
Program Product

SC33-0009-2

OS
PL/I Checkout and
Optimizing Compilers:
Language Reference Manual

Program Number 5734-PL 1
(This program product is available
as part of composite package 5734-PL3)

Program Number 5734-PL2

Third Edition (September 1972)

This is a reprint of SC33-0009-1, incorporating changes
released in the following Technical Newsletter:

SN33-6036 (dated November 5th,1972)

This edition applies to Release 1.0 of the OS PLII Optimizing
Compiler, and all subsequent releases until otherwise
indicated in new editions or Technical Newsletters.

Changes are continually made to the information in this
publication; before using it in connection with operation of
IBM systems, consult the latest IBM System/360 and System/370
Bibliography SRL Newsletter, Order No. GN20-0360, for the
editions that are applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form is provided at the back of this publication for
reader's comments. If the form has been removed, comments
may be addressed to IBM United Kingdom Laboratories Ltd.,
Programming Publications, Hursley Park, Winchester,
Hampshire, England. Comments become the property of IBM.

~ Copyright International Business Machines Corporation 197n,
1971

This publication is planned for use as a
reference book by the PLII programmer. It
is not a tutorial publication, but is
designed for the reader who already has a
knowledge of the language and who requires
a source of reference material.

The publication is in two parts. Part I
contains discussions of concepts of the
language. Part II contains detained rules
and syntactic descriptions.

Although implementation information is
included, the book is not a complete
description of any implementation
environment. In general, it contains
information nE~eded to write a program that
will be processed by the OS PLII Optimizing
Compiler or the OS PLII Checkout Compiler.
It does not contain all the information
needed to execute programs. For further
information on executing a program refer to
either the compiler's programmer's guide
(for batch processing only) or its Time
Sharing Option publication (for processing
in a TSO System).

The following restrictions apply to the
information given in thi* publication if
the PLII Op1:.imizing Compiler is being used
under Releases 19.6 or 20.0 of the IBM
Operating System:

• Extended precision floating point
arithmetic is not available under
Release 1'9.6.

• ASCII data sets are not supported under
Releases 19.6 and 20.0.

• Conversational processing is not
available under Releases 19.6 and 20.0.

• PLII Teleprocessing facilities are not
available under Releases 19.6 and 20.0.

In order to execute programs processed
by these compilers, subroutine libraries
are required. The subroutines are provided
by the OS PL/I resident library (optimizing
compiler only) and the OS PLII transient
library (both compilers).

The OS PL/I Optimizing and Checkout
Compilers require an MFT or MVT version of
the IBM Operating System. Programs that
have been compiled by the PLII Optimizing
Compiler and 1flhich utilize PLII
multitasking facilities can be executed
only under thle MVT version of the operating
system.

Preface

USE OF THIS PUBLICATION

This puhlication is designed as a reference
book for the PLII programmer. Its two-part
format allows a presentation of the
material in such a way that references can
be found quickly, in as much or as little
detail as the user needs.

Part I, "Concepts of PL/I," is composed
of discussions and examples that explain
the different features of the language and
their interrelationships. To reduce the
need for cross referpnces and to allow each
chapter to stand alone as a complete
reference to its subject, some information
is repeated from one chapter to another.
Part I can, nevertheless, be read
sequentially in its entirety.

Part II, "Rules and Syntactic
Descriptions," provides a quick reference
to specific information. It includes less
information about interrelationships, but
it is organized so that a particular
question can be answered quickly. Part II
is organized purely from a reference point
of view; it is not intended for sequential
reading.

For example, a programmer would read
chapter 5, "Statement Classification" in
Part I for information about the
interactions of different statements in a
program; but he would look in section J,
"Statements" in Part II, to find all the
rules for the use of a specific statement,
its effect, options allowed, and the format
in which it is written.

In the same manner, he would read
chapter 4, "Expressions and Data
Conversions" in Part I for a discussion of
the concepts of data conversion, but he
would use-section F, "Data Conversion and
Expression Evaluation" in Part II, to
determine the exact results of a particular
type of conversion.

An explanation of the syntax language
used in this publication to describe
elements of PLII is contained in section A,
"Syntax Notation" in Part II.

REQUISITE PUBLICATIONS

For information necessary to compile,
linkage edit, and execute a program, the
reader should be familiar with the
appropriate one of the following
publications:

3

OS PL/I Optimizing Compiler:
Programmer's Guide, Order No. SC33-0006

OS PL/I Checkout Compiler: Programmer's
Guide, Order No. SC33-0007

OS Time Sharing Option: PL/I Optimizing
Compiler, Order No. SC33-0029

OS Time Sharing Option: PL/I Checkout
Compiler, Ordsr No. SC33-0033

RECOMMENDED PUBLICATIONS

The subjects covered in the following
publications include the compiler
facilities, the optimization or checkout
features (whichever are applicable)~
methods of implementing the various
language features, and comparisons of the
language implemented by the OS PL/I
Optimizing or Checkout Compilers with that
implemented by the PL/I (F' Compiler.

4

OS PL/I Optimizing Compiler: General
Information,
Order No. GC33-0001

OS PL/I Checkout Compiler: General
Information,
Order No. GC33-0003

OS PL/I Optimizing Compiler: Execution
Logic,
Order No. SC33-0025

OS PL/I Checkout Compiler: Execution
Logic,
Order No. SC33-0032

AVAILABILITY OF PUBLICATIONS

The availability of a publication is
indicated by its use key, the first letter
in the order number. The use keys for
publications referred to in this manual
are:

G - General: available to users of
IBM systems, products, and
services without charge, in
quantities to meet their normal
requirements: can also be
purchased by anyone through IBM
branch offices.

S - Sell: can be purchased by anyone
through IBM branch offices.

PART I: CONCEPTS OF PLII

CHAPTER 1: BASIC CHARACTERISTICS OF
PL/I . • . • • • • • • • • • • •
Machine Independence • • • • • •
Program Structure • • • • • • •
Data Types and Data Description
Default Assumptions
storage Allocation •
Expressions • • • •
Data Collections

11

13
13
13
13
13
14
1"4

• • 14
Input and Output •
Multitasking • • •

• • • • 15

Facilities of Two Compilers ••• •
15
16
16 Compile-time Operations

Execution-time Facilities
Interrupt Activities • • • •
Operating system Facilities

• • • • 16
17
17

CHAPTER 2: PROGRAM ELEMENTS ••••
Character Sets • •

• • 18
18

60-Character set • • • • •
48-Character Set • • • • •
Using the Character set

Basic Program structure

18
18
19

Simple and Compound statements
Groups and Blocks

• • 21
21

• • 22

CHAPTER 3: DATA ELEMENTS
Data Types • • • • •
Problem Data • • • • • •

Arithmetic Data
string Data • • • • •
Unitialized Variables

Program Control Data
File Data • • • •
Label Datil •
Entry Datil •
Event Data •
Task Data • • • •
Locator Data
Area Data • • • •

Data Orgarlization
Arrays • 0 • • • •

Structures • • • •
Arrays of structures •

Other AttI:ibutes • • • •

• • 23
• • 23

23
• • • • • • 23

• • 29
• 31
• 31

• • : • • • 31
• • 31

• • • • 32
• • • 32

• • • • • • 32
• • 32

• • • • • • 33
• • • • • • 33

• • 33
35
37

• • 37

CHAPTER 4: EXPRESSIONS AND DATA
CONVERSION • • • • • • • • • • • • 42
Use of Expressions~; • • • • 42
Data Conversion •• • • • • 43

Operational Expressions • • 43
Assignment • • • • • • • • • • •• 43
Problem Data Conversion • • 43
Locator Dalta Conversion' • • • • • • • 44
Use of Built-in Functions •••••• 44

Expression operations • • 44
Arithmetic Operations • • • 45
Bit-String Operations • • 45
Comparison Operations •• 46
Concatenation Operations • • • 47

Contents

• 47 Combinations of Operations •
Function Reference Operands
Attributes of Targets ••••
Array Expressions •• • • • •

• • • 49

Prefix Operators and Arrays
Infix Operators and Arrays •

Structure Expressions • • • •
Prefix Operators and Structures
Infix Operators and Structures • • •

Exceptional Conditions • • • • • •

• 50
• 50
• 51
• 51
• 52
• 52
• 53
• 54

CHAPTER 5: STATEMENT CLASSIFICATION •• 55
Classes of Statements •••• • • • • • 55

Descriptive Statements • • • • • • • • 55
Input/Output Statements •• • • • • • 56
Data Movemeht and Computational
St~tements • • • • • • • • • • •
Program Organization Statements
storage Control Statements •
Control Statements • • • • •
Exception Control Statements
Preprocessor Statements ••
Listing Control Statements •
Diagnostic Statements

• 57
• 58
• 59
• 59
• 62

63
• • 64

• 64

CHAPTER 6: PROGRAM ORGANIZATION. • 66
Blocks • • • • • • 66

Procedure Blocks • • • • • • • 66
Begin Blocks • • • • • • • • • • • • • 66
Internal and External Blocks • • • • • 67

Activation of Blocks • • • • 68
Termination of Blocks • 70

Begin Block Termination • 70
Procedure Termination •• 71
Program Termination • 72

Dynamic Loading of an External
Procedure • • • • • • • • • • • 72
Storage Allocation • • • • • • • • 73
Reactivation of an Active Procedure
(Recursion) ••••••• • 74
Prologues and Epilogues • • • • • • 75

CHAPTER 7: RECOGNITION OF NAMES • 77
Explicit Declaration • • • • • • • • • • 77

Scope of an Explicit Declaration • • • 78
Contextual Declaration • • • • • • • • • 78

Scope of a Contextual Declaration • • 78
Implicit Declaration • • • • • • • • • • 79
Examples of Declarations • • • • • • • • 79
Internal and External Attributes • • • • 80
Multiple Declarations and Ambiguous
References • • • • • • • • • • • • • • • 82
Application of Default Attributes • 83

Processes in the Application of
Attributes • • • • • • • • • • • • 83
Application of Standard Defaults • • • 83

DEFAULT Statement • • • • • • • • • 84

CHAPTER 8: STORAGE CONTROL
Static Storage • •
Automatic Storage • • • •

• 88
• 88
• 89

5

Effect of Recursion on Automatic
variables • • • • • • • • • • • • 89

Controlled Storage • • • • • • • • • 89
ALLOCATE Statement for Controlled
Variables • • • • • • 90
Free Statement for Controlled
Variables • • • • • • • • • • • • • • 91
Multiple Generations of Controlled
Variables •• • • • • • • • •
Controlled Structures •• • •
ALLOCATION Built-in Function •

91
• • 92
• • 92

Based Storage ••• • •
Based Variables ••• • •
Locator Qualification
Pointer Variables •• ~ •

• • • 92
• • • • • • 92
• • • • • • 93

93
Addr Built-In FUnction • • • • • •
Based Variables and Input/Output •
Self-Defining DataCRefer Option) •
List Processing • • • • • •
ALLOCATE Statement for Based

• • 94
• • 94
• • 96
• • 97

variables • • • • • • • • • • • • • • 98
FREE Statement for Based Variables • • 98
Multiple Generations of Based
variables •••• • •
NULL Built-in Function
Types of List
Areas ••••••••
Area Assignment
Input/Output of Areas ••
Multiple Locator Qualification

• • • 98
• • • 99

• • 99
• •• 100

• .102
• .103
• .103

CHAPTER 9: SUBROUTINES AND FUNCTIONS •• 105
Introduction. • • • • • • .105
subroutines • • • • • • • •. • • • • 107
Functions ••• • • • • • • • • • .108

Attributes of Returned Values •• 110
Generic Entry Names and References ••• 110
Built-in Functions. • • • • • • • .111
FORTRAN Library Functions •••• 112
Built-in Subroutines. • • • • • .112
Relationshi~ of Arguments and
Parameters • • • • •

Dummy Arguments ••• • •
Entry Attribute • • • • •
Allocation of Parameters •
Argument and Parameter Types •

Passing an Argument to the Main
Procedure ••• • • • • • •

CHAPTER 10: INPUT AND OUTPUT
Introduction • • • • • • • •

• .113
• • • 113

• .114
.117

• .118

• .120

• .121
• .121

Data Sets ••••••• • • • • • • • • 121
Information Interchange Codes

Files • • • • • • • • •
File Attribute • • • • • •
Alternative Attributes • •
Additive Attributes

Opening and Closing Files
standard Files • • • • • •

CHAPTER 11: STREAM-ORIENTED

• .122
• .122

• • • • 123
• •• 123

• .125
• .126
• .130

TRANSMISSION. • • • • • • • • .132
Introduction. • • • • • • • .132

List-directed Transmission. • •• 132
Data-directed Transmission •••••• 132
Edit-directed transmission. • •• 133

Data Transmission Statements. • .133
Options of Transmission Statements ••• 134

6

Data Specifications ••••• ~ • .135
Data Lists • • • • • • • • • ~ • • • .135

.137 List-directed Data Specification •
Data-directed Data Specification •
Edit-directed Data Specification •
PRINT Files • • • •
ENVI'FONMENT Attribute

Record Format Options
Buffer Allocation
Data Set Organization
Magnetic Tape Handling Options •
ASCII Data sets

CHAPTER 12: RECORD-ORIENTED

• •• 139
.142
.146

• •• 147
.148
.151

• .151
.152
.152

TRANSMISSION. • • • • • • • • • • .154
Introduction. • • • • • • • • .154
Data Transmitted. • • • • • • .154
Data Transmission Statements. • • .154
Options of Transmission Statements .155
Processing Modes. • • • .158

Move Mode ••• • • .158
Locate Mode • • • • • .160

ENVIRONMENT Attribute .161
Record Format Options .163
Buffer Allocation ••• 166
.Data Set Organization ••• 166
Magnetic Tape Handling Options. .168
Printer/Punch Control (CTL360/CTLASA) 168
Data Interchange (COBOL) ••••••• 168
In-line Code Optimization (TOTAL) •• 170
Data Management Optimization
CINDEXAREA/NOWRITE/ADDBUFF)
Key Classification (GENKEY)
Number of Channel Programs CNCP)
Track Overflow (TRKOF1)
Varying-length String Option

• .170
.170

• •• 171
• .171

(SCALARVARYING) a..... .172
Key Length Option CKEYLENGTH) .172
Key Location Option (KEYLOC) •• 172
ASCII Data Sets • • • • .173

Consecutive Organization. .174
sequentlal Update •• .174

Indexed Organization. • • • • .174
Keys. • • • • • • • .175
Dummy Records •••• .178
Creating a Data Set .178
sequential Access .178
Direct Access ••••• 179

Regional Organization .179
Keys. • • • • • • • • • • • • • .180
Types of Regional Organization. .180
Regional(l) Organization ••••••• 180
Regional(2) Organization •• 183
Regional(3) Organization ••••••• 185

Teleprocessing ••••••••••••• 187
Summary of Record-oriented Transmission 190
Examples of Declarations for Record
Files ••••••••••••••••• 191

CHAPTER 13: EDITING AND STRING HANDLING 193
Editing by Assignment ••••••••• 193

Altering the Length of String Data •• 193
Other Forms of Assignment .194
Picture Specification •• 195

Bit-String Handling • • • • • • • • • .199
String Built-in Functions .200

CHAPTER 14: EXCEPTIONAL CONDITION
HANDLING AND PROGRAM CHECKOUT •• 202
Enabled Conditions and Established
Action ••••••••••••••••• 202
Example of Use of ON-conditions •• 208

CHAPTER 15: EXECUTION-TIME
OF THE CHECKOUT COMPILER
Introduction. • • • •
Tracing Facilities •
Current status List
Program Amending • •

FACILITIES
.211

• .211
• .212
• .216
• .221

CHAPTER 16: COMPILE-TIME FACILITIES •• 222
Introduction. • • • • • • • • • • .222
Preprocessor Input and Output •• 222

Preprocessor Scan •• 222
Preprocessor Variables • • .224
Preprocessor Expressions •••••• 225
Preprocessor Procedures •• • .225

Invocation of Preprocessor Procedures 226
Argument::; and Parameters for
Preprocessor Functions • •

Preprocessor DO-group
Inclusion of External Text •
Preprocessor Statements ••••.••
Listing Cont:rol Statements •

• .226
• .228
• .228
• .229
• .230

CHAPTER 17: MULTITASKING. • • .232
Introduction • • • • • • • • • .232
Specifying Tasking and Reentrability •• 233
Creation of Tasks •••••• 234

CALL Statement • • • .234
Priority of Tasks • • .235
PRIORITY Built-in Function and
Pseudovariable • • • • • •

Coordinati()n and Synchronization of
• .235

Tasks •••• • • • • • • • • • .236
Sharing Data between Tasks • • • .236
Sharing Files between Tasks. • .237
WAIT Statement •••••••••••• 237
Testing and Setting Event Variables .237
DELAY StatE~ment • • • • • .238

Termination of Tasks. • •••• 238
programming Example •• 239

CHAPTER 18: EFFICIENT PROGRAMMING ••• 242
Optimization ••••••••••••• 242
Common Expressions •••••••••• 242
Transfer of Invariant Expressions or
Statements •••••••••••••• 243
ORDER and EtEORDER Option • • • • • • .243
Elimination of Redundant Expiession .245
Expression Simplification .245
Coding Source Programs for the
optimizing Compiler •• • • • • .245

programming Techniques for the
oftimizing Compiler •••••••••• 247

Improving speed of Compilation •••• 247
Improving speed of Execution. .248
In-Line Operations •••••••••• 251
Use of St.oI:age • • • • • • • • • • • .254
Use of Input/Output Facilities •• 256
Additional Hints • • • • • • • • .257

Common Errors and Pitfalls ••••••• 259
Operating System and Job Control ••• 259
Source Program and General Syntax •• 259
Program Control ••••••••••• 259

Declarations and Attributes ••••• 259
Assignments and Initialization •••• 261
Arithmetic and Logical Operations •• 262
DO Groups .-. • • • • • • • • • .264
Data Aggregates ••••••••••• 265
strings •••••••••••• .266
Functions and Pseudovariables .266
On-conditions and On-units • • • .266
Input/Output. • • • • • • • • • .267

CHAPTER 19: INTERLANGUAGE
COMMUNICATION FACILITIES •
Interlanguage Facilities •

Interlanguage Environment
COBOL Interface
FORTRAN Interface •••••••

PART II: RULES AND SYNTACTIC
DESCRIPTIONS • • . • • • •

SECTION A: SYNTAX NOTATION •

.270
• •• 270

.275

.278
••• 279

.283

• .285

SECTION B: CHARACTER SETS WITH EBCDIC
AND CARD-PUNCH CODES • • • .287

.287 60-Character Set •
48-Character Set • • • • .288

SECTION C: KEYWORDS AND KEYWORD
ABBREVIATIONS • • • • • • • • • • .289

SECTION 0: PICTURE SPECIFICATION
CHARACTERS • • •• • •••••••• 295
Picture Characters for Character-string
Data • • • • • •• • •••••••• 295
Picture Characters For Numeric
Character Data •• •• • • • • • • .296

Digit and Decimal-point Specifiers •• 297
Zero Suppression Characters •• .297
Insertion Characters. • • • • • .298
Signs and Currency Symbgl •• 301
Credit, Debit, and overpunched Signs .302
Exponent Specifiers. • ••••• 303
Scaling Factor • • • • • • • • .304

SECTION E: EDIT-DIRECTED FORMAT ITEMS .305
Data Format Items ••• 305
Control Format Items • • • ••• 305
Remote Format Item. • ••••• 306
Use of Format Items • • • • • • • .306
Alphabetic J.·ist of Format Items • .306

SECTION F: DATA CONVERSION AND
EXPRESSION EVALUATION • • • • • • .315
Section Organization •••••••••• 315

Example of Use of the Conversion
Rules •••••••••••••••• 316

Table of CEIL Values • • • • • • • • • • 314
Tables for Arithmetic Operations • • • • 329
Tables for Comparison operations • • • • 331

SECTION G: BUILT-IN FUNCTIONS AND
PSEUDOVARIABLES ••••••••• .333

Classification of Built-in Functions .333
Conversion of Arguments .334
Accuracy of the Mathematical
Functions ••••••••• .335

7

Aggregate Arguments
Null Arguments • • •
PseudoVariacles ••••

SECTION H: ON-CONDITIONS •

.341

.341
••• 342

.357
Introduction •••••••••••••• 357
Condition Codes (On-codes) •• 358
Multiple Interrupts •• 365
List of Conditions • • • • • • • • • • .365
Classification of Conditions •••••• 366

SECTION I: ATTRIBUTES ••••••• •• 318

8

SECTION J: STATEMENTS • • • • .412
.449
• 455

Preprocessor Statements •••••• •
Listing Control Statements •• • •

SECTION K: DATA MAPPING
Structure Mapping

Rules •• • • • •
Record Alignment • •

.457
• , • .457

••. ~~ •• 457
,". ""; • "71

SECTION L: COMPILER DIFFERENCES. ".474

GLOSSARY

INDEX

..0 ~'. 478
;J .,.t

.493
, f

Figure 1.1. Some functions of special
charact rs ••••••••••• • 20
Figure 1. Section of main store
showl.' lignment of fixed length
fiel" · ••••• • • • • 39
FiguL~)~ Scopes of data
declal, '. ons..... • 80
Figure 7.~. Scopes of entry and label
declarat, ,ons • • • • • • • • • • • 80
Figure 8.1. Example of
one-directional chain •• • 99
Figure 10.1. Effect of operations on
EXCLUSIVE files •••••• • •• .126
Figure 11~1. General format for
repetitive specifications ••• , • .136
Figure 1".2. Example of data-directed
transmission (both input and output) •• 142
Figure 11.3. Options and format items
for controlling layout of PRINT files .147
Figure 11 .4'. Effect of LEAVE and
REREAD optio,ns • • • • • • • • • • • • • 152
Figure 12.1. Input and output: move
mode • • • • • • • • • • • • • • • 159
Figure 12.2. Locate mode input, move
mode output ••••••••.••••• 162
Figure 12.3. Effect of LEAVE and
REREAD options • • • • • • • • • • 1 69
Figure 12.4. 1403 Printer control
codes . • . • • • • • • • • • •. 169
Figure 12.5. 2540 Card read punch
control codes • • • • • • •• .169
Figure 12.6. Statements and options
permitted for creating and accessing
CONSECUTIVE data sets ••••••••• 175
Figure 12.7. Statements and options
permitted for creating and accessing
INDEXED data, sets • • • • • • • • • 176,177
Figure 12.8. Effect of KEYLOC and RKP
values on establishing embedded keys
in record variabl~s or data sets •••• 177
Figure 12.9. Statements and options
permitted for creating and accessing
REGIONAL dat,a sets • • • • • • • • • 1 81 ,182
Figure 12.10. Statements and options
permitted for TRANSIENT files .190
Figure 14.1. A program checkout
routine • • • • • • • • •• • .209
Figure 15.1. Example of use of CHECK
statement •••••••••.••••• 215
Figure 15.2. Flow comments produced
by various transfers of control .217
Figure 15.3. Program-item information
provided by the PUT statement options .217
Figure 15.4. Information transmitted
by PUT ALL statement • . • • • • .220
Figure 16.1. Effects of %PAGE and
%SKIP • • • • • • • • • • • .231
Figure 17.1. Synchronous and
asynchronous operation • • • • • .232
Figure 17.2. Flow diagram for
programming example of multitasking •• 241

Figures

Figure 18.1. Implicit data
conversion performed in-line ..•• 252,253
Figure 18.2. Conditions under which
string operations are handled in-line .254
Figure 18.3. Conditions under which
string functions are handled in-line • .255
Figure 19.1. Extent of PL/I
environment • • . • • • • •• • •• 276
Figure 19.2. COBOL-PL/I data
equivalents •• • • • • • • •• • .279
Figure 19.3. Declaration of a data
aggregate in COBOL and PL/I .279
Figure 19.4. FORTRAN-PL/I data
equivalents •••• • .280
Figure 19.5. Return codes produced
by PL/I data types••• 281,283
Figure 0.1. Pictured character-string
examples • • • • • • • • • • • • .296
Figure 0.2. Pictured numeric
character examples • . . • • •• • .297
Figure 0.3. Examples of zero
suppression • • • • • • • •• 299
Figure 0.4. Examples of insertion
characters ••••••••.••••.• 300
Figure 0.5. Examples of drifting
picture characters. • • • .302
Figure 0.6. Examples of CR, DB, T, I,
and R picture characters •••••••• 303
Figure 0.7. Examples of
floating-point picture specifications .304
Figure 0.8. Examples of scaling
factor picture characters .••• .304
Figure F.1. List of priority of
operations and guide to conversion
rules • • • • • • • • • •• .314
Figure F.2. Table of CEIL(n*3.32) and
CEIL(n/3.32) value ••••••••••• 314
Figure F.3. Circumstances causing
conversion. • • • • • • • . .314
Figure F.4a. Master table for
arithmetic operations •• 329
Figure F.4b. Key to conversions •• 329
Figure F.4c. Result table for
ADDITION, SUBTRACTION, MULTIPLICATION,
and DIVISION. • • • • .329
Figure F.4d. Result table for
EXPONENTIATION • • • • • • .329
Figure F.5a. Master table for
comparison operations .331
Figure F.5b. Types of comparison
operation and targets ••••••••• 331
Figure G.1. Performance statistics
for the mathematical built-in
functions with short and long precision
floating-point arguments •••• 336,337,'338
Figure G.2. Performance statistics
for the mathematical built-in functions
with extended-precision
floating-point argwnents •••• 339,340,341
Figure H.1. Output for the CHECK
condition •••• ~ •••••••••• 369

9

Figure 1.1. Classification of attributes
according to data type •.•••.••• 379
Figure 1.2. File declarations. .380
Figure 1.3. Guide to types of
defining. • • • • • • • • • • .387
Figure J.1. General formats of the
assignment statement •••••••••• 414
Figure J.2. General formats of the
DEFAULT statement • • • • • • • • • • .421
Figure J.3. General format of the DO
statement ••••••••••••••• 425
Figure J.4. Transfer and destination
statements. • • • • • • • • • •• .431
Figure J.5. Format of option list for
READ statement. • • • • • • • •• .442
Figure K.1. Summary of alignment
requirements for ALIGNED data .459,460
Figure K.2. Summary of alignment
requirements for UNALIGNED data •• 461,462
Figure K.3. Mapping of minor
structure G •••••• Q ••••••• 463
Figure K.4. Mapping of minor
structure E •••••••••••••• 464
Figure K.5. Mapping of minor
structure N • • • • • • • • • • •• 465

10

Figure K.6. Mapping of minor
structure S •••••••••••••• 466
Figure K.7. Mapping of minor
structure C • • • • • • • • • .467
Figure K.8. Mapping of minor
structure M • • • • • • • • • • • .468
Figure K.9. Mapping of major
structure A • • • • • • • • .469
Figure K.10. Offsets in final mapping
of structure A • • • • • • • • • .470
Figure K.11. Format of structure S •• 471
Figure K.12. Block created from
structure S •••••••••••••• 472
Figure K.13. Block created by
structure S with correct alignment .472
Figure K.14. Alignment of data in a
buffer in locate mode input/output,
for different formats and data set
organizations • • • • • • • • • • .473
Figure L.1. Differences resulting
from differing compiler functions ••• 474
Figure L.2. Differing qualitative
restrictions •••••••••••• 475,476
Figure L.3. Differing quantitative
restrictions ••••• ~ •••••••• 477

Part 1: Concepts of PLII

11

12

Chapter 1: Basic Characteristics of PL/I

The modulal:'ity of PL/I, the ease with which
subsets can be selected to meet different
needs, becomes apparent when one examines
the different features of the language.
Such modularity is one of the most
important characteristics of PL/I.

This chapter contains brief discussions
of most of the basic features to provide an
overall description of the language. Each
is treated in more detail in subsequent
chapters.

Machine Independence

No langua<ge can be completely machine
independent, but PL/I is much less machine
dependent than most commonly used
programming languages. The methods used to
achieve this show in the form of
restrictions in the language. The most
obvious example is that data with different
characteristics cannot in general share the
same storage; to equate a floating-point
number with a certain number of alphabetic
characters would be to make assumptions
about the representation of these data
items which would not be true for all
machines.

It is recognized that the price entailed
by machine independence may sometimes be
too high. In the interest of efficiency,
certain features such as the UNSPEC
built-in function and record-oriented data
transmission are machine dependent.

Program Sb'ucture

A PL/I pr()g:cam consists of one or more
blocks of statements called procedures. A
procedure may be thought of as a
subroutine. Procedures may invoke other
procedures, and these procedures or
subroutines may be either compiled
separately, or nested within the calling
procedure and compiled with it. Each
procedure may contain declarations that
define names and control allocation of
storage.

The rules defining the use of
procedures, communication between
procedures, the meanings. of names, and
allocation of storage are fundamental to
the proper understanding of PL/I at any

level but the most elementary. These rules
give the programmer considerable control
over the degree of interaction between
subroutines. They permit flexible
communication and storage allocation, at
the same time allowing the definition of
names and allocation of storage for private
use within a procedure.

By giving the programmer freedom to
determine the degree to which a subroutine
is self-contained, PL/I makes it possible
to write procedures which can freely be
used in other environments, while still
allowing interaction in procedures where
interaction is desirable.

Data Types and Data Description

The characteristic of PL/I that most
contributes to the range of applications
for which it can be used is the variety of
data types that can be represented and
manipulated. PL/I deals with arithmetic
data, string data (bit and character), and
program control data, such as labels.
Arithmetic data may be represented in a
variety of ways; it can be binary or
decimal, fixed-point or floating-point,
real or complex, and its precision may be
specified.

PL/I provides features to perform
arithmetic operations, operations for
comparisons, logical manipulation of bit
strings, and operations and functions for
assembling, scanning, and subdividing
character strings.

The compiler must be able to determine,
for every name used in a program, the
complete set of attributes associated with
that name. The programmer may specify
these attributes explicitly by means of a
DECLARE statement; the compiler may
determine all or some of the attributes by
context; or a partial or complete set of
attributes may be assumed by default. The
programmer can specify which attributes are
to be applied by default, or he can allow
the compiler to determine them.

Default Assumptions

An important feature of PL/I is its default
philosophy. If all the attributes

Chapter 1: Basic Characteristics of PL/I 13

associated with a name, or all the options
permitted in a statement, are not specified
by the programmer, attributes or options
will be assigned by the compiler. This
default action has two main consequences.
First, it reduces the amount of declaration
and other program writing required; second,
it makes it possible to teach and use
subsets of the language for which the
programmer need not know all possible
alternatives, or even that alternatives
exist.

The default attributes assumed by the
compiler are the standard default
attributes of the PL/I language and the
implementation precision defaults.
However, the programmer can override these
by use of the DEFAULT statement.

The compiler optionally produces an
attribute listing which contains the
identifiers used in a PL/I source program
and a complete list of the attributes

I specified either by explicit, contextual,
or implicit declarations, or by application
of default rules. The programmer can use
this listing to check that these attributes
are consistent with his intentions.

Storage Allocation

PL/I goes beyond most other languages in
the flexibility of storage allocation that
it provides. Dynamic storage allocation is
comparatively difficult for an assembler
language programmer to handle for himself;
yet it is automatically provided in PL/I.
There are four different storage classes:
AUTOMATIC, STATIC, CONTROLLED, and BASED.
In general, the default storage class in
PL/I is AUTOMATIC. This class of storage
is allocated whenever the block in which
the variables are declared is activated.
At that time the bounds of arrays and the
lengths of strings are calculated.
AUTOMATIC storage is freed and is available
for re-use whenever control leaves the
block in which the storage is allocated.

Storage may also be declared STATIC, in
which case it is allocated when the program
is loaded; it may be declared CONTROLLED,
in which case it is explicitly controlled
by the programmer with ALLOCATE and FREE
statements, independent of the invocation
of blocks; or it may be declared BASED,
which gives the programmer an even higher
degree of control.

The existence of several storage classes
enables the programmer to determine for
himself the speed, storage space, or
programming economy that he needs for each
application. The cost of a particular

14

facility will depend upon the
implementation, but it will usually be true
that the more dynamic the method of storage
allocation, the greater the execution time.

Expressions

Calculations in PL/I are specified by
expressions. An expression has a meaning
in PL/I that is similar to that of
elementary algebra. For example:

A + B • C

This specifies multiplication of the value
of B by the value of C and adding the value
of A to the result. PL/I places few
restrictions on the kinds of data that can
be used in an expression. For example, it
is conceivable, though unlikely, that A
could be a floating-point number, B a
fixed-point number, and C a character
string.

When such mixed expressions are
specified, the operands will be converted
so that the operation can be evaluated
meaningfully. Note, however, that the
rules for conversion must be considered
carefully; converted data may not have the
s:ame value as the original. And, of
course, any conversion increases execution
time.

The results of the evaluation of
expressions are assigned to variables by
~eans of the assignment statement. An
example of an assignment statement_is:

x = A + B • C;

This means: evaluate the expression on the
~ight and store the result in X. If the
attributes of X differ from the attributes
of the result of the expression, conversion
will again be performed.

Data Collections

PL/I offers the programmer many ways of
describing and operating on collections of
data, or data aggregates. Arrays are
Gollections of data elements, all of the
same type, collected into lists or tables
of one or more dimensions. Structures are
hierarchical collections of data, not
necessarily all of the same type. Each
level of the hierarchy may contain other

I
structures of deeper levels. An item that
does not contain another structure must
represent an elementary data item or array.

An element of an array may be a
structure; similarly, any level of a
structure may be an array. Operations can
be specified for arrays, structures, or
parts of arrays or structures. For
example:

A = B + C;

In this assignment statement, A, B, and C
could be arrays or structures.

Input and Output

Facilities for input and output allow the
user to choose between factors such as
simplicitYM machine independence, and
efficiencyu There are two broad classes of
input/output in PL/I: stream-oriented and
record-oriented.

Stream-oriented input/output is almost
completely machine independent. On input~
data items are selected one by one from
what is assumed to be a continuous stream
of characters that are converted to
internal form and assigned to variables
specified in a list. Similarly, on output,
data items are converted one by one to
external character form and are added to a
conceptually continuous stream of
characters. within the class of stream
input/output, the programmer can choose
different levels of control over the way
data items are edited and selected from or
added to the stream.

For printing, the output stream may be
considered to be divided into lines and
pages. An output stream file may be
declared to be a print file with a
specified line size and page size. The
programme!r has facilities to detect the end
of a page! and to specify the beginning of a
line or a. page. These facilities may be
used in sUbroutines that can be developed
into a report generating system suitable
for a particular installation or
application.

I

In a system employing the Time Sharing
Option, dat;a may be fed into, and output
may be obtained from, a PL/I program using
a terminal remote from the machine.

Record-oriented input/output is machine
dependent. It deals with collections of
data, called records, and transmits these
one record at a time without any data
conversion; the external representation is
generally an exact copy of the internal
representation. Because the aggregate is
treated as a whole, and because no

I convers:ion is performed, this form of
input/output is more efficient than
stream-oriented input/output.

Teleprocessing facilities are provided
by PL/I as part of the tasic
record-oriented transmission facilities.

Stream-oriented input and output usually
sacrifices efficiency for ease of handling.
Each data item is transmitted separately
and is examined to determine if data
conversion is required. Record-oriented
input and output, on the other hand,
provides faster transmission, but generally
requires a greater programming effort.

Input and output operations for data
banks involving a number of interrelated
data sets is simplified by the use of file
variables. All input/output statements can
use file variables with file values
established and modified during execution
of the program.

Multitasking

The operating system has facilities for
multiprogramming, that is, it allows a
number of programs to be active
concurrently. In the same way, PL/I has
facilities to allow a number of procedures
within a PL/I program to be active
concurrently.

Any PL/I procedure may invoke another,
in other words initiate the execution of
another procedure. The programmer may
specify that the procedures are to be
tasks, which means that they may both te
active concurrently. The invoked procedure
is known as a subtask of the other, and is
said to have been attached by it.

The advantage of multitasking is that
CPU operations may be carried out in one
task while an input/output operation (or
other CPU operations, in the case of
multiprocessing machines) is carried out
concurrently in another. As soon as the
CPU or the input/output operations in one
task are completed, a search is made
amongst all the active tasks for another
one that requires the same resource. If
more than one such task is found, the
resource is assigned to the one having
highest priority. The PL/I programmer may
allow the system to allocate relative
priorities or he may assign priorities to
his tasks when they are attached.

A number of tasks may be dependent on
each other at various points during their
execution. For example, one task may
require results obtained in another tefore
it can be completed. In PL/I, the
programmer may synchronize tasks at various
points in their execution. An operation in
one task may be made to await the
completion of an operation in another task.

Chapter 1: Basic Characteristics of PL/I 15

The optimizing and checkout compilers
differ in their implementations of
multitasking. Each task in a PL/I program
compiled by the optimizing compiler forms a
system task to be scheduled by the
operating. system. The checkout compiler
constitutes a single task, and the compiler
itself schedules the tasks created within a
PL/I program.

Facilities of Two Compilers

The optimizing and checkout compilers are
complementary program products. The main
function of the optimizing compiler is to
generate highly efficient object code,
while that of the checkout compiler is to
minimize the time a programmer needs to
spend in debugging.

Both compilers may be used for batch
processing, that is, processing in which a
program must be compiled, and possibly
executed, in full before the programmer
obtains any result. The checkout compiler
has the facility for conversational
processing. In this mode, the program's
execution is monitored from a keyboard
terminal and temporary amendments may be
made during execution as a result of
information so obtained: new PL/I code may
be temporarily included in the program, for
instance. The best use is made of PL/I
facilities when both compilers are
employed. The program is compiled by the
checkout compiler during the debugging
stages, to allow the programmer to use his
time most efficiently; the debugged program
is then compiled by the optimizing
compiler, to obtain object code that makes
the most efficient use of the machine.

The language implemented by the two
compilers is, in general, the same. There
are a few exceptions concerned with the
different primary function of each
compiler. certain optimizing features are
not implemented by the checkout compiler
and certain program checkout features are
not implemented by the optimizing compiler.
For instance, a number of statements
instruct the checkout compiler to provide
the programmer with information about the
flow of control through his program during
execution. Since t-he optimizing compiler
does not have these facilities, it merely
checks the statements' syntax and otherwise
ignores them. Similarly, there are
statement options concerned with generating
the most efficient object code possible
that are used by the optimizing compiler
but which are syntax-checked and then
ignored by the checkout compiler.

16

Compile- time Operations

PL/I permits a compile-time level of
operation, in which preprocessor statements
specify operations upon the text of the
source program itself. The simplest, and
perhaps the commonest, preprocessor
statement is %INCLUDE (all preprocessor
statements are preceded by a percent sign).
This statement causes text to be inserted
into the program, replacing the %INCLUDE
statement itself. A typical use could be
to copy declarations from an installation's
standard set of definitions into the
program.

Another function provided by
compile-time facilities is the selective
compilation of program text. For example,
it might specify the inclusion or deletion
of debugging statements.

Since a simple but powerful part of the
PL/I language is available for compile-time
activity, the generation, or replacement
and deletion, of text can become more
elaborate, and more subtle transformations
can be performed. Such transformations
might then be considered to be
installation-defined extensions to the
language.

Execution- time Facilities

PL/I includes statements and options that
provide powerful facilities for debugging.
other features allow program amendment
during execution; these require the use of
the Time Sharing Option of the operating
system, and of the checkout compiler. They
allow the programmer to learn quickly about
the behaviour of his program while it is
being executed and also, in the appropriate
processing environment, to correct it.
Also, under the Time Sharing Option,stream
I/O can be performed from and to a
terminal, on programs compiled by either
the checkout or the optimizing compiler.

The debugging facilities cause
information to be written on the SYSPRINT
file (and, if desired, at the terminal when
the terminal is not defined as the SYSPRINT
file) throughout execution or at designated
points during execution. The programmer
can, througbout execution, cause
information to be written every time a
reference to a selected variable occurs in
a pre-defined situation or when a transfer
of control takes place. Similarly, at
designated points in the program being
executed, the information to be written can
include the values of selected variables,
the names of the procedures currently

active, or the numbers of the statements
involved i.n the latest transfers of
control.

The time at which this output is
available depends on the processing mode.
In batch processing, information written on
the SYSPRINT file is only available when
the SYSPRINT file is printed, which is
normally after execution has terminated.
In conversational processing, information
written on the SYSPRINT file can be
immediatel:y printed at the termnal;
therefore the output provided by the
debugging facilit~es can be made available
immediately it is produced.

Program amendment during execution is

I possible only with conversational
processing under the checkout compiler.
The programmer can enter instructions at
the terminal that cause program execution
to be suspended and control passed to the
terminal. He can then enter statements
that are executed during the current
suspension o.f execution or during a further
suspension; ·t.his future suspension will be
at a point specified by the programmer.
These statements can, for instance,
initiate the debugging facilities described
above, change the value of a variable or

/

insert extra statements in the program.
The amendmen't.s made apply to the current
conversationial sess~ol,ls_only; they are not
made part of the· or1gl.nal program. Once
normal execu,t.ion has been resumed, they
cannot be :re't.rieved by the programmer,
although the:ir effect may last to the end
of program execution.

Interrupt Activities

Modern computing systems provide facilities
for interrup,t.ing the execution of a program
whenever cer~tain exceptional conditions
arise. Further, they allow the program to
deal with BUlch a condition and to retum to
the point at which the interrupt occurred.

PL/I provides facilities for detecting a
variety of e:lCceptional conditions. It
allows the p:cogrammer to specify, by means

1

0f a condition prefix, that an interrupt
will occur i:E the condition should arise.
By use of an ON statement, he can specify
the action tc::> be taken when an interrupt
does occuro In conversational processing,

I the programmer can deal with any error
condition lwnediately it occurs.

Operating System Facilities

A number of facilitites provided by the
operating system can be called upon by the
PL/I programmer. The most prominent ones,
namely interlanguage communication,
sort/merge, and checkpoint/restart are
outlined below.

It is possible for a PL/I program to
communicate with COBOL and FORTRAN routines
at execution time, if the latter were
compiled by a compiler developed by IBM for
os. A PL/I procedure may invoke a COBOL or
FORTRAN routine" and may be invoked by a
COBOL or FORTRAN main program or routine.
In addition, a PL/I program may be used to
create or access a COBOL or FORTRAN data
set. All these facilities are provided by
the PL/I language. Further communication
is·possible between PL/I and other
languages if an assembler language
interface is provided. Such interfaces are
described in the following os publications:

os PL/I Optimizing Compiler:
Programmer's Guide

and

os PL/I Checkout compiler:
Programmer's Guide.

Provided the operating system has been
generated with the appropriate sort/merge
program, the sort/merge facilities may be
utilized by the PL/I programmer. They may
be used on records on PL/I-created data
sets,' on data passed by a PL/I program, and
on data being passed to a PL/I program.

When a PL/I batch processing program
compiled by the optimizing compiler is to
run for an extended periOd, the operating
system checkpoint/restart facility can be
employed to minimize the losses caused by a
machine or system failure. The programmer
selects checkpoints in his program at which
processing is to be recommenced following a
failure. Only the processing carried out
between the checkpoint and the failure may
be lost. Results obt.ained up to the
checkpoint are preserved on external
storage, together with data (including a
copy of the program and its associated
storage) necessary for continuation of the
run.

sort/merge and checkpoint/restart
facilities are described in the
Programmer's Guides.

Chapter 1: Basic Characteristics of PL/I 17

Chapter 2: Program Elements

There are no restrictions in the format of
PL/I statements, apart from those imposed
by the physical form of the source program.
Consequently, programs can be written
without consideration of special coding
forms or checking to see that each
statement begins in a specific column.
Each statement may begin in the next column
or position after the previous statement,
or any number of blanks may intervene.

Character Sets

One of two character sets may be used to
write a source program; either a
60-character set or a 48-character set.
For a given external procedure, the choice
between the two sets is optional. In
practice, this choice will depend upon the
available equipment.

60-CHARACTER SET

The 60-character set is composed of digits,
special characters, and alphabetic
characters.

There are 29 alphabetic characters
beginning with the currency symbol ($), the
number sign (#), and the commercial "at"
sign (a). These characters precede the 26
letters of the English alphabet in Extended
Binary-Coded-Decimal Interchange Code
(EBCDIC). For use with languages other
than English, other characters may be
substituted for $, #, and ~.

There are ten digits. The decimal
digits are the digits 0 through 9. A
binary digit is either a 0 or a 1.

There are 21 special characters. They
are as follows:

Character

Blank
Equal sign or assignment symbol
Plus sign
Minus sign
Asterisk or multiply symbol

18

=
+

•

Left parenthesis
Right parenthesis
Comma
Point or period
Single quotation mark
or apostrophe

Percent symbol
Semicolon
Colon
"Not" symbol
"And" symbol
"Or" symbol
"Greater than" symbol
"Less than" symbol
Break character t

Question mark

Character

(
)

,
&
I
>
<

Special characters are combined to
create other symbols. For example, <=
means "less than or equal to", ,= means
"not equal to". The combination •• denotes
exponentiation (X •• 2 means Xa). Blanks are
not permitted in such composite symbols.

An alphameric character is either an
alphabetic character or a digit, but not a
special character.

48-CHARACTER SET

The 48-character set is composed of 48
characters of the 60-character set. In all
but four cases, the characters of the
reduced set can be combined to represent
the missing characters from the larger set.
For example, the percent symbol (%) is not
included in the 48-character set, but a
double slash (//) can be used to reFresent
it. The four characters that are not
duplicated are the commercial "at" sign,
the number sign, the break character, and
the question· mark.

The restrictions and changes for this
character set are described in section B,
"Character sets with EBCDIC and Card-Punch
Codes" •

'The break character is the same as the
typewriter underline character. It is used
in a name, such as GROSS_PAY, to improve
readability_

USING THE CHARACTER SET

All the elements that make up a PL/I
program are constructed from the PL/I
character sets. There are two exceptions:
character-string constants and comments may
contain any character in the EBCDIC 8-bit
code.

Certain characters perform specific
functions in a PL/I program. For example,
many characters function as operators.

There ,are four types of operators:
arithmetic, comparison, bit-string, and
string.

The arithmetic operators are:

+ denoting addition or prefix plus
denoting subtraction or prefix

minus
* denoting multiplication
/ denoting division
** denoting exponentiation

The comparison operators are:

> denoting "greater than"
,> denoting "not greater than"
>= denoting "greater than or

equal to"
= denoting "equal to"
,= denoting "not equal to"
<= denQting "less than or equal to"
< denoting "less than"
,< denoting "not less than"

The bit-~trinq operators are:

, denoting "not"
& denoting "and"
I denoting ·or"

The stri:gg operator is:

I I denoting concatenation

Figure 2.1 shows some of the functions
of other special characters.

Identifiers

In a PL/I program, names or labels are
given to data, files, statements, and entry
points of different. program areas. In
creating a name or label, a programmer must
observe the syntax rules for creating an
identifier.

An identifier is a single alphabetic
character or a string of alphameric and
break characters, not contained in a
comment or constant, and preceded and
followed by a blank or some other
delimiter; the initial character of the
string must be alphabetic. The length must
not exceed 31 characters.

Language keywords also are identifiers.
A keyword is an identifier that, when used
in the proper context, has a specific
meaning to the compiler. A keyword can
specify such things as the action to be
taken, the nature of data, the purpose of a
name. For example, READ, DECIMAL, and
ENDFILE are keywords. Some keywords can be
abbreviated. A complete list of keywords
and their abbreviations is contained in
section C, "Keywords and Keyword
Abbreviations".

~: PL/I keywords are not reserved
words. They are recognized as keywords by
the compiler only when they appear in their
proper context. In other contexts they may
be used as programmer-defined identifiers.

Examples of identifiers that could be
used for names or labels:.

A

FILE2

LOOP_3

RATE OF_PAY

#32

Chapter 2: Program Elements 19

r---, 'Name Character Use I
~---~ I comma Separates elements of a list
I
I period
I
I
I semicolon
I
assignment

symbol

colon

blank

single quotation
mark

parentheses

arrow

=

()

Indicates decimal point or binary point:
connects elements of a qualified name

Terminates statements

Indicates assignment of values t

Connects prefixes to statements; can be
used in specification for bounds of an
array; can be used in RANGE specification
of DEFAULT statement

separates elements of a statement

Encloses string constants and picture
specification

Enclose lists; specify information
associated with various keywords; in
conjunction with operators and operands,
delimit portions of a computational
expression

Denotes locator qualification

percent symbol % Indicates statements to be executed by the
compile-time preprocessor or listing
control statements

~---~ 11Note that the character = can be used as an equal sign and as an assignment symbol. I L ___ J

Figure 2.1. Some functions of special characters

Some identifiers, as discussed in later
chapters, cannot exceed seven characters in
length and must not contain the break
character. This limitation is placed upon
certain names, called external names, that
may be referred to by the operating system
or by more than one separately compiled
procedure. If an external name of a PL/I
procedure contains more than seven
characters, it is truncated by the
compiler, which concatenates the first four
characters with the last three characters~
The entry name of a COBOL or FORTAN routine
may have up to eight characters. If more
than eight characters are specified, the
leftmost eight are taken.

Use of Blanks

Blanks may be used freely throughout a PL/I
program. They may surround operators and
most other delimiters. In general, any
number of blanks may appear wherever one

20

blank is allowed, such as between words in
a statement.

One or more blanks must be used to
separate identifiers and constants that are
not separated by some other delimiter or by
a comment. However, identifiers, constants
(except character-string constants) and
composite operators (for example, ,=)
cannot contain blanks.

Other cases that require or permit
blanks are noted in the text where the
feature of the language is discussed. Some
examples of the use of blanks are:

AB+BC is equivalent to AB + BC

TABLE(10) is equivalent to TABLE (10)

FIRST, SECOND is equivalent to FIRST, SECOND

ATOB is not equivalent to A TO B

comments

comments are permitted wherever blanks are
allowed in a program, except within data
items, such as a character string. A
comment is treated as a blank and can
therefore be used in place of a required
separating blank. comments do not
otherwise affect execution of a program;

I

they are used only for documentation
purposes 8 comments may be coded on the
same line as statements, either inserted
between st,atements or in the middle of
them.

The general format of a comment is:

1* character-string *1

The character pair 1* indicates the
beginning lof a comment. The same character
pair reversed, *1, indicates its end. No
blanks or other characters can separate the
two characters of either composite pair;
the slash and the asterisk must be
immediately adjacent. The comment itself
may contain any characters except the *1
combination, which would be interpreted as

I terminating the comment. The initial 1*
must never be in columns 1 and 2 of a line.

Example:

1* THIS WHOLE SENTENCE COULD BE
INSERTED AS A COMMENT *1

Any characters permitted for a
particular machine configuration may be
used in comments.

Basic Prog'ram Structure

A PL/I program is constructed from basic
program elements called statements. There
are two types of statements: simple and
compound. These statements make up larger
program elements called groups and blocks.

SIMPLE AND COMPOUND STATEMENTS

There are three types of simple statements:
keyword, assignment, and null, each of
which contains a statement body that is
terminated by a semicolon.

A keyword statement has a keyword to
indicate the function of the statement; the
statement :body is the remainder of the
statement.

The assignment statement contains the
assignment symbol (=) and does not have a
keyword.

The null statement consists only of a
semicolon and indicates no operation; the
semicolon is the statement body.

Examples of simple statements are:

GO TO LOOP_3; (GO TO is a keyword; the
blank between GO and TO
is optional. The state­
ment body is LOOP_3;)

A = B + C; (assignment statement)

A compound statement is a statement that
contains one or more other statements as a
part of its statement body. There are two
compound statements: the IF statement and
the ON statement. The final statement of a
compound statement is a simple statement
that is terminated by a semicolon. Hence,
the compound statement is terminated by
this semicolon. The IF statement can
contain two statements which may be simple
or compund as shown in the following
example:

IF A>B THEN A = B+C; ELSE GO TO
LOOP_3;

The following is an example of the ON
statement:

ON OVERFLOW GO TO OVFIX;

Statement Prefixes

Both simple and compound statements may
have one or more prefixes. There are two
types of prefixes; the label prefix and the
condition prefix.

A label prefix identifies a statement so
that it can be referred to at some other
point in the program. A label prefix is an
identifier that precedes the statement and
is connected to the statement by a colon.
Any statement may have one or more labels.
If more than one are specified, they may be
used interchangeably to refer to that
statement.

A condition prefix specifies whether or
not interrupts are to result from the
occurrence of the named conditions.
Condition names are language keywords, each
of which represents an exceptional
condition that might arise during execution
of a program. Examples are OVERFLOW and
SIZE. The OVERFLOW condition arises when
the exponent of a floating-point number

Chapter 2: Program Elements 21

exceeds the maximum allowed (representing a
maximum value of about 1075). The SIZE
condition arises when a value is assigned
to a variable with loss of high-order
digits or bits.

When the programmer does not expect the
condition to arise, he may disable it by
preceding the condition name in a prefix by
the word NO. If NO is used, there can be
no intervening blank between the NO and the
condition name.

A condition prefix consists of a list of
one or more condition names, separated by
commas and enclosed in parentheses. One or
more condition prefixes may be attached to
a statement, and each parenthesized list
must be followed by a colon. Condition
prefixes precede the entire statement,
including any possible label prefixes for
the statement. For example:

(SIZE,NOOVERFLOW):COMPUTE:A = B • C •• 0;

The single condition prefix indicates that
an interrupt is to occur if the SIZE
condition arises during execution of the
assignment statement, but,. that no interrupt
is to occur if the OVERFLOW condition
arises. Note that the condition prefix
precedes the label prefix COMPUTE.

Since intervening blanks between a
prefix and its associated statement are
ignored, it is often convenient, when using
card input, to punch the condition prefix
into a separate card that precedes the card
into which the statement is punched. Thus,
after debugging, the prefix can be easily
removed. For example:

(NOCONVERSION):

(SIZE,NOOVERFLOW):

COMPUTE: A = B • C •• 0;

Note that there are two condition prefixes.
The first specifies that no interrupt is to

22

occur if an invalid character is
encountered during an attempted data
'conversion.

Condition prefixes are discussed in
chapter 14, "Exceptional Condition Handling
and Program Checkout".

GROUPS AND BLOCKS

A group is a sequence of statements headed
by a DO statement and terminated by a
corresponding END statement. It is used
for control purposes. A group also may be
,called a DO-group.

A ~ is a sequence of statements that
;defines an area of a program. It is used
to delimit the scope of a name and for
control purposes. A program may consist of

:one or more blocks. Every statement must
appear within a block. There are two kinds
of blocks: begin blocks and procedure
blocks. A begin block is delimited by a
BEGIN statement and an END statement. A
procedure block is delimited by a PROCEDURE
statement and an END statement. Every
begin block must be contained within some
procedure block.

Execution passes sequentially into and
out of a begin block. However, a procedure
block must be invoked by execution of a

'statement in another block. The first
procedure in a program to be executed is
invoked automatically by the operating
system. This first procedure must be

:identified by specifying OPTIONS (MAIN) in
the PROCEDURE statement.

A procedure block may be invoked as a
task, in which case it is executed
concurrently with the invoking procedure.
Tasks are discussed in chapter 17,
"Multitasking".

Data is generally defined as a
representation of information or of value.

In PL/I, reference to a data item,
arithmetic or string, is made by using
either a vaI:iable or a constant (the terms
are not ex:ac:tly the same as in general
mathematical usage).

A varia.ble is a symbolic name having a
value that may change dur}ng execution of a
program.

A constant (which can be a symbolic
name) has a value that cannot change.

The following statement has both
variables and constants:

AREA = RADIUS**2*3.1416;

AREA and RADIOS are variables; the numbers
2 and 3.1416 are constants. The value of
RADIUS is a data item, and the result of
the comput,at.ion will be a data item that
will be assigned as the value of AREA. The
number 3.1416 in the statement is itself
the data item.

If the number 3.1416 is to be used in
more than one place in the program, it may
be convenient to represent it as a variable
to which t,he value 3.1416 has been
assigned. Thus, the above statement could
be written as:

PI = 3.1416;
AREA = RADIUS**2*PI;

In the last statement, only the digit 2 is
a constant.

A constant does more than state a value;
it demonstrates various characteristics of
the data item. For example" 3. 1416 shows
that the data type is arithmetic and that
the data item is a decimal number of five
digits and that four of these digits are to
the right 01: the decimal point.

A constant represented by a symbolic
name has a value which is determined by the
compiler and which the programmer does not
need to know. Normally, such constants are
associated with the control of the program;
they represent addresses in internal
storage rather than computational values.
For instance, PL/I statements can be given
labels. The identifier used for such a
label is a symbolic name which represents a
constant, namely the address of the code
generated by that statement.

Chapter 3: Data Elements

The characteristics of a variable or a
symbolic constant are not immediately
apparent in the name. Since these
characteristics, called attributes, must be
known, certain keywords and expressions may
be used to specify the attributes in a
DECLARE statement. The attributes used to
describe each data type are discussed
briefly in this chapter. A complete
discussion of each attribute appears in
section I, "Attributes".

In preparing a PL/I program, the
programmer must be familiar with the ty~es
of data that are permitted, the ways in
which data can be organized, and the
methods by which data can be referred to.
The following paragraphs discuss these
features.

Data Types

The types of data that may be used in a
PL/I program fall into two categories:
problem data and program control data.
Problem data is used to represent values to
be processed by a program. It consists of
two data types, arithmetic and string_
Program control data is used by the
programmer to control the execution of his
program. Program control data consists of
the following types: label, event, file,
entry, locator, task, and area.

Problem Data

The types of problelD data are arithmetic
and string.

ARITHMETIC DATA

An item of arithmetic data is one with a
numeric value. Arithmetic data items have
the characteristics of base, scale,
precision, and mode~ The characteristics
of data items represented by an arithmetic
variable are specified by attributes
declared for the name, or assumed by
default.

The base of an arithmetic data item is
either decimal or binary.

Chapter 3z Data Elements 23

The scale of an arithmetic data item is
either fixed-point or floating-point. A
fixed-point data item is a number in which
the position of the decimal or binary point
is specified, either by i~s appearance in a
constant or by a scale factor declared for
a variable. A floating-point data item is
a number followed by an optionally signed
exponent. The exponent specifies the
assumed position of the decimal or binary
point, relative to the position in which it
appears.

The precision of an arithmetic data item
is the number of digits the data item may
contain, in the case of fixed-point, or the
minimum number of significant digits
(excluding the exponent) to be maintained,
in the case of floating-point. For
fixed-point data items, precision can also
specify the assumed position of the decimal
or binary point, relative to the rightmost
digit of the number.

Whenever a data item is assigned to a
fixed-point variable, the declared
precision is maintained. The assigned item
is aligned on the decimal or binary point.
Leading zeros are inserted if the assigned
item contains fewer integer digits than
declared; trailing zeros are inserted if it
contains fewer fractional digits. A SIZE
error may occur if the assigned item
contains too many integer digits;

I truncation on the right may occur, without
rounding, if it contains too many
fractional digits.

The mode of an arithmetic data item is
either real or complex. A real data item
is a number that expresses a real value. A
complex data item is a pair of numbers:
the first is real and the second is
imaginary. For a variable representing
complex data items, the base, scale, and
precision of the two parts must be
identical.

Base, scale, and mode of arithmetic
variables are specified by keywords;
precision is specified by parenthesized
decimal integer constants. The precision
of arithmetic variables and constants is
discussed in greater detail below.

In the following sections, the real
arithmetic data types discussed are decimal
fixed-point, binary fixed-point, decimal
floating-point, and binary floating-point.
Any of these can be used as the real part
of a complex data item. The imaginary part
of a complex number is discussed in the
section "Complex Arithmetic Data," in this
chapter.

complex arithmetic variables must be
explicitly declared with the COMPLEX
attribute. Real arithmetic variables may

24

be explicitly declared to have the REAL
attribute, but it is not generally
necessary to do so, since an arithmetic
variable is generally assumed to be real
unless it is explicitly declared complex.

Decimal Fixed-Point Data

A decimal fixed-point constant consists of
one or more decimal digits with an optional
decimal point. If no decimal point
appears, the point is assumed to be
immediately to the right of the rightmost
digit. A sign may optionally precede a
decimal fixed-point constant.

Examples of decimal fixed-point
constants as written in a program are:

3.1416

455.3

732

003

-5280

.0012

For expression evaluation, decimal
fixed-point constants have an apparent
precision (p,q), where p is the total
number of digits in the constant and q is
the number of digits specified to the right
of the decimal point. For example:

3.14 has the precision (3,2)

The keyword attributes for declaring
decimal fixed-point variables are DECIMAL
and FIXED. Precision is stated by two
decimal integers, separated by a comma and
enclosed in parentheses. The first, which
must be unsigned, specifies the total
number of digits: the second, the scale
factor, may be signed and specifies the
number of digits to the right of the
decimal point. If the variable is to
represent integers, the scale factor and
its preceding comma can be omitted. The
attributes may appear in any order, but the
precision specification must follow either
DECIMAL or FIXED (or REAL or COMPLEX).
Following are examples of declarations of
decimal fixed-point variables:

DECLARE A FIXED DECIMAL (5,4);

DECLARE B FIXED (6,0) DECIMAL;

DECLARE C FIXED (7,-2) DECIMAL;

DECLARE D DECIMAL FIXED REAL(3,2)

The first DECLARE statement specifies that
the identifier A is to represent decimal
fixed-point. items of not more than five
digits, four of which are to be treated as
fractional, that is, to the right of the
assumed decimal point. Any item assigned
to A will be converted to decimal
fixed-point ,and aligned on the decimal
point. The :second DECLARE statement
specifies that B is to represent integers
of no more than 6 digits. Note that the
comma and the zero are unnecessary; it
could have been specified B FIXED DECIMAL
(6). The third DECLARE statement specifies
a negative scale factor of -2; this means
that the assumed decimal point is two
places to the right of the rightmost digit
of the item. The fourth DECLARE statement
specifies that D is to represent

. fixed-point items of no more than three
digits, two of which are fractional.

The maximum number of decimal digits
allowed is 15. Default precision, assumed
when no spec:ification is made, is (5,0).
The internal coded arithmetic form of
decimal fixed-point data is packed decimal.
Packed decimal is stored two digits to the
byte, with a sign indication in the
rightmost four bits of the rightmost byte.
Consequent,l~r, a decimal fixed-point data
item is always stored as an odd number of
digits, even though the declaration of the
variable may specify the number of digits
(p) as an even number. When the
declaration specifies an even number of
digits, the extra digit place is in the
high-order position, and it participates in
any operations performed upon the data
item, such ClS in a comparison operation.
Any arithme1:.ic overflow or assignment into
an extra high-order digit place can be
detected only if the SIZE condition is
enabled.

Binary Fixed-Point Data

A binary fi.xed-point constant consists of
one or more binary digits with an optional
binary point, followed ~mmediately by the
letter B, with no intervening blank. A
sign may 4optionally precede the constant.

Examples of binary fixed-point constants
as written in a program are:

101108

lllllB

101B

-111.0I1B

1011.111B

For expression evaluation, binary
fixed-point constants have an apparent
precision (p,q), where p is the total
number of binary digits in the constant,
and q is the number of binary digits
specified to the right of the binary point.
For example:

0000001B has the precision (7,0)

The keyword attributes for declaring
binary fixed-point variables are BINARY and
FIXED. Precision is specified by two
decimal integer constants~ enclosed in
parentheses, to represent the maximum
number of binary digits and the number of
digits to the right of the binary point,
respectively. If the variable is to
represent integers, the second digit and
the .comma can be omitted. The attributes
can appear in any order, but the precision
specification must follow either BINARY or
FIXED (or REAL or COMPLEX).

Following is an example of declaration
of a binary fixed-point variable:

DECLARE FACTOR BINARY FIXED (20,2);

FACTOR is declared to be a variable that
can represent arithmetic data items as
large as 20 binary digits, two of which are
fractional. The decimal equivalent of that
value range is from -262,144.00 through
+ 26 2" 1 43. 75 •

The maximum number of binary digits
allowed is 31. Default precision is
(15,0). The internal coded arithmetic form
of binary fixed-point data can be either a
fixed-point binary halfword or fullword. A
halfword is 15 bits plus a sign bit, and a
fullword is 31 bits plus a sign bit. Any
binary fixed-point data item with a
precision of (15,0) or less is stored as a
halfword, and with a precision greater than
(15,0), up to the maximum precision, is
stored as a fullword. The declared number
of digits are considered to be in the
low-order positions, but the extra
high-order digits participate in any
operations performed upon the data item.
Any arithmetic overflow into such extra
high-order digit positions can be detected
only if the SIZE condition is enabled.

An identifier for which no declaration
is made is assumed to be a binary
fixed-point variable, with default
precision, if its first letter is any of
the letters I through N, when the standard
default rules are applied.

Chapter 3: Data Elements 25

Decimal Floating-point~

A decimal floating-point constant is
written as a field of decimal digits
followed by the letter E, followed by an
optionally signed decimal integer exponent.
The first field of digits may contain a
decimal point. The entire constant may be
preceded by a plus or minus sign. Examples
of decimal floating-point constants as
written in a program are:

1SE-23

1SE23

4E-3

-48333E6S

438EO

3141S93E-6

• 003'141S 93E3

The last two examples represent the same
value.

For expression evaluation, decimal
floating-point constants have an apparent
precision (p)where p is the number of
digits of the constant to the left of the
(the mantissa). For example:

0.012ES has the precision (4)

The keyword attributes for declaring
decimal floating-point variables are
DECIMAL and FLOAT. Precision is stated by
a decimal integer constant enclosed in
parentheses. It specifies the minimum
number of significant digits to be
maintained. If an item assigned to a
variable has a field width larger than the
declared precision of the variable,
truncation may occur on the right. The
least significant digit is the first that
is lost. Attributes may appear in any
order, but the precision specification must
follow either DECIMAL or FLOAT (or REAL or
COMPLEX).

Following is an example of declaration
of a decimal floating-point variable:

DECLARE LIGHT_YEARS DECIMAL FLOAT(S);

This statement specifies that LIGHT_YEARS
is to represent decimal floating-point data
items with an accuracy of at least five
significant digits.

The maximum precision allowed for
decimal floating-point data items is (33);
the default precision is (6). The exponent
cannot exceed two digits. A value range of

26

approximately 10- 78 to 107S can be
expressed by a decimal floating-point data
item. The internal coded arithmetic form
of decimal floating-point data is
normalized hexadecimal floating-point, with
the point assumed to the left of the first
hexadecimal digit. If the declared
precision is less than or equal to (6),
short floating-point form is used; if the
declared precision is greater than (6) and
less than or equal to (16), long
floating-point form is used; if the
declared precision is greater than (16),
extended floating-point form is used.

An identifier for which no declaration
is made is assumed to be a decimal
floating-point variable if its first letter
is any of the letters A through H, 0
through Z, or one of the alphabetic
extenders, $, #, Q, when the standard
default rules are applied.

Binary Floating-point Data

A binary floating-point constant consists
of a field of binary digits followed by the
letter E, followed by an optionally signed
decimal integer exponent followed by the
letter B. The exponent is a decimal
integer and specifies power of two. The
field of binary digits may contain a binary
point. The entire constant may be preceded
by a plus or minus sign. Examples of
binary floating-point constants as written
in a program are:

101101ESB

101.101E2B

11101E-28B

-10.01E99B

For expression evaluation, binary
floating-point constants have an apparent
precision (p) where p is the number of
binary digits to the left of the E (the
mantissa). For example:

0.0101E33B has the precision (S)

The keyword attributes for declaring
binary floating-point variables are BINARY
and FLOAT. Precision is expressed as a
decimal integer constant, enclosed in
parentheses, to specify the minimum number
of significant digits to be maintained.
The attributes can appear in any order, but
the precision specification must follow
either BINARY or FLOAT (or REAL or
CO~PLEX). Following is an example of
declaratiun of a binary floating-point
variable:

DECLARE S BINARY FLOAT (16);

This specifies that the identifier S is to
represent binary floating-point data items
with 16 digits in the binary field.

The maximum precision allowed for binary
floating-point data items is (109); the
default precision is (21). The exponent
cannot exceed three decimal digits. A
value range of approximately 2_260 to 2252

can be expressed by a binary floating-point
data item. The internal coded arithmetic
form of binary floating-point data is
normalized hexadecimal floating-point. If
the declared precision is less than or
equal to (21), short floating-point form is
used; if the declared precision is greater
than (21) and less than or equal to (53),
long floating-point form is used; if the
declared precision is greater than "(53),
extended floating-point form is used.

Complex Arithmetic Data

In the complex mode, an arithmetic data
item is considered to consist of two parts,
the first a real part and the second a
signed imaginary part. There are no
complex constants in PL/I. A complex value
is obtained by a real constant and an
imaginary constant.

An imaginary constant is written as a
real constant of any type immediately"
followed by the letter I.

Examples of imaginary constants as
written in a program are:

271

3.968B10I

11011 .. 01BI

Each of these is considered to have a real
part of zero. A complex value with a
non-zero real part is represented in the
following :form:

[+1-] real constant {+I-}
imaginary-constant

Thus a complex value could be written as
38+271 ..

The keyword attribute for declaring a
complex variable is COMPLEX. A complex
variable can have any of the attributes
valid for the different types of real
arithmetic data. Each of the base, scale,
and precision attributes applies to both

" fields.

Unless a variatle is explicitly declared
to have the COMPLEX attribute, it is
assumed to represent real data items.

Numeric Character Data

A numeric character data item (also known
as a numeric field data item) is the value
of a variable that has been declared with
the PICTURE attribute and a numeric picture
specification. The data item is the
character representation of a decimal
fixed-point or floating-point value.

A numeric picture specification
describes a character string to which only
data that has, or can be converted to, an
arithmetic value is to be assigned. A
numeric picture specification cannot
contain either of the picture characters A
or X, which are used for non-numeric
picture-character strings. The basic form
of a numeric picture specification is one
or more occurrences of the digit-specifying
picture character 9 and an optional
occurrence of the picture character V, to
indicate the assumed location of a decimal
point. The picture specification must be
enclosed in single quotation marks. For
example:

'999V99'

This numeric picture specification
describes a data item consisting of up to
five decimal digits in character form, with
a decimal point assumed to precede the
rightmost two digits.

Repetition factors may be used in
numeric picture specifications. A
repetition factor is a decimal integer
constant, enclosed in parentheses, that
indicates the number or repetitions of the
immediately following picture character.
For example, the following picture
specification would result in the same
description as the example shown above:

, (3)9V(2)9'

The format for declaring a numeric
character variatle is:

DECLARE identifier PICTURE
'numeric-picture-specification';

For example:

DECLARE PRICE PIC'lURE '999V99';

This specifies that any value assigned to
PRICE is to be maintained as a character
string of five decimal digits, with an
assumed decimal point preceding the

Chapter 3: Data Elements 27

rightmost two digits. Data assigned to
PRICE will be aligned on the assumed point
in the same way that point alignment is
maintained for fixed-point decimal data.

The numeric picture specification
specifies arithmetic attributes of data in
much the same way that they are specified
by the appearance of a constant. Only
decimal data can be represented by picture
characters. Complex data can be declared
by specifying the COMPLEX attribute along
with a single picture specification that
describes either a fixed-point or a
floating-point data item.

The maximum number of decimal digits
allowed in a numeric character item is 15.

It is important to note that, although
numeric character data has arithmetic
attributes, it is not stored in coded
arithmetic form. Numeric character data is
stored in zoned decimal format; before it
can be used in arithmetic computations, it
must be converted either to packed decimal
or to hexadecimal floating-point format.
such conversions are done automatically,
but they require extra execution time.

Although numeric character data is in
character form, like character strings, and
although it is aligned on the decimal point
like coded arithmetic data, it is processed
differently from the way either coded
arithmetic items or character strings are
processed. Editing characters can be
specified for insertion into a numeric
character data item, and such characters
are actually stored within the data item.
Consequently, when the item is printed or
treated as a character string, the editing
characters are included in the assignment.
If, however, a numeric character item is
assigned to another numeric character or
arithmetic variable, the editing characters
will not be included in the assignment;
only the actual digits and the location of
the assumed decimal point are assigned.

Consider the following example:

DECLARE PRICE PICTURE '$99V.99',
COST CHARACTER (6),
VALUE FIXED DECIMAL (6,2)~

PRICE = 12.28;

COST = '$12.28';

In the picture specification for PRICE, the
currency symbol ($) and the decimal point
(.) are editing characters. They are
stored as characters in the data item.
They are not, however, a part of its
arithmetic value. After execution of the
second assignment statement, the actual
internal character representation of PRICE

28

and COST can be considered identical. If
they were printed, they would print exactly
the same. They do not, however, always
function the same. For example:

VALUE = PRICE;

COST = PRICE;

VALUE = COST;

PRICE = COST;

After the first two assignment
statements are executed, the value of VALUE
would be 0012.28 and the value of COST
would be '$12.28'. In the assignment of
PRICE to VALUE, the currency symbol and the
decimal point are considered to be editing
characters, and they are not part of the
assignment; the arithmetic value of PRICE
is converted to internal coded arithmetic
form. In the assignment of PRICE to COST,
however, the assignment is to a character
string, and the editing characters of a
numeric picture specification always
participate in such an assignment. No
conversion is necessary because PRICE is
stored in character form.

The third and fourth assignment
statements would cause errors. The value
of COST cannot be assigned to VALUE because
the currency symbol in the string makes it
invalid as an arithmetic constant. The
value of COST cannot be assigned to PRICE
for exactly the same reason. Only values
that are of arithmetic type, or that can be
converted to arithmetic type, can be
assigned to a variable declared with a
numeric picture specification.

~otei Although the decimal point can be
e.dit ng character or an actual character
a character string, it will not cause an
error in converting to arithmetic form,
since its appearance is valid in an
arithmetic constant. The same would be
true of a valid plus or minus ~ign, since
arithmetic constants can be preceded by
signs.

an
in

other editing characters, including zero
suppression characters, drifting
characters, and insertion characters, can
be used in numeric picture specifications.
F9r complete discussions of picture
characters, see section D, "Picture
Specification Characters" and the
discussion of the PICTURE attribute in
section I, "Attributes".

STRING DATA

A string is a contiguous sequence of
characters (or binary digits) that is
treated as a single data item. The length
of the string is the number of characters
(or binary digits) it contains.

There are two types of strings:
character strings and bit strings.

Character-string Data

A character string can include any digit,
letter, or special character recognized as
a character by the particular machine
configuration. Any blank included in a
character string is an integral character
and is included in the count of length. A
comment that is inserted within a character
string will not be recognized as a comment.
The comment, as well as the comment
delimiters (/* and */), will be considered
to be part of the character-string data.

Character-string constants, when written
in a program, must be enclosed in single
quotation maI:ks. If a single quotati,on
mark is a character in a string, it must be
written as two single quotation marks with
no intervening blank. The length of a
character string is the number of
characters between the enclosing quotation
marks. If two single quotation' marks are
used within the string to represent a
single quotat~ion mark, they are counted as
a single character.

Examples of character-string constants
are:

'LOGARITHM TABLE'

'PAGE 5 11

'SHAKESl?EARE"S ""HAMLET"'"

'AC438- '19'

(2) 'WALIA '

The third example actually indicates
SHAKESPEARE'S "HAMLET" with a length of
24. In the last example, the parenthesized
number is a ;repetition factor, which
indicates repetition of the characters that
follow. This example specifies the
constant 'WALLA WALLA' (the blank is
included as one of the characters to be
repeated}. The repetition factor must be
an unsigned decimal integer constant,

I enclosed in parentheses. It has a maximum
permissible value of 32767.

A null character-string constant is
written as two quotation marks with no
intervening blank.

The keyword attribute for declaring a
character-string variable is CHARACTER.
Length may be declared by an expression or
a decimal integer constant, enclosed in
parentheses, which specifies the number of
characters in the string. The length
specification must follow the keyword
CHARACTER. For example:

DECLARE NAME CHARACTER (15):

This DECLARE statement specifies that the
identifier NAME is to represent
character-string data items, 15 characters
in length. If a character string shorter
than 15 characters were to be assigned to
NAME, it would be left adjusted and padded
on the right with blanks to a length of 15.
If a longer string were assigned, it would
be truncated on the right. (Note: If SUch
truncation occurs it can be detected by use
of the STRINGSIZE condition).

When no length is specified, the
standard default assumption is a length of
one.

Character-string variables may also be
declared to have the VARYING attribute, as
follows:

DECLARE NAME CHARACTER (15) VARYING;

This DECLARE statement specifies that the
identifier NAME is to be used to represent
varying-length character-string data items
with a maximum length of 15. The actual
length attribute for NAME at any particular
time is the length of the data item
assigned to it at that time. The
programmer need not keep track of the
length of a varying-length character
string; this is done automatically. The
length at any given time can be determined
by the programmer" however, by use of the
LENGTH built-in function, as discussed in
chapter 13, "Editing and String Handling".

Character-string data is maintained
internally in character format, that is,
each character occupies one byte of
storage. The maximum length allowed for
variables declared with the CHARACTER
attribute is 32,767. The maximum length
allowed for a character-string constant
before application of repetition factors
varies according to the amount of storage
available to the compiler, but it will
never be less than 512. The minimum length
for a character string is zero. The
storage allocated for varying-length
strings is two bytes longer than the
declared maximum length. The initial two

Chapter 3: Data Elements 29

bytes hold the string's current length, in
bytes.

Character-string variables also can be
declared using the PICTURE attribute of the
form:

PICTURE 'character-picture-specification'

The character picture specification is a
string composed of the picture
specification characters A, X, and 9. The
string of picture characters must be
enclosed in single quotation marks, and it
must contain at least one A or X and no
other picture characters except 9. The
character A specifies that the
corresponding position in the described
field will contain an alphabetic character
or blank. The character X specifies that
any character may appear in the
corresponding position in the field. The
picture character 9 specifies that the
corresponding position will contain a
numeric character or blank. For example:

DECLARE PART_NO PICTURE 'AA9999X999';

This DECLARE statement specifies that the
identifier PART NO will represent
character-string data items consisting of
two alphabetic characters, four numeric
characters, one character that may be any
character, and three numeric characters.

Repetition factors are used in picture
specifications differently from the way
they are used in string constants.
Repetition factors must be placed inside
the quotation marks. The repetition factor
specifies repetition of the immediately
following picture character. For example,
the above picture specifi6ation could be
written:

'(2)A(4)9X(3)9'

The maximum length allowed for a picture
specification is the same as that allowed
for character-string constants, as
discussed above.

Note that, for character picture
specifications, the picture character 9
specifies a digit or a blank, while, for
numeric picture specifications, the same
character specifies only a di9tt.

Bit-string Da~a

A bit-string constant is written in a
program as a series of binary digits
enclosed in single quotation marks and
followed immediately by the letter B.

30

A null bit-string constant is written as
two quotation marks with no intervening
blank, followed immediately by the letter
B.

Examples of bit-string constants as
written in a program are:

, l' B

'11111010110001'B

(64)'0'B

, 'B

The parenthesized number in the third
example is a repetition factor which
specifies that the following series of
digits is to be repeated the specified
number of times. The example shown would
result in a string of 64 binary zeros.

A bit-string variable is declared with
the BIT keyword attribute. Length may be
declared by an expression or a decimal
integer constant, enclosed in parentheses,
to specify the number of binary digits in
the string. The letter B is not included
in the length specification since it is not
part of the string. The length
specification must follow the keyword BIT.
Following is an example of declaration of a
bit-string variable:

DECLARE SYMPTOMS BIT (64);

Like character strings, bit strings are
assigned to variables from left to right.
If a string is longer than the length
declared for the variable, the rightmost

'digits are truncated; if shorter, padding,
on the right, is with zeros.

If no length is specified. a length of
one is assumed.

A bit-string variable may be given the
VARYING attribute to indicate it is to be
used to represent varying-length bit
strings. Its application is the same as
that described for character-string
variables in the preceding section.

Bit strings are stored eight bits to a
byte. The maximum length allowed for a
bit-string variable is 32,767. The maximum
length allowed for a bit-string constant
before application of repetition factors
depends upon the amount of storage
available to the compiler, but it will
never be less than 4096 (512 bytes). The
minimum length for a bit string is zero.
The storag~ allocated for varying-length
,strings is two bytes longer than that
required by the declared maximum length.

,The initial two bytes hold the string's
current length, in bits.

UNITIALIZED VARIABLES

When the pr()grammer makes a reference to an
arithmetic ()r string variable such that the
variable sh()uld contain a valid value -
assigns the value to another variable for
instance - E!rrOrS can occur if this is the
first referEmce to the variable. The
programmel: lInust ensure that a variable has
been assigned a value before trying to
access it. The checkout compiler checks
whether this has been done.

To facilitate this checking, the
compiler assigns a special value to each
variable as soon as storage is allocated to
it. An attE!mpt to use a variable having
this value tjiill result in interruption of
execution. The special value is one which
the variablE! would not normally have. For
instance, with a varying-length character
string, the compiler assigns the variable a
length of -1. Certain of these special
values, however, might occassionally be
used by the programmer. These are as
follows.

Fixed length character strings:

X-FE' in the first byte

Picture data:

X'FE' in the first byte

Fixed-point binary data: values can be set
by the user at sysgen time. Default values
are:

halfword X, SOOO', i.e. _2 8
+ 1

fullword _2 16
X'SOOOOOOO', i.e. +1

If it is essential that one of the above
values is used in a program to be run under
the checkout: compiler, the compiler options
should specify that no checking for
unitialized variables is carried out. The
optimizing compiler does not check for
unitialized variables.

Program COlntrol Data

The types of program control data are file,
label, entry, event, task, locator, and
area.

FILE DATA

A file data item represents information
about a PL/I file. It may be a file

constant, or the value of a file variable.
A file constant can be assigned to a file
variable: a reference to the file variable
is a reference to the assigned file
constant.

LABEL DATA

A label data item is a label constant or
the value of a label variable.

A label constant is an identifier
written as a prefix to a statement so that,
during execution, program control can be
transferred to that statement through a
reference to its label. A colon connects
the label to the statement.

ABCDE: MILES = SPEED*HOURS:

In this example, ABCDE is the statement
label. The statement can be executed
either by normal sequential execution of
instructions or by transferring control to
this statement from some other point in the
program by means of a GO TO statement.

As used above, ABCDE can be classified
further as a statement-label constant. A
statement-label variable is an identifier
that refers to statement-label constants.
Consider the following example:

statement:

statement:

LBL A and LBL B are statement-label
constants because they are prefixed to
statements. LBL X is a statement-label
variable. By assigning LBL_A to LBI_X, the
statement GO TO LBL X causes a transfer to
the LBL A statement: Elsewhere, the
program-may contain a statement assigning
LBL_B to LBL_X. Then, any reference to
LBL X would be the same as a reference to
LBL-B. This value of LBL X is retained
untIl another value is assigned to it.

Chapter 3: Data Elements 31

A statement·label variable must be
declared with the LABEL attribute, as
follows:

DECLARE LBL_X LABEL:

ENTRY DATA

Entry data is used only in connection with
entry names, and has values which permit
references to be made to entry points of
procedures. Entry data may be an entry
constant or the value of an entry variable.

An entry constant is an identifier that
appears in the program as an entry name
written as a prefix to a PROCEDURE or ENTRY
statement. It permits references to be
made to an entry point of a procedure.

Example:

P: PROCEDURE:
CALL P1;

CALL P1A;

P1: PROCEDURE;

P1A: ENTRY;

P1 and P1A are declared as entry constants.
Control is transferred to the procedure
entry points designated by P1 or P1A when a
reference is made to either entry constant.

An entry variable is an identifier that
refers to an entry constant. Consider the
following example:

DECLARE EV ENTRY VARIABLE,
(E1,E2) ENTRY:

EV = E1:
CALL EV:
EV = E2:
CALL EV:

EV is declared an entry variable by means
of the VARIABLE attribute. The first CALL
statement invokes an entry point
represented by the entry constant E1. The
second CALL invokes the entry point E2.

32

EVENT DATA

Event variables are used to coordinate the
concurrent execution of a number of
procedures, or to allow a degree of overlap
between a record· oriented input/output
operation (or the execution of a DISPLAY
statement) and the execution of other
statements in the procedure that initiated
the operation.

A variable is given the EVENT attribute
by its appearance in an EVENT option or a
WAIT statement, or by explicit declaration,
as in the following example:

DECLARE ENDEVT EVENT:

For detailed information, see chapter
17, "Multitasking," chapter 12,
"Record-Oriented Transmission", or
"DISPLAY" in section J, "Statements".

TASK DATA

Task variables are used to control the
relative priorities of different tasks
(i.e., concurrent separate executions of a
procedure or procedures).

A variable is given the TASK attribute
by its appearance in a TASK option, or by
explicit declaration, as in the following
example:

DECLARE ADTASK TASK;

For detailed information, see chapter
17, "Multitasking."

LOCATOR DATA

There are two types of locator data:
pointer and offset.

The value of a pointer variable is
effectively an address of a location in
storage, and so it can be used to qualify a
reference to a variable that may have been
allocated storage in several different
locations.

The value of an offset variable
specifies a location relative to the start
of a reserved area of storage and remains
valid when the address of the area itself
changes.

Locator variables can be declared as in
the following example:

DECLARE HEADPTR POINTER,
FIRST OFFSET (AREAl);

In this example, AREAl is the name of the
reserved area of storage that will contain
the location :specified by FIRST.

A variable can also be given the POINTER
attribute by its appearance in the BASED
attribute, by its appearance on the
left-hand side of a locator qualification
symbol, or by its appearance in a SET
option.

For detailed information, see chapter 8,
"Storage Control".

AREA DATA

Area variables are used to describe areas
of storage that are to be reserved for the
allocation of based variables. An area can
be assigned or transmitted complete with
its contained allocations; thus, a set of
based allocations can be treated as one
unit for assignment and input/output while
each allocation retains its individual
identity.

A variablea is given the AREA attribute
either by its appearance in the OFFSET
attribute or an IN option, or by explicit
declaration, as in the following example:

DECLARE 2~REA 1 AREA (2000) ,
AREA2 AREA;

The number of bytes of storage to be
reserved can be stated explicitly, as it
has been for AREAl in the example;
otherwise a default size is assumed. The
default size is 1000 bytes; the theoretical
maximum size is 16,777,200 bytes but in
practice the maximum depends on the amount
of storage available to the program.

For detailed information, see chapter 8,
"Storage Control".

Data Organization

In PL/I, data items may be single data
elements, or they may be grouped together
to form data collections called arrays and
structures. A variable that represents a
single element is an element variable (also
called a scalar variable). A variable that
represents at collection of data elements is
either an array variable or a structure
variable.

Any type of problem data or program
control data can be collected into arrays
or structures.

ARRAYS

Data elements having the same
characteristics, that is, of the same data
type and of the same precision or length,
may be grouped together to form an array.
An array is an n-dimensional collection of
elements, all of which have identical
attributes. Only the array itself is given
a name. An individual item of an array is
referred to by giving its relative position
within the array.

Consider the following two declarations:

DECLARE LIST (8) FIXED DECIMAL (3);

DECLARE TABLE (4,2) FIXED DECIMAL (3);

In the first example, LIST is declared to
be a one-dimensional array of eight
elements, each of which is a fixed-point
decimal item of three digits. In the
second example, TABLE is declar,ed to be a
two-dimensional array, also of eight
fixed-point decimal elements.

The parenthesized number or numbers
following the array name in a DECLARE
statement is the dimension attribute
specification. It must follow the array
name, with or without an intervening blank.
It specifies the number of dimensions of
the array and the bounds, or extent, of
each dimension. Since only one bounds
specification appears for LIST, it is a
one-dimensional array. Two bounds
specifications, separated by a comma, are
listed for TABLE; consequently, it is
declared to be a two-dimensional array.

The bounds of a dimension are the
beginning and the end of that dimension.
The extent is the number of integers
between, and including, the lower and upper
bounds. If only one integer appears in the
bounds specification for a dimension, the
lower bound is assumed to be 1. The one
dimension of LIST has bounds of 1 and 8;
its extent is 8. The two dimensions of
TABLE have bounds of 1 and 4 and 1 and 2;
the extents are 4 and 2.

If the lower bound of a dimension is not
1, both the upper bound and the lower bound
must be stated explicitly, with the two

Chapter 3: Data Elements 33

numbers connected with a colon. For
example:

DECLARE LIST_A (4:11);

DECLARE LIST_B (-4:3);

In the first example, the bounds are 4 and
11; in the second they are -4 and 3. Note
that the extents are the same; in each
case, there are 8 integers from the lower
bound through the upper bound. It is
important to note the difference between
the bounds and the extent of an array. In
the manipulation of array data (discussed
in chapter 4, "Expressions and Data
Conversions") involving more than one
array, the bounds -- not merely the
extents -- must be identical. Although
LIST, LIST A, and LIST B all have the same
extent, the bounds are-not identical.

The bounds of an array determine the way
elements of the array can be referred to.
For example, assume that the following data
items are assigned to the array LIST, as
declared above:

20 5 10 30 630 150 310 10

The different elements would be referred
to as follows:

Reference Element
LIST (1) 20

LIST (2) 5

LIST (3) 10

LIST (4) 30

LIST (5) 630

LIST (6) 150

LIST (1) 310

LIST (8) 10

Each of the numbers following the name
LIST is a subscript. A parenthesized
subscript following an array name, with or
without an intervening blank, identifies a
particular data item within the array. A
subscripted name, such as LIST(4), refers
to a single element and is an element
variable. The entire array can be referred
to by the unsubscripted name of the array,
for example, LIST. In this case, LIST is
an array variable. Note the difference
between a subscript and the dimension
attribute specification. The latter, which
appears in a declaration, specifies the
dimensionality and the number of elements
in an array. Subscripts are used in other
references to identify specific elements
within the array.

34

The same data could be assigned to
, LIST A and LIST B, as declared above
., (though not by direct assignment from
, LIST). In this case it would be would be

referred to as follows:

Reference Element Reference
LIST_A (4) 20 LIST_B (-4)

LIST_A (5) 5 LIST_B (-3)

LIST_A (6) 10 LIST_B (-2)

LIST_A (1) 30 LIST_B (-1)

LIST_A (8) 630 LIST_B (0)

LIST A (9) 150 LIST_B (1)

LIST_A (10) 310 LIST_B (2)

LIST_A (11> 10 LIST_B (3)

Assume that the same data were assigned
toTABLE, which is declared as a

'I two-dimensional array (though note again
, that assignment could not be direct from

LIST to TABLE). TABLE can be illustrated
as a matrix of four rows and two columns,
as follows:

TABLE (m,n)
(1, n)

(2,n)

(3,n)

(4,n)

.1mt..1l
20

10

630

310

(m,2)
5

30

150

10

An element of TABLE is referred to by a
subscripted name with two parenthesized

,subscripts, separated by a comma. For
example, TABLE (2,1) would specify the
first item in the second row, in this case,

, the data item 10.

~ The use of a matrix to illustrate
TABLE is purely conceptual. It has no
relationship to the way in which the items
are actually organized in storage. Data
items are assigned to an array in row major
order, that is, with the right-most
subscript varying most rapidly. For
example, assignment to TABLE would be to
TABLE(1,1), TABLE(1,2), TABLE(2,1),

;TABLE(2,2) and so forth.

Arrays are not limited to two
dimensions; up to 15 dimensions can be
declared for an array. In a reference to
an element of any array, a subscripted name

;must contain as many subscripts as there
are dimensions in the array.

Examples of arrays in this chapter have
shown arrays of arithmetic data. All data
types may be collected into arrays. string

arrays, either character or bit, are valid,
as are arra:ys of label, entry, event, file,
area, task, or locator data.

Exp~essions as Subscripts

The subscripts of a subscripted name need
not be constants. Apy expression that
yields a valid arithmetic value can be
used. If the evaluation of such an
expression yields a value that is not a
fixed-point binary integer, it is converted
to FIXED BINARY(15,O), since subscripts are
maintained internally as binary integers .•

subscripts are frequently expressed as
variables or other expressions. Thus.,
TABLE(I,J*K) could be used to refer to the
different ele!ments of TABLE by varying the
values of I, J, and K.

Cross-sections of Arrays

Cross-sections of arrays can be referred to
by substituting an asterisk for a subscript
in a subscx'ipted name. The asterisk, then
specifies t,hat the entire extent is to be
used. For example, TABLE(*,1) refers to
all of the elements in the first column of
TABLE. It specifies the cross-section
consisting of: TABLE (1 , 1), TABLE (2, 1) ,
TABLE (3, 1), clOd TABLE (4, 1) • The
subscripted name TABLE(2,*) refers to all
of the data items in the second row of
TABLE. TABLIH*,*) refers to the entire
array.

Note that a subscripted name containing
asterisk subscripts represents, not a
single data tl!lement, but an array with as
many dimensions as there are asterisks.
Consequently., such a name is not an element
expression, but an array expression.

A reference to a cross-section of an
array may be a reference to two or more
elements of 1:.hat array which may not be
adjacent in storage, the elements specified
by such a rejEerence being separated by
other elements which are not part of the
cross-section. The storage represented by
such a cross-section is known as
non-connecte.~ storage. Certain
restrictions apply to the use of
non-connected storage; for example, a
record variable (that is, a variable to or
from which diata is transmitted by a
record-orien1ted transmission statement)
must represelnt data in connected storage
(that is, data items which are adjacent in
storage) ..

STRUCTURES

Data items that need not have identical
characteristics, but that possess a logical
relationship to one another, can be grouped
into aggregates called structures.

Like an array, the entire stxucture is
given a name that can be used to refer to
the entire collection of data. Unlike an
array, however, each element of a structure
also has a name.

A structure is a hierarchical collection
of names. At the bottom of the hierarchy
is a collection of elements, each of which
represents a single data item or an array.
At the top of the hierarchy is the
structure name, which represents the entire
collection of element variables. For
example, the following is a collection of
element variables that might be used to
compute a weekly payroll:

LAST NAME
FIRST NAME
REGULAR HOURS
OVERTIME HOURS
REGULAR RATE
OVERTIME_RATE

These variables could be collected into
a structure and given a single structure
name, PAYROLL, which would refer to the
entire collection.

LAST_NAME

FIRST_NAME

PAYROLL

REGULAR_HOURS REGULAR_RATE

OVERTIME_HOURS OVERTI~E_RATE

Any reference to PAYROLL would be a
reference to all of the element variables.
For example:

GET DATA (PAYROLL) 1

This input statement could cause data to
be assigned to each of the element
variables of the structure PAYROLL.

It often is convenient to subdivide the
entire collection into smaller logical
collections. In the above examples,
LAST_NAME and FIRST_NA~E might make a
logical subcollection, as might
REGULAR HOURS and OVERTIME HOURS, as well
as REGULAR RATE and OVERTIME RATE. In a
structure,-such subcollections also are
given names.

Chapter 3: Data Elements 35

NAME

FIRST
LAST

PAYROLL

HOURS

REGULAR
OVERTIME

RATE

REGULAR
OVERTIME

Note that the hierarchy of names can be
considered to have different levels. At
the first level is the structure name
(called a major structure name); at a
deeper level are the names of substructures
(called minor structure names); and at the
deepest are the element names (called
elementary names). An elementary name in a
structure can represent an array, in which
case it is not an element variable, but an
array variable.

The organization of a structure is
specified in a DECLARE statement through
the use of level numbers. A major
structure name must be declared with the
level number 1. Minor structures and
elementary names must be declared with
level numbers arithmetically gieater than
1; they must be decimal integer constants~
A blank must separate the level number and
its associated name. For example, the
items of a weekly payroll could be declared
as follows:

DECLARE 1 PAYROLL,
2 NAME,

3 LAST,
3 FIRS'!',

2 HOURS,
3 REGULAR,
3 OVERTIME,

2 RATE,
3 REGULAR,
3 OVERTIl~E;

Note: In an actual declaration of the
strUCture PAYROLL, attributes would be
specified for each of the elementary names
LAST and FIRST, and the two pairs REGULAR
and OVERTIME. The pattern of indentation
in this example is used only for
readability. The statement could be
written in a continuous string as DECLARE
PAYROLL, 2 NAME, 3 LAST, etc.

PAYROLL is declared as a major structure
containing the minor structures NAME,
HOURS, and RATE. Each minor structure
contains two elementary names. A
programmer can refer to the entire
structure by the name PAYROLL, or he can
refer to portions of the structure by
referring to the minor structure names. He
can refer to an element by referring to an
elementary name.

Note that in the declaration, each level
number precedes its associated name and is
separated from the name by a blank. The
numbers chosen for successively deeper

36

levels need not be the immediately
succeeding integers. They are used merely
to specify the relative level of a name. A
minor structure at level n contains all the

, names with level numbers greater than n
, that lie between that minor structure name
and the next name with a level number less
than or equal to n. PAYROLL might have

, been declared as follows:

DECLARE 1 PAYROLL,
4 NAME,

5 LAST,
5 FIRST,

2 HOURS,
6 REGULAR,
5 OVERTIME,

2 RATE,
3 REGULAR,
3 OVERTIME;

This declaration would result in exactly
the same structuring as the previous
declaration. The maximum permissible
number of levels is 15, and the highest
permissible level number is 255.

The description of a major structure
name is terminated by the declaration of
another item with a level number 1, by the
declaration of another item with no level
number, or by a semicolon terminating the

,DECLARE statement.

Level numbers are specified with
,structure names only in DECLARE statements
'and, in the case of controlled structures,
ALLOCATE statements. 'In references to the
structure or its elements, no level numbers

'are used.

Qualified Names

:A minor structure or a structure element
'can be referred to by the minor structure
name or the elementary name alone if there
,is no ambiguity. Note, however, that each
of. the names REGULAR and OVERTIME appears
twice in the structure declaration for
PAYROLL. A reference to either name would
be ambiguous without some qualification to
,make the name unique.

PL/I allows the use of qualified names
:to avoid this ambiguity. A Qualified name
:is an elementary name or a minor structure
'name that is made unique by qualifying it
with one or more names at a higher level.
In the PAYROLL example, REGULAR and
OVERTIME could be made unique through use
of the qualified names HOURS.REGULAR,
HOURS. OVERTIME, RATE. REGULAR, and
RATE. OVERTIME.

The different names of a qualified name
are connected by periods. Blanks may
appear surrounding the period.
Qualification is in the order of levels~
that is, the name at the highest level must
appear first, with the name at the deepest
level appearing last.

Any of the names in a structure, except
the major structure name itself, need not
be unique within the procedure in which it
is declared. For example, the qualified
name PAYROLL.HOURS.REGULAR might be
required to make the reference unique
(another structure, say WORK, might also
have the name REGULAR in a minor structure
HOURS; it cou.l d be made unique with the
name WORK.HOURS.REGULAR). All of the
qualifying na.mes need not be used, although
they may be~ if desired. Qualification
need go only so far as necessary to make
the name unique. Intermediate qualifying
names can be omitted. The name
PAYROLL. LAST is a valid reference to the
name PAYROLL. NAME. LAST.

ARRAYS OF STRUCTURES

A structure name, either major or minor,
can be given a dimension attribute in a
DECLARE statement to declare an array of
structures. An array of structures is an
array whose elements are structures having
identical names, levels, and elements. For
example, if a structure, WEATHER, were used
to process meteorological information for
each month of a year, it might be declared
as follows~:

DECLARE 1 WEATHER(12),
2 ~rEMPERATURE"

3 HIGH DECIMAL FIXED(4,1),
3 LOW DECIMAL FIXED(3,1),

2 WIND VELOCITY,
:3 HIGH DECIMAL FIXED(3),
:3 LOW DECIMAL FIXED(2),

2 PRECIPITATION,
3 TOTAL,DECIMAL FIXED(3,1),
:3 AVERAGE DECIMAL FIXED(3,,)~

Thus, when such an array represents the
weather for a whole year, a programmer
could refer to the weather data for the
month of July by specifying WEATHER(7).
Portions of the July ,weather could be
referred to by TEMPERATURE(7),
WIND VELOCITY(7), and PRECIPITATION(7), but
TOTAL(7) would refer to the total
precipitation during the month of July.

TEMPERATURE.HIGH(3), which would refer
to the high temperature in March, is a
subscripted gualified name.

The need for subscripted qualified names
becomes more apparent when an array of
structures contains minor structures that
are arrays. For example, consider the
following array of structures:

DECLARE 1 A (6,6),
2 B (5),

3 C,
3 D,

2 E~

Both A and B are arrays of structures. To
identify a data item, it may be necessary
to use as many as three names and three
subscripts. For example, A(1,1).B(2).C
iqentifies a particular C that is an
element of B in a structure in A.

So long as the order of subscripts
remains' unchanged, subscripts in such
references may be moved to the right or
left and attached to names at a lower or
higher level. For example, A.B.C(1,1,2)
and A(1,1,2).B.C have the same meaning as
A(1,1).B(2).C for the above array of
structures. Unless all of the subscripts
are moved to the lowest or highest level,
the qualified name is said to have
interleaved subscriEts; thus, A.B(1,1~2).C
has interleaved subscripts.

An array declared within an array of
structures inherits dimensions declared in
the containing structure. For example, in
the above declaration for the array of
structures A, the array B is a
three-dimensional structure, because it
inherits the two dimensions declared for A.
If B is unique and requires no
qualification, any reference to a
particular B would require three
subscripts, two to identify the specific A
and one to identify the specific B within
that A.

Cross-Sections of Arrays of Structures

A reference to a cross-section of an array
of structures is not permitted, that is,
the asterisk notation cannot be used in a
reference.

Other Attributes

Keyword attributes for data variables such
as BINARY and DECIMAL are discussed briefly
in the preceding sections of this chapter.
Other attributes that are not peculiar to
one data type may also be applicable. A
complete discussion of these attributes is
contained in section I, "Attributes". Some

Chapter 3: Data Elements 37

that are especially applicable to a
discussion of data type and data
organization are DEFINED, LIKE, ALIGNED,
UNALIGNED, and INITIAL.

DEFINED Attribute

The DEFINED attribute specifies that the
named data element, structure, or array is
to occupy the same storage area as that
assigned to other data. For example,

\ DECLARE LIST (100,100),
LIST_ITEM (100,100) DEFINED LIST;

LIST is a 100 by 100 two-dimensional array.
LIST_ITEM is an identical array defined on
LIST. A reference to an element in
LIST ITEM is the same as a reference to the
corresponding element in LIST.

The DEFINED attribute with the POSITION
attribute can be used to subdivide or
overlay a data item. For example:

DECLARE LIST CHARACTER (50),
LISTA CHARACTERI(10) DEFINED LIST,
LISTB CHARACTER(10) DEFINED LIST

POSITION(ll),
LISTC CHARACTER(30) DEFINED LIST

POSITION(21);

LISTA refers to the first ten characters of
LIST. LISTB refers to the second ten
characters of LIST. LISTC refers to the
last thirty characters of LIST.

The DEFINED attribute may also be used
to specify parts of an array through use of
iSUB variables, in order to constitute a
new array. The iSUB variables are dummy
variables where i can be specified as any
decimal integer constant from 1 through Q
(where Q represents the number of
dimensions for the defined item). The
value of the iSUB variable ranges from the
lower bound to the upper bound of the ith
dimension of the defined array. For
example:

DECLARE A(20,20),
B(10) DEFINED A(2*lSUB,2*lSUB)i

B is a subset of A consisting of every even
element in the diagonal of the array, A.
In other words, B(l) corresponds to A(2,2),
B(2) corresponds to A(4,4)~

Non-connected storage: The use of the
DEFINED attribute to overlay arrays with
arrays creates the possibility that array
expressions can refer to array elements in
non-connected storage (that is , array
elements which are not adjacent in
storage). It is possible for an array

38

expression involving consecutive elements
to refer to non-connected storage in the
two following cases:

1. Where an array is declared with iSUB
defining. An array expression which
refers to adjacent elements in an
array declared with iSUB defining can
be a reference to non-connected
storage (that is, a reference to
elements of an overlayed array which
are not adjacent in storage).

2. Where a string array is defined on a
string array which has elements of
greater length. Consecutive elements
in the defined array are separated by
the difference between the lengths of
the elements of the base and defined
arrays, and are considered to be held
in non-connected storage.

LIKE Attribute

The LIKE attribute is used to indicate that
the name being declared is to be given the
same structuring as the major structure or
minor structure name following the
attribute LIKE. For example:

i
DECLARE 1 BUDGET,

2 RENT,
2 FOOD,

3 MEAT,
3 EGGS,
3 BUTTER,

2 TRANSPORTATION,
3 WORK,
3 OTHER,

2 ENTERTAINMENT,
1 COST_OF_LIVING LIKE BUDGET;

This declaration for COST OF LIVING is the
same as if it had been declared:

DECLARE 1 COST OF LIVING,
2 RENT,-
2 FOOD,

3 MEAT,
3 EGGS,
3 BUTTER,

2 TRANSPORTATION,
3 WORK,
3 OTHER,

2 ENTERTAINMENT;

Note: The LIKE attribute copies
strUCturing, names, and attributes of the
structure below the level of the specified
name only. No dimensionality of the
specified name is copied. For example, if
BUDGET were declared as 1 BUDGET(12), the
declaration of COST OF LIVING LIKE BUDGET
would not give the dimension attribute to
COST_OF_LIVING. To achieve dimensionality

of COST OF LIVING, the declaration would
have to-be-DECLARE 1 COST_OF_LIVING(12)
LIKE BUDGET.

A minor structure name can be declared
LIKE a major structure or LIKE another
minor structure. A major structure name
can be declared LIKE a minor structure or
LIKE another major structure.

ALIGNED and UNALIGNED Attributes

In System/360 and System/370, information
is held in units of eight bits, or a
multiple of eight bits. Each eight-bit
unit of infol,"mation is called a byte. When
PLII data i.s stored in character form, each
character occupies one byte.

Bytes may be handled separately or
grouped together in fields. A halfword is
a group of t'JiO consecutive bytes. A ~
is a group of four consecutive bytes. A
double word is a field consisting of two
words. Byte locations in storage are
consecutively numbered starting with 0;
each number is considered the address of
the corresponding byte. A group of bytes
in storage is addressed by the leftmost
byte of the group.

Fixed-length fields, such as halfwords
and double words, must be located in main

storage on an integral toundary for that
unit of information. A boundary is called
integral for a unit of information when its
address is a multiple of the length of the
unit in tytes. For example, a word (four
bytes) must be located in storage so that
its address is a multiple of the number 4.
A halfword (two bytes) must have an address
that is a multiple of the number 2, and a
doubleword (eight bytes) must have an
address that is a multiple of the number 8
(see figure 3.1).

Halfwords, words, and doublewords may be
accessed more readily than a field of the
same length that is not aligned on an
integral boundary. For this reason, it is
a system requirement that data to be used
in certain operations is aligned on one of
the three integral boundaries.

It is possible in PLII to align data on
boundaries that will give the fastest
possible execution. This is not always
desirable, however, since there may be
unused bytes between successive data
elements, which increases use of storage.
This is likely to be particularly important
when the data items are members of
aggregates that are to be used to create a
data set; the unused bytes can greatly
increase the amount of external storage
required. The ALIGNED and UNALIGNED
attributes allow the programmer to choose
whether or not data is to be stored on the
appropriate integral boundary.

r--I Address of Byte
~--------T----"-----T----------T---------T---------T---------T-----·---T---------T------~--T--I 50000 I 50001 I 50002 I 50003 I 50004 I 50005 I 50006 I 50007 I 50008 I
~--------+----.-----+----------+---------+---------+---------+---------+---------+---------+--
I I I I , I I I I I
I byte I byte I byte I byte , byte I byte I byte I byte I byte I
I I I I , I I I I I
~--------~----,-----+----------~---------+---~-----~---------+---------~---------+---------~--
I I , I I
I halfword I halfword , halfword I half word I half word
I I , I I
~------------------~--------------------+-------------------~-------------------+------------
I I I
I word , word I word
I I I
~-----------,----------------------------~--------------------._-----------------+------------
I I
I doubleword I doubleword
L __ --_____________ ~ ___________ _

Figure 3.1. Section of main store showing alignment of fixed length fields

Chapter 3: Data Elements 39

ALIGNED specifies that the data element
is to be aligned on the storage boundary
corresponding to its data type requirement.
These requirements are specified in section
K, "Data Mapping".

UNALIGNED specifies that each data
element, with one exception, is mapped on
the next byte boundary. The exception is
for fixed-length bit strings, which are
mapped on the next bit.

When the UNALIGNED attribute is
specified, the compiler generates code that
moves the data to an appropriate integral
boundary before an operation is performed,
if the operation requires data alignment.
Consequently, although 'the UNALIGNED
attribute may reduce storage requirements,
it may increase execution time.

Defaults are applied at element level.
The default for bit-string data,
character-string data~ and numeric
character data is UNALIGNED; for all other
types of data, the default is ALIGNED.

ALIGNED or UNALIGNED can be specified
for element, array, or structure variables.
The application of either attribute to a
structure is equivalent to applying the
attribute to all contained elements that
are not explicitly declared ALIGNED or
UNALIGNED.

The following example illustrates the
effect of ALIGNED and UNALIGNED
declarations for a structure and its
elements:

DECLARE 1 S,
2 X BIT(2), /* UNALIGNED BY

DEFAULT */
2 A ALIGNED, /* ALIGNED EXPLICITLY

3 B, /* ALIGNED FROM A */
3 C UNALIGNED, /* UNALIGNED

EXPLICITLY */
4 D, /* UNALIGNED FROM C */

*/

4 E ALIGNED, /* ALIGNED EXPLICITLY */
4 F, /* UNALIGNED FROM C */

3 G, /* ALIGNED FROM A */
2 H; /* ALIGNED BY DEFAULT */

INITIAL Attribute

The INITIAL attribute specifies an initial
value to be assigned to a variable at the
time storage is allocated for it. For
example:

40

DECLARE NAME CBARACTER(10) INITIAL
('JOHN DOE');

DECLARE PI FIXED DECIMAL (5,4) INITIAL
(3.1416);

DECLARE TABLE (100,100) INITIAL CALL
SUBR;

DECLARE A INIT(B*C»;

DECLARE X INIT(SQRT(Z»;

When storage is allocated for NAME, the
'1 character string 'JOHN DOE' (padded on the

right to 10 characters) will be assigned to
it. When PI is allocated" it will be
initialized to the value 3.1416. Either
value may be retained throughout the
program, or it may be changed during
execution.

The third example illustrates the CALL
option. It indicates that the procedure
SUBR is to be invoked to perform the

.1 initialization. The required values must
, be assigned to TABLE during the execution
, of SUBR.

The fourth example shows an INITIAL
attribute which contains an expression. It
specifies that A is to be initialized with
the value of the product of Band C.

The fifth example illustrates the use of
a function reference to initialize a data
item.

For a variable that is allocated when
the program is loaded, that is, a static
variable, which remains allocated
throughout execution of the program, any
value specified in an INITIAL attribute is
assigned only once. For automatic
variables, which are allocated at each
activation of the declaring block, any
specified initial value is assigned with
each allocation. For based and controlled
variables, which are allocated at the
execution of ALLOCATE statements (also
LOCATE statements for based variables), any
specified initial value is assigned with
each allocation. Note, however, that this
initialization of controlled variables can
be overridden in the ALLOCATE statement.

The INITIAL attril:'11te cannot be given
for entry constants, file constants,
DEFINED data, entire structures, or
parameters (except CONTROLLED parameters).

~: The CALL option or an expression
containing one or more variables cannot be
used with the INITIAL attribute for static
data.

An area variable is automatically
initialized with the value of the E~PTY
built-in function, on allocation, after
which any specified INITIAL is applied. An
area can be initialized by assignment of
another area, using the INITIAL attribute
with or without the CALL option.

The INITIAL attribute can be specified
for arrays, as well as for element
variables. In a structure declaration,
only element~ary names can be given the
INITIAL at:tl:ibute.

An array or an array of structures can
be partly initialized or fully initialized.
Uninitialized elements are specified by

I either omi.tting to put a value in the
INITIAL attl:ibute or by using an asterisk.
For example:

DECLAR:E~ A(15) CHARACTER (13) INITIAL
('JOHN DOE', * ,
'RICHARD ROW',
'MARY SMITH'),

B (10,10) DECIMAL FIXED(5)
INITIAL«25)0,(25)1,(50)0),

1 C(8),
2 D INITIAL (0),
2 E INITIAL«8)0);

In this example, only the first, third, and
fourth elements of A are initialized; the
rest of the array is uninitialized. The
array B is fully initialized, with the
first 25 elements initialized to 0, the
next 25 to 1, and the last 50 to O. The
parenthesiz~~d numbers (25, 25, and 50) are
iteration factors, that specify the number
of elements to be initialized. In the
structure C II where the dimension (8) has
been inheri 1:ed by 0, only the first element
of D is initialized; where the dimension
(8) has been inherited by E, all the
elements of E are initialized.

When an array of structures is declared
with the LIKE attribute to obtain the same
structuring as a structure whose elements
have been initialized, it should he noted
that only the first structure in this array
of structures will be initialized. For
example:

DECLARE 1 G,
2 H INITIAL(O),
2 I INITIAL(O),

1 J(8) LIKE G;

In this example, only J(1).H and J(1).I are
initialized in the array of structures.

For STATIC arrays, iteration factors
must be decimal integer constants; for
arrays of other storage classes, iteration
factors may be constants, variables, or
expressions.

The iteration factor should not be
.confused with the string repetition factor
discussed earlier in this chapter.
Consider the following example:

DECLARE TABLE (50) CHARACTER (10)
INITIAL «10)'A',(25)(10)'B',
(24)(1)'C'):;

This INITIAL attribute specification
contains both iteration factors and
repetition factors. It specifies that the
first element of TABLE is to be initialized
with a string consisting of 10 A's, each of
the next 25 elements is to be initialized
with a string consisting of 10 B'S, and
each of the last 24 elements is to be
initialized with the single character C.
In the INITIAL attribute specification for
a string array, a single parenthesized
factor preceding a string constant is
assumed to be a string repetition factor
(as in (10)'A'). If more than one appears,
the first is assumed to be an iteration
factor, and the second a string repetition
factor. For this reason (as in
(24)(1)'C'), a string repetition factor of
1 must be inserted if a single string
constant is to be used to initialize more
than one element.

Chapter 3: Data Elements 41

Chapter 4: Expressions and Data Conversion

An expression is a representation of a
value. A single constan't or a variable is
an expression. Combinat.ions of constants
and/or variables, along with operators
and/or parentheses, are expressions. An
expression that contains operators is an
QEerational expression. The constants and
variables of an operatidnal expression are
called operands. Examples of expressions
are:

27

LOSS

A+B

(SQTY-QTY)*SPRICE

Any expression can be classified as an
element expression (also called a scalar
expression), an array expression, or a
structure expression. Element variables,
array variables, and structure variables
can appear in the same expression.

An element expression is one that
represents an element value. This
definition includes an elementary name
within a structure or a subscripted name
that specifies a single element of an
array.

An array expression is one that
represents an array of values. This
definition includes a structure, or part of
a structure (a minor structure or element)
that is given the dimension attribute.

A. structure expression is one that
represents a structured set of values.
None of its operands are arrays, but an
operand can be subscripted.

In the examples that follow, assume that
the variables have attributes declared as
follows:

DECLARE A(10,10) BINARY FIXED (31),
B(10,10) BINARY FIXED (31),

42

1 RATE, 2 PRIMARY DECIMAL FIXED (4,2),
2 SECONDARY DECIMAL FIXED (4,2),

COST(2), 2 PRIMARY DECIMAL FIXED
(4,2),

2 SECONDARY DECIMAL FIXED (4,2),
C BINARY FIXED (15),
D BINARY FIXED (15);

Examples of element expressions are:

C * D

A(3,2) + B(4,8)

RATE.PRIMARY - COST.PRIMARY(1)

A(4,4) * C

RATE. SECONDARY / 4

A(4,6) * COST.SECONDARY(2)

All of these expressions are element
expressions because each operand is an
element variable or const~nt ~even though
some may be elements' of arrays or
elementary names of structures); hence,
each expression represents an element
value.

Examples of array expressions are:

A + B

A * C - D

B / 10B

RATE + COST

All of these expressions are array
expressions because at least one operand of
each is an array variable; hence, each
expression represents an array value. Note
that the third example contains the binary
-fixed-point constant 10B. The last example
represents an array of structures.

Examples of structure expressions are:

RATE * COST(2)

RATE / 2

Both of these expressions are structure
expressions because at least one operand of
each is a structure variable and no operand
is an array; hence, each expression
represents a structure value.

Use of Expressions

Expressions that are single constants or
single variables may appear freely
throughout a program. However, the syntax
of many PL/I statements allows the
appearance of operational expressions,

provided the result of the expression
conforms with the syntax rules.

In syntactic descriptions used in this
publication~ the unqualified term
"expression~' refers to an element
expression, an array expression, or a
structure expression. For cases in which
the kind of expression is restricted, the
type of restriction is noted; for example,
the term "element-expression" in a
syntactic description indicates that
neither an array expression nor a structure
expression is valid.

~ Althou9h operational expressions can
appear in a number of different PL/I
statements, their most common occurrences
are in assignment statements of the form:

A = B + C;

The assignment. statement has no PL/I
keyword. The assignment symbol (=)
indicates that the value of the expression
on the right (B + C) is to be assigned to
the variable on the left (A). For purposes
of illustration in this chapter, some
examples of e:lCpressions are shown in
assignment statements.

Data Conversion

OPERATIONAL EXPRESSIONS

An operational expression consists of one
or more sin9le operations. A single
operation is either a prefix operation (an
operator preceding a single operand) or an
infix operation (an operator between two
operands). The two operands of any infix
operation, when the operation is performed,
usually must be of the same data type.

The operands of an operation in a PL/I
expression are automatically converted, if
necessary, to a com~on representation
before the operation is performed. General
principles concerning these conversions are
given in "Attributes of Targets" later in
this chapter. Detailed rules for specific
cases, including rules for computing the
precision or length of a converted item,
can be found in section F, "Data Conversion
and Expression Evaluation."

Data conversion is mainly confined to
problem dat4:t. The only conversion possible
with program control data is between offset
and pOinter types (except that conversion
to character strings takes place under the
checkout compiler during stream output).

There are very few restrictions on the
use of more than one representation in an
expression. It must be realized, however,
that such mixtures imply conversions. If
conversions take place at execution time~
they will slow down execution. Also,
unless care is taken, conversion can result
in loss of precision and can produce
unexpected results. Mixed-representation
expressions should, therefore, be avoided
as far as possitle, and when they are used
the relevant conversion rules should be
thoroughly understood by the programmer.

ASSIGNMENT

In addition to conversion performed in the
evaluation of an expression, conversion
will also occur when a data item (or the
result of an expression evaluation) is
assigned to a variable whose attributes
differ from the attributes of the item
assigned. The rules for such conversions
are, with a few exceptions, the same as
those for conversion in the evaluation of
operational expressions.

Conversion also takes place during
stream-oriented input/output (see chapter
11), and there are a number of other
circumstances that cause conversion; a
complete list is given in Section F.

PROBLEM DATA CONVERSION

Two classes of conversion can be performed
on problem data: !YEe conversion and
arithmetic conversion.

Type conversions are those that take
place between the four different types of
problem data, namely:

character-string - data with the CHARACTER
attribute

bit-string - data with the BIT attribute

numeric character - data with a PICTURE
attritute that contains neither
of the picture characters A and
X.

coded arithmetic - data with FIXED or
FLOAT, DECIMAL or BINARY, REAL or
~OMPLEX, and precision
attributes.

(Strictly, numeric character data is merely
a particular case of arithmetic data, but
for the purpose of presenting the
conversion rules, it is regarded as a
separate type of representation.)

Chapter 4: Expressions and Data Conversion 43

Arithmetic conversions are those that
occur within the coded arithmetic form -
conversions between fixed-point and
floating-point scales, decimal and binary
bases, and real and complex modes, and
conversions of precision.

An example of type conversion is a bit
string being converted to coded arithmetic
representation during the evaluation of an
arithmetic expression. The bit string is
interpreted as an unsigned binary integer,
as if it had the attributes FIXED
BINARY(31,O) REAL, with a value equal to
the positive binary value represented by
the bit pattern in the string. If the
current length of the string is greater
than 31, excess bits on the left-hand end
of the string are ignored.

An example of arithmetic conversion is
an item being converted from fixed-point
decimal representation to floating-point
binary representation, both in real mode,
during the evaluation of an arithmetic
expression. The item retains the same
value but the scale on which it is
represented is changed from decimal to
binary and its base is changed from
fixed-point to floating-point. Also, the
value of the precision attribute is
increased by a factor of 3.32, because 3.32
times as many binary integers are required
to repre~ent a given value as decimal
integers. The precision is rounded up to
an integer after being multiplied by 3.32.

LOCATOR DATA CONVERSION

The only type of program control data that
may be converted during evaluation of
expressions, and execution of assignment
statements, is "locator data, that is, data
with the OFFSET or POINTER attributes.
During the evaluation of an expression
(locator data may be included in comparison
operations using the = and ~= comparison
operators), only offset to pointer'
conversion may occur. During an
assignment, conversion from offset to
pointer and from pOinter to offset may
occur.

USE OF BUILT-IN FUNCTIONS

As well as allowing conversions to take
place during expression evaluation and on
assignment, the programmer may initiate
conversions when he requires them by means
of PL/I built-in functions. (The concept
of a built-in function is explained in
chapter 9, "Subroutines and Functions," and

44

detailed descriptions of the functions are
given in section G, "Built-in Functions and
pseudovariat1es.")

The functions are:

CHAR
BIT
FIXED
FLOAT
DECIMAL
BINARY

Each function converts data to the
attritute implied by its name. It will
perform any type and arithmetic conversions
that may be required. In addition to these
functions, there are the COMPLEX built-in
function, which converts two real arguments
to a single complex value, and the functj.on
REAL, which extracts the real part of a
complex value.

In the case of BIT and CHAR built-in
functions" the programmer may specify the
length attribute of the resultant string,
and in the case of FIXED, FLOAT, DECIMAL,
and BINARY, he may specify the precision of
the result.

The precision of a data item may be
controlled by means of the PRECISION
built-in function.

Conversion between pointer and offset
types may be initiated ty the programmer
using the OFFSET and POINTER built-in
functions.

Most of the conversions performed by
these built-in functions could equally
readily be achieved by assignment to a PL/I
variable having the required attributes
(with the exception of the conversions
performed by the COMPLEX built-in
function). The programmer may, however,
find the use of a built-in function more
convenient than the creation of a variable
solely for the purpose of carrying out a
conversion.

Expression Operations

An operational expression can specify one
or more single operations. The class of
operation is dependent upon the class of
operator specified for the operation.
There are four classes of operations -
arithmetic, tit-string, comparison, and
concatenation.

ARITHMETIC OPERATIONS

An arithmetic operation is one that is
specified by combining operands with one of
the following operators:

+ • / ••

The plus lsign and the minus sign can appear
either as Erefix operators (associated with
and preceding a single operand, such as +A
or -A) or as infix operators (associated
with and between two operands, such as A+B
or A-B). All other arithmetic operators
can appear only as infix operators.

An expression of greater complexity can
be composed of a set of such arithmetic
operations. Note that prefix operators can
precede and be associated with any.of the
operands of an infix operation. For
example, in the expression A.-B~ the minus
sign preceding the variable B indicates
that the value of A is to be multiplied by
-1 times the value of B.

More than one prefix operator can
precede and be associated with a single
variable. More than one positive prefix
operator will have no cumUlative effect,
but two consecutive negative prefix
operators will have the same effect as a
single positive prefix operator.

Results of Arithmetic Operations

After any necessary conversion of the
operands in an expression has been carried
out, the arithmetic operation is performed
and a result is obtained. This result may
be the value of the expression or it may be
an intermediate result upon which further
operations eire to be performed.

Consider the expression

A • B + C

The operati()n A • B is performed first, to
gi ve an intEarmediate result. Then the
value of thEa expression is obtained by
performing t~he operation (intermediate
result) + C ..

The intermediate result is held in a
temporary location designated by the
compiler. It has attributes in the same
way as any ,rariable in a PL/I pJ;ogram.
What attributes the result has depends on
the attributes of the two operands (or the
single operand in the case of a prefix
operation) and on the operator involved.
This dependence is further explained under
"Attributes of Targets" later in this
chapter.

An intermediate result may undergo
convtrsion if a further operation is to be
performed, and the value of an expression
may be converted if it is assigned. These
conversions follow exactly the same rules
as the conversion of programmer-defined
data.

0Eerations using Built-in Functions

There are three built-in functions in PL/I
that allow the programmer to override the
implementation precision rules for
addition, subtraction, multiplication, and
division operations. (The concept of a
built-in function is explained in chapter
9, "Subroutines and Functions," and the
functions are described in detail in
section G, "Built-in functions and
pseudovariables.")

The functions are ADD, MULTIPLY, and
DIVIDE. ADD may be used for subtraction
simply by prefixing the operand to be
subtracted with a minus sign. In using
these functions, two operands are
specified~ together with the precision of
the result. The base, scale, and mode of
the result are as defined by the rules for
conversion in the evaluation of
expressions.

BIT-STRING OPERATIONS

A bit-string operation is one that is
specified by combining operands with one of
the following operators:

"" & I

The first operator, the "not" symbol, can
be used as a prefix operator only. The
second and third operators, the "and"
symbol and the "or" symbOl, can be used as
infix operators only. (The operators have
the same function as in Boolean algebra.)

Operands of a bit-string operation are,
if necessary, converted to bit strings
before the operation is performed. If the
operands of an infix operation are of
unequal current length, the shorter is
extended on the right with zeros.

The result of a bit-string operation is
a bit string equal in length to the current
length of the operands (the two operands,
after conversion, are always the same
length). .

Bit-string operations are performed on a
bit-by-bit basis. The effect of the "not"

Chapter 4: Expressions and Data Conversion 45

operation is bit reversal: that is, the
result of ~1 is 0: the result of ~O is 1.
The result of an "and" operation is 1 only
if both corresponding bits are 1;
otherwise, the result is O. The result of
an 'or' operation is 1 unless both operands
are zero, in which case it is O. The
following table illustrates the result for
each bit position for each of the
operators:
r------T------TT------T------T------T-----' I A I B II ~A I ~B I A&B I AlB I
~------+------++------+-~----+------+-----~
I I II I I I I
I 1 I 1 II 0 I 0 I 1 I 1 I
~------+------++----- +--,----+------+-----~
I I II I I I I
I 1 I 0 II 0 I 1 I 0 I 1 I
~------+------++------+------+------+-----~
I I II I I I I
I 0 I 1 II 1 I 0 I 0 I 1 I
~------+------++------+------+------+-----i
I, I II I I I I
I 0 I 0 II 1 I 1 I 0 I 0 I L ______ ~ ______ ~~ ______ ~ ______ ~ ______ ~ _____ J

More than one bit-string operation can
be combined in a single expression that
yields a bit-string value.

In the following examples, if the value
of operand A is '010111'B, the value of
operand B is '111111'B, and the value of
operand C is '110'B, then:

~ A yields '101000'B

~ C yields '00 l' B

C & B yields '110000'B

A B yields '111111'B

C B yields '111111'B

A I (~C) yields '011111'B

~«~C) I (~B» yields '110111'B

Boolean Built-in Functio~

In addition to the "not", "and" and "or"
operations using the operators ~,& and I,
Boolean operations may be performed using
the BOOL built-in function. The concept of
a built-in function is described in chapter
9, "Subroutines and Functions," and the
function is described in detail in section
G, "Built-in Functions and
Pseudovariables."

46

COMPARISON OPERATIONS

,A comparison operation is one that is
specified by combining operands with one of
the following operators.

< ,< <= = ,= >= > ,>

These operators specify "less than", "not
less than", "less than or equal to", "equal
to", "not equal to", "greater than or equal
to", "greater than", and "not greater
than".

There are four types of comparisons:

1. Algebraic, which involves the
comparison of signed arithmetic values
in internal coded arithmetic form. If
operands differ in base, scale,
precision, or mode, they are converted
according to the rules for arithmetic
operations. Numeric character data is
converted to coded arithmetic before
comparison. Only the operators = and
~= are valid for comparison of complex
operands.

2. Character, which involves
left-to-right, character-by-character
comparisons of characters according to
the collating sequence.

3. Bit, which involves left-to-right,
bit-by-bit comparison of binary
digits.

4. Program control data, which involves
comparison of the internal coded forms
of the operands. Only the comparison
operators = and ~= are permitted: area
variables cannot be compared. The
only conversion that can take place is
offset to pointer; all other type
differences between operands for
program control data comparisons are
in error.

If the operands of a problem data
comparison are not immediately compatible
(that is, if their data types are
apprcpriate to different types of
comparison), the operand of the lower
precedence is converted to conform to the
comparison type of the other •. The
precedence of comparison types is (1)
algebraic (highest), (2) character, (3)
'bit. Thus, for example, if a bit string
were to be compared with a fixed decimal
value, the bit string would be converted to
fixed binary for algebraic comparison with
the decimal value (which would also be
converted to fixed binary). In the
comparison of strings of unequal lengths,
,the shorter string is padded on the right
with blanks (in a character comparison) or
'O'B (in a bit comparison).

The result of a comparison operation
always is a bit string of length one; the
value is "'B if the relationship is true,
or loeB if the relationship is fals~.

The mos1~c::ommon occurrences of
comparison operations are in the IF
statement, of the following format:

IF A :: 13

THEN actio~-if-true

ELSE action-if-false

The evaluati(:>n of the expression A = B
yields either '1'B or loeB. Depending upon
the value, either the THEN portion or the
ELSE portion of the IF statement is
executed.

Comparison operations need not be
limited to IF statements, however. The
following assignment statement could be
valid:

x = A < B;

In this example, the value '1'B would be
assigned to X if A is less than B;
otherwise, the value loeB would be
assigned. In the same way, the following
assignment s11:.atement could be valid:

x = A = Bi

The first symbol (=) is the assignment
symbol; the second (=) is the comparison
operator. If A is equal to B, the value of
X will be ·1'B; if A is not equal to B, the
value of X will be loeB.

CONCATENATION OPERATIONS

A concatenation operation is one that is
specified by combining operands with the
concatenation symbol:

II

It signifies that the operands are to be
joined in such a way that the last
character or bit of the operand to the left
will immedia'tely precede the first
character or bit of the operand to the
right, with no intervening bits or
characters.

The concatenation operator can cause
conversion to string type since
concatenation can be performed only upon
strings, either character strings or bit
strings. If either operand is character or
decimal, any necessary conversions are
performed -to produce a character-string

result. Otherwise if the operands are bit
and binary, or toth binary, conversions are
performed to produce a bit-string result.

The results of concatenation operations
are as follows:

Bit String: A bit string whose length is
equal to the sum of the lengths of the two
bit-string operands.

Character string: A character string whose
length is equal to the sum of the lengths
of the two character-string operands.

If an operand requires conversion for
the concatenation operation, the result is
dependent upon the length of the character
string to which the operand is converted.
For example, if A has the attributes and
value of the constant '010111'B~ B of the
constant '101'B, C of the constant 'XY,Z',
and 0 of the constant 'AA/BB'~ then

AIIB yields '010111101~B

AI IAIIB yields '010111010111101'B

CliO yields 'Xy,ZAA/BB'

01 IC yields 'AA/BBXY,Z'

BIID yields '101AA/BB'

Note that, in the last example, the tit
string '101'B is converted to the character
string '101' before the concatenation is
performed. The result is a character
string consisting of eight characters.

COMBINATIONS OF OPERATIONS

Different types of operations can te
combined within the same oFerational
expression. Any combination can be used.
For example, the eXFression shown in the
following assignment statement is valid:

RESULT = A + B < C & D;

Each operation within the expression is
evaluated according to the rules for that
kind of operation, with necessary data
conversions taking place before the
operation is performed.

Assume that the variables given atove
are declared as follows:

DECLARE RESULT BIT(3),
A FIXED DECIMAL(1),
B FIXED BINARY (3),
C CHARACTER(2)i D BIT(4);

Chapter 4: Expressions and Data Conversion 47

• The decimal value of A would be
converted to binary base.

• The binary addition would be performed,
adding A and B.

• The binary result would be compared
with the converted binary value of C.

• The bit-string result of the comparison
would be extended to the length of the
bit string D, and the "and" operation
would be performed.

• The result of the "and" operation, a
bit string of length 4, would be
assigned to RESULT without conversion,
but with truncation on the right.

The expression in this example is
described as being evaluated
operation-by-operation, from left to right.
such would be the case for this particular
expression. The order of evaluation,
however, depends upon the priority of the
operators appearing in the expression.

priority of Operators

In the evaluation of expressions, priority
of the operators is as follows:

•• prefix+ . /
infix+ infix­
II

prefix-

< ~< <= = ~= >=
&

I

>

(highest)
I
I
I
I
V

(lowest)

If two or more operators of the highest
priority appear in the same expression, the
order of evaluation of those operators is
from right to left; that is, the rightmost
exponentiation or prefix operator is
evaluated first. Each succeeding
exponentiation or prefix operator to the
left has the next highest priority.

For all other operators, if two or more
operators of the same priority appear in
the same expression, the order or priority
of those operators is from left to right.

Note that the order of evaluation of the
expression in the assignment statement:

RESULT = A + B < C & D;

is the result of the priority of the
operators. It is as if various elements of
the expression were enclosed in parentheses
as follows:

48

(A) + (B)
(A + B) < (C)
(EA + B) < C) & (D)

The order of evaluation (and,
consequently, the .resul t) of an expression
can be changed through the use of
parentheses. The acove expression, for
example, might be changed as follows:

(A + B) < (C & D)

The order of evaluation of this
expression would yield a bit string of
length one, the result of the comparison
operation. In such an expression, those
expressions enclosed in parentheses are
evaluated first, to be reduced to a single
value, before they are considered in
relation to surrounding operators. Within
the language, however, no rules specify
which of two parenthesized expressions,
such as those in the acove example, would
be evaluated first.

The value of A would be converted to
fixed-point binary, and the addition would
be performed, yielding a fixed-point binary
result (result 1). The value of C would be
converted to a-bit string (if valid for
such conversion) and the "and" operation
would be performed.

At this point, the expression would have
been reduced to:

result_1 < result_2

result_2 would ce converted to binary, and
the algebraic comparison would be
performed, yielding the bit-string result
of the entire expression.

The priority of operators is defined
only within operands (or sub-operands). It
does not necessarily hold true for an
entire expression. Consider the following
example:

A + (B < C) & (D II E •• F)

The priority of the operators specifies, in
this case, only that the exponentiation
will occur cefore the concatenation. It
does not specify the order of the operation
in relation to the evaluation of the other
operand (A + (B < C».

Any operational expression (except a
prefix expression) must eventually ce
reduced to a single infix operation. The
operands and operator of that operation
determine the attributes of the result of
the entire expression. For instance, in
the first example of combining operations
(which contains no parentheses), the "and"
operator is the operator of the final infix
operation; in this case, the result of

evaluation of the expression is a bit
string of length 4. In the second example
(because of the use of parentheses), the
operator of t.he final infix operation is
the comparisQ1n operator, and the evaluation
yields a bit string of length 1.

In general, unless parentheses are used
within the expression, the operator of
lowest priority determines the operands of
the final operation. For example:

A + B ** 3 II C * D - E

In this case, the concatenation operator
indicates that the final operation will be:

(A + B ** 3) II (C * D - E)

The evaluation will yield a
character-string result.

subexpressions can be analyzed in the
same way. 'rhe two operands of the
expression can be defined as follows:

A + (B ** 3)

(C * D) .• E

Function RefE~rence Operands

An operand of an expression can be a
constant, an element variable, an array
variable, or a structure variable. An
operand can also be an expression that
represents a value that is the result of a
comput~tion., c:ls shown in the following
assignment statement:

A = B * SQRT(C);

In this example, the expression SQRT(C)
represents a value that is equal to the
square root of the value of C. Such an
expression is called a function reference.

A function reference consists of a name
and, usually, a parenthesized list of one
or more variables, constants, or other
expressions., The name is the name of a
block of code written to perform specific
computations upon the data represented by
the list and t:.o substitute the computed
value in place of the function reference.

Assume, in the above example, that C has
the value 16. The function reference
SQRT(C) causes execution of the code that
would compute the square root of 16 and
replace the function reference with the
value 4. In effect, the assignment
statement would become:

A = B * 4;

The code represented by the name in the
function reference is called a function.
The function SQRT is one of the PI/I
built-in functions. Built-in functions,
which provide a number of different
operations, are a part of the PI·/I
language. A complete discussion of each
appears in section G, "Built-in Functions
and Pseudovariables." In addition, a
programmer may write functions for other
purposes (as described in chapter 9,
"Subroutines and Functions"), and the names
of those functions can be used in function
references.

The use of a function reference is not
limited to operands of operational
expressions. A function reference is, in
itself, an expression and can be used
wherever an expression is allowed. In
general, it cannot be used in those cases
where a variable represents a receiving
field, such as to the left of an assignment
symbol.

There are, however, several built-in
functions that can be used as
Eseudovariables. A pseudovariable is a
built-in function name that is used in a
receiving field. Consider the following
example:

DECLARE A CHARACTER(10),
B CHARACTER(30);

SUBSTR(A,6,S) = SUBSTR(B,20,S);

In this assignment statement, the SUBSTR
built-in function nam.e is used both in a
normal function reference and as a
pseudovariable.

The SUBSTR built-in function extracts a
substring of specified length from the
named string. As a pseudovariable, it
indicates the location, within a named
string, that is the receiving field.

In the above example, a substring five
characters in length, beginning with
character 20 of the string B, is to be
assigned to the last five characters of the
string A. That is, the last five
characters of A are to be replaced by
characters 20 through 24 of B. The first
five characters of A remain unchanged, as
do all of the characters of B.

All the built-in functions that can be
used as. pseudovariables are discussed in
section G, "Built-in Functions and
Pseudovariables." No programmer-written
function can be used as a pseudovariable.

Chapter 4: Expressions and Data Conversion 49

Attributes of Targets

The target of a conversion or expression
operation is the receiving field to which
the result of the conversion or operation
is assigned. This section deals with the
principles of determining attributes of
such targets. Detailed rules are given in
section F, "Data Conversion and Expression
Evaluation."

In the case of a direct assignment, such
as the statement

A = Bi

in which conversion must take place, then
the target is the variable on the left of
the assignment symbol (in this case A).
However, during the evaluation of an
expression, targets are frequently
temporary storage locations created by the
compiler.

Consider the following example:

DECLARE A CHARACTER(S),
B FIXED DECIMAL(3,2),
C FIXED BINARY(10)i

A = B + C;

During the evaluation of the expression B+C
and during the assignment of that result,
there are four different targets, as
follows:

1. The compiler-created temporary to
which the converted binary equivalent
of B is assigned.

2. The compiler-created temporary to
which the binary result of the
addition is assigned.

3. The compiler-created temporary to
which the converted decimal
fixed-point equivalent of the binary
result is assigned.

4. A, the final destination of the
result, to which the converted
character-string equivalent of the
decimal fixed-point representation of
the value is assigned.

The attributes of the first target are
determined from the attributes of the
source (B), from the operator, and from the
attributes of the other operand (if one
operand of an arithmetic infix operator is
binary, the other is converted to binary
before evaluation). The attributes of the
second target are determined from the
attributes of the source (C and the
converted representation of B). The
attributes of the third target are

50

determined in part from the source (the
second target) and in part from the
attributes of the eventual target (A).
(The only attribute determined from the
eventual target is DECIMAL, since a binary
arithmetic representation must be converted
to decimal representation before it can be
converted to a character string.) The
attributes of the fourth target (A) are
known from the DECLARE statement.

When an expression is evaluated, the
target attributes usually are partly
derived from the source, partly from the
operation being performed, and partly from
the attributes of a second operand. Some
assumptions may be made, and some
implementation restrictions (for example,
maximum precision) and conventions exist.
After an expression is evaluated, the
result may be further converted. In this
case, the target attributes usually are
independent of the source.

A conversion always involves a source
data item and a target data item, that is,
the original representation of the value
and the converted representation of the
value. All of the attributes of both the
source data item and the target data item
are known, or supplied by default, at
compile time.

It is possible for a conversion to
involve intermediate results whose
attributes may depend upon the source
value. For example, conversion from
character string to arithmetic may require
an intermediate conversion and, thus, an
intermediate result, before final
conversion is completed. The final target
attributes in such cases, however~ are
always determined from the source data item
and are independent of the values of
variables.

It should be realized that constants
also have attributes: the constant 1.0 is
different from the constants 1, '1'B, '1',
1B, or 1EO. Under the optimizing compiler,
constants may be converted at compile time
as well as at execution time, but in all
cases, the rules are the same.

Array Expressions

An array expression is a single array
variable or an expression that includes at
least one array operand. Array expressions
may also include operators (both prefix and
infix), element variables, and constants.

Evaluation of an array expression yields
an array result. All operations performed
on arrays are performed on an

element-by-element basis, in row-major
order. Therefore, all arrays referred to
in an array expression must have the same
number of dimensions, and each dimension
must be of identical bounds.

Although comparison operators are valid
for use with array operands~ an array
operand cannot appear in the IF clause of
an IF stateml3nt. Only an element
expression is valid in the IF clause, since
the IF statement tests a single true or
false result. However, the equality of two
arrays of string data can be tested by
using the STRING built· in function and
pseudovariable to produce two element
values. For example~

DECLARE (A,B) (10) CHAR(5);

IF STRING(A) = STRING(B) THEN •••

~ Array expressions are not generally
expressions of conventional matrix algebra.

PREFIX OPERATORS AND ARRAYS

The result of the operation of a prefix
operator on an array is an array of
identical bonnds, each element of which is
the result of the operation having been
performed upon each element of the original
array. For example:

If A is the array 5 3 -9

1 2 7

6 3 -4

then -A is the array -5 -3 9

-1 -2 -7

-6 -3 4

INFIX OPERATORS AND ARRAYS

Infix operations that include an array
variable as one operand may have an
element, another array, or a structure as
the other operand.

The result of an operation in which an
element and an array are connected by an

infix operator is an array with bounds
identical to the original array, each
element of which is the result of the
operation performed upon the corresponding
element of the original array and the
single element. For example:

If A is the array 5 10 8

12 11 3

then A*3 is the array 15 30 24

36 33 9

The element of an array-element
operation can be an element of the same
array_ For example, the expression
A*A(2,3) would give the same result in the
case of the array A above, since the value
of A(2,3) is 3.

Consider the following assignment
statement:

A = A * A(1,2);
Again, using the above values for A, the
newly assigned value of A would be:

50 100 800

1200 1100 300

Note that the original value for A(1,2),
which is 10, is used in the evaluation for
only the first two elements of A •. Since
the result of the expression is assigned to
A, changing the value of A, the new value
of A(1,2) is used for all subsequent
operations. The first two elements are
multiplied by 10, the original value of
A(1,2); all other elements are multiplied
by 100~ the new value of A(1,2).

Array-and-array Operations

If two arrays are connected by an infix
operator, the two arrays must be of
identical bounds. The result is an array
with bounds identical to those of the
original arrays; the operation is performed
upon the corresponding elements of the two
original arrays.

Note that the arrays must have the same
number of dimensions, and corresponding
dimensions must have identical lower bounds
and identical upper bounds. For example,
the bounds of an array declared X(10,6) are
not identical to the bounds of an array
declared Y(2:11,3:8) although the extents
are the same for corresponding dimensions,
and the number of elements is the same.

Chapter 4: Expressions and Data Conversion 51

Examples of array infix expressions are:

If A is the array

and if B is the array

then A+B is the array

and A*B is the array

2

6

4

1

8

6

3

14

10

2

48

24

Array-and-structure Operations

4 3

7

8 2

5 7

3 4

3

9 10

4 11

11 3

20 21

3 28

24 2

The result of an operation in which an
array and structure are connected by an
infix operator is an array of structures
with bounds identical to the array and
structuring identical to the structure.

For example, given the following
declaration:

DECLARE 1 A, 2 B, 2 C,
X(2),
Y(2) LIKE A;

the assignment statement:

Y = X + A;

is valid. This is equivalent to:

Y.B(1) = X(1) +
Y.C(l) = X(1) +
Y.B(2) = X(2) +
Y.C(2) = X(2) +

A.B;
A.C;
A.B;
A.C;

If the structure has a dimension attribute
on the level 1 name, the operation becomes
an array-and-array operation. If the array
elements are structures, the rules about
·identical structuring given under
"structure Expressions" apply to the array
elements and the structure.

52

Data Conversion in Array Expressions

The examples in this discussion of array
expressions have shown only single
arithmetic operations. The rules for
combining operations and for data
conversion of operands are the same as
those for element operations.

Structure Expressions

A structure expression is a single
structure variable or an expression that
includes at least one structure operand and
does not contain an array operand. Element
variables and constants can be operands of
a structure expression. Evaluation of a
structure expression yields a structure
result. A structure operand can be a major
structure name or a minor structure name.

Although comparison operators are valid
for use with structure operands, a
structure operand cannot appear in the IF
clause of an IF statement. Only an element
expression is valid in the IF clause, since
the IF statement tests a single true or
false result.

All operations performed on structures
are performed on an element-by-element
basis. Except in a BY NAME assignment (see
below), all structure variables appearing
in a structure expression must have
identical structuring.

Identical structuring means that the
structures must have the same minor
structuring and the same number of
contained elements and arrays and that the
positioning of the elements and arrays
within the.structure (and within the minor
structures if any) must be the same.
Arrays in corresponding positions must have
identical bounds. Names do not have to be
the same. Data types of corresponding
elements do not have to be the same, so
long as valid conversion can be performed.

PREFIX OPERATORS AND STRUCTURES

The result of the operation of a prefix
operator on a structure is a structure of
identical structuring, each element of
which·is the result of the operation having
been performed upon each element of the
original structure.

~ since structures may contain.
elements of many different data types, a
prefix operation in a structure expression

would be mea.ningless unless the operation
can be validly performed upon every element
represented by the structure variable~
which is eit,her a major structure name or a
minor structure name.

INFIX OPERATORS AND STRUCTURES

Infix operations that include a structure
variable as one operand may have an element
or another structure as the other operand.

Structure operands in a structure
expression need not be major structure
names. A minor structure name, at any
level, is a structure variable. Thus, if
M.N is a minor structure in the major
structure M" the following is a structure
expression:

M.N & '1010'B

Structure-and-element Operations

When an oFeration has one structure and one
element operand, it is the same as a series
of operations, one for each element in the
structure. Each sub-operation involves a
structure element and the single element.

Consider the following structure:

1 ,~,

2 B,
3 C,
3 0,
3 E,

:2F,
3 G,
3 H,
3 I;

If X is an element variable, then A • X is
equivalent to:

A.C • X
A.D. X
A.:e: • X
A.(; • X
A.H • X
A.I • X

Structure-and-structure Operations

When an operation has two structure
operands, it is the same as a series of
element oper,ations, one for each
corresponding pair of elements. For
example, if A is the structure shown in the

previous example and if M is the following
structure:

then A

1 M,
2 N,

3 0,
3 P,
3 Q,

2 R,

II M

A.C
A.D
A.E
A.G
A.H
A.I

3 S,
3 T,
3 U;

is equivalent

II M.O
II M.P
II M.Q
II M.S
II M.T
II M.U

to:

Structure Assignment BY NAME

One exception to the ,rule that operands of
a structure expression must have the same
structuring is the case in which the
structure expression aFpears in an
assignment statement with the BY NAME
option.'

The BY'NAME appears at the end of a
structure assignment statement and is
preceded by a comma. Examples are shown
below.

consider the following structures and
assignment statements:

lONE,
2 PART 1 ,

3 RED,
3 ORANGE,

2 PART2,
3 YELLOW,
3 BLUE,
3 GREEN;

1 TWO,
2 PARTl,

3 BLUE,
3 GREEN,
3 RED,

2 PART2,
3 BROWN,
3 YELLOW;

ONE = TWO, BY NAME;

1 THREE,
2 PART1,

3 RED,
3 BLUE,
3 BROWN,

2 PART2,
3 YELLCW,
3 GREEN;

ONE.PARTl = THREE.PART1, BY NA~E;
ONE = TWO + THREE, BY NAME;

The first assignment statement would ce the
same as the following:

ONE.PART1.RED = TWO.PART1.RED;

ONE.PART2.YELLOW = TWO.PART2.YELLOWi

The second assignment statement would be
the same as the following:

ONE. PART 1 • RED = THREE. PART 1.. RED i

Chapter 4: Expressions and Data Conversion 53

The third assignment statement would be the
same as the following:

ONE.PART1.RED = TWO.PART1.RED
+ THREE.PART1.RED;

ONE.PART2.YELLOW = TWO.PART2.YELLOW
+THREE.PART2.YELLOW;

The BY NAME option can appear in an
assignment statement only. It indicates
that assignment of elements of a structure
is to be made only for those elements whose
names are common to both structures.
Except for the highest-level qualifier
specified in the assignment statement, all
qualifying names must be identical.

If an operational expression appears in
an assignment statement with the BY NAME
option, o~eration and assignment are
performed only upon those elements whose
names have been declared in each of the
structures. In the third assignment
statement above, no operation is performed
upon ONE.PART2.GREEN and THREE.PART2.GREEN,
because GREEN does not appear as an
elementary name in PART2 of TWO.

Exceptional Conditions

Three PL/I exceptional conditions may be
raised during conversion of data: SIZE,
CONVERSION, and STRINGSIZE. (The concept
of a condition is explained in chapter 14,
"Exceptional Condition Handling and Program
Checkout," and the conditions are described
in detail in section H, nOn-Conditions. n)

The SIZE condition is raised when
significant digits are lost from the
left-hand side of an arithmetic value.
This can occur during conversion within an
expression, or upon assigning the result of
an expression. It is not raised in
conversion to character string or bit
string even if the value is truncated. It
is raised on conversion to E or F format in

54

edit-directed output if the field width
specified will not hold the converted value
of the list item. The SIZE condition is
normally disabled, so an interrupt will
occur only if the condition is raised
within the scope of a SIZE prefix (except
that" under the checkout compiler, standard
system action takes place whether or not
the condition is enabled).

The CONVERSION condition is raised when
the source field contains a character that
is invalid for the conversion being
performed. For example, CONVERSION would
be raised if a character string being
converted to arithmetic contains any
character other than those allowed in
arithmetic constants, or if a character
string that is being converted to bit
contains any character other than 0 and 1.
Each invalid character raises the
CONVERSION condition once~ so a single
conversion operation causes several
interru~ts if more than one invalid
character is encountered. The CONVERSION
condition is normally enabled, so when the
condition is raised, an interrupt will
occur. It can be disabled by a
NOCONVERSION prefix, in which case an
interrupt will not occur when the condition
is raised.

The STRINGSIZE condition is raised when
a character or bit string is assigned to a
target that is too small to accommodate it.
Characters or bits are truncated from the
right-hand end of the string so as to match
the length of the target. The STRINGSIZE
condition is normally disabled, so'that an
interrupt will occur only within the scope
of a STRINGSIZE condition prefix.

These three conditions may be raised
also during the evaluation of an
expression. In addition, four other
conditions may be raised: FIXEDOVERFLOW,
OVERFLOW, UNDERFLOW, and ZERODIVIDE. Note
that FIXEDOVERFLOW and OVERFLOW are raised
when the implementation-defined maximum
precisions are exceeded, not when the
declared precision of a target is exceeded.

This chapter classifies statements
according t() their functions. statements
in each fun<:tional class are listed, the
purpose of: E~ach statement is described, and
examples of their use are shown.

A detai.lE~d description of each statement
is not included in this chapter but may be
found in section J, "Statements."

Classes of S'tatements

Statements can be grouped into the
following classes:

Descriptive

Input/output

Data Movement and Computational

Program Organization

Storage: Control

Control

Exception Control

Preprocessor

Diagnostic

The names of the classes have been chosen
for descriptive purposes only; apart from
preprocessor statements they have no
fundamental significance in the language.
A statemen't may be included in more than
one class, since it can have more than one
function.

DESCRIPTIVE STATEMENTS

When a PL/I program is executed, it may
manipulate many different kinds of data.
Each data item, except an arithmetic or
string constant, is referred to in the
program by a name. The PL/I language
requires that the properties (or
attributes) of data items referred to must
be known at the time the program is
compiled. There are a few exceptions to
this rule; fl::>r non-STATIC items, the bounds
of the dimen:sions of arrays, the lengths of
strings, area sizes, initial values, and
some file attributes may be determined
during execution of the program.

Chapter S: Statement Classification

DECLARE and DEFAULT Statements

The DECLARE statement is the principal
means of specifying the attributes of a
name. A name used in a program need not
always appear in a DECLARE statement; its
attributes often can be determined by
con~ext. If the attributes are not
explicitly declared and cannot be
determined by context, default rules are
applied. Default rules are either the
standard default rules defined for the
compilers or those defined by the
programmer for a particular program using
the DEFAULT statement. The combination of
default rules and context determination can
make it unnecessary, in some cases, to use
a DECLARE statement.

The DEFAULT statement gives the
programmer control over attributes which
are applied by default, for the following:

explicitly declared identifiers

contextually declared identifiers

implicitly declared identifiers

descriptors in the ENTRY attribute

values returned by internal procedures

I DECLARE statements may also be an
important part of the documentation of a
program; consequently, programmers may make
liberal use of declarations, even when
default attributes apply or when a
contextual declaration is possible.
Because there are no restrictions on the
number of DECLARE statements, different
DECLARE statements can be used for
different groups of names. This can make
modification easier and the interpretation
of diagnostics clearer.

othe~ Descriptive Statements

The OPEN statement allows certain
attributes to be specified for a file
constant and may, therefore, also be
classified as a descriptive statement.
Certain attributes can be specified in an
ALLOCATE statement for a controlled
variable. The FORMAT statement may be
thought of as describing the layout of data
on an external medium, such as on a page or
an input card.

Chapter 5: Statement Classification 55

INPUTIOUTPUT STATEMENTS

The principal statements of the
inputloutput class are those that actually
cause a transfer of data between internal
storage and an external medium. Other
inputloutput statements, which affect such
transfers, may be considered inputloutput
control statements.

Each of the inputloutput statements is
used with an associated FILE option to
identify a file. The file option specifies
a file expression which can be either a
file constant, a file variable, or a
function reference which returns a file
value.

In the following list, the statements
used when transferring data are grouped
into two subclasses, RECORD 1/0 and STREAM
1/0:

RECORD 1/0 Statements

READ

WRITE

REWRITE

LOCATE

DELETE

STREAM 1/0 Statements

GET

PUT

1/0 Control Statements

OPEN

CLOSE

UNLOCK

An allied statement, discussed with
these statements, is the DISPLAY statement.

There are two important differences
between STREAM transmission and RECORD
transmission. In STREAM transmission, each
data item is treated individually, whereas
RECORD transmission is concerned with
collections of data items (records) as a
whole. In STREAM transmission, each item
may be edited and converted as it is
transmitted; in RECORD transmission, the

I record on the external medium is generally
an exact copy of the record as it exists in
internal storage, with no editing or
conversion performed.

56

As a result of these differences, record
transmission is particularly applicable for
processing large files that are written in
an internal representation, such as in
binary or decimal. Stream transmission may
be used for processing keypunched data and
for producing readable output, where
editing is required.

Record Transmission Statements

The READ statement transmits records
directly into internal storage and makes
them available for processing. The WRITE
statement causes records to be transmitted
to the output device. The LOCATE statement
allocates storage for a variable within an
output buffer, setting a pointer to
indicate the location in the buffer, having
previously caused any record already
located in a buffer for this file to be
written out.

The REWRITE statement alters existing
records in an UPDATE file. The DELETE
statement deletes records in an UPDATE
file.

STREAM Transmission Statements

Only sequential files can be processed ~ith
the GET and PUT statements. Record
boundaries generally are ignored; data is
considered to be a stream of individual
data items, either coming from (GET) or
going to (PUT) the external medium.

The GET and PUT statements may transmit
a list of items in one of three modes:
data-directed, list-directed, or
edit-directed. In data-directed
transmission, the names of the data items,
as well as their values, are recorded on
the external medium. In list-directed
transmission, the data is recorded
externally as a list of constants,
separated by blanks or commas. In
edit-directed transmission, the data is
recorded externally as a string of
characters to be treated character by
character according to a format list.

Data-directed transmission is most
useful for reading a relatively small
number of values and for producing
self-annotated debugging output.
List-directed input is suitable for reading
in larger volumes of data punched in free
form. Edit-directed transmission is used
wherever format must be strictly
controlled, for example, in producing
reports and for reading cards punched in a
fixed format.

Note: The GET and PUT statements can also
~sed for internal data movement, by
specifying a string name in the STRING
option instead of specifying the FILE
option. Although the facility may be used
for movi.ng data to and from a buffer, it is
not actually a part of ·the input/output
operation.,

Input/Output. Control Statements

The OPEN statement associates a file name
with a data set and prepares the data set
for processing. It may also specify
additional clttributes for the file.

An OPEN statement need not always be
written. EJcecution of any input or output
transmission statement that specifies the
name of an unopened file will result in an
automatic opening of the file before the
data transmission takes place.

The OPEN statement may be used to
specify any file attribute except the
ENVIRONMENT attribute. For a PRINT file,
the length of each printed line and the
number of lines per page can be specified
only in an OPEN statement by the PAGESIZE
and LINESIZE options. The LINESIZE option
can be specified for a non-PRINT OUTPUT
file to determine the length of the
physical tlocks transmitted to a device.

I
The OPEN statement can also be used'to
specify a name (in the TITLE option) other
than a file name~ as a link between the
data set and the file.

The CLOSE statement dissociates a data
set from a file. All files are closed at
termination of a program, so a CLOSE
statement is not always required.

The UNLOCK statement releases, for use
by other tasks, a record which has
restricted access because it is associated
with an EXCLUSIVE file.

DISPLAY Statement

The DISPLAY statement is used to write
messages on the console, usually to the
operator. It may also be used, with the
REPLY option, to allow the operator to
communicate with the program by typing in a
code or a message. The REPLY option may be
used merely as a means of suspending
program execution until the operator
acknowledges the message.

DATA MOVEMENT AND COMPUTATIONAL STATEMENTS

Internal data movement involves the
assignment of the value of an expression to
a specified variable. The expression may
be a constant or a variable, or it may be
an expression that specifies computations
to b~ made.

The most commonly used statement for
internal data movement, as well as for
specifying computations, is the assignment
statement. The GET and PUT statements with
the STRING option can also be used for
internal data movement. The PUT statement
can, in addition, specify computations to
be made.

Assignment Statement

The assignment statement, which has no
keyword, is identified by the assignment
symbol (=). It generally takes one of the
two forms illustrated by the following
examples:

NTOT=TOT;

AV=(AV*NUM+TAV*TNUM)/(NUM+TNUM);

The first form can be used purely for
internal data movement. The value of the
variable (or constant) to the right of the
assignment symbol is to be assigned to the
variable to the left. The second form
includes an operational expression whose
value is to be assigned to the variable to
the left of the assignment symbol. The
second form specifies computations to be
made" as well as data movement.

Since the attributes of the variable on
the left may differ from the attributes of
the result of the expression (or of the
variable or constant), the assignment
statement can also be used for conversion
and editing.

The variable on the left may be the name
of an array 9r a structure; the expression
on the right may yield an array or
structure value. Thus the assignment
statement can be used to move aggregates of
data, as well as single items.

Multiple Assignment: The values of the
expression in an assignment statement can
be assigned to more than one variable in a
statement of the following form:

A,X = B + C;

Such a statement is executed in exactly the
same way as a single assignment, except

Chapter 5: Statement Classification 57

that the value of B + C is assigned to both
A and X. In general, it has the same
effect as if the following two statements
had been written:

A = B + C;

x = B + C;

~ If multiple assignment is used for a
structure assignment BY NAME, the
elementary names affected will be only

I those that are common to all of the
structures referred to in the statement.

PROGRAM ORGAN I ZATION STAT.EMENTS

The program organization statements are
those statements used to delimit sections
of a program into blocks and to manipulate
these blocks. These statements are the
PROCEDURE statement, the END statement, the
ENTRY statement, the BEGIN statement, the
FETCH statement, and the RELEASE statement.

Proper division of a program into blocks
simplifies the writing and testing of the
program, particularly when a number of
programmers are co-operating in writing a
single program. It may also result in more
efficient use of storage, since dynamic
storage of the automatic class is allocated
on entry to the block in which it is
declared.

PROCEDURE Statement

The principal function of a procedure
block, which is delimited by a PROCEDURE
statement and an associated END statement,
is to define a sequence of operations to be
performed upon specified data. This
sequence of operations is given a name (the
label of the PROCEDURE statement) and can
be invoked from any point at which the name
is known.

Every program must have at least one
PROCEDURE statement and one END statement.
A program may consist of a number of
separately written procedures linked
together. A procedure may also contain
other procedures nested within it. These
internal procedures may contain
declarations that are treated (unless
otherwise specified) as local definitions
of names. Such definitions are not known
outside their own block, and the names
cannot be referred to in the containing
procedure. storage associated with these
names is generally allocated upon entry to

58

the block in which such a name is defined,
and it is freed upon exit from the block.

The sequence of statements defined by a
procedure can be executed at any point at
which the procedure name is known. This
execution can be either synchronous (that
is, the execution of the invoking procedure
is suspended until control is returned to
it) or asynchronous (that is, execution of
the invoking procedure proceeds
concurrently with that of the invoked
procedure); for details of asynchronous
operation, see ~hapter 17, "Multitasking."
A procedure is invoked either by a CALL
statement or by the appearance of its name
in an expression, in which case the
procedure is called a function reference.
A function reference causes a value to be
calculated and returned to the function
reference for use in the evaluation of the
expression. A function procedure cannot be
executed asynchronously with the invoking
procedure.

Communication between two procedures is
by means of arguments passed from an
invoking proc~dure to the invoked
procedure, by a value returned from an
invoked procedure, and by names known
within both procedures. A procedure may
therefore operate upon different data when
it is invoked from different points. A
value is returned from a function procedure
to a function reference by means of the
RETURN statement.

ENTRY Statement

The ENTRY statement is used to provide an
alternative entry point to a procedure and,
possibly, an alternative parameter list to
which arguments can be passed,
corresponding to that entry point.

~ It is important to distinguish
between the ENTRY statement, which
specifies an entry to the procedure in
which it occurs, and the ENTRY attribute.
The ENTRY attribute is considered in
chapter 9, in "Subroutines and Functions."

BEGIN Statement

Local definitions of names can also be made
within begin blocks, which are delimited by
a BEGIN statement and an associated END
statement. The BEGIN and END statements
specify that the statements contained
between them are to be considered as an
entity for the purpose of flow of control.
Begin blocks are executed in the normal

flow of a program. One of the most common
uses of a begin block is as the on-unit of
an ON stat,ement, in which case it is not
executed t,hrough normal f low of cont~ol,
but only upon occurrence of the specified
condition. It is also useful for
delimiting a section of a program in which
some automatic ~torage is to be allocated.

Each begin block must be nested within a
procedure or another pegin block.

END Statement

The END statement is used to signify the
end of a block or group. Every block or
group must have an END statement. However,
the END :statement may be explicit or
implicit; a single END statement can be
applied to a number of nested blocks and
groups b:y the inclusion of the label of the
containing block or group after the keyword
END. The other END statements are then
implied by the one containing the label,
and need not be given explicitly. If no
label follows END, the statement applies to
only one group or block.

Execution of an END statement for a
block terminates the block. However, it is
iiOtthe only means of terminating a block,
even though each block must have an END
statemen'c. For example, a procedure can be
terminated by execution of a RETURN
statement (see "Control Statements").

The effect of execution of an END
statement for a group depends on whether or
not the 9rouP is iterative (see "Control
Statements"). If the group is iterative,
execution iQf the END statement causes
control to return to the beginning of the
group until all iterations are complete,
unless control is passed out of the group
before then. If the group is noniterative,
the END f:lt,atement merely delimits the group
(to enable the group to be treated as a
single unit in the logic of the program),
and control passes to the next statement.

FETCH an<i :RELEASE Statements

The FETCH :statement copies a procedure from
auxiliary storage into main storage so that
it may be invoked, for instance by a CALL
statement later in the program. The
RELEASE stiitement frees main storage thus
allocated. If a procedure's entry name
appears in a FETCH statement, then, even if

this FETCH statement is never executed, the
invoking statement will load the procedure
before attempting to initiate its
execution. Also, if the procedure's name
appears in a RELEASE statement, but there
is no FETCH statement in the invoking
procedure, invocation will cause the
loading of the invoked procedure.

STORAGE CONTROL STATEMENTS

As with many other conventions in PI/I, the
conventions concerning storage allocation
may be overridden by the programmer.
Storage ,for variables is generally given
the storage class AUTOMATIC by default,
which means that the storage remains
allocated from the time the procedure is
activated until it is terminated.
Alternatives to the AUTOMATIC attribute
that may be chosen by the programmer are
STATIC, in which case storage is allocated
for the duration of the entire program, and
CONTROLLED or BASED, in which case the
storage can be allocated to the variable
and freed under the control of the
programmer, using the ALLOCATE and FREE
statements.

ALLOC~TE and FREE Statements

The ALLOCATE statement is used to assign
storage to controlled and based data,
independent of procedure block boundaries.
The bounds of controlled arrays, the
lengths of controlled strings, and the size
of controlled areas, as well as their
initial values, may also be specified at
the time the ALLOCATE statement is
executed. The FREE statement is used to
free previously-allocated controlled and
based storage when it is no longer
required.

CONTROL STATEMENTS

Statements in a PL/I program, in general,
are executed sequentially unless the flow
of control is modified by the occurrence of

Chapter 5: Statement Classification 59

an interrupt or the execution of one of the
following control statements:

GO TO

IF

DO

CALL

RETURN

END

STOP

EXIT

HALT

GO TO statement

The GO TO statement is used as an
unconditional branch. If the destination
of the GO TO is specified by a label
variable, it may then be used as a switch
by assigning label constants, as values, to
the label variable.

If the label variable is subscripted,
the switch may be controlied by varying the
subscript. The destination of a GO TO
statement can also be specified by a
function reference that returns a label
value. By using label variables or
function references, quite subtle switching
can be effected. It is usually true,
however, that simple contr'ol statements are
the most efficient.

The keyword of the GO TO statement may
be written either as two words separated by
a blank or blanks, or as a single word,
GOTO.

IF statement

The IF statement provides the most common
conditional branch and is usually used with
a simple comparison expression following
the word IF. For example:

IF A = B

THEN action-if-true

ELSE action-if-false

I

A THEN or an ELSE clause consists of
either a single or compound statement, a
do-group (see "DO Statement" below), or a

60

begin block. If the comparison is true,
the THEN clause is executed. After
execution of the THEN clause, the ELSE
olause is not executed, and execution
continues with the next statement. Note
that the THEN clause can contain a GO TO
statement or some other control statement
that would result in a different transfer
of control.

If the comparison is false, only the
ELSE clause is executed. Control then
continues normally.

The IF statement might be as follows:

IF A = B

THEN C = D;

ELSE C = E;

If A is equal to B, the value of D is
assigned to C, and the ELSE clause is not
executed. If A is not equal to B, the THEN
clause is not executed, and the value of E
is assigned to C.

Either the THEN clause or the ELSE
clause can contain a control statement that
causes a branch, either conditional or
unconditional. If the THEN clause contains
a GO TO statement, for example, there is no
need to specify an ELSE clause. Consider
the following example:

IF A = B

THEN GO TO LABEL_1;

next-statement

If A is equal to B, the GO TO statement of
the THEN clause causes an unconditional
branch to LABEL_1. If A is not equal to B,
the THEN clause is not exec~ted and control
passes to the next statement, whether or
not it is an ELSE clause associated with
the IF statement.

Note: If the THEN clause does not cause a
tranSfer of control and if it is not
followed by an ELSE clause, the next
statement will be executed whether or not
the THEN clause is executed.

The expression following the IF keyword
can be only an element expression; it
cannot be an array or structure expression.
It can, however, be a logical expression
with more than one operator. For example:

IF A = B , C = D
THEN GO TO R;

The same kind of test could be made with
nested IF statements. The folrowing three
examples are equivalent:

Example 1:

IF 1~ =: B , C = 0
TH1!:N GO TO R;

B = B + 1;

Example 2:

IF A :: B
TH1!:N IF C = 0

THEN
B = B • 1 ;

Example 3:

GO

IF A ,,= B THEN GO

IF C '1 = 0 THEN GO
GO TO R;

S: B _. B + 1 ;

DO· Statement

TO R;

TO S;

TO S;

. The most c()mmon use of the DO statement is
to specify that a group of statements is to
be executed a stated number of times while
a control ,rariable is incremented each time
through the loop. Such a group might take
the form:

DO I _. 1 TO 1 0 ;

END;

The statements to be executed iteratively
must be delimited by the DO statement and
an associated END statement. In this case,
the group ()f statements will be executed
ten times, while the value of the control
variable I ranges from 1 through 10. The
effect of t:he DO and END statements would
be the same as the following:

I = 1;
A: IF I > 10 THEN GO TO B;

I I +1;
GO TO A;

B: next statement

Note that the increment is made before the
control variable is tested and that, in
general, ccmtrol goes to the statement
following the group only when the value of
the control variable exceeds the limit set
in the DO statement. If a reference is
made to a control variable after the last
iteration is completed, the value of the
variable will be one increment beyond the
specified limit.

The DO statement can also be used with
the WHILE option and no control variable,
as follows:

DO WHILE (A = B);

This statement, heading a group, causes the
group to be executed repeatedly so long as
the value of A remains equal to the value
of B.

The WHILE option can be combined with a
control variable of the form:

DO I = 1 TO 10 WHILE (A = B);

This statement specifies two tests. Each
time that I is incremented, a test is made
to see that I has not exceeded 10. An
additional test then is made to see that A
is equal to B. Only if both conditions are
satisfied will the statements of the group
be executed.

More than one specification can be
included in a single DO statement •
Consider each of the following DO
statements:

DO I = J,K;

DO I TO 10, 13 TO 15;

DO I = 1 TO 10, 11 WHILE (A = B);

The first statement specifies that the
DO-group is executed once only with the
value of I set equal to the value of J, and
once only with the value of I set equal to
the value of K.

The second statement specifies that the DO
group is to be executed a total of thirteen
times, ten times with the value of I equal
to 1 through 10, and three times with the
value of I equal to 13 through 15. The
third DO statement specifies that the group
is to be executed at least ten times, and
then (provided that A is equal to B) once
more; if "BY 0" were inserted after "11",
execution would continue with I set to 11
as long as A remained equal to B. Note
that in both statements a comma is used to
separate the two specifications. This
indicates that a succeeding specification
is to be considered only after the
preceding specification has been satisfied.

The control variatle of a DO statement
can be used as a subscript in statements
within the DO-group, so that each iteration
deals with successive elements of a tatle
or array. For example:

DO I = 1 TO 10i
A(I) = Ii
END;

Chapter 5: Statement Classification 61

In this example, the first ten elements of
A are set to 1,2, ••• ,10, respectively.

The increment in the iteration
specification is assumed to be one unless
some other value is stated, as follows:

DO I = 2 TO 10 BY 2;

This specifies that the loop is to be
executed five times, with the value of I
equal to 2, 4, 6, 8, and 10.

Noniterative DO statements

The DO statement need not specify repeated
execution of the statements of a do-group.
A simple DO statement, in conjunction with
a do-group, can be used as follows:

DO;

END;

The use of the simple DO statement in this
manner merely indicates that the do-group
is to be treated logically as a single
statement. It can be used to specify a
number of statements to be executed in the
THEN clause or the ELSE clause of an IF
statement, thus maintaining sequential
control without the use of a begin block.

CALL, RETURN, and END Statements

A subroutine may be invoked by a CALL
statement that names an ent.ry point of the
subroutine. When the multitasking
facilities are not in use, control is
returned to the activating, or invoking,
procedure when a RETURN statement is
executed in the subroutine or when
execution of the END statement terminates
the subroutine. If the CALL statement
contains one of the multitasking options,
TASK, EVENT, or PRIORITY, the subroutine is
executed as a subtask with its own separate
flow of control; in this case, the RETURN
or END statement merely terminates the
separate flow of control established for
the subtask. (See chapter 17,
"Multitasking.")

The RETURN statement with a
parenthesized expression is used in a

I, function procedure to return a value to a
function reference.

Normal termination of a program occurs
as the result of normal execution of the

62

final END statement of the main pr~cedure
or of a RETURN statement in the ma1n
procedure, either of which returns control
to the calling program, which may be the
operating system. Termination of a program
by any other method is abnormal.

STOP and EXIT Statements

The STOP and EXIT statements are both used
to cause abnormal termination. The STOP
statement terminates execution of the
entire program, including all concurrent
tasks. The EXIT statement terminates only
the task that executes it, together with
any attached tasks. (See chapter 17,
"Multitasking.")

HALT Statement

The HALT statement is effective only in
conversational processing; in batch
processing it is a null operation. When
included in a source program, it causes
program execution to be suspended and
control passed to the terminal.

EXCEPTION CONTROL STATEMENTS

The control statements, discussed in the
preceding section, alter the flow of
control whenever they are executed.
Another way in which the sequence of
execution can be altered is by the
occurrence of a program interrupt caused by
an exceptional condition that arises.

In general~ an exceptional condition is
the occurrence of an unexpected action,
such as an overflow error~ or of an
expected action, such as an end of file,
that occurs at an unpredictable time. A
detailed discussion of the handling of
these conditions appears in chapter 14,
"Exceptional Condition Handling and Program
Checkout."

The three exception control statements
are the ON statement, the REVERT statement,
and the SIGNAL statement.

ON Statement

Tne ON statement is used to specify action
to be taken when any subsequent occurrence
of a specified condition causes a program

, .. J
I.

interrupt. ON statements may specify
particular action for any of a number of
different conditions. For all of these
conditions, a standard system action exists
as a part of PL/I, and if no ON statement
is in force at the time an interrupt
occurs, the standard system action will
take place. For most conditions, the
standard system action is to print a
message and take action which usually leads
to termination of execution.

The ON statement takes the form:

ON condition[SNAP]
{SYSTEM; lon-unit}

The "condition" is one of those listed in
section H, "On-Conditions." The "on·unit"
is a single statement or a begin block that
specifies action to be taken when that
condition arises and an interrupt occurs.
For example:

ON ENDFILE(DETAIL) GO TO NEXT_MASTER;

This statement specifies that when an
interrupt occurs as the result of trying to
read beyond the end of the file named
DETAIL, control is to be transferred to the
statement labeled NEXT_MASTER.

When execution of an on-unit is
successfully completed, control will
normally .return to the point of the
interrupt or to a point immediately
following it, depending upon the condition
that caused the interrupt.

The effect of an ON statement, the
establishment of the on-unit, can be
changed within a block (1) by execution of
another ON statement naming the same
condition with either another on-unit or
the word SYSTEM, which re-establishes
standard system action, or (2) by the
execution ofa REVERT statement naming that
condition. On-units in effect at the time
another block is activated remain in effect
in the activated block, and in other blocks
activated by it, unless another ON
statement for the same condition is
executed. When control returns to an
activating block, on-units are
re-established as they existed.

REVERT Stat,ement

The REVERT statement is used to cancel the
effect of all ON statements for the same
condition that have been executed in the
block in which the REVERT statement
appears.

The REVERT statement, which must s~ecify
the condition name, re-estatlishes the
on-unit that was in effect in the
activating block at the time the current
block was invoked.

SIGNAL Statement

The SIGNAL statement simulates the
occurrence of an interrupt for a named
condition. It can be used to test the
coding of the on.unit established by
execution of an ON statement. For example:

SIGNAL OVERFLOW:

This statement would simulate the
occurrence of an overflow interrupt and
would cause execution of the on-unit
established for the OVERFLOW condition. If
an on-unit has not been established,
standard system action for the condition is
performed. In most cases, the standard
system action is the same as for when the
on-unit is entered following an interru~t.

PREPROCESSOR STATEMENTS

PLII allows a degree of control over the
contents of the source program during the
compilation. The programmer can specify,
for example, that any identifier a~pearing
in the source program will be changed: he
can select parts of the program to be
compiled without the rest; he can include
text from an external source. These
operations are performed by the
preprocessor stage of the compiler, and are
specified by preprocessor statements that
a~pear among the other statements within
the source program itself.

In general, preprocessor statements are
identified by a leading percent symbol
before the keyword; several, of them have
the same keywords as standard PLII
statements, and these have a similar effect
at compile time to that of their
~ounterparts at execution time.

Chapter 5: Statement Classification 63

The cpmplete list of preprocessor
statements is as follows:

% ACTIVATE

% assignment

% DEACTIVATE

% DECLARE

% DO

% END

% GO TO

% IF

% INCLUDE

% null

% PROCEDURE

Preprocessor RETURN

These statements are discussed in chapter
16, "Compile-Time Facilities" and in
section J, "statements."

LISTING CONTROL STATEMENTS

There are three statements that allow the
programmer to control the format of the
listing of his program. The statements
a.re:

%PAGE

"SKIP

"CONTROL

They are described in Chapter 16,
"Compile-time Facilities."

Although they have the initial " sign,
these statements do not require the use of
the preprocessor.

DIAGNOSTIC STATEMENTS

A program processed by the PL/I checkout
compiler can include statements that
provide a considerable amount of diagnostic
information during execut~on. These
statements:

64

1. Control a continuing output of
diagnostic information throughout
execution:

CHECKINOCHECK statement
FLOWINOFLOW statement

2. Produce diagnostic information at
specific points during execution:

PUT statement with one of the
options:

LIST
DATA
EDIT
SNAP
FLOW
ALL

With the exception of a PUT statement with
the LIST, DATA, or EDIT option, none of
these statements provide diagnostic
information when processed by the PL/I
optimizing compiler. This compiler checks
these statements for syntax and then
ignores them: there is no output. In
addition, the implementation of a PUT
statement with the LIST or DATA option by
the optimizing compiler is different from
that of the checkout compiler. The
checkout compiler implements such a
statement by producing information about
problem and program-control variables: the
optimizing compiler produces information
about problem variables only.

CHECK and NOCHECK Statements

When a CHECK statement is executed,
information about the variables specified
or assumed is put out whenever these
variables occur in pre-defined situations.
This continues to the end of program
execution or until the CHECK statement is
overridden by a NOCHECK statement.

The execution of a CHECK statement that
specifies or assumes a particular
identifier has the same result as if the
CHECK condition has been enabled for every
block in which the identifie~ is known.
This applies to all such blocks in the
current compilation and to all separately
compiled blocks in which the identifier is
known and which are active at the same time
as the current block_

Information is put out for label and
entry constants and for all variables. It
comprises:

1. Problem variables:

Name and value

2. constants and program-control
variables:

'Name, and, under the check'out
compiler, details of the current situation
of the constant or variable. For example,
the details for a file variable include
whether the file is open or closed.

The NOCHECK statement prevents output of
CHECK information fot the specified or
assumed variables.

FLOW and NOFLOW Statements

Execution of a FLOW statement results in
information being put out at every transfer
of control within the current task during
execution. This continues to the end of
program exec:ution or until a NOFLOW
statement is, executed.

At each t,ransfer of control, the
information put out comprises the statement
number of the statement that caused the
transfer of control, and the statement
number of the statement that received
control at that transfer.

The NOFLOW statement prevents the output
of FLOW information at a transfer of
control.

PUT Statements

When a PUT statement is executed, the
output comprises:

LIST, DATA or EDIT

The name of the variable appears if DATA
is used. The remaining output iSI

SNAP

Problem variables: Value

Program-control variables (LIST and
DATA only): Current situation of
the variable

The current statement number and a list
of the procedures currently active.

FLOW

The same information as for the FLOW
statement, for the last n transfers of
control. The value of n-is specified in
a compiler option.

ALL

Information about all the variables in
the program, together with the
information provided by the' SNAP and
FLOW options, and the values of the ON
built-in functions. Options may be
specified to limit the output.

Chapter 5: Statement Classification 65

Chapter 6: Program Organization

This chapter discusses how statements can
be organized into blocks to form a PL/I
program, how control flows within a program
from one block of statements to another,
and how storage may be allocated for data
within a block of statements. The
discussion in this chapter does not
completely cover multitasking, which is
discussed in detail later. However, the
discussion generally applies to all blocks,
whether or not they are executed
concurrently.

Blocks

A block is a delimited sequence of
statements that constitutes a section ofa
program. It localizes names declared
within the block and limits the allocation
of variables. There are two kinds of
blocks: procedure blocks and begin blocks.
The optimizing compiler will accept a
maximum of 255 blocks in one compilation.
There is no limit for the checkout
compiler.

PROCEDURE BLOCKS

A procedure block, simply called a
procedure, is a sequence of statements
headed by a PROCEDURE statement and ended
by an END statement. as follows:

label: [label:] ••• PROCEDURE;

END[label];

All procedures must be named because the
procedure name is the primary point of
entry through which control can be
transferred to a procedure. Hence, a
PROCEDURE statement must have at least one
label. A label need not appear after the
keyword END in the END statement, but if
one does appear, it must match the label
(or one of the labels> of the PROCEDURE
statement to which the END statement
corresponds. (There are exceptions; see
·Use of the END Statement with Nested
Blocks and DO-GrOUps· in this chapter.) An
example of a procedure follows:

66

A: READIN: PROCEDURE;
statement-1
statement-2

statement-n
END READIN;

In general, control is transferred to a
procedure through a reference to the name
(or one of the names) of the procedure.
Thus" the procedure in the above example
would be given control by a reference to
either of its names, A or READIN.

A PL/I program consists of one or more
such procedures, each of which may contain
other procedures and/or begin blocks.

BEGIN BLOCKS

A begin block is a set of statements headed
by a BEGIN statement and ended by an END
statement, as follows:

[label:] ••• BEGIN;

END [label];

Unlike a procedure block, a label is
optional for a begin block. If one or more
labels are prefixed to a BEGIN statement,
they serve only to identify the starting
point of the block. (Control may ~ass to a
begin block without reference to the name
of that block through normal sequential
execution, although control can be
transferred to a labeled BEGIN statement by
execution of a GO TO statement.> The label
following END is optional. However, a
label can appear after END, matching a
label of the corres~onding BEGIN statement.
(There are exceptions; see ·Use of the END
Statement with Nested Blocks and DO-Groups·
in this chapter.) An example of a begin
block follows:

B: CONTROL: BEGIN;
statement-1
statement ... 2

statement-n
END B;

Unlike procedures, begin blocks
generally are not given eontrol through
special references to them. The normal
sequence of control governing ordinary
statement execution also governs the
execution of begin blocks. Control passes
into a begin block sequentially, following
execution of the preceding statement. The
only exception is a begin block used as the
on-unit in an ON statement. In this case,
the block is executed only upon occurrence
of the specified condition.

Begin blocks are not essential to the
construction of a PL/I program. However,
there are times when it is advantageous to
use begin blocks to delimit certain areas
of a program. These advantages are
discussed in this cpapter and in chapter 7,
"Recognition of Names."

INTERNAL AND EXTERNAL BLOCKS

Any block can contain one or more blocks.
That is, a procedure, as well as a begin
block, can contain other procedures and
begin blocks. However, there can be no
overlapping of blocks; a block that
contains another clock must totally
encompass that block.

A procedure block that is contained
within another block is called an internal
procedure. A procedure block that is not
contained within another block is called an
external procedure. There must always be
at least one external procedure in a PL/I
program. (Note; Each external procedure is
compiled separately. Entry names of
external procedures cannot exceed seven
characters.),

Begin blocks are always internal; they
must always be contained within another
block.

Internal procedure and begin blocks can
also be refE~rred to as nested blocks.
Nested blocks, in turn, may have blocks
nested within them, and so on. The
outermost block must always be a procedure.
Consider the following example:

A: PROCEDURE;
statement-a 1
statement-a2
statement-a3
B: BEGIN;

statement-b1
statement-b2
statement-b3
END B;

stat~ment-a4
statement-aS
C: PROCEDURE;

statement-c1
statement-c2
D: BEGIN;

statement-d1
statement-d2
statement-d3
E: PROCEDURE;

statement-e1
statement-e2
END E;

statement-d4
END D;

END C;
statement-a6
statement-a7
END A;

In the above example, procedure block A
is an external procedure because it is not
contained in any other clock. Block B is a
begin block that is contained in A; it
contains no other blocks. Block C is an
internal procedure; it contains begin block
D~ which, in turn, contains internal
procedure E. This example contains three
levels of nesting relative to A; Band C
are at the first level, D is at the second
level (but the first level relative to C)
and E is at the third level (the second
level relative to C, and the first level
relative to D).

Under the optimizing compiler, the
maximum permissible depth of nesting is 50.
There is no limit under the checkout
compiler.

Use of the END Statement with Nested Blocks
and DO-Groups (Mu~tiEle Closure)

The use of the END statement with a
procedure, begin clock, or DO-group is
governed by the following rules:

1. If a label is not used after END, the
END statement closes (i.e., ends) that
unclosed block headed by the BEGIN or
PROCEDURE statement, or that unclosed
DO-group headed by the DO statement,
that physically precedes, and a~pears
closest to, the END statement.

Chapter 6: Program Organization 67

2. If the optional label is used after
END, the END statement closes that
unclosed block or DO-group headed by
the BEGIN, PROCEDURE, or DO statement
that has a matching label, and that
physically precedes, and appears
closest to, the END statement. Any
unclosed blocks or DO-groups nested
within such a block or DO-group are
automatically closed by this END
statement; this is known as multiple
closure.

Multiple closure is a shorthand method
of specifying a number of consecutive END
statements. In effect, the compiler
inserts the required number of END
statements immediately preceding the END
sta~ement specifying multiple closure. For
example, assume that the following external
procedure has been defined:

FRST: PROCEDURE;
statement-f1
statement-f2
ABLK: BEGIN;

statement-a1
statement-a2
SCND: PROCEDURE;

statement-s1
statement-s2
BBLK: BEGIN;

statement-b1
statement-b2
END;

END:
statement-a3
END ABLK;

END FRST;

In this example, begin block BBLK and
internal procedure SCND effectively end in
the same place; that is, there are no
statements between the END statements for
each. This is also true for begin block
ABLK and external procedure FRST. In such
cases, it is not necessary to use an END
statement for each block, as shown; rather,
one END statement can be used to end BBLK
and SCND, and another END can be used to
end ABLK and FRST. In the first case, the
statement would be END SCND, because one
END statement with no following label would
close only the begin block BELK (see the
first rule above). In the second case,
only the statement END FRST is required:
the statement END ABLK is superfluous.
Thus, the example could be specified as
follows:

68

FRST: PROCEDURE;
statement-f1
statement-f2
ABLK: BEGIN:

stat ement a 1
statement-a2
SCND: PROCEDURE;

statement-s1
statement-s2
BBLK: BEGIN:

statement-b1
statement-b2

END SCND:
statement-a3

END FRST:

Note that a label prefix attached to an END
statement specifying multiple closure is
assumed to apply to the last END statement.
Therefore all intervening groups and blocks
will be terminated if control passes to
such a statement. Fo~ example:

CBLK:

DGP:

IBL:

PROCEDURE;
statement-c1
statement-c2
DO I = 1 TO 10;
statement-dl
GO TO LBL:
statement-d2
END CBLK:

In this example, the END CELK statement
closes the block CBLK and the iterative
DO-group DGP. The effect is as if an
unlabeled END statement for DGP appeared
immediately after statement-d2, so that the
transfer to LBL would prevent all but the
first iteration of DGP from taking place,
and statement-d2 would not be executed.

Activation of Blocks

Although the begin block and ~he procedure
have a physical resemblance and play the
same role in the allocation and freeing of
storage, as well as in delimiting the scope
of names, they differ in the way they are
activated and executed. A begin block,
like a single statement, is activated and
executed in the course of normal sequential
program flow (except when specified as an
on-unit) and, in general, can appear
wherever a single statement can appear.
For a procedure, however, normal sequential
program flow passes around the procedure,
from the statement before the PROCEDURE
statement to the statement after the END
statement of that procedure. The only way
in which a procedure can be activated is by
a procedure reference.

A procedure reference is the appearance
of an entry expression in one of the
following contexts:

1 • After t,he keyword CALL in a CALL
stateme!nt.

2. After the keyword CALL in the CALL
option of the INITIAL attribute.

3. As a function reference.

This chapter uses examples of the first
of these; the material, however, is
relevant to the other two forms as well.
For further information, refer to the
discussion of the INITIAL attribute in
section I, "Attributes," and to chapter 9,
"Subroutines and Functions."

The simplest form of the CALL statement
is

CALL entry-constant;

If the ent:ry constant is a label of a
PROCEDURE :statement it represents the
primary en'try poin~ to the procedure; if it
is a label of an ENTRY statement it
represents a secondary entry Eoint. The
following is an example of a procedure
containing secondary entry points.

A: PROCEDURE;
statement-l
statement-2

ERRT: ENTRY;
statement-3
statement-4
statement-5

NEXT: RETR: ENTRY;
statement-6
statement-7
statement-8
END A;

In this example, A is the primary entry
point to the procedure, and ERRT, NEXT, and
RETR specify secondary entry points.
Actually, since they are both names for the
same ENTRY s'tatement, NEXT and RETR specify
the same secondary entry point. The
procedure may be activated by one of the
following :statements:

CALL A;
CALL ERR'!';
CALL NEX'ri
CALL RET:R;

Alternatively, the appropriate entry
name value could be assigned to an entry
variable, clnd this entry variable could be
used in the procedure reference. In the
following 4ex,ample. the two CALL statements
have the same effect.

DECLARE ENTl ENTRY VARIABLE;

ENTl = ERRT;

CALL ENT1;

CALL ERRT;

When a procedure reference is executed,
the procedure containing the specified
entry point is activated and is said to be
invoked; control is transferred to the
specified entry point. 1 The point at which
the procedure reference appears is called
the point of invocation and the block in
which the reference is made is called the
invoking block. An invoking block remains
active even though control is transferred
from it to the block it invokes.

Whenever a procedure is invoked at its
primary entry point, execution begins with
the first executable statement in the
invoked procedure. However, when a
procfdure is invoked at a secondary entry
point, execution begins with th~ first
executable statement following the ENTRY
statement that defines that secondary entry
point. Therefore, if all of the numbered
statements in the last example are
executable, the statement CALL A would
invoke procedure A at its primary entry
point, and execution would begin with
statement-l; the statement CALL ERRT would
invoke procedure A at the secondary entry
point ERRT, and execution would begin with
statement-3; either of the statements CALL
NEXT or CALL RETR would invoke procedure A
at its other secondary entry point, and
execution would begin with statement-6.
Note that any ENTRY statements encountered
during sequential flow are never executed;
control flows around the ENTRY statement as
though the statement were a comment.

Any procedure, whether external or
internal, can always invoke an external
procedure, but it cannot always invoke an
internal procedure that is contained in
some other procedure. Those internal
procedures that are at the first level of

t This statement does not apply when the
CALL statement specifies one of the
multitasking options. See "Multitasking."

Chapter 6: Program Organization 69

nesting relative to a containing procedure
can always be invoked by that containing
procedure, or by each other. For example:

PRMAIN: PROCEDURE;
statement-1
statement-2
statement-3
A: PROCEDURE;

statement-a 1
statement ... a2
B: PROCEDURE;

statement-b1
statement-b2

END A;
statement-4
statement-5
C: PROCEDURE;

statement-c1
statement-c2
END C;

statement-6
statement-7
END PRMAINi

In this example, PRMAIN can invoke
procedures A and C, but not Bi procedure A
can inVOke procedures Band C; procedure B
can invoke procedure Ci and procedure C can
invoke procedure A but not B.

The foregoing discussion about the
activation of blocks presupposes that a
program has already been activated. A PL/I
program becomes active when a calling
program invokes the initial procedure.
This calling program usually is the
operating system. although it could be
another program. The initial procedure,
called the main procedure, must be an
external procedure whose PROCEDURE
statement has the OPTIONS (MAIN)
specification, as shown in the following
example:

CONTRL: PROCEDURE OPTIONS(MAIN)i
CALL Ai
CALL Bi
CALL Ci
END CONTRL;

In this example, CONTRL is the initial
procedure and it invokes other procedures
in the program.

The following is a summary of what has
been stated or implied about the activation
of blocks:

70

• A program becomes active when the
initial procedure is activated by the
operating system.

• Except for the initial procedure,
external and internal procedures
contained in a program are activated
only when they are invoked by a
procedure reference.

• Begin blocks are activated through
normal sequential flow or as on~units.

• The initial procedure remains active
for the duration of the program.

• All activated blocks remain active
until they are terminated (see telow).

Termination of Blocks

In general, a procedure block is terminated
when, by some means other than a procedure
reference, control passes back to the
invoking block or to some other active
block. Similarly, a begin block is
terminated when, ty some means other than a
procedure reference, control passes to
another active tlock. There are a number
of ways by which such transfers of control
can be accomplished, and their
interpretations differ according to the
type of block being terminated.

Note that when a block is terminated,
any task attached by that block is
terminated (see chapter 17,
"Multitasking"'.

BEGIN BLOCK TERMINATION

A begin block is terminated when any of the
following occurs:

1. Control reaches the END statement for
the block. When this occurs, control
moves to the statement physically
following the END, except when the
block is an on-unit.

2. The execution of a GO TO statement
within the begin block (or any tlock
activated from within that begin
block) transfers control to a point
not contained within the block.

3. A STOP or EXIT statement is executed
(thereby terminating execution of the
current task and all its subtasks).

4. Control reaches a RETURN statement
that transfers control out of the
begin block and out of its containing
procedure as well •

5. A procedure within which the begin
block is contained has been attached
as a task, and the attaching tlock
terminates •

A GO TO statement of the typ~ described
in item 2 can also cause the termination of
other blocks as follows:

If the transfer point is contained in a
block that did not directly activate the
block being' terminated, all intervening
blocks in the activation sequence are
terminated.

For example, if begin block B is
contained in begin block A, then a GO TO
statement in B that transfers control to a
point contained in neither A nor B
effectively terminates both A and B. This
case is illustrated below:

FRST: PROCEDURE OPTIONS(MAIN);
statement-1
st:a tement - 2
statement-3
A: BEGIN;

statement-a 1
statement-a2
B: BEGIN;

statement-b1
statement-b2
GO TO LAB;
statement-b3
END B;

statement-a3
END A;

statement-4
statement-5

LAB: statement-6
statement-7
END FRST;

After FRST is invoked, the first three
statements are executed and then begin
block A is activated. The first two
statements in A are executed and then begin
block B is activated (A remaining active).
When the GO TO statement in B is executed,
control passes to statement-6 in FRST.
Since statement-6 is contained in neither A
nor B, both A and B are terminated. Thus,
the transfer of control out of begin block
B results in the termination of intervening
block A as WE!ll as termination of block B.

PROCEDURE TERMINATION

A procedure is terminated when one of the
following occurs:

1. Control reaches a RETURN statement
within the procedure. The execution
of a RETURN statement causes control
to be returned to the point of
invocation in the invoking procedure.
If the point of invocation is a CALL
statement, execution in the inVOking
procec1Ulce resumes with the statement
following the CALL. If the point of
invocation is one of the other forms
of procedure references (that is, a
CALL option or a function reference),
execution of the statement containing
the reference will be resumed.

2. Control reaches the END statement of
the procedure. Effectively, this is
equivalent to the execution of a
RETURN statement.

3. The execution of a GO TO statement
with~n the procedure (or any block
activated from within that procedure)
transfers control to a point not
contained within the procedure.

4. A STOP or EXIT statement is executed
(thereby terminating execution of the
current task and all its subtasks).

5. The procedure or a containing
procedure has been attached as a task
and the attaching block is terminated.

Items 1 and 2 are normal procedure
terminations; items 3, 4, and 5 are
abnormal procedure terminations.

As with a begin block, the type of
termination described in item 3 can
sometimes result in the termination of
several procedures and/or begin blocks.
Specifically, if the transfer point
specified by the GO TO statement is
contained in a block that did not directly
activate the block being terminated, all
intervening blocks in the activation
sequence are terminated. Consider the
followirig example:

A: PROCEDURE OPTIONS(MAIN);
statement-1
statement-2
B: BEGIN;

statement-b1
statement~b2
CALL C;
statement ... b3
END B;

statement-3
statement-4.
C: PROCEDURE;

statement-c1
statement-c2
statement-c3
D: BEGIN;

statement-d1
statement-d2
GO TO LAB;
statement-d3
END 0;

statement-c4
END C;

statement-5
LAB: statement-6

statement-7
END A;

In the above example, A activates B, which
activates C, which activates D. In D, the
statement GO TO LAB transfers control to
statement-6 in A. Since this statement is
not contained in 0, C, or B, all three

Chapter 6: Program Organization 71

blocks are terminated; A remains active.
Thus, the transfer of control out of D
results in the termination of intervening
blocks Band C as well as the termination
of block D.

PROGRAM TERMINATION

A program is terminated when anyone of the
following occurs:

1. Control for the program reaches an
EXIT statement in the major task.
This is abnormal termination.

2. Control for the program reaches a STOP
statement. 1 This is abnormal
termination.

3. Control reaches a RETURN statement or
the final END statement in the main
procedure. This is normal
termination.

4. The ERROR condition is raised in the
major task and there is no established
on-unit for ERROR and FINISH, or, if
one or both of the conditions has an
estatlished on-unit, on-unit exit is
by normal return, rather than by GO TO
branching. This is abnormal
termination. The program is not
terminated if ERROR was raised by a
SIGNAL ERROR statement inserted by the
checkout compiler in place of a
statement in which an error had been
detected. (Note that in .
conversational processing, the ERROR
and FINISH conditions cause control to
be passed to the terminal, and this is
regarded as equivalent to an on-unit
being entered; any statements then
entered in immediate mode are
processed as if in an ERROR or FINISH
on~unit.

On termination of a program, whether
normal or abnormal, control is returned to
the calling program (this is usually the
operating system control program).

Dynamic Loading of an External Procedure

A procedure invoked by a CALL statement or
a CALL option of an INITIAL attribute, as
described in "Activation of Blocks" in this

1When multitasking is in operation, the
program (i.e., the major task) is
terminated when any task reaches a STOP
statement. See chapter 17, "Multitasking."

72

chapter, or by a function reference, as
described in chapter 9, "Subroutines and
Functions", is generally resident in main
storage throughout the execution of the
entire program. If required, however, a
procedure may be trought into main storage
for only as long as it is required: the
invoked procedure is dynamically loaded
into, and dynamically deleted from, main
storage during execution of the calling
procedure.

Dynamic loading and deletion of
procedures is' particularly useful when a
called procedure is not necessarily invoked
every time the calling procedure is
executed, and when conservation of main
storage is more important than a short
execution time.

The PL/I statements that initiate the
loading and deletion of a procedure are
FETCH and RELEASE. The appearance of an
entry name in a FETCH or RELEASE statement
indicates to the compiler that the
procedure containing an entry point with
that name will need to be fetched into main
storage before it can be executed~ When a
FETCH statement is executed, the procedure
is copied from auxiliary storage into main
storage, unless a copy already exists in
main storage. In addition, when a CALL
statement or option or a function reference
is executed, the procedure is copied into
main storage, unless a copy exists already.
Thus, a procedure may be loaded from
auxiliary storage by:

1. execution of a FETCH statement;

2. execution of a CALI statement or
option or a function reference,
provided that the name of the entry
point of the procedure appears,
somewhere in the calling procedure, in
a FETCH or RELEASE statement.

In neither case is it an error if the
procedure has already been fetched into
main storage. In case 2, it is not
necessary that control should pass through
the FETCH or RELEASE statement, either
before or after execution of the CALL or
function reference.

Whichever statement caused the loading
of the fetched procedure, execution of the
CALL statement or option or the function
reference invokes the procedure in the
normal way.

The fetched procedure may be allowed to
remain in main storage until execution of
the whole program is completed.
Alternatively, the storage it occupies may

be freed f()r other purposes at any time by
means of the RELEASE statement.

Considel: the following example, in which
PROGA and FROGB are entry names of
procedures resident on auxiliary storage.

PROG: PROCEDURE;

FETCH PROGA;

CALL PROGA;

RELEASE PROGA;

CALL PROGB;
GO TO FIN;
FETCH PROGB;

1!~IN: END PROG;

PROGA will be loaded into main storage by
the first: FETCH statement, and will be
executed when the first CALL statement is
reached; its storage is released when the
RELEASE statement is executed. PROGB will
be fetched when the second CALL statement
is reached., even though the FETCH statement
referring to this procedure is never
executed" and the same CALL statement will
initiate e~{ecution of PROGB. Note that the
same results would be achieved if the
statement FETCH PROGA; were omitted; the
appearance of PROGA in a RELEASE statement
will cause the statement CALL PROGA; to
fetch the procedure, as well as invoke it.

The fetched procedure is compiled and
link-edited separately from the calling
procedure. The programmer must ensure that
the entry name specified in FETCH, RELEASE,
and CALL statements and options, and in
function references, is known in auxiliary
storage. ~[,he job control statements
necessary to achieve this are discussed in
OS PL/I Checkout Compiler: Programmer's
Guide and pS PL/I Optimizing Compiler:
Programmer's Guide

Rules c4::>ncerning the use of
dynamically-loaded procedures are:

1 • Only lexternal procedures may be
fetchled.

2. Identifiers with the EXTERNAL
attribute are not permitted in a
fetched procedure.

3. Identifiers with the CONTROLLED or
FILE attributes are not permitted in a
fetched procedure unless they are

parameters. Note that this means any
file used in the fetched procedure,
including either of the standard
stream-oriented I/O default files
SYSIN or SYSPRINT, must be passed from
the calling procedure.

4. Storage for STATIC variables in the
fetched procedure is allocated when
the FETCH statement is executed, and
is freed when a corresponding RELEASE
statement is executed. Each time a
procedure is fetched into main
storage, a STATIC variable either is
given the value specified in an
INITIAL attribute, or, if there is no
INITIAL attribute, is uninitialized.

5. The FETCH, RELEASE, and CALL
statements must specify entry
constants. Entry variables are not
permitted. Note that an entry
constant may have no more than seven
characters.

6. Fetched procedures may not fetch
further procedures.

Storage ,Allocation

Storage allocation is the process of
associating an area of storage with a
variable so that the data item(s) to be
represented by the variable may be recorded
internally. When storage has been
associated with a variable, the variable is
said to be allocated. Allocation for a
given variable may take place statically,
that is, before the execution of the
program, or dynamically, during execution.
A variable that is allocated statically
remains allocated for the duration of the
program. A variable that is allocated
dynamically will relinquish its storage
either upon the termination of the block
containing that variable or at the request
of the programmer, depending upon its
storage class.

The manner in which storage is allocated
for a variable is determined by the storage
class of that variable. There are four
storage classes: static, automatic,
controlled, and based. Each storage class
is specified by its corresponding storage
class attribute: STATIC, AUTOMATIC,
CONTROLLED, and BASED~ respectively. The
last three define dynamic storage
allocation.

Storage class attributes may be declared
explicitly for element, array~ and major
structure variables. If a variable is an
array or a major structure variable, the
storage class declared for that variable

Chapter 6: Program Organization 73

applies to all of the elements in the array
or structure.

All variables that have not been
explicitly declared with a storage class
attribute are given the AUTOMATIC
attribute, with one exception: any
variable that has the EXTERNAL attribute is
given the STATIC attribute.

Chapter 8, "storage Control" discusses
how the various storage classes may be

I used.

Reactivation of an Active Procedure
(Recursion)

An active procedure that can be reactivated
from within itself or from within another
active procedure is said to be a recursive
pr9cedure; such reactivation is called
~sion.

A procedure can be invoked recursively
only if the RECURSIVE option has been
specified in its PROCEDURE statement. This
option also applies to the names of any
secondary entry points that the procedure
might have.

The environment (that is, values of
automatic variables, etc.) of every
invocation of a recursive procedure is
preserved in a manner analogous to the
stacking of allocations of a controlled
variable (see chapter 8, "storage
Allocation"). An environment can thus be
thought of as being "pushed down" at a
recursive invocation, and "popped up" at
the termination of that invocation. Note
that a latel constant in the current block
always contains information identifying the
current invocation of the block that
contains the label. Consider the following
example:

74

RECURS: PROCEDURE RECURSIVE;
DECLARE X STATIC EXTERNAL INITIAL (0);

X=X+l;
PUT DATA (X);
IF X =5 THEN GO TO LAB;
CALL AGN:
X =X-l:
PUT DATA (X):

LAB: END RECURS:

AGN: PROCEDURE RECURSIVE:
DECLARE X STATIC EXTERNAL INITIAL (0):

X=X+l;
PUT DATA(X):

CALL RECURS;
X=X-l;
PUT DATA (X):
END AGN:

In the atove example, RECURS and AGN are
both recursive procedures. Since X is
static and has the INITIAL attribute, it is
allocated and initialized before execution
of the program begins.

The first time that RECURS is invoked, X
is incremented by 1 and X=l is transmitted
by the PUT statement. Since X is less than
5,; AGN is invoked. In AGN, X is
incremented cy 1 and X=2 is transmitted
(also by a PUT statement). AGN then
reinvokes RECURS.

This second invocation of RECURS is a
recursive invocation, because RECURS is
still active. X is incremented as before,
an,d then X=3 is transmitted. X is still
le~s than 5, so AGN is invoked again.
Since AGN is active when invoked, this
invocation of AGN is also recursive. X is
incremented once again, X=4 is transmitted,
and RECURS is invoked for the third time.

The third invocation of RECURS results
in the transmission of X=5. But, since X
is no longer less than 5, GO TO LAB is
executed, and then RECURS is terminated.
However, only the third invocation of
RECURS is terminated, with the result that
control returns to the procedure that
invoked RECURS for the third time: that is,
control returns to the statement following
CALL RECURS in the second invocation of
AGN. At this point X is decremented by I
and X=4 is transmitted. Then the second
invocation of AGN is terminated, and
control returns to the procedure that
invoked AGN for the second time; that is,
control returns to the statement following
CALL AGN in the second invocation of
RECURS. Here X is decremented again and
X=3 is transmitted, after which the second
invocation of RECURS is terminated and
control returns to the first invocation of
AGN. X is decremented again, X=2 is
transmitted, the first invocation of AGN is
terminated, and control returns to the
first invocation of RECURS. X is
decremented, X=l is transmitted, and the
first invocation of RECURS is terminated.
control then returns to the procedure that
invoked RECURS in the first place.

Note that if a label constant is
assigned to a label variable in a
particular invocation, a GO TO statement
naming that variable in another invocation
would resto:re the environment that existed
when the assignment was performed.

Note also that the environment of a
procedure invoked from within a recursive
procedure by means of an entry variable is
the one that was current when the entry
constant was assigned to the variable.
Consider the following example:

I=1:
CALL A: /*FIRST INVOCATION OF A*/

A:PROC RECURSIVE:
DECLARE EV ENTRY VARIABLE STATIC:
IF I=1 THEN DO:

I=2:
EV=B:
CALL A; /*SECOND INVOCATION OF A*/

END:
ELSE CALL EV; /*INVOKES B WITH

ENVIRONMENT OF FIRST
INVOCATION OF A*/

B:PROC:
GO TO OUT;

END;
OUT:END A:

The GO TO statement in the procedure B will
transfer control to the END A; statement in
the first invocation of A, and will thus
terminate EI and ~ invocations of A.

Prologues and Epilogues

Each time a block is activated~ certain
activities must be performed before control
can reach t:he first executable statement in
the block. This set of activities is
called a EFoloque. Similarly, when a block
is terminat:ed, certain activities must be
performed before control can be transferred
out of the block; this set of activities is
called an !Eilogue.

prologues and epilogues are the
responsibility of the compiler and not of
the programmer. They are discussed here
because knowledge of them may assist the
programmer in improving the performance of
his program.

prologue!!

A prologue is code that is executed as the
first step in the activation of a block.
In general, activities performed by a
prologue are as follows:

• Computing dimension bounds and string
lengths for automatic and DEFINED
varia1:les.

• Allocating storage for automatic
variables and initialization, if
specified.

• Determining which currently active
blocks are known to the procedure, so
that the correct generations of
automatic storage are accessible, and
the correct on-units may be entered.

• Allocating storage for dummy arguments
that may l:e passed from this block.

The prologue may need to evaluate
expressions for initial values (including
iteration factors), and for array bounds,
string lengths, and area sizes.

For each 1:10ck in the program, the
optimizing compiler assigns these values in
the following order:

1. Values that are independent of other
declarations in the block. (Values
may be inherited from an outer 1:10ck.)

2. Values that are dependent on other
declarations in the block. If a value
depends on more than one other
declaration in the block, correct
initialization is not guaranteed. For
example:

DCL I INIT(10), J INIT(I), K INIT(J):

Correct initialization of K is not
guaranteed.

The checkout compiler has no restriction
on the number of dependencies: it evaluates
the expressions in the order required by
the dependencies (provided the dependencies
can be determined from inspection of the
DECLARE statement alone.)

Note that declarations of data items
must not be mutually interdependent. For
example, the following declaration is
invalid:

DCL A(B(1», B(A(1»:

Note that interdependency can occur with
more than two data items. For example, the
following declaration is also invalid:

DCL A(B(1», B(C(1»~ C(A(1»;

Chapter 6: Program Organization 75

Epilogues

An epilogue is code that is executed as the
final step in the termination ofa block.
In general, the activities performed by an
epilogue are as follows:

76

• Re-establishing the on-unit environment
existing before the block was
activated.

• Releasing storage for all automatic
variables allocated in the block.

A PL/I program consists of a collection of
identifiers f constants, and special
characters used as operators or delimiters.
Identifiers themselves may be either
keywords or names with a meaning specified
by the programmer. The PL/I language is
constructed so that t'he compiler can
determine fl~om context whether or not an
identifier is a keyword, so there is no

I list of resE~rved words that must not be
used for prc>grammer-defined namesj.. Any
identifier may be used as a name; the only
restriction is that at any point in a
program a name can have one and only one
meaning. For example, the same name cannot
be used for both a file and a
floating-point variable.

~: The clbove is true so long as the
60-character set is used. Certain
identifiers of the 48-character set cannot
be used as l?rogrammer-defined identifiers
in a program written using the 48.character
set; these identifiers are: GT, GE, NE,
LT, NG, LE, NL, CAT, OR, AND, NOT, and PT.

It is not necessary, however, for a name
to have the same meaning throughout a'
program. A name declared within a block
has a meaning only within that block.
Outside the block it is unknown unless the
same name has also been declared in the
outer block .. In this case, the·name in the.
outer block refers to a different data
item. This enables programmers to specify
local definitions and, hence, to write
procedures or begin blocks without knowing
all the namEas being us ed by other
programmers writing other parts. of the
program.

Since it is possible for a name to have
more than one meaning, it is important to
define which part of the program a
particular meaning applies to. In PL/I a
name is gi v~an attributes and a meaning by a
declaration (not necessarily explicit).
The part of the program for which the
meaning applies is called the scope of the
declaration of that name. In most cases,
the scope of a name is determined entirely
by the posi 1:.ion at which the name is
declared within the program (or assumed to
be declared if the declaration is not
explicit) .. There are cases in which more
than one generation of data may exist with

--------.------.----
t Though the uses of the 48-character set
composite symbols, and, under the checkout
compiler, of the file SYSPRINT, are
restricted.

Chapter 7: Recognition of Names

the same name (such as in recursion); such
cases are considered se~arately.

In order to understand the rules for the
scope of a name, it is necessary to
understand the terms "contained in" and
"internal to."

Contained In:

All of the text of a block, from the
PROCEDURE or BEGIN statement through
the corresponding END statement, is
said to be contained in that block.
Note, however, that the labels of the
BEGIN or PROCEDURE statement heading
the block, as well as the labels of
any ENTRY statements that apply to the
block, are not contained in that
block. Nested blocks are contained in
the block in which they appear.

Internal To:

Text that is contained in a block, but
not contained in any other block
nested within it~ is said to be
internal to that block. Note that
entry names of a procedure (and labels
of.a·BEGIN statement) are not
contained in that block.
Consequently, they are internal to the
containing block. Entry names of an
external procedure are treated as if
they were external to the external
procedure.

In addition to these terms, the
different types of declaration are
important. The three different types
explicit declaration, contextual
declaration, and implicit declaration
are discussed in the following sections.

Explicit Declaration

A name is explicitly declared if it
appears:

1. In a DECLARE statement

2. In a parameter list

3. As a statement label

4. As a label of a PROCEDURE or ENTRY
statement.

Chapter 7: Recognition of Names 77

The appearance of a name in a parameter
list is the same as if a DECLARE statement
for that name appeared immediately
following the PROCEDURE or ENTRY statement
in which the parameter list occurs (though
the same name may also appear in a DECLARE
sta'tement internal to the same block).

The appearance of a name as the label of
either a PROCEDURE or ENTRY statement
constitutes a declaration within the
procedure containing the one to which it
refers.

The appearance of a label prefix on a
statement constitutes explicit declaration
of the label.

SCOPE OF AN EXPLICIT DECLARATION

The scope of an explicit declaration of a
name is that block to which the declaration
is internal, including all contained blocks
except those blocks (and any blocks
contained within them) to which another
explicit declaration of the same identifier
is internal.

For example:

P A B B' C C· D Q R
P: PROCEDUREi] DECLARE A, Bi

J
Q: PROCEDUREi

DECLARE B, Ci

1 1
R: PROCEDUREi

DECLARE C,Di

END Ri

] END Qi

] END Pi

The lines to the right indicate the
scope of the names. Band B' indicate the
two distinct uses of the name B; C and C'
indicate the two uses of the name C.

Contextual Declaration

When a name appears in certain contexts,
some of its attributes can be determined
without explicit declaration. In such a
case, if the appearance of a name does not
lie within the scope of an explicit

78

declaration for the same name, the name is
said to be contextually declared.

A name that has not been declared
explicitly will be recognized and declared
contextually in the following cases:

1. A name that appears in a CALL
statement, in a CALL option, or
followed by an argument list is given
the BUILTIN and INTERNAL attributes.
Built-in functions and pseudovariables
without arguments, such as ONCHAR,
ONSOURCE, DATE and DATAFIELD" should
be declared explicitly with the
BUILTIN attribute, contextually using
a null argument list" for example,
ONCHAR(), or implicitly by using a
DEFAULT statement, for example,

DEFAULT RANGE (ON, DAT) BUILTINi

2. A name that appears in a FILE or COPY
option, or a name that appears in an
ON, SIGNAL, or REVERT statement for a
condition that requires a file name,
is given the FILE attribute.

3. A name that appears in an ON
CONDITION, SIGNAL CONDITION, or REVERT
CONDITION statement is recognized as a
programmer-defined condition name.

4. A name that appears in an EVENT option
or in a WAIT statement is given the
EVENT attribute.

5. A name that appears in a TASK opt,ion
is given the TASK attribute.

6. A name that appears in the BASED
attribute, in a SET option, or on the
left-hand side of a pointer
qualification .symbol is given the
POINTER attribute.

7. A name that appears in an IN option,
or in the OFFSET attribute, is given
the AREA attricute.

Examples of contextual declaration are:

READ FILE (PREQ) INTO (Q);

ALLOCATE X IN (S);

I

In these statements, PREQ is given the FILE
attribute, and S is given the AREA
attricute.

SCOPE OF A CONTEXTUAL DECLARATION

The scope of a contextual declaration is
determined as if the declaration were made
in a DECLARE statement immediately

following the PROCEDURE statement of the
external prc)cedure in which the name
appears.

Note that contextual declaration has the
same effect as if the name were declared in
the external procedure, even when the
statement that causes the contextual
declarations is internal to a block (called
B, for example) that is contained in the
external prc)cedure. Consequently, the name
is known throughout the entire external
procedure,. ~axcept for any blocks in which
the name is explicitly declared. It is as
if block B has inherited the declaration
from the containing external procedure.

Since a contextual declaration cannot
exist within the scope of an explicit
declaration., it is impossible for the
context of (1 name to add to the attributes
established for that name in an explicit
declarationu For example, the following
procedure is invalid:

P: PROC (F);

RElill FILE (F) INTO (X) ;

]:ND P;

The identifier F is in a parameter list and
is, therefore, explicitly declared. The
standard default attributes REAL DECIMAL
FLOAT conflict with the attributes that
would normally be given to F by its
appearance in the FILE option. such use of
the identifier is in error.

Implicit Declaration

If a name a!~pears in a program and is not
explicitly or contextually declared, it is
said to be implicitly declared. The scope
of an implic:it declaration is determined as
if the name were declared in a DECLARE
statement immediate"ly following the
PROCEDURE st;atement of the external
procedure ir.l which the name is used. A
name used only in a contained procedure
will be known in the containing procedure.

Unless the DEFAULT statement causes
programmer-defined defaults to override the
standard defaults, an implicit declaration
causes standard default attributes to be
applied, depending upon the first letter of
the name. If the name begins with any of
the letters I throughN it is given the
attributes REAL FIXED BINARY (15,0). If
the name begins with any other letter

including one of the alphabetic extenders
$~ #, or a, it is given the attributes REAL
FLOAT DECIMAL (6).

Examples of Declarations

scopes of data declarations are illustrated
in figure 7.1. The brackets to the left
indicate the block structure; the brackets
to the right show the scope of each
declaration of a name. In the diagram, the
scopes of the two declarations of Q and R
are shown as Q and Q' and Rand R'.

P is declared in the block A and known
throughout A since it is not redeclared.

Q is declared in A, and redeclared in B.
The scope of the first declaration is all
of A except Bi the scope of the second
declaration is block B only.

R is declared in block C, but a
reference to R is also made in block B.
The reference to R in block B results in an
implicit declaration of R in A, the
external procedure. Two separate names
with different scopes exist, therefore.
The scope of the explicitly declared R is
C; the scope of the implicitly declared R
is all of A except block C.

I is referred to in block C. This
results in an implicit declaration in the
external procedure A. As a result, this
declaration applies to all of A, including
the contained procedures B, C, and D.

s is explicitly declared in procedure D
and is known only within D.

scopes of entry constant and statement
label declarations are illustrated in
figure 7.2. The example shows two external
procedures. The names of these procedures,
A and E, are assumed to be explicitly
declared with the EXTERNAL attribute within
the procedures to which they apply. In
addition, E is explicitly declared in A as
an external entry constant. The explicit
declaration of E applies throughout block
A. It is not linked to the explicit
declaration of E that applies throughout
block E. The scope of the name E is all of
block A and all of block E. The scope of
the name A is only all of the block A~ and
not E.

However, it could appear in an external
entzy declaration in E, which would then
result in the scope of A being all of A and
all of E.

The label Ll appears with statements
internal to A and to C. Two separate

Chapter 7: Recognition of Names 79

r---, I p ~ Q' R R' S I
I A: PROCEDURE;] 1 I DECLARE P, Qi
I B: PROCEDUREi
I DECLARE Qi
l R = Qi

I [C: BEGIN; 1 I DECLARE Ri
I DO I = 1 TO 10;
I END;
I END C;

I END B; 1
:

1, D: PROCEDURE; J
DECI .. ARE S;
END D;

END Ai L ___ ~ __________ _

]
Figure 7.1. scopes of data declarations

r---,
A: PROCEDURE;

DECLARE E ENTRY;
Ll: P = Q;
B: PROCEDUREi

[
L2: CALL C;
C: PROCEDURE;

Li: X=Y;
CALL E;
END Ci

GO TO Li;
END B;

[
D: PROCEDUREi

END D;
CALL B;
END Ai
PROCEDURE;

END E;

Ll Li' L2 ABC 0 E

1
]

Figure 7.2. Scopes of entry and label declarations

declarations are therefore established; the
first applies to all of block A except
block C, the second applies to block C
only. Therefore, when the GO TO statement
in block B is executed, control is
transferred to L1 in block A, and block B
is terminated.

o and B are explicitly declared in block
A and can be referred to anywhere within A;
but since they are INTERNAL, they cannot be
referred to in block E (unless passed as an
argument to E).

C is explicitly declared in B and can be
referred to from within B, but not from
outside B.

L2 is declared in B and can be referred
to in block B, including C, which is
contained in B, but not from outside B.

80

Internal and External Attributes

The scope of a name with the INTERNAL
attribute is the same as the scope of its
declaration. Any other explicit
declaration of that name refers to a new
otject with a different, non-overlapping
scope.

A name with the EXTERNAL attritute may
be declared more than once in the same
program, either in different external
procedures or within blocks contained in
external procedures~ Each declaration of
the name establishes a scope. These
declarations are linked together and,
within a program, all declarations of the
same identifier with the EXTERNAL attribute
refer to the same name. The scope of the
name is the sum of the scopes of all the

declarations of that name within the
program.

I
Note: External names of PL/I data cannot
be more than seven characters long and must
not contain the _ (break) character.

Since these declarations all refer to
the same thing, they must all result in the
same set of attributes. It may be
impossible for the compiler to check all
declarations, particularly if the names are
declared in different procedures, so care
should be t~aken to ensure that different
declarations of the same name with the
EXTERNAL attiibute do have matching
attributes. The attribute listing, which
is available as optional output from these
compilers, helps to check the use of names.
The following example illustrates the above
points in a program:

A: PROC:EmURE;
DECLARE S CHARACTER (20);
DCL SET ENTRY(FIXED DECIMAL(1»,
OUT ENTRY(LABEL);
CALL SET (3);

E: GET LIST (5,M,N);
B: BEGIN;

DECLARE X(M,N), Y(M);
GET LIST (X,Y);
CALL C(X,Y);
C: PROCEDURE (P,Q);

DECLARE P(.,.), Q(.),
S BINARY FIXED EXTERNAL;

5 = 0;
DO I = 1 TO M:
IF SUM (P(I,.» = Q(I)

THEN GO TO B;
S = S+1;
IF S = 3 THEN CALL OUT (E);
CALL D(I);

B: END;
END C;

D: PROCEDURE (N);
PUT LIST ('ERROR IN ROW'

N, 'TABLE NAME'S);
END D;

EmD B;
GO TO E;
END A;

OUT: PROCEDURE (R);
DECLARE R LABEL,

(M,L) STATIC INTERNAL
INITIAL (0),

S BINARY FIXED EXTERNAL,
Z FIXED DECIMAL(1);

M = M+1; S=O;
IE~ M<L THEN STOP; ELSE GO TO R;

SET: ENTRY (Z);
L=:Z;
RE~TURN;

END OUT;

A is an e>~ternal procedure name; its
scope is all of block A, plus any other
blocks where A is declared as external.

S is explicitly declared in block A and
block C. The character string declaration
applies to all of block A except block C;
the fixed binary declaration applies only
within block C. Notice that although D is
called from within block C, the reference
to 5 in the PUT statement in D is to the
character string 5, and not to the S
declared in block C.

N appears as a parameter in block D, but
is also used outside the block. Its
apearance as a parameter establishes an
explicit declaration of N within D since
there is no other declaration of N within
D; the references outside Dcause an
implicit declaration of N in block A.
These two declarations of the name N refer
to different objects, although in this
case, the objects have the same data
attributes, which are, by standard default
, FIXED (15,0), BINARY, and INTERNAL.

X and Yare known throughout B and could
be referred to in block C or D within B,
but not in that part of A outside B.

I
P and Q are parameters, and therefore if

there were no other declaration of these
names within the block, their appearance in
the parameter list would be sufficient to
constitute an explicit declaration.
However, a separate DECLARE statement is
required in order to specify that P and Q
are arrays and it is this that is the
explicit declaration. Note that although
the arguments X and Yare declared as
arrays and are known in block c, it is
still necessary to declare P and Q in a
DECLARE statement to establish that they,
too, are arrays. (The asterisk notation
indicates that the bounds of the parameters
are the same as the bounds of the
arguments.)

I and M are not explicitly declared in
the external procedure A; they are
therefore implicitly declared and are known
throughout A, even though I appears only
within block C.

The second external procedure in the
example has two entry names, SET and OUT.
These are considered to be explicitly
declared with the ENTRY and EXTERNAL
attributes. They must also be declared
explicitly with the ENTRY attribute in
procedure A. Since ENTRY implies EXTERNAL,
the two entry constants 5ET and OUT are
known throughout the two external
procedures.

The label B appears twice in the
program, once as the label. of a begin
block, which is an explicit declaration, as
a label in A. It is redeclared as a label
within block C by its appearance as a
prefix to the END statement. The reference

Chapter 7: Recognition of Names 81

to B in the GO TO statement within block C
therefore refers to the label of the END
statement within block C4 outside block C,
any reference to B would be to the label of
the begin block.

Note that C and 0 can be called from any
point within B but not from that part of A
outside B, nor from another external
procedure. Similarly, since E is known
throughout the external procedure A, a
transfer to E may be made from any point
within A. The label B within block C,
however, can only be referred to from
within C. Transfers out of a block by a GO
TO statement can be made3 but such
transfers into a nested block generally
cannot. An exception is shown in the
external procedure OUT, where the label E
from block A is passed as an argument to
the label parameter R.

The statement GO TO R causes control to
pass to the label E, even though E is
declared within A, and not known within
OUT.

The variables M and L are declared
within the block OUT to be STATIC: their
values are preserved between calls to OUT.

In order to identify the S in the
procedure OUT as the same S in the
procedure C, both have been declared with
the attribute EXTERNAL.

scope of Member Names of External
Structures

When a major structure name is declared
with the EXTERNAL attribute in more than
one block, the attributes of the
corresponding structure members must be the
same in each case, although the
corresponding member ~ need not be
identical. Names of members of structures
always have ~NTERNAL attribute, and
cannot be declared with any scope
attribute. However, a reference to a
member of an external structure, using the
member name known to the block containing
the reference, is effectively a reference
to that member in all blocks in which the
external name is known, regardless of
whether the corresponding member names are
identical. For example:

82

PROCA: PROCEDURE:
DECLARE 1 A EXTERNAL,

2 B,
2 C:

END PROCA:

PROCB: PROCEDURE:
DECLARE 1 A EXTERNAL,

2 BR
2 0:

END PROCB;

In this example, if A.B is changed in
PROCA, it is also changed for PROCB, and

.vice versa; if A.C is changed in PROCA, A.V
is changed for PROCB, and vice versa.

Multiple Declarations and Ambiguous
References

Two or more declarations of the same
identifier internal to the same block
cons.titute a multiple declaration" unless

.at least one of the identifiers is declared
within a structure in such a way that name
qualification can be used to make the names
unique.

TwO or more declarations anywhere in a
program of the same identifier as EXTERNAL

:names with different attributes constitute
,a multiple declaration.

Multiple declarations are in error.

A name need have only enough
qualification to make the name unique.

. Reference to a name is always taken to
apply to the identifier declared in the
innermost block containing the reference.
An ambiguous reference is a name with
insufficient qualification to make the name
unique.

The following examples illustrate both
multiple declarations and ambiguous
references:

DECLARE 1 A, 2 C, 2 0, 3 E;
BEGIN;
DECLARE 1 A, 2 B, 3 C, 3 E;
A.C = D.E:

. In this example, A4C refers to C in the
inner block; D.E refers to E in the outer
block.

DECLARE 1 A, 2 B, 2 B, 2 C, 3 0, 2 0;

In this example, B has been multiply
declared. A.D refers to the second 0,
since A.D is a complete qualification of

. only the second 0: the first 0 would have
to be referred to as A.C.D.

DECLARE 1 A, 2 B, 3 C, 2 0, 3 C:

In this example, A.C is ambiguous because
neither C is completely qualified by this
reference.

DECLARE 1 A, 2 A, 3 A~

In this example. A refers to the first A,
A.A refers to the second A, and A.A.A
refers to the third A.

DECLARE X~

DECLARE 1 Y, 2 X, 3 Z, 3 A,
2 Y, 3 Z, 3 Ai

In this example, X refers to the first
DECLARE statement. A reference to Y.Z is
ambiguous; Y.~l.Z refers to the second Z;
and Y.X.Z refers to the first Z.

Application olf Default Attributes

Every identifier in a PL/I source program
requires a complete set of attributes.
However, the attributes specified in a
DECLARE statement need rarely be the
complete set ()f attributes for the
identifier. Moreover, contextual
declaration Ccln result in only a partial
declaration of an identifier. For each
partially declared identifier the set of
attributes is completed implicitly by the
compiler by application of default rules.

Df:;fault rules which are determined for
the implementations are termed ~tandard
default rules ,; alternative default rules
can be defined by the programmer who wishes
either to modify the standard default
rules, or dev~elop a completely new set of
default rules '. The DEFAULT statement is
used for this purpose. Its use is
described in ii later section of this
chapter.

PROCESSES IN THE APPLICATION OF ATTRIBUTES

Attribute processing by the compiler takes
place in the following order:

1. Defactoring of attributes.

2. Application of the LIKE attribute.

3. Application of ALIGNED or UNALIGNED
attributes to structure members.

4. Establishment and application of
explicit declarations.

5. Establishment and application of
contextuial declarations.

6. Establishment of implicit
declarations.

1. Application of attributes specified in
the DEFAULT statements (if present),
for explicitly, contextually, and
implicitly declared identifiers; then
application of standard default
attributes.

8. Resolution of identical identifiers,
including identifiers used in
attributes, or declared in different
blocks of a procedure.

From this it should be seen that
attributes applied by default cannot
override attributes of the same class
applied to an identifier by explicit or
contextual declaration. Further, any
attributes applied by default are largely
dependent on attributes already applied.
This is fundamental to understanding the
use of the DEFAULT statement.

APPLICATION OF STANDARD DEFAULTS

Standard default rules are applied for a
class of attributes when an attribute of a
particular class, such as scope, scale,
base, or mode, etc., has not been applied
either by explicit or contextual
declaration. A summary of the standard
defaults for file attributes appears in
chapter 10, -Input and Output.- A summary
of standard default assumptions for both
problem and program control data are given
below. A complete de~cription of standard
default assumpti~ns is given in sectioD I,
-Attributes.-

Problem Data

If the problem data is not known to be
either of character or of arithmetic type,
arithmetic type is assumed.

Arithmetic Data: The standard defaults
vary according to the information specified
for the data:

1. If an arithmetic data item is
partially specified in an explicit

Chapter 1: Recognition of Names 83

declaration, the attributes assumed by
default are:

Default
Explicit attributes
declarations assumed

BINARY REAL, FLOAT
DECIMAL REAL, FLOAT
FIXED REAL, DECIMAL
FLOAT REAL, DECIMAL
REAL FLOAT, DECIMAL

FIXED BINARY REAL
FIXED DECIMAL REAL
FLOAT BINARY REAL
FLOAT DECIMAL REAL

REAL FIXED DECIMAL
REAL FLOAT DECIMAL
REAL BINARY FLOAT
REAL DECIMAL FLOAT

Note that if COMPLEX is declared
instead of REAL, the attributes are
the same as for REAL, and are applied
to each of the two parts.

2. If a base but not a scale is
specified, the scale assumed depends
on the presence of a scale factor in
the precision attribute. If there is
a scale factor, FIXED is assumed, if
there is not, FLOAT is assumed.

For example:

DCL A BINARY(5),
B BINARY(5,2):

The assumed attributes for A are REAL
fLOAT: for B, they are REAL FIXED.

3. If mode, scale, and base are not
specified by a DECLARE or DEFAULT
statement, the attributes assumed
depend on the initial letter of the
identifier.

Default
Initial attributes
letter assumed

$,#,&,A - H REAL FLOAT DECIMAL

I - N REAL FIXED BINARY

o - Z REAL FLOAT DECIMAL

A value returned from a function
reference can have default rules applied to
determine its base, scale, and mode.
Default attributes for a returned value are
obtained cy applying default rules to the
function name as if it were an arithmetic
identifier.

84

Precision of arithmetic data: Standard
default precisions for arithmetic data are:

~ttributes

FIXED BINARY

FIXED DECIMAL

FLOAT BINARY

FLOAT DECIMAL

Precision

(15,0)

(5,0)

(21)

(6)

Other attributes of arithmetic data: The
assumed attributes are ALIGNED, and
AUTOMATIC if INTERNAL, or STATIC if
EXTERNAL.

string data: If the length of a character
or cIt string is undefined, a length of 1
is assumed. The attributes UNALIGNED" and
AUTOMATIC if INTERNAL, or STATIC if
EXTERNAL, are assumed.

Structures and structure members:
Level-one structures are assumed AUTOMATIC
if INTERNAL, and STATIC if EXTERNAL. Minor
structures and structure members cannot be
declared to have storage or scope
attributes.

Arraxs and data elements: UNALIGNED is
assumed for data elements of string or
picture type. ALIGNED is assumed for all
other data types. scope and storage depend
on the data type.

program Control Data TYEes

~: An entry constant declared in a
DECLARE statement, or as a statement'prefix
on a PROCEDURE or ENTRY statement, is
assumed EXTERNAL. An entry variable is
assumed INTERNAL.

LABEL, POINTER, OFFSET, AREA, EVENT, TASK:
Identifiers declared with anyone of these
attributes are assumed ALIGNED, and
AUTOMATIC if INTERNAL, STATIC if EXTERNAL.
If the size is not specified for an area
variable, the default size of 1000 bytes is
applied.

DEFAULT Statement

The function of the DEFAULT statement is to
give the programmer control over the
default attributes assigned to identifiers.
The DEFAULT statement cannot be used to
override the attributes assigned to
identifiers by explicit or contextual
declarations.

The DEFAUI~T statement can be used to
modify the standard default rules or to
specify a complete set of
programmer-defined default rules. It can
specify attributes for identifiers whose
attribute sets are not complete after

I explicit, i.mplicit, or contextual
declaration, for the descriptors in entry
declarations, and for the attributes in the
RETURNS option of PROCEDURE and ENTRY
statements. Standard default rules can be
restored aftE!r p'rogrammer-defined defau~t
rules have bE!en established in a program.

A simplified general form of the DEFAULT
statement is as follows:

DEFAULT

{
RANGE({identifierJI{letter:letterJI{*J)}
DESCRIPTORS
[attribute-specification];

RANGE Option:: Th,e RANGE option specifies
the identifiers to which the associated
default rules are to be applied. The range
can be specij:ied as either two letters
separated by a colon, or as a single
identifier. For example, the option:

RANGE (A:: J) •••

applies to all identifiers with initial
letters in the range A through J. The
option:

RANGE(ABC) •••

applies to all identifiers with the initial
three letters 'ABC' such as ABC, ABCD, and
ABC DE'.

The RANGE option can also be specified
as:

RANGE (*)1

whereby all possible initial alphabetic
characters I' from A through Z, and the
characters $v ~, and # are specified.

DESCRIPTORS pption: The DESCRIPTORS option
specifies that th~ associated default rules
are to be applied to non-null parameter
descriptors.

Attribute Specification: The attribute
specification is a list of attributes from
which selected attributes are applied to
identifiers in the specified range.
Attributes in the list may appear in any
order and mU~3t be separated by blanks.

Only those attributes that are necessary
to complete the declaration of a data item
are taken from the list of attributes. If
the list does not supply all the required
attributes, then standard default

attributes are applied. Therefore,
specification of any attribute that is a
standard default is unnecessary. For
example:

DEFAULT RANGE(T) POINTER;

This means that any identifier that begins
with the letter T is a pointer. The
complete list of attributes that apply to
these identifiers is POINTER, AUTOMATIC,
INTERNAL, and ALIGNED.

Attributes that conflict when applied to :
a data item do not necessarily conflict
when they appear in an attribute
specification. For example:

DEFAULT RANGE(S) BINARY VARYING;

This means that any identifier that begins
with the letter S and is declared
explicitly with the BIT or CHARACTER
attribute will receive the VARYING
attribute; all others (that are not
declared explicitly or contextually as
other than arithmetic data) will receive
the BINARY attribute.

The VALUE option is used within the
attribute specification to specify
attributes that are represented by a
decimal integer constant or an expression.
These are the attributes length, size~ and
precision. For example:

DEFAULT RANGE(*) VALUE(AREA(2000»;

This statement gives a default size of 2000
to all area variables. The dimension
attribute can be specified directly in an
attribute specification provided it appears
first in the list.

Example 1:

Assume that the following ranges of
initial letters are to correspond to the
attributes given:

Initial letters Attributes reguired

A - D REAL FLOAT DECIMAL

E - H REAL FLOAT BINARY

I - N REAL FIXED BINARY

o - Z REAL FIXED DECI~AL

The precisions to be assumed are the
default precisions for these
implementations. A DEFAULT statement to
establish these additional default rules
is:

DEFAULT RANGE(E:H) BINARY,
RANGE(O:Z)FIXED;

Chapter 7: Recognition of Names 85

In this statement additional default
rules for two ranges of initial letters are
specified. The standard default rules for
identifiers with initial letters outside
the ranges E - Hand 0 - Z are unchanged.

Example 2:

A DEFAULT statement can specify that all
implicitly-declared data has the same
attribute.

DEFAULT RANGE (*) PICTURE '99999';

This statement causes all
implicitly-declared identifiers to be
assumed numeric character type with the
attributes REAL PICTURE '99999'.

If values other than the standard
defaults are required, the argument of the
VALUE option should always contain an
attribute to qualify the precision, string
length, or area size for a particular
default attribute. For example:

a. DEFAULT RANGE (S:T) CHARACTER
VALUE (CHARACTER (10»:

b. DEFAULT RANGE (*) VALUE (FIXED
BINARY(31),FLOAT DECIMAL(33),
FLOAT BINARY(109), FIXED
DECIMAL(lS»;

The first example specifies that all
implicitly-declared identifiers with the
initial letters Sand T are to receive the
default attribute CHARACTER and a default
string length of ten characters. The
second example specifies that all
identifiers of arithmetic type with
undefined precisions will have the
precisions as defined in the argument to
the keyword VALUE. (In this instance the
precisions specified are the maximum
precisions permitted.)

Note that the only attributes which the
VALUE option can influence are precision,
string length, and area size. Other
attributes in the option, such as CHARACTER
and FIXED BINARY in the above examples,
merely indicate which attributes the value
is to be associated with. Consider the
following example.

DEFAULT RANGE(I) VALUE(FIXED
DECIMAL(8,3»;

I = 1;

If it is not declared explicitly, I will be
given the standard default attributes FIXED
BINARY(15,0). It will not be influenced by
the default statement, beCause this
statement specifies only that the default
precision for FIXED D.ECIMAL identifiers is
to be (8,3).

86

Restoring Standard Defaults

The following statement:

DEFAULT RANGE(*), DESCRIPTORS:

overrides, for all identifiers, any
programmer-defined default rules
established in a containing block. It can
be used to restore standard defaults for
contained blocks.

To restore standard defaults to a
particular identifier, the keyword SYSTEM
can be specified in its DECLARE statement.

Scope of the DEFAULT Statement

The scope of a DEFAULT statement is the
block in which it is specified, and any
blocks contained in that block, except that
if a DEFAULT statement in a contained block
specifies all or part of the range
specified in a DEFAULT statement in a
containing block, the statement in the
contained block overrides the other for the
range that they have in common. For
example:

A: PROC;
DEFAULT RANGE(A:I) FIXED BINARY;

B: PROC;
DEFAULT RANGE(I) DECIMAL;

END A:

In procedure B, DECIMAL overrides BINARY
for identifiers beginning with I, and FIXED
is not inherited. Standard defaults will
be applied for alignment, scope, storage
class, mode, and precision.

A DEFAULT statement in an internal block
affects only explicitly declared
identifiers. This is because the scope of
contextually and implicitly declared
identifiers is determined as if their
declaration were made in a DECLARE
statement immediately following the
PROCEDURE statement o£ the external
procedure in which the name appears.

Factored De~ault Specification

A default specification can be factored.
For example, the following statement:

DEFAULT U~ANGE(A:C) FIXED, RANGE(D:F)
FLOAT) DECIMAL;

I specifies that arithmetic identifiers with
the initial lette.rs A to C receive the
attributes FIXED DECIMAL, and those with
the initial letters D to F receive the
attributes FLOAT DECIMAL.

Pro9rammer-·dE~fined Defaults for Parameter
Descriptors

The DEFAULT statement can be used to
specify attributes for parameter
descriptors. The keyword DESCRIPTORS
designates the list of attributes which
follows it as an attribute specification
for parametelc descriptors. For example:

DEFAuvr DESCRIPTORS BINARY;
DCL X ENTRY (FIXED, FLOAT);

the attributl; BINARY is added to each
parameter descriptor in the list, producing
the equivalent list:

(FIXED BINARY, FLOAT BINARY)

The DESCRIPTORS default attributes are
not applied -to parameters having null
descriptors,,, that is, parameters for which
no attributes are specified in the
parameter descriptor, and whose attributes
must therefore match those of the
corresponding arguments.

Programmer-~efined Default for the RETURNS
Option

'

The default attributes of implicitly
declared values returned from function

procedures are dependent on the entry name
used to invoke the procedure. The DEFAULT
statement can be used to specify such
attributes when the entry name, or the
initial letter of the entry name, is
specified in the DEFAULT statement.

For example, the following statements:

DEFAULT RANGE (X) FIXED BINARY;
X: PROC (Y) ;

would be interpreted as:

X PROC(Y) RETURNS (FIXED BINARY);

Restrictions of the Use of the DEFAULT
Statement

The DEFAULT statement must not specify the
attributes ENTRY, ENVIRONMENT, RETURNS,
LIKE, VARIABLE, or any file attributes
other than FILE. It cannot be used to
specify structuring, although structure
elements can have defaults applied
according to a RANGE specification.

Although the DEFAULT statement may
specify the dimension attribute for
identifiers that have not been declared
explicitly, a subscripted identifier would
be contextually decla~ed with the attribute
BUILTIN. Therefore the dimension attribute
can be applied by default only to
explicitly declared identifiers. For
example:

DEFAULT RANGE (ARRAY) (10,10) FIXED
BINARY;
DCL ARRAY1, ARRAY2;

Both ARRAY1 and ARRAY2 are explicitly
declared two-dimensional arrays of 100
elements, each with the attributes FIXED
and BINARY.

Chapter 7: Recognition of Names 87

Chapter 8: Storage Control

The purpose of this chapter is to describe
how the PL/I programmer can control the
allocation of storage. Allocation is the
process of obtaining storage for a
variable. A generation of a variable
refers to a particular allocation of it.
The four storage classes STATIC, AUTOMATIC,
CONTROLLED, and BASED allow the programmer
to exercise as much control as he requires
for a particular program.

All variables require storage; this
applies both to problem data, such as
string and arithmetic, and to program
control data such as label variables, entry
variables, and file variables. The
declaration of a variable must include a
storage class attribute even if only by
default. The name of a variable is
effectively the address of the variable,
and the attributes specified for a variable
describe the amount of storage required and
how it is to be interpreted. For example:

DECLARE X FIXED BINARY (31,0) AUTOMATIC:

The name X addresses a fullword, i.e., four
bytes, that contains a value to be
interpreted as a fixed-point binary
integer. For static and automatic
variables, this concept is not very
important, but when considering controlled
and, particularly, based variables it is
relevant.

It should be understood that at no point
in a PL/I program does the programmer have
access to the absolute address of a
variable within main storage, because the
allocation of storage for variables is
managed by the compiler. The programmer
does not specify where in main storage the
allocation is to be made~ He can, however,
specify where it is to be allocated
relative to storage already allocated for
instance by allocating based variables in
an area variable.

The degree of storage control that can
be exercised depends on the class of
storage used.

Static Storage

variables declared with the STATIC
attribute are allocated prior to the
execution of a program and remain allocated
until the program terminates. The program
has no control on the allocation of static

88

variables during execution. Programs often
need data that is used whenever the Frogram
is executed. For example, all arithmetic
constants specified in a program are stored
in a manner similar to variables declared
STATIC. The difference is that constants
cannot be changed during program execution
whereas the values of static variables can.
Although static variables can be declared
at any point in a program, they are all
allocated prior to execution. But it is
important to note that static variables
follow normal scope rules for the validity
of references to them. For example:

A:PROC OPTIONS(MAIN);

B:PROC;

DECLARE X STATIC INTERNAL;

END B;

END A;

Although the variable X is allocated
throughout the program, it can be
referenced only within procedure B or any
block contained in B.

If static variables are initialized
using the INITIAL attribute, the initial
values must be specified as constants with
the exception of poin~er variables as noted
below. And any specification of extents,
for instance array bc~nds~ must also be
constants. Thus if static storage is used,
it must be borne in mind that whatever
allocation has been specified when the
program was written will be retained
throughout the execution of the program.
Static storage should be used for all data
that may be referred to by the programmer
at any Foint in a program. A STATIC
pointer or offset variable may be
initialized only ty using the NULL built-in

. function.

All other forms of storage allocation
are dynamic, that is, the storage is
obtained during the execution of the
program. Because of this, the programmer
can exert more control.

Automatic Storage

Automatic variables are allocated on entry
to the block in which they have been
declared. They can be reallocated many
times during the execution of a program.
The programmer controls their allocation by
his design of the block structure of his
program. For example:

A:PROC;

CALL B;

B:PROC;

DECLA,RE X, Y AUTO;

END EI;

CALL B;

Each time pI:ocedure B is invoked, the
variables X and Yare allocated storage,
and when B t.erminates the storage is
released; consequently, the values they
contained are lost. The storage that has
been freed is available for reallocation to
other variables. Thus, whenever a block
(procedure or begin) is active, storage is
allocated for all variables declared
automatic within that block, and whenever a
block is inactive no storage is allocated
for the automatic variables in that block.
Only one allocation of a particular
automatic variable can exist, except for
those procedures that are called
recursively or by more than one task.

Array bounds, string lengths, and area
sizes for amtomatic variables can be
specified as expressions. This means not
only that st~orage can be allocated when it
is required but also that the required
amount of storage can be allocated. For
example:

A:PROC;

DECLAR:E~ N FIXED BIN;

B:PROC;:
DECLARE STR CHAR(N);

The character string STR will have a length
defined by the value of the variable N that
existed when procedure B was invoked.
However, storage is conserved at the
possible expense of speed of execution
because of the extra operations required to
evaluate such expressions.

EFFECT OF RECURSION ON AUTOMATIC VARIABLES

A procedure that can be invoked when it is
already active in the same task is said to
be recursive. The values of variables
allocated. in one activation of such a
procedure must be protected from change by
other activations. This is arranged by
stacking the variables. A stack operates
on a last-in first-out basis; the most
recent generation of an automatic variable
is the only one that can be referenced.
Note that static variables are not affected
by recursion! Thus they are useful for
communication across recursive invocations.
This also applies to automatic variables
that are declared in a procedure that
contains a recursive procedure and to
controlled and based variables. For
example:

A:PROC;
DCL X;

B:PROC RECURSIVE;
DCL Z,

Y STATIC;

CALL B;

END B;
END A;

A single generation of the variable X
exists throughout invocations of procedure
B. The variable Z will have a different
generation for each invocation of procedure
B. The variable Y can be referred to only
in procedure B and will not be reallocated
at each invocation. (The concept of
stacking of variables is also of importance
in the discussion of controlled variables.)

Controlled Storage

Variables declared as CONTROLLED are
allocated tnly when they are specified in
an ALLOCAT statement. The programmer has
individual control over each controlled
variable. Effectively, they. are

Chapter 8: Storage Control 89

independent of the program block structure,
but not completely. The scope of a
controlled variable, when declared
internal, is the block in which it is
declared and any contained blocks. The
declaration of a controlled variable
describes only how much storage will be
required when the variable is allocated and
how it is to be interpreted. For example:

A:PROCi
DCL X CONTROLLED;

CALL Bi

B:PROCi
ALLOCATE Xi

END B;
END Ai

The variable X can be validly referred to
within procedure B and that part of
procedure A that follows the CALL
statement. Any reference to the value of
the variatle before execution of the CALL
statement is in error. Once a controlled
variable has been allocated, it remains
allocated either until a tREE statement
that names the variable is encountered or
until the end of the program. Note that
the scope of a controlled variable may not
be the whole program; this creates a
situation analogous to that for the STATIC
INTERNAL variable described under '"Static
Storage" earlier, i.e., it exists but
cannot be referenced.

The FREE statement frees the storage
allocated fora controlled variable. The
storage can then te re-used for other
allocations.

Generally, controlled variables are
useful when large data aggregates with
adjustable extents are required in a
program. For example:

90

DCL A(M,N) CTLi

GET LIST(M,N);
ALLOCATE Ai
GET LIST(A);

FREE Ai

This program sequence allocates the exact
storage required depending on the input
data and discards the data (and frees its
storage) when no longer required. This
method can te more efficient than the
alternative of setting up a begin block,
because no prologue or epilogue is
required.

ALLOCATE STATEMENT FOR CONTROLLED VARIABLES

A controlled variable can be allocated only
by an ALLOCATE statement. The general form
of the ALLOCATE statement for controlled
variables is:

ALLOCATE [level] identifier [dimension
attribute] [attribute]

[,[level] identifier [dimension
attribute] [attribute]] •••

[INITIAL attribute];

The "identifier" is any variable that has
the CONTROLLED attritute. It can be an
element, array, or structure, but cannot be
subscripted or qualified. permitted
attributes are those that specify
dimensions, the length of strings, and the
size of areas. (Areas are discussed later
in this chapter but in this context they
are simply variables whose storage is
adjustable.) This enatles the programmer
to alter the amount of storage for a
particular generation of a variable. These
attributes are:

dimension
CHARACTER (length)
BIT (length)
AREA(size)

The dimension attribute can appear with
any of the others. For example:

DCl X(20) CHAR(S) CONTROLLED;

ALLOCATE X(2S) CHAR(6);

The attribute values specified in an
ALLOCATE statement always override those
given in the DECLARE statement for the same
variatle. However, the attributes
themselves must agree. Thus the dimension
attribute must s-pecify the same number of
dimensions. As in a DECLARE statement,
element expressions can be used to specify
bounds, lengths, and sizes.

The INITIAL attribute can also be
sFecified in an ALLOCATE statement.

Initial values given in an ALLOCATE
statement override those, if any, given in
a DECLARE st:atement.

FREE STATEMENT FOR CONTROLLED VARIABLES

storage for a controlled variable is freed,
and therefore its value is lost, when:a
FREE state'mE!nt is executed that names :the
variable. The form of the FREE statement
is:

FREE identifier[,ide~tifier] ••• ~

The ftidentifierft has the same restrictions
as in the AI.LOCATE statement ..

If the FFlEE statement names a variable
that has not been allocated, no actioQ is
taken.

Implicit Freeing

If a controlled variable is to remain
allocated until the end of a task, it need
not be explicitly freed by a FREE
statement. All controlled storage is
automatically freed at the termination of
the task in which it was allocated.

MULTIPLE GENERATIONS OF CONTROLLED
VARIABLES

If storage for a controlled variable is
reallocated before being freed the first
generation is preserved, i.e., stacked.
The second generation becomes the current
generation; the first generation cannot be
directly accessed until the current
generation has been freed. This is simila~
to the prolcess described for automatic
variables in a recQrsive procedure. For
controlled variab:4es, however, stacking and
unstacking of variables occur at ALLOCATE
and FREE statements rather than at block
boundaries and are independent of
invocation of procedures within a task.

Although values of successive
generations of a controlled variable are
stacked, values can be obtained from the
most recent generation to help create a new
generation. If, in an ALLOCATE or DECLARE
statement, Cll bound, length, or size is
specified by an expression that contains
references to the variable, the value is
taken from the most recent previous
generation. For example:

DCL X(20)FIXED BIN CTL;

ALLOCATE X;

ALLOCATE X(X(1»;

In the first allocation of X the upper
bound is specified by the DECLARE
statement, i.e., 20.. In the second
allocation the upper bound is specified by
the value of the first element of the first
generation of X.

Asterisk Notation

If, in an ALLOCATE statement, dimensions,
lengths, or sizes are indicated by
asterisks, values are inherited from the
most recent previous generation. For
arrays, the asterisk must be used for every
dimension of the array, not just one of
them. For example:

DCL X(10,20) CHAR(S) CTL;

ALLOCATE X:

ALLOCATE X(10,10);

ALLOCATE X(.,.);

In this example, the first generation of X
has bounds (10,20); the second and third
generations have bounds (10,10). The
elements of each generation of X are all
character strings of length five.

The asterisk notation can also be used
in a DECLARE statement, but has a different
meaning. For example:

DCL Y CHAR(.) CTL,
N FIXED BIN;
N=20;

ALLOCATE Y;

ALLOCATE Y CHAR(N);

This simply means that the length of the
character string Y is to be taken from the

Chapter 8: Storage Control 91

previous generation unless it is specified
in an ALLOCATE statement, in which case Y
is given the specified lengt.h. This allows
the programmer to defer the specification
of the string length until the actual
allocation of storage.

CONTROLLED STRUCTURES

When a structure is controlled, any arrays,
strings, or areas it contains can be
adjustable. For this reason, it is
permissible to describe the relative
structuring in an ALLOCATE statement. For
example:

DCL A CTL,
2 B(-10:10),
2 C CHAR(*) VARYING;

ALLOCATE A,
2 B,
2 C CHAR(S);

. FREE A;

When the structure is allocated, A.B has
the extent -10 to +10 and A.C is a VARYING
character string with maximum length Sand
the value null. When the structure is
freed, only the major structure name is
given. All of a controlled structure must
be freed or allocated; it is an error to
attempt to obtain storage for part of a
structure.

ALLOCATION BUILT-IN FUNCTION

where the allocation and freeing of a
variable depend on flow of control, it is
useful to be able to determine if the
variable has been allocated. The
ALLOCATION built-in function returns a
binary integer value indicating the number
of generations that can be accessed in the
current task for a given controlled
variable. If the variable is not
allocated, the value zero is returned. The
function reference has the form:

ALLOCATION (a)

where a must be a controlled variable.

Besides the ALLOCATION built-in
function, other built-in functions that may
be useful are the array-handling functions
DIM, which determines the extent of a

92

specified dimension of an array, and LBOUND
and HBOUND, which determine the lower and
upper bound respectively of a specified
dimension of a given array. Similarly for
strings, the built-in function lENGTH~
returns the current length of the string.

Based Storage

A based variable is fundamentally different
from all other storage classes in that the
name of a based variable does not identify
the location of a generation in main
storage; a declaration of a based variable
is only a description of the generation,
i.e., the amount of storage required and
how that storage is to be interpreted. The
location of the generation is identified by
a separate variable called a locator
variable. A locator variable is either a
pointer variable or an offset variable.
Offset variables are discussed later in
this chapter in conjunction with area
variables.

Although a declaration for a controlled
variable is also only a description of the
storage, once an ALLOCATE statement has
been executed for the variable, its name
also identifies the location of the
variable. For this reason, it is
impossible to refer to more than one
generation of a controlled variable at a
particular point in a program. In fact,
the ALLOCATE statement can also be used for
a based variable, but because the location
of any generation is identified by an
independent locator variable, it is
possible to refer at any point in a program
to any generation of a based variable by
using an appropriate locator value.

BASED VARIABLES

A declaration of a based variable has the
keyword BASED and, optionally, the name of
a locator variable that can be assumed to
be associated with the based variable. For
example:

DCL X FIXED BIN BASED(P);

For this declaration the value of the
variable P will identify the location of
the variable X, except when the reference
is otherwise explicitly qualified, as
described below.

The association of a pointer variable in
this way is not a special relationship. P
can be used to identify locations of other

based varia,bles and other locators can be
used to identify other generations of the
X.

LOCATOR QUA.LIFICATION

Because a reference to the value of a based
variable consists of two parts" it is a
qualified reference and to .distinguish this
from a reference to a member of a
structure, it is called a locator-qualified
reference. The composite symbol -> (a
minus sign immediately followed by a
greater than sign) represents 'qualified
by' or 'points to'. For example:

P -> X

X must be a based variable and P must be a
locator expression. The reference means:
that generation of X identified by the
value of the locator P. X is said to be
explicitly locator-gualified.

When a based variable is associated with
a locator variable in a declaration, the
programmer need specify only the name of
the based variable in a reference. For
example:

DCL X FIXED BIN BASED(P);

ALLOCATE X;

X = x ~ .. 1;

The ALLOCATE statement sets a value in
the pointer variable P so that the
reference X applies to allocated storage.
The references to X in the assignment
statement are implicitlx locator-gualified
by P. References are explicitly
locator-qualified as follows:

Q->X = Q··>X + 1;

This assignment statement has the same
effect as that of the previous example. A
based variable can be declared without
naming a pointer variable; in this case any
reference tC) the based variable must always
be explicitly locator-qualified.

(Note that PL/I allows a more general
form of locator qualification than is
described here; see "Multiple Locator
Qualificaticm" at the end of this chapter.
However, the general form is not essential
to an understanding of the remainder of
this chapte1: •)

POINTER VARIABLES

A pointer variable is declared contextually
if it appears in the declaration of a based
variable, if it appears as a locator
qualifier, or if it aFpears in the SET
option of an ALLOCATE, LOCATE, or READ
statement. It can also be declared
explicitly a~ in the following example:

DCL Q POINTER;

Because Q is a variable it must have a
storage class; in this case, AUTO~ATIC is
aFplied by default. Note that a pointer
variable is a program control variable and
therefore cannot be manipulated in the same
way as arithmetic values. Pointer
variables can be collected in arrays and
structures.

Pointer Expression

A pointer expression is either a pointer
variable, which can be qualified or
subscripted~ or a function reference that
returns a pOinter value.

A pointer expression can be used in the
following ways:

1. As a locator qualifier, in,association
with a declaration of a based
variable.

2. In a comparison operation, for example
in a IF statement (pointer values can
be compared whether equal or not
equal).

3. As an argument in a procedure
reference.

Setting Pointer Variables

Before a reference is made to a
pointer-qualified variable, the pointer
must have a value. A pointer value is
obtained from any of the following:

1. The NULL built-in function.

2. The ADDR built-in function.

3. A READ or LOCATE statement.

4. An ALLOCATE statement.

All pointer values are originally derived
from one of these three methods. such
values can then be manipulated by

Chapter 8: Storage Control 93

assignment that copies a pointer value to a
pOinter variable; by locator conversion
that converts an offset value to a pointer
value, or vice versa; by passing the
pointer value as an argument in a procedure
reference; and by returning a pointer value
from a function procedure~

AD DR BUILT-IN FUNCTION

The ADDR built-in function returns a
pointer value that identifies the first
byte of a variable. The variable can have
any data type or organization and any
storage class. For example:

P = ADDR(X);

~here P is a pointer variable and X is any
:onnected variable. The argument to the
built-in function can be a subscripted
~ualified reference. For example:

DCL A(3,2) CHARACTER (5) BASED(P),
C(3,2) CHARACTER(5);

P = ADDR(C);
Q = ADDR(A(2,1»;

In this example, the arrays A and C refer
to the same storage. The elements Band
C(2,1) also refer to the same storage.

Notice that when a based variable is
overlaid in this way no new storage is
allocated - the based variable uses the
same storage as the variable on which it is
overlaid (A(3,2) in the example).

This overlay technique can be achieved
by use of the DEFINED attribute, but an
important difference is that for DEFINED
the overlay is permanent. When based
variables are overlaid, the association can
be changed at any time in the program by
assigning a new value to the pointer
variable. Note that although PL/I does not
permit the overlay of variables with
different data types, e.g., overlaying an
integer with a bit string, it is possible
in this implementation. However, it should
be understood that incompatibilities
between the attributes of the based
variable and the attributes of the variable
being overlaid will be detected only when
running under the checkout compiler with
1:.he NOCOMPATIBLE option.

The ADDR built-in function does not
supply any information on the organization
of a variable. Therefore, if the variable
is an aggregate, it should be in connected
storage if it is to be referenced as an

94

entity. For example, if the variable is a
cross-section of an array, the elements
must not be interleaved. Furthermore, in
this implementation, if the variable is a
varying-length string or an area, control
information is an integral part of the
variable. A varying-length string is
prefixed by a two-byte length field, and an
area is prefixed by 16 bytes of control
information. Thus if the ADDR function is
performed on these types of variable, the
pointer value identifies the start of the
control information.

Other rules that apply to the use of the
AD DR function are given in section G,
"Built-in Functions".

BASED VARIABLES AND INPUT/OUTPUT

Based variables can be transmitted using
either stream-oriented or record~oriented
transmission.

In the list-directed form of
stream-oriented transmission, provided the
based variables are locator-qualified
(implicitly or explicitly), they are
treated in the same way as other types of
variable. For example:

GET LIST (P->X);

For data-directed transmission, however,
only a based variable that has been
associated with a locator expression in a
declaration can be transmitted. For
example:

DCL Y BASED(Q), Z BASED;

PUT DATA (Y) ;

The variable Z cannot be transmitted in a
PUT DATA or GET DATA {that is,
data-directed I/O) statement. Chapter 11
discusses the techniques and facilities of
stream-oriented transmission.

Record-oriented transmission provides
two processing modes: move mod"e, which
moves data into or out of an allocated
generation of a variable either directly or
indirectly via a buffer; or, locate mode,
which only moves the data into or out of a
buffer and identifies the storage allocated
within the buffer. Although based
variables can be transmitted using either
mode, they are designed to be used with
locate mode. Based variables are used in
locate mode to describe the contents of a
buffer, and therefore allow data to be
processed while it is in the buffer. Note

that locate mode only applies to SEQUENTIAL
BUFFERED files. Chapter 12,
"Record-Oriented Transmission," discusses
the two modes more fully.

READ with SET Statement

In locate mode, the READ statement has the
form: J

READ FIlLECfile-expression)
SET(element-pointer-variable);

This statement places a record iIi a buffer
and identifies its location by setting the
specified pointer variable. Any based
variable qualified by this pointer variable
describes the contents of the buffer. For
example:

DCL X CHAR(20) BASEDCP),
Y(20) CHAR(1) BASED(P);

READ E'Il~ECIN) SET(P);

In this program segment, a record is read
into a buff:er and the pointer variable P
identifies its location. The record in the
buffer is treated simultaneously by the
based variable X as a fixed-length
charactez:' string and by the based variable
Y as an arl:ay of single characters. Note
that P is declared contextually as a
pointer val:iable and that a reference to X
or Y is implicitly qualified by P.

The next 1/0 operation on the file
Cincluding closing the file) frees the
buffer.

LOCATE St~~

The LOCATE statement complements the READ
with SET statement and is used for output
from a buffer. The form is:

LOCATE based-variable
FILECfile-expression)

[SET (element-pointer-variable)];

This statement allocates storage in a
buffer for a specified based variable. The
SET option need only be specified if the
based variatle has not been associated with
a pointer variable in a declaration.

The LOCATE statement operates
differently from all other transmission
statements. Because the statement sets a
pointer to a storage address, there is
nothing to transmit until values have been
assigned to that storage. The LOCATE
statement transmits the previous record
(i.e., the contents of storage obtained by
a previous LOCATE statement), frees the
storage for that record, and allocates
storage for the next record. The current
record is also transmitted if a WRITE or
CLOSE statement is executed for the same
file. The following example shows the use
of the LOCATE statement:

DCL 1 STR BASEDCP),
2 NAME CHAR(20),
2 RATE FIXED(5.2);

OUTPUT:LOCATE STR FILE(OUT);

I*ASSIGN VALUES TO STR*I

GO TO OUTPUT;

By using locate mode the programmer can
specify that a number of different forms of
record be held in the same file. For
example:

DCL STR1 BASED(P),
2 CODE CHAR(1),
2 X CHAR(30),

1 STR2 BASED(Q),
2 CODE CHAR(1),
2 XeS) FIXED BIN;

READ FILE(IN) SET(P);
IF STR1.CODE= '2' THEN DO;

Q=P;
I=Q->X(1);

END;

In this program segment each based
structure has an element CODE that
identifies the structure. A record is read
and its location is set in P. Depending on
the value of CODE, the value of P is
assigned to Q so that the record can te
interpreted as STR2.

If an element varying-length string is
transmitted using locate mode, the
SCALARVARYING option of the ENVIRON~ENT
attribute must be specified for the file
(see chapter 12, "Record-Oriented
Transmission"). The records will include a
two-byte length prefix.

Chapter S: Storage Control 95

SELF-DEFINING DATA(REFER OPTION)

A self-defining record is one which
contains information about its own fields,
such as the length of a string. A based
structure can be declared so that such data
can be manipulated. String lengths, array
bounds, and area sizes can all be defined
by variables· declared within the structure.
When the structure is allocated (by either
an ALLOCATE statement or a LOCATE
statement), the value of an expression is
assigned to a variable that defines a
length, bound, or size. For any other
reference to the structure, the value of
the defining variable is used.

The REFER option is used in the
declaration of a based structure to specify
that, on allocation of the structure, the
value of an expression is to be assigned to
a variable in the structure and is to
represent the length, bound, or size of
another variable in the structure. The
REFER option has the following general
format:

element-expression REFER
(element-variable)

The value of the element-expression must be
capable of being converted to an integer.
Any variables used as operands in the
expression must not belong to the structure
containing the REFER option.

The element-variable, known as the
object of the REFER option, must be the
name of a member of the structure being
declared. It must not be locator-qualified
or subscripted and it must precede the
member it defines. For example:

DECLARE 1 STR BASED(P),
2 X FIXED BINARY,
2 Y (L REFER (X»,

L FIXED BINARY INITIAL(1000)i

This declaration specifies that the based
structure STR will consist of an array Y
and an element X. When STR is allocated,
the upper bound is set to the current value
of L which is assigned to X. For any other
reference to Y, such as a READ statement
that sets P, the bound value is taken from
X.

Any number of REFER options may be used
in the declaration of a structure provided
that at least one of the following
restrictions is satisfied:

1. All objects of REFER options are
declared at logical level two, that
is, not declared within a minor
structure. For example:

96

DECLARE 1 STR BASED,
2 (M,N),
2 ARR(I REFER (M),

J REFER(N»,
2 Xi

When this structure is allocated, the
values assigned to I and J will set
the bounds of the two-dimensional
arrayARR.

2. The structure is declared so that no
padding between members of the
structure can occur. Section K, "Data
Mapping," describes the rules by which
structures are mapped. For example:

DECLARE 1 STR UNALIGNED BASED (P),
2 B FIXED BINARY~
2 C,

3 D FLOAT DECIMAL,
3 E (I REFER (D»

CHAR(J REFER (E»,
2 G FIXED DECIMAL;

Because this structure has the
UNALIGNED attribute, all items require
only byte alignment. Therefore
regardless of the values of Band D
(the REFER objects) no padding will
occur. Note that D is declared within
a minor structure.

3. If the REFER option is used only once
in a structure declaration,
restrictions 1 and 2 can be ignored
provided that:

a. For a string length or area size,
the option is applied to the last
element of the structure.

b. For an array bound, the option is
applied either to the last element
of the structure or to a minor
structure that contains the last
element. The array bound must be
the upper bound of the leading
dimension. For example:

DCL 1 STR BASED (P),
2 X FIXED BINARY,
2 Y,

3 Z FLOAT DECIMAL,
3 M FIXED DECIMAL,

2 D (L REFER (M»,
3 E (50),
:3 F (20);

Note that the leading dimension of
an array can be inherited from a
higher level. For example, if we
had declared STR(4) in the above
example, the leading dimension
would have been inherited from
STR(4) and so it would not have
been possible to use the REFER
option in D.

This declaration does not satisfy
restrictions 1 or 2; the REFER
object M is declared within a
minor structure and padding will
oc(:ur. However, restriction 3 is
sa1::isfied as the REFER option is
applied to a minor structure that
contains the last element.

If the value of the object of a REFER
option variE~s during the program then:

1 • The stl:ucture must not be freed until
the object is restored to the value it
had when allocated.

2. The stI:ucture must not be written out
while the object has a value greater
than the value with which it was
allocat,ed.

3. The stz'ucture may be written out when
the object has a value equal to or
less than the value it has when
allocated. The number of elements,
the string length, or area size
actually written will be that
indicated by the current value of the
object. For example:

DCL 1 REC BASED (P),
2 N,
2 A (M REFER(N»,

M INITIAL (100);

ALLOCATE REC;

N := 86;

WRITE FILE (X) FROM (REC);

In this example, 86 elements of REC
are written. It would be an error to
attempt to free REC at this point
since N must be restored to the value
it has when allocated (i.e., 100). If
N was assigned a value greater than
100, an error would occur when the
WRITE s'tatement was encountered.

When the value of a refer object has
been changed, the next reference to the
structure causes remapping. For example:

DCL 1 A BASED(P),
2 B,
2 C (I REFER(B»,
2 D,

I INIT(10);
ALLOCATE Ai

B :; 5;

The next reference ·to A after the
assignment to B will cause the structure to
be remapped to reduce the upper bound of C
from 10 to 5, and to allocate to D storage
immediately following the new last element
of C. Although the structure is remapped,
no data is reassigned - the contents of the
part of storage originally occupied £y the
structure A are unchanged. If the
programmer does not take account of
remapping, errors can occur. Consider the
following example, in which there are two
REFER options in the one structure:

DCL 1 A BASED (P),
2 B FIXED BINARY (15,0),
2 C CHAR (11 REFER (B»,
2 D FIXED BINARY (15,0),
2 E CHAR (12 REFER (D»,

(11,12) INIT (10);
ALLOCATE A;

B = 5;

The mapping of A with the original and new
values of B is as follows:

B C D E B=10

B C D I E=5

D now refers to data that was originally
part of that assigned to the
character-string variable C. This data
will be interpreted according to the
attributes of D - that is, as a fixed-point
decimal number - and the value obtained
will be taken to be the length of E.
Hence, the length of E is unpredictable.

LIST PROCESSING

List processing is the name for a number of
techniques to help manipulate collections
of data. Although arrays and structures in
PL/I are also used for manipulating
collections of data, list processing
techniques are more flexible in that they
allow collections of data to be
indefinitely reordered and extended during
program execution. It is not the purpose
here to illustrate these techniques but
simply to show how based variables and
locator variables serve as a basis for this
type Of processing.

A list that has at least one pointer
within each member that identifies the
location of another mem£er in the list is
called a chained or threaded list. The
primary application of the ALLOCATE and
FREE statements is to build these lists.

Chapter 8: Storage Control 97

ALLOCATE STATEMENT FOR BASED VARIABLES

The form of the ALLOCATE statement is:

ALLOCATE based-variable
[IN(area-variable)]
[SET(locator-variable)]
[,based-variable
[IN(area-variable)]
[SET(locator-variable)]] ••• ;

The based variable can be any data type or
organization. The SET option is needed if
the based variable was declared without an
associated pointer variable or if it is
required to leave the pointer that was
declared with the based variable unchanged,
and to set a different pointer to the
generation of the based variable that is
being allocated.

Both based and controlled variables can
be allocated in the same statement.

FREE STATEMENT FOR BASED VARIABLES

The form of the FREE statement is:

FREE [locator-qualifier->]
based-variable [IN(area-variable)]
[,[locator-qualifier->]
based-variable [IN(area-variable)]] ••• ;

A particular generation of a based variable
is freed by specifying a pointer qualifier
in the statement. If a qualifier is
omitted, the pointer variable associated
with the based variable in its declaration
is used; it is an error in this case if a
pointer variable has not been associated
with the based variable.

A FREE statement cannot be used to free
a locate-mode I/O buffer.

Both based and controlled variables can
be freed in the same statement.

MULTIPLE GENERATIONS OF BASED VARIABLES

All current generations of a based variable
can be referred to by specifying

98

appropriate pOinter variables. In list
processing, a number of based variables
with many generations can be included in a
list. Members of the list are chained
together by a pointer in one member
identifying the location of another member.
Note that the allocation of a based
variable cannot specify where in main
storage the variable is to be allocated.
In practice a chain of items may be
scattered throughout main storage. But by
accessing each pointer the next member is
found. A member of a list is usually a
structure that includes a pointer variable.
For example:

DCL 1 STR BASED(H),
2 P POINTER,
2 DATA,

T POINTER;

ALLOCATE STR;
T=H;

NEXT:ALLOCATE STR SET(T->P);
T=T->P;

GO TO NEXT;

In this program segment, a list of
structures is created. The structures are
generations of STR and are linked by the
painter variable P in each generation. The
independent pointer variable T identifies
the previous generation during the creation
of the list. The first ALLOCATE statement
sets the pointer H to identify it.
Ultimately the pointer H identifies the
start, or head, of the list. The second
ALLOCATE statement sets the pointer P in
the previous generation to identify the
location of this new generation. The
assignment statement T=T->P; updates
pointer T to identify the location of the
new generation.

Figure 8.1 shows a diagrammatic
representation of a one-directional chain.

ITEM 1 r-------->ITEM 2 r--------> ITEM 3 r----
r-----------·----... --, I r------------------, I r------------------, I I • ____ J I • ____ J I • ____ J

I Forwards Pointer I I Forwards Pointer I I Forwards Pointer I
.-----------.-------~ .------------------~ .------------------~
I I I I I I
I Data 1 I I Data 2 I I Data 3 I
I I I I I I L ______ ~-----------J L _____ - _______ --___ J L __________________ J

Figure 8.1. Example of one-directional chain

Note that, unless the value of P in each
generation is assigned to a separate
pointer variable for each generation, the
generations of STR can be accessed only in
the order in which the list was created.
For the above example, the following
statements can be used to access each
generation in turn:

T=H;
NXT: T-' >DATA=X:

T=T->P:
GO TO NXT:

NULL BUILT-IN FUNCTION

When a list is created in the way
described, it is necessary to indicate the
end of the list. The NULL built-in
function ret:urns a pointer value that
cannot identify a location in storage.
Thus by sett:ing the pointer in the last
generation in a list to the value of NULL a
positive indication of the end of the list
is given. For example:

T=H;
NXT: IF T->P~=NULL THEN

DO;
T->DATA=X:

T=T->P:
GO TO NXT:
END:

This program segment can be used instead of
the previous example to scan the list; it
is assumed that the pointer P in the final
generation of STR has been set to the value
of NULL.

In general, the value of a NULL built-in
function is used whenever a pointer (or
offset) variable should not identify a
location in storage. Note that the only

way a pointer can acquire the null value is
by assignment of the NULL built-in function
(apart from one special case, namely the
assignment of the value returned by the
ADDR built-in function when passed an
unallocated controlled variable). The
value of a pointer variable that no longer
identifies a generation of a based
variable, for example, when a based
variable has been freed, is undefined.

TYPES OF LIST

The foregoing examples showed a simple list
processing technique, the creation of a
unidirectional list. More complex lists
can be formed by adding other pointer
variables into the structure. If a second
pointer were added, it could be made to
point to the previous generation. The list
would then be bidirectional; from any item
in the list, the previous and next items
could be accessed by using the appro~riate
pOinter value. Instead of the last ~ointer
value being set to the value of NULL, it
can be set to point to the first item in
the list, thus creating a ring or circular
list.

A list need not consist only of
generations of a single based variable.
Generations of different based structures
can be included in a list by setting the
appropriate pointer values. Items can be
added and deleted from a list by
manipulating the values of pointers. A
list can be restructured by manipulating
the pointers, so that the processing of
data in the list may be simplified.

By reducing the amount of movement of
data within main storage, the programmer
can generally achieve a considerable saving
on processing time. Note, however, that
each ~ointer requires four bytes of storage
and any allocated based variable requires
at least eight bytes of storage, even if it
is a bit string of length one.

Chapter 8: Storage Control 99

AREAS

When a based variable is allocated, the
storage is obtained from wherever it is
available. Consequently, a list of
allocated based variables could be
scattered widely throughout main storage.
For internal operations on the list, this
is not significant, because items are
readily accessed using the pointers.
However, if the list is to be transmitted
to a data set, the items would have to be
collected together. Items allocated within
an area variable are already collected and
can be transmitted or assigned as a unit
while still retaining their separate
identities.

It is desirable to identify the
locations of based variables within an area
variable relative to the start of the area
variable. Offset variables are defined for
this purpose. If pointer variables were
used they would be unlikely to be valid
when the area variable were transmitted
back to main storage.

Area Variables

The AREA attribute defines an area of
storage that is to be reserved for the
allocation of based variables. The
declaration of an area variable has the
form:

DCL identifier AREA [(size)]~

The amount of storage to be reserved is
given in bytes~ i.e. the integral value of
"size". If size is not given, a default of
1000 bytes is assumed.

The size of an area is adjustable in the
same way as a string length or an array
bound and therefore it can be specified by
an expression or an asterisk (for a
controlled area or parameter) or by a REFER
option (for a based area). The maximum
size of an area is limited only by the
amount of main storage available to the
program.

In addition to the declared size, an
extra 16 bytes of control information,
which contains such details as the amount
of storage in use, precedes the reserved
size of an area.

The amount of reserved storage that is
actually in use is known as the extent of
the area. The maximum extent is
represented by the area size. Based
variables can be allocated and freed within
an area at any time during execution. This

100

means that the extent of an area varies as
storage is used. Because any based
variable can be allocated within an area,
they could require different amounts of
storage. When a based variable is freed,
the storage it occupied is marked as
available for other allocations. In fact
the implementation maintains a chain of
available storage within an area~ the head
of the chain is held within the 16 bytes of
control information. Inevitably, as based
variables with different storage
requirements are allocated and freed, gaps
will occur in the area when allocations do
not fit available spaces. Thus the extent
of an area may contain allocations that
have been freed but are still significant.
A significant allocation is one that has
not been freed or that has been freed but
has at least one unfreed allocation
following it. When an area has no
significant allocations, the extent is
zero.

Note that based variables are always
allocated in multiples of eight bytes.

No operators, not even comparison, can
be applied to area variables.

Offset Variables

Offset variables are a special form of
pointer used exclusively with area
variables. The value of an offset variable
indicates the location of a based variable
within an area variable relative to the
start of the area. Because the based
variables are identified relatively, if the
area variable is assigned to a different
part of main storage, the offset values are
not invalidated. Note that offset
variables do not preclude the use of
pointer variables within an area. An
offset variable is declared as follows:

DCL identifier
OFFSET[(element-area-variable)];

The association of an area variable with
an offset variable is not a special
relationship; an offset variable can be
associated with any area variable by means
of the POINTER built-in function (see
"Locator Conversion" below). The advantage
of making such an association in
declaration is that a reference to the
offset variable implies reference to the
associated area variable.

Note that the appearance of an area
variable in the declaration of an offset is
a contextual declaration of the area
variable.

Locator Conversion

When an offset variable is used in a
reference, it is implicitly convert~d to a
pointer value; the address value of an
associated area variable is added to the
offset value. Explicit conversion of an
offset to a pointer value is accomplished
using the POINTER built-in function. For
example:

DCL P i='OINTER, 0 OFFSET (A), B AREA;

P = POINTER(O,B);

This statement assigns a pointer value to
P, giving the location of a based variable,
identified l;;y offset 0 in area B. Because
the area variable is different from that
associated with the offset variable, the
programmer must ensure that the offset
value is valid for the different area. It
would be valid, for example, if area A had
been assigned to area B prior to the
invocation of the function.

The OFFSET built-in function complements
the POINTER built-in function and returns
an offset value derived from a given
pointer and area. The given pointer value
must identify the location of a based
variable in the given area.

In practice, these functions need rarely
be used as most conversions are carried out
implicitly.

Offset EXEressions

Because an offset is implicitly converted
to a pointeJ:' value, offset expressions can
be used inte:rchangeably with pointer
expressions. An offset expression can be
used as a locator qualifier, in association
with a declaration of a based variable, in
a comparison. operation, or as an argument
in a procedure reference. Note, however,
that an offset variable cannot be specified
in the SET o'ption of a READ or LOCATE
statement.

ALLOCATE Statement with the IN Option

An offset value is originally obtained
either by conversion of a pointer value or
by the SET option of the ALLOCATE
statement. This form of the ALLOCATE
statement is as follows:

ALLOCATE based-variable
[INCelement-area-variable)]
[SETClocator-variable)];

This statement allocates storage for a
based variable within the specified area.

The variable has an offset relative to
the start of the area, and this offset
value is assigned to the locator variable
specified in the SET option. Conversion
takes place if the locator variable is of
pointer type. Either or both of the
options IN and SET can be implied. For
example:

DCL X BASEDCO),
Y BASEDCP),
A AREA,
o OFFSETCA);

ALLOCATE Xi
ALLOCATE Y INCA);

The storage class of area A and offset 0 is
AUTOMATIC by default. The first ALLOCATE
statement is equivalent to:

ALLOCATE X INCA) SETCO);

The second ALLOCATE statement is equivalent
to:

ALLOCATE Y INCA) SETCP);

The programmer must ensure that all
implications can be resolved. If, for
example, the offset 0 had not been
associated with the based variable X, the
SET option would be required.

When the IN and SET options are
specified rather than implied, it is
permissible to use an offset variable that
has been declared with no associated area.
The area in the SET option may also be

Chapter 8: Storage Control 101

different from the one in the DECLARE
statement, provided it is contained within
that area. For example:

DCL 01 OFFSET(A1),
02 OFFSET,
A2 AREA BASED(P:);

ALLOCATE A2 IN(A1) SET(P);

ALLOCATE X IN(A2) SET(01);
ALLOCATE Y IN(A2) SET(02);

The offset variables 01 and 02 have the
values of the offsets of the variables X
and Y, in, respectively, the areas A1 and
A2.

The following example shows how a list
can be built in an area variable using
offset variables. This example is a
rewrite of the example given in "Multiple
Generations of Based Variables" earlier in
this chapter.

DCL A AREA,
(T,H) OFFSET(A) ,
1 STR BASED(H),

2 P OFFSET(A),
2 DATA;

ALLOCATE STR IN(A);
T=H;

NEXT:ALLOCATE STR SET(T->P);
T=T->P;

GO TO NEXT;

FREE statemen1;- with the IN Option

A based variable allocated within an area
variable can be freed by specifying the
area variable by the IN option:

FREE based-variable
[IN(element-area-variable)];

Multiple freeing of both tased and
controlled variables can be made by the
same FREE statement. When all the current
allocations of variables within an area
variable are to be freed, the EMPTY
built-in function is the most convenient
method.

102

EMPTY Built-in Function

When an area variable is allocated, it
automatically has the empty state, i.e.,
the area extent is zero. The value of the
EMPTY built-in function can be assigned to
an area variable to free all allocations in
the variable. The function reference does
not require arguments but must be given a
null argument list if the name has not been
declared BUILTIN. For example:

DECLARE A AREA,
I BASED (P),
J BASED (Q);

ALLOCATE I INCA), J IN (A);

A = EMPTY 0 ;
/*EQUIVALENT TO:

FREE I IN (A), J IN (A); */

Note that the area variable itself is not
freed., its storage is retained for further
allocations of based variables.

AREA ASSIGNMENT

The value of an area expression can be
assigned to one or more area variables by
an assignment statement. Area-to-area
assignment has the effect of freeing all
allocations in the target area and then
assigning the extent of the source area to
the target area, in such a way that all
offsets for the source area are valid for
the target area. For example:

DECLARE X BASED (0(1»,
0(2) OFFSET (A),
(A,B) AREA;

ALLOCATE X IN (A);
X = 1;
ALLOCATE X IN (A) SET (0(2»;
0(2) ->X = 2;
B = A;

Given this program segment and using the
POINTER built-in function, the references
POINTER (0(2),B)->X and 0(2)->X will
represent the same value allocated in areas
B and A respectively_

If a source area containing no
allocations is assigned to a target area,
the effect is merely to free all
allocations in the target area.

A possible use for area assignment is to
allow for expansion of a list of based
variables bE!yond the bounds of its original
area. When an attempt is made to allocate
a based variable within an area that
contains insufficient free storage to
accommodate it, the AREA condition is
raised (see below). The on~unit for this
condition c()uld be to change the value of a
pointer qualifying the reference to the
inadequate area, so that it pointed to a
different al:ea; on return from the on-unit,
the allocation would be attempted again,
within the new area. Alternatively, the
on-unit could write out the area and reset
it to EMPTY.

AREA ON-conc~

The AREA condition is raised in any of the
following circumstances:

1. When an attempt is made to allocate a
based variable within an area that
contains insufficient free storage for
the allocation to be made.

2. When an attempt is made to perform an
area assignment, and the target area
is too small to accommodate the extent
of the source area.

3. When a SIGNAL AREA statement is
executed.

The ONCODE built-in function can be used
to determine whether the condition was
raised by an allocation, an assignment, or
a SIGNAL statement. On normal return from
the on-unit, the action is as follows:

1. If the condition was raised by an
allocation, the allocation is
re-attempted. If the on-unit has
changed the ~alue of a pointer
qualifying the reference to the
inadequate area so that it points to
another area, the allocation is
re-attempted within the new area.
Note ,that if the on-unit does not
effectively correct the fault, a loop
may result.

2. If the condition was raised by an area
assignment, or by a SIGNAL statement,
execu,tion continues at the point of
interrupt.

If no on-unit is specified, the system will
comment and raise the ERROR condition.

INPUT /'OUTPUT OF AREAS

The area facility is designed to allow easy
input and output of complete lists of based
variables as one unit, to and from RECORD
files. On output, only the area extent,
together with the 16 bytes of control
information, is transmitted (although the
extent does include freed allocations which
are still significant). Thus the unused
part of an area does not take up space on
the data set. Because the extents of areas
may vary, V-format or U-format records
should be used. The maximum record length
required is governed by the area length
(i.e., area size + 16).

MULTIPLE LOCATOR QUALIFICATION

Locator qualification is the association of
one or more locator values with a based
variable to identify a particular
generation of the based variable.
Reference to a based variable can be
explicitly qualified as follows:

element-Iocator-expression->
[based-Iocator-variable->l •••
cased-variable

A number of general rules can ce stated
concerning the use of locator
qualification:

1. Locator qualification is used to
indicate the generation of a based
variable to which the associated
reference applies.

2. If an offset expression or an offset
variable is used as a locator
qualifier, its value is implicitly
converted to a pointer value on each
reference to the based variable.

3. When more than one locator qualifier
is used in a reference, only the
first, or leftmost, can be a function
reference; all other locator
qualifiers must themselves be based
variables. Note, however, that an
entry variable can be based and can
represent a function that returns a
locator value.

4. When more than one locator qualifier
is used, they are evaluated from left
to right.

Reference to a based variable can also
be impiicitly qualified. The locator value
used to determine the generation of a based
variable that is implicitly qualified is
the one declared with the based variable.

Chapter 8: Storage Control 103

Because the locator declared with a based
variable can also be based, a chain of
locator qualifiers can be implied. For
example:

DECLARE (P(10),Q) POINTER,
R POINTER BASED (Q),
V BASED (P(3»,
W BASED (R),
Y BASED;

ALLOCATE R,V,W;

Given this declaration and allocation, the
following are valid references:

1. P(3) -> V

2. V

3. Q -> R -> W

4. R -> W

5. W

References 1 and 2 are equivalent as are
references 3, 4 and 5. Note that any
reference to Y must include a qualifying
locator variable.

104

Levels of Locator Qualification

A pointer that qualifies a based variable
refresents one level of locator
qualification; an offset represents two
levels because it is implicitly qualified
within an area. The number of levels is
not affected by a locator being subscripted
and/or an element of a structure. Under
the oftimizing compiler, the maximum number
of levels of locator qualification allowed
in a reference depends on the available
storage, but it will never be less than
ten; there is no limit under the checkout
compiler. For example:

DECLARE X BASED (P),
P POINTER BASED (Q),
Q OFFSET (A);

Given this declaration the references: X,
P -> X, and Q -> P -> X all refresent three
levels of locator qualification.

Chapter 9: Subroutines and Functions

Introduction,

The block structure of PL/I permits the use
of sUbroutines and programmer-defined
functions. Subroutines and functions are
groups of statements that can:

1. be invoked from different points in a
program to perform the same
frequently-used process.

2. process data passed from different
points of invocation.

3. return control, and in the case of
functions, return a value derived from
the execution of the function, to a
point immediately following the point
of invocation.

Subroutines and functions may be either
internal or external to the invoking block.
Built-in functions are always external
procedures which are permanently maintained
in a PL/I system environment, and are an
integral part of the PL/I language.

The rules given in this chapter for the
use of subroutines and functions depend on
whether the subroutine or function is an
external or internal procedure: this is
because the compiler can determine the
relationship between two procedures from
the procedures themselves when the invoked
procedure is internal to the invoking
procedure. When the invoked procedure is
external the relationship must be given
explicitly in the invoking procedure.
Consequently it is necessary to supply more
information about an external subroutine or
procedure in the invoking procedure to
enable the compiler to produce the required
object progr'am.

A subroutine is a procedure invoked by a
CALL statement or CALL option of an INITIAL
attribute.

A function, either programmer-defined or
built-in, is invoked by the presence of a
'function reference' in an expression. A
function reference is an entry expression
which represents an entry name of a
function. (An entry name is an identifier
which represents a particular entry point
of a procedure.)

I The definitive difference between a
subroutine and a function in PL/I is that a
subroutine does not return data values to
the point of invocation, whereas a function

procedure returns a value to replace the
function reference in the evaluation of the
expression in which the function reference
appears.

Both subroutines and functions can make
use of data known in the invoking block.
There are two methods by which data can be
made available:

1. Data represented by names which are
known in both the invoking block and
the invoked procedure. For
information about the rules for
deciding where a name is known see
chapter 7, "Recognition of Names".

2. Arguments and Parameters: values from
the invoking block can be passed to
the invoked procedure by writing
arguments in an argument list
associated with a CALL statement or
option, or function reference; these
values are made available by
parameters in the invoked procedure.

Parameters are identifiers which
appear in the parameter list of an
invoked entry point. The number of
arguments and parameters must be the
same; the maximum number permitted for
a particular entry point is 64.

A parameter has no storage associated
with it: it is simply a means of
allowing the invoked procedure to
access storage allocated in the
invoking procedure. A reference to a
parameter in a procedure is
effectively a reference to the
corresponding argument. Any change to
the value of the parameter is made to
the value of the argument. However in
certain circumstances a dummy argument
is created and the value of the
original argument is not changed.
These are:

a. When the attribute of an argument
differ from those of the
corresponding parameter. The
value of the original argument is
converted and assigned to a dummy.

b. When only a value is passed as an
argument. For example, when an
argument is a constant.

c. When the argument is an
iSUB-defined array.

Chapter 9: Subroutines and Functions 105

In these cases, a reference to the
parameter is effectively a reference
to the dummy. The dummy and the
parameter initially have the same
value as the original argument, but
subsequent changes to the parameter do
not affect the original argument's
value. storage for dummy arguments is
within that belonging to the invoking
procedure.

Both internal and external subroutines
and functions are normally link-edited, and
loaded into main storage at the same time
as the calling procedure. An external
subroutine or function may, however, be
compiled, link-edited, and loaded
separately from the calling procedure. ~Y
the use of FETCH and RELEASE statements 1n
the calling procedure, the subroutine or
function is allowed to remain on auxiliary
storage until required in the calling
procedure, at which time it is fetched into
main storage; and it may be deleted from
main storage when it is no longer required.
This dynamic loading of external procedures
is described in chapter 6, ·Program
Organizationn•

Entry points of Subroutines and Functions ,

A subroutine or function procedure may have
one or more entry points.

PROCEDURE Statement: The primary entry
point to a procedure is established by the
PROCEDURE statement.

ENTRY Statement: Secondary entry points to
a procedure are established by the ENTRY
statement.

Each PROCEDURE and subsidiary ENTRY
statement can specify its own parameters
and, in the case of function procedures,
returned value attributes,. However, the
environment established on entry to a block
at a PROCEDURE statement is identical to
the environment established when the same
block is invoked at a secondary entry
point. Each entry point has an associated

I
entry name. The length of the name for an
external entry-point to a PL/I procedure is
limited to seven characters.

Entry names are explicitly declared in
the invoking block as· entry constants for
internal procedures by their presence as
prefixes to PROCEDURE or ENTRY statements;
it is an error to declare an internal entry
name in a DECLARE statement. External
entry names must be declared explicitly as
entry constants with the ENTRY attribute.
Entry variables are identifiers with the

(attributes ENTRY and VARIABLE which

106

represent entry constants assigned to them.
A reference to an entry variable is a
reference to its latest assigned entry
constant value.

Use of the ENTRY Attribute

The general form of the ENTRY attribute is:

identifier ENTRY
[(parameter descriptor list)]
[VARIABLE]
[RETURNS (attribute list)]
[OPTIONS (options list)]

The parameter descriptor list is used to
specify the attributes of the parameters
associated with the entry point represented
by the identifier. The parameter
descriptor must provide accurate
information about the attributes of the
parameters so that the compiler can create
the correct dummy arguments. If the
parameter descriptor list is omitted from
an external entry declaration, the compiler
must assume that the attributes of any
arguments match those of the corresponding
parameters. No conversions are performed.
Further information is given under the
heading nparameter Descriptor Listn in this
chapter.

The RETURNS attribute may be given to
specify the attributes of the value
returned by the function procedure.

The OPTIONS attribute is required if the
entry point is in an external function or
subroutine that has been compiled by a
COBOL or FORTRAN compiler. Further
information is given in chapter 19,
nInterlanguage Communications n•

Exit-Points of Subroutines and Functions

The RETURN statement is used to return
control to the point immediately following
the point of invocation; the GO TO statement
is used to transfer control to some other
pOint; and the END statement can also be
used to return control from a subroutine
procedure in the same way as a RETURN
statement. For a function procedure, the
RETURN statement must specify an element
expression whose value is given· to the
function reference in the expression in
which it appears.

RETURNS Attl:ibute and RETURNS Option

The RETURNS attribute specifies for the
invoking block the attributes of the value
to be received from the function procedure.
The RETURNS option specifies for the
function procedure the attributes that a

I value to be returned should have. If the
value does not have these attributes, the
appropriate conversion is performed before
the function relinquishes control and
returns the value.

If the RETURNS option is not specified,
the attribu1~es of the returned value are
assumed by default according to the initial
letters of 1~he entry-point name. The
standard default assumptions are: REAL
FIXED BINARY (15,0) for initial letters in
the range (J[:N) and REAL FLOAT DECIMAL (6)
for the ranges (A:H) and (O:Z) and the
characters $, #, ~.

The RETURNS attribute must not be
specified for an internal entry name
because the compiler can determine the
attributes of the returned value from the
function prc)cedure itself. If it is not
specified for an external entry name or an
entry variable, the compiler assumes
default attributes (determined from the
name of the entry point) for the value
returned from the function. Consequently
the RETURNS attribute and the RETURNS
option must both be given in the situation
when an eJtt4ernai function procedure must
return a value with attributes which cannot
be determined correctly by default. The
attributes in both the RETURNS attribute
and the RETURNS option should agree, since
the value returned by the function will
have the attributes specified in the
option, whereas the invoking procedure
always assumes that the value will have the
attributes specified in the RETURNS
attribute ..

Subroutines

The PL/I st.atements associated with the use
of subroutine procedures are discussed
below.

A subrou'l:.ine is a procedure that usually
requires arguments to be passed to it in an
invoking CA:LL statement. It can be either
an external or an internal procedure. A
reference to such a procedure is known as a
subroutine reference. The general format
of a subrou'l:.ine reference in a CALL
statement or CALL option of an INITIAL
attribute is as follows:

CALI entry-expression
[(argument[,argumentl •••)];

Whenever a subroutine is invoked, the
arguments of the invoking statement are
associated with the parameters of the entry
point, and control is then passed to that
entry point. The subroutine is thus
activated, and execution of the subroutine
procedure can begin.

Upon termination of a subroutine,
control is usually returned to the invoking
block. A subroutine can be terminated by
any of the following statements.

END Statement: Control reaches the final
END statement of the subroutine. Execution
of this statement causes control to be
returned to the CALL statement from which
the sUbroutine was invoked (unless control
passes to another task).

RETU~N Statement: Control reaches a RETURN
statement in the subroutine. This causes
the same normal return caused by the END
statement.

GO TO Statement: Control reaches a GO TO
statement that transfers control out of the
subroutine. (This is not permitted if the
subroutine is invoked by the CALL option of
the INITIAL attribu;te.) The GO TO
statement may specify a label in a
containing block (the label must be known
within the subroutine), or it may specify a
parameter that has been associated with a
label argument passed to the subroutine.
Although this is a valid termination of the
subroutine, it is not normal return of
control, as effected by an END or RETURN
statement.

EXIT Statement: The EXIT statement
encountered in a sutroutine abnormally
terminates execution of that subroutine and
of the task associated with the procedure
that invoked it.

STOP Statement: The STOP statement
encountered in a subroutine abnormally
terminates execution of that subroutine and
of the entire program associated with the
procedure that invoked it.

Use of Subroutines: The following examples
illustrate how a subroutine interacts with
the procedure that invokes it.

Chapter 9: Subroutines and Functions 107

PRMAIN: PROCEDURE;
DECLARE NAME CHARACTER (20),

ITEM BIT(S), OUTSUB ENTRY;

CALL OUTSUB (NAME, ITEM);

END PRMAIN;

OUTSUB: PROCEDURE (A,B);
DECLARE A CHARACTER (20),

B BIT(S);

PUT LIST (A, B) ;

END OUTSUB;

In procedure PRMAIN, NAME is declared as a
character string, and ITEM as a bit string.
The CALL statement in PRMAIN invokes the
procedure called OUTSUB, and the
parenthesized list included in this
procedure reference contains the two
arguments being passed to OUTSUB. The
PROCEDURE statement defining OUTSUB
declares two parameters, A and B. When
OUTSUB is invoked, NAME is associated with
A and ITEM is associated with B. Each
reference to A in OUTSUB is treated as a
reference to NAME and each reference to B
is treated as a reference to ITEM.
Therefore, the PUT LIST (A,B) statement
causes the values of NAME and ITEM to be
written into the stanjard system output
file, SYSPRINT. Note that in the
declaration of OUTSUB within PRMAIN, no
parameter descriptor need be associated
with the ENTRY attribute, since the
attributes of NAME and ITEM match those of,
respectively, A and B.

A name is explicitly declared to be a
parameter by its appearance in the
parameter list of a PROCEDURE or ENTRY
statement. However, its attributes, unless
defaults apply, must be explicitly stated
within that procedure in a DECLARE
statement.

It can be seen that the use of arguments
and parameters provides the means for
generalizing procedures 50 that data whose
names may not be known within such
procedures can, nevertheless, be operated
upon.

" 08

A: PROCEDURE;
DECLARE RATE FLOAT (10), TIME FLOAT(S),

DISTANCE FLOAT(1S), MASTER FILE;

CALL READCM (RATE, TIME, DISTANCE,
MASTER);

READCM: PROCEDURE (w,X,Y,Z);
DECLARE W FLOAT (10), X FLOAT(S),

Y FLOAT(1S), Z FILE;

GET FILE (Z) LIST <W,X,Y):
Y = W*X;
IF Y > 0 THEN RETURN;

ELSE PUT LISTC'ERROR READCM'):
END READCM:
END A;

The arguments RATE, TIME, DISTANCE, and
MASTER are passed to the parameters W, X,
Y, and Z. Consequently, in the subroutine,
a reference to W is the same as a reference
to RATE, X the same as TIME, Y the same as
DISTANCE, and Z the same as MASTER.

Functions

Unlike a subroutine, which is invoked by a
CALL statement or a CALL option, a function
is invoked by the appearance of the
function name (and associated arguments) in
an expression. such an appearance is
called a function reference. Like a
subroutine, a function can operate upon the
arguments passed to it and upon other known
data. But unlike a subroutine, a function
is written to compute a single value which
is returned, with control, to the point of
invocation. This single value can be of
any data type except entry. An example of
a function reference is contained in the
following procedure:

MAINP: PROCEDURE;

GET LIST (A, B, C, Y):

X = Y**3+SPROD(A,B,C);

In the abov_:! procedure, the assignment
statement

x = Y*.3+SPROD(A,B,C);

contains -a reference to a function called
SPROD. The parenthesized list following
the function name contains the arguments
that are being passed to SPROD. Assume
that SPROD has been defined as follows:

SPROD: PROCEDURE (U,V,W);

IF U > V + W
THEN RETURN (0);
ELSE RETURN (U*V*W);

END SPROD;

When SPROD :Ls invoked by MAINP, the
arguments A~ B, and C are associated with
the parameters U, V, and W, respectively.
Since attributes have not been explicitly
declared for the arguments and parameters,
default attributes of FLOAT DECIMAL (6) are
applied to ~:!ach argument and parameter.

During the execution of SPROD, the IF
statement is encountered and a test is
made. If U is greater than V + W, the
statement associated with the THEN clause
is executed;; otherwise, the statement
associated with the ELSE clause is
executed. In either case, the executed
statement is a RETURN statement.

RETURN Stat~:!ment: The RETURN statement is
the usual W<ly by which a function is
terminated and control is returned to the
invoking procedure. Its use in a function
differs somewhat from its use in a
subroutine; in a function, not only does it
return control but it also returns a value
to the point: of invocation. The general
form of the RETURN statement, when it is
used in a function, is as follows:

RETURN (element-expression);
\

The value of the element expression is
returned to the invoking procedure at the
point of im70cation. Thus, for the above
example, SPROD returns either 0 or the
value represented by U*V*W, along with

I control to the invoking expression in
MAINP. The returned value is taken as the
value of the functi6n reference, and
evaluation of the invoking expression
continues ..

GO TO Statement: A function can also be
terminated byexecution of a GO TO
statement. If this method is used,
evaluation of the expression that invoked

the function will not be completed, and
control will go to the designated
statement. As in a subroutine, the
transfer point specified in a GO TO
statement may be a parameter that has been
associated with a label argument. For
example, assume that MAINP and SPROD have
been defined as follows:

MAINP: PROCEDURE;

GET LIST (A,B,C,Y);
X = Y**3+SPROD(A,B,C,LAB1);

LAB1: CALL ERRT;

END MAINP;

SPROD: PROCEDURE (U" V , w, Z) ;
DECLARE Z LABEL;

IF U > V + W
THEN GO TO Z;
ELSE RETURN (U*V*W);

END SPROD;

In MAINP, LABl is explicitly declared to be
a statement label constant by its
appearance as a label for the CALL ERRT
statement. When SPROD is invoked, LABl is
associated with parameter Z. Since the
attributes of Z must agree with those of
LABl, Z is declared to have the LABEL
attribute. When the IF statement in SPROD
is executed, a test is made. If U is
greater than V + W, the THEN clause is
executed, control returns to MAINP at the
statement labeled LABl, and evaluation of
the expression that invoked SPROD is
discontinued. If U is not greater than V +
W, the ELSE clause is executed and a return
to MAINP is made in the normal fashion.
Additional information about the use of
label arguments and label parameters is
contained in the section "Relationship of
Arguments and Parameters" in this chapter.

~: In some instances, a function may be
so defined that it does not require an
argument list. In such cases, the
appearance of an external function name
within an expression will be recognized as
a function reference only if the function
name has been explicitly declared to be an
entry name. See "ENTRY Attribute" in this
chapter for additional information.

Chapter 9: Subroutines and Functions 109

ATTRIBUTES OF RETURNED VALUES

RETURNS Attribute: The RETURNS attribute
is specified in a DECLARE statement for an
external entry name. It specifies for the
invoking block the attributes of the value

I returned by that function. It further
specifies, by implication, the ENTRY
attribute for the name. Unless attributes
for the returned value can be determined
correctly by default, any invocation of an
external function must appear within the
scope of a declaration with the RETURNS
attribute for the entry name.

The general format of the RETURNS
attribute is:

RETURNS (attribute-list)

A RETURNS attribute specifies that within
the invoking procedure the value returned
from an external function procedure is to
be treated as though it had the attributes
given in the attribute list. The word
treated is used because no conversion is
performed in an invoking block upon any
value returned to it. The attributes given

I
in a RETURNS attribute must agree with the
data attributes given in the corresponding
RETURNS option, since the value returned
will have attributes determined from the
RETURNS option.

The RETURNS attribute cannot be given
for an internal procedure. The attributes
of the returned value are determined from
the RETURNS option at the entry point, if
given; otherwise according to default rules
as applied to the identifier of the entry
constant.

RETURNS Option: The RETURNS option is
specified in a PROCEDURE or ENTRY statement
of a function procedure. It specifies the

I
attributes to which the value returned by
the function will be converted before
return.

Generic Entry Names and References

A generic entry name represents a family of
procedure entry points, each member of
which can be invoked by a ~n~ic
reference, that is, a procedure reference
using the generic name in place of the
actual entry name. The member invoked is
determined according to the number and
attributes of the arguments specified in
the generic reference; the member that is
invoked is the first one whose generic
descriptor list matches the arguments both
in number and attributes.

110

A generic name must be declared with the
GENERIC attribute. The general format of
this attribute is as follows:

generic name GENERIC (entry-expression)
WHEN (generic-descriptor-list)

[,entry-expression
WHEN(generic-descriptor-list)] •••);

where generic-descriptor-list is:

([descriptor(,d.scriptorl •••])

Each entry-expression corresponds to one
procedure entry point in the family. The
entry expression can be an entry name or an
expression which represents an entry name.
Each descriptor in the generic-descriptor
list corresponds to a single argument, and
may specify attributes that the
corresponding argument must have in order
that the associated entry name can be
selected. Where no descriptor is required,
it may be either omitted or indicated by an
asterisk. The asterisk form is essential
if the missing descriptor is the only
descriptor. For example, whereas (,)
represents two descriptors (*) represents
one. The generic descriptor list which is
to represent the absence of any argument
takes the form:

•••• ENTRY1 WHEN() •••

An entry expression is chosen from those
specified in a generic declaration by a
process known as generic selection.
Generic selection is performed by comparing
arguments specified in a function reference
or CALL statement with the contents of the
generic descriptor list supplied with each
entry expression in the GENERIC
declaration. Firstly, each generic
descriptor list is checked, in order of
appearance in the declaration to determine
whether it contains the same number of

I descriptors as there are arguments in the
reference to the generic name.

when a generic descriptor list with the
same number of descriptors as arguments is
found, each descriptor is tested with the
qorresponding argument to determine whether

I attributes given in the descriptor are
attributes of the argument. For example,
if a generic descriptor list contains:

••••• (FLOAT,FIXED)

and the corresponding two arguments have
attributes such as DECIMAL FLOAT(6) and
BINARY FIXED(15,0) either explicitly,
contextually, implicitly, or by default,
then each attribute in the .
generic-descriptor list is an attribute of
the corresponding argument and the
~election is successful. However, if
either argument did not have the attributes

in the corresponding descriptor, the
selection process would consider the next
generic membl3r with just two descriptors.
For example consider the following
statement:

DECLARE CAlLC GENERIC
(FXDCAL WHEN (FIXED,FIXED),
l!"LOCAL WHEN (FLOAT, FLOAT),
MIXED WHEN (FLOAT,FIXED»;

This statement defines CALC as a generic
name havinq t.hree members, FXDCAL, FLOCAL,
and MIXED. One of these three function
procedures will be invoked by a generic
reference to CALC, depending on the
characteristics of the two arguments in
that reference. For example, consider the
following statement:

Z=X+CALC(X,Y);

If X and Yare floating-point and
fixed-point, respectively, MIXED will be
invoked.

If all the descriptors are omitted or
consist of an asterisk, the first entry
name with the correct number of descriptors
is selected.

The program is in error if no generic
descriptor list is found to match the
attributes of the arguments to a particular
generic function reference.

Built-in Functions

Besides function references to procedures
written by the programmer, a function
reference may invoke one of a comprehensive
set of pre-defined functions called
built-in functions.

Buil t·-in functions are an intrinsic part
of PL/I. They include not only the
commonly used arithmetic functions but also
other necessary or useful functions related
to language facilities, such as functions
for manipulalting strings and arrays.

Built-in functions are invoked in the
same way t.hat programmer-defined functions
are invoked. However, many built-in
functions can return an array of values,
whereas a programmer-defined function can
return only an element value.

~Q~l Some built-in functions will
actually be compiled as in-line code rather
than as proc:edure invocations.

The use of a built-in function with a
list, such as SUBSTR (X,Y,Z) or
INDEX(A,'B'), etc., is recognized without

further identification being necessary to
establish the identifier as a built-in
function. However, any built-in function
or pseudovariable which does not have a
parenthesized argument list, such as
ONCHAR, ONSOURCE, TIME, etc., must te
either declared explicitly with the
attribute BUILTIN, or s~ecified with a null
argument list (for example TIME(» in the
block in which the identifier is used as a
built-in function.

Built-in function names can be used as
programmer· defined names. Consequently,
ambiguity may occur if a built-in function
reference is used in a tlock that is
contained in another block in which the
same identifier is declared for some other
purpose. To avoid this ambiguity, the
BUILTIN attribute can be declared for a
built-in function name in any block that
has inherited, from a containing block,
some other declaration of the identifier.
Consider the following example.

A: PROCEDURE;

B: BEGIN;
DECLARE SQRT FLOAT BINARY;

C: BEGIN;
DECLARE SQRT BUILT,IN;

END C;

END Bi

END A;

Assume that in external procedure A, SQRT
is contextually declared with the attribute
BUII,TIN. Consequently, any reference to
SQRT would refer to the built-in function
of that name. In B, however, SQRT is
declared to be a floating-point binary
variable, and it cannot be used in any
other way. Finally, in C, SQRT is declared
with the BUILTIN attribute so that any
reference to SQRT will be recognized as a
reference to the built-in function and not
to the floating-point binary variable
declared in B.

Note that a variable having the same
identifier as a built-in function can te
im~licitly declared as an arithmetic
variable by, for instance, its appearance
on the left-hand side of an assignment

Chapter 9: Subroutines and Functions 111

symbol (in an assignment statement, a DO
statement, or a repetitive specification)
or in the data list of a GET statement,
provided that it is neither enclosed within
nor immediately followed by an argument
list. (This also applies to the names
ONCHAR, ONSOURCE, and PRIORITY which are
pseudovariables that do not require
arguments.) For example, if the statement
SQRT = 1 had appeared in begin block B
instead of the DECLARE statement, SQRT
would have been implicitly declared as a
floating-point decimal variable.

A programmer can even use a built·in
function name as the entry name of a
programmer-defined function and, in the
same program, use both the built-in
function and the programmer-defined
function. This can be accomplished by use
of the BUILTIN attribute when the
programmer-defined function is an internal
procedure, and by use of the BUILTIN and
ENTRY attributes when the
programmer-defined function is an external
procedure.

The following example illustrates use of
the BUILTIN attribute in conjunction with
an internal function procedure.

A: PROCEDURE;

SQRT: PROCEDURE (PARAM)
RETURNS (FIXED (6,2»;

DECLARE PARAM FIXED (12);

END SQRT;

X = SQRT(Y);

B: BEGIN;
DECLARE SQRT BUILTIN;

Z = SQRT (P);

END B;

END A;

The use of SQRT as the label of the second
PROCEDURE statement is an explicit
declaration of the identifier as an entry
name. The function reference in the
assignment statement in A thus refers to

112

the programmer-written SQRT function. In
the begin block B, the identifier SQRT is
declared with the BUILTIN attribute.
Consequently, the function reference in the
assignment statement in B refers to the
built-in SQRT function.

For a programmer-written internal
function using the name of a built-in
function any reference to the identifier in
the containing block would be a reference

I to the programmer-written function. In the
above example the attributes of the
returned value are specified in the RETURNS
option of the procedure statement for SQRT.
Since the function procedure is internal,
these .ttributes are known to the calling
procedure.

In the case of a programmer-written
external function procedure using as an
entry name the name of a built-in function,
any procedure containing a reference to
that function procedure name must also
contain an entry declaration of that name;
otherwise a reference to the identifier
would be a reference to the built-in
function. In the above example, if the
begin block B were not contained in A,
there would be no need to specify the
BUILTIN attribute; unless the identifier
SQRT is given attributes other than BUILTIN
(by explicit or contextual declaration), it
refers to the built·-in function. If the
procedure SQRT were an external procedure,
procedure A would need the following
statement to declare explicitly SQRT AS AN
ENTRY NAME, and to specify the attributes
of the values passed to and returned from
the programmer written function procedure.

DCL SQRT ENTR~ (FIXED (12» RETURNS
(FIXED(6,2»;

FORTRAN Library Functions

Library functions, analagous to PL/I
built-in functions, are associated with
FORTRAN compilers. These functions may be
invok~d from a PL/I program by means of
PL/I inter language communication
facilities. The facilities are described
in Chapter 19.

Built-in Subroutines

A PL/I programmer can avail himself of
certain operating system facilities by
using built-in subroutines. These have
entry names that are defined by the
implementation and are invoked by means of
the ·CALL statement. The operating system

facilities and the corresponding entry
names are as follows.

Checkpoint/rE~start (implemented by tlle
optimizing c()mpiler only): PLICKPT,
PLIREST, PLICANC

A CALL statement specifying PLICKPT,
PLIREST, or PLICANC is treated as a null
statement by the checkout comFiler.

sort/merge: PLISRTA, PLISRTB, PLISRTC,
PLISRTD

In additic)n, there is a subroutine,
PLIDUMP, that. provides an edited dump of
main storage" and another, PLIRETC, that
allows the user to set the return code of
his program.

The entry names are known as built-in
~, and can be explicitly or '
contextually declared to have the BUILTIN
attribute. 'rhey are not reserved words.

The use of these subroutines is
described in the following publications:
os PL/I Optimizing Compiler: Programmer's
Guide and os PL(I Checkout Comeiler:
Programmer's GU1de.

Relationship of Arguments and Parameters

When a function or sUbroutine is invoked, a
relationship is established bet~een the
arguments of the invoking statement or
expression and the parameters of the
invoked entry point. This relationship is
dependent uFon whether or not dummy
arguments are created.

DUMMY ARGUMENTS

In the preceding discussions of arguments
and parametE!rS, it is pointed out that the
name of an argument, not its value, is
passed to a subroutine or function.
However, thi.s is not always possible. A
constant, fClr example, has no name: nor
does an opex:ational expression. Therefore,
the compilel: provides storage for such
values and associates the name of the
corresponding parameter with each. These
storage locations are called dummy
argument~. The PL/I programmer should be
aware of their existence because any change
to a paramet~er will be reflected only in
the value 01: the dummy argument and not in
the value 01: the original argument from
which it was constructed.

A dummy argument is always created when
the original argument is any of the
following:

1. A constant.

2. An expression involving operators.

3. An expression in parentheses.

4. A variable whose data attributes are
different from the data attributes
deqlared for the parameter. This does
not apply when an eXFression other
than a decimal integer constant is
used to define the bounds, length or
size of a controlled parameter: the
compiler assumes that the argument and
parameter bounds, length or size
match.·

5. A function reference with an argument
list. .

6. A controlled string or area, or a
string or area with an adjustable
length or size, aseociated with a
non-controlled parameter whose length
or size is a constant.

7. An iSUB-definedarray.

The attributes of a dummy argument
created for an argument to be passed to an
internal procedure are derived as follows:

1. From the attributes declared for the
associated parameter in the internal
procedure.

2. For the tounds of an array, the length
of a string or the size of an area, if
specified by asterisk notation in the
parameter declaration, from the bound,
.length or'size of the argument itself.

In all other cases, a reference to the
argument is passed directly (in effect, the
storage address of the argument is passed).
The parameter becomes identical with the
passed argument: thus, changes to the value
of a parameter will be reflected in the
value of the original argument only if a
dummy argument is not passed.

tIn the case of arguments and parameters
with the PICTURE attribute, a dummy
argument will be created unless the picture
specifications match exactly, after any
repetition factors have been applied. The
only exception is that an argument or
parameter with a + sign in a scaling factor
matches a parameter or argument without the
+ sign.

Chapter 9: Subroutines and Functions 113

}O~NTRY ATTRIBUTE

The ENTRY attribute is used to identify the
entry name of an external procedure. The
use of the ENTRY attribute to identify the
entry constant of an internal procedure is

I invalid; its use to identify each entry
point of an external procedure is
mandatory. The general form of the ENTRY
attribute is described in "Use of the ENTRY
Attribute", earlier in this chapter.

Note that the format allows the keyword
ENTRY to be specified without an
accompanying parameter descriptor list when
used to identify a function entry name that
does not require arguments, or when the
arguments and parameters match. The
parameter descriptor list must be specified
with an ENTRY attribute that identifies the
entry name of an external procedure if
arguments do not match parameters. The use
of the attribute VARIABLE in an entry
declaration establishes the identifier as
an entry variable. An entry variable
represents an entry constant after
assignment of the entry constant to the
entry variable. If an entry variable is
used in a function reference or CALL
statement to invoke an entry point to which
arguments are to be passed, the entry
variable should be declared with a
parameter descriptor list which specifies
the attributes of the parameters of the
entry point, otherwise erroneous arguments
may be passed.

far!meter Descriptor List~

Each set of attributes, or descriptor, in
the parameter descriptor list in the ENTRY
attribute specification corresponds to one
parameter of the subroutine or function
invoked, and if given, specifies the
attributes of that parameter. The
attributes of an individual parameter are
separated by blanks to form a parameter
descriptor for each parameter; parameter
descriptors in a parameter descriptor list
are separated by commas. In general, if
the attributes of an argument do not agree
with those of its corresponding parameter
(as specified in a parameter descriptor
list), a dummy argument is constructed for
that argument if conversion is possible.
The dummy argument contains the value of
the original argument converted to conform
with the attributes of the corresponding
parameter. Thus, when the subroutine or
function is invoked, it is the dummy
argument that is passed to it.

When a descriptor list is given with the
ENTRY attribute, each parameter of the

114

subroutine or function must be accounted
for. When the attributes of the argument
and parameter match, the descriptor may be
either omitted or indicated by an asterisk,
but commas delimiting the descriptors must
not be omitted. For example, the
statement:

DECLARE SUBR ENTRY (FIXED"FLOAT)i

specifies that SUBR is an entry point that
has three parameters: the first and third
have the attributes FIXED and FLOAT,
respectively, while the attributes of the
second are assumed to be the same as those
of the argument being passed. Since the
attributes of the second parameter are not
stated, no assumptions are made.

As mentioned earlier, the ENTRY
attribute may be specified without a
parameter descriptor list. It is used in
this way to indicate that the associated
identifier is an entry name. such an
indication is necessary if an identifier is
not otherwise recognizable as an entry
riame~ that is, if it is not explicitly
declared to be an entry name by its
aFpearance as a label of a PROCEDURE or
ENTRY statement.

Therefore, if a reference is made to an
entry name in a block in which it does not
aFpear in this way, the identifier must be
given the ENTRY attribute explicitly. For
example, assume that the following has been
specified:

A: PROCEDURE;

PUT LIST (RANDOM);

END Ai

Assume also that A is an external procedure
and RANDOM is an external function that
requires no arguments and returns a random
number. As the procedure is shown above,
RANDOM is not recognizal::le within A as an
entry name, and the result of the PUT
statement therefore is undefined. In order
for RANDOM to be recognized within A as an
entry name, it must be declared to have the
ENTRY attril::ute. For example:

A: PROCEDURE;
DECLARE RANDOM ENTRY;

PUT LIST (RANDOM);

END A;

Now, RANDOM is recognized as an entry name,
and the a~pearance of RANDOM in the PUT
statement cannot be interpreted as anything
but a function reference. Therefore, the
PUT statement results in the output
transmission of the random number returned
by RANDOM.

Note: The ENTRY attribute is implied -­
~herefore need not be stated explicitly
-- for an identifier that is declared in a
DECLARE statement to have one of the entry
name attributes RETURNS, OPTIONS,
REDUCIBLE, or IRREDUCIBLE.

Entry Expressions as Arguments

When an entry name is specified as an
argument of a function or subroutine
reference, one of the following applies:

1. If the entry expression argument, call
it M, is specified with an argument
list of its own, it is recognized as a
function reference; M is invoked. and
the value returned by M effectively
replaces M and its argument list in
the containing argument list. For
example:

CALL A (M (B)) ;

This passes the value returned by the
function procedure M.

If the entry expression argument
appears with a,null argument list, it
is taken to be a function reference
with no arguments. For example:

CALL A (B ()) ;

This passes, as the argument to
procedure A, the value returned by the
function procedure B.

2. If the entry expression argument has
no argument list and appears within
parenthesis, a dummy entry variable is
created. For example:

CALL A ((B)) ;

This passes, as the argument to
procedu~e A, the value of the entry
name B.

3. When a built-in function name or an
entry expression is used without an
argument list as an argument to a
built-in function, the function
specified by the argument is not
invoked provided that the built-in
function will accept an argument of
type ENTRY. If the built-in function
will not accept an entry argument, the
argument is assumed to be a reference
to the value of the function. For
example:

DCL DATE BUILTIN, Z CHAR(2);

Z = SUBSTR (DATE,5,2);

The days field is extracted from the
value returned by the DATE built-in
function

I 4. If the entry expression argument to a
user-defined function appears without
an argument list and neither within an
operational expression nor within
parentheses, the entry expression
itself is passed to the function or
subroutine being invoked. In such
cases, the entry expression is not
taken to be a function reference, even
if it is the name of a function that
does not require arguments. For
example:

CALL A(B);

This passes the entry expression B as
an argument to procedure A. If the
corresponding parameter inA has been
declared with the attribute ENTRY, it
will be given the attribute VARIABLE
by default. If B is an entry
variable, it will be passed to the
parameter in the same way as for any
argument whose attributes match those
of the parameter. If B is an entry
constant a dummy is created and
passed, as for any constant argument.

If an identifier is known as an entry
name and appears as an argument and if
the parameter descriptor for that
argument specifies an attribute other
than ENTRY, the entry name will be
invoked and its returned value passed.
If the value returned has different
attributes from those specified in the
parameter descriptor, conversion is
performed. For example:

Chapter 9: Subroutines and Functions 115

A: PROCEDURE;
DECLARE B ENTRY,

C ENTRY(FLOAT);

x = C(B);

END A;

In this case, B is invoked and its
returned value is passed to C.

Consider the following example:

CALLP: PROCEDURE;
DECLARE RREAD ENTRY,

SUBR ENTRY (ENTRY, FLOAT,
FIXED BINARY, LABEL);

GET LIST (R,S);

CALL SUBR (RREAD, SQRT(R), S,
LABl) ;

LABl: CALL ERRT(S);

END CALI.P;

SUBR: PROCEDURE (NAME f X, J, TRANPT);
DECLARE NAME ENTRY, TRANPT LABEL;

IF X > J THEN CALL NAME(J);
ELSE GO TO TRANPT;

END SUBR;

In this example, assume that CALLP, SUBR,
and RREAD are external. In CALLP, both
RREAD and SUBR are explicitly declared to
have the ENTRY attribute. The explicit
declaration for SUBR is used to provide
information about the characteristics of
the parameters of SUBR. Four arguments are
specified in the CALL SUBR statement.
These arguments are interpreted as follows:

1. The first argument, RREAD, is
recognized as an entry name (because
of the ENTRY attribute declaration).
This argument is not in conflict with
the first parameter descriptor
specified in the ENTRY attribute
declaration for SUBR in CALLP.

116

Therefore, since RREAD is recognized
as an entry name and not as a function
reference, the entry name is passed at
invocation. Since NAME is an ent~y
parameter, it is given the attribute
VARIABLE by default. Since RREAD is a
constant, a dummy entry argument is
created, and this is passed to NAME.

2. The second argument, SQRT(R), is
recognized as a built-in function
reference because of the argument list
accompanying the entry name. SQRT is
invoked, and the value returned by
SQRT is assigned to a dummy argument,
which will be passed to the subroutine
SUBR. The attributes of the dummy
argument agree with those of the
second parameter, as specified in the
parameter attribute list declaration.
When SUBR ~s invoked, the dummy
argument is <'passed to it.

3. The third argument, S, is simply a
decimal floating-point element
variable. However, since its
attributes do not agree with those of
the third parameter, a dummy argument
is created containing the value of S
converted to the attributes of the
third parameter. When SUBR is
invoked, the dummy argument is passed.

4. The fourth argument, LAB1, is a
statement-label constant. Its
attributes agree with those of the
fourth parameter. But since it is a
constant, a dummy argument is created
for it. When SUBR is invoked, the
dummy argument is passed~

In SUBR, four parameters are explicitly
declared in the PROCEDURE statement. If no
further explicit declarations were given
for these parameters, arithmetic default
attributes would be supplied for each.
Therefore, since NAME must represent an
entry name, it is explicitly declared with
the ENTRY attribute, and since TRANPT must
represent a statement label, it is
explicitly declared with the LABEL
attribute. X and J are arithmetic, so the
defaults are allowed to apply.

Note that the appearance of NAME in the
CALL statement does not constitute a
contextual declaration of NAME as a

I built-in procedure. Such a contextual
declaration is made if no explicit
declaration applies. However the
appearance of NAME in the PROCEDURE
statement of SUBR constitutes an explicit
declaration of NAME as a parameter. If the
attributes of a parameter are not
explicitly declared in a complementary
DECLARE statement, arithmetic defaults
apply. consequently, NAME must be
explicitly declared to have the ENTRY

attribute: otherwise, it would be assumed
to be a binary fixed-point variable, and
its use in the CALL statement would result
in an error.

ALLOCATION OF PARAMETERS

Since a parameter has no associated storage
within the invoked procedure, it cannot be
declared to have any of the storage class
attributes STATIC, AUTOMATIC, or BASED. It
can, however, be declared to have the
CONTROLLED attribute. Thus, there are two
classes of parameters, as far as storage
allocation is concerned: those that have
no storage class, i.e., simple parameters,
and those that have the CONTROLLED
attribute, i.e., controlled parameters.

A simple parameter may be associated
with an argument of any storage class.
However, if more than one generation of the
argument exists, the parameter is
associated only with that generation
existing at the time of invocation.

A controlled parameter must always have
a corresponding controlled argument. Such
an argument cannot be subscripted, cannot
be an element of a structure, and cannot
cause a dummy to be created. If more than
one generation of the argument exists at
the time of invocation, the parameter
corresponds to the entire stack of these
generations. Thus, at the time of .
invocation, a controlled parameter
represents the current generation of the
corresponding argument. A controlled
parameter may be allocated and freed in the
invoked procedure, thus allowing the
manipulation of the allocation stack of the
associated argument. A simple parameter
cannot be specified in an ALLOCATE or FREE
statement.,

When no parameter descriptor is given,
the entire stack is passed. In this case,
the parameter may be simple or controlled
and be correspondingly associated with
either the latest generation or the entire
stack.

Parameter Attributes

Parameters cannot be declared with the
attributes DEFINED or BASED. A parameter
may be used as a ~ identifier for
overlay defining and it may be used for
record-oriented transmission only provided
it has the CONNECTED attribute. A
parameter always has the attribute
INTERNAL. It must be a level-one
identifiel= •

Parameter Bounds, LengthsL-2nd Sizes

If an argument is an array, a string, or an
area, the bounds of the array, the length
of the string, or the size of the area must
be declared for the corresponding
parameter. The number of dimensions and
the bounds of an array parameter, or the
length and size of an area or string
parameter, must be the same as the current
generation of the corresponding argument.
Usually, this can be assured simply by
specifying actual numbers for the bounds,
length, or size of the parameter.

If the bounds, length, or size are not
known at the time the subroutine or
function is written, they may be specified
by asterisks, for simple parameters, or
asterisks or expressions for controlled
parameters.

Simple Parameter BoundsL Lengths, and Sizes

When the actual length, bounds, or size of
a simple parameter may be different for
different invocations, they can be
specified in a DECLARE statement by
asterisks. When an asterisk is used, the
length, bounds, or size are taken from the
current generation of the corresponding
argument.

An asterisk is not allowed as the length
specification of a character or bit string
that is an element of an aggregate, if the
corresponding argument is such that a dummy
is created. The string length must be
specified as a decimal integer constant.

Controlled Parameter ~nds, Lengths, and
Sizes

The bounds, length, or size of a controlled
parameter can be represented in a DECLARE
statement either by asterisks or by element
expressions.

Asterisk Notation: When asterisks are
used, length, bounds, or size of the
controlled parameter are taken from the
current generation of the corresponding
argument. Any subsequent allocation of the
controlled parameter uses these same
bounds, length, or size, unless they are
overridden by a different length ~ bounds,
or size specification in t~e ALLOCATE
statement. If no current generation of the
argument exists, the asterisks only
determine the dimensionality of the
parameter, and an ALLOCATE statement in the

Chapter 9: Subroutines and Functions 117

invoked procedure must specify bounds,
length, or size for the controlled
parameter before other references to the
parameter can be made.

Expression Notation: The bounds, length,
or size of a controlled parameter can also
be specified by element expressions. These
expressions are evaluated at the time of
allocation. Each time the parameter is
allocated, the expressions are re-evaluated
to give current bounds , length, or size
for the new allocation. However, such
expressions in a DECLARE statement can be
overridden by a bounds , length, or size
specification in the ALLOCATE statement
itself. For example:

MAIN: PROCEDURE OPTIONS(MAIN);

118

DECLARE (A(20), B(30), C(100),
D(100»CONTROLLED,
NAME CHARACTER (20),
I FIXED(3,0):

ALLOCATE A,B;
CALL SUB1 (A, B);

FREE A,B;

FREE A,B;
GET LIST (NAME, I);
CALL SUB2 (C,D,NAME,I):

FREE C,D;

END MAIN;

SUB1: PROCEDURE (U,V);
DECLARE (U(*), V(*» CONTROLLED;

ALLOCATE U(30), V(40);

RETURN;
END SUBl;

SUB2: PROCEDURE (X~y,NAMEA,N);
DECLARE (X(N),Y(N»CONTROLLED,

NAMEA CHARACTER (*),
N FIXED(3,0);

ALLOCATE X,Y:

RETURN:
END SUB2:

In the procedure MAIN. the arrays A, B, C,
and D are declared with the CONTROLLED
storage class att'ri1:::ute: NAME and I are
AUTOMATIC by default.

When SUB1 is invoked, A and B, which
have been allocated as declared, are
passed. SUB1 declares its parameters with
the asterisk notation. The ALLOCATE
statement, however, specifies bounds for
the arrays: consequently, the allocated
arrays, which are actually a second

I generation of A and B, have bounds
different from the first generation. If no
bounds were specified in the ALLOCATE
statement, the bounds of the first and the

I new generation would l:::e identieal.

On return to MAIN, the first FREE
statement frees the second generation of A
and B (allocated in SUB1 as parameters),
and the second FREE statement frees the
first generation (allocated in MAIN).

When SUB2 is invoked, C and D are passed
to X and Y, NAME is passed to NAMEA~ and I
is passed to N. In SUB2, X and Yare
declared with bounds that depend upon the
value of I (passed to N). When X and Yare
allocated, this value determines the bounds
of the allocated array.

Although NAME (corresponding to NAMEA)
is not controlled, the asterisk notation
for the length of NAMEA indicates that the

I length is to be picked up from the argument
(NAME).

ARGUMENT AND PARAMETER TYPES

In general, an argument and its
corresponding parameter may be of any data
organization and type. However, not all
parameter/argument relationships are so
clear-cut. Some need further definition
and clarification: these are given l:::elow.

If a parameter is an element, i.e., a
variable that is neither a structure nor an
array, the argument must be an element
expression. If the argument is a

subscripted variable, the subscripts are
evaluated be:fore the subroutine or function
is invoked and the name of the Sfecified

I element is passed. If the argument passed
to an external procedure is a constCint, the
attributes of the corresponding parameter
must agree with the attributes indicated by

I
the constant, unless there is a
corresponding parameter descriptor in the
entry declaration.

If a pa:rameter is an array, the argument
I may be an ,array expression or an element

expression. If the argument is an element
expression, the corresponding parameter
descriptor or declaration must specify the
bounds of the array parameter. The bounds
must be specified as decimal integer
constants. This causes the construction of
a dummy array argument, whose bounds are
those of the array parameter. The value of

I the element expression is then assigned to
the value of each element of the dummy
array argument.

If a para.meter is a structure, the
argument must be a structure expression or
an element expression. If the argument is
an element expression, the corresponding
parameter descriptor for an external entry
point must specify the structure
description of the structure parameter
(only level numbers need be used -- see the
discussion of the ENTRY attribute in
section I, "Attributes", for details).
This causes the construction of a dummy
structure al:gument, whose description
matches that~ of the structure parameter.
The value of: the element expression then
becomes the value of each element of the
dummy struc't:ure argument. The relative
structuring of the argument and the
parameter must be the same; the level
numbers need not be identical. The element
val ue must l)e one that can be converted to
conform with the attributes of all the
elementary names of the structure.

If the parameter is an array of
structures, the argument can be the
expression representing an element, an
array, a structure or an array of
structures.

I If a pari:lmeter is a ~, the argument
must be either a label variable or a label
constant. If the argument is a label
constant, a dummy argument is constructed~

If the parameter is an entry , the
argument must be an entry name or a generic
name. If the argument is a generic name
the parameter descriptor (or parameter
declaration, if the invoked procedure is
internal) must give parameter descriptions
to enable generic selection to ce made
before passing an entry. Under the
oftimizing compiler, entry variables passed
as arguments are assumed to be aligned, so
that no dummy argument is created when only
the alignments of argument and parameter
differ. Note that the name of a
mathematical built-in function can be
passed as an argument but no other built-in
function name can be passed.

If a parameter is a ~, the argument
must be a file variable or file constant.

For example:
E: PROCEDURE;
DECLARE F1 FILE;
CA1,L E1 (F1) ;

E1: PROCEDURE(F2);
DECLARE F2 FILE;
CALL E2(F2);

E2: PROCEDURE (F3);
DECLARE F3 FILE;

END E;

The file parameters F1, F2, and F3 all
refer to the same file. Infut/output
on-units for file parameters are discussed
in chapter 14, "Execution Condition
Handling and Program Checkout".

If the parameter is a fixed length
string, and if a dummy argument is not to
be created, then the argument must also be
a fixed length string. Similarly, if a
dummy is not to be created when the
parameter is a varying length string, the
argument must be'a varying length string.
Whenever a varying-length element string
argument is passed to a non-varying element
string parameter whose length is undefined
(i.e. specified by an asterisk), the
current length of the argument is passed to
the invoked procedure. When the argument
is a varying-length string array passed to

Chapter 9: Subroutines and Functions 119

a non-varying undefined-length parameter,
only one length is passed, namely the
maximum length.

If a parameter is a locator of either
pointer or offset type" the argument must
be a locator expression of either type. If
the types differ, a dummy argument is
created. The parameter descriptor of an
offset parameter must not specify an
associated area.

If the parameter is an ~ , the
argument must be an area expression. If
the sizes differ, a dummy argument is
created.

Passing an Argument to the Main Procedure

A single argument can be passed using the
PARM field in the statement for the step

120

executing the PL/I program. See OS PL/I
Optimizing Compiler: Programmer's Guide
and OS PL/I Checkout Compiler:
programmer's Guide. If this facility is
used, the parameter must be declared as a
VARYING character string; the maximum
length is 100, and the current length is
set equal to the argument length at object
time. For exa~ple:

TOM: PROC (PARAM) OPTIONS (MAIN);
DCL PARAH CHAR(100) VARYING;

The value in the PARM field of the EXEC
statement for the execution job step will
he passed to TOM.

Storage is allocated only for the
current length of the argument; the source
program will overwrite adjacent information
if a value greater than the current length
is assigned to the parameter.

Introduction

PL/I includes input and output statements
that enable data to be transmitted between
the internal and external storage devices
of a computer. A collection of data
external 'to a program is called a data set.
Transmission of data from a data set to a
program is termed input, and transmission
of data from a program to a data set is
called outp~.

PL/I inpu't 'and output statements are
concerned with the logical organization of
a data se't and not with its physical
characteristics; a program can be designed
without specific knowledge of the
input/output devices that will be used when
the program is executed. To allow a source
program to deal primarily with the logical
aspects of data rather than with its
physical ox'ganization in a data set, PL/I
employs a symbolic representation of a data
set called a file. A file can be
associated with different data sets at
different times during the execution of a
program.

Two type!s of data transmission can be
used by a PL/I program. In stream-oriented
transmissic1n, the organization of the data
in the data set is ignored within the
program, and the data is treated as though
it actually ~ere a continuous stream of
indi vidua,l data items in character form;
data iS'converted from character form to
internal form on input, and from internal
form to character form on output. In
record-oriented transmission, the data set
is considered to be a collection of
discrete records. No data conversion takes
place during record transmission; on input
the data is transmitted exactly as it is
recorded in the data set, and on output it
is transmitted exactly as it is recorded

,internally.' It is possible for the same
data set to be proce~sed at different times
by either stream transmission or record
transmission; however, all items in the
data set would have to be in character
form.

stream-oriented transmission is ideal
for simple jobs, particularly those that
use punched card input and have limited
output; a minimum of coding is required of

1

1ThiS is not strictly true for ASCII data
sets - see "Information Interchange Codes"
in this chapter.

Chapter 10: Input and Output

the programmer, especially for punched card
input and printed output. Stream-oriented
transmission also allows communication with
the program at execution time from a
terminal, if the program is being run under
the Time Sharing Option. However, compared
with record-oriented transmission,
stream-oriented transmission is less
efficient in terms of execution time
because of the data conversion it involves,
and more space is required on external
storage devices because all data is in
character form.

Record-oriented transmission is more
versatile than stream-oriented
transmission, with regard to both the
manner in which data can be processed and
the types of data set that it can process.
Since data is recorded in a data set
exactly as it appears in main storage, any
data format is acceptable; no conversion
problems will arise, but the programmer
must have a greater awareness of the
structure of his data.

This chapter discusses those aspects of
PL/I input and output that are common to
stream-oriented and record-oriented
transmission, including files and their
attributes, and the relationship of files
to data sets. The next two chapters
describe the input and output statements
that can be used in a PL/I program, and the
various data set organizations that are
recognized in PL/I~

Data Sets

Data sets are stored on a variety of
auxiliary storage media, such as punched
cards, reels of magnetic tape, magnetic
disks, and magnetic drums. Despite their
variety, these media have many common
characteristics that permit standard
methods of collecting, storing, and
transmitting data. For convenience. the
general term volume is used to refer to a

I unit of auxiliary storage, such as a reel
of magnetic tape or a disk pack, without
regard to its specific physical
composition.

The data items within a data set are
arranged in distinct physical groupings

Chapter 10: Input and Output 121

called blocks.2 These blocks allow the data
set to be transmitted and processed in

I

portions rather than being transmitted in
its entirety before any processing is
carried out. For processing purposes, each
block may consist of logical subdivisions
called records, each of which contains one
or more data items. A block can comprise
part of a record, a single record, or
several records. (Sometimes a block is
called a Ehxsical record, because it is the
unit of data that is physically transmitted
to and from a volume, and its logical
subdivisions are called logical records.)

When a block contains two or more
records, the records are said to be
blocked. Blocked records permit more
compact and efficient use of auxiliary
storage. The use of blocked records can
also improve the throughput of a program
wh~re a large number of short records are
to be processed, by reducing the number of
physical input/output operations.

Most data processing applications are
concerned with logical records rather than
blocks. Therefore, the input and output
statements of PL/I generally refer to
logical records; this allows the programmer
to concentrate on the data to be processed,
without being directly concerned about its
physical organization in external storage.

INFORMATION INTERCHANGE CODES

In System/360 and System/370, the standard
code used to represent data, both in main
storage and on auxiliary storage, is EBCDIC
(extended binary-coded-decimal interchange
code). In general, PL/I programs compiled
by the optimizing or checkout compiler use
EBCDIC to record all character data. The
operating system does, however, support the
use of an alternative code, namely ASCII
(American Standard Code for Information
Interchange), to represent data on
auxiliary storage, and such data sets may
be read or created using PL/I. The su~port
is limited to data sets held on magnetic
tape.

Translation between the two codes is
performed by the operating system. Apart

2This discussion has to be slightly
modified for teleprocessing applications,
where the data set is in fact a queue of
messages and the term "block" is not
strictly applicable. However, a message is
similar to a block in that it may consist
of one or more records. Teleprocessing is
discussed in chapter 12, "Record-Oriented
Transmission."

122

from the options specified in the
ENVIRONMENT attribute, the same PL/I
program may be used to handle an ASCII data
set as would be used for a standard EBCDIC
data set. On output, translation from
E~CDIC to ASCII is performed immediately
before data is written from a buffer to
external storage. On input, translation is
performed from ASCII to EBCDIC as soon as a
buffer is filled with data.

In PL/I, only CHARACTER data may be
written onto an ASCII data set. Each
character in the ASCII code is represented
by a seven-bit pattern and there are 128
such patterns. In EBCDIC, each character
has an eight-bit pattern, and there are 256
possibilities. The ASCII set includes a
substitute character (the SUB control
character) that is used to represent EBCDIC
characters having no valid ASCII code. (In
the American National Standards Institute
table, this is the character having the
column 1, row 10 position.) Upon reading
this data, the character would be
translated to the EBCDIC SUB character,
which has the bit pattern 00111111.

Files

To allow a source program to deal primarily
with the logical aspects of data rather
than with its physical organization in a
data set, PL/I employs a symbolic
representation of a data set called a file.
This symbolic representation determines how
input and output statements access and
process the associated data set. Unlike a
data set, however, a file has significance
only within the source program and does not
exist as a physical entity external to the
program.

PL/I requires that an identifier which
represents a file be declared with the FILE
attribute. Such an identifier may either
be a file constant or a file variable. A
file variable is a data item to which a
file constant can be assigned. After
assignment, a reference to the file
variable has the same significance as a
reference to the assigned file constant.
Each data set processed by a PL/I program
must be associated with a file constant
i~entifier.

File constants: The individual
characteristics of each file are described
with keywords called file descriEtion
attributes. The following lists show the
attrIbutes that apply to each type of data
transmission:

§tream- ox'iented Transmission

FILE
STREAM
INPUT
OUTPUT
PRINT
ENVIRONM:E~NT

Record-oriented Transmission

FILE
RECORD
INPUT
OUTPUT
UPDATE
SEQUENTI1U,
DIRECT
TRANSIENT
BUFFERED
UNBUFFERED
BACKWARDS
KEYED
EXCLUSIV]~

ENVIRONMENT

File variables: A file variable is an
identifier that has the attributes FILE and
VARIABLE; it cannot have any of the file
description attributes (except FILE). File
variables can be collected into arrays or
structures. Note that the VARIABLE
attribute can be implied by, for example,
the dimension attribute.

File expre~§!Qn§: A file expression can be
a reference to a file constant, a file
variable, or a function reference which
returns a value with the FILE attribute.

A detailed description of each of these
attributes appears in section I,
"Attributes." The discussions below give a
brief description of each of the file
description attributes and show how these
attributes are declared for a file.

FILE ATTRIBUTE

The FILE attribute indicates that the
associated identifier is a file constant or
variable. For example, the identifier
MASTER is declared to be a file constant in
the following statement:

DECLARE MASTER FILE;

In the following statement, the
identifier ACCOUNT is declared to be a file
variable, and ACCT1, ACCT2, ••• are
declared to be file constants; the file
constants may subsequently be assigned to
the file variable.

DECLARE ACCOUNT FILE VARIABLE,
ACCTl FILE,
ACCT2 FILE,

The following example shows how the
VARIABLE attribute may te implied.

DECLARE PAYREC(10) FILE;

PAYREC(I), where I has a value from 1 to
10, has the attritute FILE by explicit
declaration and the attribute VARIABLE ty
implication of the dimension attritute (10)
in the DECLARE statement.

The attritutes associated with a file
constant fall into two categories:
alternative attributes and additive
attributes. An alternative attribute is
one that is chosen from a group of
attritutes. If no explicit or implicit
decla~ation is given for one of the
alternative attributes in a group and if
one of the alternatives is required, a
default attribute is assumed.

An additive attribute is one that must
be stated explicitly or is implied by
another explicitly stated attribute. The
additive attribute KEYED is implied ty the
DIRECT attritute. The additive attribute
PRINT can be implied by the standard output
file name SYSPRINT. An additive attribute
can never be implied by default.

Note: With the exception of the INTERNAL
ahd EXTERNAL scope attributes, all the
alternative and additive attributes imply
the FILE attribute. Therefor'e, the FILE
attribute need not be specified for a file
that has at least one of the alternative or
additive attributes already specified
explicitly.

ALTERNATIVE ATTRIBUTES

PL/I provides five groups of alternative
file attributes. Each group (except scope,
which is discussed in section I,
"Attributes") is discussed individually.
Following is a list of the groups.

Chapter 10: Input and Output 123

Group Alternative Default
IIE~ Attributes Attribute

Usage STREAM I RECORD STREAM

Function INPUT I OUTPUT I UPDATE INPUT

Access SEQUENTIALIDIRECTI SEQUENTIAL
TRANSIENT

Buffering BUFFERED I UNBUFFERED BUFFERED

Scope EXTERNAL I INTERNAL EXTERNAL

The scope attributes are discussed in
detail in section I, "Attributes."

STREAM and RECORD Attributes
<

The STREAM and RECORD attributes describe
the type of data transmission
(stream-oriented or record-oriented) to be
used in input and output operations for the
file.

The STREAM attribute causes a file to be
treated as a continuous stream of data
items recorded only in character form.

The RECORD attribute causes a file to be
treated as a sequence of records, each
record consisting of one or more data items
recorded in any internal form.

DECLARE MASTER FILE RECORD,
DETAIL FILE STREAM;

INPUT, OUTPUT, and UPDATE Attributes

The function attributes determine the
direction of data transmission permitted
for a file. The INPUT attribute applies to
files that are to be read only. The OUTPUT

I attribute applies to files that are to
create or, in some cases, extend data sets.
The UPDATE attribute (which applies only to
RECORD files) describes a file that is to
be used for both input and output: it
allows records to be inserted into an
existing data set and other records already
in that data set to be altered.

SEQUENTIAL, DIRECT and TRANSIENT Attribute~

The access attributes apply only to a file
with the RECORD attribute, and describe how
the records in the file are to be accessed.

124

The SEQUENTIAL attribute specifies that
records in the data set are to be accessed
in physical sequence or in key sequence
order.

The DIRECT attribute specifies that
records in a data set may be accessed in
any order. The location of the record in
the data set is determined by a
character-string "key"; therefore" the
DIRECT attribute implies the KEYED
attribute. The associated data set must be
in a direct-access volume.

The TRANSIENT attribute applies to files
used for teleprocessing applications. A
TRANSIENT file is associated with a data
set which consists of a queue of messages.
The message queue data set contains
messages originating from and destined for
remote terminals while in transit between a
message control program and the Pl/I
message processing program. The action of
reading a record removes that record from
the data set. Access is sequential, but
the file must have the KEYED attribute
since a key is used to identify the
terminal concerned; a buffer is always
used, and so the file must also have the
BUFFERED attribute. Teleprocessing is
discussed in chapter 12, "Record-Oriented
Transmission."

BUFFERED and UNBUFFER~D Attributes

The buffering attributes apply only to a
file that has either the SEQUENTIAL or
TRANSIENT., and RECORD attributes. The
BUFFERED attribute indicates that records
transmitted to and from a file must pass
through an intermediate internal-storage
area. If BUFFERED is specified4 data
transmission is, in most cases, overlapped
automatically with processing.

The UNBUFFERED attribute indicates that
a record in a data set need not pass
through a buffer but may be transmitted
directly to and from the main storage
associated with a variable. When
UNBUFFERED is specified, data transmission
is not overlapped automatically with

I processing-: the programmer must use the
EVENT option to achieve such overlapping.

~ Specification of UNBUFFERED does not
I preclude the use of buffers. In nearly all

cases, "hidden buffers" are required.
These cases are listed in the discussion of
the BUFFERED and UNBUFFERED attributes in
section I, "Attributes."

ADDITIVE ATTRIBUTES

The additive attributes are:

PRINT

BACKWAB:DS

KEYED

EXCLUSIVE

ENVIRONMENT (option-list)

PRINT Attrii)ute

The PRINT attribute applies only to files
with the STltEAM and OUTPUT attributes. It
indicates that. the file is eventually to be
printed, that is, the data associated with
the file is to appear on printed pages,
although it may first be written on some
other medium. The PRINT attribute causes
the initial byte of each record of the
associated data set to .be reserved for a
printer con1:~rol character.

BACKWARDS A1:.tribute

I The BACKWARDS attribute applies only to
SEQUENTIAl, RECORD INPUT files and only to
data sets on magnetic tape. It indicates
that a file is to be accessed in reverse
order, beginning with the last record and
proceeding through the file until the first
record is accessed.

KEYED Attribute

I The KEYED attribute applies only to files
with the RECORD attribute. It indicates
that records in the file can be accessed
using one of the key options (KEY, KEYTO,
or KEYFROM) of data transmission statements
or of the DELETE statement. Note that the
KEYED attribute does not necessarily
indicate that the actual keys exist on, or
are to be written in, or are to be read
from the data set; consequently, it need

not be specified unless one of the key
options is to be used. The nature and use
of keys is discussed in detail in chapter
12, "Record-Oriented Transmission."

EXCLUSIVE Attribute

When access to a record is restricted to
one task, the record is said to be locked
by that task. The EXCLUSIVE attribute,
which can be specified for DIRECT UPDATE or
INPUT files only, provides a temporary
locking mechanism to prevent one task from
interfering with an operation by another
task. It can be suppressed by the NOLOCK
option on the READ statement. Figure 10.1
shows the effects of various operations on
an EXCLUSIVE file.

The EXCLUSIVE attribute will also lock a
record on a data set that is shared between
two PL/I jobs in a multi-programming
environment. The effect is as for sharing
between two tasks.

ENVIRONMENT Attribute

The ENVIRONMENT att.ribute provides
information that allows the compiler to
determine the method of accessing the data
associated with a file. It specifies the
physical organization of the data set that
will be associated with the file, and
indicates how the data set is to be
handled.

The general format of the ENVIRONMENT
att'ribute is

ENVIRONMENT (option-list)

The ENVIRONMENT attribute can be given in a
file declaration or as an option of the
CLOSE statement. When ENVIRONMENT is
specified in a CLOSE statement, the only
option allowed is LEAVE or REREAD.

The options appropriate to the two typee of
data transmission are described in chapter
11, "Stream-Oriented Transmission," and
chapter 12, "Record-Oriented Transmission,"
both in Part I.

Chapter 10: Input and Output 125

r-----~-~-----~---T--------~---------~-~-~----~-----~------~---.------------------------, I Attempted 1 Current state of Addressed Record 1
1 ~----------------------T-~--------------------T------~--~-------------~ 1 Operation 1 Unlocked 1 Locked by this task ILocked by another task 1
~-----------------+----------------------+----~-----------------+-----------------------~ 1 READ NOLOCK 1 Proceed 1 Proceed 1 Wait for unlock I
.-----------------+-------------~--------+----------------------+-----------------------~ I READ 11. Lock record 1 Proceed 1 Wait for unlock 1
1 12. Proceed 1 1 1
~-----------------+--------~-------------+----------------------+-----------------------~ 1 DELETE/REWRITE 11. Lock record 11. Proceed 1 Wait for unlock 1
1 12. Proceed 12. Unlock- record 1 1
1 13. Unlock1 record 1 , 1
~-----------------+----------------------+----------------------+-----------------------~ 1 UNLOCK 1 No effect I Unlock record 1 No effect 1
~-----------------+----------------------~----------------------~-----------------------~

I I CLOSE FILE IRaise ERROR if there are records locked by another task. otherwise, I
I lunlock all records locked in this task, and proceed with closing. ,
~-----------------+-----------------------------------~--------~-------~----------------~ , Terminate Task ,Unlock all records locked by task. C~ose file, if opened in this taskl

~----~------------+---------------------------~---~ , 1The unlocking occurs at the end of the operation, on completion of anyon-units ,
, entered because o,f the operation (that is, at the corresponding WAIT statement when 1
, the EVENT option has been specified). If the EVENT option has been specified with a 1
1 READ statement, the operation is not completed until the corresponding WAIT statement 1
1 is reached; in the meantime, no attempt to delete or rewrite the record should te 1
1 made. 1 L __ - ___________________________________ - _______ - __ J

Figure 10.1. Effect of operations on EXCLUSIVE files

Opening and Closing Files

Before the data associated with a file can
be transmitted by input or output
statem~nts, certain file preparation
activities must occur, such as checking for
the availability of external storage media,
positioning the media, and allocating
appropriate operating system support. Such
activity is known as opening a file. Also,
when processing is completed, the file must
be closed. closing a file involves
releasing the facilities that were
established during the opening of the file.

PL/I provides two statements, OPEN and
CLOSE, to perform these functions. These
statements, however, are optional. If an
OPEN statement is not executed for a file,
the file is opened automatically before the
first data transmission statement for that
file is executed; in this case, the
automatic file preparation consists of
standard system procedures that use
information about the file as specified in
a DECLARE statement (or assumed from a
contextual declaration derived from the
transmission statement). Similarly, if a
file has not been closed before completion
of the task in which the file was opened,
the file is closed automatically upon
completion of the task.

126

When a file for stream input, sequential
input, or sequential update is opened, the
associated data set is positioned at the
first record. When a BACKWARDS file is
opened, the associated data set is
positioned at the last record.

QPEN Statement

Execution of an OPEN statement causes one
or more files to be opened explicitly. The
OPEN statement bas the following basic
format:

OPEN FILE(file-expression) (option group]
(,FILE(file-expression) (option

group]] ••• ;

The option list of the OPEN statement can
specify any of the alternative and additive
attributes, except ENVIRONMENT, INTERNAL,
and EXTERNAL. Attributes included as
options in the OPEN statement are merged
with those stated in a DECLARE statement.
The same attributes need not be listed in
both an OPEN statement and a DECLARE
statement for the same file, and, of
course, there must be no conflict. Other
options that can only appear in the OPEN
statement are the TITLE option, used to
associate the file with the data set, and
the PAGESIZE and LINESIZE options, used to

specify the layout of a data set. The
TITLE option is discussed below under
-Associating Data Sets with Files," and the
PAGESIZE and LINESIZE options, which apply
only to STREAM files, in chapter 11,
- Stream-ori43nted Transmission." The option
list may precede the FILE (file expression)
s peci fica tic)n.

The OPEN statement is executed by
library routines that are loaded
dynamically at the time the OPEN statement
is executed.. Consequently, execution time
can be reduced if more than one file is
specified ill the same OPEN statement, since
the routines need be loaded only once,
regardless of the number of files being
opened. No1:.e, however, that such multiple
opening may require temporarily more
internal stc)rage than might otherwise be
needed.

For a file to be opened explicitly, the
OPEN statement must be executed before any
of the inpu1:. and output statements listed
below in "Implicit Opening" are executed
for the f1l43.

Implicit O~ning

An implicit opening of a file occurs when
one of the statements listed below is
executed for a file for which an OPEN
statement has not already been executed.
The type of statement determines which
unspecified alternatives are ~pplied to the
file when it is opened.

The following list contains the
statement identifiers and the attributes
deduced from each:

Statement Identifier Attributes Deduced

GET STREAM, INPUT

PUT 'sTREAM, OUTPUT

READ RECORD, INPUT

WRITE RECORD, OUTPUT

LOCATE RECORD, OUTPUT,
SEQUENTIAL, BUFFERED

REWRITE RECORD, UPDATE

DELETE RECORD, UPDATE

UNLOCK RECORD, DIRECT,
UPDATE, EXCLUSIVE

Notes:

1. INPUT and OUTPUT are deduced from READ
and WRITE only if UPDATE has not been
explicitly declared.

2. If a GET statement contains a COPY
option, execution of the GET statement
causes implicit opening of either the
specified file as a STREAM OUTPUT file
or the standard output file SYSPRINT.

An implicit opening caused by one of the
above statements is equivalent to preceding
the statement with ,an OPEN statement that
specifies the deduced attributes.

Merging of Attributes

There must be no coriflict between the
attributes specified in a file declaration
and the attributes merged as the result of
opening the file. For example, the
attributes INPUT and UPDATE are in
conflict, as are the attributes UPDATE and
STREAM.

After the attributes are merged, the
attribute implications listed below are
applied prior to the application of the
default attributes discussed earlier.
Implied attributes can also cause a
conflict. If a confiict in attributes
exists after the application of default
attributes, the UNDEFINEDFILE condition is
raised.

Following is a list of merged attributes
and attributes that each implies after
merging:

Merged Attributes

UPDATE

SEQUENTIAL

DIRECT

BUFFERED

UNBUFFERED

PRINT

BACKWARDS

KEYED

EXCLUSIVE

Implied Attributes

RECORD

RECORD

RECORD, KEYED

RECORD, SEQUENTIAL

RECORD, SEQUENTIAL

OUTPUT, STREAM

RECORD,
SEQUENTIAL,
INPUT

RECORD

RECORD

The following two examples illustrate

I attribute merging for an explicit opening
using a file constant and a file variable.

Chapter 10: Input and Output 127

I File constant:

DECLARE LISTING FILE STREAM;

OPEN FILE(LISTING) PRINT;

Attributes after merge due to execution of
the OPEN statement are STREAM and PRINT.
Attributes after implication are STREAM.
PRINT, and OUTPUT. Attributes after
default application are STREAM, PRINT,
OUTPUT, and EXTERNAL.

File variable:

DECLARE ACCOUNT FILE VARIABLE,
(ACCT1,ACCT2, •••) FILE

OUTPUT;

ACCOUNT = ACCT1;
OPEN FILE(ACCOUNT) PRINT;

ACCOUNT = ACCT2;
OPEN FILE(ACCOUNT) RECORD UNBUFFERED;

The file ACCT1 has been opened with
attributes (by explicit and implicit
declaration) STREAM, EXTERNAL, PRINT, and
OUTPUT. The file ACCT2 has been opened
with attributes RECORD, EXTERNAL, OUTPUT,
SEQUENTIAL, and UNBUFFERED.

The following example illustrates implicit
opening.

DECLARE MASTER FILE KEYED INTERNAL
ENVIRONMENT (INDEXED F
RECSIZE(120) KEYLEN(S»;

READ FILE (MASTER) INTO
(MASTER RECORD) KEYTO(MASTER_KEY)i

Attributes after merge due to the opening
caused by execution of the READ statement
are KEYED, INTERNAL, RECORD, and INPUT.
Attributes after implication are KEYED,
INTERNAL, RECORD, and INPUT (no additional
attributes are implied). Attributes after
default application are KEYED, INTERNAL,
RECORD, INPUT, SEQUENTIAL, and BUFFERED.

Associating Data Sets with Files

With batch processing under the OS, the
association of a file with a specific data
set is accomplished using job control
language, outside the PL/I program. At the

128

time a file is opened, the PL/I file name
is associated with the name (ddname) of a
data definition statement (DD statement),
which is, in turn, associated with the name
of a specific data set (dsname). Note that
the direct association is with the name of
a DD statement, not with the name of the
data set itself.

A ddname can be associated with a PL/I
file either through the file name or
through the character-string value of the
expression in the TITLE option of the
associated OPEN statement.

If a file is opened implicitly~ or if no
TITLE option is included in the OPEN
statement that causes explicit opening of
the file, the ddname is assumed to ce the
same as the file name. If the file name is
longer than eight characters, the ddname is
assumed to ce composed of the first eight
characters of the file name.

~ Since external names are limited to
seven characters, an external file name of
more than seven characters is shortened
into a concatenation of the first four and
the last three characters of the file name.
Such a shortened name is not, however, the
name used as the ddname in-the associated
DD statement.

Consider the following statements:

1. OPEN FILE(MASTER)i

2. OPEN FILE(OLDMASTER)i

3. READ FILE(DETAIL) ••• ;

When statement number 1 is executed, the
file name MASTER is taken to be the same as
the ddname of a DD statement in the current
job step. When statement number 2 is
executed, the name OLDMASTE is taken to be
the same as the ddname of a DD statement in
the current job step. (The first eight
characters of a file name form the ddname.
Note, that if OLDMASTER is an external
name, it will be shortened by the compiler
to OLDMTER for use within the program.) If
statement number 3 causes implicit opening
of the file DETAIL, the name DETAIL is
taken to ce the same as the ddname of a DD
statement in the current job step.

In each of the above cases, a
corresponding DD statement must appear in
the job stream; otherwise, the
UNDEFINEDFILE condition would be raised.
The three DD statements would appear, in
part, as follows:

1. //MASTER DD DSNAME= •••

2. //OLDMASTE DD DSNAME= •••

3. //DETAIL DD DSNAME= •••

If a file is opened explicitly by an
OPEN statement that includes a TITLE
option, the ddname is taken from the TITLE
option, and the file constant is not used
outside the program. The TITLE option
appears in an OPEN statement in the
following format:

OPEN FIL:E:(file-expr) TITLE(expression);

The expression in the TITLE option is
evaluated and, if necessary, converted to a
character string~ which is assumed to be
the ddname identifying the appropriate data
set. If the character string is longer
than eight characters, only the first eight
characters Cilre used. The following OPEN
statement illustrates how the TITLE option
might be USE!d:

OPEN FILE(DETAIL) TITLE('DETAIL1');

If this statement were executed, there must
be a DO statement in the current job step
with DETAIL1 as its ddname. It might
appear, in part, as follows:

//DETAIL1 DD DSNAME=DETAILA, •••

Thus, the data set DETAILA is associated
with the file DETAIL through the ddname
DETAIL1.

Although a data set name represents a
specific collection of data, the file' name
can, at different times, represent entirely
different data sets. In the above example
of the OPEN statement, the file DETAIL1 is
associated with the data set named in the
DSNAME parameter of the DD statement
DETAIL1. If the file were closed and
reopened, a TITLE option specifying a
different ddname could be used, and then
the file could be associated with a
different data set.

If the file expression in the statement
which explicitly or implicitly opens the
file is not a file constant~ then the CD
statement name must be the same as the
value of the file expression. The
following example illustrates how a DD
statement should be associated with the
value of a file variable.

PRICES = RPRICE;

OPEN FILE(PRICES)i

The DD card should associate the data set
with the file constant RPRICE, which is the
value of the file variable PRICES, thus:

//RPRICE DD DSNAME= •••

Use of the TITLE option allows a
programmer to choose dynamically, at open
time, one among several data sets to be
associated with a particular file name.
Consider the following example:

DECLARE 1 INREC, 2 FIELD 1 ••• ,
2 FILE IDENT CHARACTER(S),

DETAIL FILE INPUT ••• ,
MASTER FILE INPUT ••• ;

OPEN FILE(DETAIL)i

READ FILE (DETAIL) INTO (INREC);

OPEN FILE (MASTER) TITLE(FILE_IDENT);

Assume that the program containing these
statements is used to process several
different detail data sets, each of which
has a different corresponding master data
set. Assume, further, that the first
record of each detail data set contains, as
its last data item, a character string that
identifies the appropriate master data set.
The following DD statements might appear in
the current job step:

//DETAIL DD DSNAME= •••

//MASTER1A DD DSNAME=MASTER1A •••

//MASTER1B DD DSNAME=MASTER1B •••

//MASTER1C DD DSNAME=MASTER1C •••

In this case, MASTER1A, MASTER1B, and
MASTER1C represent three different master
files. The first record of DETAIL would
contain as its last item, either
'MASTER1A', 'MASTER1B', or 'MASTER1C',
which is assigned to the character-string
variable FILE IDENT. When the OPEN
statement is executed to open the file
MASTER, the current value of FILE IDENT
would be'taken to be the ddname, and the
appropriate data set identified by that
ddname would be associated with the file
name MASTER.

Another similar use of the TITLE option
is illustrated in the following statements:

DCL IDENT(3) CHAR(1)
INIT (, A', , B', 'C');

DO I = 1 TO 3;
OPEN FILE(MASTER)

TITLE('MASTER1 t IIIDENT(I»;

CLOSE FILE(MASTER);
END;

In this example, IDENT is declared as a
character-string array with three elements
having as values the specific character
strings 'A', 'B', and 'ct. When MASTER is

Chapter 10: Input and Output 129

opened during the first iteration of the
DO-group, the character constant 'MASTER"
is concatenated with the value of the first
element of IDENT, and the associated ddname
is taken to be MASTER1A. After processing,
the file is closed, dissociating the file
name and the ddname. During the second
iteration of the group, MASTER is opened
again. This time, however, the value of
the second element of IDENT is taken, and,
MASTER is associated with the ddname
MASTER1B. Similarly, during the final
iteration of the group, MASTER is
associated with the ddname MASTER1C.

~ The character set of the job control
language does not contain the break
character (_). Consequently, this
character cannot appear in ddnames. Care
should thus be taken to avoid using break
characters among the first eight characters
of file names, unless the file is to be
opened with a TITLE option with a valid
ddname as its expression. The alphabetic
extender characters $, a, and #, however,
are valid for ddnames, but the first
character must be one of the letters A
through z.

Use of a file variable also allows a
number of files to be manipulated at
various times by a single statement. For
example:

DECLARE F FILE VARIABLE,
A FILE,
B FILE,
C FILE;

F=Ai
LAB: READ FILE (F) ,

F=Bi
GO TO LABi

F=Ci
GO TO LAB;

The statement labeled LAB is used to read
the three files A,B, and C, each of which
may be associated with a different data
set. Note that the files A" B, and C
remain open after the READ statement has
been executed in each instance. When a
number of data set~is to be accessed by a
single statement, use of a file variable
rather than the TITLE option may improve
program efficiency by allowing a file for
each data set to remain open for as long as
it is required by the program. Using the
TITLE option could necessitate closing and
reopening a file whenever it is to be
associated with a new data set.

130

CLOSE Statement

The basic form of the CLOSE statement is:

CLOSE FILE (file-expr) [ENVIRONMENT
({LEAVEIREREAD})]

[,FILE (file-expr) [ENVIRONMENT
({LEAVEIREREAD})]] ••• ;

Executing a CLOSE statement dissociates the
specified file from the data set with which
it became associated when the file was
ofened. The CLOSE statement also
dissociates from the file all attributes
established for it by the implicit or
explicit opening process. If desired, new
attributes may be specified for the file
constant in a subsequent OPEN statement.
However, all attributes explicitly given to
the file constant in a DECLARE statement
remain in effect.

As with the OPEN statement, closing more
tha,n one file with a single CLOSE statement
can save execution time, but it may require
the temporary use of more internal storage
than would otherwise be neededM

The LEAVE and REREAD options are used to
control the disposition of magnetic tapes.

Note: Closing an already closed file or
openIng an already opened file has no
effect apart from increasing the execution
time of the program.

STANDARD FILES

Two standard files are provided that can be
used by any PL/I program. One is the
standard input file SYSIN, and the other is
the standard output file SYSPRINT. These
files need not be declared or opened
explicitly; a standard set of attributes is
afplied automatically. For SYSIN, the
attributes are STREAM INPUT, and for
SYSPRINT they are STREAM OUTPUT PRINT.
Both file names, SYSIN and SYSPRINT, are
assumed to have the EXTERNAL attribute,
even though SYSPRINT contains more than
seven characters.

I The FILE option need not be specified in
GET and PUT statements when these files are
to be used. GET and PUT statements that do
not name a file are equivalent to:

GET FILE(SYSIN) ••• ;

PUT FILE(SYSPRINT) ••• i

Any other references to SYSIN and SYSPRINT
(such as in ON statements or in
record-oriented statements) must be stated
explicitly.

Under the optimizing compiler, the
identifiers SYSIN and SYSPRINT are not
reserved for the specific purposes
described above~ They can be used for
other pur~oses besides identifying standard
files. Other attributes can be applied to
them, either explicitly or contextually,
but the PRINT attribute is applied
automatically to SYSPRINT when it is
declared or op~ned as a STREAM OUTPUT file
unless the INTERNAL attribute is declared
for it.

Under the, checkout compiler, the file
SYSPRINT is used for diagnostic messages,
and the file: SYSIN. may be used to hold the
source progx:'am. When the compiler uses one
of the files, the file is opened with
certain attributes that may not be altered;
the programmer consequently needs to
exercise care if he declares SYSPRINT or
SYSIN explicitly_ Full details of the
restrictions: are given in the OS PL/I
Checkout CoilllJ2i1er: Programmer' s Guide.

Even under the optimizing compiler, care
must be 'take!n when SYSIN or SYSPRINT is

declared as anything other than a STREAM
file.. The compiler causes, in effect" the
identifier SYSIN to be inserted into each
GET statement in which no file constant is
explicitly stated and the identifier
SYSPRINT to be inserted into each PUT
statement in which no file constant is
explicitly stated. Consequently, the
following would be in error:

DECLARE (SYSIN,SYSPRINT) FIXED
DECIMAL (4,2);

GET LIST (A,B,C);
PUT LIST (D,E,F);

The identifier SYSIN would be inserted into
the GET statement, and SYSPRINT in the PUT
statement. In this case, however" they
would not refer to the standard files" but
to the fixed-point variables declared in
the block.

Chapter 10: Input and Output 131

Chapter 11: Stream-Oriented Transmission

Introduction

This chapter describes the input and output
statements used in stream-oriented
transmission. Those features that apply
equally to stream-oriented" and
record·oriented transmission, including
files, file attributes, and opening and
closing files, are described in chapter 10,
"Input and Output".

In stream-oriented transmission, a data
set is treated as a continuous stream of
data items in character form; within a
program, block and record boundaries are
ignored. However, a data set is considered
to consist of a series of lines of data,
and each data set that is created or
accessed by stream-oriented transmission
has a line size associated with it~ In
general, a line is equivalent to a record
in the data set; however, the line size
does not necessarily equal the record size.

There are three modes of stream-oriented
transmission: list-directed,
data-directed, and edit-directed. The

I transmission statements used in all three
modes require the following information:

1. The name of the file associated with
the data set from which data is to be
obtained or to which data is to be
assigned.

2. A list of program variables to which
data items are to be assigned during
input or from which data items are to
be obtained during output. This list
is called a data list. On output in
list- and edit-directed modes, the
data list can also include
expressions.

3. For edit-directed mode, the format of
each data item in the stream.

"

Under certain conditions some of this
required information can be implied.

LIST-DIRECTED TRANSMISSION

I
List-directed transmission permits the user
to read and write out data without having
to specify the format of the items in the
stream.

132

Input: In general, the data items in the
stream are character strings in the form of
optionally signed valid constants or in the
form of expressions that represent complex
constants. The variables to which the data
items are to be assigned are specified by a
data list. Items are separated by a comma
and/or one or more blanks.

Output: The data values to be transmitted
are specified by a variable, a constant, or
an expression that represents a data item.
Each data item placed in the stream is a
character-string representation that
reflects the attributes of the variable.

I Items are separated by one or more blanks.
Leading zeros of arithmetic data are
suppressed. Binary items are expressed in
decimal representation.

For PRINT files, data items are
automatically aligned on
implementation-defined preset tab
positions. These positions are 1~ 25~ 49,
73, 97, and 121, but provision is made for
the programmer to alter these values.

DATA-DIRECTED TRANSMISSION

Data-directed transmission permits the user
to transmit self-identifying data.

Input: Each data item in the stream is in
the form of an assignment that specifies
both the value and the variable to which it
is to be assigned. In general, values are
in the form of constants. Items are
separated by a comma and/or one or more
blanks. A semicolon must end each group of
items to be accessed by a single GET
statement. A data list in the GET
statement is optional, since the semicolon
determines the number of items to be

I obtained from the stream.~

outEut: The data values to be transmitted
may be specified by an optional data list.
Each data item placed in the stream has the
form of an assignment statement without a

I semicolon. Items are separated by one or

~ These rules are slightly amended when the
program is initiated and data entered from
a terminal under TSO. Details are given in
the following OS publications: Time
Sharing Oftion: PL/I Optimizing Compiler
and Time Sharing Option: PL/I Checkout
Compiler.

I more blanks. The last item transmitted by
each PUT st,atement is followed by a
semicolon$ Leading zeros of arithmetic
data are suppressed. The character
representation of each value reflects the
attributes of the variable, except for
binary items, which appear as values
expressed in decimal notation.

If the data list is omitted, it is
assumed to :3pecify all variables that are
known within the block containing the
statement and are permitted in
data-directed output.

For PRINT files, data items are
automatically aligned on the
implementation-defined preset tab positions
referred to under "List-Directed
Transmission".

EDIT-DIRECTED TRANSMISSION

Edit-directed transmission permits the user
to specify 'the variables to which data is
to be assigned or to specify data to be
transmitted~ and to specify the format for
each item on the external medium.

Input: Data in the stream is a continuous
string of characters; different data items
are not separated. The variables to which
the data is to be assigned are specified by
a data list,. Format items in a format list

lspecifY the number of characters that
contain the value to be assigned to each
variable and describe characteristics of
the data (fc:>r example, the assumed location

lof a decimal point).2

output: The data values to be transmitted
are defined by a data list. The format
that the data is to have in the stream is
defined by ci format list.

Data TransDlission Statements

Stream-oriented trahsmission uses only one
input statement, GET, and one output
statement" l?UT. A GET statement gets the
next series of data items from the stream,
and a PUT s1::atement puts a specified set of
data items into the stream. The variables

2These rules are slightly amended when the
program is initiated and data entered from
a terminal under TSO. Details are given in
the following OS publications: OS Time
Sharing OptjhQn: PL/I Optimizing Compiler
and OS Time.2haring Option: PL/I Checkout
Compiler.

to which data items are assigned, and the
variables or expressions from which they
are transmitted, are generally specified in
a data list with each GET or PUT statement.
The statements may also inqlude options
that specify the origin or destination of
the data or indicate where it appears in
the stream relative to the preceding data.

The following is a summary of the
stream-oriented data transmission
statements and their options:

STREAM INPUT:

GET [{FILE (file-expression)} I{STRING
(character-string-variable)}]

[data-specification]
[COPY[(file-expression)]]
[SKIP [(expression)]];

Note that neither the copy option nor SKIP
option can be used with the STRING option
in a GET statement.

STREAM OUTPUT:

PUT [{FILE (file-expression)} I{STRING
(character-string-variable)}]

[data-specification]
[SKIP [(expression)]];

Note that the SKIp option cannot be used
with the STRING option in a PUT statement.

STREAM OUTPUT PRINT:

PUT [FILE (file-expression)]
[data-specification]

[
PAGE [LINE (eXpreSSiOn)]]
SKIP[(expression)]
LINE (expression) ;

The options may appear in any order. The
data specification can have one of the
following forms:

(LIST] (data-list)

DATA [(data-list)]

EDIT {(data-list) (format-list)} •••

SNAP

FL·OW

ALL [(character-string-expression)]

If a GET or PUT statement includes a data
list that is not preceded by one of the
keywords LIST,DATA, or EDIT, then LIST is
assumed. In such a statement, the data
list must immediately follow the GET or PUT
keyword; any options required must be
specified after the data list.

Chapter 11: Stream-Oriented Transmission 133

The SNAP, FLOW and ALL options in the data
specification cause information about the
program to be put into the stream. These
options can only be used in a PUT
statement. The information is provided
only if the PUT statement is processed by
the PL/I checkout compiler; if such a PUT
statement is included in a program that is
processed by the PL/I optimizing compiler,
these options are checked for syntax errors
and then ignored. The use of the options
is described in chapter 15, "Execution-Time
Facilities of the PL/I Checkout Compiler".

I The data specification can be omitted only
if one of the control options (PAGE, SKIP,
or LINE) appears. Format lists may use any
of the following format i,tems:

A,B,C,E,F,
P,R,X

SKIP [(w)]
COLUMN (w)

PAGE
LINE (w)

which may be used with
any STREAM or
STRING option

which may be used with
any STREAM file

which may be used with
STREAM OUTPUT PRINT
files

The statements are discussed individually
in detail in section J, "statements".

Options of Transmission Statements

FILE and STRING Options

The FILE option specifies the file upon
which the operation is to take place. The
STRING option allows GET and PUT statements
to be used to transmit data between
internal storage locations rather than
between internal and external storage. If
neither the FILE option nor the STRING
option appears in a GET statement, the
standard input file SYSIN is assumed; if
neither option appears in a PUT statement,
the standard output file SYSPRINT is
assumed.

Examples of the use of the FILE option
are given in some of the statements below.
Chapter 13, "Editing and String Handling",
illustrates the use of the STRING option.

COpy Option

The COPY option may appear only in a GET
FILE statement. It specifies that the
stream is to be written, exactly as read,
onto the file named in the COpy

134

specification. If no file name is given,
the default is the standard output file
SYSPRINT. For example, the statement:

GET FILE(SYSIN) DATA(A~B,C) COPY(DPL);

not only transmits the values assigned to
A, B, and C in the input stream to the
variables with these names, but also causes
them to be written, exactly as they appear
in the input stream, on the file DPL. If
they were written, by default, on the
SYSPRINT file, they would appear in
data-directed format. Data items that are
skipped on input, and not transmitted to
internal variables, are copied intact into
the output stream.

SKIP Option

The SKIP option specifies a new current
line (or record) within the data set. The
parenthesized expression is converted to an
integer~. The data set is positioned to
the start of the wth line (record) relative
to the current line (record).

For non-PRINT files, if the expression
is omitted or if ~ is not greater than
zero, a value of 1 is assumed. For PRINT
files, if w is less than or equal to zero,
the effect-is that of a carriage return

I with the same current line; if the
expression is omitted, 1 is assumed.

The SKIP option takes effect before the
transmission of any values defined by the
data specification, even if it appears
after the data specification. Thus, the
statement:

PUT LIST(X,Y,Z) SKIP(3);

causes the values of the variables X~ Y,
and Z to be printed on the standard output
file SYSPRINT commencing on the third line
after the current line.

When printing at a terminal in
conversational mode, SKIP(w) with ~ greater
than 3 is equivalent to SKIP(3). In other
words, no more than three lines may be
skipped.

PAGE Option

The PAGE option can be specified only for
PRINT files. It causes a new current page
to be defined within the data set. The
PAGE option takes effect before the
transmission of any values defined by the
data specification (if any), even if it
appears after the data specification.

I When printing at a terminal in
conversational mode, the PAGE option causes
three lines to be skipped.

LINE Opti()n

The LINE ()ption can be specified only for
PRINT files~ It causes blank lines to be
'inserted so that the next line will be the
~th line ()f the current page, where ~ is
the value of the parenthesized expression
when convert:ed to an integer. The LINE
option takes effect before the transmission
of any values defined by the data
specification (if any), even if it follows
the data specification. If both the PAGE
option and the LINE option appear in the
same statement, the PAGE option is applied
first. For example, the statement

PUT FILE(LIST) DATA(P,Q,R) LINE(34) PAGE:

causes the values of the variables P, Q,
and R to printed in data-directed format on
a new page, commencing at line 34.

When printing at a terminal in
conversational mode, the LINE option always
causes three lines to be skipped.

Data Specifications

Data specifications are given in GET and
PUT statements to identify the data to be
transmitted.

DATA LISTS

List-directed and edit-directed data
specifications require a data list to
specify the data items to be transmitted.
A data list is optional for a data-directed
data specification.

General fOJ::'mat:

(data-list)

where "data list" is defined as:

elem,eIllt [, element] •••

Syntax rules:

The nature of the elements depends upon
whether the data list is used for input or
for output. The rules are as follows:

1. On input, a data-list element for
edit-directed and list-directed
transmission can be one of the
following: an element, array, or
structure variable, a pseudovariable
other than STRING, or a repetitive
specification (similar to a repetitive
specification of a DO group) involving
any of these elements. For a
data-directed data specification, a
data-list element can be an element,
array, or structure variable. None of
the names in a data-directed data list
can be subscripted, locator-qualified,
or iSUB-defined, but qualified (that
is, structure-member), simple-defined,
or string-over lay-defined names are
allowed.

2. On output, a data-list element for
edit-directed and list-directed data
specifications can be one of the
following: an element expression, an

,array expression, a structure
expression, or a repetitive
specification involving any of these
elements. For a data-directed data
specification, a data-list element can
be an element, array, or structure
variable, or a repetitive
specification involving any of these
elements. It must not be
locator-qualified or iSUB-defined, but
may be qualified (that is, a member of
a structure), or simple- or
string-overlay-defined. Subscripts
are allowed for data-directed output.

3. The elements of a data list can be:

Input:

Output:

Problem data: Arithmetic
String

Problem data: Arithmetic
String

Program control
data: Area

Entry
Event
File
Label
Offset
Pointer
Task

Entry and label constants may not be
specified.

A data list that specifies
program-control data can only be used
in PUT DATA or PUT LIST statements
that are to be processed by the
checkout compiler or PUT DATA
statements that are to be processed
under the optimizing compiler. In the
latter case, the name of the variable
is transmitted, but not its value.

Chapter 11: Stream-Oriented Transmission 135

4. A data list must always be enclosed in
parentheses.

Repetitive Specification

The general format of a repetitive
specification is shown in figure 11.1.

Syntax rules:

1. An element in the element list of the
repetitive specification can be any of
those allowed as data-list elements as
listed above.

2. The expressions in the specification,
which are the same as those in a DO
statement, are described as follows:

a. Each expression in the
specification is an element
expression.

b. In the specification, expression-1
represents the starting value of
the control variable or
pseudovariable. Expression-3
represents the increment to be
added to the control variable
after each repetition of data-list
elements in the repetitive
specification. Expression-2
represents the terminating value
of the control variable.
Expression-4 represents a second
condition to control the number of
repetitions. The exact meaning of
the specification is identical to
that of a DO statement with the
same specification. When the last
specification is completed,
control passes to the next element
in the data list.

3. Each repetitive specification must be
enclosed in parentheses, as shown in
the general format. Note that if a
repetitive specification is the only
element in a data list, two sets of
outer parentheses are required, since

the data list must have one set of
parentheses and the repetitive
specification must have a separate
set.

4. As figure 11.1 shows~ the
"specification~ portion of a
repetitive specification can be
repeated a number of times, as in the
following form:

DO I = 1 TO 4, 6 TO 10;

Repetitive specifications can be
nested; that is, an element of a
repetitive specification can itself be
a repetitive specification. Each DO
portion must be delimited on the right
with a right parenthesis (with its
matching left parenthesis added to the
beginning of the entire repetitive
specification)~

When DO portions are nested, the
rightmost DO is at the outer level of
nesting. For example~ consider the
following statement:

GET LIST «(A(I,J) DO I = 1 TO 2)
DO J = 3 TO 4»;

Note the three sets of parentheses, in
addition to the set used to delimit
the subscript. The outermost set is
the set required by the data list; the
next is that required by the outer
repetitive specification. The third
set of parentheses is that required by
the inner repetitive specification.
This statement is equivalent to the
following nested DO-groups:

DO J = 3 TO 4;
DO I = 1 TO 2;
GET LIST (A (I,J»;
END;

END;

It gives values to the elements of the
array A in the fc!lowing order:

A(1,3), A(2,3), A(1,4), A(2,4)

r------------------~---------------~-~---~------,
I variable I I
I (element [,elementl ••• DO = specification(, specificationl •••) I
I pseudovariable I
I I
I I
IA "specification" has the following format: I
I I
I [TO expression-2 [BY expressiOn-3l] I
lexpression-1 [WHILE (expression-4)l I
I BY expression-3 [TO expression-2] I
L _____ ~ ___ - __ -_-__ ----------~-----------~-------------___ ~ _____________________ ~--------J

Figure 11.1. General format for repetitive specifications

136

Under the optimizing compiler, the
maximum permissible level of nesting
is 50.. There is no such limit under
the checkout compiler.

!:!2lli Although the DO keyword is used in
the repetitive specification, a
corresponding END statement is not allowed.

Transmission of Data-list Elements

If a data-list element is of complex mode,
the real part is transmitted before the
imaginary part.

If a data-list element is an array
variable, the elements of the array are
transmitted in row-major order, that is,
with the rightmost subscript of the array
varying most frequently.

If a data-list element is a structure
variable, t;he elements of the structure are
transmitted in the order specified in the
structure declaration.

For example, if a declaration is:

DECLARE 1 A (10), 2 B, 2 C;

then the st~atement:

PUT FILE(X) LIST(A);

would result in the output being ordered as
follows:

A.B(1) A.C(1) A.B(2) A.C(2) A.B(3)
A.C(3) ••• etc.

If, however, the declaration had been:

DECLARE: 1 A, 2 B(10), 2 C(10);

then the same PUT statement would result in
the output being ordered as follows:

A.B(1) A.B(2) A.B(3) ••• A.B(10)
A.C(1) A.C(2) A.C(3) ••• A.C(10)

If, within a data list used in an input
statement for list-directed or
edit-directed transmission, a variable is
assigned a value, this new value is used if
the variable appears in a later reference
in the data list. For example:

GET LIST (N,(X(I) DO 1=1 TO N), J, K,
SUBSTR (NAME, J,K»;

When this statement is executed, data is
transmitted and assigned in the following
order:

1. A new value is assigned to N.

2. Elements are assigned to the array X
as specified in the repetitive
specification in the order
X(1),X(2), ••• X(N), with the new value
of N used to specify the number of
items to be assigned.

3. A new value is assigned to J.

4. A new value is assigned to K.

5. A substring of length K is assigned to
the string variable NAME, beginning at
the Jth character.

List-directed Data Specification

General format for a list-directed data
specification, either input or output is as
follows:

(LIST] (data-list)

The data list is described under "Data
Lists", above. The keyword LIST specifies
the list-directed mode of transmission.

Examples of list-directed data
specifications:

LIST ·(CARD, RATE, DYNAMIC_FLOW)

LIST «THICKNESS(DISTANCE)
DO DISTANCE = 1 TO 1000»

LIST (P, Z, M, R)

LIST (A*B/C, (X+Y)**2)

The specification in the last example can
be used only for output, since it contains
values specified by expressions. Such
expressions are evaluated when the
statement is executed, and the result is
placed in the stream.

List-directed Data in the Stream

Problem data in the stream, either input or
output, is of character data type and has
one of the following general forms:

[+1-] arithmetic-constant

character-string-constant

bit-string-constant

[+1-] real-constant{+I-}imagipary-constant

Chapter 11: Stream-Oriented Transmission 137

A string constant must be one of the two
permitted forms listed above; iteration and
string repetition factors are not allowed.
A blank must not follow a sign preceding a
real constant, and must not precede or
follow the central + or - in complex
expressions.

The format of program control data is
described in chapter 15, "Execution-time
Facilities of the Checkout Compiler".

List-directed Input Format

When the data named is an array, the data
consists of constants, the first of which
is assigned to the first element of the
array, the second constant to the second
element, etc., in row-major order.

A structure name in the data list
represents a list of the contained element
variables and arrays in the order specified
in the structure description.

On input, data items in the stream must
be separated either by a blank or by a
comma. This separator may be surrounded by
an arbitary number of blanks. A null field
in the stream is indicated either by the
first non-blank character in the data
stream being a comma, or by two commas
separated by an arbitrary number of blanks.
A null field specifies that the value of
the associated item in the data list is to
remain unchanged.

The transmission of the list of
constants on input is terminated by
expiration of the list or at the end of the
file. In the former case, the file is
positioned in the stream ready for the next
GET statement. More than one blank can
separate two data items, and a comma
separator may be preceded or followed by
one or more blanks. If the items are
separated by a comma, then the first
character to be scanned when the next GET
statement is executed will be the one
immediately following the comma. If the
items are separated by blanks only, the
first item scanned will be the next
non-blank character. In the following
example,s X represents a non-blank
character, b represents a blank, and t
indicates the position of the file at the
start of the next GET statement.

138

Xbb,bbbXXX
t

XbbbbXXXX
t

Xb,l-end of record
t

Note that if a record terminates with a
semi.colon, the succeeding record is not
read in until the next GET statement
requires it.

If the data is a character-string
constant, the surrounding quotation marks
are removed, and the enclosed characters
are interpreted as a character string.

If the data is a bit.string constant,
enclosing quotation marks and the trailing
character B are removed, and the enclosed
characters are interpreted as a bit string.

If the data is an arithmetic constant or
complex expression, it is interpreted as
coded arithmetic data with the base, scale,
mode, and precision implied by the
constant.

~directed Output Format

,The values of the element variables and
expressions in the data list are converted
to character representations and
transmitted to the data stream. The
conversions follow the normal rules for
arithmetic to character conversions, except
that floating-point items are not rounded.

A blank separates successive data items
transmitted. (For PRINT files, items are
separated according to program tab
settings.)

The length of the data field placed in
the stream is a function of the attributes
of the data item, including precision and
length. Detailed discussions of the
conversion rules and their effect upon
precision are listed in the descriptions of
conversion to character type in section F,
"Data Conversion and Expression
Evaluation".

Binary data items are converted to
decimal notation before being placed in the
stream.

For numeric character values, the
character~string value is transmitted.

Bit strings are converted to character
representation of bit-string constants,
consisting of the characters 0 and 1,

enclosed in quotation marks, and followed
by the letter B.

CharacteJ: strings are written out as
follows. If the file does not have the
attribute PIUNT, enciosing quotation marks
are supplied, and contained single
quotation marks or apostrophes are replaced
by two quotcltion marks. The field width is
the current length of the string plus the
number of added quotation marks. If the
file has the attribute PRINT, enclosing
quotation marks are not supplied, and
contained single quotation marks or
apostrophes are unmodified. The field
width is the current length of the string.

Data-directed Data Specification

General format for a data-directed data
specification, either for input or output,
is as follOtiis:

DATA [~:dclta-list)]

General rulE~s:

1. The data list is described in "Data
Lists" in this chapter. For input,
the data list cannot contain
subscripted names. Names of structure
elements in the data list need only
have enough qualification to resolve
any ambiguity: full qualification is
not I."equired. On input, if the stream
contains an unrecognisable
element-variable or a name that does
not ha"e a counterpart in the data
list, the NAME condition is raised.

2. Omission of the data list implies that
a data list is assumed. This assumed
data list contains all the names that
are known to the block and to any
containing blocks, and that are valid
for data-directed transmission.

On input, if the stream contains an
unrecognisable element-variable or an
unknown name, the NAME condition is
raised~ If the assumed data list
contains a name that is not included
in the stream, the value of the
associated variable remains unchanged.

On output, all items in the assumed
data list are transmitted. Where two
or more blocks containing the PUT
statement each have declarations of
items which have the same name, all
the items will be transmitted, the
known item appearing first.

3. Recognition of a semicolon or an
end-af-file in an input stream causes

transmission to cease, whether or not
a data list is specified. On output,
a semicolon is written into the stream
after the last data item transmitted
by each PUT statement.

Data-directed Data in the Stream

The data in the stream associated with
data-directed transmission is in the form
of a list of element assignments. For
problem data, they have the following
general format (the optionally signed
constants, like the variable names and the
equal signs, are in character form):

element-variable = data value
[{bl,}element-variable = data
value] ••• :

General rules for problem data:

1. The element variable may be a
subscripted name. Subscripts must be
optionally signed decimal integer
constants.

2. On input, the element assignments may
be separated by either a blank (B in
the above format) or a comma.
Redundant blanks are ignored. On
output, the assignments are separated
by a blank. (For PRINT files, items
are separated according to program tab
settings.)

3. Each data value in the stream has one
of the forms described for
list-directed transmission.

4. On input a semi-colon following an
element assignment terminates the list
of element assignments to be
transmitted by the execution of a
single GET DATA statement, and thereby
determines the number of element
assignments that are actually
transmitted by a particular statement.
On output a semi-colon is transmitted
on completion of a PUT DATA statement.

5. Locator qualifiers cannot appear in
the stream. The locator qualifier
declared with the based variable is
used to establish the generation.
Based variables that have not been
declared with a locator qualifier
cannot be transmitted.

Under the optimizing compiler, the
following restrictions apply to based
variables in the data list:

a. The variable must not be based on
an OFFSET variable.

Chapter 11: Stream-Oriented Transmission 139

b. The variahle must not be a member
of a structure declared with the
REFER option.

c. The pointer on which the variable
is based must not be based,
defined, or a parameter, and it
must not be a member of an array
or structure.

6. Under the optimizing compiler, defined
variables in the data list must not
have been defined:

a. On a controlled variable.

b. On an array with one or more
adjustable bounds.

c. With a POSITION attribute that
specifies other than a constant.

~directed Data spec~fication for Input

General rules for data-directed input:

1. If the data specification does not
include a data list, the names in the
stream may be any names known at the
point of transmission. Qualified
names in the input stream must be
fully qualified. The name must not
contain more than 256 characters.

2. If a data list is used. each element
of the data list must be an element,
array, or structure vaFiable. Names
cannot be subscripted, but qualified
names are allowed in the data list.
All names in the stream should appear
in the data list; however, the order
of the names need not be the same, and
the data list may include names that
do not appear in the stream. For
example, consider the following data
list, where A, B, C, and D are names
of element variahles:

DATA (B, A, C, D)

This data list may be associated with
the following input data stream:

A= 2.5, B= .0047, 0= 125, Z= 'ABC'i

~ C appears~in the data list but
not in the strea'm; its value remains
unaltered. Z, which is not in the
data list, raises the NAME condition.

3. If the data list includes the name of
an array, subscripted references to
that array may appear in the stream
although subscripted names cannot
appear in the data list. The entire

140

array need not appear in the stream;
only those elements that actually
appear in the stream will be assigned.
If a subscript is out of range, or is
missing, the NAME condition is raised.

Let X be the name of a two-dimensional
array declared as follows:

DECLARE X (2,3);

Consider the following data list and
input data stream:

Data Specification
DATA (X)

Input Data Stream
X (1., 1) = 7. 9 5 ,
X(1,2)= SOS5,
X(1,3)= 73;

Although the data list has only the
name of the array, the associated
input stream may contain values for
individual elements of the array. In
this case, only three elements are
assigned; the remainder of the array
is unchanged.

4. If the data list includes the names of
structure elements, then fully
qualified names must appear in the
stream, although full qualification is
not required in the data list.
Consider the following structures:

DECLARE 1 CARDIN, 2 PARTNO, 2 DESCRP,
2 PRICE, 3 RETAIL, 3 WHSL;

If it is desired to read a value for
CARDIN.PRICE.RETAIL, the data
specification and input data stream
could have the following forms:

Data Specification Input Data Stream
DATA (CARDIN.RETAIL) CARDIN.PRICE.

RETAIL = 4.2S;

5. Interleaved subscripts cannot a~pear
in qualified names in the stream. All
subscripts must he moved all the way
to the right, following the last name
of the qualified name. For example,
assume that Y is declared as follows:

DECLARE 1 Y(5,5),2 A(10),3 B,
3 C, 3 D;

An element name would have to appear
in the stream as follows:

Y.A.B(2,3,S)= S.72

The name in the data list could not
contain the subscript.

Data-direc~d Data Specification for output

General rules for data-directed output:

1. An element of the data list may be an
element, array, or structure variable,
or a repetitive specification
involving any of these elements or
further repetitive specifications.
subscripted names can appear. For
problem data, the names appearing in
the data list, together with their
values, are transmitted in the form of
a list of element assignments
separated by blanks and terminated by
a semicolon. (For PRINT files, items
are. separated according to program tab
settings.)

The rules applying to program control
data ,are given in chapter 15,
"Execution-time Facilities of the
Checkout Compiler."

2. Array variables in the data list are
treated as a list of the contained
subsc:ripted elements in row-major
order.

Consider an array declared as follows:

DECL.ARE X (2, 4) FIXED;

If X appears in a data list as
follows:

on output, the output data stream
would have the form:

X(1,1)= 1 X(1,2)= 2 X(1,3)= 3
X(1,4)= 4 X(2,1)= 5 X(2,2)= 6
X(2~3)= 7 X(2,4)= 8;

Note: In actual output, more than one
EIank would follow the equal sign. In
conversion from coded arithmetic to
character, leading zeros are converted
to blanks, and up to three additional
blanks may appear at the beginning of
the field.

3. Subscript expressions that appear in a
data list are evaluated and replaced
by their values.

4. Items that are part of a structure
appearing in the data list are
transmitted with the full
qualification, but subscripts follow
the qualified names rather than being
interleaved. For example, if a data
list is specified for a structure
element transmitted under
data-directed output as follows:

DATA (Y(1,-3).Q)

the associated data field in the
output stream is of the form:

Y.Q(1,-3)= 3.756;

5. Structure names in the data list are
interpreted as a list of the contained
element or elements, and any contained
arrays are treated as above.

For example, consider the following
structure:

1 A, 2 B, 2 C, 3 D

If a data list for data-directed
output is as follows:

DATA (A)

and the values of Band Dare 2 and
17, respectively, the associated data
fields in the output stream would be
as follows:

A.B= 2 A.C.D= 17:

6. In the following cases, data-directed
output is not valid for subsequent
data-directed input:

a. When the character-string value of
a numeric character variable does
not represent a valid optionally
signed arithmetic constant. For
example, this is always true for
complex numeric character
variables.

b. When a program control variable is
transmitted such a variable must
not be specified in an input data
list.

Length of Data-directed Output Fields

The length of the data field on the
external medium is a function of the
attributes declared for the variable and,
since the name is also included, the length
of the· fully qualified subscripted name.
The field length for output items converted
from coded arithmetic data, numeric
character data, and bit-string data is the
same as that for list-directed output data,
and is governed by the rules for data
conversion to character type as described
in section F, "Data Conversion and
Expression Evaluation".

For character-string data, the contents
of the character string are written out

Chapter 11: Stream-Oriented Transmission 141

r------~----------------·--, AB: PROCEDURE;
Input Stream

DECLARE (A(6), B(7» FIXED;
B(1)=1, B(2)=2, B(3)=3,

GET FILE (X) DATA (B):
B(4)=1, B(5)=2, B(6)=3, B(7)=4;

DO I = TO 6:

A (I) = B (1+1) + B (I);
output stream

END;
A(1)= 3 A(2)= 5 A(3)= 4 A(4)= 3

PUT FILE (Y) DATA (A);
A(5)= 5 A(6)= 7;

END AB; L ___ -------------_____________________ J

Figure 11.2. Example of data-directed transmission (both input and output)

I

enclosed in quotation marks. Each
quotation mark contained within the
character string is represented by two
successive quotation marks.

Example

In the example shown in figure 11.2, A is
declared as a one-dimensional array of six
elements; B is a one-dimensional array of
seven elements. The procedure calculates
and writes out values for A(I) = B(I+1) +
B(I).

Edit-directed Data Specification

General format for an edit-directed data
specification, either fo.r input or output,
is as follows:

EDIT {(data-list) (format-list)}
[(data·list) (format-list)] •••

1. The data list, which must be enclosed
in parentheses, is described in "Data
Lists", above. The format list, which
also must be enclosed in parentheses~
contains one or more format items.
There are three types of format items:
data format items, which describe data
in the stream; control format items,
which describe page, line, and spacing
operations; and remote format items,
which specify th~ label of a separate
statement that contains the format
list to be used. Format lists and
format items are discussed in more
detail in "Format Lists", below.

142

~ Program-control variables
cannot be specified in data lists for
edit-directed transmission.

2. For input, data in the stream is
considered to be a continuous string
of char.acters not separated into
individual data items. The number of
characters for each data item is
specified by a format item in the
format list. The characters are
treated according to the associated
format item.

3. For output, the value of each item in
the data list is converted to a format
specified by the associated format
item and placed in the stream in a
field whose width also is specified by
the format item.

4. For either input or output~ the first
data format item is associated with
the first item in the data list, the
second data format item with the
second item in the data list, and so
forth. If a format list contains
fewer format items than there are
items in the associated data list, the
format list is re-used; if there are
excessive format items, they are
ignored. Suppose a format list
contains five data format items and
its associated data list specifies ten
items to be transmitted. Then the
~ixth item in the data list will be
associated with the first data format
item, and so forth. Suppose a format
list contains ten data format items
and its associated data list specifies
only five items. Then the sixth
through the tenth format items will be
ignored.

5. An array or structure variable in a
data list is equivalent to n items in
the data list, where n is the number
of element items in the array or
structure, each of which will be
associated with a separate use of a
data format item.

6. If a cOliltrol format item is
encountered, the control action is
executefi, and the data list item is
paired with the next format item.

1. The specified transmission is complete
when th,e last item in the data list
has been processed using its
corresponding format item. Subsequent
format items, including control format
items, ,are ignored.

8. On output, data items are not
automatically separated, but
arithmetic data items generally
include leading blanks because of data
conversion rules and zero suppression.

Examples:

GET EDIT (NAME, DATA, SALARY)
(A(N), X(2), A(6), F(6,2»:

PUT EDIT ('INVENTORY='IIINUM,INVCODE)
(A,F(S);

The first example specifies that the ~irst
N characters in the stream are to be
treated as a character string and assigned
to NAME: the next two characters are to be
skipped: thE! next six are to be assigned to
DATA in chaI:acter format: and the next six
characters are to be considered·as an
optionally' signed decimal fixed-point
constant a.nC! assigned to SALARY.

The second example specifies that the
character string 'INVENTORY=' is to be
concatenat,ed with the value of INUM and
placed in the stream in a field whose width
is the length of the resultant string.
Then the value of INVCODE is to be
converted to character to represent an
optionallY' signed decimal fixed-point
integer constant and is then to be placed
in the stream right-adjusted in a field
with a width of five characters (leading
characters may be blanks). Note that
values represented by expressions and
constants can appear in output data lists
only.

Format Listf!

Each edit-directed data specification must
be associat~d with a format list.

General format:

(format-list)

where "format list" is defined as:

[: item 1
n item •••

n (format-list)

item

n item

n (format-list)

Syntax rules:

1. Each "item" represents a format item
as described below.

2. The letter n represents an iteration
factor, which is either an expression
enclosed in parentheses or an unsigned
decimal integer constant. If it is
the latter, a blank must separate the
constant and the following format
item. The iteration factor specifies
that the associated format item or
format list is to be used n successive
times. A zero iteration factor
specifies that the associated format
item or format list is to be skipped
and not used (the data list item will
be associated with the next data
format item). If an expression is
used to represent the iteration
factor, it is evaluated and converted
to an integer, which must be
non-negative, once for each set of
iterations. The associated format
item or format list is that item or
list of items immediately to the right
of the iteration factor.

General rule:

There are three types of format items:
data format items, control format items,
and the remote format item. Data format
items. specify the external forms that data
fields are to take. Control format items
specify the page, line, column, and spacing
operations. The remote format item allows
format items to be specified in a separate
FORMAT statement elsewhere in the block.

Detailed discussions of the various
types of format items appear in section E,
"Edit-Directed Format Items". The
following discussions show how the format
items are used in edit-directed data
specifications.

Data Format Items

On input, each data format item
specifies the number of characters to be
associated with the data item and how to
interpret the external data. The data item
is assigned to the associated variable

Chapter 11: Stream-Oriented Transmission 143

named in the data list, with necessary
conversion to conform to the attributes of
the variable. On output, the value of the
associated element in the data list is
converted to the character representation
specified by the format item and is
inserted into the data stream.

There are six data format items:
fixed-point (F), floating-point (E),
complex (el" picture (P), character-string
(A), and bit-string (B). They are, in
general, specified as follows:

F (w [, d [, p]])

E (w,d[,s])

e (real-format-item [,real-format-item])

P 'picture-specification'

A lew)]

B lew)]

In this list, the letter ~ represents an
expression that specifies the number of
characters in the field. The letter d
specifies the number of digits to the-right

, Of a decimal point; it may be omitted for
fixed-point integers. The real format item
of the complex format item represents the
appearance of either an F, E or P format
item. The picture specification of the P
format item can be either a numeric
character specification or a
character-string specification. On output,
data associated with E and F format items
is rounded if the internal precision
exceeds the external precision.

A third specification (E) is allowed in
the F format item; it is a scaling factor.
A third specification (s) is allowed in the
E format item to specify the number of
digits that must be maintained in the first
subfield of the floating-point number.
These specifications are discussed in
detail in section E, ftEdit-Directed Format
Itemsft.

Note: Fixed-point binary and floating-point
binary data items must always be
represented in the input stream with their
values expressed in decimal digits. The F

I and E format items may then be used to
access them, and the values will be
converted to binary representation upon
assignment. On output, binary items are
converted to decimal values and the
associated F or E format items must state
the field width and point placement in
terms of the converted decimal number.

The following examples illustrate the
use of format items:

144

1. GET FILE (INFILE) EDIT (ITEM) (A(20»;

This statement causes the next 20
characters in the file called INFILE
to be assigned to ITEM. The value is
automatically transformed from its
character representation specified by
the format item A(20), to the
representation specified by the
attributes declared for ITEM.

Note: If the data list and format list
were-used for output, the length of a
string item need not be specified in
the format item if the field width is
to be the same as the length of the
string, that is, if no blanks are to
follow the string.

2. PUT FILE (MASKFLE) EDIT (MASK) (B)i

Assume MASK has the attribute BIT
(25); then the above statement writes
the value of MASK in the file called
MASKFLE as a string of 25 characters
consisting of O's and 1's. A field
width specification can be given in
the B format item. Ii must be stated
for input. ----

3. PUT EDIT (TOTAL) (F(6,2»;

Assume TOTAL has the attributes FIXED
(4,2); then the above statement
specifies that the value of TOTAL is
to be converted to the character
representation of a fixed-point number
and written into the standard output
file SYSPRINT. A decimal point is to
be inserted before the last two
numeric characters, and the number
will be right-adjusted in a field of
six characters. Leading zeros will be
changed to blanks, and, if necessary,
a minus sign will be placed to the
left of the first numeric character.

The conversion from internal decimal
fixed-point type to character type is
performed according to the normal
rules for conversion. Extra
characters may appear as blanks
preceding the number in the converted
string. And, since leading zeros are
converted to blanks, additional blanks
may precede the number. If a decimal
point or a minus sign appears, either·
will cause one leading blank to be
replaced.

In edit-directed output, the field
width specification in the format item
(in this case, the 6 in the F(6,2)
format item) can be used to truncate
leading zeros. In this specification,
one zero is truncated. TOTAL would be
converted to a character string of

length seven. If all four digits of
the converted number are greater than
zero, the number, with its inserted
decimal point, will require five digit
position.s; if the number is negative,
another digit position will be
required for the minus sign.
Consequently, the F(6,2) specification
will always allow all digits, the
point, and a possible sign to appear,
but will remove the extra blank by
truncation.

4. GET FILE(A) EDIT (ESTIMATE) (E(10,6»:

This statement obtains the next ten
characters from the file called A and
interprets them as a floating-point
decimal number. A decimal point is
assumed before the rightmost six
digits of the mantissa. An actual
point within the data can override
this assumption. The value of the
number is converted to the attributes
of ESTIMATE and assigned to this
variable.

S. GET EDIT (NAME, TOTAL)
(P'AAAAA',P'9999'):

When this statement is executed, the
standard input file SYSIN is assumed.
The first five characters must be
alphabetic or blank and they are
assigned to NAME. The next four
characters must be nonblank numeric
charac·ters and they are assigned to
TOTAL.

Control Format Items

The control format items are the spacing
format item (X), and the COLUMN, LINE,
PAGE, and SKIP format items. The spacing
format item specifies relative spacing in
the data stream. The PAGE and LINE format
items can be used only with PRINT files
and, consequently, can only appear in PUT
statements. All but PAGE generally include
expressions. LINE, PAGE, and SKIP can also
appear separately as options in the PUT
statement; SKIP can appear as an option in
the GET statement.' The following examples
illustrate the use of the control format
items:

1. GET EDIT (NUMBER, REBATE)
(A(S), X(S), A(S»:

This statement treats the next lS
characters from the standa~d input
file, SYSIN, as follows: the first
five characters are assigned to
NUMBER, the next five characters are
spaced over and ignored, and the
remaining five characters are assigned
to REBATE.

2. GET FILE(IN) EDIT (MAN, OVERTIME)
(SKIP(l), A(6), COLUMN(60), F(4,2»;

This statement positions the data set
associated with file IN to a new line:
the first six characters on the line
are assigned to MAN, and the four
characters beginning at character
position 60 are assigned to OVERTI~E.

3. PUT FILE(OUT) EDIT (PART, COUNT)
(A(4), X(2), F(S»;

This statement places in the file
named OUT four characters that
represent the value of PART, then two
blank characters, and finally five
characters that represent the
fixed-point value of COUNT.

4. The following examples show the use of
the COLUMN, LINE, PAGE, and SKIP
format items in combination with one
another.

PUT EDIT ('QUARTERLY STATEMENT')
(PAGE, LINE(2), A(19»;

PUT EDIT
(ACCT#, BOUGHT, SOLD,

PAYMENT, BALANCE)
(SKIP(3), A(6), COLUMN(14),
F(7,2), COLUMN(30), F(7,2),
COLUMN(4S), F(7,2),
COI.UMN(60), F(7,2»:

The first PUT statement specifies that
the heading QUARTERLY STATEMENT is to
be written on line two of a new page
in the standard output file SYSPRINT.
The second statement specifies that
two lines are to be skipped (that is,
"skip to the third following line")
and the value of ACCT# is to be
written, beginning at the first
character of the fifth line; the value
of BOUGHT, beginning at character
position 14; the value of SOLD,
beginning at character position 30;
the value of PAYMENT, beginning at
character position 4S; and the value
of BALANCE at character position 60.

Note: Control format items are executed at
~ime they are encountered in the format
list. Any control format list that appears
after the data list is exhausted will have
no effect.

Remote Format Item

The remote format item (R) specifies the
label of a FORMAT statement (or a label
expression whose value is the label of a
FORMAT statement) located elsewhere; the
FORMAT statement and the GET or PUT
statement specifying the remote format item
must be internal to the same block. The
FORMAT statement contains the remotely

Chapter 11: Stream-Oriented Transmission 14S

situated format items. This facility
permits the choice of different format
specifications at execution time, as
illustrated by the following example:

DECLARE SWITCH LABEL;
GET FILE(IN) LIST(CODE);
IF CODE = 1

THEN SWITCH = L1;
ELSE SWITCH = L2;

GET FILE(IN) EDIT (W,X,Y,Z)
(R(SWITCH»;

L1: FORMAT (4 F(B,3»;
L2: FORMAT (4 E(12,6»;

SWITCH has been declared to be a label
variable; the second GET statement can be
made to operate with either of the two
FORMAT statements.

Expressions in Format Items

The ~, E, g, and ~ specifications in
data format items, as well as the
specifications in control format items,
need not be decimal integer constants.
Expressions are allowed. They may be
variables or other expressions.

A value read into a variable can be used
in a format item associated with another
variable later in the data list.

PUT EDIT (NAME, NUMBER, CITY)
(A(N) ,A(N-4) ,A(10»;

GET EDIT (M,STRING A,I,STRING B)
(F(2),A(M),X(M),F(2),A(I»;

In the first example, the value of NAME is
inserted in the stream as a character
string left-adjusted in a field of N
characters; NUMBER is left-adjusted in a
field of N-4 characters; and CITY is
left-adjusted in a field of 10 characters~
In the second example, the first two
characters are assigned to M. The value of
M is then taken to specify the number of
characters to be assigned to STRING_A and
also to specify the number of characters to
be ignored before two characters are
assigned to I, whose value then is used to
specify the number of characters to be
assigned to STRING_B.

PRINT Files

The PRINT attribute can be applied only to
a STREAM OUTPUT file. It indicates that

146

the data in the file is ultimately intended
to be printed (although it may first be
written on a medium other than the printed
page). The first data byte of each record
of a PRINT file is reserved for an American
National Standard (ANS) printer control
character; the compiler causes the control
characters to be inserted automatically
when statements containing the control
options and format items PAGE, SKIP, and
LINE are executed.

The layout of a PRINT file can be
controlled by the use of the options and
format items listed in figure 11.3. (Note
that LINESIZE, SKIP, and COLUMN can also be
used for non-PRINT files.) LINESIZE and
PAGESIZE establish the dimensions of the
printed area of the page, excluding
footings. The LINESIZE option specifies
the maximum number of characters to be
included in each printed line; if it is not
specified for a PRINT file, a default value
of 120 characters is assumed (but there is
no default for a non-PRINT file). The
PAGESIZE option specifies the maximum
number of lines to appear in each printed
page; if it is not specified, a default
value of 60 lines is assumed. Consider the
following example:

OPEN FILE(REPORT) OUTPUT STREAM PRINT
PAGESIZE(55) LINESIZE(110);

This statement opens the file REPORT as a
PRINT file. The specification PAGESIZE(55)
indicates that each page should contain a
maximum of 55 lines. An attempt to write
on a page after 55 lines have already been
written (or skipped) will raise the ENDPAGE
condition. The standard system action for
the ENDPAGE condition is to skip to a new
page, but the programmer can establish his
own action through use of the ON statement.

The ENDPAGE condition is raised only
once per page. Consequently, printing can
be continued beyond the specified PAGESIZE
after the ENDPAGE condition has been raised
the first time. This can be useful, for
example, if a footing is to be written at
the bottom of each page. For example:

ON ENDPAGE(REPORT) BEGIN;
PUT FILE(REPORT) SKIP LIST

(FOOTING) ;
N = N + 1;
PUT FILE(REPORT) PAGE LIST

('PAGE ~ II N) ;
PUT FILE(REPORT) SKIP (3);
END;

r----------------T------------------T----------------T----------------------------------, I \ Edit-directed I Statement in \ \
\ Option \ format item \ which option \ Effect \
\ \ \ or format \ I
\ \ I item appears \ I
~----------------+------------------+----------------+----------------------------------i
LINESIZE(w)~ OPEN Establishes line width

PAGESIZE(w) OPEN Establishes page width

PAGE PAGE PUT Skip to new page

LINE(w) LINE(w) PUT Skip to specified line

SKIP (x)]« SKIP ((x)] 2. PUT Skip specified number of lines

COLUMN(w)2. PUT Skip to specified character
position in line

~---------.--.-----J.------------------J.-----------... ----J.----------------------------------i
I tCan also be used with non-PRINT files: see "Options of Transmission Statements" and I
I "Control Format Items", above, and "Line Size and Record Format", telow. I L ___________ . __ J

Figure 11.3. Options and format items for controlling layout of PRINT files

Assume that REPORT has been opened with
PAGESIZE(55), as shown in the previous
example. When an attempt is made to write
on line 56 (or to skip teyond line 55)~ the
ENDPAGE condition will arise, and the begin
block shown here will be executed. The
first PUT statement specifies that a line
is to be skipped, and the value of FOOTING,
presumably a character string, is to be
printed on line 57 (when ENDPAGE arises,

I the current line is always PAGESIZE+ 1) •
The page number is incremented, the file
REPORT is set to the next page, and the
character string 'PAGE' is concatenated
with the new page number and printed. The
final PUT statement causes three lines to
be skipped, so that the next printing will
be on line 4. Control returns from the
begin block to the PUT statement that
caused the ENDPAGE condition, and the data

I
is printed.. Any SKIP option specified in
that statement will have no further effect,
however.

Note that SIGNAL ENDPAGE is ignored if
there is no ENDPAGE on-unit.

The specification LINESIZE(110)
indicates that each line on the page can
contain a ma.ximum of 110 characters. An
attempt to write a line greater than 110
characters will cause the excess characters
to be placed on the next line.

Standard File SYSPRINT

Unless the standard file SYSPRINT is
declared explicitly, it is always given the
attribute PRINT. Under the optimizing

compiler, a new page is initiated
automatically when the file is opened. If
the ~irst PUT statement that refers to the
file has the PAGE option, or if the first
PUT statement includes a format list with
PAGE as the first item, a blank page will
appear. Under the checkout com~iler, no
new page is started when an explicit or
implicit OPEN is executed for SYSPRINT,
because the file is used by the com~iler to
transmit diagnostic messages. SYSPRINT is
always open under the checkout compiler.

ENVIRONMENT Attribute

The ENVIRONMENT attribute s~ecifies
information about the physical organization
of the data set associated with a file.
The information is contained in a
~arenthesized option list; the general
format is:

ENVIRONMENT (option-list)

The options a~plicable to
stream-oriented transmission are:

F\FB\FS\FBS\V\VB\D\DBIU
RECSIZE(record-length)
BLKSIZE(block-size)

BUFFERS(n)

CONSECUTIVE

lLEAVE t
REREAD~

ASCII
BUFOFF ((n)]

Chapter 11: Stream-Oriented Transmission 147

The options may appear in any order and
are separated by blanks, The options
themselves cannot contain blanks.

The options are discussed below.

RECORD FORMAT OPTIONS

Although record boundaries are ignored in
stream-oriented transmission, record format
is important when a data set is being
created, not only because it affects the
amount of storage space occupied by the
data set and the efficiency of the program
that processes the data, but also because
the data set may later be processed by
record-oriented transmission. Having
specified the record format, the programmer
need not concern himself with records and
blocks as long as he uses only
stream-oriented transmission; he can
consider his data set as a series of
characters arranged in lines, and can use
the SKIP option or format item (and, for a
PRINT file, the PAGE and LINE options and
format items) to select a new line.

Records can have one of the following
formats:

Fixed-length

Variable-length

F unblocked
FB blocked
FBS blocked, standard
FS unblocked, standard

V unblocked
VB blocked
D unblocked (see

"ASCII Data Sets")
DB blocked (see

"ASCII Data Sets")

Undefined-length U (cannot be blocked)

Blocking and deblocking of records is
performed automatically.

All records, whatever the format,
consist of data bytes and, optionally,
control or prefix bytes. Variable-length
records include control and prefix bytes to
specify record and block lengths; the use
of these bytes is described later in this
section. In addition, any record (whatever
the format) associated with a PRINT file
has the first data byte interpreted as a
printer control character. The compiler
analyzes the relevant PUT statement and
inserts the appropriate character (or a
default character).

148

Fixed-length Records

All records in the data set are the same
length.

F-format: The records are unblocked; each
record constitutes a single
block.

FB-format: The records are blocked, some
of the blocks may be shorter
blocks, that is they may be
shorter than the specified
block size.

FS-format: The records are unblocked; each
record constitutes a single
block. For direct-access
storage, every track except the
last one is filled to capacity.

FES-format: The records are blocked. Only
the last block can be a short
clock.

A sequential data set is said to contain
FBS-format records if:

1. All records in the data set are
FE-format.

2. For direct-access storage, every track
except the last one is filled to
capacity.

3. No blocks except the last one are
truncated.

Data sets with FBS-format can be read more
efficiently from direct-access storage than
data sets with truncated blocks.

Variable-length Records

Each record can be a different length.

V-format: The records are unblocked; each
record constitutes a single
block. Each record consists
of:

Four control bytes
Data bytes

The four control bytes contain
the record length <that is, the
length of the current record);
this value is inserted
automatically, and requires no
action cy the programmer.

In addition, four extra control
bytes are placed at the
beginning of the block (that

is, the record). These bytes
contain the block size; the
value is inserted in the same
way as the record length.

VB-format:: The records are blocked. Each
record consists of:

Four control bytes
Data bytes

The four control bytes have the
same purpose as in V-format
records. The block has four
extra control bytes for the
block size in the same way as
V-format records.

I D- and DB·format: see "ASCII Data sets".

Undefined-length Records

All processing is the responsibility of the
programmer. If a length specification is
required in the record, the programmer. must
provide one and also interpret it.

RECSIZE O~)E&!!

The RECSIZE option specifies the record
length. 'l'his is the sum of:

1. The length required for data. For
variable-length and undefined records,
this iSI the maximum length.

2. Any control bytes required.
variable-length records require four,
for t.hE! record length; fixed-length
and undefined-length records do not
requirE! any.

The recor.d length can be specified as a
decimal intE!ger constant, or as a variable
with the attributes FIXED BINARY(31,0)
STATIC.

The value iSI subject to the following
conventions:

Maximum: Fixed-length, and
undefined-length (except ASCII
data sets): 32,760 bytes.
Variable-length (except ASCII
data sets): 32,756 bytes
ASCII data sets: 9999 bytes

Zero value: A search for a valid value is
made in (in the following
order):

DD statement for the
data set associated with
the file

Data set label

If neither of these can
provide a value, default
action is taken (see "Record
Format Defaults", later in
this section).

Negative value: The UNDEFINEDFILE
condition is raised.

A value implied by the LINESIZE option
overrides a value specified in the RECSIZE
option.

BLKSIZE Option

The BLKSIZE option specifies the clock
size. This is the sum of:

1. The lengths of all the records in the
block. For variable length records,
the length of each record includes the
four control bytes for the record
length.

2. Any control bytes required.
Variable-length blocked records
require four for the blocksize;
fixed-length and undefined-length
records do not require any.

or

Any block prefix bytes (ASCII data
sets)

The block size can be specified as a
decimal integer constant, or as a variable
with the attributes FIXED BINARY(31,0)
STATIC.

The value is subject to the following
conventions:

Maximum: 32,760 bytes (or 9999 for an
ASCII data set for which
BUFOFF is specified without a
prefix-length value)

Chapter 11: Stream-Oriented Transmission 149

Zero value: A search for a valid value is
made in (in the following
order):

DD statement for the
data set associated with
the file

Data set label

If neither of these can
provide a value, default
action is taken (see "Record
Format Defaults", later in
this section).

Negative value: the UNDEFINEDFILE
condition is raised.

The relationship of the block size to
the record length depends on the record
format:

FB·format or FBS-format: The block size
must be a multiple of record
length

VB-format: The block size must be equal to
or greater than the sum of:

The lengths of all the records
in the block
Four control bytes for the
block size

DB·format: The blocksize must be equal to
or greater than the sum of:

~

The lengths of all the records
in the block
Length of the block prefix (if
block is prefixed)

1. The BLKSIZE option can be used with
unblocked (F-,V-, or D-format) records
as follows:

a. The BLKSIZE option, but not the
RECSIZE option, is specified. The
record length is set equal to the
block size (minus any control or
~refix bytes) and the record
format is unchanged.

b. Both the BLKSIZE and the RECSIZE
options are specified, and the
relationship of the two values is
compatible with blocking for the
record format used. The records
are assumed to be blocked and the
record format is set to FB, VB, or
DB whichever is appropriate.

2. If, for FB-format or FBS-format
records, the block size equals the
record length, the records are assumed

lS0

to be unblocked and the record format
is set to F.

Record Format Defaults

If any of the record format options is not
specified in the ENVIRONMENT attribute, or
in the associated DD statement or data set
label, the following action is taken:

INPUT files:

Record format: The UNDEFINEDFILE condition
is raised.

Block size or record length: If one of
these is specified, a search is
made for the other in the
associated DD statement or data
set label. If the search
provides a value, the
UNDEFINEDFILE condition is
raised if this value is
imcompatible with the value in
the specified option. If the
search is unsuccessfu1, a value
is derived from the value for
the specified o~tion (with the
addition or subtraction of any
control or prefix bytes).

If neither is specified, the
UNDEFINEDFILE condition is
raised.

OUTPUT files:
(

Record format: set to VB-format, or if
ASCII option s~ecified, to
DB-format

Record length: The specified or default
LINESIZE value is used:
PRINT files:

F, FB, FBS, or U:LINESIZE + 1
V, VB, 0, or DB: LINESIZE +
S

Non-PRINT files:
F, FB, FBS, or U:LINESIZE
V, VB, 0, or DB: LINESIZE +
4

Block size: FB, or FBS: S*(record length)
VB: S*(record length) + 4
DB:5*(record length) + (block
prefix) (see note 3)

BUFFER offset: F, FB, or U:O
D, or DB: 4

!:!2lli
1. The standard default for LINESIZE is

120.

2. If the default block size as
calculak.ed above is greater than
32,760 the block size is set equal to
(record length + 4), and the records
are set to V-format, except when the
ASCII option is specified. With ASCII
data set.s, if, the default blocksize is
great4~r than 32,760, or 9999 if BUFOFF
is specified without a prefix-length
value, then the block size is set
equal tel (record length + length of
block plt:'efix) and the record format is
set t() D.

3. With I>B··format records on output
files, the length of the block prefix
(that i!3, the buffer offset) must
always be either 0 or 4.

4. The optimizing and checkout compilers
will also accept the form of record
format specification used for the
PL/IOn compiler. In this form, the
record length and block size are
included in the format specification.

BUFFER ALLOCJ~TION

A buffer is a main storage area that is
used for the intermediate storage of data
transmitted t~o and from a data set. The
use of buffers allows transmission and
computing time to be overlapped. Buffers
are essential for the automatic blocking
and deblocking of records.

BUFFERS OEticm

The option BUFFERS(n) in the ENVIRONMENT
attribute specifies the number(n) of
buffers to be allocated for a data set;
this numbex' must not exceed 255 (or such
other maximum as was established at system
generation). If the number of buffers is
not specifiedl or is specified as zero, two
buffers are~ assumep.

The number of buffers can be specified
in the BUFNO subparameter of a DD statement
instead of in the ENVIRONMENT attribute.

DCB SUbparameter

Some of the information that can be
specified in the options of the ENVIRONMENT
attribute can also be specified in the DCB
subparameter of a DD statement. The table
gives a list of equivalents.

~QPtion

Record format
RECSIZE
BLKSIZE
BUFFERS
ASCII·
BUFOFF

DATA SET ORGANIZATION

DCB SUbparameter

RECFM
LRECL
BLKSIZE
BUFNO
ASCII
BUFOFF

The organization of a data set determines
how data is recorded in the data set, and
how the data is subsequently retrieved so
that it can be transmitted to the program.
This implementation recognizes three data
set organizations, CONSECUTIVE, INDEXED,
and REGIONAL. A data set that is to be
accessed by stream-oriented transmission
must have CONSECUTIVE organization; since
this is the default for data set
organization, it need not be specified at
all for a STREAM file.

CONSECUTIVE Data Sets

The records in a CONSECUTIVE data set are
arranged sequentially in the order in which
they were written;. they can be retrieved
only in the same order. After the data set
has been created, the associated file can
be opened for input (to read the data), or
for output (to extend the data set by
adding records at the end" or to replace
the contents of the data set by new data:
the effect of using an OUTPUT file to
process an existing data set depends on the
DISP parameter of the associated DD
statement) •

Chapter 11: Stream-Oriented Transmission 151

r------------------T-------------------T--, I ENVIRONMENT I DISP I Action I
I Option I Subparameter I I
.--------------~---+----------------~--+--~ I REREAD I I Positions the current volume to reprocess thel
I I I data set. Repositioning for a BACKWARDS file I
I I I is at the physical end of the data set. I
.------------------+-------------------+--i I LEAVE I I Positions the current volume at the logical I
I I I end of the data set. Positioning for a I
I I I BACKWARDS file is at the physical beginning I
I I I of the data set. I
~--~---------------+-------------------+--i I Neither I PASS I Positions the volume at the end of the data I
I REREAD nor I I set I
I LEAVE I I I
I I I I
I I DELETE I Rewinds the current volume I
I I I I
I I KEEP, CATLG, I Rewinds and unloads the current volume I
I I UNCATLG I I
L __ ~---------------~----.---------------~-------------_________________ -----------------_J
Figure 11.4. Effect of LEAVE and REREAD options

MAGNETIC TAPE HANDL·ING OPTIONS

~E and REREAD Options

The volume disposition options allow the
programmer to specify the action to be
taken when the end of a magnetic tape
volume is reached, or when a data set on a
magnetic tape volume is closed. The LEAVE
option prevents the tape from being
rewound. The REREAD option rewinds the
tape to permit reprocessing of the volume
or data set. If neither of these is
specified, the action at end of volume or
on closing of a data set is controlled by
the DISP parameter of the associated DD
statement. The effects of the options are
summarized in figure 11.4.

ASCII DATA SETS

Data sets on magnetic tape using ASCII may
be created and accessed in PL/I. The
implementation supports F, U, and D record
formats. F and U formats are treated in
the same way as with other data sets; 0 and
DB formats, which correspond to V and VB
formats with other data sets, are described
below.

In addition to the record format, two
other ENVIRONMENT options may be specified:
ASCII, and the buffer offset option BUFOFF.

152

ASCII Option .

This option specifies that the code used to
represent data on the data set is ASCII.

BUFOFF Option and Block Prefix Fields

At the beginning of each block in an ASCII
data set, there may be a field known as the
block prefix field. It may be from one to
99 bytes long. The buffer offset option
indicates the length of this field to data
management, so that the accessing or
creation of data is started at this offset
from the beginning of each physical block.
Pl/I does not support access to this field,
and in general it does not contain
information which is used in OS
implementations. There is one situation in
which data management does use information
in the block prefix: with unblocked or
blocked variable length records (that is,
D- or DB-format records), the block prefix
field may be used to record the length of
the block. In this case, it is four bytes
long and contains a right-aligned, decimal
character value that gives the length of
the block in bytes, including the block
prefix field itself. It is then exactly
equivalent to a block length field.

The format of the buffer offset option
is BUFOFF [en)]. A numerical value equal
to the length of the prefix can be
specified for ftnft. It may be specified as
either a decimal integer constant or as a
variable with the attributes FIXED
BINARY(31,O) STATIC. Its minimum value is

zero and its maximum is 99. The absence of
a prefix length specification indicates
that the .block prefix is to be used as a
block length field; it implies that the
field is four bytes long. The length of
the block is inserted in the prefix by data
managemen·t.

On input, any ASCII data set may be
accessed if it has a block prefix field of
length one to 99 bytes, or no block prefix
field at all; and it may be accessed
whether or not the block prefix field is
used as a block length field. On output, a
data set using anyone of the three valid
record formats may be created without a
block prefix, but the only situation in
which the creation of a block prefix is
supported by PL/I is when it is used as a
block length field.

The BUFOFF option may be used with ASCII
data sets only.

D-format i!!l;d DB-format Records

Each record may be of a different length.
The two dif.ferent formats are:

D-format: The records are unblocked; each
record constitutes a single

block. Each record consists
of:

Four control bytes
Data tytes

The four control bytes contain
the length of the record; this
value is inserted by data
management and requires no
action from the programmer. In
addition, there may be, at the
start of the block, a block
prefix field, which may contain
the length of the block.

DB-format: The records are clocked. All
other information given for
D-format applies to DB-format.

Default Rules

In addition to the rules given under
"Record Format Defaults", the following
rule applies:

If ASCII is not specified in either the
ENVIRONMENT option or the DD statement, but
one of BUFOFF, D, or DB is specified, then
ASCII is assumed.

Chapter 11: Stream-Oriented Transmission 153

Chapter 12: Record-Oriented Transmission

Introduction

This chapter describes the input and output
statements used in record-oriented .
transmission. Those features of PL/I that
apply equally to record-oriented and
stream-oriented transmission, including
files, file attributes, and opening and
closing files, are described in chapter 10,
"Input and output".

In record-oriented transmission, data in
a data set is considered to be a collection
of records recorded in any format
acceptable to the operating system. No
data conversion is performed during
record-oriented transmission: on input,
the READ statement either causes a single
record to be transmitted to a program
variable exactly as it is recorded in the
data set, or else sets a pointer to the
record in a buffer; on output, the WRITE,
REWRITE, or LOCATE statement causes a
single record to be transmitted from a
program variable exactly as it is recorded
internally. Although data is actually
transmitted to and from a data set in
blocks, the statements used in
record-oriented transmission are concerned
only with records; the records are blocked
and deblocked automatically.

Data Transmitted

Most variables, including parameters and
DEFINED variables, can be transmitted by
record-oriented transmission statements,
and in general, the information given in
this chapter may be applied equally to all
variables. There are certain special
considerations for a few types of data, and
these are given below.

Data Aggregates

There are some restrictions applied to data
The following restrictions apply to data
aggregates:

1. An aggregate must be in connected
storage. (An aggregate parameter must
have the CONNECTED attribute).

2. For the LOCATE statement, the variable
must be a level 1 based variable.

154

Unaligned Bit Strings

The following may not be transmitted.

1. BASED, DEFINED, parameter,
subscripted, or structure-base-element
variables that are unaligned
fixed-length bit strings.

2. Minor structures whose first or last
base elements are unaligned
fixed-length bit strings (except where
they are also the first or last
elements of the containing major
structure).

3. Major structures that have the BASED
or DEFINED attribute or are
parameters, and that have unaligned
fixed-length bit strings as their
first or last elements.

Varying-length Strings and Area Variables

A locate mode output statement (see "LOCATE
Statement", later in this Chapter)
specifying a varying-length string causes
the transmission of a field having a length
equal to the maximum length of the string,
plus a two-byte prefix denoting the current
length of the string. The SCALARVARYING
option must be specified for the file. A
locate mode output statement specifying an
area variable causes the transmission of a
field as long as the declared size of the
area, plus a 16-byte prefix containing
control information.

A move mode output statement (see "WRITE
Statement" and "REWRITE statement" later in
this chapter) specifying a varying-length
string variable transmits only the current
length of the string. A two-byte prefix is
included only if the SCALARVARYING option
is specified for the file. A move mode
statement specifying an element area
variable or a structure whose last element
is an area variable transmits only the
current extent of the area plus a 16-byte
prefix.

DATA TRANSMISSION STATEMENTS

The following is a general description of
the record-oriented data transmission

statements; they are described in detail in
section J, "statements".

There al:e four statements that actually
cause transmission of records to or from
auxiliary storage. They are READ, WRITE,
LOCATE, and REWRITE. A fifth statement,
the DELETE statement, is used to delete
records frc)m 'an UPDATE file. The
attributes of the file determine which
statements can be used.

READ Statement

The READ st:atement can be used with any
INPUT or UPDATE file. It causes a record
to be tra.nslmi tted from the data set to the
program, either directly to a variable or
to a buffer. In the case of blocked
records, a READ statement with the
appropriatE~ option causes a record to be
transferred from a buffer to the variable
or sets a pointer to the record in a
buffer; consequently, not every READ
sta~ement causes transmission of data from
an iriput device.

WRITE Statelment

The WRITE e;tatement can be used with any
OUTPUT file or DIRECT UPDATE file, but not
with a SEQUENTIAL UPDATE file. It causes a
record 'to t)e transmitted from the program
to the datal set. For unblocked records,
transmissicln may be directly from a
variable or from a buffer. For blocked
records, the WRITE statement causes a
logical record to be placed into a buffer;
only when t.he blocking of the records is
complete is there actual transmission of
data to an output device.

REWRITE Statement

The REWRITE: statement causes a record to be
replaced in an UPDATE file. For SEQUENTIAL
UPDATE file!s, the REWRITE statement
specifies that the last record read from
the file is to be rewritten; consequently a
record must. be read before it can be
rewritten.. For DIRECT UPDATE files, any
record can be rewritten whether or not it
has first been read.

LOCATE Statement

The LOCATE statement can be used only with
an OUTPUT SEQUENTIAL BUFFERED file. It
allocates storage within an output buffer
for a based variable, setting a pointer to
the location in the buffer as it does so.
This pointer can then be used to refer to
the allocation so that data can be moved
into the buffer. When a complete block of
logical records is present in a buffer, the
block is transmitted to an output device.

DELETE Statement

The DELETE statement specifies that a
record in an UPDATE file be deleted.

UNLOC~ Statement

The UNLOCK statement is used in association
with a READ statement that refers to an
EXCLUSIVE file. The UNLOCK statement makes
the specified record available to other
tasks in addition to that for which the
READ statement was issued.

Options of Transmission Statements

Options that are allowed for
record-oriented data transmission
statements differ according to the
attributes of the file and the
characteristics of the associated data set.
Lists of all of the allowed combinations
for each type of file are given in figures
12.6~ 12.7, and 12.9, later in this
chapter.

Each option consists of a keyword
followed by a value, which is a file
expression, a variable, or an expression,
enclosed in parentheses. In any statement,
the options may appear in any order.

FILE Option

The FILE option must appear in every
record-oriented statement. It specifies
the file upon which the operation is to
take place. It consists of the keyword
FILE followed by a file expression enclosed
in parentheses. An example of the FILE
option is shown in each of the statements
in this section.

Chapter 12: Record-Oriented Transmission 155

INTO Option

The INTO option can be used in the READ
statement for any INPUT or UPDATE file.
The INTO option specifies a variable into
which the logical record is to be read.

READ FILE (DETAIL) INTO (RECORD_1);

This specifies that the next sequential
record is to be read into the variable
RECORD_1.

Note that the INTO option can name an
element string variable of varying length.
When using a READ statement with the FROM
option, only the current length of a
varying-length string is transmitted to a
data set and a two-byte prefix specifying
the length mayor may not be attached; it
will only be attached if the SCALARVARYING
option of the ENVIRONMENT attribute is
specified for the file.

If SCALARVARYING was not declared then,
on input, the implementation calculates the
string length from the record length and
attaches it as a two-byte prefix. For
varying-length bit strings, this
calculation rounds up the length to a
multiple of 8 and therefore the calculated
length may be greater than the maximum
declared length.

FROM option

The FROM option must be used in the WRITE
statement for any OUTPUT or DIRECT UPDATE
file. It can also be used in the REWRITE
statement for any UPDATE file. The FROM
option specifies the variable from which
the record is to be written.

Note that the FROM option can name an
element string variable of varying length.
(See "INTO Option" above).

Records are transmitted as an integral
number of bytes. Therefore, if a bit
string (or a structure that starts or ends
with a bit string) that is not aligned on a
byte boundary, is transmitted, the record
will contain bits at the start or end that
are not part of the string.

The FROM option can be omitted from a
REWRITE statement for SEQUENTIAL BUFFERED
UPDATE files. If the last record was read
by a READ statement with the INTO option,
REWRITE without FROM has no effect on the
record in the data set; but if the last
record was read by a READ statement with
the SET option, the record will be updated,
in the buffer, by whatever assignments were
made and copied back onto the data set.

156

WRITE FILE (MASTER) FROM (MAS_REC);

REWRITE FILE (MASTER) FROM (MAS_REC);

Both statements specify that the value of
the variable MAS REC is to be written into
the file MASTER.- In the case of the WRITE
statement~ it specifies a new record in a
SEQUENTIAL OUTPUT file. The REWRITE
statement specifies that MAS_REC is to
replace the last record read from a
SEQUENTIAL UPDATE file.

SET Option

The SET option can be used with a READ
statement or a LOCATE statement. It
specifies that a named pointer variable is
to be set to point to the location in the
buffer into which data has been moved
during the READ operation, or which has
been allocated by the LOCATE statement.

READ FILE (X) SET (P);

This statement specifies that the value of
the pointer variable P is to be set to the
location in the buffer of the next
sequential record. If the SET option is
omitted, the pointer declared with the
record variable will be set.

Note that if an element string variable
of varying-length is transmitted~ the
SCALARVARYING option must be specified for
the file.

IG~ORE Option

The IGNORE option can be used in a READ
statement for any SEQUENTIAL INPUT or
SEQUENTIAL UPDATE file. It includes an
expression whose integral value specifies a
number of records to be skipped over and
ignored. If the value of the expression is
negative or zero, no records are skipped.

READ FILE (IN) IGNORE (3);

This statement specifies that the next
three records in the file are to be
skipped.

If a READ statement includes none of the
options INTO, SET, and IGNORE, IGNORE(1) is
assumed.

KEY Option

The KEY option applies only to KEYED files
associated with data sets of INDEXED or
REGIONAL organization. (The types of data
set organization applicable to
record-oriented transmission are discussed
under "Data set Organization", later in
this chapter.) The option consists of the
keyword KEY followed by a parenthesized
expression, which may be a character-string
constant, ,a variable, or any other element
expression; if necessary, the expression is
evaluated and converted to a character
string.. The rules governing the length of
the character string and what it represents
are discussed below under "INDEXED
Organization" and "REGIONAL Organization"
later in this chapter.

The Ke:y option identifies a particular
record.. It can be used in a READ statement
for an INPUT or UPDATE file, or in a
REWRITE Istatement for a DIRECT UPDATE file.
(The KEY option can be used in a READ
statemen't for a SEQUENTIAL file only if the
associated data set has INDEXED
organiza'tion.)

:READ FILE (STOCK) INTO (ITEM)
KEY (STKEY);

This sta'tement specifies that the record
identified by the character· string value of
the variable STKEY is to be read into to
the variable ITEM.

KEYFROM and KEYTO Options

The KEYF:ROM and KEYTO options apply only to
KEYED files associated with data sets of
INDEXED or REGIONAL organization, or to
TRANSIENT files. Each option consists of

I the keyword KEYFROM or KEYTO followed by an
expression in parentheses. For KEYFROM,
the expression may be a character-string
constant, or any other element expression;
if necessary~ the expression is evaluated
and converted to a ,character string. For
KEYTO, the expression must be a

I
character-string variable or pseudovariable
whose value is less than 256 bytes long.
The rules governing the lengths of the
character strings and what they represent
are discussed below, under "INDEXED
Organization" and "REGIONAL Organization"
(except for TRANSIENT files, which are
discussed under "Teleprocessing").

The KEYFROM option specifies a key that
identifies the record on the data set, or
(for TRANSIENT files) the terminal to which
the message or record is to be transmitted.

I It can be used in a WRITE statement for a

I
SEQUENTIAL OUTPUT or DIRECT UPDATE file or
a DIRECT OUTPUT file that has REGIONAL
organization, or in a LOCATE statement.

WRITE FILE (LOANS) FROM (L~ANREC)
KEYFROM (LOANNO)~

This statement specifies that the value of
LOANREC is to be written as a record in the
file LOANS, and that the character string
value of LOAN NO is to be used as the key
with which it can subsequently be
retrieved.

The KEYTO option specifies the name of
the variable into which the key (or
terminal identifier, if the file is
TRANSIENT) of a record is to be read. It
can be used in a READ statement for a
SEQUENTIAL INPUT, SEQUENTIAL UPDATE, or
TRANSIENT INPUT file.

READ FILE (DETAIL) INTO (INVTRY)
KEYTO (KEYFLD);

This statement specifies that the next
record in the file DETAIL is to be read
into the variable INVTRY, and that the key
of the record is be read into the variable
KEYFLD.

EVENT Option

I
The EVENT option consists of the keyword
EVENT followed by the name of an event
variable in parentheses. (The appearance
of a name in the EVENT option constitutes a
contextual declaration of an event
variable.) The option can appear in any
READ, WRITE, REWRITE, or DELETE statement
for an UNBUFFERED file with CONSECUTIVE or
REGIONAL organization or for any DIRECT
file,.

The EVENT option specifies that the
input or output operation is to take place
asynchronously (i.e., while other
processing continues) and that no I/O
conditions (except for UNDEFINEDFILE) are
raised until a WAIT statement, specifying
the same event variable, is executed by the
same task. For example:

READ FILE, (MASTER) INTO (REC_VAR)
EVENT (RECORD_1);

WAIT (RECORD_1);

I When any expressions in the options of the
READ statement have been evaluated, the
input operation is started. As soon as
this has happened, the statements following
are executed. Any RECORD, TRANSMIT, KEY,

Chapter 12: Record-Oriented Transmission 157

or ENDFILE condition will not be raised
until control reaches the WAIT statement.
If, when the WAIT statement is executed,
the input oferation is not complete, and if
none of the four conditions is raised,
execution of further statements is
suspended until the operation is complete.
When the operation is successfully
completed, processing continues with the
next statement following the WAIT

I statement. If any of the four conditions
arise owing to execution of the READ
statement, the condition(s) will be raised
when the WAIT statement is executed. For
this implementation, only the conditions
TRANSMIT and RECORD can occur together;
TRANSMIT is always processed first. Then,
upon normal return from anyon-units
entered, processing continues with the next

I statement following the WAIT statement.
Although the EVENT option specifies
asynchronous processing, none of the four
conditions can cause an interrupt until
they are synchronized with processing by
the WAIT statement.

Note that for consecutive and regional
sequential files only one outstanding
input/output operation is allowed for a
file unless a higher numter is specified in
the NCP option of the environment attribute
or DCB subparameter. The ERROR condition
is raised if an attempt is made to initiate
an input/output operation on a file in
excess of the number allowed, while a
previous input/output operation has not
been waited for.

Once a statement containing an EVENT
option has been executed, the event
variable named in the option is considered
to be active; while it is active, the same
event variable cannot be specified again in
an EVENT option. The event variable
becomes inactive again only after execution
of the corresponding WAIT statement or when
the file is closed.

The EVENT option can also be used with
the CALL statement to specify asynchronous
execution of procedures (see chapter 17,
ftMultitasking ft), and with the DISPLAY
statement with the REPLY option.

NOLOCI< Option

The NOLOCI< option can be used in a READ
statement that refers to an EXCLUSIVE file.
It specifies that the record accessed by
the READ statement will not be locked
between completion of a READ statement and
commencement of the corresponding REWRITE;
the record will continue to be available to

158

other tasks in addition to that which
issued the READ statement.

Processing Modes

Record-oriented transmission offers the
programmer two methods of handling his
data. He can process data within a
declared storage area; this is termed the
move mode because the data is actually
moved into or out of main storage either
directly or via a buffer. Alternatively,
the programmer can process his data while
it remains in a buffer (that is, without
moving it into a declared storage area):
this is termed the locate mode, because the
execution of a data transmission statement
merely identifies the location of the
storage allocated to a record in the
buffer. The locate mode is applicable only
to SEQUENTIAL BUFFERED files. which mode
is ·used is determined by the data
transmission statements and options used by
the programmer.

MOVE MODE

In the move mode, a READ statement causes a
record to be transferred from external
storage to the variable named in the INTO
option (via an input tuffer if a BUFFERED
file is used): a WRITE or REWRITE statement
causes a record to be transferred from the
variable named in the FROM option to
external storage (perhaps via an output
buffer). The variables named in the INTO
and FROM options can be of any storage
class.

Consider the following example, which is
illustrated in figure 12.1:

NEXT: READ FILE(IN) INTO(DATA):

WRITE FILE (OUT) FROM (DATA):
GO TO NEXT;

The first time the READ statement is
executed, a block is transmitted from the
data set associated with the file IN to an
input buffer, and the first record in the
block is assigned to the variable DATA;
further executions of the READ statement
assign successive records from the buffer
to DATA. When all the records in the
buffer have been processed, the next READ
statement causes a new block to be
transmitted from the data set although this

DATA
SET

INPUT
BUFFER

VARIABLE
(DATA)

OUTPUT
BUFFER

DATA
SET

(

[~

1ST
READ

1ST
READ

JRD
READ

D
1ST
WRITE

.------------~~--------------'\

I

2ND
WRITE

J RD
WRITE

I 1 I

Figure 12.11. Input and output: move mode

Chapter 12: Record-Oriented Transmission 159

READ statement will probably access a new
record in an alternative buffer, thus
permitting overlapped data transmission and
processing. The WRITE statement is
executed in a similar manner, building
physical records in an output buffer and
transmitting them to the data set
associated with the file OUT each time the
buffer is filled.

The move mode may be simpler to use than
the locate mode since there are no buffer
alignment problems. Furthermore, it can
result in faster execution when there are
numerous references to the contents of the
same record, because of the overhead
incurred by the indirect addressing
technique used in locate mode.

It is ~ossible to use the move mode
access technique and avoid internal
movement of data in the following cases:

'1. SEQUENTIAL UNBUFFERED files with:
CONSECUTIVE organization with either
U-format records, or F-format records
which are not larger than the variable
specified in either the INTO or FROM
option; and REGIONAL(l) organization
with F-format records which are not
larger than the variable specified in
the FROM or INTO option.

2. DIRECT files with REGIONAL(l) or
REGIONAL(2) organization and F-format
records; and REGIONAL(3) organization
with F-format or U-format records.

LOCATE MODE

Locate mode requires the use of based
variables. A based variable is effectively
overlaid on the data in the buffer, and
different based variables can be used to

160

access the same data by associating the
same pointer with each one; thus the same
data can be interpreted in different ways.
Locate mode can also be used to read
self~defining records~ in which information
in one part of the record is used to
indicate the structure of the rest of the
record; for example, this information could
be a count of the number of repetitions of
a subfield, or a code identifying which one
of a class of structures should be used to
interpret the record.

A READ statement causes a block of data
to be transferred from the data set to an
input buffer if necessary, and then sets a
pointer variable named in the SET option to
point to the location in the buffer of the
next record; the data in the record can
then be processed by reference to the based
variable associated with the pointer
variable. The record is available only
until the execution of the next READ
statement that refers to the same file.

A LOCATE statement causes storage for a
based variable to be allocated in an output
buffer, and sets a Fointer variable to
identify the allocated storage. The based
variable can now have values assigned to
it. The next LOCATE, WRITE, or CLOSE
statement for the same file will, if
necessary, transmit the data in the out~ut
buffer to the data set. After transmission
the storage used for the buffer is freed;
hence, only the latest one can be accessed.

Locate mode frequently provides faster
execution than move mode since there is
less movement of data, and less storage may
be required. But it must be used
carefully; in particular, the programmer
must be aware of how his data will be
alig~ed in the buff~r and how structured
data will be mapped; structure mapping and
data alignment are discussed in section K,
"Data Mapping".

Figure '2~2 illustrates the following
example, whi4:h uses locate mode for input
and move mod49 for output:

DClL DATA BASED (P) :

NEXT: READ FILE(IN) SET(P);

~~R:rTE FILE (OUT) FROM (DATA) ;
GO TO NEXT;

The first time the READ statement is
executed, ii block is transmitted from the
data set associated with the file IN to an
input buffer, and the pointer variable P is
set to point to the first record in the
buffer: any reference to the variable DATA
or to any other based variable qualified by
the pointer :P will then in effect be a
reference to this first record. Further
executions of the READ statement set the
pointer variable P to point to succeeding
records in the buffer. When all the
records in the buffer have been processed,
the next READ statement causes a new block
to be transmitted from the data set.

It is doubtful whether the use of locate
mode for both input and output in the above
example would result in increased
efficiency. An alternative would be to use
move mode :for input and locate mode for
output, fo:r example:

DCL DATA BASED(P):

NEXT: LOCATE DATA FILE(OUT):
READ FILE(IN) INTO(DATA):

GO TO NEXT;

Each execution of the LOCATE statement
reserves storage in an output buffer for a
new allocation of the based variable DATA
and sets the pointer variable P to pOint to
this storage. The first execution of the
READ stateme:nt causes a block to be
transmitted from the data set associated
with the file IN to an input buffer, and
the first record in the block to be
assigned to the first allocation of DATA;
subsequent executions of the READ statement
assign successive logical records to the
current allocation of DATA. When all the
records .in t.he buffer have been processed,
the next READ statement causes a new block
to be transmitted from the data set. Each
record is available for processing during
the period between the execution of the
READ statemElnt and the next execution of
the LOCATE statement. When no further

space is available in the output buffer,
the next execution of the LOCATE statement
causes a block to be transmitted to the
data set associated with the file OUT, and
a new buffer to be allocated.

Note that if the READ statement raises
the ENDFILE condition, the file OUT will
have been allocated a buffer which will be
transmitted when the file is closed.

ENVIRONMENT Attribute

The ENVIRONMENT attribute specifies
information about the ~hysical organization
of the data set associated with a file.
The information is contained in a
parenthesized option list; the general
format is:

ENVIRONMENT (option-list)

The options applicable to
record-oriented transmission are:

FIFBIFSIFBSIVIVBIVSIVBSIDIDBIU
RECSIZE(record-length)
BLKSIZE(block-size)

BUFFERS (n)

CONSECUTIVE I
INDEXED
REGIONAL({11213})
TP ({MI R})

lLEAVE t
REREAD~

TOTAL

lCTLASAl
CTL360~

COBOL

INDEXAREA (index-area-size)]
NOWRITE
ADDBUFF

GENKEY

NCP(n)

TRKOFL

SCALARVARYING

KEYLENGTH(n)

KEYLOC(n)

ASCII
BUFOFF ((n)]

Chapter 12: Record-Oriented Transmission 161

DATA
SET

INPUT
BUFFER

OUTPUT
BUFFER

DATA
SET

1ST
READ

I
p1

1ST
READ

I
p1
2ND
READ

1ST
WRITE

3 RD
WRITE

__ --------------J\~------------__ ('\

I J
Figure 12.2. Locate mode input, move mode output

162

I
p1

3RD
READ

2 NO
WRITE

3RD
WRITE

I ! I

A consta:nt or variable can be used with
those ENVIRONMENT options that require
decimal int,eger arguments, such as block

I
sizes and r'ecord lengths. The variable
must be unsubscripted and unqualified with
the attributes FIXED BINARY(31,O) and
STATIC.

The options may appear in any order, and
are separ;ated by blanks. The options
themselves cannot contain blanks.

The op,tions are discussed below.

RECORD FO:RMAT OPTIONS

Records can have one of the following
formats:

Fixed-length

variable length

Undefined-length

F unblocked
FB blocked
FS unblocked, standard
FBS blocked, standard

V
VB
VS
VBS
o

DB

U

unblocked
blocked
spanned
blocked, spanned
unblocked (see ·ASCII
Data Sets·)
blocked (see ASCII
Data Sets·)

(cannot be blocked)

Blocking and deblocking of records is
performed automatically.

All records, whatever the format, consist
of data byt.es and, optionally, control or
prefix bytes. Variable-length records
include control or prefix bytes to specify
record and tlock lengths: the use of these
bytes is described later in this section.
In addition, any record (whatever the
format) can have an optional printer or
machine control chara(:ter in the first data
byte. The programmer must insert the
character himself, and must indicate the
presence of such a character by means of
the CTLASA or CTL360 options of the
ENVIRONMENT attribute, or by means of the
equivalent field of the DCB subparameter in
the associated DO statement.

The SCALARVARYING option (described later
in this section) can be specified with
records of any format. This option cannot
be specified if the first data byte
contains a printer or a machine control
character, as this would lead to an
ambiguous interpretation of this byte.

Fixed-length Records

All records in the data set are the same
length.

F-format: The records are unblocked; each
record constitutes a single block

FB-format: The records are blocked. Some
of the blocks may be short blocks, that
is, they may be shorter than the
specified block size.

FS- forma.t : The records are unblocked: each
record constitutes a single block. For
direct-access storage~ every track
except the last one is filled to
capacity.

FBS-format: The records are blocked. Cnly
the last block can be a short block.

A consecutive data set is said to contain
FBS-format records if:

1. All records in the data set are
FB-format

2. For direct-access storage, every track
except the last one is filled to
capacity.

3. No blocks except the last one are
truncated.

Data sets with standard format (FS or FES)
records can be read from direct-access
storage more efficiently than data sets
with truncated blocks or embedded unfilled
tracks.

variable-length Records

Each record can be a different length.

V-format: The records are unblocked; each
record constitutes a single tlock.
Each record consists of:

Four control bytes

Data bytes

The four control tytes contain the
record length (that is, the length of
the current record including the four
control bytes); this value is inserted
automatically and requires no action by
the programmer. In addition, four
extra control bytes are placed at the
beginning of the block. These bytes
contain the block size including all
control bytes; the value is inserted in
the same way in the record length.

Chapter 12: Record-Oriented Transmission 163

VB-format: The records are blocked. Each
record consists of:

Four control bytes

Data bytes

The four control bytes have the same
purpose as in V-format records. The
block has four extra control bytes for
the block size, in the same way as for
V-format records.

VS-format: Each record constitutes at
least one block. On CONSECUTIVE data
sets, record length can be greater than
block size; if it is, the record can
'span' several blocks. A spanned
record is divided into segments, and
each segment occupies a block.
Therefore a block consists of:

Four block control bytes

Four record or segment control bytes

Data Bytes

The block control bytes contain the
length of the block; the record (or
segment) control bytes contain the
length of the record (or segment).
These values are inserted automatically
and require no action by the
programmer.

VS~format records can be specified for
data sets with CONSECUTIVE or
REGIONAL(3) organization only. The VS
record format option must be specified
as an option of ENVIRONMENT, not in the
DCB subparameter of the DD card.

CONSECUTIVE: Record length can be
equal to or greater than block
size; each block contains one
record or record segment.

REGIONAL(3): Record length cannot be
greater than block size. A
record can only be segmented
across track boundaries, when a
complete record will not fit
into the space remaining on the
current track. Each such
segment constitutes a block.

VBS-format: Each record constitutes part
of a block, a block or several blocks.
Each block consists of:

164

Four block control bytes
One of the following:

One or more complete records
One or more complete records, and

either one or two record segments.

Two record segments
A single record segment

Each complete record or each record
segment consists of:

Four record or segment control
bytes

Data bytes

The control bytes have the same purpose
as in VB-format records.
VBS-format records can be specified for
data sets with CONSECUTIVE organization
only.

D- and DB-format: see "ASCII Data Sets"

segmentation and reassembly of records,
like blocking and deblocking, take place
automatically, and require no action by the
programmer.

Undefined-length Records

All processing is the responsib~lity of the
programmer; if a length specification is
required in the record, the programmer must
provide it, and must interpret it.

RECSIZE Option

The RECSIZE Option specifies the record
length. For files other than transient
ones~ this is the sum of:

1. The length required for data. For
variable-length and undefined-length
records, this is the maximum length.

2. Any control bytes required.
Variable-length records require four,
for the record length; fixed-length
and undefined-length records do not
require any.

For a transient file, it is the sum of:

1. The four V-format control bytes.

2. One flag byte.

3. Eight bytes for the key.

4. The maximum length required for the
data.

The record length can be specified as a
decimal integer constant or as a variable
with the attributes FIXED BINARY (31,0)
STATIC.

The value is subject to the following
conventions:

Maximum: Fixed-length, and undefined
(except ASCII data sets):
32,760 bytes
V-format, and VS- and
VBS-format with UPDATE files:
32,756 bytes
VS~and VBS-format with INPUT
and OUTPUT files: no limit
ASCII data sets: 9999

For VS- and VBS-format records longer than
32,756 bytes, the length must be specified
in the RECSIZE option of ENVIRONMENT, and
the DCB subparameter of the DD card must
specify LRECL=X.

Zero value: A search for a valid value is
made in (the following order):

DD statement for the data
set associated with
the file

Data set label

If neither of these can provide a value,
default action is taken (see "Record Format
Defaults", later in this section).

Negative value: The UNDEFINEDFILE
condition is raised

BLKSI ZE oEtj&!!

The BLKSI2;E option specifies the maximum
block size on the data set. The length of
a block is; 1:he sum of:

1. The total length(s) of one of the
following:

A sin9le record

A sin9le record and either one or two
recelrei segments

several records

several records and either one or two
record segments

Two rE!cord segments

A s1n9le record segment

For vaJ:iable length records, the
length of each record or record
segmen1: includes the four control
bytes for the record or segment
length ..

The above list summarizes all the
possitle comtinations of records and
record segments options: fixed- or
variable-length blocked or unblocked,
spanned or non-spanned. When
specifying a block size for spanned
records, the programmer must be aware
that each record and each record
segment will require four control
bytes for the record length, and that
these quantitites are in addition to
the four control tytes required for
each block.

2. Any further control bytes required.
Variable-length blocked records
require four, for the block size;
fixed-length and undefined-length
records do not require any.

Any block prefix bytes required (ASCII
data sets only).

The value can be specified as a decimal
integer constant, or as a variable with the
attribute$ FIXED BINARY (31,0) STATIC.

The value is subject to the following
conventions:

Maximum: 32,760 bytes (or 9999 for an
ASCII data set for which BUFOFF
without a prefix-length value
has been specified)

Zero value: A search for a valid value is
made (in the following order):

DD statement for the data
set associated with the
file

Data set label

If neither of these can provide
a value, default action is
taken (see "Record Format
Defaults")

Negative value: The UNDEFINEDFILE
condition is raised

The relationship of the block size to the
record length depends on the record format:

FB-format or FBS format: The block size
must be a multiple of the
record length

VB-format: The block size must be equal to
or greater than the sum of:

The maximum length of any
record

Four control bytes

Chapter 12: Record-Oriented Transmission 165

VS-format or VBS-format: The block size
can be less than, equal to, or
greater than the record length.

DB-format: The blocksize must be equal to
or greater than the sum of:

~

The maximum length of any
record

The length of the block prefix
(if block is prefixed)

1. The BLKSIZE option can be used with
unblocked (F-, V-, or D-format)
records, as follows:

a. The BLKSIZE option, but not the
RECSIZE option, is specified. The
record length is set equal to the
block size, (minus any control or
prefix bytes) and the record
format is unchanged.

b. Both the BLKSIZE and the RECSIZE
options are specified, and the
relationship of the two values is
compatible with blocking for the
record format used. The records
are assumed to be blocked and the
record format is set to FB VB, or
DB whichever is appropriate.

2. If, for FB-format or FBS-format
records, the block size equals the
record length, the records are assumed
to be unblocked and the record format
is set to F.

Record Format Defaults

If any of the record format options is not
specified, the following action is taken.

Record format: The UNDEFINEDFILE condition
is raised.

Block size or record length: If one of
these is specified, a search is
made for the other in the
associated DO statement or data
set label. If the search
provides a value, the
UNDEFINEDFILE condition is
raised if this value is
incompatible with the value in
the specified option. If the
search is unsuccessful, a value
is derived from the specified
option (with the addition or
subtraction of any control or
prefix bytes). If neither is
specified, the UNDEFINEDFILE
file condition is raised.

166

~: The optimizing and checkout
compilers will also accept the form of
record format specification used for the
PL/I(F) compiler. In this form, the record
length and block size are included in the
format specification.

BUFFER ALLOCATION

A buffer is an internal storage area that
is used for the intermediate storage of
data transmitted to and from a data set.
The use of buffers can speed up processing
of SEQUENTIAL files. Buffers are essential
for the automatic blocking and deblocking
of records and for locate-mode
transmission.

BUFFERS Option

I The option BUFFERS(n) in the ENVIRONMENT
attribute specifies, for CONSECUTIVE and
INDEXED data sets, the number (n) of
buffers to be allocated for a data set:
this number must not exceed 255 (or such
other maximum as was established at system
generation). If the number of buffers is
not specified for a BUFFERED file or is
specified as zero, two buffers are assumed.

I A REGIONAL data set is always allocated two
buffers.

In teleprocessing, the BUFFERS option
specifies the number of buffers available
for a particular message queue, that is,
for a particular TRANSIENT file. The
buffer size is specified in the message
control program for the installation. The
number of buffers specified should, if
possible, be sufficient to provide for the
longest message to be transmitted.

DATA SET ORGANIZATION

The organization of a data set determines
how data is recorded in a data set volume,
and how the data is subsequently retrieved
so that it can be transmitted to the
program. Records are stored in and
retrieved from a data set either
sequentially on the basis of successive
physical or logical positions, or directly
by the use of keys specified in data
transmission statements. These storage and
retrieval methods provide PL/I with five
general data set organizations:
CONSECUTIVE, INDEXED, REGIONAL, TP(M), and
TP(R). If the data set organization is not
specified, a default is obtained thus:

1. If the merged attribute from the
DECLARE; and OPEN statements do not
include TRANSIENT: the default is
CONSECUTIVE.

2. If the attributes include TRANSIENT:
the default is TP(M).

CONSECUTIV~ INDEXED, and REGIONAL Data
Sets

In a data set with CONSECUTIVE
organization, records are organized solely
on the basis; of their successive physical
positions; records are retrieved only in
sequential order, and keys are not used.
The records of an INDEXED data set are
arranged in logical sequence according to
keys associated with each record; the
records are arranged in ascending key
sequence, and indexes are maintained in the
data sets and are used for retrieval of
records. A data set with REGIONAL
organization is divided into regions, each
of which is identified by a region number
and contains one or more records; for
retrieval, the key supplied gives the

I region nUmbE!r or track at which the search
for the record is to commence.

CONSECUTIVE data sets are the simplest
of the three-types to create and use~ and
they have the advantage that less external
storage is required. However, records in a
CONSECUTIVE data set can be upda~ed only in
their existing sequence, and if-records are
to be inser'ted a new data set must be
created. Updating is not supported for
magnetic tape.

Although an INDEXED data set must be
created sequentially, once it exists
records can be retrieved, updated, added,
or deleted at random. Sequential
processing of an INDEXED data set is slower
than that 01: a corresponding CONSECUTIVE
data set, because the records it contains
are not necessarily retrieved in physical
sequence; furthermore, random access is
less efficient for an INDEXED data set than
for a REGIONAL dataset, because the
indexes must be searche4 to locate a
record. Other disadvantages of an INDEXED
data set are that it requires more external
storage s~ace than a CONSECUTIVE data set,
and that all volumes of a multi-volume data
set must be mounted even for sequential
processing.

Direct access of REGIONAL data sets is
quicker than that of INDEXED data sets, but
they have the disadvantage that sequential
processing may present records in random
sequence; the order of sequential retrieval
is not nec:eE3sarily that in which the

records were presented, nor need it be
related to the relative key values.
Blocked records are not permitted in a
REGIONAL data set.

Optimization of InEut/~~ut 9pera~i~n2

In general, I/O operations are performed by
library subroutines called from compiled
code. Under certain conditions, however,
the optimizing compiler can provide in-line
code to carry out these operations, thus
saving the overheads of library calls.
This gives considerably faster execution of
the I/O statements.

For an I/O statement to be executed
in-line, the data set being accessed or
created must be CONSECUTIVE, and the file
used must be a non-parameter file constant
with the attributes SEQUENTIAL, BUFFERED,
and either INPUT or OUTPUT. The
ENVIRONMENT attribute must specify the
following options: TOTAL" SCALARVARYING
(if varying-length strings are to be
transmitted), and either F, FB, FS, FBS, D,
DB, V, or U record format. The file
declaration would therefore be as follows:

DCL F FILE RECORD SEQUENTIAL BUFFERED
INPUTIOUTPUT ENV(CONSECUTIVE
F'! FB! U TOTAL [SCALARVARYING]
[RECSIZE(n)] [BLKSIZE(n)]);

The standard default attributes and option
are underlined. At least one of the
underlined attributes must be specified,
otherwise the file would be given the
attribute STREAM by default.

The statement READ SET will always be
implemented by in-line code if it specifies
a file declared or indicated as above,
except when a file with the attribute
BACKWARDS is used to transmit U-format
records. The other record I/O statements,
namely READ INTO, WRITE FROM, and LOCATE,
generate in-line code provided:

1. the record variable declaration does
not include an expression as a string
length, an array bound, or an area
size;

and

2. the ENVIRONMENT attribute specifies
the record SiZE for F-, FB-, FS-,
FBS-, or V-format records, or the
block size for U-format records.

I/O statements compiled by the checkout
compiler always generate a library call.

Chapter 12: Record-Oriented Transmission 161

When in-line code is employed to
implement an I/O statement, the compiler
gives an informatory message.

The speed of I/O operations when
accessing an INDEXED data set can be
improved by specifying the INDEXAREA,
NOWRITE, and ADDBUFF options. Details are
given under ftData Management Optimizationft

in this Chapter.

Teleprocessing Data Sets

A teleprocessing data set comprises a queue
of messages that constitute the input to a
PL/I message processing program. The
messages are retrieved sequentially; keys
are used to identify the terminal
associated with the message.

The TP(M) option specifies that the file
is a teleprocessing file and can only be
associated with a teleprocessing data set.
Each I/O operation in the PL/I program
causes a complete message to be transmitted
to or from the data set. The message can
consist of one logical record, or several
logical records, on the data set.

The TP(R) option is the same except that
each I/O operation applies to one logical
record only in the data set. This record
can be a message or part of a complete
message.

A teleprocessing file can be declared
with the following attributes only:

FILE
RECORD
INPUT or OUTPUT
BUFFERED or UNBUFFERED
TRANSIENT
KEYED
ENVIRONMENT

For teleprocessing applications, the
only environment options that can be
specified are:

TP «(MI R})

RECSIZE(record-length)
BUFFERS(n)

Record format must not be specified for
teleprocessing programs.

168

MAGNETIC TAPE HANDLING OPTIONS

LEAVE and REREAD Options

The volume disposition options allow the
programmer to specify the action to be
taken when the end of a magnetic tape
volume is reached, or when a data set on a
magnetic tape volume is closed. The LEAVE
option prevents the tape from being
rewound. The REREAD option rewinds the
tape to permit reprocessing of the data
set. If neither of these is specified, the
action at end of volume or on closing of a
data set is controlled by the DISP
parameter of the associated DO statement.
The effects of the options are summarized
in figure 12.3.

PRINTER/PUNCH CONTROL (CTL360/CTLASA)

The printer/punch control options CTLASA
and CTL360 apply only to OUTPUT files
associated with CONSECUTIVE data sets.
They specify that the first character of a
record is to be interpreted as a control
character.

1. The CTLASA option specifies ANSI
standard control characters.

2. The CTL360 option specifies IBM
machine code control characters.

The codes that can be used with these
options are listed with their actions in
figures 12.4 and 12.5.

DATA INTERCHANGE (COBOL)

The COBOL option facilitates the
interchange of data between programs
written in PL/I and programs written in
COBOL. It specifies that structures in the
data set associated with the file will be
mapped as they would be in American
National Standard COBOL. The COBOL
structures can be SYNCHRONIZED or
unsynchronized; it is the programmer's
responsibility to ensure that the
associated PL/I structure has the
equivalent alignment stringency, that is,
it must be ALIGNED or UNALIGNED,
respectively.

r-------------------T-------------------T------------------------.------------------------, I . ENVIRONMENT, DISP I Action I
, Option I Subparameter I I
~------------------+-------------------+-----------~------------------------------------~ ,REREAD, I Positions the current volume to reprocess thel
I I I data set. Repositioning for a BACKWARDS file I
I I I is at the physical end of the data set. I
~----------.---------+-------------------+--~ I LEAVE, , Positions the current volume at the logical ,
I I I end of the data set. Repositioning for a I
I , I BACKWARDS file is at the physical beginning I
, I I of the data set. I
~------------------+-------------------+--~ I Nei1:hler ,PASS I Positions the volume at the end of the data I
I REREAD nor , , set ,
,LEAVE" I
, " I , ,DELETE, Rewinds the current volume I
, " I , , KEEP, CATLG, , Rewinds and unloads the current volume I
I ,UNCATLG, I L _________ . _________ ~ ___________________ ~ __ J

Figure 12.3. Effect of LEAVE and REREAD options

r-------·--------------T---T---------------------, , CTLASA code I CTL360 code tytes, I
~---------------------+---------------------T---------------------~ I , action before ,action after I action without I Action I
I . printing I printing I printing I I

~-------.--------------+---------------------+---------------------+---------------------i
+ 00000001 Print only (no space)
b 00001001 00001011 Space 1 line o 00010001 00010011 Space 2 lines

00011001 00011011 Space 3 lines
1 10001001 10001011 Skip to channell
2 10010001 10010011 Skip to channel 2
3 10011001 10011011 Skip to channel 3
4 10100001 10100011 Skip to channel 4
5 10101001 10101011 Skip to channel 5
6 10110001 10110011 Skip to channel 6
7 10111001 10111011 Skip to channel 7
8 11000001 11000011 Skip to channel 8
9 11001001 11001011 Skip to channel 9
A 11010001 11010011 Skip to channel 10
B 11011001 11011011 Skip to channel 11
C 11100001 11100011 Skip to channel 12 _____ . ____ . ____________ .L _____________________ ~ _____________________ ~ ____________________ _

Figure 12.4. 1403 Printer control codes

r-----------T-----------T-----------------, ICTLASA codelCTL360 code I Action I
I I bytes , ,

~-----------+-----------+-----------------i I V ,00000001 Iselect stacker 1 I
, w ,01000001 ,Select stacker 2 I
I I 10000001 Iselect stacker 3 I L ___________ ~ ___________ ~ _________________ J

Figure 1205. 2540 Card Read Punch control
codes

A file with the COBOL option can be used
only for HEAD INTO, WRITE FROM, and REWRITE
FROM stClt~3ments. The file name cannot te

passed as an argument or assigned to a file
variable. The variable to be transmitted
must not be subscripted.

If an ON-condition is raised during the
execution of a READ statement, the variable
named in the INTO oftion cannot be used in
the on-unit. If the completed INTO
variable is required, there must be a
normal return from the on-unit.

Chapter 12: Record-Oriented Transmission 169

The restrict~ons noted below apply to
the handling of a file with the COBOL
option. The PL/I equivalents of COBOL data
types are given in chapter 19,
"Interlanguage Communication Facilities".

The EVENT option can be used only if the
compiler can determine that the PL/I and
COBOL structure mappings are ident~cal
(i.e., all elementary items have identical
boundaries>. If the mappings are not
identical, or if the compiler cannot tell
whether they are identical, an intermediate
variable is created to represent the level
1 item as mapped by the COBOL algorithm.
The PL/I variable is assigned to the
intermediate variable before a WRITE
statement is executed, or assigned from it
after a READ statement has been executed.

IN-LINE CODE OPTIMIZATION (TOTAL)

The purpose of this option is to aid the
optimizing compiler in the production of
efficient compiled code. In particular, it
allows the compiler to use in-line code for
certain I/O operations (see "Optimization
of Input/Output Operations ft in this
chapter). It specifies that no attritutes
will be merged from the OPEN statement or
the I/O statement. In other words, the
complete set of attritutes is to be built
up at compile time from explicitlY1declared
and default attributes.

The UNDEFINEDFILE condition is raised if
any attribute that was not explicitly
declared appears on the OPEN statement, or
if the I/O statement implies a file
attribute that conflicts with a declared or
default attribute.

It is not an error to specify TOTAL when
using the checkout compiler.

DATA MANAGEMENT OPTIMIZATION
(INDEXAREA/NOWRITE/ADDBUFF)

The data management optimization options in
the ENVIRONMENT attribute increase program
efficiency, in certain circumstances, when
DIRECT files are used to access INDEXED
data sets.

The INDEXAREA option improves the
input/output speed of a DIRECT INPUT or
DIRECT UPDATE file with INDEXED data set

170

organization, by having the highest level
of index placed in main storage. The
"index area size" enables the programmer to
limit the amount of main storage he is
prepared to allow for an index area. The
size, when specified, must be a decimal

I integer constant or a variable with
attributes FIXED BINARY (31,0) STATIC whose
value lies within the range zero through
32,767. If the "index area size" is not
specified, the highest level index is moved
unconditionally into main storage. If an
index area size is specified, the highest
level index is held in main storage,
provided that its size does not exceed that
specified. If the specified size is less
than zero or greater than 32,767, the
compiler issues a warning message and
ignores the option.

The NOWRITE option is used for DIRECT
U~DATE files. It informs the compiler that
no records are to be added to the data set
and that data management modules concerned
solely with adding records are not
required; it thus allows the size of the
object program to be reduced.

The ADDBUFF option can be specified for
a DIRECT INPUT or DIRECT UPDATE file with
INDEXED data set organization and F-format
records to indicate that an area of
internal storage is to be used as a
workspace in which records on the data set
can be rearranged when new records are
added. The size of the workspace is
assumed to be equivalent to one track of
the direct device used. The option need
not be specified for DIRECT INDEXED files
with V-format records, as the workspace is
automatically allocated for such files.

KEY CLASSIFICATION (GENKEY)

The GENKEY (generic key) option applies
only to INDEXED data sets. It enables the
programmer to classify keys recorded in a
data set and to use a SEQUENTIAL KEYED
INPUT or SEQUENTIAL KEYED UPDATE file to
a~cess records according to their key
classes.

A generic key is a character string that
identifies a class of keys: all keys that
begin with the string are members of that
class. For example, the recorded keys
'ABCD', 'ABCE', and 'ABDF' are all members
of the classes identified by the generic
keys 'A' and 'AB', and the first two are
also members of the class 'ABC'; and the
three recorded keys can be considered to be
unique members of the classes 'ABCD',
'ABCE', and 'ABDF', respectively.

The GENKEY option allows the programmer
to start sequential reading or updating of
an INDEXED data set from the first
non-dummy l:ecord that has a key in a
particular class; the class is identified
by the inclusion of its generic key in the
KEY option of a READ statement. 1 Subsequent
records can be read by READ statements
without thE! KEY option. No indication is
given when the end of a key class is
reached.

In the following example, a key length
of more than three bytes is assumed.

DCL IND FILE RECORD SEQUENTIAL KEYED
UPDATE ENV (INDEXED GENKEY);

READ FILE(IND) INTO (INFIELD) KEY ('ABC');

NEXT: RE:AD FILE (IND) INTO (INFIELD);

GO TO NEXT;

The first READ statement causes the first
non-dummy l~ecord in the data set whose key
begins with 'ABC' to be read into INFIELD;
each time the second READ statement is
executed, the non-dummy record with the
next higher key will be retrieved.
Repeated execution of the second READ,
statement could result in reading records
from higher key classes since no indication
is given when the end of a key class is
reached. It is the responsibility of the
programmer to check each key if he does not
wish to read beyond the key class. Any
subsequent execution of the first READ
statement would reposition the file to the
first record of the key class 'ABC'.

If the data set contains no records with
keys in the specified class, or if all the
records with keys in the specified class
~re dummy l:ecords, the KEY condition is
raised. The data set is then positioned
either at the next record that has a higher
key or at the end of the file.

Note how the presence or absence of the
GENKEY option affects the execution of a
READ statement that supplies a source key

1Note that v although the first record
having a key in a particular class can be
retrieved by READ KEY, the actual key
cannot be obtained unless the records have
embedded keys, since the KEY~O option
cannot be used in the same statement as the
KEY option .. ,

that is shorter than the key length
specified in the KEY LEN subfarameter of the
DD statement that defines the data set.
GENKEY causes the key to be interpreted as
a generic key, and the data set is
positioned to the first non-dummy record in
the data set whose key tegins with the
source key. If the GENKEY option is not
specified, a short source key is padded on
the right with blanks to the specified key
length, and the data set is positioned to
the record that has this padded key (if such
a record exists).

The use of the GENKEY option does not
affect the result of supplying a source key
whose length is greater than or equal to
the specified key length. The source key,
truncated on the right if necessary,
identifies a specific record (whose key can
be considered to be the only member of its
class).

NUMBER OF CHANNEL PROGRAMS (NCP)

The NCP option specifies the number of
incomplete input/output operations with the
EVENT option that can be handled for the
file at anyone time. For consecutive and
regional sequential files, it is an error
to allow more than the specified number of
events to be outstanding.

For indexed files, any excess operations
are queued, and no exceptional condition is
raised. However, specification of the
numter of channel programs required may aid
optimization of I/O with an indexed file.
The NCP option has no effect with a
regional direct file.

The decimal integer constant specified
with NCP must have a value in the range 1
through 99; otherwise, 1 is assumed.

This option is equivalent to the NCP
subparameter of the DCB parameter of the DO
statement.

TRACK OVERFLOW (TRKOFL)

Track overflow is a feature of the
operating system which can be incorporated
at system generation time; it requires the
record overflow feature on the direct
access storage control unit. Track
overflow allows a record to overflow from
one track to another. It is useful in
achieving a greater data packing
efficiency, and allows the size of a record
to exceed the capacity of a track.

Chapter 12: Record-Oriented Transmission 171

Note: Track overflow is not available for
REGIONAL (3) or INDEXED data sets.

VARYING-LENGTH STRING OPTION
(SCALARVARYING)

The SCALARVARYING option is used in the
input/output of varying-length strings. .
The transmission of element varying-length
strings using locate mode is possible only
when this option is specified. This is
achieved by the inclusion or recognition of
a two-byte length prefix to an element
varying-length string when the string is
transmitted.

When storage is allocated for a
varying-length string, the compiler
includes a two-byte prefix that specifies
the current length of the string. For an
element varying-length string, this prefix
is included on output, or recognized on
input, only if SCALARVARYING is specified
for the file.

When locate mode statements (LOCATE and
READ SET) are used to create and read a
data set with element varying-length
strings, SCALARVARYING must be specified to
indicate that a length prefix is present,
since the pointer that locates the buffer
will always be assumed to point to the
start of the length prefix.

~:

1. When SCALARVARYING is specified and
element varying-length strings are
transmitted, the programmer must allow
two bytes in the record length to
include the length prefix.

2. A data set created using SCALARVARYING
should be accessed only by a file that
also specifies SCALARVARYING.

3. SCALARVARYING and CTLASA/CTL360 must
not be specified for the same file l as
this causes the first data byte to be
ambiguous.

4. SCALARVARYING must not be used with
data sets created by the PL/I (F)
compiler; this compiler neither
creates nor recognizes a length
prefix.

KEY LENGTH OPTION (KEYLENGTH)

The KEYLENGTH option specifies the length
of the recorded key for KEYED files.
KEYLENGTH must be specified for INDEXED or
REGIONAL(3) files.

112

KEY LOCATION OPTION (KEYLOC)

The KEYLOC option can be used with INDEXED
data sets, when the data set is created, to
specify the start position of an embedded
key in a record. The position given must
be within the limits:

1 S n S recordsize - keylength +1

That is, the key cannot be larger than the
record, and must be contained completely
within the record.

If KEYLOC is not specified, the value of
the RKP subparameter of the DCB parameter
of the DD statement is used. If this
subparameter is not specified, then RKP=O
is assumed.

~

1. The RKP value for a particular byte
always differs from the KEYLOC value.
See "Embedded Key", in "INDEXED
ORGANIZATION", later in this chapter.

2. When KEYLOC is specified, the key is
always part of the variable. When RKP
is specified, the key is part of the
variable only when RKP~1

3. If SCALARVARYING is specified, the
emabedded key must not immediately
precede or follow the first byte:
hence, KEYLOC must specify greater
than 2.

DCB Subparameters

Some of the information that can be
specified in the options of the ENVIRONMENT
attribute can also be specified in the
subparameters of the DCB parameter of a DD
statement. The table gives a list of
equivalents:

ENV 0Etion

Record format
RECSIZE
BLKSIZE
BUFFERS
CTLASA/CTL360
NCP
TRKOFL
KEY LENGTH
KEYLOC

I ASCII
BUFOFF

DCB SUbparameter

RECFM
LRECL
BLKSIZE
BUFNO
RECFM
NCP
RECFM
KEYLEN
RKP
ASCII
BUFOFF

ASCII DATA SETS

Data sets on magnetic tape using ASCII may
be created and accessed in PL/I. The
implementation supports F, FB, U, 0, and DB
record formats. F, FB, and U formats are
treated in the same way as with other data
sets; 0 and DB formats, which correspond to
V and VB fOlt:'mats with other data sets, are
described below.

In addition to the record format, two
other ENVIRONMENT options may be specified:
ASCII, and the buffer offset option BUFOFF.

Only chalt:'acter data may be written onto
an ASCII da1t:a set: when the data set is
created, transmission must be from a
character string variable. This variable
may have th43 attribute VARYING as well as
CHARACTER, but the two length bytes of a
varying-length character string can not be
transmitted; in other words, varying-length
character strings can not be transmitted to
an ASCII da1:.a set using a SCALARVARYING
file. Also~ data aggregates containing
varying-length strings may not be
transmitted,.

Since an ASCII data set must be on
magnetic tape, it must be of CONSECUTIVE
organization. The associated file mu~t be
BUFFERED.

ASCII Optiol!

This option specifies that the code used to
represent data on the data set is ASCII.

BUFOFF Opti()n and Block Prefix Fields

At the beginning of each block in an ASCII
data set, there may be a field known as the
block prefi~" field. It may be from one to
99 bytes long. The buffer offset option
indicates the length of this field to data
management, so that the accessing or
creation of data is started at this offset
from the beginning of each physical block.
PL/I does not support access to this field,
and in gene;t:'al it does not contain
information which is used in these
implementations. There is one situation in
which data management does use information
in the bloc]<: prefix : with variable length
records (that is, 0- or DB-format records),
the block prefix field may be used to
record the length of the block. In this
casei it is four bytes long and contains a
right-aligned, decimal character value that
gives the l~ngth of the block in bytes,

including the block prefix field itself.
It is then exactly equivalent to a block
length field.

The format of the buffer offset option
is BUFOFF[(n)]. A numerical value equal to
the length of the prefix may be specified
for "n". It may be specified as either a
decimal integer constant or as a variable
with the attributes FIXED BINARY(31,O)
STATIC. Its minimum value is zero and its
maximum is 99. The absence of a prefix
length specification indicates that the
block prefix is to be used as a block
length field; it implies that the field is
four bytes long. The length of the block
is inserted in the prefix by data
management.

On input, any ASCII data set may be
accessed if it has a block prefix field of
length one to 99 bytes, or no block prefix
field at all; and it may be accessed
whether or not the block prefix field is
used as a block length field. On output, a
data set using anyone of the valid record
formats may be created without a block
prefix, but the only situation in which the
creation of a block prefix is supported by
PL/I is when it is used as a block length
field. The only permissible buffer offset
specification on output is therefore
BUFOFF, with no prefix length
specification.

The BUFOFF option may be used with ASCII
data sets only.

D-format and DB-format Records

Each record may be of a different length.
The two formats are:

D-format: The records are unblocked; each
record constitutes a single
block. Each record consists of:

Four control bytes
Data bytes

The four control bytes contain
the length of the record; this
value is inserted by data
management and requires no
action from the programmer. In
addition, there may be, at the
start of the block, a block
prefix field, which may contain
the length of the block.

DB-format: The records are blocked. All
other information given for
D-format apflies to DB-format.

Chapter 12: Record-Oriented Transmission 173

Default Rules

In addition to the rules given under
"Record Format Defaults", the following
rule applies:

If ASCII is not specified in either the
ENVIRONMENT option or the DD statement, but
one of BUFOFF, D, or DB is specified, then
ASCII is assumed.

Consecutive Or,9anization

In a data set with CONSECUTIVE
organization, the records have no keys.
When the data set is created, records are
written consecutively in the order in which
they are presented. The records can be
retrieved only in the order in which they
were written or in the reverse order when
using the BACKWARDS attribute; therefore
the associated file must have the
SEQUENTIAL attribute. A CONSECUTIVE data
set can have F-format, FB-format,
FBS-format, V-format, VB-format, VS-format,
VBS-format, D-format, DB-format, or
U-format records. The BACKWARDS attribute
cannot be specified when a data set has V-,
VB-, VS-, VBS-, D-, or DB-format records.

Note the difference between the
CONSECUTIVE option of the ENVIRONMENT
attribute and the SEQUENTIAL attribute.
CONSECUTIVE specifies the physical
organization of a data set; SEQUENTIAL
specifies how a file is to be processed. A
data set with CONSECUTIVE organization must
be associated with a SEQUENTIAL file; but a
data set with INDEXED or REGIONAL
organization can be associated with either
a SEQUENTIAL or DIRECT file.

A CONSECUTIVE data set on magnetic tape
can be read forwards or backwards. If the
data set is to be read backwards, the
associated file must have the BACKWARDS
attribute. If a data set is first read or
written forwards and then read backwards in
the same program, the LEAVE option should
be specified in the ENVIRONMENT attribute
to prevent normal rewind when the file is
closed (or, with a multi-volume data set,
when volume-switching occurs).
Variable-length record data sets cannot be
read backwards.

Once a CONSECUTIVE data set has been
created, the file that accesses it can be

I opened for SEQUENTIAL INPUT, OUTPUT or, for
direct access data sets, UPDATE. If it is
opened for OUTPUT, DISP=MOD must be
specified in the DD statement; records can
then be added to the end of the data set.
(If DISP=MOD is not specified, the data set

174

will be overwritten.) Figure 12.6 lists
the data transmission statements and
options that can be used to create and
access a CONSECUTIVE data set.

SEQUENTIAL UPDATE

When a CONSECUTIVE data set is accessed by
a SEQUENTIAL UPDATE file, a record must be
retrieved with a READ statement before it
can be updated by a REWRITE statement;
however~ every record that is retrieved
need not be rewritten. A REWRITE statement
will always update the last record read.

Consider the following:

READ FILE(F) INTO(A);

READ FILE(F) INTO(B);

REWRITE FILE(F) FROM(A);

The REWRITE statement updates the record
which was read cy the second READ
statement. The record that was read by the
first statement cannot be rewritten after
the second READ statement has been
executed.

Indexed Organization

A data set with INDEXED organization must
be on a direct-access device. Its records,
which can be either F-format or V-format
records, blocked or unblocked, are arranged
in logical sequence according to keys that
are associated with each record. A key is
a character string that can identify each
record uniquely_ Logical records are
arranged in the data set in ascending key
sequence according to the System/360 and
System/370 collating sequence. Indexes
associated with the data set are used by
the operating system data-management
routines to locate a record when the key is
supplied.

Unlike CONSECUTIVE organization, INDEXED
organization does not require every record
to be accessed in sequential fashion. An
INDEXED data set must be created
sequentially; but, once it has been
created, the associated file may have the
attribute SEQUENTIAL or DIRECT as well as
INPUT or UPDATE. When the file has the
DIRECT attribute, records may be retrieved,
added, deleted, and replaced at random.

r-----------------T--T------------------------,
IFile declaration11Valid statements2 , with options that must IOther options that can I
I I appear lalso be used I
~-----------------+--+------------------------i ISEQUENTIAL OUTPUT I WRITE FILE(file-expr) FROM(variable); I I
I BUFFERED 1 I I
I ILOCATE variable FILE(file-expr); I SET (pointer-variable) I

~-------,----------+--+------------------------i ISEQUENTIAL OUTPUTIWRITE FILE(file-expr) FROM(variable); I EVENT (event-variable) I
I UNBUFFERED I I I
~-------,----------+--+------------------------i ISEQUENTIAL INPUT IREAD FILE(file-expr) INTO(variable); I I
I BUFFERED I I I
I IREAD FILE(file-expr) SET(pointer-variable); I I
I IREAD FILE(file-expr) IGNORE(expression); I I
.-------.----------+--+------------------------i ISEQUENTIAL INPUT IREAD FILE(file-expr) INTO(variable); I EVENT (event-variatle) I
I UNBUFFERED I I I
I IREAD FILE(file-expr) IGNORE(expression); I EVENT (event-variable) I

~-----------------+--+------------------------i ISEQUENTIAL UPDATE I READ FILE(file-expr) INTO(variable); I I
I BUFFERED I I I
I IREAD FILE(file-expr) SET(pointer-variable); I I
I IREAD FILE(file-expr) IGNORE(expression); I I
I IREWRITE FILE(file-expr); I FROM (variable) I
t-----------------+--+-------------------------1 ISEQUENTIA.L UPDATEIREAD FILE(file-expr) INTO(variable); I EVENT (event-variable) I
I UNBUFFERED I I. I
I IREAD FILE(file-expr) IGNORE(expression)i I EVENT (event-variable) I
I IREWRITE FILE(file-expr) FROM(variable); I EVENT (event-variable) I
t------.-.--·--------~----------.. ------------------------_________ .L ________________________ -I
ItThe complete file declaration would include the attributes FILE, RECORD, and I
I ENVIRONMENT I
I I
12The statement READ FILE (file-expression) ; is a valid statement and is equivalent to:1
I RE.AD FILE (file-expression) IGNORE (1) i I L _________ . __ J

Figure 12.6. Statements and options permitted for creating and accessing CONSECUTIVE
data sets

Figure 12.7 lists the data-transmission
statements and options that can be used to
create and access an INDEXED data set.

KEYS

There are two kinds of keys, recorded keys
and source keys. A recorded key is a
character :string that actually appears with
each record in the data set to identify
that record; its length cannot exceed 255
characters. A source key is the
character-string value of the expression
that appears in the KEY or KEY FROM option
of a data transmission statement to
identify the record to which the statement
refers: for direct access of an INDEXED
data set, each transmission statement must
include a source key.

I The length of the recorded keys in an
INDEXED da'ta set is defined by the

KEYLENGTH environment option or the KEYLEN
subparameter of the DD statement that
defines the data set. If the length of a
source key is greater than the specified
length of the recorded keys, the source key
is truncated on the right. If the source
key is shorter than the specified key
length, and GENKEY has not been specified,
the source key is padded with blanks on the
right to the specified length.

The recorded keys in an INDEXED data set
may be separate from, or embedded within,
the logical records. If the keys are
embedded within the records, either the
KEYLOC(n) environment option should be
specified when the data set is created, or
the subparameter RKP must be included in
the DO statement for the associated data
set (in the job step in which the data set

r
iS created), to give the location of the
key within the record.

Chapter 12: Record-Oriented Transmission 175

r-----------------T---T-------------------------, IFile declaration~lvalid statements 2 , with options that must IOther options that can I
I I appear lalso be used I
~-----------------+---+-------------------------~ ISEQUENTIAL OUTPUTIWRITE FILECfile-expr) FROM (variatle) I I
\ \ KEYFROM(expression); I I
I I \ I
I ILOCATE variable FILE(file-expr) \ SET (pointer-variable) I
I I KEYFROM(expression); I I

~-----------------+---+-------------------------i ISEQUENTIAL INPUT \READ FILE(file-expr) INTO(variable); \ KEY (expression) or KEYTO I
I I I (character-string- I
I I I variable) I
I IREAD FILE(file-expr) SET(pointer-variable);IKEY(expression) or KEYTO I
I I I (character-string- \
I I I variatle) I
\ IREAD FILE(file-expr) IGNORE(expression)i I I

~---.-------------+---+-------------------------~ ISEQUENTIAL UPDATE I READ FILE(file-expr) INTO(variable); IKEY(expression) or KEYTO I
I I I (character-string- I
I I I variatle) I
I IREAD FILE(file-expr) SET(pointer-variable);IKEY(expression) or KEYTO I
I I I (character-string- I
I I I variable) I
I IREAD FILE(file-expr) IGNORE(expression); I I
I I I I
I IREWRITE FILE(file-expr); I FROM (variable) I
I I I I
I IDELETE FILE(file~expr); I KEY (expression) I

~-----------------+---+-------------------------i \DIRECT INPUT IREAD FILE(file-expr) INTO(variable) !EVENT(event-variable) I
I I KEY(expression); . I I

~-----------------+---+-------------------------i \DIRECT UPDATE JREAD FILE(file-expr) INTO(variable) I EVENT (event-variable) I
I I KEY(expression); ! I
\ I I I
\ \REWRITE FILE(file-expr) FROM (variatle) I EVENT (event-variatle) I
I I KEY(expression); I I
I \ I I
I \WRITE FILE(file-expr) FROM(variable) I EVENT (event-variable) I
I \ KEYFROM(expression); I I
I I I I
\ IDELETE FILE(file-expr) KEY(expression); \ EVENT (event-variable) I L _________________ ~ ___ ~ _________________________ J

Figure 12.7 (Part 1 of 2).
INDEXED data sets

Statements and options permitted for creating and accessing

Embedded Keys

The KEYLOC option specifies the absolute
position of an embedded key from the start
of the data in a record, while the RKP
subparameter specifies the position of an
embedded key relative to the start of the
record.

Thus the equivalent KEYLOC and RKP values
for a particular byte depends on:

1. The KEYLOC byte count starts at 1; the
RKP count starts at 0

2. The record format:

176

For example, if the embedded key tegins
at the tenth byte of a record variable,
then the specifications are:

Fixed length: KEYLOC(10)
RKP=9

Variable-length: KEYLOC(10)
RKP=13

If KEYLOC is specified with a value
equal to or greater than one, embedded keys
exist in the record variable and on the
data set. If KEYLOC is equal to zero, or
is not specified, the RKP value is used; as
a result, embedded keys may not always be
present in the record variable or the data
set. The effect of the use of either
option is shown in figure 12.8.

r------------------T---T-----~-------------------l
DIRECT UPDATE READ FILE(file-expr) INTO(variable) I EVENT (event-variable)
EXCLUSIVE KEY(expression); land/or NOLOCK

REWRITE FILE(file-expr) FROM (variable)
KEY(expression);

WRITE FILE(file-expr) FROM(variable)
KEYFROM(expression);

DELETE FILE(file-expr) KEY(expression);

I
I EVENT (event-variable)
I
I
I EVENT (event-variable)
I
I
I EVENT (event-variable)
I

UNLOCK FILE(file-expr) KEY(expression); I
t-----------------~---~-------------------------~ 'The compl.3te file declaration would include the attributes FILE, RECORD, and

ENVIRONMENT; if any of the options KEY, KEYFROM, and KEYTO is used, it must
also include the attribute KEYED.

2The statement: READ FILE (file-expression); is equivalent to the statement:
READ FILE (file-expression) IGNORE (1);

Note: The attribute UNBUFFERED is ignored and BUFFERED is assumed for INDEXED
SEQUENTIAL and SEQUENTIAL files.

Use of the DELETE statement is invalid if OPTCD=L (DCB subparameter) was not specified
when the data set was created or if the RKP sutparameter is zero for FB records, or

Ifour for V and VB records. L __ _

Figure 12.7 (Part 2 of 2). Statements and options permitted for creating and accessing
INDEXED data sets

r-----------------------T-------------------T-------------------T-----------------------, I I I I Data Set I
, , I ~-------------T---------~ I KEYLOC I RKP I Record Variable I Unblocked I Elocked I
, (n) I I , records f records,

t-----------------------+-------------------+-------------------+-------------+---------~ I n>1' I Key ,Key I Key I
t-----------------------i RKP equivalent = .-------------------+-------------+------~--i
I ,n-l+C', , I I
I n== 1 I I Key I Key2 , Key I
t-----------------------+-------------------+-------------------+-------------+---------i I , RKP =0 I No key I No key I Key3 I
, n==O ~-------------------+-------------------+-------------+---------~
I OJ: not I I I I I
I specified I RKP>O I Key ,Key, Key I
t-----------·------------~-------------------~-------------------~-------------~---------i I Note: 1 C = number of control bytes, if any; C=O for fixed-length records I
I C=4 for variable-length records I
I 2 In this instance the key is not recognized by data management I
I 3 Each logical record in the block has a key I L ___ ~---__________________________________ J

Figure 12 .. 8. Effect of KEYLOC and RKP values of establishing embedded keys in record
variables or data sets

Chapter 12: Record-Oriented Transmission 177

Programs written for the PL/I F Compiler
which use records with embedded keys can be
compiled without alteration to the
ENVIRONMENT attribute for the inclusion of
the KEYLOC option, if the original RKP
subparameter is specified when the
recompiled program is executed.

The use of embedded keys obviates the
need for the KEYTO option during sequential
input, but the KEYFROM option is still
required for output. (However, the data
specified by the KEY FROM option may be the
embedded key portion of the record variable
itself.) In a data set with unblocked
records, a separate recorded key precedes
each record, even when there is already an
embedded key; If the records are blocked,
the key of only the last record in each
block is recorded separately in front of
the block.

During the execution of a WRITE
statement that adds a record to a data set
with embedded keys, the value of the
expression in the KEYFROM option is
assigned to the embedded key position in

I the record variable. Note that a record
variable can be declared as a structure
with an embedded key declared as a
structure member, but that such an embedded
key must not be declared as a VARYING
string.

For a LOCATE statement, the KEYFROM
string is assigned to the embedded key when
the next operation on the file is
encountered.

DUMMY RECORDS

Records within an INDEXED data set are
either actual records containing valid data
()r dummy records. A dummy record is
identified by the constant (8)'1'B in its
first byte. Dummy records can be inserted
by the programmer, or can be created by
deleting records. They can be replaced by
valid data records having the same keys as
the dummy records. The subparameter
OPTCD=L must be included in the DO
statement that defines the data set when it
is created, so that dummy records are

I recognized and not retrieved by READ
statements.

CREATING A DATA SET

When an INDEXED data set is being created,
the associated file must be opened for
SEQUENTIAL OUTPUT, and the records must be
presented in the order of ascending key

'178

values. (If there is an error in the key
sequence, the KEY condition will be
raised.) A DIRECT file cannot be used for
the creation of an INDEXED data set.

Once an INDEXED data set has been
created, the file that accesses it can be
opened for SEQUENTIAL INPUT or UPDATE, or
for DIRECT INPUT or UPDATE. In the case of
F-format records, it can also be opened for
OUTPUT to add records at the end of the
data set. The keys for these records must
have higher values than the existing keys
for that data set and must be in ascending
order. The storage allocated for a data
set can be increased when it is required
for output.

SEQUENTIAL ACCESS

A SEQUENTIAL file that is used to access an
INDEXED data set may be opened with either
the INPUT or the UPDATE attribute. The
data transmission statements need not
include source keys, nor need the file have
the KEYED attribute. sequential access is
in order of ascending recorded-key values;
records are retrieved in this order, and
not necessarily in the order in which they
were added to the data set. Dummy records
are not retrieved if the DD statement that
defined the data set included the
subparameter OPTCD=L.

Except that the :EVENT option cannot be
used, rules governing the relationship
between the READ and REWRITE statements for
a SEQUENTIAL UPDATE file that acces.ses an
INDEXED data set are identical to those for
a CONSECUTIVE data set (described above).

Embedded keys in a record to be updated
must not .be altered. The modified record
must always overwri·te the updated record in
the data set.

Additionally, records can be effectively
deleted from the data set; a DELETE
statement marks a record as a dummy by
putting (8)'1'B in the first byte. The
DELETE statement should not be used to
process a data set with F-format blocked

I
records and either KEYLOC= 1 or RKP=O, or V­
.or. VB-format records and either KEYLOC=1 or
RKP=4. (The code (8) '1'B would overwrite
the first byte of the recorded key.) Note
that the EVENT option is not supported for
SEQUENTIAL access of INDEXED data sets.

During sequential access of an INDEXED
data set, it is possible to read a
particular record by supplying a source key
in the KEY option of a READ statement, and
to continue sequential reading from that
point in the data set. (The associated

file must have the KEYED attribute.) Thus,
a READ statement that includes the KEY
option will cause the record, whose key is
supplied, to be read; a subsequent READ
statement wit:hout the KEY option will cause
the record with the next higher recorded
key to be read (even if the keyed record
has not beEm found).

The effect of supplying a source key
that is shorter than the recorded keys in
the data set differs according to whether
or not the GENKEY option is specified in
the ENVIRONMl~NT attribute. In the absence
of the GENKEY option, the source key is

I padded on. t;hE! right with blanks to the
length specified in the KEYLENGTH option of
the ENVIRONMENT attribute, and the record
with this padded key is read (if such a
record exislts). If the GENKEY option is
specified, the source key is interpreted as
a generic key, and the first recorq with a
key in the class identified by this generic
key is read. (Refer to "Key
Classification," above.)

DIRECT ACCESS

A DIRECT file that is used to access an
INDEXED data set may be opened with either
the INPUT or the UPDATE attribute. All
data transmiBsion statements must include
source keys; the DIRECT attribute implies
the KEYED att.ribute.

A DIRECT UPDATE file can be used to
retrieve, add, delete, or replace records
in an INDEXED data set according to the
following conventions:

1. Retrieval: If the DD statement that
defined the data set included the
subparameter OPTCD=L, dummy records
are not made available by a READ
statement. (The KEY condition is
raised.ll

2. Addition: A WRITE statement that
includei a unique key causes a record
to be inserted into the data set. If
the key is the same as the recorded
key of a dummy record, the new record
replace~3 the dummy record. If the key
is the same as the recorded key of a
record that is not marked as deleted,
or if there is no space in the data
set for the record, the KEY condition
is rajLsl~d.

3. Deletioll: The record specified by the
source key in a DELETE statement is
retrieved, marked as deleted, and
rewritt4:m into the data set. Thf9
effect ()f the DELETE statement is to
inser~ the value (S) '1'B in the first

byte of the data in a record.
Deletion is possible only if OPTCD=L
was specified in the DD statement that
defined the data set when it was
created. If the data set has F-format
blocked records with RKP=O or
KEYLOC=1, or V-format records with
RKP=4 or KEYLOC=1, records cannot be
deleted. (The code (S)'1'B would
overwrite the embedded keys.)

4. Replacement: The record specified by a
source key in a REWRITE statement ~s
replaced by the new record. If the
data set contains F-format blocked
records, a record replaced with a
REWRITE statement causes an implicit
READ statement to be executed unless
the previous I/O statement was a READ
statement that obtained the record to
be replaced. If the data set contains
V-format records and the updated
record has a length different from
that of the record read, the whole of
the remainder of the track will be
moved, and may cause data to be moved
to an overflow track.

Regional Organization

A data set with REGIONAL organization is
divided into regions, each of which is
identified by a region number, and each of
which may' contain one record or more than
one record, depending on the type of
REGIONAL' organization. The regions are
numbered in succession, beginning with
zero. and a record may be accessed by
specifying its region number, and perhaps a
key, in a data transmission statement.

REGIONAL organization of a data set
permits the programmer to control the
physical placement of records in the data
set, and enables him to optimize the access
time for a particular application. such
optimization is not available with
CONSECUTIVE or INDEXED organization, in
which successive records are written either
in strict physical sequence or in logical
sequence depending on ascending key values;
neither of these methods takes full
advantage of the characteristics of
direct-access storage devices. REGIONAL
data sets are confined to direct-access
devices.

A REGIONAL data set can be created in a
similar manner to a CONSECUTIVE or INDEXED
data set, records being presented in the
order of ascending region numbers;
alternatively, direct access can be used,
in which records can be presented in random
sequence and inserted directly into
preformatted regions. Once ~ REGIONAL data

Chapter 12: Record-Oriented Transmission 179

set has been created, it can be accessed by
a file with the attributes SEQUENTIAL or
DIRECT as well as INPUT or UPDATE. Note
that neither a region number nor a key need
be specified if the data set is associated
with a SEQUENTIAL INPUT or SEQUENTIAL
UPDATE file. When the file has the DIRECT
attribute, records can be retrieved, added,
deleted, and replaced at random.

Records within a REGIONAL data set are
either actual records containing valid data
or dummy records. The nature of the dummy
records depends on the type of REGIONAL
organization; the three types of REGIONAL
organization are described below.

Figure 12.9 lists the data transmission
statements and options that can be used to
create and access a REGIONAL data set.

KEYS

There are two kinds of keys, recorded keys
and source keys. A reco~ded k~ is a
character string that immediately precedes
each record in the data set to identify
that record; its length cannot exceed 255
characters. A source key is the
character-string value of the expression
that appears in the KEY qr KEYFROM option
of a data transmission statement to
identify the record to which the statement
refers. When a record in a REGIONAL data
set is accessed, the source key gives a
region number, and may also give a recorded
key.

The length of the recorded keys in a
REGIONAL data set is defined by the
KEYLENGTH option of the ENVIRONMENT
attribute, or the KEYLEN subparameter on
the DO statement. Unlike the keys for
INDEXED data sets, recorded keys in a
REGIONAL data set are never embedded within
the record.

TYPES OF REGIONAL ORGANIZATION

There are three types of REGIONAL
organization:

1. A REGIONAL(1) data set contains
F-format records that do not have
recorded keys. Each region in the
data set contains only one record;
therefore, each region number
corresponds with a relative record
position within the data set.

180

2. A REGIONAL(2) data set contains
F-format records that have recorded
keys. Each region in the data set
contains only one record. Direct
access to a REGIONAL(2) data set
employs the region numbe.r specified in
a source key to locate the required
region. REGIONAL(2) differs from
REGIONAL(1) in that records are not
necessarily in the specified regions.
The specified region identifies a
starting-point; a search is then made
for a record with the given recorded
key starting at the beginning of the
track containing the region specified.

3. A REGIONAL(3) data set contains
F-format, V-format, VS-format or
U-format records with recorded keys.
Each region in the data set
corresponds with a track on a
direct-access device, and can normally
contain one or more records. Direct
access of a REGIONAL(3) data set
employs the region number specified in
a source key to locate the required
region. Once the region has been
located, a sequential search for space
to add a record, or for a record that
has a recorded key identical with that
supplied in the source key, can be
made. VS-format records may span more
than one region.

REGIONAL(1) ORGANIZATION

In a REGIONAL(1) data set, since there are
no recorded keys, the region number serves
as the sole identification of a particular
record. The character-string value of the
source key should represent an unsigned
decimal integer that should not exceed
16777215. If the region number exceeds

I this figure, it is treated as modulo
·16777216: 16777226, for instance, is
treated as 10. Only the characters 0
through 9 and the blank character are valid
in the source key; leading blanks are
interpreted as zeros; embedded blanks are
not permitted in the number; the first
embedded blank, if any, will terminate the
region number. If more than eight
characters appear in the source key, only
the rightmost eight are used as the region
number; if there are fewer than eight
characters, blanks (interpreted as zeros)
are assumed on the left.

r-----------·------T---T-------------------------, IFile declaration 1 1Valid statements, with options that must IOther options that can I
I I appear ralso be used I
~-----------.------+-------------------------.. ---.--------------+-------------------------~
ISEQUENTIAL OUTPUTIWRITE FILE (file-expr) FROM (variable) I I
I BUFFERED I KEYFROM(expression); I I
I ILOCATE variable FILE(file-expr) ISET(pointer-variable) I
I I KEYFROM(expression); I I
~-------,----.---.. --+--... +-------------------------~ ISEQUENTIAL OUTPUTIWRITE FILE(file-expr) FROM(variable) I I
I UNBUFFERED I KEYFROM(expression)i I EVENT (event-variable) I
~-----------------+---+-------------------------~
ISEQUENTIAL INPUT IREAD FILE (file-expr) INTO (variable); IKEYTO I
I BUFFERED I I (character-string- I
I I I variable) I
I IREAD FILE(file-expr) SET(pointer-variable);IKEYTO I
I I I (character-string- I
I I I variable) I
I IREAD FILE(file~expr) IGNORE(expression); I i
~-----------------+---+-------------------------~ ISEQUENTIAL INPUT IREAD FILE(file-expr) INTO(variable)i I EVENT (event-variable) I
I UNBUFFERED I I and/or KEYTO j
I I I (character-string- I
I I I variable) 1
I IREAD FILE (file-expr) IGNORE(expression)i I EVENT (event-variable) I
~-----------------+---+-------------------------~ ISEQUENTIAL UPDATEIREAD FILE(file-expr) INTO(variable)i IKEYTO I
I BUFFERED I . I (character-string- I
I I I variable) !
I IREAD FILE(file-expr) SET(pointer-variable)iIKEYTO ~
I I I (character-string- I
I I I variable)
I IREAD FILE(file-expr) IGNORE(expression)i I
I I I
I IREWRITE FILE(file-expr)i I FROM (variable) I
~------~----------+---+-------------------------i ISEQUENTIA,L UPDATEIREAD FILE(file-expr) INTO(variable)i IEVENT (event-variable) I
I UNBUFFERED I I I
I I land/or KEYTO !
I I I (character-string- I
I I I variable) !
I IREAD FILE(file-expr) IGNORE(expression); I EVENT (event-variable) I
I I I I
I IREWRITE FILE(file-expr) FROM(variable)i I EVENT (event-varial::le) I
~---------.--------+---+-------------------------~ IDIRECT OU~rpOT IWRITE FILE(file-expr) FROM (variable) IEVENT (event-variable) I
I I KEYFROM(expression)i I I
~-----------.------+---+---------------~---------~ IDIRECT INPUT IREAD FILE(file-expr) INTO (variable) I EVENT (event-variable) I
I I KEY(expression); I I
~-----------------+--------------------------------.----------+-------------------------i I DIRECT UPDA'rE I READ FILE (file-expr) INTO (variable) I EVENT (event-variable) I
I ~ KEY(expression)~ I I
I I I I
I IREWRITE FILE(file-expr) FROM(variable) IEVENT(event-variable) I
I I KEY(expression); I I
I I I I
I IWRITE FILE(file-expr) FROM (varial::1e) I EVENT (event-variable) I
I I KEYFROM(expression); I I
I I I I
I IDELETE FILE(file-expr) KEY(expression)i I EVENT (event-varial::le) I L ________________ -~ ___________________________________ ------__ ~ _________________________ J

Figure 12.9' (Part 1 of 2). Statements and options permitted for creating and accessing
REGIONAL data sets

Chapter 12: Record-Oriented Transmission 181

r-----------------T-----------------------'--------------------T-------------------------,
IFile declaration1 1Valid statements, with options that must IOther options that can I
I I appear lalso be used I
~-----------------+---+-------------,------------~ IDIRECT INPUT IREAD FILE(file-expr) INTO(variable) I EVENT (event-variable) I
JEXCLUSIVE I KEY(expression); land/or NOLOCK I
~-----------------+---+-------------------------i DIRECT UPDATE READ FILE(file-expr) INTO (variable) EVENT (event-variable)
EXCLUSIVE KEY(expression); and/or NOLOCK

REWRITE FILE(file-expr) FROM (variable)
KEY(expression);

EVENT (event-variable)

WRITE FILE(file-expr) FROM(variable)
KEYFROM(expression);

EVENT (event-variable)

DELETE FILE(file-expr) KEY(expression); EVENT (event-variable)

UNLOCK FILE(file-expr) KEY(expression);

r-----------------~---~-------------------------~ I 'The complete file declaration would include the attributes FILE, RECORD, and I
I ENVIRONMENT; if any of the options KEY, KEYFROM, and KEYTO is uSEd, it must also I
I include the attribute KEYED. I
IThe statement: READ FILE (file-expression); is equivalent to the statement: READ FILE I
I (file-expression) IGNORE(l); I L ___ --________________________________ J

Figure 12.9 (Part 2 of 2). Statements and options permitted for creating and accessing
REGIONAL data sets

Dummy Records

Records in a REGIONAL(l) data set are
either actual records containing valid data
or dummy records. A dummy record in a
REGIONAL(l) data set is identified by the
constant (8)'1'B in its first byte.
Although such dummy records are
automatically inserted in the data set
either when it is created or when a record
is deleted, they are not ignored when the
data set is read; the PL/I program must be
prepared to recognize them. Dummy records
can be replaced by valid data. Note that
if the programmer inserts (8)'1'B in the
first byte, the record will be lost if the
file is copied onto a data set whose dummy
records are not retreived.

creating a REGIONAL(l) Data Set

A REGIONAL(1) data set can be created
either sequentially or by direct access.

When a SEQUENTIAL OUTPUT file is used to
create the data set, the opening of the
file causes all tracks on the data set to
be cleared, and a capacity record to be
written at the beginning of each track to
record the amount of space available on
that track. Records must be presented in
ascending order of region numbers; any
region that is omitted from the sequence is
filled with a dummy record. If there is an

182

error in the sequence, or if a duplicate
key is presented, the KEY condition will be
raised. When the file is closed, any space
remaining at the end of the current extent
is filled with dummy records.

If a data set is created using a
buffered file, and the last WRITE or LOCATE
statement before the file is closed
attempts to transmit a record beyond the
limits of the data set, the CLOSE statement
may raise the ERROR condition.

If a DIRECT OUTPUT file is used to
create the data set, the whole of the
primary extent allocated to the data set is
filled with dummy records when the file is
opened.

Once a REGIONAL(1) data set has been
created, the file that accesses it can be
opened for SEQUENTIAL INPUT or UPDATE, or
for DIRECT INPUT or UPDATE. It can be
opened for OUTPUT only if the existing data
set is to be overwritten.

Sequential Access

A SEQUENTIAL file that is used to process a
REGIONAL(1) data set may be opened with
either the INPUT or UPDATE attribute. The
data transmission statements must not
include the KEY option; but the file may
have the KEYED attribute, since the KEYTO
option can be used. If the

character--st.ring variable specified in the
KEYTO option has more than eight
characters, the value returned (the region
number) is padded on the left with blanks;
if it has fewer than eight characters, it
is truncated on the left.

sequential access is in the order of
ascending region numbers. All records are
retrieved, whether dummy or actual, and the
PL/I progl:arn should be prepared to
recognize dummy records.

The rules governing the relationship
between READ and REWRITE statements for a
SEQUENTIAL UPDATE file that accesses a
REGIONAL(1) data set are identical to those
for a CONSECUTIVE data set (described
above) •

Direct Acc:ess

A DIRECT file that is used to process a
REGIONAL(1) data set may be opened with
either the INPUT, or the UPDATE attribute.
All data transmission statements must
include source keys; the DIRECT attribute
implies the KEYED attribute.

A DIRECT UPDATE file can be used to
retrieve, add, delete, or replace records
in a REGIONJ!~L (1) data set according to the
following conventions:

1. Retri.~;al: All records, whether dummy
or actual, are retrieved. The program
must be prepared to recognize dummy
recordsi.

2. Addition: A WRITE statement
SUbStit~tes a new record for the
existing record (actual or dummy) in
the region specified by the source
key.

3. Deletio~: The record specified by the
source key in a DELETE statement is
converted to a dummy record.

4-. Repla~nt: The record specified by
the source key in a REWRITE statement,
whe·ther dummy or actual, is replaced.

REGIONAL(2) ORGANIZATION

In a REGIONAL(2) data set, each record is
identified 1:::y a recorded key that
immediately precedes the record. The
actual position of a record in the data set
relative to other records is determined not
by its recorded key, but by the region
number that is supplied in the source key

of the WRITE statement that adds the record
to the data set.

I. When a record is added to the data set
by direct access, it is written with its
recorded key in the first available space
after the beginning of the track that
contains the region specified. When a
record is read by direct access, the search
for a record with the appropriate recorded
key begins at the start of the track that
contains the region specified. Unless it
is limited by the LIMCT subparameter of the
DD statement that defines the data set, the
search for a record or for space to add a
record continues right through to the end
of the data set and then from the beginning
until the whole of the data set has been
covered. The closer a record is to the
specified region, the more quickly it can
be accessed.

Source Keys

The character-string value of the source
key can be thought of as having two logical
parts, the region number and a comparison
key. On output, the comparison key is
written as the recorded key; for input, it
is compared with the recorded key.

The rightmost eight characters of the
source key make up the region number, which
must be an unsigned decimal integer that
does not exceed 16171215. If the region
number exceeds this figure, it is treated
modulo 16111216: 16111226 is treated as
10. The region specification can include
only the characters 0 through 9 and the
blank character; leading blanks are
interpreted as zeros; embedded blanks are
not permitted in the number; the first
embedded blank, if any, will terminate the
region number. The comparison key is a
character string which occupies the left
hand side of the source key, and may
overlap or be distinct from the region
number, from which it can be separated by
other, non-significant , characters. The
length of the comparison key is specified
by either the KEYLEN subparameter of the DD
statement for the data set or the KEYLENGTH
option of the ENVIRONMENT attribute. If
the source key is shorter than the
specified key length, it is extended on the
right with blanks. To retrieve a record,
the comparison key must exactly match the
recorded key of the record. The comparison
key can include the region number, in which
case the source key and the comparison key
are identical; alternatively~ part of the
source key may not be used. The length of
the comparison key is always equal to
KEYLENGTH or KEYLENi if the source key is
longer then KEYLEN+8, the characters in the

Chapter 12: Record-Oriented Transmission 183

source key between the comparison key and
the region number are ignored.

consider the following examples of
source keys (the character "b" represents a
blank):

KEY ('JOHNbDOEbbbbbb12363251')

The rightmost eight characters make up the
region specification, the relative number
of the record. Assume that the associated
DO statement has the subparameter
KEYLEN=14. In retrieving a record, the
search will begin with the beginning of the
track which contains the region number
12363251, until the record is found having
the recorded key of JOHNbDOEbbbbbb.

If the subparameter were KEYLEN=22, the
search still would begin at the same place,
but since the comparison and the source key
are the same length, the search would be
for a record having the recorded key
'JOHNbDOEtbtbbb12363251'.

KEY ('JOHNbDOEbbbbbbDIVISIONb423bbbb34627')

In this example, the rightmost eight
characters contain leading blanks, which
are interpreted as zeros. The search will
begin at region number 00034627. If
KEYLEN=14 is specified, the characters
DIVISIONb423b will be ignored.

Assume that COUNTER is declared FIXED
BINARY (21) and NAME is declared
CHARACTER(15). The key might be specified
as :

KEY (NAME II COUNTER)

The value of COUNTER will be converted to a
character string of eleven characters.
(The rules for conversion specify that a
binary value of this length, when converted
to character, will result in a string of
length 11, three blanks followed by eight
decimal digits.) The value of the
rightmost eight characters of the converted
string will be taken to be the region
specification. Then if the keylength
specification is KEYLEN=15, the value of
NAME will be taken to be the comparison
specification.

Dummy Records

A REGIONAL(2) data set can contain dummy
records. A dummy record consists of a
dummy key and dummy data. A dummy key is
identified by the constant (8) '1'B in its
first byte. The first byte of the data
contains the sequence number of the record
on the track.

184

Dummy records can be replaced by valid
data. They are inserted automatically
either when the data set is created or when
a record is deleted, and they are ignored
when the data set is read. (Unlike INDEXED
data sets, REGIONAL data sets do not
require the subparameter OPTCD=L in the DO
statement.)

Creating a Data Set

A REGIONAL(2) data set can be created
either sequentially or ty direct access.
In either case, when the file associated
with the data set is opened, the data set
is initialized with capacity records
specifying the amount of space available on
each track.

When a SEQUENTIAL OUTPUT file is used to
create the data set, records must be
presented in ascending order of region
numbers; any region that is omitted from
the sequence is filled with a dummy record.
If there is an error in the sequence,
including an attempt to place more than one
record in the same region~ the KEY
condition will be raised. When the file is
closed, any space remaining at the end of
the current extent is filled with dummy
records.

If a data set is created using a
buffered file, and the last WRITE or LOCATE
statement before the file is closed
attempts to transmit a record beyond the
limits of the data set, the CLOSE statement
may raise the ERROR condition.

If a DIRECT OUTPUT file is used to
create the current extent of a data set,
the whole of the primary extent allocated
to the data set is filled with dummy
records when the file is opened. Records
can be presented in random order, and no

(
;COndition is raised r7 duplicate keys.
Each record is substituted for the first
dummy record on the track that contains the
region specified in the source key; if
there are no dummy records on the track,
the record is substituted for the first
dummy record encountered on a subsequent
track, unless the LIMCT subparameter
specifies that the search cannot reach
beyond this track. (Note that it is
possible to place records with identical
recorded keys in the data set.)

Once a REGIONAL(2) data set has been
created. the file that accesses it can be
opened for SEQUENTIAL INPUT or UPDATE, or
for DIRECT INPUT or UPDATE. It cannot be
opened for OUTPUT.

seguential Access

A SEQUENTIAL file that is used to process a
REGIONAL(2) data set may be opened with
either the INPUT or the UPDATE attribute.
The data transmission statements must not
include the KEY option, but the file may
have the KEYED attribute since the KEYTO
option can be used. The KEYTO option
specifies that the recorded key only is to
be assigned to the specified variable. If
the charac1t:.er-string variable specified in
the KEYTO option has more characters than
are specified in the KEYLEN subparameter,
the value returned (the recorded key) is
extended on the right with blanks; if it
has fewer characters than specified by
KEYLEN, 1~h43 value returned is truncated on
the right.

Sequential access is in the physical
order in which the records exist on the
data set, not necessarily in the order in
which they were added to the data set. The
recorded keys do not affect the order of
sequential access. Dummy records are not
retrieved.

The rules governing the relationship
between REJW and REWRITE statements for a
SEQUENTIAL UPDATE file that accesses a
REGIONAL (2) data set are identical with
those for a CONSECUTIVE data set (described
above).

Direct ACCE!SS

A DIRECT fi.le that is used to process a
REGIONA.L (2) data set may be opened with
either the INPUT or the UPDATE attribute.
All data transmission statements must
include source keys; the DIRECT attribute
implies the KEYED attribute. The search
for each record is commenced at the start
of the track containing the region number
indicated by the key.

1. Retr!~val: Dummy records are not made
availaJ:le by a READ statement. The
KEY condition is raised if a record
with the specified recorded key is not
found.

2. Addi·tion: A WRITE statement
substitutes the new record for the
firs·t dummy record on the track
containing the region specified by the
source key_ If there are no dummy
reco:rds on this track, and an extended
search is permitted by the LIMCT
subparameter, the new record replaces
the first dummy record encountered
during the search.

3. Deletion: The record specified by the
source key in a DELETE statement is
converted to a dummy record.

4. Replacement: The record specified by
the source key in a REWRITE statement
must exist; a REWRITE statement cannot
be used to replace a dummy record. If
it does not exist, the KEY condition
is raised.

Note that if a track contains records
with duplicate recorded keys, the record
farthest from the beginning of the track
will never be retrieved during direct
access.

REGIONAL(3) ORGANIZATION

A REGIONAL(3) data set differs from a
REGIONAL(2) data set (described above) only
in the following respects:

1. Each region number identifies a track
on the direct-access device that----­
contains the data set; the region
number should not exceed 32767. A
region in excess of 32767 is treated
modulo 32768; 32778 is treated as 10.

2. A region can contain one or more
records, or a segment of a VS-format
record.

3. The data set can contain F-format,
V-format, VS-format, or U-format
records. Dummy records can be
created, but a data set that has
V-format, VS-format, or U-format
records is not preformatted with dummy
records because the lengths of records
cannot be known until they are
written; however, all tracks in the
primary extent are cleared and the
operating system maintains a capacity
~~ at the beginning of each track,
in which it records the amount of
space available on that track.

Source keys for a REGIONAL(3) data set
are interpreted exactly as those for a
REGIONAL(2) data set, and the search for a
record or space to add a record is
conducted in a similar manner.

Dummy Records

Dummy records for REGIONAL(3) data sets
with F-format records are identical with
those for REGIONAL(2) data sets.

Chapter 12: Record~Oriented Transmission 185

V-format, VS-format, and U-format dummy
records are identified by the fact that
they have dummy recorded keys «S)"'B in
the first byte). The four control bytes in
each V-format and VS-format dummy record
are retained, but otherwise the contents of
V-format, VS-format, and U-format dummy
records are undefined. V-format,
VS-format, and U-format format records are
converted to dummy records only when a
record is deleted; they cannot be
reconverted to valid records.

creating a Data set

A REGIONAL(3) data set can be created
either sequentially or by direct access.
In either case, when the file associated
with the data set is opened, the data set
is initialized with capacity records
specifying the amount of space available on
each track.

When a SEQUENTIAL OUTPUT file is used to
create the data set, records must be
presented in ascending order of region
numbers, but the same region number can be
specified for successive ~ecords. If there
is an error in the sequence, the KEY
condition will be raised. If a track
becomes filled by records for which the
same region number was specified, the
region number is automatically incremented
by one; an attempt to add a further record
with the same region number will raise the
KEY condition (sequence error).

If a data set is created using a
buffered file, and the last WRITE or LOCATE
statement before the file is closed
attempts to transmit a record beyond the
limits of the data set, the CLOSE statement
may raise the ERROR condition.

If a DIRECT OUTPUT file is used to
create the data set, the whole of the
primary extent allocated to the data set is
initialized when the data set is opened;
for F-format records, the space is filled
with dummy records, and for V-format,
VS-format, and U-format records, the
capacity record for each track is written
to indicate empty tracks. Records can be
presented in random order, and no condition
is raised by duplicate keys or duplicate
region specifications. If the data set has
F-format records, each record is
substituted for the first dummy record in
the region (track) specified in the source
key; if there are no dummy records on the
track, and an extended search is permitted

186

by the LIMCT subparameter;, the record is
substituted for the first dummy record
encountered during the search. If the data
s~t has V-format, VS-format, or U-format
r,ecords, the new record is inserted on the
specified track, if sufficient space is
available; otherwise, if an extended search
is permitted, the new record is inserted in
the next ayailable space.

Note that for spanned records space may
be required for overflow onto subsequent
tracks.

Once a REGIONAL(3) data set has been
created, the file that accesses it can be
opened for SEQUENTIAL INPUT or UPDATE, or
for DIRECT INPUT or UPDATE. It can only be
opened for OUTPUT if the entire existing
data set is to be deleted and replaced.

Sequential Access

A SEQUENTIAL file that is used to access a
REGIONAL(3) data set may be opened with
either the INPUT or UPDATE attribute. The
data transmission statements must not
include the KEY option, but the file may
have the KEYED attribute since the KEYTO
option can be used. The KEYTO option
specifies that the recorded key only is to
be assigned to the specified variable. If
the character-string variable specified in
the KEYTO option has more characters than
are specified in the KEYLEN subparameter,
the value returned (the recorded key)' is
extended on the right with blanks; if it
has fewer characters than specified by
KEYLEN, the value returned is truncated on
the right.

sequential access is in the order of
ascending relative tracks. Records are
retrieved in this order, and not
necessarily in the order in which they were
added to the data set; the recorded keys do
~ot affect the order of sequential access.
Dummy records are not retrieved.

The rules governing the relationship
between READ and REWRITE statements for a
SEQUENTIAL UPDATE file that accesses a
REGIONAL(3) data set are identical with
those for a CONSECUTIVE data set (described
above) •

Direct Access

A DIRECT file that is used to process a
~EGIONAL(3) data set may be opened with

either the INPUT or the UPDATE attribute.
All data tralrlsmission statements must
include sourlce keys; the DIRECT attribute
implies the KEYED attribute.

1. Retri~!: Dummy records are not made
available by a READ statement. The
KEY condition is raised if a record
wi th th,e specified recorded key is not
found .•

2. Addition: In a data set with F-format
records; a WRITE statement substitutes
the new record for a dummy record in
the region (track) specified by the
source key. If there are no dummy
records on the specified track, and an
extended search is permitted by the
LIMCT subparameter, the new record
replaces the first dummy record
encount·ered during the search. If the
data set has V-format, VS-format, or
U-format records, a WRITE statement
inserts the new record after any
records already present on the
specified track if space is available;
otherwi:se, if an extended search is
permitted, the new record is inserted
in the next available space.

3. Deletion: A record specified by the
source ikey in a DELETE statement is
convertled to a dummy record. The
space formerly occupied by an F-format
record can be re-used; space formerly
occupied by V-format, VS-format, or
U-format records is not available for
re-USE~.

4. Replacement: The record specified by
the sou:cce key in a REWRITE statement
must exist; a REWRITE statement cannot
be ust~d to replace a dummy record.
When a VS-format record is replaced,
the new one must not be shorter than
the old.

~: If a ·track contains records with
duplicate recorded keys, the record
farthest from the beginning of the
track will never be retrieved during
direct access.

Teleprocessi:ng

The teleprocessing facilities of PL/I are
provided by an extension of the basic
record-oriented transmission facilities
with the addition of the TRANSIENT file
attribute and the PENDING condition. The
implementation provides a communicating
link between the PL/I message processing
programs using these features, and the
teleprocessing facilities of the operating
system.

A teleprocessing message control program
(MCP) handles messages originating from and
destined for a number of remote terminals
or a number of PL/I message processing
programs. Each origin or destination
associated with a message is identified by
a name carried within that message.
Messages are transmitted to and from a PL/I
message processing program via queues in
main storage. (These queues are supported
by corresponding intermediate queues in a
disk data set. The PL/I program has access
only to the main storage queues, by means
of intermediate buffers for each file.)

The "data set" associated with each
TRANSIENT file is in fact an input or
output message queue set up by the MCP. A
READ statement for the file will take the
next message (or the next record from the
current message) from the associated queue,
assign the data part to the variable named
in the READ INTO option (or set a pointer
to point to the data in a READ SET buffer),
and save the origin name by assigning it to
the variable named in the KEYTO option.
(The PENDING condition is raised if the
input queue is empty when the READ
statement is executed.> A WRITE or LOCATE
statement will transmit the processed
message or record to the output queue,
using the element expression specified in
the KEYFROM option to identify the
destination.

ENVIRONMENT Attribute

A message can consist of one logical
reco~d, or several logical records, on the
teleprocessing data set. The programmer
must specify whether a complete message
(which may be several logical records) or
only one logical record is to be
transmitted to his PL/I program at each I/O
operation. He must also specify the size
of the record variable (or input and output
buffer, for locate mode), and the number of
intermediate buffers required for each
message. This information can be provided
by means of the appropriate options of the
ENVIRONMENT attribute.

The options, and their meanings, are:

TP(M): Each I/O operation in the Pl/I
program transmits a complete
message

TP(R): Each I/O operation in the Pl/I
program transmits one logical
record

RECSIZE: Size of the record variable (or
input or output buffer, for locate
mode) in the PL/I program. If the

Chapter 12: Record-Oriented Transmission 187

TP(M) option is used, this size
should, if possible, be equal to
the length of all the logical
records that constitute the
message. If it is smaller, part
of the message will be lost. If
it is greater, the contents of the
last part of the variable (or
buffer) are undefined. If the
TP(R) option is specified, this
size must be the same as the
logical record length.

BUFFERS: Number of intermediate buffers
required to contain the longest
message to be transmitted. If a
message is too long for the
tuffers specified, extra buffers
must be obtained before processing
can continue, which increases
execution time. The extra buffers
are obtained by the operating
system; the programmer need not
take any action ..

These are the only options of the
ENVIRONMENT attribute that can be specified
for a TRANSIENT file.

TRANSIENT Attribute

The TRANSIENT attribute, which is an
alternative to the DIRECT and SEQUENTIAL
attributes, indicates that the contents of
the data set associated with the file are
re-established each time the data set is
accessed. In effect, this means that
records can be continually added to the
data set by one program during the
execution of another program that
continually removes records from the data
set. Thus the data set can be considered
to be a continuous queue through which the
records pass in transit between the message
control program and the message processing
program. The queue is always accessed
sequentially.

The data set associated with a TRANSIENT
file differs from those associated with
DIRECT and SEQUENTIAL files in that its
contents are dynamic; reading a record
removes it from the data set. Such a data
set can never be created by a DIRECT or
SEQUENTIAL file. (It can, however, be
accessed as a CONSECUTIVE data set by a
SEQUENTIAL file.)

The TRANSIENT attribute can be specified
only for RECORD KEYED BUFFERED files with
either the INPUT or the OUTPUT attribute.
(The EVENT option cannot be used for
teleprocessing operat'ions.) The file must
also have the ENVIRONMENT attribute with
the options appropriate to teleprocessing.

188

For TRANSIENT files, the file name or
title must be the ddname of a DD statement.
The message queue data set is identified in
the DD statement by the QNAME parameter.
For a TRANSIENT OUTPUT file, the element
expression specified in the KEYFROM option
must have as its value a recognized
terminal or program identification.

Error Handling

The conditions that can be raised during
teleprocessing transmission are TRANSMIT,
KEY, RECORD, ERROR, and PENDING.

The TRANSMIT condition can be raised
only on input, and is as described for
other types of transmission.

The RECORD condition is raised in the
same circumstances as for other types of
transmission. (The messages and records
are treated as V-format records.)

The ERROR condition is raised as for
other types of transmission; it is also
raised when the expression in the KEYFRCM
option is missing or detectably invalid.
Note that if the expression is
syntactically valid tut does not represent
an origin or a destination name recognized
by the MCP, the KEY condition is raised.

The PENDING condition can be raised only
during execution of a READ statement for a
TRANSIENT file. It is raised when the
associated queue is empty; standard system
action is to wait at the READ statement
until a message is available. When the
PENDING condition is raised, the value
returned by the ONKEY built-in function is
a null string.

Note: When the TP(R) option is specified
in the ENVIRONMENT attribute, a message is
transmitted one record at a time. There is
no ON-condition or other automatic means
for detecting the end of the message; the
user is responsible for arranging the
indication of the end of the message
(possibly by using the first record as a
header giving the necessary control
information.)

Statements and Options

T~e READ statement is used for input, with
either the INTO option or the SET option;
the KEYTO option must be given. The origin
name is assigned to the variable named in
the KEYTO option. If the origin name is
shorter than the character-string variatle

named in the KEYTO option, it is padded on
the right with blanks. If the KEYTO
variable is a varying-length string, its
current length is set to that of the origin
name. The origin name should not be longer
than the REYTO variable (if it is, it is
truncated), but in any case will riot be
longer than S characters. The data part of
the message or record is assigned to the
variable named in the INTO option, or the
pointer variable named in the SET option is
set to poin'c. to the data in the READ SET
buffer.

Either the WRITE or the LOCATE statement
may be used for output~ either statement
must have the KEYFROM option -- the first
eight characters of the value of the
KEYFROM expression are used to identify the
destination.. The data part of the message
is transmitted from the variable named in
the FROM option of the WRITE statement; or,
in the case of LOCATE, a pointer variable
is set to pOint to the location of the data
in the output buffer. When a message is
transmitted by an OUTPUT TRANSIENT file as
a number of logical records, the end of the
message must be indicated by closing the
file.

The list of statements and options
permitted for TRANSIENT files is given in
tabular form in figure 12.10. Some
examples follow:

DECLARE (IN INPUT, OUT OUTPUT) FILE
TRANSIENT ENV(TP(M) RECSIZE(124»,
(INREC, OUTREC) CHARACTER(120)
VARYING, TERM CHARACTER(S);

READ FIl~E(IN) INTO (INREC) KEYTO(TERM);

WRITE FILE(OUT) FROM (OUTREC)
KEYFROM(TERM);

The above example illustrates the use of
move mode in teleprocessing applications.

I Note that the files IN and OUT are given
the attributes KEYED and BUFFERED because
TRANSIENT implies these attributes. The
input buffer for file IN contains the next
message (or record from a message,
depending on the message format) from the
input queue. The input queue will also be
named IN unless the file has been opened
with a TITLE option specifying a different
queue name. The message format is
determined by the programmer, and the file
declaration for IN must include this
information in the ENVIRONMENT attribute.

The READ statement causes the message Or
record to be moved from the input buffer
into the variable INREC; if the buffer is
empty when t.he READ statement is executed
(i.e., there are no messages in the queue),

the PENDING condition is raised. The
standard system action for the condition is
to suspend execution and wait until a
message is available. The name of the
origin is assigned to TERM.

After processing, the message or record
is held in OUTREC. The WRITE statement
moves it to the output cuffer, together
with the value of TERM (which will still
contain the origin name unless another name
has been assigned to it during processing).
From the buffer, the message will be
automatically transmitted to the correct
queue for the destination, as specified by
the value of TERM.

Since the output queue is determined
from the destination name~ the file name
OUT has no significance outside the Pl/I
program. However, the file would need the
TRANSIENT, KEYED, and BUFFERED attributes,
and the correct message format in the
ENVIRONMENT attribute.

DECLARE (IN INPUT,OUT OUTPUT) FILE
TRANSIENT ENV(TP(M) RECSIZE(124»,
MESSAGE CHARACTER(120) VARYING
BASED(INPTR),
TERM CHARACTER(S);

READ FILE(IN) SET (INPTR) KEYTO(TERM);

WRITE FILE(OUT) FROM (MESSAGE)
KEYFROM(TERM);

This example is similar to the previous
one, except that locate mode input is used;
the message data is processed in the input
buffer, using the based variable MESSAGE,
which has been declared with the pointer
variable INPTR. (The data of the message
will be aligned on a doubleword boundary.)
Note that the attribute TRANSIENT implies
KEYED and BUFFERED. The WRITE statement
moves the processed data from the input to
the output buffer; otherwise its effect is
as described for the WRITE statement in the
first example.

The technique used in this example would
be useful in applications where the
differences between processed and
unprocessed messages were relatively
simple, since the maximum size of input and
output messages would be the same. If the
length and structure of the output message
could vary widely, depending on the text of
the input message, locate mode output could
be used to advantage; after the input
message had been read in, a suitacle based
variable could be located in the output
buffer (using the LOCATE statement), where
further processing would take place. The
message would be transmitted immediately

Chapter 12: Record-Oriented Transmission 189

r-----------------T---T-------------------------,
IFile Declaration IValid statements, with options that must IOther options that can I
I I appear lalso be used I

~-----------------+---+-------------------------~ ITRANSIENT INPUT IREAD FILE(file-expr) INTO (variable) I I
I I KEYTO(character-string-variatle): I I
I I I I
I IREAD FILE(file-expr) SET (pointer-variable) I I
I I KEYTO(character-string-variable): I I

~-----------------+-------------~-----------------------------+-------------------------i ITRANSIENT OUTPUT IWRITE FILE(file-expr) FROM (variatle) I I
I I KEYFROM(expression); I I
I I I I
I ILOCATE variable FILE(file-expr) ISE'I(pointer-variable) I
I I KEYFROM(expression); I I

~-----------------~------------------------~------------------~-------------------------~ 11 The complete file declaration would include the attribute FILE, RECORD, KEYED, I
I BUFFERED, and the ENVIRONMENT attribute with either the TP(M) or the TP(R) option. I L ___ J

Figure 12.10. Statements and options permitted for TRANSIENT files

before execution of the next WRITE or
LOCATE statement for the file.

Note that although the EVENT option is
not permitted, data transmission could be
overlapped with processing in an MVT
operating system by means of the PL/I
multitasking facilities described in
chapter 17, "Multitasking". For example,
the processing program could consist of a
number of subtasks, each associated with a
different queue. Each subtask processes
the input from its associated queue, and
transmits output to the required
destination. As soon as the PENDING
condition is raised in a subtask, another
subtask could receive input or transmit
output.

Summary of Record- 0 riented Transmission

The following pOints cover the salient
features of record-oriented transmission:

1. A SEQUENTIAL file specifies that the
accessing, creation, or modification
of the data set records is performed
in a particular order:

CONSECUTIVE or REGIONAL data set; from
the first record of the data set to
the last record of the data set (or
from the last to the first if the
BACKWARDS attribute has been
specified).

INDEXED or REGIONAL(l) data set; in
ascending order of key sequence.

2. A DIRECT file specifies that records
may be processed in random order. The
particular record is identified by a
key.

190

3.

4.

5.

Records in a data set that are
accessed, created, or modified by a
SEQUENTIAL file mayor may not have
recorded keys. If they do, the
recorded keys may be extracted from
the data set or placed into the data
set by the KEYTO and KEYFROM options.
REGIONAL(l) data sets may also be
retrieved 6r created using the KEYTO
and KEYFROM options respectively; the
region number is specified as the key.

INDEXED KEYED files opened for
SEQUENTIAL INPUT and SEQUENTIAL UPDATE
may be positioned to a particular
record within the data set either by a
READ KEY or a DELETE KEY operation
that specifies the key of the desired
record. Thereafter, successive READ
statements without the KEY option will
access the following records in the
data set sequentially.

Existing records of a data set in a
SEQUENTIAL UPDATE file can be
modified, ignored, or, if the data set
is INDEXED, deleted. The DELETE
statement used without the KEY option
for this type of file specifies that
the last record read is to be
deleted. 1 The DELETE statement can be
used with the KEY option to delete a
specific record in a DIRECT UPDATE
file: also, records can be added to
such a file by means of the WRITE
statement. An existing record in an
UPDATE file can be replaced through
use of a REWRITE statement.

When a file has the DIRECT, INPUT or
UPDATE, and EXCLUSIVE attributes, it

1If the DELETE statement is used with a
SEQUENTIAL file, the data set must have
INDEXED organization.

is possible to protect individual
records that are read from the data
set. For an EXCLUSIVE file, any READ
statement without a NOLOCK opti.on
automatically locks the record read.
No other task operating upon the same
data set can access a locked record
until it is unlocked by the locking
task. The record is protected from
access by tasks in other jobs, as well
as by those within the same job as the
locking task. Any task referring to a
locked record will wait at that point
until the record is unlocked. A
record can be explicitly unlocked by
the locking task through execution of
a REWRITE, DELETE, UNLOCK, or CLOSE
statement. Records are unlocked
automatically upon completion of the
locking task. The EXCLUSIVE attribute
applies to the data set and not the
file. Consequently, record protection
is provided even when all tasks refer
to the data set through use of
different files.

7. A WRITE statement adds a record to a
data set, while a REWRITE statement
replaces a record. Thus, a WRITE
statement may be used with OUTPUT
files, and DIRECT UPDATE files, but a
REWRITE statement may be used with
UPDATE files only. Moreover, for
DIRECT files, a REWRITE statement uses
the KEY option to identify the
existing record to be replaced: a
WRITE statement uses the KEY FROM
option, which not only specifies where
the record is to be written in the
data set, but also specifies, except
for REGIONAL(l), an identifying key to
be recorded in the data set.

8. Recordls of a SEQUENTIAL INPUT or
SEQUENTIAL UPDATE file can be skipped
over and ignored by use of the IGNORE
option of a READ statement. The
expression of the IGNORE option
specifies the number of records to be
skipped. A READ statement in which
only the FILE option appears indicates
that one record is to be skipped.

9. Telepr()cessing support is provided by
an extension of the basic
record-oriented transmission
facilities. TRANSIENT files are
associated with queues of messages
either incoming from or outgoing to
remote terminals. Such files must be
KEYED and BUFFERED, and the
ENVIRONMENT attribute must be used to
specify the message format. TRANSIENT
files can be accessed by READ, WRITE,
and I,OCATE statements, which cannot
have the EVENT option.

Examples of Declarations for Record Files

Following are examples of declarations of
file constants including the ENVIRON~ENT
attribute:

DECLARE FILE#3 INPUT DIRECT
ENVIRONMENT(V BLKSIZE(328)
REGIONAL(3»;

This declaration specifies only three file
attributes: INPUT, DIRECT, and
ENVIRONMENT. Other implied attributes are
FILE (implied by any of the attributes) and
RECORD and KEYED (implied by DIRECT).
Scope is EXTERNAL, by default. The
ENVIRONMENT attribute specifies that the
data set is of the REGIONAL(3) organization
and contains unblocked varying-length
records with a maximum length of 328 bytes.
Note that a maximum length record will
contain only 320 bytes of data to be used
by the program, because 8 bytes are
required for control information in such
V-format records. The KEY option must be
specified in each READ statement that
refers to this file.

DECLARE INVNTRY UPDATE BUFFERED
ENVIRONMENT (F RECSIZE(100)

INDEXED BUFFERS(4»:

This declaration also specifies only three
file attributes: UPDATE, BUFFERED, and
ENVIRONMENT. Implied attributes are FILE,
RECORD, and SEQUENTIAL (the last two
attributes are implied by BUFFERED). Scope
is EXTERNAL, by default. The data set is
of INDEXED organization, and it contains
fixed-length records of 100 bytes each.
Four buffers are to be allocated for use in
accessing the data set. Note that although
the data set actually contains recorded
keys~ the KEYTO option cannot be specified
in a READ statement, since the KEYED
attribute has not been specified.

Note that for both of the above
declarations, all necessary attributes are
either stated or implied in the DECLARE
statement. None of the attributes can be
changed in an OPEN statement or in a DD
statement. The second declaration might
have been written:

DECLARE INVNTRY
ENVIRONMENT(F RECSIZE(100)

INDEXED);

With such a declaration, INVNTRY can be
opened for different purposes. It could,
for example, be opened as follows:

OPEN FILE (INVNTRY)
UPDATE SEQUENTIAL BUFFERED:

Chapter 12: Record-Oriented Transmission 191

With this OPEN statement, the file
attributes would be the same as those
specified (or implied) in the DECLARE
statement in the second example above (the
number of buffers would have to be stated
in the associated DO statement). The file
might be opened in this way, then closed,
and then later opened with a different set
of attributes, for example:

OPEN FILE (INVNTRY)
INPUT SEQUENTIAL KEYED1

192

This OPEN statement allows records to be
read with either the KEYTO or the KEY
option. Because the file is SEQUENTIAL and
the data set is INDEXED, the data set may
be accessed in a purely sequential manner1
or, by means of a READ statement with a KEY
option, it may be accessed randomly. A KEY
option in a READ statement with a file of
this description causes a specified record
to be obtained. Subsequent READ statements
without a KEY option access records
sequentially, beginning with the next
record.

Chapter 13: Editing and String Handling

The data manipulations performed by the
arithmetic, comparison, and bit-string
operators are extended in PL/I by a variety
of string-handling and editing features.
These features are specified by data
attributes, statement options, built-in
functions 11 iand pseudovariables.

The following discussions give general
descriptions ,of each feature, along with
illustrative examples.

Editing by As:signment

The most fund,amental form of editing
performed by -the assignment statement
involves conv,erting the data type of the
value on the :right-hand side of the
assignment symbol to conform to the
attributes c::>f the receiving variable.
Because the assigned value is made to
conform to thle attributes of the receiving
variable, the precision or length of the
assigned value may be altered. such
alteration can involve the addition of
digits or characters to and the deletion of
digits or characters from the converted
item. The rules for data conversion are
discussed in chapter 4, "Expressions and
Data Conversions", and in section F, "Data
Conversion and Expression Evaluation".

ALTERING 'l~HE lLENGTH OF STRING DATA

When a value is assigned to a string
variable, it is converted, if necessary, to
the same string type (character or bit) as

I
the receiving string. If necessary, it is
truncated or, for fixed-length receiving
strings, extended on the right to conform
to the declared length of the receiving
string. For E~xample, assume SUBJECT has
the attributes CHARACTER (10), indicating a
fixed-length character string of ten
characters. Consider the following
statement:

SUBJEC'J~ :: 'TRANSFORMATIONS';

The length of the string on the right is
fifteen chal:ac::ters; therefore, five
characters will be truncated from the right
end of the string when it is assigned to
SUBJECT. This is equivalent to executing:

SUBJECT = 'TRANSFORMA';

If the assigned string is shorter than
the length declared for the receiving
string variable, the assigned string is
extended on the right either with blanks,
in the. case of a character-string variable,
or with zeros, in the case of a bit-string
variable. Assume SUBJECT still has the
attributes CHARACTER (10). Then the
following two statements assign equivalent
values to SUBJECT:

SUBJECT = 'PHYSICS':

SUBJECT = 'PHYSICSbbb';

The letter E indicates a blank character.

Let CODE be a bit-string variable with
the attributes BIT(10). Then the following
two statements assign equivalent values to
CODE:

CODE = '110011'B;

CODE = '1100110000'B;

Note, however, that the following
statements do not assign equivalent values
to SUBJECT if it has the attributes
CHARACTER (10):

SUBJECT = '110011'B;

SUBJECT = '1100110000'B;

When the first statement is executed, the
bit-string constant on the right is first
converted to a character string and is then
extended on the right with blank characters
rather than zero bits. This statement is
equivalent to:

SUBJECT = '110011bbbb';

The second of the two statements
requires only a conversion from bit-string
to character-string type and is equivalent
to:

SUBJEqT = '1100110000';

A string value, however, is not extended
with blank characters or zero tits when it
is assigned to a string variable that has
the VARYING attribute. Instead, the length
specification of the receiving string
variable is effectively adjusted to
describe the length of the assigned string.
Truncation will occur, though, if the
length of the assigned string exceeds the

Chapter 13: Editing and String Handling 193

maximum length declared for the
varying-length string variable.

OTHER FORMS OF ASSIGNMENT

In addition to the assignment statement,
PL/I provides other ways of assigning
values to variables. Among these are two
methods that involve input and output
statements: one in which actual input and
output operations are performed, and one in
which data movement is entirely internal.

Input and Output Operation§.

Although the assignment statement is
concerned with the transmission of data
between storage locations internal to a
computer, input and output operations can
also be treated as related forms of
assignment in which transmission occurs
between the internal and external storage
facilities of the computer.

Record-oriented operations, however, do
not cause any data conversion of items in a
logical record when it is transmitted.
Required editing of the record must be
performed within internal storage either
before the record is written or after it is
read.

Stream-oriented operations, on the other
hand, do provide a variety of editing
functions that can be applied when data
items are read or written. These editing
functions are similar to those provided by
the assignment statement, except that any
data conversion always involves character
type, conversion from character type on
input, and conversion to character type on
output.

STRING Option in G~T and RUT Statements

The STRING option in GET and PUT statements
allows the statements to be used to
transmit data between internal storage
locations rather than between the internal
and external storage facilities. In both
GET and PUT statements, the FILE option,
specified by FILE (file-expr) , is reflaced
by the STRING option, as shown in the
following formats:

194

GET STRING
(character-string-expression)
data specification;

PUT STRING
(~haracter-string-variable)
data specification;

The GET statement specifies that data items
to be assigned to variables in the data
list are to be obtained from the specified
character string. The PUT statement
specifies that data items of the data list
are to be assigned to the specified
character-string variable. The
"data-specification" is the same as
described for input and output. In
general, it takes one of the following
forms:

DATA [(data-list)]

[LIST] (data-list)

EDIT {(data-list) (format-list)} •••

Although the STRING option can be used
with each of the three modes of
stream-oriented transmission, it is most
useful with edit-directed transmission,
which considers the input stream to be a
continuous string of characters. For
list-directed and data-directed GET
statements, individual items in the
character string must be sefarated by
commas or blanks; for data-directed GET
statements, the string must also include
the transmission-terminating semicolon, and
each data item must appear in the form of
an assignment statement. Edit-directed
transmission provides editing facilities by

I

means of the format list. Note that the
COLUMN control format option may not be

. used with the STRING option.

The NAME condition is not raised for a
GET DATA statement with the STRING option.
Instead, the ERROR condition is raised for
situations that would cause the NAME
condition to be raised for a GET DATA
statement with the FILE option.

The STRING option permits data gathering
or scattering operations to be performed
with a single statement, and it allows
stream-oriented processing of character
strings that are transmitted by
record-oriented statements. Consider the
following statement:

PUT STRING (RECORD) EDIT
(NAME, PAY#, HOURS*RATE)
(A(12), A(7), P'$999V.99');

This statement specifies that the
character-string value of NAME is to be
assigned to the first (leftmost) 12
character positions of the string named
RECORD, and that the character-string value
of PAY# is to be assigned to the next seven
character positions of RECORD. The value
of HOURS is then to be multiplied by the

value of RATE, and the product is ~o be
edited into the next seven character
positions, according to the picture
specification.

Frequently, it is necessary to read
records of different formats, each of which
gives an indication of its format within
the record by the value of a data item.
The STRING option provides an easy way to
handle such records; for example:

READ FII~ (INPUTR) INTO (TEMP);
GET STRING (TEMP) EDIT (CODE) (F (1)) ;
IF CODE ,= 1 THEN GO TO OTHER_TYPE;
GET STRING (TEMP) EDIT (X,Y,Z)

<:X(1), 3 F(10,4»;

The READ statement reads a record from the
input file INPUTR. The first GET statement
uses the STRING option to extract the code
from the first byte of the record and to
assign it to CODE. The code is tested to
determine the format of the record. If the
code is 1, the second GET statement then
uses the STRING option to assign the items
in the record to X,Y, and Z. Note that the
second GET statement specifies that the
first character in the string TEMP is to be
ignored (the X(1) format item in the format
list). Each GET statement with the STRING
option always specifies that the scanning
is to begin at the first character of the
string. Thus, the character that is
ignored in t.he second GET statement is the
same character that is assigned to CODE by
the first GET statement.

In a similar way, the PUT statement with
a STRING option can be used to create a
record within internal storage. In the
following example, assume that the file
OUTPRT is e~Telltually to be printed.

PUT STHIlqG (RECORD) EDIT
(NAME., PAY#, HOURS*RATE)
(XU) II A(12), X(10), A(7), X(10),
P' $9~~9V. 99');

WRITE E'I]~E (OUTPRT) FROM (RECORD);

The PUT statement specifies, by the X(1)
spacing format item, that the first
character assigned to the character-string
variable is to be a single blank, the ANS
carriage-control code that specifies a
single space before printing. Following
that, the values of the variables NAME and
PAY# and of the expression HOURS*RATE are
assigned. The format list specifies that
ten blank characters are to be inserted
between NAME and PAY# and between PAY# and
the expression value. The WRITE statement
specifies that record transmission is to be
used to write the record into the file
OUTPRT.

PICTURE SPECIFICATION

Picture specifications extend the editing
facilities availatle in PL/I, and provide
the user with greater control over his data
formats. A picture specification consists
of a sequence of character codes enclosed
in quotation marks which is either part of
the PICTURE attribute, or part of the P
(picture) format-item:

DECLARE PRICE

PUT FILE(SYSPRINT)

PICTURE'$Z9V99';

EDIT
('PART NUMBER', PART#)
(A(12), P'AAA99X');

Picture specifications are of two types:

• numeric character specificatons

• character-string picture specifications

A numeric character specification in a
PICTURE attribute indicates that the data
item represents a numeric quantity but that
it is to be stored as a character-string,
and indicates how the numeric value is to
be represented in the string. A numeric
character specification in a P format item
indicates how a numeric value is, or is to
be, represented as a character-string on
the external medium.

A character-string picture specification
is an alternative way of descriting a
fixed-length character string, with the
additional facility of indicating that any
position in the string may only contain
characters from certain subsets of the
complete set of characters available on the
operating system.

The concepts of the two types of picture
specifications are described separately
below, and a detailed description of each
picture character, together with examples
of its use, appears in section D, "Picture
Specification Characters". It is
sufficient here to note that the presence
of an A or X picture character defines a
picture specification as a character-string
picture specification; otherwise, it is a
numeric character specification.

Numeric Character Specifications

A numeric character specification specifi~s
that the associated data item has a numer1C
value but is to be stored (or is to te
represented in the External medium) as a
character string. It also specifies the

Chapter 13: Editing and String Handling 195

form the character string is to take, and
exactly how the numeric value is
represented in the string. For example:

DeL PRICE PICTURE'$Z9V99';

This specifies that PRICE is to be
represented by a character-string of length
5. The first character is always $, the
second will be a blank or non- zero digit,
and the third, fourth and fifth characters
will be digits. The numeric value is
indicated by the four characters which can
represent digits, a decimal point being
assumed in the position indicated by the V;
hence it is regarded as FIXED DECIMAL
(4,2), and is always positive. 13.25 is
represented as '$1325' and .95 as '$b095'.

The numeric character specification has
two major uses:

• For data items which will be concerned
with input/output operations (although
they may be used anywhere in a program
where numeric data can occur).
However, most numeric operations on
pictured data are considerably less
efficient than the same operations on
coded numeric data.

• The second use stems from the fact that
a pictured data item effectively has
two values. When the item is used in a
numeric context, the numeric value is
obtained from or stored into the
character-string by the conversion
process defined by the picture
specification; when the item is used as
source data in a context where a
character-string expression is
required, the actual character-string
which represents the value is used.

196

For example:

DCL COUNT PICTUREo999' INITIAL(O),
STRING CHAR (3);

COUNT = COUNT +1;
STRING = COUNT;

The initial representation of COUNT is
'000'. In the first assignment
statement, this is converted to FIXED
DECIMAL (3,0), the addition is
performed, and the result is converted
back to the pictured form '001'. In
the second assignment statement the
value of string is set to '001'.

Note particularly that the charact~r
context includes defining. A numeric
character data-item may be defined on a
character-string and vice versa.

Picture Charact.er • 9' in Numeric Character
Sfecifications

· The picture character '9' is the simplest
· form of numeric character specification. A
· string of n '9' picture characters
i specifies that the item is to be
represented by a fixed-length
character-string of length n, each
character of which is a digit (zero through
nine). The numeric value is the value of
the digits as an unsigne~ dec:imal number·
(i.e., FIXED DECIMAL (n,O». For example:

DCL DIGIT PICTURE'9'
COUNT PICTURE'999',
XYZ PICTURE '(10)9';

The last example shows an alternative way
of writing the picture specification 9 ten
times.

Example of use:

DCL 1 CARD IMAGE,
2 DATA CHAR(72),
2 IDENTIFICATION CHAR(3),
2 SEQUENCE PIC'99999';

SEQUENCE = SEQUENCE + 1;
WRITE FILE(OUTPUT) FROM(CARD_IMAGE);

(Note that the definition of '9' in a
character-string picture is different in
that the corresponding character can be
blank or a digit.)

Picture Characters Z •

It is often preferatle to replace leading
zeros in numbers by blanks. In pictures
this is accomplished by using the Z picture
specification character. A picture
specification containing only ZS and 9s has
one or more ZS optionally followed ty one
or more 9s. The representation of numeric
data is as for the '9' picture
specification except that if the digit to
be held would otherwise be zero and if all
digit positions to the left would also be
zero, then the character-string will
contain a blank in this position. For
example:

DeL PAGE_NUMBER PICTURE'ZZ9';

The value 197 is held as '197', 69 as
'b69', 5 as 'bb5' and zero as '~bO'. with
a picture specification of all Zs, the
value zero is held as an all-blank string.

The asterisk picture specification
character has the same effect as the Z
character except that an * is held in the
string instead of a blank. This ca~ be
used, for example, when printing checks,
when it is dE~sired not to leave blank
spaces within fields. For example:

DCL CREDIT PICTURE '$**9.99':

(The $ and (~) characters are described
below.) A vcllue of 95 is held as
'$**0.95': a value of 12350 is held as
'$123.50'.

Picture Character V

The V pic·turEl specification character
indicates the position of an assumed
decimal point. within the character-string.
For example:

DCL VALUE PICTURE 'Z9V999'i

The string '12345' represents the numeric
value 12.:345. Note that the V character in
the picture specification does not specify
a character position in .the
character-string representation. In
particular, on assignment to the data item
a decimal point is not included in the
character string.

Insertion Picture Characters B • c /

A decimal poi:nt picture character(.) can
appear in a numeric picture specification.
It merely indicates that a point is to be
included in the character representation of
the value.. Therefore, the decimal point is
a part of its character-string value. The
decimal point picture character does not
cause decimal point alignment during -
assignment; it is not a part of the
variable's ar:lthmetic value. Only the
character V causes alignment of decimal
points p For 4~xample:

DECLARE SUM PICTURE '999V.99';

SUM is a numeJcic character variable
representing numbers of five digits with a
decimal point assumed between the third and
fourth digits.. The actual point specified
by the decimaJL point insertion character is
not a part of the arithmetic value; it is,
however, part of its character-string
value. (The decimal point picture
character can appear on either side of the
character V. In certain contexts the two
forms have. dif:ferent meanings but V. is
recommended' in most cases. See section D,

"Picture Specification Characters.") The
following two statements assign the same
character string to SUM:

SUM = 123;

SUM = 123.00;

In the first statement, two zero digits are
added to the right of the digits 123.

Note the effect of the following
declaration.

DECLARE RATE PICTURE '9V99. 99" ;

Let RATE be used as follows:

RATE = 7.62;

When this statement is executed, decimal
point alignment occurs on the character V
and not the decimal point picture character
that appears in the picture specification
for RATE. If RATE were printed, it would
appear as '762.00', but its arithmetic
value would be 7.6200.

Unlike the character V, which can appear
only once in a picture specification, the
decimal point picture character can appear
more than once; this allows digit groups
within the numeric character data item to
be separated by points, as is common in
Dewey decimal notation and in' the numeric
notations of some European countries.

Because a decimal point picture
character causes a period character to be
inserted into the character-string value of
a numeric character data item, it is called
an insertion character. PL/I provides
three other insertion characters: comma
(,,), slash'(/), and blank (B) • Consider the
following statements:

DECLARE RESULT PICTURE '9.999.999,V99';

RESULT = 1234567;

The character-string value of RESULT would
be '1.234.567,00·. Note that decimal point
alignment occurs before the two rightmost
digit positionsl as specified by the
character V. If RESULT were assigned to a
coded arithmetic field, the value of the
data converted to arithmetic would be
1234567.00.

If a point;, comma or slash picture
character appears with a string of Z or *
zero suppression characters, then if all
p+evious digits in the string are
suppressed, the insertion character is
suppressed to blank or '*'.

The B character differs from the other
three in that a blank is always inserted in

Chapter 13: Editing and String Handling 197

the corresponding position of the character
string, even within a string of * zero
suppression characters.

Picture Character $

The $ picture character controls the
appearance of the currency symbol $ in
specified positions of numeric character
data items. For example a dollar sign can
be appended to the left of a numeric
character item, as indicated in the
following statements:

DECLARE PRICE PICTURE '$99V.99';

PRICE = 12.45;

The character-string value of PRICE is
equivalent to the character-string constant
'$12.45'. Its arithmetic value~ however,
is 12.45.

Sign Seecification i~ Nume~lc Character
Specifications

There are several ways in which signed
information may be held ina numeric
character data item. The simplest of these
is the S character specification. This
specifies a character in the
character-string representation which
contains '+' if the value is positive or
zero, and ,_, if the value is negative. It
must occur either to the right or to the
left of all digit positions. For example:

DCL ROOT PICTURE 'S999';

50 is held as '+050', zero as '+000' and
-243 as '-243'. Similarly the '+' picture
character specifies a corresponding
character pOSition containing '+' for
positive or zero, and blank for negative
values; the 1_' picture character specifies
a corresponding character pOSition
containing blank for positive or zero, and
I_I for negative values.

Overpunched Sign SEecification Characters,
I-.LB

An alternative way of representing signed
values, which does not require an
additional character in the string, is by
an overpunched sign specification. This
representation has arisen from the custom
of indicating signs in numeric data held on

198

punched cards, by superimposing a 12-punch
(to represent +) or an 11-punch (to
represent -) on top of a column containing
a digit (usually the last one in a field).
The resulting card-code is, in most cases,
the same as that for an alphabetic
character (e.g., 12-punch superimposed on 1
through 9 gives A through I, l1-punch
superimposed on 1 through 9 gives J through
R). The 12-0 and 11-0 combinations are not
characters in the PL/I set but are within
the set of characters accepted by the
operating system.

The T picture specification character
specifies a character in the
character-string representation which will
hold a digit and sign, in the
representation described above, i.e.,
12-punch superimposed on 0, or on 1 through
9 (A through I) for positive, 11-punch
superimposed on 0, or on 1 through 9 (J
through R) for negative. It can appear

, anywhere a 19' picture specification
character could have occurred. For
example:

DCL CREDIT PICTURE 'ZZV9T ' ;

The character-string representation of
CREDIT is 4 characters. +21.05 is held as
'210E'. _-0.07 is held as 'bbOP'.

The I picture specification character
specifies a character position which holds
the representation of a digit overpunched
with a 12-punch if the value is positive or
zero, but just a digit if the value is
negative.

The R picture specification character
specifies a character position which hold
the representation of a digit overpunched
with an 11-punch if the value is negative,
but just a digit if the value is positive.
For example:

GET EDIT (X) (P' R99 I) :

will set X to (+) 132 on finding '132' in
the next 3 positions of the input stream,
but -132 on finding 'J32'.

other Numeric Character Facilities

Further details on the use of the above
picture specification characters, together
with details of picture specification
characters for floating signs and currency
symbols, and floating point values, appear
in section 0, "Picture Specification
Characters".

The full list of numeric character
specification characters is:

9 , V, Z, ., Y, (.) , (,) , / , B, S:, +, -, $ i CR, DB, T, I, R,
K,E,F of which all except K,V,F specify the
occurrence of a character in the
character-string representation.

Character-string Picture Specifications

A character-string picture specification is
an alternative way of describing a
fixed-length character string, with the
additional facility of indicating that any
position in the string may'only contain
characters from certain subsets of the
complete set of available characters.

A character-string picture specification
is recognized, by the occurrence 'of an A or
X picture specification character. The
only valid characters in a character-string
picture specification are X, A, and 9.
Each of these specifies the presence of one
character position in the character-string
which can contain the following:

X any character recognized by the
particular implementation (i.e.,
all 256 possible bit combinations
rep:resented by the 8-bit byte).

A any ,alphabetic character, #, a, $,
or :blank.

9 any digit, or blank. Note the
difference from the 9 picture
specification character in numeric
character specifications.

When a character-string value is assigned,
or transferred, to a pictured
character-string data item, the particular
character in each position is checked for
validity, as specified by the corresponding
picture Sfeci:fication character, and the
CONVERSION condition is raised for an
invalid character. For example:

DECLARE PART# PICTURE 'AAA99X';

The following values are valid for
assignment to PART#.

'ABC12M u

'bbb09/"
'XYZb13"

The following values are not (the invalid
characters are underscored);

'AB123M"
'ABC1/2'
'Mb#~5; II

Bit-string Handling

The following examples illustrate some of
the facilities of PL/I that can be ~sed in
bit-string manipulations.

DECLARE 1 PERSONNEL RECORD,
2 NAME, -

3 LAST CHARACTER(15),
3 FIRST CHARACTER(10),
3 MIDDLE CHARACTER(1),

2 CODE STRING,
3 MALE BIT(l),
3 SECRETARIAL BIT(1)~
3 AGE,

4 (UNDER 20,
TWENTY TO 30,
OVER 3'0) BIT (1),

3 HEIGHT,-
4 (OVER 6,

FIVE-SIX TO 6,
UNDER 5 6) BIT(1),

3 WEIGHT, - -
4 (OVER 180,

ONE TEN TO 180,
UNDER 110)-BIT(1),

3 EYES, -
4 (BLUE,

BROWN,
HAZEL,
GREY,
OTHER) BIT (1) ,

3 HAIR,
4 (BROWN,

BLACK,
BLOND,
RED.,
GREY,
BALD) BIT (1) ,

3 EDUCATION,
4 (COLLEGE,

HIGH_SCHOOL"
GRAMMAR_SCHOOL) BIT(1):

This structure contains NAME, a minor
structure of character-strings, and
CODE_STRING, a minor structure of
bit-strings. By default, the elements of
PERSONNEL-RECORD have the UNALIGNED
attril:ute. Consequently, CODE_STRING is
mapped with eight elements per byte, that
is, in the same way as a bit-string of
length 25.

Each of the first two bits of the string
represents only two alternatives: MALE or
,MALE and SECRETARIAL or ,SECRETARIAL. The
other categories (at level 3) list several
alternatives each. (Note that the level
number 4 and the attributes BIT(l) are
factored for each category.)

Chapter 13: Editing and String Handling 199

The following portion of a program might
be used· with PERSONNEL_RECORD:

INREC: READ FILE(PERSON)
INTO (PERSONNEL_RECORD);

IF (,MALE , SECRETARIAL
, UNDER 20
, UNDER-5 6
, UNDER-110
" BLUE -
, (HAIR. BROWN I BLOND)
& HIGH SCHOOL)
I (MALE & ,SECRETARIAL
, OVER 30
& OVER-6
& OVER:18~
& EYES.GREY
& BALD
& COLLEGE)

THEN PUT LIST (NAME);

GO TO INREC;

Another way to program the same
information retrieval operation is as
follows:

DECLARE PERS STRING BIT(25) DEFINED
CODE_STRING;

IF PERS STRING
=-'0110000100110000100000010'B
THEN GO TO OUTP;

IF PERS .STRING
=-'0110000100110000001000010'B
THEN GO TO OUTPi

IF PERS STRING
=-'1000110010000010000001100'B
THEN GO TO OUTPi

GO TO INREC;

OUTP: PUT LIST (NAME);

GO TO INREC;

In this example, the bit string PERS_STRING
is defined on the minor structure
CODE_STRING. Bit-string constants are
constructed to represent the values of the
information being sought. The bit string
then is compared, in turn, with each of the
bit-string constants. Note that the first
and second constants are identical except
that the first tests for brown hair and the
second tests for blond hair. These two
variations are specified in the first
example by (HAIR.BROWNIBLOND).

Note that the second method of testing
PERSONNEL RECORD could not be used if the
structure-were ALIGNED (the base identifier
for overlay defining must be UNALIGNED).

200

The first method, if it were used~ would be
more efficient with an ALIGNED structure.

The second method has the disadvantage
that the 25 bits in PERS STRING have to
match the bit-string constant exactly.
This means that in an abnormal situation"
such as. when a man is described as having
grey hair and being bald, he would be
selected by the first method but not by the
second. The second method also has the
disadvantage that if a further item of
data, such as another colour of hair, were
to be added, the bit string constants would
have to be changed in every comparison,
whereas the first method requires that only
the comparisons in which the new item is
used need to be changed.

If the second method were used, an
improvement could be made by uS1ng
combinations of bits to denote each
characteristic, rather than single bits.
For instance, the minor structure HAIR
could be replaced by a bit string length 3
at the same level in the structure and,
'OOO~B could represent bald, '001~B
grey-haired, '010'B red-haired, etc. This
would reduce length required for
PERS STRING from 25 to 16 bits, and would
obviate the possibility of conflicts such
as that between bald and grey-haired.

The tests might also be made with a
series of IF statements, either nested or
unnested, in which each bit would be tested
with a single IF statement.

String Built .. in Functions

PL/I provides a number of built-in
functions, some of which also can be used
as pseudovariables, to add power to the
string-handling facilities of the language.
Following are brief descriptions of these
functions (more detailed descriptions
appear in section G, "Built-in Functions
and Pseudovariables").

The BIT built-in function specifies that
a data item is to be converted to a bit
string. The built-in function allows a
programmer to specify the length of the
converted string, overriding the length
that would result from the standard rules
of data conversion.

The CHAR built-in function is exactly
the same as· the BIT built-in function,
except that the conversion is to a
character string whose length may be
specified by the programmer.

The SUBSTR built-in function, which can
also serve as a pseudovariable in a

receiving field, allows a specific
substring to be extracted from (or assigned
to in the case of a pseudovariable) within
a specified string value.

The INDEX built-in function allows a
string, either a character string or a bit
string, to be searched for the first
occurrence of a specified substring, which
can be a single character or bit. The
value returned is the location of the first
character or bit of the substring, relative
to the beginning of the string. The value
is expressed as a binary integer. If the
substring does not occur in the specified
string, the value returned is zero.

The LENGTH built-in function gives the
current length of a character string or bit
string. It is particularly useful with
strings that have the VARYING attribute.

The HIGH built-in function provides a
string of a specified length that consists
of repeated occurrences of the highest
character in the collating sequence. For
these implementations, the character is
hexadecimal FF.

The LOW tuilt-in function provides a
string of a specified length that consists
of repeated occurrences of the lowest
character in the collating sequence. For
these implementations, the character is
hexadecimal 00.

The REP:EAT built-in function permits a
string to be formed from repeated
occurrences of a specified substring. 'It
is used to create string patterns.

The STRING built-in function, which can
also be used as a pseudovariable,
concatenates all the elements in an
aggregate variable into a single string
element.

The BOOL built-in function allows any of
the 16 different Boolean operations to be
applied to two specified bit strings.

The UNSPEC built-in function, which can
also be used as a pseudovariable, specifies
that the internal coded representation of a

value is to te regarded as a bit string
with no conversion. For example:

x = ARRAY(UNSPEC('A'»;

In this statement the internal
representation of the character 'A' is for
these implementations a string eight tits
in length. This bit string is converted to
a fixed binary arithmetic value, and used
as a subscript for the array. (The decimal
value of this particular subscript is 193).

The TRANSLATE built-in function changes
specified character elements in a string
for specified replacement character
elements. The 'replacement' element is
inserted into the 'position' in the string
occupied by the element to be replaced.

This built-in function enables the
programmer to use a translation facility
whereby all the characters in a given
string are translated according to a
translation table contained in two other
strings. One of these strings serves as a
key to the replacement characters held in
the other string. For example:

DECLARE (W,X,Y,Z) CHAR (3);

X=' ABC' ;
Y=' TAR' ;
Z='CAB' ;

W = TRANSLATE (X,Y,Z);

/* W = 'ART' */

The VERIFY built-in function compares
two strings to check whether the bits or
characters in one string occur anywhere in
the other string. If all the characters or
bits in one string are detected in the
second string, a value of '0' is returned.
If a character or tit does not occur in the
second string, a value representing the
position of this character or bit in the
first string is returned.

The first string is verified from left
to right. A position value for the first
unmatched bit or character only is
returned.

Chapter 13: Editing and String Handling 201

Chapter 14: Exceptional Condition Handling and Program Checkout

When a PL/I program is executed, a large
number of exceptional conditions are
monitored by the system and their
occurrences are automatically detected
whenever they arise. These exceptional
conditions may be errors, such as overflow
or an input/output transmission error, or
they may be conditions that are expected
but infrequent, such as the end of a file
or the end of a page when output is being
printed. When checking out a program;, a
programmer can also get a selective flow
trace and dumps by specifying that the
occurrence of anyone of a list of
identifiers be treated as an exceptional
condition.

Each of the conditions for which a tes.t
may be made has been given a name, and
these names are used by the programmer to
control the handling of exceptional
conditions. The list of condition names is
part of the PL/I language. For keyword
names and descriptions of each of the
conditions, see section H, "ON-Conditions."

The situations in which these conditions
occur is the same for both the optimizing
and the checkout compilers. The enabling
of these conditions, and the specifying of
the action required when a condition is
raised, are described in this chapter.

With the checkout compiler, the
facilities for making values available to
the programmer during execution are greatly
extended. These facilities are described
in chapter 15, "Execution-time Facilities
of the Checkout Compiler".

Enabled Conditions and Established Action

A condition that is being monitored, and
the occurrence of which will cause an
interrupt, is said to be enabled. Any
action specified to take place when an
occurrehce of the condition causes an
interrupt, is said to be established.

Most conditions are checked for
automatically, and when they occur, the
system will take control and perform some
standard action specified for the

I condition. Such conditions are enabled by
default, and the standard system action is
established for them.

202

The most common system action is to
raise the ERROR condition. This provides a
common condition that may be used to check
for a number of different types of errors,
rather than checking each error type
individually. Standard system action for
the ERROR condition depen,ds on the
processing mode:

Batch processing (optimizing and checkout
compilers): If'the condition is raised
in the major task, the FINISH condition
is raised and the program is
subsequently terminated. If it is
raised in a subtask, that task is
terminated.

'Conversational processing (checkout
compiler only): Control is passed to
the terminal.

The programmer may specify whether or
not some conditions are to be enabled, that
is, are to be checked for so that they will
cause an interrupt when they arise. If a
condition is disabled, an occurrence of the
condition will not cause an interrupt.
Under the checkout compiler, the SIZE,
STRINGRANGE, and SUBSCRIPTRANGE conditions
are continuously monitored, whether enabled
or not.

All input/output conditions and the
ERROR, FINISH, and AREA conditions are
always enabled and cannot be disabled. All
of the computational conditions and the
program checkout conditions may be enabled
or disabled. The program checkout
conditions and the SIZE condition must be
explicitly enabled if they are to cause an
interrupti all other conditions are enabled
by default and must be explicitly disabled
if they are not to cause an interrupt when
they occur.

Condition Prefixes
I

Enabling and disabling can be specified for
the eligible conditions by a condition
prefix. A condition prefix is a list of
one or more condition names, enclosed in
parentheses and separated by commas, and
connected to a statement (or a statement
label) by a colon. The prefix always
precedes the statement and any statement
labels. For example:

(SIZE): Ll: X=(I**N)/(M+L)i

A condition name in a prefix list indicates
that the corresponding condition is enabled
within the scope of the prefix. The name
of a condition used in a prefix can be
preceded by the word NO" without a
separating l:.lank or connector, to indicate
that the corresponding condition is
disabled. For example:

(NOCONVERSION): Y=AIIB;

scope of the Condition Prefix

The scope of the prefix" that is, the part
of the program throughout which it applies,
is usually the statement to which the
prefix is ,attached. The prefix does not
apply to any functions or subroutines that
may be invoked in the execution of the
statement.

A condi,tion prefix to an IF statement
applies only to the evaluation of the
expression following the IF; it does not
apply to the statements in the THEN or ELSE
clauses, although these may themselves have
prefixes 8 Similarly, a prefix to the ON
statement has no effect on the statements
in the on-unit. A condition prefix to a DO
statement applies only to the evaluation of
any expressions in the DO statement itself
and ~ to any other statement in the DO­
group.

Conditi~on prefixes to the PROCEDURE
statement ;and the BEGIN statement are
special (though commonly used) cases. A
condition prefix attached to a PROCEDURE or
BEGIN statement applies to all the
statements up to and including the
corresponding END statement. This includes
other PROCEDURE or BEGIN statements nested
within that block. It does not apply to
any procedures lying outside that block.

The enabling or disabling of a condition
may be redefined within a block by
attaching a prefix to statements within the
block, including PROCEDURE and BEGIN
statements ('thus redefining the enabling or
disabling c:>f the condition within nested
blocks). Such a redefinition applies only
to the execution of the statement to which
the prefix is attached. In the case of a
nested PROCEDURE or BEGIN statement, it
applies only to the block the statement
defines, as well as any blocks contained
within that block. When 'control passes out
of the scope of the redefining prefix, the
redefinition no longer applies. A
condition pr1efix can be attached to any
statement ex,cept a DECLARE, DEFAULT, or
ENTRY statement.

ON Statement

A system action exists for every condition,
and if an interrupt occurs, the system
action will be performed unless the
programmer has specified an alternate
action in an ON statement for that
condition. The purpose of the ON statement
is to establish the action to be taken when
an interrupt results from an exceptional
condition that has been enabled, either by
default or by a condition prefix.

Note; The action specified in an ON
statement will not be executed during any
portion of a program throughout which the
condition has been disabled.

The form of the ON statement is:

ON condition-name (SNAP]
{on-unitISYSTEMi}

(See section J, "Statements" for a full
description) •

The keyword SYSTEM followed by a
semicolon specifies standard system action
whenever an interrupt occurs. It
re-establishes system action for a
condition for which some other action has
been established. The on-unit is used by
the programmer to specify an alternative
action to be taken whenever an interrupt
occurs.

The SNAP option specifies that, when an
interrupt occurs, a list of all blocks in
the chain of invocation leading to the
current task is written on the standard
system file SYSPRINT. If SNAP is
specified, the action of the SNAP option
precedes the action of the on-unit. If
SNAP SYSTEM is specified, the system action

(
message is followed immediately by a list
of active blocks.

The on-unit must be either a
single, unlabeled, simple statement or an
unlabeled begin block. The single
statement cannot be a RETURN, FORMAT,
DECLARE, or DEFAULT statement. It cannot
be either of the. two compound statements,
IF and ON, or a DO-group. (PROCEDURE,
BEGIN, END, and DO statements can never
appear as single statements.) The begin
block, if it appears, can contain any

I
statement (except that, as with any BEGIN
block, a RETURN statement can appear only
within a procedure nested in the begin
block) •

The. single statement on-unit, or the
begin block on-unit, is executed as though
it were a procedure (without parameters)
that was called at the point in the program
at which the interru:pt occurred. If the

Chapter 14: Exceptional Condition Handling and Program Checkout 203

on-unit is a single statement it behaves as
though it were a single-statement
procedure; when execution of the unit is
complete, control generally returns to the
block from which the on-unit was entered.
Just as with a procedure, control may be
transferred out of an on-unit by a GO TO
statement; in this case, control is
transferred to the point specified in the
GO TO, and a normal return does not occur.

~ The specific point to which control
returns from an on-unit varies for
different conditions. In some cases, it
returns to the point that immediately
follows the action in which the condition
arose, or the statement following the one
in which the condition was raised. In
other cases, control returns to the actual
point of interrupt, and the action is
reattempted. An example of the latter case
is the return from the on-unit of an ON
CONVERSION statement. When an interrupt
occurs as the result of a conversion error,
control returns from the on-unit to
reattempt conversion of the character that
caused the error (on the assumption that
the invalid character has been changed
during execution of the on-unit). If the
invalid character is not changed, the ERROR
condition is raised.

Null On-unit

A special case of an on-unit is the null
statement. The effect of this is the same
as a normal return from a begin-block
on-unit, except that with the CONVERSION
and AREA conditions, there is no retry.

Use of the null on-unit is not the same
as disabling, for two reasons: first, a
null on-unit may be specified for any
condition, but not all conditions can be
disabled; and, second, disabling a
condition, if possible, may save time by
avoiding any checking for this condition.
If a null on-unit is specified, the system
must still check for occurrence of the
condition; the action then taken is the
action that would be taken on normal return
from an on-unit.

Note: A null on-unit for the CONVERSION
condition will not cause a permanent loop
if a conversion error occurs, because no
conversion is re-attempted unless the
invalid character is changed in the
on-unit. If it is not changed, the ERROR
condition is raised.

204

scoEe of the ON Statement

The execution of an ON statement associates
an action specification with the named
condition. Once this association is
established, it remains until it is
overridden or until termination of the
block in which the ON statement is
executed.

An established interrupt ac·tion passes
from a block to any block it activates, and
the action remains in force for all
subsequently activated blocks unless it is
overridden by the execution of another ON
statement for the same condition. If it is
overridden, the new action remains in force

I
only until that block is terminated or
until a REVERT statement is executed for
the condition. When control returns to the
activating block, all established interrupt
actions that existed at that pOint are
re-established. This makes it impossible
for a subroutine to alter the interrupt
action established for the block that
invok~d the subroutine.

If more than one ON statement for the
same condition appears in the same block,
each subsequently executed ON statement
permanently overrides the previously
established condition. No re-establishment
is possible, except through execution of
another ON statement with an identical
action specification (or re-execution,
through some transfer of control, of an
overridden ON statement).

Dynamically Descenden~ On-units

It is possible to raise a condition during
execution of an on-unit and enter a further
on-unit. An on-unit entered due to a
condition either raised or signalled in
another on-unit is a dynamically-descendant
on-unit. A normal return from a
dynamically-descendant on-unit
reestablishes the environment of the
on-unit in which the condition was raised.

On-units for File Parameters and File
Variables

File constants or file variables used as
arguments and parameters can be specified
in input or output condition on-units. The
following examples illustrate the rules and
uses of this facility:

1. On-units for a particular condition in
separate blocks can specify different
file identifiers for the same file.

For example:

E: PROCEDURE;
DECLARE Fl FILE;
ON ENDFILE (F1) GOTO Ll;
CAI,L El (Fl);

E1: PROCEDURE (F2);
DECLARE F2 FILE;
ON ENDFILE (F2) GO TO L2;
REJlID FILE (F 1) ;
REJlID FILE (F2);
END E1;

An end-'of-file encountered for F1 in
E1 causes the on-unit for F2 in El to
be entE!red. If the on-unit in El were
not specified, an end-of-file
condition encountered for either Fl or
F2 would cause entry to the on-unit
for Fl in E.

2. On-units for a particular input or
output condition in the same block can
specify different file identifiers for
the same file. The presence of a
second on-unit overrides the first.

For eXclmple:

E: PFtOCEDURE;
D.E:CI~ARE F 1 FILE;
CALI~ El (F1);

E1: PROCEDURE (F2);
DECLARE F2 FILE;
ON ENDFILE (Fl) GOTO L1;
READ FILE (F1) INTO (Xl);

ON ENDFILE (F2) GOTO L2;
HElm FILE (F2) INTO (X2);

REi\{) FILE (F 1) INTO (X3);

END E;

An end-of-file condition raised by
execut:i.on of the second READ FILE
(F1)~ statement causes the on-unit for
F2 to be entered.

3. If a REVERT statement for a particular
condit:i.on that specifies a file
parameter is executed, anyon-unit
previously established for the
argUInent corresponding to the file
parameter is entered.

For example:

E: PROCEDURE;
DCL Fl FILE;
ON ENDFILE (F1);
CALL El (F1);

El: PROCEDURE (F2);
DECLARE F2 FILE;
ON ENDFILE (F2) GOTO L;

REVERT ENDFILE (F2);
/*NULL ON-UNIT IN E ASSOCIATED

WITH ENDFILE INTERRUPTS FOR F2
*/

READ FILE (F2) INTO (X1);

END E;

An end-of-file condition encountered
in the execution of the READ statement
for F2 does not cause the on-unit for
F2 and E1 to be entered. Because of
REVERT statement the on-unit for F1 in
the containing procedure is entered.

Whenever a file variable is used, the
effect is the same as if the current
file-constant value of the variable had
been used. Thus having an ON statement
which specifies a file variable refers to
the file constant that is the current value
of the variable when the on-unit is
established.

For example:

DECLARE FV FILE VARIABLE,
FCl FILE,
FC2 FILE;

FV = FC1;
ON ENDFILE(FV) GO TO FIN;

FV = FC2;
READ FILE(FC1) INTO (X1);
READ FILE(FV) INTO (X2);

An end-of-file condition raised during the
first READ statement will cause the on-unit
to be entered, since the on-unit refers to
file FC1. If the condition is raised in
the second READ statement, however, the
on-unit is not entered, since this READ
refers to file FC2.

If an ON statement specifying a file
variable is executed more than once, and
the variable has a different value each
time, then a different on-unit will be

Chapter 14: Exceptional Condition Handling and Program Checkout 205

established at each execution. For
example.

DECLARE FV FILE VARIABLE,
FC1 FILE,
FC2 FILE;

DO FV=FC1,FC2;
ON ENDFILE(FV) GO TO FIN;

END;

REVERT Statement

The REVERT statement is used to cancel the
action specification of all the ON
statements for the named condition that
have been executed in the same block in
which the REVERT statement is executed. It
then re-establishes the action that was in
force at the time of activation of that
block. This statement has the form:

REVERT condition-name;

A REVERT statement that is executed in a
block in which no on-unit has been
established for the named condition is
treated as a null statement.

SIGNAL Statem~nt

The programmer may simulate the occurrence
of an ON condition by means of the SIGNAL
statement. An interrupt will occur unless
the named condition is disabled. This
statement has the form:

SIGNAL condi tion-nam·e;

The SIGNAL statement causes execution of
the interrupt action currently established
for the specified condition. The principal
use of this statement is in program
checking, to test the action of an on-unit,
and to determine that the correct action is
associated with the condition.

If the signaled condition is not
enabled, the SIGNAL statement is treated as
a null statement.

CONDITION Condition

The ON-condition of the form:

CONDITION (identifier)

206

allows a programmer to establish an on-unit
that will be executed whenever a SIGNAL
statement is executed specifying CONDITION
and that identifier.

As a debugging aid~ this condition can
be used to establish an on-unit whose
execution results in printing information
that shows the current status of the
program. The advantage of using this
technique is that the statements of the
on-unit need be written only once. They
can be executed from any point in the
program through placement of a SIGNAL
statement. Following is an example of how
the CONDITION condition might be included
in a program:

ON CONDITION (TEST) BEGIN;

END;

Execution of the begin block would be
caused wherever the following statement
appears:

SIGNAL CONDITION (TEST):

The identifier can be declared
contextually (as in the example given

I
above) or explicitly. An explicit
declaration of a condition name could
follows:

DCL CNAME CONDITION;
ON CONDITION(CNAME) BEGIN;

END:

be as

The CONDITION condition is always
enabled, but it can be raised only by the
SIGNAL statement.

CHECK Condition

The CHECK condition is an important tool
provided in PL/I for program testing. It
is raised during execution of the program
whenever the value of a designated variable
is modified, or whenever control is
transferred to a statement prefixed by a
designated label or entry constant.
Variables, label constants, and entry
constants for which the CHECK condition is
to be raised are designated explicitly in
an optional name list given with the CHECK
prefix that enables the CHECK condition.
If the CHECK prefix is given without the
name list, all variables, label constants,
and entry constants that are within the
scope of the CHECK prefix can cause the
CHECK condition to be raised. Variables

that can raise the CHECK condition include
array and structure variables, label
variables, entry variables, event
variables, area variables, file variables,
task variables, based and defined
variables, and locator variables.
Subscripted and locator-qualified names are
not allowed but qualified names (i.e.,
members of structures> can be used.
iSGB-defined variables are not allowed.

The interrupt occurs immediately after
assignment to the variable being checked.
An interrupt will take place, for instance,
after the assignment of each element of a
checked array. Exceptions are as follows.

1. If arguments specified in a CALL
statement are being passed directly
(as opposed to being passed by means
of dummy arguments>, then CHECK for
these names is raised on return from
the sul;routine.

2. With letbel and entry constants, the
interrupt occurs immediately before
the eXE!cution of the statement or the
invocation of the entry name.

The system action for problem variables is
to print the identifier causing the
int~rrupt and its new value in the form of
data-directE!d output. For program control
variables, t~he information provided is:

Checkout compiler: As for PUT DATA

Optimizing c:ompiler: Name of the
identifieI'

If the CHE:CK condition is raised by a
SIGNAL CHECIC, the standard system action is
to print the identifiers (and their values,
where applic:able> given in the name list of
the CHECK prefix. If the CHECK prefix does
not have a name list, the standard action
is to print all the identifiers (and their
values, whel:e a.pplicable>, that are within
the scope of the CHECK prefix.

Thus, by preceding a block with a CHECK
prefix, as s;hown in the example in figure
14. 1, the pl:ogrammer can obtain selective
dumps in a readable format by specifying
variables; he can obtain a flow trace by
specifying labels and entry names.

The CHECK condition may also be
specified in an ON statement, if other than
system .ctian is required. This gives the
user all the facilities of PL/I, including
the simplicity of data-directed output for
controlling and editing his debugging
information.

SIZE condition

The SIZE condition is not enabled unless it
appears in a condition prefix. It is
raised if high-order significant digits are
lost from an arithmetic value during
assignment to a variable or
compiler-created intermediate storage
location, or in an input/output operation.
An error message is printed, and the ERROR
condition is raised; in the absence of an
appropriate on-unit, this leads to
termination of the task. The checkout
compiler will detect a SIZE error and take
standard system action whether or not the
condition is enabled, although a SIZE
on-unit can be entered only when the
condition has been enabled.

SUBSCRIPTRANGE Condition

Another ON condition that is used
principally for program checkout, but that
may also be used in production, is
SUBSCRIPTRANGE. For the optimizing
compiler, the condition needs to be enabled
by a condition prefix. The checkout
compiler will detect a SUBSCRIPTRANGE error
and take standard system action, whether or
not the condition is enabled, although a
SUBSCRIPTRANGE on-unit can be entered only
when the condition has been enabled.

Since this checking involves a
substantial, overhead in both storage space
and execution time, it usually is used only
in program testing - it is removed for
production programs, SUBSCRIPTRANGE being a
normally-disabled condition.

STRINGRANGE Condition

The STRINGRANGE condition is not enabled
unless it appears in a condition prefix.
It is raised by an invalid reference to the
SUBSTR built-in function and
pseudovariable, the arguments to which must
lie within certain bounds (see "SUBSTR
string Built-in Function" in section G,
"Built-in Functions and Pseudovariables">.
It allows execution to continue with a
SUBSTR reference that has been revised
either automatically (that is, by standard
system action> or by the programmer using
an on-unit. The checkout compiler will
detect a STRINGRANGE error and take
standard system action whether or not the
condition has been enabled, although a
STRINGRANGE on-unit 'can be entered only
when the condition has been enabled.

Chapter 14: Exceptional Condition Handling and Program Checkout 207

Condition Built-in Functions and Co~dition
Codes

When an on-unit is invoked, it is as if it
were a procedure without arguments. It is
therefore impossible to pass to the on-unit
any information about the interrupt (other
than the name of the condition). To assist
the programmer in making use of on-units,
some special functions are provided that
may be·used to inquire about the cause of
an interrupt and possibly to attempt to
correct the error.

These condition built-in functions can
be used only in on-units or in blocks
invoked by on-units. They are listed in
section G, "Built-In functions and
Pseudovariables".

The condition built-in functions provide
information such as the name of the
procedure in which the interrupt occurred,
the character or character string that
caused a conversion interrupt, the value of
the key used in the last record
transmitted, and so on. Some can be used
as pseudovariables for error correction.

The ONCODE function provides a binary
integer whose value' depends on the cause of
the last interrupt. This function, used in
conjunction with the ERROR condition,
allows the programmer to deal with errors
that may be detected by the implementation,
but that are not represented by condition
names in the language. It can also be used
to distinguish between the various
circumstances under which a particular
condition (for instance the KEY condition)
can be raised.

:Example of Use of On-conditions

'The routine shown in figure 14. 1
illustrates the use of the ON statement,
·the SIGNAL and REVERT statements, and
condition prefixes. The routine reads
batches of cards containing test readings.

208

Each batch has a header card with a sample
number, called SNO, of zero and a trailer
card with SNO equal to 9999. If a
conversion error is found, one retry is
attempted with the error character set to
zero. Two data fields are used to
.calculate a subscript; if the subscript is
out of range, the sample is ignored. If
there is more than one subscript error or
more than one conversion error in a batch,
that batch is then ignored.

The numbers to the right of each line
are card sequence numbers, which are not
part of the program itself.

The CHECK prefixes in cards 1 and 25 are
included to help with debugging; in a
production program, they would be removed.
The prefix in card 1 specifies that
interrupts will occur at the following
times: just tefore the statements HEADER,
NEWBATCH, and BADBATCH are executed; just
before the procedure INPUT is invoked; and
whenever the value of an element of the
variatle SAMPLE changes. Since no ON
statement has been executed for the CHECK
condition, system action is performed.
This will result in the appropriate name
being written on SYSPRINT (together with
the new value in the case of SAMPLE).

Since the labels used within the
internal procedure INPUT are not known in
DIST, they cannot be specified in a CHECK
list for DIST. A separate CHECK prefix is
therefore inserted just before the
procedure statement heading INPUT. This
check list specifies the labels in INPUT,
and the array TABLE.

The first statement executed is the ON
ENDFILE statement in card 9. This
specifies that the external procedure
SUMMARY is to be called when an ENDFILE
interrupt occurs. This action applies
within DIST and within INPUT and within all
other procedures called by DIST, unless
they establish their own action for
ENDFILE.

r---------·--, (CHECK(BEADER,NEWBATCH,INPUT,BADBATCH,SANPLE»: /*DEBUG*/ 01
DIST: PROCEDURE; 02

DECLARE 1 SAMPLE EXTERNAL, 03
2 BATCH CHARACTER(6), 04
2 SNO PICTURE '9999', 05
2 READINGS CHARACTER(70), 06

TABLE(15,15) EXTERNAL, (ONCHAR" ONCODE) BUILTIN;
/* ESTABLISH INTERRUPT ACTIONS FOR ENDFILE , CONVERSION */ 08

ON ENDFILE (PDATA) CALL SUMMARY; 09
ON CONVERSION BEGIN; CALL SKIPBCH; 10

GO TO NEWBATCH; 11
END; 12

ON ERROR DISPLAY(BATCHIISNOIIREADINGS), 13
/* MAIN LOOP TO PROCESS HEADER , TABLE */ 14

HEADER: READ INTO (SAMPLE) FILE (PDATA); 15
/* CHECK ACTION LISTS INPUT DATA FOR DEBUG */ 16
IF SNO ,= 0 THEN SIGNAL CONVERSION; 17

NEWBATCH: GET LIST (OMIN,OINT,AMIN,AINT) STRING (READINGS), 18
TABLE = 0; 19
CALL INPUT; 20
CALL PROCESS; 21
GO TO HEADER; 22

/* ERROR RETURN FROM INPUT */ 23
BADBATCH: SIGNAL CONVERSION; 24
(CHECK(IN1,IN2,ERR2,ERR1,TABLE»: /*DEBUG*/ 25

INPUT: PROCEDURE; 26
/* ESTABLISH INTERRUPT ACTIONS FOR CONVERSION , SUBRG */ 27

ON CONVERSION BEGIN; 28
IF ONCODE = 624 , ONCHAR = , , 29

THEN DO; ONCHAR = i' 0'; 30
GO TO ERR1; 31

END; 32
ELSE GO TO BADBATCH; 33

END; 34
ON SUBSCRIPTRANGEGO TO ERR2; 35

/* LOOP TO READ SAMPLE DATA AND ENTER IN TABLE */ 36
IN1: READ INTO (SAMPLE) FILE (PDATA); 37

IF SNO = 9999 THEN RETURN; /*TRAILER CARD*/ 38
IN2: GET EDIT (R"OMEGA,ALPHA) (3 P' 999') 39

STRING (READINGS); 40
(SUBSCRIP'X'RANGE): TABLE ((OMEGA-OMIN) /OINT, (ALPHA-AMIN) /AINT) = R; 41

I GO TO IN1; 42
I /* FIRST CONVERSION , SUBSCRIPTRANGE ERROR IN THIS BATCH */ 43
I ERR2: ON SUBSCRIPTRANGE GO TO BADBATCH; /*FOR NEXT ERROR*/ 44
I CALL ERRMESS<SAMPLE, 02); 45
I GO TO IN1; 46
I ERR1: REVERT CONVERSION; /*SWITCH FOR NEXT ERROR*/ 47
I CALL ERRMESS<SAMPLE,01); 48
I GO TO IN2; 49
I END INPUT; 50
I END DIST; 51 L _______ . ___ ... _______ .. __ ~ ______ .-_-~ ... __ ., ______ ~--------___ .. __ _____ ... __________________ ~ ___ _

Figure 14.1. A program checkout routine

Througholllt the procedure, any conditions
except SIZE, SUBSCRIPTRANGE, STRINGRANGE,
S';rRINGSI ZE, and CHECK ar'e enabled by
default; and for all conditions except
those mentioned explicitly in ON
statements, the system action applies.
This system action, in most cases, is to
generate a IIlessage and then to raise the
ERROR condit,ion. The action specified for
the ERROR cClndition in card 13 is to
display ,the contents of the card being
processed. When the ERROR action is

completed" the FINISH condition is raised,
, and execution of the program is

subsequently terminated.

The statement in "card 1 0 specifies
action to be taken whenever a CONVERSION
interrupt occurs. Since this action
consists of more than one statement, it is
bracketed by BEGIN and END statements.

The main loop of the program starts with
the statement HEADER. Since the CHECK

Chapter 1,4: Exceptional Condition Handling and Program Checkout 209

condition is enabled for HEADER, an
interrupt will occur before HEADER is
executed. The READ statement with the INTO
option will cause a CHECK condition to be
raised for each element ()f the variable
SAMPLE; consequently, the input is listed
in the form of data-directed output.

The card read is assumed to be a header
card. If it is not, the SIGNAL CONVERS.ION
statement causes execution of the BEGIN
block, which in turn calls a procedure (not
shown here) that reads on, ignoring cards
until it reaches a header card. The begin
block ends with a GO TO statement that
terminates the on-unit.

The GET statement labeled NEWBATCH uses
the STRING option to get the different test
numbers that have been read into the
character string READINGS, which is an
element of SAMPLE. Since the variables
named in the data list are not explicitly
declared, their appearance causes implicit
declaration with the attributes FLOAT
DECIMAL (6).

The array TABLE is initialized to zero
before the procedure INPUT is called. This
procedure inherits the on-units already
established in DIST, but it can override
them.

The first statement of INPUT establishes
a new action for CONVERSION interrupts.
Whenever an interrupt occurs, the ONCODE is
tested to check that the interrupt is due
to an illegal P format input character and
that the illegal character is a blank. If
the illegal character is a blank,.it is
replaced by a zero, and control is
transferred to ERR1.

ERR1 is internal to the procedure INPUT.
The statement, REVERT CONVERSION, nullifies
the ON CONVERSION statement executed in

I INPUT and restores the action specified for
conversion interrupts in DIST (which causes
the batch to be ignored).

After a routine is called to write an
error message, control goes to IN2, which

210

retries the conversion. If another
conversion error occurs, the interru~t
action is that specified in cards 10 and
11.

The second ON statement in INPUT
establishes the action for a SUBSCRIPTRANGE
interrupt. This condition must be
explicitly enabled by a SUBSCRIPTRANGE
prefix for an interrupt to occur. If an
interrupt does occur, the on-unit causes a
transfer to ERR2, which establishes a new
on-unit for SUBSCRIPTRANGE interrupts,
overriding the action specified in the ON
statement in card 35. Any subsequent
subscript errors in this batch will,
therefore, cause control to go to BADBATCH,
which signals the CONVERSION condition as
it existed in the procedure DIST. Note
that on leaving INPUT, the on-action
reverts to that established in DIST, which
in this case calls SKIPBCH to get to the
next header card.

After establishment of a new on-unit, a
message is printed, and a new sample card
is read.

The statement labeled IN1 reads an
SO-column card image into the structure
SAMPLE. A READ statement does not cause
input data to be checked for validity, so
the CONVERSION condition cannot arise.

The statement IN2 checks and edits the
data in card columns 11 through 19
according to the picture format item~ A
non-numeric character (including blank) in
these columns will cause a conversion
interrupt, with the results discussed
above.

The next statement (card 41) has a
SUBSCRIPTRANGE prefix. The data just read
is used to calculate a double subscript.
If either subscript falls outside the
bounds declared for TABLE, an interrupt
occurs. If both fall outside the range,
two interrupts occur.

Chapter IS: Execution-time Facilities of the Checkout Compiler

Introduction

This chapter describes language features
which can provide various facilities to
help the pro~Jrammer at execution time.
These feattlrE~S are implemented by the PL/I
checkout cc>mpil,er only. If they are
included in a source program to be
processed by the PL/I optimizing compiler,
they are checked for cdrrect syntax and
then ignored; their presence in such a
program is not regarded as an error.

In ordel: t:hat the working time of both
the programmE~r and the computer shall be
used with thE~ maximum efficiency, it is
essential that program turnaround should be
as rapid as possible. The most important
way of achieving this, as far as the
programmer is concerned, is to reduce the
time he spend.s finding out how well his
program works, and to allow him to correct
any syntactic or logical errors with the
minimum delay. The PL/I checkout compiler
supports this aim by providing
execution-time facilities that:

1. Provide the programmer with
informat:ion about designated items.
This information comprises:

a. A trace of the items, that is,
information is put out whenever
these items are referenced in
pre-defined situations throughout
exec::ution.

b. A list showing the current status
of the designated items at any
specified pOint during execution.

The items to be traced or listed, and
the points at ,Which this output
occurs, are specified by statements in
the SOUJcce program. The pre-def ined
situations are specified in the
languclgl:! "

2. Allow the programmer to initiate the
trace d:k'namically.

3. Provide him with the opportunity, in
the appropriate processing
envir6nment, for amending his program.
The amendments apply only to the
current execution of the program, and
are not incorporated in the source
program,.

The extent to which these facilities are
applicable to a particular program depends
on the processing mode:

1. Batch processing:

The programmer does not control the
time at which execution begins, and
cannot intervene during execution to
initiate a trace or a current-status
list, or to modify his program. If a
trace or a current-status list is
required, the appropriate statements
must have been included in the source
program. output from these facilities
is not available until execution has
terminated.

2. Conversational processing:

The programmer initiates execution of
his program at the terminal and can
intervene during execution to initiate
a trace or a current-status list, or
to temporarily modify his program.
Statements to initiate a trace or
status-list can also be included in
the source program. Output from these
facilities is immediately available
and can be printed at the terminal.

If the SYSPRINT file is associated
with a device other than the
programmer's terminal, some of
SYSPRINT output will appear on both
devices. That part of the SYSPRINT
output which is not normally available
at the terminal can be copied onto it
by means of the appropriate terminal
instruction.

Conversational processing requires a
keyboard terminal as the input/output
device. This enables the programmer to:

1. Transmit and receive data at a rate
fast enough to allow him to maintain a
train of thought, and

2. Have control passed to him at the
terminal, or obtain it by calling
attention from the terminal.

processing at the terminal is performed
in immediate mode, that is, any instruction
entered can be executed immediately. If a
permitted PL/I statement or statement group
is entered, it can be translated and
interpreted (executed) immediately.

Chapter 15: Execution-time Facilities of the Checkout Compiler 211

PL/I includes statements and options
that support these facilities. These
provide:

1. Tracing facilities:

Information about designated items can
be written on the SYSPRINT file.

2. Current status list:

The current status of problem data or
program-control data can be written on
the SYSPRINT file.

3. Program amending:

Extra PL/I statements can be included
in the program during execution.
These are processed in immediate mode,
that is, they are entered at the
terminal and can be immediately
translated and interpreted. These
statements are not incor~orated
permanently in the source program.

Note the relationship of PL/I and the
processing mode:

1. Any statement in a PL/I source program
submitted for batch processing can
also be included in a source program
submitted for conversational
processing, and vice versa.

2. There are some language items that
have or can have a different usage in
batch processing from that in
conversational processing. They are:

212

a. GO TO statement: In batch
processing, confrol is transferred
to a statement identified by a
label.
In conversational processing,
control can be transferred to a
statement identified by either a
label or, in a GO TO statement
entered in immediate mode, a
number.

b. HALT statement: In batch
processing, this statement is a
null operation.
In conversational processing, this
statement causes execution of the
current task to be suspended and
control passed to the terminal_

c. ERROR condition: In batch
processing, if the ERROR condition
is raised, the standard system
action is to raise the FINISH
condition and terminate the task
or, if the condition is raised in
the major task, terminate the
program.

In conversational processing, if
the ERROR condition is raised, the
standard system action is to pass
control to the terminal.

d. FINISH condition: In batch
processing, the standard system
action in the absence of an
on-unit is simply to continue
processing from the point where
the interruption occurred.

In conversational processing, the
standard system action is to pass
control to the terminal.

3. There are a few PL/I statements that
cannot be used in immediate mode;
these are described in the section
"Program Amending," below.

Tracing Facilities

The tracing mechanism is activated by the
following statements:

Item or feature

Data
Transfer of control

Statements

CHECK/NOCHECK
FLOW/NOFLOW

CHECK and NOCHECK Statements

A CHECK statement provides, for every
statement that comes within its range,
dynamic enabling of the CHECK condition.
As a result, the standard system action for
the CHECK condition can be taken for these
statements; this action provides that
information is written, on the SYSPRINT
file, about the names specified or assumed
in the prefix whenever these names appear
in pre-defined situations during program
execution. If an on-unit has been
established for the CHECK condition the
on-unit is executed and standard system
action is not performed.

A CHECK statement can specify a list of
names. If it has such a list, the CHECK
condition is enabled for the specified
names only. If it does not have a list,
the CHECK condition is enabled for all the
names in the program.

A CHECK statement remains effective
until the program terminates or an
appropriate NOCHECK statement is executed.
The NOCHECK statement suppresses the CHECK
condition for specified or assumed names.
If no names are specified in a NOCHECK
statement, then the CHECK condition is

suppressed for all names in the program.
CHECK and NOCHECK statements executed in a
procedure c:ompiled by the checkout compiler
have no effect in any procedures compiled
by the optimizer that may form part of the
same program.,

The range of a CHECK or NOCHECK
condi tion stclteme.nt is:

1. In the external block that contains
the CHECK or NOCHECK statement: all
the statements executed after the
execution of the CHECK or NOCHECK
statement.

In this context, "contains" means that
the CHECK or NOCHECK statement is in
the external block or in a block
internal to the external block.

2. In an e~cternal, separately compiled
block invoked from a block to which
the CHECK or NOCHECK statement
applies: all references to names
associated with the inherited prefixes
if these names are known in both the
invokin~J and the invoked blocks.
Thus, when a name in the CHECK or
NOCHECK statement name list appears in
the invoked external procedure, it
will be within the range of the
statement only if it is declared in
both procedures to be EXTERNAL.

The names can be unsubscripted,
non-Iocator-qualified variables, label
constants, or entry constants.

The effect of the use of both CHECK and
NOCHECK statE~ments in a program is shown by
the following example:

CHECK O~,B,C,D);

NOCHECK (A,D);

CHECK (D,E);

NOCHECK (B,E);

The first CHECK statement establishes
the names A~ B, C, and D as members of the
name list.

The first NOCHECK statement deletes A
and D from this list; after this point, the
CHECK condition is raised for Band C onlye

The second CHECK statement restores D to
the name list and adds a new name E, to the
list. After this point, the CHECK
condition is raised for B, C, D, and E.

The second NOCHECK statement deletes B
and E from the name list. After this
point, the CHECK condition is raised for C
and D only.

The CHECK and NOCHECK statements
. effectively modify actual or inherited
CHECK or NOCHECK prefixes and add CHECK or
NOCHECK prefixes to currently unprefixed
statements. A statement inherits a prefix
either from an actual prefix to a PROCEDURE
or BEGIN block or from a
previously-executed CHECK or NOCHECK
statement; in both cases, the CHECK or
NOCHECK keyword effectively adds a
corresponding prefix to every statement
within its range. To determine the effect
of a CHECK or NOCHECK statement, carry out,
conceptually, the following steps.

1. When a CHECK statement without a
name-list is executed, delete all
actual or inherited CHECK and NO CHECK
prefixes within its range, then allow
every statement within its range to
inherit a CHECK prefix without a
name-list.

2. When a NOCHECK statement without a
name-list is executed, delete all
actual or inherited CHECK and NCCHECK
prefixes within its range.

3. When a CHECK or NOCHECK statement with
a name-list is executed, carry out the
following steps on all statements
within its range.

a. Delete from all actual or
inherited prefixes (both CHECK and
NOCHECK) all names that appear in
the CHECK or NCCHECK statement
name-list (except where the same
name appears in the statement and
the prefix but refers to a
different data item in each case).
In both cases, treat a prefix with
no name-list as having a name-list
that includes all known names.

b. If the statement is a CHECK add a
CHECK prefix having the same
name-list to every statement. If
the statement is a NOCHECK, add a
NOCHECK prefix having the same
name-list to every statement. In
both cases, exclude any names that
are not known at the statement
being prefixed. .

Note: Before carrying out (a), expand into
their element names any structure names in

Chapter 15: Execution-time Facilities of the Checkout Compiler 213

the CHECK or NOCHECK statement and in any
prefixes that may be modified.

The action of CHECK and NOCHECK
statements in combination with prefixes is
illustrated by the following examples.
They show how the effects of prefixes
written by the programmer are modified by
the execution of a CHECK or NOCHECK
statement.

Exampl-e 1:

CHECK; /. NAMES CHECKED FOR:

(CHECK(A»: ••• ; /. ALL
(CHECK(D,E»: ••.•• ;/. ALL
(NOCHECK(A»: •••• ;/. ALL
(NOCHECK): •••• ; /. ALL
(CHECK): •••• ; /. ALL

Example 2:

*/

./

./
*/
./
./

CHECK(A,B,C); /. NAMES CHECKED FOR:- */

.
(CHECK(A»: •••• ; /. A,B,C
(CHECK(D,E»: •••• ;/. A,B,C,D,E
(NOCHECK(A}): •••• ;/. A,B,C
(NOCHECK): •••• ; I. A,B,C
(CHECK): •••• ; /. ALL

Example 3:

NOCHECK(C,D); /. NAMES CHECKED FOR:

.
(CHECK(A»: •••• ; /. A
(CHECK(D,E»: •••• ;/. E
(NOCHECK(A»: ••• o;/* NONE
(NOCHECK): •••• ; /. NONE
(CHECK): •••• ; /* ALL EXCEPT C,D

./

The situations in which the CHECK
condition is raised are described in "CHECK
Condition" in section H, "ON-Conditions."
Some of them are illustrated in the figure
15.1.

The CHECK condition is raised when
AUTOMATIC, BASED, o~ CONTROLLED variables
are initialized by means of the INITIAL
attribute (with or without the CALL
option). If standard system action is
taken, CHECK output is produced as follows:

AUTOMATIC: Only if the CHECK statement has
been executed before the establishment
of the prologue for the block containing

214

the initialization. Thus in the example
given, CHECK output is never produced
for the variable C because, in the
example, no assignment is made to C.
Such output would be produced if, for
example, the CHECK statement was
executed in a block that contained the
~rocedure PR, or if the procedure PR was
invoked recursively. In the latter
instance, CHECK output would be produced
at the second and all succeeding
invocations.

BASED or CONTROLLED: When the variable is
allocated by means of an ALLOCATE or
LOCATE statement. CHECK is never raised
by the INITIAL attribute of a BASED
variatle that is never explicitly
allocated.

Note: The CHECK condition is never raised
for the initialization of STATIC variatles.

FLOW Statement

The FLOW statement causes information atout
the transfer of control during execution of
a task to be written on the SYSPRINT file.
When a FLOW statement has been executed, it
remains effective until the task terminates
or until a NOFLOW statement is executed in

I

the same task. The FLOW statement has no
effect outside procedures compiled by the
checkout compiler.

When a FLO'W statement has been executed
in a task, every transfer of control that
occurs subsequently in that task causes a
flow comment to be put out before the
transfer takes place. This comment
consists of:

1. The number of the statement that
causes the transfer of control.

2. The number of the statement to which
control is transferred.

The transfer of control can only be to a
point within the task that contains the
FLOW statement. If the FLOW statement is
in.a nested block, the point can be in any
containing block, including external
blocks. However, the FLOW statement cannot
be inherited across tasks; for example, if
task A, which contains a FLOW statement,
attaches a task (B) which does not contain
a FLOW statement, 'no flow comments are put
out during the execution of task B.

P:R: PRoe OPTIONS (MAIN) ;
DCL (A,B) DECIMAL(S),

C CHAR(10) INIT('DAILYRATES') AUTO,
C1 CHAR(2S) BASED(P),
D (1 0) LABEL,
GENTRY;

. ,
CHECR(A,B,C,Cl,D,F,P);

A=l;
B=2;
ALLOCATE C 1 ;

/*CHECR OUTPUT FOR A*/
/*CHECR OUTPUT FOR B*/
/*CHECR OUTPUT FOR p*/

D(l): READ FILE (X) INTO(C1); /*CHECR OUTPUT FOR D(l) AND Cl*/

E: GET DATA(A,B);

DISPLAY (C) REPLY(C1);

CALL F(A,B);

CALL Gi

F: PROC(Y,Z)i
DCL (Y,Z) DECIMAL(S)

Y=20;

END Fi
END PRJ

~:

. ,

/*CHECR OUTPUT FOR A AND B*/

/*CHECR OUTPUT FOR Cl*/

/*CHECR OUTPUT FOR F AT TIME OF CALL*/
/*CHECR OUTPUT FOR A, B ON RETURN

FROM F (EVEN IF VALUES OF Y, Z
NOT CHANGED IN F)*/

1. If the CHECR statement had been CHECR;,output
would have been as indicated with, in addition,
CHECR output for E, G, and Y.

2. If dummy arguments had been created for A and
B, no CHECR output would have been produced.

Figure 15.1. Example of use of CHECR statement

Chapter 15: Execution-time Facilities of the Checkout Compiler 215

While it is always clear why a
particular statement is specified in the
flow comment as the statement that caused
the transfer of control, it is not always
so obvious why control was transferred to
the statement given as the destination.

Consider the following program:

statement
number

3 FLOW;

12 ON CONVERSION GO TO L12:

24 GO TO L19;

35
36

42

57

65
66

117

124

L12:CALL ABS: ... ,

x = F(A,B):

L19:DO I = 1 TO 99:

END:
A = B**2:

ABS:PROC;

RETURN;

130 END ABS:

150 SIGNAL CONVERSION:

192

197
198

216

F:PROC(Y,Z) RETURNS(DECIMAL);

RETURN (M):
END F;

In this program, the statement numbers in
the flow comments produced by transfers of
control are shown in figure 15.2.

Statement numbers are derived from a
count of semicolons, for both simple and
compound statements. In the example above,

ON CONVERSION GO TO L12:

is counted as one statement.

NOFLOW Statement

The NOFLOW statement suppresses the action
of a FLOW statement executed earlier in the
same task.

Current Status List

Information about selected items in a
program can be put into the output stream
by means of a PUT statement with one of the
options LIST, DATA, SNAP, FLOW, or ALL.
This information can comprise names and
values of both problem-data and
program-control variables and details of
data relating to flow of control and ON
conditions. Note that only the PL/I
checkout compiler can provide all this
information. The PL/I optimizing compiler
can provide only the names and values of
problem-data variables, and the names of
program control variables.

The information provided by the options
specified in the PUT statement is
summarized in figure 15.3.

Details of the output provided by the
use of each of these options is given in
the sections below.

PUT Variables

The data list for the LIST and DATA options
can specify both problem and
program-control variables. Only problem
variables can be specified in an EDIT data
list. If DATA is specified without a data
list, the data is assumed to be all problem
and program-control variables known in the
block.

r----------------------T----------------------------T-----------------------------------, I Statement I Transferred from I Transferred to I
~----------------------+---------------------------.+-----------------------------------~ IGO TO in on-unit I 12 I 35 I
~----------------------+----------------------------+-----------------------------------~ I I I I
IGO TO I 24 I 57 I
~----------------------+----------------------------+-----------------------------------~ I CALL I 35 I 117 I
~------.---------------+----------------------------+-----------------------------------~ IFunction reference I 42 I 192 I
~---------.-------------+----------------------------+-----------------------------------~ I DO I 57 I When iteration is complete., I
I I Istatement number of statement I
I I I after matching END statement, I
I I Ithat is, 66 I
~-----.----,-------------+----------------------------+-----------------------------------~ lEND for iterative DO I 65 I 57 I
~---------,-------------+----------------------------+-----------------------------------~ IRETURN in I 124 I 35 I
I procedure! invoked I I I
I by CALL· I I I
~-----.----,-------------+----------------------------+-----------------------------------~ I END i:n pz'ocedure I 130 I 35 I
I invoked by CALL I I i
~-----.-----------------+----------------------------+-----------------------------------~ I SIGNAL , 150 I 12 I
~-----,----,-------------+----------------------------+-----------------------------------~ IRETURN in I 197 I 42 I
I prOCedu.rE! invoked I I I
I as function ref erence I I I L _____ . ____ • _____________ J. ____________________________ -" __________ • _________________________ J

Figure '15.2. Flow comments produced by various transfers of control

r-------'--·--------~~----.--------------.. -----T-----...... ---~----------... ~---------------------,
I opt:ion I Information I
~-------.--.--------------------------... -------+----------------.... --------------------------~
I (LIST] (data·list) I Variables I
I DATA (data-list)] I I
I EDIT (data-list) (format-list) I I
I (,Cdata-list)(format-list)]... I I
~---------.----------------------------------+---~ I SNAP IActive blocks and on-units I
~-------,--.----------------------------------+---~
I FLOW(n)] ILast n transfers of control I
~---------.----------------------------------+--------------------~----------------------~ I ALL(chalracter-string-expression)] I Variables, active blocks and on-units, I
I Itransfers of control, ON built-in functions I L _______ . __ • __________________________________ J. ___ J

Figure 15,.3. Program-item information provided by the PUT statement options

The information provided for the problem
variables specified or assumed depends on
the data-transmission option selected:

OptiOI! output

LIS'l~ Value

DATA Name of variable, and value

EDIT Value as specified

If a variable specified or assumed fora
PUT DATA statement is not initialized or is
not allocated, the checkout compiler

I includes a comment to this effect in the
output.

The information provided for a
program-control variable specified or
assumed in a PUT LIST or PUT DATA statement
depends on the variable. The name of the
variable is put out only if DATA (with or
without a data list) is specified. A
program-control variable does not have a
value in the sense that a problem variable
has one. Instead, the output for a
program-control variable comprises
information related to the current
situation of the variable. For exam~le,

Chapter 15: Execution-time Facilities of the Checkout Compiler 217

the output for a file variable states
whether the file is open or closed, and the
output for an event variable states whether
the event is active or inactive.

Under the optimizing compiler a PUT DATA
statement specifying a program control
variable will cause only the name of the
variable to be printed. A PUT LIST or PUT
EDIT statement must not specify program
control data under the optimizing com~iler.

The value output for each type of
program-control variable is:

AREA
Area size
Area extent
List of freed allocations within the

extent

ENTRY
Entry constant assigned to the variable

(if any)
If the entry constant is internal and is

in a procedure that is not the current
procedure:
Statement number
A list of the currently active

procedures invoked in the process of
activating the block containing the
entry constant. If the list of
active blocks cannot be produced,
because the entry variable no longer
has a valid value, a comment to this
effect is made.

Note: The above output is provided by a
PUT DATA statement specifying any
entry variable or a PUT LIST statement
specifying an entry variable that has
been declared as having a non-null
argument list. If a PUT LIST
statement specifies an entry variable
that has been declared as not
requiring an argument list, the entry
is invoked. In such a case, only PUT
DATA may be used to put out the value
of the entry variable.

EVENT
Description of the event:

Task or I/O event
Active or inactive
complete or incomplete
status

If the event is active:

218

Indication of whether task or I/O event
Absolute priority
If a task event:

Entry name specified in the CALL
statement that activated the event
variable

Statement number of this CALL
statement

If an I/O event
File name or 'DISPLAY'
Statement number of I/O statement

that activated the event variable
Statement numbers of the WAIT

statements associated with this
event

FILE (variable or constant)
If item is a variat1e:

File constant assigned to variatle
Whether the file is open or closed
If the file is open:

List of attributes other than the
ENVIRONMENT attritute

Number of records transmitted
If the file is a STREAM file:

Already-transmitted items in the
current record

LABEL
If variable has valid label constant

value
Label constant assigned to the variatle
Statement numter
If the label constant is in a procedure

that is not the current procedure:
A list of the currently active

procedures invoked in the process
of activating the block containing
the label constant. If the list of
active blocks cannot be produced,
tecause the label variable no
longer has a valid value, a comment
to this effect is made.

If label variable does not have a valid
value:

Comment to this effect

Note: Label variables can be initialized
without having constants assigned to
them. In the program:

DCL L(3) LABEL;

L(1): ••• :

L(1) has a value and can a~pear in a
GO TO statement: but it is not a latel
constant. In this case, the full
output for a label variable with a
label constant value is transmitted,
except for the latel constant value
itself.

OFFSET
Whether the offset has a null value
If the offset is not null and the long

form of the offset variable is used:
Name of the based variatle addressed by

the offset
Name of the area, and value (in bytes)

of the offset
Whether it is invalid: for example,

because the based variable previously
associated with it had been freed

If the offset is not null and the short
form of the offset is used:
The byte-address value of the offset

POINTER
Whether the pointer has a null value
If the pointer is not null and the long

form of pointer is used:
Name of the based variable addressed by

the pointe!.'
If the last value assigned to the pointer

is the value of an offset:
Name of the area, and value (in bytes)

of t~he offset1.
If the last usage of the pointer was in a

RE.AD ••• SET or a LOCATE statement:
NamE! of the file
Record number of the record with

which the pointer is associated
Name of based variable (if a LOCATE

st~atement)
whether it is invalid: for example,

because the based variable previously
associated with it has been freed

If the pointer is not null and the short
form of pointer is used:
The byte-address of the pointer

TASK
Description of the task:

Active or inactive
Absolute priority

If the task is active:
Entry name specified in the CALL

statement that activated the task
va:riable

statement number of this CALL statement

PUT SNAP Statement

The PUT statement with the SNAP option
causes the following data to be fut into
the stream:

1. The current statement number.

2. A list of the currently active blocks
and on-units invoked in the process of
acti v,ating the block in which the PUT
statement was executed. Routines
compiled by the optimizing compiler,
and FORTRAN and COBOL routines, are
included in the list.

1.Except that if the area is based or is an
element ()f an array of areas, the value of
the offset is not transmitted; and if the
area is an element of a based structure,
neither the offset nor the name of the area
is transmi1:.ted.

PUT FLOW Statemen~
{

The PUT statement with the FLOW option
causes a list of the last n transfers of
control to be put into the-stream. In each
transfer of control, the statements
involved are:

1. The statement that caused the transfer
of control.

2. The statement to which control is
transferred.

The rules for identifying these statements
are the same as for the FLOW statement.
The value of n is any value specified by
the programmer; it may be Sfecified in the
PUT FLOW statement or in the appropriate
compiler option. If there are conflicting
values for n in the PUT statement and the
compiler option, the smaller is used. If
no value is given in either place, then a
default of 25 is assumed.

Under the optimizing compiler, the syntax
of a PUT FLOW statement is checked, then it
is ignored. A PUT FLOW statement has no
effect outside procedures compiled by the
checkout compiler.

PUT ALL Statement

The PUT ALL statement provides the maximum
amount of debugging information obtainable
without a dump of main storage. Options
may be specified to select a part only of
the total information available.

The information transmitted by PUT AIL
with no options is as shown in figure 15.4.
The content of each item is as followS.

SNAP information: The information provided
by a PUT SNAP statement. In a
multitasking program, the chain of
invocation is followed back through
all attaching tasks to the main
procedure of the program.

FLOW information: The information provided
by a PUT FLOW statement_without a
number-of-statements option.

Condition built-in functions: Values of
the following built-in functions in
data-directed format.

DATAFIELD
ONCHAR
ONCODE
ONCOUNT
ONFILE
ONKEY
ONLOC
ONSOURCE

Chapter 15: Execution-time Facilities of the Checkout Compiler 219

This information is given for the
current task only, because the values
of the built-in functions are no
different in the contexts of other
tasks.

r---,
r---

1. Current
task

2.

3.

Highest
priority
task
(excl.
current
task)

Next
highest
priority
task
(excl.

1. SNAP information
2. FLOW information
3. Condition built-in

functions
4. current r---

5.

block 11. Entry name
12. Condition
I status
13. Variables L __ _

r---
Block 11.
that 12.
invoked I 3.
current L--­

block
r---

As for
current
block

6. Block I
that 11. As for
invoked I 2. current
'above 13. block
block I L __ _

etc, to initially­
invoked procedure of

Itask L __ _

r---
I
11·
12.
14.
15.
16 •
letc L __ _

r---
11·
12.
14 •
15.
16 •

As for current
task, with item
4 being the
latest block in
the chain of
invocation.

current letc

As for current
task, with item
4 being the
latest block in
the chain of
invocation.

task) I L __ _

letc., to lowest priority task L ___ J

Figure 15.4. Information transmitted by
PUT ALL statement

Entry name:
through
entered
This is
name in

220

The name of the entry point
which the procedure was
on its current invocation.
the same as the corresponding
the SNAP information.

Condition status: For each PL/I
on-condition:

Whether it is enabled.

variables: The value of every problem data
and program control variable and every
file constant declared in that tlock,
in data-directed format. Controlled
variables have every generation
transmitted, starting with the latest.
If a variable is uninitialized or
unallocated a comment is printed.

The options are specified as a character
string following the ALL option. The full
list of options is as follows.

PUT ALL (• DSF'CTo')

where n is a number 1 through 9999. Any or
all of the options may be specified
together.

When one or more of the options is
specified, SNAP and FLOW information is
given for each task for which other
information is transmitted, except that it
is always omitted for the current task.
The other information is transmitted if one
or more of the options D, S, F, or C is
specified. The information is given for
all tasks and blocks unless limited by one
or both of the options T and n.

The meaning of each option is as
follows.

D: Values of problem and program control
variables, as defined under "Variables"
above, are transmitted. Values of file
constants are not transmitted.

s: The same meaning as D, except that
array variatles are not transmitted.

F: Values of file constants are
transmitted.

C: Values of the condition built-in
functions and the condition status of
each block are transmitted.

T: L~mits the output to the current task.

n: Limits the output to this number of
blocks.

The options D and S conflict. There is
also a conflict if two or more numbers
corresponding "to two values of n' 'aJipear in
the string. In these cases, the option
specified latest in the string overrides
any earlier conflicting option.

Under the optimizing compiler, the syntax
of the PUT ALL statement is checked, then
it is ignored.

Program 1~mending

When procElssing in conversational mode, the
programmel~ can suspend program execution
and obta,in control at the terminal. He
does this by striking the appropriate key
a t the teI:minal. This raises the ATTENTION
condition, which causes processing to be
interrupted, and in the absence of an
ATTENTION on-unit, control to be passed to
the te,rmiIllal. If the interrupt takes place
within the scope of an ATTENTION on-unit,
control gC1es to the terminal upon normal
return from the on-unit.

The progra,mmer can then do one of the
following:

1.

2.

He can enter PL/I statements for
immed.iate execution. When these
statements have been processed, he can
cause program execution to be resumed
at any specified point.

He can enter PL/I statements for
execution at a specified point once
program execution has been resumed.
These statements are not executed
immediately they are entered, as in
the preceding situation, but are
stored for later use. Program
execution is resumed; when the
specified point in execution is
reached, then, without further action
by the programmer, program execution
is ag,ain suspended and the extra
statements are executed. ;rn order to
achieve this, the extra statements
must be preceded by an appropriate
termi:nal subcommand. This is an
instruction to the checkout compiler.
In this instance"the subcommand
specifies the point at which program
execu'tion will automatically be
suspelnded so that the extra statements
entered with it can be executed.

He <-:aln enter, by itself, one of a
numbe:!:' of terminal subcommands.

The sllb4commands provide various aids to
debugging that do not involve entering
extra statements.

I
Full de1tails of the terminal subconimands

and their usage are given in OS Time
Sharing (~:.ion: PL/I Checkout Compiler.

The extra PL/I statements are always
executed in immediate mode; this applies
whether they are inser~ed while the
programmer has control at the terminal or
whether he has used a terminal command to
cause them to be inserted at a specified
point once program execution has been
resumed. A reference in these statements
toa name must be to a name known in the
current block or known in'a specified
external procedure. An immediate-mode
statement cannot alter an existing
declaration, nor can a new declaration be
introduced. Similarly, the block structure
cannot be altered, by, for example, the
creation of a new block.

The restrictions imposed on PL/I
statements used in immediate mode are:

1.

2.

3.

4.

The following statements cannot be
used in immediate-mode:

BEGIN

DECLARE

DEFAULT

ENTRY

FETCH2.,

FORMAT

ON

PROCEDURE

RELEASE1.

If an immediate-mode statement refers
to a name that is not known in the
block, the name is given the BUILTIN
attribute.

An unmatched END statement cannot be
used..

Statements cannot be labeled or have
condition prefixes.

~Except that if the original source program
contains FETCH or RELEASE statements, FETCH
and RELEASE are valid in immediate mode if
they specify procedures specified in the
original program statements.

Chapter 15: Execution-time Facilities of the Checkout Compiler 221

Chapter 16: Compile-time Facilities

Introduction

Compile time is generally defined as that
time during which a user's source program
is compiled, or translated, into an
executable object program. Ordinarily,
changes to a source program may not be made
at this time.

However, with PL/I, the programmer does
have some control over his source program
du.ring compile time. His source program
can contain special statements (identified
by a leading %) that can cause parts of the
source program to be altered in various
ways:

1. Any identifier appearing in the source
program can be changed.

2. If conditional compilation is desired,
the programmer can indicate which
sections of his program are to be
compiled.

3. Strings of text residing in a user
library or a system library can be
incorporated into the source program.

PL/I makes source program alteration at
compile time possible by providing two
stages:

1. The Preprocessor Stage -- During this
stage, the user's source program is
scanned for Qreprocessor statements,
special statements that cause the
preprocessor to alter the text being
scanned. These statements are
considered part of the source program,
and appear freely intermixed with the
statements and other text of the
source program. The altered source
program, resulting from the action of
the preprocessor statements, then
serves as input to the second stage.
Note that the preprocessor stage is
optional.

2. The Processor Stage -- During this
stage, the output from the first stage
is compiled into an executable object
program.

This chapter is concerned with the first
stage; the actual compilation of a program
is not discussed.

In addition to the preprocessor
statements, the programmer has at his
disposal listing control statements which

222

I
allow him to control ·the layout of the
printed listing of his program. These do
not employ the preprocessor stage.

Preprocessor Input and Output

The preprocessor interprets preprocessor
statements and acts upon the source program
accordingly. Input to the preprocessor is
a sequence of characters that is the user's
source program. It contains preprocessor
statements freely intermixed with the rest
of the user's source program. Preprocessor
statements are identified by a leading
percent symtol (%) and are executed as
they are encountered by the preprocessor
(with the exception of preprocessor
procedures, which must be invoked in order
to te executed). One or more blanks may
separate the percent symbol from the
statement.

In addition to interpreting the
preprocessor statements, the preprocessor
checks the source program for unmatched
delimiters on comments and character-string
constants. It also checks non-preprocessor
statements for invalid characters, and
replaces them with blanks. This is the
only checking done at this stage on
non-preprocessor statements.

Output from the preprocessor consists of
a string of characters called the
preprocessed text, which consists of the
altered source program and which serves as
input to the processor stage.

The programmer can specify compiler
options that cause the input to, and the
output from, the preprocessor to be
printed. The listing of the input to the
preprocessor, which represents the program
as coded by the programmer, is known as the
insource listing, and the listing of the
input to the compiler - the preprocessed
text if the preprocessor is used - is known
as the source listing.

PREPROCESSOR SCAN

The preprocessor starts its scan of the
input text at the beginning of the string
and scans each character sequentially. As
long as a preprocessor statement is not
encountered, the characters are placed into

the preprocessed text in the same order and
general fox'm in which they were scanned.
However, when a preprocessor statement is
encountered, it is executed. This
execution can cause the scanning of the
source pz'ogrzam and the subsequent formation
of preprocessed text to be altered in
either of two ways:

1. The ell:ecuted statement may cause the
preprocessor to continue the scan from
a different point in the program.
This new point may very well be one
that has already been scanned.

2. The executed statement may initiate
replacement activity. That is, it may
cause an identifier not appearing in a
preprocessor statement to be replaced
when that identifier is subsequently
encountered in the scan. The
repla(:ement value will then be written
into the preprocessed text in place of
the old identifier (see "Rescanning
and RE!placement" below for details).

The scan is terminated when an attempt
is made to scan beyond the last character
in the source program. The preprocessed
text is completed and the second stage of
compilation can then begin.

Rescannir:~ and Replacement

For an identifier to be replaced by a new
value, the identifier must first be
activateq jEor replacement. Initially, an
identifier is activated by its appearance
in a preprocessor DECLARE statement (i.e.,
a % DECLAR1!: statement). (It can be
deactivated by appearing in a % DEACTIVATE
statement and it can be reactivated by
appearin9 in a % ACTIVATE statement.)
After it has been activated initially, it
must be 9i'i7en a replacement value. This is
usually don.e via the execution of a
preprocessor assignment statement. Once an
identifiE!r has been activated and been
given a value, any occtirrence of that
identifier in text other than preprocessor
statement.s is replaced by that value,
provided that the identifier is still
active when it is encountered by the scan.
Preprocessor variables can be activated
with either the RES CAN or the NOREsCAN
options. If the NOREsCAN option applies,
the valUE3 is immediately inserted into the
program t.e:lCt. If the REsCAN option
applies, a rescan is made during which the
value is tested to determine whether it, or
any part of it, should be replaced by
another value. If it cannot be replaced,
it is inserted into the preprocessed text;

if it can be replaced, replacement activity
continues until no further replacements can
be made. Thus, insertion of a value into
preprocessed text takes place only after
all possible replacements have been made.
Note that the deactivation of an identifier
causes it to lose its replacement
capability but not its value. Hence, the
subsequent reactivation of such an
identifier need not be accompanied by the
assignment of a replacement value.

For example, if the source program
contained the following sequence of
statements:

%DECLARE A CHARACTER, B FIXED;
%A='B+C';
%B = 2:
X = A;

then the following would be inserted into
the preprocessed text in place of the above
sequence:

X = 2+C;

In this example, the first statement is
a preprocessor DECLARE statement that
activates A and B and also activates them
as preprocessor variables with the default
REsCAN. The second and third statements
are preprocessor assignment statements; the
second assigns the character string 'B+C'
to A, and the third assigns the constant 2
to B. The fourth statement is a
nonpreprocessor statement· and, therefore,
is not executed at this stage. However,
because this statement contains A, and A is
a preprocessor variable that has been
activated for replacement, the current
value of A will replace it in that
statement. Thus, the string 'B+C~ replaces
A in the statement. But this string
contains the preprocessor variable B. Upon
checking B, the preprocessor finds that it
has been activated and that it has teen
assigned a value of 2. Hence, the value 2
replaces B in the string. Further checking
shows that 2 cannot be replaced; scanning
resumes with +C which, again, cannot be
replaced. Thus, the chain of replacements
comes to an end and the resulting statement
is inserted into the preprocessed text.

~For the purpose of this discussion, a
nonpreprocessor statement is any statement
or sequence of text that appears in the
source program but is not contained in a
preprocessor statement, nor in a
preprocessor procedure, nor in a comment.

Chapter 16: Compile-Time Facilities 223

If, in the above example" the
preprocessor variable A has been activated
by this statement:

~ACTIVATE A NORESCAN;

the statement inserted into the text would
be:

x = B + C;

since the NORESCAN option for preprocessor
variable A suppresses the res canning of the
result 'B+C' substituted for A.

Note that the preprocessor variable B
has a default precision of (5,0) and,
therefore, actually contains 2 preceded by
four zeros. When this value replaces B in
the string 'B+C' it is converted to a
character string and becomes 2 preceded by
seven blanks (the rules for conversion of
decimal fixed-point values to character
string are followed). See the section
"Preprocessor Expressions" in this chapter,
for details.

Replacement values must not contain
percent symbols, unmatched quotation marks,
or unmatched comment delimiters.

The following example illustrates how
compile-time facilities can be used to
speed up the execution of a DO-loop.

A programmer might include the following
loop in his program:

DO 1=1 TO 10;
Z(I)=X(I)+Y(I);
END;

The following sequence would accomplish the
same thing, but without the requirements of
incrementing and testing during execution
of the compiled program:

~DECLARE I FIXED;
11=1 ;
~LAB: ;
Z(I)=X(I)+Y(I);
11=1+1;
IIF 1<=10 ITBEN IGO TO LAB:
IDEACTIVATE I;

The first statement activates I and
establishes it as a preprocessor variable.
The second statement assigns the value 1 to
I. This means that subsequent encounters
of the identifier I in non-preprocessor
statements will be replaced by 1 (provided
that I remains activated). The third
statement is a preprocessor null statement
that is used as the transfer target for the
preprocessor GO TO statement appearing
later.

224

The fourth statement, not being a
preprocessor statement, is only scanned for
replacement activity; it is not executed.
The first time that this statement is
scanned, I has the value 1 and has been
activated. Therefore, each occurrence of I
in this statement is replaced by 1 and the
following is inserted into the preprocessed
text being formed:

Z(1) =X (1)+Y(

Note that each 1 is preceded by seven
blanks.

The fifth statement increments the value
of I by 1 and the sixth statement, a
preprocessor IF statement:, tests the value
of I. If I is not greater than 10, the
scan is resumed at the statement labeled
LAB: otherwise, the scan continues with the
text immediately following the %GO TO
statement. Hence,· for each increment of I,
up to and including 10, the aSSignment
statement is rescanned and each occurrence
of I is replaced by its current value. As
a result, the following statements are
inserted into the preprocessed text:

Z(

Z(

Z(

1) =X (

2)=X(

10)=X(

1) +Y (1>:

2)+Y(2) :

10)+Y(10) ;

AS before, each number from 1 through 9
is preceded by seven blanks: the number 10
is preceded by six blanks.

When the value of I reaches 11, control
falls through to the %DEACTIVATE statement.
This statement is interpreted as follows:
subsequent encounters of the identifier I
in source program text are not to be
replaced by the value 11 in the
preprocessed text being formed: each I will
be left unmodified, either for the
remainder of the scan or at least until I
is reactivated by a %ACTIVATE statement.
If I is again activated, it will still have
the value 11 (unless an intervening
preprocessor assignment statement has
established a new value for I).

Preprocessor Variables

A preprocessor variable is an identifier
that has been specified in a %DECLARE
statement with either the FIXED or
CHARACTER attribute. No other attributes

IC$n be declared for a preprocessor
variable. Other attributes are supplied by
the cOmPilej(however. A preprocessor

c.J

I

variable declared with the FIXED attribute
is also given the attributes DECIMAL and
precision (5,0); a CHARACTER preprocessor
variable is given the VARYING attribute
with no maximum length. No contextual or
implicit declaration of identifiers is
allowed in preprocessor statements.

The scope of a preprocessor variable
encompasses all text except those
preprocessor procedures that have
redeclared that variable. The scope of a
preprocessor variable that has been
declared in a preprocessor procedure is the
entire procedure (there is no nesting of
preprocessor procedures).

When a preprocessor variable has been
given a value, that value replaces all
occurrences of the corresponding identifier
in text other than preprocessor statements
during tha time that the variable is
active. If the preprocessor variable is
inactive, replacement activity cannot occur
for the corr~sponding identifier.

A prep:rocessor variable is activated by
its appea:rance in the %DECLARE statement.
It can be deactivated and subsequently
reacti vatled by its appearance in
%DEACTIVATE and %ACTIVATE statements,
respectively. Deactivation of a
preprocessor variable does not strip it of
its value; in other words, an inactive
preprocessor variable retains the value it
had while it was active and can be altered
by a preprocessor statement or procedure if
so desired.

Preprocessor Expressions

Preprocessor expressions are written and
evaluated in the same way as source program
expressions, with the following exceptions:

1. The operands of a preprocessor
expression can consist only of
preprocessor variables, references to
preprocessor procedures, decimal
integer constants, bit-string
constants, character-string constants,
and references to the built-in
functions SUBSTR, INDEX, and LENGTH.
Repetition factors are not allowed
with the string constants and the
arguments to a built-in function
reference must be preprocessor
expressions.

2. The E~xfonentiation symbol (**) cannot
be used as an arithmetic operator.

3. For arithmetic operations, only
decimal integer arithmetic of
precision (5,0) is performed; that is,

each operand is converted to a decimal
fixed-point value of precision (5,0)
before the operation is performed, and
the decimal fixed-point result is
converted to preciSion (5,0) also.
Any character string being converted
to an arithmetic value must be in the
form of an optionally signed decimal
integer constant. Note that the
properties of the division operator
are affected. For example, the
expression 3/5 evaluates to 0, rather
than to 0.6.

4. The conversion of a fixed-point
decimal number to a character string
always results in a string of length
8. (Leading zeros in the number are
replaced by blanks and an additional
three clanks are appended to the left
end of the number, one of which is
replaced by a minus sign if the number
is negative.)

A character string in an expression
being assigned to a preprocessor variable
may include preprocessor variables,
references to preprocessor procedures,
constants, and operators; preprocessor
statements cannot be included in such
strings.

Preprocessor Procedures

A preprocessor procedure is an internal
function procedure that can be executed
only at the preprocessor stage. Its syntax
differs from other function procedures in
that its PROCEDURE and END statements must
each have a leading percent symbol. The
format of a preprocessor procedure is as
follows:

%label: [label:]... PROCEDURE
[(identifier
[, identifier] •••)]
RETURNS{(CHARACTERIFIXED)};

[lacel:] ••• RETURN
(preprocessor-expression);

" [label:] END [label];

More than one RETURN statement may
appear. The general rules governing the
statements that can appear within a
preprocessor procedure are given in the
description of the %PROCEDURE statement in
section J, "Statements". One thing should
be noted, however: no statement appearing

Chapter 16: Compile-Time Facilities 225

within a preprocessor procedure can have a
leading percent symbol.

INVOCATION OF PREPROCESSOR PROCEDURES

A preprocessor procedure is invoked by a
function reference in the usual sense:
i.e., by the appearance of the entry name
and its associated argument list (if any)
in an expression. The function reference
can appear in a preprocessor statement or
in a nonpreprocessor statement.

A condition must be met if the reference
to the preprocessor procedure is made in a
nonpreprocessor statement: the entry name
used in the reference must be active at the
time the reference is encountered. Entry
names of preprocessor functions are the
same as preprocessor variables as far as
activation and deactivation is concerned;
i.e., they can be activated initially by a
%DECLARE statement or by a %ACTIVATE .
statement.

I Provided its entry name is active, a
preprocessor procedure need not be scanned
before it is invoked. It must, however, be
either present in the main text, or in
included text (by a %INCLUDE statement) at
the point of invocation. Preprocessor
procedure entry names need not be specified
in %DECLARE statements.

The value returned by a preprocessor
function (i.e., the value of the
preprocessor expression in the RETURN
statement) always replaces the function
reference and its associated argument list.
Note that for a reference made in a
preprocessor statement, the replacement is
only for that particular execution of the
statement: a subsequent scanning of the
statement would again result in the
invocation of the function.

ARGUMENTS AND PARAMETERS FOR PREPROCESSOR
FUNCTIONS

The number of arguments in the procedure
reference and the number of parameters in
the %PROCEDURE statement need not be the
same. The arguments are interpreted
according to the type'of statement
(preprocessor or nonpreprocessor) in which
the function reference appears. The
arguments in the argument list are
evaluated before any match is made with the
parameter list. If there are more
arguments than parameters, the excess
arguments on the right are ignored. (Note
that for a function reference argument, the

226

function is invoked and executed, even if
the argument is ignored later.) If there
are fewer arguments than parameters, the
excess parameters on the right are given
values of zero, for FIXED parameters, or
the null string, for CHARACTER parameters.
the usual rules concerning the creation of
dummy arguments apply if the function
reference is in a preprocessor statement,
but dummy arguments are always created if
the function reference occurs in a
nonpreprocessor statement.

If the function reference appears in a
nonpreprocessor statement, the arguments
are interpreted as character strings and
are delimited by the appearance of a comma
or a right parenthesis occurring outside of
balanced parentheses. For example, the
argument list (A(B,C)"D) has two arguments,
namely, the string A(B,C) and the string D.
Each argument is then scanned for possible
~eplacement activity. Both the procedure
~ame and its argument list must be found at
one replacement level. Thus, only the
commas and parentheses seen in the text
being scanned when the procedure name is
encountered are considered in this context.
After all replacements have been made, each
resulting argument is converted to the type
indicated by the corresponding parameter
attribute in the preprocessor procedure
statement for the function entry name.

If the function reference appears in a
preprocessor statement, the arguments are
~ssociated with the parameters in the
normal fashion. If there is a
disagreement, the arguments are converted
to the attrib~tes of the corresponding
parameters. Only preprocessor variables,
character- string constants, and
fixed-point decimal constants can be passed
to a preprocessor function invoked by a
preprocessor statement.

Returned Value

The value returned by a preprocessor
function to the point of invocation is
represented by the preprocessor expression
in the RETURN statement of that function.
Before being returned, this value is
converted (if necessary) to the attribute
(CHARACTER or FIXED) specified in the
RETURNS option of the function's ~PROCEDURE
statement. If the point of invocation is
in a nonpreprocessor statement, and the
entry name has not been activated with the
NORESCAN option, the value is scanned, for
replacement activity after it has replaced
the function reference.

Note that the rules for preprocessor
expressions do not permit the value

returned by a preprocessor procedure to
contain preprocessor statements.

Example of ~reprocessor Functions

In the sta.tements below, VALUE is a
preprocessor function procedure that

I returns a character string of the form
'arg1(arg2)', where arg1 and arg2 represent
the arguments that have been passed to the
function.

Assume that the source program contains
the following sequence:

%DECLAR.E A CHARACTER;
DECLARE (Z(10), Q) FIXED;
%A='Z';
~VALUE: PROCEDURE (ARG1,ARG2) RETURNS

(CHARACTER) ;
DECLARE ARG1 CHARACTER,

ARG2 FIXED;
RETURN(ARG1tl' ('IIARG211')');
%END VALUE;

Q = 6+VALUE(A,3);

When the scan encounters the last
statement, A is active and is thus eligible
for replacement. Since VALUE is also
active, the reference to it in the last
statement causes the preprocessor to invoke
the preprocessor function procedure of that
name. However, before the arguments A and
3 are passed to VALUE, A is replaced by its
value Z (assigned to A in a previous
assignment statement), and 3 is converted
to fixed-point to conform to the attribute
of its cor.responding parameter. VALUE then
performs a concatenation of these arguments
and the parentheses and returns the
concatenated value, that is, the string Z
(3), to the point of invocation. The
returned value replaces the function
reference and the result is inserted into
the preprocessed text. Thus, the
preprocessed text generated by the above
sequence is as follows:

DECLARE (Z(10),Q) FIXED;
Q = 6+Z(33):

The preprocessor function procedure GEN
defined in the following example can
generate a GENERIC declaration for up to 99
entry names with up to 99 parameter
descriptors in the parameter descriptor
lists. Only four are generated in this
example, however.

Assume ·that the source program contains
the following sequence:

DCL A GEN (A,2,S,FIXED), ••• :

%GEN: PROC (NAME, LOW, HIGH,ATTR)
RETURNS (CHAR):

DCL (NAME, SUFFIX, ATTR" STRING)
CHAR, (LOW, HIGH, I, J) FIXED;

STRING=~GENERIC(';
DO I=LOW TO HIGH; /* ENTRY NAME

LOOP */
IF 1>9

THEN SUFFIX=SUBSTR(I, 7, 2);
/* 2 DIGIT SUFFIX*/

ELSE SUFFIX=SUBSTR(I, 8, 1);
/*1 DIGIT SUFFIX*/

STRING=STRINGI I NAME I I SUFFIX I I
, WHEN (';

DO J=1 TO I; /* DESCRIPTOR
LIST*/
STRING=STRINGIIATTR:
IF J<I /* ATTRIBUTE

END:

SEPARATOR */
THEN STRING=STRINGII',';
ELSE STRING=STRINGII')':
/* LIST SEPARATOR */

IF I<HIGH /* ENTRY NAME

END:

SEPARATOR*/
THEN STRING=STRINGII',':
ELSE STRING=STRINGII')':
/* END OP LIST */

RETURN (STRING):
% END;'

The following text is produced by this
preprocessor procedure:

DCL A GENERIC(A2 WHEN (FIXED,FIXED),
A3 WHEN (FIXED, FIXED,

FIXED),
A4 WHEN (FIXED, FIXED,

FIXED, FIXED),
AS WHEN (FIXED, FIXED,

FIXED, FIXED~ FIXED»;

Use of the SUBSTR, LENGTH, and INDEX
Built-in Functions

A reference to SUaSTR, LENGTH, or INDEX in
a nonpreprocessor statement is executed by
the preprocessor only if these names are
active. These built-in functions can be
activated only by a %DECLARE or %ACTIVATE
statement. If any of the identifiers
SUBSTR, LENGTH, and INDEX appear in
prefixes to ~PROCEDURE statements, it is
assumed that references are to be to
user-defined preprocessor procedures of
that name. In such cases the identifiers
SUBSTR, LENGTH, and INDEX may be
re-declared with the BUILTIN attribute when
the built-in functions are to be used
within a preprocessor procedure.

Chapter 16: Compile-Time Facilities 227

The built-in functions behave in the
same way as user preprocessor functions
when encountered in source text or in
preprocessor statements.

The first argument of SUBSTR, LENGTH and
INDEX is, if necessary, converted to
character; the second and third arguments
of SUBSTR are, if necessary, converted to
decimal; and the second argument of INDEX
is, if necessary, converted to character.

I The returned value is CHARACTER for SUBSTR,
and FIXED for LENGTH or INDEX.

Preprocessor DO-group

The preprocessor DO-group can provide
iterative execution of the preprocessor
statements contained within the group. The
format of the preprocessor DO-group is as
follows:

%[label:l ••• DO[i=m1[BTOy m2[BY m311];
m3 [TO m21J

%[label:l ••• END[labell;

In the above format, i must be a
preprocessor variable and m1, m2, and m3
must be preprocessor expressions. The-­
label that can follow the keyword END must
be one of the labels preceding the keyword
DO. Preprocessor DO-groups may be nested
and multiple closure is allowed.

Control cannot be transferred into a
preprocessor DO-group specifying iteration,
except by way of a return from a
preprocessor procedure invoked from within
the group.

Both preprocessor statements and text
other than preprocessor statements can
appear within a preprocessor DO-group.
However, only the preprocessor statements
are executed; nonpreprocessor statements
are scanned but only for Fossible
replacement activity.

Noniterative preprocessor DO-groups are
useful as THEN or ELSE clauses of %IF
statements.

The expansion of a preprocessor DO-group
is similar to that shown under the
nonpreprocessor DO statement section J,
"Statements".

The example below results in the same
expansion generated for the example of
preprocessor loop expansion in the section

228

~Rescanning and Replacement" in this
chapter:

%DECLARE I FIXED;
%DO 1=1 TO 10;
Z(I)=X(I)+Y(I);
%END;
~DEACTIVATE Ii

The second example under "Returned
Value" shows how preprocessor DO-groups can
ce used within a preprocessor procedure
(percent symbols must be omitted, of
course).

INCLUSION OF EXTERNAL TEXT

strings of external text can be
incorporated into the source program at the
preprocessor stage by use of the %INCLUDE
statement. Such text, once incorporated,
as called included text and may consist of
both preprocessor and nonpreprocessor
statements. Hence, included text can
contribute to the preprocessed text being
formed.

If the included text contains any
preprocessor declarations, the scope of the
names declared as preprocessor variables is
all the included text and any text which
follows the included text, except
preprocessor procedures in which the name
~s redeclared.

The general format and the rules
governing the use of the %INCLUDE statement
are presented in section J, "Statements".

The text specified by a ~INCLUDE
statement is incorporated into the source
program immediately after the point at
which the statement is executed. The scan
therefore continues with the first
'character in the included text. All
preprocessor statements in this text are
executed and replacements are made where
required.

Preprocessor procedures whose
declarations appear in external text can be
~nvoked only after that external text
:becomes included text. The result of a
'preprocessor procedure reference
'encountered before that procedure has been
;incorporated into the source program is
undefined.

Assume ,that PAYRL is a member of the
data set SYSLIB and contains the following
structure declaration:

DECLARE, 1 PAYROLL,
2 NA,ME,

3 LAST CHARACTER (30) VARYING,
3 FIRST CHARACTER (15) VARYING,
3 MIDDLE CHARACTER (3) VARYING,

2 MA.N NO,
3 REGLR FIXED DECIMAL (8,2),
3 OVERTIM FIXED DECIMAL (8,2),

2 RA,TE,
3 REGLAR FIXED DECIMAL (8,2),
3 OVERTIME FIXED DECIMAL (8,2);

Then the following sequence of
preprocessor statements:

~DECLARE PAYROLL CHARACTER;
~PAYROI,L=' CUM PAY';
~INCLUDE PAYRL;
%DEACTJ:VATE PAYROLL;
%INCLUDE PAYRLi

will generat;e two identical structure
declarations into the preprocessed text,
the only difference being their names,
CUM PAY and PAYROLL. Execution of the
first %INCLUDE statement causes the text in
PAYRL to be incorporated into the source
program. When the scan encounters the
identifier PAYROLL in this included text,
it replaces it by the current value of the
acti ve prepl:ocessor variable PAYROLL,
namely, CUM_.PAY. Further scanning of the
included text results in no additional
replacementsi. The scan then encounters the
%DEACTIVATE statement. Execution of this
statement dE!activates the preprocessor
variable PAYROLL and makes the identifier
ineligible for replacement. When the
second %INCLUDE statement is executed~ the
text in PAYHL once again is incorporated
into the source program. This time,
however, scanning of the included text
resul ts in no replacements whatsoever"
because none of the identifiers in the
included teJct are active. Thus, two
structure dE!clarations, differing in name
only~ are inserted into preprocessed text.

PreproceSS(l,r Statements

This section lists those statements that
can be used at the preprocessor stage and
briefly discusses those preprocessor
statements that ha~e not yet been explained
in this chapter. All of the preprocessor
statements, their formats, and the rules
governing their use are described in the
sub-section "Preprocessor Statements" in
section J, ~Statements".

But first, some unrelated comments
pertaining to preprocessor statements in
general should be made:

1. Some keywords appearing in
preprocessor statements can be
abbreviated as shown in section C,
"Keywords and Abbreviations".

2. Comments can appear within
preprocessor statements wherever
blanks can appear; however, such
comments are never inserted into
preprocessed text.

3. All preprocessor statements can be
labeled. Such labels must appear
immediately following the % (only
blanks can intervene). All labels
must be unsubscripted statement latel
constants. (Labels on %DECLARE
statements are ignored.)

The functions performed by the following
preprocessor statements have already been
discussed in this chapter:

%ACTIVATE
%DEACTIVATE
%DECLARE
"DO
%END
%INCLUDE
%PROCEDURE
RETURN

Note that the preprocessor RETURN
statement cannot have a leading % because
it can be used only within a preprocessor
procedure, and all percent symbols must be
omitted therein.

Four other statements can be executed at
the preprocessor stage:

%assignment
%GO TO
%IF
%null

The preprocessor assignment statement is
used to evaluate preprocessor expressions
and to assign the result to a preprocessor
variable. All of the examples shown in
this section make use of this statement.

The % GO TO statement causes the
preprocessor to interrupt its sequential
scanning and continue it elsewhere in the
source program, specifically at the label
specified in the % GO TO. Thus, it can be
useful for rescanning or avoiding text.

The % IF statement can be used to
control the sequence of the scan according
to the value of a preprocessor expression.
It must have a THEN clause and it can have
an ELSE clause. Each clause, as well as

Chapter 16: Compile-Time Facilities 229

each preprocessor statement within the
clause, must be preceded by a %. Nesting
of IIF statements is allowed and must
follow the same rules that apply for the
nesting of nonpreprocessor IF statements.

The preprocessor null statement is the
same as a nonpreprocessor null statement
(except for the %). It can be used to
provide transfer targets for %GO TO
statements or it can be used in nested %IF
statements to balance the %ELSE clauses.
For example, %ELSEI; is a null ELSE clause.

Listing Control Statements

There are three statements that give the
programmer control over the layout of his
printed listing:

%SKIP [(n)] ;
%PAGE;
%CONTROL(FORMATINOFORMAT);

%SKIP specifies that a number of lines in
the listing are to be skipped, and IPAGE
specifies that the listing is to be
continued on the following page. %CONTROL
activates and de-activates the FORMAT
option of the checkout compiler.

Although the statements have the initial
% sign, they do not necessitate the use of
the preprocessor. If the preprocessor is
used, however, the %PAGE and %SKIP
statements are applied to both the insource
listing (the input to the preprocessor) and
the source listing (the preprocessed text).
The %CONTROL statement applies only to the
formatted listing produced by the checkout
compiler.

Application of the statement %SKIP(n):
to either the insource listing or the
source listing cause n blank lines to be
inserted before the next line in the
listing. The statement %SKIP; is
equivalent to %SKIP(1);.

The statement %PAGE; causes the next
line of text in the listing to be printed
on the first line of the next page. There
are no options that can be specified in a
%PAGE statement.

230

The %CONTROL statement is executed with
,one of the options FORMAT and NOFORMAT.
When FORMAT is specified as a compiler
option" a %CONTROL (NOFORMAT) statement
suspends the compiler option's formatting
action. A sutsequent %CONTROL(FORMAT)
'statement restores the formatting action.
,The %CONTROL statement has no effect when
,the FORMAT compiler option is not
specified.

After being put into effect" a %SKIP or
%PAGE statement is not printed by the
preprocessor and is deleted from the text
by the compiler; it does not appear in the
formatted listing. %CONTROL statements do
not appear in formatted listings.

To cause formatting of the listing, the
listing control statement must be on a line
9f text with no other statements.

When the preprocessor is used~ a %SKIP~
%PAGE, or %CONTROL statement with text
other than comments on the same line is
moved by the preprocessor onto a line of
its own, so that it is put into effect when
the compiler listing is printed. Hence the
preprocessor listing will be exactly as
coded, but the source listing will have
line or page skips in accordance with any
IPAGE and %SKIP statements, and the FORMAT
compiler option will be put in effect or
pot in accordance with any %CONTROL
statements.

When the preprocessor is used, a keyword
or other identifier split accross the end
of a line that contains a %PAGE or %SKIP
has its two parts concatenated to form a
complete identifier in the source listing.
If the deletion of the %SKIP or %PAGE
~tatement provides sufficient space, the
complete word appears on the same line as
the first part; otherwise it is used to
start a new line.

If n in a %SKIP(n); statement is greater
~han the number of lines remaining on the
page" the equivalent of a %PAGE; statement
is executed in its place.

The effects of the %SKIP and %PAGE
statements in various situations are shown
in figure 16.1.

r----------·------------------T-----------------------------T----------------------------, I Prog~cammer' s I Insource Listing .Q! Source I Source Listing after I
, Code , Listing without Preprocessor, Preprocessing I
~----------.------------------+-----------------------------+----------~-----------------~ I A=B; I A=B; I A=B; I
I ~SKI]?(2);, , I
I C=D;, I I
, I C=D;. ,C=D ; I
~--------------------~-------+-----------------------------+----------------------------~ I X=2; %SKIP(l); I X=2; %SKIP(l); I X=2; I
I Y=O; ,Y=O; , I
I I I Y=O; I
.---------_._-----------------+-----------------------------+----------------------------~ I B1=·1'B; 'B1=~1'B; ,B1='1'B; I
I ~SKIP;B2='O'B; I ~SKIP;B2='O'B; I I
I I 'B2='O~B; I
~~----~----------------------+-----------------------------+----------------------------i , P=O;~ •• %SKIP(l);SIG' P=O; ••• %SKIP(l);SIG ,P=O;... I
I NAL CONVERSION; , NAL CONVERSION; I I
I (G of SIGNAL in , I SIGNAL I
, last posn. in line) , ,CONVERSION; I
.----------------------------+-----------------------------+----------------------------i ,RES=SQRT(X); I DCL Z FLOAT; at ,DCL Z FLOAT; at I
I ~PAGE; I start of new page , start of new page I
, DCL :~ FLOAT;, I ,
.----------.------------------+-----------------------------+----------------------------i I OPEN FILE (F1); , No skip to new page I PUT (REC_1); at I
I IPJ~GE; PUT (REC_'); I I start of new page I
.----------------------------+-----------------------------+----------------------------i I END][,OOP_3B;%PAGE;A I No skip to new page I ALLOCATE A_3; at I
, LLOCATE A_3; I , start of new page I
I (A olE ALLOCATE in I , I
I last posn. in line) I , I L ____________________________ ~ _____________________________ ~ ____________________________ J

Figure 16ti1~ Effects of %PAGE and %SKIP

Chapter 16: Compile-Time Facilities 231

Chapter 17: Multitasking

The use of a computing system to execute a
number of operations concurrently is
broadly termed multiprogramming. The PL/I
programmer can make use of the
multiprogramming capability of the system
by means of the multitasking facilities
described in this chapter.

Introduction

A PL/I program is a set of one or more
procedures, each of which consists of one
or more blocks of PL/I statements. The
execution of these procedures constitutes
one or more tasks, each of which can be
identified by-a-different task name. A
task is dynamic; it exists only while the
procedure is being executed. This
distinction between the procedure and its
execution is essential to the discussion of
multitasking. A procedure could be
executed several times in different tasks.

When the multitasking facilities are not
used, the execution of a program comprising
one or more procedures constitutes a single
task, with a single flow of control; when a
procedure invokes another procedure,
control is passed to the invoked procedure,
and execution of the invoking procedure is
suspended until the invoked procedure
passes control back to it. This serial
type of operation is said to be
synchronous; when the programmer is
concerned only with synchronous operations,
the distinction between program and task is
relatively unimportant.

With multitasking, the invoking
procedure does not relinquish control to
the invoked procedure. Instead, an
additional flow of control is established,
so that both procedur~s can be executed (in
effect) concurrently. This process is
known as attaching a task. The attached
task is a subtask of the attaching task.
Any task can attach a number of subtasks.
The task that has control at the outset is
called the major task. This parallel type
of operation is said to be asynchronous.

The diagram shown in figure 17.1
illustrates the difference between
synchronous and asynchronous operations.
The arrowed lines represent the control
flows. Procedures A and B are executed
synchronously; C and 0 are executed
asynchronously.

232

When several procedures are executed as
asychronous tasks" individual statements
are not necessarily executed simultaneousl~
:by different tasks; whether this occurs
depends on the state and resources of the
system. Hence, at any given time, it may
be necessary for the system to select its
next action from a number of different
tasks. Each task has a priority value
associated with it, which governs this
selection process. The programmer can
control the priority of the task, within
limits, if he wishes to do SOi otherwise,
the priority value is set automatically.

A:PROC;--------1 .. ~ CALL B; .,...--------1 ..

B: PROC; -----~ •• END;

C:PROC;-------1 CALL D TASK; ------t .. ~. END C;

LJ: PROC; ------4.. END;

Figure 17.1. Synchronous and asynchronous
operation

A task can have control of either the
CPU or the systems's I/O resources. I/O
may be performed in one task while CPU
operations are being carried out in
another, and there may, at the same time,
be other tasks waiting for one or other of
;the resources. Operation of the CPU can be
interrupted if a task of higher priority
than the current one requires CPU
facilities. Interruption can occur, for
instance, if a higher-priority task
com~letes an I/O operation or if the
current task attaches a subtask of higher

priority. lm I/O operation is never
interrupted; I/O resources can only be
re-allocated after completion of an I/O
operation~ When an I/O operation is
completed I' 't.he system searches amongst all
the active 'tasks that require the I/O
resources tiD find the one with the highest
priority.

The checkout and optimizing compilers
implement the multitasking features of PL/I
in different ways. The optimizing compiler
utilizes the operating system tasking
facilities, whereas the checkout compiler
maintains f'ull control of all processing,
whether s:ynchronous or asynchronous. The
results p:roduced by a multitasking program
will, hc)wever, be the same under both
compilers.

It may be that one task is to run
independently of other concurrent tasks for
some time, but then become dependent on
some other task (for example, one task may
require the result of another task before
it can be completed). To allow for this,
prOVision has been made for one task to
await the completion of an operation at any
stage of ,another task before carrying on.
This process is known as task
synchronization. Information about the
state of ,an operation can be held by an
event variable, to which an event name
refers. By specifying an event name in a
WAIT statement, the programmer can cause
the task to wait for completion of the
associated operation before proceeding.

The programmer can apply the' EVENT
option to t,asks and certain input/output
operations, in which case the val u'e of the
event variable is set automatically as a
result of the operation concerned~ or he
can set the value explicitly.

The EVENT option allows an input/output
operation to proceed asynchronously with
the task that initiated it~ at any time
subsequent to the initiation of the
input/outpu:t operation, the task can await
its completion. For example, a task can
display a message to the operator and,
instead of waiting fot a reply~ can
immediatel~' proceed, pausing later to deal
with the rElply.

In general, the rules associated with
the synchronous invocation 0;1= procedures
apply equally to the asynchronous
attachment of tasks. For example, on-units
established prior to attachment of a
subtask arEl inherited by the subtask, just
as if the initial block of the subtask had
been synchl:onously invoked. However,
asynchronous operation introduces some
extra considerations, such as the fact that
a number of: concurrent tasks can
independent~ly refer to one variable. This

necessitates s,ome extra rules, which are
described in ~his chapter.

Multitasking also requires some extra
rules and provisions for input/output. For
example, without special provision, there
would be nothing to prevent one task from
operating on a record in a DIRECT UPDATE
file while another task was operating on
the same record~ to cope with this, the
EXCLUSIVE attribute is provided. The
protection of records on EXCLUSIVE files is
described in chapter 12, "Record-Oriented
Transmission".

Tasks can be terminated in a number of
different ways. Normal termination occurs
when control for the task reaches a RETURN
or END statement for the procedure attached
as a task. The EXIT statement specifies
abnormal termination of the task and its
subtasks, while the STOP statement
specifies abnormal termination of the major
task (even if STOP is executed in a
subtask).

Multitasking may allOW the central
processing unit and input/output channels
to be used more efficiently, by reducing
the amount of waiting time. It does not
necessarily follow that an asynchronous
program will be more efficient than an
equivalent synchronous program (although it
may be easier to write). It depends on the
amount of overlap possible between
operations with varying amounts of
input/output~ if the overlap is slight,
multitasking could be the less efficient
method, because of the increased system
overheads.

Specifying Tasking and Reentrability

If multitasking is required, there is no
need to specify the TASK keyword in the
OPTIONS option of the PROCEDURE statement
for the main procedure. Under the
optimizing compiler, the multitasking
modules of the PL/I library are made
available by means of the SYSLIB DO job
control statement; and under the checkout
compiler, the multitasking facilities are
always available. It is not an error to
specify TASK in the PROCEDURE statement~ if
present, the keyword is ignored. This
allows programs written for the PL/I(F)
compiler to be compiled without error
messages being generated.

Under the optimizing compiler, it is,
however, necessary to specify the REENTRANT
option if the procedure could possibly be
attached as more than one task, to be
executed concurrently. The code generated
by the compiler might otherwise not be
reentrant.

Chapter 17: Multitasking 233

When REENTRANT is specified" the
compiler will generate code that is
reentrable as far as machine instructions
and compiler-created storage is concerned.
However the programmer must ensure that the
logic of his PL/I source code is such that
the program remains reentrable. In
particular, he must not overwrite static
storage.

Creation of Tasks

The programmer specifies the creation of an
individual task by using one or more of the
multitasking options with a CALL statement.
Once a procedure has been activated by
execution of such a CALL statement, all
blocks synchronously activated as a result
of its execution become part of the created
task, and all tasks attached as a result of
its execution become subtasks of the
created task. The created task itself is a
subtask of the task executing the CALL
statement. All programmer-created tasks
are subtasks of the major task.

~: A task can be attached by a
procedure entered as a result of a function
reference in a PUT statement for the
standard file SYSPRINT.

CALL STATEMENT

The CALL statement for asynchronous
operation has the same form as that for
synchronous operation, except for the
addition of one (or any combination) of the
multitasking options, TASK, EVENT, or
PRIORITY. These options, in addition to
their individual meanings (listed below),
all specify that the invoked procedure is
to be executed concurrently with the
invoking procedure.

The CALL statement for asynchronous
operation can specify arguments to be
passed to the invoked procedure, just as it
could if the operation were to be
synchronous.

TASK Option

TASK option has the following format:

TASK [(element-task-name)]

The task name can be subscripted and/or
qualified. Without the task name, the
option merely specifies asynchronous

234

operation. If the task is to have a name,
the option must appear complete with the
task name, which is thus contextually
declared to have the TASK attritute, unless
an explicit declaration exists. This is
the only way in which a task can acquire a
name. (Explicit declaration of a task
variatle does not associate the task name
with any task.) The name can be used to
control the priority of the task at some
other point, by means of the PRIORITY
pseudovariable and built-in function. The
task name has no other use to the PL/I
programmer.

EVENT Option

The EVENT option has the following format:

EVENT (element-event-name)

The event name can be subscripted and/or
qualified. When this option is used, the
event name is contextually declared to have
the EVENT attribute (unless an explicit
declaration exists) and is associated with
the completion of the task created by the
CALL statement. Another task can then be
made to wait for completion of this task by
specifying the event name in a WAIT
statement of the other task.

An event variatle has two separate
values: a completion value that indicates
whether or not the event is complete, and a
status value that indicates whether the
event has been abnormally completed. The
completion value is a single bit, and the
status value is a fixed binary number of
precision (15,0). When the CALL statement
is executed, the completion value of the
e,vent variatle is set to 'O'B (for
"incomplete") and the status value to zero
(for "not abnormally completed"). On
termination of the created task, the
completion value is set to '1'B, and, in
the case of abnormal termination, the
status value is set to 1 (if it is still
zero).

The EVENT option can also be specified
on the READ, WRITE, REWRITE, and DELETE
statements, and on the DISPLAY statement
with the REPLY option (see chapter 8,
"Input and Output"). In these cases~ it
allows other processing to continue while
the input/output operation is being
executed.

PRIORITY 0.E3:ion

When a numb~~r of tasks simultaneously
require attE~ntion, a choice has to be made
Under the o)?timizing compiler, this choice
is made by 1:he operating system, based on
the relati V4~ importance of the various
tasks: a task that has a higher priority
value than the others will receive
attention first. Note that tasks" other
than those executing the user's program and
those in a wait state, may require
attention fjeom the system, and may have a
higher priority than any of the user's
tasks. Und43r the checkout compiler, the
choice is mcide by the compiler, but when
processing in one task is interrupted" the
compiler always gives control to the task
within the same program that has the
highest priority.

The PRIORITY option has the following
format:

PRIORITY (expression)

If this option appears in the CALL
statement., "t:~he expression is evaluated to a
binary integer ill, of precision (n,O), where
n is implementation-defined (15 for this
implementation). The priority of the
created task is then made m relative to the
task executing the CALL statement. The
lowest absolute priority possible is 0: the
highest absolute priority possible is 234.
(See "Priority of Tasks~" in this chapter)

If the option does not appear, the
priority of the attached task is equated to
that of the task variable named in the TASK
option, if any, or else equated to the
priority of the attaching task. If the
programmer employs a task variable, he must
specify a priority for the task (by means
of either the PRIORITY pseudovariable or
the PRIORITY option of the CALL statement),
otherwise the priority will be undefined.

Examples

1. CALL PROCA TASK(T1):

2. CALL PROCA TA~K(T2) EVENT(ET2):

3. CALL PROCA TASK(T3) EVENT (ET3)
PRIORITY(-2);

4. CALL PROCA PRIORITY(1);

The CA,LL statements in the above
examples create four different tasks that
execute one procedure, PROCA. In example
3, the subtask T3 has a lower priority than
the attaching task, while in example 4, the
unnamed subtask has a higher priority than

I the attaching task. (It is assumed that
the priorities of the attached tasks would

lie within the range 0 to the highest on
the current job step).

PRIORITY OF TASKS

A priority specified in a PL/I source
program is a relative value: the actual
value depends on factors outside the source
program.

Under OS, the priority associated with
each job step is provided by the
programmer, using the PRTY parameter in the
JOB statement. This priority can have any
number from 0 through 14: the higher the
number, the higher the priority. The
priority of the major task of the PL/I
program when it is first entered is given
by

Priority=(16*(jot step priority»+10

This is the maximum priority for the
program; that is, the highest priority that
any task of the PL/I program can have. If
an attempt is made to create a subtask with
a higher priority than the maximum
priority, the subtask will be executed at
the maximum priority. Priority can be
reduced to zero, but not below (a priority
of less than zero~ will be treated as zero
priority). A task can change its own
priority and that of any other task.

PRIORITY BUILT-IN FUNCTION AND
PSEUDOVARIABLE

The PRIORITY pseudovariable provides a
method of setting the priority of a named
task relative to the current task. The
effect of the statement

PRIORITY (T)=N;

is to set the priority of the task T equal
to the priority of the current task plus
the integral value of the expression N. If
the priority thus calculated would be
higher than the maximum priority or less
than zero, the implementation ensures that
the priority is set to the maximum~ or
zero. respectively.

The PRIORITY built-in function returns
the relative priority of the named task
(that is, the difference between the actual
priority of the named task and the actual
priority of the current task). Consider a
task~ T1, that attaches a subtask, T2, that

Chapter 17: Multitasking 235

itself attaches a subtask, T3. If task T2
executes the sequence of statements

PRIORITY(T3)=3;
X=PRIORITY(T3);

X will not necessarily have the value 3.
If, for example, task T2 had an actual
priority of 24, and the maximum priority
were 26, then execution of the first
statement would result in task T3 having a
priority of 26, not 21. Relative to task
T2, task T3 would have a priority of 2:
hence, after execution of the second
statement, X would have a value of 2.

Between execution of the two statements,
control could pass to task T1, which could
change the priority of task T2, in which
case the value of X would depend on the new
priority. For example, given the same
original priorities as before, task T3
would have a priority of 26 after execution
of the first statement. If the priority of
task T2 were now changed to 20 by its
attaching task, T1~ execution of the second
statement would result in X having a value
of 6.

A task name may have a priority assigned
to it before it is associated with a
procedure. It is not an error if such a
name is never associated with a procedure.
Thus, when a program is being developed,
task names may be introduced into the
program before the corresponding tasks are
introduced.

Coordination and Synchronization of Tasks

The rules for scope of names apply to
blocks in the same way whether or not they
are invoked as, or by, subtasks; thus, data
and files can be shared between
asynchronously executing tasks. Hence, a
high degree of cooperation is possible
between tasks, but this necessitates some
coordination. certain additional rules are
introduced to deal with sharing of data and
files between tasks, and the WAIT statement
is provided to allow task synchronization.

SHARING DATA BETWEEN TASKS

It is the programmer's reponsibility to
ensure that two references to the same

I
variable cannot be in effect at one instant
if either reference would cause the value
of the variable to be changed. He can do
so by including an appropriate WAIT
statement at a suitable pOint in his source
program to force temporary synchronization

236

of the tasks involved. Subject to this
qualification, and the normal rules of
scope, the following additional rules
apply:

.1. Static variables can be referred to in
any task in which they are known.

2. Regardless of task boundaries, an
automatic variable can be referred to
in any block in which it is known, or
to which it is passed as an argument,
or in which it is referred to using an
appropriate based variable. (Note
that unless a dummy argument is
created, the value of an argument can
change at any time; the current value
is used when any reference is made by
any task.)

3. Controlled variables can be referred
to in any task in which they are
known. However, not all generations
are known in each task. When a task
is initiated~ only the latest
generation, if any, of each controlled
variable known in the attaching task
is known to the attached task. Both
tasks may refer to this generation.
Subsequent generations in the attached
task are known only within the
attached task; subsequent generations
within the attaching task are known
only within the attaching task. A
task can free only its own
allocations; an attempt to free
allocations made by another task will
have no effect. No generations of the
controlled variable need exist at the
time of attaching. It is not
permissible far a task to free a
controlled generation shared with a
subtask if the subtask will later
refer to the generation. When a task
is terminated~ all generations of
controlled storage made within that
task are freed.

4. Based variables allocated within an
area are freed when the area is freed;
unless contained in an area allocated
in another task, all based variable
allocations (including areas) are
freed on termination of the task in
which they were allocated.

5. Any generation of a variable of any
storage class can be referred to in
any task by means of an appropriate
based variable reference. The
programmer must ensure that the
required variable has been allocated
at the time of reference.

A task may allocate and free based
variables in any area to which it can
refer. A task can only free an allocation
of a based variable not allocated in an

area if the based variable was allocated cy
that task.

SHARING FIL.ES BETWEEN TASKS

A file is shared between a task and its
subtask if-~ile is open at the time the
subtask is attached. If a subtask shares a
file with its attaching task, the subtask
must not attempt to close the file. A
subtask must not access a shared file while
its attaching task is closing the file.
The subtask may re-open a file closed by
the attaching task, but it will not then be
shared.

If a file name is known to a task and
its subtask~ and the associated file was
not open when the subtask was attached,
then the file is not shared: the effect is
as if the task and its subtask were
separate tasks to which the file name were
known. That is" each task may separately
open, access, and close the file. This
type of o~eration is guaranteed only for
files that are DIRECT in both tasks. Note
that if one task opens a file, no other
task can provide the corresponding close
operation.

It is ~ossible that two or more tasks
may attempt to operate simultaneously on
the same record in a data set opened for
direct access: this can be synchronized by
use of the EXCLUSIVE file attribute. This
attribute is described in chapter 12,
"Record-Oriented Transmission" and section
0, "Attributes".

WAIT STATEM.ENT

The WAIT st.atement has the following
format:

WAIT (event-name [,event-name] •••)

[(element-expression)];

Full details of the WAIT statement are
given in section J~ "statements"; the
following is a shorter description,
providing background to the present
discussion.

The WAIT statement specifies that the
task executing it will go into a waiting
state and e:Kecution of another task may be
started or .resumed until such time as the
required events have been completed. An
event is complete when its completion value
is '1'B. Note that the WAIT statement
specifies event names, not task names.

An event variable may be associated with
an input/output operation that has been
initiated by the task executing the WAIT
statement. In this case, execution of the
WAIT statement has the following effect:

1. If transmission ends (or has ended)
normally, the event variable is set
complete.

2. If the transmission ends (or has
ended) requiring input/output
conditions to be raised, the event
variable is set abnormal (i.e., its
status value is set to 1) and all the
required conditions are raised. The
event variable is set complete on
return from the last on-unit.

If an abnormal return is made from an
on-unit entered from the WAIT operation,
the associated event variable is set
complete, the WAIT operation is terminated,
and control for the task passes to the
point specified by the abnormal return.

Example

P 1 : PROCEDURE;

CALL P2 EVENT(EP2):
CALL P3 EVENT(EP3);
WAIT CEP2);
WAIT CEP3);

END P1;

In this example, the task executing P1 will
proceed until it reaches the first WAIT
statement; it will then await the
completion of the task executing P2, and
then the completion of the task executing
P3, before continuing.

TESTING AND SETTING EVENT VARIABLES

The two values, completion and status, of
an event variable can be retrieved cy the
built-in functions COMPLETION and STATUS.

The COMPLETION function returns the
current completion value of the event
variacle named in the argument. This value
is loeB if the event is incomplete, or '1'B
if the event is complete.

The STATUS function retu~ns the current
status value of the event variacle named in
the argument. This value is nonzero if the
event variable has been set abnormal, or 0
if it is normal.

Chapter 17: Multitasking 237

These two built-in functions can also be
used as pseudovariables; thus, either of
the two values of an event variable can be
set independently. Alternatively, it is
possible to assign the composite value of
one event variable to another by specifying
the event variables in an assignment
statement. Thus, the setting of an event
variable can be controlled by the
programmer. By this means, he can mark the
stages of a task; and, by using a WAIT
statement in one task and an event
assignment (from the COMPLETION built-in
function or another event variable) in
another task, he can synchronize any stage
of one task with any stage of another.

The programmer should not attempt to
assign a completion value to an event
variable currently associated with an
active task or with an input/output event.
An input/output event is never complete
until an associated WAIT statement is
executed, the WAIT being in the same task
as the EVENT option.

other ways in which an event variable
can be set have already been discussed
(such as specifying the event name in the
EVENT option of a CALL statement). Full
details of event variables will be found
under "EVENT Attribute" in section I,
"Attributes". See also "EVENT Option" in
chapter 12, "Record-Oriented Transmission".

Note:

When tasks are being synchronized, the
following points should be kept in mind:

1. An input/output event must be waited
for in the task that init~ates the
input/output operation. The event can
also be waited for in any other task,
but in this case this task will wait
until the event has been set complete
by a WAIT statement in the initiating
task.

2. There is a very real danger that two
tasks could interlock and enter a
permanent wait state. The programmer
must ensure that this cannot happen in
a program. For example:

238

Task T1

WAIT (E2)i

COMPLETION (EV)
='1'B;

Task T2 (Event E2)

COMPLETION(EV)='O'Bi

WAIT (EV);

l • RETURN;

Task T1 would wait for the completion
of task T2, and task T2 would wait for
task Tl to execute the completion
pseudovariable to set the event
variable EV complete.

Under the checkout compiler this
condition is detected and causes
termination of processing. Under the
optimizing compiler, the program waits
until canceled by the operating system
or the operator.

DELAY STATEMENT

The DELAY statement (see section J,
"Statements") allows a task to wait for a
specified period, without reference to an
event variable.

Termination of Tasks

A task is terminated by the occurrence of
one of the following:

1. Control for the task reaches a RETURN
or END statement for the initial
procedure of the task.

2. Control for the task reaches an EXIT
statemen:t.

3. Control for the task;, or for any other
task~ reaches a STOP statement.

4. The block in which the task was
attached is terminated (either
normally or abnormally).

5. The attaching task itself is
terminated.

6. Standard system action for the ERROR
condition or the action" on normal
return from an ERROR on-unit is
carried out.

+ermination is normal only if item (1) of
the above list applies. In all other
cases, termination is abnormal.

To avoid unintentional abnormal
termination of a subtask, an attaching task
should always wait for completion of the
$uttask in the same block that attached the
subtask before the task itself is allowed
to teterminated.

When a task is terminated~ the following
actions are performed:

1. All input/output events that have been
initiated in the task and are not yet
complete are set complete, and their
status values (if still zero) are set
to 1;' 1:.he results of the input/output
operations are not defined.

2. All files that have been opened during
the task and have not yet been closed
are closed; all input/output
conditions are disabled while this
action is taking place.

3. All allocations of controlled
variables made by the task are freed.

4. All allocations of based variables
made by the task are freed, except
those it has allocated within an area
allocated by another task (these are
freed when the area is freed).

5. All active blocks (including all
active subtasks) in the task are
terminii ted.

6. If the EVENT option was specified when
the task was attached, the completion
value of the associated event variable
is set to ~1'B. If the status value
is still zero~ and termination is
abnorm.al, the status value is set to

7. All records locked by the task are
unlock,ed.

Note: If a task is terminated while it is
assigning a value to a variable, the value
of the vari,able is undefined after
termination. Similarly, if a task is
terminated while it is creating or updating
an OUTPUT or UPDATE file, the effect on the
associated data set is undefined after
termination. It is the responsibility of
the programmer to ensure that assignment
and transmission are properly completed
before termination of the task performing
these operations.

Programming Example

This example shows an application of
multitasking to a banking system. The
program is divided into a batch section and
a real-time section. Each section
constitutes a subtask of the major task;
each subtask has other subtasks attached to
it that perform the various data processing
routines necessary in each section. The
use of several subtasks increases the
program efficiency by permitting overlap
between the input/output operations and the
operations performed by the central
processing unit.

The batch section of the program
processes batches of cards that contain
account information (such as cheques
cashed, deposits made, or loan account
details) and, after a certain number of
transactions, produces a statement.

The real-time section of the program
provides a means of communication between
itself and the operator, using the DISPLAY
statement with the REPLY option. This
facility permits the user to issue commands
to the program through the operator's
console. These commands can:

1. Cause management or credit
information, bank statements" or
similar information to be made
immediately available.

2. Initiate or terminate processing.
Thus the user can initiate the
processing of card batches, terminate
a section of processing~ terminate the
entire program, or reply to a call for
clarification of mispunched data.

The functions of the various tasks that
make up the program, and their relationship
to each other, are shown in figure 17.2.
Suggested coding for the ONLINE and PROCESS
procedures is given below. These
procedures are internal to the BANKER
procedure, as are all the procedures in the
program in this case.

Chapter 17: Multitasking 239

240

ONLINE: PROCEDURE;

START:

X:

XL(1):

XL(2):

XL(S):

DECLARE COMMAND CHARACTER(30) VARYING,
COMTYPE(S) CHARACTER (30) VARYING,
COUNT(S) FIXED BINARY INITIAL «S)O),
ID CHARACTER (72) VARYING,
XL(S) LABEL,
ENDBEVT EVENT EXTERNAL;

COMTYPE(1) = 'CREDIT';
COMTYPE(2) = 'STATEMENT';
COMTYPE(3) = 'INFORMATION';
COMTYPE(4) = 'CALL BATCH';
COMTYPE(S) = 'END BATCH';

COMTYPE(S) = 'END PROGRAM';

DISPLAY ('NEXT COMMAND') REPLY (COMMAND);
/*TASK IS IN WAITING STATE UNTIL REPLY IS RECEIVED*/
DO I = 1 TO S;

IF COMMAND = COMTYPE (I)
THEN GO TO XL(I);

END;
DISPLAY (' UNRECOGNI ZABLE COMMAND" REPEAT')

REPLY (COMMAND);
GO TO X;

DISPLAY ('ACCOUNT ID') REPLY (ID);
COUNT(1) = COUNT(1) + 1;
CALL CREDIT (ID) PRIORITY (-1); /*ATTACH CREDIT TASK*/
GO TO START:

COMPLETION (ENDBEVT) = '1'B;
/*SETS EVENT COMPLETE IN BATCH. BATCH
WILL TERMINATE WHEN ALL CARDS READ IN*/
GO TO START;

END ONLINE:

PROCESS: PROCEDURE;
DECLARE ANS CHARACTER (30) VARYING,

(READEVT, ENDEVT, TEVREAD,
TEVUPDT, TEVRED) EVENT EXTERNAL;

WS: WAIT (READEVT, ENDBEVT) (1):
IF COMPLETION(READEVT)='l'B THEN GO TO READIN:
WAIT (TEVREAD, TEVUPDT, TEVRED) (3);

EXS: EXIT;
/*IF 'END BATCH' COMMAND WAIT FOR ASSOCIATED
TASKS BEFORE BATCH IS TERMINATED*/

READIN: COMPLETION (READEVT) = 'O'B:
CALL READER TASK (PR1) PRIORITY (-1) EVENT (TEVREAD):
CALL UPDATE TASK (PR2) PRIORITY (-2) EVENT (TEVUPDT);
CALL RED TASK (PR4) PRIORITY (-3) EVENT (TEVRED);
WAIT (TEVREAD, TEVUPDT,TEVRED) (3);
DISPLAY ('CARDS PROCESSED') REPLY (ANS);
IF ANS = 'WAIT' THEN GO TO WS: /*WAIT FOR CO~MANO*/
IF ANS = 'READ' THEN GO TO READIN: /*PROCESS NEXT BATCH*/

END PROCESS;

Major task PRIORITY = P
r---------------------------------, r-------------------,
I BANKER: PROC OPTIONS(MAIN, TASK); I ICREDI'I: PROC(X): I
I Function: I r->IWhat is xes credit I
I Initialization, e.g., open master I Subtask CONTROL PRIORITY = P-1 I I rating? I
Ifiles. I r------------------------------------, I L ___________________ J

IAttach on-line control task: ~---->IONLINE: PROC; I
I CALL ONLINE TASK(CONTROL) I I Function: I
I PRIORITY (-1) EVENT (TEVCTRL);I IDISPLAY ('Next command') I r-------------------,
IWAIT (for command or CONTROL 1<--, IREPLY (command) I I I STATEMENT: PROC(Y):I
Itermination): I IAttach task according to command, or~-+->IPrint statement fori
I If command, attach subtask I Isatisfy a WAIT statement in a diff- I I IY's account. I
I BATCH, thep return to WAIT .-, lerent task by completing its event I I L ___________________ J

I If termination, end program I I I variable. The same procedure can te I I L _________________________________ J I lattached several times as different I I

r-------------------J Itasks. I I r-------------------,
I IPriorities should be in the range I I IMANIFO: PROC; I
V I (p-3) to (P-10). I ~->IExtract management I

Subtask BATCH PRIORITY = P-2 L----------------T-------------------J I I information. I r---------------------------------, I I L ___________________ J

IPROCESS: PROC; I V I
I I r--------------, I
I~nction: I IWAIT satisfiedl I r-------------------,
IInitialization of card processing I L------r------_J I I CREDIT: PROC(Z): I I routines. I • __________________ J .->IWhat is z's credit I
IWAIT1 (for 'Read' or 'End batch' I < __ J I I rating? I Icommands). I I L ___________________ J

I CALL (processing tasks). ~---, I
IWAIT2 (for cards to be processed) I I I
IDISPLAY ('Cards processed, any I I V
I more?') • I I Other
I R.I!;PLY (' No more', , Read'" or I I tasks
I'wait'): I I
I If 'No more': terminate BATCH. I I
I If 'Read': return to CALL. I I
I If 'Wait': return to WAIT1. I I L _________________________________ J I

r--·---------·------------~----------T-------------------------------------, V V V
Subtask PR1 PRIORITY = P-11 Subtask PR2 PRIORITY = P-12 Suttask PR4 PRIORITY = P-13
r----------------------------,
I READER: PROC: I
I Function: I
IRead cards into array (which I
I must have at lei:lst three I
Irows). When one row is I
Ifilled, test for completion I
lof processing of next row byl
Isubtask PR2 before con- I
I tinuing to read. I L ____________________________ J

r--------------------------------, I UPDATE: PROC: I
I Function: I
IProcess array information: checkl
Ithat each row is full before I
I processing. I
IUpdate master files, transaction I
I files. I
IWhen statement 'page' is full, I
lattach task to print statement. I
ITransfer information on a 'RED' I
laccount to a 'RED' array for I
Iprocessing by 'RED' procedure. I
L--------------T-----------------J
Subtask PR3

I
V

PRIORITY = P-1S
r--------------------------------,
I STATEMENT: PROC(Account ID): I
I Function: I
IPrint statement for the account I
I identified. I
~--------------------------------~

Figure 17.2. Flow diagram for programming example of multitasking

r----------------------------,
IRED: PROC: I
I Function: I
ITreatment of 'RED' accounts. I
IIf necessary attach task I
Ifor treatment of 'VERY RED' I
I accounts. I
L------------T---------------J

I
V

Suttask PRS PRIORITY = P-14
r----------------------------,
IVERYRED: PROC; I
I Function: I
IPrint letter for account I
I owner, and owner's name for I
Ibranch manager. I L ____________________________ J

Chapter 17: Multitasking 241

Chapter 18: Efficient Programming

This chapter contains three sections: the
first provides a description of the
optimization facilities of the optimizing
compiler; the second gives suggestions for
some coding practices to improve efficiency
of programs for the optimizing compiler;
the third lists some of the errors and
pitfalls most likely to be encountered by
programmers when first using PL/I.

OPTIMIZATION

The optimization facilities of PL/I are
available only for programs processed by
the PL/I optimizing compiler. The PL/I
checkout compiler does not provide
optimization of object programs; it
implements the optimization language items
'by checking the syntax and then ignoring
them.

The main purpose of optimization is to
generate object programs which execute as
fast as possible and which occupy as little
space as possible during execution. In
many cases this will involve generating
efficient code for the statements written
by the programmer; in other cases" however,
the optimizing compiler may alter the
sequence of statements or operations to
improve the performance whilst producing
the same result.

The following types of optimization are
carried out by the optimizing compiler:

• Elimination of common expressions

• Transfer of invariant expressions out
of loops

• Elimination of redundant expressions

• Simplification of expressions

• Initialization of arrays and structures

• In-line code for conversions

• In-line code for record 110
transmission statements

• Reduction of key conversion for
REGIONAL data sets

• Matching format lists with data lists

• In-line code for string manipulation

242

• In-line code for many of the built-in
functions

• Special-case code for DO statements

• Structure assignments

• Register and address optimization"
including maintenance of values in
registers for as long as possible and
producing efficient address arithmetic
based on optimal flow-paths

• Program branches kept as much as
possible to the same base address

• Packing library routines into logical
units to minimize space requirements

• Elimination of common constants and
program control data to minimize space
usage

Certain of the more important features are
described further in the following
sections.

COMMON EXPRESSIONS

The term "common expression" is used to
describe an expression such as B+C in:

A = B+C

D = B+C

in which the variables Band C are not
reset between the two occurrences of the
expressions. In a case like this it is
necessary to evaluate the expression only
once.

The technique of avoiding repeated
evaluation of the same expression is called
common expression elimination.

An important application of common
expression elimination occurs in statements
containing subscripted variables where the
same subscript value is used for each
variable. For example:

PAYROLL TAX (MANNO) = PAY CODE(MANNO) •
WEEKPMNT(MANNO)i -

The value of the subscript expression ~ANNO
is computed once only when the statement is

executed (the computation would involve the
conversion of a value from decimal to
binary if MANNO were declared a decimal
variable) •

Interrupt Han~ling for Programs with Common
Expression Elimination

The order of most operations in each PL/I
statement is clependent on the priority of
the operators involved. However, the order
of evaluation of those sub-expressions
whose results form the operands of
operators of lower priority, such as
subscript expressions, locator qualifier
expressions, and function references, is
not defined beyond the rule that an operand
must be fully evaluated before its value
can be used in another operation.
Therefore on-units associated with
interrupts which occur during the
evaluation of such sub-expressions can be
entered in an unpredictable order.
Consequently, an expression might have
several possible values~ according to the
order of, and action taken by, the on-units
that are entered. When a computational
on-unit is entered:

1. The valuE~s of all variables set by the
execution of previous statements are
guaranteed to be the latest values
assigned to the variables, and can be
used by t:he on-unit. For instance the
PUT DA'l'A statement can be used to
record the values of all variables on
entry to an on-unit.

2. The value of any variable set in an·
on-unit resulting from a computational
interrupt is guaranteed to be the
latest value assigned to the variable,
for any part of the program.

Where there is a possibility that
variables might be modified as the result
of a computational interrupt, either in the
associated on-unit, or as the result of the
execution of a branch from the on-unit,
common expression elimination is inhibited.
For example:

ON ZERODIVIDE B,C=1;

X=:A*B+B/C;
Y=:A*B+D;

The compilE~r would normally attempt to
eliminate the re-evaluation of the
sub-expression A*B in the second assignment
statement. However~ in this example, if
the ZERODIVIDE condition is raised during
the evaluation of B/C the two values for

A*B could be different. This optimization
is inhibited to allow for this possibility.

Note that the above discussion applies
only when the optimization option ORDER is
specified or assumed. If the programmer
does not require the guarantees described
above,the optimization option REORDER can
be specified. In this case, common
expression elimination is not inhibited.
The ORDER and REORDER options are discussed
later in this chapter.

TRANSFER OF INVARIANT EXPRESSIONS OR
STATEMENTS

An expression or statement occuring within
a loop is said to be invariant if the
compiler can detect that the expression
value or statement action would be
identical for each iteration of the loop.

An invariant expression or statement can
be moved from within a loop to a point in
the program outside the loop, so that it is

I executed once only, rather than for each
iteration of the loop. For example:

DO I = 1 TO N;

J = 3;

END;

The statement J=3 is invariant and can be
moved outside the loop. It can be moved
forwards or backwards~ according to
circumstances.

If the programmer wishes to take
advantage of this type of optimization, he
must specify the optimization option
REORDER on a BEGIN or PROCEDURE block which
contains the loop with reorderable
statements or operations. If the option is
not specified, the default option ORDER is
assumed and the optimization is inhibited.
The ORDER and REORDER options are discussed
below.

ORDER AND REORDER OPTION

~RDER and REORDER are optimization options
specified for a procedure or begin block in
a PROCEDURE or BEGIN statement.

The standard default is ORDER, but
REORDER is inherited by all contained

Chapter 18: Efficient Programming 243

blocks unless they explicitly specify
ORDER.

ORDER Option

The ORDER option should be specified for a
procedure ,or begin block if the programmer
requires that the most recently assigned
values of variables that are modified in
the block are guaranteed for use in
on-units entered because of computational
interrupts during the execution of
statements and expressions in the block.
In a block to which the ORDER option
applies, common expressions may be
eliminated by the compiler. If so, the
occurrence of computational interrupts
during execution of the block may be less
than would occur if common expressions had
not been eliminated. However, if an
interrupt occurs during execution of an
ORDER block~ the values assigned to
variables in statements which precede the
interrupt are guaranteed to be the most
recent values assigned when reference is
made to them in the on-unit for the
interrupt. Other forms of optimization are
permitted in an ORDER block except for
forward or backward move-out of any
expression which can cause an interrupt.
Since it would be necessary to disable all
the possible conditions which might be
encountered~ the use of ORDER virtually
suppresses any move-out of statements or
expressions from loops.

REORDER OEtio"n

The REORDER option permits the compiler to
generate optimized code to produce the
result specified by the source program,
when error-free execution takes place.
Move-out is permitted for any invariant
statements and expressions from inside a
loop to a point in the source program
either preceding or following such a loop.
Thus the statement or expression is
executed once only, either before or after
the loop.

More efficient execution of loops can be
achieved by maintaining in registers the
values of variables which are subject to
frequent modification during the execution
of the loops. When error-free execution
permits, values can be kept in registers,
and considerable efficiency can be achieved
by dispensing with time-consuming
load-and-store operations to reset the
values of variables in their storage
locations. If the latest value of a
variable is required after a loop has been

244

executed, the value is assigned to the
storage location of the variable when
control passes out of the loop.

Register allocation can be more
significantly optimized if REORDER is
specified for the block. However~ the
values of variables that are reset in the
block are not gua.ranteed to be the latest
assigned values when a computational
interrupt occurs, since the latest value of
a variable may be present in a register but
not in the storage location of the
variable. Thus, anyon-unit entered for a
computational interrupt must not refer to
variables set in the reorder block.
However, use 'of the tuilt-in functions
ONSOURCE and ONCHAR is still valid in this
context.

A program is in error if during
execution there is a computational or
system action interrupt in a REORDER tlock
followed by the use of a variable whose
value is not guaranteed.

Since these restrictions preclude the
correction of erroneous data, except ty
using ONSOURCE and ONCHAR pseudovariatles
for a CONVERSION on-unit, the programmer
must either depend on the standard system
action, thereby terminating execution of
the program, or use the on-unit to perform
error recovery and to restart the program
by obtaining fresh data for computation.
The second approach should ensure that all
valid data is processed, and that invalid
data is noted, while still taking advantage
of any possible optimization. For example:

ON OVERFLOW PUT DATA:
DO J = 1 TO M:
DO I = 1 TO N;
X(I,J) = Y(I) + Z(J) *L + SQRT(W)i
P = I*J;
END;
END;

When the above statements appear in a
reorder tlock, the source code
compiled is interpreted as follows:

ON OVERFLOW PUT DATA:
TEMP1 = SQRT(W):
DO J = 1 TO M;
TEMP2 = Z(J) * L + TEMP1;
DO I = 1 TO N:
X(I,J) = Y(I) + TEMP2;
END;
END;
P = N*Mi

TEMP1 and TEMP2 are temporary variatles
created to hold the values of expressions
moved backwards out of the loops. The
statement P = N * M; can be moved forwards
out of the loops since the value of P can
only be required after the last iteration

of the outer loop. If an overflow
interrupt occurs, the values of the
variables used in the loops cannot be
guaranteed 1:'0 be the most recent values
assigned before the occurrence of the
interrupt, BilrlCe the current values may be
held in registers, and not in the storage
location to ·which the on-unit must refer.

ELIMINATION OlP REDUNDANT EXPRESSION

A redundant expression is an expression
that need not be evaluated in order to
continue exec11ting the program correctly.

The effect of this optimization is to make
the use of logical expressions in IF
statements more efficient than a series of
nested IF statements. For example:

IF (A = D) ~ (C = D) THEN
X = 'Y + Z;

is more efficient than:

IF A = D THEN X = Y+Z;
ELSE IF C=D THEN X = Y + Z;

If A or C does equal D. the THEN clause in
the first example is executed, without the
expression ever being resolved to a single
bit.

EXPRESSION SI~!PLIFICATION

Expression simplification is the process of
changing the form of source statement
expressions Wl. thout changing the intended
effect so that; they can be compiled into
more efficient; object code.

Two forms of E!xpression simplification are
carried out b~' the compiler. Both involve
the use of arithmetic constants in
operational ell:pressions. The
simplifications are as follows:
expressions such as 3*B are transformed
into B+B+B; and in subscript expressions,
expressions such as 1+2 are transformed
into I*MULT + 2 *MULT where MULT is a
constant multiplier. The 2*MULT is then
used as an offset factor in the addressing
calculations.

CODING SOURCE PROGRAMS FOR THE OPTIMIZING
COMPILER

This section contains details of coding
practices which should be observed or

avoided in order to take advantage of the
optimization facilities.

Common Expression Elimination

Common expression eli:mination is inhibited
by:

1. The use in expressions of variables
whose values can be reset in either an
input-output or computational on-unit.

2. If a based variable is, at some point
in the program, overlaid on top of a
variable used in the common
expression, then assigning a new value
to the based variable in between the
two occurences of the common
expression, inhibits optimization.

For instance, the common expression
X+Z, in the following example, is not
eliminated because the based variable
A which, earlier in the program, is
overlaid on the variable X, is
assigned a value in between the two
occurences of X+Z.

DCL A BASED(P);
P=ADDR(X);

P=ADDR(Y);

B=X+Z;
P->A=2;
C=X+Z;

3. When ORDER is specified, any variable
which satisfies the following
definition of an aliased-variable: an
aliased variable is any variable whose
value can be modified by references to
identifiers other than its own
identifier, such as variables with the
DEFINED attribute, variables used as
the base for defined variables,
parameters, arguments to the ADDR
built-in function, and based
variables.

Variables whose addresses are known to
an external procedure by means of
pointers that are either external or
used as arguments are also assumed to
be aliased variables.

The effect of an aliased variable is
not to prevent common expression
elimination completely, but to inhibit
it slightly. For all aliased
variables the compiler builds a list
of all the variables which could
possibly reference the aliased

Chapter 18: Efficient Programming 245

variable. The list is the same for
each member of the list, and in a
given program there may be many such
lists.

When an expression containing an
aliased variable is being checked for
its use as a common expression, the
possible flow paths along which
related common expression could occur
are searched for assignments, not only
to the variable referenced in the
expression l but also for all the
members of the alias list to which
that variable belongs. If the program
contains an external pointer variable,
it is assumed that this pointer could
be set to all variables whose
addresses are known to external
procedures, i.e., all external
variables, all arguments passed to
external procedures, and all variables
whose addresses could be assigned to
the external pointer. Thus variables
addressed by the external pointer., or
by any other pointer which has a value
assigned to it from the external
pointer, are assumed to belong to the
same alias list as the external
variables, etc.

4. The form of an expression. If ~he
expression B+C could be treated as a
common expression, the compiler would
not be able to detect it as a common
expression in the following statement:

D=A+B+C~

The compiler processes the expression
A+B+C from left to right.
Consequently it only recognizes the
expressions A+B and (A+B) +C. However"
by coding the expression D=A+(B+C),
the programmer can ensure that it is
recognized. since the compiler must
process the expression with the
highest priority first.

5. The scope of a common expression. In
order to determine the presence of
common expressions, the program is
analyzed and the existence of
flow-units is determined. A flow-unit
is a unit of compiled code
representing all or part of a block
that can only be entered at the first
instruction and le:ft at the last.
Common expressions are recognized
across individual flow units.
However, if the program flow-paths
between flow units are complex, the
recognition of common expressions is
inhibited across flow-units.

Common expression elimination is assisted
by these points:

246

1. Variables in expressions should not be
external or associated with external
pointers, or arguments to ADDR
built-in functions.

2. The source program should not contain
external procedures, external label
variables, or latel constants known to
external procedures. Where possible a
label list should te supplied in
declarations of label variables.

3. Variables in expressions should not be
set or accessed in on-units if
possible.

Transfer of Invariant Expressions

Transfer of invariant expressions out of
loops is inhibited by:

1. ORDER specified for the block.
However, transfer is not entirely
prevented by the ORDER option. It is
only inhibited for operations which
can cause computational interrupts.
Such operations do not include array
subscript manipulation where the
subscripts are represented by tinary
halfword integers: such subscripts
cannot cause overflow unless they are
uninitialized, in which case the
program is in error anyway.

2. The use of variables whose values can
be set or used by input or output
statements.

3. The use in expressions of variables
whose values can be set in
input/output or computational
on-units, or which are
aliased-variables.

4. A complicated program flow, involving
external procedures, external label
variables and label constants, and the
absence of a latel list in a label
variable declaration.

Transfer is assisted by:

1. Specifying REORDER for the block

2. Avoidance of points 2-4 above

Redundant Expression Elimination

Redundant expression elimination is
inhibited or assisted by the same factors
as for transfer of invariant expressions,
described above.

Other Optimization Features

Optimized code can be generated for the
following items:

1. For a do-group control variable except
when its value can be modified either
explicitly or by an on-unit during
execution of a do-loop.

2. For do-loops that do not contain other
do-lo1ops, provided that, if the scope
of the control variable extends beyond
the block containing the do-loop, then
it is given a definite value after the
do-loop and before the end of the
bloc::k.

3. For assignment of arrays or structures
unles:s non-contiguous storage is used.

4. For a:rray initialization where the
same 'l1alue is assigned to each element
unless the array occupies
nonricontiguous storage.

5. For in-line conversions unless they
involve complicated picture or
character to arithmetic conversions.

6. For in-line code for the string
buiIt··iin functions SUBSTR and INDEX
unlesl3 ,the ON-conditions STRINGSIZE or
STRINGRANGE are enabled.

7. For register allocation and addressing
schemes unless the program flow is
compliciited by use of external
proc:edu;ces;, external label variables,
label cc:mstants known to external
procedures l or unless label lists are
not supplied in label variable
declarations. Optimized register
usage is also inhibited by the use of
aliased variables and variables that
are rE~fcerenced or set in an on-unit.

~rogrammi:ngr Techniques for the Optimizing
Compiler

In PL/I there are often several different
ways of producing a given effect. One of
these ways will usually be more efficient
from a particular point of view than
another, depending largely on the method of
implementat~i()n of the language features
concerned. However, it should be realized

at the outset that a primary cause of
program inefficiency occurs at the problem
definition stage, before any actual
programming is done: PL/I cannot be used
to full advantage unless the problem is
defined in terms of PL/I facilities.

The purpose of this section is to help
the programmer make the best use of the
optimizing compiler. The first two parts
are presented from two different
viewpoints:

Improving the speed of compilation

Improving the speed of execution

The remainder of the section is of common
interest, and deals with the use of
storage; use of compile-time facilities;
use of input/output facilities; and
additional hints.

No techniques for improving the
efficiency of code generated by the
checkout compiler are given, since this
compiler is designed primarly to give
efficient use of programmer's time, rather
than to produce optimum code.

IMPROVING SPEED OF COMPILATION

The NOOPTIMIZE optimizing compiler option
requests that compilation be as fast as
possible. In addition, the following
measures are suggested.

1. Allocate as much storage to the
compiler as possible. This minimizes
the time consumed by the compiler
spilling into auxiliary storage.

2. Keep the number of begin blocks and
procedures to a minimum. Do not use
BEGIN-END to effect statement
grouping; this is more simply obtained
by use of DO-groups.

3. Try to avoid using those compiler
options that produce listings, e.g.,
object listing.

4. On re-runs, further slight increases
in efficiency can te obtained cy:

a. removing all unreferenced labels
and data;

b. correcting all source errors, and,
where possible, removing the
causes of diagnostic messages
including such messages as
"FILE/STRING option missing in
GET/PUT statement".

Chapter 18: Efficient Programming 247

IMPROVING SPEED OF EXECUTION

The OPTIMIZE(TIME) optimizing compiler
option requests that execution be as fast
as possible. In addition, the following
measures are suggested. .

1. Avoid unnecessary program segmentation
and block structure~ all procedures,
on-units and begin blocks need
prologues and epilogues, the
initialization and housekeeping for
which carry an overhead. The use of
GOTO or IF statements to control
program logic, is more efficient than
using the CALL statement, provided
that the number of GOTO or IFs
required is not excessive.

2. The following measures apply to
labels.

a. A GO TO statement is more
efficient if it refers to a label
within the same block rather than
to a label outside the block.

b. A GO TO statement that refers to a
label variable is more efficient
if the declaration of the label
variable includes a complete list
of label constants that the
variable can represent.

3. Avoid extensive use of adjustable
arrays and/or CONTROLLED storage.

4. Use constants wherever possible
instead of expressions.

5. Exercise ca·re in specifying precision.
For example:

DCL A FIXED DEC(B,4),
B FIXED DEC(10,2),
C FIXED DEC(10,1)~

C=A+B~

This requires almost twice as much
code as it would if B had been
declared (10,4), because the
evaluation of A+B requires a scale
factor of 4.

6. Use the PICTURE attribute only when
necessary. For example, use FIXED
DECIMAL(5~2) instead of PIC'999V99~.
If a picture field is used in more
than one arithmetic operation, convert
it once and then use the new form in
each operation. This holds for any
conversion required more than once.

24B

If it is necessary to use data with
the PICTURE attribute in arithmetic
expressions, use pictures that will be
handled in-line, as this considerably
reduces execution time. Pictures with
all 9s~ a V and a non-drifting sign
are particularly useful. For example:

'999'
'$99V99'
'S99'
'V999'

Internal switches and counters, and
data involved in substantial
computation or used for subscripts,
should be declared BINARY~ data
required for output should be kept in
DECIMAL form.

B. Keep data conversions to a minimum.
Some possible methods follow:

a. Use additional variables. For
example, if a problem specifies
that a character variable has to
be regularly incremented by 1,

DCL CTLNO CHAR(B):

CTLNO = CTLNO+1:

requires two conversions" while

DCL CTLNO CHAR(B),
DCTLNO DEC FIXED:

DCTLNO=DCTLNO+1;
CTLNO=DCTLNO:

requires only one conversion.

b. Take special care to make
structures match when it is
intended to move data from one
structure to another.

c. Avoid mixed mode arithmetic,
especially the use of character
strings in arithmetic
calculations.

9. The following measures apply to data
aggregates:

a. In general, array expressions are
expanded into iterative DO-groups
and structure expressions are
expanded into a series of element
expressions. However, for a
simple assignment of the form: A
= Bi, where A and B are arrays or
structures, B is copied to A all
in one piece. A and B must not

have adjustable bounds, lengths,
or sizes and the references must
be to connected storage.

b. Avoid declaring redundant levels
in a structure. For example:

DCL 1 A,
2 B,

3 C(10),
3 0 CHAR(20);

In this example B is redundant.

c. Avoid references to
pseudovariables with aggregate
arguments in stream-oriented
input.

d. Avoid references to user functions
or to array-handling built-in
functions in aggregate
eXIlressions.

e. Avoid nested references to
functions" particularly those with
aggregate arguments.

f. Wherever possible, declare
aggregates in the procedure in
which they are used, instead of
passing them as arguments. If an
aggregate is required in two or
more procedures, then it should te
declared EXTERNAL, if the
procedures are external, or else
it should be declared in the
outermost block in which it is
used.

g. Declare subscript variables in the
tlock in which they are used as
FIXED BINARY (15,0).

10. The following measures apply to
strings:

a. Bit strings should, if possible,
be specified as multiples of eight
bits. However, bit strings used
as logical switches should be
specified according to the number
of switches required. In the
following examples. (a) is
preferable to (b), and (b) to Cc):

Example 1:

Single Switches

(a) DCL SW BIT(1) INITC'1'B);

IF SW THEN DO;

(t) DCL SW BIT(8) INIT('1'B);

IF SW THEN DO;

Cc) DCL SW BIT(S) IN IT (~1'B);

IF SW = '10000000'B THEN
DO;

Example 2:

Multiple switche~

(a) DCL B BIT(8);

B = '11100000'B;

IF B = ~11100000'B THEN DO

(b) DCL B BIT(3);

B = '111"B;

IF B = '111'B THEN DO;

(c) DCL (SW1,SW2,SW3) BIT(l);

SW1, SW2, SW3, = '1'B;

IF SW1&SW2&SW3 THEN DO;

If tit-string data whose length is
not a multiple of S is to te held
in structures, such structures
should be declared ALIGNED.

~: The use of tit strings in a
multitasking program can

Chapter 18: Efficient programming 249

occasionally cause incorrect
results. When the program
references the bit string, it may
be necessary for a PL/I library
routine to access adjacent
storage, as well as the string
itself. If another task accesses
this adjacent storage at the same
time, then the results may be
unpredictable. The problem is
less likely to arise with aligned
bit strings than unaligned.

b. Note that concatenation operations
on bit-strings are time-consuming.

c. Varying-length strings are
generally less efficient than
fixed-length strings.

d. Fixed-length strings are not
efficient if their length is not
known at compile time" as in the
following example:

DCL A CHAR(N);

11. Avoid using the SIZE, SUBSCRIPTRANGE,
STRINGRANGE and CHECK ON-conditions,
except during debugging. Debugging
aids should be removed from the
program before running it as a
production job.

12. Do not refer to the DATE built-in
function more than once in a run; it
is expensive. Instead, refer to the
function once and save the value in a
variable for subsequent use; e.g.
instead of:

PAGEA= TITLEAIIDATE;
PAGEB= TITLEBIIDATE;

it is more efficient to write

DTE=DATE;
PAGEA=TITLEAIIDTE;
PAGEB=TITLEBIIDTE;

13. The following measures apply to
input/output:

250

a. Allocate sufficient buffers to
prevent the program becoming I/O
bound.

b. Use blocked output records.

c. open a number of files in a single
OPEN statement.

d. In STREAM input/output, use long
data lists instead of splitting up
input/output statements.

e. Use edit-direct input/out~ut in
preference to list- or
data-directed.

f. Consider the use of overlay
defining to simplify transmission
to or from a character string
structure. For example:

DCL 1 IN,
2 TYPE CHAR(2),
2 REC,

3 A CHAR(5),
3 E CHAR(7),
3 C CHAR(66);

GET EDIT(IN)
(A(2),A(5),A(7),A(66»;

In the above example, each
format-item/data-field pair is
matched separately, code being
generated for each matching
operation. It would be more
efficient to define a character
string on the structure and a~ply
the GET statement to the string:

DCL STRNG CHAR(SO) DEF IN;

GET EDIT (STRNG) (A(SO»;

g. If a file is declared DIRECT
INDEXED, the ENVIRONMENT o~tions
INDEXAREA, NCWRITE, and ADDBUFF
should be applied if possible.

h. When creating or accessing a
CONSECUTIVE data set, use file and
record variable declarations that
cause in-line code to be
generated, if possible. Details
of the declarations are given in
chapter 12, "Record-Oriented
Transmission".

i. Conversion of source keys for
REGIONAL data sets can be avoided
if the following special cases are
observed.

(1) For REGIONAL(l): when the
source key is a fixed binary
element variable or constant
with precision in the range
(12,0) to (23,0).

(2) For REGIONAL(2) and (3): When
the source key is of the form
(character-string­
expressionllr), where r is a
fixed binary element variable
or constant with precision in
the range (12,0) to (23,0).

j. Direct update of an INDEXED data
set is slowed down if an I/O

operation on the same file
intervenes between a READ and a
REWRITE for the same key. This
can cause the REWRITE statement to
iss;ue an extra READ.

k. When. creating or accessing a data
set having fixed-length records,
use! standard formatting, that is,
specify FS or FBS record format,
whenever possible.

(Illlput/Output is also discussed
under ·Use of Input/Output
Facilities· later in this
cha,pter.)

14. The following measures apply to
interlanguage communication:

a. Whelre possible" ensure that PL/I
aggregate arguments will be mapped
the! same as those for COBOL or
FORTRAN.

b. The compiler cannot always detect
wheln a structure in PL/I and COBOL
will map identically. Each
element in the base structure bas
an alignment requirement for
exalmple,a CHAR(4) item can be
aligned on any byte in main
storage, whereas a FIXED BIN(31)
i te!m must be fullword aligned.
The! compiler creates a dummy
argument for the structure
whe!never the first base element
has a less stringent alignment
req[uirement than any other base
ele!ment. This rule is applied
independently to each minor
stz:ucture at level 2. The NOMAP
opt,ion should be specified if the
act,ual lengths of items do not
req[uire padding bytes to be
inserted. For example:

DeL 1 S, 2 X CHAR(4), 2 Y FIXED
BIN(31) ;

The! compiler will create a dummy
argument for this structure
because Y has a greater alignment
stz'ingency than X. However, the
structure will map identically in
PL/I and COBOL because no padding
is required.

c. When arguments do map differently,
usel the NOMAPIN option to avoid
unlllecessary initialization of
dummy arguments, and use the
NO~~POUT option to avoid
unn,ecessary assignment from dummy

arguments if the final value is
not required (e.g., if the value
is unchanged).

d. Avoid multiple initialization of
the PL/I environment by ensuring:

(1) that the main procedure is
PL/I, or

(2) that a PL/I procedure is
called from the main routine,
or

(3) that the structure of the
program is such that the PL/I
environment is not destroyed
between calls to PL/I
procedures.

IN-LINE OPERATIONS

Many operations are handled in-line. It
will repay the user, therefore, to
recognise which operations are performed
in-line and which require a library call,
and to arrange his program to use the
former wherever possible. The majority of
these in·line operations are concerned with
data conversion and string handling.

Data Conversion

The data conversions performed in-line are
shown in figure 18.1. Whether a particular
conversion is done in-line or not can
depend on whether optimization for minimum
execution time has teen requested. The
column 'Optimization' has the entry 'none'
if the level is immaterial, and 'time' if
execution-time optimization is necessary.
A conversion outside the range or condition
given, or marked 'Not done' is performed by
a library call.

Not all the picture characters available
may be used in a picture involved in an
in-line arithmetic conversion. The only
ones permitted are:

V and 9

Drifting or non-drifting characters $
S + -

Zero suppression characters Z •

Punctuation characters ,. / B

Chapter 18: Efficient Programming 251

r-------------------------------T-------------------------------------T-----------------, I Conversion I I Optimization I
~-------------T-----------------~ Comments and Conditions ~--------T--------~
I Source I Target I I SIZE I SIZE I
I I I I Disabled I Enabled I
~-------------+-----------------+-------------------------------------+--------+--------~

IFIXED BINARY I none none
I I
FIXED DECIMAL IIf either scale factor = 0 and the time time

FIXED BINARY FLOAT

Bit string

other scale factor ~ 0, then the
optimization can be 'none'

If source scale factor = 0, then the
optimization can be 'none' (whether
SIZE is enabled or not)

String must be fixed-length, ALIGNED,
and with length ~2048

Character string Source scale 'factor must be ~ 0

time time

none Not done

time Not done
or Picture string must be fixed-length with

length ~256 Picture types 1, 2 or 3
~-------------+-----------------+------------~------------------------+--------+--------~ IFIXED BINARY IIf source and target scales have the none time

I Isame sign and are non-zero, then the
I optimization (SIZE disabled) must be
I 'time·.
I
IFIXED DECIMAL
I

FIXED DECIMALIFLOAT
I
IBit String
I
I
I

Source precision must be <10

Source scale factor must be zero
String must be fixed-length, ALIGNED,
and with length ~2048

ICharacter string Source scale factor must be ~ 0
I String must be fixed-length and
I length ~256
I
I Picture Picture types 1, 2 and 3 For picture
I types 1 and 2 with no sign,
I optimization can be 'none'

none none

time time

none Not done

time time

time Not done

~-------------+-----------------+------------~------------------------+--------+--------~
I IFIXED BINARY I I time INot done I
I I I I I I
I IFIXED DECIMAL ITarget preci~ion must be ~9 I time INot done I
I I I I I I
I FLOAT I FLOAT Isource and target may be single or I none I none I
I I Idouble length I I I
I I I I I I
I IBit string IString must Qe fixed-length, ALIGNED, I time INot done I
I I land with length ~2048 I I I
~-------------+-----------------+------------~------------------------+--------+--------~ I IFIXED BINARY ISource string must be fixed-length, I none INot done I
I I I ALIGNED, and with length ~2048 I I I
I I I I I I
IBit string IFIXED DECIMAL ISource must ~e fixed-length, ALIGNED"I time INot done I
I land FLOAT land with length <32 I I I L _____________ ~ _________________ ~ ____________ ~ ________________________ ~ ________ ~ ________ J

Figure 18.1 {Part 1 of 2}. Implicit data conversion performed in-line

252

r---------'----------------------T-------------------------------------T-----------------, I Conversion I I Optimization I
.-------------T-----------------~ Comments and Conditions .--------T--------~
I Source I Target I I SIZE I SIZE I
I I I IDisabledlEnabled I
.-------------+-----------------+-------------------------------------+--------+--------~ I ICharacter string Istring must be fixed-length with I none I none I
I I Ilength S256 I I I
I Picture I I I I I
I I I I I I
I I Picture IPictures must be identical I none I none i
.-------------+-----------------+-------------------------------------+--------+--------~ I IFIXED BINARY lsource precision must be <10 I time INot donel
I I I I I I
I IFIXED DECIMAL IIf picture has a sign, then the I none INot done I
I I loptimization must be 'time' I I I
I Picture I I I I I
ltype 1 I FLOAT lsource precision must be <10 I time INot done I
I I I I I I
I I Picture IPicture types 1, 2 or 3 I time INot done I
.-----------,--+-----------------+-------------------------------------+--------+--------~ I Label I Label I I none I none I
.-----------,--+-----------------+-------------------------------------+--------+--------~ I locator I locator I I none I none I L _______ , ____ , __ J. _________________ J. _____________________________________ J. ________ J. ________ J

Figure 18.1 (Part 2 of 2). Implicit data conversions performed in-line

For in-line conversions, pictures with
this subset of characters are divided into
three types:

Picture type 1: Pictures of all 9s with
(optionally) a V and a leading or
trailing sign. For example:

'99V999', '99', 's99V9',
'99V+", '$999'

Picture type 2: Pictures with zero
suppressi6n characters and
(optionally) punctuation
characters and a sign character.
Also, type 1 pictures with
punctuation characters. For
example:

'ZZZ', ' •• /.*9', 'ZZ9V.99',
'+ZZ.ZZZ', '$///99', '9.9'

Picture type 3: Pictures with drifting
strings and (optionally)
punctuation characters and a sign
character. For example:

'$$$$', '-,--9', '5/55/59',
'+++9V.9','$$$9-'

Sometimes a picture conversion is not
performed in-line even though the picture
is one of the above types. This may be
because:

1. The 1e",el of optimization is too low.

2. SIZE is enabled.

3. There is no overlap between the digit
positions in the source and target.
For example:

DECIMAL (6,8) or DECIMAL (5, -3) to
PIC '999V99' will not be performed

4. The picture may have certain
characteristics that make it difficult
to handle in-line. example:

a. Punctuation between a drifting Z
or a drifting * and the first 9 is
not preceded by a V. For exam~le:

'ZZ .. 99'

b. Drifting or zero expression
characters to the right of the
decimal point. For example:

'ZZV.ZZ', '++V++'

String Handling

The string functions and operations
performed in-line are shown in figures 18.2
and 18.3. It should be noted that even the
string functions indicated as always being
performed in-line may sometimes call a
library routine. For example, if the
expression in the BIT or CHAR functions
requires an implicit conversion not handled
in-line, the appropriate library routines
will be called.

Chapter 18: Efficient Programming 253

r------------------T--, I String Operation I Comments and Conditions I

~------------------+----------------------------T---------------T---------------~-------i I Source I Target I Comments I

~--------------------------~-+---------------+----------~------------~ Assign I Non-adjustable, ALIGNED. INon-adjustable,INo length restriction I
Ifixed-length bit string I ALIGNED, bit lif OPTIMIZE(TIME) is I
I I string I specified; otherwise I
I I Imaximum length of I
I I 181 92 bits ~ I

.--------------------------~-+---------------+-----------------------i I Adjustable or VARYING, . INon-aC!justable, IOnly if OPTIMIZE (TIME) I
IALIGNED bit string IALIGNED bit lis specified I
I Istring S 2048 I I
I Ibits I I
.--------------------------~-+---------------+-----------------------i I Non-adjustable, UNALIGNED, I (same as IOnly if OPTIMIZE(TIME) I
I fixed-length bit string I source) lis specified. Maximum I
Ithat is an element of an I Ilength = 57 bits I
I AUTOMATIC, BASED, or STATIC I I I
Istructure with no adjustable I I I
Ibounds or extents I I I

.--------------------------~-+---------------+-----------------------i I Non-adjustable, fixed-lengthINon-adjustable I I
Icharacter string . Icharacter I I
I I string I I

.--------------------------~-+---------------+-----------------------~ JAdjustable or VARYING INon-adjustable I I
Icharacter string I character I I
I Istring of I I

I I Ilength S 256 I I

.------------------+--------------------------~-~---------------~-----------------------i
I'and'~ 'not', ~or'IAs for bit string assignmerits, but no adjustable or varying-length I
I loperands are handled I I

~------------------+--------------------------~---~ I Compare lAs for string assignment with the two comparands taking the ro~es ofl
I Isource and target, but no adjustable or varying-length operands are I
I I handled . I

.------------------+--------------------------~---i I Concatenate lAs for string assignments" tut no adjustatle or varying-length I
I Isource strings are handled: I

.------------------+--i ISTRING function IElement variables and non-adjustable array and structure variables I
I lin connected storage. • I

.------------------~--------------------------~---i I Notes: 1. the maximum lengths specified refer to the lengths of operations rather than I
I operands. If the target is fixed-length, the operation length is the target I
I length. If the target is VARYING, the operation length is the lesser of thel
I operand lengths. I
I I
I 2. UNALIGNED bit strings that are parameters, defined variables, or part of I
I aggregate variables are not handled. I
L ________________ ~----------------------------.-------__________________________________ J

Figure 18.2. Conditions under which string operations are handled in-line

USE OF STORAGE

When reduction/of storage space is more
important than reduction of execution time,
the following measures may be employed.

1. Wherever possible, fixed-point data
for computation should be binary,
rather than decimal.

254

2. If a file declared as INDEXED is to be
used for DIRECT UPDATE but will not
have records added to it, the use of
the ENVIRONMENT option NOWRITE will
save data management about 5000 bytes
of storage.

Alignment Attributes: These allow the
user to provide alignment for
arithmetic and string data as follows:

ALIGNED:
Arithmetic:

FIXED DECIMAL: byte
FLOAT(DOUBLE): doubleword
FIXED BINARY(p,q)
where p~15:halfword
Other: word

String: byte

UNALIGNED:
Arithmetic and character

string: byte
Bit string: bit

Thus the UNALIGNED attribute can be
used to obtain denser packing of data,
with the minimum of padding.

r---------T-------------------------------, I string I Comments and Conditions I
IFunction I I
~---------+---~---------------------------~
IBIT I Always I
I I I
I BOOL IThe third argument must be a I
I I constant. The first two I
I larguments must satisfy the 1
I Iconditions for 'and'~ 'or', and
I I'not' operations in figure
I 1118.2.
I I
CHAR I Jl~lways

I
HIGH Always

INDEX

LENGTH

LOW

REPEAT

SUBSTR

second argument must be a
non-adjustable character string
<256 characters long

J~lways

J~lways

Second argument must be
<:onstant

STRINGRANGE must be disabled

TRANSLATE First argument must be
fixed-length, second and third
arguments must be constant

UNSPEC I Always
I

VERIFY IFirst argument must be
I fixed-length; if CHARACTER it
Imust be S256 characters, if BITI
lit must be ALIGNED, S2048 bits. I
ISecond argument must be I
I constant I L _________ ~ _______________________________ J

Figure 18.3~ Conditions under which the
string functions are handled in-line

Area, event and task data are always
word·· c:>r doul::leword-aligned. They can
never be unaligned.

In data aggregates, the explicitly
declared alignment for the aggregate
applies to each element in the
aggregate. In structures, however,
this alignment can be overridden by an
alignment specified for a particular
base element. For example

DCL 1 STR UNALIGNED,
2 A,
2 B ALIGNED,
2 C;

Here A and C will be UNALIGNED and B
will be ALIGNED.

Default attributes depend on the data
type of the ~lement concerned, both
for data items and for data
aggregates. These defaults are:

UNALIGNED All string data and
PICTURE items

ALIGNED All arithmetic data i.e.,
BINARY
DECIMAL
F'IXED
FLOAT

For example:

DCL A BIT(4),
I,
(B CHAR(10), X) UNALIGNED,
(C BIT(12), Y FIXED) ALIGNED;

Here A is UNALIGNED by default, I is
ALIGNED by default, and B, C~ X and Y,
are as explicitly declared.

DCL (A1(80) CHAR(6), A2(80) BINARY)
ALIGNED,

B 1 (3, 3) BIT (2) "
C 1 (3 , 3) CHAR (4) ,
D1 (100) DECIMAL;

Here A1 and A2 are as explicitly
declared, B1 and C1 are UNALIGNED l::y
default, and D1 is ALIGNED by default.

DCL 1 A,
2 B"
2 C BIT(4) UNALIGNED,
2 D ALIGNED.,

3 E BIT(2),
3 F,

2 G CHAR(10);

Here A is a major structure
B is FLOAT DECIMAL ALIGNED by

default
C is explicitly UNALIGNED
D is a minor structure
E is BIT ALIGNED (inherited from

D)

Chapter 18: Efficient Programming 255

F is FLOAT DECIMAL ALIGNED by
default(here ALIGNED is
inherited from D, but it is
also the default for F if D had
not been declared ALIGNED)

G is CHAR UNALIGNED

The user must take care that the
alignment attributes are correct when
matching variables for:

a. Use of the DEFINED attribute

b. Arguments and associated
parameters

4. A DO-group, like that in the following
example, is expensive in terms of
storage, although not in terms of
time:

DO I = 1,2,6,9;

END;

An alternative that saves storage is:

DCL VALUES(4) FIXED BIN STATIC
INIT(1,2,6,9);

DO J=1 TO 4;
I=VALUES(J);

END;

5. After debugging, disable any
normally-disabled conditions that were
enabled for debugging purposes by
removing the relevant prefixes~ rather
than by includin~ NO-condition
prefixes. For instance, disable the
SIZE condition by removing the SIZE
prefix, rather than by adding a NOSIZE
prefix. The former method allows the
compiler to eliminate code that checks
for the condition, whereas the latter
method necessitates the generation of
extra code to prevent the checks being
carried out.

Many PL/I facilities and data
conversions are handled by PL/I resident
and transient library subroutines. Some of
these library subroutines require
considerably more storage space than others
and should be avoided if the size of the
object program is to be kept to a minimum.
They include subroutines that handle the
following:

1. Conversions between character and
arithmetic data.

256

2. Conversions involving numeric
character data.

3. List- and data-direct input/output,
except for character string variables
associated with character data.

4. Edit-directed input/output,
conversions between character and E­
and F-format data.

5. Edit-direct output, numeric character
to B-format conversion, character or
numeric character to P-format
conversion (except where pictures are
identical).

6. CHECK prefix option.

7. eNCODE, ONLOC, and COMPLETION built-in
functions.

8. WAIT statement.

USE OF INPUT/OU'I'PUT FACILITIES

The characteristics of a data set (record
format, length, blocking factor, etc.)
will significantly alter the time overhead
of programs performing a large amount of
input/output. In general~ the blocking of
records will save both time and space on a
data set.

It is advantageous to open a number of
files in a single OPEN statement, since
separate opening activities (either
explicit or implicit) will require the
reloading of the OPEN modules from the
transient library. It should also be
considered that when a file is open,
buffers or workspace and data management
interface modules are occupying storage.
Accordingly, if storage space is a prime
consideration, the judicious use of the
OPEN and CLOSE statements will help to
control the available storage.

Of the three STREAM transmission
techniques available, data-directed will
generally be the most costly, both in time
and space (symbol table entries exist at
object time for each data variable
transmitted). List-directed is available
for free format input-output, but the
greatest degree of control is available by
using edit-directed, which is generally the
most efficient technique, both in object
time space and execution.

Repeated execution of a str~am I/O
operation is best achieved by means of a
repetitive DO specification within the I/O
statement, rather than by placing the
statement within a DO-loop. The repetitive

specificat:ic:m obviates the need for
repeated library calls to perform initial
housekeeping operations such as obtaining
buffer spac4a.

RECORD transmission offers facilities
for handling data aggregates as single data
entities, rcither than element by element.
certain advantages, accordingly, are
available in terms of efficient access to
data set records and efficient use of data
set space, since the data is unconverted
and unedi t:ed.

For othe~, than spanned records, the use
of locate mode I/O saves movement bet~een
buffers and other locations. with spanned
records, this movement is necessary since
the segments must be transferred between
buffers and work areas. It is inefficient
to use both locate and move modes on the
same file, since considerable overhead~ are
incurred in obtaining and releasing work
areas.

When using the INDEXED data set
organization, accessing records in an
overflow clr4aa can slow processing
consideral:il~(. It is recommended that
INDEXED datu sets are regularly recreated
so that logically-deleted but
physically-present records are purged from
the data 5e1:. and records are collected from
the overflo'll areas into the prime data
areas.

Consideration should be given especially
to the choic:e between the BUFFERED and
UNBUFFERED file attributes, available for
sequential access. A BUFFERED file permits
the object l?rogram to perfo,rm .. anticipatory
buffering", that is, overlap of device
transmission and computing time. An
UNBUFFERED file"though sometimes saving
space requi~,ed for buffers, does not permit
such overlap" unless the EVENT option is
used. (It~ nhould be noted, in any case,
that an UNBUFFERED file will require hidden
buffers if 1:he record format is v, or if
the data 5e1: is INDEXED, or REGIONAL(2) or
(3».

Input/Outp~: Error Recovery

When I/O trclnsmission errors are
encountered., exhaustive recovery procedures
are performed automatically by data
management~, so that, upon entry to a
TRANSMIT on··uni t, it is unnecessary and

impossible to perform further transmission
error correction procedures.
Synchronization of transmission errors and
entry to relevant on-units can only be
guaranteed for input errors. An output
operation error may be detected in a
succeeding output operation, the particular
one being dependent upon the blocking
factor and the number of allocated tuffers.

ADDITIONAL HINTS

operating System and Jot Control

External procedures, but not internal
procedures, are treated as separate control
sections.

PROCEDURE Statement

Be careful to differentiate between options
of the OPTIONS option" and other options of
PROCEDURE. For example:

P:PROC OPTIONS(MAIN, RECURSIVE);

is incorrect. It should be:

P:PROC OPTIONS(MAIN) RECURSIVE;

Declarations and Attributes

1. Do not rely too heavily on default
attributes. Explicit declarations
help to clarify the source program
logic, and in some cases (for exam~le,
precision) reduce the chance of error.

2. Variables declared FIXED BINARY or
FLOAT BINARY are automatically aligned
on the proper word boundary (unless
they are declared UNALIG'NED),
regardless of whether they are single
o'r part of an aggregate. FIXED
DECIMAL variables are stored in packed
decimal format and the decimal
instructions are used in operations
involving them. FLOAT DECIMAL
variables are stored in floating-point
format; operations involving them are
carried out using the floating-~oint
instruction set.

Chapter 18: Efficient Programming 257

Assignments and Initialization

1. High order zeros will be inserted if
required on assignment to or
initialization of an arithmetic
variable:

DCL A FIXED DECIMAL (5,2) INIT (12);
/*A HAS VALUE 012.00*/

DCL B FIXED BINARY (15,0);
B=12;
/*B HAS VALUE 000000000001100B*/

2. Arrays may be initialized by
assignment from an element expression:

258

DCL A(1 0) ;
A=O;

The element value will be assigned
to each element of the array.
Similarly" when an element
expression is assigned to a
structure, its value will be
assigned to each element of the
structure:

DCL lB,

B=O;

2 C BIT(l),
2 0 CHAR (1) ,
2 E CHAR(4);

As a result of this assignment"
the values of the various elements
will be:

C 'O'B
o 'b'
E 'bbbO'

If it is required to assign zero to
all arithmetic and bit elements and
blanks to all string elements in a
structure containing two or all three
data types" the structure may have a
null string assigned to it, thus:

B=";

The values of the elements would then
be:

C 'O'B

o 'b'

E 'bbbb'

DO Loops

Iterations can step backwards, and the
expression in the WHILE option can refer to
the control variable, e.g.,

DO I=N+2*L BY -X WHILE (1)0);
END;

The control variable can be modified within
the loop.

It is possible to transfer from within a
DO loop to a label on the END statement for
the group. This has the effect of
incrementing the control variable without
intermediate processing; control will not
fall through. It is also possible to
transfer out of an iterative DO group
before the terminating value of the control
variable is reached.

Functions

The arguments in a function reference can
be modified by the function.

ON-conditions and on-units

Note the scope of condition prefixes:

(SIZE):A:PROC;

(NOSIZE):IF M>N THEN DO;
J=E+F;
END;

END A;

In the above example, SIZE is disabled
only during the evaluation of the
expression M>N; SIZE is enabled for the
assignment J=E+F.

Comparison of Aggregates

After evaluation of the comparison in the
IF statement, a single element must result,
not an aggregate. Hence aggregates cannot
be compared in an IF statement. However,
the equality of two aggregates of string
data can be tested by using the STRING

built-in fUllct,ion and pseudovariable. For
example:

DECLARE (A,B) (10) CHAR(10)~

IF STRING(A) = STRING(B) THEN •••

Common EI'rolrs and Pitfalls

This is a list of the errors and pitfalls
most likely to be encountered when writing
a PL/I source program. Some of the items
concern misunderstood or overlooked
language rules, while others result from
failure to observe the implementation
conventions and restrictions.

The warnings apply particularly to
programs compiled by the optimizing
compiler. Although a source program is in
error under the optimizing compiler will in
general be in. error under the checkout
compiler as well, the checkout compiler
detects many of the errors listed and takes
appropria'te a,ction.

OPERATING SYSTEM AND JOB CONTROL

A STATIC variable in an overlay segment
could be oveI:wri tten during an overlay
operation unless it is contained iri the
root segment.

SOURCE PROGRll~M AND GENERAL SYNTAX

1. Keypunch transcription errors may
occur unless particular care is taken
when writing the following characters:

1 (numeral), I (letter), I (or),
/ (slash), • (quotation mark);

, (n()t), 7 (seven),
> (greater than)~

L Cletter), < (less than).

o 'letter)~ 0 (zero);

5 (letter), 5 (five)~

Z (letter), 2 (two);

(break character),
- (minus sign)~

2. Ensure that the source program is
completely contained within the
margins specified by the MARGINS
option.

3. Inadvertent omission of certain
symbols may give rise to errors that
are difficult to trace. Common errors
are: unbalanced quotation marks;
unmatched parentheses; unmatched
comment delimiters (e.g., /* punched
instead of */ when closing a comment);
and missing semicolons.

4. Reserved keyword operators in the
48-character set (e.g., GT, CAT) must
in all cases be preceded and followed
by a blank or comment.

5. Care should be taken to ensure that
END statements correctly match the
appropriate DO, BEGIN, and PROCEDURE
statements.

6. In some situations, parentheses are
required when their necessity is not
immediately obvious. In particular,
the expression following WHILE and
RETURN must be enclosed in
parentheses.

PROGRAM CONTROL

1. The procedure to be given initial
control at execution time must have
the OPTIONS(MAIN) attribute. If 'more
than one procedure has the MAIN
option, the first one encountered by
the linkage-editor gets control.

2. When a procedure of a program is
invoked while it is still active in
the same task, it is said to be used
recursively. Under the optimizing
compiler, attempting the recursive use
of a procedure that has not been given
the RECURSIVE attribute may result in
a program interrupt after exit from
the procedure. This will occur if
reference is made to automatic data of
an earlier invocation of the
procedure.

3. When a procedure may be invoked while
it is still active in another task,
the REENTRANT option must be
specified.

DECLARATIONS AND ATTRIBUTES

1. DECLARE statements for AUTOMATIC
variables are in effect executed at

Chapter 18: Efficient Programming 259

entry to a block; sequences of the
following type should not be used:

A: PROC;
N=4;
DCL B(N) FIXED;

END;

2. Missing commas in DECLARE statements
are a common source of error. For
example, a comma must follow the entry
for each element in a structure
declaration.

3. External identifiers should neither
contain more than seven characters,
nor start with the letters IKN.

4. In a PICTURE declaration, the V
character indicates the scale factor,
but does not in itself produce a
decimal point on output. The point
picture character produces a point on
output" but is purely an editing
character and does not indicate the
scale factor. In a decimal constant,
however, the point does indicate the
scale factor. For example:

DCL A PIC'99.9~~
B PIC'99V9',
C PIC' 99. V9";

A,B,C=45.6:
PUT LIST (A~B,C)~

This will cause the following values
to be put out for A, B" and C,
respectively:

04.5 456 45.6

If these values were now read back
into the variables by a GET LIST
statement, A" B, and C would be set to
the following respective values:

004 56.0 45.6

If the PUT statement were then
repeated, the\result would be:

00.4 560 45.6

5. Separate external declarations for the
same identifier must not specify
conflicting attributes, either
explicitly/or by default. If this
occurs the compiler will not be able
to detect the conflict.

6. An identifier cannot be used for more
than one purpose within its scope.
Thus, the use of X in the following
sequence of statements would be in
error:

260

PUT FILE (X) LIST (A,B,C); X=Y+Z;
X: M=N:

7. The precision of decimal integer
constants should be taken into account
when such constants are passed. For
example:

CALL ALPHA(6):

ALPHA: PROCEDURE(X):
DCL X FIXED DECIMAL:
END;

If ALPHA is an external procedure, the
above example is incorrect because X
will be given a default precision~
while the constant, 6, will be passed
with precision (1,0).

8. When a data item requires conversion
to a dummy, and the called procedure
alters the value of the parameter,
note that the dummy is altered, not
the original argument. For exampl~:

DCL A FIXED,
B FLOAT:

CALL X(A,B):

X:PROC(Y,Z);
DCL (Y,Z) FIXED:
Y=Z**100~ /*A IS ALTERED IN

CALLING PROC*/
Z=Y**3; /*B IS UNALTERED IN

CALLING PROC*/
END X;

9. When the attributes for a given
identifier are incompletely declared,
the rest of the required attributes
are supplied by default. The
following default assumptions should
be carefully noted.

FLOAT DECIMAL(6) REAL is assumed for
implicitly declared arithmetic
variables, unless the initial letter
is in the range I through N, when
FIXED BINARY(15,0) REAL is assumed.

If a variable is explicitly declared
and any of the base, scale, or mode
attributes is specified, the others
are assumed to be from the set
FLOAT/DECIMAL/REAL. For example:

DCL I:

DCL J REAL;

/*I IS FIXED BINARY
(15,0) REAL
AUTOMATIC*/

/*J IS FLOAT DECIMAL
(6) REAL
AUTOMATIC*/

DCL K STATIC: /*K IS FIXED BINARY
(15,0) REAL
STATIC*/

DCL L FIXED; I*L IS FIXED DECIMAL
(5,0) REAL
AUTOMATIC*I

10. The precision of complex expressions
is not obvious. For example, the
precision of 1 + 11 is (2,0), that is,
the precision follows the rules for
expression evaluation.

11. When a procedure contains more than
one entry point, with different
parameteJ: lists on each entry, make
sure that. no references are made to
param~ters other than those associated
with the point at which control
entered the procedure. For example:

A: PROCEDURE(P,Q);
P=(l+ 8; RETURN;

B: l~NTRY(R,S);
R=1?+S; I*THE REFERENCE TO P

IS AN ERROR*I
l~NJ) ;

12. Based storage is allocated in terms of
doublewords; therefore, even for the
smallest item, at least eight bytes
are required.

13. The varii3.ble used in the REFER option
must be :ceferred to unambiguously.
For eXcimll?le:

DeL 1 A,
2 Y FIXED BIN,
2 Z FLOAT,

1 B,
2 Y FIXED BIN,
2 T(1:N REFER(B.Y»;

In any references to this declaration,
Y must be fully qualified to prevent a
possible ambiguity.

14. Conflicting contextual declaratfons
must be avoided. P is often used as
the name of a pointer; it must not,
therefore, assume by default the
characteristics of another data type.
For example:

DCL B BASED (P),

P AUTO,

. ,
The explicit declaration of P is
processed first by the compiler and
the default attributes, FLOAT and
DECIMAL are added; the contextual
declaration of P is then conflicting.

15. Parameters may not be given one of the
storage class attributes AUTC~ATIC,
BASED, or STATIC; a parameter must
either te CONTROLLED or have no
storage class.

ASSIGNMENTS AND INITIALIZATION

1. When a variatle is accessed, it is
assumed to have a value which has teen
previously assigned to it and which is
consistent with the attributes of the
variable. If this assumption is
incorrect, either the program will
proceed with incorrect data or a
program interrupt will occur. Such a
situation can result from failure to
initialize the variable, or it can
occur as a result of the variatle
h~ving been set in one of the
following ways:

a. by the use of the UNSPEC
pseudovariable

b. by record-oriented input

c. by overlay defining a picture on a
character string, with subsequent
assignment to the character string
and then access to the picture

d. by passing as an argument a
variable assigned in a different
procedure, without matching the
attributes of the parameter.

e. by assignment to a based variable
with different attributes, tut at
the same location.

Failure to initialize a variatle will
result in the variable having an
unpredictable value at execution time.
Do not assume this value to te zero.

Failure to initialize a subscript can
be detected by enabling
SUBSCRIPTRANGE, when debugging the
program (provided the uninitialized
value does not lie within the range of
the subscript).

2. Under the optimizing compiler, any
attempt to put out a variatle or array
that has not been initialized may well
cause a data interrupt to occur. For
example:

DCL A(10) FIXED;
A(1)=10;
PUT LIST (A);

Chapter 18: Efficient Programming 261

To avoid the data interrupt, the array
should be initialized before the
assignment statement, thus:

A=O;

Note that this problem can also occur
under the optimizing compiler as a
result of CHECK system action for an
uninitialized array. If the CHECK
condition were enabled for the array
in the above example, and system
action were taken, the results, and
the way in which the program
terminates, would be unpredictable.
The same problem arises when PUT DATA
is used.

3. Note the distinction between
= (assignment) and = (comparison)'.
The statement

A=B=Ci

means "compare B with C and assign the
result (either 'l'B or 'O'B) to A~
performing type conversion if
necessary."

4. Assignments that involve conversion
should be avoided if possible (see
section 2. under "Arithmetic and
Logical Operations" later in this
chapter).

5. In the case of initialization of or
assignment to a fixed length string:
if the assigned value is shorter than
the string~ it is extended on the
right with blanks (for a character
string) or zeros (for bit strings).
For example:

DCL A CHAR(6),
B CHAR(3) INIT('CR');
A=B;

After the execution of the above
statements, B would contain CRb, and A
would contain CRbbbb.

6. It is not possible to reference a
cross section of an array of
structures in an assignment statement
or any other single statement; the
whole of an array of structures, or a
single element may be referenced, but,
not a cross section.

1. When SIZE is disabled, the result of
an assignment which would have raised
SIZE is unpredictable:

262

FIXED BINARY: The result of an
assignment here -- which includes, for
instance, source language assignments
and the conversions implied by

parameter matching -- may be to raise
FIXEDOVERFLOW.

FIXED DECIMAL: Truncation to the
nearest byte may occur, without
raising an interrupt. If the target
precision is even, an extra ,digit may
be inserted in the high-order byte.

ARITHMETIC AND LOGICAL OPERATIONS

1. The rules for expression evaluation
should be carefully noted, with
particular. reference to priority of
operations. The following examples
show the kind of mistake that can
occur:

X>YIZ is not equivalent to X>YIX>Z
but is equivalent to (X>Y)IZ

X>Y>Z is not equivalent to X>Y&Y>Z
but is equivalent to (X>Y»Z

All operation sequences of equal
priority are evaluated left to right,
except for **, prefix +, prefix -, and
" which are evaluated right to left.
Thus, the statement

is equivalent to

A=B**(-(C**D»;

The normal use of parentheses is to
modify the rules of priority: however,
it may be convenient to use redundant
parentheses as a safeguard or to
clarify the operation.

2. Conversion is governed by
comprehensive rules which must be
thoroughly understood if unnecessary
trouble is to be avoided. Some
examples of the effect of conversion
follow.

a. DECIMAL FIXED to BINARY FIXED can
cause unexpected results if
fractions are involved:

DCL I FIXED BIN(31,5) INIT(l):
I = 1+.1:

The value of I is now 1.0625.
This is because .1 is converted to
FIXED BINARY(5,4), so that the
nearest binary approximation is
O.OOOlB (no rounding occurs). The
decimal equivalent of this is
.062~. A better result would have
been achieved by specifying .1000
in place of .1.

b. If a.rithmetic is performed on
charactE!r string data, the
intermediate results are held in the
maximum fixed decimal precision
(15,0):

DCL A CHAR(6) INIT('123.4S');
DCL B FIXED(S,2);
B=:A; /*B HAS VALUE 123.45*/
B=:A+A; / *B SAS VALUE 246.00*/

c. The rules for 4rithmetic to bit
string conversion affect
assignment to ~ bit string from a
decimal consta~t:

DeL A BIT(1),
D BIT(S),

A== 1; /*A HAS VALUE '0' B*/
0=1; 1*0 HAS' VALUE '00010'B*/
D='1'B; 1*0 ~AS VALUE

, 10000" B*I
IIi' A=1 THEN GO TO Y;

ELSE GO TO X;

The branch will be to X, because
the assignment to A resulted in
the following sequence of actions:

(1) The decima~ constant, 1, is
assumed to be FIXED DECIMAL
(1~0) and is assigned to
temporary storage with the
attributes FIXED BINARY(4,0),
taking the; value 0001B;

(2) This value is now treated as a
bit string of length (4)~ so
that it becomes '0001'B;

(3) The resultant bit string is
assigned to A. Since A has a
declared l~ngth of 1, and the
value to be assigned has
acquired a length of 4,
truncation occurs at the
right, and A has a final value
of 'O'B.

To perform the comparison
operation in the IF statement~
, 0':8 and 1 are converted to FIXED
BINl~RY and compared
arithmetically. They are unequal,
giving a result of "false" for the
relationship ·A=1.

In the first assignment to 0, a
sequence of actions similar to
that described for A takes place~
except that the value is extended
at the.right with a zero, because
o has a declared length that is 1
greater than that of the value to
be assigned.

d. Assignment of arithmetic values to
character strings involves
conversion according to the rules
given in section F, "Data
Conversion and Expression
Evaluation" ..

Example 1

DCL A CHAR(4),
B CHAR(7);

A=" 0'; /*A HAS VALUE ., Ottb' */
A=O; /*A HAS VALUE'ttbO'*/
B=1234S67; /*B HAS VALUE

'ttb1234'*1

Note: The three blanks are
necessary to allow for the
possibility of a minus sign, a
decimal or binary point, and
provision for a single leading
zero before the point.

Example 2

DCI CTLNC CHAR(8) INIT('O'):
DO 1=1 TO 100;

CTLNO=CTLNO+1:

END;

In this example, a conversion
error occurs because of the
following sequence of actions:

(1) The initial value of CTLNO,
that is, 'Obbbbbbb', is
converted to FIXED
DECIMAL (15.,0).

(2) The decimal constant" 1,
assumed to be FIXED
DECIMAI(1,0)~ is added; in
accordance with the rules for
addition, the precision of the
result is (16,0).

(3) This value is now converted to
a character string of length
18 in preparation for the
assignment back to CTLNC.

(4) Because CTLNO has a length of
8, the assignment causes
truncation at the right; thus,
CTLNO has a final value that
consists entirely of tlanks.
This value cannot be
successfully converted to
arithmetic type for the second
iteration of the loop.

Chapter 18: Efficient Programming 263

264

e. FIXED division can result in
unexpected overflows or
truncation. For example, the
expression

25+1/3

would yield a value of 5.33 ••• 3.
To obtain a result of 25.33 ••• 3,
it would be necessary to write

25+01/3

The explanation is that constants
have the precision and scale
factor with which they are
written, while FIXED division
results in a value of maximum
implementation- defined precision.
The results of the two evaluations
are reached as follows:

r-------T-------T-----------------,
1 1 Precn/I 1
1 I Scale I I
I Item 1 Factor I Result I
~-------+-------+-----------------~
1 1 1 (1,0) I 1 I
1 3 1 (1,0) I 3 1
I 1/3 1(15,14) 10.33333333333333 I
125 I (2,0) I 25 1
125+1/3 1(15,14) 15.3333333333~333 1
I I I (truncation on I
1 1 I left; I
I I I FIXEDOVERFLOW I
1 1 I would be raised I
1 I I unless disabled) I
~-------+-------+-----------------~
101 1 (2,0) I 01 1
I 3 I (1,0) I 3 1
101/3 1(15,13)100.3333333333333 I
125 1 (2,0) 1 25 I
125+01/31(15,13) 125.3333333333333 1 L _______ ~ _______ ~ _________________ J

Alternatively. the PRECISION
built-in function could be used:

25+PREC(1/3,15,13)

f. Checking of a picture is performed
only on assignment into the
picture variable:

DCL A PIC'999999~,
B CHAR(6) DEF A,
C CHAR(6);

B= , ABCDEF' ;
C=A; /*WILL NOT RAISE CONV

CONDITION*/
A=C; /*WILL RAISE CONV*/

Note also (A, B, C as declared
above):

A=123456; /*A HAS VALUE
123456*/

/*B HAS VALUE
'123456'*/

C=123456; /*C HAS VALUE
'bbb123'*/

C=A; /*c HAS VALUE '123456~*/

g. A FIXED DECIMAL element with a
declared even precision (P,Q) may
have an effective precision of
(P+1,Q), as the high-order byte
may not be non-zero. The SIZE
condition can be used to eliminate
this effect:

DO GROUPS

DCL (A,B,C) FIXED DECIMAL (6,0);
ON SIZE;

.
(SIZE): A = B + C;

This ensures that the high-order
byte of A is zero after the
assignment.

1. The scope of a condition prefix
applied to a DO statement is limited
to execution of the statement itself;
it does not apply to execution of the
entire group.

2. An iterative DO group is not executed
if the terminating condition is
satisfied at initialization:

I=6;
DO J=I TO 4;

X=X+J;
END;

X is not altered by this group, since
BY 1 is implied. Iterations can step
backwards, and if BY -1 had been
specified, three iterations would have
taken place.

3. Expressions in a DO statement are
assigned to temporaries with the same
characteristics as the expression, not
the variable. For example:

DCL A DECIMAL FIXED(5,0);
A=10;
DO I=l TO A/2;

END:

This loop will not be executed,
because A/2 has decimal precision
(15,10), which, on conversion to
binary (for comparison with I),
becomes binary (31,34).

Five iterations would result if the DO
statement were replaced by

ITEMP=A/2;
DO 1=1 TO ITEMP:
or
DO 1=1 TO PREC(A/2,6,1)

4. DO groups ·cannot be used as on-units:
a BEGIN block should be used for an
on-unit of more than one statement.

5. Upper and lower bounds of iterative DO
groups are computed once only, even if
the variables involved are reassigned
within the group. This applies also
to the BY expression.

Any new values assigned to the
variables involved would take effect
only j,f the DO group were started
again.

6. In a. DO group with both a control
variable and a WHILE option, the
evaluation and testing of·the WHILE
expression is carried out only after
determination (from the value of the
control variable) that iteration may
be performed. For example, the
follo\~ing group would be executed at
most~ once:

DO 1=1 WHILE(X>Y):

END;

7. I is :Erequently used as the control
variable in a DO group, for example:

DO 1=1 TO 10;

Within the scope of this implicit
decla:ration, I might be contextually
declared as a pointer, for example:

DCL X BASED(I):

The two statements are in conflict and
will produce a diagnostic message.
When I is a pointer variable, it can
only be used in a DO group in one of
the following ways:

a. DCL (I, lA, IB, IC) POINTER:

DO I=IA,IB,IC:

b. DCL (I, IA) POINTER:

DO WHILE(I=IA);

8. If the control variable is used as a
subscript within the do-group, care
must be taken not to let the variable
run beyond the bounds of the array
dimension. For instance:

DECLARE A(10);
DO I = 1 TO N:

A(I) = X:

END:

If N is greater than 10 then the
assignment statement may overwrite
data beyond the storage allocated to
the array A. Such a bug can be
difficult to find, particularly if th
the overwritten storage happens to
contain object code. The error can
be prevented by enabling
SUBSCRIPTRANGE.

DATA AGGREGATES

1. Array arithmetic should be thought of
as a convenient way of specifying an
iterative computation. For examfle:

DCL A(10,20):

A=A/A(1,1):

has the same effect as

DCL A (1 0, 20) :

DO 1=1 TO 10:
DO J=1 TO 20:
A(I,J)=A(I,J)/A(1~1):

END: END;

Note that the effect is to change the
value of A(1,1) only, since the first
iteration would produce a value of 1
for A(1,1). If the programmer wished
to divide each element of A by the
original value of A(1,1), he could
write

B=A(1,1):
A=A/B:

Chapter 18: Efficient Programming 265

or alternativelYI

DCL A(10,20),
B(10,20);

B=A/A(1,1);

2. Note the effect of array
multiplication:

DCL (A,B,C) (10,10);

A=B*C;

This does not effect matrix
multiplication: it is equivalent to:

DCL (A,B,C) (10,10);

DO 1=1 TO 10;
DO J=1 TO 10;
A(I,J)=B(I,J)*C(I,J);
END; END;

STRINGS

1. Assignments made to a varying string
by means of the SUBSTR pseudovariable
do not set the length of the string.
A varying string initially has an
undefined length, so that if all
assignments to the string are made
using the SUBSTR pseudovariable, the
string still has an undefined length
and cannot be successfully assigned to
another variable or written out.

2. The user must ensure that the lengths
of intermediate results of string
expressions do not exceed 32767 bytes.
This applies particularly to strings
of varying lengths, as there is no
object-time ~ength checking.

FUNCTIONS AND PSEUDOVARIABLES

1. When UNSPEC is used as a
pseudovariable, the expression on the
right is converted to a bit string.
Consequently, the expression must not
be invalid for such conversion; for
example, if the expression is a
character string containing characters
other than 0 or 1, a conversion error
will result.

266

ON-CONDITIONS AND ON-UNITS

1. Note the correct positioning of the ON
statement. If the specified action is
to apply when the named condition is
raised by a given statement, the ON
statement must be executed before that
statement. The statements:

GET FILE (ACCTS) LIST (A,B,C):
ON TRANSMIT (ACCTS) GO TO TRERR;

would result in the ERROR condition
being raised in the event of a
transmission error during the first
GET operation, and the required branch
would not be taken (assuming that no
previous ON statement applies).
Furthermore, the ON statement would be
executed after each execution of the
GET statement.

2. An on-unit cannot be entered by means
of a GOTO statement. To execute an
on-unit deliberatelYI the SIGNAl
statement can be used.

3. CONVERSION on-units entered as a
result of an invalid conversion (as
opposed to SIGNAL) should either
change the invalid character (by means
of the ONSOURCE or ONCHAR
pseudovariable), or else terminate
with a GOTO statement. otherwise, the
system will print a message and raise
the ERROR condition.

4. At normal exit from an AREA on-unit
the standard system action is to try
again to make the allocation. As a
result the on-unit will be entered
again, and an indefinite loop will be
created. To avoid this, the amount
allocated should be modified in the
on-unit, for example l by using the
EMPTY built-in function or by changing
a pointer variable.

5,. Do not use on-units to implement the
program's logic: use them only to
recover from truly exceptional
conditions. Whenever an on-unit is
entered, considerable error-handling
overheads are incurred. To implement
the logic, the programmer should
perform the necessary tests, rather
than relying on the compiler's
condition-detecting facilities.

For example, in a program using
record-oriented output to a keyed data
set, the programmer might wish to
eliminate certain keys because they
wo~ld not fit into the limits of the
data set. He may rely on the raising
of the KEY condition to detect
unsuitable keys, but it is

considerably more efficient for him to
test each key himself.

6. After debugging, disable any
normally-disabled conditions that were
enabled for debugging purposes by
removing the ~elevant prefixes, rather
than by including NO-condition
prefixes. For instance, disable th~
SIZE: condition by removing the SIZE
prefix, rather than by adding a NOSIZE
prefile. The former method allows the
compiler to eliminate code that checks
for the condition, whereas the latter
method necessitates the generation of
extl:a code to prevent the checks being
carl:i4ad out.

I NPUT /OU~rpI(JT

1. The UNDEFINEDFILE condition is raised
not only by conflicting language
attributes (such as DIRECT with
PRINT)~ but also by the following:

a. Block size smaller than record
size (except when records are
spanned).

b. LINESIZE exceeding the permitted
maximum.

c. KEYLENGTH zero or not specified
for creation of INDEXED,
REGIONAL(2), or REGIONAL(3) data
sets.

d. Specifying a KEYLOC option, for an
INDEXED data set, with a value
resulting in KEYLENGTH + KEYLOC
exceeding the record length.

e. Specifying a V-format logical
record length of less than 18
bytes for STREAM data sets.

f. Specifying, for FB-format blocked
records, a block size which is not
an integral multiple of the
recordsize.

g. Specifying, for VB-format records,
a logical record length that is
not at least four bytes smaller
than the specified block size.

2. If a file is to be used for both input
and output~ it must not be declared
with either the INPUT or the OUTPUT
att.ribute. The required option can be
specified on the OPEN statement.

3. Input/output lists must be surrounded
by a pair of parentheses; so must
iteration lists. Therefore" two pairs
of outer parentheses are required in

GET LIST «A(I) DO 1=1 TO N»i

4. The last eight bytes of a source key
to access a regional data set must be
the character string representation of
a fixed decimal integer. When
generating the key, the rules for
arithmetic to character string
conversion should be considered. For
example, the following group would be
in error:

DCL KEYS CHAR(B);
DO 1=1 TO 10;

KEYS=I;
WRITE FILE(F) FROM (R)

KEYFROM (KEYS);
END;

The default for I is FIXED
BINARY(1S,0), which requires not 8 but
9 characters to contain the character
string representation of the
arithmetic values.

5. Note that the file must have the KEYED
attribute if the KEY., KEYFRO~, or
KEYTO options are to be used in any
input/output statement referring to
that file.

6. The standard file names SYSIN and
SYSPRINT are implicit only in GET and
PUT statements. Any other reference,
such as those in ON statements or
record-oriented input/output
statements, must be explicit.

7. PAGESIZE and LINESIZE are not file
attributes, that is, they cannot be
included in a declaration for the
file; they are options on the OPEN
statement.

B. When an edit-directed data list is
exhausted, no further format items
will be processed, even if the next
format item does not require a
matching data item. For example:

DCL A FIXED(5),
B FIXED(5,2);

GET EDIT (A,B) (F(S),F(S,2),X(70»;

The X(70) format item will not be
processed. To read a following card
with data in the first ten columns
only, the SKIP option can be used:

GET SKIP EDIT (A,B) (F(S)~ F(S,2»;

9. The number of data items represented
by an array or structure name

Chapter 1B: Efficient programming 261

10.

11.

appearing in a data list is equal to
the number of elements in the array or
structure; thus if more than one
format item appears in the format
list, successive elements will be
matched with successive format items.
For example:

DCL 1 A,
2 B CHAR(S),
2 C FIXED(S,2);

PUT EDIT (A) (A(5),F(5,2»;

B will be matched with the A(S) item,
and C will be matched with the F(5~2)
item.

Arrays are transmitted in row major
order (e.g., A(1,1), A(1,2), A(1,3),

A (2, 1) , et c.)

strings used as input data for GET
DATA and GET LIST must be enclosed in
quotation marks.

12. The 48-character representation of a
semicolon (,.) is not recognized as a
semicolon if it appears in a
data-directed input stream; the 11-8-6
punch must be used.

13. The user must be aware of a limitation
of PUT DATA; (i.e., without a data
list): its effect when used with an
ON statement is restricted because the
data known to PUT DATA would be the
data known at the point of the on­
unit.

268

If the ON statement

ON ERROR PUT DATA;

is used in an outer block" it must be
remembered that variables in inner
blocks are not known and therefore
will not be dumped. It would be a
good practice, therefore, to repeat
the on-unit in all inner blocks during
debugging.

If an error occurs during execution of
the PUT DATA statement, and this
statement is within an ERROR on-unit,
the program will recursively enter the
ERROR on-unit until no more storage
remains. Since this could be wasteful
of machine time and printout, the
ERROR on-unit should be turned off
once it is activated. Instead of:

ON ERROR PUT DATA;

better code would be:

14.

ON ERROR BEGIN;
ON ERROR SYSTEM;
PUT DATA;
END;

When PUT DATA is used without a
data-list every variable known at that
point in the program is transmitted in
data-directed output format to the
specified file. Users of this
facility, however, should note that:

a) Uninitialized FIXED DECIMAL data
may raise the CONVERSION
condition or a data interrupt.

b) Unallocated CONTROLLED data will
cause arbitrary values to be
printed and, in the case of
FIXED DECIMAL, may raise the
CONVERSION condition or a data
interrupt.

A pointer set in
SET is not valid
operation on the
CLOSE statement.
WRITE and LOCATE
freely mixed.

READ SET or LOCATE
l:::eyond the next
file, or l:::eyond a

In OUTPUT files,
statements can be

When it is required to rewrite a
record that has been read into a
buffer (using a READ SET statement
that specifies a SEQUENTIAL UPDATE
file) and then updated, the REWRITE
statement without a FROM pption may be
used. The result of a REWRITE after a
READ SET is always to cause the
contents of the last buffer to l:::e
rewritten onto the data set. For
example:

3 READ FILE (F) SET (P)~

S P->R = S;

7 REWRITE FILE (F);

11 READ FILE (F) INTO (X);

1S REWRITE FILE (F);

19 REWRITE FILE (F) FROM (X);

~:

Statement 7 will rewrite a record
updated in the buffer.

15.

Sta.tement 15 will not change the
record on the data set at all.

Staltement 19 will raise ERROR,
since there is no preceding
READ statement.

Thel:e is one cas e where it is not
possible to check for the KEY
condit:ion on a LOCATE statement until
transmission of a record is attempted.

This is:

When there is insufficient room in
the specified region to output the'
record on a REGIONAL(3) v- or
U-format file. Neither the.record
rcll.s1ng the condition nor the
Cl1rrent record is transmitted.

If a lLOCATE is the last I/O statement
to be executed before the file is
closed, the record is not transmitted
and the condition may be raised by the
CLOSE statement.

If a reference is made, at object
time, to a based variable that has not
been allocated storage, an
unpredictable interrupt (protection,
add:ressing" or specification) may
occur.

16~ Areas, pointers, offsets and
structures containing any of these
cannot be used with STREAM I/O.

17. When a tased variatle is freed, the
associated pointer no longer contains
useful information.

18. A based variable allocated in an area
must be freed in that area. For
example:

19.

DeL A AREA, B BASED (X);
ALLOCATE B IN (A);

FREE B;
FREE B IN (A);

/* INVALID ./
/* VALID ./

The alignment in the buffer of the
f'irst tyte of the first record in a
block that has been read from an ASCII
data set is not necessarily on a
doubleword. The block prefix is
doubleword aligned, but the alignment
of the first record depends on the
length of the tlock prefix.

Cpapter 18: Efficient Programming 269

Chapter 19: Interlanguage Communication Facilities

The PL/I interlanguage facilities permit
communication, at execution time" between
programs compiled by the PL/I checkout and
optimizing compilers and programs compiled
by one of the following compilers, and
executed using the corresponding library.
The compilers and libraries have all been
developed by IBM for os.

compiler or Library

FORTRAN E
FORTRAN G
FORTRAN H Version II
FORTRAN Library
COBOL E
COBOL E Library
COBOL F
COBOL F Librar ..
American National Standard

COBOL
American National Standard

COBOL Library

Program No.

360S-FO-092
360S-FO-520
360S-FO-500
360S-LM-501
360S-CO-503
360S-LM-504
360S-CB-524
360S-LM-525

360S-CB-545

360S-LM-546

communication between a PL/I program,
and a program compiled by one of the
FORTRAN or COBOL compilers" can be achieved
in two ways:

1. By using a conversion data set for the
PL/I and COBOL/FORTRAN routines.

2. By invoking a COBOL/FORTRAN routine
from a PL/I routine, or vice versa,
and by passing data either as
arguments or in the form of static
storage.

If a common data set is used to
communicate between a PL/I and a COBOL
routine, the COBOL option of the
ENVIRONMENT attribute may be required. For
further details, see the section WData
Interchnage (COBOL)W in chapter 12.

A PL/I procedure can invoke a COBOL
routine by use of the CALL statement, or
can invoke a FORTRAN routine by use of the
CALL statement or a function reference.
Alternatively, a PL/I procedure can be

'invoked by use of the corresponding
language features in a COBOL or a FORTRAN
main program or routine. Arguments can be
passed on invocation, and a value can be
returned for function references.

A COMMON block in FORTRAN has storage
equivalent to that of a STATIC EXTERNAL
variable in PL/I. If a COMMON block and a
STATIC EXTERNAL variable are given the same
name, then they will be allocated the same
block of storage, in the same way as two

270

identical STATIC EXTERNAL variables in
PL/I. Assigning a value to one variable
causes the same value to be assigned to the
other. There is no similar equivalence in
COBOL - no COBOL variable can have common
storage with a PL/I variable other than as
an argument or parameter.

The interlanguage facilities are
entirely provided by the PL/I compiler;
they are obtained by specifying the
appropriate language items in the invoking
or invoked PL/I procedure. Existing COBOL
or FORTRAN programs or routines generally
do not need modification or recompiling for
interlanguage use; new programs or routines
can be written in these languages and
compiled as before, without the need to
anticipate interlanguage communication.
Thus existing COBOL or FORTRAN application
programs can be extended by the use of PL/I
procedures, while COBOL or FORTRAN
libraries can be made available to new or
existing PL/I procedures.

~ In the context of this Chapter,
Wroutine W includes a COBOL subprogram, or a
FORTRAN subroutine or function, including a
FORTRAN library function. The conventions
that exist in these languages for handling
subroutines and functions apply normally,
and are not modified for interlanguage use.
In particular, the restriction that a
FORTRAN function cannot be inVOked without
passing an argument or arguments still
applies when the invocation is 'from a PL/I
routine.

Interlanguage Facilities

While a detailed knowledge of COBOL or
FORTRAN is not essential for use of the
interlanguage facilities, the programmer
may need to be aware of the equivalents in
data organizatiqn in PL/I and the other two
languages. These equivalents must be
understood in order to achieve
argument/parameter matching.

The interlanguage facilities
automatically resolve differences in the
mapping for equivalent data organi zations"
when matching arguments and parameters; the
programmer can, if he wishes, override this
action.

Facili ties are provided to ex'tend PL/I
interrupt-handling to cover invoked COBOL
or FORTRAN routines.

Passing Ar~lments to a COBOL or FORTRAN
Routine

When an argument is passed to a COBOL or a
FORTRAN rout~ine, the data type is
determined in the normal PL/I manner, that
is, from the parameter descriptor list of
the associated entry declaration, or from
the argument itself. The interlanguage
facilities ensure, however, that the
addressing mechanism for the argument is
that used b){ the invoked language, and
that, unless otberwise required, the
mapping of clny aggregates passed is that
used by the invoked language. Note that
since the interlanguage facilities provided
by PL/I cannot look at the parameter in the
invoked rou1:.ine, it is the programmer' s
responsibility to ensure that the parameter
in the invo]ted routine corresponds in data
type and or9anization to the argument
description in PL/I.

If the PJL/I compiler can determine, at
compile-time, that the mapping of a
structure or array argument is the same in
PL/I as in the invoked language, the
argument is passed directly to the invoked
routine. H4:>wever, where such mapping
equi valenc::e does not exist, the
interlanguage facilities provide for a
dummy argumlent to be passed, where the
dummy is ma,pped according to the rules of
the invoked language. See section K, "Data
Mapping".

If the P:L/I data types of arguments
passed to FORTRAN or COBOL have no
equivalents in these languages, a warning
message i:s produced at compile-time. At
execution·-time the results are undefined,
and may include abnormal termination.

Data types: PL/I has more data types than
either COBOL or FORTRAN~ some have no
equivalents in these languages. The extent
to which :PL/I data types have equivalents
in COBOL lor FORTRAN" and therefore can be
passed as arguments, is summarized here.

Problem dat~: Most of the PL/I data types
have equivalents in either COBOL or
FORTRAN. T'ab1es of data equivalents for
PL/I-COBOL and PL/I-FORTRAN are given
below, in "COBOL Interface" and "FORTRAN
Interface" respectively.

Program-control data: Arguments of any
program-control data type can be passed to
an invoked COBOL or FORTRAN routine.
However, only an entry argument can be
passed and used within the invoked routine,
and then only if the routine is a FORTRAN
routine. J!.rguments of any other data type
should not be used in the invoked routine
except to be passed in turn to a PL/I
procedure.

~ The COBOL option in the ENVIRONMENT
attribute can be specified for a file that
is to be used in certain inputloutput
operations. Although this option initiates
remapping of PL/I structures" it is in no
way associated with the interlanguage
facilities described here~ a file with this
option cannot be used,as a file argument or
a file parameter. For use of the COBOL
option of the ENVIRONMENT attribute, see
"ENVIRONMENT Attribute" in chapter 12,
"Record-Oriented Transmission."

Data-mapping: In order that an argument
can be successfully passed to a COBOL or
FORTRAN routine, the mapping of the actual
argument passed must correspond to the
mapping assumed for the parameter by COBOL
or FORTRAN.

For an element argument, the only
requirement is that the alignments of
argument and parameter are compatible. In
PL/I the alignment of variables is
determined by the ALIGNED and UNALIGNED
attributes. The equivalent specifications
in COBOL and FORTRAN are:

~ COBOL FORTRAN

ALIGNED SYNCHRONIZED Normal alignment

UNALIGNED Unsynchronized No equivalent

The alignment of a PL/I argument is
deduced, like the data type, from the
parameter descriptor list or from the
argument itself. Only ALIGNED elements may
be passed to SYNCHRONIZED COBOL parameters,
or to FORTRAN parameters. Either ALIGNED
or UNALIGNED elements can be passed to
COBOL unsynchronized parameters. It is the
programmer's responsibility to ensure that
these alignments are compatible.

The problem is more complicated for data
aggregates. A PL/I or a COBOL structure
for example can have either of the
alignment stringencies given above. In
addition, each member can have its own
alignment stringency or all members can
have the same alignment stringency.
padding bytes are inserted by the mapping
algorithm for the particular language, in
order to preserve the required alignment
for each member. In a PL/I structure, the
alignments are adjusted, where possible, to
minimize the amount of padding required;
this adjustment does not occur in a COBOL
structure. The result is that a structure
mapped with the PL/I mapping algorithm may
not have the same layout in main storage as
a structure mapped with the COBOL
algorithm.

Similarly, the mapping of arrays is
different in PL/I and FORTRAN. PL/I stores
arrays of more than one dimension in

Chapter 19: Interlanguage Communication Facilities 271

row-major-order, while FORTRAN stores them
in column-major-order. Hence, for arrays
with more than one dimension, a reference
to an element in PL/I is obtained by
reversing the order of the subscripts that
would be used in FORTRAN to refer to the
same element.

The interlanguage facilities resolve
these problems by creating dummy arguments
for PL/I data aggregates passed as
arguments to COBOL or FORTRAN routines.
~hen a PL/I structure is passed as an
argument to a COBOL routine, the mapping of
the argument in both languages is
considered. If the compiler can determine
that the mappings are identical, the
argument is passed directly to the COBOL
routine.

However, if the compiler cannot
determine that the mappings are identical,
a dummy argument is created, mapped
according to the COBOL mapping algorithm.
The values of the members of the PL/I
structure are assigned to the corresponding
members in the dummy argument; the dummy is
then passed as an argument to the COBOL
routine. On return to the PL/I procedure,
the values in the dummy argument (which may
or may not have been changed) are assigned
to the corresponding members of the
original PL/I argument.

Similarly, when a PL/I array is passed
as an argument to a FORTRAN routine, the
mapping of the array in both languages is
considered. If the arrays are
unidimensional, and are in connected
storage and are aligned identically~ the
argument is passed directly to the invoked
FORTRAN routine. If either the arrays are
unidimensional and do not meet the above
conditions, or are multidimensional, a
dummy argument is created, mapped according
to FORTRAN array handling. (In effect,
this means the subscripts are reversed).
The values of the PL/I array elements are
assigned to the corresponding elements in
the dummy argument. The dummy is then
passed as an argumen~ to the FORTRAN
routine. On return to the PL/I procedure,
the values in the dummy argument (which may
or may not have been changed) are assigned
to the appropriate elements of the PL/I
argument.

The programmer can specify certain
options that inhibit or restrict the effect
of the interlanguage facilities for
remapping data aggregates. If several are
passed at an invocation, he can, for
example, inhibit the facilities for one
argument, allow them for another argument~
or restrict them for a third argument.

272

Invocation

Invocation of a COBOL or FORTRAN routine is
performed by a CALL statement or (in the
case of a FORTRAN routine only) function
reference that specifies an entry constant
or variable whose value corresponds to the
entry point of a COBOL or FORTRAN routine.
The entry point must not be that of a
FORTRAN main program. The entry constant
or variable must be identified as invoking
COBOL or FORTRAN ty use of the appropriate
options in the OPTIONS attribute in the
declaration of the entry in the PL/I
program. The programmer may also specify,
in this declaration, options which suppress
re-mapping of data aggregates and an option
which allows PL/I to deal with certain
interrupts in the COBOL or FORTRAN routine.

The options are:

COBOL:

FORTRAN:

NOMAP:

NOMAPIN:

NOMAPOUT:

INTER:

This specifies that the
designated entry point is in a
COBOL routine.

This specifies that the
designated entry point is in a
FORTRAN routine.

This specifies that a dummy
argument is not created; the
aggregate argument is passed
directly to the invoked
routine.

This specifies that, if a dummy
argument is created, it is not
initialized with the values of
the aggregate argument.

This specifies that, if a dummy
argument is created, then, on
return, the values in the dummy
argument are not assigned to
the aggregate argument.

This specifies that any
interrupts occurring during the
execution of a COBOt or FORTRAN
routine that are not dealt with
by the COBOL or'FORTRAN
interrupt-handling facilities
are dealt with by the Pl/I
interrupt-handling facilities
(see also "Interrupt Handling"
later in this chapter).

The NOMAPIN and NOMAPOUT
options should be used if
initialization is not required
whenever program efficiency is
important" because they allow
the compiler to omit
unnecessary initialization
code ..

ARGn: This is an option of NOMAP,
NOMAPIN, and NOMAPOUT which
specifies which arguments the
option applies to. If no ARGn
is specified, the option is
applied to all arguments.

The following ~oints should be noted in
the declaration of the entry name:

1. Either COBOL or FORTRAN (but not both)
can appear in the declaration. One or
more of the options NOMAP~ NOMAPIN and
NOMAPOUT can appear in the same
declara'tion.

2. The RETURNS attribute cannot be used
with the COBOL option, as COBOL
subprograms do not return values.

3. An entry variable or a parameter can
be declared with the interlanguage
options.

4. An en~try name with the interlanguage
options can appear in a GENERIC
attribute specification.

5. The entry constant name of the COBOL
or FORTRAN routine may have one
through eight characters. If more
than eight characters are specified,
the leftmost eight only are taken.

Examples:

1. DCL COBOL ENTRY (CHAR(5»
OPTIONS(COBOL INTER),

COBOLB ENTRY (1, 2 FIXED, 2 FLOAT)
OPTIONS(COBOL NOMAPIN),

COBOLBXX OPTIONS(COBOL) EXTERNAL
ENTRY(•••);

2. DCL FORTA ENTRY(FIXED BINARY)
OPTIONS (FORTRAN) RETURNS
(F'LOAT (5»;

3. DCL A ~XTERNAL ENTRY(•••) VARIABLE
OPTIONS (FORTRAN),

B OPTIONS(FORTRAN);

A=:E\:
CAI~L A (•••) ;

4. DCL A GENERIC (COBOLZ
WHEN(CHARACTER),

FORTZ WHEN(FIXED BINARY»,

COBOLZ OPTIONS(COBOL),

FORTZ OPTIONS(FORTRAN);

5. DCL A ENTRY;

CALL X(A);

X:PROC (B):
DCL B OPTIONS(COBOL);

6. eCL COBSUB ENTRY(••• ~ ••• , ••• ~)
OPTIONS(COBOL,NOMAP(ARG1,ARG3»:

CALL COBSUB (A" B, C) ;

CALL COBSUB(X,Y~Z):

Passing Arguments to a PL/I Procedure

When an argument is passed to a PL/I
procedure from COBOL or FORTRAN, the data
type is determined in the normal PL/I
manner" that is fronl the declaration of the
parameter. The interlanguage facilities
ensure that the addressing mechanism used
for the parameter is that used cy Pl/I, and
that, unless otherwise required, the
mapping of any aggregate parameters passed
is also that used by PL/I. Note that since
the interlanguage facilities provided by
PL/I cannot look at the argument in the
routine invoking PL/I~ it is the
programmer's responsibility to ensure that
the argument passed to PL/I corresponds in
data type and organization to the parameter
declared in PL/I.

Data mapping: The situation is similar to
that which occurs on invocation of COBOL or
FORTRAN by PL/I. The mapping of the
argument on entry to the PL/I procedure
must correspond to the mapping used by PL/I
in addressing the parameter.

For element arguments and parameters,
this means that a SYNCHRONIZED or
unsynchronized COBOL argument may ce passed
to an UNALIGNED PL/I parameter, or that a
SYNCHRONIZED COBOL argument or a FORTRAN
argument can be passed to an ALIGNED PL/I
parameter.

For aggregate arguments and ~arameters
where the mapping of the argument in CCBOL
or FORTRAN differs from the mapping of the
parameter in PL/I, the interlanguage
f?cilities resolve the problem by creating
a dummy argument which is passed to the
PL/I procedure.

The dummy argument is ma~ped according
to PL/I rules, and, before invocation of

Chapter 19: Interlanguage Communication Facilities 273

the PL/I procedure, the values of the
members of the COBOL or FORTRAN argument
are assigned to the corresponding members
of the dummy argument. On return from the
PL/I procedure, the values of the members
of the dummy argument are assigned back to
the original argument.

If the compiler can recognize that the
mapping in COBOL or FORTRAN and PL/I are
equivalent, no such dummy is created.
Alternatively, the programmer can inhibit
the creation of the dummy, or the
assignments between the original argument
and the created dummy, by means of options.

Invocation

The entry points in a PL/I procedure that
are to be invoked from COBOL or FORTRAN
must be identified by the appropriate
options in the corresponding PROCEDURE or
ENTRY statement. The programmer may also
specify options that suppress re-mapping of
data aggregates.

COBOL:

FORTRAN:

NOMAP:

NOMAPIN:

NOMAPOUT:

Parameter
list:

274

This specifies that the entry
point can only be invoked by a
COBOL routine.

This specifies that the entry
point can only be invoked by a
FORTRAN routine.

This specifies that a dummy
argument is not .created; the
COBOL or FORTRAN aggregate
argument is passed directly to
PL/I.

This specifies that, if a dummy
argument is created, it is not
initialized with the values of
the aggregate argument.

This specifies that, if a dummy
argument is created its values
are not assigned back to the
aggregate argument on return.
The NOMAPIN and NOMAPOUT
options should be used, if
initializations not required~
whenever program efficiency is
important, since they allow the
compiler to omit unnecessary
initialization code.

The parameter or parameters
to which the NOMAP, NOMAPIN, or
NOMAPOUT options apply can be
specified in a list. If no
list is specified, the option
is applied to all parameters.

The following points should te noted
when coding the PROCEDURE or ENTRY
statement:

1. Only one of the options MAIN~ CCBCL,
or FORTRAN can appear in the same
statement. One or more of the options
NOMAP, NOMAPIN, or NOMAPOUT can appear
in the same statement.

2. If the parameters for the procedure
include strings, areas or arrays" the
lengths, sizes or tounds for these
must be specified as decimal integer
constants.

3. The RETURNS option cannot te specified
for any entry point invoked by a CCBOL
routine.

Examples:

1. P1:PROC(A,B,C) OPTIONS(FORTRAN
NOMAPIN(C) NOMAPOUT(A»;

DCL A(3,4) FLOAT BIN(20),
B FIXED BIN(31),
C(S,6) FLOAT DEC(6);

2. P2:PROC(R,S,T) OPTIONS (FORTRAN
NOMAP) ;

3. P3:PROC(X,Y) OPTIONS(COBOL NC~APIN(X)
NOMAPOUT(Y»;

DCL 1 X, 2 ••• 2 ••• 3 ••• ,
1 Y, 2 ••• 2 ••• 3 ••• ;

Using Common Storage

A variatle in a PL/I program can be
allocated the same block of storage as a
group of variables in a FORTRAN routine.
This storage can then be used to
communicate tetween the two routines.
Allocation of common storage is achieved by
declaring a PL/I variable to be STATIC
EXTERNAL and to have the same name as a
COMMON block in the FORTRAN routine. The
STATIC EXTERNAL variable and the'" COMMON
block will then be equivalent to two
declarations of a STATIC EXTERNAL variable
in different external PL/I procedures. The
numter of variatles using common storage is
not limited to two: any number of
identical STATIC EXTERNAL variables in
different PL/I procedures may be used
together with any number of identical
COMMON blocks in different FORTRAN
routines, if all the procedures and
routines are link-edited into a single
program. Methods of link-editing are given
in the compilers' programmers' guides.

The STATIC EXTERNAL variables must
follow the normal PL/I rules relating to
these attributes, and they must be of a

data type that corresponds to the data type
of the COMMON variables (see "FORTRAN
Interface" later in this chapter for a
table of corresponding data types). Also"
the PL/I variables must be aligned to meet
the requirements of the corresponding
FORTRAN data type.

The PL/.I variables may be initialized
using the INITIAL attribute, and the
FORTRAN variables may be initialized using
a block da'ta subprogram. If the PL/I
variables on the one hand and the FORTRAN
variables on the other are not initialized
to the same value, the procedure or routine
that is encountered first by the
linkage-editor determines the initial value
of all the variables. It is not an error
to initialize a PL/I variable to a
different value from a corresponding
FORTRAN variable, or to initialize one and
not the othe~r.

The PL/I variable may have further
variables ov'erlayed upon it by means of the
DEFINED attx'ibute, provided that the
defined variable meets the data type and
alignment requirements of the FORTRAN
variable. If the requirements are not met,
execution ex:rors may occur.

Common st:orage cannot be used for a PL/I
and a COBOL variable; the only facility
provided by PL/I for communication between
a PL/I procE!dure and a COBOL routine is
that for passing arguments.

INTERLANGUIAGE ENVIRONMENT

For a PL/I procedure to be executed, a PL/I
environment must first be established. If
the program contains a PL/I main procedure,
this environment is established when the
program is first entered. If the main
routine is COBOL or FORTRAN" the
interlanguage facilities will establish the
required PLlI environment when necessary.
This section describes the conventions and
restrictions in the interlanguage context.

Establishing the PL/I Environment

If the main routine of the program is a
PL/I main pJcocedure, the PL/I environment

is established on entry to the program.
Even if this program contains a mixture of
PL/I and COBOL or FORTRAN routines, the
normal rules for freeing PL/I storage and
closing PL/I files apply.

If the main routine of the program is
not a PL/I main procedure" the PL/I
environment is established when the first
PL/I procedure is inVOked. The extent of
this environment includes the routine that
invoked the PL/I procedure (see figure
19.1), and the environment remains in
existence until that routine is terminated.
The environment can be reestablished and
terminated as frequently as required.
Whenever the PL/I environment is destroyed,
all PL/I controlled and based storage is
released, and all PL/I files are closed.

For reasons of efficiency and of
programming convenience, the PL/I
environment should be destroyed as
infrequently as possible during execution
of a program. This can be ensured if the
main routine is a PL/I main procedure, or
if a PL/I procedure, no matter what it
contains, is inVOked from the main routine.
The latter alternative, however, has the
disadvantage that if the main routine is in
FORTRAN, the PL/I environment will not be
ended normally when the final FORTRAN
RETURN is executed to return control to the
operating system (see "Termination of
FORTRAN and COBOL Routines" later in this
Chapter) •

Interrupt Handling

COBOL and FORTRAN routines handle certain
of the hardware interrupts that may occur
dU'ring their execution, but there are some
that they do not handle. The inter language
communication facilities of PL/I allow any
interrupt not dealt with by a COBOL or
FORTRAN routine to be handled by any PL/I
procedure from which that routine is
dynamically descendent.

Chapter 19: Interlanguage Communication Facilities 275

r-------------------,
I I
I PROC1 (MAIN) I
I I
1 FORTRAN I
1 1
L---------T---------J

I
r------------------------------+-----------------------------, 1 +++++++++++++1+++++++++++++ 1
1 + 1 + 1

r---------~---------, + r---------~---------, + r---------~---------,
1 I + I I + I I
1 PROCS I + I PROC2 I + I PROCS I
I I + I I + I 1
I FORTRAN 1 + 1 FORTRAN 1 + 1 FORTRAN 1
I I + 1 1 + 1 1
L---------T---------J + L---------T---------J + L---------T---------J

1 + I + I
1 + I + I
I + 1 + +++++++++++++1+++++++++++++
I + 1++ 1 +

r---------~---------l + r---------~---------, + + r---------~---------, +
I 1 + 1 I + + I I +
I PROC9 I + I PROC3 I + + I PROC6 1 +
I 1 + 1 I + + 1 1 +
I FORTRAN I + I PL/I 1 + + I FORTRAN 1 +
I I + 1 I + + 1 1 + L ___________________ J + L---------T--~------J + + L---------T---------J +

+ 1++ 1 +
+ I + + 1 +
+ 1++ I +
+ I + + 1 +

+ r---------~---------, + + r---------~---------, +
+ I I + + I 1 +
+ I PROC4 1 + + I PROC7 1 +
+ I 1 + + 1 1 +
+ 1 COBOL 1 + + 1 PL/I 1 +
+ I 1 + + I I + + L ___________________ J + + L ___________________ J +

+ + + +
+++++++++++++++++++++++++++ +++++++++++++++++++++++++++

t t
1 1
1 1
1 1
I 1
I I

Boundaries of PL/I.environments------------J

Figure 19.1. Extent of PL/I environment

The programmer specifies the INTER
option of the OPTIONS attribute when
declaring the COBOL or FORTRAN entry name.
(See also the INTER option under "Passing
Arguments to COBOL or FORTRAN Routine"
earlier in this chapter.) This allows the
interrupts not dealt with by the invoked
COBOL or FORTRAN routine to be handled by
either a PL/I on-unit or by PL/I standard

276

system action. t In PL/I, an on-unit" while
established, applies not only to the
procedure in which it was created, but also
to all procedures that are dynamically
descendent from it. If there occurs,
during the execution of a COBOL or FORTRAN
routine, an interrupt that will not be

1Except that PL/I cannot handle a ZERODIVIDE
interrupt in a division of COMPUTATIONAI·- 3
data in a routine compiled by a COBOL
compiler other than the COBOL E compiler.
Such an interrupt will cause termination of
the program.

handled by that routine, and if the routine
was invoked by a PL/I procedure in which
the INTER option was specified for the
COBOL or FORITRAN entry name, then a search
is made through all invoking procedures for
an appropriate on-unit. If none is found,
standard system action is taken. If INTER
is not specified, no search is made, and
the interrupt is dealt with by the
operating system control program.

Note that the search passes through all
routines in the invoking chain, as far as
the limit lof the PL/I environment. It is
therefore possible for the search to
include COBOL and FORTRAN routines. Such
routines have no effect on the results of
the search, since only PL/I on-units are
searched for, unless one of them is a COBOL
routine that has been compiled by a
compiler that does not implement Americam
National Standard COBOL or that was made
available prior to Release 19 of System/360
Operating System. In these cases" the
result of the search and the effects of the
interrupt are undefined l , and may incl ude
abnormal termination of the program.

GO TO StateIIIlent

The GO TO st,atement must not be used to
transfer control across more than one
interlanguag:e boundary, where an
interlanguage boundary is defined as an
invocation in which one routine calls
another of a. different language. such
transfers of control may be initiated
inadvertently if the programmer uses a GO
TO statement: in an on-unit. (Note that
entry to an on-hnit is not considered as
transferring control outside the block or
routine in \tillhich the statement that caused
the on-unit to be entered was executed: the
on-unit may be regarded as being appended
to the procE!dure or routine from which it
is entered. This applies even if the
on-unit is elOtered from a COBOL or FORTRAN
routine). Consider the following example:

P:PROCEDURE;
DECLARE LAB LABEL(L1,L2)
E:XTERNAL,
E'ORT ENTRY OPTIONS (FORTRAN
INTER);
ON ERROR GO TO LAB;

C:ALL FORTi

I,,1: ••••••• ;

END P;

Q:PROCEDURE OPTIONS(FORTRAN);
DECLARE LAB LABEL(L1,L2)
EXTERNAL;

L2: ••••••• ;

END Q;

nssume that the CALL FORTi statement is
executed, and that FORT then calls Q.
Assume further that an error occurs in Q
which initiates entry to the on-unit
established in P. At this stage control is
still with procedure Q because the on-unit
is regarded as being appended to the
procedure from which it was entered. If
LAB has the value Ll, then the GO TO branch
is in error tecause it transfers control
back to procedure P and in doing so crosses
the interlanguage boundaries between Q and
FORT and between FORT and P. If lAB has
the value L2, the GO TO is not in error
because control remains in procedure Q. If
an interrupt in FORT caused the on-unit to
be entered tefore Q was called, then the GO
TO would not have been in error, if LAB had
the value L1: only one interlanguage
boundary would be crossed;, namely the
FORTRAN-PL/I toundary tetween FORT and P.
(LAB should not have the value 12 in this
case because procedure Q is not active).

Termination of FORTRAN and COBOL Routin!~

A routine may be terminated by either
executing a statement that terminates the
whole program, or by handing control tack
to the calling routine.

The statements that terminate the whole
program are STOP in FORTRAN and STOP RUN in
COBOL. They are equivalent to the PL/I
STOP statement. The effects of these
statements are unchanged in a mixed
language program; they still terminate the
whole program.

If a FORTRAN STOP is executed in a
routine that is within a PL/I environment,
that environment is not ended in the normal
way. If a COBOL STOP RUN is executed in a
routine that is within a PL/I environment,
that environment is ended in the normal way
only if it includes the main routine of the
program; otherwise the termination will be
abnormal. The main difference, from the
programmer's point of view, between a
normal and an abnormal ending is that in
the atnormal ending, open files in PIlI
procedures are not closed. This could
cause output data to te lost. Considering
the example in figure 19.1, a STOP in PROC2
or a STOP RUN in PROC4 would not close any

Chapter 19: Interlanguage Communication Facilities 277

files that may be open in PRoe3, and a STOP
in PRoe6 would not close any files in
PROe7.

A RETURN executed in a FORTRAN
subroutine or function that is inside a
PL/I environment and which returns control
to a routine outside that environment (in
other words~ a RETURN statement in a
FORTRAN routine that directly invokes a
PL/I routine but which is not dynamically
descendent from any PL/I routine), ends the
PL/I environment and causes all files in
dynamically descendent PL/I procedures to
be closed. However, a RETURN statement in
a FORTRAN main routine is effectively a
STOP statement; control is passed to the
operating system without any files being
closed.

When a COBOL main routine that is within
a PL/I environment passes control back to
the operating system, the environment is
ended normally.

Multitasking

A PL/I procedure cannot invoke a COBOL or a
FORTRAN routine as a task, that is, the
CALL statement must not specify the TASK,
EVENT, or PRIORITY options.

Only one task of a PL/I program can have
active COBOL or FORTRAN routines at anyone
time. If a PL/I .program has more than one
task active at the same time, then~ if one
of these tasks has invoked a COBOL or a
FORTRAN routine~ the programmer must ensure
that the other tasks wait until control has
returned to the Pl/I program before another
non-PL/I routine is invoked.

COBOL INTERFACE

Argument/parameter matching across a
PL/I-COBOl interface requires a knowledge

218

of the equivalence of data types and of
,data organization in the two languages.
The PL/I equivalents of the COBOL data

;types are shown in figure 19.2. These are
the PL/I data types that should appear in
PL/I parameter descriptors associated with

,COBOL arguments or parameters respectively.

While a knowledge of the equivalent data
types is sufficient for specifying COBOL
items in terms of PL/I element variables,
,the specification of equivalent data
aggregates (group items in COBOL,
structures or arrays in PL/I) requires a
knowledge of the data-organization
descriptions of the two languages. The
example given in figure 19.3 shows how a
COBOL data aggregate is described in PL/I
terms.

In COBOL, the OCCURS clause cannot
appear more than three times in anyone
group-item description. This imposes a
,restriction on any PL/I array within a
structure passed as an argument to a COBOL
routine. Also, the OCCURS clause cannot
appear on a level-01 entry. This precludes
the use of a level-01 array in a PL/I
structure passed to or from a COBOL
'routine.

A PL/I structure that contains an area
or a bit-string variable should not be
passed as an argument to a COBOL routine.
'If it iSJ a diagnostic message is produced
:and the structure is not automatically
:remapped.

A bit or character string with the
,VARYING attribute may be passed to a COBOL
routine, although there is no equivalent
attribute in COBOL. The address of the
start of the two-byte length prefix is
passed~ so that the prefix consitutes the
first two bytes of the COBOL string.
Conversely, when COBOL data is passed to a
PL/I string parameter with the VARYING
attribute, the first two bytes of the
argument form the parameter's length
prefix.

r---T---, I COBOL I PL/I I
.---------------r-------T-------------------+----------------T-------T------------------~ I I I Alignment I I I Alignment I
I I ~----------T--------i I ~----------T-------i I Data tYPE! I Length I Synch. I Unsynch. I Data Type I Length I Aligned I Un- I
I I (bytes) I (aligned) I (un- I I (bytes) I lalignedl
I I I I aligned) I I I I I
~---------------+-------+----------+--------+----------------+-------+----------+-------~
COMPUTATIONAL'

dec. lengt;h:
1-·4

5-·9

10-·18

COMPUTATIONAL-l

COMPUTATIONAL-2

COMPUTATIONAL-3

2 Halfword

4 Fullword

8 Fullword

4 Fullword

8 Doubleword

Byte

Byte

Byte

Byte

Byte

Byte

Byte

FIXED
BINARY(15,0)
(halfword
integer)

FIXED
BINARY(31,0)
(fullword
integer)

No equivalent

FLOAT DEC(6)
(short float)

FLOAT DEC(16)
(long float)

FIXED DEC

2 Halfword Byte

4 Fullword Byte

4 Fullword Byte

8 Dou1:leword Byte

Byte Byte

DISPLAY any Byte Byte CHARACTER any Byte Byte

~-----------.----~-------~----------~--------~----------------~-------~----------~-------~
INotes: 'Decimal length is equal to the number of 9s in the picture. I
I I
I 2The length of 1 byte applies to the smallest fixed decimal value I
I (i.e., 1 digit). For other valuesJ the length is given by I
I CEIL«number of digits + 1)/2) bytes. I L __ - ____________________________________ J

Figure 19.2. COBOL-PL/I data equivalents

r-----------·-------------·--.-----------------------,
01 A SYNCHRONIZED. 1 A ALIGNED,

02 B OCCURS 3 TIMES. 2 B(3),
03 C OCCURS 4 TIMES. 3 C(4),

04 D OCCURS 5 TIMES USAGE C0MP-3 4 D(5) FIXED DECIMAL(7,3),
PIC S9999V999.

02 E USAGE DISPLAY.
03 F PIC X(8).
03 G PIC 9(8).

02 DUMMY OCCURS 6 TIMES.
03 H OCCURS 7 TIMES USAGE COMP

PIC S9999.

2 E,
3 F CHAR(8),
3 G PIC • (8) 9' I'

2 H(6,7) FIXED BINARY (15,0);

Figure 19.3. Declaration of a data aggregate in COBOL and PL/I

FORTRAN INTERFACE

Argument/parameter matching across a
PL/I-FORTRAN interface, and the use of
common storage for PL/I and FORTRAN
variables, require a knowledge of the

, equivalence of data types and of data
organizations in the two languages. The

PL/I equivalents of the FORTRAN data types
are shown in figure 19.4. These are the
PL/I data types that should appear in PL/I
parameters or parameter descriptors
associated with FORTRAN arguments or
parameters respectively, and in the
declaration of STATIC EXTERNAL variables
with the same names as FORTRAN CO~~CN
blocks.

Chapter 19: Interlanguage Communication Facilities 279

The specification of equivalent data
aggregates in PL/I and FORTRAN is simpler
than in PL/I and COBOL, as the only data
aggregates that exist in FORTRAN are
arrays. The problems arise when using
non-connected unidimensional arrays or
multidimensional arrays as PL/I arguments.

Generally, when passing arguments
between PL/I and FORTRAN, the interlanguage
facilities pass a unidimensional array
directly to the invoked routine~ without
the creation of a dummy argument. However,
if a PL/I unidimensional array in
non-connected storage is passed as an
argument to a FORTRAN routine, the
interlanguage facilities create a dummy
argument into which the unconnected array
is mapped. The dummy is then passed as the

argument. On return, the values in the
dummy are assigned to the corresponding
elements in the array.

A dummy argument is always created for a
multidimensional array J;:assed between PL/I
and FORTRAN routines, unless the NOMAP
option specified.

If a PL/I array of bit strings is passed
as an argument to a FORTRAN routine, only S
or 32 should be sJ;:ecified for the string
lengths. If values other than these are
specified, a diagnostic message is produced
and the array is not automatic~lly
remapped. Similarly, only these lengths
should be used for PL/I variables having
storage common with FORTRAN variables.

r-------------------------------T---, I FORTRAN I PL/I I
~-----------T--------T----------+-----------------------T-------T-----------------------i
I I I I I I Alignment I
IData Type I Length I Alignment 1 1 Data Type ILength ~-----------T-----------~
I I (bytes) I I I (bytes) I Aligned I Unaligned I

~-----------+--------+----------+-----------------------+-------+-----------+-----------~ INTEGER*2 I 2 Halfword IREAL FIXED BINARY(15,0) 2 Halfword Byte

t

I I
INTEGER*4 I 4 Fullword IREAL FIXED BINARY(31,0)

REAL*4

REAL*S

REAL*16

I I
J 4 Fullword IREAL FLOAT DEC(6)
I I (real short float)
I I
I S Doubleword REAL FLOAT DEC(16J
I (real long float)
I
I
I

16 Doubleword REAL FLOAT DEC(33)
(real extended float)

I
COMPLEX*S I S Fullword COMPLEX FLOAT DEC(6)

(complex short float)

COMPLEX*16 16 Doubleword COMPLEX FLOAT DEC(16)
(complex long float)

COMPLEX*32 32 Doubleword COMPLEX FLOAT DEC(33J
(complex extended
float)

4 Fullword Byte

4 Fullword Byte

S Doubleword Byte

16 Doubleword Byte

S Fullword Byte

16 Doubleword Byte

32 Doubleword Byte

I LOGICAL*1 1 Byte BIT(S) Byte Bit2
I
I LOGICAL*4 4 Fullword BIT(32) 4 Byte Byte I
~-----------~--------~----------~-----------------------~-------~-----------~-----------~
I Notes: 'Generally FORTRAN data is held in main storage with these alignments. COMMON I
I data, however, is always byte-aligned. This could cause a specification I
I interrupt if the items in the COMMON area are not stored in order of decreasing I
I stringency. I
I 2The fact that the alignment required of unaligned bit strings is bit rather I
I than byte does not affect PL/I-FORTRAN data interchange, since the FORTRAN I
I string will always take up an integral number of bytes. I L ___ J

Figure 19.4. FORTRAN-PL/I data equivalents

2S0

r-----------------T---------------------------------T-----------------------------------,
I I COB 0 L I FOR T RAN I

I PL/I ~----------------T----------------t----------------T~-----------------~
I Attribute I Argument I Parameter I Argument I Parameter I

.~------------·-----t----------------t----------------t----------------t------------------~
I ALIGNED I 0000 I 0000 I 0000 I 0000 I

~-----------··-----t----------------t----------------t-------------.---+------------------~ I AREA I Note 1 I Note 1 I Note 1 I Note 1 I
~----------.-.. -----+----------------+----------------+-------------.---+------------------~ I BINARY I 0000 I 0000 I 0000 I 0000 I
~-----------··-----t----------------t----------------t-------------·---t------------------~ I BIT I Note 1 I Note 1 I Note 2 I Note 2 I
~----------.-.. -----+----------------+----------------t-------------·---+------------------~ I CHlRACTER I 0000 I 0000 I 0004 I 0004 I
~----------·-·------t----------------t---------~------t--,-----------·---t------------------~
I COMPLEX I 0004 I 0004 I Note 4 I Note 4 I

~----------·-·------+----------------t----------------t-------------,---t---~--------------~
I CONNECTED I 0000 I 0000 I 0000 I 0000 I

~-----------------+----------------+----------------t----------------+------------------~
I CONTROLL1~D I 0000 I 0012 I 0000 I 0012 I

~-----------------t----~-----------t----------------+----------------t------------------~ I DECIMAL I 0000 I 0000 I Note 3 I Note 3 I
~-----------------t----------------t----------------t----------------t------------------~ I DEFINED I 0000 I I 0000 I I
~---------·--·------t----------------+------------....,---t----------------t------------------~ I Dimension I Note 8 I Note 8 I 0000 I 0000 I
~---------·--·------+----------------t----------------+----------------+------------------~
I ENTRY I 0004 I 0004 I 0004 I 0004 I

~---------·--·------t----------------+----------------+----------------+------------------~ I EVENT I 0004 I 0004 I 0004 I 0004 I
~-----------.------+-~--------------+----------------+----------------+------------------~ I FILE I 0004 I 0004 I 0004 I 0004 I
~---------.--,------+----------------+----------------+----------------t------------------~ I FIXED I 0000 I 0000 I 0000 I 0000 I
.-----------,------+----------------t----------------t----------------+------------------~
I FLOAT I 0000 I 0000 I 0000 I 0000 I

~---------.--.------+----------------+----------------t--------... -------t------------------~ I LABEL I 0004 I 0004 I 0004 I 0004 I
~---------·--------t-------.---------t----------------t----------------+------------------~
I Non-connected I Note 5 I 0000 I Note 5 I 0000 I

~---------·--------+----------------+----------------t----------------t------------------~
I OFFSET I 0004 I 0004 I 0004 I 0004 I

~---------·--------t----------------t----------------t----------------+------------------~
I PICTURE I 0000 I 0000 I 0004 I 0004 I

~---------·--------t----------------+----------------t----------------+------------------~
I POINTER I 0004 I 0004 I 0004 I 0004 t
.---------,--------t----------------t----------------t----------------+------------------~
I Precision I Note 6 I Note 6 I Note 7 I Note 7 I

~---------,--------t----------------t----------------t----------------t------------------~
I REAL I 0000 I 0000 I 0000 I 0000 I

~-----------------+----------------t----------------t----------------+------------------~
I Structure I 0000 I 0000 I Note 1 I Note 1 I

~-----------------+----------------t----------------t----------------+------------------~
I TASK I 0004 I 0004 I 0004 I 0004 I

~-----------------t-------~~-------t----------------+----------------t------------------~ I UNALIGNED I Note 9 "- I 0000 I Note 9 I 0000 I
~-----------------t----------------t----------------+----------------t------------------~ I VARYING I 0004 I 0004 I 0004 I 0004 I
L ___________ . ______ J._.----------... ----J.----------------J. ________________ J. __________________ J

Figure 19.5' (Part 1 of 2). Return codes. produced by PL/I data types

Chapter 19: Interl~nguage Communication Facilities 281

r---, Notes I

1. Checkout compiler:0004 6. Variable is FIXED(p,O), or is short or
Optimizing compiler: 0008
In both cases, creation of a dummy
argument is suppressed

long FLOAT:OOOO
Variable is BINARY FIXED (p,g) with
q~=O, or is extended FLOAT: 0004

2. BIT(8) or BIT(32): 0000 7. Variable is FLOAT, or is FIXED BINARY
with precision (p,O): 0000 Any other length: 0008

In latter case, creation of a dummy
argument is suppressed.

Variable is FIXED DECIMAL, or is
BINARY(p,q) with q~=O: 0004

3. FLOAT DECIMAL: 0000 8. If item is element of a structure or
is a minor structure: 0000 FIXED DECIMAL: 0004
All other cases: 0008

4. FLOAT COMPLEX: 0000
FIXED COMPLEX: 0008 9. If argument is an aggregate and

creation of temporary is suppressed
by NOMAP, or if argument is 5. If creation of temporary suppressed by

NOMAP option: 0012
If no NOMAP option: 0000

scalar: 0012
If argument is an aggregate and no
NOMAP: 0000

Figure 19.5 (Part 2 of 2). Return codes produced by PL/I data types

RETURN CODES

Diagnostic messages are provided at compile
time as an aid to debugging the program.
The messages are classified according to
the type of the information they provide.
A numeric value, the return code, is
associated with each class of message, as a
guide to the severity of the error or
possible error that has been diagnosed.
The highest return code generated during
compilation constitutes the return code of
that compilation, and its value is printed
on the compile-time listing. Diagnostic
messages and return codes are described in
the compilers' programmers' guides. The
classes of message and corresponding return
codes are as follows.

Informatory
Warning
Error
Severe error

return code 0000
return code 0004
return code 0008
return code 0012

If no messages are produced, a code of 0000
is returned.

A return code of 0000 indicates that the
compiler found no possible sources of

282

error. A code of 0004 indicates that
execution will probably be successful. A
code of 0008 indicates that an error has
been found but that execution nevertheless
might be successful. A code of 0012
indictes that execution will erobably not
be successful.

As part of the interlanguage facilities
of PL/I, diagnostic messages are produced,
and the return code set appropriately~ if
the programmer specifies argum~nts or
parameters whose attributes are such that
errors may occur at execution time. The
compiler will never prevent data being
passed, nor will it attempt to correct
errors; although it produces messages to
indicate likely sources of error to the
programmer, it will always allow him to
attempt to pass any type of data he
specifies.

Figure 19.5 shows the return codes
generated by various types of PL/I data.

I

Part 11: Rules and Syntactic Descriptions

283

284

Throughout this publication, wherever a
PL/I sta tem.;nt -- or some other combination
of elements -- is discussed, the manner of
writing that statement or phrase is
illustrated with a uniform system of
notation.

This notation is !!Q:!:. a part of PL/I; it
is a standardized notation that may be used
to describe the syntax -- or construction

of any p.rogramming language. It
provides a brief but precise explanation of
the general patterns that the language
permits. It does not describe the meaning
of the language elements, merely their
structure; that is, it indicates the order
in which 'the elements may (or must) appear"
the punctuation that is required, and the
options that are allowed.

The following rules explain the use of
this nota'tion for any programming language;
Qnly the examples apply specifically to
PL/I:

1. A notation variable is the name of a
generaI-class-of elements in the
programming language. A notation
variable must consist of:

a. Lower-tiase letters, decimal
digits, and hyphens and must begin
with a letter.

b. Either all lower-case letters or a
combination of lower-case and
upper-case letters. In the latter
case, there must be one portion in
all lower-case letters and one
portion in all upper-case letters,
and the two portions must be
sE!parated by a hyphen.

All such variables used are defined in
the manual either syntactically, using
this notation, or are defined
semantically. For example:

a. digit. This denotes the
occurrence of a digit, which may
be 0 through 9 inclusive.

b. file-expression. This denotes the
occurrence of a reference to a
file.

c. DO-statement. This denotes the
occurrence of a DO statement. The
upper-case letters are used to
indicate a language keyword.

Section A: Syntax Notation

2. A notation constant denotes the
literal occurrence of the characters
represented. A notation constant
consists either of all capital letters
or of a special character. For
example:

DECLARE identifier FIXED;

This denotes the literal occurrence of
the word DECLARE followed by the
notation variable "identifier," which
is defined elsewhereJ followed by the
literal occurrence of the word FIXED
followed by the literal occurrence of
the semicolon (;).

3. The term "syntactic unit," which is
used in subsequent rules, is defined
as one of the following:

a. A single notation variable or
notation constant.

b. Any collection of notation
variables, notation constants,
syntax-language symbols, and
keywords surrounded by braces or
brackets.

4. Braces {} are used to denote grouping
of more than one element into a
syntactic unit.

Example:

identifier
1

FIXED I
FLOAT

The vertical stacking of syntactic
units indicates that a choice is to be
made. The above example indicates
that the variable "identifier" must be
followed by the literal occurrence of
either the word FIXED or the word
FLOAT.

5. The vertical stroke ! indicates that a
choice is to be made.

Example:

identifier {FIXED!FLOAT}

This has exactly the same meaning as
the above example. Both methods are
used in this manual to display
alternatives.

Section A: Syntax Notation 285

6. Square brackets [] ·denote options.
Anything enclosed in brackets may
appear once or may not appear at all.
Brackets can serve the additional
purpose of delimiting a syntactic
unit. For example:

({[lower-bound:] upper-bound} I.>

This denotes the occurrence of either
a literal asterisk or the variable
"upper-bound," but not both. If
"upper-bound" appears, it can
optionally be preceded by the
syntactic unit composed of the
variable "lower-bound" and the literal
colon.

7. Three dots ••• denote the occurrence
of the immediately preceding syntactic
unit one or more times in succession.

286

For example:

[digi t] •••

The variable "digit" mayor may not
occur since it is surrounded by
brackets. If it does occur, it may be
repeated one or more times.

8. Underlining is used to denote an
element in the language being
described when there is conflict
between this element and one in the
syntax language. For example:

operand {Sll} operand

This denotes that the two occurrences
of the variable "operand" are
separated by either an "and" (S) or an
"or" (I). The operator I is
underlined to indicate that it is an
"or" symbol in the PL/I language
rather than an "or" symbol in the
syntax language.

Section B: Character Sets with EBCDIC and Card-punch Codes

60-CHARACTEH SET Character
W

Card-Punch
0-6

8-Bit Code
1110 0110
1110 0111
1110 1000
1110 1001
1111 0000
1111 0001
1111 0010
1111 0011
1111 0100
1111 0101
1111 0110
1111 0111
1111 1000
1111 1001

Character
blank

<
(

+
I ,
$
*)

,
/
,
%

):
?

a

=
A
B
C
D
E
F
G
H
I
J
K
L
M
N
o
P
Q
R
S
T
U
V

Card-Punch
no punches
12-8-3
12-8-4 (12-8-6)
12-8-5 (0-8-4)
12-8-6 (12)
12-8-7 (NA)
12 (NA)
11-8-3
11-8-4
11-8-5 (12-8-4)
11-8-6
11-8-7 (NA)
11
0-1
0-8-3
0-8-4 (NA)
0-8-5 (NA)
0-8-6 (8-6)
0-8-7 (12-0)
8-2 (8-5)
8-3 (NA)
8-4 (NA)
8-5 (8-4)
8-6 (8-3)
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11- 9
0-2
0-3
0-4
0-5

8-Bit
EBCDIc Code
0100 0000
0100 1011
0100 1100
0100 1101
0100 1110
0100 1111
0101 0000
0101 1011
0101 1100
0101 1101
0101 1110
0101 1111
0110 0000
0110 0001
0110 1011
0110 1100
0110 1101
0110 1110
0110 1111
0111 1010
0111 1011
0111 1100
0111 1101
0111 1110
1100 0001
1100 0010
1100 0011
1100 0100
1100 0101
1100 0110
1100 0111
1100 1000
1100 1001
1101 0001
1101 0010
1101 0011
1101 0100
1101 0101
1101 0110
1101 0111
1101 1000
1101 1001
1110 0010
1110 0011
1110 0100
1110 0101

X
Y
Z
o
1
2
3
4
5
6
7
8
9

Composite
Symbols

<=
II
** ,<
,>
,=
>=
/*
*/
->

0-7
0-8
0-9
o
1
2
3
4
5
6
7
8
9

Card-Punch
12-8-4, 8-6 (12-8-6, 8-3)
12-8-7, 12-8-7 (NA)
11- 8-4, 11- 8-4
11-8-7, 12-8-4 (NA)
11-8-7, 0-8-6 (NA)
11-8-7, 8-6 (NA)
0-8-6, 8-6 (8-6, 8-3)
0-1, 11-8-4
11-8-4, 0-1
11, 0-8-6 (11, 8-6)

The card-punch codes given in brackets are
BCDIC codes that differ from the
corresponding EBCDIC codes. NA indicates
that the symbol has no representation in
BCDIC. BCDIC codes can be used in the PL/I
source program provided that the BCD
compiler option is specified. No BCDIC
8-bit codes are given here since, when the
BCD option is specified, all BCDIC codes in
the sou'rce program are converted by the
compiler into EBCDIC. Note that although
the full PL/I 60-character set is not
available in BCDIC, all the 48-character
set (see next page) is available, so if the
48-character-set option is specified as
well as the BCD option, all PL/I operations
can be performed.

Section B: Character Sets With EBCDIC and Card-Punch Codes 287

48-CHARACTER SET

Character
blank

+
$

*)

/

=
A
B
C
o
E
F
G
H
I
J
K
L
M
N
o
P
Q
R
S
T
U
V
W
X
Y
Z
o
1
2
3
4
5
6
7
8
9

Composite
Symbols

LE
CAT
**
NL
NG
NE
//
, .
AND

288

Card-Punch
no punches
12-8-3
12-8-5 (0-8-4)
12-8-6 (12)
11-8-3
11-8-4
11-8-5 (12-8-4)
11
0-1
0-8-3
8-5 (8-4)
8-6 (8-3)
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
11-1
11-2
11- 3
11-4
11-5
11-6
11-7
11-8
11-9
0-2
0-3
0-4
0-5
0-6
0-7
0-8
0-9
o
1
2
3
4
5
6
7
8
9

Card Punch
12-8-3, 12-8-3
11- 3, 12- 5
1 2- 3 , 12- 1 , 0- 3
11-8-4, 11-8-4
11-5, 11-3
11-5, 12-7
11- 5, 12-5
0-1, 0-1
0-8-3, 12-8-3
12-1, 11-5, 12-4

8-Bit
EBCDIC Code
0100 0000
0100 1011
0100 1101
0100 1110
0101 1011
0101 1100
0101 1101
0110 0000
0110 0001
0110 1011
0111 1101
0111 1110
1100 0001
1100 0010
1100 0011
1100 0100
1100 0101
1100 0110
1100 0111
1100 1000
1100 1001
1101 0001
1101 0010
1101 0011
1101 0100
1101 0101
1101 0110
1101 0111
1101 1000
1101 1001
1110 0010
1110 0011
1110 0100
1110 0101
1110 0110
1110 0111
1110 1000
1110 1001
1111 0000
1111 0001
1111 0010
1111 0011
1111 0100
1111 0101
1111 0110
1111 0111
1111 1000
1111 1001

60-Character
Set
Eguivalent

<=
II
**
,<
,>
,=
" , ,

Composite
Symbols Card Punch

12-7, 12-5
12-7, 0-3
11- 3, 0-3

60-Character
Set
Equivalent

GE
GT
LT
NOT
OR
/*
*/
PT

11-5, 11-6, 0-3
11-6, 11-9
0-1, 11-8-4
11-8-4, 0-1
11-7, 0-3

>=
>
< ,
I
/*
*/
->

The card-punch codes given in brackets are
SCOIC codes that differ from the
corresponding EBCDIC codes. BCOIC codes
can be used in the PL/I source program
provided that the BCD compiler option is
specified. No BCDIC 8-bit codes are given
here since, when the BCD option is
specified, all BCDIC codes in the source
program are converted by the compiler into
EBCDIC. .

Note: When using the 48-character set, the
following rules should be observed:

1. The two periods that replace the colon
must be immediately preceded by a
blank if the preceding character is a
period.

2. The two slashes that replace the
percent symbol must be immediately
preceded by a blank if the preceding
character is an asterisk, or
immediately followed by a blank if the
following character is an asterisk.

3. The sequence "comma period" represents
a semicolon except when it occurs in a
comment, a character string, or a
picture specification or when it is
immediately followed by a digit.

4. If the compiler option that specifies
the 48-character set is included in
the compilation, 60-character set
symbols may be freely intermixed with
48-character set symbols and will be
accepted by the compiler as valid
input.

5. 48-character set "reserved" words
(e.g., GT,LE,CAT, etc.,) must be
preceded and followed by a blank or a
comment. If they are not, the
interpretation by the compiler is
undefined and may not therefore, be
what the user intended.

A record containing part or all of a
48-character set reserved word must be
3 characters or more in length.

Keyword
A [(w)]

ABS(x)
ACOS(x)
"ACTIVATE
ADD (x. , x,a , X3 (, X ~])
ADDBUFF
ADDR(x)
ALIGNED
ALL [(charac:ter-string­

expression)]
ALL (x)

I ALLOCATE
ALLOCATION (x)
ANY (x)
AREA
AREA [(size)]

I ARGn
ASCII
ASIN(x)
ATAN(x.[,xa])
ATAND(x.[,x2])
ATANH(x)

I ATTENTION
AUTOMATIC
B [(w)]

BACKWARDS
BASED[(locator-expression)]
BEGIN
BINARY
BINARY(x.[,xa(,x3]])
BIT[(lengt:h)]
BIT(x.[,xa])
BLKSIZE(block-size)
BOOL(x. ,X2,li~3)
BUFFERED
BUFFERS(n)

I BUFOFF ((n)]
BUILTIN
BY

BY NAME
C(real-format-item

[,real-format-item])
CALL
CEIL(x)
CHAR (x. (, xaJJ)
CHARACTER[(length)]
CHECK
CHECK(name-list)]
CLOSE
COBOL

COLUMN(n)
COMPLETION (~()
COMPLEX
C OMP LEX (x ~I , xa)
CONDITION
CONDITION (name)
CONJG(x)
CONNECTED
CONSECUTIVE

Section C: Keywords and Keyword Abbreviations

Abbreviation

"ACT

ALLOC
ALLOCN(x)

ATTN
AUTO

BIN
BIN(x.[,xa[,x3]])

BUF

CHAR (length)]

COL(n)
CPLN(x)
CPLX
CPLX (Xt, xa)
COND
COND(name)

CONN

Use of Keyword
format item
built-in function
built-in function
preprocessor statement
built-in function
option of ENVIRONMENT attribute
built-in function
attribute
option of PUT statement

built-in function
statement
built-in function
built-in function
condition
attribute
option of NOMAP, NOMAPIN, NOMA POUT options
option of the ENVIRONMENT attribute
built-in function
built-in function
built-in function
built-in function
condition
attribute
format item
attribute, option of OPEN statement
attribute
statement
attribute
built-in function
attribute
built-in function
option of ENVIRONMENT attribute
built-in function
attribute
option of ENVIRONMENT attribute
option of ENVIRONMENT attribute
attribute
option of DO statement, option of

repetitive input/output specification
option of assignment statement
format item

statement, option of INITIAL attribute
built-in function
built-in function
attribute
statement
condition, condition prefix
statement
option of ENVIRONMENT attribute, or

OPTIONS option/attribute
FORMAT ITEM
built-in function, pseudovariable
attribute
built-in function, pseudovariable
attribute
condition
built-in function
attribute
option of ENVIRONMENT attribute

Section C: Keywords and Keyword Abbreviations 289

Keyword
"CONTROL
CONTROLLED
CONVERSION
COPY[(file-expression)]
COS (x)
COSO (x)
COSH(x)
COUNT (file-expression)
CTLASA
CTL360
o
DATA
DATAFIELD
DATE
DB
"DEACTIVATE
DECIMAL
DECIMAL(x.[~xa[,x3]])
DECLARE
"DECLARE
DEFAULT
DEFINED
DELAY
DELETE
DESCRIPTORS
DIM(x.,x;a)
DIRECT
DISPLAY
DIVIDE(x.,x;a,x3['x,+])
DO

"DO
E(w,d[,s])
EDIT
ELSE
"ELSE
EMPTY
END
"END
ENDFILE(file-expression)
ENDPAGE(file-expression)
ENTRY
ENVIRONMENT
ERF(x)
ERFC (x)
ERROR
EVENT

EXCLUSIVE
EXIT
EXP(x)
EXTERNAL
F(w, [,dr,s]])
F
FB
FBS

I FETCH
FILE
FILE (file-expression)

FINISH
FIXED
FIXED(x.[,x;a[,x3]])
FIXEDOVERFLOW
FLOAT

290

Abbreviation

CTL
CONV

"DEACT
DEC
DEC(x.[,xa['X3]])
DeL
"DCL
DFT
DEF

ENV

EXCL

EXT

FOFL

Use of Keyword
listing control statement
attribute
condition, condition prefix
option of GET statement
built-in function
built-in function
built-in function
built-in function
option of ENVIRONMENT attribute
option of ENVIRONMENT attribute
option of-ENVIRONMENT attribute
option of GET or PUT statement
built-in function
built-in function
option of ENVIRONMENT attribute
preprocessor statement
attribute
built-in function
statement
preprocessor statement
statement
attribute
statement
statement
option of DEFAULT statement
built-in function
attribute
statement
built-in function
statement, repetitive input/output data

specification
preprocessor statement
format item
option of GET or PUT statement
clause of IF statement
clause of "IF statement
built-in function
statement
preprocessor statement
condition
condition
attribute, statement
attribute, option of CLOSE statement
built-in function
built-in function
condition
attribute, option of CALL, DELETE,

DISPLAY, READ, REWRITE., and WRITE
statements

attribute
statement
built-in function
attribute
format item
option of ENVIRONMENT attribute
option of ENVIRONMENT attribute
option of ENVIRONMENT attribute
statement
attribute
option of CLOSE, DELETE, GET, LOCATEJ

OPEN, PUT, READ, REWRITE, UNLOCK, and
WRITE statements

condition
attribute
built-in function
condition, condition prefix
attribute

Keyword Abbreviation Use of Keyword
built-in function
built-in function

FLOAT (Xt [~x,a])
FLOOR(x)
FLOW
FORMAT
FORTRAN
FREE
FROM(variable)

I FS
GENERIC
GENKEY
GET
GO TO GOTO
%GO TO %GOTO
HALT
HBOUND (Xt, x;a)
HIGH (x)
IF
%IF
IGNORE(n)
IMAG (x)
IN (element-area-variable)
%INCLUDE
INDEX(xt,x;a)
INDEXAREA [(index-area-

size)]
INDEXED
INITIAL INIT
INPUT
INTER
INTERNAL INT
INTO (variable)
IRREDUCIBLE IRRED
KEY(file-expression)
KEY (x)

KEYED
KEYFROM(x)
KEYLENGTHCn)
KEYLOC(n)
KEYTO (varia:ble)
LABEL
LBOUND (x" x;a)
LEAVE
LENGTH(x)
LIKE
LINE(n)
LINENO{x)
LINESIZE(expression)
LIST
LOCATE
LOG (x)
LOG2(x)
LOG10(x)
LOW(x)
MAIN
MAX(xt,x;a ••• xn)
MIN(xt ,x;ae~ .xn)
MOD(xt,x;a)
MULTIPLY(xt,x2,x3['x~])
NAME (file-expression)
NCP(n)
NOCHECK
NOCHECK[(name-list)]
NOCONVERSION NOCONV
NOFIXEDOVERFLOW NOFOFL
NOFLOW
NOFORMAT

statement, option of PUT statement
statement, option of %CONTROL statement
option of OPTIONS option/attribute
statement
option of WRITE or REWRITE statements
option of ENVIRONMENT attribute
attribute
option of ENVIRONMENT attribute
statement
statement
preprocessor statement
statement
built-in function
built-in function
statement
preprocessor statement
option of READ statement
built-in function, pseudovariable
option of ALLOCATE and FREE statements
preprocessor statement
built-in function
option of ENVIRONMENT attribute

option of ENVIRONMENT attribute
attribute
attribute, option of.OPEN statement
option of OPTIONS option/attribute
attribute
option of READ statement
attribute
condition
option of READ, DELETE, and REWRITE

statements
attribute, option of OPEN statement
option of WRITE statement
option of ENVIRONMENT attribute
option of ENVIRONMENT attribute
option of READ statement
attribute
built-in function
option of ENVIRONMENT attribute
built-in function
attribute
format item, option of PUT statement
built-in function
option of OPEN statement
option of GET or PUT statement
statement
built-in function
built-in function
built-in function
built-in function
option of OPTIONS option
built-in function
built-in function
built-in function
built-in function
condition
option of ENVIRONMENT attribute
statement
condition prefix
condition prefix
condition prefix
statement
option of %CONTROL statement

Section C: Keywords and Keyword Abbreviations 291

Keyword
NOLOCK
NOMAP[(arg-list)]
NOMAPIN[(arg-list)]
NOMAPOUT[(arg-list)]
NOOVERFLOW
NORESCAN
NOSIZE
NOSTRINGRANGE
NOSTRINGSIZE
NOSUBSCRIPTRANGE
NOUNDERFLOW
NOWRITE
NOZERODIVIDE
NULL
OFFSET[(area-name)]
OFFSET(xt,x,a)
ON
ONCHAR
ON CODE
ONCOUNT
ONFILE
ONKEY
ONLOC
ONSOURCE
OPEN
OPTIONS (list)

ORDER
OUTPUT
OVERFLOW
P 'picture specification'
PAGE

I %PAGE
PAGESIZE(w)
PENDING(file~expression)
PICTURE
POINTER
POINTER(xt,x,a)
POLY{x,.,x,a)
POSITION (expression)
PRECISION(x.,x,a[,x3])
PRINT
PRIORITY (x)
PRIORITY [(x)]
PROCEDURE
%PROCEDURE
PROD{x)
PUT
R(x)
RANGE
READ
REAL
REAL(x)
RECORD
RECORD(file-expression)
RECSIZE{record-length)
RECURSIVE
REDUCIBLE
REENTRANT
REFER (element-variable)
REGIONAL(11213)

I RELEASE
REORDER
REPEAT{xt,x,a)
REPLY{c)
REREAD
RES CAN

292

Abbreviation

NOOFL

NOSTRG
NOSTRZ
NOSUBRG
NOUFL

NOZDIV

OFL

PIC
PTR
PTR(xt,x,a)

POS (expression)
PREC(xt,x,a[,x3])

PROC
%PROC

RED

Use of Keyword
option of READ statement
option of OPTIONS attribute
option of OPTIONS attribute
option of OPTIONS attribute
condition prefix
option of %ACTIVATE statement
condition prefix
condition prefix
condition prefix
condition prefix
condition prefix
option of ENVIRONMENT attribute
condition prefix
built-in function
attribute
built-in function
statement
built-in function, pseudovariable
built-in function
built-in function
built-in function
built-in function
built-in function
built-in function, pseudovariable
statement
attribute, option of ENTRY and

PROCEDURE statements
option of BEGIN and PROCEDURE statements
attribute, option of OPEN statement
condition, condition prefix
format item
format item, option of PUT statement
listing control statement
option of OPEN statement
condition
attribute
attribute
built-in function
built-in function
attribute
built-in function
attribute, option of OPEN statement
option of CALL statement
built-in function, pseudovariable
statement
preprocessor statement
built-in function
statement
format item
option of DEFAULT statement
statement
attribute
built-in function, pseudovariable
attribute, option of OPEN statement
condition
option of ENVIRONMENT attribute
option of PROCEDURE statement
attribute
option of OPTIONS option
option of BASED attribute
option of ENVIRONMENT attribute
statement
option of BEGIN and PROCEDURE statements
built-in function
option of DISPLAY statement
option of ENVIRONMENT attribute
option of %ACTIVATE statement

Keyword
RETURN
RETURNS (attribute-list)
REVERT
REWRITE
ROUND(xt,xa)
SCALARVARYING
SEQUENTIAL
SET (locator-variable)

SIGN(x)
SIGNAL
SIN(x)
SIND(x)
SINH (x)
SIZE
SKIP[(n)]

%SKIP
SNAP
SQRT(x)
STATIC
STATUS (x)
STOP
STREAM
STRING(x)
STRING (string-name)
STRINGRANGE:
STRINGSIZE
iSUB
SUBSCRIPTRANG,E
SUBSTR(xt,xa[,x3])
SUM(x)
SYSIN
SYSPRINT
SYSTEM
TAN (x)
TAND(x)
TANH (x)
TASK
TASK[(task-name)]
THEN
ITHEN
TIME
TITLE (element-expression)
TO

TOTAL
TP(MIR)
TRANSIENT
TRANSLATE(xt,xa[,x3])
TRANSMIT (file-expression)
TRKOFL
TRUNC(x)
U
UNALIGNED
UNBUFFERED
UNDEFINEDFIl.E

(file-expression)
UNDERFLOW
UNLOCK
UNSPEC(x)
UPDATE
V
VALUE
VARIABLE
VARYING
VB

Abbreviation

SEQL

STRG
STRZ

SOBRG

UNAL
UNBUF
UNDF

(file-expression)
UFL

VAR

Use of Keyword
statement, preprocessor statement
attribute, option of PROCEDURE statement
statement
statement
built-in function
option of ENVIRONMENT attribute
attribute
option of ALLOCATE, LOCATE, and

READ statements
built-in function
statement
built-in function
built-in function
built-in function
condition
format item, option of GET and

PUT statements
listing control statement
option of ON and PUT statements
built-in function
attribute
tuilt-in function, pseudovariable
statement
attribute, option of OPEN statement
built-in function, pseudovariatle
option of GET and PUT statements
condition, condition prefix
condition, condition prefix
dummy variable of DEFINED attribute
condition, condition prefix
built-in function, pseudovariable
tuilt-in function
name of standard system input file
name of standard system output file
option of ON or DECLARE statements
tuilt-in function
built-in function
built-in function
attribute, option of OPTIONS option
option of CALL statement
clause of IF statement
clause of %IF statement
built-in function
option of OPEN statement
option of DO statement, option of

repetitive input/output specification
option of ENVIRONMENT attribute
option of ENVIRONMENT attribute
attribute
built-in function
condition
option of ENVIRONMENT attribute
built-in function
option of ENVIRONMENT attribute
attribute
attribute, option of OPEN statement
condition

condition, condition prefix
statement
built-in function, pseudovariable
attribute, option of OPEN statement
option of ENVIRONMENT attribute
option of DEFAULT· statement
attribute
attribute
option of ENVIRONMENT attribute

Section C: Keywords and Keyword Abbreviations 293

Keyword
VBS
VERIFY(x.,xa)
VS
WAIT
~HEN(generic-descriptor-

list)
~HILE

WRITE
X(w)
ZERODIVIDE

294

Abbreviation

ZDIV

Use of Keyword
option of ENVIRONMENT attribute
built-in function
option of ENVIRONMENT attribute
statement
option in GENERIC declaration

option of DO statement
statement
format item
condition, condition prefix

Section D: Picture Specification Characters

Picture spe1cification characters appear in
either th~~ :l?ICTURE attribute or the
P-format item for edit-directed input and
output. In either case, an individual
character has the same meaning. A
discussion 4:>f the concepts of pi ct ure
specifications appears in chapter 13,
"Editing and string Handling".

PicturE~ 4::haracters are used to describe
the attributes of the associated data item,
whether it is the value of a variable or a
data item b:> be transmitted between the
program and external storage.

A picture specification always describes
a charac:tEar representation that is either a
character-string data item or a numeric
character data item. A character-string
pictured i~~m is one that can consist of
alphabetic characters, decimal digits, and

I blanks. A n~m~ charact~ictured item
is one in which the data itself can consist
only of decimal digits, a decimal point,

I the letter E, and, optionally, a plus or
minus sign. Other characters generally
associated with arithmetic data, such as
currency symbols, can also be specified,
but they are not a part of the arithmetic
value of the numeric character variable,
although the characters are stored with the
digits and are considered to be part of the
character-s1:ring value of the variable.
Under the optimizing compiler, the maximum
length of character string pictured data
that is guaranteed to be handled is 1023,
though longE~r items may be handled if
sufficient, storage is available. The
checkout compiler will accept items of
length not exceeding 32767 characters.
Under both c:ompilers, the maximum length of
numeric chaI:ac·ter item is 255.

Arithmetic data assigned to a numeric
character vSlriable is converted to
character representation. Editing, such as
zero suppression and the insertion of other
characters, can be specified for a numeric
character data item.

Data assigned to a variable declared
with a numeric picture specification (or
data to be ""ri tten with a numeric picture
format item) must be either internal coded
arithmetic data or data that can be
converted tel coded arithmetic. Thus,
assigned data can contain only digitS and,
optionally, a decimal point, a sign and the
exponent deli meter E. It should not
contain any editing characters, for
example, a currency symbol; if it does, the
CONVERSION condition is raised.

Numeric character data to be read using
the P-format item must conform to the
specification contained in the P-format
item, including editing characters. If the
indicated character does not appear in the
input stream, the CONVERSION condition is
raised.

Data assigned to a variable declared
with a character-string picture
specification (or data to be written with a
character-string picture format item)
should conform, character by character (or
be convertible, character by character) to
the picture specification; if it does not,
the CONVERSION condition is raised.
Character string data read in using the P
format item must conform to the
specification given in the format item. If
the indicated character does not appear in
the input stream, the CONVERSION condition
is raised.

Figures in this section illustrate how
different picture specifications affect the
representation of values when assigned to a
pictured variable or when printed using the
P-format item. Each figure shows the
original value of the data, the attributes
of the variable from which it is assigned
(or written), the picture specification,
and the character-string value of the
numeric character or pictured
character-string variable.

Picture Characters for Character-string Data

Only three picture characters can be used
in character-string picture specifications:

X specifies that the associated position
can contain any character whose internal
bit configuration can be recognized by
the computer in use.

A specifies that the associated position
can contain any alphabetic character or
a blank character.

9 specifies that the associated position
can contain any decimal digit or a blank
character.

A character picture specification must
contain at least one A or X.

section D: Picture Specification Characters 295

r------------------T--------------------T------------------------T----------------------, I Source I Source Data I Picture I Character-String I
I Attributes I (in constant form) I Specification I Value' I
.------------------+--------------------+-----~------------------+----------------------~ CHARACTER(S) '9B/2L' XXXXX 9B/2L

CHARACTER(S)

CHARACTER(S)

CHARACTER(S)

CHARACTER(S)

CHARACTER(S)

CHARACTER(S)

'9B/2L'

'9B/2L'

'ABCDE'

'ABCDE'

'ABCDE'

'12/34'

xxx

XXXXXXX

AAAAA

AAAAAA

AAA

99X99

9B/

9B/2Lbb

ABCDE

ABCDEb

ABC

12/34

CHARACTER(S) 'L26.7' A99X9 L26.7
.------------------~--------------------~------------------------~----------------------~ 11A variable declared with a character-string picture specification has a character-I
I string value only. I L ___ J

Figure 0.1. Pictured character-string examples

Figure 0.1 gives examples of
character-string picture specifications.
In the figure, the letter b indicates a
blank character. Note that assignments are
left-adjusted, and any necessary padding
with blanks is on the right.

Picture Characters for Numeric Character
Data

Numeric character data must represent
numeric values; therefore, the associated
picture specification cannot contain the
characters X or A. The picture characters
for numeric character data can specify
detailed editing of the data.

A numeric character variable can be
considered to have two different kinds of
value, depending upon its use. They are
(1) its arithmetic value pnd (2) its
character-string value.

The arithmetic value is the value
expressed by the decimal digits of the data
item, the assumed location of a decimal
point, and possibly a sign. The arithmetic
value of a numeric character variable is
used whenever the variable appears in an
expression that results in a coded
arithmetic value or whenever the variable
is assigned to a coded arithmetic, numeric
character, or bit-string variable. In such
cases, the arithmetic value of the numeric
character varLable is converted to internal
coded arithmetic representation.

296

The character-string value is the value
expressed by the decimal digits of the data
i tem f• as well as all of the editing and
insertion characters appearing in the
picture specification. The
character-string value does not, however,
include the assumed location of a decimal
point, as specified by the picture
character V. The character-string value of
a numeric character variable is used
whenever, the variable appears in a
character-string expression operation or in
an assignment to a character-string
variable, whenever the data is printed
using list-directed or data-directed
output, or whenever a reference is made to
a character-string variable that is defined
on the numeric character variable. In such
cases, no data conversion is necessary.

The picture characters for numeric
character specifications may be grouped
into the following categories:

• Digit and Decimal-Point Specifiers

• Zero suppression Characters

• Insertion Characters

• Signs and Currency Symbol

• Credit, Debit, and overpunched Signs

• Exponent specifiers

• Scaling Factor

A numeric character specification
consists of one or more fields, each field

r------------------r--------------------y------------------T----------------------------, I Source I Source Data I Picture I Character-String I
I Attributes I (in constant form) I Specification I Value1 I
.------------------+--------------------+------------------+----------------------------~ FIXED(S) 1 1234S 99999 12345 I

I I
FIXED(5) 1 12345 99999V 12345 I

I I
FIXED(S) I 12345 999V99 34500 2 I

I I
FIXED(5) 1 12345 V99999 00000 2 I

, I
FIXED(7) I 1234567 99999 34567 2 I

I I
FIXED(3) I 123 99999 00123 I

I I
FIXED(5~2) I 123.45 999V99 12345 I

I I
FIXED(7,2) I 12345.67 9V9 56 2 I

I I
FIXED(S,2) I 123.45 99999 00123 I

.------------------~--------------------~------------------~----------------------------~ I'The arithmetic value is the value expressed by the digits and the actual or assumedl
I location of the V in the specification. 1
12 In this case, PL/I does not define the result since significant digits have beenl
I truncated on the left. The result shown, however, is that given for these I
I implementations. The SIZE condition will be raised, if enabled. I L ___ J

Figure D. ,2. pictured numeric character examples

describinq ,a fixed-point number. A
floating-point specification has two fields
- one for tbe mantissa and one for the
exponent. ~~ field may be divided into
subfields b:~ inserting a V picture
specification character; the portion
preceding the V and that following it (if
any) are subfields of the specification.

A major requirement of the picture
specification for numeric character data is
that each field must contain at least one
picture character that specifies a digit
position. This picture character, however,
need not be the digit character 9. Other
picture characters, such as the zero
suppressio:n characters CZ or * or Y), also
specify digit positions. At least one of
these characters must be used to define a
numeric character specification.

DIGIT AND DECIMAL-POINT SPECIFIERS

The picture characters 9 and V are used in
the simplest form of numeric character
specifications that represent fixed-point
dp.cimal valuEls.

9 specifies that the associated position
in the data item is to contain a decimal
digit.

v specifies that a decimal point is
assumed at this fosition in the
associated data item. However, it does
not specify that an actual decimal point
is to be inserted. The integer and
fractional parts of the assigned value
are aligned on the V character;
therefore, an assigned value may be
truncated or extended with zero digits
at either end. (Note that if
significant digits are truncated on the
left, the result is undefined and a SIZE
interrupt will occur, if SIZE is
enabled.) If no V character appears in
the picture specification of a
fixed-point decimal value (or in the
first field of a picture specification
of a floating-point decimal value), a V
is assumed at the right end of the field
specification. This can cause the
assigned value to be truncated, if
necessary, to an integer. The V
character cannot appear more than once
in a picture specification.

Figure D.2 gives examples of numeric
character specifications.

ZERO SUPPRESSION CHARACTERS

The zero suppression picture characters
specify conditional digit positions in the
character-string value and may cause

Section D: Picture Specification Characters 297

leading zeros to be replaced by asterisks
or blanks and nonleading zeros to be
replaced by blanks. Leading zeros are
those that occur in the leftmost digit
positions of fixed-point numbers or in the
leftmost digit positions of the two parts
of floating-point numbers, that are to the
left of the assumed position of a decimal
point, and that are not preceded by any of
the digits 1 through 9. The leftmost
nonzero digit in a number and all digits,
zeros or not, to the right of it represent
significant digits. Note that a
floating-point number can also have leading
zeros in the exponent field.

Figure D.3 gives examples of the use of
zero suppression characters. In the
figure, the letter b indicates a blank
character.

z specifies a conditional digit position
and causes a leading zero in the
associated data position to be replaced
by a blank character. When the
associated data position does not
contain a leading zero, the digit in the
position is not replaced by a blank
character. The picture character Z
cannot appear in the same field as the
picture character * or a drifting
character, nor can it appear to the
right of any of the picture characters
9, T, I, R, or Y in a field.

* specifies a conditional digit position.
It is used the way the picture character
Z is used, except that leading zeros are
replaced by asterisks. The picture
character * cannot appear in the same
subfield as the picture character Z or a
drifting character, nor can it appear to
the right of any of the picture
characters 9, T, I, R, or Y in a field.

Y specifies a conditional digit position
and causes a zero digit, leading or
nonleading, in the associated position
to be replaced by a blank character.
When the associated position does not
contain a zero digit, the digit in the
position is not replaced by a blank
character.

298

Figure D.3 gives examples of the use of
zero suppression characters. In the
figure, the letter b indicates a blank
character.

Note: If one of the picture characters Z
oi * appears to the right of the picture
character v, then all fractional digit
positions in the specification, as well as
all integer digit positions, must employ
the Z or * picture character, res~ectively.
When all digit positions to the right of
the picture character V contain zero
suppression picture characters, fractional
zeros of the value are suppressed only if
ail positions in the fractional part
contain zeros and all integer positions
h~ve teen suppressed. The entire
character-string value of the data item
will then consist of blanks or asterisks.
No digits in the fractional part are
replaced by blanks or asterisks if the
fractional part contains any significant
digit.

INSERTION CHARACTERS

The picture characters comma (,), point
C.), slash (/), and blank (B) are insertion
characters: they cause the specified
character to be inserted into the
associated position of the numeric
character data. They do not indicate digit
or character positions, but are inserted
between digits or characters. Each does,
nowever, actually represent a character
position in the character-string value,
~hether or not the character is suppressed.
The comma, point, and slash are conditional
insertion characters: within a string of
zero suppression characters, they, too, may
be suppressed. The blank (B) is an
unconditional insertion character: it
always specifies that a blank is to appear
in the associated position.

~ Insertion characters are applicable
only to the character-string value. They
specify nothing about the arithmetic value
of the data item.

r------·----.--------T--------------------T------------------------T----------------------,
I Sourc:e I Source Data I Picture I Character-String I
I Attributes I (in constant form) I Specification I Value~ I
~~---------.--------+--------------------+------------------------+----------------------i FIXED(S) 12345 ZZZ99 12345

FIXED (5·) 00100 ZZZ99 bb100

FIXED(S) 00100 ZZZZZ bb100

FIXED (5·) 00000 ZZZZZ bbbbb

FIXED (5,,2) 123.45 ZZZ99 bb123

FIXED(S,2) 001.23 ZZZV99 bb123

FIXED (5,) 12345 ZZZV99 34500a

FIXED (5, ,2) 000.08 ZZZVZ9 bbb08

FIXED(S,2) 000.00 ZZZVZZ bbbbb

FIXED (5,) 00100 ••••• ··100

FIX:ED (5,) 00000 ••••• • ••••
FIX:ED (5",2) 000.01 ···V·. ···01

FIXED (5,) 00100 YYYYY bb1bb

FIXED(S) 10203 9Y9Y9 1'b2b3

FIXED(S,2) 000.04 YYYVY9 bbbb4

~----------.--------~--------------------~------------------------~----------------------i I 'The a:ritbmetic value is the value expressed by the digits and the actual or assumed I
I locat:ion of the V in the specification. I
I I
I aIf SIZE i,s enabled, it would be raised in this case, and the result would be as shown. I
I If SIZE is not enabled, the result is undefined. I L ___ J

Figure 0.3. Examples of zero suppression

causes a. comma to be inserted into the
associated position of the numeric
characte!r data when no zero suppression
occurs. If zero suppression does occur,
the comma is inserted only when an
unsuppressed digit appears to the left
of the comma position, or when a V
appears immediately to the left of it
and the fractional part contains any
significant digits, or when the comma is
at the s;tart of a string or is preceded
only by characters not specifying digit
positions. In all other cases where
zero suppression occurs, the comma
insertion character is treated as though
it were a zero suppression character
iden·tica,l to the one immediately
precedin.g it.

is used the same way the comma picture
characte!r is used, except that a point

(.) is assigned to the associated
position. This character never causes
point alignment in the picture
specifications of a fixed-point decimal
number and is not a part of the
arithmetic value of the data item. That
function is served solely by the picture
character V. Unless the V actually
appears, it is assumed to be to the
right of the rightmost digit position in
the field, and point alignment is
handled accordingly, even if the point
insertion character appears elsewehre.
The point (or the comma or slash) can be
used in conjunction with the V to cause
insertion of the point (or comma or
slash) in the position that delimits the
end of the integer portion in and the
beginning of the fractional portion of a
fixed-point (or floating-point) number,

Section D: Picture Specification Characters 299

r------------------T--------------------T-------~----------------T----~-----------------, I Source I Source Data I Picture I Character-String I
I Attributes I (in constant form) I Specification I Value1 I
~------------------+--------------------+------------------------+------------~---------i FIXED(4) 1234 9,999 1,234

FIXED(6,2) 1234.56 9., 999V. 99 1,234.56

FIXED(4,2) 12.34 zz.vzz 12.34

FIXED(4,2) 00.03 zz.vzz bbb03

FIXED(4,2) 00.03 ZZv.zz b1:.03

FIXED(4,2) 12.34 ZZv.zz 12.34

FIXED(4,2) 00.00 ZZv.zz bb1:bb

FIXED(9,2) 1234567.89 9,999,999.V99 1,234,567.89

FIXED(7,2) 12345.67 •• ,999V.99 12,345.67

FIXED(7,2) 00123.45 .·,999V.99 ···123.45

FIXED(9,2) 1234567.89 9.999.999V,99 1.234.567,89

FIXED (6) 123456 99/99/99 12/34/56

FIXED(6) 123456 99.9/99.9 12.3/45.6

FIXED(6) 001234 ZZ/ZZ/ZZ I bbb12/34
I

FIXED(6) 000012 ZZ/ZZ/ZZ I bbbbbb12.
I

FIXED(6) 000000 ZZ/ZZ/ZZ I bbbbbbbb
I

FIXED(6) 000000 •• 1 •• /.. I ••••••••
I

FIXED(6) 000000 •• B •• B.. I •• b •• b ••
I

FIXED(6) 123456 99B99B99 t 12b34b56
I

FIXED(3) 123 9BB9BB9 I 1bb2bb3
I

FIXED(2) 12 9BB/9BB I 1bb/2bb
~------------------~--------------------~------------------------~----------------------i I 'The arithmetic value is the value expressed by the digits and the actual or assumedl
I location of the V in the specification. I L ___ J

Figure D.4. Examples of insertion characters

300

as might be desired in printing, since
the V does not cause printing of a
point. The point must immediately
precede or immediately follow the V. If
the pOint precedes the V, it will be
inserted only if an unsuppressed digit
appears to the left of the V, even if
all fractional digits are significant.
If the point immediately follows the V,
it will be suppressed if all digits to
the right of the, V are suppressed, but
it will appear if there are any
significant fractional digits (along
with any intervening zeros).

is used the same way the comma picture
character is used, except that a slash
(/) is inserted in the associated
position.

B specifies that a blank character always
be inserted into the associated position
of the character-string value of the
numeric character data.

Figure D.4 gives examples of the use of
insertion character. In the figure, the
letter b indicates a blank character.

SIGNS AND CURRENCY SYMBOL

The picture characters S, +, and - specify
signs in numl~ric character data. The
picture character $ specifies a currency
symbol in thle character-string value of
numeric chiir,acter data.

These picture characters may be used in
either a static or a.drifting manner. The
static use specifies that a sign, a
currency symbol, or a blank always appears
in the associated position. The drifting
use specifies that leading zeros are to be
suppressed. In this case, the rightmost
suppressed position associated with the
picture character will contain a sign~ a
blank, or a currency symbol (except that
ilihere all digit positions are occupied by
drifting characters and the value of the
data item is zero, the drifting character
is not inserted).

A drifting character is specified by
multiple USE! of that character in a picture
field. Thus, if a field contains one
currency symbol ($), it is interpreted as
static: if It contains more than one, it is
interpreted as drifting. The drifting
character must be specified in each digit
position through which it may drift.

Drifting characters must appear in
strings. A string is a sequence of the
same drifting character, optionally
containing a V and one of the insertion
characters; <::omma, point, slash, or B. Any
of the insertion characters slash, comma,
or point TJii t.hin or immediately following
the string is considered part of the
drifting string. The character B always
causes ine3e:t:'tion of a blank, wherever it
appears. A V terminates the drifting
string, exc1ept when the arithmetic value of
the data item is zero; in that case, the V
is ignored. A field of a picture
specification can contain only one drifting
string. A drifting string cannot be
preceded by a digit position nor can it
occur in the same field as the picture
characters * and Z.

The position in the data associated with
I the characters slash, comma, and point

appearing in a string of drifting
characters iliill contain one of the
following:

• slash, comma, or point if a significant
digit has appeared to the left

• the drifting symbol, if the next
position to the right contains the
leftmost significant digit of the field

• blank, if the leftmost significant digit
of the field is more than one position
to the right

If a drifting string contains the
drifting character n times, then the string
is associated with n-1 conditional digit
positions. The position associated with
the leftmost drifting character can contain
only the drifting character or blank, never
a digit. Two different picture characters
cannot be used in a drifting manner in the
same field.

If a drifting string contains a V within
it, the V delimits the preceding portion as
a subfield, and all digit positions of the
subfield following the V must also be part
of the drifting string that commences the
second sUbfield.

Only one type of sign character can
appear in each field. An S, +, or - used
as a static character can appear to the
right or left of all digits in the mantissa
and exponent fields of a floating-point
specification, and to the right or left of
all digit positions of a fixed-point
specification.

In the case in which all digit positions
after the V contain drifting characters,
suppression in the subfield will occur only
if all of the integer and fractional digits
are zero. The resulting edited data item
will then be all blanks (except for any
insertion characters at the start of the
field). If there are any significant
fractional digits, the entire fractional
portion will appear unsuppressed.

$. specifies the currency symbol. If this
qharacter appears more than once, it is
a drifting character; otherwise it is a
static character. The static character
specifies that the character is to be
placed in the associated position. The
static character must appear either to
the left of all digit positions in a
field of a specification or to the right
of all digit positions in a
specification. See details above for
the drifting use of the character.

S specifies the plus sign character (+) if
the data value is ~O, otherwise it
specifies the minus sign character (-).
The character may be drifting or static.
The rules are identical to those for the
currency symbol.

section D: Picture Specification Characters 301

r------------------r--------------------T------------------------T----------------------; I Source I Source Data I · Picture I Character-String I
I Attributes I (in constant form) I specification J Value· I
~------------------+-----,---------------+------------------------t----------------------i FIXED(S,2) 123.45 $999V.99 $123.45 I

FIXED(S,2) 012.00 99$ 12$

FIXED(S,2) 001.23 $ZZZV.99 $bb1.23

FIXED(S,2) 000.00 $ZZZV.ZZ bbbbbbb

FIXED (1) 0 $$$.$$ bbbbbb

FIXED(5,2) 123.45 $$$9V.99 $123.45

FIXED(S,2) 001.23 $$$9V.99 bb$1.23

FIXED(2) 12 $$$,999 bbb$012

FIXED(4) 1234 $$$,999 b$1,234

FIXED(S,2) 2.45 SZZZV.99 +bb2.4S

FIXED(5) 214 SS,SS9 +214

FIXED(S) -4 SS,SS9 -4

FIXED(S,2) -123.45 +999V.99 b123.45

FIXED(5,2) -123.45 -999v.99 -123.45

FIXED (5,,2) 123.45 999V.99S 123.45+

FIXED(S,2) 001.23 ++B+9V.99 bbb+1.23

FIXED(5,2) 001.23 ---9V.99 bbb1.23

FIXED(5~2) -001.23 SSS9V.99 bb-1.23

~----------~-------~--------------------~------------------------~----------------------~ 11The arithmetic value is the value expressed by the digits and the actual or assumed I
I location of the V in the specification. I L ___ --------____ , ______________________ J

Figure 0.5. Examples of drifting picture characters

+ specifies the plus sign character (+) if
the data value is ;=:0, otherwise it
specifies a blank. The character may be
drifting or static. The rules are
identical to those for the currency
symbol.

specifies the minus sign character (-)
if the data value is <0, otherwise it
specifies a blank. The character may be
drifting or static. The rules are
identical to those for the currency
symbol.

Figure 0.5 gives examples of the use of
drifting picture characters. In the
figure, the letter b indicates a blank
character.

302

CREDIT, DEBIT, AND OVERPUNCHED SIGNS

The character pairs CR (credit) and DB
(debit) specify the signs of real numeric~
character data items and usually appear in
business report forms.

Any of the picture characters T, I" or R
specifies an overpunched sign in the
associated digit position of numeric
character data. An overpunched sign is a
12-punch (for plus) or an 11-punch (for
m~nus) punched into the same column as a
digit. It indicates the sign of the
arithmetic data item. Only one overpunched
sign can appear in a specification for a
fixed-point n~mber. A floating-point
specification can contain two, one in the
mantissa field and one in the exponent
field. The overpunch character can,
however, be specified for any digit

r------------------T--------------------T------------------------T----------------------, I Source I Source Data I Picture I Character-String I
I Attributes I (in constant form) I Specification I Value' I
.------------------+--------------------+------------------------+----------------------~ FIXED(3) -123 $Z.99CR $1.23CR

FIXED (Lt·;, 2)

FIXED (LI~, 2)

FIXED(4,2)

FIXED (L~)

FIXED (L~)

12.34

-12.34

12.34

1021

-1021

$ZZV.99CR

$ZZV.99DB

$ZZV.99DB

9991

Z99R

$12.34bb

$12.34DB

$12.341:::1:::

102A

102J

FIXED(4) 1021 99T9 1011
~------------------~--------------------~------------------------~----------------------~
I~The arithmetic value is the value expressed by the digits and the actual or assumed I
I location of the V in the specification. I L ___ J

Figure 0,.6. Examples of CR, DB" T, I, and R picture characters

position within a field. The overpunched
number then will appear in the specified
digit pOBi1t:.ion.

CR specifies that the associated positions
will contain the letters CR if the
value of the data is less than zero.
otherwise, the positions will contain
two blanks. The characters CR can
appear only to the right of all digit
positions of a field.

DB is used the same way that CR is used
except that the letters DB appear in
the associated positions.

T specifies that the associated position,
on in{:,ut, will contain a digit
overpunched with a 12-punch ~O or an

I

R

11 '-pullich if the value is <0. It also
specifies that an overpunch is to be
indicated in the character-string
value.

specifies that the associated position,
on input, will contain a digit
over punched with a 12-punch if the
value is ~O; otherwise, it will contain
the digit with no overpunching. It
also specifies that an overpunch is to
be indicated in the character-string
value if the data value is ~O.

specifies that the associated position,
on input, will contain a digit
ovel:plllnched with an 11-punch if the
value is <0; otherwise, it will contain
the digit with no overpunching. It
also specifies that an overpunch is to
be :Lndica ted in the character-string
value if the data value is <0.

Figure 0.6 gives examples of the CR, DB,
and overpunch characters. In the figure,
the letter b indicates a blank character.

~ The picture characters CR, DB, T, I,
and R cannot be used with any other sign
characters in the same field.

EXPONENT SPECIFIERS

The picture characters K and E delimit the
exponent field of a numeric character
specification that describes floating-point
decimal numbers. The exponent field is
always the last field of a numeric
character floating-point picture
specification. The picture characters K
and E cannot appear in the same
specification.

K

E

specifies that the exponent field
appears to the right of the associated
position. It does not specify a
character in the numeric character data
item.

specifies that the associated position
contains the letter E, which indicates
the start of the exponent field.

The value of the exponent is adjusted in
the character-string value so that the
first significant digit of the first field
(the mantissa) appears in the position
associated with the first digit specifier
of the specification (even if it is a zero
suppression character).

Section 0: Picture Specification Characters 303

r------------------T--------------------T------------------------T----------------------, I Source I Source Data I ,Picture I Character-String I
I Attributes I (in constant form) I St:ecification I Value' I
.------------------t--------------------t-----~------------------t----------------------i FLOAT (5) • '2345E06 V. 99999E99 I. 12345E06

I
FLOAT(5) • 12345E-06 V.99999ES99 I • 12345E-06

I
FLOAT(5) .12345E+06 V.99999KS99 I .12345+06

I
FLOAT(5) -123.45E+12 S999V.99ES99 I -123.45E+12

I
FLOAT(5) 001.23E-01 SSS9.V99ESS9 I +123.00Eb-3

I
FLOAT(5) 001.23E+04 ZZZV.99KS99 I 123.00+02

I
FLOAT(5) 001.23E+04 SZ99V.99ES99 I +123.00E+02

I
FLOAT (5) 001.23E+04 $SSSV.99E-99 I +123.00Eb02

~_-----------------L--------------------L------~------___________ L ______________________ ~
11 The arithmetic value is the value expressed'by the mantissa, multiplied by 10 to thel
I power indicated in the exponent field. I L ___ J

Figure 0.7. Examples of floating-point picture specifications

Figure 0.7 gives examples of the use of
exponent delimeters. In the figure, the
letter b indicates a blank character.

SCALING FACTOR

The picture character F st:ecifies a scaling
factor for fixed-point decimal numbers. It
appears at the right end of the picture
specification and is used in the following
format:

F ([+1-] decimal-integer-constant)

F specifies that the optionally signed
decimal integer constant enclosed in
parentheses is the scaling factor. The
scaling factor specifies that the
decimal point in the arithmetic value
of the variable is that number of
places to the right (if the scaling
factor is positive) or to the left (if
negative) of its assumed position in
the character-string value.

The scaling factor must not imply a
scale outside the range -128 to 127.

Figure D.8 shows examples of the use of
the scaling factor picture character.

r------------------T--------------------T------~-----------------T----------------------,
I Source I Source Data I ' Picture I Character-String I
I Attributes I (in constant form) I Specification I Value1 I
~------------------t--------------------t-------~----------------t------------,----------~ I FIXED(4,0) I 1200 I 99F(2) I 12 I
I I I I I
I FIXED(7,0) I -1234500 I S999V99F(4) I -12345 I
I I I I I
I FIXED(5,5) I .00012 I 99F(-5) I 12 I
I I I I I
I FIXED(6,6) I .012345 I 999V99F(-4) I 12345 I • __________________ L ____________________ L _______ ~ ________________ L ______________________ ~
I'The arithmetic value is the same as the character-string value, multiplied by 10 tol
I the power of the scaling factor. I L ___ ~-----__________________________________ J

Figure D.8. Examples of scaling factor picture characters

304

Section E: Edit-directed Format Items

This section, describes each of the
edit-directe!d format items that can appear
in the format list of a GET or PUT
statement.

There are three categories of format
items: datal format items, control format
items, and the remote format item.

In this section l the three categories
are discussed separately and the format
items are listed under each category. The
remainder 01: the section contains detailed
discussions of each of the format items,
with the dis;cussions appearing in
alphabetic order.

Data Format Items

A data formclt item describes the external
format of a single data item.

For input, the data in the stream is
considered to be a continuous string of
characters; all blanks are treated as
characters :Ln the stream, as are quotation
marks. Each data format item in a GET
statement specifies the number of
characters to be obtained from the stream
and describ~es the way those characters are
to be inter]preted. strings should not be
enclosecl in quotation marks, nor should the
letter B te used to identify bit strings.
If the chariClcters in the stream cannot be
interpreted in the manner specified, the
CONVERSION condition is raised.

For output, the data in the stream takes
the form 13pecified by the format list.
Each data f,ormat item in a PUT statement
specifies the width of a field into which
the associated data item in character form
is to be :~laced and describes the format
that the 'value is to take. Enclosing
quotation marks are not inserted, nor is
the letter B to identify bit strings.

Leading blanks are not inserted
automatically to separate data items in the
output stream. String data is
left-adjusted in the field, whose width is
specified. Arithmetic data is
right-adjusted. Because of the rules for
conversion of arithmetic data to character
type, which can cause up to three leading
blanks 'to tie inserted (in addition to any
blanks that replace leading zeros), there
generally will be at least one blank
preceding an arithmetic item in the

converted field. Leading blanks will not
appear in the stream, however, unless the
specified field width allows for them.
Truncation, due to inadequate field-width
specification is on the left for arithmetic
items, on the right for string items.

Note that the value of binary data both
on input and output is always represented
in decimal form for edit-directed
transmission.

Following is a list of data format
items:

Fixed-point format item F

Floating-point format item E

Complex format item C

Picture format item P

Bit-string format item B

Character-string format item A

Control Format Items

The control format items specify the layout
of the data set associated with a file.
The following is a list of control format
items:

Paging format item PAGE

Line skipping format item SKIP

Line position forma,t item LINE

Column position format item COLUMN

Spacing format item X

A control format item has no effect
unless it is encountered before the data
list is exhausted.

The PAGE and LINE format items apply
only to output and only to files with the
PRINT attribute. The SRIP, COLUMN and X
format items apply to both input and
output.

The PAGE, SKIP, and LINE format items
have the same effect as the corresponding
options of the PUT statement (and of the
GET statement, in the case of SKIP), except
that the format items take effect only when

section E: Edit-Directed Format Items 305

they are encountered in the format list~
while the options take effect before any
data is transmitted.

The COLUMN format item positions the
file to the specified character position in

I the current or following line. It cannot
be used in a GET STRING or PUT STRING
statement.

The spacing format item specifies
relative horizontal spacing. On input, it
specifies a number of characters in the
stream to be skipped over and ignored; on
output, it specifies a number of blanks to
be inserted into the stream.

For the effects of control format items
when specified in the first GET or PUT
statement following the opening of a file,
see "O~EN Statement" in section J,
"Statements".

Remote Format Item

The remote format item specifies the label
of a FORMAT statement that contains a
format list which is to be taken to replace
the remote format item.

The remote format item is:

R(statement-label-designator)

The "statement-label-designator" is a
I label constant or scalar label variable.

Use of Format Items

Most of the format items listed below are
followed by a specification. In all cases
except the picture and remote items, any
expression contained in the specification
can be given as decimal integer constants,
as element variables, or as other element
expressions. The value assigned to a
variable during an input operation can be
used in an expression in a format item that

306

is associated with a later data item. An
expression is evaluated and converted to an
integer each time the format item is used.

Alphabetical List of Format Items

A-Format Item

The A-format item is:

A [(field-width)]

The character-string format item
describes the external representation of a
string of characters.

General rules:

1. The "field-width" is an expression
that is evaluated and converted to an
integer, which must be non-negative,
each time the format item is used. It
specifies the number of character
positions in the data stream that
contain (or will contain) the string.

2. On input, the specified number of
characters is obtained from the data
stream and assigned, with any
necessary conversion" truncation, or
padding, to the associated element in
the data list. The field width is
always required on input, and if it
has a value equal to zero, a null
string is assumed. If quotation marks
appear in the stream~ they are treated
as characters in the string.

3. On output, the associated element in
the data list is converted, if
necessary, to a string of characters
and is truncated or extended with
blanks on the ri~ht to the specified
field width before, being---placed into
the data stream. If the field ~idth
is equal to zero" the format item a.nd
its associated element in the data
list are skipped, and no characters
are placed into the data stream.
Enclosing quotation marks are never
inserted. If the field width is not
speCified, it is assumed to be equal
to the character-string length of the
element named in the data list (after
conversion, if necessary, according to
the rules given in section F, "Data
Conversion and Expression
Evaluation") •

B-format Item

The B-fo:(mat item is:

B (field-width)]

The bit-string format item describes the
external re};:lresentation of a bit string.
Each bit is represented by the character 0
or 1.

General :rules:

1. The "field-width" is an expression
tha't is; evaluated and converted to an
integeI:, which must be non-negative,
each time the format item is used. It
specifies the number of data-stream
charact:er positions that contain (or
will ccmtain) the bit string.

2. On inptlt, the character representation
of the bit string may occur anywhere
within the specified field. Blanks,
which may a.ppear before and after the
bit string in the field, are ignored.
Any necessary conversion occurs when
the bit string is assigned to the
associated element in the data list.
The field width is always required on
input, and if it is equal to zero, a
null st.ring is assumed. Any character
othel." t.han 0 or 1 in the string,
including embedded blanks, quotation
marksl, or the letter B, will raise the
CONVERSION condition.

3. On output, the character
repres~=ntation of the bit string is
left-adjusted in the specified field,
and nec::essary truncation or extension
with blanks occurs on the right. Any
necessary conversion to bit-string is
performed. No quotation marks are
inserted, nor is the identifying
letter B. If the field width is equal
to zero, the format item and its
assoc::iiated element in the data list
are skipped, and no characters are
placed into the data stream. If the
field width is not specified, it is
assumed to be equal to the bit-string
length of the element named in the
data list (after conversion, if
necessary, according to the rules
given in section F "Data Conversion
and Expression Evaluation").

The C-format item is:

C(real-format-item(,real-format-item])

The complex format item describes the
external representation of a complex data
item.

General rules:

1. Each "real-format-item" is specified
by one of the F-" E-., or P-format
items. The P-format item must
describe n'umeric character data; it
cannot describe character-string data.

2. On input, the complex format item
describes the real and imaginary parts
of the complex data item within
adjacent fields in the data stream.
If the second real format item is
omitted, it is assumed to be the same
as the first. The letter I will cause
the CONVERSION condition to be raised.

3. On output, the real format items
describe the forms of the real and
imaginary parts of the complex data
item in the data stream. If the
second real format item is omitted, it
is assumed to be the same as the
first. The letter I is never appended
to the imaginary part. If the second
real format item (or the first, if
only one appears) is an F or E item,
the internal sign will be printed only
if the value of the imaginary part is
less than zero. If the real format
item is a P item, the sign will be
printed only if the S or - or +
picture character is specified. If
the I is to be appended, it must be
specified as a separate data item in
the data list, immediately following
the variable that specifies the
complex item. The I" then, must have
a corresponding format item (either A
or Pl.

COLUMN Format Item

The COLUMN format item is:

COLUMN (character-position)

The column position format item
positions the file to a specified character
position within the current or following
line. It can be used with either input or
output files.

General rules:

1. The "character-position" is an
expression which is evaluated and
converted to an integer, which must be
non-negative, each time the format
item is used.

Section E: Edit-Directed Format Items 307

2. The file is positioned to the
specified character position in the
current line, provided it has not
already passed this position. On
input, intervening character positions
are ignored; on output, they are
filled with blanks. If the file is
already positioned after the specified
character position, the current line
is completed and a new line is
started; the format item is then
applied to the following line.

3. If the specified character position
lies beyond the rightmost character
position of the current line, or if
the value of the expression for the
character position is less than one,
then the character position is assumed
to be one.

~ The rightmost character
position is determined as follows:

a. For output files, it is determined
by the line size.

b. For input files, the compiler uses
the length of the current logical
record to determine the line size
and, hence, the rightmost
character position. In the case
of V-format records, this line
size is equal to the logical
record length minus the number of
bytes containing control
information.

4. The COLUMN format item has no effect
unless it is encountered before the
data list is exhausted.

5. The COLUMN format item must not be
used in a GET STRING or PUT STRING
statement.

E-format Item

The E-format item is:

E(field-width,number-of-fractional-digits
[,number-of-significant-digits])

The floating-point format item describes
the external repr,esentation of decimal
arithmetic data in floating-point format.

General rules:

1. The "field-widthW, "number-of­
fractional-digits", and wnumber-of­
significant-digitsW can be represented
by expressions, which are evaluated
and converted to integers when the
format item is used.

308

WField-width" specifies the total
number of characters in the field.

"Number-of-fractional-digits"
specifies the number of digits in the
mantissa that follow the decimal
point.

WNumber-of-significant-digits"
specifies the number of digits that
must appear in the mantissa.

2. On input, the data item in the data
stream is the character representation
of an optionally signed decimal
floating-point or fixed-point constant
located anywhere within the specified
field. If the data item is a
fixed-point number, an exponent of
zero is assumed.

The external form of a floating~point
number is:

[+1-] mantissa [E]{+I-} exponent
E [+1-]

The mantissa must be a decimal
fixed-point constant.

a. The number can appear anywhere
within the specified field; blanks
may appear before and after the
number in the field and are
ignored. If the entire field is
blank, the CONVERSION condition is
raised. When no decimal point
appears, the expression for the
number of fractional digits
specifies the number of character
positions in the mantissa to the
right of the assumed decimal
point. If a decimal point does
appear in the number, it overrides
the specification of the number of
the fractional digits.

The value expressed by "field­
width" includes trailing blanks,
the exponent position, the
positions for the optional plus or
minus signs, the position for the
optional letter E, and the
position for the optional decimal
point in the mantissa.

b. The exponent is a decimal integer
constant. Whenever the exponent
and preceding sign or letter E are
omitted, a zero exponent is
assumed.

3. On output, the internal data is
converted to floating-point, and the
external data item in the specified
field hi!lS the following general form:

[-] {s-d digits}.{d digits}
E {+I-} exponent

In this form, s represents the number
of significant digits, and d
represents the number of fractional
digits. The value is rounded if
necessary. If the data item is
fractional, the character 0, rather
than s-d digits, appears before the
decimal point.

a. The exponent is a two-digit
decimal integer constant, which
may be two zeros. The exponent is
automatically adjusted so that the
leai3.ing digit of the mantissa is
non:z ero. When the val ue is zero,
zero suppression is applied to all
digit positions (except the first)
to the left of the decimal point.
All other digit positions contain
z.~rl::>.

b. If t.he above form of the number
does not fill the specified field
on loutPUt, the number is
right-adjusted and extended on the
left with blanks. If the number
of significant digits is not
specified, it is taken to be 1
plus the number of fractional
digits. The field width for
non-negative values of the data
item must be greater than or equal
to 5 plus the number of
significant digits. For negative
values of the data item~ the field
wid,th must be greater than or
equ1al to' 6 plus the number of
significant digits. However, if
the number of fractional digits is
zero, the decimal point is not
w:ritten, and the above figures for
the field width are reduced by 1.

c. The rounding of internal data is
as follows: if truncation causes
a digit to be lost from the right,
and this digit is greater than or
equal to 5~ then 1 is added to the
digit to the left of the truncated
digit.

d. If the field width is such that
significant digits or the sign are
lost, the SIZE condition is
raised.

F-format Item

The F-format item is:

F(field-width[,number-of-fractional-digits
[,scaling-factor]])

The fixed-point format item describes
the external representation of a decimal
arithmetic data item in fixed-point format.

General rules:

1. The "field-width", "number-of
fractional-digits"~ and "scaling­
factor" can be represented by element
expressions, which are evaluated and
converted to integers when the format
item is used. The evaluated field
width and number of fractional digits
must both be non-negative.

2. On input, the data item in the data
stream is the character representation
of an optionally signed decimal
fixed-point constant located anywhere
within the specified field. Blanks
may appear before and after the number
in the field and are ignored. If the
entire field is blank, it is
interpreted as zero.

The number of fractional digits, if
not specified, is assumed to be zero.

If no scaling factor is specified and
no decimal point appears in the field,
the expression for the number of
fractional digits specifies the number
of digits in the field to the right of
the assumed decimal point. If a
decimal point actually does appear in
the data, it overrides the expression
for the number of fractional digits.

If a scaling factor is specified, it
effectively multiplies the value of
the data item in the data stream by 10
raised to the integral value (E) of
the scaling factor. Thus, if E is
positive, the number is treated as
though the decimal point appeared E
places to the right of its given
position. If E is negative, the
number is treated as though the
decimal point aPEeared E places to the
left of its given position. The given
position of the decimal point is that
indicated either by an actual point,
if it appears, or by the expression
for the number of fractional digits,
in the absence of an actual point.

3. On output, the internal data is
converted, if necessary, to
fixed-point; the external data is the
character representation of a decimal

section E: Edit-Directed Format Items 309

fixed-point number, rounded if
necessary, and right-adjusted in the
specified field.

If only the field width is specified
in the format item, only the integer
portion of the number is written; no
decimal point appears.

If both the field width and number of
fractional digits are specified, but
the scale factor is not, both the
integer and fractional portions of the
number are written. If the value (d)
of the number of fractional digits Is
greater than zero, a decimal point is
inserted before the rightmost ~
digits. Trailing zeros are supplied
when the number of fractional digits
is less than d (the value d must be
less than the-field width)7
suppression of leading zeros is
applied to all digit positions (except
the first) to the left of the decimal
point.

The rounding of internal data is as
follows: if truncation causes a digit
to be lost from the right, and this
digit is greater than or equal to 5,
then 1 is added to the digit to the
left of the truncated digit.

The integer value (E) of the scaling
factor effectively multiplies the
value of the associated element in the
data list by 10 raised to the power of
E, before it is edited into its .
external character representation.
When the number of fractional digits
is zero, only the integer portion of
the number is used.

On output, if the value of the
fixed-point number is less than zero,
a minus sign is prefixed to the
external character representation: if
it is greater than or equal to zero,
no sign appears. Therefore, for
negative values of the fixed-point
number" the field width specification
must include a count of both the sign
and the decimal point.

If the field width is such that any
character is lost, the SIZE condition
is raised.

LINE Format Item

The LINE format item is:

LINE (line-number)

310

The line position format item specifies
the particular line on the current or
following page of a PRINT file upon which
the next data item is to be printed.

General rules:

1. The "line-number" can be represented
by an expression, which is evaluated
and converted to an integer, which
must be non-negative, each time the
format item is used.

2. Blank lines are inserted, if
necessary.

3. If the specified line number is less
than or equal to the current line
number, or if the specified line is
beyond the limits set by the PAGESIZE
option of the OPEN statement (or by
default), the ENDPAGE condition is
raised. An exception is that if the
specified number is equal to the
current line number, and the column
one character has not yet been
transmitted, the effect is as for a
SKIP(O) item-carriage return with no
line spacing.

4. If "line-number" is equal to zero, it
is assumed to be one.

5. The LINE format item has no effect
unless it is encountered before the
data list is exhausted.

P'""format Item

The P-format item is:

P • picture-specification ,

The picture format item describes the
external representation of numeric
character data and of character-string
data.

The "picture-specification" is discussed
in detail in section D, "Picture
Specification Characters" and in the
discussion of the PICTURE attribute in
section I, "Attributes".

On input, the picture specification
describes the form of the data item
expected in the data stream and, in the
case of a numeric character specification,
how the item's arithmetic value is to be
interpreted. Note that the picture
specification should accurately describe
the data in the input stream, including
characters represented by editing
characters. If the indicated character
does not appear in the stream, the
CONVERSION condition is raised.

On ou·tput., the value of the associated
element in the data list is converted to
the form specified by the picture
specificatic)Q before it is written into the
data strea.m.

PAGE Forma~~

The PAGE fOl:mat item is:

PAGE

The pagiJlg format item specifies that a
new page is to be established. It can be
used only with PRINT files.

General rull:!s:

1. The E!stablishment of a new page
impliel6 that the file be positioned to
line Ollle of the next page.

2. The PAGE format item has no effect
unless it is encountered before the
data list is exhausted.

The R-format item is:

R (statement-label-designator)

The remote format item allows format
items in .a FORMAT statement to replace the
remote format item.

General rules:

1. The "statement-label-designator" is a
label constant, or an element label
variable, or a function reference that
has as its value the statement label
of a F'ORMAT statement. The FORMAT
statement includes a format list that
is taken to replace the format item.

2. The R-format item and the specified
FORMAT statement must be internal to
the salme block. (If the procedure is
execut~ed recursively, they must be in
the same invocation.>

3. There can be no recursion within a
FOR~IA,]~ statement. That is" a remote
FORMA,]~ statement cannot contain an
R-format item that names itself as a
stat.ement label designator, nor can it
name clnother remote FORMAT statement
that will lead to the naming of the
original FORMAT statement. Avoidance
of rec:ursion can be assured if the
FOR~!A~r statement ref erred to by a

remote format item does not itself
contain a further remote format item.

4. Any conditions enabled for the GET or
PUT statement must also be enabled for
the remote FORMAT statement(s) that
are referred to.

5. If the GET or PUT statement is a
single statement of an on-unit, it
cannot contain a remote format item.

'SKIP Format Item

The SKIP format item is:

SKIP[,(relative-position-of-next-line)]

The line skipping format item specifies
that a new line is to be defined as the
current line.

General rules:

1. The ~relative-position-of-next-line"
can be specified by an element
expression, which is evaluated and
converted to an integer, w, which must
be non-negative, each time the format
item is used. It must be greater than
zero for non-PRINT files. If it is
not, or if it is omitted, 1 is
assumed.

2. The new line is the wth line after the
present line.

3. If w is greater than one, then on
input, one or more lines will be
ignored; on output, one or more blank
lines will be inserted.

4. w may be equal to zero for PRINT files
only; the effect is that of a carriage
return without line spacing.
Characters previously written may be
overprinted.

5. For PRINT files, if the specified
relative position is beyond the limit
set by the PAGESIZE option of the OPEN
statement (or the default), the
END PAGE condition is raised.

6. If the SKIP format item is the first
item to be executed after a file bas
been opened, output commences on the
wth line of the first page. If w is
,zero or 1 , it commences on the first
line of tbe first page.

Section E: Edit-Directed Format Items 311

7. The SKIP format item has no effect
unless it is encountered before the
data list is exhausted.

X-format Item

The X-format item is:

X (field-width)

The spacing format item controls the
relative spacing of data items in the data
stream. It is not limited to PRINT files.

General rules:

1. The "field-width" is an expression,
which is evaluated and converted to an

312

integer, which must be non-negative,
each time the format item is used.
The integer specifies the number of
blanks before the next field of the
data stream, relative to the current
position in the stream.

2. On input" the specified number of
characters is spaced over in the data
stream and not transmitted to the
program.

3. On output, the specified number of
blank characters are inserted into the
stream.

4. The spacing format item has no effect
unless it is encountered before the
data list is exhausted.

Missing from orig document

Missing from orig document

Section F: Data Conversion and Expression Evaluation

The purpose of this section is to help the
user analyze i3. mixed expression, involving
problem datil, to determine the conversions
that will occur, and the effect these
conversions will have on the final result.
In this context, an assignment is
considered as a special case of a mixed
expression. An expression is termed
"mixed" for one of two reasons:

1. Operands have attributes that differ.
For ex,ample,

DCL A CHAR(6),B FIXED BINARY(31):

A=B;

B is converted to character-string
form before assignment to A.

2. Operands have attributes that are not
compatible with the operation to be
performed. For example,

DCL C BIT(10) VARYING;

C=C+C:

C is converted to an arithmetic value
before the addition is pe;formed. The
arithmetic result of the addition is
converted to bit-string form before
assignme:nt back to C.

This section gives all the circumstances
and rules under which such conversions take
place.

Conversions may also occur in situations
other than assignment or.expression
evaluation. However, the rules given here
are directly applicable to these
situations. Figure F.3 lists all the
circumstances under which conversion may
occur.

Section Or~:Janization

The conversion rules are presented by
figures F.1, F.4, and F.S, and by source to
target rules.

Figure F.1 shows the operations that may
be performed, gives their priority in
expression evaluation, and contains
references to figures F.4 and F.S, and to
source to t.az:get rules where further
information nlay be obtained.

section F:

Figure F.4 shows, for all arithmetic
operations, the conversions that will take
place.

Figure F.S shows, for all problem data
comparisons, the conversions that will take
place.

Source to target rules are given for
each of the following data types:

Coded Arithmetic:

FIXED BINARY
FIXED DECIMAL
FLOAT BINARY
FLOAT DECIMAL

PICTURE (numeric character)

CHARACTER

BIT

The following pages take each of these
data types as a target and give the
conversion rules for all the others taken
as sources to that target. The source to
target rules are used directly for all
conversions that do not involve operators.
See figure F.3.

The relationship between figures F.1,
F.4, and F.S, and the source to target
rules is illustrated as follows:

r----------,
IFigure F.1~-------,
L----T-----J--, I

V

I I
I I
V I r----------, I

IFigure F.411
L---T------J 1

I I
1 V
I
I
1
1
V

r----------,
IFigure F.SI
L----T-----J

I
V

r----------------------, lsource to target rules 1 L ______________________ J

One other figure, figure F.2, is an aid
to calculating the new precision resulting
from a conversion.

The placement of the figures in this
section is designed so that the user can

Data Conversion and Expression Evaluation 315

have access to most of the information at
one page opening. Figures F.land F.2 are
together on a foldout page so that they are
clear of the normal page. Figures F.4 and
F.5 are each on a foldout page and placed
at the back of the section. Thus, figures
F.l, F.2, and F.4 or F.5, and specific
source to target rules can all be viewed
simultaneously.

EXAMPLE OF USE OF THE CONVERSION RULES

The following example illustrates how
information is retrieved from the figures
and the source to target rules.

DCL FB FIXED BI~ARYC 5) "
FD FIXED DECIMAL(5,2),
CH CHARACTER(12):

CH=4.2*FB+FD:

From the priority rules in figure F.l, the
assignment statement is executed in the
following steps:

1. resultl=4.2*FB

2. result2=result1+FD

3. CH=result2

The attributes of the result at each
step are determined as follows.

step 1

The constant 4.2 has implied attributes of
FIXED DECIMALC2,1).

Refer to figure F.4a using the
attributes of the constant as the first
operand and the attributes of FB as the
second operand. This gives the code
reference 5_ In figure F.4d, code

316

reference 5 gives the attributes of the
result as FIXED BINARYCp,q), where the
precision for multiplication is:

p=1+(1+2*3.32)+5=14
q=Cl*3.32)+0=4

• result1 has attributes FIXED
BINARYC14,4)

Step 2

Refer to figure F.4a using the attributes
of resultl as the first operand and the
attributes of FD as the second operand.
This gives the code reference 7. In figure
F.4c" code reference 7 gives the attributes
of the result as FIXED BINARYCp,q), where
the precision for addition is:

p=1+MAX(14-4,CC1+5*3.32)-2*3.32»+7=19
q=MAX(4,C2*3.32»=7

• result2 has attributes FIXED
BINARYC 19, 7)

Step 3

Refer to the rules for FIXED BINARY source
to CHARACTER target. The source is first
converted to FIXED DECIMALCp,q), where

p=1+19/3.32=7
q=7/3.32=3

Refer to the rules for FIXED DECI~AL
source to CHARACTER target. The decimal
constant is assigned to an intermediate
string of length 10.

The intermediate string is assigned to
CH, which is padded on the right with two
blank characters.

Source: Target: Coded Arithmetic

Coded Arithmetic

T'hE! four data types FIXED BINARY, FIXED DECIMAL, FLOAT BINARY, and
FLOAT DECIMAL are all coded arithmetic data. Rules for conversion
bet~ween them are given under each data type taken as a target.
However, the following general points should be noted:

II Small changes in value may occur due to truncation on the right in
conversion from decimal to binary, and between fixed-point decimal
and floating-point decimal.

II If a complex value is converted to a real value, the imaginary
part is ignored. If a real value is converted to a complex value,
the imaginary part is zero.

PICTURE (numeric character)

CHARACTER

BIT

Data is first interpreted as decimal with scale and prec1s10n
de1:.ermined by the corresponding PICTURE specification. The item is
1:hl~n converted to the base, scale, mode, and precision of the target.
See under specific target types of coded arithmetic data using FIXED
DECIMAL or FLOAT DECIMAL as the source.

The source string must represent a valid arithmetic constant or
c=omplex expression: otherwise, the CONVERSION condition will be
raised, if enabled. The constant can be signed, and can be surrounded
by blanks, but cannot contain blanks between the sign and the value,
c)r between the end of the real part and the sign preceding the
imaginary part of a complex expression.

A null string gives the value zero.

'rhe constant will have base, scale, mode, and precision attributes.
It will be converted to the attributes of the target when they are
independent of the source attributes, as in the case of assignment.
See under specific target types of coded arithmetic data using the
attributes of the constant as the source.

However, if an intermediate target is necessary, as is the case in
evaluation of an operational expression, the attributes of the
intermediate target are those it would have if a decimal fixed-point
integer of precision (15,0) had appeared in place of the string.
(This allows the compiler to generate code to handle all cases,
regardless of the attributes of the contained constant.)
Consequently, any fractional portion of the constant is lost. See
under specific target types of coded arithmetic data using FIXED
DECIMAL as the source.

The source string is interpreted as an unsigned binary integer whose
precision is (31,0) if the conversion occurs during evaluation of an
operational expression, or whose precision is (56,0) if the conversion
occurs during an aSSignment. The greater precision allowed for in an
assignment is possible because the compiler can readily determine the
final target. See under specific target types of coded arithmetic
data using FIXED BINARY as the source.

Section F: Data Conversion and Expression Evaluation 317

318

If the source string is longer than the allowable prec1s10n, bits on
the left are ignored: if nonzero bits are lost, the result is
undefined and the SIZE condition will be raised if enabled.

A null string gives the value zero.

Source: Target: FIXED BINARY

FIXED BINARY'

The: binary point alignment is maintained during precision conversion,
and therefore padding or truncation can occur on the left or the
right. If nonzero bits on the left are lost, the result is undefined:
the SIZE condition will be raised, if enabled.

FIXED DECIMA.L

If the precl.sl.on of the source is (P1 ,g1),' the precl.sl.on of the result
is (Pa~ga), where Pa=1+CEIL(p.*3.32) and ga=CEIL(g.*3.32). If the
calculated value of Pa exceeds 31, significant digits on the left may
be lost, this will cause the SIZE condition to be raised, if enabled,
and the result is undefined.

FLOAT BINARY'

This conversion can occur only when data is assigned. The precision
conversion is the same as that given for FIXED BINARY to FIXED BINARY
wi t,h P. as declared or indicated and go as indicated by the binary
point position and modified by the value of the exponent ..

FLOAT DECIMAL

Thi.s conversion can occur only when data is assigned. The precision
conversion is the same as that given for FIXED DECIMAL to FIXED BINARY
with Po as declared or indicated and g. as indicated by the decimal
poi.nt position and modified by the value of the exponent.,

PICTURE (numeric character)
CHARACTER
BIT

See! under Coded Arithmetic Target.

section F: Data Conversion and Expression Evaluation 319

Source: Target: FIXED DECIMAL

FIXED BINARY

If the precision of the source is (Pt,qt)~ the prec1s10n of the result
is (Pa,qa), where Pa~1+CEIL(p1/3.32) and qa=CEIL(q1/3.32).

FIXED DECIMAL

The decimal point alignment is maintained during precision conversion,
and therefore padding or truncation can occur on the left or the
right. If nonzero bits on the left are lost, the result is undefined;
the SIZE condition will be raised, if enabled.

FLOAT BINARY

This conversion can occur only when data is assigned. The precision
conversion is the same as that given for FIXED BINARY to FIXED DECIMAL
with Pt as declared or indicated and qt as indicated by the binary
point position and modified by the va~ue of the exponent.

FLOAT DECIMAL

This conversion can occur only when data is assigned. The precision
conversion is the same as that given for FIXED DECIMAL to FIXED
DECIMAL with Pt as declared or indicated and qt as indicated by the
decimal point position and modified by the value of the exponent.

PICTURE (numeric character)
CHARACTER
BIT

See under Coded Arithmetic Target.

320

Source: Target: FLOAT BINARY

FIXED BINAR1:

If the precision of the source is (P.,q1)~ the prec1s10n of the result
is Pa, where Pa=P.. The exponent will indicate any fractional part of
thel value.

FIXED DECIMJlJ,

If the precision of the source is (P.,q1)~ the prec1s1on of the result
is Pa, where Pa=CEIL(p.*3.32). The exponent will indicate any
fractional part of the value.

FLOAT BINARY

The precision of the result may be converted from short to long
precision by padding with zeros on the right, or may be converted from
long to short precision by truncation on the right.

FLOAT DEC lIt-!AL

If the precision of the source is (P.,q1)~ the precision of the result
is Pa, where Pa=CEIL(p.*3.32).

PICTURE (n'llmeric character)
CHARACTER
BIT

See under Coded Arithmetic Target.

Section F: Data Conversion and Expression Evaluation 321

Source: Target: FLOAT DECIMAL

FIXED BINARY

If the precision of the source is (Pt,q1)~ the prec1s10n of the result
is Pa, where Pa=CEIL(Pt/3.32). The exponent will indicate any
fractional part of the value.

FIXED DECIMAL

If the precision of the source is (P1,Q1). the precision of the result
is Pa, where Pa=Pt. The exponent will indicate any fractional part of
the value.

FLOAT BINARY

If the precision of the source is (Pt), the precision of the result is
Pa, where Pa=CEIL(p1/3• 32).

FLOAT DECIMAL

The precision of the result may be converted from short to long
precision by padding with zeros on the right, or may be converted from
long to short precision by truncation on the right.

PICTURE (numeric character)
CHARACTER
BIT

See under Coded Arithmetic Target.

322

Source: Target: PICTURE (Numeric Character)

Upon conversion to numeric character form, the source data acquires
attributes that depend entirely on the known attributes of the target
vaz·iable. Any PICTURE specification implies coded arithmetic data,
whi.ch is either FIXED DECIMAL or FLOAT DECIMAL. The following rules
for different source to numeric character target show those target
attributes that are necessary to permit error-free assignment.

FIXED BINARY

If the precision of the source is (Pf,q,)~ the target must imply,

FIXED DECIMAL (1+x+q-y,q) or
FLOAT DECIMAL (x)
where x>=CEIL(Pf/3.32),y=CEIL(q,/3.32), and q>=y.

FIXED DECIMAL

If the precision of the source is (Pt,q,), the target must imply,

FIXED DECIMAL (x+q-p1,q) or
P'LOAT DECIMAL (x)
where x>=p and q>=q 1 •

FLOAT BINARY

If the precision of the source is (p,), the target must imply,

FIXED DECIMAL (p,q) or
P'LOAT DEC IMAL (p)
\oj,here p>=CEIL(p,/3.32) and the values of p and q take account of
t.he range of values that may be held by the exponent of the
source.

FLOAT DECIMAL

If the precision of the source is (P1), the target must imply,

FIXED DECIMAL (p,q) or
P'LOAT DECIMAL (p)
where P>=Pt and the values of p and q take account of the range of
values that may be held by the exponent of the source.

PICTURE (numeric character)

CHARACTER

The implied attributes will be either FIXED DECIMAL or FLOAT DECIMAL.
See the respective entries for this target.

The target must imply a character string that will accommodate the
source string character-for-character (excluding insertion characters)
with no conversion being required. Insertion characters are removed
during the assignment to the target.

Section F: Data Conversion and Expression Evaluation 323

Source:

BIT

324

Target: PICTURE <numeric character)

If the length of the source string is (n), the target must imply,

FIXED DECIMAL (1+x+q,q) or
FLOAT DECIMAL (x)
where x>=CEIL(n/3.32) and q>=O.

Source: Target: CHARACTER

Coded Arithmetic

The arithmetic value is converted to a decimal constant. The constant
is :Lnserted into an intermediate character-string whose length is
derived from the attributes of the source.. The intermediate string is
assigned to the target according to the rules given for CHARACTER to
CHARACTER.

Not4! that the rules for coded arithmetic to character-string
con"ersion are also used for list-directed and data-directed output,
and for evaluating keys (even for REGIONAL files).

FIXED BINARY

The binary precision (P1,Q1) is first converted to the equivalent
decimal precision (p,q), where p=1+CEIL(p./3.32) and q=CEIL(q./3.32).
Thel:eafter the rules are the same as those given for FIXED DECIMAL to
CElAUACTER.

FIXED DECIMAl ..

A dE!cimal fixed-point source with precision (p,q) is converted as
foll.ows:

1. If p>=q>=O then:

• The constant is right adjusted in a field of width p+3.

• Leading zeros are replaced by blanks, except for a single zero
that immediately precedes the decimal point of a fractional
number.

• A minus sign will precede the first digit of a negative number.
A positive value is unsigned.

• Unless the source is an integer, the constant has q fractional
digits.

2. If p<q or q<O, a scaling factor is appended to the right of the
constant. The scaling factor has the form:

F{+I-}nnn, where {+I-}nnn has the value of q.

The length of the intermediate string is p+k+3, where k is the
number of digits necessary to hold the value of q (not including
the sign or the letter F).

If the arithmetic value is complex, the intermediate string consists
of the imaginary part concatenated to the real part. The left-hand,
or real, part is generated exactly as a real source. The right-hand,
or imaginary, part is always signed, and it has the letter I appended.
The generated string is a complex expression with no blanks cetween
its elements. The length of the intermediate string is:

2*p+7 for p>=q>=O and
2*(p+k)+7 for p<q or q<O.

The following examples show the intermediate strings that are
generated from several real and complex fixed-point decimal values:

precision
value
string

(5,0)
2947
'bbbb2947'

(4,1)
-121.7
'b-121.7'

(4,-3)
-3279000
'-3279F+3'

(2,1)
1.2+0.31
'bbb1.2+Q.3I'

section F: Data Conversion and Expression Evaluation 325

FLOAT BINARY

The floating-point binary prec1s10n (Pt) is first converted to the
equivalent floating-point, decimal precision (p), where
p=CEIL(Pt/3.32). Thereafter the rules are the same as those given for
FLOAT DECIMAL to CHARACTER.

FLOAT DECIMAL

A decimal floating-point source with prec1s10n (p) is converted as if
it were transmitted by an E-format it~m of the form E(w,d,s) where:

w, the length of the intermediate string, is p+6.
d, the number of fractional digits, is p-1.
s, the number of significant digits, is p.

An E-format item generates a floating-point decimal constant with a
signed 2-digit exponent (see section E, "Edit Directed Format Items").

The conversion differs from that performed for an E- format item in
one respect: the last significant digit is rounded for an E- format
item, but not for other conversions from floating-point to character.

If the arithmetic value is complex, the intermediate string consists
of the imaginary part concatenated to the real part. The left-hand,
or real, part is generated exactly as a real source. The right-hand,
or imaginary, part is always signed, and it has the letter I appended.
The generated string is a complex expression with no blanks between
its elements. The length of the intermediate string is:

2*p+13.

The following examples show the intermediate strings that are
generated from several real and complex floating-point decimal values:

precision:
value
string

precision:
value
string

(5)
1135x10
'b1~1350E+08'

(5)

(5)
-.001663
'-1.6630E-03'

11.3+1.51
'b1.1300E+01+1.5000E+OOI·

(3)
1
'b1.00E+00'

PICTURE (numeric character)

CHARACTER

BIT

326

A real numeric character field is interpreted as a character string
and assigned to the target string according to the rules given for
CHARACTER to CHARACTER. If the numeric character field is complex,
the real and imaginary parts are concatenated before assignment to the
target string.

Insertion characters will be included in the target string.

The source string is assigned to the target string from left to right.
If the source string is longer than the target, excess characters on
the right are ignored, and the STRINGSIZE condition will be raised, if
enabled. If the target is longer than the source, the target is
padded on the right with blanks.

Bit 0 becomes character 0 and bit 1 becomes character 1. A null bit
string becomes a null character string. The generated character
string is assigned to the target string according to the rules given
for CHARACTER to CHARACTER.

Source: Target: BIT

Coded Arithmetic

If necessary, the arithmetic value is converted to binary and both the
si9n and any fractional part are ignored. (If the arithmetic value is
c:omplex, the imaginary part is also ignored.) The resulting binary
int:eger is treated as a bit string. It is assigned to the target
a,cc:ording to the rules given for BIT to BIT.

FIXED BINARY

If the precision of the source is (p,q), the length of the
intermediate bit string is given by:

MIN(31,(p-q».

If (p-q) is negative or zero, the result is a null bit string.

'l?hE! following examples show the intermediate strings that are
generated from several fixed-point binary values:

pr~!ci sion:
value
e;tring

FIXED DECIMAL

(1)

1
, 1 'B

(3)

-3
'011!'B

(4,2)
1.25
'01'B

If the precision of the source is (p,q), the length of the
init.ermediate bit string is given by:

MIN(31,CEIL«p-q)*3.32».

If (p-q) is negative or zero, the result is a null bit string.

~rhle following examples show the intermediate strings that are
generated from several fixed-point decimal values:

prleci sion:
~1a.lue
st:ring

FLOAT BINARY

(1)
1
'0001'B

(2, 1)

1. 1
'0001'B

If the precision of the source is (p), the length of the intermediate
bit string is given by:

MIN(31,p).

FLOAT DECIMAL

If the precision of the source is (p), the length of the intermediate
bit string is given by:

MIN(31,CEIL(p*3.32».

PICTURE (numeric character)

Data is first interpreted as decimal with scale and prec1s10n
determined by the corresponding PICTURE specification. The item is
then converted according to the rules given for FIXED DECIMAL or FLOAT
DECIMAL to BIT.

Section F: Data Conversion and Expression Evaluation 327

CHARACTER

BIT

328

Character 0 becomes bit 0 and character 1 becomes bit 1. Any
character other than 0 or 1 will raise the CONVERSION condition, if
enabled. A null string becomes a null bit string. The generated bit
string, which has the same length as the source character-string, is
assigned to the target according to the rules given for BIT to BIT.

The source string is assigned to the target string from left to right.
If the source string is longer than the target" excess bits on the
right are ignored, and the STRINGSIZ~ condition will be raised~ if
enabled. If the target is longer than the source, the target is
padded on the right with blanks.

Missing from orig document

Missing from orig document

Missing from orig document

Missing from orig document

Section G: Built-in Functions and Pseudovariables

All of the bUiilt-in functions that are
available to the programmer are given in
this section and are presented in
alphabetica.l order. Any built ... in function
that can alsol be used as a pseudovariable
has a subentI'Y describing the action of the
pseudovariable.

The general form of a built-in function
reference is as follows:

function name [(xli (x.,xa ••• ,xn)]

where x or Xt,Xa ••• ,Xn represent the
argument.s required. For some
functions one or more arguments are
optional. For example:

Each func·tion in the alphabetical list is
identified by the general form of the
function reference (the pseudovariable
reference is always identical to the
equivalent function reference). In
general, each function description has the
following ite~ms:

1. A description of the value returned.

2. Details of the arguments.

3. Any othelr qualifications on the use of
the function.

4. When applicable, a description of the
action of the equivalent
pseudova.riable.

CLASSIFICATION OF BUILT-IN FUNCTIONS

The built-in functions can be classified
according to the PL/I features they are
intended to serve. These classes are:

Stri.ng-handling
.Ari t;hmetic
Mathematical
.Arra.y-handling
Condition-handling
StoI:age Control
Mult.itasking
STRE:AM Input/Output
DATE: and TIME functions

The first four classes are all
computational built-in fun£!:io!!§..

String-handling Built-in Functions

These functions simplify the processing of
bit and character strings. They are:

BIT
BOOL
CHAR
HIGH
INDEX
LENGTH
LOW

REPEAT
STRING
SUBSTR
TRANSLATE
UNSPEC
VERIFY

Arithmetic Built-in Functions

These functions allow the programmer to
control conversion of base, scale, mode,
and precision both directly and during
basic arithmetic operations. Other
functions in this class are used to
investigate simple properties of arithmetic
values, for example, the SIGN function
indicates the sign of an arithmetic value.
They are:

ABS
ADD
BINARY
CEIL
COMPLEX
CONJG
DECIMAL
DIVIDE
FIXED
FLOAT
FLOOR

IMAG
MAX
MIN
MOD
MULTIPLY
PRECISION
REAL
ROUND
SIGN
TRUNC

Mathematical Built-in Functions

These functions provide standard
mathematical operations. They are:

ACOS
ASIN
ATAN
ATAND
ATANH
COS
COSO
COSH
ERF
ERFC
EXP

LOG
LOG2
LOG10
SIN
SIND
SINH
SQRT
TAN
TAND
TANH

Section G: Built-In Functions and Pseudovariables 333

These functions all operate on array
arguments and return a single value
property of an array. They are:

ALL
ANY
DIM
HBOUND

LBOUND
POLY
PROD
SUM

Condition-Handling Built-in Functions

These functions allow the programmer to
investigate interrupts that arise from
enabled conditions. Each of the functions
returns a value that is defined only within
the scope of an on-unit that can be entered
for the condition specific to the built-in
function or within the scope of an on-unit
for the ERROR or FINISH condition when
raised as standard system action. They
ar,e:

DATAFIELD
ONCHAR
ONCODE
ONCOUNT

ONFILE
ONKEY
ONLOC
ONSOURCE

Storage Control Built-ig_Fu~ion~

These functions return special values
concerning based or controlled variables,
or identify the location of based
variables. They are:

ADDR
ALLOCATION
EMPTY

NULL
OFFSET
POINTER

These functions allow the programmer to
investigate the current state of an event
variable. They are:

334

COMPLETION
PRIORITY
STATUS

Stream Input/Output Built-in Functions

These functions allow the programmer to
investigate the current state of a file.
They are:

COUNT
LINENO

CONVERSION OF ARGUMENTS

Conversion of arguments can occur for many
of the built-in functions. Arguments to
these built-in functions can be operational
expressions. An expression argument, which
can include references to built-in
functions, is evaluated and converted,
according to the rules for data conversion,
to a form suitable for the built-in
function. The data type required by each
argument is given in each function
description.

string-Handling Built-in Functions

Some of these functions require arithmetic
as well as string arguments. The
arithmetic arguments denote the length of a
string and therefore should be integer or
capable of being converted to integer. The
string arguments can be represented by an
arithmetic expression that will be
converted to string either according to
data conversion rules or according to the
rules given in the function description.
The programmer should ensure that the
conversion will cause the function to
operate on the string type he requires.

Arithmetic Built-in rynctions

Some of these functions derive the data
type of their results from one or more
arguments. When the data types of the
arguments differ, they are converted
according to the following scheme~ if
scales differ, fixed-point is converted to
floating-point; if bases differ, decimal is
converted to binary; and if modes differ,
real is converted to complex. These rules
are applied after any string-type arguments
have been connected to arithmetic. When a
data attribute of·the result cannot agree
with that of the argument, for example, the
FLOOR built-in function, the rules are
given in the function description.

The sYlllb()l N is used to represent the
maximum precision allowed for fixed-point
results. The value of N is defined as:

15 for FIXED DECIMAL
31 for FIXED BINARY

Mathematica~ Built-in Functions

All of thesEl functions operate on
floating-point values to produce a
floating-point result and therefore, if any
argument is not floating-point, it will be
converted.

Array-handling Built-in Functions

Any conversion of arguments required for
these functions is noted in the function
description.

ACCURACY O:F THE MATHEMATICAL FUNCTIONS

The accura~cy of a result is infl uenced by
two factorl3:

1. The accillracy of the argument.

2. The per:formance of the algorithm.

Most argumen~ts contain errors. An error in
a given argument may have accumulated over
se..veral stepl3 prior to the evaluation of a
function. Even data fresh from input
conversion mily contain slight errors. The
effect of ar9ument error on the accuracy of
a resul t depl~nds solely on the nature of
the mathemeltical function and not on the
algorithm that computes the result. Errors
of this type are not discussed further in
this public:a1:.ion.

Performance statistics for each
mathematical function are given in figures
G.1 and G.2. The values are based on the
assumption that the arguments are free from
error.

For each function, accuracy values are
given for the valid argument range or
representat;i,'e segments of it. In each
case the particular statistics given are
the most meaningful to the function and
range under consideration.

For example, the root-mean-square(RMS)
of the relative error and the maximum
relative error of a set of results are
generally useful and revealing statistics,
but are useless for the range of a function
where its value becomes zero; the slightest
error of the argument value can cause an
unbounded fluctuation in the relative
magnitude of the result. Such is the case
with SIN (x) for values of 'x' close to pi:
in this range it is more appropriate to
discuss absolute errors.

The values for short and long precision
floating-point arguments are given in
figure G.1. They are derived from random
distribution of 5000 arguments per range,
generated to be either uniform or
exponential, as appropriate. The values
for extended precision floating-point
arguments are given in figure G.2. They
are derived from 2000 randomly-distributed
arguments, generated to have one of the
four types of distribution noted at the
foot of each part of the figure.

Note that, in both figures, each value
quoted for the maximum error refers to a
particular sample and should be regarded
only as a guide to the true maximum error.

Maximum and RMS values are given for
short, long, and extended floating-point
results.

Maximum and RMS values for the relative
or (where necessary) the absolute errors
are given for each function range. These
are defined as follows:

Let f(x) = the true value for the
function

g(x) = the calculated value for the
function

Then the absolute error of the result is

ABS(f(x)-g(x»

and the relative error of the result
is

ABS«f(x)-g(x»/(f»

Let the number of sample results obtained
be n: then the RMS of the absolute error
is:

SQRT(~«f(x)-g(x»**2)/n)

and the RMS of the relative error is

SQRT(L(«f(x">-g(x))/f (x))**2)/n)

Section G: Built-In Functions and pseudovariables 335

r-------------T---------T-------------------T---------------------T---------------------, I I I I Short Floating Point I Long Floating Point I
I I I ~---------------------+---------------------i I Function I Argument I Range I Rela ti ve Error I Relati ve Error I
I Name I Mode I I .10 •• 8 I *10 •• 17 I
I I I ~----------T----------+----------T----------i
I I I I RMS I MAX I RMS I Max I

~-------------+---------+-------------------+----------+----------+----------+----------i
I ACOS(x) I real I ABS(x)SO.5 I 43 I 88 I 7.2 I 20 I

I I ~-------------------+----------+----------+----------+----------~ I I I 0.5<ABS(x)Sl I 16 I 89 I 6.6 I 21 I
~-------------+---------+-------------------+----------+----------+----------+----------i I ASIN(x) I real I·ABS(x)SO.5 I 10 I 54 I 4.4 I 21 I
I I ~-------------------+----------+----------+----------+----------~
I I I 0.5<ABs(x)sl I 26 I 94 I 5.9 I 21 I

~-------------+---------+-------------------+----------+----------+----------+----------i I ATAN(x) I real I ABS(x)<l I 13 I 90 I 4,.1 I 21 I
I I ~-------------------+----------+----------+----------+----------~
I I I full rangea I 25 I 99 I 5.2 I 17 I

I ~---------+-------------------+----------+----------+----------+----------i
I I complex I full rangea I 21 I 110 I 5.2 I 44 I

~-------------+---------+-------------------+----------+----------+----------+-----.----~
I ATAN(xe,xa) I real I ABS(x,)Sl, I I I I I
I I I ABS(xa)Sl a I 29 I 160 I 6.9 I 36 I

~-------------+---------~-------------------~----------~----------~----------~----------~ I ATANO(x) I similar to real ATANH(x) I

~-------------+---------T-------------------T----------~----------T----------T----------i I ATANH(x) I real I ABS(x)SO.2 I 46 I 110 I I I

I I ~-------------------+----------+----------+----------+----------~
I I I ABS(x)<0.9 I 39 I 120 I I I

I I ~-------------------+----------+----------+----------+----------~ I I I ABS (x) SO. 25 I I I 5.8 I 21 I
I I ~-------------------+----------+----------+----------+----------~
I I I ABS(x)sO.95 I - I - I 9.0 I 25 I
I ~---------+-------------------+----------+----------+----------+----------i I I complex I full rangea I 22 I 120 I 5.6 I 41 I

~-------------+---------+-------------------+----------+----------+----------+----------~
I COS(x) I real' I OSxspi I 4.7 I 12 I 7.3 I 27 I

I I ~-------------------+----------+----------+----------+----------i I , I -10Sx<0,pi<xS10 I 4.6 I 12 I 6.9 I 27 ,
I I ~-------------------+----------+----------+----------+----------~ I I I 10<ABS(x)S100 ,4.6 , 12 I 100 I 270 I
I ~---------+-------------------+----------+----------+----------+---------~~ I 1 complex3 1 ABS(a)S10,ABS(b)S11 120 I 320 I 31 I laO I
~-------------+---------~-------------------~----------~----------~----------~----------~ I COSO(x) , similar to real COS (x) I
~-------------+---------T-------------------T----------T----------T----------T----------i I COSH(x) I real I ABS (x) Sl I 41 I 96 I I I
1 1 ~-------------------+----------+----------+----------+----------~ I I I 1 <ABS (x) <2 I'" 21 I 72 I - I - 1
I I ~-------------------+----------+----------+----------+----------~ I I I ABS(x)S170 I 20 I 82 1 , I
1 I ~-------------------+----------+----------+----------+----------~ I I lABS (x) S 17 I - I - I 11 I 39 I
I I ~-------------------+----------+----------+----------+----------~ I I I ABS (x) S5 I -, I 11 1 38 1
I ~---------+-------------------+----------+----------+----------+----------~ I I complex3 1 ABS(a)S10,ABS(b)Sll 97 I 310 I 25 I 73 ,
~-------------~---------L-------------------~----------L---------,-~----------~----------i 1 s. RMS and Max values given are absolute errors. 1
I a All these ranges are distributed exponentially~ all other distributions are uniform.'
I 3 Where (a+i.b) represents x. I L ___ J

Figure G.l (Part 1 of 3). Performance statistics for the mathematical built-in functions
with short and long precision floating-point arguments

336

r----------·---T---------T-------------------T---------------------T---------------------,
,I I I I Short Floating Pointl Long Floating Point I

I I I . ~---------------------+---------------------~
I Functic:m I Argument I Range I Relati ve Error I Relati ve Error I
I Name I Mode I I .10 •• 8 I .10·*17 I
I I I ~----------T----------+----------T----------~
1 I I I RMS I MAX I RMS I Max I

.---------_._--+---------+-------------------+----------+----------+----------+----------~
I ERF(x) I real I ABS(x)Sl I 11 I 85 I 2.6 I 19 I

I I ~-------------------+----------+----------+----------f----------~
I I I 1 <ABS (x) <2.04 I 3.7 I 11 I 0.95 I 2.9 I

I I ~-------------------+----------+----------+----------+----------~
I I I 2.04<ABS(x)<3.91921 3.5 I 6.0 I I I

I I ~-------------------f----------+----------+----------f----------~
I I I 2.04<ABS(x)<6.092 I I I 0.80 I 1.4 I

.----------_._--+---------+-------------------+----------+----------+----------+----------~ I ERFC(x) 1 real I -3.8<x<0 I 30 I 94 I - I - I
I I ~-------------------+----------+----------+----------f----------~
I I I -6<x<0 I I I 6.5 I 21 I

I I .-------------------+----------+----------+----------+----------~ I I I OSxS 1 I 13 I 69 I 2. 7 I 15 I
I I ~-------------------+----------+----------+----------+----------~
I I I 1<xS2.04 I 37 I 200 I 9.1 I 43 I

I I ~-------------------+----------+----------+----------+----------~
I I I 2.04<x<4 I 37 I 130 J 8.7 I 33 I

I I ~-------------------+----------+----------+----------f----------~ I I I 4Sx<13.3 I 820 I 1500 I 200 I 350 I
.-------------+---------+-------------------+----------+----------+----------+----------~ EXP(x) I real I -l<x<l I 13 I 44 I 5.4 I 21 I

I .-------------------+----------+----------+----------+----------~
I I full range I 12 I 46 I 4.7 I 43 I

~---------+-------------------+----------+----------+----------+----------i
I complex I ABS(a)S170 I I I I I
I I ABS(b)Spi/2 I 65 I 240 I I I

I ~-------------------+----------+----------+----------+----------i
I I ABS(a)S170, I I I I I
I I pi/2<ABS(b)S20 I 63 I 230 I I I

I .-------------------+----------+----------+----------+----------i I I ABS(a)<l I I I I I·
I I ABS(b)<pi/2 I I I 19 I 62 I
I ~-------------------+----------+----------+----------+----------i
I I ABS(a)<20 I I I I I
I lABS (b) <20 I I I 20 I 82 I

~-------------+---------+-------------------+----------+----------+----------+----------i
I LOG (x) I real I excluding I I I I I
I I I 0.5<x<2.02 I 12 I 84 I 5.5 I 34 I

I I ~-------------------+----------+----------+----------+----------~
I I I O. 5<x<2. 0' I 2.5 I 6.8 I 2.4 I 4. 7 I

I .---------+-------------------+----------+----------+----------f----------~
I I complex I full rangea I 38 I 190 I 13 I 53 I

.-------------+---------+-------------------+----------+----------+----------+----------i
I LOG2(x) I real I excluding I I I I I
I I I 0.5<x<2.0a I 34 I 98 I 8.8 I 43 I

I I ~-------------------+----------+----------+----------+----------i
I I I 0.5<x<2.0' I 23 I 48 I 2.9 I 5.8 I

.-------------t---------t-------------------+----------t----------+----------+----------~
I LOG10 (x) I real I excluding I I I I I
I I I 0.5<x<2.0a I 22 I 110 I 6.6 I 32 I

I I .------------~------t----------+----------+----------+----------i
I I I O.5<x<2.0~ I I 2.3 I 7.2 I 1.2 I 2.9 I

.-----------.--~---------~------------J------~----------~----------~----------~----------i I ~ RMS and Max values given are absolute errors. I
I a All these ranges are distributed exponentially: all other distributions are uniform. I
I 3 Where (a+i*b) represents x. I L ___ J

Figure G.1 (Part 2 of 3). Performance statistics for the mathemat1cal built-in functions
with short: Clnd long precision floating-point arguments

section G: Built-In Functions and Pseudovariables 337

r----~--------T---------T-------------------T---------------------T---------------------,
I I I I Short Floating Point I Long Floating Point I

I I I ~---------------------+---------------------i I Function I Argument I Range I Relative Error I Relative Error I
I Name I Mode I I *10**8 I ·10*·17 I
I I I ~----------T----------+----------T----------i I I I I RMS I MAX I RMS I Max I
~-------------+---------+-------------------+----------+----------+----------+----------~
I SIN(x) I real~ I ABS(x)Spi/2 I 4.8 I 12 I 1.8 I 7.7 I

I I ~-------------------+----------+----------+----------+----------i
I I I pi/2<ABS(x)S10 I 4.6 I 13 I 32 , 240 I

I I ~-------------------+----------+----------+----------+----------~
I I I 10<ABS(x)S100 I 4.6 1 12 I 93 I 270 I

I .---------+-------------------+----------t----------+----------t----------i
I I complex 3 1 ABS(a)S10,ABS(b)S11 120 I 340 I 200 I 11000 1

~-------------+---------L-------------------L----------L----------L----------L----------i I SIND(x) I similar to real SIN(x) I
~-------------+---------T-------------------T----------T----------T----------T----------i

SINH(x) I real I ABS(x)S1 I 20 I 88 I I I

I ~-------------------+----------+----------+----------+----------i
I 11<ABS(x)<2 I 25 I 100 I I I

I ~-------------------+----------t----------+----------t----------i
I I ABS(x)S170 I 20 I 82 I I I

I ~-------------------+----------+----------+----------+----------i
I I ABS (x) S 17 I I I 10 I 36 I

I ~-------------------+----------t----------t----------t----------i
I I ABS(x)<0.881374 I I I 3.7 I 20 I

I ~-------------------+----------+----------+----------+----------~
I I 0.881374<ABS(x)S5 I I I 10 I 35 I

~---------t-------------------+----------t----------t----------t----------i
I complex I ABS(aLS10,ABS(b)Sll 88 I 270 I 23 I 64 I

~-------------+---------+-------------------+----------+----------+----------+----------~
I SQRT(x) I real I full range2 I 13 I 48 I 3.1 I 11 I

I ~---------+-------------------t----------t----------+----------t----------i
I I complex I full range 2 I 54 I 220 I 13 1 49 I

~-------------+---------+-------------------+----------+----------+----------+----------i
TAN(x) I real~ 1 ABS(x)Spi/4 I 29 I 160 I 6.2 I 39 I

I ~-------------------t----------t----------+----------+----------i
I I pi/4<ABS(x) <pi/2 I 37 I 150 I I I

I ~-------------------+----------+----------+----------+----------i
I 1 pi/4<ABS(x)<1.5 I I I 47 I 230 I

I ~-------------------+----------t----------+----------t----------i
I I pi/2<ABS(x)S10 I 32 I 480 I I I

I ~-------------------+----------+----------+----------+----------i
I I 1.5<ABS(x)S10 I 1 I 7800 I 47000 I

I ~-------------------+----------+----------+---~------t----------i
I I 10<ABS(x)s100 I 31 I 140 I 7800 I 27000 I

~---------+-------------------+----------+----------+----------+----------i
I complex3 1 ABS(a)<1,ABS(b)<9 I 53 1 290 I 17 I 71 I

~---_---------+--------_L-------------------L----------~----------L----------~----------i I TAND(x) 1 similar to read TAN (x) I
~-------------+---------T-------------------T----------T----------T----------T----------i
1 TANH (x) I real I ABS(x)SO.7 I 15 1 78 I 1 1

1 1 ~-------------------+----------+----------t----------+---~------~
1 I .10.7<ABS{x)S9.011 1 3.9 1 2.3 1 I 1
1 1 ~-------------------+----------+----------+----------+----------i
I 1 I ABS(x)SO.54931 1 1 I 3.8 I 19 1

1 1 ~-------------------+----------t----------+----------t----------i I I I 0.54931<ABS(x) I 1 1 I I
1 I 1 S20.101 I 1 1 1.0 1 16 1
I ~---------+-------------------+----------t----------t----------t----------i
I 1 complex 3 1 ABS(a)<9,ABS(b)<1 1 52 1 270 1 17 1 69 I

t1-RMs-a~d-MaiLvaiues-gI;e~-are-a1soiute-err;rs:-------L----------L----------L----------1
12 All these ranges are distributed exponentially; all other distributions are uniform. 1
13 Where (a+i.b) represents x. 1
I~ Each figure here depends on the particular points encountered near the singularities I
1 of the function, where no error control can be maintained. I L ___ J

Figure G.l (Part 3 of 3). Performance statistics for the mathematical built-in functions
with short and long precision floating-point arguments

338

r-----------··--T---------T-------------------T------------~T-----------------------------1
I I' , , Relative Error ·10··34 ,
,Function 'Argument, Range ,Distribution ~-------------T---------------~
,Name ,Mode, , Type' , I
I " I(see foot of I RMS , Max I
I 'I I table), , I
~-----------.---+---------+-------------------+-------------+-----_._------+---------------'" I ACOS(x) I real ,ABS(x)S1 I 0 I 9.9 , 32 ,

~-------------+---------+-------------------+-------------+-------------+---------------~ I ASIN(x) I real ,ABS(x)S1 I U I 8.1 I 32 I
~-------------+---------+-------------------+-------------+-------------+---------------'" I ATAN(x) I real I ABS(x)<10 •• 75 IT, 7.3 I 30 I
I ~---------+-------------------+-------------+-------------+---------------~ I I complexal full range I EU I 12 I 170 I

~----------.---+---------+-------------------+-------------+-------------+---------------'" I ATAN(xtuxa) I real ,full range , EO , 8.5 I 38 I
.-------------+---------+-------------------+-------------+-------------+---------------~ ,ATANH(x)1 I real ,ABS(x)<0.25 I U , 8.6 I 28 I
, , ~-------------------+-------------+-------------+---------------'" I I I ABS(x)SO.95 I U , 18 I 50 ,

, ~---------+-------------------+-------------+-------------+---------------~ I , complexa , full range I EU I 11 I 59 I
~---------.--.---+---------+-------------------+-------------+-------------+---------------'" I cos (x) I real I OSx<pi t ,U, 1.5 I 3.3 I
, , ~-------------------+-------------+-------------+---------------~ , , I -10<x<0,pisx<10~' U , 1.6 , 3.5 ,

, , ~-------------------+-------------+-------------+---------------'" , , ,10SABS(x)<200 t , U , 1.6 I 3.5 I
I ~---------+-------------------+-------------+-------------+---------------~ I , complexal ABS(a)<10 I U I 24 I 62 I
I , , ABS (b) < 1 I u, I ,
~-------------+---------+-------------------+-------------+-------------+---------------~ , COSH(x) ,real I ABS(x)<10 I U , 15 I 6l ,

I ~---------+-------------------+-------------+-------------+---------------'" , I complexa , ABS(aJ<10 I 0 I 20 I 67 ,
I , , ASS (b) <1 ,U, , I
~--------.------+---------+----------------.---+-------------+-------------+---------------'" , ERF(x) I real ,ABS(x)<1 , 0 , 5.3 , 30 ,

, , ~-------------------+-------------+-------------+---------------~ , I , 1 SABS (x) <2.8 Q37, U , 2.3 I 9.2 ,

I , ~-------------------+-------------+-------------+---------------'" I , ,2.8437SABS(x)<5 I U , 1.3 , 1.9 ,

~-------------+---------+-------------------+-------------+-------------+---------------i , ERFC(x) ,real ,-5<x<0 ,U, 12 , 31 ,

I I ~-------------------+-------------+-------------+---------------'" , , I OSx< 1 ,U I 5. 8 , 33 ,

, I ~-------------------+-------------+-------------+---------------i , , I 1 Sx<2. 8437 , U , 28 I 77 I
I , ~-------------------+-------------+-------------+---------------'" , , I 2.8437Sx<5 I U I 180 I 490 I
~-------------~---------~-------------------~-------------~-------------~---------------~ , 'RMS and Max values are for absolute errors aWhere x=a+i.b I
~--------.---~ I E exponential EO a+i.b=r.EXP(i.k) where x=a+i.b ,
, 0 uniform (linear) or (ATAN only) x.=a, xa=b, and: I
I T tangents of linearly-scaled r has E distribution in (0,10 •• 75) I
I angles in (-pi/2,pi/2) k has U distribution in (-pi,pi) I L ___ --------___________________________ J

Figure G.2 (Part 1 of 3). Performance statistics for the mathematical built-in functions
with ex-t.end.ed-precision floating-point arguments

Section G: Built-In Functions and Pseudovariables 339

r-------------T---------T'-------------------T-------------T-----------------------------,
I I I I I Relative Error *10**34 I

I Function I Argument I Range I Distribution ~---,----------T---------------~
I Name I Mode I I Type I I I
I I I I (see foot of I RMS I Max I
I I I I table) I I I

~-------------f---------+-------------------+-------------t-------------t---------------i
I EXP(x) I real I ABS(x)<1 I U I 4.3 I 15 I

I I ~-------------------+-------------+-------------+---------------i I I I ABS (x) < 1 0 I U I 3.8 I 15 I
I I ~-------------------t-------------t-------------t---------------i I I I - 1 80 <x< 17 4 I U I 3. 7 I 1 5 I
I .---------+-------------------+-------------+-------------+---------------~
I I complexal ABS(a)<170 I U I 7.8 I 35 I
I I I ABS(b)<pi/2 I U I I I

I I ~-------------------+-------------+-------------+---------------i
I I lABS (a) < 170 I U I 8 • 0 I 33 I
I I I pi/2SABS(b)<100 I U I I I

~-------------+---------+-------------------+-------------+-------------+---------------i
I LOG (x) I real 10.99<x<1.01 t I U I 0.084 I 0.20 I

I I ~-------------------+-------------t-------------+---------------i
I I I 0.5<x<21 I U I 1.7 I 3.2 I

I I .-------------------+-------------+-------------+---------------~
I I I 10**-78<x<10**75 I E I 8.9 I 45 I

I .---------+-------------------+-------------+-------------t---------------i
I I complexal full range I EU I 9.8 I 51 I

~-------------+---------+-------------------+-------------+-------------+---------------~
I LOG2(x) I real I 0.99<x<1.0111 I U I 0.055 I 0.13 I

I I ~-------------------t-------------+-------------t---------------i
I I I O. 5<x<21 I U I 1.0 I 1.9 I

I I .-------------------+-------------+-------------+---------------~
I I I 10**-78<x<10**75 I E I 4.4 I 30 I

.-------------t---------+-------------------+-------------+-------------t---------------i
I LOG10(x) I real I 0.99<x<1.011 I U I 0.038 I 0.16 I

I I ~-------------------+-------------+-------------+---------------~
I I I O. 5 <x<2 11 I U I 1 • 5 I 2. 9 I

I I ~-------------------+-------------t-------------t---------------i
I I I 10**-78<x<10**75 I E I 12 I 38 I

~-------------+---------+-------------------+-------------+-------------+---------------~ I SIN(x) I real I ABS(x)<pi/2 t I U I 1.2 I 3.0 I
I I ~-------------------+-------------t-------------t---------------i
I I I pi/2SABS(x)<101 I U I 1.6 I 3.5 I

I I .--------~----------+-------------+-------------+---------------~ I I I 10SABS(x)<200 t I U I 1.5 I 3.6 I
I ~---------t-------------------t-------------t-------------t---------------i
I I complexal ABS(a)<10 I U I 24 I 60 I
I I lABS (b) < 1 I U I I I
.-------------t---------t-------------------t-------------t-------------t---------------i
I SINH(x) I real I ABS(x)<1 I U I 6.8 I 29 I

I I .-------------------+-------------+-------------+---------------i
I I I 1SABS(x)<10 I U I 13 I 54 I

I ~---------+-------------------t-------------t-------------t---------------i
I I complex 3 1 ABS(a)<10 I U I 18 I 53 I
I I lABS (b) < 1 I U I I I
.-------------~---------~-------------------~-------------~-------------~---------------i I tRMS and Max values are for absolute errors aWhere x=a+i*b I
.---~ I E exponential EU a+i*c=r*EXP(i*k) where x=a+i*b I
I U uniform (linear) or (ATAN only) Xt=a, xa=b, and: I
I T tangents of linearly-scaled r has E distribution in (0,10*.75) I
I angles in (-pi/2,pi/2) k has U distribution in (-pi, pi) I L ___ J

Figure G.2 (Part 2 of 3). Performance statistics for the mathematical built-in functions
with extended-precision floating-point arguments

340

r-----------··-T---------T-------------------T-------------T-----------------------------, I " , , Relative Error .10 •• 34 I
I Function I Argument I Range 'Distribution ~-------------T---------------"
I Name ,Mode, , Type, , ,
I " I (see foot of I RMS , Max I
I I I I tabl e), I I
~-------------f---------f-------------------f-------------f-------------+---------------i I SQRT(x) I real I 10 •• -50<x<10 •• 50 IE' 3.0 I 15 ,
, J ~-------------------f-------------f-----~-------f----~----------i I J , 10··-78<x<10·.75· , E , 2.8 I 14 I
I ~---------f-------------------f-------------+-------------f---------------i

hi~(;)------f-~~~;:t-~~~;~~~~;;;-------t------~~-----t----~~~------t------;~-------1
, , ~-------------------f-------------f-------------+---------------i I I ,pi/4SABS(x)<pi/2, U , 8.9 , 39 I
I , ~-------------------f-------------f-------------f---------------i I I I pi / 2 SABS (x) < 1 0 I U I 12 I 52 ,
, I ~-------------------+-------------+-------------+---------------i I , I 10SABS(x)<200 , U I 11 , 46 ,

I ~---------+-------------------f-------------f-------------f---------------i
I , complex2 1 ABSCa)<1 ,U, 15 , 61 I
, I lABS (b) <9 'U I , ,
~-------------f---------f-------------------f-------------f-------------f---------------i , TANHCx) I real I ABS(x)<0.54931 , U , 5.0 , 25 I
I , ~-------------------+-------------f-------------+---------------i , , ,0.54931SABS(x)<5, U , 2.6 , 21 ,

, ~---------f-------------------+-------------+-------------+---------------i I , complex2 1 ABS(a)<9 I U , 15 I 53 ,
I I lABS (b) <1 'U I I ,
~-------------~---------~-------------------~-------------~-------------~---------------i I 1RMS and Max values are for absolute errors 2Where x=a+i.b I
~--------.---i I E exponential EU a+i.b=r.EXP(i.k) where x=a+i.b I
I U uniform (linear) or (ATAN only) x.=a, xa=b, and: I
, T tangents of linearly-scaled r has E distribution in (0,10 •• 75) ,
I angles in (-pi/2,pi/2) k has U distribution in (-pi, pi) I L ___ J

Figure G.2' (Part 3 of 3). Performance statistics for the mathematical built-in functions
with extended-precision floating-point arguments

AGGREGATE ARGUMENTS

The only functions that can accept
structure arg1llments are ADDR, ALLOCATION,
and STRING.

All built-in functions that can have
arguments can have array arguments. But
whereas ADDR, ALLOCATION, STRING, and the
Array-handline} fUnctions return single
val~es, all other functions return an array
of values. Thus for functions such as
SOBSTR, any Olle of the arguments can be an
array (if more than one is an array, the
bounds must be identical). This facility
is equivalent to placing the function

reference in a DO-loop where one or more
arguments is a subscripted array reference
that is modified by the control variable.

NULL ARGUMENTS

A number of built-in functions do not
require arguments. It should be noted that
the functions must either be explicitly
declared with the BUILTIN attribute or
contextually declared by including a null
argument list in the function reference,
e.g., ONCHAR(). Otherwise, the name cannot
be recognized by the compiler as a built-in
function name.

section G: Built-In Functions and Pseudovariables 341

The functions without arguments are:

DATAFIELD
DATE
EMPTY
NULL
ONCHAR
ONCODE
ONCOUNT
ONFILE
ONKEY
ONLOC
ONSOURCE
PRIORITY (when optional

argument for pseudovariable
omitted)

STATUS (when optional
argument omitted)

TIME

PSEUDOVARIABLES

certain built-in functions can be used to
represent receiving fields. In this form
they are pseudovariables. Except when
noted in the description of the
pseudovariable, it can appear on the left
of the equal sign in an assignment or DO
statement; it can appear in a data, list of
a GET statement; and it can appear as the
string name in a KEYTO, STRING, or REPLY
option.

Since all pseudovariables are also
built-in functions, only a short
description is given in the relevant
function description.

Note that pseudovariables cannot be
nested; for example, the following
statement is invalid:

UNSPEC(SUBSTR(A,1,2» = 'OO'B;

If x is fixed and complex with prec1s10n
(p,q), the precision of the result is given
by:

(MIN(N,p+l),q)

where N is the maximum allowable number of
digits.

ACOS(x) Mathematical

ACOS returns a floating-point value that
represents the inverse (arc) cosine in
radians of a given value x.

x must be real, and the absolute value
must be less than or equal to 1, i.e.,
ABS(x)<=1. The result is in the range:

O<=ACOS (x) <=pi

Arithmetic

ADD ,returns the sum of two values X4 and X2
with a precision specified by X3 and x 't-

x~ and X2 values to be added.

X3 unsigned decimal integer constant
specifying the number of digits to be
maintained throughout the operation; it
must not exceed the implementation
limit.

X 't decimal integer constant, optionally
signed, specifying the scale factor of
the result. For a fixed-point result,
if X3 is given, then X't must also be
given. For a floating-point result,
only X3 can be given.

ADDR(x) Storage Control

ADDR returns a pointer value that identifes
The pseudovariables are: the location at which a given variable x

has been allocated.
COMPLETION
COMPLEX
I MAG
ONCHAR
ONSOURCE
PRIORITY

REAL
STATUS
STRING
SUBSTR
UN SPEC

Arithmetic

ABS returns the absolute value of a given
expression x. If x is real, it is the
positive value of Xi if x is complex, it is
the positive square root of the sum of the
squares of the real and imaginary parts.

342

x a variable of any data type and
organization and of any storage class
except:

1. A BASED, DEFINED~ parameter,
subscripted, or
structure-base-element variable
that is an unaligned fixed-length
bit string.

2_ A minor structure whose first base
element is an unaligned
fixed-length bit string (except
where it is also the first element
of the containing major
structure).

3. A major structure that has the
DEFINED attribute or is a
parameter. and that has an
unaligned fixed-length bit s~ring
as its first element.

4. A variable not in connected
storia,ge.

If x is an aggregate, the returned value
identifies the first element.

If x is a varying string, the returned
value identifies the two-byte prefix.

If x is an area, the returned value
identifies ,the control information.

If x is a controlled variable that has not
been allocated, the null pointer value is
returned.

If x is a parameter and a dummy argument
has been created, the returned value
identifies the dummy argument.

Note that because of condition 4 above, if
x is a parameter, it must have the
CONNECTED attribute.

Array-Handling

ALL returns a bit string in which each bit
is 1 if the corresponding bit in each
element of the given array x exists and is
1. The length of the result is equal to
that of the longest element.

If x is not a bit-string array, it is
converted to bit string. It must not be
iSUB-defined.

ALLOCATION tx) storage Control

Abbreviatio:n: ALLOCN

ALLOCATION returns a default-precision
fixed-point binary integer specifying the
number of generations that can be accessed
in the current task for a given controlled
variable x.

x the name of the controlled variable.
The name must be level one and
unsuts cripted.

If x is not allocated, the result is zero.

ANY (x) Array-Handling

ANY returns a bit string where each bit is
1 if the corresponding bit in any element
of the given array x exists and is 1. The
length of the result is equal to that of
the longest element.

If x is not a bit-string array, it is
converted to bit string. It must not be
i SUB-'def ined.

ASIN(x) Mathematical

ASIN returns a floating-point value that
represents the inverse (arc) sine in
radians of a given value a.

x must be real, and the absolute value
must be less than or equal to 1, i.e.,
ABS(x)<=1. The result is in the range:

-pi/2<=ASIN(x) <=pi/2

ATAN (x, [, Xa]) Mathematical

AT AN returns a floating-point value that
represents the inverse (arc) tangent in
radians of a given value X1 or of a given
ratio X./X2.

If x. alone is specified and is real,
the result is in the range:

-pi/2<ATAN(x.) <pi/2

If x. alone is specified and is complex,
it must not be +i or -i. The result is
given by:

-i*ATANH (i*x1)

If X1 and X2 are specified, they must
both be real. It is an error if x. and X2
are both zero. The results for all other
values of x. and X2 are given by:

pi/2 for X2=O and Xt>O

-pi/2 for X2=O and x.<O

section G: Built-In Functions and Pseudovariables 343

ATAND (x, [, x,a]) Mathematical

ATAND returns a floating-point value that
represents the inverse (arc) tangent in
degrees of a given value Xt or of a given
ratio X./X2.

If X1 alone is specified it must be
real. The result is in the range:

-90<ATAND(x'J)<90

If Xt and X2 are specified, they must
both be real. The result is defined in
terms of the function ATAN as:

180/pi*ATAN(xt,x2)

ATANH(x) Mathematical

ATANH returns a floating-point value that
represents the inverse (arc) hyperbolic
tangent of a given value x.

If x is real, its absolute value must be
less than 1~ i.e., ABS(x)<1.

If x is complex, it must not be +1 or
-1. The result is defined as:

LOG«1+x)/(1-x»/2

Arithmetic

BINARY returns the binary representation of
a given value Xt with a precision specified
by X2 and X3.

Xt value to be converted to binary base.

X2 unsigned decimal integer specifying the
number of digits to be maintained
throughout the operation; it must not
exceed the implementation limit.

X3 decimal integer, optionally signed,
specifying the scale factor of the
result. For a fixed-point result, if
X2 is given, then X3 must also be

344

-given. For a floating-point result,
only X2 can be given. If both X2 and
X3 are omitted, the precision of the
result is determined from the rules for
base conversion.

BIT(X,[,Xa]) String-Handling

Bit returns a bit string representation of
a given value X1.

Xt expression to be converted.

X2 an expression that can be converted to
integer specifying the length of the
resulting bit string. If necessary, X2
is converted to a binary integer of
precision (15,0). If X2 is omitted,
the length is determined by the rules
for type conversion.

BOOL(x"x,a,X:a) String-Handling

BOOL returns a bit string that is the
result of a Boolean operation, specified by
X3, on bit strings X1 and X2. The length
of the result is equal to that of the
longer operand, x. or X2-

Xt and X2 tit-string expressions or
expressions that may be converted to
bit strings.

X3 bit string of four bits. Each bit
specifies the result when a bit from X1
is compared with the corresponding bit
from X2 as follows:

X1 X2 result

° ° bit 1 of X3

° 1 tit 2 of X3
1 ° bit 3 of X3
1 1 bit 4 of X3

If x. and X2 are different lengths~ the
shorter is padded on the right with zeros
to match the longer. If X3 is not a bit
string expression of length 4~ it will be
converted and padded on the right with
zeros or truncated on the right, as
necessary.

CEIL(x) Arithmetic

CEIL returns the smallest integer greater
than or equal to a given value x. x must
be real.

If x is fixed-point with precision
(p,q), the precision of the result is given
by:

(MIN(N,MAX(p-q+1,1»~0)

where N is the maximum number of digits
allowable.

CHAR (xLiL!.11 String-Handling

CHAR returns a character string
representation of a given value X1.

X1 expression to be converted.

X2 an expression that can be converted to
integer specifying the length of the
resulting character string. If
necessary, X2 is converted to a binary
integer of precision (15,0). If X2 is
omitted, the length is determined by
the rules for type conversion.

COMPLETION (x) Multitasking

COMPLETION returns a single bit specifying
the completion value of a given event x.
If the event is incomplete, 'O'B is
returned; if complete, '1'B is returned.

£OMPLETION Pseudovariable

The pseudovariable sets the completion
value of the given event x. x must be
inactive. No interrupt can occur during
assignment to the pseudovariable. The
COMPLETION pseudovariable cannot be used as
the control variable in a DO-goup.

COMPLEX(~L!.l Arithmetic

COMPLEX returns a complex value formed from
two given values x~ and X2.

x~ real value that is to be the real part
of the result.

X2 real value that is to be the imaginary
part of the result.

If Xt and X2 differ in base, the decimal
one is converted to binary; if they differ
in scale, the fixed-point is converted to
floating-point. The result will have the
same base and scale. Both x~ and X2 must
be real.

The precision of the result, if
fixed-point, is given by:

(MINCN,MAX(p~-q1,p2-q2)+MAX(qt,q2»'
MAX(q~,q2»

where (P1,q~) and (P2,q2) are the
precisions of x~ and X2 respectively, and N
is the maximum number of digits allowable.

If the arguments, after any necessary
conversions have been performed, are
floating point, and their precisions are P1
and P2, then the precision of the result is
MAXCPt,P2).

COMPLEX Pseudovariable

The pseudovariable assigns the real part of
a complex value to the variable Xt and the
imaginary part to the variable X2- Only a
complex value can be assigned to the
pseudovariable. The COMPLEX pseudovariable
cannot be used as the control variable in a
DO-group.

CONJG(x) Arithmetic

CONJG returns the conjugate of a given
complex value x, i.e.~ the same value with
the sign of the imaginary part reversed.
If x is real, it will be converted to
complex.

COS (x) Mathematical

COS returns a floating-point value that
represents the cosine of a given value x.

x an expression whose value is in
radians.

If x is complex, the result is given by:

cos(a)*coshCb)-i*sin(a)*sinhCb)

where (a+i*b) represents x.

COSD(x) Mathematical

COSD returns a floating-point value that
represents the cosine of a given value x.

x an expression whose value is in
degrees. x must be real.

Section G: Built-In Functions and Pseudovariables 345

Mathematical

COSH returns a floating-point value that
represents the hyperbolic cosine of a given
value x.

If x is complex, the result is given by:

cosh(a)*cos(b)+i*sinh(a)*sin(b)

where (a+i*b) represents x.

STREAM Input/Output

COUNT returns a binary integer of default
precision specifying the number of data
items transmitted during the last GET or
PUT operation on the specified file x.

x a file expressionJ the file must have
the STREAM attribute.

Note that if an on-unit or procedure is
entered during a GET or PUT operation and,
within that on-unit or procedure, a GET or
PUT operation is executed for the same
file, the value of COUNT is reset for the
new operation; it is restored when the
original GET or PUT is continued.

DATAFIELD £2ndition-Handling

DATAFIELD is used in a NAME condition
on-unit to return a character string whose
value is the name and contents of the field
that caused the condition to be raised.

It can also be used in an on-unit for an
ERROR or FINISH condition raised as part of
the standard system action for the NAME
condition.

If DATAFIELD is used out of context, a
null string is returned.

DATE returns a character string of length
six, in the form yymmdd, where:

346

yy
mm
dd

the current year
the current month
the current day

DECI MAL (x t.h!aL.hl1.1 Arithmetic

DECIMAL returns the decimal representation
of a given value at with a precision
specified by Xa and X3.

Xt value to te converted to decimal base.

Xa unsigned decimal integer constant
specifying the number of digits to be
maintained throughout the operation; it
must not exceed the implementation
limit.

X3 decimal integer constant, optionally
signed, specifying the scale factor of
the result. For a fixed-point result,
if Xa is given, then X3 must also be
given. For a floating-point result,
only Xa can be given.

If both Xa and X3 are omitted, the
precision of the result is determined from
the rules for base conversion.

DIM(x"xa) Array-Handling

DIM returns a default-precision fixed-point
binary integer specifying the current
extent of a specified dimension Xa of a
given array X,.

X, the given array; it must be currently
allocated.

Xa the element expression specifying a
particular dimension of X,. If
necessary, Xa is converted to a binary
integer of precision (15,0).

x. must not have less than (xa) dimensions.

Arithmetic

DIVIDE returns the quotient of two values
x. and Xa with a precision specified by a3
and x ~ •

x. dividend

Xa divisor

X3 unsigned decimal integer constant
specifying the number of digits to be
maintained throughout the operation; it
must not exceed the implementation
limit.

X~ decimal integer constant, optionally
signed, specifying the scale factor of
the result. For a fixed-point result,

both X3 and x~ must be given. For a
floating-point result, only X3 can be
given.

storage Control

EMPTY returns an area of zero extent. It
is used to free all allocations in an area.
Note that the value of this function is
automatically assigned to an area variable
when it is allocated.

ERF(x) Mathematical

ERF returns a floating-point value that
represents the error function of a given
value x. x must be real.

The result is given by:
2 fX _t2

ERF (>~) = .vII e dt
o

ERFC (x) Mathematical

ERFC returns a floating-point value that
represents the complement of the error
function of a given value x. x must be
real.

The result is defined in terms of the
function ERF' as:

1-ERF(x)

EXP(x) Mathematical

EXP returns a floating-point value that
represents the base of the natural
logarithm system e to a given power x.

Arithmetic

FIXED returns the fixed-point
representation of a given value x. with a
precision specified by Xa and X3.

X1 value to, be converted to fixed-point
scale.

xa unsigned decimal integer constant
specifying the total number of digits
in the result.

X3 decimal integer constant, optionally
signed, specifying the scale factor of

the result. If X3 is omitted, a scale
factor of zero is assumed.

If both Xa and X3 are omitted, the default
value (15,0), for a binary result, or
(5,0), for a decimal result, is assumed.

FLOAT (x. [« Xa]) Arithmetic

FLOAT returns the floating-point
representation of a given value x~ with a
precision specified by Xa.

x. value to be converted to floating-point
scale.

Xa unsigned decimal integer constant
specifying the total number of digits
in the result. If Xa is omitted, the
default value 21, for a binary result,
or 6, for a decimal result, is assumed.

FLOOR(x) Arithmetic

FLOOR returns the largest integer less than
or equal to a given value x. x must be
real.

If x is fixed-point with prec1s1on (p,q>,
the precision of the result is given by:

(MIN(N,MAX(p-q+1,1»~0)

where N is the maximum number of digits
allowable ..

HBOUND(x,1'x,a) Array-Handling

HBOUND returns a default-precision
fixed-point binary integer specifying the
current upper bound of a specified
dimension Xa of a given array x ••

Xt the given array; it must be currently
allocated.

Xa an element expression specifying a
particular dimension of Xt. If
necessary, Xa is converted to a tinary
integer af precision (15,0).

x. must not have less than (xa)
dimensions.

section G: Built-In Functions and pseudovariables 347

HIGH(x) String-Handling

HIGH returns a character string of length x
where each character is the highest
character in the collating sequence
(hexadecimal FF).

x expression specifying the length. If
necessary, x is converted to a binary
integer of precision (15,0).

I MAG (x) Arithmetic

lMAG returns the imaginary part of a given
complex value x. If real, x 1S converted
to complex. The mode of the result is
real.

IMAG pseudovariable

The pseudovariable assigns a real value or
real part of a complex value to the
imaginary part of a given complex variable
x. x must be complex.

INDEX(xt,xa) String-Handling

INDEX returns a halfword binary integer
indicating the starting position within the
string x. of a substring identical to
string Xa.

x. string to be searched

Xa string to be searched for

If Xa does not occur in x., the value
zero is returned.

If Xa occurs more than once in Xt, the
starting position of the first occurrence
is returned.

If any argument is character or decimal,
conversions are performed to produce
character strings. Otherwise if the
arguments are bit and binary, or both
binary, conversions are performed to
produce bit strings.

LENGTH (x) String-Handling

LENGTH returns a default-precision
fixed-point binary integer specifying the
current length of a given st.ring x. If x
is binary, it is converted to bit string;
otherwise any other conversion required is
to character string.

348

LBOUND(x,l,xa) Array-Handling

LBOUND returns a default-precision
fixed-point binary integer specifying the
current lower bound of a specified
dimension Xa of a given array X1.

x. the given array: it must be currently
allocated.

xa an element expression specifying the
particular dimension of x •• If
necessary, Xa is converted to a cinary
integer of precision (15,0).

x. must not have less than (xa)
dimensions.

LINENO(x) STREAM Input/Output

LINENO returns a default-precision
fixed-point cinary integer specifying the
current line number of the specified file
x.

x a file expression, the file must have
the PRINT attribute.

LOG (x) Mathematical

LOG returns a floating-point value that
represents the natural logarithm, i.e.,
base e, of a given value x. If x is real,
it must be greater than zero. If x is
complex, it must not be equal to 0+01. The
function is multiple-valued if x is
complex: hence, only,the principal value
can be returned. The principal value has
the form:

(a+i*b)

where b is the range:

-pi<b<=pi.

LOG2(x) Mathematical

LOG2 returns a floating-point value that
represents the binary logarithm, i.e., case
2, of a given value x. x must be real and
greater than zero.

LOG10(x) Mathematical

LOG10 returns a floating-point value that
represents the common logarithm, i.e., base
10, of a given value x. x must be real and
greater than zero.

LOW(x) String-Handling

LOW returns a character string of length x
where each character is the lowest
character in the collating sequence
(hexadecimal 00). If necessary, x is
converted to binary integer of precision
(15,0).

x expression specifying the length

MAX(x" Xa • • ..:.L~ Arithmetic

MAX returns, from a set of two or more
arguments, the value of the argument with
the largest value.

Xo,Xa ••• ,Xn list of values from which the
largest is to be returned.

The maximum number of arguments that the
function will accept is 64. All the
arguments must be real.

If the argumelnts are .fixed-point with
precisions:

(Po, q.), (Pa, qa)· •• , (Pn, qn)

the precision of the result is giveti by:

(MIN(N,MAX(PG-q.,Pa-qa···,Pn-qn)+
MAX (q t , q[a • • ., qn)) , MAX (q. , qa • • • " qn))

If the arguments, after any necessary
conversions bave been performed, are
floating point, and their precisions are
Pt,Pa'P3 ••• Pn, then the precision of the
result is MAX(PG,Pa,P3 ••• Pn).

Arithmetic

MIN returns, from a set of two or more
arguments, tbe value of the argument with
the smallest value.

x.,Xa ••• ,Xn list of values from which the
smallest is to be returned.
smallest is to be returned.

The maximum number of arguments that the
function will accept is 64. All the
arguments must be real.

If the arguments are fixed-point with
precisions:

the precision of the result is given by:

(MIN(N,MAX(p.-q.,Pa-qa···,Pn-qn)+
MAX (q. ,qa •••. , qn)) , MAx (q., qa. • • ,qn))

If the arguments, after any necessary
conversions have been performed, are
floating point, and their precisions are
P.,Pa'P3 ••• Pn, then the precision of the
result is MAX(Pt,Pa,P3 ••• Pn).

MOD(x"xa) Arithmetic

MOD returns the smallest positive value, R,
such that:

(x. - R)/xa = n where n is an integer.

Thus. the result is the smallest positive
value that must be subtracted from a given
value Xt to make it exactly divisible by
the given value Xa.

Xt must be real. If Xo is positive, the
result is the remainder of the division of
x. and Xa; if Xt is negative, the result is
the modular equivalent of this remainder.

xa must be real. If Xa is zero, the
ZERODIVIDE condition is raised. If the
result is floating-point, the precision is
the greater of those of Xt and Xa; if the
result is fixed-point, the precision is
given by:

(MIN(N,Pa-qa+MAX(Pt,qa»,MAX(q.,qa»

where (P1,qO) and (Pa,qa) are the
precisions of X1 and Xa respectively.

If x. and Xa are fixed-point with different
scale factors, the result may be truncated
on the right, and the SIZE condition is
raised, if enabled.

MULTIPLY(Xt,Xa,X3['X~])

MULTIPLY returns the product of two values
Xt and Xa with a precision specified by X3
and X't •

Xt and Xa values to be multiplied.

X3 unsigned decimal integer constant
specifying the number of digits to be
maintained throughout the operation; it
must not exceed the implementation
limit.

Section G: Built-In Functions and Pseudovariables 349

x~ decimal integer constant, optionally
signed, specifying the scale factor of
the result. For a fixed-point result"
both X3 and x~ must be given. For a
floating-point result, only X3 can be
given.

Storage Control

NULL returns a null pointer value, i.e., a
value that cannot identify any generation
of a variable. The null pointer value can
be converted to OFFSET by assignment of the
built-in function value to an offset
variable.

OFFSET(x.,xa) Storage Control

OFFSET returns an offset value derived from
a given pointer x~ and relative to a given
area xa. If x, ~§ null, then the null
value is returned.

x. a pointer expression. It must identify
a generation of a based variable within
area Xa.

xa an area variable

If x, is an element expression, then Xa
must be an element variable.

ONCHAR Condition-Handling

ONCHAR returns the character that caused
the CONVERSION condition to be raised. It
can be used in an on-unit for the
CONVERSION condition or for ERROR or FINISH
condition raised as standard system action
for the CONVERSION condition.

If the ONCHAR built-in function is used
out of context, a blank is returned unless
ONCHAR has a value given to it by an
assignment to the pseudovariable out of
context; in this case, the character
assigned to the pseudovariable is returned
by the built-in function.

ONCHAR Pseudovariable

The pseudovariable resets the current value
of the ONCHAR built-in function. The value
assigned to the pseudovariable is converted
to a character string of length 1. The new
character is us~d when the conversion is
re-attempted.

350

If the pseudovariable is used out of
context, and the next reference to the
built-in function is also out of context,
then the character assigned to the
pseudovariable is returned. The
out-of-context assignment is otherwise
ignored.

ONCODE condition-Handling

ONCODE returns a default-precison
fixed-point binary integer that defines the
type of interrupt that caused the on-unit
to become active. It can be used in any
on-unit. All ON-codes are defined in
section H, "On-Conditions".

If ONCODE is used out of context, zero
is returned.

ONCOUNT Condition-Handling

ONCOUNT returns a default-precision
fixed-point binary integer specifying the
number of interrupts that remain when an
on-unit is entered. Both types of multiple
interrupt are discussed in section H,
"ON-Conditions".

If ONCOUNT is used out of context, zero
is returned.

ONFILE Condition-Handling

ONFILE returns a character string whose
value is the name of the file for which an
input/output or CONVERSION condition is
raised. It can be used in an on-unit for
any input/output or CONVERSION condition,
or for the ERROR or FINISH condition raised
as standard system action for an
~nput/output or the CONVERSION condition.

If ONFILE is used out of context, a null
string is returned.

Condition-Handling

ONKEY returns a character string whose
value is the key of the record that caused
an input/output condition to be raised. It
can be used in an on-unit for any
input/output condition, except ENDFII.E, or
for the ERROR or FINISH condition raised as
standard system action for an input/output
condition. Note that ONKEY is always set

for operatiolls on a KEYED file, even if the
statement that causes the condition to be
raised has OI:)t specified the KEY, KEYTO, or
KEY FROM optil::>ns.

The resul·t is determined by the
following rules:

1. For any inputloutput condition (other
than EN1DFILE), or for the ERROR or
FINISH condition raised as standard
system action for these conditions,
the result is the value of the
record.el:! key from the 1/0 statement
causing the error.

For REGIONAL(1) data sets, the result
is an eight-byte character
repre!:.entation of the region number.
If the key was incorrectly specified,
the result is the last eight bytes of
the source key •. If the source key is
less than eight bytes, it is padded on
the L~nt: with blanks to make it eight
bytes. If the key was correctly
specified, the eight-byte character
string consists of the region number
in char,acter form padded on the left
with blanks, if necessary.

2. For a REWRITE statement that attempts
to write an updated record on to an
indexed data set when the key of the
updated record differs from that of
the input record, the result is the
value of the embedded key of the input
record.

If ONKEY i!3 Ilsed out of context, a null
string is :cetulrned.

Condition-Handling

ONLOC returns a character string whose
value is the name of the entry-point of the
procedure in which the condition was
raised. It can be used in anyon-unit.

If ONLoe is used out of context, a null
string is returned.

ONSOURCE Condition-Handling

ONSOURCE returns a character string whose
value is the contents of the field that was
being processed when the CONVERSION
condition was raised. It can be used in an
on-unit for the CONVERSION condition or for
the ERROR or FINISH condition raised as
standard system action for the CONVERSION
condition.

If ONSOURCE is used out -of context, a
null string is returned.

ONSOURCE Pseudovariable

The pseudovariable resets the current value
of the ONSOURCE built-in function. The
value assigned to the pseudovariable is
converted to a character string and, if
necessary, is padded on the right with
blanks to match the length of the field
that caused the error. The new string is
used when the conversion is re-attempted.

When conversion is re-attempted, the
string assigned to the pseudovariable is
processed as a single data item. For this
reason, the error correction process should
not assign a string containing more than
one data item when the conversion occurs
during the execution of a GET LIST or GET
DATA statement. The presence of blanks or
commas in the string will cause further
conversion error.

POINTER(x"xa) Storage Control

Abbreviation: PTR(Xt,x2)

POINTER returns a pointer value derived
from a given offset value Xt and a given
area xa. If Xt is null then the null value
is returned.

Xt an offset expression. It must identify
a generation of a based variable, but
not necessarily in Xa. If it is not in
Xa, the generation must be equivalent
to one in X2.

X2 an area variable.

Generations of based variables in
different areas are equivalent if, up to
the allocation of the latest generation,
the variables have been allocated and freed
the same number of times as each other.

POLY(X.,xal Array-Handling

POLY returns a floating-point value that
represents a polynomial formed from two
given unidimensional arrays Xt and X2 •

Xt an array defined as a(m:n), where (rn:n)
represents the lower and upper bounds.

section G: Built-In Functions and Pseudovariables 351

Xa an array defined as x(p:q), where (p:q)
represents the lower and upper bounds.

If the elements of one or both of the
arrays are not floating-point, they are
converting to floating-point

The returned value is defined as:

n-m
"" j-1 a (m) + L...J (a (m+ j) * n x (p+ i))
j=1 i=O

If (q-p)«n-m-1) then x(p+i)=x(q) for
(p+i»q.

If m=n then the result is a(m).

If Xa is an element expression, it is
interpreted as an array of one element,
i.e., x(1), and the result is defined as:

n-m
L a(m+j)*x(1)**j

j=O

x, must not be iSUB-defined.

PRECISION(X.,Xa(,X3]) Arithmetic

PRECISION returns a given value x. with a
precision specified by Xa and X3.

x. value whose precision is to be changed.

xa unsigned decimal integer constant
specifying the number of digits that
the value of x. is to have after
conversion; it must not exceed the
implementation limit.

X3 decimal integer constant, optionally
signed, specifying the scale factor of
the result. For a fixed-point result,
X3 must be given. For a floating-point
result, X3 must not be given.

PRIORITY (xl Multitasking

PRIORITY returns a halfword binary integer
indicating the priority associated with the
given task variable x. It gives the
priority relative to the priority of the
current task. No interrupt can occur
during evaluation of PRIORITY.

352

PRIORITY Pseudovariable

The pseudovariatle adjusts the priority of
the task associated with the given task
variatle x. It receives a halfword binary
integer, and sets the priority of a to the
received value, relative to the priority
held ty the current task immediately prior
to the assignment. x may be associated
with any active or inactive task, including
the current one. The task variable may be
omitted, in which case the variable
associated with the current task is
assumed. No interrupt can occur during
assignment to the PRIORITY pseudovariable.
The PRIORITY pseudovariable cannot be used
as the control variable in a DO group.

PROD(x) Array-Handling

PROD returns the product of all the
elements in a given array x.

x an array of integers or floating-point
elements.

If the elements of x are non-integer
fixed-point, they are converted to
floating-point.

If the elements of x are string, they
are converted to integers. The precision
of the result for fixed-point integers is
(N,O), where N is the maximum number of
digits allowatle. x must not be
iSUB-defined.

REAL(x) Arithmetic

REAL returns the real part of a given
complex value x. x will be converted to
complex if it is real.

REAL Pseudovariable

The pseudovariable assigns a real value or
the real part of a complex value to the
real part of a given complex variable x. x
must not be real.

REPEAT(x,~ string-Handling

REPEAT returns a string consisting of the
string x. concatenated to itself the number
of times specified by XaJ i.e., there will
be (xa+1) occurrences of the string X1.

Xt stJ:'ing to be repeated

Xa an elcpJcession that can be converted to
int,egelE:' indicating number of
repet,i 1t.ions.

If x, is aJcithmetic;, it will be converted
to string .• bit string if it is binary,
character 13tring if it is arithmetic. If
Xa is zero or negative, the string Xt is
returned"

If Xa is all array, then Xt should be an
array with identical bounds.

ROUND (x, ,~ll Arithmetic

ROUND ;['etu:rns the given value XII rounded at
a digit specified by Xa.

Xt the value to be rounded.

Xa decimal integer constant, optionally
si9fnE~d, specifying the digit at which
rounding is to occur. If Xa is
positive, it is the (xa)th digit to the
right:. of the point; if negative, it is
the (x2+1)th digit to the left of the
point:. •

If Xt is floating-point~ Xa is ignored; the
rightmost:. ;bit of the mantissa is set to 1.

The pre1cision of a fixed-point result is
given by::

(MAX(1,MIN(p-q+1+xa,N»,xa)

where (p~q) is the precision of Xt and N is
the maximum number of digits allowable.

Note th,at the rounding of a negative
value results in the rounding of its
absolute value, 'then the sign is replaced.

SIGN(x). Arithmetic

SIGN returns a default-precision
fixed-poin·t binary integer that indicates
whether a I~iven value x is positive, zero,
or negative. The value returned is as
follows:

value of x

x > 0

X = 0

x < 0

X must be real ..

value returned

+1

o

-1

SIN (x) Mathematical

SIN returns a floating-point value that
represents the sine of a given value x.

x an expression whose value is in radians.

If x is complex, the result is given by:

sin(a)*cosh(t)+i*cos(a)*sinh(b)

where (a+i*b) represents x.

SIND(x) Mathematical

SIND returns a floating-point value that
represents the sine of a given value x.

x an expression whose value is in
degrees. x must be real.

SINH(x) Mathematical

SINH returns a floating-point value that
represents the hyperbolic sine of a given
value x. If x is complex, the result is
given by:

sinh(a)*cos(b)+i*cosh(a)*sin(b)

where (a+i*b) represents x.

SQRT(x) Mathematical

SQRT returns a floating-point value that
represents the square root of x. If x is
real, it must not be less than zero. The
result is the positive square root of x.
If x is complex, the function is
multiple-valued; hence, only the principal
value can be returned. The principal value
has the form:

(a+i*b)

where either a>O, or a=O and b>=O.

STATUS [(x)] Multitasking

STATUS returns a default-precision
fixed-point binary integer specifying the
status value of a given event x. If the'
event is normal, zero is returned; if
abnormal, non-zero is returned. If no
argument is specified, the event associated
with the current task is assumed.

Section G: Built-In Functions and Pseudovariables 353

STATUS pseudovariable

The pseudovariable resets the status value
of a given event x. No interrupt can occur
during assignment to the pseudovariable.

STRING(x) string-Handling

STRING returns an element string that is
the concatenation of all the elements of a
string data aggregate.

x an array or structure expression whose
elements are either all character
strings and/or numeric character data,
or all bit strings.

x cannot be an operational expression or a
function reference.

If x is a structure that has padding caused
by ALIGNED elements;, the Fadding is not
included in the result.

If any of the strings in the aggregate x
are of varying length, only the current
length, and not including the two-byte
length prefix, is concatenated.

x must not be iSUB-def~ned.

If x is an element variable, the rules for
aggregates apply except that there is no
concatenation.

STRING Pseudovariable

The pseudovariable assigns a string, piece
by piece, to the given aggregate variable
x, until either all of the aggregate
elements are filled or no piece of the
assigned string remains. In the latter
case, any remaining strings in the
aggregate variable are filled with blanks
or, if varying-length, are given zero
length.

The STRING pseudovariable must not be
used in the data specification of a GET
statement, nor in an INTO or KEYTO option
of a READ statement.

The STRING pseudovariable cannot be used
as the control variable in a DO-group.

A varying-length string is filled to its
maximum length.

354

SUBSTR(x"xa[,Xa]) string-handling

SUBSTR returns a substring of the given
string X1.

x, string from which the substring is to
be extracted.

X2 an expression that can be converted to
integer indicating the starting
position of the substring in X1.

X3 an expression that can be converted to
integer specifying the length of the
substring in x,. If X3 is zero, a null
string is returned. If X3 is omitted,
the substring returned is position X2
in X1 to the end of x ••

If x. is not a string, it is converted to a
bit string if binary or a character string
if decimal.

The STRINGRANGE condition, if enabled,
is raised if the values of X2 and X3 are
such that the substring does not lie
entirely within X1. If STRINGRANGE is not
enabled, then under the optimizing compiler
the result is undefined and under the
checkout compiler, standard system action
is taken (even if there is STRINGRANGE
on-unit established.)

SUBSTR Pseudovariable

The pseudovariable assigns a string to a
substring of the given string x. The
remainder of string x is unchanged.

Array-handling

SUM returns the sum of all the elements in
a given array x.

x an array of arithmetic elements.

If the elements of x are fixed-point, the
precision of the result is (N,q), where N
is the maximum number of digits allowable
and q is the scale factor of x. If the
elements of x are strings, they are
converted to integers.

x must not be iSUB-defined.

TAN (x) Mathematical

TAN returnB a floating-point value that
represen1:.s the tangent of a given value x.

x an expression whose value is in
radians.

If x is complex, the result is defined as:

REAL (TAN(x» = TAN(a)*(1-TANH(b)**2)/
(1+(TAN(a)*TANH(b»**2)

IMA(;('rAN (x» = TANH (b) * (1 +TAN (a) **2) /
(1+(TAN(a)*TANH(b»*·2)

where (a+i*b) represents x.

TANO (x). Mathematical

TANO returns a floating-point value that
represents the tangent of a given value x.

x an ,expression whose value is in
degrees. x must be real.

Mathematical

TANO returns a floating-point value that
represents the hyperbolic tangent of a
given value x.

x an expression whose value is in
radianse

If x is complex the result is defined as:

-:i.*TAN(i*x)

TIME rletuJ:'ns a character string of length
nine, in the form hhmmssttt, where:

hh the current hour
mm number of minutes
ss number of seconds
ttt number of milliseconds

If no timing facility is available, TIME
returns the value (9)'0'.

TRANSLATE C:Xt, Xa [« xa]) string-handling

TRANSLATE returns a string the same length
as a given string X1 where all or some of

the characters may have been changed.
Characters are changed according to a
look-up table provided l::y strings x~ and
X3 e

The function operates on each character
of x. as follows: .

If a character in Xt is found in X3, then
the character in x~ that corresponds to the
one in X3 is copied to the result:
otherwiseJ the character in Xt is co~ied
directly to the result.

Xt character string to be searched for
possible translation of all or some of
its characters.

x~ character string containing the
translation values of characters.

X3 character string containing the
characters that are to be translated.
If X3 is omitted, a string of 256
characters is assumed: it contains all
possible characters arranged in
ascending order (hexadecimal 00 through
FF).

Strings Xa and X3 should be the same
length: otherwise X~ is padded with blanks,
or truncated, on the right to match the
length of X3.

Any non-character arguments are
converted to character.

TRUNC(x) Arithmetic

TRUNC returns an integer that is the
truncated form of a given value x. If x is
positive or zero, the result is the largest
integer less than or equal to x. If x is
negative, the result is the smallest
integer greater than or equal to x. x must
be real.

If x is fixed-point with precision
(p,q), the precision of the result is given
by:

(MIN(N,MAX(p-q+1,1»,0)

where N is the maximum number of digits
allowable.

UNSPEC(x) String-handling

UNSPEC returns a bit string that is the
internal coded form of a given value x.

Section G: Built-In Functions and Pseudovariables 355

x expression of any data type.

The length of the returned bit-string
depends on the attributes of x.

If x is a varying-length string, its
two-byte prefix is included in the returned
bit-string.

If x is complex, the length of the
returned string is twice the value given in
the following table.

r-----------r-----------------------------,
I I I
Ibit-string I attributes of x I
I length I I
~-----------+-----------------------------i I 16 IFIXED BINARY (p,g) for p<16 I
~-----------+-----------------------------i I 32 IFIXED BINARY (p,g) for p>15 I
I IFLOAT BINARY (p) for p<22 I
I IFLOAT DECIMAL (p) for p<7 I
I IPOINTER (standard length) I
I I OFFSET I
I IFILE constant or variable I
I IPOINTER (under checkout I
I I compiler with COMPATIBLE I
I I option) I
.-----------+-----------------------------~ I 64 IFLOAT BINARY (p) for 21<p<54 I
I IFLOAT DECIMAL (p) for 6<p<17 I
I ILABEL constant or variable I
I IENTRY constant or variable I

.-----------+-----------------------------~ I 128 IFLOAT BINARY(p) for 53<p<110 I
I IFLOAT DECIMAL(p) for 16<p<34 I
I I TASK I
I IPOINTER (under checkout I
I Icompiler with NOCOMPATIBLE I
I I option) I
.-----------+-----------------------------~
I 256 I EVENT I
~-----------+-----------------------------i I n I BIT (n) I
.-----------+-----------------------------i I n+16 IBIT VARYING where n is the I
I Imaximum length of x. I
.-----------+-----------------------------i
I 8*n ICHARACTER (n) I
I I PICTURE I
I I (with character-string I
I Ilength of n) I
.-----------+-----------------------------i I 8*(n+2) ICHARACTER VARYING where n is I
I Ithe ~ximBm length of x. I
f-----------+-----------------------------i I 8*(n+16) IAREA (n) I
~-----------+-----------------------------i I 8*FLOOR(n) I FIXED DECIMAL (p,q) I
I Iwhere n = (p+2)/2 I L ___________ ~ _____________________________ J

356

UNSPEC Pseudovariable

The pseudovariable assigns a bit string
directly to the given variable x, i.e., no
conversion to the data type of the variable
is attempted. The bit string is passed, if
necessary" on the right with zeros to match
the length of the variable. If x is a
varying length string" its two-byte prefix
is included in the field to which the bit
string is assigned.

VERIFY(x"x;a) String-handling

VERIFY returns a default-precision
fixed-point binary integer indicating the
position in the given string Xt of the
first character or bit that is not in the
given string Xa. If all the characters or
bits in XI do appear in Xa, a value of zero
is returned. The arguments are converted
to strings if they are arithmetic. If one
string argument is bit and the other
character, the bit is converted to
character.

x, string to be scanned for any character
not in Xa-

xa the verification string, consisting of
a set of characters in any order.

If either argument is character or decimal,
conversions are performed to produce
character strings. Otherwise, if the
arguments are bit and binary or both
binary, conversions are performed to
produce bit.

In trod UCtiOI1L

The on-conditions are those exceptional
conditions t~hat can be specified in PL/I by
means of an ON statement. If a condition
is enabled, the occurrence of the condition
will result in an interrupt. The
interrupt, in turn, will result in the
execution of: the current action
specificaticm for that condition. If an ON
statement for that condition is not in
effect, the current action specification is
the standard system action for that
condition. If an ON statement for that
condition is in effect, the current action
specification is either SYSTEM, in which
case the standard system action for that
condition is; taken, or an on-unit, in which
case the prc)grammer has supplied his own
action to bE! taken for that condition.

Some conditions are always enabled
unless they have been explicitly disabled
by condition prefixes; others are always
disabled unless they have been explicitly
enabled by condition prefixes; and still
others are CiLlways enabled and cannot be
disabled.

Those conditions that are always enabled
unless they have been explicitly disabled
by condition prefixes are:

CONVERSION

FIXEDOVERFLOW

OVERFLOW

UNDERFLOW

ZERODIVIDE

Each of the above conditions can be
disabled by a condition prefix specifying
the conditicm name preceded by NO without
intervening blanks. Thus, one of the
following names in a condition prefix will
disable the respective condition:

NOCONVE~RSION

NOFIXEDOVERFLOW

NOOVERE~LOW

NOONDEHFLOW

NOZERODIVIDE

Section H: On-conditions

Such a condition prefix renders the
corresponding condition disabled throughout
the scope of the prefix; the condition
remains enabled outside this scope. (Scope
of a condition prefix is discussed in
chapter 14, "Exceptional Condition Handling
and Program Checkout".)

Conversely, those conditions that are
always disabled unless they have been
enabled by a condition prefix are:

SIZE

SOBSCRIPTRANGE

STRINGRANGE

STRINGSIZE

CHECK

The appearance of one of these five in a
condition prefix renders the condition
enabled throughout the scope of the prefix;
the condition remains disabled outside this
scope. Further, a condition prefix speci­
fying NOSIZE, NOSUBSCRIPTRANGE, NO STRING­
RANGE, NOSTRINGSIZE, or NOCHECK will
disable the corresponding condition
throughout the scope of that prefix. Since
SIZE. STRINGRANGE, and SUBSCRIPTRANGE
represent errors that are likely to prevent
successful execution, the checkout compiler
checks for these conditions, and takes
standard system action, even when they are
disabled, although an on-unit cannot be
entered while the corresponding condition
is disabled.

All other conditions are always enabled
and remain so for the duration of the
program. These conditions are:

AREA

ATTENTION (checkout compiler only)

CONDITION

ENDFILE

ENDPAGE

ERROR

FINISH

KEY

NAME

Section H: ON-Conditions 357

PENDING

RECORD

TRANSMIT

UNDEFINEDFILE

CONDITION CODES (ON-CODES)

The ONCODE built-in function may be used by
the programmer in anyon-unit to determine
the nature of the error or condition that
caused entry into that on-unit. The codes
corresponding to the conditions and errors
checked for are given below:

o

Errof-Qr E~Etional Condition

The ONCODE function has been used
outside an on-unit.

ERROR Condition Code

3 Execution of SIGNAL ERROR
statement in place of statement
diagnosed as in error.

FINISH Condition Codes

4 SIGNAL FINISH, STOP, or EXIT
statement executed.
or
Main procedure completed normally .•

ERROR Condition Cod~

9 SIGNAL ERROR statement executed.

Note: For further ERROR condition codes,
see code numbers 1000 onwards.

NAME Condition Codes

10 SIGNAL NAME statement executed.
or
Unrecognizable identifier in GET
DATA input stream.

RECORD Condition Codes

20

21

22

23

24

358

SIGNAL RECORD statement executed.

Record variable smaller than
record size.

Record variable larger than record
size.

Attempt to write or locate a zero
length record.

Zero length record has been read
from a REGIONAL data set.

TRANSMIT Condition Codes

40

41

SIGNAL TRANSMIT statement
executed.

Uncorrectable transmission error
in output data set.

42 Uncorrectable transmission error
in input data set.

KEY Condition Codes

50

51

52

53

54

55

56

57

SIGNAL KEY statement executed.

Key specified cannot be found.

Attempt to add keyed record which
has same key as a record already
present in data set, or, in a
REGIONAL(1) data set, attempt to
write into a region already
containing a record.

Value of expression specified in
KEYFROM option during sequential
creation of INDEXED or REGIONAL
data set is less than value of
previously specified key or region
number.

Key conversion error has occurred,
possibly due to region number not
being numeric character.

Key specification is null string
or begins (8)'1'B.

Attempt to access a record using a
key that is outside the data set
limits.

No space available to add a keyed
record.

ENDFILE Condition Code

70 SIGNAL ENDFILE statement executed.
or
Attempt to read past the file
delimiter.

UNDEFINEDFILE Condition Codes

80

81

82

SIGNAL UNDEFINEDFILE statement has
been executed.

Conflict in file attributes exists
at open time between attributes in
DECLARE statement and those in
explicit or implicit OPEN
statement.

Conflict between file attributes
and physical organization of data
set, e.g. between file
organization and device type.

83

84

85

86

AftE~r merging ENVIRONMENT options
with DO statement and data set
label, data set specification is
incomplete, e.g. blocksize or
rec()rd format has not been
spel::ified.

No DO statement associating file
with a data set.

During initialization of a DIRECT
OUTPUT file associated with a
REGIONAL data set, an input/output
errl::>r occurred.

Linesize greater than
implementation-defined maximum.
o:r:
Invalid value in an ENVIRONMENT
option.

87 After merging ENVIRONMENT options
w:ith DO statement and data set
label, conflict exists in data set
specification, e.g. record format
incompatible with blocksize or
f:ile organization.

ENDPAGE condition Code

90 SIGNAL ENDPAGE statement executed.
or
Attempt to start new line when
lin.e number is equal to current
page size.

PENDING Condition Code

100 SIGNAL PENDING statement executed.
or
REJlID issued for TRANSIENT INPUT
file when message queue empty.

STRINGSIZE Condition Code

150 SIGNAL STRINGSIZE statement
executed.
or
ChaLracters have been lost in an
assignment to a character-string
val~iable or temporary or in an
i.nput/output operation.

OVERFLOW Condition Code

300 SI(;NAL OVERFLOW statement has been
ex~acuted.
c)r
~la9ni tude of floating-point number
exceeds permitted maximum.

FIXEDOVER!'LOW Condition Code

310 SIC;NAL FIXEDOVERFLOW statement
eX4!cuted.
or
Length of result of fixed-point

arithmetic operation exceeds
permitted maximum.

ZERODIVIDE condition~

320 SIGNAL ZERODIVIDE statement
executed.
or
Attempt to divide by zero.

UNDERFLOW Condition Code

330 SIGNAL UNDERFLOW statement
executed.
or
Magnitude of a floating-point
number is smaller than the
permitted minimum.

SIZE Condition Code

340

341

SIGNAL SIZE statement executed.
or
High-order non-zero digits have
been lost in an assignment to a
variable or temporary, or
significant digits have been lost
in an input/output operation.

High order non-zero digits have
been lost in an input/output
operation.

STRINGRANGE Condition.code

350 SIGNAL STRINGRANGE statement
executed.
or
Length of the arguments of a
SUBSTR reference failed to comply
with the rules described for the
SUBSTR built-in function.

AREA Condition codes

360

361

Attempt to allocate a based
variable within an area that
contains inSUfficient free storage
for allocation to be made.

Insufficient space in target area
for assignment of source area.

362 SIGNAL AREA statement executed.

ATTENTION condition~

400 Checkout compiler only: SIGNAL
ATTENTION statement executed
or
Attention signaled from terminal.

CONDITION Condition Code

500 SIGNAL CONDITION (condition)
statement has been executed.

Section H: ON-Conditions 359

CHECK Condition Codes

510 SIGNAL CHECR statement executed.
ol:'
Value of all or part of variable
is about to change" or execution
of labeled or named statement is
about to take place, within scope
of CHECR prefix.

SUBSCRIPTRANGE Condition Code

520

521

SIGNAL SUBSCRIPTRANGE statement
executed.
or
Subscript has been evaluated and
found to lie outside its specified

Subscript of iSUB-defined variable
lies outside bounds of
corresponding dimension of base
variable.

CONVERSION Condition Codes

600

601

603

604

605

606

607

608

609

610

611

360

SIGNAL CONVERSION statement
executed.

Invalid conversion attempted
during input/output of a character
string.

Error during processing of an
F-format item for a GET STRING
statement.

Error during processing of an
F-format item for a GET FILE
statement.

Error during processing of an
F-format item for a GET FILE
statement following a TRANSMIT
condition.

Error during processing of an
E-format item for a GET STRING
statement.

Error during processing of an
E-format item for a GET FILE
statement.

Error during processing of an
E-format item for a GET FILE
statement following a TRANSMIT
condition.

Error during processing of a
B-format item for a GET STRING
statement.

Error during processing of a
B-format item for a GET FILE
statement.

Error during processing of a
B-format item for a GET FILE

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

statement following TRANSMIT
condition.

Error during character string to
arithmetic conversion.

Error during character string to
arithmetic conversion for a GET or
PUT FILE statement.

Error during character string to
arithmetic conversion for a GET or
PUT FILE statement following a
TRANSMIT condition.

Error during character string to
bit string conversion.

Error during character string to
bit string conversion for a GET or
PUT FILE statement.

Error during character string to
bit string conversion for a GET or
PUT FILE statement following a
TRANSMIT condition.

Error during character string to
picture conversion.

Error during character string to
picture conversion for a GET or
PUT FILE statement.

Error during character string to
picture conversion for a GET o.r
PUT FILE statement following a
TRANSMIT condition.

Error in decimal P-format item for
a GET STRING statement.

Error in decimal P-format input
for a GET FILE statement.

Error in decimal P-format input
for a GET FILE statement following
a TRANSMIT condition.

Error in character P-format input
for a GET FILE statement.

Error exists in character P-format
input for a GET FILE statement.

Error exists in character P-format
input for a GET FILE statement
following a TRANSMIT condition.

ERROR Condition Codes

~: For other ERROR conditions, see
condition codes 3 and 9.

1002 GET or PUT STRING specifies data
that exceeds siz.e of string.

1003

1004

1005

1007

1008

1009

1011

1013

1014

1015

1016

1018

1019

1020

l~urther output prevented by
~rRANSMIT or KEY conditions having
been previously raised for the
da'ta set.

Attempt to use PAGE, LINE, or SKIP
S 0 for non-print file.

:1n DISPLAY (element- expression)
REPLY (character-variable)
statement, element-expression or
Icharacter-variable is of zero
length.

;~ REWRITE or a DELETE statement
has not been preceded by a READ.

Unrecognized identifier in a
string specified in a GET STRING
DATA statement.

,~n input/output statement
specifies an operation or an
option which conflicts with the
file attributes.

Data management has detected an
input/output error but is unable
to provide any information about
its cause.

Previous input operation
incomplete; REWRITE or DELETE
statement specifies data which has
,been previously read in by a READ
statement with an EVENT option,
and no corresponding WAIT has been
executed.

Attempt to initiate further
input/output operation when number
of incomplete operations equals
nu.mber sFecified by ENVIRONMENT
option NCP(n) or by default.

Event variable has been specified
for an input/output operation when
already in use.

After UNDEFINEDFILE condition has
been raised as a result of an
unsuccessful attempt to implicitly
open a file, the file was found to
te unopened on normal return from
the on-unit.

End of file or string was
encountered in data before end of
data-list or (in edit-directed
transmission) format list.

Attempt to close file which was
nOlt opened in current task.

Fu.rther input/output attempt~d
be!fore WAIT statement executed to
ensure completion of previous
READ.

1021

1022

1023

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

Attempt to access a record locked
by another file in this task.

Attempt to write a record onto a
sequential outFut data set on
which space is not available.

Exclusive file closed while
records still locked in a subtask.

computational error; short
floating point argument of SQRT
built-in function is negative.

computational error; long floating
point argument of SQRT built-in
function is negative.

computational error; extended
floating point argument of SQRT
built-in function is negative.

Computational error in LOG, LOG2,
or LOG10 built-in function;
extended floating point argument
is S O.

Computational error in LOG, LOG2,
or LOG10 built-in function; short
floating point argument is S o.
Computational error in LOG, LOG2
or LOG10 built-in function; long
floating point argument is S o.
Computational error in SIN, COS,
SIND, or COSO built-in function;
absolute value of short floating
point argument exceeds (2 •• 18).pi
(SIN and COS) or (2 •• 18).180 (SIND
and COSO).

computational error in SIN, COS,
SIND, or COSO built-in function;
absolute value of long floating
point argument exceeds (2 •• 50).pi
(SIN and COS) or (2 •• 50).180 (SIND
and SIND).

Computational error; absolute
value of short floating Foint
argument of TAN or TANO built-in
functuion exceeds, resFectively,
(2 •• 18).pi or (2 •• 18).180.

Computational error; absolute
value of long floating point
argument of TAN or TAND built-in
function exceeds, respectively,
(2 •• 50).pi or (2 •• 50).180.

'Computational error; short
floating point arguments of ATAN
or ATANO built-in function Doth
zero.

Section H: ON-Conditions 361

1511

1514

1515

1516

1517

1518

1519

1520

1521

1522

1550

1551

1552

362

computational error; long floating
point arguments of ATAN or ATAND
built-in function both zero.

Computational error; absolute
value of short floating point
argument of ATANH built-in
function ~ 1.

Computational error; absolute
value of long floating point
argument of ATANH built-in
function ~ 1.

Computational error; absolute
value of extended floating point
argument of ATANH built-in
function ~ 1.

Computational error in SIN, COS,
SIND, or COSO built-in function;
absolute value of extended
floating point argument exceeds
(2**106)*pi (SIN and COS) or
(2*.106).180 (SINO and COSO).

Computational error; absolute
value of short floating point
argument of ASIN or ACOS built-in
function exceeds 1.

Computational error; absolute
value of long floating point
argument of ASIN or ACOS built-in
function exceeds 1.

Computational error; absolute
value of extended floating point
argument of ASIN~ ACOS built-in
function exceeds 1.

Computational error; extended
floating point arguments of ATAN
or ATAND built-in function both
zero.

Computational error; absolute
value of extended floating point
argument of TAN or TANO built-in
function ~ (2.*106).pi or
(2 •• 106).180, respectively.

Computational error; real short
floating-point base is zero and
fixed-point integer exponent not
positive.

Computational error; real long
floating-point base is zero and
fixed-point integer exponent not
positive.

Computational error; real short
floating point base is zero and
the floating-point or non-integral
exponent is not positive.

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

2002

3000

Computational error: real long
floating point base is zero and
the floating-point or non-integral
exponent is not positive.

computational error: complex short
floating point base is zero and
fixed-point integer exponent is
not positive.

Computational error: complex long
floating point base is zero and
fixed-point integer exponent is
not positive.

Computational error: complex short
floating point base is zero and
floating-point or non-integral
exponent is not positive and real.

Computational error: complex long
floating point base is zero and
floating-point or non-integral
exponent is not positive and real.

computational error: complex short
floating point argument of ATAN or
ATANH built-in function has value,
respectively, or ±11 or ±1.

Computational error: complex long
floating point argument of ATAN or
ATANH tuilt-in function has value,
re~pectivelYJ of ±11 cir ±1.

Computational error: real extended
floating-point base is zero and
fixed-point integer exponent not
positive.

Computational error; real extended
floating point base is zero and
floating-point or non-integral
exponent is not positive.

Computational error; complex
extended floating point base is
zero and integer exponent is not
positive.

Computational error: complex
extended floating point tase is
zero and floating-point or
non-integral exponent is not
positive.

Computational error: complex
extended floating point argument
of ATAN or ATANH built-in function
has value, respectively, of ±11 or
±1.

WAIT statement cannot be executed
because of restricted system
facility.

Field width, number of fractional
digits, and number of significant

3001~

3005

3006

3008

3500

3501

3502

3503

3798

3799

3800

3801

3802

3803

3804

digits (w,d, and s) specified for
E-format item in edit-directed
in~)ut/output statement do not
permit transmission without loss
of significant digits or sign.

ChE!ckout compiler only: A-format
width unspecified in format list
for GET EDIT statement.

ChE!ckout compiler only: B-format
width unspecified in format list
for GET EDIT statement.

Picture description of target does
not. match non-character-string
source.

Ch4ackout compiler only: remote
format item specifies label not in
CUlcrent block.

Ch49ckout compiler only: argument
to HIGB built-in function is less
than zero.

Chleckout compiler only: argument
to LOW built-in function is less
then zero.

Chleckout compiler only: argument
to BIT built-in function less than
:ze:ro.

Checkout compiler only: argument
to CHAR built-in function less
·than zero.

ONCHAR or ONSOURCE pseudovariable
used out of context.

In an on-unit entered as a result
lof the CONVERSION condi tion being
raised by an invalid character in
'the string being converted, the
character has not been corrected
by use of the ON SOURCE or ONCHAR
pseudovariables.

Checlout compiler only: length of
data aggregate exceeds system
limit of 2**24 bytes.

Checkout compiler only: element
of an array in a structure cannot
be mapped.

Checkout compiler only: array
bound is out of valid range.

Checkout compiler only: array has
lc)wer bound greater than upper
bc)und.

Checkout compiler only: string
has length greater than permitted
malximum.

3805

3806

3807

3808

3901

3904

3906

3907

3909

3910

3911

3912

3913

3914

4000

4001

4002

Checkout compiler only: length of
string less than zero.

Checkout compiler only: size of
area exceeds permitted maximum.

Checkout compiler only: size of
area is less than zero.

Aggregate cannot be mapped in
COBOL or FORTRAN.

Attempt to invoke task having name
variable that is already
associated with an active task.

Event variable specified as
argument to COMPLETION
pseudovariable while already in
use for a DISPLAY statement.

Assignment to an event variable
that is already active.

Attempt to associate an event
variable that is already
associated with an active task.

Attempt to create a subtask (using
CALL statement) when insufficient
main storage available.

Attempt to attach a task (using
CALL statement) when number of
active tasks was already at limit
defined by ISASIZE paramter of
EXEC statement.

WAIT statement in on-unit
specifies that an event already
being waited for in task from
which on-unit was entered.

Attempt to execute CALL with TASK
option in block invoked while
executing PUT FILE(SYSPRINT)
statement.

CALL statement with TASK option
specifies an unknown entry point.

Attempt to call FORTRAN or COBOL
routines in two tasks
simultaneously.

Checkout compiler only: use of
uninitialized variable as source.

Checkout compiler only: reference
to CONTROLLED variable before it
has been allocated.

Controlled variable with bound,
length, or size as * has been
specified in an ALLOCATE statement
when no previous allocation
exists.

Section H: ON-Conditions 363

4003

4050

4051

4052

4053

4054

4055

4056

4057

4058

5000

5001

5002

364

Checkout compiler pnly: IN option
of ALLOCATE statement specifies an
area not the same as that declared
to be associated with offset
variable specified in SET option.

Checkout compiler only: attempt
to refer to a based variable whose
pointer has the null or other
initial value.

Checkout compiler only: attempt
to free a variable that has no
valid allocation in its associated
area.

Checkout compiler only: pointer
addresses based variable whose
attributes differ from attributes
of variable declared with that
pointer value.

Checkout compiler only: reference
to based variable when pointer
addresses storage that no longer
contains the variable.

Checkout compiler onlli locator
variable refers to a ocate mode
input/output buffer when buffer is
not the latest one or when file is
closed.

Checkout compiler only: attempt
to assign to an offset variable a
locator that does not reference
storage in the appropriate aiea.

POINTER or OFFSET built-in
function does not address a valid
allocation of storage in the
specified area.

Checkout compiler only: locator
qualifying a based variable refers
to storage which has not been
allocated in current task.

Checkout compiler only: a based
structure is referred to by means
of a pointer that is not valid for
that structure.

Checkout compiler only: number of
arguments being passed does not
match number of parameters.

Checkout compiler only:
attributes of argument being
passed do not match attributes of
corresponding parameter.

Checkout compiler only:
attributes of value being returned
do not match those implied by
context of function reference.

5003

5004

5005

5050

5051

8091

Checkout compiler only: attempt
to return a value -from a block
invoked by a CALL statement.

Checkout compiler only: block
invoked asa function \f4ithout
returning a value.

FORTRAN routine would pass invalid
data type.

Checkout compiler only: attempt
to use defined variable whose
storage extends beyond end of base
variable.

POSITION attribute specifies value
greater than permitted maximum.

Checkout compiler only: size of
simple defined area greater than
that of base variable.

Operation exception.

8092 Privileged operation exception.

8093

8094

EXECUTE exception.

Protection exception.

8095 Addressing exception.

8096

8097

9002

9003

9004

9005

9050

9051

Specification exception.

Data exception.

Checkout compiier only: attempt
to execute GO TO statement
specifying label in an inactive
block.

Checkout compiler only: ?ttempt
to invoke an entry point 1n a
procedure compiled by the
-optimizing compiler when that
procedure's containing block is
inactive.

Checkout compiler only: linkage
editor cannot find entry constant
on specified data set.

Checkout compiler only: attempt
to use label variable in a GO TO
statement when value not in label
list.

Program has been terminated by an
abend.

Attempt to invoke procedure
compiled by the checkout compiler
from one compiled by the
optimizing compiler.

9101

9200

9201

9250

9251

Checkout compiler only: number of
lines specified in STEPLINES
c()mpiler option has been
transmitted.

Program check occurred in
SOR'r/MERGE program.

Parameter or returned value
specified for SORT exit does not
matlch specification in invocation
o:E PL/I sort entry name.

p:cocedure to be fetched cannot be
found.

Plermanent transmission error when
fetching a procedure.

Multiple .Illb~rrupt,s

A multiple interrupt is the simultaneous
occurrence of two or more interrupts.

With IBM System/360 and System/370
systems using Processors other than Models
91 and 195, a multiple interrupt can only
occur for tbe conditions TRANSMIT and
RECORD. ThE! interrupt for TRANSMIT is
always procElssed first. The interrupt for
RECORD will be ignored unless there is an
on-unit for TRANSMIT that causes normal
return.

In system~ using IBM System/360 Models
91 and 195 Processors, a second type of
multiple int:errupt, known as an imprecise
interrupt, c:an occur during parallel
processing. The interrupt may be due to
the raising of a PL/I condition or a
hardware E!xc:eption which subsequently
raises the ERROR condition. The conditions
and except.ic)Ds that may cause an imprecise
interrupt al:e shown below, in the order in
which they are processed.

PLII on-ccmditions:

1 • UNDERFJLOW
2. FIXEDOVERFLOW
3. SIZE
4. OVERFLOW
5. ZERODIVIDE

Hardware interrupts:

6. Data e:lCception
7. specification exception
8. Addr~~s:sing exception
9. Protec't:.ion exception

Event I/IO and imprecise interrupts
cannot occ::u:r as part of the same multiple
interrupt '.

Imprecise inter~upt conditions are
processed successively, until one of the
following occurs, in which case no
subsequent conditions are processed.

1. The processing of a condition causes
termination of the task, through
either standard system action, normal
return from an on-unit, or abnormal
termination in the on-unit.

2. Control is transferred out of an
on-unit by means of a GO TO statement,
so that a normal return is not allowed
to take place.

List of Conditions

This section presents conditions in
alphabetical order. In general, the
following information is given for each
condition:

1. General format -- given only when it
consists of more than the condition
name.

2. DescriPtion -- a discussion of the
condition, including the circumstances
under which the condition can be
raised. Note that an enabled
condition can always be raised by a
SIGNAL statement; this fact is not
included in the descriptions.

3. Result -- the result of the operation
that caused the condition to occur.
This applies when the condition is
disabled as well as when it is
enabled. In some cases, the result is
not defined; that is, it cannot be
predicted. This is stated wherever
applicatle.

4. Standard system action -- the action
taken by the system when an interrupt
occurs and the programmer has not
specified an on-unit to handle that
interrupt.

5. Status -- an indication of the
enabled/disabled status of the
condition at the start of the program,
and how the condition may be disabled
(if possible) or enabled.

6. Normal return -- the point to which
control is returned as a result of the
normal termination of the on-unit. A
GO TO statement that transfers control
out of an on-unit is an abnormal
on-unit termination. Note that if a
condition (except the ERROR condition)

Section H: ON-Conditions 365

Missing from orig document

Missing from orig document

1. If a name in the CHECK prefix is a
statement label constant, the
condition is raised and the interrupt
occurs prior to the execution of the
statement to which the label is
prefixed. If the label is prefixed to
a FORMAT statement, the condition is
not raised.

2. If a name in the CHECK prefix is a
variable (as specified in the general
format above), the condition is raised
whenever the value of the variable, or
of any part of the variable, is
changed by any statement within the
scope of the prefix.

368

spe'cifically, if the identifier 10
represents the variable, the condition
is raised in the following cases:

a. 10 appears on the left-hand side
of an assignment statement. (This
applies to BY NAME assignment only
if the name mentioned changes its
value.)

b. 10 is set as a result of a
pseudovariable appearing on the
left-hand side of an assignment
statement.

c. 10 appears as the control variable
of a DO-group or a repetitive
specification in a data list (or
it is set as a result of a
pseudovariable appearing as the
control variable of a DO-group or
a repetitive specification in a
data list).

d. 10 appears in the data list of an
edit-directed or list-directed GET
statement.

e. 10 is altered by data-directed
input.

f. 10 appears in the REPLY option of
a DISPLAY statement.

g. ID appears in the STRING option of
a PUT statement.

h. ID is passed as an argument to a
programmer-defined procedure, no
dummy argument is created, the
procedure terminates with a RETURN
or END, and the procedure is not
irtvoked with the TASK, PRIORITY,
or EVENT option.

i. ID appears in the KEYTO or INTO
option of a READ statement. Note
that if the READ statement bas an
EVENT option, the CHECK condition
will not be raised.

j.

k.

ID is a locator variable and
appears in a SET option or is set
implicitly.

ID is a non-static variable set by
the INITIAL attribute.

In ~, ~, g, and e above, if 10 is a
data aggregate, the CHECK condition is
raised and the interrupt occurs each
time an element of that aggregate is
given a value. If 10 is an element of
a data aggregate~ the condition is
raised for that element only, not the
whole array.

The condition is not raised under any of
the following circumstances:

a. If the value of a variable defined
on 10 or on part of 10 changes in
any of the ways described above.

b. If the parameter that represents
the argument 10 changes value.

c. If 10 appears in a GO TO or RETURN
statement or any statement that
involves the execution of a GO TO
or RETURN statement.

Note that in all of the above
contexts, 10 can appear in subscripted
or qualified form. Note also that 10
need not appear in the name list of a
CHECK prefix; it only need represent a
structure or element contained by, or
containing, a name in the list.

The interrupt for a CHECK condition
occurs immediately after the
assignment to 10, except in case h.
Then it occurs immediately after
execution of the subroutine's RETURN
or ENO statement. In a DO statement,
the interrupt occurs each time control
proceeds sequentially to the statement
following the DO statement. If the 00
specifies repetitive execution, the
interrupt occurs each time the control
variable changes value.

If a statement causes a CHECK
condition to be raised for several
names, the conditions will be raised
in the left-to-right order of
appearance of the names.

3. If an identifier in the CHECK prefix
name list is an entry constant, the
condition is raised and the interrupt
occurs prior to each invocation of the
entry point corresponding to the entry
constant. The condition is raised
only if the entry point is invoked by
the entry constant given in the
prefix.

Result: When CHECK is raised, there is no
effect on t~he~ statement being executed.

Standard S!stem Action: In the absence of
a CHECK on·-unit, the output consists of the
current stClt~:!ment number together with the
data shown in figure H.1.
r-------------------T----------T----------, IVariable ()r I Checkout I Optimizing I
I Constant. I Compiler I Compiler I
~---------_---------+----------L----------~
IArithmetic or I Name and Value I
Istring variable I I
~-------------------+----------T----------~
IArea, file, entry I I I
I event, label, lAS for PUTI Name I
Ilocator or task I DATA I I
I variable I I I
IEntry or label I I I
I constant I I I L ___________________ ~ __________ ~ __________ J

Figure H.1~ Output for the CHECK condition

If SIGNAL cae:CK without a name-list is
given, in the absence of a CHECK on-unit,
within the scope of a CHECK prefix that is
also without a name list, all problem data
identifiers within the scope of the prefix
are printed, together with their values.
In addition, under the checker the names
and values of all internal program control
variables tind the names of all external
program control variables within the scope
of the prefix are printed.

Note: Standard system action for the CHECK
condition requires access to the variable;
consequently, if SIGNAL CHECK is given for
an unallocated variable, an error will
result, as it would if the variable were
accessed by an on-unit. Under the checker,
a comment will be printed and execution
continued if the variable has the INTERNAL
attribute; variables with the EXTERNAL
attribute or any variable under the
optimizer will raise ERROR.

Status: CHECK is disabled by default and
within the scope of a NOCHECK condition
prefix. It is enabled only within the
scope of a CHECK prefix.

For other details of the enabling and
disabling of the CHECK condition, see
chapter 14, "Execution-Time Facilities of
the Checkout compiler".

Normal Return: Upon the normal completion
of the on-unit for the CHECK condition,
execution continues immediately following
the point at~ which the interrupt occurred.

CONDITION (nam.e) Programmer-named

Abbreviation; COND(name)

The "name" must be specified by the
programmer. The appearance of an
identifier with CONDITION in an ON, SIGNAL,
or REVERT statement constitutes a
contextual declaration for it; the
identifier is given the EXTERNAL attribute.

An identifier may also be declared
explicitly as a condition name by means of
the CONDITION attribute.

Description: CONDITION is raised by a
SIGNAL statement that specifies the
appropriate identifier. The identifier
specified in the SIGNAL statement
determines which CONDITION condition is to
be raised.

Standard System Action: In the absence of
an on-unit for this condition, the system
prints a message and continues with the
statement following SIGNAL.

Status: CONDITION is always enabled; it
cann~t be disabled.

Normal Return: Upon the normal completion
of the on-unit, execution continues with
the statement following the SIGNAL
statement that caused the interrupt.

CONVERSION computational

Abbreviation: CONV

Description: The CONVERSION condition
occurs whenever an invalid conversion is
attempted on character-string data. this
attempt may be made internally or during an
input/output operation. For example, the
condition occurs when a character other
than 0 or 1 exists in a character string
being converted to a bit string; other
examples are when a character string being
converted to a numeric character field
contains characters not permitted by the
PICTURE specification~ or when a string
being converted to coded arithmetic data
does not contain the character
representation of an arithmetic constant.

All conversions of character-string data
are carried out character-by-character in a
left-to-right sequence and the condition
occurs for each invalid character. The
condition is also raised if the all
characters in the string are blank. When
an invalid character is encountered, an
interrupt occurs (provided, of course, that
CONVERSION has not been disabled) and the

section H: ON-Conditions 369

current action specification for the
condition is executed. If the action
specification is an on-unit, the invalid
character can be corrected within the unit
by using the ONSOURCE or ONCHAR
pseudovariables. When one of these
pseudovariables has been used, the
conversion is retried on return from the
on-unit. If the error has not been
corrected the program will loop. If these
pseudovariables have not been used the
ERROR condition is raised.

Result: When CONVERSION occurs, the
contents of the entire result field are
undefined.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Stat~: CONVERSION is enabled throughout
the program., except within the scope of a
condition prefix specifying NOCONVERSION.

Normal Return: Upon the normal termination
of the on-unit for this condition, control
returns to the beginning of the string and
the conversion is retried.

ENDFILE (element-file-exprl Input/Output

Description: The ENDFILE condition can be
raised during a GET or READ operation: it
is caused by an attempt to read past the
file delimiter of the file named in the GET
or READ statement. It applies only to
SEQUENTIAL INPUT, SEQUENTIAL UPDATE and
STREAM INPUT files.

In record-oriented I/O, ENDFILE is
raised whenever a file delimiter is
encountered during the execution of a READ
statement.

In stream-oriented I/O, ENDFILE is
raised during the execution of a GET
statement if a file delimiter is
encountered either before any items in the
GET statement data list have been
transmitted or between transmission of two
of the data items. If a file delimiter is
encountered within a data item, or if it is
encountered while an X format item is being
implemented, the ERROR condition is raised.

If the file is not closed after ENDFILE
occurs, then any subsequent GET or READ
statement for that file immediately raises
the ENDFILE condition again.

If ENDFILE is raised by an input/output
statement using the EVENT option, the
interrupt does not take place until the
execution of a subsequent WAIT statement
for that event in the same procedure.

370

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: The ENDFILE condition is always
enabled: it cannot be disabled.

Normal Return: Upon the normal termination
of the on-unit for the condition, execution

'continues with the statement immediately
following the GET or READ statement that
caused the ENDFILE (or, if ENDFILE was
raised by a READ with the EVENT option,
control passes back to the WAIT statement
from which the on-unit was invoked).

Note: If a file is closed in an on-unit
furthis condition, the results of normal
return are undefined. Exit from such an
on-unit should be by means of a GO TO
statement.

ENDPAGE (element-file-exE!! Input/Output

Description: The ENDPAGE condition is
raised when a PUT statement results in an
attempt to start a new line beyond the
limit specified for the current page. This
limit can be specified by the PAGESIZE
option in an OPEN statement: if PAGESIZE
has not been specified, a default limit of
60 is applied. The attempt to exceed the
limit may be made during data tr~nsmission
(including associated format items, if the
PUT statement is edit-directed), by the
LINE option, or by the SKIP option.
ENDPAGE can also be raised by a LINE option
or LINE format item that specified a line
number less than the current line number.

When ENDPAGE is raised, the current line
number is one greater than that specified
by the PAGESIZE option (or 61, if the
default applies) so that it is possible to
continue writing on the same page. The
on-unit may start a new page by execution
of a PAGE option or a PAGE format item,
Which sets the current line to 1.

ENDPAGE is raised only once per page.
If the on-unit does not start a new page,
the current line number may increase
indefinitely. If a subsequent LINE option
or LINE format item specifies a line number
that is less than or equal to the current
line number, ENDPAGE is not raised, but a
new page is started with the current line
set to 1. AQ exception is that if the
current line number is equal to the
specified line number~ and the file is
position on column 1 of the line, ENDPAGE
is not raised.

If ENDPAGE is raised during data
transmission, then, on return from the

on-unit, the data is written on the current
line, which may have been changed by the
on-unit. If ENDPAGE results from a LINE or
SKIP option l then, on return from the
on-unit, the action specified by LINE or
SKIP is ignc1red.

Standard s~tem Action: In the absence of
an on-unit, the system starts a new page.
If the condition is signaled, execution is
unaffected and continues with the statement
following the SIGNAL statement.

Status: ENDPAGE is always enabled; it
cannot be disabled.

Normal Retul:n: Upon the normal completion
of the on-unit for this condition,
execution of the PUT statement continues in
the manneI~ des cribed above.

System Action

Description~ The ER~OR condition is raised
under the following circumstances:

1. As a rE~sult of the standard system
action for an ON-condition for which
that action is to "print an error
message and raise the ERROR
condltion".

2. As a r~:!sult of an error (for which
therE~ :Ls no ON-condition) occurring
duz'ing program execution.

3. As a r.:sult of a SIGNAL ERROR
statE~ml:nt.

Standard S~~tem Action: This depends on
the processing mode:

Batch processing (optimizing or checkout
compile:d: If the condition is raised
in the major task, the FINISH condition
is raised and the task is terminated.
If the condition is raised in any other
task, the task is terminated.

Conversational processing (checkout
compile:r only):. Control is passed to
the terminal. Processing that is then
initiated at the terminal takes place
as if it were in an ERROR on-unit, and
completion of this processing (ot~er
than by a GO TO statement out of the
on-unit) constitutes a return from the
on-unit.

Status: :e:RROR is always enabled; it cannot
be disabl1ed.

Normal Re'turn: With certain exceptions,
this depends on the processing mode:

Batch processing (optimizing or checkout
compiler): The standard system action
for batch processing mode is taken.

Conversational processing (checkout
compiler only): The FINISH condition
is raised.

The exceptional cases occur under the
checkout compiler when a SIGNAL ERROR
statement is executed in place of a
statement in which the compiler has found
an error. In these cases~ normal return is
to the statement following the one in which
ERROR was signalled. The cases are
characterized by an oncode of 3.

system Action

Description: The FINISH condition is
raised during execution of a statement
which would cause the termination of the
major task of a PL/I program, that is, by a
STOP statement in any task, or an EXIT
statement in the major task, or a RETURN or
END statement in the initial procedure of
the major task. The condition is also
raised by SIGNAL FINISH in any task, and as
part of the standard system action for the
ERROR condition. The interrupt occurs in
the task in which the statement is
executed, and anyon-unit specified for the
condition is executed as part of that task.
An abnormal return from the on-unit will
avoid any subsequent task termination
processes and permit the interrupted task
to continue.

Standard System Action: This depends on
the processing mode:

Batch processing (optimizing or checkout
compiler): No action is taken; that
is, processing is continued from the
point at which the condition was
raised.

Conversational processing (checkout
compiler only): Control is passed to
the terminal. Processing that is then
initiated at the terminal takes place
as if it were in a FINISH on-unit, and
completion of that processing (other
than by a GO TO statement out of the
on-unit)'constitutes a normal return
from the on-unit.

Status: FINISH is always enabled: it
cannot be disabled.

Normal Return: Upon the normal completion
of the on-unit, execution of the
interrupted statement is resumed.

Section H: ON-Conditions 371

FIXEDOVERFLOW computational

Abbreviation: FOFL

Description: The FIXEDOVERFLOW condi~ion
occurs when the length of the result of a
fixed-point arithmetic operation exceeds
the maximum length allowed by the
implementation. This maximum is 15 for
decimal fixed-point values and 31 for
binary fixed-point values.

Result: The result of the invalid
fixed-point operation is undefined.

Standard System Action: In the absence of
an on-uait, the system prints a message and
raises the ERROR condition.

status: FIXEDOVERFLOW is enabled
throughout the program, except within the
scope of a condition prefix that specifies
NOFIXEDOVERFLOW.

Normal Return: Upon normal termination of
the on-unit for this condition, control
returns to the point immediately following
the point of interrupt.

KEY (element-file-expr) Input/Output

Description: The KEY condition can be
raised only during operations on keyed
records. It is raised in any of the
following cases:

1. The keyed record cannot be found.

2. An attempt is made to add a duplicate
key.

3. The key is out of sequence.

4. An error occurred in the conversion of
the key_

5. The key has a null string or begins
with the dummy r.ecord string (8) '1' B.

6. No space is available to add the keyed
record.

1. The key is outside the data set limits
(regional data sets only).

If REY is raised by an input/output
statement using the EVENT option, the
interrupt does not occur until the
execution of a subsequent WAIT statement
for that event in the same procedure.

When a LOCATE statement is used for a
REGIONAL (3) data set with V-format or
U-format records, and there is not enough

312

room in the specified region, the KEY
condition is not raised until transmission
of the record is attempted. Neither the
record that causes the condition to be
raised nor the current record is
transmitted.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

status: KEY is always enabled; it cannot
be disabled.

Normal Return: Upon the normal completion
of the on-unit for this condition, control
passes to the statement immediately
following the statement that caused KEY to
be raised (or, if KEY was raised by an
input/output statement with the EVENT
option, control passes back to the WAIT
statement from which the on-unit was
invoked) •

Note: If a file is closed in an on-unit
~his condition, the results of normal
return are undefined. Exit from such an
on-unit should be by means of a GO TO
statement.

NAME (element-file-expr) Input/Output

Description: The NAME condition can be
raised only during a data-directed ~ET
statement with the FILE option. It is
raised in any of the following situations
where an unrecognizable element variable
appears in the stream:

1. There is an invalid character in the
variable:

A non-blank delimiter (comma,
semicolon, or end-of-file mark) on
left hand side of equals sign.

A non-blank character between the
right parenthesis and the equal
sign

A subscript character is not a
digit

2. There is an invalid blank in the
variable:

Within the name or a subscript
value. (Note: Blanks are
permitted on either side of the
period in a qualified name, or
between a sign and a digit in a
subscript)

3. The n.ame is missing or invalid:

No c:ounterpart in the data list

If t~here is no data list, the name
is Ilot known in the block

Qualified name is not fully
qualified

MOrE! than 256 characters for a
fully qualified name

The name is iSUB-defined

4. A subs(:ript list is missing or
invalid:

A subscript is missing

IIlC()rrect number of subscripts

More than five digits in a
subE~cript (leading zeros ignored)

A subscript is beyond the permitted
rcLDge

The programmer may retrieve the
incorrect delta field by using the built-in
function DA~[,AFIELD in the on-unit.

standard System Action: In the absence of
an on-unit, the system ignores the
incorrect data field, prints a message, and
continues the execution of the GET
statement ..

status: NAI~E is always enabled; it cannot
be disabled.

Normal Retu:rn: Upon the normal completion
of the on-unit for this condition, the
execution o:f the GET statement continues
with the ne:xt identifier in the stream.

OVERFLOW Computational

Abbreviation: OFL

Description: The OVERFLOW condition occurs
when the magnitude of a floating-point
number exceeds the permitted maximum. The
magnitude of a floating-point number or
intermediate result must not be greater
than approximately 10 75 or 2252.

Result: The value of such an invalid
floa ting-:point number is undefined.

Standard §ystem Act!QB: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: OVERFLOW is eqabled throughout the
program, except within the scope of a
condition prefix specifying NOOVERFLOW.

Normal Return: Upon normal termination of
the on-unit for this condition, control
returns to the point immediately following
the point of interrupt.

PENDING (element-file-expr) Input/Output

Description: Except when signaled, the
PENDING condition can be raised only during
execution of a READ statement for a
TRANSIENT INPUT file. It is raised when an
attempt is made to read a record that is
temporarily unavailable (~.e., when the
message queue associated with the file
contains no messages at the time the READ
statement is executed).

standard System Action: In the absence of
an on~unit, the action is as described for
normal return.

Status: PENDING is always enabled; it
cannot be disabled.

Normal Return: Upon the normal completion
of the on-unit for this condition, control
returns to the point of interrupt (unless
the condition was signaled), where
execution is suspended until an appropriate
record becomes available. If the condition
was signaled, execution continues with the
statement immediately following the SIGNAL
statement that caused the interrupt.

Note: The value of the ONKEY built-in
function when the PENDING condition is
raised is a null string.

RECORD (element-file-expr) Input/Output

Description: The RECORD condition can be
raised only during a READ, WRITE, LOCATE,
or REWRITE operation. It is raised by any
of the following:

1. When the record length specified for a
file with fixed-length records is
smaller than the variable in a READ
INTO statement; the remainder of the
variable is undefined. If the
variable is a varying-length string,
RECORD is not raised if the
SCALARVARYING option is applied to the
file.

2. When the record is larger than the
variable in a READ INTO statement; the
remainder of the record is lost.

Section H: ON-Conditions 373

3. When the maximum record length is
smaller than the variable in a WRITE,
REWRITE, or LOCATE statement. For
WRITE or REWRITE, the remainder of the
variable is lost; for LOCATE, the
variable is not transmitted.

4. When the record length specified for a
file with fixed-length records is
larger than the variable in a WRITE,
REWRITE, or LOCATE statement; the
remainder of the record is undefined.
If the variable is a varying-length
string, RECORD is not raised if the
SCALARVARYING option is applied to the
file.

5. When the variable in a WRITE or
REWRITE statement indicates a zero
length; no transmission occurs. If
the variable is a varying-length
string, RECORD is not raised if the
SCALARVARYING option is applied to the
file.

If the SCALARVARYING option is applied
to the file (it must be applied to a file
using locate mode to transmit
varying-length strings), a 2-byte length
prefix is transmitteed with an element
varying-length string. The length prefix
is not reset if the RECORD condition is
raised. If the SCALAR VARYING option is not
applied to the file, the length prefix is
not transmitted; on input, the current
length of a varying-length string is set to
the shorter of the record length and the
maximum length of the string.

If RECORD is raised by an input/output
statement using the EVENT option, the
interrupt does not occur until the
execution of a subsequent WAIT statement
for that event in the same procedure.

The RECORD condition is not raised for
undefined-length records read from:

A CONSECUTIVE data set to a SEQUENTIAL
UNBUFFERED file

A REGIONAL(3) data set to a DIRECT file

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: RECORD is always enabled; it
cannot be disabled.

Normal Return: Upon normal completion of
the on-unit~ execution continues with the
statement immediately following the one for
which RECORD occurred (or if RECORD was
raised by an input/output statement with an
EVENT option, control returns to the WAIT
statement from which the on-unit was
invoked) •

374

Note: If a file is closed in an on-unit
for this condition, the results of normal
:return are undefined. Exit from such an
on-unit should be by means of a GO TO
statement.

Computational

'Description: The SIZE condition occurs
only when high-order (i.e., leftmost)
significant binary or decimal digits are
lost in an assignment to a variable or an
intermediate result or in an input/output
operation. This loss may result from a
conversion involving different data types,
different bases, different scales, or
different precisions.

The SIZE condition differs from the
FIXEDOVERFLOW condition in that, whereas
FIXEDOVERFLOW occurs when the size of a
calculated fixed-point value exceeds the
maximum allowed by the implementation (see
the description of the FIXEDOVERFLOW
condition), whereas SIZE occurs when the
size of the value being assigned to a data
item exceeds the declared (or default) size
of the data item. SIZE can be raised on
assignment of a value regardless of whether
or not FIXEDOVERFLOW was raised in the
calculation of that value.

The declared size is not necessarily the
actual precision with which the item is
held in storage; however, the limit for
SIZE is the declared or default size, not
the actual size in storage. For example, a
fixed binary item of precision (20) will
occupy a fullword in storage, but SIZE is
raised if a value whose size exceeds FIXED
8INARY(20) is assigned to it.

Result: The contents of the data item
receiving the wrong-sized value are
undefined.

Standard system Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: SIZE is disabled within the scope
of a NOSIZE condition prefix and elsewhere
throughout the program, except within the
scope of a condition prefix specifying
SIZE. Under the checkout compiler, the
standard system action takes place for SIZE
under the circumstances given under
"Description" above, even when the
condition is disabled; no on-unit for this
condition can be entered, however, while it
is di'sabled.

Normal Return: Upon normal termination of
the on-unit for this condition, control
returns to the point immediately following
the point of interrupt.

Abbreviatio:n: STRG

Definition: The STRINGRANGE condition is
raised whenever the lengths of the
arguments to a SUBSTR reference fai1 to
comply with the rules described for the
SUBSTR built-in function. It is raised for
each such reference.

standard ~~~em Action: A message is
printed and processing continues as
described for normal return.

stat!!§.: ST:RINGRANGE is disabled by default
and within the scope of a NOSTRINGRANGE
condi tion p:refix. It is enabled only
within th43 ,scope of a STRINGRANGE condition
prefix. Under the checkout compiler, the
standard system action takes place for
STRINGRANGE under the circumstances given
under "Defi:nition" above, even when the
condition is disabled; no on-unit for this
condition can be entered, however, while it
is disab143d.

Normal Retu:rn: On normal return from the
on-unit, execution continues with a revised
SUBSTR reference whose value is defined as
follows:

Assuming that the length of the source
string (after execution of the on-unit, if
specified) is k, the starting point is i,
and the length of the substring is j;

1. If i is greater than k the value is
the null string.

2. If i is less than or equal to k, the
valu~~ ;is that substring beginning at
the mth character or bit of the source
stri~g and extending ~ characters or
bits v where ill and II are defined by:

m=MAX (:i, 1)

n=MAX(O,MIN(j+MIN(i,1)-1,k-m+1»
[if j is specified]

n=k-m+1
[if j is not specified]

This means 'that the new arguments are
forced within the limits.

The values of i and j are established
before entry to the on-unit; they are not
reevaluated on return from the on-unit.

The val u~e of k may change in the on-unit
if the first argument of SUBSTR is a
varying-length string. The value n is
computed on return from the on-uni~ using
any new value of k.

STRINGSIZE Program-checkout

Abbreviation: STRZ

Definition: The STRINGSIZE condition is
raised when a string is about to be
assigned to a shorter string.

Result: After the interrupt, the truncated
string is assigned to its target string.
The right hand characters or bits of the
source string are truncated so that the
target string can accomodate the source
string.

Standard System Action: A message is
printed and processing continues.

status: STRINGSIZE is disabled by default
and within the scope of a NOSTRINGSIZE
condition prefix. It is enabled only
within the range of a STRINGSIZE condition
prefix.

Normal Return: On normal return from the
on-unit, execution continues from the point
of interruption.

SUBSCRIPTRANGE Program-checkout

Abbreviation: SUBRG

Description: SUBSCRIPTRANGE can be raised
whenever a subscript is evaluated and found
to lie outside its specified bounds. The
condition is also raised when an iSUB
subscript is outside the range given in the
declaration of the iSUB defined array. The
order of raising SUBSCRIPTRANGE relative to
evaluation of other subscripts is
undefined.

Result: When SUBSCRIPTRANGE has been
raised, the value of the illegal subscript
is undefined, and, hence, the reference is
also undefined.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: SUBSCRIPTRANGE is disabled by
default and within the scope of a
NOSUBSCRIPTRANGE condition prefix. It is
enabled only within the scope of a
SUBSCRIPTRANGE condition prefix. Under the
checkout compiler, the standard system
action takes place for SUBSCRIPTRANGE under
the circumstances given under "Description"
above, even when the condition is disabled;
no on-unit for this condition can be
entered, however, while it is disabled.

Section H: ON-Conditions 375

Normal Return: Normal return from a
SUBSCRIPTRANGE on-unit raises the ERROR
condition.

TRANSMIT (element-f!le-e~E!l Input/Output

Description: The TRANSMIT condition can be
raised during any input/output operation.
It is raised by a permanent transmission
error and therefore signifies that any data
transmitted is potentially incorrect.

During input, TRANSMIT is raised after
assignment of the potentially incorrect
record. If records are blocked~ TRANSMIT
is raised for each subsequent record ~n the
block. During output, TRANSMIT is raised
after transmission of the potentially
incorrect data item has been attempted.

If records are blocked, transmission
will occur when the block is complete,
rather than after each I/O statement

When a spanned record is being updated,
the TRANSMIT condition is raised on the
last segment of a record only. It is not
raised for any subsequent records in the
same block, although the integrity of these
records cannot be assumed.

If TRANSMIT is raised by an input/output
statement using the EVENT option, the
interrupt does not take place until the
execution of a subsequent WAIT statement
for that event in the same procedure.

Standard System Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

Status: TRANSMIT is always enabled; it
cannot be disabled.

Normal Return: Upon the normal completion
of the on-unit, processing continues as
though no error had occurred, allowing
another condition (e.g., RECORD) to be
raised by the statement or data item that
raised the TRANSMIT condition. (If
TRANSMIT is raised by an input/output
statement with an EVENT option, control
returns to the WAIT statement from which
the on-unit was invoked.)

Note: If a file is closed in an on-unit
~his condition, the results of normal
return are undefined. Exit from such an
on-unit should be by means of a GO TO
statement

376

UNDEFINEDFILE (e1ement-file-exprl
Input/Output

Atbreviation: UNDF(element-fi1e-expr)

Description: The UNDEFINEDFILE condition
is raised whenever an attempt to open a
file is unsuccessful. If the attempt is
made by means of an OPEN statement that
specifies more than one file name, then the
condition is raised as follows:

Checkout compiler: After an attempt
to open each file

Optimizing compiler: After attempts
to open all the other files specified
in the statement

If the condition is raised for more than
one file in the same OPEN statement,
on-units will be executed according to the
order of appearance (taken from left to
right) of the file names in that OPEN
statement.

If the condition is raised by an
implicit file opening in an input/output
statement without the EVENT option, then,
upon normal return from the on-unit,
processing continues with the remainder of
the interrupted input/output statement. If
the file was not opened in the on-unit,
then the statement cannot be continued and
the ERROR condition is raised.

If the condition is raised by an
implicit file opening in an input/output
statement having an EVENT option, then the
interrupt occurs before the event variable
is initialized. In other words, the event
variable retains its previous value and
remains inactive. On normal return from
the on-unit, the event variable is
~nitialized, that is, it is made active and
its completion value is set to 'O'B
(provided the file has been opened in the
on-unit). Processing then continues with
the remainder of the interrupted statement.
However, if the file has not been opened in
the on-unit, the event variable remains
uninitialized, the statement cannot te
continued, and the ERROR condition is
raised.

Some cases for which the UNDEFINEDFIIE
condition is raised are as follows:

1. A conflict in attributes exists.

2. The b10cksize has not been specified.

3. There is no recognizable DD statement
for the file.

4. The TOTAL option of the environment
attribute has heen specified and
either attributes have been added on

an OPEN statement or attributes
implied. by an I/O statement conflict
with default attributes.

standard S~t~!m Action: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

status: UNDEI~INEDFILE is always enabled:
it cannot be disabled.

Normal Return:: Upon the normal completion
of the final em-unit, control is given to
the statement immediately following the
statement tha1~ caused the condition to be
raised (see ftDescription ft for action in the
case of an implicit opening).

UNDERFLOW computational

Abbreviation: UFL

Description:: The UNDERFLOW condition
occurs when the magnitude of a
floating-point number is smaller than the
permitted minimum. (For System/360
implementatiolls, the magnitude of a
non-zero floating-point value may not be
less than applcoximately 10-78 or 2- aeo .)

UNDERFLm~ (10es not occur when equal
numbers are subtracted (often called
significance error).

Note that the expression X**(-Y) (where
Y>O) can be e'valuated by taking the
reciprocal of X**Y; hence, the OVERFLOW
condition may be raised instead of the
UNDERFLOW cc:mdition.

Result: ';I('he .invalid floating-point value
is set to 0,.

Standard System Action: In the absence of
an on-unit, the system prints a message and
continues execution from the point at which
the interrupt occurred.

status: UNDERFLOW is enabled throughout
the program, except within the scope of a
condition prefix specifying NOUNDERFLOW.

Normal Return: Upon normal termination of
the on-unit for this condition, control
returns to the point immediately following
the point of interrupt.

ZERODIVIDE computational

Abbreviation: ZDIV

Description: The ZERODIVIDE condition
occurs when an attempt is made to divide by
zero. This condition is raised for
fixed-point and floating-point division.

Result: The result of a division by zero
is undefined.

standard System Actio~: In the absence of
an on-unit, the system prints a message and
raises the ERROR condition.

status: ZERODIVIDE is enabled throughout
the program, except within the scope of a
condition prefix specifying NOZERODIVIDE.

Normal Return: Upon normal te~mination of
the on-unit for this condition, control
returns to the point immediately following
the point of interrupt.

Section H: ON-Conditions 377

Section I: Attributes

This section gives detailed descriptions of
all attributes in alphabetical order.
Alternative attributes are discussed
together.

Figure 1.1 has been compiled from the
individual rules for attributes and is
intended to serve as a quick reference to
the following:

1. The classification of attributes
according to data type.

2. The valid combinations of attributes
that may ~e applied to a data item.

For a variable, attributes must be
selected from the columns Data
Attributes, Scope Attributes, Storage
Attributes, and Alignment Attributes.
For the types of constants shown in
the table, attributes must be selected
from columns Data Attributes and Scope
Attributes. Note that a complete set
of attributes for a data item may be
obtained by explicit or contextual
declaration and programmer-defined or
standard defaults.

3. Those attributes that conflict.

Attributes shown as applying to one
data type conflict with those of any
other data type, except for those
attributes shown as applying to both
types. Alternative attributes within
a data type, e.g., BIT and CHARACTER,
are conflicting.

The following example illustrates the
function of the figure:

DECLARE ST BIT(10);

Given the above decl~ration, the standard
default attributes, AUTOMATIC, INTERNAL,
and UNALIGNED will be applied to the name
ST.

Figure 1.2 is an expansion of the entry
for file constants in figure 1.1, to
include the relationships between file
attributes and options of the ENVIRONMENT
attribute for the different data set
organizations. The figure also shows the
attribute implications of each file
attribute.

378

ALIGNED and UNALIGNED

Attreviation: UNAL for UNALIGNED

The ALIGNED and UNALIGNED attributes
specify the positioning of data elements in
storage, to influence speed of access or
storage economy respectively. They may be
specified for element, array, or structure
variables.

ALIGNED specifies that the data element
is to be aligned on the storage boundary
corresponding to its data type.requirement.

UNALIGNED specifies that a bit string is
to be mapped on the next available bit
boundary, and that a halfword l a word, or
doubleword item is to be mapped on the next
available byte boundary.

General format:

ALIGNED I UNALIGNED

General rules:

1. Although they are essentially element
data attributes, Al·IGNED and UNALIGNED
can be applied to any array or
structure. This is equivalent to
applying the attribute to all
contained elements that are not
explicitly declared with the ALIGNED
or UNALIGNED attribute.

2. Application of either attribute to a
contained array or structure overrides
an ALIGNED or UNALIGNED attribute that
otherwise would apply to elements of
the contained aggregate by having been
specified for the containing
structure.

3. The LIRE attribute is expanded before
the ALIGNED and UNALIGNED attributes
are applied to the contained elements
of the LIKE structure variable. The
only ALIGNED and UNALIGNED attributes
that are carried over from the LIRE
structure variable are those
explicitly specified for substructures
and elements of the structure
variable.

DATA TYPE DATA ATTRIBUTES

Arithmetic REAL I COMPLEX
variable 1 FLOAT I FIXED

BINARY I DECIMAL
(precision)

String
variable

picture
variable

Label
variable

File
variable

Entry
variable 2

Locator
variable

Area
variable

Event
variable

Task
variable

BIT I CHARACTER
(lenqth)
[VARYING]

{
PICTURE }
~EALICOMPLEX PICTURE

I,ABEL

FILE VARIABLE

ENTRY
IRREDUCIBLE I REDUCIBLE
Rl~TURNS [OPTIONS]
[VARIABLE]

POINTERI {OFFSET [(area­
vClriable)]}

A:REA (size)

EVENT

SCOPE ATTRIBUTES

{
INTERNAL}
EXTERNAL

INTERNAL is
standard default
and mandatory
for:

AUTOMATIC,
BASED,
DEFINED,
parameter

and standard
default for:

CONTROLLED,
STATIC

STORAGE ATTRIBUTES

I'Sto{r:6~O~;~~ :}
STATIC
BASED
CONTROLLED

AUTOMATIC is standard
default for INTERNAL.
STATIC is standard
default for EXTERNAL.

[INITIAL]

1'< Defined:
DEFINED

[POSITION]

Simple Parameter:
parameter

[CONNECTED]

Controlled Parameter:
parameter
CONTROLLED
[INITIAL]

, J

>

ALIGNMENT
ATTRIBUTES

{
ALIGNED }
UNALIGNED

{
ALIGNED }
UNALIGNED

{
ALIGNED }
UNALIGNED

ALIGNED

1---------1---------------+-------------1 -------------"'------------,.
File FILE [ENVIRONMENT]
constant3 STREAM I RECORD

INPUT I OUTPUT I UPDATE
S:EQUENTIAL I DIRECT I
TRANSIENT
BUFFERED I UNBUFFERED
[KEYED) [BACKWARDS]
[PRINT] [EXCLUSIVE]

Entry (as for entry variables,
constant but excluding VARIABLE)

Built-in
entry
constant

Generic
entry
constant

Condition
constant

BUILTIN

GENERIC

CONDITION

{
INTERNAL}
EXTERNAL

EXTERNAL

INTERNAL

{ INTERNAL}
EXTERNAL

Standard default attributes are underlined.

Aggregate Variables

Arrays: (dimension) may be added to the
declaration of any variable.

Structures: the attributes that may be
specified for a name in a structure
depend upon the level at which the
name is declared:

1. For a major structure name, exclude
data type: the LIKE attribute may
be specified.

2. For a minor structure name, exclude
data type, scope, and storage; the
LIKE attribute may be specified.

3. For a base element name, exclude
scope and storage.

1 Identifiers that are implicitly declared (or explicitly declared with only scope, storage,
or alignment) are assumed to be arithmetic variables. If the initial letter of the
identifier is I through N, FIXED BINARY (15,0) are standard defaults, all others are
FLOA1' DECIMAL (6). If BINARY, DECIMAL, REAL, or COMPLEX are specified, FLOAT is standard
default,; otherwise if precision is specified with a scale factor, FIXED is standard
de£atllt .•

2 ENTRY is implied by IRREDUCIBLE, REDUCIBLE, RETURNS, or OPTIONS. An entry constant may
have the parameter attribute.

3 File at:tributes, and their relationship to options of the ENVIRONMENT attribute, are
descI:ibed in Figure 1.2. A file constant may have the parameter attribute.

Figure I.1. Classification of attributes according to data type

Section I: Attritutes 379

RECORD

Types of File SEQUENTIAL DIRECT
~:

BUF UNBUF
I attribute or option must be

C T C specified or implied.
0 e 0 0 default attribute or option.
N 1 N 0 optional attribute or option:
S R e S R R specified only if required.
E I E P E E I .E S attribute or option must be

Applicable S C N G r C G N G specified.
Attributes and T U 0 I 0 U I 0 I - invalid attribute or option.
Options R T E 0 c T 0 E 0

E I X N I I N X N The term "specified" includes the
A V E A n V A E A appearance of an option in the
M E 0 L 9 E L 0 L ENVIRONMENT attribute or in the

DCB subparameter of the DO card.

Attributes Implied

F FILE I I I I I I I I I
I STREAM 0 - - - - - - - - FILE
L RECORD - I I I I I I I I FILE
E INPUT 0 0 0 D D D 0 0 0 FILE

OUTPUT 0 0 0 0 0 0 0 0 0 FILE
A UPDATE - 0 0 0 - 0 0 0 0 FILE RECORD
T SEQUENTIAL - 0 0 0 - 0 0 - - FILE RECORD
T DIRECT - - - - - - - S S FILE RECORD KEYED
R BUFFERED - 0 0 0 I - - - - FILE RECORD SEQUENTIAL
I UNBUFFERED - - - - - S S - - FILE RECORD SEQUENTIAL
B PRINT 0 - - - - - - - - FILE STREAM OUTPUT
U BACKWARDS - 0 - - - 0 - - - FILE RECORD SEQUENTIAL INPUT
T KEYED - - 0 0 I - 0 I I FILE RECORD
E TRANSIENT - - - - I - - - - FILE

EXCLUSIVE - - - - - - - 0 0 FILE RECORD
ENVIRONMENT I I S S S I S S S FILE

0 FIFBIFSIFBSIVI I S - - - S - - -
P VBIVSIVBSlu
T FIFBIDIDBIU S S - - - - - - - ASCII data sets only
I FIVIVSIU - - - S - - S - S Only F for REGIONAL (1) and (2)
0 FIFBIVIVB - - S - - - - S - VS invalid with UNBUF
N RECSIZE(n) I I I I I I I I I { One or both must be specified for
S BLKSIZE(n) I I I I - I I I I CONSECUTIVE, INDEXED, and REGIONAL f1 lese

ASCII 0 0 - - - - - - -
0 BUFOFF(n) 0 0 - - - - - - -
F CTLASAICTL360 - 0 - - - 0 - - - } invalid for ASCII data sets.

SCALARVARYING - 0 0 0 - 0 0 0 0
E LEAVE 0 0 - - - 0 - - -
N REREAD 0 0 - - - 0 - - -
V COBOL - 0 0 0 - 0 0 0 0
I BUFFERS(n) I I I I I - - - -
R CONSECUTIVE - 0 - - - 0 - - -
0 INDEXED - - S - - - - S -
N REGIONAL - - - S - - S - S
M «(11213})
E TP ((MI R)) - - .. - S - - - -
N KEYLENGTH(n) - - S S - - S S S for REGIONAL(2) and (3) OUTPUT only
T KEYLOC(n) - - 0 - - - - 0 -

NCP(n) - 0 0 0 - 0 0 0 0
TRKOFL - 0 - 0 - 0 0 - 0 invalid for REGIONAL(3)
INDEXAREA(n) - - - - - - - 0 -
ADDBUFF(n) - - - - - - - 0 -
NOWRITE - - - - - - - 0 - UPDATE files only.
GENKEY - - 0 - - - - 0 - INPUT or UPDATE files only; KEYED

is required.
TOTAL 0 0 0 0 0 0 0 0 0

Additional Notes:

1. UPDATE is invalid for tape files.

2. BACKWARDS is valid only for tape files.

3. KEYED is required for INDEXED and REGIONAL output.

Figure 1.2. File declarations

380

4. For oVElrlay defining involving bi t­
and character-class data, both the
defined item and the overlaid part of
the base item must be UNALIGNED. For
all other types of defining,
equival.ent items must be either both
ALIGNED or both UNALIGNED.

5. The ALIGNED and UNALIGNED attributes
of an argument actually passed must
match t:he attributes of the
corresponding parameter. If these
attributes of the original argument do
not match those of the corresponding
parameter, a dummy argument is
creat.ed.

6. If a based variable is used to refer
to a generation of another variable,
the ALIGNED and UNALIGNED attributes
of both variables must agree.

7. The alignment of string data depends
not only on the use of ALIGNED or
UNALIGNED, but also on whether the
strings are fixed-length or
varyin9-length. A summary of string
alignment is included in figures K.1
and K. 4~.

8. TASK, EVENT, and AREA cannot be
unaligned.

9. If an unaligned fixed-length bit
string is used as the argument of the
ADDR function, or appears as the first
element: of a based structure which is
used in a LOCATE or ALLOCATE
statement, the locator value returned
may not address the bit string at the
first bit position.

Assumptions ::

1. Defaults are applied at element level.
The default for bit-string data,
character-string datal and numeric
character data is UNALIGNED; for all
other types of data, the default is
ALIGNED.

2. For all operators and user-defined and
built-in functions, the default for
ALIGNED or UNALIGNED is applicable to
the elements of the result.

3. Constants take the default for ALIGNED
or UNA]~IGNED.

The AREA attribute defines storage that, on
allocation, is to be reserved for the
allocation of based variables. storage

thus reserved can be allocated to and freed
from based variables by naming the area
variable in the IN option of the ALLOCATE
and FREE statements. Storage that has been
freed can be subsequently reallocated to a
based variable.

General format:

AREA [(size)]

General rules:

1. The area size for areas that are not
of static storage class is given by an
expression whose integral value
specifies the number of bytes to be
reserved.

2. The size for areas of static storage
class must be specified as a decimal
integer constant. The theoretical
maximum size permitted is 16,111,200
bytes; in practice the maximum depends
on the amount of main storage
available to the program.

3. An asterisk may be used to specify the
size if the area variable being
declared is controlled or is a
parameter. In the case of a
controlled area variable that is
declared with an asterisk, the size
must be specified in the ALLOCATE
statement used to allocate the area.
In the case of a parameter that is
declared with an asterisk, the size is
inherited from the argument.

4. Data of the area type cannot be
converted to any other type; an area
can be assigned to an area variable
only.

5. No operators can be applied to area
variables.

6. An area variable cannot be unaligned.

1. If an area has the BASED attribute,
the size attribute must be a decimal
integer constant unless the area is a
member of a based structure and the
REFER option is used (see chapter 8,
"storage Control").

8. For RECORD input/output, only the
extent (rather than the declared size)
and control information of an area is
transmitted (except when the area is
in a structure and is not the last
item in it - then, the declared size
is transmitted).

Section I: Attributes 381

Assumptions:

1. If the size specification is omitted,
a default value is assumed. For this
implementation, it is 1000.

2. An area variable can be contextually
declared by its appearance in an
OFFSET attribute or an IN option.

AUTOMATIC, STATIC, CONTRObLED and BASED

Abbreviations: AUTO for AUTOMATIC
CTL for CONTROLLED

The storage class attributes are used to
specify the type of storage allocation to
be used for data variables.

AUTOMATIC specifies that storage is to
be allocated upon each entry to the block
to which the storage declaration is
in~ernal. The storage is released upon
exit from the block. If the block is a
procedure that is invoked recursively, the
previously allocated storage is "pushed
down" upon entry; the latest allocation of
storage is "popped up" upon termination of
each generation of the recursive procedure
(for a discussion of push-down and pop-up
stacking, see chapter 6, "Program
Organization").

STATIC specifies that storage is to be
allocated when the program is loaded and is
not to be released until program execution
has been completed.

CONTROLLED specifies that full control
will be maintained by the programmer over
the allocation and freeing of storage by
means of the ALLOCATE and FREE statements.
Multiple allocations of the same controlled
variable, without intervening freeing, will
cause stacking of generations of the
variable.

BASED, like CONTROLLED, specifies that
full control over storage allocation and
freeing will be maintained by the
programmer, but by various methods that are
described in chapter 8, "Storage Control"
multiple allocations are not stacked but
are available at any time; each can be
identified by the value of a pointer
variable.

General format:

STATIC I AUTOMATIC I CONTROLLED I
I BASED [(element-Iocator-expression)]

382

General rules:

1. Automatic and based variables can have
internal scope only. Static and
controlled variables may have either
internal or external scope.

2. Storage class attributes cannot be
specified for entry constants, file
constants, members of structures, or
DEFINED data items.

3. Parameters can be declared explicitly
with the storage class attribute
CONTROLLED, but not STATIC, BASED, or
AUTOMATIC.

4. Variables declared with adjustable
lengths and dimensions cannot have the
STATIC attribute.

5. For a structure variable, a storage
class attribute can be given only for
the major structure name. The
attribute then applies to all elements
of the structure or to the entire
array of structures. If the attribute
CONTROLLED or BASED is given to a
structure, only the major structure
and not the elements can be allocated
and freed.

6. The following rules govern the use of
based variables:

a. Whenever a locator value is needed
to complete a based variable
reference, and none is explicitly
specified, the value of the
locator expression in the relevant
BASED attribute is used. It is an
error if no locator has been
declared.

b. When reference is made to a based
variable, the data attributes
assumed are those of the based
variable, while the qualifying
pointer variable identifies the
location ot data.

c. A based variable can be used to
identify and describe existing
data; to obtain storage by means
of the ALLOCATE statement; or to
obtain storage in an output buffer
by means of the LOCATE statement.

d. The relative locations of based
variables allocated within an area
can be iuentified by the values of
offset variables.

e. The EXTERNAL attribute cannot
appear with a based variable
declaration, but a based variable
reference can be qualified by an
external pointer variable.

f. A based structure can be declared
to contain adjustable area-sizes~
array-bounds, and string-length
specifications, by using the REFER
option. See chapter 8, "Storage
Control".

g. References to based variables in a
CHECK prefix list or in a data
list for data directed
input/output cannot be explicitly
locator qualified.

h. A BASED VARYING string must have a
maximum length equal to the
maximum length of any string upon
which it is defined. For example:

DECL,l\RE A CHAR (50) VARYING
BASED(Q),

B CHAR(50) VARYING;
Q=ADDR(B)i

i. The INITIAL attribute may be
specified for a based variable.
The values are used only upon
explicit allocation of the based
variable with an ALLOCATE or
LOCATE statement.

I:E both the REFER option and the
INITIAL attribute are used for the
same member, initialization is
done after the object of the REFER
has been assigned its value.

Assumptions:

1. Default storage class is AUTOMATIC for
internal variables and STATIC for
external variables.

2. A pointer variable can be contextually
declared by its appearance:

in the BASED attribute

in the SET option of a LOCATE,
ALLOCATE, or READ statement

as a locator qualifier.

BACKWARD§

The BACKWARDS attribute specifies that the
records of a SEQUENTIAL INPUT file
associated ~ith a data set on magnetic tape'
are to be accessed in reverse order, i.e.,
from the last record to the first record.

General .format:

BACKWARDS

General rules:

1. The BACKWARDS attribute applies to
RECORD files only; that is, it
conflicts with the STREAM attritute.
It implies RECORD and SEQUENTIAL.

2. The BACKWARDS attribute applies to
magnetic tape files only.

See AUTOMATIC.

BINARY and DECIMAL

Abbreviations: BIN for BINARY
DEC for DECIMAL

The BINARY and DECIMAL attributes
specify the base of the data items
represented by an arithmetic variable as
either binary or decimal.

General format:

BINARY I DECIMAL

General rule:

The BINARY or DECIMAL attribute cannot
be specified with the PICTURE attribute.

Assumptions:

Undeclared identifiers (or identifiers
declared only with one or more of the
dimensions, UNALIGNED, ALIGNED, scope, and
storage class attributes) are assumed to be
arithmetic variables with assigned
attributes depending upon the initial
letter. For identifiers beginning with any
letter I through N, the standard default
attributes are REAL FIXED BINARY (15,0).
For identifiers beginning with any other
alphabetic character, the standard default
attributes are REAL FLOAT DECIMAL (6). If
FIXED or FLOAT and/or REAL or COMPLEX are
declared, then DECIMAL is assumed.

BIT, CHARACTER and VARYING

Abbreviations: CHAR for CHARACTER
VAR for VARYING

The BIT and CHARACTER attributes are used
to specify string variables. The BIT
attribute specifies a bit string. The
CHARACTER attribute specifies a character
string.

section I: Attributes 383

General format:

{ BIT } [(length)] [VARYING]
CHARACTER

General rules:

1. The length attribute specifies the
length of a fixed-length string or the
maximum length of a varying-length
string. If it is not specified, a
length of one is assumed. For a bit
string the length is specified in
bits, and for a character string, in
bytes.

2. The VARYING attribute specifies that
the variable is to represent
varying-length strings, in which case
length specifies the maximum length.
The current length at any time is the
length of the current value. The
storage allocated for varying-length
strings is two bytes longer than the
declared maximum length. The initial
two bytes hold the string's current
length (in bytes for a character
string or bits for a bit string).

3. If present, the length attribute must
immediately follow the CHARACTER or
BIT attribute at the same factoring
level with or without intervening
blanks.

4. The length attribute may be specified
by an expression or an asterisk.

If the length specification is an
expression, it is converted to an
integer when storage is allocated for
the variable •.

The asterisk notation can be used for
parameters or controlled variables.
The length can be taken from a
previous allocation or, for CONTROLLED
variables, it can be specified in a
subsequent ALLOCATE statement.

There are restrictions on the use of
asterisks and expressions in the
length specifications of the elements
of data aggregates in parameter
descriptors: expressions may be used
only for controlled parameters, and
asterisks must not be used if the
corresponding argument is such that a
dummy is created.

5. If a string has the STATIC attribute,
the length attribute must be a decimal
integer constant.

6. If a string has the BASED attribute,
the length attribute must be a decimal
integer constant unless the string is

384

a member of a based structure and the
REFER option is used. (See chapter 8,
"Storage Control").

7. The BIT, CHARACTER, and VARYING
attributes cannot be specified with
the PICTURE attribute.

8. The PICTURE attribute can be used
instead of CHARACTER to declare a
fixed-length character-string variable
(see the PICTURE attribute).

9. The maximum length allowed for a bit­
or character-string variable is
32,767. The minimum length for any
string is zero.

BUFFERED and UNBUFFERED

Abbreviations: BUF for BUFFERED
UNBUF for UNBUFFERED

The BUFFERED attribute specifies that
during transmission to and from auxiliary
storage each record of a SEQUENTIAL RECORD
file must pass through intermediate storage
buffers.

The UNBUFFERED attribute specifies that
such records need not pass through buffers.
It does not, however, specify that they
must not. Hidden buffers will, in fact, be
used if INDEXED, REGIONAL(2), or
REGIONAL(3) is specified in the ENVIRONMENT
attribute or if the records are
variable-length.

General format:

BUFFERED I UNBUFFERED

General rules:

·1. The BUFFERED and UNBUFFERED attributes
can be specified for SEQUENTIAL RECORD
and TRANSIENT files only.

2. The locate-mode I/O statements LOCATE
and READ SET can be used only on
tuffered files.

Assumption:

The standard default is BUFFERED.

BUILTIN

The BUILTIN attribute specifies that any
reference to the associated name within the
scope of the declaration is to be
interpreted as a reference to the built-in

function, a pseudovariable, or built-in
subroutine 01: the same name.

General formclt:

BUILTIN

General rules:

1. BUILTIN is used to refer to a built-in
function, a pseudovariable or a
built-·in subroutine in a block that is
contained in another block in which
the SamE! identifier has been declared
to have another meaning.

2. If thE! BUILTIN attribute is declared
for a name, the attribute INTERNAL is
implied~ No other attributes may be
given t() the name.

3. The BUILTIN attribute cannot be
declared for parameters. Built-in
functions without arguments should be
declared, either explicitly, with the
BUILTIN attribute, or contextually by
using a null argument list, or
implic:i tly using a DEFAULT statement.
A list ()f these built-in functions is
given in section G, "Built-in
Functions and Pseudovariables."

CHARACTER

See BIT.

COMPLEX and REAL

Abbreviation:: CPLX for COMPLEX

The COMPLEX and REAL attributes are used
to specify the mode of an arithmetic
variable. Rl~AL specifies that the data
items repres(!nted by the variable are to be
real numbers.. COMPLEX specifies that the
data items represented by the variable are
to be complelc numbers, that is, each data
item is a pair: the first member is a real
number and the second member an imaginary
number.

General format:

REAL I cm~PLEX

General rule::

If a numeJcic character variable is to
represent. c:omplex values, the COMPLEX
attribute must be specified with the
PICTURE attribute. The COMPLEX attribute
is the only ()ther arithmetic or string data

attribute that can be specified with the
PICTURE attritute.

Assumption:

The standard default is REAL.

CONDITION

Abbreviation: COND

The CONDITION attribute specifies that
the associated identifier is a condition
name.

General format:

CONDITION

General rules:

1. The only other attributes that can
apply to a condition name are the
scope attributes, INTERNAL and
EXTERNAL.

2. The only statements in which a
condition name can appear are ON,
SIGNAL, REVERT, DECLARE, and DEFAULT.

Assumptions:

An identifier that appears with the
CONDITION condition in an ON, SIGNAL, or
REVERT statement is contextually declared
to be a condition name.

The default scope is EXTERNAL.

CONNECTED

Abbreviation: CONN

The CONNECTED attribute is applied only
to parameters, and specifies that the
parameter will be a reference to connected
stor~ge only and, hence, allows the
parameter to be used as a target or source
in record-oriented I/O or as a base in
string overlay defining.

General format:

CONNECTED

. General rules:

1. CONNECTED is an additive attribute of
non-controlled aggregate parameters
and may be associated only with
level-one names. It may be specified
in a DECLARE statement or in a

section I: Attributes 385

parameter descriptor of an ENTRY
attribute.

2. An argument passed to a CONNECTED
parameter must be a reference to
connected storage. If not, a dummy
argument is created in connected
storage.

CONTROLLED

See AUTOMATIC.

DECIMAL

See BINARY.

DEFINED

Abbreviation: DEF

The DEFINED attribute specifies that the
variable being declared is to be associated
with some or all of the storage associated
with the designated base variable.

General format:

DEFINED{base-variablel (base-variable)}
[POSITION(element-expression)]}

The "base-variable" is the variable
whose storage is to be associated with the
variable teing declared; the latter is the
"defined variable".

The POSITION attribute specifies the
beginning of the part of a string base
variable with which the defined variable is
to be associated. The position is that of
the first bit or character in the required
part of the base variable.

General rules:

1. The purpose of defining one variable
on another is to allow the programmer

386

to refer to internally stored data by
more than one name. The name of the
base variable is the name initially
declared for the data. Each variable
defined on this base variable has a
different nam~. If the internally
stored data is a data aggregate, a
defined variable can comprise all the
data or only a specified part of it.
The defined variable does not inherit
any attributes from the base variable.

2. There are three types of defining;
simple, iSUB, and string overlay.

If the POSITION attribute is
specified, string overlay defining is
in effect; in this case the base
variable must not contain iSUB
references. If the subscripts
specified in the base variable contain
references to iSUB variables, iSUB
defining is in effect. If neither
iSUB variables nor the POSITION
attribute is present, then simple
defining is in effect if the base
variable and defined variable match
according to the criteria given below;
otherwise string overlay defining is
in effect. For a tabulated summary of
these rules, see Figure 1.3.

A base variable and a defined variable
~ if the base variable when passed
as an argument would match a parameter
which had the attributes of the
defined variable (except for the
DEFINED attribute). For this purpose,
the parameter is assumed to have all
array bounds, string lengths, and area
sizes specified by asterisks.

For simple and iSUB defining a PICTURE
attribute can only be matched by a
PICTURE attribute that is identical
except for repetition factors. For a
reference to specify a valid base
variable in string overlay defining,
the reference must be to connected
storage. The implementation allows
the programmer to override the
matching rule completely, provided he
is willing to accept that this could
have unwanted side-effects on his
program.

r------------O---------T---------------------T----------------------T--------------------, I POSITION attribute I References to iSUB I Base and defined I Type of defining I
I specified I variables in base I match~ I in effect I
I I item subscripts I I I
.---------------------+---------------------+----------------------+--------------------~
I I I I I
I YES I I I string overlay I
.---------------------+---------------------+----------------------+--------------------~
I I I I I
I I YES I I iSUB I
I I I I I
I .---------------------+----------------------+--------------------~
I I I I I
I NO I I YES I simple I
I I I I I
I I NO .----------------------+--------------------~
I I I I I
I I I NO I string overlay I
I I I I I • _____________________ L _____________________ L ______________________ ~ ____________________ ~

I ~A definition of matching in this context is given in General Rule 2. I L ___________ • __ J

Figure I.3e Guide to types of defining

3. The values specified or derived for
any array bounds, string lengths, or
area sizes in a defined variable need
not alwclYs match those of the base
variable, but must be such that the
defined array, string or area can be
cont.ain.:!d in the corresponding base
array, string or area.

4. Some. clt1:.ributes of the base variable
need not or cannot match those of the
defined variable. The following
restriction should be noted:

Bc!§!2! variable:

f>1ay be EXTERNAL or INTERNAL
Qualified, or
subscripted, or both

A parameter (in
string overlay
defining, the
parameter must
refer to connected
storage)

Cannot be BASED
DEFINED

Defined variable:

Must be INTERNAL
A level-one
identifier

May have Dimension attribute

Cannot be INITIAL
AUTOMATIC/BASED/

CONTROLLED/STATIC
A parameter

5. If the base variable is EXTERNAL, it
must be known in the procedure to
which the defined variable is
internal. An EXTERNAL base variable
may be known in several external
procedures; a change to its value made
in one of these causes a similar
change to the value of the defined
variable.

6. In references to defined data, the
SUBSCRIPTRANGE and STRINGSIZE
conditions are raised for the array
bounds and string lengths of the
defined variable, not the base
variable.

7. The determination of values and the
interpretation of names occurs in the
following sequence:

a. The array bounds, string lengths,
and area sizes of a defined
variable are evaluated on entry to
the procedure in which the
variable is declared.

b. A reference to a defined variable
is a reference to the current
generation of the base variable.
When a defined variable is passed
as an argument without creation of
a dummy, the corresponding
parameter refers to the generation
of the base variable that is
current when the argument is
passed. This remains true even if
the base variable is reallocated
within the invoked procedure.

c. When a reference is made to the
defined variable~ the order of

Section I: Attributes 387

evaluation of the subscripts of
the base and defined variable is
undefined.

Simple Defining

Simple defining allows an element, array or
structure variable to be referred to by
another name.

General rules:

1. The defined and base variables can
comprise any data type; they must
match, in the sense described earlier
in this section. If the ALIGNED or
UNALIGNED attribute is specified for
an element in the defined variable, it
must also be specified for the
corresponding element in the base
variable.

2. The defined variable may have the
dimension attribute. The base
variable may be subscripted; the
subscripts must not be iSGB variables.

3. The POSITION attribute cannot be used
in simple defining.

4. In simple defining of an array:

a. The base variable can be a
cross-section of an array.

b. The number of dimensions in the
defined variable must be equal to
the number of dimensions in the
base variable.

5. In simple defining of a string, the
length of the defined string must be
less than or equal to the length of
the base string.

6. In simple defining of an area, the
size of the defined area must be equal
to the size of the base area.

7. A base variable may be, or may
contain, a VARYING string, provided
that the corresponding part of the
defined variable is a VARYING string
of the same maximum length.

Examples:

388

DCL A(10,10,10)J
X1(2,2,2) DEF A,
X2(10,10) DEF A(*,*,S),
X3 DEF A(L,~,N);

Xl is a three-dimensional array that
consists of the first two elements
of each row, column and plane of A.

. "~. . . X2 1S a two-d1mens10nal array that
consists of the fifth plane of A.
X3 is an element that consists of
the element identified by the
subscript expressions L,M, and N.

DCL B CHAR(10),
Y CHAR(S) DEF B;

Y is a character string that
consists of the first five
characters of B.

DCL C AREA(SOO),

DCL

Z AREA(SOO) DEF C;

Z is an area defined on C.

D UNALIGNED,
2 E,
2 F,

3 G CHAR (10) VAR,
3 H,

1 S UNALIGNED DEF D,
2 T,
2 G,

3 V CHAR (10) VAR,
3 W;

S is a structure defined on D; for
simple defining the organization of
the two structures must be
identical. A reference to T is a
reference to E, V to G, etc.

iSGB Defining

iSUB defining allows a programmer to create
a defined array that consists of designated
elements from a base array. Both defined
and base arrays can be arrays of
structures.

General rules:

1. The defined and base arrays can
comprise any data types~ and must have
identical attributes (apart from the
dimension attribute).

2. The defined variable must have the
dimension attribute. In the
declaration of the defined array, the
base array must be subscripted, and
the subscript positions cannot be
specified as asterisks.

3. The POSITION attribute cannot be used
in iSUB defining.

4. An i SUB variable is a ref'erence, in
the subscript list for the base array,
to the ith dimension of the defined
array. At least one subscript in the
base-array subscript-list must be an

iSUB expression which, on evaluation,
gives the required subscript in the
base iirray. The value of i ranges
from 1 to n, where n is the number of
dimensions in the defined array. The
number of subscripts for the base
array must be equal to the number of
dimensions for the base array.

5. As well as the general rules for
evaluation, the following should be
noted:

a. If a reference to a defined array
does not specify a subscript
expression, subscript evaluation
occurs during the evaluation of
the expression or assignment in
which the reference occurs.

b. The value of i is specified as a
decimal integer constant. Within
an iSUB expression, an iSUB
variable is treated as a fixed
binary variable, with default
precision.

c. A subscript in a reference to a
defined variable is evaluated even
if there is no corresponding iSUB
in the base-variable subscript
list.

6. iSUB-defined variables may not appear
in the explicit or assumed data-list
of a data-directed transmission
statement or a CHECK statement or
prefix.

Examples:

DCL A(100,100) CHAR(1),
X(10,10) CHAR(1)

DEF A(1SUB+20,2SUB+90)i

X is a two-dimensional array that
consists of the elements of A that
lie within the bounds 21 - 30 for
the first dimension, and 91 - 100
for the second dimension.

DCL B(2,5),
Y(5,2) DEF B(2SUB,1SUB)i

Y is a two-dimensional array that
consists of the elements of B with
the bounds transposed.

DC L A (1 0, 1 0)
B(5,5) DEF A(1+1SUB/5,1+2SUB/5)i

In this case there is a many-to-one
mapping of certain elements of B to
a single element of A. B(I,J) is
defined on:

A(1,1) for 1<5 and J<5
A(1,2) for 1<5 and J=5

A(2,1) for I=5 and J<5
A(2,2) for 1=5 and J=5

Since all the elements B(I~J) are
defined on the single element A(1,1)
when 1<5 and J<5, assignment of a
value to one of these elements
causes the same value to be assigned
to all of them.

String Overlay Defining

String overlay defining allows a programmer
to associate a defined variable with the
storage for a base variable. Both the
defined and the base variable must be
string or picture data.

General rules:

1. Neither the defined nor the base
variable can have the ALIGNED or the
VARYING attributes.

2. Both the defined and the base
variables must belong to the bit
class, or both must belong to the
character class. The bit class
consists of:

a. Fixed-length bit strings.

b. Aggregates of fixed-length tit
strings.

The character class consists of:

a. Fixed-length character strings.

b. Character string and numeric
pictured data.

c. Aggregates of ~ and B.
3. iSUB variables cannot be used for the

base variable in string overlay
defining.

4. The POSITION attribute can be used to
specify the bit or character within
the base variatle at which the defined
variable is to begin. It has the
format:

POSITION (element-expression)

where the expression, on evaluation,
provides the position of the required
bit or character relative to the start
of the base variable. This attribute
can precede or follow the DEFINED
attribute; if it is omitted,
POSITION(1) is assumed. The value
provided by the expression can range
from 1 to n, where n is defined as

Section I: Attributes 389

n = N(b) - N(d) + 1

where N(b) is the number of bits or
characters in the base
variable, and

N(d) is the number of bits or
characters in the
defined variable.

The expression is evaluated, and
converted to an integer, at each
reference to the defined item. The
absolute maximum permissible value is
32161.

5. When the defined variable is a bit
class aggregate:

a. the POSITION attribute can contain
only an unsigned decimal integer
constant;

b. the base variable must not be
subscripted.

6. The base variable must refer to data
in connected storage.

1. Under the optimizing compiler, an
array overlay-defined on another array
is always assumed to be in unconnected
storage. Under the checkout compiler,
it is treated as being in unconnected
storage only when the bounds of the
base and defined items differ.

Examples:

390

DCL A CHAR(100),
V(10,10) CHAR(l) DEF A;

v is a two-dimensional array that
consists of all the elements in the
character string A.

DCL B(10) CHAR(l),
W CHAR(10) DEF Bi

W is a character string that
consists of all the elements in the
array B.

DCL C(10,10) BIT(l),
X BIT(40) DEF C POS(20);

X is a bit string that consists of
40 elements of C, starting at the
20th element.

DCL E PIC'99V.999',
Zl(6) CHAR(1) DEF E,
Z2 CHAR(3) DEF E POS(4),
Z3(4) CHAR(l) DEF E POS(21;

Z1 is a character-string array that
consists of all the elements of the
decimal numeric picture E.
Z2 is a character string that

consists of the elements '999' of
the picture E.
Z3 is a character-string array that
consists of the elements '9.99~ of
the picture E.

Dimension Attribute

The dimension attribute specifies the
number of dimensions of an array and the
bounds of each dimension. The dimension
attribute either specifies the bounds
(either the upper bound or the upper and
lower bounds) or indicates, by use of an
asterisk, that the actual bounds for the
array are to be taken from elsewhere.

General format:

(bound (,bound] •••)

where "bound" is:

{(lower-bound:] upper-bound}l.

and "upper-bound" and "lower-bound" are
element expressions.

General rules:

1. The number of bounds specifications
indicates the number of dimensions in
the array unless the v~riable being
declared is contained in an array of
structures, in which case it inherits
dimensions from the containing
structure.

~. The bounds specification indicates the
bounds as follows;

a. If only the upper bound is given,
the lower bound is assumed to be
1.

b. The lower bound must be less than
or equal to the upper bound.

c. An asterisk specifies that the
actual bounds are to be specified
in an ALLOCATE statement, if the
variable is CONTROLLED., or in a
declaration of an associated
argument, if the variable is a
simple parameter. Thus, the
asterisk notation can be used only
for parameters and CONTROLLED
variables.

3. Bounds that are expressions are
evaluated and converted to FIXED
BINARY (15,0) when storage is
allocated for the array. For simple
parameters, bounds can be only
optionally signed decimal integer
constants or asterisks.

4. The bou.nds of arrays declared STATIC
must be~ optionally signed decimal
integer constants.

5. The 1:oulnds of arrays declared BASED
must be! optionally signed decimal
integer constants unless the array is
part of a based structure and the
REFER o'ption is used. (See chapter 8,
"Storage.Control".)

6. The dimension attribute must
immediately follow the array name (or
the paz'enthesized list of names, if it
is being factored). Intervening
blanks are optional.

7. The maJC:imum permissible number of
dimensions is 15. The minimum
permissible value for a lower bound is
-32768; the maximum permissible for an
upper bound is 32767.

DIRECT, SE~iENTIAL, and TRANSIENT

Abbrevia"tion.: SEQL for SEQUENTIAL

The DIRECT, SEQUENTIAL, and TRANSIENT
attributes specify access information for
the data set associated with a file.

The DIRECT and SEQUENTIAL attributes
specify the manner in which the records in
a data set associated with a RECORD file
are to be accessed. SEQUENTIAL implies
that the records are to be accessed
according to their physical or logical
sequence in the data set. (The records in
an INDEXED data set are processed in their
logical sequence; the records in a
CONSECUTIVE or REGIONAL data set are
processed in their Ehysical sequence.)
DIRECT specifies that the records are to 1:e
accessed by use of a key; each record must,
therefore, have a key associated with it.
Either of these two attributes implies the
RECORD attribute.

The TRANSIENT attribute is designed for
teleproces.sing applications. It indicates
that the contents of the data set
associated with the file are reestablished
each time the data set is accessed. In
effect, this means that records can be
continually added to the data set by one
program du.ring the execution of another
program that continually removes records
f rom the d,ata set. Thus the data set can
be considered to be a continuous queue
through which the records pass in transit
between a message control program and a
message processing program.

Note that DIRECT and SEQUENTIAL specify
only the current usage of the file; they do

not specify physical properties of the data
set associated with the file. The data set
associated with a SEQUENTIAL file may
actually have keys recorded with the data.
Most data sets accessed by DIRECT files are
created by SEQUENTIAL files. However, a
data set associated with a TRANSIENT file
differs from those associated with DIRECT
and SEQUENTIAL files in that its contents
are dynamic; reading a record removes it
from the data set. Such a data set can
never be created or accessed by a DIRECT or
SEQUENTIAL file.

The use of TRANSIENT files is almost
totally dependent on the implementation;
for this reason, a list of rules for the
use of TRANSIENT is given below the general
rules and assumptions.

General format:

SEQUENTIAL I DIRECT I TRANSIENT

General rules:

1. DIRECT files must be KEYED; this
attribute is implied by DIRECT.
SEQUENTIAL files mayor may not have
the KEYED attribute.

2. The DIRECT, SEQUENTIAL, and TRANSIENT
attributes cannot be specified with
the STREAM attribute.

3. TRANSIENT files must have the KEYED
attribute.

Assumptions:

1. Default is SEQUENTIAL for RECORD
files.

2. If a file is implicitly opened by an
UNLOCK statement" DIRECT is assumed.

3. The TRANSIENT attribute does not imply
any file attributes other than FILE.

The following rules apply specifically
to the use of the TRANSIENT attribute:

1. The TRANSIENT attribute can be
specified only for RECORD KEYED
BUFFERED (or UNBUFFERED) files with
either the INPUT or OUTPUT attribute.

2. The ENVIRONMENT attribute with one of
the two teleprocessing format options
(TP(M) or TP(R» must be declared for
TRANSIENT files.

3. Input can be specified only by a READ
statement with the KEYTO option and
either the INTO option or the SET
option.

Section I: Attributes 391

4. Output can be specified only by a
WRITE statement or a LOCATE statement,
either of which must have the KEYFROM
option.

5. The EVENT option is not permitted.

6. The "data set" associated with a
TRANSIENT file is in fact a queue of
messages maintained automatically in
main storage by a separate message
control program using the
teleprocessing facilities of the
operating system. The queue is always
accessed sequentially.

7. The element expression specified in
the KEYFROM option should have as its
value a recognized terminal or process
queue identification.

The ENTRY attribute specifies that the
identifier being declared is either an
external entry constant or an entry
variable. It is also used to describe the
attributes of the parameters of the entry
point.

General format:

ENTRY[(parameter-descriptor-list)]

where "parameter-descriptor-list" is:

[parameter descriptor[,parameter
descriptor] •••]

Rules for Paramet!f_Descriptor lists

1. A parameter descriptor list can only
be given to describe the attributes of
the parameters of the associated
external entry constant or entry
variable.

If no parameter descriptor list is
given, the arguments are assumed to
match the parameters; if a parameter
descriptor list is given, it is used
for argument and parameter matching
and the creation of dummy arguments:
the parameter descriptor list must be
supplied if arguments do not match the
parameters.

2. A descriptor describes the attributes
of a single parameter. For example,
the descriptors for the parameters in
the following procedure:

392

TEST:PROCEDURE (A,B,C,D~E,F):

DECLARE A FIXED DECIMAL (5),
B FLOAT BINARY (15),
C POINTER,
1 D,

2 P,
2 Q,

3 R FIXED DECIMAL,
1 E,

2 X,
2 Y,

3 Z,
F(4) CHARACTER (10):

END TEST;

could be declared as follows:

DECLARE TEST ENTRY
(DECIMAL FIXED (5),
BINARY FLOAT (15),
,
1,
2,
2,

3 DECIMAL FIXED,
,

(4) CHARACTER (10»;

3. The parameter descriptors must appear
in the same order as the parameters
they describe. If a descriptor is
absent, the argument is assumed to
match the parameter.

4. If a descriptor is not required for a
parameter, the absence of a descriptor
must be indicated in one of the
following ways:

by a comma:
ENTRY(CHARACTER(10)",FIXED DECI~AL)
indicates four parameters:

by an asterisk followed by a comma or
the closing parenthesis of the
parameter descriptor list: ENTRY(*)
indicates one parameter;

by the closing parenthesis when it
follows a comma with no intervening
descriptor: ENTRY(FLOAT BINARY,)
indicates two parameters.

A declaration ENTRY() is equivalent
to ENTRY with no parameter descriptor
list and the entry name must never
have any arguments.

In the example in rule 2 above, the
parameter C has no descriptor nor has
the structure parameter E.

5. In general, the attributes may appear
in any order in a parameter

descriptor, but for an array parameter
descriptor, the dimension attribute
must be the first specified. For a
structure parameter descriptor, the
level numbers must appear in the same
order af; the level numbers of the
corresponding parameter, and they must
precede the attributes for each level;
the descriptor level numbers need not
be the same as those of the parameter,
but the structuring must be identical;
the at~tl:ibutes for a particular level
may appear in any order.

Note~ Each descriptor level number,
together with any attributes specified
for the level, is delimited by a comma
(s ee eXclmpl e above).

6. Defaults are not applied to a
parameter descriptor unless attributes
or level numbers are specified in the
descript:or. If a level number and/or
the dimension attribute only is
specifie~d in a descriptor, FLOAT
DECIMAL(6) REAL are assumed.

7. Extent.s (lengths, sizes, and bounds)
in parameter descriptors may only be
specifiE!d by decimal integer constants
or by asterisks. Extents in
descriptors for controlled parameters
may only be specified by asterisks.

8. Attributes given in the parameter
descript.or list can be established
implicitly by use of the DEFAULT
statement in conjunction with the
DESCRIPTORS option. However they are
not applied for missing descriptors.

General rules:

1. The ENTRY attribute, without a
parameter descriptor list, is implied
by the attri1::utes OPTIONS, REDUCIBLE,
IRREDUCIBLE, and RETURNS.

2. The ENTRY attribute cannot be
specified with the BUILTIN or GENERIC
attribut.e.

3. The ENTRY attribute must be specified
or implied for a parameter
representing an entry constant or
entry variable argument.

The maximum permissible depth of
nesting of the ENTRY attribute is two.
For example:

DCL E ENTRY(ENTRY(FIXED»;

is permissible, but:

DCL E ENTRY(ENTRY(ENTRY(FIXEO»);

is not permissible.

4.

5.

6.

7.

Factoring of attributes is not
permitted within the parameter
descriptor list of an ENTRY attribute
specification.

External entry constants must 1::e
explicitly declared.

The optional attribute VARIABLE is an
additive attribute. When given, it
specifies that the associated
identifier is an entry variable. The
VARIABLE attribute is declared
implicitly if the identifier is
declared with anyone or more of the
following attributes:

ALIGNED
AUTOMATIC
BASED
CONTROLLED
DEFINED

dimension
INITIAL
parameter
STATIC
UNALIGNED

The use of an entry variable in a CALL
statement or function reference means
that associated entry points cannot be
known until execution time. When an
entry variable declared without a
parameter descriptor list appears
either in a CALL statement or as a
function reference that involves
passing arguments, the arguments are
assumed to match the parameters of the
referenced entry point. However, if a
parameter descriptor list is given in
the declaration of an entry variable,
the parameters of the referenced entry
point are assumed to match the
attributes given in the parameter
descriptor list: dummy arguments are
created if necessary.

8. When a reference to any entry
expression includes an argument list
(which may be a null argument list),
the procedure it represents is always
invoked.

9. When a reference to any entry
expression does not include an
argument list, the procedure it
represents is not invoked in the
following contexts:

a. The righthand side of an
assignment to an entry variable.

b. Comparison with an entry
expression.

c. An argument to a generic entry
name.

d. An argument passed to an entry
parameter.

e. An argument to the UNSPEC built-in
function.

Section I: Attributes 393

f. Any context that requires a
variable (applicable only to entry
variables) •

10.. An entry variable used in a CALL
statement must have as its value an
entry point of a block that is active
at the time the CALL statement is
executed. If the variable has an
invalid value, the checkout compiler
will raise the ERROR condition; under
the optimizing compiler, however,
detection of such an error is not
guaranteed.

11. The values of two entry expressions
may be compared using either the = or
~= comparison operator. It is not an
error to specify, in a comparison
operation, an entry variable whose
value is an entry point of an inactive
block.

12. Entry names on the same PROCEDURE or
ENTRY statement do not compare equal.

13. The ENTRY attribute cannot be
specified in a RETURNS attribute or
option. ENTRY statement do not
compare equal.

Assumptions:

The ENTRY attribute can be implied. The
appearance of an identifier as a label
prefix of either a PROCEDURE statement or
an ENTRY statement constitutes an explicit
declaration of that identifier as an entry
constant. Its attributes are obtained from
this explicit declaration and from the
declarations, if any, given in an
additional DECLARE statement. The
attributes are obtained as follows:

scope attribute: For an external entry
constant, the scope is EXTERNAL
(INTERNAL is' invalid). For an entry
variable, the scope is INTERNAL by
default.

RETURNS Attribute: This is obtained
from the RETURNS attribute in the
DECLARE statement.

ENVIRONMENT

Abbreviation: ENV

The ENVIRONMENT attribute is an
implementation-defined attribute that
specifies various file characteristics that
are not part of the PL/I language.

394

General format:

ENVIRONMENT (option-list)

Options in the "option list" are separated
by blanks or commas. The option list is
defined individually for each
implementation of PL/I. For this
implementation, it is as follows:

[record-format] [BUFFERS(n)]
[data-set-organization]
[magnetic tape handling]
[carriage-control]
[COBOL] [data-management-optimization]
[key-classification]
[KEYLENGTH(n)]
[KEYLOC(n)]
[SCALARVARYING]
[teleprocessing format]
[direct access device usage]
[ASCII - data interchange code]
[BUFOFF[(n)] - ~uffer offset]
[TOTAL]

The options may appear in any order. They
are described in chapter 11,
"Stream-Oriented Transmission" and chapter
12, "Record-Oriented Transmission".

The ENVIRONMENT attribute may be
included only in a DECLARE statement. It
cannot be specified as an option of an OPEN
statement. It can be specified as an
option of the CLOSE statement for the
volume disposition options LEAVE and
REREAD.

The EVENT attribute specifies that the
associated identifier is used as an event
name. Event names are used to investigate
the current state of tasks or of
asynchronous input/output operations. They
can also be used as program switches.

General format:

EVENT

General rules:

1. An identifier may be explicitly
declared with the EVENT attribute in a
DECLARE statement. It may be
contextually declared by its
appearance in an EVENT option of a
CALL statement, in a WAIT statement,
in a DISPLAY statement, or in various
input/output statements (see chapter
10, "Input and Output", and chapter
17, "Multitasking").

2. Event n.ames may also have the
following attributes:

Dimelnsion

scope (the default is INTERNAL)

storage class (the default is
AU'l~OMATIC)

DEFINED (event names may only be
defined on other event names)

INITIAL or INITIAL CALL

3. An event variable has two separate
values:

a. A single bit which reflects the
completion value of the variable.
'1·B indicates complete, 'O'B
indicates incomplete.

b. A fixed-point binary value of
default precision (i.e.,(15,0»
which reflects the status value of
thEl variable. A zero value
indicates normal, nonzero
indicates abnormal status.

The values of the event variable can
be sepa.rately returned by use of the
COMPLETION and STATUS built-in
functions. The COMPLETION function
returns a bit-string value
corresponding to the completion value
of the variable; STATUS returns a
fixed binary value corresponding to
the status value.

Assignment of one event variable to
anothel: causes both the completion and
status values to be assigned.
Conversion between event variables and
any other data type is not possible.

4. Event variables may be elements of an
aggregate. Aggregates containing
event vrariables may take part in
assignment, provided that this would
not require conversion to or from
event CIa ta.

5. The v'alues of the event variable can
be set by one of the following means:

a. USEl of the COMPLETION
pseudovariable~ to set the
completion value.

b. USEl of the STATUS pseudovariable,
to set the status value.

c. EVElOt variable assignment.

d. By a statement with the EVENT
opt;ion.

e. By a WAIT statement for an event
variable associated with an
input/output event or DISPLAY
statement.

f. By the termination of a task with
which the event variable is
associated.

g. By closing a file on which an
input/output operation with an
event option is in progress.

6. On allocation of an event variatle,
its status and completion values are
undefined.

7. An event variable may be associated
with an event, that is, a task or an
input/output operation, by means of
the EVENT option on a statement. The
variable remains associated with the
event until the event is completed.
For a task the event is completed when
the task is terminated because of a
RETURN, END or EXIT; for an
input/output event, the event is
completed during the execution of the
WAIT for the associated event which
must be present in the task that
initiated the input/output operation.
During this period the event variatle
is said to be active. It is an error
to associate an active event variatle
with another event, or to modify the
completion value of an active event
variable by event variable assignment
or by use of the COMPLETION
pseudo-variable.

8. It is an error to assign a value to an
active event variable (including an
event variable in an array, structure,
or area) by means of an input/output
statement.

9. On execution of a CALL statement with
the EVENT option, the event variable,
if inactive, is set to zero status
value and to incomplete. The sequence
of these two assignments is
uninterruptable, and is completed
before control passes to the named
entry point. On termination of the
task initiated by the CALL statement,
the event variable is set complete and
is no longer active. If the task
termination is not due to RETURN or
END in the task, then the event
variable status is set to 1, unless it
is already nonzero. The sequence of
the two assignments to the event
variable values is uninterruptable.

10. On execution of an input/output
statement with the EVENT option, the
event variable, if inactive, is set to
zero status value and to incomplete.

Section I: Attributes 395

The sequence of these two assignments
is uninterruptable and is completed
before any transmission is initiated
but after any action associa·ted with
an implicit opening is completed. An
input/output event variable will not
be set complete until either the
termination of the task that initiated
the event or the execution, by that
task, of a WAIT statement naming the
associated event variable. The WAIT
operation delays execution of this
task until any transmission associated
with the event is terminated. If no
input/output conditions are to be
raised for the operation, the event
variable is set complete and is no
longer active. If any input/output
conditions are to be raised, the event
variable is set to have a status value
of 1 and the relevant conditions are
raised. On normal return from the
last on-unit entered as a result of
these conditions, or on abnormal
return from one of the on-units, the
event variable is set complete and is
no longer active.

11. Event variables cannot be unaligned.

12. Two event variables can be compared
using a = or a ,= comparison operator.
The variables compare equal if both
the status and completion values are
equal, otherwise they compare not
equal.

EXCLUSIVE

Abbreviation: EXCL

The EXCLUSIVE attribute specifies that
records in a DIRECT UPDATE file may be
locked by an accessing task to prevent
other tasks from interfering with an
operation. The section entitled -EXCLUSIVE
Attribute- in chapter 10, -Input and
Output-, contains a table showing the
effects of various operations on EXCLUSIVE
files and the records contained in them.

General format:

EXCLUSIVE

General rules:

1. The EXCLUSIVE attribute can be applied
to RECORD KEYED DIRECT UPDATE or INPUT
files only.

2. A READ statement referring to a record
in an EXCLUSIVE file has the effect of
locking that record, unless the READ
statement has the NOLOCK option, or

396

unless the record has already been
locked by another task; in the latter
case, the task executing the READ
statement will wait until the record
is unlocked before proceeding.

3. A DELETE or REWRITE statement
referring to a locked record will
automatically unlock the record at the
end of the DELETE or REWRITE
operation; if the record has been
locked by another task, the task
executing the DELETE or REWRITE
statement will wait until the record
is unlocked. While a DELETE or
REWRITE operation is taking place, the
record is always locked.

4. Automatic unlocking takes place at the
end of the operation~ on completion of
anyon-units entered because of the
operation (that is, at the
corresponding WAIT statement when the
EVENT option has been specified) or by
a GO TO branch out of such an on-unit.

5. A locked record can be explicitly
unlocked by the task that locked it,
by means of the UNLOCK statement.

6. Closing an EXCLUSIVE file unlocks all
the records locked by that task in the
file.

7. When a task is terminated, all records
locked by that task are unlocked.

Assumptions:

1. If a file is implicitly opened by the
UNLOCK statement" it is gi ven the
EXCLUSIVE attribute.

2. EXCLUSIVE implies RECORD, DIRECT,
KEYED, and UPDATE.

EXTERNAL and INTERNAL

Abbreviations: EXT for EXTERNAL
INT for INTERNAL

The EXTERNAL and INTERNAL attributes
specify the scope of a name. INTERNAL
specifies that the name can be known only
in the declaring block and its contained
blocks. EXTERNAL specifies that the name
may be known in other blocks containing an
external declaration of the same name.

General format:

EXTERNAL I INTERNAL

General rules:

1. When c:i major structure name is
declared EXTERNAL in more than one
block I' 'the attributes of the structure
members must be the same in each case,
althouglb. the corresponding member
names nleed not be identical.

2. Members of structures always have the
INTERNAI, attribute and cannot be
declared with any scope attribute.
However, a reference to a member of an
external structure, using the member
name ltnl::>wn to the block containing the
reference~ is effectively a reference
to that member in all blocks in which
the extlernal name is known, regardless
of whether the corresponding member
names are identical.

Assumptiom; :

INTERNA1[' :is assumed for entry names of
internal procedures and for variables with
any storag4~ class. EXTERNAL is assumed for
file constan,ts and entry constants of
external p:cocedures. Programmer-defined
condition names are assumed to be EXTERNAL"

The FILE a1:tribute specifies that the
identifier being declared is a file name.

General formii t:

FILE

General rulel3:

1. File description attributes, such as
RECORD, INPUT, etc., cannot be applied
to a file variable.

2. A filE! 19xpression is a file constant,
a file variable or a function
reference that represents a file
value.. It may be used as:

a. an argument to the FILE or COPY
option

b. an argument to be passed to a
function or subroutine

c. an argument to an input/output
c()ndition name for ON, SIGNAL, and
R]~VERT statements

d. an iirgument to a RETURN statement

3. On-units can be established for a file
constant through a file variable that
represents its value.

For example:

DCL F FILE,
G FILE VARIABLE:
G=F:

L1: ON ENDFILE(G);
L2: ON ENDFILE(F);

The statements labelled L1 and L2 are
equivalent.

4. A dummy argument is created for a file
constant argument to a CALL statement
or function reference.

5. A file variable may be specified in a
CHECK prefix list. The CHECK
condition is not raised for such a
file variable by its appearance as a
FILE option in ON, SIGNAL, and REVERT
statements.

6. The value of a file variable may be
transmitted by record-oriented
transmission statements. The value
may not be valid after transmission.

7. The values of two file expressions may
be compared using either the = or ,=
comparison operator. The expressions
compare equal only if they represent
file values, all of whose parts are
equal.

Assumptions:

The FILE attribute can be implied for a
file constant by any of the "file
description attributes". Refer to chapter
10, "Input and Output", for discussion of
the file attributes. In addition, an
identifier can be contextually declared as
a file constant through its appearance in
the FILE option of any input or output
statement, or in an ON statement for any
input/output condition.

An identifier with the FILE attribute is
assumed to be a file variable if the
identifier is an element of an array or
structure, or if any of the following
additional attributes is specified:

Storage class attributes
dimension attributes
parameter
ALIGNED or UNALIGNED
DEFINED
INITIAL
VARIABLE

Section I: Attributes 397

FIXED and FLOAT

The FIXED and FLOAT attributes specify the
scale of the arithmetic variable being
declared. FIXED specifies that the
variable is to represent fixed-point data
items. FLOAT specifies that the variable
is to represent floating-point data items.

General format:

FIXED/FLOAT

General rule:

The FIXED and FLOAT attributes cannot be
specified with the PICTURE attribute.

Assumptions:

Undeclared identifiers (or identifiers
declared only with one or more of the
dimension, ALIGNED or UNALIGNED, scope, and
storage class attributes) are assumed to be
arithmetic variables with assigned
attributes depending upon the initial
letter. For identifiers beginning with any
letter I through N, the standard default
attributes are REAL FIXED BINARY (15,0).
For identifiers beginning with any other
alphabetic character, the standard default
attributes are REAL FLOAT DECIMAL (6). If
BINARY or DECIMAL and/or REAL or COMPLEX
are specified, FLOAT is assumed.

See FIXED.

The GENERIC attribute is used to define an
entry name that is generic to a specified
group of entry expressions. When the
generic name is referred to, one of the
specified entry expressions is selected,
based upon the arguments specified for the
generic name in the reference.

General format:

GENERIC (entry-expression WHEN
(generic-descriptor-list)
[,entry-expression WHEN
(generic-descriptor-list)] •••);

where generic-descriptor-list is:­
[descriptor[,descriptor] •••]

398

General rules:

1. The only attribute than can be
specified for the name being given the
GENERIC attribute is INTERNAL.

2. Each entry expression following the
GENERIC attribute corresponds to one
member of the generic group. An
entry-expression must be a constant or
variable of type ENTRY. It must not
be based, subscripted, or defined.

3. The same entry-expression may appear
more than once within a single GENERIC
declaration with different lists of
descriptors.

4. The selection of a particular entry
expression is based upon the arguments
of, or absence of all arguments from,
the reference to the generic name.
When a generic name is referred to,
the number of arguments and attributes
of each argument are compared with
each generic descriptor list from left
to right until all the attributes in
one generic descriptor list are found
to be attributes of the arguments.
The reference is then interpreted as a
reference to the member with the
matching generic descriptor list.

5. The only attributes allowed are those
that affect generic selection; these
are:

ALIGNED
AREA (No size may be specified)
Base
BIT (No length may be specified)
CHARACTER (No length may be

specified)
ENTRY (No descriptor list may be

specified)
EVENT
FILE
LABEL (No label list may be

specified)
Mode
OFFSET (No area variable may be

specified)
PICTURE 'picture-specification'
POINTER
Precision (Number of digits and

scale factor must be
specified)

Scale
TASK
UNALIGNED
VARYING

A missing descriptor may be indicated
by an asterisk or a comma in the
generic descriptor list.

6. An entry expression used as an
argument in a reference to a generic
value only matches a descriptor of

type ENTRY. If there is no such
description, the program is in error.

7. An argument with the GENERIC attribute
matches an ENTRY attribute in a
generic descriptor list.

8. Under 'the optimizing compiler, if a
locator attribute (POINTER or OFFSET)
is specified in the generic descriptor
list l, 'the corresponding parameter must
have the same attribute; no conversion
from one type to the other can be
perfc)rmed when the entry-point is
invoked. Under the checkout compiler,
the c:::onversion can be performed.

9. Aggr~3g4ates may not be specified in a
generic descriptor list, though they
may be passed as arguments to a
generic entry name. Under the
optimi:zing compiler, no dummy argument
can te created for such an aggregate.

10. Generic names (as opposed to
references) may be specified as
arguments to non-generic entry names.

If the non-generic entry name is an
entry variable or an external entry
constant it must be declared with a
parameter descriptor list. The
descriptor for the generic argument
must be ENTRY with a parameter
descriptor list. This nested list is
used to select the argument to be
passE!d,. For example:

A: PROC;
DeL B GENERIC (C WHEN(FIXED),

D WHEN(FLOAT»,
E ENTRY (ENTRY(FIXED»;

CAL]~ E (B) ;

END Ai;

When procedure E is invoked, C is
select~3d and passed as the argument,
since the descriptor specifies that
the parameter specified by the entry
name parameter is FIXED.

If the non-generic entry name is an
internal entry constant, the
corresponding parameter must be
declclr~:d ENTRY with a parameter
descriptor list. This list is used to
select the argument to be passed. For
exampIE~:

A: PROe;
DCL B GENERIC (C WHEN(FIXED),

D WHEN(FLOAT»;
CALL E(B);
E: PROC(P);

DCL P ENTRY(FIXED);

END Ei
END A;

When procedure E is invoked, C is
selected and passed as the argument,
since the parameter of entry name
parameter is declared to be FIXED.

INITIAL

Abbreviation: INIT

The INITIAL attribute has two forms.
The first specifies a constant, expression,
or function reference, whose value is to be
assigned to a data item when storage is
allocated to it. The second form specifies
that, through the CALL option, a procedure
is to be invoked to perform initialization
at allocation. The variable is initialized
by assignment during the execution of the
called routine (rather than by this routine
being invoked as a function that returns a
value to the point of invocation).

General format:

1. INITIAL (item [,item] •••)

2. INITIAL CALL entry-expression
[argument-list]

General rule:

The INITIAL attribute cannot be given to
constants, defined data, structures or
parameters (except CONTROLLED parameters).

Rules for form 1:

1. Each item in the list can be a
constant, a parenthesized expression,
a reference, an asterisk denoting no
initialization for a particular
element, or an iteration
specification.

2. In this discussion, the term
Wconstant W denotes one of the
following:

[+1-] arithmetic-constant

bit-string-constant

character-string-constant

Section I: Attributes 399

entry-constant

file-constant

label-constant

[+I-jreal-constant{+I-}imaginary­
constant

The term wexpression w denotes an
element expression used to provide an
initial value to be assigned to the
initialized data item. An expression
is always enclosed in parentheses when
specified in the INITIAL attribute.
The term wreference" denotes a
reference to a variable or a function
which can be used for the initial
value of the data item.

3. The time at which the INITIAL
attribute is applied depends on the
storage class of the variable.

STATIC: When the external procedure
in which the variable is declared
is entered.

AUTOMATIC: When the block in which
the variable is declared is
entered.

CONTROLLED: When the ALLOCATE
statement is executed.

BASED: When an ALLOCATE or a LOCATE
statement is executed for the
variable. If the variable is
referenced only by setting a
pointer and is never specified in
an ALLOCATE or LOCATE statement,
the INITIAL attribute specified in
a DECLARE statement is never
applied.

4. Only one initial value can be
specified for an element variable~
more than one can be specified for an
array variable. A structure variable
can be initialized only by separate
initialization of its elementary
names, whether they are element or
array variables.

5. Initial values specified for an array
are aSSigned to successive elements of
the array in row-major order (final
subscript varying most rapidly).

6. If too many initial values are
specified for an array, excess ones
are ignored: if not enough are
specified, the remainder of the array
is not initialized.

7. Only constant values can be specified
in the INITIAL attribute for STATIC
variables, except that the NULL

400

built-in function may be used to
initialize a STATIC pOinter variable.

8. The iteration specification has one of
the following general forms:

(iteration-factor)
reference I constant I (expression)

(iteration-factor)
item[,iteml •••

(iteration-factor) *
The "iteration-factor" specifies the
number of times the constant,
expression, or item list, is to be
repeated in the initialization of
elements of an array. If a constant
or expression follows the iteration
factor, then the specified number of
elements are to be initialized with
that value. If a list of items
follows the iteration factor J then the
list is to be repeated the specified
number of times, with each item
initializing an element of the array.
If an asterisk follows the iteration
factor, then the specified number of
elements are to be skipped in the
initialization operation.

9. The iteration factor can be an element
expression, except for STATIC data, in
which case it must be an unsigned
decimal integer constant. When
storage is allocated for the array,
the expression is evaluated to give an
integer that specifies the number of
iterations.

10. A negative or zero iteration factor
causes no initialization.

11. The initialization of an array of
strings may include both string
repetition and iteration factors.
Where only one of these is given it is
taken to be a string repetition factor
unless the string constant is placed
in parentheses. Note that a string
repetition factor must be an unsigned
decimal integer constant. For
example, consider the following:

«2)'A I)is equivalent to ('AA')
«2)('A') is equivalent to ('AI,'A')
«2)(1)'A') is equivalent to
('A', 'A')

12. Iterations may be nested.

13. It is an error to specify an iteration
factor in an INITIAL att~ibute of a
scalar item.

14. Names used in expressions and function
references for initial values must be

known ~iithin the block in which the
initialized item is declared.

15. STATIC label or entry variables cannot
have the INITIAL attribute.

16. An altt!rnate method of initialization
is available for elements of arrays of
non-ST1~TIC label variables: an
element:. of a label array can appear as
a statement prefix, provided that all
subscripts are optionally signed
decimal integer constants. The effect
of this appearance is the
initialization of that array element
to a value that is a constructed label
constant for the statement prefixed
with the subscripted reference. This
sta.tem.!nt must be immediately internal
to the block containing the
declaration of the array. Only one
form of initialization can be used for
a given label array. If CHECK is
specified for such an array and the
elements of the array are initialized
in this ~ay, the CHECK condition is
not raised at initialization.

17. If the attributes of an item in the
INITIAL attribute differ from those of
the data item itself, then~ provided
the attributes are compatible,
conversion will be performed.

1S. If a STATIC EXTERNAL item is given the
INITIAL attribute in more than one
declaration, the value specified must
be the same in every case.

Rules for form 2:

1. The "entry-expression" and
"argument-list" passed must satisfy
the condition stated for prologues as
discns!3ed in chapter 6, "Program
Organization".

2. Form 2 cannot be used to initialize
STATIC data.

Examples:

a. DECLARE SWITCH BIT (1)
INITIAL ('1'B):

b. DECLARE MAXVALOE INITIAL (99),
MINVALOE INITIAL (-99);

c. DECLARE A (100,10) INITIAL
«920)0, (20) «3)5,9»:

d. DECLARE TABLE (20,20) INITIAL
CALL SET_OP (X,Y):

e. DECLARE 1 A(S),
2 B INITIAL (0),
2 C INITIAL «8)0):

f. DECLARE Z(3) LABEL:

Z(1): IF X = Y THEN GO TO EXIT:

Z(2): A = A + B + C * D:

Z(3): A = A + 10:

GO TO Z(I):

EXIT: RETURN;

Example c results in the following:
each of the first 920 elements of A is set
to 0, the next 80 elements consist of 20
repetitions of the sequence 5,5,5,9.

In Example d, SET_OP is the name of a
procedure that sets the initial values of
elements in TABLE. X and Yare arguments
passed to SET_UP.

In Example e, Band C inherit a
dimension of (8) but, whereas only the
first element of B is initialized, all the
elements of C are initialized.

In the last example, transfer is made to
a particular element of the array Z by
giving I a value of 1,2, or 3.

INPUT, OUTPUT, and UPDATE

The INPUT, OUTPUT, and UPDATE attributes
indicate the function of the file. INPUT
specifies that data is to be transmitted
from auxiliary storage to the program.
OUTPUT specifies that data is to be
transmitted from the program to auxiliary
storage either to create a new data set or
extend an existing one. UPDATE specifies
that the data can be transmitted in either
direction: that is, the file is both an
input and an output file.

General format:

INPUT I OUTPUT I OPDATE

section I: Attributes 401

General rules:

1. A file with the INPUT attribute cannot
have the PRINT attribute.

2. A file with the OUTPUT attrLbute
cannot have the BACKWARDS attribute.

3. A file with the UPDATE attribute
cannot have the STREAM, BACKWARDS, or
PRINT attributes. A declaration of
UPDATE for a SEQUENTIAL file indicates
the update-in-place mode. To access
such a file, the sequence of
statements must be READ, then REWRITE.

Assumptions:

Default is INPUT. The PRINT attribute
implies OUTPUT. The EXCLUSIVE attribute
implies UPDATE.

INTERNAL

see EXTERNAL.

IRREDUCIBLE and REDUCIBLE

Abbreviations: IRRED for IRREDUCIBLE
RED for REDUCIBLE

These attributes are used for
optimization. The checkout compiler merely

I checks them for syntax errors, applies the
implied,attribute, and then ignores them.
Their presence in a program processed by
the checkout compiler is not an error.

They are specified in entry-constant
declarations of function procedures.
REDUCIBLE specifies that if the entry name
appears with an 'argument list that is
identical to an argument list used in an

I earlier invocation, the function need not
necessarily be reinvoked and the result of
the earlier evaluation may be used.
IRREDUCIBLE specifies that this type of
optimization is not permitted.
optimization within a function procedure is
not affected by either attribute.

General format:

IRREDUCIBLE I REDUCIBLE

General rule:

1. These attributes can be applied only
to external entry constants or entry
variables, since internal entry names
cannot be declared. For internal
entry constants, the equivalent
options can be applied to PROCEDURE or
ENTRY statements.

402

Assumptions:

The IRREDUCIBLE and REDUCIBLE attributes
imply ENTRY.

The standard default is IRREDUCIBLE.

The KEYED attribute specifies that the
options KEY, KEYTO, and KEY FROM may te used
to access records in the file. These
options indicate that keys are involved in
accessing the records in the file.

General format:

KEYED

General rules:

1. A KEYED file cannot have the
attributes STREAM or PRINT.

2. The KEYED attribute can be specified
for RECORD files only, and must be
associated with direcf access devices
or with a file with the TRANSIENT
attribute.

3. The KEYED attribute must be specified
for every file with which any of the
options KEY, KEYTO, and KEY FROM is
used. It need not be specified if
none of the options are to be used,
even though the corresponding data set
may actually contain recorded keys.

Assumption:

The DIRECT attribute implies KEYED.

The LABEL attribute specifies that the
identifier teing declared is a label
variable and is to have statement labels as
values. To aid in optimization of the
object program, the attribute specification
may also include the values that the name
can have during execution of the program.

General format:

LABEL [(statement-label-constant
[,statement-label-constant] •••)]

General r\ll~es:

1. If a l:ist of statement label constants
is given, the variable must have as
its value a member of the list when
used i:n a GO TO statement or R format

For example:
A- • . ,
B: X=7;

Label A is not equal to label B.

item,. The label constants in the list 10.
must be known in the block containing

A label prefixed to a FORMAT statement
does not compare equal with the label
prefixed to the following statement. the declaration. Under the optimizing

compil'er, the maximum permissible
number of label constants in the list 11.
is 125. There is no limit under the
checkout compiler.

A label prefixed to an END statement
does not compare equal with the label
prefixed to the following statement.

2. The parenthesized list of statement
label constants can be used in a LABEL
attribute specification for a label
array.

3. A label variable may not be used to
iden'tify a PROCEDURE or ENTRY
stat1ement, and an entry constant may
not be assigned to a label variable.

4. A subscripted label specifying an
element of a label array can appear as
a statement label prefix if the label
variable is not STATIC, but it cannot
appear in an END statement after the
keyword END. For further information,
see the INITIAL attribute.

5. A label variable may have another
label variable or a label constant
assigned to it. When such an
assignment is made, the environment of
the source label is assigned to the
target.

6. The INITIAL attribute cannot be
specified for STATIC label variables.

7. A latel variable used in a GO TO
statement must have as its value a
label constant that is used in a block
that is active at the time the GO TO
is executed. If the variable has an
invalid value, the checkout compiler
will raise the ERROR condition; under
the optimizing compiler, however,
detection of such an error is not
guaranteed.

8. Labels may be compared. Comparison
operators permitted for labels are
= and ,=. Labels on the same
statement compare equal. It is not an
error to specify, in a comparison
operation, a label variable whose
value is a label constant used in a
block that is no longer active.

9. A label prefixed to a null statement
does n.ot compare equal to a label
prefil!:ed to the statement immediately
following the null statement.

1

12 • The label on IF statement does not
compare equal with that on the
succeeding THEN clause.

Length Attribute

See BIT.

The LIKE attribute specifies that the name
being declared is a structure variable with
the same structuring as that for the name
following the attribute keyword LIKE.
Substructure names, elementary names, and
attributes for substructure names and
elementary names are to be identical.

General format:

LIKE structure-variable

General rules:

1. The "structure-variable" can be a
major structure name or a minor
structure name. It can be a qualified
name, but it cannot be subscripted.

2. The "structure-variable" must be known
in the block containing the LIKE
attribute specification. The
structure names in all LIKE attributes
are associated with declared
structures before any LIKE attributes
are expanded. For example:

DECLARE 1 A, 2 C, 3 E, 3 F,
1 D, 2 C, 3 G, 3 H;

BEGIN;
DECLARE 1 A LIKE D, 1 B LIRE A.C;

END;

section I: Attributes 403

These declarations result in the
following:

1 A LIKE D is expanded to give:

1 A, 2 C, 3 G, 3 H

1 B LIKE A.C is expanded to give:

1 B, 3 E, 3 F

3. a. Neither the ·structure variable·
nor any of its substructures can
be declared with the LIKE
attribute. For example, the
following is invalid:

404

DECLARE 1 A LIKE C,
1 B,

2 C,
3 D,
3 E LIKE X,

2 F"
1 X,

2 y"
2 Z;

because the LIKE attribute of A
specifies a structure, C, that
contains an identifier, E, that
has the LIKE attribute.

b. ·Structure variable· must not be a
substructure of a structure
declared with the LIKE attribute.
For example, the following is
invalid:

DECLARE 1 A LIKE G.C,
1 B,

2 C,
3 D,
3 E,

2 F;,
1 G LIKE Bi

because the LIKE attribute of A
specifies a substructure, G.C, of
a structure, G, declared with the
LIKE attribute.

c. Under the optimizing compiler, no
substructure of the major
structure containing ·structure
variable· can have the LIKE
attribute. For example, the
following is invalid under the
optimizing compiler:

DECLARE 1 A LIKE C,
1 B,

2 C,
3 D,
3 D,
3 E,

2 F LIKE X,
1 X,

2 Y,
2 Z:

because the LIKE attribute of A
specifies a structure, C~ within a
structure, B, that contains a
substructure" F, having the LIKE
attribute.

4. Neither additional substructures nor
elementary names can be added to the
created structure; any level number
that immediately follows the
·structure variable· in the LIKE
attribute specification in a DECLARE
statement must be algebraically equal
to or less than the level number of
the name declared with the LIKE
attribute.

5. Attributes of the "structure variable·
itself do not carryover to the
created structure. For example,
storage class attributes do not carry
over. If the "structure variable"
following the keyword LIKE represents
an array of structures, its dimension
attribute is not carried over.
Attributes of substructure names and
elementary names~ however, are carried
over; contained dimension and length
attributes are recomputed. An
exception is that this does not apply
to the INITIAL attribute for any
elements of a label array that has
been initialized by prefixing to a
statement.

6. If a direct application of the
description to the structure declared
LIKE would cause an incorrect
continuity of level numbers (for
example, if a minor structure at level
3 were declared LIKE a major structure
at level 1) the level numbers are
modified by a constant before
application.

7. The LIKE attribute is expanded before
the ALIGNED and UNALIGNED attributes
are inherited by the contained
elements of a structure.

8. The LIKE attribute is expanded before
the standard defaults or DEFAULT
statements are applied.

OFFSET and POINTER

Abbreviation: PTR for POINTER

The OFFSET and POINTER attributes
describe locator variables. A pointer
variable can be used in a based variable
reference to identify a particular

generation of the based variable. Offset
variables identify a location relative to
the start of an area; pointer variables
identify any location, including those
within areas.

General :format:

POINTER I OF'FSET
[(element-area-variable)1

General .ruIElS:

1. A pointer variable can be explicitly
declarEld in a DECLARE statement, or it
can be contextually declared by its
appearance as a pointer qualifier, by
its appearance in a BASED attribute,
or by its appearance in a SET option.

2. An offfiet variable cannot be
contextually declared. If no area
variable is specified the offset can
only be used as a locator qualifier
thrOtlgh us e of the POINTER buil t- in
functi()n.

3. The value of a pointer variable can be
set in any of the following ways:

a. with the SET option of a READ
stc:ltement.

b. By a LOCATE statement.

c. By an ALLOCATE statement.

d. By assignment of the value of
another locator variable, or a
locator value returned by a
user-defined function.

e. :By assignment of an ADDR or NULL
built-in function value.

4. The '\7alue of an offset variable can be
set in anyone of the following ways:

a. By an ALLOCATE statement.

b. By assignment of the value of
another locator variable, or a
locator value returned by a
user-defined function.

c. B~' assignment of the NULL built-in
fUlnction value.

5. Locator variables cannot be operands
of any operators other than the
compaI:ison operators = and , =.

6. Loca,tc>r data cannot be converted to
any ot~her data type, but pointer can
be converted to offset, and vice
versa.,

7. A locator value can be assigned only
to a locator variable. When an offset
value is assigned to an offset
variable, the area variables named in
the OFFSET attributes are ignored.

A pointer value is converted to offset
by effectively deducting the pointer
value for the start of the area from
the pointer value to be converted.
This conversion is limited to pointer
values that relate to addresses within
the area named in the OFFSET
attribute. Except when assigning the
NULL built-in function value, it is an
error to attempt to convert to an
offset variable that is not associated
with an area.

In conversion of offset data to
pointer, the offset value is added to
the pointer value of the start of the
area named in the OFFSET attritute.
It is an error to attempt to convert
an offset variable that is not
associated with an area.

In any conversion of locator data
under the optimizing compiler, if the
offset variatle is a member of a
structure, or if it appears in a DO
statement or a multiple assignment
statement, then the area associated
with that offset variable must ce an
unsubscripted, non-defined, element
variable. The area may be based, but
if so, its qualifier must be an
unsubscripted, non-based, non-defined
pointer; and this pointer must not be
used to qualify the area explicitly in
declaration of the offset variable.
No such restrictions apply to the
checkout compiler.

8. With one exception, locator data
cannot be transmitted using STREAM
input/output. The exception is that,
for the checkout compiler, locator
variables can appear in a PUT DATA or
PUT LIST statement.

9. Whenever implicit conversion cetween
pointer and offset takes place the
area variable designated in the OFFSET
attribute is used to establish the
value.

Assumption:

The variable named in the OFFSET
attribute is contextually declared to have
the AREA attribute ..

Section I: Attributes 405

OPTIONS

The OPTIONS attribute specifies
characteristics of entry data. The OPTIONS
attribute implies the ENTRl attribute and
is additive. It has no effect on argument
passing and generic selection.

General Format:

OPTIONS (options-list)

It is used in the following manner:

DECLARE identifier

[ENTRY[(parameter-descriptor-list)]]

[VARIABLE] OPTIONS(option-list);

The options are separated by blanks.
For this implementation, the options are:

{COBOL I FORTRAN}

[NOMAP [(argument-list)]]
[NOMAPIN [(argument-list)]]
[NOMAPOUT [(argument-list)]]

[INTER]

These options specify facilities used
for interlanguage communication. They are
described briefly below; a full account of
the effect and usage is given in chapter
19, "Interlanguage Communication".

General rules:

1. The OPTIONS attribute can only be used
in an entry declaration. It can only

be specified for external entry constants,
or entry variables, or parameters.

2. The options can be specified in any
order.

3. The COBOL option specifies that the
designated entry point is in a COBOL
subprogram.

4. The FORTRAN option specifies that the
designated entry point is in a FORTRAN
subroutine or function.

5. The NOMAP, NOMAPIN and NOMAPOUT
options prevent the manipulation of
data aggregates at the interface
between PL/I and either COBOL or
FORTRAN.

406

One or more of these options can
appear in the sa~e OPTIONS-attribute
specification.

The arguments to which each option
applies can be specified in the

optional "argument-list" that follows
the option keyword. The format of the
"argument-list" is:

(ARGi[,ARGj] •••)

where i,j,... are decimal integers,
and the option is to apply to the ith,
jth,... items in the argument list of
procedure reference.

Only the arguments to which this
option applies are specified in the
argument list; they can be specified
in any order.

If there is no argument list for an
option, the option is assumed to apply
to all the arguments passed on
invocation of the entry name.

An OPTIONS specification should not
include the same argument in more than
one specified or assumed argument
list.

6. The INTER option specifies that any
interrupts occurring during the
execution of a COBOL subprogram (or a
FORTRAN routine) that are not dealt
with by the COBOL (or FORTRAN)
interrupt handling facilities are
dealt with by the PL/I interrupt
handling facilities.

Examples:

DCL COBOLA OPTIONS(COBOL NOMAP(ARG1)
NOMAPOUT(ARG3»;

CALL COBOLA(X,Y,Z); /* X, Y, Z ARE
STRUCTURES */

. ,
DCL FORTRNA OPTIONS(FORTRAN INTER);

CALL FORTRNA(L,M); /* L AND ~ ARE
ARRAYS */

. ,

OUTPUT

See INPUT.

Parameter 1~t1~ribute

The parameter attribute specifies that a
name in an illlvoked procedure represents an
argument pas:sed to that procedure.

General rule:s:

1. An identifier is explicitly declared
with the parameter attribute by its
appeara:nce in a parameter list. The
ident:i.fier must not be subscripted or
qualified. .

2. A parameter list is specified in a
PROCEDURE or ENTRY statement.
Parameters in a parameter list
correspond, from left-to-right, with
arguments in an argument list. The
number of arguments and parameters
must be the same.

3. Attributes other than parameter can be
supplied by a DECLARE statement
inter:nal to the procedure. A
parameter cannot be declared with any
file attributes other than FILE, or
with any of the attributes STATIC,
AUTOM.ATIC, BASED, BUILTIN, EXTERNAL,
GENERIC, or DEFINED.

4. If a parameter is to be used as a base
item for string overlay defining, or
is to be specified in record-oriented
transmission, the CONNECTED attrib~te
must be: declared explicitly.

5. Bounds, lengths, and sizes of simple
paramet,ers must be specified either by
asterisks or by constants. Only
controlled parameters may have the
INITIAl, attribute.

6. If the attributes of an argument do
not mat,ch those given for the
corresponding parameter, a dummy
argument is generated with attributes
that ag'ree with those of the
paramet,er. The original argument is
the:n converted and assigned to the
dummy argument. The conversion is
performed automatically for internal
entry constants: but for external
entry constants and entry variables, a
paramet,er- descriptor list must be
given in an appropriate entry
declaration if conversion is required.

The relationships between arguments
and pal:ameters is discussed in chapter
9, "sut)routines and Functions".

Assumptions:

If attributes are not supplied in a
DECLARE stat:ement, default attributes are
applied, depending on the initial letter of

the parameter identifier and on any
associated DEFAULT statement. A parameter
has the INTERNAL attribute by default.

PICTURE

Abbreviation: PIC

The PICTURE attribute is used to define
the internal and external formats of
character-string and. numeric character data
and to specify the editing of data.
Numeric character data is data having an
arithmetic value but stored internally in
character form. Numeric character data
must be converted to coded arithmetic
before arithmetic operations can be
performed.

The picture characters are described in
"Picture Specification Character" in Part
II.

General format:

PICTURE

{

'Character-Picture-specification'}

'numeric-picture-specification'

A "picture specification", either character
or numeric, is composed of a string of
picture characters enclosed in single
quotation marks. An individual picture
character may be preceded by a repetition
factor, which is a decimal integer
constant, B, enclosed in parentheses, to
indicate repetition of the character n
times. If n is zero, the character is
ignored. Picture characters are considered
to be. grouped into fields, some of which
contain subfields.

General rules:

1. The "character-picture-specification"
is used to describe a character-string
data item.

2. The "numeric-picture-specification" is
used to describe a character item that
represents either an arithmetic value
or a character-string value, depending
upon its use.

3. A numeric character data item can have
only a decimal base. Its scale and
precision are specified by the picture
characters. The PICTURE attribute
cannot be specified in combination
with base, scale, or precision
attributes. If the mode of the
numeric character data is COMPLEX,
however, the COMPLEX attribute must be
explicitly stated.

section I: Attributes 407

4. Only coded arithmetic data or
character string data representing
arithmetic constants may be assigned
to a numeric picture variable.

POINTER

See OFFSET.

POSITION

See DEFINED.

Precision Attribute.

The precision attribute is used to specify
the minimum number of significant digits to
be maintained for the values of the data
items, and to specify the scale factor (the
assumed position of the binary or decimal
point). The precision attribute applies to
both binary and decimal data.

General format:

(number-of-digits (,scale-factor])

The "number-of-digits" is an unsigned
decimal integer constant and "scale-factor"
is an optionally signed decimal integer
constant. The precision attribute
specification is often represented, for
brevity, as (p,g), where E represents the
"number-of-digits" and g represents the
"scale-factor".

General rules:

1. The precision attribute must follow,
with no intervening keywords or names,
the scale (FIX~D or FLOAT), base
(DECIMAL or BINARY), or mode (REAL or
COMPLEX) at the same factoring level.

2. The number of digits specifies the
number of digits to be maintained for
data items assigned to the variable.
The scale factor specifies the number
of fractional digits. No point is
actually present; its location is
assumed.

3. The scale factor can be specified for
fixed-point variables only; the number
of digits is specified for both
fixed-point and floating-point
variables.

408

4. When the scale is FIXED and no scale
factor is specified, it is assumed to
be zero; that is, the variable is to
represent integers.

6.

7.

8.

The scale factor of the variable, or
of an intermediate result must be in
the range -128 through +127.

The scale factor can be negative, and
it can be larger than the number of
digits. A negative scale factor (-g)
always specifies integers, with the
point assumed to be located g places
to the right of the rightmost actual
digit. A positive scale factor (q)
that is larger than the number of
digits always specifies a fraction,
with the point assumed to be located g
places to the left of the rightmost
actual digit. In either case,
intervening zeros are assumed, but
they are not stored; only the
specified number of digits are
actually stored.

The precision attribute cannot be
specified in combination with the
PICTURE attribute.

The maximum number of digits allowed
is 15 for decimal fixed-point data, 31
for binary fixed-point data, 33 for
decimal floating-point data, and 109
for binary floating-point data.

Assumptions:

The standard defaults for precision are
as follows:

(5,0) for DECIMAL FIXED
(15,0) for BINARY FIXED
(6) for DECIMAL FLOAT
(21) for BINARY FLOAT

The PRINT attribute specifies that the data
of the file is ultimately to be printed.
The PAGE and LINE options and format items
of the PUT statement and the PAGESIZE
option of the OPEN statement can be used
only with files having the PRINT attribute.
These options are described in section J,
"Statements".

General format:

PRINT

General rules;:

1. The PRINT attribute implies the OUTPUT
and S'l'RBAM attributes.

2. The PRINT attribute conflicts with the
RECORD nttribute. (However RECORD
files can be associated with the
printer;; see chapter 12,
"Record·~Oriented Transmission".)

3. The PRINT attribute causes the initial
data by·te within each record to be
res ervel:i for ANS printer control
charac:::tlers. These control characters
are set by the PAGE, SKIP, or LINE
format items or options.

Assumption:

If no FILE or STRING specification
appears in a PUT statement, the standard
output file SYSPRINT is assumed.

See COMP,LEX.

RECORD and STREAM

The RECORD cmd STREAM attributes specify
the kind of data transmission to be used
for the file. STREAM indicates that the
data of the file is considered to be a
continuous stream of data items, in
character form, to be assigned from the
stream to variables, or from expressions
into the stJ~eam. RECORD indicates that the
file consists of a collection of physically
separatel:e4:::ords, each of which consists of
ona or more data items in any form. Each
record is t:t'ansmitted as an entity to or
from a variable.

General format:

RECOlRDISTREAM

General rules:

1. A file with the STREAM attribute can
be specified only in the OPEN, CLOSE,
GE~[' , PUT, ON, and assignment
statements.

2. A file with the RECORD attribute can
be specified only in the OPEN, CLOSE,
READ, WRITE, REWRITE, LOCATE, UNLOCK,
DELETE, ON, and assignment statements.

3. A file! with the STREAM attribute
cannot have any of the following
at'tributes: UPDATE, DIRECT,
SEQUENTIAL, TRANSIENT, BACKWARDS,

BUFFERED, UNBUFFERED" EXCLUSIVE, and
KEYED, any of which implies RECORD.

4. A file with the RECORD attribute
cannot have the PRINT attribute.

Assumptions:

Default is STREAM. If a file is
implicitly opened by a READ, WRITE,
REWRITE, LOCATE, UNLOCK, or DELETE
statement, RECORD is assumed.

REDUCIBLE

see IRREDUCIBLE.

RETURNS

The RETURNS attribute is specified in an
ENTRY declaration to define the data
attributes of a value returned by an entry
variable or an external procedure.

General format:

RETURNS (attribute •••)

It is used in the following manner:

DECLARE identifier
[ENTRY (parameter descriptor list»)
[VARIABLE] RETURNS (attribute •••);

General rules:

1. The attributes in the parenthesized
list following the keyword RETURNS
must be separated by blanks (except
for attributes, such as precision,
that are enclosed in parentheses).
They must agree with the attritutes
specified either explicitly in the
RETURNS option of the PROCEDURE or
ENTRY statement to which the entry
name is prefixed, or by default.

2. The attributes specify the data
characteristics of the value returned
when the entry is invoked as a
function.

3. The only attributes that may be
specified are string or arithmetic
attributes (including VARYING), or
ALIGNED, UNALIGNED, POINTER, OFFSET,
AREA, FILE, EVENT, TASK, and LABEL.
The OFFSET attribute may include an
area namei under the optimizing
compiler, this must be a non-defined,
unsubscripted, unqualified name, but
under the checkout compiler it may be

Section I: Attributes 409

any area expression other than a
function reference. The LABEL
attribute may include a list of label
constants.

4. If RETURNS attributes are not
specified with an explicitly declared
entry constant of an external function
procedure, default attributes are
applied according to the entry
constant identifier. Standard default
assumptions are given below.

Note: The value returned by a
procedure function reference should
agree with the attributes specified by
RETURNS; if it does not agree, there
is an error since no conversion will
be performed.

5. String lengths and area sizes must be
specified by decimal integer
constants. The returned value has the
specified length or size.

Assumptions:

If the RETURNS attribute is not
specified for an external entry point, a
RETURNS attribute is assumed specifying
default attributes; the defaults are either
as specified in a DEFAULT statement or are
the standard defaults: REAL FIXED BINARY
(15,0) if the entry constant begins with
any of the letters I through N, otherwise~
REAL FLOAT DECIMAL (6).

SEQUENTIAL

See DIRECT.

Size Attribute

See AREA.

STATIC

See AUTOMATIC.

STREAM

See RECORD.

410

The TASK attribute describes a variable
that may be used as a task name, to test or
control the relative priority of a task.

General format:

TASK

General rules:

1. An identifier can be explicitly
declared with the TASK attribute in a
DECLARE statement, or it can be
contextually declared by its
appearance in a TASK option of a CALL
statement.

2. Task variables can also have the
following attributes:

a. Dimension

b. scope (the default is INTERNAL)

c. storage class (the default is
AUTOMATIC)

d. DEFINED (task variables may only
be defined on other task names)

e. INITIAL and INITIAL CALL

3. A task expression can be used in the
following contexts only:

a.

b.

c.

d.

e.

f.

g.

h.

i.

In the TASK option of a CALL
statement

As an argument of the PRIORITY
pseudovariable or built-in
function

As an argument in a CALL statement
or function reference

As a parameter in a PROCEDURE or
ENTRY statement

In an ALLOCATE or FREE statement

In an assignment statement

In a RETURN statement

As the control variable of a
DO-loop.

In a comparison operation.

4. A task variable may be associated with
the priority of a task by including
the task name in the TASK option of a
CALL statement. A task variable is
said to be active if its associated
task is active. A task variable must
be in an allocated state when it is
associat:ed with a task and must not be
freed while it is active. An active
task variable cannot be associated
with another task.

5. A task variable contains a single
value, a priority value. This value
is a fixed-point binary value of
precision (15,0). This value can be
test:ed clnd ad jus ted by means of the
PRIORITY built-in function and
pseudovariable. The built·in function
returns the priority of the task
argumE!n't relative to the priority of
the task executing the function.
Similarly, the pseudovariable permits
assignment, to the named task
varialol'e, of a priority relative to
the p:t'iority of the task executing the
assignment.

6. Unless the priority of the task
variable is set by means of either the
PRI()RITY pseudovariable or the
PRIORITY option of the CALL statement
which invokes the task, its priority
will be undefined.

7. Task data cannot be converted to any
other data type.

8. Assignment of task data to an inactive
task va.riable is permitted. The value
assigned must be the priority of a
task derived from a task expression.

9. Two task expressions can be compared
using = or a ~= comparison operator.
The val:iables compare equal if their
priorities are equal, otherwise they
comparE~ not equal.

TRANSIENT

See DIRECT.

UNALIGNED

See ALIGNED.

UNBUFFERED

See BUFFERED.

See INPUT.

VARIABLE

The VARIABLE attribute can be used with the
ENTRY, FILE, or LABEL attributes to
establish the name as a variable.

General format:

VARIABLE

VARYING

See BIT.

Section I: Attributes 411

Section J: Statements

This section presents the PL/I statements
in alphabetical order. (The preprocessor
statements are alphabetically arranged at
the end of this section.) Most statements
are accompanied by the following
information:

1. Function -- a short description of the
meaning and use of the statement

2. General format -- the syntax of the
statement

3. Syntax rules -- rules of syntax that
are not reflected in the general
format

4. General rules -- rules governing the
use of the statement and its meaning
in a PL/I program

ALLOCATE

Abbreviation: ALLOC

The ALLOCATE statement causes storage to be
allocated for specified controlled or based
data.

General format:

ALLOCATE option[,option] ••• ;

where "option" has one of two forms:

Option 1

[level] identifier [dimension]
[attri1:::utel •••

Option 2

based-variable· identifier
[SET(element-locator-variable)]
[IN(element-area-variable)]

Syntax rules:

Syntax rules 1 through 6 apply only to
Option 1:

1. "Level" indicates a level number. The
first identifier appearing after the
keyword ALLOCATE must be a level 1
identifier.

2. Each identifier must represent data of
the controlled storage class or be an
element of a controlled major
structure.

412

3. "Dimension" indicates a dimension
attribute. "Attribute" indicates an
AREA, BIT, CHARACTER, or INITIAL
attribute.

4. A dimension attri1:::ute, if present,
must specify the same number of
dimensions as that declared for the
associated identifier.

5. The attribute BIT may appear only with
a BIT identifier; CHARACTER may appear
only with a CHARACTER identifier; AREA
may only appear with an area
identifier.

6. A structure element name, other than
the major structure name, may a~pear
only if the relative structuring of
the entire major structure containing
the element appears as in the DECLARE
statement for that structure. In this
case, dimension attributes must be
specified for all identifers that are
declared with the dimension attribute.

Syntax rules 7 and 8 apFly only to
Option 2:

7. The based variable appearing in the
ALLOCATE statement may be an element
variable, an array, ?r a ma~or
structure. When it J.S a maJor
structure, only the major structure
name is specified.

8. The SET option, if present, may appear
preceding or following the IN option.

General rules:

Rules 1 through 6 apply only to Option 1:

1. When Option 1 is used, an ALLOCATE
statement for an identifier for which
storage was allocated and not freed
causes storage for the identifier to
1:::e "pushed down" or stacked. This
pushing down creates a new generation
of data for the identifier. When
storage for this identifier is freed,
using the FREE statement, storage is
"popped up" or removed from the stack.

2. Bounds for arrays, lengths of strings,
and sizes of areas are fixed at the
execution of an ALLOCATE statement.

a. If a bound, length, or size is
explicitly specified in an
ALLOCATE statement, it overrides

that; given in the DECLARE
st,at:ement.

b. If a bound, length, or size is
specified by an asterisk in an
AI,LOCATE stat,ement, the, bound,
length or size is taken from the
curJcent generation. If no
generation of the variable exists,
the bound, length, or size is
undefined and the program is in
err~)r •

c. Either the ALLOCATE statement or a
DEC:LARE or DEFAULT statement must
specify any necessary dimension,
size, or length attributes for an
identifier. Any expression taken
f:t'om a DECLARE or DEFAULT
s'tatement is evaluated at the
point of allocation using the
conditions enabled at the ALLOCATE
statement, although names in the
expression are interpreted in the
env'ironment of the DECLARE or
DEF'AULT statement.

d. If, in either an ALLOCATE or a
DECLARE statement, bounds,
lengths, or sizes are specified by
expressions that contain
references to the variable being
allocated, the expressions are
evslluated using the value of the
mOEit recent generation of the
variable.

3. Upon allocation of an identifier,
initial values are assigned to it if
the identifier has an INITIAL
attrib'lte in either the ALLOCATE
statement or DECLARE statement.
ExprEasBions or a CALL option in the
INITIAJL attribute are executed at the
point, ~)f allocation, using the
conditions enabled at the ALLOCATE
statem,ent, although the names are
interp:reted in the envi ronment of the
decli3.r,ation. If an INITIAL attribute
appears in both DECLARE and ALLOCATE
stat,ements, the INITIAL attribute in
the ;~LLOCATE statement is used. If
initializati6n involves reference to
the variable being allocated, the
reference will be to the new
generation of the variable.

4. To determine whether or not storage
has be!en allocated for an identifier
and ho,w many generations exist, the
built-in function ALLOCATION may be
used.

5. A parameter that is declared
CONTROLLED may be specified in an
ALLOCJ~TE statement.

6. Any evaluations performed at the time
the ALLOCATE statement is executed
(e.g., evaluation of expressions in an
INITIAL attribute) must not be
interdependent.

Rules 7 through 12, apply only to Option 2:

7. When Option 2 is used, storage is not
"pushed down" or stacked. In this
case, reference may be made to any
generation of a based variable through
a locator variable.

8. The allocation of a based variable
involves the based variable to te
allocated, a locator variable to
identify the new generation, and an
area if the generation is to be
allocated in an area. If no SET
option is specified, a SET option is
assumed to specify the locator
variable given in the BASED attribute
of the based variable declaration: it
is an error, in such a case, if this
BASED attribute does not specify a
locator variable. If the SET option
specifies an offset variable and no IN
option is present then an IN option is
assumed to specify the area given in
the OFFSET attribute of the offset
variable declaration; in such a case~
it is an error if this OFFSET
attribute does not specify an area
variable.

9. If the SET option specifies an offset
variable, the locator value
identifying the new generation is
assigned to the offset variable: the
IN option must be present, or te
assumed, and it must specify either
the same area as that specified in the
OFFSET attribute of the offset
variable declaration, or an area
contained in or containing that area.

10. If no IN option is present and none is
assumed, the new generation is
allocated in storage associated with
the task which executes the ALLOCATE
statement. The SET option in this
case must specify a pointer variable.

11. If the IN option appears in, or is
assumed for, the ALLOCATE statement,
storage will be allocated in the named
area, for the based variable. If
sufficient storage does not exist
within'this area, the AREA condition
will be raised.

12. The amount of storage allocated for a
based variable depends on its
attributes, and on its dimensions,
length, or size specifications if
these are applicable at the time of
allocation.

section J: Statements 413

These attributes are determined from
the declaration of the based variable,
and additional attributes may not be
specified in the ALLOCATE statement.
A based structure may contain
adjustable array bounds or string
lengths or area sizes (see "REFER
Option", in "storage Control" in Part
I). Note that the asterisk notation
for bounds, length, or size is not
permitted for based variables.

Assignment Statement

The assignment statement is used to
evaluate an expression and to assign its
value to one or more target variables; the
target variables may be element, array, or
structure variables. The target variables
can be pseudovariables.

General formats:

The assignment statement has three
general format options. They are given in
figure J .1.

Syntax rules:

1. In option 2, each target variable must
be an array. If the right-hand side
contains arrays of struGtures, then
all· target variables must be arrays of
structures. The BY NAME option may be
given only when the right-hand side
contains at least one structure.

2. In Option 3, each target variable must
be a structure.

General rules:

1. Aggregate assignments (Options 2 and
3) are expanded into a series of
element assignments according to rules
5 through 8.

2. An element assignment is performed as
follows:

a. Subscripts and locator
qualifications of the target
variables, and the second and
third arguments of SUBSTR
pseudovariable references, are
evaluated first. (The order of
evaluation of subscripts and
qualifiers is undefined).

b. The expression on the right-hand
side is then evaluated.

c. For each target variable (in left
to right order), the expression is
converted to the characteristics
of the target variable according
to rules for data conversion
(except that whenever a conversion
of arithmetic base is involved,
the value is converted directly to
the precision of the target
variabLe). The converted value is
then assigned to the target
variable. .

d. The element variable can be a
variable with the PICTURE
attribute. The rules for
assignments to picture targets are
described in section D, "Picture
Specification Characters".

3. The following rules apply to string
element assignment:

r---,
Option 1 (Element Assignment)

\ element-variable I [, element-variable]

lpseudovariable ,pseudovariable

Option 2 (Array Assignment)

(array-variable [, arraY-Variable]

I pseudovariable, pseudovariable

IOption 3 (Structure Assignment)

= element-expression;

j

structure-expression [,BY NAME]!
••• = array-expression [,BY NAME] ;

element-expression

I I structure-variable [structure-variable] _ jstructure-expression [,BY NAME] I .
I · .. - ,
I pseudovariable ,pseudovariable element-expression L ___ - ________________________________ _

Figure J.1. General formats of the assignment statement

414

a. ~rhle assignment is performed from
left to right, starting with the
leftmost position.

b. If the target variable is a
fixed-length string, the
expression value is truncated on
the right if it is too long
(raising the STRINGSIZE condition~
if e!nabled) or padded on the right
(with blanks for character string,
zeros for bit strings) if the
'valu.e is too short. (Note that a
string pseudovariable is
considered to be a fixed-length
string.) The resulting value is
assigned to the target.

c. If the target is a VARYING string
and the value of the expression is
lc.nsrer than the maximum length
declared for the variable, the
value is truncated on the right
(raising the STRINGSIZE condition,
if Emabled). The target string
obtclins a current length equal to
it.s maximum length. If the value
of the expression is not longer
than the maximum length, the value
is assigned~ the target string
obtcdns a current length equal to
the length of the value.

4. The fc)lJLowing rules apply to other
element assignments:

a. If the target is an area variable,
the expression must be an area
variable or function. The AREA
condition will be raised by this
assignment if the size of the
target area is insufficient for
the current extent of the area
b~~ilO.g assigned.

b. If the target is a pointer
variable, the expression can only
be a pointer (or offset) variable
Ole a pointer (or offset) function
reference. If the expression is
of offset type, its value is
converted to pointer.

c. If the target is an offset
variable, the expression can only
be an offset (or pointer) variable
or an offset (or pointer) function
reference. If the expression is
o.f pOinter type, its value is
converted to offset.

d. If the target is a label variable,
the expression can only be a label
variable or label constant.
Environmental information (i.e.,
information that identifies the
invocation of the block) is always

assigned to the label variable.

e. If the target is an event
variable, the expression can only
be an event variable. The
assignment is uninterruptable, and
it involves roth the completion
and status values. An event
variable does not become active
when it has an active event
variable assigned to it. It is an
error to assign to an active event
variable.

f. If the target is a STATUS
pseudovariab1e, a value can re
assigned whether or not the event
variable is active. It is an
error to assign to a COMPLETION
pseudovariab1e if the named event
variable is active.

g. If the target is an entry
variable, the expression can only
be an entry ex~ression.

h. If the target is a file name
variable, the expression can only
be a file expression.

i. If the target is a task variable,
the expression can only be a task
variable or a task function
reference. The task variable
specified must be inactive. The
assignment involves the priority
of the task variable or task
function reference.

5. The first target variable in an
aggregate assignment is known as the
master variable. If the master
variable is an array, then an array
expansion (Rule 6) is performed~
otherwise, a structure expansion
(Rules 7 and 8) is performed. The
CHECK condition for assignment to a
target variable is raised (when
suitably enabled) after assignment to
each element. In the case of BY NAME
assignment, the CHECK condition for
the target variable is raised
regardless of whether any value is
assigned to an item. The label prefix
of the original statement is a~Flied
to a null statement preceding the
other generated statements.

6. In Option 2, all array operands must
have the same number of dimensions and
identical bounds. The array
assignment is expanded into a loop as
follows.

section J: Statements 415

LABEL: DO jl = LBOUNDCmaster-variable,1) TO
HBOUNDCmaster-variable,l);

DO j2 = LBOUNDCmaster-variable,2) TO
HBOUNDCmaster-variable,2);

DO jn = LBOUNDCmaster-variable,n) TO
HBOUNOCmaster-variable,n);

generated assignment statement

END LABEL;

In this expansion, n is the number
of dimensions of the master variable
that are to participate in the
assignment. In the generated
assignment statement, all array
operands are fully subscripted, using
(from left to right) the dummy
variables j1 to jn. If an array
operand appears with no subscripts, it
will only have the subscripts j1 to
jn; if cross-section notation is used,
the asterisks are replaced by j1 to
jn. If the original assignment
statement (which may have been
generated by Rule 7 or Rule 8) has a
condition prefix, the generated
assignment statement is given this
condition prefix. If the original
assignment statement (which may have
been generated by Rule 8) has a BY
NAME option, the generated assignment
statement is given a BY NAME option.
If the generated assignment statement
is a structure assignment, it is
expanded as given below.

7. In Option 3, where the BY NAME option
is not specified, the following rules
apply:

416

a. None of the operands can be
arrays, although they may be
structures that contain arrays.

b. All of the structure operands must
have the same number, k, of
immediately contained items.

c. The assignment statement (which
may have been generated by Rule 6)
is replaced by ~ generated
assignment statements. The !th
generated assignment statement is
derived from the original
assignment statement by replacing
each structure operand by its !th
contained item: such generated
assignment statements may require
further expansion according to
Rule 6 or Rule 7~ All generated
assignment statements are given

the condition prefix of the
original statement.

8. In Option 3, where the BY NAME option
is given, the structure assignment,
which may have been generated by Rule
6, is expanded according to steps a
through d below. None of the operands
can be arrays.

a. The first item immediately
contained in the master variable
is considered.

b. If each structure operand and
target variable has an immediately
contained item with the same
identifier, an assignment
statement is generated as follows:
the statement is derived by
replacing each structure operand
and target variable with its
immediately contained item that
has this identifier. If any
structure contains no such
identifier, no statement is
generated. If the generated
assignment is a structure or
array-of-structures assignment, BY
NAME is appended. The first
generated assignment is given the
label prefix of the original
assignment statement; all
generated assignment statements
are given the condition prefix of
the original assignment statement.

c. step b is repeated for each of the
items immediately contained in the
master variable. The assignments
are generated in the order of the
items contained in the master
variable.

d. steps a through c may generate
further array and structure
assignments. These are expanded
according to Rules 6 through 8.

The BEGIN statement heads and identifies a
begin block.

General format:

BEGIN[ORDERIREORDER];

Syntax rules:

1. A label of a BEGIN statement may be
subscripted, but such a label cannot
appear in an END statement.

General :rule:s:

1. A BEGIN statement is used in
conjunction with an END statement to
delimit a begin block. A complete
discussion of begin blocks can be
found in chapter 6, "Program
Organif:Jation. "

2. ORDER and REORDER are optimization
options for use by the optimizing
compiler. If they are included in a
program processed by the checkout
compiler, they are checked for syntax
errors and then ignored. Their
presence in such a program is not an
errOl:.

3. ORDER and REORDER specify the extent
to which the block is to be optimized.
In general, ORDER permits optimization
to the degree such that the latest
values of variables set in a block are
guaranteed available in a
computiitional on-unit entered at any
point: during execution of the block.
REORDER permits a greater degree of
optimi:zation; with REORDER the latest
values of variables set in the block
are no't guaranteed available in an
on-unit entered during execution of
the block. If neither is specified,
ORDER is assumed, but REORDER is
inheri'ted by all contained blocks
unless they explicitly specify ORDER.

The CALL statement invokes a procedure and
causes control to be transferred to a
specified entry point of the procedure.

General format:

CALL {entry-expression I generic-name I
built-in name}

[(argument [,argument] •••)l

[TASK [(element-task-name)]]
[EVENT (element-event-name)]
[PRIORITY (expression)];

Syntax rulEls:

2.

The entry expression, generic name, or
built-in name represents the entry
point of the subroutine invoked.

The TASK, EVENT, and PRIORITY options
can appear in any order.

General rules:

1. The TASK, EVENT, and PRIORITY options,
when used alone or in any combination,
specify that the invoked and invoking
procedures are to be executed
asynchronously. Note that if either
the EVENT option or the PRIORITY
option, or both, are used without the
TASK option, the created task will
have no name. (See chapter 17,
"Multitaksing".)

2. When the TASK option is used, the task
name, if given, is associated with the
task created by the CALL. Reference
to this name enables the priority of
the task to be controlled at some
other point by the use of the PRIORITY
pseudovariable and built-in function.

3. When the EVENT option is used, the
event name is associated with the
completion of the task created by the
CALL statement. Another task can then
wait for completion of this created
task by specifying the event name in a
WAIT statement.

Upon execution of the CALL
statement, the event variable is made
active, and the completion value is
set to 'O'B and the status value to O.
Upon termination of the created task,
the completion value is set to '1'B
and, unless the task has been
terminated by a RETURN or END
statement, the status is set to 1 if
still zero.

4. If the PRIORITY option is used, the
expression in the PRIORITY option is
evaluated to an integer ID, of an
implementation-defined precision
(15,0). The priority of the named
task is then made m relative to the
task in which the CALL is executed.

If a CALL statement with the EVENT
or TASK option does not have the
PRIORITY option, the priority of the
invoked task is made equal to that of
the task variable in the TASK option,
if there is a task variable, or else
made equal to the priority of the
invoking task. The programmer must
specify a priority if he uses a task
variable, (by means of either a
PRIORITY option on the CALL statement
or the PRIORITY built-in function
prior to the CALL statement),
otherwise the task will be of
undefined priority.

5. Expressions in these options, as well
as any argument expressions, are
evaluated in the task in which the
call is executed. This includes
execution of anyon-units entered as
the result of the evaluations.

Section J: statements 417

6. The environment of the invoked
procedure is established after
evaluation of the expressions named in
Rule 5, and before the procedure is
invoked.

7. A CALL statement must not be used to
invoke a procedure if control is
returned to the invoking procedure by
means of a RETURN(expression)
statement.

8. see chapter 9, "Subroutines and
Functions" for detailed descriptions
of the interaction of arguments with
the parameters that represent these
arguments in the invoked procedure.

9. If the procedure invoked by the CALL
statement has been specified in a
FETCH or RELEASE statement, and if it
is not present in main storage, the
CALL statement initiates dynamic
loading of the procedure from
auxiliary storage. The execution of
the invocation is delayed until the
procedure has been loaded.

In this case, the entry expression
must be an entry constant, and it must
be equivalent to both the name by
which the procedure is known in
external storage and a point through
which the procedure may be entered;
and the same constant must have
appeared in a FETCH or RELEASE
statement compiled at the same time as
the CALL statement. A main procedure
may not be dynamically loaded. A
fetched procedure may not fetch a
further procedure.

The CHECK statement causes the CHECK
condition to be dynamically enabled for
specified or assumed names.

The PL/I checkout compiler implements
the CHECK statement in this sense, but the
PL/I optimizing compiler implements this
statement by checking the syntax and then
ignoring it.

General format:

CHECK[(name-list)];

Syntax rules:

1. The optional "name-list" is one or
more names separated by commas.

2. A name must be one of the following:

418

a. An unsubscripted variacle
representing element, an array or
a structure of any data type. The
variable must not be iSUB-defined
or locator qualified.

b. A label constant.

c. An entry constant.

3. If a name-list is specified, the CHECK
statement applies to those names only.
The names must be known in the block
in which the CHECK statement is
executed.

If no names are specified, the CHECK
statement is assumed to apply to every
name known in the external procedure
that contains the CHECK statement,
whether or not these names were known
at the time the CHECK statement was
executed. These names may be known in
other, separately compiled, external
procedures.

General Rules:

1. Execution of a CHECK statement has the
effect of enabling a CHECK
condition-prefix, or of modifying an
existing CHECK condition-prefix, for
every statement that is executed after
the execution of the CHECK statement.

The prefixes thus derived operate in
the same way as ordinary prefixes. If
the condition is raised, any CHECK
on-unit established is executed. If
there is no on-unit, the standard
system action for the CHECK condition
is taken. The situations in which the
CHECK condition is raised are
described in "CHECK Condition", in
section H, "On-Conditions".

2. The variable can be of any storage
class, or DEFINED, or a parameter.

3. If the name of a structure or an array
of structures appears in the name
list, this is expanded into a list of
the names of all the elements in the
structure or array of structures, in
the order in which they were.declared.
This expanded list appears in the name
list for the derived prefixes.

4. The information provided by standard
system action for the CHECK condition
for a particular name is~

a. The statement-number of the
statement in which the references
to the name occurs.

b. Information similar to that put
out by a POT DATA statement for
the particular type of variable.

If the name is the name of an array,
the infol:mation includes the
subscript:ed name of the element to
which a Jlew value is being assigned.

5. If the name is an entry name, this can
be specified as an entry constant or
an entry variable, whether it appears
in a function reference, a CALL
statement" or an INITIAL CALL
attribute. If the reference is to an
entry variable, the information
provided by standard system action
includes the name of the entry
constant associated with the
particllliar invocation of the entry
variable.

6. A CHECK statement remains effective
until:

a. The program terminates" or

b. An appropriate NOCHECK statement
Jis executed.

The CLOSE statement dissociates the named
file from the data set with which it was
associated by opening in the current task.

General format:

CLOSE FILE(file-expr)
[ENVIRONMENT({LEAVEIREREAD})]
[,FILE(file-expr)
[ENVIRONMENT({LEAVEIREREAD})]] ••• i

General rules:

1. The FILE(file-expression) option
specifies which file is to be closed.
It must appear once. Several files
can be closed by one CLOSE statement.
There must be a FILE option for each
one.

2. A closed file can be reopened.

3. Closing an unopened file, or an
already closed file, has no effect.

4. The CLOSE statement cannot be used to
close a file in a task different from
the one that opened the file. If a
file i.s not closed by a CLOSE
statement, it is automatically closed
at the completion of the task in which
it was c>pened.

6. All input/output events associated
with the file that have a status value
of zero when the file is closed are
set complete, with a status value of
1 •

7. A CLOSE statement unlocks all records
in the file previously locked in the
task in which the CLOSE appears.

8. The ENVIRONMENT attribute with either
the REREAD or LEAVE options can be
given.

DECLARE

Abbreviation: DCL

The DECLARE statement is the principal
method for explicitly declaring attributes
of names.

General format:

DECLARE
[level] identifier[attribute] •••
(SYSTEM]
[,[level] identifier[attribute] •••
(SYSTEM]] ••• ;

Syntax rules:

1. Any number of identifiers may be
declared in one DECLARE statement.

2. "Level" is a nonzero unsigned decimal
integer constant. If a level number
is not specified, level 1 is assumed
for all element and array variacles.
Level 1 must be specified for all
major structure names. A blank space
must separate a level number from the
identifier following it.

3. Attributes specified in DECLARE
statements are separated by blanks.
Except for the dimension, length, and
precision attribute specifications,
they may appear in any order. The
dimension attribute specification must
immediately follow the array name; the
length and precision attribute
specifications must follow one of
their associated attributes. A comma
must follow the last attribute
specification for a particular name
(or the name itself if no attricutes
are specified with it), unless it is
the last name in the DECLARE
statement, in which case the semicolon
is used.

4. "SYSTEM" specifies that the standard
default attributes are to be applied
to the associated identifi~r;

Section J: Statements 419

attributes are not taken from DEFAULT
statements. "SYSTEM" may appear
before, after, or between the other
attributes.

Factoring of Attributes

Attributes common to several names can
be factored in a declaration to eliminate
repeated specification of the same
attribute for many identifiers. Factoring
is achieved by enclosing the names in
parentheses~ and following this by the set
of attributes which apply. All factored
attributes must apply to all of the names.
No factored attribute can be overridden for
any of the names, but any name within the
list may be given other attributes so long
as there is no conflict with the factored
attributes. Factoring of attributes is
permitted only in the DECLARE and DEFAULT
statement, but not within an ENTRY
attribute declaration. The dimension
attribute may be factored. The precision
and length attributes can be factored only
in conjunction with an associated keyword
attribute. Factoring can be nested as
shown in the fourth example below.

Names within the parenthesized list are
separated by commas.

Note: Structure level numbers can also be
factored, but a factored level number must
precede the parenthesized list.

DECLARE (A,B,C,O) BINARY FIXED (31):

DECLARE (E OECIMAL(6,S),
F CHARACTER(10» STATIC:

DECLARE 1 A, 2(B,C,D) (3,2) BINARY
FIXED (15), ••• ;

DECLARE «A,B) FIXED(10), C FLOAT(S»
EXTERNAL;

General rules:

1. A particular level 1 identifier can be
specified in only one DECLARE
statement within a particular block.
All attributes given explicitly for

420

that identifier must be declared
together in that DECLARE statement.
(Note, however, that identifiers
having the FILE attribute may be given
attributes in an OPEN statement as
well. See "The OPEN Statement" in
this section and chapter 10, "Input
and output" for further information.)

2. Attributes of external names~ in
separate blocks and compilations, must
be consistent (except that an INITIAL
attribute given in one declaration
need not be repeated)~

3. Labels may be prefixed to DECLARE
statements. However, a branch to such
a label is treated as a branch to a
null statement. Condition prefixes
cannot be attached to a DECLARE
statement.

DEFAULT

Abbreviation: OFT

The DEFAULT statement allows the
programmer to specify the default
attributes to be applied to designated
identifiers that require implicit
declaration of some or all of their
attributes. The DEFAULT statement can
specify default attributes for:

1. Explicitly declared identifiers

2. Contextually declared identifiers

3. Attributes to be included in parameter
descriptors

4. Implicitly declared identifiers and
values returned from function
procedures

General format: See figure J.2.

r---,
DEFAULT {simple-specificationlfactored-specification}

(~{simple-specificationlfactored-specification}] •••

"simple-specification" is

RANGE({identifierlletter:letter}
[,(identifierlletter:letter}] •••)

(attribute-specification]

RANGE(.) (attribute-specification]

DESCRIPTORS (attribute-specification]

"factored-specification" is

({simple-specificationlfactored-specification}
(,{simple-specificationlfactored-specification}] •••)

(attribute-specification]

"attribute-specification" is

attribute... (VALUE(value-specification)]
VALUE (value-specification)

Figure Jf.:2. General formats of the DEFAULT statement

General Rules:

1. Any nt't.ributes not applied according
to DEFAULT statement rules for any
partially complete explicit or
contex'tual declarations, and for
implicit declarations, are supplied
according to standard default rules.

2. The BClope of a DEFAULT statement is
the]block in which it occurs, and all
blocks within that block which neither
incl'ld'e another DEFAULT statement with
the same range, nor are contained in a
block having a DEFAULT statement with
the same range.

It is possible for a containing block
to hc:lv,e a DEFAULT statement with a
ran9~9 'that is partly covered by the
range lof a DEFAULT statement in a
contained block. In such a case, the
range lof the DEFAULT statement in the
containing block is reduced by the
range lof the DEFAULT statement in the
contained block.

For example:

P: :PROCEDURE;
L1: DEFAULT RANGE (XY) FIXED;

Q: :BEGIN;
L2: DEFAULT RANGE (XYZ) FLOAT;

END Pi

The range and scope of DEFAULT
statement L1 is all identifiers in the
procedure P beginning with the
characters XY, together with all
identifiers in begin block Q beginning
with the characters XY, except for
those beginning with the characters
XYZ. The range and scope of the
DEFAULT statement L2 is all the
identifiers in begin block Q beginning
with characters XYZ.

3. VALUE (value-specification) may appear
anywhere within an attribute
specification, except before an array
dimension attribute.

4. VALUE establishes any default rules
for a string length, area size, and
precision. The base and scale
attributes in the value specification
must be present to identify a
particular precision specification
with a particular attribute.

S. A value specification is a list of one
or more of the following in any order;

a. AREA (size)

b. BIT (length)

c. CHARACTER (length)

d. {base-attribute scale-attribute I
scale-attribute base-attribute}

(precision[,scale factor])

section J: Statements 421

The base and scale attributes may be
factored, if, when expanded, the above
format is used.

The size of AREA data, or length of
BIT or CHARACTER data, can be an
expression or a decimal integer
constant, or can be specified as an
asterisk.

Example:

DEFAULT RANGE(A:C)
VALUE (FIXED DECIMAL(10),

FLOAT DECIMAL(14),
AREA(2000»;

DECLARE B FIXED DECIMAL, C FLOAT
DECIMAL,

A AREA;

These statements are equivalent to:

DECLARE B FIXED DECIMAL(10), C FLOAT
DECIMAL(14), A AREA(2000);

6. RANGE designates the particular
identifiers to which the attributes
specified in a DEFAULT statement
apply.

422

a. The form of RANGE(identifier) is
used when the default rules are to
apply to those identifiers which
contain the letters indicated in
"identifier" as their first and
subsequent letters. For example:

RANGE (ABC)

applies to these identifiers:

but not to:

ABC
ABCD
ABCD •••• etc.

ABD
ACB
AB
A

hence a single letter in the RANGE
specification applies to all
identifiers which start with that
letter.

b. An alternative specification of
RANGE is the form "letter:letter"
This is used to specify that
identifiers with initial letters
which either correspond to the two
letters specified, or to any
letters between the two in
alphabetic sequence, are subject
to the default attributes
specified for a particular range.
The letters given in the

specification must be in
increasing alphabetic order, for
example:

RANGE(A:G,I:M~T:Z)

c. RANGE(*) specifies all identifiers
in the scope of the DEFAULT
statement.

7. DESCRIPTORS specifies that the
associated attributes are to be
included in any parameter descriptors
in a parameter descriptor list of an
explicit entry declaration, provided
that the inclusion of any such
attributes is not prohibited by the
presence of alternative attributes of
the same class and provided that at
least one attribute is already
present. From the second provision it
follows that the DESCRIPTORS default
attributes are not applied to
parameters having null descriptors,
that is, parameters whose attributes
match those of the corresponding
argument.

8. Factored-default-specification: this
form is used as follows:

DEFAULT (RANGE (A) FIXED, RANGE(B)
FLOAT) BINARY;

This statement establishes default
attributes FIXED BINARY for implicitly
declared identifiers with the initial
letter A, and FLOAT BINARY for those
with the initial letter B.

9. Labels may be ~refixed to DEFAULT
statements. However, a branch to such
a label is treated as a branch to a
null statement. Condition prefixes
cannot be attached to a DEFAULT
statement.

Rules for Attributes in a DEFAULT
Statement:

1. The file attributes (excluding FILE),
and the attributes ENTRY, ENVIRONMENT,
RETURNS, LIKE, and VARIABLE are not
permitted in an attribute
specification. If FILE is used, it
implies a scope attribute of INTERNAL
and the attribute VARIABLE.

2. It is not possible to use the DEFAULT
statement to create a structure.
Structure elements are given default
attributes according to the identifier
of the element, not the qualified
structure element name.

3. The following attributes are allowed
in an attribute specification only if

the restriction given below for each
is otserved.

AREA - without a size specification
BIT - without a string length

specification
CHARAC'I'ER - without a string length

specification
LABEL - without a label list
Ari,thme:tic base and scale attributes -

without precision specifications

4. The CONTROLLED attribute cannot be
applied to a parameter or parameter
descriptor. For any identifier that
is a parameter name, a specification
of CONTROLLED as a default attribue
will be: ignored, and the attribute
will be: ignored if it appears in a
DESCRIPTORS attribute specification.

5. The dimensions of an array are
permitted as attributes, but only as
the first item in an attribute
specification. The bounds may be
specified as a arithmetic constant or
an expression involving variables.
For example:

DEFAULT RANGE (J) (5);
DEFAULT RANGE (J) (5,5) FIXED;

but !lot,

DEFAULT RANGE (J) FIXED (5);

The INITIAL attribute may be
specified.

The DELAY statement causes the execution of
a task to be suspended for a specified
period of time.

General :Eormat:

DELAY (element-expression);

General rules:

1. Execution of the DELAY statement
causes the element expression to be
evaluated and converted to an integer
B; execution is then suspended for !l
milliseconds. The value is recorded
to 1/50th or 1/60th second, depending
on whether the frequency of the
electrical supply to the machine is 50
or 60 hertz (cycles per second).

2. If no timing facility is available,
DELAY a.cts as a null statement.

Example:

DELAY (20);

This statement causes execution of the
task to be suspended for 20 milliseconds or
17 milliseconds (approximately), depending
on whether the supply is 50 or 60 hertz.

DELETE

The DELETE statement deletes a record from
an UPDATE file.

General format:

DELETE FILE (file-expr)
[KEY(expression)]
[EVENT(event-variable)]i

General rules:

1. The options may appear in any order.

2. The FILE option specifies the UPDATE
file; it must te specified.

3. The KEY option must be specified if
the file is a DIRECT UPDATE file. It
can be specified for a SEQUENTIAL
UPDATE file with INDEXED organization.
The expression is converted to a
character string and determines which
record is to be deleted.

4. If the file is a SEQUENTIAL UPDATE
file, the record to be deleted is the
last record that was read; the data
set organization must be INDEXED.

5. The EVENT option allows processing to
continue while a record is being
deleted.

When control reaches a DELETE
statement containing this option, the
"event variable" is made active (that
is, it cannot be associated with
another event) and is given the
completion value 'O'B, provided that
the UNDEFINEDFILE condition is not
raised by an implicit file opening
(see "Note" below). The event
variable remains active and retains
its 'O'B completion value until
control reaches a WAIT statement
specifying that event variable. At
this time, either of the following can
occur:

a. If the DELETE statement has teen
executed successfully and neither
of the conditions TRANSMIT or KEY
has teen raised as a result of the
DELETE, the event variable is set

Section J: Statements 423

complete, given the completion
value '1'B, and the event variable
is made inactive, that is, can be
associated with another event.

b. If the DELETE statement has
resulted in the raising of
TRANSMIT or KEY, the interrupt for
each of these conditions does not
occur until the WAIT is
encountered. At such time, the
corresponding on-units (if any)
are entered in the order in which
the conditions were raised. After
a return from the final on-unit,
or if one of the on-units is
terminated by a GO TO statement,
the event variable is given the
completion value '1'B and is made
inactive.

Note: If-the DELETE statement causes an
implicit file opening that results in the
raising of UNDEFINEDFILE, the on-unit
associated with this condition is entered
immediately and the event variable remains
unchanged; that is, the event variable
remains inactive and retains the same value
it had when the DELETE was encountered. If
the on-unit does not correct the condition,
then, upon normal return from the on-unit,
the ERROR condition is raised; if the
condition is corrected in the on-unit, that
is, if the file is opened successfully,
then, upon normal return from the on-unit,
the event variable is set to 'O'B, it is
made active, and execution of the DELETE
statement continues.

6. The DELETE statement unlocks a record
only if that record had been locked in
the same task in which the DELETE
appears.

7. The DELETE statement can cause
implicit opening of a file.

Example:

DELETE FILE(ALPHA) KEY (DKEY);

This statement causes the record
identified by DKEY to be deleted from the
data set associated with the file ALPHA.
If the record was previously locked in the
same task, it is unlocked.

DISPLAY

The DISPLAY statement causes a message to
be displayed to the machine operator. A
response may be requested.

424

General format:

Option 1.

DISPLAY (element-expression);

Option 2.

DISPLAY (element-expression)
REPLY
(character-variablelpseudovariable)
(EVENT (event-variable)];

General rules:

1. Execution of the DISPLAY statement
causes the element expression to be
evaluated and, where necessary,
converted to a varying character
string of implementation-defined
maximum length (72 characters). This
character string is the message to be
displayed.

2. In Option 2, the character variable or
pseudovariable receives a string that
is a message to be supplied by the
operator. The STRING pseudovariable
must not be used. The message cannot
exceed 72 characters.

3. In Option 2, if the EVENT option is
not specified, execution of the
program is suspended until the
operator's message is received. In
option 1, execution continues
uninterrupted.

4. If the EVENT (event-variable) option
is given, execution will not wait for
the reply to be completed before
continuing with subsequent statements.
The completion part of the event
variable will be given the value 'O'B
until the reply is completed, when it
will be given the value '1'B. The
reply is considered complete only
after the execution of a WAIT
statement naming the event. Another
DISPLAY statement must not be executed
until the previous reply is complete.

Example:

DISPLAY ('END OF JOB');

This statement causes the message "END
OF JOB" to be displayed.

The DO statement heads a DO-group and can
also be used to specify repetitive
execution of the statements within the
group.

General formats:

The thrE!e format types for the DO
statement ar4; shown in Figure J-3.

Syntax rules::

1. In all it.hree types, the DO statement
is used in conjunction with the END
statement to delimit a DO-group. Only
Type 'I ~joes not provide for the
repetitive execution of the statements
within the group.

2. In 'l'ype 3, ·the variable or
pseudovariable must represent a single
element': "variable" may be
subscripted and/or qualified. Real
arithmetic variables are generally
used, but all variable types are
allowed, provided that the expansions
gi ven iln the general rulas below
resu11:. in valid PL/I programs. Note
that if "variable" is a
progrcim-control variable, the BY and
TO options cannot be used in
"specification".

3. Each 43xpression in a specification
must be an element expression.

4. If "BY lexpression3" is omitted from a
"specification," and if "TO
expression2" is included,
"expression3" is assumed to be 1.

5. If "TO expression2" is omitted from a
"specification," repetitive execution
continues until it is terminated by
the WHILE clause or some statement
causel3 control to pass out of the
group.

The following pseudovariables may not be
used under the optimizing compiler:
COMPLETION" COMPLEX, PRIORITY, STRING.

6. If both "TO expression2" and "BY
expression3" are omitted from a
specification, it implies a single
execution of the group, with the
control variable having the value of
"expression1". If "WHILE expression4"
is included, this single execution
will not take place unless
"expression4" is true.

General rules:

1. In Type 1, the DO statement only
delimits the start of a DO-group: it
does not provide for repetitive
execution.

2. In Type 2, the DO statement delimits
the start of a DO-group and provides
for repetitive execution as defined by
the following:

LABEL: DO WHILE (expression):
statement-1

statement-n
END:

NEXT: statement /*STATEMENT
FOLLOWING THE DO GROUP*/

The above is exactly equivalent to the
following expansion:

LABEL: IF (expression) THEN: ELSE
GO TO NEXT:

NEXT:

statement-1

statement-n
GO TO LABEL:
statement /*STATEMENT

FOLLOWING THE DO GRCUP*/

r---, Type 1. DO: I

Type 2. DO WHILE (element-expression):

DO
{

PSeUdOvariable}

variable
=specification[,specificationl ••• :

I
I
I
I
I
I
I
I

where "specification" has the form: I

. [TO expression2 [ByexpreSSion3l] :
express~on1 [WHILE(expression4)l I

BY expression3 [TO expression2l I _________ , __ J

Figure J.3. General format of the DO statement

Section J: Statements 425

3~ In Type 3, the DO statement delimits
the start of a DO-group and provides
for controlled repetitive execution as
defined by the following:

LABEL: DO-variable=
expression1
TO expression2

BY expression3
WHILE (expression4);
statement-1

statement-m
LABEL1: END;
NEXT: statement

For a variable that is not a
pseudovariable, this is exactly
equivalent to the following expansion:

LABEL: p=ADDR(variable);
e1=expression1 ;
e2=expression2;
e3=expression3;
v=e1 ;

LABEL2: IF (e3>=0) & (v>e2) I
(e3<0)&(v<e2)
THEN GO TO NEXT;

IF (expression4) THEN;
ELSE GO TO NEXT;

statement-1

statement-m
LABEL 1: v=v+e3;

GO TO LABEL2;
NEXT: statement

In the above expansion, p is a
compiler-qreated pointer; v is a
compiler-created based-variable based on p
and with the same attributes as "variable".
"el," "e2," and "e3" are compiler-created
variables having the attributes of
"expression1," "expression2," and
"expression3~" respectively. Note that the
generation of the control variable is
established once outside the loop,
immediately before the initial value
expression (expression1) is evaluated.

426

Additional rules for the above
expansion follow:

a. The above expansion only shows the
result of one "specification." If
the DO statement contains more
than one "specification," the

statement labeled NEXT is the
first statement in the expansion
for the next "specification." The
second expansion is analogous to
the first expa~sion in every
respect. Thus, if a second
"specification" appeared in the DO
statement, the second expansion
would look like this:

NEXT e5=expression5;

v=e5;
LABEL3: IF ••• THEN GO TO NEXT1;

IF (expressionS) THEN;
ELSE GO TO NEXT1;

statement-1

statement-m
LABEL4: v=v+e7;

GO TO LABEL3;
NEXT1: statement

Note that statements 1 through m
are not actually duplicated in the
program.

b. If the WHILE clause is omitted,
the IF statement immediately
preceding statement-1 in the
expansion is omitted.

c. If "TO expression2" is omitted,
the statement "e2=expression2" and
the IF statement identified by
LABEL2 are omitted.

d. If both "TO expression2" and "BY
expression3" are omitted, all
statements involving e2 and e3, as
well as the statement GO TO
LABEL2, are omitted.

4. The WHILE clause in Types 2 and 3
specifies that before each repetition
of statement execution, the associated
element expression is evaluated, and,
if necessary, converted to a bit
string. If any bit in the resulting
string is 1, the statements of the
DO-group are executed. If all bits
are 0, then, for Type 2, execution of
the DO-group is terminated, while for
Type 3, only the execution associated
with the "specification" containing
the WHILE clause is terminated;
repetitive execution for the next
·specification," if one exists, then
begins.

5. In a "specification," "expression1"
represents the initial value of the
control variable (i.e~, "variable" or

"pseudovariable"); "expression3"
represents the increment to be added
to thE:! I::;:ontrol variable after each
execution of the statements in the
groul=,; 19xpression2 represents the
termina'ting value of the control
variable. Execution of the statements
in a DO'-group terminates for a
"specification" as soon as the value
of the I::;:ontrol variable, when tested
at the end of the loop, is outside the
range defined by "expression1" and
"expresl3 ion2 • " When execution for the
last wspecification" is terminated,
control lr in general, passes to the
statement following the DO-group.

6. Control may transfer into a DO-group
from outside the DO-group only if the
DO-group is delimited by the DO
stat;ement in Type 1; that is, only if
repetitive execution is not specified.
Consequently, repetitive DO-groups
cannot, j::;:'ontain ENTRY statements.

7. The gE!nl:!ration of a control variable
that is either pointer-qualified or
controlled is established outside the
loop, immediately before the initial
value e:lCpression (expression1) is
evaluated. If the control variable
generation is changed in the loop by
either changing its pointer or by
allocating it, the loop is continued
with 1:.hE! control variable derived from
the previous generation. However any
reference to the control variable
insidE: 1:.he loop is a reference to the
subsequent generation. It is an error
to free the generation.

8. Under the optimizing compiler the
maximum permissible depth of nesting
is 49ti There is no limit under the
checkout compiler.

The END stcltl3ment terminates blocks and
groups.

General format:

END [identifier];

Syntax rules::

I The "identifier" is a label or entry
constant; it cannot be subscripted.

General ruleE;:

1. If a label follows END, the statement
terminates the unterminated group or
block headed by the nearest preceding

DO, BEGIN, or PROCEDURE statement
having that label. It also terminates
any unterminated groups or blocks
physically within that group or block.

2. If a label does not follow END, the
statement terminates that group or
block headed by the nearest preceding
DO, BEGIN, or PROCEDURE statement for
which there is no corresponding END
statement.

3. If control reaches an END statement
for a procedure, it is treated as a
RETURN statement.

The ENTRY statement specifies a secondary
entry point of a procedure.

General format:

entry-constant: [entry-constant:] •••
ENTRY [(parameter [,parameter] •••)]

[RETURNS (attribute list)]
[IRREDUCIBLE \ REDUCIBLE]
[OPTIONS(option-list)];

Syntax rules:

1. The only attributes in the attribute
list of the RETURNS ol=tion that may be
specified with an ENTRY statement are
the arithmetic, string, ALIGNED,
UNALIGNED, POINTER, OFFSET, AREA,
FILE, EVENT, LABEL, and TASR
attributes. Strings can be given the
VARYING attribute. The OFFSET
attribute may include an area name;
under the optimizing compiler, this
must be a non-defined, unsubscripted,
unqualified name. The LABEL attribute
may include a list of label constants.
An area size or string length must be
specified by a decimal integer
constant.

2. A condition prefix cannot be specified
for an ENTRY statement.

3. The options RETURNS, REDUCIBLE (or
IRREDUCIBLE), and OPTIONS can al=pear
in any order.

4. The options REDUCIBLE and IRREDUCIBLE
are for optimization. If they are to
appear in a program processed by the
checkout compiler, they are checked
for syntax errors and ignored; their
presence in such a program is not an
error.

5. The "options-list" of the OPTIONS
option specifies one or more

Section J: Statements 427

additional implementation-defined
options. These are:

{COBOL I FORTRAN}

[NOMAP [(argument-list)]]
[NOMAPIN (argument-list)]]
[NOMAPOUT[(argument-list)]]

The options are separated by blanks,
and can appear in any order.

The "argument-list" is a list of the
names of the parameters to which the
option applies. Not more than
sixty-four parameters can be specified
in an argument list; they can appear
in any order, and are separated by
commas or blanks. If there is no
argument list" the option is assumed
to apply to all the parameters
associated with the entry name.

NOMAP, NOMAPIN, and NOMAPOUT can all
appear in the same OPTIONS
specification. This specification
should not include the same parameter
in more than one specified or assumed
argument list.

The use of these options is described
in chapter 16, "Interlanguage
Communication".

General rules:

1. The relationship established between
the parameters of a secondary entry
point and the arguments passed to that
entry point is exactly the same as
that established for primary entry
point parameters and arguments. See
chapter 9, "Subroutines and
Functions", for a complete discussion
of this subject.

2. As stated in syntax rule 1, the
attributes specified with an ENTRY
statement determine the
characteristics of the value returned
by the procedure when it is invoked as
a function at this entry point. The
value being returned by the procedure
(i.e., the value of the expression in
a RETURN statement) is converted, if
necessary, to correspond to the
specified attributes. If the
attributes are not specified at the
entry point, default attributes are
applied, according to the first letter
of the entry name used to invoke the
entry point.

428

3. If an ENTRY statement has more than
one name, each name is interpreted as
though it were a single entry name for
a separate ENTRY statement having the
same parameter list and explicit
attribute specification. For example,
consider the statement:

A: I: ENTRY;

This statement is effectively the same
as:

A: ENTRY;

I: ENTRY;

Since the attributes of the returned
value are not explicitly stated, the
characteristics of the value returned
by the procedure will depend on
whether the entry point has been
invoked as A or I.

4. The ENTRY statement must be internal
to the procedure for which it defines
a secondary entry point. It may not
be internal to any block contained in
this procedure; nor may it be within a
DO-group that specifies repetitive
execution.

5. When an ENTRY statement is encountered
in normal sequential flow, control
passes around it.

6. IRREDUCIBLE and REDUCIBLE are
optimization options that can only be
specified for function procedures.
REDUCIBLE specifies that if the entry
name appears with an argument list
that is identical to an argument list
used in an earlier invocation, the
function will not necessarily be
reinvoked and the result of the
earlier evaluation may be used.
IRREDUCIBLE specifies that this type
of optimization is not permitted.
Optimization within a function
procedure is not affected by either
attribute. If neither option is
specified, IRREDUCIBLE is assumed.

7. The meaning of the options in the
OPTIONS option is:

COBOL: The PL/I procedure is to be
invoked at this entry point by
only a COBOL subprogram.

FORTRAN: The PL/I procedure is to be
invoked at this entry point by
only a FORTRAN subroutine or
function.

NOMAP, NOMAPIN, NOMAPOUT: These
options prevent the automatic
manipulation of data aggregates at

the interface between either COBOL
or E'ORTRAN and PL/I.

Each option argument-list can
spec:ify the parameters to which
the option applies. If there is
no aLrgument-list for an option,
that option is assumed to apply to
all the parameters associated with
the invocation of the entry name.

The EXIT statement causes immediate
termination of the task that contains the
statement and all tasks attached by this
task. If thE~ EXIT statement is executed in
a major task~ it is equivalent to a STOP
statement.

General format:

EXI'!';

General rule:

If executed in a major task, EXIT causes
the FINISH condition to be raised in that
task. On normal return from the FINISH
on-unit, the task executing the statement,
and all of its descendant tasks are
terminated~ The completion values of the
event variables associated with these tasks
are set to 'l'B, and their status values to
1 (unless they are already non-zero).

The FETCH st,atement indicates to the
compiler that the procedures identified by
the entry constants are resident on
auxiliary storage and will need to be
copied into main storage if they are to be
executedo The FETCH statement, when
executed~ causes a test to be made in main
storage for the named procedures. Any
procedures found not to be already in main
storage are loaded from auxiliary storage.
A similar test and loading is performed
whenever a procedure named in a FETCH
statement is invoked by a CALL statement,
by a CALL 'Option of an INITIAL attribute,
or by a function reference, before an
attempt is made to execute that procedure. I

COBOL and FORTRAN routines may be fetched
in the same way as PL/I procedures.

General format:

FETCH entry-constant
[,entry-constant] ••• ;

General rules:

1. The entry-constant must be a name by
which the procedure to be fetched is
known to the operating system.

2. The entry constant in the FETCH
statement must be the same as the one
used in the corresponding CAll
statement, CALL optiQn, or function
reference.

3. A fetched procedure may not fetch any
further procedures.

4. A FETCH statement will not overlap
with other statements.

The FLOW statement causes information about
the transfer of control within a task to be
written on the SYSPRINT file.

The PL/I checkout compiler implements
the FLOW statement in this sense, but the
PL/I optimizing compiler implements this
statement by checking the syntax and then
ignoring it.

General format:

FLOW;

General rules:

1. When a FLOW statement has been
executed, the execution (in the same
task) of a subsequent statement that
causes a transfer of control results
in a flow comment being written on the
SYSPRINT file.

A flow comment consists of:

a. The number of the statement that
causes the transfer of control

b. The number of the statement to
which control is transferred

A flow comment is written after
control is transferred, but before
execution of the target statement is
commenced.

2. The flow comment is written only when
the transfer of control is to a point
within the task that contains the FLOW
statement. If control passes to a
pOint outside this task, (because the
task terminates), no further flow
comments are written.

Section J: Statements 429

3. The statement that causes a flow
comment to be written is a transfer
statement; the statement to which
control is transferred is a
destination statement. A summary of
the transfer statements and their
destination statements is given below,
in figure J.4.

4. The FLOW statement remains effective
until:

a. The program terminates, or

b. The task terminates, or

c. A NOFLOW statement is executed
later in the same task.

FORMAT

The FORMAT statement specifies a format
list that can be used by edit-directed
transmission statements to control the
format of the data being transmitted.

General format:

label: [label:] ••• FORMAT (format-list);

Syntax rules:

1. The ftformat list ft must be specified
according to the rules governing
format list specifications with
edit-directed transmission as
described in chapter 10, ftInput and
Output ft •

2. At least one ftlabel ft must be specified
for a FORMAT statement. One of the
labels (or a label variable or a

430

function reference representing the
value of one of the labels) is the
statement latel designator appearing
in a remote format item.

General rules:

1. A GET or PUT statement may include a
remote format item, R, in the format
list of an edit-directed data
specification. That portion of the
format list represented by R must be
supplied by a FORMAT statement
identified by the statement label
specified with R.

2. The remote format item and the FOR~AT
statement must be internal to the same
block.

3. If a condition prefix is associated
with a FORMAT statement, it must be
identical to the condition prefix
associated with the GET or PUT
statement referring to that FORlo!AT
statement.

4. When a FORMAT statement is ,encountered
in normal sequential flow, control
passes around it, and the CHECK
condition will not be raised for a
statement label attached to it.

5. It is an error to attempt to transfer
control to a FORMAT statement by means
of a GO TO statement.

The FREE statement causes the storage
allocated for specified based or controlled
variables to be freed. For controlled
variables, the next most recent allocation
in the task is made available, and
subsequent references in the task to the
identifier refer to that allocation.

r--T--, I Transfer statement I Destination statement I

~--------.----------------------------------+-------------------~------------------------~ I GO TO Istatement prefixed by GO TO label I

t--+--i I CALL IPROCEDURE or ENTRY statement in the invoked I
I I procedure I
.-------------------~----------------------+--i
I END or RETURN statement in a procedure ICALL statement I
I invoked by a CALL statement I I
t--------·----------------------------------+--i I END or H.E'TURN statement that terminates I STATIC or AUTOMATIC variable: PROCEDURE or I
I a procedu:re invoked by the INITIAL CALL I BEGIN statement of the block that contains I
I attribute Ithe DECLARE sta~ement I
I IBASED or CONTROLLED variatle: ALLOCATE I
I I statement that specifies the variable I

.--------------~-----~---------------------+--i
I Statement that contains a function IPROCEDURE or ENTRY statement in the I
I reference linvoked procedure I

t--+--i I RETURN sti3.tement in a procedure invoked IStatement containing the function reference I
I as a function reference I I

~--+--i I END st.atement of an iterative DO group I Matching DO statement, even if there are no I
I Imore iterations to te performed I

.--+--i I Iterative DO statement, either when the IStatement that follows the matching END I
I statement list has been executed in full, I statement I
I or when the statement list is not to be I I
I executed I I
~--+--i I END statement that terminates an IStatement to which the on-unit returns I
lon-unit .. or a single statement (except Icontrol normally I
I GO TO or CALL) that is an on-unit I I
.--+--i I statement (including SIGNAL) that resultslFirst, or only, statement of the on-unit I
I in an int4:rrupt for which there is an I i
lon-unit I I L __ ~ __ J

Figure J.4. Transfer and destination statements

General forI1nat:

FREE option[,optionl ••• ;

where "optic)D" has one of two forms:

Option 1

identif:ier

option 2

[locator-qualifier ->1
based-variable-identifier

(IN (elE!ment-area-variable)]

Syntax rules;:

1. InO~tion 1, the "identifier" is a
level-cine, unsubscripted variable of
the controlled storage class.

2. In Option 2, the
"based-variablE-identifier" must be an
unsubscripted, level-one based
variable.

3. It is permissible to use both types of
option in one statement.

General rules:

1. Controlled storage, and based storage
not in an area, that has been
allocated in a task cannot be freed by
any other task ..

2. If a specified nonbased identifier has
no allocated storage at the time the
FRE.E statement is executed, it is a
no-operation.

I Rules 3 through 6 apply only to Option 2.

section J: Statements 43j

3. If the based variable is not
explicitly qualified by locator
qualification, the locator declared
with the based variable will.be used
to identify the generation of data
occupying the portion of storage to be
freed. If no locator has been
declared the statement is in error.

4. The amount of storage freed depends
upon the attributes of the based
variable, including bounds and/or
lengths at the time the storage is
freed, if applicable. The user is
responsible for determining that this
amount coincides with the amount
allocated. If the variable has not
been allocated, the results are
unpredictable.

5. A based variable can be used to free
storage only if that storage has been
allocated for a based variable having
identical data attributes.

6. The IN option is specified or is
implied, if the storage to be freed
was allocated in an area. The IN
option cannot appear if the based
variable was not allocated in an area.
Note that area assignment causes
allocation of based storage in the
target area; such allocations 'can be
freed by the IN option naming the
target area.

The GET statement is a STREAM transmission
statement that can be used in either of the
following ways:

1. It can cause the assignment of data
from an external source (that is, from
a data set) to one or more internal
receiving fields (that is, to one or
more variables).

2. It can cause the assignment of data
from an internal source (that is, from
a character-string variable) to one or
more internal receiving fields (that
is, to one or more variables).

General format:

GET option-list;

Following is the format of "option
list":

432

[FILE(file-expression)
ISTRING(character-string-expression)]
[data-specification]
[COPY[(file-expression)]]
[SKIP[(expression)]]

General rules:

1. If neither the FILE option nor the
STRING option appears, the file option
FILE(SYSIN) is assumed~

2. One data specification must appear
unless the SKIP option is specified.

3. The options may appear in any order.

4. The "file-expression" of the FILE
option represents a file which has
been associated, by opening, with the
data set which is to provide the
values. It must be a STREAM INPUT
file.

The "file-expression" of the COpy
option represents a file associated
with the data set which is to receive
the values. It must be a STREAM
OUTPUT file.

5. The "character-string-name" refers to
the character string that is to
provide the data to be assigned to the
data list. This name may be a
reference to a built-in function.
Each GET operation using this option
always begins at the beginning of the
specified string. If the number of
characters in this string is less than
the total number of characters
specified by the data specification,
the ERROR condition is raised.

6. When the STRING option is used under
data-directed transmission, the ERROR
condition is raised if an identifier
within the string does not have a
match within the data specification.

7. The "data-specification" is as
described in chapter 11,
"stream-Oriented Transmission".

8. If the FILE option refers to a file
that is not open in the current task,
the file is implicitly opened in the
task for stream input transmission.

If the COpy option refers to a file
that is not open in the current task,
the file is implicitly opened in the
task for stream output transmission.

9. The COPY option, which cannot be used
with the STRING option, specifies that
the source data stream, as read, is to
be written, without alteration, on the
specified file. Each new record in
the input stream starts a new record
on the COpy file. If no file is
specified, the default is standard
print file SYSPRINT.

10. If an interrupt during the execution
of a GEl' statement with a COpy option
causes a,n on-unit to be entered in
which another GET statement is
executed for the same file, and if
control is returned from the on-unit
to the i.nterrupted statement, then
resumed execution of that statement
will be as if no COPY option had been
specified. If, in the on-unit, a PUT
statement is executed for the file
associat:ed with the copy option, the
posi,tion of the data transmitted will
not necessarily b~ immediately
following the most
recently-transmitted COpy data item.

11. The SKIP option causes a new current
line to be defined for the data set.
The expI:ession, if present, is
conver'teld to an integer ~, which must
be great.er than zero. If not, the
compileI: substitutes a value of 1.
The datal set is positioned at the
start of the wth line relative to the
current line.- If the expression is
omitted, SKIP(1) is assumed. The SKIP
option is always executed before any
data is transmitted.

12. For ,the effect of statement options
when spelcified in the first GET
statement following the opening of the
file, see "OPEN statement" in this
section.

Abbreviation: GOTO

The GO 'I'O statement causes control to be
transferred t:o the statement identified by
the specified label.

General fOJ:'malt:

l
element~label-expreSSiOn;!

GOTO
statement-number;

Syntax rules:

1. 'Element-Iabel-expression' can be used
in a GO TO statement in a source
program, or in a GO TO entered in
immediate mode.

2. i'Statement-number' can only ce used in
a GO TO immediate statement entered at
the terminal when running under the
checkout compiler.

General rules:

1. An element-label-expression is a label
constant, a label variable, or a
function reference that returns a
label value. Since a label expression
may have different values at each
execution of the GO TO statement,
control may not always pass to the
same statement.

2. A GO TO statement cannot pass control
to an inactive clock or to another
task.

3. A GO TO statement cannot transfer
control from outside a DO-group to a
statement inside the DO-group if the
DO-group specifies repetitive
execution, unless the GO TO terminates
a procedure or on-unit invoked from
within the DO-group.

4. If a GO TO statement transfers control
from within a clock to a point not
contained within that block, the clock
is terminated. Also~ if the transfer
point is contained in a block that did
not directly activate the block being
terminated, all intervening blocks in
the activation sequence are also
terminated (see chapter 8, "Storage
Control", for examples and details).
When one or more blocks are terminated
by a GO TO statement, conditions are
reinstated and automatic variacles are
freed just as if the blocks had
terminated in the usual fashion.

5. When a GO TO statement specifies a
label constant contained in a block
that has more than one activation,
control is transferred to the
activation current when the GO TO is
executed.

6. When a GO TO statement transfers
control out of a procedure that has
been invoked as a function, the
evaluation of the expression that
contained the corresponding function
reference is discontinued.

I
The HALT statement causes execution of a
task being executed in conversational mode
under the checkout compiler to ce
interrupted and control passed to the
terminal.

Section J: Statements 433

General format:

HALT;

General rules:

1. The HALT statement is only effective
in a conversational environment. In a
non-conversational environment and
under the optimizing compiler, the
HALT st·atement is a null operation.

2. The HALT statement remains effective
until the programmer at the terminal
causes execution to be resumed.

The IF statement tests the value of a
specified expression and controls the flow
of execution according to the result of
that test.

General format:

IF element-expression
THEN unit-1
[ELSE unit-2)

Syntax rules:

1. Each unit is either a single statement
(except DO, END, PROCEDURE, BEGIN,
DECLARE, DEFAULT, FORMAT, or ENTRY), a
DO-group, or a begin block.

2. The IF statement itself is not
terminated by a semicolon; however,
each "unit" specified must be
terminated by a semicolon.

3. Each "unit" may be labeled and may
have condition prefixes.

General rules:

1. The element expression is evaluated
and, if necessary, converted to a bit
string. When the ELSE clause (that
is, ELSE and its following ·unit·) is
specified, the following occurs:

434

If any bit in the string is 1, or
if the string is null, "unit-1" is
executed, and control then passes
to the statement following the IF
statement. If all bits in the
string have the value O. ·unit-l"
is not executed and ·unit-2" is
executed, after which control
passes to the next statement.

When the ELSE clause is not specified,
the following occurs:

If any bit in the string is 1, or
if the string is null, "unit-1· is
executed, and control then passes
to the statement following the IF
statement. If all bits are 0,
"unit-1" is not executed and
control passes to the next
statement.

Each "unit" may contain statements
that specify a transfer of control
(e.g., GO TO); hence~ the normal
sequence of the IF statement may be
overridden.

An array or structure variable can
appear in the element expression only
as an argument to a function that
returns an element value.

2. IF statements may be nested; that is,
either ·unit", or both, may itself be
an IF statement. Since each ELSE
clause is always associated with the
innermost unmatched IF in the same
block or DO-group, an ELSE with a null
statement may be required to specify a
desired sequence of control. Under
the optimizing compiler, the maximum
permissible depth of nesting is 49.
There is no restriction under the
checkout compiler.

LOCATE

The LOCATE statement, which applies to
BUFFERED OUTPUT files, causes allocation of
a based variable in a buffer; it may also
cause transmission of a based variable
previously allocated in a buffer.

General format:

LOCATE variable FILE(fila-expression)
[SET(pointer-variable»)
[KEYFROM(expression»);

Syntax rules:

1. The options may appear in any order.

2. The "variable" must be an
unsubscripted level 1 based variable.

General rules:

1. The FILE option specifies the file
involved. This option must appear.

2. Execution ofa LOCATE statement causes
the specified based variable to be
allocated in the buffer. Components
of the based variable that have been
specified in REFER options are
initialized. A pointer value is

assigned to the pointer variable named
in the SET option or, if the SET
option is omitted, to the pointer
variable specified in the declaration
of the based variable. The pointer
value identifies the record in the
buffer. After execution of the LOCATE
statement~ values may be assigned to
the based variable for subsequent
transmission to the data set, which
will ()cc::ur immediately before the next
LOCATl~, WRITE, or CLOSE operation on
the file. The transmitted data item
must not be referred after
transmif3sion.

3. I f th~! l<EYFROM option appears, the
value olE the expression is converted
to a (:hllracter string and is used as
the key of the record when it is
subsequently written.

4. If t.hE~ FILE option refers to an
unopened file, the file is opened
automatically; the effect is as if the
LOCATl~ !3tatement were preceded by an
OPEN stlltement referring to the file.
The fill9 is given the attributes
RECORD cind OUTPUT.

The NOCHECl< statement suppresses the action
of the CHECK statement for the specified
names.

The PL/I Icheckout compiler implements
the NOCHECK lstatement in this sense, but
the PLII optimizing compiler implements
this statement by checking the syntax and
then ignoring it.

General format:

NOCHECK [(name-list)];

Syntax rul~~s:

1. The opt.ional "name-list" is one or
more names separated by commas; a name
can be qualified, but cannot be
subscripted or locator-qualified.

2. A name must be one of the following:

a. An element, an array or a
structure variable of any data
type.

b. A label constant.

c. An entry constant.

3. If a name-list is specified, the
NOCHECK statement applies to those

names only. These names must be known
in the block in which the NOCHECK
statement is executed.

If there is no name-list, the NOCHECK
statement applies to every name in the
program.

General rules:

1. Execution of a NOCHECK statement has
the effect of disabling the CHECK
condition for specified or assumed
names. The condition-prefix can be an
actual prefix, written in the program,
or a conceptual prefix, derived from a
previous CHECK statement.

2. The NOCHECK statement remains
effective until:

a. The program terminates, or

b. It is overidden by an appropriate
CHECK statement.

NOFLOW
(

The NOFLOW statement suppresses the action
of the FLOW statement.

The PL/I checkout compiler implements
the NOFLOW statement in this sense, but the
PL/I optimizing compiler implements this
statement by checking the syntax and then
ignoring it.

General format:

NOFLOW;

General rules:

1. The NOFLOW statement remains effective
until:

a. The program terminates, or

t. The task terminates or

c. It is overridden by a FLOW
statement.

Null Statement

The null statement causes no action and
does not modify sequential statement
execution. If the label of a null
statement is enabled for the CHECK
condition, CHECK is raised whenever control
reaches the null statement.

Section J: Statements 435

General format:

[label:] ••• ;

Note that a label prefixed to a null
statement does not compare equal to a label
prefixed to the statement immediately
following the null statement.

For example:

A: i
B: X=Ti

Label A does not compare equal to label B.

The ON statement specifies what action is
to be taken (programmer-defined or standard
system action) when an interrupt results
from the occurrence of the specified
exceptional condition.

General format:

ON condition [SNAP] {SYSTEM; lon-unit}

Syntax rules:

1. The condition may be any of those
described in section H,
"On-Conditions".

2. The "on-unit" represents a
programmer-defined action to be taken
when an interrupt results from the
occurrence of the specified
"condition". It can be either a
single unlabeled simple statement or
an unlabeled begin block. If it is an
unlabeled simple statement, it can be
any simple statement except BEGIN, DO,
END, RETURN, FORMAT, PROCEDURE, ENTRY,
DECLARE, or DEFAULT. If the on-unit
is an unlabeled begin block, any
statement can be used freely within
that block, with one exception: a
RETURN statement can appear only
within a procedure nested within the
begin block.

3. Since the "on-unit" itself requires a
semicolon, no semicolon is shown for
the "on-unit" in the general format.
However, the word SYSTEM must be
followed by a semicolon.

General rules:

1. The ON statement determines how an
interrupt occurring for the specified
condition is to be handled. Whether
the interrupt is handled in a standard
system fashion or by a

436

programmer-supplied method is
determined by the action sFecification
in the ON statement, as follows:

a. If the action specification is
SYSTEM, the standard system action
is taken. The standard system
action is not the same for every
condition, although for most
conditions the system simply
prints a message and raises the
ERROR condition. The standard
system action for each condition
is given in section H,
"On-Conditions". (Note that the
standard system action is always
taken if an interrupt occurs and
no ON statement for the condition
is in effect.)

b. If the action specification is an
"on-unit," the programmer has
supplied his own
interrupt-handling action, namely,
the action defined by the
statement(s) in the on-unit
itself. The on-unit is not
executed when the ON statement is
executed; it is executed only when
an interruFt results from the
Gccurrence of the specified
condition (or if the interrupt
results from the condition being
signaled by a SIGNAL statement).

2. The action specification (i.e.,
"on-unit" or SYSTEM) established by
executing an ON statement in a given
block remains in effect throughout
that block and throughout all clocks
in any activation sequence initiated
by that block, unless it is overridden
by the execution of another ON
statement or a REVERT statement, as
follows:

a. If a later ON statement specifies
the same condition as a prior eN
statement and this later ON
statement is executed in a block
that lies within the activation
sequence initiated by the block
containing the prior ON statement,
the action specification of the
prior ON statement is temporarily
suspended, or stacked. It can be
restored either by the execution
of a REVERT statement, or by the
termination of the block
containing the later ON statement.

b. If the later ON statement and the
prior ON statement are internal to
the same invocation of the same
block, the effect of the Frior eN
statement is completely nullified.

3. An on-unit is always treated by the
compiler as a procedure internal to
the block in which it appears.
(conceptuallYI, it is enclosed in
PROCEDURE and END statements.) Any
names referenced in an on-unit are
those known in the environment in
which thel ON statement for that
on-unit was executed, rather than the
environmemt in which the interrupt
occurred.

4. A condition raised during execution
results in an interrupt if and only if
the condition is enabled at the point
where it is raised.

a. The c:ondi tions AREA, OVERFLOW,
FIXEDOVERFLOW, UNDERFLOW,
ZERODIVIDE~ CONVERSION, all of the
inpu1:/output conditions, and the
conditions CONDITION, FINISH, and
ERFtOR are enabled by default.

b. The conditions SIZE, STRINGSIZE,
STRINGRANGE, SUBSCRIPTRANGE, and
CHi':CK are disabled by default.

c. ThE! Emabling and disabling of
OVERI~LOW, FIXEDOVERFLOW,
UNDERFLOW, ZERODIVIDE, CONVERSION,
SIZE~ STRINGSIZE, STRINGRANGE,
SUElSCRIPTRANGE, and CHECK can be
controlled by condition prefixes.

5. If an em··uni t is a single statement,
it cannot refer to a remote format
specification.

6. If SNAP is specified, then when the
given <:ondition occurs and the
interrupt results, a list of all of
the blocks and on-units active at the
time the interrupt occurred is printed
on SYSPRINT, followed by the FLOW
table. This table is the same as
would 1)e produced by a PUT FLOW
statement.. The list of blocks and
on-units" and the FLOW table, are
printed by the both the checkout and
the optimizing compilers.

7. Under 1:hE:! optimizing compiler, up to
49 on-units may be concurrently active
in anyone block, and up to 254 in any
one compilation. There are no limits
under thE:! checkout compiler.

The OPEN statement associates a file name
with a data set. It also can complete the
specification of attributes for the file,
if a complete set of attributes has not
been declared for the file being opened.

General format:

OPEN FILE(file-expr) (options-group]
(,FILE(file-expr) [options-group]] ••• ;

where "options-group" is as follows;

(DIRECT I SEQUENTIAL I TRANSIENT]
(BUFFERED I UNBUFFERED]
[STREAM I RECORD]
[INPUTI OUTPUT I UPDATE]
(KEYED] (EXCLUSIVE]
(BACKWARDS]
(TITLE (element-expression)]
(PRINT]
[LINESIZE(element-expression)]
[PAGESIZE(element-expression)]

Syntax rules:

1. The INPUT, OUTPUT, UPDATE, STREAM,
RECORD, DIRECT, SEQUENTIAL, TRANSIENT,
BUFFERED, UNBUFFERED. KEYED,
EXCLUSIVE, BACKWARDS, and PRINT
options specify attributes that
augment the attributes specified in
the file declaration; for rules
governing which of these attributes
can be applied together, see chapter
11, "Input and "Output", and the
corresponding attributes in section I,
"Attributes" •

2. The options in an "option-group· and
the FILE option for a file may appear
in any order.

3. The "file-expression" represents the
name of the file that is to be
associated with a data set. Several
files can be opened by one OPEN
statement.

General rules:

1. The opening of an already open file
does not affect the file if the second
opening takes place in the same task
or an attached task. In such cases,
any expressions in the "options-group·
are evaluated, but they are not used.

2. If the TITLE option is specified, the
"element~expression· is converted to a
character string, if necessary, the
first eight characters of which
identify the data set (the ddname) to
be associated with the file. If this
option'does not appear, the first
eight characters of the file name
(padded or truncated) are taken to be
the ddname. Note that this is not the
same truncation as that for external
names. If the file name is a
parameter, the identifier of the
original argument passed to the
parameter, rather than the identifier

section J: statements 437

of the parameter itself, is used as
the identification.

3. The LINESIZE option can be specified
only for a STREAM OUTPUT file. The
expression is evaluated, converted to
an integer, and used as the length of
a line during subsequent operations on
the file. New lines may be started by
use of the printing and control format
items or by options in a GET or PUT
statement. If an attempt is made to
position a file past the end of a line
before explicit action to start a new
line is taken, a new line is
automatically started, and the file is
positioned to the start of this new
line. The following
implementation-defined values apply:

4.

5.

438

Maximum line size:

F- or U-format:
V-format

Minimum line size:

F- or U-format
V-format: PRINT files

Non-PRINT FILES

Default line size

32,759
32,751

1
9
10

120

The LINESIZE option cannot be
specified for an INPUT file. The line
size taken into consideration whenever
a SKIP option appears in a GET
statement is the line size, if any,
that was used to create the data set;
otherwise, the line size is taken to
be the current length of the logical
record (minus control bytes, for
V-format records).

The PAGESIZE option can be specified
only for a file having the STREAM and
PRINT attributes. The element
expression is evaluated and converted
to an integer, which represents the
maximum number of lines to a page.
During subsequent transmission to the
PRINT file, a new page may be started
by use of the PAGE format item or by
the PAGE option in the PUT statement.
If a page becomes filled and more data
remains to be printed before action to
start a new page is taken, the ENDPAGE
condition is raised. The following
implementation-defined values apply:

Maximum page size
Minimum page size
Default page size

32,767
1
60

When a STREAM file is opened, it is
conceptually positioned as if it had
just completed scanning of the zeroth
record - that is, it is positioned at

the end of an imaginary record
immediately preceding the record
accessed in the first GET or PUT
statement. Thus if the first GET or
PUT specifies, by means of a statement
option or format item, that n lines
are to be skipped before the first
record is accessed, the file is then
positioned at the start of the nth
record. For a PRINT file, "the zeroth
record" means a conceptual line having
a line number equal to the pagesize.
The first PUT statement will cause
ENDPAGE to be raised, unless it
specifies only the PAGE option or
format item, or only that zero lines
are to be skipped; in these cases no
change takes place in the file.

PROCEDURE

The PROCEDURE statement has the following
functions:

• It heads a procedure.

• It defines the primary entry point to
the procedure.

• It specifies the parameters, if any,
for the primary entry point.

• It may specify certain special
characteristics that a procedure can
have.

• It may specify the attributes of the
value that is returned by the procedure
if it is invoked as a function at its
primary entry point.

General format:

entry-constarit: [entry-constant:] •••
PROCEDURE[(parameter(,parameter] •••)]
[OPTIONS (option-list)]
[RECURSIVE] [RETURNS (data attributes)]
[ORDERIREORDER]
[REDUCIBLE I IRREDUCIBLE] ~

Syntax rules:

1. The "data attributes" given in the
RETURNS option represent the
attributes of the value returned by
the procedure when it is invoked as a
function at its primary entry point.
Only arithmetic, string, ALIGNED,
UNALIGNED, POINTER, OFFSET, AREA,
FILE, EVENT, LABEL, and TASK
attributes are allowed. Strings can
be given the VARYING attribute. The
OFFSET attribute may include an area
name; under the optimizing compiler,

this must be a non-defined,
unsul:scl:ipted" unqualified, area name.
The LABEL attribute may include a list
of label constants. An area size or
string length must be specified by a
decimal integer constant.

2. OPTIONS " RECURSIVE, RETURNS, ORDER,
REORDE!R" REDUCIBLE and IRREDUCIBLE,
can appE~ar in any order and are
separatE~d by blanks.

3. The options ORDER, REORDER, REDUCIBLE
and IRRlmUCIBLE are for optimization.
If they are included in a program
processE~d by the checkout compiler,
they are checked for syntax errors and
ignored; their presence in such a
program is not an error.

4. The Woptions-listW of the OPTIONS
option specifies one or more
additional implementation-defined
options" These are:

{M1Ut~1 COBOL I FORTRAN}

lNOMAP(argument-list)]]
[NOMAPIN [(argument-list)]]
(NOM1\POUT ((argument-list)]]

[RlmNTRANT]

[TASK]

The options are separated by blanks or
commas, and can appear in any order.

The Wargument-listW is a list of the
names of the parameters to which the
option iipplies. Not more than
sixty-four parameters can be specified
in an argument list: they can appear
in any order and are separated by
commas I:>r blanks. If there is no
argumEan1c list, the option is assumed
to apply to all the parameters
associated with the entry name.

NOMAP" NOMAPIN, and NOMAPOUT can all
appear in the same OPTIONS-attribute
specification. This specification
should][lot include the same parameter
in more than one specified or assumed
argum4an't list.

The use of COBOL, FORTRAN, NOMAP,
NOMAPIN, and NOMAPOUT is described in
chapter 19, WInterlanguage
Communication Facilitiesw•

a. The TASK option need not be
specified for procedures to be
processed by the checkout or
optimizing compilers. However, it
may be required if those

procedures are processed by other
PL/I compilers.

b. The REENTRANT option applies to
code produced by a PL/I com~iler:
if this option is specified with
either the COBOL or FORTRAN
options, this ha·s no effect on the
code in the COBOL or FORTRAN
program. A program that calls
COBOL or FORTRAN routines is not
reenterable.

c. The TASK option must not be
specified with either the CCBOL or
the FORTRAN options.

General rules:

1. When the procedure is invoked, a
relationship is established between
the arguments passed to the procedure
and the parameters that represent
those arguments in the invoked
procedure. This topic is discussed in
chapter 9, wSubroutines and
Functionsw•

2. OPTIONS may be specified only for an
external procedure, and at least one
external procedure must have the
OPTIONS (MAIN) designation; if more
than one is so designated, the
operating system will invoke the one
that appears first, physically.

3. RECURSIVE must be specified if the
procedure might be invoked
recursively: that is, if it might be
reactivated while it is still active.
If specified, it applies to all of the
entry points (primary and secondary)
that the procedure might have. It
applies only to the procedure for
which it is declared.

4. The Wdata attributes W in the RETURNS
option specify the attributes of the
value returned by the procedure when
it is invoked as a function at its
primary entry point. The value
specified in the RETURN statement of
the invoked procedure is converted to
conform with these attributes before
it is returned to the invoking
p~ocedure.

If the RETURNS option is not
specified, default attributes are
supplied. In such a case, the name of
the entry point (the entry constant by
which the procedure has been invoked)
is used to determine the default base,
precision, and scale. <Since the
entry point can have several entry
constants, the default base,
precision, and scale can differ
according to the entry constant.)

section J: Statements 439

5. ORDER and REORDER are optimization
options. ORDER and REORDER specify
the extent to which the block is to be
optimized. In general, ORDER permits
optimization to the degree such that
the latest values of all variables set
in a block are guaranteed available in
a computational on-unit entered during
execution of the block. REORDER
permits a greater degree of
optimization; with REORDER the values
of variables set in the block are not
guaranteed to be the most recently
assigned values in an on-unit entered
during execution of the block. If
neither option is specified, ORDER is
assumed but REORDER is inherited ty
all contained blocks unless they
explicitly specify ORDER.

6. IRREDUCIBLE and REDUCIBLE are
optimization options that can only be
specified for function procedures.
REDUCIBLE specifies that if the entry
name appears with an argument list
that is identical to an argument list
used in an earlier invocation, the
function will not necessarily be
reinvoked and the result of the
earlier evaluation may be used.
IRREDUCIBLE specifies that this type
of optimization is not permitted.
Optimization within a function
procedure is not affe'cted by either
attribute. If neither option is
specified, IRREDUCIBLE is assumed.

7. If a PROCEDURE statement has more than
one entry constant, the first constant
can be considered as the only label of
the statement; each subsequent entry
constant can be considered as a
separate ENTRY statement having an
identical parameter list as specified
in the PROCEDURE statement. For
example, the statement:

A: I: PROCEDURE (X);

is effectively the same as:

A: PROCEDURE (X);

I: ENTRY (X);

Since the attributes of the value are
not eXflicitly stated, the characters
of the value returned by the procedure
will depend on whether the procedure
has been invoked as A or I.

8. The meaning of the options in the
OPTIONS option is:

440

COBOL: The PLII procedure is to be
invoked at its main entry point by
only a COBOL subprogram.

FORTRAN: The PLII procedure is to be
invoked at its main entry point by
only a FORTRAN subroutine or
function.

MAIN: The PL/I procedure is the
initial procedure of a PLII
program, and is invoked by the
operating-system control program as
the first step in the execution of
that program.

NOMAP, NOMAPIN, NOMAPOUT: These
options prevent the automatic
manipulation of data aggregates at
the interface between either COBOL
or FORTRAN and PL/I.

Each option argument-list can
specify the parameters to which the
option applies. If there is no
argument list for an option, that
option is assumed to apply to all
the parameters associated with the
invocation of the entry name.

REENTRANT: The code produced by the
compiler is reenterable.

TASK: The PL/I multitasking
facilities are to be used.

The PUT statement is a STREAM transmission
statement that can be used in either of the
following ways:

1. It can cause the values in one or more
internal storage locations to be
transmitted to a data set on an
external medium.

2. It can cause the values in one or more
internal storage locations to be
assigned to an internal receiving
field (represented by a
character-string variable).

Under the checkout compiler, it can
cause program checkout information to
be written onto the SYSPRINT file.

General format:

PUT [FILE (file-expression)]'
[STRING (character-string-variable)]
[data-specification],
[SNAP] ,
[FLOW[(n)]] I
[ALL[(character-string-expression)]]

~
PAGE [LINEfelement-expreSSiOn)]]
SKIP [(element-expression)]
LINE (element-expression)

Syntax rules:

1. If neither the FILE nor STRING option
appea:rs, the specification FILE
(SYSPRINT) is assumed. If such a PUT
statement lies within the scope of a
declaration of the identifier
SYSPRINT, SYSPRINT must have been
declared as FILE STREAM OUTPUT. If
the PUT statement does not lie within
the scope of a declaration of
SYSPRINT, SYSPRINT is the standard
system output file.

2. The FILE option specifies transmission
to a (iata set on an external medium.
The file expression in this option is
the name of the file that has been
associated (by implicit or explicit
opening) with the data set that is to
receive the values. This file must
have ·the OUTPUT and STREAM attributes.

3. UndEar the checkout compiler, the SNAP
option causes a list of all currently
active blocks and on-units to be
printed on SYSPRINT. Under the
optimizing compiler, the option's
syntax is checked, then it is ignored.

4. Under the checkout compiler, the FLOW
option causes a comment on each of the
last n transfers of control to be put
into :Ehe SYSPRINT stream. The rules
determining the nature of each flow
comment are the same as for the FLOW
statement, described earlier in this
section. If n is not specified, the
value specifiid in the appropriate
compiler option is used; if no value
is specified there, a default of 25 is
taken. Under the optimizing compiler,
the syntax of the option is checked,
then it is ignored.

5. Under the checkout compiler, the ALL
option causes all information provided
by t:he SNAP and FLOW options to be put
into the SYSPRINT stream, together
with certain other debugging
information. A description of this
information is given in chapter 15,
"Execution-time Facilities of the
Checkout Compiler". Under the
optimizing compiler, the syntax of the
option is checked, then it is ignored.
The value of the
character-string-expression must be
one or more of the option characters
D,S,F,C,T,n concatenated to form a
string without blanks or punctuation
marks, n being one through four
digits.

6. The STRING option specifies
transmission from internal storage
locations (represented by variables or
expressions in the "data­
specification") to a character string
(represented by the "character-string­
variable"). It cannot be used with a
SNAP, FLOW, or ALL option. The
"character-string-variable" can be any
string pseudovariatle other than
STRING.

7. The "data specification" option is as
described in chapter 11,
"Stream-Oriented Transmission".

8. The PAGE, SKIP, and LINE options
cannot appear with the STRING option.

9. The options may appear in any order;
at least one must appear.

General rules:

1. If the FILE option is specified, and
the "file-expression" refers to an
unopened file, the. file is opened
implicitly as an OUTPUT file.

2. If the STRING option is specified, the
PUT operation begins assigning values
to the beginning of the string (that
is, at the left-most character
position), after appropriate
conversions have been performed.
Blanks and delimiters are inserted as
usual. If the string is not long
enough to accomodate the data, the
ERROR condition is raised.

3. The PAGE and LINE options can be
specified for PRINT files only. All
of the options take effect before
transmission of any values defined by
the data specification, if given. Of
the three, only PAGE and LINE may
appear in the same ?UT statement, in
which case, the PAGE option is applied
first.

4. The PAGE option causes a new current
page to be defined within the data
set. If a data specification is
present, the transmission of values
occurs after the definition of the new
page. The page remains current until
the execution of a PUT statement with
the PAGE option, until a PAGE format
item is. encountered, or until the
ENDPAGE condition is raised, resulting
in the definition of a new page. A
new current page implies line one.

When printing at a terminal in
conversational mode, the PAGE option
causes three lines to be skipped.

Sect.ion J: Statements 441

5. The SKIP option causes a new current
line to be defined for the data set.
The expression, if present, is
converted to an integer !, which for
non-PRINT files must be greater than
zero. The data set is positioned at
the start of the wth line after the
current line. If-the expression is
omitted, SKIP(1) is assumed.

For PRINT files ! may be less than or
equal to zero: in this case, the
effect is that of a carriage return
with the same current line. If less
than w lines remain on the current
page when a SKIP(w) is issued, ENDPAGE
is raised.

When a SKIP option is specified on the
first PUT statement of a file, the
data set is positioned at the start of
the ~th line on the first page. If ~
is zero or one, it is positioned at
the start of the first line.

When printing at a terminal in
conversational mode, no more than
three lines may be skipped; SKIP(w)
with w greater than 3 is equivalent to
SKIP (3).

6. The LINE option causes a new current
line to be defined for the data set.
The expression is converted to an
integer~. The LINE option specifies
that blank lines are to be inserted so
that the next line will be the wth
line of the current page. If at least
~ lines have already been written on
the current page or if ~ exceeds the
limits set by the PAGESIZE option of
the OPEN statement, the ENDPAGE
condition is raised. If w is less
than or equal to zero, it-is assumed
to be 1. If! specifies the current
line, ENDPAGE is raised except when
the file is positioned on column 1; in
this case, the effect is as for a
SKIP(O) option.

If the LINE option is specified in the
same statement as a PAGE option, the
PAGE option is executed first.

When printing at a terminal in
conversational mode, the LINE option
causes three lines to be skipped.

7. For the effects of statement options
when specified in the first PUT
statement following the opening of the
file, see "OPEN statement" in this
section.

The READ statement causes a record to be
transmitted from a RECORD INPUT or RECORD
UPDATE file to a variable or buffer.

General format:

READ option-list;

The format of the option list is shown
in figure J. 5.

General rules:

1. The options may appear in any order.

2. The FILE option specifies the file
from which the record is to be read.
This option must appear. If the file
specified is not open in the current
task, it is opened.

3. The INTO(variable) option specifies
the variable into which the record is
to be read. If the variable is an
aggregate, it must be in connected
storage; certain uses of unaligned
fixed-length bit strings are
disallowed (for details, see "Data
Transmitted" in chapter 12,
"Record-Oriented Transmission").
String pseudovariables other than
STRING may be specified.

r---, I r-- --, --,
I r-- IKEY(expression) (NOLOCK] I
I I [INTO(variable)]I I [EVENT(event-variatle)]
I I IKEYTO(character~string-variatle)1
I I L__ __J

I I r--
I FILE I I KEY (expression)
I (filename) I [SET(pointer-variable)] I

---,
I
I

I I IKEYTO(character-string-variable) I
I I

L__ _ __ J

I I
I I[IGNORE(expression)] (EVENT(event-variatle)] I L __ L ___ J

Figure J.5. Format of option list for READ statement

442

4. The KE'~ and REYTO options can be
specified for KEYED files only.

5. The KE'~ option must appear if the
file hi:is the DIRECT attribute. The
"element-expression" is converted to
a character string that represents a
key. It is this key that determines
which record will be read.

The KEY option may also appear for a
file having INDEXED organization and
the SEQUENTIAL and REYED attributes.
In such cases, the file is positioped
to the record having the specified
key. ~rhereafter, records may be read
sequentially from that point on by
usin9 READ statements without the KEY
opti()n.

6. The KEYTO option can be given only if
the file has the SEQUENTIAL and KEYED
attributes. It specifies that the
key ()f the record being read is to be
assigned to the "character-string
variable" according to the rules for
character-string assignment. The
KEYTO option can specify any string
pseudmlariable other than STRING. It
cannc)t specify a variable declared
with a numeric picture specification.
The maJcirnum permissible length for
the c:hclracter string is 256.

Assignment to the KEYTO variable
always follows assignment to the INTO
variable. If an incorrect key
specification is detected, the KEY
condition is raised. For this
implE!mEmtation, the value assigned is
as follows:

a. For REGIONAL(1), the eight
c:haracter region number, padded
or truncated on the left to the
declared length of t~
c:hclracter-string variable. If
the character-string variable is
of varying length, any leading
zeros in the region number are
t.runcated and the string length
is set to the number of
significant digits. An all-zero
region number is truncated to a
single zero.

b. F'o!,' REGIONAL(2) and REGIONAL(3),
thEl ;recorded key without the
region number, padded or
trulnca ted on the fight to the
declared length of the
character-string variable.

c. For INDEXED, the recorded key,
padded or truncated on the right
to the declared length of the
character-string variable.

The KEY condition will not be raised
for such padding or truncation.

7. The EVENT option allows processing to
continue while a record is being read
or ignored. This option cannot be
specified for a SEQUENTIAL BUFFERED
file.

When control reaches a READ statement
containing this option, the "event
variable" is made active (that is, it
cannot be associated with another
event) an~ is given the completion
value 'O'B, provided that the
UNDEFINEDFILE condition is not raised
by an implicit file opening (see
"Note" below). The event variable
remains active and retains its 'O'B
completion value until control
reaches a WAIT statement specifying
that event variable. At this time,
either of the following can occur:

a. If the READ statement has been
executed successfully and none of
the conditions ENDFILE, TRANS~IT,
KEY or RECORD has been raised as
a result of the READ, the event
variatle is set complete (given
the completion value '1'B), and
the event variable is made
inactive, that is, it can be
associated with another event.

b. If the READ statement has
resulted in the raising of
ENDFILE, TRANSMIT, KEY, or
RECORD, the interrupt for each of
these conditions does not occur
until the WAIT is encountered.
At such a time, the corresponding
on-units (if any) are entered in
the order in which the conditions
were raised. After a return from
the final on-unit, or if one of
the on-units is terminated by a
GO TO statement, the event
variable is given the completion
value '1'B and is made in4ctive.

Note: If the READ statement causes
an implicit file opening that results
in the raising of UNDEFINEDFILE, the
on-unit associated with this
condition is entered immediately and
the event variatle remains unchanged~
that is, the event variable remains
inactive and retains the same value
it had when the READ was encountered.
If the on-unit does not correct the
condition, then~ upon normal return
from the on-unit, the ERROR condition
is raised; if the condition is
corrected in the on-unit, that is, if
the file is opened successfully,
then, upon normal return from the
on-unit, the event,variable is set to

Section J: Statements 443

loeB, it is made active, and
execution of the READ statement
continues.

8. Any READ statement referring to an
EXCLUSIVE file will cause the record
to te locked unless the NOLOCK option
is specified. A locked record cannot
be·read, deleted, or rewritten by any
other task until it is unlocked. Any
attempt to read, delete, rewrite, or
unlock a record locked by another
task results in a wait. Subsequent
unlocking can be accomplished by the
locking task through the execution of
an UNLOCK, REWRITE, or DELETE
statement that specifies the same
key, by a CLOSE statement, or by
completion of task in which the
record was locked.

Note that a record is considered
locked only for tasks other than the
task that actually locks it; in other
words, a locked record can always be
read by the task that locked it and
still remain locked as far as other
tasks are concerned (unless, of
course, the record has been
explicitly unlocked by one of the
above methods).

9. The SET option specifies that the
record is to be read into a buffer
and that a pointer value is to be
assigned to the named locator
variable. The pointer value
identifies the record in the buffer.

10. The IGNORE option may be specified
for SEQUENTIAL INPUT and SEQUENTIAL
UPDATE files. The expression in the
IGNORE option is evaluated and
converted to an integer. If the
value., a, is greater than zero, !!
records are ignored; a subsequent
READ statement for the file will
access the (n+1)th record. If n is
less than 1, the option has no
effect. A READ statement without an
INTO, SET, or IGNORE option is
equivalent to a READ with an
IGNORE(l).

11. A file with INDEXED organization that
is being accessed sequentially may be
positioned by issuing a READ
statement with the KEY option. The
specified key will be used to
identify the record required.
Thereafter, records may be read
sequentially from that point by use
of READ statements without the KEY
option. This applies to INPUT and
UPDATE files.

444

For INDEXED SEQUENTIAL files, two
positioning statements can be used,
with the following formats:

READ FILE (file-expression)
INTO (variable)
KEY (expression);

READ FILE (file-expression)
SET (Fointer-variable)
KEY (expression);

12. The EVENT, IGNORE, KEY and NOLOCK
options cannot be used with a
TRANSIENT file.

RELEASE

The RELEASE statement frees for other
purposes main storage occupied by
procedures identified by the specified
entry constants. Also, whenever a
procedure named in a RELEASE statement is
invoked by a CALL statement, a CALL option
of an INITIAL attribute or a function
reference, and is found not to be resident
in main storage, a search is made for the
procedure on auxiliary storage. If it is
found, it is copied into main storage
before any attempt is made to execute it.

General format:

RELEASE entry-constant
[,entry-constantl ••• ;

General rules:

1. At execution time, the only effect of
the RELEASE statement is to free the
necessary storage. It has no effect
on the meaning or scope of the
entry-constant.

2. The entry-constant must be the same
as the one used in any corresponding
CALL statements or options, or
function references, and FETCH
statements.

RETURN

The RETURN statement terminates execution
of the procedure that contains the RETURN
statement. If the procedure has not been
invoked as a task, the RETURN statement
returns control to the invoking procedure.
The RETURN statement may also return a
value.

General format:

option 'I.

RE~rURN;

option 2.

RETURN (element-expression);

General rules:

1. Only the RETURN statement in Option 1
can be used to terminate procedures
not invoked as function procedures;
control is returned to the point
logically following the invocation.

Option 1 represents the only form of
the RETURN statement that can be used
to terminate a procedure initiated as
a 1I:~ask.. If the RETURN statement
terminates the major task, the FINISH
condition is raised prior to the
execution of any termination
processes. If the RETURN statement
terminates any other task, the
completion value of the associated
event variable (if any) is set to
'1 f B, and the status value is left
unchanged.

2. The RETURN statement in Option 2 is
used to terminate a procedure invoked
as a function procedure only.
Controll is returned to the point of
invocation, and the value returned to
the function reference is the value
of the, expression specified converted
to con.form to the attributes declared
for the invoked entry point. These
attritutes may be explicitly
specified at the entry point; they
are otherwise implied by the initial
letter of the entry name through
which the procedure is invoked.

3. If con.trol reaches an END statement
corresponding to the end of a
procedure, this END statement is
treated as a RETURN statement (of the
option 1 form) for the procedure.

REVERT

The REVERT statement is used to cancel the
effect of the latest relevant ON
statement. It can affect only ON
statements that are internal to the block
in which the REVERT statement occurs and
which have been executed in the same
invocation of that block. Execution of
the REVERT statement in a given block
cancels the action specification of any ON
statement f:or the named condition that has

been executed in that block; it then
re-establishes the action specification
that was in force at the time of
activation of the tlock.

General format:

REVERT condition;

Syntax rule:

The "condition" is any of those
described in section H, "On-Conditions".

General rule:

The execution of a REVERT statement has
the effect described above only if (1) an
ON statement, specifying the same
condition and internal to the same block,
was executed after the block was activated
and (2) the execution of no other similar
REVERT statement has intervened. If
either of these two conditions is not met,
the REVERT statement is treated as a null
statement.

REWRITE

The REWRITE statement can be used only for
update files. It replaces an existing
record in a data set.

General format:

REWRITE FILE (file-expression)
[FROM(variable)]
[KEY (element-expression)]
[EVENT (event-variable)]:

Syntax rules:

1. The options may appear in any order.

2. The "file-expression" represents the
name of the file containing the
record to be rewritten. The file
must have the UPDATE attribute.

3. The FROM option specifies a variable
that represents the record that will
replace the existing record in the
specified file. If the variable is
an aggregate, it must be in connected
storage: certain uses of unaligned
fixed-length bit strings are
disallowed (for details, see "Data
Transmitted" in chapter 12,
"Record-Oriented Transmission").

General rules:

1. If the file referred to by
"file-expression" has not been
opened, it is opened implicitly with
the attributes RECORD and UPDATE.

section J: Statements 445

2. The KEY option must appear if the
file has the DIRECT attribute; it
cannot appear otherwise. The
element-expression is converted to a
character string. This character
string is the source key that
determines which record is to be
rewritten.

3. For SEQUENTIAL files with INDEXED
organization, if the key is an
embedded key, the user must take care
that the rewritten key is the same as
the key in the replaced record.

4. The FROM option must be specified for
UPDATE files having either the DIRECT
attribute or both the SEQUENTIAL and
UNBUFFERED attributes. A REWRITE
statement in which the FROM option
has not been specified has the
following effect:

a. If the last record was read by a
READ statement with the INTO
option, REWRITE without FROM has
no effect on the record in the
data set.

b. If the last record was read by a
READ statement with the SET
option, the record will be
updated by whatever assignments
were made in the buffer
identified by the pointer
variable in the set option. When
the records are blocked, a
REWRITE statement issued for any
record in the block causes the
complete block to be rewritten
even if no REWRITE statements are
issued for other records in the
block.

5. The EVENT option allows processing to
continue while a record is being
rewritten. This option must not be
specified for a SEQUENTIAL BUFFERED
file.

446

When control reaches a REWRITE
statement containing this option, the
event variable is made active (that
is, it cannot be associated with
another event) and is given the
completion value 'O'B, provided that
the UNDEFINEDFILE condition is not
raised by an implicit file opening
(see "Note" below). The event
variable remains active and retains
its 'O'B completion value until
control reaches a WAIT statement
specifying that event variable. At
this time, either of the following
can occur:

a. If the REWRITE statement has been
executed successfully and none of
the conditions TRANSMIT, KEY, or
RECORD has been raised as a
result of the REWRITE, the event
variable is set complete (given
the completion value '1"B), and
the event variable is made
inactive (that is, it can be
associated with another event).

b. If the REWRITE statement has
resulted in the raising of
TRANSMIT, KEY, or RECORD, the
interrupt for each of these
conditions does not occur until
the WAIT is encountered. At such
time, the corresponding on-units
(if any) are entered in the order
in which the conditions were
raised. After a return from the
final on-unit, or if one of the
on-units is terminated by a GO TO
statement, the event variable is
given the completion value '1'B
and is made inactive.

~ If the REWRITE statement
causes an implicit file oFening that
results in the raising of
UNDEFINEDFILE, the on-unit associated
with this condition is entered
immediately and the event variable
remains unchanged, that is, the event
variable remains inactive and retains
the same value it had when the
REWRITE was encountered. If the
on-unit does not correct the
condition, then, upon normal return
from the on-unit, the ERROR condition
is raised; if the condition is
corrected in the on-unit, that is, if
the file is opened successfully,
then, upon normal return from the
on-unit, the event variable is set to
'O'B, it is made active, and
execution of the REWRITE statement
continues.

6. If the record rewritten is one that
was locked in the same task, it
becomes unlocked.

The SIGNAL statement simulates the
: occurrence of an interrupt. It may be
used to test the current action

: specification for the associated
: condition.

General fOlcmat:

SIGNruu condition:

Syntax rulE:!:

The "condition" is anyone of those
described in section H, "On-Conditions".

General l:uJLes:

1. When (l SIGNAL statement is executed,
it is as if the specified condition
has actually occurred. sequential
execut.ion is interrupted and control
is transferred to the current on-unit
for the specified condition. After
the on-unit has been executed,
control returns to the statement
immE!dlately following the SIGNAL
statement.

2. The on-condition CONDITION can cause
an int~errupt only as a result of its
specification in a SIGNAL statement.

3. If the specified condition is
disabled, no interrupt occurs" and
the SIGNAL statement becomes
equivcLlent to a null statement.

4. If thE!re is no current on-unit for
the specified condition, then the
standard system action for the
condition is performed.

The STOP st:atement causes immediate
termination of the major task and all
sub-tasks

General fOI:mat:

STOP;

General rule:

Prior to any termination activity the
FINISH condition is raised in the task in
which the STOP is executed. On normal
return from the FINISH on-unit, all tasks
in the program are terminated.

The UNLOCK statement makes the specified
locked record available to other tasks for
operations on the record.

General format:

UNLOCK option-list:

Following is the format of "option
list":

FILE(file-expresslon) KEY (expression)

General rules:

1. The options may appear in either
order.

2. The FILE option specifies the file
involved, which must have the
attributes UPDATE, DIRECT, and
EXCLUSIVE.

3. In the KEY option, the "expression"
is converted ·to a character string
and determines which record is
unlocked.

4. A record can be unlocked only ty the
task which locked it.

The execution of a WAIT statement within
an activation of a block retains control
for that activation of that block within
the WAIT statement until certain specified
events have completed.

General format:

WAIT (event [,event) •••)
(element-expression»);

Syntax rules:

Each event is an event variable, or an
array or (for the checkout compiler only)
a structure consisting only of event
variables.

General rules:

1. Control for a given block activation
remains within this statement until,
at possibly separate times during the
execution of the statement, the
condition

COMPLETION (event) = 'l'B

has been satisfied, for some or all
of the event names in the list.

2. If the expression does not appear,
all the event names in the list must
satisfy the above condition before
control is passed to the next
statement in this task following the
WAIT.

Section J: Statements 447

3. If the optional expression appears,
the expression is evaluated when the
WAIT statement is executed and
converted to an integer. This
integer specifies the number of
events in the list that must satisfy
the above condition before control
for the block passes to the statement
following the WAIT. Of course, if an
on-unit entered due to the WAIT is
terminated abnormally, control might
not pass to the statement following
the WAIT.

If the value of the expression is
zero or negative, the WAIT statement
is treated as a null statement. If
the value of the expression is
greater than the number, ~, of event
names in the list, the value is taken
to be n. If the statement refers to
an array event name, then each of the
array elements contributes to the
count.

4. If the event variable named in the
list has been associated with a task
in its attaching CALL statement~ then
the condition in Rule 1 will be
satisfied on termination of that
task.

5. If the event variable named in the
list is associated with an
input/output operation initiated in
the same task as the WAIT~ the
condition in Rule 1 will be satisfied
when the input/output operation is
completed. The execution of the WAIT
is a necessary part of the completion
of an input/output operation. If
prior to, or during~ the WAIT all
transmission associated with the
input/output operation is terminated,
then the WAIT performs the following
action. If the transmission has
finished without requiring any
input/output conditions to be raised,
the event variable is set complete
(i.e., COMPLETION(event
name) = '1'B). If the transmission
has been terminated but has required
conditions to be raised, the event
variable is set abnormal (i.e.,
STATUS(event name) = 1) and all the
required on-conditions are raised.
On return from the last on-unit, the
event variable is set complete.

6. The order in which on-conditions for
different input/output events are
raised is not dependent on the order
of appearance of the event names in
the list. If an on-condition for one
event is raised, then all other

448

conditions for that event are raised
before the WAIT is terminated or
before any other input/output
conditions are raised unless an
abnormal return is made from one of
the on-units thus entered. The
raising of ON conditions for one
event implies nothing about the
completion or termination of
transmission of other events in the
list.

7. If an abnormal return is made from
anyon-unit entered from a WAIT, the
associated event variable is set
complete, the execution of the WAIT
is terminated, and control passes to
the point specified by the abnormal
return.

8. If some of the event names in the
WAIT list are associated with
input/output operations and have not
been set complete before the WAIT is
terminated (either because enough
events have been completed or due to
an abnormal return), then these
incomplete events will not be set
complete until the execution of
another WAIT referring to these
events in this same task.

WRITE ---.,..
The WRITE statement is a RECORD
transmission statement that transfers a
record from a variable in internal storage
to an OUTPUT or UPDATE file.

General format:

WRITE FILE (file-expression) FROM
(variable)

[KEYFROM(element-expression)
[EVENT(event-variable)]:

Syntax rules:

1. The options may appear in any order.

2. The "file expression" specifies the
file in which the record is to be
written. This file must be a RECORD
file that has either the OUTPUT
attribute or the DIRECT and UPDATE
attri1:utes.

3. The FROM option specifies a variable
that represents the record to 1:e
written. If the variable is an
aggregate, it must be in connected

storage: certain uses of unaligned
fixed-length bit strings are
disallowed (for details see "Data
Transmitted" in chapter 12,
"Re(::o:rd-Oriented Transmission").

General rules:

1. If th,e file is not open in a task, it
is opened for that task implicitly
with 'the attributes RECORD and OUTPUT
(unlel3s UPDATE has been declared).

2. If 1;h,e KEYFROM option is specified,
the "Ielement expression" is converted
to ii ,character string. This
chalca,cter string is the' source key
that specifies the relative location
in the data set where the record is
writt'en. For REGIONAL (2) "
REGIONAL(3), and INDEXED, KEYFROM
also specifies a recorded key whose
length is determined by the KEYLEN
subparameter or the KEYLENGTH option.

3. The EVENT option allows processing'to
continue while a record is being
wri~t:.ten. This option cannot be
specified for a SEQUENTIAL BUFFERED
file: record transmisson and
processing are automatically
ove:rlapped in such a file.

When control reaches a WRITE
sta'tement containing this option" the
"ev,ent variable" is made active (that
is, it cannot be associated with
anot,her event) and is given the
completion value '0' B" provided that
the UNDEFINEDFILE condition is not
raised by an implicit file opening
(see "Note" below). The event
variable remains active and retains
its 'O'B completion value until
control reaches a WAIT statement
specifying that event variable. At
this time, either of the following
can occur:

a~ If the WRITE statement has been
executed successfully and none of
the conditions TRANSMIT, KEY, or
RECORD has been raised as a
result of the WRITE, the event
variable is set complete (given
the completion value 'l'B), and
the event variable is made
inactive, that is, it can be
associated with another event.

b. If the WRITE statement has
resulted in the raising of
TRANSMIT, KEY, or RECORD, the
interrupt for each of these
conditions does not occur until
the WAIT is encountered. At such
time, the corresponding on-units
(if any) are entered in the order

in which the conditions were
raised. After a return from the
final on-unit, or if one of the
on-units is terminated by a GO TO
statement, the event variable is
given the completion value ('l'B)
and is made inactive.

Note: If the WRITE statement causes
an implicit file opening that results
in the raising of UNDEFINEDFIIE, the
on-unit associated with this
condition is entered immediately and
the event variable remains unchanged;
that is, the event variable remains
ina,ctive and retains the same value
it had when the WRITE was
encountered. If the on-unit does not
correct the condition, then, upon
normal return from the on-unit, the
ERROR condition is raised: if the
condition is corrected in the
on-unit, that is, if the file is
opened successfully, then upon normal
return from the on-unit, the event
variable is set to 'O'B, it is made
active, and execution of the WRITE
statement continues.

4. The EVENT option cannot be used with
a TRANSIENT file.

Preprocessor Statements

All of the statements that can be
executed at the preprocessor stage are
presented alphabetically in this section.

%ACTIVATE

Abbreviation: ~ACT

The appearance of an identifier in a
~ACTIVATE statement makes it active and
eligible for replacement: that is, any
subsequent encounter of that identifier in
a nonpreprocessor statement, while the
identifier is active, will initiate
replacement activity.

General format:

%[label:]... ACTIVATE identifier
[RESCANINORESCAN] [,identifier
[RESCANINORESCAN~] ••• :

section J: statements 449

Syntax rules:

1. Each identifier must be a
preprocessor variable, a preprocessor
procedure name, or any of the
built-in functions INDEX, LENGTH or
SUBSTR.

2. A ~ACTIVATE statement cannot appear
within a preprocessor procedure.

General rules:

1. An identifier cannot be activated
initially by a %ACTIVATE statement;
the appearance of that identifier in
a %DECLARE statement serves that
pur~ose. An identifier can be
activated by a ~ACTIVATE statement
only after it has been deactivated by
a %DEACTIVATE statement.

2. When an identifier is active (and has
been given a value -- if it is a
preprocessor variable) any encounter
of that identifier within a
nonpreprocessor statement will
initiate replacement activity in all
cases except when the identifier
appears within a comment or within
single quotes. For example, if the
source program contains the following
sequence of statements:

% DECLARE I FIXED, T CHARACTER;

% DEACTIVATE Ii

% I = 15:

% T = • A (I) • ;

S I*T*3;

% I = 1+5;

" ACTIVATE I;

" DEACTIVATE T;

R = I*T*2;

then the preprocessed text generated
by the above would be as follows
(replacement blanks are not shown):

S = I*A(I>*3;

R = 20*T*2:

3. If the identifier to which RESCAN or
NORESCAN refers is the name of a
preprocessor variable of type FIXED
or of a preprocessor procedure which
returns a FIXED value, replacement in
the output stream occurs irrespective
of which option is specified. If the
identifier to which RES CAN or

450

NORESCAN refers is the name of a
preprocessor variable of type
CHARACTER or of a procedure which
returns a CHARACTER value then:

a. RESCAN specifies that when the
identifier is scanned by the
preprocessor, replacement in the
output stream takes place as
usual.

b. NORESCAN specifies:

(1) That when the identifier is
scanned by the preprocessor,
it is replaced in the output
stream by that text which is
the current value of the
variable named by the
identifier, or by that text
which is the result of
invoking the procedure named
by the identifier.

(2) That this text is not to be
rescanned for further
replacement.

RES CAN is the default.

4. The execution of a %ACTIVATE
statement to activate a preprocessor
identifier that is already activated
has no effect.

~Assignment Statement

The %assignment statement is used to
evaluate preprocessor expressions and to
assign the result to a preprocessor
variable.

General format:

%[label:l... preprocessor-variable =
preprocessor-ex~ression;

General rule:

When the value assigned to a
preprocessor variable is a character
string, this character string should not
contain a preprocessor statement.

%DEACTIVATE

Abbreviation: %DEACT

The appearance of an identifier in a
%DEACTIVATE statement makes it inactive
and ineligible for replacement; that is,

any subsequent encounter of that
identifier in a nonpreprocessor statement
will not initiate any replacement activity
(unless, of course, the identifier has
been reacti.vated in the interim).

General fOI:mat:

"[labEd:] • • • DEACTIVATE identifier
[,identifier] ••• ;

Syntax rtlllE~s:

1. Each "identifier" must be either a
preprocessor variable~ the SUBSTR
built-in function~ or a preprocessor
pr'o<:e<iure name.

2. A "DEACTIVATE statement cannot appear
within a preprocessor procedure.

General rule:

The dE~a~=ti vation of an identifier does
not strip it of its value, nor does it
prevent jLt from receiving new values in
subsequent preprocessor statements.
Deactivati~:>n simply prevents any
replacement for a particular identifier
from taking place. Deactivation of a
deactivai:.ed preprocessor identifier has no
effect ..

Abbrevia'tion: "DCL

The "DECLARE statement establishes an
identifier as a preprocessor variable or a
preprocessor procedure name and also
serves to activate that identifier. An
identifier must appear in a "DECLARE
statement before it can be used as a
variable or a procedure name in any other
preprocessor statement.

General fOlrmat:

"([late!l:] •••
D:ECLARE identifier

{FIXED I CHARACTER I ENTRY I BUILTIN}
[,identifier
{FIXEDICHARACTERIENTRYIBUILTIN}] ••• ;

Syntax rules:

1. CHARACTER or FIXED must be specified
if the "identifier" is a preprocessor
variable; an entry declaration may be
optionally specified if the
"identifier" is a preprocessor
procedure name. The declaration of a
preprocessor procedure entry name can
be performed explicitly by its
appearance as the label of a

"PROCEDURE statement. This explicit
declaration however, does not cause
the activation of the preprocessor
procedure name.

2. Only the attributes shown in the
above format can be specified in a
"DECLARE statement.

3. Factoring of attributes is allowed as
for nonpreprocessor DECLARE
statements.

4. Any label attached to a "DECLARE
statement is ignored by the scan.

General rules:

1. No length can be specified with the
CHARACTER att:ribute. If CHARACTER is
specified, it is assumed that the
associated identifier represents a
varying-length character string that
has no maximum length.

2. A preprocessor variable declared with
the attribute FIXED is also given the
attributes DECIMAL and (5,0) by
default.

3. A preprocessor declaration is not
known until it has been encountered
by the scan. If a reference to a
preprocessor variable or procedure is
encountered in a preprocessor
statement before the declaration for
that variable or procedure has been
scanned, then the reference is in
error.

4. The scope of all preprocessor
variatles, procedure names, and
labels is the entire source program
scanned by the preprocessor, not
including any preprocessor procedures
that redeclare such identifiers. The
scope of a declaration in a
preprocessor procedure is limited to
that procedure.

5. An entry declaration may be specified
for each preprocessor procedure in
the source program. It is used to
activate the entry name. Each time a
preprocessor function is invoked, its
arguments are converted if necessary
to the attributes of the
corresponding parameters.

See "Preprocessor Procedures" in
"Compile-Time Facilities" in Part I,
for a discussion of the association
of arguments and parameters at the
time of invocation.

6. A preprocessor IDECLARE statement
behaves as a "ACTIVATE statement when
it is encountered, and activates,

Section J: Statements 451

with the RES CAN option, all
preprocessor variables identified in
the statement.

7. The BUILTIN attribute may only be
specified for SUBSTR, LENGTH, or
INDEX. It indicates that the
associated identifier is the built-in
function of the same name.

The ~DO statement is used in conjunction
with a lEND statement to delimit a
preprocessor DO-group. It cannot be used
in any other way.

General format:

"[label:l ••• DO m2 [BY m3l]];

m3 [TO m2l

Syntax rule:

The "~" represents a preprocessor
variable, and "m1~" "m2," and "m3" are
preprocessor expressions.

General rule:

The expansion of a preprocessor
DO-group is the same as the expansion for
a corresponding nonpreprocessor DO-group
and "i," "m1," "m2," and "m3" have the
same meaning that the corresponding
expressions in a nonpreprocessor DO-group
have.

See "preprocessor DO-Groups" in chapter
16, "Compile-Time Facilities", for a
discussion and an example of its use.

The "END statement is used in conjunction
with "DO or IPROCEDURE statements to
delimit preprocessor DO-groups or
preprocessor procedures.

General format:

I [label:l ••• END [labell;

Syntax rule:

The label following END must be a label
of a "PROCEDURE or "DO statement.
Multiple closure is permittBd.

452

Abbreviation: GO TO

The "GO TO statement causes the
,reprocessor to continue its scan at the
specified label.

General format:

"[label:l ••• GO TO label;

General rules:

1. The label following the keyword GO TO
determines the point to which the
scan will be transferred. It must be
a label of a preprocessor statement,
although it cannot be the label of a
preprocessor procedure.

2. A preprocessor GO TO statement
appearing within a preprocessor
procedure cannot transfer control to
a point outside of that procedure.
In other words, the label following
GO TO must be contained within the
procedure.

3. See ""INCLUDE Statement" for a
restriction regarding the use of "GO
TO with included text.

The "IF statement can control the flow of
the scan according to the value of a
preprocessor expression.

General format:

"[label:l ••• IF
preprocessor-expression

Syntax rule:

ITHEN preprocessor-clause-1
["ELSE preprocessor-clause-2l

A preprocessor clause is any single
preprocessor statement other than
%DECLARE, "PROCEDURE, "END, or "DO
(percent symt:ol included) or a
preprocessor DO-group (percent symt:ols
included). Otherwise, the syntax is the
same as that for non-preprocessor IF
statements.

General rules:

1. The preprocessor expression is
evaluated and converted to a bit
string (if the conversion cannot be
made, it is an error). If any bit in
the string has the value 1, clause-1

is exec:uted and clause-2, if present,
is ignored; if all bits are 0,
clause-1 is ignored and clause-2, if
present, is executed. In either
case, t:he scan resumes immediately
following the IF statement, unless,
of course, a %GO TO in one of the
clausee; causes the scan to resume
elsewhE~re •

2. ~IF' statements can be nested
according to the rules for nesting
non~reprocessor IF statements.

~INCLUDF!

The IINCLUD:E statement is used to include
(incorporat'e) strings of external text
into the source program being scanned.
This in<::llllded text can contribute to the
preprocessed text being formed.

General format:

The %INCLUDE statement is defined as
follows for these compilers:

~[label:]... INCLUDE

{
ddname-1 (member-name-1)}

member-name-1

[

,ddname-2 (memter-name-2)]

,member-name-2

Syntax rulEls:

... ,

1. Each "Jddname" and "member name" pair
identifies the external text to be
incorporated into the source program.
This E!xternal text must be a member
of at partitioned data set.

2. A "ddname" specifies the ddname
occurring in the name field of the
appropriate DO statement. Its
associated "member name" specifies
the name of the data set member to be
incorporated. If "ddname" is
omitt~ad, SYSLIB is assumed, and the
SYS]~IB DD statement is required.

3. A ~INC:LUDE statement cannot be used
in a preprocessor procedure.

General Jeules:

1. Included text can contain
nonpreprocessor and/or preprocessor
statements. Its maximum permissible
length is 100 characters.

2. The included text is scanned, in
sequence, in the same manner as the
source program; that is, preprocessor
statements are executed and
replacements are made where required.

3. %INCLUDE statements can be nested.
In other words, included text also
can contain %INCLUDE statements. A
%GO TO statement in included text can
transfer control to a point in the
source program or in any included
text at an outer level of nesting,
but the reverse is not permitted. An
analogous situation exists for nested
DO-groups that specify iterative
execution: control can be
transferred from an inner· group to an
outer, containing group, but not from
an outer group into an inner,
contained group. The maximum
permissible depth of nesting is 49.

4. Preprocessor statements in included
text must be complete. It is not
permissible, for example, to have
half of a IIF statement in included
text and half in the other part of
the source program.

If the source program contained the
following sequence of statements:

%OECLARE (FILENAME1, FILENAME2)
CHARACTER;

~ FILENAME1 = 'MASTER';

% FILENAME2 = 'NEWFILE';

I INCLUDE DCLS;

and if the SYSLIB member name DCLS
contained:

DECLARE (FILENAME1, FILENAME2)
FILE RECORD INPUT
DIRECT KEYED ENVIRONMENT
(REGIONAL(3) KEYLENGTH(S) F
RECSIZE(SO»;

then the following would be inserted into
the preprocessed text:

DECLARE (MASTER, NEWFILE)
FILE RECORD INPUT
DIRECT KEYED ENVIRONMENT
(REGIONAL(3) KEYLENGTH(S) F
RECSIZE (SO» ;

Note that this is a way in which a
central litrary of file declarations can
be used, with each user supplying his own
names for the files teing declared.

Section J: Statements 453

~Null Statement

The Inull statement can be used to provide
transfer targets for %GO TO statements.
It is also useful for balancing ELSE
clauses in nested %IF statements.

General format:

I [label:] ••• :

~PROCEDURE

Abbreviation: ~PROC

The ~PROCEDURE statement is used in
conjunction ~ith a ~END statement to
delimit a preprocessor procedure. Such a
preprocessor procedure is an internal
function procedure that can be executed
only at the preprocessor stage.

General format:

I label: [label:]... PROCEDURE
[(identifier [, identifier] •••)]
RETURNS{CHARACTERIFIXED}:

Syntax rules:

1. Each "identifier" is a parameter of
the function procedure: a maximuro of
15 may be specified.

2. One of the attributes CHARACTER or
FIXED must be specified in the
RETURNS attribute list to indicate
the type of value returned by the
function procedure. There can be no
default.

General rules:

1. The only statements and groups that
can be used within a preprocessor
procedure are:

a. the preprocessor assignment
statement

b. the preprocessor DECLARE
statement

c. the preprocessor DO-group

d. the preprocessor GO TO statement

e. the preprocessor IF statement

f. the preprocessor null statement

g. the preprocessor RETURN statement

454

All of these statements and the
DO-group must adhere to the syntax
and general rules given for them in
this section, with one exception: all
percent symbols must be omitted.

2. A GO TO statement appearing in a
preprocessor procedure cannot
transfer control to a point outside
of that procedure.

3. As implied by general rule 1,
preprocessor procedures cannot be
nested.

4. A preprocessor procedure can be
invoked by a function reference in a
preprocessor statement, or, if the
function procedure name is active, by
the encounter of that name in a
nonpreprocessor statement.

Preprocessor RETURN

The preprocessor RETURN statement can be
used only in a preprocessor procedure and,
therefore, can have no leading %. It
returns a value as well as control tack to
the point from which the preprocessor
procedure was invoked.

General format:

[label:]... RETURN
(preprocessor-expression):

General rule:

The value of the preprocessor
expression is converted to the RETURNS
list of attribute specified in the
IPROCEDURE statement before it is passed
back to the point of invocation. If the
point of invocation is in a
nonpreprocessor statement, replacement
activity can be performed on the returned
value after that value has replaced the
procedure reference.

Note that the rules for preprocessor
expressions do not permit the value
returned by a preprocessor procedure to
contain preprocessor statements.

Listing Cc)n'trol Statements

~CONTROL

The checkout compiler FORMAT option, when
specified, may be activated and
deactivatE!d by the %CONTROL statement.
Onder the ol£'timizing compiler, the syntax
of the statjement is checked, then it is
ignored.

General fc)rmat:

"CON~[,ROL(FORMATI NOFORMAT) :

Syntax rule:s:

1. To influence formatting of a listing,
the lata tement must be on a line with
no other statements.

2. The :statement will have no effect On
the format if it appears within a
comment or another statement.

General rules:

1. The "CONTROL statement has no effect
if the FORMAT compiler option has not
been specified.

2. The FORMAT compiler option is
nullified if more %CONTROL statements
have been executed with the NOFORMAT
op,tionl than with the FORMAT option:
the rElsult is as if the FORMAT option
had nOlt been specified. In all other
cases, the %CONTROL statement has no
effect on the format.

3. The st:atement may be used with or
without the preprocessor.

4. The "CONTROL statement is printed in
the formatted listing. It is also
retained in the text passed to the
compil.er, but is ignored by the
compiler.

5. If the preprocessor is used, and a
"CONTltOL statement is. written on the
same line as one or more other
statements, the preprocessor moves
the "CONTROL so that it is on a line
of its own in the text passed to the
compiler"

The statem~:mt following a "PAGE statement
in the pro~~ram listing is printed on the
first line of the next page.

General format:

"PAGE;

Syntax rules:

1. To cause formatting to take place,
the statement must be on a line with
no other statements.

2. The statement will have no formatting
effect if it appears within a comment
or another statement.

General rules:

1. The statement may be used with or
without the preprocessor. It will
control both the insource and the
source listing.

2. After being put into effect, the
"PAGE; is not printed by the
preprocessor and is deleted from the
text by the compiler; it does not
appear in the formatted listing.

3. If the preprocessor is used. and a
"PAGE statement is written on the
same line as one or more other
statements, the preprocessor moves
the "PAGE so that it is on a line of
its own in the text passed to the
compiler. The insource listing is
therefore not formatted~ but the
source listing is.

4. When the preprocessor is used, an
identifier that is split across the
end of a line that contains a "PAGE
statement is concatenated to form one
word. The second part of the word is
moved onto the same line as the first
part if there is sufficient space on
that line, otherwise the concatenated
word is printed at the start of a new
line.

The specified number of lines following a
"SKIP statement in the program listing are
left blank.

General Format

"SKIP [(n)) ;

Syntax rules:

1. To cause formatting to take place,
the statement must be on a line with
no other statement.s.

section J: Statements 455

2. The statement will have no formatting
effect if it appears within a comment
or another statement.

3. n must be a decimal integer constant
in the range 1 through 999. Omission
of the option is equivalent to
specifying the value 1 for n.

General rules:

1. The statement may be used with or
without the preprocessor. It will
control both the insource and the
source listing.

2. After being put into effect, the
ISRIP statement is not printed by the
preprocessor and is deleted from the
text by the compiler; it does not
appear in the formatted listings.

3. If the preprocessor is used, and a
ISKIP statement is written on the

456

same line as one or more other
statements, the preprocessor moves
the %SKIP so that it is on a line of
its own in the text passed to the
compiler. The insource listing is
therefore not formatted, but the
source listing is.

4. When the preprocessor is used, an
identifier that is split across the
end of a line that contains a ISKIP
statement is concatenated to form one
word. The second part of the word is
moved onto the same line as the' first
part if there is sufficient space on
that line, otherwise the concatenated
word is printed at the start of a new
line.

5. If n is greater than the number of
lines remaining on the page, the
equivalent of a %PAGE statement is
executed in place of the ISKIP
statement.

This section describes structure mapping
and alignment of records in buffers. The
information is included because, under
certain circ:umstances, it should be borne
in mind when a program is being written.
However, thE~ information is not essential
to programm.~rs using stream-oriented

ItransmiSSiOJl or unaligned data (other than
bit strings:l: it is intended for those
using rec()rd-oriented transmission
(particulclrly locate mode) with aligned
structures.

Structure lVJ[apping

For any strlllcture (major or minor), the
length, alil:Jnment requirement, and
position :celative to a doubleword boundary
will depend on the lengths, alignment
requirements, and relative positions of
its membe:cs. The process of determining
these requirements for each level in turn
and finally for the complete structure, is
known as ~tructure mapping.

During the structure mapping process,
the compiler minimizes the amount of
unused storage (padding) ~tween members
of the structure. It completes the entire
process &efore the structure is allocated,
according (in effect) to the rules
discussed in the following paragraphs. It
is necessaJ:'Y for the user to understand
these rules for such purposes as
determining the record length required for
a structurE! when record-oriented
input/outp\Jlt is used, and for determining
the amount of padding or rearrangement
required tel ensure correct alignment of a
structure f:or locate-mode input/output
(see "Record Alignment", in this section).

structul:e mapping is not a physical
process. J~lthough during this discussion
such terms as "shifted" and "offset" are
used, these terms are used purely for ease
of discussion, and do not imply actual
movement in storage: when the structure is
allocated, the relative locations are
already kn()wn as a result of the mapping
process.

RULES

The mapl~ing for a complete structure
reduces 1:0 successively combining pairs of

Section K: Data Mapping

items (elements, or minor structures whose
individual mappings have already been
determined). Once a pair has been
combined, it becomes a unit to be paired
with another unit, and so on until the
complete structure has been mapped. The
rules for the process are therefore
categorized as:

Rules for determining the order of
pairing

Rules for mapping one pair

These rules are described below, and the
example at the end of this section shows
an application of the rules in detail.

Note: To follow these rules, it is
necessary to appreciate the difference
between logical level and level number.
The item with the greatest level number is
not necessarily the item with the deepest
logical level. If the structure
declaration is written with consistent
level numbers or suitable indentation (as
in the detailed example given after the
rules), the logical levels are immediately
apparent. In any case, the logical level
of each item in the structure can be
determined by applying the following rule
to each item in turn:, starting at the
beginning of the structure declaration:

The logical level of a given item is
always one unit deeper than that of
the most immediate of its containing
structures.

For example:

DCL 1 A, 4 B, 5 C, 5 D, 3 E, 8 F, 7 G:

1 2 3 3 2 3 3

The lower line shows the logical level
for each item in the declaration.

Rules for Order of pairing

The steps in determining the order of
pairing are as follows:

1. Find the mino:r structure with the
deepest logical level (which we will
call logical level n).

2. If the number of minor structures at
logical level n exceeds one, take the

Section K: Data ~apping 457

first one of them as it appears in
the declaration.

3. Using the rules for mapping one pair
(see below), pair the first two
elements appearing in this minor
structure, thus forming a unit.

4. Pair this unit with the next element
(if any) appearing in the declaration
for the minor structure, thus forming
a larger unit.

5. Repeat rule 4 until all the elements
in the minor structure have been
combined into one unit. This
completes the mapping for this minor
structure; its alignment requirement
and length, including any padding,
are no~ determined and will not
change (unless the programmer changes
the structure declaration). Its
offset from a doubleword boundary
will also have been determined; note
that this offset will be significant
during mapping of any containing
structure, and it may change as a
result of such mapping.

6. Repeat rules 3 through 5 for the next
minor structure (if any) appearing at
logical level n in the declaration.

7. Repeat rule 6 until all minor
structures at logical level n have
been mapped. Each of these minor
structures can now be thought of as
an element for structure mapping
purposes.

8. Repeat the process for minor
structures at the next higher logical
level; that is, make n equal to
(n - 1) and repeat rules 2 through 7.

9. Repeat rule 8 until n = 1; then
repeat rules 3 through 5 for the
major structure.

Rules for Mapping One Pair

(AS stated earlier., terms apparently
implying physical storage are used here
only for ease of discussion; the storage
thus implied may be thought of as an
imaginary model consisting of a number of
contiguous doublewords. Each doubleword
has eight bytes numbered zero through 7,
so that the offset from a doubleword
boundary can be given; in addition, the
bytes in the model may be numbered
continuously from zero onwards, starting

458

at any byte, so that lengths and offsets
from the start of a structure can be
given.)

1. Begin the first item of the pair on a
double word boundary; or, if the item
is a minor structure that has already
been mapped, offset it from the
doubleword boundary by the amount
indicated.

2. Begin the other item of the pair at
the first valid position following
the end of the first item. This
position will depend on the alignment
requirement of the second item.
Alignment and length requirements for
elements are given in figure R.1 and
K.2. (If the item is a minor
structure, its alignment requirement
will have been determined already.)

3. Shift the first item towards the
second item as far as the alignment
requirement of the first item will
allow. The amount of shift
determines the offset of this pair
from a doubleword boundary.

After this process has been completed,
any padding between the two items will
have been minimized and will remain
unchanged throughout the rest of the
operation. The pair can now be considered
to be a unit of fixed length and alignment
requirement; its length is the sum of the
two lengths plus padding, and its
alignment requirement is the higher of the
two alignment requirements (if they
differ).

Effect of UNALIGNED Attribute

The example of structure mapping given
below shows the rules applied to a
structure declared ALIGNED, because
mapping of aligned structures is more
complex owing to the number of different
alignment requirements. The general
effect of the UNALIGNED attribute is to

.reduce fullword and doubleword alignment
requirements down to byte, and to reduce
the alignment requirement for tit strings
from byte down to bit. The same structure
mapping rules apply, but the reduced
alignment requirements are used. This
means that unused storage between items
can only be tit padding within a byte, and
never a complete byte; bit padding may
occur when the structure contains bit
strings.

r---------·--·--------T-----------------T-----------------T------------T------------------1
I I I Storage I I I
I Variable IStored Internally I Requirements I Alignment I Explanation I
I Type I as I (in Bytes) I Requirements I I
~---------.----------+-----------------+-----------------+------------+------------------~ IBIT (n) lOne byte for eachl CEIL(n/S) I
I I group of S bits I I
I I(or part thereof), I
.-------------------+-----------------+-----------------~ ICHARACTER (n) lOne byte per I n I
I I character I I

.--------_._---------+-----------------+-----------------~ I PICTURE lOne byte for each,Number of 'Byte
I IPICTURE character I PICTURE charac- I
I I (except V,, K, and I ters other than I
I lthe F scaling IV, K, and F I
I I factor ,specification I
I I specification) I I

.-------------------+-----------------+-----------------~ IDECIMAL FIXED (p,q) I Packed decimal 1 CEIL«p+1)/2) I
I Iformat (1/2 byte, I
I lper digit, plus 1 I
I 11/2 byte for I I
I I sign) I I

Data may
begin on
any byte
o through 7

~-------------------+-----------------+-----------------+------------+------------------i I BIT (n) VAR~'ING I Two-byte prefix I 2+CEIL (n/8) I
I Iplus one byte fori I
I leach group of 8 , I
I Ibits (or part , I
I I thereof) I I
t-------------------+-----------------+-----------------4 I CHARACT:ER (nl) I Two- byte prefix I 2+n I
I VARYING Iplus one byte perl I Halfword
I I character I I
~-----------------~-+-----------------+-----------------~ I BINARY :FIX:E:D (P, q) I Halfword, I
I p < =15 Ibinary integer I 2 I Data may begin
I I , I on byte 0,2,
I I I I 4 or 6
I .-----------------+-----------------+------------+------------------~
I p > 15 IFullword binary I
I I integer I

~-------------------+-----------------~ I BINARY FLOJl~T (p) I I
I p < 22 I Short I 4
~-------... -.--.--------~ floating-point I
IDECIMAL FLOAT (p) I I
I p < 7 I ,
.-------------------+-----------------~ I POINTER' I ,
.-------------------+-----------------~
10FFSET~ I - I

.-------------------+-----------------~ I FILE I ,

t-------------------+-----------------+-----------------~
I ENTRY I , I

.-------------------+-----------------~ S I
I LABEL I I I

.--------------------+-----------------+-----------------i I TASK I 1 16 I

.-------------------+-----------------+-----------------~ I EVENT I ,32 I

Full
word

Data may
begin on
byte 0 or
4 only

L ___________________ ~ _________________ ~ _________________ ~ ____________ ~ _________________ _

Figure K .. 1 (Part 1 of 2). Summary of alignment requirements for ALIGNED data

Section K: Data ~apping 459

r-------------------T-----------------T-----------------T------------T------------------, I I I storage I 1 1
I Variable IStored Internally I Requi~ements 1 Alignment 1 Explanation 1
I Type I as I (in Bytes) 1 Requirements 1 1

~-------------------+-----------------+-------~---------+------------+------------------~ IBINARY FLOA~ (p) I I I Data may
I 21 < P < 54 I Long I I Double begin on
~---~----~----------~floating-point I 8 I word byte 0
IDECIMAL FLOAT (p) I I I only
I 6 < P < 17 I I I
~-------------------+-----------------+-----------------~ IBINARY FLOAT(p) I , I
153 < p < 110 I Extended I I
~-------------------~floating-point' 16 I
IDECIMAL FLOAT(p) I , I
116 < p < 34 I I I
~-------------------+-----------------+-----------------~ I AREA I , 16+size I
~-------------------4-----------------4---------------__ 4 ____________ 4 __________________ ~

IltLocators (pointers and offsets) used in prog~.ams processed by the CheCkout. compiler I
I can be 4 or 16 bytes long. The mapping of f9ur-byte locators is described here; the I
I mapping of 16-byte locators is identical except for the extra storage requirement. I L ___ J

Figure K.1 (Part 2 of 2). Summary of alignment requirements for ALIGNED data

TASK, EVENT and AREA data cannot be
unaligned. If a structure has the
UNALIGNED attribute and it contains an
element that cannot be unaligned, then
UNALIGNED is ignored for that element: the
element is aligned by the compiler and an
error message is put out. For example, in
a program with the declaration

460

DECLARE 1 A UNALIGNED,
2 B,
2 C AREA (1 00) ;

C is given the attribute ALIGNED, as the
inherited attribute UNALIGNED conflicts
with AREA.

r---------'----------T-----------------T-----------------T------------T------------------, I I , Storage I I I
I Vari,able I Stored Internally I Requirements I Alignment I Explanation I
I Type I as I (in Bytes) I Requirements I I
~-------------------+-----------------+-----------------+------------+-----~------------~
IBIT (n) lAs many bits as I n bits IBit IData may begin I
I lare required, 1 I Ion any bit in I
I 'regardless of I I I any byte 0 I
I Ibyte boundaries I I Ithrough 7 I
~-------.----.--------+-----------------+-----------------+------------+------------------~
I CHARACT:ER (n) lOne byte per, n 1
I I character I I
~-------.----.--------+-----------------+-----------------~
1 PICTURE lOne byte for eachlNumber ,of PICTURE I
I IPICTURE characterlcharacters other I
I 1 (except V or K) Ithan V or K I
~---------,--.--------+-----------------+-----------------~
IBIT(n) VARYING ITwo-byte prefix , I
I Iplus one byte forl2 bytes + n bits I
I leach group of 8 , I
I Ibits (or part , I
I I thereof), I
~---------.-.---------+-----------------+-----------------~
I CHARAC'I'ER(n) 1 Two-byte prefix' 2+n I
I VARYING Iplus one byte per, I
I 1 character , 1
~--------.. -.---------+-----------------+-----------------~
IDECIMAI, li'IXED(p,q) IPacked decimal , CEIL((p+1)/2) I
1 I format (112 byte , 1
1 Iper digit, plus , 1
I 11/2 byte for, 1
1 Isign) , 1
~--------.--.---------+-----------------+-----------------~ Byte
I BINARY F:IX:ED (p, q) 1 Halfword binary , I
1 p < = 15 1 integer , 2 I
I ~-----------------+-----------------~ I p > '15 I Full word binary ,
I I integer ,
~-------------------+-----------------i
I BINARY FLOAT (p) 1 ,
I p < 22 1 Short , 4
~------.-------------~ floating-point ,
IDECIMAL FLOAT (p) 1 ,
I p < 7 1 ,
~------,----·---------+-----------------i
I POINTER 1 ,
~-------------------+-----------------~ 1 OFFSET 1 - ,
~------·----·---------+-----------------i
I FILE I ,

Data may begin
on any byte 0
through 7

L __________ • _________ ~ _________________ ~ ______________ ---~------------~ _________________ -J

Figure K.~! (Part 1 of 2). Summary of· alignment requirements for UNALIGNED data

Section K: Data Napping 461

r-------------------T-----------------T-----------------T------------T------------------, I ENTRY , I ,
~-------------------+-----------------~ ,
I LABEL , I I
~-------------------+-----------------~ , ,BINARY FLOAT (p) , , ,
I 2 1 < P < S 4 , Long , I
~-------------------~floating-point I 8 ,
,DECIMAL FLOAT (p) 1 I ,
I 6 < p < 17 I , ,
~-------------------+-----------------+-----------------~ ,BINARY FLOAT(p) I I I
153 < p <110 I Extended 1 I
~-------------------~floating-point I 16 I
IDECIMAL FLOAT(p) I I I
116 < p < 34 1 , I I
~-------------------~-----------------~-----------------~------------~------------------~

I I Note: TASK, EVENT, and AREA data cannot be UNALIGNED. A pointer or offset can be 4 or ,
I 16 bytes long (see figure K.1). I L ___ - _______________________ - _________ J

Figure K.2 (Part 2 of 2). Summary of alignment requirements for UNALIGNED data

Example of Structure Mapping

This example shows the application of
the structure mapping rules for a
structure declared as follows:

462

DECLARE 1 A ALIGNED,
2 B POINTER,
2 C,

3 D FLOAT DECIMAL(14),
3 E,

4 F LABEL,
4 G,

S H CHARACTER(2),
S I FLOAT DECIMAL(13),

4 J FIXED BINARY(31,0),
3 K CHARACTER(2),
3 L FIXED BINARY(20,0),

2 M,
3 N,

4 P FIXED BINARY(S),
4 Q CHARACTER(S),
4 R FLOAT DECIMAL(2),

3 S,
4 T FLOAT DECIMAL(15),
4 U BIT(3),
4 V CHAR(l),

3 W POINTER,
2 X PICTURE ~$9V99';

The. minor structure at the deepest
logical level is G, so that this is mapped
first. Then E is mapped, followed by N,
S, C, and M, in that order. Finally, the
major structure A is mapped. For each
structure, a table is given showing the
steps in the processJ accompanied by a
diagram giving a visual interpretation of
the process. At the end of the example,
the structure map for A is set out in the
form of a table showing the offset of each
member from the start of A.

r-·----'-----T-------------T--------T-----------T-----------T-------------,
I I I IOffset froml I I
I Namle of I Alignment I Length I Doubleword I Length of I Offset from I
I It,em I Requirement I .-----T-----~ Padding I G I
I I I IEeginl End I I I
.---------+-------------+--------+-----+-----+-----------+-------------~

Step 1 I H I Byte I 2 I 0 I 1 I I I
I I I Double I 8 I 0 I 7 I I I
I I I I I I I I

step 2 I *H I Byte I 2 I 6 I 7 I I 0 I
I I I Double I 8 I 0 I 7 I 0 I 2 I
•. _-,-------+-------------+--------+-----+-----+.;..----------+-------------~
I G I Double I 10 I 6 I 7 I I I L _________ ~ _____________ ~ ________ ~ _____ ~ _____ ~ ___________ ~ _____________ J

*First item shifted right

H I
.~

Step I

H I
,-A--u "

Step 2

G

Figure K1I3. Mapping of minor structure G

Section K: Data Mapping 463

r---------T-------------T--------T-----------T-----------T-------------, I , "Offset from' , I
I Name of I Alignment I Length 'Doubleword , Length of , Offset from'
, Item I Requirement , .-----T-----~ Padding' E ,
I , I' Be-gin , End I , ,

~---------f-------------f--------+-----+-----+-----------+-------------~ step 1 IF, Word I 8 ,0, 7 , , ,
, G , Double ,10 ,6 I 7 , I I
, , I' I I I ,

Step 2 I *F I Word ,8 ,4, 3 , ,0,
, G , Doubl e ,1 0 ,6 I 7, 2 I 10 I
I , I I I' , ,

Step 3, F I I" I I I
I through' Double I 20 I 4 I 7 I I I
I G I I I I I I I
I J I Word I 4 I 0 I 3 I 0 , 20 ,
~---------f-------------f--------+-----+-----+-----------+-------------i
, E I Double I 24 I 4 , 3 , I I L _________ ~ _____________ ~ ________ ~ _____ ~ _____ ~ ___________ ~ _____________ J

*First item shifted right

F G

Step I 0

F G

Step 2

F G J

Step 3

'WI
,

E

Figure K.4. Mapping of minor structure E

464

r-----·----T-------------~--------~-----------r-----------T-------------, I I I ,Offset from' , ,
, NamE! of, Alignment 'Length I Doubleword I Length of I Offset from I
, ItE!m I Requirement I ~-----T-----~ Padding' N I
, , "Beginl End I I I
~----.. ----+-------------+-------~+-----+-----+-----------+-------------~

step 1 I l? , Halfword I 2 I 0 I 1 I ,0,
I C2 I Byte ,5 I 2 I 6 I ,2 I
I I I I I I I I

step 2, l? I "I I I I
I through I Halfword I 1 I 0 I 6 I I I
I 1:2 I I I I I I I
I JR I Word I 4 I 0 I 3 I 1 , 8 I
~---------+-------------+--------+-----+-----+-----------+-------------~ I N I Word ,12 ,0 I 3 , I , L _________ ~ _____________ ~ ________ ~ _____ ~ _____ ~ ___________ ~ _____________ J

p
.~

Step I 1° I

p Q R
;,..-A-u

Step 2

I ..
N

Figure K.5. Mapping of minor structure N

Section K: Data Ma~ping 465

r---------T-------------T--------T-----------T-----------T-------------, I I I IOffset from I I I
, Name of I Alignment I Length 'Doubleword I Length of , Offset from ,
, Item ,Requirement, ~-----T-----~ Padding' S ,
, , "Begin, End I , ,
~---------+-------------+--------+-----+---~-+-----------+-------------i

Step 1, T I Double , 8 ,0 I 7 I I 0 ,
I U 'Byte I 1 I 0 I 0 I 0 I 8 ,
I I I I' I , ,

step 2 I T I I I' I I I
I through' Double , 9 ,0, 0 I I I
I 0 I I' I I I I
I V 'Byte ,1 I 1 I 1 I 0 I 9 I
~---------+-------------+--------+-----+-----+-----------+-------------i I s I Doubl e I 1 0 ,0 I 1 , , I L _________ ~ _____________ ~ ________ ~ _____ ~ _____ ~ ___________ ~ _____________ J

T
I

Step I o

T

Step 2 0

, ...
S

• Figure K-6. Mapping of Minor Structure S

466

r---------T-------------T--------T-----------T-----------T-------------,
I I I IOffset from 1 1 1
I Name of 1 Alignment I Length IDoubleword 1 Length of 1 Offset from I
1 It:em I Requirement I ~-----T-----~ Padding 1 C 1
I I I I Begin I End I I I
~---------+--------~----+--------+-----+-----+-----------+-------------i

Step 1 0 Double 8 0 7 0
E Double 24 4 3 4 12

step 2 D
thl:ough

E
K

Double

Byte

36

2

o

4

3

5 o 36

Step 3 D
t:hJcough Double 38 0 5

K
L Word 4 0 3 2 40

~---------+-------------+--------+-----+-----+-----------+-------------~
I C I Double 1 44 I 0 1 3 "I 1 1 L _________ ~ _____________ ~ ________ ~ _____ ~ _____ ~ ___________ ~ _____________ J

D E (Ienqth 24)

Step I

D E (\enqth 24) K
, ,. , ~

Step 2 , 0 II 1213141 5 1617 ~ 415 r fllt-7 or--, 0 ~I q"""21r--"131r--141--'sl---"Tb 1--'71---r"O 1--r
'
1-'213-'14--'-15-r1 b-r17-r-f

D E (I en q th 24) K L
, A .. I ~, £ ,

Step 3 rl,121314IsI617~~4IsVk'OI,121314IsI617'OI'12131415IbI7f
... ,
c

Figure K,. 7. Mapping of minor structure C

Section K: Data Mapping 467

r---------T-------------T--------T-----------T-----------T-------------,
I I I IOffset from I I I
I Name of I Alignment 1 Length IDoubleword I Length of 1 Offset from 1
I Item I Requirement 1 .-----~-----~ Padding 1 M I
I I I 1 Beginl End I 1 1

~---------f-------------+--------+-----+-----+-----------+-------------~ step 1 1 N I Word I 12 1 0 1 3 1 I 1
I s I Double I 10 I 0 I 1 I I I
I I I 1 I I I I

step 2 I *N I Word I 12 I 4 I 7 1 1 0 1
I s I Double 1 10 1 0 I 1 1 0 1 12 1
1 I I 1 I I 1 1

step 3 I N I I 1 I 1 1 1
I through I Double I 22 1 4 I 1 I I I
lSI I I I I 1 1
I W I Word I 4 1 4 I 7 I 2 I 24 1
~---------+-------------+--------+-----+-----+-----------+-------------~
1 M I Double I 28 I 4 I 71 I 1 L _________ ~ _____________ ~ ________ ~ _____ ~ _____ ~ ___________ ~ _____________ J

*First item shifted right

N S

Step I 0

N S
____ ------A----------",.------~A------~

Step 2

N S w

Step 3

M

Figure R.8. Mapping of minor structure M

468

r-'-··-·-----T-------------T--------T-----------,.-----------T-------------,
I I I IOffset from I I I
I Name of I Alignment I Length IDoubleword 1 Length of I Offset from I
I JCtem I Requirement I ~-----T-----~ Padding I A I
I I I I Begin I End I I I
~----.-----+-------------+--------+-----+-----+-----------+-------------~

Step 1 B word 4 0 3

step 2

step 3

Step ~

Step I

Step 2

Step 3

Step 4

C Double 44 0 3

*]B Word 4 4 7
C Double 44 0 3

:6
thr10ugh Double 48 4 3

C
iM Double 28 4 7

6
through Double 76 4 7

M

o

o

o
4

48

X Byte 4 0 3 0 76
~--.-------+-------------+--------+-----+-----+-----------+-------------~
I A I Double I 80 I 4 I 3 I I I L __ . _______ ~ _____________ ~ ________ ~ _____ ~ _____ ~ ___________ ~ _____________ J

*First item shifted right

B C (length 44)

. ". ~ j ° II 1213141 * 1710 II ld~31r---14\r-rS\---r"b \--"-7\ 0--'-\-r""1 \2....,-\3-r-!4~\S~\ b T"""'II7\r--to \---r"1 \--r2\3--'-!4-r""\S---r-\ b-'-17~\ °

B C

B C M (length 28)
r .& ., ",pi ,..

B C M X
~r ~ .,A.

iOI I 121314ISI6I'IOI'j(j1314ISI6I'IOI'vrj1314ISI6I'IOI' 12[314151&171°

,
A (length 80)

Figure K.9., Mapping of major structure A

Section K: Data ~appin9 469

r----------------------------T--------------T--------------T--------------T-------------, I A From A
I B 0
I C From C 4
I D 0 4
I padding (4) 8 12
I E From E 12 16
I F 0 12 16
I padding (2) 8 20 24
I G From G 10 22 26
I H 0 10 22 26
I I 2 12 24 28

J 20 32 36
K 36 40
padding (2)
L

38 42
40 44

N

s

p
Q
padding(1)
R

From M 48
From N 0 48

o 0 48
2 2 50
7 7 55
8 8 56.

From S 12 60
T 0 12 60
U 8 20 68
V 9 21 69

padding (2) 22 70
W 24 72

X 76 ____________________________ 4 ______________ 4 ______________ 4 ______________ 4 _____________ J

Figure K.10. Offsets in final mapping of structure A

470

Record Alignment

The usex' mU~3t pay attention to record
alignment within the buffer when using
locate mode input/output. The first data
byte of the first record in a block is
generally aligned in a buffer on a
doubleword boundary (see figure K.14): the
next record begins at the next available
byte in the buffer. The user must ensure
that the alignment of this byte matches
the alignmelnt requirements of the based
variable wi1th which the record is to be
associated.

For blc)c:ked records, doubleword
alignment of the first byte of data in
each record in the block is ensured if the
record length (RECSIZE) is a multiple of
eight. For spanned records, the block
size (BLKSIZE) must be a multiple of eight
if this alignment is required. For data
read from ASCII data sets, the first byte
of the block prefix is doubleword-aligned;
to ensure similar alignment of the first
byte of the first record, the prefix
length must be a multiple of eight bytes~
less four t,o allow for the four record
length bytes.

Most o:f the alignment problems
described here occur in ALIGNED based or
non-based variables. If these variables
were UNALIGNED~ the preservation of the
record alignment in the buffer would be
considerably easier.

If a VB-format record is to be
constructed with logical records defined
by the structure:

1 S,
2 A CHAR(1),
2 B FIXED BINARY(3l,O);

this structure is mapped as in figure
K.1l.

r--------T--T-----------, I IA I B I • __ J __ J __ + __ + __ J __ J __ J __ ~

t t t
W W W

W = Word boundary

Figure E.ll. Format of structure S

If the block was created using a
sequence of WRITE FROM(S) statements, the
format of the tlock would be as in figure
K.12, and it can be seen that the
alignment in the buffer differs from the
alignment of S.

There is no problem if the file is then
read using move mode READ statements,
e.g., READ INTC(S), because information is
moved from the buffer to correctly aligned
storage.

If, however, a structure is defined as:

1 SBASED BASED(P) LIKE S;

and RE"AD SET (P) statements are used,
reference to SBASED.B will, for the first
record in the block, be to data aligned at
a doubleword plus one byte, and will
probably result in a specification
interrupt.

The same problem would have arisen had
the file originally been created by using
the statement:

LOCATE SBASED SET(P):

Again, for the first record in the
block, P would be set to address a
doubleword and references to SBASED.B
would be invalid.

In both cases the problem is avoided if
the structure is padded in such a way that
B is always correctly aligned:

1 S,
2 PAD CHAR(3),
2 A CHAR (1),
2 B FIXED BINARY:

The block format would now be as in Figure
K-13: B is always on a word boundary.
Padding may be required at the beginning
and end of a structure to preserve
alignment.

Section K: Data Mapping 471

r-----------T-----------T--~-----------T-----------T--T-----------T---------I BL I RL I A I B I RL I A I B I
.--J--J--J--f--J--J--J--f--f--J--J--J--f--J--J--J--f--f--J--J--J--f---------
t t t t t t
D .W D W D W

BL = Block length
RL = Record length

D = Doubleword boundary
W = Word boundary

Figure K.12. Block created from structure S

r-----------T-----------T--------T--T-----------T-----------T--------T--T-----------T---I BL I RL I PAD I AI B I RL I PAD I AI B I
~--J--J--J--+--J--J--J--+--J--J--+--f--J--J--J--+--J~-J_-J--+--J--J--+-_f_-J __ J __ J __ +_--
t t t t t t t t
D W D W D W D W

BL = Block length
RL = Record length

D = Doubleword boundary
W = Word boundary

Figure K.13. Block created by structure S with correct alignment

The alignment of different types of
record within a buffer is shown in figure
R.14. For all organizations and record
types, except FB, V and VB records in
INDEXED data sets with KEYLOC = 0 or
unspecified, the first data byte in a
block (or hidden buffer) is always on a
doubleword boundary. The position of any
successive records in the buffer depends
on the record format.

For INDEXED data sets with unblock~d
F-format records, the LOCATE statement
will use a hidden buffer if the data set
key length is not a multiple of eight and
the KEYLOC value is 1, 0 or is not
specified (that is, RKP = 0). The pointer
variable will point at this hidden buffer.

A special problem arises when using
locate mode input/output in conjunction
with a based variable containing
adjustable extents, i.e., containing a
REFER option. Consider the following
structure:

472

1 S BASED(P),
2 N,
2 C CHAR (L REFER (N»i

If it is desired to create blocked
V-format records of this type, using
locate mode input/output., record alignment
must be such that N is half-word aligned.
If L is not a multiple of 2 then, if the
alignment of the current recorq is
correct, that of the following record will
be incorrect. Correct alignment can be
obtained by the following sequence:

LENGTH = Li
/* SAVE DESIRED LENGTH 1 */

L = 2* CEIL(L/2);
/* ROUND UP TO MULTIPLE OF 2

LOCATE S FILE (F);
N = LENGTH;

/* SET REFER VARIABLE */

This technique can be adapted to other
uses of the REFER option.

CONSEcm~ IVE

F,V,VS,D,U

FB

VB, VJ3S ,DB

INDEXED

F

FB

v

VB

REGIONAL
F,V,VS,U

Notes~

KEYLOC
1

>1

o

>1

o

>1

o

>1

o

1. EK - embedded key K - key

RKP

o

>0

o

o

>0

o

4

>4

4

4

>4

4

Doubleword
boundary

data

data

I

I data I

~data~ ~data~

I
-4--data~

I
~data~

I
~data--..

I
.....-da ta----......- da ta~

IEKI I)EK))
~data~~data~

~data-' ---data~

EKI I
~data--.

IEKI I
~data~

K(I
...-data-.

I
~data~ ~data ____

~data~ ..-.-data~

I
.... data--- ~data~

data I

1 - record length
2. Each I/O operation sets the pointer to the beginning of the data in the records.
3. For CO:NSECUTlVE data sets with VBS-format records, if the record length is greater

than the block size, the record is moved to a hidden buffer, with the first data
byte on a doubleword boundary. ------,

Figure K.,1ItJ. Alignment of data in a buffer in locate mode input/output, for different
formats and. data set organizations

Section K: Data Mapping 473

Section L: Compiler Diff,e:rences

The tables in this section list the
principal differences between the
optimizing and checkout compilers.

Figure L.1 gives the differences that
arise from the differing functions of the
two compilers. There are, for instance,
keywords concerned with the checkout and
conversational facilities of the checkout
compiler that are not implemented by the
optimizing compiler, and optimization
keywords that are not implemented by the
checkout compiler.

Figures L.2 and L.3 show differences
that do not arise directly from differing
compiler functions. Figure L.2 contains
general syntactic and semantic
differences, and figure L.3 shows
differing quantitative restrictions on the
use of various facilities of the language.

The section is applicable only to
error-free programs processed in batch
mode.

r------------------------T------------------------------T-------------------------------, I Language feature I Optimizing compiler I Checkout compiler I
I I implementation I implementation 1

.------------------------+------------------------------+-------------------------------i
1 statements: I Syntax-check only I Implemented I
1 CHECK I I 1
I NOCHECK I l I
I FLOW I I 1
I NOFLOW I I 1
I PUT SNAP I I 1
I POT FLOW 1 I 1
I POT ALL 1 I 1
1 HALT 1 I 1
I ICONTROL L I 1
~------------------------+---------------------------~--+.-------------------------------i "I ATTENTION condition 1 Syntax-check only I Implemented I
.------------------------+------------------------------+-------------------------------~ I Options": I Implemented I Syntax-check only I
I ORDER I I I
I REORDER I I I
I TOTAL I I I
.------------------------+------------------------------+-------------------------------~ I Built-in subroutines: I Implemented I Syntax-check only I
I PLICKPT I I I
I PLIREST I I I
I PLICANC I I I

.------------------------+------------------------------+-------------------------------i I PUT DATA statement and I Names of variables only I Names and values of I
I CHECK prefix I transmitted I variables, transmitted 1
I specifying program I I I
I control data I I I
.------------------------+------------------------------+-------------------------------~ I POT LIST statement I Invalid I Values of variables I
I specifying program I I transmitted I
I control data I I I
~------------------------+------------------------------+-------------------------------i I Lengths of pointer and I 4 bytes I With COMPATIBLE compiler I
I offset variables I I option: 4 bytes I
I I I With NOCOMPATIBLE compiler I
I I I option: 16 bytes I

~------------------------+------------------------------+-------------------------------i I Oncodes I Certain codes not I All oncodes implemented I
I I implemented (See list I I
1 I in section H, ·On- I I
I I conditions·). I I L ________________________ ~ ______________________________ ~ _______________________________ J

Figure L.1. Differences resulting from differing compiler functions

414

r--------.---··------------T------------------------------T-------------------------------,
I Language feature I Optimizing compiler I Checkout compiler I
I I implementation I implementation I

~----------.-.-------------+------------------------------+-------------------------------i I Bas ed val:inble in data-I 1 Must not be based on an I No corresponding rules I
I directed I/O and CHECK I offset variable. I I
I name-list I 2 Must not be a member of I I
I I a structure containing I I
I I the REFER option. I I
I I 3.Must not be bas.ed on a I I
I I pointer that is based, I I
I I defined, or a parameter, I I
I I or a member of an I I
I I aggregate. I I
~------------------------+------------------------------+-------------------------------i I Defined variable in I Must not be defined: I No cor:responding .rules I
I data-direct.ed 1/0 and I 1 on a controlled variable. I I
I CHECK name··list I 2 on an array with one or I I
I I more adjustable tounds. I I
I I 3 with a POSITION attri- I I
I I bute specifying other I I
I I than a constant. I I
~----------·-.. ---------·---t------------------------.... -----t-------------------------------i
I CHECK prefix specifying I CHECK raised for the I CHECK not raised for I
I label of statement to I label I the label I
I which prefix is I I I
I attached I I I
~------------------------t------------------------------+-------------------------------~ I LIKE a ttI~ibute I Not allowed I No cor:responding rule I
I specifying a minor I I I
I structurE~ 1:hat is I I I
I contained in a major I I I
I structurE~ ()f which I I I
I some othEar minor I I I
I structure is declared I I I
I with LIKE nttribute I I I

~------------------------t------------------------------+-------------------------------~ I Area variable in an I Must be non-defined, I No cor:responding rule I
I OFFSET attJcibute either I unsubscripted, I I
I in DECLARE statement orl unqualified area name I I
I RETURNS attribute or I I I
I option I I I
~------------------------+------------------------------+-------------------------------i I Area variable in OFFSET I Not allowed I No corresponding rule I
I attributE~ in parameter I I I
I descriptor I I I
~------------------------+------------------------------+-------------------------------~ Locator c:oIlversion 1 If offset is a structure No cor:responding rules

(offset to pointer and member, or if it appears
vice versa) in a DO statement or

multiple assignment, the
associated area must be
a non-based, non-defined
element variable. If the
area is based, its
locator must be an un­
subscripted, non-based,
non-defined pointer, and
it must not be used to
explicitly qualify the
area in the offset
declaration.

2 Locator conversion can­
not be performed tetween
argument and parameter:
both must be either
offset or pointer. L ________________________ ~ ______________________________ ~ _______________________________ J

Figure L.2 (Part 1 of 2). Differing qualitative restrictions

Section L: Compiler Differences 475

r------------------------T------------------------------T-------------------------------, I Language feature I Optimizing compiler I Checkout compiler I
I I implementation I implementation I
~------------------------+-------------------~----------+-------------------------------~ I Aggregate argument to I Dummy argument cannot be I No corresponding rule I
I generic entry name I be created I I
~------------------------+------------------------------+-------------------------------~ I Parameter string length I Length or size attribute I Dummy created if length or I
I or area size specified I assumed to match argument: I size differs from argument I
I as other than decimal I dummy never created I I
I integer constant I I I
~------------------------+------------------------------+-------------------------------~ I Attributes of entry I No dummy argument I Dummy argument created I
I argument and parameter I I I
I differ in alignment I t I
I only I I I
~------------------------+------------------------------+-------------------------------~ I Event names in WAIT I Structure of event names I No corresponding rule I
I statement I not allowed I I
~------------------------+------------------------------+-------------------------------~ I Pseudovariables: I Not allowed as control I No corresponding rule I
I COMPLETION I variables for DO-groups I I
I COMPLEX I I I
I PRIORITY I I I
I STRING I I I

.------------------------+------------------------------+-------------------------------~ I UNDEFINEDFILE condition I Raised once, after I Raised at each attempt to I
I in OPEN statement I attempting to open every I open a file that is un- I
I specifying more than I file I defined I
lone file name I I I

.------------------------+------------------------------+-------------------------------~ I Standard default files I No corresponding rule I Used by compiler. Must not I
I SYSIN and SYSPRINT I I be declared with attributes I
I 1 I conflicting with compiler I
I I I requirements. SYSPRINT I
I I I always open, therefore no I
I I I new page started for I
I I I program's output I L ________________________ ~ ______________________________ ~ _______________________________ J

Figure L.2 (Part 2 of 2). Differing qualitative restrictions

476

r------------------------T------------------------------T-------------------------------, I Language feature I Optimizing compiler I Checkout compiler I
I I implementation I implementation I
.------------------------+--------------~------------~--+-------------------------------~
I Maximum number of I 255 I No corresponding rule I
I blocks in one I I I
I compilatio'n I I I

~------------------------+------------------------------+-------------------------------~ I Maximum level of I 50 I No corresponding rule I
I nesting of blocks I I I

.------------------------+------------------------------+-------------------------------i I Maximum number of I 49 in any block I No corresponding rule I
I active on-units I 254 in any compilation I j

.------------------------+------------------------------+-------------------------------~ I Maximum level of I 49 I No corresponding rule I
I nesting of DO and IF I I I
I statements I I I
.------------------------+------------------------------+-------------------------------~ I Maximum le!vel of I 1 I No corresponding rule I
I dependenc~' in DECLARE I I I
I statement I I I
.------_._----------------+------------------------------+-------------------------------~ I Maximum nUlmber of I 125 I No corresponding rule I
I entries in list of I I I
I constants in I I I
I declaraticm of COBOL I I I
I variable, I I
.----------_._------------+------------------------------+-------------------------------~ , Maximum le!v.el of 'Depends on storage avail- , No corresponding rule I
I locator qualification , able, but never less than I I
, I 10 I I
~-------.----.-------------+------------------------------+-------------------------------~ , Maximum number of names, 255 I No corresponding rule I
I in CHECK list I I I
.------------------------+------------------------------+-------------------------------~
I Maximum le!ngth of I Depends on storage avail- I 32767 I
I character-string I able, but never less than I I
I picture data I 1023 I I L ________________________ ~ ______________________________ ~ _______________________________ J

Figure L.3. Differing quantitative restrictions

Section L: Compiler Differences 471

478

access: the act that encompasses the
references to and retrieval of data.

action s.E.!!£~lficill2n: in an ON statement,
the on-unit or the single keyword SYSTEM,
either of which specifies the action to be
taken whenever an interrupt results from
raising of the named on-condition. The
action specification can also include the
keyword SNAP.

activate Ca block): to initiate the
execution of a block. A procedure block
is activated when it is invoked at any of
its entry points; a begin block is
activated when it is encountered in normal
flow of control, including a branch.

activation (of a block):

1. The process of activating a block.

2. The exe!cution of a blo ck.

activation (of a preprocessor variable or
entry namel: the establishment of the
validity for replacement of the value of a
variable or the returned value of an entry
name. The first activation must be the
result of the appearance of the name in a
%DECLARE statement. If an active variable
or entry name is made inactive by a
%DEACTIVAT.E statement it may be activated
again by a %ACTIVATE statement.

active:

1. The s1tate of a block after activation
and before termination.

2. The sta'te in which a preprocessor
varialble or preprocessor entry name
is said to be when its value can
replace the corresponding identifier
in source program text.

3. The sta1te in which an event variable
is said to be during the time it is
associated with an asynchronous
operat~i(:m. An event variable remains
active and, hence, cannot be
associated with another operation
until a WAIT statement specifying
that event variable has been executed
or, in t:he case of an event variable
associated with a task, until an
EXIT, Rl~TURN, or END statement has
caused t~ermination of the task.

4. The stat~e in which a task variable is
said to be when its associated task
is attac:hed.

Glossary

5. The state in which a task is said to
be before it has been terminated.

additive attributes: attributes for which
there are no defaults and which, if
required, must always be added to the list
of specified attributes or be implied
(i.e., they have to be added to the set of
attributes, if they are required).

address: a specific storage location at
which a data item can be stored.

adjustable extent: bound (of an array),
length (of a string), or size (of an area)
that may be different for different
generations of the associated variable.
Adjustable bounds, lengths, and sizes are
specified as expressions or asterisks (or
by REFER options for based variables),
which are evaluated separately for each
generation. They cannot be used for
static variables.

aggregate: see data aggregate.

aggregate expressions: an array
expression or a structure expression.

alignment: the storing of data items in
relation to certain machine-dependent
boundaries.

allocated variable: a variable with which
main storage has been associated and not
freed.

allocation:

1. The reservation of main storage for a
variable.

2. A generation of an allocated
variable.

alphabetic character: any of the
characters A through Z of the English
alphabet and the alphabetic extenders #,
$, and ~ (which may have different graphic
representation in different countries).

alphameric character: an alphabetic
character or a digit.

alternative attribute: an attribute that
may be chosen from a group of two or more
alternatives. If none is specified, a
default is assumed.

ambiguous reference: a reference that is
not sufficiently qualified to identify one
and only one name known at the point of
reference.

Glossary 479

ancestral task: the attaching task or any
of the tasks in a direct line from the
given task to, and inr.1uding, the major
task.

~: a declared portion of contiguous
main storage identified by an area
variahle and reserved, on allocation, for
the allocation of based variables.

area variable: a variable with the AREA
attribute; its values may only be areas.

argument: an expression in an argument
list as part of a procedure reference.

argument list: a parenthesized list of
one or more arguments, separated by
commas, following an entry-name constant,
an entry-name variable, a generic name, or
a built-in function name. The list is
passed to the parameters of the entry
point.

arithmetic constant: a fixed-point
constant or a floating-point constant.
Although most arithmetic constants can be
signed, the sign is not part of the
constant.

arithmetic conversion: the transformation
of a value from one arithmetic
representation to another.

arithmetic data: data that has the
characteristics of base, scale, mode, and
precision. It includes coded arithmetic
data and pictured numeric character data.

arithmetic operator§: either of the
prefix operators + and -, or any of the
following infix operators: + - • / ••

arithmetic picture data: decimal picture
data or binary picture data containing the
following types of picture specification
characters.

1. Decimal digit characters.

2. zero-suppression characters.

. 3. Sign and currency symbol characters.

4. Insertion characters.

5. Commercial characters.

6. Exponent characters.

array: a named, ordered collection of
data elements, all of which have identical
attributes. An array has dimensiohs
specified by the dimension attribute, and
its individual elements are referred to by
subscripts. An array can also be an

480

ordered collection of identical
structures.

array expression: an expression whose
evaluation yields an array of values.

array of structures: an ordered
collection of identical structures
specified by giving the dimension
attribute to a structure name.

assignment: the process of giving a value
to a variatle.

asynchronous operation: the overlap of an
input/output operation with the execution
of statements or the concurrent execution
of procedures using multiple flows of
control for different tasks.

attachment of a task: the invocation of a
procedure and the establishment of a
separate flow of control to execute the
invoked procedure (and procedures it
invokes) asynchronously with execution of
the invoking procedure.

attention: an occurence, external to a
task" that could cause an interrUpt to the
task.

attribute:

1. A descriptive property associated
with a name to describe a
characteristic of items that the name
may represent.

2. A descriptive property used to
describe a characteristic of the
result of evaluation of an
expression.

automatic storage allocation: the
allocation of storage for automatic
variables.

automatic variable: a variable that is
allocated automatically at the activation
of a block and released automatically at
the termination of that block •

case: the number system in terms of which
an-irithmetic value is represented.

base element: the name of a structure
member that is not a minor structure.

base item: the automatic, controlled, or
static variable or the parameter upon
which a defined variable is defined. T·he
name may be qualified and/or subscripted.

based storage allocation: the allocation
of storage for based variables.

based variable: a variable whose
generations are identified by locator
variables. A based variable can be used
to refer t,o values of a variable of any
storage class: it can also be allocated
and freed explicitly by use of the
ALLOCATE and FREE statements.

begin bloc:k: a collection of statements
headed by a BEGIN statement and ended by
an END statE~ment that is a part of a
program that delimits the scope of names
and that is activated by normal sequential
flow of control, including any branch
resulting from a GO TO statement.

binary: thE! number system based on the
number 2.

bit: a binclry digit (0 or 1).

bit strinq: a string composed of zero or
more bits.

bi t-stri.!LCLS>perators: the logical
operators ~ (not), , (and), and I (or).

block: a bE!gin block or procedure block.

block headil19 statement: the P,ROCEDURE or
BEGIN stat:ement that heads a block of
statements.

bounds: thE! upper and lower limits of an
array dimEmsion.

buffer: intermediate storage, used in
input/output operations, into which a
record is read during input and from which
a record is written during output.

built-in function: a function that is
supplied by the language.

call: (v~!rlb) to invoke a subroutine by
means of 1:.hl~ CALL statement or CALL
option; (1l011n) such an invocation.

character set: a defined coll~ction of
characters~--see language character set
and datcl chiaracter set.

character s'!:;ring: a string composed of
zero or more characters.

character-string picture data: data
described by a picture specification which
must have at least one A or X picture
specification character.

closing (of a file): the dissociation of
a file from a data set.

coded ari1t;,hmetic data: arithmetic data
that is sto'red in aform that is
acceptable, without conversion, for
arithmetic calculations.

comment: a string of zero or more
characters used for documentation, that is
preceded by /* and terminated by */ and
which is a separator.

commercial character: the following
picture specification characters;

1. CR (credit).

2. DB (debit).

3. T, I, and R, the overpunched-sign
characters, which indicate that the
associated position in the data item
contains or may contain a digit with
an overpunched sign and that this
overpunched sign is to be considered
in the character string value of the
data item.

comparison operator~: infix operators
used'in comparison expressions. They are
~< (not less than), < (less than), <=
(less than or equal to), ~= (not equal
to)" = (equal to), >= (greater than or
equal to), > (greater than), and ~> (not
greater than).

compile time: in general, the time during
which a source program is translated into
an object module. In PL/I, it is the time
during which a source program can be
altered (preprocessed), if desired, and
then translated into an object program.

compile-time statements: see preprocessor
statemenfs.

complex data: arithmetic data, each item
of which consists of a real part and an
imaginary part.

composite operators: an operator composed
of two operator symbols, e.g., ~>

compound statement: a statement that
contains other statements. IF and ON are
the only compound statements.

concatenation: the operation that joins
two strings in the order specified, thus
forming one string whose length is equal
to the sum of the lengths of the two
strings. It is specified by the operator
II·
condition: see on·conditions.

condition list: a list of one or more
condition prefixes.

condition name: a language keyword (or
CONDITION followed by a parenthesized
programmer-defined name) that denotes an
on-condition that might arise within a
task.

Glossary 481

condition prefix: a parenthesized list of
one or more language condition names;,
prefixed to a statement. It specifies
whether the named on-conditions are to be
enabled.

connected referepce: a reference to
connected storage; it must be apparent,
prior to execution of the program, that
the storage is connected.

connected storage: main storage of an
uninterrupted linear sequence of items
that can be referred to by a single name.

constant: an arithmetic or string data
item that does not have a name and whose
value cannot change; an unsubscripted
label prefix or a file name or an entry
name.

contained text: all text in a procedure
(including nested procedures) except its
entry names and condition prefixes of the
PROCEDURE statement; all text in a begin
block except labels and condition prefixes
of the BEGIN statement that heads the
block. Internal blocks are contained in
the external procedure.

contextual declaration: the appearance of
an identifier that has not been explicitly
declared, in a context that allows the
association of specific attributes with
the identifier.

control format item: a specification used
in edit-directed transmission to specify
positioning of a data item within the
stream or printed page.

control variable: a variable used to
control the iterative execution of a
group. See iterative do-group.

controlled parameter: a parameter for
which the CONTROLLED attribute is
specified in a declare statement~ it can
be associated only with arguments that
have the CONTROLLED attribute.

controlled storage allocation: the
allocation of storage for controlled
variables.

controlled variable: a variable whose
allocation and release are controlled by
the ALLOCATE and FREE statements, with
access to the current generation only.

conversion: the transformation of a value
from one representation to another to
conform to a given set of attributes.

cross section of an array: the elements
represented by the extent of at least one
dimension (but 'not all dimensions) of an
array. ,An asterisk in the place of a

482

sutscript in an array reference indicates
the entire extent of that dimension.

current generation: that generation (of
an automatic or controlled variable)
currently availatle by reference to the
name of the variable.

data: representation of information or of
value in a form suitable for processing.

data aqgreqate: a logical collection of
two or more data items that can be
referred to either collectively or
individually; an array or structure.

data character set: all of those
characters whose representation is
recognized by the computer in use.

data-directed transmission: the type of
stream-oriented transmission in which data
is transmitted as a group, comprising one
or more items separated by commas or
blanks, terminated by a semicolon, where
each item is of the form

name = value

The name can be qualified and/or
sutscripted.

data format item: a s~ecification used in
edit-directed transmission to describe the
representation of a data item in the
stream.

data item: a single unit of data; it is
synonymous with element.

data list: a parenthesized list of
expressions or repetitive specifications,
separated by commas, used in a
stream-oriented input or output
specification that represents storage
locations to which data items are to be
assigned during input or values which are
to be obtained for output.

data set: a collection of data external
to the program that can be accessed by the
program by reference to a single file
name.

data specification: the portion of a
stream-oriented data transmission
statement that specifies the mode of
transmission (DATA, LIST, or EDIT) and
includes the data list (or lists) and, for
edit-directed mode, the format list (or
lists).

data stream: data being transferred from
or to a data set by stream-oriented
transmission, as a continuous stream of
data elements in character form.

data transmission: the transfer of data
from a data set to the program or vice
versa.

deactivateg: the state in which a
preprocessor variable or entry name is
said to be when its value cannot replace
the corresponding identifier in source
program text.

decimal: 'the number system based on the
number 10.

decimal di,g! t character: the picture
specification character 9.

decimal picture data: arithmetic picture
data specified by picture specification
characters containing the following types
of picture specification characters:

1. Decimal digit characters.

2. The virtual point picture character.

3. Zero-suppression characters.

4. Sign ,and currency symbol characters.

5. Inser'tion characters.

6. Comme,rcial characters.

7. Exponent characters.

declaration:

1. The establishment of an identifier as
a name and the construction of a set
of attributes (partial or complete)
for it.

2. A source of attributes of a
particular name.

default: the alternative attribute or
option assumed, or specified for
assumption by the DEFAULT statement, when
no such attribute or option has been
specified.

defined ite~: a variable declared to
represent pa,rt or all of the same storage
as that assigned to another variable known
as the base item.

delimiter: all operators, comments, and
the following characters: percent,
parentheses, comma, period, semicolon,
colon, assignment symbol, and blank; they
define the limits of identifiers,
constants, picture specifitations, iSUBS,
and keywords.

descriptor: see Earameter descriptor.

diqit: one of the characters 0 through 9.

dimensionality: the number of bounds
specifications in an array declaration.

disabled: the state in which a particular
on-condition will not result in an
interrupt that would cause an on-unit for
that condition to be entered.

do-qroup: a sequence of statements headed
by a DO statement and ended by its
corresponding END statement, used for
control purposes.

do lOOE: see iterative do-grouE.

driftinq-characters: see sign and
currency symbol characters.

dummy argument: temporary storage that is
created automatically to hold the value of
an argument that cannot be passed by
reference.

edit-directed transmission: the type of
stream-oriented transmission in which data
appears as a continuous stream of
characters and for which a format list is
required to specify the editing desired
for the associated data list.

element: a single item of data as opposed
to a collection of data items such as an
array; a scalar item.

elementexEression: an expression whose
evaluation yields an element value.

elementary name: see base element.

element variable: a variable that
represents an element; a scalar variable.

enabled: that state in which a particular
on-condition will result in a program
interrupt that would cause an on-unit for
that condition to be entered.

entry constant: an entry name.

entry eXEression: an expression whose
evaluation yields an entry value.

entry name: an identifier that is
explicitly or contextually declared to
have the ENTRY attribute (unless the
VARIABLE attribute is given) or has an
implied ENTRY attribute; the value of an
entry variable.

entry Eoint: a point in a procedure at
which it may be invoked. (See primary
entry Eoint and secondary entry point.)

entry variable: a variable that can
represent entry values. It must have both
the ENTRY and VARIABLE attributes.

Glossary 483

entry value: the entry point represented
by an entry constant; the value includes
the environment of the activation that is
associated with the entry constant.

environment (of an activation):
information associated with the invocation
of a block that is used in the
interpretation of references, within the
invoked block, to data declared outside
the block. This information includes
generations of automatic variables,
extents of defined variables, and
generations of parameters.

environment (of a label constant):
identity of the particular activation of a
block to which a reference to a
statement-label constant applies. This
information is determined at the time a
statement-label constant is passed as an
argument or is assigned to a
statement-label variable, and it is passed
or assigned along with the constant.

epilogue: those processes that occur
automatically at the termination of a
block or task.

evaluation: reduction of an expression to
a single value, an array of values, or a
structured set of values.

~: an activity in a program whose
status and completion can be determined
from an associated event variable.

event variable: a variable with the EVENT
attribute, which may be associated with an
event; its value indicates whether the
action has been completed and the status
of the completion.

explicit declaration: the appearance of
an identifier in a DECLARE statement, as a
label prefix, or in a parameter list.

exponent characters: the following
picture specification characters:

1. K and E, which are used in
floating-point picture specifications
to indicate the beginning of the
exponent field.

2. F, the scaling factor character,
specified with an integer constant
which indicates the number of decimal
positions the decimal point is to be
moved from its assumed position to
the right (if the constant is
positive) or to the left (if the
constant is negative).

expression: a notation, within a program,
that represents a value, an array of
values, or a structured set of values; a
constant or a reference appearing alone,

or combinations of constants and/or
references with operators.

1. The range indicated by the bounds of
an array dimension, the range
indicated by the length of a string,
or the range indicated by the size of
an area.

2. The significant allocations in an
area.

external name: a name (with the EXTERNAL
attribute) whose scope is not necessarily
confined only to one block and its
contained blocks.

external procedure: a procedure that is
not contained in any other procedure.

factoring: the application of one or more
attributes or of a level number to a
parenthesized list of names.

field (in the data stream): that po~tion
of the data stream whose width, in number
of characters, is defined by a single data
or spacing format item.

field (of a picture seecification): any
character-string picture specification or
that portion (or all) of a numeric
character picture specification that
describes a fixed-point number.

file: a named representation, within a
program, of a data set or data sets. A
file is associated with the data set or
data sets for each opening.

file attribute: any of the attributes
that describe the characteristics of a
file.

file constant: a name declared for a file
and for which a complete set of file
attributes exists during the time that the
file is open.

file expression: an expression whose
evaluation yields a file name.

file name: a name declared for a file.

file variable: a variable to which file
constants can be assigned; it must have
both the attributes FILE and VARIABLE. No
file-name attributes4 other than FILE, can
be specified for a file-name variable.

fixed-point constant: see arithmetic
constant.

floating-point constant: see arithmetic
constant.

flow of contI,'ol: sequence of execution.

format item: a specification used in
edit-directecl transmission to describe the
representa ticm of a data item in the
stream (dat;a format item) or to specify
positioning c)f a data item within the
stream (cont]~ol format item).

format list: a parenthesized list of
format items required for an edit-directed
data speci1:ic::ation.

fully-qualified name: a qualified name
that is complete, i.e.~ that includes all
names in the hierarchical sequence above
the structurE! member to which the name
refers, as w4~11 as the name of the member
itself.

function: a function procedure
(programmer-!:;pecified or built-in); a
procedure t.hilt is invoked by the
appearance of one of its entry names in a
function reference and which returns a
value to the point of reference.

function ref1erence: the appearance of an
entry-name o:r built-in function name (or
an entry var:iable) in an expression.

generation (of a variable): the
allocation of a static variable, a
particular allocation of a controlled or
automatic: va:riable or the storage
indicated ty a particular locator
qualification .of'ii based variable, or by a
defined va:riable or a parameter.

generic kel: a character string that
identifies a class of keys: all keys that
begin with the string are members of that
class. Fo:r example, the recorded keys
'ABCo', 'ABCE', and 'ABDF'~ are all
members of the classes identified by the
generic keys 'A' and 'AB', and the first
two are also members of the class 'ABC';
and the three recorded keys can be
considered to be unique members of the
classes 'ABCo'~ 'ABCE', 4ABDF',
respectively •.

generic nam!: the name of a family of
entry names. A reference to the name is
replaced by the particular entry name
whose paramelter descriptors match the
attribubes olf the arguments in the
argument list at the point of invocation.

group: a dCI-group; it can be used
wherever a single statement can appear,
except as an on-unit.

identifie~: a string of alphameric and,
possibly, b:r::eak characters, not contained
in a comment; or constant and which is
preceded ancl followed by a separator; the
initial character must be alphabetic.

implicit declaration: the establishment
of an identifier, which pas no explicit or
contextual declaration, as a name. A
default set of attributes is assumed for
the identifier.

implicit opening: the opening of a file
as the result of an input or output
statement other than the OPEN statement.

infix operator: an operator that appears
between two operands.

initial procedure: an external procedure
whose PROCEDURE statement has the OPTIONS
(MAIN) attribute. Every PL/I program must
have an initial procedure. It is invoked
automatically as the first step in the
execution of a progam.

input/output: the transfer of data
between an auxiliary medium and main
storage.

insertion picture character: a picture
specification character that is, on
assignment of the associated data to a
character string, inserted in the
indicated position. When used in a
P-format item for input, an insertion
character serves as a checking picture
character.

interleaved array: an array whose name
refers to non-connected storage.

interleaved subscrip~s: a subscript
notation, used with subscripted qualified
names, in which not all of the necessary
subscripts immediately follow the same
component name.

internal block: a block that is contained
in another block.

internal name: a name that is not known
outside the block in which it is declared.

internal procedure: a procedure that is
contained within a block.

internal text: all of the text contained
in a block except that text that is
contained in another block. Thus the text
of an internal block (except its entry
names) is not internal to the containing
block.

interrupt: the redirection of flow of
control of the program (possibly
temporary) as the result of an
on-condition or attention.

invocation: the activation of a
procedure.

invoke: to activate a procedure at one of
its entry points.

Glossary 485

invoked procedure: a procedure that has
been activated at one of its entry points.

invoking block: a block containing a
statement that activates a procedure.

iteration factor: an expression that
specifies:

1. In an INITIAL attribute
specification, the number of
consecutive elements of an array that
are to be initialized with a given
constant.

2. In a format list, the number of times
a given format item or list of items
is to be used in succession.

iterative do-group: a do-group whose DO
statement specifies a control variable
and/or a WHILE option.

key: data that identifies a record within
a direct-access data set. See source key
and recorded key.

keyword: an identifier that is part of
the language and which" when used in the
proper context, has a specific meaning to
the compiler.

~: (applied to a name) recognized
with its declared meaning; a name is known
throughout its scope.

label: a name used to identify a
statement other than a PROCEDURE or ENTRY
statement; a statement label.

label constant: an unsubscripted name
that appears prefixed to any statement
other than a PROCEDURE or ENTRY statement.

label list (of a statement): all of the
label prefixes of a statement.

label list (of a label variable
declaration): a parenthesized list of one
or more statement-label constants
immediately following the keyword LABEL to
specify the range of values that the
declared variable may have; names in the
list are separated by commas. When
specified for a label array, it indicates
that each element of the array may assume
any of the values listed but no other.

label prefix: a label prefixed to a
statement.

label variable: a variable declared with
the LABEL attribute and thus able to
assume as its value a label constant.

language character set: a character set
whIch has been defined to represent
program elements in the source language

486

(in this context, character-string
constants and comments are not considered
as program elements).

leading zeros: zeros that have no
significance in the value of an arithmetic
integer; all zeros to the left of the
first significant integer digit of a
number.

level number: an unsigned decimal integer
constant in a DECLARE or ALLOCATE
statement that specifies the position of a
name in the hierarchy of a structure. It
precedes the name to which it refers and
is separated from that name by the name's
delimiter. Level numbers appear without
the names in a parameter descriptor of an
ENTRY attribute specification.

level-one variable: a major structure
name; any unsubscripted variable not
contained within a structure.

list-directed transmission: the type of
stream-oriented transmission in which data
in the stream appears as constants
separated by blanks or commas and for
which formatting is provided
automatically.

locator qualification: in a reference to
a based variable, either a.locator
variable or function reference connected
by an.arrow to the left of a based
variable to specify the generation of the
tased variable to which the reference
refers, or the implicit connection of a
locator variable with the based reference.

locator variable: a variable whose value
identifies the location in main storage of
a variable or a buffer.

locked record: a record in an EXCLUSIVE
DIRECT UPDATE file that is available to
only one task at a time.

loqical level (of a structure member):
the depth indicated by a level numter when
all level numbers are in direct sequence,
that is, when the increment between
successive level numbers is one.

logical operators: the bit-string
operators ~ (not), , (and)~ and I (or).

lower bound: the lower limit of an array
dimension.

major structure: a structure whose name
is declared with level number 1.

major task: the task that has control at
the outset of execution of a program. It
exists throughout the execution of the
program.

minor st:t'uc:ture: a structure that is
contained ".i thin another structure. The
name of at minor structure is declared with
a level number greater than one.

mode (of al:i thmetic data): a
characteristic of arithmetic data; real or
complex.

multiple .9.!lclaration: two or more
declaratioIls of the same identifier
internal tel the same block without
different qualifications, or two or more
external dElclarations of the same
identifier with different attributes in
the same pz'ogram.

multiproce~sing: the use of a computing
system with two or more processing units
to execute two or more programs
simultaneoUlsly_

multiprogra.mming: the use of a computing
system to execute more than one program
concurrently, using a single processing
unit.

multitasking: a facility that allows a
programme.r to execute more than one PL/I
procedure simultaneously_

~: an identifier appearing in a
context where it is not a keyword.

nesting: the occurrence of:

1. A block within another block.

2. A group within another group.

3. An IF statement in a THEN clause or
an ELS:e: cIa use.

4. A function reference as an argument
of a function reference.

5. A remo1::e format item in the format
list of a FORMAT statement.

6. A parameter descriptor list in
anothe:c parameter descriptor list.

7. An at:t:cibute specification within a
parenthesized name list for which one
or more attributes are being
factc)rE~d •

non-connected storage: separate locations
in storage that contain related items of
data that Ccln be referred to by a single
name but thclt are separated by other data
items not rE~ferred to by that name.
Examples arE~ the storage ref erred to by an
unsubscriptE!d elementary name in an array
of structtlrE~S or by a subscripted name
referring to an array cross section in
which the subscript list contains an

asterisk to the left of any element
expression.

null locator value: a special locator
value that cannot identify any location in
internal storage; it gives a positive
indication that a locator variable does
not currently identify any generation of
data.

null string: a string data item of zero
leng.th.

numeric character data: see decimal
J?icture data.

offset variable: a locator variable with
the OFFSET attribute, whose value
identifies a location in storage" relative
to the beginning of an area.

on-condition: an occurrence, within a
PL/I task, that could cause a program
interrupt. It may be the detection of an
unexpected error or of an occurrence that
is expected, but at an unpredictable time.

on-unit: the specified action to be
executed upon detection of the
on-condition named in the containing ON
statement. This excludes SYSTEM and SNAP.

opening (of a file): the association of a
file with a data set and the comfletion of
a full set of attributes for the file
name.

operand: an expression to whose value an
operator is applied.

operational expression: an expression
containing one or more operators.

operator: a symbol specifying an
operation to be performed. See arithmetic
operators, bit-string operators,
comparison operators and concatenation.

option: a specification in a statement
that may be used to influence the
execution or interfretation of the
statement.

packed decimal: the internal
representation of a fixed-point decimal
data item.

padding:

1. one or more characters or bits
concatenated to the right of a string
to extend the string to a required
length. For character strings,
padding is with blanks; for bit
string, with zeros.

Glossary 487

2. one or more characters or bits
inserted in a structure so that the
structure elements have the required
alignment.

parameter: a name in a procedure that is
used to refer to an argument passed to
that procedure.

parameter descriptor: the set of
attributes specified for a single
parameter in an ENTRY attribute
specification.

parameter descriptor list: the list of
all parameter descriptors in an ENTRY
attribute specification.

parameter list: a parenthesized list of
one or more parameters, separated by
commas following either the keyword
PROCEDURE in a PROCEDURE statement, or the
keyword ENTRY in an ENTRY statement. The
list corresponds to a list of arguments
passed at invocation.

partiallY-qualified name: a qualified
name that is incomplete, i.e., that
includes one or more, but not all, names
in the hierarchical sequence above the
structure member to which the
partially-qualified name refers, as well
as the name of the member itself.

picture specification: a
character-by-character description of the
composition and characteristics of decimal
picture data and character-string picture
data.

picture specification character: any of
the characters that can be used in a
picture specification. See decimal
picture data and character-string picture
data.

point of invocation: the point in the
invoking block at which the procedure
reference to the invoked procedure
appears.

pointer variable: a locator variable with
the POINTER attribute, whose value
identifies an absolute location in main
storage.

precision: the value range of an
arithmetic variatle expressed as a total
number of digits and, for fixed-point
variables, the number of those digits
assumed to appear to the right of the
decimal or binary point.

prefix: a label or a parenthesized list
of one or more condition names connected
by a colon to the beginning of a
statement.

488

prefix operator: an operator that
precedes an operand and applies only to
that operand. The prefix operators are +
(plus), - (minus), and ~ (not).

Ereprocessor: a program that examines the
source program for preprocessor statements
which are then executed, resulting in the
alteration of the source program.

preprocessor statement: a special
$tatement appearing in the source program
that specifies how the source program text
is to be altered: it is executed as it is
enccuntered by the preprocessor.

primary entry Foint: the entry point
identified by any of the names in the
label list of the PROCEDURE statement.

priority: a value associated with a task,
that specifies the precedence of the task
relative to other tasks.

problem data: string or arithmetic data
that is processed by a PLII program.

procedure: a collection of statements,
headed by a PROCEDURE statement and ended
by an END statement, that is a part of a
program, that delimits the scope of names,
and that is activated by a reference to
one of its entry names.

procedure reference: an entry constant or
variable or a tuilt-in function name. The
name may be followed by one "or more
argument lists. It may appear in a CALL
statement or CALL option or as a function
reference.

processor: a program that prepares source
program text (possible preprocessed text)
for execution.

program: a set of one or more external
procedures, one of which must have the
OPTIONS (MAIN) option in its PROCEDURE
statement.

program control data: data used in a PL/I
program to effect the execution of the
program. Program control data consists of
the following types: entry, task, file,
label, event, pointer, offset, and area.

proloque: the processes that occur
automatically on block activation.

pseudovariable: any of the built-in
function names that can be used to specify
a target variatle.

qualified name: a hierarchical sequence
of names of structure members, connected
ty periods, used to identify a component
of a structure. Any of the names may te

subscriptE~d.. See also locator
gualificat:i()n.

range (of a_~efault specification): a set
of identifi.:lrs and/or parameter
descriptors to which the attributes in a
default spe<::ification of a DEFAULT
statement apply.

record: t.hE~ logical unit of transmission
in a record-oriented input or output
operation.

recorded k~: a key recorded in a
direct-acc:esis volume to identify an
associated data record.

recursi ve .E!~ocedure: a procedure that may
be reactivat:ed while still active in the
same task.

reentran~'ocedur~: a procedure that may
be reactivated while active in another
task.

REFER eX'e!:es.sion: the expression
preceding the keyword REFER, from which an
original bound, length" or size is taken
when a based variable containing a REFER
option is allocated, either by an ALLOCATE
or LOCATE statement.

REFER ob~ct,: the unsubscripted element
variable appearing in a REFER option that
specifies a current bound, length, or size
for a member of a based structure. It
must be a member of the structure, and it
must precede the member declared with the
REFER opti,on.

reference: the appearance of a name,
except in a context that causes explicit
declaratio:n.

remote format item: the letter R
specified in a format list together with
the label of a separate FORMAT statement.

repetition factor: a parenthesized
unsigned decimal integer constant that
specifies:

1. The number of occurrences of a string
confi9u:ration that make up a string
constan't.

2. The number of occurrences of a
picture specification character in a
picture specification.

repetitiveJ[pecification: an element of a
data list that specifies controlled
iteration to transmit one or more data
items, generally used in conjunction with
arrays.

returned value: the value returned by a
function procedure to the point of
invocation.

scalar item: a single item of data; an
element.

scalar variable: a variable that can
represent only a single data item; an
element variable.

scale: a system of mathematical notation:
fixed-point or floating-point scale of an
arithmetic value.

scale factor: a specification of the
number of fractional digits in a
fixed-point number.

scope (of a condition prefix): the
portion of a program throughout which a
particular condition prefix applies.

scope (of a declaration): the portion of
a program throughout 'which a particular
declaration is a source of attributes for
a particular name.

scope (of a name): the portion of a
program throughout which the meaning of a
particular name does not change.

secondar~ entr~ point: an entry point
identified by any of the names in the
label list of an ENTRY statement.

self-defining data: a data item, or an
aggregate of data items, that includes
descriptive information about attributes
of the data, such as values for adjustable
bounds or lengths.

separator: see delimiter.

sign and currency symbol characters: the
picture specification characters, S, +, -
and $. These can be used

1. As static characters in which case
they are specified only once in a
picture specification and appear in
the associated data item in the
position in which they have been
specified.

2. As drifting characters~ in which case
they are specified more than once (as
a string in a picture specification)
but appear in the associated data
item at most once, immediately to the
left of the significant portion of
the data item.

significant allocation: any unfreed
allocation in an area and any freed
allocation that lies between the start of
the area and the end of the unfreed
allocation that is farthest from the start

Glossary 489

of the area. If a subsequent allocation
of the same size is made in the same
location the original allocation ceases to
be significant.

simple parameter: a parameter for which
no storage-class attribute is specified;
it may represent an argument of any
storage class, but only the current
generation of a controlled argument.

source key: a key referred to in a
record-oriented transmission statement
that identifies a particular record within
a direct-access data set.

source program: the program that serves
as input to the compiler. The source
program may contain preprocessor
statements.

source variable: a variable whose value
is to be assigned or to take part in some
other operation.

standard default: the alternative
attribute or option assumed when none has
been specified and there is no applicable
DEFAULT statement.

standard file: a file assumed by the
processor In the absence of a FILE or
STRING option in a GET or PUT statement;
SYSIN is the standard input file and
SYSPRINT is the standard output file.

sta~dard system action: action specified
by the language to be taken in the absence
of an on-unit for an on-condition.

statement: a bas'ic element of a PL/I
program that is used to delimit a portion
of the program, to describe names used in
the program, or to specify action to be
taken. A statement can consist of a
condition list, a label list, a statement
identifier, and a statement body that is
terminated by a semicolon.

statement body: that part of a statement
that follows the statement identifier, if
any, and is terminated by the semicolon;
it includes the statement options.

statement identifier: the PL/I keyword
that indicates the purpose of the
statement.

statement-label constant: see label
constant.

statement-label expr~ssion: see ~
expression.

statement-label variable: see ~
variable.

490

static storage allocation: the allocation
of storage for static variables.

static variable: a variable that is
allocated before execution of the program
begins and that remains allocated for the
duration of execution of the program.

stream: see data stream.

string: a connected sequence of
characters or bits that is treated as a
single data item.

string variable: a variable declared with
the BIT or CHARACTER attribute, whose
values can be either bit strings or
character strings.

structure: a hierarchical set of names
that refers to an aggregate of data items
that may have different attributes.

structure expression: an expression whose
evaluation yields a structure set of
values.

structure of arrays: a structure
containing arrays specified by declaring
individual members names with the
dimension attribute.

structure member: any of the minor
structures or elementary names in a
structure.

structuring: the makeup of a structure,
in terms of the nurober of members, the
order in which they appear, their
attributes, and their logical level (but
not necessarily their names or declared
level numbers).

subfield (of a picture specification):
that portion of a picture specification
field that appears before or after a V
picture specification character.

~~: a procedure that is invoked
by a CALL statement or CALL option. A
subroutine cannot return a value to the
invoking block, but it can alter the value
of variables.

subscript: an element expression that
specifies a position within a dimension of
an array. A subscript can also be an
asterisk, in which case it specifies the
entire extent of the dimension.

subscript list: a parenthe~ized list of
one or more subscripts, one for each
dimension of an array, which together
uniquely identify either a single element
or cross section of the array.

subtask: a task that is attached by the
given task or any of the tasks in a direct
line from the given task to the last
attached task.

synchronou~: using a single flow of
control :for serial execution of a program.

target vari~ble: a variable to which a
value is assigned.

task: the e!xecution of one or more
procedures by a single flow of control.

task name: an identifier used to refer to
a task variable.

task variabl~~: a variable with the TASK
attribute whose value gives the relative
priority of a task.

termination (of a block): cessation of
execution ot: a block, and the return of
control to t~he activating block by means
of a RETURN or END statement, or the
transfer of control to the activating
block or to some other active block by
means of a GO TO statement.

termination (of a task): cessation of the
flow of control for a task.

truncation: the removal of one or more
digits, characters, or bits from one end
of an item of data when a string length or
precision of a target variable has been
exceeded.

upper bound: the upper limit of an array
dimension.

variable: a named entity that is used to
refer to data and to which values can be
assigned. Its attributes remain constant,
but it can refer to different values at
different times. Variables fall into
three categories, applicable to any data
type: element, array, and structure.
Variables may be subscripted and/or
qualified, or locator qualified.

virtual point picture character: the
picture specification character, V, which
is used in picture specifications to
iridicate the position of an assumed
decimal or binary point.

zero-suppression characters: the picture
specification characters Z, y, and .,
which are used to.suppress zeros in the
corresponding digit positions.

Glossary 491

492

Index

Indexes to systems reference library manuals are consolidated in the publication IBM
System/360 ()perating System: Systems Reference Library Master Index, Form GC28-6644.
For additIonal information about any subject listed below, refer to other publications
listed fOl.' the same subject in the Master Index.

Where mOrE! 1:han one page reference is given the major reference is first.

• (period) picture character 197,298-299
with string of zero suppression
charactE~rs 197

+ (plus) picture character 302

$ (currency) picture character 198,301

* (asterisk) picture character 298,196

- (minus) picture character 302

/ (slash) picture character 197,298,300
with string of zero suppress10n
characters 197

, (comma) picture character 197,298-299
with string of zero suppression

charactE!rS 197

%ACTIVATE statement 449-500
activation of an identifier 223

%assignment statement 229,450
%CONTROL stsltement 455,230-231
%DEACTIVATE statement 450-451

deactivation of an identifier 223
%DECLARE stsltement 451-452

activation of an identifier 223
%DO statement 452
%ELSE clause 452
%END stateme:nt 452
%GO TO statement 229,452
%IF statemen.t 229-230
%IF statement 452-453
%INCLUDE statement 453
%null statement 230,454
%PAGE statement 455,230-231
%PROCEDURE statement 454
%SKIP statement 455,230-231
%THEN clause 452

A format item 134,144,306
A picture character 30,199,295
abbrevia·tions, keyword 289-294
abnormal termination

procedure block 71
program 62,72
task 62,233,238

ABS built-in function 342
access 479
accessing a data set

CONSECUTIVE (record) 174
CONSECUTIVE (stream) 151

accessing a data set (continued)
INDEXED 178-179
REGIONAL (1) 182-183
REGIONAL (2) 185
REGIONAL (3) 186-187

accessing generations of a based
variable 98-99

accuracy of mathematical functions 335
ACOS built-in function 342
action specification 479
activate (a block) 479
activation

begin block 68
block 479
preprocessor entry name 479
preprocessor identifier 223
preprocessor variable 225,479
procedure block 68~70
procedure block (recursively) 74-75
program 70

active 479
ADD built-in function 342
ADDBUFF option 170
additive attributes 479
ADDR built-in function 94,342-343

varying-length string or area
argument 94

address 479
address of variable 88
address in storage as PL/I data 23
address in storage of aligned data 39
adjustable arrays, inefficient use of 248
adjustable extent 479
adjustable-length strings

less efficient than non-adjustable 250
aggregate 482

argument for built-in function 341
argument for ADDR built-in function 94
argument for COBOL or FORTRAN
routine 251

common errors 265-266
comparison in IF statement 258-259
efficiency in record-oriented
transmission 257

efficient alignment 255-256
efficient use of 248-249
expression 479
format list for, in edit-directed

I/O 267-268
in record-oriented transmission 154
use of same aggregate in two or

more procedures 249
algebraic comparison 46

Main page references are those listed first Index 493

ALIGNED attribute 378,381,39-40
in attribute processing 83

alignment 39-40,479
inefficient use of storage 254-256
alignment of record for ASCII data
set 269

alignment of data in a locate mode
buffer 471-472

alignment requirement 457
aligned data 39-40,459-460
data interchange 168
unaligned data 39-40,461-462

alignment, default 84
ALL built-in function 343
ALL option 65,441,219-220
ALLOCATE statement 59,412-414

and area variable 101
and CHECK condition for based
variables 214

and offset or pointer variable 101
based variable 98
controlled structure 92
controlled variable 90-91
list processing 97-99
use of asterisk notation 91-92

allocated variable 479
allocation 88,95,479

amount of storage for based variable 261
by LOCATE statement 95
freeing allocation in an area 102
in an area with insufficient storage 103
of based variable in an area 100,101
of storage for the compiler 247
of structure with REFER option 96
significant, in an area 100

ALLOCATION built-in function 92,343
alphabetic character 18,479
alphameric character 18,479
altering the length of string data by
assignment

fixed-length strings 193
varying-length strings 193

alternative attribute 479
ambiguous reference 479,82-83
American Standard Code for Information

Interchange 122
ancestral task 480
ANS(American National Standard) control
character 146

CTLASA option 163,168
in PRINT file 148

ANY built-in function 343
application of default attributes 83-84
application of standard defaults

problem data 83-84
program control data 84

area 480,33
assignment 102
controlled, as an argument 113
default attributes for area data 84
data not allowed instream-oriented
transmission 269

input/output 103
not allowed in offset parameter
descriptor 120

AREA attribute 381-382
in ALLOCATE statement 90

AREA condition 103,366
on-unit action to avoid looping 266
raised in element assignment 415
with null on-unit 204

area extent
zero 102

area parameter
argument type 120

area size
default 33
in REFER option 96-97
maximum 33

area variable 33,480
associated with an offset variable 100
default storage class 101
in allocation of based variable 101
initialization 40
maximum size 100
offsets and pointers 101
output in PUT statement 218
pointers and offsets 101
record-oriented transmission of 154
storage requirement 460

ARGn
OPTIONS attribute 273

argument 105,480
aggregate, inefficient use of 249
built-in function 119
CHECK condition interrupt for 207
constant 113
dummy 113
entry expression 115-117
fixed or varying-length string 119
function reference 113
generic entry name 119
maximum number of arguments at one

invocation 105
not matching attributes of parameter 113
operational expression 113
parenthesized expression 113
passed by COBOL or FORTRAN to

PL/I 273-274
passed by PL/I to COBOL or

FORTRAN 271-272
passing to a main procedure 120
pointer expression 93
precision of arithmetic constant

argument 260
preprocessor function 226-228
provides contextual declaration of

name 78
restrictions on arguments passed to

COBOL 278
restrictions on arguments passed to

FORTRAN 280
to built-in function, conversion 334
type for various parameters 118-120
using asterisk notation 113
with PICTURE attribute 113

argument list 480
arithmetic base attributes 383
arithmetic built-in functions 333
arithmetic constant 480
arithmetic conversion 317-322,480,43-44

(see also conversion)
arithmetic data 480,23-28

default attributes 83-84

494 Main page references are those listed first

arithmetic mode attribute 385
arithmetic operation

conversion tables 329
preprocessor expression 225

arithmetic operator 19,45,480
arithmetic picture data 480

(see also numeric character data)
arithmetic scale attribtues 398
arithmetic to bit conversion 327
arithmetic to character conversion 325-326
arithmetic to numeric character

convers:ion 323
arithmetic value of numeric character
data 196

arithmetic variable
insertion of high-order zeros 258

array 480
adjustable, inefficient use of 248
argument for COBOL or FORTRAN
routine 251

argument using asterisk for string
length ,117

array of structures 37
as parameter 119
as structure element 36
assignment and initialization 258
bounds 33
bounds in REFER option 96-97
common lerrors 265-266
cross-section 35
cross-section in a structure invalid 262
default attributes 84
dimensions 33
efficiency in record-oriented
transmission 257

efficient alignment 255-256
efficient use of 248-249
element 33
element not allowed in CHECK prefix 207
element not allowed in data-directed

input. 135
element, unaligned bit string, in
record-oriented I/O 151

extent: 33
format list for, in edit-directed
I/O 267,-268

in record-oriented transmission 154
INI'l'IAL a'ttribute: 41
iSUB-defined, as an argument 113
manipulation, built-in functions 334
mapping, :rORTRAN array handling 273-274
maximum number of dimensions 34
multiplication not matrix
multiplication 266

name 33
of defined data, data-directed I/O of

elements 140
of file names 123
of pointer variables 93
of pointers, elements of, in based
variable I/O 140

of string data, comparison in IF
statemEm1l: 51

organization 33-35
overlay dl~fining of 390
parametHr" argument type 119

array assi9nrnent 415,248-249

array expression 42,480
infix operation 51-52
prefix operation 51
reference to elements in non-connected
storage 38

result 51-52
subscripted name with asterisk
notation 35

array of structures 37,480
as parameter 119
cross-section not permitted 37
LIKE attribute and INITIAL attribute 41

ASCII (American Standard Code for
Information Interchange) 122

ASCII data set 173~174
alignment of records in buffer 269
BLKSIZE option 149
DCB subparameter 151

ASCII option 173
ASIN built-in function 343
assembler-language interface 17
assignment 480

altering string length 193
area 102
causing conversion 43
common errors 261-262
in process at task termination 239
multiple assignment 57-58
of array 248-249
of completion va,lue 237-238
of numeric-character picture data 28
of status 237-238
to initialize data aggregate 258
with the BY NAME option 58
zero-insertion for arithmetic target 258

assignment statement 21,57-58,414-416
associating a data set with a file 128-130
asterisk notation

area size 381,100
area size of argument 113
bound specification 390
bounds of argument 113
controlled parameter 117-118
cross-section of an array 35
DEFAULT statement 422
dummy argument 113
generic selection 398
in allocation of controlled
variable 91-92

in based length, bound or size 413
in generic descriptor list 110
in parameter descriptor 114
INITIAL iteration specification 400
not permitted in array of structures 37
parameter descriptor list 114,393
simple defining 386,388
simple parameter 117
string length 384
string length in aggregate argument 117
atring length of argument 113
string parameter 119

asynchronous operation 58,232,480
efficiency in input/output 257

ATAN built-in function 343
ATAND built-in function 344
ATANH built-in function 344
attachment of task 480

Main page references are those listed first Index 495

attention 480
ATTENTION condition 221,366-367
attribute factoring

%DECLARE statement 451
DECLARE statement 420
DEFAULT statement 422
not permitted in parameter
descriptor list 393

attributes 480
assumed for SYSIN and SYSPRINT 130
conflict arising from contextual
declaration 261

conflict in external name 260
establishing a complete set of
attribute 83

incompatible, in overlayed based
variable 94

merging of file attributes 127-128
of parameters 106,117
of target in conversion and expression
evaluation 50

permitted attributes in preprocessor
variables 224

permitted in ALLOCATE statement 90-91
returned value 110
specification in DEFAULT statement 85

AUTOMATIC attribute 382-383
not applicable to parameter 261

automatic storage 89
automatic storage allocation 480
automatic variable 480

in task synchronization 236
initialization 40

B (blank) picture character 298-300,197
B format item 307,134,144

width field optional on output 144
BACKWARDS attribute 125,383

other attributes implied at merging 127
restriction on record formats 174

base 480
base element 480
base item 480
base, arithmetic 23

default attribute 84
based area and REFER option 100
BASED attribute 382-383

amo~nt of storage allocated 261
not applicable to parameter 261
provides contextual declaration of

name 78
unaligned based bit string in record

I/O 154
based storage 59,92-104
based storage allocation 480
based structure and REFER option 96-97
based variable 481,92-93

ALLOCATE statement 98
allocation in an area 100
at task termination 239
cornmon error 262
in a recursive procedure 89
in CHECK name-list, under optimizing
compiler 367

in data-directed input/output 139-140
in task synchronization 236
initialization 40

based variable (continued)
interrupt caused when unallocated 269
list processing with 97-99
multiple generation 98-99
multiple-qualified generation 103
overlaid on variable in common
expression 245

qualified by an offset variable 103
batch processing 16,65

condition 202,212
ERROR condition 371
execution-time facilities 211
GO TO statement 212
HALT statement 212
standard system action for FINISH
condition 213

begin block 22,58-59,66-67
activation 68
inefficient use of 247
termination 70-71

B~GIN statement 416,58-59
condition prefix 203

binary 481
BINARY attribute 383

alignment 257
data manipulation more efficient than

DECIMAL 254
efficient for switches and counters 248
rounding errors on conversion from
decimal 262

BINARY built-in function 344
binary data

as decimal in list- and data-directed
output 132

fixed-point 25
floating-point 26
storage requirement 459-462

binary fixed-point data
constant 25
variable 25

binary floating-point data
constant 26
variable 26-27

bit 481
BIT attribute ~83-384

cornmon errors on conversion from
arithmetic 263

BIT built-in function 344,200
bit string 481

built in functions 333
common errors 266
comparison 46
controlled, as an argument 113
efficient specification of length 250
efficient use of 249-250
fixed length more efficient than
varying 250

handling 199-200
length as asterisk in aggregate

argument 117
unaligned, in record-oriented

transmission 154
use in multitasking 249-250
varying-length, record-oriented

transmission of 154
varying-length, with SUBSTR built-in

function 266
bit to arithmetic conversion 317

496 Main page references are those listed first

bit to character conversion 326
bit to numeric character conversion 324
bit-string constant

length 30
null string 30

bit-string data
constant 30
overlaid on subscripted variable 390
storage requirement 459,461
variable 30
with POSITION attribute 390

bit-string format item 305
bit-string operation 45-46

conversion of operand 45
resul't 45-46

bit-string operator 19,481
bit-string variable

addressing of unaligned bit-string 381
as parameter 119
length 30
storage allocated when
varying-length 29-30

storage requirement 459,461
varying-length string 30

blank
after lev'el number 36
B picture character 197

causing error on conversion to
arithmetic 263

in A format output 144
in array specification 33
in B format item input 307
in character string 29
in data-directed input stream 132,139
in data-directed output
stream 132-133,139,141

in E format item input 308
in edit-directed F-format
output 144-145

in edit-directed input stream 305
in edit-directed output stream 305,143
in ENVIRONMENT specification 148,163
in F format item input 309
in format-list iteration factor 143
in list-directed input data 138
in list-directed input stream 132,136
in list-directed output stream 132,138
in PL/I 20
in prefix 22
in preprocessor statement 222
in qualified name 37
in REGIONAL(.2) source key 183-184
in subscripted name 34
inserted by X format item 312
inserted in A format item output 306
inserted in B format item output 307
inserted in character string on
assignment 29

inserted in character-string
comparison 46

inserted in COLUMN format item
output 308

inserted in comparison operation 46
inserted in ONSOURCE pseudovariable
string 351

inserted in source key for INDEXED data
set 175

inserted in string on
assignment 415,193

inserted in TRANSLATE replacement
string 355

inserted into character string on
assignment 262

not permitted in binary constant
specification 25

preceding and following reserved
words 259

replacing leading zeros in pictured
item 196

separates attributes in parameter
descriptor 114

BLKSIZE DCB subparam.eter 151
BLKSIZE option 149-150,165-166

BLKSIZE subparameter 172
block 481,66-68

activation 68-70
active block at task termination 239
begin block 22,58-59
external 67
internal 67
invoked block 69
invoking block 69
maximum number in one compilation 66
maximum permissible nesting level 66
nested 67
procedure block 22,58
prologue determines blocks known 75
termination 70-72

block heading statement 481
block size

and record length in record
input/output 165-166

and record length in stream
input/output 149-150

default size 150,166
maximum size 149,165
result of zero or negative
value 150,165

block size option
raising UNDEFINEDFILE condition 267

blocked records 122
blocking

for increased efficiency of
input/output 256

BOOL built-in function 344,201
bounds 33,481

in controlled parameter 117-118
in interlanguage parameter 271
in simple parameter 117
value for based or controlled

a:rrays 412-413
break character

not permitted in job control
language 130

buffer allocation
record input/output 166
stream input/output 151

buffer offset option 173
BUFFERED attribute 124,384

advantages and disadvantages 257
other attributes implied at merging 127

buffers 481
allocation of sufficient number 250
hidden 257,384

Main page references are those listed first Index 497

BUFFERS option 166
BUFNO subparameter 151,172
teleprocessing 188

BUFNO DCB subparameter 151
BUFOFF DCB subparameter 151
BUFOFF option 173

and BLKSIZE option 149
built-in function

49,105,111-112,333-356,481
accuracy of mathematical functions 335
aggregate argument 341
as argument 119
BUILTIN attribute 78
conversion of arguments 334
in operational expression 49
null argument list 341-342,78
recognition of name 111-112
value returned 111
without argument list 341-342,78

built-in names 113
built-in subroutines 112-113
BUILTIN attribute 384-385

%DECLARE statement 451-452
contextual declaration 78
for built-in subroutines 113
for EMPTY built-in function 102
when required for built-in

function 111-112
BY NAME option 414,416

in structure assignment 53-54
BY option 426-427

%DO statement 452
byte 39

C character in PUT ALL statement 220
C format item 134,144,307
call 481
CALL option 107

provides contextual declaration of
name 78

CALL statement 62,107,417-418
asynchronous operation 234
inefficient use of 248
invoking a dynamically-fetched
procedure 72

provides contextual declaration of
name 78

capacity record 185
for track of REGIONAL(1) data set 182
for track of REGIONAL (2) data set 184
for track of REGIONAL(3) data set 186

card read punch control codes 168
CEIL·built-in function 344
ceiling value

calculating precisions in
conversion 314

chained list 97
CHAR built-in function 345,200
CHARACTER attribute 383-384

%DECLARE statement 451
%PROCEDURE statement 454
in ALLOCATE statement 90

character set 481,18-21
48-character set 18,288
60-character set 18,287

character string 481
built-in functions 333
common errors 266

character string (continued)
comparison 46
controlled, as an argument 113
efficient specification of length 250
fixed-length more efficient than
varying 250

in-line code for improved
efficiency 251-254

inefficient in arithmetic
expressions 248

length as asterisk in aggregate
argument 117

varying-length, record-oriented
transmission of 154

varying-length, with SUBSTR built-in
function 266

character-string picture 195,198-199
difference from numeric character
picture 195

character to arithmetic conversion 317
character to bit conversion 328
character to numeric character
conversion 323

character-string constant 29
characters that can be used 19
length 29
null string 29

character-string data
constant 29
variable 29
storage requirement 459,461

character-string format item 305
character-string picture
character 30,295-296

character-string picture item 295,481
maximum length 295

character-string picture
specification 30,407,199

character-string value of numeric
character data 196
char~cter-string variable

as parameter 119
length 29
storage allocated when
varying-length 29-30

storage requirement 459,461
varying-length string 29

characters in PL/I
alphabetic 18
digit 18
special 18,20

CHECK condition 206-207,367-369
disablement for production runs 250,256
dynamic enabling in CHECK

statement 212,418-419
for uninitialized variable 262
handled by library subroutines 256
in aggregate assignment 415

CHECK prefix
with statement label 367

CHECK statement 212-214,418-419
problem data 64
program control data 65
relation to CHECK condition 213

checking of syntax by preprocessor 222
checkout compiler

CHECK statement 418-419

498 Main page references a~e those listed first

checkout. compiler (continued)
differences from optimizing

compiler 474
execution-time facilities 211-221
FLOW stat.ement 429-430
implementation of multitasking 16,233
no optimization facilities 242
NOCHECK statement 435
NOFLOW statement 435
optimization options 417
program items in current status
list 2'16

PU'l' statement options 134
REENTRANT option 439
SCALARVARYING option 172
SIZE condition 207
standard system action for CHECK
condition 207,369

standard system action for ERROR
condition 202,371

TASK option 439
UNDEFINEDFILE condition 376
use of CHECK prefix with statement
label 367

checkpoint/restart facility in a PL/I
program 17,113

CLOSE statement 419,57,130
execu.ted after LOCATE statement 95
raisinq ERROR condition 182
with ENVIRONMENT attribute 125

closing a file 130,481
saving storage 256

COBOL interface
interlanquage communications 278-279

COBOL option
data interchange 168-169
ENVIRONMENT attribute 271
OPTIONS attribute 272,406
OPTIONS option 274,427-428,439-440

COBOL routine
efficiency of communication with 251
maximum length of entry name 20
passing varying-length string to 278
truncation of entry name 20

coded arithmetic data 481
coding programs for optimizing
compiler 245-246

COLUMN format item 134,145,147,306
not a.llmled wi th STRING option 194,306

column posit.ion format item 305
combination of operations 47-49

priority of operators 314,48
comma

in list-directed input 138
picture character 197

commands, tE~rminal 221
comment 21 ,,481

characters that can be used 19
in character string 29

commercial character 481
COMMON block in FORTRAN 274-275,270
common errOJ:s and pitfalls 259-269
common expression

elimination in optimization 242-243
inhibition of elimination 245-246
interrupt handling 243

comparison
not allmled for area variables 100

comparison (continued)
of arrays of string data in IF

statement 51
of event variables 396
of pointer expressions 93

comparison key 183-184
comparison operation 46-47

algebraic 46
bit 46
character 46
conversion of operand 46
conversion tables 331
program control data 46
result 47

comparison operator 19,481
distinguished from assignment

symbol 262
compatibility of the two compilers 16
compilation, improving speed of 247-259
compile time 481

preprocessor stage 222
processor stage 222

compile-time statements
(see preprocessor statement)

compiler
spilling onto external storage 247

compiler differences
conversational/optimization
differences 474

qualitative differences 475-476
quantitative differences 477

compiler options
effect on compilation and execution

times 247
COMPLETION built-in function 237,345

handled by library subroutines 256
COMPLETION pseudovariable 237,345

not allowed as do-loop control
variable 425

completion value
of task associated with event
variable 234

complex arithmetic data 481
constant 27
imaginary part 24
imaginary part of constant 27
list-directed input 138
picture specification 407
real part 24
real part of constant 27
variable 27

COMPLEX attribute 385
COMPLEX built-in function 345
complex expression

precision of 261
complex format item 305
COMPLEX pseudovariable 345

not allowed as do-loop control
variable 425

complex to real conversion 317
composite operators 481
composite symbols

in 48-character set 288
in 60-character set 287

compound statement 21,481
computational built-in functions 333-334
computational conditions 366
concatenation 481

Main page references are those listed first Index 499

concatenation operation
conversion of operand 47
inefficient for bit strings 250
result 47

condition
(see on-condition)

CONDITION attribute 385
condition built-in functions 208,334

in PUT ALL output 219
condition codes 358-365
CONDITION condition 206,369
condition disabling 202-203,357-358
condition enabling 202-203,357-358
condition list 481
condition name 481

explicit declaration 206
implicit declaration 206

condition prefix 21-22,202-203,482
scope 258
scope when on DO statement 264

condition status in PUT ALL output 220
conditional branch 60
conflicting attributes

arising from contextual declaration 261
CONJG built-in function 345
CONNECTED attribute 385-386

for parameter aggregate in record
I/O 154

connected reference 482
connected storage 482,385-386

for parameter 117
CONSECUTIVE data set 167

record input/output 174
stream input/output 151

consecutive file
outstanding input/output events (NCP
option) 171

constant 482
as argument to a subroutine or
function 113,260

binary fixed-point 25
binary floating-point 26
bit-string 30
character string 29
complex arithmetic data 27
conversion of attributes 50
decimal fixed-point 2~
decimal floating-point 26
entry 23,32
file 23,31,122-123
label 23,31
with symbolic name 23

contained text 482
contextual declaration 482,78-79

in attribute processing 83
not permitted for preprocessor
statement -225

control bytes
for area variable 100
for area variable in record I/O 103,154
for variable-length records 148,163-164
for varying-length string in record

I/O 154,172
in argument to ADDR built-in

function 94
on ASCII data sets 173

control character
machine 168-169
printer 148,168-169
printer/punch 163,168-169

control format item 482,305-306
control option

in PRINT file 134
control passing to terminal 221
control sections under OS 257
control statement 59-62
control variable 482

as subscript 61,265
CONTROLLED attribute 382-383
controlled parameter 117,482

lengths, bounds or size
specification 117-118

controlled storage 59,89-92
ALLOCATION built-in function 343
inefficient use of 248

controlled storage allocation 482
controlled string or area as an

argument 113
controlled structures 92
controlled variable 482,89-92

allocation and freeing of storage 59
as an argument to a subroutine or
function 117

as base for defined variable in
data-directed I/O 140

at task termination 239
in recursive procedure 89
in task synchronization 236

conversational processing 16,65,221
ATTENTION condition interrupt 221
execution-time facilities 211
GO TO statement 212
HALT statement 212
standard system action for ERROR
condition 202,212,371

standard system action for FINISH
condition 213

conversion 43-44,267,482
arithmetic 317-322,43-44
arithmetic operation 45
arithmetic to bit 327
arithmetic to character 325-326
arithmetic to numeric character 323
bit-string operation 45
bit to arithmetic 317
bit to character 326
bit to numeric character 324
by assignment 44
by means of built-in function 44
'causes of 314-315
character to arithmetic 317
character to bit 328
character to numeric character 323
common errors 262-264
comparison operation 46
complex to real 317
concatenation operation 47
data 315
example of use of conversion rules 316
FIXED BINARY to FIXED BINARY 319
FIXED BINARY to FIXED DECIMAL 320
FIXED BINARY ·to FLOAT BINARY 321

500 Main page references are those listed first

conversion (continued)
322
319

320
321

322

FIXED BINARY to FLOAT DECIMAL
FIXED DECIMAL to FIXED BINARY
FIXED DECIMAL to FIXED DECIMAL
FIXED DECIMAL to FLOAT BINARY
FIXED DECIMAL to FLOAT DECIMAL
fixed-point to character 325
FLOAT BINARY to FIXED BINARY 319
FLOA'l' BINARY to FIXED DECIMAL 320
FLOA'l' BINARY to FLOAT BINARY 321
FLOAT BINARY to FLOAT DECIMAL 322
FLOAT DECIMAL to FIXED BINARY 319
FLOAT DECIMAL to FIXED DECIMAL 320
FLOAT DECIMAL to FLOAT BINARY 321
FLOAT DECIMAL to FLOAT DECIMAL 322
floating-point to character 326
for ari.thmetic operations 329
for comparison operations 331
guide to tables on 315-316
handled by library subroutines 256
in array expression 52
in bit-string operation 45
in comparison operation 46
in concatenation operation 47
in operat:ional expression 43
locator 101
minimizing 248
mode 317
numeric character to arithmetic 317
numeric character to bit 327
numeric character to character 326
of argument to built-in function 334
of regional data set keys 267
of regional data set keys, avoidance
of 250

offset to pointer 44,101,103
p6inter to offset 44,101
pointer t:o offset in ALLOCATE

statement 101
preprocessor expression 225
problem data 43-44
program control data 44
real to complex 317
tables, guide to 315-316
to BIT for UNSPEC pseudovariable 266
type 317,43-44

CONVERSION condition 54,266,369-370
action within on-unit 266
1. format item input 308
in assignment to pictures 295,199
in reading in data using P format

item 295,310
raised by transmission of uninitialized
variable 268

raised in B format item input 307
raised in C format item input 307
raised in edit-directed input
stream 305

with null on-unit 204
CONVERSION condition on-unit

ONCHAR built-in function 350
ONCHAR pseudovariable 350
ONFILE b~ilt-in function 350
ONSOURCE built-in function 351
ONSOURCE pseudovariable 351

conversion rules
guide to 314

COpy option 134,432
implicit opening of file 127
provides contextual declaration of

name 78
copying procedure into main storage
dynamically 59,72

COS built-in function
COSD built-in function
COSH built-in function
COUNT built-in function
counter

345
345
346

346

efficient data type for 248
CR (credit) picture character 302-303
creating a data set

CONSECUTIVE (record) 174
CONSECUTIVE (stream) 151
INDEXED 178
REGIONAL (1) 182
REGIONAL (2) 184
REGIONAL (3) 186

credit (CR) picture character 302-303
cross-section of an array 482

as argument to ADDR built-in
function 94

asterisk notation 35
cross-section of array of structures
invalid 262,37

CTLASA codes 168
CTLASA option 163,168

not permitted with SCALARVARYING
option 172

RECFM subparameter 172
CTL360 codes 168
CTL360 option 163,168

not permitted with SCALARVARYING
option 172

RECFM subparameter 172
currency symbol ($) picture
character 198,301,489

current generation 482
of controlled variable 91

current line number of PRINT file
provided by LINENO built-in

function 348
current status list 216-220

D character in PUT ALL statement 220
D- format record 1lJ 8 , 173
data 482

redundant, effect on compilation
speed 247

data aggregate 482
see also aggregate

data alignment attributes 378,381
data alignment in a locate mode
buffer 471-472

data character set 482
data conversion

(see conversion)
data-directed input 140

blank in stream 132
data list 135

data-directed input/output
improving efficiency 250

data-directed output 141-142
blank in stream 132-133
data list 135

Main page references are those listed first Index 501

data-directed output (continued)
no data list 133
PRIN'l' file 133

data-directed transmission 56,482
data specification 139-142
input 1~2
of based variable 94
output 132-133

data format item 305,482,143-144
data interchange

COBOL option 168-169
data interrupt on output 261-262
data item 23,482

constant 23
data list 132,482

efficient specification 250
input list 135
output list 135
transmission of array variable 137
transmission of complex variable 137
transmission of structure variable 137

data management optimization
INDEXED data sets 170

data mapping
interlanguage facilities 271-272

data movement and computational
statements 57-58

data organization 33-37
data set 121,482

and file 128-130
ASCII 1 73-1 74
efficiency in storing aggregate 257
efficiency 6f standard format

records 251
sharing file name with others 129

data set access
CONSECUTIVE (record) 174
CONSECUTIVE (stream) 151
INDEXED 178-179
REGIONAL (1) 182-183
REGIONAL (2) 185
REGIONAL (3) 186-187

data set creation
CONSECUTIVE (record) 174
CONSECUTIVE (stream) 151
INDEXED 178
REGIONAL(1) 182
REGIONAL (2) 185
REGIONAL (3) 186

data set organization
record input/output 166-168
stream input/output 151

data specification 482
data specification option 134
data stream 483
data transmission 483

record-oriented transmission 121
stream-oriented transmission 121

data type equivalence
PL/I and COBOL 278-279
PL/I and FORTRAN 279-280

data types
conversion between types 43
problem data 23
program control data 23

data, arithmetic, for list-directed
input 137-138

DATAFIELD built-in function 346

date
provided by DATE built-in function

346,250
DATE built-in function 346

inefficient use of 250
DB (debit) picture character 302-303
DB-format record 148,173
DCB subparameter 151,172
DD statement 128

and ENVIRONMENT attribute 151
and file variable 129

ddname 128
deactivated 483
deactivation

preprocessor identifier 223
preprocessor variable 225

debit (DB) picture character 302-303
debugging

removal of debugging aids for
production runs 250

decimal 483
DECIMAL attribute 383

data manipulation less efficient than
BINARY 254

efficient for data to be written
out 248

DECIMAL built-in function 346
decimal data

fixed-point 24-25
floating-point 26
storage requirement 459-461

decimal digit character 483
decimal fixed-point data

constant 24
variable 24-25

decimal floating-point data
constant 26
variable 26

decimal picture data 483
(see also numeric-character data)

decimal point insertion picture
character 197,299

decimal point, assumed, picture character
197,297,260

declaration 483
conflict arising from contextual
declaration 261

contextual 78-79
example 79-80
explicit 77-78
implicit 79
multiple 82-83
of a file for in-line I/O

code 167-168,170
of entry names 106

DECLARE statement 55,419-420
common errors 259-261
explicit declaration of name 77
explicit declaration of name,

advantages of 257
PAGESIZE and LINESIZE options not

allowed 267
defactoring of attributes

in attribute processing 83
default 483

access attribute for RECORD file 391
advantages of explicit declaration 257
alignment 381

502 Main page references are those listed first

default (continued)
alignment for array data 84
alignment for element data 84
alignment for string data 84
alternative file attributes 124
area data 84
area size 33,84,100,382
arithmetic base 383
ari thm4~tic data attributes 84,260-261
arithm«~tic mode 385
arithmetic scale 398
array attributes 84
ASCII, when BUFOFF, D, or DB
specified 174

attributes applied by implicit
declaration 79

attributes for preprocessor
variable 224-225

attributes of value returned by
function 107

attributes supplied by DEFAULT
statement 420

block size 150,166
buffering attribute 384
elemEm't attributes 84
entry data 84
event data 84
exponent in E format item input 308
field width for A format item 306
field width for B format item input
field width for X format item 312
file for COpy option 127
file function attributes 402
file usage attribute 409
in INDEX option 170
label data 84
length of substring returned by

SUBSTR 354
line number in LINE format item 310
line sizle 438
line value in SKIP format item 311
LINESIZE option value 146,150
name QlC :names specified in RANGE
option 85

number of buffers 166
numbE~r of channel programs 171

307

number of fractional digits in F format
item input 309

number of lines in %SKIP statement 230
number of significant digits in E

format. output 309
numbers of buffers 151
offset d,ata 84
optimization attribute 402
optimization option 417,428,440
optimization option 243-244
page S:lZ4~ 438
PAGESIZE option value 146
parameter descriptor 393
pointelC data 84
POSITION attribute value 389
position in COLUMN format item 308
posit:ion string in TRANSLATE built-in
function 355

precision for FIXED built-in
function 347

precision for FLOAT built-in
function 347

default (continued)
preprocessor replacement option 450
process of applying attributes 83
record format 150,166
record length 150,166
RETURNS attribute specification 410
rules for ASCII data sets 174
scope attribute 397
standard default restored by DEFAULT
statement 86

standard rules for default
attributes 83-84

storage class 74,84,383
string data attribute 84
string length 84,384
structure attributes 84
SYSPRINT assumed in COpy option 134
task name for PRIORITY
pseudovariable 352

value for number of transfers of
control 219

value for SKIP option 134
values in VALUE option 85

default-length
bit-string variable 30,84,384
character-string variable 29,84,384

default precision
binary fixed-point data 25,84,408
binary floating-point data 27,84,408
decimal fixed-point data 25,84,408
decimal floating-point data 26,84,408

DEFAULT statement 55,420-423,84-87
and standard default attributes 85
attribute specification 85
conflicting attributes 85
in attribute processing 83
not applied to null parameter
descriptors 87

restoring standard defaults 86
simplified general form 85

DEFINED attribute 38,386-390
common errors in overlay defining 262
for variable in CHECK name-list 367
pointer of based variable in
data-directed I/O 140

unaiigned defined bit string in
record I/O 154

defined item 483
defined variable

in data-directed input/output 140
defining

iSUB 388-389
simple 388
string overlay 389-390
string overlay, input/output of
structures 250

string overlay, using parameter as
base 117

DELAY stat~ment 238,423
DELETE statement 56,155,423-424

file attributes at implied opening 127
restrictions on KEYLOC and P~P values

for file 177
delimiter 483

unmatched, checked by preprocessor 222
delimiters, unmatched 259
descriptive statement 55-56

Main page references are those listed first Index 503

descriptor
(see parameter descriptor)

DESCRIPTORS option 85-86,422
diagnostic messages

effect on compilation speed 247
in interlanguage communication 281

diagnostic statement 64-65
differences between checkout/optimizing

compilers
conversational/optimization
differences 474

qualitative differences 475-476
quantitative differences 477

digit 483
digit ~icture character 297
DIM bU1lt-in function 346
dimension attribute 390-391

in ALLOCATE statement 90
on file name 123

dimensionality 483
dimensions 33

inherited 37
inherited by controlled variable 91
not copied in LIKE attribute 38

direct access of a REGIONAL(1) data set
addition 183
deletion 183
replacement 183
retrieval 183

direct access of a REGIONAL(2) data set
addition 185
deletion 185
replacement 185
retrieval 185

direct access of a REGIONAL(3) data set
addition 187
deletion 187
replacement 187
retrieval 187

direct access of an INDEXED data set
addition 179
deletion 179
replacement 179
retrieval 179

DIRECT attribute 124,391-392
other attributes implied at merging 127

direct creation of a REGIONAL(1) data
set 183

direct creation of a REGIONAL(2) data
set 184

direct creation of a REGIONAL(3) data
set 186

disabled 483
disabling of conditions 202-203,357-358
DISP parameter

CATLG subparameter 152,169
DELETE subparameter 152,169
KEEP subparameter 152,169
PASS subparameter 152,169
UNCATLG subparameter 152,169

DISPLAY statement 57,424
DIVIDE built-in function 346-347
division operation

common errors 264
do-group 22,483,424-427

common errors 264-265
efficiency compared with begin
block 247

do-group (continued)
termination 67-68
termination of iterative group 59
termination of non-iterative group 59

DO iterative specification
parentheses required 267

do-loops 426-427
backwards-stepping 258
containing transfers of control 258
efficiency of 256

DO statement 61-62,424-427
condition prefix 203
iterative use 61,426-427
non-iterative use 62

dollar ($) picture character 198
doubleword 39
drifting picture character 301
dsname 128
dummy argument 105-106,113,483

creation of 113,114
deriving of attributes 113
for aggregate using asterisk in
string 117

for entry expression argument 115
for unaligned entry name 119
not created for controlled argument 117
passed from COBOL or FORTRAN 273-274
passed to COBOL or FORTRAN 271-272
preprocessor function 226

dummy record
INDEXED data set 178
RSGIONAL(1) data set 182
REGIONAL (2) data set 184
REGIONAL (3) data set 185-186

dump
edited 113

duplicate key
direct creation of REGIONAL (2) data
set 184

direct creation of REGIONAL(3) data
set 187

recorded, in access of REGIONAL(2) data
set 185

recorded, in access of REGIONAL(3) data
set 187

dynamic fetching of procedure into main
storage 59,72

dynamically descendant on-unit 204
E format item 134,144,145

input 308
output 309

E picture character 303-304
EBCDIC (extended binary coded decimal

interchange code) 18,122,287-288
edit-directed input 133,142-143

data list 135
edit-directed input/output

data in the s·tream 305
more efficient than list- and
data-directed 250

edit-directed output 133,142-143
data in the stream 305
data list 135

edit-directed transmission 56,483
common errors 267
data specification 142-146
input 133
output 133

504 Main page references are those listed first

editing by clssignment 193-195
editing in stream input/output 194
efficient programming 247,259

use of library subroutines 256
element 483

default attributes 84
element assignment 414-415
element expression 42,483
element paralmeter

argument type 118
element variable 483
elementary name

(see base element)
ELSE clause 434,60
embedded key 172

in INDEXED SEQUENTIAL access 178
KEYLOC option 176-178
RKP subpalrameter 176,178
when SCAI.ARVARYING specified 172

empty area 102
EMPTY built-in function 347,102
enabled 483
enabling of conditions 202-203,357-358

cannot be disabled 357-358
disabled unless enabled 357
enabled unless disabled 357

end 6f file
raising ERROR condition rather than

ENDFILE 370
END statement 59,62,106,107,427

multiple closure 59
not permitted in repetitive
specification 137

with nested blocks in do-groups 67-68
ENDFILE condition 370

EVENT input/output 157-158
raised in mixed move/locate mode
processing 161

ENDFILE condition on-unit
ONFILJE: bu.ilt-in function 350

ENDPAGE condition 370-371
current line number 147
LINE format item 310
PAGESIZE option 442
raised by first PUT statement of a
file 438

SIGNAL ENDPAGE 147
SKIP format item 311
SKIP option 442

ENDPAGE condition on-unit
ONFILE built-in function 350

ENTRY attribute 106,114-117,392-394
%DECLARE statement 451
implied by other attributes 115

entry constant 23,32,483
not allowed in stream I/O 135

entry data
default attributes 84
entry constant 23,32,483
entry variable 32

entry declaration
when argument and parameter match 114

entry expression 483
as argument to subroutine or function

115- '117
in generic selection 110
in procedure reference 69
in subroutine reference 107

entry name 32,483
as parameter 119
attribute specification 110
declaration for external procedure 106
declaration for internal procedure 106
external, declared without parameter
descriptors 106

external, maximum length 106
generic 110
generic, as argument 119
in FETCH, RELEASE, and CALL
statements 73

of COBOL or FORTRAN routine, maximum
length 20

unaligned, as argument 119
entry parameter

argument type 119
entry point 483

point of invocation 69
primary 69,106
secondary 69,106

ENTRY statement 58,106,427-428
with more than one label 69'

entry value 484
entry vari~ble 32,483

based 103
output in PUT statement 218
storage requirement 459,462

environment
of activation 484,74-75
of invocation 484,74-75
of label constant 484,403
of label variable 403
PL/I, in interlanguage

communication 251
ENVIRONMENT attribute 394,125

and DCB subparameter 151
ASCII option 173
BUFOFF option 173
CLOSE statement 419,125
D option 173
DB option 173
for ASCII data set 173
invalid in OPEN statement 57
record input/output 161-174
stream input-output 147-153

ENVIRONMENT option
and file attributes 378

epilogue. 76,484
equivalence of data types

PL/I and COBOL 278-279
PL/I and FORTRAN 279-280

ERF built-in function 347
ERFC built-in function 347
ERROR condition 371,212

as result of AREA condition 103
raised at end of file 370
raised by CLOSE statement 182
raised by too many outstanding I/O
operations 158

raising FINISH condition 212
standard system action 202
STRING option 441, 194
teleprocessing 188
terminating task 240

ERROR condition on-unit
DATAFIELD built-in function 346
ONCHAR built-in function 350

Main page references are those listed first Index 505

ERROR condition on-unit (continued)
ONCHAR pseudovariable 350
ONFILE built-in function 350
ONKEY built-in function 350-351
ONSOURCE built-in function 351
ONSOURCE pseudovariable 351

error handling
teleprocessing 188

error messages
effect on compilation speed 247
interlanguage communication 281

errors, common 259-269
evaluation 484
event 484
EVENT attribute 394-396
event data 32

default attribute 84
event input/output

at task termination 239
CALL statement 417
DELETE statement 423-424
DISPLAY statement 424
READ statement 442-443
REWRITE statement 446
UPDATE file accessing a CONSECUTIVE
data set 174

WAIT statement 447-448
WRITE statement 449

event name 233
EVENT option 234,157-158

CALL statement 234,417
completion value 234
data interchange 170
DELETE statement 423-424
DISPLAY statement 424
not permitted for INDEXED SEQUENTIAL
access 178

not permitted in teleprocessing 188
number of channel programs 171
provides contextual declaration of

name 78
READ statement 442-443
REWRITE statement 445-446
status ~alue 234
WRITE statement 449

event variable 32,233,484
at task termination 239
comparison of 396
output in PUT statement 218
storage requirement 459
testing and setting 237-238,395

example
IPAGE and ISKIP statements 231
bit-string manipulation 199-200
compile-time facilities and do-group
execution 224

data declaration 79-80
declaring a record file 191-192
entry and label. declaration 79-80
INTERNAL and EXTERNAL scope 81-82
list processing 98-99,102
multitasking program 239-241
of declaration 79-80
of use of file variable 130
structure mapping 462-470
use of ON-conditions 208-210
use of preprocessor function 227

exception
data, specification, addressing, or
protection 365

exception control statements 62-63
exceptional conditions

(see on-condition; ON statement; on-unit)
EXCLUSIVE attribute 396,125

other attributes implied at merging 127
EXEC statement PARM field 120
execution

asynchronous operation 58
improving speed of 248-259
synchronous operation 58

execution time
Communication under Time Sharing Option

(TSO) 121
effect of conversion 43
effect of UNALIGNED attribute 40
reducing 248-249

execution-time facilities
current status list 212
program amending 212
tracing facilities 212

exit point 106
EXIT statement 62,108,429
EXP built-in function 347
explicit declaration 77-78,484

in attribute processing 83
explicit file opening 126
explicitly qualified based variable 103
exponent 24

binary 26
decimal 24

exponent picture character 303-304,484
exponentiation

symbol not permitted in preprocessor
expression 225

expression 113,484
area 102
array 42
common 242
complex, precision of 261
data conversion in 315,43
effect of precision on efficiency of
evaluation 248

element 42
elimination in optimization 242-243
entry 69,107,110
file 123
in controlled parameter 117-118
in format item 146

in list-and data-directed output 132
inefficient use of 248
invariant 243
offset 101
operational 42
operational, as argument to subroutine
or function 113

operational, data conversion in 315,43
parenthesized, as an argument 113
prologue evaluates DECLARE

expressions 75
redundant 245
scalar 42
simplification in optimization 245
structure 42

expression operand 42,49

506 Main page references are those listed first

expression operation 42-49
arithml::tic operation 45
bit-str~ng operation 45-46
combinations of operations 47-49
comparison. operation 46-47
concatenation operation 47

ext ended bina.ry coded decimal interchange
code (EBCDIC) 18,122,287-288

extended precision
binary flo,ating-point data 27
decimal floating-point data 27

extent 484
array 33
of area 100
of static area variable 88
zero area extent 102

EXTERNAL at.tl:ibute 396-397
assumed fc)r standard file 130
default st~orage is STATIC 74

external entl:y name
declarat.icm 106
maximum lemgtb 106

external namE: 484
conflict of attributes 260
maximum 1 emgth 20 , 260
reserv'edl characters IKN 260

external pro(:edure 67,484
entry nam~~ declaration 106
invocation 105
separate control sections under OS 257

F charactel: in PUT ALL statement 220
F compiler

and SCM~ru~VARYING option 172
record fOlrmat options accepted 151

F format item 134,144-145
input 30~~
output. 3109-310

F format item 144-145
F-format record 148,163

less efficient than FS-format 251
with BLKSIZE option 150,166

F pictUl:e character 304
facilities II 4Jperating system, in a PL/I

program '17
factoring 484
factoring ()f attributes

%DECLARE :statement 451
DECLARE s'tatement 420
DEFAULT s'tatement 87,422
not permi·tted in parameter descriptor
list 393

fast compilation techniques 247
fast exectution techniques 248-259
FB-format record 148,150,163,165,166

less efficient than FBS-format
records 251

FBS-format record 148,150,163,165,166
more ef:ficient than FB-format 251

FETCH statement 59,72,429
in immediate mode 221

fetching p:rocedure into main storage
dynamically 59,72,106

compila'tion and link-editing 73
restric·tions on attributes of

variables 73
field (in th~ data stream) 484

field (of a picture specification)
484,296-297

file 121,484
access from more than one task 125
additive attributes 123,125
alternative attributes 123
and data set 128-130
at task termination 239
attributes 123-125,484
closing 130
COBOL option (data interchange) 168-169
declaration for in-line I/O 167-168,170
delimiter raising ERROR rather than

ENDFILE 370
exclusive 125
file name and ddname 128
implicit opening for COpy option 127
maximum number of outstanding I/O
operations 158

merging of attributes 127-128
on-unit for file parameter 204-206
opening 126-130
parameters and variables, on-units for

204-206
positioning after execution of GET

LIST 138
selection of set of attributes 378
standard files 130-131

file access attributes 391-392
FILE attribute 397,123

array of file names 123
VARIABLE attribute 123

file constant 23,31,122-123,484
file data

file constant 31
file variable 31

file declaration
efficiency improved by means of

NOWRITE 254
file expression 123,484
file function attributes 401-402
file name 484

associated with more than one data
set 129

FILE option 134,155
CLOSE statement 419
DELETE statement 423
GET statement 432
LOCATE statement 434
OPEN statement 437
provides contextual declaration of

name 78
PUT statement 440-441
READ statement 442
REWRITE statement 445
UNLOCK statement 447
WRITE statement 448

file parameter
argument type 119

file usage attributes 409
file variable 31,123,484

and DD statement 129
compared with TITLE option 130
example of use 130
output in PUT statement 218
storage requirement 459,461

FINISH condition 213,371
raised by ERROR condition 212

Main page references are those listed first Index 507

FINISH condition on-unit
DATAFIELD built-in function 346
ONCHAR built-in function 350
ONCHAR pseudovariable 350
ONFILE built-in function 350
ONKEY built-in function 350-351
ONSOURCE 'built-in function 351
ONSOURCE pseudovariable 351

FIXED attribute 398
%DECLARE statement 451
~PROCEDURE statement 454

FIXED BINARY, conversion to 319
FIXED BINARY to FIXED BINARY
conversion 319

FIXED BINARY to FIXED DECIMAL
conversion 320

FIXED BINARY to FLOAT BINARY
conversion 321

FIXED BINARY to FLOAT DEClfv1..AL
conversion 322

FIXED built-in function 347
FIXED DECIMAL, conversion to 320
FIXED DECIMAL to FIXED BINARY
conversion 319

FIXED DECIMAL to FIXED DECIMAL
conversion 320

FIXED DECIMAL to FLOAT BINARY
conversion 321

FIXED DECIMAL to FLOAT DECIMAL
conversion 322

fixed-length record
record input/out~ut 163
stream input/output 148

fixed-length string
as an argument or parameter 119
bit-string 30
character-string 29

fixed-length string parameter
argument type 119

fixed-point binary data
maximum precision 25,335
storage requirement 459,461

fixed-point constant
(see Warithmetic constantW)

fixed-point data
binary 25
decimal 24-25
precision 24

fixed-point decimal data
maximum precision 25,335
redundant high-order non-zero digit 264
storage requirement 459,461

fixed-point format item 305
fixed-point to character conversion 325
FIXEOOVERFLOW condition 54,3.72

may be raised on assignment 262
multiple interrupt on Model 91 or 195

Processor 365
relationship to SIZE condition 374

FLOAT attribute 398
FLOAT BINARY, conversion to 321
FLOAT BINARY to FIXED BINARY
conversion 319

FLOAT BINARY to FIXED DECIMAL
conversion 320

FLOAT BINARY to FLOAT BINARY
conversion 321

FLOAT BINARY to FLOAT DECIMAL
conversion 322

FLOAT built-in function 347
FLOA'l' DECIMAL, conversion to 322
FLOAT DECIMAL to FIXED BINARY
conversion 319

FLOAT DECIMAL to FIXED DECIMAL
conversion 320

FLOAT DECIMAL to FLOAT BINARY
conversion 321

FLOAT DECIMAL to FLOAT DECI~1.AL
conversion 322

floating-point binary data
maximum precision 27
storage requirement 459,460,461

floating-point constant
(see Warithmetic constantW)

floating-point data
binary 26-21
decimal 26
precl.sl.on 24

floating-point decimal data
maximum precision 26
storage requirement 459,460,461

floating-point format item 305
floating-point to character conversion 326
FLOOR built-in function 341
flow comment 214,429
FLOW information in PUT ALL output 219
flow of control 485

begin block 66-61,68
procedure block 66,68-70

FLOW option 65,219,441
FLOW statement 65,214-216,429-430
FORMAT compiler option 230
format item 134,143-145,485

control format item 145-146
data format item 143-145
remote format item 145-146
value specified as expressions 146

format item specification 306
format list 485,143-146

common errors 261
FORMAT option of %CONTROL statement 230
FORMAT statement 55,145-146,430
formatting of listings 231-232
FORTRAN interface

interlanguage communication 214-281
FORTRAN library functions 112
FORTRAN option

OPTIONS attribute 212,406
OPTIONS option 214,421-428,439-440

FORTRAN routine
efficiency of communication with 251
maximum length of entry name 20
truncation of entry name 20

fraction field
in data format item 144

FREE statement 59,430-432
based variable 98
based variable in an area 102
controlled variable 91
controlled structure 92

freeing based storage in an area
100,102,269

freeing controlled storage at end of
task 91

508 Main page references are those listed first

freeing stoJ:age allocated to fetched
procedurE; 59,12

freeing strl1cture· with REFER option 91
freeing variables in an area 102

·FROM opti()n 156,448
REWRITf'~ 13tatement 445-446

FS-format r~ecord 163
more eJ:ficient than F-format 251

fully-qualified name 485
function 58.105,108-110,485

attribute for value returned in
DEFAULT statement 87

built-in 111-t12,3'33-356
default iittributes for returned value

107
differE~nc:::e from subroutine 105
FORTRAN library function 112
invocat:icln 105
modifying an argument 258

function name .
default: attributes 84

function rejEerence 49,58,108,485
as an argument to a subroutine or
function 113

in operational expressions 49
inefficicant when nested 249
preprocel:lsor procedure 225-228
returnin9 an offset or pointer

value 103

generation 88,485
associatced with controlled
paramE~t~~r 117

associCLtE~d with simple parameter 117
based variable 92
based variable, multiply-qualified 103
controllE~d. variable, determiningg

number ()f generations allocated 92
multiple., of based variable 98-99
multiple " of controlled variables 91
passed f()r controlled argument 111

GENERIC attribute 398-399
generic dE~s(::riptor list 398-399

with no descriptors 111
generic entl:y name 110-111,485

as an ar~Jument 119
generic key 110-111,485

SEQUEN'l'I1~L fil e accessing an INDEXED
data s;e1~ 118

generic refE~rence 110
generic selE~ction 110,398-399
GENKEY opt:i()n 110-111,119
GENKEY opt:icm 110-111
GET statement 56-51,432-433

efficien1~ data list specification 250
f~leatt]:ibutes at implied opening 121
f1rst after opening a file 438
implicit opening of COpy file 121
options 133

GET statement 432-433
GO TO statement 60,106,108,109,212 433

efficient: use of 248 '
in interlanguage communication 211
on-unit not allowed as target 266

group 485
begin blclck inefficient as a group 241
(see also do-group)

halfword 39
HALT statement 62,212,433-434
aBOUND built-in function 347
hidden buffers 384
HIGH built-in function 348,201
hints on programming for optimizing

compiler 257-259

I.picture character 198,302-303
identifier 485

keyword 19
label 19
maximum length 19
maximum length in data-directed

input 140
name 19

IF statement 434,60-61
comparison of arrays of string data

51,258-259
condition prefix 203

IGNORE option 156,444
IKN reserved characters in external

names 260
lMAG built-in function 348
lMAG pseudovariable 348
imaginary part of complex arithmetic
data 24

immediate mOQ,e 211
restriction on PL/I statements 221

implicit declaration 19,485
not permitted for preprocessor
statement 225

implicit file opening 121,485
implicit READ statement

in INDEXED DIRECT replacement 119
implicitly qualified based variable 103
imprecise interrupt on Model 91 or 195

processor 365
IN option

ALLOCATE statement 413
FREE statement 432
provides contextual declaration of

name 78
in-line code for improved efficiency

251-254
included text

in source program at preprocessor stage
228-229

incompatible attributes
detection in overlayed based

variables 94
INDEX built-in function 348,201

in preprocessor statement 221-228
INDEXAREA option 170
INDEXED data set 161,114-119

efficiency of input/output operations
250-251

improving access speed 110
improving efficiency with NOWRITE
option' 254

inefficient overflow caused by deleted
records 251

needing hidden buffers 251
TRKOFL not permitted 112

indexed file
outstanding input/output ·events (NCP
option) 111

Main page references are those listed first Index 509

infix operation
array and array operation 51-52
array and element operation 51
array and structure operation 52
result in array expression 51-52
result in structure expression 53-54
structure and element operation 53
structure and structure operation 53
structure assignment with BY NAME 53-54

infix operator 485
information interchange codes 122
inherited dimensions

in array of structures 37,96
inherited dimensions, lengths, and sizes

in controlled variable 91
INITIAL attribute 40-41,399-401

and CHECK condition for based
variables 214

for static variable 88
in ALLOCATE statement 90
in DEFAULT statemnt 423
invalid for certain data 40
invalid for structure name 40
iteration factor not allowed for scalar
item 400

initial procedure 70,485
initialization 262

area variable 40
array 40,258
array of structures 41
automatic variable 40
based variable 41,413
checking for 31
common errors 261
controlled variable 40,413
in prologue 75
INITIAL attribute 40-41,399-401
LOCATE statement 434
of arrays and structures 258,40-41
static variable 40
structure 41,258
zero-insertion for arithmetic
variable 258

INPUT attribute 124,401-402
when same file to be used for

output 267
input data

48-character set semi-colon not
recognized 268

input/output 485
common errors 267-269
efficient programming 256-257
handled by library subroutines 256
implemented by in-line code 167-168,170
indexed data set, improving speed 170
indexed data set, more efficient with

NOWRITE 254
of areas 103
of based variable 94
of lists of based variables 103
under Time Sharing Option (TSO) 121,16
uses of pictured data 195

input/output conditions 366
effect of EVENT option and WAIT
statement 157

input/output control statement 57
input/output on-conditions 366

effect of EVENT option and WAIT
statement 157

input/output operation
(see also input/output)
indexed data set, improving speed
NCP option 171,158

input/output statement
input/output control 57
record-oriented transmission 56
stream-oriented transmission 56-57

insertion picture character
197,298-300,485

insource listing 222
formatting 231-232

integral boundary 39

170

INTER option 406,272
interlanguage communication

improving efficiency of
interlanguage environment
interlanguage facilities
interlanguage options

17,270-283
251

275-277
270-283

invocation of COBOL or FORTRAN from
PL/I 272-273

invocation of PL/I from COBOL or
FORTRAN 274

interleaved array 485
as argument to ADDR 94

interleaved subscripts 485
intermediate targets in conversion of
data 50

INTERNAL attribute 396-397
internal block 485
internal name 485
internal procedure 67,485

entry name declaration 106
invocation 105
not separate control section under

OS 257
internal text 485
interrupt 485

ATTENTION raised from terminal 221
CHECK condition 207
effect of REORDER opition 244
imprecise, on Model 91 or

195 Processor 365
in common expression handling 243
in interlanguage communication 275-277
in order block 244
in reorder block 244
multiple (see multiple interrupt)
some causes 261-262

interrupt handling
in interlanguage communication 275-277

INTO option 156,442
invariant expression

transfer of 243,246
invocation 485

of preprocessor procedure 226
of procedure 69
of subroutines and functions 105

invoke 485
invoked procedure 486

internal and external 105
invoking block 486
I/O operation

(see also input/output)
indexed data set, improving speed 170
NCP options 171,158

510 Main page references are those listed first

IRREDUCIBLE attribute 402
IRREDUCIBLE option

ENTRY statement 427-428
PROCEDURE statement 440

iSUB defining 386,388-389
iSUB variable 38
iSUB-defined array 113

as an argument 105
not al.lowed in CHECK name-list 36~
not alloWE!d in data-directed I/O 135

iSUB-defined variable
not alloWE!d in CHECK prefix 207

iteration
backwards, in a do-loop 258

iteration factor 486
and repetition factor 41
in format list 143
in INITIAl. attribute specification 400
in initi.alization of an array 41
not alloWE!d in INITIAL attribute of
scalar i t:em 400

iterative DO statement 61,426-427
iterative do-group 486,426-427

backwards-stepping 258
containi.n~r transfers of control 258
efficiency of 256

job control. language 128-130
break character invalid 130

K picture (:haracter 303-304
key 486

(see also source key; recorded key)
embedded 172
embedded, when SCALARVARYING
specified 172

for regional data set, avoiding
conversion 250

generic 170-171
recorded 172,175,180
source 1 '15 ,180
source, c,onversion from character
string .267

KEY condit:Lo:n 372,
EVENT input/output 157-158
GENKEY option 170-171
positioning of file after condition
raised 171

raised by REWRITE statement 185
raised in creating a REGIONAL(1) data
set 182

raised :In creating a REGIONAL(2) data
set 184

raised in creating a REGIONAL(3) data
set 1186

raised in creating an INDEXED data set
178

raised in INDEXED DIRECT access or
deletion 179

teleprocessing 188
when not raised until transmission

attemp·ted 269
KEY condit:ion on-unit

ONFlLE built-in function 350
KEY option 157

DELETE :statement 423
file Inu:st have KEYED attribute 267
READ st;atement 442-443

KEY option (continued)
REWRITE statement 445-446
UNLOCK statement 447

KEYED attribute 125,402
other attributes implied at merging 127

KEYFROM option 157,
embedded key 178
file must have KEYED attribute 267
LOCATE statement 435
WRITE statement 449

KEYLENGTH option 172
KEYLEN subparameter 172
raising UNDEFINEDFILE condition 267

KEYLOC option 172
PL/I (F) compiler 178
raising UNDEFINEDFILE condition 267
restrictions when DELETE statement to

be uSed 177
RKP subparameter 172

keypunching, common errors 259
KEYTO option 157,

file must nave KEYED attribute 267
in sequential access of a REGIONAL(2)
data set 185

in sequential access of a REGIONAL(3)
data set 186

maximum length of character string 443
not required for embedded key 178
READ statement 442-443

keyword 19,486
alphabetic listing of 289-294

keyword abbreviation
alphabetic listing of 289-294

keyword, reserved, surrounded by
blanks 259

keyword statement 21
known 486

label 19,486
efficient use in GO TO statement 248

LABEL attribute 402-403
label constant 23,31,486

explicit declaration 77-78
list, for a statement 486
list in declaration of label variable

248,486
not allowed in stream input/output 135
with CHECK prefix 367

label data
default attribute 84
label constant 31
label variable 31

label prefix 21,486
label variable 31,486

as parameter 119
declaration with list of label
constants 248

environment of 403
output in PUT statement 218
storage requirement 459,462

label-variable parameter
argument type 119

language character set 486
LBOUND built-in function 348
leading zeros 486
LEAVE option 152,168

in ENVIRONMENT on CLOSE
statement 125,419

Main page references are those listed first Index 511

length
altering the length of string data 193
bit-string constant 30
bi~-string variable 30
character-string constant 29
default value 84
in controlled parameter 117-118
in interlanguage parameter 274
in parameter passed from COBOL or

FORTRAN 274
in simple parameter 117
inherited by controlled variable 91
of data field in data-directed

output 141-142
of data field in list-directed

output 138
of strings, efficient specification

of 250
optional in edit-directed A-format
output 144

string, as asterisk in aggregate
argument 117

uninitialized varying-length string 29
value for based or controlled

string 412-413
length attribute 384,201
LENGTH built-in function 348,201

in preprocessor statement 227-228
length, default

bit-string variable 30,84,384
character-string variable 29,84,384
in VALUE option 85

length, maximum
bit-string constant 30
bit-string variable 30
character-string constant 29
character-string variable 29
external entry name 106

length, minimum
bit-string variable 30
character'string variable 29

level
of locator qualification 103
maximum number permitted in a

structure 36
of namss 1n structure hierarchy 36,457
redundant, in a structure 249

level number 486,457
followed by blank 36

level-one variable 486
library calls, avoidance of 251
library functions, FORTRAN 112
library subroutines, use of 256
LIKE attribute 38-29,403-404

excludes dimensions 38
in attribute processing 83
initialization of array of
structures 41

restriction 404
LIKE option

with PAGE option 442
LIMCT subparameter

direct creation of REGIONAL(2) data
set 184

direct creation of REGIONAL(3) data
set 186

line
in stream-oriented transmission 132

LINE format item 134,145,147,305,310
LINE option 135,147,440-442

effect when printing at terminal 135
line-position format item 305
line-skipping format item 305
LINENO built-in function 348
LINESIZE option 146-147,438

not allowed in DECLARE statement 267
raising UNDEFINEDFILE condition 267

list processing 97-99
list-directed input

arithmetic data 137-138
blanks in stream 132
conversion 138
data list 135
input stream format 138
termination of stream 138

list-direct input/output
improving efficiency 250

list-directed output
blanks in stream 132
conversion 138-139
data list 135
length of a data field 138
output stream format 138
PRINT file 132

list-directed transmission 56,486
data in the stream 137-138
data specification 137-139
input 132
of based variable 94
output 132

listing
control statements 230-231,64
effect on compilation speed 247
formatting 230-231
preprocessor input and output 222

lists of based variables, input/output 103
loading procedure into main storage

dynamically 59,72
locate mode processing 160-162

and based variable 94
efficiency 257

LOCATE statement 56,155,434-435
and based variable 95
and CHECK condition for based
variables 214

file attributes at implied opening 127
implemented by in-line code 167
KEYFROM option 157
last bef~re closing file 182
limit on use of pointer 268
must specify level 1 variable 154
SET option and based variable 95
varying-length strings 172

locator
qualified names not allowed in CHECK
prefix 207

locator data
conversion 101,44
offset data 32
pointer data 32

locator qualification 93,486
explicit and implicit 103
levels of 104
multiple 103

locator qualifier
explicit and implicit 103

512 Main page references are those listed first

locator qualifier (continued)
not allowed in CHECK name-list 367
not allowed in data-directed
iransmission 139

offset expression 101
locator variable 32,92,486

allocat:ion of based variable in an
area 101

list processing with 97-99
null value 99

locked record 486
locking a r~~cord on a file 125

NOLOCK option 158
LOG built-- in function 348
logical 1 ~;vE~l

item within a structure 457,486
redundant, in a structure 249

logical operators 486
logical record 122
LOG10 built-in function 349
LOG2 built-in function 348
loop optimi:~ation 244
LOW built--in function 349,201
lower bound 486
LRECL DCB sllbparameter 151

machine dE:!pl3ndence
record-oriented transmission 13,15
UNSPEC built-in function 13

machine independence 13
stream-oriented transmission 15

magnetic tape handling options
record input/output 168
stream input/output 152

MAIN opt.ion 259,439-440
main procE:!dllre

parameter in 120
passin9 an argument 120

major struct.ure 35-37,486
major task 232,487
mapping

of aggregate in interlanguage
communication 251,271-272

of structure with REFER option 96,97
record alignment 471-472
structurE: 457-460

MARGINS option 259
matching

of arguml3nt and parameter
attributes 113

mathematical built-in functions 333,
accuracy of 335
performance statistics for 336

MAX built--in function 349
maximum

absolute priority of a task 235
area size 33,100,381
array bound 391
block size 149,165
depth ()f nesting for %INCLUDE

statements 453
depth ()f nesting for repetitive
specification 137

depth ()f nesting of do-groups 427
depth of nesting of IF statements 434
index ar'ea size with INDEXAREA

option 170

maximum (continued)
level of locator qualification 104
line size 438
number of arguments or parameters 105
number of buffers 151,166
number of channel programs 171
number of digits in numeric character

item 28
number of dimensions of an array 391,34
number of label constants in LABEL
attribute 403

number of levels in a structure 36
number of names in CHECK name-list 367
number of parameters for a IPROCEDURE
statement 454

page size 438
record length 149,165
value in POSITION attribute 390
value of BUFOFF specification 173
value of PRTY parameter 235
value of region number £or REGIONAL(3)
data set 185

value of source key for REGIONAL(l)
data set 180

value of source key for REGIONAL(2)
data set 183

maximum length
binary exponent 26
bit-string constant 30
bit-string variable 30
character-string constant
character string in KEYTO
character-string pictured
character-string variable
data-directed input item
decimal exponent 27
external entry name 106,260

29
option 443
data 295

29
140

external name 20,128
file name 128
identifier 19
in BUFOFF option 173
intermediate in string expressions 266
name in data-directed input 140
numeric character data 295
recorded key 175,180
text included by IINCLUDE statement 453

maximum precison
binary fixed-point data 25,329,335
binary floating-point data 27,329
decimal fixed-point data 25,329,335
decimal floating-point data 26,329

merging of file attributes 127-128
message control program (MCP) 187
message processing program (MPP) 187
MIN built-in function 349
minimizing compilation time 247
minimum

absolute priority of a task 235
array bound 391
index area size with INDEXAREA

option 170
line size 438
number of channel programs 171
page size 438
value of BUFOFF specification 173

minimum length
bit-string variable 30

Main page references are those listed first Index 513

minimum length (continued)
character-string variable 29
in BUFOFF option 173

minor structure 36-37,487
MOD built-in function 349
mode (of arithmetic data) 487,24

default attribute 84
conversion 317

move mode processing 158-160
and based variable 94
efficiency 257

multiple assignment 57-58
multiple closure 67-68

END statement 59
GO TO statement closes begin

block 70-71
GO TO statement closes procedure

block 71
multiple declaration 82-83.487
multiple generations

of based variables 98-99
of controlled variables 91

multiple interrupt 365
ONCOUNT built-in function 350

multiple locator qualification 103
multiple opening 127
MULTIPLY built-in function 349-350
multiprocessing 487
multiprogramming 487

sharing files 125
multitasking 232-241,487

built-in functions 334
implementation by checkout and
optimizing compilers 16,233

in intsrlanguage communication 278
sharing files 125
use of bit strings 249-250

name 19,487
ambiguous reference 82-83
array 33-35
built-in 113
condition name declaration 206
data set 128
DD statement 128
declaration as built-in 78
elementary name 36-37
entry name declaration 106
external entry name 67
file name and ddname 128
local definition within a procedure

block 58
local definition within a begin
block 58

major structure name 36-37
maximum length of external name 20
minor structure name 36-37
multiple declaration 82-83
qualified 36
recognition of built-in function

name 111-112
reference to member of external
struct ure 82

resolution of identical names 83
scope of declaration 77
structure 35
subscripted 34

name (continued)
subscripted qualified name 37
task name 232

NAME condition 372-373
NAME condition on-unit

DATAFIELD built-in function 346
ONFILE built-in function 350

NCP option 171
effect on EVENT option 158
NCP subparameter 172

nested block 67
maximum permissible nesting level 67

nesting 487
of repetitive specifications 136-137
not allowed for pseudovariables 342

NOCHECK statement 435,65,212-214
NOCOMPATIBLE checkout compiler option 94
NOFLOW statement 65,216,435
NOFORMAT compiler option 230
NOFORMAT option of ICONTROL statement 230
NOLOCK option on READ statement

125,158,442-444
NOMAP option

efficiency of interlanguage
communication 251

OPTIONS attribute 272,406
OPTIONS option 274,428,439-440

NOMAPIN option
efficiency of interlanguage

communication 251
OPTIONS attribute 272,406
OPTIONS option 274,428,439-440

NOMAPOUT option
efficiency of interlanguage

communication 251
OPTIONS attribute 272,406
OPTIONS option 274,428,439-440

non-connected storage 487
cross-section of an array 35
reference in array expression 38

non-iterative DO statement 62,425
non-iterative do-group 425
NOOPTIMIZE compiler option 247
NOOVERFLOW condition 54
NORESCAN option 223,449
normal termination

procedure block 71
program 62,72
task 233,238

NOWRITE option 170
storage saved 254

null arguments
to built-in function 341-342

NULL built-in function 93,99,350
initializing static offset variable 88
initializing static pointer variable 88

null field
in list-directed input 138

null locator value 487
null on-unit 204

difference with CONVERSION and AREA
conditions 204

null pointer value 99
null statement 21,435-436
null string 487

bit-string constant 30
character-string constant 29

514 Main page references are those listed first

number of active allocations of controlled
storage

provided by ALLOCATION built-in
function 343

number of channel programs (NCP
option) 171

number of items in last STREAM operation
provided by COUNT built-in function 346

numeric character data 27-28,295,487
(see also decimal picture data)
arithmetic value 296,196
character-string value 296,196
conversion 43
format in internal storage 28
maximum length 295
maximum number of decimal digits 28

numeric cha.racter to arithmetic
conversion 317

numeric character to bit conversion 327
numeric cha:racter to character

conversion 326
numeric field data item (see numeric
character data)

numeric··cha:racter picture specification
195-199,27-28,407

complex data 28
differen,ce from character string

pic1::ure 195
editing characters in specification 28
picturE~ characters 27 ,296-304
repetition factor 27

object listing
effec.t on compilation speed 247

object of REFER option 96
offset

equivalent to two pointers 104
level of qualification 104
qualified. names not allowed in CHECK
prefiJt 207

OFFSET ati:r:lbute 404-405
for name im tBECK list, under
optimizing compiler 367

providE~s contextual declaration of
name 78

OFFSET built-in function 101,350
offset dai:a 32

conversic:m to pointer 44,405
defauli: attribute 84
not allmfed in stream-oriented
transmission 269

offset exprf9ssian 101
as locator qualifier 103
conversion to pointer 103
function reference returning an offset
value 103

offset parameter
paramet:elJ:' descriptor 120

offset qualification, multiple 103
offset qualifier

not al101fed in CHECK name-list 367
offset variable 32,92,100,487

and dat:a··directed input/output of based
variablE~ 139

list pro(:::essing with 97-99
output in PUT statement 218-219
storage~ requirement 459,461

ON statement 62-63,436-437
condition prefix 203
establishes on·-unit only after
execution 266

provides contextual declaration of
name 78

scope 204
specifying file variable 205-206

on-code 208
listing of 358-365

on-condition 487
common errors 266-267
condition codes 358-365
disabling for production runs

250,256,267
effect of EVENT option and WAIT
statement 157

effect of REORDER option 244
normally disabled 357
normally enabled 357-358
programmer-coded checking preferred

266-267
raised in conversion and expressions
evaluation 54

scope of prefix 258
types 366

on-unit 63,487
do-group ~ot permitted 265
dynamically descendent 204
environment restored by epilogue 76
for file parameter 204-206
inefficient use of 248
inherited in interlanguage

communication 275-271
normal return 203-204
null on-unit 204
prologue determines relevant
on-units 75

single statement 203-204
ONCHAR built-in function 350

not affected by REORDER option 244
ONCHAR pseudovariable 350
ONCODE built-in function 350

handled by library subroutines 256
ONCODE values 358-365
ONCOUNT built-in function 350
ONFILE built-in function 350
ONKEY built-in function 350-351

teleprocessing 188
ONLOC built-in function 351

handled by library subroutines 256
ONSOURCE built-in function 351

not affected by REORDER option 244
ONSOURCE pseudovariable 351
OPEN statement 56,57,126-127,437-438

for standard file SYSPRINT 147
multiple, for increased efficiency 256
when file used for both input and
output 261

opening (of a file) 481
opening a file 126-130,487

explicit opening 126
attribute for value returned in DEFAULT
statement 87

for COpy option 127
implicit opening 126-130
multiple opening 127

Main page references are those listed first Index 515

opening a file (continued)
multiple opening, for increased

efficiency 256
standard file SYSPRINT 147

operand 42,487
expression 49
function reference as operand 49
preprocessor expression 225

operating system
control sections 257
using operating system facilities in
PL/I program 17

operationai expression 42,487
as an argument to a subroutine or
function 113

containing function reference 49
data conversion in 43
infix operation 43
prefix operation 43

operator 487
arithmetic 19
bit-string 19
comparison 19
operators not applicable to area
variables 100

relative priority 48
string 19

OPTCD subparameter
dummy record in INDEXED data set 178
INDEXED DIRECT access or deletion 179

optimization
effect on in-line code generation

251-254
in-line code for I/O operations

167-168,170
of loops by maintaining values in
registers 244

optimization attributes 402
OPTIMIZE compiler option 248
optimizing compiler

CHECK statement 418
coding programs for 245-247
differences from checkout compiler 474
FLOW statement 429-430
implementation of multitasking 16,233
no execution-time facilities 211
NOFLOW statement 435
optimiziation facilities 242-247
optimizer code produced for certain

items in a program 247
program items in current status
list 216

PUT statement options 134
REENTRANT option 439
SCALARVARYING option 172
standard system action for CHECK
condition 207,369

standard system action for ERROR
condition 202,371

TASK option 439
UNDEFINEDFILE condition 376

option 487
OPTIONS attribute 106,406
OPTIONS option

common error 257
ENTRY statement 428
PROCEDURE statement 439-440

ORDER option 244
BEGIN statement 417
PROCEDURE statement 439-440

output
efficient data type for 248
of area 103
of lists of based variables 103
of record using locate statement 95
of structure with REFER option 97
of uninitialized variable 261-262

OUTPUT attribute 124,401-402
when same file to be used for input 267

OVERFLOW condition 54,373
multiple interrupt on Model 91 or 195
Processor 365

overlap
of input/output operations 257

overlay defining 389-390
common errors 262
input/output of structures 250
using parameter as base 117

overlay of segment containing static
variable 259

overlaying with based variables 94
overpunched sign picture character

198,302-303

P (picture) format item
310-311,134,144,145,195

input 310
output 311

packed decimal 487
padding 487

minimized with UNALIGNED attribute
254-256

PAGE format item 134,145,147,305,311
PAGE option 134,147,441-442

effect when printing at terminal 135
in first PUT statement for SYSPRINT
standard file 147

with LIKE option 442
page, new, for SYSPRINT file 147
PAGESIZE option 146-147,437-438

not allowed in DECLARE statement 267
paging format item 305
parallel processing, interrupt during 365
parameter 105,488

aggregate in record oriented
transmission 154

allocation 117-118
and dummy argument 113
as base identifier for overlay
defining 117

attributes permitted 117
bounds, length and size specification

117-118
connected storage 117
file, on-unit for 204-206
in main procedure 120
in record-oriented transmission 117
lack of storage class 261
maximum number of parameters at one
invocation 105

non-controlled 113
pointer for based variable in
data-directed I/O 140

preprocessor function 226-228
scope 117

516 Main page references are those listed first

parameter (continued)
storage class attribute 117
struc'ture! as 119
types of associated argument 118-120
unaligned bit string parameter in
reco.rd I/O 154

with attJ:'ibutes matching argument 114
parameter de!scriptor 113,117,488

default a,ttributes in DESCRIPTORS
option 85,87

for controlled argument 117
null descriptor unaffected by DEFAULT
statement 87

when argument and parameter match 114
parameter descriptor list 393,106,488

omitted items 114
paramete:r list 488

interlangruage, in OPTIONS option 274
parentheses

effec't on order of evaluation in
expressi.ons 48

use i:n re!petitive specification 136
parenthesi ze'd expression 113

as an argument to a subroutine or
func'tion 113

PARM field of EXEC statement 120
partially-qualified name 488
passing an alrgument 105
PENDING condition 373,188
PENDING conCllition on-unit

ONFILE built-in function 350
performa:nce statistics for mathematical
built-i:n

functions 336
period picture character 197,298-299

with string of zero suppression
charactelrs 1 97

physical record 122
PICTURE attJ:'ibute 195,407-408

decimal ~~int character 260
in argumelnts and parameters 113
inefficiE!nt use of 248

picture data.
(see also character string picture
item; ntllmeric character data)

storage J:'equirement 459,461
picture (P) format item 305,310-311
picture specification 407-408,195-1'99,488

charactez'-string picture 407,199
numeric-c:haracter picture 407,195-199

picture specification character 488
charactez:-string data 295-296
numeric-c!haracter data 296-304
permitting efficient in-line
conversions 251-252

pitfalls 259-269
PL/I enVir0111ment

in interlanguage communication 275-277
PL/I (F) compiler

KEYLOC option 178
record format options accepted 151
SCALARVARYING option 172

PL/I program
activaticlD 70
initial procedure 70
structure 66,67
termination 72

PLICANC
PLICKPT
PLIDUMP
PLIREST
PLIRETC
PLISRTA
P1·ISRTB
PLISRTC
PLISRTD
point of
pointer

113
113
113
113
113
113
113
113
113
invocation 488

based,defined,parameter,or in
aggregate, I/O of 140

level of qualification 104
qualified names not allowed in CHECK
prefix 207

POINTER attribute 404-405
for name in CHECK list, under
optimizing compiler 367

POINTER built-in function 100-101 351
pointer data 32 '

conversion to offset 44,405
default attribute 84
not allowed in stream oriented
transmission 269

pointer expression 93
pointer qualification symbol

provides contextual declaration of
name 78

pointer qualificaton, multiple 103
pointer qualifier

not allowed in CHECK name-list 367
pointer value

of start of varying-length string or
area 94

pointer variable 32,93-94,488
allocation of based variable in an
area 101

and offset variable 100
and SET option of READ statement 95
list processing with 97-99
not useful after based variable
freed 269

null value 99
output in PUT statement 219
set by LOCATE statement 95
static, initialization of 88
storage requirement 459 461

.POLY built-in function 351'
POSITION attribute 38,386-390

data-directed I/O of defined
variables 140

for variable in CHECK name-list 367
~i~h ~it-clas~ aggregate 390

p~s1t19n1ng of f1le in list-directed
1nput 138

precision 488
binary fixed-point constant 25
binary fixed-point variable 25
binary floating-point constant 26
binary floating-point variable 26-27
ceiling value in conversion 314
decimal fixed-point constant 24
decimal fixed-point variable 24-25
decimal floating-point constant 26
decimal floating-point variable 26
extended precision 26-27

Main page references are those listed first Index 517

precision (continued)
fixed-point data 24
floating-point data 24
in arithmetic built-in functions 335
of arithemtic constant argument 260
of complex expression 260
of value of subscript expression 35
specification leading to inefficient

execution 248
type conversion 43

precision attribute 408
PRECISION built-in function 352
precision, default

binary fixed-point data 25,84,408
binary floating-point data 27,84,408
decimal fixed-point data 25,84,408
decimal floating-point data 26,84,408
in VALUE option 85

precision, maximum
binary fixed-point data 25,329,335
binary floating-point data 27,329
decimal fixed-point data 25,329,335
decimal floating-point data 26,329

prefix bytes
an ASCII data sets 173
for area variable 100
in argument to ADDR built-in
function 94

of area in record input/output 103,154
of record on ASCII data set 173
of varying-length string in record
input/output 154,172

prefix operation
result in array expression 51
result in structure expression 52

prefix operator 488
prefix, statement 21-22,488
preprocessed text 222
preprocessor 488
preprocessor do-group 228
preprocessor expression 225
preprocessor function

arguments and parameters 226-228
preprocessor input/output 222-224
preprocessor procedure 225-228
preprocessor RETURN statement 454
preprocessor scan 222-224
preprocessor statement

63-64,229,449-454,488
preprocessor variable 224-225

permitted attributes 224-225
primary entry point 69,488
PRINT attribute 125,408-409

other attributes implied at merging 127
PRINT file 146-147
printer control character

in PRINT file 148,168-169
printer/punch control character

in RECORD OUTPUT file 163,168-169
priority 488

conversion of comparison operands 46
of major task 235
of operators in combined operation

48,314
of operators, common errors 262
task 232,235-236

PRIORITY built-in function 352,235-236

PRIORITY option 235,417
PRIORITY pseudovariable 235,352

not allowed as do-loop control
variable 425

problem data 488
arithmetic 23-28
conversion 43-44
string 29-30

procedure 22,58,66,488
activation 68-70
dynamic f.etching into main
storage 59,72

external 67,69
external or internal, invocation of 105
initial 70
inefficient use of 247
internal 67
main, passing an argument 120
termination 71-72

procedure reference 68-69,488
PROCEDURE statement 58,106,438-440

common error 257
condition prefix 203

processing mode, program
batch processing 16,62
conversational processing 16,62

processing mode, record input/output
158-162

locate mode 160-162
move mode 158-160

processor 488
PROD built-in function 352
program 488

amending 221
program control data 31-33,448

comparison of 46
program element 21
program organization statements 58-59
program structure 13,21-22
program termination 72
program-checkout conditions 366

(see also on-condition, ON statement,
on-unit)

programmer-named condition 369
prologue 75,488
PRTY parameter of JOB statement 235
pseudovariable 49,342,488
PUT statement 56-57,65,440-442

ALL option 219-220
efficient data list specification 250
file attributes at impled opening 127
first after opening a file 438,442
first PUT for SYSPRINT standard
file 147

FLOW option 219
limitation of PUT DATA; statement 268
options 133
output for problem data 217
output for program control data 217-219
SNAP option 219
specifiying entry variable 218

qualification, locator
(see also offset; pointer)
explicit and implicit 103
levels of 104

qualified name 488
blank around periods 37

518 Main page references are those listed first

qualified name (continued)
interleavE~d subscripts 37
locator qualified 93
subscriptE~d qualified name 37

qualifier
offset expression 101
not all()WE~d in CHECK name-list 367

quote
unmatched., checked by preprocessor 222

R format it:em 134, 145-146,311
R picture character 198,302-303
range 488
RANGE option 85-87,422
reactivation of an active procedure 74-75
READ statement 56,155,442-444

efficienc~r when updating indexed data
set 250-·251

file att:ributes at implied opening 127
implementE:d by in-line code 167
NOLOCK opt.ion 125,158
SET option and based variable 95
SET option, limit on use of pointer 268
SET option, transmitting VARYING
strings 172

real arithmetic data 24
REAL attribut.e 385
REAL built--in function 352
real part of complex arithmetic data 24
REAL pseudovariable 352
real to complex conversion 317
RECFM DCB subparameter 151
record 122,1'89

alignment 471-472
alignment., ASCII data set 269
deleted f causing inefficiency on

indexed data set 257
effect of NOLOCK option 158

RECORD attribute 124,409
RECORD condition 373-374

EVENT input/output 157-158
in multiple interrupt 365
teleprocessing 188

RECORD condi t.ion on-unit
ONFIL:E: built-in function 350

record forma it
for ASCII data sets 173
for input/output of areas 103
record input/output 163-166
restricti4:>ns with BACKWARDS

attribute 174
stream input/output 148-151

record format. default
record input/output 166
stream input file 150
stream ou'tput file 150

record format. options
efficiency of standard format
records 251

format fo:!:' PL/I (F) compiler
accepted 151

RECFM subparameter 172
record input/output 163-166
stream in)~ut/output 148-151

record input/output 121,154-192
efficient transmission of

aggregabes 257

record input/output (continued)
inefficiency of mixing locate and move

modes 257
of parameter 117
options 156-158
permitted variable types 154
statements 56,154-158

record length
and block size in record input/output

165-166
and block size in stream input/output

149-150
default length 150,166
for input/output of areas 103
maximum length 149,165
result of zero or negative RECSIZE
value 149,165

when transmitting varying-length
strings 172

record-oriented transmission 121,154-192
(see also record input/output)

recorded key 489
INDEXED data set 175-178
KEYLENGTH option. 172
maximum length 175
REGIONAL data set 180

RECSIZE option 149,164-165
LRECL subparameter 172
raising UNDEFINEDFILE condition 267
teleprocessing 187-188

recursion 74-75
and automatic, based, and controlled
variables 89

not permitted with a FORMAT
~tatement3jl

RECURSIVE option 259,439
recursive procedure 489
REDUCIBLE attribute 402
REDUCIBLE option

ENTRY statement 427-428
PROCEDURE statement 439

reduction of execution time 248-259
redundant data, effect on compilation

speed 247
redundant expression

elimination in optimization 245,246
reentrability of a PL/I procedure 233-234
REENTRANT option 233-234,259,439
reentrant procedure 489
REFER expression 489
REFER object 96,489

changing 97
REFER option 96-97

and based variable in data-directed
input/output 140

object must be unambiguous 261
size of based area 100
structure in CHECK list, under
optimizing compiler 367

reference 489
ambiguous 82-83
function 58
generic 110
procedure 58,68-69

region 179
region number 179

Main page references are those listed first Index 519

REGIONAL data set 167,179-188
avoiding conversion of keys 250
record formats 180
REGIONAL(l) data set 180-183
REGIONAL(2) data set 180,183-185
REGIONAL(3) data set 180,185-187
TRKOFL, restricted use with

REGIONAL (3) 172
VS-format r·ecords 164

regional file
sequential, outstanding I/O events (NCP
option) 171

REGIONAL(l) data set 180-183
capacity record 182

REGIONAL(2) data set 183-185
capacity record 184
needing hidden buffers 257

REGIONAL(3) data set 185-187
capacity record 186
needing hidden buffers 257

register allocation, optimization of 244
relationship of arguments and parameters

113-120
RELEASE statement 59,72,444

in immediate mode 221
releasing storage allocated to a fetched

procedure 59,72,444
remapping

of structure with REFER option 97
remote format item 306,489
REORDER option 244

BEGIN statement 417
PROCEDURE statement 439

REPEAT built-in function 352-353,201
repetition factor 489

and iteration factor 41
bit-string constant 30
character-string constant 29
character-string picture
specification 30

in string initialization 400
numeric-character picture
specification 27

repetitive DO specification within I/O
statement 489,136-137

maximum permissible depth of
nesting 137

more efficient than do~loop 256-257
parentheses required 267

REPLY option 424
REREAD option 152,168

in ENVIRONMENT on CLOSE statement
125,419

RESCAN option 223,449
rescanning of preprocessor text 223-224
reserved word

IKN in external name 260
preceded and followed by blanks 259

resident library
use of subroutines from 256

resolution of identical identifiers
in attribute processing 83

result
array and array operation 51
array and element operation 51
array and structure operation 52
array expression 51-52
bit-string concatenation 47

result (continued)
bit-string operation 45-46
character string concatenation 47
comparison operation 47
structure and element operation 53
structure and structure operantion 53
structure expression 52-54

return code
in interlanguage communciation 281-282
programmer-defined 113

RETURN statement 444-445,62,106,108,109
necessity for parentheses 259
preprocessor statement 454

returned value of a function 489
default attributes for 84

RETURNS attribute 107,110,409-410
~PROCEDURE statement 454
agreement with RETURNS option 107
not with COBOL option 273

RETURNS option 107,110
agreement with RETURNS attribute 107
ENTRY statement 427
implied in DEFAULT statement 87
not allowed with COBOL option 273
PROCEDURE statement 439

REVERT statement 63,206,445
limiting scope of on-unit 204
provides contextual declaration of

name 78
REWRITE statement 56,155,445-446

efficiency when updating indexed data
set 250-251

file attributes at implied opening 127
freeing locked record 158
raising KEY condition 185
without from option 268-269

RKP subparameter
relationship to KEYLOC option 172
restrictions when DELETE statement to

be used 177
ROUND built-in function 353
rounding of data

E format item output 309
F format item output 310

row major order 34
rules for mapping pair of structure items

457-458
rules for order of pairing of structure
items 457

run time, techniques for improving 248-259

S (sign) picture character 198,301
S character in PUT ALL statement 220
scalar expression (see element expression)
-scalar item 489
scalar variable 33,489
SCALARVARYING option 172

conflict with CTLASA or CTL360
options 172

input 172
not permitted with ASCII option 173
output 172
SET option 156

scale of arithmetic data item 24,489
default attribute 84
exponent 24
scale f~ctor 24,489

520 Main page references are those listed first

scaling factoI:
in F format; item 144
F picture (:haracter 304

scanning of dalta for list-directed input
138

scope
of a name ~Jith the EXTERNAL attribute

80-82
of a name ",lith the INTERNAL attribute

80-82
of an explicit declaration 78
of condit. ion prefix 203,258,489
of contextual declaration 78-79
of declarat:ion 77,489
of DEFAULT statement 86
of name 4H9
of name in external structure 82
ON statement 204
preprocessc)r variable 225

scopeattribui:.es 396-397
secondary eIltJ~y-point 69,489
segment· ovel:lciyingand static storage 259
self-defining data 489
semi-colon

in list;-Cii;r:ected input data 138
48-chara(::ter set version not recognized
on input 268

separator I[slee delimiter)
sequential access of a REGIONAL (1) data set

access 18.2-183
upda te 'I 8:2 -18 3

sequential access of a REGIONAL(2) data set
access 18 15
update 185

sequential ac,cess of a REGIONAL (3) data set
access 186
update 186

sequential access of an INDEXED data set
access 178
deletion 178
update 178

SEQUENTIAL ,attribute 124,391-392
comparison with CONSECUTIVE option 174
other at·tributes implied at merging 127

sequential creation of REGIONAL data set
REGIONAL(1) 182
REGIONAL (2) 184
REGIONAL(3) 186

sequential file
effects of BUFFERED and UNBUFFERED

a ttribute:s 257
SET option 156

ALLOCATE statement 413
LOCATE statement 435
provides contextual declaration of

name 78
READ statE!ment 442-444

sharing files: between tasks 125,237
sharing storalge with a FORTRAN routine

274-275
shortening

external file name 128
of exteI'nall name 20

sign
in arithmetic data for list-directed
input 138

sign picture characters 198,301-302,489

SIGN built-in function 353
SIGNAL statement 63,206,446-447

ENDPAGE condition 147
provides contextual declaration of

name 78
significance error

not detected by UNDERFLOW condition 377
significant allocations in an area 100,489
significant-digits field

in E format item 144
simple defining 386,388
simple parameter 117,490

lenqths, bounds or size
specification 117

simple statement 21
SIN built-in function 353
SIND built-in function 353
SINH built-in function 353
size of area 100

default value 84
default value in VALUE option of DEFAULT
statement 85

in controlled parameter 117-118
in interlanguage parameter 274
in simple parameter 117
inherited by controlled area
variable 91

value for based or controlled area
412-413

SIZE condition 54,207,307
action under checkout compiler when
disabled 357

and redundant digit in fixed decimal
variable 264

disablement for production runs 250,256
E format item output 309
F format item output 310
multiple interrupt on Model 91 or 195
Processor 365

reducing efficiency of picture data
operations 253

relationship to FIXEDOVERFLOW
condition 374

results undefined when SIZE
disabled 262

SKIP format item 134,145,147,305,311-312
SKIP option 134,147

default value 134
effect when printing at terminal 134
GET statement 433
PUT statement 440-442
with first PUT statement after opening
file 442

slash (I) picture character 197
with string of zero suppression
characters 197

SNAP infor.mation in PUT ALL output 219
SNAPLoption

ON statement 203,436-437
PUT statement 65,219,441

sort/merge facility in a PLiI
program 17,113

source key 490
conversion from character string 267
for regional data set, avoiding
conversion 250

INDEXED data set 175-178
INDEXED DIRECT access 179

Main page references are those listed first Index 521

source key (continued)
INDEXED SEQUENTIAL access 178-179
REGIONAL(l) data set 180
REGIONAL data set 180
REGIONAL(l) DIRECT access 183
REGIONAL(l) SEQUENTIAL access 182-183
REGIONAL(2) data set 183-184
REGIONAL(2) DIRECT access 185
REGIONAL(2) SEQUENTIAL access 185
REGIONAL(3) data set 185

source listing 222
formatting 231-232

source program 490
source variable 490
spacing format item 305,306
spanned records

movement out of buffer in locate mode
I/O 257

special characters 18,20
speed

of compilation, improving 247
of execution, improving 248-259
of I/O operations, improving 170

spilling of compiler onto external
storage 247

SQRT built-in function 353
stacking

automatic variables in a recursive
procedure 89

of generations of controlled
variable 91

standard default attributes 79,83-84,490
in attribute processing 83
restored by DEFAULT statement 86

standard file 490
assumed attributes 130
implied in GET or PUT statement 130
SYSIN 134
SYSPRINT 134

standard format records, efficiency of 251
standard syntax notation 285-286
standard system action 63,202,490

CHECK condition 207
statement 490

compound 21
control 59-62
data movement and computational 57-58
descriptive 55-56
diagnostic 64-65
exception control 62-63
input/output 56-57
preprocessor 63-64
program organization 58-59
simple 21

statement body 490
statement identifier 490
statement label constant

(see label constant)
statement label variable

(see label variable)
statement prefix 21-22,488
statements and options

for CONSECUTIVE data sets (record) 174
for CONSECUTIVE data sets (stream)

133-135
for INDEXED data sets 176-177
for REGIONAL data sets 181-182
teleprocessing 188-190

STATIC attribute 382-383
not applicable to parameter 261

static picture character 301
static storage 88

shared with FORTRAN routine 274-275
static storage allocation 490
static variable 490

in overlay segment 259
in task synchronization 236
INITIAL CALL invalid 40
initialization 40

STATUS built-in function 237,353
STATUS pseudovariable 237,354
status value

of task associated with event
variable 234

STOP statement 62,108,447
storage

amount allocated for based variable 261
area variable 100
automatic 89
based 92-104
connected, for a parameter 117
controlled 89-92
efficient use of 254-256
for argument passed to main

pr,ocedure 1 20
for dummy argument 106
free storage and the area condition 103
freeing based storage in an area 102
never associated with a parameter 105
static 88

storage addresses
as PL/I data 23
of aligned data 39

storage allocation 88
by LOCATE statement 95
dynamic 73-74
for the compiler 247
in prologue 75
released in epilogue 76
static 73-74

storage class attributes 73,382-383
default for area variable 101
default for string data 84
default for structure 84
of parameters 117

storage contro.l built-in functions 334
storage control condition 366
storage control statements 59
sto~age requirements

ALIGNED attribute 459,460
effect of UNALIGNED attribute 40
UNALIGNED attribute 462

stream
(see data stream)

STREAM attribute 124,409
stream input

avoiding pseudovariable with aggregate
argument 249

GET statement 133
stream input/output 121,132-153

built-in functions 334
efficient data-list specification 250
data conversion 43
editing operations 194
options 133-135
statements 133,56~57

522 Main page references are those listed first

stream input/output (continued)
under TimEa Sharing Option (TSO) 121

stream outpu·t
PUT stat;ements 133

stream-orient:ed transmission 121,132-153
(see also stream input/output)

string 490
(see bit-string; character string)

string attI,-ibutes 383-384
STRING built--in function 354,201

use in comparing aggregates in IF
statement: 258- 2

string built--in functions 333,192-193
string data 29-30

(see also bit-string data;
charact.er-string data)

arrays of, comparison in IF
statement. 51

bit 30
character 29- 30
default attributes 84
efficient specification of length 250
fixed lengrth more efficient than
varying 250

string length 29-30
asterisk, in aggregate argument 117
in REFER option 96-97

string operator 19,481
STRING option 134

COLUMN format item not allowed 194,306
ERROR condition raised 194
GET statement 432,194-195
PUT statement 440-441,194-195

string overlay defining 386,389-390
input/output of structures 250
using parameter as base 117

STRING pseudovariable 354
not allowed as do-loop control variable

354,425
not allowed in INTO option 442
not allowed in stream input data

lists 135
use in comparing aggregates in IF
statement 258-2

string variable 490
(see bit-string variable;
character-string variable)

STRINGRANGE condition 207,375
action under checkout compiler when
disabled 207,357

disablement for production runs 250,256
SUBSTR built-in function 354

STRINGSIZEcondition 54,375
DEFINED attribute 387
raised in string element assignment 415

structure 93,490
argument for COBOL or FORTRAN
routine 251

argument using asterisk for string
length 117

array of structures 37,480
array of structures, cross-section
invalid 262

as parameter 119
assignment and initialization 258
avoidance of conversions on

assignment 248

structure (continued)
based, with REFER option 96-97
based, with REFER option, in
input/output 140

containing bit strings 249
containing pointer variables 93,96-97
containing unaligned bit strings, in
record I/O 154

controlled 92
cross-section of array of structures
invalid 262

default attributes 84
efficiency in record-oriented
transmission 257

efficient alignment 255-256
efficient use of 248-249
format list for, in edit-directed I/O

267-268
in list processing 97-99
in record-oriented transmission 154
INITIAL attribute 41
input/output, efficiency of overlay
defining 250

major structure 35-37
major structure name 36-37
maximum permissible number of levels 36
member 35-37,490
minor structure 35-37
minor structure name 36-37
parameter, argument type 119
of arrays 490
reference across external structures 82
structure element 35-37
with unaligned bit string in record

I/O 154
structure assignment 415-416

with BY NAME option 53-54
structure element 36-37
structure expression 42,52-54,490

infix operation 53-54
prefix operation 52
result 52-54

structure mapping 457-460
COBOL structure mapping 272-273

structure parameter
argument type 119

structuring 490
SUB control character in ASCII and

EBCDIC 122
subcommands, terminal 221
subfield (of a picture specification)

297,490
subroutine 105,107-108,490

built-in 112-113
difference from function 105
invocation 105
library, use of 256

subscript 34,490
constant 35
efficient data type for 248,249
expression 35
interleaved subscripts 37
list 490
uninitialized 262

subscript expression
attributes of value 35

subscripted name 34
not allowed in CHECK prefix 207

Main page references are those listed first Index 523

subscripted name (continued)
not allowed in data-directed input
number of subscripts 34
subscripted qualified name 37

subscripted qualified name 37
SUBSCRIPTRANGE condition 207,375-376

action under checkout compiler'when
disabled 207,357

DEFINED attribute 387
detecting uninitialized subscripts

substitute character in ASCII and
EBCDIC 122

SUBSTR built-in function 354,200-201
in preprocessor statement 227-228

SUBSTR pseudovariable 354,200-201
use in assignment to varying-length
string 266

subtask 232,490
SUM built-in function 3.54
summary of record input/output 190-192
switches

efficient data type for 248
efficient use of bit strings 249

synchronization of tasks 233,236
synchronous 490
synchronous operation 58,232
syntax checking

by preprocessor 222
SYSIN standard file 130-131

common error 267
restrictions under the checkout
compiler 131

SYSPRINT standard file 130-131,147
common error 267
default for COPY option 127
restriction in multitasking 234
restrictions under the checkout
compiler 131

system action conditions 366
(see also standard system action)

SYSTEM option
DECLARE statement 86,419
ON statement 203,436

T character in PUT ALL statement
T picture character 198,302-303
tab positions 131

in data-directed PRINT file
in list-directed PRINT file

TAN built-in function 355
TAND built-in function 355
TANH built-in function 355
target attributes 50

in conversion of data 50
in evaluation of expressions
intermediate 50

target variable 491
task 491

abnormal termination 233,238
EXCLUSIVE attribute for file
locked records 125
major task 232
normal termination 233,238
priority 235
sharing files between tasks
subtask 232
synchronization 236-238

220

141
132,138

50

125

125,237

135

262

TASK attribute 410-411
task data 32
task name 232,491
TASK option 234,419

CALL statement 234
OPTION option 439
PROCEDURE statement 234
provides contextual declaration of
name 78

task synchronization 236-238
permanent wait 237
waiting for input/output event 237

task variable 32,491
need for assigning priority 235
output in PUT variable 219
storage requirement 459

techniques for efficient programming
247-259

teleprocessing 187-190
data set 168
ENVIRONMENT attribute 187-188
permitted attributes for teleprocessing
file 168

terminal
communication from 121,221
GO TO executed at the terminal 433
HALT executed at the terminal 433
receiving control at 221
subcommands 221

termination 233
abnormal 62,72
abnormal termination of a task 233,238
begin block 70-72
block 59,491
group '59
iterative do-group 59
non-iterative do-group 59
normal 62,72
normal termination of a task 233,238
procedure block 71-72
program 62,72
task 62,70,491

text 223-224
preprocessed 222

THEN clause 434,60
threaded list 97
time

provided by TIME built-in function 355
reduction of compilation time 247
reduction of execution time 248-259

TI~~ built-in function 355
TIME option of OPTIMIZE compiler
option 248

effect on generation of in-line code
252-254

Time Sharing Option (TSO)
and input/output of a PL/I program 16
and the checkout and optimizing

compilers 16
stream input/output 121

TITLE option 437
and ddname 128-130
compared with file variable 130

TO option
DO statement 426-427
100 statement 452

TOTAL option 170

524 Main page references are those listed first

TP(M) opt:i.on 168,187
TP(R) opt:i.on 168,187
tracing facilities 212-216
track overflow 171-172
transcription, common errors 259
TRANSIENT attribute 391-392,124,188
transient file

record length 164
transient library

use of subroutines from 256
TRANSLATE built-in function 355,201
transmiss:i.on

of data list elements, stream I/O 137
of record by LOCATE statement 95
of structure with REFER option 97

TRANSMIT condition 376
EVENT input/output 157-158
in multiple interrupt 365
teleprocessing 188
time of interrupt 257

TRANSMIT condition on-unit
ONFlLE built-in function 350

TRKOFL option. 171-172
RECFM subparameter 172

TRUNC built-in function 355
truncation 491

file name 128
in A format item output 306
in B forma.t item output 307
in edi,t-directed output stream 305
of string on assignment 415,193
of bit string on assignment 30
of charact.er string on assignment 30
on assignment to decimal floating-point
variable 26

source key for INDEXED data set 175
TSO

(see Time Sharing option)
type conversion 317,43-44

UNALIGNED att~ribute 378,381, 39-40
alignment of different data types 458
effect on storage requirements and
execution time 40

efficient use of storage 254-256
in attribute processing 83

unaligned bit string
in record-oriented transmission 154

unaligned ent:ry name as argument 119
UNBUFFERED a1:tribute 124,384

advantages and disadvantages 257
other attributes implied at merging 127

unconditional branch 60
undefined-length record

record input/output 164
stream tnput/output 149

UNDEFINEDFILE condition 127,376
common. causes 267
EVENT input/output 157-158
raised for invalid block size 150,165
raised for invalid record length
149,16~)

raised in attribute merging 127
raised ~,h4an record format unspecified

150,16Ei
when file declared with TOTAl.
option '170

UNDEFINEDFILE condition on-unit
ONFlLE built-in function 350

UNDERFLOW condition 54,377
multiple interrupt on Model 91 or 195
Processor 365

uninitialized variable
checking for 31

UNLOCK statement 57,447
file attributes at implied opening 127

unmatched delimiters 259
UNSPEC built-in function 355-356,201
UNSPEC pseudovariable 356

conversion of source to bit-string 266
UPDATE attribute 124,401-402

other attributes implied at merging 127
UPDATE file

CONSECUTIVE data set 174
sequential access of an INDEXED data
set 178

updating an indexed data set
efficiency of I/O operations 250-251

upper bound 491
use of blanks 20
use of expressions 42-43

V picture character 27,197,297
no decimal point insertion 260

V-format record 148,163-164
needing hidden buffers 257
with BLKSIZE option 150,166

VALUE option 421,85-86
value returned by function reference

(see also RETURNS attribute, RETURNS
option)

attributes 110
data types allowed 108
preprocessor function 226-227

values established in a prologue 75
variable 23,491

area 33
array 33
binary fixed-point 25
binary floating-point 26-27
bit-string 30
character-string 29
complex arithmetic data 27
control 61
decimal fixed-point 24-25
decimal floating-point 26
element 33
entry 32
event 32
file 31,123
isub 38
label 31
locator 32
offset 32
pointer 32
scalar 33
structure 33
task 32
type permitted in record input/output
statements 154

uninitialized, checking for 31
VARIABLE attribute 106,114,411

applied to array of file names 123

~ain page references are those listed first Index 525

variable-length record
record input/output 163-164
stream input/output 148-149

VARYING attribute 383-384
varying-length string

as an argument or parameter 119
bit-string 30
character-string 29
passing to COBOL routine 278
record-oriented transmission 154,172
SCALARVARYING option required on
transmission 154,172

VB-format record 149,150,163,164,165
VBS-format record 163,164,166
VERIFY built-in function 356,201
virtual point (V) picture character 491
volume 121
VS-format record 163-164,166

WAIT statement 237,447-448
effect of NCP option 158
handled by library subroutines 256
provides contextual declaration of

name 78
WHILE option 426-427

common error 265
necessity for parentheses 259
referring to control variable 258
with control variable 61

width field
in data format item 144
optional in edit-directed B-format

output 144
word 39
WRITE statement 56,155,448-449

X

X

Y

executed after LOCATE statement 95
file attributes at implied opening 127
implemented by in-line code 167
KEYFROM option 157
last before closing file 182

format item 312,134,145
ERROR condition raised at end of
file 370

input 312
output 312

picture character 30,199,295

picture character 298

Z picture character 298,196
zero

in edit-directed F-format output
144,310

in edit-direpted output stream 305
in IGNORE option 156
inserted in bit-string comparison 46
inserted in bit-string on assignment

30,'262
inserted in bit-string operation 45
inserted in comparison operation 46
inserted in string element
assignment 415

inserted in TRANSLATE replacement
string 355

inserted on assignment to fixed-point
variable 24

inserted in arithemetic variable 258
leading, replacement in numeric
character data 196

suppressed in data-directed output
133,141

suppressed in E format item output 309
suppressed in list-directed output 132
suppressed in numeric-character picture

297-298
zero suppression picture characters

297-298,491
use with period, comma, or slash
picture character 197

ZERODIVIDE condition 54,377
multiple interrupt on Model 91 or 195
Processor 365

1403 Printer control codes 168

2540 Card Read Punch control codes 168

48-character set 18,288
semi-colon combination not recognized

on input 268

60-character set 18,287

9 picture character 27,30,197
character string picture 199,295
numeric character picture 196,297

526 Main page references are those listed first

OS FILII Checkout and Optimizing Compilers:
Language Reference Manual

Order No. SC33-OOO9-2

Your views about this publication may help improve its usefulness: this form
wUI be sent to the author's department for appropriate action. Using this
fornl to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.

Poss.ible topi<;s for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation? _____________________________ _

READER'S
COMMENT
FORM

Numlber of latest Technical Newsletter (if any) concerning this publication: __________ _

PleaS4~ indicate in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office
or representative will be happy to forward your comments.)

SC33-0009-2

Your comments, please ...

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

Fold Fold ... 0'

Fold

Business Reply Mail
\

No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
Department 813L
1133 Westchester Avenue
White Plains, New York 10604

International BUllnell Machlnel Corporation
Da .. Proceliing Dtvllion
1133 Weltchelter Avenue, Whhe Plalnl, New York 10804
(U.S.A. only)

IBM World Trade Corporauon
821 United Natlonl Plaza, New York, New York 10017
(International)

First Class ,
Permit 40 I
Armonk
New York

Fold

o
(J)

-0
r
::::

(J)
("')
w
w
6 o
~
~

SC33-0009-2

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plaine, New York 10804
[U.S.A. only]

IBM World Trade Corporation
B21 United Nations Plaza, New York, New York 10017
[International]

o
en
'"tJ .­
::::
(')
:T

~
7\
o
C
r+
Q)
:J
Co

o
"0
r+

3'
N'
:;'

(Q

(')
o
3
"E.

~ .­
Q)
:J

(Q
C
Q)

'i
::D
CD -~
CD

5
CD

s::
Q)
:J
C
!!.

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	replyA
	replyB
	xBack

