
Program Product

5C33-0008-6
File No. 5360/5370-29

DOS PL/I Optimizing Compiler:
Programmer's Guide

Optimizing Compiler 5736-PL1
Resident Library 5736-LM4
Transient Library 5736-LM5

(These program products are also available as
composite package 5736-PL3)

Release 6.0

-~- ------ ------ --- --- -. _ -- - - -------------- _.-

Seventh Edition (May 1984)

This is a major revision of, and makes obsolete,SC33-0008-5.

This edition applies to Release 6.0 of DOS PL/I Optimizing
Compiler, Program Product 5736-PL1, and to any subsequent
releases until otherwise indicated in ne~ editions or technical
newsletters.

The changes for this edition are summarized under "Summary of
Amendments" following the preface. Specific changes are
indicated by a vertical bar to the left of the change. These
bars will be deleted at any subsequent republication of the page
affected. Editorial changes that have no technical significance
are not noted.

Changes are made periodically to this publication; before using
this publication in connection with the operation of IBM
systems, consult the latest IBM SYstem/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below;
requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this
publication~ If the form has been removed, comments may be
addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1971,
1972, 1973, 1974, 1976, 1981, 1984

PREFACE

This publication is a guide to the use of the PL/I Optimizing
Compiler (Program No. 5736-PLl) in a batch environment under
your operating system. It explains how to use the compiler to
compile and execute PL/I programs, and describes the features of
the operating system that may be required by a PL/I programmer.
It does not describe the language implemented by the compiler or
explain how to use the compiler with the Conversational Monitor
System (CMS); these are functions of the manuals listed under
"Associated Publications" below.

During execution of a PL/I program, the optimizing compiler
employs subroutines from the DOS PL/I Resident Library (Program
No. 5736-LM4) and the DOS PL/I Transient Library (Program No.
5736-LM5). This programmer's guide assumes the availability of
these program products.

Different release levels of the DOS PL/I Optimizing Compiler and
the PL/I Resident and Transient Libraries will provide
compatible execution provided that the following conditions are
satisfied:

• The release and service level of the transient library are
equal to or greater than the release and service level of
the resident library.

• The release and service level of the resident library are
equal to or greater than the release and service level of
the compiler.

Chapter 1, "Running a PL/I Program," through Chapter 3, "How to
Define a Data Set," of this programmer's guide cover basic
topics, and are intended primarily for casual (nonspecialist)
programmers or for newcomers to IBM systems. The reader is
assumed to have only an elementary grasp of PL/I and the basic
concepts of data processing. These chapters introduce the IBM
Disk Operating System and Disk Operating System with Virtual
Storage (DOS/VS), and explain how to run a simple PL/I program
and how to define a simple data set.

The rest of the manual contains more detailed information on the
optimizing compiler, and provides general guidance and reference
information on operating system features that are likely to be
required by the PL/I applications programmer.

Chapter 4, "The Optimizing Compiler" on page 14, describes the
optimizing compiler, the data sets it requires, its optional
facilities, and the listings it produces. Chapter 5, nThe
Linkage Editor" on page 43, contains similar information about
the linkage editor, which is always needed to prepare a PL/I
program for execution.

Chapter 6, nprogram Library Creation and Maintenance" on page
66, is concerned with the various types of program library
available under the Disk Operating System.

Chapter 7, "Data Sets and Files," through Chapter 10, "Using
VSAM Data Sets from PL/I," are concerned with the various types
of data sets that can be created and accessed by a PL/I program,
and explain how to define these data sets.

Chapter 11, "Program Checkout," describes the facilities
available for debugging PL/I programs.

Chapter 12, "Linking PL/I and Assembler Language Modules,"
explains how to write programs that contain a combination of
PL/I and assembler-language modules.

Preface iii

Chapter 13, "Checkpoint/Restart," and Chapter 14, "PL/I SORT,"
are concerned with the use of built-in subroutines included in
the optimizing compiler to provide a direct interface between
PL/I programs and the operating system checkpoint/restart and
sort facilities.

Chapter IS, "Communication with COBOL, FORTRAN, and RPG,"
describes how the PL/I interlanguage facilities permit
communication, at execution time, between programs compiled by
FORTRAN, COBOL, and RPG compilers, and executed using the
corresponding libraries.

Chapter 16, "Using PL/I on CICS," describes the use of PL/I in
conjuncti~n with CICS facilities.

Appendixes supply reference information.

ASSOCIATED PUBLICATIONS

The language implemented by the DOS PL/I Optimizing Compiler is
described in the following publication:

• OS and DOS PL/I Language Reference Manual, GC26-3977

For information on how to use the compiler under CMS, refer to:

• DOS PL/I Optimizing Compiler: CMS User's Guide, SC33-00S1

The PL/I Optimizing Compiler, its facilities, and its
requirements are described in the following DOS publication
(which also contains a comparison of the language implemented by
this compiler).

• DOS PL/I Optimizing Compiler: General Information, GC33-0004

Compile-time and execution-time messages for this compiler are
documented in the following DOS publications:

• DOS PL/I Optimizing Compiler Messages, SC33-002l

• DOS PL/I Transient Library: Messages, SC33-000S

Additional information about the object programs generated by
the DOS PL)I Optimizing Compiler and the PL/I resident and
transient modules is contained in the following DOS publication:

• DOS PL/I Optimizing Compiler: Execution Logic, SC33-0019

Information about installing and operating the DOS PL/I
Optimizing Compiler, including both system generation and
storage requirements, is contained in the following DOS
publication:

• DOS PL/I Optimizing Compiler: Installation Guide, SC33-0020

The following manuals describe the control statements that
relate to the SCP (system control programming) and the
VSE/Advanced Functions of DOS/VSE (Disk Operating System/Virtual
Storage Extended).

• DOS/VSE System Control Statements, GC33-S376

• VSE/Advanced Functions Control Statements, SC33-609S

Information on DOS/VSE·I/O macros can be found in:

• VSE/Advanced Functions Macro Reference, SC24-S2ll

The following publication provides all the VSAM information
needed to use Access Method Services in order to establish and
maintain VSAM data sets.

• DOS/VS Access Method Services User's Guide, GC33-S382

iv DOS PL/I Optimizing Compiler: Programmers Guide

SYNTAX NOTATION

INDUSTRY STANDARDS

The types of labels that may be written on magnetic tape or disk
by DOS/VSE are defined and described in the following manuals:

• DOS/VSE DASD Labels, GC33-S37S

• DOS/VSE Tape Labels, GC33-S374

The following publications contain information for assembler,
COBOL, and PL/I application programmers for preparing programs
using CICS/VS commands to execute under either CICS/DOS/VS or
CICS/OS/VS.

• Customer Information Control System/Virtual Storage
(CICS/VS) Version 1, Release 3: Application Programmer's
Reference (Command Level), SC33-0077

• Customer Information Control System/Virtual Storage
(CICS/VS) Version 1, Release 3: Application Programmer's
Reference (Macro Level), SC33-0079

For information about the capabilities of the IBM 3800 Printing
Subsystem, refer to:

• DOS/VS IBM 3800 Printing Subsystem, GC26-3900

For detailed information on the functions and capabilities of
the IBM 3881 Optical Mark Reader, refer to:

• IBM 3881 Optical Mark Reader Models 1 and 2 Reference Manual
and Operator's Guide, GA21-91~3

For definitions of terms used in this manual, see the following
publication:

• IBM Data Processing Glossary, GC20-1699

Throughout this publication, when a PL/I statement or some other
combination of elements is discussed, the manner of writing that
statement or phrase is illustrated with a uniform system of
notation. This notation is not a part of PL/Ii it is merely a
notation that is used to describe the syntax, or construction,
of the language.

For syntax notation used in this publication, see the "Syntax
Notation" section of OS and DOS PL/I Language Reference Manual.

The DOS PL/I Optimizing Compiler is designed according to the
specifications of the following industry standards as understood
and interpreted by IBM as of October, 1979:

• American National Standard Code for Information Interchange
(ASCII), X3.4 - 1977

• American National Standard Representation of Pocket Select
Characters in Information Interchange, levell, X3.77 - 1980
(proposed to ISO, March 1, 1979)

• The draft proposed American National Standard Representation
of Vertical Carriage Positioning Characters in Information
Interchange, levell, dpANS X3.78 (also proposed to ISO,
March 1, 1979)

Preface v

SUMMARY OF AMENDMENTS

MAY 1984

NEW PROGRAMMING FEATURE

SERVICE CHANGE

SEPTEMBER 1981

Support for the IBM 3370 Model 2 and 3380 Direct Access Storage
devices is provided under DOS/VSE with VSE/Advanced Functions,
Release 3.5.

The section, "Restrictions on Input/Output by FORTRAN Routines"
on page 261, has been added to Chapter 15, "Communication with
COBOL, FORTRAN, and RPG."

Other miscellaneous corrections and clarifications have been
made throughout the manual.

NEW PROGRAMMING SUPPORT

For Extended Graphic Character Set support, the GRAPHIC compiler
option, and the GRAPHIC ENVIRONMENT option, are described.

NEW PROGRAMMING FEATURE

SERVICE CHANGES

Support for the IBM 3375 Direct Access Storage device is
provided under DOS/VSE with VSE/Advanced Functions, Release 3.

This edition is for use with the new OS and DOS Pl/I language
Reference Manual. Information moved from the DOS Pl/I
Optimizing Compiler language Reference Manual into this edition
of the programmer's guide includes:

• The ENVIRONMENT attribute, data transmission statements, and
related topics.

• "Associating Data Sets with Files" on page 91.

• Chapter 15, "Communication with COBOL, FORTRAN, and RPG" on
page 247.

The following updates have been made throughout the manual:

• The SIZE operand is now required on the EXEC system control
statement.

• The lIBDEF control statement may be used in place of SYSSlB,
SYSRlB, and SYSClB when operating under DOS/VSE with
VSE/Advanced Functions.

• The lBlTYP system control statement is no longer required
when operating under DOS/VSE with VSE/Advanced Functions.

vi DOS Pl/I Optimizing Compiler: Programmers Guide

DECEMBER 1979

In addition, Appendixes B, D, G, H, and I have been removed. A
new Appendix B, "V SAM Background," and a new Appendix D, "CICS
System Information," have been added.

• Information previously found in Appendix B can be found in
DOS/VSE System Control Statements.

• Information previously found in Appendix D can be found in
DOS/VSE DASD Labels and DOS/VSE Tape Labels.

• Information previously found in Appendixes G and H have been
incorporated into the body of the manual.

Other miscellaneous corrections have been made throughout the
publication.

VSE/VSAM SPACE MANAGEMENT FOR SAM FEATURE

JANUARY 1979

DOS/VSE with VSE/Advanced Functions, Release 2, supports the
VSE/VSAM Space Management for SAM Feature of VSE/VSAM Release 2.
Informati~n on using this feature with DOS PL/I is included in
this manual.

Other changes and corrections have also been made throughout the
manual.

DEVICE SUPPORT: FIXED BLOCK DEVICES

AUGUST 1977

Support for fixed block devices is provided under DOS/VSE with
VSE/Advanced Function, Release 1.

Other changes and corrections have also been made throughout the
manual.

DEVICE SUPPORT: 3350 AND 3330-11

NEW PROGRAMMING FEATURE

DOS/VS Release 34 provides support for the 3330-11 and 3350
direct access storage devices.

Summary of Amendments vii

CONTENTS

Chapter 1. Running a PL/I Program
Performance

Compile-Time Performance
Execution-Time Performance

1
4
4
4

Chapter 2. Introduction to DOS and the DOS PL/I Optimizing
Compiler ••••••••• • • • • • •

PL/I Optimizing Compiler
Link-editing PL/I Programs

Conversational Monitor System

Chapter 3. How to Define a Data
DOS Input/Output Concepts
Processing a Data Set

ASSGN Statement
TLBL Statement
LBLTYP Statement
DLBL Statement
EXTENT Statement

Standard Files
Examples

Set

Chapter 4. The Optimizing Compiler
Compilation

Job Control for Compilation
Primary Input (SYSIPT)
Output (SYSLNK or SYSPCH)
Workspace (SYSOOI and SYS002)
Listing (SYSLST)
Source Statement Library

Compiler Options
AGGREGATE Option .. .
ATTRIBUTES[(FULLISHORT)] Option
CATALOG Option
CHARSET Option
COMPILE Option
CONTROL Option
COUNT Option
DECK Option
DUMP Option
DYNBUF Option
ESD Option
FLAG Option
FLOW Option
GOSTMT Option
GRAPHIC Option
INCLUDE Option
INSOURCE Option
LI~1SCONV Option
LINECOUNT Option
LINK Option
LIST Option
MACRO Option
MAP Option ..
MARGINI Option
MARGINS Option
MDECK Option
NAME Option
NEST Option
OFFSET Option
OPTIMIZE Option
OPTIONS Option
SIZE Option
SOURCE Option
STORAGE Option
SYNTAX Option
WORKFILE Option
XREF[(SHORTIFULL)] Option

6
7
7
8

9
9
9

10
10
11
11
11
11
11

14
14
15
15
16
16
16
17
17
21
21
21
21
21
22
22
22
22
22
23
23
23
23
23
24
24
24
24
25
25
25
25
25
25
26
26
27
27
27
27
27
28
28
28
28
29

Contents ix

Using PlIXHD to Identify COUNT Output
listings ...••.......•

Options Used For The Compilation
PREPROCESSOR INPUT ••...•.
Source Program •.•..••••

Statement Nesting level .
Attribute and Cross-reference Table

Attribute Table
Cross-reference Table

Aggregate length Table
Storage Requirements .•.
Statement Offset Addresses ..
External Symbol Dictionary (ESD)

ESD Entries
Object Module listing
Diagnostic Messages

Batched Compilations .•.•.••••
Use of SIZE and DUMP Options
Example ...•.........
Multiple Compilations in a Single Job

Compile-Time Processing
Invoking The Preprocessor
The Y.INClUDE Statement
Use of the INCLUDE Option

Chapter S. The Linkage Editor
Input to the linkage Editor

. . . .
Output from the linkage Editor ..
Additional linkage Editor Processing

Object Module and Program Phase Structure
Text
External Symbol Dictionary . . . •
Relocation Dictionary ••.• •

linkage Editor Processing for a Pl/I Program
Multiprogramming Considerations

Job Control Statements for the linkage Editor
EXEC Statement .." ...•.•
lBlTYP Statement .•.....•.•
OPTION Statement•

linkage Editor Control Statements
ACTION Statement . • • •
INCLUDE Statement
PHASE Statement .•......••
ENTRY Statement ..•...
Example of Control Statements

Linkage Editor listing ...•.
Overlay (Multiphase) Programs

Constructing Overlay Programs

.

Pl/I Resident library Modules •. . • • .
link-Editing Wide Overlay Structures••
link-Editing Tall Overlay Structures .•
link-Editing Complicated Overlay Structures •.
Improvements to Overlay Programs link-Edited with

AUTOlINK ...•........•.•. . . •
Improvements to Overlay Program link-Editing with NOAUTO

DOS Releases Before Release 28.0
Data Variables and Files in Overlay Programs
Overlay Programs in a Foreground Partition

Examples of Overlay Program Creation
Use of Over lay Phases ..•...

Linking Pl/I and Other language Modules
Establishing Initial Control .•.•
linking Multiple Object Modules •••. •.•.•••

Relink-Editing for 3330-11 and 3350 Under DOS/VS Release
34•......

Chapter 6. Program Library Creation and Maintenance
Program libraries

Core-Image library •...
Including New Programs .
Deleting Unwanted Programs

Source Statement library ...•
Inserting a Source Statement Book .•
Deleting Unwanted Source Statement.~ooks

x DOS Pl/I Optimizing Compiler: Programmers Guide

29
30
31
31
31
32
32
32
33
33
34
34
35
36
37
37
38
39
39
40
40
40
41
41

43
43
43
43
44
44
45
45
46
46
46
47
47
47
48
48
49
50
S2
S2
52
53
54
54
54
55
56

56
57
57
57
59
59
61
63
63
63

64

66
66
67
67
67
68
68
69

Relocatable Library•..
Inserting a Relocatable Object Module
Compiling and Cataloging into a Relocatable Library
Deleting Unwanted Relocatable Object Modules

Chapter 7. Data sets and Files
Data Sets

Data Set Names
Blocks and Records
Information Interchange Codes
Record Formats

Fixed-Length Records
Variable-Length Records
Undefined-Length Records

Data Set Organization
Labels
Data Sets and Files
Job Control Statements for Data Sets

The ASSGN Statement
The TLBL Statement
The DLBL and EXTENT Statements
The LBLTYP Statement

DOS Data Management
Buffers
Access Methods• . . .
VSE/VSAM Space Management for SAM Data Sets

Auxiliary Storage Devices . . • . .
Card Readers and Punches

IBM 1442 Card Punch
IBM 2501 Card Reader.
IBM 2520 Card Read Punch
IBM 2540 Card Read Punch
IBM 2560 Card Read Punch
IBM 5425 Card Read Punch
IBM 3504 and 3505 Card Readers
IBM 3525 Card Punch
Features of the IBM 3504, 3505, and 3525
IBM 3800 Printing Subsystem
IBM 3881 Optical Mark Reader

Line Printers
Magnetic Tape

Track Width
Translation Feature
Conversion Feature
Recording Density
Magnetic Tape Volumes with Multiple Data Sets
Magnetic Tape Labels
Backward Processing of Magnetic Tape Data Sets
Use of the ENDFILE Condition

Direct Access Devices
IBM 3540 Diskette Input/Output Unit

Associating Data Sets with Files
Associating Several Files with One Data Set

The ENVIRONMENT Attribute
Data Set Organization Options •.........
ENVIRONMENT Options

Record Format Options for Record-Oriented Data
Transmission

Record Format Options for stream-Oriented Data
Transmission

GENKEY Option
MEDIUM Option • .
RECSIZE Option •
BL KSIZE Opti on•.....
Record Format, BLKSIZE, and RECSIZE Defaults
BUFFERS Option
VERIFY Option•.
EXTENTNUMBER Option
COBOL Option
SCALARVARYING Option . • . .
KEYLENGTH Option

Chapter 8. Defining Data sets for stream Files •
Defining Files for Stream-Oriented Data Transmission

Contents

69
69
69
70

72
72
72
72
73
73
73
74
75
75
76
76
76
77
77
77
77
78
78
78
79
80
80
80
80
80
80
81
81
82
82
82
87
87
88
89
89
89
89
89
89
90
90
91
91
91
91
93 .
94
94
94

95

97
97
98

102
102
103
103
104
104
104
105
105

106
106

xi

ENVIRONMENT Options
CONSECUTIVE Option•
Record Format Options
RECSIZE Option
Record Format, BlKSIZE, and RECSIZE Defaults
GRAPHIC Option

Creating a Data Set for Stream-Oriented Data Transmission
Essential Information•...•....•..
Exampl e ..•...........•...•.•..

Accessing a Data Set for Stream-Oriented Data Transmission
Essential Information
Record Format
Example•.....

Print Files •
Record Format
Example

Tab Control Table
SYSIN and SYSPRINT Files

Chapter 9. Using CONSECUTIVE~ INDEXED~ and REGIONAL Data
Sets •••••••••••• • • • • • • • •

Creating and Accessing Data Sets for Record-Oriented
Transmission

CONSECUTIVE Data Sets • . •
CONSECUTIVE Organization
Defining a CONSECUTIVE Data Set
ENVIRONMENT Options for CONSECUTIVE Data Sets

ASCII Option
ASSOCIATE Option
BUFOFF Option and Block Prefix Fields
CMDCHN Option
COlBIN Option
CONSECUTIVE Option
CTlASA and CTl360 Options
FIlESEC Option
FUNCTION Option
LEAVE and UNLOAD Options
NOFEED Option
NOLABEl Option
NOTAPEMK Option
OMR Option
RCE Option .
STACKER Option
VOL SEQ Option
HRTPROT Option

Creating a CONSECUTIVE Data Set
Essential Information ...

Accessing a CONSECUTIVE Data Set
Essential Information
Record Format•

Example of CONSECUTIVE Data Sets
Punching Cards and Printing . • . .

Exampl e•
Device-Associated Files (IBM 3525 Card Punch)

INDEXED Data Sets
INDEXED Organization

Indexes
Keys
Embedded Keys .•...

Defining an INDEXED Data Set•
ENVIRONMENT Options for INDEXED Data Sets

ADDBUFF Option ..
HIGHINDEX Option ".
INDEXAREA Option
INDEXED Option
INDEXMUlTIPLE Option
KEYlOC Option .•..
NOWRITE Option
OFLTRACKS Option

Creating an INDEXED Data Set
Essential Information
Master Index
Cylinder Index
Prime Data Area

xii DOS Pl/I Optimizing Compiler: Programmers Guide

. . . '. .

106
107
107
108
108
109
109
109
110
III
III
112
113
113
114
115
116
117

118

118
119
119
119
120
121
121
122
123
124
124
124
124
125
126
126
126
127
127
127
128
128
128
128
129
130
130
130
130
130
133
133
134
134
136
137
137
139
139
139
140
140
140
140
141
142
142
142
142
143
143
143

Overflow Areas
Record Format and Keys
Creating Dummy Records and Deleting Records

Accessing an INDEXED Data Set
Sequential Access
Direct Access
Essential Information

Reorganizing an INDEXED Data Set
Examples of INDEXED Data Sets

REGIONAL Data Sets
REGIONAL Organization
Defining a REGIONAL Data Set
ENVIRONMENT Options for REGIONAL Data Sets

REGIONAL Option
Keys
REGIONAl(l) Organization
REGIONAl(3) Organization

Essential Information for Creating and Accessing REGIONAL
Data Sets

Examples of REGIONAL Data Sets
REGIONAlCl) Data Sets
REGIONAl(3) Data Sets

Chapter 10. Using VSAM Data sets from PL/I
VSAM Organization

Keys for VSAM Data Sets
Keys for Indexed VSAM Data Sets
Relative Byte Addresses (RBA)
Relative Record Numbers

Choice of Data Set Type
Defining a VSAM Data Set to PL/I
ENVIRONMENT Options for VSAM Data Sets

VSAM Option
PASSWORD Option
GENKEY Option
REUSE Opti on
BKWD Option .

Performance Options
SKIP Option
BUFND Option
BUFNI Option
BUFSP Option

Compatibility with Other Data Set Organizations
The VSAM Compatibility Interface
Adapting Existing Programs for VSAM Data Sets

CONSECUTIVE Files
INDEXED Files
REGIONAL Files

Associating Several VSAM Files with One Data Set
Shared Data Sets
How to Execute a Program Using VSAM Data Sets

Associating an Alternate Index Path with a File
Entry-Sequenced Data Sets

loading an ESDS
Sequential Access

Key-Sequenced and INDEXED Entry-Sequenced Data Sets
loading a KSDS
Sequential Access
Direct Access
SAMEKEY Built-In Function

Relative-Record Data Sets
loading an RRDS •....
Sequential Access
Direct Access

Examples with Entry-Sequenced Data Sets ..
Defining and loading an Entry-Sequenced Data Set
Updating an Entry-Sequenced Da~a Set . . .
Creating a Unique Key Alternate Index Path for an ESDS
Creating a Nonunique Key Alternate Index Path for an

ESDS
Using Alternate Indexes and Backward Reading on an ESDS

Examples with Key-Sequenced Data Sets
Defining and loading a Key-Sequenced Data Set
Updating a Key-Sequenced Data Set

Contents

144
144
144
145
145
147
147
147
148
151
151
152
152
152
154
156
158

159
160
160
162

167
167
168
168
169
169
169
172
172
173
173
174
174
174
175
175
175
176
176
176
177
177
177
177
177
177
178
178
178
179
179
179
181
181
181
184
184
184
184
185
185
185
188
189
189

190
191
193
193
193

xiii

Creating a Unique Key Alternate Index Path for a KSDS
Using a Unique Key Alternate Index Path with a KSDS

Examples with Relative-Record Data Sets 0 0 0 0

Defining and Loading a Relative Record Data Set
Updating a Relative-Record Data Set 0 0 0 0 0 0 0 0

Chapter 11. Program Checkout
Conversational Program Checkout
Compile-Time Checkout
Linkage-Editor Checkout
Execution-Time Checkout 0

logical Errors in Source Programs
Invalid Use of PL/I
Unforeseen Errors
Insufficient Storage
Operating Error
Invalid Input Data 0 0 0 0

Unidentified Program Failure 0 0 0 0 0

Compiler or Library Subroutine Failure
System Failure 0 0 0 0 • • 0 0 0 0

Statement Numbers and Tracing 0 0 0 0 0 0 0 • •

Dynamic Checking Facilities .. 0 0 0 •

Control of Conditions . 0 0 0 • 0 0 • 0 0 0 0

Use of the Pl/I Preprocessor in Program Checkout
Condition Codes 0 0 ••

Dumps . 0 0 0 0 • • 0 • 0 0 • • 0 0 • 0 0

Trace Information 0 0 0 0 0 0

File Information . . 0 •

Debugging Information
REPORT Option
QUICK DUMP Option
Hexadecimal Dump

Execution-Time Return Codes

Chapter 12. Linking PL/! and Assembler Language Modules
Overview 0.. 0 0 • 0 0 0 0 0 0 •

Parameter Passing 0 0 •

Environment 0... 0
How To Write Your Routines

The PL/I Environment
Establishing the PL/I Environment 0..

Use of PLIMAIN to Invoke Pl/I Procedure
PLICAllA and PlICALlB o. 0 • 0 0 0 0 0 •

The Dynamic Storage Area (DSA) and Save Area
Calling Assembler Routines from Pl/I 0 0 0 0 0 0 • 0

Invoking a Nonrecursive Assembler Routine
Invoking a Recursive Assembler Routine
Use of Register 12 .. 0 0 0 • 0 • • • 0 • • • • • • •

Calling IOCS Modules from Assembler Subroutines
Calling PL/I Procedures from Assembler Language

Establishing the Pl/I Environment for Multiple
Invocations ... 0 • 0 • • • • • • 0 •• 0., 0

Establishing the PL/I Environment Separately for Each
Invocation 0 • • • • • • 0 • • • • 0 0

PL/I Calling Assembler Calling Pl/I .
Assembler Calling PL/I Calling Assembler

Overriding and Restoring PL/I Error-Handling 0 • 0 0

Arguments, Parameters, and Return Codes 0 0 0 0 • 0 • 0

Receiving Arguments in an Assembler-Language Routine
Assembler Routine Entry Point Declared with the

ASSEMBLER Option . 0 • 0 • • • 0 0 0 0 0 0 • • 0 0

Assembler Routine Entry Point Declared without the
ASSEMBLER Option" . 0 0 0 • 0 • 0 • 00 0 0 • 0

Passing Arguments from an Assembler-l.a'nguage Routine
Return Code 0 0 • • 0 0 0 • 0 • 0 • 0 •

Chapter 13. Checkpoint/Restart
Checkpoints 0 • • • • 0 •

Restarts .. 0 • • • • • • 0

PLICKPT 0 0 • • • • • • • 0 •

Taking Checkpoints on Magnetic Tape
Taking Checkpoints on Disk Storage

Effect of Restart on Data Sets
Unit-Record Data Sets

xiv DOS PL/I Optimizing Compiler: Programmers Guide

196
197
198
199
201

202
202
202
203
203
204
204
204
205
205
205
205
206
206
207
207
208
209
209
209
211
212
212
212
213
213
213

215
215
215
215
216
216
217
217
217
217
218
218
219
219
220
221

221

224
226
226
226
226
227

227

227
228
228

229
229
229
229
231
231
232
232

Data Sets on Direct-Access Devices
Data Sets on Magnetic Tape

Example

Chapter 14. PL/I SORT
Storage Requirements

Entry Names
Procedures Invoked Via Sort User Exits
Data Sets Used By Sort/Merge

Input Data Sets
Work Data Sets
Output Data Sets
Symbolic Device Names ..

Invoking Sort/Merge From PL/I
Examples of Using PL/I Sort•......

Sorting Records Directly From One Data Set To Another
(PLISRTA)

User Exit El5 (PLISRTB)
Using User Exit E35 To Handle Sorted Records
Passing Records To Be Sorted, and Receiving Sorted

Records (PLISRTD)
Sorting Variable-Length Records

Chapter 15. Communication with COBOL, FORTRAN, and RPG
Arguments and Parameters
Passing Arguments to COBOL or FORTRAN Routines
Invoking COBOL or FORTRAN Routines

Examples
Passing Arguments from COBOL or FORTRAN Routines

Data Mapping
Invoking PL/I Routines
Matching COBOL Arguments/Parameters
Matching FORTRAN Arguments/Parameters
Matching RPG Arguments/Parameters
Compile-Time Return Codes
Using Common Storage
Interlanguage Environment

Establishing the PL/! Environment
Establishing the FORTRAN Environment
Restrictions on Input/Output by FORTRAN Routines
Handling Interrupts
GO TO Statement
Terminating FORTRAN and COBOL Routines

Chapter 16. Using PL/I on CICS
CICS-Supplied Interface
PL/I-Supplied Interface . .
Ways of Writing CICS/VS Transactions in Pl/I

Macro-Level Interface
Command-Level Interface

PL/I Storage
Lifetime of Storage Acquired from CICS/VS
Storage Classes

SYSPRINT
Declaration of SYSPRINT

CHECK and PUT DATA
Execution-Time Options
Error Handling

Abend Codes Used by PL/I Under CICS
IBMBEER

Use of PLIDUMP
Interlanguage Communication--OPTIONS ASSEMBLER
STORAGE and CURRENTSTORAGE
PL/I Program Termination
PL/I Shared Library for CICS/DOS/VS
Using the CICS Facilities

Appendix A. Programming Example
Contents of Listings

Appendix B. VSAM Background
The VSAM Catalog
VSAM Data Sets
Access Method Services

.

232
232
232

234
234
234
235
235
235
236
237
237
237
238

238
240
240

240
240

247
248
248
250
251
252
252
252
254
255
256
257
258
258
258
260
261
262
263
263

265
266
267
267
267
269
270
270
270
271
271
272
272
274
276
277
278
278
279
279
279
280

281
281

297
297
297
'298

Contents xv

Password Protection
The Life of a VSAM Data Set

Defining a VSAM Data Set
DEFINE CLUSTER Command
Using the Access Method Services Program

Sharing VSAM Data Sets
Sharing a Data Set between Jobs
Sharing within a Job

Deleting a VSAM Data Set
Al ternate Index Paths

How to Build and Use Alternate Index Paths
Terminology

Planning and Coding with Alternate Indexes
Passwords
Performance

How to Build an Alternate Index
DEFINE ALTERNATEINDEX Command
BLDINDEX Command
DEFINE PATH Command

Executing the Access Method Service Commands to Create an
Alternate Index Path

Deleting an Alternate Index

Appendix C. Compatibility with the DOS PL/I D Compiler
Alignment of Strings
Assembler Language Interface
Built-in Function without Arguments
Expressions in DO Statements
SYSIN and SYSPRINT
E- and F-format Items
Buffered Data Sets
REGIONAL Data Sets ..
Halfword Binary Numbers ..
Labels on DECLARE Statements
ONSYSLOG Option

DYNDUMP
DISPLAY Statement and REPLY Option
INDEX Built-in Function
PRECISION Built-in Function ..
Redundant Expression Elimination
SUM and PROD Built-in Functions
Attributes of File Parameters
Defining of Pictures
Sterling Pictures
Source Program Errors
RETURNS Keyword in PROCEDURE and ENTRY Statements
Entry Names as Arguments
ENDFILE Condition
MEDIUM Option•.
SIZE Condition
INITIAL Attribute and Statement Length
Use of the DEFINED Attribute

Appendix D. PL/I-CICS System Information •••••
CICS/VS-PL/I Interface Components •

CICS/VS-PL/I Application Program Interface
CICS/VS-PL/I Nucleus Module DFHSAP

Appendix E. The VTOC Display utility

Appendix F. Requirement for Problem Determination and APAR
Submission •••••••

Original Source Program
Use of the Preprocessor
Job Control Statements .
Operating Instructions/Console Log
Listings
Linkage Editor Map
Execution-time Dumps
Compiler Failure under CMS
Applied PTFs
Submitting the APAR

Index
xvi DOS PL/I Optimizing Compiler: Programmers Guide

299
299
299
300
303
304
304
304
305
306
306
306
307
307
307
308
309
310
311

312
312

314
314
314
314
314
315
315
315
315
315
316
316
316
316
316
317
317
317
317
317
317
317
318
318
318
318
318
318
319

321
321
322
323

325

326
326
326
326
327
327
327
327
327
328
328

330

FIGURES

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

29.
30.

31.
32.

33.
34.

35.

36.
37.
38.
39.

40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.

59.
60.

PL/I Programming Example . ..
Data Set Information that Must Be Supplied
Example of a Program that Creates a Data Set
Example of a Program that Accesses a Data Set
Compiler Data Sets .
Compiler Options, Abbreviations, and Defaults
Compiler Options Arranged by Function
Compiler Listing and Associated Options
Standard ESD Entries
Example of Batched Compilations . . .
Listing of Source Programs with the INCLUDE Option
Overlay Structure
Link-Editing a Tall Overlay Structure
Library Modules that Can Be Placed Anywhere in an
Overlay Program . .
An Overlay Program
Overlay Program Using Batched Compilation
Use of ENTRY Statement in Multilanguage Programs
Cataloging Multiple Object Modules .
Fixed-Length Records
Variable-Length Records
Access Methods for Record-Oriented Data Transmission
IBM 2540 Card Read Punch: Stacker Numbers
Format of IBM 3881 Output Records
Format of Magnetic Tape Volumes .
Attributes of PL/I File Declarations .
Options of PL/I File Declarations .
Device Types and Corresponding Specifications
Device Types Associated with SYSIPT, SYSLST, and
SYSPCH ..
Data Set Information for Stream-Oriented Transmission
Creating a Data Set with Stream-Oriented Data
Transmission .
Writing Graphic Data to a Stream File
Accessing a Data Set Using Stream-Oriented
Transmission .
Creating a Data Set Using a PRINT File ..•
PL/I Structure PLITABS for Modifying the Preset Tab
Settings . . .
A Comparison of Data Set Types Available to PL/I
Record I/O. .
Record-Oriented Transmission Data Set Information
CONSECUTIVE Data Set Statements and Options . .
Creating and Accessing a CONSECUTIVE Data Set
American National Standard Print and Card Punch
Control Characters (CTLASA) ..
2540 Card Read Punch Control Characters (CTL360)
IBM Machine Code Print Control Characters (CTL360)
3525 Card Printer Control Characters (CTLASA)
3525 Card Printer Control Characters (CTL360)
Printing with Record-Oriented Data Transmission
INDEXED Data Set Statements and Options
Index Structure of an INDEXED Data Set
Adding Records to an INDEXED Data Set. . . .
Effect of KEYLOC Values on Establishing Embedded Keys
Record Format Information for an INDEXED Data Set
Record Formats in an INDEXED Data Set
Creating an INDEXED Data Set ..
Updating an INDEXED Data Set
REGIONAL Data Set Statements and Options
Creating a REGIONAL(l) Data Set
Updating a REGIONAL(l) Data Set .
Creating a REGIONAL(3) Data Set .•.
REGIONAL(3) Data Sets: Direct Update
REGIONAL(3) Data Sets: Sequential Update and Direct
Input . . .
Types and Advantages of VSAM Data Sets
VSAM Data Sets and Permitted File Attributes

3
10
12
13
16
18
19
30
37
39
42
53
56

58
60
61
64
71
74
74
79
80
88
90
95
96
99

100
110

111
112

113
115

117

118
119
120
129

131
131
131
132
132
133
135
136
138
141
145
146
149
150
153
160
161
163
164

165
169
173

Figures xvii

61.
62.
63.
64.
65.

66.
67.
68.

69.

70.
71.
72.

73.
74.
75.
76.
77.

78.

79.

80.
81.
82.
83.

84.

85.
86.
87.
88.

89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.

101.
102.
103.
104.
105.
106.

Processing Allowed on Alternate Indexes
VSAM Entry-Sequenced Data Set Statements and Options
VSAM INDEXED Data Set Statements and Options
VSAM Relative-Record Data Set Statements and Options
Defining and loading an Entry-Sequenced Data Set
(ESDS)
Updating an ESDS ..•.. ..• .
Creating a Unique Key Alternate Index Path for an ESDS
Creating a Nonunique Key Alternate Index Path on an
ESDS.•.•
Alternate Index Paths and Backward Reading with an
ESDS •
Defining and loading a Key-Sequenced Data Set (KSDS)
Updating a KSDS
VSAM Methods of Insertion into a Key-Sequenced Data
Set.
Creating an Alternate Index Path for a KSDS
Using a Unique Alternate Index Path to Access a KSDS
Defining and loading a Relative-Record Data Set (RRDS)
Updating an RRDS•......
Skeletal Code for a Nonrecursive Assembler Routine to
be I nvoked from Pl/ I •.. .. •.
Skeletal Code for a Recursive Assembler Routine that
Uses the Pl/I Storage Scheme . • . . . • . • . .
Invoking Pl/I Procedures from an Assembly-language
Routine .. •.... ..
Use of PlICAllA . ..••.. .
Use of PlICAllB•• ••
Inserting a Pl/I Entry Point Address in PlIMAIN
Establishing PlIMAIN as an Entry in the
Assembler-language Routine
PlIMAIN.
Methods of Overriding and Restoring Pl/I
Error-Handlin.g . .

ENTRY

Example of Pl/I Routine to Take Checkpoints
Sort/Merge File Names and Symbolic Devices
Using Pl/I to Invoke Sort/Merge (PlISRTA) • .
Using User Exit E15 to Supply Records for Sorting
(PlISRTB)
Using User Exit E35 to Handle Sorted Records (PlISRTC)
Using User Exits E15 and E35 (PlISRTD)
Using PlISRTB to Sort Varying-length Strings
Sorting Variable-length Records (PlISRTC)
COBOl-Pl/I Data Equivalents•..•
Declaration of a Data Aggregate in COBOL and Pl/I
FORTRAN-Pl/I Data Equivalents
Example of Pl/I Procedure To Be Invoked from RPG II
Return Codes Produced by Pl/I Data Types . •
Extent of Pl/I Environment . • .
Pl/I Restrictions when Used with CICS ..
CICS-Supplied Interface Restrictions and
Pl/I-Supplied Interface Status
Format of Records Sent to SYSPRINT
Example Program Source Statements •
Base Cluster, Alternate Indexes, and Paths
Commands Required to Create an Alternate Index Path
DFHPllI link-Edited into Transaction ..•.
Summary of Requirements for APAR Submission

xviii DOS Pl/I Optimizing Compiler: Programmers Guide

179
180
182
186

188
189
189

190

191
194
195

196
197
198
199
200

218

220

222
224
224
225

225

226
233
236
239

241
242
243
245
246
254
255
256
257
259
261
266

268
271
281
308
313
322
328

CHAPTER 1. RUNNING A PL/I PROGRAM

In describing how to run a PL/I program, this chapter mentions
some of the features of the IBM Disk Operating System (DOS) and
additional features available when running under a Virtual
Storage operating system (DOS/VS). For readers unfamiliar with
the Disk Operating System, these features are described in
Chapter 2.

This chapter describes how to run a program that uses card input
and printed output. Chapter 3 describes how to define simple
consecutive data sets for creation and access by a PL/I program.

Using the DOS PL/I Optimizing Compiler to run a PL/I program
involves three steps:

1. Compilation

2. Link-editing

3. Execution

The first step, compilation, is necessary to create an object
module from the PL/I source program. The second step,
link-editing, is necessary to combine the PL/I object module
with object modules from the PL/I library or other programs to
form an executable program. The third step is simply the
execution of the executable program created in the link-editing
step.

When you submit a PL/I program as a job for execution, you must
supply the appropriate DOS job control statements so that the
operating system can initiate the required functions in the
correct order. The basic job control statements are:

• The JOB statement--initiates the job.

• The OPTION statement--specifies options for the job.

• The EXEC statement--initiates loading and execution of a
program.

• The end-of-data statement (/*).

• The end-of-job statement (/&).

A typical sequence of DOS job control statements, PL/I source
statements, and data for the execution step follows:

// JOB PLITEST
// OPTION LINK
// EXEC PLIOPT,SIZE=64K

PL/I source statements

/*
// EXEC LNKEDT
// EXEC ,SIZE=64K

data

Chapter 1. Running a PL/I Program 1

If you use punched cards as input to your system, all job
control statements start in column 1. Apart from the
end-of-data (/*> and the end-of-job (/&) statements, all job
control statements have // in the first two columns, followed by
at least one blank, and a job control keyWord such as EXEC,
OPTION, or JOB.

The JOB statement is always the first statement in a DnS job.
Code it as follows:

// JOB jobname [job-identification]

where jobname is any name of up to eight alphameric characters,
the first of which must be an alphabetic character, and
job-identification is an optional field that can contain any
additional comment or installation-defined information about the
job that you may want to record.

The OPTION statement with the LINK option must be included to
signify that the compiler should prepare an object module for
link-editing. Code the OPTION statement as follows:

// OPTION LINK

The EXEC statements must be present to invoke the optimizing
compiler for the compilation step, the linkage editor for the
link-editing step, and the executable PL/I program for the final
step. To invoke the compiler, code the EXEC with the SIZE
option as follows:

// EXEC PLIOPT,SIZE=nK

where n specifies the amount of storage that is to be used by
the program.

The DOS PL/I Optimizing Compiler can also be invoked from a
cataloged procedure, using the form PROC=procedure-name.

To invoke the linkage editor, code the EXEC statement as
follows:

// EXEC LNKEDT

To invoke the executable PL/I program, code the EXEC statement
as follows:

// EXEC ,SIZE=nK

The last use of the EXEC statement need not include the name of
a program as an operand since an EXEC statement without a
program name operand will cause the last executable program that
was link-edited to be executed. Hence, this form of the EXEC
statement will normally be used only immediately following a
link-editing step. However, the SIZE operand must be used in
either case:

// EXEC program-name,SIZE=nK

or

// EXEC ,SIZE=nK

The end-of-data statement (/*> must be used to indicate the end
of the PL/I source program and the end of any data that is used
by the PL/I program when it is executed.

The end-of-job (/&) statement must be used to indicate the end
of the job.

A complete set of job control statements for a PL/I compilation,
link-editing, and execution is given in the programming example
in Figure 1 on page 3.

2 DOS PL/I Optimizing Compiler: Programmers Guide

// JOB FIGOIOI
// OPTION LINK
// EXEC PLIOPT,SIZE=64K
/* PROGRAMMING EXAMPLE TO PRINT THE SUM OF */
/* PAIRS OF VALUES OBTAINED FROM PUNCHED */
/* CARD INPUT */

TEST: PROCEDURE OPTIONS(MAIN);
ON ENDFILECSYSIN) GOTO ENDTST;
DECLARE CA,B,C) FIXED DECIMAL(3);

NEXT: GET FILECSYSIN) DATA (A,B);
C=A+B;

ENDTST: END TEST;
/*
// EXEC LNKEDT
// EXEC ,SIZE=64K
A=131 B=75;
A=2 B=907;
A=-14 B=14;
A=341 B=429;
A=-245 B=102;
A=999 B=-lOO;
/*
/&

PUT FILE(SYSPRINT) SKIP DATA(A,B,C);
GOTO NEXT;

Figure 1. PL/I Programming Example

When using the DOS PL/I Optimizing Compiler with DOS/VS,
DOS/VSE, and DOS/VSE with Advanced Functions, the following are
available:

Virtual storage
Multiple user partitions
Relocating loader
Catalogued procedures
Virtual Storage Access Method

With virtual storage, the address space available for problem
programs is not limited by the physical size of main storage.
Large programs no longer need to be structured by overlay
techniques to fit into the available main storage, and
multiprogramming operations are less constrained by the size of
main storage.

Under DOS/VS, up to five partitions can be specified at system
generation time. These are: BG, F4, F3, F2, and Fl, in
increasing order of priority. More partitions may be specified
under DOS/VSE with Advanced Functions. The number of partitions
is dependent upon the release level of your system.

The relocating loader can load a program at any address in any
partition without the need to write self-relocating programs or
to link-edit again. The DOS PL/I Optimizing Compiler will
execute in any of the five partitions without the need for
multiple copies of the compiler; output from the compiler will
also execute in any partition.

DOS/VS makes available an additional library, the procedure
library. This is used to contain cataloged procedures; for
example, the job control statements necessary to compile,
link-edit, and execute a program.

A description of PL/I support for VSAM data sets is given in
Chapter 10.

Chapter 1. Running a PL/I Program 3

PERFORMANCE

The methods of obtaining optimum performance depend on the (
system configuration and the workload of the machine, but some \
general guidelines are set out below.

COMPILE-TIME PERFORMANCE

The DOS PL/I Optimizing Compiler has been designed to adjust its
processing to make full use of the storage available to it,
whether real or virtual. The compiler uses its spill file when
the storage available to it is insufficient; the point at which
no spilling occurs depends on the size and content of the
program being compiled.

The compile time in virtual mode is affected by the relative use
of the compiler spill file and the page data set and the
relative speed of the spill file device and the page data set
device.

If the page data set is on a faster device than the compiler
spill file, it may be better to use a large virtual partition
and specify a SIZE option just large enough to avoid using the
spill file. This situation may, however, be altered if other
partitions are in contention for these devices. If the compiler
spill file and the page data set are on the same drive, there
will be contention between the two.

It is possible to compile some programs with less real storage
than the SOK bytes design point of the compiler, but performance
will be degraded. To minimize the overcommitment, the amount of
virtual storage used should be restricted by specifying a SIZE
option that is the larger of SOK bytes or the amount of real
storage expected to be available.

EXECUTION-TIME PERFORMANCE

Some PL/I features that may not be practical under DOS are more
feasible under DOS/VS because the constraint of real storage
size is reduced; these include the STMT, FLOW, and COUNT
compiler options, and the PUT DATA and CHECK statements. Use of
these features will increase program size and may degrade
performance, but could give savings in terms of reduced
debugging time.

The performance of a program under DOS/VS and DOS/VSE depends on
the address reference pattern; if this is localized, there will
be less likelihood of system paging than if the whole virtual
address space is referenced randomly. Use of PL/I block
structuring helps to keep address references to object code
localized.

Many of the hints in the OS and DOS PL/I Language Reference
Manual in the section on "Efficient Programming" are applicable
to program performance under DOS/VS. The following points
should also be considered when using PL/I for execution under a
virtual storage operating system:

• Bit string operations and conversions done by library calls
should be avoided.

• The inline I/O facility should be used wherever possible,
and blocking factors should be increased as far as
consistent with other requirements of the program.

• Large multidimensional arrays should be processed, or
cross-sections passed as arguments, in row major order, not
column major order.

• List-processing applications, in which data structures are
chained together, may cause paging when the chain is

4 DOS PL/I OptimizingCompilerl Programmers Guide

•

followed. The ALLOCATION built-in function is implemented
as a scan through a chain of allocations of controlled data.

Near simultaneous references to variables declared in
different blocks may cause paging.

• Care must be taken in creating load modules for programs as
the layout of a load module becomes important when it is
executed in virtual mode. Infrequently used modules such as
IBMBERR, IBMBOCL, and IBMBPGR should be grouped away from
more frequently used modules.

Chapter 1. Running a PL/I Program S

CHAPTER 2. INTRODUCTION TO DOS AND THE DOS PL/I OPTIMIZING COMPILER

The IBM Disk Operating System (DOS) consists of a control
program and a number of service programs that together assist
both the operator and the programmer in the use of IBM
computers. An operating system relieves the programmer and
operator of many time-consuming tasks, including the allocation
of internal and external storage space, the control of
input/output devices, and the control of the jobs being
processed by the system.

It is often necessary to execute two or more programs as a
related group, passing information created by one program as
input to the following program. Such a group of programs can be
executed as a self-contained job by using the batched job
processing facilities of the Disk Operating System. Each
program executed within the job is processed as a separate job
step.

The control program supervises the execution of all other
programs, and services the common requirements of these programs
during execution. It has three main components:

1. Supervisor: The supervisor controls and coordinates all
activity within the computing system.

2. Job Control: The job control program processes all job
control statements and commands that enter the system.

3. Initial Program Load (IPL): The IPL routine is used by the
operator to reactivate the operating system at the beginning
of the day's processing, or after some other operating
system or stand-alone program has been used.

The operating system allows many programs to occupy main storage
simultaneously. Each program is loaded into a predefined area
of main storage known as a partition. Under DOS/VSE with
Advanced Functions, the number of partitions provided is
dependent upon the release level of your system. One partition
is known as the background partitioni the remaining partitions
are the foreground-l partition through the foreground-n
partition, respectively. A program can be executed in any
partition as a job step within a job. Alternatively, a program
can be initiated in any foreground partition by a command from
the operator's console.

Programs executed concurrently in the various partitions compete
with each other for the resources of the system, such as the
central processing unit or an input/output channel. The
allocation of such resources is controlled by the supervisor
program. The relative priority of the program is set by the
partition in which it is executed. The foreground-l partition
has the highest priority and the background partition has the
lowest priority.

The service programs of the Disk Operating System include
librarian and a number of utility programs; all these are
described in separate publications which are listed in the
preface.

The operating system provides facilities for the creation and
maintenance of three different types of program libraries
(collections of programs stored on a direct-access device). The
libraries are the core-image library, the relocatable library,
and the source statement library.

(
\

A core-image library is used to hold executable (link-edited) ~
programs; all programs to be executed under the control of the ~
DOS supervisor program must be stored in a core-image library.

6 DOSPL/I Optimizing Compiler: Programmers Guide

A relocatable library is used to hold relocatable (compiled or
assembled, but not link-edited) object modules; object modules
in a relocatable library can be readily incorporated into an
executable program by the linkage editor.

A source statement library is used to hold sequences of source
program statements that can be included in a compilation by the
compiler (by means of the Y.INClUDE statement). Such sequences
of statements are termed books.

Each system will include a system core-image library, a system
relocatable library, and a system source statement library. The
system libraries will contain the system control programs
supplied by IBM as components of the Disk Operating System.
System libraries can also contain IBM program products and
user-written programs. Alternatively, such programs can be held
in additional private libraries. Private libraries can also be
created for the three types of program libraries. Chapter 6 on
page 66, gives further information about these libraries.

PL/I OPTIMIZING COMPILER

The DOS Pl/I Optimizing Compiler is an IBM program product
designed for use with the IBM Disk Operating System. This
compiler translates Pl/I source statements into machine
instructions. The set of instructions resulting from the
compilation of a Pl/I external procedure is termed a relocatable
object module. Before such a module can be executed, it must be
processed by the linkage editor and placed in a core-image
library.

The compiler can be used in any partition, but can only be
initiated as a job step within a job.

LINK-EDITING PL/I PROGRAMS

The linkage editor is a service program that converts
relocatable object modules into core-image modules (termed
executable programs, or executable program phases in the case of
multiphase programs). The linkage editor can obtain its input
both from SYSlNK input stream and from a relocatable library.

A feature of the linkage editor is its ability to combine two or
more relocatable object modules into a single executable
program. This feature is particularly significant for a Pl/I
program because the optimizing compiler does not generate
directly all the machine instructions that are required to
present a source program. Instead, for frequently-used
functions such as input/output, the compiler generates
references to standard Pl/I library subroutines. Many of these
subroutines are in the DOS Pl/I Resident library; the remainder
are in the DOS Pl/I Transient library. The linkage editor
retrieves those resident library modules that are required for a
Pl/I program from the relocatable library and incorporates them
into the executable program.

The subroutines in the transient library are not incorporated by
the linkage editor into the executable program. These routines
are loaded directly into storage from the transient library,
which is held in the core-image library, only when required
during the execution of the Pl/I program. Many of the
subroutines in the transient library are concerned with
input/output and with error-handling.

Chapter 2. Introduction to DOS and the DOS Pl/I Optimizing Compiler 7

CONVERSATIONAL MONITOR SYSTEM

The Conversational Monitor System (CMS) component of the Virtual
Machine Facility/370 (VM/370) provides program creation,
compilation, testing, and execution services by means of
conversational time-sharing from remote terminals. Using the
compiler under CMS permits many users of the same computer to
develop programs concurrently. Instructions on how to use the
compiler under CMS are contained in the DOS PL/I Optimizing
Compiler: CMS User's Guide.

8 DOS PL/I Optimizing Compiler: Programmers Guide

/
I,

\

(
\

)
CHAPTER 3. HOW TO DEFINE A DATA SET

A data set is any collection of data in auxiliary storage that
can be created or accessed by a program. It can be punched onto
cards or paper tape; or it can be recorded on magnetic tape or
on a direct-access storage device such as a magnetic disk. A
printed listing can also be termed a data set, but it cannot be
read by a program.

The language reference manual for this compiler describes how to
use PL/I statements to transmit data between a program and a
data set. For a program containing such statements to be
executed, it is necessary to give the operating system certain
information about the data set. Some of this information is
placed in the file declaration in the PL/I source program; more
may need to be given in DOS job control statements. The DOS job
control statements that may be required to define data sets are
described in DOS/VSE System Control Statements.

This chapter provides a short explanation of what is required
for defining consecutive data sets.

DOS INPUT/OUTPUT CONCEPTS

Before a PL/I program can process a data set, it must identify
the device that will read or write the data set. The Disk
Operating System uses symbolic device names rather than actual
device addresses to identify input/output devices. Therefore,
to relate a file to the device that will process the associated
data set, the file declaration must specify the device type and
a symbolic device name in the MEDIUM option of the ENVIRONMENT
attribute. How this is done is explained in Chapter 7.

Each symbolic device name used in a DOS installation must be
related to an actual unit address. Many such relationships are
established permanently for an installation during initial
program load; these are known as standard device assignments.
Before you run a program, determine what the standard
assignments are at your installation.

If you always use these standard assignments, it will be
sufficient to identify the device that will process a data set
in the MEDIUM option of the associated file. If you want to use
a symbolic device name for which no permanent assignment has
been made at your installation, or if you want to temporarily
change an assignment, you must include an ASSGN statement in the
job (see below).

PROCESSING A DATA SET

The amount of information that you must supply to the operating
system when you run a program that creates or accesses a data
set depends on the type of input/output device used and on
whether you are using the standard device assignments. For each
data set, the PL/I source program must have a file declaration
that includes the MEDIUM option and specifies the record format
for the data set. In addition, DOS job control statements must
be supplied as follows:

• For each data set on labeled magnetic tape: a TLBL
statement.

• For each data set on a diskette or a direct-access devicea a
DLBL statement and at least one EXTENT statement.

• For each nonstandard device assignment: an ASSGN statement .

Chapter 3. How to Define a Data Set 9
I

]

• For one or more data sets that are either REGIONAL or
INDEXED or held on labeled magnetic tape, a single LBLTYP
statement must be supplied in the link-editing step for the
program, dependent upon the level of your operating system.

Note: A LBLTYP statement is not required for VSAM data sets.

These requirements are summarized in Figure 2. The following
paragraphs contain short descriptions of the job control
statements and indicate where they are placed in the job stream.

All the job control statements for a job step must precede the
EXEC statement for that job step.

Always Required For Information Where Specified

Any input/output Type of device--unless File declaration in
device independent source program: see OS

and DOS Pl/I language
Symbolic device name Reference Manual

Record format

Nonstandard device Device assignment ASSGN statement
assignment

Data set on magnetic Identification TLBL statement
tape with standard
labels Storage for label LBLTYP statement

processing

Data set on Identification and DLBL statement
direct-access volume or extent information
on a diskette EXTENT statement

REGIONAL (1) REGIONAL LBLTYP statement (not
(3) or INDEXED file, required for VSAM data
storage for label sets, or for DOS/VSE
processing with Advanced Functions)

Figure 2. Data Set Information that Must. Be Supplied

ASSGN statement

TLBL Statement

The ASSGN statement associates a symbolic device name with the
address of an actual input/output device.

The ASSGN statement and the symbolic device names associated
with its use are described in DOS/VSE System Control Statements.

The ASSGN statement can appear anywhere among the job control
statements for the job step, other than between DLBL and EXTENT
statements.

The TLBL statement applies only to data sets on magnetic tape.
It contains information that identifies the data set (for
example, the data set name and serial number>. The operating
system records this information on the tape in a series of
records termed a data set label, and refers to it if the data
set is used again in ~nother job to ensure that the correct tape
has been mounted.

(
\

The TLBL statement can appear anywhere among the job control
statements for the job step, other than between DLBL and EXTENT t
statements. ~

10 DOS PL/I Optimizing Compiler: Programmers Guide

lBlTYP statement

DlBl statement

EXTENT statement

STANDARD FILES

EXAMPLES

A lBlTYP statement is not required for consecutive data sets on
direct-access devices or for VSAM data sets; it is always needed
for INDEXED and REGIONAL direct-access data sets and for data
sets on magnetic tape with IBM standard labels. The lBlTYP
statement is not required when running on DOS/VSE with VSE
Advanced Functions. The statement requests the linkage editor
to allocate space in the executable program phase for use by the
operating system label-processing routines.

Dependent upon the level of your operating system, one lBlTYP
statement must be included in any job that employs labeled
magnetic tape. It must precede the EXEC lNKEDT statement.

The DlBl statement applies only to data sets on diskettes and
direct-access devices. like the TlBl statement for
magnetic-tape data sets, it provides information that enables
the operating system to write data set labels or to check them
if an existing data set is to be processed.

The DlBl statement can appear anywhere among the job control
statements for the job step. A DLBl statement must be followed
by at least one EXTENT statement (see below).

For a direct-access device an EXTENT statement defines the space
(extent) to be occupied by a data set (that is, it identifies
the actual tracks to be used). It is possible for a data set to
extend over two or more extents (groups of contiguous tracks) of
a direct-access device. In such a case, an EXTENT statement is
required for each extent.

For a diskette, an EXTENT statement defines the type of extent;
only data areas (signified by I in the EXTENT statement) are
supported.

The EXTENT statements for a data set must always follow
immediately behind the DLBL statement for the data set.

Pl/I includes two standard files, SYSIN for input and SYSPRINT
for output. If the Pl/I program includes a GET statement
without the FILE option, the compiler assumes the file to be
SYSPRINT associated with the symbolic device name SYSIPT. If
the program includes a PUT statement without the FILE option,
the compiler assumes the file to be SYSPRINT associated with the
symbolic device name SYSLST. If neither SYSPRINT nor SYSIN is
declared explicitly in the program, the compiler assumes the
following declaration for SYSPRINT:

DECLARE SYSPRINT FILE PRINT
ENVIRONMENT(MEDIUM(SYSLST) F RECSIZE(121»;

and, for SYSIN:

DECLARE SYSIN FILE STREAM INPUT
ENVIRONMENT(MEDIUM(SYSIPT) F RECSIZE(80»;

The examples in Figure 3 on page 12 and Figure 4 on page 13
illustrate the use of the standard files SYSIN and SYSPRINT for
punched-card input and printed output, the creation of a data
set on magnetic tape, and the creation and access of a data set
on a direct-access storage device. Each example includes the

Chapter 3. How to Define a Data Set 11

DOS job control statements necessary for compiling,
link-editing, and executing the program.

Figure 3 shows a program that evaluates the familiar expression G
for the roots of a quadratic equa~ion and records its results in ~
two data sets, one on magnetic tape and the other on an IBM 3330
Disk Storage drive.

// JOB FIG0302
// PAUSE PLEASE MOUNT TAPE 061699 AS '181'
// OPTION LINK
// EXEC PLIOPT, SIZE=64K

CREATE:PROC OPTIONSCMAIN);
DCL RESULTS FILE RECORD OUTPUT SEQL ENVCMEDIUM

CSYS009,3330)FB BLKSIZE(400) RECSIZE(40),
RESULT2 FILE STREAM OUTPUT

ENVCF RECSIZE(40) MEDIUMCSYS008,2400»,
1 RECORD,2 CA,B,C,Xl,X2) FLOAT DEC(6) COMPLEX;
ON ENDFILE CSYSIN) GOTO FINISH;
OPEN FILE CRESULT2),FILECRESULTS),FILECSYSPRINT),

FILECSYSIN);
NEXT: GET FILE CSYSIN) LIST CA,B,C);

Xl=C-B+SQRTCB**2-4*A*C)/C2*A);
X2=C-B-SQRTCB**2-4*A*CO)/C2*A);
PUT SKIP FILE CSYSPRINT) EDIT CRECORD) CCCEC16,9»);
PUT FILE CRESULT2) EDIT CRECORD) CCCEC16,9»);
WRITE FILE CRESULTS) FROM CRECORD);
GOTO NEXT;

FINISH:CLOSE FILECRESULTS),FILECRESUlT2),FIlECSYSPRINT),
FILECSYSIN);

END CREATE;

/*
// lBlTYP TAPE
// EXEC lNKEDT
// ASSGN SYS009,3330,VOl=DOS222,SHR
// ASSGN SYS008,X'18l',X'C8'
// DlBl RESUlTS,'ROOTS',SD
// EXTENT SYS009,DOS222,1,3458,19
// TlBl RESUlT2,'RESUlTS',0,06l699
// EXEC, SIZE=64K
5 12 4
4 -10 4
5 16 2
4 -12 10
5 12 9
29 -20 4
/*
/&

Figure 3. Example of a Program that Creates a Data Set

The 3330 data set is written on disk pack serial number DOS222
Cspecified in the EXTENT statement); the DlBl statement
specifies the data set name ROOTS, the default retention period
of seven days, and the code SD for CONSECUTIVE organization.

The magnetic tape storage set is written on a tape mounted on
the tape drive with address X'18l' Csecond ASSGN statement); the
TLBl statement specifies the data set name and the volume serial
number of the magnetic-tape volume to be used.

12 DOS PL/I Optimizing Compiler: Programmers Guide

(

\

)
Figure 4 shows a program that reads the 3330 data set created in
the first example and prints the results. Although a different
filename is used from that in the first example, the data set is
identified by the name ROOTS, which is specified in the DLBL
statement.

// JOB FIG0303
// OPTION LINK
// EXEC PLIOPT,SIZE=64K

ACCESS:PROC OPTIONSCMAIN);

/*

DCL INDATA FILE RECORD INPUT SEQL ENVCMEDIUMCSYS009,3330)
FB BLKSIZE(400) RECSIZE(40»,

I RECORD, 2 (A,B,C,XI,X2) FLOAT DEC(6) CPLX;
ON ENDFILE CINDATA) GOTO FINISH;
PUT EDIT ('A','B','C','XI','X2')

(XC7),3CA,XC23»,A,XC22),A);
OPEN FILE CINDATA),FIlE(SYSPRINT)

NEXT: READ FILE CINDATA) INTO CRECORD);
PUT SKIP EDIT (RECORD)CCCFCI2,2»);
GOTO NEXT;

FINISH:CLOSE FILECINDATA),FIlE(SYSPRINT);
END ACCESS;

// EXEC LINKEDT
// ASSGN SYS009,3330,VOL=DOS222,SHR
// DLBL INDATA, 'ROOTS'
// EXTENT SYS009,DOS222
// EXEC, SIZE=64K
/&

Figure 4. Example of a Program that Accesses a Data Set

Chapter 3. How to Define a Data Set 13

CHAPTER 4. THE OPTIMIZING COMPILER

COMPILATION

The DOS Optimizing Compiler translates PL/I source statements
into machine instructions. A set of machine instructions such
as is produced by the compiler is termed an object module. (If
several sets of PL/I source statements are present, each
corresponding to an external procedure and separated by
appropriate control statements, the compiler can create two or
more object modules in a single job step.)

However, the compiler does not generate all the machine
instructions required to represent the source program; instead,
for frequently-used standard routines such as those that handle
the allocation of main storage space and the transmission of
data between main and auxiliary storage, the compiler inserts
references to standard subroutines that are stored in the DOS
PL/I Resident Library.

An object module produced by the compiler is not ready for
execution until the appropriate modules from the resident
library have been included. This is the task of a system
service program, the linkage editor, which is described in
Chapter 5 on page 43. A module that has been processed by the
linkage editor is referred to as an executable program, and
sometimes as an executable program phase.

Modules from the transient library do not form a permanent part
of the executable program. Instead, they are loaded as required
during execution of the program, and the storage they occupy is
released when they are no longer needed.

While it is processing a PL/I source program, the compiler
produces a listing that contains information about the source
program and the object module derived from it, together with
diagnostic messages relating to errors or other conditions
detected during compilation. Much of this information is
optional and is supplied either by default or in response to a
request made by including appropriate options in the
compiler-control PROCESS statement that optionally precedes each
source module.

The compiler also includes a facility, the processor, which can
modify the source statements or insert additional source
statements before compilation begins.

Compiler options can be used for purposes other than to specify
the information to be listed. For example, the preprocessor can
be used independently to process source programs that are to be
compiled later, and the compiler can be used merely to check the
syntax of the source-program statements. Furthermore,
continuation of processing through syntax checking and
compilation can be made conditional on successful compile-time
processing. The compiler options are discussed under "Compiler
Options" on page 17.

The compiler comprises a control phase that remains in main
storage throughout compilation, and a series of processing
phases that are loaded and executed in turn under the
supervision of the control phase. Several of the processing
phases are loaded only if required for a particular compilation.

The source program must be in the form of a data set read by a
device assigned to SYSIPT; frequently, the data set is a deck of
punched cards. The source program is passed to the compiler d
either directly or through a preprocessor stage. ~

14 DOS PL/! Optimizing Compiler: Programmers Guide

The source program may also be passed directly to the compiler
if it contains ~INCLUDE statements but no other type of
preprocessor statements. In this case, you must specify the
INCLUDE option.

The compiler translates the source program into machine
instructions, and creates the external symbol dictionary (ESD)
and relocation dictionary (RLD) required by the linkage editor.
The external symbol dictionary is a list that includes the names
of subroutines that are referred to in the object module but are
not part of the module; these names, which are termed external
references, include the names of the resident library modules
and other object modules that will constitute the executable
program. The relocation dictionary contains information that
enables the linkage editor to assign absolute storage addresses
within the object module. Chapter 5 contains a fuller
discussion of the external symbol dictionary and the relocation
dictionary, and explains how the linkage editor uses them.

JOB CONTROL FOR COMPILATION

Compilation is initiated by the following EXEC statement:

// EXEC PLIOPT,SIZE=nK

The optimizing compiler can be used in a batched-job foreground
partition provided that a copy of the compiler was link-edited
and cataloged into a private core image library for use in that
particular partition when the system was generated, and provided
that the symbolic device name SYSCLB is assigned to the
partition before compilation is initiated. The volume
containing the private core image library must be mounted on the
device associated with the symbolic device name SYSCLB. (Under
VSE/Advanced Functions, LIBDEF may be used.)

If the compilation job step is to be followed by a link-editing
job step, the EXEC statement must be preceded by an OPTION
statement specifying the LINK option, thus:

// OPTION LINK

// EXEC PLIOPT,SIZE =nK

The compiler uses the standard device assignments for its data
sets, but you can modify those assignments if there are special
requirements for compiler input/output. For instance, if the
source module is to be read from magnetic tape or if the object
module written on SYSPCH is required on magnetic tape, the
symbolic device name can be assigned accordingly by means of the
ASSGN statement.

The compiler requires several standard data sets. These are
shown in Figure 5 on page 16 and described in the following
paragraphs.

Primary Input (SYSIPT)

The primary input to the compiler must be a consecutive data set
containing a PL/I source module in the form of SO-byte unblocked
records. The source statements may be preceded by a
compiler-control PROCESS statement. This statement is used to
specify the compiler options required for the compilation. The
source module may comprise one or more external procedures; if
you want to compile more than one external procedure in a single
job step, separate the external procedures in the input data set
with PROCESS statements. (This use of the PROCESS statement is
described under "Batched Compilations" on page 3S.)

The input data set may be on a diskette, direct-access device,
punched cards, or magnetic tape. The address of the device used
must be assigned to SYSIPT. The data set must contain unblocked
fixed-length SO-byte records.

Chapter 4. The Optimizing Compiler 15

Function Symbolic Name Device Type File When Required

Input SYSIPT DASD IJSYSIN Always
Magnetic tape
Card reader
Diskette

listing SYSlST DASD IJSYSlS Always
Magnetic Tape
Printer
Diskette

Output to SYSlNK DASD IJSYSlN When
linkage link-editing
editor follows

compilation in
the same job

Output to SYSPCH DASD IJSYSPH When
linkage Magnetic tape link-editing
editor Card punch takes place in
(card Diskette a subsequent
deck) job

Compiler SYSOOI Disk IJSYSOI Always
spill SYS002 IJSYS02
files

Source SYSSlB (if DASD IJSYSSl When
statement the source preprocessor
library statement :t.INClUDE

module is is used
held in a
private
source
statement
library

Figure 5. Compiler Data Sets

output (SYSLNK or SYSPCHl

The compiler can optionally transmit the object module to a data
set on SYSlNK, to a data set on SYSPCH, or to a data set on
both. The object module is in a form suitable for processing by
the DOS linkage editor program.

Workspace (SYSOOl and SYS0021

Listing (SYSLST)

The compiler will require data sets on SYSOOI and SYS002 for use
as intermediate (temporary) workspace.

SYSOOI and SYS002 define data sets, known as spill files, which
the compiler uses for auxiliary storage during the compilation.
These data sets must be on similar disk storage devices.

Optimal compilation speed is achieved if SYSOOI and SYS002 are
on different volumes with full cylinders allocated to each data
set. If only one volume is available, SYSOOI and SYS002 should
use a split-cylinder extent allocation with the cYlinders
divided equally between the data sets.

(

~

The compiler can produce a listing giving information about the (1
program. The information that may appear, and the associated ~
options, are described under "listings" on page 30. The

16 DOSPl/I Optimizing Compiler: Programmers Guide

symbolic listing is SYSLST. Records associated with the listing
are fixed-length, 121-byte records including an American
National Standard carriage control character.

Source Statement Library

COMPILER OPTIONS

The preprocessor r.INCLUDE statement can be used to obtain source
statements for the program from the system source statement
library or from a private source statement library. SYSSLB or
LIBDEF under VSE/Advanced Functions must be assigned when a
private source statement library is to be searched for the
required source statement book.

The optimizing compiler offers a number of options that you can
select by including the appropriate keywords in the *PROCESS
statement. The options control various aspects of the program
that will be generated, such as the extent to which it will be
optimized, the contents of the listing, and other factors. Thus
the options can be used to tailor the compiler to suit your
needs.

The *PROCESS statement precedes the source statements in the
input to the compilation step. The format of the statement is:

*PROCESS [option-list];

The * must appear in the first position of the statement. The
keyword PROCESS follows the asterisk, with or without
intervening blanks. The option-list follows the keyword
*PROCESS with one or more intervening blanks. The options in
the list are separated from each other by a comma or one or more
blanks, or both. The statement must be terminated by a
semicolon. An example is given below:

*PROCESS SIZE (72K),LIST,DECK;

A *PROCESS statement can extend over more than one input record,
provided that the default right-hand margin is observed for each
record. An option keyword may span two adjacent records if the
keyword or argument string terminates in the right-hand source
margin, and the remainder of the string starts in the same
column as the asterisk.

Many of the option keywords have an abbreviated form that you
can use to obtain a more concise list of options. You may
specify the options in any order.

The compiler options are of the following types:

1. Simple pairs of keywords: a positive form (for example,
XREF) that requests a facility, and an alternative negative
form (for example, NOXREF) that rejects that facility.

2. Keywords that permit you to provide a value-list that
qualifies the option (for example, SIZE(S6K».

3. A combination of 1 and 2 above.

For each compilation, a default for each option (except NAME,
CATALOG, and CONTROL) will apply, unless specifically overridden
by a request for a variant of the option.

Chapter 4. The Optimizing Compiler 17

Compiler Option

AGGREGATE I NOAGGREGATE
ATTRIBUTES[(FUllISHORT)]1

NOATTRIBUTES
CATAlOG('namel)
CHARSETC[48 160][EBCDICIBCD])
COMPIlEINOCOMPIlE[(WIE S)]
CONTROltC'password')l
COUNT I NOCOUNT
DECKINODECK
DUMP NODUMP
DYNBUFINODYNBUF
ESDINOESD
FlAG[CIIWIEIS)]
FlOW[(n,m)] NOFlOW
GOSTMTINOGOSTMT
GRAPHICINO.GRAPHIC
INCLUDE NOINClUDE
INSOURCEINOINSOURCE
lIMSCONV NOlIMSCONV
lINECOUNT(n)
lINKINOlINK[CWIEIS)]
lISTt(m[,n])]INOlIST
MACRO I NOMACRO
MAPINOMAP
MARGINI('c')INOMARGINI
MARGINSCm,n[,c])
MDECKINOMDECK
NAME('name,origin[,NOAUTO]')
NESTINONEST
OFFSETINOOFFSET
OPTIMIZECTIMEI012)INOOPTIMIZE
OPTIONSINOOPTIONS
SIZE(yyyyyylnnnnKIMAX)
SOURCEINOSOURCE
STORAGEINOSTORAGE
SYNTAXINOSYNTAX[(WIEIS)]
WORKFIlEC231112314 33301

3340133501FBA)1
XREF[(FUll SHORT)]INOXREF

Abbreviated Name

AGINAG
A[(FIS)]INA

CS([48160][EBIB])
CINC[CWIEIS)]

CTINCT
DIND
DUINDU

F[CWIEIS)]

GSINGS

INCININC
ISINIS
lCSINlCS
lCCn)

MINM

MIC'c')INMI
MAR(m,nt,c])
MDINMD
N('name,origin[,NOAUTO]')

OFINOF
OPT(TIMEI012)INOPT
OPINOP
SZ(yyyyyylnnnKIMAX)
SINS
STGINSTG
SYN NSYN[(WIEIS)]

X[CFIS])INX

IBM De·fault

NOAGGREGATE
NOATTRIBUTES Defaul t'
suboption F.Ull

CHARSET(60 EBCDIC)
NOCOMPIlECS)

NOCOUNT
NODECK
NODUMP
NODYNBUF
NOESD
FlAG(I)
NOFlOW
NOGOSTMT
NOGRAPHIC
NOINClUDE
INSOURCE
NOlIMSCONV
lINECOUNT(55)
NOLINKCS)
NOlIST
NOMACRO
NOMAP
NOMARGINI
MARGINS(2,72)
NOMDECK

NON EST
NOOFFSET
NOOPTIMIZE
OPTIONS
SIZE(MAX)
SOURCE
NOSTORAGE
NOSYNTAXCS)
WORKFIlE(2311)

NOXREF Default
suboption FUll

lUsers of the 3344 direct-access device should specify 3340 in the
WORKFIlE option.
Users of the 3375 or 3380 direct-access device should specify 3330 in the
WORKFIlE option.

Figure 6. Compiler Options, Abbreviations, and Defaults

Figure 6 lists all the compiler options alphabetically with
their abbreviated forms and their default values. Figure 7 on
page 19 lists them by function so you can more easily see the
types of facilities that are available. The defaults given are
those supplied by IBM. An installation can modifY the defaults
according to local requirements. Check for any modified
defaults at your installation. It is possible for compiler
options to have been deleted from use when the system was
generated. If a deleted option is requested in a PROCESS
statement, a message will be printed and the compilation will
proceed without the use of the option. A deleted option can be
restored for use temporarily if, when the option is specified,
the CONTROL option is also specified. The CONTROL option is
described later in this chapter.

The following paragraphs describe the options. For those
options that request the compiler to list information, only a

(
\

brief description is included; the generated listings are ,.~
described under "listings" on page 30. 4

18 DOS Pl/I Optimizing Compiler: Programmers Guide

').

COMPILER OPTIONS: FUNCTIONAL SUMMARY, PART I

Control Listings Produced

AGGREGATE Lists aggregates and their sizes

ATTRIBUTES

ESD

FLAGCIIWIEIS)

INSOURCE

LIST

MAP

OPTIONS

SOURCE

STORAGE

XREF

Lists attributes of identifiers

Lists external symbol dictionary

Suppresses diagnostic messages below
a certain severity.

Lists preprocessor input

Lists compiled code produced by compiler

Lists offsets of STATIC INTERNAL
and AUTOMATIC variables

Lists options used

Lists source program or preprocessor output

Lists storage used

Lists identifiers and the statements in
which they are used

Improve readability of source listing

NEST Indicates do-group and block level by
numbering in margin

MARGINI Highlights any source outside margins
~ v Control lines per page of listing

LINECOUNT Specifies number of lines per page on listing

Define character set and margins of input

CHARSET

GRAPHIC

MARGINS

Identifies a character set used in source

Specifies that graphics are used in source

Identifies the columns used for source program,
and identifies the position of a carriage
control character

Prevent unnecessary processing

NOSYNTAXCWIEIS) Stops processing after errors are found
in preprocessing

NOCOMPILE(WIEIS) Stops processing after errors are found in
syntax checking

Control preprocessing

MACRO

INCLUDE

MDECK

INSOURCE

Allows full use of the preprocessor facility

Allows inclusion of text without overheads
incurred by macro

Produces a source deck from preprocessor output

Lists the input to the preprocessor

) Figure ~{Part 1 of 2). Compiler Options Arranged by Function

Chapter 4. The Optimizing Compiler 19

COMPILER OPTIONS: FUNCTIONAL SUMMARY, PART II

Control executable program phase

DECK

CATALOG

NAME

Produces an object module

Produces an object deck on virtual card punch
with CATAlR card

Specifies non-default name for executable
program phase

Control storage used during compilation

SIZE Controls the amount of storage the compiler uses

Reduce execution-time storage

DYNBUF

lIMSCONV

Allocates buffer space during execution

Specifies that certain conversions will not be
used in stream I/O, consequently reducing
number of library modules link-edited

Identify statement numbers

GOSTMT

OFFSET

Use when debugging

FLOW

COUNT

Specifies that a statement number table will be
retained till execution time so that execution
time messages can include statement number

Specifies that a listing associating statement
numbers with offsets will be generated to aid
in identifying statements from offsets given
in execution time error messages

Generates code so that a trace of executed
statements will be retained

Generates code so that a count of the number
of times each statement is executed will be
printed at the end of the program

Improve compilation/execution speed

OPTIMIZE(TIME)

NOOPTIMIZE

Reduces execution time at the expense
of compilation

Reduces compilation time at the expense
of execution

Use when debugging the compiler

DUMP Produces a dump if the compiler itself
terminates abnormally

specify devices to be used by the compiler

WORKFIlE(device type) Specifies device type used for
compiler workfiles

Use for system programming

CONTROl('password') Allows a,ccess to deleted options for those
who know password

Figure 7 (Part 2 of 2). Compiler Options Arranged by Function

20 DOS Pl/I Optimizing Compiler: Programmers Guide

('

\

(
\

)

AGGREGATE Option

An aggregate length table, g1v1ng the lengths and bytes of all
major structures and arrays in the source program, will be
produced if the AGGREGATE option is specified.

ATTRIBUTES[(FULLISHORT1] Option

CATALOG Option

CHARSET Option

COMPILE Option

The ATTRIBUTES option requests the printing of a table of source
program identifiers and their attributes.

If SHORT is specified, unreferenced identifiers are omitted,
making the listing more manageable.

If both ATTRIBUTES and XREF apply, and there is a conflict
between SHORT and FULL, the usage is determined by the last
option found. For example, ATTRIBUTES(SHORT) XREFCFULL) results
in FULL applying to the combined listing.

The default FULL means that FULL applies if the option is
specified with no suboption.

The CATALOG option requests that the object module be stored and
cataloged in a relocatable library at the end of the compilation
step. It causes the compiler to generate a CATALR statement
preceding the object module output on SYSPCH. The CATALOG
option specifies the name by which the object module is to be
identified in the library. The name can be from one to eight
characters, the first of which must not be an asterisk. It must
be enclosed between quotes. Further information about the use
of this option is given in Chapter 6.

60- OR 48-CHARACTER SET: If the PL/I source statements are
written in the PL/I 60-character set, specify CHARSET(60); if
they are written in the 48-character set, specify CHARSET(48).
The OS and DOS PL/I Language Reference Manual lists the
character sets. (Note that the compiler will accept source
programs written in either character set if CHARSET(48) is
specified. However, the use of CHARSET(48) will cause an
increase in compilation time.)

BCD OR EBCDIC, The compiler will accept source statements in
which the characters are represented by either of two codes;
binary coded decimal (BCD) or extended binary-coded-decimal
interchange code (EBCDIC). The OS and DOS PL/I Language
Reference Manual lists the EBCDIC representation of both the
48-character set and the 60-character set.

If both arguments (48 or 60, EBCDIC or BCD) appear, they may be
in any order, and should be separated by a blank or by a comma.

The COMPILE option specifies that the compiler is to compile the
source program unless an unrecoverable error was detected during
preprocessing or syntax checking. The NOCOMPILE option without
an argument causes processing to stop unconditionally after
syntax checking. With an argument, continuation depends on the
severity of errors detected so far, as follows:

NOCOMPILE(Wl No compilation if a warning, error, severe error,
or unrecoverable error is detected

NOCOMPILE(El No compilation if error, severe error, or
unrecoverable error is detected

Chapter 4. The Optimizing Compiler 21

CONTROL Option

COUNT Option

DECK Option

DUMP Option

DYNBUF Option

NOCOMPILE(S) No compilation if a severe error or unrecoverable
error is detected

If the compilation is terminated by the NOCOMPILE option, the ~
cross-reference listing and attribute listing might be producedJ
the other listings that follow the source program will not be
produced ..

The CONTROL option enables the compiler options deleted at
system generation to be used for a particular compilation. The
CONTROL option must be specified with a password that is defined
at system generation.

Note: The CONTROL option must be the first in the list of
options in the PROCESS statement.

If the CONTROL option is specified without a password, CONTROL
('OPTIMIZE') is defaulted.

The COUNT option specifies that the compiled program is to
produce a table indicating how many times each statement or
group of statements in the program has been executed. The table
is written to SYSLST when the program terminates. The counting
is done within your MAIN procedure and inner procedures compiled
with it. Any statements eliminated by optimization of the
program are listed as "unexecuted statements." You can supply a
head to identify the COUNT output by use of the PLIXHD facility
described at the end of this section.

The COUNT option implies the GOSTMT option. If COUNT and
NOGOSTMT are both specified, a diagnostic message is issued and
no count table is produced.

The DECK option specifies that the compiler is to write the
object module in the form of aO-position records onto SYSPH.
Positions 73 through 76 of each record contain a code to
identify the object module; this code comprises the first four
characters of the first label in the external procedure
represented by the module. Positions 77 through 80 contain a
4-digit decimal number: the first record is numbered 0001, the
second 0002, etc.

The DUMP option, when specified, causes a dump of registers and
main storage used by the optimizing compiler if compilation
terminates because of an error within the compiler itself.

The DYNBUF option specifies that the compiler is not to allocate
buffers for files at compile-time. . Instead, the buffers are to
be allocated dynamically when the files are opened at
execution-time. Consequently, space is not required for a
file's buffers until it is open and is released when it is
closed. NODYNBUF is the default. NODYNBUF causes the compiler
to allocate storage for buffers for all files, with the effect
that the overall storage requirement of the object program is
increased but the time taken to open the files is reduced.

If DYNBUF is used, there is no advantage in having all the files
in a program open concurrently. Therefore, files that need not
be opened concurrently should be opened and closed separately.

22 DOS PL/I Optimizing Compiler: Programmers Guide

)
ESD Option

FLAG Option

FLOW Option

GOSTMT Option

~ GRAPHIC Option

If NODYNBUF is used, there is no advantage in opening and
closing files separately so that they are not open concurrently.
Therefore, all the files used in a program can be opened and
closed together.

The ESD option requests the inclusion of a listing of the
external symbol dictionary (ESD).

The diagnostic messages produced by the optimizing compiler are
graded in order of severity. The FLAG option specifies the
minimum level of severity that requires a message to be printed:

FLAG(I)

FLAG(W)

FLAG(E)

FLAG(S)

List all diagnostic messages. Note that, if you
specify FLAG, FLAG (I) is assumed.

List all diagnostic messages except "informatory"
messages.

List all diagnostic messages except "warning" and
"informatory" messages.

List only "severe" errors and "unrecoverable" errors.

The severity levels are discussed under "Listings" on page 30.

The FLOW option requests that the compiled program list the
numbers of the last "n"branch-out and branch-in source
statements executed prior to the occurrence of an interrupt that
results in an execution-time diagnostic message. The format of
the option is:

FLOW[(n,m)]

where

n is the number of statement numbers to be listed, and

m is the number of procedures through which a flow-trace is
to be maintained at anyone time.

The maximum value ~or n or m is 32,767. The FLOW option is
operative only within your MAIN procedure and inner procedures
compiled with it. The FLOW option is discussed further under
"Statement Numbers and Tracing" on page 207.

If the FLOW option is specified without arguments, FLOW (25,10)
is assumed.

The GOSTMT option requests the compiler to produce additional
information that will allow statement numbers from the source
program to be included in diagnostic messages produced during
execution of the compiled program.

However, you can get information about statement numbers and
their associated offsets by referring to the "Statement Offset
Addresses" on page 34.

The GRAPHIC option specifies that either:

Chapter 4. The Optimizing Compiler 23

INCLUDE Option

INSOURCE Option

LIMSCONV Option

LINECOUNT Option

• You have graphics within comments in your source program.

• You use the MACRO option and your source program contains
graphics within comments or graphic constants.

You need not specify GRAPHIC if you use graphic constants and do
not use the preprocessor. If you do not require graphic
support, specify NOGRAPHIC. The default is NOGRAPHIC.

When using the GRAPHIC compiler option, ensure that all comments
within your program use the hexadecimal value wOE' (or whatever
value your installation has defined as the left delimiter) only
as a left delimiter to begin a graphic string.

You must use the compiler option CHARSET=(EBCDIC,60) when the
GRAPHIC compiler option is specified.

To print graphic data (including your source program), your data
must be in a format acceptable for a printer with graphic
support or for a print utility program, such as the Kanji p~int
utility.

The INCLUDE option requests the compiler to handle the inclusion
of PL/I source statement books for programs that use the
~INCLUDE statement. This method is faster than using the
preprocessor for programs that contain ~INCLUDE statements but
no other preprocessor statements. The INCLUDE option should not
be used if the MACRO option is specified.

The INSOURCE option requests a listing of the PL/I source
statements by the preprocessor.

The LIMSCONV option specifies that the compiler will not have to
handle any conversions for data- or list-directed input other
than the following:

• Bit (or character containing bit string) to bit.

• Character to character (or picture character).

• Fixed- or floating-point decimal constants (or character
strings that represent such constants) to arithmetic.

The use of this option will result in a space saving. The
resident library conversion modules for all other conversions
are otherwise incorporated into the object module on the
assumption that they might be used. Note that if a program
attempts a conversion not given above when this option has been
used, the CONVERSION condition will be raised. On-codes that
indicate attempts to use suppressed conversions are given; these
are listed in the OS and DOS Language Reference Manual.

The LINECOUNT option specifies the number of lines to be
included in each page of a printed listing, including heading
lines and blank lines. Its format is:

LINECOUNT(n)

I
I
\

where ~
n is the number of lines.

24 DOS PL/I Optimizing Compiler: Programmers Guide

LINK Option

LIST Option

MACRO Option

MAP Option

MARGINI Option

MARGINS Option

The LINK option specifies that link-editing is to follow the
compilation unconditionally; the use of the NOLINK option will
suppress link-editing according to the severity level of
messages produced during the compilation. Note that the LINK
option of the DOS OPTION statement is also needed if
link-editing is to follow the compilation.

The LIST option requests a listing of the object module
generated by the compiler (in a form similar to assembler
language instructions). The format of the LIST option is:

LIST[(m[,n])]

where

m is the number of the first statement for which an object
listing is required.

n is the number of the last statement for which an object
listing is required.

If 'n' is omitted, an object listing for statement number 'm'
only is given.

If LIST is used in conjunction with MAP, additional listings of
static storage are generated.

Specify MACRO when you want to employ the compile-time
preprocessor. The use of the preprocessor is described under
"Compile-Time Processing" on page 40.

The MAP option causes the printing of the tables showing the
organization of the storage for the compiled object module. A
table showing the mapping of static internal and automatic
variable is always produced. This enables you to find variables
in a PLIDUMP. If the LIST option is also used, maps of static
internal and external control sections are also provided. They
include a table showing the mapping of PL/I data items in
dynamic and static storage. The MAP option is normally used in
conjunction with the LIST option.

The MARGINI option defines the character that the compiler is to
print on margins of the source listing, thus revealing any
source statements that cross either margin. Its format is:

MARGINI ('c')

where

c is the alphameric character to be printed on the source
listing margins.

The MARGINS (source margin) option specifies the part of each
input record that contains the PL/I source statements. The
compiler will not process data that is outside these limits.
The option can also specify the position of an ANS carriage
control character to format the listing of source statements

Chapter 4. The Optimizing Compiler 25

produced by the compiler if the SOURCE option is specified. The
format of the MARGINS option is:

/
MARGINS(m,n[,c]) \

MDECK Option

NAME Option

where

m represents the position in the input record of the first
byte of the field that contains the 80-byte source
statement record,

n represents the position in the input record of the last
byte of the source statement field, and

C represents the position in the input record of the byte
that will contain the control character.

The value m must be less than or equal to n, and neither must
exceed 80. The value c must be outside the limits set by m and
n. The valid control characters are:

~ Skip one line before printing (blank)

o Skip two lines before printing

Skip three lines before printing

Suppress space before printing

1 Start new page

Chapter 9 on page 118 contains a full description of the use of
printer control characters. If you do not specify a position
for a control character, it is assumed not to be used.

If the value c is greater than the maximum length of a source
statement record, the compiler will not be able to recognize it;
consequently the listing will not have the required format. If
the character specified is not a valid control character, a
blank is assumed by default.

If the value of m is 1 there is a possibility of confusion
between source text and *PROCESS statement. If * PROCESS is
found with the asterisk in column I it is taken as a * PROCESS
statement even if it occurs in a source program. For this
reason you should not set m to 1.

Source statements generated by the preprocessor always have a
source margin (2,72). Columns 73 through 80 contain information
inserted by the preprocessor; this information is described
under "Listings" on page 30.

Specify the option MDECK if you want the output from the
preprocessor in the form of a card deck. This output is written
(punched) as a data set on SYSPCH.

The NAME optiori specifies the name of the executable program
phase that will be created by the linkage editor from the
compiled object module. The option causes the compiler to place
a linkage editor PHASE statement at the start of the object
module. The PHASE statement has the effect of assigning the
specified name and loading point address to the following module
when the module is link-edited. The format of the NAME option
is:

NAME('name,origin[,NOAUTO]')

26 DOS PL/I Optimizing Compiler: Programmers Guide

/
\

NEST Option

OFFSET Option

OPTIMIZE Option

OPTIONS Option

SIZE Option

where name, or1g1n, and NOAUTO are the operands of the DOS
linkage editor PHASE statement described under "PHASE Statement"
on page 50.

The NEST option specifies that the source program listing should
indicate for each statement its begin-block level and its
DO-group level.

The OFFSET option causes printing of the statement numbers for
statements internal to each procedure, with their offset
addresses relative to the primary entry point of the procedure.
This information is of use in identifying the statement being
executed when an error occurs and a listing of the object module
(obtained by using the LIST option) is available. Note that the
GOSMT option will cause statement numbers, as well as offset
addresses, to be included in execution-time diagnostic messages.

The OPTIMIZE option specifies the type of optimization required:

NOOPTIMIZE produces the fastest possible compilation, but
inhibits optimization for faster execution and reduced
storage requirements. The compiler still carries out
optimization of the object code, but certain optional
optimization is omitted.

OPTIMIZECTIME) requests the compiler to optimize the machine
instructions generated for minimum execution time. A
secondary effect of this type of optimization can be a
reduction in the amount of storage required for object
programs. The use of OPTIMIZE(TIME) could result in a
substantial increase in compile time over NOOPTIMIZE.

OPTIMIZECO) is the equivalent of NOOPTIMIZE.

OPTIMIZE(2) is the equivalent of OPTIMIZE(TIME).

The OS and DOS PL/I Language Reference Manual includes a full
discussion of program optimization and efficient programming.

The OPTIONS option requests a list showing the status of all the
compiler options after any default attributes have been applied
at the start of compilation.

The optimizing compiler must have at least 51,200 (SOK) bytes of
main storage available for its use. The SIZE option specifies
the amount of main storage available for the compilation. In a
non-multiprogramming environment, the amount will be all of main
storage other than that used by the supervisor. In a
multiprogramming environment, the amount is limited to the size
of the partition and the SIZE option on the EXEC statement.
Code this option in one of the following ways:

SIZE(yyyyyy) specifies that yyyyyy bytes of main storage are
available for the compilation. Leading zeros are not
required.

SIZE(yyyK) specifies that yyyK bytes of main storage are
available for the compilation (IK=1024). Leading zeros are
not required.

Chapter 4. The Optimizing Compiler 27

SOURCE Option

STORAGE Option

SYNTAX Option

WORKFILE Option

SIZE(MAX) instructs the compiler to obtain as much main
storage as it can.

Always use as much storage as possible to obtain maximum
performance from the compiler. The point at which increasing
the storage available does not significantly improve performance
is determined mainly by the size of the source program. In
general, the larger the source program, the greater the amount
of main storage that will be necessary for maximum performance.

The SOURCE option requests a listing of the Pl/I source
statements processed by the compiler. The source statements
listed are either those of the original source program or, if
the MACRO option is specified, the output from the preprocessor.

The STORAGE option causes printing of a table giving the storage
requirements for the compiled object module.

The SYNTAX option specifies that the compiler will check the
syntax of the source statements. If you specify NOSYNTAX,
syntax checking will not be performed, and as a consequence, the
program will not be compiled. (Note that, if you have specified
SOURCE, a source listing will still be generated, even though
the program is not compiled.)

If you specify the MACRO option, syntax checking can be
conditional on the severity level of the diagnostic messages
generated by the preprocessor:

NOSYNTAX(Wl

NOSYNTAX(El

NOSYNTAX(Sl

No syntax checking if preprocessor issues a
warning, error, or severe error message.

No syntax checking if the preprocessor issues an
error or severe error message.

No syntax checking if the preprocessor issues a
severe error message.

The optimizing compiler always uses work files (or spill files)
on a direct-access device for the temporary storage of text
and/or dictionary information. The type of direct-access device
that will normally be used is decided at system generation
according to the resources of the installation. The WORKFItE
option permits the selection of the alternative direct-access
device for a particular compilation.

If the alternative device type is requested, the symbolic device
names SYSOOl and SYS002 must be assigned to the channel and the
device(s) used, and DLBl and EXTENT statements must be provided
in the job step for the compilation to define the data sets for
each workfile (unless VSAM Space Management is used). For
workfiles on fixed block devices, the CISIZE parameter on the
DlBL statement must not be specified. The file names used in
the DLBL statements must be IJSYSOI and IJSYS02. The amount of
space required for the data sets is described in DOS PL/I
Optimizing Compiler: Installation Guide.

When using the VSE/VSAM Space Management for SAM feature, SAM
data sets may be defined in VSAM space. To use compile time
workfiles in VSAM space, FBA (for fixed block architecture
devices) must be specified. The data sets for the workfiles may
be defined explicitly or implicitly as follows:

28 DOS PL/I Optimizing Compiler: Programmers Guide

(
\

(

)
• For explicit defining, use Access Method Services to define

a dynamic SAM ESDS with a default RECORDSIZE and a
RECORDFORMAT of UNDEF. During compilation, supply DLBL
statements for IJSYSOI and IJSYS02 specifying VSAM and
DISP=C,DELETE). No EXTENT statement is needed.

• For implicit defining, supply DLBL statements during
compilation for IJSYSOI and IJSYS02 specifying VSAM,
DISP=C,DELETE) and the RECORDS and RECSIZE parameters. The
volume may be specified either via an EXTENT statement or a
default model for a SAM ESDS.

Optimum compilation speed is achieved if SYSOOI and SYS002 are
on different volumes with full cylinders allocated to each data
set. If only one volume is available, SYSOOI and SYS002 should
use a split-cylinder extent allocation with the cylinders
divided equally between the data sets.

The size and total number of records written by the compiler
onto these data sets are listed at the end of the compilation;
it varies widely according to the size and nature of the source
program and the amount of main storage available. However, 250K
bytes of storage for each data set should be sufficient for
compiling programs containing up to 500 source statements.

If you are using an IBM 3344 direct-access device for workfiles,
you must specify WORKFILE(3340). If you are using an IBM 3375
or 3380, you must specify WORKFILE(3330).

If you are using a fixed block device and the compiler is
executing in a minimum size partition, the data set may not
exceed 16,776K bytes. The limit on data set size is higher for
larger partitions.

XREF[(SHORTIFULL1] Option

The XREF option specifies that the compiler is to include the
cross-reference table of names used in the program, together
with the numbers of the statements in which they are declared or
referenced. Refer to the section "Cross-reference Table" on
page 33 for a description of the format and content of the
cross-reference table.

If the sUboption SHORT is specified, un referenced names are not
listed.

The default suboption FULL means that FULL applies if the option
is specified with no suboption.

If both XREF and ATTRIBUTES are specified, the two listings are
combined. If there is a conflict between SHORT and FULL, the
usage is determined by the last option specified. For example,
ATTRIBUTESCSHORT) XREFCFULL) results in FULL applying to the
combined listing.

Using PLIXHD to Identify COUNT Output

When COUNT output is generated, if your program contains a
static external character variable called PLIXHD, the value in
PLIXHD is printed at the head of the output. This allows you to
supply an identifier for such output.

To do this, PLIXHD must be declared as STATIC EXTERNAL CHARACTER
VARYING. CSTATIC may be omitted because EXTERNAL data is STATIC
by default). For example a

DCL PLIXHD EXTERNAL CHARACTER(50) VARYING
INITC'THIS IS A PLIXHD MESSAGE');

The printed output of PLIXHD is limited to one line and is
truncated if necessary.

Chapter 4. The Optimizing Compiler 29

LISTINGS

If PLIXHD is declared EXTERNAL but not CHARACTER VARYING, a
diagnostic message is generated during compilation. If PLIXHD
is EXTERNAL CHARACTER but not VARYING, its value is printed as (
shown above; in other cases it will normally be ignored but .
could lead to execution time errors.

During compilation, the compiler generates a listing that
contains information about the compilation and about the source
and object modules. It places this listing in the data set on
SYSLST. The following description of the listing refers to its
appearance on a printed page.

The listing comprises a small amount of standard information
that always appears, together with those items of optional
information requested or supplied by default. Figure 8 lists
the optional components of the listing and the corresponding
compiler options.

Listings

Options for the compilation

Preprocessor input

Source program

Statement nesting level

Attribute table

Cross-reference table

Aggregate-length table

Statement offset addresses

Storage requirements

External symbol dictionary

Static storage map

Object module

Diagnostic messages for severe
errors, errors, warnings, and
informatory conditions

Options Required

OPTIONS

MACRO and INSOURCE

SOURCE

NEST

ATTRIBUTES

XREF

AGGREGATE

SOURCE, NOGOSTMT, and OFFSET

STORAGE

ESD

MAP

LIST

FLAG(S), FLAG(E), FLAG(W),
FLAGCI)

Figure 8. Compiler Listing and Associated Options

The first page of the compiler listing is identified by the
compiler version number, the date, and, if the timer is used,
the time.

All the pages of the listing are numbered sequentially in the
top right-hand corner. Page 1 also includes a statement of the
options specified for compilation.

The listing ends either with a statement that no messages were
produced for the compilation, or with one or more diagnostic
messages. The format of the messages is described under
"Diagnostic Messages" on page 37. If the machine has the timer
feature, the listing also ends with a statement of the elapsed
time taken for the compilation.

The compiler also prints the number and size of the records
written onto the spill files (IJSYSOI and IJSYS02). The

30 DOS PL/I Optimizing Compiler: Programmers Guide

information is provided to assist the system programmer in
specifying the most economic amount of space for this file.

The following paragraphs describe the optional parts of the
listing in the order in which they appear. Appendix A on page
281 includes a fully annotated example of a compiler listing.

OPTIONS USED FOR THE COMPILATION

PREPROCESSOR INPUT

SOURCE PROGRAM

If the option OPTIONS applies, a complete list of the options
for the compilation, including the default options, follows the
statement of the options specified in the PROCESS statement, on
the first page.

If both the options MACRO and INSOURCE apply, the compiler lists
the input statements to the preprocessor, one record per line.
The printed lines are numbered sequentially at the left.

If the compiler detects an error, or the possibility of an
error, during the preprocessor phase, it prints a message on the
page or pages following the input listing. The format and
classification of the error messages are exactly as described
for the compilation error messages, under "Diagnostic Messages"
on page 37.

If the option SOURCE applies, the compiler lists the source
program input, one record per line; if the input statements
include printer control characters, the lines will be spaced
accordingly.

Additional formatting of both the preprocessor and compiler
source listing is made possible by the Y.SKIP, Y.PAGE, Y.PRINT, and
Y.NOPRINT, listing control statements. The Y.SKIP control
statement causes the number of blank lines specified as its
argument to be inserted. For example, the statement:

Y.SKIP(lO) ;

will cause ten blank lines to be inserted into the source
listing. The Y.PAGE statement causes the source program listing
to be interrupted and resumed on the following page.

If a Y.NOPRINT statement is found, printing of a listing stops
until a Y.PRINT statement is reached. The Y.PRINT and Y.NOPRINT
statements are printed on the source listing, if PRINT is in
effect when they are found.

The statements in the source program are numbered sequentially
by the compiler, and the number of the first statement in the
line appears to the left of each line in which a statement
begins. If the source statements were generated by the
preprocessor, columns 73 through 84 contain the following
information:

COLUMN

73 - 80

81

INFORMATION

Input line number from which the source statement was
generated. This number normally corresponds to the
line number in the preprocessor input listing.

The line numbers will not correspond if MARGINSCm-n)
is specified such that m-n-=70.

Blank

Chapter 4. The Optimizing Compiler 31

82, 83

84

statement Nesting Level

Two-digit number giving the maximum depth of
replacement by the preprocessor for this line. If no
replacement occurred, the columns'are blank.

"E" signifies that an error occurred while replacement
was being attempted. If no error occurred, the column
is blank.

If the options SOURCE and NEST apply, the block level and the DO
level are printed to the right side of the statement number
under appropriate headings:

STMT LEV
1
2 1
3 2
4 2
5 2
6 2
7 2
8 2
9 2

10 3
11 3
12 2
13 1

NT
o A: PROC OPTIONS(MAIN);
o B: PROC;
o DCl KClO,lO) FIXED BIN (15);
o DCL Y FIXED BIN (15) INIT (6);
o DO 1=1 TO 10;
1 DO J= 1 TO 10;
2 K(I,J) = N;
2 END;
1 BEGIN;
1 K(l,l) = Y;
1 END;
1 END B;
o END A;

ATTRIBUTE AND CROSS-REFERENCE TABLE

I

"<14

If the option ATTRIBUTES applies, the compiler prints an
attribute table containing a list of the identifiers in the
program together with their declared and default attributes. If
the option XREF applies, the compiler prints a cross-reference (

Attribute Table

table containing a list of the identifiers in the program \
together with the numbers of the statements in which they
appear. If both ATTRIBUTES and XREF apply, the two tables are
combined.

The suboption SHORT can be used to prevent un referenced
identifiers being listed. For details, see the earlier
descriptions of ATTRIBUTES and XREF.

If an identifier was declared explicitly, the number of the
DECLARE statement is listed under the heading of DCL NO. If an
identifier is declared contextually or implicitly, the symbol
"******" is printed under this heading. The statement numbers
of statement labels and entry labels are also given under this
heading.

The attributes INTERNAL and REAL are never included; they can be
assumed unless the respective conflicting attributes, EXTERNAL
and COMPLEX appear.

For a file identifier, the attribute FILE always appears and the
attribute EXTERNAL appears if it applies; otherwise, only
explicitly declared attributes are listed.

For an array, the dimension attribute is printed first; the
bounds are printed as in the array declaration, but the
expressions are replaced by asterisks.

For arrays or structures, the bounds are always shown as
asterisks, even when they are declared as constants.

For a character string or a bit string, the length, preceded by
the word "CHARACTER" or "BIT~ is printed as in the declaration,
but an expression is replaced by an asterisk.

32 DOS PL/l Optimizing Compiler: Programmers Guide

Cross-reference Table

If the cross-reference table is combined with the attribute
table, the numbers of the statements or lines in which a name
appears follow the list of attributes for the name. The order
in which the statement numbers appear is subject to any
reordering of blocks that has occurred during compilation. In
general, the statement numbers for the outermost blocks are
given first, followed on the next line by the statement numbers
for the inner blocks.

The PL/I text is expanded and optimized to a certain extent
before the cross-reference table is produced. Consequently,
some names that might appear only once within a source statement
might acquire multiple references to the same statement number.
By the same token, other names might appear to have incomplete
listings of references, while still others might have references
to statements in which the name does not appear explicitly. For
example:

• Duplicate references might be listed for items such as
do-loop control variables, and for some aggregates.

• Optimization of certain operations on structures can result
in incomplete listings in the cross-reference table; the
numbers of statements in which these operations are
performed on major or minor structures are listed against
the names of the elements, instead of against the structure
names.

• No references to PROCEDURE or ENTRY statements in which a
name appears as a parameter are listed in the
cross-reference table for that name.

• Reference within DECLARE statements to variables that are
not being declared are not listed. For example, given the
statements:

DCL ARRAYCN) ;
DCL STRING CHARCN);

No references to these statements would appear in the
cross-reference table entry for N.

• The number of a statement in which an implicitly
pointer-qualified based variable name appears is included
not only in the list of statement numbers for that name, but
also in the list of statement numbers for the pointer
implicitly associated with it.

• The statement number of an END or LEAVE statement that
refers to a label is not listed in the entry for the label.

• Automatic variables declared with the INITIAL attribute have
a reference to the PROCEDURE or BEGIN statement for the
block containing the declaration included in the list of
statement numbers.

AGGREGATE LENGTH TABLE

An aggregate length table is obtained by using the AGGREGATE
option. The table shows how each aggregate in the program is
mapped. It contains the following information:

• The statement number in which the aggregate is declared.

• The name of the aggregate and the elements within the
aggregate.

• The level number of each item in a structure.

• The number of dimensions in an array.

Chapter 4. The Optimizing Compiler 33

STORAGE REQUIREMENTS

• The byte offset of each element from the beginning of the
aggregate. (The bit offset for unaligned bit-string data is
not given.)

• The length of each element.

• The total length of each aggregate, structure, and
sub-structure.

The table is completed with the sum of the lengths of all
aggregates that do not contain adjustable elements.

The statement number is the number of the DECLARE statement for
the aggregate.

The length of an aggregate may not be known at compilation,
either because the aggregate contains elements having adjustable
extents, or because the aggregate is dynamically defined. In
these cases, the word "ADJUSTABLE" or "DEFINED" appears in the
"Length in Bytes" column.

If the program contains arrays or structures that are used in
FORTRAN or COBOL programs, the compiler may have to create
additional arrays and structures where mapping is different from
that used in PL/I. Temporary arrays and structures created in
this way will cause additional entries to be included in the
table with the word "COBOL" or "FORTRAN" appended. A separate
entry is made in the aggregate table for every aggregate dummy
argument or FORTRAN-mapped array or COBOL-mapped structure.

If the options SOURCE and STORAGE apply, the compiler lists the
following information under the heading "Storage Requirements"
on the page following the end of the aggregate length table:

• The storage area in bytes for each procedure.

• The storage area in bytes for each BEGIN block.

• The storage area in bytes for each on-unit.

• The dynamic storage area in bytes for each procedure, BEGIN
block, and on-unit. The dynamic storage area is acquired at
activation of the block.

• The length of the program control section. The program
control section is the part of the object module that
contains the executable part of the program.

• The length of the static internal control section. This
control section includes storage for variables declared
STATIC INTERNAL.

(

~

STATEMENT OFFSET ADDRESSES

If the options SOURCE, NOGOSTMT, and OFFSET apply, the compiler
lists, for each primary entry point, the offsets at which
statements occur. This information is found, under the heading
"Table of Offsets and Statement Numbers within Procedure"
following the end of the storage requirements table.

Offsets given in error messages can be compared with this table
and the erroneous statement discovered. The statement is
identified by finding the section of the table that relates to
the procedure or on-unit names in the message and then finding
the largest entry in the table that is less than or equal to the
offset in the message. If the procedures or on-unit name
specified in the message is the same as that in the table (as it ~
will be unless a secondary entry point is used) the statement ~
will have been found.

34 DOS PL/I Optimizing Compiler: Programmers Guide

If a secondary entry point is used the correct offset must be
calculated.

The offset figure in the message is taken from the entry point
used by the program and mentioned in the message. The offset
used in the table is taken from the primary entry point of the
procedure. If the entry points are not the same, the offset of
the entry point must be added to the figure given in the
execution time message and this figure used to establish the
statement number.

In the program whose listing is shown below, the error message
gives an offset of X'50' from the entry point A2. Entry point
A2 is not the primary entry point. From the listing it can be
seen that entry point A2 (statement 5) is at the offset X'78'.
To get the true offset, it is necessary to add the two figures
and arrive at an offset of X'C8'. From the table it is clear
that this offset is within statement 6.

SOURCE LISTING

I M:PROC OPTIONS(MAIN);
2 CALL A2;
3 AI: PROC;
4 N=3;
5 A2: ENTRY;
6 N=N/);
7 END;
8 END;

TABLES OF OFFSETS AND STATEMENT NUMBERS
WITHIN PROCEDURE M

OFFSET (HEX)
STATEMENT NO.

o
I

56
2

5E
8

WITHIN PROCEDURE Al

OFFSET (HEX) 0 78
5

A8
4,

B4
6 STATEMENT NO. 3

Message
IBM301I 'ONCODE'=0320 'ZERODIVIDE'

CONDITION RAISED AT OFFSET +000050 IN
PROCEDURE WITH ENTRY A2

If a BEGIN block is involved, the offset to the BEGIN statement
must be added before the process begins.

EXTERNAL SYMBOL DICTIONARY (ESD)

If the option ESD applies, the compiler lists the contents of
the external symbol dictionary (ESD) for the object module.

The ESD is a table containing all the external symbols that
appear in the module. The information appears under the
following headings:

SYMBOL

TYPE

An 8 character field which identifies the external
symbol.

Two characters from the following list to identify the
type of ESD entry.

SD

CM

Section definition: the name of a control
section within this module.

Common area: a type of control section that
contains no executable instructions. The
compiler creates a common area for each
non-string element variable declared STATIC
EXTERNAL without the INITIAL attribute.

Chapter 4. The Optimizing Compiler 35

ESD Entries

ID

ADDR

ER

wx

LD

External reference: an external symbol that
is not defined in this module.

Weak external reference: an external symbol
that is not defined in this module and which
is not to be resolved unless an ER entry is
encountered for the same reference.

Label definition: the name of an entry
point to the external procedure other than
that used as the name of the program control
section.

Four-digit hexadecimal number: the entries in the ESD
are numbered sequentially, starting from 0001.

Hexadecimal representation of the address of the
symbol: this field is not used by the compiler, since
the address is not known at compile time.

LENGTH The hexadecimal length in bytes of the control section
(SD and CM entries only).

The external symbol dictionary always starts with standard
entries (Figure 9 on page 37):

1. Name of the initial entry point PLISTART. This control
section transfers control to the initialization routine
IBMBPIR.

When initialization is complete, control passes to the
address stored in the control section PLIMAIN.
(Initialization is required only once during the execution
of a PL/I program, even if the PL/I program calls another
external procedure; in such a case, control passes directly
to the entry point named in the CALL statement, and not to
IBMBPIR.)

2. Name of the program control section (the control section
that contains the executable instructions of the object
module). This name is the first label of the PROCEDURE
statement for the external procedure, padded on the left
with asterisks to seven characters if necessary, and
extended on the right with the character 1.

3. Name of the static internal control section (which includes
storage for all variables declared STATIC INTERNAL). This
name is the first label of the PROCEDURE statement for the
external procedure, padded on the left with asterisks to
seven characters if necessary, and extended on the right
with the character 2.

4. External reference to entry point A in IBMBPIR, the PL/I
initialization routine that establishes the PL/I environment
for the object module. IBMBPIR is the entry point used when
the PL/I program is invoked directly by means of a job
control command or statement.

The remaining entries in the external symbol dictionary vary,
but generally include the following:

1. Section definition for the 4-byte control section PLIMAIN,
which contains the address of the principal entry point to
the external procedure. This control section is present
only if the PROCEDURE statement includes the option MAIN.
If it does not include the option MAIN, PLIMAIN is inserted
as an external reference.

(

(

\

/

2. Weak external reference to PLITABS, PLIFLOW, and PLICOUNT: ~
PLITABS in case a library module in a PL/I structure with
the attributes STATIC and EXTERNAL is used to alter the

36 DOS PL/I Optimizing Compiler: Programmers Guide

~
;

standard PL/I tab settings, PLIFLOW to enable the FLOW
option to be used, and PLICOUNT to enable the COUNT option
to be used.

3. LD-type entries for all names of entry points to the
external procedure except the first.

4. ER-type entries for library routines and external routines
called by the program. The list includes the names of
library routines called directly by compiled code
(first-level routines), and the names of routines that are
called by first-level routines.

5. CM-type entries for variables declared STATIC EXTERNAL
without the INITIAL attribute.

6. SD-type entries for all other external variables and for
external file names.

7. WX-type entries for library routines and external routines
that are not to be resolved unless ER-type entries for the
same routines are present when the object module is
link-edited.

Symbol Type

PLISTART SD
**PROGI SD
**PROG2 SD
PLITABS WX
PLIFLOW WX
PLICOUNT WX
IBMPIRA ER
PLIMAIN SD

Figure 9. Standard

ID

0001
0002
0003
0004
0005
0006
0007
0008

ESD Entries

ADDR

000000
000000
000000
000000
000000
000000
000000
000000

Length

000010
0008F8
000440

000008

OBJECT MODULE LISTING

DIAGNOSTIC MESSAGES

If the MAP option applies, the compiler generates a formatted
listing of the contents of the static control section; this
listing is termed the static internal storage map. The MAP
option also produces a variable storage map. This map shows how
PL/I data items are mapped in main storage. It names each PL/I
identifier, its level, its offset (in both decimal and
hexadecimal form) from the start of the storage area, its
storage class, and the name of the PL/I block in which it is
declared. The LIST option requests a listing of the machine
instructions of the object program, including any
compiler-generated subroutines, in a form similar to assembler
language.

These listings contain information that cannot be fully
understood without a knowledge of the structure of the object
program as generated by the optimizing compiler. This is beyond
the scope of this manual, but a full description of the object
program and of the static storage map and the object-program
listing can be found in the publication DOS PL/I Optimizing
Compiler: Execution Logic.

Both the static internal storage map and the object program
listings start on a new page.

The compiler generates messages that describe any errors, or
conditions that may lead to errors, detected during compilation.
Messages generated by the preprocessor appear in the compiler

Chapter 4. The Optimizing Compiler 37

listing immediately after the listing of the statements
processed by the preprocessor; all other messages are grouped
together at the end of the listing. The messages are graded
according to their severity:

An informatory (I) message calls attention to a possible
inefficiency in the program or gives other information
generated by the compiler that may be of interest to the
programmer.

A warning (W) message calls attention to a possible error,
although the statement to which it refers is syntactically
valid.

An ~ (E) message indicates an error for which the
compiler has applied a ftfix-upft with confidence. The
resulting program will execute and will probably give
correct results.

A severe (S) error message indicates an error that cannot
be corrected with any degree of confidence by the
compiler. Execution will almost certainly fail or produce
incorrect results.

An unrecoverable (U) error message indicates an error that
forces termination of the compilation.

You can generate your own messages to give information about
preprocessing in the reNOTE statement. For example, you might to
put out a message listing how many times a preprocessor
procedure had been called.

The compiler lists only those messages with a severity equal to
or greater than that specified by the FLAG option.

Type of Message Option

FLAG(I)
FLAG(W)
FLAGCE)
FLAG(S)
always listed

informatory
warning
error
severe error
unrecoverable error

BATCHED COMPILATIONS

Each error message is identified by an 8-character code:

1. The first three characters are IEL, which identify all
messages from the optimizing compiler.

2. The next four characters are a 4-digit message number.

3. The last character is the letter I, which is the operating
system code for a message which does not require a response
from an operator.

The text of each message, an explanation, and any recommended
programmer response are given in DOS PL/I Optimizing Compiler:
Messages.

The batched compilation facility allows the compiler to compile
more than one external procedure in a single job step. Batch
compilation can increase compiler throughput by reducing
operating and compiler initialization overheads. An
unrecoverable error during compilation of one external procedure
will not usually prevent the compilation of those that follow
it.

Examples of applications of batched processing are:

• Compiling a series of unrelated external procedures for
debugging purposes

38 DOS PL/I Optimizing Compiler: Programmers Guide

(

\

• Compiling a set of related external procedures to produce
separate object modules that can be link-edited to form an
overlay program (see Chapter 5).

To specify batched compilation, include a compiler PROCESS
statement in front of each external procedure. The PROCESS
statements identify the start of each external procedure and
allow compiler options to be specified individually for each
compilation. The format of the statement is described under
"Compiler Options" on page 17.

USE OF SIZE AND DUMP OPTIONS

EXAMPLE

The following points should be noted when using the SIZE or DUMP
option in a batched compilation:

1. The SIZE option specified either explicitly or by default
for the first compilation in a batch cannot be altered for a
subsequent compilation.

2. If the DUMP option is used in any compilation other than the
first compilation in a batch, the option must be specified
for the first compilation also.

Figure 10 is an example of simple batched compilations. It
illustrates the use of a single invocation of the optimizing
compiler to compile three procedures.

// JOB FIG0405X
// EXEC PLIOPT,SIZE=64K * PROCESS A,X,SZ(50K),NEST,DECK,CATALOGC'FIRST'),NOLINK;

First PL/I source module

* PROCESS ESD,OPT(2),DECK,A,CATALOGC'SECOND'),NOLINK;

Second PL/I source module

* PROCESS A,X,CATALOGC'THIRD'),DECK,NOLINK;

/*
/&

Third PL/I source module

Figure 10. Example of Batched Compilations

The first PROCESS statement in Figure 10 specifies the options
for the compilation of the procedure FIRST; of the options
specified, only SIZE applies "to the compilations of the other
procedures. Each subsequent source module in the batched
compilation is preceded by a PROCESS statement that specifies
the options for that particular compilation. The use of the
CATALOG and DECK options causes the compiler to produce a CATALR
statement and an object module for each compilation on SYSPCH to
facilitate the inclusion of each module in a relocatable
library. See Chapter 6 for further information.

Chapter 4. The Optimizing Compiler 39

MULTIPLE COMPILATIONS IN A SINGLE JOB

In addition to the batched compilation facilities, it is also
possible to reinvoke the optimizing compiler (and any other DOS (
language processor) to produce several object modules on SYSlNK. ~
These modules may then be link-edited into an executable program
and executed in single link-edit and execute steps. A sequence
of job control statements to combine two Pl/I procedures and
assembler-language module as a single program foilowsl .

// JOB
// OPTION lINK
// EXEC PlIOPT,SIZE=64K

first Pl/I source module

/3E
// EXEC PlIOPT,SIZE=64K

second Pl/I source module

/3E
// EXEC ASSEMBLY

Assembler-language module

/3E
// EXEC lNKEDT
// EXEC ,SIZE=64K
/&

COMPILE-TIME PROCESSING

The following discussion supplements the information contained
in the OS and DOS Pl/I language Reference Manual by providing an
illustration of how to invoke the preprocessor.

INVOKING THE PREPROCESSOR

The preprocessor stage of the compiler is executed only if you
specify the compiler option MACRO.

The term MACRO owes its origin to the similarity of some
applications of the compile-time facilities to the macro
language available with such processors as the assembler. Such
macro language allows you write a single instruction in a
program to represent a sequence of instructions that have
previously been defined.

Three other compiler options, MDECK, INSOURCE, and COMPILE are
meaningful only when you also specify the MACRO option. All are
described earlier in this chapter.

40 DOS Pl/I Optimizing Compiler: Programmers Guide

/
\.

The job control statements and the PROCESS statement for a
compilation step that uses the preprocessor are given below.
The statements produce a source module and listings of both the
original source module and the source module created by the
preprocessor.

THE ~INCLUDE STATEMENT

// JOB FIG0406X
// EXEC PLIOPT,SIZE=64K
* PROCESS MACRO,INSOURCE,MDECK;

/*
/&

PL/I source module

The OS and DOS PL/I Language Reference Manual describes how to
use the XINCLUDE statement to incorporate source statements from
a source statement library into a PL/I source program. (A
source statement library is used for the storage of sequences of
source statements termed books.) Books that are related, such
as the PL/I source statement books, are grouped together to form
a sublibrary. Thus, a set of source statements that you might
wish to insert into your source program by means of a X INCLUDE
statement must exist as a book within a sublibrary within a
library. Chapter 6 describes how to insert a book of source
statements into a source statement library, and how to delete
unwanted books.

The Y.INCLUDE statement specifies a list of one or more
identifiers. Each specifies the name of the source statement
book, or, optionally, a sublibrary and, in parentheses, the name
of the book. For example, the statement:

XINCLUDE P(INVERT),LOOPX;

specifies that the source statements in books INVERT and LOOPX
contained in the sublibrary P and in the PL/I sublibrary are to
be inserted consecutively into the source program generated by
the preprocessor. If the books are held in a private source
statement library, the symbolic device name SYSSLB must be
assigned in an ASSGN statement preceding the compilation job
step, unless you are operating under DOS/VSE with Advanced
Functions, in which case the LIBDEF statement is used.

USE OF THE INCLUDE OPTION

If the Y.INCLUDE statement is the only preprocessor statement in
the source program and the included source statements do not
contain any other types of preprocessor statements, the INCLUDE
compiler option can be specified instead of the MACRO option.
This will result in a faster compilation.

Use of the XINCLUDE option will conflict with the use of
INSOURCE and MDECK options as well as with the MACRO option.
When the INCLUDE option is used, the limit of nesting of source
statement books is eight. (There is no limit if the MACRO
option is used.) .

The listing of the source program produced when the INCLUDE
option is used will show both the XINCLUDE statement and the
source statements that replace it. Thus there is no need to use
the MACRO and INSOURCE options to obtain a separate listing of
the original source program and the included source statements.

The listing of a source program line that contains a XINCLUDE
statement to include two source statement books is shown in
Figure lion page 42.

Chapter 4. The Optimizing Compiler 41

Original source program line:

x=y; XINCLUDE R,W; X=Z;
Appearance in the listing after expansion:

x = Y; XINCLUDE R,********

Source statements for R

.
***************w;******

Source statements for W

*********************X=Z;
Figure 11. Listing of Source Programs with the INCLUDE Option

Errors in the use of a X INCLUDE statement will be indicated at
the appropriate point in the listing. Such errors are fully
described by diagnostic messages.

42 DOS PL/I Optimizing Compiler: Programmers Guide

(
~

(

)

)

CHAPTER 5. THE LINKAGE EDITOR

This chapter describes the use of the DOS linkage editor
program. You must invoke the linkage editor program to process
the object module compiled by the optimizing compiler before the
PL/I program can be executed.

The linkage editor has two major functions. One is to resolve
any unresolved machine addresses in the PL/I object module, to
enable it to be loaded and executed in the required main storage
partition; the other is to incorporate any required object
modules from the relocatable library (such as modules from the
PL/I resident library for operations for which the compiler does
not generate object code). The resultant output from the
linkage editor is an executable program phase. This output is
written into a core-image library, from which it can be
subsequently loaded for execution.

Input to the Linkage Editor

The linkage editor can accept input as follows:

• Linkage editor control statements from SYSIPT, SYSRDR, or
SYSLNK. Linkage editor control statements can also be
included in object modules loaded from a relocatable
library.

• Relocatable object modules from:

SYSLNK (compiler output)

SYSRES (system relocatable library)

SYSRLB (private relocatable libraries)

Output from the Linkage Editor

The linkage editor produces the following outputs:

• An executable program phase, either cataloged permanently or
stored temporarily in a core-image library.

• A module map, and if necessary, diagnostic messages to
indicate any detected error conditions, on SYSLST. The
listing is described later in this chapter.

Additional Linkage Editor Processing

The linkage editor also has the following additional features:

• It can build an overlay structure for a program consisting
of several procedures, so that programs having a total
object-time storage requirement that exceeds the main
storage available can be executed.

• Automatic library call feature (AUTOLINK), whereby PL/!
library subroutines are automatically incorporated into the
program phase by the linkage editor. This facility can be
suppressed, either for a complete job-step, or for a
particular phase in a multiphase link-edit operation.

Chapter 5. The Linkage Editor 43

OBJECT MODULE AND PROGRAM PHASE STRUCTURE

Text

An object module produced by the optimizing compiler consists
of:

• External symbol dictionary (ESD) entries

• Text (TXT) entries

• Relocation dictionary (RlD) entries

• END statement

Each executable program phase is constructed from the text of
one or more object modules. The linkage editor constructs a
control dictionary from the ESD information in each object
module. A composite control dictionary is also constructed for
RlD information. These dictionaries are used to resolve all
linkages, both between external modules, and between any control
sections generated by the compiler for a single source program
module.

The text of an object module consists of the compiler-generated
machine instructions. These instructions are grouped in blocks
known as control sections. An object module created by the
optimizing compiler includes the following control sections:

• Program control section: contains the executable part of the
program.

• Static internal control section: contains the following:

Constants used in the Pl/I program
Addresses of static storage items
Addresses of library routines and compiler-generated
subroutines
Addresses of other program control sections
Addresses of external entry points and external
variables
STATIC INTERNAL variables
Control blocks used by the program, such as data element
descriptors and skeleton control blocks for
partially-completed argument lists
Addresses of label constants

• Control sections termed common areas are created for all
external variables which, if not declared with the INITIAL
attribute, will be common areas.

• PlIMAIN: this control section contains the addresses of the
executable Pl/I program. It is produced by the compiler
only if the external procedure starts with a PROCEDURE
statement having the MAIN option.

• PlISTART: this control section is always produced and is the
entry point to the executable program. It contains the
addresses of the entry points of library routine IBMBPIR and
instructions to branch to this routine. Control is passed
to this routine, which initializes the Pl/I environment.
Control is then passed to the address contained in the
control section PlIMAIN. The address in PlIMAIN is resolved
by the linkage editor. If two or more main external Pl/I
procedures. are to be link-edited into one executable
program, the linkage editor will place the address of the
external entry point of the first procedure into PlIMAIN.
If a mixture of Pl/I and non-Pl/I modules is to be
link-edited to form a program in which a non-Pl/I program is
to receive initial control from the DOS supervisor, you must
define the initial entry point explicitly to the linkage
editor program in an ENTRY statement. The linkage editor
ENTRY statement is described later in this chapter.

44 DOS Pl/I Optimizing Compiler: Programmers Guide

(

)
• PLIFLOW: this control section is produced if the

statement-number trace is required (that is, if the FLOW
option has been specified for the compilation). PLIFLOW
invokes a module to initialize the flow-trace table that is
maintained in static storage.

• PLICOUNT: this control section is produced if the
statement-count is required (that is, if the COUNT option
has been specified for the compilation). PLICOUNT invokes a
module to initialize the count tables that are contained in
non-LIFO (last-in-first-out) storage.

• Control sections for compiler-generated subroutines.

• External references to PL/I library modules to be
link-edited into the program.

External Symbol Dictionary

The external symbol dictionary (ESD) contains a list of all the
external symbols that appear in the module. An external symbol
is a name that can be referenced in a control section other than
the one in which it is defined.

The names of the control sections are themselves external
symbols, as are the names of variables declared with the
EXTERNAL attribute and external entry names in the external
procedure of a PL/I program. References to external symbols
defined elsewhere are known as external references.

External references in a PL/I object module always include the
names of the resident library modules that are required for the
execution of the program. They may also include calls to
relocatable subroutines that are not part of the PL/I resident
library but which are to be incorporated into the executable
program.

Part of the linkage editor's job is to locate the subroutines
referred to, and include them in the program phase that is being
link-edited. This is performed automatically by the AUTOLINK
feature. If AUTOLINK is suppressed, any such module can be
included if specifically requested by the use of the linkage
editor INCLUDE statements. The INCLUDE statement is described
under "Linkage Editor Control Statements" on page 48.

Relocation Dictionary

The relocation dictionary is built up from the RLD entries in
each of the relocatable object modules that form the input to
the linkage editor. It is used to establish the absolute
machine addresses by adding compiler-generated addresses to the
relocation factor used for a particular phase. The relocation
factor is derived from the main storage location at which the
phase is to be loaded.

At execution time, the machine instructions, including the
instructions generated by the optimizing compiler, use two
methods of addressing locations in main storage:

• Names used only within a control section have addresses
related to the starting point of the control section.

• Other names (external names) have absolute addresses so that
any control section can refer to them.

Object programs produced by the optimizing compiler are
self-locating. The base addresses used within a phase are
resolved by the linkage editor to the relative address.

Chapter 5. The Linkage Editor 45

LINKAGE EDITOR PROCESSING FOR A PL/I PROGRAM

An object module compiled by the optimizing compiler cannot be ~
executed without the appropriate Pl/I resident and transient ~
library modules. The library modules are included in two ways I

• By incorporation during link-editing

• By dynamic invocation during execution

The first method is used for the resident library modules; the
following paragraphs describe how the linkage editor locates
those modules that are incorporated at link-edit time. The
second method is used for the Pl/I transient library subroutine
modules associated with some input/output operations (including
opening and closing files), and for execution-time error
handling.

In its basic processing mode, the linkage editor accepts data
from its primary input source, a data set with the symbolic
device name SYSlNK. For a Pl/I program, this input data set is
the object module created by the compiler. The linkage editor
uses the external symbol dictionary in the input module to
determine whether the module includes any external references
for which there are no corresponding external symbols within the
module itself. It then attempts to resolve such references.

External symbol resolution by automatic library call involves a
search of the relocatable library. The linkage editor locates
the modules in which the external symbols are defined (if such
modules exist), and incorporates them into the program phase it
is creating. It takes each external reference it encounters and
incorporates the corresponding module. If further identical
references are encountered, no further action is taken other
than to establish linkage to the incorporated module in each
case.

Note that, if a Pl/I and a FORTRAN object module have common
STATIC EXTERNAL storage defined by means of a FORTRAN COMMON
statement, the Pl/I object module must be the first module
processed by the linkage editor.

Multiprogramming Considerations

In a multiprogramming environment, you should know prior to the
link-editing process whether the Pl/I program is to be executed
in the background partition or in one of the foreground
partitions. A program is link-edited to be executed in a
particular partition unless it is a self-relocating program.

Under DOS/VS, the relocating loader can load a program at any
address in any partition without the need to write
self-relocating programs or to link-edit again.

The use of the PHASE and ACTION statements is described in
"linkage Editor Control Statements" on page 48.

JOB CONTROL STATEMENTS FOR THE LINKAGE EDITOR

DOS job control statements associated with the use of the
linkage editor program are:

lBlTYP statement

OPTION statement

EXEC statement

The lBlTYP and OPTION statements always precede the EXEC
statement.

46 DOS Pl/I Optimizing Compiler: Programmers G~ide

EXEC statement

LBLTYP statement

OPTION statement

The linkage editor is invoked by the following statement:

// EXEC LNKEDT

The LBLTYP statement is used to define the amount of main
storage to be reserved by the linkage editor in a program phase
that processes either magnetic-tape data sets with IBM standard
labels or non-sequential direct-access data sets. This storage
is used for processing the labels of such data sets. It is
required for both background and foreground programs, dependent
upon the level of your operating system. It is not required for
programs that process VSAM data sets or magnetic-tape data sets
that are unlabeled or have non-standard tape labels. The format
of the LBLTYP statement is:

// LBLTYP [NSDCnn)ITAPEl

NSD Cnn) is used if any non-sequential DSAD data sets are to be
processed, regardless of other types of data sets to be used.
'nn' specifies the largest number of EXTENT statements that will
be given for any of the DLBL statements that are associated with
the job step.

TAPE is used only if magnetic tape data sets with standard
labels are to be processed in a PL/I object program in which no
non-sequential DASD data sets are to be processed.

If the LBLTYP statement is necessary as defined above, its
omission will cause errors during execution of the program
produced by the linkage editor. The DOS label-processing
routines are loaded at execution time into storage reserved for
them by the linkage editor if the LBLTYP statement is present.
If this storage area is not available, the label-processing
routines will overwrite a portion of storage occupied by the
link-edited program.

The LBLTYP statement must precede the EXEC LNKEDT statement.
COne LBLTYP statement only should be given.)

Note: Under DOS/VSE with Advanced Functions, label-processing
storage is dynamically allocated, and the LBLTYP statement is
not required.

The following options of the OPTION job control statement apply
to the use of the linkage editor program:

LINK

CATAL

For a job that involves a link-editing step, the LINK option of
the OPTION statement must be specified. If the output of the
linkage editor is to be cataloged into the core-image library
after the link-editing step, the CATAL option of the OPTION
statement must be specified. When CATAL is specified, there is
no need to specify LINK.

The OPTION statement must precede the EXEC LNKEDT statement for
the li~kage editor job step. Only one OPTION statement is
needed for a job that contains more than one linkage editor
step.

Chapter S. The Linkage Editor 47

LINKAGE EDITOR CONTROL STATEMENTS

ACTION Statement

linkage editor control statements are used to control the
operation of the linkage editor. The statements are:

ACTION: To specify linkage editor options.

INCLUDE: To specify inclusion of additional relocatable object
modules.

PHASE: To name the link-edited phase.

ENTRY: To define the initial entry point of the phase.

This section describes each linkage editor control statement as
it applies to Pl/I users' requirements.

linkage editor control statements may be read from SYSRDR by job
control~ which copies the statements and any physically
accompanying object module (on punched cards~ for instance) onto
the data set (SYSlNK) that is to contain the input to the
linkage editor. Hencel all such statements in the input stream
must precede the EXEC statement which invokes the linkage
editor.

FORMAT OF CONTROL STATEMENTS: The first character of a linkage
editor control statement is always blank. The control statement
keyword (ACTION 1 INClUDE~ PHASE10r ENTRY) follows to the right
of the first blank and may be preceded by further blanks.
Operands must be separated from the statement keyword by one or
more blanks and from each other by commas. Operands cannot
extend past column 71. An operand field is delimited by a

, blank.

The ACTION statement is used to specify linkage editor options.
When used~ it should appear in the SYSRDR or SYSIN data set
immediately after the OPTION LINK or OPTION CATAl statement so
that it is the first record to be written onto SYSlNK. The
options of the ACTION statement are:

CANCEL
Fl or F2
MAP or NOMAP
NOAUTO

Options can be given in any order.

CANCEL OPTION: The CANCEL option causes immediate cancellation
of the job after the link-editing step if any errors occur that
cause linkage editor diagnostic messages to be printed. These
messages (numbered from 21001 to 21701) are documented in the
DOS System Control and System Services publication.

If this option is not specified l the linkage editor will list
the errors and attempt to continue.

Fl AND F2 OPTIONS: The options Fl and F2 specify the foreground
partition in which the link-edited program is to be executed.
The use of either option requires that the operating system has
been generated for multiprogrammingl and also that each
partition is allocated the same storage area at link-edit that
will be allocated when the object program is executed. If used
in a non-multiprogramming environment l either option is ignored.
Programs with a phase origin (see npHASE Statement" on page 50)
specified as 'S'~ '*'1 or 'ROOT' can be designated for execution
in a foreground partition by means of these options.

,/

(

MAP OR NOMAP OPTION: The MAP option causes the linkage editor to ~,'
produce a listing that indicates the main storage addresses ~
assigned to each program phase and entry point processed in the

48 DOS Pl/I Optimizing Compiler: Programmers Guide

INCLUDE statement

job step. An example of this listing is given in Appendix A on
page 281. The NOMAP option suppresses the listing. The option
MAP is assumed if neither option is specified and SYSLST is
assigned at link-edit time.

NOAUTO OPTION: The NOAUTO option causes the suppression of the
AUTOLINK feature. AUTOLINK causes the automatic search of the
relocatable library for resident library modules and any other
object modules that are to be incorporated into the executable
object program. The search takes place when an external
reference cannot be resolved within the module itself. The
AUTOLINK feature is recommended for use with all single-phase
PL/I programs.

If no ACTION statement is given and SYSLST is assigned, ACTION
MAP is assumed; if SYSLST is not assigned, ACTION NOMAP is
assumed.

An example of an ACTION statement that requests the linkage
editor to construct an executable program phase for execution in
the currently-assigned foreground-l partition follows:

ACTION Fl

Additional features of the ACTION statement under DOS/VS include
F3 and F4 for extra partitions, and REL and NOREL for the
relocating loader.

The relocating loader can load any relocatable phase into any
problem program partition. If ACTION REL is specified, a phase
will be marked relocatable if possible, depending on the PHASE
statement (see "PHASE Statement," below). ACTION REL is the
default for systems that have relocating loader support
specified at system generation time. DOS/VSE with Advanced
Functions makes all programs relocatable unless NOREL is
specified.

The INCLUDE statement can be used to specify that a module from
the relocatable library is to be included in the link-editing
operation, and is to be link-edited to form either a part of a
phase or a complete phase. One or more relocatable object
modules can be included in anyone phase. The position of the
INCLUDE statement determines the position of the included module
within the phase.

The format of the INCLUDE statement is:

INCLUDE [modulenamel

"modulename" specifies the name of the module to be included
from the relocatable library. The module name must be the one
specified in the optimizing compiler CATALOG option or the DOS
Librarian CATALR statement when the module was cataloged. (See
Chapter 6.)

When the INCLUDE statement is used without the "modulename"
operand, the object module is assumed to follow the INCLUDE
statement immediately in the output to the SYSIPT device. This
method is normally used when the relocatable module is in the
form of a deck of punched cards. (You can obtain an object
module as punched cards by specifying the compiler DECK option
when the program is compiled.)

INCLUDE statements may also be used to nest modules that are in
the relocatable library. For example, a module included by use
of an INCLUDE statement may itself cause another module to be
included. Such nesting is permitted up to a depth of six
levels. For example, a module included by an INCLUDE statement
read from the card reader (SYSRDR) is at the first level and a
module included for a first level module is at the second level.

Chapter 5. The Linkage Editor 49

PHASE statement

An example of an INCLUDE statement that requests the linkage
editor to incorporate an object module from a relocatable
library into the executable program phase follows:

INCLUDE ZREOOI

The PHASE statement specifies a name and the origin point of a
phase to be produced by the linkage editor. The name is that
with which the phase is cataloged in the core-image library, and
by which it is identified for subsequent retrieval. The origin
point specifies the location in main storage at which the phase
is to be loaded for execution.

The compiler option NAME, if used, will cause the compiler to
generate a PHASE statement preceding the object module produced
for the compilation on SYSLNK. The NAME option is described in
Chapter 4 of this pUblication.

The format of the PHASE statement is as follows:

PHASE name,origin[,NOAUTO]

where "name" is the name to be used for cataloging the phase in
the core image library; "origin" is the symbolic or absolute
location in main storage at which the phase is to be loaded; and
NOAUTO optionally suppresses use of the automatic library
(AUTOLINK) feature for the phase.

NAME OPERAND OF THE PHASE STATEMENT: The name operand represents
the symbolic name of the phase. It may consist of one to eight
alphameric characters. In a multiphase program, the phase name
must be at least five characters, the first four of which are
identical to those in the names of the other phases in the
program but different from any other phase names in the library
that are not part of the program.

An asterisk is not permitted as the first character of a phase
name.

ORIGIN OPERAND OF THE PHASE STATEMENT: The origin operand of the
PHASE statement specifies the load address in main storage to be
used for the phase. The load address can be specified
symbolically in one of the following formats:

1. symbol

2. *
3. ROOT

4. S

5. F + address

A complete list of the available forms is described in detail in
DOS/VSE System Control Statements. Those given above are the
most likely to be used when link-editing PL/I programs.

The first form, "symbol", specifies that the origin is to be
identical to that of a phase that has already been processed by
the linkage editor. Therefore, the symbol given should be the
phase name used for a phase that precedes it in the input to the
linkage editor. In effect, the phase currently processed will
occupy the same storage as the phase named as the symbol. This
mechanism is of use in constructing an overlay (multiphase)
program.

\

The second form, "*", specifies that the origin is to be the ~
next available doubleword address after the previous phase, if ~
any. If there is no previous phase, the address is assumed to
be the first doubleword address after the supervisor and any

50 DOS PL/I Optimizing Compiler. Programmers Guide

)
storage reserved for label processing, unless the ACTION
statement is specified with the foreground option. In this case
the phase origin will be at the start of either the
foreground-I, foreground-2, or any partition specified, plus
that of any preceding phase.

The third form, "ROOT", specifies that the phase is the root
phase of an overlay (multiphase) program. This phase should be
the first to be processed by the linkage editor. Its origin
will be the next available doubleword address after the
supervisor and any storage reserved for label processing, unless
the ACTION statement is specified with the Fl or F2 option. In
this case the phase origin will be at the start of either the
foreground-lor the foreground-2 partition.

The fourth form, "S", specifies that the phase origin is the
next doubleword address available after the supervisor and any
storage reserved for label processing, unless the ACTION
statement is specified with the Fl or F2 option. If this is the
case, the phase origin will be at the start of either the
foreground-lor foreground-2 partition.

The fifth form, "F + address", permits the specification of a
foreground-lor foreground-2 partition address as the origin of
the phase. This form can be used instead of the ACTION
statement with the Fl or F2 option and the PHASE statement with
the "*", "S", or "ROOT" forms if the foreground partitions
allocated when the link editing is performed do not occupy the
same areas of main storage as the foreground partitions used
when the program is executed. The "address" is an absolute
storage location to which is added storage for a register save
area and, if required, storage for label processing.

The first four forms are compatible with the generation of a
relocatable phase unless they refer to another phase that is not
relocatable. The last form will generate a nonrelocatable
phase.

Refer to DOS/VSE System Control Program for more detail on the
PHASE statement.

A PHASE statement is not required for a single-phase program
that is to be written into the temporary area of a core-image
library. The PHASE statement is required for a temporary
multiphase program, however. (In either case, the EXEC
statement that invokes a program phase from the temporary area
does not specify a program name.)

A PHASE statement must precede the first object module in the
phase to be produced by the linkage editor. Any object module
not preceded by a PHASE statement will be included in the
current phase.

When several PHASE statements occur, each of the PHASE
statements must be followed by at least one INCLUDE statement to
obtain a module from the relocatable library or the input
stream. For example:

// JOB EXAMPLE
// OPTION CATAL

PHASE PHASl,ROOT
INCLUDE PROGA
INCLUDE PROGB
PHASE PHAS3,*
INCLUDE

object module C

/*
// EXEC LNKEDT
/&

Chapter 5. The Linkage Editor 51

ENTRY statement

See also "Overlay (Multiphase) Programs" on page 53.

The ENTRY statement can be used to specify the initial entry
point in a phase to be invoked by the control program. The
format of the ENTRY statement is as followsz

ENTRY entry-point

An ENTRY statement is not required unless the control section
that receives control initially from the operating system is not
the first cOhtrol section to be processed by the linkage editor.
For PL/I programs, the first control section in an object module
is the compiler-generated control section PLISTART. This
control section contains the entry-point address to the PL/I
program.

An example of an ENTRY statement that causes control to be
passed to an entry point other than that of the first control
section in the link-edited phase follows:

ENTRY EPZOOI

Example of Control statements

The following gives the linkage editor INCLUDE and PHASE
statements and the job control statements associated with the
use of the linkage editor to create a multiphase program
consisting of modules from a relocatable library.

LINKAGE EDITOR LISTING

// JOB FIG0500X
// OPTION CATAL

PHASE PHAS1,ROOT
INCLUDE A
PHASE PHAS2,*
INCLUDE Bl
PHASE PHAS3,PHAS2
INCLUDE B2

// EXEC LNKEDT
/&

The listing produced by the linkage editor contains a statement
of the options given in any ACTION statement or assumed by
default, a listing of the INCLUDE, PHASE, and ENTRY statements
processed, and a listing of the external references resolved by
the AUTOLINK feature.

If the option MAP is given, the linkage editor also produces a
listing showing the types of phase produced (ROOT or OVERLAY),
the load-point address (XFR-AD), the phase origin address
(LOCORE), the highest main storage address used (HICORE), the
core-image library disk storage address used for the phase, and
the relocation factor used for the phase. The contents of the
phase and the control sections that have been combined by the
linkage editor into the phase are then listed with their main
storage start-addresses and the relocation factor used to obtain
the main stotage start-address. For each control section, each
external entry point is listed with its main storage address.
Unresolved external entry points are flagged with an asterisk.
For every unresolved weak EXTRN, there is an unresolved message
indicating an address constant.

Any errors encountered by the linkage editor are indicated by
diagnostic messages with message numbers prefixed by "21."

An example of a linkage editor listing is given in Appendix A on
page 281.

52 DOS PL/I Uptimizing Compiler: Programmers Guide

/
(I

~

OVERLAY (MULTIPHASEJ PROGRAMS

I

I ~
~ m

I m p
I m m

Programs larger than the available main storage space can often
be subdivided into smaller phases that can fit into the
available space and be executed independently of other phases in
the program. During execution of such a multiphase program
phases can be loaded and executed successfully in the same area
of main storage. One phase must remain in main storage
throughout; this is termed the root phase. The other phases are
termed overlay phases. Both a root phase and an overlay phase
can contain one or more PL/I external procedures, but the main
procedure must always be in the root phase.

Control cannot be passed from a PL/I procedure in the root phase
to a procedure in an overlay phase until the overlay phase has
been loaded into main storage. Loading is achieved by means of
the resident library module PLIOVLY. The module PlIOVlY is
invoked by the statement:

CALL PLIOVLY (character-string-expression);

where ncharacter-string-expressionn represents the name of an
overlay phase in the core-image library. The phase name used in
a CALL PLIOVLY statement is a unique name given in the NAME
option or PHASE statement when the overlay phase was created.
For example:

CALL PlIOVlY ('PHASES');

The phase is then loaded into main storage and control is
returned to the PL/I procedure. The statement immediately
following the CAll PLIOVlY statement is then executed. Entry
points within the overlay phase can then be invoked by a CAll
statement or a function reference from any phase currently
resident in main storage at any time after the containing phase
has been loaded, provided that it has not been overwritten by a
subsequently loaded phase.

Note that an overlay phase can itself initiate the loading of
further phases. Nesting of overlay phases can take place up to
a depth of six. However, the calling phase must not itself be
overwritten in main storage by the newly-loaded overlay phase.
Figure 12 shows an overlay program as a tree structure. The use
of a tree structure can help in planning an overlay program.

ROOT
I
V I

I ~ I
I m m m
~ The ROOT phase may fetch any phase A through N. m Phase A may fetch any phase C through K.

Phase B may fetch may fetch any phase l through N.
Phase C may fetch phase F.
Phase E may fetch any phase G through K.

I Phase G can fetch phase I, J, and K. m Phases D, F, H, I, J, K, l, M and N cannot fetch
any other phases.

Figure 12. Overlay Structure

Chapter S. The linkage Editor 53

An overlay program phase can fetch into main storage any overlay
phase that is directly below it in its tree structure hierarchy.
If an overlay phase is more than one level below its fetching
phase, space is reserved for any intermediate phase that may
subsequently be fetched into storage.

Constructing Overlay Programs

An overlay program is constructed by the DOS linkage editor from
a number of relocatable object modules. The linkage editor can
obtain these modules from a preceding batched compilation, or
from a relocatable library, or from a device assigned to SYSIPT.

Each group of relocatable object modules that is to form a
single phase in an overlay program must be preceded in the input
to the linkage editor by a PHASE statement. The format of the
phase statement is described earlier in this chapter.

The root phase of a PL/I overlay program must contain at least
one PL/I procedure with the MAIN option. The programmer must
ensure that the root phase is not overlaid by any other phases
during execution.

Note: If you want to link-edit the output from a PL/I batched
compilation in the immediately following job step, use the
compiler NAME option to generate the appropriate PHASE statement
for each overlay phase.

PL/I Resident Library Modules

It is probable that most of the PL/I object modules in an
overlay program will contain references to modules of the DOS
PL/I Resident Library. The location of these modules within the
overlay structure can significantly affect the space
requirements of the program. You must therefore decide in which
phase or phases of your overlay program each required library
module is to be placed.

The following sections give suggested techniques for optimizing
the placement of resident library modules within the phases of
an overlay program. These techniques apply only to Release 28.0
of the Disk Operating System and to any subsequent releases. If
the release level of your operating system is earlier than 28.0,
refer to "DOS Releases Before Release 28.0" on page 57.

Link-Editing Wide Overlay structures

A wide overlay structure is one that contains few levels of
overlay, but which contains many phases at each level. For a
structure of this type, optimum use of available storage can
usually be achieved by allowing each phase to contain the
library modules that it calls, with the exception of certain
modules that must always be in the root phase.

The required placement of library modules is achieved as
follows:

1. Use the AUTOLINK feature of the DOS linkage editor; that is,
do not code the NOAUTO option on any PHASE statement.

2. Include the following modules in the root phase if the
associated function is used anywhere in the overlay program.

IBMBJWTA if the wait statement is used.

IBMBTOCA if the COMPLETION pseudovariable is used.

(
\

IBMBJDSA if the DISPLAY statement with the EVENT option is ~
used. ~

54 DOS PL/I Optimizing Compiler: Programmers Guide

)

IBMBRIOA if the EVENT option is used on a record I/O
statement.

IBMBSCPA if the GET statement with COPY option is
specified.

3. Include module IBMDPOLA in every overlay phase (but not in
the root phase).

Note: Because the position of an INCLUDE statement determines
the position of the module within the phase, the INCLUDE
statements for the resident library modules must follow the PL/I
source code.

When the overlay program is processed by the linkage editor, the
AUTOLINK feature ensures that external references to modules
whose names begin with "IBM" are resolved within the phase in
which they occur. Each phase thus gets those library modules
that it requires and no others. The INCLUDE statements for the
root phase ensure that the modules listed in (2) above are
placed in the root phase. Module IBMDPOLA contains dummy entry
points for modules that must be in the root phase, and prevents
additional copies of these modules being placed in the overlay
phases.

If any overlay phase contains a CHECK condition prefix, ensure
that a CHECK condition prefix for a variable with the same
attributes occurs in the root phase. It may be necessary to
insert a dummy variable in the root phase to satisfy this
requirement.

An example of the link-edit procedure for a wide overlay
structure follows:

// JOB
// OPTION LINK

PHASE PHASER,ROOT

(Main procedure using PLISORT
built-in function)

/*
//
/&

INCLUDE IBMBPGRA
PHASE PHASEl,*
(phase 1 object module)
INCLUDE IBMDPOLA
PHASE PHASE2,PHASEI
(Phase 2 object module)
INCLUDE IBMDPOLA

Link-Editing Tall Overlay structures

A tall overlay structure is one that contains many levels of
overlay, but few phases at each level. For a structure of this
type, optimum use of available storage can usually be achieved
by including commonly used library modules in the root phase.
This can be done as follows:

1. Code the NOAUTO option on each PHASE statement except the
PHASE statement for the root.

2. Create a list of library modUles that are to be included in
the root phase. The list can be created in one of two ways:

a. Examine all external procedures in the compiler ESD
listings for all the overlay phases of the program, and
select all module names that are marked "ER."

b. Perform a trial link-edit on the program, and select all
module names that are marked as unresolved external
references (EXTRN) in the linkage editor listing.

Chapter 5. The Linkage Editor 55

3. Place INCLUDE statements for the selected modules in the
root phase. An example of the link-edit procedure for a
tall overlay structure is shown in Figure 13.

Stage 1 - Trial Link Edit

// JOB
// OPTION LINK

/*

PHASE PHASER,ROOT

(Procedure with references to
library modules "A" and "B")

PHASE

PHASE

PHASEl,*,NOAUTO

PHASE2,PHASEl,NOAUTO

(Procedure with references to
library modules "B," DC," and "D")

// EXEC
/&

LNKEDT

The output from the linkage editor shows that references to
library modules nco and "D" are unresolved. INCLUDE statements
for these modules must therefore be added to the root phase.

Stage 2 - 2nd Link Edit

// JOB
// OPTION LINK

PHASE PHASER,ROOT
INCLUDE C
INCLUDE D

PHASE

PHASE PHASE2,PHASEl,NOAUTO

/*
// EXEC INKEDT
/&

Figure 13. Link-Editing a Tall Overlay Structure

Link-Editing Complicated Overlay structures

An overlay program may be both wide and tall, or it may contain
some wide branches and some tall branches. In these cases, the
link-editing techniques described previously may result in a
program size that is considerably larger than optimum, either
because the root phase contains many library modules that are
used very infrequently, or because many copies of the same
module are in storage at the same time.

The following sections describe techniques that can be used to
improve the overlay program. It is assumed that an initial
link-edit has been performed on the basis of whether wide or
tall structures predominate in the program.

Improvements to Overlay Programs Link-Edited with AUTOLINK

If an overlay program has been link-edited using the AUTOLINK
feature, the storage requirements of tall branches in the

S6 DOS PL/I Optimizing Compiler: Programmers Guide

l ,

program may be unnecessarily large because many library modules
occur in more than one phase in the branch. If this is the
case, the situation can be improved by moving library modules to
the highest common phase in the branch. This can be done as
follows:

1. Add the NOAUTO option to the PHASE statements for all phases
in the branch except the first.

2. Remove the INCLUDE IBMDPOLA statement from all phases in the
branch except the first.

3. Working from the ESD listings of the compilations for the
changed phases, create a list of library modules by
selecting each module name that is marked "ER." References
to modules IBMBJWTA, IBMBTOCA, IBMBPIRA, IBMBPGRA, and
IBMBERCA should be ignored, because IBMDPOLA contains dummy
entry points for these modules.

4. Insert INCLUDE statements for the selected modules in the
first phase of the branch.

Improvements to Overlay Program Link-Editing with NOAUTO

If an overlay program has been link-edited using the NOAUTO
option, the root phase may be unnecessarily large because it
contains library modules that are used only by a few phases in
the program. In this case, the situation can often be improved
by moving these library modules from the root phase to the
phases that require them.

Only modules that do not call other library modules can be
treated in this way. A list of library modules that do not call
other library modules, and which therefore can be placed
anywhere in an overlay program, is given in Figure 14 on page
58.

Modules can be moved from the root phase as follows:

1. Working from the compiler ESD listings, select modules that
are listed in Figure 14 on page 58 and which are used
infrequently.

2. Place an INCLUDE statement for each selected module in each
phase that uses it, and remove the INCLUDE statements for
these modules from the root phase.

DOS RELEASES BEFORE RELEASE 28.0

If your disk operating system is earlier than release 28.0 the
DOS linkage editor will not recognize that special treatment of
PL/I resident library modules is required, and will treat them
just like any other external module. That is, the linkage
editor will include each library module once only, in the first
phase in which it is requested.

Thus it is possible that a phase containing a particular module
will not have been loaded or will not have been overlaid by the
time another phase that requires it is executed.

To guard against this possibility, use the techniques described
under "Link-Editing Tall Overlay Structures" earlier in this
chapter.

DATA VARIABLES AND FILES IN OVERLAY PROGRAMS

Variables with the attributes STATIC INTERNAL or AUTOMATIC in an
overlay phase will have undefined values if the phase is
overlaid and a new copy of the same phase is subsequently loaded
and invoked. Consequently, any variables with values that are

Chapter 5. The Linkage Editor 57

IBMBAMMA
IBMBAYFA
IBMBBBAA
IBMBBBNA
IBMBBCIA
IBMBBCKA
IBMBBCTA
IBMBBCVA
IBMBBGCA
IBMBBGFA
IBMBBGIA
IBMBBGSA
IBMBBGVA
IBMBCBBA
IBMBCBCA
IBMBCBQA
IBMBCOA
IBMBCVA
IBMBCWA
IBMBCYA
IBMBEOCA
IBMBEOLA
IBMBJDTA
IBMBJDYA
IBMBJDZA
IBMJTTA
IBMBKCPA
IBMBKSTA
IBMBMPUA
IBMBMQUA
IBMBMRUA
IBMBMRVA
IBMBMUDA
IBMBMVUA
IBMBMVVA
IBMBMVWA
IBMBMWXA
IBMBMWYA
IBMBMXLA
IBMBMXSA
IBMBPAFA
IBMBPAMA
IBMBPRCA

Structure mapping
POLY built-in function
AND, OR operations (byte-aligned bit strings)
NOT operation (byte-aligned bit strings)
INDEX (character strings)
Concatenate, REPEAT (character strings)
TRANSLATE (character strings)
VERIFY (character strings)
Compare (general bit strings)
Assign (byte-aligned bit strings) and Fill (general bit strings)
INDEX (bit strings)
SUBSTR built-in function
VERIFY (bit strings)
Conversion (bit to bit)
Conversion (bit to character)
Conversion (bit to pictured character)
Conversion (packed decimal to pictured decimal)
Conversion (packed decimal to E format)
Conversion (packed decimal to F format)
Conversion (fixed binary to fixed binary and float to float)
ON-code
ONLOC built-in function
DATE built-in function
DELAY
DISPLAY without EVENT
TIME built-in function
Checkpoint/restart interface
SORT interface
MULTIPLY (fixed binary complex)
DIVIDE (fixed binary complex)
ADS (fixed binary complex)
ABS (fixed decimal complex)
Shift and assign/load (fixed decimal real)
Multiplication and Division (fixed binary complex)
Multiplication and Division (fixed decimal complex)
Multiplication (long and short float complex)
Division (short float complex)
Division (long float complex)
Integer exponentiation (long float real)
Integer exponentiation (short float real)
Controlled variable management
AREA management
Return code module

Figure 14. Library Modules that Can Be Placed Anywhere in an Overlay Program

to be used by a subsequent copy of the same phase should be
declared with the attributes STATIC EXTERNAL both in the overlay
phase and in the root phase.

Variables with the attributes CONTROLLED EXTERNAL in overlay
phases must also be declared in the root phase of the program.

Variables whose values are used in more than one overlay phase
should also be declared STATIC EXTERNAL in each overlay phase
that uses them and in the root phase. This will .cause all such
variables to be stored in a common area at the beginning of the
problem program partition.

If STATIC EXTERNAL data is shared by two or more phases at two
or more levels below the root phase, it is possible to store
such data in a common phase at a higher level rather than in the
root phase.

This is done by declaring the STATIC EXTERNAL data in the common
phase rather than in the root phase. The d.eclaration must also
include the INITIAL attribute, to force the data item to be
mapped in the storage area of the common phase.

58 DOS PL/I Optimizing Compiler: Programmers Guide

)

)

For example, in Figure 12 on page 53, suppose that phases C and
D use a large array that is not used in phase B or any of its
subsidiary phases. The storage for such an array is allocated
throughout execution of the program if it is declared STATIC
EXTERNAL in the root phase. If it is declared STATIC EXTERNAL
INITIAL C •••) in phase A, it will be allocated storage only when
A is loaded and the PL/I procedure within A is invoked. The
storage will be allocated within the storage area for this
procedure. Thus the storage available to phase B and to any of
its subsidiary phases is increased by the amount of storage the
array would otherwise have occupied.

Note that the values in the array will be lost as soon as phase
A is overlaid by phase B. Consequently, this technique must not
be used when the values of the STATIC EXTERNAL data are to be
preserved throughout any overlaying and reloading of the common
phase.

Variables whose values are used in more than one phase can also
be passed as arguments in CAll statements or function
references. However, the values of such variables will be
undefined when the invoking procedure is overlaid, unless they
are STATIC EXTERNAL in both the overlay phase and the root
phase.

If a file is declared and opened in an overlay phase, the file
must be closed before the phase is overwritten. However, the
file need not be closed if it was also declared in the root
phase. As the SYSPRINT file is used for error messages, the
CSECT for the file should be included in the root phase; that
is, it should be declared explicitly or implicitly in the root
phase.

OVERLAY PROGRAMS IN A FOREGROUND PARTITION

If an overlay program is to be link-edited for execution in a
foreground partition, the ACTION statement must be used to
specify the required foreground partition, since the PHASE
statement for the root phase must specify "ROOT," and therefore
cannot be used to specify a foreground origin address. Note
that the foreground partition should be allocated exactly as it
will be allocated when the overlay program is executed. If the
first three characters of the phase names in a foreground
overlay program are 'FGP', the phase will be retrieved and
loaded from the core-image library more efficiently.

Examples of Overlay Program Creation

The following two examples show the use of the optimizing
compiler and the linkage editor in creating an overlay program.

The example of Figure 15 on page 60 shows several PL/I object
modules and other relocatable modules from both the relocatable
library and the input stream that are written onto the SYSLNK
data set prior to the link-editing step that creates a
multiphase program. However, if the first module to be invoked
cannot be the first module in the input, it must, with some
exceptions, be supported by a linkage editor ENTRY statement to
identify it as the first module to be invoked.

In Figure 15, an overlay program is link-edited, written onto
the core-image library, and executed. The root phase of the
program is a phase called OVLAYI. It consists of a main PL/I
procedure compiled in the first job-step, and an object module
identified in the relocatable library as RELMODI.

The overlay program is to be executed in the background
partition. It will occupy storage immediately following the
resident supervisor program and a communications area.

Chapter 5. The Linkage Editor 59

// JOB OVERLAYI
// OPTION CATAL

PHASE OVLAY1,ROOT
// EXEC PLIOPT,SIZE=64K

RT:PROCEDURE OPTIONS(MAIN)j
DECLARE (X,E) ENTRY;

CALL PLIOVLY ('OVLAY2')

Y = X * Z; /* FUNCTION X INVOKED*/

CALL PLIOVLY ('OVLAY3');

CALL E;

END RT;
/*

INCLUDE RELMODI
PHASE OVLAY2,*
INCLUDE

/*

object module card deck
(entry point nXft)

PHASE OVLAY3,OVLAY2
INCLUDE RELMOD2
INCLUDE

/*

object module card deck
(entry point nEft)

// EXEC LNKEDT
// EXEC OVLAYI
/&

Figure 15. An Overlay Program

The first overlay phase, OVLAY2, is to occupy the next available
storage location after the root phase. This phase consists of a
relocatable object module in the form of a card deck. The first
overlay phase is invoked at entry point X. The second overlay
phase (OVLAY3) is to occupy the same storage locations as
OVLAY2. OVLAY3 consists of the object module RELMOD2 from the
relocatable library and the second relocatable object program
submitted as a card deck. The second overlay phase is invoked
at entry point E. When procedure RT is executed, the overlays
are loaded successively, the second overwriting the first.

The second example in Figure 16 on page 61, shows the use of the
PL/Ibatched-compilation facility to compile several external
procedures from one invocation of the compiler and to link-edit
them to the background partition.

In this example, the PHASE statements are generated by the
optimizing compiler. A PHASE statement is produced for every
compilation for which the compiler option NAME is used in the
PROCESS statement. The operands of the NAME option are (
specified exactly as for the PHASE statement. Each generated :
PHASE statement is placed before the object module produced by
the compilation on SYSLNK.

60 DOS PL/I Optimizing Compiler: Programmers Guide

) // JOB FIG0503X
// OPTION CATAL
// EXEC PLIOPT
~ PROCESS NAME('FGPOVLI,ROOT');

RT:PROCEDURE OPTIONS(MAIN)j
DECLARE (EI,E2) ENTRY;

CALL PLIOVLY ('FGPOVL2')j

CALL EI;

CALL PLIOVLY ('FGPOVL3')j

.
CALL E2;

.
END RT;

~ PROCESS NAME('FGPOVL2,~');
EI:PROCEDURE;

END El;
~ PROCESS NAME('FGPOVL3,FGPOVL2');

E2:PROCEDURE;

END E2;
// EXEC LNKEDT
// EXEC FGPOVLI
/&

Figure 16. Overlay Program Using Batched Compilation

The CATAL option in the OPTION statement specifies that the
linkage editor output is to be cataloged on the core image
library.

FGPOVLI is the root phase; FGPOVL2 and FGPOVL3 are overlay
phases that occupy the same main storage locations. The layout
of the main storage partition for this program is given below:

Use of Overlay Phases

ROOT PHASE AREA
- FGPOVLl

OVERLAY PHASE AREA
FGPOVL2 and FGPOVL3

The following notes describe the possible organization of an
application program into an overlay program.

Note that the figures used are not meant to be representative
but merely to illustrate the points that are being explained.

Assume that the program is large, containing a total of
approximately 2000 statements. It is to be executed in the
background partition (BG), in which there are 48K bytes of main
storage. (It is assumed for the purposes of this discussion
that this partition is permanently allocated this amount of main
storage so that the PL/I Optimizing Compiler can be used

Chapter 5. The Linkage Editor 61

regularly.) If compiled as a single-phase program, the PL/I
object program would require approximately ISOK bytes of main
storage for execution. The storage requirements for the program (
might consist of the following: ~

SK STATIC EXTERNAL data

AUTOMATIC and CONTROLLED data Up to 10K at anyone time

Compiled object code (including
link-edited PL/I library subroutines
and space for transient
library routines)

Total

130K

14SK bytes

However, it is reasonable to expect that a program of this size
would be developed and tested initially as a number of separate
external procedures. Consequently, the creation of an overlay
program with phases containing one or more external procedures
can be envisaged at an early stage in the development of the
program.

To enable this program to be executed in a 48K-byte-partition,
it must be divided into a root phase and a number of overlay
phases. The root phase is designed to load and invoke each
overlay directly. The background partition will contain the
root phase and one overlay phase only at anyone time. The
storage requirement for the root phase is:

STATIC EXTERNAL data

AUTOMATIC and CONTROLLED data

Compiled object code (excluding

SK

IK

library subroutines) 10K

PL/I resident library subroutines (some
of which are used by overlay phases) 8K

Space allowed for transient
library routines

Total

4K

28K bytes

The approximate maximum storage requirements for an overlay
phase is:

None STATIC EXTERNAL data

AUTOMATIC and CONTROLLED data Up to 10K at anyone time

Compiled object code (excluding
library subroutines)

PL/I resident library subroutines
(some of which are used exclusively
by the overlay phase)

Space allowed for transient
library routines

Total

6K

2K

2K

20K bytes maximum

The combined storage for the root phase and the largest of the
overlay phases should not exceed 48K bytes.

These figures are approxintations only. The subdivision of a
single program will probably cause a marginal increase in the
total storage requirement and a significant increase in the
total execution time because of increased overheads in phase ~
loading and block initialization. The assumptions shown above ~
are for guidance only. The requirements for a particular
multiphase program can only be determined locally.

62 DOS PL/I Optimizing Compiler: Programmers Guide

)

The size of a PL/I object module before link-editing can be
obtained from the compiler listing entitled "Storage
Requirements." The resident library modules that are required
for the object module are given in the external symbol
dictionary (ESD) listing, also produced by the compiler.
Resident library modules for the optimizing compiler have the
characters "IBMB" in the first four positions of the library
module name. The total length of a link-edited program phase is
given in the storage map produced by the linkage editor for each
program phase.

LINKING PL/I AND OTHER LANGUAGE MODULES

Relocatable object modules written in various programming
languages, such as PL/I, COBOL, FORTRAN, and assembler language,
can be combined by the linkage editor to form a single
executable program. This section describes some of the methods
that can be used to achieve the correct combination of modules
from PL/I and other languages.

The first consideration is to determine which module is to
receive control initially when the program is invoked and to
ensure that the linkage editor takes the appropriate action for
this module. A second consideration is the use of the linkage
editor itself, particularly when the object modules to be
processed are to be obtained from different sources.

Establishing Initial Control

The main consideration in using the linkage editor to combine
relocatable object modules, particularly if they were written in
different programming languages, is to determine which module is
to receive initial control. Normally, the first object module
to be processed by the linkage editor will automatically be the
first module in the executable program to be invoked. However,
if the first module to be invoked cannot be the first module in
the input, it must, with some exceptions, be supported by a
linkage editor ENTRY statement to identify it as the first
module to be invoked. Figure 17 on page 64 shows when an ENTRY
statement should or should not be used.

Linking Multiple Object Modules

One method of linking multiple object modules into a single
executable program is to compile (or assemble) each module and
catalog the resulting object module in a relocatable library.
The link-editing run would require the appropriate linkage
editor INCLUDE statements in the order in which the modules are
to be retrieved from the relocatable library and combined. If
two modules contain the same entry point name (this occurs in
some IBM-supplied modules when a superset module contains the
same entry point name as a subset module), this method prevents
a linkage editor message 21431 (duplicate entry point label).

Another method is to compile and link edit the modules as one
job stream. If two modules contain the same entry point name,
an INCLUDE statement for the superset module must be the first
statement to the linkage editor.

A third method is to produce the object modules in the form of
card decks for direct input to the linkage editor. It is also
possible to perform a series of compilations and assemblies in
the same job; this results in a sequence of object modules being
written onto SYSLNK for direct input to the linkage editor in ~
link-editing step that immediately follows the last compilation
or assembly in the job. This technique is used in an example in
Chapter 11. It is a convenient method of performing
multiple-compile, link, and execute operations within a job for
checking out such programs.

Chapter 5. The Linkage Editor 63

in Editor Is ENTRY Required? Type of Module Type of Module First
containing Initial Input
,Entry Point

PL/I COBOL YESl
Assembler with END label statement YESl
Assembler without END label statement NO
FORTRAN3 NO

COBOL 'D' PL/I ,Not permitted,
Assembler with END label statement therefore the
Assembler without END label sta~ement COBOL module must
FORTRAN be the first rn--

the input to the
linkage editor

COBOL 'F' PL/I YES
Assembler with END label statement YES
Assembler without END label statement NO
FORTRAN NO

FORTRAN PL/I3 YES
COBOL YES
Assembler with END label statement YES
Assembler without END label statement YES

Assembler - PL/I YES
with END label COBOL YES
statement. FORTRAN YES2

Assembler - PL/I YES
without END COBOL YES
label statement FORTRAN YES

RPG II RPG II NO
Any other YES

lThe entry name used in the ENTRY statement must be PLISTART.
2This applies when PL/I or COBOL modules are also present; if the program
consists of assembler and FORTRAN modules only, the ENTRY statement is
not required.

3If the PL/I and FORTRAN modules have common STATIC EXTERNAL storage defined
by means of a FORTRAN COMMON statement, the PL/I object module mY§! be the
first module processed by the linkage editor.

Note:
A full list of COBOL and FORTRAN compilers can be found in the publicationsl
DOS PL/I Oetimizing Comeiler,: General Information, and
DOS PL/I Oetimizing Comeiler: Installation.

Figure 17. Use of ENTRY Statement in Multilanguage Programs

Any combination of these techniques may be used to suit the
requirements of a particular application.

If the program to be link-edited contains a mixture of PL/I and
Assembler language modules in which the PL/I module is invoked
from the Assembler language module, the resident library module
IBMBPJRA must be included in the executable program. A linkage
editor INCLUDE statement can be used for this purpose.

RELINK-EDITING FOR 3330-11 AND 3350 UNDER DOS/VS RELEASE 34

Programs running under DOS/VS Release 34 that want to take
advantage of support for the 3330-11 and 3350 direct-access
storage devices need not relink-edit their programs when all the
following are true:

• The supervisor has rotational sensing (RPS) support
generated in the system.

64 DOS PL/I Optimizing Compiler: Programmers Guide

,/
I

\.

(

)
•

•

RPS support has been loaded into the SVA, or sufficient SVA
space is available for loading the RPS logic modules.

The program is running in virtual mode and the SIZE operand
is specified on the EXEC statement.

• The program has sufficient GETVIS space for RPS extensions
to existing control blocks.

• The program currently specifies 2311, 2314, 3330, or 3340
DASDs for the files that are to be moved to the 3330-11 and
3350 DASDs.

Note: Release 34 does not support 3370, 3375, or 3380
devices.

If these conditions are not true, relink-editing is necessary.

Chapter 5. The Linkage Editor 65

CHAPTER 6. PROGRAM LIBRARY CREATION AND MAINTENANCE

PROGRAM LIBRARIES

This chapter describes some of the basic features and
requirements for cataloging and maintaining Pl/I programs in the
various types of libraries available under DOS/VSE with Advanced
Functions. If you intend to make extensive use of the DOS/VSE
librarian facilities, particularly for creation and
reorganization of the libraries described in this chapter, refer
to VSE/Advanced Functions: System Control Statements.

Four types of program libraries can be used in DOS/VSE Advanced
Functions:

• Core-Image library--contains the executable programs, in
core-image format, that are kept in a DOS/VSE installation.

• Relocatable library--contains compiled, but not executable,
object modules.

• Source Statement library--contains programs in source
statement form.

• Procedure library--contains DOS/VSE job control statements.

These are system libraries, which are always available when a
program is run.

In addition, private core-image, relocatable, and source
statement libraries can be defined. A private library can only
be established on a device similar to that used for the system (1
library, a 2314, 3330, or other direct-access device. These ~
private libraries are usually available when a program is run.
They can be different for each partition in the system, or they
can be the same for all partitions.

The number of private and system libraries, and the search order
in which they are accessed, is determined by the DOS/VSE job
control statements. When you search multiple libraries, the
lIBDEF control statement can be used. To define multiple
libraries, including the system libraries, use the SEARCH clause
of the lIBDEF control statement. DOS/VSE uses the order in
which the libraries are specified as the search order.

If only one set of private libraries is defined, an assignment
of SYSClB (private core image), SYSRlB (private relocatable), or
SYSSlB (private source statement) can be used. In this case,
the library defined by the assignment is used first to satisfy
the request. If the defined file cannot be found in the private
library, the system library is searched.

Only one library can be identified for output at anyone time;
you identify this library through the TO clause of the
lIBDEF control statement.

Before issuing the lIBDEF or ASSIGN job control statement:

• The storage volume containing the library (or libraries)
must be mounted.

• The symbolic device must be assigned a device address.

• DlBl control statements for each library to be accessed must
be issued; these control statements make the library labels
available to the system when the llBDEF control statement is
issued.

66 DOS Pl/I Optimizing Compiler: Programmers Guide

CORE-IMAGE LIBRARY

Each of these libraries is maintained by the DOS/VSE Librarian.
The librarian programs can be used to insert, delete, and
condense the contents of a library. Some of the uses of MAINT
(one of the librarian service programs) are given in the
following sections of this chapter.

A core-image library contains programs in the form of executable
program phases. Any program to be executed in a DOS/VSE
environment (that is, under control of the resident DOS/VSE
supervisor program) must be stored in a core-image library
before it can be loaded for execution. Programs can be stored
either temporarily or permanently.

The temporary area of the private or system core-image library
used as output can hold only one programj this temporary area is
used for object programs that have been link-edited and are to
be loaded in the next job step.

An executable program should not be permanently inserted in the
core-image library until it is verified and complete.

Any number of private core-image libraries can be created. In a
multiprogramming environment, a core-image library can hold:

• One copy of a non-self-relocating program for execution in
only one partition.

• A relocatable program that can be executed in any partition.

• A self-relocating program that can be loaded from the
core-image library for execution at any storage address.

The PL/I Optimizing Compiler, and any of the object modules it
produces, is relocatable. A single copy can be link-edited into
the system core image library and executed in any partition that
is large enough for the program.

Including New Programs

The inclusion of a new executable program phase in the
core-image library is performed after successful completion of
the link-editing step for the program.

To catalog a program permanently in the core-image library:

1. Include the following job control statement in the job
stream:

// OPTION CATAL

2. Name the program and specify its loading address, either in
the compiler NAME option, or in a linkage editor PHASE
statement.

For a program phase that is required only for the duration of
the job, include the following statement:

// OPTION LINK

Deleting Unwanted Programs

To delete one or more unwanted program phases from the
core-image library, use the librarian program MAINT with a
DEL ETC statement to specify the phase names of the programs to
be deleted. The following example deletes two program phases
(PROGI and PROG2) from the core-image library:

Chapt~r 6. Program Library Creation and Maintenance 67

// JOB CLEAR
// EXEC MAINT

DElETC PROGl,PROG2
/*
/&

If the program to be deleted consists of a number of phases, an
alternate form of the DELETC statement, requiring only one
operand for the entire set of phases, is available. The
following example deletes all the phases belonging to the same
program, provided the first four characters of the phase names
are identical (PROG). (The DELETC statement specifies these
identical characters only.)

// JOB ClROVLY
// EXEC MAINT

DEL ETC PROG.ALL
/*
/&

SOURCE STATEMENT LIBRARY

A source statement library contains any number of books, each
consisting of a sequence of source statements. Any number of
books can be included in a PL/I compilation by using the
preprocessor facilities of the compiler and the ~INCLUDE
statement.

Books of assembler language, COBOL; and PL/I source statements
are grouped into separate sublibraries. The sublibrary for PL/I
source statements is designated P. For example, the following
~INCLUDE statement requests the inclusion of the PL/I source
statement book DCLSTMTA:

~ INCLUDE P(DCLSTMTA);

Inserting a Source Statement Book

To include a sequence of PL/I source statements as a new book in
the Pl/I sublibrary of a system or private source statement
library, use the librarian program MAINT and supply a CATALS
statement that gives the sublibrary and book name of the new
PL/I source statement book. The source statement records must
be preceded and followed by a librarian BKEND statement. They
must not include a PL/I PROCESS statement; the compilation will
be in error if one is included. The following example shows a
job in which a sequence of PL/I source records is cataloged in
the system source library:

// JOB SOURCE
// EXEC MAINT

CATALS P.DClIB
BKEND
/* STANDARD DECLARATION OF DCLIB */

DCL I RECQ,
2 (RECA,

RECB,
RECC,
RECD) CHAR(SO),

2 KEY,
3 (FIRST,

SECOND,
THIRD) CHAR(3),

2 CODE CHAR(I);
/* END OF DCLIB */
BKEND

/*
/&

68 DOS PL/I Optimizing Compiler: Programmers Guide

/
i,1

'~

Deleting Unwanted Source Statement Books

RELOCATABLE LIBRARY

To delete a source statement book, use the librarian program
MAINT with the DElETS statement to specify the name of the
source statement book that is to be deleted. The following
example deletes the book DClIB created above:

// JOB DElSOURCE
// EXEC MAINT

DElETS P.DClIB
/3E
/&

The space used for the source statement book DClIB cannot be
reused until the library is condensed.

A relocatable library contains any number of relocatable object
modules. A relocatable object module is a program that has been
either compiled or assembled, but that cannot be executed until
it has been processed by the linkage editor to form an
executable program phase.

The term relocatable is used for an object module that can be
link-edited for subsequent execution at any predefined storage
location. Do not confuse relocatable with self-relocating,
which is used for a particular type of executable program phase
that can be loaded from the core-image library for execution in
different storage locations on different occasions.

An object module produced by the optimizing compiler is in
relocatable format, and may be included in a relocatable
library.

) Inserting a Relocatable Object Module

To add a relocatable object module to a relocatable library, use
the librarian program MAINT with the CATAlR statement. The
CATAlR statement specifies that the relocatable object module on
the device assigned to SYSIPT is to be incorporated into the
library and cataloged with the name given in this statement.
The following example catalogs a relocatable object module
(named MODUlEI) supplied from a card deck in the card reader
normally assigned to SYSIPT:

// JOB CATREl
// EXEC MAINT

CATAlR MODUlEI

/3E
/&

Pl/I relocatable
object module

A Pl/I object module can be obtained as a deck of punched cards
by specifying the DECK option for the compilation.

Compiling and Cataloging into a Relocatable Library

Two methods of cataloging a relocatable object module are
available that do not require the object module in the form of a
deck of punched cards. Both methods involve assigning a
magnetic tape or disk storage device to SYSPCH for the
compilation step, and reassigning the device to SYSIPT for a
subsequent cataloging step. One method is provided by the
operating system, the other by the optimizing compiler.

The DOS method recognizes a CATAlR statement in the input stream
preceding the EXEC statement for the compilation step, and
copies the statement onto SYSPCH. In the subsequent

Chapter 6. Program library Creation and Maintenance 69

compilation1 the DECK option must be specified so that the
object module created is written onto SYSPCH following the
CATALR statement. This method is satisfactory for single
compilations. The following is an example of cataloging an
object module:

// JOB FIG0601X
// ASSGN SYSPCH 1X'183'1X'C8'
// MTC REW 1SYSPCH

CATALR MODULEI
// EXEC PLIOPT 1SIZE=64K * PROCESS DECK1NOLINK;

/*
// MTC WTM 1SYSPCH
// MTC REW 1SYSPCH
// RESET SYSPCH
// ASSGN SYSIPT 1X'183'1X'C8'
// EXEC MAINT
18

In this example1 the MTC statements are used to write the
end-of-file marker and rewind the magnetic tape volume. The
symbolic device name SYSPCH must be reassigned its former device
address before SYSIPT can be assigned the device address of the
magnetic tape unit.

It is possible to perform subsequent link-editing and execution
steps by omitting the NOLINK compiler option and providing the
appropriate job control statements following an ASSGN statement
that restores SYSIPT to its former device address.

The method provided by the optimizing compiler requires the use
of both the DECK option and the CATALOG option. The compiler
CATALOG option causes the compiler to generate a CATALR
statement1 using the name given with the option for the name of
the relocatable object module that is to be cataloged. The
CATALR statement precedes the object module that is written onto
SYSPCH.

The compiler CATALOG option permits the use of batched
compilation1 in which more than one object module can be
cataloged in a single step following the compilation step. This
is illustrated in Figure 18 on page 71.

Deleting Unwanted Relocatable Object Modules

Use the librarian program MAINT with the DELETR statement to
delete an unwanted object module from a relocatable library.
The following example deletes the object module MODULE1:

// JOB DELETREL
// EXEC MAINT

DELETR MODULEI
/*
/8

The space used for MODULEI cannot be reused until the library is
condensed.

70 DOS PL/I Optimizing Compiler: Programmers Guide

(

\

// JOB FIG060lX
// ASSGN SYSPCH,X'183',X'C8'
// MTC REW,SYSPCH
// EXEC PLIOPT,SIZE=64K * PROCESS CATALOGC'MODULEl'),DECK,NOLINK;

* PROCESS CATALOGC'MODULE2'),DECK,NOLINK;

* PROCESS CATALOGC'MODULE3'),DECK,NOLINK;

/*
// MTC WTM,SYSPCH
// MTC REW,SYSPCH
// RESET SYSPCH
// ASSGN SYSIPT,X'183',X'C8'
// EXEC MAINT
/&

Nates:

1. If a disk storage device is to be used for SYSPCH, and
subsequently SYSIPT, both the compilation and the cataloging
steps must be supplied with the appropriate DLBL and EXTENT
statements.

2. If SYSPCH has a permanent (system-generated) assignment, the
ASSGN statement used in these examples must not be used, and
the corresponding operator command must be used in its
place.

Figure 18. Cataloging Multiple Object Modules

Chapter 6. Program Library Creation and Maintenance 71

CHAPTER 7. DATA SETS AND FILES

DATA SETS

DATA SET NAMES

BLOCKS AND RECORDS

This chapter describes the nature and organization of data sets,
the data management services provided by the Disk Operating
System, and the ENVIRONMENT options used in file declarations to
describe the data set to Pl/I. It also explains how the
compiled program produced by the compiler uses the data
management services to create, modify, and access data sets.
The term data set is synonymous with the term file as used
extensively in the Disk Operating System for collections of data
stored on an external storage medium; it is not synonymous with
the Pl/I term file, which is a Pl/I data type given to
identifiers that are associated with external data sets during
program execution. Methods of creating and accessing data sets
are given in Chapter 8 through Chapter 10.

Chapter 10 describes VSAM data sets. These differ significantly
from other data set types; VSAM users will find that much of the
information in Chapter 7 is irrelevant.

A data set is any collection of data that can be created by a
program and accessed by the same or another program. A data set
may be a deck of punched cards, it may be a series of items
recorded on magnetic tape, or it may be recorded on a direct
access device (as well as being input from, or output to, your
terminal). A compiled program uses the data management routines
of the operating system to create, update, and access data sets.

A volume is a physical unit of auxiliary storage (for example, a
reel of magnetic tape or a disk pack) that can be written on or (
read by an input/output device. A serial number identifies each
volume (other than a magnetic tape volume either without labels
or with nonstandard labels).

A magnetic tape or direct access volume can contain more than
one data set; conversely, a single data set can span two or more
magnetic tape or direct access volumes.

A data set on a direct access device must have a name so that
the operating system can refer to it. This name is specified in
the DLBl job control statement. A data set on a magnetic tape
device must have a name if the tape has IBM standard labels (see
"labels" on page 76). Data sets on punched cards, paper tape,
unlabeled magnetic tape, or nonstandard labeled magnetic tape do
not have names.

The items of data in a data set are arranged in blocks separated
by interblock gaps (IBG). (Some manuals refer to these as
interrecord gaps.)

A block is the unit of data transmitted to and from a data set.
Each block contains one record, part of a record, or several
records. A block could also contain a prefix field of up to 99
bytes in length depending on the information interchange code
(ASCII or EBCDIC) in which the data is recorded (see
"Information Interchange Codes" on page 73).

A record is the unit of data transmitted to and from a program.
When writing a Pl/I program, you need consider only the records
that you are reading or writing; but when you describe the data

72 DOS Pl/I Optimizing Compiler: Programmers Guide

)
sets that your program will create or access, you must be aware
of the relationship between blocks and records.

If a block contains two or more records, the records are said to
be blocked. Blocking conserves storage space in a volume
because it reduces the number of interblock gaps, and it may
increase efficiency by reducing the number of input/output
operations required to process a data set. Records are blocked
and deblocked automatically by the data management routines.

Specify the record length in the RECSIZE option of the
ENVIRONMENT attribute.

INFORMATION INTERCHANGE CODES

RECORD FORMATS

The normal code in which data is recorded is the Extended Binary
Coded Decimal Interchange Code (EBCDIC), although source input
can optionally be coded in Binary Coded Decimal (BCD). However,
for magnetic tape only, the system accepts data recorded in the
American Standard Code for Information Interchange (ASCII). Use
the ASCII and BUFOFF options of the ENVIRONMENT attribute if you
are reading or writing data sets recorded in ASCII.

A prefix field up to 99 bytes in length may be present at the
beginning of each block in an ASCII data set. The use of this
field is controlled by the BUFOFF option of the ENVIRONMENT
attribute. For a full description of the options used for ASCII
data sets, see "CONSECUTIVE Data Sets" on page 119.

Each character in the ASCII code is represented by a 7-bit
pattern. There are 128 such patterns. The ASCII set includes a
substitute character (the SUB control character) that is used to
represent EBCDIC characters having no valid ASCII code. The
ASCII substitute character is translated to the EBCDIC SUB
character, which has the bit pattern 00111111.

The records in a data set must be one of the following:

• Fixed-length

• Variable-length

• Undefined-length

Records can be blocked if required, but only fixed-length and
variable-length records are deblocked by the system;
undefined-length records must be deblocked by your program.

Fixed-Length Records

You can specify the following formats for fixed-length records:

F Fixed-length, unblocked
FB Fixed-length, blocked

In a data set with fixed-length records, as shown in Figure 19
on page 74, all records have the same length. If the records
are blocked, each block usually contains an equal number of
fixed-length records (although the last block may be truncated).
If the records are unblocked, each record constitutes a block.

Chapter 7. Data Sets and Files 73

Unblocked Records (F-format):

I Record I IBG I Record I ... IBG Record

Blocked Records (FB-format):

Block

Record Record IBG I Reco .. d •••

Figure 19. Fixed-Length Records

Variable-Length Records

You can specify the following formats for variable-length
records:

V Variable-length, unblocked
VB Variable-length, blocked
D Variable-length, unblocked, ASCII
DB Variable-length, blocked, ASCII

V-format permits both variable-length records and
variable-length blocks. The first 4 bytes of each record and of
each block contain control information for use by the operating ,
system (including the length in bytes of the record or block).
Because of these control fields, variable-length records cannot
be read backward. Variable-length records are shown in
Figure 20.

V-format:

VB-format:

Cl Block control information
C2 Record or segment control information

Figure 20. Variable-Length Records

V-format signifies unblocked variable-length records. Each
record is treated as a block containing only one record, the
first 4 bytes of the block contain block control information,
and the next 4 contain record control information.

VB-format signifies blocked variable-length records. Each block
contains as many complete records as it can accommodate. The
first 4 bytes of the block contain block control information,
and the first 4 bytes of each record contain record control
information.

74 DOS PL/I Optimizing Compiler: Programmers Guide

ASCII RECORDS: For data sets that are recorded in ASCII use
D-format as follows:

• D-format records are similar to V-format records, except
that the data they contain is recorded in ASCII.

• DB-format records are similar to VB-format records, except
that the data they contain is recorded in ASCII.

Undefined-Length Records

U-format permits the processing of records that do not conform
to F- and V-formats. The operating system and the compiler
treat each block as a record; your program must perform any
required blocking or deblocking.

DATA SET ORGANIZATION

The data management routines of the operating system can handle
a number of types of data sets, which differ in the way data is
stored within them and in the permitted means of access to the
data. The main types of non-V SAM data sets and the
corresponding keywords describing their PL/I organization arel

Type of Data Set

Sequential
Indexed Sequential
Direct
Virtual Storage

PL/I organization

CONSECUTIVE
INDEXED
REGIONAL
VSAM

Note: Do not confuse the operating system data set
organizations "sequential" and "direct" with the PL/I file.
description attributes SEQUENTIAL and DIRECT, which describe how
the file is to be processed by the PL/I program.

An option that describes the organization of the data set must
be given in the ENVIRONMENT attribute, unless CONSECUTIVE
organization is used. CCONSECUTIVE is assumed by default.)

In a sequential Cor CONSECUTIVE) data set, records are placed in
physical sequence. Given one record, the location of the next
record is determined by its physical position in the data set.
Sequential organization is used f'or all magnetic tapes, and may
be selected for direct access devices. Paper tape, punched
cards, terminal, and printed output are sequentially organized.

An indexed sequential (or INDEXED) data set must reside on a
direct access volume. An index or set of indexes maintained by
the operating system gives the location of certain principal
records. This permits direct retrieval, replacement, and
addition of records, as well as sequential processing.

A direct (or REGIONAL) data set must reside on a direct access
volume. The records within the data set can be organized by a
PL/I program in two ways: REGIONALCl) and REGIONAL(3); in either
case, the data set is divided into regions. Each region in a
REGIONALCI) data set contains one record only; a key specifying
the region number identifies the record. Each region in a
REGIONAL(3) data set occupies one track of a direct access
device and contains one or more records; a key specifying both
the region number and a key recorded with the record identifies
a particular record within a particular region. Direct and
sequential processing are both possible. Note that the DOS PL/I
Optimizing Compiler does not support REGIONAL(2) data set
organization.

VSAM data sets are described in Chapter 10.

Chapter 7. Data Sets and Files 7S

LABELS

DATA SETS AND FILES

The operating system uses labels to identify magnetic tape and 11
direct access volumes. ~

Magnetic tape volumes can have IBM standard or nonstandard
labels, or they can be unlabeled. IBM standard labels have two
parts: the initial volume label, and header and trailer labels.
The initial volume label identifies a volume and its owner; the
header and trailer labels precede and follow each data set on
the volume. Header labels contain system information,
device-dependent information (for example, recording technique),
and data set characteristics. Trailer labels are almost
identical with header labels, and are used when magnetic tape is
read backward.

Direct access volumes have IBM standard labels. Each volume is
identified by a volume label, which is stored on the volume.
This label contains a volume serial number and the address of a
volume table of contents (VTOC). The table of contents, in
turn, contains a label, termed a data set label, for each data
set stored on the volume.

DOS/VSE Tape Labels and DOS/VSE DASD Labels contain descriptions
of the IBM standard magnetic tape and direct access data set
labels, respectively.

A data set that is processed by a Pl/I program must be
represented within the program by a Pl/I file. The declaration
of a file in a Pl/I program must include the ENVIRONMENT
attribute, which describes the characteristics of the data set
to be associated with the file; other file description
attributes describe the type of processing to be performed by
the fi I e when the program is executed. ('

A Pl/I file is not associated with a data set until the file is
opened, and the association ceases when the file is closed.
Consequently, through the TITLE option of the OPEN statement,
the same file can be associated with different data sets during
the execution of a single program, and the same data set can be
accessed through different files.

JOB CONTROL STATEMENTS FOR DATA SETS

The data set information supplied in the ENVIRONMENT attribute
includes the data set organization, the record format, and the
type of input/output device that will be used. But it does not
include the actual device address or the name of the data set;
that information, if required, must always be given in DOS job
control statements. This arrangement permits Pl/I programs to
be written without knowledge of the actual data sets to be
processed, and enables the same program to be used to process
different data sets of a similar type.

The DOS job control statements are:

ASSGN

TLBL

DLBL

EXTENT

LBLTVP

identifies the device on which the data set will be
mounted.

labeled magnetic tape only; identifies the data set.

direct access devices only; identifies the data set.

direct access devices only; defines the space to be
occupied by the data set.

allocates space for use by data management
label-processing routines.

76 DOS PL/I Optimizing Compiler: Programmers Guide

The ASSGN statement

The TLBL statement

These statements are discussed below. For more detailed
information, refer to DOS/VSE System Control statements.

The Disk Operating System uses symbolic device names rather than
actual device addresses to identify input/output devices within
a program; accordingly, the MEDIUM option of the PL/I
ENVIRONMENT attribute specifies only a symbolic device name and
the type of device. It is the function of the ASSGN statement
to relate a symbolic name to a device address; such a
relationship is termed a device assignment.

Many device assignments are established permanently during
initial program load. These are standard device assignments.
If a program uses a standard device assignment for a data set,
an ASSGN statement is not required for that data set.
Therefore, you should always be aware of the standard
assignments at your installation before running a program that
processes a data set.

A program must include a TLBL statement for each magnetic tape
data set that has IBM standard labels. The statement is not
required for magnetic tape sets that have nonstandard labels or
are unlabeled.

The TLBL statement contains information that identifies the data
set (including the data set name and the volume serial number);
this information is recorded in the data set labels.

The DLBL and EXTENT Statements

The LBLTVP Statement

For each data set on a direct access device or diskette, there
must be a DLBL statement and, usually, at least one EXTENT
statement.

The DLBL statement, like the TLBL statement for magnetic tape,
contains information that identifies the data set.

For a direct access device, the EXTENT statement defines the
starting location and the size of the data set. The statement
is not required for existing single-volume INPUT CONSECUTIVE
data sets, since the information it contains can be retrieved
from the data set label.

For a diskette, an EXTENT statement defines the type of extent;
only data areas (signified by I in the EXTENT statement) are
supported.

For a description of the DLBL and EXTENT statements when using
the VSE/VSAM Space Management for SAM feature, see "VSE/VSAM
Space Management for SAM Data Sets" on page 79.

A LBLTYP statement should be included in any program that
processes an INDEXED or REGIONAL data set or a data set on
labeled magnetic tape. It requests the linkage editor to
reserve storage for use by the data management label-processing
routines.

The LBLTYP statement is not required when running on DOS/VSE
with VSE/Advanced Functions.

Chapter 7. Data Sets and Files 77

DOS DATA MANAGEMENT

BUFFERS

ACCESS METHODS

The compiler compiles each input or output statement in a PL/I
program into machine instructions that request the operating
system data management routines to perform the required input or
output operation. (For more information on data management, see
DOS PL/I Optimizing Compiler: Execution Logic.)

The data management routines create and maintain data set labels
and indexes. They transmit data between main and auxiliary
storage, and they request the operator to mount and demount
volumes as required.

The data management routines can provide areas of main storage,
termed buffers, in which data can be collected before it is
transmitted to auxiliary storage, or into which it can be read
before it is made available to a program. The use of buffers
permits the blocking and deblocking of records, and may allow
the data management routines to increase the efficiency of
transmission of data by anticipating the needs of a program.
Anticipatory buffering requires at least two buffers: while the
program is processing the data in one buffer, the next block of
data can be read into another. Anticipatory buffering can only
be used for data sets being accessed sequentially.

Record-oriented data transmission has two modes of handling
data:

• In move mode, you can process data by having the data moved
into or out of the variable, either directly or via a
buffer.

• In locate mode, you can process data while it remains in a
buffer. The execution of a data transmission statement
assigns to a pointer variable the location of the storage
allocated to a record in the buffer. Locate mode is
applicable only to BUFFERED files; the file must be either a
SEQUENTIAL file or an INPUT or UPDATE file associated with a
VSAM data set.

For more information, see "Processing Modesn in the OS and DOS
PL/I Language Reference Manual.

The combination of data set organization and an access technique
is termed an access method. The access methods used by the
compiler and the subroutine libraries are:

SAM
ISAM
DAM
VSAM

Sequential Access Method
Indexed Sequential Access Method
Direct Access Method
Virtual Storage Access Method

The PL/I library subroutines use SAM for all stream-oriented
transmission. They implement PL/I GET and PUT statements (other
than GET or PUT STRING statements) by transferring the
appropriate number of characters to or from the data management
buffers, and use the data management routines to fill or empty
the buffers. .

Figure 21 on page 79 lists the access methods employed for
record-oriented transmission.

78 DOS PL/I Optimizing Compiler: Programmers Guide

Data set File Attributes Access
Organization Methods

CONSECUTIVE SEQUENTIAL INPUT BUFFERED
OUTPUT or SAM
UPDATE UNBUFFERED

,INDEXEDl SEQUENTIAL INPUT BUFFERED
OUTPUT or ISAM2
UPDATE UNBUFFERED

DIRECT INPUT - ISAM2
UPDATE

REGIONAL SEQUENTIAL INPUT BUFFERED
OUTPUT or DAMa
UPDATE UNBUFFERED

DIRECT INPUT
OUTPUT - DAMa
UPDATE

VSAM ESDS SEQUENTIAL INPUT BUFFERED
OUTPUT or VSAM
UPDATE UNBUFFERED

VSAM KSDS SEQUENTIAL INPUT BUFFERED
and RRDS OUTPUT or VSAM

UPDATE UNBUFFERED

DIRECT INPUT BUFFERED
OUTPUT or VSAM
UPDATE UNBUFFERED

lPL/I files declared with ENVIRONMENT(INDEXED) may be used
to access VSAM key sequenced data sets (see Chapter 10).

2ISAM does not provide support for the 3350, 3330-11, 3375,
3380, or fixed block direct access storage devices.

aDAM does not provide support for the fixed block direct
access storage devices.

Figure 21. Access Methods for Record-Oriented Data Transmission

VSE/VSAM SPACE MANAGEMENT FOR SAM DATA SETS

When using the VSE/VSAM Space Management for SAM feature, SAM
data sets may be defined in VSAM space, either explicitly or
implicitly. This applies to CONSECUTIVE RECORD files and STREAM
files when a DASD device is specified in the MEDIUM option.

• For explicit defining, use Access Method Services to define
a SAM ESDS with the required RECORDSIZE and RECORDFORMAT.
Supply a DLBL statement for the file specifying VSAM. No
EXTENT statement is needed.

• For implicit defining, supply a DLBL statement for the file
specifying VSAM, and the RECORDS and RECSIZE parameters.
The volume may be specified via an EXTENT statement or a
default model for a SAM ESDS.

For CONSECUTIVE INPUT files and for CONSECUTIVE UNBUFFERED files
(DTFSD work files) that are to be opened both for OUTPUT and
INPUT, specify DISP=OLD on the DLBL statement.

Chapter 7. Data Sets and Files 79

AUXILIARY STORAGE DEVICES

The following paragraphs state the record formats that are ~
acceptable for various types of auxiliary storage devices, and ~
summarize the salient operational features of these devices.

CARD READERS AND PUNCHES

IBM 1442 Card Punch

IBM 2501 Card Reader

The following card readers and punches can be used by PL/I
programs:

IBM 1442 Card Read Punch
IBM 2501 Card Reader
IBM 2520 Card Read Punch
IBM 2540 Card Read Punch
IBM 2560 Card Read Punch
IBM 5425 Card Read Punch
IBM 3504 Card Reader
IBM 3505 Card Reader
IBM 3525 Card Punch

The IBM 1442 Card Read Punch is functionally similar to the 2540
Card Read Punch, described below.

The IBM 2501 Card Reader reads 80-column cards as 80-byte
fixed-length EBCDIC records, and stacks the cards in a single
stacker.

IBM 2520 Card Read Punch

The IBM 2520 Card Read Punch reads 80-column cards as 80-byte
fixed-length EBCDIC records; it also punches fixed-length,
variable-length, or unspecified-length EBCDIC records up to 80
bytes in length onto 80-column cards. The control bytes of
variable-length records are not punched. Any attempt to block
records is ignored. The 2520 has two stackers, one for cards
that have been read, the other for cards that have been punched.

IBM 2540 Card Read Punch

The fUnctions of the IBM 2540 Card Read Punch are similar to
those of the 2520. In addition, the 2540 has five stackers.
See Figure 22.

~---READ---""I

I 1 I 2 I 3 I 2 I 1 I
~-------PUNCH--------~

Figure 22. IBM 2540 Card Read Punch: Stacker Numbers

Two stackers are for cards that have been read, two are for
cards that have been punched, and one is for cards that have

80 DOS PL/I Optimizing Compiler: Programmers Guide

been either read or punched. The stackers in each pair are
numbered 1 and 2. The fifth is numbered 3. The stackers
numbered 1 are normally used. For record-oriented files with
the CTLASA or CTL360 ENVIRONMENT options, by inserting an ANS or
machine code in the left byte of each record , stackers 2 and 3
can be used when punching cards.

IBM 2560 Card Read Punch

The following facilities of the IBM 2560 Card Read Punch are
supported by PL/I:

CARD READING: The 2560 will raad 80-column cards as fixed-length
EBCDIC records up to 80 bytes in length , and stack the cards in
a single stacker.

CARD PUNCHING: The 2560 will punch F- , V-, or U-format EBCDIC
records up to 80 bytes in length onto 80-column cards. The
control bytes of V-format records are not punched. Any attempt
to block records is ignored. Stacker selection is available by
means of CTLASA or CTL360 control characters. The CTLASA and
CTL360 control characters are given in Chapter 9.

CARD PRINTING: The 2560 has up to six print heads l each of which
prints a line of up to 64 characters on a card. F- , V-, and
U-format records can be printed. The control bytes of V-format
records are not printed.

A PL/I file that uses a 2560 must specify which function of the
2560 is being employed; that is, whether it is reading,
punching, or printing. These functions are specified in the
FUNCTION option of the ENVIRONMENT attribute. The FUNCTION
option is also used to specify from which of the two input
stackers cards are to be selected. The programmer can use the
two input stackers independently to access two different data
sets; there is no contention between cards from different
stackers.

IBM 5425 Card Read Punch

The following facilities of the IBM 5425 Card Read Punch are
supported by PL/I:

CARD READING: The 5425 will read 96-column cards as fixed-length
EBCDIC records up to 96 bytes in length.

CARD PUNCHING: The 5425 will punch F- , V-, or U-format EBCDIC
records up to 96 bytes in length onto 96-column cards. The
control bytes of V-format records are not punched. Any attempt
to block records is ignored. Stacker selection is available by
means of CTLASA or CTL360 control characters. The CTLASA and
CTL360 control characters are given in Chapter 9.

CARD PRINTING: The 5425 has up to 4 print heads l each of which
prints a line of up to 32 characters on a card. F- , V-, and
U-format records can be printed. The control bytes of V-format
records are not printed.

A PL/I file that uses a 5425 must specify which of the functions
of the 5425 is being used; that is , whether it is reading,
punching, or printing. These functions are specified in the
FUNCTION option of the ENVIRONMENT attribute. The FUNCTION
option is also used to specify from which of the two input
stackers cards are to be selected. The programmer can use the
two input stackers independently to access two different data
sets; there is no contention between cards from different
stackers.

Chapter 7. Data Sets and Files 81

IBM 3504 and 3505 Card Readers

IBM 3525 Card Punch

The IBM 3504 and 3505 Card Readers will read 80-column cards,
and will provide, in addition to normal card reading, the
following facilities:

• Optical Mark Read
• Read Column Eliminate
• Stacker Feature
• EBCDIC or Column Binary Modes

These additional features are described later in this chapter.

The IBM 3525 Card Punch must be used in conjunction with an IBM
3505 Card Reader. However, these two devices are functionally
separate and operate independently of each other.

The 3525 is basically an 80-column card punch, and can have the
following additional facilities:

• Card reading facilities that, optionally, include:

Reading in EBCDIC or column binary mode

Read Column Eliminate

• Card punching in EBCDIC or column binary mode

• Card printing facilities that include either:

•

Two-line printing, or

Multiline printing (up to 25 lines)

Punch interpretation

• Stacker selection

These features are described in the following section. Note
that a file that uses a 3525 must specify which function of the
3525 is to be employed, whether it is reading, punching,
printing, or punch interpreting. These functions are specified
in the FUNCTION option of the ENVIRONMENT attribute.

It is possible to use the 3525 to perform reading, punching, and
printing operations on a single deck of cards. A separate PL/I
file is used for each type of operation. Such files must be
associated together as a group. This is achieved by the
ASSOCIATE option of the ENVIRONMENT attribute. The use of
associated files is discussed further in this chapter.

Features of the IBM 3504, 3505, and 3525

The following paragraphs describe the optional features of the
IBM 3504, 3505, and 3525 devices.

OPTICAL MARK READING: The Optical Mark Read feature (OMR) is
available only on the 3504 and 3505 Card Readers. This feature
enables preprinted or pencil-written marks on a punched card to
be read as data. The following rules apply:

• Data can be read in EBCDIC mode or in column binary mode.

• The associated PL/I file must have the attributes RECORD and
INPUT and the OMR ENVIRONMENT option.

• The Read Column Eliminate (RCE) feature cannot be used in
conjunction with the Optical Mark Read (OMR) feature.

82 DOS PL/I Optimizing Compiler: Programmers Guide

)

)

• Up to 40 columns of EBCDIC data or 80 characters of column
binary data can be read optically from a single card.
Optical and punched data can be read from the same card
although there are some restrictions, given below, on how
the data is recorded on the card.

• Optical mark data can appear only in alternate card columns
and must be separated by blank columns. Optical mark and
punched hole columns must also be separated by at least one
blank column. When the record is read in, the data is
compressed by removing the blank column following each
optical mark column, and the record is padded with blanks.

• The columns containing optically-readable marks must be
specified to the program at execution time by a format
descriptor card. This card must be the first card in the
deck of cards to be read by the file each time the program
is run. Operating procedures for running jobs that use OMR
should ensure that this point is not overlooked.

• The OMR descriptor card has the following format:

FORMAT (nl,n2),(n3,n4) ...

where nl is the first column in a group to be read in OMR
mode, n2 is the last column in the group, n3 is the first
column in the next group, n4 is the last column in this
group, and so on. Remember that only every other column
between nl and n2 or n3 and n4 can be read in OMR mode. A
maximum of 40 columns of OMR data can be accommodated on an
80-column card. Nl and n2 (and similarly n3 and n4) must be
either both even or both odd, and n3 must be at least 2
greater than n2.

The format descriptor record must begin in column 2 and can
continue through column 71. If a continuation is required,
punch any character in column 72 and start the continuation
in column 16 of the following card.

A blank must follow the keyword FORMAT. Operands must be
separated by a comma. For example:

FORMAT (1,9),(70,80)

This specifies that columns 1 to 10 and 70 to 80 are
reserved for OMR use and, of these, columns 1, 3, 5, 7, 9,
70, 72, 74, 76, 78, and 80 will be scanned for optical mark
data.

• Column 1 of the card always corresponds to the first byte of
the data in main storage. Consequently, if an optical mark
appears in column 2, column 1 must be blank and the first
byte of storage will also be blank.

• If a marginal mark, weak mark, or poor erasure is detected
on a column, the corresponding byte and the last byte of the
record are set to X'3F'. The TRANSMIT condition is raised
once only for all errors found in a card. The card itself
is stacked in the alternative stacker to that normally used
by the file.

• The symbolic device name SYSIPT must not be used for a file
that uses the OMR feature.

• If columns 1 and 2 are used for optical character marks, a
/* is not recognized as the file delimiter. Your PL/I
program must then detect the last record on the file.

• When an OMR file is closed, a card feed operation is
executed by the reader. If several files are to be read
consecutively, either for successive programs in a single
batch, or for several files in a single program, a nondata
card must separate the files. Hence if the file is closed
after the ENDFILE condition has been raised, that is, after

Chapter 7. Data Sets and Files 83

a /~ card has been read, a nondata card must follow the /~.
If the file is closed before ENDFILE is raised, that is,
without the /~ being read, the /~ card will suffice as a
nondata card.

READ COLUMN ELIMINATE: The Read Column Eliminate (RCE) feature
is optionally available on the 3504, 3505, and on a 3525 with
card reading facilities. This feature permits the selective
reading of card columns. The columns to be ignored when the
card is read are specified in a format descriptor card. The
ignored columns are replaced by blanks in EBCDIC mode or zeros
in column binary mode before the record is transmitted.

The following rules apply:

• The symbolic device names SYSIPT and SYSRDR must not be used
for a file that uses the RCE feature.

• An RCE format descriptor card must be supplied. This card
must be the first card in the deck of cards to be read by
the program each time it is executed. Operating procedures
for running jobs that use RCE should ensure that this point
is not overlooked.

• The RCE descriptor card has the following format:

FORMAT (nl,n2),(n3,n4) ...

where nl is the first column in a group of columns to be
ignored and n2 is the last column in the group, n3 is the
first column in the next group to be ignored, n4 is the last
column in this group, and so on.

The format descriptor card must begin in column 2 and
continue through to column 71. If a continuation is
required, punch any character in column 72 and start the
continuation in column 16 of the following card.

A blank must follow the keyword FORMAT. Operands must be
separated by a comma. For example:

FORMAT (20,30),(52,76)

This specifies that columns 20 through 30 and columns 52
through 76 are to be ignored when the card is read.

• The RCE option must be declared in the ENVIRONMENT attribute
for the file.

• The file can have either the STREAM or the RECORD attribute.

• The OMR feature cannot be used in conjunction with the Read
column eliminate feature (ReE).

• If columns 1 and 2 are ignored, a /~ is not recognized as
the file delimiter. Your PL/I program must then detect the
last record on the file.

• When an RCE file is closed, a card feed operation is
executed by the reader. If several files are to be read
consecutively, either for successive programs in a single
batch, or for several files in a single program, a nondata
card must separate the files. Hence if the file is closed
after the ENDFILE condition has been raised, that is, after
a /~ card has been read, a nondata card must follow the /~.
If the file is closed before ENDFILE is raised, that is,
without the /~ being read, the /~ card will suffice as a
nondata card.

STACKER FEATURE: The stacker feature is optionally available on

/

\,

the 3504 and 3505, and is a standard feature on a 3525. For a ~
3504 and 3505, the stacker used for a particular file can be U~
specified in the STACKER ENVIRONMENT option. For a 3525 there ~
are two methods of sel&cting a stacker:

84 DOS PL/I Optimizing Compiler: Programmers Guide

)
• The stacker can be selected permanently for all cards in the

file. This method involves the STACKER ENVIRONMENT option.

• For record-oriented output files on a 3525, the first byte
of the record can contain a stacker control character to
select the required stacker dynamically. The use of such
codes is specified by the CTLASA or CTL360 ENVIRONMENT
options.

The following rules apply to the use of the STACKER ENVIRONMENT
option:

• The stacker feature cannot be used for a file that employs
the card printing function of the 3525.

• If the value specified in the STACKER option is not 1 or 2,
the UNDEFINEDFILE condition will be raised.

• The STACKER option is ignored if the file is device
independent or if the use of stacker control characters is
specified.

• If the STACKER option is used for an input file that uses
OMR, any cards that contain unreadable mark data are stacked
in the alternative stacker to that specified in the STACKER
option.

EBCDIC OR COLUMN BINARY MODES: Cards processed by a 3504, 3505,
or a 3525 can hold data coded in either EBCDIC or column binary
mode. If EBCDIC is used, each card can contain up to 80
characters. If column binary is used, each card can contain up
to 160 binary characters, two per card column. EBCDIC and
column binary data cannot be intermixed.

In column binary mode, each card column holds two 6-bit
characters. The first character appears in rows 12 through 3 on
the card, and the second in rows 4 through 9. The binary values
of characters are transmitted to successive bytes in main
storage. The 2 high-order bits of each byte are set to zero
(these bits are not represented in the 6-bit code). The
characters are transmitted in the order: first (top) character,
second (bottom) character, and so on for each column in the
card, from column 1 to 80.

The details of the coding and conversion technique used for
column binary data are left to the program designer. The
TRANSLATE built-in function may provide a convenient method of
converting data to or from column binary form.

Rules for using column binary mode are:

• The COLBIN ENVIRONMENT option must be specified.

• The PL/I file must have the RECORD attribute.

• The punch-interpret feature must not be used.

• The file must be either an input file or an output punch
file. It cannot be a print file.

• Th$ column binary feature cannot be used with a device
independent file.

PRINTING ON CARDS: The card printing feature is available only
on the IBM 3525 Card Punch. This feature is available in two
forms:

• Two-line printing

• Multiline printing

Up to 64 characters can be printed on each line.

Chapter 7. Data Sets and Files 85

Stream- or record-oriented files can be used to print on cards.
If, however, the file is associated with another file that uses
the 3525 simultaneously, such as an INPUT or PUNCH file, the /
file must be record-oriented. (

~,
TWO-LINE PRINT FEATURE: If the 3525 has the two-line print
feature and is used by a file with the PRINT attribute or a
record-oriented file with the CTLASA or CTL360 ENVIRONMENT
options, care should be taken to ensure that no attempt is made
to print on any line other than lines 1 and 3 of the card. Such
an attempt will cause the program to be terminated without
raising a PL/I error condition. For a PRINT file, a maximum
page size of 3 should be used to guard against this possibility.
Files that do not have the PRINT attribute or the CTLASA or
CTL360 ENVIRONMENT options will automatically print on lines 1
and 3. Note that SKIPCO) will cause the program to be
terminated without raising a PL/I error condition. The MEDIUM
ENVIRONMENT option must specify 3525T for a 3525 with the
two-line print feature.

MULTIPLE PRINT FEATURE: If a 3525 with the multiline print
featu~e is used, the file should have a maximum page size of 25,
unless you intend that "pages" should span cards. Whatever the
page size, a PUT PAGE statement for a PRINT file will always
cause the file to be positioned at line 1 of the next card.
Note that SKIPCO) will cause the program to be terminated
without raising a PL/I error condition. The MEDIUM ENVIRONMENT
option must specify 3525 for a 3525 with the multiline print
feature.

ASSOCIATED FILES ON THE 3525: If you use the ASSOCIATE option to
associate two or more files for simultaneous use of a 3525, you
should observe the following rules:

• The symbolic device names used for the associated files must
not be any of these:

SYSIPT
SYSPCH
SYSLST

• The files must all be record-oriented.

• Only a single buffer can be used on a read or punch file.
Consequently, only BUFFERSCl) can be declared explicitly.
One or two buffers can be declared for a print file.

• Files must be associated, and used, in the order:

read -> punch -> print -> read ...

This rule applies both to the specification of the ASSOCIATE
option for each file and to the order of executing the
input/output statements for the files. The print operation
may be omitted or repeated; when it is employed, it must not
cause any card feeding. The print operation, therefore,
must not cause a new page to be started.

• The second operand of the FUNCTION option must specify all
functions used by the associated files. Consequently, it
must be identical in the declaration of each file in a group
of associated files.

• If the system cannot open one of a group of associated
files, it will be an error to attempt to use any of the
other files in the group.

• If a file must be closed, all associated files must be
closed as well, with no intervening I/O operation and no
closed file in the group being reopened. If a file's last
output statement 'was a LOCATE, an I/O operation takes place
when the file is closed. This operation must be the next
one in the normal I/O sequence, and must take place before
any of the associated files is closed. The correct sequence

86 DOS PL/I Optimizing Compiler: Programmers Guide

) •

of operations during the closure of a group of files can be
ensured by using a multiple CLOSE statement with the files
specified in the order read-punch-print.

Closing a file may cause a card to be fed through the
reader. Feeding takes place as follows.

Files
in Group

Read
Punch
Print
Read/Print
Read/Punch/Print
Read/Punch
Punch/Print
PunchInterpret

Files whose Closure
causes Card Feed

Read (if RCE specified)
Punch
Print
Print (if RCE specified on READ file)
Print
Punch
Print
Punch

No card feed operation is executed when a read or read print
file for which RCE has not been specified is closed. To
ensure that the last card in the file is fed through the
reader, the file should not be closed until a read operation
has raised the ENDFILE condition.

IBM 3800 Printing Subsystem

The IBM 3800 Printing Subsystem can be used in a manner
compatible with IBM line printers; however, it can do more than
line printers. For information on using its added capabilities,
see DOS/VS IBM 3800 Printing Subsystem Programmer's Guide.

IBM 3881 Optical Mark Reader

The IBM 3881 Optical Mark Reader reads handwritten or
machine-printed marks on paper documents. Documents are fed
from a single hopper and are delivered to one of two stackers:
the normal stacker (stacker 1) or the select stacker (stacker
2).

The contents of a document are transmitted to the PL/I program
as a single record. The correspondence between marks on the
document and the content of the output record is defined by
means of a "format control sheet," which must be provided for
each type of document that is to be read. Details of 3881
format control sheets are given in IBM 3881 Optical Mark Reader
Models 1 and 2 Reference Manual and Operator's Guide.

The format control sheet defines sections of the document and
specifies how the marks within these sections are to be
interpreted. Each mark is translated into a numeric,
alphabetic, or alphanumeric EBCDIC character. If the 3881 has
the BCD feature, sections containing binary coded decimal data
may also be defined. BCD data is translated to EBCDIC in the
output record.

The 3881 can be equipped with a serial numbering feature that
enables it to print a serial number on each document as it is
read. If this feature is used, the serial number is given as
part of the output record.

The format of a 3881 output record is shown in Figure 23 on page
88, together with the meaning of the record descriptor bytes.
Note that the first four bytes of the record are not transmitted
to the PL/I program.

The output record of the 3881 is effectively V-format, and may
be read into a varying length string. The PL/I file that is
used to access the data set should have a block size or record
length specified that is at least 4 bytes larger than the record
actually read. This is to ~llow for the segment descriptor
word. Any record format may be specified, but the file will be

Chapter 7. Data Sets and Files 87

I
Byte No. 0

Byte 4

Hex EBCDIC Serial

Segment

treated by the compiler as variable-length unblocked. If
neither block size nor record length is specified, a default of
block size equals 900 is taken. A block size of 900 is also the
largest block size that may be specified.

Normal Serial
Descriptor Record Mark BCD Number
(note 1) Descriptor Data Data Data

I ? I
I
~H 9 I

2 3

1
4 5 6 7 8 X X X X X X X X X X X

Start of
PL/I Record

Conditions

Demt Reject BCD
Byte 5

Condition (note 3)

Numbering sent to Characters Errors
Hex EBCDIC

Used Select
Stacker

C8 H No No
C1 A No No
C2 B No No
C3 C No No
C4 0 No Yes
C5 E No Yes
C6 F No Yes
C7 G No Yes
FO 0 Yes No
F1 1 Yes No
F2 2 Yes No
F3 3 Yes No
F4 4 Ves Yes
F5 5 Ves Ves
F6 6 Yes Yes
F7 7 Ves Ves

on Demt on Demt
(note 2) (note 2)

No No
No Yes
Yes No
Yes Yes
No No
No Yes
Yes No
Yes Yes
No No
No Yes
Yes No
Yes Yes
No No
No Yes
Ves No
Yes Yes

FO 0 Basic format

F1 1 Format 1

F2 2 Format 2

F3 3 Format 3

F4 4 Format 4

F5 5 Format 5

Notes:
1. The segment Descriptor is not passed to the PLII program.
2. Invalid combinations of marks cause a special code to be

placed in the corresponding position in the output record.
This code is either hex '3F' or optionally hex '7C' which
is a printable character.

3. The format type is as specified on the last format control
sheet read by the 3881.

Figure 23. Format of IBM 3881 Output Records

LINE PRINTERS

The printer accepts F-, V-, and U-format records; the control
bytes of V-format records are not printed. Each line of print
corresponds to one record; you should therefore restrict your
record length to the length of one printed line. Any attempt to
block records is ignored.

When using a record-oriented file, you can control the printer
line spacing dynamically by inserting an ANS or machine code in
the first byte of each record; indicate which code you are using
in the ENVIRONMENT attribute (CTLASA or CTL360 option). The
control character is not printed. If you do not specify the
line spacing, single spacing (no blanks between lines) is ~
assumed. ~

88 DOS PL/I Optimizing Compiler: Programmers Guide

MAGNETIC TAPE

Track Width

Translation Feature

Conversion Feature

Recording Density

Magnetic tape devices accept ASCII, fixed-length,
variable-length, and undefined-length records.

Magnetic tape can be used in a number of different ways,
according to the features available or that are required for a
particular program. You should find out what the standard
features for the magnetic tape devices in your installation are,
and use the job control ASSGN statement to specify any of the
features that are nonstandard. The features that are available
are described below.

Nine-track magnetic tape is used in IBM operating systems, but
some 2400 series magnetic tape drives incorporate features that
facilitate reading and writing 7-track tape.

The translation feature changes character data from EBCDIC (the
8-bit code used in IBM operating systems) to BCD (the 6-bit code
used on 7-track tape) or vice versa.

The data conversion feature treats all data as if it were in the
form of a bi t string, breaking the strin,g into groups of 8 bi ts
for reading into main storage, or into groups of 6 bits for
writing on 7-track tape; the use of this feature precludes
reading the tape backward.

You can specify fixed-, variable-, or undefined-length records
for 9-track magnetic tape, but fixed-length only for 7-track
magnetic tape, unless the data conversion feature is available.
(The data in the control bytes of variable-length records is in
binary form; in the absence of the data conversion feature, only
6 of the 8 bits in each byte are transmitted to 7-track tape.)

The maximum recording density available depends on the model
number of the tape drive that you use.

For 9-track tape, track density is controlled by the ASSGN
statement. Refer to DOS/VSE System Control Statements.

For 7-track tape, the standard recording density for both types
of drive unit is 200 bytes per inch; you can use the ASSGN
statement to select alternatives of 556 or 800 bytes per inch.

Note: When a read or write hardware error occurs on a magnetic
tape device with short records (12 bytes on a read and 18 bytes
on a write), these records will be ignored.

Magnetic Tape Volumes with Multiple Data sets

A magnetic tape volume can contain more than one data set.
Consequently, it may be necessary to wind (or rewind) the volume
to a particular position before processing can take place. The
format of both labeled and unlabeled data sets on magnetic tape
volumes is shown in Figure 24 on page 90. Note that a tapemark
is used to separate a data set label from the preceding and
following data sets, and to separate unlabeled data sets.

Chapter 7. Data Sets and Files 89

1. Labeled magnetic tape data sets (
Volume First Tape First Tape First Tape Second Etc. \.
label header mark data mark trailer mark header

label set label label
V

L>load point

2. Unlabeled magnetic tape data sets (for which NOLABEL must be specified)

Tape
mark

V

L L >load p01nt

First Tape Second Tape Etc.
data mark data mark
set set

. . >Th1s tape mark 1S opt10nally present. Use the ENVIRONMENT
option NOTAPEMK if it is not present.

Figure 24. Format of Magnetic Tape Volumes

Magnetic Tape Labels

If a program is to access or create a data set that is not the
first data set on the volume, the MTC job control statement
causes the volume to be positioned at the required data set (or
its header or trailer label) before the program is invoked.
After invocation of the program, the program itself must control
the positioning of the volume. This is especially important if
the program will reopen, for reading backward, a file that it
has just closed, or if it will open a file associated with a
data set to follow the data set it has just processed. For this
purpose, the LEAVE option of the ENVIRONMENT attribute and of
the CLOSE statement is available. On closing the file, the ('
effect of the LEAVE option is to suppress the automatic ~
rewinding of the volume.

Data sets on magnetic tape can have IBM standard labels or
nonstandard labels, or they can be unlabeled.

IBM standard labels are processed by the operating system,
provided that a program is link-edited with a LBLTYP job control
statement to reserve space for label processing, and that a TLBL
statement is included for each data set. The LBLTYP statement
may not be required, dependent upon the level of your operating
system.

You can use a PL/I program to process IBM standard or
nonstandard labels by treating them as separate data sets. The
ENVIRONMENT attribute for the associated files must include the
option NOLABEL. To skip a label, use the MTC job control
statement. (Refer to DOS/VSE System Control Statements.)
Multivolume data sets cannot be unlabeled if they are to be
created or accessed automatically.

An unlabeled data set requires no special treatment.

Backward Processing of Magnetic Tape Data Sets

If a PL/I program opens an input file with the BACKWARDS
attribute, the volume containing the associated data set must be
positioned at the trailer label of this data set. If the data
set was created or retrieved in a forward direction immediately
before it is to be retrieved in reverse order, and if the LEAVE ~
option was specified when the output file was closed, the volume \~
will be positioned correctly for the input file to be opened.

90 DOS PL/I Optimizing Compiler: Programmers Guide

)

Otherwise, the MTC job control statement must be used to
position the volume correctly.

Use of the ENDFILE Condition

A data set in a magnetic tape volume with multiple data sets can
be accessed~ and then either the same data set can be accessed
in reverse order or the next data set in the volume can be
accessed. However, the LEAVE option must be specified for the
first file, and the ENDFIlE condition must be raised before this
file is closed. This ensures that the magnetic tape volume is
positioned correctly, after the tapemark, when the second file
is opened.

DIRECT ACCESS DEVICES

Direct access devices accept fixed-, variable-, and
undefined-length records.

The storage space on these devices is divided into conceptual
cylinders and tracks. A cylinder is usually the amount of space
that can be accessed without movement of the access mechanism,
and a track is that part of a cylinder that is accessed by a
single read/write head. For example, a 3375 direct access
storage device has 12 recording surfaces, each of which has 946
concentric tracks; thus, it contains 946 cylinders, each of
which includes 12 tracks.

When you create a data set on a direct access device, you must
always indicate to the operating system, in one or more EXTENT
statements, how much auxiliary storage the data set requires.
You must specify the space requirement in terms of tracks or
blocks. Bear in mind that space in a data set on a direct
access device is occupied not only by blocks of data, but by
control information inserted by the operating system; if you use
small blocks, the control information can result in a
considerable space overhead.

For detailed information that will enable you to determine the
amount of space you will require, see the pUblications for the
direct access device you will be using.

IBM 3540 Diskette Input/Output Unit

Diskettes of the IBM 3540 Input/Output Unit accept fixed-length,
unblocked records.

The storage space on a diskette consists of 77 tracks, track 0
through track 76. Of these tracks, 73 are available to you; the
remaining tracks are used by the system (track 0 is used to hold
up to 19 file labels, each of which describes an individual
file; three tracks are reserved).

Tracks are divided into predefined sections called sectors.
There are 26 sectors, numbered 01 through 26, on each track.
Each sector holds one record. A record is a collection of
related items of data; standard record length for the 3540 is
128 characters. One diskette holds 1898 records.

ASSOCIATING DATA SETS WITH FILES

A file in a Pl/I program is generally associated with a physical
data set by means of options of the ENVIRONMENT attribute. The
MEDIUM option must be specified in every file declaration. The
MEDIUM option must specify a 'symbolic device name' and,
optionally, a 'device type' for the data set. The 'symbolic
device name' is used by the operating system to identify a
particular input/output device. It takes the form 'SYSxxx'
where xxx is the range 000 to 255, or, for IBM standard system
devices, is SYSRDR, SYSIPT, SYSIN, SYSOUT, SYSlST, SYSPCH,

Chapter 7. Data Sets and Files 91

SYSLNK, and SYSLOG. For a particular system, the symbolic
device names are assigned to particular physical devices.
However, these assignments can be changed temporarily by the job /
control ASSGN statement. Except for the special circumstances I
given later in this chapter under the "MEDIUM Option," the ~
device type must be specified in the source program so that the
compiler can cause the appropriate data management routines to
be link-edited.

The device type of the MEDIUM option must correspond to the
physical input/output unit type assigned to the file either
automatically or by using the ASSGN statement. For example, if
the device type indicates magnetic tape, the file must be
assigned to a magnetic tape unit.

Consider the following example:

DECLARE MASTER FILE RECORD INPUT
SEQUENTIAL ENVIRONMENT

(... MEDIUM(SYS006,2400) ...);

In this declaration, the file MASTER is assigned the symbolic
device name SYS006 and the device type for MASTER is declared to
be an IBM 2400 Magnetic Tape Unit.

If the operating system in which the above file declaration is
used automatically associates the name SYS006 with a suitable
magnetic tape unit, no further assignment is necessary.
Otherwise, the ASSGN statement must be used to assign a system
file to a magnetic tape unit. The job control program used with
the execution module must contain the statement partially shown
below:

// ASSGN SYS006, ...

This statement associates the logical device name SYS006 with a
physical input/output unit which must, of course, be a magnetic I
tape. The specific tape unit to be used follows the SYS006 on ~
the ASSGN statement.

The MEDIUM option only associates a file with a device or
volume; the first seven characters of the file name or the
identifier specified in a TITLE option associates a file with
the job control statements DLBL or TLBL.

If the TITLE option of the OPEN statement is specified, the
filename is converted to a character string, when necessary.
The first seven characters of the filename identify the data set
(via the filename of a DLBL or TLBL job control statement). If
the option is not specified, the first seven characters of the
filename (padded or truncated) are taken to be the DLBL or TLBL
filename. This filename is used when a file is passed as a
parameter, rather than the external filename, which is truncated
in a different manner.

If the file expression used in an OPEN statement is a file
constant, then a TLBL or DLBL statement must name the file
constant. If the OPEN statement does not specify a file
constant, then aTLBL or DLBL statement must name the value of
the file expression. For example:

DCL PRICES FILE VARIABLE,
RPRICE FILE;
PRICES = RPRICE;
OPEN FILE(PRICES);

A TLBL statement associates the data set STOCK with the file
constant RPRICE, thus:

// TLBL RPRICE,'STOCK'

Use of a file variable also allows a number of files to be
manipulated at various times by a single statement. For
example:

92 DOS PL/I Optimizing Compiler: Programmers Guide

DECLARE F FILE VARIABLE,
A FILE ,
B FILE ,

F=A;

LAB: READ FILE CF) ,

F=B;
GO TO LAB;

The READ statement is used to read files A and B. Note that
files A and B remain open after the READ statement has been
executed in each instance.

The following OPEN statement illustrates the TITLE option:

OPEN FILECDETAIL) TITLEC'DETAILI');

If this statement is to be executed, there must be a TLBL or
DLBL job control statement in the current job step with DETAIll
as its file name. It might appear as follows:

// TLBL DETAIlI,'DETAIlA'

Thus, the data set DETAILA is associated with the file DETAIL
through the TlBl file name, DETAIll.

Use of the TITLE option allows you t/o choose dynamically, at
open time, one among several data sets to be associated with a
particular file name. Consider the following example:

DO IDENT='A','B','C';
OPEN FILECMASTER)

TITLEC'MASTERI'IIIDENT)j

CLOSE FIlECMASTER)j
END;

In this example, when MASTER is opened during the first
iteration of the do group, the associated data set is taken to
be MASTERIA. After processing, the file is closed, dissociating
the file name and the data set. During the second iteration of
the do group, MASTER is opened again. This time, MASTER is
associated with the data set MASTERIB. Similarly, during the
final iteration of the do group, MASTER is associated with the
data set MASTERIC.

ASSOCIATING SEVERAL FILES WITH ONE DATA SET

The TITLE option can be used to associate two or more Pl/I files
with the same external data set at the same time. This is
illustrated in the following example, where INVNTRY is the name
of a data set to be associated with two files:

OPEN FILE CFIlEI) TITlEC'INVNTRY');
OPEN FILE CFIlE2) TITLEC'INVNTRY');

If you do this, be careful. These two files access a common
data set through separate control blocks and data buffers. When
records are written to the data set from one file, the control
information for the second file will not record that fact.
Records written from the second file could then destroy records
written from the first file. PL/I does not protect against data
set damage that might occur. If the data set is extended, the
extension is reflected only in the control blocks associated

Chapter 7. Data Sets and Files 93

with the file that wrote the data; this can cause an abend when
other files access the data set.

THE ENVIRONMENT ATTRIBUTE

The ENVIRONMENT attribute of the PL/I file declaration specifies
information about the physical organization of the data set
associated with a file, and other related information. The
information is contained within parentheses in an option list;
the syntax is:

r-== Syntax

~VIRONMENTeoPtion~list)

Abbreviation: ENV

A constant or variable can be used with most of those
ENVIRONMENT options that require decimal integer arguments, such
as block sizes and record lengths. The options EXTENTNUMBER and
BUFFERS require constants. The variable must be unsubscripted
and unqualified with the attributes, FIXED BINARYe3I,O) and
STATIC.

The options may appear in any order, and are separated by
blanks. The options themselves cannot contain blanks.

The following example illustrates the syntax of the ENVIRONMENT
attribute in the context of a complete file declaration. (The
options specified are for VSAM and are discussed in Chapter 10.)

DCL FILENAME FILE RECORD SEQUENTIAL
INPUT ENVeVSAM GENKEY);

Figure 25 on page 95 and Figure 26 on page 96 summarize the PL/I
file attributes, the ENVIRONMENT options, and certain
qualifications on the use of both.

DATA SET ORGANIZATION OPTIONS

ENVIRONMENT OPTIONS

The options that specify data set organization are:

CONSECUTIVE
INDEXED
REGIONALe{113})
VSAM

Each option is described in the chapter applicable to its data
set organization. If the data set organization option is not
specified in the ENVIRONMENT attribute, CONSECUTIVE is assumed
by default.

This chapter describes the options that apply to two or more
data set organizations:

FIFBIVIVBIDIDBIU
GENKEY
MEDIUM
RECSIZE
BLKSIZE
BUFFERS

VERIFY
EXTENTNUMBER
COBOL
SCALARVARYING
KEYLENGTH

Each remaining ENVIRONMENT option is described in the chapter
pertaining to its data set organization.

94 DOS PL/I Optimizing Compiler: Programmers Guide

)
Record

Types
of Sequential

File
CONSE- REGIONAL
CUTIVE

U U
n n

B b B b
u u I u u

S f f N f f
t f f D f f
r e e E e e

PL/I e r r X r r
File a e e E e e
Attributes m d d D d d

BACKWARDS3 - 0 0 - - -
BUFFERED - D - D D -
DIRECT - - - - - -
ENVIRONMENT I S S S S S
FILE I I I I I I
INPUTl D D D D D D
KEYED4 - - - 0 0 0
OUTPUT 0 0 0 0 0 0
PRINTl 0 - - - - -
RECORD - I I I I I
SEQUENTIAL - D D D D D
STREAM D - - - - -
UNBUFFERED - - S - - S
UPDATE2 - 0 0 0 0 0

1 A file with the INPUT attribute cannot
attribute.

Direct

R
I E
N G
D I

V V E 0
S S X N
A A E A
M M D L

- - - -
D S - -
S S S S
S S S S
I I I I
D D D D
0 0 I I
0 0 - 0
- - - -
I I I I
D D - -
- - - -
S D - -
0 0 0 0

have the PRINT

Key:

I Must be specified
or implied

D Default
o Optional
S Must be specified

Invalid

Attributes Implied

FILE RECORD SEQUENTIAL
INPUT

FILE RECORD SEQUENTIAL
FILE RECORD KEYED
FILE

FILE
FILE RECORD
FILE
FILE STREAM OUTPUT
FILE
FILE RECORD
FILE
FILE RECORD SEQUENTIAL
FILE RECORD

2 UPDATE is invalid for tape files.
3 BACKWARDS is valid only for tape files.
4 KEYED is required for INDEXED and REGIONAL output.

Figure 25. Attributes of PL/I File Declarations

Record Format Options for Record-Oriented Data Transmission

Record formats supported depend on the data set organization.

~ Syntax
FtFBIVIVBIDIDBIU

Records can have one of the following formats:

Fixed-length

Variable-length

Undefined-length

F
FB

V
VB
D
DB

U

unblocked
blocked

unblocked
blocked
unblocked, ASCII
blocked, ASCII

(cannot be blocked)

When U-format records are read into a varying-length string,
PL/I sets the length of the string to the block length of the
retrieved data.

Chapter 7. Data Sets and Files 95

Record
Types

of Sequential
File Direct

CONSE- REGIONAL
CUTIVE

U U
n n

B b B b R
u u I u u I E

S f f N f f N G
t f f D f f D I
r e e E e e V V E 0
e r r X r r S S X N

ENVIRONMENT a e e E e e A A E A
Options m d d D d d M M D L

ADDBUFF - - - - - - - - 0 -
ASCII 0 0 - - - - - - - -
ASSOCIATE - S S - - - - - - -
BKWD - - - - - - 0 - - -
BLKSIZE I I I I I I N N I I
BUFFERS I I - I I - N N - -
BUFND - - - - - - 0 0 - -
BUFNI - - - - - - 0 0 - -
BUFOFF 0 0 - - - - - - - -
BUFSP - - - - - - 0 - - -
CMDCHN I I I - - - - - - -
COBOL - 0 0 0 0 0 0 0 0 0
COLBIN - S S - - - - - - -
CONSECUTIVE D D - - - - 0 0 - -
CTLASAICTL360 - 0 0 - - - - - - -
EXTENTNUMBER - - - I I I - - I I
F FB - - - S - - N N S -
F FBIDIDBIU S S - - - - N N - -
F FB V VB U I S S - - - N N - -
F U - - - - S S N N - S
FILESEC I I I - - - - - - -
FUNCTION 0 0 - - - - - - - -
GENKEY - - - 0 - - 0 0 - -
GRAPHIC 0 - - - - - - - - -
HIGHINDEX - - - 0 - - - - 0 -
INDEXAREA - - - - - - - - 0 -
INDEXED - - - S - - 0 0 S -
INDEXMULTIPLE - - - 0 - - - - 0 -
KEYLENGTH - - - S S S C C S S
KEYLOC - - - 0 - - - - 0 -
LEAVE 0 0 0 - - - - - - -
MEDIUM I S S S S S N N S S
NO FEED I I I - - - - - - -
NOLABEL 0 0 0 - - - - - - -
NOTAPEMK 0 0 - - - - - - - -
NOWRITE - - - - - - - - 0 -
OFLTRACKS - - - 0 - - - - - -
OMR - S S - - - - - - -
PASSWORD - - - - - - 0 0 - -

Figure 26 CPart I of 2). Options of PL/I File Declarations

96 DOS PL/I Optimizing Compiler: Programmers Guide

Key:

I Must be specified
or implied

C Checked for VSAM
D Default
N Ignored for VSAM
o Optional
S Must be specified

Invalid

Comments

Either BLKSIZE or
RECSIZE or both
must be specified
for CONSECUTIVE,
INDEXED, and
REGIONAL files.

For ASCII data
sets, only F,FB,D,
DB, and U are valid.

CTLASA/CTL360 not
valid for ASCII
data sets.

KEYLENGTH not
valid for
REGIONALCI) files.

Only F valid for
REGIONALCI) files.

NOWRITE is valid
only for UPDATE
files.

GENKEY is valid
only for INPUT or
UPDATE files;
KEYED is required.

/
I

"

)
Record

Types
of Sequential

File
CONSE- REGIONAL
CUTIVE

U U
n n

B b B b
u u I u u

S f f N f f
t f f D f f
r e e E e e
e r r X r r

ENVIRONMENT a e e E e e
Options m d d D d d

RCE I S S - - -
RECSIZE I I I I I I
REGIONAL - - - - S S
REUSE - - - - - -
SCALARVARYING - 0 0 0 0 0
SKIP - - - - - -
STACKER I S S - - -
UNLOAD 0 0 0 - - -
VERIFY 0 0 0 0 0 0
VOLSEQ I I I - - -
VSAM - - - - - -
WRTPROT I I I - - -

Direct

I
N
D

V V E
S S X
A A E
M M D

- - -
C C I
- - -
0 0 -
0 0 0
0 - -- - -
- - -
- - 0
- - -
S S -- - -

R
E
G
I
0
N
A
L

-
I
S
-
0

0 --
-

Key:

I Must be specified
or implied

C Checked for VSAM
D Default
N Ignored for VSAM
o Optional
S Must be specified

Invalid

Figure 26 (Part 2 of 2). Options of PL/I File Declarations

These record format options do not apply to VSAM data sets. If
a record format option is specified for a file associated with a
VSAM data set, the option is ignored.

Record Format options for stream-Oriented Data Transmission

GENKEV Option

The record format options for stream-oriented data transmission
are discussed in Chapter 8.

The GENKEY (generic key) option applies only to INDEXED and VSAM
key-sequenced data sets. It enables you to classify keys
recorded in a data set and to use a SEQUENTIAL KEYED INPUT or
SEQUENTIAL KEYED UPDATE file to access records according to
their key classes. r: Syntax

GENKEV

A generic key is a character string that identifies a class of
keys; all keys that begin with the string are members of that
class. For example, the recorded keys 'ABCD', 'ABCE', and
'ABDF' are all members of the classes identified by the generic
keys 'A' and 'AB', and the first two are also members of the
class 'ABC'; and the three recorded keys can be considered to be
unique members of the classes 'ABCD', 'ABCE', and 'ABDF',
respectively.

The GENKEY option allows you to start sequential reading or
updating of a VSAM data set from the first record that has a key

Chapter 7. Data Sets and Files 97

MEDIUM Option

in a particular class, and for an INDEXED data set from the
first nondummy record that has a key in a particular class. The
class is identified by the inclusion of its generic key in the (
KEY option of a READ statement. Subsequent records can be read \
by READ statements without the KEY option. No indication is .
given when the end of a key class is reached.

Although the first record having a key in a particular class can
be retrieved by READ KEY, the actual key cannot be obtained
unless the records have embedded keys, since the KEYTO option
cannot be used in the same statement as the KEY option.

In the following example, a key length of more than 3 bytes is
assumed:

DCL IND FILE RECORD SEQUENTIAL KEYED
UPDATE ENV (INDEXED GENKEY)j

READ FILE(IND) INTO(INFIElD)
KEY ('ABC')j

NEXT: READ FILE (IND) INTO (INFIELD)j

GO TO NEXTj

The first READ statement causes the first nondummy record in the
data set whose key begins with 'ABC' to be read into INFIELD;
each time the second READ statement is executed, the nondummy
record with the next higher key is retrieved. Repeated
execution of the second READ statement could result in reading
records from higher key classes because no indication is given (
when the end of a key class is reached. It is your ~
responsibility to check each key if you do not want to read
beyond the key class. Any subsequent execution of the first
READ statement would reposition the file to the first record of
the key class 'ABC'.

If the data set contains no records with keys in the specified
class, or if all the records with keys in the specified class
are dummy records, the KEY condition is raised. The data set is
then positioned either at the next record that has a higher key
or at the end of the file.

Note how the presence or absence of the GENKEY option affects
the execution of a READ statement that supplies a source key
that is shorter than the key length specified in the KEYLENGTH
option that defines the INDEXED data set. GENKEY causes the key
to be interpreted as a generic key, and the data set is
positioned to the first nondummy record in the data set whose
key begins with the source key. For a READ statement, if the
GENKEY option is not specified, a short source key is padded on
the right with blanks to the specified key length, and the data
set is positioned to the record that has this padded key (if
such a record exists). For a WRITE statement, a short source
key is always padded with blanks.

The use of the GENKEY option does not affect the result of
supplying a source key whose length is greater than or equal to
the specified key length. The source key, truncated on the
right if necessary, identifies a specific record (whose key can
be considered to be the only member of its class).

The MEDIUM (device type) option of the ENVIRONMENT attribute
must be specified for each file declaration except for VSAM
files, in which case it is ignored if specified.

98 DOS PL/I Optimizing Compiler: Programmers Guide

)
Syntax

MEDIUM(symbolic-device-name
[,device-typel)

The symbolic device name specification has the form SYSxxx,
where xxx may be:

IPT system input device

LST system output device used for listing

PCH system output device (card punch)

000-255 symbolic device names SYSOOO through SYS255

The device type specification contains the number of the device
to be used. For instance, if the IBM 1442Nl Card Read/Punch is
to be used, the option would be written as 1442.

Device MEDIUM
Type Number Specification

Card IBM 2540 2540
Readers IBM 2560 2560
and IBM 1442Nl 1442
Punches IBM 1442N2 1442

IBM 2520B1 2520
IBM 2520B2 2520
IBM 2520B3 2520
IBM 2501 2501
IBM 3504 3504
IBM 3505 3505
IBM 3525
(multi-line print) 3525
(2-1ine print) 3525T

IBM 3881 3881
IBM 5425 5425

Printers IBM 1403 1403
IBM 1404 1404
IBM 1443 1443
IBM 1445 1445
IBM 3211 3211
IBM 5203 5203
IBM 3203 3203

Magnetic IBM 2400 (9-track) 2400
Tape IBM 2400 (7-track) 2400
Drives IBM 3410/3411 3410

IBM 3420 3420
IBM 8809 2400

DASD IBM 2311 2311
IBM 2314 2314
IBM 2321 2321
IBM 3330 3330
IBM 3340 3340
IBM 3350 3350
IBM 3375 2311
IBM 3380 2311
IBM fixed block FBA
devices

Diskette IBM 3540 3540
Unit

Figure 27. Device Types and Corresponding Specifications

Chapter 7. Data Sets and Files 99

Symbolic
Device Name

SYSIPT

SYSlST

SYSPCH

Figure 27 shows how the individual device types are specified.
The device type specification is optional in certain
circumstances, but if it is specified in the MEDIUM option, it (
can subsequently be overwritten only under the conditions \
described below.

• The 3330-11, 3350, 3375, and 3380 devices are not supported
for ISAM files with INDEXED organization. When 3330 is
specified, the compiler assumes the 3330 model 1 device is
meant.

• The fixed block devices are not supported for files with
INDEXED or REGIONAL organization; therefore, for these types
of files, device type in the MEDIUM option must not specify
FBA.

The device types listed in Figure 27 may be assigned to the
symbolic device names SYSIPT, SYSlST, and SYSPCH as shown in
Figure 28.

Device Type

IBM 2540 (reader) IBM 3420
IBM 2560 (reader) IBM 3410/3411
IBM 1442N1 IBM 3330
IBM 2501 IBM 3340
IBM 2520B1 IBM 3350
IBM 2400 (7- or 9-track) IBM 3375
IBM 2311 IBM 3380
IBM 2314 IBM fixed block devices
IBM 3504 IBM 3881
IBM 3505 IBM 5425
IBM 3525 IBM 8809
IBM 3540

IBM 1403 IBM 3330
IBM 1404 IBM 3340
IBM 1443 IBM 3350
IBM 2400 (7- or 9-track) IBM 3375
IBM 2311 IBM 3380
IBM 2314 IBM fixed block devices
IBM 3211 IBM 3881
IBM 3420 IBM 5203/3203
IBM 3410/3411 IBM 8809
IBM 3540

IBM 2540 (punch) IBM 3420
IBM 2560 (punch) IBM 3410/3411
IBM 1442N1 IBM 3330
IBM 1442N2 IBM 3340
IBM 2520B1 IBM 3350
IBM 2520B2 IBM 3375
IBM 2520B3 IBM 3380
IBM 2400 (7- or 9-track) IBM fixed block devices
IBM 2311 IBM 3881
IBM 2314 IBM 5425
IBM 3525 IBM 8809
IBM 3540

/

\

Figure 28. Device Types Associated with SYSIPT, SYSlST, and SYSPCH

The operating system input/output facilities use the symbolic
device name to associate the Pl/I file with a symbolic device
name used by the operating system. Within the system, the
symbolic device name is assigned, either permanently or
temporarily, to a device. However, the compiler requires to
know the device type used for a data set associated with a Pl/I ,
file, so that the correct data management input/output routines
can be incorporated into the object program by the linkage
editor. (For more information, see "Associating Data Sets with

100 DOS Pl/I Optimizing Compiler: Programmers Guide

)

Filesft on page 91.) Note that the choice of device type should
normally be made prior to compilation, and that alteration will
usually require recompilation with a modified MEDIUM option.
However, a limited degree of device independence is possible.

A device type need not be specified in the MEDIUM option for the
symbolic device names SYSIPT, SYSlST, and SYSPCH. By means of
the job control ASSGN statement, the user can specify the actual
device type to be used during execution of the program. If you
do not know which direct access device will be used at execution
time, you should code 2311. If you will be using tape but do
not know which tape device will be used at execution time, you
should code 2400. After release 3 of DOS VSE/Advanced
Functions, some device substitution for non-ISAM files is
allowed.

For a device such as the IBM 3375, the MEDIUM option could
specify a 2311. When the program executes with a SIZE parameter
on the EXEC statement, the system will use the device that is
assigned to the logical unit.

When device substitution is used, it must be a device of the
same class. If 2311 is specified in the MEDIUM option, it must
be assigned to a disk device. likewise, 2400 implies a magnetic
tape drive. Earlier DOS systems only supported device
independence for the 3330-11, 3350, or FBA devices.

The tables and routines necessary for device independence are
generated by the compiler if the following requirements are met:

• The output file SYSlST must either have the STREAM and the
PRINT attribute or the RECORD attribute with the CTlASA
option. The output file SYSPCH must have the RECORD
attribute with the CTlASA option. The first character of
each record is interpreted as a control character in these
cases. Input files (SYSIPT) may be either STREAM or RECORD.
In all cases, RECORD files must have the BUFFERED attribute.

Note: For the output file SYSPCH, if the device specified
in the ASSGN statement is an IBM 2560, the FUNCTION option
(described under ftCONSECUTIVE Data Sets" on page 119) cannot
be specified on the device independent file declaration;
stacker selection is made through the ASSGN statement, and
read and punch operations are performed for input and output
files respectively. Only the "vn and awn ANS control
characters can be used with device independent files for
output through the IBM 2560.

• The IBM 5425 multifunction card unit uses 96-column cards;
when assigned to SYSIPT or SYSPCH, only 80 columns of data
may be read or punched. In order to read or punch the full
96 columns, the MEDIUM option must specify 5425.

• Records must be unblocked and of fixed length. The maximum
record length is as follows:

80 for SYSIPT
121 for SYSlST
81 for SYSPCH

Note: If the data set is to reside on a direct access device,
the record sizes 80, 121, and 81 must be the values for SYSIPT,
SYSlST, and SYSPCH respectively.

If the above requirements are met, any device type supported for
the respective symbolic-device-name (see Figure 28 on page 100)
may be assigned without the necessity of recompilation.

Chapter 7. Data Sets and Files 101

RECSIZE Option

BLKSIZE Option

The RECSIZE option specifies the record length.

r=: Syntax

I RECSIZE(record-length)

For files other than those files associated with VSAM data sets,
the record length is the sum of:

1. The length required for data. For variable-length and
undefined-length records, this is the maximum length.

2. Any control bytes required. Variable-length records require
4 for the record length; fixed-length and undefined-length
records do not require any.

For VSAM data sets, the maximum and average lengths of the
records are specified to the Access Method Services utility when
the data set is defined. If the RECSIZE option is included in
the file declaration for checking purposes, the maximum record
length should be specified.

The record length can be specified as an integer or as a
variable with the attributes FIXED BINARY(31,0) STATIC.

The value is subject to the following conventions:

Maximum:
Fixed-, and undefined-length (except ASCII data sets):
32,760 bytes

Variable-length: 32,756 bytes

ASCII data sets: 9999

VSAM data sets: 32,761 bytes

Zero value:
Default action is taken (see "Record Format, BlKSIZE, and
RECSIZE Defaults" on page 103).

Negative Value:
The UNDEFINEDFIlE condition is raised.

The BLKSIZE option specifies the maximum block size on the data
set. It does not apply to VSAM data sets, and is ignored if
specified. r-: Syntax

BLKSIZE(bIOCk-SiZe)

The block size is the sum of:

1. The total length(s) of one of the following:

A single record
Several records

For variable-length records, the length of each record
includes the 4 control bytes for the record length.

102 DOS Pl/I Optimizing Compiler: Programmers Guide

(

\
v

2. Any further control bytes required. Variable-length blocked
records require 4 for the block size; fixed- and
undefined-length records do not require any.

or

Any block prefix bytes required (ASCII data sets only).

The block size value can be specified as an integer, or as a
variable with the attributes FIXED BINARY(3I,O) STATIC.

The block size value is subject to the following conventions:

Maximum:
32,760 bytes (or 9999 for an ASCII data set for which
BUFOFF without a prefix length value has been specified)

Zero value:
Default action is taken (see "Record Format, BLKSIZE, and
RECSIZE Defaults")

Negative value:
The UNDEFINEDFILE condition is raised

The relationship of the block size to the record length depends
on the record format:

FB-format:
The block size must be a multiple of the record length.

VB-format:
The block size must be equal to or greater than the sum ofs

1. The maximum length of any record

2. Four control bytes

DB-format:
The block size must be equal to or greater than the sum ofs

1. The maximum length of any record

2. The length of the block prefix (if block is prefixed)

Record Format, BLKSIZE, and RECSIZE Defaults

BUFFERS Option

If, for a non-VSAM data set, any of the record format options is
not specified, the following action is taken:

Record Format: An error message is produced.

Block size or If one of these is specified, a value for
record length: the other is derived from the specified

option (with the addition or subtraction
of any control or prefix bytes).
If neither is specified, the UNDEFINEDFILE
condition is raised.

A buffer is a storage area that is used for the intermediate
storage of data transmitted to and from a data set. The use of
buffers can speed up processing of SEQUENTIAL files. Buffers
are essential for the blocking and deblocking of records and for
locate-mode transmission.

~ Syntax
BUFFERS({112})

Chapter 7. Data Sets and Files 103

VERIFY Option

EXTENTNUMBER Option

COBOL Option

The BUFFERS option specifies the number of buffers to be
allocated for a data seti this number can only be one or two. (
For CONSECUTIVE or INDEXED RECORD files with sequential access, \
two buffers are allocated by defaulti the user can change this
to one. For all other record files, a default of one, which
cannot be changed by the user, is allocated.

The VERIFY option is used to specify that a read-check is to be
performed after every write operation. This option is permitted
only with direct access devices. It is assumed for a 2321.

[VE Syntax
VERIFY

The EXTENTNUMBER option is used to specify the number of extents
used for REGIONAL or INDEXED data sets.

r-== Syntax

I EXTENTNUMBERCn)

For REGIONAL data sets, EXTENTNUMBERCn) is optional. If
specified, n must be greater than 0 and less than 256. The
default value of n is 1.

For INDEXED data sets, EXTENTNUMBERCn) is optional. If
specified, the value for n must include all data area extents,
the master index and cylinder index extents Cwhich must be
adjacent to one another), and all independent overflow extents.
Master and cylinder index extents count as one extent, although
each index requires a separate EXTENT job control statement.
Thus, the minimum number that can be specified is two: one
extent for one prime data area and one for the cylinder index.
The maximum value for n is 255, and the default value is two.

The COBOL (data interchange) option specifies that structures in
the data set associated with the file will be mapped as they
would be in a COBOL compiler. r:: Syntax

LBOL

The following restrictions apply to the handling of a file with
the COBOL option:

• A file with the COBOL option can be used only for READ INTO,
WRITE FROM, and REWRITE FROM statements.

• The filename cannot be passed as an argument or assigned to
a file variable.

• The variable to be transmitted must be subscripted.

• If a condition is raised during the execution of a READ
statement, the variable named in the INTO option cannot be
used in the on-unit. If the completed INTO variable is
required, there must be a normal return from the on-unit.

104 DOS PL/I Optimizing Compiler: Programmers Guide

• The EVENT option can be used only if the compiler can
determine that the Pl/I and COBOL structure mappings are
identical (that is, all elementary items have identical
boundaries). If the mappings are not identical, or if the
compiler cannot tell whether they are identical, and
intermediate variable is created to represent the level-l
item as mapped by the COBOL algorithm. The Pl/I variable is
assigned to the intermediate variable before a WRITE
statement is executed, or assigned from it after a READ
statement has been executed.

See Chapter 15, "Communication with COBOL, FORTRAN, and RPG" on
page 247, for supported COBOL compilers and for Pl/I equivalents
of COBOL data types.

SCALARVARVING Option

KEVLENGTH Option

The SCAlARVARYING option is used in the input/output of
varying-length strings, and can be specified with records of any
format.

~ Syntax
SCALARVARVING

When storage is allocated for a varying-length string, the
compiler includes a 2-byte prefix that specifies the current
length of the string. For an element varying-length string,
this prefix is included on output, or recognized on input, only
if SCAlARVARYING is specified for the file.

When locate-mode statements (lOCATE and READ SET) are used to
create and read a data set with element varying-length strings,
SCAlARVARYING must be specified to indicate that a length prefix
is present, since the pointer that locates the buffer is always
assumed to point to the start of the length prefix.

When SCAlARVARYING is specified and element varying-length
strings are transmitted, you must allow 2 bytes in the record
length to include the length prefix.

A data set created using SCALARVARYING should be accessed only
by a file that also specifies SCAlARVARYING.

SCAlARVARYING and CTlASA/CTl360 must not be specified for the
same file, as this causes the first data byte to be ambiguous.

The KEYlENGTH option specifies the length, n, of the recorded
key for KEYED files. KEYlENGTH can be specified for INDEXED or
REGIONAl(3) files.

r-== Syntax

I KEVLENGTHCn)

If the KEYlENGTH option is included in a VSAM file declaration
for checking purposes, and the key length specified in the
option conflicts with the value defined for the data set, the
UNDEFINEDFIlE condition is raised.

Chapter 7. Data Sets and Files 105

CHAPTER 8. DEFINING DATA SETS FOR STREAM FILES

This chapter describes how to define data sets for use with PL/I
files that have the STREAM attribute. It lists the ENVIRONMENT
options that can be used and explains how to create and access
data sets.

Data sets with the STREAM attribute are processed by
stream~oriented data transmission, which allows the PL/I program
to ignore block and record boundaries and treat a data set as a
continuous stream of data values in character or graphic form.
Because stream-oriented transmission always treats the data in a
data set as a continuous stream, it can be used only to process
data sets with CONSECUTIVE organization.

Data sets for stream-oriented data transmission are created and
accessed using the list-, data-, and edit-directed input and
output statements described in Chapter 13 of the OS and DOS PL/I
Language Reference Manual.

For output, PL/I converts the the data items from the program
variables into character or graphic form if necessary, and
builds the stream of characters or graphics into records for
transmission to the data set.

For input, PL/I takes records from the data set and separates
them into the data items requested by the program, converting
them into the appropriate form for assignment to the program
variables.

Stream-oriented data transmission can be used to read or write
graphic data. There are terminals, printers, and data-entry
devices that, with the appropriate programming support, can
display, print, and enter graphics. You must be sure that your
data is in a format acceptable for the device or for a print
utility program such as the Kanji print utility.l For example,
the Kanji print utility does not allow graphic strings to be
continued onto another line.

DEFINING FILES FOR STREAM-ORIENTED DATA TRANSMISSION

ENVIRONMENT OPTIONS

Files for stream-oriented data transmission are defined by a
file declaration with the following attributes:

DCl filename FILE STREAM
INPUT I {OUTPUT [PRINT]}
ENVIRONMENTCoption-list)j

Default file attributes are shown in Figure 25 on page 95; these
attributes are described in the OS and DOS Pl/I language
Reference Manual. The PRINT attribute is described further in
this chapter.

The following options are applicable to stream-oriented data
transmission and are described in this chapter:

CONSECUTIVE
FIFBIVIVBIDIDBIU
RECSIZE
GRAPHIC

1 Details on processing Japanese or Chinese graphics are
available through the IBM World Trade Americas/Far East
Corporation.

106 DOS PL/I Optimizing Compiler: Programmers Guide

(

)

CONSECUTIVE Option

The following options also apply to stream-oriented data
transmission:

ASCII
BLKSIZE
BUFFERS
BUFOFF
C~1DCHN
FILESEC
FUNCTION
LEAVE

NO FEED
NOLABEL
NOTAPEMK
RCE
STACKER
UNLOAD
VERIFY
VOL SEQ
WRTPROT

Options that apply to two or more data set organizations are
described in Chapter 7. Each remaining option is described in
the chapter pertaining to its data set organization. Figure 26
on page 96 summarizes the ENVIRONMENT options.

STREAM files must have CONSECUTIVE data set organization. The
CONSECUTIVE option for STREAM files is the same as that
described under "CONSECUTIVE Data Setsn on page 119 in Chapter
9.

r-= Syntax

I CONSECUTIVE

CONSECUTIVE is the default data set organization.

Record Format Options

Although record boundaries are ignored in stream-oriented data
transmission, record format is important when a data set is
being created, not only because it affects the amount of storage
space occupied by the data set and the efficiency of the program
that processes the data, but also because the data set may later
be processed by record-oriented data transmission. Having
specified the record format, you need not concern yourself with
records and blocks as long as you use stream-oriented data
transmission. You can consider your data set as a series of
characters or graphics arranged in lines, and can use the SKIP
option or format item (and, for a PRINT file, the PAGE and LINE
options and format items) to select a new line.

~ Syntax
FtFBIVIVBIDIDBIU

Records can have one of the following formats, as described in
Chapter 7.

Fixed-length F
FB

Variable-length V
VB
D
DB

Undefined-length U

unblocked
blocked

unblocked
blocked
unblocked ASCII
blocked ASCII

(cannot be blocked)

Blocking and deblocking of records is performed automatically.

Chapter 8. Defining Data Sets for Stream Files 107

RECSIZE Option

RECSIZE for stream-oriented data transmission is the same as
that described in Chapter 7. Additionally, a value specified by
the lINESIZE option of the OPEN statement overrides a value
specified in the RECSIZE option. LINESIZE is discussed in the OS
and DOS PL/I Language Reference Manual.

Additional record-size considerations for list- and
data-directed transmission of graphics are given in Chapter 13
of the OS and DOS PL/I Language Reference Manual.

Record Format, BLKSIZE, and RECSIZE Defaults

If the record format, BLKSIZE, or RECSIZE options are not
specified in the ENVIRONMENT attribute, the following action is
taken:

INPUT files:

If the symbolic device name SYSIPT or a unit record device is
specified in the MEDIUM option, the defaults are F for record
format and 80 for record length, block size, and LINESIZE. For
all other INPUT files, defaults are applied as for
record-oriented data transmission, described under "Record
Format, BLKSIZE, and RECSIZE Defaults" in Chapter 7.

OUTPUT files:

If the symbolic device name SYSPCH or a card punch is specified
in the MEDIUM option, the defaults are F for record format, 80
for lINESIZE, and 81 for both record length and block size. If
the symbolic device name SYSLST or a line printer is specified,
the defaults are F for record format, 120 for LINESIZE, and 121
for both record length and block size. For all other output
files:

Record format:
Set to VB-format, or if ASCII option specified, to
DB-format

Record length:
The specified or default LINESIZE value is used:

PRINT files:
F, FB, or U: line size +
V, VB, D, or DB: line size +

Non-PRINT files:
F, FB, or
V, VB, D,

Block size:
F or FB:
V or VB:
D or DB:

Buffer offset:

U: line size
or DB: line size +

record length
record length + 4
record length + block
prefix

F, FB, or U: 0
D or DB: 4

Notes:

1
5

4

1. For PRINT files, the default LINESIZE value is 120. There
is no default LINESIZE for non-PRINT files.

2. If the block size as calculated above is greater than
32,760, the block size is set to the record length + 4, and
the record format is set to V. For an ASCII data set, if
the default block size is greater than 32,700 (or 9999 if
BUFOFF is specified without a prefix length value), the

108 DOS PL/I Optimizing Compiler: Programmers Guide

/

GRAPHIC Option

block size is set to record length + block prefix and the
record format is set to D.

3. With DB-format records on output files, the length of the
block prefix (that is, the buffer offset) must always be
either 0 or 4.

The GRAPHIC option of the ENVIRONMENT attribute must be
specified if you use graphic variables or graphic constants in
GET and PUT statements for list- and data-directed input/output,
and can be specified for edit-directed input/output.

r-:: Syntax
GRAPHIC

For list- and data-directed input/output, if you have graphics
in input or output data and do not specify the GRAPHIC option,
the ERROR condition is raised.

For edit-directed input/output, the GRAPHIC option specifies
that left and right delimiters are to be added to graphic
variables and constants on output, and that input graphics will
have left and right delimiters. If the GRAPHIC option is not
specified, left and right delimiters will not be added to output
data, and input graphics do not require left and right
delimiters. When the GRAPHIC option is specified, the ERROR
condition is raised if left and right delimiters are missing
from the input data.

For information on the graphic data type, and on the G-format
item for edit-directed input/output, see the OS and DOS Pl/I
language Reference Manual.

CREATING A DATA SET FOR STREAM-ORIENTED DATA TRANSMISSION

To create a data set, you must give the operating system certain
information in your Pl/I program.

ESSENTIAL INFORMATION

You must specify:

• The symbolic device name, and, unless either SYSPCH or
SYSlST is the symbolic device name used, the type of device
that will write or punch the data set.

• The record format, record size, and, if the records are
blocked, the block size, unless the defaults for
stream-oriented output files are to apply. The defaults are
applied as for record-oriented data transmission, described
under "Record Format, BlKSIZE, and RECSIZE Defaults" in
Chapter 7.

If you want to take advantage of the DOS device-independent data
transmission facilities, files associated with the symbolic
devices SYSPCH and SYSlST must have F-format records with a
record length of 80 bytes for SYSPCH and 121 bytes for SYSlST.
The device-independence facilities permit the assignment of the
device address of a device other than a card punch or printer to
these symbolic device names.

Dependent upon the level of your operating system, a program
that uses stream-oriented transmission to create a CONSECUTIVE
data set on a labeled magnetic tape must be link-edited with a
lBlTYP statement present so that space is reserved for
processing the tape label. When the program is executed, a TlBl

Chapter 8. Defining Data Sets for Stream Files 109

job control statement must be given to identify the tape volume
and the data set.

If the program uses stream-oriented transmission to create a
CONSECUTIVE data set on a direct access volume, a DLBL and one
or more EXTENT statements must be given to identify the direct
access volume(s) and extent(s) for the data set.

Figure 29 summarizes the data set information that must be given
for a data set created by stream-oriented transmission.

Always Required For: Information Required ,.,here Specified

Any input/output using Type of device, unless File declaration in
stream-oriented transmission device independent source program: see OS

and DOS PL/I Language
Symbolic device name Reference Manual
Record format

Non-standard device Device assignment ASSGN statement
assignment

Data set on magnetic Identification TLBL statement
tape with standard
labels Storage for label LBLTypl statement

processing

Data set on diskette Identification and DLBL and EXTENTz
or direct access volume extent information statements

lThe LBLTYP statement is not always necessary when operating under
VSE/Advanced Functions.

zThe EXTENT statement is not always necessary when using VSE/VSAM Space
Management for SAM (see Chapter 7).

Figure 29. Data Set Information for Stream-Oriented Transmission

EXAMPLE

Figure 30 on page III illustrates the use of edit-directed
stream-oriented transmission to create a data set on a disk
storage volume.

The data read from the input stream by the file SYSIN includes a
field VREC that contains five unnamed, 7-character subfields;
the field NUM defines the number of these subfields that contain
information. The data set associated with the PL/I file WORK
has variable-length blocked (VB-format) records. Note that the
PUT statement that transmits data to the file WORK has a SKIP
option. The effect of the SKIP option is to create a new
variable-length record for the data transmitted by each
execution of this PUT statement.

An ASSGN statement is present to associate the symbolic device
name SYS009 used in the program with the device address for the
3330 disk storage drive. A DLBLstatement identifies the data
set with the name PEOPLE and associates it with the PL/I file
constant WORK. An EXTENT statement identifies the symbolic
device name to be used in creating the data set, the storage
volume that will hold the data set (DOS222), the type of storage
extent represented by the EXTENT statement, the number of the
track in which the data set is to commence, and the number of
tracks to be reserved for the data set.

110 DOS PL/I Optimizing Compiler: Programmers Guide

(
\

)

)

// JOB FIG0802
// OPTION LINK
// EXEC PLIOPT,SIZE=64K

PEOPLE: PROC OPTIONSCMAIN);

/*

DCL WORK FILE STREAM OUTPUT,
1 REC,

2 FREC,
3 NAME CHARCI9),
3 NUM CHARCl),
3 PAD CHARC2S),

2 VREC CHAR(35),
IN CHAR(80) DEF REC;

ON ENDFILECSYSIN) GO TO FINISH;
OPEN FILECWORK) LINESIZE(400);

MORE: GET FILECSYSIN) EDITCIN)CAC80»;
PUT FILECWORK) EDITCIN)CAC45+7*NUM»;
GO TO MORE;

FINISH: CLOSE FILECWORK);
END PEOPLE;

// EXEC LNKEDT
// ASSGN SYS009,3330,VOL=DOX222,SHR
// DLBL WORK,'PEOPLE'"SD
// EXTENT SYS009,DOS222,1,O,3458,19
// EXEC ,SIZE=64K
R.C.ANDERSON
B.F.BENNETT
R.E.COLE
J.F.COOPER
A.J.CORNELL
E.F.FERRIS
/*
/&

o 202848
2 771239
5 698635
5 418915
3 237837
4 158636

DOCTOR
PLUMBER
COOK
LAWYER
BARBER
CARPENTER

VICTOR HAZEL
ELLEN VICTOR JOAN ANN OTTO
FRANK CAROL DONALD NORMAN BRENDA
ALBERT ERIC JANET
GERALD ANNA MARY HAROLD

Figure 30. Creating a Data Set with Stream-Oriented Data Transmission

Figure 31 on page 112 shows an example of a program using
list-directed output to write graphics to a stream file. It
assumes that you have an output device that can print graphic
data. The program reads employee records and selects persons
living in a certain area. It then edits the address field,
inserting one graphic blank between each address item, and
prints the employee number, name, and address.

ACCESSING A DATA SET FOR STREAM-ORIENTED DATA TRANSMISSION

A data set accessed using stream-oriented data transmission need
not have been created by stream-oriented data transmission, but
it must have CONSECUTIVE organization, and all the data in it
must be in character or graphic form.

You can open the associated file for input and read the records
the data set contains, or you can open the file for output and
extend the data set by adding records at the end.

ESSENTIAL INFORMATION

When accessing a data set using stream-oriented transmission,
you must specify:

• The symbolic device name and, unless SYSIPT is the symbolic
device name used, the device type of the device that will
read the data set, in the MEDIUM option.

• The record format, record length, and, if records are
blocked, the block size, unless the defaults for
stream-oriented input files are to apply.

Chapter 8. Defining Data Sets for Stream Files III

XAMPLEl: PROC OPTIONSCMAIN);
DCL INFILE FILE INPUT RECORD,

OUTFILE FILE OUTPUT STREAM ENVCGRAPHIC); ,
/M GRAPHIC OPTION MEANS M/

DCL /M DELIMITERS WILL BE M/
1 IN, /M INSERTED ON OUTPUT M/

3 EMPNO CHAR(6), /M FILES. M/
3 NAME,

5 LAST G(7), /M THIS DATA REQUIRES M/
5 FIRST G(7), /M SPECIAL INPUT DEVICE M/

3 ADDRESS, /M TO INPUT GRAPHIC M/
5 ZIP CHAR(6), /M CHARACTER. M/
5 DISTRICT G(5),
5 CITY G(5),
5 OTHER GCIO);

DCL ADDRWK G(22);
ON ENDFILECINFILE) GO TO LAST;

READ:
READ FILECINFILE) INTOCIN);
IF SUBSTRCZIP,l,3)~='300'

THEN GO TO READ;
L=O;
ADDRWK=DISTRICT; /M ASSIGNMENT STATEMENT M/
DO 1=1 TO 5;

IF SUBSTRCDISTRICT'I'l)=~[] [] 0-1 /M SUBSTR BIF PICKS UP M/

THEN GO TO HEXTl~ /M THE ITH GRAPHIC CHAR M/
END; /M IN DISTRICT. M/

NEXTl: L=L+I+1;
SUBSTRCADDRWK,L,5)=CITYi
DO 1=1 TO 5;

IF SUBSTRCCITY'I'l)=~[] [] 0-1
THEN GO TO HEXT2;

END;
HEXT2: L=L+I;

SUBSTRCADDRWK,L,10)=OTHER;
PUT FILECOUTFILE) SKIP /M THIS DATA SET *./
EDITCEMPNO,IH.LAST,FIRST,ADDRWK) /*. REQUIRES UTILITY *./

CA(8),GC7),GC7),XC4),GC22»; /M TO PRINT GRAPHIC M/

GO TO READ; /M DATA. M/
LAST:

END XAMPLEl;

Figure 31. Writing Graphic Data to a Stream File

RECORD FORMAT

When using stream-oriented data transmission to access a data
set you do not need to know the record format of the data set
(except when you must specify a block size); each GET statement
transfers a discrete number of characters or graphics to your
program from the data stream.

If you do give record format information, it must be compatible
with the actual structure of the data set. For example, if a
data set is created with F-format records, a record length of
600 bytes, and a block size of 3600 bytes, you can access the
records as if they are U-format with a maximum block size of
3600 bytes; but, if you specify a block size of 3500 bytes, your
data will be truncated.

112 DOS Pl/I Optimizing Compiler: Programmers Guide

/
(

\
'<.;.

(

EXAMPLE

)

PRINT FILES

The program in Figure 32 reads the data set created by the
program in Figure 30 and uses the file SYSPRINT to list the data
it contains. CSYSPRINT is discussed later in this chapter.)
Each set of data is read, by the GET statement, into two
variables: FREC, which always contains 45 characters; and VREC,
into which is inserted the number of characters generated by the
expression 7*NUM.

The symbolic device name SYS009 is assigned as in the previous
example.

// JOB FIG0804
// OPTION LINK
// EXEC PLIOPT,SIZE=64K

/*

PEOPLE: PROCEDURE OPTIONSCMAIN);
DECLARE WORK FILE STREAM INPUT
ENVCVB RECSIZE(84) BLKSIZE(424) MEDIUMCSYS009,3330»,
1 REC,

2 FREC,
3 NAME CHARACTER(20),
3 NUM PIC '9',
3 PADI CHARCl),
3 SERNO PIC '(6)9',
3 PAD2 CHARCl),
3 PROF CHARACTER(16),

2 VREC CHARACTER(35),
IN CHAR(80) DEF REC;
ON ENDFILECWORK) GO TO FINISHj
OPEN FILECWORK),FILECSYSPRINT);

MORE: GET FILECWORK) EDITCIN,VREC) CA(45),AC7*NUM»;
PUT FILECSYSPRINT) SKIP EDIT CIN)CA)j
GOTO MORE;

FINISH: CLOSE FILECWORK),FILECSYSPRINT)j
END PEOPLE;

// EXEC LNKEDT
// ASSGN SYS009,3330,VOL=DOS222,SHR
// DLBL WORK, 'PEOPLE'
// EXTENT SYS009,DOS222
// EXEC ,SIZE=64K
/8

Figure 32. Accessing a Data Set Using Stream-Oriented
Transmission

A DLBL statement associates the PL/I file WORK with the data set
PEOPLE, and an EXTENT statement identifies the symbolic device
name and the disk storage volume DOS222 containing the data set.
Data management will obtain the remainder of the information
necessary to access the data set from the data set label that
was written onto the volume when the data set was created.

Both the Disk Operating System and the PL/I language include
features that facilitate the formatting of printed output. The
operating system allows you to use the first byte of each record
for a print control character; the control characters, which are
not printed, cause the printer to skip to a new line or page.
Tables of print control characters are given in Figure 39 on
page 131 through Figure 43 on page 132 in Chapter 9. In a PL/I
program, the use of a PRINT file provides a convenient means of
controlling the layout of printed output from stream-oriented
data transmission; the compiler automatically inserts print
control characters in response to the PAGE, SKIP, and LINE
options and format items.

Chapter 8. Defining Data Sets for Stream Files 113

RECORD FORMAT

You can apply the PRINT attribute to any STREAM OUTPUT file,
even if you do not intend to print the associated data set
directly. When a PRINT file is associated with a magnetic tape /
or direct access data set, the print control characters have no \'
effect on the layout of the data set, but appear as part of the
data in the records.

The compiler reserves the first byte of each record transmitted
by a PRINT file for an American National Standard print control
character, and inserts the appropriate characters automatically.
A PRINT file uses only the following five print control
characters:

Character

b (blank)
o

1

Action

Space I line before printing
Space 2 lines before printing
Space 3 lines before printing
No space before printing
Start new page

The compiler handles the PAGE, SKIP, and LINE options or format
items by padding the remainder of the current recnrd with blanks
and inserting the appropriate control character in the next
record. If SKIP or LINE specifies more than a 3-line space, the
compiler inserts sufficient blank records with appropriate
control characters to accomplish the required spacing. In the
absence of a print control option or format item, when a record
is full the compiler inserts a blank character (single line
space) in the first byte of the next record.

If a PRINT file is being transmitted to a terminal, the PAGE,
SKIP, and LINE options will never cause more than 3 lines to be
skipped, unless formatted output is specified.

You can limit the length of the printed line produced by a PRINT
file either by specifying a record length in your PL/I program
(ENVIRONMENT attribute) or by giving a line size in an OPEN
statement (LINESIZE option). The record length must include the
extra byte for the print control character, that is, it must be
I byte larger than the length of the printed line (5 bytes
larger for V-format records). The value you specify in the
LINESIZE option refers to the number of characters in the
printed line; the compiler adds the print control character.

The blocking of records has no effect on the appearance of the
output produced by a PRINT file, but it does result in more
efficient use of auxiliary storage when the file is associated
with a data set on a magnetic tape or direct access device. If
you use the LINESIZE option, ensure that your line size is
compatible with your block size: .for F-format records, block
size must be an exact multiple of (line size + 1); for V-format
records, block size must be at least 9 bytes greater than line
size.

Although you can vary the line size for a PRINT file during
execution by closing the file and opening it again with a new
line size, you must do so with caution if you are using the
PRINT file to create a data set on a magnetic tape or direct
access device; you cannot change the record format established
for the data set when the file is first opened. If the line
size specified in an OPEN statement conflicts with the record
format already established, the UNDEFINEDFILE condition will be
raised; to prevent this, either specify V-format records with a
block size at least 9 bytes greater than the maximum line size
you intend to use, or ensure that the first OPEN statement
specifies the maximum line size that is compatible with the

(

block size given, or with the defaults that are applied if these ~
are not given. ~

114 DOS Pl/I Optimizing Compiler: Programmers Guide

EXAMPLE

Note that, if a PRINT file associated with a data set on a
direct access volume is closed and reopened, any records written
before the file is closed will be overwritten by any records
transmitted after the file has been reopened.

Figure 33 illustrates the use of a PRINT file and the printing
options of stream-oriented data transmission statements to

// JOB FIG0805
// OPTION LINK
// EXEC PLIOPT,SIZE=64K

SINE: PROC OPTIONSCMAIN);

/*

DCL TABLE FILE PRINT ENveVB MEDIUMCSYS006,3330»,
HEADINGS CHAR(90) INITC' 0 6 12 18

24 30 36 42 48 54'),
TITLE CHAR(13) INITC'NATURAL SINES'),
PGNO FIXED DEC(2) INITCl),
FINISH BITCl) INITC'O'B),
VALUESCO:359,O:9) FLOAT DEC(6);
ON ENDPAGECTABLE) BEGIN;
PUT FILECTABLE) EDITC'PAGE',PGNO)eLINEC55),COLC87),A,FC3»;
IF FINISH='O'B THEN DO;

END;

PGNO=PGNO+l
PUT FILECTABLE) EDITCTITLEI I' CCONT"D)',HEADINGS)
CPAGE,A,SKIP(3),A);
PUT FILECTABLE) SKIP(2);
END;

DO I = 0 TO 359;
DO J = 0 TO 9;

END;

VALUESCI,J) = SINDCI + J/IO);3),lO F(9»;
END;

OPEN FILECTABLE) PAGESIZE(52) LINESIZE(93),FILECSYSPRINT);
PUT FILECTABLE) EDITCTITLE,HEADINGS)CPAGE,A,SKIPC3),A);
DO I = 0 TO 71;
PUT FILECTABLE) SKIP(2);

DO J = 0 TO 4;
K=5*I+J;
PUT FILECTABLE)EDITCK,VALUESCK,*»CFC3),lO FC9,4»;
END;

END;
FINISH='l'B;
PUT FILECTABLE)LINEC54);
PUT EDITC'END OF SINE TABLE OUTPUT')CA)'
CLOSE FILECTABLE),FILEeSYSPRINT);
END SINE;

// EXED LNKEDT
// ASSGN SYS006,3330,VOL=DOS222,SHR
// DLBL TABLE,'SINES'"SD
// EXTENT SYS006,DOS222,l,O,3458,19
// EXEC ,SIZE=64K
/&

Figure 33. Creating a Data Set Using a PRINT File

format a table and write it onto a direct access device for
printing on a later occasion. The table comprises the natural
sines of the angles from 0° to 359°54', in steps of 6'.

The statements in the ENDPAGE on-unit insert a page number at
the bottom of each page, and set up the headings for the
following page.

Chapter 8. Defining Data Sets for Stream Files 115

TAB CONTROL TABLE

The example includes both an ASSGN statement for the symbolic
device name SYS006 to associate it with the tape drive that is
to be used , and a DLBL statement that associates the file TABLE /
wi th the data set SINES on volume number DOS222. l""

The program in Figure 44 on page 133 uses record-oriented data
transmission to print the table created by the program in
Figure 33.

Data-directed and list-directed output to a PRINT file are
automatically aligned on preset tabulator positions. The preset
tab positions are given in the OS and DOS PL/I Language
Reference Manual. The tab settings are stored in a table in the
transient library module IBMBSTAB. The definitions of the
fields in the table are as follows:

OFFSET OF TAB COUNT: Halfword binary integer that gives the
offset of "Tab count," the field that
indicates the number of tabs to be us~d.

PAGESIZE: Halfword binary integer that defines the
default page size. This page size is used
for dump output to the PLIDUMP data set as
well as for stream output.

LINESIZE: Halfword binary integer that defines the
default line size.

PAGELENGTH: Halfword binary integer that defines the
default page size.

FILLERS: Three halfword binary integers; reserved
for future use.

Tab count:

Tabl-Tabn:

Halfword binary integer that defines the
number of tab position entries in the
table (maximum 255). If tab count = 0,
any specified tab positions are ignored.

n halfword binary integers that define the
tab positions within the print line. The
first position is numbered 1, and the
highest position is numbered 255. The
value of each tab should be greater than
that of the tab preceding it in the table;
otherwise, it is ignored. The first data
field in the printed output begins at the
next available tab position.

The preset PL/I tab settings can be overridden for your program
by causing the linkage editor to resolve an external reference
to PLITABS. To cause the reference to be resolved , supply a
table with the name PLITABS , in the format described above.

There are two methods of supplying the tab table. One method is
to include a PL/I structure in your source program with the name
PLITABS , which must be declared STATIC EXTERNAL. An example of
the PL/I structure is shown in Figure 34 on page 117. This
example creates three tab settings, in positions 30 , 60 , and 90 ,
and uses the defaults for page size and line size. Note that
TABI identifies the position of the second item printed on a
line; the first item on a line always starts at the left margin.
The first item in the structure is the offset to the NO OF TABS
field; FILLl, FILL2, and FILL3 can be omitted by adjustIng-the
offset value by -6.

(
~

116 DOS PL/I Optimizing Compiler: Programmers Guide

DCl 1 PlITABS STATIC EXT,
2 (OFFSET INITCI4),

PAGESIZE INIT(60),
lINESIZE INITCI20),
PAGElENGTH INITCO),
FIlll INITCO),
FIll2 INITCO),
FIll3 INITCO),
NO_OF_TABS INIT(3),
TABI INIT(30),
TAB2 INIT(60),
TAB3 INIT(90» FIXED BIN(15,0);

Figure 34. Pl/I Structure PlITABS for Modifying the Preset Tab
Settings

The second method is to create an assembler language control
section called PlITABS and include it in the link-editing of the
executable program.

SYSIN AND SVSPRINT FILES

Pl/I includes a SYSIN file for input and a SYSPRINT file for
output. If your program includes a GET statement that does not
include the FILE or STRING option, the compiler inserts the name
SYSIN; if it includes a PUT statement without the FILE or STRING
option, the compiler inserts the name SYSPRINT.

If you do not declare SYSPRINT, the compiler will give the file
the attribute PRINT in addition to the normal default
attributes. Because SYSPRINT is a PRINT file, the compiler also
supplies a default lINESIZE of 120 characters. Therefore, yoU
need give only a minimum of information in the Pl/I program.
The complete statement for SYSPRINT will be assumed as follows:

DCl SYSPRINT FILE STREAM OUTPUT PRINT
EXTERNAL ENVCF RECSIZE(121)
MEDIUM (SYSlST»;

You can override the attributes given to SYSPRINT by the
compiler by explicitly declaring or opening the file. If you do
so, bear in mind that this file is also used by the
error-handling routines of the transient library, and that any
change you make in the format of the output from SYSPRINT will
also apply to the format of execution-time diagnostic messages.
If a line size less than 72 is used, any diagnostic messages
will be transmitted to the operator console.

The compiler does not supply any attributes other than the
defaults for the input file SYSIN; if you do not declare it, the
compiler assumes the attributes:

DCl SYSIN FILE STREAM INPUT EXTERNAL
ENV(RECSIZE(80) F MEDIUMCSYSIPT»;

Chapter 8. Defining Data Sets for Stream Files 117

CHAPTER 9. USING CONSECUTIVE, INDEXED, AND REGIONAL DATA SETS

SEQUENCE

DEVICES

ACCESS
I=By key
2=Sequen-

tial
3=Backward

Alternate
index
Access as
above

How
Extended

DELETION
l=Space

reusable
2=Space not

reusable

This chapter describes how to use CONSECUTIVE, INDEXED, and
REGIONAL data sets using the SAM, QSAM, ISAM, and DAM access
methods.

Figure 35 shows the facilities that are available with the
various types of data sets that can be used with Pl/I.

COMPARISON OF PL/I DATA SET TYPES

VSAM VSAM VSAM INDEXED CONSECUTIVE REGIONAL REGIONAL
KSDS ESDS RRDS (1) (3)

Key Entry Num- Key Entry Order By By
Order Order bered Order Region Region

DASD DASD DASD DASDI DASD,tape, DASD2 DASD
card, etc.

123 123 123 12 2 12 12
3 tape only

123 123 No No No No No

With At In With At end In empty With new
new end empty new slots keys
keys slots keys

Yes,l No Yes, 1 No No No No

1 limited to 2311, 2314, 3330-1, and 3340 devices.
2 Not FBA devices.

Figure 35. A Comparison of Data Set Types Available to Pl/I Record I/O

CREATING AND ACCESSING DATA SETS FOR RECORD-ORIENTED TRANSMISSION

To create or access a data set for record-oriented transmission,
you must give the operating system information in your Pl/I
program, and, in certain cases, in TlBl or DlBl and EXTENT and
other job control statements. These requirements are summarized
in Figure 36 on page 119.

In record-oriented transmission, data is transmitted to and from
auxiliary storage exactly as it appears in the program
variables; no data conversion takes place for data sets other
than ASCII data sets or for data that requires conversion when
written onto or read from 7-track magnetic tape. A record in a
data set corresponds to a variable in the program.

The following sections describe the information that you must
supply, and discuss some of the information you may supply, when
processing CONSECUTIVE, INDEXED, and REGIONAL data sets.

118 DOS PL/I Optimizing Compiler: Programmers Guide

(

Always Required for: Information ,.,here Speci fied

Any input/output Type of device - unless File declaration in
using record-oriented device independent source program: see
transmission the ENVIRONMENT attri-

Symbolic device name bute MEDIUM option
in Chapter 7.

Record format

Nonstandard device Device assignment ASSGN statement
assignment

Data set on magnetic Identification TLBL statement
tape with standard
labels Storage for label LBLTYP statement l

processing

Data set on direct- Identification and DLBL and EXTENT2
. access volume extent information statements

REGIONAL(1),REGIONALC3), LBLTYPl
or INDEXED data set,
storage for label
processing

1 Not required for VSE/Advanced Functions.

2 The EXTENT statement is not always necessary when using VSE/VSAM Space
Management for SAM (see Chapter 7).

Figure 36. Record-Oriented Transmission Data Set Information

) CONSECUTIVE DATA SETS

This section describes CONSECUTIVE data set organization, the
data transmission statements used with CONSECUTIVE data sets,
and the ENVIRONMENT options that define CONSECUTIVE data sets.
It then describes how to create, access, and update CONSECUTIVE
data sets.

CONSECUTIVE ORGANIZATION

In a data set with CONSECUTIVE organization, records are
organized solely on the basis of their successive physical
positions; when the data set is created, records are written
consecutively in the order in which they are presented. The
records can be retrieved only in the order in which they were
written or in the reverse order when using the BACKWARDS
attribute. The associated file must have the SEQUENTIAL
attribute.

Figure 37 on page 120 lists the data transmission statements and
options that you can use to create and access a CONSECUTIVE data
set.

DEFINING A CONSECUTIVE DATA SET

A CONSECUTIVE data set is defined by a file declaration with the
following attributes:

DCL filename FILE RECORD
INPUT I OUTPUT I UPDATE
SEQUENTIAL
BUFFERED I UNBUFFERED
[BACKWARDS]
ENVIRONMENTCoption-list);

Chapter 9. Using CONSECUTIVE, INDEXED, and REGIONAL Data Sets 119

The file attributes are described in the OS and DOS PL/I
Language Reference Manual. Default file attributes are shown in
Figure 25 on page 95.

Valid statementsZ, with Options
File Declaration l that Must Appear

SEQUENTIAL OUTPUT WRITE FILE(file-reference)
BUFFERED FROM(reference);

LOCATE based-variable
FILE (file-reference);

SEQUENTIAL OUTPUT WRITE FILE(file-reference)
UNBUFFERED FROMCreference);

SEQUENTIAL INPUT READ FILE(file-reference)
BUFFERED INTOCreference)j

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)
IGNORECexpression);

SEQUENTIAL INPUT READ FILE(file-reference)
UNBUFFERED INTO(reference);

READ FILE(file-reference)
IGNORECexpression);

SEQUENTIAL UPDATE READ FILE(file-reference)
BUFFERED INTOCreference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)
IGNORECexpression);

REWRITE FILE(file-reference);

SEQUENTIAL UPDATE READ FILE(file-reference)
UNBUFFERED INTOCreference);

READ FILE(file-reference)
IGNORECexpression);

REWRITE FILE(file-reference)
FROMCreference)j

Other Options that
Can also Be Used

SET(pointer­
reference)

EVENTCevent­
reference)

EVENT(event-
reference)

EVENT(event-
reference)

FROM(reference)

EVENT(event-
reference)

EVENT(event~
reference)

EVENTCevent-
reference)

lThe complete file declaration would include the attributes FILE, RECORD,
and ENVIRONMENT.

2The statement READ FILE (file-reference); is equivalent to:
READ FILE(file-reference) IGNORE (1);

Figure 37. CONSECUTIVE Data Set Statements and Options

ENVIRONMENT OPTIONS FOR CONSECUTIVE DATA SETS

The following options apply only to CONSECUTIVE data sets and
are described in this chapter:

120 DOS PL/I Optimizing Compiler: Programmers Guide

I

\

(

\

ASCII Option

ASSOCIATE Option

ASCII
ASSOCIATE
BUFOFF
CMDCHN
COLBIN
CONSECUTIVE
CTLASA I CTL360
FILESEC
FUNCTION

LEAVE I UNLOAD
NOFEED
NOLABEL
NOTAPEMK
OMR
RCE
STACKER
VOLSEQ
WRTPROT

The following options apply to CONSECUTIVE as well as one or
more other data set organization a

BLKSIZE
BUFFERS
COBOL
FIFBIVIVBIDIDBIU

MEDIUM
RECSIZE
SCALARVARYING
VERIFY

These options are described in Chapter 7. Figure 26 on page 96
summarizes the ENVIRONMENT options.

The ASCII option specifies that the code used to represent data
on the data set is ASCII. r:: Syntax

ASCII

Data sets on magnetic tape using ASCII may be created and
accessed in PL/I. The implementation supports F, FB, U, D, and
DB record formats. F, FB, and U formats are treated in the same
way as with other data sets; D and DB formats, which correspond
to V and VB formats with other data sets, are described below.

Only character data may be written onto an ASCII data set; when
the data set is created, transmission must be from a
character-string variable. This variable may have the attribute
VARYING as well as CHARACTER, but the 2 length bytes of a
varying-length character string cannot be transmitted; in other
words, varying-length character strings cannot be transmitted to
an ASCII data set using a SCALARVARYING file. Also, data
aggregates containing varying-length strings may not be
transmitted.

Because an ASCII data set must be on magnetic tape, it must be
of CONSECUTIVE organization. The associated file must be
BUFFERED. The BUFOFF ENVIRONMENT option may be specified for
ASCII data sets.

The ASSOCIATE option of the ENVIRONMENT attribute enables
multiple operations (for example, read and then punch) to be
performed on an IBM 3525 Card Punch. A file is declared for
each operation that is required, and the files are "associated"
with each other by means of the ASSOCIATE option.

r-= Syntax

I ~SOCIATE(filename)

• The filename must be a file constant declared in the same
external procedure.

• The device type specified in the MEDIUM option must be 3525
or 3525T.

Chapter 9. Using CONSECUTIVE, INDEXED, and REGIONAL Data Sets 121

• The logical unit specified in the MEDIUM option must not be
SYSlST, SYSIPT, or SYSPCH.

• The file must have the RECORD attribute.

• BUFFERSCl) must be specified explicitly or by default for
files that are used to read or to punch cards.

• The FUNCTION option must be specified with a second operand
that corresponds to the set of associated files.

Files must be associated in the order nread - punch - write -
read." The following example shows the declarations for three
files that are used to read a card, punch it, and then print on
it.

DCl READ FILE RECORD INPUT
ENVC .. FUNCTIONCR,RPW),ASSOCIATECPUNCH) ..),

PUNCH FILE RECORD OUTPUT
ENV(.. FUNCTIONCP,RPW),ASSOCIATE(PRINT) ..),

PRINT FILE RECORD OUTPUT
ENVC .. FUNCTIONCW,RPW),ASSOCIATE(READ) ..);

Input/output operations on sets of associated files must be
performed in the order in which the files are associated. For
the files given in the example above, the correct sequence is:

READ FILE CREAD) .
WRITE FILE CPUNCH)
WRITE FILE (PRINT)

. . , . , . ,
You must ensure that the correct sequence is followed. If,
however, the sequence contains a print operation, any number of
CONSECUTIVE print operations may be performed, from zero (print
operation omitted) up to the maximum for the device (2 or 25).

The first file in the input/output sequence may be opened
implicitly. The remaining files must be opened explicitly
before an operation is performed on any of the associated files.

You must ensure that none of the associated files is closed
before all the I/O operations on the set of associated files are
complete. For this reason, a multiple close statement should be
used to close a set of associated files if locate-mode I/O is
being used~

BUFOFF Option and Block Prefix Fields

At the beginning of each block in an ASCII data set, there may
be a field known as the block prefix field. It may be from 1 to
99 bytes long. The buffer offset option, BUFOFF, specifies the
length of this field to data management, so that the accessing
or creation of data is started at this offset from the beginning
of each physical block. Pl/I does not support access to this
field, and in general it does not contain information that is
used in these implementations.

There is one situation in which data management does use
information in the block prefix: with variable-length records
(that is, D- or DB-format records), the block prefix field may
be used to record the length of the block. In this case, it is
4 bytes long and contains a right-aligned, decimal character
value that gives the length of the block in bytes, including the
block prefix field itself. It is then exactly equivalent to a
block length field.

~ Syntax

tBUFOFF[(n)]

122 DOS Pl/I Optimizing Compiler: Programmers Guide

CMDCHN Option

A numeric value equal to the length of the prefix may be
specified for n. It may be specified as either an integer or as
a variable with the attributes FIXED BINARY(31,0) STATIC. Its
minimum value is 0 and its maximum is 99. The absence of a
prefix length specification indicates that the block prefix is
to be used as a block length field; it implies that the field is
4 bytes long. The length of the block is inserted in the prefix
by data management.

On input, any ASCII data set may be accessed if it has a block
prefix field of length 1 to 99 bytes, or no block prefix field
at all; and it may be accessed whether or not the block prefix
field is used as a block length field.

On output, a data set using anyone of the valid record formats
may be created without a block prefix, but the only situation in
which the creation of a block prefix is supported by PL/I is
when it is used as a block length field. Therefore, the only
permissible buffer offset specification on output is BUFOFF,
with no prefix length specification.

The BUFOFF option may be used with ASCII data sets only.

BUFOFF DEFAULTS: For output files, if you do not specify BUFOFF,
the default is:

BUFFER offset:
F, FB, or U: 0
D, or DB: 4

With DB-format records on output files, the length of the block
prefix (that is, the buffer offset) must always be either 0 or
4.

If ASCII is not specified but one of BUFOFF, D, or DB is
specified, then ASCII is assumed.

D-FORMAT AND DB-FORMAT RECORDS: The data contained in D- and
DB-format records is recorded in ASCII. Each record may be of a
different length. The two formats are:

D-format:
The records are unblocked; each record constitutes a single
block. Each record consists of:

Four control bytes
Data bytes

The 4 control bytes contain the length of the record; this
value is inserted by data management and requires no action
by you. In addition, there may be, at the start of the
block, a block prefix field, which may contain the length
of the block.

DB-~ormat:
The records are blocked. All other information given for
D-format applies to DB-format.

The CMDCHN (command chain) option is permitted only with the IBM
3540 Diskette. It allows you to simulate blocked records on the
diskette by specifying the CCW chaining factor; this can be 1,
2, 13, or 26. Blocked (FB) records as such are invalid for the
3540, because it is considered to be a unit record device.

~ Syntax
CHDCHN(n)

Chapter 9. Using CONSECUTIVE, INDEXED, and REGIONAL Data Sets 123

If the CMDCHN option is specified, the file must be explicitly
opened. If the CMDCHN option is not specified, CMDCHN(l) is
assumed. (

COLBIN Option

CONSECUTIVE Option

The COlBIN option specifies that cards processed by an IBM 3505
or 3525 Card Reader hold data in column binary f,orm.

r= Syntax

LLBIN

• The file must have the RECORD attribute.

• The device type in the MEDIUM option must be 3505, 3525, or
3525T.

• The FUNCTION option must not specify punch interpret
(FUNCTION(P,I» or write (FUNCTION(W».

The CONSECUTIVE option may be specified for a STREAM or RECORD
file. It defines a file with CONSECUTIVE data set organization,
which is described above. r: Syntax

coNSECUTIVE

CONSECUTIVE is the default data set organization.

CTLASA and CTL360 Options

FILESEC Option

The printer and punch control options, CTlASA and CTl360, apply
only to OUTPUT files associated with CONSECUTIVE data sets.
They specify that the first character of a record is to be
interpreted as a control character. r: Syntax

CTLASA I CTL360

The CTlASA option specifies American National Standard Vertical
Carriage Positioning Characters or American National Standard
Pocket Select Characters (level 1). The CTl360 option specifies
IBM machine code control characters.

The control characters that can be used with these options are
listed with their actions later in this chapter.

The FIlESEC (file security) option is permitted only with IBM
3540 Diskette output files.

r-= Syntax

I~LESEC

124 DOS Pl/I Optimizing Compiler: Programmers Guide

\

FUNCTION Option

The FILESEC option is used to specify that the operator must
authorize any future attempts to read the diskette volume.

The FUNCTION (device function) option specifies the operations
that are to be performed by an IBM 3525 Card Punch, IBM 2560
Card Read Punch, or IBM 5425 Card Read Punch. The FUNCTION
option for the IBM 3525 has the format:

Syntax

FUNCTION ({~} [~~= 1)
,RPW

The FUNCTION option for the IBM 2560 and IBM 5425 has the
format:

r--- Syntax

I FUNCTION ([1121)

The letters R, p, and W specify the operation that is to be
performed by the file, as follows:

R The file is used to read cards. The file must have the
INPUT attribute.

P The file is used to punch cards. The file must have the
OUTPUT attribute, and must not have the PRINT attribute.

W The file is used to print on cards. The file must have the
OUTPUT attribute; for the IBM 3525 only, the file may have
neither the PRINT attribute nor the CTLASA or CTL360
option, since no printer control characters are available
on a 2560 or 5425.

The digits 1 and 2, applicable only to IBM 2560 and IBM 5425,
indicate the input stacker selection for the file.

The second operand of the FUNCTION option, applicable only to
the IBM 3525, specifies that the device is being used for
multiple operations on the same card. It can have the following
values:

I The file is used to punch and interpret files. In this
case only, the first operand may be omitted; if it is
specified, it must be P.

RP The file is one of two associated files that are used to
read and then punch cards.

RW The file is one of two associated files that are used to
read and then print on cards.

PW The file is one of two associated files that are used to
punch and then print on cards.

RPW The file is one of three associated files that are used to
read, punch, and then print an cards.

The following rules apply to the FUNCTION option for the IBM
3525:

Chapter 9. Using CONSECUTIVE, INDEXED, and REGIONAL Data Sets 125

• The device type specified in the MEDIUM option must be 3525
or 3525T.

• If the second operand of the FUNCTION option is I, the first
operand, if specified, must be P.

• The COLBIN option must not be specified with FUNCTION(P,I).

• The ASSOCIATE option must be specified, unless FUNCTION has
a single operand or is FUNCTIONCP,I).

• If FUNCTIONCP,I) is specified, the output records must be F
format.

If the FUNCTION option is omitted from the declaration of a file
associated with a 3525, the following defaults are applied:

INPUT files
OUTPUT non-PRINT files
OUTPUT PRINT files

FUNCTION(R)
FUNCTION(P)
FUNCTION(W)

The defaults for the IBM 2560 and IBM 5425 are:

INPUT files
OUTPUT files

FUNCTION(Rl)
FUNCTION(Pl)

(If only the stacker selection digit is omitted, the default is
stacker 1.)

LEAVE and UNLOAD Options

NOFEED Option

NOLABEL Option

The LEAVE and UNLOAD magnetic tape handling options allow you to
specify the action to be taken when the end of a magnetic tape
volume is reached, or when a data set on a magnetic tape volume
is closed. r-:: syntax

LEAVE I UNLOAD

If a data set is first read or written forward and then read
backward in the same program, specify the LEAVE option to
prevent rewind when the file is closed (or, with a multivolume
data set, when volume switching occurs).

The UNLOAD option is used to specify that the tape is to be
rewound and unloaded when the file is closed, or (for input
files) when a tape mark is read.

The NOFEED option is permitted only with the IBM 3540 Diskette.
It is used to specify that the diskette is to remain in position
at the end of a job step, so that it may be accessed later
without operator intervention. r::: Syntax

NOFEED

The NOLABEL option is used to specify that no file labels are to
be processed for a magnetic tape file.

126 DOS PL/I Optimizing Compiler: Programmers Guide

(

~

NOTAPEMK Option

OMR Option

RCE Option

r-:: Syntax
NOLABEL

If the NOlABEl option is specified for output files, a tape mark
is written as the first record on the tape unless, in addition
to NOlABEl, the NOTAPEMK option is specified in the ENVIRONMENT
attribute. Nonstandard labels and additional user labels are
not processed.

The NOTAPEMK option for tape files enables you to prevent a
leading tapemark from being written ahead of the data records on
unlabeled tape files. The resulting data set cannot be read
backward, unless it is an ASCII dataset. r-:: Syntax

NOTAPEMK

NOTAPEMK may be used for tape OUTPUT files with NOlABEl
specified. This option is not allowed for UNBUFFERED files.

The OMR (optical mark read) option specifies the optical reading
of marks in a standard 80-column card by a 3505. If this option
is used, the first card in the deck of cards to be read by the
program must be an OMR format descriptor card.

~ Syntax
OMR

• The file must have the RECORD attribute.

• BUFFERS(I) must be specified explicitly or by default.

• The device type in the MEDIUM option must be 3505.

• The Read Column Eliminate (RCE) option must not be
specified.

If a block size (BlKSIZE) of less than 80 (EBCDIC) or 160
(column binary) is specified, the block size is changed to 80 or
to 160 as appropriate.

The RCE (read column eliminate) option specifies the selective
reading of card columns by an IBM 3505 Card Reader or a 3525
Card Punch. If this option is used, the first card in the deck
of cards to be read by the program must be an RCE format
descriptor card. The format of the format descriptor card is
described under "Features of the IBM 3504, 3505, and 3525" on
page 82 in Chapter 7.

Syntax

Chapter 9. Using CONSECUTIVE, INDEXED, and REGIONAL Data Sets 127

STACKER Option

VOLSEQ Option

WRTPROT Option

•

•

The device type specified in the MEDIUM option must be 3505,
3525, or 3525T.

The logical unit specified in the MEDIUM option must not be
SYSIPT.

• The Optical Mark Read (OMR) option must not be specified.

The STACKER option specifies into which stacker of an IBM 3505
Card Reader or IBM 3505 Card Punch cards are to be directed.

~ Syntax
~ACKER(n)

where n is a constant or a FIXED BINARY STATIC variable of
precision (31,0).

• The device type specified in the MEDIUM option must be 3505,
3525, or 3525T.

• The FUNCTION option must not specify write (FUNCTION(W».

• n must be either 1 or 2.

• The stacker that is selected depends on the value of n when
the file is opened (either explicitly or implicitly). It
cannot be changed unless the file is closed and then
reopened.

If the STACKER option is not specified, STACKER(l) is assumed.

The VOLSEQ (volume sequence) option is permitted only with IBM
3540 Diskette input files. For multivolume data sets, it is
used to specify that sequence checking on the volume serial
numbers must be performed.

~ Syntax
VOLSEQ

The WRTPROT (write protect) option is permitted only with IBM
3540 Diskette output files. It is used to specify that the data
set created is to be flagged as a read-only data set.

~ Syntax
WRTPROT

(
I

\

(
\

CREATING A CONSECUTIVE DATA SET

When you create a CONSECUTIVE data set, the associated file must
be opened for SEQUENTIAL OUTPUT. Either the WRITE or the LOCATE
statement may be used to write records. Figure 38 on page 129 ~
shows the statements and options permitted for creating a \~
CONSECUTIVE data set. ~

128 DOS PL/I Optimizing Compiler: Programmers Guide

Essential Information

When you create a CONSECUTIVE data set using record-oriented
transmission, you must specifyz

• The symbolic device name, and, unless either SYSPCH or
SYSLST is the symbolic device name used, the type of device
that will write or punch the data set.

• The record format, record size, and, if the records are
blocked, the block size. No defaults are permitted.

// JOB FIG0904
// OPTION LINK
// EXEC PLIOPT,SIZE=64K

MERGE: PROCEDURE OPTIONS(MAIN);
DCL INI FILE RECORD SEQUENTIAL

ENV(F RECSIZE(IS) MEDIUM(SYS006,3330»,
IN2 FILE RECORD SEQUENTIAL ENV(F RECSIZE(lS) MEDIUM(SYS007,3330»,
OUT FILE RECORD SEQUENTIAL ENV(MEDIUM(SYS008,3330)

F RECSIZE(lS»OUTPUT,
(ITEMI BASED(A),ITEM2 BASED(B» CHAR(lS);

/* START OF ENDFILE ON-UNITS */
ON ENDFILE(IN1) BEGIN;

ON ENDFILE(IN2) GO TO FINISH;
NEXT2z WRITE FILE(OUT) FROM(ITEM2);

PUT SKIP LIST (ITEM2);
READ FILE(IN2) SET(B);
GO TO NEXT2;
END;

ON ENDFILE(IN2) BEGIN;
ON ENDFILE(IN1) GO TO FINISH;

NEXTlz WRITE FltE(OUT) FROM (ITEM1);
PUT SKIP LIST (ITEM1);
READ FILE(IN1) SET(A);
GO TO NEXT1;
END;
/* END OF ENDFILE ON-UNITS */

OPEN FILE(IN1),FILE(OUT),FILE(IN2),FILE(SYSPRINT);
READ FILE(IN1) SET(A);
READ FILE(IN2) SET(B);

NEXT: IF ITEMI > ITEM2 THEN DO;
PUT SKIP LIST(ITEM2);
WRITE FILE(OUT) FROM(ITEM2);
READ FILE(IN2) SET(B);
GO TO NEXT;
END;

ELSE DOj
PUT SKIP LIST(ITEM1);
WRITE FILE(OUT) FROM(ITEM1);

READ FILE(IN1) SET(A);
GO TO NEXT;
ENDj

FINISH: CLOSE FILE(IN1),FILECIN2),FILECOUT),FILE(SYSPRINT);
END MERGE;

/*
// EXEC LNKEDT
// ASSGN SYS006,3330,VOL=DOS222,SHR
// ASSGN SYS007,3330,VOL=DOS222,SHR
// ASSGN SYS008,3330,VOL=DOS222,SHR
// DLBL IN1,'DS1'
// EXTENT ,DOS222
// DLBL IN2,'DS2'
// EXTENT ,DOS222
// DLBL OUT,'DS3'
// EXTENT ,DOS222,l,O,34S8,2
// EXEC ,SIZE=64K
/&

Figure 38. Creating and Accessing a CONSECUTIVE Data Set

Chapter 9. Using CONSECUTIVE, INDEXED, and REGIONAL Data Sets 129

ACCESSING A CONSECUTIVE DATA SET

To access an existing data set on a labeled magnetic tape or
direct access device, you must identify it to the operating
system in a TLBL statement or DLBL and EXTENT statements.
Figure 38 shows the statements and options permitted for
accessing a CONSECUTIVE data set.

Essential Information

Record Format

When accessing a CONSECUTIVE data set using record-oriented
transmission, you must specify:

• The symbolic device name, and, unless SYSIPT is the symbolic
device name used, the type of device that will read the data
set.

• The record format, record size, and, if the records are
blocked, the block size. No defaults are permitted.

The record format information must be compatible with the actual
structure of the data set. For example, if you create a data
set with FB-format records, a record size of 600 bytes, and a
block size of 3600 bytes, you must either access them with a
file declared with the ENVIRONMENT options FB, RECSIZE(600)
BLKSIZE(3600), or you can access the records as if they were
undefined-length records with a maximum block size of 3600
bytes; but if you specify undefined-length records with a
maximum block size of 3500 bytes, the blocks will be truncated.

EXAMPLE OF CONSECUTIVE DATA SETS

Creating and accessing CONSECUTIVE data sets is illustrated in
the program shown in Figure 38. The program merges the contents
of two existing data sets, DSI and DS2, and writes them onto a
new data set, DS3. Each of the original data sets contains
IS-byte fixed-length records arranged in EBCDIC collating
sequence.

The two input files, INI and IN2, have the default attribute
BUFFERED, and locate-mode is used to read records from the
associated data sets into the respective buffers. Each of the
data sets is identified and associated with the appropriate PL/!
file by a DLBL statement. ASSGN statements to establish the
symbolic device names used by each of the files are also
included.

PUNCHING CARDS AND PRINTING

You cannot use a PRINT file for record-oriented data
transmission. You can still exercise some control over the
layout of printed output by including a print control character
as the first byte of each of your output records; you can also
use similar control characters to select the stacker to which
cards punched by your program are fed.

The operating system recognizes two types of control characters
for printer and card punch commands--American National Standard
control characters and machine code control characters. You
must indicate which control character you are using in your PL/I
program (CTL360 or CTLASA ENVIRONMENT option). If you specify
one of these characters, but transmit your data to a device
other than a printer or a card punch, the operating system
transmits the control characters as part of your records. If
you use an invalid control character, the job will be
terminated.

130 DOS PL/I Optimizing Compiler: Programmers Guide

The American National Standard control characters, listed in
Figure 39, cause the specified action to occur before the
associated record is printed or punched.

Code Action

b Space 1 line before printing
(blank code)

o Space 2 lines before printing
- Space 3 lines before printing
+ Suppress space before printing
1 Skip to channel 1
2 Skip to channel 2
3 Skip to channel 3
4 Skip to channel 4
5 Skip to channel 5
6 Skip to channel 6
7 Skip to channel 7
8 Skip to channel 8
9 Skip to channel 9
A Skip to channel 10
B Skip to channel 11
C Skip to channel 12
V Select stacker 1
W Select stacker 2

Figure 39. American National Standard Print and Card Punch
Control Characters (CTlASA)

Code Byte Action

00000001 Select stacker 1
01000001 Select stacker 2
10000001 Select stacker 3

Figure 40. 2540 Card Read Punch Control Characters (CTl360)

Act Immedi-
Print, ately (no

. Then Act printing)
Code Byte Action Code Byte

00000001 Print only -
(no space)

00001001 Space 1 line 00001011
00010001 Space 2 lines 00010011
00011001 Space 3 lines 00011011
10001001 Skip to chn1 1 10001011
10010001 Skip to chn1 2 10010011
10011001 Skip to chn1 3 10011011
10100001 Skip to chn1 4 10100011
10101001 Skip to chn1 5 10101011
10110001 Skip to chn1 6 10110011
10111001 Skip to chn1 7 10111011
11000001 Skip to chn1 8 11000011
11001001 Skip to chn1 9 11001011
11010001 Skip to chnl 10 11010011
11011001 Skip to chn1 11 11011011
11100001 Skip to chn1 12 11100011

Figure 41. IBM Machine Code Print Control Characters (CTl360)

Chapter 9. Using CONSECUTIVE, INDEXED, and REGIONAL Data Sets 131

Code Action

b Space 1 line and print
0 Space 2 lines and print
n Space 3 lines and print
1 Skip to channel 1 and print
2 Skip to channel 2 and print
3 Skip to channel 3 and print
4 Skip to channel 4 and print
5 Skip to channel 5 and print
6 Skip to channel 6 and print
7 Skip to channel 7 and print
8 Skip to channel 8 and print
9 Skip to channel 9 and print
A Skip to channel 10 and print
B Skip to channel 11 and print
C Skip to channel 12 and print

Figure 42. 3525 Card Printer Control Characters (CTLASA)

The machine code control characters differ according to the type
of device. The IBM machine code control characters for the IBM
2540 Card Read Punch are listed in Figure 40 on page 131, and
Figure 41 gives those for printers. Control codes for the IBM
3525 Card Printer are given in Figure 42 and Figure 43.

Code Byte Action

00001101 Print on line 1
00010101 Print on line 2
00011101 Print on lien 3
00100101 Print on line 4
00101101 Print on line 5
00110101 Print on line 6
00111101 Print on line 7
01000101 Print on line 8
01001101 Print on line 9
01010101 Print on line 10
01011101 Print on line 11
01100101 Print on line 12
01101101 Print on line 13
01110101 Print on line 14
01111101 Print on line 15
10000101 Print on line 16
10001101 Print on line 17
10010101 Print on line 18
10011101 Print on line 19
10100101 Print on line 20
10101101 Print on line 21
10110101 Print on ,line 22
10111101 Print on line 23
11000101 Print on line 24
11001101 Print on line 25

Figure 43. 3525 Card Printer Control Characters (CTL360)

There are two types of machine code control characters for the
printer-one causing the action to occur after the record has
been transmitted, and the other producing immediate action but
transmitting no data (include the second type only in a blank
record).

The essential requirements for producing printed output or
punched cards are 'exactly the same as those for creating any
other CONSECUTIVE data set (described above).

For a printer, if you do not use one of the control characters,
all data will be printed sequentially, with no spaces between

132 DOS PL/I Optimizing Compiler: Programmers Guide

)

Example

records; each block will be interpreted as the start of a new
line. When you specify a block size for a printer or card
punch, and are using one of the control characters, allow for
the control character in your block size; for example, if you
want to print lines of 100 characters, specify a block size of
101.

The program in Figure 44 uses record-oriented transmission to
read and print the contents of the data set SINES, which was
created by the PRINT file in Figure 33 on page 115. The output
file PRINTER is declared with the option CTLASA, ensuring that
the first byte of each record will be interpreted as an ANS
printer control code. The example requires an ASSGN statement
for the symbolic device name SYS006, and a DLBL statement to
associate the file TABLE with the data set SINES on the volume
number DOS222.

// JOB FIG0910
// OPTION LINK
// EXEC PLIOPT,SIZE=64K

PRT: PROC OPTIONSCMAIN);
DCL TABLE FILE RECORD INPUT SEQUENTIAL

ENVCVB RECSIZE(98) BLKSIZE(494) MEDIUMCSYS006,3330»,
PRINTER FILE RECORD OUTPUT SEQUENTIAL

ENVCMEDIUMCSYSLST,1403)
V RECSIZECI02) CTLASA),

LINE CHAR(94) VARj
ON ENDFILECTABLE) GO TO FINISHj

OPEN FILECTABLE), FILECPRINTER);
NEXT: READ FILECTABLE) INTOCLINE)j

WRITE FILECPRINTER) FROM CLINE);
GO TO NEXT;

FINISH: CLOSE FILE CTABLE), FILECPRINTER);
END PRT;

/*
// EXEC LNKEDT
// ASSGN SYS006,3330,VOL=DOS222,SHR
// DLBL TABLE,'SINES'
// EXTENT SYS006,DOS222
// EXEC ,SIZE=64K
/&

Figure 44. Printing with Record-Oriented Data Transmission

DEVICE-ASSOCIATED FILES (IBM 3525 CARD PUNCH)

The IBM 3525 is an 80-column card punch, available to IBM
System/370 users, that can also read cards and print on them.
The CTLASA and CTL360 control characters for the device are
given earlier in this chapter.

You can use the multiple capabilities of the device by
associating two or three files together with the device so that
more than one of the operations read, punch, and print can be
performed on the same card during one pass through the device.
Details of the use of the device, together with the IBM 3505
Card Reader, are given in Chapter 7. However, you must consider
the following restrictions at the time you write the program.

• Device-associated files must have the RECORD attribute and
must be either all BUFFERED or all UNBUFFERED.

Chapter 9. Using CONSECUTIVE, INDEXED, and REGIONAL Data Sets 133

INDEXED DATA SETS

INDEXED ORGANIZATION

• The records must be F-format. The maximum record size is 80
for read and punch files and 64 for print files, plus 1 byte
for punch/print control characters.

• When a read or punch associated file is opened, the value of
the BUFFERS option will be set to 1.

• Device-associated files may be opened in any order, but all
of the files must be open before any transmission takes
place to or from anyone of them.

• Depending on the files associated, the appropriate
input/output operations on each card must strictly follow
the order read-punch-print. If the sequence rules are not
followed, the ERROR condition is raised. Only the print
operation can be omitted or repeated.

• A print-associated file that uses control characters for
line positioning must not attempt to feed a card. Such an
attempt would occur if an instruction to print beyond the
maximum line number C2 or 25) for the card were used, or if
a control character that implied a new record were used.
For example, the control character '1' specifies printing on
the first line of the next card.

• Device-associated files can normally be closed in any order,
but no transmission can take place after anyone of the
files has been closed. As a result, care is needed if the
LOCATE statement is used for BUFFERED OUTPUT files. The
output from a LOCATE statement does not actually take place
until the next LOCATE, WRITE, or CLOSE statement for the
file. If the LOCATE statement is used on both print- and
punch-associated files, a multiple CLOSE statement must be
used, specifying the punch file before the print file. For
example:

LOCATE A FILECPUNCHOUT);
LOCATE B FILECPRINTOUT);
CLOSE
FIlECPUNCHOUT),FIlECPRINTOUT);

• The American National Standard print control character '+'
Cor SKIPCO» is not allowed with the IBM 3525.

• Files associated with column binary or Optical Mark Read
data sets must be RECORD files.

This section describes INDEXED data set organization, data
transmission statements, and the ENVIRONMENT options that define
INDEXED data sets. It then describes how to create, access, and
reorganize INDEXED data sets. See Figure 45 on page 135.

A data set with INDEXED organization must be on a direct access
device. Its records, which can be either F-format blocked or
unblocked records, are arranged in logical sequence according to
keys that are associated with each record. A key is a character
string that can identify each record uniquely. Logical records
are arranged in the data set in ascending key sequence according
to the EBCDIC collating sequence. Indexes associated with the
data set are used by the operating system data management
routines to locate a record when the key is supplied.

Unlike CONSECUTIVE organization, INDEXED organization does not
require every record to be accessed in sequential fashion. An
INDEXED data set must be created sequentially; but, once it has
been created, the associated file may be opened for SEQUENTIAL
or DIRECT access, as well as INPUT or UPDATE. When the file has

134 DOS PL/I Optimizing Compiler: Programmers Guide

the DIRECT attribute, records may be retrieved, added, and
replaced at random.

Sequential processing of an INDEXED data set is slower than that
of a corresponding CONSECUTIVE data set, because the records it
contains are not necessarily retrieved in physical sequence;
furthermore, random access is less efficient for an INDEXED data
set than for a REGIONAL data set, because the indexes must be
searched to locate a record. An INDEXED data set requires more

Valid statementsZ, with Options Other Options that Can
File Declaration that Must Appear also Be Used

SEQUENTIAL
OUTPUT

SEQUENTIAL
INPUT

SEQUENTIAL
UPDATE

DIRECT INPUT

DIRECT UPDATE

WRITE FIlECfile-reference)
FROMCreference)
KEYFROMCexpression);

lOCATE based-variable
FIlECfile-reference)
KEYFROMCexpression);

READ FIlECfile-reference)
INTOCreference);

READ FIlECfile-reference)
SET(pointer-reference);

READ FIlECfile-reference)
IGNORECexpression);

READ FIlECfile-reference)
INTOCreference);

READ FIlECfile-reference)
SET(pointer-reference);

READ FIlECfile-reference)
IGNORECexpression);

REWRITE FIlECfile-reference);

READ FIlECfile-reference)
INTOCreference)
KEYCexpression);

READ FIlECfile-reference)
INTOCreference)
KEYCexpression);

REWRITE FIlECfile-reference)
FROMCreference)
KEYCexpression);

WRITE FIlECfile-reference)
FROMCreference)
KEYFROMCexpression);

SETCpointer-reference)

KEYCexpression) or
KEYTOCreference)

KEYCexpression) or
KEYTO(reference)

KEYCexpression) or
KEYTOCreference)

KEYCexpression) or
KEYTOCreference)

FROM(reference)

EVENTCevent-reference)

EVENTCevent-reference)

EVENT(event-reference)

EVENTCevent-reference)

IThe complete file declaration would include the attributes FILE, RECORD,
and ENVIRONMENT; if any of the options KEY, KEYFROM, or KEYTO is used,
it must also include the attribute KEYED .

. 2The statement: READ FIlECfile-reference); is equivalent to the state­
ment: READ FIlECfile-reference) IGNORE(1);

Note: The attribute UNBUFFERED is ignored and BUFFERED is the default
for SEQUENTIAL files.

Figure 45. INDEXED Data Set Statements and Options

Chapter 9. Using CONSECUTIVE, INDEXED, and REGIONAL Data Sets 135

Indexes

Cylinder 1

• 100 100 200

Data Data Data
10 20 40

Data Data Data
150 175 190

external storage space than a CONS.ECUTIVE data set, and all
volumes of a multivolume data set must be mounted, even for
sequential processing.

Figure 45 on page 135 lists the data transmission statements and
options that can be used to create and access an INDEXED data
set.

To provide faster access to the records in the data set, the
operating system creates and maintains a system of indexes to
the records in the data set. The lowest level of index is the
track index. There is a track index for each cylinder in the
data set; it occupies the first track (or tracks) of the
cylinder, and lists the key of the last record on each track in
the cylinder. A search can then be directed to the first track
that has a key that is higher than or equal to the key of the
required record. See Figure 46.

If the data set occupies more than one cylinder, the operating
system develops a higher-level index called a cylinder index.
Each entry in the cylinder index identifies the key of the last
record in the cylinder. To increase the speed of searching the
cylinder index, you can request that the operating system
develop a master index for a specified number of cylinders.

Master index

I 450 900 I ~ I
Cylinder index

200 300 375 450 -
500 600 700 900 -

1000 1200 1500 2000 -

Cylinder 11 Cylinder 12

200
Track

~
1

1500 ~
1

2000 index

Data Prime
100 data

Data Prime
200 data

Overflow

Figure 46. Index Structure of an INDEXED Data Set

136 DOS Pl/I Optimizing Compiler: Programmers Guide

Keys

Embedded Keys

You can have up to three levels of master index; Figure 46
illustrates the index structure. The part of the data set that
contains the cylinder and master indexes is termed the index
~.

When an INDEXED data set is created, all the records are written
in what is called the prime data area. If more records are
added later, the operating system does not rearrange the entire
data set; it inserts each new record in the appropriate position
and moves up the other records on the same track. Any records
forced off the track by the insertion of a new record are placed
in an overflow area. The overflow area can consist either of a
number of tracks set aside in each cylinder for the overflow
records from that cylinder (cylinder overflow area), or a
separate area for all overflow records (independent overflow
~).

Records in the overflow area are chained together to the track
index so as to maintain the logical sequence of the data set.
This is illustrated in Figure 47 on page 138. Each entry in the
track index consists of two parts:

• The normal entry, which points to the last record on the
track

• The overflow entry, which contains the key of the first
record transferred to the overflow area and also points to
the last record transferred from the track to the overflow
area

If there are no overflow records from the track, both index
entries point to the last record on the track. An additional
field is added to each record that is placed in the overflow
area. It points to the previous record transferred from the
same track; the first record from each track is linked to the
corresponding overflow entry in the track index.

There are two kinds of keys--recorded keys and source keys. A
recorded key is a character string that actually appears with
each record in the data set to identify that record; its length
cannot exceed 255 characters and all keys in a data set must
have the same length. The recorded keys in an INDEXED data set
may be separate from, or embedded within, the logical records.
A source key is the character-string value of the expression
that appears in the KEY or KEYFROM option of a data transmission
statement to identify the record to which the statement refers;
for direct access of an INDEXED data set, each transmission
statement must include a source key.

Note: All VSAM key-sequenced data sets have embedded keys, even
if they have been converted from ISAM data sets with nonembedded
keys.

The use of embedded keys avoids the need for the KEYTO option
during sequential input, but the KEYFROM option is still
required for output. (However, the data specified by the
KEYFROM option may be the embedded key portion of the record
variable itself.) In a data set with unblocked records, a
separate recorded key precedes each record, even when there is
already an embedded key. If the records are blocked, the key of
only the last record in each block is recorded separately in
front .. cf the block.

During the execution of a WRITE statement that adds a record to
a data set with embedded keys, the value of the expression in
the KEYFROM option is assigned to the embedded key position in
the record variable. Note that a record variable can be

Chapter 9. Using CONSECUTIVE, INDEXED, and REGIONAL Data Sets 137

Normal entry Overflow entry

100 100 Trick 200

10 20 40

150 175 190

Figure 47. Adding Records to an INDEXED Data Set

Track
2

138 DOS PL/I Optimizing Compiler: Programmers Guide

200

100

200

Track
Index

Prime
data

Overflow

declared as a structure with an embedded key declared as a
structure member, but that such an embedded key must not be
declared as a VARYING string.

For a LOCATE statement, the KEYFROM string is assigned to the
embedded key when the next operation on the file is encountered.

DEFINING AN INDEXED DATA SET

A sequential INDEXED data set is defined by a file declaration
with the following attributes:

DCL filename FILE RECORD
INPUT I OUTPUT UPDATE
SEQUENTIAL
BUFFERED
[KEYED]
ENVIRONMENTCoption-list);

A direct INDEXED data set is defined by a file declaration with
the following attributes:

DCL filename FILE RECORD
INPUT I OUTPUT I UPDATE
DIRECT
UNBUFFERED
KEYED
ENVIRONMENTCoption-list);

The file attributes are described in the OS and DOS PL/I
Language Reference Manual. Default attributes are shown in
Figure 25 on page 95.

ENVIRONMENT OPTIONS FOR INDEXED DATA SETS

ADDBUFF Option

The following options apply only to INDEXED data sets and are
described in this chapter.

ADDBUFF
HIGHINDEX
INDEXAREA
INDEXED

INDEXMULTIPLE
KEYLOC
NOWRITE
OFLTRACKS

The following options apply to INDEXED as well as one or more
other data set organization:

BLKSIZE
BUFFERS
COBOL
EXTENTNUMBER
FIFB

KEYLENGTH
MEDIUM
RECSIZE
SCALARVARYING
VERIFY

These options are described in Chapter 7. Figure 26 on page 96
summarizes the ENVIRONMENT options.

The ADDBUFF option can be specified for a DIRECT INPUT or DIRECT
UPDATE file with INDEXED data set organization and F-format
records to indicate that an area of internal storage is to be
used as a workspace in which records on the data set can be
rearranged when new records are added. The size of the
workspace is equivalent to one track of the direct-access device
used. r: Syntax

:DBUFFCn)

Chapter 9. Using CONSECUTIVE, INDEXED, and REGIONAL Data Sets 139

HIGHINDEX Option

INDEXAREA Option

INDEXED Option

INDEXMULTIPLE Option

The ADDBUFF option need not be specified for DIRECT INDEXED
files with V-format records, as the workspace is automatically
allocated for such files.

The HIGHINDEX option is used for INDEXED data sets to specify
the type of device C2311, 2314, 3330, or 3340) on which the
high-level index or indexes resideCs) if the device type differs
from the one specified in the MEDIUM option.

~ Syntax

I KIGHINDEXCdevice-type)

Note: When 3330 is specified, it is assumed to mean 3330 model
1; the 3330-11 device is not supported for INDEXED organization.

The INDEXAREA option improves the input/output speed of a DIRECT
INPUT or DIRECT UPDATE file with INDEXED data set organization,
by having the highest level of index placed in main storage.

r-== Syntax

I INDEXAREA[CindeX-area-SiZe)]

The index area size specification enables you to limit the
amount of main storage allowed for an index area. The size,
when specified, must be an integer or a variable with attributes
FIXED BINARY(31,0) STATIC whose value lies within the range 0
through 64,000. If the index area size is not specified, the
highest level index is moved unconditionally into main storage.
If an index area size is specified, the highest level index is
held in main storage, provided that its size does not exceed
that specified. If the specified size is less than 0 or greater
than 64,000, unpredictable results will occur.

The INDEXED option defines a file with INDEXED organization
Cwhich is described above).

~ Syntax
INDEXED

The INDEXMULTIPLE option is used for INDEXED data sets to
specify that a master index will be, or has been, built for this
file.

~ Syntax
INDEXMULTIPLE

140 DOS PL/I Optimizing Compiler: Programmers Guide

KEVLOC Option

The KEYLOC (key location) option can be used with INDEXED data
sets, when the data set is created, to specify the absolute
position of an embedded key from the start of the data in a
record.

~ Syntax
KEVLOC(n)

The position given (n) must be within the limits:

I <= n <= record length - keylength + I

That is, the key cannot be larger than the record, and must be
contained completely within the record.

If the keys are embedded within the records, the KEYLOC(n)
option should be specified.

The equivalent KEYLOC value for a particular byte is affected by
the following:

• The KEYLOC byte count starts at I

• The record format

For example, if the embedded key begins at the 10th byte of a
record variable, then the specifications are:

Fixed length: KEYLOC(10)

Variable-length: KEYLOC(10)

If KEYLOC is specified with a value equal to or greater than I,
embedded keys exist in the record variable and on the data set.
If KEYLOC(l) is specified, it must be specified for every file
that accesses the data set. The effect of the use of the KEYLOC
option is shown in Figure 48.

DATA SET DATA SET
KEYLOC(n) RECORD VARIABLE UNBLOCKED BLOCKED

RECORDS RECORDS

n > 1 Key Key Key

n = 1 Key Keyl Key

n = 0 or No key No key Key2
not
specified Key Key Key

1 In this instance, the key is not recognized by data
management.

2 Each logical record in the block has a key.

Figure 48. Effect of KEYLOC Values on Establishing Embedded Keys

If SCALARVARYING is specified, the embedded key must not
immediately precede or follow the first byte; hence, the value
specified for KEYLOC must be greater than 2.

If the KEYLOC option is included in a VSAM file declaration for
checking purposes, and the key location specified in the option
conflicts with the value defined for the data set, the
UNDEFINEDFILE condition is raised.

Chapter 9. Using CONSECUTIVE, INDEXED, and REGIONAL Data Sets 141

NOWRITE Option

OFLTRACKS Option

The NOWRITE option is used for DIRECT UPDATE files. It
specifies that no records are to be added to the data set and
that data management modules concerned solely with adding
records are not required; it thus allows the size of the object
program to be reduced.

~ syntax
NOWRITE

The OFlTRACKS option is used for OUTPUT files and INDEXED
organization to specify the number of tracks to be reserved on
each cylinder for adding records. r-: Syntax

OFLTRACKS(n)

The number specified (n) must be within

0 <= n <= 8 for data sets on 2311

0 <= n <= 17 for data sets on 3330-1

0 <= n <= 18 for all other devices

For INPUT files and UPDATE files, when
added, this option is ignored.

the following limitsa

no records are to be

CREATING AN INDEXED DATA SET

When you create an INDEXED data set, the associated file must be
opened for SEQUENTIAL OUTPUT, and the records must be presented
in the order of ascending key values. Figure 45 on page 135
shows the statements and options permitted for creating an
INDEXED data set.

A single EXTENT statement cannot define the whole of an INDEXED
data set. You must use EXTENT statements to define the
following separatelys

• The storage area for the master index, if used.

• The storage area for the cylinder index. This is always
required.

• The storage area for each prime data area in the data set.
At least one prime data area is required.

• The storage area for an independent overflow area, if used.

Essential Information

The DlBl statement should contain the data set organization code
ISC (INDEXED Sequential Creation) and precede the associated
EXTENT statements. The space for an INDEXED data set must be
allocated as one or more complete cylinders. If the data set
spans more than one direct access volume, it must continue from
the last track of one volume to the first track of the second
cylinder (cylinder 1) of the following volume. When the program
is link-edited, it will be necessary to include a lBlTYP
statement in the job, unless you are operating under
VSE/Advanced Functions.

142 DOS Pl/I Optimizing Compilers Programmers Guide

Master Index

Cylinder Index

Prime Data Area

If a master index is required, its extent must be adjacent to
that of the cylinder index. When creating an INDEXED data set,
you must specify:

• The device type and symbolic device name of the direct
access device that will contain the new data set, in the
MEDIUM option.

• The rec~rd format F for fixed-length unblocked records or FB
for fixed-length blocked records, the record size, and, if
blocked records are used, the block size.

• The data set organization INDEXED.

• The KEYlENGTH option to specify the length of the recorded
keys.

• The EXTENTNUMBER option to specify the maximum number of
extents used for the data set. (The number should exclude
the EXTENT statements supplied for a master index, if used.)
A lBlTYP statement will also be necessary, unless you are
operating under VSE/Advanced Functions, and should specify
the full number of EXTENT statements.

• The OFlTRACKS option to indicate the number of overflow
tracks per cylinder in the prime data area.

You can specify the VERIFY option to ensure that each record is
correctly written onto the direct access volume.

If a master index is to be created, specify the INDEXMUlTIPlE
option. If such a master index and the cylinder index are to be
held on a device separate from the remainder of the data set,
specify the HIGHINDEX option to indicate the type of device
used~

The use of a master index is not recommended unless the cylinder
index occupies more than three tracks. The EXTENT statement for
the master index must be the first to follow the DlBl statement
for the INDEXED data set. The EXTENT statement must have the
type code 4 and the sequence number O. It must also occupy
storage preceding and immediately adjacent to the storage
allocated for the cylinder index.

The cylinder index is always required. The EXTENT statement for
the cylinder index must follow an EXTENT statement for a master
index, if present, and have the type code 4 and the sequence
number 1. The storage for the cylinder index must immediately
follow that of a master index, if used.

An EXTENT statement must be supplied to define each prime data
area in an INDEXED data set. One prime data area only is
permitted on a single direct access volume. For a data set that
spans two or more direct access volumes, a separate EXTENT
statement must be supplied for one prime data area on each
volume. A prime data area must start and end on a full cylinder
boundary.

The EXTENT statement must have the type code 1. The sequence
numbers for prime data area EXTENT statements start at 2.

Chapter 9. Using CONSECUTIVE, INDEXED, and REGIONAL Data Sets 143

Overflow Areas

If records are to be added to the data set after its initial
creation, it may be necessary to provide storage for records
that cannot be accommodated when a particular track is full.

To specify a cylinder overflow area, the overflow area that is a
part of the prime data, use the OFLTRACKS option for the
associated PL/I file. OFLTRACKS causes the number of tracks
specified to be reserved in each cylinder of the prime data area
as the overflow area for the remaining tracks on the cylinder.
OFLTRACKS need only be specified for an output file or an update
file to which records are to be added. The value specified must
not vary for a particular data set.

To specify an independent overflow area, provide an EXTENT
statement witn the type code 2. Only one independent overflow
area is permitted for a data set. The independent overflow area
cannot span separate direct access volumes.

The use of either type of overflow area has the advantage of
reducing the amount of unused space in the prime data area, but
entails an increased search time for overflow records.

It is good practice to request an overflow area large enough to
contain a reasonable number of additional records.

The use of an independent overflow area on a volume separate
from that which contains the prime data area will help to
increase the speed of direct access to the records in the data
set by reducing the number of access mechanism movements
required.

If all the tracks in the prime data area are not filled during
creation, you cannot use the unused portion of the prime data
area for overflow records from existing full tracks when records
are subsequently added during direct access (although the
unfilled portion of the last track used and any unused tracks in
the prime data area can be filled with records that are in the
correct key sequence to be added to the end of the data set).
You can reserve space for later use within the part of the prime
data area that already contains records by writing dummy records
during creation.

Record Format and Keys

An INDEXED data set can contain only fixed-length records,
blocked or unblocked. You must always specify the record format
in the PL/I program.

If the records are blocked, each record must include the
associated key (that is, the key must be embedded in the
record). An embedded key can appear in any position within the
record, and you must use the KEYLOC option of the ENVIRONMENT
attribute to indicate its position.

Unblocked records can have embedded keys or the keys can be
separated from the records. If the keys are not embedded,
either specify KEYLOC(O) or omit the KEYLOC option. Figure 49
on page 145 shows the relationship between record size and block
size and Figure 50 on page 146 illustrates the record formats
for an INDEXED data set.

creating Dummy Records and Deleting Records

You cannot change the specification of an INDEXED data set after
you have created it. Therefore, you must foresee your future
needs where the size and location of the index, prime, and
overflow areas are concerned. The "deletion" of unwanted
records and the recognition of "deleted" records is your
responsibility. A record can be deleted by converting it into a
null or dummy record. The program ·should test each record

144 DOS PL/I Optimizing Compiler: Programmers Guide

BLOCKED
RECORDS

UNBLOCKED
RECORDS

R = Size

Example:

retrieved to determine whether it contains valid data, or
.whether it is a null or dummy record.

KEYLOC RECSIZE BLKSIZE KEYLENGTH
OPTION OPTION OPTION OPTION

Always required; R R*B Always
default is KEYLOC(l) required

Required if key is embedded; R R
otherwise, omit or specify
KEYLOC(O)

of record B = Blocking factor

Blocked records with embedded key of 20 bytes starting at
byte 10 of each record. Records are 120 bytes in length
and blocked in groups of 10:

... ENVIRONMENT(INDEXED KEYLOC(lO) KEYLENGTH(20)
FB RECSIZE(120) BLKSIZE(1200)

EXTENT NUMBER(3) OFLTRACKS(2) ...)

Figure 49. Record Format Information for an INDEXED Data Set

ACCESSING AN INDEXED DATA SET

Sequential Access

After an INDEXED data set has been created, the file that
accesses it can be opened for SEQUENTIAL INPUT or UPDATE, or for
DIRECT INPUT or UPDATE. In the case of F-format records, it can
also be opened for OUTPUT to add records at the end of the data
set. The keys for these records must have higher values than
the existing keys for that data set and must be in ascending
order.

Figure 45 on page 135 shows the statements and op'tions permitted
for accessing an INDEXED data set.

Sequential input allows you to read the records in ascending key
sequence, and in sequential update you can read and rewrite each
record in turn. Using direct input, you can read records using
the READ statement, and in direct update you can read existing
records or add new ones. Sequential and direct access are
discussed in further detail below.

A sequential file that is used to access an INDEXED data set may
be opened with either the INPUT or the UPDATE attribute. The
data transmission statements need not include source keys, nor
need the file have the KEYED attribute. Sequential access is in
order of ascending recorded-key values; records are retrieved in
this order, and not necessarily in the order in which they were
added to the data set.

Embedded keys in a record to be updated must not be altered.
The modified record must always overwrite the update record in
the data set.

The EVENT option is not supported for SEQUENTIAL access of
INDEXED data sets.

Chapter 9. Using CONSECUTIVE, INDEXED, and REGIONAL Data Sets 145

Unblocked records, no embedded keys.
KEYLOC(O) or· omitted

RECORDED
KEY

RECORDED
KEY

Unblocked records, embedded keys.
KEYLOC(>O)

DATA EMBEDDED DATA
KEY

---same key---~

Blocked records (must have embedded keys)
KEYLOC(1) (default assumption)

RECORDED
KEY

EMBEDDED DATA
KEY

1st record

RECORDED
KEY

RECORDED
KEY

~---------same key--------......

Blocked records with embedded keys.
KEYLOC(>1)

RECORDED
KEY

DATA
EMBEDDED
KEY DATA DATA

EMBEDDED
DATA

KEY

EMBEDDED DATA
KEY

DATA
EMBEDDED
KEY

DATA

\.... 1st record ...I\.... 2nd record .J\.... last
~~
record- ~

same key

Figure 50. Record Formats in an INDEXED Data Set

INDEXED KEYED files opened for SEQUENTIAL INPUT and SEQUENTIAL
UPDATE may be positioned to a particular record within the data
set by a READ KEY operation that specifies the key of the
desired record. Thereafter, successive READ statements without
the KEY option will access the following records in the data set
sequentially. A subsequent READ statement without the KEY
option causes the record with the next higher recorded key to be
read (even if the keyed record has not been found).

The length of the recorded keys in an INDEXED data set is

(

defined by the KEYlENGTH ENVIRONMENT option. If the length of a ~
source key is greater than the specified length of the recorded ~
keys, the source key is truncated on the right.

146 DOS PL/I Optimizing Compiler: Programmers Guide

\
/

Direct Access

The effect of supplying a source key that is shorter than the
recorded keys in the data set differs according to whether or
not the GENKEY option is specified in the ENVIRONMENT attribute.
In the absence of the GENKEY option, the source key is padded on
the right with blanks to the length specified in the KEYLENGTH
option of the ENVIRONMENT attribute, and the record with this
padded key is read (if such a record exists). If the GENKEY
option is specified, the source key is interpreted as a generic
key, and the first record with a key in the class identified by
this generic key is read. (Refer to "GENKEY Option" on page 97
in Chapter 7.)

A direct file that is used to access an INDEXED data set may be
opened with either the INPUT or the UPDATE attribute. All data
transmission statements must include source keys; the DIRECT
attribute implies the KEYED attribute.

A DIRECT UPDATE file can be used to retrieve, add, or replace
records in an INDEXED data set. The following convention
applies to record replacement.

The record specified by a source key in a REWRITE statement is
replaced by the new record. If the data set contains FB-format
records, a record replaced with a REWRITE statement causes an
implicit READ statement to be executed unless the previous data
transmission statement was a READ statement that obtained the
record to be replaced.

Essential Information

To access an existing INDEXED data set, you must identify it to
the operating system in DLBL and EXTENT statements, which must
correspond with those used when the data set was created. The
data set organization code ISE should be given in the DLBL
statement when extending, accessing, or updating an INDEXED data
set. If the data set is to be accessed for input or update in
the same job step that created it, two separate PL/I files must
be used and two complete sets of job control statements must be
supplied. One set must have a DLBL statement with the code ISC
and be associated with the PL/I file with the OUTPUT attribute.
The other set must have a DLBL statement with the code ISE and
be associated with the PL/I file with the INPUT or UPDATE
attribute.

The essential information that must be supplied in a program for
a file that accesses an INDEXED data set is similar to that
described for the creation of an INDEXED data set. Certain
additional ENVIRONMENT options can be used to improve
performance when accessing and updating records in an INDEXED
data set. These are the INDEXAREA, NOWRITE, and ADDBUFF
options.

Note that an error could occur if a job fails when using
INDEXAREA after the data set has been updated but before the
modified cylinder index is written back onto the data set. If
an INDEXED data set has an incorrect cylinder index for this
reason, the entire data set should be reorganized as described
below.

REORGANIZING AN INDEXED DATA SET

It is necessary to reorganize an INDEXED data set periodically
because the addition of records to the data set results in an
increasing number of records in the overflow area. Therefore,
even if the overflow area does not eventually become full, the
average time required for the direct retrieval of a record will
increase. The frequency of reorganization depends on how often
the data set is updated, on how much storage is available in the
data set, and on your timing requirements.

Chapter 9. Using CONSECUTIVE, INDEXED, and REGIONAL Data Sets 147

There are two ways to reorganize an INDEXED data seta

• COpy the data set into a temporary CONSECUTIVE data set, and
then re-create it in the original area of auxiliary storage.

• Copy the data set sequentially into a new area of auxiliary
storage; you can then release the original auxiliary
storage.

EXAMPLES OF INDEXED DATA SETS

Figure 51 on page 149 illustrates the creation of a simple
INDEXED data set. The data set contains a telephone directory,
using the subscribers' names as keys to the telephone numbers.

148 DOS PL/I Optimizing Compiler: Programmers Guide

// JOB FIG09l7
// OPTION LINK
// EXEC PLIOPT,SIZE=64K

TELNOS: PROC OPTIONSCMAIN);
DCL DIREC FILE RECORD SEQUENTIAL

KEYED OUTPUT
ENVCINDEXED KEYLENGTH(20) F

RECSIZE(3) MEDIUMCSYS006,
3330) VERIFY INDEXMULTIPLE
EXTENTNUMBER(3)
OFLTRACKS(2»,

CARDIN RECORD INPUT
ENVCMEDIUMCSYSIPT) F

RECSIZE(80»,
CARD CHAR(80),
NAME CHAR(20) DEFINED CARD,
NUMBER CHAR(3) DEF CARD

POSC2l);
ON ENDFILECCARDIN) GO TO FINISH;
OPEN FILECDIREC),FILECSYSPRINT),

FILECCARDIN);
NEXTIN: READ FILECCARDIN) INTO (CARD);

PUT SKIP LIST CCARD);
WRITE FILECDIREC) FROMCNUMBER)

KEYFROMCNAME);
GO TO NEXTIN;

FINISH: CLOSE FILECDIREC),FILECSYSPRINT),
FILECCARDIN);

END TELNOS;
/*
// LBLTYP NSD(04)
// EXEC LNKEDT
// ASSGN SYS006,3330,VOL=DOS22,SHR
// DLBL DIREC,'TELNO'"ISC
// EXTENT SYS006,DOS222,4,O,36l0,l
// EXTENT SYS006,DOS222,4,l,36ll,4
// EXTENT SYS006,DOS222,l,2,3648,38
// EXTENT SYS006,DOS222,2,3,3686,19
// EXEC ,SIZE=64K
ACTION,G. 162
BAKER,R. 152
BRAMLEY,O.H. 248
CHEESEMAN,L. 141
CORY,G. 336
ELLIOTT,D. 875
FIGGINS,S. 413
HARVEy,C.D.W. 205
HASTINGS,G.M. 391
KENDALL,J.G. 294
LANCASTER,W.R. 624
MILES,R. 233
NEWMAN,M.W. 450
PITT,W.H. 515
ROLF,D.E. 114
SHEERS,C.D. 241
SUTCLIFFE,M. 472
TAYLOR,G.C. 407
WILTON,L.W. 404
WINSTONE,E.M. 307
/*
/&

Figure 51. Creating an INDEXED Data Set

Notes:

1. The VERIFY option
causes the system to
check that each record
has been written cor­
rectly onto the direct
access volume.

2. The EXTENTNUMBER option
specifies that the data
set TELNO is to consist
of three extents. The
extents are required for
the master index, cylinder
index, prime data area,
and any independent overflow
area. For the purpose of the
EXTENTNUMBER option, the
master and cylinder indexes
are counted as one. However,
for the LBLTYP option, they
are counted as two.

3. The data set TELNO occupies
1 track for its master index,
4 tracks for the cylinder
index, 38 tracks for the
prime data area, and 19
tracks for the independent
overflow area. The OFLTRACKS
option reserves 2 tracks of
each cylinder in the prime
data area for cylinder
overflow records.

4. LBLTYP is not required
when operating under
VSE/Advanced Functions.

Chapter 9. Using CONSECUTIVE, INDEXED, and REGIONAL Data Sets 149

// JOB FIG0918
// OPTION LINK
// EXEC PLIOPT,SIZE=64K

DIRUPDT: PROC OPTIONS(MAIN);
DCL DIREC FILE RECORD KEYED UPDATE DIRECT

ENV(MEDIUM(SYS006,3330) KEYLENGTH(20) F RECSIZE(3)
EXTENTNUMBER(3) VERIFY INDEXED
INDEXMULTIPLE),
CARDIN FILE RECORD INPUT ENVCMEDIUM(SYSIPT)

F RECSIZE(80»,
1 CARD,
2 NAME CHAR(20),
2 NEW NUMBER CHAR(3),
2 BLANKI CHAR(I),
2 OLD_NUMBER CHAR(3),
2 BLANK2 CHAR(S),
2 CODE CHAR(I),2 BLANK3 CHAR(47),
ONCODE BUILTIN;

ON ENDFILE(CARDIN) GO TO FINISH;
ON KEY(DIREC) BEGIN;

IF ONCODE = SI THEN PUT FILE CSYSPRINT) EDIT
('NAME NOT FOUND IN DATA SET')(X(S),A);

IF ONCODE = 52 THEN PUT FILE CSYSPRINT) EDIT
('DUPLICATE NAME') (X(S),A);

END;
OPEN FILE(DIREC), FILE (CARDIN),FILE(SYSPRINT);

NEXT: READ FILECCARDIN) INTO CCARD);
PUT FILE(SYSPRINT) SKIP EDITCNAME,CODE)CA,XC2»;
IF CODE = 'A' THEN WRITE FILE CDIREC) FROM (NEW NUMBER)

KEYFROMCNAME); -
ELSE IF CODE = 'C' THEN REWRITE FILE (DIREC) FROM

(NEW NUMBER) KEYCNAME);
ELSE PUT FILE (SYSPRINT)EDIT('CODE INVALID')(X(S),A);

GO TO NEXT;

FINISH: CLOSE FILE(DIREC),FILE(CARDIN),FILE(SYSPRINT);
END DIRUPDT;

/3E

// LBLTYP NSD(04)
// EXEC LNKEDT
// ASSGN SYS006,3330,VOL=DOS222,SHR
// DLBL DIREC,'TELNO'"ISE
// EXTENT SYS006,DOS222,4,0,3610,1
// EXTENT SYS006,DOS222,4,1,3611,4
// EXTENT SYS006,DOS222,1,2,3648,38
// EXTENT SYS006,DOS222,2,3,3686,19
// EXEC ,SIZE=64K
NEWMAN,M.W.
LAW
GOODFELLOW,D.T.
MILES,R.
HARVEy,C.D.W.
BARTLETT,S.G.
READ,K.M.
PITT,W.H.
ROLF,D.F.
ELLIOTT,D.
HASTINGS,G.M.
BRAMLEy,O.H.
/3E
/&

S16 450
391
889

209
183
001

233

SIS
114

291 87S
391

439 248

C
A
A
C
A
A
C
X
C
C
C
C

Nate: Deletion of unwanted telephone numbers is achieved by using the code C and
rewriting the numbers as blanks.

Figure 52. Updating an INDEXED Data Set

ISO DOS PL/I Optimizing Compiler: Programmers Guide

\
)

REGIONAL DATA SETS

The program in Figure 52 updates this data set. The input data
includes codes to indicate the operations required:

A Add a new record
C Change an existing record (a blank new number indicates a

lapsed account)

The link-editing steps in these examples include lBlTYP
statements to specify that room will be required for processing
the labels for the extents of the INDEXED data set. Under
VSE/Advanced Functions, the lBlTYP statement is not required.
Also included are ASSGN statements to associate the symbolic
device name SYS006 with the 3330 disk drive that is to be used,
DlBl statements to associate the file DIREC with the data set
TElNO and specify its type and status (ISC or ISE), and EXTENT
statements that give the symbolic device name, the disk storage
volume (DOS222), the type of extent, and the locations.

This section describes REGIONAL data set organization, data
transmission statements, and the ENVIRONMENT options that define
REGIONAL data sets. It then describes how to create and access
REGIONAl(l) and REGIONAl(3) data sets.

REGIONAL ORGANIZATION

A data set with REGIONAL organization is divided into regions,
each of which is identified by a region number, and each of
which may contain one record or more than one record, depending
on the type of REGIONAL organization. The regions are numbered
in succession, beginning with zero, and a record may be accessed
by specifying its region number, and perhaps a key, in a data
transmission statement.

REGIONAL data sets are confined to direct access devices.

The major advantage of REGIONAL organization over other types of
data set organization is that it allows you to control the
relative placement of records. By judicious programming, you
can optimize record access in terms of device capabilities and
the requirements of particular applications. Such optimization
is not available with CONSECUTIVE or INDEXED organization, in
which successive records are written either in strict physical
sequence or in logical sequence, depending on ascending key
values. Neither of these methods takes full advantage of the
characteristics of direct access storage devices.

Direct access of REGIONAL data sets is quicker than that of
INDEXED data sets, but it has the disadvantage that sequential
processing may present records in random sequence; the order of
sequential retrieval is not necessarily that in which the
records were presented, nor need it be related to the relative
key values.

A REGIONAL data set can be created in a manner similar to a
CONSECUTIVE or INDEXED data set, records being presented in the
order of ascending region numbers. Alternatively, direct access
can be used, in which records can be presented in random
sequence and inserted directly into preformatted regions. Once
a REGIONAL data set has been created, it can be accessed by a
file with the attributes SEQUENTIAL or DIRECT as well as INPUT
or UPDATE. Neither a region number nor a key need be specified
if the data set is associated with a SEQUENTIAL INPUT or
SEQUENTIAL UPDATE file. When the file has the DIRECT attribute,
records can be retrieved, added, deleted, and replaced at
random.

Records within a REGIONAL data set are either actual records
containing valid data or dummy records. The nature of the dummy
records depends on the type of REGIONAL organization.

Chapter 9. Using CONSECUTIVE, INDEXED, and REGIONAL Data Sets 151

There are two types of REGIONAL data sets applicable to the DOS
Pl/I Optimizing Compiler, as described below.

Figure 53 on page 153 lists the data transmission statements and
options that can be used to create and access a REGIONAL data
set.

The DOS D Pl/I compiler handles REGIONAL data sets differently,
and allows an OUTPUT file to be used to add records to an
existing data set. Pl/I D compilers that take advantage of this
facility should be modified before recompilation with the
optimizing compiler.

DEFINING A REGIONAL DATA SET

A sequential REGIONAL data set is defined by a file declaration
with the following attributes:

DCl filename FILE RECORD
INPUT I OUTPUT I UPDATE
SEQUENTIAL
BUFFERED I UNBUFFERED
[KEYED]
ENVIRONMENTCoption-list);

A direct REGIONAL data set is defined by a file declaration with
the following attributes:

DCl filename FILE RECORD
INPUT I OUTPUT I UPDATE
DIRECT
UNBUFFERED
KEYED
ENVIRONMENTCoption-list);

The file attributes are described in the OS and DOS Pl/I
language Reference Manual.

ENVIRONMENT OPTIONS FOR REGIONAL DATA SETS

REGIONAL Option

The following options apply to REGIONAL data sets.

BlKSIZE
BUFFERS
COBOL
EXTENTNUMBER
FlU
KEYlENGTH

MEDIUM
RECSIZE
REGIONAL
SCAlARVARYING
VERIFY

The REGIONAL option is described in this chapter; the rema1n1ng
options apply to two or more data set organizations and are
described in Chapter 7. Figure 26 on page 96 summarizes the
ENVIRONMENT options.

The REGIONAL option defines a file with REGIONAL organization.

r--: Syntax

I REGIONAL([113))

1 I 3
specifies REGIONAl(l) or REGIONAl(3), respectively.

REGIONAL(l)
specifies that the data set contains F-format records that
do not have recorded keys. Each region in the data set

152 DOS Pl/I Optimizing Compiler: Programmers Guide

File Declaration!

SEQUENTIAL OUTPUT
BUFFERED

SEQUENTIAL OUTPUT
UNBUFFERED

SEQUENTIAL INPUT
BUFFERED

SEQUENTIAL INPUT
UNBUFFERED

SEQUENTIAL UPDATE
BUFFERED

SEQUENTIAL UPDATE
UNBUFFERED

DIRECT OUTPUT

DIRECT INPUT

contains only one record; therefore, each region number
corresponds with a relative record within the data set
Cthat is, region numbers start with 0 at the beginning of
the data set).

Valid statementsZ, with Options Other Options that Can
that Must Appear also Be Used

WRITE FILECfile-reference)
FROMCreference)
KEYFROMCexpression);

LOCATE based-variable SETCpointer-reference)
FROMCfile-reference)
KEYFROMCexpression);

WRITE FILECfile-reference)
FROMCreference)
KEYFROMCexpression); EVENTCevent-reference)

READ FILECfile-reference) KEYTOCreference)
INTOCreference);

READ FILE(file-reference) KEYTOCreference)
SETCpointer-reference);

READ FILECfile-reference)
IGNORECexpression);

READ FILECfile-reference) EVENT(event-reference)
INTOCreference); and/or KEYTOCreference)

READ FILECfile-reference) EVENTCevent-reference)
IGNORECexpression);

READ FILECfile-reference) KEYTO Creference)
INTOCreference);

READ FILECfile-reference) KEYTOCreference)
SETCpointer-reference);

READ FILECfile-reference)
IGNORECexpression);

REWRITE FILECfile-reference); FROMCreference)

READ FILECfile-reference) EVENTCevent-reference)
INTOCreference); and/or KEYTOCreference)

READ FILECfile-reference) EVENTCevent-reference)
IGNORECexpression);

REWRITE FILECfile-reference) EVENTCevent-reference)
FROMCreference);

WRITE FILECfile-reference) EVENTCevent-reference)
FROMCreference)
KEYFROMCexpression);

READ FILECfile-reference) EVENTCevent-reference)
INTOCreference)
KEYCexpression);

Figure 53 CPart I of 2). REGIONAL Data Set Statements and Options

Chapter 9. Using CONSECUTIVE, INDEXED, and REGIONAL Data Sets 153

Valid statements, with Options Other Options that Can
File Declaration l that Must Appear also Be Used

DIRECT UPDATE READ FILE(file-reference)
INTO(reference)
KEY(expression);

REWRITE FILE(file-reference)
FROM(reference)
KEY(expression);

WRITE FILE(file-reference)
FROM(reference)
KEYFROMCexpression);

EVENT(event-reference)

EVENTCevent-reference)

EVENTCevent-reference)

lThe complete file declaration would include the attributes FILE, RECORD,
and ENVIRONMENT; if any of the options KEY, KEYFROM, or KEYTO is used, it

, must also include the attribute KEYED.

2The statement: READ FILE (file-reference); is equivalent to the statement
READ FILE Cfile-reference) IGNORE(l);

Figure 5S CPart 2 of 2). REGIONAL Data Set Statements and Options

Keys

Although REGIONAL(l) data sets have no recorded keys,
REGIONALCl) DIRECT INPUT or UPDATE files can be used to
process data sets that do have recorded keys. REGIONAL(S)
data sets can be accessed by a file declared with
REGIONALCl) organization.

REGIONAL(3)
specifies that the data set contains F- or U-format records
with recorded keys. Each region in the data set
corresponds with a track on a direct access device and can
contain one or more records.

Direct access of a REGIONAL(S) data set employs the region
number specified in a source key to locate the required
region. Once the region has been located, a sequential
search is made for space to add a record, or for a record
that has a recorded key identical with that supplied in the
source key. Only one region (or track) is searched.

REGIONAL(l) organization is most suited to applications in which
there are no duplicate region numbers, and where most of the
regions will be filled (reducing wasted space in the data set).
REGIONALCS) is more appropriate where records are identified by
numbers that are thinly distributed over a wide range. You can
include in your program an algorithm that derives the region
number from the number that identifies a record in such a manner'
as to optimize the use of space within the data set; duplicate
region numbers may occur but, unless they are on the same track,
their only effect might be to lengthen the search time for
records with duplicate region numbers.

The examples at the end of this section illustrate typical
applications of REGIONAL organization.

There are two kinds of keys, recorded keys and source keys. A
recordedkev is a character string that immediately precedes
each record in the data set to identify that record; its length
cannot exceed 255 characters. A source key is the
character-string value of the expression that appears in the KEY
or KEYFROM option of a data transmission statement to identify
the record to which the statement refers. When a record in a
REGIONAL data set is accessed, the source key gives a region
number, and may also give a recorded key.

154 DOS PL/I Optimizing Compiler: Programmers Guide

The length of the recorded keys in a REGIONAL data set is
specified by the KEYlENGTH option of the ENVIRONMENT attribute.
Unlike the keys for INDEXED data sets, recorded keys in a
REGIONAL data set are never embedded within the record.

Source Keys: The character-string value of the source key can be
thought of as having two logical parts--the region number and a
comparison key. On output, the comparison key is written as the
recorded key; for input, it is compared with the recorded key.

The rightmost S characters of the source key make up the region
number, which must be the character-string representation of a
fixed decimal integer that does not exceed 16777215 Calthough
the actual number of records allowed may be smaller, depending
on a combination of record size, device capacity, and limits of
your access method). If the region number exceeds this figure,
it is treated as modulo 16777216; for instance, 16777226 is
treated as 10. The region specification can include only the
characters 0 through 9 and the blank character; leading blanks
are interpreted as zeros. Embedded blanks are not permitted in
the number; the first embedded blank, if any, terminates the
region number. The comparison key is a character string that
occupies the left hand side of the source key, and may overlap
or be distinct from the region number, from which it can be
separated by other, nonsignificant, characters. The length of
the comparison key is specified by the KEYLENGTH option of the
ENVIRONMENT attribute. If the source key is shorter than the
specified key length, it is extended on the right with blanks.
To retrieve a record, the comparison key must exactly match the
recorded key of the record. The comparison key can include the
region number, in which case the source key and the comparison
key are identical. Alternatively, part of the source key may
not be used. The length of the comparison key is always equal
to KEYLENGTH; if the source key is longer than KEYLENGTH+S, the
characters in the source key between the comparison key and the
region number are ignored.

When generating the key, the rules for arithmetic to character
string conversion should be considered. For example, the
following group would be in error:

DCl KEYS CHARCS);
DO 1=1 TO 10;

KEYS=I;
WRITE FILECF) FROMCR)

KEYFROMCKEYS);
END;

The default for I is FIXED BINARY C15,0), which requires not 8
but 9 characters to contain the character string representation
of the arithmetic values.

Consider the following examples of source keys (the character
"b" represents a blank):

KEY C'JOHNbDOEbbbbbb12363251')

The rightmost S characters make up the region specification, the
relative number of the record. Assume that the associated
ENVIRONMENT attribute has the option KEYlENGTH(14). In
retrieving a record, the search begins with the beginning of the
track that contains the region number 12363251, until the record
is found having the recorded key of JOHNbDOEbbbbbb.

If the option were KEYlENGTH(22), the search still would begin
at the same place, but since the comparison key and the source
key are the same length, the search would be for a record having
the recorded key 'JOHNbDOEbbbbbb12363251'.

KEYC'JOHNbDOEbbbbbbDIVISIONb423bbbb34627')

In this example, the rightmost S characters contain leading
blanks, which are interpreted as zeros. The search begins at

Chapter 9. Using CONSECUTIVE, INDEXED, and REGIONAL Data Sets 155

region number 00034627. If KEYLENGTH(14) is specified, the
characters DIVISIONb423b will be ignored.

Assume that COUNTER is declared FIXED BINARY(21) and NAME is
declared CHARACTER(15). The key might be specified as:

KEY (NAME II COUNTER)

The value of COUNTER will be converted to a character string of
II characters. (The rules for conversion specify that a binary
value of this length, when converted to character, will result
in a string of length II: 3 blanks followed by S decimal
digits.) The value of the rightmost S characters of the
converted string is taken to be the region specification. Then
if the keylength specification is KEYLENGTH(15), the value of
NAME is taken to be the comparison specification.

Reduction o~ Key Conversions: In general, for each input/output
statement that specifies a source key, the compiler includes a
conversion routine to convert the key ,to fixed binary. The
conversion routine is not required if the following special
cases are observed:

• For REGIONAL(l): When the source key is a fixed binary
element variable or constant with precision (p,O), where 12
<= p <= 23.

• For REGIONAL(3): When the source key is of the form:

(character-string-expressionllr)

REGIONALlIJ Organization

where r is a fixed binary element variable or constant with
precision (p,O), where 12 <= p <= 23.

In a REGIONALCI) data set, because there are no recorded keys,
the region number serves as the sole identification of a
particular record. The character-string value of the source key
should represent an unsigned decimal integer that should not
exceed 16777215 (although the actual number of records allowed
may be smaller, depending on a combination of record size,
device capacity, and limits of your access method). If the
region number exceeds this figure, it is treated as modulo
16777216; for instance, 16777226 is treated as 10. Only the
characters ° through 9 and the blank character are valid in the
source key; leading blanks are interpreted as zeros. Embedded
blanks are not permitted in the number; the first embedded
blank, if any, terminates the region number. If more than S
characters appear in the source key, only the rightmost S are
used as the region number; if there are fewer than S characters,
blanks (interpreted as zeros) are inserted on the left.

DUMMY RECORDS: Records in a REGIONAL(I) data set are either
actual records containing valid data or dummy records. A dummy
record in a REGIONAL(I) data set is identified by the constant
(S)'I'B in its first byte. Although such dummy records are
automatically inserted in the data set when it is created, they
are not ignored when the data set is read; the PL/I program must
be prepared to recognize them. Dummy records can be replaced by
valid data. Note that, if you insert (S)'l'B in the first byte,
the record will be lost if the file is copied onto a data set
whose dummy records are not retrieved.

CREATING A REGIONALlll DATA SET: A REGIONAL(I) data set can be
created either sequentially or by direct access.

Figure 53 on page 153 shows the statements and options permitted
for creating a REGIONAL data set.

When a SEQUENTIAL OUTPUT file is used to create the data set,
the opening of the file causes all tracks on the data set to be
cleared, and a capacity record to be written at the beginning of

156 DOS PL/I Optimizing Compiler: Programmers Guide

(

\

each track to record the amount of space available on that
track. Records must be presented in ascending order of region
numbers; any region that is omitted from the sequence is filled
with a dummy record. If there is an error in the sequence, or if
a duplicate key is presented, the KEY condition is raised. When
the file is closed, any space remaining is filled with dummy
records.

If a data set is created using a buffered file, and the last
WRITE or lOCATE statement before the file is closed attempts to
transmit a record beyond the limits of the data set, the CLOSE
statement may raise the ERROR condition.

If a DIRECT OUTPUT file is used to create the data set, the
whole data set is filled with dummy records when the file is
opened. Records can be presented in random order; if a
duplicate key is presented, the KEY condition is raised.

ACCESSING A REGIONAL(lJ DATA SET: Once a REGIONAL(l) data set
has been created, the file that accesses it can be opened for
SEQUENTIAL INPUT or UPDATE, or for DIRECT INPUT or UPDATE. It
can be opened for OUTPUT only if the existing data set is to be
overwritten.

Figure 53 shows the statements and options permitted for
accessing a REGIONAL data set.

Sequential Access: A SEQUENTIAL file that is used to process a
REGIONAl(l) data set may be opened with either the INPUT or
UPDATE attribute. The data transmission statements must not
include the KEY option; but the file may have the KEYED
attribute, since the KEYTO option can be used. If the character
string referenced in the KEYTO option has fewer than 8
characters, the value returned (the region number) is padded on
the left with blanks; if it has more than 8 characters, it is
truncated on the left.

Sequential access is in the order of ascending region numbers.
All records are retrieved, whether dummy or actual, and the Pl/I
program should be prepared to recognize dummy records.

Using sequential input with a REGIONAlCl) data set, you can read
all the records in ascending region number sequence, and in
sequential update you can read and may rewrite each record in
turn.

The rules governing the relationship between READ and REWRITE
statements for a SEQUENTIAL UPDATE file that accesses a
REGIONALCI) data set are identical to those for a CONSECUTIVE
data set (described early in this chapter).

Direct Access: A DIRECT file that is used to process a
REGIONAlCI) data set may be opened with either the INPUT or the
UPDATE attribute. All data transmission statements must include
source keys; the DIRECT attribute implies the KEYED attribute.

A DIRECT UPDATE file can be used to retrieve, add, delete, "or
replace records in a REGIONAlCl) data set according to the
following conventions:

• Retrieval: All rec~rds, whether dummy or actual, are
retrieved. The program must be prepared to recognize dummy
records.

• Addition: A WRITE statement substitutes a new record for the
existing record Cactual or dummy) in the region specified by
the source key.

•

•

Deletion: The REWRITE statement can be used to delete a
record by replacing it with a dummy record.

Replacement: The record specified by the source key in a
REWRITE statement, whether dummy or actual, is replaced.

Chapter 9. Using CONSECUTIVE, INDEXED, and REGIONAL Data Sets 157

REGIONAL(3) organization

In a REGIONAl(3) data set, each record is identified by a
recorded key that immediately precedes the record. The actual
position of the record in the data set relative to other records
is determined not by its recorded key, but by the region number
that is supplied in the source key of the WRITE statement that
adds the record to the data set. Each region can contain one or
more records.

Each region number identifies a track on the direct access
device that contains the data set; the region number should not
exceed 16777215.

The data set can contain F- or U-format records. When a data
set is preformatted, all tracks in the data set are cleared and
the operating system maintains a capacity record at the
beginning of each track, in which it records the amount of space
available on that track.

When a record is added to the data set by direct access, it is
written with its recorded key in the first available space after
the beginning of the track that contains the region specified.
When a record is read by direct access, the search for a record
with the appropriate recorded key begins at the start of the
track that contains the region specified and continues to the
end of that track.

CREATING A REGIONAL(31 DATA SET: A REGIONAl(3) data set can be
created either sequentially or by direct access. In either
case, when the file associated with the data set is opened, the
data set is initialized with capacity records specifying the
amount of space available on each track.

Figure 53 on page 153 shows the statements and options permitted
for creating a REGIONAL data set.

When a SEQUENTIAL OUTPUT file is used to create the data set,
records must be presented in ascending order of region numbers,
but the same region number can be specified for successive
records. If there is an error in the sequence, the KEY
condition will be raised. If a track becomes filled by records
for which the same region number was specified, the region
number is automatically incremented by one; an attempt to add a
further record with the same region number will raise the KEY
condition (sequence error).

If a data set is created using a buffered file, and the last
WRITE or lOCATE statement before the file is closed attempts to
transmit a record beyond the limits of the data set, the CLOSE
statement may raise the ERROR condition.

If a DIRECT OUTPUT file is used to create the data set, the
capacity record for each track is written to indicate empty
tracks. Records can be presented in random order, and no
condition is raised by duplicate keys.

ACCESSING A REGIONAL(31 DATA SET: After a REGIONAl(3) data set
has been created, the file that accesses it can be opened for
SEQUENTIAL INPUT or UPDATE, or for DIRECT INPUT or UPDATE. It
can only be opened for OUTPUT if the entire existing data set is
to be deleted and replaced.

Figure 53 shows the statements and options permitted for
accessing a REGIONAL data set.

Sequential Access: A SEQUENTIAL file that is used to access a
REGIONAl(3) data set may be opened with either the INPUT or
UPDATE attribute. The data transmission statements must not
include the KEY option, but the file may have the KEYED
attribute since the KEYTO option can be used. The KEYTO option
specifies that the recorded key only is to be assigned to the
specified variable. If the character string referenced in the
KEYTO option has fewer characters than are specified in the

158 DOS Pl/I Optimizing Compiler: Programmers Guide

KEYlENGTH option, the value returned Cthe recorded key) is
extended on the right with blanks; if it has more characters
than specified by KEYlENGTH, the value returned is truncated on
the right.

Sequential access is in the order of ascending relative tracks.
Records are retrieved in this order, and not necessarily in the
order in which they were added to the data set; the recorded
keys do not affect the order of sequential access.

The rules governing the relationship between READ and REWRITE
statements for a SEQUENTIAL UPDATE file that accesses a
REGIONAl(3) data set are identical with those for a CONSECUTIVE
data set Cdescribed above).

Direct Access: A DIRECT file that is used to process a
REGIONAl(3) data set may be opened with either the INPUT or the
UPDATE attribute. All data transmission statements must include
source keys; the DIRECT attribute implies the KEYED attribute.

• Retrievals The KEY condition is raised if a record with the
specified recorded key is not found.

• Addition: A WRITE statement inserts the new record after any
records already present on the specified track if space is
available.

• Replacement: If the record specified by the source key in a
REWRITE statement does not exist; the KEY condition is
raised.

Note: If a track contains records with duplicate recorded keys,
the record obtained when a duplicate key is specified is
undefined.

ESSENTIAL INFORMATION FOR CREATING AND ACCESSING REGIONAL DATA SETS

To create a REGIONAL data set, you must supply a DlBl and EXTENT
statement. The DlBl statement should include the data set
organization code DA. Unless you are operating with
VSE/Advanced Functions, a lBlTYP statement must be supplied when
the program is link-edited so that main storage space is
reserved for processing the data set labels.

When creating a REGIONAL data set, you must specifys

• The device type and symbolic device name of the direct
access device that will contain the new data set, in the
MEDIUM option.

• The record format and record size.

• The type of organization, either REGIONAlCl) or REGIONAl(3).

• For REGIONAl(3), you must also state the length of the
recorded key in the KEYlENGTH option.

You can open an existing REGIONAL data set for sequential or
direct access, and for input or update in each case. Using
sequential input with a REGIONAlCl) data set, you can read all
the records in ascending region number sequence, and in
sequential update you can read and rewrite each record in turn.
Sequential access of a REGIONAl(3) data set will give you the
records in the order in which they appear in the data set.
Using direct input, you can read any record by supplying a key
containing its region number and, for REGIONAl(3), its recorded
key; in direct update, you can read and rewrite existing records
or add new ones. A Pl/I program that processes a REGIONAlCl)
data set must be able to recognize any dummy records that it
encounters.

To access a REGIONAL data set, yo~ must identify it to the
operating system in a DlBl and EXTENT statement.

Chapter 9. Using CONSECUTIVE, INDEXED, and REGIONAL Data Sets 159

EXAMPLES OF REGIONAL DATA SETS

Included in these examples are LBLTYP statements to reserve (
space for processing a label for a REGIONAL data set, ASSGN
statements for the non-standard device assignments that are
used, DlBL statements to associate the files with the
appropriate REGIONAL data sets, and EXTENT statements to define
the symbolic device names, disk storage volume, and the
locations within the volumes of the REGIONAL data sets. LBLTYP
is not required when operating with VSE/Advanced Functions.

REGIONAL(l) Data sets

Figure 54 and Figure 55 on page 161 illustrate the creation and
updating of a REGIONAL(1) data set.

// JOB FIG0920
// OPTION LINK
// EXEC PLIOPT,SIZE=64K

CRRl: PROC OPTIONSCMAIN);
DCL NOS FILE RECORD OUTPUT DIRECT KEYED

ENVIRONMENTCF RECSIZE(20) REGIONALCI) MEDIUMCSYS006,3330»,
CARDIN FILE RECORD INPUT ENVCF RECSIZE(80) MEDIUMCSYSIPT»,
CARD CHAR(80),
NAME CHAR(20) DEF CARD,
NUMBER CHAR(3) DEF CARD POS(21);

ON ENDFILECCARDIN) GO TO FINISH;
OPEN FILE CNOS),FILE CCARDIN),FILECSYSPRINT);

NEXT: READ FILECCARDIN) INTO CCARD);
PUT SKIP LISTCCARD);
WRITE FILECNOS) FROMCNAME) KEYFROMCNUMBER);
GO TO NEXT;

FINISH: CLOSE FILECNOS),FILECCARDIN),FILECSYSPRINT);
END CRRl;

/3E
// LBLTYP NDSCOl)
// EXEC LNKEDT
// ASSGN SYS006,3330,VOL=DOS222,SHR
// DLBL NOS,'NOSA',7,DA
// EXTENT SYS006,DOS222,1,0,3534,19
// EXEC ,SIZE=64K
ACTION,G. 162
BAKER,R. 152
BRAMLEy,O.H. 248
CHEESEMAN,L. 141
CORY,G. 336
ELLIOTT,D. 875
FIGGINS,S. 413
HARVEy,C.D.W. 205
HASTINGS,G.M. 391
KENDALL,J.G. 294
LANCASTER,W.R. 624
MILES,R. 233
NEWMAN,M.W. 450
PITT,W.H. 515
ROLF,D.E. 114
SHEERS,C.D. 241
SUTCLIFFE,M. 472
TAYLOR,G.C. 407
WILTON,L.W. 404
WINSTONE,E.M. 307
/3E
/&

Figure 54. Creating a REGIONAL(1) Data Set

160 DOS PL/I Optimizing Compiler: Programmers Guide

// JOB FIG0921
// OPTION lINK

Figure 54 uses the same data as Figure 52 on page 150, but
interprets it in a different way; the data set is effectively a
list of telephone numbers with the names of the subscribers to
whom they are allocated. The telephone numbers correspond to
the region numbers in the data set, the data in each occupied
region being a subscriber's name. Note that there are no
recorded keys in a REGIONAl(l) data set.

The data read by the program in Figure 55 is identical with that
used in Figure 53 on page 153, and the codes are interpreted in
the same way. This program updates the data set, and then lists
its contents. Before each new or modified record is written,
the program tests the existing record in the region to ensure
that it is a dummy; this is necessary because a WRITE statement
can overwrite an existing record in a REGIONAl(l) data set even
if it is not a dummy. Similarly, during the sequential reading
and printing of the ~ontents of the data set, each record is
tested and dummy records are not printed.

// EXEC PlIOPT,SIZE=64K
ACRl: PROC OPTIONS(MAIN);

DCl NOSI FILE KEYED RECORD DIRECT UPDATE
ENVCF RECSIZE(20) MEDIUM(SYS006,3330) REGIONAl(l»,

NOS2 FILE KEYED RECORD INPUT
ENVCF RECSIZE(20) MEDIUM(SYS006,3330) REGIONAl(l»,

NOS FILE VARIABLE,
CARDIN FILE RECORD INPUT ENV(MEDIUM(SYSIPT» F RECSIZE(80»,
1 CARD,

2 NAME CHAR(20),
2 NEW NUMBER CHAR(3),
2 BlANKl CHAR(l),
2 OLD NUMBER CHAR(3),
2 BlANK2 CHAR(5),
2 CODE CHAR(l),
2 BlANK3 CHAR(47),

IOFIElD CHAR(20),ONCODE BUILTIN,
BYTEI CHAR(l) DEF IOFIElD;

ON ENDFIlE(CARDIN) GO TO PRINT;
ON KEY (NOSl) BEGIN;
PUT EDIT ('NUMBER INVALID, ONCODE=',ONCODE)(X(5),A,A);
GO TO NEXT;
END;
NOS=NOSl;
OPEN FIlE(NOS) TITlE('NOSA'), FILE (CARDIN);

NEXT: READ FIlE(CARDIN) INTO (CARD);
PUT FIlE(SYSPRINT) SKIP EDIT(NAME(NEW_NUMBER,OlD_NUMBER,CODE)

(A,X(2»;
IF CODE = 'A' THEN GOTO RITE;

ELSE IF CODE = 'C' THEN DO;
UNSPECCBYTEl)=(8) 'l'B;
WRITE FILE(NOS) FROM (IOFIElD) KEYFROM(OlD_NUMBER);
IF NEW_NUMBER=' 'THEN GOTO NEXT;
ELSE GOTO RITE;
END;

ELSE PUT FILE (SYSPRINT) EDIT ('CODE INVAlID')(X(5),A);
GOTO NEXT;

RITE: READ FIlECNOS) KEY(NEW NUMBER) INTO (IOFIElD);
IF UNSPECCBYTE1)=(8) 'I'B THEN WRITE FILE(NOS)

KEYFROMCNEW_NUMBER) FROMCNAME)j
ELSE PUT FIlE(SYSPRINT) EDIT ('NUMBER ALREADY USED')(X(5),A);
GOTO NEXT;

PRINTz CLOSE FILE(NOS),FILECCARDIN);
PUT FIlE(SYSPRINT) PAGE;
NOS=NOS2j
OPEN FIlE(NOS) TITlE('NOSA');
ON ENDFIlE(NOS) GOTO FINISH;

Figure 55 (Part 1 of 2). Updating a REGIONAl(l) Data Set

Chapter 9. Using CONSECUTIVE, INDEXED, and REGIONAL Data Sets 161

NEXTINa READ FIlE(NOS) INTO(IOFIElD) KEYTOCNEW NUMBER);
IF UNSPEC(BYTE1) = (8) 'l'B THEN GOTO NEXTIN;
ELSE PUT FIlECSYSPRINT) SKIP EDIT (NEW NUMBER,IOFIElD)

(A,XC2»; GOTO NEXTIN; -
FINISH:

/*
CLOSE FILECNOS),FILECSYSPRINT); END ACR1;

// lBLTYP NSD(01)
// EXEC LNKEDT
// ASSGN SYS006,3330,VOL=DOS222,SHR
// DlBL NOSA"'NOSA',,DA
// EXTENT SYS006,DOS222,l,O,3534,19
// EXEC ,SIZE=64K
NEWMAN,M.W.
LAW
GOODFELlOW,D.T.
MIlES,R.
HARVEy,C.D.W.
BARTLETT,S.G.
READ,K.M.
PITT,W.H.
ROlF,D.F.
ELlIOTT,D.
HASTINGS,G.M.
BRAMLEY,O.H.
/*
/&

516
391
889

209
183
001

291

439

450 C
A
A

233 C
A
A
C

515 X
114 C
875 C
391 C
248 C

Note: Deletion of unwanted records is achieved, in this example, by inserting X'FF'
in the first data byte of each such record.

Figure 55 (Part 2 of 2). Updating a REGIONAl(l) Data Set

In this example, a file variable (NOS) has been used to enable
records in a REGIONAL data set that has been opened for updating
to be retrieved sequentially after completion of the update.
This technique overcomes the restriction that a file cannot be
declared with the attributes UPDATE and INPUT in the same
program. Two files, NOS1 and NOS2, are declared and are
assigned in turn to the file variable for processing. The TITLE
option in both OPEN statements specifies the same identifier
(NOSA) for the data set, thereby making one DLBL and EXTENT
statement suffice for both files.

REGIONAL(3) Data sets

Figure 56 on page 163 through Figure 58 on page 165 illustrate
the use of REGIONAl(3) data sets. The figures depict a library
processing scheme in which loans of books are recorded and
reminders are issued for overdue books. Two data sets, STOCK3
and LOANS3, are involved. STOCK3 contains descriptions of the
books in the library, and uses the 4-digit book reference
numbers as recorded keys; a simple algorithm is used to derive
the region numbers from the reference numbers. CIt is assumed
that there are about 1000 books, each with a number in the range
1000-9999.) LOANS3 contains records of books that are on loan;
each record comprises two dates, the date of issue and the date
of the last reminder. Each reader is identified by a 3-digit
reference number, which is used as a region number in LOANS3j
the reader and book numbers are concatenated to form the
recorded keys.

In Figure 56, the data sets STOCK3 and LOANS3 are created. The
file LOANS, which is used to create the data set lOANS3, is
opened for direct output merely to format the data set; the file
is closed without any records being written onto the data set.
It is assumed that the number of books on loan will not exceed
100; therefore the space operand in the EXTENT statement that
defines lOANS3 requests 3 tracks, sufficient for 100 blocks of

162 DOS PL/I Optimizing Compiler: Programmers Guide

19-byte records (12 bytes for data and a 7-byte key). The data
set STOCK3 is created sequentially; duplicate region numbers are
acceptable since each region can contain more than one record.

// JOB FIG0922
// OPTION LINK
// EXEC PLIOPT,SIZE=64K

CRR3: PROC OPTIONS(MAIN);
DCL STOCK FILE RECORD SEQUENTIAL KEYED OUTPUT

ENV(REGIONAL(3) MEDIUMCSYS006,3330) U RECSIZE(llO) KEYLENGTH(4»,
LOANS FILE RECORD DIRECT OUTPUT KEYED
ENV(REGIONALC3) MEDIUMCSYSOOS,3330) F RECSIZE(12) KEYLENGTH(7»,

1 CARD,
2 NUMBER PIC'9999',
2 AUTHOR CHAR(2S) VAR,
2 TITLE CHAR(SO) VAR,
2 QTYI FIXED DEC(3),

1 BOOK,
2 (Ll,L2) FIXED DEC(3),
2 ATY2 FIXED DEC(3),
2 DESCN CHAR(7S) VARYING,

REGION PIC'99999999';
ON ENDFILE(SYSIN) GO TO FINISH;
OPEN FILE(LOANS), FILE (STOCK),FILE(SYSPRINT),FILECSYSIN)j

NEXT: GET FILECSYSIN) LISTCCARD);
Ll = LENGTHCAUTHOR);
L2 = LENGTHCTITLE);
QTY2=QTYl;
DESCN = AUTHOR II TITLE;
REGION = CNUMBER-lOOO)/lOOO;
WRITE FILE (STOCK) FROM (BOO) KEYFROM(NUMBERIIREGION);
PUT SKIP EDIT CCARD) (AC4),X(1),A(2S),X(1),A(SO»;
GO TO NEXT;

FINISH: CLOSE FILECSTOCK),FILECLOANS),FILE(SYSPRINT),FILECSYSIN);
END CRR3;

/*
// LBLTYP NSD(Ol)
// EXEC LNKEDT
// ASSGN SYSOOS,3330,VOL=DOS222,SHR
// ASSGN SYS006,3330,VOL=DOS222,SHR
// DLBL LOANS,'LOANS3'"DA
// EXTENT SYSOOS,DOS222,l,O,3S34,3
// DLBL STOCK,'STOCK3'"DA
// EXTENT SYS006,DOS222,1,0,3SS3,19
// EXEC ,SIZE=64K
'1015' 'J.M.BARRIE' 'PETER PAN' 1
'1214' 'L.CARROLL' 'THE HUNTING OF THE SNARK' 1
'3079' 'G.FLAUBERT' 'MADAME BOVARY' 1
'3083' 'V.HUGO' 'LES MISERABLES' 2
'3085' 'J.K.JEROME' 'THREE MEN IN A BOAT' 2
'4292' 'W.LANGLAND' 'THE BOOK CONCERNING PIERS THE PLOWMAN' 1
'5999' 'W.SHAKESPEARE' 'MUCH ADO ABOUT NOTHING' 3
'6591' 'F.RABELAIS' 'THE HEROIC DEEDS OF GARGANTUA AND PANTAGRUEL' 1
'8326' 'H.D.THOREAU' 'WALDEN, OR LIFE IN THE WOODS' 1
'9765' 'N.MELLERSH' 'THE DISCOVERERS OF THE UNIVERSE' 3
/*
/&

Figure 56. Creating a REGIONAL(3) Data Set

Figure 57 on page 164 illustrates the updating of the data set
LOANS3. Each item of input data, read from a punched card,
comprises a book number, a reader number, and a code to indicate
whether it refers to a new issue (I), a returned book (R), or a
renewal (A). The position of the reader number on the card
allows the 8-character region number to be derived directly by
overlay defining. The DATE built-in function is used to obtain
the current data. This data is written in both the issue-data
and reminder-data portions of a new record or an updated record.

Chapter 9. Using CONSECUTIVE, INDEXED, and REGIONAL Data Sets 163

The region number for the data set LOANS3 is obtained by testing
the reader number.

// JOB FIG0923
// OPTION LINK
// EXEC PLIOPT,SIZE=64K

DUR3: PROC OPTIONS(MAIN);
DCL 1 RECORD,

2 (ISSUE,REMINDER) CHAR(6),
SYSIN FILE RECORD INPUT SEQUENTIAL ENV(F RECSIZE(80) MEDIUM(SYSIPT»,
LOANS FILE RECORD UPDATE DIRECT KEYED

ENV(REGIONAL(3) F RECSIZE(12) KEYLENGTH(7) MEDIUM(SYS006,3330»,
CARD CHAR(80),
BOOK CHAR(4) DEFINED CARD,
READER CHAR(3) DEFINED CARD POSITION(10),
CODE CHAR(l) DEFINED CARD POSITION(20),
RCODE CHAR(l) DEFINED RECORD;
REGION CHAR(8),
DATE BUILTIN;

ON ENDFILE(SYSIN) GO TO FINISH;
OPEN FILE(SYSIN),FILE(LOANS),FILE(SYSPRINT);
ISSUE,REMINDER = DATE();

NEXT: READ FILE(SYSIN) INTO (CARD);
PUT FILE(SYSPRINT) SKIP EDIT(CARD)(A(20»;

/* '****' IS A DUMMY TO SEPARATE ENTRIES FOR DIFFERENT DAYS */
IF BOOK = '****' THEN GO TO NEXT'
IF READER < '034' THEN REGION = (8) '0';

ELSE IF READER < '067' THEN REGION ='00000001';
ELSE REGION = '00000002';

IF CODE = 'I' THEN DO;
WRITE FILE(LOANS) FROM(RECORD) KEYFROM(READERIIBOOKIIREGION);
GOTO NEXT;
END;

IF CODE = 'R' THEN DO;
UNSPEC(RCODE) = (8) 'l'B; (
REWRITE FILE (LOANS) FROM (RECORD) KEY (READER I I BOOK II REGION); \
END;

ELSE IF CODE = 'A' THEN REWRITE FILE(LOANS) FROM (RECORD)
KEY (READER II BOOK I I REGION);

ELSE PUT FILE (SYSPRINT) EDIT ('CODE INVALID')(X(5),A);
GOTO NEXT;

FINISH: CLOSE FILE(SYSIN),FILE(LOANS),FILECSYSPRINT);
END DUR3;

/*
// LBLTYP NSD(01)
// EXEC LNKEDT
// ASSGN SYS006,3330,VOL=DOS222,SHR
// DLBL LOANS,'LOANS3'"DA
// EXTENT SYS006,DOS222,1,0,3534,3
// EXEC ,SIZE=64K
**** MONDAYS DATA
5999 003
3083 091
1214 095
**** TUESDAYS
5999 003
3083 091
3517 095
/*
/&

I
I
I

DATA
I
R
X

Figure 57. REGIONAL(3) Data Sets: Direct Update

164 DOS PL/I Optimizing Compiler: Programmers Guide

// JOB FIG0924
// OPTION LINK
// EXEC PLIOPT,SIZE=64K

SUR3z PROCEDURE OPTIONSCMAIN);
DCL LOANS FILE RECORD SEQUENTIAL UPDATE KEYED

ENVCREGIONAL(3) F RECSIZE(12) KEYLENGTH(7) MEDIUM(SYSOOS,3330»,
STOCK FILE RECORD DIRECT INPUT KEYED

ENVCREGIONAL(3) U RECSIZECIIO) KEYLENGTH(4) MEDIUM(SYS006,3330»,
CTODAY,LASMTH) CHAR(6),
YEAR PIC '99' DEF LASMTH,
MONTH PIC '99' DEF LASMTH POS(3),
1 RECORD,

2 CISSUE,REMINDER) CHAR(6),
DCODE CHARCl) DEF ISSUE,
LOANKEY CHAR (7),
READER CHAR (3) DEFINED LOANKEY,
BKNO CHAR (4) DEF LOANKEY POS(4),
INTER FIXED DEC(S),
REGION CHAR(8),
1 BOOK,

2 CLl,L2) FIXED DEC(3),
2 QTY FIXED DEC(3),
2 DESCN CHAR(7S) VAR,

AUTHOR CHAR(2S) VAR,
TITLE CHAR(50) VAR,DATE BUILTIN;

TODAY,LASMTH = DATE();
IF MONTH = '01' THEN DOi

MONTH = '12';
YEAR = YEAR-I;
END;

ELSE MONTH = MONTH-Ii
OPEN FILECLOANS),FILE(STOCK),FILE(SYSPRINT);
ON ENDFILE(LOADS) GOTO FINISH;

NEXT: READ FILE CLOANS) INTO (RECORD) KEYTO(LOANKEY);
IF UNSPECCDCODE)='llllllll' THEN GOTO NEXT;
IF REMINDER < LASMTH THEN DOi

REMINDER = TODAY;
REWRITE FILE(LOANS) FROMCRECORD)i
INTER = (BKNO-IOOO)/lOOO;
REGION = INTERi
READ FILECSTOCK) INTO (BOOK) KEY(BKNOIIREGION);
AUTHOR = SUBSTR(DESCN,l,Ll)j
TITLE = SUBSTRCDESCN,Ll+l,L2)j
PUT FILECSYSPRINT) SKIP(4) EDIT(READER,AUTHOR,TITLE) (A,SKIP(2»;
ENDi

GO TO NEXTi
FINISH: CLOSE FILE(LOANS),FILE(STOCK),FILE(SYSPRINT);

END SUR3i
/*
// LBLTYP NSDCOl)
// EXEC LNKEDT
// ASSGN SYS005,3330,VOL=DOS222,SHR
// ASSGN SYS006,3330,VOL=DOS222,SHR
// DLBL LOANS,'LOANS3'"DA
// EXTENT SYSOOS,DOS222,1,0,3534,3
// DLBL STOCK,'STOCK3'"DA
// EXTENT SYS006,DOS222,1,0,3SS3,19
// EXEC ,SIZE=64K
/&

Figure 58. REGIONAL(3) Data Sets: Sequential Update and Direct Input

In order to make the REGIONAL(3) examples testable without
introducing a further job, it is assumed that several days'
input will be presented at once. In the example, Monday's and
Tuesday's loans and returns are presented together, allowing the
R (return) function to be tested.

Chapter 9. Using CONSECUTIVE, INDEXED, and REGIONAL Data Sets 16S

The program in Figure 58 uses a sequential update file (LOANS)
to process the records in the data set LOANS3, and a direct
input file (STOCK) to obtain the book description from the data
set STOCK3 for use in the reminder note. Each record from
LOANS3 is tested to see whether the last reminder was issued
more than a month ago; if necessary, a reminder note is issued
and the current date is written in the reminder-date field of
the record.

To conserve space in the data set STOCK3, U-format records are
used. In each record, the author's name and the title of the
book are concatenated in a single character string, and the
lengths of the two parts of the string are written as part of
the record.

166 DOS PL/I Optimizing Compiler: Programmers Guide

CHAPTER 10. USING VSAM DATA SETS FROM PL/I

VSAM ORGANIZATION

This chapter describes VSAM (the Virtual Storage Access Method)
organization for record-oriented transmission, the VSAM
ENVIRONMENT options, compatibility with other PL/I data set
organizations, and the statements used to load and access the
three types of VSAM data sets--entry-sequenced, key-sequenced,
and relative record. The chapter concludes with a series of
examples showing the PL/I statements, Access Method Services
commands, and job control statements necessary to create and
access VSAM data sets. These are supported by short
descriptions.

Appendix B introduces VSAM and Access Method Services. It
describes the commands for defining and deleting data sets, and
for building alternate indexes.

For additional information about the facilities of VSAM, the
structure of VSAM data sets and indexes, the way in which they
are defined by Access Method Services, and the required job
control statements, see the VSAM pUblications for your system.

VSAM provides three types of data sets:

Key-sequenced data sets
Entry-sequenced data sets
Relative-record data sets

(KSDS)
(ESDS)
(RRDS)

These correspond roughly to PL/I INDEXED, CONSECUTIVE, and
REGIONAL data set organizations, respectively. They are all
ordered, and they can all have keys associated with their
records. Both sequential and keyed access are therefore possible
with all three types.

Although only key-sequenced data sets have keys as part of their
logical records, keyed access is also possible for
entry-sequenced data sets (using relative-byte addresses) and
relative-record data sets (using relative record numbers).

All VSAM data sets are held on direct access storage devices,
and a virtual storage operating system is required to use them.

The physical organization of VSAM data sets differs from those
used by other access methods. VSAM does not use the concept of
blocking, and, except for relative record data sets, records
need not be of a fixed length.

In data sets with VSAM organization, the data items are arranged
in control intervals, which are in turn arranged in control
areas. For processing purposes, the data items within a control
interval are arranged in logical records. A control interval may
contain one or more logical records, and a logical record may
span two or more control intervals. Concern about blocking
factors and record length is largely removed by VSAM although
records cannot, of course, exceed the maximum specified size.
VSAM allows access to the control intervals, but this type of
access is not supported by Pl/I.

VSAM data sets can have two types of indexes--prime and
alternate. A prime index is the index to a KSDS that is
established when the data set is defined; it always exists and
may be the only index for a KSDS. Key-sequenced and
entry-sequenced data sets can both have one or more alternate
indexes created for them. An alternate index on an ESDS enables
it to be treated, in general, as a KSDS. An alternate index on
a KSDS enables a field in the logical record different from that
in the prime index to be used as the key field. For example, a

Chapter 10. Using VSAM Data Sets from Pl/I 167

data set held or INDEXED in order of employee number could be
INDEXED by name in an alternate index and could then be accessed
in alphabetic order, in reverse alphabetic order, or directly
using the name as a key, as well as in the same kind of
combinations by employee number. Alternate indexes may be
either nonunique, in which duplicate keys are allowed, or
uni9u~, in which they are not. The prime index can never have
duplicate keys.

Any change in a data set that has alternate indexes must be
reflected in all the indexes if they are to remain useful. This
activity is known as index upgrade, and is done by VSAM for any
index in the index upgrade set of the data set. (For a KSDS, the
prime index is always a member of the index upgrade set.) You
must, however, avoid making changes in the data set that would
cause duplicate keys in the prime index or in a unique
alternative index.

Before a VSAM data set is used for the first time, its structure
is defined to the system by the DEFINE command of Access Method
Services. The definition completely defines the type of the data
set, its structure, and the space it requires. If the data set
is INDEXED, its indexes (together with their key lengths and
locations) and the index upgrade set are also defined. A VSAM
data set is thus "created" by Access Method Services.

The operation of writing the initial data into a newly-created
VSAM data set is referred to as loading in this publication.

The three different data set types provide for three different
types of data:

• Entry-sequenced data sets should be used for data that will
be primarily accessed in the order in which it was created
(or the reverse order).

• Key-sequenced data sets should be used when °a record will
normally be accessed through a key within the record (for
example, a stock control file where the part number can be
used to access the record).

• Relative-record data sets are suitable for data in which
each item has a particular number and the relevant record
will normally be accessed by that number. An example might
be a telephone system with a record associated with each
number.

Records in all types of VSAM data sets can be accessed directly
by means of a key, sequentially (either backward or forward), or
in a combination of the two ways; that is, by selecting a
starting point by means of a key and then reading forward or
backward from that point.

Figure 59 on page 170 shows how the same data could be held in
the three different types of VSAM data sets and illustrates
their respective advantages and disadvantages.

KEYS FOR VSAM DATA SETS

All VSAM data sets can have keys associated with their records.
For key-sequenced data sets, and for entry-sequenced data sets
accessed via an alternate index, the key is a defined field
within the logical record. For entry-sequenced data sets, the
key is the relative byte address (RBA) of the record. For
relative-record data sets, the key is a relative-record number.

Keys ~or Indexed VSAM Data sets

Keys for key-sequenced data sets and for entry-sequenced data
sets accessed via an alternate index are part of the logical
records recorded on the data set. The length and location of the
keys are defined when the data set is created.

168 DOS Pl/I Optimizing Compiler: Programmers Guide

The ways in which the keys may be referenced in the KEY,
KEYFROM, and KEYTO options are as described under these options
in Chapter 12 of the OS and DOS PL/I Language Reference Manual.
See also "Embedded Keys" on page 137 in Chapter 9 of this book.

Relative Byte Addresses (RBA)

Relative byte addresses allow you to use keyed access on an ESDS
associated with a KEYED SEQUENTIAL file. The RBAs, or keys, are
character strings of length 4, and their values are defined by
VSAM. RBAs cannot be constructed or manipulated in PL/I; their
values, however, can be compared in order to determine the
relative positions of records within the data set. RBAs are not
normally printable.

The RBA for a record can be obtained by means of the KEYTO
option, either on a WRITE statement when the data set is being
loaded or extended, or on a READ statement when the data set is
being read. An RBA obtained in either of these ways can
subsequently be used in the KEY option of a READ or REWRITE
statement.

An RBA must not be used in the KEYFROM option of a WRITE
statement. VSAM allows the use of the relative byte address as
a key to a KSDS, but this is not supported by PL/I.

Relative Record Numbers

Records in an RRDS are identified by a relative-record number
that starts at 1 and is incremented by I for each succeeding
record. These relative-records numbers may be used as keys to
allow keyed access to the data set.

Keys used as relative-record numbers are character strings of
length 8. The character value of a source key used in the KEY or
KEYFROM option must represent an unsigned integer. If the
source key is not 8 characters long, it is truncated or padded
with blanks (interpreted as zeros) on the left. The value
returned by the KEYTO option is a character string of length 8,
with leading zeros suppressed.

CHOICE OF DATA SET TYPE

When planning your program, the first decision to be made is
which type of data set to use. As discussed in Chapter 9, there
are three types of VSAM data sets and four types of non-VSAM
data sets available to you. VSAM data sets can provide all the
function of the other types of data sets, plus additional
function available only in VSAM. VSAM can usually match other
data set types in performance, and often improve upon it.
However, VSAM is more liable to performance degradation through
misuse of function.

The comparison of the data set types given in Figure 35 on page
118 in Chapter 9 is helpful; however, many factors in the choice
of data set type for a large installation are beyond the scope
of this book.

Figure 59 on page 170 shows the possibilities available with the
types of VSAM data sets. When choosing between the VSAM data
set types, you should base your choice on the most common
sequence in which you will require your data. You should follow
a procedure similar to the one suggested below to help ensure a
combination of data sets and indexes that provide the function
you require.

Chapter 10. Using VSAM Data Sets from PL/I 169

The diagrams show how the information contained in the family tree below could
be held in VSAM data sets of different types.

ANDREW M SMITH &
VALERIE SUZIE ANN MORGAN (1967)

I

FRED (1969) ANDY (1970)

Key-Sequenced Data Set

Prime
Index

ANDY

FRED

JANE

SUZAN

Entry-Sequenced Data Set

Relative byte
addresses can be
accessed and used
as keys

Data component

ANDY

empty space

FRED

empty space

JANE

empty space

SUZAN

Data component

SUZAN (1972) JANE (1975)

70M

69M

75 F

72 F

Alternate Indexes
By Birthdate (unique)

69

70

72

7&

\

\ \ By sex (non·unique)

- -;;:--:::"';..'~\--fEB-----
.-_ _ _-.....' F --- \ '\"- -

\'\" M '.::::"-/ ,." _-"'"

Alternate Indexes
Alphabetically by name
(unique)

ANDY

r-----'r---------.r~F;R~E~D~------~6;9~M;r~----------~~~=-----~ FRED
I------~
I
1-------1
I
I-------t
I
L _____ J

Relative Record Data Set

Relative record
numbers can be
accessed and used
as keys

Each slot corresponds to a year

Slot

2

4

5

6

8

ANDY

SUZAN

JANE

Data component

FRED

ANDY

empty space for 71

SUZAN

empty space for 73

empty space for 74

JANE

empty space for 76

70M JANE

72 F SUZAN

75 F " ' \
_ "', \ By sex (non·unique) -- \

---~~-\---~rr[I ,-,--
\ \. F

" " "" M " " ---'---- -'"

69M No Alternate Indexes

70M

72F

75 F

Figure S9 (Part 1 of 2). Types and Advantages of VSAM Data Sets

170 DOS PL/I Optimizing Compiler: Programmers Guide

Method of Loading Method of Reading Method of Updating Pros and Cons

Key-Sequenced Data Set Sequentially in order of prime KEYED by specifYing key of KEYED specifying a unique Advantages
index which must be unique record in prime or unique key in any Index Complete access and updating

alternate index SEQUENTIAL following Disadvantages
SEQUENTIAL backwards or positioning by unique key Records must be in order of
forwards in order of any index Deletion of records allowed prime index before loading
positioning by key followed Insertion of records allowed Uses
by sequential reading either For uses where access will be
backwards or forward related to key

Entry-Sequenced Data Set Sequentially (forwards only) SEQUENTIAL backwards or New records at end only Advantages
The RBA of each record can forwards EXisting records cannot have Simple fast creation. No
be obtained and used as a key KEYED using unique alternate length changed requirement for a unique index

index or RBA Access may be sequential or Disadvantages
Positioning by key followed KEYED using alternate index Limited updating facilities
by sequential either backwards Deletion of records not Uses
or forwards allowed For uses where data will

primarily be accessed
sequentially

Relative Record Data Set Sequentially starting from KEYED specifying numbers Sequentially starting at a Advantages
slot 1 as key specified slot and continuing Speedy access to record by
KEYED specifying number Sequential forwards or with next slot number
of slot backwards omitting empty Keyed specifying numbers as Disadvantages
Positioning by key followed records key Structure tied to numbering
by sequential writes Deletion of records allowed sequences

Insertion of records into No alternate index
empty slots allowed Fixed length records

Uses
For use where records will be
accessed by number

Figure 59 (Part 2 of 2). Types and Advantages of VSAM Data Sets

Chapter 10. Using VSAM Data Sets from Pl/I 171

1. Determine the type of data and how it will be accessed.

• Primarily sequentially--favors ESDS

• Primarily by key--favors KSDS

• Primarily by number--favors RRDS

2. Determine how the data set will be loaded. Note that a KSDS
must be loaded in key sequencej thus an ESDS with an
alternate index path may be a more practical alternative for
some applications.

3. Determine whether you require access through an alternate
index path. These are only supported on KSDS and ESDS. If
you do, determine whether the alternate index will have
unique or nonunique keys. Use of nonunique keys limits key
processing. Conversely, the prediction that all future
records will have unique keys may not be practical, and an
attempt to insert a record with a nonunique key in an index
that has been created for unique keys will cause an error.

4. When you have determined the data sets and paths that you
require, ensure that the operations you have in mind are
supported. Figure 60 on page 173 and Figure 61 on page 179
may be helpful in this determination.

Figure 62 on page 180 through Figure 64 on page 186 show the
statements permitted for entry-sequenced data sets, INDEXED data
sets, and relative-record data sets, respectively.

DEFINING A VSAM DATA SET TO PL/I

A sequential VSAM data set is defined by a file declaration with
the following attributes:

DCl filename FILE RECORD
INPUT I OUTPUT I UPDATE
SEQUENTIAL
BUFFERED
[KEYED]
ENVIRONMENTCoption-list)j

A direct VSAM data set is defined by a file declaration with the
following attributes:

DCl filename FILE RECORD
INPUT I OUTPUT I UPDATE
DIRECT
UNBUFFERED
[KEYED]
ENVIRONMENTCoption-list)j

Figure 25 on page 95 in Chapter 7 shows the default attributes.
The file attributes are described in the OS and DOS PL/I
Language Reference Manual. Options of the ENVIRONMENT attribute
are discussed below.

Some combinations of the file attributes INPUT or OUTPUT or
UPDATE and DIRECT or SEQUENTIAL or KEYED SEQUENTIAL are allowed
only for certain types of VSAM data sets. Figure 60 on page 173
shows the compatible combinations.

ENVIRONMENT OPTIONS FOR VSAM DATA SETS

Many of the options of the ENVIRONMENT attribute affecting data
set structure are superfluous for VSAM data sets. If they are
specified, they are either ignored or are used for checking
purposes. If those that are checked conflict wiih the values
defined for the data set, the UNDEFINEDFILE cond1tion is raised
when an attempt is made to open the file.

172 DOS Pl/I Optimizing Compiler: Programmers Guide

INPUT

OUTPUT

UPDATE

Key: ESDS
KSDS
RRDS
Path(U)

The ENVIRONMENT options applicable to VSAM data sets area

VSAM
BKWD
BUFND
BUFNI
BUFSP
PASSWORD

REUSE
SKIP
COBOL
GENKEY
SCALARVARYING

COBOL, GENKEY, and SCALARVARYING have the same effect as for
non-VSAM data sets.

SEQUENTIAL KEVED SEQUENTIAL DIRECT

ESDS ESDS KSDS
KSDS KSDS RRDS
RRDS RRDS PathCU)
PathCN) Path(N)
PathCU) PathCU)

ESDS ESDS KSDS
RRDS KSDS RRDS

RRDS Path(U)

ESDS ESDS KSDS
KSDS KSDS RRDS
RRDS RRDS Path(U)
PathCN) PathCN)
PathCU) Path(U)

Entry-sequenced data set Path(N) Alternate index path
Key-sequenced data set with nonunique keys
Relative-record data set (See "Alternate Index Paths"
Alternate index path with in Appendix B for details.)
unique keys

The attributes on the left can be combined with those at the top of the figure
for the data sets and paths shown. For example, only an ESDS and an RRDS may
be SEQUENTIAL OUTPUT.

Figure 60. VSAM Data Sets and Permitted File Attributes

VSAM Option

PASSWORD Option

The options checked for a VSAM data set are RECSIZE, and, for a
key-sequenced data set, KEYLENGTH and KEYLOC.

Figure 26 on page 96 in Chapter 7 shows which options are
ignored for VSAM, as well as the required and default options.

Specify the VSAM option for VSAM data sets.

r= Syntax

LAM

When a VSAM data set is defined to the system (using the DEFINE
command of Access Method Services), READ and UPDATE passwords
can be associated with it. After that the appropriate password
must be included in the declaration of any PL/I file used to
access the data set. The syntax of the option is:

Chapter 10. Using VSAM Data Sets from PL/I 173

GENKEV Option

REUSE Option

BKWD Option

r-:: Syntax
PASSWORD(paSSWOrd-specificatiOn)

password-specification
is a character constant or character variable that
specifies the password for the access method your program
requires. If the specification is a constant, it must not
contain a repetition factor; if it is a variable, it must
be level-I, element, static, and unsubscripted.

The character string is padded or truncated to 8 characters and
passed to VSAM for inspection. If the password is incorrect,
the system operator is given a number of chances to specify the
correct password. The number of chances to be allowed is
specified when the data set is defined. After this number of
unsuccessful tries, the UNDEFINEDFILE condition is raised.

The three levels of password supported by PL/I are:

• Master
• Update
• Read

These three levels are defined in Appendix B. Specify the
highest level of password needed for the type of access that
your program will perform.

For the description of the GENKEY option, see ftGENKEY Optionft on
page 97 in Chapter 7.

The REUSE option specifies that an OUTPUT file associated with a
VSAM data set is to be used as a workfile.

~ Syntax
REUSE

The data set is treated as an empty data set each time the file
is opened. Any secondary allocations for the data set are
released, and the data set is treated exactly as if it were
being opened for the first time.

A file with the REUSE option must not be associated with a data
set that has alternate indexes or the BKWD option, and must not
be opened for INPUT or UPDATE.

The REUSE option takes effect only if REUSE was specified in the
Access Method Services DEFINE CLUSTER command.

The BKWD option specifies backward processing for a SEQUENTIAL
INPUT or SEQUENTIAL UPDATE file associated with a VSAM data set.

~ syntax

~WD

Sequential reads (that is, reads without the KEY option)
retrieve the previous record in sequence. For INDEXED data

174 DOS PL/I Optimizing Compiler: Programmers Guide

PERFORMANCE OPTIONS

SKIP Option

)

BUFND Option

sets, the previous record is, in general, the record with the
next lower key. However, if the data set is being accessed via
a nonunique key alternate index, records with the same key are
recovered in their normal sequence. For example, if the records
are:

A B Cl C2 C3 D E

where Cl, C2, and C3 have the same key, they are recovered in
the sequence:

E D Cl C2 C3 B A

When a file with the BKWD option is opened, the data set is
positioned at the last record. ENDFILE is raised in the normal
way when the start of the data set is reached.

The BKWD option must not be specified with either the REUSE
option or the GENKEY option. Also, the WRITE statement is not
allowed for files declared with the BKWD option.

SKIP, BUFND, BUFNI, and BUFSP are options you can specify to
optimize VSAM's performance.

The SKIP option of the ENVIRONMENT attribute specifies that the
VSAM OPTCD "SKP" is to be used wherever possible. It is
applicable to key-sequenced data sets accessed by means of a
KEYED SEQUENTIAL INPUT or UPDATE file. r: Syntax

LIP

If the application program is designed to access individual
records scattered throughout the data set, but the access will
be primarily in ascending key order, the SKIP option should be
specified for the file.

If the program is designed to read large numbers of records
sequentially, without the use of the KEY option, or if it is
designed to insert large numbers of records at specific points
in the data set (mass sequential insert), the SKIP option should
be omitted.

It is never an error to specify (or omit) the SKIP option; its
effect on performance is significant only in the circumstances
described.

The BUFND option specifies the number of data buffers required
for a VSAM data set. The syntax of the option is: r= Syntax

I BUFND(n)

n
specifies an integer, or a variable with the attributes
FIXED BINARY(31) STATIC.

Chapter 10. Using VSAM Data Sets from PL/I 175

Multiple data buffers help performance when the file has the
SEQUENTIAL attribute and long groups of contiguous records are
to be processed sequentially. (

BUFNI Option

BUFSP Option

The BUFNI option specifies the number of index buffers required
for a VSAM data set. The syntax of the option is:

~ Syntax
~FNI(n)

n
specifies an integer, or a variable with the attributes
FIXED BINARY(31) STATIC.

Multiple index buffers help performance whenever the file has
the KEYED attribute. Specify at least as many index buffers as
there are levels in the index.

The BUFSP option specifies, in bytes, the total buffer space
required for a VSAM data set (for both the data and index
components). The syntax of the option is:

~ Syntax
BUFSPlnl

n
specifies an integer, or a variable with the attributes
FIXED BINARY(31) STATIC.

It is usually preferable to specify the BUFNI and BUFND options
rather than BUFSP.

COMPATIBILITY WITH OTHER DATA SET ORGANIZATIONS

The aspects of compatibility that affect the VSAM user who has
data sets or programs created for other access methods are as
follows:

• The re-creation of existing data sets as VSAM data sets.
The Access Method Services REPRO command re-creates data
sets in VSAM format. This command is described in the
DOS/VS Access Method Services User's Guide.

• All VSAM key-sequenced data sets have embedded keys, even if
they have been converted from ISAM data sets with
nonembedded keys.

• The use of programs written for non-VSAM data sets with VSAM
data sets without alteration of the programs. This is
described in the next section under "The VSAM Compatibility
Interface. n

• The alteration of existing programs to allow them to use
VSAM data sets. A discussion of this is given at the end of
this section.

176 DOS PL/I Optimizing Compiler: Programmers Guide

~

(

THE VSAM COMPATIBILITY INTERFACE

The VSAM compatibility interface simulates ISAM-type handling on
VSAM key-sequenced data sets. This allows compatibility for any
program whose logic depends on ISAM-type record handling.

The compatibility interface is needed in the following
circumstances:

• If your program uses nonembeddedkeys.

• If your program relies on the raising of the RECORD
condition when an incorrect-length record is encountered.

• If your program relies on checking for deleted records. In
ISAM, deleted records remain in the data set but are flagged
as deleted. In VSAM, they become inaccessible to you, and
their space is available for overwriting.

If any of these conditions apply, the program cannot
satisfactorily be written for VSAM without the compatibility
interface.

ADAPTING EXISTING PROGRAMS FOR VSAM DATA SETS

CONSECUTIVE Files

INDEXED Files

REGIONAL Files

Existing programs with INDEXED, CONSECUTIVE, or REGIONAl(l)
files can readily be adapted for use with VSAM data sets.
Programs with REGIONAl(l) data sets require only minor revision.

If the logic of the program depends on the ra1s1ng of the RECORD
condition when a record of an incorrect length is found, you
will have to write your own code to check for the record length
and take the necessary action. This is because records of any
length up to the maximum specified are allowed in VSAM data
sets.

Programs using INDEXED files need only be changed if you wish to
avoid using the compatibility interface.

Dependence on the RECORD condition should be rempved, and your
own code inserted to check for record length if this is
necessary.

Any checking for deleted records should be removed.

Programs using REGIONAl(l) data sets cannot be used unaltered to
access VSAM relative-record data sets.

REGIONAl(l) and any other non-VSAM ENVIRONMENT options should be
removed from the file declaration and be replaced by the VSAM
ENVIRONMENT option.

Any checking for deleted records should be removed because VSAM
deleted records are not accessible to you.

Programs with REGIONAl(3) files will need restructuring before
they can be used with VSAM data sets.

ASSOCIATING SEVERAL VSAM FILES WITH ONE DATA SET

The TITLE option of the OPEN statement can be used to associate
two or more Pl/I files with the same VSAM data set in the manner
described in Chapter 7 for non-VSAM data sets. Pl/I creates one

Chapter 10. Using VSAM Data Sets from Pl/I 177

set of control blocks (an Access Method Control ~lock (ACB) and
a Request Parameter List (RPL» for each file, and does not
provide the facili.ty to associate multiple RPLs with a single ~
ACB. These control blocks are described in the VSAM ~

SHARED DATA SETS

Programmer's Guide and normally need not concern you.

Multiple files may perform retrievals against a single data set
with no difficulty. However, if one or more files perform
updates, the following may occur.

• Other files may retrieve down-level records. This can be
avoided by opening all files with the UPDATE attribute.

• When more than one file is open with the UPDATE attribute,
retrieval of any record in a control interval makes all the
other records in that control interval unavailable until the
update is complete. This raises the ERROR condition with
condition code 1027. The only way to avoid this error is to
ensure that the two files are not accessing the same control
interval in the data set. You can design your program to
retry the retrieval after completion of the other file's
data transmission.

• When one or more of the multiple files is an alternate index
path, an update through an alternate index path may update
the alternate index before the data record is written,
resulting in a mismatch between the index and the data.

PL/I does not support cross-partition or cross-system sharing of
data sets. These types of sharing are discussed in Appendix B
and further described in the DOS/VS Access Methods Services
User's Guide.

HOW TO EXECUTE A PROGRAM USING VSAM DATA SETS

Before you execute a program that accesses a VSAM data set, you
need to know:

• The name of the VSAM data set.

• The name of the PL/I file.

• Whether you intend to share the data set with other users
(see the discussion of "Sharing VSAM Data Sets" on page 304
in Appendix B).

You can then write the required DLBL statement to access the
data set in the form:

// DLBL filename, 'data set name'"VSAM

For example, if your file is is called PLIFILE, your data set
called VSAMDS, and your data set is on volume DOS222, you would
enter:

// DLBL PLIFILE,'VSAMDS'"VSAM
// EXTENT SYS006,DOS222

ASSOCIATING AN ALTERNATE INDEX PATH WITH A FILE

When using an alternate index, you simply specify the name of
the path as the data set name (file identifier) of the DLBL
statement associating the base data set/alternate index pair
with your PL/I file. Before using an alternate index, you
should be aware of the restrictions on processing; these are
summarized in Figure 61 on page 179. The method used for
defining a path and building an alternate index is given in
Appendix B.

178 DOS PL/I Optimizing Compiler: Programmers Guide

(
~

l v

Base
Cluster
Type

KSDS

ESDS

Assuming that a Pl/I file was called PlIFIlE and the alternate
index path was called PERSAlPH, and that it was on volume
DOS222, the DlBl and EXTENT statements could take the forml

// DlBl PlIFIlE,'PERSAlPH'"VSAM
// EXTENT SYS006,DOS222

Alternate Index
Key Type Processing Restrictions

Unique key As normal KSDS May not modify

Nonunique key limited keyed May not modify
access

Unique key As KSDS No deletion
May not modify

Nonunique key limited keyed No deletion
access May not modify

key of access

key of access

key of access

key of access

Figure 61. Processing Allowed on Alternate Indexes

ENTRY-SEQUENCED DATA SETS

Loading an ESDS

Sequential Access

The statements and options allowed for files associated with an
ESDS are shown in Figure 62 on page 180.

When an ESDS is being loaded, the associated file must be opened
for SEQUENTIAL OUTPUT. The records are retained in the order in
which they are presented.

The KEYTO option may be used to obtain the relative byte address
of each record as it is written. The keys thus obtained may
subsequently be used to achieve keyed access to the data set.

A SEQUENTIAL file that is used to access an ESDS may be opened
with either the INPUT or the UPDATE attribute. If either of the
options KEY or KEYTO is used, the file must also have the KEYED
attribute.

Sequential access is in the order in which the records were
originally loaded into the data set. The KEYTO option may be
used on the READ statements to recover the RBAs of the records
that are read. If the KEY option is used, the record that is
recovered is the one with the specified RBA. Subsequent
sequential access continues from the new position in the data
set.

For an UPDATE file, the WRITE statement adds a new record at the
end of the data set. With a REWRITE statement, the record
rewritten is the one with the specified RBA if the KEY option is
used; otherwise it is the record accessed on the previous READ.
A REWRITE statement must not attempt to change the length of the
record that is being replaced.

The DELETE statement is not allowed for entry-sequenced data
sets.

Chapter 10. Using VSAM Data Sets from Pl/I 179

Valid statements, with Options Other Options that Can
File Declaration! that Must Appear also Be Used

SEQUENTIAL OUTPUT WRITE FIlECfile-reference)
BUFFERED FROMCreference);

lOCATE based-variable
FIlECfile-reference);

SEQUENTIAL OUTPUT WRITE FIlECfile-reference)
UNBUFFERED FROMCreference);

SEQUENTIAL INPUT READ FIlECfile-reference)
BUFFERED INTO(reference);

READ FIlECfile-reference)
SETCpointer-reference);

READ FIlECfile-reference);

SEQUENTIAL INPUT READ FIlECfile-reference)
UNBUFFERED INTO(reference);

READ FIlECfile-reference);2

SEQUENTIAL UPDATE READ FIlECfile-reference)
BUFFERED INTOCreference);

READ FIlECfile-reference)
SETCpointer-reference);

READ FIlECfile-reference)2

WRITE FIlE(file-reference)
FROMCreference);

REWRITE FIlECfile-reference);

SEQUENTIAL UPDATE READ FIlECfile-reference)
UNBUFFERED INTOCreference);

READ FIlE(file-reference);2

WRITE FIlE(file-reference)
FROM(reference);

REWRITE FIlECfile-reference)
FROM(reference);

CSee notes in Part 2.)

KEYTOCreference)

SET(pointer-reference)

EVENTCevent-reference)
and/or KEYTOCreference)

KEYTOCreference)
or KEY(expression)3

KEYTOCreference)
or KEY(expression)3

IGNORECexpression)

EVENTCevent-reference)
and/or either
KEYCexpression)3 or
KEYTOCreference)

EVENTCevent-reference)
and/or
IGNORECexpression)

KEYTOCreference)
or KEY(expression)3

KEYTOCreference)
or KEY(expression)3

IGNORE(expression)

KEYTOCreference)

FROMCreference) and/or
KEYCexpression)3

EVENT(event-reference)
and/or either
KEY(expression)3 or
KEYTO(reference)

EVENT(event-reference)
and/or
IGNORE(expression)

EVENT(event-reference)
and/or
KEYTO(reference)

EVENT(event-reference)
and/or KEYCexpression)3

Figure 62 (Part I of 2). VSAM Entry-Sequenced Data Set Statements and Options

180 DOS Pl/I Optimizing Compilers Programmers Guide

(
I

\

(
\

~l' ,
IThe complete file declaration would include the attributes FILE, RECORD,
and ENVIRONMENT; if either of the options KEY or KEYTO is used, it must
also include the attribute KEYED.

zThe statement READ FIlE(file-reference); is equivalent to the statement:
READ FIlE(file-reference) IGNORE (1);

aThe expression used in the KEY option must be a relative byte address,
previously obtained by means of the KEYTO option.

Figure 62 (Part 2 of 2). VSAM Entry-Sequenced Data Set Statements and Options

KEY-SEQUENCED AND INDEXED ENTRY-SEQUENCED DATA SETS

Loading a KSDS

Sequential Access

The statements and options permitted for INDEXED VSAM data sets
are shown in Figure 63 on page 182. An INDEXED data set may be
a KSDS with its prime index, or either a KSDS or an ESDS with an
alternate index. Except where stated, the following description
applies to all INDEXED VSAM data sets.

When a KSDS is being loaded, the associated file must be opened
for KEYED SEQUENTIAL OUTPUT. The records must be presented in
ascending key order, and the KEYFROM option must be used. Note
that the prime index must be used for loading the data set; no
VSAM data set can be loaded via an alternate index.

If a KSDS already contains some records, and the associated file
is opened with the SEQUENTIAL and OUTPUT attributes, records may
be added only at the end of the data set. The rules given in
the previous paragraph apply; in particular, the first record
presented must have a key greater than the highest key' present
on the data set.

A SEQUENTIAL file that is used to access a KSDS may be opened
with either the INPUT or the UPDATE attribute.

For READ statements without the KEY option, the records are
recovered in ascending key order (or in descending key order if
the BKWD option is used). The key of a record recovered in this
way can be obtained by means of the KEYTO option.

If the KEY option is used, the record recovered by a READ
statement is the one with the specified key. Such a READ
statement positions the data set at the specified record;
subsequent sequential reads will recover the following records
in sequence.

WRITE statements with the KEYFROM option are allowed for KEYED
SEQUENTIAL UPDATE files. Insertions can be made anywhere in the
data set, regardless of the position of any previous access.

If the data set is being accessed via a unique key index, the
KEY condition is raised if an attempt is made to insert a record
with the same key as a record that already exists on the data
set. For a nonunique key index, subsequent retrieval of records
with the same key is in the order in which they were added to
the data set.

REWRITE statements with or without the KEY option are allowed
for UPDATE files. If the KEY option is used, the record that is
rewritten is the first record with the specified key; otherwise
it is the record that was accessed by the previous READ

Chapter 10. Using VSAM Data Sets from Pl/I 181

statement. When a record is rewritten using an alternate index,
the prime key of the record must not be changed.

Valid statements, with Options that Other Options that
File Declaration l Must Appear Can also Be Used

SEQUENTIAL OUTPUT WRITE FILE(file-reference)
BUFFERED3 FROM(reference)

KEYFROMCexpression);

LOCATE based-variable SET(pointer-
FILE(file-reference) reference)
KEYFROMCexpression);

SEQUENTIAL OUTPUT WRITE FILE(file-reference) EVENTCevent-
UNBUFFERED3 FROM(reference) reference)

KEYFROMCexpression);

SEQUENTIAL INPUT READ FILECfile-reference) KEY(expression) or
BUFFERED INTO(reference); KEYTOCreference)

READ FILE(file-reference) KEY(expression) or
SETCpointer-reference); KEYTO(reference)

READ FILECfile-reference);2 IGNORECexpression)

SEQUENTIAL INPUT READ FILE(file-reference) EVENT(event-
UNBUFFERED INTO(reference); reference) and/or

either
KEY(expression) or
KEYTOCreference)

READ FILE(file-reference);2 EVENT(event-
reference) and/or
IGNORECexpression)

SEQUENTIAL UPDATE READ FILE(file-reference) KEY(expression) or
BUFFERED INTOCreference); KEYTOCreference)

READ FILECfile-reference) KEY(expression) or
SETCpointer-reference); KEYTOCreference)

READ FILE(file-reference);2 IGNORECexpression)

WRITE FILECfile-reference)
FROM(reference)
KEYFROMCexpression);

REWRITE FILE(file-reference); FROM(reference) and/
or KEYCexpression)

DELETE FILE(file-reference)5 KEY(expression)

SEQUENTIAL UPDATE READ FILECfile-reference) EVENTCevent-ref.)
UNBUFFERED INTOCreference); and/or either

KEYCexpression) or
KEYTOCreference)

READ FILE(file-reference);2 EVENT(event-
reference) and/or
IGNORE(expression)

(See notes in Part 3.)

Figure 63 (Part 1 of 3). VSAM INDEXED Data Set Statements and Options

182 DOS PL/I Optimizing Compiler: Programmers Guide

(

(
\

(
\~

Valid statements, with Options that Other Options that
File Declaration l Must Appear Can also Be Used

WRITE FILE(file-reference) EVENT(event-
FROM(reference) reference)
KEYFROM(expression);

REWRITE FILE(file-reference) EVENT(event-
FROM(reference); reference) and/or

KEY(expression)

DELETE FILE(file-reference);' KEY(expression)
and/or
EVENT(event-
reference)

DIRECT4 INPUT READ FILE(file-reference)
BUFFERED INTO(reference)

KEYCexpression);

READ FILECfile-reference)
SETCpointer-reference)
KEYCexpression);

DIRECT4 INPUT READ FILECfile-reference) EVENT(event-
UNBUFFERED INTOCreference) reference)

KEY(expression);

DIRECT4 UPDATE READ FILECfile-reference)
BUFFERED INTO(reference)

KEYCexpression);

READ FILE(file-reference)
SETCpointer-reference)
KEY(expression)j

REWRITE FILECfile-reference)
FROMCreference)
KEYCexpression)j

DELETE FILE(file-reference)
KEYCexpression)j'

WRITE FILECfile-reference)
FROMCreference)
KEYFROM(expression)j

DIRECT4 UPDATE READ FILE(file-reference) EVENT(event-
UNBUFFERED INTO(reference) reference)

KEY(expression)j

REWRITE FILE(file-reference) EVENT(event-
FROMCreference) reference)
KEY(expression);

DELETE FILE(file-reference) EVENT(event-
KEY(expression)j' reference)

WRITE FILE(file-reference) EVENT(event-
FROM(reference) reference)
KEYFROM(expression)j

Figure 63 (Part 2 of 3). VSAM INDEXED Data Set Statements and Options

Chapter 10. Using VSAM Data Sets from PL/I 183

IThe complete file declaration would include the attributes FILE and
RECORD. If any of the options KEY, KEYFROM, or KEYTO is used, the
declaration must also include the attribute KEYED.

2The statement: READ FIlE(file-reference); is equivalent to the
statement: READ FILE(file-reference) IGNORE(I);

3A SEQUENTIAL OUTPUT file must not be associated with a data set accessed
via an alternate index.

4A DIRECT file must not be associated with a data set accessed via a
nonunique key alternate index.

5DELETE statements are not allowed for a file associated with an ESDS
accessed via an alternate index.

Figure 63 (Part 3 of 3). VSAM INDEXED Data Set Statements and Options

Direct Access

A DIRECT file that is used to access an INDEXED VSAM data set
may be opened with the INPUT, OUTPUT, or UPDATE attribute. A
DIRECT file must not be used to access the data set via a
nonunique key index.

If a DIRECT OUTPUT file is used to add records to the data set,
the KEY condition is raised if an attempt is made to insert a
record with the same key as a record that already exists.

If a DIRECT INPUT or DIRECT UPDATE file is used, records may be
read, written, rewritten, or deleted in the same way as for a
KEYED SEQUENTIAL file.

SAMEKEV Built-In Function

If a VSAM data set is being accessed via an alternate index
path, the presence of nonunique keys can be detected by means of
the SAMEKEY built-in function. After each retrieval, SAMEKEY
indicates whether any further records exist with the same
alternate index key as the record just retrieved. Hence it is
possible to stop at the last of a series of records with
nonunique keys without having to read beyond the last record.
SAMEKEY (file-reference) returns 'liB if the input/output
statement has completed successfully and the accessed record is
followed by another with the same key; otherwise it returns
'O'B.

RELATIVE-RECORD DATA SETS

Loading an RRDS

The statements and options permitted for VSAM relative record
data sets (RRDS) are shown in Figure 64 on page 186.

When an RRDS is being loaded, the associated file must be opened
for OUTPUT. Either a DIRECT or a SEQUENTIAL file may be used.

For a DIRECT OUTPUT file, each record is placed in the position
specified by the relative-record number (or key) in the KEYFROM
option of the WRITE statement (see "Keys for VSAM Data Sets" on
page 168).

For a SEQUENTIAL OUTPUT file, WRITE statements with or without
the KEYFROM option may be used. If the KEYFROM option is
specified, the record is placed in the specified slot; if it is
omitted, the record is placed in the slot following the current

184 DOS PL/I Optimizing Compiler: Programmers Guide

Sequential Access

Direct Access

position. There is no requirement for the records to be
presented in ascending relative-record number order. If the
KEYFROM option is omitted, the relative record number of the
written record can be obtained by means of the KEYTO option.

If an RRDS is to be loaded sequentially, without use of the
KEYFROM or KEYTO options, the file is not required to have the
KEYED attribute.

It is an error to attempt to load a record into a position that
already contains a record: if the KEYFROM option is used, the
KEY condition is raised; if it is omitted, khe ERROR condition
is raised.

A SEQUENTIAL file that is used to access an RRDS may be opened
with either the INPUT or the UPDATE attribute. If any of the
options KEY, KEYTO, or KEYFROM is used, the file must also have
the KEYED attribute.

For READ statements without the KEY option, the records are
recovered in ascending relative-record number order. Any empty
slots in the data set are skipped over.

If the KEY option is used, the record recovered by a READ
statement is the one with the specified relative-record number.
Such a READ statement positions the data set at the specified
record; subsequent sequential reads will recover the following
records in sequence.

WRITE statements with or without the KEYFROM option are allowed
for KEYED SEQUENTIAL UPDATE files. Insertions can be made
anyWhere in the data set, regardless of the position of any
previous access. For WRITE with the KEYFROM option, the KEY
condition is raised if an attempt is made to insert a record
with the same relative-record number as a record that already
exists on the data set. If the KEYFROM option is omitted, an
attempt is made to write the record in the next slot, relative
to the current position. The ERROR condition is raised if this
slot is not empty.

The KEYTO option may be used to recover the key of a record that
is added by means of a WRITE statement without the KEYFROM
option.

REWRITE statements, with or without the KEY option, are allowed
for UPDATE files. If the KEY option is used, the record that is
rewritten is the record with the specified relative-record
number; otherwise it is the record that was accessed by the
previous READ statement.

A DIRECT file used to access an RRDS may have the OUTPUT, INPUT,
or UPDATE attribute. Records may be read, written, rewritten,
or deleted exactly as though a KEYED SEQUENTIAL file were used.

EXAMPLES WITH ENTRY-SEQUENCED DATA SETS

The examples in Figure 65 on page 188 through Figure 69 on page
191 for ESDS are based on the family tree shown in Figure 59 on
page 170.

Chapter 10. Using VSAM Data Sets from Pl/I 185

Valid statements, with Options that Other Options that
File Dec1aration l Must Appear Can also Be Used

SEQUENTIAL OUTPUT WRITE FILE(file-reference) KEYFROM(expression)
BUFFERED FROMC reference) j or KEYTO(reference)

LOCATE based-variable SET(pointer-
FILECfile-reference)j reference) and/or

KEYFROMCexpression)

SEQUENTIAL OUTPUT WRITE FILECfile-reference) EVENTCevent-
UNBUFFERED FROM(reference)j reference)

and/or either
KEYFROMCexpression)
or KEYTOCreference)

SEQUENTIAL INPUT READ FILE(file-reference) KEYCexpression) or
BUFFERED INTOC reference) j KEYTOCreference)

READ FILECfile-reference) KEYCexpression) or
SETCpointer-reference)j KEYTOCreference)

READ FILECfile-reference)j2 IGNORECexpression)

SEQUENTIAL INPUT READ FILECfile-reference) EVENT(event-ref.)
UNBUFFERED INTOC reference) j and/or either

KEYCexpression) or
KEYTO(reference)

READ FILECfile-reference)j2 EVENT(event-
reference) and/or
IGNORECexpression)

SEQUENTIAL UPDATE READ FILECfile-reference) KEYCexpression) or
BUFFERED INTOC reference) j KEYTOCreference)

READ FILECfile-reference) KEY(expression) or
SETCpointer~reference)j KEYTOCreference)

READ FILECfile-reference)j2 IGNORECexpression)

WRITE FILE(file-reference) KEYFROMCexpression)
FROM(reference)j or KEYTOCreference)

REWRITE FILECfile-reference)j FROMCreference) and/
or KEYCexpression)

SEQUENTIAL UPDATE READ FILECfile-reference) EVENTCevent-ref.)
UNBUFFERED INTOCreference)j and/or either

KEY(expression) or
KEYTOCreference)

READ FILECfile-expressionj 2 EVENTC event-
reference) and/or
IGNORECexpression)

WRITE FILECfile-reference) EVENTCevent-ref.)
FROMCreference)j and/or either

KEYFROMCexpression)
or KEYTOCreference)

Figure 64 CPart I of 2). VSAM Relative-Record Data Set Statements and Options

186 DOS PL/I Optimizing Compiler: Programmers Guide

(

\

Valid statements, with Options that Other Options that
File Declaration l Must Appear Can also Be Used

SEQUENTIAL UPDATE REWRITE FILE(file-reference)
UNBUFFERED, cont. FROMCreference);

DIRECT OUTPUT
BUFFERED

DIRECT OUTPUT
UNBUFFERED

DIRECT INPUT
BUFFERED

DIRECT INPUT
UNBUFFERED

DIRECT UPDATE
BUFFERED

DIRECT UPDATE
UNBUFFERED

WRITE FILECfile-reference)
FROM(reference)
KEYFROMCexpression);

WRITE FILECfile-reference)
FROMCreference)
KEYFROMCexpression);

READ FILECfile-reference)
INTOCreference) KEY(expression);

READ FILECfile-reference)
SET(pointer-reference)
KEYCexpression);

READ FILECfile-reference)
KEYCexpression);

READ FILECfile-reference)
INTOCreference) KEY(expression);

READ FILECfile-reference)
SETCpointer-reference)
KEY(expression);

REWRITE FILECfile-reference)
FROMCreference) KEYCexpression);

DELETE FILECfile-reference)
KEYCexpression);

WRITE FILECfile-reference)
FROMCreference)
KEYFROMCexpression);

READ FILECfile-reference)
INTOCreference)
KEYCexpression);

REWRITE FILECfile-reference)
FROMCreference)
KEYCexpression);

DELETE FILECfile-reference)
KEYCexpression);

WRITE FILECfile-reference)
FROMCreference)
KEYFROMCexpression);

EVENTCevent­
reference) and/or
KEYCexpression)

EVENT(event­
reference)

EVENTCevent­
reference)

EVENTCevent­
reference)

EVENTCevent­
reference)

EVENT(event­
reference)

EVENT(event­
reference)

lThe complete file declaration would include the attributes FILE and
RECORD. If any of the options KEY, KEYFROM, or KEYTO is used, the
declaration must also include the attribute KEYED.

2The statement: READ FILECfile-reference); is equivalent to the
statement: READ FILECfile-reference) IGNORE(I);

Figure 64 (Part 2 of 2). VSAM Relative-Record Data Set Statements and Options

Chapter 10. Using VSAM Data Sets from PL/I 187

Defining and Loading an Entry-sequenced Data set

In Figure 65, the data set is defined with the DEFINE CLUSTER
command and given the name SMITHFAM.BASE. The NONINDEXED ~
keyword causes an ESDS t·o be defined.

// JOB DOSIOl7 A.J.COS,N08I,H205434
// OPTION CATAL

PHASE PGMA,*
// EXEC IDCAMS,SIZE=30K

/*

DEFINE CLUSTER -
(NAME(PLIVSAM.AJCI.BASE) -
VOLUMES(DOSlll) -
NONINDEXED -
RECORDSIZE(80 80) -
TRACKS(2 2»

// EXEC PLIOPT, SIZE=64K
CREATE: PROC OPTIONS (MAIN);

DCL
FAMFILE FILE SEQUENTIAL OUTPUT ENVeVSAM),
IN FILE RECORD INPUT,
STRING CHAR(80);

ON ENDFILE(IN) GOTO FINITO;
DO 1=1 BY 1;

READ FILE(IN) INTO (STRING);
WRITE FILE(FAMFILE) FROM (STRING);

END;
FINITO:

/*

PUT SKIP EDIT(I-I,' RECORDS PROCESSED')(A);
END;

// EXEC LNKEDT
// DLBL FAMFILE,'PLIVSAM.AJCl.BASE'"VSAM
// EXTENT SYS006,DOSlll
// ASSGN SYS006,3330,VOL=DOSIII,SHR
// EXEC PGMA,SIZE=60K
FRED 69 M
ANDY 70 M
SUZAN 72 F
/*
/&

Figure 65. Defining and Loading an Entry-Sequenced Data Set
(ESDS)

The PL/I program writes the data set using a SEQUENTIAL OUTPUT
file and a WRITE FROM statement. The DLBL statement for the
file contains the data set name (file identifier) of the data
set given in the NAME parameter of the DEFINE CLUSTER command.

The RBA of the records could have been obtained during the
writing for subsequent use as keys in a KEYED file. To do this
a suitable variable would have to be declared to hold the key
and the WRITE ... KEYTO statement used. For example:

DCL CHARS CHAR(4);
WRITE FILE(FAMFIlE) FROM (STRING)

KEYTO(CHARS);

Note that the keys would no.t normally be printable, but could be
retained for subsequent use.

The cataloged procedure OPTION CATAl and a PHASE statement is
used. Because the same program can be used for adding records
to the data set, it is retained in a library. Its use is shown
in Figure 65.

188 DOS Pl/I Optimizing Compiler: Programmers Guide

Updat1ngan Entry-Sequenced Data Set

Figure 66 shows the addition of a new record on the end of an
ESDS. This is done by reexecuting the program shown in
Figure 65. A SEQUENTIAL OUTPUT file is used and the data set
associated with it by use of the data set name (file identifier)
specifying the name PllVSAM.AJC1.BASE specified in the DEFINE
command shown in Figure 65.

Existing records can be rewritten in an ESDS provided that the
length of the record is not changed. A SEQUENTIAL or KEYED
SEQUENTIAL update file can be used to do this. If keys are
used, they can be the RBAs or keys of an alternate index path.

DELETE is not allowed for entry-sequenced data sets.

// JOB DOSlOl8 A.J.COS,N081,Hl05434
// DLBL FAMFILE,'PllVSAM.AJCl.BASE',O,VSAM
// EXTENT SYS006,DOSlll
// ASSGN SYS006,3330,VOl=DOSlll,SHR
// EXEC PGMA,SIZE=60K
JANE 75 F
/*
/&

Figure 66. Updating an ESDS

Creating a Unique Key Alternate Index Path ~or an ESDS

Figure 67 shows the creation of a unique key alternate index
path for the ESDS defined and loaded in Figure 65. Using this
path, the data set is indexed by the name of the child in the
first 15 bytes of the record.

// JOB DOSlOl9 A.J.COX,N08l,H205434
// EXEC IDCAMS,SIZE=30K

/*

DEFINE AlTERNATEINDEX -
(NAME(PlIVSAM.AJCl.AlPHIND) -
VOlUMES(DOSlll) -
TRACKS(4 1) -
KEYS(15 0) -
RECORDSIZEC20 40) -
UNIQUEKEY -
RElATE(PllVSAM.AJCl.BASE»

// DlBl DD1,'PlIVSAM.AJC1.BASE',O,VSAM
// EXTENT SYS006,DOSlll
// DlBl DD2,'PllVSAM.AJCl.AlPHIND',O,VSAM
// EXTENT SYS006,DOSlll
// ASSGN SYS006,3330,VOl=DOSlll,SHR
// EXEC IDCAMS,SIZE=60K

BlDINDEX INFIlECDDl) OUTFIlECDD2)

DEFINE PATH -
(NAME(PLlVSAM.AJC1.ALPHPATH) -
PATHENTRY(PllVSAM.AJCl.AlPHIND»

Figure 67. Creating a Unique Key Alternate Index Path for an
ESDS

Chapter 10. Using VSAM Data Sets from Pl/I 189

Three Access Method Services commands are used. These are:

DEFINE ALTERNATE INDEX
Defines the alternate index as a data set to VSAM.

BLDINDEX
Places the pointers to the relevant records in the
alternate index.

DEFINE PATH
Defines an entity that can be associated with a PL/I file
in DLBL and EXTENT statements.

DLBL and EXTENT statements are required for the INFILE and
OUTFILE operands of BLDINDEX and for the sort files. Care
should be taken that the correct names are specified at the
various points. A more complete description of defining an
alternate index is given in Appendix B on page 297.

creating a Nonunique Key Alternate Index Path ~or an ESDS

Figure 68 shows the creation of a nonunique key alternate index
path for an ESDS. The alternate index enables the data to be
selected by the gender of the children. This enables the girls
or the boys to be accessed separately and every member of each
group to be accessed by use of the key.

// JOB DOS10I10 A.J.COX,N08l H205434
// EXEC IDCAMS,SIZE=30K

/*

DEFINE ALTERNATEINDEX -
(NAME(PL1VSAM.AJC1.SEXIND) -
VOLUMES(DOSlll) -
TRACKS(4 1) -
KEYSCI 37) -
NONUNIQUEKEY -
RELATE(PL1VSAM.AJC1.BASE» -
RECORDSIZE(20 400»

// DLBL DD1,'PL1VSAM.AJCl.BASE'"VSAM
// EXTENT SYS006,DOSlll
// ASSGN SYS006,3330,VOL=DOSlll,SHR
// EXEC IDCAMS,SIZE=30K

BLDINDEX INFILECDDl) OUTFILE(DD2)

DEFINE PATH -
(NAME(PL1VSAM.AJC1.SEXPATH) -

PATHENTRY(PL1VSAM.AJC1.SEXIND»

Figure 68. Creating a Nonunique Key Alternate Index Path on an
ESDS

The three commands and the DLBL and EXTENT statements are as
described in Figure 67 on page 189. The fact that the index has
nonunique keys is specified by the use of the NONUNIQUEKEY
operand. When creating an index with nonunique keys, care
should be taken to ensure that a large enough RECORDSIZE is
specified. In a nonunique alternate index, each alternate index
record contains pointers to all the records that have the
associated alternate index key. The pointer takes the form of
an RBA for an ESDS and the prime key for a KSDS. When a large
number of records may have the same key, a large record will be
required.

190 DOS PL/I Optimizing Compiler: Programmers Guide

Using Alternate Indexes and Backward Reading on an ESDS

Figure 69 shows the use of alternate indexes and backward
reading on an ESDS. The program has four files:

BASEFlE reads the base data set forward.

BACKFLE reads the base data set backward.

ALPHFLE is the alphabetic alternate index path indexing the
children by name.

GENDFLE is the alternate index path that corresponds to the
gender of the children.

There are DLBL and EXTENT statements for all of the files. They
connect BASEFLE and BACKFLE to the base data set by specifying
the name of the base data set as the data set name (file
identifier), and connect ALPHFLE and GENDFLE by specifying the
names of the paths given in Figure 67 on page 189 and Figure 68
on page 190.

// JOB DOS10lll A.J.COX,N08l,H20S434
// OPTION LINK
// EXEC PLIOPT, SIZE=64K

READIT: PROC OPTIONS(MAIN);
DCL BASEFLE FILE SEQUENTIAL INPUT ENVCVSAM),

/*File to read base data set forward*/
BACKFLE FILE SEQUENTIAL INPUT ENVeVSAM BKWD),

/*File to read base data set backward*/
ALPHFLE FILE DIRECT INPUT ENVCVSAM),
/*File to access via unique alternate index path*/
GENDFIL FILE KEYED SEQUENTIAL INPUT ENV(VSAM),
/*File to access via nonunique alternate index path*/

STRING CHAR(80), /*String to be read into*/
1 STRUC DEF (STRING),

2 NAME CHAR(2S),
2 DATE_OF_BIRTH CHAR(2),
2 FILL CHAR(10),
2 GENDER CHAR(1);
DCL NAMEHOLD CHARC2S),SAMEKEY BUILTIN;

/*Print out the family eldest first*/
ON ENDFILECBASEFLE) GOTO YPRINT;

PUT EDITC'FAMILY ELDEST FIRST')CA);
PUT SKIP(2);

DO WHILEC'l'B);
READ FILECBASEFLE) INTO CSTRING);
PUT SKIP EDITCSTRING)CA);

END;
YPRINT:

CLOSE FILECBASEFLE);
/*Close before using data set from other file not necessary

but good practice to prevent potential problems*/

ON ENDFILECBACKFLE) GOTO AGEQUERY;
PUT SKIP(3) EDITC'FAMILY YOUNGEST FIRST')CA);
PUT SKIP(2);

DO WHILEC'l'B);
READ FIlECBACKFLE) INTO CSTRING);
PUT SKIP EDITCSTRING)(A);

END;

AGEQUERY: CLOSE FILECBACKFLE);

Figure 69 (Part 1 of 2). Alternate Index Paths and Backward Reading with an ESDS

Chapter 10. Using VSAM Data Sets from PL/I 191

/*Print date of birth of child specified in the file SYSIN*/

ON KEYCALPHFLE) BEGIN;
PUT SKIP EDITCNAMEHOLD,' NOT A MEMBER OF THE SMITH FAMILY')

CA);
GOTO SPRINTj
END;

ON ENDFILECSYSIN) GOTO SPRINTj

DO WHItEC'I'B);
GET SKIP EDITCNAMEHOLD)CAC2S»j
READ FILECALPHFLE) INTO CSTRING) KEYCNAMEHOLD)j
PUT SKIP (2) EDITCNAMEHOLD,' WAS BORN IN ' DATE OF BIRTH)(A,XCl),A,X(I),A)j

ENDj

SPRINT:
CLOSE FILECALPHFLE)j

/*Use the alternate index to print out all the girls in the
family*/

FINITO:

/*

ON ENDFILECGENDFIL) GOTO FINITOj

PUT SKIP(2) EDITC'ALL THE GIRLS')CA)j
PUT SKIP(2);

READ FILECGENDFIL) INTO (STRING) KEY('F')j
PUT SKIP EDIT(STRING)(A)j
DO WHILECSAMEKEYCGENDFIL»j

READ FILECGENDFIL) INTO (STRING)j
PUT SKIP EDIT(STRING)(A)j

ENDj

ENDj

// EXEC LNKEDT
// DLBL BASEFLE,'PLIVSAM.AJC1.BASE',O,VSAM
// EXTENT SYS006,DOSIII
// DLBL BACKFLE,'PLIVSAM.AJC1.BASE',O,VSAM
// EXTENT SYS006,DOSIII
// DLBL ALPHFLE,'PLIVSAM.AJC1.ALPHPATH',O,VSAM
// EXTENT SYS006,DOSlll
// DLBL GENDFIL,'PLIVSAM.AJCI.GENDPATH',O,VSAM
// EXTENT SYS006,DOSIII
// ASSGN SYS006,3330,VOL=DOSI1I,SHR
// EXEC ,SIZE=60K
ANDY
/*
// EXEC IDCAMS,SIZE=30K

DELETE -
PLIVSAM.AJCI.BASE

/*
/&

Figure 69 CPart 2 of 2). Alternate Index Paths and Backward Reading with an ESDS

The program uses SEQUENTIAL files to access the data and print
it first in the normal order then in the reverse order. At the
label AGEQUERY a DIRECT file is used to read the data associated
with an alternate index key in the unique alternate index.

Finally, at the label SPRINT a KEYED SEQUENTIAL file is used to
print a list of the females in the family using the nonunique
key alternate index path. The SAMEKEY built-in function is used
to read all the records with the same key. The females will be
accessed in the order in which their names were originally
entered. This will happen whether the file is read forward or
backward. For a nonunique key path, the BKWD option only
affects the order in which the keys are readj the order of items

192 DOS PL/I Optimizing Compiler: Programmers Guide

with the same key remains the same as it is when the file is
read forward.

DELETION: At the end of the example, the Access Method Services
DELETE command is used to delete the base data set. When this
is done, the associated alternate indexes and paths will also be
deleted. They can also be deleted separately, as described in
Appendix B on page 297.

EXAMPLES WITH KEY-SEQUENCED DATA SETS

The examples in Figure 70 on page 194 through Figure 73 on page
197 show the use of a key-sequenced data set to hold a telephone
directory. The prime index is by the name of the subscriber.
In Figure 70 the data set is defined and loaded. In Figure 71
it is updated by means of a prime index. In Figure 73 a unique
key alternate index path is created using the numbers as the
alternate key. In Figure 73, use of the alternate index path is
shown to update the base data set using the number as a key and
to print out the data in order of the numbers. They can be
compared with the INDEXED data set examples in Chapter 9.

De~ining and Loading a Key-Sequenced Data Set

Figure 70 on page 194 shows the DEFINE command used to define a
KSDS. The data set is given the name PLIVSAM.AJC2.BASE and
defined as a KSDS because of the use of the INDEXED option. The
position of the keys within the record is defined in the KEYS
option.

Within the PL/I program a KEYED SEQUENTIAL OUTPUT file is used
with a WRITE ... FROM ... KEYFROM statement. The data is presented
in ascending key order. A KSDS must be loaded in this manner.

The file is associated with the data set by a DLBL statement
that uses the name given in the DEFINE command as the data set
name (file identifier), using the prime index.

Updating a Key-Sequenced Data Set

Figure 71 on page 195 shows one method by which a KSDS can be
updated.

A DIRECT update file is used and the data is altered according
to a code that is passed in the records in the file SYSIN.

A Add a new record
C Change the number of an existing name
D Delete a record

Chapter 10. Using VSAM Data Sets from PL/I 193

// JOB DOSI0112 A.J.COS,N081,H205434
// OPTION lINK
// EXEC IDCAMS,SIZE=30K

/*

DEFINE CLUSTER -
(NAME(PlIVSAM.AJC2.BASE) -
VOLUMES(DOSlll) -
INDEXED -
TRACKS(3 1) -
KEYS(20 0) -
RECORDSIZE(23 SO»

// EXEC PlIOPT, SIZE=64K
TElNOS: PROC OPTIONSCMAIN);

DCl DIREC FILE RECORD SEQUENTIAL OUTPUT KEYED ENV(VSAM),
CARD CHAR(SO),
NAME CHAR(20) DEF CARD POSel),
NUMBER CHAR(3) DEF CARD POS(21),
OUTREC CHAR(23) DEF CARD POSel);

ON ENDFIlE(SYSIN) GOTO FINISH;

OPEN FIlECDIREC) OUTPUT;

NEXTIN: GET FIlECSYSIN) EDITCCARD)(A(SO»;
WRITE FIlECDIRECT) FROMCOUTREC) KEYFROM(NAME);
GOTO NEXTIN;

FINISH: CLOSE FIlECDIREC);

END TElNOS;

/*
// EXEC lNKEDT
// DLBL DIREC,'PLIVSAM.AJC2.BASE',0,VSAM
// EXTENT SYS006,DOSlll
// ASSGN SYS006,3330,VOL=DOSlll,SHR
// EXEC ,SIZE=64K
ACTION,G. 162
BAKER,R. 152
BRAMLEY,O.H. 248
CHEESEMAN,D. 141
CORY,G. 336
EllIOTT,D. 875
FIGGINS,S. 413
HARVEy,C.D.W. 205
HASTINGS,G.M. 391
KENDALL,J.G. 294
lANCASTER,W.R. 624
MILES,R. 233
NEWMAN,M.W. 450
PITT,W.H. 515
ROlF,D.E. 114
SHEERS,C.D. 241
SUTClIFFE,M. 472
TAYLOR,G.C. 407
WIlTON,l.W. 404
WINSTONE,E.M. 307
/*
/&

Figure 70. Defining and loading a Key-Sequenced Data Set eKSDS)

194 DOS Pl/I Optimizing Compiler: Programmers Guide

/

~

// JOB DOSlOl13 A.J.COX,N08l,H205434
// OPTION LINK
// EXEC PLIOPT, SIZE=64K

DIRUPDT: PROC OPTIONSCMAIN)j

DCL DIREC FILE RECORD KEYED ENVCVSAM),
ONCODE BUILTIN,
OUTREC CHAR(23),
NUMBER CHAR(3) DEF OUTREC POSC2l),
NAME CHAR(20) DEF OUTREC,
CODE CHAR(2)j

ON ENDFILECSYSIN) GO TO PRINT;

ON KEYCDIREC) BEGIN;
IF ONCODE=51 THEN PUT FILECSYSPRINT) SKIP EDIT

C'NOT FOUND: ',NAME)CAC15),A);
IF ONCODE=52 THEN PUT FILECSYSPRINT) SKIP EDIT

C'DUPLICATE: ',NAME)CAC15),A);
END;

OPEN FILECDIREC) DIRECT UPDATE;

NEXT: GET FILECSYSIN) EDITCNAME,NUMBER,CODE)CAC20),AC3),XC56),AC1»;
IF CODE='A' THEN WRITE FILECDIREC) FROMCOUTREC) KEYFROMCNAME);
ELSE IF CODE='C' THEN REWRITE FILECDIREC) FROMCOUTREC)

KEYCNAME);
ELSE IF CODE='D' THEN DELETE FILECDIREC) KEYCNAME);
ELSE PUT FILECSYSPRINT) SKIP EDITC'INVALID CODE: ',NAME)

CAClS),A);
GO TO NEXT;

PRINT: CLOSE FILECDIREC);
PUT FILECSYSPRINT) PAGE;
OPEN FILECDIREC) SEQUENTIAL INPUTj

ON ENDFILECDIREC) GO TO FINISH;

NEXTIN: READ FILECDIREC) INTOCOUTREC);
PUT FILECSYSPRINT) SKIP EDITCOUTREC)CA);
GO TO NEXTINj

FINISH: CLOSE FILECDIREC);
END DIRUPDT;

/*
// EXEC LNKEDT
// DLBL DIREC,'PLlVSAM.AJC2.BASE',0,VSAM
// EXTENT SYS006,DOSlll
// ASSGN SYS006,3330,VOL=DOSlll,SHR
// EXEC ,SIZE=64K
NEWMAN,M.W. 516
GOODFELLOW,D.T. 889
MILES,R.
HARVEY,C.D.W. 209
BARTLETT,S.G. 183
CORY,G.
READ,K.M. 001
PITT,W.H.
ROLF,D.F.
ELLIOTT,D. 291
HASTINGS,G.M.
BRAMLEY,O.H. 439
/*
/&

Figure 71. Updating a KSDS

C
A
D
A
A
D
A

D
C
D
C

At the label NEXT, the name, number, and code are read in and
action taken according to the value of the code. A KEY on-unit
is used to handle any incorrect keys. When the updating is

Chapter 10. Using VSAM Data Sets from PL/I 195

Method

SEQ

SKP

DIR

finished Cat the label PRINT), the file DIREC is closed and
reopened with the attributes SEQUENTIAL INPUT. The file is then
read sequentially and printed.

The file is associated with the data set by a DLBL statement
that uses the data set name efile identifier) PLlVSAM.AJC2.BASE,
defined in the DEFINE CLUSTER command in Figure 70 on page 194.

METHODS OF UPDATING A KSDS: There are a number of methods of
updating a KSDS. The method shown using a DIRECT file is
suitable for the data as it is shown in the example. If the
data had been presented in ascending key order Cor even
something approaching it), performance may have been improved by
use of the SKIP ENVIRONMENT option. For mass sequential
insertion, a KEYED SEQUENTIAL UPDATE file should be used. This
gives faster performance because the data is written onto the
data set only when strictly necessary and not after every write
statement, and because the balance of freespace within the data
set is retained.

Statements to achieve effective mass sequential insertion would
be:

DCL DIREC KEYED SEQUENTIAL UPDATE -
ENVeVSAM);

WRITE FILEeDIREC) FROMeOUTREC) -
KEYFROMeNAME);

The PL/I input/output routines would detect that the keys were
in sequence and make the correct requests to VSAM. If the keys
were not in sequence, this too would be detected and no error
would occur, although the performance advantage would be lost.
VSAM, in fact, provides three methods of insertion as shown in
Figure 72.

SKIP means that the sequence must be followed but that records
may be omitted. Absolute sequence or order need not be
maintained if SEQ or SKIP is used because the PL/I routines
determine which type of request to make to VSAM for each
statement, first checking on the keys to see which would be
appropriate. The retention of freespace ensures that the
structure of the data set at the point of mass sequential
insertion is not destroyed, enabling further normal alterations
to be made in that area without loss of performance.

When Written PL/I Attributes
Requirements Freespace Onto Data set Required

Keys in sequence kept only when KEYED SEQUENTIAL UPDATE
necessary

Keys in sequence used only when KEYED SEQUENTIAL UPDATE
necessary ENVeVSAM SKIP)

Keys in any used after every DIRECT
order statement

Figure 72. VSAM Methods of Insertion into a Key-Sequenced Data Set

Creating a Unique Key Alternate Index Path for a KSDS

Figure 73 on page 197 shows the creation of a unique key
alternate index path for a KSDS. The data set is indexed by the
telephone number enabling the number to be used as a key to
discover the name of person on that extension. The fact that
keys are to be unique is specified by UNIQUEKEY. Also, the data
set will be able to be listed in numeric order to show what
numbers are not used. Three Access Method Services commands are
used:

196 DOS PL/I Optimizing Compiler: Programmers Guide

DEFINE ALTERNATE INDEX
Defines the data set that will hold the alternate index
data.

BLDINDEX
Places the pointers to the relevant records in the
alternate index.

DEFINE PATH
Defines the entity that can be associated with a PL/I file
in DLBL and EXTENT statements.

DLBL and EXTENT statements are required for the INFILE and
OUTFILE of BLDINDEX and for the sort files. Care should be
taken not to confuse the names involved. See the discussion in
Appendix B on page 297.

When creating an alternate index with a unique key, you should
ensure that no further records could be included with the same
alternate key. In practice, a unique key alternate index would
not be entirely satisfactory for a telephone directory as it
would not allow two people to have the same number. Similarly
the prime key would prevent one person having two numbers. A
solution would be to have an ESDS with two nonunique key
alternate indexes, or to restructure the data format to allow
more than one number per person and to have a nonunique key
alternate index for the numbers. See Figure 68 on page 190 for
an example of the creation of an alternate index with nonunique
keys.

// JOB DOSIOtl4 A.J.COS,N081,H20S434
// EXEC IDCAMS,SIZE=30K

/*

DEFINE ALTERNATEINDEX -
(NAME(PLIVSAM.AJC2.NUMIND) -
VOLUMESCDOSlll) -
TRACKSC4 4) -
KEYS(3 20) -
RELATECPLIVSAM.AJC2.BASE) -
UNIQUEKEY -
RECORDSIZE(24 48» -

CATALOG(DOSlll.VSAMCAT)

// DLBL DDl,'PLlVSAM.AJC2.BASE',0,VSAM
// EXTENT SYS006,DOSlll
// DLBL DD2,'PLIVSAM.AJC2.NUMIND',0,VSAM
// EXTENT SYS006,DOSlll
// ASSGN SYS006,3330,VOL=DOSlll,SHR
// EXEC IDCAMS,SIZE=30K

BLDINDEX INFILECDDl) QUTFILECDD2)

DEFINE PATH -
CNAMECPLIVSAM.AJC2.NUMPATH) -

PATHENTRYCPLIVSAM.AJC2.NUMIND»

Figure 73. Creating an Alternate Index Path for a KSDS

Using a Unique Key Alternate Index Path with a KSDS

Figure 74 on page 198 shows the use of a path with a unique key
alternate index to update a KSDS and then to access and print it
'in the order of the alternate index.

The alternate index path is associated with the PL/I file by a
DLBL statement that specifies the name of the path (given in the
DEFINE PATH command in Figure 73) as the data set name (file
identifier).

Chapter 10. Using VSAM Data Sets from PL/I 197

In the first section of the program a DIRECT OUTPUT file is used
to insert a new record using the alternate index key. Note that
any alteration made with an alternate index must not alter the
prime key or the alternate index key of access of an existing
record or add a duplicate key in the prime index or any unique
key alternate index.

In the second section of the program (at the label PRINTIT), the
data set is read in the order of the alternate index keys using
a SEQUENTIAL INPUT file. It is then printed onto SYSPRINT.

// JOB DOS10116 A.J.COX,N08l,H205434
// OPTION LINK
// EXEC PLIOPT, SIZE=256K

ALTER: PROC OPTIONS(MAIN);
DCl NUMFlEl FILE RECORD DIRECT OUTPUT ENV(VSAM),

NUMFlE2 FILE RECORD SEQUENTIAL INPUT ENV(VSAM),
IN FILE RECORD,
STRING CHAR(80),
NAME CHAR(20) DEF STRING,
NUMBER CHAR(3) DEF STRING POSC2l),
DATA CHAR(23) DEF STRING;

ON KEY (NUMFlEl) BEGIN;
PUT SKIP EDITC'DUPlICATE NUMBER')CA);

END;
ON ENDFIlE(IN) GOTO PRINTIT;
DO WHILEC'l'B);

READ FIlE(IN) INTO (STRING);
WRITE FILE(NUMFLE1) FROM (STRING) KEYFROM(NUMBER);

END;
PRINTIT:

CLOSE FIlE(NUMFLE1);
ON ENDFIlECNUMFLE2) GOTO FINALE;
DO WHIlE('l'B);

READ FIlECNUMFLE2) INTO CSTRING);
PUT SKIP EDITCDATA)(A);

END;
FINALE:

/*

PUT SKIP(3) EDITC'****SO ENDS THE PHONE DIRECTORY****')(A);
END;

// EXEC LNKEDT
// DlBL NUMFLE1,'PL1VSAM.AJC2.NUMPATH'"VSAM
// EXTENT SYS006,DOSlll
// DLBL NUMFLE2,'PL1VSAM.AJC2.NUMPATH'"VSAM
// EXTENT SYS006,DOSlll
// ASSGN SYS006,3330,VOl=DOSlll,SHR
// EXEC ,SIZE=256K
RIERA L 123
/*
// EXEC IDCAMS,SIZE=30K

DELETE -
PL1VSAM.AJC2.BASE

/*
/&

Figure 74. Using a Unique Alternate Index Path to Access a KSDS

EXAMPLES WITH RELATIVE-RECORD DATA SETS

These exampl~s show the defining and loading of an RRDS and its
subsequent updating. The examples correspond with the
REGIONAlCl) examples in Chapter 9. They use the same telephone
directory data, but use the number as the key to the record.
The record contains only the name.

198 DOS Pl/I Optimizing Compiler: Programmers Guide

(
I

// JOB DOSIOl17 A.J. COX,N08l,H205434
// OPTION LINK
// EXEC IDCAMS,SIZE=30K

/*

DEFINE CLUSTER -
CNAMECPLlVSAM.AJC3.BASE) -
VOLUMESCDOSlll) -
NUMBERED -
TRACKSC2 2) -
RECORDSIZEC20 20»

// EXEC PLIOPT, SIZE=64K
CRRl: PROC OPTIONSCMAIN);

DCL NOS FILE RECORD OUTPUT DIRECT KEYED ENV(VSAM),
CARD CHAR(80),
NAME CHAR(20) DEF CARD,
NUMBER CHAR(2) DEF CARD POSC2l),
IOFIELD CHAR(20);

ON ENDFILE (SYSIN) GO TO FINISH;
OPEN FILE(NOS);

NEXT: GET FILE(SYSIN) EDITCCARD)(A(80»;
IOFIELD=NAME;
WRITE FILECNOS) FROMCIOFIELD) KEYFROMCNUMBER);
GO TO NEXT;

FINISH: CLOSE FILECNOS);
END CRRl;

/*
// EXEC LNKEDT
// DLBL NOS,'PLIVSAM.AJC3.BASE'"VSAM
// EXTENT SYS006,DOSlll
// ASSGN SYS006,3330,VOL=DOSll1,SHR
// EXEC ,SIZE=64K
ACTION,G. 12
BAKER,R. 13
BRAMLEy,O.H. 28
CHEESNAME,L. 11
CORY,G. 36
ELLIOTT,D. 85
FIGGINS.E.S. 43
HARVEy,C.D.W. 25
HASTINGS,G.M. 31
KENDALL,J.G. 24
LANCASTER,W.R. 64
MILES,R. 23
NEWMAN,M.W. 40
PITT,W.H. 55
ROLF,D.E. 14
SHEERS,C.D. 21
SURCLIFFE,M. 42
TAYLOR,G.C. 47
WILTON,L.W. 44
WINSTONE,E.M. 37
/*
/&

Figure 75. Defining and Loading a Relative-Record Data Set
CRRDS)

Defining and Loading a Relative Record Data Set

In Figure 75, the data set is defined with a DEFINE CLUSTER
command and given the name PL1VSAM.AJC3.BASE. The fact that it
is to be an RRDS is determined by the NUMBERED keyword. In the
PL/I program it is loaded with a DIRECT OUTPUT file and a
WRITE ... FROM ... KEYFROM statement is used.

If the data had been in order and the keys in sequence, it would
have been possible to use a SEQUENTIAL file and write into the
data set from the start. The records would then have been
placed in the next available slot and given the appropriate

Chapter 10. Using VSAM Data Sets from PL/I 199

number. The number of the key for each record could have been
returned using the KEYTO option.

// JOB DOS10#18 A.J.COS,N081,H205434
// OPTION LINK
// EXEC PLIOPT, SIZE=64K

ACR1: PROC OPTIONSCMAIN);
DCL NOS FILE RECORD KEYED ENVCVSAM),NAME CHAR(20),

CNEWNO,OLDNO) CHAR(2),CODE CHAR(l),IOFIELD CHAR(20),
BYTE CHAR(1) DEF IOFIELD;

NEXT:

ON ENDFILECSYSIN) GO TO PRINT;
OPEN FILECNOS) DIRECT UPDATE;
ON KEYCNOS) BEGIN;

PUT FILECSYSPRINT) SKIP EDIT
C'DUPLICATE',NAME)CAC15),A);

END;
GET FILECSYSIN) EDITCNAME,NEWNO,OLDNO,CODE)

(AC20),2 A(2),X(55),ACl»;
IF CODE='A' THEN GO TO RITE;

ELSE IF CODE='C' THEN
DO;

DELETE FILECNOS) KEY(OLDNO);
GO TO RITE;

END;
ELSE IF CODE='D' THEN

DELETE FILECNOS) KEYCOLDNO);
ELSE PUT FILE(SYSPRINT) SKIP EDITC'INVALID CODEz ',NAME) -

CA(15),A);
GO TO NEXT;

RITE: WRITE FILE{NOS) KEYFROM(NEWNO)
FROMCNAME);

GO TO NEXT;
PRINT: CLOSE FILECNOS);

PUT FILECSYSPRINT) PAGE;
OPEN FILECNOS) SEQUENTIAL INPUT;
ON ENDFILE(NOS) GO TO FINISH;

NEXTIN: READ FILE(NOS) INTOCIOFIELD) KEYTOCNEWNO);
PUT FILECSYSPRINT) SKIP EDITCNEWNO,IOFIELD)CA(5),A);
GO TO NEXTINi

FINISH: CLOSE FILECNOS);
END ACRl;

/*
// EXEC LNKEDT
// DLBL NOS,'PL1VSAM.AJC3.BASE'"VSAM
// EXTENT SYS006,DOSl11
// ASSGN SYS006,3330,VOL=DOSll1,SHR
// EXEC ,SIZE=64K
NEWMAN,M.W.
GOODFELLOW,D.T.
MILES,R.
HARVEy,C.D.W.
BARTLETT,S.G.
CORY,G.
READ,K.M.
PITT,W.H.
ROLF,D.F.
ELLIOTT,D.
HASTINGS,G.M.
BRAMLEy,O.H.
/*

5640
89

23
29
13

36
01

55
14

4285
31

4928

// EXEC IDCAMS,SIZE=30K
DELETE -

PLIVSAM.AJC3~BASE

Figure 76. Updating an RRDS

200 DOS PL/I Optimizing Compiler: Programmers Guide

C
A
D
A
A
D
A

D
C
D
C

!
\
\,

The PL/I file is associated with the data set by the DLBL
statement that uses as the data set name (file identifier) the
name given in the DEFINE CLUSTER command.

Updating a Relative-Record Data set

Figure 76 on page 200 shows an RRDS being updated. A DIRECT
UPDATE file is used and new records are written by key. There
is no need to check for the records being empty because the
empty records are not available under VSAM.

In the second half of the program, starting at the label PRINT,
the updated file is printed out. Again there is no need to
check for the empty records as there is in REGIONAL(l).

The PL/I file is associated with the data sets by a DLBL
statement that specifies the data set name (file identifier)
PLlVSAM.AJC3.BASE, the name given in the DEFINE CLUSTER command
in Figure 75.

At the end of the example, the DELETE command is used to delete
the data set.

Chapter 10. Using VSAM Data Sets from PL/I 201

CHAPTER 11. PROGRAM CHECKOUT

Program checkout is the application of diagnostic and test
processes to a program. You should give adequate attention to
program checkout during the design and development of a program
so that:

• A program becomes fully operational after the fewest
possible test runs, thereby minimizing the time and cost of
program development.

• A program is proved to have fulfilled all the design
objectives before it is released for production work.

• A program has complete and clear documentation to enable
both operators and program maintenance personnel to use and
maintain the program without assistance from the original
programmer.

CONVERSATIONAL PROGRAM CHECKOUT

The compiler can be used in conversational mode when writing and
testing programs at a terminal. The conversational features are
available to users where CMS facilities are present. The
conversational facilities enable you to develop a PL/I program
at a terminal, through which you can examine diagnostic messages
for compilation and results and diagnostic messages for
compilation and execution. Thus, a PL/I program can be checked
out during its construction, thereby saving a substantial amount
of elapsed time that can occur between .test compilation and
execution runs in batch processing.

The PL/I program is entered and processed using the DOSPLI,
EDIT, and other CMS commands and features, described in DOS PL/I
Optimizing Compiler: CMS User's Guide.

COMPILE-TIME CHECKOUT

At compile-time, both the preprocessor and the compiler can
produce diagnostic messages and listings according to the
compiler options selected for a particular compilation. The
listing and associated compiler options are discussed in Chapter
4. The diagnostic messages produced by the optimizing compiler
are identified by a number prefixed by the letters IEL. These
diagnostic messages are designed to be as self-explanatory as
possible. Each message is reproduced in DOS PL/I Optimizing
Compiler: Messages, which includes explanatory notes, examples,
and any action to be taken.

Always check the compilation listing for occurrences of these
messages to determine whether the syntax of the program is
correct. Messages of greater severity than warning (that is,
error, severe error, and unrecoverable error) should be acted
upon, even if the message indicates that the compiler has been
able to "fix" the error correctly. You should appreciate that
the compiler, in making an assumption as to the intended meaning
of an erroneous statement in the source program, can introduce a
further, perhaps most severe, error which in turn can produce
yet another error, and so on. When this occurs, the result is
that the compiler produces a number of diagnostic messages which
are all caused either directly or indirectly by the one error.

(

Other useful diagnostic aids produced by the compiler are the
attribute tables and cross-reference tables. The attribute
table, specified by the ATTRIBUTES option, is used for checking !~
that program identifiers, especially those whose attributes are I~
contextually and implicitly declared, have the correct
attributes. The cross-reference table is requested by the XREF

202 DOS PL/I Optimizing Compiler: Programmers Guide

,
)

~
I

f

option, and indicates, for each program variable, the statement
number of each statement that refers to the variable.

To prevent unnecessary waste of time and resources during the
early stages of developing programs, use NOSYNTAX, NOCOMPILE,
and NOLINK options. These options, when specified, will
suppress subsequent compilation, link-editing, and execution
should the appropriate error conditions be detected.

The NOSYNTAX option specified with the severity level RW,R "E,"
or Rsn will cause the compilation of the output from the PL/I
preprocessor, if used, to be suppressed prior to the
syntax-checking stage should the preprocessor issue diagnostic
messages at or above the severity level specified in the option.

The NOCOMPILE option specified with the severity level "W,n RE,"
or "sn will cause the compilation to be suppressed after the
syntax-checking stage if syntax checking causes the compiler to
issue diagnostic messages at or above the severity level
specified in the option.

The NOLINK option specified with the severity level "W,R "E," or
nsn will cause link-editing (and execution) to be suppressed if
the compiler issues diagnostic messages at or above the severity
level specified in the option.

LINKAGE-EDITOR CHECKOUT

When using the linkage editor, check particularly that any
required overlay structuring and incorporation of additional
relocatable subroutine modules has been performed correctly.
Diagnostic messages produced by the linkage editor are prefixed
by R21.R These messages are fully documented in DOS: Operator
Communications and Messages.

When checking the processing performed by the linkage editor,
refer to the module map produced by the linkage editor showing
the structure of the executable program phase. The module map
names the relocatable object modules that have been incorporated
into the program. The compiler produces an external symbol
dictionary (ESD) listing if requested by the ESD option. The
ESD listing indicates the external names that the linkage editor
is to resolve in order to create an executable program phase.
The linkage editor is described in Chapter 5.

EXECUTION-TIME CHECKOUT

At execution time, errors can occur in a number of different
operations associated with running a program. For instance, an
error in the 'use of a job control statement can cause a job to
fail. Most errors that can be detected are indicated by a
diagnostic message. The diagnostic messages for errors detected
at execution time are listed in DOS PL/I Optimizing Compiler:
Messages. These messages are identified by the prefix IBM. The
messages are printed on the SYSPRINT file if it is declared
explicitly or implicitly as a PRINT file with a line size of not
less than 72 or if the SNAP option occurs in the same program.
Otherwise, the messages are printed on the operator console.

A failure in the execution of a PL/I program could be caused by
one of the following:

• Logical error in source program

• Invalid use of PL/I

• Unforeseen errors

• Operating error

• Invalid input data

Chapter 11. Program Checkout 203

• Unidentified program failure

•
•

A compiler or library subroutine failure

System failure
(
~

Logical Errors in Source Programs

Invalid Use of PL/I

Unforeseen Errors

Logical errors in source programs can often be difficult to
detect. Such errors can sometimes cause a compiler or library
failure to be suspected. The more common errors are misuse of
array subscripts, misuse of locator variables, failure to
convert correctly from arithmetic to string data and from string
to arithmetic data, incorrect arithmetic operations, and string
manipulation operations, and failure to match data lists with
their format lists.

It is possible that a misunderstanding of the language, or the
failure to provide the correct environment for using PL/I, will
result in a failure of a PL/I program. For example, the use of
uninitialized variables, the use of controlled variables that
have not been allocated, reading records into incorrect
structures, the misuse of array subscripts or of pointer
variables, conversion errors, incorrect arithmetic operations,
or string manipulation operations can cause this type of
failure. See the OS and DOS PL/I Language Reference Manual for
descriptions of other common errors that are made in PL/I source
programs.

If an error is detected during execution of a PL/I program in
which no on-unit is provided to terminate execution or attempt ~
recovery, the job will be terminated abnormally. However, the
status of a program at the point where the error occurred can be
recorded by the use of an ERROR on-unit that contains the
statements:

ON ERROR BEGIN;
ON ERROR SYSTEM;
PUT DATA;
END;

You are advised to include such an on-unit in any PL/I program
under test. The PUT DATA statement causes the printing of the
names and the values of all identifiers valid for data-directed
transmission and known in the block containing the on-unit in
which it appears. Note that the use of the "PUT DATA;"
statement requires a considerable amount of storage for symbol
tables and library subroutines, some of which may never be used.
Therefore the "PUT DATA;" statement is not recommended for
permanent inclusion in a PL/I program, but only as a temporary
aid to program checkout. The statement "ON ERROR SYSTEM;"
contained in the on-unit ensures that further errors caused by
uninitialized variables do not result in a permanent loop. Note
also that if the program contains nested procedures or begin
blocks, the on-unit shown above should appear in each block so
that variables known only with a particular block can be
printed.

A common error in programs that are incompletely checked-out is
the failure to initialize variables before their values are
used.

It is recommended that you not use the full optimization
facilities of the compiler in the early stages of debugging I
because of the additional compilation required to provide the ~
additional optional optimization. Full optimization can also
cause the reordering of some expressions and statements. This

204 DOS PL/I Optimizing Compiler: Programmers Guide

)
Insufficient storage

operating Error

Invalid Input Data

may make debugging more difficult for programs that contain
errors.

It is possible to receive a diagnostic message indicating that
there is insufficient address space available for a PL/I program
or program phase, even if you are certain that there is enough
storage for the job. VSE job control allocates space based on
the size of the largest program in the library whose name begins
with the same first four letters as the program or phase
awaiting execution. Thus, if your program or phase has a name
whose first four letters are the same as those in the name of a
larger program in the library, job control will attempt to
acquire the larger amount of space for your program. The
solution is to rename your program or phase with a name whose
first four letters are unique. Job control will then take the
size from your program itself.

A job could fail because of an operating error, such as running
a job t~ice so that a data set becomes overwritten or
erroneously deleted. Other operating errors include getting
card decks into the wrong order and the failure to give
operators correct instructions for running a job.

A program should contain checks to ensure that any incorrect
input data is detected before it can cause the program to fail.

Use the COPY option of the GET statement if you wish to check
values obtained by stream-oriented input. The values will be
listed on the file named in the COPY option. If no file n~me is
given, SYSPRINT is assumed. The VERIFY built-in function can be
used to check the validity of input.

Unidentified Program Failure

If execution of a program terminates abnormally without an
accompanying PL/I execution-time diagnostic message, it is
probable that the error that caused the failure also prevented
the production of a message. In this situation, it is still
possible to check the PL/I source program for errors that could
result in overwriting areas of the main storage partition that
contain executable instructions, particularly the communications
region, which contains the address tables for the execution-time
error handling routines. The types of PL/I source program
errors that might cause the main storage to be overwritten
erroneously are:

1. Assignment of a value to a nonexistent array element. For
example:

DCL ARRAY(10);

DO I = 1 TO 100;
ARRAY(I) = VALUE;
END;

To detect this type of error at execution time, enable the
SUBSCRIPTRANGE condition. For each attempt to write a value
to an element outside the declared range of subscript
values, the SUBSCRIPTRANGE will be raised. If there is no
on-unit for this condition, a diagnostic message will be
printed. This facility, although a valuable
program-checkout aid, is expensive in execution time and

Chapter 11. Program Checkout 205

storage space, and should be used carefully during the
debugging of programs containing arrays. /

2. The use of incorrect locator values for locator (pointer and \
offset) variables. This type of error is possible if a
locator value is obtained by means of a record-oriented
transmission statement. Check that locator values created
in a program, transmitted to a data set, and subsequently
retrieved for use in another program, are valid for use in
the second program. An error could also be caused by
attempting to free a based variable when its qualifying
pointer value has been changed. For example:

DCl A STATIC,B BASED (P),Q POINTER;
AllOCATE B;
Q = ADDR(A);
P = Q;
FREE B;

3. The use of incorrect values for label, entry, and file
variables. Errors similar to those described above for
locator variables are possible for label, entry, and file
values that are transmitted and subsequently retrieved.

4. The use of the SUBSTR pseudovariable to assign a string to a
position beyond the maximum length of the target string.
For example:

DCl X CHAR(3);
1=3;
SUBSTR(X,2,I) = 'ABC';

Enabling STRINGRANGE will detect this. STRINGRANGE,
although a valuable program checkout aid, is expensive in
execution time and storage space, and should be used
carefully during the debugging of programs containing the /
SUBSTR pseudovariable. (

The SIZE condition should be enabled when debugging programs
so that any instances of the loss of high order bits or
digits in an assignment, intermediate result, or
input/output operation are detected.

Compiler or Library Subroutine Failure

System Failure

If you are convinced that the failure is caused by a compiler or
a library subroutine failure, you should notify your management,
who will initiate the appropriate action to correct the error.
This could mean calling in IBM personnel for programming support
to rectify the problem. Before calling IBM for programming
support, refer to the instructions for providing the correct
information to be used in diagnosing the problem. These
instructions are given in Appendix F on page 326.

Meanwhile, you can attempt to find an alternative way to perform
the operation that is causing the trouble. A bypass is often
feasible, because the Pl/I language frequently provides
alternative methods of performing a given operation.

System failures include machine malfunctions and operating
system errors. These failures should be identified to the
operator by a system message. If execution of a Pl/I program
results in a diagnostic message indicating an illegal supervisor
call (SVC), it is probable that the DOS control program was
generated without the particular SVC required by a PL/I
function. Operating System requirements are given in DOS Pl/I ~
Optimizing Compiler: Installation. ~

206 DOS Pl/I Optimizing Compiler: Programmers Guide

STATEMENT NUMBERS AND TRACING

Three compiler options provide valuable program-checkout aids.
They are the statement numbering option (GOSTMT), the statement
number trace facility (FLOW(n,m», and the statement count
option (COUNT).

The GOSTMT option causes the number of the statement containing
an error that results in the abnormal termination of execution
to be printed as part of the execution-time diagnostic message.
This option is not specified by default, so it must be given
explicitly for each compilation.

The (FLOW(n,m» option produces a list of the numbers of the
last In' branch-out/branch-in statement numbers, and the last
'm' procedures and on-units to be entered. A branch-out
statement is a statement such as a GOTO statement that transfers
control to a statement other than the one that immediately
follows it. A branch-in statement is a statement such as
PROCEDURE, ENTRY, or any other labeled statement that receives
control from a statement other than the statement that
immediately precedes it. The figure you choose for "n" should
be large enough to provide a usable trace of the flow of control
through the program. The trace is printed whenever an on-unit
with the SNAP option is entered. It gives both the statement
numbers and the names of the containing procedures, blocks, or
on-units. For example, an ERROR on-unit that causes both the
listing of the program variables and the statement number trace
can be included in a PL/I program as follows:

ON ERROR SNAP BEGIN;
ON ERROR SYSTEM;
PUT DATA;
END;

The COUNT option produces a table indicating how many times each
statement or group of statements in the program has been
executed. Count output is written on the file SYSLST when the
program terminates. The output has the following format:

PROCEDURE namel
FROM TO COUNT

1 20 1
21 30 10

200 210 1

namel TOTAL m

PROCEDURE name 2
FROM TO COUNT

1 10 5

name2 TOTAL n

Three such columns are printed per page. Each column is
followed by the total count for the column (that is, m+n in the
preceding example.)

To draw attention to statements that have not been executed,
ranges for which the count is zero are listed separately after
the main tables.

If the OPTIMIZE and REORDER options are used when compiling, the
numbers produced by COUNT and FLOW may be useful but they are
not accurate.

~) DYNAMIC CHECKING FACILITIES
I

It is possible for a syntactically-correct program to produce
incorrect results without raising any PL/I error conditions.

Chapter 11. Program Checkout 207

This can be attributed to the use of incorrect logic in the PL/I
source program or to invalid input data. Detection of such
errors from the resultant output (if any) can often be a (
difficult task. It is sometimes helpful to have a record of \
each of the values assigned to a variable, particularly label, ~
entry, loop control, and array subscript variables. This can be
obtained by using either PUT DATA statements or the CHECK prefix
option.

A CHECK prefix option can specify program variables in a list.
Whenever a variable that has been included in a checklist is
assigned a new value, the CHECK condition is raised. If the
implicit action for the CHECK condition is used, the action is
to print the name and new value of the variable that caused the
CHECK condition to be raised. An example of a CHECK prefix
options list is:

(CHECK(A,B,C,L»:/* CHECKOUT PREFIX LIST */
TEST: PROCEDURE OPTIONS(MAIN);

DECLARE A etc.,

CHECK can also be used to print the name of a label constant
whenever control passes through it.

If the CHECK condition is to be raised for all the variables and
labels used in a program, the CHECK prefix option can be more
simply specified without a list of items. For example:

(CHECK): TEST: PROCEDURE;

Note that, if a CHECK on-unit, other than on CHECK SYSTEM, and a
CHECK prefix-list are used, the implicit action (to print the
name and value of the identifier that raises the CHECK
condition) will be overridden. Although a valuable
program-checkout aid, the CHECK condition is expensive in \
execution time and storage space.

CONTROL OF CONDITIONS

During execution of a PL/I object program, a number of
conditions can be raised, either as a result of program-defined
action, or as a result of exceeding a hardware limitation. PL/I
contains facilities for detecting such conditions. These
facilities can be used to determine the circumstances of an
unexpected interrupt, perform a recovery operation, and permit
the program to continue to run. Alternatively, the facilities
can be used to detect conditions raised during normal processing
and to initiate program-defined actions for the condition. Note
that some of the PL/I conditions are enabled by default, some
cannot be disabled, and others have to be enabled explicitly in
the program. Refer to the OS and DOS PL/I Language Reference
Manual for a full description of each condition.

Note that the SIGNAL statement can be used to raise any of the
PL/I conditions. Such use permits anyon-units in the program
to be tested during debugging.

The implicit action for a condition that raises the ERROR
condition when there is no on-unit is to raise the FINISH
condition and terminate the program. A dump of main storage is
also produced if the DUMP option of the OPTION job control
statement has been specified (see "Dumps" on page 209).

The FINISH condition is also raised for the following:

• When a SIGNAL FINISH statement is executed.

• When a PL/I program completes executing normally .

208 DOS PL/I Optimizing Compiler: Programmers Guide

\,
,;

•

•

When an ERROR on-unit is completed that does not return
control to the PL/I program by means of a GO TO statement.

When a STOP statement is executed .

The SIGNAL FINISH statement does not terminate the execution of
a program.

Use of the PL/I Preprocessor in Program Checkout

CONDITION CODES

During program checkout, it is often necessary to use a number
of the PL/I conditions and the on-units associated with them and
to subsequently remove them from the program when it is found to
be satisfactory. The PL/I preprocessor can be used to
facilitate the inclusion of a standard set of program-checkout
statements from the source statement library~ When the program
is fully operational, the 7.INCLUDE statement can be removed, and
the resultant object program is compiled for execution without
them.

A standard set of PL/I program checkout statements would require
the enabling of any conditions that are disabled by default.
The 7.INCLUDE statement that causes the inclusion of the set of
program checkout statements should be placed at the start of the
program. If there are anyon-units that must remain in the
program permanently and for which there are equivalent on-units
in the included statements, the source statement book should
precede any of the permanent on-units in the text of the source
program.

Condition codes can indicate more precisely what type of error
has occurred where a condition can be raised by more than one
error. For example, the ERROR condition can be raised by a
number of different errors, each of which is identified by a
condition code. You can obtain the condition code by using the
condition built-in function ONCODE in the on-unit. The
condition codes are described in the OS and DOS PL/I Language
Reference Manual.

The checks given above will very rarely fail to reveal the cause
of the error. In the unlikely event that an error cannot be
detected by any of these methods, or in exceptional
circumstances, when a compiler fault is suspected, it may be
necessary to obtain a printout, or dump, of the main storage
partition used by the program. A dump can display the contents
of all buffers associated with PL/I files, the Pl/I file
attributes for each file open when the dump is taken, and a
trace of the block invocations that occurred during execution
before the dump was taken. A hexadecimal dump can be obtained
to determine the machine instructions and data present in main
storage when the failure occurred. A report of the storage
currently in use can be obtained to help in estimating the
amount of storage required to execute the program. Refer to DOS
PL/I Optimizing Compiler: Execution Logic for information about
the organization of the object programs produced by the
optimizing compiler, and how to interpret a storage dump. A map
of the offsets of stati~ and automatic variables from their
defining bases is given if the MAP compiler option is used.
This will enable you to identify variables in a dump.

A formatted PL/I dump is obtained by a call to PLIDUMP. The
symbolic device SYSLST must be assigned to a printer or tape
unit when the dump is taken.

PLIDUMP can be called with two optional arguments. The first
argument is a character-string constant used to specify the
types of information to be included in the dump. The second

Chapter 11. Program Checkout 209

argument is a character-string expression with which you can
identify the output produced by PlIDUMP. The format of the
PlIDUMP statement is:

CAll PlIDUMP [('option -list',
['user-identification'])];

The option-list is a contiguous string of characters chosen from
among the following:

T To request a trace of active procedures, begin blocks,
on-units, and library modules.

NT To suppress the output produced by T above.

F To request a complete set of attributes for all files that
are open, and the contents of the buffers used by the
files.

NF To suppress the output produced by F above.

S To request the termination of the program after the
completion of the dump.

C To request continuation of the program after completion of
the dump.

H To request a hexadecimal dump of the main storage partition
used by the program.

NH To suppress the hexadecimal dump.

B If T is specified, B produces a separate hexadecimal dump
of control blocks such as the TCA (task communications
area) and the DSA (dynamic storage area) chain that are
used in the trace analysis. If F is specified, B produces
a separate hexadecimal dump of control blocks used in the
file analysis, such as the FeB (file control block).

NB Suppresses hexadecimal dumps of control blocks.

D To request analysis of the status of any files that are
open, and to provide useful debugging information regarding
modules associated with the file.

ND To suppress the output produced by D above.

48 To request that the translate table from hexadecimal to
character contains the Pl/I 48-character set only.

60 To request that the translate table from hexadecimal to
character contains the Pl/I 60-character set.

R To request a report of the current storage in use and the
amount of unused storage.

NR To suppress the output produced by R above.

Q To request a DOS system dump of the current partition using
a minimum amount of storage (as opposed to normal PlIDUMP
requirements). This option is intended only as a 'last
resort option', since no extra information, apart from the
hexadecimal dump, is given. The option can only be used if
all options using more storage than the PlIDUMP dump
routines are negated. Thus:

CAll PlIDUMP('NTNFNRQ');

must be coded to obtain this facility.

NQ To suppress the output produced by Q above.

The defaults for the above options are:

210 DOS PL/I Optimizing Compiler: Programmers Guide

(
I

\

I
i
\,

Trace Information

CAll PlIDUMPC'TFRC48D');

The user-identification permits you to specify a
character-string expression to identify individual dumps. It
can only be specified if preceded by the specification of an
options list, thus:

CAll PlIDUMP('TFHB',
'THIS IS MY OWN TRUE DUMP');

If the TSTAMP option was specified during compiler installation,
the time and date of compilation will be held in the static
internal control section for each procedure. The offset will be
held in the first word of the control section. The information
will take the form "day month year hour minute second": for
example, 4 JULY 76 06.06.57. This will be printed at the head
of the static storage by PlIDUMP if the B (block) option is in
effect.

The static internal control section is addressed by register 3
in compiled code.

Because the ERROR condition is occasionally raised by errors
about which little or no information can be printed out, the
PLIDUMP routine is called automaticallY as part of the implicit
action for ERROR if the DUMP option of the OPTION job control
statement is specified for the job or job step. PLIDUMP is
called with the option-list 'HB', and the dump is printed on
SYSLST.

The PLIDUMP produced by implicit action is obtained by calling a
special ON FINISH unit which then calls PlIDUMP with the
options:

CAll PlIDUMP ('HB','ERROR ACTION');

This allows on-unit information to be given in the PlIDUMP. The
PlIDUMP will contain irrelevant information in the first line of
the trace. This line states:

'PlIDUMP was called from offset x from
an ON FINISH unit.'

This line can safely be ignored. Note that ON file information
will only be given if an on-unit has been entered for that
condition.

Trace information produced by PLIDUMP includes for procedures
the name and offset within the program, and for begin blocks the
offset only. When the statement number option GOSTMT is used,
the dump includes the number of the statement that invokes each
block. For on-units, the dump reproduces the values of any
oncode built-in functions that could be used in the on-unit,
regardless of whether the on-unit actually used the oncode
built-in function. If a hexadecimal dump is also requested, the
trace information will also include:

• The address of each DSA (dynamic storage area)

• The address of the TCA (task communications area)

• The contents of the registers on entry to IBMDERR

• The PSW address or the address from which IBMDERR was
invoked

• The addresses of the library module DSAs back to the most
recently used compiled-code DSA

DSAs and the TCA are described in DOS Pl/I Optimizing Compiler:
Execution logic.

Chapter 11. Program Checkout 211

File In~ormation

If the FLOW option was specified for the compilation, a table of
statement numbers indicating the flow of control through the
program is produced.

File information produced by the PLIDUMP modules includes:

1. Default and declared attributes of all files that are open

2. Contents of all buffers that are accessible to the dump
routine.

The above information is given in BCD notation.

If the Block ('B') or the Hexadecimal ('H') option is requested,
then according to the options:

3. Address and contents of FCB (file control block) are given.

4. Address and contents of ENVIRONMENT block (if any) are
given.

5. Address and contents of DTF (define-the-file) block and ACB
(address control block) are given.

6. For VSAM, the address and contents of the IOCB and appendage
are given.

Because of the many variations in control block length, the
length given for anyone of items 2, 4, 5, and 6 cannot be
guaranteed to be the exact length of that block. Usually, too
large a block will be printed, but in some cases too small a
block will be printed. If too small a block is printed, it may
be necessary to use the full hexadecimal dump to obtain the
complete file contents, using the link-edit map.

Debugging In~ormation

REPORT Option

The debugging option ('D') applies to the file information and
provides extra information regarding the status of the file by
decoding certain key flags within the control blocks. The names
of the transmitter and open modules are also provided.

The report produced gives the size and addresses of the
following:

1. Partition

2. Problem program

3. Program management area

4. Primary LIFO storage area

5. Primary non-LIFO storage area. Within the primary non-LIFO
storage:

a. Free areas

b. LIFO overflow segments

c. Transmitter areas

6. Total storage used

7. Total storage unused

212 DOS PL/I Optimizing Compiler: Programmers Guide

QUICK DUMP Option

Hexadecimal Dump

Note: A sample report is given in the DOS PL/I Optimizing
Compiler: Execution Logic.

The quick dump option (option 'Q') gives a DOS system dump from
the beginning of the partition to its end (the PDUMP macro is
used to obtain the dump). The quick dump option is only
applicable if all other options are negated.

The hexadecimal dump is a dump of the partition of main storage
containing the program. The dump is given as three columns.
The two left-hand columns contain the contents of storage in
hexadecimal notation. The third column contains a BDC
translation of the first two columns. For hexadecimal
characters that cannot be represented by a BDC character, a
period is printed. The hexadecimal characters are converted to
characters using the 48- or 60-character set, depending on which
option is specified.

EXECUTION-TIME RETURN CODES

A PL/I program invoked by an assembler language routine will
return a code in register 15.

The return code can be set by passing as an argument to the CALL
PLIRETC statement a value represented as a constant or a
variable with the attribute FIXED BINARY (31,0): for example,
CALL PLIRETC(12);. The range of codes should be restricted to 1
through 999. If a return code of greater than 999 is specified,
the return code is set to 999 and a diagnostic message is
issued. Codes that use values in the thousands are returned if
an error causes the program to terminate.

The return code generated by a PL/I program consists of two
elements. One element is specified if the program calls PLIRETC
or is set to zero by default. The other is specified by the
program management routines of the PL/I library and indicates
the way in which your program terminated. Unless an error is
detected which prevents the Pl/I program management routines
from operating correctly, the two elements are added together.
In the resulting total, the thousands digit indicates the way in
which your program terminated. The hundreds, tens, and units
are zero by default or set by your program when PlIRETC is
called; they can be used to allow conditional execution of the
next step or for any other purpose you require.

The meaning of the codes generated by the Pl/I program
management routines is as follows:

0000

1000

2000

3000

4000

4008

4012

Normal termination.

STOP or EXIT statement, or a call to PLIDUMP with the S
option.

ERROR condition raised and program terminated without
return from ERROR or FINISH on-unit.

Return codes in the 3000-3999 range can be issued by a
user-written IBMBEER.

Error prevented program management routines from
functioning correctly. In this situation, the remaining
digits are used to further identify the error as shown
below, and any set by a call to PLIRETC are ignored.

Code returned if PL/I program has no main procedure.

Not enough main storage available.

Chapter 11. Program Checkout 213

4028

4032

Excessive fragmentation of storage. PL/I's maximum
working storage is 255 fragments.

The DSA chain fields have been overlaid.

If a return code in the 4000-4032 range is encountered and the
cause cannot be traced to a source program error, it may be
necessary to call in IBM program support personnel. Appendix F
on page 326 describes the materials that will be required for
examination by IBM in such circumstances.

214 DOS PL/I Optimizing Compiler: Programmers Guide

CHAPTER 12. LINKING PL/I AND ASSEMBLER LANGUAGE MODULES

OVERVIEW

Parameter Passing

Environment

Writing assembler language subroutines for PL/I and calling PL/I
subroutines from assembler programs are simple operations,
provided that a set of conventions are carefully followed.
There are two reasons for these conventions:

• PL/I parameter passing conventions: These are adopted by
PL/I to allow the length of nonarithmetic data items to be
passed automatically to a called routine.

• The PL/I environment: This is an arrangement of registers
and control blocks used by PL/I to simplify error-handling,
storage management, and other housekeeping tasks.

If an assembler routine is called from PL/I, the parameter
problem can be overcome by using the ASSEMBLER option thus:

DCl ASMSUB ENTRY OPTIONS(ASSEMBlER),
CHARSTRING CHAR(25);

CAll ASMSUBCCHARSTRING);

This results in the address of the character string being passed
directly, rather than the address of a control block that
contains the length and address of the character string.

If an assembler routine is to call Pl/I, or if Pl/I is to use an
assembler routine as a function reference, either the Pl/I
conventions must be followed or some method must be found of
circumventing them. (See "Arguments, Parameters, and Return
Codes" on page 226.)

ASSEMBLER SUBROUTINES CALLED FROM PL/I: The Pl/I environment
causes problems to assembler subroutines that are called from
Pl/I mainly because a STXIT PC macro is used in Pl/I to set up
an error exit that depends on having register 12 pointing to a
Pl/I control block known as the TCA (Task Communications Area)
and register 13 pointing at a save area that is chained in the
normal way. When Pl/I calls an assembler subroutine, the
subroutine must either forego the use of register 12 or cancel
and reissue the STXIT PC macro instruction, thus either
retaining PL/I error-handling or setting up its own. It is
normally better to retain Pl/I error-handling, because the
issuing of two STXIT PC macro instructions is a considerable
overhead and Pl/I error-handling normally gives a useful message
when a program check occurs.

For a recursive routine, the Pl/I environment provides a ready
made lIFO (last-in, first-out) storage stack and an overflow
mechanism. Assembler routines can use this, but, if they do,
must not use register 12 and should carefully follow the code
and instructions in the examples.

PL/I SUBROUTINES CALLED FROM ASSEMBLER: When Pl/I is called from
assembler, the Pl/I environment must be set up before the Pl/I
subroutine is executed. If the Pl/I subroutine is called only
once this can be done in the same manner as when a Pl/I program
is called from the system. To do this, the Pl/I subroutine
should be given the MAIN option and the assembler branch on
register 15 to an entry point called PlICAllA. If the Pl/I

Chapter 12. linking Pl/I and Assembler language Modules 215

routine is called a number of times, some device must be
employed to prevent the PL/I environment from being discarded at
the end of each call. This is because setting it up is a
significant time overhead. The suggested method is to call a ~
PL/I procedure which has the MAIN option and for this in turn to
re-call the assembler program. In this way, the PL/I
environment remains available to PL/I subroutines without time
overhead.

If a PL/I routine calls an assembler-language routine that in
turn calls a PL/I routine, the PL/I routines must be link-edited
together. For example, if an assembler-language program loads a
PL/I routine, the results are unpredictable.

HOW TO WRITE YOUR ROUTINES

THE PL/I ENVIRONMENT

Examples in this chapter show the code required to interface
between PL/I and assembler. Provided you bear in mind the notes
in the examples, you can use the code as it stands, together
with your assembler routines. If you want to make consistent
use of assembler-PL/I programming, you should, however, read the
remaining sections of this chapter to understand the reasoning
behind the code.

PL/I CALLING ASSEMBLER SUBROUTINES: Unless you have good reasons
for wanting to do your own error-handling, you should use the
code in Figure 77 on page 218 for a nonrecursive routine and the
code in Figure 79 on page 222 for a recursive or reentrant
routine. If the routine is to receive parameters or to return
values, study "Arguments, Parameters, and Return Codes" on page
226 at the end of this section.

ASSEMBLER CALLING PL/I SUBROUTINES: If your PL/I subroutine is
invoked only once, it should, if possible, be given the MAIN
option and called via entry point PLICALLA as in the first line
of Figure 79, ending at EOJ. If it is impractical to compile
the program with the MAIN option, (it might, for example,
already be compiled as a PL/I subroutine) you can insert its
address in PLIMAIN as shown in Figure 82 on page 225 and then
call PLICALLA.

If your routine is to be called a number of times, you should
follow the complete scheme shown in Figure 79. If parameters
are to be passed or values returned, study the section
"Arguments, Parameters, and Return Codes" on page 226.

The PL/I environment is the term used to describe a number of
control blocks created by routines that are provided by the DOS
PL/I Resident and Transient Libraries to satisfy the
storage-management and error-handling requirements of a PL/I
procedure.

When a PL/I program invokes an assembler-language routine, the
invoked routine must ensure that the PL/I environment is
preserved. The PL/I environment is preserved by observing the
standard IBM linkage conventions, which include the storing of
register values in a save area, and by ensuring that the content
of register 12 is not altered by the assembler routine if PL/I
is to handle interrupts that occur during execution of the
assembler routine. CIt is sensible to allow Pl/I to handle
interrupts. The alternative involves resetting the program
interrupt exit twice and is a considerable overhead. The
disadvantage of using PL/I error-handling is that it prevents
you from using register 12 at any time during the assembler
program.) Register 13 must be set to the address of a new save
area established by the assembler routine.

If you intend to call assembler language subroutines from PL/I,
you need to know no more about the PL/I environment and should

216 DOS PL/I Optimizing Compiler: Programmers Guide

) ,

continue with "Calling Assembler Routines from Pl/I" on page
218.

ESTABLISHING THE PL/I ENVIRONMENT

An assembler-language routine that invokes a Pl/I procedure for
which the PL/I environment has not been established can use one
of two entry points to establish the environment. The entry
points are given the standard names PlICAllA and PLICAllB, and
are described later in this section.

Use of PLIMAIN to Invoke PL/I Procedure

After the environment has been created, an address held in a
control section called PlIMAIN is used to transfer control to
the Pl/I procedure whose address is also contained in PLIMAIN.
Normally, after link-editing, PLIMAIN will contain the
entry-point address of the first, or only, Pl/I main procedure
in the program. If the assembler-language routine is to invoke
a Pl/I procedure that is not the first, or only, main Pl/I
procedure in the program, it must insert in the
compiler-generated control section PlIMAIN the address of the
entry-point of the procedure it is to invoke. The example in
Figure 82 on page 225 shows how this is done.

If there is no main procedure in the program, the assembler
routine should contain an entry point called PlIMAIN, at which
is held the address of the entry point of the Pl/I routine to be
invoked. The example in Figure 83 on page 225 shows how the
appropriate address is inserted into the location represented by
the entry point PlIMAIN. If the assembler program does not
include an entry point called PlIMAIN in these circumstances, a
dummy module called PlIMAIN will be included from the DOS Pl/I
Resident library, thus incurring an avoidable overhead in time
and space.

After the Pl/I environment has been established, it can, as
shown in the example in Figure 79 on page 222, be preserved, and
any Pl/I procedure can be invoked subsequently by loading the
address of its entry point into a register, and executing a
branch-and-link-register instruction to it.

PLICALLA AND PLICALLB

PLICALLA: PlICAllA is the entry point to be used when the Pl/I
environment must be established for a Pl/I procedure that can
use for its dynamic storage as much of the available space in
storage as it requires.

PLICALLB: PlICAllB is the entry point to be used when the Pl/I
environment must be established for a Pl/I procedure that can
use for its dynamic storage only a specific amount of the
available storage at a specified address.

Further details and examples using PlICALLA and PlICALLB are
given later in this chapter.

THE DYNAMIC STORAGE AREA (DSAl AND SAVE AREA

Whenever a Pl/I procedure is invoked, it requires for its own
use a block of storage known as a dynamic storage area (DSA). A
DSA for a Pl/I procedure consists of a save area for the
contents of registers, a backchain address that points to the
save area for the previous routine, and storage for automatic
variables and miscellaneous housekeeping items.

An assembler routine invoked from Pl/I must take one of the
following actions to preserve the Pl/I environment:

Chapter 12. linking Pl/I and Assembler language Modules 217

I. On invocation, it must store the contents of all registers
in the existing PL/I DSA and establish its own save area in
which the backchain address of the PL/I DSA must be stored.
The first byte of the save area must be set to zero. The
second word of the save area is the backchain address. The
remainder of the save area would only be used by a routine
invoked from the assembler routine or by the PL/I
error-handler, if used, for saving the assembler routine's
registers.

2. If the assembler routine is not to use a PL/I error-handler
and does not invoke a function routine, the STXIT PC macro
must be used to reset the interrupt handler, but only those
registers that it modifies need be stored. The STXIT PC
macro is discussed later in this chapter.

CALLING ASSEMBLER ROUTINES FROM PL/I

The following section describes:

• How to invoke a non-recursive assembler routine.

• How to invoke a recursive assembler routine.

INVOKING A NONRECURSIVE ASSEMBLER ROUTINE

When a PL/I program invokes a non recursive assembler-language
routine, the assembler-language routine must follow System/370
linkage conventions and save the registers for use by PL/I on
return from the assembler-language routine. The register values
are stored in the PL/I DSA, the address of which is ~ontained in
register 13 on entry to the assembler-language routine. This
address must then be stored in the backchain word in a save area
defined within the assembler routine itself. Prior to returning

/

to the PL/I routine, the assembler routine must restore the (
registers to the values held when the PL/I routine invoked the \

DUMREC

SRCH

CSECT
ENTRY
DC
DC
DS
STM
BALR
USING
LA
ST
ST
LR

L
LM
BR

SAVEAREA DC

assembler routine. The assembler instructions in Figure 77
should be executed immediately when the assembler routine is
invoked in order to achieve the given objectives. The example
assumes that the assembler routine uses register 10 as its base
register.

SRCH
C' SRCH'
ALI(S)
OH
14,11,12(13)
10,0
*,10
4,SAVEAREA
13,4(4)
4,8(13)
13,4

13,4(13)
14,11,12(13)
14
20F'0'

STORE PL/I REGISTERS IN PL/I DSA
ESTABLISH BASE REGISTER

STORE PL/I DSA ADDRESS IN SAVE AREA

LOAD SAVE AREA ADDRESS

ASSEMBLER
ROUTINE

RESTORE PL/I REGISTERS
AND
RETURN TO PL/I
ALLOCATE 80 BYTE SAVE AREA

Figure 77. Skeletal Code for a Nonrecursive Assembler Routine to be Invoked from
PL/I

218 DOS PL/I Optimizing Compiler: Programmers Guide

~,

)

If you use the code in Figure 77 around your assembler program,
you will be able to assemble and link-edit it, and then call it
with a PL/I CALL statement in a perfectly straightforward
manner.

INVOKING A RECURSIVE ASSEMBLER ROUTINE

USE OF REGISTER 12

A recursive or reentrant assembler routine invoked from PL/I
must obtain a separate save area for each invocation, and so
cannot use the method of having a static save area as
illustrated in Figure 77. The suggested method is to make use
of the PL/I storage management scheme. This obtains storage in
a LIFO (last-in, first-out) stack and can use the PL/I storage
overflow routine to attempt to obtain further storage when the
storage initially available for dynamic use by the program is
used up. This method is referred to as obtaining a DSA.

The first byte of a DSA set up using the PL/I storage scheme is
used in PL/I error-handling. Consequently, it must be set to a
special value depending on whether you want to use Pl/I
error-handling in the assembler routine.

If you do not want to use Pl/I error-handling in your
subroutine, you must set the first byte of the DSA to X'OO'.
(You must also issue a STXIT PC macro to disable and enable the
PL/I error-handler at the start and end of the routine. See
"Overriding and Restoring PL/I Error-Handling" on page 226.)
The DSA obtained must be at least 80 bytes long. Additional
storage can be obtained for use in the assembler routine. The
total length of storage obtained must be a multiple of 8 bytes.

If PL/I error-handling is to be retained in the assembler
language routine and the assembler routine is not, in turn,
going to call PL/I subroutines, the DSA should be at least 88
bytes in length, byte 0 must be set to X'80', byte 1 to X'OO',
and bytes 86 and 87 (the PL/I error-handler enabler cells) set
to X'91CO'. Additional storage can be obtained within the DSA
for use by each invocation of the assembler subroutine. The
total length of the DSA must be a multiple of 8 bytes.

Also, the entry point should be preceded by the name and length
of the assembler program, so that the name can be printed in
error messages and PLIDUMP. This should be aligned so that the
character string name immediately precedes the one byte length
field (containing the length of the name in hex), which
immediately precedes the entry point of the assembler routine.

The example in Figure 78 on page 220 shows how to create and
release a DSA in a recursive assembler routine. The contents of
registers 12 and 13 and the layout of storage in a recursive
environment are described in DOS PL/I Optimizing Compiler:
Execution Logic.

An assembler routine that is to be invoked by a PL/I procedure
should not modify register 12, because the value in this
register will be changed by the PL/I error-handling routines if
a program check interrupt occurs in the assembler routine.

If PL/I error-handling is not required, the assembler routine
should issue a DOS Supervisor STXIT PC macro to establish either
its own or the system error-handling facilities. The routine
must subsequently restore PL/I error-handling facilities before
returning to PL/I. This is discussed further in "Overriding and
Restoring PL/I Error-Handling" on page 226. (A routine that
changes the contents of register 12 should also store it on
entry and restore it on return.)

Chapter 12. Linking PL/I and Assembler Language Modules 219

DUMREC CSECT
ENTRY REC
DC C'REC'
DC ALI(3)

REC DS OH
STM 14 .. 11 .. 12 .. (13) STORE CALLER'S REGISTERS IN CALLER'S DSA
BALR 10 .. 0 ESTABLISH BASE REGISTER
USING * .. 10
LR 4 .. 1 SAVE ANY PARAMETER LIST ADDRESS

PASSED FROM CALLING ROUTINE
LA 0 .. 96 PUT THE LENGTH OF REQUIRED DSA IN REG 0
L 1 .. 76(13) LOAD THE ADDRESS OF THE NEXT AVAILABLE

BYTE OF STORAGE AFTER THE CURRENT DSA
ALR 0 .. 1 ADD ADDRESS.
CL 0 .. 12(12) COMPARE RESULT WITH ADDRESS OF LAST

AVAILABLE BYTE IN STORAGE THAT CAN BE USED
BNH ENOUGH
L 15 .. 116(12) LOAD AND BRANCH TO THE PL/I STORAGE OVER-
BALR 14 .. 15 FLOW ROUTINE TO ATTEMPT TO OBTAIN MORE STORAGE

ENOUGH EQU * ST 0 .. 76(1) STORE THE ADDRESS OF THE NEXT AVAILABLE
BYTE IN STORAGE AFTER THE NEW DSA

ST 13 .. 4Cl) STORE THE CHAIN-BACK ADDRESS OF THE
PREVIOUS DSA IN THE CURRENT DSA

MVC 72C4 .. 1) .. 72(13) COpy ADDRESS OF LIBRARY WORKSPACE
LR 13 .. 1 STORE THE ADDRESS OF THE NEW

DSA IN REGISTER 13
MVI OCI3) .. X'80' SET FLAGS IN DSA TO
MVI lCI3) .. X'OO'
MVI 86(13) .. X'91' PRESERVE PL/I ERROR-HANDLING
MVI 87CI3) .. X'CO' IN THE ASSEMBLER ROUTINE

ASSEMBLER
ROUTINE

I 13 .. 4(13) RELEASE CURRENT DSA
LM 14 .. 11 .. 12(13) RESTORE CALLER'S REGISTERS
BR 14

Note: If your assembler routine requires separate storage for each invocation .. it
should be added to the value in the load address instruction (LA 0 .. 88) and addressed
from register 13. Total length must be a multiple of 8.

Figure 78. Skeletal Code for a Recursive Assembler Routine that Uses the PL/I
Storage Scheme

CALLING IOCS MODULES FROM ASSEMBLER SUBROUTINES

If a subset of an IOCS module is called by a user's assembler
subroutine .. and a different subset of the same module is called
by PL/I .. then duplicate entry points may be diagnosed at
link-edit time. This can be resolved by replacing the two LIOCS
modules in the relocatable library by their common superset
module.

A list of the IOCS modules subject to duplicate entry point
messages can be found in the DOS PL/I Optimizing Compiler:
Installation Guide.

The appropriate supersets can be coded from the publication
VSE/Advanced Functions Macro Reference.. or equivalent
publication.

220 DOS PL/I Optimizing Compiler: Programmers Guide

I

\

(

~

CALLING PL/I PROCEDURES FROM ASSEMBLER LANGUAGE

The simplest way to invoke a single external Pl/I procedure from
an assembler-language routine is to give the PL/I procedure the
MAIN option and invoke it using entry point PLICAlLA. All that
is required is to load the address of PlICAlLA into register 15
and then branch and to link to it. When PLICAlLA is used in
this way, the PL/I environment is created and control is then
passed via PlIMAIN to the first Cor only) main procedure in the
program. Use of this technique will cause the PL/I environment
to be established separately for each invocation.

Note: PL/I procedures may not be loaded into a GETVIS area.

ESTABLISHING THE PL/I ENVIRONMENT FOR MULTIPLE INVOCATIONS

If the assembler routine is to invoke either a number of Pl/I
routines or the same Pl/I routine repeatedly, the creation of
the PL/I environment for each invocation will be unnecessarily
inefficient. The solution is to create the Pl/I environment
once only for use by all invocations of Pl/I procedures. This
can be achieved by invoking a main Pl/I procedure which
immediately reinvokes the assembler routine. The assembler
routine must preserve the PL/I environment and is then able to
invoke any number of Pl/I procedures directly. The example in
Figure 79 on page 222 contains an assembler-language routine
that establishes the Pl/I environment once only for multiple
invocations of Pl/I procedures.

In Figure 79, the assembler routine MYPROG receives control
initially from the supervisor, and invokes the Pl/I procedure
MAIN using the entry point PlICAlLA to the Pl/I initialization
routine. The Pl/I procedure MAIN immediately reinvokes the same
assembler routine at the entry point ASSEM. At this entry
point, the PL/I environment is stored, and the new DSA, 100
bytes in length, is created in a manner similar to that
previously given for creating a DSA in a recursive routine. If
there is insufficient room for the new DSA, the PL/I overflow
routine is invoked to attempt to obtain storage elsewhere for
the new DSA. The overflow routine is described in greater
detail in DOS PL/I Optimizing Compiler: Execution logic.

In the assembler routine, the instructions following the label
ENOUGH, through the instruction that loads the address of the
PL/I entry point HEAD, are all concerned with setting up the DSA
so that the correct environment exists when the routine invokes
the external PL/I procedures PLIN and PlOUT or the secondary
entry points within them. These instructions should always be
present in order to preserve the Pl/I environment set up by the
main procedure for subsequent use by any assembler-invoked Pl/I
procedures.

Note that, when an external PL/I procedure is invoked, register
5 must be set to zero, and that a Pl/I procedure CPlIN in this
example) that returns a value will assign that value to the last
address in the parameter list PARMLSTI. This address is the
address of the assembler-defined storage for RESULT. The
constant X'80' in the first byte of the fullword containing the
address of RESULT in PARMlSTI indicates that it is the last
fullword in the parameter list.

If an assembler-language routine invokes a PL/I procedure
without passing any parameters to it and without expecting any
value to be returned from it, register 1 must be set to zero.
In this example, the procedure PlIN contains a
RETURNCexpression) statement, but when invoked through the
parameterless entry point HEAD, no value is returned to the
invoking routine. Similarly, the procedure PlOUT contains the
parameterless entry point FOOT and does not return a value.

The INCLUDE statement in the link-edited step ensures that the
resident library module IBMBPJRA is included in the executable

Chapter 12. Linking Pl/I and Assembler language Modules 221

program. IBMBPJRA contains, for the DOS implementation of the
optimizing compiler, the entry points PLICALlA and PLICALLB.

// JOB FIGl203
// OPTION LINK, DUMP
// EXEC ASSEMBLY,SIZE=64K
MYPROG CSECT

ENTRY
BALR
USING
LA
SR
L
BALR

ASSEM
10,0
*,10
13,SAVEAREA
1,1
15,=VCPLICALLA)
14,15

LTR R15,R15
BNZ CANCEL
EOJ

CANCEL EQU *
CANCEL

ASSEM

ENOUGH

DC C'ASSEM'
DC ALI(5)
DS OH
STM 14,12,12CI3)

BALR 10,0
USING *,10

LA
L

0,104
1,76CI3)

ALR 0,1
CL 0,12(12)
BNH ENOUGH
L 15,116(12)

BALR
EQU
ST

14,15
* 0,76Cl)

ST 13,4Cl)
ST 1,8(13)
MVC 72(4,1),72(13)

LR 13,1
MVI 0(13),X'80'
MVI 1(13),X'00'
MVI 86CI3),X'91'
MVI 87(13),X'CO'

SR 5,5

SR

L 15,=V(HEAD)
BALR 14,15

ESTABLISH ADDRESSABILITY

CALL THE PL/I PROCEDURE WHICH
-HAS OPTIONSCMAIN) AND SO SET
-UP THE PL/I ENVIRONMENT AND
-THEN CALL ASSEM.

NORMAL RETURN!
NO

THE NAME IN PL/I FORMAT

STORE PL/I REGISTERS FOR
PROCEDURE 'MAIN'.

ESTABLISH ADDRESSABILITY

GET STORAGE FOR A SAVE AREA
LENGTH REQUIRED (104 BYTES)
ADDRESS OF START OF CURRENTLY
AVAILABLE STORAGE.

IS THERE ENOUGH SPACE LEFT!
YES
LOAD ADDRESS OF OVERFLOW
-ROUTINE AND BRANCH TO IT.

STORE ADDRESS OF START OF
-REMAINING AVAILABLE STORAGE
-IN NEW DSA OFFSET 76.

STORE CHAIN BACK ADDRESS
STORE CHAIN FORWARD ADDRESS
COPY ADDRESS OF WORKSPACE FOR
-USE BY PL/I LIBRARY.

POINT 13 AT NEW DSA
SET FLAGS IN THE DSA TO
-PRESERVE PL/I ERROR
-HANDLING IN THE ASSEMBLER
-ROUTINE.

R5 MUST BE ZERO FOR CALLING AN
-EXTERNAL PL/I PROCEDURE

Rl MUST BE SET TO ZERO FOR A
-PARAMETERLESS ENTRY POINT THAT
-DOES NOT RETURN A VALUE.

CALL PL/I TO 'HEAD' PAGE

Figure 79 (Part 1 of 2). Invoking PL/I Procedures from an Assembly-Language Routine

222 DOS PL/I Optimizing Compiler: Programmers Guide

(
I
\

~

)

LOOP EQU '* LA I,ARGTLSTI
L 15,=VCPLIN)
BAlR 14,15

'* '* L 3,RESULT
LTR 3,3
BM OUTLOOP

LA I,ARGTLST2
L 15,=VCPlOUT)
BALR 14,15
B lOOP

'* OUTLOOP EQU '* SR 1,1
L 15,=VCFOOT)
BALR 14 .. 15

l 13 .. 4CI3)
lM 14 .. 12,12CI3)
BR 14

'* ARGTlSTl DC ACDATA)
ARGTlST2 DC X'SO'

DC Al3CRESUlT)
DATA DC F'123'
RESULT DC F'O'
SAVEAREA DC IS F' 0'

END MYPROG
/'* // EXEC PLIOPT,SIZE=64K '* PROCESS;

MAIN: PROC OPTIONSCMAIN);
DCL ASSEM ENTRY;
CALL ASSEM;
END; '* PROCESS;

PLIN: PROCCI) RETURNSCFIXED BIN(31»j
DCL CI .. J) FIXED BIN(31)j
GET LIST(J);
RETURNCI+J)j

HEAD: ENTRYj

CALL PL/I TO READ AND ADD

TEST RESULT -
-BRANC~ OUT IF IT IS NEGATIVE

CALL Pl/I TO TRANSMIT RESULT

SET REGISTER 1 TO ZERO
CALL PL/I TO 'FOOT' PAGE

RETURN TO THE MAIN PL/I PROCEDURE
WITH OPTIONSCMAIN).

PUT LISTC'THE FIRST LINE OF OUTPUT AT THE TOP OF THE PAGE')
PAGE;

PUT SKIP(2);
ENDj '* PROCESS;

PLOUT: PROCCK)j
DCL K FIXED BIN(31);
PUT LIST(K)j
RETURN;

FOOT: ENTRYj
PUT LISTC'END OF THE OUTPUT FOR THIS JOB') SKIP(2)j
ENDj

/*
INCLUDE IBMBPJRA

// EXEC LNKEDT
// EXEC, SIZE=64K

50 77 123 234 345 456 -23 -100 -123 -234
/*
/&

Figure 79 CPart 2 of 2). Invoking PL/I Procedures from an Assembly-Language Routine

Chapter 12. Linking PL/I and Assembler Language Modules 223

ESTABLISHING THE PL/I ENVIRONMENT SEPARATELY FOR EACH INVOCATION

If it is necessary to reestablish the PL/I environment each time
a PL/I procedure is invoked, use the entry point PLICAlLA
(Figure 80) or PLICALLB (Fi~ure 81) to invoke the PL/I
initialization routines.

LA' I,PARMLIST
L 15,=V(PLICALLA)
BALR 14,15

PARMLIST DC
DC

A(parmi)
A(parm2)

ADDRESS OF FIRST PARAMETER FOR PL/I
ADDRESS OF SECOND PARAMETER FOR PL/I

DC
DC

X'80' END OF PARAMETER LIST FLAG
AL3Cparmn or return-value) ADDRESS OF LAST PARAMETER

-OR RETURNED VALUE

Figure 80. Use of PLICALLA

LA
L
BALR

PLIST DC
DC

* DC
DC
DC
DC

DC
DC

* LENGTH DC
AREA DS

Figure 81. Use

I,PLIST
15,=VCPLICALLB)
14,15

ACPARMLIST) ADDRESS OF PL/I PARAMETER LIST
ACLENGTH) LENGTH OF STORAGE FOR PL/I

-ON DOUBLE WORD BOUNDARY
X'80'
AL3CAREA) START OF PL/I STORAGE AREA
AC parmI) ADDRESS OF FIRST PARAMETER
ACparm2) ADDRESS OF SECOND PARAMETER

X'80' END OF PARAMETER LIST FLAG
AL3(parmn or return-value) ADDRESS OF LAST PARAMETER

-OR RETURNED VALUE
F'8l92' ROUTINE'S STORAGE LIMITED T~ 8K BYTES

1024D ROUTINE'S STORAGE STARTS HERE

of PLICALLB

For PLICALLA, the assembler-language routine must insert in
register 1 the address of the parameter list that contains the
addresses of any arguments to be passed on to the PL/I
procedure. For PLICALLB, the assembler-language routine must
insert in register 1 the address of a parameter list (PLIST in
Figure 81) that contains the following:

• The address of the parameter list containing addresses of
arguments to be passed to PL/I,

• The address of the value for the amount of storage to be
made available to the PL/I procedure, and

224 DOS PL/I Optimizing Compiler: Programmers Guide

~

)

LA
L
MVC
L
BALR

PARMLIST DC
DC
DC

• The start address of the storage to be used by the PL/I
procedure. The storage should be doubleword aligned. Note
that the first byte in the last address word in each of
these parameter lists must contain X'80'. The examples in
Figure 80 on page 224 and Figure 81 show the use of PLICALLA
and PLICALLB to invoke the first Cor only) main PL/I
procedure in the program.

If more than one PL/I subroutine is called and each subroutine
must create and destroy the PL/I environment, the address of
each subroutine, as it is required, should be placed in PLIMAIN
before the call to PLICALLA or PLICALLB. The example in
Figure 82 does this by setting the address in PLIMAIN to that of
the external entry name MYPROG.

I,PARMLIST
3,=VCPLIMAIN)
OC4,3)=VCMYPROG)
3E15,=VCPLICALLA)
14,15

ACparml
X'80'
AL3Cparm2)

CHANGE ADDRESS IN PLIMAIN
-TO THAT OF MYPROG

FIRST PARAMETER TO MYPROG

LAST PARAMETER TO MYPROG

Figure 82. Inserting a PL/I Entry Point Address in PLIMAIN

LA
L
L
ST
L
BALR

PARMLIST DC
DC
DC

PLIMAIN DS

If it is necessary to reestablish the PL/I environment for each
invocation of a PL/I procedure where there is no main PL/I
procedure in the program, the use of either entry point PLICALLA
or PLICALLB must be accompanied by the use of an entry point
called PLIMAIN in the assembler-language routine. This entry
point should contain the address of the PL/I routine to be
invoked. Figure 83 shows how this is done.

1,PARMLIST
2,=ACPLIMAIN)
3,=VCMYPROG)
3,O(2)
l5,=VCPLICALLA)
14,15

INSERT ADDRESS IN PLIMAIN
-OF ENTRY TO MYPROG

ACparml)FIRST PARAMETER TO MYPROG
X'80'
AL3parm2)LAST PARAMETER TO MYPROG
F

Figure 83. Establishing PLIMAIN as an Entry in the Assembler-Language Routine
ENTRY PLIMAIN

Chapter 12. Linking PL/I and Assembler Language Modules 225

PL/! calling Assembler Calling PL/!

The information given in the preceding sections will be (
sufficient to write pr~grams to include a Pl/I procedure that \
invokes an assembler-language routine which invokes a further
Pl/I procedure. Figure 79 on page 222 contains an example of a
program which performs this type of processing.

Assembler calling PL/! Calling Assembler

The information given in the preceding sections will be
sufficient to write programs that include an assembler-language
routine that invokes a Pl/I procedure which in turn invokes an
assembler-language routine. Figure 79 contains an example of a
program which performs this type of processing.

OVERRIDING AND RESTORING PL/I ERROR-HANDLING

PROGA CSECT
ENTRY
STM
BAlR
USING
L
lA
ST
lA
ST
STXIT

lM
STXIT
l
LM
BR

ADDRI DS
ADDR2 DS

The Pl/I error-handling facilities are described in detail in
DOS Pl/I Optimizing Compiler: Execution logic Manual. The
following paragraphs explain how to override and restore these
facilities in an assembler-language subroutine.

An assembler-language routine invoked from Pl/I can override
Pl/I error-handling by issuing its own STXIT PC macro. However,
a routine that issues a STXIT PC macro to cancel Pl/I
error-handling must restore the Pl/I error-handling facilities
before returning to the Pl/I program. It does this by issuing a
further STXIT PC macro before restoring the Pl/I registers and
branching back. The STXIT PC macro that restores the Pl/I
error-handling must have two address operands containing
addresses of the Pl/I error-handler and its save area. The
example in Figure 84 shows how these two addresses are obtained.

ASSEM
14,12,12(13)
10,0
*,10
S,40(12)
6,28(S)
6,ADDRI
6,36(S)
6,ADDR2
PC, (operands)

O,l,ADDRl
PC,(O),(l)
13,4(0,13)
14,12,12(13)
14
F
F

ENTRY POINT INVOKED FROM Pl/I
STORE Pl/I ENVIRONMENT
ESTABLISH BASE REGISTER

OBTAIN ADDRESS AT OFFSET 40 FROM TCA
OBTAIN ADDRESS OF THE Pl/I ERROR-HANDLER
-AND STORE IT
OBTAIN ADDRESS OF Pl/I SAVE AREA FOR
-ERROR-HANDLING AND STORE IT
ESTABLISH NEW ERROR-HANDLER

Assembler routine that modifies register
12 and either handles its own errors or
uses the system for error-handling
RESTORE OLD Pl/I ERROR-HANDLER

RESTORE Pl/I ENVIRONMENT

RETURN TO PL/I
STORAGE FOR PL/I ERROR-HANDLER ADDRESS
STORAGE FOR PL/I ERROR-HANDLER'S SAVE AREA AD

Figure 84. Methods of Overriding and Restoring PL/I Error-Handling

ARGUMENTS, PARAMETERS, AND RETURN CODES

Arguments are passed between Pl/I and assembler routines by r
means of lists of addresses known as "parameter lists." Each ~
address in a parameter list occupies a fullword in main storage.

226 DOS Pl/I Optimizing Compiler: Programmers Guide

)

The last fullword in the list contains X'SO' in its first byte
to enable it to be recognized.

Each address in a parameter list is either the address of a data
item or the address of a control block that describes a data
item. Data items themselves are never placed directly in
parameter lists.

The contents of the parameter list depend on whether
OPTIONS(ASSEMBLER) was specified and whether the assembler
subroutine is invoked by a function reference or a subroutine
call. (Note that OPTIONS(ASSEMBLER) can only be used for
assembler routines called from PL/I and not vice versa.)

RECEIVING ARGUMENTS IN AN ASSEMBLER-LANGUAGE ROUTINE

When an assembler routine is invoked by a PL/I routine by means
of a CALL statement or a function reference, the assembler
routine will receive the address of a parameter list in register
1. The meaning of the addresses in the parameter list depends
upon whether or not the entry point of the assembler routine
has been declared with the ASSEMBLER option. These two cases
are discussed separately in the following paragraphs. The
ASSEMBLER option is fully described in the OS and DOS PL/I
Language Reference Manual.

Assembler Routine Entry Point Declared with the ASSEMBLER Option

The ASSEMBLER option is provided to simplify the passing of
arguments from PL/I to assembler routines. It specifies that
the parameter list set up by PL/I is to contain the addresses of
actual data items, rather than the addresses of control blocks,
irrespective of the types of data that are being passed. Thus
if, for example, an array is passed from PL/I to an assembler
routine, the address in the parameter list is that of the first
element of the array.

Note that, if a particular data item is not byte-aligned (for
example, an unaligned bit string), the address of the parameter
list is that of the byte that contains the start of the data
item. Also, varying-length character strings are preceded in
storage by a 2-byte field specifying the current length of the
string, and it is the address of this prefix that is placed in
the parameter list.

An assembler routine whose entry point has been declared with
the ASSEMBLER option can be invoked only by means of a CALL
statement.

Assembler Routine Entry Point Declared without the ASSEMBLER Option

If the entry point of the assembler routine has not been
declared with the ASSEMBLER option, each address in the
parameter list is the address either of a data item or of a
control block, depending on the type of data that is being
passed.

For arithmetic element variables, the address in the parameter
list is that of the variable itself. For all other problem data
types, the address in the parameter list is that of a control
block known as a "locator/descriptor." For program control
data, the address in the parameter list is that of a control
block. The formats of locator/descriptors and of control blocks
for program control data are given in the DOS PL/I Optimizing
Compiler: Execution Logic Manual.

It is recommended that the use of this type of linkage be
avoided wherever possible. Access to locator descriptors is
normally necessary only when the full attributes of the
arguments are not known by the assembler routine. The use of
function references (which cannot be used with the ASSEMBLER

Chapter 12. Linking PL/I and Assembler Language Modules 227

option) can be avoided by passing the receiving field as a
parameter to the assembler routine.

PASSING ARGUMENTS FROM AN ASSEMBLER-LANGUAGE ROUTINE

RETURN CODE

In order to pass one or more arguments to a PL/I routine, an
assembler routine must create a parameter list and set its
address in register 1. The last fullword in the parameter list
must have X'80' in its first byte. If the PL/I routine executes
a RETURN(expression) statement, the last address of the
parameter list must be that of the field to which PL/I is to
assign the returned value.

Each address in the parameter list must be either the address of
a data item or the address of a control block that describes a
data item, depending upon the type of data that is being passed.
For arithmetic element variables, the address in the parameter
list must be that of the variable itself. For all other problem
data types, the address in the parameter list must be that of a
locator/descriptor. For program control data, the address in
the parameter list must be that of a control block. The formats
of locator descriptors and of control blocks for program control
data are given in the DOS PL/I Optimizing Compiler: Execution
Logic Manual.

In some cases, it is possible to avoid the use of
locator/descriptors when passing aggregates or strings, by
pretending that the data is an arithmetic variable. Suppose,
for example, that an assembler routine is required to pass a
fixed-length character string of twenty characters to a PL/I
routine. The assembler routine can place the address of the
character string itself in the parameter list, and the PL/I
routine can be written thus:

PP:PROC(X);
DCL X FIXED,

A CHAR(20) BASED(P);
P = ADDR(X);

Because X is declared to be arithmetic, the address in
parameter list is interpreted as the start of the data
being passed. This address is assigned to P, and is
subsequently used as a locator for the based character
which has the attributes of the data that has actually
passed.

the
that is

string A,
been

This technique will work for all data types except unaligned bit
strings. Note that the dummy arithmetic parameter need not have
the same length as the data that is actually being passed; it is
used simply to enable the passed address to be identified as the
start of the data.

Assembler subroutines may pass a return code to a calling PL/I
procedure by setting a value in the range 1 to 999 in the
halfword location TURC in the TCA, that is, 70(0,12). The
calling PL/I procedure can access this value by using the
PLIRETV built~in function.

228 DOS PL/I Optimizing Compiler: Programmers Guide

(
\

I
i

\

CHAPTER 13. CHECKPOINT/RESTART

CHECKPOINTS

RESTARTS

PLICKPT

Checkpoint/restart is a technique for resuming execution of a
program after an interruption by, for example, a power failure.
Checkpoint/restart involves the creation of checkpoint records
that can be subsequently retrieved and used to restart the
execution of the program. Execution is resumed at the point
reached when the checkpoint record was made.

The use of checkpoint/restart should be confined to programs
that are likely to run for long periods of time. Only programs
in the background or a batched-job foreground partition may be
checkpointed.

Checkpoint records can be created during execution of a Pl/I
program by including a CAll PLICKPT statement. Its use would
normally be restricted to some natural point of progression in
the program, such as between one set of calculations and the
next.

Checkpoint records can be recorded on magnetic tape or on disk
storage devices. The appropriate TlBl or DlBl and EXTENT
statements must be supplied to define the checkpoint data set.

Checkpoint records cannot be written to SAM files in VSAM space.

A program can resume execution from a checkpoint. The
checkpoint record is loaded and control restored to it by a DOS
facility which is specified by the RSTRT job control statement.
The RSTRT statement is described in DOS/VSE System Control
Statements. It may be useful to inform the operator that a
particular program can be restarted if a failure occurs. The
method used to pass this information will depend on local
practice. The operator can then use the RSTRT statement
directly to restart the program at the earliest opportunity.

The format of the CAll PlICKPT statement i~:

CAll PlICKPT[Cargl[,arg2[,arg3[,arg4]]])];

where

argl

arg2

represents a character string that identifies the
filename for a DlBl statement that defines the
checkpoint dat~ set on a disk storage volume. If the
checkpoint record is to be written onto a magnetic
tape, this argument should be a null string. If the
checkpoint record is to be written onto a disk storage
device and this argument is a null string, the
filename SYSCHK is assumed, and should be used as the
filename on the DlBL statement for the checkpoint data
set.

represents a character string variable of at least
four characters in length, which the DOS checkpoint
macro will use to record the sequence number of the
checkpoint record that is being recorded. The Pl/I
program should print this sequence number as soon as
each checkpoint record has been made so that, if a
restart is necessary, the latest checkpoint taken can
be identified.

Chapter 13. Checkpoint/Restart 229

arg3

arg4

represents a character string that defines the
characteristics of the device used to record the
checkpoint records. The following format should be
used for the character string:

[SYSnnn][,(24001231112314
133301334013350IFBA)]

where SYSnnn is the symbolic device name of the device
used for recording the checkpoint records. Symbolic
device names in the range SYSOOO through SYS255 can be
used. Defaults for this argument are: SYSOOI and
2400.

23111

23141

2400

33301

33401

33501

FBAI

must be specified if the device used is a
2311 disk storage drive.

must be specified if the device used is a
2314 disk storage drive.

must be specified if the device used is a
magnetic tape drive.

must be specified if the device used is a
3330-1 disk storage drive. It may be
specified if the device used is a 3330-11,
but this is not required.

must be specified if the device used is a
3340 disk storage drive.

may be specified if the device used is a
3350 disk storage drive.

may be specified if the device used is a
fixed-block device.

IPrograms compiled with 2311, 2314, 3330, 3350, or FBA (
can be used unchanged with other direct access storage \
devices, including 3375 and 3380. The user can
override the devices in arg3 with the other direct
access storage devices at execution time by means of
the job control ASSGN statement.

represents a fixed binary variable of precision
(31,0), which the DOS checkpoint/restart facilities
will use to return a code to the PL/I program. The
codes returned will have the following values and
meanings:

o

8

12

4

Checkpoint successful. This code will be
returned after a checkpoint record has been
successfully made.

Checkpoint unsuccessful. This code will be
returned if an argument is found to be
invalid by the checkpoint routine. For
example, the device type might be
unrecognizable.

Checkpoint unsuccessful. This code will be
returned if the checkpoint routine has
encountered either a hardware error or an
error in the set-up for taking checkpoints.
Further details are given in the DOS System
Programmer's Guide.

Restart has occurred. This code will b~
returned if a program has been restarted
from a checkpoint.

All the arguments are optional. If arg2, arg3, or arg4 is ~
specified, the defaults for preceding arguments will be assumed ~

230 DOS PL/I Optimizing Compiler: Programmers Guide

)

if these arguments are specified as null strings. For example,
to specify arg4 only, code the PlICKPT statement as follows:

CAll PlICKPTC",",",CODE);

where the variable CODE is to receive the return code set by the
checkpoint/restart facilities.

TAKING CHECKPOINTS ON MAGNETIC TAPE

Any number of checkpoints can be recorded consecutively on'
magnetic tape. A separate magnetic-tape device can be used
exclusively for the checkpoints. However, if there are no
additional devices available, it is possible to include
checkpoint records among the records of another data set that is
being written onto magnetic tape; such records will be
recognized by DOS data set management and ignored when the data
set is accessed for input by a Pl/I program (except when the
data set is accessed by a SEQUENTIAL UNBUFFERED file).
Similarly, records that are not checkpoint records will be
ignored by the DOS restart routines when a checkpoint record on
such a data set is used to restart execution of a program.

If a labeled magnetic tape is used exclusively for recording
checkpoint records, no TlBl statement is required, and the MTe
job control statement should be used to position the tape past
the label.

TAKING CHECKPOINTS ON DISK STORAGE

Any number of checkpoints can be recorded on a disk storage
volume. However, the number of checkpoint records that will be
present on the volume at anyone time depends on the amount of
space made available to the checkpoint data set. When coding
the EXTENT statement for the data set, the number of tracks
required can be calculated as follows:

tracks = (I+CEIlCP/T)HER

where P = partition size,
R = number of checkpoint records

to be retained, and
T = track capacity

For fixed block devices, the storage requirements are specified
in terms of fixed blocks. The storage requirements can be
calculated as follows:

blocks = Cl+CEIl(P/B»~R
where B = hardware-dependent blocksize

for the fixed block device.

The partition size must be that used for the execution of the
PL/I program. When the extent is full, additional checkpoint
records are written over the preceding checkpoints from the
beginning of the extent.

If it is possible that the Pl/I program will execute more than
one CAll PlICKPT specifying a particular filename, the JCl for
the job should include a DLBL statement specifying an expire
time of zero for the corresponding data set. If this is not
done, the operator will be called upon to delete the data set
each time a succeeding version is to be written.

Chapter 13. Checkpoint/Restart 231

EFFECT OF RESTART ON DATA SETS

Any data sets used by a program that is to be restarted from a
checkpoint must be available when the restart is attempted. (
Such data sets are repositioned before processing is resumed. '

UNIT-RECORD DATA SETS

The repositioning of any unit-record data sets is the
responsibility of the user. To facilitate the repositioning of
these data sets, the following suggestions are given:

1. Checkpoints should be taken at a logical break in the
processing of unit-record data sets.

2. Information displayed when a checkpoint is taken should
identify the last record processed for each unit-record data
set.

DATA SETS ON DIRECT-ACCESS DEVICES

Data sets residing on direct-access storage devices and being
processed sequentially when the checkpoint was taken are
repositioned by the restart routines.

Data sets residing on direct-access storage devices and being
processed by a DIRECT UPDATE file present a problem in that any
records updated after a checkpoint might be erroneously updated
a second time when the program is restarted. There are two
possible solutions to this problem:

• Design the program to maintain a history of all updates as a
separate file. This file can then be used as a checklist
against any erroneous updates.

• Set up the data set so that each record within it contains
information that can be checked by the program to prevent a
further erroneous updating.

DATA SETS ON MAGNETIC TAPE

EXAMPLE

Repositioning of magnetic tape volumes to the point following
the last record to be processed is performed automatically
provided the following points are observed. (The first three
points involve the use of the MTC job control statement.)

1. If the data set is one of several on the volume, the volume
should be positioned at the beginning of the relevant data
set by means of a MTC statement.

2. Magnetic-tape volumes with nonstandard labels should be
repositioned past the labels to a point (the tapemark)
preceding the first record of the relevant data set.

3. If a BACKWARDS file is associated with a data set on a
magnetic tape that is unlabeled or has nonstandard labels,
the volume should be positioned immediately past the
tapemark following the last record of the data set.

4. The correct volume of a multivolume data set should be
mounted.

(

\

An example of a Pl/I procedure that uses the checkpoint/restart
facilities is given below. The example causes a checkpoint
record to be written onto a 2311 disk storage device, for which
it uses the symbolic device name SYS030, the data set name ~
CKPTl, and the default file name SYSCHK. ~

232 DOS PL/I Optimizing Compiler: Programmers Guide

// JOB CKPTRST
// OPTION LINK
// EXEC PLIOPT,SIZE=64K

LI: PROC OPTIONSCMAIN);
DCL RET_CODE FIXED BIN(31,O),
COUNT CHAR(8);

.
/* STATEMENTS FOR CHECKPOINT/RESTART */

CALL PLICKPT(",COUNT,'SYS030,2311',RET_CODE);
/* THE PROGRAM CONTINUES OR RESTARTS AT THIS POINT */

IF RET_~3¥E~gI~~~~HECKPOINT I',COUNT,'OK')(A);
IF RET_CODE>4 THEN

PUT EDIT('CHECKPOINT NOT TAKEN')(A);
IF RET_CODE=4 THEN

PUT EDIT('CHECKPOINT/RESTART HAS OCCURRED')(A);

/* END OF CHECKPOINT/RESTART STATEMENTS */

.
END Ll;

/*
// EXEC LNKEDT
// ASSGN SYS030,X'294'
// DLBL SYSCHK,'CKPT1',O,SD
// EXTENT SYS030,DOS222,1,3458,60
//EXEC,SIZE=64K
/&

Figure 85. Example of PL/I Routine to Take Checkpoints

Chapter 13. Checkpoint/Restart 233

CHAPTER 14. PL/! SORT

Storage Requirements

ENTRY NAMES

If you intend to use the PL/I sort facilities, your installation
must include a copy of the DOS/VS program product sort/merge
program (S746-SMl), or a copy of the DOS program product
sort/merge program (S746-SM2). The PL/I sorting facilities make
use of the sort/merge program to arrange records according to a
predetermined sequence. The sort/merge program includes ~
exit points to enable user-written routines to be entered at
particular stages during the sorting operation and to provide
access to records that are being sorted.

The PL/I sort facilities provide an interface to enable the sort
program to be invoked and to call PL/I procedures through two of
the user exits, EIS and E35. This chapter describes the method
of invoking sort/merge from PL/I and the use of the user exits
EIS and E3S.

The m1n1mum storage requirements for the sort program when used
in conjunction with a PL/I program is 16K bytes. If a
direct-access storage device is to be used for intermediate
storage, at least 32K bytes of storage must be available.

Efficiency is enhanced if additional main storage can be
provided. These storage requirements are in addition to those
of the PL/I program.

A PL/I program invokes the sort program by means of a CALL
statement that names one of four entry points to a PL/I sort
interface routine provided by the DOS PL/I Resident Library.
The CALL statement also passes arguments that specify the
requirements for the sorting operation. The arguments include a
sequence of sort/merge control statements in the form of
character-string expressions. The PL/I sort interface module
has entry points for four types of processing:

PLISRTA: Invokes the sort/merge program to retrieve records
from a data set (SORTIN), sort them, and write them in
sorted sequence onto another data set (SORTOUT).

PLISRTB: Invokes the sort/merge program and specifies the use
of user exit EIS. A PL/I procedure invoked at user
exit EIS can supply all the records to be sorted. The
sorted records are written directly onto the data set
SORTOUT.

PLISRTC: Invokes the sort/merge program and specifies the use
of user exit E3S. A PL/I procedure invoked at user
exit E3S can receive all the records from the sort and
handle any output that is required.

PLISRTD: Invokes the sort/merge program and specifies the use
of user exit El5 and user exit E35. The use of these
user exits is exactly as described for PLISRTB and
PLISRTC, above.

After completion of the sort, the sort/merge program returns a
value to the invoking program to indicate whether the sort was
successful. The invoking procedure must include a variable with
the attributes FIXED BINARY(31) to receive this value, and the
name of the variable must always be included in the argument
list of the call statement that invokes sort/merge. The
return-code values are:

234 DOS PL/I Optimizing Compiler: Programmers Guide

)

o Sort successful

16 Sort unsuccessful

PROCEDURES INVOKED VIA SORT USER EXITS

Both external and internal PL/I procedures can be invoked via
sort user exits. The use of external PL/I procedures should
present no problems so long as their entry names are properly
declared in the main PL/I procedure and they are link-edited
with the main PL/I procedure to form a single executable
program.

All records passed to a PL/I procedure from the sort/merge
program1 and all records passed to the sort/merge program1 must
be in the form of character strings. Thus1 if a PL/I procedure
invoked'via one of the sort/merge user exits receives records
from the sort, it must include a character-string parameter; if
it passes records to the sort, it must include a RETURN
statement with a character-string expression.

A PL/I procedure invoked via a sort/merge user exit must pass a
return code to the sort program to indicate what action should
be taken when the PL/I procedure next relinquishes control.
This is effected by invoking from within the procedure the PL/I
library interface module PLIRETC as follows:

CALL PLIRETCCn);

where n can have one of the following values to indicate the
required action:

For procedures invoked via user exit E15:

8 Do not return to this procedure.

12 Include the record returned from the procedure in the sort.

16 Stop the sort and return immediately to the invoking
procedure.

For ,procedures invoked via user exit E35:

4 Pass the next sorted record to the E35 procedure.

8 Do not return to this procedure.

12 Include the record returned from the procedure in the data
set SORTOUT.

16 Stop the sort and return immediately to the invoking
procedure.

DATA SETS USED BY SORT/MERGE

Input Data Sets

The execution step for a PL/I program that uses the PL/I sorting
facilities requires some or all of the following job control
statements, in addition to the job control statements for the
PL/I program1 to define the data sets used by the sort/merge
program. Figure 86 on page 236 shows the file names and
symbolic device names used by the sort/merge program.

If the sort/merge program is to read the records to be sorted
from one or more data sets, include the following statements.
CThe sort/merge program can obtain records from up to nine data
sets successively.)

Chapter 14. PL/I SORT 235

Work Data Sets

TLBL OR DLBL STATEMENTS: For each input data set on magnetic
tape with standard labels, include a TLBL statement. For each
input data set on a direct-access device, include • DLBL
statement. These statements must specify, in consecutive
ascending sequence, the file names SORTINI through SORTIN9,
according to the number of input data sets.

EXTENT STATEMENTS: Include an EXTENT statement for each
direct-access extent occupied by the input data sets.

SORT STATEMENT: If more than on input data set is to be accessed
for records to be sorted, specify the number of data sets in the
FILES option of the SORT statement.

The sort/merge program requires at least three magnetic or
direct-access data sets for use as intermediate storage; you can
increase efficiency by specifying the direct-access data sets on
separate direct-access devices. If the volume of records to be
sorted demands more intermediate storage, you can specify up to
nine magnetic-tape or eight direct-access data sets. Specify
the number of work data sets to be used in the WORK operand of
the sort/merge SORT statement.

TLBL OR DLBL STATEMENTS: For each work data set on ~agnetic tape
with standard labels, include a TLBL statement. For each work
data set on direct-access storage, include a DLBL statement.

Use of
Device Filename Symbolic Device Names When:

Output

Input

Work

ALTWK

CHECKPOINT

SORT OUT

SORTINI

·
SORTINn

SORTWKI

· · SORTWKm

SORTALT

SORTCKP

Sort/Merge
Reads Input
and Writes
Output

SYSOOI

SYSOO2

· · SYS(n+l)

SYS(n+2)

·
SYSCn+m+l)

SYSCn+m+2)

SYSOOO

User Routine User Routine User Routines
at El5 Reads at E35 Writes Read Input
Input Output and Write

Output

SYSOOI

SYSOOI

SYS(n)

SYSOO2 SYSCn+l) SYSOOI
SYSCm+l) SYSCn+m) SYSCm)

SYSCm+2) SYSCn+n+m+l) SYSCm+l)

SYSOOO SYSOOO SYSOOO

n=the number of input files, as specified in the FILES parameter of the
SORT statement.

m=the number of work files, as specified in the WORK parameter of the
SORT card.

Figure 86. Sort/Merge File Names and Symbolic Devi-ces

EXTENT STATEMENT: Include one extent statement for each
direct-access extent used for each work data set on a
direct-access device.

236 DOS PL/I Optimizing Compiler: Programmers Guide

(
\~

!

\

output Data sets

If the sort/merge program is to write the sorted records onto an
output data set, include the following statements.

TLBL AND DLBL STATEMENTS: If the output data set is on magnetic
tape with standard labels, include a TlBl statement. If the
data set is on a direct-access device, include a DlBl statement.
Either statement must specify the name SORTOUT for its file
name.

EXTENT STATEMENT: If the output data set is on a direct-access
device, include one or more EXTENT statements.

Symbolic Device Names

The symbolic device names used in these statements must be
determined according to the information in Figure 86 on page
236.

INVOKING SORT/MERGE FROM PL/I

The sort/merge program is invoked from a Pl/I program by one of
the CAll statements listed below. The number of arguments
required depends on the entry name invoked.

The arguments include sort/merge program control statements that
define the processing to be carried out and describe the records
to be sorted. (When the sort/merge program is invoked as an
independent job step, these control statements are submitted via
SYSRDR.) The control statements are described in the
appropriate sort/merge publication for the version of the
sort/merge program to be used. Note that the Pl/I sort
interface of the sort/merge program CS746-SM2) does not permit
the use of the MERGE statement.

The general syntax of the CAll statement for each of the four
entry points is:

CAll PlISRTACargl,arg2,arg3,arg4[,arg7
[, arg8]]);

CAll PlISRTB(argl,arg2,arg3,arg4,argS
[, a rg7 [, a rg8]]) ;

CAll PlISRTCCargl,arg2,arg3,arg4,arg6
[, a rg7 [, a rg8]]) ;

CAll PlISRTDCargl,arg2,arg3,arg4,argS,
arg6[,arg7[,arg8]]);

The arguments are:

argl Sort/merge SORT statement.

arg2 Sort/merge RECORD statement.

arg3 Sort/merge OPTION statement.

arg4 Name of variable in invoking procedure
receive the sort return-code value.

arg5 Entry name of the Pl/I procedure to be
exit EIS.

arg6 Entry name of the Pl/I procedure to be
exit E3S.

arg7 Sort/merge INPFIl statement.

arg8 Sort/merge OUTFIl statement.

that is to

invoked from user

invoked from user

Chapter 14. Pl/I SORT 237

Control statements for the sort/merge program that are arguments
to one of the Pl/I-sort interfaces are represented in the Pl/I
program as character strings. Unless they are coded as null
strings, these statements must be preceded and followed by a
blank character.

The following notes apply to the use of the OPTION statement,
the INPFIl statement, and the OUTFIl statement.

1. The OPTION Statement: The STORAGE option of the OPTION
statement must be specified unless the minimum size of
storage is acceptable for the sort/merge program. The
minimum storage requirement of the sort program is 16K
bytes. If a direct-access storage device is to be used for
intermediate storage, at least 32K bytes of storage must be
available. These storage requirements are in addition to
the storage requirements of the Pl/I program. The STORAGE
option must have the format:

STORAGE=(nlnK)

where n is an integer. The first parameter of the OPTION
statement should be PRINT=NONE, and the parameters ROUTE=lST
and DUMP should not be used. If it is necessary to use
PRINT=All, PRINT=CRITICAl, DUMP, or ROUTE=lST, then SYSlST
must be closed when PlISRT is called, and the SORT user
exits must not use SYSlST. However, if one of these
parameters is used and for any reason Pl/I error routines
get control, an ABEND will occur.

2. The INPFIl Statement: The EXIT option must be specified if
you are using either PlISRTB or PlISRTD with a Pl/I
procedure at user exit El5 to obtain records and pass them
to the sort/merge program. Do not use this option if the
sort/merge program is to obtain records for sorting from a
SORTIN input data set even if such records are made
available to a Pl/I procedure invoked via user exit E15.

3. The OUTFIl Statement: The EXIT option must be specified if
you are using either PlISRTC or PlISRTD to pass all the
sorted records to a Pl/I procedure at user exit E35 and a
SORTOUT data set is not required. Do not use this option if
the sort program is to write any records onto a SORTOUT data
set even if such records are made available to a Pl/I
procedure invoked via user exit E35.

4. In those cases in which an OPTION statement is neither
necessary nor desired, arg3 may be coded as a null string.
The argument must always be coded even though it is not
needed; it must not be omitted.

5. In those cases in which an INPFIl statement is neither
necessary nor desired, arg7 may be coded as a null string.
The argument must be coded if arg8 is also coded; arg7 may
be omitted only if arg8 is also omitted.

6. In those cases in which an OUTFIl statement is neither
necessary nor desired, arg8 may be coded either as a null
string or omitted entirely.

EXAMPLES OF USING PL/I SORT

The following examples make use of a job stream using sort. on
disk.

SORTING RECORDS DIRECTLY FROM ONE DATA SET TO ANOTHER (PLISRTAJ

The example in Figure 87 on page 239 illustrates the use of
entry point PlISRTA to retrieve records from an input data set
(SORTINI), sort them, and write them directly in sorted sequence
onto an output data set (SORTOUT). The example will sort
records that are 80 bytes in length. The sort field commences

238 DOS Pl/I Optimizing Compiler: Programmers Guide

on byte 7 and is the rema1n1ng 74 bytes of the record. The
records are sorted into ascending alphameric sequence.

The PL/I program contains the following elements:

• A declaration of the variable RETURN CODE to receive the
return code from the sort/merge program.

• A CALL statement to invoke the entry point PLISRTA.

• Statements to test the return code.

The example uses the minimum of data sets: one for input, one
of output, and three direct-access storage extents on a single
disk storage drive.

// JOB FIGl402
// OPTION LINK
// EXEC PLIOPT,SIZE=IOOK

/* PL/I PROGRAMMING EXAMPLE USING PLISRTA */
EXI06: PROCEDURE OPTIONS(MAIN);

DCL RETURN_CODE FIXED BINARYC31,O);

/* INVOKE THE SORT PROGRAM */

CALL PLISRTA C' SORT FIELDS=C7,74,CH,A,),WORK=3 "
, RECORD TYPE=F, LENGTH=(80) "
• OPTION PRINT=NONE,STORAGE=45000 "
RETURN CODE,
, INPFIL BLKSIZE=80 "
, OUTFIL BLKSIZE=80 I);

/* TEST RETURN CODE */

IF RETURN_CODE=16
THEN PUT SKIP EDIT('SORT FAILED')(A);
ELSE IF RETURN CODE=O

THEN PUT SKIp EDITC'SORT COMPLETE')(A);
ELSE PUT SKIP EDIT

C'INVALID SORT RETURN CODE')(A);
/* SET RETURN CODE TO REFLECT SUCCESS OF SORT */
CALL PLIRETCCRETURN CODE);
END EXI06; -

/*
// EXEC LNKEDT
// ASSGN SYS001,3330,VOL=DOS222,SHR
// ASSGN SYS002,3330,VOL=DOS222,SHR
// ASSGN SYS003,3330,VOL=DOS222,SHR
// ASSGN SYS004,3330,VOL=DOS222,SHR
// ASSGN SYS005,3330,VOL=DOS222,SHR
// DLBL SORTOUT,'SDATA',O,SD
// EXTENT SYS001,DOS222,I,O,3990,19
// DLBL SORTIN1,'DDATA',O,SD
// EXTENT SYS002,DOS222,I,O,4009,19
// DLBL SORTWK1"O
// EXTENT SYS003,DOS222,I,O,4028,19
// DLBL SORTWK2"O
// EXTENT SYS004,DOS222,I,O,4047,19
// DLBL SORTWK3"O
// EXTENT SYS005,DOS222,I,O,4066,19
// EXEC ,SIZE=100K
/&

Figure 87. Using PL/I to Invoke Sort/Merge CPLISRTA)

Chapter 14. PL/I SORT 239

USER EXIT E15 (PLISRTBl

The example in Figure 88 on page 241 illustrates the use of
entry point PlISRTB to enable records to be supplied to the sort
by a Pl/I procedure.

like that in the previous example, the main procedure invokes
the sort program and test the return code when processing is
complete. The presence of the EXIT option in the INPFIl
statement indicates to the sort/merge program that all records
to be sorted will be supplied by the procedure invoked via user
exit E15 (in this case, procedure E15X).

Each time procedure E15X is invoked by the sort/merge program,
it reads a record from the input stream and passes it to the
sort after the appropriate return code has been passed.

USING USER EXIT E35 TO HANDLE SORTED RECORDS

The example in Figure 89 on page 242 illustrates the use of
entry point PlISRTC to enable records to be supplied from the
sort to the PL/I procedure. As in previous examples, the main
procedure invokes the sort program and tests the return code
when processing is complete. The presence of the EXIT option in
the OUTFIl statement indicates to the sort/merge program that
all records to be sorted are to be passed to the procedure
invoked by user-exit E35 (in this case, procedure E35X). Each
time procedure E35X is invoked by the sort/merge program, it
receives a sorted record as a parameter, prints it, and requests
the next record from the sort/merge program by passing it the
appropriate return code.

PASSING RECORDS TO BE SORTED, AND RECEIVING SORTED RECORDS (PLISRTDJ

The example in Figure 90 on page 243 illustrates the use of
entry point PLISRTD to enable records to be supplied to the sort
from a PL/I procedure and sorted records to be supplied from the
sort to a PL/I procedure. As in previous examples, the main
procedure invokes the sort program and tests the return code
when processing is complete. The use of the El5 user exit is
similar to that in Figure 88 on page 24lj the use of the E35
user exit is similar to that in Figure 89.

The sequence of events is a follows:

1. The PL/I program invokes the sort/merge program.

2. The sort/merge program invokes the E15 routine for each
input record until the return code is set to 8.

3. The records are sorted.

4. The sort/merge program invokes the E35 routine for each
sorted record until all the sorted records have been passed
or until the E35 routine requests no more records.

SORTING VARIABLE-LENGTH RECORDS

The,PL/I-sort interface facilities can be used to sort
variable~lengt~ records in the 'following circumstanc~s:

• By using PLISRTA to obtain variable-length records from a
SORTIN data set, and transmit variable-length records to a
SORTOUT data set.

• By using PlISRTC to obtain variable-length records from a
SORTIN data set and pass them as adjustable strings to an
E35 routine.

240 DOS Pl/I Optimizing Compiler: Programmers Guide

// JOB FIG1403
// OPTION
// EXEC PlIOPT,SIZE=100K /* Pl/I PROGRAMMING EXAMPLE USING PlISRTB */

EX107: PROC OPTIONS(MAIN);
DCl RETURN_CODE FIXED BINARY(31,0); /* INVOKE THE SORT PROGRAM */

CAll PlISRTB (' SORT FIElDS=(7,74,CH,A),WORK=4 "
, RECORD TYPE=F,lENGTH=(80) "
, OPTION PRINT=NONE,STORAGE=4S000 "
RETURN_CODE,
E1SX,
• INPFIl EXIT "
, OUTFIl BlKSIZE=80 I);

/* TEST RETURN CODE */
IF RETURN CODE=16

THEN PUT SKIP EDIT('SORT FAIlED')(A);
ELSE IF RETURN CODE=O

THEN PUT SKIp EDIT('SORT COMPlETE')(A);
ELSE PUT SKIP EDIT('INVAlID SORT RETURN CODE')CA);

/* SET THE RETURN CODE TO REFLECT SUCCESS OF SORT */
CAll PlIRETC(RETURN_CODE);

E1SX: /* THIS PROCEDURE OBTAINS RECORDS FROM THE INPUT STREAM */

PROC RETURNS(CHAR(80»;
DCl SYSIN FILE RECORD INPUT ENVIRONMENT

(F RECSIZE(80)MEDIUMCSYSIPT»;
ON ENDFIlE(SYSIN) BEGIN;

PUT SKIP(3) EDIT
('END OF SORT PROGRAM INPUT'«A);

CAll PlIRETC(8); /* SIGNAL END OF SORT INPUT */
GOTO ENDE1S;
END;

DCl INFIELD CHAR(80);
READ FILE (SYSIN) INTO (INFIELD);
CAll PlIRETC(12); /* INPUT TO SORT CONTINUES */
RETURN (INFIELD);

ENDE1S: END E1SX;
END EX107;

/*
// EXEC lNKEDT
// ASSGN SYS001,3330,VOl=DOS222,SHR
// ASSGN SYS002,3330,VOl=DOS222,SHR
// ASSGN SYS003,3330,VOl=DOS222,SHR
// ASSGN SYS004,3330,VOl=DOS222,SHR
// ASSGN SYSOOS,3330,VOl=DOS222,SHR
// DlBl SORTOUT,'SDATA',O
// EXTENT SYS001,DOS222,1,0,3990,19
// DLBl SORTWK1,,0
// EXTENT SYS002,DOS222,1,0,4009,19
// DlBL SORTWK2,,0
// EXTENT SYS003,DOS222,1,0,4028,19
// DlBL SORTWK3,,0
// EXTENT SYS004,DOS222,1,0,4047,19
// DlBl SORTWK4,,0
// EXTENT SYSOOS,DOS222,1,0,4066,19
// EXEC ,SIZE=100K
003329HOOKER S.W. RIVERDALE, SATCHWEll lANE, BACONSFIElD
002886BOOKER R.R. ROTORUA, MIlKEDGE lAND, TOBlEY
003077ROOKER & SON, lITTLETON NURSERIES, SHOLTSPAR
OS9334HOOK E.H. 109 ElMTREE ROAD, GANNET PARK, NORTHAMPTON
073872HOME TAVERN, WESTLEIGH
/*
/&

Figure 88. Using User Exit E1S to Supply Records for Sorting (PLISRTB)

Chapter 14. Pl/I SORT 241

// JOB FIG1404
// OPTION LINK
// EXEC PLIOPT,SIZE=lOOK

/* PL/I PROGRAMMING EXAMPLE USING PLISRTC */
EXI08: PROCEDURE OPTIONSCMAIN)

/*

DCL RETURN_CODE FIXED BINARY(31,O);

/* INVOKE THE SORT PROGRAM */

CALL PLISRTC C' SORT FIELDS=C7,74,CH,A),WORK=4 '
• RECORD TYPE=F,LENGTH=(80) "
, OPTION PRINT=NONE,STORAGE=45000 "
RETURN CODE,
E35X, -
, INPFIL BLKSIZE=80 "
, OUTFIL EXIT ');

/* TEST RETURN CODE */

IF RETURN CODE=16
THEN PUT SKIP EDIT('SORT FAILED')(A);
ELSE IF RETURN CODE=O

THEN PUT SKIp EDITC'SORT COMPLETE')(A);
ELSE PUT SKIP EDITC'INVALID SORT RETURN CODE')(A);

/* SET THE RETURN CODE TO REFLECT SUCCESS OF SORT */
CALL PLIRETCCRETURN_CODE);

E35X: /* THIS PROCEDURE OBTAINS SORTED RECORDS */

PROC (INREC); /* PROCESS SORTED RECORDS */

DCL INREC CHAR(80);
PUT SKIP EDIT (INREC) (A);
CALL PLIRETC(4); /* REQUEST NEXT RECORD FROM SORT */
END E35X;

END EXI08;

// EXEC LNKEDT
// ASSGN SYSOOl,3330,VOL=DOS222,SHR
// ASSGN SYS002,3330,VOL=DOS222,SHR
// ASSGN SYS003,3330,VOL=DOS222,SHR
// ASSGN SYS004,3330,VOL=DOS222,SHR
// ASSGN SYS005,3330,VOL=DOS222,SHR
// DLBL SORTINl,'DDATA',O
// EXTENT SYSOOl,DOS222,1,O,3990,19
// DLBL SORTWKl"O
// EXTENT SYS002,DOS222,l,O,4009,19
// DLBL SORTWK2"O
// EXTENT SYS003,DOS222,l,O,4028,19
// DLBL SORTWK3"O
// EXTENT SYS004,DOS222,l,O,4047,19
// DLBL SORTWK4"O
// EXTENT SYS005,DOS222,l,O,4066,19
// EXEC ,SIZE=lOOK
/&

Figure 89. Using User Exit E35 to Handle Sorted Records (PlISRTC)

242 DOS Pl/I Optimizing Compiler: Programmers Guide

// JOB FIG1405
// OPTION lINK
// EXEC PlIOPT,SIZE=100K

EXI09: PROC OPTIONSCMAIN); /* Pl/I PROGRAMMING EXAMPLE USING PlISRTD */
DCl RETURN_CODE FIXED BINARYC31,0);
/* INVOKE THE SORT PROGRAM */

CAll PlISRTD C' SORT FIElDS=(7,74,CH,A),WORK=4 I,

, RECORD TYPE=F,lENGTH=(80) "
, OPTION PRINT=NONE,STORAGE=45000 '
RETURN CODE,
EI5X, -
E35X,
, INPFIl EXIT "
, OUTFIl EXIT ')j

/* TEST RETURN CODE */
IF RETURN CODE=16 THEN PUT SKIP EDIT ('SORT FAIlED')(A)j
ELSE IF RETURN_CODE=O

THEN PUT SKIP EDIT('SORT COMPlETE')(A);
ELSE PUT SKIP EDIT ('INVALID SORT RETURN CODE')(A);

/* SET RETURN CODE TO REFLECT SUCCESS OF SORT */
CAll PlIRETC(RETURN CODE);

EI5X: /* THIS PROCEDURE OBTAINS RECORDS FROM THE INPUT STREAM */
PROC RETURNSCCHAR(80»j

ON ENDFIlE(SYSIN) BEGIN;
PUT SKIP(3)EDIT('END OF SORT PROGRAM INPUT. "

'SORTED OUTPUT SHOULD FOllOW')(A);
CAll PlIRETC(8)j /* SIGNAL END OF SORT INPUT */
GOTO ENDEI5;
END;

DCl INFIELD CHAR(80);
GET FILE (SYSIN) EDIT (INFIELD) (A(80»;
PUT SKIP EDIT (INFIElD)(A);
CAll PlIRETC(12); /* INPUT TO SORT CONTINUES */
RETURN (INFIElD)j

ENDEI5: END EI5X;
E35X: /* THIS PROCEDURE OBTAINS SORTED RECORDS */

PROC (INREC);
/* PROCESS SORTED RECORDS */

DCl INREC CHAR(80);
PUT SKIP EDIT CINREC) (A);
CAll PlIRETC(4); /* REQUEST NEXT RECORD FROM SORT */
END E35X;

END EXI09;
/*
// EXEC lNKEDT
// ASSGN SYS001,3330,VOl=DOS222,SHR
// ASSGN SYS002,3330,VOl=DOS222,SHR
// ASSGN SYS003,3330,VOl=DOS222,SHR
// ASSGN SYS004,3330,VOl=DOS222,SHR
// DlBl SORTWK1,,0
// EXTENT SYS001,DOS222,1,0,3990,19
// DlBl SORTWK2,,0
// EXTENT SYS002,DOS222,1,0,4009,19
// DlBl SORTWK3,,0
// EXTENT SYS003,DOS222,1,0.4028,19
// DlBl SORTWK4,,0
// EXTENT SYS004,DOS222,1,0,4047,19
// EXEC ,SIZE=100K
003329HOOKER S.W. RIVERDALE, SATCHWEll lANE, BACONSFIElD
002996BOOKER S.W. ROTORUA, MIlKEDGE lANE, TOBlEY
003077ROOKER & SON, lITTLETON NURSERIES, SHOlTSPAR
059334HOOK E.H. 109 ElMTREE ROAD, GANNET PARK, NORTHAMPTON
073872HOME TAVERN, WESTLEIGH
000931FOREST,IVER,BUCKS
/*
/&

Figure 90. Using User Exits E15 and E35 (PlISRTD)

Chapter 14. Pl/I SORT 243

• By using PLISRTB to obtain varying-length strings from an
El5 routine with the option RETURNSCCHARCn)VARYING), convert
them to variable-length records, sort them, and transmit
them to a SORTOUT data set.

• By using PlISRTD to obtain varying-length strings from an
E1S routine with the option RETURNSCCHARCn)VARYING), convert
then to a variable-length records, sort them, and pass them
reconverted as adjustable strings to an E35 routine.

An ElS routine can also be used as follows:

• Fixed-length strings can be returned from the PL/I program
to be sorted in a sorting operation for which
variable-length records are specified.

• Varying-length strings can be returned from the Pl/I program
to be sorted in a sorting operation for which fixed-length
records are specified.

In the first case, the Pl/I interface converts the fixed-length
strings to variable-length records of equal length. In the
second case, the varying-length strings are padded with blanks
to the maximum length and converted to fixed-length records.

CNote that an E35 routine cannot be used in a similar manner.
If the sorted records passed to it are fixed-length, a
fixed-length string must be used; if the sorted records are
variable-length, an adjustable string must be used.)

Variable-length records can be sorted, provided that the
position and length of fields that are used as sort keys are
identical for every record.

An example of a Pl/I program to invoke sort/merge to sort
varying-length strings as variable-length records is given in
Figure 91 on page 245. The example uses PlISRTB to pass
varying-length strings to the sort program. The sort program
sorts them and writes them onto the data set VRECS. The records
have a maximum length of 84 bytes including a 4-byte length
field added to each varying-length string before it is passed to
the sort program. Consequently the sort field, which commences
on the seventh position in the varying-length string, is
specified in the SORT FIELDS statement as starting in the
eleventh position in the variable-length record. The sort field
is the following 14 characters, and lies within the minimum
record length of 24.

The program lists each record in the input stream and converts
it into a varying-length string. It also prints the length of
the data portion of each string that is processed.

Variable-length records passed to an E35 exit routine must be
declared as parameters that are adjustable character strings.
The use of the VARYING attribute for such parameters is not
permitted. For example, suppose the records are variable length
and unblocked, with the following characteristics:

Maximum length for both input and output: 80 bytes

Minimum length for both input and output: 20 bytes

Most frequent record length: 40 bytes

Maximum block size: 84 bytes

An example of a Pl/I program to invoke sort/merge to sort such
records is given in Figure 92 on page 246. In the example,
PLISRTC obtains variable-length records from the data set VRECS
Ccreated in the example in Figure 91), sorts them, and passes
them as adjustable strings to the E3S routine which prints them.

244 DOS PL/I Optimizing Compiler: Programmers Guide

// JOB FIGI306
// OPTION lINK
// EXEC PlIOPT,SIZE=100K
/*Pl/I EXAMPLE USING PlISRTB TO SORT VARYING-lENGTH RECORDS*/

EX1406: PROC OPTIONS(MAIN);
DCl RETURN CODE FIXED BIN(31,0);
CAll PlISRTB (' SORT FIElDS=(11,14,CH,A),WORK=4 "

I RECORD TYPE=V,lENGTH={84",24,44) "
, OPTION PRINT=NONE,STORAGE=45000 "
RETURN CODE,
EI5X, -
, INPFIl EXIT "
, OUTFIl BlKSIZE=88 I);

IF RETURN CODE=O
THEN PUT SKIP EDIT ('SORT COMPlETE'){A);
ELSE IF RETURN CODE=16

THEN PUT SKIP EDIT{'SORT FAIlED')(A);
ELSE PUT SKIP EDIT

('INVALID RETURN CODE')(A);
/* SET RETURN CODE TO REFLECT SUCCESS OF SORT */

CAll PlIRETC(RETURN_CODE);

EI5X: PROC RETURNS (CHAR(80) VARYING);
DCl STRING CHAR(80) VAR;
ON ENDFIlE(SYSIN) BEGIN;

PUT SKIP EDIT ('END OF INPUT'){A);
CAll PlIRETC(8);
GOTO ENDEI5;
END;

GET EDIT{STRING)(A{80»j
I=INDEX{STRINGII' ',' ')-lj /* RESET THE lENGTH OF THE */
STRING = SUBSTR(STRING,I,I)j /* STRING FROM 80 Tn lENGTH */

/* OF THE TEXT IN EACH INPUT*/
/* RECORD */

PUT SKIP EDIT(I,STRING) (F(2),X{3),A);

/*

CAll PlIRETC(12)j
RETURN{STRING);

ENDEI5: END EI5X;
END EX1406j

// EXEC lNKEDT
// ASSGN SYSOOl,3330,VOl=DOS222,SHR
// ASSGN SYS002,3330,VOl=DOS222,SHR
// ASSGN SYS003,3330,VOl=DOS222,SHR
// ASSGN SYS004,3330,VOl=DOS222,SHR
// ASSGN SYS005,3330,VOl=DOS222,SHR
// DlBl SORTOUT,'VRECS',O
// EXTENT SYSOOl,DOS222,1,0,3990,19
// DlBl SORTWKl"O
// EXTENT SYS002,DOS222,1,0,4009,19
// DlBl SORTWK2,,0
// EXTENT SYS003,DOS222,1,0,4028,19
// DlBl SORTWK3,,0
// EXTENT SYS004,DOSZ~2,1,0,4047,19
// DlBl SORTWK4,,0
// EXTENT SYS005,DOS222,1,0,4066,19
// EXEC ,SIZE=lOOK
003329HOOKER S.W. RIVERDALE, SATCHWEll lANE, BACONSFIElD
002886BAKER R.R. ROTORUA, MIlKEDGE lANE, TOBlEY
003077ROKER 8 SON, lITTLETON NURSERIES, SHOlTSPAR
059334HAWICK E.H. 109 ElMTREE RD., GANNET PARK, NORTHAMPTON
073872HAWICK ARMS, WESTLEIGH
093131BIRCHWOOD,FOREST & co. IVER, BUCKS
/*
/8

Figure 91. Using PlISRTB to Sort Varying-length Strings

Chapter 14. Pl/I SORT 245

The records have a maximum length of 84 bytes and a maximum
block size of 88 bytes. Each record has a 4-byte length field
which remains with it throughout the sorting operation.
Consequently the sort field, which commences on the first byte
of data part of each record, is specified in the SORT FIELDS
statement as starting in the fifth position on the record. The
sort field is six characters in length and is to be sorted in
ascending sequence.

The sorted records are passed to the PL/I E35 routine, their
length fields having been removed by the PL/I-sort interface
routine.

//JOB FIGl407
// OPTION LINK, DUMP
// EXEC PLIOPT,SlZE=lOOK

/*

/* PL/I PROGRAMMING EXAMPLE USING PLISRTC TO SORT
VARYING-LENGTH RECORDS

EXlOlO: PROC OPTIONS(MAIN);
DCL RETURN CODE FIXED BINARY(3l,O);
CALL PLISRTC(' SORT FIELDS=5,6,CH,A),WORK=4 "

, RECORD TYPE=V,LENGTH=(84",24,44) "
, OPTION PRINT=NONE,STORAGE=45000 "
RETURN CODE,
E35X, -
, INPFIL BLKSIZE=88 "
, OUTFIL EXIT ');

/* SET RETURN CODE TO REFLECT SUCCESS OF SORT */
CALL PLIRETC(RETURN_CODE)j

IF RETURN CODE=O
THEN PUT SKIP EDIT('SORT COMPLETE')(A)j
ELSE IF RETURN CODE=l6

THEN PUT SKIP EDIT('SORT FAILED')(A)j
ELSE PUT SKIP EDIT

('IVALID SORT RETURN CODE')(A)j
E35X:PROC(STRING)j

DCL STRING CHAR(*);
PUT SKIP EDIT (STRING)(A)j
CALL PLIRETC(4)j
END E35Xj

END EXlOlOj

// EXEC LNKEDT
// ASSGN SYSOOl,3330,VOL=DOS222,SHR
// ASSGN SYS002,3330,VOL=DOS222,SHR
// ASSGN SYS003,3330,VOL=DOS222,SHR
// ASSGN SYS004,3330,VOL=DOS222,SHR
// ASSGN SYS005,3330,VOL=DOS222,SHR
// DLBL SORTINl,'VRECS'
// EXTENT SYSOOl,DOS222,l,O,3990,l9
// DLBL SORTWKl"O
// EXTENT SYS002,DOS222,1,O,4009,l9
// DLBL SORTWK2"O
// EXTENT SYS003,DOS222,l,O,4028,l9
// DLBL SORTWK3"O
// EXTENT SYS004,DOS222,l,O,4047,l9
// DLBL SORTWK4"O
// EXTENT SYS005,DOS222,1,O,4066,l9
// EXEC ,SIZE=lOOK
/&

Figure 92. Sorting Variable-Length Records (PLISRTC)

246 DOS PL/I Optimizing Compiler: Programmers Guide

CHAPTER 15. COMMUNICATION WITH COBOL, FORTRAN, AND RPG

Pl/I permits communication, at execution time, between programs
compiled by the Pl/I Optimizing Compiler and programs compiled
by one of the following compilers, and executed using the
corresponding library.

Program

DOS FORTRAN IV Compiler

DOS FUll ANS COBOL (Version 3)
Compiler and library

(library only)

DOS/VS COBOL Compiler and
library
(library only)

DOS RPG II Compiler
DOS/VS RPG II Compiler

Program No.

360N-FO-479

5736-CB2
5736-lM2

5746-CBl
5746-lM4

5736-RGl
5746-RGl

Communication between a Pl/I program, and a program compiled by
one of the FORTRAN or COBOL compilers, can be achieved in two
ways:

• By using a common data set for the Pl/I and COBOL/FORTRAN
routines.

• By invoking a COBOL/FORTRAN routine from a Pl/I routine, or
vice versa, and by passing data either as arguments or in
the form of static storage.

If a common data set is used to communicate between a Pl/I and a
COBOL routine, the COBOL option of the ENVIRONMENT attribute may
be required. Although this option initiates remapping of Pl/I
structures, it is in no way associated with the interlanguage
facilities described here; a file with this option cannot be
used as a file argument or a file parameter. For use of the
COBOL option of the ENVIRONMENT attribute, see "COBOL Option" on
page 104 in Chapter 7.

A Pl/I procedure can invoke a COBOL routine by use of the CAll
statement, or can invoke a FORTRAN routine by use of the CAll
statement or a function reference. Alternatively, a Pl/I
procedure can be invoked by use of the corresponding language
features in a COBOL or a FORTRAN main program or routine.
Arguments can be passed on invocation, and a value can be
returned for function references.

A COMMON block in FORTRAN has storage equivalent to that of a
STATIC EXTERNAL variable in Pl/I. If a COMMON block and a STATIC
EXTERNAL variable are given the same name, then they will be
allocated the same block of storage, in the same way as two
identical STATIC EXTERNAL variables in Pl/I. Assigning a value
to one variable causes the same value to be assigned to the
other. There is no similar equivalence in COBOl--no COBOL
variable can have common storage with a Pl/I variable other than
as an argument or parameter.

A program compiled by the DOS RPG II compiler can invoke a Pl/I
routine from its calculation section by means of an EXIT
operation. Parameters cannot be passed, nor can values be
returned, but data can be communicated by means of static
storage. (See "Matching RPG Arguments/Parameters" on page 256).

The interlanguage facilities are entirely provided by the Pl/I
compiler; they are obtained by specifying the appropriate
language items in the invoking or invoked Pl/I procedure.
Existing COBOL or FORTRAN programs or routines generally do not

Chapter 15. Communication with COBOL, FORTRAN, and RPG 247

need modification or recompiling for interlanguage use; new
programs or routines can be written in these languages and
compiled as before, without the need to anticipate interlanguage
communication. Thus existing COBOL or FORTRAN application
programs can be extended by the use of PL/I procedures, while
COBOL or FORTRAN libraries can be made available to new or
existing PL/I procedures. Existing RPG II programs designed to
invoke assembler routines can invoke PL/I routines without
modification.

In the context of this chapter, routine includes a COBOL
subprogram, or a FORTRAN subroutine or function, including a
FORTRAN library function. The conventions that exist in these
languages for handling subroutines and functions apply normally,
and are not modified for interlanguage use. In particular, the
restriction that a FORTRAN function cannot be invoked without
passing an argument or arguments still applies when the
invocation is from a PL/I routine.

Facilities are provided to extend PL/I interrupt handling to
cover invoked COBOL or FORTRAN routines.

ARGUMENTS AND PARAMETERS

While a detailed knowledge of COBOL or FORTRAN is not essential
for use of the interlanguage facilities, you may need to be
aware of the equivalents in data organization in PL/I and the
other two languages. These equivalents must be understood in
order to achieve argument/parameter matching for COBOL and
FORTRAN, and to achieve correspondence between Pl/I declarations
and RlABL and UlABl operations for RPG II.

For COBOL and FORTRAN, the interlanguage facilities
automatically resolve differences in the mapping for equivalent
data organizations, when matching arguments and parameters; you
can, if you wish, override this action. (

PASSING ARGUMENTS TO COBOL OR FORTRAN ROUTINES

When an argument is passed to a COBOL or a FORTRAN routine, the
data type is determined in the normal PL/I manner; that is, from
the parameter descriptor list of the associated entry
declaration, or from the argument itself. The interlanguage
facilities ensure, however, that the addressing mechanism for
the argument is that used by the invoked language, and unless
otherwise required, the mapping of any aggregates passed is that
used by the invoked language. Because the interlanguage
facilities provided by Pl/I cannot look at the parameter in the
invoked routine, it is your responsibility to ensure that the
parameter in the invoked routine corresponds in data type and
organization to the argument description in PL/I.

If the PL/I compiler can determine, at compile-time, that the
mapping of a structure or array argument is the same in PL/I as
in the invoked language, the argument is passed directly to the
invoked routine. However, where such mapping equivalence does
not exist, the interlanguage facilities provide for a dummy
argument to be passed, where the dummy is mapped according to
the rules of the invoked language. See "Structure Mapping" in
the OS and DOS Pl/I language Reference Manual.

If the PL/I data types of arguments passed to FORTRAN or COBOL
have no equivalents in these languages, a warning message is
pr'9duced at compile-time. At execution-:-time, the resul ts are
undefined, and may include abnormal ter.ination.

DATA TYPES: Pl/I has more data types than either COBOL or
FORTRAN; some have no equivalents in these languages. The extent
to which PL/I data types have equivalents in COBOL or FORTRAN,
and therefore can be passed as arguments, is summarized here.

248 DOS PL/I Optimizing Compiler: Programmers Guide

I
I~

PROBLEM DATA: Most of the PL/I data types have equivalents in
either COBOL or FORTRAN. Tables of data equivalents for
PL/I-COBOL and PL/I-FORTRAN are given below, in Figure 93 on
page 254 and Figure 95 on page 256, respectively.

PROGRAM-CONTROL DATA: Arguments of any program-control data type
can be passed to an invoked COBOL or FORTRAN routine. However,
only an entry argument can be passed and used within the invoked
routine, and then only if the routine is a FORTRAN routine.
Arguments of any other data type should not be used in the
invoked routine except to be passed in turn to a PL/I procedure.

DATA-MAPPING: In order that an argument can be successfully
passed to a COBOL or FORTRAN routine, the mapping of the actual
argument passed must correspond to the mapping assumed for the
parameter by COBOL or FORTRAN.

For an element argument, the only requirement is that the
alignments of argument and parameter are compatible. In PL/I,
the alignment of variables is determined by the ALIGNED and
UNALIGNED attributes. The equivalent specifications in COBOL and
FORTRAN are:

PL/I

ALIGNED

UNALIGNED

COBOL

SYNCHRONIZED

Unsynchronized

FORTRAN

Normal
alignment

No equivalent

The alignment of a PL/I argument is deduced, like the data type,
from the parameter descriptor list or from the argument itself.
Only ALIGNED elements may be passed to SYNCHRONIZED COBOL
parameters, or to FORTRAN parameters. Either ALIGNED or
UNALIGNED elements can be passed to COBOL unsynchronized
parameters. It is your responsibility to ensure that these
alignments are compatible.

The problem is more complicated for data aggregates. A PL/I or a
COBOL structure, for example, can have either of the alignment
restrictions given above. In addition, each member can have its
own alignment restriction or all members can have the same
alignment restriction. Padding bytes are inserted by the
mapping algorithm for the particular language, in order to
preserve the required alignment for each member. In a PL/I
structure, the alignments are adjusted, where possible, to
minimize the amount of padding required; this adjustment does
not occur in a COBOL structure. The result is that a structure,
mapped with the PL/I mapping algorithm, may not have the same
layout in main storage as a structure mapped with the COBOL
algorithm.

Similarly, the mapping of arrays is different in PL/I and
FORTRAN. PL/I stores arrays of more than one dimension in
row-major-order, while FORTRAN stores them in
column-major-order. Hence, for arrays with more than one
dimension, a reference to an element in Pl/I is obtained by
reversing the order of the subscripts that would be used in
FORTRAN to refer to the same element.

The interlanguage facilities resolve these problems by creating
dummy arguments for Pl/I data aggregates passed as arguments to
COBOL or FORTRAN routines. When a Pl/I ALIGNED structure is
passed as an argument to a COBOL routine, the mapping of the
argument in both languages is considered. If the compiler can
determine that the mappings are identical, the argument is
passed directly to the COBOL routine.

However, if the compiler cannot determine that the mappings are
identical, a dummy argument is created, mapped according to the
COBOL SYNCHRONIZED mapping algorithm. The values of the members
of the Pl/I structure are assigned to the corresponding members
in the dummy argument; the dummy is then passed as an argument
to the COBOL routine. On return to the Pl/I procedure, the

Chapter 15. Communication with COBOL, FORTRAN, and RPG 249

values in the dummy argument (which mayor may not have been
changed) are assigned to the corresponding members of the
original Pl/I argument.

Similarly, when a Pl/I array is passed as an argument to a
FORTRAN routine, the mapping of the array in both languages is
considered. If the arrays are unidimensional, and are in
connected storage and are aligned identically, the argument is
passed directly to the invoked FORTRAN routine. If either the
arrays are unidimensional and do not meet the above conditions,
or are multidimensional, a dummy argument is created and mapped
according to FORTRAN array handling. (In effect, this means the
subscripts are reversed.) The values of the Pl/I array elements
are assigned to the corresponding elements in the dummy
argument. The dummy argument is then passed as an argument to
the FORTRAN routine. On return to the Pl/I procedure, the values
in the dummy argument (which mayor may not have been changed)
are assigned to the appropriate elements of the Pl/I argument.

You can specify certain options that inhibit or restrict the
effect of the inter1anguage facilities for remapping data
aggregates. If several are passed at an invocation, you can, for
example, inhibit the facilities for one argument, allow them for
another argument, or restrict them for a third argument.

INVOKING COBOL OR FORTRAN ROUTINES

Invocation of a COBOL or FORTRAN routine is performed by a CAll
statement or (in the case of a FORTRAN routine only) a function
reference that specifies an entry constant or variable whose
value corresponds to the entry point of a COBOL or FORTRAN
routine. The entry point must not be that of a FORTRAN main
program. The entry constant or variable must be identified as
invoking COBOL or FORTRAN by use of the appropriate options in
the OPTIONS attribute in the declaration of the entry in the
Pl/I program. You may also specify, in this declaration, options
that suppress remapping of data aggregates and an option that
allows Pl/I to deal with certain interrupts in the COBOL or
FORTRAN routine.

The options are:

COBOL
This specifies that the designated entry point is in a
COBOL routine.

FORTRAN

NOMAP

This specifies that the designated entry point is in a
FORTRAN routine.

This specifies that a dummy argument is not created; the
aggregate argument is passed directly to the invoked
routine.

NOMAPIN
This specifies that, if a dummy argument is created, it is
not initialized with the values of the aggregate argument.

NOMAPOUT

INTER

This specifies that, if a dummy argument is created, then,
on return, the values in the dummy argument are not
assigned to the aggregate argument.

The NOMAPIN and ,'OMAPOUT options should be used if
initialization is not required whenever program efficiency
is important, because they allow the compiler to omit
unnecessary initialization code.

This specifies that any interrupts occurring during the
execution of a COBOL or FORTRAN routine that are not dealt

250 DOS Pl/I Optimizing Compiler: Programmers Guide

/
i
\,

(

~
) v

Examples

ARGn

with by the COBOL or FORTRAN interrupt-handling facilities
are dealt with by the Pl/I interrupt-handling facilities
(see also "Handling Interrupts" later in this chapter).

This is an option of NOMAPI NOMAPIN I and NOMAPOUT that
specifies which arguments the option applies to. If no
ARGn is specifiedl the option is applied to all arguments.

The following points should be noted in the declaration of the
entry name:

• Either COBOL or FORTRAN (but not both) can appear in the
declaration. One or more or the options NOMAP I NOMAPIN and
NOMAPOUT can appear in the same declaration.

• The RETURNS attribute cannot be used with the COBOL optionl
as COBOL does not provide function subprograms.

• An entry variable or a parameter can be declared with the
interlanguage options.

• An entry name with the interlanguage options can appear in a
GENERIC attribute specification.

• The entry constant name of the COBOL or FORTRAN routine may
have 1 through 8 characters. If more than 8 characters are
specifiedl the leftmost 8 only are taken.

1. DCl COBOL ENTRY (CHAR(5»
OPTIONS(COBOl INTER)I

COBOlB ENTRY (11 2 FIXED I 2 FLOAT)
OPTIONS(COBOl NOMAPIN),

COBOlBXX OPTIONS(COBOl) EXTERNAL
ENTRY(...);

2. DCl FORTA ENTRY(FIXED BINARY)
OPTIONS(FORTRAN) RETURNS
(FLOAT (5»;

3. DCl A EXTERNAL ENTRY(...) VARIABLE
OPTIONS (FORTRAN),

B OPTIONS (FORTRAN);

A=Bi
CAll A(...);

4. DCl A GENERIC (COBOll
WHEN(l UNAlIGNED I 2 FIXED I
2 FLOAT)

FORTl WHEN(FIXED BINARY»I

COBOll OPTIONS (COBOl)1

FORTl OPTIONS (FORTRAN);

5. DCl A ENTRY;

CAll X (A);

X:PROC(B);
DCl B OPTIONS (COBOL);

Chapter 15. Communication with COBOl l FORTRAN I and RPG 251

6. DCL COSUB ENTRY(... , ... , ... ,)
OPTIONS(COBOL,NOMAP(ARG1,ARG3»;

CALL COBSUB(A,B,C)j

CALL COBSUB(X,Y,Z);

PASSING ARGUMENTS FROM COBOL OR FORTRAN ROUTINES

DATA MAPPING

When an argument is passed to a PL/I procedure from COBOL or
FORTRAN, the data type is determined in the normal PL/I manner;
that is, from the declaration of the parameter. The
interlanguage facilities ensure that the addressing mechanism
used for the parameter is that used by PL/I, and that, unless
otherwise required, the mapping of any aggregate parameters
passed is also that used by PL/I. Because the interlanguage
facilities provided by PL/I cannot look at the argument in the
routine invoking PL/I, it is your responsibility to ensure that
the argument passed to PL/I corresponds in data type and
organization to the parameter declared in PL/I.

The situation is similar to that which occurs on invocation of
COBOL or FORTRAN by PL/I. The mapping of the argument on entry
to the PL/I procedure must correspond to the mapping used by
PL/I in addressing the parameter.

For element arguments and parameters, this means that a FORTRAN
argument or a SYNCHRONIZED or unsynchronized COBOL argument may
be passed to an UNALIGNED PL/I parameter, or that a SYNCHRONIZED
COBOL argument or a FORTRAN argument may be passed to an ALIGNED
PL/I parameter.

For aggregate arguments and parameters where the mapping of the
argument in COBOL (synchronized) or FORTRAN differs from the
mapping of the parameter in PL/I, the interlanguage facilities
resolve the problem by creating a dummy argument which is passed
to the PL/I procedure.

The dummy argument is mapped according to PL/I rules; and,
before invocation of the PL/I procedure, the values of the
members of the COBOL or FORTRAN argument are assigned to the
corresponding members of the dummy argument. On return from the
PL/I procedure, the values of the members of the dummy argument
are assigned back to the original argument.

If the compiler can recognize that the mapping in COBOL or
FORTRAN and PL/I are equivalent, no such dummy is created.

Alternatively, you can inhibit the creation of the dummy, or the
assignments between the original argument and the created dummy,
by means of options.

INVOKING PL/I ROUTINES

The entry points in a PL/I procedure that are to be invoked from
COBOL, FORTRAN, or RPG must be identified by the appropriate
options in the corresponding PROCEDURE or ENTRY statement. You
may also specify options that suppress remapping of data
aggregates, and, for RPG, that identify the names of common data
areas.

COBOL
This specifies that the entry point can only be invoked by
a COBOL routine.

252 DOS PL/I Optimizing Compiler: Programmers Guide

FORTRAN

RPG

NOMAP

This specifies that the entry point can only be invoked by
a FORTRAN routine.

This specifies that the entry point can only be invoked by
an RPG routine.

This specifies that a dummy argument is not created; the
COBOL or FORTRAN aggregate argument is passed directly to
PL/I.

NOMAPIN
This specifies that, if a dummy argument is created, it is
not initialized with the values of the aggregate argument.

NOMAPOUT

RLABL

This specifies that, if a dummy argument is created, its
values are not assigned back to the aggregate argument on
return. I
The NOMAPIN and NOMAPOUT options should be used, if
initializations are not required, whenever program
efficiency is important, since they allow the compiler to
omit unnecessary initialization code.

This specifies that the variables named in the option are
STATIC EXTERNAL variables used for communication with RPG
and that they also appear in RPG RLABL operations.

Parameter List
The parameter or parameters to which the NOMAP, NOMAPIN, or
NOMAPOUT options apply can be specified in a list. If no
list is specified, the option is applied to all parameters.

The following points should be noted when coding the PROCEDURE
or ENTRY statement:

• Only one of the options MAIN, COBOL, FORTRAN, or RPG can
appear in the same statement. One or more of the options
NOMAP, NOMAPIN, or NOMAPOUT can appear in the same
statement.

• If the parameters for the procedure include strings, areas,
or arrays; the lengths, sizes, or bounds for these must be
specified as integers.

• The RETURNS option cannot be specified for any entry point
invoked by a COBOL or an RPG routine.

• The parameter or parameters to which the NOMAP, MAPIN, or
MAPOUT options apply can be specified in an argument list.

• An entry point that is to be invoked by an RPG routine
cannot have parameters.

Examples:

1. Pl:PROCeA,B,C) OPTIONS eFORTRAN
NOMAPINeC) NOMAPOUTCA»j

DCl AC3,4) FLOAT BIN(20),
B FIXED BIN(31),
Ce5,6) FLOAT DEC(6)j

2. P2:PROCCR,S,T) OPTIONS CFORTRAN NOMAP)j

3. P3:PROCCX,Y) OPTIONS(COBOL NOMAPINeX)
NOMAPOUTCY»j

DCl 1 X, 2 ... ,
1 y, 2 ... j

Chapter 15. Communication with COBOL, FORTRAN, and RPG 253

MATCHING COBOL ARGUMENTS/PARAMETERS

DATA TYPE

COMPUTATIONALI
dec. 1 ength :

1-4

COMPUTA­
TIONAL-I

COMPUTA­
TIONAL-2

COMPUTA­
TIONAL-3

DISPLAY

5-9

10-18

Argument/parameter matching across a PL/I-COBOL interface
requires a knowledge of the equivalence of data types and of
data organization in the two languages. The PL/I equivalents of
the COBOL data types are shown in Figure 93. These are the PL/I
data types that should appear in PL/I parameter descriptors
associated with COBOL arguments or parameters, respectively.

COBOL PL/I

ALIGNMENT

LENGTH SYNCH. UNSYNCH. DATA TYPE
(BYTES) (ALIGNED) (un-

2

4

8

4

8

any

Halfword

Fullword

Fullword

Fullword

Double­
word

Byte

Byte

ALIGNED)

Byte

Byte

Byte

Byte

Byte

Byte

Byte

FIXED
BINARY(15,0)
(halfword
integer)

FIXED
BINARY(31,0)
(fullword
integer)

No equiva­
lent

FLOAT DEC(6)
(short
float)

FLOAT
DEC(16)
(long float)

FIXED DEC

CHARACTER

ALIGNMENT

LENGTH ALIGNED UN-
(BYTES) ALIGNED

2

4

4

8

any

Half­
word

Ful1-
word

Full­
word

Byte

Byte

Byte

Double- Byte
word

Byte Byte

Byte Byte

IDecimal length is equal to the number of 9s in the picture.

2The length of 1 byte applies to the smallest fixed decimal value (i.e.,
1 digit). For other values, the length is given by CEIL«number of digits
+ 1)/2) bytes.

Figure 93. COBOL-PL/I Data Equivalents

While a knowledge of equivalent data types is sufficient for
specifying COBOL items in terms of PL/I element variables, the
specification of equivalent data aggregates (group items in
COBOL, structures or arrays in PL/I) requires a knowledge of the
data organization descriptions of the two languages. The
example given in Figure 94 on page 255 shows how a COBOL data
aggregate is described in PL/I terms.

In COBOL, the OCCURS clause cannot be nested to more than three
levels. This imposes a restriction on any PL/I array within a
structure passed as an argument to a COBOL routine. Also, the
OCCURS clause cannot appear on a level-Ol entry. This precludes
the use of a level-Ol array in a PL/I structure passed to or
from a COBOL routine.

254 DOS PL/I Optimizing Compiler: Programmers Guide

COBOL PL/I

01 A SYNCHRONIZED. 1 A ALIGNED,
2 B(3), 02 B OCCURS 3 TIMES.

03 C OCCURS 4 TIMES.
04 D OCCURS 5 TIMES USAGE COMP-3

PIC S9999V999.
02 E USAGE DISPLAY.

03 F PIC X(8).
03 G PIC 9(8).

02 DUMMY OCCURS 6 TIMES.

03 H OCCURS 7 TIMES USAGE COMP
PIC S9999.

3 C(4),

2 E,

4 D(5) FIXED
DECIMAL(7,3),

3 F CHAR(8),
.3 G PIC '(8)9',

2 H(6,7) FIXED BINARY
(15,0);

Figure 94. Declaration of a Data Aggregate in COBOL and PL/I

A Pl/I structure that contains an area or a bit variable should
not be passed as an argument to a COBOL routine. If it is, a
diagnostic message is produced and the structure is not
automatically remapped.

A bit or character string with the VARYING attribute may be
passed to a COBOL routine, although there is no equivalent
attribute in COBOL. The address of the start of the 2-byte
length prefix is passed, so that the prefix constitutes the
first 2 bytes of the COBOL string .. Conversely, when COBOL data
is passed to a PL/I string parameter with the VARYING attribute,
the first 2 bytes of the argument form the parameter's length
prefix.

MATCHING FORTRAN ARGUMENTS/PARAMETERS

Argument/parameter matching across a PL/I-FORTRAN interface, and
the use of common storage for PL/I and FORTRAN variables,
requires a knowledge of the equivalence of data types and of
data organizations in the two languages. The PL/I equivalents
of the FORTRAN data types are shown in Figure 95 on page 256.
These are the Pl/I data types that should appear in PL/I
parameters or parameter descriptors associated with FORTRAN
arguments or parameters, respectively, and in the declaration of
STATIC EXTERNAL variables with the same names as FORTRAN COMMON
blocks.

Specification of equivalent data aggregates in Pl/I and FORTRAN
is simpler than in PL/I and COBOL, as the only data aggregates
that exist in FORTRAN are arrays. Problems arise when using
unconnected unidimensional arrays or multidimensional arrays as
PL/I arguments.

Generally, when passing arguments between PL/I and FORTRAN, the
interlanguage facilities pass a unidimensional array directly to
the invoked routine, without the creation of a dummy argument.
However, if a PL/I unidimensional array in unconnected storage
is passed as an argument to a FORTRAN routine, the interlanguage
facilities create a dummy argument into which the unconnected
array is mapped. The dummy is then passed as the argument. On
return, the values in the dummy are assigned to the
corresponding elements in the array.

A dummy argument is always created for a multidimensional array
passed between Pl/I and FORTRAN routines, unless the NOMAP
option is specified.

If a PL/I array of bit strings is passed as an argument to a
FORTRAN routine, only 8 or 32 should be specified for the string
lengths. If values other than these are specified, a diagnostic

Chapter 15. Communication with COBOL, FORTRAN, and RPG 255

FORTRAN PL/I

ALIGNMENT

DATA TYPE LENGTH ALIGNMENTl
(BYTES)

DATA TYPE LENGTH UN-
(BYTES) ALIGNED ALIGNED

INTEGER*2

INTEGER*4

REAL*4

COMPLEX*8

COMPLEX
*16

LOGICAL*1

LOGICAL*4

2

4

4

8

8

16

1

4

Halfword

Fullwora

Fullword

Double­
word

Fullword

REAL FIXED BINARY(15,O)

REAL FIXED BINARY(31,O)

REAL FLOAT DEC(6)
(real short float)

REAL FLOAT DEC(16)
(real long float)

COMPLEX FLOAT DEC(6)
(complex short float)

Doubleword COMPLEX FLOAT DEC(16)
(complex long float)

Byte

Fullword

BIT(8)

BIT(32)

2

4

4

8

8

16

1

4

Half­
word

Full­
word

Full­
word

Byte

Byte

Byte

Double- Byte

Full­
word

Byte

Double- Byte
word

Byte

Byte

Bit2

Byte

lGenerally FORTRAN data is held in main storage with these alignments.
COMMON data, however, is always byte-aligned. This could cause a specifica­
tion interrupt if the items in the COMMON area are not stored in order of
decreasing restriction.

2The fact that the alignment required of unaligned bit strings is bit
rather than byte does not affect PL/I-FORTRAN data interchange, since the
FORTRAN string will always take up an integral number of bytes.

Figure 95. FORTRAN-PL/I Data Equivalents

message is produced and the array is not automatically remapped.
Similarly, only these lengths should be used for PL/I variables
having storage in common with FORTRAN variables.

MATCHING RPG ARGUMENTS/PARAMETERS

A PL/I procedure or entry point that is to be invoked from RPG
II must have OPTIONS(RPG) specified on the PROCEDURE or ENTRY
statement. The PROCEDURE or ENTRY statement must be in the
outermost block of the PL/I program, and no other options of the
OPTIONS option, except RLABL, may appear.

The PL/I routine can be invoked from the Calculation Section of
the RPG program by means of the EXIT operation. Control returns
to the RPG program when the END statement of the PL/I routine is
reached, or when a RETURN statement is executed in the outermost
block.

It is not possible for a PL/I routine to invoke an RPG program.

The PL/I environment is established on the first invocation from
the RPG program. Thereafter it remains established until the
RPG program terminates.

Data can be communicated between RPG II and PL/I by means of
STATIC EXTERNAL storage or by means of files. The shared data
may be an RPG indicator, an RPG field, or an RPG array or table.

256 DOS PL/I Optimizing Compiler: Programmers Guide

Data that appears in an RLABL or ULABL operation of RPG must be
explicitly declared in PL/I as unqualified, level-I, STATIC
EXTERNAL variables. Variables that appear in an RLABL operation
must also appear in the RLABL option of the OPTIONS option of
the PL/I PROCEDURE or ENTRY statementj these variables must not
be declared with the INITIAL attribute.

An RPG indicator is a single byte with a 2-character
identification. To reference an indicator in PL/I, the PL/I
variable must be named INxx, where xx is the RPG 2-character
identification, and be declared as CHARACTERCl). Indicators
known to PL/I must appear in an RLABL operation in RPG, and so
must also appear in the RLABL option in PL/I.

An indicator is off when its bit value is 'OOO~OOOO'B, and on
when its bit value is 'llllOOOO'B. Because indicators must be
declared as CHARACTERCl), these values are most conveniently
referred to as "off" = LOWCl) and "on" = '0'.

Fields in RPG may be declared as CHARACTER or FIXED DECIMAL,
according to the format of the field. The PL/I variable must
have the same name as the RPG field, and the field must appear
in an RLABL or ULABL operation in RPG.

An RPG table or array may be referenced in PL/I if the name of
the table or array appears in an RLABL operation and the same
name is declared in PL/I and appears in the RLABL option.

You must be aware of the structure of an RPG II linkage field
for a table or array, and describe the corresponding object in
PL/I. An example of a PL/I declaration corresponding to a table
linkage field is shown in Figure 96.

COMPILE-TIME RETURN CODES

As part of the interlanguage facilities of PL/I, diagnostic
messages are produced, and the return code is set appropriately,
if you specify arguments or parameters whose attributes are such
that errors may occur at execution time. The compiler will
never prevent data being passed, nor will it attempt to correct
errorSj although it produces messages to indicate likely sources
of error, it will always allow you to attempt to pass any type
of data you specify.

PLISUB: PROCEDURE OPTIONSCRPG,RLABlCTABLET»j

DECLARE 1 TABLET STATIC EXTERNAL,/*RESOLVED TO RPG LINKAGE FIELD*/
2 ELEMENT LENGTH FIXED BINARYC15,0),
2 NUMBER OF ENTRIES FIXED BINARYC15,0),
2 START OF TABLE POINTER,
2 END OF TABLE POINTER,
2 LAST_LOOKUP POINTERj

DECLARE TABLET_ELEMENT CHAR(4) BASED;

DECLARE NEWVAL CHAR(4) STATIC EXTERNALj /*KNOWN TO RPG*/

DECLARE TRANS CHAR(256); /*TRANSLATION STRING KNOWN ONLY TO PL/I*/

NEWVAL = TRANSLATECLAST_LOOKUP->TABLET_ELEMENT,TRANS);

(ETC.)

END PLISUB;

Figure 96. Example of PL/I Procedure To Be Invoked from RPG II

Chapter 15. Communication with COBOL, FORTRAN, and RPG 257

USING COMMON STORAGE

Figure 97 on page 259 shows the return codes generated by
various types of Pl/I data.

A variable in a Pl/I program can be allocated the same block of
storage as a group of variables in a FORTRAN routine. This
storage can then be used to communicate between the two
routines. Allocation of common storage is achieved by declaring
a Pl/I variable to be STATIC EXTERNAL and to have the same name
as a COMMON block in the FORTRAN routine. The STATIC EXTERNAL
variable and the COMMON block will then be equivalent to 2
declarations of a STATIC EXTERNAL variable in different external
Pl/I procedures. The number of variables using common storage
is not limited to 2. Any number of identical STATIC EXTERNAL
variables in different Pl/I procedures may be used together with
any number of identical COMMON blocks in different FORTRAN
routines, if all the procedures and routines are link-edited
into a single program.

The STATIC EXTERNAL variables must follow the normal Pl/I rules
relating to these attributes, and they must be of a data type
that corresponds to the data type of the COMMON variables (see
Figure 95 on page 256 for a table of corresponding data types).
Also, the Pl/I variables must be aligned to meet the
requirements of the corresponding FORTRAN data type.

The Pl/I variables may be initialized using the INITIAL
attribute, and the FORTRAN variables may be initialized using a
block data subprogram. If the Pl/I variables on the one hand
and the FORTRAN variables on the other are not initialized to
the same value, the procedure or routine encountered first by
the linkage-editor determines the initial value of all the
variables. It is not an error to initialize a Pl/I variable to
a different value from a corresponding FORTRAN variable, or to
initialize one and not the other.

The Pl/I variable may have further variables overlaid upon it by
means of the DEFINED attribute, provided that the defined
variable meets the data type and alignment requirements of the
FORTRAN variable. If the requirements are not met, execution
errors may occur.

Common storage cannot be used for a Pl/I and a COBOL variable;
the only facility provided by Pl/I for communication of data
between a Pl/I procedure and a COBOL routine is that for passing
arguments.

INTERLANGUAGE ENVIRONMENT

For a program to be executed, a suitable environment must first
be established. If the program contains a Pl/I main procedure,
the PL/I environment is established when the program is first
entered. If the main routine is COBOL or FORTRAN, the
interlanguage facilities will establish the required PL/I
environment when necessary. This section describes the
conventions and restrictions in the interlanguage context.

ESTABLISHING THE PL/I ENVIRONMENT

If the main routine of the program is a Pl/I main procedure, the
Pl/I environment is established on entry to the program. Even
if this program contains a mixture of Pl/I and COBOL or FORTRAN
routines, the normal rules for freeing Pl/I storage and closing
Pl/I files apply.

If the main routine of the program is not a Pl/I main procedure,
the PL/I environment is established when the first PL/I
procedure is invoked. The extent of this environment includes
the routine that invoked the Pl/I procedure (see Figure 98 on
page 261) and the environment remains in existence until that

258 DOS Pl/I Optimizing Compiler: Programmers Guide

routine is terminated. The environment can be re-established
and terminated as frequently as required. Whenever the PL/I
environment is destroyed, all PL/I controlled and based storage
is released, and all PL/I files are closed.

COB 0 L FOR T RAN

PL/I
ATTRIBUTE ARGUMENT PARAMETER ARGUMENT PARAMETER

ALIGNED 0000 0000 0000 0000

AREA Note 1 Note 1 Note 1 Note 1

BINARY 0000 0000 0000 0000

BIT Note 1 Note 1 Note 2 Note 2

CHARACTER 0000 0000 0004 0004

COMPLEX 0004 0004 Note 4 Note 4

CONNECTED 0000 0000 0000 0000

CONTROLLED 0000 0012 0000 0012

DECIMAL 0000 0000 Note 3 Note 3

DEFINED 0000 - 0000 -
Dimension Note 8 Note 8 0000 0000

ENTRY 0004 0004 0004 0004

EVENT 0004 0004 0004 0004

FILE 0004 0004 0004 0004

FIXED 0000 0000 0000 0000

FLOAT 0000 0000 0000 0000

LABEL 0004 0004 0004 0004

OFFSET 0004 0004 0004 0004

PICTURE 0000 0000 0004 0004

POINTER 0004 0004 0004 0004

Precision Note 6 Note 6 Note 7 Note 7

REAL 0000 0000 0000 0000

Structure 0000 0000 Note 1 Note 1

TASK 0004 0004 0004 0004

UNALIGNED Note 9 0000 Note 9 0000

Unconnected Note 5 0000 Note 5 0000

VARYING 0004 0004 0004 0004

Figure 97 (Part 1 of 2). Return Codes Produced by PL/I Data
Types

Chapter 15. Communication with COBOL, FORTRAN, and RPG 259

Notes:

1. Creation of a dummy argument is suppressed: 00~8

2. BIT(8) or BIT(32): 0000
Any other length: 0008
In the latter case, creation of a dummy argument

is suppressed.

3. FLOAT DECIMAL: 0000
FIXED DECIMAL: 0004

4. FLOAT COMPLEX: 0000
FIXED COMPLEX: 0008

5. If creation of temporary suppressed
by NOMAP option: 0012

If no NOMAP option: 0000

6. Variable is FIXED (p,O),
or is short or long FLOAT: 0000

Variable is FIXED BINARY (p,q) with q~=O,
or is extended FLOAT: 0004

7. Variable is FLOAT,
or is FIXED BINARY with precision (p,O): 0000

Variable is FIXED DECIMAL,
or is BINARY (p,q) with a~=O: 0004

8. If item is element of a structure or is a
minor structure: 0000

All other cases: 0008

9. If argument is an aggregate and creation of temporary
suppressed by NOMAP, or if argument is scalar: 0012

If argument is aggregate and no NOMAP: 0000

Figure 97 (Part 2 of 2). Return Codes Produced by PL/I Data
Types

For reasons of efficiency and of programming convenience, the
PL/I environment should be destroyed as infrequently as possible
during execution of a program. This can be ensured if the main
routine is a PL/I main procedure, or if a PL/I procedure, no
matter what it contains, is invoked from the main routine. The
latter alternative, however, has the disadvantage that if the
main routine is in FORTRAN, the PL/I environment will not be
ended normally when the final FORTRAN RETURN is executed to
return control to the operating system (see "Terminating FORTRAN
and COBOL Routines" on page 263).

ESTABLISHING THE FORTRAN ENVIRONMENT

Before a FORTRAN routine can be executed, a suitable environment
must be established. The extent of this environment includes
the PL/I procedure that invokes the FORTRAN routine, and this
environment remains in existence until the PL/I procedure is
terminated.

On each call to FORTRAN, a test is made to determine whether a
FORTRAN environment has been established. If it has not,
FORTRAN initialization routines are invoked. Among other
housekeeping tasks performed, the message file, FT06F001, is
opened in preparation for FORTRAN error handling. When the
FORTRAN environment is terminated, the file is closed.

Because the FORTRAN environment remains in effect only as long
as the invoking PL/I procedure is active, considerable overhead
can accrue opening and closing FT06F001, if the invoking PL/I
program is itself invoked repeatedly.

260 DOS PL/I Optimizing Compiler: Programmers Guide

I
!

\
~

For reasons of efficiency then, the FORTRAN environment should
be destroyed as infrequently as possible during the execution of
a program. This is ensured if the PL/I procedure that calls the
FORTRAN routine is not terminated until all the FORTRAN calls
have been executed, or if the FORTRAN environment is extended to
include the outer PL/I procedure by invoking a FORTRAN routine
(no matter what it contains, a RETURN statement is sufficient)
from the outer PL/I procedure.

Note, however, that there must not be two concurrent PL/I
environments; this means, for example, that a COBOL program may
not call two PL/I main procedures.

PROC8
FORTRAN

PROC9
FORTRAN

PROCI (MAIN)
FORTRAN

PROC2
FORTRAN

PROCS
PL/I

PROC4
COBOL

V
Boundaries of PL/I environments

PROCS
FORTRAN

PROC6
FORTRAN

PROC7
PL/I

<--------~

Figure 98. Extent of PLjI Environment

RESTRICTIONS ON INPUT/OUTPUT BY FORTRAN ROUTINES

Apart from the use of SYSLST, any input/output control
information generated by a FORTRAN routine that has been invoked
by a PL/I procedure will overwrite PL/I environment information.

Conversely, a FORTRAN routine that performs input/output and
invokes a PL/I procedure will have any input/output control
information overwritten by the establishment of the PL/I
environment. However, an implementation-defined subroutine,
PLISA, is provided to overcome this problem.

The PLISA subroutine reserves storage for the PL/I environment.
Two arguments are supplied to the PLISA subroutine. The first
argument is the name of the variable in which the PL/I
environment is to be maintained. The second argument is an
integer constant specifying the number of bytes of storage. The
following sample statements could be given in a FORTRAN routine.

Chapter 15. Communication with COBOL, FORTRAN, and RPG 261

HANDLING INTERRUPTS

Note that the PlISA subroutine must be called before the Pl/I
procedure is called. For example:

REAl*8 PlIENV(250)

CAll PlISACPlIENV,2000)

CAll PlIPROC(X)

Notes:

1. The FORTRAN data type REAL*8 is irrelevant in this example;
any data type could be specified, provided that the array
dimension is modified to maintain the same number of bytes.

2. The number of bytes given in this example should be regarded
as a minimum amount of storage required by a PL/I
environment. There is no simple method of determining the
maximum amount of environment information required during
the execution of a PL/I procedure. The safest course of
action is to make the FORTRAN array variable as large as
practicable.

When a PL/I procedure that has been invoked from a FORTRAN
routine uses the SYSPRINT file, the last item will not be
transmitted unless the file is closed before return to the
FORTRAN routine. Alternatively, a PUT SKIP statement could be
executed to cause transmission of the last item.

Similarly, when a PL/I procedure invokes a FORTRAN routine, the
last item will not be transmitted until after return from the
FORTRAN routine. Therefore, if the FORTRAN routine uses SYSLST,
the last item of SYSPRINT output will be printed after the
SYSLST output. To avoid this, either the SYSPRINT file should
be closed or a PUT SKIP statement should be executed before the
FORTRAN routine is invoked.

COBOL and FORTRAN routines handle certain hardware interrupts
that may occur during their execution, but there are some that
they do not handle. The interlanguage communication facilities
of PL/I allow any interrupt not dealt with by a COBOL or FORTRAN
routine to be handled by any PL/I procedure from which that
routine is dynamically descendent.

Specify the INTER option of the OPTIONS attribute when declaring
the CaBOL or FORTRAN entry name. (See also the INTER option
under "Invoking COBOL or FORTRAN Routines" on page 250 in this
chapter.) This allows the interrupts not dealt with by the
invoked COBOL or FORTRAN routine to be handled by either a Pl/I
on-unit or by PL/I implicit action. In Pl/I, an on-unit, while
established, applies not only to the procedure in which it was
created, but also to all procedures that are dynamically
descendent from it. If there occurs, during the execution of a
COBOL or FORTRAN routine, an interrupt that will not be handled
by that routine, and if the routine was invoked by a PL/I
procedure in which the INTER option was specified for the COBOL
or FORTRAN entry name, then a search is made through all
invoking procedures for an appropriate on-unit. If none is
found, implicit action for the condition is taken. If INTER is
not specified, no search is made, and the interrupt is dealt
with by the operating system control program.

The search passes through all routines in the invoking chain, as
far as the limit of the PL/I environment. It is, therefor~,
possible for the search to include COBOL and FORTRAN routines.
Such routines have no effect on the results of the search, since
only PL/I on-units are searched for.

262 DOS Pl/I Optimizing Compiler: Programmers Guide

(

~

GO TO STATEMENT

The GO TO statement must not be used to transfer control across
more than one interlanguage boundary, where an interlanguage
boundary is defined as an invocation in which one routine calls
another of a different language. Such transfers of control may
be initiated inadvertently if you use a GO TO statement in an
on-unit. (Execution of a statement that causes entry to an
on-unit is not considered as transferring control outside the
block or routine. The on-unit may be regarded as being appended
to the procedure or routine from which it is entered. This
applies even if the on-unit is entered from a COBOL or FORTRAN
routine.) Consider the following example:

P:PROCEDURE;
DECLARE LAB LABEL(Ll,L2) EXTERNAL
FORT ENTRY OPTIONS(FORTRAN INTER);

ON ERROR GO TO LAB;

CALL FORT;

L 1 : ••••••••••••• j

END P;
Q:PROCEDURE OPTIONS (FORTRAN);

DECLARE LAB LABEL (Ll,L2)
EXTERNAL;

L2: ;

END Q;

Assume that the CALL FORT; statement is executed, and that FORT
then calls Q. Assume further that an error occurs in Q, which
initiates entry to the on-unit established in P. At this stage,
control is still with procedure Q, because the on-unit is
regarded as being appended to the procedure from which it was
entered. If LAB has the value Ll, then the GO TO branch is in
error, because it transfers control back to procedure P and, in
doing so, crosses the interlanguage boundaries between Q and
FORT and between FORT and P. If LAB has the value L2, the GO TO
is not in error because control remains in procedure Q. If an
interrupt in FORT caused the on-unit to be entered before Q was
called, then the GO TO would not have been in error. If LAB had
the value Ll, only one interlanguage boundary would be crossed,
namely the FORTRAN-PL/I boundary between FORT and P. (LAB
should not have the value L2 in this case, because procedure Q
is not active.)

TERMINATING FORTRAN AND COBOL ROUTINES

A routine may be terminated by either executing a statement that
terminates the whole program, or by handing control back to the
calling routine.

The statements that terminate the whole program are STOP in
FORTRAN and STOP RUN in COBOL. They are equivalent to the PL/I
STOP statement. The effects of these statements are unchanged
in a mixed-language program; they still terminate the whole
program.

If a FORTRAN STOP is executed in a routine within a PL/I
environment, that environment is not ended in the normal way.
If a COBOL STOP RUN is executed in a routine within a PL/I
environment, that environment is ended in the normal way only if
it includes the main routine of the program; otherwise the
termination will be abnormal. The main difference, from your
point of view, between a normal and an abnormal ending is that

Chapter 15. Communication with COBOL, FORTRAN, and RPG 263

open files in Pl/I procedures are not closed in an abnormal
ending. This could cause the output data to be lost. Consider
the example in Figure 98 on page 261; A STOP in PROC2 or a STOP
RUN in PROC4 would not close any files that may be open in
PROC3, and a STOP in PROC6 would not close any files in PROC7.

A RETURN executed in a FORTRAN subroutine or function that is
inside a PL/I environment, and which returns control to a
routine outside that environment, ends the Pl/I environment and
causes all files in dynamically descendant Pl/I procedures to be
closed (in other words, a RETURN statement in a FORTRAN routine
that directly invokes a Pl/I routine, but which is not
dynamically descendant from any Pl/I routine). However, a
RETURN statement in a FORTRAN main routine is effectively a STOP
statement; control is passed to the operating system with no
files being closed.

When a COBOL main routine within a Pl/I environment returns
control to the operating system, the environment ends normally.

264 DOS Pl/I Optimizing Compiler: Programmers Guide

~
~

CHAPTER 16. USING PL/I ON CICS

PL/I can be used in conjunction with CICS facilities to write
application programs for CICS/DOS/VSE. When this is done, CICS
provides facilities to the PL/I program that would normally be
provided directly by the Disk Operating System. These
facilities include most data management facilities and all job
and task management facilities.

This chapter describes the PL/I-supplied PL/I-CICS/VS interface,
and the restrictions and features that apply to PL/I programs,

• Compiled on Version 1, Release 6 of the DOS PL/I Optimizing
Compiler,

• Link-edited with Version 1, Release 6 of the DOS PL/I
Resident Library, and

• Executed under an appropriate release of CICS/DOS/VS (for
instance, Version 1, Release 4) with the CICS/VS-related
modules supplied by the DOS PL/I Transient Library (Version
1, Release 6).

The information presented here and in Appendix D supplements
information contained in the CICS/VS application programmer's
reference manuals. Those manuals contain information on how to
code programs for CICS/VS. Familiarity with them, as well as
with PL/I, is assumed in the text that follows.

PL/I restrictions in the CICS/VS environment when the
PL/I-supplied PL/I-CICS/VS interface is in use are enumerated in
Figure 99 on page 266. PL/I restrictions imposed by the
CICS-supplied PL/I-CICS interface, but relaxed by the
PL/I-supplied interface, are shown in Figure 100 on page 268.

In addition to the restrictions shown in Figure 99 on page 266,
considerations that apply to the following topics are discussed
in this chapter:

• PL/I storage

•
•
•
•
•
•
•
•
•
•

Lifetime of storage acquired from CICS/VS
Storage classes
CONTROLLED storage

Output to SYSPRINT

CHECK and PUT DATA

Execution-time options

Error handling

Use of PLIDUMP

Interlanguagecommunications--OPTIONS (ASSEMBLER)

STORAGE and CURRENTSTORAGE

PL/I program termination

PL/I shared library

Using the CICS facilities

Chapter 16. Using PL/I on CICS 265

Input/Output

OPEN/CLOSE
RECORD I/O
STREAM Input
STREAM Output

DISPLAY
DELAY
DATE
TIME

PL/I RESTRICTIONS UNDER CICS

Only for SYSPRINT
No record I/O statements are allowed.
No stream input is allowed.
No stream output is allowed except to the SYSPRINT file.
This is intended for debugging purposes only and, for
performance reasons, should not be included in production
programs.
The DISPLAY statement cannot be used.
The DELAY statement cannot be used.
The DATE built-in function cannot be used.
The TIME built-in function cannot be used.

Interlanguage Communication

No communication with FORTRAN or COBOL using PL/I's interlanguage
facilities.

Limited communications using OPTIONS (ASSEMBLER). See text.

Execution-Time Options

Execution-time options can only be specified in the PLIXOPT string.

Specifying the SPIE option has no effect.

Builtin Subroutines

PLISRT, PLICKPT, and PLICANC cannot be used.

PLIDUMP has certain restrictions and additional functions. See text.

PLIRETC and PLIRETV can be used to communicate between user-written programs
link-edited together, but not to communicate with CICS.

Debugging Facilities

FLOW, COUNT, REPORT, and CHECK/NOCHECK can all be used without restriction
under the CICS command-level interface, but are subject to restrictions
under the macro-level interface. See text.

Figure 99. PL/I Restrictions when Used with CICS

CICS-SUPPLIED INTERFACE

In early versions of CICS/DOS Entry, CICS/DOS Standard, and
CICS/DOS/VS, CICS itself provided an interface between your PL/I
program and CICS. This interface consisted of modified PL/I
library modules that requested such services as the acquisition
and release of storage from CICS. This interface supported PL/I
programs, but it imposed restrictions on the PL/I program
facilities available to a PL/I transaction program. This
interface still exists and is described in many of the CICS
manuals related to CICS macro-level coding~ such as CICS/VS
Application Programmer's Reference Manual (Macro Level). These
manuals enumerate PL/I-CICS/VS restrictions, which are
associated orily with the PL/I-CICS interface that is supplied by
CICS/DOS Entry, CICS/DOS Standard, and CICS/DOS/VS to PL/I~CICS
users.

266 DOS PL/I Optimizing Compiler: Programmers Guide

(
~

PL/I-SUPPLIED INTERFACE

In the current release of the DOS PL/I Optimizing Compiler and
Libraries, PL/I supplies an interface between PL/I programs and
the current release of CICS/VS. This interface, as with its
CICS-supplied predecessor, consists of PL/I library modules
(primarily from the PL/I Transient Library) modified for use in
the CICS/VS environment. It makes substantially more of the
PL/I language usable in a CICS/VS transaction program. Many of
the restrictions listed in CICS macro-level documentation as
applying to PL/I apply only to PL/I programs using the old
CICS-supplied interface, not ~o PL/I programs using the
PL/I-supplied interface.

WAYS OF WRITING CICS/VS TRANSACTIONS IN PL/I

Because CICS supplies many facilities that would ordinarily be
supplied by interactions be~ween PL/I statements and the
operating system, there must be ways of addressing CICS
functional control blocks and requesting these services. Under
the PL/I-supplied interface to CICS, some services (such as
explicit allocation of BASED or CONTROLLED storage) are
performed by the PL/I library using CICS/VS facilities, but
appear as the same ALLOCATE or FREE statements as would be used
in a non-CICS program. Other services (such as I/O services
similar ~o PL/I READ, WRITE, or REWRITE statements) are
represented in the PL/I program as requests directed to CICS
itself.

To implement these requests, CICS/VS must define application
program interface protocols. These protocols occur in two
forms:

• Macro-level interface

• Command-level interface

MACRO-LEVEL INTERFACE

The macro-level interface has been supported by CICS since its
earliest versions. It is invoked by:

• Including PL/I declarations for various CICS control blocks
via Y.INCLUDE statements

• Coding user-supplied statements to access and alter these
control blocks

• Embedding CICS statements in the form of assembler language
macros in the PL/I program

The program is then processed, in turn, by a CICS-supplied
utility (called the CICS Preprocessor), the system assembler,
and the PL/I compiler to produce an object module.

The effect of processing by the CICS preprocessor and the
assembler is to convert the assembler macros into PL/I
assignment statements that store values into CICS control blocks
(in addition to any such statements already coded by the user),
and a PL/I CALL DFHPLII statement to convey the request to
CICS/VS. Incorrect addressing of CICS control blocks, erroneous
or incomplete specification of requests, and use of incorrect
data types cannot be diagnosed by PL/I at compile time, and, in
many cases, cannot be diagnosed by PL/I or CICS at execution
time. Such errors can cause application program errors,
transaction abends, or even damage to CICS itself.

Chapter 16. Using PL/I on CICS 267

The detailed protocols for CICS macro-level coding can be found
in CICS/VS Application Programmer's Reference Manual (Macro
Level). This CICS coding is supported by both CICS- and
PL/I-supplied PL/I-CICS/VS interfaces, although the
PL/I-supplied interface provides additional function and relaxes
some restrictions on PL/I language usage. See Figure 100.

Restrictions Using
CICS-Supplied Interface

status Using
PL/I-Supplied Interface

Statements not usable: READ, WRITE, Same, except that PUT, OPEN, and CLOSE
GET, PUT, OPEN, CLOSE, DISPLAY, may be issued for SYSPRINT. (See text.)
DELAY, REWRITE, LOCATE, DELETE,
UNLOCK, STOP, HALT, EXIT, FETCH,
RELEASE, WAIT.

PL/I Sort/Merge not usable. Same.

PL/I error handling not permitted. Full PL/I error handling (ON, SIGNAL,
Any branch to the PL/I error handler REVERT) may be used for any PL/I
causes CICS transaction abend, so no condition (including program checks and
PL/I condition can be raised. ON, CICS transaction abends) that can arise
SIGNAL, and REVERT statements are under CICS/VS. See text.
not supported.

PL/I options. Compiler options REPORT, FLOW, GONUMBER, and GOSTMT may
FLOW, COUNT, GOSTMT, and GONUMBER all be used in programs using the
are not supported. No PL/I command-level interface. They are
execution options are supported. restricted somewhat under the

macro-level interface. See text.

External calls not usable. External calls to other PL/I routines or
to assembler language routines declared
with OPTIONS (ASSEMBLER) may be made
without restriction. Called subroutines
may invoke CICS services, provided the
appropriate CICS control blocks were
passed to them by their callers.

Floating point arithmetic usable Floating point arithmetic usable without
but: restriction.

- Floating point registers not - Floating point registers are
saved or restored. saved and restored by the PL/I

- Floating point registers not library in those few places
printed in a dump. where it is necessary.

- Floating point interrupts - Floating point registers are
will cause a transaction printed by PLIDUMP.
abend. - Floating point overflow and - Floating point overflow or underflow may be handled in
underflow interrupts may OVERFLOW and UNDERFLOW on-units.
terminate CICS. The program mask is set for PL/I

and CICS/VS, respectively, as
appropriate.

Names for variables used in CICS/VS Same.
macros cannot exceed 8 characters.

Multiple PL/I programs cannot be Restriction removed. External calls can
link-edited together. be used freely.

Object program size cannot exceed Same.
256K-bytes.

Static storage not alterable if Same.
re-entrancy is to be maintained.

Figure 100 (Part 1 of 2). CICS-Supplied Interface Restrictions and PL/I-Supplied
Interface Status

268 DOS PL/I Optimizing Compiler: Programmers Guide

status Using Restrictions Using
eICS-Supplied Interface PL/I-Supplied Interface

CONTROllED variables not usable. Not usable. Causes non-reentrant code.
May cause invalid CICS FREEMAIN.

STATIC EXTERNAL variables must have Same.
the INITIAL attribute because
CICS/VS cannot handle common CSECTs.

Figure 100 (Part 2 of 2). CICS-Supplied Interface Restrictions and Pl/I-Supplied
Interface Status

COMMAND-LEVEL INTERFACE

CICS/VS Version 1, Release 3 provided a new set of programming
protocols for CICS/VS programming. This interface is invoked by
coding Pl/I statements of the form:

EXEC CICS verb parameter-list

in the application program, and executing a CICS/VS utility
program called the CICS Translator. The Translator supplies a
control block (DFHEIB) for receipt of information from CICS/VS,
and a set of Pl/I ENTRY declarations with parameter-list
descriptors. It generates one Pl/I CALL statement for each EXEC
CICS command in the program. The program does not directly
reference internal CICS control blocks; in most cases, you need
neither address nor manipulate such control blocks; all required
parameters are present and of the correct data type for each
CICS request, and request validation can be performed at
execution time. This interface is called the command-level
interface, or the High-level Programming Interface (HlPI). It
provides a simple and reliable way to code CICS/VS transaction
programs in Pl/I. The command-level interface is described in
detail in CICS/VS Application Programmer's Reference Manual,
(Command level). Use of this interface requires the
Pl/I-supplied Pl/I-CICS/VS interface.

Using the Pl/I-supplied interface thus permits either
macro-level or command-level programs, or mixtures of the two,
to be written in Pl/I for CICS/VS. It is strongly recommended
that only command-level coding be used for new CICS/VS-Pl/I
programming.

Although the command-level coding protocols permit extensive
validation of EXEC CICS commands, neither Pl/I nor CICS/VS has
any real way, under either set of CICS coding protocols, to
diagnose use of the Pl/I features listed as restrictions in
Figure 99 on page 266. For example, the compiler would regard
syntactically valid Pl/I statements, such as READ, WRITE, or
REWRITE, or calls to PLICKPT or PlISRTC, as valid, and would
generate its usual object code for them. Execution of such
restricted statements might have a serious impact on the
integrity or performance of CICS/VS, including termination of
CICS/VS itself, unpredictable transaction abends, system waits,
and so on. Avoidance of restricted Pl/I facilities in a CICS/VS
environment is your responsibility.

With the issues concerning macro-level versus command-level
coding, and the CICS- versus PL/I-supplied Pl/I-CICS/VS
interfaces addressed by the above text and Figure 99 and
Figure 100, the remainder of this chapter is devoted entirely to
the Pl/I-supplied Pl/I-CICS/VS interface.

Chapter 16. Using Pl/I on CICS 269

PL/I STORAGE

LIFETIME OF STORAGE ACQUIRED FROM CICS/VS

STORAGE CLASSES

When storage is acquired from CICS/VS via a CICS/VS GETMAIN
request, that storage has a type (for example, USER, TERMINAL)
that determines how CICS storage management will manage it.
Storage acquired by a user directly from CICS/VS via DFHSC
TYPE=GETMAIN or EXEC CICS GETMAIN normally has a scope that
spans the whole CICS task, not just the program. The storage
remains allocated until it is freed, or until the CICS task
ends. PL/I places storage acquired by the PL/I library, for
either PL/I's Initial Storage Area (ISA) or a Secondary Storage
Area (SSA), on a storage management queue associated with the
current invocation of the program, not the task. When the
program terminates, whether or not via PL/I termination, CICS
frees the program's PL/I storage, even though the task may still
be active.

This distinction has major implications for storage passed back
and forth between programs. Suppose, for a certain CICS
transaction, PL/I program A links to PL/I program B, and a
transaction work area (TWA) or communication area (COMMAREA) is
available to hold a PL/I pointer to be communicated between the
two. The TWA, because it is a part of the CICS task-related
control block structure, remains available to both programs.
CICS/VS tries to ensure that a COMMAREA can be passed back and
forth successfully, as described in the CICS/VS command-level
coding documentation. Suppose, however, that the program tries
to pass a pointer, via the TWA or COMMAREA, to some other
storage area not in the TWA or COMMAREA. If B were to acquire
the storage via a PL/I ALLOCATE statement, the storage would be
released when B terminated, and thus could never be passed back
to A. Any pointer in a TWA or COMMAREA that pointed to such
storage would be invalid, and the result of using it
unpredictable.

If A acquired the storage by issuing a PL/I ALLOCATE statement
for a PL/I BASED variable, A can convey the address of the
storage to B, and B can use or alter the storage; however, B
cannot free the storage. If B issued a PL/I FREE statement for
the storage, PL/I storage management would not find it on its
storage management chain for B. If B issued a CICS FREEMAIN,
CICS/VS would discover that it was PL/I storage, not user
storage. Either of these requests would be in error.

If A acquired the storage by CICS GETMAIN, then A could convey
the address of the storage to Band B could use, alter, or free
the storage, since it would be user storage owned by the task,
not by program A or B.

If the processing scenario called for B to acquire the storage
and pass it back to A, B would have to acquire the storage by
CICS GETMAIN.

Because changing STATIC storage violates the integrity of
reentrant procedures, the CICS user should avoid writing into
STATIC storage. Most or all user variables that are actuallY
changed during program execution should be AUTOMATIC. User
variables that have initial values, and whose values never
change, should be declared STATIC INITIAL, and any variable
declared EXTERNAL must have the INITIAL attribute to preclude
generation of common CSECTs. Although AUTOMATIC storage allows
re-entry and should suffice for most purposes, you can allocate
and free storage via ALLOCATE and FREE statements. BASED
variables can be allocated and freed in this way.

CONTROLLED storage may be used in OS CICS/VS-PL/I transactions;
however, the addressing mechanism used for CONTROLLED storage on

270 DOS PL/I Optimizing Compilers Programmers Guide

SVSPRINT

LL 00

2 2

DOS PL/I is nonreentrant, making it impractical to use
CONTROLLED storage in DOS PL/I-CICS transactions. (One could
put CICS ENQ/DEQ around the allocation, use, and freeing of
CONTROLLED variables, and make them work on DOS.) CONTROLLED
storage should thus be avoided in transaction programs that are
expected to be used under both DOS and OS systems.

The intent of CONTROLLED storage is to permit you to explicitly
manage a push-down stack of multiple generations of variables.
If you just want to explicitly allocate and free a piece of
storage via PL/I ALLOCATE and FREE statements, BASED storage is
more efficient than CONTROLLED storage.

SYSPRINT can be used for any type of stream output. It is also
used for error messages generated by the program and REPORT and
COUNT output. Because CICS provides all normal I/O facilities,
SYSPRINT is intended primarily for debugging. Performance may
not be satisfactory for production programs. SYSPRINT is the
only file that PL/I may write to; however, if another file is
specified, the program may behave as if SYSPRINT had been
specified.

SYSPRINT output is assigned to the CPLI transient data queue.
The actual type of queue is determined during CICS installation.
To learn the queue type in your installation, ask your system
programmer.

Records sent to SYSPRINT take the form of the message, preceded
by a terminal identification and a transaction identification.
The whole record is preceded by an American National Standard
control character to determine the format of the printing. The
records are V-format, with a maximum record length of 133. The
lengths of the various fields are shown in Figure 101.

ASA

1

terminal
id

4

transaction
id

4

output data

120

where LL is the length of the record, including the length bytes
00 is hexadecimal '00'
ASA is the American National Standard carriage control character

Figure 101. Format of Records Sent to SYSPRINT

Because SYSPRINT output is transmitted to one queue from all
transmitters, the queue may contain output from more than one
PL/I program, and the records may be intermixed. Whether this
occurs depends on how CICS is set up in your installation. If a
debugging system that executes one transaction at a time is
used, it will not occur. In a system executing many
transactions, it will. If it does occur, you must use an
application program to sort the outputs of the various programs
using the terminal and transaction identifiers as keys.

DECLARATION OF SVSPRINT

SYSPRINT need not be declared in the application program, but if
it is, it should be declared as STREAM PRINT OUTPUT. Any
ENVIRONMENT options that are specified are ignored. The
PAGESIZE and LINESIZE option of OPEN may be used; all other
options of OPEN are ignored. The maximum LINESIZE is 120;
larger values are truncated.

Chapter 16. Using PL/I on CICS 271

CHECK AND PUT DATA

SYSPRINT need not be explicitly opened or closed. However, it
should be explicitly closed before the execution of any CICS
facility that may result in control not returning to the PL/I
program. For example, SYSPRINT should be explicitly closed
before the use of a DFHPC macro with TYPE=XCTL, RETURN, or
ABEND. If this is not done, the record being built at the time
may not be transmitted.

The LINENO and COUNT built-in functions of PL/I stream I/O may
be used against SYSPRINT. In the CICS/DOS/VS environment,
however, they will return zero. Thus, you should avoid use of
these built-in functions if transaction portability between OS
and DOS is to be maintained.

Because of the extensive use of BASED storage in CICS/VS
transactions, you should remember the following restrictions on
CHECK and PUT DATA.

In Pl/I, it is not permissible to write:

PUT DATA (P -> VAR);

If VAR was declared as BASED (P), the value of the generation of
VAR to which P points can be written out by PUT DATA (VAR);.

CHECK cannot be raised for a BASED variable without a pointer
specified in its declaration." In the case of VAR above, the
value of VAR to which P points is supplied when CHECK is raised
for VAR, even if some other pointer is used in the statement
that raises CHECK. For example:

DCl P PTR,
VAR BASED(P);

P -> VAR = 5; /* prints VAR = 5; */
Q -> VAR = 8; /* prints VAR = 5; */

No compile- or execution-time message will tell that the wrong
generation of VAR is being printed out. CHECK must not be
raised for variables in CICS control blocks used with the
macro-level interface. The PL/I library modules that
communicate with CICS use the assembler language version of the
CICS macro interface, and thus use exactly the same CICS control
blocks as the user's macro-level PL/I program. If assigning to
a variable in one of those control blocks raises CHECK for that
variable, then the Pl/I SYSPRINT transmitter, in attempting to
output the CHECK information, may store into the same variable
in the same control block, destroying the value set by the user
program. Because all the control blocks associated with
command-level coding are read-only (from the user's point of
view), CHECK can never be raised for them. No such problem
exists with programs coded with command-level coding.

EXECUTION-TIME OPTIONS

Under CICS, execution-time options can only be specified in a
character string named PlIXOPT. For example:

DCl PlIXOPT CHAR(20) VAR STATIC EXTERNAL
INIT('ISASIZE(3000) NOSTAE');

The following options may be used. IBM recommended defaults are
underlined.

COUNT I NOCOUNT
FLOW I NOFlOW
ISASIZE

(
\
~

I
(

\

REPORT I NOREPORT
STAE I NOSTAE ~

272 DOS Pl/I Optimizing Compiler: Programmers Guide

COUNT, FLOW, and REPORT depend on PL/I termination being
properly performed for their correct execution. See the
discussion on PL/I program termination in "Error Handlingn on
page 274. Using CICS/VS macro instructions may cause FLOW and
REPORT, as well as the compile-time option GOSTMT, to give
erroneous results.

The default options for COUNT and FLOW are taken from the
options specified at compile time.

The STAE option specifies that PL/I error handling will be used
for hardware-detected interrupts and CICS abends.

ISASIZE specifies the initial size of the storage obtained for
PL/I use. Storage obtained will be retained by PL/I throughout
the execution of the program. Further storage can be obtained
if necessary, but fastest execution is achieved if all storage
is obtained in the ISA.

If too small a value is specified in ISASIZE, the minimum
acceptable size is acquired. If the ISASIZE option is not
specified, an attempt will be made to allocate an ISA
sufficiently large to include both the standard control blocks
and the DSA for the main procedure. (Such an attempt may fail
if the FLOW option is used.> Thus, the minimum storage will be
acquired. Any other storage obtained for static and automatic
variables will have to be requested from CICS. This may result
in slow execution. To determine the optimum ISASIZE, you should
use the REPORT option. The fastest initialization will be
achieved if you specify an ISASIZE that is large enough to hold
the storage requirements of the first block. The fastest
execution will be achieved if all PL/I storage can be obtained
from the ISA.

The REPORT option monitors the storage usage throughout the
program, and prints the results at the end of execution. The
values given and their meanings are described below.

ISASIZE SPECIFIED
This is the value specified. 0 is given if the ISASIZE
option is not used.

LENGTH OF INITIAL STORAGE AREA (ISA)
This is the size that is acquired. It will differ from the
value above if no value is specified, or if too small a
value for the minimum requirements is specified.

AMOUNT OF PL/I STORAGE REQUIRED
This is the size of the ISA that gives fastest execution
for that run of the program. Note, however, that this
could waste storage if a large amount of storage is used
only during part of program execution.

NUMBER OF GETMAINS
NUMBER OF FREEMAINS

This is the number of times storage outside the ISA is
acquired. GETMAINS and FREEMAINS take time, and should be
reduced when fast performance is required.

NUMBER OF GET NON-LIFO REQUESTS
NUMBER OF FREE NON-LIFO REQUESTS

These are the number of times storage is allocated for
nonblock-dependent items such as BASED variables (as
opposed to block-dependent variables>. These values have
little bearing on ISASIZE. For more information, refer to
DOS PL/I Optimizing Compiler: Execution Logic.

The execution-time COUNT and FLOW options permit you to override
the compiler COUNT and FLOW options. However, in normal use, it
is just as simple to change the compiler options with a *PROCESS
statement as it is to code the PLIXOPT string. The
execution-time COUNT and FLOW options provide compatibility with
CICS under OS/VS.

Chapter 16. Using PL/I on CICS 273

ERROR HANDLING

If the compiler option COUNT, or FLOW together with GOSTMT, is
specified, the compiled program can produce both COUNT and FLOW
output. The default is to produce COUNT output if COUNT is
specified at compile time, and/or FLOW output if FLOW is
specified. However, production of COUNT or FLOW output can be
suppressed by specifying the CICS execution-time NOCOUNT or
NOFlOW options, respectively. Also, FLOW output can be produced
from a program compiled with COUNT and NOFlOW by specifying the
CICS execution-time FLOW option; and COUNT output can be
produced from a program compiled with NOCOUNT, FLOW, and GOSTMT
by specifying the execution-time COUNT option.

If the FLOW compiler option is specified with NOGOSTMT, the
compiled program can produce FLOW output, but not COUNT output.
The default is to produce FLOW output. This can be suppressed
by the CICS NOFlOW execution-time option. If the NOCOUNT and
NOFlOW compiler options are specified, the CICS COUNT and FLOW
execution-time options are ignored.

Note that the NOCOUNT and NOFlOW execution-time options only
partially reduce the execution-time overhead of modules compiled
with FLOW or COUNT. For best performance, the modules should be
recompiled without FLOW and COUNT.

Pl/I error handling is the same as under DOS, provided the STAE
option is in effect. The only exception is that it is possible,
under CICS, to override the automatic generation of an error
message when the ERROR condition arises. This can be useful in
a production program where the transmission of a message to the
CPlI queue may be an inappropriate reaction to an error.

The error message is suppressed if an on-unit for the ERROR
condition is supplied. If you require both the on-unit and the
message, you should specify SNAP in the on-unit. For example:

ON ERROR SNAP BEGIN;
ON ERROR SYSTEM;
PUT DATA (A,B,C);
EXEC CICS DUMP .. .
CAll PlIDUMP (...);

END;

All error messages are transmitted to the SYSPRINT file that, as
described above, is attached to the CPlI queue.

If the NOSTAE option is in effect, all hardware-detected
interrupts and CICS abends are handled by CICS. The default
CICS action is to produce a dump and terminate the transaction.

STAE allows Pl/I interrupts that arise from either hardware
interrupts or CICS/VS transaction abends to be handled by the
user in on-units; otherwise, such errors cause a CICS task
abend. Software-detected Pl/I interrupts (for example,
CONVERSION or ERROR because a negative argument was supplied to
the real square root function) cause Pl/I conditions to be
raised whether or not STAE is in effect. Software-detected Pl/I
conditions can be raised, even if NOSTAE is in effect.

Pl/I does not issue the DOS STXIT macro in the CICS environment.
If the STAE option is requested, a CICS DFHPC TYPE=SETXIT macro
is issued by Pl/I initialization. If a program check occurs,
the CICS STXIT PC routine gets control and, if the program check
occurred in user code in a Pl/I transaction program, invokes the
Pl/I error handler. Thus, the STAE option does not affect
CICS/VS itself or any other CICS transaction. It uses CICS/VS
error handling; it does not override it.

If STAE is specified, CICS/VS control program services address 11
the CICS version of the Pl/I error handler as an exit routine to ~
CICS/VS control program services. As such an exit routine, the
Pl/I error handler handles any CICS/VS abends, whether initiated

274 DOS Pl/I Optimizing Compiler: Programmers Guide

by program checks or by softwa~e elsewhere in CICS, that occur
in the PL/I program or associated CICS services. However, the
PL/I error handler may not be able to handle abends that occur
at a deeper level of the CICS system. It is your responsibility
to see that such abends do not occur. Use of the DFHPC macro
with an operand of TYPE=SETXIT or EXEC CICS HANDLE ABEND, while
the STAE option is in effect, removes the PL/I error handling
facilities; that is, the effect is as if NOSTAE were specified.
However, interrupts may result in CICS receiving control with an
incorrect program mask that could lead to unexpected program
check interrupts in other transactions.

If you want to use CICS facilities to set your own error exit,
you should use the NOSTAE option. Use of the STAE option
results in PL/I specifying its own error exit, and the
respecifying of such an exit leads to unpredictable results.

PL/I error-handling facilities function in a way that is
compatible with CICS's own error-handling facilities. For
example, CICS/VS Dynamic Transaction Backout may be needed to
back out updates already done by a transaction that has failed,
even though the error may have been detected internally within
the program, not by CICS/VS (for example, a PL/I software
interrupt raised ERROR). Backout may also be needed if a
CICS-initiated transaction abend was temporarily intercepted but
not successfully handled by a PL/I on-unit. Furthermore, if
program A links to program B, and B abends, A must be able to
obtain that information and make it available to program A.

To meet these requirements, the PL/I error handler under CICS/VS
does several things:

• If STAE is in effect so that the PL/I error handler gets
control after a CICS-initiated abend, the on-units in your
program, if present, may not successfully effect recovery
from the error condition. If they do not, the ultimate
effect in the Pl/I program is to raise ERROR. If there is
no ERROR on-unit, or if the program takes normal return from
the ERROR on-unit, PL/I termination issues a CICS abend,
using the original CICS abend code (or using APLS if the
original code was ASRA). Thus, the temporary but
ineffectual interception of the CICS abend does not keep the
transaction from abending, and does not keep Dynamic
Transaction Backout (for example) from functioning. If code
in PL/I on-units successfully recovers from the problem, the
transaction continues and no abend occurs.

• Whether or not STAE is in e,ffect, PL/I software interrupts
can occur and cause appropriate PL/I conditions to be
raised. If not corrected in appropriate on-units, the
software interrupt eventually causes the ERROR condition to
be raised. If there is no ERROR on-unit, or if the program
takes normal return from the ERROR on-unit, PL/I
termination communicates to CICS/VS termination-in-error of
the transaction by issuing a CICS/VS abend with abend code
APLS. Thus, Dynamic Transaction Backout (for example) can
proceed just as though CICS/VS had initiated the abend.

• When program A links to program B, and program B abends upon
completion of CICS/VS, CICSinitiates the abend of A (as the
program that linked to B). If A is a PL/I program being
executed with the STAE option, the ERROR condition will be
raised with condition code 9050, meaning "An abend has
occurred". If A has some way of making the transaction
continue, it may do so by exiting from the ERROR on-unit via
a GO TO statement rather than by normal return.

The support for PL/I error handling makes it possible to cope
with computational interrupts, CONVERSION errors, and other
non-I/O-related conditions using the same PL/I facilities used
in programs executed directly under DOS.

For conditions associated with CICS/VS abends (including ASRA
abends for program checks), CICS provides a facility (DFHPC

Chapter 16. Using PL/I on CICS 275

TYPE=SETXIT or EXEC CICS HANDLE ABEND;) to branch to either a
program (external to the currently executing program) or to a
routine (located somewhere within the current program). PL/I
issues a DFHPC TYPE=SETXIT identifying the PL/I error handler as
a program to establish linkage from CICS to the PL/I error
handler, souse of this facility will necessarily destroy PL/I
error handling. In PL/I programs, CICS/VS does not support a
SETXIT identifying the label of a location in the current
program. This is not really a restriction, because PL/I ON,
SIGNAL, and REVERT statements give you all the facilities of
PL/I to do so.

PL/I error-handling facilities do not include I/O-related
conditions like RECORD, TRANSMIT, ENDFILE, KEY, and so on,
because I/O is not performed using PL/I files and PL/I I/O
statements, but by CICS file-handling facilities. (SYSPRINT is
the only exception to this rule.) Conditions detected by
CICS/VS during the processing of your program are reflected via
CICS-defined protocols. These are described in the CICS
manuals.

In command-level programs, such conditions are reflected based
on previously executed EXEC CICS HANDLE statements. The EXEC
CICS HANDLE facility semantically resembles a PL/I on-unit of
the form:

ON condition GO TO label;

The HANDLE command can be coded wherever the ON ... GO TO ...
statement can be coded. The label to be branched to can be
located in some other active block, and the condition can arise
in some still later block. HANDLE will terminate intervening
PL/I blocks by invoking PL/I's out-of-block GO TO facilities.

HANDLE is not not semantically identical to the ON ... GO TO ...
statement; however, a PL/I on-unit disappears when the block
containing it terminates. A CICS HANDLE disappears when it is
explicitly overridden by another one. Thus a HANDLE command
could specify a branch to a label in a block no longer active.
Since HANDLE is implemented by forcing a PL/I out-of-block GO
TO, this is like assigning a label constant to a PL/I label
variable and then branching to the label variable after the
block containing the label constant has terminated. This is an
invalid GO TO. The PL/I out-of-block GO TO mechanism attempts
to detect this error and raises the ERROR condition when it
detects it. If PL/I out-of-block GO TO fails to detect such an
invalid GO TO, however, the GO TO becomes an invalid branch that
will cause some unpredictable failure. Thus, upon return from a
PL/I block that established HANDLE for some particular
condition, your program should issue a resetting HANDLE for that
condition (provided, of course, that there is still some
possibility of the condition arising). This resetting is
unnecessary for a PL/I on-unit.

ABEND CODES USED BY PL/I UNDER CIes

Certain error conditions result in the PL/I library routines
issuing CICS abends. Such abends are not caught by the PL/I
error handling facilities, even if the STAE option is in effect,
because the PL/I abend exit is cancelled. They will, therefore,
normally terminate the transaction and produce a dump. Abend
codes used are:

APLC The shared library facilities are required by the
application program, but were not included in the CICS
system during initialization/installation. See your system
programmer.

APLE An error occurred during PL/I program management. It may
mean that a program check occurred in the PL/I error ~
handler, and this, in turn, may mean that an error ~
occurred that is so serious that it overwrote the PL/I

276 DOS PL/I Optimizing Compilers Programmers Guide

IBMBEER

USE OF PLIDUMP

environment, the PL/I error handler, or part of CICS
itself.

APLI An error was detected by CICS on transmission of a record
to the CPLI queue. See your system programmer.

APLM No main procedure.

APLD An error was detected by CICS on transmission of a record
to the CPLD queue. See your system programmer.

APLG A get storage request to the storage allocation routine
specified a size greater than the maximum of 65512
permitted by CICS/VS. This error is caused by either a
BASED or CONTROLLED variable that is too large in an
ALLOCATE statement, or too many large AUTOMATIC variables.

APLS This abend is issued on termination, if:

1. Termination is caused by the ERROR condition, and

2. The ERROR condition was not caused by an abend (other
than an ASRA abend).

This is the abend code issued by PL/I when a transaction
terminates in error due to a PL/I software interrupt
(CONVERSION, for example), and there is no ERROR on-unit,
or the program takes normal return from the ERROR on-unit.
Since the program failed, the failure must be reflected to
CICS/VS as an abend so that Dynamic Transaction Backout,
and so on, can occur if necessary. Since there was no
CICS/VS abend to be reissued, PL/I termination must supply
an abend code.

APLS is also the abend code issued by PL/I termination
when a program check (CICS ASRA abend) was intercepted by
the PL/I error handler, but you were unable to resolve the
condition. For instance, your program was terminated due
to normal return from an on-unit. PL/I cannot re-issue
the abend with code ASRA, because a program linked to this
failing program would be abended with ASRA, which implies
that a PSW and registers are supplied that permit fixup or
retry while, in fact, the PSW is from a program no longer
active, and the registers point to storage locations that
are no longer meaningful.

APLX The total possible LIFO storage segments have been
exhausted. Check the program for loops or increase the
ISASIZE.

XXXX An abend is issued with the original abend code if
termination was caused by the ERROR condition being raised
with an abend code other than ASRA, and no IBMBEER module
was included to cause user-specified action for the ERROR
condition.

IBMBEER's return code indicates whether a simple return or an
abend is to be issued. IBMBEER is described in the section "The
Abend Facility" in DOS PL/I Optimizing Compiler: Installation.

The CALL PLIDUMP statement is used to obtain a dump of storage
areas in PL/I terms. Areas to be dumped can be specified via an
options list in the same way as non-CICS systems. Most of the
code involved is dynamically loaded, so the resident storage
requirements are small, although a larger amount of storage is
required when the statement is actually executed. This means
that CALL PLIDUMP statements may be included in production
programs to be executed should unexpected errors arise.

Chapter 16. Using PL/I on CICS 277

The following options are availablez

T
NT
S
C
B

NB
K

NK

Trace of active procedures, etc.
No trace
stop execution
Continue execution
Produce a hexadecimal dump of PL/I control blocks (DSAs,
PL/I TCA, etc.)
No dump of PL/I blocks
Produce a hexadecimal dump of the TIOAS and TWA (CICS
control blocks if they exist)
No dump of CICS blocks

The default values are T, C, NB, and NK.

The dump information is built into records, suitable for
printing, that are transmitted to a transient data queue with a
destination ID of CPLD. Each record consists of a I-byte
American National Standard control character followed by up to
120 bytes of data. The first record transmitted by a CALL
PLIDUMP statement is an identification record that contains the
terminal ID, transaction ID, transaction number, date, and time.
Prior to transmitting this record, an ENQ is issued. The
corresponding DEQ is issued after the last record produced by
the CALL PLIDUMP statement has been transmitted. This means
that no more than one transaction at anyone time produces a
PLIDUMP, and that all the records for each PLIDUMP are together
on the queue. Therefore, this queue can be sent directly to a
printer. For details about how a dump will be printed, contact
your system programmer.

Because PLIDUMP does not print the program or its static
storage, and there are many CICS/VS control blocks that it does
not print, it may be appropriate to request a CICS dump in
addition to PLIDUMP.

PLIDUMP copes with program checks that arise during its own
execution; however, it is unable to cope with such program
checks in the CICS/VS environment unless the program being
dumped is executed with the STAE option in effect.

INTERLANGUAGE COMMUNICATION--OPTIONS ASSEMBLER

OPTIONS ASSEMBLER can be used under CICS, allowing assembler
language subroutines to be called from a PL/I routine, and the
arguments passed in an assembler language manner. (See OS and
DOS PL/I Language Reference Manual for details.> No other
interlanguage communication is allowed.

If CICS facilities are requested from a macro-level assembler
language program, the registers must be set to the CICS
conventions before the facility is used, and reset to PL/I
conventions afterward. For this reason, it is inadvisable to
use CICS facilities from a macro-level assembler language
subroutine. Similarly, it is inadvisable to call any other
system facilities. Macro-level assembler language routines
should only be used for computational purposes.

See CICS/VS documentation for information on the use of CICS/VS
command-level facilities in an assembler language subroutine.

STORAGE AND CURRENTSTORAGE

The STORAGE and CURRENTSTORAGE builtin functions make the length
of an item used for input or output available to the PL/I
program. This is particularly useful with CICS, where functions
often require the length of an argument as well as its address.

STORAGE and CURRENTSTORAGE are used with the command-level
interface to eliminate having to count or compute PL/I aggregate
lengths or specify length fields in the CICS commands.

278 DOS PL/I Optimizing Compiler: Programmers Guide

I

\

PL/I PROGRAM TERMINATION

Most PL/I programs appear to terminate by returning from the
main procedure, and may even appear to be a return to the Disk
Operating System. In fact, it is a return to PL/I
initialization/termination routines to perform various cleanup
functions. In case of problems during program execution, the
ERROR condition may be raised. If there is no ERROR on-unit (or
if there is an ERROR on-unit and control exits via normal
return, for instance, not via a GOTO statement), the PL/I
program terminates via PL/I termination facilities. A small
percentage of PL/I programs terminate via a STOP or SIGNAL
FINISH statement (although SIGNAL FINISH is a nonoperative
statement unless a FINISH on-unit (even a null one) has been
established). All of these, however, cause the program to
terminate via PL/I termination facilities.

In the CICS/VS environment, PL/I programs terminate in any of
the above ways, or they terminate via CICS/VS statements. Using
command-level coding, the commands EXEC CICS RETURN, EXEC CICS
XCTL, or EXEC CICS ABEND, terminate the PL/I program via PL/I
termination facilities, because' the CICS command-level interface
program (DFHEIP) branches into the PL/I termination routine to
ensure that PL/I termination processing occurs. Using the CICS
macro-level coding interface, however, the macros DFHPC
TYPE=RETURN, DFHPC TYPE=ABEND, and DFHPC TYPE=XCTL cause
branches directly into CICS Program Control Program, terminating
the PL/I program without executing PL/I termination code. Thus,
nothing dependent on PL/I termination processing can work. This
means that, in a macro-level program terminated by the above
DFHPC macros:

• SYSPRINT output is lost unless the user inserts a CLOSE
statement for SYSPRINT.

• Output from the FLOW, COUNT, and REPORT options is lost.

For straightforward termination, the DFHPC TYPE=RETURN macro can
usually be changed to a PL/I RETURN or SIGNAL FINISH statement,
reinstating normal PL/I termination. There is no comparable way
to convert DFHPC TYPE=XCTL, except to approximate it by DFHPC
TYPE=LINK, followed by a PL/I RETURN or SIGNAL FINISH to end the
PL/I program. This may be an undesirable circumvention with
CICS. The long-range solution is to convert the program to use
the command-level interface.

When PL/I program termination occurs via normal PL/I facilities,
any requested FLOW, COUNT, or REPORT output is written to
SYSPRINT, SYSPRINT is closed (if it's open), and the program
returns control to CICS/VS. CICS/VS then frees all storage that
the PL/I program acquired from CICS/VS via CICS GETMAINs issued
by the PL/I library.

PL/I SHARED LIBRARY FOR CICS/DOS/VS

Shared library support for CICS/DOS/VS is supplied by DOS PL/I.
It is not a generalized shared library facility, it is not
available to non-CICS/VS programs, and the user has no control
over its contents.

If shared library support is installed, it is link-edited as an
integral part of DFHSAP, increasing the size of DFHSAP from 7K
to 8K bytes to about 19K bytes. It contains:

• IBMDPSL - DOS shared library bootstrap

• IBMBAMM - Structure mapping, sometimes used for STORAGE and
CURRENTSTORAGE BIFs

• PL/I bit manipulation routines

• PL/I conversion library

Chapter 16. Using PL/I on CICS 279

You must supply the linkage editor control statement "INCLUDE
PLISHRE". This supplies a bootstrap module, IBMDPSR, which is
link-edited into your program to resolve shared library modules.
CICS/VS initialization supplies addressability to the shared
library. As a rule, DOS/VS PL/I-CICS/VS users likely to have
four or more Pl/I transactions active concurrently benefit from
this shared library support.

USING THE CICS FACILITIES

CICS application programs must be link-edited in a different way
than non-CICS applications. This is because the normal entry
point, control section PLISTART, is not required on CICS
systems. Instead, the module DFHPLII, which acts as the entry
point to the program and must be link-edited with the
application program, is provided. Also, the CICS loader stores
certain addresses within this interface module, and the loader
assumes it is positioned at the head of the load module.

An INCLUDE card for DHFPLII must exist immediately after the
phase name. The link-edited output should be checked to ensure
that DFHPLII is the entry point and DFHIBM is the first CSECT.
For example, to compile a program and produce a module called
PROGI, use:

//OPTION CATAL
PHASE PROGI,)E
INCLUDE DFHPLII

/)E
//EXEC PLIOPT, SIZE=64K
//EXEC LNKEDT
/)E

assuming, earlier in the same job, the PL/I source has been
preprocessed by the CICS preprocessor.

If the shared library is to be used, an INCLUDE PLISHRE card
should follow the INCLUDE DFHPLII card.

280 DOS PL/I Optimizing Compiler: Programmers Guide

APPENDIX A. PROGRAMMING EXAMPLE

The example illustrates page by page all the listings produced
by the optimizing compiler and the linkage editor. The listings
are described in Chapter 4 on page 14 and Chapter 5 on page 43.

The example program illustrates the use of the preprocessor
xINCLUDE statement to incorporate a PL/I DECLARE statement from
the source statement library. The program contains statements
to initialize a two-dimensional table with the values 1 through
12 in each column, and then proceeds to calculate and print the
products of each row and column of this table. The source
statements for this example are given in Figure 102.

// JOB FIGAI
// OPTION LINK
// EXEC PLIOPT,SIZE=64K
~ PROCESS MACROS,INSOURCE,AGGREGATE< ATTRIBUTES,ESD,NEST,OFFSET,

OPT(TIME),STORAGE,XREF,LIST;

PI PROC OPTIONS(MAIN) REORDER;
XINCLUDE DCLSTMT;

DO I = 1 TO 2;
DO J =1 TO 12;

A(J,I) = J;
END;

END;

DO J = 1 TO 2;
COLPRODCJ) =1;
DO I = 1 TO 12;

/~ INCLUDE DECLARATIONS ~/

/~ INITIALIZE TABLE ~/

/~ CALCULATE COLUMN PRODUCTS ~/

COLPRODCJ) = COLPRODCJ) ~ ACI,J);
END;

END;

DO I = 1 TO 12; /~ CALCULATE ROW PRODUCTS ~/
ROWPROD(I) = ACI,l) ~ ACI,2);

END;

PUT SKIP(2) LIST C'PRODUCTS OF ROWS'); /~ PRINT RESULTS ~/
PUT SKIP(2) DATA CROWPROD);
PUT SKIP(2) LIST ('PRODUCTS OF COLUMNS');
PUT SKIP (2) DATA CCOLPROD);

END P;
/~

// EXEC LNKEDT
// EXEC ,SIZE=64K
/8

Figure 102. Example Program Source Statements

CONTENTS OF LISTINGS

Page 11

Page 21

JOB, OPTION, and EXEC statements as they appear
in the input.

First page of compiler listing, showing the list
of options applicable to the compilation as well
as those that were given in the PROCESS
statement. Note that the size option gives the
actual amount of storage available for
compilation.

Appendix A. Programming Example 281

Page 3:

Page 4:

Page 5:

Page 6 :

Page 71

Page 81

Page 9,10:

Page III

Page 121

Pages 13-161

Page 17.

Page 181

Page 19:

Pages 20,21:

Page 22:

Page 23:

The listing of the input to the preprocessor.
Lines 1 to 26 contain a PL/I source program that
is to be modified by the preprocessor. Lines 27
and 28 contain the included statement read from
BOOKNAME P.DCLSTMT. The message indicating that
no errors were detected during preprocessing
follows the reproduction of the included source
statement module.

The same program created by the preprocessor as
listed by the compiler.

The attribute and cross-reference table.

The aggregate length table.

The storage requirement table.

The external symbol dictionary and compilation
statistics.

The static internal storage map.

The variable storage map.

The table of offsets and statement numbers.

The object listing.

The compiler diagnostic message produced for this
compilation. The time taken for the compilation
and the size and number of records transmitted to
the spill file during compilation are also given.

An EXEC statement to invoke the linkage editor.

The diagnostic listing produced by the linkage
editor. "ACTION TAKEN" indicates that the map
option of the ACTION statement has been assumed
by default. "LIST" means that the listed feature
or control statement has been used. In this
example, the AUTOLINK feature has been used for
the name relocatable object modules.

The linkage editor map, showing the relative
storage locations in the executable program phase
of all the control sections created by the
compiler or incorporated from the PL/I resident
library.

The listing of unreferenced symbols and the
reference to unresolved address constants apply
to external references that cannot be matched
with a corresponding entry point. These are, in
general, weak external references (WXTRN) that
are not needed in the program.

The EXEC statement to invoke the executable
program phase created in the preceding
link-editing step.

Listed output from the execution of the compiled
and link-edited program.

282 DOS PL/I Optimizing Compiler. Programmers Guide

II JOB RFP214AB
/I OPTION LINIt
II EXEC PL%OPT,SIZE-64K

DOS PVI OPTIMIZING COMPILER

OPTIONS SPECIFIED

VERSION 1 RELEASE 5.0 TIME a 18.2".39

• PROCESS MACRO,INSOURCE,AGGREGATE,ATTRIBUTES,ESD,MAP,NEST,OFFSET,

OPT(TIME),STORAGE,XREF,LIST,

00120000

00130000

OPTIONS USED

AGGREGATE
COMPILE
DYNBUF
£SD
GOSTMT
INCLUDE
I NSOORCE
LINK
LIST
MACRO
MAP
NEST
OFFSET
OPTIONS
SOURCE
STORAGE
SYNTAX

NOCOONT
NODECK
ROFLOW
NOLIMSCONV
NOHARGINI
NOMDECl(

ATTRIBUTES (SHORT)
CHARSET(60,EBCDIC)
FLAG(W)
LINECOONT(60)
MARGINS (2,72,1)
OPTIMIZECTIME)
SIZE(389000)
WORltFILE(3330)
XREFCSHORT)

Appendix A.

<D

DATE a 26 AUG 7b PAGE 1

®

Programming Example 283

PLII OPTIMIZING COMPILER PI PRce OPTIONSe MAIN) REORDER;

LINE
1
2
3
II
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

PREPROCESSOR INPUT

PI PROC OPTIONSeMAIN) REORDER;
/. INCLUDE DECLARATIONS ./
IINCLUDE DCLSTMT;
/. INITIALIZE TABLE ./
DO I '" 1 TO 2;

DO J = 1 TO 12;
AeJ,I) '" J;
END;

END;
/. CALCULATE COLUMN PRODUCTS ./
DO J '" 1 TO 2;

COLPRODeJ) '" 1;
DO I '" 1 TO 12;

COLPRODeJ) '" COLPRODCJ) • ACI,J);
END;

END;
/. CALCULATE ROW PRODUCTS ./
DO I '" 1 TO 12;

ROWPRODCI) '" ACI,l) • AU,2);
END;

/. PRINT RESULTS ./
PUT SKIP(2) LIST C'PRODUCTS OF ROWS');
POT SKIP(2) DATA eROWPROD);
POT SKIP(2) LIST C'PRODUCTS OF COLUMNS');
PUT SKIP(2) DATA CCOLPROD);
END Pi

INCLUDED TEXT FOLLOWS FROM BOOKNAME = P.DCLSTMT

27
28

DCL CROWPROD(12),COLPRODe2),~(12,2»
FIXED DECIMAL CS);

PLII OPTIMIZING COMPILER P: PROC OPTIONSCMAIN) REORDER;

NO MESSAGES OF SEVERITY W AND ABOVE PRODUCED BY THE PREPROCESSOR

MESSAGES SUPPRESSED BY THE FLAG OPTION: 1 I.

284 DOSPL/I Optimizing Compiler: Programmers Guide

PAGE 2

®
00140000
001~0000
001600U1
00170000
00180000
00190000
00200000
00210000
00220000
00230000
00240000
002~0000
00260000
00270000
00280000
00290000
00300000
00310000
00320000
00330000
00340000
00350000
00360000
00370000
00380000
00390000

00040000
0005000('

PAGE 3

PLiI OPTIMIZING COMPILER p, PROC OPTIONSCMAIN) REORDER,

MACRO AND SOURCE LISTING

STIlT LEV NT

1 0 p, PROC OPTIONSCMAIN) REORDER, 1
I. INCLUDE DECLARATIONS .1 2

2 1 0 DeL CROWPROD(12),COLPRODC2),Ae12,2» 27
rIXED DECIMAL (~), 018

I. INITIALIZE TABLE .1 1&
3 1 0 DO I • 1 TO 2, 5
q 1 1 DO J • 1 '1'0 12, fI
5 1 2 ACJ,U • J, 7
6 1 2 END, II
7 1 1 END, 9

I. CALCULATE COLUMN PRODUCTS ·1 10 • 1 ° DO J • 1 TO 2, 11
9 1 1 COLPRODeJ) • 1, 12

10 1 1 DO I • 1 TO 12, 13
11 1 2 COLPROD(J) • COLPRODeJ) - ACI,J), 11&
12 1 2 END, 1~
13 1 1 END, lit

I. CALCULATE ROW PRODUCTS .1 17
14 1 ° DO I • 1 TO 12, n
15 1 1 ROWPROD(I) • A(I,1) - A(I,2), 19
16 1 1 END, 410

I- PRINT RESULTS ·1 :l1.
17 1 ° PUT SKIP(2) LIST (~PRODUCTS OF ROWS'), 22
18 1 ° PUT SKIP(2) DATA (ROWPROD), 23
19 1 0 PUT SKIP(2) LIST C'PRODUCTS OF COLUMNS'), 24
20 1 0 PDT SKIP(2) DATA (COLPROD), 2~
21 1 0 END P, 2et

PLiI OPTIMIZING COMPILER PI PROC OPTIONSeMAIN) REORDER,

ATTRIBUTE AND CROSS-REFERENC~ TABLE eSHORT)

DCL NO. IDENTIFIER

2 A

2 COLPROD

•••••••• 1

•••••••• J

2 ROWPROD

•••••••• SYSPRINT

ATTRIBUTES AND REFEREt~CES

(12,2) AUTOMATIC ALI,GNED DECIMAL FIXED (5,0)
5,11,15,15

(2) AUTOMATIC ALIGNED DECIMAL PIXED C5,0)
9,11,11,20

AUTOMATIC ALIGNED BINARY FIXED (15,0)
3,3,5,10,10,11,14,14,15,15,15

AUTOMATIC ALIGNED BINARY FIXED (15,0)
4,q,~,5,8,8,9,11,11,11

(12) AUTOMATIC ALIGNED DECIMAL FIXED (S,O)
15,18

EXTERNAL FILE PRINT
17,18,19,20

PAGE 4

@
R

PAGE 5

®

Appendix A. Programming Example 285

PLII OPTIMIZING COMPILER

DCL NO.

2

2

2

IDENTIFIER

A

COLPROD

ROWPROD

P: PROC OPTIONS(MAIN) REORDER;

AGGREGATE LENGTH TABLE

LVL DIMS

2

1

1

OFFSET ELEMENT
LENGTH.

3

3

3

TOTAL
LENGTH.

72

6

36

SUM OF C~NSTANT LENGTHS 114

PL/I OPTIMIZING COMPILER P: PROC OPTIONS(MAIN) REORDER;

STORAGE REQUIREMENTS

BLOCK, SECTION OR STATEMENT TYPE LENGTH (HEX) DSA SIZE (BEX)

.····.Pl PROGRAM CSECT 744 2E8
•• ····P2 STATIC CSECT 500 IF''
P PROCEDURE BLOCK 742 2E6 464 100

PLII OPTIMIZING COMPILER P: PROC OPTIONS(MAIN) REORDER;

EXTERNAL SYMBOL DICTIONARY

SYMBOL TYPE ID ADDR LENGTH

PLISTART SD 0001 000000 000010
······Pl SD 0002 000000 0002E8
••• ••• P2 SO 0003 000000 0001F"
PLITABS WX 0004 000000
PLIFLOW WX 0005 000000
PLICOUNT WX 0006 000000
IBMBPIRA ER 0007 000000
PLIMAIN SD 0008 000000 000008
IBMBSDOA ER 0009 000000
IBMBSIOA ER OOOA 000000
IBMBSOOA ER OOOB 000000
IBMBCACA ER OOOC 000000
IBMBCWDH ER OOOD 000000
IBMBOCLA ER OOOE 000000
IBMBOCLC WX OOOF 000000
IBMBSDOB WX 0010 000000
IBMBSIOE WX 0011 000000
IBMBSLOA ER 0012 000000
IBMBSPLA ER 0013 000000
IBMBSDOT WX 001" 000000
IBMBSXCA WX 0015 000000
IBMBSXCB WX 0016 000000
IBMBSIST WX 0017 000000
IBMDSTFA ER 0018 000000
IBMBOCLB ER 0019 000000
IJJFCBZD ER OOlA 000000
P LD 00000"
SYSPINT ·SD 001B 000000 0001A8

286 DOSPl/IOptimizing Compiler: Programmers Guide

PAGE 6

®

PAGE 7

(J)

PAGE 8

@

PLII OPTIMIZING COMPILER PI PROC OPTIONS(MAIN) REORDER, PAGE 9

~ STATIC INTERNAL STORAGE MAP CIlOOOOOO
OOOOFC 810001010000003A SYMBOL TABLE •• COL PROD

000000 COOO01FO PROGRAM ADCON OOOOOOCOOOOOOOOO ® 000004 00000004 PROGRAM ADCON 0007C306030709D6
000008 OOOOOOSA PROGRAM ADeON CIlOOOOOO
OOOOOC 00000078 PROGRAM ADCON
000010 00000078 PROGRAM ADeON
0000111 00000000 A •• IBMBCACA
000018 00000000 A •• IBMBCWDH
00001C 00000000 A •• IBMBOCLA STATIC EXTERNAL CSECTS
000020 00000000 A •• IBMBOCLC
000024 00000000 A •• IBMBSDOB
000028 00000000 A •• IBMBSIOE
00002C 00000000 A •• IBMBSLOA 000000 0000000000000000 FeB
000030 00000000 A •• IBMBSPLA 0000000000000000
000034 00000000 A •• IBMBSDOT 000000700000007C
000038 2000 OEO 000000B800000000
00003A 04040580 DEO •• ROWPROO 4040000041201000
00003E 0002 CONSTANT 8080001002000000
0000110 0001 CONSTANT 0000E20000000000
000042 0009 CONSTANT 0000000000000000
000044 OOOC CONSTANT 0000008000000000
000046 0006 CONSTANT 0000000000000000
0000118 0003 CONSTANT 0000000000000000
00001lA OOIiB CONSTANT 0000000000000000
OOOOIiC 0048 CONSTANT 0000000000000000
00004E 0024 CONSTANT 0000000000000000
000050 000000BB00100000 LOCATOR 000BE2E8E2D7D9C9
000058 0000000000000078 LOCATOR •• ROWPROO 05E30000
000060 000000CBOO130000 LOCATOR 00007C 00000000020000AC ENVB
000068 00000000000000811 LOCATOR •• COLPROO 010000B0020000AC
000070 91E091EO CONSTANT 020000AC020000AC
000074 00000002 CONSTANT 020000AC020000AC
000078 0000000300000003 DESCRIPTOR 020000AC020000AC

OOOCOOOl 020000AC020000AC
0000811 0000000300000003 DESCRIPTOR OOOOAC 00000000 ENVB CONSTANT

00020001 OOOOBO 00000079 EWB CONSTANT
000090 00000000 A •• FCB 0000B8 0000800008000003 OTF (CONSTANT PART)
0000911 00000000 A •• PCB OOOOCO 00000110 OTF 'VARI~BLE PART)
000098 00000000 A •• TEMP 0000C4 0000000000000000 DTF (CONSTANT PART)
00009C 80000074 A •• CONSTANT 3380E2E8E2D709C9
OOOOAO 00000000 A •• TEMP 0500000000000000
OOOOAIl OOOOOOEO A •• SYMTAB 00000800002020F3
0000A8 80000000 A •• TEMP 2410610880000000
OOOOAC 00000000 A •• TEMP 0000000000000000
OOOOBO OOOOOOFC A •• SYMTAB OOOOFFOOOOOOOOOO
0000B4 80000000 A •• TEMP 0000000013000020
0000B8 00001C CONSTANT 0000000000000079
OOOOBB 070906C4EIIC3ElE2 CONSTANT 47000000

1I006C61100906E6E2 000110 070000F2 DTF 'VARIABLE PART)
OOOOCB 070906CIIEIIC3E3E2 CONSTANT 000111t 40000006 OTF (CONSTANT PART)

40D6C640Cl060lEIt 000118 310000FIl DTF 'VARIABLE PART)
0llDSE2 00011C 40000005 OTF (CONSTANT PART)

OOOOOE 000120 08000118 OTF 'VARIABLE PART)
OOOOEO 810001010000003A SYMBOL TABLE.,. ROWPROD 000124 20000001 DTF (CONSTANT PART)

000000B800000000 000128 10000101t OTF 'VARIABLE PART)
00070906E6070906 00012C AOOOOO080~10610C DTF (CONSTANT PART)

Appendix A. Programming Example 287

PLII OPTIMIZING COMPILER

60000079
000138 310000F4
00013C 40000005
000140 08000138
000144 20000001
000148 lE000128
00014C 3000008100000000

0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000047FF001C
47FF001C

PLII OPTIMIZING COMPILER

IDENTIFIER

ROWPROO
COLPROD
A
I
J

PLII OPTIMIZING COMPILER

Pa PROC OPTIONS(MAIN) REORDER,

DTF (VARIABLE PART)
DTF (CONSTA"~T PART)
DTF (VARIABLE PART)
DTF (CONSTANT PART)
DTF (VARIABLE PART)
DTF (CONSTANT PART)

P: PROC OPTIONS(MAIN)

VARIABLE STORAGE MAP

REORDER;

LEVEL OFFSET (HEX) CLASS

1 216 08 AUTO
1 204 CC AUTO
1 252 FC AUTO
1 200 C8 AUTO
1 202 CA AUTO

PI PROC OPTIONS(MAIN) REORDER,

TABLES OF OFFSETS AND STATEMENT NUMBERS

WITHIN PROCEDURE P

OFFSET (HEX) 0 74 7C 84 84 9A A8 A8
STATEMENT NO. 1 3 5 3 4 5 6 5

OFFSET (HEX) DA E2 F2 F2 100 118 132 136
STATEMENT NO. 9 11 8 9 10 11 1~ 10

OFFSET (HEX) 182 18A lA4 lAq lA6 1M 1M IDC
STATEMENT NO. 14 15 16 15 16 1Il 17 18

BLOCK

P
P
P
P
P

M B2
6 4

136 136
13 9

23A 26C
19 20

288 DOS Pl/I Optimizing Compiler: Programmers Guide

PAGE 10

PAGE 11

@

PAGE 12

@

B2 .B2 BE D2 .D2
7 5 7 3 8

142 15A 16E 16E 176
11 13 8 U 15

21>2
21

)

PL/I OPTIMIZING COMPILER PI PROC OPTIONS(MAIN) REORDER; PAGE 13

OBJECT LISTltJG

• STATEMENT NUMBER 1
000000
000003

• PROCEDURE

• REAL ENTRY
000004 90 EC D OOC
000008 47 1'0 I' 014
OOOOOC 00000000
000010 000001DO
000014 00000000
000018 58 30 I' 010
00001C 58 10 D O~C
000020 58 00 I' OOC
000024 lE 01
000026 55 00 C OOC
00002A 47 DO I' 030"
00002E 58 FO C 074
000032 05 EI'
000034 58 EO 0 0~8
000038 18 FO
00003A 90 EO 1 048
00003E 50 DO 1 004
000042 41 Dl 0 000
000046 50 50 0 058
00004A 92 80 D 000
00004E 92 2~ D 001
000052 02 03 0 054 3 010
000058 05 20

• PROLOGOE BASE
00005A D2 07 D OB8 3 058

000060 41 EO D OD8
000064 50 EO 0 OB8

000068 D2 07 D OCO 3 068

00006E 41 1'0 D OCC
000072 50 1'0 D OCO

000076 05 20

• PROCEDORE BASE

• STATEMENT NUMBER 3
000078 48 50 3 040
00007C 40 50 D OC8

DC
DC

STM
B
DC
DC
DC
L
L
L
ALR
CL
BNH
L
&ALR
L
LR
STM
ST
LA
ST
MVI
MVI
MVC
BALR

C' P'
AL1CU

P

14,12,12(13)
·+16
ACSTMT. NO. TABLE)
1"464'
ACSTATIC CSECT)
3,16(0,15)
1,16"(0,13)
0,12(0,15)
0,1
0,12(0,12)
·+10
15,116(0,12)
14,15
14,72(0,13)
15,0
14,0,72(1)
13,4 (O,U
13,0(1,0)
5,88(0,13)
0(13),X'80'
1(13),X'21f'
84 (4 ,13),112(3)
2,0

MVC LOCATOR •• VO •• ROWPR
00(8),88(3)

LA 14,216(0,13)
ST 14,LOCATOR •• VO •• RO

WPROO
MVC LOCATOR •• VO •• COLPR

00(8),104(3)
LA 15,204(0,13)
ST 15,LOCATOR •• VO •• CO

LPROD
BALR 2,0

LH 5,64 (0,3)
STH 5,1

• INITIALIZATION CODE FOR OPTIMIZED LOOP FOLLOWS

• CODE MOVED FROM STATEMENT NUMBER 5
000080 48 EO 3 042 LH 14,66(0,3)

14,352(0,13) 000084 ~O EO D 160 ST

• CONTINUATION OF STATEMENT NUMBER 3
000088 CL.2 EgO •

• STATEMENT NUMBER 4
000088 48 BO" 3 044
00008C 48 AO 3 040
000090 40 AO 0 OCA

LH 11,68(0,3)
LH 10,64(0,3)
STH 10,J

• INITIALIZATION CODE FOR OPTIMIZED LOOP FOLLOWS

• CALCULATION OF COMMONEO EXPRESSION FOLLOWS
00009~)8 80 D 160 L 8,352(0,13)

• END OF COMMON CODE
000098 48 40 3 046
00009C 18 SA
00009E

• STATEMENT NUMBER 5
00009E 4E SO D 090
0000A2 18 10
0000A4 lA 78

LH 4,10(0,3)
LR 5,10
EgU •

CVD 5,WKSP.l+24
LR 7,13
AR 7,8

@

0000A6 02 02 1 01'3 0 095 MVC VO •• A(3),WKSP.l+29

• STATEMENT NUMBER 6

• METHOD OR ORDER OF CALCULATING EXPRESSIONS CHANGED

• CODE MOVED FROM STATEMENT NUMBER 5
OOOOAC lA 84 AR

• CONTINUATION OF STATEMENT NUMBER 6
OOOOAE 87 SA 2 026 BXLE
0000B2 40 50 0 OCA STH

• CODE MOVED FROM STATEMENT NUMBER ~

• STATEMENT NUMBER 1

8,4

5,10,::=L.4
5,J

• METHOD OR ORDER OF CALCULATING EXPRESSIONS CHANGED

• CODE MOVED FROM STATEMENT NUMBER 5
0000B6 58 EO 0 160 L
OOOOBA 4A EO 3 048 Aft
OOOOBE 50 EO 0 160 ST

• CONTINUATION OF STATEMENT NUMBER 7
0000C2 48 50 0 OC8 LH
0000C6 4A 50 3 040 AH

14,352 (0,13)
14,72(0,3)
14,352 (0,13)

5,1
5,64(0,3)

Appendix A .. Programming Example 289

PLII OPTIMIZING COMPILER PI PROC OPTIONS(MAIN) REORDER; PAGE

OOOOCA
OOOOCE
000002

40 50 0 OC8
49 50 3 03E
41 CO 2 010

STH
CH
BNH

• CODE MOVED FROM STATEMENT NUMBER 3

• STATEMENT NUMBER 8
000006 48 50 3 040
OOOODA 40 50 0 OCA

LH
STH

5,1
~,62(0,3)

CL.2

5,64(0,3)
5,J

• INITIALIZATION CODE FOR OPTIMIZED LOOP FOLLOWS

• CODE MOVED FROM STATEMENT NUMBER 9
OOOODE 48 40 3 048 LH
0000E2 50 40 0 168 ST

• CODE MOVED FROM STATEMENT NUMBER 11
0000E6 48 80 3 042 LH
OOOOEA 50 80 0 16C ST
OOOOEE 48 90 3 04A LH
0000F2 50 90 0 110 ST

• CONTINUATION OF STATEMENT NUMBER 8
0000F6 CL.6 EQU

• STATEMENT NUMBER 9
0000F6 58 10 0 168 L
OOOOFA 18 40 LR
OOOOFC lA 47 AR
OOOOFE 02 02 4 OC9 3 088 MVC

• STATEMENT NUMBER 10
000104 48 90 3 040 LH
000108 40 90 0 OCI! 5TH

4,12(0,3)
4,360(0,13)

8,66(0,3)
8,J64(0,lJ)
9,14(0,3)
9,368(0,lJ)

•

1,360(0,13)
4,13
4,7
VO •• COLPROO(3),184
(3)

9,64(0,3)
9,1

.• INITIALIZATION CODE FOR OPTIMIZED LOOP FOLLOWS

• CALCULATION OF COMMON ED EXPRESSION FOLLOWS
00010C 58 EO 0 16C L 14,364(0,13)

• END OF COMMON CODE
000110 58 BO 0 110
000114 48 AO 3 046
000118 18 5E
00011A 18 87
00011C

• STATEMENT NUMBER 11
00011C 18 em
00011E lA 48
000120 18 90
000122 lA 95

CL.8

L 11,368(0,13)
LH 10,70(0,3)
LR 5,14
LR 8,7
EQU •

LR
AR
LR
AR

4,13
4,8
9,13
9,5'

000124 F8 52 0 098 4 OC9

00012A FC 52 0 098 9 OF3

000130 02 02 4 OC9 0 09B

• STATEMENT NUMBER 12
000136 81 SA 2 OA4

ZAP

MP

l-tVC

aXLE

• CODE MOVED FROM STATEMENT NUMBER 10

• STATEMENT NUMBER 13

WKSP.l+32(6),VO •• C
OLPROO(3)
WKSP.l+32(6),VO •• A
(3)

VO •• COLPROD(3),WKS
P.l+35

@
5,10,CL.a

• METHOD OR ORDER OF CALCULATING EXPRESSIO~S CHANGED

• CODE MOVED FROM STATEMENT
00013A 58 EO 0 168
00013E 4A EO 3 048
000142 50 EO 0 168

• CODE MOVED FROM STATEMENT
000146 58 80 0 lbC
00014A CiA 80 3 048
00014E 50 80 0 10C
000152 58 40 0 110
000156 CiA 40 3 048
00015A 50 40 0 170

• CONTINUATION OF STATEMENT
00015E 48 50 0 OCA
000162 CiA 50 3 0"0
000166 40 50 0 OCA
00016A "9 50 3 03E
00016E 41 CO 2 07E

• CODE MOVED FROM STATEMENT

• STATEMENT NUMBER 1"
000112 48 70 3 040
000116 "0 70 0 OC8

NUMBER 9
L
AH
ST

NUl".BER 11
L
AH
5T
L
hH
ST

NUMBER 13
LH
AS
5TH
CH
8NH

Nm1BER 8

LH
5TH

14,360(0,13)
14,12(0,3)
14,360.(0,13)

8,364(0,13)
8,12(0,3)
8,364(0,13)
4,368(0,13)
4,12(0,3)
4,368(0,13)

5,J
5,04(0,3)
5,J
~,62(0,3)

CL.6

7,64(0,3)
7,1

• INITIALIZATION CODE FOR OPTUIIZ~D LOOP FOLLOWS

• CODE MOVED PROM STATEMENT NUMBER 15
00011A 48 "0 3 Oli8 LH
00011E li8 EO 3 046 LH
000182 48 90 3 04C LH

• CONTINUATION OF STATEMEnT NUMBER 14
000186 18 64 LR
000188 18 5E LR
00018A 18 B9 LR
00018C 18 AE LR

4,12(0,3)
1",10(0,3)
9,16(0,3)

6,4
5,14
11,9
10,14

290 DOS PL/! Optimizing Compiler: Programmers Guide

14

(
I

\

PL/I OPTIMIZING COMPILER P: PROC OPTIONS(MAIN) REORDER; PAGE 15

~ 00018E CL.I0 EQU • @ ~ • INITIALIZATION CODE FOR OPTIMIZED LOOP FOLIDWS
000204 48 EO 3 048 LH 14,12(0,3)

• STATEMENT NUMBER 15 000208 48 40 3 04E LH 4,18(0,3)
00018E 18 10 LR 1,13 00020C 18 B4 LR 11,4
000190 1A 75 AR 7,5 00020E 18 5E LR 5,14
000192 18 90 LR 9,13 000210 18 AE LR 10,14
000194 1A 94 AR 9,4 000212 CL.13 EQU •
000196 F8 52 0 098 7 OF6 ZAP WKSP.1+32(6),VO •• A 000212 41 10 0 lA8 LA 1,424(0,13)

+3<3,1) 000216 50 7(1 3 OAO ST 7,160(0,3)
00019C FC 52 0 098 7 OF9 MP WKSP.1+32(6),VO •• A 00021A U 75 D 005 LA 1, VO •• ROWPROD (5)

+6(3,1) 00021E 50 70 3 OA8 ST 1,168(0,3)
0001A2 02 02 9 005 0 09B MVC VO •• ROWPROO(3),WKS 000222 96 80 3 OA8 01 168(3),X'80'

P.l+3!> 000226 41 10 3 OAO LA 1,.160(0,3)
00022A 58 FO 3 024 L l!>,A •• IBMBSDOB
00022E 05 EF BALR 14,15

• STATEMENT NUMBER 16 000230 87 SA 2 19A BXLE 5,10,CL.13
000234 58 10 0 188 L 1,392(0,13)

• METHOD OR ORDER OF CALCULATING EXPRESSIONS CHANGED 000238 58 FO 3 034 L l!>,A •• IBMBSOOT
00023C 05 EF BALR 14,15

• CODE MOVED FROM STATEMENT NUMBER 15
0001A8 lA 46 AR 4,6

• STATEMENT NUMBER 19
• CONTINUATION OF STATEMENT NUMBER 16 00023E U EO D 1A8 LA 14,424(0,13)
0001AA 87 SA 2 116 BXLE !>,10,CL.I0 000242 50 EO 3 098 ST 14,152(0,3)

000246 50 EO D 188 ST 14,392(0,13)
• CODE MOVED FROM STATEMENT NUMBER 14 00024A 18 lE LR 1,14

00024C 92 40 D 1B9 MVI 441(13),X'40'
000250 III 10 3 094 LA 1,148(0,3)

• STATEMENT NUMBER 17 0002514 58 FO 3 028 L l!>,A •• IBMBSIOE
0001AE 41 FO 0 lA8 LA 15,424(0,13) 000258 05 EF BALR 14,15
0001B2 50 FO 3 098 ST· 15,152(0,3) 00025A 41 EO 3 ObO LA 14,96(0,3)
0001B6 50 FO 0 188 ST 15,392(0,13) 00025E III FO 3 038 LA 15,56(0,3)
0001BA 18 IF LR 1,1~ 000262 58 10 D 188 L 1,392(0,13)
0001BC 92 40 0 1B9 MVI 441(13) ,X'40' 000266 90 EF 1 000 STM 14,15,0(1)
0OOlCO 41 10 3 094 LA 1,148(0,3) 00026A 58 FO 3 02C L 15,A •• IBMBSLOA
0001C4 58 FO 3 028 L 15,A •• IBMBSIOE 00026E 05 EF BALR 14,15
0001C8 05 EF BALR 14,15
0001CA 41 EO 3 050 LA 14,80(0,3)
0001CE 41 FO 3 038 LA 15,5b(0,3) • STATEMENT NUMBER 20
000102 58 10 D 188 L 1,392(0,13) 000210 41 EO 0 1A8 LA 14,42 IHO,13)
000106 90 EF 1 000 STM 14,15,0(1) 000214 50 EO 3 098 ST 14,152(0,3)
00010A 58 FO 3 02C L 15,A •• IBMBSLOA 000278 50 EO D 188 ST 114,392(0,13)
00010E 05 EF BALR 14,15 00021C 18 lE LR 1,14

000211:; 92 80 0 189 MVI 441(13),X'80'
000282 92 01 D IBA MYI 442(13),X'Ol'

• STATEMENT NUMBER 18 000286 41 10 3 094 LA l,lC18(O,3)
0001EO 41 EO 0 lA8 LA 14,424(0,13) 00028A 58 FO 3 028 L l~,A •• IBMBSIOE
0001E4 50 EO 3 098 ST 14,152(0,3) 00028E 05 EF BALR 14,15
0001E8 50 EO 0 188 ST 14,392(0,13) 000290 48 EO 3 040 LH 14,64(0,3)
0001EC 18 lE LR 1,14
0001E!: 92 80 0 1B9 MVI 44H13) ,X' 80' • INITIALIZATION CODE FOR OPTIMIZED LOOP FOLLOWS
0001F2 92 01 0 IBA MVI 442(13),X'Ol' 000294 !)O AO 0 19C ST 10,412 (0,13)
0001F6 41 10 3 094 LA 1,148(0,3) 000298 48 40 3 046 LH 4,10(0,3)
0001FA 58 FO 3 028 L 15 ,·A •• IBMBSIOE 00029C 48 AO 3 048 LH 10,72(0,3)
0001FE 05 EF BALR 14,15 0002AO 58 50 D 19C L 5,412(0,13)
000200 48 80 3 040 LH 8,64(0,3) 0002A4 18 B4 LR 11,4

Appendix A. Programming Example 291

PLI'I OPTIMIZING COMPILER P: PROC OPTIONS (MAIN) REORDER; PAGE 16

0002A6 CL.12 EgO •
0002A6 SO SO D 19C ST S,U2(0,13) @ 0002AA 111 70 D lAB LA 7,11211(0,13)
0002AE SO 70 3 OAC ST 7,172(0,3)
0002B2 U 75 D OC9 LA 7,VO •• COLPROD(S)
0002B6 SO 70 3 OBII ST 7,180(0,3)
0002BA 96 80 3 OBII 01 180(3),X'80'
0002BE III 10 3 OAC LA 1,172(0,3)
0002C2 S8 FO 3 0211 L lS,A •• IBMBSDOB
0002C6 05 EF BALR 111,-15
0002C8 87 SA 2 22E BXLE S,10,CL.l:l
0002CC 58 10 D 188 L 1,392(0,13)
0002DO 58 FO 3 0311 L lS,A •• IBMBSDOT
0002DII OS EF BALR 111,lS

• STATEMENT NOMBER 21
0002D6 18 OD LR 0,13
0002D8 58 DO 0 0011 L 13,11(0,13)
0002DC 58 EO D OOC L 111,12(0,13)
0002EO 982C-D 01C LM 2,12,28(13)
0002EII 05 1E BALR 1,111

• END PROCEDORE
0002E6 07 07 NOPR 7

• END PROGRAM

listing page 16.

292 DOS PL/I Optimizing Compiler: Programmers Guide

)

~
:\
ty

PL/I OPTIMIZING COMPILER PI PROC OPTIONS(MAIN) REORDER; PAGE 17

COMPILER DIAGNOSTIC MESSAGES OF SEVERITY W AND ABOVE

ERROR ID L STMT MESSAGE DESCRIPTION ®
WARNING DIAGNOSTIC MESSAGES

IEL0916I W 1 ITEM(S> 'ROWPROD','COLPROD','A' MAY BE UNINITIALIZED"WHEN USED IN THIS BLOCK.

MESSAGES SUPPRESSED BY THE FLAG OPTION: ~ I.

END OF COMPILER DIAGNOSTIC MESSAGES

COMPILE TIME 0.31· MINS SPILL FILEs o RECORDS, SIZE 4051

EXEC LNKEDT 00410000

JOB RFP214AB 26/08/76 DOS LINI<AGE EDITOR DIAGNOSTIC or INPUT

ACTION TAKEN MAP
LIST AUTOLINK
LIST AUTOLINK
LIST AtJ'l'OLINK
LIST AUTOLINK
LIST AtJ'l'OLINK
LIST AUTOLINK
LIST AtJ'l'OLINK
LIST AUTOLINK
LIST AUTOLINK
LIST AUTOLINK
LIST AUTOLINK
LIST AUTOLINK
LIST AUTOLINK
LIST ENTRY

REL
IBMBCAC}I.
IBMBCWDH
IBMBOCLA
IBMBPIRA
IBMBERRA
IBMBOCNA
IBMBPGRA
IBMBSDOA
IBMBSIOA
IBMBSLOA
IBMBSPLA
IBMDSTFA
IJJFCBZD

Appendix A. Programming Example 293

26.108.116 PHASE XFR-AD LOCORE HICORE DSJ(-AD ESD TIPE LABEL LOADED REL-FR

PHASE··. 100078 100078 102C9C OD9 OD 09 CSECT PLISTART 100018 100078 RELOCATABLE (

CSECT ······Pl 100088 100088 @ "-• ENTRI P 10008C

CSECT ······P2 100370 100370

CSECT PLlMAIN 100568 100~68

CSECT IJJFCBZD 102918 102918
• ENTRI IJJFCIZD 102918

CSECT SYSPINT 100570 100!)70

CSECT IBMBCACl 100718 100718
ENTRY IBMBCACA 100718

CSECT IBMBCWOl 1009E8 1009E8
ENTRY IBMBCWOH 1009E8

• ENTRI IBMBCWZH 1009£8

CSECT IBMOOCLl 100B08 100BD8
ENTRY IBMBOCLA 100BD8
ENTRI IBMBOCLC 100BDC
ENTRY I BaOCLB 100BDA
ENTRI IBMBOCLD 100BOE
ENTRI IBMBOCLG 100CA4
ENTRY IBMBOCMA 100B08

• ENTRI IBMBOCMB 100BOA
• ENTRI IBMBOCMC 100BDC
• ENTRI IBMBOCMD 100BDE
• ENTRI IBMBOCMG 100CA4

CSECT IBMDPIRl 100CC8 100CC8
ENTRY IBMBPlRA 100CFO

• ENTRI IBMBPLRA 100CFQ

CSECT IBMOERR1 100FOO 100FOO
ENTRI IBMBERRB 100F40
ENTRY IBMBERRA 1001'00
ENTRI IBMBERRC 1014CO

CSECT IBMOOCN1 101548 101548
ENTRl(I BMBOC NA 101548

• ENTRl(IBMBRIOC 10156C

CSECT IBMDPGRl 101610 101610
ENTRY IBMBPGRB 10h12
ENTRY IBMBPGRC 10162E
ENTRY IBMBPGRO 10162A
ENTRY IBMBPGRA 101610

CSECT IBMOSOO1 101890 101890
ENTRl(IBMBSOOA 101896

294 DOS PL/I Optimizing Compilers Programmers Guide

261'081'76 PHASE XFR-AD LOCORE BICORE DSIt-AD ESO TYPE LABEL LOADED REL-FR

ENTRY IBMBSOOB 101894 @ ~ ENTRY IBMBSOOT 101AF2
V • ENTRY IBMBSOOC 101892

• ENTRY IBMBSOOO 101890

CSEC'l' 18MDSIOl 101058 101058
ENTRY IBMBSIOA 101058
ENTRY IBMBSIOE 101060

• ENTRY 18MBSIOB 10105A
• ENTRY IBMBSIOC 10105C
• ENTRY IBMBSIOO 10105E
• ENTRY IBMBSIOT 101EAA

CSECT IBMDSLOl 101EC8 1011::C8
ENTRY IBMBSLOA 101EC8

• ENTRY IBMBSLOS 101ECA

CSEC'l' I8MDSPLl 102520 102520
ENTRY IBMBSPLA 102520
ENTRY IBMBSPLB 102522
ENTRY IBMBSPLC 102524

CSECT IBMDSTFl 102750 102750
ENTRY I8MDSTFA 1027&4

• UNRESOLVED EXTERNAL REFERENCES WXTRN PLITABS
WXTRN PLIFLOW
WXTRN PLICOUNT
WXTRN IBMBSXCA
WXTRN I8MBSXCB
WXTRN I8M8SlST
WXTRN IBMBCGZA
WXTRN IBMSCCQA
WXTRN IBMBCHXH
WXTRN IBMBCHFY
WXTRN IBMBCVOY
WXTRN 18MBPGOA
WXTRN IBMBJWTA
WXTRN IBMBTOCA
WXTRN IBMSTOCB
WXTRN IBMBILCl
WXTRN I BMBPJRC
WXTRN PLIXOPT
WXTRN PLIXHD
WXTRN IBMBERCA
WXTRN 18MBKSYA
WXTRN IBM8SCPA
WXTRN 18M8CBCA

020 UNRESOLVED ADDRESS CONSTANTS

Appendix A. Programming Example 295

I" "XEC ,SIZE-6 ••

PRODUCTS OF ROWS

ROWPROD(l) =
ROWPROO(6) =
ROWPROD (11) =

1
36
121

PRODUCTS OF COLUMNS

COLPROD(l) = 1600

ROWPROD(2)=
ROWPROO (7) =
ROwPROD(12)=

COLPROD(2) =

4 ROWPROO(3)=
49 ROWPROO(8) =
1114;

1600;

9
64

00420000

ROWPROO(4)=
ROWPROO(9)=

296 DOS PL/! Optimizing Compiler: Programmers Guide

16
81

ROWPROD(S)·
ROWPROO(lO)=

2S
100

APPENDIX B. VSAM BACKGROUND

THE VSAM CATALOG

VSAM DATA SETS

This appendix gives an introduction to the facilities of VSAM
and Access Method Services. The commands for creating and
deleting data sets and for creating alternate indexes are
described. Other housekeeping tasks are described in your
DOS/VS Access Method Services User's Guide. If you have complex
requirements or are going to be a frequent user of VSAM, you
should review the VSAM publications for your operating system.
PL/I does not support all VSAM functions.

VSAM data sets must be defined and cataloged in a VSAM catalog
before they are loaded with data. Each VSAM data set's name and
physical attributes are recorded in the catalog. A hierarchy of
catalogs is possible, in which you have your own private
catalog, which in turn is cataloged in the master catalog.
Alternatively, you may catalog your data sets directly in the
master catalog.

Data sets are defined and cataloged by using the Access Method
Services program.

By having all data sets cataloged, close control of your data
sets is possible and system control statements can be restricted
to simply associating the name of the data set with the file
name in the PL/I program. Any other information necessary to
use the data set will be found in the catalog. Thus, when using
VSAM, essential system control statements can be restricted to
associating the data set name with the file name and specifying
the logical unit. Other information can be supplied but it is
merely used to override defaults and tailor VSAM's processing to
suit your needs in matters such as buffer size.

The three types of VSAM data sets are:

• A key-sequenced data set, which consists of a data component
containing records with embedded keys, and an index
component relating key values to relative locations of the
records. The index, created and maintained by VSAM when
data is written, is called the prime index.

You may retrieve records directly, by supplying a key value
as a search argument, or sequentially. Records retrieved
sequentially are returned in order of their key values, and
not their location in the data set.

To create a key-sequenced data set, records must be
presented in order of key values. Once a key-sequenced data
set has been created, VSAM permits a full range of
operations upon the data--retrieval, insertion, deletion,
and changing the length of a record--with either sequential
or direct access.

For a key-sequenced data set, VSAM also permits access to
control intervals and access by relative byte address;
however, PL/I does not support these types of access.

• An entry-sequenced data set, in which the records are in the
order in which they were presented for storage (that is,
each new record is stored at the end). Once you have
created an entry-sequenced data set, records cannot be
inserted, deleted, shortened, lengthened, or moved from one
location to another. They may, however, be replaced with
records of the same data length.

Appendix B. VSAM Background 297

An entry-sequenced data set is essentially a sequential data
set, but one whose records can be updated and can be
retrieved either sequentially or at random by direct access.
The search argument for direct retrieval is a record's
relative byte address (RBA), that is, its displacement from
the start of the data set. To retrieve records randomly,
your program must keep track of records' RBAs and associate
RBAs with the contents of records. VSAM makes the RBA
available after each record is written.

• A relative record data set, which is a string of
fixed-length record slots, each of which is identified by a
relative-record number from 1 to n, where n is the maximum
number of records that can be stored in the data set. Each
record occupies a single slot and is stored and retrieved by
an argument which is the relative-record number of the slot.
The size of each slot is the record length you specified
when you defined the data set.

All VSAM data sets must be on direct access storage devices.
Under VSAM it is, therefore, possible to access records in all
types of data sets by means of a key.

VSAM's use of catalogs to hold information about the physical
attributes of all data sets, and the use of a separate service
program (Access Method Services) for data set management,
results in a reduced dependence on system control statements
compared with other access methods. It has the advantage that
operations on data sets are more explicitly specified using
VSAM. This has the corresponding disadvantage that temporary
data sets cannot be so easily created for the length of the
execution of a program. To compensate for this, the REUSE
option of the DEFINE CLUSTER command specifies data sets that
are to be used as temporary work areas. REUSE is further
described later in this appendix.

A discussion on the physical structure of VSAM data sets is
given in Chapter 10; a more thorough discussion is given in
DOS/VS Access Method Services User's Guide.

ACCESS METHOD SERVICES

Access Method Services is a multifunction service program that
carries out utility tasks on VSAM data sets. It is used to
define them (that is, to record them in a catalog), to delete
them, to generate alternate indexes from them, and to carry out
many other routine tasks. You request tasks that you want by
coding the appropriate Access Method Services commands and
executing the Access Method Services program.

Access Method Services may be used in a separate job called from
a PL/I user program. In a batch system, the EXEC statement

// EXEC IDCAMS,SIZE=nK

is used and the commands placed in the file SYSIN. On CMS, you
include the commands in a file with the filetype AMSERV, and
specify the name of the file in the AMSERV command.

To create a data set you use the DEFINE CLUSTER command of
Access Method Services. A cluster can be a key-sequenced data
set, which consists of a data component and an index component,
or it can be an entry-sequenced or relative record data set,
which consists of only a data component. The command specifies
the name to be used for the data set, the amount of space
required, the volume on which it will be placed, the "record
length, the position of any key, the catalog in which it will "be
recorded, and, optionally, a number of other physical
attributes. For example:

DEFINE CLUSTER (NAME (BLOGGS) -
VOL(VSER04) CYLCI 1) -

RECSIZEC20 80) KEYS(IO 0»

298 DOS PL/I Optimizing Compiler: Programmers Guide

PASSWORD PROTECTION

This defines a key sequence data set called BLOGGS on the volume
VSER04. One cylinder is to be allocated as a primary space
allocation, and secondary allocations are to be in increments of
one cylinder. The record size varies, with a maximum of 80
bytes and an average of 20. The key is 10 bytes long and starts
in the first byte (offset 0).

VSAM data sets can have password protection, allowing access to
be limited to those who know the password. Various levels of
password can be provided to give different degrees of access to
the data set.

The master password allows complete access to read, write, and
delete the data set. Access to alter the contents of the data
set but not to delete it is given in the update password.
Access to read the data set, but not to alter it, is given in
the read password. These three are the only levels of password
that concern you as a PL/I user. However, there is a fourth
level between the master password and the update password that
allows the data set to be accessed at the control interval
level, but does not allow the data set to be deleted; this is
the control password. PL/I does not support control interval
processing.

Passwords are set when the data set is defined using Access
Method Services, and can be altered using the ALTER command.
For a data set to be protected, it is necessary for the catalog
that contains it, and the master catalog, to be protected.

THE LIFE OF A VSAM DATA SET

A VSAM data set passes through four stages:

1. Definition with the DEFINE command.

2. Initial loading. Before a newly-defined key-sequenced data
set is used for UPDATE or INPUT, it must be loaded by
writing the initial data. This can be done from a PL/I
program. After this point an alternate index may be defined
and a path built, using Access Method Services.

3. Updating and reading, when the data is read from the data
set or the original data is altered. Again, this can be
done from the PL/I program.

4. Deletion with the DELETE command.

DEFINING A VSAM DATA SET

VSAM data sets are defined and cataloged using the DEFINE
CLUSTER command of Access Method Services. To use the DEFINE
CLUSTER command, you need to know:

• If the master catalog is password protected, the name and
password of the master catalog or the name and password of
the VSAM private catalog you are using, if you are not using
the master catalog

• Whether VSAM space for your data set is available

• The type of VSAM data set you are going to create

• The volume on which your data set is to be placed

• The average and maximum record size in your data set

• The position and length of the key for an INDEXED data set

• The space to be allocated for your data set

Appendix B. VSAM Background 299

• How to code the DEFINE command

• How to use the Access Method Services program.

When you have the information, you can code the DEFINE command
and then define and catalog the data set using Access Method
Services.

If the space is not available for your data set, you must use
the DEFINE command to define space before you define your data
set. The method of defining space is explained in the DOS/VS
Access Method Services User's Guide. Your system programmer
will be able to tell you if space ha~ been defined.

DEFINE CLUSTER Command

The DEFINE CLUSTER command is the command that defines and
catalogs your data set. A simplified form of the command is:

Syntax

DEFINE CLUSTER (NAME(data-set-name)
CYLINDERS(primary

[secondary])
RECORDS(primary

[secondary])
TRACKS(primary

[secondary])]
[FILE(dname)]
[FREESPACE(cipercent

[capercent])]
[INDEXEDINONINDEXEDI

NUMBERED]
[KEYS(length offset)]
[RECORDSIZE(average maximum)]
[REUSEINOREUSEl
[SHAREOPTIONS(crosspartition

[crosssystem])]
[VOLUMES(volser[volser ...])]
[password-options]
[other-options]

[DATA(option-list)]
[INDEX(option-list)]
[CATALOGCcatname[/password]

[dnamel)]

Items in uppercase (capital letters) must be coded as shown.
Items in lowercase must be replaced by the information you
require; hyphens indicate that the items replaced should not
contain blanks. Alternatives are separated by the vertical
stroke, I. Underscored items indicate default options. Items
enclosed in square brackets are optional. If the command
exceeds one line, the continuation marker - must be used on each
line except the last.

The DATA and INDEX operands of the DEFINE CLUSTER command allow
different attributes to be specified for the data component of
the data set and the index component. This cannot usefully be
done without more information than is available in this manual;
consequently, the discussion is limited to the options of
CLUSTER. However, separate specification of data~and index
components is important for VSAM operational control and
efficient performance:

• Good VSAM data set naming conventions usually dictate
separate names specified for the data and index components
of a cluster.

• VSAM calculates control interval sizes for your data set,
but it does so with the goal of optimizing disk space, not
performance. It uses its calculated CI size for both data

300 DOS PL/I Optimizing Compiler: Programmers Guide

and index, when in fact the best values for the two types of
CI size usually differ.

Most DEFINE CLUSTER commands should specify the DATA operand
(for all types of clusters) and the INDEX operand (for a KSDS)
with a user-supplied name and a value for CI size for each
component.

For more information, refer to the DOS/VS Access Method Services
User's Guide.

NAME(data set name)
specifies the name of the data set. NAME must be specified
for the cluster. If no name is specified for a data set, a
name is generated and listed for you.

The name may contain from 1 through 44 alphameric
characters, national characters (~, I, and $), and two
special characters (the hyphen and the 12-0 overpunch).
Names containing more than eight characters must be
segmented by periods; one to eight characters may be
specified between periods. The first character of any name
or any name segment must be either an alphabetic or a
national character.

CYLINDERS(primary[secondary]) I
RECORDS(primary[secondary]) I
TRACKS(primary[secondary])

specifies the space that is to be reserved for your data
set, in either cylinders, records, or tracks. The primary
allocation is reserved when the DEFINE CLUSTER command is
executed. The secondary allocation is reserved when the
primary allocation has been filled. Up to 16 secondary
allocations can be made.

FILE(dname)
specifies the filename of the DLBL job control statement
that, together with an EXTENT statement, identifies the
logical units and volumes to be used for space allocation.

FREESPACE(cipercent[capercent])
specifies the amount of space that will be left empty in a
key sequenced data set. Free space can be left to allow
for expansion of the data set in a way that will not
degrade the speed of sequential access.

cipercent
is the percentage of each control interval that is to
be left empty.

capercent
is the percentage of control intervals in each control
area to be left empty.

Control intervals are collections of records. Control
areas are collections of control intervals. The sizes are
determined by VSAM to suit the devices used, or the control
interval size can be specified in the DEFINE command (see
the DOS/VS Access Method Services User's Guide).

The default is FREESPACE(O 0).

INDEXED I NONINDEXED I NUMBERED
specifies the type of VSAM data set as follows:

INDEXED
NONINDEXED
NUMBERED

Key-sequenced data set
Entry-sequenced data set
Relative record data set

KEYS(length offset)
applies to key-sequenced data sets only and specifies the
position and length of the key. In VSAM, all keys are
within the record.

Appendix B. VSAM Background 301

length
is the length of the key in bytes.

offset
is the offset from the start of the record.

For example, KEYS(lO 0) means that the first 10 characters
(bytes) of the record are to be used as a key. I

RECORDSIZElaverage maximum)
specifies the size of records. Average size and maximum
size must be specified in bytes. For relative-record data
sets, fixed-length records are required; consequently,
average and maximum must be the same. For other types of
data sets, records can be any length less than or equal to
the maximum length.

REUSE I NOREUSE
specifies whether the cluster can be opened again and again
as a temporary, or reusable, cluster. REUSE allows you to
create an entry-sequenced, key-sequenced, or
relative-record workfile.

When you create a reusable cluster, you cannot build an
alternate index to support it. Also, you cannot create a
reusable cluster with key ranges or with its own data
space. Reusable data sets may be multivolumed and are
restricted to 16 physical extents per volume.

SHAREOPTIONSln[m])
is descrIbed below under "Sharing a Data Set between Jobs"
on page 304.

VOLUMESlvoiserl [volsern])
specifies the volume or volumes on which your data set is
to reside. A volume serial number, volser, may contain one
to six alphameric, national (a, I, and $), and special
characters (commas, blanks, semicolons, parentheses,
slashes, asterisks, periods, quotation marks, ampersands,
plus signs, hyphens, and equal signs). Single quotation
marks within a volume serial number must be coded as two
single quotation marks. A volume serial number must be
enclosed in single quotation marks if it contains a special
character.

For consistency with DOS/VS job control statements, only
alphameric characters should be used.

password-options
specify the password or passwords for your data set.
Password levels differ for various degrees of security.
These levels are (from low to high):

READPWlpassword)
gives read-only access.

UPDATEPWlpasswordl
gives access to alter contents.

CONTROLPWlpassword)
is irrelevant to PL/I users.

MASTERPWlpassword)
gives c.omplete access to data set.

password is a 1 to 8 EBCDIC character password.

If only a low-level password such as READPW is specified,
the read password is propagated upward so that it also
becomes the other passwords. If only a high-level password
is specified, lower level passwords will not be required.

302 DOS PL/I Optimizing Compiler: Programmers Guide

other-options
Numerous other options can be specified that control the
physical structure, data integrity, and protection of VSAM
data sets. See the DOS/VS Access Method Services User's
Guide.

DATA(option-listJ
specifies attributes of the data set of the cluster. For
information on these attributes (option-list), refer to the
DOS/VS Access Method Services User's Guide.

INDEX(option-listJ
specifies, for a key-sequenced file, attributes of the
index data set of the cluster. For information on these
attributes (option-list), refer to the DOS/VS Access Method
Services User's Guide.

CATALOG(catname[/password][dname]J
identifies the catalog in which the cluster is to be
defined.

catname
specifies the name of the catalog.

password
specifies the update or higher-level password if the
catalog is password protected.

dname
-----specifies the filename of the DLBL job control

statement that identifies the catalog.

An example of the use of the DEFINE CLUSTER command is:

DEFINE CLUSTER -
(NAME(EXAMPLE.ONE) -

READPWeONEPSWD) -
VOLeVSER04) -
RECORDSIZEC400,47S) -
KEYSC12 4) -
FREESPACEC40,40) -
TRACKSCIO 5» -

CATALOGCAMASTCAT/MCATUPPW)

This example defines a key-sequenced data set into the master
catalog. The key is 12 bytes long and starts at offset 4 Cthe
fifth character). Forty percent of each control interval, and
forty percent of the control intervals in each control area,
will be kept empty for new records. The primary space
allocation is 10 tracks and the secondary allocation will be in
increments of 5 tracks. The catalog in which the data set is to
be defined is called AMASTCAT and the password is MCATUPPW.

Complete examples of PL/I statements, system control statements,
and Access Method Services commands are given at the end of
Chapter 10.

Using the Access Method Services Program

How you use the Access Method Services program depends on
whether you work in a batch or interactive system. In a batch
environment, you execute the program as a separate job. For
example:

// JOB
// EXEC IDCAMS,SIZE=64K

DEFINE CLUSTER CNAMECFRED) -
VOLUMESCVSEROS) -
TRACKSCI0 5) -
RECORDSIZEC80 100) -
NONINDEXED -

CATALOGCMASTCAT)

Appendix B. VSAM Background 303

SHARING VSAM DATA SETS

The extent to which VSAM data sets can be shared depends upon
the SHAREOPTIONS specified in the DEFINE CLUSTER command when
the data set is defined. A description of sharing between jobs
and sharing within a job follows. For detailed information,
refer to DOS/VS Access Method Services User's Guide.

Sharing a Data Set between Jobs

Sharing within a Job

When issuing the DEFINE CLUSTER command, it is possible to use
the SHAREOPTIONS parameter to specify the amount of sharing that
will be allowed on the data set. The option is specified with a
number, n, or two numbers, nand m, separated by a blank, where:

n specifies cross-partition sharing and has the following
meanings:

1

2

3

4

specifies that any number of users can share the component
or cluster being defined if the file is opened for input
(read operations) only; however, once a file has been
opened for input, it cannot be opened for output.
Conversely, once the file has been opened for output (write
operations), no other user can open it for either input or
output until that operation is finished.

specifies that any number of users can use the component or
cluster for input (read operations) even if one user is
using it for output (write operations). No more than one
user can open the file for output at a time.

specifies that any number of users can share the component
or cluster for both read and write operations. VSAM does
not monitor accesses to ensure data integrity.

specifies that any number of users can share the component
or cluster for both read and write operations. VSAM
ensures write integrity for ACBs opened from different
tasks or partitions. If the user issues only GET updates
throughout the system, read integrity will also result from
this option. The DOS/VS trackhold facility is used to
ensure the appropriate integrity.

and m specifies cross-system sharing. Cross-system sharing has
no effect on DOS/VS itself. However, if it were specified and
the pertinent cluster were then imported into an OS/VS system,
the cross-system subparameter would be effective for values 3 or
4 only. The meanings for these values are the same as their
meanings for cross-partition sharing.

When a data set is opened, VSAM checks to see if it is being
shared. If it is, VSAM checks to see whether the type of
sharing requested is allowed in the SHAREOPTIONS. If it is not
allowed, the file is not opened and the UNDEFINEDFILE condition
is raised.

Data sets can be shared within a job by having a number of DLBL
statements specifying the same data set, or by opening the data
set by a number of alternate index paths, or by both methods at
once. Generally speaking, there are no restrictions on this
type of use. However, it is possible for errors to occur when
one file is holding a control interval and the same control
interval is required by another file. Such errors can be
avoided by not having two files associated with the same data
set at one time.

304 DOS PL/I Optimizing Compiler: Programmers Guide

DELETING A VSAM DATA SET

To delete a VSAM data set, you need to know:

• The name of the data set

• Its master password, if any, or the master password of the
catalog that contains it

• The name of the catalog in which it is placed if it is not
in the master catalog

• How to code and use the DELETE subcommand.

VSAM data sets are deleted by the DELETE command of Access
Method Services:

Syntax

DELETE CLUSTER (data-set-name
[/password)]

[CATALOG(catname[/passwordl
[dnamel)]

[other-optionsl

data-set-name
is the name of the data set that you want to delete.

password
is the master password for the data set.

CATALOG(catname[/passwordl[dnamell
specifies the name of the catalog that defines the data set
to be deleted.

catname
identifies the catalog.

password

dname

specifies the master password of the catalog. If data
sets to be deleted are password protected and the
catalog is also password protected, a password must be
supplied either through CATALOG or with the name of
each data set to be deleted.

-----specifies the filename of the DLBL job control
statement which identifies the catalog that defines
the data sets to be deleted. The dname is required if
the desired catalog is not either the master or job
catalog.

other-options
specifies other facilities of the DELETE command. These
are described in the DOS/VS Access Method Services User's
Guide.

An example of deleting a data set in a batch programming
environment is:

// JOB
// EXEC IDCAMS,SIZE=64K

DELETE FRED CATALOG(MASTCAT)

This deletes the data set FRED defined in the example of the
DEFINE CLUSTER command shown earlier in this section.

Appendix B. VSAM B~ckground 305

ALTERNATE INDEX PATHS

VSAM allows alternate indexes to be defined on key-sequenced and
entry-sequenced data sets. This enables key-sequenced data sets
to be accessed in a number of ways apart from use of the prime
index, and allows entry-sequenced data sets to be indexed and
accessed by key or sequentially in order of the keys.
Consequently, data created in one form can be accessed in a
large number of different ways. For example, an employee file
might be indexed by personnel number, by name, and also by
department number.

When an alternate index has been built, you actually access the
data set through a third object known as an alternate index path
that acts as a connection between the alternate index and the
data set.

Two types of alternate indexes are allowed--unique key and
nonunique key. For a unique key alternate index, each record
must have a different key. For a nonunique key alternate index,
any number of records can have the same key. In the example
suggested above, the alternate index using the names could be a
unique key alternate index (provided each person had a different
name), and the alternate index using the department number would
be a nonunique key alternate index because more than one person
would be in each department. An example of alternate indexes
applied to a family tree is given in Figure 59 on page 170.

A data set accessed through a unique key alternate index path
can be treated, in most respects, like a KSDS accessed through
its prime index. The records may be accessed by key or
sequentially, records may be updated, and new records may be
added. If the data set is a KSDS, records may be deleted and
the length of updated records altered. Restrictions and allowed
processing are shown in Figure 61 on page 179. When records are
added or deleted, all indexes associated with the data set are
by default altered to reflect the new situation.

In data sets accessed through a nonunique key alternate index
path, the record accessed is determined by the key and the
sequence. The key can be used to establish positioning so that
sequential access may follow. The use of the key accesses the
first record with that key. When the data set is read backward,
only the order of the keys is reversed. The order of the
records with the same key remains the same whichever way the
data set is read.

HOW TO BUILD AND USE ALTERNATE INDEX PATHS

Terminology

If you are using alternate indexes, knowledge of how to use them
is required at four stages of the programming process, as it is
with normal data sets. These stages are:

1. When planning and coding the program

2. When creating the alternate indexes

3. When executing the program that accesses the data set
through the alternate indexes

4. When deleting the alternate index, if you wish to delete it
at a different time from the associated data set.

Discussions of what to do at these stages follow, but are
preceded by a section on the terminology used with alternate
indexes.

An alternate index is, in practice, a VSAM data set that
contains a series of pointers to the keys (or their equivalent)
of a VSAM data set. When you use an alternate index to access a

306 DOS PL/I Optimizing Compiler: Programmers Guide

data set, you should use a third entity known as an alternate
index path (or simply a path), that establishes the relationship
between the index and the data set.

The data set to which the alternate index gives you access is
known as the base data set, or more usually in the .VSAM manuals
as the base cluster.

The indexes of a base cluster are, by default, connected to it
in such a way that alteration to the data will be automatically
reflected in the indexes. All indexes so connected are known as
the index upgrade set of the base cluster. The relationship
between the items is shown in Figure 103 on page 308.

PLANNING AND CODING WITH ALTERNATE INDEXES

Passwords

Performance

When planning to use an alternate index you must know:

• The type of base data set with which the index will be
associated

• Whether the keys will be unique or nonunique

• Whether the index is to be password protected

• Some of the performance aspects of using alternate indexes.

The type of the base cluster and the use of unique or nonunique
keys determine the type of processing that you can carry out
with the alternate index, and so determine the PL/I statements
you may use. Figure 60 on page 173 and Figure 61 on page 179,
respectively, show the basic file attributes that you can use
with an alternate index path and the types of processing that
you can use.

Broadly, you use an alternate index path just like any other
data set. In fact, a PL/I file could be used to access a data
set directly in one execution and to access a data set, via an
alternate index path in another.

The alternate index may be password protected, as for a normal
VSAM data set.

Performance with alternate indexes is not significantly worse
than performance using the prime index. The use of alternate
indexes, however, causes the access of a record to be less
direct and therefore not as fast. When a data set with a number
of indexes is opened, the indexes are by default opened at the
same time as the data set to allow fo~ possible upgrade.

If you are using the data set for read-only processing, however,
you do not need to upgrade the alternate indexes, and you can
improve performance by defining a path with the NOUPDATE
attribute. (The method of defining such a path is described in
the MVS/Extended Architecture VSAM Administration Guide.)
NOUPDATE prevents the upgrade of alternate indexes for the data
set. For this reason, you should not alter the data set using a
path defined with the NOUPDATE attribute.

Appendix B. VSAM Background 307

,-----------'----,

DATA

BASE CLUSTER I
I
I

-~------i---~~~~~;~;~;------~--:

PRIME I ALTERNATE ALTERNATE:
INDEX I INDEX 1 INDEX 2 I

I I

I I
I
I ---------r------
I L __________ _

PATH 1

Base Cluster

Prime index

Alternate Indexes

Paths

Index upgrade set

PATH 2

Accesses data by prime index (except for ESDS).

Is the index used in creating the data set and used when access is made through the base cluster.

Ar.e other indexes to the same base data.

Establish a path through the base data other than that implied by the prime index in a KSDS and
the sequence in an ESDS. Paths connect the alternate index with the base data.

That set of indexes (always including the prime index) that will be automatically updated when
the data is changed. Note that indexes can exist outside this set.

Figure 103. Base Cluster, Alternate Indexes, and Paths

HOW TO BUILD AN ALTERNATE INDEX

To build and use an alternate index, you issue three Access
Method Services commands:

DEFINE ALTERNATEINDEX
BLDINDEX
DEFINE PATH

DEFINE ALTERNATEINDEX defines and catalogs the data set that
will hold the alternate index, and associates it with the base
cluster. BLDINDEX reads the base cluster, extracts the keys,
sorts them, and builds the alternate index by inserting pointers
to the records. DEFINE PATH establishes a path that you will be
able to associate with your PL/I file when you want to access
the base data set through the alternate index. An alternate
index cannot be built unless there are records in the data set.

308 DOS PL/I Optimizing Compiler: Programmers Guide

To use these commands you will need to know:

• The name of the base data set

• The password for the base data set, if any

• The position and length of the alternate index key in the
record

• The approximate size of the base cluster

• Whether the keys will be unique or nonunique

• If the keys will be nonunique, the approximate maximum
number of records with the same key

• The catalog on which the alternate index is to be placed

When you have established these facts, you can code and execute
the commands.

The commands must be issued in the order shown. A separate job
step must be used for BLDINDEX and DEFINE PATH. An example
showing the commands in one job step is given at the end of this
section.

DEFINE ALTERNATEINDEX Command

A simplified form of the DEFINE ALTERNATEINDEX command is:

Syntax

DEFINE ALTERNATEINDEX
CNAMECindexname)

RELATECdata-set-name)
[/passwordl)

[CYLINDERSCprimary
[secondary])

RECORDSCprimary
[secondary])

TRACKSCprimary
[secondary])]

[FILECdname)]
[FREESPACECcipercent

[capercent])]
[KEYSClength offset)]
[RECORDSIZECaverage maximum)]
[REUSEINOREUSE]
[SHAREOPTIONS(crosspartition

[crosssystem])]
[UNIQUEKEYINONUNIQUEKEY]
[UPGRADE I NOUPGRADE]
[VOLUMESCvolserl

[voisern ...])]
[password-options]
[other-options]

CATALOGCcatname[/password][dname])]

Note: Only those options that are different from those of the
DEFINE CLUSTER command are explained below. If in doubt about
the others, see °DEFINE CLUSTER Commando earlier in this
chapter.

NAME(indexnamel
specifies the name of the alternate index. The name may
contain from 1 through 44 alphameric characters, national
characters ca, ., and $), and special characters (hyphen
and 12-0 overpunch). Names containing more than 8
characters must be segmented by periods; one to eight
characters may be specified between periods. The first

Appendix B. VSAM Background 309

BLDINDEX Command

character of any name or name segment must be either an
alphabetic or a national character.

RELATE(data-set-name[/passwordJ)
specifies the base data set with which the alternate index
will be associated.

KEYS(length offset)
specifies the position of the alternate index key in the
record. They may be anywhere within the record.

RECORDSIZE(average maximum)
specifies the size of the record in the alternate index.
If the path is nonunique, each index record will have to
refer to many data records. Consequently, if the key is
nonunique, the maximum should be a large figure. The
default values are large; see the DOS/VS Access Method
Services User's Guide.

UNIQUEKEYINONUNIQUEKEY
specifies whether the keys will be unique. If duplicate
keys are found when building an alternate index that has
been given the UNIQUEKEY attribute, an error occurs and the
execution of BLDINDEX is halted.

UPGRADE I NOUPGRADE
specifies whether the alternate index is to be part of the
index upgrade set for the data set. Ifit is, it is
automatically updated whenever the base data set is altered
(using this index or any other index). If NOUPGRADE is
specified, the index is not automatically altered with the
data set.

password-options
CONTROLPW, MASTERPW, READPW, and UPDATEPW are the password
options of the alternate index. See "DEFINE CLUSTER
Command" on page 300 in this chapter for details.

other-options
are described in the DOS/VS Access Method Services User's
Guide.

CATALOG(catname[/passwordJ[dnameJ)
specifies the catalog in which the alternate index will be
defined. It must be the same as the catalog of the base
data set.

See "DEFINE CLUSTER Command" on page 300 for details.

An example of the DEFINE ALTERNATEINDEX command iSI

DEFINE ALTERNATEINDEX -
(NAME(ALPHINDX) -
VOLUMES(VSER04) -
KEYS(IO 0) -
NONUNIQUEKEY -
RELATE(PERSNOS) -
RECORDSIZE(20 2000» -

CATALOGCAMASTCAT/MCATUPPW)

This defines an alternate index called ALPHINDX on the data set
called PERSNOS. The keys are nonunique and are in the first 10
bytes of the record. It is cataloged in the catalog called
AMASTCAT with the master password MCATUPPW.

The BLDINDEX command extracts keys from the base data set, sorts
them into order, and places the necessary information in the
alternate index. DLBL statements, or their equivalent, are
required for the base cluster, the alternate index, and two work
files that may be needed if the necessary sorting cannot be
carried out in main storage.

310 DOS PL/I Optimizing Compiler: Programmers Guide

DEFINE PATH Command

Syntax

BLDINDEX
INFILECdnamel[/read-password])
OUTFILECdname2[/update-password])

[CATALOG(catname[/update-password])]

where dnamel is the name of the base data sef and dname2 is the
name of the alternate index. For examples

BLDINDEX INFILECBASE) -
OUTFILECALTIND) -
CATALOGCAMASTCAT/MCATUPPW)

The DLBL and EXTENT statements take the following formss

Base Cluster:

// DLBL BASE , 'ALPHIND'"VSAM
// EXTENT SYS007 , VSER04

where BASE is the INFILE name and ALPHIND is the data set name.

Alternate Index:

// DLBL ALTIND , 'ALPHIND'"VSAM
// EXTENT SYS007 , VSER04

where ALTIND is the OUTFILE name and ALPHIND is the data set
name.

Sort Workfiless

// DLBL IDCUT1 1 'SORT.WORK.ONE'I,VSAM
// EXTENT SYS008 , VSER05
// DLBL IDCUT2 , 'SORT.WORK.TWO'I,VSAM
// EXTENT SYS008 , VSER05

A combined example showing the commands and job control
statements required to create an alternate index is given in
Figure 104 on page 313.

The DEFINE PATH command defines a name of the alternate
index/base cluster combination, and enables it to be used from a
PL/I program.

Syntax

DEFINE PATH (NAMECpathname)
PATHENTRV
(alternate-index-name[/password])
[password-options]
[other-options]

[CATALOG(catname[/password][dname])]

The DEFINE PATH command and its options are described in detail
in the DOS/VS Access Method Services User's Guide.

The master password of the catalog, which must be the same
catalog as that used by the base cluster and the alternate
indexl is an alternative to the use of the master password of
the base cluster.

An example of the DEFINE PATH command is:

Appendix B. VSAM Background 311

DEFINE PATH -
(NAME(AlPHPERS) -

PATHENTRY(AlPHIND» -
CATAlOG(MASTCAT)

EXECUTING THE ACCESS METHOD SERVICE COMMANDS TO CREATE AN ALTERNATE INDEX PATH

The example in Figure 104 on page 313 shows the use of Access
Method Services in a batch system. If you use CMS, the Access
Method Services Commands are written in a file with the file
type AMSERV, and the name of the file specified in an AMSERV
command.

In the example, the existence of a data set PERSNOS that
contains data records is assumed. It is a data set keyed by
personnel numbers. An alternate index called AlPHIND is being
generated on the data set keyed by the first 2S characters of
the records that contain the name. The path that specifies the
base data set/alternate index pair is to be called PERSAlPH.
The catalog used by all items is NMCAT, and the volume VSER4.

The example is commented to aid understanding. Access Method
Services comments are delimited by /* and */. System control
comments are one line in length and start with //*. These are
the allowed forms for comments.

DELETING AN ALTERNATE INDEX

Alternate indexes and alternate index paths are automatically
deleted when the associated base data set is deleted. If you
want to delete them separately without deleting the base data
set, you specify them in the DELETE command. For example:

To delete an alternate index:

DElETE(AlTIND/SESAME)

where AlTIND is the name of the alternate index and SESAME is
the master password.

To delete a path:

DElETE(AlTPATH/SESAME)

where AlTPATH is the name of the path and SESAME is the
password.

312 DOS Pl/I Optimizing Compiler: Programmers Guide

/

\

~\
) // JOB

3E DLBL and EXTENT statements, for BLDINDEX command follow
3E first the alternate index
// DLBL ALTIND,'ALPHIND'"VSAM
// EXTENT SYS007,VSER4
3E then the base data set
// DLBL BASEDS,'PERSNOS'"VSAM
// EXTENT SYS007,VSER4
3E the DLBL and EXTENT statements for BLDINDEX sort files follow
// DLBL IDCUTl,'SORT.WORK.ONE'"VSAM
// EXTENT SYS006,VSER5
// DLBL IDCUT2,'SORT.WORK.TWO'"VSAM
// EXTENT SYS006,SER5
// EXEC IDCAMS,SIZE=64K

DEFINE ALTERNATEINDEX -
CNAMECA1PHIND) /3E data set name of alternate index 3E/ -

VOLUMESCVSER4) /3E volume on which it is placed 3E/ -
TRACKSClO,l) /3E space used by alternate index 3E/ -
NONUNIQUEKEY /3E keys will not be unique 3E/ -
RECSIZEC20 1000) /3E average will be one personnel number

RELATECPERSNOS»
CATALOGCNMCAT)

BLDINDEX -

INFILECBASEDS)
OUTFILECALTIND)

CATALOGCNMCAT)

DEFINE PATH -

CNAMECPERSALPH)

/3E
/3E

/3E

/3E
/3E

/3E

/3E

per name but some names will have many
numbers so large maximum required 3E/ -
name of associated data set 3E/ -
catalog name must be same as base data set's 3E/

this command loads the data into the alternate
index created in the previous command 3E/ -
name of base data set 3E/ -
name of alternate index 3E/ -

this command enables you to use alternate index
base cluster pair from your program 3E/ -
name of alternate index path to be used as data
set name in DLBL statement PL/I program 3E/ -

PATHENTRYCALPHIND» /3E name of alternate index 3E/ -
CATALOGCNMCAT)

In this example, there are five names involved:

1. The data set name Cor file identifier) of the base data set--PERSNOS. Used in
the RELATE operand of the DEFINE ALTERNATEINDEX command, and as the filename in
the DLBL statement for the INFILE of the BLDINDEX command.

2. The filename of the base data set--BASEDS. Used in the INFILE operand of the
BLDINDEX command and as the name in the DLBL statement for the INFIlE.

3. The data set name of the alternate index--ALPHIND. Given in the NAME operand of
the DEFINE ALTERNATEINDEX command, and used as the data set name Cfile
identifier) in the DLBL statement for the BLDINDEX OUTFILE, and in the PATHENTRY
operand of the DEFINE PATH command.

4. The filename of the alternate index--ALTIND. Used in the OUTFILE operand of the
BLDINDEX command and as the filename in the DLBL statement for the OUTFILE.

5. The name of the alternate index path--PERSALPH. Given in the NAME operand of
DEFINE PATH and that will be used as the data set name Cfile identifier) when
the base data set is accessed through the alternate index paths.

Figure 104. Commands Required to Create an Alternate Index Path

Appendix B. VSAM Background 313

APPENDIX C. COMPATIBILITY WITH THE DOS PL/I D COMPILER

Alignment of Strings

Some features of the DOS PL/I Optimizing Compiler implementation
are incompatible with the language implemented by version 4 of
the PL/I D Compiler. The most significant incompatibilities are
listed below. Except where stated, the description given is of
the optimizing compiler implementation. Programs written for
version 4 of the Pl/I D Compiler that use any of these features
should be reviewed before compiling them with the optimizing
compiler, to ensure that they will return the same results.

A number of the differences given here are also given in the
general information manual for this compiler. The general
information manual also contains some of the implementation
limitations and restrictions restrictions of this compiler. The
language reference manual for this compiler gives full details
of the implementation of each language feature.

The UNALIGNED attribute is implemented in full by the optimizing
compiler. The D compiler does not implement UNALIGNED for bit
strings and forces the alignment of all character strings.

Because the default for alignment is UNALIGNED, conversion
problems that may result can be overcome by including the
statement:

DEFAULT RANGEC*) ALIGNED;

This will cause all strings in the converted program to remain
aligned.

Assembler Language Interface

Assembler language subroutines used with PL/I programs written
for the D compiler may have to be modified when the programs are
recompiled by the optimizing compiler. Whereas a D compiler
program passes arguments to an assembler routine as the
addresses of data items, in many cases, optimizing compiler
programs will pass the address of locator/descriptors for the
data items.

Built-in Function without Arguments

Built-in functions without arguments, such as TIME and DATE,
must be declared explicitly with the attribute BUILTIN.

Expressions in DO Statements

Expressions in DO statements are evaluated by the D compiler in
the order "expression2" followed by "expression3", irrespective
of the order of appearance in the DO statement. For example:

DO I = J TO K BY L;

DO I = J BY L TO K;

In both statements, "expression2" is represented by K and
"expression3" by l. The D compiler always evaluates expression2
first, whereas the order in which the optimizing compiler
evaluates each expression is undefined.

314 DOS PL/! Optimizing Compiler: Programmers Guide

SVSIN and SVSPRINT

Although the names SYSIN and SYSPRINT have no special meaning
for the D compiler, they do for the optimizing compiler. Pl/I
programs can contain stream-oriented (GET or PUT) data
transmission statements which do not specify a file name. The D
compiler treats such statements as referring to the symbolic
devices SYSIPT and SYSlST; the optimizing compiler makes the
assumption that such input statements refer to SYSIN, and output
statements to SYSPRINT.

E- and F-format Items

Buffered Data sets

REGIONAL Data sets

Zero before decimal point: When F-format fractional values or
E-format zero mantissa values are transmitted, the optimizing
compiler inserts a leading zero before the decimal point. The D
compiler does not put the zero before the point. For example:

D compiler -.500
Optimizing compiler -0.500

If errors are detected in a lOCATE statement, space will not be
allocated in the buffer and the pointer will not be set.

REGIONAL data sets for programs written for the D compiler, are,
when created, preformatted by a utility program. This program
is executed as a separated job step prior to execution of the
Pl/I program in which the output file is opened to create the
data set. Subsequent use can be made of this data set through
an OUTPUT file without formatting it again.

REGIONAL data sets created for programs compiled by the
optimizing compiler are preformatted by a Pl/I library
subroutine when the output file is opened. Thus an output file
cannot be opened to process a regional data set without
destroying all the records contained in it. If records are to
be added to the regional data set, an UPDATE file must be used.

Preformatting, including the preformatting of secondary extents,
is performed as follows:

1. A REGIONAL(I) data set with the the attributes DIRECT and
OUTPUT, is preformatted with dummy records when the file is
opened. (A dummy record is a record whose first byte is set
to X'FF' and whose remaining bytes are undefined.)

2. A REGIONAl(l) data set with the attributes SEQUENTIAL and
OUTPUT has all tracks cleared when the file is opened.
Dummy records are written into those regions that do not
receive a data record during processing.

3. A REGIONAl(3) data set with the attributes SEQUENTIAL and
OUTPUT, or DIRECT and OUTPUT has all tracks cleared when the
file is opened.

Because dummy records can be retrieved from a REGIONAlCl) data
set by a READ statement, the programmer must ensure that dummy
records are recognized by the program.

HalfWord Binary Numbers

Fixed-point binary numbers with a preC1S10n of (15) or less are
held in main storage as halfword binary numbers by programs
compiled by the optimizing compiler. Fixed binary numbers with
a precision greater than (15) are held as fullword binary

Appendix C. Compatibility with the DOS PL/I D Compiler 315

numbers. All fixed-point binary numbers in programs compiled by
the D compiler are held as fullword binary numbers.

D compiler programs to be recompiled should be checked for
occurrences of FIXED BINARY variables which have precisions of
(15) or less (thus including those with default precision),
since they might occur in record-oriented transmission and cause
differences in record lengths and in the alignment of records in
locate-mode buffers. A similar problem could occur for programs
that process data sets created by D compiler object programs.
Bit-string values returned by the UNSPEC built-in function when
used with halfword binary numbers as arguments are 16 bits in
length. The DEFAULT statement may be used to ensure that all
undeclared fixed binary variables have the maximum precision
(31,0).

Labels on DECLARE statements

ONSYSLOG Option

DYNDUMP

The D compiler ignores any labels prefixed to DECLARE
statements. The optimizing compiler recognized such labels and
treats branches to such labels as branches to null statements.
An incompatibility can occur if in a recompiled D compiler
program such a label has the same identifier as a variable or is
used as a label prefix to another statement.

The optimizing compiler does not support the use of the ONSYSLOG
option, whereby all output resulting from actions derived from
on-conditions is printed on the system log.

The optimizing compiler does not permit use of the DYNDUMP,
IJKTRON, IJKTROF, and IJKEXHC subroutines.

DISPLAY Statement and REPLY Option

The optimizing compiler permits strings up to 126 bytes in
length for both the DISPLAY statement and the REPLY option. The
D compiler permits strings up to 80 bytes for the DISPLAY
statement, and up to 256 bytes for the REPLY option.

INDEX Built-in Function

The INDEX built-in function can be used with a binary arithmetic
argument that requires conversion to character string form
before the built-in function can be executed. This occurs
wherever the other argument is either a decimal arithmetic value
or a character string. For example:

INDEX(A,I)

INDEX(I,'B')

In both cases I is a binary arithmetic variable. A is a decimal
arithmetic variable. In the first case both A and I are
converted to character form, in the second case only I is
converted.

An incompatibility exists between the methods and the results of
conversion from binary arithmetic to character form for this
built-in function. The D compiler converts a binary arithmetic
argument to an intermediate bit-string form which is then
converted to character form consisting only of ones and zeros.
The optimizing compiler converts the argument to an intermediate
decimal arithmetic form, which is then converted to character
form consisting of all numeric characters.

316 DOS PL/I Optimizing Compiler: Programmers Guide

PRECISION Built-in Function

The PRECISION built-in function is implemented differently by
the D and optimizing compilers. For the D compiler, if the
first argument is FIXED, and the third argument is omitted, the
third argument is assumed to be zero, and the compiler will
issue an informatory message.

Redundant Expression Elimination

The optimization processor eliminating redundant expressions
could give rise to an incompatibility for D compiler programs
that are recompiled by the optimizing compiler. If a program
contains an expression, such as IF (A=D)I(C=D) THEN ... such that
the condition (A=D) is satisfied, the expression (C=D) is
ignored. However, (C=D) might contain a function which, if not
evaluated, could give rise to error.

SUM and PROD Built-in Functions

For the optimizing compiler, the SUM and PROD built-in functions
accept arguments that can be arrays of either fixed-point or
floating-point elements. The value returned is in the same
scale as the argument given, except for the PROD built-in
function used with fractional fixed-point arguments, where the
value returned is in floating-point scale. Note that string
arguments are converted to fixed-point arithmetic form, and that
the result is returned in this form.

For the D compiler, the arguments of these built-in functions
are, if necessary, converted to floating-point scale. The
returned value always has floating-point scale.

Attributes of File Parameters

For the D compiler, a file parameter can be declared with other
attributes in addition to the FILE attribute. For the
optimizing compiler, a file parameter can only be declared with
the FILE attribute; all other attributes are inherited from the
argument. If additional attributes are given, the compiler will
issue an informatory message, and ignore them.

Defining of Pictures

Sterling Pictures

Simple defining of pictures will be diagnosed by the optimizing
compiler as an error if the defined element is a picture that
does not exactly match the base element. The D compiler
requires only that the base element should be a picture or a
character string.

Sterling data is not supported by the optimizing compiler. A
picture including any of the following characters is invalid:

G, M, H, P, 6, 7, 8

Source Program Errors

The D compiler does not detect all the errors in a source
program that can be detected by the optimizing compiler. Errors
that the D compiler does not detect include the transfer of
control into an iterative do-group, comparison of structures,
and incorrect overlay defining.

Programs which contain these errors and compile successfully
with the D compiler will not compile successfully with the
optimizing compiler.

Appendix C. Compatibility with the DOS PL/I D Compiler 317

RETURNS Keyword in PROCEDURE and ENTRY statements

PROCEDURE and ENTRY statements for function procedures that
specify the attributes of the value returned by the procedure
must, for the optimizing compiler, have such attributes
contained in a parenthesized list preceded by the keyword
RETURNS. For example, the following statement is valid for the D
compiler, but not for the optimizing compiler:

X: PROCEQURE (y,Z) FLOAT BINARY;

For the optimizing compiler, this statement should be written as
follows:

X: PROCEDURE (Y,Z) RETURNS (FLOAT BINARY);

Entry Names as Arguments

ENDFILE Condition

MEDIUM Option

SIZE Condition

The D compiler assumes an entry name argument in parentheses and
without arguments of its own to be a function reference. For
example, in the expression X«Y», the function Y is invoked and
the value it returns is used as the argument to procedure X.
The optimizing compiler assumes that the entry name itself is to
be passed as an argument. It creates an entry variable with the
value of the entry constant argument, and passes this as a dummy
argument to the invoked procedure. Function references such as
this in programs written for the D compiler should be modified
to contain a null argument list in order to invoke the function.
For example, the expression given above should be written as
X(Y(».

For the D compiler, after the ENDFILE condition has been raised
once, a subsequent execution of a GET or READ statement will not
raise ENDFILE again, but will read past the file delimiter. For
the optimizing compiler, subsequent GET or READ statements will
raise ENDFILE again.

The optimizing compiler allows specification of MEDIUM without a
physical device type. This is used to request the generation of
device independent tables. The D compiler generates device
independent tables no matter what device type is specified
provided all other necessary restrictions are observed.

For the D compiler, if the SIZE condition is raised during E­
and F-format output, asterisks are transmitted. For the
optimizing compiler, the results is undefined.

INITIAL Attribute and Statement Length

The optimizing compiler has a restriction that any statement
must fit into a work area used by the compiler. The maximum
size of the work area varies with the amount of main storage
available to the compiler. The limitations on the length of
statements are as follows:

Space Available

50K - 55K bytes
55K - 69K bytes
69K - 75K bytes

Maximum Statement Length

1012 characters
1600 characters
3400 characters

Note: The values 55K and 69K for the changeover points are only
approximate.

318 DOS PL/I Optimizing Compiler: Programmers Guide

J I
A maximum statement length of 4000 characters can be obtained
only if the space available is greater than 75K and if the IBM
3330, 3340, 3350, 3375, 33S0, or a fixed block device is used
for the spill file.

The DECLARE statement is an exception in that it can be regarded
as a sequence of separate DECLARE statement separated by those
commas which are not contained in parentheses.

For example,

DCl 1 A,
2 B (10,10) INITIAL (1,2,3, ...),
2 C (10,100) INITIAL ((1000) 0),
2 (D,E) CHARACTER (20) VARYING,

In this example, each line is terminated by a comma that is not
contained within parentheses. Consequently, the compiler can
treat each line as a separate DECLARE statement insofar as the
use of its work area is concerned.

The compiler will also permit a DECLARE statement to exceed the
size of the work area if it contains an INITIAL attribute that
specifies a simple list of items and that is not within any
brackets. For example:

INITIAL (item,item,item, ...) ...

In this case, for the purpose of its work area, the compiler
will split the declaration at one or more of the commas in the
list. Each item created by the split may contain initial values
that, when expanded to eliminate any repetition and iteration
factors, do not exceed the maximum statement length.

The above paragraph also applies to the use of the INITIAL
attribute in a DEFAULT statement.

The D compiler makes a special case of INITIAL clauses, and it
is possible, therefore, that a program which can be compiled by
the D compiler may exceed the limit for the optimizing compiler.

If the problem is encountered, it may be solved by one of the
following techniques:

• Increase the main storage available to the compiler (unless
it already exceeds 69K).

• Simplify the DECLARE statement so that the compiler can
split the statement.

• Modify any lists of items following the INITIAL attribute so
that individual items are smaller and separated by commas
not contained in parentheses. For example, the following
declaration is followed by an expanded form of the same
declaration. The compiler can more readily accommodate the
second declaration in the work area:

Use of the DEFINED Attribute

DCl Y (1000) CHAR(S) INIT(ClOOO)(S)'Y');
DCl Y (1000) CHAR(S) INIT ((250) (S)'Y',
(250)(S)'Y',(250)CS)'Y',(250)(S)'Y');

The Pl/I D compiler does not implement simple defining.
Instead, the D compiler treats instances of simple defining as
string overlay defining. Consequently, programs written for the
D compiler that contain instances of simple defining will
produce different results when recompiled by the optimizing
compiler. For example:

Appendix C. Compatibility with the DOS Pl/I D Compiler 319

DCl ACID) CHARCS),
B(ID) CHAR(4) DEFINED(A)j

In this example, the D compiler overlays the array B on the
first 40 characters Cthe first five elements) of array A.
Consequently, a reference to B(2) is equivalent to a reference
to SUBSTR(A(I),5,4). The optimizing compiler will simply
overlay each element of the array B on the corresponding element
of array A. Consequently, a reference to B(2) is then
equivalent to a reference to SUBSTR(AC2),1,4).

Another example follows:

DCl 1 S,
2 A CHAR(S)
2 B CHAR(72),
1 51 DEFINED S,
2 AICHAR(4),
2 Bl CHAR(4);

In this example, a reference to element BI is interpreted by the
D compiler as a reference to SUBSTR(A,S,4) and by the optimizing
compiler as a reference to SUBSTR(B,I,4).

To achieve compatibility in such cases, the attribute POS(I)
must be included in the declarations of the defined item before
the program is recompiled by the optimizing compiler.

320 DOS Pl/I Optimizing Compiler: Programmers Guide

APPENDIX D. PL/I-CICS SYSTEM INFORMATION

Each of the two PL/I-CICS interfaces supplies a module (DFHSAP)
to be loaded as a part of the CICS/VS nucleus and a module
(DFHPLII) to be link-edited with your program. These modules
must match; that is, the CICS-supplied DFHSAP will not work with
the PL/I-supplied version of DFHPLII, and vice versa. A single
execution of CICS/VS can load only one DFHSAP; therefore, all
PL/I-CICS/VS transaction programs in a single execution of
CICS/VS (for instance, within a single partition) must use
either the CICS/VS-supplied interface or the PL/I-supplied
interface, but no intermixing of the two is permitted. Under
the current version of CICS/VS, you might use one PL/I interface
in one partition and the other PL/I interface in another, even
though the CICS/VS systems are not being executed independently
of each other. If mixing should inadvertently occur, the
results will be as shown in Figure 105 on page 322.

The system programmer should ensure that the proper DFHSAP
module is loaded with the CICS nucleus, and that the proper
DFHPLII module is link-edited into transaction programs. (See
DOS PL/I Optimizing Compiler: Installation for details.) It is
sometimes helpful, however, to know which version of these
modules is present. This can be determined as follows:

• For DFHSAP, look at its link-edit listing (or a listing
produced by RSERV) to see if it contains external names
beginning with IBMF or IBMH. If it does, it is the
PL/I-supplied DFHSAP. If no such names are found, it is the
CICS-supplied DFHSAP.

• For DFHPLII, look at its link-edit listing (or a listing
produced by RSERV) to see what addresses are represented by
entry-point names DFHPLII, DFHPLIN, and DFHPLIC. If each
points to a different location in DFHPLII, it is the
PL/I-supplied DFHPLII. If they all point to the same
location in DFHPLII, it is the CICS-supplied DFHPLII.

CICS/VS-PL/I INTERFACE COMPONENTS

PL/I supplies an interface module called DFHPLII and a module
called DFHSAP. DFHSAP is a part of the PL/I product, not of
CICS/VS, but it is loaded during CICS/VS initialization to
become part of the CICS nucleus. It is supplied as part of the
PL/I Transient Library.

DFHSAP's initialization module establishes PL/I execution
options for each CICS-PL/I program. Its PL/I error handler is a
proper PL/I error handler. It contains modified versions of
various OS PL/I modules (even for the CICS/DOS/VS environment).

Certain other functions, normally required only in a debugging
environment, are implemented by loading PL/I transients into
CICS/VS storage via a DFHPC TYPE=LOAD macro. Such transients
include the STREAM OUTPUT PRINT transmitter for SYSPRINT, the
PLIDUMP transients, the storage management module required for
the REPORT option, and two versions of the PL/I execution-time
messages modules (one version for GONUMBER/GOSTMT, the other for
NOGONUMBER/NOGOSTMT). Just as all the modules in DFHSAP are
tailored for CICS, so these PL/I-CICS/VS transients are all
CICS-tailored modules, although they are very similar to their
OS PL/I Transient Library counterparts.

There is no compile-time CICS option; however, PL/I library
modules can tell whether they are being executed in the CICS
environment by testing a bit, TTKK, in the PL/I TCA. Some of
them make use of a CICS implementation appendage, built in the
PL/I Program Management Area right after the PL/I TCA and TIA.
It is principally used by the modules in DFHSAP, but various

Appendix D. PL/I-CICS System Information 321

DFHSAP
in

CICS/VS
Nucleus

CICS-
Supplied

PL/I-
Supplied

CICS-Supplied

Supported -
Pl/I function and
restrictions as
documented in CICS
macro-level
documentation.

Not supported -
CICS ASRA
(program check)
transaction abend
will result.

PL/I-Supplied

Not Supported -
Unpredictable CICS
transaction abend,
but probably ASRA
for program check.

Supported - Pl/I
function and
restrictions as
documented in this
publication.

Figure 105. DFHPllI lihk-Edited into Transaction

other library modules have sections of code for the CICS
environment that test this bit and use the CICS appendage.

The CICS appendage is equivalent to the following Pl/I
structure:

DCl I IBMDZCIC ALIGNED,
2 TCTCA PTR,

/* ADDR CICS TCA */
2 TCCSA PTR,

/* ADDR CICS CSA */
2 TCSTV PTR,

/* ADDR SYSPRINT XMTR */
2 TCTMS PTR,

/* ADDR MSGS OUTPUT BOOTSTRAP */
2 TCTCR PTR,

/* ADDR COUNT OUTPUT MODULE */
2 TCRHD CHAR (8),

/* TRANSIDI ITERMID */
2 TCMSP CHAR (1),

/* Pl/I PROGRAM MASK */
2 TCMSC CHAR (1);

/* CICS PROGRAM MASK */

The module addresses in this appendage are 0 if the particular
module has not been loaded for this CICS/VS transaction program.
This appendage makes the CICS environment addressable from
within the Pl/I environment.

CICS/VS-PL/I APPLICATION PROGRAM INTERFACE

The link-edited CICS/VS interface module (DFHPlII) replaces the
batch-mode PlISTART CSECT, and contains what amounts to a
CICS/VS-tailored version of the PlISTART parameter list.

Execution of your Pl/I transaction program commences when DFHPCP
calls DFHPliI at its entry point DFHPlIN. DFHPliN immediately
calls Pl/I initialization in DFHSAP, passing it the following
addresses:

PLIMAIN Address of MAIN procedure.

PLIFLOW Flow trace initialization module (if FLOW option).

PLICOUNT Count initialization module (if COUNT option).

PLIXHD

PLITCIC

Your heading for COUNT and REPORT output.

Entry to CICS/VS HlPI~

322 DOS Pl/I Optimizing Compiler: Programmers Guide

I

(

(

IBMBPSRA Shared library transfer vector.

IBMBPOPT Compiler-parsed PLIXOPT options.

IBMBERCA CHECK module.

It also passes the length of pseudo-register vector (PRV),
always zero for DOS.

Any of the above parameter addresses, except PLIMAIN, can be
zero if the related entity or option does not exist for the
particular program being initialized.

To pass the above parameter list to PL/I initialization in
DFHSAP, DFHPL1I contains the following functional entry points,
in addition to the code at entry point DFHPLIN:

DFHPL1I Bootstrap to CICS services for the macro interface.

DFHPL1C Entry point to return CSA address to caller.

IBMBOCLA Entry points to branch through DFHSAP.

IBMBOCLB OPEN/CLOSE code in STREAM PRINT transmitter IBMBOCLC
for SYSPRINT.

CICS/VS-PL/I NUCLEUS MODULE DFHSAP

The PL/I interface module in the CICS/VS nucleus is a
PL/I-provided module that supports PL/I Optimizing Compiler
programs only. It consists of bootstrap code plus OS PL/I
library modules modified for the CICS/VS environment. These
modules have names that begin IBMF instead of IBMD. Any
DOS-only versions have names that begin with IBMH.

In general, PL/I library module names begin with IBM, have a
fourth letter to specify the relevant environment (for example,
B for basic, D for DOS only, F for CICS/VS, H for CICS/DOS/VS
only, and so on), and a last (eighth) letter to differentiate
among entry points (A, B, and so on). Thus, DOS PL/I
initialization is done by a module with entry names IBMDPIRA,
IBMDPIRB, and IBMDPIRC. Ignoring the different entry points, it
is sometimes called IBMDPIR. Ignoring environment, it can be
functionally identified as PIR.

Keeping these naming conventions in mind, DFHSAP contains:

IBMFPCC
Bootstrap to library modules in DFHSAP.

IBMBOCLA, B, C
IBMFSTVA, B, C

Bootstrap code to invoke (via CICS LOAD the first time) the
STREAM OUTPUT PRINT transmitter for SYSPRINT (plus
OPEN/CLOSE).

IBMHPIR
Initialization/termination code, containing all relevant
functions of PIR, PII and PIT.

IBMFPGR
Storage management without REPORT option.

IBMFERR
PL/I error handler.

IBMDPSR
Bootstrap module for PL/I CICS/DOS/VS shared library. If
it is present, the DOS shared library modules themselves
follow immediately as part of DFHSAP.

The modules in DFHSAP supply all the initialization/termination,
storage management, and error~andling function required in a

Appendix D. PL/I-CICS System Information 323

debugged production program. In the testing and tuning
environment, however, the SYSPRINT facility, PlIDUMP, FLOW,
COUNT, REPORT, and CHECK may be desired, and error messages
concerning failing programs will usually be produced on
SYSPRINT. These functions require transients that are-part of
the PL/I transient library, but are tailored for the CICS
environment and loaded into CICS storage by a CICS DFHPC ,
TYPE=LOAD macro. CICS/VS regards them as ordinary transactio~',
programs. Macros for their PPT entries are on the Pl/I
distribution tape. They are:

IBMFSTVA
STREAM OUTPUT PRINT transmitter, altered to handle only the
CICS/VS version of SYSPRINT, but with OPEN/CLOSE support
added.

IBMFPGDA
Storage management with REPORT option.

IBMFPMRA
Module to generate storage report for REPORT option.

IBMFEFCA
Module to produce COUNT output.

IBMFESMA, ESNA, FOCA, ETXA
Messages modules.

IBMFKMPA, KPTA, KTCA, KTRA, KTBA, KCSA
PlIDUMP modules.

Two Pl/I Resident Library modules test the CICS bit in the Pl/I
TCA and take slightly different paths based on it. They are:

IBMDSIO
The stream initialization output module that, while
building a Pl/I block called the SIOCB, has to get the
address of the Pl/I File Control Block (FCB). This address
is obtained differently for the CICS SYSPRINT file than for
ordinary batch STREAM OUTPUT files. Subsequent stream I/O
modules address the file via the SIOCB, and thus require no
modification to run in the CICS environment.

IBMDKDM
The resident interface to PlIDUMP loads the first PlIDUMP
transient, as appropriate, based on whether the program is
being executed within the CICS/VS environment or the normal
DOS environment.

324 DOS Pl/I Optimizing Compiler: Programmers Guide

APPENDIX E. THE VTOC DISPLAY UTILITY

The VTOC (Volume Table of Contents) display utility program
displays the contents of the volume table of contents of a disk
storage volume mounted on a 2311, 2314, 3330, or 3340 disk
storage drive. This information is essential for controlling
the organization of a storage volume. The program can produce
its output on a printer, a magnetic tape, or a disk storage
volume.

The data sets contained on a disk storage volume are identified
by entries in the volume table of contents of a disk storage
volume mounted on a 2311, 2314, 3330, or 3340 disk storage
drive. This information is essential for controlling the
organization of a storage volume. The program can produce its
output on a printer, a magnetic tape, or a disk storage volume.

The data sets contained on a disk storage volume are identified
by entries in the volume table of contents which serve as data
set header labels. The labels in the VTOC are listed in the
order of appearance. The listing contains the format of the
data set label and the major fields within each label. The VOLI
label, which contains the address of the VTOC, the serial
number, and other volume identification, will also be displayed.
For more information about the organization of the VTOC and the
VOLI label, see the system control program publication, Data
Management Concepts.

An example of the job control statements required to use the
VTOC display program to list the contents of the VTOC of a disk
storage device follows:

// JOB RUNVTOC
// ASSGN SYS004,X'19l'
// ASSGN SYS005,X'00E'
// EXEC LVTOC
/&

(input)
(output)

To obtain the output on a particular device, it must be assigned
to SYS005. The appropriate job control statement are required
if labeled magnetic tape or a direct-access device is used.
Refer to DOS/VSE DASD Labels for a description of the Format I
data set label used in a direct-access storage volume table of
contents.

Appendix E. The VTOC Display Utility 325

APPENDIX F. REQUIREMENT FOR PROBLEM DETERMINATION AND APAR SUBMISSION

When a member of IBM programming support personnel is called to
examine the suspected malfunctioning of an IBM program product,
that representative will first determine whether or not the
malfunction really is a problem in the program product. If a
decision is made that the program product is at fault, a check
must then be made to determine whether the fault is a known
fault for which an existing fix can be obtained. If the fault
is not known, the problem must be referred to the appropriate
program maintenance group within IBM for analysis and
correction. The process of referring a problem to IBM involves
submitting a report known as an APAR (Authorized Program
Analysis Report), which must be accompanied by material to
enable the program maintenance personnel to analyze the problem.

To enable IBM program maintenance personnel to analyze a
problem, it must be possible to reproduce it at the IBM program
maintenance center. It will therefore be essential to supply
with the APAR the source program to enable the problem to be
reproduced and analyzed. Faster resolution of the APAR may be
possible if some or all of the material listed in Figure 106 on
page 328 is supplied and if the source program is reduced to the
smallest, least complex form which still contains the problem.

All listings that are supplied must relate to a particular
execution of the compiler, in the case of a suspected compiler
failure, or to the relevant link-editing and execution steps, in
the case of the failure of the Pl/I program during execution.
listings derived from separate compilations or executions are of
no value and may in fact be misleading to the program support
personnel.

Original Source Program

The original Pl/I source program must be supplied in a
machine-readable form such as a deck of punched cards or a reel
of magnetic tape. The copy of the program supplied must be
identical to the listing that is also supplied.

Use o~ the Preprocessor

If the compilation includes preprocessing, the source program
submitted should include, either as a card deck or on magnetic
tape, the source module obtained by means of the compiler MDECK
option.

If the problem is known to have occurred during preprocessing, a
listing of the source program being preprocessed must be
supplied. If the preprocessing involves the use of the XINClUDE
statement, a copy of the Pl/I source statement module(s)
included should be supplied in a machine-readable form. If
source statement modules are not supplied in the original
submission of the APAR, the APAR will not be acted upon until
they are supplied.

Job Control Statements

listings of job control statements used to 'run the program must
be supplied. Where there are, a large number of job'control ,
statements, supply these also in a machine-readable form such as
on punched cards or on magnetic tape. This will assist the
program maintenance personnel to reproduce the problem more
quickly.

326 DOS Pl/I Optimizing Compiler: Programmers Guide

Operating Instructions/Console Log

Listings

Linkage Editor Map

Execution-time Dumps

In the case of an execution-time failure of a program that
processes a number of data sets or that operates in a
complicated environment, such as a teleprocessing application,
it is essential that adequate description of the processing and
the environment is given to enable it to be recreated. Although
it may be impossible to supply console logs and operating
procedures, a complete description of the application, the
organization of the data sets, and adequate operating
instructions are vital for IBM program support personnel to
reproduce the problem.

A listing of the source program is essential. Other
compiler-generated listings, while not essential, may assist in
producing a faster resolution of the APAR. If any of the
compiler options that must be specified in order to obtain
material for submission with an APAR have been deleted at system
generation, they can be restored for temporary use by means of
the compiler CONTROL option.

There should be no Y.NOPRINT statements in the listing unless
they are pertinent to the problem.

When a problem occurs at execution time, a linkage editor map is
essential. The linkage editor map will be used in the analysis
of the storage dump that must also be obtained when the program
failed.

If the problem occurs during execution of the PL/I program, a
storage dump must be supplied. A dump can be obtained by using
a stand-alone dump program. However, if possible, a formatted
PL/I dump produced by the PL/I error-handling facilities should
be provided. A PL/I dump is obtained by using the PLIDUMP
facility described in Chapter 11.

Compiler Failure under eMS

If the failure occurs while compiling or executing a program or
programs under CMS, full details of the Virtual Machine
environment must be supplied. This can best be done as follows:
immediately prior to invoking the compiler to reproduce the
problem, issue the following CMS commands:

QUERY SYSNAMES
QUERY SET
QUERY TERMINAL
QUERY VIRTUAL
QUERY SEARCH
QUERY DISK *
QUERY LIBRARY
QUERY DOSLIB
QUERY UPSI
QUERY OPTION
DLBL (without operands)
LISTIO

Invoke the compiler using the DOSPLI command, specifying the
option DUMP *PROCESS card that precedes the source program,
along with any other options required to produce the relevant
output on a line printer.

A listing of the PL/I source program and the entire terminal
listing from LOGON to LOGOFF, should be submitted. If a display

Appendix F. Requirement for Problem Determination and APAR Submission 327

terminal is used, spool console input/output using the CP SPOOL
CONSOLE START command to provide full details of all input
entered and r~sponses received.

Applied PTFs

A list of any program temporary fixes (PTFs) and local fixes
applied to either the compiler or its libraries must be
supplied.

Submitting the APAR

When submitting material for an APAR to IBM, ensure that any
magnetic tapes and decks of punches cards that are supplied
containing source programs, job stream data, data sets, or
libraries are carefully packed and clearly identified.

Each magnetic tape submitted should have the following
information attached and visible:

Material Required Compiler Option When Required

Original source program C, E, M

Job Control Statements C, E

Operating instructions/ E
Console log

Listings:
Source listing SOURCE (S) C, E, M
Cross-reference listing XREF (X) C, E, M
Attribute table ATTRIBUTES (A) C, E, M
Aggregate table AGGREGATE (AG) C, E, M
Storage table STORAGE (STG) C, E, M
Compiler options OPTIONS (OP) C, E, M
Object listing LIST C, E, M

Compiler termination dump DUMP (DU) C, M

Linkage editor map MAP (linkage editor E
option)

Execution-time dump E, M

User subroutines E, M

User data sets or CMS files E, M

Preprocessor input listing INSOURCE CIS) P, M

Preprocessor output MDECK (MD) C, E, M

Partition/Region size C, E, M

Virtual machine configuration M

List of applied PTFs C, E, M

Note:
"C" indicates the requirements for a compile-time error;
"E" indicates the requirements for an execution-time error;
"P" indicates the requirements for a processor error;
"M" indicates the requirements for a conversational (CMS) error.

Under CMS, the compiler options must be specified in a *PROCESS card
that precedes the source program.

Figure I06~ Summary of Requirements for APAR Submission

328 DOS PL/I Optimizing Compiler: Programmers Guide

• The APAR number assigned by IBM

• The contents of the volume (source program job control
statements, or data, etc.)

• The recording mode and density

• All relevant information about the labels used for the
volume and its data sets

• The record format and blocking sizes used for each data set

• The name of the program that created each data set.

Each card deck submitted must have the following information
attached and visible:

• The APAR number assigned by IBM

• The contents of the card deck (source program, job control
statements, or data, etc.).

This information will ensure that a magnetic tape or card deck
will not be lost if it becomes separated from the rest of the
APAR material, and that its contents are readily accessed.

Appendix F. Requirement for Problem Determination and APAR Submission 329

Special Characters

ACTION statement
Fl option 48
F2 option 48

*PROCESS 17
:.:INCLUDE

description 41
source statement library 17
use in program checkout 209

:.:INCLUDE statement
source statement library 68

r.NOPRINT 31
r.NOTE 38
r.PAGE 31
:':PRINT 31
r.SKIP 31

abend codes, PL/I under CICS 276
Access Method Services 303

BLDINDEX command
syntax and examples 310-311
use 308
use with entry-sequenced data
set 190

use with key-sequenced data
set 197

DEFINE ALTERNATEINDEX command
syntax and operands 309-310
use 308
use with entry-sequenced data
set 190

use with key-sequenced data
set 197

DEFINE CLUSTER command
syntax and operands 300
use 298

DEFINE PATH command
syntax and examples 311-312
use 308
use with entry-sequenced data
set 190

use with key-sequenced data
set 197

defined 298
DELETE CLUSTER command 305
executing commands 312
syntax and operands 304

access methods 78-79
for record-oriented data
transmission 79

DAM (Direct Access Method) 78
SAM 78
VSAM 78

accessing
a data set

example 13
accessing data sets

CONSECUTIVE 129, 130
information required 130

for record-oriented transmission 118

for stream-oriented data
transmission 111

record format 112
INDEXED 145-147
REGIONAL

information required 159
REGIONAL(I) 157
REGIONAL(3) 158
stream-oriented data

transmission 113
ACTION statement 48-49

CANCEL option 48
F3 option 49
F4 option 49
MAP option 48
NOAUTO option 49
NOMAP option 48
NOREL option 49
REL option 49

adapting existing programs for VSAM data
sets 177

ADDBUFF option 139, 140
adding records to an INDEXED data
set 138

advantages of VSAM data sets 170-171
AGGREGATE compiler option

abbreviation and default 18
description 21
function 19

aggregate length table 33
align~ent

restrictions 249
strings 314
variables 249

ALLOCATE statement 270
use in CICS 270

ALTER command 299
alternate index 167

and backward reading on an
ESDS 191-192

example 191-192
coding with 307
creating 312

commands required 313
defined 168
deleting 312
duplicate keys 168
how to build 308-309
nonunique key 168, 306
on an ESDS 192
passwords 307
performance with 307
planning with 307
processing allowed 179
unique key 168, 306

alternate index paths
associating with a file 178
defining 306
how to build 306-308
how to use 306
nonunique. key, for an ESDS'

creating 190
creating, example 190

terminology 306
unique key, for a KSDS

creating 196
creating, example 197

unique key, for an ESDS

330 DOS PL/I Optimizing Compiler: Programmers Guide

creating 189
creating, example 189

unique key, using with a KSDS 197
example 198

use of SAMEKEY built-in function
with 184

American National Standard
card punch control characters 131
print control characters 131

American National Standard CANS)
print control characters 114

American Standard Code for Information
Interchange CASCII) 72

amount of Pl/I storage required 273
APAR submission 326-329
APlC abend code 276
APlD abend code 277
APlE abend code 276
APlG abend code 277
APlI abend code 277
APlM abend code 277
APlS abend code 277
APlX abend code 277
applied PTFs 328
ARGn option of OPTIONS attribute 251
arguments

See also passing arguments
matching COBOL 254-255
matching FORTRAN 255-256
matching RPG 256-257
passing

to COBOL routines 248
to FORTRAN routines 248

passing from assembler-language
routines 228

passing from COBOL routines 252
passing from FORTRAN routines 252

arguments and parameters in
interlanguage communication 248

arguments, parameters, and return
codes 226-228

array mapping 248
ASCII 72
ASCII option 121
ASCII records 75
ASSEMBLER option 227, 278
assembler-language routines

called from Pl/I 215, 216
calling Pl/I calling assembler 226
D compiler language interface 314
linking Pl/I with 215-228

arguments, parameters, return
codes 226

ASSEMBLER option 227
calling IOCS modules 220
calling Pl/I from
assembler 221-223

Dynamic Storage Area CDSA) 217
error-handling 226
establishin~ Pl/I environment 217
invoking nonrecursive assembler
routine 218

invoking recursive assembler
routine 219

passing arguments 228
passing parameters 215
PlICAllA 217
PlICAlLB 217
return codes 228
save area 217
use of PlICAllA 224
use of PLICAllB 224
use of PlIMAIN 225
use of register 12 219

passing arguments 228
ASSGN statement

associating symbolic device with
actual device 10

description 76
for device assignment 77
processing a data set 9
used to change and assignment 9

ASSOCIATE option 121-122
associated files on 3525 86
associating

an alternate index path with a
file 178

data sets with files 91
one data set with many files 93
several VSAM files with one data
set 177-178

attribute table 32
attributes

of file declarations 95
ATTRIBUTES compiler option

abbreviation and default 18
description 21
function 19

attributes of file parameters 317
AUTOlINK feature 43

function 45
improve program after use 56

auxiliary storage devices 80-91
direct-access devices 91

3540 Input/Output unit
diskettes 91

line printers 88
magnetic tape 89

backward processing 90
conversion feature 89
ENDFIlE condition 91
format of volumes 90
labels 90
recording density 89
track width 89
translation feature 89
volumes with multiple data
sets 89

1442 card read punch 80
2501 card reader 80
2520 card read punch 80
2540 card read punch 80
2560 card read punch 81
3504 card reader 82-87
3505 card reader 82-87
3525 card punch 82-87
3800 printing subsystem 87
3881 optical mark reader 87
5425 card read punch 81

backward processing of magnetic tape
files 90

backward reading on an ESDS 191-192
programming example 191-192

BACKWARDS attribute 90
for checkpoint/restart 232

base cluster 307, 308
base data set 307
batched compilations 38-40

for cataloging in relocatable
library 70

for overlay programs 60
Binary Coded Decimal CBCD) 21, 73

Index 331

bit manipulation routines 279
BKWD option 174
BLDINDEX command

syntax and examples 310-311
use 308

BLKSIZE option
defaults

for non-VSAM data sets 103
for stream-oriented
transmission 108

BLKSIZE options 102
block prefix fields 122-123
blocks, defined
books of source statement 68
buffered data sets 315
buffers 78
BUFFERS option 103
BUFND option 175-176
BUFNI option 176
BUFOFF option 122-123

defaults 123
BUFSP option 176
built-in function without arguments 314

CALL PLICKPT 229-231
CANCEL option

of ACTION statement 48
card punches 80
card readers 80
CATAL option

of OPTION statement
adding new programs to core-image
library 67

CATAL option of OPTION statement 47
catalog

master 297
private 297
VSAM 297

CATALOG compiler option 18
description 21
for cataloging an object module 70
function 20

CATALOG operand
of DEFINE ALTERNATEINDEX command 310
of DEFINE CLUSTER command 303

cataloging an object module 69
cataloging multiple object modules 71
CATALR statement 69

generated by the compiler 21
CATALS statement 68
character sets 21
character string, PLIXOPT 273
CHARSET

abbreviation and default 18
CHARSET compiler option

description 21
function 19

CHECK and PUT data 272
CHECK data 272
CHECK prefix option 208

in program checkout 208
checking facilities 207
checkout of program 202
checkpoint/restart 229-233

CALL PLICKPT 229-231
effect of restart on data sets 232

on direct-access devices 232
on magnetic tape 232
unit record data sets 232

example 233
PLICKPT 229-231
taking checkpoints on disk
storage 231

taking checkpoints on magnetic
tape 231

checkpoints 229
choice of data set type 169-172
CICS

appendage 321
CURRENTSTORAGE 278
error handling 274-277
facilities~ using 280
FREEMAIN 270
GETMAIN 270
lifetime of storage acquired 270
nucleus 321
PL/I abend codes under 276
restrictions with PL/I 266
STORAGE 278
storage classes 270
system information 321-324
translator 269
use of SYSPRINT 271-272
use with PL/I 265-280

CICS-supplied interface 266
restrictions 269

CICS/DOS/VS, PL/I shared library
for 279

CICS/VS transactions, writing in
PL/I 267-269

CICS/VS-PL/I
application program interface 322
interface components 321-324
nucleus module DFHSAP 323-324

cluster 298
CM-type entries 35
CMDCHN option 123
CMS (Conversational Monitor System)

commands used to reproduce program
problem 327

compiler failure under 327
introduction 8

COBOL
arguments, matching 254-255
communication with PL/I 247-264
data equivalence with PL/I 254
declaration of a data aggregate 255
ENVIRONMENT option 104
handling interrupts 262
link-edited with PL/I 63
option of OPTIONS attribute 250, 252
parameters, matching 254-255
routines

invoking 250
passing arguments from 252
terminating 263-264

structures, length of 34
codes, information interchange 72
coding with alternate indexes 307
COLBIN option 124
column binary mode 85
colu'mn-maj or-order 249 "
command-levelint~rfa~e269
commands required to create alternate

index path 313
COMMAREA 270
common areas control section 44
COMMON block 247
common data set 247
common storage, using 258
communication area (COMMAREA) 270
communication with

COBOL 247-264

332 DOS PL/I Optimizing Compiler: Programmers Guide

FORTRAN 247-264
RPG 247-264

comparison of data set types available
to PL/I record I/O 118

compatibility interface, VSAM 177
compatibility with

DOS PL/I D compiler 314-320
compatibility, VSAM 176-177

with CONSECUTIVE files 177
with INDEXED files 177
with REGIONAL files 177

COMPILE
abbreviation and default 18

COMPILE compiler option
description 21

compile-time
performance 4
processing 40
return codes 257-260

compiler
data sets 15
introduction to 6-7
optimizing 14-42
performance 4-5
restoration of options deleted 18

compiler failure under CMS 327
compiler listing and associated
options 30

compiler listings 30-31
compiler option

abbreviations 18
defaults 18

compiler options
AGGREGATE 21
ATTRIBUTES 21
CATALOG 21
CHARSET 21
COMPILE 21
CONTROL 22
COUNT 22
DECK 22
DUMP 22, 39
DYNBUF 22
ESD 23
FLAG 23
FLOW 23
functional summary 19-20
GOSTMT 23
GRAPHIC 23
INCLUDE 24, 41
INSOURCE 24
LIMSCONV 24
LINECOUNT 24
LINK 25
LIST 25
MACRO 25
MAP 25
MARGINI 25
MARGINS 25-26
MDECK 26
NAME 26
NEST 27
OFFSET 27
OPTIMIZE 27
OPTIONS 27
SIZE 27, 39
SOURCE 28
STORAGE 28
SYNTAX 28
WORKFILE 28-29
XREF 29

compiler subroutine failure 206
complicated overlay structures

link-editing 56

condition codes 209
CONSECUTIVE data sets

accessing 129, 130
information required 130

creating 128-134
information required 129

defining 119
ENVIRONMENT options 120-128
PL/I organization 75, 119
print control characters in 130
punching cards and printing
in 130-134

record format 130
space management 79
statements and options permitted 120
using 118-134

CONSECUTIVE files
compatibility with VSAM 177

CONSECUTIVE option 94, 124
for STREAM files 107

console log, in problem
determination 327

constructing overlay programs 54
control

areas 167
intervals 167
of conditions 208-209
password 299
phase 14
program 6
statements, linkage editor 52

control characters
American National Standard 131
American National Standard (ANS) 114
CTLASA 131, 132
CTL360 131-132
for print formatting 113
machine code 131
print

for record-oriented data
transmission 130

2540 card read punch 131
3525 card printer 132

CONTROL compiler option 18
description 22
function 20

control sections of object module
control statements, linkage editor 48

ACTION statement 48-49
ENTRY statement 52
examples 52
INCLUDE statement 49-50
PHASE statement 50-51

CONTROLPW password operand
of DEFINE CLUSTER command 302

conversational monitor system (CMS) 8
conversational program checkout 202
conversion feature 89
conversion library, PL/I 279
COPY option of GET statement 205
core-image library 67, 68

contents 66
deleting unwanted programs 67
including new programs 67

core-image modules 7
COUNT compiler option

abbreviation and default 18
description 22
function 20
in program checkout 207
with CICS 274

creating
alternate indexes 312

commands required 313

Index 333

CONSECUTIVE data sets 128-134
information required 129

data sets for record-oriented
transmission 118

data sets for stream-oriented data
transmission 109

example III
data sets using a PRINT file

example 115
dummy records 189, 190

in INDEXED data sets 144
IKDEXED data sets 142-145

example 149
information required 142

nonunique key alternate index paths
for an ESDS 190

example 190
REGIONAL data sets

information required 159
with SEQUENTIAL OUTPUT file 158

REGIONALCl) data sets 156-157
example 160

REGIONAL(3) data sets 158
example 163

unique key alternate index paths for
a KSDS 196

example 197
unique key alternate index paths for
an ESDS 189

example 189
creating a data set

example 12
cross-partition sharing 304
cross-reference table 33
cross-system sharing 304
CTLASA control characters 131
CTLASA option 124
CTL360 option 124
CURRENTSTORAGE 278
cylinder overflow area 137
CYLINDERS operand

of DEFINE CLUSTER command 301

D compiler
assembler language interface 314
DOS PL/I, compatibility with 314-320
E-format items 315
F-format items 315
REGIONAL data sets 315

D-format records 74
DAM (Direct Access Method) 78
data aggregate

declaration in COBOL 255
declaration in PL/I 255

data area
overflow 144
prime 143

data management 78-79
access methods 78-79
auxiliary storage devices 80-91
blocking and deblocking of
records 78

buffers 78
locate-mode 78
move-mode 78

data mapping 249-250, 252
DATA operand

of DEFINE CLUSTER command 300
data sets

See also VSAM data sets
accessing

CONSECUTIVE 129, 130
example 13

accessing for record-oriented
transmission 118

accessing for stream-oriented data
transmission Ill, 113

record format 112
associating one with many files 93
associating with files 91
buffered 315
common 247
compiler 15
CONSECUTIVE

ENVIRONMENT options for 120-128
options and statements
permitted 120

record format 130
CONSECUTIVE organization 75, Ill,

119
CONSECUTIVE, using 118-134
creating

CONSECUTIVE 128-134
example 12
INDEXED 142-145

creating for record-oriented
transmission 118

creating for stream-oriented data
transmission 109

example III
creating using a PRINT file

example 115
defined 72
defining 9

REGIONAL 152
defining a VSAM 299
defining for stream files 106-117
deleting VSAM 305
effect of restart on 232
INDEXED 134-151

accessing 145-147
adding records to 138
defining 139
embedded keys in 137
ENVIRONMENT options for 139-142
index structure of 136
organization 134
recorded keys in 137
source keys in 137

INDEXED organization 75
information 10
information for record-oriented
transmission 119

information for stream-oriented data
transmission 110

job control statements (JCL) for 76
labels 76
multiple, on magnetic tape 89
names 72
on direct-access devices, effect of
restart on 232

on magnetic tape
backward processing 90
ENDFILE condition 91

on magnetic tape, effect of restart
on 232

organization 75
ENVIRONMENT options 94

REGIONAL 151-165
organization 151
recorded keys in 154
source keys in 155-156

334 DOS PL/I Optimizing Compiler: Programmers Guide

statements and options
permitted 153-154

REGIONAL organization 75
REGIONAL, D compiler 315
sharing between jobs 304
sharing within a job 304
types available to Pl/I record

I/O 118
unit record, effect of restart

on 232
used by sort/merge 235-237

input 235
output 237
work 236

VSAM 297-298
VSAM, life of 299-300
VSAM, sharing 304

data sets, nature and
organization 72-105

data types 248
equivalence 254, 256

data variables
in overlay programs 57

DB-format records 74
debugging information 212
DECK

abbreviation and default 18
DECK compiler option

description 22
for cataloging an object module 70
function 20

declaration of SYSPRINT 271, 272
DECLARE statement 319, 320

labels 316
defaults

ATTRIBUTES 32
for non-V SAM data sets

BLKSIZE option 103
RECSIZE option 103

for stream-oriented transmission
BLKSIZE option 108
RECSIZE option 108

record format
for stream-oriented

transmission 108
record format options 103

DEFINE ALTERNATEINDEX command
CATALOG operand 310
KEYS operand 310
NAME operand 309
NONUNIQUEKEY operand 310
NOUPGRADE operand 310
RECORDSIZE operand 310
RELATE operand 310
syntax and operands 309-310
UNIQUEKEY operand 310
UPGRADE operand 310
use '308

DEFINE CLUSTER command 298
CATALOG operand 303
CONTROLPW password operand 302
CYLINDERS operand 301
DATA operand 300, 303
FILE operand 301
FREESPACE operand 301
INDEX operand 300, 303
INDEXED operand 301
KEYS operand 301
MASTERPW password operand 302
NAME operand 301
NONINDEXED operand 301
NOREUSE operand 302
NUMBERED operand 301
password operands 302

READPW password operand 302
RECORDS operand 301
RECORDSIZE operand 302
REUSE operand 302
REUSE option 298
SHAREOPTIONS operand 302
syntax and operands 300-304
TRACKS operand 301
UPDATEPW password operand 302
VOLUMES operand 302

DEFINE PATH command
syntax and examples 311-312
use 308

DEFINED attribute, use of 319
defining

CONSECUTIVE data sets 119
data sets 9
data sets for stream files 106
entry-sequenced data sets

example 188
files for stream-oriented data
transmission 106

INDEXED data sets 139
key-sequenced data sets 193

example 194
pictures 317
REGIONAL data sets 152
relative-record data set 199

example 199
VSAM data sets 172, 299

direct 172
sequential 172

DEL ETC statement 67
DELETE CLUSTER command 305
deleting

alternate indexes 312
records 144
VSAM data sets 305

DELETR statement 70
DELETS statement 69
density for magnetic tape 89
device

See also direct-access
assignment 77
assignments, standard 9
types

and MEDIUM option
specifications 99

associated with symbolic
names 100

device-associated files 133-134
DFHEIP 279
DFHIBM 280
DFHPC macro 274
DFHPLIC 323
DFHPLII 280

interface module 321
link-edited into transaction 323

DFHPLIN entry point 323
DFHSAP

CICS/VS-PL/I nucleus module 323-324
module 321

diagnostic messages 37
direct

data set 75
input to REGIONAL(3) data sets 165
update to REGIONAL(3) data sets 164

direct access
key-sequenced data sets 184
relative-record data set 185
to INDEXED data sets 147
to REGIONAL(I) data sets 157
to REGIONAL(3) data sets 159

direct-access

Index 335

devices
effect of restart on data sets

on 232
devices, data sets on 298

direct-access devices
diskettes 91

Disk Operating System (DOS)
introduction to 6

disk storage, taking checkpoints on 231
diskette storage 91
DISPLAY statement 316
DLBL statement

description 11, 76
for DASD data sets 77
processing a data set 9
restrictions 11, 77
under CMS 327

DO statement expressions 314
DO-group level numbering 32

NEST option 27
DOS (Disk Operating System)

data management 78-79
introduction 6

DOS PL/I D compiler, compatibility
with 314-320

dummy arguments for PL/I data
aggregates 249

dummy records
creating 144
REGIONAL(l) 156

DUMP
abbreviation and default 18

DUMP compiler option 39
description 22
function 20

dumps 209-213
dynamic checking facilities 207
Dynamic Storage Area (DSA) 217
Dynamic Transaction Backout 275
DYNBUF

default 18
DYNBUF compiler option

description 22
function 20

DYNDUMP subroutine 316

E (error-level) messages 38
E-format items, D compiler 315
EBCDIC 21, 73
EBCDIC mode 85
eliminating redundant expressions 317
embedded keys

in INDEXED data set 137
end-of-data statement 1, 2
end-of-job statement 1, 2
ENDFILE condition 91, 318
entry names

as arguments 318
declarations for interlanguage'

communication 251
ENTRY statement 52
entry-sequenced data set 297

defining and loading, example 188
loading 179
RETURNS keyword 318
sequential access 179
statements and options

permitted 180-181
updating, example 189

use in mu1ti1anguage programs 63
using alternate index and backward

reading 191-192
example 191-192

entry-sequenced data set (ESDS) 167
alternate index 168

ENVIRONMENT attribute
ADDBUFF option 139, 140
ASCII option 121
ASSOCIATE option 121-122
BKWD option 174
BLKSIZE option

defaults 103
BLKSIZE options 102
BUFFERS option 103
BUFND option 175-176
BUFNI option 176
BUFOFF option 122-123

defaults 123
BUFSP option 176
CMDCHN option 123
COBOL option 104
COLBIN option 85, 124
CONSECUTIVE option 94, 107, 124
CTLASA option 124
CTL360 option 124
data set organization options 94
description 94
EXTENTNUMBER option 104
FILESEC option 124
FUNCTION option 125-126
GENKEY option 97-98
GRAPHIC option 109
HIGHINDEX option 140
INDEXAREA option 140
INDEXED option 94, 140
INDEXMULTIPLE option 140
KEYLENGTH option 105
KEYLOC option 141
LEAVE option 126
MEDIUM option 98, 101

associating data sets with
files 91-92

device type specifications 99
device types 100,
with DOS PL/I D compiler 318
with 3525 multiple print
feature 86

NOFEED option 126
NOLABEL option 126
NOTAPEMK option 127
NOWRITE option 142
OFLTRACKS option 142
OMR option 82-84, 127
option-list 97
options

for CONSECUTIVE data sets 120-128
for INDEXED data sets 139-142
for REGIONAL data sets 152
for stream-oriented data
transmission 106-109

for VSAM data sets 172, 173-176
performance options 175
RCf option 84, 127 .
record format options 107

for record-oriented data
transmission 95

for stream-oriented data
transmission 97

RECSIZE option 102, 108
defaults 103

REGIONAL option 94, 152-154
SCALARVARYING option 105
SKIP option 175

336 DOS PL/I Optimizing Compiler: Programmers Guide

STACKER option 84, 128
to describe data set organization 75
UNLOAD option 126
VERIFY option 104
VOL SEQ option 128
VSAM option 94
WRTPROT option 128

ENVIRONMENT options
See also ENVIRONMENT attribute
PASSWORD 173-174
REUSE 174
VSAM 173

environment, interlanguage 258-264
error CE) message 38
error handling 278
error handling, CICS 274-277
ERROR on-unit 209
errors, source program 317
ESD CExternal Symbol Dictionary) 35

contents 45
description 15
entries 36
entries in object module 44

ESD compiler option
defaul t 18
description 23
function 19

EXEC CICS
ABEND 279
HANDLE 274-276, 277
RETURN 279
XCTL 279

EXEC statement 2
used by linkage editor 47

executable program phase
as output from linkage editor 43
combining relocatable modules 7
module loading 14

executing a program using VSAM data
sets 178-179

executing Access Method Services
commands 312

execution-time
checkout 203-206
dumps, use in problem
determination 327

options 274
options, under CICS 272
performance 4
return codes 213

expressions
in DO statements 314

Extended Binary Coded Decimal
Interchange Code CEBCDIC) 21, 73

extent of PL/I environment 261
EXTENT statement 9

description II, 76
for DASD data sets 77
processing a data set 9
with INDEXED data sets 143

EXTENTNUMBER option 104
external references IS, 45
external symbol, defined 45

F-format records 73
failure

compiler subroutine 206
compiler under CMS 327
library subroutine 206
system 206
unidentified program 205-206

FB-format records 73
fields, table definition

FILLERS field 116
LINESIZE field 116
modifying tab settings 117
OFFSET OF TAB COUNT field 116
PAGELENGTH field 116
PAGESIZE field 116
tab count field 116
tabl-tabn field 116

file
attributes 95
attributes permitted for VSAM data
sets 173

information 212
parameter attributes 317
print format 113
print options

for stream-oriented data
transmission 113

PRINT, creating data set using
example 115

stream, writing graphic data to 112
SYSIN 117
SYSPRINT 117

FILE operand
of DEFINE CLUSTER command 301

files
associating many with one data
set 93

associating with data sets 91
device-associated 133-134
in overlay programs 57

files, nature and organization 72-105
FILESEC option 124
FILLERS 116
FINISH condition 209
fixed-length records

blocked 73
unblocked 73

FLAG
abbreviation and default 18

FLAG compiler option
description 23
function 19

FLAGCE) messages 38
FLAGCI) messages 38
FLAGCS) messages 38
FLAGCW) messages 38
FLOW

defaul t 18
FLOW compiler option

function 20
in program checkout 207

FLOW compiler options
description 23

foreground partitions 48
format

of magnetic tape volumes 90
of records sent to SYSPRINT 271

FORTRAN
arguments, matching 255-256
communication with PL/I 247-264

Index 337

environment, establishing 260
handling interrupts 262
option of OPTIONS attribute 250, 253
parameters, matching 255-256
routines

invoking 250
passing arguments from 252
restrictions on input/output
by 261-262

terminating 263-264
FREE NON-LIFO requests 273
FREE statement 270

use in CICS 270
FREEMAINs, number of 273
FREESPACE operand

of DEFINE CLUSTER command 301
FUNCTION option 125-126
F1 option

of ACTION statement 48
F2 option

of ACTION statement 48
F3 option

of ACTION statement 49
F4 option

of ACTION statement 49

GENKEY option 97-98
GET NON-LIFO requests 273
GET statement

COPY option 205
GETMAINs, number of 273
GO TO statement

interlanguage environment 263
out-of-block 276

GOSTMT
abbreviation and default 18

GOSTMT compiler option
description 23
function 20
in program checkout 207

GRAPHIC
default 18

GRAPHIC compiler option
description 23
function 19

graphic data, writing to a stream
file 112

GRAPHIC option 109

halfword binary numbers 315
HANDLE command 275-276
handling interrupts

COBOL routines 262
FORTRAN routines 262

hexadecimal dump 213
High-Level Programming Interface

(HLPI) 269
HIGHINDEX option 140
how to build an alternate index 308-309
how to invoke an assembler routine

nonrecursive 218
recursive 219

I (informatory-level) messages 38
I/O concepts in DOS 9
IBMBAMM 279
IBMBAMMA 58
IBMBAYFA 58
IBMBBBAA 58
IBMBBBNA 58
IBMBBCIA 58
IBMBBCKA 58
IBMBBCTA 58
IBMBBCVA 58
IB~lBBGCA 58
IBMBBGFA 58
IBMBBGIA 58
IBMBBGSA 58
IBMBBGVA 58
IBMBCBBA 58
IBMBCBCA 58
IBMBCBQA 58
IBMBCOA 58
IBMBCVA 58
IBMBCWA 58
IBMBCYA 58
IBMBEER 277
IBMBEOCA 58
IBMBEOLA 58
IBMBERCA 323
IBMBJDSA 54
IBMBJDTA 58
IBMBJDYA 58
IBMBJDZA 58
IBMBJTTA 58
IBMBJWTA 54
IBMBKCPA 58
IBMBKSTA 58
IBMBMPUA 58
IBMBMQUA 58
IBMBMRUA 58
I BMB~1RVA 58
IBMBMUDA 58
I BMB~1VUA 58
IBMBMVVA 58
I BMBMV~JA 58
IBMBMWXA 58
I BMBM~JYA 58
IBMBMXlA 58
IBMBMXSA 58
IBMBOClA 323
IBMBOClB 323
IBMBOClC 323
IBMBPAFA 58
IBMBPAMA 58
IBMBPGRA 55
IBMBPOPT 323
IBMBPRCA 58
IBMBPSRA 323
IBMBRIOA 54
IBMBSCPA 54
IBMBSTAB 116
IBMBTOCA 54
IBMDKDM 324
IBMDPOlA 55
IBMDPSl 279
IBMDPSR 323
IBMDSIO 324
IBMFEFCA 324
IBMFERR 323
IBMFESMA 324
IBMFESNA 324
IBMFETXA 324

338 DOS Pl/I Optimizing Compiler: Programmers Guide

IBMFFOCA 324
IBMFKCSA 324
IBMFKMPA 324
IBMFKPTA 324
IBMFKTBA 324
IBMFKTCA 324
I Bto1FKTRA 324
IBMFPCC 323
IBMFPGDA 324
IBMFPGR 323
IBMFPMRA 324
IBMFSTVA 323 , 324
IBMFSTVB 323
IBMFSTVC 323
IBMHPIR 323
IJKEXHC 316
IJKTROF 316
IJKTRON 316
INCLUDE

card 280
compiler option 41

INCLUDE compiler option
abbreviation and default 18
description 24
function 19

INCLUDE statement 49-50
independent overflow area 137
index

area 137
master 136 , 143
structure of an INDEXED data set 136
upgrade set 168 , 307

INDEX operand-
of DEFINE CLUSTER command 300 , 303

INDEXAREA option 140
INDEXED

organization 134
VSAM data sets , keys for 168

INDEXED data set 75 , 134
accessing 145-147
adding records 138
creating 142-145

example 149
information required 142

creating dummy records 144
defining 139
deleting records 144
direct access to 147
embedded keys in 137
ENVIRONMENT options 139-142
index structure 136
keys 144
record format 144, 146
recorded keys in 137
reorganizing 147
sequential access to 145-147
sequential processing of 135
source keys in 137
statements and options permitted 135
updating

exampla 150
IKDEXED entry-sequenced data set

sequential access 181
INDEXED files

compatibility with VSAM 177
INDEXED operand

of DEFINE CLUSTER command 301
INDEXED option 94 , 140
indexed sequential data set 75
indexes 136-137
INDEXMULTIPLE option 140

indicator, RPG 257
Information Interchange Codes 73
informatory (I) message 38
Initial Program Load (IPL) 6
Initial Storage Area (ISA) 270 , 273
input/output

restrictions on by FORTRAN
routines 261-262

inserting a book into source statement
library 68

insertion methods
VSAM into a KSDS 196

INSOURCE compiler option
abbreviation and default 18
description 24
function 19

INTER option of OPTIONS attribute 250
interface

assembler language with D
compiler 314

CICS-supplied 266
CICS-supplied , restrictions 269
CICS/VS-PL/I application program 322
command-level 269
components 1 CICS/VS-PL/I 321-324
High-Level Programming Interface

(HLPI) 269
macro-level 267-269
PL/I-COBOL 254-255
PL/I-FORTRAN 255-256
PL/I-RPG 256-257
PL/I-supplied , status 269
to CICS , PL/I-supplied 267

interlanguage
communication, OPTIONS ASSEMBLER 278
environment 258-264
environment , GO TO statement 263
facilities 247-264

interrupt-handling
COBOL routines 262
FORTRAN routines 262

invalid input data 205
invalid use of PL/I 204
invoking

COBOL routines 250
FORTRAN routines 250
PL/I routines 252

IOCS modulesl called from assembler
subroutines 220

ISASIZE option 272-274

JCL statements
ASSGN 9
DLBL 9
EXTENT 9
LBLTYP 9
TLBL 9

job control program 6
job control statements 76

linkage editor 46
EXEC statement 47
LBLTYP statement 47
OPTION statement 47

required to use VTOC 325
JOB statement 2

Index 339

key conversions, reduction of 156
key-sequenced data set 297

creating a unique key alternate index
path for 196

example 197
defining and loading 193

example 194
direct access 184
loading 181
SAMEKEY built-in function 184
sequential access 181
updating 193, 196

example 195
using a unique key alternate index
path with 197

example 198
key-sequenced data set (KSDS) 167

alternate index 167
prime index 167

KEYLENGTH option 105
KEYLOC option 141
keys

conversions, reduction of 156
embedded, in INDEXED data set 137
for INDEXED VSAM data sets 168
for VSAM data sets 168
in INDEXED data sets 144
keys for 168
recorded, in INDEXED data set 137
recorded, in REGIONAL data sets 154
source, in INDEXED data set 137
source, in REGIONAL data
sets 155-156

VSAM data sets
KEYS operand

of DEFINE ALTERNATEINDEX command 310
of DEFINE CLUSTER command 301

labels 76
magnetic tape 90
on DECLARE statements 316

LBLTYP statement
description 11, 76
for data management 77
processing a data set 9, 11
restrictions 11, 77
used by linkage editor 47

LEAVE option 126
length of initial storage area 273
LIBDEF statement IS
libraries 6
library 66

conversion 279
core-image 6

for DOS supervisor controlled
programs 6

PL/I shared for CICS/DOS/VS 279
relocatable

use 7
source statement

and Y.INCLUDE statement 17
use 7

subroutine failure 206
life of VSAM data set 299-300
LIMSCONV compiler option

abbreviation and default 18
description 24
function 20

LINE option and format item 113
line printers 88
LINECOUNT compiler option

abbreviation and default 18
description 24
function 19

LINESIZE 116
LINESIZE option

of OPEN statement 114
LINK compiler option

default 18
description 25

LINK operand
of OPTION statement 15

link-editing
complicated overlay structures 56
tall overlay structures 55

examples 56
wide overlay structures 54

example 55
linkage editor 43, 52-65, 327

additional processing
AUTOLINK feature 43
building overlay structure 43

checkout 203
control dictionary 44
control statements 48-52

ACTION statement 48-49
ENTRY statement 52
examples 52
INCLUDE statement 49-50
PHASE statement 50-51

converting modules 7
entries in object module 44
external symbol resolution 46
including library modules 46
incorporating resident library

modules 46
input to 43
job control statements for 46

EXEC statement 47
LBLTYP statement 47
OPTION statement 47

linking multilanguage programs 63
linking multiple object modules 63
listing 52
map, use in problem
determination 327

multiprogramming considerations 46
output from

executable program phase 43
module map 43

processing 46
use uhder DOS release earlier than

28.0 57
linking PL/I

with other language modules 63
linking PL/I with

assembler language modules 215-228
arguments, parameters, return

codes 226
ASSEMBLER option 227
calling IOCS modules 220
calling PL/I from
assembler 221-223

Dynamic Storage Area (DSA) 217
error-handling 226
establishing PL/I environment 217
invoking nonrecursive assembler
routine 218

340 DOS PL/I Optimizing Compiler: Programmers Guide

invoking recursive assembler
routine 219

passing arguments 228
passing parameters 215
PLICALLA 217
PLICALLB 217
return codes 228
save area 217
use of PLICALLA 224
use of PLICALLB 224
use of PLIMAIN 225
use of register 12 219

LIST compiler option
default 18
description 25
function 19

listing 16
compiler 30-31
example 281-282
linkage editor 52
use in problem determination 327

LISTIO CMS command 327
loading

entry-sequenced data set 179
example 188

key-sequenced data set 181, 193
example 194

relative-record data set 184, 199
example 199

VSAM data sets 168
locate-mode 78
logical errors in source programs 204

MACRO compiler option
abbreviation and default 18
description 25
function 19

macro-level interface 267-269
magnetic tape 89

backward processing 90
checkpoints 231
conversion feature 89
effect of restart on data sets

on 232
ENDFILE condition 91
labels 90
recording density 89
taking checkpoints on 231
track width 89
translation feature 89
volume format 90
volumes with multiple data sets 89

major order, column 249
major order, row 249
MAP compiler option

default 18
description 25
function 19

MAP option
of ACTION statement 48

mapping 249-250
mapping of arrays 248
MARGINI

abbreviation and default 18
MARGINI compiler option

description 25
function 19

MARGINS
abbreviation and default 18

MARGINS compile option
function 19

MARGINS compiler option
description 25-26

master index 136, 143
master password 299
MASTERPW operand

of DEFINE CLUSTER command 303
MASTERPW password operand

of DEFINE CLUSTER command 302
matching

COBOL arguments 254-255
FORTRAN parameters 255-256
RPG parameters 256-257

MDECK
abbreviation and default 18

MDECK compiler option
abbreviation and default 18
description 26
function 19

MEDIUM option 98, 101
associating data sets with
files 91-92

device types 100
and corresponding
specifications 99

symbolic device name
SYSIPT 100
SYSLST 100
SYSPCH 100

with DOS PL/I D compiler 318
with 3525 multiple print feature 86

messages
error-level 38
informatory-level 38
severe-level 38
unrecoverable error 38
warning-level 38

modifying tab settings 117
module map

as output from linkage editor 43
move-mode 78
multilanguage programs

entry-sequenced data set with 63
multiphase program 53
multiple compilations 40
multiple data sets

on magnetic tape 89
multiple print feature 86
multiprogramming 48

NAME compiler option
abbreviation 18
description 26
function 20

NAME operand
of DEFINE ALTERNATEINDEX command 3n9
of DEFINE CLUSTER command 301
of PHASE statement 50

NEST compiler option
default 18
description 27
function 19

NOAGGREGATE compiler option
abbreviation and default 18

NOATTRIBUTES compiler option
abbreviation and default 18

NOAUTO option
improve program after use 57

Index 341

of ACTION statement 49
NOCOMPILE compiler option

abbreviation and default 18
description 21
function 19

NOCOUNT compiler option 272, 274
abbreviation and default 18

NODECK compiler option
abbreviation and default 18

NODUMPcompiler option
abbreviation and default 18

NODYNBUF compiler option
default 18
description 22

NOESD compiler option
default 18

NOFEED option 126
NOFLOW compiler option 272, 274

default 18
NOGOSTMT compiler option

abbreviation and default 18
NOGRAPHIC compiler option

default 18
description 24

NOINCLUDE compiler option
abbreviation and default 18

NOLABEL option 126
NOLIMSCONV compiler option

abbreviation and default 18
NOLINK compiler option

default 18
description 25

NOLIST compiler option
default 18

NOMACRO compiler option
abbreviation and default 18

NOMAP compiler option
default 18

NOMAP option
of ACTION statement 48

NOMAP option of OPTIONS attribute 250,
253

NOMAPIN option of OPTIONS
attribute 250, 253

NOMA POUT option of OPTIONS
attribute 250, 253

NOMARGINI compiler option
abbreviation and default 18

NOMDECK compiler option
abbreviation and default 18

NON-LIFO
FREE requests 273
GET requests 273

non-recursive assembler routine
skeletal code 218

NON EST compiler option
default 18

NONINDEXED operand
of DEFINE CLUSTER command 301

nonrecursive assembler routine
how to invoke 218

nonunique key alternate index 168
nonunique key alternate index path

creating for an ESDS 190
example 190

NONUNIQUEKEY operand
of DEFINE ALTERNATEINDEX command 310

NOOFFSET
abbreviation and default 18

NOOPTIMIZE compiler option
abbreviation and default 18
description 27
function 20

NOOPTIONS compiler option

abbreviation and default 18
NOREL option

of ACTION statement 49
NOREPORT option 272-274
NOREUSE operand

of DEFINE CLUSTER command 302
NOSOURCE compiler option

abbreviation and default 18
NOSTAE option 272-274
NOSTORAGE compiler option

abbreviation and default 18
NOSYNTAX compiler option

abbreviation and default 18
description 28
function 19

NOTAPEMK option 127
NOUPGRADE operand

of DEFINE ALTERNATEINDEX command 310
NOWRITE option 142
NOXREF compiler option

abbreviation and default 18
number of

FREE NON-LIFO requests 273
FREEMAINS 273
GET NON-LIFO requests 273
GETMAINS 273

NUMBERED operand
of DEFINE CLUSTER command 301

numbers, halfword binary 315

object module 14
control sections 44
external symbol dictionary 45
listing 37
relocatable 7
text 44

object module structure
OFFSET compiler option

abbreviation and default 18
description 27
function 20

OFFSET OF TAB COUNT 116
OFLTRACKS option 142
OMR option 82-84, 127
ONSYSLOG option 316
OPEN statement

LINESIZE option 114
TITLE option 93

operating error 205
operating instructions, use for problem

determination 327
Optical Mark Read COMR) feature 82-84
OPTIMIZE compiler option

abbreviation and default 18
description 27

OPTIMIZECTIME) compiler option
function 20

optimizing record access 151
option list

for ENVIRONMENT attribute 97
OPTION statement

CATAL option 67
LINK option IS, 67
options 47
used by linkage editor 47
with LINK option 2

options
execution-time 274
execution-time, CICS 272

342 DOS PL/I Optimizing Compiler: Programmers Guide

options and statements permitted
for CONSECUTIVE data sets 120
for INDEXED data sets 135
for REGIONAL data sets 153-154

OPTIONS attribute
ARGn option 251
COBOL option 250, 252
FORTRAN option 250, 253
INTER option 250
NOMAP option 250, 253
NOMAPIN option 250, 253
NOMAPOUT option 250, 253
RLABL option 253
RPG option 253

OPTIONS compiler option
abbreviation and default 18
description 27
function 19

OPTIONS(ASSEMBLER) 227, 278
ORIGIN operand

of PHASE statement 50
original source program 326
out-of-block GO TO 276
output 16
overflow areas 137, 144

cylinder 137
independent 137

overlay phase 53
loading with PLIOVLY 53
storage requirement 62
use of 61

overlay program 53-63
constructing 54
data variables 57
example 60
files 57
in a foreground partition 59
library modules 57
link-edited with AUTOLINK

improvements to 56
link-edited with NOAUTO 57

improvements to 57
overlay phase 53

storage requirement 62
permissible modules 58
root phase 53

storage requirement 62
storage requirement 62

example 62
use of overlay phases 61
using batched compilation 61

overlay structure building 43
overlay structures 53

complicated, link-editing 56
tall, link-editing 55

examples 56
wide, link-editing 54

example 55

PAGE option and format item 113
PAGELENGTH 116
PAGESIZE 116
parameters 252

and arguments 248
lists 226, 253
matching COBOL 254-255
matching FORTRAN 255-256
matching RPG 256-257
passing 215

to COBOL routines 248
to FORTRAN routines 248

parti tion 6
foreground

overlay program in 59
partitions

foreground 48
passing arguments

data mapping 249-250, 252
data types 248
from assembler-language routines 228
from COBOL routines 252
from FORTRAN routines 252
problem data 249
program-control data 249
to COBOL routines 248
to FORTRAN routines 248

passing parameters 215
passwords

alternate indexes 307
control 299
master 299
operands of DEFINE CLUSTER

command 302
protection 299
read 299
update 299

performance 4-5
compile-time 4
execution-time 4
with alternate indexes 307

PHASE statement 50-51
NAME operand 50
ORIGIN operand 50

picture defining 317
PL/I

abend codes under CICS 276
bit manipulation routines 279
calling assembler calling PL/I 226
CICS system information 321-324
conversion library 279
decl~ration of a data aggregate 255
error handling, methods of overriding
and restoring 226

linking with assembler
modules 215-228

arguments, parameters, return
codes 226

ASSEMBLER option 227
calling IOCS modules 220
calling PL/I from
assembler 221-223

Dynamic storage Area (DSA) 217
error-handling 226
establishing PL/I environment 217
invoking nonrecursive assembler

routine 218
invoking recursive assembler

routine 219
passing arguments 228
passing parameters 215
PLICALLA 217
PLICALLB 217
return codes 228
save a rea 217
use of PLICALLA 224
use of PLICALLB 224
use of PLIMAIN 225
use of register 12 219

out-of-block GO TO 276
program termination 279
restrictions under CICS 266
running program 1-5
using on CICS 265-280

Index 343

writing CICS/VS transactions 267-269
Pl/I environment 216

establishing 217, 258-260
establishing for multiple
invocations 221

establishing separately for each
invocation 224

extent of 261
Pl/I interface

COBOL 254-255
FORTRAN 255-256
RPG 256-257
to CICS 267
to CICS, status 269

Pl/I preprocessor
use in program checkout 209

Pl/I procedure
called from assembler

language 221-223
invoked by PlIMAIN 217
invoked by RPG II 257

Pl/I routines
called from assembler 215, 216
invoking from COBOL, FORTRAN,

RPG 252
Pl/I Sort 234-246

data sets used by 235-237
input 235
output 237
work 236

invoking from Pl/I 237-238
PlISRTA entry 234

syntax 237
PlISRTB entry 234

syntax 237
PlISRTC entry 234

syntax 237
PlISRTD entry 234
"" syntax 237
programming examples 238-246

PlISRTA 239
PlISRTB 241, 245
PlISRTC 242, 246
PlISRTD 243

storage requirements 234
user exit points 234

procedures invoked 235
Pl/I storage 270

amount required 273
planning with alternate indexes 307
PlICAllA 215, 217, 224
PlICAllB 217, 224
PlICKPT 229-231
PlICOUNT 322
PlICOUNT control section 45
PlIDUMP 209-211

default options 278
options 277-278
use of 277-278

PlIFlOW 322
PlIFlOW control section 45
PlIMAIN 322

establishing as an entry in an
assembler-language routine 225

inserting a Pl/I entry point address
into 225

used to invoke a Pl/I procedure 217
PlIMAIN control section 44
PlIOVlY library module 53
PlIRETC 235
PlISA subroutine 261
PlISHRE 280
PlISRTA 234

programming example 239

syntax 237
PlISRTB 234

programming example 241, 245
syntax 237

PlISRTC 234
programming example 242, 246
syntax 237

PlISRTD 234
programming example 243
syntax 237

PlISTART 280
PlISTART control section 44
PlITABS structure

for modifying tab settings 117
PlITCIC 322
PlIXHD 29, 322
PlIXOPT character string 273
PRECISION built-in function 317
preprocessor 14

input 31
use for problem determination 326

primary input 15
prime data area 143
prime index 167, 297
print

American National Standard (ANS)
control characters 114

control characters 113
for record-oriented data
transmission 130

in CONSECUTIVE data sets 130
on 3525 card punch 85

multiple print feature 86
two-line print feature 86

record format
for stream-oriented data
transmission 114

PRINT file
creating data set using

example 115
lINE option and format item 113
PAGE option and format item 113
SKIP option and format item 113

PRINT files
for stream-oriented data
transmission 113

problem data 249
problem determination 326-329

console log 327
execution-time dumps 327
linkage editor map 327
listings 327
operating instructions 327
use of preprocessor 326

procedure library
contents 66

PROCEDURE statement, RETURNS
keyword 318

PROCESS statement 15
processing allowed on alternate
indexes 178

processing phases 14
PROD built-in function 317
program checkout 202

CHECK prefix option 208
compile-time 202-203
compiler subroutine failure 206
condition codes 209
control of conditions 208-209
conversational 202
debugging information 212
dynamic checking facilities 207
ERROR on-unit 209
execution-time 203-206

344 DOS Pl/I Optimizing Compiler: Programmers Guide

file information 212
FINISH condition 209
hexadecimal dump 213
invalid input data 205
invalid use of PL/I 204
library subroutine failure 206
linkage-editor 203
logical errors in source

programs 204
operating error 205
PLIDUMP 211
QUICK DUMP option 213
REPORT option 212
SIGNAL statement 208
system failure 206
trace information 211
unforeseen errors 204
unidentified program failure 205-206
use of Y.INCLUDE statement in 209
use of PL/I preprocessor 209

program control data 249
program control section 44
program libraries

core-image library 67, 68
contents 66

creation and maintenance 66-71
deleting books from source statement
library 69

deleting programs from core-image
library 67

private libraries
defining 66

procedure library
contents 66

relocatable library 69, 71
adding object module to 69
compiling and cataloging into 69
contents 66
deleting an object module 70

source statement library 68, 69
contents 66
including books 68
inserting new books 68

program phase structure 44
program termination, PL/I 279
programming example 3

listing 281-282
PTFs applied 328
punching cards and printing 130-133
PUT DATA 207, 272

QUERY CMS commands
DISK * 327
DOSLIB 327
LIBRARY 327
OPTION 327
SEARCH 327
SET 327
SYSNAMES 327
TERMINAL 327
VIRTUAL 327

QUICK DUMP option 213

RCE option 84, 127
Read Column Eliminate (RCE) feature 84
read password 299
READPW password operand

of DEFINE CLUSTER command 302
record format

CONSECUTIVE data sets 130
defaults

for stream-oriented
transmission 108

ENVIRONMENT options
for record-oriented data
transmission 95

for stream-oriented data
transmission 97

fixed-length 73
for INDEXED data sets 144, 145
for stream-oriented data transmission

to access a data set 112
option defaults 103
options

for stream-oriented data
transmission 107

print
for stream-oriented data
transmission 114

SYSPRINT 271
undefined-length 75
variable-length 74

record-oriented data transmission
access methods 79
accessing data sets for 118
creating data sets for 118
data set information 119
locate-mode 78
move-mode 78
record format options 95

recorded key
in INDEXED data set 137
in REGIONAL data set 154

recording density 89
records

blocking and deblocking 78
defined 72
dummy, in REGIONAL(I) data sets 156
in INDEXED data sets 144

creating dummy records 144
deleting records 144

of DEFINE CLUSTER command 301
optimizing access 151

RECORDSIZE operand
of DEFINE ALTERNATEINDEX command 310
of DEFINE CLUSTER command 302

RECSIZE option 102, 108
defaults

for non-VSAM data sets 103
for stream-oriented
transmission 108

recursive assembler routine
how to invoke 219
skeletal code 220

reduction of key conversions 156
redundant expression elimination 317
REGIONAL data sets 151, 165

accessing
information required 159

creating
information required 159

D compiler 315
defining 152

Index 345

ENVIRONMENT options 152-154
examples 162

REGIONAL(1), creating 160
REGIONAL(1), updating 161-162
REGIONAL(3), creating 163
REGIONAL(3), direct input 165
REGIONAL(3), direct update 164
REGIONAL(3), sequential
update 165

organization 75
recorded keys in 154
REGIONALCI) organization 156-157
REGIONAL(3) organization 158-159
source keys in 155-156
statements and options permitted 153

REGIONAL files
compatibility with VSAM 177

REGIONAL option 94, 152-154
REGIONAL organization 151
REGIONALCl) data sets

accessing 157
directly 157
sequentially 157

creating 156-157
defined 152
dummy records 156
organization 156-157

REGIONAL(3) data sets
accessing 158

directly 159
sequentially 158

creating 158-159
example 163

defined 154
direct input 165
direct update 164
organization 158-159
sequential update 165

register 12, use of 219
REL option

of ACTION statement 49
RELATE operand

of DEFINE ALTERNATEINDEX 310
Relative Byte Address CRBA) 169, 298

in VSAM data sets 169
relative-record data set CRRDS)

defining and loading 199
example 199

direct access 185
loading 184
relative-record number 169
sequential access 185
statements and options

permitted 186-187
under VSAM 167, 298
updating 201

example 200
relative-record number

in relative-record data set
CRRDS) 169

relink-editing for 333t-l1 and 3350
under DOS/VS Release 34 64

relocatable library 69, 71
adding object module to 69
cataloging an object module 70
compiling and cataloging into 69
contents 66
deleting an object module 70
use 7

relocatable object module 7
relocation dictionary CRLD) 15

entries in object module 44
use 45

relocation factor 45

reorganizing an INDEXED data set 147
REPLY option 316
REPORT option 212, 272-274
resident library modules 54

incorporation during link-editing 46
restart, effect on data sets 232
restarts 229
restrictions

on input/output by FORTRAN
routines 261-262

restrictions, CICS-supplied
interface 269

return codes 228
compile-time 257-260
execution-time 213
produced by PL/I data types 259-260

RETURNS keyWord in PROCEDURE and ENTRY
statements 318

REUSE operand
of DEFINE CLUSTER command 302

RLABL option of OPTIONS attribute 253
root phase 53

IBMBJDSA 54
IBMBJWTA 54
IBMBRIOA 54
IBMBSCPA 54
IBMBTOCA 54
storage requirement 62

row-major-order 249
RPG

arguments, matching 256-257
communication with PL/I 247
example of PL/I procedure

invoked 257
indicator 257
option of OPTIONS attribute 253
parameters, matching 256-257

running a PL/I program 1-5 ~

S Csevere-Ievel) messages 38
SAM 78, 79
SAMEKEY built-in function 184
save area 217
SCALARVARYING option 105
Secondary Storage Area CSSA) 270
sequential

update to REGIONAL(3) data sets 165
sequential access

entry-sequenced data sets 179
INDEXED data set 135
INDEXED entry-sequenced data
sets 181

key-sequenced data set 181
relative-record data set 185
to INDEXED data sets 145-147
to REGIONALCl) data sets 157
to REGIONAL(3) data sets 158

sequential data set 75
SEQUENTIAL OUTPUT file

used to create REGIONAL data
sets 158

severe CS) message 38
shared data sets 178
shared library, PL/I, for

CICS/DOS/VS 279
SHAREOPTIONS operand

of DEFINE CLUSTER command 304
of DEFINE CLUSTER operand 302

sharing

346 DOS PL/I Optimizing Compiler: Programmers Guide

between jobs 304
cross-partition 304
cross-system 304
VSAM data sets 304
within a job 304

SIGNAL FINISH statement 279
ERROR on-unit 209
FINISH condition 209

SIGNAL statement 208
SIZE compiler option

abbreviation and default 18
description 27
function 20

SIZE condition 318
SKIP option 175
SKIP option and format item 113
sort/merge 234-246

data sets used by 235-237
input 235
output 237
work 236

invoking from PL/I 237-238
PLISRTA.entry 234

syntax 237
PLISRTB entry 234

syntax 237
PLISRTC entry 234

syntax 237
PLISRTD entry 234

syntax 237
programming examples 238-246

PLISRTA 239
PLISRTB 241, 245
PLISRTC 242, 246
PLISRTD 243

storage requirements 234
user exit points 234

procedures invoked 235
source

program 31, 326
program errors 317

SOURCE compiler option
abbreviation and default 18
description 28
function 19

source key
in INDEXED data set 137
in REGIONAL data set 155-156

source statement library 68, 69
and Y.INCLUDE statement 17
contents -66
deleting unwanted books 69
including books 68
inserting a new book 68
use 7

space management
for CONSECUTIVE data sets 79

spill files 16
stacker feature 84
STACKER option 84, 128
STAE option 272-274
standard device assignments 9, 77
standard files 11
statement

count option (COUNT) 207
length and INITIAL attribute 318
nesting level 32
number track facility (FLOW) 207
numbering option (GOSTMT) 207
numbers and tracing 207
offset addresses 34

statements and options permitted
CONSECUTIVE data sets 120
entry-sequenced data sets 180-181

INDEXED data sets 135
REGIONAL data sets 153-154
relative-record data sets 186-187
VSAM INDEXED data sets 182-184

static external storage map 37
static external variable 29, 247
status, PL/I-supplied interface to

CICS 269
Sterling pictures 317
STOP statement 279
storage

auxiliary devices 80-91
lifetime of under CICS 270
requirements 34

STORAGE and CURRENTSTORAGE 278
storage classes in CICS

ALLOCATE statement 270
AUTOMATIC 270
BASED 270
CONTROLLED 270
FREE statement 270
STATIC 270

STORAGE compiler option
abbreviation and default 18
description 28
function 19

storage map, variable 37
STREAM attribute 106-117
stream-oriented data transmission

accessing data sets for III
record format 112

CONSECUTIVE organization III
creating data set using PRINT file

example 115
creating data sets for 109

example III
defining data sets for 106-117
defining files for 106
print record format 114
record format options 97
required information 110

string alignment 314
STXIT macro 274
STXIT PC macro 226
STXIT PC routine 274
submitting an APAR 328
subroutine PLISA 261
SUM built-in function 317
supervisor 6
symbolic device name

SYSIPT
device types associated with 100

SYSLST
device types associated with 100

SYSPCH
device types associated with 100

symbolic device names 9, 77
SYNTAX compiler option

abbreviation and default 18
description 28

SYSCLB 15
SYSIN 315
SYSIN files 117
SYSIPT 15

device types associated with 100
linkage editor control statements
in 43

SYSLNK 15, 16
linkage editor control statements
in 43

SYSLST 15
device types associated with 100

SYSPCH 15, 16
device types associated with 100

Index 347

SYSPRINT 315
declaration of 271
format of records sent to 271
use in CICS 271-272

SYSPRINT files 117
data sets for stream files 117

SYSRDR
linkage editor control statements
in 43

SYSRES
linkage editor control statements
in 43

SYSRLB
linkage editor control statements
in 43

SYSSLB 15
system failure 206
system information, PL/I-CICS 321-324
SYSOOI 15 , 16
SYS002 15 , 16

tab control table
FILLERS field 116
LINESIZE field 116
modifying tab settings 117
OFFSET OF TAB COUNT field ,116
PAGELENGTH field 116
PAGESIZE field 116
tab count field 116
tabl-tabn field 116

tab count field 116
tall overlay structures

link-editing 55
examples 56

TCA 321
terminating

COBOL routines 263-264
FORTRAN routines 263-264

termination, PL/I program 279
terminologYI alternate index paths 306
text (TXT)

entries in object module 44
TIA 321
TITLE option 93
TITLE option of OPEN statement

use with VSAM data sets 177
TLBL statement 9

description 76
for magnetic tape data sets 77
identifying a data set 10
processing a data set 9

trace information 211
tracing and statement numbers 207
track width 89
TRACKS operand

of DEFINE CLUSTER command 301
transaction work area (TWA) 270
transient library modules

IBMBSTAB 116
translation feature 89
translator, CICS 269
troubleshooting 326-329
TTKK 321
TWA (transaction work area) 270
two-line print feature 86
TYPE=SETXIT operand 275
types of VSAM data sets 170-171

U (unrecoverable-level) messages 38
U-format records 75
UNALIGNED attribute 314
undefined-length records 75
unforeseen errors 204
unidentified program failure 205-206
unique key alternate index 168
unique key alternate index path

creating for a KSDS 196
example 197

creating for an ESDS 189
example 189

using with a KSDS 197
example 198

UNIQUEKEY operand
of DEFINE ALTERNATEINDEX command 310

unit record data sets 232
effect of restart on 232

UNLOAD option 126
unrecoverable (U) message 38
update password 299
UPDATEPW password operand

of DEFINE CLUSTER operand 302
updating

entry-sequenced data sets
example 189

INDEXED data sets
example 150

key-sequenced data sets 193 , 196
example 195

REGIONAL(l) data sets
example 161-162

REGIONAL(3) data sets
example 164 , 165

relative-record data sets 201
example 200

UPGRADE operand
of DEFINE ALTERNATEINDEX command 310

using
access method services program 303
CICS facilities 280
common storage 258
CONSECUTIVE data sets 118-134
CONSECUTIVE, INDEXED, and REGIONAL
data sets 165

PL/I on CICS 265-280
unique key alternate index path with

a KSDS 197
example 198

V-format records 74
variable storage map 37
variable-length records

blocked 74
blocked , ASCII 74
unblocked 74
unblocked , ASCII 74

VB-format records 74
VERIFY option 104
VOL SEQ option 128
volume

defined 72
VOLUMES operand

of DEFINE CLUSTER command 302
VSAM 78

348 DOS PL/I Optimizing Compiler: Programmers Guide

background 297-313
catalog 297
VSE/VSAM space management 79

VSAM data sets 167-201
adapting existing programs 177
advantages 170-171
associating alternate index path with
file 178

associating one with several
files 177-178

choice of type 169-172
compatibility interface 177
compatibility with other
types 176-177

CONSECUTIVE files 177
INDEXED files 177
REGIONAL files 177

control areas 167
control intervals 167
data set types 297-298
defining 299
direct 172

defining 172
direct access 184
entry-sequenced data set (ESDS) 167,

297
alternate index 167
programming examples 188-192

entry-sequenced, sequential 179
ENVIRONMENT attribute

performance options 175
ENVIRONMENT attribute options
for 172

ESDS, statements and options
permitted 180-181

executing a program using 178-179
index upgrade 168
INDEXED 168

keys for 168
sequential access 181

INDEXED, statements and options
pe.r'mi tted 182-184

key-sequenced data set (KSDS) 167,
297

alternate index 167
methods of insertion into 196
prime index 167
programming examples 193-198

life of 299-300
loading 168

entry-sequenced data set 179
on direct-access storage devices 298
organization 167-168
permitted file attributes 173
prime index 297
Relative Byte Address (RBA) 169

with KEYFROM option 169
with KEYTO option 169

relative-record data set (RRDS) 167,
184

direct access 185
loading 184
programming examples 198-201
sequential access 185
statements and options

permitted 186-187
SAMEKEY built-in function 184
sequential 172

defining 172
shared 178
sharing 304
TITLE option of OPEN statement
with 177

types 170-171

VSAM option 94
of ENVIRONMENT attribute 173

VSE/VSAM space management 79
VTOC

display utility 325
job control statements required 325

W (warning-level) message 38
warning (W) message 38
wide overlay structures

link-editing 54
example 55

WORKFILE compiler option
default 18
description 28-29
function 20

workspace 16
writing

CICS/VS transactions in PL/I 267-269
graphic data to a stream file 112

WRTPROT option 128

XREF compiler option
abbreviation and default 18
description 29
function 19

xxxx abend code 277

1442 card read punch 80

2501 card reader 80
2520 card read punch 80
2540 card read punch 80
2540 card read punch control characters

(CTL360) 131
2560 card read punch 81

3504 card reader 82-87
column binary mode 85
EBCDIC mode 85
OMR option with 82-84
Optical Mark Read (OMR)
feature 82-84

RCf option with 84
Read Column Eliminate (RCE)
feature 84

stacker feature 84
STACKER option with 84

3505 card reader 82-87

Index 349

column binary mode 85
EBCDIC mode 85
OMR option with 82-84
Optical Mark Read (OMR)
feature 82.;...84

RCE option with 84
Read Column Eliminate (RCE)
feature 84

stacker feature 84
STACKER option with 84

3525 card printer control
characters 132

3525 card punch 82-87, 133-134
associated files 86
column binary mode 85
EBCDIC mode 85
print feature 85, 86

multiple print feature 86
two-line print feature 86

RCE option with 84
Read Column Eliminate (RCE)
feature 84

stacker feature 84
STACKER option with 84

3540 Input/Output unit

diskette storage 91
3800 printing subsystem 87
3881 optical mark reader 87

48-character set 21

5425 card read punch 81

60-character set 21

350 DOS Pl/I Optimizing Compiler: Programmers Guide

Qj

o z

DOS PL/I Optimizing Compiler:
Programmer's Guide
SC33·0008·6

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any
requests for copies ofpublications, or for assistance in using your IBM system. to your IBM representative or to
the IBM branch office serving your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL ________ _

Previous TNL ____ ~ ____ _

Previous TNL _________ _

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

SC33-0008-6

Reader's Comment Form

Fold and tape Please do not staple Fold and tape

...

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

III " I NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

...

Fold and tape Please do not staple Fold and tape

--------- ----- ---- - ---- -- -------------, -
®

c
o
en
"'"0
r :::.:
o
"0
3·
N·
5·
(Q

(')
o
3
"E.
m
~
"'"0
"'"I o

(Q

OJ
3
3
CD
"'"I

vi"

en
(')
CAl
CAl
6
o o
00 c»

