Program Product

SC33-0037-1
File No. S360/5370-29

0OS
PL/l1 Optimizing Compiler:
CMS User’s Guide

Program Numbers 5734-PL1
5734-LM4
5734-LM5

(These program products are available
as composite package 5734-PL3)

&
=



Second Edition (June 1973)

|This is a major revision of and obsoletes SC33-0037-0. This edition
|arplies to Version 1 Release 2 Modification 0 of the optimizing compiler
|]and to all subsequent releases until otherwise indicated in new editions
J]or Technical Newsletters. Information has been included on the

| facilities that have been introduced with release 2 of the compiler, and
jon the alterations that have been made to improve PL/I under CMS.

|A number of changes have been made to the compiler options.

The COUNT option has been introduced. This results in code being
generated that will produce a count of the number of times each
statement has been executed during a program.

The INCLUDE option has been introduced. This allows secondary text
to be included without the overhead of using the complete
prerprocessor facility.

The MARGINS and SEQUENCE options have been altered so that two
default values are set up when the compiler is installed. One value
is for F-format records and one for V or U-format records. This
simplifies the compilation of source programs with vV-format records.

|
|
|
|
|
|
|
|
|
|
|
|
:
] A NOSECUENCE option has been introduced.
|

|

All these changes are described in chapter 3.

|Changes have also been made in the execution time options. A method has
| been introduced whereby they can be specified within the PL/I program.

| COUNT and NOCOUNT and FLOW and NOFLOW have alos been introduced as

| execution time options, giving the programmer control of whether COUNT
|or FLOW output is generated for a particular run of a program. These
|changes are described in chapter 4.

|

| Changes have also been made in the conventions that apply when passing

| parameters to the main PL/I procedure. These are described in chapter
|2. Improved messages which are generated when an attempt is mwade to use
la PL/I facility that is not availakle under CMS are also listed in this
| chapter.

|Additionally two new sections have been added in chapter 1. The first
|describes the action required if you wish to write source statements to
|be included as secondary input text to your PL/I program. The second

| describes the action required if you wish to produce compiled modules
{that can be included in a text library. A number of minor alterations
|and corrections have also been made throughout the book. Changes are
|marked with a vertical line to the left of the change.

|]Changes are continually being made to the information herein; before
Jusing this publication in connection with the operation of IBM systems,
| consult the latest IBM System/360 Bikliography SRL newsletter, Order No.
|GN20-0360, for the editions that are applicable and current.

l

|Changes are continually being made to the information herein; before
lusing this publication in connection with the operation of IBM systems,
|consult the latest IBM System/360 and System/370 Bibliography, Order
INo. GA22-6822, and associated Technical Newsletters for the editions

| that are applicable and current.

| Requests for copies of IBM publications should be made to your IBM
| representative or to the IBM branch office serving your locality.

|A form for reader's comments is provided at the back of this
|publication. 1If the form has been removed, comments may be addressed to
| IBM United Kingdom Laboratories Ltd., Programming Publications, Hursley
| Park, Winchester, Hampshire. England.

© Copyright International Business Machines Corporation 1973



Preface

This manual explains, for the users of the Conversational Monitor System
(CMS) component of the IBM Virtual Machine Facilitys/370, how to invoke
the PL/I Cptimizing Compiler and use its conversational I/0
capabilities.

The reader is assumed to have a basic knowledge of PL/I and of CMs.

Chapter 1 is an introduction to PL/I under CMS. It aims to give enough
information to allow the reader to enter, compile, and execute a
straightforward PL/I program under CMS. It also aims to act as a guide
to further sources of information and to provide enough background
material to allow the reader to make full use of the potentialities of
the optimizing compiler under CMS.

Chapter 2 is the reference source for the special restrictions and
conventions that apply to PL/I when it is compiled by the optimizing
compiler and executed under CMS.

chapter 3 is the reference source for the PLIOPT command and its
options.

Chapter 4 is the reference source for the execution time options that
are available when executing programs compiled by the PL/I Optimizing
Compiler.

Figure P.1 is a guide to using this book.

REFERENCE PUBLICATIONS
This book makes reference to the following publications for related
information that is beyond its scope.

IBM Virtual Machine Facility,s/370: Command Lanquage Usexr's_Guide,
Crder No. GC20-1804-0

IBM Vvirtual Machine Facility/370: EDIT Guide, Order No. GC20-1805-0

IBM Virtual Machine Facility/370: Terminal User's Guide,
Order No. GC20-1810-0

0S PL/I Checkout and Optimizing Compilers: Language Reference Manual,
Order No. SC33-0009-1

0S PL/I Optimizing Compiler: Programmer's guide, order No. SC33-0006-1

0S PL/I Optimizing Compiler: Program Logic, Order No. SC33-0006-0

AVAILABILITY OF PUBLICATIONS

The availability of a publication is indicated by its use key, the first
letter in the order number. The use keys are:

G - General: available to users of IBM systems, products, and
services without charge, in gquantities to meet their normal
requirements; can also be purchased by anyone through IBM
branch offices.



Sell: can be purchased by anycne through IBM branch offices.

Licensed materials, property of IBM: available only to
licensees of the related program products under the terms of
the license agreement.



=

Are you

familiar with
PL/I

No

Are you
familiar with

» The PL/1 language is described in
the PL/I Checkout and Optimizing
Compilers Language Reference Manual.

.

- This publication gives a brief introduction.
Further information is available in VM/370
Command Language User’s Guide.

CMS No
Are you
familiar with the
PL/I restrictions No

under CMS

you wish to
know the syntax and

# These are described in chapter 2 of this
manual.

o

options of the PLIOP
command

Yes

Do you

-» These are described in chapter 3 of this
manual. An example and description of
the PLIOPT command is given in chapter
1, and in a foldout at the end of this manual.

wish to know
about the execution Yes
W

—» These are described in chapter 4 of this
manual.

Figure P.1. How to use this kook



Contents

CHAPTER 1: WRITING AND RUNNING A
PL/I PROGRAM UNDER CMS « 2 « « o« o
INTRODUCTION &« o o « o o« o « o e
Starting the Session - the LOGIN
Command o« ¢ o« o o o o o = = o « o @
Summary < « o
Examrcle of use of the LOGIN
command « « ¢« « o o o o o o
BACKGROUND ¢ o ¢ o o o o « «
CP and Your Virtual Machlne
sources of Further Information
Invoking CMS - the IPL Command .
Summary . . . - .« .
Examgle of use of the IPL
command « o« « ¢ o o o o o o
Background .« . < . . . . « e o
Entering Data Under CMS « o e
Profile EXEC v v 4 o o « o o o =
Sources of Further Information .
Entering the Program - The Edit and
File CommandsS . « « o« o « « o « o «
summary . . . . « e o e .
Examples of Use of the EDIT and
FILE COmMmands « « « « « o« o« o «
Background .« « . . < . .
The EDIT Facility of CMS
Correcting Typing Errors
Format of PLIOPT files .
Special Cconsiderations . .
Lowercase Character String
CONStaAntsS o « ¢ o ¢ 2 4« a o o o
Sources of Further Information
Topic
Reference source . . .« . 4 « o .
Compiling the Program - the PLIOPT
Command .« « ¢ & o 4 4 4 o o o o o o
Summary . . o « o o . -
Example of Use of the PLIOPT
Command . « « ¢ & ¢ o « & « « o
Background Information . . . . . .
Compiler Output and its
Destination . . . “« o o o
Choosing the Informatlon to be
sent to your Terminal - Listing
OptioNS o o o o « o o o o o o
Compiler Options « « o o o o o «
Files used by the compiler . . .
Special Considerations . . .
Secondary Input Text - %INCLUDE
Statements e e o 4 o = e e o @
Compiling a Program to be
Executed Under OS . & o o o « o
Sources of Further Information . .
Executing a PL/I Program . . . . . .
SUMAXY =« o o o o o « o « a s o«

s & o s
. s & 8 a2 & @
.

20

21
21

22
22

22

Examples of Executing a PL/I
Program « « « o« o © o o ¢ o o @
Background . . . . a e e s e @
MODULE and TEXT Flles « o » o
PL/I Files and CMS Defaults . .
An Alternative Method of
Executing a MODULE File . . . .
Special considerations . . . . . .
Passing Parameters and Execution
Time Options <« « « ¢ « « « « »
Executing a File Not Compiled
Under CMS or Compiled with the
OSDECK Option « « « « o o o o o
Sources of Further Information . .
Ending the Terminal Session - The
LOGOUT Command « « « « o o o o o o o
SUMMABYY « o o o o « o o o o o o
Example of ending the session .
Background . . « « ¢ o ¢ o o o o o
Deleting Files « o o o o « o« « &
Special considerations « . . . . .
Retaining a Switched Line
connection .+ . ¢ &4 ¢ ¢ . . o .
Source of Further Information . .

CHAPTER 2: PL/I CONVENTIONS AND
RESTRICTIONS UNDER CMS o ¢« ¢ « o « &
Restrictions .« ¢ « o« o« o o« o o o o @
conventions « « « « ¢« « o « . e o o
Stream I/O0 Conventions at the
Terminal .« « « o = ® o o « o o
Formatting Conventions for PRINT
Fil€S 4 o o o o o o o o « o o «
Automatic Prompting . . . . . .
Spacing and Punctuation
Conventions for Input . . . . .
Simplified Punctuation for GET
LIST and GET DATA Statements .
Endfile . . . . e o + o o o
Display and Reply Under CMS . « .

CHAPTER 3: THE PLIOPT COMMAND AND
ITS OPTIONS . « « o« N
Syntax Notation . . « « « « « &

a e o -

PLIOPT Command . . .
USAGE o o o o o o = o = =
PLIOPT Options and Compiler

OPtiONS o« o o o o o © o o o o « @
Relationship of Statement

Numbering Options « . . o o e

Alphabetical List of Optlons « s

CHAPTER 4: EXECUTION TIME OPTIONS .
List of Execution Time Options . . .

28
30
30
30

31
31

31

35
35
37
37

37
38

39

4y

4y
49

61
61



Figures

Figure P.1. How to use this book . . 5 Figure 2.1. Restrictions on the PL/I
Figure 1.1. The steps involved in that can be executed under CMS. . . 35
entering and executing a PL/I Figure 2.2. PAGELENGTH defines the
program unde€r CMS .« + « o o o o o o 8 size of your parer, PAGESIZE the
Figure 1.2. The disks on which the number of lines printed in the main
compiler cutput is stored . . . . . 23 printing area. « « « « + « « « « . . 38
Figure 1.3. Files that may be used Figure 3.1. (Part 1 of 3) Compiler
by the compiler . . « . . &« « « « o 24 options arranged by function . . . . 46



=

LOGIN command

Starts the terminal
session

i
IPL CMS command
Makes your CMS virtual

machine available

\

Return to correct errors

Figure 1.1.

YES

1

EDIT & FILE commands

Enable you to enter
or correct your PL/I
program and store it
as a CMS PLIOPT file

y
PLIOPT command

Enables you to compile
your PL/l program
producing a CMS TEXT
file of machine code

Errors
found ?

GLOBAL command

Makes the PL/I
library available

LOAD & START commands

Resolve addresses
(LOAD), and execute the
program (START) *

NO

LOGOUT command

Ends the terminal
session

C=

program under CMS

I*
1

Return to correct errors

The program can be retained
in an executable form by use
of the GENMOD command
to create a MODULE file

The steps involved in entering and executing a PL/I



Chapter 1: Writing and Running a PL/I Program Under
CMS

Introduction

Executing a PL/I program under CMS is a very simple process. You will
need to carry out the following six steps using CMS comrmands at a
terminal.

1. LOGIN at the terminal.
2. IPL CMs.
3. Write or alter a source program using the CMS editor.
4., Compile the source program using the PLIOPT command.
5. Execute the compiled program using the GLOBAL corrand to access the
PL/I libraries followed by the LOAD and START commands. Or create
a MOLCULE file using the GLOBAL, LOAD, and GENMOD commands for
subsequent execution without further use of the LOAD command.
6. End the session.
The remainder of this chapter leads you through the steps listed akove
one by cne. A standard approach has been adorted for each step. The
format is:
1. Summary and example. These give you the essential information to
run straightforward programs and list any special cases that

require additional action. These are the only sections you will
need to look at during your first CMS sessions.

2. Background information. This amplifies the information in the
summary and is intended to enable the user to get the kest possible
results from using PL/I under CMS.

3. sSpecial considerations. This explains what to do in the special
cases listed in the summary. Special cases have keen kept separate
to prevent them making a simple process appear complex. This
section is omitted where there are no special cases.

4. sources of further information. This lists the manuals that you
will require for any further information you may need.

A sample terminal session can be folded out from the end of the book.
This shows all seven steps involved on one page and can be used for
quick reference.

Cther chapters in this book are for reference. Chapter 2 lists the
special restrictions and conventions that apply to PL/I that is compiled
ky the optimizing compiler and executed under CMS. Chapter 3 lists the
options and syntax of the PLIOPT command. Chapter 4 lists the execution
time options that are availakle for programs compiled by the optimizing
compiler.

|System_requirements: The PL/I Optimizing Compiler requires a minimum of
|320K bytes of virtual storage for the CMS virtual machine. This figure
|is the same as the suggested minimum for CMs.

The next rage shows you how to start a CMS session.

Chapter 1: Writing and Running a PL/I Program Under CMS 9



Starting the Session-The LOGIN Command

SUMMARY

To start a terminal session, you switch on the terminal and enter the
LOGIN command, specifying the identifier of your virtual machine. The
terminal responds by requesting your password if one is required by your
installaticn. After you have entered the password, the system responds
with a log message. You are now in the control program environment of
VM/370, and can invocke CMS.

Example of use of the LOGIN Command

|Terminal Printout Notes and comments

I e .  — —————— - - - -~ — -

| (you switch on the terminal)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
| of the password will normally be|
| suppressed oxr overprinted for |
| securitye. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
J

|VvM/370 ONLINE Message shows a virtual machine
| (you may have to press attention is available.

|key to unlock the terminal keykoard.)

|login skylark LOGIN command followed by

| | identifier for your virtual

1 1 machine.

I

| ENTER PASSWORD: System requests password.

| (password entered here) You enter password. The printing
I

!

|

I

|
| LOGMSG - 09:12:09 04/02/72 Log message showing time and
| RUNNING SYS010 - COLD START AT 09:00 date of message, system identi-
JLOGIN AT 09:13:04 THURSDAY 04/02/72 fication and start time, time
! and date of signing on.

|1. A carriage return is assumed after all programmer input.

|2. The character | in column two implies spacing has been added to
acconrmodate notes.

|
|3. System response is in upper case (capital) letters; programmer
| input in lower case.

BACKGROUND

CP _and Your Virtual Machine

When you have keyed in your LCGIN command and your password, you are in
control of a virtual machine. Your terminal can be considered as the

10



console of your virtual machine. You can thus carry out many of the
operations of the orerator of the real machine. This includes the
ability to invoke a number of operating systems, among them CMS.

Your virtual machine is controlled in the real machine by a control
program known as Control Programs/370 (CP/370). When you have received
the log message, you are in control of your virtual machine and said to
be in the "CP environment".

SOURCES OF FURTHER INFORMATION

Topic Reference_ Source
LOGIN command VM/370 Command Language User's Guide
LOGMSG meaning VM/370 Terminal Userx's Guide

Charter 1: Writing and Running a PL/I Program Under CMS 11



Invoking CMS-The IPL Command

SUMMARY

To invoke CMS, you issue the IPL (Initial Program Load) command.

Example of use of the IPL command

[ S e T e e e e e e = - ——————

| EXAMPLE OF IPL

l - e o i (A T —  —— " - - —— - " ——— -

| Terminal Printout Notes and comments

I
|
| |
| ipl cms : The IPL CMS command. |
I
I

|
| CMs 1.0 PLC 5 WEDNESDAY 04/07/72 09.13.50

i Message confirms CMS is invoked and
P that CMs commands may be entered. |

- " e R o e o e " T > S B S i S o A A e D A I

conventions: |

I
|1. A carriage return is assumed after all programmer input.

2. sSystem response is in upper case (capital) letters, programmer
| input in lower case. : |

e mrccc e a- - > e o - — -———— - = - o o e o e o o o e -d

BACKGROUND

Entering Data Under CMS

Unless you are operating in a submode of CMS, such as INPUT mode within
the editor, everything you enter at the terminal is taken to ke a CMS
command. If the command is correct, it is carried out and a READY
message typed to confirm that the command is complete and that the
system is ready for further commands. If the command is not correct, an
error message is typed. Data is transmitted to the system when you press
the carriage return key.

When a CMS command is being executed, the terminal keyboard is locked
so that you cannot enter any further data until the system is ready to
receive it.

Line editing characters

VM/370 provides four characters to alter, delete, or split up the line
you key in at the terminal. These four characters are known as line
editing characters and are a3, ¢, #, and " by default. For some
terminals £ becomes [ or (. They are removed from your input and
treated as editing characters unless they are preceded by the escape
character (see "Using line editing characters as normal characters"
kelow). The line editing characters can be used to alter or delete
lines before you press the carriage return key, or to enter a number of
commands on one line to save time.

12



Deleting a _line: If you wish to delete a line you are typing and to
reenter it completely you should use the logical line delete character
and then press the carriage return key. By default the logical line
delete character is &. Thus to delete a line you might enter:

this is an example of deleting a line #
(¢ becomes [ or ( on some terminals.)

Altering a line: 1If you wish to alter a line and then transmit it to
the system, you must use the logical character delete character,
(sometimes called the logical backspace character). By default the
logical character delete character is a. If the logical character
delete character is entered once it deletes the previous character, if
it is entered twice it deletes the previous two characters, and so on.
Thus to alter the line you are typing you might enter:

this is an example of altering a wineaaadaline

Many programmers prefer to use the actual backspace key on the terminal
as the character delete character. This saves the trouble of having to
count back to the character you wish to change. Instead you can just
backspace to the incorrect character and reenter the line from that
point. To set the backspace as the character delete character you must
use the terminal command thus:

TERMINAL CHARDEL (you press the backspace key at this point)
(Note: This cannot ke done in EDIT mode.)

Entering more than one command per line: If you want to save time at
the terminal by entering more than one command per line you must use the
logical line end character. By default this is #. The characters
following the # are treated as a new line. The line end character can
be used to split any type of input although its chief use is for
commands. For example if you wanted to split a line you might enter:

this is an example of splitting#a line

Using line editing characters as normal characters: If you wish to use
any of the line editing characters as a normal character you must
precede it with the escape character. By default this is ". For
example to enter the line 'this is an example of using the escage
character to enter 3' you would enter:

this is an example of using the escape character to enter "a

The escape character can ke used preceding itself.

Attention key: If you press the attention key, or its equivalent once
while under the control of CMS, it causes an attention interrupt. If a
CMS cormand is being executed, this allows you to key in further CMS
commands that will normally be executed when the current command has
been completed. However, there are a number of commands that are
executed immediately. These are called immediate commands. HT - halt
typing, HX - halt execution and RT - resume tyring can ke useful when
running PL/I programs. The immediate commnads are described in the
Command Language User's Guide.

If a CMS cormand is not being executed, pressing the attention key once
deletes anything entered on the current line, but otherwise has no
effect.

If you rress the attention button twice while in the CMS environment,
control is returned to CP. The system then types "CP" at your terminal.
If you wish to return to CMsS, you can press the attention button again
or enter the CP BEGIN command and control will be returned to CMS.

chapter 1: Writing and Running a PL/I Program Under CMS 13



Profile EXEC

When the first CMS command after IPL is executed, a CMS disk must be
accessed. If the first command is an ACCESS command, the disk accessed
will be the disk named in the ACCESS cormand. If any other command is
used, the 191 disk will ke accessed by default and set up as your A
disk.

when the first disk is accessed, the disk is searched for a CMS EXEC
procedure with the name PROFILE. (An EXEC procedure is a set of CMS
commands that, typically, carry out repetitive housekeering tasks such
as defining files. These commands are executed by calling the EXEC
procedure.) If an EXEC procedure with the name PROFILE is found on the
first disk accessed, it is automatically executed. Many installaticns
use this feature to handle repetitive housekeeping tasks that need to be
done at the start of every session.

Information on issuing and writing a PROFILE EXEC is given in the VM/370
Command Language Reference.

SOURCES OF FURTHER INFORMATICN

Topic Reference_source

CMS background VM/370 Command Language User's Guide
IPL command VM/370 command Language User's Guide
PROFILE EXECs VM/370 Command Language User's Guide

14



Entering the Program-The EDIT and FILE Commands

SUMMARY

To enter or alter a PL/I source program under CMS, it is necessary to
use the CMS editcr. You enter the EDIT command followed by the file
name of your choice and the file type PLICPT or PLI. You then use the
editing facilities either to enter new input or, if you are updating, to
alter the existing program. The facilities available for manipulating
and altering text using the editor are not described in this manual. If
you are nct aware of them, you will find them in the CMS Edit Guide.

The facilities for correcting lines before you press the carriage return
key are described in the previous section under the heading "Line
Editing Characters"”.

When you are satisfied with your input or alterations, you use the
FILE subcommand to create a CMS file that can be compiled using the
PLIOPT command. In addition to creating a file, the FILE sukbcommand
also ends the edit submode.

If you are entering a new PL/I program you must choose a new filename
which follows the CMS conventions. That is, the name can consist of up
to eight characters, which may be any alphameric character plus the
special characters §, @, and #. (Remember however that @& and # are
default line editing characters and special action may be required if
|you wish to use them. BAlso care should be taken not to choose a CMS or

|CP command as a name, because this can cause problems if you wish to
jcreate a module file.) If you are altering an existing program, you
specify the existing filename. Your input must be typed in columns 1
through 71. The editor will insert one blank to the left of your input
so that the actual margins will be 2,72. You can type your input in
either capitals or lowercase letters or any combination of the two.

If you intend to execute your program under CMS, you should be aware
of the special conventions and restrictions that apply to PL/I when it
is used under CMS. These are listed in chapter 3 of this manual. If
you intend to compile your program under CMS but to execute it under the
control of 0S then there are no special restrictions on the language you
may use.

Special action will be required in the following circumstances

1. If your program uses lower case character string constants.

2. If you wish to use a *PROCESS statement.

3. If you wish to use any of the line editing characters as normal
characters in your program. The line editing characters are a, #, £,
and " by default.

j4. If you wish to create a file of secondary input text for inclusion by
| use of the %INCLUDE statement.

The action is described under the heading "Special Considerations"
kelow.

Chapter 1l: Writing and Running a PL/I Program Under CMsS 15



Examples of Use of the EDIT and FILE Cormands

rmm—————————— - - - - - -

- - 2 > o o o = - - - - - —-————

| EXAMPLE OF ENTERING A NEW PROGRAM

I_---___----_--___-_--_---___--_

|Terminal Printout

| edit rabbit pliopt
|

|
NEW FILE:

rakkit:proc ortions (main);
display

end;

EDIT:
top
F

3

type *

|
|
I
D
|
o]
I
(0]
|
|
|
RABBIT: PROC OPTIONS (MAIN);
END;
FOF
file
|

Conventions:

I
I
|
I
|
|
!
|
I
|
|
I
I
I
|
I
|
|
|
I
I
|
|
I
I
|
I
I
I
I
|
I
I
!
I
!
I
I
I
I
|
I
|
I
I
!
|
|

input in lowercase.

16

- ——— ———— - — - ————— - - - —

(*the rakbit squeaks to the world');

DISPLAY ('THE RABRBIT SQUEAKS TO THE WORLD');

e - — —— - —— - — — — — - " _— .~ - o —— - -~ —— -

. A carriage return is assumed after all programmer input.

. The character | in column two implies spacing has been added to
accommodate notes in the right hand column.

3. System response is in uppercase (capital) letters, programmer

-_--_---_-----_--__-_-_---_-----__-_---I

Notes and comments

The EDIT command followed by file
name and file type. |

Message shows that you have no PLIOPT
file called "rabbit". ]

Message shows you are in EDIT mode. |

INPUT subcommand causes the INPUT
mode to be entered. |

Message shows you are in INPUT mode.
PL/I must appear in columns 1 through
71.

Null line (carriage return only on a
line) causes return from INPUT to
EDIT mode.

Message shows change of mode.

Places the line pointer at the

top of the file.

Message shows pointer is at top of
file.

Have the contents of the file
displayed at the terminal.

Means end of file reached

FILE command results in your input
keing stored with the filename and
type you specified. It also ends EDIT
mode.

READY message indicates further
commands can be entered.

e e — . — —— —— — — T P — — —" f— t— N Tt T W S Wi i, i St T S—— — e Tt — — — — S



|Terminal Printout Notes and comments

‘ e o o e o e e o o e o e = = = >

| (This example assumes that you are correcting an error on line 10)

|
| edit dig pliopt Issue EDIT command specifying exist-
ing PLIOPT file "dig".

|

|

|

{

|

|

|
| |
| |
| EDIT: System confirms that it is in EDIT |
| 1 mode with a copy of the file |
| | available. (If there was no PLIOPT |
| | file "dig" it would respond "NEW |
| ] FILE:".) The line pointer is placed |
| | at the top of the file. |
| |
|next 10 Position line pointer to incorrect |
| line. |
| PHT EDIT(X)(A); The tenth line beyond the original |
| 1 line pointer position is displayed. |
|c/ht/ut CHANGE subcommand. ]
| PUT EDIT(X) (A); Corrected line displayed. For |
|1 details of CHANGE and other edit ]
| | subcomrmands see CMS Edit Guide ]
| 1 ]
|file FILE cormand requests that the ]
| 1 altered copy be stored as the file ]
I 1 "dig" and that the previous copy ke |
|1 discarded. |
|1 |
| R: READY message indicates further CMS |
| 1 commands may be entered. ]
| === e i it bt T —m———————— |
|Conventions: |

|
|1. A carriage return is assumed after all programmer input. |
| |
|2. The character | in column two implies spacing has been added to |
| accormmodate notes in the right hand column. |
| |
|3. System response is in upper case (capital) letters, programrmer |
| input in lowercase. |
Llerer———— ————— . e e e e e e i o e e e e e e e e 1

BACKGROUND

The EDIT Facility of CMS

The EDIT facility of CMS allows you to create and update sequential
files fror your terminal. It is used to create PLIOPT or PLI files
{which can be compiled by the PL/I Optimizing Comriler. (PLI files were
|the filetype availakle for PL/I under CP/67 and can still be used under
the VM/370 system. Their format is identical to PLIOPT files.) The EDIT
facility has two modes, the EDIT wmode and the INPUT mode. The EDIT
mode allows you to use various EDIT sukcommands to change, rearrange, or
add to the copy of the file in main storage. The INPUT mode assumes
that all items keyed in at the terminal are to be included in the file
you are creating. To enter the INPUT mode, you issue the sukcommand
INPUT. To return from the INPUT mode to the EDIT mode, you enter a null
line; that is, a line that consists only of a carriage return. (If you
want a blank line in your PLIOPT file you must, therefore, key in at

Chapter 1: Writing and Running a PL/I Program Under CMS 17



least one blank in the line.)

When you issue the EDIT command, you must specify a file name and a
file tyre. CMS searches your disks for the file and if you have such a
file brings a copy of it into main storage and types the message "EDIT:"
indicating that you are in EDIT mode. If you do not have such a file,
it assumes you intend to create one and types the message "NEW FILE" and
"EDIT". To enter the INPUT mode you must enter the INPUT subcommand.

To return from the EDIT mode to CMS, you must issue a command that
specifies what is to be done to the copy of the file that you have keen
editing. This can ke done ky using either the FILE command or the QUIT
command. The FILE command stores the copy of the file you have been
creating and discards the previous copy, if any. The QUIT command
discards the copy of the file that you have been editing. If you wish
to retain both the original copy of the file and the copy of the file
that you have been editing, you can use the FNAME subcommand to rename
the copy of the file on which you are working. You could enter:

fname rabkit2
Then, when you issued the FILE command, the altered file would ke stored
with the name rabbit2 and the original file rabbit would still be

available.

If you wish to save your input and still remain in EDIT mwode you can use
the SAVE command.

A full description of the EDIT command and EDIT subcommrands is given
in the VM/370 Edit Guide.

Ccorrecting Tygping Errors

If you wish to correct a line kefore pressing the carriage return key
you can use the line editing characters described under the heading
"Line Editing Characters" in the previous section of this chapter. 1If
you wish to correct a line when it has been transmitted, you must use
the editing facilities which are described in the CMS Edit Guide.

Format ¢f PLICPT files

PLIOPT and PLI files created by the editor have 80 byte fixed length
records. Sequence numkers are in columns 73 through 80. Further
information can be found in the EDIT Guide. PLI files are an
alternative type of file that can ke handled by the optimizing compiler.

SPECIAL CONSIDERATIONS

Lowerxcase Character String Constants

When you are editing a PLIOPT file, the CMS editor automatically
translates any lower case characters you enter to upper case. If ycu
wish to enter lower case character string constants in your program it
is necessary to take special action. Enter:

CASE M

This must be done when you are in EDIT mode. Your input will then ke

18



transmitted as entered. As the PL/I optimizing compiler accepts both
urper and lowercase input, you can still enter your program in either
ugpercase or lowercase. During compilation the compiler will translate
all PL/I into uppercase. Items appearing between quotes or comment
delimiters will not be translated. The listing will show your program
with everything except comments and data between quotes in upper case.

To return to automatic translation to upper case during your edit
session issue a CASE U subcommand. First enter a null line (carriage
return only on a line) to return to the edit mode, then enter:

CASE U

Use_of *PROCESS_Statements

Special action is required if you use the *PROCESS statement. This is
because the * must appear in column 1 and, by default, the editor moves
all input to PLIOPT files one column to the right. Accordingly the
backspace key must ke used kefore the *. The *PROCESS staterment takes
the form:

(you press the backspace key)*process attributes xref;
If you are using the backspace as a character delete character it must

be preceded by the escape character. (See "Line Editing Characters"
under "Invoking CMS - the IPL Command" earlier in this chapter.)

Use of the line editing characters in your program

If you wish to use any of the line editing characters as normal input to
your program you must precede them by the escape character. By default,
the line editing characters are a, #, £, ", but all or any of them may
ke changed with the TERMINAL command, and £ becomes [ or ( on certain
terminals. If the defaults are in effect, and you wish to refer to a
variable called DOCUMENT#2, it is necessary to enter the #, which is the
default line-end character, preceded by " which is the default escare
character, thus:

DOCUMENT" #2

Details of the line editing characters are given in the previous section
of this chapter under the heading "Line Editing Characters".

{Creating a file for inclusion by %INCLUDE statement
|

|If you wish to create a file of secondary input text that you will

| subsequently be able to include in your program by use of the %INCLUDE
|statement, you will need to create a COPY file and to store it on a
|racro library by use of the MACLIB command.

|

| Creating a cory file is similar to creating a PLIOPT file, however,
|data must be typed in columns 2 through 72 if you intend to use the

| standard PL/I margins. This is necessary because the text is not
|shifted one column to the right as it is for PLIOPT files. When you

| have created your copy file and used the FILE command to store it, you
|]will need to issue a MACLIB command to place it on a macro library. The
| MACLIE conmmand takes the form:

MACLIE {ADD}file—name macro-library-name

i
|
| GEN
|
|

If you are adding a new file to an existing library you use "ADD" as the

Charter 1: Writing and Running a PL/I Program Under CMS 19



|second operand. If you are creating the macro library you use "GEN" as
|the second operand. An example of creating a file of inclusion by the
juse of %INCLUDE statements is shown below.

.............................................. e
{ EXAMPLE OF CREATING SECONDARY INPUT TEXT FOR INCLUSIOCN

| BY %INCLUDE STATEMENTS

edit cuckoc copy Filetype COPY must be used

NEW FILE:

EDIT: Enter EDIT mode

input Enter INPUT submode

INPUT:

DISPLAY (*TEST DATA FOR %INCLUDE"); Column 1 must be left blank to
| allow for standard PL/I margins

Null line causes return to EDIT mode.

|

|
| |
| |
| |
| |
| |
| |
| |
| I
| |
| |
| EDIT Return from INPUT to EDIT mode. ]
|file Store the file. |
|R; |
|maclik add mylib cuckoo Store the file on the macro library mylib.|
| i If the macro library did not exist, you |
| | would use "GEN" instead of "ADD" this |
| | would generate a macro library called |
[ | "mylik". |
|R; |
I ittt ittt e m——me——————— |
{Conventicns: |
| |
|1. A carriage return is assumed after all programmer input. |
| |
|2. The character | in column two implies spacing has been added to |
| accorrmodate notes in the right hand column. |
| |
|3. System response is in urper case (capital) letters, programmer |
] input in lower case. |
e e e ———— e e e e —————— e —————— 1

SOURCES OF FURTHER INFORMATION

Topic Reference_source

Format of PLIOPT and PLI files CMS EDIT Guide

Using the VM/370 editor CMS EDIT Guide

Using your terminal CMS Terminal User's Guide

20



Compiling the Program-The PLIOPT Command

SUMMARY

To compile a program under CMS, you use the PLIOPT command followed by

the name of the file that contains the source program. If you wish to

specify any compiler or PLIOPT options, these must follow the file name
and be preceded by a left parenthesis. Options are separated from each
other by blanks, the abbreviated forms should always be used.

During compilation, two new disk files will be produced. They will
have the file types TEXT and LISTING and the same file name as the file
specified in the PLIOPT command. The TEXT file contains the compiled
code. The LISTING file contains the listings produced during
compilation. Any error messages produced will be transmitted to your
terminal.

If compilation reveals source program errors, you can alter the
PLIOPT file that contains the source ky use of the CMS editor. You can
then reissue the PLIOPT command. This results in the creation of new
TEXT and LISTING files corresponding to the newly edited source programe.
If previous versions were availakle they will be overwritten. When you
have a satisfactory compilation, you can execute the program, which is
now in the form of a TEXT file. The next section of the chapter tells
you how to do this.

Special action will be required in the following circumstances:

1. If your source uses the %INCLUDE statement to incorporate secondary
input text.

2. If your source program is not on a CMS disk.
3. If you intend to execute your program under the control of 0S.
4. If you wish to place the compiled program on a text library.

The action required is descriked in the sections below under the
heading "Special Considerations."

Chapter 1: Writing and Running a PL/I Program Under CMS 21



Example of Use of the PLIOPT Command

[ et 1
| EXAMPLE OF USE OF THE PLIOPT COMMAND |

I e o — - — " - o " " "~ - — . o " " " o~ > - l

|Terminal Printout Notes and comments

I ......................................................................
pliopt rabbit (xref The PLIOPT command

|

1. Options must appear after a left
parenthesis and be separated by blanks.
If any exceed 8 characters see "Srecial
considerations" below.

2. The right parenthesis is not necessary.

3. During compilation the system will
issue an in-operation signal for every
2 seconds of virtual CPFU time used,
this is known as the BLIP signal.

Nz

MPILE TIME 0.01 MINS SPILL FILE 0 RECORDS SIZE 4051

el
e U e ) O e e e e e e e

|
I
I
I
|
|
|
|
|
|
I
|
I
|
|
II
| READY message. If the compiler failed or
| found errors of severity W or higher, CMS
| responds R(return code);

|conventicns:

|
]1. A carriage return is assumed after all programmer input.
I
/2. The character | in column two implies spacing has been added to
| accormodate notes in the right hand column.

13. System response is in upper case (capital) letters, programmer

|
|
|
|
|
|
|
|
|
|
|
|
|
|
;
MESSAGES PRODUCED FOR THIS COMPILATION ]
]
|
|
|
|
|
|
|
|
|
|
I
|
|
i input in lower case. j
4

BACKGROUNL INFORMATION

Compiler Qutput and its Destination

When you issue the PLIOPT command, CMS calls the PL/I Optimizing
compiler to compile your source program. The compiler creates two new
files during its execution. oOne file contains the compiled code that
will be executed when you wish to execute your program. The other file
contains diagnostic messages akout the compilation, and, optionally,
listings of your source program and the compiled code. (The various
options ccntrolling the listing produced by the compiler are described
in chapter 3 of this manual.)

By default, the two newly created files will be placed on CMS disks.
They will have the same file name as the file that contains the source
program but a different file type. The compiled code will have the file
type TEXT and the listing will have the file type LISTING. Thus, if you
compiled a PLIOPT file called ROBIN you would, by default, create two
further files called ROBIN; a TEXT file containing the compiled code and
@ LISTING file containing the listing information. These files would be
placed on your CMS disks according to the rules shown in figure 1.2.
(The relationship between CMS disks is explained in the VM/370 Command
Language User's Guide.)

22



The creation of the LISTING file can be suppressed ky use of the
NOPRINT option of the PLIOPT command. (See below under "Listing
Cptions".) The creation of the TEXT file can be suppressed by use of
the NOOBJECT option of the PLIOPT command.

1
| SOURCE DISK . OUTPUT DISK |
I 4+t -+ + 3+ 3 3+ 343 = - l
| source disk read/write source disk |
R == e e e e oo oo e |
| source disk read/only with I
| parent disk read/write parent disk |
|-====o=m e === e - e mmmmmm e - |
| source disk reads/only with |
| parent disk readsonly and |
| A disk reads/write A disk |
|=====-mmmmmee m-=mmmmmmmemeeee e -mmmmmmmmmmmmeommoomeoo- |
| source disk read only with |
| no parent and A disk read/write A disk |
|====-==mmmmaee = e — oo em oo |
| source disk reads/only with no program terminates unless you |
| parent disk or parent disk have directed outrut to a non |
| readsonly and A disk reads DASD device by using a CMS |
| only FILEDEF command. (See CMS |
] Comrand Language User's Guide |
i for information on how to do |
| this) ]
le—em e . ————————————————— = —————— 3

Figure 1.2. The disks on which the compiler output is stored

Choosing the Information to be sent to your Terminal - Listing
Options

Options of the PLIOPT command and other CMS facilities offer you a wide
choice in the amount of listing information that can be made availakle
to you at the terminal.

Three factors are relevant:

1. The compiler option TERMINAL which allows you to have sections of
the listing printed at the terminal as well as being included in
the normal listing file. TERMINAL can be followed by a
parenthesized options lists specifying those parts of the listing
that you wish to be transmitted to your terminal. cChapter 3 of
this manual gives details. By default the TERMINAL option is
specified without an options list and cormpiler diagnostic messages
are transmitted to the terminal.

2. The CMS option PRINT|DISK|NOPRINT, which allows you to direct the
listing to a printer PRINT), to a CMS file (DISK... This is the
default) or to have the listing file discarded (NOPRINT).

3. The ability to direct the listing information directly to the
terminal by issuing the FILEDEF command "FILEDEF LISTING TERM"

The TERMINAL and PRINT options are described in chapter 3 of this
manual. The FILEDEF command is described in the VM/370 Command Language
User's Guide.

The CMS defaults are TERMINAL with no options list and DISK. When
you have received the messages passed to your file as specified in the
TERMINAL option, you can decide whether to examine the LISTING file
using the EDIT mode, to pass it to a printer, or to discard it.

Chapter 1: Writing and Running a PL/I Program Under CMS 23



Only one copy of the listing is transmitted to the terrinal if you
use both the TERMINAIL option and assign the listing file to the
terminal.

Compiler Qptions

The PLIOPT command expects all options to be not more than eight
characters long. It is therefore, necessary to use the abbreviated form
of certain compiler options such as ATTIRIBUTES, and advisable always to
use the abbreviated form. All options and sub-options must ke separated
by blanks. Parentheses need not be separated from options or suboptions
even if the option has a length of more than 8 characters. Thus
TERMINAL(XREF A) is acceptakle, although the total length is greaterx
than 8 characters. -rs

Files used by the compiler

During compilation the compiler uses a number of files. These files are
allocated by the interface module that invokes the compiler. The files
used are shown in figure 1.3.

[ T T TS S s s s ssT s -1
| Name | Function | Device Type | When Required |
| === |===-- -m—m————— === S ———— == e e |
| PLIOPT | System input | DASD, | Always ]
| | | magnetic tape, | |
| | | card reader | |
| | | | !
|LISTING | System print | DASD, | Always |
| | | magnetic tape, | |
| ] | printer | |
[ | | | , _ |
| TEXT | system load | DASD, | When object module is to |
] ] | magnetic tape | be created |
| | | I |
| SYSPUNCH| System punch | DASD, | When object module |
| | | magnetic tape, | required in card image |
| | | card punch | format |
| | I | |
|sYsuTli | spill | DASD | When insufficient main |
| | | | storage available |
| | " | | |
|MACLIB | Preprocessor | DASD | Wwhen %INCLUDE is used |
| | RINCLUDE | | |
L 4

Figure 1.3. Files that may be used by the compiler

SPECIAL CONSIDERATIONS

Secondary Input Text - ZINCLUDE Statements

If your program uses %INCLUDE statements to include previously written
PL/I statements or procedures, the libraries on which they are held must

24



be made available tc CMS before issuing the PLIOPT command. To do this
you must insert the statements into a CMS MACLIB using the MACLIB
command. You then issue a GLOBAL command taking the form "GLOBAL MACLIB
filename." For example, if your secondary input text was held in MACLIB
called "mylib" you would enter:

global maclib mylib

before issuing the PLIOPT command. The PLIOPT command must specify
either the INCLUDE or the MACRO option.

Source Program not on a CMS Disk

If your source program is not held on a CMS disk you can either read or
move it to a CMS disk from a card reader or tape using the READCARD or
MOVEFILE commands of CMS, or issue a FILEDEF command to define the EL/I
source as coming from either the reader or tape device and then compile
it.

Moving the file onto a CMS disk offers the advantage that the source
can subsequently be altered from the terminal. This may be necessary if
compilaticn reveals errors in the source program. The method is given
in the VM/370 Command Language User's Guide.

To compile a program held on card or tape it is necessary to issuve a
FILEDEF command kefore the PLIOPT command. Thus to compile a program
held on card you might use the following sequence:

FILEDEF PLIOPT READER (LRECL 80 RECFM F BLOCK 80
PLIOPT fname (option 1 .... option n)

Any filename can be used for "fname". The name specified will ke
given to the LISTING, TEXT, and UTILITY files produced by the compiler.

A description of the FILEDEF command is given in the VM/370 command
language reference.

Compiling a Program to be Executed Under 0OS

If you intend to execute your program under 0S, you should specify the
OSDECK option thus:

PLIOPT RABBIT (OSDECK

This prevents the compiler from issuing a CMS loader ENTRY command,
specifying the CMs execution time interface module. An attempt to
execute a program compiled without the OSDECK option under 0S, results
in an 0S linkage editor error of severity level 8.

It is possible to execute a program compiled with the OSDECK option
under CMS, but srecial action is required. See "Executing a File not
Compiled Under CMS or Compiled with the OSDECK option" in the following
section, "Executing a PL/I Program."

jcompiling a program_to be placed on_a text library

|]If you intend to include the compiled TEXT file as a member of a text
|library it is necessary to use the NAME option when you specify the
| PLIOPT conmmand. This is because memkers of a TXTLIB file are given the

Charter 1: Writing and Running a PL/I Program Under CMS 25



name of their primary entry point if they have no external name. The
|primary entry point of every TEXT file produced by the optimizing
{compiler is the same, consequently only one compiled program can be
{included in a TXTLIB if the NAME option is not used. (The NAME option
|gives the TEXT file an external name.)

]
] Code required to create a TEXT file suitable for including in a
JTXTLIB is shown kelow. This code gives the file the external name used
|in the PLIOPT command. However any other name can be used, provided
{that it does not exceed six characters. It should ne noted that, if the
]name exceeds six characters the NAME option will be ignored.

I

iThe code below compiles a PLIOPT file RABBIT with the external name
!RABBIT and adds it to an existing text library called BICLIB.

i
‘pliopt rabbit (name(*rabbit®
| (compiler messages etc)

i
|txtlib add biolib rabbit

SOURCES OF FURTHER INFORMATION

Topic Reference_source

Error message explanations
CMS (numbered DMSxXxX) VM/370 system Messages Manual

PL/I (numbered IELxxxx) PL/I Optimizing Compiler Messages

FILEDEF command VM/370 Command Language User's Guide

GLOBAL comrmand VM/370 Command Language User's Guide

MOVEFILE command VM/370 command Language User's Guide

PL/I language PL/I Checkout and Optimizing Compilers
Language Reference Manual

PLIOPT command Chapter 3 of this manual

READCARD command VM/370 command Language Reference

TXTLIB cormand VM/370 Command Language Reference

26



Executing a PL/I Program

SUMMARY

To execute a PL/I program under CMS, you must have either a CMS TEXT
file or a CMS MODULE file. If your program is not in either of these
forms, see the earlier sections of this chapter. (A MODULE file is
created by using the LOAD command to resolve addresses in a TEXT file.

Details are given below.)
If you have a TEXT file execution requires three steps:
1. Issuing a GLOBAL command for the PL/I libraries.

2. Issuing the LOAD command with the START option if you wish
execution to begin.

3. If the START option was not issued with the LOAD command,
issuing the START command.

These steps are shown in example 1 below.
If you have a MODULE file execution requires 2 steps:
1. 1Issuing a GLOBAL command for the PL/I libraries.
2. Issuing the filename as a CMS command.
These steps are shown in example 3 below.
To create a MODULE file, you issue the GENMOD command after issuing the

] GLOBAL and LOAD commands, see example 2 below. You must specify a

|filename with the GENMOD command, otherwise the resulting module file
will be called DMSIBEM.

The PL/I standard files, SYSIN, SYSPRINT, and PLIDUMP are automatically
assigned kefore the PL/I program begins execution. SYSIN and SYSPRINT
are assigned to the terminal, and PLIDUMP is assigned to a printer. If
you wish to override these assignments you must issue FILEDEF commands
before the start of execution. See "PL/I Files and CMS Defaults" below.

Sspecial action will be required in the following circumstances:

1. If you wish to pass parameters to your program.

2. If your program uses any PL/I files that do not match the CMs
default definitions.

3. If you wish to execute a program that was compiled under 0OS, or was
compiled under CMS with the OSDECK option.

The action required is described in the sections below under the heading
"gpecial Considerations."”

Chapter 1: Writing and Running a PL/I Program Under CMS 27



Examples cf Executing a PL/I Program

| EXAMPLE 1.

l - = - = = — ——

|Terminal printout

global txtlib plilib
R
1

ad rabbit

art

ECUTION BEGINS...

E RAEBIT SQUEAKS TO THE
RLD

—— () I e B e s e e (N8 e e e () NS — —

input in lower case.

I
I
|
I
I
|
I
|
I
|
I
I
I
|
|
|
I
I
|
I
I
|E
I
|
I
|
I
|
I
I
|
!
|
I
I
|
I
I
I
I
!
L

- -~ ———

28

EXECUTING A TEXT FILE

- ——— ———— -~ - - ——— —— —

Notes and comments

- —— - ———— ——— ——— —————— - — — — -~ -

GLOBAL command makes the PL/I libraries
available.

READY message.

LOAD command generates an executable
program in main storage from the TEXT
file. (An alternative is

LOAD RABBIT (START, if you want immediate
execution).

READY message.
START command starts execution

1. If you wish to pass parameters, follow
"start™ with a blank, an asterisk,
another blank, and then the parameters;
thus: start * s 123. See "Special
considerations" below.

Message at start of execution. For every
2 seconds of CPU time used an in-operation
signal is given.

The message in the sample program is
passed to the terminal.

The READY message indicates that further
CMS commands may be entered.

1. A carriage return is assumed after all programmer input.

2. The character | in column two implies spacing has been added to
accormodate notes in the right hand column.

3. System response is in upper case (capital) letters, programmer

- ——— e " —— - ——— - " - —— - - — i —— - - - —

————— — —— . . s, . . s, o

!
I
|
|
I
I
|
|
I
!
I
|
|
|
|
!
|
I
|
I
!
I
|
I



mmmmmm————— ———————
| EXAMPLE

I ____________________
|Terminal Printout
|global txtlik plilib
|1

|R;

| load rabkit

I

|

|

genmod rabkit

Conventions:

1. A carriage retur
2

The character |
accormocdate note

3. System response
input in lower c¢

| I IR S S S

Chapter 1:

- -—------_-----—---__._—_-_—-----—-——--—--,—--—1

2. CREATING A MODULE FILE |
________________________________ e LR |

Notes and Comments

—— - — i ——— —— -~ —— - ———— ——————— — ——— — ——— 1 o

Make PL/I libraries available

LOAD command creates an executable
program from TEXT file and library
modules.

|

|

|

I

|

|

|

|

|
Creates a copy of the loaded program |
as a CMS MODULE file. This can now |
be executed by use of the file name |
as a command. If you issue a genrod |
command without a filename the |
resulting file will be called DMSIBM |
kecause this is the name of the first]
entry point in every module file |
produced by the compiler. ]
|

|

|

I

|

|

|

|

]

|

|

|

1

n is assumed after all programmer input.

in column two implies spacing has been added to
s in the right hand column.

is in upper case (capital) letters, prograrmer
ase.

——— ————— -~ - —— - ———— — - —— - -

Writing and Running a PL/I Program Under CMS 29



global txtlib plilib GLOBAL ccormand makes the PL/I
| libraries available. This is
necessary as some library modules are
loaded dynamically.

R READY message
rabbit For a MODULE file the filenawe can be
used as a CMS command.

!

|

|

14

|

a

|

i

] 1. If you wish to pass parameters,

| they must appear after the file-

| name and be preceded by a blank

] thus: rakbit / 1234. See "Special
| considerations" below.

L
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
THE RABBIT SQUEAKS TO THE WORLD The message in the sample program is |
passed to the terminal. |
|

|

|

|

|

|

|

|

|

|

|

|

|

|

3

R The READY message indicates that

further CMS commands may be entered.

|1. A carriage return is assumed after all programmer input.

2. The character | in column two implies spacing has been added to
accormodate notes.

input in lower case.

——— - o — —— " ——— ——— i — - ——————— " " T — ——— ——— " T —— - ——

|

I

l . .

|3. System response is in upper case (capital) letters, programmer
|

L

BACKGROUND

MODULE and TEXT Files

During compilation the PL/I optimizing compiler produces code that
requires further processing before it can be executed. Addresses within
the code must be resolved and external modules referenced within the
code must be included. These references will always include modules
from the PL/I likrary.

The resolution of addresses is initiated by the LOAD command. The
processed data can then be retained with the addresses resolved by the
use of a GENMOD command specifying the filename. This command produces
a CMs MODULE file that can be executed without going through the process
of issuing the LOAD command on each occasion.

PL/I Files and CMS Defaults

The FILEDEF command gives the CMS user the ability to simulate 0S DL
statements when using CMS. The use of FILEDEF statements is necessary
for any PL/I programs that use record or stream I/0 statements. (It is

30



possible to use the DISPLAY statement and the REPLY option to simulate
conversation I/0 under CMS. See chapter 2.)

To assign the terminal to a file it is necessary only to use TERM in
your FILECEF command. For example if you wished to assign a file called
CUTPUT1 to the terminal you would do it as follows:

|

I

!

}

| FILEDEF OUTPUT1 TERM

|

| Because synchonization is only automatically handled for STREAM files,
| RECORD files should not normally be assigned to the terminal.

l .

A number of FILEDEF commands are issued by the interface module
DMSIBM. They assign SYSIN and SYSPRINT to the terminal for
conversational I/0 and PLIDUMP to a printer. If you wish to override
these default assignments, you must issue suitable FILEDEF commands
before starting the execution of the PL/I program.

The differences in syntax between the FILEDEF command and the 0OS DD
statement are considerable and the user should consult the vM/370
Command Language User's Guide before attempting to use the FILEDEF
command. If the FILEDEF command is not used and an attempt is made to
open the file CMs defaults are applied. The default is a FILEDEF
command to device disk with filename FILE and file tyre ddname.

An Alternative Method of Executing a MODULE File

A module file can be executed by a LOADMOD command followed by a START
command.

SPECIAL CCNSIDERATIONS

Passing Parameters and Execution Time Options

When passing parameters two sets of restrictions have to be korn in
mind, those that are imposed by CMS, and those imposed by the PL/I
optimizing compiler.

Under CMS, parameters must be passed to the program in tokens
containing no more than eight characters. These tokens must ke
separated by blanks.

The PL/I Optimizing Compiler allows you to pass two types of
parameters to a PL/I program. The first is a set of execution time
options, sometimes called program management parameters (these are
listed in chapter 4 of this manual). The seccnd is a single parameter
that is passed to the PL/I main procedure. The two types of parameter
are separated by a / symbol which must itself have a blank on either
side. Anything preceding this symkol is taken to be an execution time
option. If no execution time option is passed, the main procedure
parameter must be preceded by the three characters
blank, oblique stroke, and blank( / ).
|
| Under the PL/I Optimizing Compiler, the main procedure parameter must
|ke a character string, and, kecause blanks are used as delimiters in CMS
]blanks cannot be passed in the string. Blanks are removed from the
|string and the two separated items concatenated.

I

] Suppose you wished to pass to a program the execution time options

| NOSPIE AND REPORT and a character string consisting of a name of more

| than eight characters and three sets of figures, this could be rpassed in

Chapter 1: Writing and Running a PL/I Program Under CMS 31



|the form:

|

| start * NOSPIE REPORT / CARPENTE R, 38,24, 38

|this would be passed to the program in the form of

|
| CARPENTER, 38, 24, 38

Executing a File Not Compiled Under CMS or Compiled with the OSDECK Opgion

If you wish to execute under CMS a program that was compiled under 0S
or was compiled under CMS with the OSDECK option, it is necessary to
explicitly load the execution time interface module. (An entry
statement for this module is automatically included in the TEXT file for
any PL/I program compiled under CMS without the OSDECK option.)

Assuming the program that you wish to execute is on a CMS TEXT file and
is called SEAGULL, the following commands are required.

global txtlib plilib
load seagull dmsibm
start dmsibm

The GLOBAL and LOAD commands make the PL/I library available and load
the program and the interface module. The START command passes control
to the interface module, which, in turn, passes control to the program.

If you wish to create a MODULE file from the load module you have
created, you must issue a GENMOD command after the LOAD command. This
will produce a MODULE file with the name of the file used in the LOAD
command (SEAGULL in the example). The MODULE file can then be executed
in the normal manner.

SOURCES OF FURTHER INFORMATION

Topic Reference_Source

FILEDEF command VM/370 cormand Language Usexr's Guide
filenamre as a comrmand VM/370 Command Language User's Guide
GENMOD command VM/370 Command Language User's Guide
GLOBAL command VM/370 Comrmand Language User's Guide
LOADMOD command VM/370 Command Language User's Guide
START commrand VM/370 Command Language User's Guide

32



Ending the Terminal Session-The LOGOUT Command

SUMMARY

To end a CMS session you enter the CP LOGOUT command from the CMS or the
CP environment.

Before finishing the session you may wish to erase some of the files.
This is done by using the ERASE command.

Special action will be required if you are using a switched line
connection_and_you do_not_wish to_be disconnected. See "Sgecial
Considerations" below.

Example of ending the session

r ..................................... W A AR D WD WP AP D G S D G A D W D S W G D W W G S W - - ----1
EXAMPLE OF LOGOUT
Terminal Printout Notes and comments
logout You enter the LOGOUT command.

CONNECT=hh:mm:ss VIRTCPU=mm.sSS.Ss TOTCPU=mm:SS.SS

Message tells you the connect time
The actual length of the session.
and virtual and the real CPU time in
minutes, seconds, and hundredths
of seconds.

OGOUT AT hh:mm:ss (zone) dayrof-week mm/ddsyy

Message shows time and date of
logging off.

A ——p——————

you switch off terminal)

| Cconventions:

1. A carriage return is assumed after all programmer input.
2. The character | in column two implies spacing has been added.

3. System response is in upper case (capital) letters, programmer
ingput in lower case.

- ——————

BACKGROUND

Deleting Files

If you wish to delete files you use the ERASE command. The command must
specify the file name and the file type. For example if you wished to
delete the PLIOPT file "rakkit", you would enter:

erase rabkit pliopt

Chapter 1: Writing and Running a PL/I Program Under CMS 33



If you wished to delete all the files called "rabbit" you would enter:

erase rabbit *

SPECIAL CONSIDERATIONS

Retgining a Switched Line Connection

1f you are using a switched line to a computer, the use of the LOGOUT
command as shown results in the connection to the computer being kroken.
If you wish to retain the connection, you must enter "logout hold". The
action is the same as for logout except that the switched line is not
disconnected.

SOURCE OF FURTHER INFORMATION

Topic Reference_source
ERASE comrand VM/370 Command Language User's Guide
LOGOUT command VM/370 Cormand Language User's Guide

34



Chapter 2: PL/I Conventions and Restrictions Under
CMS

Restrictions

The PL/I features that may not be used under CMS and restrictions on
other features are shown in figure 2.1.

- — " - - — = A o " ——— " = o ——— " - —— -~ —— — - - — - —— - ——

ASCII data sets

BACKWARLS attribute with magnetic tapes
FETCH and RELEASE statements

INDEXED files

PL/I checkroint restart facilities (PLICKPT)

PL/I sort facilities (PLISORT)
Teleprocessing files

VS or VBS record formats

VSAM files

—— - — o —— — - —— - —— - - - —— - — ————— ——— —— ————_ o 4 o

—— ————— T——— {— T—— — —— —— W T—— ——— i —— . 7o . s}

READ....EVENT can only be used if the NCP parameter is included in
the ENVIRONMENT option of the PL/I file.

procedure. The blanks are removed from the string and
the items separated by them are concatenated.

b e e e e e e e o e a0 2 e o o e e o S o e e e o

r
|
|
|
I
|
|
|
|
|
|
|
|
|
|
| Tasking
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
Blanks cannot be passed in the parameter string to the main ]
I
I
3

Figure 2.1. Restrictions on the PL/I that can be executed under CMS.

The results of using PL/I features that are not availakle under CMS are
summarized below.

MULTITASKING PL/I error message number IBM576I will be generated.
This reads "ATTEMPT TO CALL A TASK IN NON-TASKING
ENVIRONMENT" The associated ONCODE is 3915.

SORT The ERROR condition will ke raised and PL/I error
message 8811 will be generated. This reads "SCRT/MERGE
NOT SUPPORTED IN CMS". The associated CNCODE is 9201.

FETCH/RELEASE The ERROR condition will be raised and PL/I errxor
message 592I will be generated. This reads
"FETCH/RELEASE NOT SUPPORTED IN CMS". The associated
ONCODE is 9252.

CHECKPOINT/RESTART
PL/I error message 926I will be generated and execution
will continue without a checkpoint being taken. The
message reads "CHECKPOINT RESTART NOT SUFPCRTED IN

i s S S e o . Wt S St St et i, S ki S S s

Chapter 2: PL/I Conventions and Restrictions Under CMS 35



CMS". There is no ONCODE as the ERROR condition is not
raised.

ISAM FILES The UNDEFINEDFILE condition is raised.
Use of TCAM, or spanned records on BDAM, or the BACKWARDS attribute.

CMS error message number DMSOP063E will be generated.
This reads "OPEN ERROR CODE x ON ddname."

36



Conventions

Two types of convention apply to PL/I when used under CMS. The first
are those adorted to make input/output simpler and more efficient at the
terminal. The second type are those that result from the terminal being
considered as the console of a virtual machine. These affect the DISPLAY
statement and the REPLY option.

|No prompting or other facilities are provided for record 1I/0 at the

| terminal. You are therefore strongly advised to use stream I/0 for any
| transmission to or from a terminal.

STREAM I/0 CONVENTIONS AT THE TERMINAL

To simplify input/output at the terminal various conventions have been
adopted for stream files that are assigned to the terminal. Three areas
are affected.

1. The formatting of PRINT files

2. The automatic prompting feature

3. The spacing and punctuation rules for input

Formatting Conventions for PRINT Files

When a PRINT file is assigned to the terminal, it is assumed that it
will be read as it is being printed. Spacing is therefore reduced to a
minimum to reduce printing time. The following rules apply to the PAGE,
SKIP, and ENDPAGE keywords.

e PAGE options or format items result in three lines being skipped.

e SKIP options or format items larger than SKIP (2) result in three
lines being skipped. SKIP (2) or less is treated in the usual manner.

e The ENDPAGE condition is never raised.

Overriding the formatting conventions for PRINT files: If you wish
normal spacing to arply to output from a PRINT file at the terminal, it
is necessary to supply your own tab table for PL/I. This is done by
declaring an external structure called PLITABS in the program and
initializing the element PAGELENGTH to the number of lines that can fit
on your page. This value differs from PAGESIZE which defines the number
of lines you want to be printed on the page before ENDPAGE is raised,
see figure 2.2. If you required a pagelength of 64 lines you would
declare PLITABRS thus:

DCL 1 PLITABS STATIC EXTERNAL,
(2 OFFSET INIT (14),

PAGESIZE INIT (60),

LINESIZE INIT (120),

PAGELENGTH INIT (64),

FILL1 INIT (0),

FILL2 INIT (0),

FILL3 INIT (0),

NUMBER_OF_TABS INIT (95),

TAB1 INIT (25),

TAB2Z2 INIT (49),

NN N

Chapter 2: PL/I Conventions and Restrictions Under CMS 37



2 TAB3 INIT (73),
2 TABY4 INIT (97),
2 TABS5 INIT (121)) FIXED BIN (15,0);

This declaration gives the standard page size, line size and tabulating
positions.

PAGESIZE j

> PAGELENGTH

PE— | ) )

PAGELENGTH: is the number of lines that could be printed on a page.

PAGESIZE: is the number of lines that will be printed on a page before the
ENDPAGE condition is raised.

Figure 2.2. PAGELENGTH defines the size of your paper, PAGESIZE
the numbexr of lines printed in the main printing area.

Automatic Prompt;ng

When the program requires input from a file that is associated with a
terminal, it issues a prompt. This takes the form of printing a colon on
the next line and then skipping to column 1 on the line following the
coclon. This gives you a full line to enter your input thus:

(space for entry of your data)
This type of prompt is referred to as a primary promrt.

If the data you transmit from the terminal does not complete the
requirements of the GET statement, a further prompt is issued. This
takes the form of printing a plus sign followed by a colcn thus:

+: (space for entry of your data)

This type of prompt is referred to as the secondary promgt.

38



Overriding Automatic Prompting: It is possible to override the primary
prompt by making a colon the last item in the request for the data. The
secondary prompt cannot be overridden. Take the two PL/I statements

PUT SKIP EDIT ("ENTER TIME OF PERIHELION");
GET EDIT (PERITIME) (A(10));

As they stand they would result in the terminal printing

ENTER TIME CF PERIHELION
: (automatic prompt)
(space for entry of data)

However, if the first statement had a colon at the end of the output
thus:

PUT EDIT (*ENTER TIME OF PERIHELION:') (A);
the sequence would be:
ENTER TIME OF PERIHELION: (space for entry of data)

Note: The automatic-prompt override works by maintaining a check on the
last item transmitted to your terminal. If the last item in the current
session was a colon, the prompt will be overridden. Care should
therefore be taken not to override the automatic prompt ky mistake. If
a program relies on automatic prompting at one point and overrides
automatic prompting at another, problems are likely tc arise. This is
because the promrt override stays in force not for one GET statement but
for all GET statements until data that does not end with a colon is
transmitted to the terminal.

Spacing and Punctuation Conventions for Input

Line continuation character. If you wish to transmit as one data item
data that requires 2 or more lines of space at the terminal a hyphen
must be typed as the last character in each line except the last line.
For example, if you wanted to transmit the sentence "this data must be
transmitted as one unit" you could enter:

this data must be transmitted -
as one unit.

. Transmission would not occur until the carriage return after the word
"unit". The hyphen would be removed. The item transmitted is referred
to as a "logical line".

Note: This convention means that a line whose last character is a hyphen
or a PL/I minus sign can only be transmitted by entering two hyrhens at

the end of the line and following them by a carriage return only cn the

next line thus:

Xyz=-
(carriage return only on this line.)

Simplified Punctuation for GET LIST and GET DATA_ Statements

For GET LIST and GET DATA statements, a comma is added to the end of
each logical line transmitted from the terminal if it is omitted ky the
prograrmer. Thus there is no need to enter blanks or comrmas to delimit
items if they are entered on separate logical lines. For the PL/I

Chapter 2: PL/I Conventions and Restrictions Under CMS 39



statement GET LIST(A,B,C); you could enter at the terminal.

+ 4R

2
3
However this rule also applies when entering character string data. A
character string must therefore ke transmitted as one logical 1line,

otherwise commas are placed at the break points. For example. if you
entered:

' COMMAS SHOULD NOT BREAK
+: UP A CLAUSE'

The resulting string would read *COMMAS SHOULD NOT BREAK, UP A CLAUSE'

Automatic_Padding for GET EDIT: For a GET EDIT statement there is no
need to enter blanks at the end of the line. The item will ke padded to
the specified length. Thus for the PL/I statement GET EDIT (NAME)
(A{15)); you could enter SMITH followed immediately by a carriage
return. The item would automatically be padded with ten blanks so that
the program received the fifteen characters "SMITH

Note: This means that a single item must ke transmitted as a logical
line, otherwise the first line transmitted will be padded with the
necessary blanks and considered to be the complete item.

Use of SKIP for terminal input: SKIP in a GET statement has little
meaning if the file involved is allocated to a terminal. The program is
apparently being asked to skip data that has not yet been keyed in. For
this reason, all uses of SKIP for input are taken to be SKIP(1l) when the
file is allocated to the terminal. SKIP(1l) is treated as an instruction
to ignore all unused data on the currently available logical line.

Endfile

The end of file can be entered at the terminal by keying in a logical
line that contains the characters "/#*" followed by a carriage return.
Any further attempts to use the file without closing it and re-opening
it result in the ENDFILE condition being raised.

DISPLAY AND REPLY UNDER CMS

Because the terminal is considered to be the console of the virtual
machine, the DISPLAY statement and the REPLY option can be used to
create conversational programs. The DISPLAY statement transmits the
message to your terminal, and the REPLY option allows you to respond.
For example, the PL/I statement:

DISPLAY (*ENTER NAME') REPLY (NAME);

would result in the message "ENTER NAME" being printed at your terminal.
The program would then wait for your response and your data would be
placed in the variakle NAME after you pressed the carriage return key.
The terminal printout would look like this:

ENTER NAME
JOHN TAYLOR

40



Chapter 3: The PLIOPT Command and its Options

How to Use This Chapter

This chapter shows the syntax of the PLIOPT command, the options that
can be used with the command, and the standard defaults that will agpply
if you do not specify values for certain ortions.

There are five sections:
1. B2 summary of the syntax notation used.

2. A description of the PLIOPT corrand and its options showing the
default option values suggested by IBM.

3. A discussion of two general points. First the differences
ketween options of the PLIOPT command and options of the PL/I
Optimizing Compiler, and, second, the relationship between the
various statement numbering options.

4. A takle of options listed by function.

5. An alphabetical list of options with detailed descriptions and
syntax notation.

If you wish to accept the default options, you will only need to look
at the section on the PLIOPT command and possibly the section on syntax
notation if you are not already familiar with this. It should be noted
that the default values may have been altered by your installaticn and
may not ccrrespond to those shown in the table. If you wish to look up
a particular option, you should look for it in the alphabetical section.
If you want a summary of the options that are available, or if you are
looking fcr an ortion to serve a specific purpose, you should look in
the table of options listed by function. Before using an ogtion found
in this table you should check in the alphabetical section to discover
the syntax.

If you intend to use options in a *PROCESS statement, you should read
the discussion headed "PLIOPT Options and Compiler Options". It should
not be necessary to read the section headed "Relationship of Statement
Numbering Options" unless you need amplification of the informaticn
supplied in the descriptions of the statement numbering options in the
alphabetical section.

A general discussion of the PLIOPT command is given in chapter 2
under the heading "Compiling the Program the PLIOPT Command".

Syntax Notation

The syntax notation used to illustrate the command in this part of the
manual is the sare as that used in the VM/370 Command Language User's
Guide. Briefly, the conventions are as follows:

Items in brackets [ ] are optional.
Items in kraces { } are alternatives; choose only one.
An item underlined applies unless an alternative is specified.

Note: Defaults shown are suggested defaults and may have been changed
for your system.

Chapter 3: The PLICPT Command and its Options 41



Items written in uprercase (capital) letters are keywords and must be
spelled as shown.

Items written in lowercase letters must be replaced by appropriate names
or values.

Separate the command name from the operands, options and suboptions by
one or more blanks.

The four special characters '()* (single quote, left parenthesis, right
parenthesis and asterisk) must be included where shown.

42



PLIOPT Command

The PLIOPT command invokes the PL/I Optimizing Compiler to compile a
program written in PL/I source language. The compiler produces a TEXT
file containing machine code and a LISTING file containing listings and
diagnostics. Other files may be produced depending on ccmpiler options.

Format:
[mmmmm e e
PLIOPT| filename [ (optionl [option2l...[)1]]
QOptions: AG|NAG
A|NA

|

|

|

] CHARSET ([48|60]{EBCDIC|BCDI])
] COMPILE|NCI(W|E|S)]

| CONTROL (*password"’)

| COUNT | NOCOUNT

| DECK | NODECK

| DUMP | NODUMP |

| ESD| NCESD

| FLAGI(I|W|E|S)]

] FLOW[(n m)] |NOFLOW

| GONUMBER | NGN

| GOSTMT | NOGOSTMT

| INCLUDE | NINC

| IMP|NIMP

| INSOURCE |NIS

I LC(n) |[LC(55)

| LIST((m n)] |NOLIST

| SMESSAGE

| MACRO | NOMACRO

| MAP | NOMAP

i MARGINI('c') |NMI

| MARGINS(m n{c]) |[MARGINS(2 72)
| MDECK | NOMDECK

] NAME('name"*)

| NEST | NONEST

| NUMBER | NONUMBER

] OBJECT | NCCBJECT

| OFFSET | NOOFFSET

| OPTIMIZE(TIME|0|2) |OPTIMISE(TIME|O|2) |NOPT
| NOOETICONS

| OSDECK 1

| PRINT |DISK |NOPRINT 1

| SEQUENCE(m n) | NOSEQUENCE

|
|
i
|
|
|
|
|
|
!

SIZE (yyyyyyyy |yyyyyK]MAX)
SOURCE | NOSOURCE
STMT | NCSTMT

STORAGE | NSTG
SYNTAX|NSYNI[(W|E{S)]
TERMINALI[ (opt-1ist)]|NTERM

XREF | NOXREF

iNote: These are ortions of the PLIOPT command and not

compiler options, see discussion below.
| FOEO S N - = — - " — - — > > " " - ——— 4

. - A - ——— . S — o ———— —— -, S S — S S a——— — A —— ot it e S S (. S — o LR S SO B o St S, St e i W S

|
|
|
|
I
|
I
|
|
|
|
I
|
|
I
|
|
I
I
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
|
|
I

filename

Is the name of the file that contains the PL/I source program. The

Chapter 3: The PLIOPT Command and its Options 43



file tyre must be PLIOPT or PLI.

optionl option2

are a series of compiler or PLIOPT options. They must be
separated from each other by at least one blank. The right
hand parenthesis is optional. If contradicting options are
srecified, the rightmost option applies.

USAGE

The PLIOPT command compiles a PL/I program or a series of PL/I programs
into machine language object code. If the program is held as a CMS file
on disk it must have the file type PLIOPT or PLI. If it is not on disk,
it must be defined to the system with a FILEDEF command.

The options governing compiler operation and ocutput are specified in any
order. Any combination of options is accepted. When conflicting options
are specified, the last specified option is used. The majority of
options have positive and negative forms one of which is used by default
if neither form is specified. Figure 3.1 summarizes the compiler
options by function and enakle you to quickly grasp the possibilities
available with the PL/I Optimizing Compiler.

PLIOPT OPTIONS AND COMPILER OPTIONS

The majority of options of the PLICPT command are options of the
optimizing compiler. This means that they can be specified in the
*PROCESS statement as well as in the PLIOPT command. All options
except DISK, NOPRINT, OSDECK, and PRINT can be specified in the *
PROCESS statement. DISK, NOPRINT, OSDECK, and PRINT cannot ke specified
| because they are PLIOPT options and not a compiler options. DUMP cannot
|be specified in the * PROCESS statement unless it is also specified in

| the PLIOPT command. This is because extra space must be acquired for
|the DUMP option kefore the * PROCESS statement is processed.

Where options of the PLIOPT command contradict those of the *PROCESS
statement, the options in the *PROCESS statement override those in the
PLIOPT command. For options whose length is greater than eight
characters, the abbreviation for that option must be used in the PLIOPT
command.

Relationship of Statement Numbering Options

The optimizing compiler provides two methods of numbering statements.
Statements can have their numkers taken from the sequence field cf the
record; this is the method used when NUMBER or GONUMBER is specified and
is the default for CMS. Alternatively, they can be numbered
sequentially starting from 1; this is the method used when STMT or
GOSTMT is srecified.

The numbers of the statements are used in compiler diagnostic messages
and listings. If the GONUMBER or GOSTIMT opticn is specified, the
numbers are retained in a takle generated Ly the compiler and are used
in execution time diagnostic messages. When numbers are required during
execution, the same numbering system as that which applied during

4y



compilation will be used. This means that specifying certain options
implies that certain other options will ke used. Three rules apply:

1. Because one or other statement numbering system must be used during
compilation, NOSTMT is taken as equivalent to NUMBER, and
similarly, NONUMBER is taken as equivalent to STMT.

2. Because the same numbering system must be used during compilation
and execution, either of the GO options is taken to imply that the
corresponding numbering system is to apply during compilation.
Thus GONUMBER implies NUMBER and GOSTMT implies STMT.

3. It is not possible to use both numbering systems in one compilation
therefore GOSTMT implies NOGONUMBER, and GONUMBER implies NOGOSTMT.

If contradictory options are specified, the last option found is used
and any implications are taken from that opticn.

The use of GONUMBER or GOSTMT involves a space overhead because the
numbers are retained in a table generated by the compiler. If statement
numbers are not retained into execution, execution-time diagnostic
messages identify the location of the error by an offset from a
procedure entry point. The use of the OFFSET option results in the
generation of a listing at compile time that associates statement
numbers with offsets and consequently enables you to identify the PL/I
statement mentioned in an execution time error message.

The OFFSET option is separate from the numbering options and must be
specified if required.

Chapter 3: The PLIOPT Command and its Options 45



LISTING OPTIONS
C

Control listings
produced

Figure 3.1l. (Part 1 of 3)

46

ontrol destination of listing file

PRINT |DISK |NOPRINT*

AGGREGATE

ATTRIBUTES

ESD

INSOURCE

FLAG(I|W|E|S)

LIST

MAP

OPTIONS

SOURCE

STORAGE

XREF

Improve readibility of source listing

NEST

MARGINI

control lines per page of listing

LINECOUNT

Determine whether listing
goes to printer, CMS disk, or
is discarded.

list of aggregates and their
sizes.

list of attributes of all
identifiers.

list of external symbol
dictionary.

list of preprocessor input.

suppress diagnostic messages
below a certain severity.

list of compiled code prcduced
by compiler.

section produced by compiler.
list of options used.

list of source program oOr
preprocessor output.

list of storage used.

list of statements in which each
identifier is used.

indicates do-group and block
level by numbering in margin.

highlights any source outside
margins.

specifies number of lines per

|
|
|
|
|
|
|
I
|
i
|
|
|
|
|
|
i
|
|
I
|
]
|
|
|
|
|
list contents of static control |
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[
|
|
|
|
|
|
|
page on listing. |
|

|

1

Compiler options arranged by function



| OPTIONS LISTED BY FUNCTION PART 2

= —————— — - - —— . T - - — - — - - D - — - — - - -

| INPUT OPTIONS

To define character set and margins of input

CHARSET identify the character set used
in source.
MARGINS identify the columns used for

identify position of a carriage
control character

SEQUENCE identify the columns used for
sequence numbers.

—————— ————— ——— — ————— - ———— - —— — ——— - ————————

|
]
|
|
| |
| [
| I
| I
| source program, and ]
| |
| |
| |
| :
| OPTICNS TO PREVENT UNNECESSARY PROCESSING |

|
|Control whether compilation should end if errors above a certain level]
| are found |
| NOSYNTAX(W|E|S) stop processing after errors are|
| found in preprocessing. |
I [
| NOCOMPILE(W|E|S) stop processing after errors are|
| found in syntax checking.

MACRO allows full use of the
preprocessor facility.

overheads incurred MACRO.

MDECK produces a source deck from

|

|

| INCLUDE allows . inclusion of text without
|

|

|

| preprocessor output.

———— ———— ——— - —— ——— - — - - —— " - —— " — ———— —— W -~ — — —— — -

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
module produced. |
[
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

|

| OBJECT produce an object module from

| translated output.

|

| NAME specify the name of the object

I

| .

| CECK produce an object module on

| punched cards.

|OPTIONS TO CONTROL STORAGE USED

|

] SIZE controls the amount of storage

| used by the compiler.

I .............. - " ———————————_———— — — —  ———— — — ——————— o -
| OPTIONS TO IMPROVE USABILITY AT A TERMINAL

!

} TERMINAL specifies how much of listing is
| transmitted to terminal.

I

| SMESSAGE/LMESSAGE enakles you to specify concise

| or full message format.

| IR . e - . - — - — - — " — = T~ i —~—_ " — —

Figure 3.1. (Part 2 of 3) Compiler options arranged by function

Chapter 3: The PLIOPT Command and its Options 47



| OPTIONS LISTED BY FUNCTICN

___________________________________ l
OPTIONS TO SPECIFY STATEMENT NUMBERING SYSTEM USED

STMT & GOSTMT

|
I
|
I
I
|
|
!
| OFFSET
I
|
!
|
I
I

- ——————— - -~ ——————— " — 3 — - - —

I
OPTICNS FOR USE WHEN DEBUGGING

FLOW

I
|
!
|
|
I
| COUNT
I
I
I
I

OPTIMIZE(TIME)

!
I
I
|
I
| NOOPTIMIZE
I

———— - —— - — . ———— i~ — " — " ——————— -

OPTION TO ALLOW EXECUTION UNDER OS

I
!
| OSDECK *
|

—— - > = o —— — - — - —————

NUMBER & GONUMBER

PART 3 I

numkers statements according to
line on which they start.

numbers statements sequentially.

specifies that a listing
associating statement numbers
with offsets will be generated
Thus enabling you to identify
statements from offsets given
in execution time error
messages.

- ——————————— i — - — " i ——

generate code that will result
in a trace of executed
statements being retained.

generate code that will result
in a count of the number of
times each statement is executed
being printed at the end of the
programe.

- ——————— - ——— - —— - -~ —

OPTICN TO IMPROVE COMPILATION/EXECUTION SPEED

reduce execution time at the
expense of compilaticn.

reduce compilation time at the

- —— . ——_— - — - —— o - ————— - - -

specifies that compiler will
produce OS compatible code.

- - —— ——— — ——— -

|OPTION FOR USE WHEN DEBUGGING THE COMPILER

|
i DUMP
|

produces a dump if the compiler
terminates abnormally.

|
| OPTICN FOR USE ON IMPRECISE INTERRUPT MACHINES

I IMPRECISE

allows imprecise interrugts
to ke correctly handled.

|
|
|
[
|
|
[
|
[
|
|
|
|
I
|
|
|
|
|
expense of execution. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 3.1. (Part 3 of 3) Compiler ortions arranged ky function

48



ALPHAEETICAL LIST OF OPTIONS
AGGREGATE | NOAGGREGATE
AG| NAG
The akbreviated form must be used in PLIOPT command.
The AGGREGATE option specifies that the compiler is to produce

an aggregate length takle, giving the lengths of all arrays and
major structures in the source program.

ATTRIBUTES | NOATTRIBUTES
A|NA

The abbreviated form must be used in PLIOPT command.

The ATTRIBUTES option specifies that the compiler is to include
in the compiler listing a table of source-program identifiers
and their attributes. 1If koth ATTRIBUTES and XREF agpply, the
two tables are combined.

CHARSET ([ 48

|601] [EBCDIC|BCD])
cs(iu8|601] [EB]

B1)

The CHARSET option specifies the character set and data code
that you have used to create the source program. The compiler
will accept source programs written in the 60-character set or
the 48-character set, and in the Extended Binary Coded Decimal
Interchange Code (EBCDIC) or Binary Coded Decimal (BCD).

60-_or u4B8-character set: If the source program is written in
the 60-character set, specify CHARSET (60); if it is written in
the 48-character set, specify CHARSET (48). The language
reference manual for this compiler lists both of these
character sets. (The compiler will accept source programs
written in either character set if CHARSET(48) is specified.
However, if the reserved keywords, for example CAT or LE are
used as identifiers in a program using the 60 character set,
errors ray occur if it is compiled with the CHARSET (48)
option).

BCD or EBCDIC: If the source program is written in BCD, specify
CHARSET (BCD); if it is written in EBCDIC, specify CHARSET
(EBCDIC). The language reference rmanual for this compiler 1lists
the EBCDIC representation of koth the 48-character set and the
60-character set.

If two arguments (48 and BCD or 60 and EBCDIC) are specified,
either argument may appear first. One or more blanks must
separate the arguments.

COMPILE|NCCOMPILE[ (W|E|S)]

——— -

C|NC| [(W|E|S)]

The abbreviated form must be used in PLIOPT command for
NOCOMPILE.

The COMPILE option specifies that the compiler is to compile
the source program unless an unrecoverable error was detected
during preprocessing or syntax checking. The NCCOMPILE ogtion
without an argument causes processing tc stop unconditionally
after syntax checking. With an argument, continuation depends
on the severity of errors detected after the syntax checking

Chapter 3: The PLICPT Command and its Options 49



rhase as follows:

NOCOMPILE(W) No compilation if a warning, error,
severe error, oOr unrecoverable
error is detected.

NOCOMPILE(E) No compilation, if error, severe
error, oOr unrecoverable error is
detected.

NOCOMPILE(S) No comgpilation if a severe error or
unrecoverable error is detected.

CONTROL ("' rassword"')

The CONTROL option specifies that any compiler
options deleted for your installation are to ke
available for this compilation. You must still be
specify the appropriate keywords to use the
options. The CONTROL option must ke specified with
a password that is established for each
installation; use of an incorrect password will
cause processing to be terminated.

'rassword' is a character string, not exceeding six characters
in length. ‘

| COUNT | NOC QUNT

|CT|NCT

——— s T— T —— At A St St Bt Mot S S, o St it St o et

The COUNT option specifies that code will be generated to allow
a count to be kept of the numker of times each statement is
executed in a particular run of a program to be generated at
the end of the run.

Unless cverridden at execution time by the NOCCUNT oprtion, it
will result in a count of the number of times each statement in
a rrogram has been executed keing printed on the PLIDUMP file
cr, if there is none, on the SYSPRINT file, after the execution
of the compiled program.

The CODE generated for the COUNT option also allows a trace of
the most recently executed statements to be retained if the
FLOW option is specified at execution time.

The COUNT option implies the GONUMBER option if the NUMBER
opticn is in effect and the GOSTMT option if the STMT option is
in effect.

DECK | NODECK

D|ND

DU| NDU

50

The DECK option specifies that the compiler is to produce an
cbject module in the form of 80-column card images and store it
in the data set defined by the DD statement with the name
SYSPUNCH. Columns 73-76 of each card contain a code to
identify the object module; this code comprises the first four
characters of the first label in the external procedure
represented by the object mcdule. Columns 77-80 contain a 4~
digit deciral number: the first card is numbered 0001, the
second 0002, and sO oOn.



Do not use in *PROCESS statement unless also used in the PLIOPT
conrand

The DUMP ortion specifies that the compiler is to produce a
formatted dump of main storage if the compilaticn terminates
abnormally (usually due to an I/O error or compiler error).
This dump is written on the file associated with ddname
SYSPRINT. Details of the suboptions of DUMP are given in the
OS PL/I Optimizing Compiler Program Logic.

ESD | NOESD

The ESD option specifies that the external symkol dictionary
(ESD) is to be listed in the compiler listing.

FLAG(I|W|E|S)
F(I|W|E[S)

The FLAG option specifies the minimun severity of error that
requires a message to be listed in the compiler listing. The
format of the FLAG option is:

FLAG (1) List all messages.

FLAG (W) List all except informatory
messages. If you specify FLAG,
FLAG(W) is assumed.

FLAG (E) List all except warning and
informatory messages.

FLAG(S) List only severe error and
unrecoverable error messages.

FLOW(n m) | NOFLOW

The FILOW COMPILER OPTION SPECIFIES THAT CODE WILL BE PRODUCED
ENABLing the transfers of control most recently executred in a
fFrogram to be listed when an ON statement with the SNAP option,
or when a CALL PLIDUMP statement is executed. This enables you
to follow the path through the most recently executed
statements. The format of the FLOW option is:

FLOW(n m)

where "n" is the nuwber of transfers of control that
will ke listed with associated statement
numbers.

where "m" is the number of transfers of control
between procedures that will ke listed with
associated procedure names.

n and m must be decimal integers and may not exceed 32768. If
either value is zero, the associated listing will noct be
produced.

The list will start with the earliest available information and
continue to the point where the CALL PLIDUMP statement or the
ON statement with the SNAP option was executed.

The code generated for the FLOW compiler option allows the

COUNT execution time optlon to be used if it is specified at
executicn time.

Chapter 3: The PLIOPT Command and its Options 51



GN| NGN

GS|NGS

The abbreviated form must be used in the PLIOPT command for
NOGONUMBER.

The GONUMBER options specifies that the compiler is to produce
additional information that will allow line numbers from the
source program to be included in execution-time messages.
Alternatively, these line numkters can be derived ky using the
offset address, which is always included in execution-time
messages, and the table produced by the OFFSET option.

Use of the GCNUMBER option implies that the NUMBER option will
apply. See "Relationship of Statement Numbering Options" at
the start of this chapter.

The GOSTMT option specifies that the compiler is to produce
additional information that will allow statement numbers from
the source program to be included in execution-time messages.
Alternatively, these statement numbers can be derived by using
the offset address, which is always included in execution-time
ressages, and the takle produced by the OFFSET option.

Use of the GOSTMT cption implies that the STMT option will also
apply. See "Relationship of Statement Numbering Options" at
the -start of this chapter.

IMPRECISE | NOIMPRECISE

IMP|NINP

The abbreviated form must be used in the PLIOPT command.

The IMPRECISE option specifies that the compiler is to include
extra text in the object module to localize imprecise
interrupts when executing the program with an IBM System/360
Model 91 or 195, or System 370 model 195. This extra text
ensures that if interrupts occur, the correct cn-units will be
entered.

—————

INC| NINC

52

The INCLUDE option specifies that %INCLUDE statements are to be
handled without the overhead of using the full preprocessor
facilities. If preprocessor statements other than %INCLUDE are
used in the program the MACRO option must be used.

The INCLUDE option will be overridden if the MACRO option is
also specified.

The abbreviated form must be used in the PLIOPT command for
NOINSOURCE.

The INSOURCE option specifies that the compiler is to include a
listing of the source program (including preprocessor



statements) in the compiler listing. This option is applicable
only when the preprocessor is used, therefore the MACRO option
rust also arprly.

LINECOUNT (n) | LINECOUNT(55)

LC(n)

LMSG | SMSG

M|NM

MAP | NCMAP

The abbreviated form must be used in the PLIOPT conmrand.

The LINECOUNT option specifies the nurber of lines to ke
included in each page of the compiler listing, including
heading lines and blank lines. The format of the LINECOUNT
crtion is:

LINECOUNT (n)

where "n" is the number of lines. It must be in the
range 1 through 32767, but if you specify less
than 7, only the heading of the listing will ke
printed.

The LIST option specifies that the compiler is to include a
listing of the object module (in a form similar to IBM
Systems/360 assembler language instructicns) in the compiler
listing.

m and n allow you to specify the range of statements for which
the 1list will be produced. If m and n are omitted the complete
program is included in the listing.

The LMESSAGE and SMESSAGE options specify that the compiler is
to produce messages in a long form (specify LMESSAGE) or in a
short form (specify SMESSAGE). Short messages save printing
time at the terminal.

The MACRO option specifies that the source program is to ke
processed ky the preprocessor.

The MAP option specifies that the compiler is to procduce tables
showing the organization of the static storage for the object
module. These tables consist cf a static internal storage map
and the static external control sections. The MAP option is
normally used with the LIST ogtion.

Use of the MAP option also results in the generation of a
variables offset map which lists static internal and automratic
variables with the offsets from their defining kases. This
simplifies finding variables in a dump.

MI(*c*') |NMI

Chapter 3: The PLIOPT Command and its Options 53



The abbreviated form must be used in the PLIOPT command for
NOMARGINI.

The MARGINI option specifies that the compiler is to indicate
the rosition of the margins Ly including in the listings of the
PL/I program a specified character in the column preceding the
left-hand margin, and in the column following the right-hand
rargin. Any text in the source input which precedes the left-
hand margin will be shifted left one column, and any text that
follows the right-hand margin will be shifted right one column.
Thus the text outside the source margins can be easily
detected. The MARGINI option applies to both the SOURCE and
INSQURCE listings.

The MARGINI ortion has the format:
MARGINI('c")

where "c" is the character to be printed as the margin
indicator.

| MARGINS(2,72,1) (F-format records)

| MARGINS (10,100,0) (v-format records)

I
|
I
|
I
!
I
l
I
I
!
I
I
!
I
|
!
l
|
|
!
I
!
|
!
l
!
I
l
!
!
I
I
I
I
I
l
I
I
|

54

MAR(m n (cl)

The MARGINS option specifies which part of each compiler input
recoxrd contains PL/I statements, and the position of the ANS
control character that formats the listing. The MARGINS option
is used to override the default margin positions that are set
up during compiler installation by the FMARGINS and VMARGINS
cptions.

The FMARGINS default applies to F-format records and the
VMARGINS default aprlies to V-format or U-format records. Only
one of these defaults is overridden by the MARGINS opticn. If
the first input record to the compiler is F-format, the
FMARGINS default is overridden. If the first input record to
the compiler is a V- or U~-format record the VMARGINS default is
overridden by the MARGINS option. Default values are assured
if a record with a different type of format is encountered by
the comgpiler.

The format of the MARGINS options is:
MARGINS9m,n, c)
where:

r is the column numker of the leftmost column that will be
scanned by the compiler. m must not exceed 100.

n is the column number of the rightmost column that will be
scanned by the compiler. n must not be less than m, nor
greater than 100.

c is the column of the ANS printer control character. It must
not exceed 100 and it must ke outside the values specified for
r and n. A value of 0 for c indicates that no ANS control
character is present. The control character applies only to
listings on a line printer; it is ignored in conversaticnal-
rode listings at the terminal. Only the following control can
ke used:



{blank) sSkip one line before printing.

0 Skip two lines before printing.

- skip three lines kefore printing.

+ Skip no lines kefore printing. |

1 Start new page.
Any other character is taken to be blank. If the value c is
greater than the maximum length of a source statement record

the compiler will not be able to recognize it; consequently the
listing will not have the required format.

MDECK | NOMDECK
MD | NMD

The MDECK option specifies that the preprocessor is to produce
a copy of its output (see MACRO option) and write it to the
file defined by the ddname SYSPUNCH. The MACRO option produces
84 byte records; however, the last four bytes, which contain
sequence numbers, are ignored for the output from MDECK option.
Thus MDECK allows you to retain the output from the
preprocessor as a deck of 80-column punched cards.

NAME| ('object-module-name"’)
N('object~-module-name')

No default applies. NAME must be specified if required.

The NAME option specifies that the TEXT file created Ly the
conmpiler will be given the specified external name. This
allows you to create more than one text file when doing batch
corpilation and also allows you to produce TEXT files suitable
for inclusion in a text library (see section headed "Compiling
the Program - the PLIOPT Command".)

The name option has the format:
NAME (*object-module-name"')
where "object-module-name®" has fromr cne through six

characters, and kbegins with an alphabetic
character.

NEST | NONEST

NUM] NNUM

The NEST option specifies that the listing resulting from the
SOURCE option will indicate, for each statement, the begin-
block level and the do-group level.

The NUMBER option specifies that the numbers specified in the
sequence fields in the source input records are to be used to
derive the statement numbers used in the compiler listings.

The position of the sequence field can be specified in the
SEQUENCE option. Alternatively, the following default positions

Chapter 3: The PLICPT Command and its Options 55



are assumed:
e Last 8 columns for fixed-length source input records.

e First 8 columns for undefined~length or variable-length
source input records. In this case, 8 is added to the
values used in the MARGINS option.

These defaults are the positicns used for line numkers
generated ky CMS; thus it is not necessary to specify the
SECUENCE option, or change the MARGINS defaults when using the
line numbers generated by CMS. Note that the preprocessor
output has fixed-length records irrespective of the format of
the primary input. Any sequence numbers in the primary input
are repositioned in columns 73-80.

The line number is calculated from the five right-hand
characters of the sequence number (or the number specified, if
less than five). These characters are converted to decimal
digits if necessary. Each time a line number is found which is
not greater than the preceding one, 100000 is added to this and
all following line numbers.

If there is more than one statement on a line, a suffix is used
to identify the actual statement in the messages. For example,

the second statement beginning on the line 40 is numbered 40.2.
The maximum value for this suffix is 31. Thus the thirty-first

and subsequent statements on a line have the same numker.

The use of NONUMBER is equivalent to the use of STMT, and
GONUMBER implies NUMBER see "Relationship of Statement
Nurbering Options™ at the start of this chapter.

OBJECT | NOOBJECT
OBJ|NOBJ

The OBJECT option specifies that the compiler is to create an
object module and store it on the TEXT file.

OF | NOF

The OFFSET option specifies that the compiler is to print a
table of statement numkers for each procedure with their offset
addresses relative to the primary entry point of the procedure.
This takle can be used to identify a statement fror an
execution-time error message if the GONUMBER or GOSTMT option
is not in effect.

OPT(TIME| Q] 2) | NOPT

The akbreviated form must be used in the PLIOPT command for

NOOPTIMIZE.

The OPTIMIZE option specifies the type of optimization
required:

NOCPTIMIZE specifies fast compilation speed, but inhibits

optimization for faster executicn and reduced
main storage requirements.

OPTIMIZE (TIME) specifies that the compiler is to optimize the
machine instructions generated to produce a very

56



efficient object program. A secondary effect of
this type of optimization can ke a reduction in
the amount of main storage required for the
object module. The use of OPTIMIZE(TIME) could
result in a sukstantial increase in compile time
over NOOPTIMIZE.

OPTIMIZE(0) is the equivalent of NOOPTIMIZE.
OPTIMIZE(2) is the equivalent of OPTIMIZE(TIME).

The language reference manual for this compiler includes a full
discussion of optimization. CPTIMIZE will be accerted if
spelled OPTIMISE.

OP| NOP

The abbreviated form must be used in the PLIOPT command for
NOOPTIONS.

The OPTIONS option specifies that the compiler is to include in
the compiler listing a list showing the compiler option used
during this compilation. This 1list includes all those opticns
aprlied by default, those specified in the PARM parameter of an
EXEC statement, and those specified in a *PROCESS statement.

CSDECK
0OsD

This is a PLIOPT option and is ignored if used in the *PRCCESS
statement.

The OSDECK option specifies that the compiler will produce
output that can be executed under the control of 0S. If the
OSDECK option is not used, the first record in the TEXT and
SYSPUNCH files is a CMS loader control card specifying the
execution time interface module as the entry point. This
record results in an errxor of severity level 8 if it is passed
to the 0s linkage editor.

There is no negative form, and OSDECK must be specified
if it is required.

PRINT|DISK|NOPRINT
PRI|DI|NOPRI

This is a PLIOPT option and is ignored if used in the *PROCESS

Cirects the compiler listing file to the printer (PRINT) or to
disk (DISK -- this is the default). If NOPRINT is specified
the file is not written.

SEQUENCE(r n) | NOSEQUENCE
SEC(m n)|NSEQ

IBM-default: F-format records SECUENCE(73 80)
V- or U-format records SEQUENCE (1 8)

The SEQUENCE option defines the section of the input record

from which the compiler will take the sequence number.
(sequence numbers are used to calculate statement numbers 1if

Chapter 3: The PLICPT Command and its Options 57



the NUMBER option is in effect.)

During compiler installation, two default values are set ug.
one value is for F-format records, the other is for V- or U-
format records. The SEQUENCE option overrides only one of
these values. The value overridden is the value that apglies
to the first record read ky the compiler. If a second type of
record is found the default sequence values will apply to this
type of record.

SECUENCE(n m)

where:

n specifies the column number of the leftmost digit of the
sequence number.

n specifies the column number of the rightmost digit of the
sequence numker

s S T — Aot S—— S — — i DA b it BSOS Al s et Mt bt

SIZE(yyyyyyyy|lyyyyyK|MAX)
SZ(yyyyyyyylyyyyyK|MAX)

This option can be used to limit the amount of main storage
used by the compiler. This is of value, for example, when
dynamically invoking the compiler, to ensure that space is left
for other purposes. The SIZE option can be expressed in three

forns:

SIZE(yyyyyyyy) specifies that the compiler should attempt
to obtain YYYYYYYY bytes of main storage
for compilation. Leading zeros are not
required.

SIZE (yyyyyK) specifies that the compiler should attempt

to obtain YYYYYK bytes of main storage for
compilation (1K=1024). Leading zeros are
not required.

SIZE (MAX) obtain as much main storage as it can.

The IBM default, and the most usual value to ke used, is
SIZE(MAX), which permits the compiler to use as much main
storage in the partition or region as it can.

When a limit is specified, the amount of main storage used by
the compiler depends on how the orerating system has been
generated, and the method used for storage allocation. The
compiler assumes that buffers, data management routines, and
processing phases take up a fixed amount of main storage, but
this amount can vary unknown to the compiler.

Note: Under CMS, SIZE(MAX) should always be used unless it is
essential to limit the space used. If a limit is set in the
SIZE option, the value used will exceed that which is
specified. This is because storage is handled ky a
CMS/compiler interface routine and not directly by the
compiler.

The value specified in the SIZE ortion cannot exceed the main
storage available for the jok step and cannot be changed after
processing has begun. This means that in a batched compilation
the value established when the compiler is invoked cannot be
changed for later programs in the batch. Thus it is ignored if
specified in a *PROCESS statement.

58



SOURCE | NOSOURCE
S|NS

The SOURCE option specifies that the compiler is tc include in
the compiler listing a listing of the source program. The
source program listed is either the original source input or,
if the MACRO option applies, the output from the preprocessor.

STMT | NOSTMT

The STMT option specifies that statements in the source program
are to ke counted, and that the resulting number is to be used
to identify statements in the compiler listings. If NCSTMT is
specified, NUMBER is implied. STMT is implied by NONUMBER or
GOSTMT. (For further information see "Relationship of
Statement Numbering Options" earlier in this chapter.)

STG| NSTG

The abbreviated form must be used in the PLIOPT command for
NOSTORAGE.

The STORAGE option specifies that the compiler is to include in
the comgiler listing a takle giving the main storage
requirements for the object module.

SYN|NSYN[(W[E[S) ]

The SYNTAX option specifies that the compiler is to continue
into syntax checking after initialization (or after
prerprocessing if the MACRO option applies) unless an
unrecoverable error is detected. The NOSYNTAX option without an
argument causes processing to stop unconditionally after
initialization (or preprocessing). With an argument,
continuation depends on the severity of errors detected during
preprocessing, as follows:

NOSYNTAX (W) No syntax checking if a warning, error, severe
error, or unrecoverable error is detected.

NOSYNTAX (E) No syntax checking if an error, severe error, or
unrecoverakle error is detected.

NOSYNTAX (S) No syntax checking if a severe error or
unrecoverakle error is detected.

If the SOURCE option applies, the compiler will generate a
source listing even if syntax checking is not performed.

The use of this option can prevent wasted runs when dekugging a
PL/I program that uses the preprocessor.

TERMINALI (opt-1ist) ]| NOTERMINAL
TERM[ (opt-1ist)] | NTERM

The abbreviation must be used in the PLIOPT command for
NOTERMINAL.

The TERMINAL option is applicable only in a conversational
environment. It specifies that some or all of the compiler
listing is to be printed at the terminal. If TERMINAL is
specified without an options list, diagnostic and informatory

Chapter 3: The PLIOPT Command and its Options 59



messages are printed at the terminal. You can add an argument,
which takes the form of an option list, to specify other parts
of the compiler listing that are to be printed at the terminal.

The listing at the terminal is independent of that written on
the LISTING file. However, if the ddname LISTING is associated
with the terminal, only one copy of each listing requested will
be printed, even if it is requested in the TERMINAL option and
also as an independent option. The following option keywords,
their negative forms, or their abbreviated forms, can be
specified in the option list:

AGGREGATE, ATTRIBUTES, ESD, INSOURCE, LIST, MAP, OFTIONS,
SOURCE, STORAGE, and XREF.

In the PLIOPT command, akkreviatons must be used for any ortion
that exceeds eight characters in length. Values for the other
options that relate to the listing (that is, FLAG, NUMBER,
STMT, LINECOUNT, LMESSAGE/SMESSAGE, MARGINI, NEST, and NUMBER)
will be the same as for the LISTING file.

XREF | NOXREF

X NX

60

The XREF option specifies that the compiler is to include in
the compiler listing a list of all identifiers used in the PL/I
program, together with the numbers of the statements in which
they are declared or referenced. (The only exception is that
label references on END statements are not included.

For example, assume that statement number 20 in the procedure
PROC1 is END PROCl1l;. 1In this situation statement number 20
will not appear in the cross reference listing for PROC1l.)

If both ATTRIBUTES and XREF apply, the two listings are
corrbined into one takle.



Chapter 4: Execution Time Options

The PL/I Optimizing Compiler produces compiled code to which various
execution time options may be passed. These options enakle you to
control the amount of storage used during execution, and to override the
PL/I error handler's attempts to intercept program check interrupts and
ABENDs. and, provided that either FLOW or COUNT HAS BEEN SPECIFIED as a
compiler option, to specify that a count of the number of times each
statement has been executed ke generated or that a trace of the most
recently executed statements be retained, or both. Execution time
options are sometimes called program management parameters.

I

|A set of default execution time options are established during system
jgeneration. These can be overridden by options specified in a PL/I

| variable PLIXOPT, and these in turn can be overridden by options

| specified with the START command or with the filename when it is used as
|a command.

I

|To specify execution time options within a PL/I program, you must use
|the following declaration:

|

| DCL PLIXOPT CHAR(len) VAR INIT ('strg') STATIC EXTERNAL;

|

| where "strg"™ is a list of options separated by blanks or commas, and
|"len" is a constant equal to or greater than the length of "strg".

|

| If more than one external procedure in a job declares PLIXOPT as STATIC
| EXTERNAL, the string in the first program passed to the loader will be
|taken as the list of options and the second and subsequent strings

| ignored.

|

|The execution time options can be specified with the START command or
|with the filename of a MODULE file when it is used as a command. If a
| parameter is also bkeing passed to the main procedure, it must follow any
| execution time ortions and ke preceded by the characters blank, oblique
| stroke, blank( / ). Program management parameters must be separated

| from each other by Lklanks.

!

|A typical START command specifying execution time options (NCSPIE and

| REPORT) and a main procedure parameter (734) might be:

I

| start * nospie report / 734

List of Execution Time Options

JThe following is a list of execution time options:
COUNT

|
| specifies that a COUNT of the number of times each statement in
| the program was executed will be produced if either the COUNT

| or FLOW option was specified at as a compiler option. (If

| neither was specified as a compiler option, an error message is
| issued and the request for COUNT is ignored.)

I

|

|

I

|

The count is transmitted to the PLIDUMP file when the program
has completed execution. To highlight statements that have not
been executed, a separate list of such statements is produced.

| NOCOUNT
I

| specifies that a count of the number of times each statement

Chapter 4: Execution Time Options 61



I
|
I
!
!
|
!
I
l
|
!
I
I
I
!
|
I
!
!
!
!
|
I
!
!
|
!
!
i
|
!

|
I
i
i
|
!
f
]
!
f
|

FLOW

NOFLOW

has been executed will not ke produced. NOCOUNT is used to
prevent a program compiled with the COUNT option from producing
count information. Even when NOCOQUNT is specified, a
considerable time and space overhead is incurred by a program
compiled with the COUNT option. To get the best performance a
debugged program must ke recompiled without the

specifies that a trace of the most recently executed statements
will be retained and that this will be printed when an on-unit
with the SNAP option is entered or when a call to PLIDUMP with
the trace option is made. The option is only effective if
either FLOW or COUNT was specified as a compiler option. (If
neither was specified an error message is issued and the ortion
is ignored.)

The format of the FLOW option is FLOW [(n m)] where n specifies
the number of branch-out/kranch-in statement number pairs to be
retained, and m specifies the number of changes of procedure or
on-unit that are retained. n and m can have different values
from those specified in the compiler FLOW option. If n and m
are omitted both at compiler time and at execution time,
default values of 25 for n and 10 for m are assumed.

The trace is transmitted to SYSPRINT AND TAKES THE FORM:

3 TO 8 IN TESTER 201
12 1O 17 202
22 TO 3 IN DRIVER 203

Meaning that a branch was made from statement three to
statement 8 which is in the procedure named TESTER, than ran
sequentially to statement 12 when a branch to 17 was made then
ran sequentially to 22 where a branch to statement 3 which is
in DRIVER was made.

specifies that a trace of the most recently executed statements
will not be retained. It is used to override the FLOW compiler
ortione.

Even when NOFLOW is specified, considerable time and space
overheads are incurred ky programs compiled with the FLOW
option. When a program has keen debugged it should be
recompiled without the FLOW COMPIler option to achieve maximum
efficiency.

ISASIZE (yyyyylyyyyyk)

62

specifies the amount of main storage initially acquired for
automatic, controlled, and based variables, and compiled code
workspace.

Allocation of PL/I dynamic storage on the entry of klocks and
for the allocation of controlled and based variables is carried
out as far as possible within this area. When there is
insufficient room, storage is acquired from the system and a
time overhead is involved. However if a large value is
specified in ISASIZE, storage may be wasted, and there may be
insufficient storage for 1I/0 kuffers and transient library
routines.

If ISASIZE is not specified, a default value is applied. This



REPORT

NOREPORT

STAE

NOSTAE

SPIE

NOSPIE

value is half of the storage remaining in the region after
storage for the load module has been allocated rounded up to
the nearest 2K bytes.

The REPORT execution time option can be used to help work out
the optimum ISASIZE.

specifies that a takle showing the use of storage by the
program will be transmitted to the PLIDUMP file at the end of
the execution of the program. Under CMS the PLIDUMP file is
assigned to the printer by default.

The REPORT option should ke used to help calculate the best
value to specify in ISASIZE. The value given in the REPORT
table "Amount of PL/I Storage Used" would give the fastest
execution with the minimum total waste of storage if specified
as the ISASIZE. However, if a number of PL/I klocks or
controlled or based variakles are little used during the
program, the programmer may prefer to have storage for some of
these allocated by the system. 1In this situation, specifying a
smaller ISASIZE value may enable the program to run in a
smaller region, although execution time may increase.

Note: The use of the REPORT parameter considerably slows
execution. It is intended as an aid for prograr development,
not for regular use.

specifies that a report table will not be generated. It is the
default.

specifies that when an ABEND occurs, an attempt will ke made to
call the PL/I error handler and raise the PL/I ERROR condition.
It is the default.

specifies that on program initialization, a STAE macro
instruction is not to be issued, and consequently the PL/I
error handler will not be called to attempt to raise the ERROR
condition when an ABEND occurs.

specifies that when a program interrupt occurs, an attempt will
ke made to call the PL/I error handler to raise the ERROR
condition. It is the default.

specifies that on program initialization, a SPIE macro
instruction is not to be issued, and consequently the PL/I
error handler will not be called to raise the ERROR condition
when a rrogram check interrupt occurs.

Chapter 4: Execution Time Options 63






( as line editing character 13
*PROCESS statement 19,44
- as line continuation character 39

/ in execution time options 61
/% as endfile marker 40

%INCLUDE data 52
without using preprocessor 52
%INCLUDE statements 20,24

: as prompt 38
1+ as prompt 38

# as line editing character 13
@ as line editing character 13
" as line editing character 13
[ as line editing character 13

A disk 14,23
AGGREGATE option 49
ANS printer contrcl character 54
ASCII data sets 35
asterisk
*PROCESS statement 19
/* as endfile on-unit 40
at character (@) as line editing
character 13
attention key 13
ATTN key, (see attention key)
ATTRIBUTES option 49
automatic padding for GET EDIT 40
automatic prompting 38,39
overriding 39

backspace character 13
BACKWARDS attribute 35
BCD 49

BEGIN command 14
blanks

Index

blanks (ZONTINUED)
removal from main procedure
parameter 31
blanks in main procedure parameter 35
bracket as line editing character 13

£ as line editing character 13
capital letters 15,19
card 25

source program on 25
case M and U 19
cent sign as line editing character 13
CHANGE subcommand of EDIT 17
character deletion 13
CHARDEL, character delete character 13
CHARSET 49
checkpoint/restart facility 35
CMS, system requirements 9
code, source 54

position in record 54
colon as prompt 38
colon plus as prompt 38
conmmands and subcommands

BEGIN 14

CASE M 19

CASE U 19

CHANGE 17

EDIT 15

ERASE 33

FILE 15,18

FILEDEF 23

filename as 27

FNAME 18

GENMOD 27

GLOBAL 27

HT 13

HX 13

immediate 13

IPL 12

LOAD 27

LOGIN 10

LoGouUT 33

MACLIB 20,24

PLICOPT 21

QUIT 18

RT 13

SAVE 18

START 27

TERMINAL 13

TXTLIB 26
commas

inserticn in conversational I/0 40
insertion in main procedure
parameter 35
compilation 21
for execution under 0S 25
COMPILE option 50
compiler 43

Index 65



compiler (CONTINUED)
files generated by 22
invoking 21
LISTING file 22
output 22
PLIOPT command 43
TEXT file 22
compiler files 24
compiler options
(see also options, compiler) 24
alphabetical list 49
length restriction 24
list of defaults 43
listed by function 47
specifying in PLIOPT commands 24
compiling non-CMS source programs 25
CONTROL option 50
conventicns, PL/I
conversational I1I,/0 37
DISPLAY and REPLY U0
conversational I/0 37,40
assigning SYSIN to terminal 31
automatic padding with blanks 40
ENDFILE 40
ending file 40
GET DATA 40
GET EDIT 40
GET SKIP 40
line continuation character 39
PRINT file formatting 37
simplified punctuation 40
SKIP for input 40
with DISPLAY and REPLY Uu40
COPY files 20
correcting typing errors 13
COUNT option
compile time 50
execution time 61
CP environment 11
returning to 14
Cps/370 11

data
entering 12
transmitting 12
DECK option 50
deleting
erasing 34
files (see ERASE command)
incorrectly tyred characters (see
logical character delete characte
incorrectly typed lines (see logical
line delete character)
disk
A disk 23
output disk 23
parent disk 23
source disk 23
source program not on 25
transferring source to 25
DISK option 23,57
DISPLAY statement 40
DMSIBM, interface module
DUMP option 51

31,32

66

EBCDIC 49
EDIT command 15
edit mode 18
editor, CMS 15
ENDFILE marker 40
ending input on file 40
ENDPAGE in conversational 1I/0 37
entering data 12
ERASE command 33
escape character 13
ESD option 51
EVENT option 35
EXEC, profile 14
execution
compiled program 27
file compiled under 0S8 32
file compiled with OSDECK option
MODULE file 27
TEXT file 27
under 0S 25

fast %INCLUDE compiler option 52
FETCH statement 35
FILE command 15,18
filenare 15
as command 27
naming PLIOPT files 15

fIlles
CMs and PL/I defaults 31
COPY 20

creating 22
deleting 34
for secondary input text 20
LISTING 22
MODULE 27
PL/I and CMS defaults 31
PLI 18
PLIOPT 18
PRINT, formatting conventions 37
TEXT 22,27
used by compilexr 24
FLAG option 51
FLOW option 51
compile time 51
execution time 62
FNAME command 18
forty eight character set 49

GENMOD command 27
GET SKIP 40
GLOBAL command 27
GONUMBER option 52
GOSTMT option 52

halting execution, HX command 13
halting typing, HT command 13

HT (halt typing) command 13

HX (halt execution) command 13
hyphens at end of lines 39

identifier, virtmal machine 10
immediate commands 13
IMPRECISE option 52

INCLUDE compiler option 52
INCLUDE statements 20,24

32



included text 24

information sent to terminal 23
INPUT mode 18

INSOURCE option 53

interface module, DMSIBM 31,32
IPL command 12

ISASIZE option 62

keyboard, locking 12

line deletion 13
line editing characters 13
LINECOUNT option 53
LIST option 53
LISTING file 22
listing options, choosing 23
LMESSAGE option 53
LOAD command 27
locking of keyboard 12
logical character delete character 13
logical line 39
logical line delete character 13
logical line end character 13
LOGIN command 10
LOGOUT command 33
LOGOUT HOLD command 34
lower case 15
character string constants 19
input 19

MACLIB 24
MACLIB commands 20
macro library
creating 20
MACRO option 52,53
INCLUDE as alternative 52
MAP option 53
MARGINI option 54
MARGINS 15
MARGINS compiler option 54
MDECK option 55
MODULE file 27
creating 27
executing 27

NAME option 26,55
NEST option 55
NOAGGREGATE option 49
NOATTRIBUTES option 49
NOCOMPILE option 50
NOCOUNT option
compile time 50
execution time 61
NODECK coption 50
NODUMP option 51
NCESD option 51
NOFLOW option 51
execution time 62
NOGONUMBER option 52
NOGOSTMT option 52
NOIMPRECISE option 52
NOINCLUDE compiler option 52
NOINSOURCE option 53
NCLIST option 53

NCMACRO option 53

NOMAP option 53

NOMARGINI option 54

NOMDECK option 55

non-CMS source programs 25

NONEST option 55

NONUMBER option 55

NOOBJECT option 56

NQOFFSET option 56

NOOPTIMIZE option 56

NOOPTIONS option 57

NOPRINT option 23,57

NOREPORT option 63

NOSOURCE option 59

NOSPIE option 63

NOSTAE option 63

NOSTMT option 59

NOSTORAGE option 59

NOSYNTAX option 59
NOTERMINAL option 60

null line 18

NUMBER option 55

number sign (#) as line editing
character 13

numbering options, discussion 4u4

OBJECT option 56
OFFSET option 56
OPTIMIZE option 56
Optimizing Compiler (see compiler)
options 54
comparison between compiler and
PLIOPT 44
compiler 44,54
AGGREGATE 49
ATTRIBUTES 49
CHARSET 49
COMPILE 50
CONTROL option 50

COUNT 50
DECK 50
DUMP 51

Esp 51

FLAG 51
FLOow 51
GONUMBER 52
GOSTMT 52

IMPRECISE 52
INCLUDE 52 .
INSOURCE 537
LINECOUNT 53

LIST 53
LMESSAGE 53
MACRO 53

MAP 53 -

MARGINI 58
MARGINS 54

MDECK 55
NAME 26,55
NEST 55

NOAGGREGATE 49
NOATTRIBUTES 49
NOCOMPILE 50
NOCOUNT 50

NODECK 50
NODUMP 51
NOESD 51

Index 67



options (CONTINUED)
compil (CONTINUED)
NOFLOW 51
NOGONUMBER 52
NOGOSTMT 52
NOIMPRECISE 52
NOINSOURCE 53

NOLIST 53
NOMACRO 53
NOMAP 53

NOMARGINI 54
NOMDECK 55
NONEST 55
NONUMBER 55
NOOBJECT 56
NCOFFSET 56
NOOPTIMIZE 56
NOOPTIONS 57
NOSOURCE 59
NOSTMT 59
NOSTORAGE 59
NOSYNTAX 59
NOTERMINAL 60

NOXREF 60
NUMBER 55
numbering 44
OBJECT 56
OFFSET 56

OPTIMIZE 56
OPTIONS 57
SEQUENCE

SIZE 58
SMESSAGE 53
SOURCE 59

STMT 59
STORAGE 59
SYNTAX 59
TERMINAL 23,60

XREF

60

execution time 62,6
COUNT

FLOW

61

ISASIZE 62
NOCOUNT 61
NOREPORT 63

NOSPIE

NOSTAE
REPORT

SPIE
STAE

using
list of defaults 43
listed by function

PLIOPT
DISK

63
63
63
63
63
31

23,57

NOPRINT 23,57
OSDECK 25,32,57
PRINT
summary of functions
OPTIONS option 57
OSDECK option 25,32,57
output disk 23

23,57

3

47

47

page breaks at terminal 37

PAGE option and format item 37

PAGELENGTH 37

PAGESIZE

68

37

parameters 31
blanks in 31
length restrictions 31
main procedure 31
passing a PL/I program 31
program management 31
restrictions 31
parent disk 23
parenthesis as line editing character 13
password
virtual machine 10
PL/I Optimizing Compiler (see compiler)
PL/I program 15
columns for input 15
PL/I restrictions 35,37
ASCII data sets 35
BACKWARDS attribute 35
blanks in main procedure parameter 37
checkpoint restart facility 35
EVENT option 35
FETCH statement 35
RELEASE statement 35
SIZE option, space used exceeding that
specified 58
sort facility 35
tasking 35
teleprocessing files 35
VBs-format records 35
Vvs-format records 35
PL/I source code 54
position in record 54
PLI files 18
PLICKPT 35
PLIDUMP, assigning to terminal 31
PLIOPT command 43
example and discussion 21
options and defaults 43
syntax 43
PLIOPT file 18
PLISORT 35
PLISTART as name of TEXT file 26
PLITABS 37
PLIXOPT 61
execution time 61
pound sign (#) as line editing
character 13
preprocessor statements 52
%INCLUDE without using preprocessor 52
primary prompt 38
PRINT file 37
conversational formatting
conventions 37
overriding formatting conventions 37
PRINT option 23,57
printer control character 54
PROCESSs statement 19,44
profile EXEC 14
prompting, conversational I/0 38

QUIT command 18
quotes as line editing character 13

records
vBs-format 35
vs-format 35
RELEASE statement 35



REPLY option 40
REPORT option 63
restrictions
PL/I, (see PL/I restrictions) 35
RT (resume typing) command 13

SAVE command 18
secondary input text 20,24
creating 20
secondary input to compiler 52
secondary prompt 38
SEQUENCE option 58
sixty character set 49
SIZE option 58
SKIP on input 40
SKIP option and format item 37
SMESSAGE option 53
sort facility 35
source code 54
position in record 54
source disk 23
SQURCE option 59
SPIE option 63
STAE option 63
star PROCESS statements 19
START command 27
STMT option 59
stopping 13
execution 13
typing (terminal printout) 13
STORAGE option 59
storage requirements for CMS 9
stream I/0
DATA directed conventions 40
EDIT directed 40
LIST directed conventions 40
subcommands (see commands and subcommands)
switched line connection, retaining 34

syntax conventions, summary 41

SYNTAX option 59

SYSIN, assigning to terminal 31
SYSPRINT, assigning to terminal
system reguirements for CMS 9

tabs 15,37
tape 25,35
BACKWARDS attribute 35
source program on 25
tasking 35
teleprocessing files 35
TERMINAL command 13
TERMINAL option 23,60
terminal session
ending 33
starting 10
terminal, listings transmitted to
TEXT file 27
creating 22
executing 27
text libraries 26
transmitting data 12
TXTLIB command, troubles with 26
typing errors, correcting 13

upper case 15,19

VBs-format records 35
Vs~-format records 35

workfiles, compiler 24

48-character set 49

60-character set 49

31

23

Index 69



Explanation of sample terminal session

The terminal session has been planned to
show various features of CMS. The program
is a simple conversational program that
responds with one of two well known
quotations when the correct author is
specified. It has been written to show the
conversational I/0 and parameter
conventions of PL/I under CMS.

The first column in the figure shows
whether the terminal print out is entered
by the user or is tranmsitted by the
system. The second column shows the
terminal printout. Where an action from
the user would not result in words
appearing on the terminal printout, the
action to be taken is placed in
parentheses. For example "(you switch on
terminal)”™ in line 1. The third column
contains notes and comments. The fourth
column gives the page of the book where a
fuller explanation of the point being
illustrated can be found. Throughout the
example certain blank lines have been
omitted to allow the complete session to
appear on one page.

Action

user
system
user

system
user
system

user
system
user

system

user
system
user

user
system
user
system
user
system

system
user
system
user
system
user

sytem

user
system

user
system

Figure F.1

| Terminal Printout

| {(you switch on terminal)
|d*x38z irvy; wvm370 online
| (you press attention key t9g
| login robin
| ENTER PASSWORD:
| (you enter password)
| LOGMSG 08:09:08 GMT MONDAY
| LOGON AT 08:25:34 GMT MONDA
|ipl cms
|CMs 1.0 PLC S
|edit skylark pliopt
|NEW FILE:
| EDIT:
| input
| INPUT:
| skylark:proc (charparm) opt
dcl (charparm,quotation, d
string=translate(charpar
on endfile (sysin) goto
start:
if string='percy bysshe s
'hail to thee blythe

'a skylark wounded on t}
else gquotation='no known
put skip edit(guotation,

(a,skip(5));
get edit(string) (a(80));

|finis: display('thank you f{
|end skylark;

| (you press carriage return
| EDIT:

|file

IR; T=0.35/0.91 08.26.32
|pliopt skylark (xref a

| PL/T OPTIMIZING COMPILER V]
|OPTIONS SPECIFIED
| XREF,A,TERM

|NO MESSAGES PRODUCED FOR TH
| COMPILE TIME 0.02 MINS SPJ
|R; T=2.74/4.41 08.38.37
|global txtlib plilib

|R; T=0.03/0.04 08.41.49
| load skylark
|R; T=1.11/1.85 08.50.06

|start * / percy, bysshe, sk

unlock terminal)

05713773
05/13/73

ons (main);

ring) char (100) var;

|
PRAPED N

nis;
elley' then guotation=

pirit';

uotation';
nter new name or endfile')

|
|
|
|
|
| eslaalse if string='willim blake®' then gquotation=
|
|
|
|
|

oto start;
r your company*);

ey)

S COMPILATION
L FILE 0 RECORDS SIZE 4051

| |
| EKECUTION BEGINS...
|HAIL TO T'HEE BLYTHE SPIRIT'

|

| ENTER NEW NAME OR ENDFILE
|:

| 7*

| THANK YOU FOR YOUR COMPANY

|R; T=1.52/2.46 08.45.06

| logout

| CONNECT=00.33.59 VIRTCPU=(0:09.11 TOTCPU=000:16.55
| LOGOFF AT 08:59:33 GMT M(DAY MAY 13 1973

{ (you switch off terminal)

Notes and comments

Message when you switch on.
Enter 'login'
Printing of password normally suppressed
Log message from system

Invoke CMS
Message shows CMS version in use

Edit mode to enter program as a CMS PLIOPT file
Shows that you have no PLIOPT file called skylark

Shows you are in edit mode
Tell system further input will be part of file
Shows that you are in input sukmode

PL/I program entered in either capitals or lower

case letters. Use columns 1 through 71

CMS interface removes blanks from main procedure

parameter. Program uses commas and translates.

a3 deletes two previous incorrect characters

wing/a cherubim doth cease to sing',

Skip(5) is interpreted as skip(3) at terminal
Sent to terminal (console of virtual machine)

Ends input submode

Message confirms you are back in edit mode
Stores input as PLIOPT file skylark

Ready message, CMS ready for further commands
Compile command, options preceded by (

R1.2 TIME 08.34.51 DATE 13 MAY 1973

TERM specified by CMS Interface module

Make the PL/I library avialable
resolve addresses in PL/I program

Note parmeter must be divided into 8 character
tokens. Blanks are removed. Note also blanks
after * and /

Message from CMS

Output from program

Prompt shows input required from terminal
Endfile marker .

Message from DISPLAY statement

Command ends terminal session

Logoff message

followed by name of virtual machine

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page
Page

Page

12

15

15

12

37

4o

16

21

27

38

40

33

A sample terminal sessin



autq buojy pjog4 4o 1nd

(ON

PL/I Optimizing Compiler: READER’S
CMS User’s Guide COMMENT
Order No. SC33-0037-1 FORM

Your views about this publication may help improve its usefulness; this form
will be sent to the author’s department for appropriate action. Using this

form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your

IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity  Accuracy Completeness Organization Index Figures Examples Legibility

Please indicate in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office
or representative will be happy to forward your comments.)



SC33-0037 -1

Your comments, please . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation

Department 813(HP)
1133 Westchester Avenue
White Plains, New York 10604

HEN

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

O
15
Py
Q
|2
|
|
I
|
I
Fold
.......... . .....-.--...I
First Class |
Permit 40 |
Armonk
New York]| |
e |
E——
]
] |
[ ]
] I
L] |
L]
|
I
I
l
|
Fold [

L-LE00-€€0S 'V'S'N Ui Paiulld  (62-0LES/09ES "ON 314) 9pInD s,4asn SND :4o)idwio) buiziwndQ 1/1d SO



	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	_1
	replyA
	replyB

