SC33-0009-2

0S

PL/l Checkout and

Optimizing Compilers:
Program Product Language Reference Manual

Program Number 5734-PL1
(This program product is available
as part of composite package 5734-PL3)

Program Number 5734-PL2

Third Edition (September 1972)

This is a reprint of SC33-0009-1, incorporating changes
released in the following Technical Newsletter:

SN33-6036 (dated November 5th,1972)

This edition applies to Release 1.0 of the 0OS PL/I Optimizing
Compiler, and all subsequent releases until otherwise
indicated in new editions or Technical Newsletters.

Changes are continually made to the information 4in this
publication; before using it in connection with operation of
IBM systems, consult the latest IBM System/360 and System/370
Bibliography SRL Newsletter, Order No. GN20-0360, for the
editions that are applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form is provided at the back of this publication for
reader's comments. If the form has been removed, comments
may be addressed to IBM United Kingdom Laboratories Ltd.,
Programming Publications, Hursley Park, Winchester,
Hampshire, England. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1970,
1971

This publication is planned for use as a
reference book by the PL/I programmer. It
is not a tutorial publication, but is
designed for the reader who already has a
knowledge of the language and who requires
a source of reference material.

The publication is in two parts. Part I
contains discussions of concepts of the
language. Part II contains detained rules
and syntactic descriptions.

Although implementation information is
included, the book is not a complete
description of any implementation
environment. In general, it contains
information needed to write a program that
will be processed by the 0S PL/I Optimizing
Compiler or the 0S PL/I Checkout Compiler.
It does not contain all the information
needed to execute programs. For further
information on executing a program refer to
either the compiler's programmer's guide
(for batch processing only) or its Time
Sharing Option publication (for processing
in a TSO System).

The following restrictions apply to the
information given in this publication if
the PL/I Optimizing Compiler is being used
under Releases 19.6 or 20.0 of the IBM
Operating System:

e Extended precision floating point
arithmetic is not available under
Release 19.6.

e ASCII data sets are not supported under
Releases 19.6 and 20.0.

e Conversational processing is not
available under Releases 19.6 and 20.0.

e PL/I Teleprocessing facilities are not
available under Releases 19.6 and 20.0.

In order to execute programs processed
by these compilers, subroutine libraries
are required. The subroutines are provided
by the 0S PL/I resident library (optimizing
compiler only) and the 0S PL/I transient
library (both compilers).

The 0S PL/I Optimizing and Checkout
Compilers require an MFT or MVT version of
the IBM Operating System. Programs that
have been compiled by the PL/I Optimizing
Compiler and which utilize PL/I
multitasking facilities can be executed
only under the MVT version of the operating
system.

Preface

USE OF THIS PUBLICATION

This publication is designed as a reference
book for the PL/I programmer. Its two-part
format allows a presentation of the
material in such a way that references can
be found quickly, in as much or as little
detail as the user needs.

Part I, "Concepts of PL/I," is composed
of discussions and examples that explain
the different features of the language and
their interrelationships. To reduce the
need for cross references and to allow each
chapter to stand alone as a complete
reference to its subject, some information
is repeated from one chapter to another.
Part I can, nevertheless, be read
sequentially in its entirety.

Part II, "Rules and Syntactic
Descriptions," provides a quick reference
to specific information. It includes less
information about interrelationships, but
it is organized so that a particular
question can be answered gquickly. Part II
is organized purely from a reference point
of view; it is not intended for sequential
reading.

For example, a programmer would read
chapter 5, "Statement Classification” in
Part I for information about the
interactions of different statements in a
program; but he would look in section J,
"Statements" in Part II, to find all the
rules for the use of a specific statement,
its effect, options allowed, and the format
in which it is written.

In the same manner, he would read
chapter 4, "Expressions and Data
Conversions" in Part I for a discussion of
the concepts of data conversion, but he
would use section F, "Data Conversion and
Expression Evaluation" in Part II, to
determine the exact results of a particular
type of conversion.

An explanation of the syntax language
used in this publication to describe
elements of PL/I is contained in section A,
"Syntax Notation" in Part II.

REQUISITE PUBLICATIONS

For information necessary to compile,
linkage edit, and execute a program, the
reader should be familiar with the
appropriate one of the following
publications:

0S PL/I Optimizing Compiler: 0S PL/I Optimizing Compiler: Executién
Programmer's Guide, Order No. SC33-0006 Logic,
Order No. SC33-0025

0S8 PL/I Checkout Compiler: Programmer's

Guide, Order No. SC33-0007 0S PL/I Checkout Compiler: Execution
Logic,
0S Time Sharing Option: PL/I Optimizing Order No. SC33-0032

Compiler, Order No. $C33-0029

0S Time Sharing Option: PL/I Checkout
Compiler, Order No. S5C33-0033

RECOMMENDED PUBLICATIONS AVATILABILITY OF PUBLICATIONS
The subjects covered in the following
publications include the compiler The availability of a publication is
facilities, the optimization or checkout indicated by its use key, the first letter
features (whichever are applicable), in the order number. The use keys for
methods of implementing the various publications referred to in this manual
language features, and comparisons of the are:
language implemented by the 0S PL/I
Optimizing or Checkout Compilers with that . G - General: available to users of
implemented by the PL/I (F) Compiler. : IBM systems, products, and
: services without charge, in

0S PL/I Optimizing Compiler: General f quantities to meet théir normal

Information,] requirements; can also be

Order No. GC33-0001 purchased by anyone through IBEM

branch offices.
0S PL/I Checkout Compiler: General
Information, S - Sell: can be purchased by anyone
Order No. GC33-0003 through IBM branch offices.

PART I: CONCEPTS OF PL/I . . .
CHAPTER 1: BASIC CHARACTERISTICS
PL/I ¢« ¢ ¢ o o o o o o o o o o =«
Machine Independence &«
Program Structure .« « « o« « o o«
Data Types and Data Description
Default Assumptions
Storage Allocation . .
Expressions . . .« . .
Data Collections . . .
Input and Output . . .
Multitasking o«
Facilities of Two Compllers
Compile-time Operations .
Execution-time Facilities .
Interrupt Activities . . .
Operating System Fac111t1es

s e & 0
e o o o
e 8 8 o o

CHAPTER 2: PROGRAM ELEMENTS . .
Character SetsS o « o « ¢ o o o =
60-Character Set e e e o o . e
QS-CharaCter Set . e« e . . - .
Using the Character Set . . .
Basic Program Structure
Simple and Compound Statements
Groups and BlocksS .« « « « < o

CHAPTER 3: CATA ELEMENTS
Data TYPES « « « o o « o
Problem Data « « « « « &
Arithmetic Data . . .
String Data . « « «
Unitialized Variables
Program Control Data .
File Data .
Label Data .
Entry Data .

Event Data
Task Data
Locator Data
Area Data . .
Data Organization
AXraysS « o o o o
Structures . . o .
Arrays of Structure
Other Attributes . .

s & 6 & 3 & o &
a 6 4 8 e & & & ® & o o 8 & s s 0 s e

@ 6 & 6 & 8 0 8 6 & 0 0 0 s 0 o s s 0
e 8 4 o & 6 & o 6 5 s 8 8 s 8 8 & s 0
® & o 0 o o @ 8 0 s & s & o2 s 0 s o

]

CHAPTER 4: EXPRESSIONS AND DATA
CONVERSION ¢ « ¢ o o o o o o o
Use of Expressions™s « « « o«
Data Conversion . « . « « «
Operational Expressions .
Assignment « ¢ ¢ ¢ o o o o
Problem Data Conversion .
Locator Data Conversion .
Use of Built~-in Functions
Expression Operations . .
Arithmetic Operations .
Bit~-String Operations .
Comparison Operations .
Concatenation Operations

® 6 0 & & o & o o & o s 2

4 & & 8 o 8 6 o & s 0 o

[@]
o]

s 6 & 6 8 B 6 & & & * 4 o & 0 o & &

a8 & 6 o & s 6 o o 2 0o o

s o 6 & & o o o e o ¢ o & 5 8 & & o & & s s

e & o & 8 % & 8 & 3 & 2 e & & s o 4 ¢

6 8 & o o @ o ® & & o ¢ o & o s s 0 & & s &

8 6 8 & ¢ ® 0 o 0 5 8 0 s 6 s 0 8 0 0

e 8 8 & 6 & ¢ o & 2 v s 0

s & ¢ & o o o o ® o ¢ o o o 0 o o & o o & s @

e & & & o 8 & 8 0 5 * s & & o 0+ s o

11

13
13
13
13
13
14
14
14
15
15
16
16
16
17
17

18
18
18
18
19
21
21
22

23
23
23
23
29
31
31
31
31
32
32
32
32
33
33
33
35
37
37

42

43
43
43
43
44
4y
44
45
45
46
47

Contents

Comkinations of Operations
Function Reference Operands
Attrikutes of Targets . . .
Array Expressions

Prefix Operators and Arrays

Infix Operators and Arrays .
Structure Expressions .« « . . »

Prefix Operators and Structures

Infix Operators and Structures .
Exceptional Conditions « « « « « «

CHAPTER 5: STATEMENT CLASSIFICATION

Classes of Statements . . « . « . .
Descriptive Statements . « « « o
Input/Output Statements .« . « « «
Data Movement and Computational
Statements . . ¢« ¢ ¢ o o o . -
Program Organization Statements
Storage Control Statements . .
Ccontrol Statements . . .
Exception Control Statements
Preprocessor Statements . .
Listing Control Statements .
Diagnostic Statements . . .

CHAPTER 6: PROGRAM ORGANIZATION
BlOCKS « « o ¢ o o o o o« o o «
Procedure BlockS . « o « o .
Begin Blocks . « « « . o« o
Internal and External Blocks
Activation of BlOoCKS « « « o «
Termination of Blocks
Begin Block Termination . .
Procedure Termination . . .
Program Termination
Dynamic Loading of an External
Procedure . ¢ « o « ¢ o o o
Storage Allocation . « « o« « ¢ o o .
Reactivation of an Active Procedure
(Recursion) . « o + o o o o « o = «
Prologues and Epilogues .« . « . « «

a & s 8 s ¢ s s
e ¢ 82 & o 0 & s s @
s & & © 82 0 s o 0 o

CHAPTER 7: RECOGNITION OF NAMES .
Explicit Declaration . « « « « o «
Scope of an Explicit Declaration
Contextual Declaration . . « « «
Scope of a Contextual Declaration
Implicit Declaration . « « « « « o
Examples of Declarations . « « . « o«
Internal and External Attrikutes . .
Multiple Declarations and Ambiguous
References . « . « o . e
Application of Default Attrlbutes -
Processes in the Appllcatlon of
Attributes
Application of Standard Defaults o
DEFAULT Statement . « ¢« ¢ ¢ ¢ « » &

CHAPTER 8: STORAGE CONTROL . . . « .
Static Storage « « ¢« « 4 o ¢ ¢ o o
Automatic Storage . o « o o o o« o o

¢ o & o & s & 0

4 & 8 8 ¢ 8 & o o s

" e s @ o 8 s 8 s & o 2 & o

Effect of Recursion on Automatic

VariableS . ¢ ¢« ¢ o« « ¢ o o« o &
Controlled Storage o«

ALLOCATE Statement for Controlled

Variables e
Free Statement for Controlled
Variables . « ¢« o« « o« . o

.

Multiple Generations of Controlled

Variables . . . “ e e e o o
Controlled Structures « o o
ALLOCATION Built-in Function
Based Storage . . « « o o o
Based Variables
Locator Qualification . .
Pointer Variables
Addr Built-In Function
Based Variables and Input/Output
Self-Defining Data(Refer Option)
List Processing . « « « & o o &
ALLOCATE Statement for Based
Variable€S .« « « o « o o« o o o
FREE Statement for Based Variable
Multiple Generations of Based
variables . ¢« « o ¢ « o
NULL Built-in Function .
Types of List . « . « &
Areas L] . L] L] - - - L] -
Area Assignment
Input/Output of Areas .
Multiple Locator Qualification

s s o 8
& o & o &
s o s o o 0

e o & o o o

ati
CHAPTER 9: SUBROUTINES AND FUNCTION
Introduction ¢« « + « ¢ o ¢ o o o
Subroutines . ¢ ¢ ¢ ¢ ¢ o o o o
FUnNctions .+ « o o o « o s o o o
Attributes of Returned Values .
Generic Entry Names and References
Built-in Functions . « « « « « « &
FORTRAN Library Functions
Built-in Subroutines
Relationshir of Arguments and
Parameters « « « « o o o o o o
Dumny Arguments . . « o o
Entry Attribute
Allocation of Parameters . .
Argument and Parameter Types
Passing an Argument to the Main
Procedure . « o« « o« o o o o o o =

o & * o o
e o o & s

CHAPTER 10: INPUT AND OUTPUT . .
INntroduction « « « « o« o o o o o
Data SetsS .« « o« ¢ ¢ o o o
Information Interchange Codes
Files . . . « o o o o & & o
File Attrlbute e e o o
Alternative Attributes .
Additive Attributes . .
Opening and Closing Files
Standard Files« .

¢ » 2 s 2
e o & & o

e & » & o @

e & o 8 & o o o * o

CHAPTER 11: STREAM-ORIENTED
TRANSMISSION o« « o o « o o «
Introduction . « « « o« o o o
List-directed Transmission
Data-directed Transmission
Edit-directed transmission
Data Transmission Statements
Options of Transmission Stateme

e o
o« e
. @
ents

t

s e & & & ¢ s o &

]

a o & & 8 o

S

e & o o o o & & s o * s o o &

e o ¢ & 85 s o s s @ e 8 o o » ¢« 5 & 8 5 s o & o e o o s o o o

91
92
22
92
92
93
93
94
924
96
97

98
99
929
. 100
<102
.103
.103

. 105
105
« 107
.108
110
-110
<111
<112
<112

. 113
<113
- 114
117
.118

.120

<121
<121
<121
122
. 122
<123
123
. 125
<126
.130

.132
<132
<132
132
133
133
<134

Data Specifications

Data LiStS o« ¢ ¢ o o ¢ o o o o
List~directed Data Specification
Data-directed Data Specification
Edit-directed Data Specification
PRINT File€sS . o« o « o o o « o &
ENVITONMENT Attribute .

¢« 6 o & o 8 o 0 2 s s 0
e o o & s o & 3 4 s 0 o

Record Format Options
Buffer Allocation
Data Set Organization
Magnetic Tape Handling Options
ASCII Data Sets .« ¢ « o o« o o

CHAPTER 12: RECORD-ORIENTED
TRANSMISSION . &« « « o o « =
Introduction « « « o« o« « &
Data Transmitted . . « . « .
Data Transmission Statements
Options of Transmission State
Processing Modes « . .« .
" Move Mode . ¢ ¢ 4 o o
Locate Mode . « « « «
ENVIRONMENT Attrikute . .
Record Format Options .

nt

oooo.-go.ao

Buffer Allocation . .
.Data Set Organization
Magnetic Tape Handling Options .

¢ & ¢ 2 0 & 0 (N s o

& & o 6 3 & & & a2 0 e

e 8 &6 o & s & o & s 2 s

.135
.135
<137
-139
<182
146
. 147
. 148
. 151
. 151
<152
152

. 154
. 154
. 154
. 154
. 155
. 158
. 158
.160
. 161
.163
. 166
166
.168

Printer/Punch Control (CTLBSO/CTLASA) 168

Data Interchange (COBOL)
In-line Code Optimization (TOTAL)
Data Management Optimization
(INDEXAREA/NOWRITE/ADDBUFF) . .
Key Classification (GENKEY) . .
Numker of Channel Programs (NCP)
Track Overflow (TRKOFL)
Varying-length String Option
(SCALARVARYING) . .
Key Length Option (KEYLENGTH)
Key Location Option (KEYLOC)
ASCII Data Sets .+ « o o «
Consecutive Organization
Sequential Update . .
Indexed Organization . .
KEYS o o o o o o o o &
Dummy Records . « .
Creating a Data Set .

Sequential Access .
Direct Access . . .
Regional Organization
KEYS « o o ¢ o o o o o @
Types of Regional Organiz
Regional(1) Organization
Regional(2) Organization
Regional (3) Organization
TeleprocCessSing « « « « « o « o « «

H e o ¢ s 06 o o ¢ 0 ¢ o

tio

o 8 & o 5 6 s o s 6 0o o s
e 6 & ¢ 8 o o 2 & 4 0 & o & o 2 0

e« s o Q) e o o s e 4 s 0 s o

o o
6 & 8 & o 6 5 8 & 5 o 0 0 s & & 0 s @

. 168
<170

.170
.170
<171
<171

<172
<172
<172
<173
174
<174
<174
<175
.178
.178
.178
.179
.179
.180
. 180
. 180
.183
. 185
. 187

Summary of Record-oriented Transmission 190

Examples of Declarations for Record
FIilE€S o ¢ « o ¢ o« o o o o o o o o o

3

<191

CHAPTER 13: EDITING AND STRING HANDLING 193

Editing by Assignment
Altering the Iength of String Data
Other Forms of Assignment .
Picture Specification . . .

Bit-String Handling

String Built-in Functions . .

« o e
e e e
e e o
e o e

.193
.193
<194
<195
199
. 200

CHAPTER 14: EXCEPTIONAL CONDITION
HANDLING AND PROGRAM CHECKOUT . . .
Enabled Conditions and Established
Action . . . « e o
Example of Use of ON-condltlons .« .

CHAPTER 15: EXECUTION-TIME FACILITIES
OF THE CHECKOUT COMPILER . « ¢ « « o

Introduction « «
Tracing Facilities .
Current Status List
Program Amending . .

o s o o
¢ o o @
s s o o

CHAPTER 16: COMPILE-TIME FACILITIES
Introduction . . . « o o
Preprocessor Input and Output .
Preprocessor SCan « « « o o o »
Preprocessor Variables
Preprocessor Expressions
Preprocessor Procedures . « « o+ .
oce

.202

«202
.208

.21
211
«212
216
.221

<222
222
.222
222
.224
«225
<225

Invocation of Preprocessor Procedures 226

Arguments and Parameters for
Preprocessor Functions . . .
Preprocessor DO-group . . .
Inclusion of External Text .
Preprocessor Statements . .
Listing Control Statements .

e s o o

*® o & s o
e s o o o
s o & o 8

CHAPTER 17: MULTITASKING « o« « « o
Introduction . « « «
Specifying Tasking and Reentrablllty
Creation of Tasks . ¢« « « o o o o «
CALL Statement « « « o o ¢ « o o« o
Priority of Tasks .« « ¢ ¢ ¢ o o «
PRIORITY Built~in Function and
Pseudovariable . « ¢« « ¢ ¢ o o o o
Coordination and Synchronization of
TASKS o o o o o o o o o o o o o o o
Sharing Data between Tasks
Sharing Files between Tasks . . .
WAIT Statement « « « o ¢ o o .
Testing and Setting Event Varlable
DELAY Statement .+ o« o« « o o o o o
Termination of Tasks « « ¢« « = & « &
Programming Example . « « « o o o o

CHAPTER 18: EFFICIENT PROGRAMMING .
Optimization . . ¢ o« o o« o o o o &«
common EXPresSSiOnsS o« « o o o o o o

Transfer of Invariant Expressions or

Statements . . . « o v s s o o u
ORDER and REORDER Option .« « . . &
Elimination of Redundant Expression
Expression Simplification
Coding Source Programs for the
Optimizing Compiler . . « « « o &«
Programming Techniques for the
Optimizing Compiler « .
Improving Speed of Compilation
Improving Speed of Execution .-
In-Line Operations . . « « « &
Use of Storage « « « o« o« o &
Use of Input/Output Fac111t1es
Additional Hints . « « ¢ « .«
common Errors and Pitfalls
Operating System and Job Control
Source Program and General Syntax
Program Control . « « o« « ¢ « o«

a & o s & o o

«226
228
.228
<229
.230

.232
.232
.233
234
<234
.235

.235

«236
.236
«237
«237
0237
.238
.238
.239

<242
<242
<242

«243
.243
«245
«245

.245

<247
<247
.248
.251
.254
«256
«257
.259
«259
'259
+«259

Declarations and Attributes259

Assignments and Initialization261
Arithmetic and Logical Operations . .262
DO GIOUPS -« o = o o o » o s « « o o264
Data AGgregates =« « « « « o « « o o« +265
Strings <« o« « « o o o o o o o o o o 2266
Functions and Pseudovariables266
Oon-conditions and On-units266
INPUL/OULPUL o « « o o o o o o o o o <267

CHAPTER 19: INTERLANGUAGE

COMMUNICATION FACILITIES o« « « « « o « 2270

. Interlanguage Facilities 270

Interlanguage Environment« .275
COBOL Interface . « « « « « « o« o « o278
FORTRAN INterface .« « o« o o « o o « 279

PART II: RULES AND SYNTACTIC

DESCRIPTIONS . ¢ &« « o o o o o o o o » o283

SECTION A: SYNTAX NOTATION . . « « « o« +285

SECTION B: CHARACTER SETS WITH EBCDIC

AND CARD-PUNCH CODES « « « « « o o o o« 287
60-Character Set « .« « « o « o « « o« +287
48-Character Set « « ¢ « ¢ « « « o « 288

SECTION C: KEYWORDS AND KEYWORD

ABBREVIATIONS =« . ¢ o ¢ o o « « o« o o« «289

SECTION D: PICTURE SPECIFICATION

CHARACTERS « o o o o o = o o o o o o = 295

Picture Characters for Character-string

DAt@ ¢« o o o o o « o o o o » o o o o o 295
Picture Characters For Numeric
Character DAta@ « « « « o o o « o o o o 2296
Digit and Decimal-point Specifiers . .297
Zero Suppression Characters 297
Insertion Characters « « « « « « o« « 298
Signs and Currency Symk@l301
Credit, Debit, and Overpunched Signs .302
Exponent Specifiers . . « « « « « . 303
Scaling Factor « « « o o « o« « o o « 304
SECTION E: EDIT-DIRECTED FORMAT ITEMS .305
Data Format ItemS .« « « « ¢ « « « o« o« «305
control Format Items . « « « « « o« « o« <305
Remote Format Item « « « « « « « « « . .306
Use of Format Items . . .« « o o s o <306
Alphabetic List of Format Items « « o« <306
SECTION F: DATA CONVERSION AND
EXPRESSION EVALUATION . . « « « « « « <315
Section Organization . . . e« o o « o« <315
Example of Use of the Conver51on
Rules . . . e o o o e o s s s o o 316
Table of CEIL Values e o o o o o o o o 314
Tables for Arithmetic Operations 329
Tables for Comparison Operations 331
SECTION G: BUILT-IN FUNCTIONS AND
PSEUDOVARIABLES =« « o « o o o o o o o «333
Classification of Built-in Functions .333
conversion of Argumeénts . . ¢ o« « o o334
Accuracy of the Mathematical
FunctionsS . ¢ ¢ ¢« o o« o« ¢« o o« o o o« 2335

Aggregate ArgumentsS .«« o « o o341 SECTION J: STATEMENTS .« o o o o o o « o812
Null ArgumentS « « « « « « o« o« s » « 341 Preprocessor Statements . . . « « . o JHU49

PseudovVariakles . ¢« « ¢« « o o« « o o« +342 Listing Control Statements 455
SECTION H: ON-CONDITIONS . « « « o « o« 4357 SECTION K: DATA MAPPING .« « « « o o o oU57
INtroduction . « « « « « « « « o ¢« o « 2357 Structure Mapping . ¢« « « o+ ¢ & & ¢ - . 457
Condition COdeS (On-COdeS) e o o o o e '358 Rﬂles e e ®© ® e ® ® e ® 8 o & o 4‘4’ . Cu57
Multiple INterruptS . « o« « « « « « « 365 Record Alignment . « « « o o o « o "o U471
List of Conditions « « « & ¢« ¢« « ¢ « « 365 .
Classification of Conditions . « « - « .366 SECTION L: COMPILER DIFFERENCES + - .474

GLOSSARY « « o o o o o o o o o o ..l:“; 4 .u78
SECTION I: ATTRIBUTES . « « « o « « « «378 INDEX « o o « o o o o o o o o o 3+ o o493

Figure ?.1. Some functions of special

charact rs e e e e e e e e e e e e e . 20
Figure 1. Section of main store
-showi- lignment of fixed length

fielt - . v 4 4 e e e e e e e e s e e o« 39
Figurw 1. Scopes of data

declal. ONS .« « « « o « s « o« o« o o « » 80
Figure 7.2. Scopes of entry and label
declarat. OnsS . « « « « o« o o o« « « o « - 80
Figure 8.1. Example of

one-directional chain « « . . « 99
Figure 1¢.1. Effect of operations on
EXCLUSIVE fileS .+ « « « o « o o + o« « 4126
Figure 1:.1. General format for

repetitive specifications136
Figure 11.2. Example of data-directed
transmission (both input and output) . .142
Figure 11.3. Options and format items

for controlling layout of PRINT files .147
Figure 11.4. Effect of LEAVE and

REREAD Options . « « « o o o o « o o« o« o152
Figure 12.1. Input and output: move

MOAE « « o o o o o o o s o o o o o« o « o159
Figure 12.2. Locate mode input, move

mode output . « o + + s 4+ s . e s o o« <162
Figure 12.3. Effect of LEAVE and

REREAD options « + « « « « « o o o « +» +169
Figure 12.4. 1403 Printer control

COAES « v =« o o o o o s o o o o o o« o 2169
Figure 12.5. 2540 Card read punch

control codesS . . « ¢ + s & o o o o o 2169
Figure 12.6. Statements and options
permitted for creating and accessing
CONSECUTIVE data sets . + « « » « o« .« 2175
Figure 12.7. Statements and options
permitted for creating and accessing
INDEXED data sets . « « o o o« « « 176,177
Figure 12.8. Effect of KEYLOC and RKP
values on establishing embedded keys

in record variables or data sets177
Figure 12.9. Statements and options
permitted for creating and accessing
REGIONAL data sets181,182
Figure 12.10. Statements and options
permitted for TRANSIENT files190
Figure 14.1. A program checkout

routine ¢ ¢ s 4o s e o e o o o 2209
Figure 15.1. Example of use of CHEC
statement . . . 4 4 4 4 ¢ e o o o o o o215
Figure 15.2, Flow comments produced

by various transfers of control217
Figure 15.3. Program-item information
provided by the PUT statement options .217
Figure 15.4. Information transmitted

by PUT ALL statement220
Figure 16.1. Effects of %PAGE and

BSKIP v v o o o o o o o o o o o o o o o231
Figure 17.1. Synchronous and

asynchronous operation232
Figure 17.2. Flow diagram for

programming example of multitasking . .241

Figures

Figure 18.1. Implicit data
conversion performed in-line252,253
Figure 18.2. Conditions under which

string operations are handled in-line .254
Figure 18.3. Conditions under which

string functions are handled in-line . .255
Figure 19.1. Extent of PL/I

environment .« .« .+ ¢ o + s o o o o o o 276
Figure 19.2. COBOL-PL/I data

equivalents . . . ¢ . ¢« 4 . o 0 e . . 4279
Figure 19.3. Declaration of a data
aggregate in COBOL and PL/T279
Figure 19.4. FORTRAN-PL/I data

equivalents ¢« .+ ¢ . o o « .« .280
Figure 19.5. Return codes produced

by PL/I data types . . « . «281,283
Figure D.1. Pictured character-string
EXaMPleS . « « ¢ ¢ 4 o o s e o o o « o 296
Figure D.2. Pictured numeric

character examples . . . « ¢ « « « o . 2297
Figure D.3. Examples of zero

SUPPressSion . . . 4 . e o .+ o .o o . 2299
Figure D.4., Examples of insertion
characters . .« . ¢« ¢« « « « ¢« « « + . . 2300
Figure D.5. Examples of drifting

picture characters « +« . « . o .302
Figure D.6. Examples of CR, DB, T, I,

and R picture characters303
Figure D.7. Examples of

floating-point picture specifications .304
Figure D.8. Examples of scaling

factor picture characters304
Figure F.1. List of priority of

operations and guide to conversion

rules . . . & ¢« 4t e 4 e e e o o o o o 2314
Figure F.2. Table of CEIL(n*3.32) and
CEIL(n/3.32) value . . « « « « ¢« « « « <314
Figure F.3. Circumstances causing
CONVErsSion . « « o« « o ¢ o o o o « « « 2314
Figure F.la. Master table for

arithmetic operations329
Figure F.U4b. Key to conversions329
Figure F.4c. Result table for

ADDITION, SUBTRACTION, MULTIPLICATION,

and DIVISION . . . « « ¢ 2 « o« « o o o+ 329
Figure F.4d. Result table for
EXPONENTIATION . . . &« & « o o « o « « 2329
Figure F.5a. Master table for

comparison operations331
Figure F.5b. Types of comparison

operation and targets331
Figure G.1. Performance statistics

for the mathematical built-in

functions with short and long precision
floating-point arguments336,337,338
Figure G.2. Performance statistics

for the mathematical built-in functions
with extended-precision

floating-point arguments339,340,341
Figure H.1. Output for the CHECK

condition ¢ . ¢ 369

Figure I.1. Classification of attributes
according to data type o o 4379
Figure I.2. File declarations380
Figure I.3. Guide to types of

defining . « « « + ¢ 4 4 & o o o o+ . +387
Figure J.1. General formats of the
assignment statement JH14
Figure J.2. General formats of the

DEFAULT statement . . « « « « « o « o o821
Figure J.3. General format of the D
statement . . . ¢ ¢ + ¢ o o o o o o+ o JH25
Figure J.4. Transfer and destination
statements . . . ¢« o+ 4 o o o o o o o U431
Figure J.5. Format of option list for

READ statement . « « « « « o o o » o+ o o482
Figure K.1. Summary of alignment
requirements for ALIGNED data . . .459,460
Figure K.2. Summary of alignment
requirements for UNALIGNED data . .461,462
Figure K.3. Mapping of minor

SETUCLUYE G . ¢« ¢ « o o o o s o o o o JU63
Figure K.4. Mapping of minor

Structure E « + « « « « o o o o » o o oU6U
Figure K.5. Mapping of minor

structure N . . « « o o« s s o o o o o o465

10

‘Figure K.9.

of structure A ¢ e e e o o
-Pigure K.12.

‘Figure K.13.

Figure L.1.

Figure K.6. Mapping of minor
structure §
Figure K.7. Mapping of minor
structure C ¢ . . 0 0 0 . .
Figure K.8. Mapping of minor

structure M . . ¢ ¢ ¢ ¢ ¢ ¢ o o o s .
Mapping of major

structure A . . . ¢ ¢ 4 e e e s 0 s .
Figure K.10. Offsets in final mapping

.466

467
.u68
469

.470
Figure K.11. Format of structure S . .471
Block created from

structure S . . . ¢ . o . .
Block created by
structure S with correct alignment . .
Figure K.14., Alignment of data in a
buffer in locate mode input/output,
for different formats and data set
organizations ¢ 4 4 4 e .
Differences resulting
from differing compiler functions . .
Figure L.2. Differing qualitative
restrictions 4 ¢ . .
Figure L.3. Differing quantitative
restrictions . . . ¢« ¢« ¢ 4 s+ o 4 o o

SU472

472

473
474
475,476
477

Part 1: Concepts of PL/I

1

12

Chapter 1: Basic Characteristics of PL/I

The modularity of PL/I, the ease with which
subsets can be selected to meet different
needs, becomes apparent when one examines
the different features of the language.
Such modularity is one of the most
important characteristics of PL/I.

This chapter contains brief discussions
of most of the basic features to provide an
overall description of the language. Each
is treated in more detail in subsequent
chapters.

Machine Independence

No language can be completely machine
independent, but PL/I is much less machine
dependent than most commonly used
programming languages. The methods used to
achieve this show in the form of
restrictions in the language. The most
obvious example is that data with different
characteristics cannot in general share the
same storage; to equate a floating-point
number with a certain number of alphabetic
characters would be to make assumptions
about the representation of these data
items which would not be true for all
machines.

It is recognized that the price entailed
by machine independence may sometimes ke
too high. 1In the interest of efficiency,
certain features such as the UNSPEC
built-in function and record-oriented data
transmission are machine dependent.

Program Structure

A PL/I program consisté of one or more
blocks of statements called procedures. A
procedure may be thought of as a
subroutine. Procedures may invoke other
procedures, and these procedures or
subroutines may be either compiled
separately, or nested within the calling
procedure and compiled with it. Each
procedure may contain declarations that
define names and control allocation of
storage.

The rules defining the use of
procedures, communication between
procedures, the meanings. of names, and
allocation of storage are fundamental to
the proper understanding of PL/I at any

Chapter 1:

level but the most elementary. These rules
give the programmer considerable control
over the degree of interaction between
subroutines. They permit flexible
communication and storage allocation, at
the same time allowing the definition of
names and allocation of storage for rprivate
use within a procedure.

By giving the programmer freedom to
determine the degree to which a subroutine
is self~contained, PL/I makes it possikle
to write procedures which can freely be
used in other environments, while still
allowing interaction in procedures where
interaction is desirakle.

Data T'ypes and Data Description

The characteristic of PL/I that most
contributes to the range of applications
for which it can be used is the variety of
data types that can Le represented and
manipulated. PL/I deals with arithmetic
data, string data (bit and character), and
program control data, such as labels.
Arithmetic data may be represented in a
variety of ways; it can be binary or
decimal, fixed-point or floating-point,
real or complex, and its precision may ke
specified.

PL/I provides features to perform
arithmetic operations, operations for
comparisons, logical manipulation of bit
strings, and operations and functions for
assembling, scanning, and subdividing
character strings.

The compiler must be able to determine,
for every name used in a program, the
complete set of attributes associated with
that name. The programmer may specify
these attributes explicitly by means of a
DECLARE statement; the compiler may
determine all or some of the attributes Ly
context; or a partial or complete set of
attributes may be assumed by default. The
programmer can specify which attributes are
to ke applied by default, or he can allow
the compiler to determine them.

Default Assumptions

An important feature of PL/I is its default
philosophy. If all the attributes

Basic Characteristics of PL/I 13

associated with a name, or all the options
permitted in a statement, are not specified
by the programmer, attributes or options
will be assigned by the compiler. This
default action has two main consequences.
First, it reduces the amount of declaration
and other program writing required; secongd,
it makes it possible to teach and use
subsets of the language for which the
programmer need not know all possible
alternatives, or even that alternatives
exist.

The default attributes assumed by the
compiler are the standard default
attributes of the PL/I language and the
implementation precision defaults.
However, the programmer can override these
by use of the DEFAULT statement.

The compiler optionally produces an
attribute listing which contains the
identifiers used in a PL/I source program
and a complete list of the attributes
specified either by explicit, contextual,
or implicit declarations, or by application
of default rules. The programmer can use
this listing to check that these attributes
are consistent with his intentions.

Storage Allocation

PL/I goes beyond most other languages in
the flexibility of storage allocation that
it provides. Dynamic storage allocation is
comparatively difficult for an assembler
language programmer to handle for himself;
yet it is automatically provided in PL/I.
There are four different storage classes:
AUTOMATIC, STATIC, CONTROLLED, and BASED.
In general, the default storage class in
PL/I is AUTOMATIC. This class of storage
is allocated whenever the block in which
the variakles are declared is activated.

At that time the bounds of arrays and the
lengths of strings are calculated,
AUTOMATIC storage is freed and is available
for re-use whenever control leaves the
block in which the storage is allocated.

Storage may also be declared STATIC, in
which case it is allocated when the program
is loaded; it may be declared CONTROLLED,
in which case it is explicitly controlled
by the programmer with ALLOCATE and FREE
statements, independent of the invocation
of blocks; or it may be declared BASED,
which gives the programmer an even higher
degree of control.

The existence of several storage classes
enables the programmer to determine for
himself the speed, storage space, or
programming economy that he needs for each
application. The cost of a particular

14

facility will depend upon the

implementation, but it will usually be true
that the more dynamic the method of storage
allocation, the greater the execution time.

Expressions

Calculations in PL/I are specified by
expressions. An expression has a meaning
in PL/I that is similar to that of
elementary algebra. For example:

A+ B *C

This specifies multiplication of the value
of B by the value of C and adding the value
of A to the result. PL/I places few
restrictions on the kinds of data that can
ke used in an expression. For example, it
is conceivable, though unlikely, that A
could be a floating=-point number, B a
fixed~-point number, and C a character
string.

When such mixed expressions are
specified, the operands will be converted
so that the operation can be evaluated
meaningfully. Note, however, that the
rules for conversion must be considered
carefully; converted data may not have the
same value as the original. And, of
course, any conversion increases execution
time.

The results of the evaluation of
expressions are assigned to variables by
means of the assignment statement. Aan
example of an assignment statement is:

X=A+ B * (C;

This means: evaluate the expression on the
right and store the result in X. If the
attributes of X differ from the attributes
of the result of the expression, conversion
will again be performed.

Data Collections

PL/I offers the programmer many ways of
describing and operating on collections of
data, or data aggregates. Arrays are
collections of data elements, all of the
same type, collected into lists or takles
of one or more dimensions. Structures are
hierarchical collections of data, not
necessarily all of the same type. Each
level of the hierarchy may contain other
structures of deeper levels. An item that
does not contain another structure must
represent an elementary data item or array.

An element of an array may be a
structure; similarly, any level of a
structure may be an array. Operations can
be specified for arrays, structures, or
parts of arrays or structures. For
example:

A =B +C;
In this assignment statement, A, B, and C
could be arrays or structures.

Input and Qutput

Facilities for input and output allow the
user to choose between factors such as
simplicity, machine independence, and
efficiency. There are two broad classes of
input/output in PL/1: stream-oriented and
record-oriented.

Stream-oriented input/output is almost
completely machine independent. On input,
data items are selected one by one from
what is assumed to be a continuous stream
of characters that are converted to
internal form and assigned to variables
specified in a list. Similarly, on output,
data items are converted one by one to
external character form and are added to a
conceptually continuous stream of
characters. Within the class of stream
input/output, the programmer can choose
different levels of control over the way
data items are edited and selected from or
added to the stream.

For printing, the output stream may ke
considered to be divided into lines and
pages. An output stream file may be
declared to be a print file with a
specified line size and page size. The
programmer has facilities to detect the end
of a page and to specify the beginning of a
line or a page. These facilities may be
used in subroutines that can be developed
into a report generating system suitable
for a particular installation or
application.

In a system employing the Time Sharing
Option, data may be fed into, and output
may be obtained from, a PL/I program using
a terminal remote from the machine.

Record-oriented input/output is machine
dependent. It deals with collections of
data, called records, and transmits these
one record at a time without any data
conversion; the external representation is
generally an exact copy of the internal
representation. Because the aggregate is
treated as a whole, and because no
conversion is performed, this form of
input/output is more efficient than
stream-oriented input/output.

Charpter 1:

Teleprocessing facilities are provided
by PL/I as part of the fkasic
record-oriented transmission facilities.

Stream-oriented input and output usually
sacrifices efficiency for ease of handling.
Each data item is transmitted separately
and is examined to determine if data
conversion is required. Record-oriented
input and output, on the other hand,
provides faster transmission, but generally
requires a greater programming effort.

Input and output operations for data
banks involving a number of interrelated
data sets is simplified by the use of file
variables. All input/output statements can
use file variables with file values
established and modified during execution
of the program.

Multitasking

The operating system has facilities for
multiprogramming, that is, it allows a
number of programs to be active
concurrently. In the same way, PL/I has
facilities to allow a number of procedures
within a PL/I program to be active
concurrently.

Any PL/I procedure may invoke another,
in other words initiate the execution of
another procedure. The programmer may
specify that the procedures are to ke
tasks, which means that they may both ke
active concurrently. The invoked procedure
is known as a subtask of the other, and is
said to have been attached by it.

The advantage of multitasking is that
CPU operations may ke carried out in one
task while an input/output operation (or
other CPU operations, in the case of
multiprocessing machines) is carried out
concurrently in another. As soon as the
CPU or the input/output operations in one
task are completed, a search is made
amongst all the active tasks for another
one that requires the same resource. If
more than one such task is found, the
resource is assigned to the one having
highest priority. The PL/I programmer may
allow the system to allocate relative
priorities or he may assign priorities to
his tasks when they are attached.

A number of tasks may be dependent on
each other at various points during their
execution. For example, one task may
require results obtained in another Lkefore
it can be completed. In PL/I, the
programmer may synchronize tasks at various
points in their execution. An operation in
one task may be made to await the
completion of an operation in another task.

Basic Characteristics of PL/I 15

The optimizing and checkout compilers
differ in their implementations of
multitasking. Each task in a PL/I program
compiled by the optimizing compiler forms a
system task to be scheduled by the
operating system. The checkout compiler
constitutes a single task, and the compiler
itself schedules the tasks created within a
PL/I program.

Facilities of Two Compilers

The optimizing and checkout compilers are
complementary program products. The main
function of the optimizing compiler is to
generate highly efficient object code,
while that of the checkout compiler is to
minimize the time a programmer needs to
spend in debugging.

Both compilers may be used for batch
processing, that is, processing in which a
program must be compiled, and possibly
executed, in full before the programmer
obtains any result. The checkout compiler
has the facility for conversational
processing. In this mode, the program's
execution is monitored from a keyboard
terminal and temporary amendments may be
made during execution as a result of
information so obtained; new PL/I code may
be temporarily included in the program, for
instance. The best use is made of PL/I
facilities when both compilers are
employed. The program is compiled by the
checkout compiler during the debugging
stages, to allow the programmer to use his
time most efficiently; the debugged program
is then compiled by the optimizing
compiler, to obtain object code that makes
the most efficient use of the machine.

The language implemented by the two
compilers is, in general, the same. There
are a few exceptions concerned with the
different primary function of each
compiler. Certain optimizing features are
not implemented by the checkout compiler
and certain program checkout features are
not implemented by the optimizing compiler.
For instance, a number of statements
instruct the checkout compiler to provide
the programmer with information about the
flow of control through his program during
execution. Since the optimizing compiler
does not have these facilities, it merely
checks the statements' syntax and otherwise
ignores them. Similarly, there are
statement options concerned with generating
the most efficient object code possible
that are used by the optimizing compiler
but which are syntax-checked and then
ignored by the checkout compiler.

16

Compile- time Operations

PL/I permits a compile-time level of
operation, in which preprocessor statements
specify operations upon the text of the
source program itself. The simplest, and
perhaps the commonest, preprocessor
statement is %INCLUDE (all preprocessor
statements are preceded by a percent sign).
This statement causes text to be inserted
into the program, replacing the %INCLUDE
statement itself. A typical use could ke
to copy declarations from an installation's
standard set of definitions into the
program.

~ Another function provided by
compile-time facilities is the selective
compilation of program text. For example,
it might specify the inclusion or deletion
of dekugging statements.

Since a simple but powerful part of the
PL/I language is available for compile-time
activity, the generation, or replacement
and deletion, of text can become more
elaborate, and more suktle transformations
can be performed. Such transformations
might then be considered to be
installation-defined extensions to the
language.

Execution- time Facilities

PL/I includes statements and options that
provide powerful facilities for dekugging.
Other features allow program amendment
during execution; these require the use of
the Time Sharing Option of the operating
system, and of the checkout comgiler. They
allow the programmer to learn quickly about
the behaviour of his program while it is
being executed and also, in the appropriate
processing environment, to correct it.
Also, under the Time Sharing Option, stream
I/0 can be performed from and to a
terminal, on programs compiled Ly either
the checkout or the optimizing compiler.

The debugging facilities cause
information to ke written on the SYSPRINT
file (and, if desired, at the terminal when
the terminal is not defined as the SYSPRINT
file) throughout execution or at designated
points during execution. The programmer
can, throughout execution, cause
information to be written every time a
reference to a selected variable occurs in
a pre-defined situation or when a transfer
of control takes place. Similarly, at
designated points in the program being
executed, the information to be written can
include the values of selected variatles,
the names of the procedures currently

active, or the numbers of the statements
involved in the latest transfers of
control.

The time at which this output is
available depends on the processing mode.
In batch processing, information written on
the SYSPRINT file is only available when
the SYSPRINT file is printed, which is
normally after execution has terminated.
In conversational processing, information
written on the SYSPRINT file can be
immediately printed at the terminal;
therefore the output provided by the
debugging facilities can be made availakle
imnmediately it is produced.

Program amendment during execution is
possible only with conversational
processing under the checkout compiler.
The programmer can enter instructions at
the terminal that cause program execution
to be suspended and control passed to the
terminal. He can then enter statements
that are executed during the current
suspension of execution or during a further
suspension; this future suspension will be
at a point specified by the programmer.
These statements can, for instance,
initiate the debugging facilities described
above, change the value of a variable or
insert extra statements in the program.
The amendments made apply to the current
conversational sessions only; they are not
made part of the original program. Once
normal execution has been resumed, they
cannot be retrieved by the programmer,
although their effect may last to the end
of program execution.

Interrupt Activities

Modern computing systems provide facilities
for interrupting the execution of a program
whenever certain exceptional conditions
arise. Further, they allow the program to
deal with such a condition and to return to
the point at which the interrupt occurred.

PL/I provides facilities for detecting a
variety of exceptional conditions. It
allows the programmer to specify, by means
of a condition prefix, that an interrupt
will occur if the condition should arise.
By use of an ON statement, he can specify
the action to be taken when an interrupt
does occur. In conversational processing,
the programmer can deal with any error
condition immediately it occurs.

Chapter 1:

Operating System Facilities

A number of facilitites provided by the
operating system can be called upon Ly the
PL/I programmer. The most prominent ones,
namely interlanguage communication,
sort/merge, and checkpoint/restart are
outlined below.

It is possible for a PL/I program to
communicate with COBOL and FORTRAN routines
at execution time, if the latter were
compiled by a compiler developed bty IBM for
OS. A PL/I procedure may invoke a COBOL or
FORTRAN routine, and may be invoked by a

‘COBOL or FORTRAN main program or routine.

In addition, a PL/I program may be used to
create or access a COBOL or FORTRAN data
set. All these facilities are provided by
the PL/I language. Further communication
is possible between PL/I and other
languages if an assemkler language
interface is provided. Such interfaces are
described in the following OS publications:

0S_PL/1 Optimizing Compiler:
Programmer's Guide

and

OS_PL/I_Checkout Compiler:
Programmer's Guide.

Provided the operating system has been
generated with the appropriate sort/merge
program, the sort/merge facilities may ke
utilized by the PL/I programmer. They may
be used on records on PL/I-created data
sets, on data passed by a PL/I program, and
on data being passed to a PL/I program.

When a PL/I katch processing program
compiled by the optimizing compiler is to
run for an extended period, the operating
system checkpoint/restart facility can ke
employed to minimize the losses caused by a
machine or system failure. The programmer
selects checkpoints in his program at which
processing is to be recommenced following a
failure. Only the processing carried out
between the checkpoint and the failure may
be lost. Results obtained up to the
checkpoint are preserved on external
storage, together with data (including a
copy of the program and its associated
storage) necessary for continuation of the

_rune.

Sort/merge and checkpoint/restart
facilities are descriked in the
Programmer's Guides.

Basic Characteristics of PL/I 17

Chapter 2: Program Elements

There are no restrictions in the format of
PL/I statements, apart from those imposed
by the physical form of the source program.
Consequently, programs can be written
without consideration of special coding
forms or checking to see that each
statement begins in a specific column.

Each statement may begin in the next column
or position after the previous statement,
or any number of blanks may intervene.

Character Sets

One of two character sets may be used to
write a source program; either a
60-character set or a 48-character set.
For a given external procedure, the choice
between the two sets is optional. 1In
practice, this choice will depend upon the
available equipment.

60-CHARACTER SET

The 60-character set is composed of digits,
special characters, and alphabetic
characters.

There are 29 alphabetic characters
beginning with the currency symbol ($), the
number sign (#), and the commercial "at"
sign (@). These characters precede the 26
letters of the English alphabet in Extended
Binary-Coded-Decimal Interchange Code
(EBCDIC). For use with languages other
than English, other characters may be
substituted for §, #, and a.

There are ten digits. The decimal
digits are the digits 0 through 9. A
binary digit is either a 0 or a 1.

There are 21 special characters. They
are as follows:
Name Character
Blank
Equal sign or assignment symbol
Plus sign

Minus sign
Asterisk or multiply symbol

* 0+ 0

18

‘Name

‘Right parenthesis

‘Question mark

‘"not equal to".

Character

Left parenthesis

Ccomma

Point or period
Single quotation mark
or apostrophe
Percent symkol
Semicolon

Colon

"Not® symbol

"And® symbol

"0Or" symbol

"Greater than" symbol
"Less than" symbol
Break character?

at @ o

A V== o s 2R

wl

Special characters are combined to
create other symkols. For example, <=
means "less than or equal to", 1= means
The combination ** denotes
exponentiation (X**2 means X2). Blanks are
not permitted in such composite symbols.

An alphameric character is either an
alphaketic character or a digit, kut not a
special character.

48-CHARACTER SET

The U8-character set is composed of 48
characters of the 60-character set. 1In all
but four cases, the characters of the
reduced set can be combined toc represent
the missing characters from the larger set.
For example, the percent symbol (%) is not
included in the U8~character set, kut a
double slash (//) can be used to represent
it. The four characters that are not
duplicated are the commercial “at" sign,
the number sign, the kreak character, and
the question. mark.

The restrictions and changes for this
character set are described in section B,

""Character Sets with EBCDIC and Card-Punch

Codes".

'The break character is the same as the
typewriter underline character. It is used

"in a name, such as GROSS_PAY, to improve

readability.

USING THE CHARACTER SET

All the elements that make up a PL/I
program are constructed from the PL/I
character sets. There are two exceptions:
character-string constants and comments may
contain any character in the EBCDIC 8-bit
code.

Certain characters perxform specific
functions in a PL/I program. For example,
many characters function as operators.

There are four types of operators:
arithmetic, comparison, Lit-string, and
string.

The arithmetic operators are:

+ denoting addition or prefix plus

- denoting subtraction or prefix
minus

* denoting multiplication

/ denoting division

** denoting exponentiation

The comparison operators are:

> denoting "greater than"
1> denoting "not greater than"
>= denoting "greater than or
equal to"
= denoting "equal to"
1= denoting "not equal to"
= denoting "less than or equal to"
< denoting "less than"
1< denoting "not less than"

The bit-string operators are:
1 denoting "not"

§ denoting "and"
| denoting "ox"

The string operator is:

|| denoting concatenation

Figure 2.1 shows some of the functions
of other special characters.

Identifiers

In a PL/I program, names or labels are
given to data, files, statements, and entry
points of different program areas. In
creating a name or label, a programmer must
okserve the syntax rules for creating an
identifier.

An identifier is a single alrhabetic
character or a string of alrhameric and
kreak characters, not contained in a
comment or constant, and preceded and
followed by a blank or some other
delimiter; the initial character of the
string must be alphabetic. The length must
not exceed 31 characters.

Language keywords also are identifiers.
A keyword is an identifier that, when used
in the proper context, has a specific
meaning to the compiler. A keyword can
specify such things as the action to be
taken, the nature of data, the purpose of a
name. For example, READ, DECIMAL, and
ENDFILE are keywords. Some keywords can be
akbreviated. A complete list of keywords
and their abbreviations is contained in
section C, "Keywords and Keyword

Abbreviations®.
Note: PL/I keywords are not reserved

words. They are recognized as keywords Ly
the compiler only when they appear in their
proper context. In other contexts they may
be used as programmer-defined identifiers.

Examples of identifiers that could be
used for names or lakels:

A
FILE2
LOOP_3
RATE_OF _PAY
#32

Chapter 2: Program Elements 19

r 1
{ Name Character Use l
1L |
[h |
| comma ' Separates elements of a list |
| |
| period R Indicates decimal point or binary point;

| connects elements of a qualified name |
| : |
| semicolon H Terminates statements

| |
| assignment = Indicates assignment of values? |
| symkol |
| |
| colon : Connects prefixes to statements; can ke |
| used in specification for bounds of an |
| array; can be used in RANGE specification |
| of DEFAULT statement |
|

| blank Separates elements of a statement

|

| single quotation. ' Encloses string constants and picture

| mark specification

|

| parentheses) Enclose lists; specify information

| associated with various keywords; in

| conjunction with operators and operands,

| delimit portions of a computational

| expression

|

|arrow -> Denotes locator qualification

|

| percent symbol % Indicates statements to be executed ky the

i compile-time preprocessor or listing

| control statements |
L 'l
L) A
|*Note that the character = can be used as an equal sign and as an assignment symkol. |
L d

Figure 2.1.

Some identifiers, as discussed in later
chapters, cannot exceed seven characters in
length and must not contain the break
character. This limitation is placed ugon
certain names, called external names, that
may be referred to by the operating system
or by more than one separately compiled
procedure. If an external name of a PL/I
procedure contains more than seven
characters, it is truncated by the
compiler, which concatenates the first four
characters with the last three characters.
The entry name of a COBOL or FORTAN routine
may have up to eight characters. If more
than eight characters are specified, the
leftmost eight are taken.

Use of Blanks

Blanks may ke used freely throughout a PL/I
program. They may surround operators and
most other delimiters. In general, any
number of blanks may appear wherever one

20

Some functions of special characters

tlank is allowed, such as between words in
a statement.

One or more blanks must be used to
separate identifiers and constants that are
not separated by some other delimiter or by
a comment. However, identifiers, constants
(except character-string constants) and
composite operators (for example, ¢=)
cannot contain blanks.

Other cases that require or permit
blanks are noted in the text where the
feature of the language is discussed.
examples of the use of blanks are:

Some

AB+BC is equivalent to AB + BC
TABLE(10) is equivalent to TABLE (10)
FIRST, SECOND is equivalent to FIRST, SECOND

ATOB is not equivalent to A TO B

Comments

Comments are permitted wherever blanks are
allowed in a program, except within data
items, such as a character string. A
commént is treated as a blank and can
therefore be used in place of a required
separating blank. Comments do not
otherwise affect execution of a program;
they are used only for documentation
purposes. Comments may be coded on the
same line as statements, either inserted
between statements or in the middle of
them.

The general format of a comment is:
/% character-string */

The character pair /* indicates the
beginning of a comment. The same character
pair reversed, */, indicates its end. No
blanks or other characters can separate the
two characters of either composite pair;
the slash and the asterisk must be
immediately adjacent. The comment itself
may contain any characters except the */
combination, which would be interpreted as
terminating the comment. The initial /%
must never be in columns 1 and 2 of a line.

Exaniple:

/7% THIS WHOLE SENTENCE COULD BE
' INSERTED AS A COMMENT */

Any characters permitted for a
particular machine configuration may be
used in comments.

Basic Program Structure

A PL/I program is constructed from basic
program elements called statements. There
are two types of statements: simple and
compound. These statements make up larger
program elements called groups and blocks.

SIMPLE AND COMPOUND STATEMENTS

There are three types of simple statements:
keyword, assignment, and null, each of
which contains a statement body that is
terminated by a semicolon.

A keyword statement has a keyword to
indicate the function of the statement; the
statement body is the remainder of the
statement.

The assignment statement contains the
assignment symbol (=) and does not have a
keyword.

The null statement consists only of a
semicolon and indicates no opexation; the
semicolon is the statement body.

Examples of simple statements are:
GO TO LOOP_3; (GO TO is a keyword; the
blank between GO and TO

is optional. The state-~

ment body is IOOP_3;)

A =B+ C; (assignment statement)

A compound statement is a statement that
contains one or more other statements as a
part of its statement body. There are two
compound statements: the IF statement and
the ON statement. The final statement of a
compound statement is a simple statement
that is terminated by a semicolon. Hence,
the compound statement is terminated by
this semicolon. The IF statement can
contain two statements which may ke simple
or compund as shown in the following
example:

IF A>B THEN A = B+C; ELSE GO TO
LOOP_3;

The following is an example of the ON
statement:

ON OVERFLOW GO TO OVFIX;

Statement Prefixes

Both simple and compound statements may
have one or more prefixes. There are two
types of prefixes; the label prefix and the
condition prefix.

A lakel prefix identifies a statement so
that it can be referred to at some other
point in the program. A label prefix is an
identifier that precedes the statement and
is connected to the statement by a colon.
Any statement may have one or more lakels.
If more than one are specified, they may be
used interchangeably to refer to that
statement.

A condition prefix specifies whether or
not interrupts are to result from the
occurrence of the named conditions.
Condition names are language keywords, each
of which represents an exceptional
condition that might arise during execution
of a program. Examples are OVERFLOW and
SIZE. The OVERFLOW condition arises when
the exponent of a floating-roint number

Chapter 2: Program Elements 21

exceeds the maximum allowed (representing a
maximum value of about 107%), The SIZE
condition arises when a value is assigned
to a variable with loss of high-order
‘digits or bits.

When the programmer does not expect the
condition to arise, he may disable it by
preceding the condition name in a prefix by
the word NO. If NO is used, there can be
no intervening blank between the NO and the
condition name.

A condition prefix consists of a list of
one or more condition names, separated by
commas and enclosed in parentheses. One orxr
more condition prefixes may be attached to
a statement, and each parenthesized list
must be followed by a colon. Condition
prefixes precede the entire statement,
including any possible label prefixes for
the statement. For example:

(SIZE,NOOVERFLOW) : COMPUTE:A = B * C ** D;

The single condition prefix indicates that
an interrupt is to occur if the SIZE
condition arises during execution of the
assignment statement, but that no interrupt
is to occur if the OVERFLOW condition
arises. Note that the condition prefix
precedes the label prefix COMPUTE.

Since intervening blanks between a
prefix and its associated statement are
ignored, it is often convenient, when using
card input, to punch the condition prefix
into a separate card that precedes the card
into which the statement is punched. Thus,
after debugging, the prefix can be easily
removed. For example:

(NOCONVERSION) :
(SIZE,NOOVERFLOW) 3
COMPUTE: A = B * C ** D;

Note that there are two condition prefixes.
The first specifies that no interrupt is to

22

. for control purposes.
.called a DO-group.

:defines an area of a program.

‘control purposes.
ione oxr more blocks.
;appear within a block.

‘statement in another klock.
.procedure in a program to be executed is
;invoked automatically by the operating

.occur if an invalid character is
encountered during an attempted data
‘conversion.

Condition prefixes are discussed in
chapter 14, "Exceptional Condition Handling
and Program Checkout".

GROUPS AND BLOCKS

A group is a sequence of statements headed

by a DO statement and terminated by a

corresponding END statement. It is used
A group also may be

A block is a sequence of statements that

It is used

to delimit the scope of a name and for

A program may consist of
Every statement must

There are two kinds

of klocks: begin blocks and procedure
blocks. A begin block is delimited by a

BEGIN statement and an END statement. 2

.procedure block is delimited by a PROCEDURE
'statement and an END statement.
‘begin block must be contained within some
.procedure block.

Every

Execution passes sequentially into and
out of a begin klock. However, a procedure
block must be invoked by execution of a
The first

system. This first procedure must ke

;identified by specifying OPTIONS (MAIN) in
‘the PROCEDURE statement.

A procedure block may be invoked as a

.task, in which case it is executed
rconcurrently with the invoking procedure.

Tasks are discussed in chapter 17,
"Multitasking".

Data is generally defined as a
representation of information or of value.

In PL/I, reference to a data item,
arithmetic or string, is made by using
either a variable or a constant (the terms
are not exactly the same as in general
mathematical usage).

A variable is a symbolic name having a
value that may change during execution of a
program.

A constant (which can be a symbolic
name) has a value that cannot change.

The following statement has both
variables and constants:

AREA = RADIUS#*#*2*3,1416;

AREA and RADIUS are variables; the numbers
2 and 3.1416 are constants. The value of
RADIUS is a data item, and the result of
the computation will be a data item that
will be assigned as the value of AREA. The
number 3.1416 in the statement is itself
the data item.

If the number 3.1416 is to be used in
more than one place in the program, it may
be convenient to represent it as a variable
to which the value 3.1416 has been
assigned. Thus, the above statement could
be written as:

PI = 3.1416;
AREA = RADIUS**2*PI;

In the last statement, only the digit 2 is
a constant.

A constant does more than state a value;
it demonstrates various characteristics of
the data item. For example, 3.1416 shows
that the data type is arithmetic and that
the data item is a decimal number of five
digits and that four of these digits are to
the right of the decimal point.

A constant represented by a symbolic
name has a value which is determined by the
compiler and which the programmer does not
need to know. Normally, such constants are
associated with the control of the program;
they represent addresses in internal
storage rather than computational values.
For instance, PL/I statements can be given
labels. The identifier used for such a
label is a symbolic name which represents a
constant, namely the address of the code
generated by that statement.

‘briefly in this chapter.

Chapter 3: Data Elements

The characteristics of a variakle or a
symkolic constant are not immediately
apparent in the name. Since these
characteristics, called attributes, must be
known, certain keywords and expressions may
be used to specify the attributes in a
DECLARE statement. The attributes used to
describe each data type are discussed
A complete
discussion of each attribute appears in
section I, "Attributes".

In preparing a PL/I program, the
programmer must ke familiar with the tyges
of data that are permitted, the ways in
which data can ke organized, and the
methods ky which data can be referred to.
The following paragraphs discuss these
features.

Data Types

The types of data that may be used in a
PL/I program fall into two categories:
problem data and program control data.
Proklem data is used to represent values to
be processed by a program. It consists of
two data types, arithmetic and string.
Program control data is used by the
programmer to control the execution of his
program. Program control data consists of
the following types: label, event, file,
entry, locator, task, and area.

Problem Data

The types of problem data are arithmetic
and string.

ARITHMETIC DATA

An item of arithmetic data is one with a
numeric value. Arithmetic data items have
the characteristics of base, scale,
precision, and mode. The characteristics
of data items represented by an arithmetic
variable are specified by attrikutes
declared for the name, or assumed by
default.

The base of an arithmetic data item is
either decimal or binary.

Chapter 3: Data Elements 23

The scale of an arithmetic data item is
either fixed-point or floating-point. A
fixed~point data item is a number in which
the position of the decimal or binary point
is specified, either by its appearance in a
constant or by a scale factor declared for
a variable. A floating-point data item is
2 number followed by an optionally signed
exponent. The exponent specifies the
assumed position of the decimal or binary
point, relative to the position in which it
appears.

The precision of an arithmetic data item
is the number of digits the data item may
contain, in the case of fixed-point, or the
minimum number of significant digits
(excluding the exponent) to be maintained,
in the case of floating-point. For
fixed-point data items, precision can also
specify the assumed position of the decimal
or binary point, relative to the rightmost
digit of the number.

Whenever a data item is assigned to a
fixed-point variable, the declared
precision is maintained. The assigned iten
is aligned on the decimal or binary point.
Leading zeros are inserted if the assigned
item contains fewer integer digits than
declared; trailing zeros are inserted if it
contains fewer fractional digits. A SIZE
error may occur if the assigned item
contains too many integer digits;
truncation on the right may occur, without
rounding, if it contains too many
fractional digits.

The mode of an arithmetic data item is
either real or complex. A real data item
is a number that expresses a real value. A
complex data item is a pair of numbers:
the first is real and the second is
imaginary. For a variable regresenting
complex data items, the base, scale, and
precision of the two parts must be
identical.

Base, scale, and mode of arithmetic
variables are specified by keywords;
precision is specified by parenthesized
decimal integer constants. The precision
of arithmetic variables and constants is
discussed in greater detail below.

In the following sections, the real
arithmetic data types discussed are decimal
fixed-point, binary fixed-point, decimal
floating-point, and binary floating-point.
Any of these can be used as the real part
of a complex data item. The imaginary part
of a complex number is discussed in the
section "Complex Arithmetic Data," in this
chapter.

Complex arithmetic variables must be

explicitly declared with the COMPLEX
attribute. Real arithmetic variables may

24

be explicitly declared to have the REAL
attribute, kut it is not generally
necessary to do so, since an arithmetic
variable is generally assumed to be real
unless it is explicitly declared complex.

Decimal Fixed-Point Data

A decimal fixed-point constant consists of
one or more decimal digits with an optional
decimal point. If no decimal point
appears, the point is assumed to ke
immediately to the right of the rightmost
digit. A sign may optionally precede a
decimal fixed-point constant.

Examples of decimal fixed-point
constants as written in a program are:

3.1416
455.3
732
003
-5280
,0012

: For expression evaluation, decimal
fixed-point constants have an apparent
precision (p,q), where p is the total
number of digits in the constant and q is
the number of digits specified to the right
of the decimal point. For example:

3.14 has the precision (3,2)

The keyword attributes for declaring
decimal fixed-point variables are DECIMAL
and FIXED. Precision is stated by two
decimal integers, separated by a comma and
enclosed in parentheses. The first, which
must be unsigned, specifies the total
number of digits; the second, the scale
factor, may be signed and specifies the
numker of digits to the right of the
decimal point. If the variable is to
represent integers, the scale factor and
its preceding comma can be omitted. The
attriktutes may appear in any order, kut the
precision specification must follow either
DECIMAL or FIXED (or REAL or COMPLEX).
Following are examples of declarations of
decimal fixed-point variables:

DECLARE A FIXED DECIMAL (5,4);
DECLARE B FIXED (6,0) DECIMAL;
DECLARE C FIXED (7,-2) DECIMAL;

DECLARE D DECIMAL FIXED REAL(3,2)

The first DECLARE statement specifies that
the identifier A is to represent decimal
fixed-point items of not more than five
digits, four of which are to be treated as
fractional, that is, to the right of the
assumed decimal point. Any item assigned
to A will be converted to decimal
fixed-point and aligned on the decimal
point. The second DECLARE statement
specifies that B is to represent integers
of no more than 6 digits. Note that the
comma and the zero are unnecessary; it
could have been specified B FIXED DECIMAL
(6). The third DECLARE statement specifies
a negative scale factor of -2; this means
that the assumed decimal point is two
places to the right of the rightmost digit
of the item. The fourth DECLARE statement
specifies that D is to represent
 fixed-point items of no more than three
digits, two of which are fractional.

The maximum number of decimal digits
allowed is 15. Default precision, assumed
when no specification is made, is (5,0).
The internal coded arithmetic form of
decimal fixed-point data is packed decimal.
Packed decimal is stored two digits to the
byte, with a sign indication in the
rightmost four bits of the rightmost byte.
Consequently, a decimal fixed-point data
item is always stored as an odd number of
digits, even though the declaration of the
variable may specify the number of digits
(p) as an even number. When the
declaration specifies an even number of
digits, the extra digit place is in the
high-order position, and it participates in
any operations performed upon the data
item, such as in a comparison operation.
Any arithmetic overflow or assignment into
an extra high-order digit place can be’
detected only if the SIZE condition is
enabled,

Binary Fixed-Point Data

A binary fixed-point constant consists of
one or more binary digits with an optional
binary point, followed immediately by the
letter B, with no intervening blank. 2
sign may optionally precede the constant.

Examples of binary fixed-point constants
as written in a program are:

10110B
11111B
101B
-111.01B

1011.111B

For expression evaluation, binary
fixed-point constants have an apparent
precision (p,q), where p is the total
number of binary digits in the constant,
and q is the numker of kinary digits
specified to the right of the binary point.
For example:

0000001B has the precision (7,0)

The keyword attributes for declaring
binary fixed-point variables are BINARY and
FIXED. Precision is specified Ly two
decimal integer constants, enclosed in
parentheses, to represent the maximum
number of binary digits and the number of
digits to the right of the binary point,
respectively. If the variakle is to
represent integers, the second digit and
the comma can be omitted. The attrikutes
can appear in any order, but the precision
srecification must follow either BINARY ox
FIXED (or REAL or COMPLEX).

Following is an example of declaration
of a binary fixed-point variable:

DECLARE FACTOR BINARY FIXED (20,2);

FACTOR is declared to be a variable that
can represent arithmetic data items as
large as 20 binary digits, two of which are
fractional. The decimal equivalent of that
value range is from -262,144.00 through
+262, 143,75,

The maximum number of binary digits
allowed is 31. Default precision is
(15,0). The internal coded arithmetic form
of kinary fixed-point data can ke either a
fixed-point binary halfword or fullword. A
halfword is 15 kits plus a sign bit, and a
fullword is 31 bits plus a sign bit. Any
binary fixed-point data item with a
precision of (15,0) or less is stored as a
halfword, and with a precision greater than
(15,0), up to the maximum precision, is
stored as a fullword. The declared numkber
of digits are considered to be in the
low-order positions, but the extra
high-order digits participate in any
operations performed upon the data item.
Any arithmetic overflow into such extra
high-order digit positions can be detected
only if the SIZE condition is enabled.

An identifier for which no declaration
is made is assumed to be a binary
fixed-point variakle, with default
precision, if its first letter is any of
the letters I through N, when the standard
default rules are arplied.

Chapter 3: Data Elements 25

Decimal Floating-point Data

A decimal floating-point constant is
written as a field of decimal digits
followed by the letter E, followed by an
optionally signed decimal integer exponent.
The first field of digits may contain a
decimal point. The entire constant may be
preceded by a plus or minus sign. Examples
of decimal floating-point constants as
written in a program are:

15E-23

15E23

4E-3
-48333E65
438E0
3141593E-6
.003141593E3

The last two examples represent the same
value.

For expression evaluation, decimal
floating-point constants have an apparent
precision (p) where p is the number of
digits of the constant to the left of the E
(the mantissa). For example:

0.012E5 has the precision (#)

The keyword attributes for declaring
decimal floating-point variables are
DECIMAL and FLOAT. Precision is stated by
a decimal integer constant enclosed in
parentheses., It specifies the minimum
number of significant digits to be
maintained. If an item assigned to a
variable has a field width larger than the
declared precision of the variable,
truncation may occur on the right. The
least significant digit is the first that
is lost. Attributes may appear in any
order, but the precision specification must
follow either DECIMAL or FLOAT (or REAL or
COMPLEX) .

Following is an example of declaration
of a decimal floating-point variable:

DECLARE LIGHT_YEARS DECIMAL FLOAT(5);

This statement specifies that LIGHT_YEARS
is to represent decimal floating-point data
items with an accuracy of at least five
significant digits.

The maximum precision allowed for
decimal floating-point data items is (33);
the default precision is (6). The exponent
cannot exceed two digits. A value range of

26

‘hexadecimal digit.

approximately 10-78 to 107% can be
expressed by a decimal floating-point data
item. The internal coded arithmetic form
of decimal floating-point data is
normalized hexadecimal floating-point, with
the point assumed to the left of the first
If the declared
precision is less than or equal to (6),
short floating-point form is used; if the
declared precision is greatexr than (6) and
less than or equal to (16), long
floating-point form is used; if the
declared precision is greater than (16),
extended floating-point form is used.

An identifier for which no declaration
is made is assumed to be a decimal
floating~-point variable if its first letter
is any of the letters A through H, ©
through Z, or one of the alphaketic
extenders, $, #, 3, when the standard
default rules are applied.

Binary Floating-point_ Data

A binary floating-point constant consists
of a field of binary digits followed Ly the
letter E, followed by an optionally signed
decimal integer exponent followed by the
letter B. The exponent is a decimal
integer and specifies power of two. The
field of binary digits may contain a binary
point. The entire constant may be preceded
by a plus or minus sign. Examples of
binary floating-point constants as written
in a program are:

101101E5B
101.101E2B
11101E-28B
-10.01E998

For expression evaluation, binary
floating-point constants have an arparent
precision (p) where p is the number of
binary digits to the left of the E (the
mantissa). For example:

0.0101E33B has the precision (5)

The keyword attributes for declaring
binary floating~point variables are BINARY
and FLOAT. Precision is expressed as a
decimal integer constant, enclosed in
parentheses, to specify the minimum number
of significant digits to be maintained.
The attributes can appear in any order, but
the precision specification must follow
either BINARY or FLCAT (or REAL or
COMPLEX). Following is an example of
declaration of a kinary floating-point
variable:

DECLARE S BINARY FLOAT (16);

This specifies that the identifier S is to
represent binary floating-point data items
with 16 digits in the binary field.

The maximum precision allowed for binary
floating-point data items is (109); the
default precision is (21). The exponent
cannot exceed three decimal digits. A
value range of approximately 2-260 to 2252
can be expressed by a binary floating-point
data item. The internal coded arithmetic
form of binary floating-point data is
normalized hexadecimal floating-point. If
the declared precision is less than or
equal to (21), short floating-point form is
used; if the declared precision is greater
than (21) and less than or equal to (53),
long floating-point form is used; if the
declared precision is greater than (53),
extended floating~point form is used.

Complex Arithmetic_Data

In the complex mode, an arithmetic data
item is considered to consist of two parts,
the first a real part and the second a
signed imaginary part. There are no
complex constants in PL/I. A complex value
is obtained by a real constant and an
imaginary constant.

An imaginary constant is written as a
real constant of any type immediately’
followed by the letter I,

Examples of imaginary constants as
written in a program are:

271
3.968E10I
11011,01BI

Each of these is considered to have a real
part of zero. A complex value with a
non-zexo real part is represented in the
following form:

{+]-] real constant {+|-}
imaginary-constant

;Thus a complex value could be written as
38+271.

The keyword attribute for declaring a
complex variable is COMPLEX. A complex
variable can have any of the attributes
valid for the different types of real
arithmetic data. Each of the base, scale,
and precision attributes applies to both

 fields.

Unless a variakle is explicitly declared
to have the COMPLEX attribute, it is
assumed to represent real data items.

Numeric Character Data

A numeric character data item (also known
as a numeric field data item) is the value
of a variable that has keen declared with
the PICTURE attrikute and a numeric picture
specification. The data item is the
character representation of a decimal
fixed-point or floating-point value.

A numeric picture specification
describes a character string to which only
data that has, or can be converted to, an
arithmetic value is to ke assigned. A
numeric picture specification cannot
contain either of the picture characters A
or X, which are used for non-numeric
picture-character strings. The basic form
of a numeric picture specification is one
or more occurrences of the digit-specifying
picture character 9 and an optional
occurrence of the picture character v, to
indicate the assumed location of a decimal
point. The picture sgecification must ke
enclosed in single quotation marks. For
example:

*999vI99"

This numeric picture specification
describes a data item consisting of up to
five decimal digits in character form, with
a decimal point assumed to precede the
rightmost two digits.

Repetition factors may be used in
numeric picture specifications. A
repetition factor is a decimal integer
constant, enclosed in parentheses, that
indicates the number or regetitions of the
immediately following picture character.
For example, the following picture
specification would result in the same
description as the example shown akove:

*(3NIv()9

The format for declaring a numeric
character variakle is:

DECLARE identifier PICTURE
‘numeric-picture-sgecification';

For examgple:
DECLARE PRICE PICTURE '999Vv99°';
This specifies that any value assigned to
PRICE is to ke maintained as a character

string of five decimal digits, with an
assumed decimal point preceding the

Chapter 3: Data Elements 27

rightmost two digits. Data assigned to
PRICE will be aligned on the assumed point
in the same way that point alignment is
maintained for fixed-point decimal data.

The numeric picture specification
specifies arithmetic attributes of data in
much the same way that they are specified
by the aprearance of a constant. Only
decimal data can be represented by picture
characters. Complex data can be declared
by specifying the COMPLEX attribute along
with a single picture specification that
describes either a fixed-point or a
floating-point data item.

The maximum number of decimal digits
allowed in a numeric character item is 15.

It is important to note that, although
nuneric character data has arithmetic
attributes, it is not stored in coded
arithmetic form. Numeric character data is
stored in zoned decimal format; before it
can be used in arithmetic computations, it
must be converted either to packed decimal
or to hexadecimal floating-point format.
Such conversions are done automatically,
but they require extra execution time.

Although numeric character data is in
character form, like character strings, and
although it is aligned on the decimal point
like coded arithmetic data, it is processed
differently from the way either coded
arithmetic items or character strings are
processed. Editing characters can be
specified for insertion into a numeric
character data item, and such characters
are actually stored within the data itenm.
Consequently, when the item is printed or
treated as a character string, the editing
characters are included in the assignment.
If, however, a numeric character item is
assigned to another numeric character or
arithmetic variable, the editing characters
will not be included in the assignment;
only the actual digits and the location of
the assumed decimal point are assigned.

consider the following example:

DECLARE PRICE PICTURE '$99v.99°,
COST CHARACTER (6),
VALUE FIXED DECIMAL (6,2);

PRICE = 12.28;
COST = '$12.28"';

In the picture specification for PRICE, the
currency symbol ($) and the decimal point
(.) are editing characters. They are
stored as characters in the data item.

They are not, however, a part of its
arithmetic value. After execution of the
second assignment statement, the actual
internal character representation of PRICE

28

the same.
.function the same.

.and COST can be considered identical. If

they were printed, they would print exactly
They do not, however, always
For example:

VALUE = PRICE;
COST = PRICE;
VALUE = COST;
PRICE = COST;

After the first two assignment
statements are executed, the value of VALUE
would be 0012.28 and the value of COST
would be '$12.28'., In the assignment of
PRICE to VALUE, the currency symbol and the
decimal point are considered to be editing
characters, and they are not part of the
assignment; the arithmetic value of PRICE
is converted to internal coded arithmetic
form. In the assignment of PRICE to COST,
however, the assignment is to a character
string, and the editing characters of a
numeric picture specification always
participate in such an assignment. No
conversion is necessary because PRICE is
stored in character form.

The third and fourth assignment
statements would cause errors. The value
of COST cannot be assigned to VALUE kecause
the currency symbol in the string makes it
invalid as an arithmetic constant. The
value of COST cannot be assigned to PRICE
for exactly the same reason. Only values
that are of arithmetic type, or that can be
converted to arithmetic type, can ke
assigned to a variable declared with a
numeric picture specification.

Note: Although the decimal point can be an
editing character or an actual character in
a character string, it will not cause an
error in converting to arithmetic form,
since its appearance is valid in an
arithmetic constant. The same would be
true of a valid plus or minus sign, since
arithmetic constants can be preceded by
signs.

- Other editing characters, including zero
suppression characters, drifting
characters, and insertion characters, can
be used in numeric picture specifications.
For complete discussions of picture
characters, see section D, "Picture
Specification Characters®™ and the
discussion of the PICTURE attrikute in
section I, "Attributes".

STRING DATA

A string is a contiguous sequence of
characters (or binary digits) that is
treated as a single data item. The length
of the string is the number of characters
(or binary digits) it contains.

There are two types of strings:
character strings and bit strings.

Character-string Data

A character string can include any digit,
letter, or special character recognized as
a character by the particular machine
configuration. Any blank included in a
character string is an integral character
and is included in the count of length. A
comment that is inserted within a character
string will not be recognized as a comment.
The comment, as well as the comment
delimiters (/* and */), will be considered
to be part of the character-string data.

Character-string constants, when written
in a program, must be enclosed in single
quotation marks. If a single quotation
mark is a character in a string, it must ke
written as two single quotation marks with
no intervening blank. The length of a
character string is the number of
characters between the enclosing quotation
marks. If two single quotation marks are
used within the string to represent a
single quotation mark, they are counted as
a single character.

Examples of character-string constants
are:

*LOGARITHM TABLE'

‘PAGE 5"

‘SHAKESPEARE''S *''*HAMLET"''‘'*‘'
'AC438-19"

(2) *WALLA

The third example actually indicates
SHAKESPEARE'S '*HAMLET'' with a length of
24, In the last example, the parenthesized
number is a repetition factor, which
indicates repetition of the characters that
follow. This example specifies the
constant 'WALLA WALLA ' (the blank is
included as one of the characters to be
repeated). The repetition factor must be
an unsigned decimal integer constant,
enclosed in parentheses. It has a maximum
permissible value of 32767.

A null character-string constant is
written as two quotation marks with no
intervening blank.

The keyword attribute for declaring a
character-string variable is CHARACTER.
Length may ke declared ky an expression ox
a decimal integer constant, enclosed in
parentheses, which specifies the number of
characters in the string. The length
specification must follow the keyword
CHARACTER. For example:

DECLARE NAME CHARACTER (15);

This DECLARE statement specifies that the
identifier NAME is to represent
character-string data items, 15 characters
in length. If a character string shorter
than 15 characters were to be assigned to
NAME, it would ke left adjusted and padded
on the right with blanks to a length of 15.
If a longer string were assigned, it would
be truncated on the right. (Note: If such
truncation occurs it can be detected by use
of the STRINGSIZE condition).

When no length is specified, the
standard default assumption is a length of
one.

Character-string variables may also ke
declared to have the VARYING attrikute, as
follows:

DECLARE NAME CHARACTER (15) VARYING;

This DECLARE statement specifies that the
identifier NAME is to ke used to represent
varying-length character-strxing data items
with a maximum length of 15. The actual
length attribute for NAME at any particular
time is the length of the data item
assigned to it at that time. The
programmer need not keep track of the
length of a varying-length character
string; this is done automatically. The
length at any given time can be determined
by the programmer, however, by use of the
LENGTH built-in function, as discussed in
chapter 13, "Editing and String Handling".

Character-string data is maintained
internally in character format, that is,
each character occupies one byte of
storage. The maximum length allowed for
variables declared with the CHARACTER
attribute is 32,767. The maximum length
allowed for a character-string constant
before application of repetition factors
varies according to the amount of storage
available to the compiler, but it will
never be less than 512. The minimum length
for a character string is zero. The
storage allocated for varying-length
strings is two bytes longer than the
declared maximum length. The initial two

Chapter 3: Data Elements 29

bytes hold the string's current length, in
bytes.

Character-string variables also can be
declared using the PICTURE attribute of the
form:

PICTURE ‘'character-picture-specification’

The character picture specification is a
string composed of the picture
specification characters A, X, and 9. The
string of picture characters must be
enclosed in single quotation marks, and it
must contain at least one A or X and no
other picture characters except 9. The
character A specifies that the
corresponding position in the described
field will contain an alphabetic character
or blank. The character X specifies that
any character may appear in the
corresponding position in the field. The
picture character 9 specifies that the
corresponding position will contain a
numeric character or blank. For example:

DECLARE PART_NO PICTURE 'AA9999X999°';

This DECLARE statement specifies that the
identifier PART_NO will represent
character-string data items consisting of
two alphabetic characters, four numeric
characters, one character that may be any
character, and three numeric characters.

Repetition factors are used in picture
specifications differently from the way
they are used in string constants.
Repetition factors must be placed inside
the quotation marks. The repetition factor
specifies repetition of the immediately
following picture character. For example,
the above picture specification could be
written:

'(2)a(4)9%x(3)9°"

The maximum length allowed for a picture
specification is the same as that allowed
for character-string constants, as
discussed above.

Note that, for character picture
specifications, the picture character 9
specifies a digit or a_blank, while, for
numeric picture specifications, the same
character specifies only a digit.

Bit-string Data

A bit~-string constant is written in a
program as a series of binary digits
enclosed in single quotation marks and
followed immediately by the letter B.

30

. the string.
‘in the length specification since it is not
- paxt of the string.
" specification must follow the keyword BIT.

A null bit-string constant is written as
two quotation marks with no intervening
blank, followed immediately by the letter
B.

Examples of bit-string constants as
written in a program are:

'1'B
*11111010110001°'B
(64)'0'B

l'B

The parenthesized numker in the third
example is a repetition factor which
specifies that the following series of
digits is to be repeated the specified
number of times. The example shown would
result in a string of 64 binary zeros.

A bit-string variable is declared with
the BIT keyword attrikute. Length may ke
declared by an expression or a decimal
integer constant, enclosed in parentheses,
to specify the number of binary digits in
The letter B is not included

The length

Following is an example of declaration of a
bit-string variable:

DECLARE SYMPTOMS BIT (64);
Like character strings, bit strings are

assigned to variables from left to right.
If a string is longer than the length

“declared for the variable, the rightmost
~digits are truncated; if shorter, padding,

on the right, is with zeros.

If no length is specified, a length of
one is assumed.

A bit-string variable may be given the
VARYING attribute to indicate it is to ke
used to represent varying-length bit
strings. Its application is the same as
that described for character-string
variakles in the preceding section.

Bit strings are stored eight bits to a
byte. The maximum length allowed for a
bit-string variakle is 32,767. The maximum
length allowed for a Lit-string constant
before application of repetition factors

‘depends upon the amount of storage
‘available to the compiler, but it will

never be less than 4096 (512 bytes). The
minimum length for a kit string is zero.
The storage allocated for varying-length

'strings is two bytes longer than that

required by the declared maximum length.

.The initial two bytes hold the string's
.current length, in kits.

UNITIALIZED VARIABLES

When the programmer makes a reference to an
arithmetic or string variable such that the
variable should contain a valid value -
assigns the value to another variable for
instance - errors can occur if this is the
first reference to the variable. The
programmer must ensure that a variable has
been assigned a value before trying to
access it. The checkout compiler checks
whether this has been done.

To facilitate this checking, the
compiler assigns a special value to each
variable as soon as storage is allocated to
it. An attempt to use a variable having
this value will result in interruption of
execution. The special value is one which
the variable would not normally have. For
instance, with a varying~length character
string, the compiler assigns the variable a
length of -1. Certain of these special
values, however, might occassionally be
used by the programmer. These are as
follows.

Fixed length character strings:
X'FE' in the first byte
Picture data:
X'FE' in the first byte

values can be set
Default values

Fixed-point binary data:
by the user at sysgen time.
are:

X'8000', i.e. -2° + 1

X'80000000°, i.e. =2'° +1

halfwoxd
fullword

If it is essential that one of the above
values is used in a program to be run under
the checkout compiler, the compiler options
should specify that no checking for
unitialized variakles is carried out. The
optimizing compiler does not check for
unitialized variables.

Program Control Data

The types of program control data are file,
label, entrxry, event, task, locator, and
area.

FILE DATA

A file data item represents information
about a PL/I1 file. It may be a file

constant, or the value of a file variakle.
A file constant can be assigned to a file
variable: a reference to the file variakle
is a reference to the assigned file
constant.

LABEL DATA

A label data item is a lakel constant or
the value of a label variable.

A lakel constant is an identifier
written as a prefix to a statement so that,
during execution, program control can be
transferred to that statement through a
reference to its lakel. A colon connects
the label to the statement.

ABCDE: MILES = SPEED*HOURS;
In this example, ABCDE is the statement
label. The statement can be executed
either by normal sequential execution of
instructions or by transferring control to
this statement from some other point in the
program by means of a GO TO statement.

As used above, ABCDE can be classified
further as a statement-label constant. A
statement-label variable is an identifier
that refers to statement-label constants.
Consider the following example:

LBL_A: statement;
LBL_B: statement;
LBL_X = LBL_A;

GO TO LBL_X;

LBL_A and LBL_B are statement-lakel
constants because they are prefixed to
statements. LBL_X is a statement-lakel
variable. By assigning LBL_A to IBI_X, the
statement GO TO LBL_X causes a transfer to
the LBL_A statement. Elsewhere, the
program may contain a statement assigning
LBL_B to LBL_X. Then, any reference to
LBL_X would be the same as a reference to
LBL_B. This value of LBL_X is retained
until another value is assigned to it.

Chapter 3: Data Elements 31

A statement-label variable must be
declared with the LABEL attribute, as
follows:

DECLARE LBL_X LABEL;

ENTRY DATA

Entry data is used only in connection with
entry names, and has values which permit
references to be made to entry points of
procedures. Entry data may be an entry
constant or the value of an entry variable.

An entry constant is an identifier that
appears in the program as an entry name
written as a prefix to a PROCEDURE or ENTRY
statement. It permits references to be
made to an entry point of a procedure.

Example:

P: PROCEDURE;
CALL P1;

CALL P1A;

P1: PROCEDURE;

3

Pi1A: ENTRY;

P1 and P1A are declared as entry constants.
Control is transferred to the procedure

entry points designated bty P1 or P1A when a
reference is made to either entry constant.

An entry variable is an identifier that
refers to an entry constant. Consider the
following example:

DECLARE EV ENTRY VARIABLE,
(E1,E2) ENTRY;

EV = E1;
CALL EV;
EV = E2;
CALL EV;

EV is declared an entry variable by means
of the VARIABLE attribute. The first CALL
statement invokes an entry point
represented by the entry constant E1. The
second CALL invokes the entry point E2.

32

EVENT DATA

Event variables are used to coordinate the
concurrent execution of a number of
procedures, or to allow a degree of overlap
between a record~oriented input/output
operation (or the execution of a DISPLAY
statement) and the execution of other
statements in the procedure that initiated
the operation.

A variable is given the EVENT attrikute
by its appearance in an EVENT option or a
WAIT statement, or by explicit declaration,
as in the following example:

DECLARE ENDEVT EVENT;

For detailed information, see chagpter
17, "Multitasking," chapter 12,
"Record-Oriented Transmission®", or
"DISPLAY" in section J, "Statements".

TASK DATA

Task variables are used to control the
relative priorities of different tasks
(i.e., concurrent separate executions of a
procedure or procedures).

A variable is given the TASK attrilkute
by its appearance in a TASK option, or Ly
explicit declaration, as in the following
example:

DECLARE ADTASK TASK;

For detailed information, see chapter
17, "Multitasking."

LOCATOR DATA

There are two types of locator data:
pointer and offset.

The value of a pointer variakle is
effectively an address of a location in
storage, and so it can ke used to qualify a
reference to a variable that may have Lkeen
allocated storage in several different
locations.

The value of an offset variakle
specifies a location relative to the start
of a reserved area of storage and remains
valid when the address of the area itself
changes.

Locatoxr variakles can be declared as in
the following example:

DECLARE HEADPTR POINTER,
FIRST OFFSET (AREA1);

In this example, AREA1 is the name of the
reserved area of storage that will contain
the location specified by FIRST.

A variable can also be given the POINTER
attribute by its appearance in the BASED
attribute, by its appearance on the
left-hand side of a locator qualification
symbol, or by its appearance in a SET
option.

For detailed information, see chapter 8,
"Storage Control".

AREA DATA

Area variables are used to describe areas
of storage that are to be reserved for the
allocation of based variables. An area can
be assigned or transmitted complete with
its contained allocations; thus, a set of
based allocations can be treated as one
unit for assignment and input/output while
each allocation retains its individual
identity.

A variable is given the AREA attribute
either by its appearance in the OFFSET
attribute or an IN option, or by explicit
declaration, as in the following example:

DECLARE AREA1 AREA(2000),
AREA2 AREA;

The number of bytes of storage to be
reserved can be stated explicitly, as it
has been for AREA1 in the example;
otherwise a default size is assumed. The
default size is 1000 bytes; the theoretical
maximum size is 16,777,200 bytes but in
practice the maximum depends on the amount
of storage available to the program.

For detailed information, see chapter 8,
"Storage Control",

Data Organization

In PL/I, data items may be single data
elements, or they may be grouped together
to form data collections called arrays and
structures. A variable that represents a
single element is an element variable (also
called a scalar variable). A variable that
represents a collection of data elements is
either an array variable or a structure
variable.

Any type of problem data or program
control data can be ccllected into arrays
or structures.

ARRAYS

Data elements having the same
characteristics, that is, of the same data
type and of the same precision or length,
may be grouped together to form an array.
An array is an n-dimensional collection of
elements, all of which have identical
attributes. Only the array itself is given
a name. An individual item of an array is
referred to ky giving its relative position
within the array.

consider the following two declarations:
DECLARE LIST (8) FIXED DECIMAL (3);

DECLARE TABLE (4,2) FIXED DECIMAL (3);

In the first example, LIST is declared to
be a one-dimensional array of eight
elements, each of which is a fixed-point
decimal item of three digits. 1In the
second example, TABLE is declared to Le a
two-dimensional array, also of eight
fixed-point decimal elements.

The parenthesized number or numbers
following the array name in a DECLARE
statement is the dimension attribute
specification. It must follow the array
name, with or without an intervening blank.
It specifies the number of dimensions of
the array and the bkounds, or extent, of
each dimension. Since only one bounds
specification appears for LIST, it is a
one-dimensional array. Two bounds
specifications, separated by a comma, are
listed for TABLE; consequently, it is
declared to ke a two-dimensional array.

The kounds of a dimension are the
beginning and the end of that dimension.
The extent is the numker of integers
between, and including, the lower and upper
bounds. If only one integer apgears in the
bounds specification for a dimension, the
lower bound is assumed to be 1. The one
dimension of LIST has kounds of 1 and 8;
its extent is 8. The two dimensions of
TABLE have kounds of 1 and 4 and 1 and 2;
the extents are 4 and 2.

If the lower bound of a dimension is not
1, koth the upper bound and the lower kound
must be stated explicitly, with the two

Chapter 3: Data Elements 33

numbers connected with a colon. For
example:

DECLARE LIST A (4:11);
DECLARE LIST B (-4:3);

In the first example, the bounds are 4 and
11; in the second they are -4 and 3. Note
that the extents are the same; in each
case, there are 8 integers from the lower
bound through the upper bound. It is
important to note the difference between
the bounds and the extent of an array. In
the manipulation of array data (discussed
in chapter 4, "Expressions and Data
Conversions") involving more than one
array, the bounds -- not merely the
extents -- must be identical. Although
LIST, LIST_A, and LIST_B all have the same
extent, the bounds are not identical.

The bounds of an array determine the way
elements of the array can be referred to.
For example, assume that the following data
items are assigned to the array LIST, as
declared above:

20 5 10 30 630 150 310 70

The different elements would be referred
to as follows:

Reference Element
LIST (1) 20
LIST (2) 5
LIST (3) 10
LIST (4) 30
LIST (5) 630
LIST (6) 150
LIST (7) 310
LIST (8) 70

Each of the numbers following the name
LIST is a subscript. A parenthesized
subscript following an array name, with ox
without an intervening blank, identifies a
particular data item within the array. A
subscripted name, such as LIST(4), refers
to a single element and is an element
variable. The entire array can be referred
to by the unsubscripted name of the array,
for example, LIST. 1In this case, LIST is
an array variable. Note the difference
between a subscript and the dimension
attribute specification. The latter, which
appears in a declaration, specifies the
dimensionality and the number of elements
in an array. Subscripts are used in other
references to identify specific elements
within the array.

34

. Note:

.declared for an array.
‘an element of any array, a subscripted name
‘must contain as many subscripts as there
-are dimensions in the array.

.shown arrays of arithmetic data.

The same data could be assigned to
LIST_A and LIST_B, as declared above
(though not by direct assignment from

LIST). In this case it would be would be

referred to as follows:
Reference Element Reference
LIST_A (4) 20 LIST_B (~4)
LIST_A (5) 5 LIST_B (-3)
LIST_A (6) 10 LIST_B (-2)
LIST A (7) 30 LIST B (-1)
LIST A (8) 630 LIsT_B (0)
LIST_A (9) 150 LIST_B (1)
LIST A (10) 310 LIST_B (2)
LIST A (1) 70 LIST_B (3)

Assume that the same data were assigned

- to. TABLE, which is declared as a

two-dimensional array (though note again

| that assignment could not be direct from

LIST to TABLE). TABLE can be illustrated
as a matrix of four rows and two columns,

i as follows:

TABLE(m,n) Am, 1) fm,2)
(1,n) 20 5
(2,n) 10 30
(3,n) 630 150
(4,n) 310 70

An element of TABLE is referred to by a

. subscripted name with two parenthesized

' subscripts, separated ty a comma. For

. example, TABLE (2,1) would specify the

- first item in the second row, in this case,
- the data item 10.

The use of a matrix to illustrate
TABLE is purely conceptual. It has no

s relationship to the way in which the items
‘are actually organized in storage.

Data
items are assigned to an array in row major

-order, that is, with the right-most

subscript varying most rapidly. For
example, assignment to TABLE would ke to
TABLE(1,1), TABLE(1,2), TABLE(2,1),

'TABLE(2,2) and so forth.

Arrays are not limited to two
dimensions; up to 15 dimensions can be
In a reference to

Examples of arrays in this chapter have
All data
types may be collected into arrays. String

arrays, either character or bit, are valid,
as are arrays of label, entry, event, file,
area, task, or locator data.

Expressions_as Subscripts

The subscripts of a subscripted name need
not be constants. Any expression that
yields a valid arithmetic value can be
used. If the evaluation of such an
expression yields a value that is not a
fixed-point binary integer, it is converted
to FIXED BINARY(15,0), since subscripts are
maintained internally as binary integers.

Subscripts are frequently expressed as
variables or other expressions. Thus,
TABLE(I,J*K) could be used to refer to the
different elements of TABLE by varying the
values of I, J, and K.

Cross-sections_of Arrays

Cross-sections of arrays can be referred to
by substituting an asterisk for a subscript
in a subscripted name. The asterisk then
specifies that the entire extent is to be
used. For example, TABLE(*,1) refers to
all of the elements in the first column of
TABLE. It specifies the cross-section
consisting of TABLE(1,1), TABLE(2,1),
TABLE(3,1), and TABLE(4,1). The
subscripted name TABLE(2,*) refers to all
of the data items in the second row of
TABLE. TABLE(*,*) refers to the entire
array.

Note that a subscripted name containing
asterisk subscripts represents, not a
single data element, but an array with as
many dimensions as there are asterisks.
Consequently, such a name is not an element
expression, but an array expression.

A reference to a cross-section of an
array may be a reference to two or more
elements of that array which may not be
adjacent in storage, the elements specified
by such a reference being separated by
other elements which are not part of the
cross-section. The storage represented by
such a cross-section is known as
non-connected storage. Certain
restrictions apply to the use of
non-connected storage; for example, a
record variable (that is, a variable to or
from which data is transmitted by a
record-oriented transmission statement)
must represent data in connected storage
(that is, data items which are adjacent in
storage) . '

STRUCTURES

Data items that need not have identical
characteristics, but that possess a logical
relationship to one another, can be grouped
into aggregates called structures.

Like an array, the entire structure is
given a name that can ke used to refer to
the entire collection of data. Unlike an
array, however, each element of a structure
also has a name.

~ A structure is a hierarchical collection
of names. At the bottom of the hierarchy
is a collection of elements, each of which
represents a single data item or an array.
At the top of the hierarchy is the
structure name, which represents the entire
collection of element variakles. For
example, the following is a collection of
element variakles that might be used to
compute a weekly payroll:

LAST_NAME
FIRST NAME
REGULAR_HOURS
OVERTIME_HOURS
REGULAR_RATE
OVERTIME_RATE

These variables could be collected into
a structure and given a single structure
name, PAYROLL, which would refer to the
entire collection.
!

PAYROLL
LAST_NAME REGULAR_HOURS REGULAR_RATE
FIRST_NAME OVERTIME_HOURS OVERTIME_RATE

Any reference to PAYROLL would be a
reference to all of the element variatles.
For example:

GET DATA (PAYROLL);

This input statement could cause data to
be assigned to each of the element
variables of the structure PAYROLL.

It often is convenient to sukdivide the
entire collection into smaller logical
collections. In the above examples,
LAST_NAME and FIRST_NAME might make a
logical subcollection, as might
REGULAR_HOURS and OVERTIME_HOURS, as well
as REGULAR_RATE and OVERTIME_RATE. 1In a
structure, such subcollections also are
given names.

Chapter 3: Data Elements 35

PAYROLL
NAME HOURS RATE
FIRST REGULAR REGULAR
LAST OVERTIME OVERTIME

Note that the hierarchy of names can be
considered to have different levels. At
the first level is the structure name
(called a major structure name); at a
deeper level are the names of substructures
(called minor structure names); and at the
deepest are the element names (called
elementary names). An elementary name in a
structure can represent an array, in which
case it is not an element variable, but an
array variable,

The organization of a structure is
specified in a DECLARE statement through
the use of level numbers. A major
structure name must be declared with the
level number 1. Minor structures and
elementary names must be declared with
level numbers arithmetically greater than
1; they must be decimal integer constants.
A blank must separate the level number and
its associated name. For example, the
items of a weekly payroll could be declared
as follows:

DECLARE 1 PAYROLL,

2 NAME,
3 LAST,
3 FIRST,

2 HOURS,
3 REGULAR,
3 OVERTIME,

2 RATE,
3 REGULAR,
3 OVERTIME;

Note: 1In an actuwal declaration of the
structure PAYROLL, attributes would be
specified for each of the elementary names
LAST and FIRST, and the two pairs REGULAR
and OVERTIME. The pattern of indentation
in this example is used only for
readability. The statement could be
written in a continuous string as DECLARE 1
PAYROLL, 2 NAME, 3 LAST, etc.

PAYROLIL is declared as a major structure
containing the minor structures NAME,
HOURS, and RATE. Each minor structure
contains two elementary names. A
programmer can refer to the entire
structure by the name PAYROLL, or he can
refer to portions of the structure by
referring to the minor structure names. He
can refer to an element by referring to an
elementary name.

Note that in the declaration, each level
number precedes its associated name and is
separated from the name by a blank. The
numbers chosen for successively deeper

36

‘ succeeding integers.
i to specify the relative level of a name. A

. than or equal to n.
: been declared as follows:

'PAYROLL.

levels need not be the immediately
They are used merely

minor structure at level n contains all the

' names with level numbers greater than n
‘that lie between that minor structure name

and the next name with a level number less
PAYROLL might have

DECLARE 1 PAYROLL,

4 NAME,
5 LAST,
5 FIRST,

2 HOURS,
6 REGULAR,
5 OVERTIME,

2 RATE,
3 REGULAR,
3 OVERTIME;

:This declaration would result in exactly
.the same structuring as the previous

- declaration.
‘numker of levels is 15, and the highest
permissible level number is 255.

The maximum permissikble

The description of a major structure

‘name is terminated Ly the declaration of
‘another item with a level number 1, by the

declaration of another item with no level

‘number, or by a semicolon terminating the
-DECLARE statement.

Level numkers are specified with

. structure names only in DECLARE statements
‘and, in the case of controlled structures,
'ALLOCATE statements.
:structure or its elements, no level numbers

In references to the

are used.

‘Qualified Names

‘A minor structure or a structure element
ican ke referred to by the minor structure
.name or the elementary name alone if there
‘is no ambiguity.

Note, however, that each
of the names REGULAR and OVERTIME aprears

twice in the structure declaration for

A reference to either name would
be ambiguous without some qualification to

.make the name unique.

PL/I allows the use of qualified names

‘to avoid this ambiguity. A gualified name
'‘is an elementary name Oor a minor structure
‘name that is made unique by qualifying it
‘with one or more names at a higher level.
‘In the PAYROLL example, REGULAR and
‘OVERTIME could be made unique through use
.0of the qualified names HOURS.REGULAR,
‘HOURS.OVERTIME, RATE.REGULAR, and
RATE.OVERTIME.

The different names of a qualified name
are connected by periods. Blanks may
appear surrounding the period.
Qualification is in the order of levels;
that is, the name at the highest level must
appear first, with the name at the deepest
level appearing last.

Any of the names in a structure, except
the major structure name itself, need not
be unique within the procedure in which it
is declared. For example, the qualified
name PAYROLL.HOURS.REGULAR might be
required to make the reference unique
(another structure, say WORK, might also
have the name REGULAR in a minor structure
HOURS; it could be made unique with the
name WORK.HOURS.REGULAR). All of the
qualifying names need not be used, although
they may be, if desired. Qualification
need go only so far as necessary to make
the name unique. Intermediate qualifying
names can be omitted. The name
PAYROLL.LAST is a valid reference to the
name PAYROLL.NAME.LAST.

ARRAYS OF STRUCTURES

A structure name, either major or minor,
can be given a dimension attribute in a
DECLARE statement to declare an array of
structures. An array of structures is an
array whose elements are structures having
identical names, levels, and elements. For
example, if a structure, WEATHER, were used
to process meteorological information for
each month of a year, it might be declared
as follows:

DECLARE 1 WEATHER(12),

2 TEMPERATURE,
3 HIGH DECIMAL FIXED(4,1),
3 LOW DECIMAL FIXED(3,1),

2 WIND_VELOCITY,
3 HIGH DECIMAL FIXED(3),
3 LOW DECIMAL FIXED(2),

2 PRECIPITATION,
3 TOTAL, DECIMAL FIXED(3,1),
3 AVERAGE DECIMAL FIXED(3,1);

Thus, when such an array represents the
weather for a whole year, a programmer
could refer to the weather data for the
month of July by specifying WEATHER(7).
Portions of the July weather could be
referred to by TEMPERATURE(7),
WIND_VELOCITY(7), and PRECIPITATION(7), but
TOTAL(7) would refer to the total
precipitation during the month of July.

TEMPERATURE.HIGH(3), which would refer
to the high temperature in March, is a
subscripted gualified name.

The need for subscripted qualified names
becomes more apparent when an array of
structures contains minor structures that
are arrays. For example, consider the
following array of structures:

DECLARE 1 A (6,6),
2 B (5,

Both A and B are arrays of structures. To
identify a data item, it may be necessary
to use as many as three names and three
subscripts. For example, A(1,1).B(2).C
identifies a particular C that is an
element of B in a structure in A.

So long as the order of subscripts
remains unchanged, sukscripts in such
references may ke moved to the right or
left and attached to names at a lower or
higher level. For example, A.B.C(1,1,2)
and A(1,1,2).B.C have the same meaning as
A(1,1).B(2).C for the akove array of
structures. Unless all of the subscrigpts
are moved to the lowest or highest level,
the qualified name is said to have
interleaved subscripts; thus, A.B(1,1,2).C
has interleaved subscrirts.

An array declared within an array of
structures inherits dimensions declared in
the containing structure. For examgle, in
the akove declaration for the array of
structures A, the array B is a
three~dimensional structure, because it
inherits the two dimensions declared for A.
If B is unique and requires no
qualification, any reference to a
particular B would require three
subscripts, two to identify the specific A
and one to identify the specific B within
that A.

Cross-Sections of Arrays of Structures

A reference to a cross-section of an array
of structures is not permitted, that is,
the asterisk notation cannot be used in a
reference.

Other Attributes

Keyword attributes for data variables such
as BINARY and DECIMAL are discussed kriefly
in the preceding sections of this chapter.
Other attrikutes that are not peculiar to
one data type may also ke agplicable. A
complete discussion of these attrikutes is
contained in section I, "Attributes". Some

Chapter 3: Data Elements 37

that are especially applicable to a
discussion of data type and data
organization are DEFINED, LIKE, ALIGNED,
UNALIGNED, and INITIAL.

DEFINED_Attribute

The DEFINED attrikute specifies that the
named data element, structure, or array is
to occupy the same storage area as that
assigned to other data. For example,

\ DECLARE LIST (100,100),
LIST_ITEM (100,100) DEFINED LIST;

LIST is a 100 by 100 two-dimensional array.
LIST_ITEM is an identical array defined on
LIST. A reference to an element in

LIST_ITEM is the same as
corresponding element in

The DEFINED attribute

a reference to the
LIST.

with the POSITION

attribute can be used to subdivide or
overlay a data item. For example:

DECLARE LIST CHARACTER (50),
LISTA CHARACTER({10) DEFINED LIST,
LISTB CHARACTER(10) DEFINED LIST
POSITION(11),
LISTC CHARACTER{30) DEFINED LIST
POSITION(21);

LISTA refers to the first ten characters of
LIST. LISTB refers to the second ten
characters of LIST. LISTC refers to the
last thirty characters of LIST.

The DEFINED attribute may also be used
to specify parts of an array through use of
isuUB variables, in order to constitute a
new array. The iSUB variables are dummy
variables where i can be specified as any
decimal integer constant from 1 through n
(where n represents the number of
dimensions for the defined item). The
value of the iSUB variable ranges from the
lower bound to the upper bound of the ith
dimension of the defined array. For
example:

DECLARE A(20,20),
B(10) DEFINED A(2*1SUB,2%1SUB);

B is a sukset of A consisting of every even
element in the diagonal of the array, A.

In other words, B(1) corresponds to A(2,2),
B(2) corresponds to A(4,4),

Non-connected_storage: The use of the
DEFINED attribute to overlay arrays with
arrays creates the possibility that array
expressions can refer to array elements in
non-connected storage (that is , array
elements which are not adjacent in
storage). It is possible for an array

38

. Note:
¢ structuring, names, and attributes of the
. structure below the level of the specified
' name only.

expression involving consecutive elements
to refer to non-connected storage in the
two following cases:

1. Where an array is declared with iSUB
defining. An array expression which
refers to adjacent elements in an
array declared with isUB defining can
be a reference to non-connected ‘
storage (that is, a reference to
elements of an overlayed array which
are not adjacent in storage).

2. Where a string array is defined on a
string array which has elements of
greater length. Consecutive elements
in the defined array are separated by
the difference between the lengths of
the elements of the base and defined
arrays, and are considered to be held
in non-connected storage.

LIKE Attribute

The LIKE attribute is used to indicate that
the name being declared is to be given the
same structuring as the major structure or
minor structure name following the
attribute LIKE. For example:

1
DECLARE 1 BUDGET,
2 RENT,
2 FOOD,
3 MEAT,
3 EGGS,
3 BUTTER,
2 TRANSPORTATION,
3 WORK,
3 OTHER,
2 ENTERTAINMENT,
1 COST_OF_LIVING LIKE BUDGET;

This declaration for COST_OF_LIVING is the
. same as if it had been declared:

DECLARE 1 COST_OF_LIVING,

2 RENT,

2 FOOD,
3 MEAT,
3 EGGS,
3 BUTTER,

2 TRANSPORTATION,
3 WORK,
3 OTHER,

2 ENTERTAINMENT;

The LIKE attribute cories
No dimensionality of the

specified name is copied. For example, if
BUDGET were declared as 1 BUDGET(12), the

: declaration of COST_OF_LIVING LIKE BUDGET
© would not give the dimension attribute to

COST_OF_LIVING. To achieve dimensionality

of COST_OF_LIVING, the declaration would
have to be DECLARE 1 COST_OF_LIVING(12)
LIKE BUDGET.

A minor structure name can be declared
LIKE a major structure or LIKE another
minor structure. A major structure name
can be declared LIKE a minor structure or
LIKE another major structure.

ALIGNED and UNALIGNED Attributes

In Systen/360 and System/370, information
is held in units of eight bits, or a
multiple of eight bits. Each eight-bit
unit of information is called a byte. When
PL/I data is stored in character form, each
character occupies one byte.

Bytes may be handled separately or
grouped together in fields. A halfword is
a group of two consecutive bytes. A word
is a group of four consecutive bytes. A
double _word is a field consisting of. two
words. Byte locations in storage are
consecutively numbered starting with 0;
each number is considered the address of
the corresponding byte. A group of bytes
in storage is addressed by the leftmost
byte of the group.

Fixed-length fields, such as halfwords
and double words, must be located in main

storage on an integral koundary for that
unit of information. A boundary is called
integral for a unit of information when its
address is a multiple of the length of the
unit in kytes. For example, a word (four
bytes) must be located in storage so that
its address is a multiple of the numker 4.
A halfword (two bytes) must have an address
that is a multiple of the number 2, and a
doukleword (eight bytes) must have an
address that is a multiple of the numker 8
(see figure 3.1).

Halfwords, words, and doublewords may be
accessed more readily than a field of the
same length that is not aligned on an
integral boundary. For this reason, it is
a system requirement that data to ke used
in certain orerations is aligned on one of
the three integral boundaries.

It is possible in PL/I to align data on
boundaries that will give the fastest
possible execution. This is not always
desirable, however, since there may Le
unused bytes ketween successive data
elements, which increases use of storage.
This is likely to be particularly important
when the data items are members of
aggregates that are to ke used to create a
data set; the unused bytes can greatly
increase the amount of external storage
required. The ALIGNED and UNALIGNED
attrikutes allow the programmer to choose’
whether or not data is to be stored on the
aprropriate integral koundary.

P -
| Address of Byte
'l: T T T v 1] T 3 T . T
| 50000 | 50001 | 50002 | 50003 | 50004 | 50005 | 50006 | 50007 | 50008 |
L 1 Ky ——d 1 4 4 4 1 1
1 3 L) T T v b)) T hl
] I | | | I |] | |
| byte | byte | byte | byte | Lyte | byte | kyte | byte | byte |
| | | | | | | | I |
4 L 4 4 4 4 L. L L
1 1 i I
halfwoxd | halfword | halfword | halfword | halfword
! ! ! !
| 1
word | woxd | word
! !
I
doubleword | doukleword
L 4

Figure 3.1.

Section of main store showing alignment of fixed length fields

Chapter 3: Data Elements 39

ALIGNED specifies that the data element
is to be aligned on the storage boundary
corresponding to its data type requirement.

These requirements are specified in section

K, "Data Mapping".

UNALIGNED specifies that each data
element, with one exception, is mapped on
the next kyte boundary. The exception is
for fixed-length bit strings, which are
mapped on the next bit.

When the UNALIGNED attribute is
specified, the compiler generates code that
moves the data to an appropriate integral
boundary before an operation is performed,
if the operation requires data alignment.
Consequently, although the UNALIGNED
attribute may reduce storage requirements,
it may increase execution time.

Defaults are applied at element level.
The default for bit-string data,
character~-string data, and numeric
character data is UNALIGNED; for all other
types of data, the default is ALIGNED.

ALIGNED or UNALIGNED can be specified
for element, array, or structure variables.
The application of either attribute to a
structure is equivalent to applying the
attribute to all contained elements that
are not explicitly declared ALIGNED or
UNALIGNED.

The following example illustrates the
effect of ALIGNED and UNALIGNED
declarations for a structure and its
elements:

DECLARE 1 S,

2 X BIT(2), /7% UNALIGNED BY
DEFAULT */
2 A ALIGNED, /7*% ALIGNED EXPLICITLY */
3 B, /* ALIGNED FROM A */

3 C UNALIGNED, /* UNALIGNED
EXPLICITLY */

4 D, /% UNALIGNED FROM C */
4 E ALIGNED, /* ALIGNED EXPLICITLY */
4 F, /* UNALIGNED FROM C */
3 G, /% ALIGNED FROM A */
2 H; /* ALIGNED BY DEFAULT */

INITIAL Attribute

The INITIAL attribute specifies an initial
value to be assigned to a variable at the
time storage is allocated for it. For
example:

DECLARE NAME CHARACTER(10) INITIAL
('JOHN DCE');

DECILARE PI FIXED DECIMAL (5,4) INITIAL
(3.1416) ;

40

.} character string 'JOHN DOE'

DECLARE TABLE (100, 100) INITIAL CALL
SUBR;

DECLARE A INIT((B*C));
DECLARE X INIT(SQRT(Z));

When storage is allocated for NAME, the
(padded on the
right to 10 characters) will be assigned to
it. When PI is allocated, it will ke
initialized to the value 3.1416. Either
value may be retained throughout the
program, or it may be changed during
execution.

The third example illustrates the CALL
option. It indicates that the procedure
SUBR is to be invoked to perform the
initialization. The required values must
ke assigned to TABLE during the execution
of SUBR.

The fourth example shows an INITIAL
attribute which contains an expression. It
specifies that A is to ke initialized with
the value of the product of B and C.

The fifth example illustrates the use of
a function reference to initialize a data
item.

For a variable that is allocated when
the program is loaded, that is, a static
variakle, which remains allocated
throughout execution of the program, any

- value specified in an INITIAL attrikute is

assigned only once. For automatic

- variakles, which are allocated at each

activation of the declaring block, any

- specified initial value is assigned with

each allocation. For based and controlled

" variakles, which are allocated at the

execution of ALLOCATE statements (also
LOCATE statements for kased variables), any

. specified initial value is assigned with
- each allocation.
. initialization of controlled variakles can

Note, however, that this
be overridden in the ALLOCATE statement.

The INITIAL attrirute cannot be given

. for entry constants, file constants,

DEFINED data, entire structures, or
parameters (except CONTROLLED parameters).

Note: The CALL option or an expression
containing one or more variables cannot be

- used with the INITIAL attribute for static
. data.

An area variable is automatically
initialized with the value of the EMPTY
built-in function, on allocation, after
which any specified INITIAL is applied. An

-area can be initialized by assignment of
. another area, using the INITIAL attribute
' with or without the CALL option.

The INITIAL attribute can be specified
for arrays, as well as for element
variables. In a structure declaration,
only elementary names can be given the
INITIAL attribute.

An array or an array of structures can
be partly initialized or fully initialized.
Uninitialized elements are specified by
either omitting to put a value in the
INITIAL attribute or by using an asterisk.
For example:

DECLARE A(15) CHARACTER(13) INITIAL
(*JOHN DOE', *,
*RICHARD ROW',
*MARY SMITH'),
B (10,10) DECIMAL FIXED(5)
INITIAL((25)0,(25)1,(50)0),
1 c(8),
2 D INITIAL (0),
2 E INITIAL((8)0);

In this example, only the first, third, and
fourth eleménts of A are initialized; the
rest of the array is uninitialized. The
array B is fully initialized, with the
first 25 elements initialized to 0, the
next 25 to 1, and the last 50 to 0. The
parenthesized numbers (25, 25, and 50) are
iteration factors, that specify the number
of elements to be initialized. 1In the
structure C, where the dimension (8) has
been inherited ky D, only the first element
of D is initialized; where the dimension
(8) has been inherited by E, all the
elements of E are initialized.

When an array of structures is declared
with the LIKE attribute to obtain the same
structuring as a structure whose elements
have been initialized, it should be noted
that only the first structure in this array
of structures will be initialized. For
example:

DECLARE 1 G,
2 H INITIAL(O),
2 I INITIAL(O),
1 J(8) LIKE G;

In this example, only J(1).H and J(1).I are
initialized in the array of structures.

For STATIC arrays, iteration factors
must be decimal integer constants; for
arrays of other storage classes, iteration
factors may be constants, variakles, or
expressions.

The iteration factor should not be

.confused with the string repetition factor

discussed earlier in this chapter.
Consider the following example:

DECLARE TABLE (50) CHARACTER (10)
INITIAL ((10)'A',(25)(10)*B',
(24) (1) *'c*);

This INITIAL attribute specification
contains both iteration factors and
repetition factors. It specifies that the
first element of TABLE is to be initialized
with a string consisting of 10 A's, each of
the next 25 elements is to be initialized
with a string consisting of 10 B's, and
each of the last 24 elements is to be
initialized with the single character C.

In the INITIAL attrikute specification for
a string array, a single parenthesized
factor preceding a string constant is
assumed to be a string repetition factor
(as in (10)'A'). If more than one agpears,
the first is assumed to be an iteration
factor, and the second a string repetition
factor. For this reason (as in
(24)(1)*c*), a string repetition factor of
1 must be inserted if a single string
constant is to ke used to initialize more
than one element.

Chapter 3: Data Elements 41

Chapter 4: Expressions and Data Conversion

An expression is a representation of a
value. A single constant or a variable is
an expression. Combinations of constants
ands/or variables, along with operators
and/or parentheses, are expressions. An
expression that contains operators is an
operational expression. The constants and
variables of an operational expression are
called operands. Examples of expressions
are:

27

LOSS

A+B

(SQTY-QTY) *SPRICE

Any expression can be classified as an
element expression (also called a scalar
expression), an array expression, or a
structure expression. Element variables,
array variables, and structure variables
can appear in the same expression.

An element expression is one that
represents an element value. This
definition includes an elementary name
within a structure or a subscripted name
that specifies a single element of an
array.

An array expression is one that
represents an array of values. This
definition includes a structure, or part of
a structure (a minor structure or element)
that is given the dimension attribute.

A structure expression is one that
represents a structured set of values.
None of its operands are arrays, but an
operand can be subscripted.

In the examples that follow, assume that
the variables have attributes declared as
follows:

DECLARE A(10, 10) BINARY FIXED (31),
B(10,10) BINARY FIXED (31),
1 RATE, 2 PRIMARY DECIMAL FIXED (4,2),
2 SECONDARY DECIMAL FIXED (4,2),
1 COST(2), 2 PRIMARY DECIMAL FIXED
' (4,2),
2 SECONDARY DECIMAL FIXED (4,2),
C BINARY FIXED (15),
D BINARY FIXED (15);

42

fixed«point constant 10B.

Examples of element expressions are:
C * D
A(3,2) + B(4,8)
RATE.PRIMARY - COST.PRIMARY(1)
A(4,4) * C
RATE.SECONDARY / 4
A(4,6) * COST.SECONDARY(2)

All of these expressions are element

‘expressions kecause each operand is an

element variable or constant (even though
some may be elements of arrays or
elementary names of structures); hence,
each expression represents an element
value.

Examples of array expressions are:
A + B
A ¥ C-0D
B /7 10B
RATE + COST

All of these expressions are array
expressions because at least one operand of
each is an array variable; hence, each
expression represents an array value. Note
that the third example contains the kinary
The last example
represents an array of structures.

Examples of structure expressions are:
RATE * COST(2)
RATE / 2

Both of these expressions are structure
expressions kecause at least one operand of
each is a structure variable and no operand
is an array; hence, each expression
represents a structure value.

Use of Expressions

Expressions that are single constants or
single variables may appear freely
throughout a program. However, the syntax
of many PL/I statements allows the
appearance of operational expressions,

provided the result of the expression
conforms with the syntax rules.

In syntactic descriptions used in this
publication, the unqualified term
"expression™ refers to an element
expression, an array expression, or a
structure expression. For cases in which
the kind of expression is restricted, the
type of restriction is noted; for example,
the term "element-expression" in a
syntactic description indicates that
neither an array expression nor a structure
expression is valid.

Note: Although operational expressions can
appear in a number of different PL/I
statements, their most common occurrences
are in assignment statements of the form:

A =B + C;

The assignment statement has no PL/I
keyword. The assignment symbol (=)
indicates that the value of the expression
on the right (B + C) is to be assigned to
the variable on the left (A). For purposes
of illustration in this chapter, some
examples of expressions are shown in
assignment statements.

Data Conversion

OPERATIONAL EXPRESSIONS

An operational expression consists of one
or more single operations. A single
operation is either a prefix operation (an
operator preceding a single operand) or an
infix operation (an operator between two
operands). The two operands of any infix
operation, when the operation is performed,
usually must be of the same data type.

The operands of an operation in a PL/I
expression are automatically converted, if
necessary, t0 a common representation
before the operation is performed. General
principles concerning these conversions are
given in "Attributes of Targets" later in
this chapter. Detailed rules for specific
cases, including rules for computing the
precision or length of a converted item,
can be found in section F, "Data Conversion
and Expression Evaluation."

Data conversion is mainly confined to
problem data. The only conversion possible
with program control data is between offset
and pointer types (except that conversion
to character strings takes place under the
checkout compiler during stream output).

There are very few restrictions on the
use of more than one representation in an
expression. It must be realized, however,
that such mixtures imply conversions. If
conversions take place at execution time,
they will slow down execution. Also,
unless care is taken, conversion can result
in loss of precision and can produce
unexpected results. Mixed-representation
expressions should, therefore, be avoided
as far as possikle, and when they are used
the relevant conversion rules should Le
thoroughly understood by the programmer.

ASSIGNMENT

In addition to conversion performed in the
evaluation of an expression, conversion
will also occur when a data item (or the
result of an expression evaluation) is
assigned to a variakle whose attrikutes
differ from the attributes of the item
assigned. The rules for such conversions
are, with a few exceptions, the same as
those for conversion in the evaluation of
operational expressions.

Conversion also takes place during
stream-oriented input/output (see chaptex
11), and there are a number of other
circumstances that cause conversion; a
complete list is given in Section F.

PROBLEM DATA CONVERSION

Two classes of conversion can be performed

on problem data: type_conversion and
arithmetic conversion.

Type conversions are those that take
place between the four different types of
problem data, namely:

character-string - data with the CHARACTER
attribute

- bit-string - data with the BIT attrikute

numeric character - data with a PICTURE
attrikute that contains neither
of the picture characters A and
X.

coded arithmetic - data with FIXED or
FLOAT, DECIMAL or BINARY, REAL or
\COMPLEX, and precision
attributes.

(Strictly, numeric character data is merely
a particular case of arithmetic data, kut
for the purpose of presenting the
conversion rules, it is regarded as a
separate type of representation.)

Chapter U4: Expressions and Data Conversion 43

Arithmetic conversions are those that
occur within the coded arithmetic form -
conversions between fixed-point and
floating-point scales, decimal and binary
bases, and real and complex modes, and
conversions of precision.

An example of type conversion is a bit
string being converted to coded arithmetic
representation during the evaluation of an
arithmetic expression. The bit string is
interpreted as an unsigned binary integer,
as if it had the attributes FIXED
BINARY (31,0) REAL, with a value equal to
the positive binary value represented by
the bit pattern in the string. If the
current length of the string is greater
than 31, excess bits on the left-hand end
of the string are ignored.

An example of arithmetic conversion is
an item being converted from fixed-point
decimal representation to floating-point
binary representation, both in real mode,
during the evaluation of an arithmetic
expression. The item retains the same
value but the scale on which it is
represented is changed from decimal to
binary and its base is changed from
fixed-point to floating-point. Also, the
value of the precision attribute is
increased by a factor of 3.32, because 3.32
times as many binary integers are required
to represent a given value as decimal
integers. The precision is rounded up to
an integer after being multiplied by 3.32.

LOCATOR DATA CONVERSION

The only type of program control data that
may be converted during evaluation of
expressions, and execution of assignment
statements, is locator data, that is, data
with the OFFSET or POINTER attributes.
During the evaluation of an expression
(locator data may be included in comparison
operations using the = and -~= comparison
operators), only offset to pointer
conversion may occur. During an
assignment, conversion from offset to
pointer and from pointer to offset may
occur. .

USE OF BUILT-IN FUNCTIONS

As well as allowing conversions to take
place during expression evaluation and on
assignment, the programmer may initiate
conversions when he requires them by means
of PL/I built-in functions. (The concept
of a built-in function is explained in
chapter 9, "Subroutines and Functions," and

4y

detailed descriptions of the functions are
given in section G, "Built-in Functions and
Pseudovariakles.")

The functions are:

CHAR
BIT
FIXED
FLOAT
DECIMAL
BINARY

Each function converts data to the
attrikute implied by its name. It will
perform any type and arithmetic conversions
that may be required. In addition to these
functions, there are the COMPLEX built-in
function, which converts two real arguments
to a single complex value, and the function
REAL, which extracts the real part of a
complex value.

In the case of BIT and CHAR kuilt-in
functions, the programmer may specify the
length attribute of the resultant string,
and in the case of FIXED, FLOAT, DECIMAL,
and BINARY, he may specify the precision of
the result.

The precision of a data item may be
controlled by means of the PRECISION
built-in function.

Conversion between pointer and offset
types may be initiated Ly the programmer
using the OFFSET and POINTER built-in
functions.

Most of the conversions performed by
these built-in functions could equally
readily ke achieved ky assignment to a PL/I
variable having the required attrikutes
(with the exception of the conversions
performed by the COMPLEX built-in
function). The programmer may, however,
find the use of a built-in function more
convenient than the creation of a variakle
solely for the purpose of carrying out a
conversion.

Expression Operations

An operational expression can specify one
or more single operations. The class of
operation is dependent upon the class of
operator specified for the operation.
There are four classes of orerations =~
arithmetic, kit-string, comparison, and
concatenation.

ARITHMETIC OPERATIONS

An arithmetic operation is one that is
specified by combining operands with one of
the following operators:

+ - * / k%

The plus sign and the minus sign can appear
either as prefix operators (associated with
and preceding a single operand, such as +A
or -A) or as infix_operators (associated
with and between two operands, such as A+B
or A-B). All other arithmetic operators
can appear only as infix operators.

An expression of greater complexity can
be composed of a set of such arithmetic
operations. Note that prefix operators can
precede and be associated with any .of the
operands of an infix operation. For
example, in the expression A*-B, the minus
sign preceding the variable B indicates
that the value of A is to be multiplied by
-1 times the value of B.

More than one prefix operator can
precede and be associated with a single
variable. More than one positive prefix
operator will have no cumulative effect,
but two consecutive negative prefix
operators will have the same effect as a
single positive prefix operator.

Results of Arithmetic Operations

After any necessary conversion of the
operands in an expression has been carried
out, the arithmetic operation is performed
and a result is obtained. This result may
be the value of the expression or it may be
an intermediate result upon which further
operations are to be performed.

Consider the expression
A * B +C

The operation A * B is performed first, to
give an intermediate result. Then the
value of the expression is obtained by
performing the operation (intermediate
result) + C.

The intermediate result is held in a
temporary location designated by the
compiler. It has attributes in the same
way as any variable in a PL/I pxogram.
What attributes the result has depends on
the attributes of the two operands (or the
single operand in the case of a prefix
operation) and on the operator involved.
This dependence is further explained under
"Attributes of Targets" later in this
chapter.

An intermediate result may undergo
convérsion if a further operation is to be
performed, and the value of an expression
may be converted if it is assigned. These
conversions follow exactly the same rules
as the conversion of rrogrammer-defined
data.

Operations using Built-in Functions

There are three kuilt-in functions in PL/I
that allow the programmer to override the
implementation precision rules for
addition, suktraction, multiplication, and
division operations. (The concept of a
built-in function is explained in chagter
9, "Subroutines and Functions," and the
functions are described in detail in
section G, "Built-in functions and
Pseudovariakles.")

The functions are ADD, MULTIPLY, and
DIVIDE. ADD may be used for suktraction
simply by prefixing the operand to be
subtracted with a minus sign. In using
these functions, two operands are
specified, together with the precision of
the result. The base, scale, and mode of
the result are as defined by the rules for
conversion in the evaluation of
expressions.

BIT-STRING OPERATIONS

A bit-string operation is one that is
specified by combining operands with one of
the following operators:

-08'

The first operator, the "not" symbkol, can
be used as a prefix operator only. The
second and third operators, the "and"
symkol and the "or" symkol, can be used as
infix operators only. (The operators have
the same function as in Boolean algebra.)

Operands of a kit-string operation are,
if necessary, converted to bit strings
before the operation is performed. If the
operands of an infix operation are of
unequal current length, the shorter is
extended on the right with zeros.

The result of a bit-string operation is
a bit string equal in length to the current
length of the operands (the two operands,
after conversion, are always the same
length).)

Bit-string operations are performed on a
bit-by-bit kasis. The effect of the "not"

Chapter 4: Expressions and Data Conversion 45

operation is bit reversal; that is, the
result of -1 is 0; the result of -0 is 1.
The result of an "and" operation is 1 only
if both corresponding bits are 1;
otherwise, the result is 0. The result of
an 'or' operation is 1 unless both operands
are zero, in which case it is 0. The
following table illustrates the result for
each bit position for each of the
operators:

3 1 v) | T T R}
[& | B || -a | -~B |ASB | A|B |
L 4 4d 4 L L 4
r T Tt T=" T 1 1
L [| | | |
I 1 | 1 [f o [o | 1 [1|
L R N L L L 1
n T T T 1| T a
| | I | | | |
[1 [0o [0o | 1 | o | 1 |
b $ + ¢ ¢ + i
| | § | | l |
[0 | v [1 | 0 [0o [1 |
L 1 1l 1 4 i |
1 3 T Ty T L) T h |
| | 1 1 | |
o [o [1 | 1 | o | o
L i N 4 L L L J

More than one bit-string operation can
be combined in a single expression that
yields a bit-string value.

In the following examples, if the value
of operand A is '010111'B, the value of
operand B is "111111'B, and the value of
operand C is '110'B, then:

~ A yields '101000'B

~ C yields '001'B
C & B yields '110000'B
A | B yields *"111111'B
C | B yields "111111'B
A | (~C) yields '011111'B
~((~C) | (~B)) yields "110111'B

Boolean Built-in Function

In addition to the "not", "and" and "or"
operations using the operators -~,§ and |,
Boolean orerations may be performed using
the BOOL built-in function. The concept of
a built-in function is described in chapter
9, "Subroutines and Functions,®" and the
function is described in detail in section
G, "Built-in Functions and
Pseudovariakles."

46

bit.

COMPARISON OPERATIONS

A comparison operation is one that is
'specified by combining operands with one of

the following operators.
< 1< <= = 1= >= > 1>

These operators specify "less than", "not
less than", "less than or equal to", "equal
to", "not equal to", "greater than or equal
to", "greater than", and "not greater
than".

There are four types of comparisons:

1. Algebraic, which involves the
comparison of signed arithmetic values
in internal coded arithmetic form. If
operands differ in base, scale,
precision, or mode, they are converted
according to the rules for arithmetic
operations. Numeric character data is
converted to coded arithmetic Lkefore
comparison. Only the operators = and
~= are valid for comparison of complex
operands.

2. Character, which involves
left-to-right, character-by-character
comparisons of characters according to
the collating sequence.

3. Bit, which involves left-to-right,
bit-by-bit comparison of binary
digits.

4. Program control data, which involves
comparison of the internal coded forms
of the operands. Only the comparison
operators = and »~= are permitted; area
variables cannot ke compared. The
only conversion that can take place is
offset to pointer; all other tyre
differences ketween operands for
program control data comparisons are
in error.

If the operands of a problem data
comparison are not immediately compatikle
(that is, if their data types are

‘arprcpriate to different types of

comparison), the operand of the lower
precedence is converted to conform to the
comparison type of the other. The

precedence of comparison types is (1)

algebraic (highest), (2) character, (3)
Thus, for example, if a bit string
were to be compared with a fixed decimal
value, the bit string would be converted to
fixed binary for algebraic comparison with
the decimal value (which would also ke
converted to fixed binary). 1In the
comparison of strings of unequal lengths,

‘the shorter string is padded on the right

with blanks (in a character comparison) or
'0'B (in a bit comparison).

The result of a comparison operation
always is a bit string of length one; the
value is '1'B if the relationship is true,
or '0'B if the relationship is false.

The most common occurrences of
comparison operations are in the IF
statement, of the following format:

IF A =B
THEN action-if~-true
ELSE action-if-false

The evaluation of the expression A = B
yields either '1'B or '0'B. Depending ugon
the value, either the THEN portion or the
ELSE portion of the IF statement is
executed.

Comparison operations need not be
limited to IF statements, however. The
following assignment statement could be
valid:

X = A < B;

In this example, the value '1'B would be
assigned to X if A is less than B;
otherwise, the value '0'B would be
assigned. In the same way, the following
assignment statement could be valid:

X=A-=B;

The first symbol (=) is the assignment
symbol; the second (=) is the comparison
operator. If A is equal to B, the value of
X will be "1'B; if A is not equal to B, the
value of X will ke '0°'B.

CONCATENATION OPERATIONS

A concatenation operation is one that is
specified by combining operands with the
concatenation symbol:

it signifies that the operands are to be
joined in such a way that the last
character or bit of the operand to the left
will immediately precede the first
character or bit of the operand to the
right, with no intervening bits or
characters.,

The concatenation operator can cause
conversion to string type since
concatenation can be performed only ugon
strings, either character strings or bit
strings. If either operand is character or
decimal, any necessary conversions are
performed to produce a character-string

result. Otherwise if the operands are bit
and binary, or koth kinary, conversions are
performed to produce a bit-string result.

The results of concatenation operations
are as follows:

Bit_sString: A bit string whose length is
equal to the sum of the lengths of the two
bit-string operands.

Character_String: A character string whose
length is equal to the sum of the lengths
of the two character-string operands.

If an operand requires conversion for
the concatenation oreration, the result is
dependent upon the length of the character
string to which the operand is converted.
For example, if A has the attributes and
value of the constant '010111'B, B of the
constant *101'B, C of the constant 'XY,2°,
and D of the constant ‘AA/BB', then

A[|B yields '010111101'B
A||2||B yields '010111010111101'B

c||D yields °'XY,ZAA/BB'

D||C yields °'AA/BBXY,2'

B||D yields *101Aa/BB'

Note that, in the last example, the kit
string *101'B is converted to the character
string '101' kefore the concatenation is
performed. The result is a character
string consisting of eight characters.

COMBINATIONS OF OPERATIONS

Different types of operations can ke
combined within the same operational
expression. Any combination can be used.
For example, the expression shown in the
following assignment statement is valid:

RESULT = A + B < C & D;

Each operation within the expression is
evaluated according to the rules for that
kind of operation, with necessary data
conversions taking place before the
operation is performed.

Assume that the variables given akove
are declared as follows:

DECLARE RESULT BIT(3),
A FIXED DECIMAL(1),
B FIXED BINARY (3),
C CHARACTER(2), D BIT(4);

Chapter U: Expressions and Data Conversion 47

e The decimal value of A would be
converted to binary base.

e The binary addition would be performed,
adding A and B.

e The binary result would be compared
with the converted binary value of C.

e The bit-string result of the comparison
would be extended to the length of the
bit string D, and the "and" operation
would be performed.

e The result of the "and" operation, a
bit string of length 4, would be
assigned to RESULT without conversion,
but with truncation on the right.

The expression in this example is
described as being evaluated
operation-by-operation, from left to right.
Such would be the case for this particular
expression. The order of evaluation,
however, depends upon the priority of the
operators appearing in the expression.

Priority of Operators

In the evaluation of expressions, priority
of the operators is as follows:

*% prefix+ prefix- - (highest)
x 7/ [
infix+ infix- |

I |
< =2 <= = A= >= > > |

§ v

| (lowest)

If two or more operators of the highest
priority appear in the same expression, the
order of evaluation of those operators is
from right to left; that is, the rightmost
exponentiation or prefix operator is
evaluated first. Each succeeding
exponentiation or prefix operator to the
left has the next highest priority.

For all other operators, if two or more
operators of the same priority arpear in
the same expression, the order or priority
of those operators is from left to right.

Note that the order of evaluation of the
expression in the assignment statement:

RESULT = A + B < C & D;
is the result of the priority of the
operators. It is as if various elements of

the expression were enclosed in parentheses
as follows:

48

(A) + (B)
(A + B) < (C) ‘
(¢A ¢+ B) < C) ¢ (D)

The order of evaluation (and,
consequently, the result) of an expression
can be changed through the use of
parentheses. The akove expression, for
example, might be changed as follows:

(A + B) < (C &§ D)

The order of evaluation of this
expression would yield a bit string of
length one, the result of the comparison
operation. In such an expression, those
expressions enclosed in parentheses are
evaluated first, to be reduced to a single
value, before they are considered in
relation to surrounding operators. Within
the language, however, no rules specify
which of two parenthesized expressions,
such as those in the akove example, would

be evaluated first.

The value of A would be converted to
fixed-point binary, and the addition would
be performed, yielding a fixed-point binary
result (result_1). The value of C would be
converted to a bit string (if valid for
such conversion) and the "and" operation
would be performed.

At this point, the expression would have

- keen reduced to:

result_1 < result_2

result_2 would ke converted to binary, and
the algebraic comparison would ke
performed, yielding the bit-string result
of the entire expression.

The priority of operators is defined
only within operands (or suk-operands). It
does not necessarily hold true for an
entire expression. Consider the following
example:

A+ (B<C) & (D || E ** F)

The priority of the operators specifies, in
this case, only that the exponentiation
will occur kefore the concatenation. It
does not specify the order of the oreration
in relation to the evaluation of the other
operand (A + (B < QO)).

Any operational expression (excert a
prefix expression) must eventually ke
reduced to a single infix operation. The
operands and operator of that operation
determine the attributes of the result of
the entire expression. For instance, in
the first example of combining operations
(which contains no parentheses), the "and"
operator is the operator of the final infix
oreration; in this case, the result of

evaluation of the expression is a bit
string of length 4. 1In the second example
(because of the use of parentheses), the
operator of the final infix operation is
the comparison operator, and the evaluation
yields a kit string of length 1.

In general, unless parentheses are used
within the expression, the operator of
lowest priority determines the operands of
the final operation. For example:

A+B#*t3 || C*D=-E

In this case, the concatenation operator
indicates that the final operation will be:
(A + B %x 3) || (C *D - E)

The evaluation will yield a
character-string result.

Subexpressions can be analyzed in the
same way. The two operands of the
expression can be defined as follows:

A + (B ** 3)

(C *# D) - E

Function Reference Operands

An operand of an expression can be a
constant, an element variable, an array
variable, or a structure variable. An
operand can also be an expression that
represents a value that is the result of a
computation, as shown in the following
assignment statement:

A = B ¥ SQRT(C);

In this example, the expression SQRT(C)
represents a value that is equal to the
square root of the value of C. Such an
expression is called a function reference.

A function reference consists of a name
and, usually, a parenthesized list of one
or more variables, constants, or other
expressions. The name is the name of a
block of code written to perform specific
computations upon the data represented Ly
the list and to substitute the computed
value in place of the function reference.

Assume, in the above example, that C has
the value 16. The function reference
SQRT(C) causes execution of the code that
would compute the square root of 16 and
replace the function reference with the
value 4. In effect, the assignment
statement would become:

A =B * 4;

The code represented by the name in the
function reference is called a function.
The function SQRT is one of the PI/I
built-in functions. Built-in functions,
which provide a numker of different
operations, are a part of the PL/I
language. A complete discussion of each
appears in section G, "Built~in Functions
and Pseudovariables.® 1In addition, a
programmer may write functions for other
purposes (as described in chapter 9,
"sSukroutines and Functions"), and the names
of those functions can be used in function
references.

The use of a function reference is not
limited to operands of operational
expressions. A function reference is, in
itself, an expression and can be used
wherever an expression is allowed. 1In
general, it cannot be used in those cases
where a variakle represents a receiving
field, such as to the left of an assignment
symkol.

There are, however, several kuilt-in
functions that can ke used as
pseudovariables. A pseudovariakle is a
ftuilt-in function name that is used in a
receiving field. Consider the following
example:

DECLARE A CHARACTER(10),
B CHARACTER(30) ;

SUBSTR(A,6,5) = SUBSTR(B,20,5);

In this assignment statement, the SUBSTR
built-in function name is used koth in a
normal function reference and as a
pseudovariakle.

The SUBSTR built-in function extracts a
substring of specified length from the
named string. As a pseudovariakble, it
indicates the location, within a named
string, that is the receiving field.

In the above example, a substring five
characters in length, beginning with
character 20 of the string B, is to ke
assigned to the last five characters of the
string A. That is, the last five
characters of A are to be rerlaced Ly
characters 20 through 24 of B. The first
five characters of A remain unchanged, as
do all of the characters of B.

All the built-in functions that can ke
used as. pseudovariakles are discussed in
section G, "Built-in Functions and
Pseudovariables." No programmer-written
function can be used as a pseudovariaktle.

Chapter U4: Expressions and Data Conversion 49

Attributes of Targets

The target of a conversion or exrression
operation is the receiving field to which
the result of the conversion or operation
is assigned. This section deals with the
principles of determining attributes of
such targets. Detailed rules are given in
section F, "Data Conversion and Expression
Evaluation."

In the case of a direct assignment, such
as the statement

A = B;

in which conversion must take place, then
the target is the variable on the left of
the assignment symbol (in this case Aa).
However, during the evaluation of an
expression, targets are frequently
temporary storage locations created by the
compiler.

Consider the following example:

DECLARE A CHARACTER(8),
B FIXED DECIMAL(3,2),
C FIXED BINARY(10);

A =B + C;

During the evaluation of the expression B+C
and during the assignment of that result,
there are four different targets, as
follows:

1. The compiler-created temporary to
which the converted kinary equivalent
of B is assigned.

2. The compiler-created temporary to
which the binary result of the
addition is assigned.

3. The compiler-created temporary to
which the converted decimal
fixed-point equivalent of the binary
result is assigned.

4. A, the final destination of the
result, to which the converted
character-string equivalent of the
decimal fixed-point representation of
the value is assigned.

The attributes of the first target are
determined from the attrikutes of the
source (B), from the operator, and from the
attributes of the other operand (if one
operand of an arithmetic infix operator is
binary, the other is converted to binary
before evaluation). The attributes of the
second target are determined from the
attributes of the source (C and the
converted representaticn of B). The
attributes of the third target are

50

determined in part from the source (the
second target) and in part from the
attrikutes of the eventual target (3).

(The only attrikute determined from the
eventual target is DECIMAL, since a binary
arithmetic representation must ke converted
to decimal representation before it can be
converted to a character string.) The
attributes of the fourth target (A) are
known from the DECLARE statement.

When an expression is evaluated, the
target attributes usually are partly
derived from the source, partly from the
operation being performed, and partly from
the attributes of a second operand. Some
assumptions may be made, and some
implementation restrictions (for example,
maximum precision) and conventions exist.
After an expression is evaluated, the
result may be further converted. 1In this
case, the target attributes usually are
independent of the source.

A conversion always involves a source
data item and a target data item, that is,
the original representation of the value
and the converted representation of the
value. All of the attributes of koth the
source data item and the target data item
are known, or supplied by default, at
compile time.

It is possible for a conversion to
involve intermediate results whose
attributes may depend upon the source
value. For example, conversion from
character string to arithmetic may require
an intermediate conversion and, thus, an
intermediate result, before final
conversion is completed. The final target
attributes in such cases, however, are
always determined from the source data item
and are independent of the values of
variatkles.

It should be realized that constants
also have attributes; the constant 1.0 is
different from the constants 1, '1'B, '1°,
1B, or 1E0. Under the optimizing compiler,
constants may ke converted at compile time
as well as at execution time, kut in all
cases, the rules are the same.

Array Expressions

An array expression is a single array
variable or an expression that includes at
least one array operand. Array expressions
may also include operators (both prefix and
infix), element variakles, and constants.

Evaluation of an array expression yields
an array result. All orerations rerformed
on arrays are performed on an

element-by-element basis, in row-major
order. Therefore, all arrays referred to
in an array expression must have the same
number of dimensions, and each dimension
must be of identical kounds.

Although comparison operators are valid
for use with array operands, an array
operand cannot appear in the IF clause of
an IF statement. Only an element
expression is valid in the IF clause, since
the IF statement tests a single true ox
false result. However, the equality of two
arrays of string data can be tested by
using the STRING kuilt-in function and
pseudovariable to produce two element
values. For example:

DECLARE (A,B) (10) CHAR(5);

.

IF STRING(A) = STRING(B) THEN ...

Note: Array expressions are not generally
expressions of conventional matrix algekra.

PREFIX OPERATORS AND ARRAYS

The result of the operation of a prefix
orperator on an array is an array of
identical bounds, each element of which is
the result of the operation having been
performed upon each element of the original

array. For example:
If A is the array 5 3 -9
1 2 7
6 3 -4

then -A is the array -5 -3 9

INFIX OPERATORS AND ARRAYS

Infix operations that include an array
variable as one operand may have an
element, another array, or a structure as
the other operand.

Array-and-element Operations

The result of an operation in which an
element and an array are connected by an

infix operator is an array with bounds
identical to the original array, each
element of which is the result of the
operation performed upon the corresponding
element of the original array and the
single element. For example:

If A is the array 5 10 8
12 1 3

then A*3 is the array 15 30 24
36 33 9

The element of an array-element
operation can be an element of the same
array. For example, the exrpression
A*A(2,3) would give the same result in the
case of the array A above, since the value
of A(2,3) is 3.

Consider the following assignment
statement:

A =23 * A(1,2);
Again, using the above values for A, the
newly assigned value of A would be:

50 100 800
1200 1100 300

Note that the original value for A(1,2),
which is 10, is used in the evaluation for
only the first two elements of A. Since
the result of the expression is assigned to
A, changing the value of A, the new value
of A(1,2) is used for all subsequent
operations. The first two elements are
multiplied ky 10, the original value of
A(1,2); all other elements are multiplied
by 100, the new value of A(1,2).

Array-and-array Operatioius

If two arrays are connected by an infix
operator, the two arrays must be of
identical bounds. The result is an array
with kounds identical to those of the
original arrays; the operation is rerformed
upon the corresponding elements of the two
original arrays.

Note that the arrays must have the same
number of dimensions, and corresponding
dimensions must have identical lower Lounds
and identical upper kounds. For example,
the bounds of an array declared X(10,6) are
not identical to the kounds of an array
declared Y(2:11,3:8) although the extents
are the same for corresponding dimensions,
and the numker of elements is the same.

Chapter U4: Expressions and Data Conversion 51

Examples of array infix expressions are:

If A is the array 2 4 3
6 1 7

4 8 2

and if B is the array 1 5 7
8 3 4

6 3 1

then A+B is the array 3 9 10
14 4 11

10 11 3

and A*B is the array 2 20 21
48 3 28

24 24 2

Array-and-structure Operations

The result of an operation in which an
array and structure are connected by an
infix operator is an array of structures
with bounds identical to the array and
structuring identical to the structure.

For example, given the following
declaration:

DECLARE 1 A,
X2,
Y(2) LIKE A;

2 B, 2¢C,

the assignment statement:

Y =X+ A;

is valid. This is equivalent to:
Y.B(1) = X(1) + A.B;
Y.C(1) = X(1) + A.C;
Y.B(2) = X(2) + A.B;
Y.C(2) = X(2) + A.C;

If the structure has a dimension attribute
on the level 1 name, the operation becomes
an array-and-array operation. If the array
elements are structures, the rules about
‘identical structuring given under
*structure Expressions" apply to the array
elements and the structure.

52

Data_Conversion in Array Expressions

The examples in this discussion of array
expressions have shown only single
arithmetic operations. The rules for
combining operations and for data
conversion of operands are the same as
those for element operations.

Structure Expressions

A structure expression is a single
structure variakle or an expression that
includes at least one structure orerand and
does not contain an array operand. Element
variables and constants can be operands of
a structure expression. Evaluation of a
structure expression yields a structure
result. A structure operand can be a major
structure name or a minor structure name.

Although comparison operators are valid
for use with structure operands, a
structure operand cannot appear in the IF
clause of an IF statement. Only an element
expression is valid in the IF clause, since
the IF statement tests a single true or
false result.

All operations performed on structures
are performed on an element-by-element
basis. Except in a BY NAME assignment (see
below), all structure variables appearing
in a structure expression must have
identical structuring.

Identical structuring means that the
structures must have the same minor
structuring. and the same number of
contained elements and arrays and that the
positioning of the elements and arrays
within the structure (and within the minor
structures if any) must be the same.
Arrays in corresponding positions must have
identical bounds. Names do not have to ke
the same. Data types of corresponding
elements do not have to be the same, so
long as valid conversion can be performed.

PREFIX OPERATORS AND STRUCTURES

The result of the operation of a prefix
operator on a structure is a structure of
identical structuring, each element of
which -is the result of the operation having
been performed upon each element of the
original structure.

Note: Since structures may contain,
elements of many different data types, a
prefix orperation in a structure expression

would be meaningless unless the operation
can be validly performed upon every element
represented by the structure variable,
which is either a major structure name or a
minor structure name.

INFIX OPERATORS AND STRUCTURES

Infix operations that include a structure
variable as one operand may have an element
or another structure as the other operand.

Structure operands in a structure
expression need not be major structure
names. A minor structure name, at any
level, is a structure variable. Thus, if
M.N is a minor structure in the major
structure M, the following is a structure
expression:

M.N & '1010'B

Structure-and-element Operations

When an operation has one structure and one
element operand, it is the same as a series
of operations, one for each element in the
structure. Each sub-operation involves a
structure element and the single element.

Consider the following structure:

1 AA'
2 B,

wWww
(=}
-

wwws-
=]
-

If X is an element variable, then A * X is
equivalent to:

A.C * X
A.D * X
A.E * X
A.G * X
A.H * X
A.I * X

Structure-and-structure Operations

When an operation has two structure
operands, it is the same as a series of
element operations, one for each
corresponding pair of elements. For
example, if A is the structure shown in the

previous example and if M is the following
structure:

1M,
2 N,
3 0,
3 P,
39,
2 R,
3 s,
3T,
3 U;
then A || M is equivalent to:
A.C || M.O
A.D || M.P
A.E || M.Q
A.G || M.S
A.H || M.T
A.I || M.U

Structure Assignment BY NAME

One exception to the rule that operands of
a structure expression must have the same
structuring is the case in which the
structure expression arpears in an
assignment statement with the BY NAME
option.

The BY NAME appears at the end of a
structure assignment statement and is
preceded by a comma, Examples are shown
below.

Consider the following structures and
assignment statements:

1 ONE, 1 TWO, 1 THREE,

2 PART1, 2 PART1, 2 PART1,
3 RED, 3 BLUE, 3 RED,
3 ORANGE, 3 GREEN, 3 BLUE,

2 PARTZ, 3 RED, 3 BROWN,
3 YELLOW, 2 PART2, 2 PART2,
3 BLUE, 3 BROWN, 3 YELLCW,
3 GREEN; 3 YELLOW; 3 GREEN;

ONE = TWO, BY NAME;
ONE.PART1 = THREE.PART1, BY NAME;
ONE = TWO + THREE, BY NAME;

The first assignment statement would ke the
same as the following:

ONE. PART1.RED = TWO.PART1.RED;
ONE.PART2.YELLOW = TWO.PARTZ2.YELLOW;

The second assignment statement would ke
the same as the following:

ONE.PART1.RED = THREE.PART1.RED;

Chapter U4: Expressions and Data Conversion 53

The third assignment statement would be the
same as the following:

ONE.PART1.RED = TWO.PART1.RED
+ THREE.PART1.RED;

ONE.PART2.YELLOW = TWO.PARTZ2.YELLOW
+ THREE.PART2.YELLOW;

The BY NAME option can appear in an
assignment statement only. It indicates
that assignment of elements of a structure
is to be made only for those elements whose
names are common to both structures.

Except for the highest-level qualifier
specified in the assignment statement, all
qualifying names must be identical.

If an operational expression appears in
an assignment statement with the BY NAME
option, orperation and assignment are
performed only upon those elements whose
names have keen declared in each of the
structures. In the third assignment
statement akove, no operation is performed
upon ONE.PART2.GREEN and THREE.PART2.GREEN,
because GREEN does not appear as an
elementary name in PART2 of TWO.

Exceptional Conditions

Three PL/I exceptional conditions may be
raised during conversion of data: SIZE,
CONVERSION, and STRINGSIZE. (The concert
of a condition is explained in chapter 14,
"Exceptional Condition Handling and Program
Checkout, " and the conditions are described
in detail in section H, "On-Conditions.")

The SIZE condition is raised when
significant digits are lost from the
left-hand side of an arithmetic value.

This can occur during conversion within an
expression, or upon assigning the result of
an expression. It is not raised in
conversion to character string or bit
string even if the value is truncated. It
is raised on conversion to E or F format in

54

edit-directed output if the field width
specified will not hold the converted value
of the list item. The SIZE condition is
normally disabled, so an interrupt will
occur only if the condition is raised
within the scope of a SIZE prefix (except
that, under the checkout compiler, standard
system action takes place whether or not
the condition is enakled).

The CONVERSION condition is raised when
the source field contains a character that
is invalid for the conversion being
performed. For example, CONVERSION would
be raised if a character string being
converted to arithmetic contains any
character other than those allowed in
arithmetic constants, or if a character
string that is being converted to kit
contains any character other than 0 and 1.
Each invalid character raises the
CONVERSION condition once, so a single
conversion operation causes several
interrupts if more than one invalid
character is encountered. The CONVERSION
condition is normally enabled, so when the
condition is raised, an interrupt will
occur. It can ke disakled by a
NOCONVERSION prefix, in which case an
interrupt will not occur when the condition
is raised.

The STRINGSIZE condition is raised when
a character or bit string is assigned to a
target that is too small to accommodate it.
Characters or bits are truncated from the
right-hand end of the string so as to match
the length of the target. The STRINGSIZE
condition is normally disabled, so that an
interrupt will occur only within the scope
of a STRINGSIZE condition prefix.

These three conditions may be raised
also during the evaluation of an
expression. In addition, four other
conditions may be raised: FIXEDOVERFLOW,
OVERFLOW, UNDERFLOW, and ZERODIVIDE. Note
that FIXEDOVERFLOW and OVERFLOW are raised
when the implementation-defined maximum
precisions are exceeded, not when the
declared precision of a target is exceeded.

This chapter classifies statements
according to their functions. Statements
in each functional class are listed, the
purpose of each statement is described, and
examples of their use are shown.

A detailed description of each statement
is not included in this chapter but may ke
found in section J, "Statements."

Classes of Statements

Statements can be grouped into the
following classes:

Descriptive

Input/Output

Data Movement and Computational
Program Organization

Storage Control

Control

Exception Control

Preprocessor

Diagnostic

The names of the classes have been chosen
for descriptive purposes only; apart from
preprocessor statements they have no
fundamental significance in the language.
A statement may ke included in more than
one class, since it can have more than one
function.

DESCRIPTIVE STATEMENTS

When a PL/I program is executed, it may
manipulate many different kinds of data.
Each data item, except an arithmetic or
string constant, is referred to in the
program by a name. The PL/I language
requires that the properties (or
attributes) of data items referred to must
be known at the time the program is
compiled. There are a few exceptions to
this rule; for non-STATIC items, the bounds
of the dimensions of arrays, the lengths of
strings, area sizes, initial values, and
some file attributes may be determined
during execution of the program.

Chapter 5: Statement Classification

DECIARE and DEFAULT Statements

The DECLARE statement is the principal
means of specifying the attributes of a
name. A name used in a program need not
always appear in a DECLARE statement; its
attributes often can be determined by
context. If the attributes are not
explicitly declared and cannot ke
determined by context, default rules are
arplied. Default rules are either the
standard default rules defined for the
compilers or those defined by the
programmer for a particular program using
the DEFAULT statement. The combination of
default rules and context determination can
make it unnecessary, in some cases, to use
a DECLARE statement.

The DEFAULT statement gives the
programmer control over attributes which
are applied ky default, for the following:

explicitly declared identifiers
contextually declared identifiers
implicitly declared identifiers
descriptors in the ENTRY attrilkute
values returned Ly internal procedures

DECLARE statements may also be an
important part of the documentation of a
program; consequently, programmers may make
liberal use of declarations, even when
default attrikutes apply or when a
contextual declaration is possirtle.
Because there are no restrictions on the
number of DECLARE statements, different
DECLARE statements can ke used for
different groups of names. This can make
modification easier and the interpretation
of diagnostics clearer.

Other Descriptive Statements

The OPEN statement allows certain
attributes to be specified for a file
constant and may, therefore, also ke
classified as a descriptive statement.
Certain attributes can ke specified in an
ALLOCATE statement for a controlled
variakle. The FORMAT statement may ke
thought of as describing the layout of data
on an external medium, such as on a page or
an input card.

Chapter 5: Statement Classification 55

INPUT/0UTPUT STATEMENTS

The principal statements of the
input/output class are those that actually
cause a transfer of data between internal
storage and an external medium. Other
input/output statements, which affect such
transfers, may be considered input/output
control statements.

Each of the input/output statements is
used with an associated FILE option to
identify a file. The file option specifies
a file expression which can be either a
file constant, a file variable, or a
function reference which returns a file
value.

In the following list, the statements
used when transferring data are grouped
into two subclasses, RECORD I/0O and STREAM
1/0:

RECORD I/O0 Statements
READ
WRITE
REWRITE
LOCATE
DELETE
STREAM I/0 Statements
GET
PUT
I/0 Control Statements
OPEN
CLOSE
UNLOCK

An allied statement, discussed with
these statements, is the DISPLAY statement.

There are two important differences
between STREAM transmission and RECORD
transmission. In STREAM transmission, each
data item is treated individually, whereas
RECORD transmission is concerned with
collections of data items (records) as a
whole. 1In STREAM transmission, each item
may be edited and converted as it is
transmitted; in RECORD transmission, the
record on the external medium is generally
an exact copy of the record as it exists in
internal storage, with no editing or
conversion performed.

56

As a result of these differences, record
transmission is particularly applicakle for
processing large files that are written in
an internal representation, such as in
binary or decimal. Stream transmission may
be used for processing keypunched data and
for producing readable output, where
editing is required.

Record Transmission Statements

The READ statement transmits records
directly into internal storage and makes
them availakle for processing. The WRITE
statement causes records to be transmitted
to the output device. The LOCATE statement
allocates storage for a variable within an
output buffer, setting a pointer to
indicate the location in the buffer, hav1ng
previously caused any record already
located in a buffer for this file to ke
written out.

The REWRITE statement alters existing
records in an UPDATE file. The DELETE
statement deletes records in an UPDATE
file.

STREAM Transmission Statements

Only sequential files can be processed with
the GET and PUT statements. Record
boundaries generally are ignored; data is
considered to be a stream of individual
data items, either coming from (GET) or
going to (PUT) the external medium.

The GET and PUT statements may transmit
a list of items in one of three modes:
data~directed, list-directed, or
edit-directed. In data-directed
transmission, the names of the data items,
as well as their values, are recorded on
the external medium. In list-directed
transmission, the data is recorded
externally as a list of constants,
separated by klanks or commas. In
edit-~directed transmission, the data is
recorded externally as a string of
characters to be trxeated character Ly
character according to a format list.

Data-directed transmission is most
useful for reading a relatively small
numker of values and for producing
self-annotated debugging outgut.
List-directed input is suitable for reading
in larger volumes of data punched in free
form. Edit-directed transmission is used
wherever format must be strictly
controlled, for example, in producing
reports and for reading cards punched in a
fixed format.

Note: The GET and PUT statements can also
be used for internal data movement, by
specifying a string name in the STRING
option instead of specifying the FILE
option. Although the facility may be used
for moving data to and from a buffer, it is
not actually a part of the input/output
operation.

Input/Output Control Statements

The OPEN statement associates a file name
with a data set and prepares the data set
for processing. It may also specify
additional attributes for the file.

An OPEN statement need not always be
written. Execution of any input or output
transmission statement that specifies the
name of an unopened file will result in an
automatic opening of the file before the
data transmission takes place.

The OPEN statement may be used to
specify any file attribute except the
ENVIRONMENT attribute. For a PRINT file,
the length of each printed line and the
number of lines per page can be specified
only in an OPEN statement by the PAGESIZE
and LINESIZE options. The LINESIZE option
can be specified for a non-PRINT OUTPUT
file to determine the length of the
physical klocks transmitted to a device.
The OPEN statement can also be used to
specify a name (in the TITLE option) other
than a file name, as a link between the
data set and the file.

The CLOSE statement dissociates a data
set from a file. All files are closed at
termination of a program, so a CLOSE
statement is not always required.

The UNLOCK statement releases, for use
by other tasks, a record which has
restricted access kecause it is associated
with an EXCLUSIVE file.

DISPLAY Statement

The DISPLAY statement is used to write
messages con the console, usually to the
operator. It may also be used, with the
REPLY option, to allow the operator to
communicate with the program by typing in a
code or a message. The REPLY option may be
used merely as a means of suspending
program execution until the operator
acknowledges the message.

DATA MOVEMENT AND COMPUTATIONAL STATEMENTS

Internal data movement involves the
assignment of the value of an expression to
a specified variakle. The expression may
be a constant or a variable, or it may ke
an expression that specifies computations
to be made.

The most commonly used statement for
internal data movement, as well as for
specifying computations, is the assignment
statement. The GET and PUT statements with
the STRING option can also ke used for
internal data movement. The PUT statement
can, in addition, sgecify computations to
be made.

Assignment Statement

The assignment statement, which has no
keyword, is identified by the assignment
symktol (=). It generally takes one of the
two forms illustrated by the following
examples:

NTOT=TOT;
AV=(AV*NUM+TAV+TNUM) / (NUM+TNUM) ;

The first form can ke used purely for
internal data movement. The value of the
variakle (or constant) to the right of the
assignment symbol is to be assigned to the
variable to the left. The second form
includes an orerational expression whose
value is to be assigned to the variable to
the left of the assignment symkol. The
second form specifies computations to Le
made, as well as data movement.

Since the attributes of the variakle on
the left may differ from the attrikutes of
the result of the expression (or of the
variable or constant), the assignment
statement can also ke used for conversion
and editing.

The variable on the left may be the name
of an array or a structure; the expression
on the right may yield an array orx
structure value. Thus the assignment
statement can be used to move aggregates of
data, as well as single items.

Multiple Assignment: The values of the
expression in an assignment statement can
be assigned to more than one variakle in a
statement of the following form:

A, X =B + C;
Such a statement is executed in exactly the

same way as a single assignment, except

Chapter 5: Statement Classification 57

that the value of B + C is assigned to both
A and X. In general, it has the same
effect as if the following two statements
had been written:

A=3B+C;

X B + C;

Note: If multiple assignment is used for a
structure assignment BY NAME, the
elementary names affected will be only
those that are common to all of the
structures referred to in the statement.

PROGRAM ORGANIZATION STATEMENTS

The program organization statements are
those statements used to delimit sections
of a program into blocks and to manipulate
these blocks. These statements are the
PROCEDURE statement, the END statement, the
ENTRY statement, the BEGIN statement, the
FETCH statement, and the RELEASE statement.

Proper division of a program into blocks
simplifies the writing and testing of the
program, particularly when a number of
programmers are co-operating in writing a
single program. It may also result in more
efficient use of storage, since dynamic
storage of the automatic class is allocated
on entry to the block in which it is
declared.

PROCEDURE_Statement

The principal function of a procedure
block, which is delimited by a PROCEDURE
statement and an associated END statement,
is to define a sequence of operations to Le
performed upon specified data. This
sequence of operations is given a name (the
label of the PROCEDURE statement) and can
be invoked from any point at which the name
is known.

Every program must have at least one
PROCEDURE statement and one END statement.
A program may consist of a number of
separately written procedures linked
together. A procedure may also contain
other procedures nested within it. These
internal procedures may contain
declarations that are treated (unless
otherwise specified) as local definitions
of names. Such definitions are not known
outside their own block, and the names
cannot be referred to in the containing
procedure. Storage associated with these
names is generally allocated upon entry to

58

the block in which such a name is defined,
and it is freed upon exit from the klock.

The sequence of statements defined by a
procedure can be executed at any point at
which the procedure name is known. This
execution can be either synchronous (that
is, the execution of the invoking procedure
is suspended until control is returned to
it) or asynchronous (that is, execution of
the invoking procedure proceeds
concurrently with that of the invoked
procedure); for details of asynchronous
operation, see chapter 17, "Multitasking."
A procedure is invoked either by a CALL
statement or by the arpearance of its name
in an expression, in which case the
procedure is called a function reference.
A function reference causes a value to ke
calculated and returned to the function
reference for use in the evaluation of the
expression. A function procedure cannot Lbe
executed asynchronously with the invoking
procedure.

Communication between two procedures is
by means of arguments passed from an
invoking procedure to the invoked
procedure, Ly a value returned from an
invoked procedure, and by names known
within both procedures. A procedure may
therefore operate upon different data when
it is invoked from different points. A
value is returned from a function procedure
to a function reference by means of the
RETURN statement.

ENTRY_ Statement

The ENTRY statement is used to provide an
alternative entry point to a procedure and,
possibly, an alternative parameter list to
which arguments can ke passed,
corresponding to that entry point.

Note: It is important to distinguish
Letween the ENTRY statement, which
specifies an entry to the procedure in
which it occurs, and the ENTRY attrikute.
The ENTRY attrikute is considered in
chapter 9, in "Subroutines and Functions."

BEGIN Statement

Local definitions of names can also ke made
within begin klocks, which are delimited by
a BEGIN statement and an associated END
statement. The BEGIN and END statements
specify that the statements contained
between them are to ke considered as an
entity for the purpose of flow of control.
Begin blocks are executed in the normal

flow of a program. One of the most common
uses of a begin block is as the on-unit of
an ON statement, in which case it is not
executed through normal flow of control,
but only upon occurrence of the specified
condition. It is also useful for
delimiting a section of a program in which
some automatic storage is to be allocated.

Each begin block must be nested within a
procedure or another begin block.

END_Statement

The END statement is used to signify the
end of a block or group. Every block or
group must have an END statement. However,
the END statement may be explicit or
implicit; a single END statement can be
applied to a number of nested blocks and
groups by the inclusion of the label of the
containing block or group after the keyword
END. The other END statements are then
implied by the one containing the label,
and need not be given explicitly. If no
label. follows END, the statement applies to
only one group or block.

Execution of an END statement for a
block terminates the block. However, it is
not the only means of terminating a block,
even though each klock must have an END
statement. For example, a procedure can be
terminated by execution of a RETURN
statement (see "Control Statements").

The effect of execution of an END
statement for a group depends on whether or
not the group is iterative (see "Control
Statements®). If the group is iterative,
execution of the END statement causes
control to return to the beginning of the
group until all iterations are complete,
unless control is passed out of the group
before then. If the group is noniterative,
the END statement merely delimits the group
(to enable the group to be treated as a
single unit in the logic of the program),
and control passes to the next statement.

FETCH_and RELEASE_Statements

The FETCH statement copies a procedure from
auxiliary storage into main storage so that
it may be invoked, for instance by a CALL
statement later in the program. The
RELEASE statement frees main storage thus
allocated. If a procedure's entry name
appears in a FETCH statement, then, even if

this FETCH statement is never executed, the
invoking statement will load the procedure
before attempting to initiate its
execution. Also, if the procedure's name
appears in a RELEASE statement, but there
is no FETCH statement in the invoking
procedure, invocation will cause the
loading of the invoked procedure.

STORAGE CONTROL STATEMENTS

As with many other conventions in PI/I, the

conventions concerning storage allocation
may be overridden by the programmer.
Storage for variables is generally given
the storage class AUTOMATIC by default,
which means that the storage remains
allocated from the time the procedure is
activated until it is terminated.
Alternatives to the AUTOMATIC attrikute
that may be chosen by the programmer are
STATIC, in which case storage is allocated
for the duration of the entire program, and
CONTROLLED or BASED, in which case the
storage can be allocated to the variakle
and freed under the control of the
programmer, using the ALLOCATE and FREE
statements.

ALLOCATE and FREE_Statements

The ALLOCATE statement is used to assign
storage to controlled and based data,
independent of procedure block koundaries.
The bounds of controlled arrays, the
lengths of controlled strings, and the size
of controlled areas, as well as their
initial values, may also be specified at
the time the ALLOCATE statement is
executed. The FREE statement is used to
free previously-allocated controlled and
based storage when it is no longer
required.

CONTROL STATEMENTS

Statements in a PL/I program, in general,
are executed sequentially unless the flow
of control is modified ky the occurrence of

Chapter 5: Statement Classification 59

an interrupt or the execution of one of the
following control statements:

GO TO
IiF

DO
CALL
RETURN
END
STOP
EXIT

HALT

GO_TO_Statement

The GO TO statement is used as an
unconditional branch. If the destination
of the GO TO is specified by a label
variable, it may then be used as a switch
by assigning label constants, as values, to
the label variable.

If the label variable is subscripted,
the switch may be controlled by varying the
subscript. The destination of a GO TO
statement can also be specified by a
function reference that returns a label
value. By using label variables or
function references, quite subtle switching
can be effected. It is usually true,
however, that simple control statements are
the most efficient.

The keyword of the GO TO statement may
be written either as two words separated by

a blank or blanks, or as a single word,
GOTO.

IF_Statement

The IF statement provides the most common
conditional branch and is usually used with
a simple comparison expression following
the word IF. For example:
IF A =B
THEN action-if-true
ELSE action-if-false
A THEN or an ELSE clause consists of

either a single or compound statement, a
do-group (see "DO Statement" below), or a

60

begin block. If the comparison is true,
the THEN clause is executed., After
execution of the THEN clause, the ELSE
clause is not executed, and execution
continues with the next statement. Note
that the THEN clause can contain a GO TO
statement or some other control statement
that would result in a different transfer
of control.

If the comparison is false, only the
ELSE clause is executed. Control then
continues normally.

The IF statement might be as follows:

IF A=B
THEN C = D;
ELSE C = E;

If A is equal to B, the value of D is
assigned to C, and the ELSE clause is not
executed. If A is not equal to B, the THEN
clause is not executed, and the value of E
is assigned to C.

Either the THEN clause or the ELSE
clause can contain a control statement that
causes a branch, either conditional or
unconditional. If the THEN clause contains
a GO TO statement, for example, there is no
need to specify an ELSE clause. Consider
the following example:

IFA=B
THEN GO TO LABEL_1;
next-statement

If A is equal to B, the GO TO statement of
the THEN clause causes an unconditional
branch to LABEL_1. If A is not equal to B,
the THEN clause is not executed and control
passes to the next statement, whether ox
not it is an ELSE clause associated with
the IF statement.

Note: If the THEN clause does not cause a
transfer of control and if it is not
followed by an ELSE clause, the next
statement will ke executed whether or not
the THEN clause is executed.

The expression following the IF keyword
can be only an element expression; it
cannot be an array or structure expression.
It can, however, ke a logical expression
with more than one operator. For example:

IFA=B §&§ C=1D
THEN GO TO R;

The same kind of test could be made with
nested IF statements. The following three
examples are equivalent:

Example 1:

IF A=B&C=D
THEN GO TO R;
B=B+ 1;

Example 2:

IF A =
THEN IF C =D
THEN GO TO R;
B =B+ 1;)

Example 3:
IF A y= B THEN GO TO S;

IF C y= D THEN GO TO S;
GO TO R;

S: B =B + 1;

DO_Statement

The most common use of the DO statement is
to specify that a group of statements is to
be executed a stated number of times while
a control variable is incremented each time
through the loop. Such a group might take
the form:

DO I =

1 TO 10;
END;

The statements to be executed iteratively
must be delimited by the DO statement and
an associated END statement. In this case,
the group of statements will be executed
ten times, while the value of the control
variable I ranges from 1 through 10. The
effect of the DO and END statements would
be the same as the following:

I=1;
A: IF I > 10 THEN GO TO B;

I I +1;
GO TO A;
B: next statement

Note that the increment is made before the
control variable is tested and that, in
general, control goes to the statement
following the group only when the value of
the control variakle exceeds the limit set
in the DO statement. If a reference is
made to a contrxol variable after the last
iteration is completed, the value of the
variable will be one increment beyond the
specified limit.

The DO statement can also be used with
the WHILE option and no control variable,
as follows:

DO WHILE (A = B);

This statement, heading a group, causes the
group to be executed repeatedly so long as
the value of A remains equal to the value
of B.

The WHILE option can be combined with a
control variakle of the form:

DO I = 1 TO 10 WHILE (A = B);

This statement specifies two tests. Each
time that I is incremented, a test is made
to see that I has not exceeded 10. An
additional test then is made to see that A
is equal to B. Only if both conditions are
satisfied will the statements of the group
be executed.

More than one specification can ke
included in a single DO statement.
Consider each of the following DO
statements:

DO I = J,K;

DO I 1 To 10, 13 TO 15;

DO I 1 TO 10, 11 WHILE (A = B);

The first statement specifies that the
DO-group is executed once only with the
value of I set equal to the value of J, and
once only with the value of I set equal to

the value of K.

The second statement specifies that the DO
group is to be executed a total of thirteen
times, ten times with the value of I equal
to 1 through 10, and three times with the
value of I equal to 13 through 15. The
third DO statement specifies that the group
is to be executed at least ten times, and
then (provided that A is equal to B) once
more; if "BY 0" were inserted after "11",
execution would continue with I set to 11
as long as A remained equal to B. Note
that in koth statements a comma is used to
separate the two specifications. This
indicates that a succeeding specification
is to be considered only after the
preceding specification has keen satisfied,

The control variakle of a DO statement
can be used as a subscript in statements
within the DO-group, so that each iteration
deals with successive elements of a takle
or array. For example:

DO I =1 TO 10;
A(I) = I;
END;

Chapter 5: Statement Classification 61

In this example, the first ten elements of
A are set to 1,2,...,10, respectively.

The increment in the iteration
specification is assumed to be one unless
some other value is stated, as follows:

DO I = 2 TO 10 BY 2;
This specifies that the loop is to be

executed five times, with the value of I
equal to 2, 4, 6, 8, and 10.

Noniterative DO Statements

The DO statement need not specify repeated
execution of the statements of a do-group.
A simple DO statement, in conjunction with
a do-group, can be used as follows:

DO;

END;

The use of the simple DO statement in this
manner merely indicates that the do-group
is to be treated logically as a single
statement. It can be used to specify a
number of statements to be executed in the
THEN clause or the ELSE clause of an IF
statement, thus maintaining sequential
control without the use of a begin block.

CALL, RETURN, and_END_Statements

A subroutine may be invoked by a CALL
statement that names an entry point of the
subroutine. When the multitasking
facilities are not in use, control is
returned to the activating, or invoking,
procedure when a RETURN statement is
executed in the sukroutine or when
execution of the END statement terminates
the subroutine. If the CALL statement
contains one of the multitasking options,
TASK, EVENT, or PRIORITY, the subroutine is
executed as a subtask with its own separate
flow of control; in this case, the RETURN
or END statement merely terminates the
separate flow of control established for
the subtask. (see chapter 17,
"Multitasking.")

The RETURN statement with a
parenthesized expression is used in a
function procedure to return a value to a
function reference.

Normal termination of a program occurs
as the result of normal execution of the

62

final END statement of the main procedure
or of a RETURN statement in the main
procedure, either of which returns control
to the calling program, which may ke the
operating system. Termination of a program
by any other method is abnormal.

STOP_and EXIT Statements

The STOP and EXIT statements are both used
to cause abnormal termination. The STOP
statement terminates execution of the
entire program, including all concurrent
tasks. The EXIT statement terminates only
the task that executes it, together with
any attached tasks. (See chapter 17,
"Multitasking.")

HALT Statement

The HALT statement is effective only in
conversational processing; in batch
processing it is a null operation. When
included in a source program, it causes
program execution to be suspended and
control passed to the terminal.

EXCEPTION CONTROL STATEMENTS

The control statements, discussed in the
preceding section, alter the flow of
control whenever they are executed.

Another way in which the sequence of
execution can be altered is by the
occurrence of a program interrupt caused by
an exceptional condition that arises.

In general, an exceptional condition is
the occurrence of an unexpected action,
such as an overflow error, or of an
expected action, such as an end of file,
that occurs at an unpredictable time. A
detailed discussion of the handling of
these conditions appears in chapter 14,
"Exceptional Condition Handling and Program
Checkout."

The three exception control statements

are the ON statement, the REVERT statement,
and the SIGNAL statement.

ON Statement

The ON statement is used to specify action
to be taken when any subsequent occurrence
of a specified condition causes a program

interrupt. ON statements may specify
particular action for any of a number of
different conditions. For all of these
conditions, a standard system action exists
as a part of PL/I, and if no ON statement
is in force at the time an interrupt
occurs, the standard system action will
take place. For most conditions, the
standard system action is to print a
message and take action which usually leads
to termination of execution.

The ON statement takes the form:

ON condition([SNAP]
{SYSTEM; |on-unit}

The "condition" is one of those listed in
section H, "On-Conditions." The "on-unit"”
is a single statement or a begin block that
specifies action to be taken when that
condition arises and an interrupt occurs.
For example:

ON ENDFILE(DETAIL) GO TO NEXT_MASTER;

This statement specifies that when an
interrupt occurs as the result of trying to
read beyond the end of the file named
DETAIL, control is to be transferred to the
statement labeled NEXT_MASTER.

When execution of an on-unit is
successfully completed, control will
normally return to the point of the
interrupt or to a point immediately
following it, depending upon the condition
that caused the interrupt.

The effect of an ON statement, the
establishment of the on-unit, can be
changed within a block (1) by execution of
another ON statement naming the same
condition with either another on-unit or
the word SYSTEM, which re-establishes
standard system action, or (2) by the
execution of .a REVERT statement naming that
condition. On-units in effect at the time
another block is activated remain in effect
in the activated block, and in other Llocks
activated by it, unless another ON
statement for the same condition is
executed. When control returns to an
activating block, on-units are
re-established as they existed.

REVERT_ Statement

The REVERT statement is used to cancel the
effect of all ON statements for the same
condition that have been executed in the
block in which the REVERT statement
appears.

The REVERT statement, which must srpecify
the condition name, re-estaklishes the
on-unit that was in effect in the
activating bklock at the time the current
block was invoked.

SIGNAL_Statement

The SIGNAL statement simulates the
occurrence of an interrupt for a named
condition., It can be used to test the
coding of the onrunit established Lty
execution of an ON statement. For examgple:

SIGNAL OVERFLOW;

This statement would simulate the
occurrence of an overflow interrupt and
would cause execution of the on-unit
estaklished for the OVERFLOW condition. If
an on-unit has not been established,
standard system action for the condition is
performed. In most cases, the standard
system action is the same as for when the
on-unit is entered following an interrugt.

PREPROCESSOR STATEMENTS

PL/I allows a degree of control over the
contents of the source program during the
compilation. The programmer can sgecify,
for example, that any identifier agpearing
in the source program will be changed; he
can select parts of the program to ke
compiled without the rest; he can include
text from an external source. These
operations are performed by the
preprocessor stage of the compiler, and are
specified by preprocessor statements that
appear among the other statements within
the source program itself.

In general, preprocessor statements are
identified by a leading percent symkol
before the keyword; several-of them have
the same keywords as standard PL/1
statements, and these have a similar effect
at compile time to that of their
gounterparts at execution time.

Chapter 5: Statement Classification 63

The complete list of preprocessor
statements is as follows:

% ACTIVATE
assignment
DEACTIVATE
DECLARE
DO

END

%
%
%
%
%
% GO TO
% IF
% INCLUDE
% null
% PROCEDURE
Preprocessor RETURN
These statements are discussed in chapter

16, "Compile-Time Facilities™ and in
section J, "Statements."

LISTING CONTROL STATEMENTS

There are three statements that allow the
programmer to control the format of the
listing of his program. The statements
are:

%PAGE
%SKIP
%CONTROL

They are described in Chapter 16,
"Compile-time Facilities."

Although they have the initial % sign,
these statements do not require the use of
the preprocessor.

DIAGNOSTIC STATEMENTS

A program processed by the PL/I checkout
compiler can include statements that
provide a considerable amount of diagnostic
information during execution. These
statements:

64

1. Control a continuing output of
diagnostic information throughout
execution:

CHECK|NOCHECK statement
FLOW|NOFLOW statement

2. Produce diagnostic information at
specific points during execution:

PUT statement with one of the
options:

LIST
DATA
EDIT
SNAP
FLOW
ALL

With the exception of a PUT statement with
the LIST, DATA, or EDIT option, none of
these statements provide diagnostic
information when processed by the PL/I
optimizing compiler. This compiler checks
these statements for syntax and then
ignores them; there is no output. In
addition, the implementation of a PUT
statement with the LIST or DATA option by
the optimizing compiler is different from
that of the checkout compiler. The
checkout compiler implements such a
statement by producing information akout
problem and program-control variables; the
optimizing compiler produces information
about problem variables only.

CHECK_and NOCHECK Statements

When a CHECK statement is executed,
information akout the variakles specified
or assumed is put out whenever these
variables occur in pre-defined situations.
This continues to the end of program
execution or until the CHECK statement is
overridden by a NOCHECK statement.

The execution of a CHECK statement that
specifies or assumes a particular
identifier has the same result as if the
CHECK condition has been enabled for every
block in which the identifier is known.
This applies to all such blocks in the
current compilation and to all serarately
compiled blocks in which the identifier is
known and which are active at the same time
as the current klock.

Information is put out for label and
entry constants and for all variables. It
comprises:

1. Proklem variakles:

Name and value

2, Constants and program-control
variables:

Name, and, under the checkout
compiler, details of the current situation
of the constant or variable. For example,
the details for a file variable include
whether the file is open or closed.

The NOCHECK statement prevents output of

CHECK information for the specified or
assumed variables.

FLOW and NOFLOW Statements

Execution of a FLOW statement results in
“information being put out at every transfer
of control within the current task during
execution. This continues to the end of
program execution or until a NOFLOW
statement is executed.

At each transfer of control, the
information put out comprises the statement
number of the statement that caused the
transfer of control, and the statement
number of the statement that received
control at that transfer.

The NOFLOW statement prevents the output
of FLOW information at a transfer of
control.

PUT_Statements

When a PUT statement is executed, the
output comprises:

LIST, DATA or EDIT

The name of the variable appears if DATA

is used. The remaining output is:
Problem variables: Value

Program-control variables (LIST and

DATA only): Current situation of
the variable

SNAP

The current statement number and a list
of the procedures currently active.

FLOW

The same information as for the FIOW
statement, for the last n transfers of
control. The value of n is specified in
a compiler option.

ALL

Information about all the variakles in
the program, together with the
information provided by the SNAP and
FLOW options, and the values of the CN
kuilt-in functions. Options may ke
specified to limit the output.

Chapter 5: Statement Classification 65

Chapter 6: Program Organization

This chapter discusses how statements can
be organized into blocks to form a PL/I
program, how control flows within a program
from one klock of statements to another,
and how storage may be allocated for data
within a klock of statements. The
discussion in this chapter does not
completely cover multitasking, which is
discussed in detail later. However, the
discussion generally applies to all blocks,
whether or not they are executed
concurrently.

Blocks

A block is a delimited sequence of
statements that constitutes a section of a
program. It localizes names declared
within the block and limits the allocation
of variables. There are two kinds of
blocks: procedure blocks and begin blocks.
The optimizing compiler will accept a
maximum of 255 blocks in one compilation.
There is no limit for the checkout
compiler.

PROCEDURE BLOCKS

A procedure block, simply called a
procedure, is a sequence of statements
headed by a PROCEDURE statement and ended
by an END statement, as follows:

label: [label:l... PROCEDURE;

L]

END(labell;

All procedures must be named because the
procedure name is the primary point of
entry through which control can be
transferred to a procedure. Hence, a
PROCEDURE statement must have at least one
label. A label need not appear after the
keyword END in the END statement, but if
one does appear, it must match the label
(or one of the lakels) of the PROCEDURE
statement to which the END statement
corresponds. (There are exceptions; see
"Use of the END Statement with Nested
Blocks and DO-Groups" in this chapter.) An
example of a procedure follows:

66

A: READIN: PROCEDURE;
statement-1
statement-2

statement-n
END READIN;

In general, control is transferred to a
procedure through a reference to the name
(or one of the names) of the procedure.
Thus, the procedure in the above example
would be given control by a reference to
either of its names, A or READIN.

A PL/1I program consists of one or more
such procedures, each of which may contain
other procedures and/or begin blocks.

BEGIN BLOCKS

A begin block is a set of statements headed
by a BEGIN statement and ended by an END
statement, as follows:

{label:]l... BEGIN;

END [labell;

Unlike a procedure block, a label is
optional for a begin block. If one or more
lakels are prefixed to a BEGIN statement,
they serve only to identify the starting
roint of the klock. (Control may pass to a
begin block without reference to the name
of that klock through normal sequential
execution, although control can be
transferred to a labeled BEGIN statement by
execution of a GO TO statement.) The label
following END is optional. However, a
lakel can aprear after END, matching a
label of the corresronding BEGIN statement.
(There are exceptions; see "Use of the END
Statement with Nested Blocks and DO-Groups"
in this chapter.) An example of a kegin
block follows:

B: CONTROL: BEGIN;
statement-1
statement~2

statement~n
END B; .

Unlike procedures, begin blocks
generally are not given control through
special references to them. The normal
sequence of control governing ordinary
statement execution also governs the
execution of begin blocks. Control passes
into a begin block sequentially, following
execution of the preceding statement. The
only exception is a begin block used as the
on-unit in an ON statement. In this case,
the block is executed only upon occurrence
of the specified condition.

Begin blocks are not essential to the
construction of a PL/I program. However,
there are times when it is advantageous to
use begin blocks to delimit certain areas
of a program. These advantages are
discussed in this chapter and in chapter 7,
"Recognition of Names."

INTERNAL AND EXTERNAL BLOCKS

Any block can contain one or more blocks.
That is, a procedure, as well as a begin
block, can contain other procedures and
begin blocks. However, there can be no
overlapping of blocks; a block that
contains ancther klock must totally
encompass that block.

A procedure block that is contained
within another block is called an internal
procedure. A procedure block that is not
contained within another block is called an
external procedure. There must always be
at least one external procedure in a PL/I
program. (Note; Each external procedure is
compiled separately. Entry names of
external procedures cannot exceed seven
characters.)

Begin blocks are always internal; they
must always be contained within another
block.

Internal procedure and begin blocks can
also be referred to as nested blocks.
Nested blocks, in turn, may have blocks
nested within them, and so on. The
outermost block must always be a procedurec.
Consider the following example:

A: PROCEDURE;
statement-al
statement-a2
statement-a3
B: BEGIN;

statement~-b1

statement-b2
statement-b3

END B;
statement-al
statement-a5s
C: PROCEDURE;

statement-c1

statement~c2

D: BEGIN;

statement-d1

statement-d2

statement-43

E: PROCEDURE;
statement~e1
statement-e2
END E;

statement-d4

END D;

END C;
statement-aé
statement-a7
END A;

In the above example, procedure klock A
is an external procedure Lbecause it is not
contained in any other klock. Block B is a
begin block that is contained in A; it
contains no other blocks. Block C is an
internal procedure; it contains begin block
D, which, in turn, contains internal
procedure E. This example contains three
levels of nesting relative to A; B and C
are at the first level, D is at the second
level (but the first level relative to Q)
and E is at the third level (the second
level relative to C, and the first level
relative to D).

Under the optimizing compiler, the
maximum permissible depth of nesting is 50.
There is no limit under the checkout
compiler.

use_of the END_Statement with_ Nested Blocks
and DO-Groups_ (Multiple Closure)

The use of the END statement with a
procedure, begin klock, or DO-group is
governed by the following rules:

1. If a label is not used after END, the
END statement closes (i.e., ends) that
unclosed block headed by the BEGIN or
PROCEDURE statement, or that unclosed
DO-group headed by the DO statement,
that physically precedes, and arpears
closest to, the END statement.

Chapter 6: Program Organization 67

2. If the optional label is used after
END, the END statement closes that
unclosed block or DO-group headed by
the BEGIN, PROCEDURE, or DO statement
that has a matching label, and that
physically precedes, and appears
closest to, the END statement. Any
unclosed blocks or DO-groups nested
within such a block or DO~group are
automatically closed by this END
statement; this is known as multiple
closure.

Multiple closure is a shorthand method
of specifying a number of consecutive END
statements. In effect, the compiler
inserts the required number of END
statements immediately preceding the END
statement specifying multiple closure. Fox
example, assume that the following external
procedure has been defined:

FRST: PROCEDURE;
statement-£1
statement-~-£2
ABLK: BEGIN;
statement-atl
statement-a2
SCND: PROCEDURE;
statement-s1
statement-s2
BBLK: BEGIN;
statement-b1
statement-b2
END;
END;
statement-a3
END ABLK;
END FRST;

In this example, begin block BBLK and
internal procedure SCND effectively end in
the same place; that is, there are no
statements Lketween the END statements for
each. This is also true for begin block
ABLK and external procedure FRST. In such
cases, it is not necessary to use an END
statement for each block, as shown; rather,
one END statement can be used to end BBLK
and SCND, and another END can be used to
end ABLK and FRST. In the first case, the
statement would be END SCND, because one
END statement with no following label would
close only the begin block BBLK (see the
first rule above). In the second case,
only the statement END FRST is required;
the statement END ABLK is superfluous.
Thus, the example could be specified as
follows:

68

FRST: PROCEDURE;
statement-£1
statement-£2
ABLK: BEGIN;
statement-ail
statement-a2
SCND: PROCEDURE;
statement-s1
statement-s2
BBLK: BEGIN;
: statement-k1
statement-b2
END SCND;
statement-a3
END FRST;

Note that a label prefix attached to an END
statement specifying multiple closure is
assumed to apply to the last END statement.
Therefore all intervening groups and klocks
will be terminated if control passes to
such a statement. For example:

CBLK: PROCEDURE;
statement~c1
statement-c2
DO I =1TC 10;
statement-d1
GO TO IBL;
statement-d2
END CBLK;

DGP:

IBL:

In this example, the END CBLK statement
closes the klock CBLK and the iterative
DO-group DGP. The effect is as if an
unlakeled END statement for DGP appeared
immediately after statement-d2, so that the
transfer to LBL would prevent all but the
first iteration of DGP from taking glace,
and statement-d2 would not be executed.

Activation of Blocks

Although the begin block and the procedure
have a physical resemklance and play the
same role in the allocation and freeing of
storage, as well as in delimiting the scogpe
of names, they differ in the way they are
activated and executed. A begin block,
like a single statement, is activated and
executed in the course of normal sequential
program flow (except when specified as an
on-unit) and, in general, can arpear
wherever a single statement can appear.

For a procedure, however, normal sequential
program flow passes around the procedure,
from the statement before the PROCEDURE
statement to the statement after the END
statement of that procedure. The only way
in which a rrocedure can be activated is by
a procedure reference.

A procedure reference is the appearance
of an entry expression in one of the
following contexts:

1. After the keyword CALL in a CALL
statement.

2., After the keyword CALL in the CALL
option of the INITIAL attribute.

3. As a function reference.

This chapter uses examples of the first
of these; the material, however, is
relevant to the other two forms as well.
For further information, refer to the
discussion of the INITIAL attribute in
section I, "Attributes," and to chapter 9,
"Subroutines and Functions."

The simplest form of the CALL statement
is

CALL entry-constant;

If the entry constant is a label of a
PROCEDURE statement it represents the
primary entry point to the procedure; if it
is a label of an ENTRY statement it
represents a secondary_entry point. The
following is an example of a rrocedure
containing secondary entry points.

A: PROCEDURE;
statement-1
statement-2

ERRT: ENTRY;
statement-3
statement-4
statement-5

NEXT: RETR: ENTRY;
statement-6
statement-7
statement-8
END A;

In this example, A is the primary entry
point to the procedure, and ERRT, NEXT, and
RETR specify secondary entry points.
Actually, since they are both names for the
same ENTRY statement, NEXT and RETR specify
the same secondary entry point. The
procedure may be activated by one of the
following statements:

CALL A;

CALL ERRT;
CALL NEXT;
CALL RETR;

Alternatively, the appropriate entry
name value could be assigned to an entry
variable, and this entry variable could be
used in the procedure reference. In the
following example, the two CALL statements
have the same effect.

DECLARE ENT1 ENTRY VARIABLE;
ENT1 = ERRT;

CALL ENT1;

CALL ERRT;

When a procedure reference is executed,
the procedure containing the specified
entry point is activated and is said to ke
invoked; control is transferred to the
specified entry point.2 The point at which
the procedure reference appears is called
the point_ of invocation and the klock in
which the reference is made is called the
invoking block. An invoking klock remains
active even though control is transferred
from it to the block it invokes.

Whenever a procedure is invoked at its
primary entry point, execution begins with
the first executakle statement in the
invoked procedure. However, when a
procedure is invoked at a secondary entry
point, execution Lkegins with the first
executable statement following the ENTRY
statement that defines that secondary entry
point. Therefore, if all of the numkered
statements in the last example are
executable, the statement CALL A would
invoke procedure A at its primary entry
point, and execution would kegin with
statement-1; the statement CALL ERRT would
invoke procedure A at the secondary entry
point ERRT, and execution would kegin with
statement-3; either of the statements CALL
NEXT or CALL RETR would invoke procedure A
at its other secondary entry point, and
execution would kegin with statement-6.
Note that any ENTRY statements encountered
during sequential flow are never executed;
control flows around the ENTRY statement as
though the statement were a comment.

Any procedure, whethexr external or
internal, can always invoke an external
procedure, kut it cannot always invoke an
internal procedure that is contained in
some other procedure. Those internal
procedures that are at the first level of

- - " - - - -

? This statement does not apply when the
CALL statement specifies one of the
multitasking options. See "Multitasking."

Chapter 6: Program Organization 69

nesting relative to a containing procedure
can always be invoked by that containing
procedure, or by each other. For example:

PRMAIN: PROCEDURE;
statement-1
statement-2
statement-3
A: PROCEDURE;

statement-a1l
statement~a2
B: PROCEDURE;
statement-b1
statement~-b2
END A;
statement-4
statement-5
C: PROCEDURE;
statement-c1
statement-c2
END C;
statement-6
statement-7
END PRMAIN:;

In this example, PRMAIN can invoke
procedures A and C, but not B; procedure A
can invoke procedures B and C; procedure B
can invoke procedure C; and procedure C can
invoke procedure A but not B.

The foregoing discussion about the
activation of blocks presupposes that a
program has already been activated. A PL/I
program becomes active when a calling
program invokes the initial procedure.

This calling program usually is the

operating system, although it could be

another program. The initial procedure,

called the main procedure, must be an

external procedure whose PROCEDURE

statement has the OPTIONS(MAIN)

specification, as shown in the following

example:
CONTRL: PROCEDURE OPTIONS(MAIN);

CALL A;

CALL B;

CALL C;

END CONTRL;

In this example, CONTRL is the initial
procedure and it invokes other procedures
in the program.

The following is a summary of what has
been stated or implied about the activation
of blocks:

* A program becomes active when the
initial procedure is activated by the
operating system.

» Except for the initial procedure,
external and internal procedures
contained in a program are activated
only when they are invoked by a
procedure reference.

70

¢ Begin blocks are activated through
normal sequential flow or as on-units.

e The initial procedure remains active
for the duration of the program.

e All activated blocks remain active
until they are terminated (see Lkelow).

Termination of Blocks

In general, a procedure block is terminated
when, by some means other than a procedure
reference, control passes back to the
invoking block or to some other active
block. sSimilarly, a begin block is
terminated when, Lty some means other than a
procedure reference, control passes to
another active klock. There are a number
of ways by which such transfers of control
can be accomplished, and their
interpretations differ according to the
type of klock being terminated.

Note that when a block is terminated,
any task attached by that klock is
terminated (see chapter 17,
"Multitasking").

BEGIN BLOCK TERMINATION

A begin block is terminated when any of the
following occurs:

1. Control reaches the END statement for
the block. When this occurs, control
moves to the statement physically
following the END, except when the
block is an on-unit.

2. The execution of a GO TO statement
within the begin block (or any klock
activated from within that begin
block) transfers control to a point
not contained within the block.

3. A STOP or EXIT statement is executed
(thereby terminating execution of the
current task and all its subtasks).

4. cControl reaches a RETURN statement
that transfers control out of the
begin block and out of its containing
procedure as well.

5. A procedure within which the begin
block is contained has been attached
as a task, and the attaching klock
terminates.

A GO TO statement of the type described
in item 2 can also cause the termination of
other blocks as follows:

If the transfer point is contained in a
block that did not directly activate the
block being terminated, all intervening
blocks in the activation sequence are
terminated.

For example, if begin block B is
contained in begin block A, then a GO TO
statement in B that transfers control to a
point contained in neither A nor B
effectively terminates both A and B.
case is illustrated below:

This

FRST: PROCEDURE OPTIONS (MAIN);
statement~1
statement-2
statement-3
A: BEGIN;
statement-a1
statement-a2
B: BEGIN;
statement-b1
statement-b2
GO TO LAB;
statement-b3
END B;
statement-a3
END A;
statement-4
statement-5
statement-6
statement-7
END FRST;

LAB:

After FRST is invoked, the first three
statements are executed and then begin
block A is activated. The first two
statements in A are executed and then begin
block B is activated (A remaining active).
When the GO TO statement in B is executed,
control passes to statement-6 in FRST.
Since statement-6 is contained in neither A
nor B, both A and B are terminated. Thus,
the transfer of control out of begin klock
B results in the termination of intervening
block A as well as termination of block B.

PROCEDURE TERMINATION

A procedure is terminated when one of the
following occurs:

1. Control reaches a RETURN statement
within the procedure. The execution
of a RETURN statement causes control
to be returned to the point of
invocation in the invoking procedure.
If the point of invocation is a CALL
statement, execution in the invoking
procedure resumes with the statement
following the CALL. If the point of
invocation is one of the other forms
of procedure references (that is, a
CALL option or a function reference),
execution of the statement containing
the referénce will be resumed.

2. Control reaches the END statement of
the procedure. Effectively, this is
equivalent to the execution of a
RETURN statement.

3. The execution of a GO TO statement
within the procedure (or any klock
activated from within that procedure)
transfers contxol to a point not
contained within the procedure.

4., A STOP or EXIT statement is executed
(thereby terminating execution of the
current task and all its subtasks).

5. The procedure or a containing
procedure has been attached as a task
and the attaching klock is terminated.

Items 1 and 2 are normal procedure
terminations; items 3, 4, and 5 are
aknormal procedure terminations.

As with a begin klock, the type of
termination described in item 3 can
sometimes result in the termination of
several procedures and/or begin Llocks.
Specifically, if the transfer point
specified by the GO TO statement is
contained in a klock that did not directly
activate the block being terminated, all
intervening klocks in the activation
sequence are terminated. Consider the
following example:

A: PROCEDURE OPTIONS(MAIN);
statement~1
statement-2
B: BEGIN;

statement-b1
statement~b2
CALL C;
statement-~b3
END B;
statement-3
statement-4
C: PROCEDURE;
statement-c1i
statement-c2
statement-c3
D: BEGIN;
statement-d1
statement-d2
GO TO LAB;
statement-43
END D;
statement-ci
END C;
statement-5
LAB: statement-6
statement-7
END A;

In the akove example, A activates B, which
activates C, which activates D. 1In D, the
statement GO TO LAB transfers control to
statement-6 in A. Since this statement is
not contained in D, C, or B, all three

Chapter 6: Program Organization 71

blocks are terminated; A remains active.
Thus, the transfer of control out of D
results in the termination of intervening
blocks B and C as well as the termination
of block D.

PROGRAM TERMINATION

A program is terminated when any one of the
following occurs:

1. Control for the program reaches an
EXIT statement in the major task.
This is abnormal termination.

2. Control for the program reaches a STOP
statement.? This is abnormal
termination.

3. Control reaches a RETURN statement or
the final END statement in the main
procedure. This is normal
termination.

4., The ERROR condition is raised in the
major task and there is no established
on-unit for ERROR and FINISH, or, if
one or both of the conditions has an
estaklished on-unit, on-unit exit is
by normal return, rather than by GO TO
branching. This is abnormal
termination. The program is not
terminated if ERROR was raised by a
SIGNAL ERROR statement inserted by the
checkout compiler in place of a
statement in which an error had been
detected. (Note that in
conversational processing, the ERROR
and FINISH conditions cause control to
be passed to the terminal, and this is
regarded as equivalent to an on-unit
being entered; any statements then
entered in immediate mode are
processed as if in an ERROR or FINISH
on-unit.

On termination of a program, whether
normal or abnormal, control is returned to
the calling program (this is usually the
operating system control program).

Dynamic Loading of an External Procedure

A procedure invoked by a CALL statement ox
a CALL option of an INITIAL attribute, as
described in "Activation of Blocks" in this

iyhen multitasking is in operation, the
program (i.e., the major task) is
terminated when any task reaches a STOP
statement. See chapter 17, "Multitasking."

72

~chapter, or by a function reference, as

described in chapter 9, "Subroutines and
Functions", is generally resident in main
storage throughout the execution of the
entire program. If required, however, a
procedure may be krought into main storage
for only as long as it is required: the
invoked procedure is dynamically loaded
into, and dynamically deleted from, main
storage during execution of the calling
procedure.

Dynamic loading and deletion of
procedures is' particularly useful when a

.called procedure is not necessarily invoked
-every time the calling procedure is

executed, and when conservation of main
storage is more important than a short
execution time.

The PL/I statements that initiate the
loading and deletion of a procedure are
FETCH and RELEASE. The appearance of an
entry name in a FETCH or RELEASE statement
indicates to the compiler that the
procedure containing an entry point with
that name will need to be fetched into main
storage before it can be executed. When a
FETCH statement is executed, the procedure
is copied from auxiliary storage into main
storage, unless a copy already exists in
main storage. In addition, when a CALL
statement or option or a function reference
is executed, the procedure is copied into
main storage, unless a copy exists already.
Thus, a procedure may be loaded from
auxiliary storage by:

1. execution of a FETCH statement;

or

2. execution of a CALL statement or
option or a function reference,
provided that the name of the entry
point of the procedure appears,
somewhere in the calling procedure, in
a FETCH or RELEASE statement.

In neither case is it an error if the
procedure has already been fetched into
main storage. 1In case 2, it is not
necessary that control should pass through
the FETCH or RELEASE statement, either
before or after execution of the CALL or
function reference.

Whichever statement caused the loading
of the fetched procedure, execution of the
CALL statement or option or the function
reference invokes the procedure in the
normal way.

The fetched procedure may be allowed to
remain in main storage until execution of
the whole program is completed.
Alternatively, the storage it occupies may

be freed for other purposes at any time by
means of the RELEASE statement.

Consider the following example, in which
PROGA and PROGB are entry names of
procedures resident on auxiliary storage.

PROG: PROCEDURE;

FETCH PROGA;
CALL PROGA;

RELEASE PROGA;

CALL PROGB;
GO TO FIN;
FETCH PROGB;

.

FIN: END PROG;

PROGA will ke loaded into main storage Ly
the first FETCH statement, and will be
executed when the first CALL statement is
reached; its storage is released when the
RELEASE statement is executed. PROGB will
be fetched when the second CALL statement
is reached, even though the FETCH statement
referring to this procedure is never
executed, and the same CALL statement will
initiate execution of PROGB. Note that the
same results would be achieved if the
statement FETCH PROGA; were omitted; the
appearance of PROGA in a RELEASE statement
will cause the statement CALL PROGA; to
fetch the procedure, as well as invoke it.

The fetched procedure is compiled and
link-edited separately from the calling
procedure. The programmer must ensure that
the entry name specified in FETCH, RELEASE,
and CALL statements and options, and in
function references, is known in auxiliary
storage. The job control statements
necessary to achieve this are discussed in
0S_PL/I Checkout Compiler: Programmer's
Guide and QS _PL/I Qptimizing Compiler:
Programmer's Guide

Rules concerning the use of
dynamically-loaded procedures are:

1. Only external procedures may be

fetched.

2. Identifiers with the EXTERNAL
attribute are not permitted in a
fetched procedure.

3. Identifiers with the CONTROLLED or

FILE attributes are not permitted in a
fetched procedure unless they are

-

parameters. Note that this means any
file used in the fetched procedure,
including either of the standard
stream-oriented 1I/0 default files
SYSIN or SYSPRINT, must be passed from
the calling procedure.

Storage for STATIC variables in the
fetched procedure is allocated when
the FETCH statement is executed, and
is freed when a corresponding RELEASE
statement is executed. Each time a
procedure is fetched into main
storage, a STATIC variable either is
given the value specified in an
INITIAL attribute, or, if there is no
INITIAL attribute, is uninitialized.

The FETCH, RELEASE, and CALL
statements must specify entry
constants. Entry variables are not
permitted. Note that an entry
constant may have no more than seven
characters.

Fetched procedures may not fetch
further procedures.

Storage.Allocation

Storage allocation is the process of
associating an area of storage with a
variable so that the data item(s) to be
represented by the variable may be recorded
internally. When storage has been
associated with a variakle, the variakle is
said to be allocated. Allocation for a
given variakle may take place statically,
that is, before the execution of the
program, or dynamically, during execution.
A variable that is allocated statically
remains allocated for the duration of the
program. A variakle that is allocated
dynamically will relinquish its storage
either upon the termination of the block
containing that variakle or at the request
of the programmer, depending upon its
storage class.

The manner in which storage is allocated
for a variakle is determined by the storage
class of that variakle. There are four
storage classes: static, automatic,
controlled, and based. Each storage class
is specified Lty its corresponding storage
class attribute: STATIC, AUTOMATIC,
CONTROLLED, and BASED, respectively.
last three define dynamic storage
allocation.

The

Storage class attributes may be declared
explicitly for element, array, and major
structure variakles. If a variable is an
array or a major structure variable, the
storage class declared for that variaktle

Chapter 6: Program Organization 73

applies to all of the elements in the array
or structure.

All variables that have not been
explicitly declared with a storage class
attribute are given the AUTOMATIC
attribute, with one exception: any
variable that has the EXTERNAL attribute is
given the STATIC attribute.

Chapter 8, "Storage Control" discusses
how the various storage classes may be
used.

Reactivation of an Active Procedure
(Recursion)

An active procedure that can be reactivated
from within itself or from within another
active procedure is said to be a recursive
procedure; such reactivation is called
recursion.

A procedure can be invoked recursively
only if the RECURSIVE option has been
specified in its PROCEDURE statement.
option also applies to the names of any
secondary entry points that the procedure
might have.

This

The environment (that is, values of
automatic variables, etc.) of every
invocation of a recursive procedure is
preserved in a manner analogous to the
stacking of allocations of a controlled
variable (see chapter 8, "Storage
Allocation"). An environment can thus be
thought of as being "pushed down" at a
recursive invocation, and "popped up" at
the termination of that invocation. Note
that a lakel constant in the current block
always contains information identifying the
current invocation of the block that
contains the label. Consider the following
example:

RECURS: PROCEDURE RECURSIVE;
DECLARE X STATIC EXTERNAL INITIAL (0);

X=X+1;

PUT DATA (X);

IF X =5 THEN GO TO LAB;
CALL AGN;

X =X-1;

PUT DATA (X);

LAB: END RECURS;

74

AGN: PROCEDURE RECURSIVE;
DECLARE X STATIC EXTERNAL INITIAL (0);

X=X+1;
PUT DATA(X);

CALL RECURS;
X=X-1;

PUT DATA (X);
END AGN;

In the akove example, RECURS and AGN are
both recursive procedures. Since X is
static and has the INITIAL attribute, it is
allocated and initialized before execution
of the program kegins.

The first time that RECURS is invoked, X
is incremented ky 1 and X=1 is transmitted
by the PUT statement. Since X is less than
5, AGN is invoked. 1In AGN, X is
incremented ky 1 and X=2 is transmitted
(also by a PUT statement). AGN then
reinvokes RECURS.

This second invocation of RECURS is a
recursive invocation, because RECURS is
still active. X is incremented as kefore,
and then X=3 is transmitted. X is still
less than 5, so AGN is invoked again.

Since AGN is active when invoked, this
invocation of AGN is also recursive. X is
incremented once again, X=4 is transmitted,
and RECURS is invoked for the third time.

The third invocation of RECURS results
in the transmission of X=5. But, since X
is no longer less than 5, GO TO LAB is
executed, and then RECURS is terminated.
However, only the third invocation of
RECURS is terminated, with the result that
control returns to the procedure that
invoked RECURS for the third time; that is,
control returns to the statement following
CALL RECURS in the second invocation of
AGN. At this point X is decremented by 1
and X=4 is transmitted. Then the second
invocation of AGN is terminated, and
control returns to the procedure that
invoked AGN for the second time; that is,
control returns to the statement following
CALL AGN in the second invocation of
RECURS. Here X is decremented again and
X=3 is transmitted, after which the second

~invocation of RECURS is terminated and

control returns to the first invocation of
AGN. X is decremented again, X=2 is
transmitted, the first invocation of AGN is
terminated, and control returns to the
first invocation of RECURS. X is
decremented, X=1 is transmitted, and the
first invocation of RECURS is terminated.
Control then returns to the procedure that
invoked RECURS in the first place.

Note that if a label constant is
assigned to a label variable in a
particular invocation, a GO TO statement
naming that variakle in another invocation
would restore the environment that existed
when the assignment was performed.

Note also that the environment of a
procedure invoked from within a recursive
procedure by means of an entry variable is
the one that was current when the entry
constant was assigned to the variable.
Consider the following example:

I=1;
CALL A; /*FIRST INVOCATION OF A%/
A:PROC RECURSIVE;
DECLARE EV ENTRY VARIABLE STATIC;
IF I=1 THEN DO;
I=2;
EV=B;
CALL A;
END;
ELSE CALL EV; /*INVOKES B WITH
ENVIRONMENT OF FIRST
INVOCATION OF A%/

/*SECOND INVOCATION OF A*/

B:PROC;
GO TO OUT;
END;
OUT:END A;

The GO TO statement in the procedure B will
transfer control to the END A; statement in
the first invocation of A, and will thus
terminate B and both invocations of A.

Prologues and Epilogues

Each time a block is activated, certain
activities must be performed before control
can reach the first executable statement in
the block. This set of activities is
called a prologue. Similarly, when a block
is terminated, certain activities must be
performed before control can be transferred
out of the block; this set of activities is
called an epilogque.

Prologues and epilogues are the
responsibility of the compiler and not of
the programmer. They are discussed here
because knowledge of them may assist the
programmer in improving the performance of
his program.

Prologues

A prologue is code that is executed as the
first step in the activation of a block.
In general, activities performed by a
prologue are as follows:

e Computing dimension bounds and string
lengths for automatic and DEFINED
variakles.

¢ Allocating storage for automatic
variables and initialization, if
specified.

e Determining which currently active
blocks are known to the procedure, so
that the correct generations of
automatic storage are accessikle, and
the correct on-units may be entered.

* Allocating storage for dummy arguments
that may ke passed from this block.

The prologue may need to evaluate
expressions for initial values (including
iteration factors), and for array bounds,
string lengths, and area sizes.

For each klock in the program, the
optimizing compiler assigns these values in
the following order:

1. Values that are independent of other
declarations in the block. (Values
may be inherited from an outer Lklock.)

2. Values that are dependent on other
declarations in the block. If a value
depends on more than one other
declaration in the block, correct
initialization is not guaranteed. For
example:

DCL I INIT(10), J INIT(I), K INIT(J);

correct initialization of K is not
guaranteed.

The checkout compiler has no restriction
on the number of dependencies; it evaluates
the expressions in the order required by
the dependencies (provided the dependencies
can be determined from inspection of the
DECLARE statement alone.)

Note that declarations of data items
must not be mutually interdependent. For
example, the following declaration is
invalid:

DCL A(B(1)), B(A(1));

Note that interdependency can occur with
more than two data items. For example, the
following declaration is also invalid:

DCL A(B(1)), B(C(1)), Cc(A(N));

Chapter 6: Program Organization 75

Epilogues e Re-estaklishing the on-unit environment
existing before the block was
activated.

An epilogue is code that is executed as the

final ster in the termination of a block.

In general, the activities performed by an

epilogue are as follows: e Releasing storage for all automatic
variables allocated in the block.

76

A PL/I program consists of a collection of
identifiers, constants, and special
characters used as operators or delimiters.
Identifiers themselves may be either
keywords or names with a meaning specified
by the programmer. The PL/I language is
constructed so that the compiler can
determine from context whether or not an
identifier is a keyword, so there is no

| 1ist of reserved words that must not be
used for programmer-defined namesi. Any
identifier may be used as a name; the only
restriction is that at any point in a
program a name can have one and only one
meaning. For example, the same name cannot
be used for both a file and a
floating-point variable.

Note: The above is true so long as the
60-character set is used. Certain
identifiers of the U48-character set cannot
be used as programmer-defined identifiers
in a program written using the 48~character
set; these identifiers are: GT, GE, NE,
LT, NG, LE, NL, CAT, OR, AND, NOT, and PT.

It is not necessary, however, for a name
to have the same meaning throughout a
program. A name declared within a block
has a meaning only within that block.
Outside the block it is unknown unless the
same name has also been declared in the
outer block.
outer block refers to a different data
item. This enables programmers to specify
local definitions and, hence, to write
procedures or begin blocks without knowing
all the names being used by other
programmers writing other parts. of the
program.

Since it is possible for a name to have
more than one meaning, it is important to
define which part of the program a
particular meaning applies to. 1In PL/I a
name is given attributes and a meaning by a
declaration (not necessarily explicit).
The part of the program for which the
meaning applies is called the scope of the
declaration of that name. In most cases,
the scope of a name is determined entirely
by the position at which the name is
declared within the program (or assumed to
be declared if the declaration is not
explicit). There are cases in which more
than one generation of data may exist with

- o - -

¢ Though the uses of the uU8-character set
composite symbols, and, under the checkout
compiler, of the file SYSPRINT, are
restricted.

In this case, the name in the .

Chapter 7: Recognition of Names

the same name (such as in recursion); such
cases are considered separately.

In order to understand the rules for the
scope of a name, it is necessary to
understand the terms "contained in" and
"internal to."

Ccontained In:

All of the text of a block, from the
PROCEDURE or BEGIN statement through
the corresponding END statement, is
said to ke contained in that klock.
Note, however, that the lakels of the
BEGIN or PROCEDURE statement heading
the block, as well as the labels of
any ENTRY statements that apply to the
block, are not contained in that
klock. Nested blocks are contained in
the block in which they appear.

Internal To:

Text that is contained in a block, but
not contained in any other block
nested within it, is said to be
internal to that block. Note that
entry names of a procedure (and lakels
of. a .BEGIN statement) are not
contained in that klock.

Consequently, they are internal to the
containing block. Entry names of an
external procedure are treated as if
they were external to the external
procedure.

In addition to these terms, the
different types of declaration are
important. The three different types -~
explicit declaration, contextual

declaration, and implicit declaration --
are discussed in the following sections.

Explicit Declaration
A name is explicitly declared if it
appears:

1. In a DECLARE statement

2. In a parameter list

3. As a statement label

4. As a labelrof a PROCEDURE or ENTRY

statement.

Chapter 7: Recognition of Names 77

The appearance of a name in a parameter
list is the same as if a DECLARE statement
for that name appeared immediately
following the PROCEDURE or ENTRY statement
in which the parameter list occurs (though
the same name may also appear in a DECLARE
statement internal to the same block).

The appearance of a name as the label of
either a PROCEDURE or ENTRY statement
constitutes a declaration within the
procedure containing the one to which it
refers.

The appearance of a label prefix on a
statement constitutes explicit declaration
of the label.

SCOPE OF AN EXPLICIT DECLARATION

The scope of an explicit declaration of a
name is that block to which the declaration
is internal, including all contained Llocks
except those blocks (and any blocks
contained within them) to which another
explicit declaration of the same identifier
is internal.

For example:

PABB'CC'DQR
P: PROCEDURE; 1 1 T
DECLARE A, B;]
Q: PROCEDURE; l A
DECLARE B, C;
R: PROCEDURE;

DECLARE C,D;

END R;
END Q; |]]
END P; 4] B
The lines to the right indicate the

names. B and B' indicate the
uses of the name B; C and C*
two uses of the name C.

scope of the
two distinct
indicate the

Contextual Declaration

When a name appears in certain contexts,
some of its attributes can be determined
without explicit declaration. In such a
case, if the appearance of a name does not
lie within the scope of an explicit

78

declaration for the same name, the name is
said to ke contextually declared.

A name that has not been declared
explicitly will be recognized and declared
contextually in the following cases:

1. A name that appears in a CALL
statement, in a CALL option, or
followed by an argument list is given
the BUILTIN and INTERNAL attrikutes.
Built-in functions and pseudovariakles
without arguments, such as ONCHAR,
ONSOURCE, DATE and DATAFIELD, should
be declared exrlicitly with the
BUILTIN attribute, contextually using
a null argument list, for example,
ONCHAR(), or implicitly by using a
DEFAULT statement, for example,
DEFAULT RANGE (ON, DAT) BUILTIN;

A name that appears in a FILE or COPY
option, or a name that appears in an
ON, SIGNAL, or REVERT statement for a
condition that requires a file name,
is given the FILE attribute.

A name that appears in an ON
CONDITION, SIGNAL CONDITION, or REVERT
CONDITION statement is recognized as a
programmer-defined condition name.

A name that appears in an EVENT option
or in a WAIT statement is given the
EVENT attribute.

A name that appears in a TASK option
is given the TASK attribute.

A name that appears in the BASED
attribute, in a SET option, or on the
left-hand side of a pointer
qualification symbol is given the
POINTER attrilbute.

A name that appears in an IN option,
or in the OFFSET attribute, is given
the AREA attrikute.
Examples of contextual declaration are:
READ FILE (PREQ) INTO (Q);
ALLOCATE X IN (S);
In these statements, PREQ is given the FILE

attribute, and S is given the AREA
attrikute.

SCOPE OF A CONTEXTUAL DECLARATION

The scope of a contextual declaration is
determined as if the declaration were made
in a DECLARE statement immediately

following the PROCEDURE statement of the
external procedure in which the name
appears.

Note that contextual declaration has the
same effect as if the name were declared in
the external procedure, even when the
statement that causes the contextual
declarations is internal to a block (called
B, for example) that is contained in the
external procedure. Consequently, the name
is known throughout the entire external
procedure, except for any blocks in which
the name is explicitly declared. It is as
if block B has inherited the declaration
from the containing external procedure.

Since a contextual declaration cannot
exist within the scope of an explicit
declaration, it is impossible for the
context of a name to add to the attributes
established for that name in an explicit
declaration. For example, the following
procedure is invalid:

P: PROC (F);

.

READ FILE(F) INTO(X);

END P;

The identifier F is in a parameter list and
is, therefore, explicitly declared. The
standard default attributes REAL DECIMAL
FLOAT conflict with the attributes that
would normally be given to F by its
appearance in the FILE option. Such use of
the identifier is in error.

Implicit Declaration

If a name appears in a program and is not
explicitly or contextually declared, it is
said to be implicitly declared. The scoge
of an implicit declaration is determined as
if the name were declared in a DECLARE
statement immediately following the
PROCEDURE statement of the external
procedure in which the name is used. A
name used only in a contained procedure
will be known in the containing procedure.

Unless the DEFAULT statement causes
programmer—-defined defaults to override the
standard defaults, an implicit declaration
causes standard default attributes to be
applied, depending upon the first letter of
the name. If the name begins with any of
the letters I through N it is given the
attributes REAL FIXED BINARY (15,0). If
the name kegins with any other letter

including one of the alrhabetic extenders
$, #, or a8, it is given the attrikutes REAL
FLOAT DECIMAL (6).

Examples of Declarations

Scores of data declarations are illustrated
in figure 7.1. The brackets to the left
indicate the klock structure; the brackets
to the right show the scope of each
declaration of a name. In the diagram, the
scopes of the two declarations of Q and R
are shown as Q and Q' and R and R'.

P is declared in the block A and known
throughout A since it is not redeclared.

Q is declared in A, and redeclared in B.

‘The scope of the first declaration is all

of A except B; the scope of the second
declaration is klock B only.

R is declared in block C, but a
reference to R is also made in klock B.
The reference to R in block B results in an
implicit declaration of R in A, the
external procedure. Two separate names
with different scopes exist, therefore.
The scope of the explicitly declared R is
C; the scope of the implicitly declared R
is all of A except klock C.

I is referred to in block C. This
results in an implicit declaration in the
external procedure A. As a result, this
declaration applies to all of A, including
the contained procedures B, C, and D.

S is explicitly declared in procedure D
and is known only within D.

Scopes of entry constant and statement
label declarations are illustrated in
figure 7.2. The example shows two external
procedures. The names of these procedures,
A and E, are assumed to be explicitly
declared with the EXTERNAL attribute within
the procedures to which they apply. 1In
addition, E is explicitly declared in A as
an external entry constant. The explicit
declaration of E applies throughout klock
A. It is not linked to the explicit
declaration of E that arplies throughout
block E. The scope of the name E is all of
block A and all of block E. The scope of
the name A is only all of the block A, and
not E.

However, it could arpear in an external
entry declaration in E, which would then
result in the scope of A being all of A and
all of E. .

The label 11 appears with statements
internal to A and to C. Two separate

Chapter 7: Recognition of Names 79

H -= 1
| P 2 92 R R' s 1 |
([A: PROCEDURE; 7] AN
| DECLARE P, Q;] 1
| |" B: PROCEDURE; i |
| DECLARE Q; |
| R = Q; |
| C: BEGIN; |
| DECLARE R; |
| DO I =1 TO 10; I
i END; |
| END C; 1
| L END B; i |
| D: PROCEDURE; |
| DECLARE S; |
| _ END D; I
| |~ END A; _J |
L e 3
Figure 7.1. Scopes of data declarations
L3 1
| L1 L1' L2 A B C D E |
I [3: PROCEDURE; i 1171 1
| DECLARE E ENTRY; |
| Ll: P = Q; - - |
| T B: PROCEDURE; |
| L2: CALL C; |
i C: PROCEDURE; |
| Ll: X = Y; |
| CALL E; |
| END C; |
| GO TO L1; |
| B END B; i i |
| - D: PROCEDURE; |
| L END D; |
| CaLL B; |
[L END A; 4 J 4
| E: PROCEDURE; . |
| B END E; i |
L — 3
Figure 7.2. Scopes of entry and label declarations
declarations are therefore established; the Internal and External Attributes
first applies to all of block A except
block C, the second applies to block C
only. Therefore, when the GO TO statement The scope of a name with the INTERNAL
in block B is executed, control is attribute is the same as the scope of its
transferred to L1 in block A, and block B declaration. Any other explicit
is terminated. declaration of that name refers to a new
okject with a different, non-overlapring
scope.
D and B are explicitly declared in block
A and can be referred to anywhere within A;
but since they are INTERNAL, they cannot Le A name with the EXTERNAL attrikute may
referred to in block E (unless passed as an be declared more than once in the same
argument to E). program, either in different external

procedures or within blocks contained in
C is explicitly declared in B and can Le external procedures. Each declaration of

referred to from within B, but not from the name establishes a score. These
outside B. declarations are linked together and,
within a program, all declarations of the
L2 is declared in B and can be referred same identifier with the EXTERNAL attrikute
to in block B, including C, which is refer to the same name. The scope of the
contained in B, but not from outside B. name is the sum of the scopes of all the

80

declarations of that name within the
program.

Note: External names of PL/I data cannot
be more than seven characters long and must
not contain the _ (break) character.

Since these declarations all refer to
the same thing, they must all result in the
same set of attributes. It may be
impossible for the compiler to check all
declarations, particularly if the names are
declared in different procedures, so care
should be taken to ensure that different
declarations of the same name with the
EXTERNAL attribute do have matching
attributes. The attribute listing, which
is available as optional output from these
compilers, helps to check the use of names.
The following example illustrates the above
points in a program:

A: PROCEDURE;
DECLARE S CHARACTER (20);
DCL SET ENTRY(FIXED DECIMAL(1)),
OUT ENTRY(LABEL);
CALL SET (3);
E: GET LIST (S,M,N);
B: BEGIN;
DECLARE X(M,N), Y(M);
GET LIST (X,Y);
CALL C(X,Y);
C: PROCEDURE (P,Q);
DECLARE P(*,*), Q(%*),
S BINARY FIXED EXTERNAL;
S = 0;
DO I =1 TO M;
IF SUM (P(I,*)) = Q(I)
THEN GO TO B;
S = S+1;
IF S = 3 THEN CALL OUT (E);
CALL D(I);
B: END;
END C;
D: PROCEDURE (N);
PUT LIST ('ERROR IN ROW ',
N, 'TABLE NAME ‘', S);

END D;
END B;
GO TO E;
END A;
OUT: PROCEDURE (R);

DECLARE R LABEL,
(M,L) STATIC INTERNAL
INITIAL (0),
S BINARY FIXED EXTERNAL,
Z FIXED DECIMAL(1);
M = M+1; S=0;
IF M<L THEN STOP; ELSE GO TO R;
ENTRY (2);
L=:Z;
RETURN;
END OUT;

SET:

A is an external procedure name; its
scope is all of klock A, plus any other
blocks where A is declared as external.

S is explicitly declared in klock A and
klock C. The character string declaration
applies to all of block A except klock C;
the fixed binary declaration applies only
within block C. ©Notice that although T is
called from within block C, the reference
to S in the PUT statement in D is to the
character string S, and not to the S
declared in klock C.

N appears as a parameter in klock D, but
is also used outside the block. Its
apearance as a parameter estaklishes an
explicit declaration of N within D since
there is no other declaration of N within
D; the references outside D cause an
implicit declaration of N in klock A.
These two declarations of the name N refer
to different okjects, although in this
case, the objects have the same data
attrikutes, which are, by standard default
. FIXED (15,0), BINARY, and INTERNAL.

X and Y are known throughout B and could
be referred to in klock C or D within B,
but not in that part of A outside B.

P and Q are parameters, and therefore if
there were no other declaration of these
names within the klock, their appearance in
the parameter list would be sufficient to
constitute an explicit declaration.
However, a separate DECLARE statement is
required in order to specify that P and Q
are arrays and it is this that is the
explicit declaration., Note that although
the arguments X and Y are declared as
arrays and are known in block C, it is
still necessary to declare P and ¢ in a
DECLARE statement to establish that they,
too, are arrays. (The asterisk notation
indicates that the kounds of the parameters
are the same as the bounds of the
arguments.)

I and M are not explicitly declared in
the external procedure A; they are
therefore implicitly declared and are known
throughout A, even though I appears only
within block C.

The second external procedure in the
example has two entry names, SET and OUT.
These are considered to be explicitly
declared with the ENTRY and EXTERNAL
attributes. They must also be declared
explicitly with the ENTRY attrikute in
procedure A. Since ENTRY implies EXTERNAL,
the two entry constants SET and OUT are
known throughout the two external
procedures.

The label B appears twice in the
program, once as the lakel of a kegin
block, which is an explicit declaration, as
a label in A. It is redeclared as a latel
within block C Ly its arpearance as a
prefix to the END statement. The reference

Chapter 7: Recognition of Names 81

to B in the GO TO statement within block C
therefore refers to the label of the END
statement within block C. Outside block C,
any reference to B would be to the label of
the begin block.

Note that C and D can be called from any
point within B but not from that part of a
outside B, nor from another external
procedure, Similarly, since E is known
throughout the external procedure A, a
transfer to E may be made from any point
within A. The label B within block C,
however, can only be referred to from
within C. Transfers out of a block by a GO
TO statement can be made; but such
transfers into a nested block generally
cannot. An exception is shown in the
external procedure OUT, where the label E
from block A is passed as an argument to
the label parameter R.

The statement GO TO R causes control to
pass to the label E, even though E is
declared within A, and not known within
OouT.

The variables M and L are declared
within the klock OUT to be STATIC; their
values are preserved between calls to OUT.

In order to identify the S in the
procedure OUT as the same S in the
procedure C, both have been declared with
the attribute EXTERNAL.

Scope_of Member Names of External
Structures

When a major structure name is declared
with the EXTERNAL attribute in more than
one block, the attributes of the
corresponding structure members must be the
same in each case, although the
corresponding member names need not be
identical. Names of members of structures
always have the INTERNAL attribute, and
cannot be declared with any scope
attribute. However, a reference to a
member of an external structure, using the
member name known to the block containing
the reference, is effectively a reference
to that member in all blocks in which the
external name is known, regardless of
whether the corresponding member names are
identical. For example:

PROCA: PROCEDURE;
DECLARE 1 A EXTERNAL,
2 B,
2 C;

END PROCA;

82

PROCB: PROCEDURE;
DECLARE 1 A EXTERNAL,
2 B,
2 D;

END PROCB;

In this example, if A.B is changed in
PROCA, it is also changed for PROCB, and

.vice versa; if A.C is changed in PROCA, A.D

is changed for PROCB, and vice versa.

Multiple Declarations and Ambiguous

References

Two or more declarations of the same
identifier internal to the same block
constitute a multiple declaration, unless

.at least one of the identifiers is declared
.within a structure in such a way that name
‘qualification can ke used to make the names
unique.

Two or more declarations anywhere in a

“program of the same identifier as EXTERNAL
‘names with different attributes constitute
‘a multiple declaration.

Multiple declarations are in error.

A name need have only enough
qualification to make the name unique.

iReference to a name is always taken to
‘apply to the identifier declared in the

innermost block containing the reference.

-An ambiguous reference is a name with

insufficient qualification to make the name
unique.

The following examples illustrate both
multiple declarations and ambiguous

.references:
DECLARE 1 A, 2 C, 2 D, 3 E;
BEGIN;
DECLARE 1 A, 2 B, 3 C, 3 E;
A.C = D.E;

In this example, A.C refers to C in the
inner block; D.E refers to E in the outer
klock.

DECLARE 1 A, 2B, 2B, 2¢C, 3D, 2D;
In this example, B has keen multiply

declared. A.D refers to the second D,
since A.D is a complete qualification of

‘only the second D; the first D would have

to be referred to as A.C.D.

DECIARE 1A, 2B, 3¢C, 2D, 3¢C;

In this example, A.C is ambiguous because

neither C is completely qualified by this

reference.
DECLARE 1 A, 2 A, 3 A;

In this example, A refers to the first A,

A.A refers to the second A, and A.A.A
refers to the thirxd a.

DECLARE X;

DECLARE 1 ¥, 2 X, 3 2, 3 A,
2Y, 312, 323;

In this example, X refers to the first
DECLARE statement. A reference to Y.Z is
ambiguous; Y.Y.2 refers to the second Z;
and Y.X.Z refers to the first z.

Application of Default Attributes

Every identifier in a PL/I source program
requires a complete set of attributes.
However, the attributes specified in a
DECLARE statement need rarely be the
complete set of attrikbutes for the
identifier. Moreover, contextual
declaration can result in only a partial
declaration of an identifier. For each
partially declared identifier the set of
attributes is completed implicitly by the
compiler by application of default rules.

Default rules which are determined for
the implementations are termed standard
default rules; alternative default rules
can be defined by the programmer who wishes
either to modify the standard default
rules, or develop a completely new set of
defdult rules. The DEFAULT statement is
used for this purpose. Its use is
described in a later section of this
chapter.

PROCESSES IN THE APPLICATION OF ATTRIBUTES
Attribute processing by the compiler takes
place in the following order:

1. Defactoring of attributes.

2. Application of the LIKE attribute.

3. Application of ALIGNED or UNALIGNED
attributes to structure members.

4. Estaklishment and application of
explicit declarations.

5. Estaklishment and application of
" contextual declarations.

6. Establishment of implicit
declarations.

7. Application of attributes specified in
the DEFAULT statements (if present),
for explicitly, contextually, and
implicitly declared identifiers; then
application of standard default
attributes.

8. Resolution of identical identifiers,
including identifiers used in
attributes, or declared in different
blocks of a procedure.

From this it should ke seen that
attributes aprlied by default cannot
override attrikbutes of the same class
applied to an identifier by explicit or
contextual declaration. Further, any
attributes applied by default are largely
dependent on attributes already apprlied.
This is fundamental to understanding the
use of the DEFAULT statement.

APPLICATION OF STANDARD DEFAULTS

Standard default rules are applied for a
class of attributes when an attrikute of a
particular class, such as scope, scale,
base, or mode, etc., has not been agplied
either by explicit or contextual
declaration. A summary of the standard
defaults for file attributes apprears in
chapter 10, "Input and Output.®™ A summary
of standard default assumptions for koth
proklem and program control data are given
below. A complete deccription of standard
default assumptions is given in sectiom I,
"Attributes."

Proklem Data

If the proklem data is not known to be
either of character or of arithmetic tyre,
arithmetic type is assumed.

Arithmetic _Data: The standard defaults
vary according to the information specified
for the data:

1. If an arithmetic data item is
partially specified in an explicit

Chapter 7: Recognition of Names 83

declaration, the attributes assumed Ly
default are:

Default
Explicit attributes
declarations assumed
BINARY REAL, FLOAT
DECIMAL REAL, FLOAT
FIXED REAL, DECIMAL
FLOAT REAL, DECIMAL
REAL FLOAT, DECIMAL
FIXED BINARY REAL
FIXED DECIMAL REAL
FLOAT BINARY REAL
FLOAT DECIMAL REAL
REAL FIXED DECIMAL
REAL FLOAT DECIMAL
REAL BINARY FLOAT
REAL DECIMAL FLOAT

Note that if COMPLEX is declared
instead of REAL, the attributes are
the same as for REAL, and are applied
to each of the two parts.

2. If a base but not a scale is
specified, the scale assumed depends
on the presence of a scale factor in
the rrecision attribute. If there is
a scale factor, FIXED is assumed, if
there is not, FLOAT is assumed.

For example:

DCL A BINARY(5),
B BINARY(5,2);

The assumed attributes for A are REAL
FLOAT: for B, they are REAL FIXED.

3. If mode, scale, and base are not
specified by a DECLARE or DEFAULT
statement, the attrikbutes assumed
depend on the initial letter of the

identifier.
Default
Initial attributes
letter assumed

$,#4,6,A - B REAL FLOAT DECIMAL

I-N REAL FIXED BINARY

o~ 2 REAL FLOAT DECIMAL

A value returned from a function
reference can have default rules applied to
determine its base, scale, and mode.
Default attributes for a returned value are
obtained Ly applying default rules to the
function name as if it were an arithmetic
identifier.

8u

Precision of arithmetic data: Standard
default precisions for arithmetic data are:

Attributes Precision
FIXED BINARY (15,0)
FIXED DECIMAL (5,0)
FLOAT BINARY 21
FLOAT DECIMAL (6)

Other attributes of arithmetic_data: The
assumed attributes are ALIGNED, and
AUTOMATIC if INTERNAL, or STATIC if
EXTERNAL.

String data: If the length of a character
or rit string is undefined, a length of 1
is assumed. The attributes UNALIGNED, and

AUTOMATIC if INTERNAL, or STATIC if
EXTERNAL, are assumed.

Structures and_structure members:

Level-one structures are assumed AUTOMATIC
if INTERNAL, and STATIC if EXTERNAL. Minor
structures and structure members cannot be
declared to have storage or scope
attributes.

Arrays _and data_elements: UNALIGNED is
assumed for data elements of string or
picture type. ALIGNED is assumed for all
other data types. Scope and storage degpend
on the data type.

Program_cControl Data_ZTyres

ENTRY: An entry constant declared in a
DECILARE statement, or as a statement prefix
on a PROCEDURE or ENTRY statement, is
assumed EXTERNAL. An entry variable is
assumed INTERNAL.

LABEL, POINTER, OFFSET, AREA, EVENT, TASK:
Identifiers declared with any one of these
attributes are assumed ALIGNED, and
AUTOMATIC if INTERNAL, STATIC if EXTERNAL.
If the size is not specified for an area
variable, the default size of 1000 Lytes is
applied.

DEFAULT Statement

The function of the DEFAULT statement is to
give the programmer control over the
default attributes assigned to identifiers.
The DEFAULT_statement cannot_ be_ used to

. override_ the_ attributes_assigned_to

- identifiers_by explicit_ox_ contextual

declarations.

The DEFAULT statement can be used to
modify the standard default rules or to
specify a complete set of
programmer-defined default rules. It can
specify attributes for identifiers whose
attribute sets are not complete after
explicit, implicit, or contextual
declaration, for the descriptors in entry
declarations, and for the attributes in the
RETURNS option of PROCEDURE and ENTRY
statements. Standard default rules can be
restored after programmer-defined default
rules have been established in a program.

"~ A simplified general form of the DEFAULT
statement is as follows:

DEFAULT
{RANGE({identifier}l[letter:letter}li*})}

DESCRIPTORS

(attribute-specification];

RANGE Option: The RANGE option specifies
the identifiers to which the associated
default rules are to be applied. The range
can be specified as either two letters
separated by a colon, or as a single
identifier. For example, the option:

RANGE (A:J)...

to all identifiers with initial
The

applies
letters in the range A through J.
option:

RANGE (ABC) s »

applies to all identifiers with the initial
three letters 'ABC' such as ABC, ABCD, and
ABCDE.

The RANGE option can also be specified
as:

RANGE (*)

whereby all possible initial alphabetic
characters, from A through Z, and the
characters $, @, and # are specified.

DESCRIPTORS Option: The DESCRIPTORS option
specifies that the associated default rules
are to be applied to non-null parameter
descriptors.

Attribute Specification: The attribute
specification is a list of attributes from

which selected attributes are applied to
identifiers in the specified range.
Attributes in the list may appear in any
order and must be separated by blanks.

Only those attributes that are necessary
to complete the declaration of a data item
are taken from the list of attributes. If
the list does not supply all the required
attributes, then standard default

attributes are applied. Therefore,
specification of any attrikute that is a
standard default is unnecessary. For
example:

DEFAULT RANGE(T) POINTER;

This means that any identifier that begins
with the letter T is a pointer. The
complete list of attributes that apply to
these identifiers is POINTER, AUTOMATIC,
INTERNAL, and ALIGNED.

Attributes that conflict when applied to:
a data item do not necessarily conflict
when they appear in an attribute
specification. For example:

DEFAULT RANGE(S) BINARY VARYING;

This means that any identifier that Lkegins
with the letter S and is declared
explicitly with the BIT or CHARACTER
attribute will receive the VARYING
attrikute; all others (that are not
declared explicitly or contextually as
other than arithmetic data) will receive
the BINARY attrikute.

The VALUE option is used within the
attribute specification to specify
attrikbutes that are represented by a
decimal integer constant or an expression.
These are the attrikutes length, size, and
precision. For example:

DEFAULT RANGE(*) VALUE(AREA(2000));
This statement gives a default size of 2000
to all area variables. The dimension
attribute can be specified directly in an

attribute specification provided it aprears
first in the list.

Example 1:

Assume that the following ranges of
initial letters are to correspond to the
attrikutes given:

Attributes

Initial letters required

A-D REAL FLOAT DECIMAL
E-H REAL FILOAT BINARY
I-N REAL FIXED BINARY
0O ~-2 REAL FIXED DECIMAL

The precisions to ke assumed are the
default precisions for these

implementations. A DEFAULT statement to
establish these additional default rules

is:
DEFAULT RANGE(E:H) BINARY,
RANGE(O:Z)FIXED;

Chapter 7: Recognition of Names 85

In this statement additional default
rules for two ranges of initial letters are
specified. The standard default rules for
identifiers with initial letters outside
the ranges E - H and O - Z are unchanged.

Example 2:

A DEFAULT statement can specify that all
implicitly-declared data has the same
attribute.

DEFAULT RANGE (*) PICTURE '99999°';

This statement causes all
implicitly-declared identifiers to be
assumed numeric character type with the
attributes REAL PICTURE '99999°.

If values other than the standard
defaults are required, the argument of the
VALUE option should always contain an
attribute to qualify the precision, string
length, or area size for a particular
default attribute. For example:

a. DEFAULT RANGE (S:T) CHARACTER
VALUE (CHARACTER (10));

b. DEFAULT RANGE (*) VALUE (FIXED
BINARY(31) ,FLOAT DECIMAL(33),
FLOAT BINARY(109), FIXED
DECIMAL(15));

The first example specifies that all
implicitly~declared identifiers with the
initial letters S and T are to receive the
default attribute CHARACTER and a default
string length of ten characters. The
second example specifies that all
identifiers of arithmetic type with
undefined precisions will have the
precisions as defined in the argument to
the keyword VALUE. (In this instance the
precisions specified are the maximum
precisions permitted.)

Note that the only attributes which the
VALUE option can influence are precision,
string length, and area size. Other
attributes in the option, such as CHARACTER
and FIXED BINARY in the above examples,
merely indicate which attributes the value
is to be associated with. Consider the
following example.

DEFAULT RANGE(I) VALUE(FIXED
DECIMAL(S,3));

I=1;

If it is not declared explicitly, I will be
given the standard default attributes FIXED
BINARY(15,0). It will not be influenced by
the default statement, because this
statement specifies only that the default
precision for FIXED DECIMAL identifiers is
to be (8,3).

86

Restoring Standard Defaults

The following statement:

DEFAULT RANGE(*), DESCRIPTORS;

. overrides, for all identifiers, any

programmer-defined default rules
estaklished in a containing klock. It can
be used to restore standard defaults for
contained blocks.

To restore standard defaults to a
particular identifier, the keyword SYSTEM
can be specified in its DECLARE statement.

Scope_of the DEFAULT Statement

The scope of a DEFAULT statement is the
block in which it is specified, and any
blocks contained in that block, excert that
if a DEFAULT statement in a contained block
specifies all or part of the range
srecified in a DEFAULT statement in a
containing block, the statement in the
contained block overrides the other for the
range that they have in common. For
example:

A: PROC;
DEFAULT RANGE(A:I) FIXED BINARY;

.

B: PROC;
DEFAULT RANGE(I) DECIMAL;

END A;

In procedure B, DECIMAL overrides BINARY
for identifiers beginning with I, and FIXED
is not inherited. Standard defaults will
be applied for alignment, scope, storage
class, mode, and precision.

A DEFAULT statement in an intermnal klock
affects only explicitly declared
identifiers. This is because the scope of
contextually and implicitly declared
identifiers is determined as if their
declaration were made in a DECLARE
statement immediately following the
PROCEDURE statement of the external
procedure in which the name appears.

"attributes FIXED DECIMAL,

Factored Default Specification

A default specification can be factored.
For example, the following statement:

DEFAULT (RANGE(A:C) FIXED, RANGE(D:F)
FLOAT) DECIMAL;

specifies that arithmetic identifiers with
the initial letters A to C receive the

and those with
the initial letters D to F receive the
attributes FLOAT DECIMAL.

Programmer-defined Defaults for Parameter
Descriptors

The DEFAULT statement can be used to
specify attributes for parameter
descriptors., The keyword DESCRIPTORS
designates the list of attributes which
follows it as an attribute specification
for parameter descriptors. For example:

DEFAULT DESCRIPTORS BINARY;
DCL X ENTRY (FIXED, FLOAT);

the attribute BINARY
parameter descriptor
the equivalent list:

is added to each
in the 1list, producing

(FIXED BINARY, FLOAT BINARY)

The DESCRIPTORS default attributes are
not applied to parameters having null
descriptors, that is, parameters for which
no attributes are specified in the
parameter descriptor, and whose attributes
must therefore match those of the
corresponding arguments.

Programmer-defined Default for the RETURNS
Option

The default attributes of implicitly
declared values returned from function

procedures are dependent on the entry name
used to invoke the procedure. The DEFAULT
statement can ke used to specify such
attributes when the entry name, or the
initial letter of the entry name, is
specified in the DEFAULT statement.

For example, the following statements:

DEFAULT RANGE (X) FIXED BINARY;
X ¢ PROC(Y);

would be interpreted as:

X : PROC(Y) RETURNS (FIXED BINARY);

Restrictions of the Use of the DEFAULT
Statement

The DEFAULT statement must not specify the
attrikbutes ENTRY, ENVIRONMENT, RETURNS,
LIKE, VARIABLE, or any file attrikbutes
other than FILE. It cannot bLe used to
specify structuring, although structure
elements can have defaults applied
according to a RANGE specification.

Although the DEFAULT statement may
specify the dimension attribute for
identifiers that have not been declared
explicitly, a subscripted identifier would
be contextually declared with the attrikute
BUILTIN., Therefore the dimension attribute
can be applied by default only to
explicitly declared identifiers.
example:

For

DEFAULT RANGE (ARRAY) (10,10) FIXED
BINARY;
DCL ARRAY1, ARRAYZ;

Both ARRAY1 and ARRAY2 are explicitly
declared two-dimensional arrays of 100
elements, each with the attributes FIXED
and BINARY.

Chapter 7: Recognition of Names 87

Chapter 8: Storage Control

The purpose of this chapter is to describe
how the PL/I programmer can control the
allocation of storage. Allocation is the
process of obtaining storage for a
variable. A generation of a variable
refers to a particular allocation of it.
The four storage classes STATIC, AUTOMATIC,
CONTROLLED, and BASED allow the programmexr
to exercise as much control as he requires
for a particular program.

All variables require storage; this
applies both to problem data, such as
string and arithmetic, and to program
control data such as label variables, entry
variables, and file variables. The
declaration of a variable must include a
storage class attribute even if only by
default. The name of a variable is
effectively the address of the variable,
and the attributes specified for a variable
describe the amount of storage reguired and
how it is to be interpreted. For example:

DECLARE X FIXED BINARY (31,0) AUTOMATIC;

The name X addresses a fullword, i.e., four
bytes, that contains a value to be
interpreted as a fixed-point binary
integexr. For static and automatic
variables, this concept is not very
important, kut when considering controlled
and, particularly, based variables it is
relevant.

It should be understood that at no point
in a PL/I program does the programmer have
access to the absolute address of a
variable within main storage, because the
allocation of storage for variables is
managed by the compiler. The programmer
does not specify where in main storage the
allocation is to be made. He can, however,
specify where it is to be allocated
relative to storage already allocated for
instance by allocating based variables in
an area variable.

The degree of storage control that can
be exercised depends on the class of
storage used.

Static Storage

Variables declared with the STATIC
attribute are allocated prior to the
execution of a program and remain allocated
until the program terminates. The program
has no control on the allocation of static

88

‘constants,

variables during execution. Programs often
need data that is used whenever the grogram
is executed. For example, all arithmetic

constants specified in a program are stored

-in a manner similar to variables declared

STATIC. The difference is that constants
cannot ke changed during program execution
whereas the values of static variables can.
Although static variakles can be declared
at any point in a program, they are all
allocated prior to execution. But it is
important to note that static variables
follow normal scope rules for the validity
of references to them. For example:

A:PROC OPTIONS(MAIN) ;

B:PROC;
DECLARE X STATIC INTERNAL;

END B;

END A;

Although the variable X is allocated
throughout the program, it can ke
referenced only within procedure B or any
klock contained in B.

If static variables are initialized
using the INITIAL attrikute, the initial
values must be specified as constants with
the exception of poincer variables as noted
below. And any specification of extents,
for instance array kcu:nds, must also ke
Thus if static storage is used,
it must ke korne in mind that whatever
allocation has been specified when the
program was written will ke retained

‘throughout the execution of the program.

Static storage should ke used for all data
that may be referred to by the programmer
at any point in a program. A STATIC
pointer or offset variable may ke
initialized only ty using the NULL built-in

‘function.

All other forms of storage allocation
are dynamic, that is, the storage is
obtained during the execution of the
program. Because of this, the programmer
can exert more control.

Automatic Storage

Automatic variables are allocated on entry
to the block in which they have been
declared. They can be reallocated many
times during the execution of a program.
The programmer controls their allocation by
his design of the klock structure of his
program. For example:

A:PROC;

CALL B;
Bs PROC;

DECLARE X,Y AUTO;

END E;

CALL B;

Each time procedure B is invoked, the
variables X and Y are allocated storage,
and when B terminates the storage is
released; consequently, the values they
contained are lost. The storage that has
been freed is available for reallocation to
other variables. Thus, whenever a block
(procedure or begin) is active, storage is
allocated for all variables declared
automatic within that block, and whenever a
block is inactive no storage is allocated
for the automatic variables in that block.
Only one allocation of a particular
automatic variable can exist, except for
those proceclures that are called
recursively or by more than one task.

Array bounds, string lengths, and area
sizes for automatic variables can be
specified as expressions. This means not
only that storage can be allocated when it
is required but also that the required
amount of storage can be allocated. For
example:

A:PROC;

DECLARE N FIXED BIN;

B:PROC;
DECLARE STR CHAR(N);

The character string STR will have a length
defined by the value of the variakle N that
existed when procedure B was invoked.
However, storage is conserved at the
possible expense of speed of execution
because of the extra operations required to
evaluate such expressions.

EFFECT OF RECURSION ON AUTOMATIC VARIABLES

A procedure that can be invoked when it is
already active in the same task is said to
be recursive. The values of variables
allocated in one activation of such a
procedure must ke protected from change by
other activations. This is arranged by
stacking the variables. A stack operates
on a last-in first-cut basis; the most
recent generation of an automatic variakle
is the only one that can be referenced.
Note that static variables are not affected
by recursion. Thus they are useful for
communication across recursive invocations.
This also applies to automatic variables
that are declared in a procedure that
contains a recursive procedure and to
controlled and based variables. For
example:

A:PROC;
DCL X;

B:PROC RECURSIVE;
DCL Z,
Y STATIC;

CALL B;

.

END B;
END A;

A single generation of the variable X
exists throughout invocations of procedure
B. The variable Z will have a different
generation for each invocation of procedure
B. The variable Y can be referred to only
in procedure B and will not be reallocated
at each invocation. (The concept of
stacking of variakles is also of importance
in the discussion of controlled variables.)

Controlled Storage

Variables declared as CONTROLLED are
allocated only when they are specified in
an ALLOCATE statement. The programmer has
individual control over each controlled
variakle. Effectively, they are

Chapter 8: Storage Control 89

independent of the program block structure,
but not comgpletely. The scope of a
controlled variable, when declared
internal, is the block in which it is
declared and any contained blocks. The
declaration of a controlled variable
describes only how much storage will be
required when the variable is allocated and
how it is to be interpreted. For example:

A:PROC;
DCL X CONTROLLED;

B:PROC;
ALLOCATE X;

END B;
END A;

The variable X can be validly referred to
within procedure B and that part of
procedure A that follows the CALL
statement. Any reference to the value of
the variakle before execution of the CALL
statement is in error. Once a controlled
variable has been allocated, it remains
allocated either until a FREE statement
that names the variable is encountered or
until the end of the program. Note that
the scope of a controlled variable may not
be the whole program; this creates a
situation analogous to that for the STATIC
INTERNAL variable described under "Static
Storage" earlier, i.e., it exists but
cannot be referenced.

The FREE statement frees the storage
allocated for a controlled variable. The
storage can then ke re-used for other
allocations.

Generally, controlled variables are
useful when large data aggregates with
adjustable extents are required in a
program. For example:

DCL A(M,N) CTL;

GET LIST(M,N);
ALLOCATE A;
GET LIST(A);

FREE A;

90

This program sequence allocates the exact
storage required depending on the ingut
data and discards the data (and frees its
storage) when no longer required. This
method can ke more efficient than the
alternative of setting up a begin block,
because no prologue or epilogue is
required.

ALLOCATE STATEMENT FOR CONTROLLED VARIABLES

A controlled variable can be allocated only
by an ALLOCATE statement. The general form
of the ALLOCATE statement for controlled
variakles is:

ALLOCATE (levell identifier [dimension
attributel [attribute)
[,[1level] identifier [(dimension
attributel [attributell...
{INITIAL attrikutel;

The "identifier" is any variable that has
the CONTROLLED attrikute. It can be an
element, array, or structure, but cannot be
subscripted or qualified. Permitted
attributes are those that specify
dimensions, the length of strings, and the
size of areas. (Areas are discussed later
in this chapter but in this context they
are simply variables whose storage is
adjustakle.) This enakles the programmer
to alter the amount of storage for a
particular generation of a variable.
attributes are:

These

dimension
CHARACTER(length)
BIT(length)
AREA(size)

The dimension attribute can appear with
any of the others. For example:

DCL X(20) CHAR(5) CONTROLLED;

ALLOCATE X(25) CHAR(6);

The attribute values specified in an
ALLOCATE statement always override those
given in the DECLARE statement for the same
variakle. However, the attributes
themselves must agree. Thus the dimension
attrikute must specify the same numker of
dimensions. As in a DECLARE statement,
element expressions can be used to sgecify
kounds, lengths, and sizes.

The INITIAL attribute can also ke
specifiéd in an ALLOCATE statement.

Initial values given in an ALLOCATE
statement override those, if any, given in
a DECLARE statement.

FREE STATEMENT FOR CONTROLLED VARIABLES

Storage for a controlled variable is freed,
and therefore its value is lost, when a
FREE statement is executed that names the
variable. The form of the FREE statement
is:

FREE identifier(,identifierl...;

The "identifier" has the same restrictions
as in the ALLOCATE statement.

If the FREE statement names a variable

that has not been allocated, no action is
taken.

Implicit Freeing

If a controlled variable is to remain
allocated until the end of a task, it need
not be explicitly freed by a FREE
statement. All controlled storage is
automatically freed at the termination of
the task in which it was allocated.

MULTIPLE GENERATIONS OF CONTROLLED
VARIABLES

If storage for a controlled variable is
reallocated before being freed the first
generation is preserved, i.e., stacked.
The second generation becomes the current
generation; the first generation cannot be
directly accessed until the current
generation has been freed.
to the process described for automatic
variables in a recursive procedure. For
controlled variables, however, stacking and
unstacking of variables occur at ALLOCATE
and FREE statements rather than at block
boundaries and are independent of
invocation of procedures within a task.

Although values of successive
generations of a controlled variable are
stacked, values can be obtained from the
most recent generation to help create a new
generation. If, in an ALLOCATE or DECLARE
statement, a bound, length, or size is
specified by an expression that contains
references to the variakle, the value is
taken from the most recent previous
generation. For example:

This is similar

DCL X(20)FIXED BIN CTL;

ALLOCATE X;

ALLOCATE X(X(1));

In the first allocation of X the upper
bound is specified by the DECLARE
statement, i.e., 20. In the second
allocation the upper bound is specified by
the value of the first element of the first
generation of X.

Asterisk Notation

If, in an ALLOCATE statement, dimensions,
lengths, or sizes are indicated by
asterisks, values are inherited from the
most recent previous generation. For
arrays, the asterisk must ke used for every
dimension of the array, not just one of
them. For example:

DCL X(10,20) CHAR(5) CTL;

ALLOCATE X;

ALLOCATE X(10,10);

3

ALLOCATE X(*,%*);

In this example, the first generation of X
has bounds (10,20); the second and third
generations have kounds (10,10). The
elements of each generation of X are all
character strings of length five.

The asterisk notation can also ke used
in a DECLARE statement, but has a different
meaning. For example:

DCL Y CHAR(%*) CTL,
N FIXED BIN;
N=20;

ALLOCATE Y;

ALLOCATE Y CHAR(N);
This simply means that the length of the
character string ¥ is to be taken from the

Chapter 8: Storage Control 91

previous generation unless it is specified
in an ALLOCATE statement, in which case Y
is given the specified length. This allows
the programmer to defer the specification
of the string length until the actual
allocation of storage.

CONTROLLED STRUCTURES

When a structure is controlled, any arrays,
strings, or areas it contains can be
adjustable. For this reason, it is
permissible to describe the relative
structuring in an ALLOCATE statement. For
example:

DCL 1 A CTL,
2 B(-10:10),
2 C CHAR(#*) VARYING;

ALLOCATE 1 A,
2 B,
2 C CHAR(S);

FREE A;

When the structure is allocated, A.B has
the extent -10 to +10 and A.C is a VARYING
character string with maximum length 5 and
the value null. When the structure is
freed, only the major structure name is
given. All of a controlled structure must
be freed or allocated; it is an error to
attempt to obtain storage for part of a
structure.

ALLOCATION BUILT-IN FUNCTION

Where the allocation and freeing of a
variable depend on flow of control, it is
useful to be able to determine if the
variable has been allocated. The
ALLOCATION built-in function returns a
binary integer value indicating the number
of generations that can be accessed in the
current task for a given controlled
variable. 1If the variable is not
allocated, the value zero is returned. The
function reference has the form:

ALLOCATION(a)
where a must be a controlled variable.
Besides the ALLOCATION built-in
function, other built-in functions that may

be useful are the array-handling functions
DIM, which determines the extent of a

92

specified dimension of an array, and LBOUND
and HBOUND, which determine the lower and
upper bound respectively of a specified
dimension of a given array. Similarly for
strings, the built-in function LENGTH,
returns the current length of the string.

Based Storage

A kased variakle is fundamentally different
from all other storage classes in that the
name of a based variakle does not identify
the location of a generation in main
storage; a declaration of a based variakle
is only a description of the generation,
i.e., the amount of storage required and
how that storage is to ke interpreted. The
location of the generation is identified by
a separate variable called a locator
variakle. A locator variable is either a
pointer variable or an offset variakle.
Offset variakles are discussed later in
this chapter in conjunction with area
variakles.

Although a declaration for a controlled
variable is also only a description of the
storage, once an ALLOCATE statement has
been executed for the variable, its name
also identifies the location of the
variable. For this reason, it is
impossikle to refer to more than one
generation of a controlled variable at a
particular point in a program. In fact,
the ALLOCATE statement can also be used for
a kased variakle, but because the location
of any generation is identified by an
independent locator variakle, it is
possible to refer at any point in a program
to any generation of a based variakle by
using an appropriate locator value.

BASED VARIABLES

A declaration of a kased variable has the
keyword BASED and, optionally, the name of
a locator variable that can be assumed to
ke associated with the tased variakle. For
example:

DCL X FIXED BIN BASED(P);

For this declaration the value of the
variable P will identify the location of
the variable X, except when the reference
is otherwise explicitly qualified, as
descriked kelow.

The association of a pointer variakle in
this way is not a special relationship. P
can be used to identify locations of other

based variables and other locators can be
used to identify other generations of the
xl

LOCATOR QUALIFICATION

Because a reference to the value of a based
variable consists of two parts, it is a
qualified reference and to distinguish this
from a reference to a member of a
structure, it is called a locator-qualified
reference. The composite symbol -> (a
minus sign immediately followed by a
greater than sign) represents ‘qualified
by' or ‘points to'. For example:

P ->X

X must be a based variable and P must be a
locator expression. The reference means:
that generation of X identified by the
value of the locator P. X is said to be

explicitly locator-qualified.

When a based variable is associated with
a locator variable in a declaration, the
programmer need specify only the name of
the based variable in a reference. For
example:

DCIL X FIXED BIN BASED(P);

.

ALLOCATE X;

X X + 1;

The ALLOCATE statement sets a value in
the pointer variable P so that the
reference X applies to allocated storage.
The references to X in the assignment
statement are implicitly locator-qualified
by P. References are explicitly
locator-qualified as follows:

R->X = Q->X + 1;

This assignment statement has the same
effect as that of the previous example. A
based variable can be declared without
naming a pointer variable; in this case any
reference to the based variable must always
be explicitly locator-qualified.

(Note that PL/I allows a more general
form of locator gualification than is
described here; see "Multiple Locator
Qualification™ at the end of this chapter.
However, the general form is not essential
to an understanding of the remainder of
this chapter.)

POINTER VARIABLES

A pointer variable is declared contextually
if it appears in the declaration of a Lased
variable, if it appears as a locator
qualifier, or if it appears in the SET
option of an ALLOCATE, LOCATE, or READ
statement. It can also be declared
explicitly as in the following example:

DCL Q POINTER;

Because Q is a variakle it must have a
storage class; in this case, AUTOMATIC is
arplied by default. Note that a pointer
variable is a program control variakle and
therefore cannot ke manipulated in the same
way as arithmetic values. Pointer
variakles can be collected in arrays and
structures.

Pointer Expression

A pointer expression is either a pointer
variakle, which can be qualified ox
sukscripted, or a function reference that
returns a pointer value.

A pointer expression can be used in the
following ways:

1. As a locator qualifier, in association
with a declaration of a based
variakle.

2. In a comparison operation, for example
in a IF statement (pointer values can
Le compared whether equal or not
equal).

3. As an argument in a procedure
reference.

Setting Pointer Variables

Before a reference is made to a
pointer-qualified variakle, the pointer
must have a value. A pointer value is
obtained from any of the following:

1. The NULL built-in function.

2. The ADDR built-in function.

3. A READ or LOCATE statement.

4. An ALLOCATE statement.
All pointer values are originally derived

from one of these three methods. Such
values can then be manipulated Ly

Chapter 8: Storage Control 93

assignment that copies a pointer value to a
pointer variable; by locator conversion
that converts an offset value to a pointer
value, or vice versa; by passing the
pointer value as an argument in a procedure
reference; and by returning a pointer value
from a function procedure.

ADDR BUILT-IN FUNCTION

The ADDR built-in function returns a
pointer value that identifies the first
byte of a variable. The variable can have
any data type or organization and any
storage class. For example:

P = ADDR(X);

#here P is a pointer variable and X is any
connected variable. The argument to the
built~in function can be a subscripted
jualified reference. For example:

DCL A(3,2) CHARACTER(5) BASED(P),
C(3,2) CHARACTER(S);

ADDR(C) ;
ADDR(A(2,1));

P
Q

In this example, the arrays A and C refer
to the same storage. The elements B and
C(2,1) also refer to the same storage.

Notice that when a based variable is
overlaid in this way no new storage is
allocated - the kased variable uses the
same storage as the variakle on which it is
overlaid (A(3,2) in the example).

This overlay technique can be achieved
by use of the DEFINED attribute, but an
important difference is that for DEFINED
the overlay is permanent. When based
variables are overlaid, the association can
be changed at any time in the program by
assigning a new value to the pointer
variable. Note that although PL/I does not
permit the overlay of variables with
different data types, e.g., overlaying an
integer with a bit string, it is possible
in this implementation. However, it should
be understood that incompatibilities
between the attributes of the based
variable and the attributes of the variable
being overlaid will bée detected only when
running under the checkout compiler with
he NOCOMPATIBLE option.

The ADDR built-in function does not
supply any information on the organization
of a variable. Therefore, if the variable
is an aggregate, it should be in connected
storage if it is to be referenced as an

24

entity. For example, if the variakle is a
cross-section of an array, the elements
must not be interleaved. Furthermore, in
this implementation, if the variakle is a
varying-length string or an area, control
information is an integral part of the
variable. A varying-length string is
prefixed by a two-byte length field, and an
area is prefixed by 16 bytes of contxrol
information. Thus if the ADDR function is
performed on these types of variable, the
pointer value identifies the start of the
control information.

Other rules that apply to the use of the
ADDR function are given in section G,
"Built~in Functions".

BASED VARIABLES AND INPUT/OUTPUT

Based variables can be transmitted using
either stream-oriented or record-oriented
transmission.

In the list-directed form of
stream-oriented transmission, provided the
based variables are locator-qualified
(implicitly or explicitly), they are
treated in the same way as other types of
variakle. For example:

GET LIST (P->X);

For data-directed transmission, however,
only a kased variakle that has keen
associated with a locator expression in a
declaration can be transmitted. For
example:

DCL Y BASED(Q), 2 BASED;

PUT DATA(Y);

The variable Z cannot ke transmitted in a
PUT DATA or GET DATA {(that is,
data-directed 1I/0) statement. Chapter 11
discusses the techniques and facilities of
stream-oriented transmission.

Record-oriented transmission provides
two processing modes: move mode, which
moves data into or out of an allocated
generation of a variakle either directly or
indirectly via a buffer; or, locate mode,
which only moves the data into ox out of a
buffer and identifies the storage allocated
within the buffer. Although based
variakles can ke transmitted using either
mode, they are designed to be used with
locate mode. Based variables are used in
locate mode to describe the contents of a
buffer, and therefore allow data to be

processed while it is in the buffer. Note

that locate mode only applies to SEQUENTIAL
BUFFERED files. Chapter 12,
"Record-0Oriented Transmission," discusses
the two modes more fully.

READ_with_ SET_Statement

In locate mode, the READ statement has the
form:

READ FILE(file-expression)
SET(element-pointer-variable);

This statement places a record in a buffer
and identifies its location by setting the
specified pointer variable. Any based
variable gualified by this pointer variable
describes the contents of the buffer. For
example:

DCL X CHAR(20) BASED(P),
Y(20) CHAR(1) BASED(P);

.

READ FILE(IN) SET(P);

In this program segment, a record is read
into a buffer and the pointer variable P
identifies its location. The record in the
buffer is treated simultaneously by the
based variable X as a fixed-length
character string and by the based variable
Y as an array of single characters. Note
that P is declared contextually as a
pointer variable and that a reference to X
or Y is implicitly qualified by P.

The next I/0 operation on the file
(including closing the file) frees the
buffer.

LOCATE Statement

The LOCATE statement complements the READ
with SET statement and is used for output
from a buffer. The form is:

LOCATE based-variable
FILE(file-expression)
[SET (element-pointer-variable)l;

This statement allocates storage in a
buffer for a specified based variable.
SET option need only be specified if the
based variakle has not been associated with
a pointer variable in a declaration.

The

The LOCATE statement operates
differently from all other transmission
statements. Because the statement sets a
pointer to a storage address, there is
nothing to transmit until values have been
assigned to that storage. The LOCATE
statement transmits the previous record
(i.e., the contents of storage obtained Ly
a previous LOCATE statement), frees the
storage for that record, and allocates
storage for the next record. The current
record is also transmitted if a WRITE or
CLOSE statement is executed for the same
file. The following example shows the use
of the LOCATE statement:

DCL 1 STR BASED(P),
2 NAME CHAR(20),
2 RATE FIXED(5,2);

OUTPUT: LOCATE STR FILE(OUT);

/*ASSIGN VALUES TO STR*/

GO TO OUTPUT;

By using locate mode the programmer can
specify that a number of different forms of
record be held in the same file. For
example:

DCL 1 STR1 BASED(P),
2 CODE CHAR(1),
2 X CHAR(30),
1 STR2 BASED(Q),
2 CODE CHAR(1),
2 X(8) FIXED BIN;

READ FILE(IN) SET(P);

IF STR1.CODE= '2' THEN DO;
Q=P;
I=Q->X(1);

END;

In this program segment each based
structure has an element CODE that
identifies the structure. A record is read
and its location is set in P. Depending on
the value of CODE, the value of P is
assigned to Q so that the record can ke
interpreted as STRZ2.

If an element varying-length string is
transmitted using locate mode, the
SCALARVARYING option of the ENVIRONMENT
attribute must be specified for the file
(see chapter 12, "Record-Oriented
Transmission"). The records will include a
two-byte length prefix.

Chapter 8: Storage Control 95

SELF-DEFINING DATA(REFER OPTION)

A self-defining record is one which
contains information about its own fields,
such as the length of a string. A based
structure can be declared so that such data
can be manipulated. sString lengths, array
bounds, and area sizes can all be defined
by variakles declared within the structure.
When the structure is allocated (by either
an ALLOCATE statement or a LOCATE 2.
statement), the value of an expression is
assigned to a variable that defines a
length, bound, or size. For any other
reference to the structure, the value of
the defining variable is used.

The REFER option is used in the
declaration of a based structure to specify
that, on allocation of the structure, the
value of an expression is to be assigned to
a variable in the structure and is to
represent the length, bound, or size of
another variable in the structure. The
REFER option has the following general
format:

element-expression REFER
(element-variakle)

The value of the element-expression must be
capable of being converted to an integer. 3.
Any variables used as operands in the

expression must not belong to the structure
containing the REFER option.

The element-variable, known as the
object of the REFER option, must be the
name of a member of the structure being
declared. It must not be locator-qualified
or subscripted and it must precede the
member it defines. For example:

DECLARE 1 STR BASED(P),
2 X FIXED BINARY,
2 Y (L REFER (X)),
L FIXED BINARY INITIAL(1000);

This declaration specifies that the based
structure STR will consist of an array Y
and an element X. When STR is allocated,
the upper bound is set to the current value
of L which is assigned to X. For any other
reference to ¥, such as a READ statement
that sets P, the kound value is taken from
X.

Any number of REFER options may be used
in the declaration of a structure provided
that at least one of the following
restrictions is satisfied:

1. All okbjects of REFER options are
declared at logical level two, that
is, not declared within a minor
structure. For example:

96

DECLARE 1 STR BASED,
2 (M,N),
2 ARR(I REFER (M),
J REFER(N)),
2 X;

When this structure is allocated, the
values assigned to I and J will set
the bounds of the two-dimensional
array ARR.

The structure is declared so that no
padding ketween members of the
structure can occur. Section K, "Data
Mapping," descrikes the rules by which
structures are mapped. For example:

DECLARE 1 STR UNALIGNED BASED (P),
2 B FIXED BINARY,
2 ¢,
3 D FLOAT DECIMAL,
3 E (I REFER (D))
CHAR(J REFER (B)),
2 G FIXED DECIMAL;

Because this structure has the
UNALIGNED attribute, all items require
only byte alignment. Therefore
regardless of the values of B and T
(the REFER okjects) no padding will
occur. Note that D is declared within
a minor structure.

If the REFER option is used only once
in a structure declaration,
restrictions 1 and 2 can be ignored
provided that:

a. For a string length or area size,
the option is applied to the last
element of the structure.

k. For an array kound, the option is
applied either to the last element
of the structure or to a minor
structure that contains the last
element. The array bound must be
the upper bound of the leading
dimension. For example:

DCL 1 STR BASED (P),
2 X FIXED BINARY,
2 Y,
3 2 FLOAT DECIMAL,
3 M FIXED DECIMAL,
2 D (L REFER (M),
3 E (500,
3 F (20);

Note that the leading dimension of
an array can be inherited from a
higher level. For example, if we
had declared STR(4) in the akove
example, the leading dimension
would have been inherited from
STR(4) and so it would not have
been possikle to use the REFER
option in D,

This declaration does not satisfy
restrictions 1 or 2; the REFER
object M is declared within a
minor structure and padding will
occur. However, restriction 3 is
satisfied as the REFER option is
applied to a minor structure that
contains the last element.

If the value of the object of a REFER
option varies during the program then:

1. The structure must not be freed until
the object is restored to the value it
had when allocated.

2. The structure must not be written out
while the object has a value greater
than the value with which it was
allocated.

3. The structure may be written out when
the object has a value equal to or
less than the value it has when
allocated. The number of elements,
the string length, or area size
actually written will be that
indicated by the current value of the
object. For example:

DCL 1 REC BASED (P),
2 N,
2 A (M REFER(N)),
M INITIAL (100);

ALLOCATE REC;
N = 86;
WRITE FILE (X) FROM (REC);

In this example, 86 elements of REC
are written. It would be an error to
attempt to free REC at this point
since N must be restored to the value
it has when allocated (i.e., 100). If
N was assigned a value greater than
100, an error would occur when the
WRITE statement was encountered.

When the value of a refer object has
been changed, the next reference to the
structure causes remapping. For example:

DCL 1 A BASED(P),
2 B,
2 C (I REFER(B)),
2D,

I INIT(10);

ALLOCATE A;

B = 5;

The next reference to A after the
assignment to B will cause the structure to
be remapped to reduce the upper kound of C
from 10 to 5, and to allocate to D storage
immediately following the new last element
of C. Although the structure is remapred,
no data is reassigned - the contents of the
part of storage originally occuried Ly the
structure A are unchanged. If the
programmer does not take account of
remapping, errors can occur. Consider the
following example, in which there are two
REFER options in the one structure:

DCL 1 A BASED (P),
2 B FIXED BINARY (15,0),
2 C CHAR (I1 REFER (B)),
2 D FIXED BINARY (15,0),
2 E CHAR (I2 REFER (D)),

(I1,I2) INIT (10);

ALLOCATE A;

B = 5;

The mapping of A with the original and new
values of B is as follows:

1.D_| E |

1. D | E R=5

]_B | C B=10

| B | C

D now refers to data that was originally
part of that assigned to the
character-string variable C. This data
will ke interpreted according to the
attributes of D - that is, as a fixed-point
decimal number - and the value obtained
will be taken to be the length of E.

Hence, the length of E is unpredictaktle.

LIST PROCESSING

List processing is the name for a numker of
techniques to help manipulate collections
of data. Although arrays and structures in
PL/I are also used for manipulating
collections of data, list processing
techniques are more flexible in that they
allow collections of data to be
indefinitely reordered and extended during
program execution. It is not the purpose
here to illustrate these techniques Lut
simply to show how kased variables and
locator variables serve as a basis for this
type of processing.

A list that has at least one pointer
within each member that identifies the
location of another memker in the list is
called a chained or threaded list. The
primary application of the ALLOCATE and
FREE statements is to build these lists.

Charter 8: Storage Control 97

ALLOCATE STATEMENT FOR BASED VARIABLES

The form of the ALLOCATE statement is:

ALLOCATE based-variable
(IN(area~variable)] '

(SET (locator~-variable)]
[,kased-variakle
[IN(area~variable)]
[SET(locator-variable)ll...;

The based variable can be any data type or
organization. The SET option is needed if
the based variable was declared without an
associated pointer variabkle or if it is
required to leave the pointer that was
declared with the based variable unchanged,
and to set a different pointer to the
generation of the based variable that is
being allocated.

Both based and controlled variables can
be allocated in the same statement.

FREE STATEMENT FOR BASED VARIABLES

The form of the FREE statement is:

FREE(locator-qualifier->]
based-variable [IN(area-variable))

[, (locator-qualifier->]}

based-variable [IN(area-variable)ll...;

A particular generation of a based variable
is freed by specifying a pointer qualifier
in the statement. If a gqualifier is
omitted, the pointer variable associated
with the Lkased variable in its declaration
is used; it is an error in this case if a
pointer variable has not Lbeen associated
with the based variable.

A FREE statement cannot be used to free
a locate-mode I/0 buffer.

Both based and controlled variables can
be freed in the same statement.

MULTIPLE GENERATIONS OF BASED VARIABLES

All current generations of a bkased variable
can be referred to by specifying

98

appropriate pointer variables. In list
processing, a number of based variables
with many generations can be included in a
list. Members of the list are chained
together by a pointer in one member
identifying the location of another memker.
Note that the allocation of a based
variakle cannot specify where in main
storage the variable is to be allocated.

In practice a chain of items may be
scattered throughout main storage. BRut by
accessing each pointer the next member is
found. A member of a list is usually a
structure that includes a pointer variartle.
For example:

DCL 1 STR BASED(H),
2 P POINTER,
2 DATA,
T POINTER;

ALLOCATE STR;
T=H;

NEXT:ALLOCATE STR SET(T->P);
T=T->P;

-

GO TO NEXT;

In this program segment, a list of
structures is created. The structures are
generations of STR and are linked Lky the
pointer variakle P in. each generation. The
independent pointer variable T identifies
the previous generation during the creation
of the list. The first ALLOCATE statement
sets the pointer H to identify it.
Ultimately the pointer H identifies the
start, or head, of the list. The second
ALLOCATE statement sets the pointer P in
the previous generation to identify the
location of this new generation. The
assignment statement T=T->P; updates
pointer T to identify the location of the
new generation.

Figure 8.1 shows a diagrammatic
representation of a one-~directional chain.

ITEM 1 fm—————— >ITEM 2 fom———— > ITEM 3 pm———
T r 1 ' r 1 '
| . e | _ e | _ pommmd
| Forwards Pointer | Forwards Pointer | | Forwards Pointer |
I F { t 4
| | | | |
| Data 1 | | Data 2 | | Data 3]
| | | | [|
L J L J L J

Figure 8.1.

Note that, unless the value of P in each
generation is assigned to a separate
pointer variable for each generation, the
generations of STR can be accessed only in
the order in which the list was created.
For the above example, the following
statements can be used to access each
generation in turn:

T=H;
NXT:T->DATA=X;

«

T=T=->P;
GO TO NXT:

NULL BUILT-IN FUNCTION

When a list is created in the way
described, it is necessary to indicate the
end of the list. The NULL built-in
function returns a pointer value that
cannot identify a location in storage.

Thus by setting the pointer in the last
generation in a list to the value of NULL a
positive indication of the end of the list
is given. For example:

T=H;
IF T->P-~=NULL THEN
DO;
T->DATA=X;

.

NXT:

T=T~->P;
GO TO NXT;
END;

This program segment can be used instead of
the previous example to scan the list; it
is assumed that the pointer P in the final
generation of STR has been set to the value
of NULL.

In general, the value of a NULL built-in
function is used whenever a pointer (or
offset) variable should not identify a
location in storage. Note that the only

Example of one-directional chain

way a pointer can acquire the null value is
by assignment of the NULL kuilt-in function
(apart from one special case, namely the
assignment of the value returned ky the
ADDR built-in function when passed an
unallocated controlled variable). The
value of a pointer variable that no longer
identifies a generation of a kased
variable, for example, when a Lased
variable has keen freed, is undefined.

TYPES OF LIST

The foregoing examples showed a simple list
processing technique, the creation of a
unidirectional list. More complex lists
can be formed by adding other pointer
variakles into the structure. If a second
pointer were added, it could be made to
point to the previous generation. The list
would then be bidirectional; from any item
in the list, the previous and next items
could be accessed by using the approrriate
pointexr value. Instead of the last rointer
value being set to the value of NULL, it
can be set to point to the first item in
the list, thus creating a ring or circular
list.

A list need not consist only of
generations of a single based variakle.
Generations of different kased structures
can be included in a list by setting the
appropriate pointer values. Items can ke
added and deleted from a list by
manipulating the values of pointers. A
list can be restructured by manipulating
the pointers, so that the processing of
data in the list may ke simplified.

By reducing the amount of movement of
data within main storage, the programmer
can generally achieve a considerable saving
on processing time. Note, however, that
each pointer requires four bytes of storage
and any allocated based variable requires
at least eight bytes of storage, even if it
is a bit string of length one.

Chapter 8: Storage Control 99

AREAS

When a based variable is allocated, the
storage is obtained from wherever it is
available. Consequently, a list of
allocated based variables could be
scattered widely throughout main storage.
For internal operations on the list, this
is not significant, because items are
readily accessed using the pointers.,
However, if the list is to be transmitted
to a data set, the items would have to be
collected together. Items allocated within
an area variable are already collected and
can be transmitted or assigned as a unit
while still retaining their separate
identities.

It is desirable to identify the
locations of based variables within an area
variable relative to the start of the area
variable. Offset variables are defined for
this purpose. If pointer variables were
used they would be unlikely to be valid
when the area variable were transmitted
back to main storage.

Area Variables

The AREA attribute defines an area of
storage that is to be reserved for the
allocation of based variables. The
declaration of an area variable has the
form:

DCL identifier AREA [((size)];

The amount of storage to be reserved is
given in bytes; i.e. the integral value of
"size", If size is not given, a default of
1000 bytes is assumed.

The size of an area is adjustable in the
same way as a string length or an array
bound and therefore it can be specified by
an expression or an asterisk (for a
controlled area or parameter) or by a REFER
option (for a based area). The maximum
size of an area is limited only by the
amount of main storage available to the
program.

In addition to the declared size, an
extra 16 bytes of control information,
which contains such details as the amount
of storage in use, precedes the reserved
size of an area.

The amount of reserved storage that is
actually in use is known as the extent of
the area. The maximum extent is
represented by the area size. Based
variables can be allocated and freed within
an area at any time during execution. This

100

means that the extent of an area varies as
storage is used. Because any based
variakle can be allocated within an area,
they could require different amounts of
storage. When a based variable is freed,
the storage it occupied is marked as
available for other allocations. 1In fact
the implementation maintains a chain of
available storage within an area; the head
of the chain is held within the 16 kytes of
control information. Inevitably, as kased
variables with different storage
requirements are allocated and freed, gaps
will occur in the area when allocations do
not fit available spaces. Thus the extent
of an area may contain allocations that
have been freed but are still gignificant.
A significant allocation is one that has
not been freed or that has keen freed kut
has at least one unfreed allocation
following it. When an area has no
significant allocations, the extent is
Zero.

Note that based variables are always
allocated in multiples of eight bytes.

No operators, not even comparison, can
be applied to area variables.

Offset Variakles

Offset variables are a special form of
pointer used exclusively with area
variables. The value of an offset variakle
indicates the location of a based variakle
within an area variable relative to the
start of the area. Because the based
variables are identified relatively, if the
area variakle is assigned to a different
part of main storage, the offset values are
not invalidated. Note that offset
variables do not preclude the use of
pointer variables within an area. An
offset variable is declared as follows:

DCL identifier
OFFSET((element-area-variakle)];

The association of an area variakle with
an offset variable is not a special
relationship; an offset variable can be
associated with any area variable Ly means
of the POINTER bkuilt-in function (see
"Locator Conversion" below). The advantage
of making such an association in
declaration is that a reference to the
offset variakle implies reference to the
associated area variable.

Note that the appearance of an area
variakle in the declaration of an offset is
a contextual declaration of the area
variakle.

Locatoxr Conversion

When an offset variable is used in a
reference, it is implicitly converted to a
pointer value; the address value of an
associated area variable is added to the
offset value. Explicit conversion of an
offset to a pointer value is accomplished
using the POINTER built-in function. For
example:

DCL P POINTER, O OFFSET(A),B AREA;

P = POINTER(O,B);

This statement assigns a pointer value to
P, giving the location of a based variatle,
identified Ly offset O in area B. Because
the area variable is different from that
associated with the offset variable, the
programmer must ensure that the offset
value is valid for the different area. It
would be valid, for example, if area A had
been assigned to area B prior to the
invocation of the function.

The OFFSET built-in function complements
the POINTER built-in function and returns
an offset value derived from a given
pointer and area. The given pointer value
must identify the location of a based
variable in the given area.

In practice, these functions need rarely
be used as most conversions are carried out
implicitly.

Offset Expressions

Because an offset is implicitly converted
to a pointer value, offset expressions can
be used interchangeably with pointer
expressions. An offset expression can be
used as a locator qualifier, in association
with a declaration of a based variable, in
a comparison operation, or as an argument
in a procedure reference. Note, however,
that an offset variable cannot be specified
in the SET option of a READ or LOCATE
statement.

ALLOCATE_Statement_with_the IN Option

BAn offset value is originally oktained
either by conversion of a pointer value or
by the SET option of the ALLOCATE
statement. This form of the ALLOCATE
statement is as follows:

ALLOCATE based-variakle
[IN(element~area-variable)]
[SET(locator-variable)];

This statement allocates storage for a
based variable within the specified area.

The variable has an offset relative to
the start of the area, and this offset
value is assigned to the locator variable
specified in the SET option. Conversion
takes place if the locator variable is of
pointer type. Either or both of the
options IN and SET can be implied. For
example:

CCL X BASED(Q),
Y BASED(P),
A AREA,
O OFFSET(A);

ALLOCATE X;
ALLOCATE Y IN(A);

The storage class of area A and offset O is
AUTOMATIC by default. The first ALILOCATE
statement is equivalent to:

ALLOCATE X IN(A) SET(O);

The second ALLOCATE statement is equivalent
to:

ALLOCATE Y IN(A) SET(P);

The programmer must ensure that all
implications can be resolved. 1If, for
example, the offset O had not been
associated with the kased variakle X, the
SET option would be required.

When the IN and SET options are
specified rather than implied, it is
permissible to use an offset variakle that
has been declared with no associated area.
The area in the SET option may also be

Chapter 8: Storage Control 101

different from the one in the DECLARE
statement, provided it is contained within
that area. For example:

DCL 01 OFFSET(A1),

02 OFFSET,

A2 AREA BASED(P);
ALLOCATE A2 IN(A1) SET(P);

ALLOCATE X IN(A2) SET(01);
ALLOCATE Y IN(A2) SET(02);

The offset variables 01 and 02 have the
values of the offsets of the variables X
and Y, in, respectively, the areas A1 and
A2I

The following example shows how a list
can be built in an area variable using
offset variables. This example is a
rewrite of the example given in "Multiple
Generations of Based Variables" earlier in
this chapter.

DCL A AREA,
(T,H) OFFSET(A),
1 STR BASED(H),
2 P OFFSET(A),
2 DATA;

ALLOCATE STR IN(A);
T=H;

NEXT:ALLOCATE STR SET(T->P);
T=T->P;

GO TO NEXT;

FREE Statement with the IN Option

A based variable allocated within an area
variable can be freed by specifying the
area variable by the IN option:

FREE based-variable
[IN(element-area-vaxriable)];

Multiple freeing of both kased and
controlled variables can be made by the
same FREE statement. When all the current
allocations of variables within an area
variable are to ke freed, the EMPTY
built-in function is the most convenient
method.

102

EMPTY Built-in_Function

When an area variable is allocated, it
automatically has the empty state, i.e.,
the area extent is zero. The value of the
EMPTY built-in function can be assigned to
an area variable to free all allocations in
the variable. The function reference does
not require arguments but must be given a
null argument list if the name has not been
declared BUILTIN. For example:

DECLARE A AREA,
I BASED (P),
J BASED (Q);

.

ALLOCATE I IN(A), J IN (A);

A = EMPTY();
/*EQUIVALENT TO:
FREE I IN (A), J IN (A); */

Note that the area variable itself is not
freed, its storage is retained for further
allocations of based variables.

AREA ASSIGNMENT

The value of an area expression can ke
assigned to one or more area variakles by
an assignment statement. Area-to-area
assignment has the effect of freeing all
allocations in the target area and then
assigning the extent of the source area to
the target area, in such a way that all
offsets for the source area are valid for
the target area. For example:

DECLARE X BASED (0(1)),
0(2) OFFSET (A),
(A,B) AREA;

ALLOCATE X IN (A);

X = 1;

ALLOCATE X IN (A) SET (0(2));
0(2) -> X = 2;

B = A;

Given this program segment and using the
POINTER built-in function, the references
POINTER (0(2),B)->X and 0(2)->X will
represent the same value allocated in areas
B and A resgectively.

If a source area containing no
allocations is assigned to a target area,
the effect is mexrely to free all
allocations in the target area.

A possible use for area assignment is to
allow for expansion of a list of based
variables beyond the bounds of its original
area. When an attempt is made to allocate
a based variable within an area that
contains insufficient free storage to
accommodate it, the AREA condition is
raised (see below). The on~unit for this
condition could be to change the value of a
pointer qualifying the reference to the
inadequate area, so that it pointed to a
different area; on return from the on-unit,
the allocation would be attempted again,
within the new area. Alternatively, the
on-unit could write out the area and reset
it to EMPTY.

AREA ON-condition

The AREA condition is raised in any of the
following circumstances:

1. When an attempt is made to allocate a
based variable within an area that
contains insufficient free storage for
the allocation to be made.

2. When an attempt is made to perform an
area assignment, and the target area
is too small to accommodate the extent
of the source area,

3. When a SIGNAL AREA statement is
executed.

The ONCODE built-in function can be used
to determine whether the condition was
raised by an allocation, an assignment, or
a SIGNAL statement. On normal return from
the on-unit, the action is as follows:

1. If the condition was raised by an
allocation, the allocation is
re-attempted. If the on-unit has
changed the walue of a pointer
qualifying the reference to the
inadequate area so that it points to
another area, the allocation is
re-attempted within the new area.
Note that if the on-unit does not
effectively correct the fault, a loop
may result.

2. If the condition was raised by an area
assignment, or by a SIGNAL statement,
execution continues at the point of
interrupt.

If no on-unit is specified, the system will
comment and raise the ERROR condition.

INPUT/OUTPUT OF AREAS

The area facility is designed to allow easy
input and output of complete lists of based
variables as one unit, to and from RECORD
files. On output, only the area extent,
together with the 16 bytes of control
information, is transmitted (although the
extent does include freed allocations which
are still significant). Thus the unused
part of an area does not take up space on
the data set. Because the extents of areas
may vary, V-format or U-format records
should be used. The maximum record length
required is governed by the area length
(i.e., area size + 16).

MULTIPLE LOCATOR QUALIFICATION

Locator qualification is the association of
one or more locator values with a Lased
variable to identify a particular
generation of the based variable.

Reference to a based variable can be
explicitly qualified as follows:

element-locator-expression~>
{based~locator-variable->])...
kased-variakle

A number of general rules can ke stated
concerning the use of locator
qualification:

1. Locator qualification is used to
indicate the generation of a based
variable to which the associated
reference applies.

2. If an offset expression or an offset
variakle is used as a locator
qualifier, its value is implicitly
converted to a pointer value on each
reference to the based variatle.

3. When more than one locator qualifier
is used in a reference, only the
first, or leftmost, can be a function
reference; all other locator
qualifiers must themselves be Lased
variakles. Note, however, that an
entry variable can be kased and can
represent a function that returns a
locator value.

4. When more than one locator qualifier
is used, they are evaluated from left
to right.

Reference to a based variable can also
be implicitly gqualified. The locator value
used to determine the generation of a Lased
variakle that is implicitly qualified is
the one declared with the based variakle.

Chapter 8: Storage Control 103

Because the locator declared with a based
variable can also be based, a chain of
locator qualifiers can be implied. For
example:

DECLARE (P(10),0Q) POINTER,
R POINTER BASED (Q),
V BASED (P(3)),
W BASED (R),
Y BASED;
ALLOCATE R,V,W;

Given this declaration and allocation, the
following are valid references:

1. P(3) =->V

2. Vv

3. Q->R ->W

4, R -> W

5. W
References 1 and 2 are equivalent as are
references 3, 4 and 5. Note that any

reference to Y must include a qualifying
locator variable.

104

Levels of Locator Qualification

A pointer that qualifies a Lkased variatle
rerresents one level of locator
qualification; an offset represents two
levels kecause it is implicitly qualified
within an area. The number of levels is
not affected ky a locator keing subscripted
and/or an element of a structure. Under
the optimizing compiler, the maximum number
of levels of locator qualification allowed
in a reference depends on the availakle
storage, but it will never ke less than
ten; there is no limit under the checkout
compiler. For example:

DECLARE X BASED (P),
P POINTER BASED (Q),
Q OFFSET (2);

Given this declaration the references: X,
P -> X, and Q -> P -> X all represent three
levels of locator qualification.

Chapter 9: Subroutines and Functions

Introduction

The block structure of PL/I permits the use
of subroutines and programmer-defined
functions. Subroutines and functions are
groups of statements that can:

1. be invoked from different points in a
program to perform the same
frequently~used process.

2. process data passed from different
points of invocation.

3. return control, and in the case of
functions, return a value derived from
the execution of the function, to a
point immediately following the point
of invocation.

Subroutines and functions may be either
internal or external to the invoking klock.
Built-in functions are always external
procedures which are permanently maintained
in a PL/I system environment, and are an
integral part of the PL/I language.

The rules given in this chapter for the
use of subroutines and functions depend on
whether the subroutine or function is an
external or internal procedure: this is
because the compiler can determine the
relationship between two procedures from
the procedures themselves when the invoked
procedure is internal to the invoking
procedure. When the invoked procedure is
external the relationship must be given
explicitly in the invoking procedure.
Consequently it is necessary to supply more
information about an external subroutine or
procedure in the invoking procedure to
enable the compiler to produce the required
object program.

A subroutine is a procedure invoked by a
CALL statement or CALL option of an INITIAL
attribute.

A function, either programmer-defined or
built-in, is invoked by the presence of a
'function reference' in an expression. A
function reference is an entry expression
which represents an entry name of a
function. (An entry name is an identifierx
which represents a particular entry point
of a procedure.)

The definitive difference between a
subroutine and a function in PL/I is that a
subroutine does not return data values to
the point of invocation, whereas a function

procedure returns a value to replace the
function reference in the evaluation of the
expression in which the function reference
appears.

Both subroutines and functions can make
use of data known in the invoking klock.
There are two methods ky which data can be
made available:

1. Data represented by names which are
known in both the invoking Lklock and
the invoked procedure. For
information about the rules for
deciding where a name is known see
chapter 7, "Recognition of Names".

2. Arguments and Parameters: values from
the invoking block can be passed to
the invoked procedure by writing
arguments in an argument list
associated with a CALL statement or
option, or function reference; these
values are made available by
parameters in the invoked procedure.

Parameters are identifiers which
aprpear in the parameter list of an
invoked entry point. The numker of
arguments and parameters must ke the
sape; the maximum number permitted for
a particular entry point is 64.

A parameter has no storage associated
with it: it is simply a means of
allowing the invoked procedure to
access storage allocated in the
invoking procedure. A reference to a
parameter in a procedure is
effectively a reference to the
corresponding argument. Any change to
the value of the parameter is made to
the value of the argument. However in
certain circumstances a dummy argument
is created and the value of the
original argument is not changed.
These are:

a. When the attrikute of an argument
differ from those of the
corresponding parameter. The
value of the original argument is
converted and assigned to a dummy.

E. When only a value is passed as an
argunent. For example, when an
argument is a constant.

c. When the argument is an
isuB-defined array.

Chapter 9: Sukroutines and Functions 105

In these cases, a reference to the
parameter is effectively a reference
to the dummy. The dummy and the
parameter initially have the same
value as the original argument, but
subsequent changes to the parameter do
not affect the original argument's
value. Storage for dummy arguments is
within that belonging to the invoking
procedure.

Both internal and external subroutines
and functions are normally link-edited, and
loaded into main storage at the same time
as the calling procedure. An external
subroutine or function may, however, be
compiled, link-edited, and loaded
separately from the calling procedure. By
the use of FETCH and RELEASE statements in
the calling procedure, the subroutine or
function is allowed to remain on auxiliary
storage until required in the calling
procedure, at which time it is fetched into
main storage; and it may be deleted from
main storage when it is no longer required.
This dynamic loading of external procedures
is described in chapter 6, "Program
Organization".

Entry points of Subroutines and Functions

A subroutine or function procedure may have
one or more entry points.

PROCEDURE_Statement:
point to a rrocedure
PROCEDURE statement.

The primary entry
is established by the

ENTRY Statement: Secondary entry points to
a procedure are established by the ENTRY
statement.

Each PROCEDURE and subsidiary ENTRY
statement can specify its own parameters
and, in the case of function procedures,
returned value attributes. However, the
environment established on entry to a block
at a PROCEDURE statement is identical to
the environment established when the same
block is invoked at a secondary entry
point. Each entry point has an associated
entry name. The length of the name for an
external entry-point to a PL/I procedure is
limited to seven characters.

Entry names are explicitly declared in
the invoking block as entry constants for
internal procedures by their presence as
prefixes to PROCEDURE or ENTRY statements;
it is an error to declare an internal entry
name in a DECLARE statement. External
entry names must be declared explicitly as
entry constants with the ENTRY attribute.
Entry variakles are identifiers with the
attributes ENTRY and VARIABLE which

106

represent entry constants assigned to them.
A reference to an entry variable is a
reference to its latest assigned entry
constant value.

Use_of the ENTRY Attrikute

The general form of the ENTRY attrikute is:

identifier ENTRY
[(parameter descriptor 1list)]
[VARIABLE])
[RETURNS (attribute list)]
[OPTIONS (options list)]}

The parameter descriptor list is used to
specify the attributes of the parameters
associated with the entry point represented
by the identifier. The parameter
descriptor must provide accurate
information about the attributes of the
parameters so that the compiler can create
the correct dummy arguments. If the
parameter descriptor list is omitted from
an external entry declaration, the compiler
must assume that the attrikutes of any
arguments match those of the corresponding
parameters. No conversions are performed.
Further information is given under the
heading "Parameter Descriptor List" in this
chapter.

The RETURNS attribute may be given to
specify the attributes of the value
returned by the function procedure.

The OPTIONS attribute is required if the
entry point is in an external function or
subroutine that has been compiled by a
COBOL or FORTRAN compiler. Further
information is given in chapter 19,
"Interlanguage Communications".

Exit-Points of Sukroutines_and Functions

The RETURN statement is used to return
control to the point immediately following
the point of invocation; the GOTO statement
is used to transfer control to some other
point; and the END statement can also be
used to return control from a subroutine
procedure in the same way as a RETURN
statement. For a function procedure, the
RETURN statement must specify an element
expression whose value is given to the
function reference in the expression in
which it appears.

RETURNS Attribute and RETURNS Option

The RETURNS attrikute specifies for the
invoking block the attributes of the value
to be received from the function procedure.
The RETURNS option specifies for the
function procedure the attributes that a
value to ke returned should have. If the
value does not have these attributes, the
appropriate conversion is performed before
the function relinquishes control and
returns the value.

If the RETURNS option is not specified,
the attributes of the returned value are
assumed by default according to the initial
letters of the entry-point name. The
standard default assumptions are: REAL
FIXED BINARY (15,0) for initial letters in
the range (I:N) and REAL FLOAT DECIMAL (6)
for the ranges (A:H) and (0:Z) and the
characters $, #, a.

The RETURNS attribute must not be
specified for an internal entry name
because the compiler can determine the
attributes of the returned value from the
function procedure itself. If it is not
specified for an external entry name or an
entry variable, the compiler assumes
default attributes (determined from the
name of the entry point) for the value
returned from the function. Consequently
the RETURNS attribute and the RETURNS
option must both Le given in the situation
when an external function procedure must
return a value with attributes which cannot
be determined correctly by default. The
attributes in both the RETURNS attribute
and the RETURNS option should agree, since
the value returned by the function will
have the attributes specified in the
option, whereas the invoking procedure
always assumes that the value will have the
attributes specified in the RETURNS
attribute.

Subroutines

The PL/I statements associated with the use
of subroutine procedures are discussed
below.

A subroutine is a procedure that usually
requires arguments to be passed to it in an
invoking CALL statement. It can be either
an external or an internal procedure. A
reference to such a procedure is known as a
subroutine reference. The general format
of a subroutine reference in a CALL
statement or CALL option of ‘an INITIAL
attribute is as follows:

CALL entry-expression
{(argument [,argument]...)];

Whenever a subroutine is invoked, the
arguments of the invoking statement are
associated with the parameters of the entry
point, and control is then passed to that
entry point. The subroutine is thus
activated, and execution of the subroutine
procedure can begin.

Upon termination of a sukroutine,
control is usually returned to the invoking
block. A sukroutine can be terminated Ly
any of the following statements.

END Statement: Control reaches the final
END statement of the sukroutine. Execution
of this statement causes control to ke
returned to the CALL statement from which
the subroutine was invoked (unless control
passes to another task).

RETURN Statement: Control reaches a RETURN
statement in the subroutine. This causes
the same normal return caused by the END
statement.

GO _TO Statement: Control reaches a GO TO
statement that transfers control out of the
subroutine. (This is not permitted if the
subroutine is invoked by the CALL option of
the INITIAL attribute.) The GO TO
statement may specify a label in a
containing klock (the label must be known
within the subroutine), or it may specify a
parameter that has keen associated with a
label argument passed to the subroutine.
Although this is a valid termination of the
subroutine, it is not normal return of
control, as effected ky an END or RETURN
statement.

EXIT Statement: The EXIT statement
encountered in a sukroutine abnormally
terminates execution of that subroutine and
of the task associated with the procedure
that invoked it.

STOP_Statement: The STOP statement
encountered in a sukroutine abnormally
terminates execution of that subroutine and
of the entire program associated with the
procedure that invoked it.

Use_of Subroutines: The following examples
illustrate how a subroutine interacts with
the procedure that invokes it.

Chapter 9: Sukroutines and Functions 107

PRMAIN: PROCEDURE;
DECLARE NAME CHARACTER (20),
ITEM BIT(5), OUTSUB ENTRY;

CALL OUTSUB (NAME, ITEM);

END PRMAIN;

OUTSUB: PROCEDURE (A,B);
DECLARE A CHARACTER (20),
B BIT(5);

PUT LIST (A,B);

.

END OUTSUB;

In procedure PRMAIN, NAME is declared as a
character string, and ITEM as a bit string.
The CALL statement in PRMAIN invokes the
procedure called 0UTSUB, and the
parenthesized list included in this
procedure reference contains the two
arguments being passed to OUTSUB. The
PROCEDURE statement defining OUTSUB
declares two parameters, A and B. When
OUTSUB is invoked, NAME is associated with
A and ITEM is associated with B. Each
reference to A in OUTSUB is treated as a
reference to NAME and each reference to B
is treated as a reference to ITEM.
Therefore, the PUT LIST (A,B) statement
causes the values of NAME and ITEM to be
written into the standard system output
file, SYSPRINT. Note that in the
declaration of OUTSUB within PRMAIN, no
parameter descriptor need be associated
with the ENTRY attribute, since the
attributes of NAME and ITEM match those of,
respectively, A and B.

A name is explicitly declared to be a
parameter by its appearance in the
parameter list of a PROCEDURE or ENTRY
statement. However, its attributes, unless
defaults apply, must be explicitly stated
within that procedure in a DECLARE
statement.

It can be seen that the use of arguments
and parameters provides the means for
generalizing procedures so that data whose
names may not be known within such
procedures can, nevertheless, be operated
upon.

108

A: PROCEDURE;
DECLARE RATE FLOAT (10), TIME FLOAT(S5),
DISTANCE FLOAT(15), MASTER FILE;

CALL READCM (RATE, TIME, DISTANCE,
MASTER) ;

READCM: PROCEDURE (W,X,Y,Z);
DECLARE W FLOAT (10), X FLOAT(S5),
Y FLOAT(15), Z FILE;

GET FILE (Z) LIST (W,X,Y);
Y = W*X;
IF Y > 0 THEN RETURN;
ELSE PUT LIST('ERROR READCM');
END READCM;
END A;

The arguments RATE, TIME, DISTANCE, and
MASTER are passed to the parameters W, X,
Y, and Z. Consequently, in the subroutine,
a reference to W is the same as a reference
to RATE, X the same as TIME, Y the same as
DISTANCE, and Z the same as MASTER.

Functions

Unlike a subroutine, which is invoked by a
CALL statement or a CALL option, a function
is invoked Ly the appearance of the
function name (and associated arguments) in
an expression. Such an appearance is
called a function reference. Like a
subroutine, a function can operate upon the
arguments passed to it and upon other known
data. But unlike a subkroutine, a function
is written to compute a single value which
is returned, with control, to the point of
invocation. This single value can be of
any data type except entry. An example of
a function reference is contained in the
following procedure:

MAINP: PROCEDURE;

GET LIST (A, B, C, Y);

-
.

Y**3+SPROD(A,B,C) ;

In the above procedure, the assignment
statement

X = Y*#3+SPROD(A,B,C);

contains ‘a reference to a function called
SPROD. The parenthesized list following
the function name contains the arguments
that are bheing passed to SPROD. Assume
that SPROD has been defined as follows:

SPROD: PROCEDURE (U,V,W);

IFU D>V + W
THEN RETURN (0);
ELSE RETURN (U*V*W);

END SPROD;

When SPROD is invoked by MAINP, the
arguments A, B, and C are associated with
the parameters U, V, and W, respectively.
Since attributes have not been explicitly
declared for the arguments and parameters,
default attributes of FLOAT DECIMAL (6) are
applied to each argument and parameter.

During the execution of SPROD, the IF
statement is encountered and a test is
made. If U is greater than V + W, the
statement associated with the THEN clause
is executed; otherwise, the statement
associated with the ELSE clause is
executed. In either case, the executed
statement is a RETURN statement.

RETURN_Statement: The RETURN statement is
the usual way by which a function is
terminated and control is returned to the
invoking procedure. Its use in a function
differs somewhat from its use in a
subroutine; in a function, not only does it
return contrxol but it also returns a value
to the poinit of invocation. The general
form of the RETURN statement, when it is
used in a function, is as follows:

RETURN (element-expression);

The value of the element expression is
returned to the invoking procedure at the
point of invocation. Thus, for the above
example, SPROD returns either 0 or the
value rerresented by U*V*W, along with
control to the invoking expression in
MAINP. The returned value is taken as the
value of the function reference, and
evaluation of the invoking expression
continues.

GO_TO_Statement: A function can also be
terminated by execution of a GO TO
statement. If this method is used,
evaluation of the expression that invoked

the function will not be completed, and
control will go to the designated
statement. As in a subroutine, the
transfer point specified in a GO TO
statement may be a parameter that has been
associated with a label argument. For
example, assume that MAINP and SPROD have
been defined as follows:

MAINP: PROCEDURE;

GET LIST (A,B,C,Y);
X = Y**3+SPROD(2A,B,C,LAB1);

CALL ERRT;

LAB1:

END MAINP;
SPROD: PROCEDURE (U,V,W,2);
DECLARE Z LABEL;

3

IFU >V +W
THEN GO TO Z;
ELSE RETURN (U*V*RW);

END SPROD;

In MAINP, LABl is explicitly declared to be
a statement label constant by its
appearance as a lakel for the CALL ERRT
statement. When SPROD is invoked, 1ABl is
associated with parameter Z. Since the
attrikbutes of Z must agree with those of
LABl, Z is declared to have the LABEL
attribute. When the IF statement in SPROD
is executed, a test is made. If U is
greater than V + W, the THEN clause is
executed, control returns to MAINP at the
statement labeled LABl1l, and evaluation of
the expression that invoked SPROD is
discontinued. If U is not greater than V +
W, the ELSE clause is executed and a return
to MAINP is made in the normal fashion.
Additional information about the use of
label arguments and label parameters is
contained in the section "Relationship of
Arguments and Parameters" in this chapter.

Note: In some instances, a function may be

so defined that it does not require an

argument list. In such cases, the
appearance of an external function name
within an expression will be recognized as
a function reference only if the function
name has been explicitly declared to be an
entry name. See "ENTRY Attribute™ in this
chapter for additional information.

Chapter 9: Subroutines and Functions 109

ATTRIBUTES OF RETURNED VALUES

RETURNS Attxibute: The RETURNS attribute
is specified in a DECLARE statement for an
external entry name. It specifies for the
invoking block the attributes of the value
returned by that function. It further
specifies, by implication, the ENTRY
attribute for the name. Unless attrikutes
for the returned value can be determined
correctly by default, any invocation of an
external function must appear within the
scope of a declaration with the RETURNS
attribute for the entry name.

The general format of the RETURNS
attribute is:

RETURNS (attribute-list)

A RETURNS attribute specifies that within
the invoking procedure the value returned
from an external function procedure is to
be treated as though it had the attributes
given in the attribute list. The word
treated is used because no conversion is
performed in an invoking block upon any
value returned to it. The attrikbutes given
in a RETURNS attribute must agree with the
data attributes given in the corresponding
RETURNS orption, since the value returned
will have attributes determined from the
RETURNS ogption.

The RETURNS attribute cannot be given
for an internal procedure. The attributes
of the returned value are determined from
the RETURNS option at the entry point, if
given; otherwise according to default rules
as applied to the identifier of the entry
constant.

RETURNS Option: The RETURNS option is
specified in a PROCEDURE or ENTRY statement
of a function procedure. It specifies the
attributes to which the value returned by
the function will be converted before
return.

Generic Entry Names and References

A generic entry name represents a family of
procedure entry points, each member of
which can be invoked by a generic
reference, that is, a procedure reference
using the generic name in place of the
actual entry name. The member invoked is
determined according to the number and
attributes of the arguments specified in
the generic reference; the member that is
invoked is the first one whose generic
descriptor list matches the arguments both
in number and attributes.

110

A generic name must be declared with the
GENERIC attrikute. The general format of
this attribute is as follows:

generic name GENERIC (entry-expression)
WHEN (generic-descriptor-list)
[,entry-expression
WHEN (generic-descriptor-1list)l...);

where generic-descriptor-list is:
([descriptor(,descriptorl...))

Each entry-expression corresponds to one
procedure entry point in the family. The
entry expression can be an entry name or an
expression which represents an entry name.
Each descriptor in the generic-descriptor
list corresponds to a single argument, and
may specify attributes that the
corresponding argument must have in order
that the associated entry name can ke
selected. Where no descriptor is required,
it may be either omitted or indicated by an
asterisk. The asterisk form is essential
if the missing descriptor is the only
descriptor. For example, whereas (,)
represents two descriptors (*) represents
one. The generic descriptor list which is
to represent the absence of any argument
takes the form:

ees«ENTRY1 WHEN()...

An entry expression is chosen from those
specified in a generic declaration by a
process known as generic selection.

Generic selection is performed by comparing
arguments specified in a function reference
or CALL statement with the contents of the
generic descriptor list supplied with each
entry expression in the GENERIC
declaration. Firstly, each generic
descriptor list is checked, in order of
appearance in the declaration to determine
whether it contains the same numker of
descriptors as there are arguments in the
reference to the generic name.

When a generic descriptor list with the
same number of descriptors as arguments is
found, each descriptor is tested with the
corresponding argument to determine whether
attrikutes given in the descriptor are
attributes of the argument. For example,
if a generic descriptor list contains:

e oo (FLOAT,FIXED)

and the corresponding two arguments have
attributes such as DECIMAL FLOAT(6) and
BINARY FIXED(15,0) either explicitly,
contextually, implicitly, or by default,
then each attribute in the
generic-descriptor list is an attrikute of
the corresponding argument and the
selection is successful. However, if
either argument did not have the attributes

in the corresponding descriptor, the
selection process would consider the next
generic member with just two descriptors.
For example consider the following
statement:

DECLARE CALC GENERIC
{FXDCAL WHEN (FIXED,FIXED),
FLOCAL WHEN (FLOAT,FLOAT),
MIXED WHEN (FLOAT,FIXED));

This statement defines CALC as a generic
name having three members, FXDCAL, FLOCAL,
and MIXED. One of these three function
procedures will be invoked by a generic
reference to CALC, depending on the
characteristics of the two arguments in
that reference. For example, consider the
following statement:

Z=X+CALC(X,Y) ;

If X and Y are floating-point and
fixed-point, respectively, MIXED will be
invoked.

If all the descriptors are omitted or
consist of an asterisk, the first entry
name with the correct number of descriptors
is selected.

The program is in error if no generic
descriptor list is found to match the
attributes of the arguments to a particular
generic function reference.

Built-in Functions

Besides function references to procedures
written by the programmer, a function
reference may invoke one of a comprehensive
set of pre-defined functions called
built-in_functions.

Built-in functions are an intrinsic part
of PL/I. They include not only the
commonly used arithmetic functions but also
other necessary or useful functions related
to language facilities, such as functions
for manipulating strings and arrays.

Built-in functions are invoked in the
same way that programmer-defined functions
are invoked. However, many built-in
functions can return an array of values,
whereas a programmer-defined function can
return only an element value.

Note: Some built-in functions will
actually be compiled as in-line code rather
than as procedure invocations.

The use of a built-in function with a
list, such as SUBSTR (X,Y,Z) or
INDEX(A,'B'), etc., is recognized without

further identification being necessary to
establish the identifier as a built-in
function. However, any built-in function
or pseudovariakle which does not have a
parenthesized argument list, such as
ONCHAR, ONSOURCE, TIME, etc., must ke
either declared explicitly with the
attribute BUILTIN, or specified with a null
argument list (for example TIME()) in the
block in which the identifier is used as a
built-in function.

Built-in function names can ke used as
programmer~defined names. Consequently,
ambiguity may occur if a built-in function
reference is used in a klock that is
contained in another block in which the
same identifier is declared for some other
purpose. To avoid this ambiguity, the
BUILTIN attrikute can ke declared for a
built-in function name in any block that
has inherited, from a containing Lklock,
some other declaration of the identifierx.
Consider the following example.

A: PROCEDURE;

B: BEGIN;
DECLARE SQRT FLOAT BINARY;

3

C: BEGIN;
DECLARE SQRT BUILTIN;

END A;

Assume that in external procedure A, SQRT
is contextually declared with the attrikute
BUILTIN. Consequently, any reference to
SQRT would refer to the built-in function
of that name. In B, however, SQRT is
declared to be a floating-point binary
variakle, and it cannot be used in any
other way. Finally, in C, SQRT is declared
with the BUILTIN attribute so that any
reference to SQRT will be recognized as a
reference to the built-in function and not
to the floating-point binary variakle
declared in B.

Note that a variakle having the same
identifier as a built-in function can ke
implicitly declared as an arithmetic
variable by, for instance, its appearance
on the left-hand side of an assignment

Chapter 9: Subroutines and Functions 111

symbol (in an assignment statement, a DO
statement, or a repetitive specification)
or in the data list of a GET statement,
provided that it is neither enclosed within
nor immediately followed by an argument
list. (This also applies to the names
ONCHAR, ONSOURCE, and PRIORITY which are
pseudovariakles that do not require
arguments.) For example, if the statement
SQRT = 1 had appeared in begin block B
instead of the DECLARE statement, SQRT
would have been implicitly declared as a
floating-point decimal variable.

A programmer can even use a built-in
function name as the entry name of a
programmer-defined function and, in the
same program, use both the built-in
function and the programmer-defined
function. This can be accomplished by use
of the BUILTIN attribute when the
programmer-defined function is an internal
procedure, and by use of the BUILTIN and
ENTRY attributes when the
programmer-defined function is an external
procedure.

The following example illustrates use of
the BUILTIN attribute in conjunction with
an internal function procedure.

A: PROCEDURE;

PROCEDURE (PARAM)
RETURNS (FIXED (6,2));
DECLARE PARAM FIXED (12);

SQRT:

END SQRT;

X = SQRT(Y);

B: BEGIN;
DECLARE SQRT BUILTIN;

Z = SQRT (P);

END A;

The use of SQRT as the lakel of the second
PROCEDURE statement is an explicit
declaration of the identifier as an entry
name. The function reference in the
assignment statement in A thus refers to

112

the programmer-written SQRT function. 1In
the begin block B, the identifier SQRT is
declared with the BUILTIN attribute.
Consequently, the function reference in the
assignment statement in B refers to the
built-in SQRT function.

For a progranmer-written internal
function using the name of a built~-in
function any reference to the identifier in
the containing klock would be a reference
to the programmer-written function. 1In the
akove example the attrikutes of the
returned value are specified in the RETURNS
ortion of the procedure statement for SQRT.
Since the function procedure is internal,
these attrikutes are known to the calling
procedure.

In the case of a programmer-written

external function procedure using as an

entry name the name of a built-in function,
any procedure containing a reference to
that function procedure name must also
contain an entry declaration of that name;
otherwise a reference to the identifier
would be a reference to the built-in
function. 1In the above example, if the
begin block B were not contained in 3,
there would be no need to specify the
BUILTIN attribkute; unless the identifier
SORT is given attributes other than BUILTIN
(by explicit or contextual declaration), it
refers to the built-in function. If the
procedure SQRT were an external procedure,
procedure A would need the following
statement to declare exrlicitly SQRT AS AN
ENTRY NAME, and to specify the attrikutes
of the values passed to and returned from
the programmer written function procedure.

DCL SQRT ENTRY (FIXED (12)) RETURNS
(FIXED(6,2));

FORTRAN Library Functions .

Library functions, analagous to PL/I
built-in functions, are associated with
FORTRAN compilers. These functions may ke
invoked from a PL/I program by means of
PL/I interlanguage communication
facilities. The facilities are described
in Chapter 19.

Built-in Subroutines

A PL/I programmer can avail himself of
certain operating system facilities by
using built-in subroutines. These have
entry names that are defined by the
implementation and are invoked by means of
the CALL statement. The operating system

facilities and the corresponding entry
names are as follows.

Checkpoint/restart (implemented by the
optimizing compiler only): PLICKPT,
PLIREST, PLICANC

A CALL statement specifying PLICKPT,
PLIREST, or PLICANC is treated as a null
statement by the checkout compiler.

Sort/merge:
PLISRTD

PLISRTA, PLISRTB, PLISRTC,

In addition, there is a subroutine,
PLIDUMP, that provides an edited dump of
main storage, and another, PLIRETC, that
allows the user to set the return code of
his program.

The entry names are known as built-in
names, and can be explicitly or
contextually declared to have the BUILTIN
attribute. They are not reserved words.

The use of these subroutines is
described in the following publications:

O0S_PL/I_Optimizing Compiler: _Programmer's

Guide and 0S PL/I Checkout Compiler:
Programmer's Guide.

Relationship of Arguments and Parameters

When a function or subroutine is invoked, a
relationship is established between the
arguments of the invoking statement or
expression and the parameters of the
invoked entry point. This relationship is
dependent upon whether or not dummy
arguments are created.

DUMMY ARGUMENTS

In the preceding discussions of arguments
and parameters, it is pointed out that the
name of an argument, not its value, is
passed to a subroutine or function.
However, this is not always possible. A
constant, for example, has no name; nor
does an operational expression. Therefore,
the compiler provides storage for such
values and associates the name of the
corresponding parameter with each. These
storage locations are called dummy
arquments. The PL/I programmer should be
aware of their existence because any change
to a parameter will be reflected only in
the value of the dummy argument and not in
the value of the original argument from
which it was constructed.

A dummy argument is always created when
the original argument is any of the
following:

1. A constant.
2. An expression involving operators.

3. BAn expression in parentheses.

4, A variable whose data attributes are
different from the data attributes
declared for the parameter. This does
not apply when an expression other
than a decimal integer constant is
used to define the bounds, length or
size of a controlled parameter: the
compiler assumes that the argument and
parameter bounds, length or size
match.*

5. A function reference with an argument
list.

6. A controlled string or area, or a
string or area with an adjustakle
length or size, associated with a
non-controlled parameter whose length
or size is a constant.

7. BAn isuB-defined array.

The attributes of a dummy argument
created for an argument to be passed to an
internal procedure are derived as follows:

1. From the attrikutes declared for the
associated parameter in the internal
procedure.

2. For the kounds of an array, the length
of a string or the size of an area, if
specified by asterisk notation in the
parameter declaration, from the Lkound,
length or size of the argument itself.

In all other cases, a reference to the
argument is passed directly (in effect, the
storage address of the argument is passed).
The parameter becomes identical with the
passed argument; thus, changes to the value
of a parameter will be reflected in the
value of the original argument only if a
dummy argument is not passed.

- - - - - - - -

*In the case of arguments and parameters
with the PICTURE attribute, a dummy
argument will be created unless the picture
specifications match exactly, after any
repetition factors have been applied. The
only exception is that an argument or
parameter with a + sign in a scaling factor
matches a parameter or argument without the
+ sign.

-Chapter 9: Subroutines and Functions 113

ENTRY ATTRIBUTE

The ENTRY attribute is used to identify the
entry name of an external procedure. The
use of the ENTRY attribute to identify the
entry constant of an internal procedure is
invalid; its use to identify each entry
point of an external procedure is
mandatory. The general form of the ENTRY
attribute is described in "Use of the ENTRY
Attribute", earlier in this chapter.

Note that the format allows the keyword
ENTRY to be specified without an
accompanying parameter descriptor list when
used to identify a function entry name that
does not require arguments, or when the
arguments and parameters match. The
parameter descriptor list must be specified
with an ENTRY attribute that identifies the
entry name of an external procedure if
arguments do not match parameters. The use
of the attribute VARIABLE in an entry
declaration establishes the identifier as
an entry variable. An entry variable
represents an entry constant after
assignment of the entry constant to the
entry variable. If an entry variable is
used in a function reference or CALL
statement to invoke an entry point to which
arguments are to be passed, the entry
variable should be declared with a
parameter descriptor list which specifies
the attributes of the parameters of the
entry point, otherwise erroneous arguments
may be passed.

Parameter Descriptor Lists

Each set of attributes, or descriptor, in
the parameter descriptor 1ist in the ENTRY
attribute specification corresponds to one
parameter of the subroutine or function
invoked, and if given, specifies the
attributes of that parameter. The
attributes of an individual parameter are
separated by blanks to form a parameter
descriptor for each parameter; parameter
descriptors in a parameter descriptor list
are separated by commas. In general, if
the attrilbutes of an argument do not agree
with those of its corresponding parameter
(as specified in a parameter descriptox
list), a dummy argument is constructed for
that argument if conversion is possible.
The dummy argument contains the value of
the original argument converted to conform
with the attributes of the corresponding
parameter. Thus, when the subroutine or
function is invoked, it is the dummy
argument that is rassed to it.

When a descriptor list is given with the
ENTRY attribute, each parameter of the

114

subroutine or function must be accounted
for. When the attributes of the argument
and parameter match, the descriptor may be
either omitted or indicated by an asterisk,
but commas delimiting the descriptors must
not be omitted. For example, the
statement:

DECLARE SUBR ENTRY (FIXED,,FLOAT);

specifies that SUBR is an entry point that
has three parameters: the first and third
have the attributes FIXED and FLOAT,
respectively, while the attributes of the
second are assumed to be the same as those
of the argument keing passed. Since the
attributes of the second parameter are not
stated, no assumptions are made.

As mentioned earlier, the ENTRY
attribute may be specified without a
parameter descriptor list. It is used in
this way to indicate that the associated
identifier is an entry name. Such an
indication is necessary if an identifier is
not otherwise recognizable as an entry
name, that is, if it is not explicitly
declared to be an entry name by its
appearance as a lakel of a PROCEDURE or
ENTRY statement.

Therefore, if a reference is made to an
entry name in a block in which it does not
arpear in this way, the identifier must be
given the ENTRY attrikute explicitly. For
example, assume that the following has been
specified:

A: PROCEDURE;

PUT LIST (RANDOM) ;

END A; !

Assume also that A is an external procedure
and RANDOM is an external function that
requires no arguments and returns a random
number. As the procedure is shown akove,
RANDOM is not recognizakle within A as an
entry name, and the result of the PUT
statement therefore is undefined. 1In order
for RANDOM to be recognized within A as an
entry name, it must be declared to have the
ENTRY attrikute. For example:

A: PROCEDURE;
DECLARE RANDOM ENTRY;

POT LIST (RANDOM);

END A;

Now, RANDOM is recognized as an entry name,
and the aprpearance of RANDOM in the PUT
statement cannot be interpreted as anything
but a function reference. Therefore, the
PUT statement results in the output
transmission of the random number returned
by RANDOM.

Note: The ENTRY attribute is implied ~--
and therefore need not be stated explicitly
-- for an identifier that is declared in a
DECLARE statement to have one of the entry
name attributes RETURNS, OPTIONS,
REDUCIBLE, or IRREDUCIBLE.

| Entry Expressions_as_Arquments

When an entry name is specified as an
argument of a function or subroutine
reference, one of the following applies:

1. If the entry expression argument, call
it M, is specified with an argument
list of its own, it is recognized as a
function reference; M is invoked, and
the value returned by M effectively
replaces M and its argument list in
the containing argument list. For
example:

CALL A (M(B));

This passes the value returned by the
function procedure M.

If the entry expression argument
appears with a null argument list, it
is taken to be a function reference
with no arguments. For example:

CALL A(B());

This passes, as the argument to
procedure A, the value returned by the
function procedure B.

2. 1If the entry expression argument has
no argument list and appears within
parenthesis, a dummy entry variable is
created. For example:

CALL A((B));

Chapter 9:

This passes, as the argument to
procedure A, the value of the entry
name B.

When a built-in function name or an
entry expression is used without an
argument list as an argument to a
tuilt~in function, the function
specified by the argument is not
invoked provided that the built-in
function will accept an argument of
type ENTRY. If the built-in function
will not accept an entry argument, the
argument is assumed to be a reference
to the value of the function. For
example:

DCL DATE BUILTIN, Z CHAR(2);

2 = SUBSTR (DATE,S5,2);

The days field is extracted from the
value returned by the DATE built-in
function

If the entry expression argument to a
user~defined function appears without
an arqgument list and neither within an
operational expression nor within
parentheses, the entry expression
itself is passed to the function or
subroutine being invoked. In such
cases, the entry expression is not
taken to be a function reference, even
if it is the name of a function that
does not require arguments. For
example:

CALL A(B);

This passes the entry expression B as
an argument to procedure A. If the
corresponding parameter in A has been
declared with the attribute ENTRY, it
will be given the attribute VARIABLE
by default. If B is an entry
variakle, it will ke passed to the
parameter in the same way as for any
argument whose attributes match those
of the parameter. If B is an entry
constant a dummy is created and
passed, as for any constant argument.

If an identifier is known as an entry
name and appears as an argument and if
the parameter descriptor for that
argument specifies an attribute other
than ENTRY, the entry name will ke
invoked and its returned value passed.
If the value returned has different
attributes from those specified in the
parameter descriptor, conversion is
rerformed. For example:

Subroutines and Functions 115

A: PROCEDURE;
DECLARE B ENTRY,

C ENTRY(FLOAT);

END A;

In this case, B is invoked and its
returned value is passed to C.

Consider the following example:
CALLP: PROCEDURE;
DECLARE RREAD ENTRY,

SUBR ENTRY (ENTRY,
FIXED BINARY,

FLOAT,
LABEL) ;

GET LIST (R,S);

CALL SUBR (RREAD, SQRT(R), S,
LABl);

CALL ERRT(S);

LAB1:

END CALLP;

SUBR: PROCEDURE (NAME, X,

DECLARE NAME ENTRY,

J, TRANPT);
TRANPT LABEL;

IF X > J THEN CALL NAME(J);
ELSE GO TO TRANPT;

END SUBR;
In this example, assume that CALLP, SUBR,
and RREAD are external. In CALLP, Loth

RREAD and SUBR are explicitly declared to
have the ENTRY attribute. The explicit
declaration for SUBR is used to provide
information about the characteristics of
the parameters of SUBR. Four arguments are
specified in the CALL SUBR statement.
These arguments are interpreted as follows:
1. The first argument, RREAD, is
recognized as an entry name (because
of the ENTRY attribute declaration).
This argument is not in conflict with
the first parameter descriptor
specified in the ENTRY attribute
declaration for SUBR in CALLP.

Therefore, since RREAD is recognized
as an entry name and not as a function
reference, the entry name is passed at
invocation. Since NAME is an entry
parameter, it is given the attribute
VARIABLE by default. Since RREAD is a
constant, a dummy entry argument is
created, and this is passed to NAME.

The second argument, SQRT(R), is
recognized as a built-in function
reference kecause of the argument list
accompanying the entry name. SQRT is
invoked, and the value returned by
SQRT is assigned to a dummy argument,
which will be passed to the subroutine
SUBR. The attrikutes of the dummy
argument agree with those of the
second parameter, as specified in the
parameter attrikute list declaration.
When SUBR is invoked, the dummy
argument is "passed to it.

The third argument, S, is simply a
decimal floating-point element
variable. However, since its
attributes do not agree with those of
the third parameter, a dummy argument
is created containing the value of S
converted to the attributes of the
third parameter. When SUBR is
invoked, the dummy argument is rassed.

The fourth argument, LAB1, is a
statement-lakel constant. Its
attributes agree with those of the
fourth parameter. But since it is a
constant, a dummy argument is created
for it. When SUBR is invoked, the
dummy argument is passed,

In SUBR, four parameters are explicitly
declared in the PROCEDURE statement. If no
further explicit declarations were given
for these parameters, arithmetic default
attributes would be supplied for each.
Therefore, since NAME must represent an
entry name, it is explicitly declared with
the ENTRY attrikute, and since TRANPT must
represent a statement label, it is
explicitly declared with the LABEL
attribute. X and J are arithmetic,’
defaults are allowed to apply.

so the

Note that the aprearance of NAME in the
CALL statement does not constitute a
contextual declaration of NAME as a
built-in procedure. Such a contextual
declaration is made if no explicit
declaration applies. However the
appearance of NAME in the PROCEDURE
statement of SUBR constitutes an explicit
declaration of NAME as a parameter. If the
attrikbutes of a parameter are not
explicitly declared in a complementary
DECLARE statement, arithmetic defaults
apply. Consequently, NAME must be
explicitly declared to have the ENTRY

attribute; otherwise, it would be assumed
to be a binary fixed-point variable, and
its use in the CALL statement would result
in an error.

ALLOCATION OF PARAMETERS

Since a parameter has no associated storage
within the invoked procedure, it cannot ke
declared to have any of the storage class
attributes STATIC, AUTOMATIC, or BASED.
can, however, be declared to have the
CONTROLLED attribute. Thus, there are two
classes of parameters, as far as storage
allocation is concerned: those that have
no storage class, i.e., simple_parameters,
and those that have the CONTROLLED
attribute, i.e., controlled parameters.

It

A simple parameter may be associated
with an argument of any storage class.
However, if more than one generation of the
argument exists, the parameter is
associated only with that generation
existing at the time of invocation.

A controlled parameter must always have
a corresponding controlled argument. Such
an argument cannot be subscripted, cannot
be an element of a structure, and cannot
cause a dummy to be created. If more than
one generation of the argument exists at
the time of invocation, the parameter
corresponds to the entire stack of these
generations. Thus, at the time of
invocation, a controlled parameter
represents the current generation of the
corresponding argument. A controlled
parameter may be allocated and freed in the
invoked procedure, thus allowing the
manipulation of the allocation stack of the
associated argument. A simple parameter
cannot be specified in an ALLOCATE or FREE
statement.

When no parameter descriptor is given,
the entire stack is passed. 1In this case,
the parameter may ke simple or controlled
and be correspondingly associated with
either the latest generation or the entire
stack.

Parametexr Attributes

Parameters cannot ke declared with the
attributes DEFINED or BASED. A parameter
may be used as a base identifier for
overlay defining and it may be used for
record-criented transmission only provided
it has the CONNECTED attribute. A
parameter always has the attribute
INTERNAL. It must be a level-one
identifier.

Parameter Bounds, Lengths, and Sizes

If an argument is an array, a string, or an
area, the bounds of the array, the length
of the string, or the size of the area must
be declared for the corresponding
parameter. The number of dimensions and
the bounds of an array parameter, or the
length and size of an area or string
parameter, must ke the same as the current
generation of the corresponding argument.
Usually, this can be assured simply Ly
specifying actual numbers for the Lounds,
length, or size of the parameter.

If the kounds, length, or size are not
known at the time the subroutine or
function is written, they may be sgecified
by asterisks, for simple parameters, orx
asterisks or expressions for controlled
parameters.

Simple Parameter Bounds, Lengths, and_Sizes

When the actual length, bounds, or size of
a simple parameter may ke different for
different invocations, they can ke
specified in a DECLARE statement Lty
asterisks. When an asterisk is used, the
length, kounds, or size are taken from the
current generation of the corresponding
argument.

An asterisk is not allowed as the length
specification of a character or kit string
that is an element of an aggregate, if the
corresponding argument is such that a dummy
is created. The string length must ke
specified as a decimal integer constant.

Controlled Parameter Bounds, ILengths, and
Sizes

The kounds, length, or size of a controlled
parameter can be rerresented in a DECLARE
statement either by asterisks or ky element
expressions.

Asterisk Notation: When asterisks are
used, length, kounds, or size of the
controlled parameter are taken from the
current generation of the corresronding
argument. Any suksequent allocation of the
controlled parameter uses these same
kounds, length, or size, unless they are
overridden by a different length , Lounds,
or size specification in the ALLOCATE
statement. If no current generation of the
argument exists, the asterisks only
determine the dimensionality of the
parameter, and an ALLOCATE statement in the

Chapter 9: Sukroutines and Functions 117

invoked procedure must specify bounds,
length, or size for the controlled
parameter before other references to the
parameter can ke made.

Expression Notation: The bounds, length,
or size of a controlled parameter can also
be specified by element expressions. These
expressions are evaluated at the time of
allocation. Each time the parameter is
allocated, the expressions are re-evaluated
to give current bounds , length, or size
for the new allocation. However, such
expressions in a DECLARE statement can be
overridden ky a bounds , length, or size
specification in the ALLOCATE statement
itself. For examgle:

MAIN: PROCEDURE OPTIONS (MAIN);

DECLARE (A(20), B(30), C(100),
D(100)) CONTROLLED,
NAME CHARACTER (20),

I FIXED(3,0);

ALLOCATE A,B;
CALL SUB1(A,B);

FREE A,B;

-

FREE A,B;
GET LIST (NAME,I);
CALL suB2 (C,D,NAME,I);

.

FREE C,D;

END MAIN;

SUB1: PROCEDURE (U,V);

DECLARE (U(*), V(%)) CONTROLLED;

3

ALLOCATE U(30), V(40);

RETURN;
END SUB1:;

SUB2: PROCEDURE (X,Y,NAMEA,N);
DECLARE (X(N),Y(N))CONTROLLED,
NAMEA CHARACTER (%*),

N FIXED(3,0);

ALLOCATE X,Y;

.

RETURN;
END SUB2;

In the procedure MAIN, the arrays A, B,
and D are declared with the CONTROLLED
storage class attrikute; NAME and 1 are
AUTOMATIC by default.

C,

When SUB1 is invoked, A and B, which
have keen allocated as declared, are
passed. SUB1 declares its parameters with
the asterisk notation. The ALLOCATE
statement, however, sgecifies bounds for
the arrays; consequently, the allocated
arrays, which are actually a second
generation of A and B, have bounds
different from the first generation.
bounds were specified in the ALLOCATE
statement, the bounds of the first and the
new generation would ke identiecal.

If no

On return to MAIN, the first FREE
statement frees the second generation of A
and B (allocated in SUB1 as parameters),
and the second FREE statement frees the
first generation (allocated in MAIN).

When SUB2 is invoked, C and D are passed
to X and Y, NAME is passed to NAMEA, and I
is passed to N. In SUB2, X and Y are
declared with bounds that depend upon the
value of I (passed to N). When X and Y are
allocated, this value determines the Lkounds
of the allocated array.

Although NAME (corresponding to NAMEA)
is not controlled, the asterisk notation
for the length of NAMEA indicates that the
length is to be picked up from the argument
(NAME) .

ARGUMENT AND PARAMETER TYPES

In general, an argument and its
¢corresponding parameter may be of any data
organization and type. However, not all
parameter/argument relationships are so
clear-cut. Some need further definition
and clarification; these are given Lelow.

If a parameter is an e€element, i.e., a
variable that is neither a structure nor an
array, the argument must be an element
expression. If the argument is a

subscripted wariakle, the subscripts are
evaluated before the subroutine or function
is invoked and the name of the specified
element is passed. If the argument passed
to an external procedure is a constant, the
attributes of the corresponding parameter
must agree with the attributes indicated by
the constant, unless there is a
corresponding parameter descriptor in the
entry declaration.

If a parameter is an array, the argument
may be an array expression or an element
expression. If the argument is an element
expression, the corresponding parameter
descriptor or declaration must specify the
bounds of the array parameter. The bounds
must be specified as decimal integer
constants. This causes the construction of
a dummy array argument, whose bounds are
those of the array parameter. The value of
| the element expression is then assigned to
" the value of each element of the dummy

array argument.

If a parameter is a structure, the
argument must be a structure expression or
an element expression. If the argument is
an element expression, the corresponding
parameter descriptor for an external entry
point must specify the structure
description of the structure parameter
(only level numbers need be used -- see the
discussion of the ENTRY attribute in
section I, "Attributes", for details).
This causes the construction of a dummy
structure argument, whose description
matches that of the structure parameter.
The value of the element expression then
becomes the value of each element of the
dummy structure argument. The relative
structuring of the argument and the
parameter must be the same; the level
numbers need not ke identical. The element
value must be one that can be converted to
conform with the attributes of all the
elementary names of the structure.

If the parameter is an array_ of
structures, the argument can be the
expression representing an element, an
array, a structure or an array of
structures.

If a parameter is a label, the argument
must be either a label variable or a label
constant. If the argument is a label
constant, a dummy argument is constructed.

If the parameter is an entry , the
argument must be an entry name or a generic
name. If the argument is a generic name
the parameter descriptor (or parameter
declaration, if the invoked procedure is
internal) must give parameter descriptions
to enable generic selection to ke made
before passing an entry. Under the
optimizing compiler, entry variables passed
as arguments are assumed to be aligned, so
that no dummy argument is created when only
the alignments of argument and parameter
differ. Note that the name of a
mathematical built-in function can ke
passed as an argument but no other kuilt-in
function name can be passed.

If a parameter is a file, the argument
must be a file variable or file constant.

For example:
E: PROCEDURE;
DECLARE F1 FILE;
CALL E1(F1);

E1: PROCEDURE(F2);
DECLARE F2 FILE;
CALL E2(F2);

E2: PROCEDURE (F3);
DECLARE F3 FILE;

END E;

The file parameters F1, F2, and F3 all
refer to the same file. Ingput/output
on-units for file parameters are discussed
in chapter 14, "Execution Condition
Handling and Program Checkout”.

If the parameter is a fixed length
string, and if a dummy argument is not to
be created, then the argument must also be
a fixed length string. sSimilarly, if a
dummy is not to be created when the
parameter is a varying length string, the
argument must be a varying length string.
Whenever a varying-length element string
argument is passed to a non-varying element
string parameter whose length is undefined
(i.e. specified by an asterisk), the
current length of the argument is passed to
the invoked procedure. When the argument
is a varying-length string array passed to

Chapter 9: Subroutines and Functions 119

a non-varying undefined-length parameter,
only one length is passed, namely the
maximum length.

If a parameter is a locator of either
pointer or offset type, the argument must
be a locator expression of either type. If
the types differ, a dummy argument is
created. The parameter descriptor of an
offset parameter must not specify an
associated area.

If the parameter is an area , the
argument must be an area expression. If
the sizes differ, a dQummy argument is
created.

Passing an Argument to the Main Procedure

A single argument can be passed using the
PARM field in the statement for the step

120

executing the PL/I program. See OS_PL/I

Optimizing Compilex: Programmer's Guide
and 0S_PL/I Checkout Compiler:
Programmer's Guide. If this facility is

used, the parameter must be declared as a
VARYING character string; the maximum
length is 100, and the current length is
set equal to the argument length at object
time. For example:

TOM: PROC (PARAM) OPTIONS (MAIN);

DCL PARAM CHAR(100) VARYING;

The value in the PARM field of the EXEC
statement for the execution job step will
be passed to TOM.

Storage is allocated only for the
current length of the argument; the source

| program will overwrite adjacent information

if a value greater than the current length
is assigned to the parameter.

Introduction

PL/I includes input and output statements
that enakle data to be transmitted between
the internal and external storage devices
of a computer. A collection of data
external to a program is called a data_set.
Transmission of data from a data set to a
program is termed input, and transmission
of data from a program to a data set is
called output.

PL/I input and output statements are
concerned with the logical organization of
a data set and not with its physical
characteristics; a program can be designed
without specific knowledge of the
input/output devices that will be used when
the program is executed. To allow a source
program to deal primarily with the logical
aspects of data rather than with its
physical organization in a data set, PL/I
employs a symbolic representation of a data
set called a file. A file can be
associated with different data sets at
different times during the execution of a
program.

Two types of data transmission can be
used by a PL/I program. In stream-oriented
transmission, the oxrganization of the data
in the data set is ignored within the
program, and the data is treated as though
it actually were a continuous stream of
individual data items in character form;
data is converted from character form to
internal form on input, and from internal
form to character form on output. In
record-oriented transmission, the data set
is considered to ke a collection of
discrete records. No data conversion takes
place during record transmission; on input
the data is transmitted exactly as it is
recorded in the data set, and on output it
is transmitted exactly as it is recorded

{internally.® It is possible for the same
data set to be procedsed at different times
by either stream transmission or record
transmission; however, all items in the
data set would have to be in character
form.

Stream-oriented transmission is ideal
for simple jobs, particularly those that
use punched card input and have limited
output; a minimum of coding is required of

1This is not strictly true for ASCII data
sets - see "Information Interchange Codes"
in this chapter.

Chapter 10: Input and Output

the programmer, especially for punched card
input and printed output. Stream-oriented
transmission also allows communication with
the program at execution time from a
terminal, if the program is being run under
the Time Sharing Option. However, comgared
with record-oriented transmission,
stream~oriented transmission is less
efficient in terms of execution time
because of the data conversion it involves,
and more space is required on external
storage devices bkecause all data is in
character form.

Record-oriented transmission is morxe
versatile than stream-oriented
transmission, with regard to both the
manner in which data can be processed and
the types of data set that it can process.
Since data is recorded in a data set
exactly as it appears in main storage, any
data format is acceptable; no conversion
proklems will arise, kut the programmer
must have a greater awareness of the
structure of his data.

This chapter discusses those aspects of
PL/I input and output that are common to
stream-oriented and record-oriented
transmission, including files and their
attributes, and the relationship of files
to data sets. The next two charters
describe the input and output statements
that can be used in a PL/I program, and the
various data set organizations that are
recognized in PL/I.

Data Sets

Data sets are stored on a variety of
auxiliary storage media, such as punched
cards, reels of magnetic tape, magnetic
disks, and magnetic drums. Desgpite their
variety, these media have many common
characteristics that permit standard
methods of collecting, storing, and
transmitting data. For convenience, the
general term volume is used to refer to a

Junit of auxiliary storage, such as a reel

of magnetic tape or a disk pack, without
regard to its specific physical
composition.

The data items within a data set are
arranged in distinct physical grourings

Chapter 10: Input and Output 121

called blocks.? These blocks allow the data
set to be transmitted and processed in
portions rather than keing transmitted in
its entirety before any processing is
carried out. For processing purposes, each
block may consist of logical subdivisions
called records, each of which contains one
or more data items. A block can comprise
part of a record, a single record, or
several records. (Sometimes a block is
called a physical record, because it is the
unit of data that is physically transmitted
to and from a volume, and its logical
subdivisions are called logical_ recoxds.)

When a block contains two or more
records, the records are said to be
blocked. Blocked records permit more
compact and efficient use of auxiliary
storage. The use of blocked records can
also improve the throughput of a program
where a large number of short records are
to be processed, by reducing the number of
physical input/output operations.

Most data processing applications are
concerned with logical records rather than
blocks. Therefore, the input and output
statements of PL/I generally refer to
logical records; this allows the programmer
to concentrate on the data to be processed,
without being directly concerned about its
physical organization in external storage.

INFORMATION INTERCHANGE CODES

In System/360 and System/370, the standard
code used to represent data, both in main
storage and on auxiliary storage, is EBCDIC
(extended binary-coded-decimal interchange
code). In general, PL/I programs compiled
by the optimizing or checkout compiler use
EBCDIC to record all character data. The
operating system does, however, support the
use of an alternative code, namely ASCII
(American Standard Code for Information
Interchange), to represent data on
auxiliary storage, and such data sets may
be read or created using PL/I. The support
is limited to data sets held on magnetic
tape.

Translation between the two codes is
performed by the operating system. Apart

2This discussion has to be slightly
modified for teleprocessing applications,
where the data set is in fact a queue of
messages and the term "block"™ is not
strictly applicable. However, a message is
similar to a block in that it may consist
of one or more records. Telerrocessing is
discussed in chapter 12, "Record-Oriented
Transmission."

122

from the options specified in the
ENVIRONMENT attribute, the same PL/I
program may ke used to handle an ASCII data
set as would be used for a standard EBCDIC
data set. On output, translation from
EBCDIC to ASCII is performed immediately
before data is written from a buffer to
external storage. On input, translation is
performed from ASCII to EBCDIC as soon as a
buffer is filled with data.

In PL/I, only CHARACTER data may Le
written onto an ASCII data set. Each
character in the ASCII code is represented
by a seven-tit pattern and there are 128
such patterns. In EBCDIC, each character
has an eight-kit pattern, and there are 256
possikilities. The ASCII set includes a
substitute character (the SUB control
character) that is used to represent EBCDIC
characters having no valid ASCII code. (In
the American National Standards Institute
takle, this is the character having the
column 1, row 10 position.) Upon reading
this data, the character would te
translated to the EBCDIC SUB character,
which has the bit pattern 00111111,

Files

To allow a source program to deal primarily
with the logical aspects of data rather
than with its physical organization in a
data set, PL/I employs a symbolic
rerresentation of a data set called a file.
This symbolic representation determines how
input and output statements access and
process the associated data set. Unlike a
data set, however, a file has significance
only within the source program and does not
exist as a physical entity external to the
program.

PL/I requires that an identifier which
rerresents a file be declared with the FILE
attribute. Such an identifier may either
be a file constant or a file variakle. A
file variable is a data item to which a
file constant can be assigned. After
assignment, a reference to the file
variakle has the same significance as a
reference to the assigned file constant.
Each data set processed by a PL/I program
must be associated with a file constant
identifier.

File_Constants: The individual
characteristics of each file are descrited
with keywords called file description
attrikutes. The following lists show the
attributes that apply to each type of data
transmission:

Stream-oriented Transmission

FILE

STREAM
INPUT
OUTPUT
PRINT
ENVIRONMENT

Record-oriented Transmission

FILE
RECORD
INPUT
ouTPUT
UPDATE
SEQUENTIAL
DIRECT
TRANSIENT
BUFFERED
UNBUFFERED
BACKWARDS
KEYED
EXCLUSIVE
ENVIRONMENT

File variables: A file variable is an
identifier that has the attributes FILE and
VARIABLE; it cannot have any of the file
description attributes (except FILE). File
variables can be collected into arrays or
structures. Note that the VARIABLE
attribute can be implied by, for example,
the dimension attribute.

File expressions: A file expression can ke
a reference to a file constant, a file
variable, or a function reference which
returns a value with the FILE attribute.

A detailed description of each of these
attributes appears in section I,
"Attributes." The discussions below give a
brief description of each of the file
description attributes and show how these
attributes are declared for a file.

FILE ATTRIBUTE

The FILE attribute indicates that the
associated identifier is a file constant or
variable. For example, the identifier
MASTER is declared to be a file constant in
the following statement:

DECLARE MASTER FILE;

In the following statement, the
identifier ACCOUNT is declared to be a file
variable, and ACCT1, ACCT2, ... are
declared to be file constants; the file
constants may subsequently be assigned to
the file variable.

DECLARE ACCOUNT FILE VARIABLE,
ACCT1 FILE,
ACCT2 FILE,

The following example shows how the
VARIABLE attribute may ke implied.

DECLARE PAYREC(10) FILE;

PAYREC(I), where I has a value from 1 to
10, has the attrikute FILE by explicit
declaration and the attribute VARIABIE Ly
implication of the dimension attrikute (10)
in the DECLARE statement.

The attrikutes associated with a file
constant fall into two categories:
alternative attributes and additive
attributes. An alternative attribute is
one that is chosen from a group of
attrikutes. If no explicit or implicit
declaration is given for one of the
alternative attributes in a group and if
one of the alternatives is required, a
default attribute is assumed.

An additive attribute is one that must
be stated explicitly or is implied by
another explicitly stated attribute. The
additive attribute KEYED is implied Ly the
DIRECT attrikute. The additive attribute
PRINT can be implied by the standard output
file name SYSPRINT. An additive attrikbute
can never be implied by default.

Note: With the exception of the INTERNAL
and EXTERNAL scope attributes, all the
alternative and additive attributes imply
the FILE attribute. Therefore, the FILE
attribute need not be specified for a file
that has at least one of the alternative or
additive attributes already specified
explicitly.

ALTERNATIVE ATTRIBUTES

PL/1 provides five groups of alternative
file attributes. Each group (excert scope,
which is discussed in section I,
"Attributes") is discussed individually.
Following is a list of the groups.

Chapter 10: Input and Output 123

Group Alternative Default
Type Attributes Attribute
Usage STREAM| RECORD STREAM
Function INPUT|OUTPUT|UPDATE INPUT
Access SEQUENTIAL|DIRECT| SEQUENTIAL
TRANSIENT
Buffering BUFFERED|UNBUFFERED BUFFERED
Scope EXTERNAL | INTERNAL EXTERNAL

The scope attributes are discussed in
detail in section I, "Attributes."

STREAM and RECORD_Attributes

The STREAM and RECORD attributes describe
the type of data transmission
(stream-oriented or record-oriented) to be
used in input and output operations for the
file.

The STREAM attribute causes a file to ke
treated as a continuous stream of data
items recorded only in character form.

The RECORD attribute causes a file to ke

treated as a sequence of records, each
record@ consisting of one or more data items
recorded in any internal form.
DECLARE MASTER FILE RECORD,
DETAIL FILE STREAM;

INPUT, OUTPUT,

and UPDATE Attributes

The function attributes determine the
direction of data transmission permitted
for a file. The INPUT attribute applies to
files that are to bLe read only. The OUTPUT
attribute applies to files that are to
create or, in some cases, extend data sets.
The UPDATE attribute (which applies only to
RECORD files) describes a file that is to
be used for both input and output; it
allows records to be inserted into an
existing data set and other records already
in that data set to be altered.

SEQUENTIAL, DIRECT and TRANSIENT Attributes

The access attributes apply only to a file
with the RECORD attribute, and describe how
the recoxrds in the file are to be accessed.

124

The SEQUENTIAL attribute specifies that
records in the data set are to be accessed
in physical sequence or in key sequence
order.

The DIRECT attrikute specifies that
records in a data set may be accessed in
any order. The location of the record in
the data set is determined by a
character-string "key"; therefore, the
DIRECT attribute implies the KEYED
attribute. The associated data set must be
in a direct-access volume.

The TRANSIENT attribute applies to files
used for teleprocessing applications. A
TRANSIENT file is associated with a data
set which consists of a queue of messages.
The message gqueue data set contains
messages originating from and destined for
remote terminals while in transit between a
message control program and the PL/I
message processing program. The action of
reading a record removes that record from
the data set. Access is sequential, Lkut
the file must have the KEYED attribute
since a key is used to identify the
terminal concerned; a buffer is always
used, and so the file must also have the
BUFFERED attribute. Teleprocessing is
discussed in chapter 12, "Record-Oriented
Transmission."

BUFFERED and_UNBUFFERED Attributes

The buffering attrikutes apply only to a
file that has either the SEQUENTIAL ox
TRANSIENT, and RECORD attrikutes. The
BUFFERED attribute indicates that records
transmitted to and from a file must pass
through an intermediate internal-storage
area. If BUFFERED is srecified, data
transmission is, in most cases, overlapped
automatically with processing.

The UNBUFFERED attribute indicates that
a record in a data set need not pass
through a buffer but may be transmitted
directly to and from the main storage
associated with a variable. When
UNBUFFERED is specified, data transmission
is not overlapped automatically with
processing; the programmer must use the
EVENT option to achieve such overlagping.

Note: Specification of UNBUFFERED does not
preclude the use of kuffers. 1In nearly all
cases, "hidden kuffers" are required.

These cases are listed in the discussion of
the BUFFERED and UNBUFFERED attributes in
section I, “Attributes."

ADDITIVE ATTRIBUTES

The additive attributes are:
PRINT
BACKWARDS
KEYED
EXCLUSIVE

ENVIRONMENT (option-1list)

PRINT Attribute

The PRINT attribute applies only to files
with the STREAM and OUTPUT attributes. It
indicates that the file is eventually to be
printed, that is, the data associated with
the file is to appear on printed pages,
although it may first be written on some
other medium. The PRINT attribute causes
the initial byte of each record of the
associated data set to be reserved for a
printer control character.

BACKWARDS Aftribute

The BACKWARDS attribute applies only to
SEQUENTIAL RECORD INPUT files and only to
data sets on magnetic tape. It indicates
that a file is to be accessed in reverse
order, beginning with the last record and
proceeding through the file until the first
record is accessed.

KEYED Attribute

The KEYED attribute applies only to files
with the RECORD attribute. It indicates
that records in the file can be accessed
using one of the key options (KEY, KEYTO,
or KEYFROM) of data transmission statements
or of the DELETE statement. Note that the
KEYED attrikbute does not necessarily
indicate that the actual keys exist on, or
are to be written in, or are to be read
from the data set; consequently, it need

not be specified unless one of the key
options is to be used. The nature and use
of keys is discussed in detail in charpter
12, "Record-Oriented Transmission."

EXCLUSIVE_Attribute

When access to a record is restricted to
one task, the record is said to be locked
by that task. The EXCLUSIVE attrikute,
which can be specified for DIRECT UPDATE or
INPUT files only, provides a temporary
locking mechanism to prevent one task from
interfering with an operation by another
task. It can be suppressed by the NOLOCK
option on the READ statement. Figure 10.1
shows the effects of various operations on
an EXCLUSIVE file,

The EXCLUSIVE attribute will also lock a
record on a data set that is shared ketween
two PL/I jobs in a multi-programming
environment. The effect is as for sharing
between two tasks.

ENVIRONMENT Attrikute

The ENVIRONMENT attribute provides
information that allows the compiler to
determine the method of accessing the data
associated with a file. It specifies the
physical organization of the data set that
will be associated with the file, and
indicates how the data set is to be
handled.

The general format of the ENVIRONMENT
attribute is

ENVIRONMENT (option-1list)

The ENVIRONMENT attribute can be given in a
file declaration or as an option of the
CLOSE statement. When ENVIRONMENT is
specified in a CLOSE statement, the only
option allowed is LEAVE or REREAD.

The options appropriate to the two types of
data transmission are described in chapter
11, "Stream-Oriented Transmission,®™ and
chapter 12, "Record-Oriented Transmission,"
koth in Part I.

Chapter 10: Input and Output 125

[N

1} 1
Attempted | Current State of Addressed Record
Operation Unlocked Locked by this task Locked by another task
READ NOLOCK Proceed | Proceed Wait for unlock
4
- t
READ 1. Lock record | Proceed Wait for unlock
2. Proceed i |
+ t i
DELETE/REWRITE 1. Lock record |1. Proceed | Wait for unlock |
2. Proceed 2. Unlock"' record |
3. Unlock* record |
4
B3
UNLOCK No effect Unlock recorxd | No effect
i
CLOSE FILE Raise ERROR if there are records locked by another task. Otherwise,
unlock all records locked in this task, and proceed with closing.

T
Terminate Task |Unlock all records locked by task. Close file, if opened in this task
iy

entered because of the operation (that is,
the EVENT option has been specified).

made.

o e s st S . S S s, GV St g, Ao s, A e, . fien S S S, SO apn.

- T
1The unlocking occurs at the end of the operation, on completion of any on-units

If the EVENT option has been specified with a
READ statement, the operation is not completed until the corresronding WAIT statement
is reached; in the meantime, no attempt to delete or rewrite the record should ke

at the corresponding WAIT statement when

e s s o e, S . .

Figure 10.1.

Opening and Closing Files

Before the data associated with a file can
be transmitted by input or output
statements, certain file preparation
activities must occur, such as checking for
the availability of external storage media,
positioning the media, and allocating
appropriate operating system support. Such
activity is known as opening a file. Also,
when processing is completed, the file must
be closed. Closing a file involves
releasing the facilities that were
established during the opening of the file.

PL/1I provides two statements, OPEN and
CLOSE, to perform these functions. These
statements, however, are optional. If an
OPEN statement is not executed for a file,
the file is opened automatically before the
first data transmission statement for that
file is executed; in this case, the
automatic file preparation consists of
standard system procedures that use
information about the file as specified in
a DECLARE statement (or assumed from a
contextual declaration derived from the
transmission statement). Similarly, if a
file has not been closed before completion
of the task in which the file was opened,
the file is closed automatically upon
completion of the task.

126

Effect of operations on EXCLUSIVE files

When a file for stream input, sequential
input, or sequential update is opened, the
associated data set is positioned at the
first record. When a BACKWARDS file is
opened, the associated data set is
positioned at the last record.

OPEN_Statement

Execution of an OPEN statement causes one
or more files to be opened explicitly. The
OPEN statement has the following basic
format:

' OPEN FILE(file-expression) [option groupl
[,FILE(file-expression) (option
groupll...;

The option list of the OPEN statement can
specify any of the alternative and additive
attrikutes, except ENVIRONMENT, INTERNAL,
and EXTERNAL. Attributes included as
ortions in the OPEN statement are merged
with those stated in a DECLARE statement.
The same attributes need not be listed in
both an OPEN statement and a DECLARE
statement for the same file, and, of
course, there must ke no conflict. Other
options that can only appear in the OPEN
statement are the TITLE option, used to
associate the file with the data set, and
the PAGESIZE and LINESIZE options, used to

specify the layout of a data set. The
TITLE option is discussed below under
"Associating Data Sets with Files," and the
PAGESIZE and LINESIZE options, which apply
only to STREAM files, in chapter 11,
"Stream-oriented Transmission." The option
list may precede the FILE (file expression)
specification.

The OPEN statement is executed by
library routines that are loaded
dynamically at the time the OPEN statement
is executed, Consequently, execution time
can be reduced if more than one file is
specified in the same OPEN statement, since
the routines need ke loaded only once,
regardless of the number of files being
opened. Note, however, that such multiple
opening may require temporarily more
internal storage than might otherwise be
needed.

For a file to be opened explicitly, the
OPEN statement must be executed before any
of the input and output statements listed
below in “"Implicit Opening" are executed
for the file,

Implicit Opening

An implicit opening of a file occurs when
one of the statements listed below is
executed fox a file for which an OPEN
statement has not already been executed.
The type of statement determines which
unspecified alternatives are applied to the
file when it is opened.

The following list contains the
statement identifiers and the attributes
deduced from each:

Statement Identifier Attributes Deduced

GET STREAM, INPUT

PUT STREAM, OUTPUT
READ RECORD, INPUT

WRITE RECORD, OUTPUT
LOCATE RECORD, OUTPUT,

SEQUENTIAL, BUFFERED

REWRITE RECORD, UPDATE
DELETE RECORD, UPDATE
UNLOCK RECORD, DIRECT,

UPDATE, EXCLUSIVE

Notes:

1. INPUT and OUTPUT are deduced from READ
and WRITE only if UPDATE has not been
explicitly declared.

2. If a GET statement contains a COPY
option, execution of the GET statement
causes implicit opening of either the
specified file as a STREAM OUTPUT file
or the standard output file SYSPRINT.

An implicit opening caused by one of the
akove statements is equivalent to preceding
the statement with an OPEN statement that
specifies the deduced attrilkutes.

Merging of Attributes

There must be no conflict between the
attributes specified in a file declaration
and the attributes merged as the result of
orening the file. For example, the
attributes INPUT and UPDATE are in
conflict, as are the attributes UPDATE and
STREAM.

After the attributes are merged, the
attrikute implications listed below are
applied prior to the aprlication of the
default attrikutes discussed earlier.
Implied attributes can also cause a
conflict. If a conflict in attrikutes
exists after the application of default
attrikbutes, the UNDEFINEDFILE condition is
raised.

Following is a list of merged attributes
and attributes that each implies after
merging:

Merged Attrikutes Implied Attrikutes

UPDATE RECORD

SEQUENTIAL RECORD

DIRECT RECORD, KEYED

BUFFERED RECORD, SEQUENTIAL

UNBUFFERED RECORD, SEQUENTIAL

PRINT OUTPUT, STREAM

BACKWARDS RECORD,
SEQUENTIAL,
INPUT

KEYED RECORD

EXCLUSIVE RECORD

The following two examples illustrate
attrikute merging for an explicit opening
using a file constant and a file variakle.

Chapter 10: Input and Output 127

| File constant:

DECLARE LISTING FILE STREAM;

OPEN FILE(LISTING) PRINT;

Attributes after merge due to execution of
the OPEN statement are STREAM and PRINT.
Attributes after implication are STREAM,
PRINT, and OUTPUT. Attributes after
default application are STREAM, PRINT,
OUTPUT, and EXTERNAL.

File variable:

DECLARE ACCOUNT FILE VARIABLE,
(ACCT1,ACCT2,...) FILE
OUTPUT;

ACCOUNT = ACCT1;
OPEN FILE(ACCOUNT) PRINT;

.

ACCOUNT = ACCT2;
OPEN FILE(ACCOUNT) RECORD UNBUFFERED;

The file ACCT1 has been opened with
attributes (by explicit and implicit
declaration) STREAM, EXTERNAL, PRINT, and
OUTPUT. The file ACCT2 has been opened
with attributes RECORD, EXTERNAL, OUTPUT,
SEQUENTIAL, and UNBUFFERED.

The following example illustrates implicit
opening.

DECLARE MASTER FILE KEYED INTERNAL
ENVIRONMENT (INDEXED F
RECSIZE(120) KEYLEN(8));

READ FILE (MASTER) INTO
(MASTER_RECORD) KEYTO(MASTER_KEY) ;

Attributes after merge due to the opening
caused by execution of the READ statement
are KEYED, INTERNAL, RECORD, and INPUT.
Attributes after implication are KEYED,
INTERNAL, RECORD, and INPUT (no additional
attributes are implied). Attributes after
default arplication are KEYED, INTERNAL,
RECORD, INPUT, SEQUENTIAL, and BUFFERED,

Associating Data Sets with Files

With batch processing under the 0S, the
association of a file with a specific data
set is accomplished using job control
language, outside the PL/I program.

128

At the

time a file is opened, the PL/I file name
is associated with the name (ddname) of a
data definition statement (DD statement),
which is, in turn, associated with the name
of a specific data set (dsname). Note that
the direct association is with the name of
a DD statement, not with the name of the
data set itself.

A ddname can be associated with a PL/I
file either through the file name or
through the character-string value of the
expression in the TITLE option of the
associated OPEN statement.

If a file is opened implicitly, or if no
TITIE option is included in the OPEN
statement that causes explicit opening of
the file, the ddname is assumed to ke the
same as the file name. If the file name is
longer than eight characters, the ddname is
assumed to ke composed of the first eight
characters of the file name.

Note: Since external names are limited to
seven characters, an external file name of
more than seven characters is shortened
into a concatenation of the first four and
the last three characters of the file name.
Such a shortened name is not, however, the
name used as the ddname in the associated
DL statement.

Consider the following statements:
1. OPEN FILE(MASTER);
2. OPEN FILE(CLDMASTER);
3. READ FILE(DETAIL)...;

When statement number 1 is executed, the
file name MASTER is taken to be the same as
the ddname of a DD statement in the current
job step. When statement number 2 is
executed, the name OLDMASTE is taken to be
the same as the ddname of a DD statement in
the current job step. (The first eight
characters of a file name form the ddname.
Note, that if OIDMASTER is an external
name, it will be shortened by the compiler
to OLDMTER for use within the program.) If
statement numker 3 causes implicit opening
of the file DETAIL, the name DETAIL is
taken to ke the same as the ddname of a DD
statement in the current jobk step.

In each of the akove cases, a
corresponding DD statement must appear in
the job stream; otherwise, the
UNDEFINEDFILE condition would be raised.
The three DD statements would appear, in
part, as follows:

1. //MASTER DD DSNAME=...

2. //0LDMASTE DD DSNAME=...

3. //DETAIL DD DSNAME=...

If a file is opened explicitly by an
OPEN statement that includes a TITLE
option, the ddname is taken from the TITLE
option, and the file constant is not used
outside the program. The TITLE option
appears in an OPEN statement in the
following format:

OPEN FILE(file-expr) TITLE(expression);

The expression in the TITLE ortion is
evaluated and, if necessary, converted to a
character string, which is assumed to be
the ddname identifying the appropriate data
set. If the character string is longer
than eight characters, only the first eight
characters are used. The following OPEN
statement illustrates how the TITLE option
might be used:

OPEN FILE(DETAIL) TITLE('DETAIL1');

If this statement were executed, there must
be a DD statement in the current job step
with DETAIL1 as its ddname. It might
appear, in part, as follows:

//DETAIL1 DD DSNAME=DETAILA,...
Thus, the data set DETAILA is associated

with the file DETAIL through the ddname
DETAIL1.

Although a data set name represents a
specific collection of data, the file name
can, at different times, represent entirely
different data sets. In the above example
of the OPEN statement, the file DETAIL1 is
associated with the data set named in the
DSNAME parameter of the DD statement
DETAIL1. If the file were closed and
reopened, a TITLE option specifying a
different ddname could be used, and then
the file could be associated with a
different data set.

If the file expression in the statement
which explicitly or implicitly opens the
file is not a file constant, then the LD
statement name must be the same as the
value of the file expression. The
foliowing example illustrates how a DO
statement should be associated with the
value of a file variakle.

PRICES = RPRICE;

OPEN FILE(PRICES);
The DD card should associate the data set
with the file constant RPRICE, which is the
value of the file variable PRICES, thus:

//RPRICE DD DSNAME=...

Use of the TITLE option allows a
programmer to choose dynamically, at open
time, one among several data sets to ke
associated with a particular file name,
Consider the following example:

DECIARE 1 INREC, 2 FIELD_1...,
2 FILE_IDENT CHARACTER(S8),

DETAIL FILE INPUT...,

MASTER FILE INPUT...;

OPEN FILE(DETAIL);

READ FILE (DETAIL) INTO (INREC);

OPEN FILE (MASTER) TITLE(FILE_IDENT);

Assume that the program containing these
statements is used to process several
different detail data sets, each of which
has a different corresponding master data
set. Assume, further, that the first
record of each detail data set contains, as
its last data item, a character string that
identifies the appropriate master data set.
The following DD statements might appear in
the current job steg:

//DETAIL DD DSNAME=...

//MASTER1A DD DSNAME=MASTER1A...
//MASTER1B DD DSNAME=MASTER1B...
//MASTER1C DD DSNAME=MASTER1C...

In this case, MASTER1A, MASTER1B, and
MASTER1C represent three different master
files., The first record of DETAIL would
contain as its last item, either
*MASTER1A', 'MASTERI1B', or 'MASTER1C',
which is assigned to the character-string
variakle FILE_IDENT. When the OPEN
statement is executed to open the file
MASTER, the current value of FILE_IDENT
would be taken to be the ddname, and the
appropriate data set identified by that
ddname would ke associated with the file
name MASTER.

Another similar use of the TITLE option
is illustrated in the following statements:

DCL IDENT(3) CHAR(1)
INIT('A', 'B', 'C");
DO I =1T0 3;
OPEN FILE(MASTER)
TITLE(*MASTER1' | | IDENT(I));

-

CLOSE FILE(MASTER) ;
END;

In this example, IDENT is declared as a
character-string array with three elements
having as values the specific character
strings 'A', 'B', and ‘'C'. When MASTER is

Chapter 10: Input and Output 129

opened during the first iteration of the
DO-group, the character constant 'MASTER1'
is concatenated with the value of the first
element of IDENT, and the associated ddname
is taken to be MASTER1A. After processing,
the file is closed, dissociating the file
name and the ddname. During the second
iteration of the group, MASTER is opened
again. This time, however, the value of
the second element of IDENT is taken, and
MASTER is associated with the ddname
MASTER1B. Similarly, during the final
iteration of the group, MASTER is
associated with the ddname MASTERIC.

Note: The character set of the job control
language does not contain the break
character (_). Consequently, this
character cannot appear in ddnames. Care
should thus be taken to avoid using break
characters among the first eight characters
of file names, unless the file is to be
opened with a TITLE option with a valid
ddname as its expression. The alphabetic
extender characters §, a, and #, however,
are valid for ddnames, but the first
character must be one of the letters A
through Z.

Use of a file variable also allows a
number of files to be manipulated at
various times by a single statement. For
example:

DECLARE F FILE VARIABLE,
A FILE,
B FILE,
C FILE;

F=A;
READ FILE (F)

.
eecs oo g

F=B;
GO TO 1AB;

F=C;
GO TO LAB;

The statement labeled LAB is used to read
the three files A, B, and C, each of which
may be associated with a different data
set. Note that the files A, B, and C
remain open after the READ statement has
been executed in each instance. When a
number of data sets, is to be accessed by a
single statement, use of a file variable
rather than the TITLE option may improve
program efficiency by allowing a file for
each data set to remain open for as long as
it is required by the program. Using the
TITLE option could necessitate closing and
reopening a file whenever it is to be
associated with a new data set.

130

CLOSE_Statement

The basic form of the CLOSE statement is:

CLOSE FILE (file-expr) [ENVIRONMENT
({LEAVE |REREAD})]
[,FILE (file-expr) (ENVIRONMENT
({LEAVE |REREAD}) 1]...;

Executing a CLOSE statement dissociates the
specified file from the data set with which
it became associated when the file was
opened. The CLOSE statement also
dissociates from the file all attributes
established for it by the implicit or
explicit opening process. If desired, new
attrikutes may ke specified for the file
constant in a suksequent OPEN statement.
However, all attributes explicitly given to
the file constant in a DECLARE statement
remain in effect.

As with the OPEN statement, closing more
than one file with a single CLOSE statement
can save execution time, but it may require
the temporary use of more internal storage
than would otherwise Le needed.

The LEAVE and REREAD options are used to
control the disposition of magnetic tapes.

Note: Closing an already closed file or
opening an already opened file has no
effect apart from increasing the execution
time of the program.

STANDARD FILES

Two standard files are provided that can be
used by any PL/I program. One is the
standard input file SYSIN, and the other is
the standard output file SYSPRINT. These
files need not ke declared or opened
explicitly; a standard set of attributes is
arplied automatically. For SYSIN, the
attributes are STREAM INPUT, and for
SYSPRINT they are STREAM OUTPUT PRINT.

Both file names, SYSIN and SYSPRINT, are
assumed to have the EXTERNAL attrikute,
even though SYSPRINT contains more than
seven characters.

The FILE option need not be specified in
GET and PUT statements when these files are
to be used. GET and PUT statements that do
not name a file are equivalent to:

GET FILE(SYSIN)...;

PUT FILE(SYSPRINT)...;
Any other references to SYSIN and SYSPRINT
(such as in ON statements or in

record-oriented statements) must ke stated
explicitly.

Under the optimizing compiler, the
identifiers SYSIN and SYSPRINT are not
reserved for the specific purposes
described above.. They can be used for
other purposes besides identifying standard
files. Other attributes can be applied to
them, either explicitly or contextually,
but the PRINT attribute is applied
automatically to SYSPRINT when it is
declared or opened as a STREAM OUTPUT file
unless the INTERNAL attribute is declared
for it.

Under the checkout compiler, the file
SYSPRINT is used for diagnostic messages,
and the file SYSIN may be used to hold the
source program. When the compiler uses one
of the files, the file is opened with
certain attributes that may not be altered;
the programmer consequently needs to
exercise care if he declares SYSPRINT or
SYSIN explicitly. Full details of the
restrictions are given in the 0S_PL/I

Checkout Compiler: _Programmer's Guide.

Even under the optimizing compiler, care
must be taken when SYSIN or SYSPRINT is

declared as anything other than a STREAM
file. The compiler causes, in effect, the
identifier SYSIN to be inserted into each
GET statement in which no file constant is
explicitly stated and the identifier
SYSPRINT to be inserted into each PUT
statement in which no file constant is
explicitly stated. Consequently, the
following would be in erxrror:

DECLARE (SYSIN,SYSPRINT) FIXED
DECIMAL (4,2);

GET LIST (A,B,

c)
PUT LIST (D,E,F)

.
e
.
’

The identifier SYSIN would be inserted into
the GET statement, and SYSPRINT in the PUT
statement. In this case, however, they
would not refer to the standard files, Lut
to the fixed-point variables declared in
the klock.

Chapter 10: Input and Output 131

Chapter 11: Stream-Oriented Transmission

Introduction

This chapter describes the input and output
statements used in stream-oriented
transmission. Those features that apply
equally to stream-oriented and
record-oriented transmission, including
files, file attributes, and opening and
closing files, are descriked in chapter 10,
"Input and Output".

In stream-oriented transmission, a data
set is treated as a continuous stream of
data items in character form; within a
program, block and record boundaries are
ignored. However, a data set is considered
to consist of a series of lines of data,
and each data set that is created or
accessed by stream-oriented transmission
has a line size associated with it. 1In
general, a line is equivalent to a record
in the data set; however, the line size
does not necessarily equal the record size.

There are three modes of stream-oriented
transmission: 1list-directed,
data~directed, and edit-directed. The
transmission statements used in all three
modes require the following information:

1. The name of the file associated with
the data set from which data is to be
obtained or to which data is to ke
assigned.

A list of program variables to which
data items are to be assigned during
input or from which data items are to
be obtained during output. This list
is called a data_list. On output in
list- and edit-directed modes, the
data list can also include
expressions.

For edit-directed mode, the format of
each data item in the stream.

Under certain conditions some of this
required information can be implied.

LIST-DIRECTED TRANSMISSION

List-directed transmission permits the user
to read and write out data without having
to specify the format of the items in the
stream.

132

—

Input: In general, the data items in the
stream are character strings in the form of
optionally signed valid constants or in the
form of expressions that represent complex
constants. The variakles to which the data
items are to be assigned are specified by a
data list. Items are separated by a comma
and/or one or more blanks.

Output: The data values to be transmitted
are specified by a variable, a constant, or
an expression that represents a data item.
Each data item placed in the stream is a
character-string representation that
reflects the attributes of the variakle.
Items are separated by one or more klanks.
Leading zeros of arithmetic data are
suppressed. Binary items are expressed in
decimal representation.

For PRINT files, data items are
automatically aligned on
implementation-defined preset tab
positions. These positions are 1, 25, 49,
73, 97, and 121, but provision is made for
the programmer to alter these values.

DATA-DIRECTED TRANSMISSION

Data~directed transmission permits the user
to transmit self-identifying data.

Input: Each data item in the stream is in
the form of an assignment that specifies
both the value and the variable to which it
is to be assigned. In general, values are
in the form of constants. Items are
separated ky a comma and/or one or more
blanks. A semicolon must end each group of
items to be accessed ky a single GET
statement. A data list in the GET
statement is optional, since the semicolon
determines the number of items to ke
obtained from the stream.?

Output: The data values to be transmitted
may be specified ky an optional data list.
Each data item placed in the stream has the
form of an assignment statement without a
semicolon. Items are separated by one or

- —— - - - - - - - - - - - -

1 These rules are slightly amended when the
program is initiated and data entered from
a terminal under TSO. Details are given in
the following OS puklications: Time

Sharing Option: PL/I Optimizing Compilex
and Time Sharing Option: _PL/I Checkout

Compiler.

more blanks. The last item transmitted by
each PUT statement is followed by a
semicolon. Leading zeros of arithmetic
data are suppressed. The character
representation of each value reflects the
attributes of the variable, excert for
binary items, which appear as values
expressed in decimal notation.

If the data list is onmitted, it is
assumed to specify all variables that are
known within the block containing the
statement and are permitted in
data-directed output.

For PRINT files, data items are
automatically aligned on the
implementation-defined preset tab positions
referred to under "List-Directed
Transmission”.

EDIT-DIRECTED TRANSMISSION

Edit-directed transmission permits the user
to specify the variables to which data is
to be assigned or to specify data to be
transmitted, and to specify the format for
each item on the external medium.

Input: Data in the stream is a continuous
string of characters; different data items
are not separated. The variables to which
the data is to be assigned are specified Ly
a data list. Format items in a format list
specify the number of characters that
contain the value to be assigned to each
variable and describe characteristics of
the data (for example, the assumed location
of a decimal point).2

Output: The data values to be transmitted
are defined by a data list. The format
that the data is to have in the stream is
defined by a format list.

Data Transmission Statements

Stream-oriented trahsmission uses only one
input statement, GET, and one output
statement, PUT. A GET statement gets the
next series of data items from the stream,
and a PUT statement puts a specified set of
data items into the stream. The variables

2These rules are slightly amended when the
program is initiated and data entered from
a terminal under TSO. Details are given in
the following OS publications: O0S_Time
Sharing Option: PL/I Optimizing Compilexr
and OS_Time Sharing Option: _PL/I_ Checkout

Compiler.

Chapter 11: Stream-Oriented Transmission

to which data items are assigned, and the
variakles or expressions from which they
are transmitted, are generally specified in
a data_list with each GET or PUT statement.
The statements may also include options
that specify the origin or destination of
the data or indicate where it appears in
the stream relative to the preceding data.

The following is a summary of the
stream-oriented data transmission
statements and their options:

STREAM_INPUT:

GET [{FILE (file-expression)} |{{STRING
(character-string-variable)}]
{data-specification]
[cOoPY((file~expression)]]
[SKIP [(expression)ll;

Note that neither the COPY option nor SKIP
option can be used with the STRING option
in a GET statement.

STREAM_OUTPUT:

PUT [({FILE (file-expression)} |{STRING
(character-string-variakle)}]
[data-specification]
{SKIP [(expression)l];

Note that the SKIP option cannot ke used
with the STRING option in a PUT statement.

STREAM_OUTPUT_PRINT:

PUT (FILE (file-expression) 1
[data-specification]
PAGE[LINE(expression)]
[SKIP[(expression)]]
LINE (expression)

The options may appear in any order. The
data specification can have one of the

following forms:
[LIST] (data-list)
DATA ([(data-list)]
EDIT {(data-list) (format-list)}...
SNAP
FLOW
ALL [(character-string-expression)]l
If a GET or PUT statement includes a data
list that is not preceded by one of the
keywords LIST,DATA, or EDIT, then LIST is
assumed. In such a statement, the data
list must immediately follow the GET or PUT

keyword; any options required must ke
specified after the data list.

133

The SNAP, FLOW and ALL options in the data
sprecification cause information about the
program to be put into the stream. These

. options can only ke used in a PUT
statement. The information is providead
only if the PUT statement is processed by
the PL/I checkout compiler; if such a PUT
statement is included in a program that is
processed by the PL/I optimizing compiler,
these options are checked for syntax errors
and then ignored. The use of the options
is described in chapter 15, "Execution-Time
Facilities of the PL/I Checkout Compiler”.

The data specification can be omitted only

if one of the control options (PAGE, SKIP,

or LINE) appears. Format lists may use any
of the following format items:

A,B,C,E,F, which may be used with
P,R,X any STREAM or

STRING option
SKIP[(w)] which may be used with
COLUMN (w) any STREAM file
PAGE which may be used with
LINE (w) STREAM OUTPUT PRINT

files

The statements are discussed individually
in detail in section J, "Statements".

Options of Transmission Statements

FILE and STRING oOptions

The FILE option specifies the file upon
‘which the operation is to take place. The
STRING option allows GET and PUT statements
to be used to transmit data between
internal storage locations rather than
between internal and external storage. If
neither the FILE option nor the STRING
option aprears in a GET statement, the
standard input file SYSIN is assumed; if
neither option appears in a PUT statement,
the standard output file SYSPRINT is
assumed.

Examples of the use of the FILE option
are given in some of the statements below.
Chapter 13, "Editing and String Handling",
illustrates the use of the STRING option.

COPY Option

The COPY option may appear only in a GET
FILE statement. It specifies that the
stream is to be written, exactly as read,
onto the file named in the COPY

134

srecification. If no file name is given,
the default is the standard output file
SYSPRINT. For example, the statement:

GET FILE(SYSIN) DATA(A,B,C) COPY(DPL);

not only transmits the values assigned to
A, B, and C in the input stream to the
variakles with these names, but also causes
them to ke written, exactly as they appear
in the input stream, on the file DPL. 1If
they were written, by default, on the
SYSPRINT file, they would appear in
data-directed format. Data items that are
skipped on input, and not transmitted to
internal variables, are copied intact into
the output stream.

SKIP_Option

The SKIP option specifies a new current
line (or record) within the data set. The
parenthesized expression is converted to an
integer w. The data set is positioned to
the start of the wth line (record) relative
to the current line (record).

For non-PRINT files, if the expression
is omitted or if w is not greater than
zero, a value of 1 is assumed. For PRINT
files, if w is less than or equal to zero,
the effect is that of a carriage return
with the same current line; if the
expression is omitted, 1 is assumed.

The SKIP option takes effect before the
transmission of any values defined by the
data specification, even if it appears
after the data specification. Thus, the
statement:

PUT LIST(X,Y,2) SKIP(3);

causes the values of the variables X, Y,
and Z to be printed on the standard output
file SYSPRINT commencing on the third line
after the current line.

When printing at a terminal in
conversational mode, SKIP(w) with w greater
than 3 is equivalent to SKIP(3). 1In other
words, no more than three lines may ke
skipped.

PAGE_Option

The PAGE option can be specified only for
PRINT files. It causes a new current rage
to be defined within the data set. The
PAGE option takes effect before the
transmission of any values defined Ly the
data specification (if any), even if it
appears after the data specification.

When printing at a terminal in 1.
conversational mode, the PAGE option causes
three lines to be skipped.

LINE Option

The LINE option can be specified only for
PRINT files. It causes blank lines to ke
inserted so that the next line will be the
wth line of the current page, where w is
the value of the parenthesized expression
when converted to an integer. The LINE
option takes effect before the transmission
of any values defined by the data
specification (if any), even if it follows
the data specification. If both the PAGE
option and the LINE option appear in the 2.
same statement, the PAGE option is applied
first. For example, the statement

PUT FILE(LIST) DATA(P,Q,R) LINE(34) PAGE;

causes the values of the variables P, Q,
and R to printed in data-directed format on
a new page, commencing at line 34.

When printing at a terminal in
conversational mode, the LINE option always
causes three lines to be skipped.

Data Specifications

3.
Data specifications are given in GET and
PUT statements to identify the data to be
transmitted.

DATA LISTS

List-directed and edit-directed data
specifications require a data list to
specify the data items to be transmitted.

A data list is optional for a data-directed
data specification.

General format:
(data-list)
where "data list" is defined as:
element (,elementl...
Syntax rules:
The nature of the elements depends ugon

whether the data list is used for input or
for output. The rules are as follows:

Chapter 11: Stream-Oriented Transmission

On input, a data-~list element for
edit-directed and list-directed
transmission can be one of the
following: an element, array, or
structure variable, a pseudovariakle
other than STRING, or a repetitive
specification (similar to a reretitive
specification of a DO groug) involving
any of these elements. For a
data-directed data specification, a
data-list element can ke an element,
array, or structure variable. None of
the names in a data-directed data list
can be subscripted, locator-qualified,
or isUB~defined, but qualified (that
is, structure~-memker), simple-defined,
or string-overlay-defined names are
allowed.

On output, a data-list element for
edit-directed and list-directed data
specifications can be one of the
following: an element expression, an

~array expression, a structure

expression, or a repetitive
specification involving any of these
elements. For a data-directed data
specification, a data-list element can
ke an element, array, or structure
variable, or a repetitive
specification involving any of these
elements. It must not be
locator-qualified or isuUB-defined, bLut
may be qualified (that is, a memker of
a structure), or simple- or
string-overlay~defined. Subscrirts
are allowed for data-directed output.

The elements of a data list can Lke:

Proklem data: Arithmetic

String

Input:

Output: Problem data: Arithmetic

String
Program control
data: Area
Entry
Event
File
Lakel
Offset
Pointer
Task

Entry and label constants may not ke
specified.

A data list that sgpecifies
program~control data can only ke used
in PUT DATA or PUT LIST statements
that are to ke processed Lty the
checkout compiler or PUT DATA
statements that are to be processed
under the optimizing compiler. In the
latter case, the name of the variakle
is transmitted, kut not its value,

135

4., A data list must always be enclosed in
parentheses.

Repetitive Specification

the data list must have one set of
parentheses and the repetitive
specification must have a separate
set.

4., As figure 11.1 shows, the
"specification” portion of a
The general format of a repetitive repetitive specification can ke
specification is shown in figure 11.1. repeated a numbexr of times, as in the
following form:
Syntax rules:
DOI=1T0 4, 6 TO 10;
1. An element in the element list of the
repetitive specification can be any of Repetitive specifications can ke
those allowed as data-list elements as nested; that is, an element of a
listed above. repetitive specification can itself be
a repetitive specification. Each DO
2. The expressions in the specification, portion must be delimited on the right
which are the same as those in a DO with a right parenthesis (with its
statement, are described as follows: matching left parenthesis added to the
beginning of the entire repetitive
a. Each expression in the specification).
specification is an element
expression. When DO portions are nested, the
rightmost DO is at the outer level of
b. In the specification, expression-1 nesting. For example, consider the
represents the starting value of following statement:
the control variable or
pseudovariable. Expression-3 GET LIST (({A(I,J) DO I = 1 TO 2)
represents the increment to be DO J = 3 TO 4));
added to the control variable
after each repetition of data-list Note the three sets of parentheses, in
elements in the repetitive addition to the set used to delimit
specification. Expression-2 the sukscript. The outermost set is
represents the terminating value the set required by the data list; the
of the control variable. next is that required by the outer
Expression-4 represents a second repetitive specification. The third
condition to control the numker of set of parentheses is that required by
repetitions. The exact meaning of the inner repetitive specification.
the specification is identical to This statement is equivalent to the
that of a DO statement with the following nested DO-groups:
same specification. When the last
specification is completed, DO J = 3 TO 4;
control passes to the next element DO I = 1TO 2;
in the data list. GET LIST (A (I,3));
END;
3. Each repetitive specification must be END;
enclosed in parentheses, as shown in
the general format. Note that if a It gives values to the elements of the
repetitive specification is the only array A in the fcllowing order:
element in a data list, two sets of
outer parentheses are required, since a(1,3), a(2,3), a€1,4), A(2,4)
variable
(element (,elementl...DO = specificationl, specificationl...)
pseudovariable

A "specification" has the following format:

TO expression-2 [BY expression-3]}
expression-1
BY expression~3 [TO expression-2])

(= = e o e e i . . S e S0

] (WHILE (expression-4)]}

b e v, v e S——— — — o o—)

Figure 11.1. General format for repetitive specifications

136

Under the optimizing compiler, the
maximum permissible level of nesting
is 50, There is no such limit under
the checkout compiler.

Note: Although the DO keyword is used in
the repetitive specification, a
corresponding END statement is not allowed.

Transmission of Data-list Elements

If a data-list element is of complex mode,
the real part is transmitted before the
imaginary part.

If a data-list element is an array
variable, the elements of the array are
transmitted in row-major order, that is,
with the rightmost subscript of the array
varying most frequently.

If a data-list element is a structure
variable, the elements of the structure are
transmitted in the order specified in the
structure declaration.

For example, if a declaration is:
DECLARE 1 A (10), 2 B, 2 C;
then the statement:

PUT FILE(X) LIST(A);

would result in the output being ordered as
follows:

A.B(1) A.Cc(1) A.B(2) A.C(2) A.B(3)
A.C(3)...etc.

If, however, the declaration had been:
DECLARE 1 A, 2 B(10), 2 c(10);

then the same PUT statement would result in
the output being ordered as follows:

A.B(1) A.B(2) A.B(3)...A.B(10)
A.C(1) A.C(2) A.C(3)...A.C(10)

If, within a data list used in an input
statement for list-directed or
edit-directed transmission, a variable is
assigned a value, this new value is used if
the variakle appears in a later reference
in the data list. For example:

GET LIST (N, (X(I) DO I=1 TO N), J, K,
SUBSTR (NAME, J,K));

When this statement is executed, data is
transmitted and assigned in the following
order:

1. A new value is assigned to N.

2. Elements are assigned to the array X
as specified in the repetitive
specification in the order
X(1),X(2),...X(N), with the new value
of N used to specify the number of
items to be assigned.

3. A new value is assigned to J.
4. A new value is assigned to K.
5. A substring of length K is assigned to

the string variakle NAME, keginning at
the Jth character.

List-directed Data Specification

General format for a list-directed data
specification, either input or output is as
follows:

{LIST] (data-list)

The data list is descriked under "Data
Lists", above. The keyword LIST srecifies
the list-directed mode of transmission.

Examples of list-directed data
specifications:

LIST (CARD, RATE, DYNAMIC_FLOW)

LIST ((THICKNESS(DISTANCE)
DO DISTANCE = 1 TO 1000))

LIstT (P, Z, M, R)

LIST (A*B/C, (X+Y)*#%2)

The specification in the last example can
be used only for output, since it contains
values specified by expressions. Such
expressions are evaluated when the
statement is executed, and the result is
placed in the stream.

List-directed Data_in_the Stream

Problem data in the stream, either input or

output, is of character data type and has

one of the following general forms:

(+|-] arithmetic-constant
character-string-constant
bit-string-constant

[+|-]1 real-constant{+|-}imaginary-constant

Chapter 11: Stream-Oriented Transmission 137

A string constant must be one of the two
permitted forms listed above; iterxation and
string repetition factors are not allowed.
A blank must not follow a sign preceding a
real constant, and must not precede or
follow the central + or - in complex
expressions.

The format of program control data is
described in chapter 15, "Execution-time
Facilities of the Checkout Compiler®.

List-directed Input Format

When the data named is an array, the data
consists of constants, the first of which
is assigned to the first element of the
array, the second constant to the second
element, etc., in row-major order.

A structure name in the data list
represents a list of the contained element
variables and arrays in the order specified
in the structure description.

On input, data items in the stream must
be separated either by a blank or by a
comma. This separator may be surrounded by
an arbitary number of blanks. A null field
in the stream is indicated either by the
first non-blank character in the data
stream being a comma, or by two commas
separated by an arkitrary numkber of blanks.
A null field specifies that the value of
the associated item in the data list is to
remain unchanged.

The transmission of the list of
constants on input is terminated by
expiration of the list or at the end of the
file. In the former case, the file is
positioned in the stream ready for the next
GET statement. More than one blank can
separate two data items, and a comma
separator may be preceded or followed by
one or more blanks. If the items are
separated by a comma, then the first
character to be scanned when the next GET
statement is executed will be the one
immediately following the comma. If the
items are separated by blanks only, the
first item scanned will be the next
non-blank character. In the following
example,s X represents a non-blank
character, b represents a blank, and t
indicates the position of the file at the
start of the next GET statement.

138

Xbb, bbbXXX
t

XbbbbXXXX
t

Xk, lJ+=end of record
1]

Note that if a record terminates with a
semi~colon, the succeeding record is not
read in until the next GET statement
requires it.

If the data is a character-string
constant, the surrounding quotation marks
are removed, and the enclosed characters
are interpreted as a character string.

If the data is a bit-string constant,
enclosing quotation marks and the trailing
character B are removed, and the enclosed
characters are interpreted as a bit string.

If the data is an arithmetic constant or
complex expression, it is interpreted as
coded arithmetic data with the Lase, scale,
mode, and precision implied by the
constant.

List-directed Output Format

The values of the element variakles and
expressions in the data list are converted
to character representations and
transmitted to the data stream. The
conversions follow the normal rules for
arithmetic to character conversions, except
that floating-point items are not rounded.

A blank separates successive data items
transmitted. (For PRINT files, items are
separated according to program tak
settings.)

The length of the data field placed in
the stream is a function of the attributes
of the data item, including precision and
length. Detailed discussions of the
conversion rules and their effect ugon
rrecision are listed in the descriptions of
conversion to character type in section F,
"Cata Conversion and Expression
Evaluation".

Binary data items are converted to
decimal notation kefore being placed in the
stream.

For numeric character values, the
character~string value is transmitted.

Bit strings are converted to character
representation of bit-string constants,
consisting of the characters 0 and 1,

i

enclosed in quotation marks, and followed
by the letter B.

Character strings are written out as
follows. If the file does not have the
attribute PRINT, enclosing quotation marks
are supplied, and contained single
gquotation marks or apostrophes are replaced
by two quotation marks. The field width is
the current length of the string plus the
number of added quotation marks. If the
file has the attribute PRINT, enclosing
quotation marks are not supplied, and
contained single quotation marks or
apostrophes are unmodified. The field
width is the current length of the string.

Data-directed Data Specification

General format for a data-directed data
specification, either for input or output,
is as follows:

DATA([(data-1list)]
General rules:

1. The data list is described in "Data
Lists"™ in this chapter. For input,
the data list cannot contain
subscripted names. Names of structure
elements in the data list need only
have enough qualification to resolve
any ambiguity; full qualification is
not regquired. On input, if the stream
contains an unrecognisable
element-variable or a name that does
not have a counterpart in the data
list, the NAME condition is raised.

2. Omission of the data list implies that
a data list is assumed. This assumed
data list contains all the names that
are known to the block and to any
containing kblocks, and that are valid
for data-directed transmission.

On input, if the stream contains an
unrecognisable element-variable or an
unknown name, the NAME condition is
raised, If the assumed data list
contains a name that is not included
in the stream, the value of the
associated variable remains unchanged.

On output, all items in the assumed
data list are transmitted. Where two
or more blocks containing the PUT
statement each have declarations of
items which have the same name, all
the items will be transmitted, the
known item appearing first.

3. Recognition of a semicolon or an
end-of-file in an input stream causes

transmission to cease, whether or not
a data list is specified. On output,
a semicolon is written into the stream
after the last data item transmitted
by each PUT statement.

Data-directed Data in_the_ Stream

The data in the stream associated with
data=~directed transmission is in the form
of a list of element assignments. For
problem data, they have the following
general format (the optionally signed
constants, like the variable names and the
equal signs, are in character form):

element-variable = data value
[{k|,}element-variable = data
valuel...;

General rules for proklem data:

1. The element variable may Le a
subscripted name. Subscripts must be
optionally signed decimal integer
constants.

2. On input, the element assignments may
be separated by either a blank (b in
the above format) or a comma.
Redundant klanks are ignored. On
output, the assignments are separated
by a klank. (For PRINT files, items
are separated according to program tab
settings.)

3. Each data value in the stream has one
of the forms described for
list-directed transmission.

4. On input a semi-colon following an
element assignment terminates the list
of element assignments to ke
transmitted by the execution of a
single GET DATA statement, and thereby
determines the number of element
assignments that are actually
transmitted by a particular statement.
On output a semi-colon is transmitted
on completion of a PUT DATA statement.

5. Locator qualifiers cannot appear in
the stream. The locator qualifier
declared with the based variakle is
used to estaklish the generation.
Based variables that have not Leen
declared with a locator qualifier
cannot be transmitted.

Under the optimizing compiler, the
following restrictions apply to Lased
variables in the data list:

a. The variable must not ke kased on
an OFFSET variable.

Chapter 11: Stream-Oriented Transmission 139

b. The variakle must not be a member
of a structure declared with the
REFER option.

¢. The pointer on which the variable
is based must not be based,
defined, or a parameter, and it
must not be a member of an array
or structure.

Under the optimizing compiler, defined
variables in the data list must not
have been defined:

a. On a controlled variable.

b. On an array with one or more
adjustable bounds.

C. With a POSITION attribute that
specifies other than a constant.

Data-directed Data Specification for Input

General rules for data-directed input:

1.

140

If the data specification does not
include a data list, the names in the
stream may be any names known at the
point of transmission. Qualified
names in the input stream must be
fully qualified. The name must not
contain more than 256 characters.

If a data list is used, each element
of the data list must be an element,
array, or structure va;iable. Names
cannot be sukscripted, but gqualified
names are allowed in the data list.
All names in the stream should appear
in the data list; however, the order
of the names need not be the same, and
the data list may include names that
do not appear in the stream. For
example, consider the following data
list, where A, B, C, and D are names
of element variakles:

DATA (B, A, C, D)

This data list may be associated with
the following input data stream:

A= 2.5, B= .0047, D= 125, Z= 'ABC';

Note: C appears:in the data list but
not in the stream; its value remains
unaltered. Z, which is not in the
data list, raises the NAME condition.

If the data list includes the name of
an array, subscripted references to
that array may appear in the stream
although subscripted names cannot
appear in the data list. The entire

array need not arpear in the stream;
only those elements that actually
appear in the stream will ke assigned.
If a sukscript is out of range, or is
missing, the NAME condition is raised.

Let X ke the name of a two-dimensional
array declared as follows:

DECLARE X (2,3);

Consider the following data list and
input data stream:

Data Specification
DATA (X)

Input_Data_Stream
X(1,1)= 7.95,
X(1,2)= 8085,
X(1,3)= 73;

Although the data list has only the
name of the array, the associated
input stream may contain values for
individual elements of the array. 1In
this case, only three elements are
assigned; the remainder of the array
is unchanged.

If the data list includes the names of
structure elements, then fully
qualified names must appear in the
stream, although full gqualification is
not required in the data list.
consider the following structures:

DECLARE 1 CARDIN, 2 PARTNO,
2 PRICE, 3 RETAIL,

2 DESCRP,
3 WHSL;

If it is desired to read a value for
CARDIN.PRICE.RETAIL, the data
specification and input data stream
could have the following forms:

Data_Specification Input Data_Stream
DATA (CARDIN.RETAIL) CARDIN.PRICE.
RETAIL = 4.28;

Interleaved sukscripts cannot aggear
in qualified names in the stream. All
subscripts must be moved all the way
to the right, following the last name
of the qualified name. For examgle,
assume that Y is declared as follows:

DECLARE 1 ¥(5,5),2 A(10),3 B,
3 C, 3 D;

An element name would have to arpear
in the stream as follows:

Y.A.B(2,3,8)= 8.72

The name in the data 1list could not
contain the subscript.

Data-directed Data Specification for Output

General rules for data-directed output:

1. An element of the data list may be an
element, array, or structure variable,
or a repetitive specification
involving any of these elements orx
further repetitive specifications.
Subscripted names can appear. For
problem data, the names appearing in
the data list, together with their
values, are transmitted in the form of
a list of element assignments
separated by blanks and terminated by
a semicolon. (For PRINT files, items
are. separated according to program tab
settings.)

The rules applying to program control
data are given in chapter 15,
"Execution-time Facilities of the
Checkout Compiler.®™

2. Array variables in the data list are
treated as a list of the contained
subscripted elements in row-major
order.

Consider an array declared as follows:
DECLARE X (2,4) FIXED;

If X appears in a data list as
follows:

DATA (X)

on output, the output data stream
would have the form:

X(1,= 1 X(1,2)= 2 X(1,3)= 3
X(1,4)= 4 X(2,1)= 5 X(2,2)= 6
X(2,3)= 7 X(@2,4)= 8;

Note: In actual output, more than one
blank would follow the equal sign. 1In
conversion from coded arithmetic to
character, leading zeros are converted
to blanks, and up to three additional
blanks may appear at the beginning of
the field.

3. Subscript expressions that appear in a
data list are evaluated and replaced
by their values.

4. Items that are part of a structure
appearing in the data list are
transmitted with the full
qualification, but subscripts follow
the qualified names rather than being
interleaved. For example, if a data
list is specified for a structure
element transmitted under
data~directed output as follows:

DATA (Y (1,-3).Q)

the associated data field in the
output stream is of the form:

Y.Q(1,-3)= 3.756;

5. Structure names in the data list are
interpreted as a list of the contained
element or elements, and any contained
arrays are treated as above.

For example, consider the following
structure:

ta, 2B, 2¢C, 3D
If a data list for data-directed
output is as follows:

DATA (A)

and the values of B and D are 2 and
17, respectively, the associated data
fields in the output stream would ke
as follows:

A.B= 2 A.C.D= 17;

6. In the following cases, data-directed
output is not valid for suksequent
data~-directed input:

a. When the character-string value of
a numeric character variakle does
not represent a valid optionally
signed arithmetic constant. For
example, this is always true for
complex numeric character
variakles.

k. When a program control variakle is
transmitted such a variakle must
not ke specified in an input data
list.

Length of Data-directed Output Fields

The length of the data field on the
external medium is a function of the
attrikutes declared for the variakle and,
since the name is also included, the length
of the fully qualified subscripted name.
The field length for output items converted
from coded arithmetic data, numeric
character data, and bit-string data is the
same as that for list-directed output data,
and is governed by the rules for data
conversion to character type as described
in section F, "Data Conversion and
Expression Evaluation".

For character-string data, the contents
of the character string are written out

Chapter 11: Stream-Oriented Transmission 141

AB: PROCEDURE;

Input Stream

DECLARE (A(6), B(7)) FIXED;

GET FILE (X) DATA (B);

DOI = 1TO 6;
A (I) =B (I+1) + B (I);

Output_Stream
END;

A(1D= 3 A(2)=
PUT FILE (YY) DATA (A);

END AB;

oo s e, e v e S s S e S, T S S, S . Y

B(1)=1, B(2)=2, B(3)=3,
B(#4)=1, B(5)=2, B(6)=3, B(7)=4;

A(5)= 5 A(6)= 7;

5 A(3)= 4 A()= 3

e e e — — ————— ——— — — ——]

Figure 11.2.

enclosed in quotation marks. Each 2.
quotation mark contained within the
character string is represented by two

successive quotation marks.

Example

In the example shown in figure 11.2, 2 is
declared as a one-dimensional array of six
elements; B is a one-dimensional array of
seven elements. The procedure calculates
and writes out values for A(I) = B(I+1) +
B(I)o N

3.

Edit-directed Data Specification

General format for an edit-directed data
specification, either for input or output,
is as follows:

EDIT {(data-list) (format-list)}
{(data-list) (format-l1list)]l...

The data list, which must be enclosed
in parentheses, is described in "Data
Lists", above. The format list, which
also must be enclosed in parentheses,
contains one or more format items.
There are three types of format items:
data format items, which describe data
in the stream; control format items,
which describe page, line, and spacing
operations; and remote format items,
which specify the label of a separate
statement that contains the format
list to be used. Format lists and
format items are discussed in more
detail in "Format Lists", below.

Note: Program-control variables

cannot be specified in data lists for
edit-directed transmission.

142

Example of data-directed transmission (both input and output)

For input, data in the stream is
considered to be a continuous string
of characters not separated into
individual data items. The number of
characters for each data item is
specified ky a format item in the
format list. The characters are
treated according to the associated
format item.

For output, the value of each item in
the data list is converted to a format
specified by the associated format
item and placed in the stream in a
field whose width also is specified by
the format item.

For either input or output, the first
data format item is associated with
the first item in the data list, the
second data format item with the
second item in the data list, and so
forth. If a format list contains
fewer format items than there are
items in the associated data list, the
format list is re-used; if there are
excessive format items, they are
ignored. Suppose a format list
contains five data format items and
its associated data list specifies ten
items to ke transmitted. Then the
sixth item in the data list will ke
associated with the first data format
item, and so forth. Suppose a format
list contains ten data format items
and its associated data list srecifies
only five items. Then the sixth
through the tenth format items will be
ignored.

An array or structure variakle in a
data list is equivalent to n items in
the data list, where n is the number
of element items in the array or
structure, each of which will be
associated with a separate use of a
data format item.

6. If a control format item is
encountered, the control action is
executed, and the data list item is
paired with the next format item.

7. The specified transmission is complete
when the last item in the data list
has keen processed using its
corresponding format item. Subsequent
format items, including control format
items, are ignored.

8. On output, data items are not
automatically separated, but
arithmetic data items generally
include leading blanks because of data
conversion rules and zero suppression.

Examples:

GET EDIT (NAME, DATA, SALARY)
(AN, X(2), A(6), F(6,2));

PUT EDIT ('INVENTORY="'||INUM,INVCODE)
(A,F(5));

The first example specifies that the first
N characters in the stream are to be
treated as a character string and assigned
to NAME; the next two characters are to be
skipped; the next six are to be assigned to
DATA in character format; and the next six
characters are to ke considered -as an
optionally signed decimal fixed-point
constant and assigned to SALARY.

The second example specifies that the
character string 'INVENTORY=' is to be
concatenated with the value of INUM and
placed in the stream in a field whose width
is the length of the resultant string.
Then the value of INVCODE is to be
converted to character to represent an
optionally signed decimal fixed-point
integer constant and is then to be placed
in the stream right-adjusted in a field
with a width of five characters (leading
characters may be klanks). Note that
values represented by expressions and
constants can appear in output data lists
only.

Format Lists

Each edit-directed data specification must
be associateéd with a format list.

General format:
(format-1list)
where "format list" is defined as:
item ¢ item
n item , N item ese

n (format-list) , n (format-list)

Syntax rules:

1. Each "item" represents a format item
as described below.

2. The letter n represents an iteration
factor, which is either an exgression
enclosed in parentheses or an unsigned
decimal integer constant. If it is
the latter, a blank must separate the
constant and the following format
item. The iteration factor specifies
that the associated format item or
format list is to be used n successive
times. A zero iteration factor
specifies that the associated format
item or format list is to be skipped
and not used (the data list item will
ke associated with the next data
format item). If an expression is
used to represent the iteration
factor, it is evaluated and converted
to an integer, which must be
non-negative, once for each set of
iterations. The associated format
item or format list is that item or
list of items immediately to the right
of the iteration factor.

General rule:

There are three types of format items:
data format items, control format items,
and the remote format item. Data format
items specify the external forms that data
fields are to take. Control format items
sgpecify the page, line, column, and spacing
operations. The remote format item allows
format items to be specified in a serparate
FORMAT statement elsewhere in the Llock.

Detailed discussions of the various
types of format items arpear in section E,
"Edit~Directed Format Items". The
following discussions show how the format
items are used in edit-directed data
specifications.

Data Format Items

On input, each data format item
specifies the number of characters to ke
associated with the data item and how to
interpret the external data. The data item
is assigned to the associated variakle

Chapter 11: Stream-Oriented Transmission 143

named in the data list, with necessary
conversion to conform to the attributes of
the variable. On output, the value of the
associated element in the data list is
converted to the character representation
specified by the format item and is
inserted into the data stream.

There are six data format items:
fixed-point (F), floating-point (E),
complex (C), picture (P), character-string
(3), and kit-string (B). They are, in
general, specified as follows:

F (w(,d(,pl])

E (w,d(,s])
(real-format-item [,real-format-iteml)
'picture-specification'

[(w)]

w ¥ "W O

[(w)]

In this list, the letter w represents an
expression that specifies the number of
characters in the field. The letter 4
specifies the number of digits to the right
of a decimal point; it may be omitted for
fixed-point integers. The real format item
of the complex format item represents the
appearance of either an F, E or P format
item. The picture specification of the P
format item can be either a numeric
character specification or a
character-string specification. On output,
data associated with E and F format items
is rounded if the internal precision
exceeds the external precision.

A third specification (p) is allowed in
the F format item; it is a scaling factor.
A third specification (g) is allowed in the
E format item to specify the number of
digits that must ke maintained in the first
subfield of the floating-point number.
These specifications are discussed in
detail in section E, "Edit-Directed Format
Items".

Note: Fixed-point binary and floating-point
binary. data items must always be
represented in the input stream with their
values expressed in decimal digits. The F
and E format items may then be used to
access them, and the values will be
converted to binary representation upon
assignment. On output, binary items are
converted to decimal values and the
associated F or E format items must state
the field width and point placement in
texrms of the converted decimal number.

The following examples illustrate the
use of format items:

144

3.

GET FILE (INFILE) EDIT (ITEM) (A(20));

This statement causes the next 20
characters in the file called INFILE
to be assigned to ITEM. The value is
automatically transformed from its
character representation specified by
the format item A(20), to the
representation specified by the
attributes declared for ITEM.

Note: If the data list and format list
were used for output, the length of a
string item need not ke specified in
the format item if the field width is
to ke the same as the length of the
string, that is, if no blanks are to
follow the string.

PUT FILE (MASKFLE) EDIT {(MASK) (B);
Assume MASK has the attribute BIT
(25); then the above statement writes
the value of MASK in the file called
MASKFLE as a string of 25 characters
consisting of 0's and 1's. A field
width specification can be given in
the B format item. It must ke stated
for input.

PUT EDIT (TOTAL) (F(6,2));

Assume TOTAL has the attrikutes FIXED
(4,2); then the above statement
specifies that the value of TOTAL is
to be converted to the character
representation of a fixed-point number
and written into the standard output
file SYSPRINT. A decimal point is to
ke inserted Lefore the last two
numeric characters, and the numker
will be right-adjusted in a field of
six characters. Leading zeros will be
changed to klanks, and, if necessary,
a minus sign will ke placed to the
left of the first numeric character.

The conversion from internal decimal
fixed-point type to character type is
performed according to the normal
rules for conversion. Extra
characters may appear as blanks
preceding the numker in the converted
string. And, since leading zeros are
converted to blanks, additional klanks
may precede the number. If a decimal
point or a minus sign appears, either
will cause one leading blank to ke
replaced.

In edit-directed output, the field
width specification in the format item
(in this case, the 6 in the F(6,2)
format item) can be used to truncate
leading zeros. In this specification,
one zero is truncated. TOTAL would be
converted to a charactexr string of

length seven. If all four digits of
the converted number are greater than
zero, the number, with its inserted
decimal point, will require five digit
positions; if the number is negative,
another digit position will be
required for the minus sign.
Consequently, the F(6,2) specification
will always allow all digits, the
point, and a possible sign to appear,
but will remove the extra blank by
truncation.

4. GET FILE(A) EDIT (ESTIMATE) (E(10,6));

This statement obtains the next ten
characters from the file called A and
interprets them as a floating-point
decimal number. A decimal point is
assumed before the rightmost six
digits of the mantissa. An actual
point within the data can override
this assumption. The value of the
numker is converted to the attributes
of ESTIMATE and assigned to this
variable.

5. GET EDIT (NAME, TOTAL)
(P'AAAAA',P'9999");

When this statement is executed, the
standaxd input file SYSIN is assumed.
The first five characters must be
alphabetic or blank and they are
assigned to NAME. The next four
characters must be nonblank numeric
characters and they are assigned to
TOTAL.

Control Format Items

The control format items are the spacing
format item (X), and the COLUMN, LINE,
PAGE, and SKIP format items. The spacing
format item specifies relative spacing in
the data stream. The PAGE and LINE format
items can be used only with PRINT files
and, consequently, can only agppear in PUT
statements. All but PAGE generally include
expressions. LINE, PAGE, and SKIP can also
appear separately as options in the PUT
statement; SKIP can appear as an option in
the GET statement.' The following examples
illustrate the use of the control format
items:

1. GET EDIT (NUMBER, REBATE)
(A(5), X(5), A(5));

This statement treats the next 15
characters from the standard input
file, SYSIN, as follows: the first
five characters are assigned to
NUMBER, the next five characters are
spaced over and ignored, and the
remaining five characters are assigned
to REBATE.

2. GET FILE(IN) EDIT(MAN,OVERTIME)
(SKIP(1), A(6), COLUMN(60), F(4,2));

This statement positions the data set
associated with file IN to a new line;
the first six characters on the line
are assigned to MAN, and the four
characters beginning at character
position 60 are assigned to OVERTIME.

3. PUT FILE(OUT) EDIT (PART, COUNT)
(a(w), x(2), F(5));

This statement places in the file
named OUT four characters that
represent the value of PART, then two
blank characters, and finally five
characters that rerpresent the
fixed-point value of COUNT.

4. The following examples show the use of
the COLUMN, LINE, PAGE, and SKIP
format items in combination with one
another.

PUT EDIT (°*QUARTERLY STATEMENT')
(PAGE, LINE(2), A(19));

PUT EDIT
(ACCT#, BOUGHT, SOLD,
PAYMENT, BALANCE)
(SKIP(3), A(6), COLUMN(14),
F(7,2), COLUMN(30), F(7,2),
COLUMN(45), F(7,2),
COLUMN(60), F(7,2));

The first PUT statement specifies that
the heading QUARTERLY STATEMENT is to
be written on line two of a new page
in the standard output file SYSPRINT.
The second statement specifies that
two lines are to be skipped (that is,
"skip to the third following line")
and the value of ACCT# is to ke
written, beginning at the first
character of the fifth line; the value
of BOUGHT, beginning at character
position 14; the value of SOLD,
beginning at character position 30;
the value of PAYMENT, beginning at
character position 45; and the value
of BALANCE at character position 60.

Note: Control format items are executed at
the time they are encountered in the format
list. Any control format list that appears
after the data list is exhausted will have
no effect.

Remote Format Item

The remote format item (R) srecifies the
lakel of a FORMAT statement (or a lakel
expression whose value is the label of a
FORMAT statement) located elsewhere; the
FORMAT statement and the GET or PUT
statement specifying the remote format item
must be internal to the same block. The
FORMAT statement contains the remotely

Chapter 11: Stream-Oriented Transmission 145

situated format items. This facility
permits the choice of different format
specifications at execution time, as
illustrated by the following example:

DECLARE SWITCH LABEL;

GET FILE(IN) LIST(CODE);

IF CODE = 1
THEN SWITCH L1;
ELSE SWITCH = L2;

GET FILE(IN) EDIT (W,X,Y,2)
(R(SWITCH)) ;

L1: FORMAT (4 F(8,3));

L2: FORMAT (4 E(12,6));

SWITCH has keen declared to be a label
variable; the second GET statement can be
made to operate with either of the two
FORMAT statements.

Expressions in Format Items

The W, p, 4, and s specifications in
data format items, as well as the
specifications in control format items,
need not be decimal integer constants.
Expressions are allowed. They may be
variables or other expressions.

A value read into a variable can be used
in a format item associated with another
variable later in the data list.

PUT EDIT (NAME,NUMBER,CITY)
(A(N) ,A(N-4) ,A(10));

GET EDIT (M,STRING_A,I,STRING_B)
(F(2),A(M),X(M),F(2),A(1));

In the first example, the value of NAME is
inserted in the stream as a character
string left-adjusted in a field of N
characters; NUMBER is left-adjusted in a
field of N-4 characters; and CITY is
left-adjusted in a field of 10 characters.
In the second example, the first two
charactexrs are assigned to M. The value of
M is then taken to specify the number of
characters to be assigned to STRING_A and
also to specify the number of characters to
be ignored kefore two characters are
assigned to I, whose value then is used to
specify the number of characters to be
assigned to STRING_B.

PRINT Files

The PRINT attribute can be applied only to
a STREAM OUTPUT file. It indicates that

146

the data in the file is ultimately intended
to be printed (although it may first ke
written on a medium other than the printed
page). The first data bkyte of each record
of a PRINT file is reserved for an American
National Standard (ANS) printer control
character; the compiler causes the control
characters to be inserted automatically
when statements containing the control
options and format items PAGE, SKIF, and
LINE are executed.

The layout of a PRINT file can be
controlled by the use of the options and
format items listed in figure 11.3. (Note
that LINESIZE, SKIP, and COLUMN can also be
used for non-PRINT files.) LINESIZE and
PAGESIZE establish the dimensions of the
printed area of the page, excluding
footings. The LINESIZE option specifies
the maximum numker of characters to ke
included in each printed line; if it is not
specified for a PRINT file, a default value
of 120 characters is assumed (but there is
no default for a non-PRINT file). The
PAGESIZE option specifies the maximum
number of lines to appear in each printed
page; if it is not specified, a default
value of 60 lines is assumed. Consider the
following example:

OPEN FILE(REPORT) OUTPUT STREAM PRINT
PAGESIZE(55) LINESIZE(110);

This statement opens the file REPORT as a
PRINT file. The specification PAGESIZE(55)
indicates that each page should contain a
maximum of 55 lines. An attempt to write
on a page after 55 lines have already keen
written (or skipped) will raise the ENDPAGE
condition. The standard system action for
the ENDPAGE condition is to skip to a new
page, but the programmer can estaklish his
own action through use of the ON statement.

The ENDPAGE condition is raised only
once per page. Consequently, printing can
be continued beyond the specified PAGESIZE
after the ENDPAGE condition has been raised
the first time. This can be useful, for
example, if a footing is to be written at
the bottom of each page. For example:

ON ENDPAGE(REPORT) BEGIN;

PUT FILE(REPORT) SKIP LIST
(FOOTING) ;

N=N+ 1;

PUT FILE(REPORT) PAGE LIST
('PAGE ' ||N);

PUT FILE(REPORT) SKIP (3);

END;

T R) T h |

| Edit-directed | Statement in | |

Option | format item | which option { Effect |

| | or format | i

| | item appears | |

4 L 4 d

| I | I

LINESIZE(w)? | - OPEN Establishes line width |

| |

| PAGESIZE(w) | - OPEN Establishes page width |

| | I |

| PAGE | PAGE PUT | Skip to new page |

| |

LINE(w) | LINE(w) PUT Skip to specified line |

[I

SKIP([(x)]? | SKIP[{(x)]12 PUT Skip specified number of lines |

| |

- | COLUMN(w)2% PUT Skip to specified character |

| | | position in line]

} 4 i 4

| %Can also be used with non-PRINT files: see "Options of Transmission Statements" and |

| "Control Format Items", above, and "Line Size and Record Format", kelow. i

L d

Figure 11.3. Options and format items for controlling layout of PRINT files

Assume that REPORT has been opened with compiler, a new pagée is initiated

PAGESIZE(55), as shown in the previous automatically when the file is opened. If

example. When an attempt is made to write
on line 56 (or to skip keyond line 55), the
ENDPAGE condition will arise, and the begin
block shown here will be executed. The
first PUT statement specifies that a line
is to be skipped, and the value of FOOTING,
presumably a character string, is to be
printed on line 57 (when ENDPAGE arises,
the current line is always PAGESIZE+1).

The page number is incremented, the file
REPORT is set to the next page, and the
character string 'PAGE' is concatenated
with the new page number and printed. The
final PUT statement causes three lines to
be skipped, so that the next printing will
be on line 4. Control returns from the
begin block to the PUT statement that
caused the ENDPAGE condition, and the data
is printed. Any SKIP option specified in
that statement will have no further effect,
however.

Note that SIGNAL ENDPAGE is ignored if
there is no ENDPAGE on-unit.

The specification LINESIZE(110)
indicates that each line on the page can
contain a maximum of 110 characters. An
attempt to write a line greater than 110
characters will cause the excess characters
to be placed on the next line.

Standard File SYSPRINT

Unless the standard file SYSPRINT is
declared explicitly, it is always given the
attribute PRINT. Under the optimizing

Chapter 11: Stream-Oriented Transmission

the first PUT statement that refers to the
file has the PAGE option, or if the first
PUT statement includes a format list with
PAGE as the first item, a klank page will
appear. Under the checkout compiler, no
new page is started when an explicit or
implicit OPEN is executed for SYSPRINT,
kecause the file is used Ly the compiler to
transmit diagnostic messages. SYSPRINT is
always open under the checkout compiler.

ENVIRONMENT Attribute

The ENVIRONMENT attrikute specifies
information akout the physical organization
of the data set associated with a file.

The information is contained in a
parenthesized option list; the general
format is:

ENVIRONMENT (option-1list)

The ortions applicakle to
stream-oriented transmission are:

F|{FB|FS|FBS|V|VB|D|DB|U
RECSIZE (record-length)
BLKSIZE(klock-size)
BUFFERS (n)

CONSECUTIVE

LEAVE
REREAD

ASCII
BUFOFF((n)]

147

The options may appear in any order and
are separated by blanks, The options
themselves cannot contain blanks.

The options are discussed below.

RECORD FORMAT OPTIONS

Although record boundaries are ignored in
stream-oriented transmission, record format
is important when a data set is being
created, not only because it affects the
amount of storage space occupied by the
data set and the efficiency of the program
that processes the data, but also because
the data set may later be processed by
record-oriented transmission. Having
specified the record format, the programmer
need not concern himself with records and
blocks as long as he uses only
stream-oriented transmission; he can
consider his data set as a series of
characters arranged in lines, and can use
the SKIP option or format item (and, for a
PRINT file, the PAGE and LINE options and
format items) to select a new line.

Records can have one of the following
formats:

Fixed-length F unblocked
FB blocked
FBS blocked, standard
FS unblocked, standard

Variable-length v unblocked
VB Dblocked
D unblocked (see
"ASCII Data Sets")
DB blocked (see
"ASCII Data Sets")
Undefined-length U (cannot be blocked)
Blocking and deblocking of records is
performed automatically.

All records, whatever the format,
consist of data bytes and, optionally,
control or prefix bytes. Variable-length
records include control and prefix bytes to
specify record and block lengths; the use
of these bytes is described later in this
section. In addition, any record (whatever
the format) associated with a PRINT file
has the first data byte interpreted as a
printer control character. The compiler
analyzes the relevant PUT statement and
inserts the appropriate character (or a
default character).

148

Fixed-length Records

All records in the data set are the same
length.
F-format: The records are unblocked; each
record constitutes a single
block.

FB-format: The records are blocked, some
of the blocks may be shorter
klocks, that is they may be
shorter than the specified
klock size.

Fs-format: The records are unklocked; each
record constitutes a single
klock. For direct-access
storage, every track except the
last one is filled to capacity.

FBS-format: The records are klocked. Only
the last block can be a short
klock.

A sequential data set is said to contain
FBS-format records if:

1. All records in the data set are
FB-format.

2. For direct-access storage, every track
except the last one is filled to
capacity.

3. No klocks excert the last one are
truncated.

Data sets with FBS-format can be read more

efficiently from direct-access storage than
data sets with truncated blocks.

Variakle-length Records

Each record can ke a different length.
v-format: The records are unblocked; each
record constitutes a single
block. Each record consists
of:

Four control bytes
Data bytes

The four control bytes contain
the record length (that is, the
length of the current recoxd);
this value is inserted
automatically, and requires no
action ky the programmer.

In addition, four extra control
bytes are placed at the
keginning of the block (that

is, the record). These bytes
contain the block size; the
value is inserted in the same
way as the record length.

VB-format: The records are blocked. Each

record consists of:

Four control bytes
Data bytes

The four control bytes have the
same purpose as in V-format
records. The block has four
extra control bytes for the
block size in the same way as
V-format records.

| b~ and DB~format: see "ASCII Data Sets".

Undefined~length Records

All processing is the responsibility of the
programmer. If a length specification is
required in the record, the programmer. must
provide one and also interpret it.

RECSIZE Option

The RECSIZE option specifies the record
length. This is the sum of:

1. The length required for data. For
variable-length and undefined records,
this is the maximum length.

2. Any control bytes required.
Variable-length records require four,
for the record length; fixed-length
and undefined~length records do not
require any.

The record length can be specified as a
decimal integer constant, or as a variable
with the attributes FIXED BINARY(31,0)
STATIC.

The value is subject to the following
conventions:
Maximum: Fixed-length, and
undefined-length (except ASCII
data sets): 32,760 bytes.
Variable-length (except ASCII
data sets): 32,756 bytes
ASCII data sets: 9999 bytes

A search for a valid value is
made in (in the following
order) :

Zero value:

DD statement for the
data set associated with
the file

Data set label

If neither of these can
provide a value, default
action is taken (see "Record
Format Defaults", later in
this section).

Negative value: The UNDEFINEDFILE
condition is raised.

A value implied ky the LINESIZE option
overrides a value specified in the RECSIZE
option.

BLKSIZE Option

The BLKSIZE option specifies the klock
size. This is the sum of:

1. The lengths of all the records in the
block. For variable length records,
the length of each record includes the
four control bkytes for the record
length.

2. Any control bytes required.
Variakle~length blocked recorxds
require four for the blocksize;
fixed-length and undefined-length
records do not require any.

or

Any block prefix bytes (ASCII data
sets)

The block size can be specified as a
decimal integer constant, or as a variakle
with the attributes FIXED BINARY(31,0)
STATIC.

The value is subject to the following
conventions:
Maximum: 32,760 bytes (or 9999 for an
ASCII data set for which
BUFOFF is specified without a
prefix-length value)

Chapter 11: Stream-Oriented Transmission 149

A search for a valid value is
made in (in the following
order):

Zero value:

DD statement for the
data set associated with
the file

Data set label

If neither of these can
provide a value, default
action is taken (see "Record
Format Defaults", later in
this section).

Negative value: the UNDEFINEDFILE
condition is raised.

The relationship of the block size to
the record length depends on the record
format:

FB-format or FBS-format: The block size
must be a multiple of record

length

VB-format: The block size must be equal to
or greater than the sum of:
The lengths of all the records
in the block
Four control bytes for the
block size

DB-format: The blocksize must be equal to
or greater than the sum of:
The lengths of all the records
in the block
Length of the block prefix (if
block is prefixed)

Note:

1. The BLKSIZE option can be used with
| unblocked (F-,V-, or D-format) records
as follows:

a. The BLKSIZE option, but not the
RECSIZE option, is specified. The
record length is set equal to the
block size (minus any control or

| prefix kytes) and the record
format is unchanged.

b. Both the BLKSIZE and the RECSIZE
options are specified, and the
relationship of the two values is
compatikle with klocking for the
record format used. The records
are assumed to be blocked and the
record format is set to FB, VB, ox
DB whichever is appropriate.

2. If, for FB-format or FBS-format

records, the block size equals the
record length, the records are assumed

150

to ke unklocked and the record format
is set to F.

Record_ Format_Defaults

If any of the record format options is not
srecified in the ENVIRONMENT attrikute, or
in the associated DD statement or data set
label, the following action is taken:

INPUT files:

Record format: The UNDEFINEDFILE condition
is raised.

Block size or record length: If one of
these is specified, a search is
made for the other in the
associated DD statement or data
set label. If the search
provides a value, the
UNDEFINEDFILE condition is
raised if this value is
imcompatible with the value in
the specified option. 1If the
search is unsuccessful, a value
is derived from the value for
the specified ortion (with the
addition or suktraction of any
control or prefix bytes).

If neither is specified, the
UNDEFINEDFILE condition is
raised.

QUTPUT files:

Record format: Set to VB-format, or if
ASCII option specified, to
DB-format

Record length: The specified or default

LINESIZE value is used:

PRINT files:
F, FB, FBS, or U:LINESIZE + 1
V, VB, D, or DB: LINESIZE +
5

Non-PRINT files:
F, FB, FBS, or U:LINESIZE
VvV, VB, D, or DB: LINESIZE +
4

Block size: FB, or FBS: 5#%*(record length)
VB: 5*(record length) + 4
DB:5*(record length) + (klock
prefix) (see note 3)

BUFFER offset: F, FB, or U:0
D, or DB: 4

Note:

1. The standard default for LINESIZE is
120.

2. If the default block size as
calculated akove is greater than
32,760 the block size is set equal to
(record length + 4), and the records
are set to V-format, except when the
ASCII option is specified. With ASCII
data sets, if the default blocksize is
greater than 32,760, or 9999 if BUFOFF
is specified without a prefix-length
value, then the block size is set
equal to (record length + length of

block prefix) and the record format is

set to D.

3. With DB-format records on output
files, the length of the block prefix
(that is, the buffer offset) must
always be either 0 or 4.

4. The optimizing and checkout compilers
will also accept the form of record
format specification used for the
PL/I(F) compiler. 1In this form, the
record length and block size are
included in the format specification.

BUFFER ALLOCATION

A buffer is a main storage area that is
used for the intermediate storage of data
transmitted to and from a data set. The
use of buffers allows transmission and
computing time to be overlapped. Buffers
are essential for the automatic blocking
and deblocking of records.

BUFFERS Option

The option BUFFERS(n) in the ENVIRONMENT
attribute specifies the number(n) of
buffers to be allocated for a data set;
this number must not exceed 255 (or such
other maximum as was established at system
generation). If the number of buffers is
not specified or is specified as zerxro, two
buffers are assumed.

The number of buffers can be specified
in the BUFNO subparameter of a DD statement
instead of in the ENVIRONMENT attribute.

DCB Subga rameter

Some of the information that can ke
specified in the options of the ENVIRO