$C33-0051-0
File No. §360/5370-29

DOS |
PL/I Optimizing Compiler:
Program Product ~ CMS User’s Guide

Program Numbers 5736-PL1
5736-LM4
5736-LM5

(These program products are available

as composite package 5736-PL3)

First Edition (March 1976)

This Edition applies to Version 1, Release U4, Modification 1 of
the DOS PL/I Optimizing Compiler under Release 3 of VM/370 and
to all subsequent releases until otherwise indicated in new
editions or Technical Newsletters. Changes will continually be
made to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest
IBM System/360 and System/370 Bibliography SRL Newsletter, Order
No. GN20-0360, for the editions that are applicable and current.

Reqguests for copies of IBM publications should be made to your
IBM representative or to the IBM branch office serving your
locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM United Kingdom Laboratories Ltd., Programming
Publications, Hursley Park, Winchester, Hampshire, England.
Comments become the property of IBM.

Note: Some sections of this manual are copyrighted in the 0S
PL/I Optimizing Compiler: CMS User's Guide.

© Copyright International Business Machines Corporation 1973,1974,
1975,1976

[
-

Preface

This manual explains, for the DOS users >f the Conversational Monitor
system (CMS) component of the IBM Virtual Machine Facilitys/370 (VM/370),
how to invoke the DOS PL/I Optimizing Compiler under CMS and execute and
debug programs compiled by it.

The reader is assumed to have a basic knowledge of PL/I, DOS and of CMs.

Chapter 1 is an introduction to PL/I under CMS. It aims to give enough
information to allow the reader to enter, compile, execute, and debug a
straightforward PL/I program under CMS. It also aims to act as a guide
to further sources of information and to provide enough background
material to allow the reader to make full use of the potentialities of
the optimizing compiler under CMS.

Chapter 2 is the reference source for the special restrictions and
conventions that apply to PL/I when it is compiled by the DOS optimizing
compiler and executed under CMS.

Chapter 3 is the reference source for the DOSPLI command and the DOS
PL/I optimizing compiler options. '

Figure P.1 is a guide to using this book.

REFERENCE PUBLICATIONS

This book makes reference to the following publications for related
information that is beyond its scope.

Virtual Machine Facility/370:

CMS User's Guide, Order No. GC20-1819

CP command Reference for General Users, Order No. GC20-1820

CMs_command _and Macro Reference, Order No. GC20-1818

Terminal User's Guide, Order No. GC20-1810

Pianning and System_ Generation Guiae, Order No. GC20-1801

DOS_PL/I Optimizing Compiler: Language_ Reference Manual,
Oorder No. SC33-0005)

DOS PL/I Optimizing Compiler: Programmer's Guide, Order No. SC33-0008

DOS PL/I Optimizing Compiler: Program Logic, Order No. SC33-0006

DOS_PL/I Optimizing Compiler: Messages, Order No. SC33-0021

Preface iii

AVAILABILITY OF PUBLICATIONS

The availability of a publication is indicated by its use key, the first
letter in the order number. The use keys are:

G - General: available to users of IBM systems, products, and
services without charge, in quantities to meet their normal
requirements; can also be purchased by anyone through IBM
branch offices.

S - Sell: can be purchased by anyone through IBM branch offices.
L - Licensed materials, property of IBM: available only to

licensees of the related program products under the terms of
the license agreement.

iv

CHAPTER 1:
PL/I PROGRAM UNDER CMS
Introduction . . « . . ¢ < .« .
Using VM/370 ¢« « ¢ o« o o o
The DOS System under CMs .
Starting the Session - the LOGON
command « o« ¢ o o o o « s o o
summary . . o o « o . - .
Example of use of the LOuON
command « « « o o o o o o
BACKGROUND « « o + 2 o o s o
CP and Your Virtual Machine
Sources of Further Information
Invoking CMS - the IPL Command .
Summary - o
Example of use of the IPL
command « ¢ « ¢ ¢ o o + @ o o
Background « « o« « o « o o o o o o
Entering Commanids and Data Under
CMS o @ o o o ¢ © o = o o o o @
Profile EXEC « 2 o o o o o o o «
Sources of Further Information . .
Entering the Program - The EDIT and
FILE Commands « « ¢ « o o « « o o =
summary c e s s e o
Examples of Use of the EDIT and
FILE Commands . « « « « . .
Background . . . « . o ¢ ¢ o .
~ The CMS Editor . « « « - . .
Correcting Typing Errors . .
Using the Editor to Alter Non-
CMs Files . . . « o e =
Format of PLIOPT f11es e o s o o
Special Considerations . « « « «
Use of Non Default Compiler
Options « « ¢ ¢ ¢ o o o o o« o «
Lowercase Character String
Constants « ¢« ¢ ¢ ¢« ¢ o o o o o
Use of the Line Editing 5ymbols
in your Program . . .
Files for Inclusion by %INCLUDE
Statement .« .« ¢ <« ¢ o e o . o .
Sources of Further Information . .
compiling the Program - the DOSPLI
ComMAand « « e o = o o = o « o o o o
Summary e« o o o « o . .«
Example of Use of the DOSPLI
Command « ¢« « « ¢ o o o ¢ o o o
Background Information < .
Compiler Output and its
Destination « « « o« o ¢ ¢ o o @

WRITING AND RUNNING A

s 8 o 8 4 @

WA

[c<JEN] SNgoaooum wv i

16
17

18
18

20
21

21

Contents

Handling Listing Information . :
Files used by the compiler . . .
Accessing Disks Under CMS . . .
Accessing the Compiler and its
Libraries « « ¢ ¢« ¢« ¢ ¢ ¢ o« o« &
Special Considerations
Secondary Input Text - %IN»LUDE
Statements
Sources of Further Information .
Executing a DOS PL/I Program . . .
SUMMAYY « o o o o o o o o o o @
Background Information
The CMS/DOS Linkage Editor . .
Using CMS Files and DOS Data
SetS o o o o ¢ o o o o o o o o
Special Considerations . . « . . .
Accessing Error Messages
Link-Editing an Object Program
Stored on a DOS Relocatable
Library .
Ssources of Further Information .
Ending the Terminal Session - The
LOGOFF Command « « ¢ ¢ « o o ¢ o «
SUMMAYY o « « o o o « o o o o =
Example of ending the session
Background « . <« <« + ¢ o o o o .
Deleting Files . « . « « « . .
Special Considerations . . < . .
Retaining a Switched Line
Connection . « « « « o « .
Source of Further Information
Debugging a Program . «. « « « « .
Use of CP Debug . « « <« .

® e o e o ® © ° & e o

« e s s s s

LI S 'Y

CHAPTER 2: PL/I CONVENTIONS AND
RESTRICTIONS UNDER CMS . o o « &
Restrictions .« « « o« o o = o «
Conventions . . . o

Display and Reply Under CMS

CHAPTER 3: THE DOSPLI COMMAND AND
COMPILER OPTIONS . .
Syntax Notation . . .
DOSPLI Command . .« .

Usage e« « o o o . .
Compiler Options . . .
Alphabetical List of Optlons

« s 0 & &
¢ o & o 0
s & o 8 o

APPENDIX A: AN EXEC PROCEDURE FOR
THE PL/T USER .« « =« ¢ « o o o o o «
INDEX . ¢ ¢ o o o o o o o o o o o o &«

.0 s 8

45
45
47
47
47

67
69

Figures

Figure P.1l. How to use this book . .
Figure 1.1. The steps involved in
entering and executing a DOS PL/I

vii

program under CMS « « . oviii

Figure 1.2. The disks on which the
compiler output is stored
Figure 1.3. Files that may be used
by the compiler . « « o o« « ¢ o o
Figure 2.1. Restrictions on the PL/I
functions that can be executed under
CMSe w ¢ ¢ o o o o o @ o o o o o o @
Figure 3.1. Compiler Options and IBM
Recommended Jefaults arranged
alphabetically « « « o o o o o o o &
Figure 3.2. (Part 1 of 3) Compiler
options arranged by function
Figure F.1l. Sample Terminal Session

vi

21

23

41

49

50
75

START

Are you familiar
with CMS?

Yes

Do you want an
overview of the DOS
Optimizing compiler
operating under
cms?

NO

Do you wish to know
about the DOSPLI
command and the
options of the
compiler?

NO

Do you wish to know
the PL/I restrictions
under CMS?

Figure P.1. How to use this book

NO

This book gives a brief introduction at
_the start of chapter 1. Further

YES

" information is in the VM/370: CMS User's
Guide.

A foldout example program at the back of
this manual provides an overview of the

YES

> facilities offered by the DOS Optimizing
compiler under CMS.

The syntax of DOSPLI and the compiler
» options are described in Chapter 3 of this

YES

book.

This information is contained in Chapter 2

— of this manual.

vii

| (stanT)

LOGON
Start the session
FETCH(START
Execute the program
IPL
Make CMS virtual machine »
available
/ Yes
- ‘4 Errors found?
EDIT & FILE
Enter, correct, and save your No
program
LOGOFF
End th i
SET DOS ON nd the session
Activate DOS environment

ASSGN
Identify source for compiler END

DOSPLI

Compile the program

EDIT

Examine listings at the terminal

Errors found?

ASSGN & DLBL

Identify PL/1 resident library

DOSLKED

Link edit the program

GLOBAL

Identify the link edited program S PL/1

ASSGN & DLBL

Identify transient library

™

Figure 1.1. The steps involved in entering and executing a DOS PL/I
program under CMS

Chapter 1: Writing and Running a PL/ I Program
Under CMS |

Introduction

Running a DOS PL/I program under. CMS is a very simple process. You will
need to carry out the following steps using commands at a terminal:

1.
2.
3.

4.

5.

7.

LOGON at the terminal.

IPL CMS.

Arite or alter a source program using the CMS editor.

Activate the DOS environment using the SET DOS command, assign the
source file to SYSIPT using the ASSGN command, and compile the
source program using the DOSPLI command. :
Access the PL/I resident library using ASSGN and DLBL commands,
then link edit the object program into an executable CMS/DOS phase
library (DOSLIB) using the DOSLKED command.

Execute the compiled program using the DLBL and ASSGN commands to
access the PL/I transient library and the SLOBAL command for the
DOSLIB, followed by the FETCH and START commands.

End the session.

After a brief introduction to VM/370 and CMS the remainder of this
chapter leads you through the steps listed above one by one. Because
CMS/DOS is intended primarily for program development, a section on
debugging is also included at the end of the chapter. A standard
approach has been adopted for each step. The format is:

1.

4.

summary and example. These give the essential information for a
novice user to run straightforward programs and list any special
cases that require additional action. These are the only sections
you will need to look at during your first CMS sessions.

Background information. This amplifies the information in the
summary and is intended to enable the user, as he gets more
experienced, to get the best possible results from using DOS PL/I
under CMs. ,

Special_ considerations. . This explains what to do in the special
cases listed in the summary. Special cases have been kept separate
to prevent them making a simple process appear complex. This
section is omitted if there are no special cases.

Sources of further informatibn. This lists the manuals that you
will require for any further information.

A sample terminal session can be folded out from the end of the book.
This shows all steps involved on one page and can be used for quick
reference.

Other chapteré in this book are for reference. Chapter 2 lists the

special restrictions and conventions that apply to PL/I when compiled by
the DOS PL/I Optimizing Compiler and executed under CMS. Chapter 3
shows the syntax of the DOSPLI command and lists the compiler options.

Chapter 1: Writing and Running a PL/I Program Under CMsS 1

System requirements: The PL/I Optlmizing Compiler requires a minimum of
320K bytes of virtual storage for the CMS virtual machlne. This figure
is the same as the suggested minimum for CMs.

USING VM{;?O

DOS PL/I under CMS is a small part of the VM/370 system. VM/370 is a
powerful system allowing you to develop and execute programs from the
terminal, enter and access data from the terminal, and giving you the
power of a full teleprocessing network. To make the most effective use
of DOS PL/I it will pay you to know the underlying principles of VM/370.
These are explained briefly below with particular reference to CMs/DOS.

VM stands for virtual machine. This is because as a VM/370 user you
can behave as if you had a computer all to yourself. You have a
"virtual machine"™. On this machine you have a set of disks on which
your programs and your data are held. You have a reader to which you,
and other VM/370 users, can pass data which can then be read onto. your
disks. You have a printer which can print copies of your f£iles or of
your program output, you have a CPU which you can use to execute
programs or the commands that are available under the VM/370 and you
have a console which is your terminal.

In fact, many of the resources will be shared with other users. The
sharing of the resources is handled by the control program CP. When you
sit at the terminal you are always working under the control of CP.

CP is the program that presents you with your virtual machine. To
operate the virtual machine, you must have an operating system. You
must ask CP to load a system using an IPL command. Many types of
operating systems can be loaded. You will normally load CMS, a system
specially designed for interactive programming. If you make a serious
error under CMS or any other operating system it will ABEND and you will
be returned to the direct control of CP. You can then re-IPL CMS and
start again, having harmed no one but yourself.

The chief features of CMS are a file handling system and a facility
for interactive programming. Both PL/I programs and the data they use,
will be held as CMS files.

Although, when you are using CMS you will in fact have two operating
systems, CMS and CP to which you can specify commands, this will not
normally be apparent to you and you will appear to have one large set of
commands at your disposal.

The commands that have most interest to the PL/I programmer can
usefully be divided into four sets; those that control the faciltiies
and configuration of your virtual machine, those that handle files,
those that allow you to query the status of your virtual machine or your
file system, and those that enable you to execute programs.

The most important are shown below:

Controlling your Virtual Machine Configuration

LINK and ACCESS connect disks to your virtual machine so that
you can access the data, programs, or storage
space you require.

SPOOL Directs output so that it can be printed or sent
' to your reader for subsequent recovery.

Controlling_your_ Files

EDIT ~ Allows you to enter and update files from your
terminal.

ERASE Erases files.

TYPE Allows files to. be displayed at the terminal.

PRINT ’ Allows files to be printed on the high-speed printer.

Querying your Status

QUERY Allows you to determine the current status of your
virtual machine.

LISTFILE Gives a listing of your CMs files.
Plus various specific DOS oriented commands listed below:

Executing Progqrams

These commands give access to various assemblers and compilers including
the 0s and DOS PL/I compilers and also simulate DOS and 0S job control
language.

As a DOS PL/I programmer, your major concern will be with CMS/DOS, a
fuller description of this is given below.

The DOS_System under CMS

The DOS system under CMS, known as CMS/DOS, is a simulated system. - It
uses part of the actual DOS system for functions that include link-
editing and control of input/output, and simulates other items.

All programs that are executea under CMS/DOS must be stored in the
DOS core image library or in a DOSLIB file, which is 'a simulation of a
core image library. A DOSLIB file is stored on a CMs disk.

Real DOS libraries are readable from the CMS virtual machine but no
writing can be done on them. Items from the libraries can, however, be
copied to CMS disks by means of special service commands. They then
become CMS files and can be edited using the CMs editor.

Relggant Commands

The commands available to users of CMS/DOS fall into four groups:

1. Commands to initalize and support the CMS/DOS system.
2. commands for simulating DOS job control language.
3. commands for simulation of DOS functions such as compiling,

link-editing, and executing programs.
4. commands for simulating librarian services.
All commands except those for program product compilation are

described in VM370: CMs Command and Macro Reference. The PL/I
compilation command is described in this manual and the COBOL

Chapter 1: Writing and Running a PL/I Program Under CMS 3

compilation command in the VM/370: CMS User's Suide for COBOL, Order No.

5C28-6469.

The commands that are liable to be of most use to the PL/I programmer
are briefly described below.

Commands to initialize and support the DOS system are:

SET
QUERY

LISTDS
cgmmaqgs for

ASSGN

DLBL

commands for

DOSPLI

FCOBOL

DOSLKED
FETCH

The commands
DSERV

ESERV

RSERV

PSERV
SSERV

DOSLIB

Used to activate the CMS/DOS environment and set the UPSI
byte, which is a DOS housekeeping field.

Used to discover whether the CMS/DOS system is active and
to test the settings of the UPSI byte.

Used to list the status of DOS files accessed in CMS.
simulation of DOS job control language are:

Used to associate a symbolic device name with an actual
unit. The unit may be a CMs disk or a virtual unit such as
a virtual punch.

Used to identify a particular DOS data set or CMS file on a
physical unit and associate it with the name used to
reference the file in the PL/I program.

simulating DOS services are:

Used to compile PL/I programs. (The full syntax of DOSPLI
is given in Chapter 3 of this manual.)

Used to compile COBOL programs.

Used to link-edit programs ready for execution and place
them in a DOSLIB.

Used to bring DOSLIB files into storage for execution under
CMs/DOS.

for simulating DOS librarian and associated services are:
Used to display directories of the various DOS libraries.

Used to copy onto a CMS disk, display, punch or print an
edited (compressed) element of a DOS/VS source statement
library. : : o

used to copy DOS relocatable library modules to CMSs disks,
to a virtual device, or to display them at a terminal.

used to copy procedures from the DOS procedure library to
CMs disks, or to a virtual device, or to display them at a
terminal.

used to copy DOS source statement library books to CMS
disks, display them at the terminal or spool them to the
virtual punch or printer.

used to handle DOSLIB libraries, for example, to delete,
rename, or add members.

The remainder of this chapter leads you through the steps involved in
keying in and executing a program under CMS/DOS. The next page shows
you how to log on to your virtual machine.

Starting the Session - the LOGON Command
SUMMARY

To start a terminal session, you switch on the terminal and enter the
LOGON command, specifying the identifier of your virtual machine. The
terminal responds by requesting your password if one is reqguired by your
installation. After you have entered the password, the system responds
with a log message. You are now in the control program environment of
VM/7370, and can invoke CMs.

Example of use_of the LOGON_Command

| ottt Rt h |
| EXAMPLE OF LOGON ‘

' - -~ — " - - - " - - - - - - —_— - - - " -

|Terminal Printout Notes and comments

- — - ——— - - —— - - - - - > ———— — " - - —— g - — - — - - — -

| (Yfou switch on the terminal)

l .

|VM/370 ONLINE Message shows VM/370 is avail-
| (you may have to press attention able.

|key to unlock the terminal keyboard.)

|| ‘

{logon skylark: LOGON command followed by
identifier for your virtual
machine. (Normally known as
userid.)

NTER PASSWORD: System requests password.
password entered here) You enter password. The printing
|

|

|

~ &

of the password will normally be
suppressed or overprinted for
security.

.

LOGMSG - 09:12:09 04/02/76 Log message showing time and

| RUNNING SYS010 - COLD START AT 09:00 date of message, system identi-
| LOGON AT 09:13:04 THURSDAY 04/03/76 fication and start time, time
{1 and date of signing on.

|1. A carriage return (or equivalent) is assumed after all programmer
input. - :

2. The character | in column two implies spacing has been added to
accommodate notes.

3. System response is in upper case (capital) letters; programmer
input in lower case.

D e M e, S e G e S — — — — S — ——— q— - —— — a—— S — — G — s, S Gt S e W o — — — —

[}
[}
[}
]
]
[}
[}
|
[}
]
[]
|
]
[}
1
[}
[}
]
]
i
|
]
]
]
!
[}
|
[}
]
[}
[}
|
[}
|
1}
]
]
[}
|
]
[}
|
}
)
[}
|
]
[}
|
|
[}
|
[}
]
]
[}
|
|
]
]
[}
]
|
]
|
[}
|
[}
)
!

7
~

Chapter 1: Writing and Running a PL/i Program Under CMS 5

-BACKGROUND

CP and Your Virtual Machine

When you have keyed in your LOGON command and your password, you are in
control of a virtual machine. Your terminal can be considered as the
console of your virtual machine. You can thus carry out many of the
operations of the operator of the real machine. This includes the
ability to invoke a number of operating systems, among them CMS.

Your virtual machine is controlled in the real machine by a control
program known as Control Program/370 or CP. When you have received the
log message, you are in control of your virtual machine and are said to
be in the "CP environment".

SOURCES OF FURTHER INFORMATION

Topic Reference Source
LOGON command VM/370: CP Command Reference For General
User's :
LOGMSG meaning VM/370: Terminal User's Guide

Invoking CMS - the IPL Command

SUMMARY

To invoke CMS, you issue the IPL (Initial Program Load) command.

Example of use of the IPL command

e st et 1
EXAMPLE OF IPL
Terminal Printout Notes and comments
ipl cms The IPL CMS command.

|
CMs 3.0 PLC 0 WEDNESDAY 04/03/76 09.13.50

| Message confirms CMS is invoked and
| that CMS commands may be entered.

]
]
'
)
[}
]
[}
|
]
)
}
[}
|
]
|
]
t
'
]
|
[}
]
\
|
[]
|
t
[}
]
|
|
1
]
f
]
|
|
|
|
|
1
]
|
|

|
|
\
]
]
]
[}
|
t
|
[}
|
[}
|
]
1

|
[}

[}
[}

'
1

]

|

]

|

Conventions:

1. A carriage return (or equivalent) is assumed after all programmer
input. .

2. The character | in column two implies spacing has been added to
accommodate notes.

3. System response is in upper case (capital) letters, programmer
input in lower case.

o o o e e o et e i o et e e
Q
o e e s e o e . S . it e o s e e,

[}
1
[}
|
|
[}
[}
[}
|
[}
[}
I}
]
]
]
]
[}
[}
[}
[}
|
1
|
|
|
|
]
|
|
|
|
]
|
]
|
)
]
|
)
'
1
[}
1
]
t
|
[}
[}
i
|
1}
[}
[
]
]
t
[}
[}
)
1)
1
]
1
|
]
[}
[}
\
]
[}

Chapter 1: Writing and Running a PL/I Program Under CMS 7

BACKGROUND

Entering Commands and Data Under CMS

Onless you are operating in a submode of CMS, such as input mode within
the editor, everything you enter at the terminal is taken to be a CMS
command. If the command is correct, it is carried out and a Ready
message typed to confirm that the command is complete and that the
system is ready for further commands. If the command is not correct, an
error message is typed. Data is transmitted to the system when you press
the carriage return key for typewriter type terminals or the ENTER key
for display type terminals.

On a typewriter type terminal when a CMS command is being executed,
the terminal keyboard is locked so that you cannot enter any further
data until the system is ready to receive it. '

Line editing symbols

VM/370 provides four symbols to alter, delete, or split up the line you
key in at the terminal. These four symbols are known as logical line

editing symbols and are a, #, #, and " by default. For some terminals,
¢ becomes [or (. The symbols are removed from your input and treated

as editing symbols unless they are preceded by the escape symbol (see
"Using line editing symbols as normal characters" below). - The line
editing symbols can be used to alter or delete lines before you press
the carriage return key, or to enter a number of commands on one line to
save time.

Deleting a_line: If you wish to delete a line you are typing and to
reenter it completely, you should use the logical line delete symbol and
then press the carriage return key. By default the logical line delete
symbol is #. Thus to delete a line you could enter:

this is an example of deleting a line ¢
(¢ becomes [or (on some terminals.)

Altering a line: If you wish to alter a line you have not completed
typing, and then transmit it to the system, you must, on a typewriter-
type terminal use the logical character delete symbol, (sometimes called
the logical backspace symbol). On a display terminal you can simply
backspace the cursor and reenter the input. By default, the logical
character delete symbol is a. If the logical character delete symbol is
entered once it Jdeletes the previous character, if it is entered twice
it deletes the previous two characters, and so on. Thus to alter the
line you are typing you could enter:

this is an example of altering an amusing little wineaaadline

Many programmers prefer to use the actual backspace key on the
terminal as the character Jelete symbol. This saves the trouble of
having to count back to the character you wish to change. Instead you
can just backspace to the incorrect character and reenter the line from
that point. To set the backspace as the character delete symbol you
must use the TERMINAL command thus:

TERMINAL CHARDEL (you press the backspace key at this point)

Entering more than one command per line: If you want to save time at
the terminal by entering more than one command per line, you must use
the logical line end symbol. By default this is #. The characters
.following the # are treated as a new line. The line end character can
be used to split any type of input although its chief use is for
commands. For example if you wanted to split a line, you might enter:

this is an example of splitting#a line
The system would see "a line" as a separate input line.

Using line editing symbols as normal characters: If you wish to use any
of the line editing symbols as a normal character, you must precede it
with the escape symbol. By default this is ". For example to enter the
line "this is an example of using the escape symbol to enter 3' you
would enter: :

this is an example of using the escape symbol to enter "a
The escape character can be used preceding itself.

Attention key: If you are a normal user, TERMINAL MODE VM will be in
effect at your terminal and the use of the Attention key or its
equivalent will have the following results. If you press it once while
under the control of CMS, it causes an attention interrupt. If a CMs
command is being executed, this allows you to key in further CMs
commands that will normally be executed when the current command has
been completed. However, there are a number of commands that are
executed immediately. These are called Immediate commands. HI - halt
typing or displaying, HX - halt execution and RT - resume typing or
displaying can be useful when running PL/I programs. The Immediate
commands are described in the VM/370: CcMs command and Macro Reference.
Note HX (halt execution) clears all previously entered DLBL commands.

If a CMS command is not being executed, pressing the Attention key
once deletes anything entered on the current line, but otherwise has no
effect.

If you press the Attention key twice in guick succession while in the
CMS environment, control is returned to CP. The system then types "CP"
at your terminal. If you wish to return to CMS, you can press the
attention key again or enter the BEGIN command and control will be
returned to CMS.

Profile EXEC

Ahen the first CMS command after IPL is executed, a CMS disk must be
accessed. If the first command is an ACCESS command, the disk accessed
will be the disk named in the ACCESS command. If any other command is
used, the 191 disk will be accessed by default and set up as your A-
disk.

When the first disk is accessed, the disk is searched for a CMS EXEC
procedure with the name PROFILE. (An EXEC procedure is a set of CMS
commands that, typically, carry out repetitive housekeeping tasks such
as assigning files. These commands are executed by entering the name of
the EXEC procedure as a command.) If an EXEC procedure with the name
PROFILE is found on the first disk accessed, it is automatically
executed. Many installations use this feature to handle repetitive
housekeeping tasks that need to be done at the start of every session.

Chapter 1: Writing and Running a PL/I Program Under CMs

A PROFILE EXEC or other EXEC procedure is a suitable method of o
establishing the DOS environment and handling the assignments necessary
for compiling and running a PL/I program. A discussion of this and an
example of a suitable EXEC procedure are given in Appendix A.

SOURCES OF FURTHER INFORMATION

Topic Reference_ source
CMs Background UM/370: CMS User's Guide
IPL command VM/370: CMS User's Guiie

VM/370: CP Command Reference for
General Users

PROFILE EXECs VM/370: CMS User's Guide
Appendix A of this Manual

10

Entering the Program - the EDIT and FILE Commands
SUMMARY

To enter or alter a PL/I source program under CMS, it is necessary to
use the CMS Editor. You enter the EDIT command followed by the filename
of your choice and the filetype PLIOPT or PLI. You then use the editing
facilities either to enter new input or, if you are updating, to alter
the existing program. The facilities available for manipulating and
altering text using the Editor are not described in this manual. If you
are not aware of them, you will find them in the VM/370: CMS User's
Guide and the VM/370: CcMS Command and Macro Reference. The facilities
for correcting lines before you press the carriage return key are
described in the previous section under the heading "Line Editing
Symbols"™.

When you are satisfied with your input or alterations, you use the
FILE subcommand to create a CMS file that can be compiled using the
DOSPLI command. In addition to storing the file on a CMS disk, the FILE
subcommand returns you from the edit submode to the CMS environment.

If you are entering a new PL/I program, you must choose a new
filename which follows the CMS conventions. That is, the name can
consist of up to eight characters, which may be any alphameric character
plus the special characters §, d, and #. (Remember however that 3 and
are default line eliting symbols and special action may be required if
you wish to use them.) If you are altering an existing program, you
specify the existing filename. Your input must be typed in columns 1
through 71. The editor will insert one blank to the left of your input
so that the actual margins will be 2,72. You can type your input in
either capitals or lowercase letters or any combination of the two; it
will be translated into capitals (uppercase) by the Editor.

If you intend to execute your program under CMS, you should be aware
of the special conventions and restrictions that apply to PL/I when it
is used under CMS. These are listed in chapter 3 of this manual. If
you intend to compile your program under CMS but to execute it under the
control of DOS, then there are no special restrictions on the language
facilities you may use.

Special action will be required in the following circumstances

1. If you wish to use compiler options other than your installation
defaults.

2. If your program uses lowercase character string constants.

3. If you wish to use any of the line editing symbols as normal
characters in your program. The line editing symbols are a, #, &,
and " by default.

4. If you wish to create a file of secondary input text for inclusion by
use of the ¥INCLUDE statement.

The action is described under the heading "Special Considerations"
later in this section.

Chapter 1: Writing and Running a PL/I Program Under CMS 11

Examples of Use of the EDIT and FILE Commands

-
|
|
|
|
]
]
|
|
|
[}
[}
|
[}
|
[}
|
|
[}
|
|
|
[}
|
[}
|
|
]
|
[}
[}
]
|
[}
]
[}
|
]
]
[}
]
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
[}
|
|
[}
]
[}
[}
[}
]
[}
1
[}
[}
[}
[}
[}
|
[}
[}
[}
-

| EXAMPLE OF ENTERING A NEW PROGRAM

l------_---------------_---------_-___-q_----------------_-_--_--_---_-

| Terminal Printout

- s - —— - — - - ——— — - ——— - — - - - — - -~ - - — - —— —— - - = - - - -

jedit rabbit pliopt
[

|
NEW FILE:

I
EDIT:

I
D
I
input

|

I
| INPUT:
{rabbit:proc options (main);
ldisplay

Notes and comments

Key in EDIT command followed by
filename and filetype.

Message shows that you have no PLIOPT

file called "rabbit".

Message shows you are in edit mode.

Reying in INPUT subcommand causes the

input mode to be entered.

Message shows you are in input mode.
PL/I statements must be keyed in
columns 1 through 71.

| (*the rabbit squeaks to the world');

|end;

IT:

E
top
T

I

I
I-
D
!
o

I
OF
|

I
type *

|

RABBIT: PROC OPTIONS (MAIN);
DISPLAY

!
I
I
[
I
I
I
|
I
|
|
|
|
|
|
I
l
| END-
|E

|£

I

!

I

I

!

- o - —— - - - -

Null line (carriage return only on a
line) causes return from input to
edit mode.

Message shows change of mode.

Places the Editor's line pointer at
the top of the file.

Message shows the pointer is at top
of file.

Have the contents of the file
displayed at the terminal.

Note program has been translated to
uppercase and moved one column
right.

|
(*TEE RABBIT SQUEAKS TO THE WORLD') ;

Means end-of-file reached.

Keying in FILE command results in
your input being stored with the
filename and type you specified. It
also ends edit mode.

Ready message indicates further
commands can be entered.

1. A carriage return (or equivalent) is assumed after all programmer

input.

accommodate notes in the right hand column.

3. System response is in uppercase (capital) letters, programmer

1nput in lowercase.

12

|
|
I
|
|2. The character | in column two implies spacing has been added to
I
|
|
|

— S . S i S s S S o S o S s S S S s, S gt S gt S ik, S i - p— — a— — — S — — — —— a— T—— ——— — ——— —

f--‘.‘ --- meTE 1
| EXAMPLE OF ALTERING AN EXISTING PROGRAM

I ——— - e o

| Terminal Printout Notes and comments

| ———————————— - - ——— - - - - - i > >~ - - " ——— o

jedit dig pllopt Issue EDIT command specifying exist-
ing PLIOPT file "“dig".

EDIT: System confirms that it is in edit

| mode with a copy of the file

| available. (If there was no PLIOPT

| file "dig" it would respond "NEW

| FILE:".) The line pointer is placed

| at the top of the file.

I

o

|

locate/pht/ Locate the errors with the LOCATE
subcommand.
PHT EDIT(X) (A); If the VERIFY option is in effect,

] the first line containing the

| incorrect word is displayed.

| If it is not the default, VERIFY

| can be specified by entering VERIFY
| in edit mode.

changesht/ut Issue CHANGE subcommand.

PUT EDIT(X) (RA); The corrected line is displayed.
details of CHANGE and other edit
subcommands, see VM/370 CMS User's
Guide.

FILE subcommand requests that the
altered copy be stored as the file
"dig" and that the previous copy be
discarded.

x Fh
— e s o e (o o e

-

1]

Ready message indicates further CMS
commands may be entered.

1
|
]
|
|
[}
|
|
]
]
]
]
1
]
{
]
|
]
]
]
]
[}
t
|
!
|
]
|
|
[}
[}
]
t
t
]
t
]
]
|
|
|
|
t
|
]
|
)
|
|
|
|
|
|
\
i
|
|
|
[}
|
|
|
|
i
[}
]
[
]
]
|

— . —— T i, St e, S s, Tt e, S — " c— T G— — — —— ——— _— — — ——— ——— ———

|Conventions:

{1. A carriage return (or equivalent) is assumed after all programmer
| input.

|

|2. The character | in column two implies spacing has been added to
| accommodate notes in the right hand column.
|
|
|

3. sSystem response is in uppercase (capital) letters, programmer
input in lowercase. .

]
(0]
a
s o s o s S . o A S i s S A S G P S P AR o o o 4, i i, B s . G, S . S s S e P i, S o, A s, S comm, S e,

BACKGROUND

The CMS Editor

The CMS Editor allows you to create and update sequential CMS files from
your terminal. It is used to create PLIOPT or PLI files which can be
compiled by the PL/I compilers. (PLI files were the filetype available
for PL/I under CP/67 and can still be used under the VM/370 system.
Their format is identical to PLIOPT files.) The CMS Editor has two
modes, the edit mode and the input mode. The edit mode allows you to
use various subcommands to change, rearrange, or add to the copy of the

Chapter 1: Writing and Running a PL/I Program Under CMS 13

file in main storage. The input mode assumes that all items keyed in at
the terminal are to be included in the file you are creating. To enter
the input mode, you issue the subcommand INPUT. To return from the
input mode to the edit mode, you enter a null line; that is, a line that
consists only of a carriage return (or pressing the Enter key for
display terminals.) (If you want a blank line in your PLIOPT file you
must, therefore, key in at least one blank character in the line.)

When you issue the EDIT command, you must specify a filename and a
filetype. CMs searches your disks for the file and if you have such a
file, brings a copy of it into main storage and displays the message
"EDIT:" indicating that you are in EDIT mode. If you do not have such a
file, it assumes you intend to create one and displays the message "NEW
FILE" followed by "EDIT".

To return from the edit mode to CMS, you must issue an edit
subcommand that specifies what is to be done to the copy of the file
that you have been editing. This can be done by using either the FILE
subcommand or the QUIT subcommand. The FILE subcommand stores the copy
of the file you have been creating and discards the previous copy, if
any. The QUIT subcommand discards the copy of the file that you have
been editing. If you wish to retain both the original copy of the file
and the copy of the file that you have been editing, you can specify a
new name in the FILE subcommand thus

file rabbit2
the previous version of the file rabbit would then remain available.

If you wish to still remain in edit mode but store what you have edited
so far, you can use the SAVE subcommand.

A full description of the EDIT command and EDIT subcommands is given

in the VM/370: CMS command and Macro Reference. For examples of how to
use the Editor see the VM/370: CMS User's Guide.

Correcting Typing Errors

If you wish to correct a line before pressing the carriage return key
you can use the line editing characters described under the heading
"Line Editing Characters™ in the previous section of this chapter. If
you wish to correct a line when it has been transmitted, you must use
the editing facilities that are described in the VM/370: CMs User's
Guide. '

Using the Editor to Alter Non-CMsS Files

The CMS Editor can only be used on CMS files, however, if you wish to
alter DOS catalogued procedures or source statement books, these may be
copied to CMS files by use of the PSERV, ESERV, and SSERV commands. The
"PSERV command can be used to copy a DOS catalogue procedure onto a CMS
disk so that the job stream could be modified via the CMS Editor. The
resultant job stream preceded by the CATALP control cards must then be
spooled back to the DOS/VS virtual machine in a manner similar to that
shown in the %INCLUDE example that follows.

Since DOSPLI compilations cannot access CMS MACLIB (macro) libraries,

the only practical use of the SSERV and ESERV commands would be to copy
DOS source books and edited source books, respectively, onto CMS disks

14

in order to manipulate them using the CMS Editor. They, too, must then
be spooled back to the DOS virtual machine.

For more information on the PSERV, ESERV, and SSERV commands, refer
to the VM/370: CMS User's Guide.

Format of PLIOPT files

PLIOPT and PLI files created by the editor have 80 byte fixed lerigth
records. Sequence numbers are in columns 73 through 80. PLI files are
an alternative type of file of the same format. The standard tab
settings for PLIOPT files are 2, 4, 7, 10, 13, 16, 19, 22, 25, 31, 37,
43, 49, 55, 79, and 80. The zones are columns 2 and 72; input is
truncated at column 72.

SPECIAL CONSIDERATIONS

Use of Non Default Compiler Options

Non-default compiler options are entered in a *PROCESS statement that
precedes the PL/I source statements. Special action is required to
enter them because the * must appear in column 1 and, by default, the
editor moves all input to PLIOPT and PLI files one column to the right.
The method used depends on the type of terminal you are using. If you
are using a typewriter terminal with a backspace key such as an IBM 2741
the backspace key must be used before the *. The *PROCESS statement
takes the form:

(you press the backspace key)*process attributes xref;

If you are using the backspace character as a character delete symbol
it must be preceded by the escape symbol. (See "Line Editing Symbols"
under "Invoking CMS - the IPL Command"™ earlier in this chapter.) If you
are using backspace for character deletion and the escape symbol is the
default " you must enter:

"{you press the backspace key) *PROCESS attributes xref;

If you are using a display type terminal without an explicit
backspace key, such as an IBM 3277, the simplest method is to reset the
tabs to 1 and then enter the *PROCESS statement starting in column 1.
The subcommands used could be as follows:

preserve save standard PLIOPT tab settings
tabset 1 set tabs allowing column 1 to be used
top set pointer to start of file

input enter input mode

*PROCESS FLOW (10,20); key in #*PROCESS statement starting in

column one
null line returns to edit mode
restore restore previous tab settings

Chapter 1: Writing and Running a PL/I Program Under CMS 15

Lowercase Character String Constants

When you are editing a PLIOPT file, the CMS editor automatically
translates any lowercase characters you enter to uppercase. If you wish
to enter lowercase character string constants in your program it is
necessary to take special action. Enter:

CASE M

This must be done when you are in Edit mode. Your input will then be
transmitted as entered. As the PL/I optimizing compiler accepts both
upper and lowercase input, you can still enter your program in either
uppercase or lowercase. During compilation the compiler will translate
all PL/I into uppercase. Items appearing between quotes or comment
delimiters will not be translated. The listing will show your program
with everything in uppercase except comments and data ketween gquotes.

To return to automatic translation to uppercase during your edit
session, issue a CASE U subcommand. First enter a null line (carriage
return only on a line) to return to the edit mode, then enter:

CASE U

Use_of the Line Editing Symbols_in_your Program

If you wish to use any of the line editing symbols as normal input to
your program you must precede them by the escape symbol. By default,
the line editing symbols are a, #, &, ", but all or any of them may be
changed with the TERMINAL command, and & becomes { or (on certain
terminals. If the defaults are in effect, and you wish to refer to a
variable called DOCUMENT#2, it is necessary to enter the #, which is the
default line-end symbol, preceded by " which is. the default escape
symbol, thus:

DOCUMENT " #2

Details of the line editing symbols are given in the previous section of
this chapter under the hea@ing "Line Editing Symbols".

Files for Inclusion by %INCLUDE Statement

Any text included in your PL/I source program by means of the ZINCLUDE
statement must be included from a DOS source statement library. If you
create such text using the Editor, you can create it as a file of the
MACRO or COPY filetype, spool your virtual punch to the userid of a DOS
virtual machine, and punch out the text preceded by the DOS JCL to
catalog the data in the DOS source statement library. The following

- steps indicate one method of accomplishing this assuming the file is
called MACFILE:

1. Invoke the CMS Editor as follows:
EDIT MACFILE MACRO
2. Key in

INPUT

16

To get into input mode and key in the following:

/7 JOB CATALS
//7 EXEC MAINT
CATALS sublib, bookname
control statement
(% INCLUDE statements go here)

/%)
7&

Then enter a null line to get into edit mode and issue the FILE
subcommand

FILE

3. To spool the newly created card images to your DOS virtual machine,
key in the following: ‘

SPOOL PUNCH TO dosuserid
PUNCH MACFILE MACRO (NOHEADER)

The card images are then sent to the virtual card reader of the DOS
virtual machine specified in "dosuserid" where they will be processed by
the MAINT program. Full explanations and alternatives are given in the
VM/370: CMS User's Guide. Examples of the use of the PSERV command are
given in the VM/370: CMS User's Guide.

SOURCES OF FURTHER INFORMATION

Topic Reference_source

Format of PLIOPT and PLI files VM/370: CMS User's Guide
Using the CMS editor VM/370: CMS User's Guide
Spooling data to a DOS virtual VM/370: CMs User's Guide
machine

Chapter 1: Writing and Running a PL/I Program Under CMS 17

Compiling the Program - the DOSPLI Command

SUMMARY

To compile a DOS PL/I program under CMS, you issue the DOSPLI command
specifying the filename of the PLIOPT or PLI file you wish to be
compiled. For example:
DOSPLI RABBIT
where RABBIT is the name of the file.
Before the DOSPLI command is issued you must:

1. Activate the DOS environment by use of the SET command. For
example:

SET DOS ON G
(This assumes that DOS SYSRES has already been accessed as your G-
disk. See "Accessing the Compiler and its Libraries" later in this

section.)

2. Assign the input file SYSIPT to the CMS disk that contains the file
to be compiled. For example:

ASSGN SYSIPT A

Two potential causes of unsuccessful compilation should be guarded
against:

1. Assignment of logical units prior to entering the DOSPLI command in
such a way that the command cannot be executed.

2. The NODECK compiler option being in effect.

Assignment of Logical Units before Executing DOSPLI

If you have made no previous assignments, the DOSPLI command will assign
the logical units it requires for successful compilation and you have no
cause to worry about logical units. However, if you have already
assigned the logical units that the compiler uses, the DOSPLI command
will not alter these assignments, assuming that you wish to use the
compiler in some non-default manner. The logical units that the
compiler uses are SYSIPT, which you must assign yourself, and SYSLST,
SYSPCH, SYS001, and SYS002 which may be assigned in the DOSPLI command.
SYSLST defines the destination of your 1listing file, SYSPCH defines the
destination of your object program, and SYS001 and SYS002 are used for
compiler work files. In the default situation, all these files will be
on CMS read/write disks, however, you may vary SYSLST and SYSPCH to get
the listing file or the object program transmitted elsewhere. Before
issuing the DOSPLI command you -should therefore ensure that these units
are either correctly assigned or are unassigned. To unassign a logical
unit, you use the ASSGN command thus:

ASSGN SYSxxx UA

where xxx is the identifier of the logical unit.

18

Compiling with the NODECK Option

On CMS/DOS the optimizing compiler places the object program on SYSPCH.
The NODECK option specifies that SYSPCH will not be created consequently
if NODECK is in effect no object program is produced. If the copy of
the compiler you use is for CMS only DECK will almost certainly be the
default option, and you will have no cause to worry about the NODECK
option. However, if your copy of the compiler is shared between CMS/DOS
virtual machine and DOS/VS virtual machines NODECK may have been chosen
as the default compiler option to suit the DOS/VS machines. If this is
the case, it will be necessary to enter the DECK compiler option on a
*PROCESS record at the start of your program. The previous section
explains how to do this. To discover the defaults you should ask your
systems programmer or use the OPTIONS compiler option on its own in a
*PROCESS statement. This last will result in a listing of the compiler
options used being generated in the listings file.

During compilation, provided you have followed the instructions
above, two new disk files will be produced. They will have the
filetypes TEXT and LISTING and the same filename as the file specified
in the DOSPLI command. The TEXT file contains the compiled code. The
LISTING file contains the listings produced during compilation. Wwhen
compilation is complete, CMS transmits a Ready message.

Unless the compiler has terminated abnormally, no return code will be
produced with the Ready message. You must inspect the listing file
under the EDIT command to examine the messages to discover the results
of compilation. On a display-type screen (such as an IBM 3270), you can
scroll through the listing on the screen. On a typewriter type terminal
(such as an IBM 2741), you must locate the messages using the LOCATE
subcommand of EDIT and type them at the terminal.

If the listing file reveals source program errors, you can alter the
PLIOPT file that contains the source by use of the Editor. You can then
reissue the DOSPLI command. This results in the creation of new TEXT
and LISTING files corresponding to the newly edited source program. If
previous versions existed they will be overwritten. When you have a
satisfactory compilation, you are ready to execute the program, which is
now in the form of a TEXT file. The next section of the chapter tells
you how to do this.

special action will be required if your source program is not on a CMS
disk or if you are including text from a DOS source statement library.

The action required is described later under the heading "Special
Considerations."

Chapter 1: Writing and Running a PL/I Program Under CMS 19

Example of Use of the DOSPLI Command

T T STTmEESsTTssss s s e memsTemmmm T TETEmEs s T sTE 1
EXAMPLE OF USE OF THE DOSPLI COMMAND |

| e 4 > = - ——— - - - - -~ - - "= - - - '

| Te

oy
e

rminal Printout

- " == - —— - - = -

sgn sysipt a

spli rabbit

it rabbit listing
IT:

cate/compiler diagnostic

Notes and comments |
G ————— ———— s |
Access the DOS SYSRES volume as your
G-disk (example assumes that SYSRES is in
your directory as 390 and that the
compiler resides in the system core image
library. You must discover how to access
SYSRES ‘in your installation).

Set up the DOS environment so that the DOS
compiler can operate, specifying the CMS
disk that has been accessed for SYSRES.
(Note that this may be done automatically
in your profile exec.)

Assign source file.

Issue the DOSPLI command to compile the
PLIOPT file rabbit.

Ready message shows compilation is
complete. The LISTING file produced by
the compiler must now be inspected to see
if the compilation was successful. A
return code 'R(00xx)'; with the Ready
message would indicate an abnormal termin-
ation of the compiler.

Enter edit mode to inspect listing file.
Response shows you are in edit mode.
Search for the words "compiler diagnostic"
in the listing file. On a display type
terminal you could scroll through the
file. Note that the character in column 1
will be a carriage control character. It
should be ignored.

Shows that no diagnostic messages

have been produced for this compilation,
and that the compilation is therefore
correct. Had the line read "COMPILER
DIAGNOSTIC MESSAGES...." it would have
been necessary to type the messages at the
terminal by means of the subcommmand TYPE
*,

When enough had been typed, typing could
be stopped by pressing the Attention key
and using the HT (halt typing) command.
Leave edit mode.

Ready message, showing you are back in the
CMS environment.

- g . PO o e > o - — - > - - 4B W= = G S > W - W= . - —— . " G WP T A > - P A o o = -

nventionss:

A carriage return is assumed after all programmer input.

The character | in column two implies spacing has been added to
accommodate notes in the right hand column.

System response is in upper case (capital) letters, programmer

input in lower case.

i e s R e TR i T S e S . SEEES e TS G S — ST m— S ca— . — — — S G— —— — . S o — — — —— — T G— — — — — — — — — —— {— ——a— — — ——

BACKGROUND INFORMATION

Compiler Output and its Destination

When you issue the DOSPLI command, CMS calls the DOS PL/I Optimizing
Compiler to compile your source program. The compiler creates two new
files during its execution. One file contains the compiled code that
can be link-edited into an executable phase so that you can execute your
program. The other file contains diagnostic messages about the
compilation, and, optionally, listings of your source program and the
compiled code. (The various options controlling the listing produced by
the compiler are described in chapter 3 of this manual.)

Unless SYSLST or SYSPCH are assigned elswhere the two newly created
files will be placed on CMS disks. They will have the same filename as
the file that contains the source program but a different filetype. The
compiled code will have the filetype TEXT and the listing will have the
filetype LISTING. Thus, if you compiled a PLIOPT file called ROBIN you
would, by default, create two further files calied ROBIN; a TEXT file
containing the compiled code and a LISTING file containing the listing
information. These files would be placed on your CMS disks according to
the rules shown in figure 1.2. (The relationship between CMS disks is
explained in the VM/370: CMS User's Guide.)

| SOURCE DISK OUTPUT DISK |

| source disk read/write source disk

| source disk read/only with

| parent disk read/write parent disk
e oo
{ source disk reads/only with

| parent disk read/only and

e et s S e S e S s S . T s Ao i S et o

| A-disk readswrite A-disk

l - - > > s e o e > 2 o 7 - oy -
| source disk read only with

| no parent and A-disk read/write A-disk

I ——————————— - —— - - ——— ————————— -~ -— - P D W - DD T D D D D D T - - -
| source disk read/only with no program terminates unless you

| parent disk or parent disk have directed output to a non

| reads/only and A disk reads/ DASD device. (See VM/370 CMs

| only User's Guide for information on
| how to do this).
leccmmrccmcrncccam = - o o > - - - - - v o e o e o e 2 o

Figure 1.2. The disks on which the compiler output is stored

Handling Listing Information

The DOS optimizing compiler places all diagnostic information on a
listing file. This file always contains diagnostic error messages or a
message saying that no errors have been found. In addition, compiler
options can specify that a number of listings are to be generated. The
possibilities include a list of source program statements, a list
showing the attributes of all variables and other identifiers, a list
showing all statements in which variables or identifiers are found (the
cross-reference listing), and a list showing the size of the aggregates
used in a program. (A list of all the possible listings can be found in

Chapter 1: Writing and Running a PL/I Program Under CMs 21

Figure 3.1 in chapter 3.) The production of some or all of these
listings may be the default in the system you use. To discover which
are the defaults, the OPTIONS compiler option can be used. This option
results in a list of the options used being generated. If no options
other than the OPTIONS option are specified in a *PROCESS statement, the
default options of your installation will be shown.

The listing file is generated as a print file and is placed on one of
your CMS disks in accordance with the rules shown in Figure 1.2.
Because the listing is a print file, its formatting is controlled by a
carriage control character in column 1. Therefore when the file is
inspected at the terminal using the EDIT command, any character in the
first column should be ignored.

To make the best use of the listing file the programmer needs a
source listing, and needs to ensure that either an offset listing is
generated or that the GOSTMT option is in effect. The GOSTMT option or
an OFFSET listing is necessary to ensure that statements mentioned in
compile-time and execution-time error messages, can be easily
identified. The attribute and cross-reference listing can be extremely
useful during program debugging, enabling the programmer to check that
variables have been correctly declared or defaulted, and enabling a
history of a particular variable to be followed through a program.

It is recommended therefore that either the GOSTMT or the OFFSET
option is specified and that the SOURCE option is always used during
program debugging. If these are not your installation defaults, a
suitable *PROCESS statement should be included at the start of the
PLIOPT file containing your source program.

At the end of a session, the listing file may be printed on a high-
speed printer to retain a printed record of the source program and its
compilation. This is done by use of the PRINT command. For example
PRINT RABBIT LISTING would transmit the listing file to the printer.

The listing file could then be erased from the CMS disk to save space by
issuing the command:

erase rabbit listing

Files used by the compiler

During compilation the compiler uses a number of files. These files are
allocated by the DOSPLI command*®s EXEC procedure that invokes the
compiler. The files used are shown in figure 1.3. All files except
SYSIPT will be assigned by the EXEC procedure unless already assigned.
SYSIPT must be assigned by the programmer to the device where the source
program is located. If SYS001 and SYS002 are assigned before the DOSPLI
command is issued they must be assigned to CMs disks, because they are
used by the compiler as work files.

22

|

I
| Logical Unit Filenames {
| SYSIPT/SYSIN (SYSIPT on DLBL XINPUT {
| | SYSIPT/SYSIN on ASSGN) |
| sYSLsT XPRINT |
| SYSPCH XPUNCH |
| sSYssLB IJSYSSL |
| S¥Ys001 IJsyso1 |
| SY¥Ys002 1J35Ys02 |
L —————— . - - - ——— - —— ——— ———————— — ——— — " —— - ———— - o — - — — — — — — — - — = - l

Figure 1.3. Files that may be used by the compiler

Accessing Disks Under CMS

In addition to disks defined in your VM/370 directory, you can
temporarily obtain disks via use of the CP LINK and DEFINE commands.
CMs must also know about these disks, and you must use the CMS ACCESS
command to establish a filemode letter for them:

ACCESS 197 £

CMS uses the filemode letter to manage your files during your terminal
session. By using the ACCESS command, you can:

e Control whether the disk is to be read-only (that is, you cannot
write on it), or is read/write.

e Control the minidisk search sequence used by CMsS.
e Control which disks are to contain new files that you create.

For the most part, you will use your primary 191 minidisk, that is,
your A-disk, your DOS ands/or OS read-only disks, and, if needed, your

VSAM disks. For more detailed information on the CMS ACCESS command and
the CP LINK and DEFINE commands, refer to the VM/370: CMS User's Guide.

Accessing the Compiler and its Libraries

The compiler may be held either on DOS SYSRES or in a private DOS core
image library.

If the compiler is on DOS SYSRES, you will probably access it before
you set DOS on. In the example, DOS SYSRES is accessed on disk 198 with
the CMS mode letter of C thus:

ACCESS 198 C
SET DOS ON C

Here the letter C in the SET command tells CMS that the DOS SYSRES
volume is at 198. If the compiler is on DOS SYSRES, access to the
compiler will be faster if no GLOBAL commands for DOSLIB libraries are
in force when the DOSPLI command is issued, see the note below.

If the DOS PL/I compiler and the PL/I libraries are in private

libraries, you must use ASSGN and DLBL commands to make them accessible.
Asssuming that the compiler and PL/I transient library are in a core

Chapter 1: Writing and Running a PL/I Program Under CMS 23

image library whose dataset name is DOSPLI.CLIB, that the PL/I resident
library is in a private relocatable library whose dataset name is
‘DOSPLI.RLIB, that the disk is at 196, and that you wish to access it as
your D-disk, the commands might be as follows:

ACCESS 196 D

ASSGN SYSCLB D

DLBL IJSYSCL D DSN DOSPLI CLIB (SYSCLB
ASSGN SYSRLB D

DLBL IJSYSRL D DSN DOSPLI RLIB (SYSRLB

DOSPLI.CLIB and DOSPLI.RLIB are examples of the DOS file-ids for the
private core image and relocatable libraries, respectively. Because DSN
is specified in the DLBL command line, CMS automatically inserts the -
period.

Note: If the DOS PL/I compiler resides in the DOS system core image
llbrary and not in the private core image library, the time required to
compile your PL/I program will be significantly increased if any DOSLIB
libraries were previously activated via a GLOBAL DOSLIB libenamel...
libenameN command. This is because CMS's fetch routine uses the
following search order to find the PL/I compiler:

1. In a DOS/VS private core image library, if one had been prev1ously
assigned via a DLBL command such as the following:

DLBL IJSYSCL DSN DOSPLI CLIB (SYSCLB)
2. If a GLOBAL DOSLIB command specifying DOSLIB libraries had been
previously issued, all such libraries are searched in the order
specified in the GLOBAL command.

3. 1In the DOS/VS system core image library, if the CMS disk mode
letter (fm) was specified in the SET DOS ON fm command.

Therefore, if the PL/I compiler is in the DOS system core image library,
you should issue the GLOBAL DOSLIB command with no additional operands
to eliminate the searching of the DOSLIB libraries.

SPECIAL CONSIDERATIONS

Secondary Input Text - ¥%INCLUDE Statements

If your program uses %INCLUDE statements to include previously written
PL/I statements or procedures, the DOS/VS source statement library on
which they are held must be made available to CMS before issuing the
DOSPLI command. If the text to be included is on a private DOS/VS
source statement library, you must use ASSGN and DLBL commands to access
the source statement library on which the secondary input text is held,
and an ACCESS command to make the DOS disk on which it is held available
to the system. Assuming the source statement library is on 193 the
command might take the form:

ACCESS 193 B
ASSGN SYSSLB B
DLBL IJSYSSL B DSN PLI INCLUDE (SYSSLB

The DOSPLI command used to compile the program must specify either the
INCLUDE or the MACRO option.

24

Source Program_not.on_a_ CMS_Disk

If your source program is on a DOS disk, it can still be compiled using
the DOSPLI command under CMS. However the disk itself will only be
accessible from CMS in read-only form and so it will not be possible to
make corrections using the CMs Editor if an error is discovered.

To compile a program on a DOS disk, ACCESS, ASSGN, and DLBL commands
must be used. Assuming the program was on disk located at 192, the
commands might take the form:

ACCESS 192 B

ASSGN SYSIPT B

DLBL XINPUT B DSN MY PL1 PROG (SYSIPT
DOSPLI program name

An alternative would be to move the program to a CMS disk using a
SSERV or ESERV command. Examples of the use of the commands are given
in the VM/370: CMS User's Guide.

A detailed description of the ASSGN and DLBL commands is given in the
CMs Command and Macro Reference.

SOURCES OF FURTHER INFORMATION

Topic Reference source

Error message explanations
CMS (numbered DMSxxxx) VM/370: System Messages Manual

PL/I (numbered IELxxxx) DOS PL/I Optimizing Compiler Messages

DLBL command VM/370: CMs Command and Macro Reference
ASSGN command VM/370: CMs Command and Macro Refarence
PL/I language PL/I Optimizing Compiler Language

Reference Manual

DOSPLI command Chapter 3 of this manual

Chapter 1: Writing and Running a PL/I Program Under CMS 25

Executing a DOS PL/I Program

SUMMARY

To execute a program under CMS/DOS you must have an executable program
phase on a DOSLIB file or in a DOS/VS core image library. Such a phase
is produced on a DOSLIB file by issuing the DOSLRED command which
produces an executable program phase from either a CMS TEXT file or an
object module in a DOS library.

Before the DOSLKED command is issued, the SET DOS ON command must
have been issued and the PL/I resident libary must be made- available so
that the necessary library modules may be link-edited in the executable
program phase. When an executable program phase has been link edited
and placed on a DOSLIB file, the PL/I transient library must be made
available so that transiently loaded modules are available for loading
during execution. The GLOBAL command must then be issued to identify
the DOSLIB library that holds the program. Because PL/I programs issue
error messages on SYSLST, SYSLST must be assigned to a suitable device
before executing a program. When a file has been link-edited and placed
on a DOSLIB library, a FETCH command with the START option will load the
program into main storage and execute it. When a program has been
placed as an executable program phase in a DOSLIB it remains there until
deleted and can always be executed by making the transient library
available, specifying the DOSLIB in a GLOBAL command and issuing a FETI'CH
command with the START option.

Executing a program held as a TEXT file therefore, involves the
following steps:

1. 1Issuing an ASSGN command to make the DOS/VS PL/I resident library
available for link-editing.

2. Issuing a DLBL command to identify the PL/I resident library.

3. 1Issuing a DOSLKED command to link-edit the text file and place it
on a DOSLIB library. The program is now link edited and may be
retained in this form.

4. Issuing a GLOBAL command for the DOSLIB on which the executable
program phase has been placed.

5. 1Issuing an ASSGN command for the PL/I transient library.
6. Issuing a DLBL command for the PL/I transient library.
7.'-Assigning SYSLST so that any error'messages will be accessible.

8. 1Issuing a FETCH command w1th the START option specifying the name
of the executable phase.

These steps are shown in the example that follows.

special action will be required if error messages are generated. See
under the heading "Special Considerations®™ later in this section.

26

| EXAMPLE OF EXECUTING A PL/I PROGRAM |

|----- ~====-mooooooooo- e ——— ===

| PREPARATORY WORK -~ CREATING AN EXECUTABLE PROGRAM PHASE AND {

| PLACING IT ON A DOSLIB FILE

|set dos on

|access 193 b

|assgn sysrlb b

IR: : Make PL/I resident

|dlbl ijsysrl b dsn privat reloc lib (sysrlb library (on disk 193)
available as B-disk.

|Rs

I 1

|doslked rabbit mylib Link edit the object program
|| with PL/I resident library

IR: _ READY message shows link-edit-
| ing successful.

l ... - - ——— —_———
i EXECUTING THE DOSLIB PHASE

|==-=- e ————————————————————— e e e e
|assgn sysclb b Assign PL/I transient library
R;
dlbl ijsyscl b dsn privat corim 1lib (sysclb Make PL/I transient
library available.

I
|
|
|'
obal doslib mylib Indicate the DOSLIB to be sear-|
ched by FETCH command. |

sgn syslst printer Ensure error messages are sent |
to the virtual printer. |

ool print to * Have error message file spooled|
to your virtual reader so that |

it will be accessible at |

terminal if messages are |

generated. |

If error messages or other |
|

|

|

l

|

I

|

!

|

|

|

|

|

I

|

R v I V- Ve - o)

— gy o e e [T e o e B (]) e o e o e e e @ T w0 (D N vl —

output to SYSLST is generated
a message reading "PRINIr FILE
_TO your userid etc" will be
ke displayed.

tch rabbit(start FETCH command fetches the link-

ECUTION BEGINS... edited module into storage.
START option begins execution.
The two commands can be issued
separately or as shown.

E RABBIT SQUEAKS TO THE WORLD The message in the DISPLAY
statement is transmitted to the
terminal which acts as the
console of the virtual machine.
Ready message indicates that
execution is complete.

|

T

o~

Conventions
1. A carriage return is assumed after all programmer input.

| |
| |
| |
| : o
|2. The character | in column two implies spacing has been added to |
] accommodate notes in the right hand column. |
| |
| |
| |
| |
L

3. System response is in upper case (capital) letters, programmer
input in lower case.
- - = > - - " - > - ——— - —— -—————— - - -——— - —-—— 4

Chapter 1: Writing and Running a PL/I Program Under CMS 27

‘BACKGROUND INFORMATION

The CMS/DOS Linkage Editor

The CMS/DOS linkage editor prepares a previously compiled object program
for execution and places it in a DOSLIB file in core image format. all
compiled PL/I programs need link-editing before execution to resolve
addresses and to include resident library modules that are used to
handle program initialization and other routine tasks.

For most purposes, the link-editing command DOSLKED can be used by
simply specifying the TEXT file produced by compilation, and the name of
the DOSLIB file on which the link-edited module is to be placed. For
example:

DOSLKED RABBIT MYLIB

causes the link-edited version of the TEXT file RABBIT to be placed on
the DOSLIB library called MYLIB. A DOSLIB file is a type of 1library
that can hold a number of link-edited programs. If the DOSLIB name is
omitted, a new DOSLIB library with the name of the TEXT file will be
generated. :

For more complex link-editing jobs, input to the linkage editor must
be provided in a CMsS file with the filetype DOSLNK which will normally
be created using the CMS Editor. The name of the DOSLNK file and the
name of the DOSLIB library on which the link-edited module is going to
be placed are then specified in the DOSLKED command. The example that
follows shows the creation of a DOSLNK file and the execution of the
DOSLKED command that specifies it. If you wish to examine the results
of a DOSLKED command, these are, by default, placed on a CMS file with
the filetype MAP and the filename of the file specified in the DOSLKED
command. Like the LISTING file generated by the DOSPLI command, it can
be examined using the Editor. Options of the DOSLKED command allow you
to have your linkage editor output sent to your terminal (TERM option),
or to the logical device associated with SYSLST (PRINT option). (SYSLST

‘is normally associated with the system printer.)

In this example the file LINKER is used to create an overlay program
in which the root phase is called RABBIT and the two overlay phases are
called LAPIN and HARE.

edit linker doslnk
NEW FILE:
EDIT
input
INPUT
action rel Link editor statements to be executed
phase rabbit,root
include rabbit
phase lapin,*
include lapin
phase hare,lapin
include hare
Null line to return to edit mode

EDIT)
file Store disk with filename LINKER and
R; filetype DOSLNK

doslked linker mylib DOSLKED command specifying file of
. linkage editor statements

Note: Each DOSLKED function executed extends the size of the DOSLIB.

28

Thus Fetch time is increased. If possible, a separate DOSLIB should be
created for each program. This DOSLIB should then be erased before
another DOSLKED for the same program is executed. If several programs
must reside in the same DOSLIB library the DOSLIB should be condensed
periodically using the "DOSLIB COMP libename®" command. B fuller
explanation of how to use the DOSLKED command and DOSLIB libraries is
given in the VM/370: CMS User's Guide.

Using CMS Files and DOS Data Sets

cMs files and DOS and OS data sets can, with varying levels of
restrictions, be written and read by programs executed under CMS/DOS.

CMS files are completely accessible to CMS programs to read, write, and
update. They are also available to create and update via the CMS
Editor, and to manipulate with CMS file-handling commands. Such files
can be made available to a number of virtual machines, but are not
accessible from outside the CMS system except by copying and recreation.
(It should be noted that only sequential and VSaM files are supported
under CMs.) ’

VSAM data sets are available both to CMS virtual machines and to the DOS
system proper. OS VSAM data sets are also available bkecause DOS and OS
VsaM data sets are, with minor exceptions, compatible. VSAM data sets
provide a method of sharing data between CMS and outside systems. VSAM
data sets cannot be manipulated by the CMS Editor or by CMs file-
handling commands. '

DOS data sets are available on a read-only basis to CMS programs
provided that they are consecutive, that is, sequential, files.

Three elements are used under CMS/DOS to associate PL/I files with
external data. Within a program, the file is identified by the declared
name or the title option. (The title option allows a file name to be
associated with different external data throughout the program.) Outside
the program, the DLBL command associates the filename with a particular
data set on a symbolic device, and the ASSGN command associates the
symbolic device name with an actual physical device.

Users of DOS job control language will be familiar with DLBL and
ASSGN as JCL statements. The CMS DLBL and ASSGN commands are very
similar to their DOS/VS equivalents, however, it should be noted that
there is no EXTENT command under CMS. Extent information is not
necessary for CMS files because the space allocation is handled by CMs.
For VSAM data sets however, you will be prompted for the extent
information when you issue the DLBL command if it is required. VsSaM
data sets differ from other types in that they have their housekeeping
handled by a set of programs known as Access Method Services, these
programs are available to the CMS user by use of the AMSERV command
which uses a file containing Access Method Sexrvices statements to
specify the functions required.

Three examples follow showing the PL/I statements and the CMS
commands necessary to access CMS files, VSAM data sets, and non-VSAM DOS
data sets respectively. The full syntax for DLBL, ASSGN, AMSERV and
other commands is given in VM/370: CMS Command and Macro Reference, and
further examples of their use are given in the VM/370: CMS User's Guide.
Accessing CMS Files

To access a CMs file, you issue an ASSGN command associating a logical

Chapter 1: Writing and Running a PL/I Program Under CMS 29 _

unit with a particular device, and a DLBL command associating the PL/I
file identifier with a particular file on the symbolic device.

In the example that follows, the PL/I program reads the file known in
the program as OLDRAB. This refers to the file RABBIT1 DATA on the CMs
B-disk. The program writes the file known in the program as NEWRAB,
creating a CMS file on the disk that will be known as RABBIT2 DATA. A
further file, PL/I file RABPRINT is assigned to the virtual printer.

PL/I Program Statements

DCL OLDRAB FILE RECORD INPUT ENV (MEDIUM(SYS009) F RECSIZE(40)),
NEWRAB FILE RECORD OUTPUT ENV (MEDIUM(SYS008) F RECSIZE(40)),
RABPRINT FILE STREAM PRINT ENV (MEDIUM(SYSLST));

CMs Commands and Responses

assgn sys009 b

R;

dlbl oldrab b CMS rabbitl data (sys009
R;

assgn sys008 a

R;

dlbl newrab a CMS rabbit2 data (sys00
R; :

assgn syslst printer
R;

Assign SYS009 to cMS B-disk.

Associate OLDRAB with
RABBIT1 DATA on B disk.
The keywoxrd CMS indicates

that it is a CMS file.

"Data" is the filetype.
Assign SYS008 to CMS A-diske.

Associate NEWRAB with the
file RABBIT2 to be placed
on the A-disk.

Assign SYSLST to printer.
There is no need for a DLBL

command for the file RAB-
PRINT, because DLBL is only
used for disks.

Accessing VSAM Data Sets

VYSAM data sets are available to read, write, and update, both from
within and from outside the CMS system. Before VSAM data sets can be
accessed, or the AMSERV command used, the command

SET DOS ON (VsaM

must be issued. This results in VSAM initialization being carried out.
SET DOS ON (VSAM can be specified outside the DOS environment or when
‘DOS is already active. It should not be used unless VSAM processing is
to take place, because it requires a sizeable virtual storage overhead
compared with SET DOS ON. ’

VSAM data sets differ from other data sets in that they are always
accessed through a catalog and that they have their routine housekeeping
carried out by Access Method Services. The CMS/DOS user uses the AMSERV
command for VSAM housekeeping functions and the ASSGN and DLBL commands
to establish the location of a catalog and to associate an actual VSAM
data set with a symbolic device and the file identifier in a PL/I
programe

To use the AMSERV command, a file of the filetype AMSERV must be
created using the CMS editor. The file should contain the necessary
Access Method Services statements. An AMSERV command specifying the
name of this file is then issued and the appropriate functions are
carried out. The AMSERV command must always be used, for cataloguing
and formatting purposes, before creating a VSAM data set. It is also

30

used for deleting, renaming, making portable copies, and other routine
tasks. Before use, the minidisk or disk must be initialized using the
IBCDASDI program supplied with VM/370, or, for disks other than
minidisks, any other DOS or 0S initialization program.

For VSAM data sets, information normally supplied in the ENVIRONMENT
option of the PL/I file is placed in the VSAM catalog. Catalog entries
are created by the DEFINE statement of Access Method Services, they
contain such information as the space used or reserved for the data set,
the record size, and the position of ‘a key within the record. The
catalog entry also contains the address of the data set.

To use a VSAM data set, the CMS user has to identify the catalog to
be searched, to assign a unit to the symbolic device that contains the
data set, and to associate the PL/I file with the VSAM data set. The
DLBL command is used to specify the catalog and to associate the PL/I
file with the data set, and the ASSGN command is used to associate the
symbolic device with an actual unit. Note that VSAM data sets cannot be
written to or read from your A-disk, the filemode must be other than A.
Where the data set is being newly created, the AMSERV command must be
specified to catalog and define the data set.

The relevant PL/I statements and CMS commands to access an existing
VSAM data set and to create a new VSAM data set are shown below.

The PL/I program reads the file OLDRAB from the VSAM data set called
RABBIT1 on the CMS C-disk. It writes the file NEWRAB onto the data set
RABBITZ2 also on the CMS C-disk. RABBIT2 is defined using an AMSERV
command. It is assumed that the master catalog is defined to be on the
C-disk and that VSAM space is also defined before executing the example.

PL/I File Declarations

DCL OLDRAB FILE RECORD SEQUENTIAL KEYED INPUT ENV(VSAM);
DCL NEWRAB FILE RECORD SEQUENTIAL KEYED OUTPUT ENV(VSAM);

CMS Commands

access 195 c¢ Access the VSAM master

assgn syscat c catalog on 195 as your C-disk.
dlbl ijsysct c dsn mastcat (syscat perm Issue a DLBL for the .
R; master catalog.

Note that this normally needs
to be done only once per
terminal session.
edit amsin amserv Create an AMSERV file.
NEW FILE:
EDIT
input
INPUT :
define cluster (name(rabbit2) vol(cmsdev) -
cyl(1,1) recsz(130,130) nonindexed) -
catalog (mastcat) ’

EDIT

file

R;

amserv amsin Execute Access Method Services

R; statements in the file to
catalog and format data set.

assgn sys002 c¢ : Assign symbolic devices

R; for VsaAM data sets.

assgn sys001 c

Chapter 1: Writing and Running a PL/I Program Under CMS 31

R H . .
dlbl oldrab ¢ dsn rabbitl(sys001 vsam Issued DLBL commands to associate
R; PL/I files with the VSaM
dlbl newrab c dsn rabbit2(sys002 vsam data sets. The fact that it
is a VSAM data set must be
specified in the DLBL command.
R; .

Accessing DOS Data Sets

To access a DOS data set it must first be made available to your virtual
machine using the LINK command. Then, using the ACCESS command, it can
be given a CMS filemode letter. Once this has been done, ASSGN and DLBL
commands can be used to access the data set. Any attempt made to write
onto the data set will be detected and an error message generated.

In the example that follows the PL/I file OLDRAB is used to access the

DOS data set CONEY1.
It is assumed that the disk has been mounted and is held as VM disk number 196.

PL/I Program Statement

DCL OLDRAB FILE RECORD ENV (MEDIUM(SYS009)F RECSIZE(40));

CMS_Commands

access 196 g Connect DOS disk to your
virtual machine.

Y 196 G R/0-DOS Message to confirm DOS disk

R; is accessed in reads/only mode.

assgn sys009 g Assign SYS009 to CMS G-disk.

R;

dlbl oldrab g dsn coneyl(sys009

R; ‘ Associate PL/I file OLDRAB

with DOS data set CONEY1 and
symbolic unit SY¥S009.

SPECIAL CONSIDERATIONS

Accessing Error Messages

If an error or some type of exceptional condition occurs during the
execution of a PL/I program, a message will be generated and sent to the
file SYSPRINT which is sometimes truncated to SYSPRIN and which is
normally assigned to SYSLST. You should make assignments to this file
so that error messages will be accessible at the terminal if an error
occurs. The method shown in the example is to assign SYSLST to the
printer and spool the printer output to your reader. If a message is
generated, CP will then inform you that a file has been spooled to your
reader. You then issue the READCARD command which reads it onto a CMs
disk and giving it the filename specified in the READCARD command. It
will then be accesible for you to type or edit at the terminal.

If a print file is spooled to your reader CP will transmit a message
to the terminal taking the form "PRT FILE file-number TO userid COPY 01

32

NOHOLD". The exact form will depend on your virtual machine
configuration. If the message was caused by an error and you have no
PL/I ERROR on-unit containing a GOIO statement, the message DMSDOS160S.
"JOB ‘'jobname' CANCELLED DUE TO PROGRAM REQUEST" will be displayed
indicating that the PL/I error handler has terminated your program. It
should be noted that the output from the COUNT and FLOW compiler options
and program output to SYSPRINT will also be spooled to your readexr and
result in the message "PRT FILE file-number TO userid ..."being
displayed”, so the message does not always indicate an error.

An example of accessing error messages is shown below. There are
many other methods of making error messages available to the terminal.
You can, for example, issue ASSGN and DLBL statements to transmit SYSLST
output to your CMS disks. The advantage of the suggested method is that
you will be informed when an error message has been generated.

r—-—--—-——-——-———————-————--—--——————-—————-.----_--_----—-—----—-_-_-——,‘

{ EXAMPLE OF ACCESSING ERROR MESSAGES |

l - — - = - - - " - —— " - - - - - o -

|assgn syslst print Assign error message file
to printer.

|R;

|spool prt to * Spool printer to reader.

IR:

jfetch vrab (start Start execution.

|EXECUTION BEGINS...

|PRT FILE 4809 TO SKYLARK COPY 01 NOHOLD Message indicating file

I 1 spooled to reader.

| DMSDOS160S. JOB *VRAB* CANCELLED DUE TO PROGRAM REQUEST.

1| Job cancellation message.

IR;
| readcard vrab output READCARD command stores
| names it VRAB OUTPUT.
RECORD LENGTH IS *'132" BYTES. Message indicating record
| length of VRAB OUTPUT.
R; .
type vrab output Type command to display the
|

file at the terminal.

IBM209I ‘ONCODE'=0082 *UNDEFINEDFILE®' CONDITION RAISED
CONFLICTING ATTRIBUTES AND FILE ORGANISATION ('ONFILE®'=NEWRAB)
IN STATEMENT 5 AT OFFSET =000124 IN PROCEDURE WITH ENTRY VRAB

I
|
|
|
|
|
|
|
|
|
|
:
| | file on CMS A-disk and |
|
|
|
|
|
|
|
|
|
|
PL/I error message dis- |
|

|
|
|
|
|
|
|
|
|
|
| : played at your terminal.
e cdcccc e cc e e ————- W e A e > > Y W D WD D BB > T T - - o > w w - e > WD - J

Link-Editing an Object Program Stored on a DOS Relocgatable Library

If the program is stored on the same relocatable library as the PL/I
resident library it is possible to 1link it by issuing ASSGN and DLBL
commands to identify the library, as in the example at the start of this
section, and then specify the name of program in the DOSLKED command.
Provided you have no CMS TEXT file of the same name, the program will be
link edited. The following steps are only necessary if the PL/I
resident library is not a part of the system relocated library. If the
program is on a library different from the PL/I resident library, you
should create it as a CMS TEXT file by use of the RSERV command and then
link edit it as in the example at the start of this section. The
command might take the form:

Chapter 1: Writing and Running a PL/I Program Under CMS 33.

assgn sysrlb e

dlbl ijsysrlb e dsn obj mod (sysrlb

rserv pliprog

This will create a CMS TEXT file called PLIPROG which you will be able
to link edit. To link edit the PLIPROG, you can use the CMS Editor to
create a DOSLNK file (that is, a file with a filetype of DOSLNK) that

contains the following link-edit cards:

ACTION REL,MAP
PHASE PLIPROG,S
INCLUDE PLIPROG

Note: A blank character must precede each of the above records.

Then issue the DOSLKED command thus:

DOSLKED fn libename (options...

To link edit the PLIPROG program using the DOSLNK link-edit control

statements.

SOURCES OF FURTHER INFORMATION

Topic Reference_ Source

DOSLKED command VM/370: CMs Commahd
ASSGN command VM/370: CMS Command
AMSERV command VM/7370: CMS Command
GLOBAL command VM/370: CMS Command
DLBL command » VM/370: CMS Command
FETCH command VM/370: CMS Command

and
and
and
and
and

and

Macro
Macro
Macro
Macro
Macro

Macro

A description of how to use all these commands is given in the

UM/370: CMS User's Guide.

34

Reference
Reference
Reference
Reference
Reference

Reference

Ending the Terminal Session - the LOGOFF Command

SUMMARY

To end a CMS session you enter the CP LOGOFF. command from the CMS or the

CP environment. LOGOUT can be used as an alias for LOGOFF.

Before finishing the session you may wish to erase some of the files.

This is done by using the ERASE command for CMS files, or the DOSLIB
command for deleting members of a -DOSLIB library.

Special actlon will be required if you are using a switched line
connection and you do not wish to “be disconnected. See "Special
Considerations" later in this section.

Example of ending the session

(= e e e ————————— e ——————————
EXAMPLE OF LOGOFF
Terminal Printout » Notes and comments
logof€ You enter the LOGOFF command.

CONNECT=hh:mm:ss VIRTCPU=mm.ss.ss TOTCPU=mm:sSs.ssS
|

Message tells you the connect tiwre,
the actual length of the session,

|

| minutes, seconds, and hundredths
| of seconds.

LOGOFF AT hh:mm:ss (zone) day-of-week mnv/dd/yy

|

| Message shows time and date of

| logging off.

(you switch off terminal)

Conventions:

1. A carriage return (or equivalent) is assumed after all pro-
grammer - input.

2. The character | in column two imglies spacing has been added.

3. System response is in upper case (capital) letters, progranmmer
input in lower case.

BACKGROUND

Deleting Files

and virtual and the real CPU time in

If you wish to delete CMS files you use the ERASE command. The command

must specify the filename, the filetype, and the filemode if it is not

Chapter 1: Writing and Running a PL/I Program Under CMS

35 .

on the A-disk. For exam?le. if you wished to delete the PLIOPT file
"rabbit", that previous examples have created on your A-disk, you would
enter:

erase rabbit pliopt

If you wished to delete all the files called "rabbit"™ on your A-disk you
- would enter:

erase rabbit *
To delete an executable program phase you will have to delete the
appropriate member of a DOSLIB library using the DOSLIB command. For
example:

DOSLIB DEL MYLIB RABBIT

deletes the executable phase RABBIT from the DOSLIB MYLIB. To delete a
VsSAM file, use the Access Method Services DELETE statement.

SPECIAL CONSIDERATIONS

Retaining a Switched Line Connection

If you are using a switched line to a computer, the use of the
LOGOFF command as shown results in the connection to the
computer being broken. If you wish to retain the connection,
you must enter "logoff hold". The action is the same as for
logoff except that the switched line is not disconnected.

SOURCE OF FURTHER INFORMATION

Topi Reference _source
ERASE command ' VM/370: CMs Command and Macro Reference
LOGOFF command UM/370: CP Command Reference for

General Users -

36

Debugging a Program

To debug a PL/I program under CMS you compile the program, look for
errors in the listing file, correct them using the Editor on your source
program, and repeat the process until all compilation errors are
corrected. You then continue into execution, checking the results or
the error messages to see if there are any logic errors. If logic
errors are found, the errors are again corrected in the source program,
and the program recompiled and executed. This process is continued
until it is established that the program is correct.

The example that follows shows the process. The program is a simple
program to calculate the average of numbers entered at the terminal. It
contains two errors; a missing parenthesis, discovered during
compilaticn, and failure to divide the total by the correct number,
discovered during execution.

The suggested debugging procedure involves switching between the
source file and the 1listing file. Care should be taken not to alter the
listing file in an attempt to correct the source program. Such
erroneous alterations will, of course, have no effect on the source
program.

Use of CP_Debug

Most PL/I programs can be debugged at the source level, and it should be
noted that VM/370 users are in a position to use the 0S PL/I program
products inclulding the Checkout Compiler. The Checkout compiler
provides an array of symbolic debugging aids such as the setting of
breakpoints, and the interactive correction and saving of the source
program. The OS PL/I compilers can be used to check all 0S compatible
language.

Should it prove necessary to debug at machine language level, the CP
debug facilities can be used. These are described in the VM/370: CMS
User's Guide. To obtain a machine language listing of your compiled
PL/I source program, you must specify the LIST option in the *PROCESS
statement. The statement with offset X'00' in this listing will be
loaded at an offset X'10' beyond the point specified in the message that
is generated when you specify the FETCH command without the START
option. Information on the execution time logic of PL/I programs is
given in the DOS PL/I Optimizing Compiler: Execution Logic, Order No.
$C33-0019. ‘

Chapter 1: Writing and Running a PL/I Program Under CMS 37

- - - - ———— - - - - " We = W W G - S W - - - - — - - > W P - - - - - - - -

EXAMPLE OF DEBUGGING A PROGRAM

access 193 d Access DOS SYSRES as D-disk.

R; i

set dos on d Enter the simulated DOS environ-
’ rent.

—-—— - — — - - — - - - — - - - - Y —— - - - —— - - - - —— - - - - - - - - - - -

stage 1 - Compilation and Correction of Compiler Detected Errors

assgn sysipt c

R; Assign the source file as Cc-disk.

dospli nmav call the DOS optimizing compiler
located in the DOS system core
image library to compile the
program nmave

R; Ready message means that compi-
lation is completed. Next inspect
the listing file for errors.
Examine listing file.

edit nmav listing

EDIT:

1/compiler diagnostic Find message in file.

-COMPILER DIAGNOSTIC MESSAGES LOCATE subcommand can be
abbreviated to 1.

type * Print messages at terminal.

~COMPILER DIAGNOSTIC MESSAGES

-ERROR ID L STMT MESSAGE DESCRIPTION Ignore first character which

0 is a carriage control for printer.
OSERVERE AND ERROR DIAGNOSTIC MESSAGES :

0

OIELO400I E 5 RIGHT PARENTHESIS ASSUMED AFTER 'RS, END WITH 99999°°*.
An additional warning message
may appear if the LINK compiler
option is your default.

0 .

O0END OF COMPILER DIAGNOSTIC MESSAGES

-COMPILE TIME 0.02M> Press Attention key and enter HT

ht command to halt typing.

quit Leave the listing file.

R;

edit nmav pliopt Edit source program.

EDIT: : '

1799999/ Locate erroneous statement.
DISPLAY('ENTER NUMBERS, END WITH 99999' REPLY(STRING);

c/9'/9") Insert change using CHANGE sub-

command abbreviated to "c".

DISPLAY('ENTER NUMBERS, END WITH 99999') REPLY(STRING);

file File the correct program.

R;

dospli nmav Recompile.

R;

edit nmav listing Examine listing file for errors.

EDIT:

locatescompiler diagnostic Look for messages.

NOT FOUND:

EOF

top Return to top of file.

TOF:

locate/source Locate "source"-

38

- - — - - - - - - — — > - - - - - . WD = - - . - -~ - — - Y - -

EXAMPLE OF DEBUGGING A PROGRAMMING PART 2

type * Print compiled source for reference.
- SOURCE LISTING

- STMT LEV NT

0
1 0 AVERAGE: PROC OPTIONS (MAIN);
2 1 0 DCL (TOTAL,NUMBER) FIXED DECIMAL,
STRING CHAR (10);

3 1 0 TOTAL=0;

4 1 0 DO I=1 BY 1; ,
5 1 1 DISPLAY('ENTER NUMBER, END WITH 99999') REPLY (STRING) ;
6 1 1 NUMBER=STRING;

7 1 1 IF NUMBER=99999 THEN GOTO LAB;

8 1 1 TOTAL=TOTAL#+NUMBER;

9 1 1 END; '
10 1 0 LAB:

DISPLAY{*AVERAGE="'| | TOTAL/I) ;
11 1 0 END;

1PL/I OPTIMIZING COMPILER > Press attention and enter HT
command to stop typing.

ht

quit Return from Edit mode to CMsS.

R;

Stage 2: Execution and Correction of Execution-time Errors

access 196 b Access the DOS private re-
locatable and core image
libraries as your B-disk.

assgn sysrlb b

R;

d1lbl ijsysrl b dsn privat relocat lib(sysrlb Make PL/I resident

R; likbrary available.

assgn sysclb b

dlbl ijsyscl b dsn privat corim lib(sysclb Make PL/I transient

R; library available.
doslked nmav mylib Link edit the program nmav.

R;

global doslib mylib Make DOSLIB available to CMs.

R;

fetch nmav(start Fetch program and start to execute.
EXECUTION BEGINS... i

ENTER NUMBER, END WITH 99999 Message from PL/I DISPLAY statement
IBMOO7A WAITING FOR REPLY TO 'DISPLAY' MESSAGE Prompt for data

10 Key in 1lst number.

ENTER NUMBER, END WITH 99999

IBMOO7A WAITING FOR REPLY TO 'DISPLAY' MESSAGE Prompt for data
11 Key in 2nd number.
ENTER NUMBER, END WITH 99999

IBMOO7A WAITING FOR REPLY TO 'DISPLAY' MESSAGE Prompt for data
12 Key in 3rd number.
ENTER NUMBER, END WITH 99999

IBM007A WAITING FOR REPLY TO *DISPLAY' MESSAGE System Message

99999 Key in 99999 to mark end.
AVERAGE= 8.2500 Program displays the result but
R; , you see ansWwer is wrong.

Your examination of the source
listing shows that TOTAL is
divided by 1 more than it should
be, because I is incremented by

1 for the end-of-data marker 99999.

NMAOOO10
NMA00020
NMAOO0O30
NMAQOO40
NMA00050
NMA00060
NMAOO0O70
NMAOO0O080
NMAOO090
NMA00100
NMAOO110
NMA00120
NMA00139

Chapter 1: Writing and Running a PL/I Program Under CMS 39

e - - - ———————— — " o st s ol e e S S U e W - - ——

EXAMPLE OF DEBUGGING A PROGRAM PART 3

—— - - — -~ — >, > —— - “———— — —— - —— - o o~

edit nmav pliopt

EDIT:
locatesdisplay

DISPLAY('ENTER NUMBERS, END WITH
locatersdisplay

DISPLAY (*AVERAGE='| |TOTAL/I);
change/sis (i-1)

DISPLAY (*AVERAGE=" | | TOTAL/ (I-1));
file
R;
dospli nmav

R;

edit nmav listing

EDIT:

locates/compiler diagnostic
NOT FOUND:

EOF

guit

R;

doslked nmav mylib

R;

fetch nmav (start

EXECUTION BEGINS...

ENTER NUMBER, END WITH 99999
IBMO0O7 WAITING FOR REPLY TO
10

ENTER NUMBER, END WITH 99999
IBM007 WAITING FOR REPLY TO
11

ENTER NUMBER, END WITH 99999
IBMO0O7 WAITING FOR REPLY TO
12

ENTER NUMBER, END WITH 99999
IBMOO07 WAITING FOR REPLY TO 'DISPLAY'
99999 ‘
AVERAGE=
R;

print nmav listing

‘DISPLAY'
'DISPLAY*

‘DISPLAY’

11.0000

logoff

CONNECT= 00:45:04 VIRTCPU=

- — - = " " - - — - - - - —— = = —

- e - > > D ————— —— - ——— —— —

Edit the source file to correct
error.

Locate "display".
99999') REPLY (STRING) ;
Wrong one, look for next occurance.

Make the change.
Corrected statement is displayed.
Store the corrected program.

Recompile the program. The old
LISTING and TEXT files are
overwritten.

Examine listing file for
errors.

Error free compilation.
Return to CMs.

Link edit corrected progran.
Note that libraries etc are

already assigned.
Re—-execute the program.

\

MESSAGE Prompt for data
MESSAGE Prompt for data
MESSAGE Prompt for data

MESSAGE System Message
Correct result
Print the listing file

cn the system printer for
reference.

000:26.70 TOTCPU= 001:19.44

LOGOFF AT 17:03:29 GMT THURSDAY 05/08/76

- ———— o - - - — - —— - — - —— - -

40

—— . A A " e e T U o WP P T P D W T > D

Chapter 2: PL/I Conventions and Restrictions
Under CMS
Restrictions

The PL/I features that may not be used under CMS and restrictions on
other features are shown in figure 2.1.

DO NOT USE UNDER CMS

|
[
t
[}
]
|
]
|
1
|
i
|
|
[}
[}
[}
[}
|
t
|
|
|
[}
|
+
[}
[}
[}
[}
]
|
[}
[}
[}
[}
[}
[}
)
]
[}
[}
[}
[]
|
|
|
]
[}
}
[}
]
]
[}
]
]
]
]
|
]
]
|
|
]
|
|
|
|
|
|
[

ASCII data sets

ASSOCFLE option of the ENVIRONMENT attribute

BACKWARDS attribute with magnetic tapes

Files with INDEXED environment option that access ISAM datasets

FUNC option of the ENVIRONMENT attribute

PL/I checkpoint restart facilities (PLICKPT)

PL/I sort facilities (PLISRT)

REGIONAL files |

Assembler language subroutines using multitasking, multipartition, or

teleprocessing operations. CMS does not support any of these
functions.

- — - - - - - > - - = ——- . - W 4D . P = - - = -~ ——— - - - - — .

e s o e o . . S ——" — — S — i S i S s, S s, S

Figure 2.1. Restrictions on the PL/I functions that can be executed
under CMS.

The results of using PL/I features that are not available under CMS are
summarized below.
SORT Results undefined

CHECKPOINT/RESTART
Results undefined

ISAM DATASETS

(Files with the CMS error message DMSBOP(08SE "UNSUPPORTED DI'F
INDEXED ENVIRONMENT TYPE ‘dtftype'"™ will be displayed.

attribute)

Use of I'CAM, or spanned records on BDAM, or the BACKWARDS attribute.

CMS error message number DMSBOP063E “"OPEN ERROR CODE x
ON Adname"™ will be displayed.

Chapter 2: PL/I Conventions and Restrictions Under CMS 41

ASCII data sets

BACKWARDS attribute :
ASSOCFLE environment attribute
FUNC environment attribute

42

CMS error message DMSBOPOB89E "OPEN ERROR CODE
CODE 'nn®' ON fn/SYSxxx/TAPEn" will be displayed.
where:z
n=4 Attempting to open DTFCD or DTFPR with
ASSOCFLE/FUNC parameters specified on the
DTF macro.
n=9 The parameter 'READ=BACK' has been specified
on the DTFMT macro. CMS/DOS will only
support tapre processing in a forward
direction.
n=11. Attempting to open DTFMT (tape data files)
and "ASCII=YES' was specified.

Conventions

Certain conventions apply to PL/I under CMS because the terminal is
treated as the console of the virtual machine. Thus the DISPLAY
statement and REPLY option, normally used to communicate with the
operator, can be used for communication between the program and the
terminal.

No prompting or other facilities are provided for I/0 at the
terminal. DISPLAY and REPLY should therefore be used to communicate
between the program and the terminal.

DISPLAY AND REPLY UNDER CMS

Because the terminal is considered to be the console of the virtual
machine, the DISPLAY statement and the REPLY option can be used to
create conversational programs. The DISPLAY statement transmits the
message to your terminal, and the REPLY option allows you to respond.
For example, the PL/I statement:

DISPLAY ('ENTER NAME®) REPLY (NAME);

would result in the message "ENTER NAME" being printed at your terminal.
The program would then issue a message wait for your response. When you
had responded, your data would be placed in the variable NAME after you

pressed the carriage return key. The terminal printout would look like

this:

ENTER NAME

IBMOO7A WAITING FOR REPLY TO DISPLAY MESSAGE
LESLEY RIERA

Chapter 2: PL/I Conventions and Restrictions Under CMS 43

I

Chapter 3: The DOSPLI Command and Compiler
Options

How to Use This Chapter

This chapter shows the syntax of the DOSPLI command, the options that
can be used with the DOS optimizing compiler, and the standard defaults
that will apply if you do not specify values for certain options.

There are five sections:
1. A summary of the syntax notation used.
2. A description of the DOSPLI command.

3. A table of the options available with the optimizing compiler
arranged in alphabetical order.

4. A table of options arranged by function.

5. An alphabetical list of options with detailed descriptions and
syntax notation.

If you wish to accept the default compiler options, you will only
need to look at the section on the DOSPLI command and possibly the
section on syntax notation. It should be noted that the default values
for the options may have been altered by your installation and may not
correspond to those shown. If you wish to look up a particular option,
you should look for it in the alphabetical section. If you want a
summary of the options that are available, you should look at the
alphabetical 1list of options. If you are looking for an option to serve
a specific purpose, you should look in the table of options listed by
function. Before using an option found in either of the tables. you
should check in the alphabetical section to discover the full syntax.

A general discussion of the DOSPLI command is given in chapter 1
under the heading "Compiling the Program - the DOSPLI Command”.

Syntax Notation

The syntax notation used to illustrate the command in this part of the
manual is the same as that used in the VM/370: CMS Command and Macro
Reference. Briefly, the conventions are as follows:

Items in brackets [1 are optional.

Items in braces { } are alternatives; choose only one.

An item underlined applies unless an alternative is specified.

Note: Defaults shown are suggested defaults and may have been changed
for your system. ,

Items written in uppercase (capital) letters are keywords and must be
spelled as shown.

. L
Items written in lowercase letters must be replaced by appropriate names
or values.

Chapter 3: The DOSPLI Command and Compiler Options 45

Separate the command name from the operands, options, and suboptions by
one or more blanks.

The four special characters " () #* (single quote, left parenthesis,
right parenthesis and asterisk) must be included where shown.

46

DOSPLI Command

The DOSPLI command invokes the DOS PL/I Optimizing Compiler to compile a
program written in PL/I source language. Provided the DECK compiler
option is in effect, the compiler produces a TEXT file containing
machine code and a LISTING file containing listings and diagnostics.
Other files may also be produced depending on compiler options.
Compiler options are either defaulted from the defaults specified by
your installation, or specified in the *PROCESS statement at the start
of the PL/I source program.

FORMAT:

—---—‘——-—-—--——-—.—_-—-—--—-ﬁ--_-—-_------—-—--———----——‘——-o-—----——-.‘

T
|DOSPLI| filename : i

filename

is the name of the file that contains the DOS PL/I source program.
The filetype must be PLIOPT or PLI.

USAGE

The DOSPLI command compiles a PL/I program into machine language object
code. If the source program is stored as a CMS file on disk, it must
have the filetype PLIOPT or PLI and an ASSGN command must be issued
associating SYSIPT (or SYSIN) with the disk containing the source
program. If it is not on a CMS disk, it must be defined to the system
with ASSGN and DLBL commands.

The CMS/DOS environment must previously have been activated by a SET
DOS ON command. If it is not active, an error message is generated.
See chapter 1 or the foldout at the end of this manuval for an example of
DOSPLI including the necessary file assignments.

Example: To compile the PLIOPT file called CONEY

DOSPLI CONEY

Compiler Options

Compiler options are used to tailor compilations to your needs. They
control items such as the listings produced, the space used by the
compiler, the form of code produced, and where the object module is
placed. They are also used to indicate the format in which the input
is presented.

Compiler options are specified in the *PROCESS statement that

precedes the source program. The method used is described in Chapter 1,
in the section on the EDIT command.

Chapter 3: The DOSPLI Command and Compiler Options 47

The majority of compiler options offer alternative methods of
processing (for example, OPTIMIZE or NOOPTIMIZE), one of which must be
taken. A system of Jefaults specifies which options will be taken when
neither one from a set is specified. The defaults are determined by
your installation when the compiler is installed.. During installation
certain options may be "deleted". These options are not then available
unless he knows the password of the CONTROL option. This manual shows
the defaults suggested by IBM, however, different defaults may have been
chosen by your installation.

To simplify using the many options available, the options are
presented in two summary forms, first alphabetically (Figure 3.1), then
by function (Figure 3.2). These summaries are followed by the full
description. The alphabetical summary is intended for quick reference
to check spelling and allowable abbreviations. The functional summary
is intended to summarize the possibilities that are open to you. The
full description, in which options are arranged alphabetically, gives
all necessary details about the options and their use.

48

| COMPILER OPTIONS ALPHABETICAL SUMMARY |
[=mm e oo = e e e e |

| Compiler Option |
| IBM suggested default for CMS

[}
[}
[}
[}
1
[}
[}
3
|
I
I
|
|
|
]
|
[}
[}
|
1
|
i
[}
[}
[}
[}
[}
[}
{
t
[}
[}
]
1
(]
[}
1
[}
[}
t
1
1
1
[}
1
[}
[}
|
[}
[}
[}
[}
[}
[}
[}
'
i
1
|
1
[}
[}
[}
1
[}
[}
1
1
1
[}
1
[}
1
[}
[}
[}
1
1
[}
t
1
[}
[}
1
]
[}

|AGGRE0ATE|NOAGGREuATE

_———.___-.__.__

| CATALOG (* name"*)
| CHARSET ({48601 [EBCDIC|BCD])

I

|
{ CONTROL{ (*password"’)]
| COUNT | NOCQUNT

|

| DECR | NODECK1

| DUME | NODUMP

| ESD| NOESD

|FLAGI (L|W|E]S)]

| FLOW[(n,m)] | NOFLOW
| GOSTMT | NOGOSTMT

(
| INCLUDE | NOINCLUDE

|LIMSCONV|NOLIMSCONV

|
| LINECOUNT (n) LINECOUNT(55)
{LINK|NOLINK[(W[E|S)]

|MACRO|NOMACRO ~

|

| MAP| NOMAP

IMARGIVI('C)]NOMARGINI
|MARoINS(m nl,c)) MARGINS(2,72)
| MDECK | NOMDECK

|

| OFFSET | NOOFFSET

| OPTIMIZE(TIME|

| 0|2|NCOPTIMIZE)

| OPTIONS | NOOPTIONS
|SIZE (yyyyyy | nnnnK| MAX)

| SYNTAX | NOSYNTAX [(W|E|S)]
|

|

| WORKFILE (device type)
| WORKFILE(2311)

| XREF | NOXREF

|

Abbreviated Name

underlined

AG|NAG
A|NA

CT |NCT

D|ND
DU|NDU

FI(I|W|E|S)]

INC|NINC

IS|NIS
LSC | NLSC

LC(n)

M| NM

MI('c"®) | NMI
MAR(m,n[,c])
MD | NMD

OF | NOF
OPT (TIME |
0]2|NOPT)
OP| NOP

S|Ns
STG | NSTG

X|NX

| 1DECK is default for non-CMsS DOS/Vs.

-
]
[}
[}
]
[}
[}
[}
[}
[}
[}
'
1
1
[}
]
]
]
[]
]
]
1
]
]
[}
[}
]
]
]
[}
]
]
[}
[}
'
[]
[}
t
]
]
[}
[}
[}
[}
[}
]
[}
]
]
[}
[}
]
[}
]
[}
[}
]
[}
[}
[}
[}
[}
]
[}
[}
[}
[}
[}
[}
]
[}
4
]
[}
t
[}
]
i
|
|
|
[}
[}
1
t
|
|
|

Figure 3.1.

Chapter 3:

»S([QB]GO][EB]B])

CINCI(W]|E|S)]

SZ (yyyyyy|nnnnK |MAX)

SYN|NSYN((W[E|S)]

— —— e, S s i i S T T S S it G, S . S . GO D S S S—— T —— Y o— S—— — T — — — " o——— — S — — — T q— f o ——— — — a— ———

‘Lists static code.

Use |

Lists aggregates.

Lists attributes of variables.
Generates CATALR record.
specifies character set of
input.

Specifies if compiler continues
after syntax check.

Allows use of deleted options.
Generates code for statement -
count.

Generates a TEXT file.

Causes dump after compiler
error.

Specifies method of buffer
allocation.

Lists external symbol
dictionary-.

Suppresses certain diagnostic
messages.

Generates code for flow trace.
Produce statement numbers in
execution time messages.
Allows inclusion of text with
minimum overhead.

Lists preprocessor input.
Limits conversions and reduces
space overhead.

Specifies lines on listing page
No effect under CMs.

Lists compiled code.

Handles all preprocessor
statements.

Marks margins of source.
Specifies margins used.
Generating preprocessed card
deck.

Shows block arrangement on
listing.

Lists offsets of each statement
Specifies optimization.

Lists the options used.
Specifies storage to be used by
compiler.

Lists source programe.

Lists storage requirements.
Specifies conditions under
which compiler proceeds after
preprocessing.

Specifies type of workfile to
be used.

Lists variable use by state-
ment.

ot S s s S TS e, o S, s . . . e S, S S gy bt S S —— — 0 —— — — Y S—— — — —a— — — — — — S—— ——— —— — — — —— — ——— — —— o S——— it —— S

Compiler Options and IBM Recommended defaults arranged alphabetically

The DOSPLI Command and Compiler Options 49 .

ittt dheded - - " ——— -~ ——— — - e e e e e e e o e 1

| - COMPILER OPTIONS:

|
|
]
|
|
|
|
|
]
[
|
[}
|
]
|
]
|
]
]
]
|
|
]
]
)
1
]
]
|
1
]
1
i
|
]

I
| LISTING OPTIONS

Control listings

prcduced AGGREGATE
ATTRIBUTES
ESD

FLAG(I|W|E|S)

INSOURCE

LIST
MAP

OPTIONS

SOURCE

STORAGE

XREF

NEST

MARGINI

LINECOUNT

e S cama S — . — . S o, T g W i, S s, D (i, S S, " (i, T s, P s D . T, i, S e, T et (. — s S s, S i, .t

| INPUT OPTIONS

FUONCTIONAL SUMMARY

Improve readibility of source listing

Control lines per page of listing

- ——— - ———— - —— - — - - - . - - -

PART 1

|
|
[}
[}
[}
|
]
]
|
|
]
[}
i
|
]
[}
|
[}
I
|
[
)
'
i
]
[}
[}
'
[
)
[}
|
1
}
t

List of aggregates and their
sizes.

List of attributes of all
identifiers.

List of external symbol
dictionary.

Suppress diagnostic messages
below a certain severity.

List of preprocessor input.

List of compiled code produced
by compiler.

List contents of static control

‘section produced by compiler.

List of options used.

List of source program or
preprocessor output.

List of storage used.

List of statements in which each
identifier is used.

Indicates do-group and block
level by numbering in margin.

Highlights any source outside
margins.

Specify number of lines per
page on listing.

o e o " " — - - - o — - — -

| To define character set and margins of input

CHARSET

[
|
] MARGINS
|
|
|

Figure 3.2. (Part 1 of 3)

50

Identify the character set used
in source.

Identify the columns used for
source program, and

identify position of a carriage
control character

Compiler options arranged by function

ot . o D s S S T amn s s S A S g S p— T g S g S Gt S G S (ot S s S s, S s, WD e S e, VS o SO Gt S i, S, s, S S, PO G, T e, S e, S i, " s 40Ot

T T T T e e - ————————— - - o - - e - - - - — -y -

1
| COMPILER OPTIONS: FUNCTIONAL SUMMARY PART 2 {
|
|

- . - - - - — - —— e = Y D . . W Y D > - A D e P D W WD WD W WD S S PP AR WD TP T W - - - - - - -

|OPTIONS TO PREVENT UNNECESSARY PROCESSING

Control whether compilation should end if errors above a certain level|

are found » |
NOSYNTAX(W|E|S) Stop processing after errors are|

found in preprocessing. |

|

NOCOMPILE (W|E|S) Stop processing after errors arej

found in syntax checking.

- - . - A e - = e T W P > Tm W = T W A W N s P D T e P D S - W W T A WP T D WD > e - W P T WD G S T -

OPTIONS FOR PREPROCESSING

|
|
|
|
|
|
|
|
'|
| MACRO Allow full use of the pre-
|
|
|
|
|
|
|
|
|
|

processor facility.

INCLUDE Allow inclusion of text without
overheads incurred by MACRO.

MDECK Produce a source deck from pre-
processor output.

INSOURCE List the input to the prepro-
cessor.

[
OPTIONS TO USE WHEN PRODUCING AN OBJECT MODULE

l

| DECK Produce an object module.

|

1 CATALOG Produce an object deck on

| virtual card punch with a CATALR
| card.

| OPTIONS TO CONTROL STORAGE USED DURING COMPILATION

|
| SIZE Control the amount of storage
| used by the compiler.

|
OPTIONS TO REDUCE EXECUTION TIME STORAGE

DYNBUF - Allocate buffer space during
execution.
LIMSCONV Specify that certain conversions

will not be used in stream I/O,
consequently reducing number of
library modules link-edited.

|
I
|
|
|
!
|
!
|

Figure 3.2. (Part 2 of 3) Compiler options arranged by function

Chapter 3: The DOSPLI Command and Compiler Options 51

- - - — -

| . COMPILER OPTIONS FUNCTIONAL SUMMARY PART 3

A s e o - - ————— - -~ " —— - — - i T A e W - - - - - - o~ - -

|
STATEMENT NUJBERING OPTIONS

GOSTMT

I
|
I
|
I
I
|
| OFFSET
|
|
I
I
I

- ——— i ———— " - " " ——— = . — — - —— " " = - —— " W - - = - —— - - -

OPTIONS FOR USE WHEN DEBUGGING

FLOW

|
|
|
I
|
I
i COUNT

I

|

|

|

NOOPTIMIZE

|
!
I DUMP
l

- - —— - - ——— - = - e W W A e = W W = = . AR W T W . - —— . = - — - - -

OPTIONS TO SPECIFY DEVICES USED BY COMPILER

I
|
!
I

- ——— ———— - ———— . - —— . ——— -~ - 4 . - —— e - - -

|OPTIONS FOR SYSTEMS PROGRAMMING

Figure 3.2.

52

OPTIMIZE(TIME)

Retain a statement number table
into execution so that execut-
ion time messages .can specify
statement number.

Specify that a listing associ-
ating statement numbers with
offsets will be generated.
Enables you to identify state-
ments from offsets given in
execution time error messages.

Generate code that will result
in a trace of executed
statements being retained.

Generate code that will result
in a count of the number of

times each statement is executed

being printed at the end of the
program.

- - . - - ——— S ————— T ———— - ———— — T ——— - —— - —— - —— — ————— - -

OPTION TO IMPROVE COMPILATION/EXECUTION SPEED

Reduce execution time at the
expense of compilation.

Reduce compilation time at the
expense of execution.

- - ——— . = — ——— — — —— - ——— - ———— - —— " - = — - —— -

OPTION FOR USE WHEN DEBUGGING THE COMPILER

Produce a dump if the compiler
terminates abnormally.

WORKFILE(device type) Specify device type used for

compiler workfiles.

for those who know password.

(Part 3 of 3) Compiler options arranged by function

CONTROL(*password') Allows access to deleted options]|

ALPHABETICAL LIST OF OPTIONS

IBM suggested defaults are underlined

AGGREGATE | NOAGGREGATE
AG| NAG

The AGGREGATE option specifies that the compiler is to produce
an aggregate length table, giving the lengths of all arrays and
major structures in the source program.

Example: To get a listing of the size of aggregates in a
program:

*PROCESS AGGREGATE;

ATTRIBUTES|NOATTRIBUTES
a|NA

The ATTRIBUTES option specifies that the compiler is to include
in the compiler listing a table of all source-program
jdentifiers and their attributes. If both ATTRIBUTES and XREF
apply, the attribute table is combined with the cross reference
table.

Example: To get a list of program identifiers and their
attributes:

*PROCESS ATTRIBUTES;

CATALOG ('name')

The CATALOG option specifies that the compiler will write an
object deck to the virtual card punch and will precede it with
a CATALR statement specifying the name under which the object
module is to be cataloged. The module cannot be cataloged onto
the system relocatable library under CMS. The name can contain
up to eight chracters, the first of which may not be an
asterisk. It must be enclosed in quotes.

Example: To specify that an object module will be written to
the virtual card punch specifying the name BIGWIG on the CATALR
card:

*PROCESS CATALOG (*BIGWIG');

CHARSET ([48 (601 | [EBCDIC|BCD1)
cs([48]601| [EB|B1)

The CHARSET option specifies the character set and data code
used in the source program. The compiler will accept source
programs written in the 60-character set or the 48-character
set, and in the Extended Binary Coded Decimal Interchange Code
(EBCDIC) or Binary Coded Decimal (BCD).

60- or #48-character set: If the source program is written in
the 60-character set, specify CHARSET (60); if it is written in
the 48-character set, specify CHARSET (48). The language
reference manual for this compiler lists both of these
character sets. (The compiler will accept source programs
written in either character set if CHARSET (48) is specified.

Chapter 3: The DOSPLI Command and Compiler Options 53 _

However, if #8-character set reserved keywords, for example CAT
or LE are used as identifiers in a program using the 60
character set, errors may occur if it is compiled with the
CHARSET(48) option).

BCD or EBCDIC: If the source program is written in BCD, specify
CHARSET (BCD); if it is written in EBCDIC, specify CHARSET
(EBCDIC). The language reference manual for this compiler lists
the EBCDIC representation of both the 48-character set and the
60-character set.

If two arguments (48 and BCD or 60 and EBCDIC) are specified,
either argument may appear first. One or more blanks must
separate the arguments.

Example: To specify that the source program is in the u48
character set:

*PROCESS CHARSET (48);

COMPILE|NOCOMPILEI[(W|E|S)]
C|NC| [(W[E[S)]

54

The COMPILE options control whether the final stage of
processing is carried out by the optimizing compiler.

The PL/I optimizing compiler compiles in three stages;
preprocessing, syntax checking, and compilation. Preprocessing
is the expansion of macro statements, syntax checking is
checking that the procedure is syntactically valid PL/I,
compilation is the actual production of compiled code.
Processing can be stopped after either of the first two stages
if errors are found. The COMPILE|NOCOMPILE options can be used
to prevent unnecessary processing if errors are found during
preprocessing or syntax checking, or to force compilation
regardless of errors. Errors are divided into four classes:

W Warning. An error may have occurred.

E Error. An error has been detected but execution
may be successful.

S severe Error.
An error has been detected which will
prevent successful execution.

U Unrecoverable Error.
An error has been detected that prevents
further processing by the compiler.

The various COMPILE|NOCOMPILE options have the following
meanings:

NOCOMPILE No compilation in any circumstances.

NOCOMPILE(W) No compilation if a warning, error,
severe error, Or unrecoverable
error is detected.

NOCOMPILE(E) No compilation, if error, severe
error, or unrecoverable error is
detected.

NOCOMPILE(S) No compilation if a severe error or
unrecoverable error is detected.

COMPILE Compilation will proceed regardless of
errors found except unrecoverable errors.

Example: To prevent compilation if an error of severity E is
found:

*PROCESS NOCOMPILE (E);

CONTROL(*password")

The CONTROL option specifies that any compiler options deleted
when the compiler was installed are to be available for this
compilation. You must still specify the appropriate keywords to
use the options. The CONTROL option must be specified with a
password that is established for each installation; use of an
incorrect password will cause processing to be terminated.

'password® is a character string, not exceeding eight
characters in length.

Example: To specify that the deleted option DUMP applies to
this compilation where the password is SESAME:

*PROCESS CONTROL (°*SESAME*') DUMP;

COUNT | NOCOUNT

CT| NCT

The COUNT option specifies that code will be generated that
causes a count to be kept of the number of times each statement
is executed in a particular run of a program. The results are
written as a table to SYSLST when the program terminates.

Programs compiled with the COUNT option require SYSLST to be
assigned to a suitable device when they are executed. For
example:

assgn syslst printer
The COUNT option requires that the GOSTMT option is also
specified. If it is not, a message is generated during
execution and a statement frequency count takle is not
produced.

Example: To compile a program that will generate a statement
frequency count table:

*PROCESS COUNT GOSTMT;

DECK | NODECK

D|ND

The DECK option on CMS specifies that the compiler is to
produce TEXT file and write it to the file or device assigned
to SYSPCH. Columns 73-76 of each card contain a code to
identify the object module; this code comprises the first four
characters of the first label in the external procedure
represented by the object module. Columns 77-80 contain a 4-
digit decimal number: the first card is numbered 0001, the
second 0002, and so on.

Chapter 3: The DOSPLI Command and Compiler Options 55

Note that under CMS, the object program is written to SYSPCH
and DECK must be specified if an object program is reguired.
This differs from DOS/VS pract1ce where the ob]ect program is
written to SYSLNK and the DECK option results in an additional
copy of the object program being generated. Under DOS/VS,
NODECK is the recommended default. .

Example: To specify that an object module be produced:

*PROCESS DECK;

DUMP| NODUMP
DU|NDU

The DUMP option specifies that the compiler is to produce a
formatted dump of main storage if the compilation terminates
abnormally (usually due to an I/0 error or compiler error).
This dump is written on the file associated with ddname
SYSPRINT. Dump has a number of suboptions useful to those
dealing #ith the internals of the compiler. Details of the
suboptions of DUMP are given in the DOS PL/I Optimizing
Compiler: Program Logic.

Example: To produce a dump after abnormal termination of the
compiler:

*PROCESS DUMP;

The DYNBUF option controls how the storage for file buffers is
acquired. TIf DYNBUF is specified, the storage is acquired
dynamically during execution. If NODYNBUF is specified, the
storage is acquired during compilation and becomes part of the
object module generated by the compiler.

The advantage of specifying DYNBUF is that the storage for
buffers is only acquired when needed. Thus DYNBUF can reduce
the object module storage requirements and, provided that all
files are not open at one time, the execution time storage
regquirements.

The advantage of specifying NODYNBUF is that it saves the time
overhead involved in acquiring buffer storage during execution.

When DYNBUF is specified, it pays to open and close files as
they are needed so that space is available for some other use
when it is not required for file buffers. If NODYNBUF is
specified, the buffer space forms a permanent part of the
object module and there is no advantage in opening and closing
files as they are required. The advantage lies in opening and
closing all files at once, because this is guicker than opening
and closing files individually.

Example: To specify that buffers for files will be acquired
dynamically during execution of the compiled program:

*PROCESS DYNBUF;
ESD | NOESD

The ESD option specifies that the external symbol dictionary

56

(ESD) is to be listed in the comnpiler listing.

Example: To produce a listing of the external symbol
dictionary:

*PROCESS ESD;

FLAG(I|W|E|S)
F(I|W[E|S)

The FLAG option specifies the minimum severity of error for
which a message is to be listed in the compiler listing. The
format of the FLAG option is:

FLAG(I) List all messages.

FLAG (W) List all except informatory
messages. (If you specify FLAG, with no
argument FLAG(W) is assumed.)

FLAG(E) List all except warning and
informatory messages.

FLAG(S) List only severe error and
unrecoverable error messages.

Example: To specify that all messages including informatory
messages be listed:

*+PROCESS FLAG(I) ;

FLOW(n, m)|NOFLOW

The FLOW compiler option specifies that code will be produced
enabling the transfers of control most recently executed in a
program to be listed when an ON statement with the SNAP option,
or when a CALL PLIDUMP statement is executed. This enables you
to follow the path through the most recently executed
statements when an error occurs during execution. The format
of the FLOW option is:

FLOW(n, m)

n is the number of transfers of control that will
be listed with associated statement numbers.

m is the number of transfers of control between
procedures that will be listed with associated
procedure names.

n and m must be decimal integers and may not exceed 32767. If
either value is zero, the associated listing will not be
produced.

The list will start with the earliest available information and
continue to the point where the CALL PLIDUMP statement or the
ON statement with the SNAP option was executed.

Programs compiled with the FLOW option require SYSLST to be
assigned when they are executed.

For example: assgn syslst printer

Chapter 3: The DOSPLI Command and Compiler Options 57

Example: To specify that a flow trace will be kept containing
50 branches between statements and 20 branches between
procedures:

*PROCESS FLOW (50, 20);

GOSTMT | NOGOSTMT

GS|NGS

The GOSTMT option specifies that statement numbers from the
source program will be included in execution-time error
messages. Alternatively, these statement numbers can be derived
by using the offset address, and the table produced by the
OFFSET option. The offset address is always included in
execution-time messages.

The GOSTMT option results in the compiler generating a
statement number table and thus has a space overhead in the
object module.

Example: To specify that statement numbers will be included in
execution time messages:

*PROCESS GOSTMT;

INC | NINC

The INCLUDE option specifies that %INCLUDE statements are to be
handled without the overhead of using the full preprocessor
facilities. If preprocessor statements other than %INCLUDE are
used in the program, the MACRO option must be used.

The INCLUDE option will be overridden if the MACRO option is
also specified.

Example: To specify that text is to be included but that no
other preprocessor facilities are required:

*PROCESS INCLUDE;

The INSOURCE option specifies that the compiler is to include a
listing of the source program (including preprocessor
statements) in the compiler listing. This option is appllcable
only when the preprocessor is used, therefore the MACRO option
must also apply.

Example: To specify that a listing showing the source program
kbefore preprocessing is to be generated:

*PROCESS INSOURCE MACRO;

LIMSCONV | NOL IMSCONV
LSC|NLSC

58

The LIMSCONV option specifies that the compiled program will
not have to handle certain types of conversion in data- or

list-directed input. This reduces the size of the object
module produced because the modules to handle such input need
not be included in the executable program phase.

If the LIMSCONV option is in effect, only the following types
of input are allowed for the variable types shown:

Bit (or character containing bit strings) to bit variable.
Character to character or picture character variable.

Fixed- or floating-point decimal constants (or character
strings that represent such constants) to arithmetic
variable.

Thus all the usual conversions are allowed, and only the more
unusual forms which are allowed by PL/I but seldom used are
prohibited. If one of the prohibited types of input is found
by a program compiled with the LIMSCONV option, the CONVERSION
condition is raised and an on-code generated. The on-codes are
listed in the language reference manual for this compiler. The
LIMSCONV option only affects programs that contain list- or
data-directed input.

Example: To limit the types of inpu:t for list- or data-
directed stream I/0 to those listed above, and thus reduce the
size of the executable program by preventing the linking of
unnecessary library modules:

*PROCESS LIMSCONV;

LINECOUNT (n) | LINECOUNT(55)
LC(n)

The LINECOUNT option specifies the number of lines to be
included in each page of the compiler listing, including
heading lines and blank lines. The format of the LINECOUNT
option is:

LINECOUNT (n)

where "n" is the number of lines. It must be
in the range 1 through 32767, but
if you specify less than 7, only the heading of the
listing will be printed.

Example: To specify that compiler listings will be written
30 lines to a page:

*PROCESS LINECOUNT (30);

LINK|NOLINK (E|W|S)
The LINK|NOLINK options are intended for use on non-terminal
systems and have no effect on CMS/DOS.
LIST[(m, n)]|NOLIST
' /
The LIST option specifies that the compiler is to include a
listing of the compiled code (in a form similar to IBM

System/360 assembler language instructions) in the compiler
listing.

Chapter 3: The DOSPLI Command and Compiler Options 59

The values m and n allow you to specify the range of statements
for which the 1list will be produced. If m and n are omitted
the complete program is included in the listing.

Example: To specify that a listing of compiled code from
statement 10 through statement 20 is to be generated:

*PROCESS LIST(10, 20);

MACRO| NOMACRO

MM
The MACRO option specifies that the source program is to be
processed by the preprocessor. This option should only be used
when preprocessor facilities other than inclusion are required.
For inclusion, the INCLUDE option provides better performance.
Example: To specify that the program is to be processed by the
preprocessors:

*PROCESS MACRO;
MAP | NOMAP

The MAP option specifies that the compiler is to produce tables
showing the organization of the static storage for the object
module. These tables consist of a static internal storage map
and the static external control sections. The MAP option is
normally used with the LIST option.

Use of the MAP option also results in the generation of a
variables offset map which lists static internal and automatic
variables with the offsets from their defining bases. This
simplifies finding variables in a dump.

Example: To specify that a listing of static storage and a
variable offset map be producea: .

*PROCESS MAP;

MARGINI (‘c') | NOMARGINI
MI(*c') [NMI

60

" The MARGINI option specifies that the compiler is to indicate

the position of the margins by including in the listings of the
PL/I program a specified character in the column preceding the
left-hand margin, and in the column following the right-hand
margin. Any text in the source input which precedes the left-
hand margin will be shifted left one column, and any text that
follows the right-hand margin will be shifted right one column.
Thus the text outside the source margins can be easily
detected. The MARGINI option applies to both the SOURCE and
INSOURCE listings.

The MARGINI option has the format:
MARGINI('c")

where "c" is the character to be printed as
the margin indicator.

Example: To specify that the margins of the source program are

MAR (m,

to be marked with an @ in the compiler listings:

*PROCESS MARGINI('3d');

n [vC])

MARGINS(m,nf{,cl)
IBM Default: MARGINS(2,72)

The MARGINS option specifies which part of each compiler input
record will be scanned by the compiler for PL/I statements, and
the position of any ANS control character used to format the
listing.

The format of the MARGINS options is:
MARGINS (myn,c)
where:

m is the column number of the leftmost column that will be
scanned by the compiler. m must not exceed 100.

n is the column number of the rightmost column that will be
scanned by the compiler. n must not be less than m, nor
greater than 100.

c is the column of the ANS printer control character. It must
not exceed 100:and it must be outside the values specified for
m and n. A value of 0 for c indicates that no ANS control
character is present. The control character applies only to
listings on a line printer. Only the following control
characters can be used:

(blank) Skip one line before printing.

0 Skip two lines before printing.

- Skip three lines before printing.

+ Skip ro lines before printing.

1 Start new page.
Any other character is taken to be blank. If the value c is
greater than the maximum length of a source statement record,
the compiler will not be able to recognize it; consequently the
listing will not have the required format.
Example: To specify that the source program is contained in
columns 1 to 70 of the input file and a printer control

character appears in column 80:

*PROCESS MARGINS(1,70,80);

MDECK | NOMDECK

MD| NMD

The MDECK option specifies that the preprocessor is to produce
a copy of its output (see MACRO option) and write it to the
file defined by SYSPCH. The MACRO option produces B84 byte
records; however, the last four bytes, which contain sequence
numbers, are ignored for the output from MDECK option. Thus

Chapter 3: The DOSPLI Command and Compiler Options 61

MDECK allows you to retain the output from the preprocessor as
a deck of 80-column punched cards.

Example: To specify that a copy of preprocessor output is to
be written onto the virtual card punch:

*PROCESS MDECK;

NAME ('object~module-name*)
N('object-module-name")

The NAME option should not be used on CMS/DOS.

NEST | NONEST

OF|NOF

The NEST option specifies that the listing resulting from the
SOURCE option will indicate, for each statement, the begin-
block level and the do-group level; thus displaying the program
structure. The levels are shown by numbers in the left hand
margin.

Example: To specify that the source listing will contain
indications of begin-block and do-group level:

*PROCESS NEST SOURCE;

The OFFSET option specifies that the compiler is to print a
table of statement numbers for each procedure with their offset
addresses relative to the primary entry point of the procedure.
This table can be used to identify a statement from an
execution-time error message if the GOSTMT option is not in
effect.

Example: To specify that a table associating statement numbers
and offsets in compiled code is to be generated in the listing
file:

* PROCESS OFFSET;

OPTIMIZE(TIME|0|2) | NOOPTIMIZE
OPT (TIME|0{ 2) | NOPT

62

The OPTIMIZE option specifies the type of optimization
required:

NOOPTIMIZE specifies fast compilation speed, but inhibits
optimization for faster execution and reduced
main storage requirements.

OPTIMIZE (TIME) specifies that the compiler is to optimize the
machine instructions generated to produce a very
efficient object program. A secondary effect of
this type of optimization can be a reduction in
the amount of main storage required for the
object module. The use of OPTIMIZE(TIME) can
result in a substantial increase in compile time
over NOOPTIMIZE. '

OPTIMIZE(0) is the equivalent of NOOPTIMIZE.
OPTIMIZE(2) is the equivalent of OPTIMIZE(TIME).

The language reference manual for this compiler includes a full
discussion of optimization. OPTIMIZE will be accepted if
spelled in the English manner: OPTIMISE.

Example: To specify that the compiled code will be optimized
for the best performance:

*PROCESS OPTIMISE;

OPTIONS |NOOPTIONS
OP| NOP

The OPTIONS option specifies that the compiler is to include in
the compiler listing a 1list showing the compiler options used
during this compilation. This list includes those options
applied by default, and those specified in a *PROCESS
statement.

Example: To specify that a listing will be produced showing
all options used for a compilation:

*PROCESS OPTIONS;

SIZE(yyyyyylyyyK|MAX)
SZ(yyyyyy|yyyX|MAX)

The SIZE option can be used to limit the amount of main storage
used by the compiler. The SIZE option can be expressed in
three forms:

SIZE(yyyyyy) Specify that the compiler should attempt to
obtain YYYYYY bytes of main storage for
compilation. Leading zeros are not
required.

SIZE(yyyK) Specify that the compiler should attempt to
obtain YYYK bytes of main storage for
compilation (1K=1024). Leading zeros are
not required.

SIZE(MAX) Specify that the compller should attempt to
obtain as much main storage as it can.

The IBM default, and the most usual value to be used, is
SIZE(MAX). This permits the compiler to use as much main
storage in the partition or region as it can.

When a limit is specified, the amount of main storage used by
the compiler depends on how the operating system has been
generated, and the method used for storage allocation. The
compiler assumes that buffers, data management routines, and
processing phases take up a fixed amount of main storage, but
this amount can vary unknown to the compiler.

Exampie: To specify that the compiler will operate in
approximately 100K:

*PROCESS SIZE (100K) ;

Chapter 3: The DOSPLI Command and Compiler Options 63

SOURCE| NOSOURCE
S|NS

The SOURCE option specifies that the compiler is to include in
the compiler listing a listing of the source program. The
source program listed is either the original source input or,
if the MACRO or INCLUDE option applies, the output from the
preprocessor.

Example: To produce a listing of the source program:
*PROCESS SOURCE;

STORAGE | NOSTORAGE
STG | NSTG

The STORAGE option specifies that the compiler is to include in
the compiler listing a table giving the main storage
reguirements for the object module.

Example: To specify that a table giving main storage
requirements for the program will be generated:

*PROCESS STORAGE;

SYN|NSYN[(W|E[S)]

The SYNTAX options control whether the compiler is to continue
into syntax checking after initialization (or after
preprocessing if the MACRO option applies).

The PL/I optimizing compiler compiles in three stages; .
preprocessing, syntax checking, and compilation. Preprocessing
is the expansion of PL/I macro statements, syntax checking is
checking that the program is syntactically valid PL/I,
compilation is the actual production of compiled code.
Processing can be stopped after preprocessing or
initialization, either unconditionally, or if a certain level
of error is found. Alternatively, syntax checking can be
forced regardless of any errors (except unrecoverable errors)
found in preprocessing, or compiler initialization.

Errors are divided into four classes:
W Warning. An error may have occurred.

E Error. An error has been detected but execution
may be successful.

S Severe Error.
An error has been detected which will
prevent successful execution.
4] Unrecoverable Error.
An error has been detected that prevents
further compilation.
The various SYNTAX options have the following effects:

NOSYNTAX - The compiler will not continue into the syntax
checking phase.

NOSYNTAX(W) No syntax checking if a warning, error, severe

64

error, or unrecoverable error is detected.

NOSYNTAX(E) No syntax checking if an error, severe error, or
unrecoverable error is detected.

NOSYNTAX(S) No syntax checking if a severe error or
unrecoverable error is detected.

SYNTAX The compiler will carry out syntax checking
phase regardless of any errors (apart from
unrecoverable errors) found in preprocessing.

If the SOURCE option applies, the compiler will generate a
source listing even if syntax checking is not performed.

The use of this option can prevent wasted runs when debugging a
PL/I program that uses the preprocessor.

Example: To prevent syntax checking if a severe error is found
in preprocessing:

*PROCESS NOSYNTAX(S);

WORKFILE(direct-access-storage-device-type)
IBM default: WORKFILE(2311)

The WORKFILE option specifies the type of direct access storage
device that will be used by the compiler for work files during
compilation. The WORKFILE option is intended to be used where
a non-standard device type is required for a particular
compilation.

When the WORKFILE option is used, the symbolic device names
SYS001 and SYS002 must be assigned the channel and devices
used, and an ASSGN and a DLBL command must be issued to define
the data sets for each workfile. The file names used in the
commands must be IJSYS01 and IJSYS02. The amount of space |
required for the data sets is described in DOS: PL/I Optimizing
Compiler: System Information.

Optimum compilation speed is achieved if SYS001 and SYS002 are
on different volumes with full cylinders allocated to each data
set. If only one volume is available, SYS001 and SYS002 should
use a split-cylinder extent allocation with the cylinders
divided equally between the data sets.

The size and total number of records written by the compiler
onto these data sets is listed at the end of the compilation;
it varies widely according to the size and nature of the source
program and the amount of main storage available. However,
250K bytes of storage for each data set should be sufficient
for compiling programs containing up to 500 source statements.

Example: To specify that the compiler is to use a 2314 direct
access storage device for its workfiles:

*PROCESS WORKFILE(2314);

Note that a number of ASSSN and DLBL commands would also be
required to achieve the result. See above.

XREF | NOXREF

Chapter 3: The DOSPLI Command and Compiler Options 65

X|NX

. 66

The XREF option specifies that the compiler is to include in
the compiler listing, a list of all identifiers used in the

PL/I program, together with the numbers of the statements in
which they are declared or referenced. This is known as a

cross-reference listing.

(Label reference on END statements are not included. For
example, assume that statement number 20 in the procedure PROC1
is END PROC1l;. 1In this situation statement number 20 will not
appear in the cross reference listing for PROC1.)

If both ATTRIBUTES and XREF apply, the two listings are
combined into one table.

Example: To specify that an attribute and cross-reference
listing will be produced:

*PROCESS ATTRIBUTES XREF;

Appendix A: An EXEC Procedure for the PL/I User

EXEC procedures are sets of CMS commands that are held in an EXEC file
and executed by specifying the name of the file. They simplify carrying
out repetitive tasks and are well suited to the job of setting up the
assignments and DLBL commands necessary to compile and execute a DOS
PL/I program.

If you use CMS only for developing and executing DOS PL/I programs,
the EXEC procedure shown below could be adopted as all or part of, your
PROFILE EXEC. If you only occassionally use DOS PL/I, the EXEC
procedure could be given a suitable name, stored, and executed when
required.

Creating an EXEC Procedure

An EXEC procedure is created using the Editor, specifying the filetype
EXEC. You use the input mode of the editor to key in the input, just as
you do with PLIOPT files. For example, to create an EXEC procedure
called PLDOS you would enter:

edit pldos exec

NEW FILE:

EDIT:

input

INPUT:

(You would enter the EXEC procedure here)

When you had completed the procedure you would leave the input mode
by entering a null line and, when you had corrected any errors, file it
with a FILE subcommand. It could then be executed by specifying the
name PLDOS.

The name you choose for your EXEC file should not be the name of a
CMS command. If it is, it will be impossible to execute the command
until the EXEC procedure is either renamed or deleted.

The EXEC procedure shown below sets DOS on, issues the ASSGN and DLBL
commands for the PL/I libraries, and the GLOBAL command for a DOSLIB.
It also spools SYSLST to your virtual reader so that any execution time
error messages will be available for reading at the terminal. When this
EXEC procedure has been executed, it will be possible to compile simply
by issuing the DOSPLI command, and to execute by issuing the FETCH and
START commands. Thus by use of this or a similar EXEC procedure, you
. can free yourself to concentrate on the PL/I program itself, rather than
being concerned with the mechanics of running it.

The example below is fully commented so that you can choose which
parts of the procedure are suitable for you. Comments are the lines
starting with an asterisk and can be omitted from the procedure you use.
EXEC procedures are a powerful tool. They can be passed arguments, and
execution of commands can be made conditional upon the success of
previous operations or on other factors. Full details are given in the
VM/370: CMsS User's Guide. It should be noted that the DOSPLI command is
itself an EXEC procedure. Consequently, if you wish to specify DOSPLI
in an EXEC procedure of your own, you must specify:

EXEC DOSPLI

Appendix A: An EXEC Procedure for the PL/I User 67

Example of a suitable EXEC

* DEVICE 350 IS ASSUMED TO CONTAIN DOS/VS SYSRES

CP LINK SYSTEM 350 350 RR ALL

ACCESS 350 F

* DEVICE 353 IS ASSUMED TO CONTAIN A PRIVATE RELOCAT LIBRARY

% CONTAINING PL/I RESIDENT LIBRARY MODULES NECESSARY DURING LINK EDITING
CP LINK SYSTEM 353 353 RR ALL

* DEVICE 352 IS ASSUMED 70 BE A PRIVATE CORE IMAGE LIBRARY

% CONTAINING THE PL/I TRANSIENT LIBRARY, NECESSARY DURING EXECUTION

CP LINK SYSTEM 352 352 RR ALL

* SET DOS ON WITH MODE OF DISK CONTAINING DOS SYSRES

. SET DOS ON F

* ASSIGN SYSIPT TO CMS DISK THAT WILL CONTAIN SOURCE PROGRAM
ASSGN SYSIPT A

*# ISSUE ACCESS; ASSGN, AND DLBL COMMANDS FOR PL/I LIBRARIES
ACCESS 352 E

ACCESS 353 G

ASSGN SYSCLB E

ASSGN SYSRLB G

DLBL IJSYSCL E DSN PRIVAT CORE IMAGE LIB (SYSCLB PERM

DLBL IJSYSRL G DSN PRIVAT RELOCAT LIB (SYSRLB PERM

* ISSUE GLOBAL FOR DOSLIB USED. NOTE THAT THIS DOSLIB SHOULD BE
* SPECIFIED IN DOSLKED COMMAND

GLOBAL DOSLIB YOURLIB

* SPOOL PRINTED OUTPUT TO READER SO THAT EXECUTION TIME ERROR MESSAGES
* WILL BE ACCESSIBLE FROM TERMINAL

ASSGN SYSLST PRINT

CP SPOOL PRINTER TO *

68

*PROCESS entering on 3277 15
*PROCESS statement 15

%INCLUDE data 24,58
creating on CMS 16
without using preprocessor 58

as line editing symbol 9

@ as line editing symbol 8

" as line editing symbol 9

[as line editing symbol 8

A-disk 10,21
ACCESS command 2,23
AGGREGATE option 53
AMSERV 30
AMSERV command
example of use 31
ANS printer control character 61
ASCII data sets 41
ASSGN command U
ASSOCFLE environment attribute 41
asterisk
*PROCESS statement 15
at character () as line editing symbol 8
attention key 10
ATTN key, (see attention key)
ATTRIBUTES option 53

backspace character 9

BACKWARDS attribute 41

BCD 53

BEGIN command 9

bracket as line editing symbol 8

c as line editing symbol 8
capital letters 11,16
case M and U 16
CATALOS option 53
cataloged procedures 14
cent sign as line editing symbol 8
CHANGE subcommand of EDIT 13
character deletion 9
CHARDEL, character delete symbol 9
CHARSET 53
checkpoint/restart facility 41
CMs disk modes 23
CMS/DOS system
background 3

Index

CMS/DOS system (continued)
command summary 3

© CMS, system requirements 2

code, source

columns used for 61

listing of with LIST option 60
commands and subcommands 4

ACCESS 2
AMSERV 30
ASSGN U4
BEGIN 9
CASE M 16
CASE U 16
CHANGE 13
DLBL 4
DOSLIB 4
DOSLKED 4,27
DOSPLI 18
DSERV 4
EDIT 11
ERASE 35
ESERV &
FCOBOL &4
FETCH 4,27
FILE 11,14
GLOBAL 27
HT 9

HX 9
immediate 9
IPL 8

LINK 2
LISTDS 4
LISTFILE 3
LOAD 27
LOGIN see LOGON
LOGOFF 35
LOGON 5
LOGOUT see LOGOFF
PRINT 3
PSERV 4
QUERY 4
QUIT 14
RSERV 4

RT 9

SAVE 14
SET 4
SPOOL 2
SSERV 4
START 27

TERMINAL 8
compilation 18
assiagnment output disk 21
failure of 18
COMPILE option 54
compiler 47
accessing compiler and libraries 23
alphabetical list of options 53
DOSPLI command 47
files 23
files generated by 21
improving performance if in DOS core
image library 23

Index 69

compiler (continued)
invoking 18