SC33-0008-6
File No. S360/S370-29

DOS PL/I Optimizing Compiler:

Program Product Programmer’s Guide
Optimizing Compiler 5736-PL1
Resident Library 5736-LM4
Transient Library 5736-LM5

(These program products are also available as
composite package 5736-PL3)

Release 6.0

Seventh Edition (May 1984)
This is a major revision of, and makes obsolete, SC33-0008-5.

This edition applies to Release 6.0 of DOS PL/I Optimizing
Compiler, Program Product 5736-PL1l, and to any subsequent
releases until otherwise indicated in new editions or technical
newsletters.

The changes for this edition are summarized under "Summary of
Amendments™ following the preface. Specific changes are
indicated by a vertical bar to the left of the change. These
bars will be deleted at any subsequent republication of the page
affected. Editorial changes that have no technical significance
are not noted.

Changes are made periodically to this publication; before using
this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below;
requests for IBM publications should be made to your IBM
;eprfs:ntat1ve or to the IBM branch office serving your

ocality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.0. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1971,
1972, 1973, 1974, 1976, 1981, 1984

PREFACE

This publication is a guide to the use of the PL/I Optimizing
Compiler (Program No. 5736-PL1) in a batch environment under
vour operating system. It explains how to use the compiler to
compile and execute PL/I programs, and describes the features of
the operating system that may be required by a PL/I programmer.
It does not describe the language implemented by the compiler or
explain how to use the compiler with the Conversational Monitor
System (CMS); these are functions of the manuals listed under
"Associated Publications™ below.

During execution of a PL/I program, the optimizing compiler
employs subroutines from the D0OS PL/I Resident Library (Program
No. 5736-LM4G) and the D0OS PL/I Transient Library (Program No.
5736-LM5). This programmer's guide assumes the availability of
these program products.

Different release levels of the D0OS PL/I Optimizing Compiler and
the PL/I Resident and Transient Libraries will provide
cogya?@bée execution provided that the following conditions are
satisfied:

. The release and service level of the transieht library are
equal to or greater than the release and service level of
the resident library.

L The release and service level of the resident library are
equal to or greater than the release and service level of
the compiler.

Chapter 1, "Running a PL/I Program,™ through Chapter 3, "How to
Define a Data Set,"™ of this programmer's guide cover basic
topics, and are intended primarily for casual (nonspecialist)
programmers or for newcomers to IBM systems. The reader is
assumed to have only an elementary grasp of PL/I and the basic
concepts of data processing. These chapters introduce the IBM
Disk Operating System and Disk Operating System with Virtual
Storage (D0OS/VS), and explain how to run a simple PL/I program
and how to define a simple data set.

The rest of the manual contains more detailed information on the
optimizing compiler, and provides general guidance and reference
information on operating system features that are likely to be
required by the PL/I applications programmer.

Chapter 46, "The Optimizing Compiler™ on page 14, describes the
optimizing compiler, the data sets it requires, its optional
facilities, and the listings it produces. Chapter 5, "The
Linkage Editor™ on page 63, contains similar information about
the linkage editor, which is always needed to prepare a PL/1
program for execution.

Chapter 6, "Program Library Creation and Maintenance™ on page
66, is concerned with the various types of program library
available under the Disk Operating Systenm.

Chapter 7, "Data Sets and Files,™ through Chapter 10, "Using
VSAM Data Sets from PL/I,"™ are concerned with the various types
of data sets that can be created and accessed by a PL/I program,
and explain how to define these data sets.

Chapter 11, "Program Checkout,® describes the facilities
available for debugging PL/I progranms.

Chapter 12, "Linking PL/I and Assembler Language Modules,"

explains how to write programs that contain a combination of
PL/1I and assembler-language modules.

Preface iii

Chapter 13, "Checkpoint/Restart,"™ and Chapter 14, "PL/I SORT,"

are concerned with the use of built-in subroutines included in
the optimizing compiler to provide a direct interface between

PL/I programs and the operating system checkpoint/restart and

sort facilities.

Chapter 15, "Communication with COBOL, FORTRAN, and RPG,"
describes how the PL/I interlanguage facilities permit
communication, at execution time, between programs compiled by
FORTRAN, COBOL, and RPG compilers, and executed using the
corresponding libraries.

Chapter 16, “Usiné PL/I on CICS,"™ describes the use of PL/I in
conjunction with CICS facilities.

Appendixes supply reference information.

ASSOCIATED PUBLICATIONS

iv

The language implemented by the DOS PL/I Optimizing Compiler is
described in the following publication:

U 0S _and DOS PL/I Language Reference Manual, GC26-3977

For information on how to use the compiler under CMS, refer to:
® DOS PL/I Optimizing Compiler: CMS User's Guide, SC33-0051

The PL/I Optimizing Compiler, its facilities, and its ‘
requirements are described in the following DOS pub11cat1on
(which also contains a comparison of the language implemented by
this compiler).

. DOS PL/1 Optimizing Compiler: General Information, GC33-0004

Compile-time and execution-time messages for this compiler are
documented in the following DOS publications:

e DOS PL/I Optimizing Compiler Messages, SC33-0021
° DOS PL/I Transient Library: Messages, SC33-0005

Additional information about the object programs generated by
the DOS PL/I Optimizing Compiler and the PL/I resident and
transient modules is contained in the following DOS publication:

. DOS PL/1 Optimizing Compiler: Execution lLogic, SCSS~001§
Information about installing and operating the D0S PL/I
Optimizing Compiler, including both system generation and

storage requirements, is contained in the following DOS
publication:

o DOS PL/I Optimizing Compiler: Installation Guide, SC33-0020
The following manuals describe the control statements that
relate to the SCP (system control programming) and the

VSE/Advanced Functions of DOS/VSE (Disk Operating System/V1rtua1
Storage Extended).

. DOS/VSE System Control Statements, GC33-5376

U VSE/Advanced Functions Control Statements, SC33-6095
Information on DOS/VSE I/0 macros can be found in:

o VSE/Advanced Functions Macro_Reference, SC24-5211

The following publication provides all the VSAM information
needed to use Access Method Services in order to establish and

maintain VSAM data sets.

. D0S/VS Access Method Services User's Guide, GC33-5382

DOS PL/I Optimizing Compiler: Programmers Guide

SYNTAX NOTATION

INDUSTRY STANDARDS

The types of labels that may be written on magnetic tape or disk
by DOS/VSE are defined and described in the following manuals:

. DOS/VSE DASD Labels, GC33-5375
. DOS/VSE Tape lLabels, GC33-5374

The following publications contain information for assembler,

COBOL, and PL/I application programmers for preparing programs

g?éggoglsglvs commands to execute under either CICS/D0S/VS or
/70S/7 .

. Customer Information Control System/Virtual Storage
(CICS/VS) Version 1, Release 3: Application Programmer's
Reference (Command Level), SC33-0077

U ustomer Information Control Svstem/Virtual Stora
(CICS/VS) Version Release 3: Application Programmer's

Reference (Macro Level), SC33-0079

For information about the capabilities of the IBM 3800 Printing
Subsystem, refer to:-

. DOS/VS IBM 3800 Printing Subsystem, GC26-3900

For detailed information on the functions and capabilities of
the IBM 3881 Optical Mark Reader, refer to:

o BM 3881 Optical Mark Reader Models 1 and 2 Reference Manu
and Operator's Guide, GA21-9143

For definitions of terms used in this manual, see the following
publication:

. IBM Data Processing Glossary, GC20-1699

Throughout this publication, when a PL/]l statement or some other
combination of elements is discussed, the manner of writing that
statement or phrase is illustrated with a uniform system of
notation. This notation is not a part of PL/I; it is merely a
notation that is used to describe the syntax, or construction,
of the language.

For syntax notation used in this publication, see the "Syntax

Notation™ section of 0S and DOS PL/I Language Reference Manual.

The DOS PL/I Optimizing Compiler is designed according to the
specifications of the following industry standards as understood
and interpreted by IBM as of October, 1979:

] American National Standard Code for Information Interchange
(ASCII), X3.4 - 1977

. American National Standard Representation of Pocket Select
Characters in Information Interchange, level 1, X3.77 - 1980
(proposed to IS0, March 1, 1979) v

. The draft proposed American National Standard Representation
of Vertical Carriage Positioning Characters in Information
Interchange, level 1, dpANS X3.78 (also proposed to IS0,
March 1, 1979)

Preface v

SUMMARY OF AMENDMENTS

AY 198

NEW PROGRAMMING FEATURE

SERVICE CHANGE

SEPTEMBER 1981

Support for the IBM 3370 Model 2 and 3380 Direct Access Storage
geiices %ssprovided under DOS/VSE with VSE/Advanced Functions,
elease 3.5.

The section, "Restrictions on Input/Output by FORTRAN Routines™
on page 261, has been added to Chapter 15, "Communication with
COBOL, FORTRAN, and RPG."™

Other miscellaneous corrections and clarifications have been
made throughout the manual.

NEW PROGRAMMING SUPPORT

For Extended Graphic Character Set support, the GRAPHIC compiler
option, and the GRAPHIC ENVIRONMENT option, are described.

NEW PROGRAMMING FEATURE

SERVICE CHANGES

Support for the IBM 3375 Direct Access Storage device is
provided under DOS/VSE with VSE/Advanced Functions, Release 3.

This edition is for use with the new 0S and DOS PL/I Language
Reference Manual. Information moved from the DOS PL/I

Optimizing Compiler Language Reference Manual into this edition
of the programmer's guide includes:

. The ENVIRONMENT attribute, data transmission statements, and
related topics.

["Associating Data Sets with Files™ on page 91.

. Chapter 15, "Communication with COBOL, FORTRAN, and RPG"™ on
page 247.

The following updates have been made throughout the manual:

] The SIZE operand is now required on the EXEC system control
statement. '

. The LIBDEF control statement may be used in place of SYSSLB,
SYSRLB, and SYSCLB when operating under DOS/VSE with
VSE/Advanced Functions.

] The LBLTYP system control statement is no longer required
when operating under DOS/VSE with VSE/Advanced Functions.

vi DOS PL/I Optimizing Compiler: Programmers Guide

DECEMBE 7

In addition, Appendixes B, D, G, H, and I have been removed. A
new Appendix B, "VSAM Background,™ and a new Appendix D, "CICS
System Information,"™ have been added.

] Information previously found in Appendix B can be found in
0S/ System Cont atem s.

. Information previously found in Appendix D can be found in

DOS/VSE DASD Labels and DOS/VSE Tape Labels.

] Information previously found in Appendixes G and H have been
incorporated into the body of the manual.

Other miscellaneous corrections have been made throughout the
publication.

VSE/VSAM SPACE MANAGEMENT FOR SAM FEATURE

JANUARY 1979

DEVICE SUPPORT:

AUGUST 1977

DEVICE SUPPORT:

DOS/VSE with VSE/Advanced Functions, Release 2, supports the

VSE/VSAM Space Management for SAM Feature of VSE/VSAM Release 2.

{nformatio? on using this feature with D0OS PL/I is included in
is manual.

Other changes and corrections have also been made throughout the

‘manual.

FIXED BLOCK DEVICES

Support for fixed block devices is provided under DOS/VSE with
VSE/Advanced Function, Release 1.

Otherlchanges and corrections have also been made throughout the
manual.

3350 AND 3330-11

NEW PROGRAMMING FEATURE

DOS/VS Release 34 provides support for the 3330-11 and 3350
direct access storage devices.

Summary of Amendments vii

CONTENTS

Chapter 1. Running a PL/I Program

Performance e e e e e
Compile-Time Performance
Execution-Time Performance

Chapter 2. Introduction to DOS and the DOS PL/I Optimizing

Compiler . o o e o o o
PL/I 0pt1m121ng Compller .
Link-editing PL/I Programs

Conversational Monitor System

Chapter 3. How to Define a nata Set

DOS Input/Output Concepts
Processing a Data Set . e
ASSGN Statement C e e e e e
TLBL Statement e e e e e e
LBLTYP Statement e e e e e s
DLBL Statement .. N
EXTENT Statement e e e e
Standard Files e e e e e e e e s
Examples e e e e e e e e e e e

Chapter 4. The Optimizing Compxler
Compilation .

Job Control for Comp11at1on . .
Primary Input (SYSIPT) .
Output (SYSLNK or SYSPCH) .
Workspace (SYS001 and SYSOOZ)
Listing (SYSLST) . .
Source Statement L1brary

Compiler Options e e e e
AGGREGATE Option .
ATTRIBUTES[(FULLISHORT)] 0Pt1on
CATALOG Option .
CHARSET Option
COMPILE Option .
CONTROL Option .

COUNT Option e e e e e e e
DECK Option e e e e e e
DUMP Option e e e e e e e
DYNBUF Option e e e e e e
ESD Option e e e e e e e e e
FLAG Option e e e e e e e e e
FLOW Option e e e e e e e e
GOSTMT Option e e e e e e e
GRAPHIC Option e e e e e e e
INCLUDE Option e e e e e e

INSOQURCE Option e e e e e
LIMSCONV Option e e e e e

. LINECOUNT Option e e e e .
LINK Option e e e e e e e e
LIST Option e e e e e e e e e
MACRO Option e e e e e e e
MAP Option .
MARGINI Option © e e
MARGINS Option e e e
MDECK Option e e e e e e
NAME Option e e e e e e s
NEST Option e e e e e e e
OFFSET Option PN
OPTIMIZE Option .

OPTIONS Option e e e e ale s
SIZE Option e e e e e e e e
SOURCE Option I,
STORAGE Option e e e e e e

SYNTAX Option
WORKFILE Option e e e e e e
XREFL(SHORT|FULL)1] Option .« .

- .

Contents

LD =

B OO WVWOWNY NN

Job bt et fd bl et d b

ix

Using PLIXHD to Identify COUNT Output

Listings . “ e e
Options Used For The Comp:latlon o .
PREPROCESSOR INPUT e e e e e e e e
Source Program . . e e e e e e

Statement Nesting Level
Attribute and Cross-reference Table
Attribute Table e e e e e .
Cross-reference Table . e e
Aggregate Length Table . . .
Storage Requirements . . e
Statement Offset Addresses . .
External Symbol Dictionary (ESD)

.

ESD Entries . e e e e .
Object Module L1st1ng . . .
Diagnostic Messages « e e e .

Batched Compilations . . .
Use of SIZE and DUMP Optzons .
Example .

Multiple Comp11at1ons 1n a S1n le J

e o o o ¢ o o o o o s @
® e o o 2 & ¢ o s o o

b
Compile-Time Processing . .
Invoking The Preprocessor .
The %INCLUDE Statement e e e
Use of the INCLUDE Option .

Chapter 5. The Linkage Editor « o o o o
Input to the Linkage Editor e e .
Output from the Linkage Editor .
Additional Linkage Editor Process:ng

Objeet Qodule and Program Phase Structure

ex . . e e e e e
External Symbol D1ct10nary e e e e
Relocation Dictionary

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

S 6 e ® o ® e 8 s ¢ e 6 e e s e e e o

Linkage Editor Processing for a PL/I Program

Multiprogramming Considerations .

Job Control Statements for the Linkage Editor
EXEC Statement . e e e e w e . e e
LBLTYP Statement e+ e e e e

OPTION Statement .

" Linkage Editor Control Statements
ACTION Statement e e e e e e
INCLUDE Statement e e e e e
PHASE Statement e e e e e e e
ENTRY Statement .
Example of Control Statements

“ o o o o ° & o

s e o o o o

Linkage Editor Listing e e e

Overlay (Multiphase) Programs
Constructing Overlay Programs
PL/I Resident Library Modules

. .

.
.
.
.
.
.
.
.
.
.
.

e e o o ¢ o o @

e o o o o & o

* o e ® & o o O

e o & o o o o o o o & o o o o o ® @

e« o o o o o

e ® o o o e ° o s e e e e+ O

o o o

© e o o s o

a o o & o

e & & o e+ o e o e o s =

e o o o s @

e ¢ o o o o & * o * o

e o o o o s e o =

e & o o o + o & e * o

e & & e o o o o @

e o o o e o ¢ o s o e

e e o o o s o & e o o o o

Link-Editing W

Link-Editing
Link-Editing
Improvements
AUTOLINK
Improvements

e 8 ® & o ¢ o & o o o

o o o o o o o
e o o o o o @

ide Overlay Structures
Tall Overlay Structures
Complicated Overlay Structures
to Overlay Programs Link—-Edited

to Overlay Program Link-Editing

with

e © o o o & s ° o o o o »
e o o o o s o o & o

DOS Releases Before Release 28.0

Data Variables and Files in Overlay.Programs
Overlay Programs in a Foreground Partition

Examples of Overlay Program Creation
Use of Overlay Phases

Linking PL/I and Other Language Modules
Establishing Initial Control o e e s

o o o o

Linking Multiple Object Modules
R§21nk Editing for 3330-11 and 3350 Under DOS/VS
Chapter 6. Program Library Creation and Maintenance
Program Libraries e e e e e e . e e s
Core~Image Library . e e e e .
Including New Programs e e e e

Deleting Unwanted Programs
Source Statement Library o e e e

Inserting a Source Statement Book

Deleting Unwanted Source Statement: B

DOS PL/I Optimizing Compiler: Programmers Guide

e o o o e o o

i

with NOAUTO

.

.
-
.
.
..

e
.

Relocatable Library . . . 69
Inserting a Relocatable ObJect Module . . 69
Compiling and Cataloging into a Relocatable L1brary . 69
Deleting Unwanted Relocatable Object Modules . e« « 70

Chapter 7. Data Sets and Files e o o o s s s o o o o o o 72
Data Sets e 72

Data Set Names e e e e e e e e e e e . . . 72

Blocks and Records e v e e e e e e e N &4

Information Interchange Codes e e e e e e e e . 73

Record Formats . C e e e e e e e e e e e e . ., 73
Fixed-Length Records e e e e e e e e . . . 73
Variable-Length Records . £
Undefined-Length Records . e e e e e 75

Data Set Organization . e . e e e e e e e 75

Labels e e e e e 76

Data Sets and F11es . . . e e e e . . 76

Job Control Statements for Data Sets . . e e e . 76
The ASSGN Statement e e e e e e e e e e e e e 77
The TLBL Statement . e e e e . . 77
The DLBL and EXTENT Statements e e e e e e oo 77
The LBLTYP Statement e e e e . . 77

DOS Data Management e e e e e e e e e e e . . .« . 18

Buffers . e e e e e e e e e e e 78

Access Methods . e e e e e e « . 78

VSE/VSAM Space Management for SAM Data Sets . e 79

Auxiliary Storage Devices . . e e e e e e e e e . . 80

Card Readers and Punches e e e e e e e e e e e e 80
IBM 1442 Card Punch e h e e e e e e e e e e e e . 80
IBM 2501 Card Reader e e e e e e e e e e e e . 80
IBM 2520 Card Read Punch e e e e e e e . 80
IBM 2540 Card Read Punch e e e e e e e e e 80
IBM 2560 Card Read Punch e e e e e e e e e e e e e 81
IBM 5425 Card Read Punch . e e e e e e e e . 81
IBM 3506 and 3505 Card Readers e .« e e . 82
IBM 3525 Card Punch e e e e e e e 82
Features of the IBM 3504, 3505, and 3525 . e e . 82
IBM 3800 Printing Subsystenm e e e e e e e e 87
IBM 3881 Optical Mark Reader e e e e e e e . . . 87

_ Line Printers o e e e e e e e e e e e . 88

Magnetic Tape e e e e e e e e e e e e e e e e . . . 89
Track HWidth e e e e e e e e e e e 89
Translation Feature e e e e e e e e . . . 89
Conversion Feature e e e e e e e e 89
Recording Density . . . 89
Magnetic Tape Volumes w1th Mult:ple Data Sets . . 89
Magnetic Tape Labels . . . 90
Backward Processing of Magnet1c Tape Data Sets .« . 90
Use of the ENDFILE Condition .« . e e e e e s . 91

Direct Access Devices P B |
IBM 3540 Diskette Input/Output Unlt o . . . 91

Associating Data Sets with Files . .) |

Associating Several Files with One Data Set . . . 93.

The ENVIRONMENT Attribute C e e e h e e e e . 1)

Data Set Organization Options e e 94

ENVIRONMENT Options . . . 94
Record Format 0pt1ons for Record 0r1ented Data

Transmission . .« « 95
Record Format Dptions for Stream-Oriented Data
Transmission e X 4
GENKEY Option e e e e e e e e e e e e e e . 97
MEDIUM Option e e e e e e e e e e e e e e e e e . . 98
RECSIZE Option e e e e e e e e e e 102
BLKSIZE Option e e e e e e e e e e e e e e e e e 102
Record Format, BLKSIZE, and RECSIZE Defaults . . 103
BUFFERS Option e e e e e e e e e e e e e e e N 103
VERIFY Option e e s e s s e e s . . 104
EXTENTNUMBER Optlon e e e e e e e e e e e e . 104
COBOL Option . e e e e e e e e e . e . . . 104
SCALARVARYING 0pt1on e e e e ea e e . . e . 105
KEYLENGTH Option e e e e e e e e .« e e 105
Chapter 8. Defining Data Sets for Stream Files « o o o 106
Defining Files for Stream-Oriented Data Transmission . . 106

Contents xi

ENVIRONMENT Options e e e e e e e e e e e e e e e e 106
CONSECUTIVE Option e e e e e e e e e e e e e e e e 107
Record Format Options Ve e e e e e e e e e e e 107
RECSIZE Option e e e e e e e e e e e e e e e e e e 108
Record Format, BLKSIZE, and RECSIZE Defaults « e e 108
GRAPHIC Option . . 109

Creating a Data Set for Stream-Or:ented Data Transmlss1on 109
Essential Information e e e e e e e e e e e e e e e 109
Example . . . e e e e e e e 110

Accessing a Data Set for Stream-0r1ented Data Transmission 111

Essential Information e e e e e e e e e e e e e e e 111

Record Format e e e « e e e 112

Example e e e e e e e e e e e e e e e e e e 113

‘Print Files C e e e e e e e e e e 113
Record Format C e e e e e e e e e e e e e e e e e e 114
Example e e e e e e e e e s e e e e e e e e 115

Tab Control Table e e e e e e e e e e e e e e e e 116

SYSIN and SYSPRINT F11es et e e e e e e e e e e e 117

Chagter 9. Using CONSECUTIVE, INDEXED, and REGIONAL Data 118
e s > L] [] - L] L] *

Creating and Access:ng Data Sets for Record—0r1ented

Transmission e s e e e e e e e e e e e e e e e 118

CONSECUTIVE Data Sets e e e e e e e e e e e e e e e 119

CONSECUTIVE Organization . e e e e e e e e e e e 119

Defining a CONSECUTIVE Data Set e e e e e e 119

ENVIRONMENT Options for CONSECUTIVE Data Sets e e e 120
ASCII Option . . e e e e e e e e s e e e e e e e 121
ASSOCIATE Option e e e e e e e 121
BUFOFF Option and Block Preflx Fields e e e e e e 122
CMDCHN Option . e e e e e e . . 123
COLBIN Option C e e e e e e e e e e e e . v . 124
CONSECUTIVE Option . e e e e e e e e e e e e 124
CTLASA and CTL360 Optlons e e e e e e e e e e 124
FILESEC Option . . e e e e e e e e e e e e e e 124
FUNCTION Option . et e e e e e e e e e e e e 125
LEAVE and UNLOAD Optlons e e e e e e e e e e e e e 126
NOFEED Option . . C e e e e e e e e e e e 126
NOLABEL Option e e e e e e e e e e e e e e e e e e 126
NOTAPEMK Option e e e e e e e e e e e e e e e e e 127
OMR Option e h e e e e e e e e e e e e e e e . 127
RCE Option e et e e e e e e e e e e e . . . 127
STACKER Option e e e e e e e e e e e e e e e e e 128
VOLSEQ Option e et e e e e e e e e e e e e e e e 128
WRTPROT Option . e e e e e e e e e e . 128

Creating a CONSECUTIVE Data Set e e e e . . e 128

Essential Information e e e e e e e e e e e 129

Accessing a CONSECUTIVE Data Set e e e e e . e 130
Essential Information C e e e e e e e e e e e e e 130
Record Format v e e e e e e e e e e 130

Example of CONSECUTIVE Data Sets e e e e e e e e e e 130

Punching Cards and Printing et e e e e e e e e . 130
Example e e e e e e e e e 133

Dev1ce-Assoc1ated F11es (IBM 3525 Card Punch) e e e e 133

INDEXED Data Sets e e e e e e e e e e e e e e e e e e 134

INDEXED Organization e e e e e e e e e e e e 134
Indexes e 136
Keys . C e e e e e . e e e e e e e 137
Embedded Keys . C e e e e e e e e e e e e 137

Defining an INDEXED Data Set e e e e e e e e 139

ENVIRONMENT Options for INDEXED Data Sets e e e e e 139
ADDBUFF Option . e . . e e e e e e e e e e 139
HIGHINDEX Option - ¢« ¢ ¢ ¢« v ¢« ¢« o « '« « « « . 160
INDEXAREA Option e e e e e e i e e e« ¢+« « o 1460
INDEXED Option . . e e e e e e e e e e e e e e 140
INDEXMULTIPLE Optlon e e e e e e e e e e 140
KEYLOC Option e e e et e e e e e e e e e e e e 141
NOWRITE Option e e . ; C e e e e e e e e e e e e 142
OFLTRACKS Option . e e e e e e e e e e e e e 1642

Creating an INDEXED Data Set e e e e e e e e e e e 142
Essential Information e e e e e e e e e . 142
Master Index e e e e e e e e e e e e e e e e e e e 143
Cylinder Index e e e e e e e e e e e e e e e e e 143
Prime Data Area e 143

xii DOS PL/I Optimizing Compiler: Programmers Guide

Overflow Areas . c e e e e e e e e e e
Record Format and Keys
Creating Dummy Records and Deletzng Records
Accessing an INDEXED Data Set e e e .
Sequential Access . e e e e e e e e
Direct Access e e e e e e e e e e e
Essential Informat:on e e e e
Reorganizing an INDEXED Data Set .
Examples of INDEXED Data Sets e e e e e e e

REGIONAL Data Sets .o e e e e e e e e
REGIONAL Organization . e e e e e e e e e
Defining a REGIONAL Data Set e e e e e e
ENVIRONMENT Options for REGIONAL Data Sets

REGIONAL 0pt1on e e e e
Keys . e e e e e e e
REGIONAL(I) Organlzatxon e e e e e e e
REGIONAL(3) Organization .
Essential Information for Creat1ng and Access:ng
Data Sets . e e e e e e .
Examples of REGIONAL Data Sets e e e e e e e
REGIONAL(1) Data Sets e e e e e e e e e
REGIONAL(3) Data Sets e e e e e e e e e

Chapter 10. Using VSAM Data Sets from PL/I o

VSAM Organization . e e e e
Keys for VSAM Data Sets e e e e e

Keys for Indexed VSAM Data Sets e e e e e
Relative Byte Addresses (RBA) e e e e
Relative Record Numbers e e e e e

Choice of Data Set Type

Defining a VSAM Data Set to PL/I e .

ENVIRONMENT QOptions for VSAM Data Sets

VSAM Option . . .

PASSWORD 0pt1on e e e e e e e e e e e e e

GENKEY Option e e e e e e e e e e e e e

REUSE Option e e e e e e e e e e e e e

BKWD Option . e e e e e e e e e e e e e
Performance Optlons C e e e e e e e e e e e

SKIP Option e e e e e e e e

BUFND Option e e e e e e e e e e e e e e

BUFNI Option e e e e e e e e e e e e e

BUFSP Option .

Compatibility with Other Data Set 0rgan1zat1ons
The VSAM Compatibility Interface . .
Adapting Existing Programs for VSAM Data Sets

CONSECUTIVE Files e e e e e e e e e
INDEXED Files e e e e e e e e e e e
REGIONAL Files .

Associating Several VSAM F11es w1th One Data Set

Shared Data Sets . .

How to Execute a Program Us1ng VSAM Data Sets .
Associating an Alternate Index Path with a File

Entry-Sequenced Data Sets e e e e e e e e e

Loading an ESDS e e e e e e e e e e e e
Sequential Access .
Key-Sequenced and INDEXED Entry—Sequenced Data Sets
Loading a KSDS . . e b e e ee e e
Sequential Access e e e e e e e e
Direct Access e e e e e e e e
SAMEKEY Built-In Functlon e e e
Relative-Record Data Sets e e e e e e e e
Loading an RRDS e e e e e e e e e e e e e
Sequential Access e e e e e e e e e e s
Direct Access
Examples with Entry-Sequenced Data Sets

Defining and Loading an Entry-Sequenced Data Set)

Updating an Entry-Sequenced Data Set

Creating a Unique Key Alternate Index Péth for an ESDS
Creating a Nonun1que Key Alternate Index Path for an

ESDS

Using Alternate Indexes and Backward Read1ng on an ESDS

Examples with Key-Sequenced Data Sets
Defining and Loading a Key-Sequenced Data Set
Updating a Key-Sequenced Data Set e e e e e

.

.

.

.

144
144
144
145
145
147
147
147
148
151
151
152
152
152
154
156
158

159
160
160
162

167
167
168
168
169
169
169
172
172
173
173
174
1746
174
175
175
175
176
176
176
177
177
177
177
177
177
178
178
178
179
179
179
181
181
181
184
184
184
184
185
185
185
188
189
189

190
191
193
193
193

Contents xiii

Creating a Unique Key Alternate Index Path for a KSDS

Using a Unique Key Alternate Index Path with a KSDS
Examples with Relative-Record Data Sets e e e e .

Defining and Loading a Relative Record Data Set

Unidentified Program Fa1lure

Updating a Relative—-Record Data Set e e e e .
Chapter 11. Program Checkout e o o o o o o s o o o o
Conversational Program Checkout e e e e e e e e e e
Compile-Time Checkout e e e e e e e e e e e e .
Linkage-Editor Checkout e et e e e e e e e .
Execution-Time Checkout et e e e e e .

Logical Errors in Source Programs e e e e e e

Invalid Use of PL/I . C e e e e e e e e e e

Unforeseen Errors e e e e e e e e e e e e e e

Insufficient Storage e e e e e e e e e e e e e

Operating Error e e e s e e e e e e e e e e e

Invalid Input Data . e e e e e . .

Compiler or Library Subroutine Fallure e e e e

System Failure . e e e e e e e e e e
Statement Numbers and Trac1ng e e e e e e e .
Dynamic Checking Facilities e e e e e e e e e .

Control of Conditions . e e e e e e e e e
Use of the PL/I Preprocessor 1n Program Checkout .
Condition Codes e e e e e e e e e e e e e e e e e e
Dumps . . .
Trace Informat1on e e e e e e e e
File Information e e e e e e e e
Debugging Information e e e . . . e
REPORT Option e e e e e e e e e e e e e e e
QUICK DUMP Option e e e e e e e e e e e e e e
Hexadecimal Dump . s e e e e e e e e e e e
Execution-Time Return Codes

.
.
.

Chapter 12. Link1ng PL/I and Assembler Language Modules

Overview . e e e e e e e e e e .
Parameter Pa551ng T
Environment ¢ o e s 4 s e e e e

How To Write Your Rout1nes e e e e e e e e e e e
The PL/I Environment . e e i e e e e e s
Establishing the PL/I Env1ronment e e e e
Use of PLIMAIN to Invoke PL/I Procedure v e e e s
PLICALLA and PLICALLB . e e e
The Dynamic Storage Area (DSA) and Save Area e e
Calling Assembler Routines from PL/1I e v e e e e e e
Invoking a Nonrecursive Assembler Routine e e e e
Invoking a Recursive Assembler Routine e e e e e
Use of Register 12 . . e e
Calling I0CS Modules from Assembler Subrout1nes o .
Calling PL/I Procedures from Assembler Language
Establishing the PL/I Environment for Multiple
Invocations N
Establishing the PL/I Env1ronment Separately for Each
Invocation . ..
PL/I Calling Assembler Ca111ng PL/I e e e e e e
Assembler Calling PL/I Calling Assembler . . e
Overriding and Restoring PL/I Error-Handling e e e 4 e
Arguments, Parameters, and Return Codes .. .
Receiving Arguments in an Assembler-Language Routlne
Assembler Routine Entry Point Declared with the
ASSEMBLER Option
Assembler Routine Entry Po1nt Declared w1thout the
ASSEMBLER Option - .
Passing Arguments from an Assembler Language Routlne

Return Code e e e e e e e e e e e

Chapter 13. Checkpoint/Restart e o o o o s o s s s o
Checkpoints e e e e e e e e e e e e e e e e e e e
Restarts e e e e e e e e e e e e e e e

PLICKPT .

Taking Checkpo1nts on Magnet1c Tape e e e e

Taking Checkpoints on Disk Storage e e e e e e
Effect of Restart on Data Sets C e e e e e e e e

Unit-Record Data Sets e v e e e e e e e e e e

* o o e o o

xiv DOS PL/I Optimizing Compiler: Programmers Guide

s e o o o =

196
197
198
199
201

202
202
202
203
203
204
204
204
205
205
205
205
206
206
207
207
208
209
209
209
211
212
212
212
213
213
213

215
215
215
215
216
216
217
217
217
217
218
218
219
219
220
221

221

224
226
226
226
226
227

227

. 227

228
228

229
229
229
229
231
231
232
232

Data Sets on Direct-Access Devices e e e e e e e e e 232

Data Sets on Magnetic Tape e e e e e e e e e e e e e 232
Example 232
chapter 14‘ PL/I SORT . L] L] * L] L] L] * L] . L] L] * . - L] . 234

Storage Requirements C e e e e e e e e e e e e e e 234
Entry Names e e e e e e e e 234
Procedures Invoked V1a Sort User Ex1ts e e e e e e 235
Data Sets Used By Sort/Merge e e e st e e e e e e e e 235
Input Data Sets . e e e e e e e e e e e e e 235
Work Data Sets e e s e e s e e e e e e e e e e e e 236
Output Data Sets e e e e e e e e e e e e e e e e e 237
Symbolic Device Names e e e e e e e e e e e e 237

Invoking Sort/Merge From PL/I e e e e e e e e e e e 237
Examples of Using PL/I Sort e e e e e e e 238

Sorting Records Dlrectly From One Data Set To Another

(PLISRTA) . e e e e e e e e e e e 238

User Exit E15 (PLISRTB) . « e e e e e 240

Using User Exit E35 To Handle Sorted Records e e 240

Passing Records To Be Sorted, and Receiving Sorted

Records (PLISRTD) . e e e e e e e e e e e e e 240
Sorting Variable-Length Records e e e e e e e e e e e 240
Chapter 15. Communication with COBOL, FORTRAN, and RPG 247
Arguments and Parameters . e e e e e e 248
Passing Arguments to COBOL or FORTRAN Rout1nes e e e e . 248
Invoking COBOL or FORTRAN Routines . e e e e e 250

Examples e e e e 251
Passing Arguments from COBOL or FORTRAN Routlnes e e e 252

Data Mapping . . c e e e s 252
Invoking PL/1 Rout1nes . e e e e e e e e e 252
Matching COBOL Arguments/Parameters et e e e e e e e 254
Matching FORTRAN Arguments/Parameters e e e e e e e e 255
Matching RPG Arguments/Parameters e e e e e e e e e e 256
Compile-Time Return Codes e e e e e e e e e e e e e e 257
Using Common Storage e e e e e e e e e e e e e e e e e 258
Interlanguage Environment e e e e e e e e e e 258

Establishing the PL/I Env1ronment e e e e e e e e e 258

Establishing the FORTRAN Environment e e e e 260

Restrictions on Input/Output by FORTRAN Rout:nes e . e 261

Handling Interrupts . . e e . e e e e s 262

G0 TO Statement C e e e e e e e 263

Terminating FORTRAN and COBOL Routlnes e e e e e e e 263
Chapter 16. Using PL/I on CICS e o o o o a s e o o o o 265
CICS-Supplied Interface . . e e e e e e e e e e e e 266
PL/I-Supplied Interface e e e e e e 267
Ways of HWriting CICS/VS Transact1ons 1n P1/I e e e e e 267

Macro-Level Interface . e . . e e e e e e e e s 267

Command-Level Interface e e e e e e e e e e e e e 269
PL/I Storage e e e e e e 270

Lifetime of Storage Acqu1red from CICS/VS e e e e e 270

Storage Classes . C e e e e e e e e e e e e 270
SYSPRINT . . e e e e e e e e e e e . . . 271

Declaration of SYSPRINT e e s e s e e s e e s e e s 271
CHECK and PUT DATA C e e e e e e e e e e e e e e e e 272
Execution-Time Options e e et e e e b e e e e e e e e 272
Error Handling e e e e e e e e e 274

Abend Codes Used by PL/I Under CICS e e e e e e e e 276

IBMBEER . . . e e e e e e e e e 277
Use of PLIDUMP . . e e e e e e e e e 278
Interlanguage Commun1cat10n——OPTIONS ASSEMBLER e e e e 278
STORAGE and CURRENTSTORAGE e e . e e e e e e e e e 279
PL/I Program Termination e e e e e e e e e e 279
PL/I Shared Library for CICS/DOS/VS e e e e e e e e e 279
Using the CICS Facilities C e e e e e e e e e e e e e 280
Appendix A. Programming Example e o o o o o o o o o o @ 281
Contents of Listings . . e e e e e e e e e e e e 281
Appendix B. VSAM Background e o o s o s s s s o s s e 297
The VSAM Catalog e e e e e e e e e e e e e e e e e e 297
VSAM Data Sets C e e e e e e e e e . . . 297
Access Method Services . e e e . . e e e s e ‘298

Contents xv

xvi

Password Protection e e e e e
The Life of a VSAM Data Set e e e e e s
Defining a VSAM Data Set e e e e e e
DEFINE CLUSTER Command . e .

Using the Access Method Serv1ces Program

Sharing VSAM Data Sets . .
Sharing a Data Set between Jobs
Sharing within a Job e e e e e e e

Deleting a VSAM Data Set .

Alternate Index Paths

How to Build and Use Alternate Index Paths

Terminology

Planning and Cod1ng w1th Alternate Indexes
Passwords e e e e e e e e e e e
Performance .

How to Build an Alternate Index . .
DEFINE ALTERNATEINDEX Command ..
BLDINDEX Command e e e e e e e e
DEFINE PATH Command

o o o o o

.

.

Executing the Access Method Serv1ce Commands

Alternate Index Path . e e e e e
Deleting an Alternate Index e e e e .

Appendix C. Compatibility with the nos PL/I

Alignment of Strings
Assembler Language Interface

Built-in Function without Arguments
Expressions in DO Statements . e e e
SYSIN and SYSPRINT e e e e e e e e
E- and F-format Items e e e e e e e
Buffered Data Sets e e e e e e e e
REGIONAL Data Sets

Halfword Binary Numbers e e e e

Labels on DECLARE Statements e e e e

ONSYSLOG Option e e e e e e e e e
DYNDUMP

DISPLAY Statement and REPLY Optlon .
INDEX Built-in Functlon . .
PRECISION Built-in Function . .
Redundant Expression Elimination .
SUM and PROD Built-in Functions .
Attributes of File Parameters . .
Defining of Pictures C e e e e e
Sterling Pictures e e e e e e e e
Source Program Errors e e e
RETURNS Keyword in PROCEDURE and ENTRY
Entry Names as Arguments e e e e
ENDFILE Condition e e e e e e e
MEDIUM Option C e e e e e ..
SIZE Condition

INITIAL Attrlbute.and Statement Length)

Use of the DEFINED Attribute e e e .

Appendix D. PL/I-CICS System Information
CICS/VS-PL/I Interface Components

CICS/VS-PL/1 Application Program Interface

CICS/VS-PL/I Nucleus Module DFHSAP
Appendix E. The VTOC Display Utility .

.

.

to.Create an

.

-

.

.

.

. .

.

Compiler

.

-

.

.

Statements

Appendix F. Requirement for Problem Determination

Submission o o e o o o o 6 o o o e
Original Source Program e e e e .
Use of the Preprocessor e e e e e e
Job Control Statements . e

Operating Instruct1ons/Console Log
Listings e e e e e e e
Linkage Ed1tor Map e e e e e e
Execution-time Dumps . C e e e
Compiler Failure under CMS « e
Applied PTFs . e e e e e e
Submitting the APAR e e e

o e o o s o

Index e & ¢ & o o & o o o e o o e s s o

DOS PL/I Optimizing Compiler: Programmers Guide

.

.

.

.

.

. .

. .

.

299
299
299
300
303
304
304
3046
305
306
306
306
307
307
307
308
309
310
311

312
312

314
314
314
314
314
315
315
315
315
315
316
316
316
316
316
317
317
317
317
317
317
317
318
318
318
318
318
318
319

321
321
322
323

325

326
326
326
326
327
327
327
327
327
328
328

330

FIGURES

-
OV NIUNLD/UWN -

b ot fd
WN =

14,

PL/I Programming Example -
Data Set Information that Must Be Supp11ed
Example of a Program that Creates a Data Set
Example of a Program that Accesses a Data Set
Compiler Data Sets T
Compiler Options, Abbreviations, and Defaults

e o o o o o

Compiler Options Arranged by Function e e e e : . .
Compiler Listing and Associated Options e e e e
Standard ESD Entries e e e e e e e e e

Example of Batched Comp11at1ons .

Listing of Source Programs with the INCLUDE 0pt1on
Overlay Structure . . .
Link-Editing a Tall Overlay Structure .

Library Modules that Can Be Placed Anywhere 1n an

Overlay Program et e e e e e e e e e e e e .
An Overlay Program e e e e
Overlay Program Using Batched Compllatlon . .

Use of ENTRY Statement in Multilanguage Programs
Cataloging Multiple Object Modules . e e e e
Fixed-Length Records e e e e e e e e e e e e e

Variable-Length Records . e
Access Methods for Record- Orlented Data Transmlssxon
IBM 2540 Card Read Punch: Stacker Numbers e e e e
Format of IBM 3881 Output Records
Format of Magnetic Tape Volumes . . e e
Attributes of PL/I File Declaratlons
Options of PL/I File Declarations . .
Device Types and Corresponding Spec1f1cat10ns .
Device Types Associated with SYSIPT, SYSLST, and
SYSPCH .

Data Set Informatlon for Stream-0r1ented Transm1551on
Creating a Data Set with Stream-Oriented Data
Transmission P

.

* o o o

Writing Graphic Data to a Stream F11e . “ e e
Accessing a Data Set Using Stream-Or;ented
Transmission e e e e

Creating a Data Set Us1n9 a PRINT F11e . .
PL/I Structure PLITABS for Modifying the Preset Tab
Settings PN
A Compar1son of Data Set Types Avallable to PL/I
Record I/0 e 4 . e
Record-0Oriented Transmlsszon Data Set Informatlon
CONSECUTIVE Data Set Statements and Options e e e
Creating and Accessing a CONSECUTIVE Data Set . .
American National Standard Print and Card Punch
Control Characters (CTLASA) . .
2540 Card Read Punch Control Characters (CTL360) .
IBM Machine Code Print Control Characters (CTL360)
3525 Card Printer Control Characters (CTLASA) PN
3525 Card Printer Control Characters (CTL360) . e
Printing with Record-Oriented Data Transmission . .
INDEXED Data Set Statements and Options e e e e e
Index Structure of an INDEXED Data Set e e e e e
Adding Records to an INDEXED Data Set

Effect of KEYLOC Values on Establishing Embedded Keys
Record Format Information for an INDEXED Data Set
Record Formats in an INDEXED Data Set e e e e e e
Creating an INDEXED Data Set . . e e e e e e e
Updating an INDEXED Data Set e e e e e
REGIONAL Data Set Statements and 0pt1ons e e e

Creating a REGIONAL(1l) Data Set . e e e e
Updating a REGIONAL(1) Data Set e e e e e e e e
Creating a REGIONAL(3) Data Set e e e e e e e

e ¢ 2 ¢ ¢ o s e o

REGIONAL(3) Data Sets: Direct Update
REGIONAL(3) Data Sets: Sequential Update and Dlrect

Input . e e e e e e e
Types and Advantages of VSAM Data Sets e e .
VSAM Data Sets and Permitted File Attr;butes .« e .

Figures

xvii

xviii

Processing Allowed on Alternate Indexes

VSAM Entry-Sequenced Data Set Statements and Opt
VSAM INDEXED Data Set Statements and Options
VSAM Relative-Record Data Set Statements and Opti
Defining and Loadxng an Entry-Sequenced Data Set
(ESDS) . . e e e e e e e e e e
Updating an ESDS

Creating a Unique Key Alternate Index Path for an ESDS

ggggt1ng a Nonunique Key Alternate Index Path on
ééggrnate Index Paths and Backward Read1ng w:th
Def1n1ng.and Load1ng a Key-Sequenced Data Set (K
Updating a KSDS . .
gSQM Methods of Insertlon 1nto a Key-Sequenced D
e . .
Creat1ng an Alternate Index Path for a KSDS .
Using a Unique Alternate Index Path to Access a

Defining and Loading a Relative-Record Data Set (RRDS)

Updating an RRDS . .

Skeletal Code for a Nonrecur51ve Assembler Routlne to

be Invoked from PL/I . .
Skeletal Code for a Recur51ve Assembler Routlne
Uses the PL/I Storage Scheme .

Invoking PL/I Procedures from an Assembly-Langua
Routine . e e e e e e e e e e e e e e
Use of PLICALLA e e e e e e e e e e e e e

Use of PLICALLB .
Inserting a PL/1 Entry Po1nt Address 1n PLIMAIN
Establishing PLIMAIN as an Entry in the

Assembler~-Language Routine ENTRY
PLIMAIN . . .
Methods of 0verr1d1ng and Restor1ng PL/I
Error-Handling .

Example of PL/I Routlne to Take Checkpo1nts .
Sort/Merge File Names and Symbolic Devices .
Using PL/I to Invoke Sort/Merge (PLISRTA) .o .
Using User Exit E15 to Supply Records for Sortin
(PLISRTB) .

Using User Ex1t E35 to Handle Sorted Records (PLISRTC)

Using User Exits E15 and E35 (PLISRTD) .
Using PLISRTB to Sort Varying-Length Strlngs
Sorting Variable-Length Records (PLISRTC) .
COBOL-PL/I Data Equivalents . .
Declaration of a Data Aggregate 1n COBOL and PL/
FORTRAN-PL/I Data Equivalents .

Example of PL/I Procedure To Be Invoked from RPG
Return Codes Produced by PL/1I Data Types . .
Extent of PL/I Environment e e e e e

PL/I Restrictions when Used w1th CICS e e e e
CICS-Supplied Interface Restrictions and
PL/I-Supplied Interface Status C e e e e e e
Format of Records Sent to SYSPRINT e e e e

Example Program Source Statements . .
Base Cluster, Alternate Indexes, and Paths
Commands Required to Create an Alternate Index
DFHPL1I Link-Edited into Transaction N
Summary of Requ1rements for APAR Subm1ss1on

DOS PL/I Optimizing Compiler: Programmers Guide

10“5
IOI\S

. .

an
an

$DS)

.

ata)

KSDS

that

ge

. .

i

11

. .

179
130

186

188
189
189

190

191
194
195

196
197
198
199
200

218
220

222
224
224
225

225

226
233
236
239

241
2642

245
266
254
255
256
257
259
261
266

268
271
281
308
313
322
328

AP UNNING L/1I_PROGRAM

In describing how to run a PL/I program, this chapter mentions

some of the features of the IBM Disk Operating System (D0S) and

additional features available when running under a Virtual

Storage operating system (D0OS/VS). For readers unfamiliar with

Ene giskzﬂperating System, these features are described in
apter 2.

This chapter describes how to run a program that uses card input
and printed output. Chapter 3 describes how to define simple
consecutive data sets for creation and access by a PL/1 program.

Using the D0OS PL/I Optimizing Compiler to run a PL/I program
involves three steps:

1. Compilation
2. Llink-editing
3. Execution

The first step, compilation, is necessary to create an object
module from the PL/I source program. The second step,
link-editing, is necessary to combine the PL/I object module
with object modules from the PL/I library or other programs to
form an executable program. The third step is simply the
eiecution of the executable program created in the link-editing
step.

When you submit a PL/I program as a job for execution, you must
supply the appropriate DOS job control statements so that the
operating system can initiate the required functions in the
correct order. The basic job control statements are:

. The JOB statement—initiates the job.
. The OPTION statement—specifies options for the job.

] The EXEC statement—initiates loading and execution of a
program. '

. The end-of-data statement (/%).
U The end-of-job statement (/&).

A typical sequence of D0OS job control statements, PL/I source
statements, and data for the execution step follows:

7/ JOB PLITEST
/7 OPTION LINK
/7 EXEC PLIOPT,SIZE=64K

PL)I source statements

.

7 %
s/ EXEC LNKEDT
7/ EXEC ,SIZE=64K

da%a
/%

’7&

Chapter 1. Running a PL/I Program 1

If you use punched cards as input to your system, all job =~
control statements start in column 1. Apart from the
end-of-data (/%) and the end-of-job (/&) statements, all Job
control statements have // in the first two columns, followed by
at least one blank, and a job control keyword such as EXEC,
OPTION, or JOB.

The JOB statement is always the first statement in a DOS job.
Code it as follows:

/7 JOB jobname [job-identificationl

where jobname is any name of up to eight alphameric characters,
the first of which must be an alphabetic character, and
job-identification is an optional field that can contain any
additional comment or installation-defined information about the
job that you may want to record.

The OPTION statement with the LINK option must be included to
signify that the compiler should prepare an object module for
link-editing. Code the OPTION statement as follows:

/7 OPTION LINK

The EXEC statements must be present to invoke the optimizing
compiler for the compilation step, the linkage editor for the
link-editing step, and the executable PL/I program for the final
step. To invoke the compiler, code the EXEC with the SIZE
option as follows:

7/ EXEC PLIOPT,SIZE=nK

where n specifies the amount of storage that is to be used by
the program.

The DOS PL/I Optimizing Compiler can also be invoked from a
cataloged procedure, using the form PROC=procedure-name.

To invoke the linkage editor, code the EXEC statement as
follows:

/7 EXEC LNKEDT

To invoke the executable PL/I program, code the EXEC statement
as follows:

/7 EXEC ,SIZE=nK

The last use of the EXEC statement need not include the name of
a program as an operand since an EXEC statement without a
program name operand will cause the last executable program that
was link-edited to be executed. Hence, this form of the EXEC
statement will normally be used only immediately following a
link-editing step. However, the SIZE operand must be used in
either case:

77 EXEC program-name,SIZE=nK
or
77 EXEC ,SIZE=nK
The end-of-data statement (/%) must be used to indicate the end
of the PL/I source program and the end of any data that is used
by the PL/I program when it is executed.

The end-of-job (/&) statement must be used to indicate the end
of the job.

A complete set of job control statements for a PL/I compilation,

link-editing, and execution is given in the programming example
in Figure 1 on page 3.

2 DOS PL/I Optimizing Compiler: Programmers Guide

A 4

x_F

/7 JOB FIGO101
/7 OPTION LINK
/7 EXEC PLIOPT,SIZE=64K
/% PROGRAMMING EXAMPLE TO PRINT THE SUM OF X/
7% PAIRS OF VALUES OBTAINED FROM PUNCHED %/
/% CARD INPUT ’ x/

TEST: PROCEDURE OPTIONS(MAIN);
ON ENDFILE(SYSIN) GOTO ENDTST;
DECLARE (A,B,C) FIXED DECIMAL(3);
NEXT: GET FILE(SYSIN& RA;A (A,B);
=A+B;
PUT FILE(SYSPRINT) SKIP DATA(A,B,C);
GOTO NEXT;
ENDTST: END TEST;
/%

77/ EXEC LNKEDT

/7 EXEC ,SIZE=64K
A=131 B=75;

A=2 B=907;
A=-14 B=1l4;
A=341 B=429;
A=-245 B=102;
A=999 B=-100;

/%

7&

Figure 1. PL/I Programming Example

When using the DOS PL/I Optimizing Compiler with DOS/VS,
DOS{YSEi and DOS/VSE with Advanced Functions, the following are
available:

Virtual storage

Multiple user partitions
Relocating loader

Catalogued procedures

Virtual Storage Access Method

With virtual storage, the address space available for problem
programs is not limited by the physical size of main storage.
Large programs no longer need to be structured by overlay
techniques to fit into the available main storage, and
multiprogramming operations are less constrained by the size of
main storage.

Under D0OS/VS, up to five partitions can be specified at system
generation time. These are: BG, F4, F3, F2, and Fl, in
increasing order of priority. More partitions may be specified
under DOS/VSE with Advanced Functions. The number of partitions
is dependent upon the release level of your system.

The relocating loader can load a program at any address in any
partition without the need to write self-relocating programs or
to link-edit again. The DOS PL/I Optimizing Compiler will
execute in any of the five partitions without the need for
multiple copies of the compiler; output from the compiler will
also execute in any partition.

DOS/VS makes available an additional library, the procedure
library. This is used to contain cataloged procedures; for
example, the job control statements necessary to compile,
link-edit, and execute a program.

- A description of PL/I support for VSAM data sets is given in

Chapter 10.

Chapter 1. Running a PL/I Program

PERFORMANCE

The methods of obtaining optimum performance depend on the /
system configuration and the workload of the machine, but some \,
general guidelines are set out below. ‘

COMPILE-TIME PERFORMANCE

The DOS PL/I Optimizing Compiler has been designed to adjust its
processing to make full use of the storage available to it,
whether real or virtual. The compiler uses its spill file when
the storage available to it is insufficient; the point at which
no spilling occurs depends on the size and content of the
program being compiled.

The compile time in virtual mode is affected by the relative use
of the compiler spill file and the page data set and the
zelgtive speed of the spill file device and the page data set
evice.

If the page data set is on a faster device than the compiler
spill file, it may be better to use a large virtual partition
and specify a SIZE option just large enough to avoid using the
spill file. This situation may, however, be altered if other
partitions are in contention for these devices. If the compiler
spill file and the page data set are on the same drive, there
will be contention between the two.

It is possible to compile some programs with less real storage
than the 50K bytes design point of the compiler, but performance
will be degraded. To minimize the overcommitment, the amount of
virtual storage used should be restricted by specifying a SIZE
option that is the larger of 50K bytes or the amount of real
storage expected to be available.

EXECUTION-TIME PERFORMANCE \

Some PL/I features that may not be practical under D0OS are more
feasible under DOS/VS because the constraint of real storage
size is reduced; these include the STMT, FLOW, and COUNT
compiler options, and the PUT DATA and CHECK statements. Use of
these features will increase program size and may degrade
performance, but could give savings in terms of reduced
debugging time.

The performance of a program under D0S/VS and DOS/VSE depends on
the address reference pattern; if this is localized, there will
be less likelihood of system paging than if the whole virtual

address space is referenced randomly. Use of PL/] block

Ttrug?urﬁng helps to keep address references to object code
ocalized.

Many of the hints in the 0S_and DOS PL/I lLanguage Referen
Manual in the section on "Efficient Programming"™ are applicable
to program performance under DOS/VS. The following points
should also be considered when using PL/I for execution under a
virtual storage operating system:

. Bit string operations and conversions done by library calls
should be avoided.

. The inline I/0 facility should be used wherever possible,
and blocking factors should be increased as far as
consistent with other requirements of the program.

. Large multidimensional arrays should be processed, or
cross-sections passed as arguments, in row major order, not
column major order.

P

] List-processing applications, in which data stryctgres are
chained together, may cause paging when the chain is

4 DOS PL/I Optimizing Compiler: Programmers Guide

Nt

followed. The ALLOCATION built-in function is implemented
as a scan through a chain of allocations of controlled data.

Near simultaneous references to variables declared in
different blocks may cause paging.

Care must be taken in creating load modules for programs as
the layout of a load module becomes important when it is
executed in virtual mode. Infrequently used modules such as
IBMBERR, IBMBOCL, and IBMBPGR should be grouped away from
more frequently used modules.

Chapter 1. Running a PL/I Program 5

CHAPTER 2. INTRODUCTION TO DOS AND THE DOS PL/I OPTIMIZING COMPILER

The IBM Disk Operating System (DO05S) consists of a control
program and a number of service programs that together assist
both the operator and the programmer in the use of IBM
computers. An operating system relieves the programmer and
operator of many time-consuming tasks, including the allocation
of internal and external storage space, the control of
input/output devices, and the control of the jobs being
processed by the system.

It is often necessary to execute two or more programs as a
related group, passing information created by one program as
input to the following program. Such a group of programs can be
executed as a self-contained job by using the batched job
processing facilities of the Disk Operating System. Each
p;ogram executed within the job is processed as a separate job
step.

The control program supervises the execution of all other
programs, and services the common requirements of these programs
during execution. It has three main components:

1. Supervisor: The supervisor controls and coordinates all
activity within the computing system.

2. Job Control: The job control program processes all job
control statements and commands that enter the system.

3. Initial Program Load (IPL): The IPL routine is used by the
operator to reactivate the operating system at the beginning
of the day's processing, or after some other operating
system or stand-alone program has been used.

The operating system allows many programs to occupy main storage
simultaneously. Each program is loaded into a predefined area
of main storage known as a partition. Under DOS/VSE with
Advanced Functions, the number of partitions provided is
dependent upon the release level of your system. O0One partition
is known as the background partition; the remaining partitions
are the foreground-1 partition through the foreground-n
partition, respectively. A program can be executed in any
partition as a job step within a job. Alternatively, a program
can be initiated in any foreground partition by a command from
the operator's console.

Programs executed concurrently in the various partitions compete
with each other for the resources of the system, such as the
central processing unit or an input/output channel. The
allocation of such resources is controlled by the supervisor
program. The relative priority of the program is set by the
partition in which it is executed. The foreground-1 partition
has the highest priority and the background partition has the
lowest priority.

The service programs of the Disk Operating System include
librarian and a number of utility programs; all these are
described in separate publications which are listed in the
preface.

The operating system provides facilities for the creation and
maintenance of three different types of program libraries
(collections of programs stored on a direct-access device). The
libraries are the core-image library, the relocatable library,
and the source statement library.

A core-image library is used to hold executable (link-edited)

programs; all programs to be executed under the 9ontrol.of the
DOS supervisor program must be stored in a core~image library.

6 DOS PL/1 Optimizing Compiler: Progfammers Guide

AN

-

A relocatable library is used to hold relocatable (compiled or
assembled, but not link-edited) object modules; object modules
in a relocatable library can be readily incorporated into an
executable program by the linkage editor.

A source statement library is used to hold sequences of source
program statements that can be included in a compilation by the
compiler (by means of the XZINCLUDE statement). Such sequences
of statements are termed books.

Each system will include a system core-image library, a system
relocatable library, and a system source statement library. The
system libraries will contain the system control programs
supplied by IBM as components of the Disk Operating System.
System libraries can also contain IBM program products and
user-written programs. Alternatively, such programs can be held
in additional private libraries. Private libraries can also be
created for the three types of program libraries. Chapter 6 on
page 66, gives further information about these libraries.

PL/I OPTIMIZING COMPILER

The DOS PL/I Optimizing Compiler is an IBM program product
designed for use with the IBM Disk Operating System. This
compiler translates PL/1 source statements into machine
instructions. The set of instructions resulting from the
compilation of a PL/1I external procedure is termed a relocatable
object module. Before such a module can be executed, it must be
Trgcessed by the linkage editor and placed in a core-image
ibrary.

The compiler can be used in any partition, but can only be
initiated as a job step within a job.

LINK-EDITING PL/I PROGRAMS

The linkage editor is a service program that converts
relocatable object modules into core-image modules (termed
executable programs, or executable program phases in the case of
multiphase programs). The linkage editor can obtain its input
both from SYSLNK input stream and from a relocatable librarvy.

A feature of the linkage editor is its ability to combine two or
more relocatable object modules into a single executable
program. This feature is particularly significant for a PL/I
program because the optimizing compiler does not generate
directly all the machine instructions that are required to
present a source program. Instead, for frequently-used
functions such as input/output, the compiler generates
references to standard PL/I library subroutines. Many of these
subroutines are in the D0S PL/I Resident Library; the remainder
are in the D0OS PL/I Transient Library. The linkage editor
retrieves those resident library modules that are required for a
PL/I program from the relocatable library and incorporates them
into the executable progran.

The subroutines in the transient library are not incorporated by
the linkage editor into the executable program. These routines
are loaded directly into storage from the transient library,
which is held in the core-image library, only when required
during the execution of the PL/I program. Many of the
subroutines in the transient library are concerned with
input/output and with error-handling.

Chapter 2. Introduction to DOS and the D0S PL/I Optimizing Compiler 7

CONVERSATION! ONITOR SYSTE|

The Conversational Monitor System (CMS) component of the Virtual
Machine Facility/370 (VM/370) provides program creation,
compilation, testing, and execution services by means of
conversational time-sharing from remote terminals. Using the
compiler under CMS permits many users of the same computer to
develop programs concurrently. Instructions on how to use the

compiler under CMS are contained in the DOS PL/I Optimizing
Compiler: CMS User's Guide.

8 DOS PL/I Optimizing Compiler: Programmers Guide

TN

m’

CHAPTER 3. HOW TO DEFINE A DATA SET

A data set is any collection of data in auxiliary storage that
can be created or accessed by a program. It can be punched onto
cards or paper tape; or it can be recorded on magnetic tape or
on a direct-access storage device such as a magnetic disk. A
printed listing can also be termed a data set, but it cannot be
read by a program.

The language reference manual for this compiler describes how to
use PL/I statements to transmit data between a program and a
data set. For a program containing such statements to be
executed, it is necessary to give the operating system certain
information about the data set. Some of this information is
placed in the file declaration in the PL/I source program; more
may need to be given in DO0S job control statements. The DOS job
control statements that may be required to define data sets are

described in DOS/VSE System Control Statements.

This chapter provides a short explanation of what is required
for defining consecutive data sets.

DOS INPUT/OUTPUT CONCEPTS

Before a PL/I program can process a data set, it must identify
the device that will read or write the data set. The Disk
Operating System uses symbolic device names rather than actual
device addresses to identify input/output devices. Therefore,
to relate a file to the device that will process the associated
data set, the file declaration must specify the device type and
a symbolic device name in the MEDIUM option of the ENVIRONMENT
attribute. How this is done is explained in Chapter 7.

Each symbolic device name used in a DOS installation must be
related to an actual unit address. Many such relationships are
established permanently for an installation during initial
program load; these are known as standard device assignments.
Before you run a program, determine what the standard
assignments are at your installation.

If you always use these standard assignments, it will be
sufficient to identify the device that will process a data set
in the MEDIUM option of the associated file. If you want to use
a symbolic device name for which no permanent assignment has
been made at vour installation, or if you want to temporarily
change an assignment, yvou must include an ASSGN statement in the
job (see below).

PROCESSING A DATA SET

The amount of information that you must supply to the operating
system when you run a program that creates or accesses a data
set depends on the type of input/output device used and on
whether you are using the standard device assignments. For each
data set, the PL/I source program must have a file declaration
that includes the MEDIUM option and specifies the record format
for the data set. In addition, DOS job control statements must
be supplied as follows:

. For each data set on labeled magnetic tape: a TLBL
statement.

. For each data set on a diskette or a direct-access device: a
DLBL statement and at least one EXTENT statement.

. For each nonstandard device assignment: an ASSGN statement.

Chapter 3. How to Define a Data Set 9

. For one or more data sets that are either REGIONAL or
INDEXED or held on labeled magnetic tape, a single LBLTYP
statement must be supplied in the link-editing step for the
program, dependent upon the level of your operating systen.

Note: A LBLTYP statement is not required for VSAM data sets. .
These requirements are summarized in Figure 2. The following
paragraphs contain short descriptions of the job control
statements and indicate where they are placed in the job stream.

All the job control statements for a job step must precede the
EXEC statement for that job step.

Always Required For Information Where Specified

Any input/output Type of device—unless File declaration in
device independent source program: see 0S

and DOS PL/I Language

Symbolic device name Reference Manual
Record format

Nonstandard device Device assignment ASSGN statement

assignment

Data set on magnetic Identification TLBL statement

tape with standard

labels Storage for label LBLTYP statement
processing

Data set on Identification and DLBL statement

direct-access volume or extent information

on a diskette EXTENT statement
REGIONAL (1) REGIONAL LBLTYP statement (not
(3) or INDEXED file, required for VSAM data
storage for label sets, or for DOS/VSE
processing with Advanced Functions)

Figure 2. Data Set Information that Must Be Supplied

ASSGN Statement

The ASSGN statement associates a symbolic device name with the
address of an actual input/output device.

The ASSGN statement and the symbolic device names associated
with its use are described in D0OS/VSE System Control Statements.

The ASSGN statement can appear anywhere among the job control
statemenis for the job step, other than between DLBL and EXTENT
statements.

TLBL Statement

The TLBL statement applies only to data sets on magnetic tape.
It contains information that identifies the data set (for
example, the data set name and serial number). The operating
system records this information on the tape in a series of
records termed a data set label, and refers to it if the data
set is used again in another job to ensure that the correct tape
has been mounted.

The TLBL statement can appear anywhere among the job control

statements for the job step, other than between DLBL and EXTENT
statements.

10 DOS PL/I Optimizing Compiler: Programmers Guide

=¥

-7

LBLTYP Statement

DLBL Statement

EXTENT Statement

STANDARD FILES

EXAMPLES

A LBLTYP statement is not required for consecutive data sets on
direct-access devices or for VSAM data sets; it is always needed
for INDEXED and REGIONAL direct-access data sets and for data
sets on magnetic tape with IBM standard labels. The LBLTYP
statement is not required when running on DOS/VSE with VSE
Advanced Functions. The statement requests the linkage editor
to allocate space in the executable program phase for use by the
operating system label-processing routines.

Dependent upon the level of your operating system, one LBLTYP
statement must be included in any job that employs labeled
magnetic tape. It must precede the EXEC LNKEDT statement.

The DLBL statement applies only to data sets on diskettes and
direct-access devices. Like the TLBL statement for
magnetic-tape data sets, it provides information that enables
the operating system to write data set labels or to check them
if an existing data set is to be processed.

The DLBL statement can appear anywhere among the job control
statements for the job step. A DLBL statement must be followed
by at least one EXTENT statement (see below).

For a direct-access device an EXTENT statement defines the space
(extent) to be occupied by a data set (that is, it identifies
the actual tracks to be used). It is possible for a data set to
extend over two or more extents (groups of contiguous tracks) of
a direct-access device. 1In such a case, an EXTENT statement is
required for each extent.

For a diskette, an EXTENT statement defines the type of extent;
only data areas (signified by 1 in the EXTENT statement) are
supported.

The EXTENT statements for a data set must always follow
immediately behind the DLBL statement for the data set.

PL/I includes two standard files, SYSIN for input and SYSPRINT
for output. If the PL/I program includes a GET statement
without the FILE option, the compiler assumes the file to be
SYSPRINT associated with the symbolic device name SYSIPT. 1If
the program includes a PUT statement without the FILE option,
the compiler assumes the file to be SYSPRINT associated with the
symbolic device name SYSLST. If neither SYSPRINT nor SYSIN is
declared explicitly in the program, the compiler assumes the
following declaration for SYSPRINT:

DECLARE SYSPRINT FILE PRINT
ENVIRONMENT(MEDIUM(SYSLST) F RECSIZE(121));

and, for SYSIN:

DECLARE SYSIN FILE STREAM INPUT
ENVIRONMENT(MEDIUMCSYSIPT) F RECSIZE(80));

The examples in Figure 3 on page 12 and Figure % on page 13
illustrate the use of the standard files SYSIN and SYSPRINT for
punched~card input and printed output, the creation of a data
set on magnetic tape, and the creation and access of a data set
on a direct-access storage device. Each example includes the

Chapter 3. How to Define a Data Set 11

DOS job control statements necessary for compiling,
link-editing, and executing the program.

Figure 3 shows a program that evaluates the familiar expression
for the roots of a quadratic equation and records its results in
two data sets, one on magnetic tape and the other on an IBM 3330
Disk Storage drive.

/s JOB FIG0302

/7 PAUSE PLEASE MOUNT TAPE 061699 AS '181°'
/7 OPTION LINK

/7 EXEC PLIOPT, SIZE=64K

CREATE:PROC OPTIONS(MAIN);

DCL RESULTS FILE RECORD OUTPUT SEQL ENV(MEDIUM
(SYS009,3330)FB BLKSIZE(400) RECSIZE(40),
RESULT2 FILE STREAM OUTPUT
ENV(F RECSIZE(40) MEDIUM(SYS008,2400)),
1 RECORD,2 (A,B,C,X1,X2) FLOAT DEC(6) COMPLEX;
ON ENDFILE (SYSIN) GOTO FINISH;
OPEN FILE (RESULT2),FILECRESULTS),FILE(SYSPRINT),
FILEC(SYSIN);

NEXT: GET FILE (SYSIN) LIST (A,B,C);
X1=(~B+SQRT(B%%2-G%XA%XC)/(2X%A);
X2=(-B-SQRT(BxX2-4X%A%XC0)/(2XA);

PUT SKIP FILE (SYSPRINT) EDIT (RECORD) (C(E(
PUT FILE (RESULT2) EDIT (RECORD) (C(E(16,9))
WRITE FILE (RESULTS) FROM (RECORD);
GOTO NEXT;
FINISH:CLOSE FILE(RESULTS),FILE(RESULT2),FILE(SYSPRINT),
FILECSYSIN);
END CREATE;

%6,9)));

.
’

77 LBLTYP TAPE

/77 EXEC LNKEDT

/7 ASSGN 5Y5009,3330,V0L=D0S222, SHR
7/ ASSGN SYS008,X'181',X'C8!

/7 DLBL RESULTS, "ROOTS',SD

/7 EXTENT $YS009,D05222,1,3458,19
/7 TLBL RESULTZ2,'RESULTS',0,061699
/7 EXEC, SIZE=64K

512 4

% -10 4

516 2

% -12 10

512 9

29 -20 4

/%

’7&

Figure 3. Example of a Program that Creates a Data Set

The 3330 data set is written on disk pack serial number D0S5S222
(specified in the EXTENT statement); the DLBL statement
specifies the data set name ROOTS, the default retention period
of seven days, and the code SD for CONSECUTIVE organization.

The magnetic tape storage set is written on a tape mounted on
the tape drive with address X'181' (second ASSGN statement); the
TLBL statement specifies the data set name and the volume serial
number of the magnetic-tape volume to be used.

12 DOS PL/1 Optimizing Compiler: Programmers Guide

PN

A= 4

< F

s

Figure 4 shows a program that reads the 3330 data set created in
the first example and prints the results. Although a different
filename is used from that in the first example, the data set is
igegtifi:d by the name ROOTS, which is specified in the DLBL
statement.

/7 JOB FIG0303
/7 OPTION LINK
7/ EXEC PLIOPT,SIZE=64K
ACCESS:PROC OPTIONS(MAIN);
DCL INDATA FILE RECORD INPUT SEQL ENV(MEPIUM(SYS009,3330)
FB BLKSIZE(400) RECSIZE(40)),
1 RECORD, 2 (A,B,C,X1,X2) FLOAT DEC(6) CPLX;
ON ENDFILE (INDATA) GOTO FINISH;
PUT EDIT (*A',"'B*,"'C*,'X1",'X2")
(X(7),3C(A,X(23)),A,X(22),A);
OPEN FILE C(INDATA),FILE(SYSPRINT)
NEXT: READ FILE C(INDATA) INTO (RECORD);
PUT SKIP EDIT (RECORD)(C(F(12,2)));
GOTO NEXT;
FINISH:CLOSE FILECINDATA),FILE(SYSPRINT);
END ACCESS;
/%

/7 EXEC LINKEDT

/7 ASSGN SYS009,3330,V0L=D0S222,SHR
77 DLBL INDATA, "ROOTS'

/7 EXTENT SYS009,D0S222

/g EXEC, SIZE=64K

7/

Figure 4. Example of a Program that Accesses a Data Set

Chapter 3. How to Define a Data Set 13

CHAPTER 4. THE OPTIMIZING COMPILER

COMPILATION

N

The DOS Optimizing Compiler translates PL/I source statements
into machine instructions. A set of machine instructions such
as is produced by the compiler is termed an object module. (If
several sets of PL/I source statements are present, each
corresponding to an external procedure and separated by
appropriate control statements, the compiler can create two or
more object modules in a single job step.)

However, the compiler does not generate all the machine
instructions required to represent the source program; instead,
for frequently-used standard routines such as those that handle
the allocation of main storage space and the transmission of
data between main and auxiliary storage, the compiler inserts
references to standard subroutines that are stored in the DOS
PL/I Resident Library.

An object module produced by the compiler is not ready for
execution until the appropriate modules from the resident
library have been included. This is the task of a systenm
service program, the linkage editor, which is described in
Chapter 5 on page 43. A module that has been processed by the
linkage editor is referred to as an executable program, and

sometimes as an executable program phase.

Modules from the transient library do not form a permanent part

of the executable program. Instead, they are loaded as required
during execution of the program, and the storage they occupy is

released when they are no longer needed.

While it is processing a PL/]I source program, the compiler

produces a listing that contains information about the source "
program and the object module derived from it, together with Q
diagnostic messages relating to errors or other conditions

detected during compilation. Much of this information is

optional and is supplied either by default or in response to a
request made by including appropriate options in the
compiler-control PROCESS statement that optionally precedes each
source module.

The compiler also includes a facility, the processor, which can
modify the source statements or insert additional source
statements before compilation begins.

Compiler options can be used for purposes other than to specify
the information to be listed. For example, the preprocessor can
be used independently to process source programs that are to be
compiled later, and the compiler can be used merely to check the
syntax of the source-program statements. Furthermore,
continuation of processing through syntax checking and
compilation can be made conditional on successful compile-time
processing. The compiler options are discussed under "Compiler
Options"™ on page 17.

The compiler comprises a control phase that remains in main
storage throughout compilation, and a series of processing
phases that are loaded and executed in turn under the
supervision of the control phase. Several of the processing
phases are loaded only if required for a particular compilation.

The source program must be in the form of a data set read by a
device assigned to SYSIPT; frequently, the data set is a deck of
punched cards. The source program is passed to the compiler

either directly or through a preprocessor stage. @

14 DOS PL/I Optimizing Compiler: Programmers Guide

A= 4

The source program may also be passed directly to the compiler
if it contains %ZINCLUDE statements but no other type of
preprocessor statements. In this case, you must specify the
INCLUDE option.

The compiler translates the source program into machine
instructions, and creates the external symbol dictionary (ESD)
and relocation dictionary (RLD) required by the linkage editor.
The external symbol dictionary is a list that includes the names
of subroutines that are referred to in the object module but are
not part of the module; these names, which are termed external
eferences, include the names of the resident library modules
and other object modules that will constitute the executable
program. The relocation dictionary contains information that
enables the linkage editor to assign absolute storage addresses
within the object module. Chapter 5 contains a fuller
discussion of the external symbol dictionary and the relocation
dictionary, and explains how the linkage editor uses then.

JOB CONTROL FOR COMPILATION

Compilation is initiated by the following EXEC statement:
77 EXEC PLIOPT,SIZE=nK

The optimizing compiler can be used in a batched-job foreground
partition provided that a copy of the compiler was link-edited
and cataloged into a private core image library for use in that
particular partition when the system was generated, and provided
that the symbolic device name SYSCLB is assigned to the
partition before compilation is initiated. The volume
containing the private core image library must be mounted on the
device associated with the symbolic device name SYSCLB. (Under
VSE/Advanced Functions, LIBDEF may be used.)

If the compilation job step is to be followed by a link-editing
job step, the EXEC statement must be preceded by an OPTION
statement specifying the LINK option, thus:

77 OPTION LINK
/7 EXEC PLIOPT,SIZE =nK

The compiler uses the standard device assignments for its data
sets, but you can modify those assignments if there are special
requirements for compiler input/output. For instance, if the
source module is to be read from magnetic tape or if the object
module written on SYSPCH is required on magnetic tape, the
symbolic device name can be assigned accordingly by means of the
ASSGN statement.

The compiler requires several standard data sets. These are
shown in Figure 5 on page 16 and described in the following
paragraphs.

Primary Input (SYSIPT)

The primary input to the compiler must be a consecutive data set
containing a PL/I source module in the form of 80-byte unblocked
records. The source statements may be preceded by a
compiler-control PROCESS statement. This statement is used to
specify the compiler options required for the compilation. The
source module may comprise one or more external procedures; if
vou want to compile more than one external procedure in a single
job step, separate the external procedures in the input data set
with PROCESS statements. (This use of the PROCESS statement is
described under "Batched Compilations™ on page 38.)

The input data set may be on a diskette, direct-access device,
punched cards, or magnetic tape. The address of the device used
must be assigned to SYSIPT. The data set must contain unblocked
fixed-length 80-byte records.

Chapter 4. The Optimizing Compiler 15

Function Symbolic Name | Device Type File When Required
Input SYSIPT DASD IJSYSIN Always
Magnetic tape
Card reader
Diskette
Listing SYSLST DASD IJSYSLS Always
‘ Magnetic Tape
Printer
Diskette
Qutput to SYSLNK DASD IJSYSLN When
linkage link—editing
editor follows
compilation in
the same job
Output to SYSPCH DASD IJSYSPH When
linkage Magnetic tape link—editing
editor Card punch takes place in
(card Diskette a subsequent
deck) job
Compiler SYS001 Disk IJSYSO01 Always
spill SYS002 1JSYS02
files
Source SYSSLB (if DASD IJSYSSL When
statement the source preprocessor
library statement %“INCLUDE
module is is used
held in a
private
source
statement
library

Figure 5. Compiler Data Sets

output (SYSLNK or SYSPCH)

The compiler can optionally transmit the object module to a data
set on SYSLNK, to a data set on SYSPCH, or to a data set on
both. The object module is in a form suitable for processing by
the D0S linkage editor program.

Workspace (SYS001 and SYS002)

The compiler will require data sets on SYS001 and SYS002 for use
as intermediate (temporary) workspace.

SYS001 and SYS002 define data sets, known as spill files, which
the compiler uses for auxiliary storage during the compilation.
These data sets must be on similar disk storage devices.

Optimal compilation speed is achieved if SYS001 and SYS002 are
on different volumes with full cylinders allocated to each data
set. If only one volume is available, SY5001 and SYS002 should
use a split-cylinder extent allocation with the cyllnders
divided equally between the data sets.

Listing (SYSLST)
The compiler can produce a listing giving information about the

program. The information that may appear, and the associated
options, are described under "Listings™ on page 30. The

16 DOS PL/I Optimizing Compiler: Programmers Guide

===\

)

symbolic listing is SYSLST. Records associated with the listing
are fixed-length, 12l1-byte records including an American
National Standard carriage control character.

Source Statement Library

COMPILER OPTIONS

A4

The preprocessor %ZINCLUDE statement can be used to obtain source
statements for the program from the system source statement
library or from a private source statement library. SYSSLB or
LIBDEF under VSE/Advanced Functions must be assigned when a
private source statement library is to be searched for the
required source statement book.

The optimizing compiler offers a number of options that you can
select by including the appropriate keywords in the XPROCESS
statement. The options control various aspects of the program
that will be generated, such as the extent to which it will be
optimized, the contents of the listing, and other factors. Thus
thedoptions can be used to tailor the compiler to suit your
needs.

The XPROCESS statement precedes the source statements in the
input to the compilation step. The format of the statement is:

%¥PROCESS loption-listl;

The ¥ must appear in the first position of the statement. The
keyword PROCESS follows the asterisk, with or without
intervening blanks. The option-list follows the keyword
XPROCESS with one or more intervening blanks. The options in
the list are separated from each other by a comma or one or more
blanks, or both. The statement must be terminated by a
semicolon. An example is given below:

¥PROCESS SIZE (72K),LIST,DECK;

A XPROCESS statement can extend over more than one input record,
provided that the default right-hand margin is observed for each
record. An option keyword may span two adjacent records if the
keyword or argument string terminates in the right-hand source
margin, and the remainder of the string starts in the same
column as the asterisk.

Many of the option keywords have an abbreviated form that you

can use to obtain a more concise list of options. You may

specify the options in any order.

The compiler options are of the following types:

1. Simple pairs of keywords: a positive form (for example,
XREF) that requests a facility, and an alternative negative
form (for example, NOXREF) that rejects that facility.

2. Keywords that permit you to provide a value-list that
qualifies the option (for example, SIZE(56K)).

3. A combination of 1 and 2 above.
For each compilation, a default for each option (except NAME,

CATALOG, and CONTROL) will apply, unless specifically overridden
by a request for a variant of the option.

Chapter 4. The Optimizing Compiler 17

Compiler Option Abbreviated Name IBM Default
AGGREGATE | NOAGGREGATE AG|NAG NOAGGREGATE o
ATTRIBUTESL(FULL|SHORT)>1| ALCF|S)I|NA NOATTRIBUTES Default
NOATTRIBUTES suboption FULL
CATALOG(*name') - -
CHARSET(L48|60JLEBCDIC|BCDI) CS([48]601LEB|B1) CHARSET(60 EBCDIC)
COMPILE!NOCOMPILE[(N EIS)] CINCI(W|E]S)] NOCOMPILE(S)
CONTROLL("password') - -
COUNT | NOCOUNT CTINCT NOCOUNT
DECK | NODECK DIND NODECK .
DUMP | NODUMP DU|NDU NODUMP
DYNBUF | NODYNBUF - NODYNBUF
ESD|NOESD - NOESD
FLAGL(I|W]|E]S)] FI(W]|E]S)] FLAG(I)
FLOWLC(n,m)]| NOFLOW - NOFLOW
GOSTMT | NOGOSTMT GS|NGS NOGOSTMT
GRAPHIC|NOGRAPHIC - NOGRAPHIC
INCLUDE|NOINCLUDE INC|NINC NOINCLUDE
INSOURCE]NOINSOURCE IS|NIS INSOURCE
LIMSCONV | NOLIMSCONV LCS|NLCS NOLIMSCONV .
LINECOUNT(n) LC(n) LINECOUNT(55)
LINK|NOLINKI(H|E|S)] - NOLINK(S)
LISTL(mL[,n])I|NOLIST - NOLIST
MACRO | NOMACRO M| NM NOMACRO
MAP | NOMAP - NOMAP
MARGINI('c")|NOMARGINI MIC'c')|NMI NOMARGINI
MARGINS(m,nl,c]) MAR(m,nl,c1) MARGINS(2,72)
MDECK | NOMDECK MD | NMD NOMDECK
NAME(Yname,originl, NOAUTO]") N{*name,originl,NOAUTO]®*) | -
NEST | NONEST - NONEST
OFFSET | NOOFFSET OF | NOF NOOFFSET
OPTIMIZE(TIME|0]|2) |NOOPTIMIZE OPTC(TIME|0]2)|NOPT NOOPTIMIZE
OPTIONS|NOOPTIONS OP | NOP OPTIONS
SIZE(yyyyyy|nnnnK|MAX) SZ(yyyyyy|nnnK|MAX) SIZE(MAX)
SOURCE | NOSOURCE S|NS SOURCE
STORAGE | NOSTORAGE STG|NSTG : NOSTORAGE
SYNTAX|NOSYNTAXI(HW|E]S)] SYN|INSYNI(H|E|S)] NOSYNTAX(S)
WORKFILE(2311]2314]3330] - WORKFILE(2311)
3360|3350|FBA)?
XREF{{FULL | SHORT) 1| NOXREF XLCF|S1)|NX NOXREF Default
suboption FULL
lysers of the 3344 direct—access device should specify 3360 in the
WORKFILE option. ,
Users of the 3375 or 3380 direct—access device should specify 3330 in the
WORKFILE option.

Figure 6. Compiler Options, Abbreviations, and Defaults

Figure 6 lists all the compiler options alphabetically with

PN

their abbreviated forms and their default values. Figure 7 on
page 19 lists them by function so you can more easily see the
types of facilities that are available. The defaults given are
those supplied by IBM. An installation can modify the defaults
according to local requirements. Check for any modified
defaults at vour installation. It is possible for compiler
options to have been deleted from use when the system was
generated. If a deleted option is requested in a PROCESS
statement, a message will be printed and the compilation will
proceed without the use of the option. A deleted option can be
restored for use temporarily if, when the option is specified,
the CONTROL option is also specified. The CONTROL option is
described later in this chapter.

The following paragraphs describe the options. For those
options that request the compiler to list information, only a
brief description is included; the generated listings are
described under "Listings"™ on page 30.

18 DOS PL/I Optimizing Compiler: Programmers Guide

A\ 4

)

COMPILER OPTIONS: FUNCTIONAL SUMMARY, PART I

control Listings Produced

AGGREGATE Lists aggregates and their sizes
ATTRIBUTES Lists attributes of identifiers
ESD Lists external symbol dictionary
FLAGC(I|WIE]S) Suppresses diagnostic messages below

a certain severity.
INSOURCE Lists preprocessor input
LIST Lists compiled code produced by compiler
r ok Sifant ST
OPTIONS Lists options used
SOURCE Lists source program or preprocessor output
STORAGE Lists storage used
XREF Lists identifiers and the statements in

which they are used

Improve readability of source listing

NEST Indicates do—group and block level by
numbering in margin

MARGINI Highlights any source outside margins

Control lines per page of listing

LINECOUNT Specifies number of lines per page on listing

Define character set and margins of input

CHARSET Identifies a character set used in source
GRAPHIC Specifies that graphics are used in source
MARGINS Identifies the columns used for source program,

and identifies the position of a carriage
control character

Prevent unhecessary processing

NOSYNTAX(W]E|S) Stops processing after errors are found
in preprocessing

NOCOMPILE(W|E|S) Stops processing after errors are found in
' syntax checking

Control preprocessing

MACRO Allows full use of the preprocessor facility
INCLUDE Allows inclusion of text without overheads

* incurred by macro
MDECK Produces a Source deck from preprocessor output
INSOURCE Lists the input to the preprocessor

Figure'tf(Part 1 of 2). Compiler Options Arranged by Function

" Chapter 4. The Optimizing Compiler

19

COMPILER OPTIONS: FUNCTIONAL SUMMARY, PART Il

control executable program phase
DECK Produces an object module

CATALOG Produces an object deck on virtual card punch
with CATALR card

NAME Specifies non—default name for executable
program phase

Control storage used during compilation

SIZE Controls the amount of storage the compiler uses

Reduce execution—time storage
DYNBUF Allocates buffer space during execution
LIMSCONV Specifies that certain conversions will not be

used in stream I/0, consequently reducing
number of library modules link—edited

Identify statement numbers

GOSTMT Specifies that a statement number table will be
retained till execution time so that execution
time messages can include statement number

OFFSET Specifies that a listing associating statement
numbers with offsets will be generated to aid
in identifying statements from offsets given
in execution time error messages

Use when debugging

FLOW Generates code so that a trace of executed
statements will be retained

COUNT Generates code so that a count of the number
of times each statement is executed will be
printed at the end of the program

Improve compilation/execution speed

OPTIMIZE(TIME) Reduces execution time at the expense
of compilation

NOOPTIMIZE Reduces compilation time at the expense
of execution

Use when debugging the compiler

DUMP Produces a dump if the compiler itself
terminates abnormally

. Specify devices to be used by the compiler

WORKFILE(device fype) Specifies device type used for
: compiler workfiles

Use for system programming

CONTROL('password') Allows access to deleted options for those
who know password

Figure 7 (Part 2 of 2). Compiler Options Arranged by Function

20 DOS PL/I Optimizing Compiler: Programmers Guide

AN

TN

LT

S~

AGGREGATE Option

An aggregate length table, giving the lengths and bytes of all
major structures and arrays in the source program, will be
produced if the AGGREGATE option is specified.

ATTRIBUTESI (FULL|SHORT)1 Option

CATALOG Option

CHARSET Option

COMPILE Option

The ATTRIBUTES option requests the printing of a table of source
program identifiers and their attributes.

If SHORT is specified, unreferenced identifiers are omitted,
making the listing more manageable.

If both ATTRIBUTES and XREF apply, and there is a conflict
between SHORT and FULL, the usage is determined by the last
option found. For example, ATTRIBUTES(SHORT) XREF(FULL) results
in FULL applying to the combined listing.

The default FULL means that FULL applies if the option is
specified with no suboption.

The CATALOG option requests that the object module be stored and
cataloged in a relocatable library at the end of the compilation
step. It causes the compiler to generate a CATALR statement
preceding the object module output on SYSPCH. The CATALOG
option specifies the name by which the object module is to be
identified in the library. The name can be from one to eight
characters, the first of which must not be an asterisk. It must
be enclosed between quotes. Further information about the use
of this option is given in Chapter 6.

60- OR 48-CHARACTER SET: If the PL/I source statements are
written in the PL/I 60-character set, specify CHARSET(60); if
they are written in the 48-character set, specify CHARSET(48).
The 0S _and DOS PL/I Language Reference Manual lists the
character sets. (Note that the compiler will accept source
programs written in either character set if CHARSET(48) is
specified. However, the use of CHARSET(48) will cause an
increase in compilation time.)

BCD OR EBCDIC: The compiler will accept source statements in
which the characters are represented by either of two codes;
binary coded decimal (BCD) or extended binary-coded-decimal
interchange code (EBCDIC). The 0S and DOS PL/I lLanguage
Reference Manual lists the EBCDIC representation of both the
48-character set and the 60-character set.

If both arguments (48 or 60, EBCDIC or BCD) appear, they may be
in any order, and should be separated by a blank or by a comma.

The COMPILE option specifies that the compiler is to compile the
source program unless an unrecoverable error was detected during
preprocessing or syntax checking. The NOCOMPILE option without
an argument causes processing to stop unconditionally after
syntax checking. With an argument, continuation depends on the
severity of errors detected so far, as follows:

NOCOMPILE(W) No compilation if a warning, error, severe error,
‘ or unrecoverable error is detected

NOCOMPILE(E) No compilation if error, severe error, or
unrecoverable error is detected

Chapter 6. The Optimizing Compiler 21

CONTROL Option

COUNT Option

DECK Option

DUMP Option

DYNBUF Option

NOCOMPILE(S) No compilation if a severe error or unrecoverable
error is detected

If the compilation is terminated by the NOCOMPILE option, the
cross—reference listing and attribute listing might be produced;
thedothsr listings that follow the source program will not be
produced. -

The CONTROL option enables the compiler options deleted at
system generation to be used for a particular compilation. The
CONTROL option must be specified with a password that is defined
at system generation.

Note: The CONTROL option must be the first in the list of
options in the PROCESS statement.

If the CONTROL option is specified without a password, CONTROL
('OPTIMIZE') is defaulted.

The COUNT option specifies that the compiled program is to
produce a table indicating how many times each statement or
group of statements in the program has been executed. The table
is written to SYSLST when the program terminates. The counting
is done within your MAIN procedure and inner procedures compiled
with it. Any statements eliminated by optimization of the
program are listed as "unexecuted statements.™ You can supply a
head to identify the COUNT output by use of the PLIXHD facility
described at the end of this section.

The COUNT option implies the GOSTMT option. If COUNT and
NOGOSTMT are both specified, a diagnostic message is issued and
no count table is produced.

The DECK option specifies that the compiler is to write the
object module in the form of 80-position records onto SYSPH.
Positions 73 through 76 of each record contain a code to
identify the object module; this code comprises the first four
characters of the first label in the external procedure
represented by the module. Positions 77 through 80 contain a
G-digit decimal number: the first record is numbered 0001, the
second 0002, etec.

The DUMP option, when specified, causes a dump of registers and
main storage used by the optimizing compiler if compilation
terminates because of an error within the compiler itself.

The DYNBUF option specifies that the compiler is not to allocate
buffers for files at compile-time. Instead, the buffers are to
be allocated dynamically when the files are opened at
execution-time. Consequently, space is not required for a
file's buffers until it is open and is released when it is
closed. NODYNBUF is the default. NODYNBUF causes the compiler
to allocate storage for buffers for all files, with the effect
that the overall storage requirement of the object program is
increased but the time taken to open the files is reduced.

If DYNBUF is used, there is no advantage in having all the files
in a program open concurrently. Therefore, files that need not
be opened concurrently should be opened and closed separately.

22 DOS PL/I1 Optimizing Compiler: Programmers Guide

TN

ESD Option

FLAG Option

FLOW Option

GOSTMT Option

D GRAPHIC Option

If NODYNBUF is used, there is no advantage in opening and
closing files separately so that they are not open concurrently.
Therefore, all the files used in a program can be opened and
closed together.

The ESD option requests the inclusion of a listing of the
external symbol dictionary (ESD).

The diagnostic messages produced by the optimizing compiler are
graded in order of severity. The FLAG option specifies the
minimum level of severity that requires a message to be printed:

FLAG(I) List all diagnostic messages. Note that, if you
specify FLAG, FLAG (I) is assumed.

FLAG(W) List all diagnostic messages except "informatory™
messages.

FLAG(E) List all diagnostic messages except "warning™ and
"informatory™ messages.

FLAG(S) List only "severe" errors and "unrecoverable™ errors.

The severity levels are discussed under "Listings™ on page 30.

The FLOW option requests that the compiled program list the
numbers of the last "n"™ branch-out and branch-in source
statements executed prior to the occurrence of an interrupt that
results in an execution-time diagnostic message. The format of
the option is:

FLOWL[(n,m)1]
where
n is the number of statement numbers to be listed, and
m is the number of procedures through which a flow-trace is

to be maintained at any one time.

The maximum value for n or m is 32,767. The FLOW option is
operative only within yvour MAIN procedure and inner procedures
compiled with it. The FLOW option is discussed further under
"Statement Numbers and Tracing™ on page 207.

If the FLOW option is specified without arguments, FLOW (25,10)
is assumed.

The GOSTMT option requests the compiler to produce additional
information that will allow statement numbers from the source
program to be included in diagnostic messages produced during
execution of the compiled program.

However, vou can get information about statement numbers and
their associated offsets by referring to the "Statement Offset
Addresses™ on page 34.

The GRAPHIC option specifies that either:

Chapter 9. The Optimizing Compiler 23

INCLUDE Option

INSOURCE Option

LIMSCONV Option

LINECOUNT Option

. You have graphics within comments in your source progranm.

* You use the MACRO option and vour source program contains
graphics within comments or graphic constants.

You need not specify GRAPHIC if vou use graphic constants and do
not use the preprocessor. If yvou do not require graphic
support, specify NOGRAPHIC. The default is NOGRAPHIC.

When using the GRAPHIC compiler option, ensure that all comments
within your program use the hexadecimal value '0E' (or whatever

value vour installation has defined as the left delimiter) only

as a left delimiter to begin a graphic string.

You must use the compiler option CHARSET=(EBCDIC,60) when the
GRAPHIC compiler option is specified.

To print graphic data (including your source program), your data
must be in a format acceptable for a printer with graphic
s:pfggt or for a print utility program, such as the Kanji print
utility.

The INCLUDE option requests the compiler to handle the inclusion
of PL/I source statement books for programs that use the
ZINCLUDE statement. This method is faster than using the
preprocessor for programs that contain XINCLUDE statements but
no other preprocessor statements. The INCLUDE option should not
be used if the MACRO option is specified.

The INSOURCE option requests a listing of the PL/I source
statements by the preprocessor.

The LIMSCONV option specifies that the compiler will not have to
handle any conversions for data- or list-directed input other
than the following:

. Bit (or character containing bit string) to bit.
. Character to character (or picture character).

. Fixed- or floating—point decimal constants (or character
strings that represent such constants) to arithmetic.

The use of this option will result in a space saving. The
resident library conversion modules for all other conversions
are otherwise incorporated into the object module on the
assumption that they might be used. Note that if a program
attempts a conversion not given above when this option has been
used, the CONVERSION condition will be raised. On-codes that
indicate attempts to use suppressed conversions are given; these

are listed in the 0S and DOS Language Reference Manual.

The LINECOUNT option specifies the number of lines to be
included in each page of a printed listing, including heading
lines and blank lines. Its format is:

LINECOUNT(n) -
where

n is the number of lines.

26 DOS PL/I Optimizing Compiler: Programmers Guide

PSRN

LINK Option

The LINK option specifies that link-editing is to follow the
compilation unconditionally; the use of the NOLINK option will
suppress link-editing according to the severity level of
messages produced during the compilation. Note that the LINK
“option of the DOS OPTION statement is also needed if
link-editing is to follow the compilation.

LIST Option

The LIST option requests a listing of the object module
generated by the compiler (in a form similar to assembler
language instructions). The format of the LIST option is:

LISTI(mI,n))]
where

m is the number of the first statement for which an object
listing is required.

n is the number of the last statement for which an object
listing is required.

If "'n' is omitted, an object listing for statement number 'm'
only is given.

If LIST is used in conjunction with MAP, add1t1ona1 listings of
static storage are generated.

MACRO Option

Specify MACRO when you want to employ the compile-time
preprocessor. The use of the preprocessor is described under
"Compile-Time Processing™ on page 40.

MAP Option

The MAP option causes the printing of the tables showing the
organization of the storage for the compiled object module. A
table showing the mapping of static internal and automatic
variable is always produced. This enables you to find variables
in a PLIDUMP. If the LIST option is also used, maps of static
internal and external control sections are also provided. They
include a table showing the mapping of PL/I data items in
dynamic and static storage. The MAP option is normally used in
conjunction with the LIST option.

MARGINI Option
The MARGINI option defines the character that the compiler is to
print on margins of the source listing, thus revealing any
source statements that cross either margin. Its format is:

MARGINI ('c")
where
c is the alphameric character to be printed on the source
listing margins.

MARGINS Option
The MARGINS (source margin) option specifies the part of each
input record that contains the PL/I source statements. The
compiler will not process data that is outside these limits.

The option can also specify the position of an ANS carriage
control character to format the listing of source statements

Chapter 4. The Optimizing Compiler 25

MDECK Option

NAME Option

produced by the compiler if the SOURCE option is specified. The
format of the MARGINS option is:

MARGINS(m,nl[,c1)
where
m represents the position in the input record of the first
byte of the field that contains the 80-byte source
statement record,

n represents the position in the input record of the last
byte of the source statement field, and

c repreéents the position in the input record of the byte
that will contain the control character.

The value m must be less than or equal to n, and neither must
exceed 80. The value ¢ must be outside the limits set by m and
n. The valid control characters are:

b Skip one line before printing (blank)
0 Skip two lines before printing
- Skip three lines before printing

Suppress space before printing
1 Start new page

Chapter 9 on page 118 contains a full description of the use of
printer control characters. If you do not specify a position
for a control character, it is assumed not to be used. '

If the value ¢ is greater than the maximum length of a source
statement record, the compiler will not be able to recognize it;
consequently the listing will not have the required format. If
the character specified is not a valid contrel character, a
blank is assumed by default.

If the value of m is 1 there is a possibility of confusion
between source text and ¥PROCESS statement. If » PROCESS is
found with the asterisk in column 1 it is taken as a ¥ PROCESS
statement even if it occurs in a source program. For this
reason you should not set m to 1.

Source statements generated by the preprocessor always have a
source margin (2,72). Columns 73 through 80 contain information
inserted by the preprocessor; this information is described
under "Listings™ on page 30.

Specify the option MDECK if you want the output from the
preprocessor in the form of a card deck. This output is written
(punched) as a data set on SYSPCH.

The NAME option specifies the name of the executable program
phase that will be created by the linkage editor from the
compiled object module. The option causes the compiler to place
a linkage editor PHASE statement at the start of the object
module. The PHASE statement has the effect of assigning the
specified name and loading point address to the following module
when the module is link-edited. The format of the NAME option
is:

NAME("name,originl,NCAUTO1')

26 DOS PL/I Optimizing Compiler: Programmers Guide

AN

)

=4

NEST Option

OFFSET Option

OPTIMIZE Option

OPTIONS Option

SIZE Option

where name, origin, and NOAUTO are the operands of the DOS
linkage ggitor PHASE statement described under "PHASE Statement™
on page .

The NEST option specifies that the source program listing should
indicate for each statement its begin-block level and its
DO-group level.

The OFFSET option causes printing of the statement numbers for
statements internal to each procedure, with their offset
addresses relative to the primary entry point of the procedure.
This information is of use in identifying the statement being
executed when an error occurs and a listing of the object module
(obtained by using the LIST option) is available. Note that the
GOSMT option will cause statement numbers, as well as offset
addresses, to be included in execution-time diagnostic messages.

The OPTIMIZE option specifies the type of optimization required:

NOOPTIMIZE produces the fastest possible compilation, but
inhibits optimization for faster execution and reduced
storage requirements. The compiler still carries out
optimization of the object code, but certain optional
optimization is omitted.

OPTIMIZECTIME) requests the compiler to optimize the machine
instructions generated for minimum execution time. A
secondary effect of this type of optimization can be a
reduction in the amount of storage required for object
programs. The use of OPTIMIZE(TIME) could result in a
substantial increase in compile time over NOOPTIMIZE.

OPTIMIZE(O0) is the equivalent of NOOPTIMIZE.
OPTIMIZE(2) is the equivalent of OPTIMIZE(TIME).

The 0S and DOS PL/I Language Reference Manual includes a full
discussion of program optimization and efficient programming.

The OPTIONS option requests a list showing the status of all the
compiler options after any default attributes have been applied
at the start of compilation.

The optimizing compiler must have at least 51,200 (50K) bytes of
main storage available for its use. The SIZE option specifies
the amount of main storage available for the compilation. In a
non-multiprogramming environment, the amount will be all of main
storage other than that used by the supervisor. In a
multiprogramming environment, the amount is limited to the si:ze
of the partition and the SIZE option on the EXEC statement.

Code this option in one of the following ways:

SIZE(yyyyyy) specifies that yyyyyy bytes of main storage are
available for the compilation. Leading zeros are not
required.

SIZE(yny) specifies that yyyK bytes of main storage are

available for the compilation (1K=1024). Leading zeros are
not required.

Chapter 4. The Optimizing Compiler 27

SOURCE Option

STORAGE Option

SYNTAX Option

WORKFILE Option

S