
Program Product

SC33-0051-0
File No. 5360/5370-29

DOS
PL/I Optimizing Compiler:
CMS User's Guide

Program Numbers 5736-PL 1
5736-LM4
5736-LM5

(These program products are available
as composite package 5736-PL3)

First Edition (March 1976)

This Edition applies to Version 1, Release 4, Modification 1 of
the DOS PL/I Optimizing Compiler under Release 3 of VM/370 and
to all subsequent releases until otherwise indicated in new
editions or Technical Newsletters. Changes will continually be
made to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest
IBM System/360 and System/370 Bibliography SRL Newsletter, Order
No. GN20-0360, for the editions .that are applicable and current.

Requests for copies of IBM publications should be made to your
IBM representative or to the IBM branch office serving your
locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM United Kingdom Laboratories Ltd., Programming
Publications, Hursley Park·, Winchester, Hampshire, England.
Comments become the property of IBM.

Note: Some sections of this manual are copyrighted in the OS
PL/I Optimizing Compiler: CMS User's Guide.

e Copyright International Business Machines Corporation 1973,1974,
1975,1976

ii

Preface

This manual explains, for the DOS users ~f the Conversational Monitor
System (CMS) component of the IBM Virtual Machine Facility/370 (~M/370),
ho~ to invoke the DOS PL/I Optimizing Compiler under CMS and execute and
debug programs compile1 by it.

rhe reader is assume1 to have a basic kno~ledge of PL/I, DOS and of CMS.

~hapter 1 is an introduction to PL/I under CMS. It aims to give enough
information to allo~ the reader to enter, compile, execute, and debug a
straightforward PL/I program under CMS. It also aims to act as a guide
to further sources of information and to provide enough background
material to allow the reader to make full use of the potentialities of
the optimizing compiler under ~MS.

Chapter 2 is the reference source for the special restrictions and
conventions that apply to PL/I when it is compiled by the DOS optimizing
compiler and execute3 under eMS.

~hapter 3 is the reference source for the DOSPLI command and the DOS
PL/I optimizing compiler options.

Figure P.l is a guide to using this book.

REFERENCE PUBLICATIONS

rhis book makes reference to the following publications for related
information that is beyond its scope.

~~§~se~:~_Gu!~~, Order No. GC20-1819

~E_comm~ng_Bef~~~nce_~Q~_§~n~~~!_~~~~, Order No. GC20-l820

eM§_£Qillm2nQ~n~_~!Q~Q_B~~~f~n~~, Order No. GC20-1818

I~~mi~!_!!~er:!!_2~i~~, Order No. GC20-1810

~l2nB!ng_and SY!!E~m_§~n~~~EiQn_Guide, Order No. GC20-1801

D02_PL/I_QQEimizin~QQIDEi!~~~_~~n~~~~~_B~fergnce~anual,
Order No. SC33-000S

QQ2_~~/I 0etimizing compiler: Progranmer's Guide, Order No. SC33-000a

D02_PL/I Oetimizing compiler: Program Logic, Order No. SC33~0006

DOS PL/I 0etimizing compiler: Messages, Order No. SC33-0021

Preface iii

~VAILABILITY OF PUBLICATIONS

The availability of a publication is indicated by its use key, t~e first
letter in the order number. rhe use keys are:

iv

G - General: available to users of IBM systems~ projucts, and
services without cllarge, in quantities to meet their normal
requirements; can also be purchased by anyone through IBM
brancn offices.

S - Sell: can be purchased by anyone through IB~ branch offices.

L - Licensed materials, property of IBM: available only to
licensees of t~e related program products under the terms of
the license agreement.

Contents

CHAPTER 1: WRITING AND RUNNING A Handling Listing Information . 21
PL/I PROGRAM UNDER CMS · · · · · 1 Files used by the compiler 22

Introduction 1 Accessing Disks Onder CMS 23
Using VM/310 · · · · · · 2 Accessing the Compiler and its

The DOS System under CMS · · 3 Libraries .• · · · · · 23
Starting the Session - t!te LOGON Special Considerations · 24

Command · · · · · · · · · 5 Secondary Input Text - "INCLUDE
Summary · · · · · · · 5 Statements · · · · · 24

Example of use of the LOGON Sources of Further Information 25
Command .• · · · · · · · 5 Executing a DOS PL/I Program 26

BACKGROUND · · · · · · · · 6 Summary . · · · · · · · · · 26
CP and Your Virtual Machine 6 Background Information · · · 28

Sources of Further Information 6 The CMS/DOS Linkage Editor · 28
Invoking CMS - the IPL Command 7 Using CMS Files and DOS Data

Summary · · · · · · · 7 Sets . · · · · · · · · · · 29
Example of use of the IPL special Considerations · · · · 32

command · · · · · · · · · · 7 Accessing Error Messages · · 32
Background .• · · · · · · · · · 8 Link-Editing an Object Program

Entering Comman1s and Data Under Stored on a DOS Relocatable
CMS . . · · · · .• · · · · 8 !.ibrary · · · · · · · · · · 33

Profile EXEC · · · · · · · 9 Sources of Further Information 34
Sources of Further Information · · 10 Ending the Terminal Session - The

Entering the Program - The EDIT and LOGOFF Command · · · · · · · · · 35
FILE Commands · · · .• · · · · · 11 Summary · · · · · · · · · 35

Summary . · · · · · · · · · · 11 Example of ending the session 35
Examples of Use of the EDlr and Background · · · · · · · 35

FILE Commands · · · · · 12 Deleting Files · · · · · · · 35
Background · · · · · 13 Special Considerations 36

The CMS Editor · · · · · · 13 Retaining a Switched Line
correcting Typing Errors · 14 Connection · · · · · · · · 36
Using the Editor to Alter Non- Source of Further Information 36

CMS Files · · · · · · · 14 Debugging a Program · · · · · · · 37
Format of PLIOPT files · · · · · 15 Use of CP Debug · · · · · · 37

Special Considerations · · · · 15
U$e of Non Default Compiler CHAPTER 2: PL/I CONVENrIONS AND

Options · · · · · · · · · · 15 RESTRICTIJNS UNDER CMS 41
Lowercase Character String Restrictions · · · · · · · · · 41
Constants · · · · · · · · · 16 Conventions · · · · · · · · · · · 43

Use of the Line Editing Symools Display and Reply Under CMS 43
in your Program · · · · · · · · 16

Files for Inclusion by IINCLUDE CHAPTER 3: THE DOSPLI COMMAND AND
statement · .• · .. · · · · · · · 16 COMPILER OPTIONS 45

Sources of Further Information · · 17 Syntax Notation · 45
compiling the Program - the DOSPLI DOSPLI Command '. · · . . 47

Comlnand · · · · · · 18 Usage . · · · · · 47
Summary · · · · · · · 18 compiler Options · · · · · 47

Example of Use of the DOSPLI Alphabetical List of Options · 53
Command .• · · · · · · · 20

Background Information · · · 21 APPENDIX A: AN EXEC PROCEDURE FOR
Compiler Output and its THE PL/I USER 67
Destination · · · · · · · 21 INDEX . . . · · · 69

v

Figures

Figure P.l. How to use this book •• vii
Figure 1.1. The steps involved in
entering and. executing a DOS PL/I
program under CMS •• • • • • .viii

Figure 1.2. The disks on which the
compiler output is stored •••• • 21

Figure 1.3. Files tAat may be used
by the compiler • • • • • • •• • • 23

Figure 2.1. Restrictions on the PL/I
functions that can be executed under
eMS. ~ • • • • • • • 41

Figure 3.1. Compiler Options and IBM
Recommended defaults arranged
alphabetica~ly • • • • • • • • • • • 49

Figure 3.2. (Part 1 of 3) Compiler
options arranged by function • • •• 50

Figure F.l. Sample Terminal Session 75

vi

START

j
Are you familiar
with CMS? j Yes

Do you want an
overview of the DOS
Optimizing compiler
operating under

eMS? j NO

Do you wish to know
about the DOSPLI
command and the
options of the

This book gives a brief introduction at
NO the start of chapter 1. Further
------------~.~ information is in the VM/370: CMS User's

Guide.

YES
A foldout example program at the back of
this manual provides an overview of the

----------------4~~ facilities offered by the DOS Optimizing
compiler under CMS.

YES The syntax of DOSPLI and the compiler
-------------.......... options are described in Chapter 3 of this

hook.

compr~o

Do you wish to know YES This information is contained in Chapter 2
the PL/I restrictions -------------......... ~ of this manual.
under CMS?

Figure P.l. How to use t~is book

vii

viii

START

LOGON

Start the session
FETCH(START

Execute the program

IPL

Make CMS virtual machine ~

available

.. --- I "- Yes
Errors foun.d?

~

EDIT& FILE

Enter, correct, and save your
No

program

LOGOFF

End the session
SET DOS ON

Activate DOS environment

ASSGN

Identify source for compiler
END

DOSPLI

Compile the program

EDIT

Examine listings at the terminal

Yes
Errors found?

No

"

ASSGN & DLBL

Identify PL/I resident library

DOSLKED

Link edit the program

~

GLOBAL
S PL/I

Identify the link edited program

ASSGN & DLBL

Identify transient library

Figure 1.1. The steps invoived in entering and executing a DOS PL/I
program under eMS

Chapter 1: Writing and Running a .PL/I Program
Under CMS

In trod uction

Running a DOS PL/I program unde~CMS is a very simple process. You will
need to carry out the following steps using commands at a terminal:

1. LOGON at the terminal.

2. IPL CMS.

3. ~rite or alter a source program using the CMS editor.

4. Activate the DOS environment using the SET DOS command. assign the
source file to SYSIPr using the ASSGN command. and compile the
source program using the DOSPLI command.

5. Access the PL/I resident library using ASSGN and DLBL commands.
then link edit the object program into an executable CMS/DOS phase
library ,(DOSLIB) using the DOSLKED command.

6. Execute the compiled program using the DLBL and ASSGN commands to
access the PL/I transient library and the 3LOBAL command for the
DOSLIB, followed by the FErCH and START commands.

7. End the session.

After a brief introduction to VM~370 and CMS the remainder of this
chapter leads you through the steps listed above one by one. Because
CMS~DOS is intended primarily for pr~gram development, a section on·
debugging is also included at the end of the chapter. A standard
approach has been adopted for each step. The format is:

1. Sum~and example. T~ese give the essential information for a
novice user to run straightfor~ard programs and list any special
cases that require additional action. These are the only sections
you will need to look at during your first CMS sessions.

2. Background information. This amplifies t~e information in the
summary and is intended to enable the user" as he gets more
experienced, to get the. best possible results from using DOS PL/I
under CMS.. '

3. ~pecial considerations •. rhis explains what to do in the special
cases listed in the summary. Special cases have been kept s,eparate
to prevent them making a simple process appear complex. This
section is omitted if there are no special cases.

4. Sources of further information. This lists the manuals that you
~ill require-for any-further-rnformation.

A sample terminal session can be folded out from t~e end of the book.
This shows all steps involved on one page and can be used for quick
reference.

Other chapters in this book are for reference. Chapter 2 lists the
special restrictions and conventions that apply to PL/I ~hen compiled by
the DOS PL/I Optimizing Compiler and executed under CMS. Chapter 3
shows the syntax of the DOSPLI command and lists the compiler optio'ns.

Chapter 1: ~riting and Running a PL~I Program Under CMS 1

§y~tem-f~~!~~~n~§: rhe PL/I Optimizing compiler requires a minimum of
320K bytes of virtual storage for the CMS virtual machine. This figure
is th~ same as the suggested minimum for eMS.

USING VM/310
J

DOS PL/I under CMS is a small part of the VM/370 system. VM/370 is a
powerful system allowing you to develop and execute programs from the
terminal, enter and access data from the terminal, and givin; you the
power of a full teleprocessin~ network. To make the most effective use
of DOS PL/I it will pay you to know the underlying principles of VM/370.
These are explained briefly below with particular reference to CMS/DOS.

VM stands for virtual machine. rhis is because as a V~/370 user you
can behave as if you had a computer all to yourself. You have a
"virtual machine". On this machine you have a set. of disks on which
your prograrus and your data are held. You have a reader to which you,
and other VM/370 users, can pass data which can then be read onto your
disks. You have a printer which can print copies of your files or of
your program output, you have a CPU whicn you can use to execute
programs or the commands that are available under the VM/310 and you
have a console which is your terminal.

In fact, many of the resources will be shared with other users. The
sharing of the resources is handled by the control program CP. ~hen you
sit at the terminal you are always working under the control of CP.

CP is the program that presents you with your virtual machine. To
operate the virtual machine, you must have an operating system. You
must ask CP to load a system using an IPL command. Many types of
operating systems can be loaded. You will normally load CMS, a system
specially designed for interactive programming. If you make a serious
error under CMS or any other operating system it will ABEND and you will
be returned to the direct control of CP. You can then re-IPL CMS and
start again, having harmed no one but yourself.

The chief features of CMS are a file handling system and a facility
for interactive programming. Both PL/I programs and the data they use,
will be held as CMS files.

Although, when you are using CMS you will in fact have two operating
systems, CMS and CP to which you can specify com~ands, this will not
normally be apparent to you and you will ap.pear to have one large set of
commands at your disposal.

Th~ commands that have most interest to the PL/I programmer can
usefully be divided into four sets; those that control the faciltiies
and configuration of your virtual machine, those that handle files,
those that allow you to query the status of your virtual machine or your
file system. and those that enable you to execute programs.

2

The most important are shown below:

LINK and ACCESS

SPOOL

connect disks to your virtual machine so that
you can access the data. programs, or storage
space you require.

Directs output so that it can be printed or sent
to your reader for subsequent recovery.

EDIT

ERASE

TYPE

PRINT

Allows you to enter and update files from your
terminal.

Erases files.

Allows files to be displayed at the terminal.

Allows files to be printed on the high-speed printer.

~~fY~nq your Status

QUERY

LISTFILE

Allows you to determine the current status of your
virtual macnine.

Gives a listing of your CMS files.

Plus various specific DOS oriented commands listed below:

§~~£~i~B~P~Q~~~

rhese commands give access to various assemblers and compilers including
the OS and DOS PL/I compilers and also simulate DOS and OS job control
language.

As a DOS PL/I programmer, your major concern will be with CMS/DOS, a
fuller description of this is given below.

The DOS System uBQ~~_CMS

rhe DOS system under CMS, known as eMS/DOS, is a simulated system. It
uses part of the actual DOS system for functions that include link­
editing and control of input/output, and simulates other items.

All programs that are executed under CMS/DOS must be stored in the
DOS core image library or in a DOSLIB file, which is a simulation of a
core image library. A DOSLIB file is stored on a CMS disk.

Real DOS libraries are readable from the CMS virtual machine but no
writing can be done on them. Items from the libraries can, however, be
copied to eMS disks by means of special service commands. They then
become CMS files and can be edited using the eMS editor.

Rel~~ant Commands

rhe commands availa.ble to users of eMS/DOS fall into four groups:

1. Commands to initalize and support the CMS/DOS system.

2. Commands for simulating DOS job control language.

3. Commands for simulation of DOS functions such as compiling,
link-editing, and executing programs.

4. Commands for simulating librarian services.

All commands except those for program product compilation are
described in VM310: CMS Command ana Macro Reference.. The PL/I
compilation command is described in this manual and the COBOL

Cnapter 1: Writing and Running a PL/I Program Under CMS 3

compilation command in tne VM/310: £.MS User'~ 3uide !Q!: £Q~Q!!, Order No.
SC28-6469.

The commands that are liable to be of most use to the PL/I programmer
are briefly describe1 below.

Commands to initialize and support the DOS system are:

SET

QUERY

LISTDS

Used to activate the CMS/DOS environment and set the UPSI
byte, w~ich is a DOS housekeeping field.

Used to discover whether the eMS/DOS system is active and
to test the settings of the UPSI byte.

Used to list the status of DOS files accessed in CMS.

commanjs for simulation of DOS job control language are:

l\SSGN

DLBL

Used to associate a symbolic device name with an actual
unit. T~e unit may be a eMS disk or a virtual unit such as
a virtual punch~

Used to identify a particular DOS data set or eMS file on a
physical unit an1 associate it with the name used to
reference the file in the PL/I program.

Commands for simulating DOS services are:

DOSPLI

FCOBOL

DOSLKED

FETCH

Used to compile PL/I programs. (The full syntax of DOSPLI
is given in Chapter 3 of this manual.>

Used to compile COBOL programs.

Used to link-edit programs ready for execution and place
them in a DOSLIB.

Used to bring DOSLIB files into storage for execution under
CMS/DOS.

The commands for simulating DOS librarian and associated services are:

DSERV

ESERV

RSERV

PSERV

SSERV

DOSLIB

Used to display directories of the various DOS libraries.

Used to copy onto a CMS disk, display, punch or print an
edited (compressed) element of a DOS/VS source statement
library.

used to copy DOS relocatable library modules to CMS disks,
to a virtual device, or to display them at a terminal.

used to copy procedures from the DOS procedure library to
eMS disks, or to a virtual device, or to display them at a
terminal.

used to copy DOS source statement library books to eMS
disks, display th~m at the terminal or spool them to the
virtual punch or printer.

used to handle DOSLIB libraries, for example, to delete,
rename, or add members,.

rhe remainder of this chapter leads you through the steps involved in
keying in and executing a program under CMS/OOS. The next page shows
you how to log on to your virtual machine.

Starting the Session - th~ LOGON Command

S(JMM~RY

To start a terminal session, you switcn on the terminal and enter the
LOGON command, specifying the identifier of your virtual machine. The
terminal responds by requesting your password if one is requir~d by your
installation. ~fter you have entered the password, the system ~esponds
with a log message. You are now in the control program environment of
VM/310, and can invoke eMS.

r--, EXAMPLE OF LOGON

Terminal Printout

(You switc,h on the terminal)

\fM/370 ONLINE
(you may have to press attention
key to unlock the termina~ keyboard.)

I
logon skylark'
I
I
I
I

ENTER PASSWORD:
(password entered here)
I
I
I

I. 1

Notes and comments

Message shows VM/310 is avail­
able.

LOGON command followed by
identifier for your virtual
machine. (Normally known as
userid.)

System requests password.
You enter password. The printing
of the password will normally be
suppressed or overprinted for
security.

ILOGMSG - 09:12:09 OQ/02/16 Log message showing time and
IRUNNING SYS010 - COLD START AT 09:00 date of message, system identi­
ILOGON AT 09:13:0Q THURSDAY OQ/03/16 fication and start time, time
I 1 and date o~ signing on.
1--
I~Q!!yentio~:
I
11.
I
'1
12.
I
I

A carriage return (or equivalent) is assumed after all programmer
input.

The character I in column two implies spacing has been added to
accommodate notes.

13~ System response is in upper case (capital) letters~ programmer
I input in lower case. L----------___ --~--------------J

Chapter 1: Writing and Running a PL/I Program Under eMS 5

.BACKGROUND

when you have keyed in your LOGON command and your password, you are in
control of a virtual machine. Your terminal can be considered as the
console of your virtual machine. You can thus carry out many of the
operations of the operator of the real machine. This includes the
ability to invoke a number of operating systems, among them CMS.

Your virtual machine is controlled in the real machine by a control
program known as control Program/370 or CP. When you have received the
log message, you are in control of your virtual macRine and are said to
be in the "cp environment".

SOUR~ES OF FURTHER INFORMATION

LOGON command

LOGMSG meaning

6

VM/370: CP Command Reference For General
User's

VM/370: Terminal User's Guide

Invoking CMS - the IPL Command

SUMMl\RY

To invoke eMS, you issue t~e IPL (Initial Program Load) .commahd.

r--,
EXAMPLE OF IPL I

--------~--~-------------------------------------.~------~-~----------
Terminal Printout Notes and comments

--------------~-------------------------~-------------~-----------.---
ipl cms T~e IPL eMS command.
I
eMS 3.0 PLC 0 WEDNESDAY 04/03/16 09.13.50

Message confirms eMS is invoked and
that CMS commands may be entered.

1. A carriage return (or equivalent) is assumed after all programmer
input.

2. The character I in column two implies spacing has been added to
accommodate notes.

3. System response is in upper case (capital) letters, programmer
input in lower case. L-----------__ -----------------J

Chapter 1: Writing a.nd .Running a PL/I Program Under eMS 7

BAC~GROUND

Unless you are operating in a submode of CMS, such as input mode within
the editor, everything you enter at the terminal is taken to be a CMS
command. If the command is correct. it is carried out and a Ready
message typed to confirm that the command is complete and that the
system is reaay for furt~er commands. If the command is not correct, an
error message is typed. Data is transmitted to the system when you press
the carriage return key for typewriter type terminals or the ENTER key
for display type terminals.

On a typewriter type terminal w~en a CMS command is being executed,
the terminal keyboard is locked so that you cannot enter any further
dat~ until the system is ready to receive it.

Li~_~diti~~~YmQQ!~

VM/310 provides four symbols to alter, delete, or split up the line you
key in at the terminal. These four symbols are known as !Q~!£~! !!n~
~dit!~ 2Ymbols and are ~, ~, #, and" by default. For some terminals,
~ becomes [or (. Tne symbols are removed from your input and treated
as editing symbols unless they are preceded by the escape symbol (see
"Using line editing symbols as normal characters" below). The line
editing symbols can be used to alter or delete lines before you press
the carriage return key, or to enter a number of commands on one line to
save time.

Q~!~~ing a line: If you wish to delete a line you are typing and to
reenter it completely, you should use the logical line delete symbol and
then press the carriage return key. By default the logical line delete
symbol is~. Thus to delete a line you could enter:

this is an example of deleting a line ~

(~ becomes [or (on some terminals.)

Altef!~ line: If you wish to alter a line you have not completed
typing, ana then transmit it to the system, you must, on a typewriter­
type terminal use the logical character delete symbol, (sometimes called
the logical backspace symbol). On a display terminal you can simply
backspace the cursor and reenter the input. By default, the logical
character delete symbol is~. If the logical character ~elete symbol is
entered once it ~eletes the previous character, if it is entered twice
it deletes the previous two characters, and so on. Thus to alter the
line you are typing you could enter:

this is an example of altering an amusing little wine~~~aline

Many programmers prefer to use the actual backspace key on the
terminal as the character delete symbol. This saves the trouble of
having to count back to the character you wish to change. Instead you
can just backspace to the incorrect character and reenter the line from
that point,. To set the backspace as the character delete symbol you
must use the TERMINAL command thus:

TERMINAL CHARDEL (you press the backspace key at this point)

8

~n~~~!~more than one command per line: If you want to save time at
the terminal by entering more than one command per line, you must use
the logical line end symbol. By default this is #. The characters
.follo~ing the # are treated as a new line. The line end character can
be used to split any type of input although its chief use is for
commands. For eKample if you ~anted to split a line, you mi~ht enter:

this is an example of splitting#a line

The system ~ouldsee "a line" as a separate input line.

~~!n~_!!n~_~diting symbols as normal characters: If you wish to use any
of the line editing symbols as a normal character, you must precede it
~ith the escape symbol. By default this is n. For example to enter the
line 'this is an eKample of using the escape symbol to enter ~. you
would enter:

this is an example of using the escape symbol to enter n~

rhe escape character can be used preceding itself.

~ttenti0ll-~~: If you are a normal user, TERMINAL ~ODE VM will be in
effect at your terminal and the use of the Attention key or its
equivalent will nave t~e follo~ing results. If you press it once while
under. the control of CMS, it causes an attention interrupt. If a CMS
command is being eKecuted, this allows you to key in further CMS
commands that will normally be executed ~hen the current command bas
been completed. Ho~ever, there are a number of commands that are
executed immediately. These are called Immediate commands. Hr - halt
typing or displaying, HX - halt execution and RT - resume typing or
displaying can be useful w~en running PL/I programs. The Immediate
commands are described in the VM/310: CMS Command and Macro Reference.
Note HX (baIt execution) clears all previously entered DLBL commands.

If a CMS command is not being executed, pressing the Attention key
once deletes anything entered on the current line, but other~ise has no
effect~

If you press the Attention key t~ice in quick succession while in the
CMS environment, control is returned to CP. The system then types "CPR
at your terminal. If you wish to return to CMS, you can press the
attention key again or enter the BEGIN command and control will be
returned to CMS •

. when the first CMS command after IPL is executed, a CMS disk must be
accessed. If the first command is an ACCESS command, the disk accessed
will be the disk named in the ~CCESS command. If any other command is
used, the 191 disk ~ill be accessed by default and set up as your ~­
disk.

When the first disk is accessed, the disk is searched for a CMS EXEC
procedure with the name PROFILE. (~n EXEC procedure is a set of CMS
commands that, typically, carry out repetitive housekeeping tasks such
as assigning files. These commands are executed by entering the name of
the EXEC procedure as a command~) If an EXEC procedure with the name
PROFILE is found on the first disk accessed, it is automatically
executed. Many installations use this feature to handle repetitive
housekeeping tasks that need to be done at the start of every session.

Chapter 1: Writing and Running a PL/I Program Under CMS 9

A PROFILE EXEC or other EXEC procedure is a suitable method of
establishing the DOS environment and handling the assignments necessary·_·
for compiling and running a PL/I program. A discussion of this and an
example of a suitable EXEC procedure are given in Appendix A.

SOURCES OF FURTHER INFOR~ATION

~MS 1!ackground

IPL command

PROFILE EXECs

10

~M/370: CMS User's Guide

VM/370: CMS User's Guide
VM/370: CP Command Reference for
General Users

VM/370: CMS User's Guide
Appendix A of this Manual

Entering the Program - the EDIT and FILE Commands

SUMMARY

ro enter or alter a PL/I source program under CMS, it is necessary to
use the CMS E1itor. You enter the EDIT command followed by the filename
of your choice and the filetype PLIOPT or PLI. You then use the editing
facilities either to enter new input or, if you are updating, to alter
the existing program. The facilities available for manipulating and
altering text using the Editor are not described in this manual. If you
are not aware of them, you will find them in the VM/370: CMS User's
~uide and the VM/370: CMS Comman1 and Macro Reference. rhe facilities
for correcting lines before you press the carriage return key are
described in the previous section under the heading "Line Editing
Symbols". .

When you are satisfied with your input or alterations, you use the
FILE subcommand to create a CMS file that can be compiled using the
DOSPLI command. In addition to storing the file on a CMS disk, the FILE
subcommand returns you from the edit submode to the CMS environment.

If you are entering a new PL/I program, you must choose a new
filename which follows the CMS conventions. That is, the name can
consist of up to eight characters, which may be any alphameric character
pluS the special characters $, @, and #. (Remember however that @ and
are default line e1iting symbols and special action may be required if
you wish to use them.) If you are altering an existing program, you
specify the existing filename. Your input must be typed in columns 1
through 11. The editor will insert one blank to the left of your input
so that the actual margins will be 2,72. You can type your inpQt in
either capitals or lOwercase letters or any combination of the two; it
will be translate1 into capitals (uppercase) by the Editor.

If you intend to ~~~£~~~ your program under CMS, you should be aware
of the special conventions and restrictions that apply to PL/I when it
is used un1er CMS. These are listed in chapter 3 of this manual. If
you intend to compile your program under CMS but to execute it under the
control of DOS, then there are no special restrictions on the language
facilities you may use.

§Eecial action will be r~uir~g_!n_~h~_~Q!lowin~ circumstances

1. If you wish to use compiler options other than your installation
defaults.

2. If your program uses lowercase character string constants.

3. If you wish to use any of the line editing symbols as normal
characters in your program. The line editing symbols are @, #, ~,
and " by default.

4. If you wish to create a file of secondary input text for inclusion by
use of the %INCLUDE statement.

The action is described under the heading "special considerations"
later in this section.

Chapter 1: Writing and Running a PL/I Program Under CMS 11

r--, I EXAMPLE OF ENTERING A NEW PROGRAM I
1--1
Terminal Printout Notes and comments I
--1
edit rabbit pliopt Key in EDIT command follo~ed by ,
I filename and filetype. 1
I I

NEW FILE: Message shows that you have no PLIOPTI
I file called "rabbit". 1
I ,

EDIT: Message shows you are in edit mode. I
I ,

input Keying in INPUT subcommand causes thel
I input mode to be entered. I
I I

INPUT: Message shows you are in input mode. ,
rabbit:proc options (main): PL/Istatements must be keyed in I
display columns 1 through 71. ,
('the rabbit squeaks to the world'); 1
end; I

I , ,.
EDIT: ,
top

I
TOF

I
I

type *
I
RABBIT: PROC OPTIONS (MAIN);
DISPLAY
I
('THE RABBIT SQUEAKS TO THE
END;

EOF
file ,

I
I

R;
I

conventions:

Null line (carriage return only on a 1
line) causes return from input to I
edit mode. I

Message sho~s change of mode.

Places the Editor'S line pointer at
the top of the file.
Message sho~s the pointer is at top
of file .•

Have the contents of the file
displayed at the terminal.
Note program has been translated
uppercase and moved one column
right.

WORLD');

Means end-of-file reached.

to

Keying in FILE command results in
your input being stored ~ith the
filename and type you specified. It
also ends edit mode.
Ready message indicates further
commands can be entered.

,-----
11.
I
I
12.
I ,

A carriage return (or equivalent) is assumed after all programmer
input.

The character I in column t~o implies spacing has been added to
accommodate notes in the right hand column .•

13. System response is in uppercase (capital) letters, programmer
I input in lo~ercase. L---------------------------------_____________________________________ J

12

r--,
EXAMPLE OF ALrERING AN EXISTING PROGRAM

Terminal Printout Notes and comments

---~--------------------------
edit dig pliopt

I

EDIT:
I
I
I
I
I
I

locate/pht/
I
PHT EDlr(X) (A)i

I
I
I
I
I

change/ht/ut
PUT EDIT(X) (A)i

I
I
I
I

file
I
I
I
I

Ri
I

conventions:

Issue EDIT command specifying exist­
ing PLIOPT file "dig".

system confirms that it is in edit
mode with a copy of the file
available. (If there was no PLIOPT
file "dig" it would respond "NEw
FILE:".) The line pointer is placed
at the top of the file.

Locate the errors with the LOCATE
subcommand.
If the VERIFY option is in effect,
the first line containing the
incorrect word is displayed.
If it is not the default, VERIFY
can be specified by entering VERIFY
in edit mode.
Issue CHANGE subcommand.
The corrected line is ~isplayed. For
details of CHANGE and other edit
subcommands, see VM/370 CMS User's
Guide.

FILE subcommand requests that the
altered copy be stored as the file
"dig" and that the previous copy be
discarded.

Ready message indicates further CMS
commands may be entered.

1. A carriage return (or equivalent) is assumed after all programmer
input.

2. The character I in column two implies spacing has been added to
accommodate notes in the right hand column.

3. System response is in uppercase (capital) letters, programmer
input in lowercase.

L---~-------------------------_--------------------~----------------___ J

BACKGROUND

The CMS Editor

The CMS Editor allows you to create and update sequential CMS files from
your terminal. It is used to create PLIOPT or PLI files which can be
compiled by the PL/I compilers. (PLI files were the filetype available
for PL/I under CP/61 and can still be used under the VM/370 system o

Their format is identical to PLIOPT files.) The CMS Editor has two
modes, the edit mode and the input mode. The edit mode allows you to
use various subcommands to cnange, rearrange, or add to the copy of the

Chapter 1: Writing and Running a PL/I Program Under CMS 13

file in main storage. The input mode assumes that all items keyed in at
the terminal are to be included in the file you are creating. To enter
the input mode, you issue the subcommand INPUT. To return from the
input mode to the edit mode, you enter a null line; that is, a line that
consists only of a carriage return (or pressing the Enter key for
display terminals.) (If you ~ant a blank line in your PLIOPT file you
must~therefore, .key in at least one blank character in the line.)

When you issue the EDIT command, you must specify a filename and a
filetype. CMS searc~es your disks for t~e file and if you have such a
file, brings a copy of it into main storage and displays the message
"EDIT:" indicating tnat you are in EDIT mode. If you do not have such a
file, it assumes you intend to create one and displays the message "NEW
FILE" follo~ed by "EDIT".

To return from t~e edit mode to CMS, you must issue an edit
subcommand that specifies what is to be done to the copy of the file
that you have been editing. Tnis can be done by using either the FILE
subcommand or the QUIT subcommand. The FILE subcommand stores the copy
of the file you have been creating and discards the previous copy, if
any. The QUIT subcommand discards the copy of the file that you have
been editing. If you ~ish to retain both the original copy of the file
and t~e copy of the file that you nave been editing, you can specify a
new name in the FILE subcommand thus

file rabbit2

the previous version of the file rabbit would then remain available.

If you wish to still remain in edit mode but store what you have edited
so far, you can use the SAVE subcommand.

A full description of the EDlr command and EDIT subcommands is given
in the VM/310: CMS command and Macro Reference. For examples of how to
use the Editor see the VM/310: CMS User's Guide.

If you wish to correct a line before pressing the carriage return key
you can use the line editing characters described under the heading
"Line Editing Characters" in t~e previous section of this chapter. If
you wish to correct a line when it has been transmitted, you must use
the editing facilities that are described in the VM/370: CMS User's
Guide.

g~i~g the Editor to Alter Non-CMS Files

The CMS Editor can only be used on CMS files, however, if you wish to
alter DOS catalogued procedures or source statement books, these may be
copied to CMS files by use of the PSERV, ESERV, and SSERV commands. rhe
PSERV command can be used to copy a DOS catalogue procedure onto a CMS
disk so that the job stream could be modified via the CMS Editor. The
resultant job stream preceded by the CATALP control cards must then be
spooled back to the DOS/VS virtual machine in a. manner similar to that
shown in the ~INCLUDE example that follows.

Since DOSPLI compilations cannot access CMS MACLIB (macro) libraries,
the only practical use of the SSERV and ESERV commands would be to copy
DOS source books and edited source books, respectively, onto CMS disks

14

in order to manipulate them using the CMS Editor. They, too, must then
be spooled back to the DOS virtual machine.

For more information on the PSERV, ESERV, and SSERV commands, refer
to the y~/370: £MS Q~~r·s Guide.

PLIOPT and PLI files created by the editor have SO byte fixed length
records~ sequence numbers are in columns 73 through SO. PLI files are
an alternative type of file of the same format. The standard tab
settings for PLIOPT files are 2, 4, 7, 10, 13, 16, 19, 22, 25, 31, 37,
ij3, ij9, 55, 79, and SO. The zones are columns 2 and 72; input is
truncated at column 12.

SPECI~L CONSIDERATIONS

Non-default compiler options are entered in a *PROCESS statement that
precedes the PL/I source statements. Special action is required to
enter them because tne * must appear in column 1 and, by default, the
editor moves all input to PLIOpr and PLI files one column to the right.
rhe method used depends on the type of terminal you are using. If you
are using a typewriter terminal with a backspace key such as an IBM 2741
the backspace key must be use1 before the *. The *PROCESS statement
takes the form:

(you press the backspace key)*process attributes xref;

If you are using tAe backspace character as a character delete symbol
it must be preceded by the escape symbol. (See "Line Editing Symbols"
under "Invoking CMS - the IPL Command" earlier in this chapter.) If you
are using backspace for character deletion and the escape symbol is the
default " you must enter:

"(you press the backspace key) *PROCESS attributes xref;

If you are using a display type terminal ~itRout an explicit
backspace key, such as an IBM 3277, the simplest method is to reset the
tabs to 1 and then enter the *PROCESS statement starting in column 1.
rhe subcommands used could be as follows:

preserve
tabset 1
top
input
*PROCESS FLOW (10,20);

restore

save standard PLIOPT tab settings
set tabs allowing column 1 to be used
set pointer to start of file
enter input mode
key in *PROCESS statement starting in
column one
null line returns to edit mode
restore previous tab settings

Chapter 1: Writing and Running a PL/I Program Under CMS 15

when you are editing a PLIOPT file. the eMS editor automatically
translates any lo~ercase characters you enter to uppercase. If you wish
to enter lowercase character string constants in your program it is
necessary to take special action. Enter:

CASE M

This must be done when you are in Edit "mode. Your input will then be
transmitted as entered. As the PL/I optimizing compiler accepts both
upper and lowercase input. you can still enter your program in either
uppercase or lo~ercase. During compilation the compiler will translate
all PL/I into uppercase. Items appearing between quotes or comment
delimiters will not be translated. The listing will show your program
with everything in uppercase except comments and data between quotes.

To return to automatic translation to uppercase during your edit
session~ issue a CASE U subcomm~nd. First enter a null line (carriage
return only on a line) to return to the edit mode, then enter:

CASE U

If you wish to use any of the line editing symbols as normal input to
your program you must precede them by the escape symbol. By default.
the line editing symbols are ~~ #, ~. ". but all or any of them may be
changed with the TERMINAL command. and ~ becomes [or (on certain
terminals. If the defaults are in effect, and you wish to refer to a
variable called DOCUMENT#2, it is necessary to enter the 3, which is the
default line-end sym~ol. preceded by " which ia the default escape
symbol, thus:

DOCUMENT"n2

Details of the line editing symbols are given in the previous section of
this chapter under the hea~ing "Line Editing Symbols".

Fi!~2 for Inclusion by ~INCLUDE Statement

Any text included in your PL/I source program by means of the ~INCLUDE
statement must be included from a DOS source statement library.. If you
create such text using the Editor, you can create it as a file of tbe
MACRO or COpy filetype. spool your virtual punch to the userid of a DOS
virtual machine. and puncn out t~e text preceded by the DOS JCL to
catalog the data in the DOS source statement library. The fo1lowLng
steps indicate one met~od of accomplishing this assuming the file is
called MACFILE:

1. Invoke the CMS Editor as follows:

EDIT MACFILE MACRO

2. Key in

INPUT

16

To get into input mode and key in the following:

/1 JOB CATALS
// EXEC MAINT

CATALS sublib.bookname
control statement
(~INCLUDE statements go here)

/.
/&

Then enter a null line to get into edit mode and issue the FILE
subcommand

FILE

3. To spool the newly created card images to your DOS virtu~ machine.
key in the following:

SPOOL PUNCH TO dosuserid
PUNCH MACFILE MACRO (NOHEADER)

rhe card images are then sent to the virtual card reader of the DOS
virtual machine specified in ftdosuserid ft where they will be processed by
the MAINT program. Full explanations and alternatives are given in the
VM/370: CMS User's Guide. Examples of the use of the PSERV command are
given in the VM/370: CMS User's Guide.

SOURCES OF FURTHER INFORMATION

TOE!£

Format of PLIOPT and PLI files

Using the CMS editor

Spooling dat~ to a DOS virtual
machine

Reference source

VM/310: CMS User's Guide

VM/310: eMS User~s Guide

VM/310: CMS User's Guide

Chapter 1: Writing and Running a PL/I Program Under CMS 11

Compiling the Program - the DOSPLI Command

SUMMARY

ro compile a DOS PL/I program under CMS, you issue the DOSPLI command
specifying the filename of the PLIOPT or PLI file you wish to be
compiled. For example:

DOSPLI RABBIT

where RABBIT is the name of the file.

Before the DOSPLI command is issued you must:

1. Activate the DOS environment by use of the SET command. For
example:

SET DOS ON G

(This assumes that DOS SYSRES has already been accessed as your G­
disk. See "Accessing the Compiler and its Libraries" later in this
section.)

2. Assign the input file SYSIPT to the CMS disk that contains the file
to be compiled. For example:

ASSGN SYSIPT A

Two potential causes of unsuccessful compilation sRould be guarded
against:

1. Assignment of logical units prior to entering the DOSPLI command in
such a way that the command cannot be executed.

2. The NO DECK compiler option being in effect.

If you have made no previous assignments, the DOSPLI command will assign
the logical units it requires for successful compilation and you have no
cause to worry about logical units. However, if you have already
assigned the logical units that the compiler uses, the DOSPLI command
will not alter these assignments, assuming that you wish to use the
compiler in some non-default manner. The logical units that the
compiler uses are SYSIPT, which you must assign yourself, and SYSLST,
SYSPCH, SYS001, and SYS002 which may be assigned in the DOSPLI command.
SYSLST defines the destination of your listing file, SYSPCH defines the
destination of your object program, and SYSOOl and SYS002 are used for
compiler work files. In the default situation, all these files will be
on CMS read/write disks, however, you may vary SYSLST and SYSPCH to get
the listing file or the object program transmitted elsewhere. Before
issuing the DOSPLI command you ·should t~erefore ensure that these units
are either correctly assigned or are unassigned. To unassign a logical
unit, you use the ASSGN command thus:

l\SSGN SYSxxx UA

where xxx is the identifier of the logical unit.

18

On CMS/DOS the optimizing compiler places the object program on SYSPCff.
The NODECK option specifies that SYSPCH will not be created consequently
if NODECK is in effect no object program is produced. If the copy of
the compiler you use is for CMS only DECK wil1 almost certainly be the
default option, and you will have no cause to worry about the NODECK
~ption. HOwever, if your copy of t~e compiler is shared between CMS/DOS
virtual machine and DOS/VS virtual machines NO DECK may nave been chosen
as the default compiler option to suit the DOS/VS machines. If this is
the case, it will be necessary to enter the DECK compiler option on a
*PROCESS record at the start of your program. The previous section
explains now to do this. To discover the defaults you should ask your
systems programmer or use the OPTIONS compiler option on its own in a
*PROCESS statement. This last will result in a listing of the compiler
options used being generated in the listings file.

During compilation, provided you have followed the instructions
above, two new disk files will be produced. They will have the
filetypes TEXT an1 LISTING and the same filename as the file specified
in the DOSPLI command. The TEXT file contains tne compiled code. The
LISTING file contains the listings produced during compilation. When
compilation is complete, CMS transmits a Ready message.

Unless the compiler has terminated abnormally, no return code will be
produced with the Ready message. You must inspect the listing file
under the EDIT command to examine the messages to discover the results
of compilation. On a display-type screen (such as an IBM 3270), you can
scroll through the listing on the screen. On a typewriter type terminal
(such as an IBM 2741), you must locate the messages using the LOCATE
subcommand of EDIT and type them at the terminal.

If the listing file reveals source program errors, you can alter the
PLIOPT file that contains the source by use of the Editor. You can then
reissue the DOSPLI dommand. This results in the creation of new TEXT
and LISTING files corresponding to the newly edited source program. If
previous versions existed they will be overwritten. When you have a
satisfactory compilation, you are ready to execute the program, which is
now in the form of a TEXT file. T~e'next section of the chapter tells
you how to do this.

The action required is described later under the heading "Spec~al
Considerations."

Chapter 1: Writing and Running a PL/I Program Onder CMS 19

r--1
1 EXAMPLE OF USE OF rHE DOSPLI COMMAND

1--
ITerminal Printout Notes and comments

I--~-------------------
laccess 390 g Access the DOS SYSRES volume as your

I G-disk (example assumes that SYSRES is in
I your directory. as 390 and that the
I compiler resides in the system core image
I library. You must discover ho~ to access

R; SYSRESin your installation).
set dos on g set up the DOS environment so that the DOS

I compiler can operate, specifying the CMS
I disk that Aas been accessed for SYSRES.
I (Note that this may be done automatically

R; in your profile exec.)
assgn sysipt a Assign source file.
R;
dospli rabbit

1
R;

I
1
I
I
I
I

edit rabbit listing
EDIT:
locate/compiler diagnostic

I
I
I
I
I

1NOT FOUND
IEOF:
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
Iquit
I I
IR;
I I

Issue the DOSPLI command to compile the
PLIOPT file rabbit.
Ready message shows compilation is
complete. The LISTING file produced by
the compiler must now be inspected to see
if the compilation ~as successful. A
return code 'R(OOxx)'; with the Ready
message ~ould indicate an abnormal termin­
ation of the compiler.
Enter edit mode to inspect listing file.
Response shows you are in edit mode.
Search for the ~ords "compiler diagnostic"
in the listing file. On a display type
terminal you could scroll through the
file. Note that the character in column 1
will be a carriage control character. It
should be ignored.

Sho~s that no diagnostic messages
have been produced for this compilation,
and that tne compilation is therefore
correct. Had the line read "COMPILER
DIAGNOSTIC MESSAGES~ ••• " it would have
been necessary to type the messages at the
terminal by means of the subcommmand TYPE

When enough had been typed. typing CQuid
be stopped by pressing the Attention key
and using the HT (halt typing) command.
Leave edit mode.

Ready message, showing you are back in the
CMS environment.

I-~-~~~~--------------------~-----~---------~----------------~---~~----
Icony~ntioll2:
11. A carriage return is assumed after all programmer input.
f
12.
I
I

The character 1 in column two implies spacing has been added to
accommodate notes in the right hand column.

13. System response is in upper case (capital) letters, ,programmer
I input in lower case.
L---________ -----------------J

20

BACKGROUND INFORMATION

:ompiler OuiPut and its Destination

When you issue the DOSPLI command r CMS calls the DOS PL/I Optimizing
:ompiler to compile your source program. The compiler creates two new
files during its execution. One file contains the compiled code that
can be link-e1ite1 into an executable phase so that you can execute your
program~ The other file contains. diagnostic messages about the
compilationr and, optionallYr listings of your source program and the
compiled code. (The various options controlling the listing produced by
the compiler are 1escribed in cnapter 3 of this manual.)

Unless SYSLST or SYSPCH are assigned elswhere the two newly created
files will be placed on eMS disks. They will have the same filename as
the file that contains the source program but a different filetype. The
compiled code ~ill have the filetype TEXT and the listing will have the
filetype LISTING. rhus, if you compiled a PLIOPT file called ROBIN you
would, by default, create two further files called ROBIN; a TEXT file
containing the compiled code an1 a LISTING file containing the listing
information. These files would be placed on your CMS disks according to
the rules shown in figure 1.2. (TBe relationship between CMS disks is
explained in the VM/370: CMS User's Guide.)

r--, I SOURCE DISK OUTPUT DISK
==

source disk read/write

source disk read/only witn
parent disk read/write

source disk read/only with
parent disk read/only and
A-disk read/write

source disk read only with
no parent and A-disk read/write

source disk read/only with no
parent disk or parent disk
read/only and A disk read/
only

source disk

parent disk

A-disk

A-disk

program terminates unless you
have directed output to a non
DASD device. (See VM/370 CMS
User's Guide for information on
how to do this). L---------------------_------__ J

Figure 1.2. The di$ks on waicn the compiler output is stored

rhe DOS optimizing compiler places all diagnostic information on a
listing file. This file always contains diagnostic error messages or a
message saying that no errors have been found.. In additionr compiler
options can specify that a number of listings are to be generated~ rhe
possibilities include a list of source program statements, a list
showing the attributes of all va~iables and other identifiers r a list
showing all statements in which variables or identifiers are found (the
cross-reference listing)r and a list showing the size of the aggregates
used in a program. (A list of all the possible listings can be found in

Chapter 1: Writing and Running a PL/I Program Under CMS 21

Figure 3.1 in chapter 3~) The production of some or all of these
listings may be the default in the system you use. To discover which
are the defaults, the OPTIONS compiler option can be used. This option
results in a list of the options used being generated. If no options
other than the OPTIONS option are specified in a *PROCESS statement, the
default options of your installation will be shown.

The listing file is generated as a print file and is placed on one of
your CMS disks in accordance with the rules shown in Figure 1.2.
Because the listing is a print file, its formatting is controlled by a
carriage control character in column ·1. Therefore when the file is
inspected at the terminal using the EDIT command, any character in the
first column should be ignored.

To make the best use of the listing file the programmer needs a
source listing, and needs to ensure that either an offset listing is
generated or that the GOSTMr option is in effect. The GOSTMT option or
an OFFSET listing is necessary to ensure that statements mentioned in
compile-time and execution-time error messages, can be easily
identified. The attribute and cross-reference listing can be extremely
useful during program debugging, enabling the programmer to cbeck that
variables have been correctly declared or defaulted, and enabling a
history of a particular variable to be followed through a program.

It is recommended therefore that either the GOSTMT or the OFFSET
option is specified and that the SOURCE option is always used during
program debugging. If these are not your installation defaults, a
suitable *PROCESS statement should be included at the start of the
PLIOPT file containing your source program.

At the end of a session, the listing file may be printed on a high­
speed printer to retain a printed record of the sorirce program and its
compilation~ This is done by use of the PRINT command. For example
PRINT RABBIT LISTING would transmit the listing file to the printer.
rhe listing file could then be erased from the CMS disk to save space by
issuing the command:

erase rabbit listing

Files used by the compil~!:

During compilation the compiler uses a number of files. These files are
allocated by the DOSPLI command~s EXEC procedure that invokes the
compiler. The files used are shown in figure 1.3. All files except
SYSIPT will be assigned by the EXEC procedure unless already assigned.
SYSIPT must be assigned by the programmer to the device where the source
program is located. If SYS001 and SYS002 are assigned before the DOSPLI
command is issued they must be assigned to CMS disks, because they are
used by the co~piler as work files.

22

r--, I FILES USED BY COMPILER 1
1--1
1 ~Q~ical_Uni! Filenames I
1 SYSIPT/SYSIN (SYSIPT on DLBL XINPUT I
1 ISYSIPT/SYSIN on ASSGN) 1
1 SYSLST XPRINT I
I SYSPCH XPUNCH I
I SYSSLB IJSYSSL I
I SYS001 IJSYS01 I
I SYS002 IJSYS02 1
L---________ -----------------J
Figure 1.3. Files that may be used by the compiler

In addition to disks defined in your VM/370 directory~ you can
temporarily obtain dis~s via use of the CP LINK and DEFI~E commands.
~MS must also know about these disks, and you must use the CMS ACCESS
command to establish a filemode letter for them:

ACCESS 197 f

~MS uses the filemode letter to manage your files during your terminal
session. By using the ACCESS command, you can:

• Control ~hether the disk is to be read-only (that is, you cannot
write on it), or is read/write.

• Control the minidisk search sequence used by CMS~

• Control ~hich disks are to contain new files that you create.

For the most part, you will use your primary 191 minidisk, that is,
your A-disk, your DOS and/or OS read-only disks, and, if needed, your
VSAM disks. For more detailed information on the CMS ACCESS command and
the CP LINK and DEFINE commands, refer to the VML170: CM§ User's Guidg.

~££~~~in~!h~Co~iler and its Libraries

The compiler may be held either on DOS SYSRES or in a private DOS core
image library.

If the compiler is on DOS SYSRES, you will probably access it before
you set DOS on. In the example, DOS SYSRES is accessed on disk 198 ~ith
the CMS mode letter of C thus:

ACCESS 198 C
SET DOS ON C

Here the letter C in the SEr command tells CMS that the D~S SYSRES
volume is at 198. If the compiler is on DOS SYSRES, access to the
compiler w~ll be faster if no GLOBAL commands for DOSLIB libraries are
in force when the DOSPLI command is issued, see the note below.

If the DOS PL/I compiler and the PL/I libraries are in private
libraries, you must use ASSGN and DLBL commands to make them accessible.
Asssuming that the compiler and PL/I transient library are in a core

Chapter 1: Writing and Running a PL/I Program Under eMS 23

image library whose dataset name is DOSPLI.CLIB, that the PL/I resident
library is in a private relocatable library whose dataset name is

'DOSPLI.RLIB, that the disk is at 196, and that you wish to access it as
your D-disk, the commands might be as follows:

ACCESS '196 D
ASSGN SYSCLB D
DLBL I~SYSCL D DSN DOSPLI CLIB (SYS:LB
ASSGN SYSRLB D
DLBL I~SYSRL D DSN DOSPLI RLIB (SYSRLB

DOSPLI.CLIB and DOSPLI.RLIB are examples of the DOS file-ids for the
private core image and relocatable libraries, respectively. Because DSN
is specified in tne DLBL command line, CMS automatically inserts the
period.

Not~: If tAe DOS PL/I compiler resides in the DOS system core image
library and not in tBe private core image library, the time required to
compile your PL/I progra~ will be Significantly increased if any DOSLIB
libraries were previously activated via a GLOBAL DOSLIB libenamel •••
libenameN command. This is because CMS's fetch routine uses the
following search order to find the PL/I compiler:

1. In a DOS/VS private core image library, if one had been previously
assigned via a DLBL command such as the following:

DLBL I~SYSCL DSN DOSPLI CLIB (SYSCLB)

2. If a GLOBAL DOSLIB command specifying DOSLIB libraries had been
previously issued, all such libraries are searched in the order
specified in the GLOBAL command.

3. In the DOS/VS system core image library, if the CMS disk mode
letter (fm) was specified in the SET DOS ON fm command.

rherefore, if the PL/I compiler is in the DOS system core image library,
you should issue the GLOBAL DOSLIB command with no additional operands
to eliminate the searching of the DOSLIB libraries.

SPECIAL CONSIDERATIONS

§~2nQ~!nput Text - %INCLUDE Statements

If your program uses %INCLUDE statements to include previously written
PL/I statements or procedures, tBe DOS/VS source statement library on
which they are held must be made available to CMS before issuing the
DOSPLI command. If the text to be included is on a private DOS/VS
source statement library, you must use ASSGN and DLBL commands to access
the source statement library on whf~h the secondary input text is held,
and an ACCESS command to make the DOS disk on which it is held available
to the system. Assuming the source statement library is on 193 the
command might take the form:

ACCESS 193 B
ASSGN SYSSLB B
DLBL IJSYSSL B DSN PLI INCLUD~ (SYSSLB

rhe DOSPLI command used to compile the program must specify either the
INCLUDE or the MACRO option.

24

Source Program not. on ~_~MS~i~~

If your source program is on a DOS disk, it can still be compiled using
the DOSPLI command under CMS. However the disk itself will only be
accessible from CMS in read-only form and so it will not be possible to
make corrections using the CMS Editor if an error is discovered.

To compile a program on a DOS disk, ACCESS, ASSGN, and DLBL commands
must be used. Assuming the program was on disk located at 192, the
commands might take the form:

ACCESS 192 B
ASSGN SYSIPT B
ULBL XINPUT B DSN MY PL1 PROG (SYSIPT
DOSPLI program name

An alternative would be to move the program to a CMS disk using a
SSERV or ESERV command. Examples of the use of the commands are given
in the VM/310: CMS User·s Guide.

A detailed description of the ASSGN and DLBL commands is given in the
CMS Command and Macro R~ference~

SOURCES OF FURTHER INFORMATION

Error message explanations
CMS (numbered DMSxxxx)

PL/I (numbered IELxxxx)

DLBL command

ASSGN command

PL/I language

DOSPLI command

VM/370: System Messages Manual

DOS PL/I Optimizing Compiler Messages

VM/370: eMS Command and Macro Reference

VM/310: CMS Command and Macro Refarence

PL/I Optimizing Compiler Language
Reference Manual

Chapter 3 of this manual

Chapter 1: Writing and Running a PL/I Program Under CMS 25

Execu ting a DOS PL/I Program

SUMMARY

ro execute a program under CMS/DOS you must ~ave an executable program
phase on a DOS LIB file .or in a DOS/VS core image library. Such a phase
is produced on a DOSLIB file by issuing the DOSLKED command which
produces an executable program phase from either a CMS TEXT file or an
object module in a DOS library.

Before the DOSLKED command is issued. the SET DOS ON command must
have been issued and the PL/I resident libary must be made· available so
that the necessary library modules may be link-edited in the executable
program phase. When an executable program phase has been link edited
and placed on a DOSLIB file, the PL/I transient library must be made
available so that transiently loaded modules are available for loading
during execution. T~e GLOBAL command must then be issued to identify
the DOSLIB library that holds the program. Because PL/I programs issue
error messages on SYSLST. SYSLST'must be assigned to a suitable device
before executing a program. When a file has been link-edited and placed
on a DOSLIB library, a FETCH command with the START option will load the
program into main storage and execute it. When a program has been
placed as an executable program phase in a DOSLIB it remains there until
deleted and can al~ays be executed by making the transient library
available. specifying the DOSLIB in a GLOBAL command and issuing a FErCH
command with the START option.

Executing a program held as a TEXT file therefore. involves the
following steps:

1. Issuing an ASSGN command to make the DOS/VS PL/I resident library
available for link-editing.

2. Issuing a DLBL command to identify the PL/I resident library.

3. Issuing a DOSLKED command to link-edit the text file and place it
on a DOS LIB library. The program is now link edited and may be
retained in this form.

4. Issuing a GLOBAL command for the DOSLIB on which the executable
program phase has been placed.

5. Issuing an ASSGN command for the PL/I transient library.

6. Issuing a DLBL command for the PL/I transient library.

7. Assigning SYSLST so that any error messages will be accessible.

8. Issuing a FETCH command with the START option specifying the name
of the executable phase.

These steps are shown in the example that follows.

Special action will be required if error messages are generated. See
under the heading "Special Considerations~ later in this section.

26

r---1
EXAMPLE OF EXECUTING A PL/I PROGRAM

PREPARATORY WORR - CREATING AN EXECUTABLE PROGRAM PHASE AND
PLACING IT ON A DOSLIB FILE

set dos on
access 193 b
assgn sysrlb b
Ri
dlbl ijsysrl b dsn privat reloc lib (sysrlb

Make PL/I resident
library (on disk 193)
available as B-disk~ I

Ri
1

doslked rabbit mylib
I

Ri
I

Link edit the object program
with PL/I resident library
READY message shows link-edit­
ing successful.

EXECUTING THE DOSLIB PHASE
---1
assgn sysclb b
Ri

Assign PL/I transient library I
1

dlbl ijsyscl b dsn privat corim lib (sysclb Make PL/I transient I
I

Ri
global doslib mylib
Ri
assgn syslst printer
Ri
spool print to *
Ri

I
1
I
1
I
I
I
I

fetch rabbit(start
EXECUTION BEGINS •••

I
I
1

THE RABBIT SQUEAKS TO THE WORLD
I
I
I

Ri
I

library available. I
I

Indicate the DOSLIB to be sear-I
ched by FETCH command. 1
Ensure error messages are sent I
to the virtual printer. I
Have error message file spooled I
to y~ur virtual reader so that I
it will be accessible at I
terminal if messages are I
generated. I
If error messages or other I
output to SYSLST is generated I
a message reading "PRINT FILE I

.TO your userid etc" will be I
be displayed. I
FETCH command fetches the link-I
edited module into storage.
START option begins execution.
The two commands can be issued
separately or as shown.
The message in the DISPLAY
statement is transmitted to the
terminal which acts as the
console of the virtual machine.
Ready message indicates that
execution is complete.

1. A carriage return is assumed after all programmer input.

2. The character I in column two implies spacing has been added to
accommodate notes in the right hand column.

3. System response is in upper case (capital) letters, programmer
input in lower case.

L----_--------__ J

Chapter 1: Writing and Running a PLII Program Under CMS 27

'B~eKGROUND INFORMATION

rhe eMS/DOS linkage editor prepares a previously compiled object program
for execution and places it in a DOSLIB file in core image format. ~ll
compiled PL/I programs need link-editing before execution to resolve
addresses and to include resident library modules that are used to
handle program initialization and otner routine tasks.

For most purposes, the link-editing command DOSLKED can be used by
simply specifying the TEXT file produced by compilation, and the name of
the DOSLIB file on w~icn tne link-edited module is to be placed. For
example:

DOSLKED RABBIT MYLIB

causes the link-edited version of tne TEXT file RABBIT to be placed on
the DOSLIB library called MYLIB. ~ DOSLIB file is a type of library
that can hold a number of link-edited programs. If the DOSLIB name is
omitted, a new DOSLIB library with the name of the TEXT file will be
generated.

For more complex link-editing jobs, input to the linkage editor must
be provided in a CMS file witn the filetype DOSLNK which will normally
be created using the CMS Editor. The name of the DOSLNK file and the
name of the DOSLIB library on wnich the link-edited module is going to
be placed are then specified in tne DOSLKED command~ The example that
follows shows the creation of a DOSLNK file and the execution of the
DOSLKED command that specifies it. If you wish to examine the results
of a DOSLKED command, these are, by default, placed on a eMS file with
the filetype MAP and tne filename of tne file specified in the DOSLKED
command. Like the LISTING file generated by the DOSPLI command, it can
be examined using the Editor. Options of the DOSLKED command allow you
to have your linkage editor output sent to your terminal (TERM option),
or to the logical device associated with SYSLST (PRINT option). (SYSLST
is normally associated with the system printer.)

In this example the file LINKER is used to create an overlay program
in which tne root pnase is called RABBIT and the two overlay phases are
called LAPIN and HARE.

edit linker doslnk
NEW FILE:
EDIT
input
INPUT
action reI
phase rabbit, root
include rabbit
phase lapin,.
include lapin
phase hare, lapin
include nare

EDIT
file
R;
doslked linker mylib

Link editor statements to be executed

Null line to return to edit mode

Store disk with filename LINKER and
filetype DOSLNK
DOSLKED command specifying file of
linkage editor statements

Note: Each DOSLKED function executed extends the size of the DOSLIB.

28

Thus Fetch time is increased. If possible, a separate DOSLIB should be
created for each program. This DOSLIB should then be erased before
another DOSLRED for t~e same program is executed. If several programs
must reside in the same DOSLIB library the DOSLIB should be condensed
periodically using t~e "DOSLIB COMP libename" command. A fuller
explanation of how to use the DOSLKED command and DOSLIB libraries is
given in the VM/370: CMS User's Guide.

Os!~g CMS Files and DOS Data Sets

CMS files and DOS and OS data sets can, with varying levels of
restrictions, be written and read by programs executed under CMS/DOS.

:MS iile~ are completely accessible to CMS programs to read, write, and
update. They are also available to create and update via the CMS
Editor, and to manipulate witn CMS file-handling commands. Such files
can be made available to a number of virtual machines, but are not
accessible from outside tne CMS system except by copying and recreation.
(It should be noted tnat only sequential and VSAM files are supported
under CMS.) .

~2AM gata set~ are available bot~ to eMS virtual machines and to the DOS
system proper. OS VSAM data sets are also available because DOS and OS
VSAM data sets are, ~ith minor exceptions, compatible. VSAM data sets
provide a met nod of sharing data between CMS and outside systems. VSAM
data sets cannot be manipulated by the CMS Editor or by CMS file­
handling commands.

DOS data sets are available on a read-only basis to CMS programs
provided that they are consecutive, tnat is, sequential, files.

Three elements are used under CMS/DOS to associate PL/I files with
external data. Within a program, the file is identified by the declared
name or the title option. (The title option allows a file name to be
associated with different external data throughout the program.) Outside
th~ program, the DLBL command associates the filename with a particular
data set on a symbolic device, and the ASSGN command associates the
symbolic device name with an actual physical device~

Users of DOS job control language will be familiar with DLBL and
ASSGN as JCL statements. The CMS DLBL and ASSGN commands are very
similar to their DOS/VS equivalents, however, it should be noted that
there is no EXTENT command under CMS. Extent information is not
necessary for CMS files because the space allocation is handled by CMS.
For VSAM data sets however, you will be prompted for the extent
information when you issue the DLBL command if it is required. VSAM
data sets differ from other types in that they have their housekeeping
handled by a set of programs known as Access Metnod Services, these
programs are available to the CMS user by use of the AMSERV command
which uses a file containing Access Method Services statements to
specify the functions required.

Three examples follow showing tne PL/I statements and the CMS
commands necessary to access CMS files, VSAM data sets, and non-VSAM DOS
data sets respectively. The full syntax for DLBL, ASSGN, AMSERV and
other commands is given in VM/310: CMS Command and Macro Reference, and
further examples of their use are given in the VM/370: CMS User's Guide.

Accessing CMS Files

To access a CMS file, you issue an ASSGN command associating a logical

Chapter 1: Writing and Running a PL/I Program Under CMS 29

unit with a particular device, and a DLBL command associating the PL/I
file identifier with a particular file on the symbolic device.

In the example th.at follows, the PL/I program reads the file known in
the program as OLDRAB.This refers to the file RABBIT! DATA on the CMS
B-disk. The program writes the file known in the program as NEWRAB,
creating a CMS file on the disk that will be known as RABBIT2 DATA. A
further file, PL/I file RABPRINT is assigned to the virtual printer.

DeL OLDRAB FILE RECORD INPUT ENV (MEDIUM{SYS009) F RECSIZE(40»,
NEWRAB FILE RECORD OUTPUT ENV (MEDIUM{SYS008) F RECSIZE(40»,
RABPRINT FILE STREAM PRINT ENV (MEDIUM(SYSLST»~

assgn sys009 b
Ri
dlbl oldrab b CMS rabbit! data (sys009
Ri

assgn sys008 a
Ri
dlbl newrab a CMS rabbit2 data (sys008
Ri

assgn syslst printer
Ri

Accessing VSAM Data Sets

Assign SYS009 to CMS B-disk.

Associate OLDRAB with
RABBIT! DATA on B disk.
The keyword CMS indicates
that it is a CMS file.
"Data" is the filetype.
Assign SYS008 to CMS A-disk.

Associate NEWRAB with the
file RABBIT2 to be pla.ced
on the A-disk.
Assign SYSLST to printer.
There is no need for a DLBL
command for the file RAB­
PRINT, because DLBL is only
used for disks.

VSAM data sets are available to read, write, and update, both from
within and from outside the CMS system. Before VSAM data sets can be
accessed, or the AMSERV command used, the command

SET DOS ON (VSAM

must be issued. This results in VSAM initialization being carried out.
SET DOS ON (VSAM can be specified outside the DOS environment or when
DOS is already active. It should not be used unless VSAM processing is
to take place, because it requires a sizeable virtual storage overhead
compared with SET DOS ON.

VSAM data sets differ from other data sets in that they are always
accessed through a catalog and tnat th.ey have their routine housekeeping
carried out by Access Method Services. The eMS/DOS user uses the AMSERV
command for VSAM housekeeping functions and the ASSGN and DLBL commands
to establish the location of a catalog and to associate an actual VSAM
data set with a symbolic device and the file identifier in a PL/I
program,.

To use the AMSERV command, a file of the filetype AMSERV must be
created using the eMS editor. Tne file should contain the necessary
Access Method Services statements. An AMSERVcommand specifying the
name of this file is th.en issued and the appropriate functions are
carried out~ The AMSERV command must always be used, for cataloguing
and formatting purposes, before creating a VSAM data set. It is also

30

used for deleting, renaming, making portable copies, and other routine
tasks. Before use, the minidisk or disk must be initialized using the
IBCDASDI program supplied ~ith VM/370, or, for disks other than
minidisks, any other DOS or OS initialization program.

For VSAM data sets, information normally supplied in the ENVIRONMENT
option of the PL/I file is placed in the VSAM catalog. Catalog entries
are created by the DEFINE statement of Access Method Services, they
contain such information as the space used or reserved for the data set,
the record size, and the position of a key within the record. The
catalog entry also contains the address of the data set.

To use a VSAM data set, the eMS user has to identify the catalog to
be searched, to assign a unit to the symbolic device that contains the
data set, and to associate the PL/I file with the VSAM data set. rhe
DLBL command is used to specify the catalog and to associate the PLII
file with the data set, and the ~SSGN command is used to associate the
symbolic device with an actual unit. Note that VSAM data sets cannot be
written to or read from your ~-disk, thefilemode must be other than A.
Where the data set is being newly created, the AMSERV command must be
specified to catalog and define the data set.

The relevant PLII statements and eMS commands to access an existing
VSAM data set and to create a new ~SAM data set are shown below.

The PLII program reads the file OLDRAB from the VSAM data set called
RABBIT1 on the CMS C-disk. It writes the file NEWRAB onto the data set
RABBIT2 also on the CMS C-disk. RABBIT2 is defined using an AMSERV
command. It is assumed that the roaster catalog is defined to be on the
c-disk and that VSAM space is also defined before executing the example.

PL~I File Declarations

DCL OLDRAB FILE RECORD SEQUENTIAL KEYED INPUT ENV(VSAM);
DeL NEWRAB FILE RECORD SEQUENTIAL KEYED OUTPUT ENV(VSAM);

access 195 c
assgn syscat c
dlbl ijsysct c dsn mastcat (syscat perm
R;

edit amsin amserv
NEW FILE:
EDIT
input
INPUT
define cluster(name(rabbit2) vol (cmsdev) -

cyl(1,11 recsz(130,130) nonindexed) -
catalog (mastcat)

EDIT
file
R;
amserv amsin
R;

assgn sys002 c
R;
assgn.sysOOl c

Access the VSAM master
catalog on 195 as your C-disk.
Issue a DLBL for the
master catalog.
Note that this normally needs
to be done only once per
terminal session.
Create an AMSERV file.

Execute Access Method Services
statements in the file to
catalog and format data set.
Assign symbolic devices
for VSAM data sets.

Chapter 1: Writing and Running a PLII Program Under eMS 31

R;
dlbl oldrab c dsn rabbit1(sys001 vsam
R;
dlbl newrab c dsn rabbit2(sys002 vsam

R· ,

AC£~22!g~DOS Data sets

Issued DLBL commands to associate
PL/I files with the VSAM
data sets. The fact that it
is a VSAM data set must be
specified in the DLBL command.

To access a DOS dataset it must first be made available to your virtual
machine using the LINK command. Tnen. using the ACCESS command. it can
be given a CMS filemode letter. Once this has been done. ASSGN and DLBL
commands can be used to access tne data set. Any attempt made to write
onto the data set will be detected and an error message generated~

In the example that follows the' PL/I file, OLDRAB is used to access the
DOS data set CONEY1.
It is assumed that the disk has been mounted and is held as VM disk number 196.

DCL OLDRAB FILE RECORD ENV (MEDIUM(SYS009)F RECSIZE(40»i

CMS Commands
access 196 g

Y 196 G R/O-DOS
Ri
assgn sys009 g
Ri
dlbl oldrab g dsn coney1(sys009
R;

SPECIAL CONSIDERATIONS

Connect DOS disk to your
virtual machine.
Message to confirm DOS disk
is accessed in read/only mode.
Assign SYS009 to CMS G-disk.

Associate PL/I file OLDRAB
with DOS data set CONEY1 and
symbolic unit SYS009.

If an error or some type of exceptional condition occurs during the
execution of a PL/I program. a message will be generated and sent to the
file SYSPRINT which is sometimes truncated to SYSPRIN and which is
normally assigned to SYSLST. You should make assignments to this file
so that error messages will be accessible at the terminal if an error
occurs.. The method shown in the example is to assign SYSLST to the
printer and spool the printer output to your reader. If a message is
generated. CP will then inform you that a file Ras been spooled to your
reader. You then issue the READCARD command which reads it onto a CMS
disk and giving it the filename specified in the READ CARD command. It
will then be accesible for you to type or edit at the terminal.

If a ~rint file is spooled to your reader CP will transmit a message
to the terminal taking the form "PRT FILE file-number TOuserid COpy 01

32

NOHOLD". The exact form will depend on your virtual machine
configuration. If the message was caused by an error and you have no
PL/I ERROR on-unit containing a GOrO statement, the message DMSDOS160S.
"JOB 'jobname' CANCELLED DUE TO PROGRAM REQUEST" ~ill be displayed
indicating that the PL/I error handler has terminated your program. It
should be noted that the output from the COUNT and FLOW compiler options
and program output to SYSPRINT will also be spooled to your reader and
result in the message "PRT FILE file-number TO userid ••• "being
displayed", so the message does not always indicate an error.

An example of accessing error messages is shown below. There are
many other methods of making error messages available to the terminal.
You can, for example, issue ASSGN and DLBL statements to transmit SYSLST
output to your CMS disks. The advantage of tbe suggested method is that
you will be informed when an error message has been generated.

r--,
EXAMPLE OF ACCESSING ERROR MESSAGES I

assgn syslst print
I

R;
spool prt to *
R;
fetch vrab (start
EXECUTION BEGINS •••

Assign error message file
to printer.

Spool printer to reader.

start execution.

PRT FILE 4809 TO SKYLARK COpy 01 NOHOLD Message indicating file
I spooled to reader.

DMSDOS160S JOB ·VRAB· CANCELLED DUE TO PROGRAM REQUEST.
I Job cancellation message.

R;
readcard vrab output

I
I

RECORD LENGTH IS '132 8 BYTES.
I

R;

READCARD command stores
file on CMS A-disk and
names it VRAB OUrpUT.
Message indicating record
length of VRAB OUTPUT.

type vrab output
I

Type command to display thel
file at the terminal. I

IBM209I 'ONCODE'=0082 ·UNDEFINEDFILE' CONDITION RAISED
CONFLICTING ATTRIBUTES AND FILE ORGANISATION ('ONFILE'=NEwRAB)
INSTATEMENT 5 AT OFFSET =000124 IN PROCEDURE WITH E~TRY VRAB

PL/I error message dis-

I
I
I
I
I

played at your terminal. I
L-----------------------------_-------------------____ -----------------J

If the program is stored on the same relocatable library as the PL/I
resident library it is possible to link it by issuing ASSGN andDLBL
commands to identify the library, as in the example at the start of this
section, and then specify the name of program in the DOSLKED command.
Provided you have no CMS TEXT file of the same name, the program will be
link edited. The follbwing steps are only necessary if the PL/I
resident library is not a part of the system relocated library. If the
program is on a library different from the PL/I resident library, you
should create it as a CMS TEXT file by use of the RSERV command and then
link edit it as in the example at the start of this section~ The
command might take the form:

Chapter 1: Writing and Running a PL/I Program Under eMS 33_

assgn sysrlb e
dlbl ijsysrlb e dsn obj mod (sysrlb
rserv pliprog

rhis will create a CMS TEXT file called PLIPROG which you will be able
to link edit. To link edit the PLIPROG, you can use the CMS Editor to
create a DOSLNK file (that is, a file with a filetype of DOSLNK) that
contains the following link-edit cards:

ACTION REL,MAP
PHASE PLIPROG,S
INCLUDE PLIPROG

NO~~: A blank cnaracter must precede each of the above records.

rhen issue the DOSLKED command thus:

DOSLKED fn libename (options •••

To link edit the PLIPROG program using the DOSLNK link-edit control
statements.

SOURCES OF FURTHER INFORMATION

!:2Ei£ Reference Sou~ce

DOSLKED command VM/370: CMs Command and Macro

ASSGN command VM/370: CMS Command and Macro

l\MSERV command V'M/370: CMS Command and Macro

GLOBAL command V'M/370: eMS Command and Macro

DLBL command VM/370: CMS Command and Macro

FETCH command VM/370: eMS Command and Macro

A description of how to use all these commands is given in the
VM/370: CMS User's Guide.

34

Reference

Reference

Reference

Reference

Reference

Reference

Ending the Terminal Session - the LOGOFF Command

SUMMARY

To end a eMS session you enter tne CP LOGOFF command from the eMS or the
CP environment. LOGOUT can be used as an alias for LOGOFF.

Before finishing the session you may wish to erase some of the files.
This is done by using the ERASE command for CMS files. or the DOSLIB
command for deleting members of a-DOSLIB library.

r--,
EXAMPLE OF LOGOFF I

--------------------------------------~-------------------------------1
Terminal Printout Notes and comments I

--1
logoff You enter the LOGOFF command. 1

CONNECT=hh:mm:ss VIRTCPU=mm.ss.ss TOTCPU=mm:ss.ss
I
I
1
I
J

I
I
I
I
I
I

Message tells you the connect time,
tne actual lengtA of the session,
and virtual and the real CPU time
minutes. seconds, and hundredths

in I

of seconds.
LOGOFF AT hh:mm:ss (zone) day-of-week mm/dd/yy
I
I
I

Message shows time and date of
logging off.

(you switch off terminal)

1. A carriage return (or equivalent) is assumed after all pro­
grammer input.

2. The character I in column two implies spacing has been added.

3. System response is in upper case (capital) letters, programmer
input in lower case.

1
I
I
I
I
t

l-----__ -----------------J

BACKGROUND

If you wish to delete CMS files you use the ERASE command. rhe command
must specify the filename, the filetype, and the filemode if it is not

Chapter 1: Writing and Running a PL/I Program Under CMS 35

on the A-disk. For example, if you wished to delete the PLIOpr file
"rabbit", that previous examples have created on your A-disk, you would
enter:

erase rabbit pliopt

If you wished to delete all the files called "rabbit" on your A-disk you
would enter:

erase rabbit *
To delete an executable program phase you will have to delete the
appropriate member of a DOSLIB library using the DOSLIB command. For
example:

DOSLIB DEL MYLIB RABBIT

deletes the executable phase RABBIT from the DOSLIB MYLIB. ro delete a
VSAM file, use the Access Method Services DELETE statement.

SPECIAL CONSIDERATIONS

If you are using a switched line to a computer, the use of tbe
LOGOFF command as shown results in the connection to the
computer being broken. If you wisA to retain tae connection,
you must enter "logoff hold". rhe action is the same as for
logoff except tnat tAe switcned line is not disconnected.

SOURCE OF FURTHER INFORMATION

ERASE command

LOGOFF command

36

VM/370: CMS Command and Macro Reference

VM/370: CP Command Reference for
General Users

Debugging a Program

To debug a PL/I program under CMS you compile the program, look for
errors in the listing file, correct tnem using the Editor on your source
program, and repeat the process until all compilation errors are
corrected. You then continue into execution, checking the results or
the error messages to see if there are any logic errors. If logic
errors are found, the errors are again corrected in the source program,
and the program recompiled and executed. This process is continued
until it is established that the program is correct.

Tne example that follows shows the process. The program is a simple
program to calculate the average of numbers entered at the terminal. It
contains two errors; a missing parenthesis, discovered during
compilaticn, and failure to divide the total by the correct number,
discovered during execution.

The suggested ~ebugging procedure involves switching between the
source file and the listing file. Care should be taken not to alter the
listing file in an attempt to correct the source program. Such
erroneous alterations will, of course, have no effect on the source
program.

Most PL/I programs can be debugged at the source level. and it should be
noted that VM/310 users are in a position to use the OS PL/i program
products inclujing tne .Cneckout Compiler. The Checkout compiler
provides an array of symbolic debugging aids such as the setting of
breakpoints, and the interactive correction and saving of the source
program. The as PL/I compilers can be used to check all 3S compatible
language.

Should it prove necessary to debug at machine language level, the CP
debug facilities can be used. These are described in the VM/310: CMS
User's Gui~e. To obtain a machine language listing of your compiled
PL/I source program, you must specify the LIST option in the *PROCESS
statement. The statement with offs~t X'OO' in this listing will be
loaded at an offset X'10· beyond the point specified in the message that
is generated when you specify the FETCH command without the START
option. Information on the execution time logic of PL/I programs is
given in the DOS pt/I Optimizing Compiler: Execution Logic, Order No.
SC33-0019.

Chapter 1: Writing and Running a PL/I Program Under CMS 31 _

EXAMPLE OF DEBUGGING A PROGRAM

access 193 d
Ri
set dos on d

Access DOS SYSRES as D-disk.

Enter the simulated DOS environ­
ment.

stage 1 - Compilation and Correction of Compiler Detected Errors

assgn sysipt c
Ri
dospli nmav

Ri

edit nmav listing
EDIT:
l/compiler diagnostic
-COMPILER DIAGNOSTIC MESSAGES

type *
-COMPILER DIAGNOSTIC MESSAGES

Assign the source file as C-disk.
Call the ·DOS optimizing compiler
located in the DOS system core
image library to compile the
program nmav.
Ready message means that compi­
lation is completed. Next inspect
the listing file for errors.
Examine listing file.

Find message in file.
LOCATE subcommand can be
abbreviated to 1.
Print messages at terminal.

-ERROR ID L STMT MESSAGE DESCRIPTION Ignore first character ~hich
o
OSERVERE AND
o

is a carriage control for printer.
ERROR DTAGNOSTIC MESSAGES

OIEL04001 E 5 RIGHT PARENTHESIS ASSUMED AFTER 'RS, END WITH 99999~'.

o
OEND OF COMPILER DIAGNOSTIC MESSAGES
-COMPILE TIME O.02M>
ht
quit
Ri
edit nmav pliopt
EDIT:
1/99999/

DISPLAY('ENTER NUMBERS, END WITH
c/9'/9')

DISPLAY{'ENTER NUMBERS, END wITH
file
Ri
dospli nmav
R;
edit nmav listing
EDIT:
locate/compiler diagnostic
NOT FOUND:
EOF
top
TOF:
locate/source

38

An additional warning message
may appear if the LINK compiler
option is your default.

Press Attention key and enter HT
command to halt typing.
Leave the listing file.

Edit source program.

Locate erroneous statement.
99999' REPLY(STRING);
Insert change using CHANGE sub­
command abbreviated to "c".

99999') REPLY(STRI~G);
File the correct program.

Recompile.

Examine listing file for errors.

Look for messages.

Return to top of file.

Locate "source".

EXAMPLE OF DEBUGGING A PROGRAMMING PART 2

type * Print compiled source for reference.
SOURCE LISTING

STMT LEV NT
o

1 0 AVERAGE: PROC OprIONS(MAIN);
2 1 0 DCL (TOTALrNUMBER) FIXED DECIMAL r

STRING CHAR (10);
3 1 0 TOTAL=O;
4 1 0 DO I=l BY 1;
5 1 1 DISPLAY('ENTER NUMBER, END WITH 99999') REPLY(STRING)i
6 1 1 NUMBER=STRINGi
7 1 1 IF NUMBER=99999 THEN GOTO LABi
8 1 1 TOTAL=TOTAL+NUMBERi
9 1 1 END;

10 1 0 LAB:
DISPLAY('AVERAGE='IITOTAL/I)i

11 1 0 ENDi
lPL/I OPTIMIZING COMPILER > Press attention and enter HT

command to stop typing.
ht
quit
Ri

Return from Edit mode to CMS.

Stage 2: Execution ana correction of Execution-time Errors

access 196 b

assgn sysrlb b
Ri

Access the DOS private re­
locatable and core image
libraries as your B-disk.

dlbl ijsysrl b dsn privat relocat libCsysrlb Make PL/I resident
library available. Ri

b assgn sysclb
dlbl ijsyscl b dsn privat corim libCsysclb Make PL/I transient

library available. Ri
doslked nmav mylib
Ri
global doslib mylib
Ri
fetch nmav(start
EXECUTION BEGINS •••
ENTER NUMBER, END WITH 99999
IBM007A WAITING FOR REPLY TO
10
ENTER NUMBER r END WITH 99999
IBM007A WAITING FOR REPLY TO
11
ENTER NUMBER, END WITH 99999
IBM007A WAITING FOR REPLY TO
12
ENTER NUMBER r END WITH 99999
IBM007A WAITING FOR REPLY TO
99999
AVERAGE= 8.2500
Ri

Link edit the program nmav.

Make DOSLIB available to eMS.

Fetch program and start to execute.

Message from PL/I DISPLAY statement
'DISPLAY' MESSAGE Prompt for data

Key in 1st number.

'DISPLAY' MESSAGE Prompt for data
Key in 2nd number.

'DISPLAY' MESSAGE Prompt for data
Key in 3rd number.

'DISPLAY' MESSAGE System Message
Key in 99999 to mark end.
Program displays the result but
you see answer is wrong.
Your examination of the source
listing shows that TOTAL is
divided by 1 more than it should
be, because I is incremented by
1 for the end-of-data marker 99999.

NMA00010
NMA00020
N~A00030
NMA00040
NMA00050
NMA00060
N~A00070
NMAOOOBO
N~A00090

NMA00100
NMA00110
NMA00120
NMA00130

Chapter 1: Writing and Running a PL/I Program Under eMS 39

----------------------------------~-------------------------------------
EX~MPLE OF DEBUGGING A PROGRAM PART 3

edit nmav pliopt

EDIT:

Edit the source file to correct
error.

Locate "display". locate/disl;>lay
DISPLl\YC'ENTER

locate/disl;>lay
NUMBERS, END ~ITH 99999') REPLYCSTRI~G);

DISPLl\YC'AVERAGE=' I ITOTAL/I);
change/i/Ci-1)

DISPLl\YC'AVERAGE=' IITOTAL/CI-1»;
file
R;
dospli nmav

R;
edit nmav listing
EDIT:
locate/compiler diagnostic
NOT FOUND:
EOF
quit
R;
doslked nmav mylib
R;

fetch nmav Cstart
EXECUTION BEGINS •••
ENTER NUMBER, END ~ITH 99999
IBM007 WAITING FOR REPLY TO 'DISPLl\Y'
10
ENTER NUMBER, END WITH 99999
IBM007 WAITING FOR REPLY TO 'DISPLAY'
11
ENTER NUMBER, END ~ITH 99999
IBM007 WAITING FOR REPLY TO 'DISPLl\Y'
12
ENTER NUMBER, END WITH 99999
IBM007 WAITING FOR REPLY TO 'DISPLAY'
99999
l\VERAGE= 11.0000
R;
print nmav listing

logoff

Wrong one, look for next occurance.

Make the change.
Corrected statement is displayed.
Store the corrected program.

Recompile the program. rhe old
LISTING and TEXT files are
overwritten.
Examine listing file for
errors.

Error free compilation.

Return to CMS.

Link edit corrected program.
Note that libraries etc are
already assigned.
Re-e~ecute the program.

MESSl\GE Proml;>t for Qata

MESSAGE Prompt for data

MESSl\GE Prompt for data

MESSAGE System Message

Correct result

Print the listing file
cn the system printer for
reference.

CONNECT= 00:45:04 VIRTCPU= 000:26.70 TOTCPU= 001:19.44
LOGOFF AT 17:03:29 GMT THURSDAY 05/08/76

40

Chapter 2: PL/I Conventions and Restrictions
Under CMS

Res trictions

rhe PL/I features that may not be used under CMS and restrictions on
other features are shown in figure 2.1.

r--,
DO NOT USE UNDER CMS

--------------~---~-----------------------~-------~-------------------
ASCII data sets

ASSOCFLE option of the ENVIRONMENT attribute

BACKWARDS attribute with magnetic tapes

Files with INDEXED environment option that access ISAM data sets

FUNC option of the ENVIRONMENr attribute

PL/I checkpoint restart facilities (PLICKPT)

PL/I sort facilities (PLISRT)

REGIONAL files

Assembler language subroutines using multitasking, multipartition, or
teleprocessing operations. CMS does not support any of these
functions. L--------------_______________________________________ -----------------J

Figure 2.1. Restrictions on the PL/I functions that can be executed
under CMS.

rhe results of using PL/I features that are not available under eMS are
summarized below.

SORT Results undefined

CHECKPOINT/RESTART
Results undefined

ISAM DATASETS
(Files with the
INDEXED ENVIRONMENT
attribute)

CMS error message DMSBOP088E "UNSUPPORrED DrF
TYPE 'dtftype'" will be displayed.

Use of rCAM, or spanned records on BDAM, or the BACKWARDS attribute.

CMS error message number DMSBOP063E "OPEN ERROR CODE x
ON 1dname" will be displayed.

Chapter 2: PL/I Conventions and Restrictions Under CMS 41

ASCII data sets
BACRWARDS attribute
ASSOCFLE environment attribute
FUNC environment attribute

42

CMS error message DMSBOP089E "OPEN ERROR CODE
CODE Inn' ON fn/SYSxxx/TAPEn" will be displayed.
where:

n=4 Attempting to open DTFCD or DrFPR with
ASSOCFLE/FUNC parameters specified on the
DTF macro.

n~9 rhe parameter 'READ=BACK' bas been specified
on the DTFMT macro. CMS/DOS will only
support tape processing in a forward
direction.

n=ll Attempting to open DTFMT (tape data files)
and ~ASCII=YES~ was specified.

Conventions

certain conventions apply to PLII under CMS because the terminal is
treated as the console of the virtual machine. Thus the DISPL~Y
statement and REPLY option, normally used to communicate with the
operator, can be used for communication between the program and the
terminal.

No prompting or other facilities are provided for 1/0 at the
terminal. DISPLAY and REPLY snould tnerefore be used to communicate
between the program and the terminal.

DISPL~Y AND REPLY UNDER CMS

Because the terminal is considered to be the console of the virtual
machine, the DISPLAY statement and tne REPLY option can be used to
create conversational programs. The DISPLAY statement transmits the
message to your terminal, and tne REPLY option allows you to respond.
For example, the PL/I statement:

DISPLAY ('ENTER NAME·) REPLY (NAME);

would result in the message "ENTER NAME" being printed at your terminal.
The program would tnen issue a message wait for your response. When you
had responded, your data would be placed in the variable NAME after you
pressed the carriage return key. The terminal printout would look like
this:

ENTER NAME
IBM007A WAITING FOR REPLY ro DISPLAY MESSAGE
LESLEY RIERA

Chapter 2: PL/I Conventions and Restrictions Under CMS 43

Chapter 3: The DOSPLI Command and Compiler
Options

This chapter shows t~e syntax of tne DOSPLI command, the options that
can be used with the DOS optimizing compiler, and the standard defaults
that will apply if you do not specify values for certain options.

There are five sections:

1. A summary of the syntax notation used.

2. A description of the DOSPLI command.

3. A table of the options available with the optimizing compiler
arranged in alphabetical order.

4. A table of options arranged by function.

5. An alphabetical list of options with detailed descriptions and
syntax notation.

If you wish to accept the default compiler options, you will only
need to look at tne section on the DOSPLI command and possibly the
section on syntax notation. It should be noted that the default values
for the options may have been altered by your installation and may not
correspond to those shown. If you wish to look up a particular option,
you should look for it in tne alphabetical section. If you want a
summary of the options that are available, you should look at the
alphabetical list of options. If you are looking for an option to serve
a specific purpose, you snould look in tne table of options listed by
function. Before using an option found in either of the tables.You
should check in the alphabetical section to discover the full syntax.

A general discussion of the DOSPLI command is given in chapter 1
under the heading "Compiling the Program - the DOSPLI Command".

Syntax Notation

The syntax notation used to illustrate the command in this part of the
manual is the same as that used in the VM/370: CMS Command and Macro
Reference. Briefly, the conventions are as follows:

Items in brackets (] are optional.

Items in braces { } are alternatives; choose only one.

~n item underlined applies unless an "alternative is specified.

Note: Defaults shown are suggested defaults and may have been changed
for your system.

Items written in uppercase (capital) letters are keywords and must be
spelled as shown.

•
Items written in lowercase letters must be replaced by appropriate names
or values.

Chapter 3: The DOSPLI Command and Compiler Options 45

separate the command name from the operands, options, and suboptions by
one or more blanks. .

The four special cnaracters • () * (single quote, left parenthesis,
right parenthesis and asterisk) must be included ~here shown •

•

46

DOSPLI Command

The DOSPLI command invokes the DOS PL/I Optimizing Compiler to compile a
program written in P~/I source language. Provided the DECK compiler
option is in effect, the compiler produces a TEXT file containing
machine code and a LISrING file containing listings and diagnostics.
other files may also be produced depending on compiler options.
Compiler options are either defaulted from the defaults specified by
your installation, or specified in the *PROCESS statement at the start
of the PL/I source program.

r--,
I DOSPLII filename I
I I I
L--l

filename

is the name of the file that contains the DOS PL/I source program.
The filetype must be PLIOPT or PLI.

OSl\GE

The DOSPLI command compiles a PL/I program into machine language object
code. If the source program is stored as a eMS file on disk .. it must
have the filetype PLIOPT or PLI and an ASSGN command must be issued
associating SYSIPT (or SYSIN) with the disk containing the source
program. If it is not on a CMS disk, it must be defined to the system
with l\SSGN and DLBL commands.

The CMS/DOS environment must previously have been activated by a SET
DOS ON command. If it is not active, an error message is generated.
See chapter 1 or the foldout at the end of this manual for an example of
DOSPLI including the necessary file assignments.

Example: To compile the PLIOPT file called CONEY

DOSPLI CONEY

Compiler Options

Compiler options are used to tailor compilations to your needs. They
control items such as the listings produced, the space used by the
compiler, the form of code produced, and where the object module is
placed. They are also used to indicate the format in which the input
is presented.

Compiler options are specified in the *PROCESS statement that
precedes the source program. The method used is described in Chapter 1,
in the section on the EDIT command.

Chapter 3: The DOSPLI Command and Compiler Options 47

The majority of compiler options offer alternative methods of
processing (for example, OPTIMIZE or NOOPTIMIZE), one of which must be
taken. A system of ~efaults specifies which options will be taken when
neither one from a set is specified~ The defaults are determined by
your installation when the compiler is installed •. During installation
certain options may be "deleted". These options are not then available
unless he kno~s the password of the CONTROL option. This manual shows
the defaults suggested by IBM, however, different defaults may have been
chosen by your installation.

To simplify using the many options available, the options are
presented in two summary forms, first alphabetically (Figure 3.1), then
by function (Figure 3.2). These summaries are followed by the full
description. The alphabetical summary is intended for quick reference
to check spelling and allowable abbreviations. The functional summary
is intende1 to summarize the possibilities that are open to you. rhe
full description, in ~hich options are arranged alphabetically, gives
all necessary details about the options and t.'1eir use.

48

r---,
COMPILER OPTIONS ALPHABETICAL SUMMARY

£Qmpi!~~-2EtiQn I Abbreviated Name
IB~ suggested default for CMS underlined

AGGREGATE.I NOftGGB~GA!~
ATTRIBUTESI~OATTRI~QTE§
CATALOG (. name')
CHARSET([481~Q][§BCOICIBCD])

:OMPILE I ~Q£QMPIL~[(~"I EI §)]

. CONTROL [('passwor:l')]
:OUNTINO£QQNT

!2~f~INODECK~
DUMPINODUMP

DYNBUFI~OD!~BU[

ESDI~OESD

E!!AG[(II wI EI S)]

FLOw[(nrm)]INOFLO~
GOSTMTINO§OSTMT

INCLUDEI~QINCLUQ~

I~§OURCEINOINSOURCE
LIMSCONVI~OLIMSfONV

LIN~COUNT(n) LINECOUNT(SS)
1LINKINOLI~~[(WTEf§)I------
ILIST[(m[rn])]I~Q~I§!
IMACROINOMft£BQ
I
IMAPI~OMAP

I

~ARGINI('c')INOMARGINI
MARGINS(m r n[rcrr-MARGINS(2,12)
MDE:KINOMDEf~

NESTINO~~§!

OFFSET I NOOFFSET
OPTIMIZE(TIMEI

Q.12INOO~!!~IZ~l
OPTIONS I NOOPTIONS
SIZE(YYYYYYlnnnnKI~~~)

§Q!:!!!f§INOSOURCE
§!QRAGEINOSTORAGE
S~NTAXINOSYNTAX[(WIEI§)]

WORKFILE(device type)
WORKFILE(2311)

XREFINOXREr--

AGINAG
AlMA

CS([481 60][EBIB])

CINC[(WIEIS)]

CTINCT

DIND
DUI NDU

F[{IIWIEIS)]

GSINGS

INCININC

ISINIS
LS:INLSC

LC(n)

MIN~

MI (, c ') I NMI
MAR (m,n [,e])
MDINMD

OFINOF
OPT(TIMEI
°12INOPT)
OPINOP
SZ(yyyyyylnnnnKIMAX)

SINS
STGINSTG
SYNINSY~[(WIEI§)]

XINX

Lists aggregates.
Lists attributes of variables.
Generates CATALR record.
Specifies character set of
input.
Specifies if c~mpiler continues
after syntax check •
Allows use of deleted options.
Generates code for statement·
count.
Generates a TExr file.
Causes dump after compiler
error.
specifies method of buffer
allocation.
Lists external symbol
dictionary.
Suppresses certain diagnostic
messages.
Generates code for flo~ trace.
Produce statement numbers in
execution time messages.
Allows inclusion of text witn
minimum overhead.
Lists preprocessor input.
Limits conversions and reduces
space overhead.
specifies lines on listing page
No effect under CMS.
Lists compiled code.
Handles all preprocessor
statements.
Lists static code.
Marks margins of source.
Specifies margins used.
Generating preprocessed card
deck.
Shows block arrangement on
listing.
Lists offsets of each statement
Specifies optimization.

Lists the opti~ns used.
Specifies storage to be used
compiler.
Lists ~ource program.
Lists storage requirements.
Specifies conditions under
which compiler proceeds after
preprocessing.
Specifies type of workfile to
be used.
Lists variable use by state-
mente

by
I
I
I
I
I
I
I
I
I
I

I ~DECK is default for non-CMS DOS/VS. I L------------------------------_______________________ ----------------------------------J
Figure 3.1. Compiler Options and IBM Recommended defaults arranged alphabetically

Chapter 3: The DOSPLI Command and Compiler Options 49.

r--,
1 COMPILER OPTIONS: FUNCTIONAL SUMMARY PART 1
1--
ILISTING OPTIONS
1
IControl listings
I produced AGGREGATE List of aggregates and their
1 sizes.
I
1 ATTRIBUTES List of attributes of all
I identifiers.

ESD List of external symbol
dictionary.

FLAG(IIWIEIS) Suppress diagnostic messages
below a certain severity.

I~SOURCE List of preprocessor input.

LIST List of compiled code produced
by compiler.

MAP List contents of static control
section produced by compiler.

OPTIONS List of options used.

SOURCE List of source program or
preprocessor output.

STORAGE List of storage used.

XREF List of statements in which eachl
identifier is used. I

I
Improve readibility of source listing I

I
NEST Indicates do-group and block j

level by numbering in margin.

MARGINI Highlights any source outside
margins.

Control lines per page of listing

LINECOUNT specify number of lines per
page on listing.

----------~------------------------------------~-----------~----------
INPUT OPTIONS

ITo define character set and margins of input
I CHARSET
I
I
I
I
I

MARGINS

Identify the character set used
in source.
Identify the columns used for
source program, and
identify position of a carriage
control character

L-----------------.--J
Figure 3.2. (Part 1 of 3) Compiler options arranged by function

50

r-----------------------------~~-----------~---~---------------------~-1
COMPILER OPTIONS: FUNCTIONAL SUMMARY PART 2 1

--1
OPTIONS TO PREVENT UNNECESSARY PROCESSING 1

I
Control whether compilation should end if errors above a certain level I

are found , 1
NOSYNTAX(WIEIS) stop processing after errors arel

found in preprocessing. 1
I

NOCOMPILE (WI E IS) stop processing after errors are
found in syntax checking.

~-~-~---------------------------------~-----------~-------~-----------
OPTIONS FOR PREPROCESSING

MACRO

INCLUDE

MDECR

INSOURCE

Allow full use of the pre­
processor facility.

Allow inclusion of text without
overheads incurred by MACRO.

Produce a source deck from pre­
processor output.

List the input to the prepro-
cessor.

OPTIONS TO USE WHEN PRODUCING AN OBJECT MODULE

DECK Produce an object module~

CATALOG Produce an object deck on
virtual card punch with a CATALRI
card. 1

--~---------------I
OPTIONS TO CONTROL STORAGE USED DURING COMPILATION I

I
SIZE Control the amount of storage 1

used by the compiler. I
--1
OPTIONS TO REDUCE EXECUTION TIME STORAGE I

I
DYNBUF Allocate buffer space during I

execution. I
I

LIMSCONV Specify that certain conversions I
will not be used in stream I/O, I
consequently reducing number of I
library modules link-edited. I

L--_-______________ J

Figure 3.2~ (Part 2 of 3) Compiler options arranged by function

Chapter 3: The DOSPLI Command and Compiler Options 51

r--,
COMPILER OPTIONS FU~CTIONAL SUMMARY PART 3

STATEMENT NU~BERING OPTIONS

GOSTMT

OFFSET

OPTIONS FOR USE WHEN DEBUGGING

FLOW

COUNT

Retain a statement number table
into execution so that execut­
ion time messages ~an specify
statement number.

specify that a listing associ­
ating statement numbers with
offsets will be generated.
Enables you to identify state­
ments from offsets given in
execution time error messages.

Generate code that will result
in a trace of executed
statements being retained.

Generate code that will result
in a count of the number of
times each statement is executed
being printed at the end of the
program.

OPTION TO IMPROVE COMPILATION/EXECUTION SPEED

OPTIMIZE(TIME)

NOOPTIMIZE

Reduce execution time at the
expense of compilation.

Reduce compilation time at the
expense of execution.

OPTION FOR USE WHEN DEBUGGING THE COMPILER

DUMP Produce a dump if the compiler
terminates abnormally.

IOPTIONS TO SPECIFY DEVICES OSED B~ COMPILER
I
I WORKFILECdevice type) Specify device type used for
I compiler workfiles.

I------------------------------~---------------------------------------
IOPTJONS FOR SYSTEMS PROGRAMMING
I
I
I
I

CONTROLC'password') Allows access to deleted options
for those who know password.

l---_-----___ J

Figure 3.2. CPart 3 of 3) Compiler options arranged by function

52

ALPHABETICAL LIST OF OPTIONS

IBM suggested defaults are underlined

AGGREGATE I NOAGGREGATE
AGI!'i~~

Tne AGGREGATE option specifies that the compiler is to produce
an aggregate length table, giving the lengths of all arrays and
major structures in the source program.

Example: To get a listing of the size of aggregates in a
program:

*PROCESS AGGREGATE:

ATTRIBUTEStNOAT!RIBUTES
AI£i~

The ATTRIBUTES option specifies that the compiler is to include
in tAe compiler listing a table of all source-program
identifiers and their attributes. If both ATTRIBUTES and XREF
apply, the attribute table is combined with the cross reference
table.

Example: To get a list of program identifiers and their
attributes:

*PROCESS ATTRIBUTES:

CATALOG ('name')

The CATALOG option specifies that the compiler will write an
object deck to the virtual card punch and will precede it with
a CATALR statement specifying the name under which the object
module is to be cataloged. The module cannot be cataloged onto
the system relocatable library under CMS. The name can contain
up ~o eight chracters, the first of which may not be an
asterisk. It must be enclosed in quotes.

EKample: To specify that an object module will be written to
the virtual card puncn specifying the name BIGWIG on the CArALR
card:

*PROCESS CATALOG ('BIGWIG');

CHARSET«(48t~~]1 [~BCDICIBCD])
es([481~Q] I [E;~I B])

The CHARSET option specifies the character set and data code
used in the source program. The compiler will accept source
programs written in the 60-character set or the 48-character
set, and in the Extended Binary Coded Decimal Interchange Code
(EBCDIC) or Binary Coded Decimal (BCD).

60= or 48-c~aracter set: If the source program is written in
the 60-character set, specify CHARSET (60); if it is written in
the 48-character set, specify CHARSET (48). The language
reference manual for tnis compiler lists both of these
character sets. (The compiler will accept source programs
writ~en in eitner character set if CHARSET(48) is specified.

Chapter 3: The DOSPLI Command and Compiler Options 53

However, if 48-character set reserved keywords, for example CAr
or LE are used as identifiers i~ a program using the 60
character set, errors may occur if it is compiled with the
CHARSET(48) option).

BCD or EBCDI~: If the source program is written in BCD, specify
CHARSET (BCD); if it is written in EBCDIC, specify CHARSEr
(EBCDIC). The language reference manual for this compiler lists
the EBCDIC representation of both the 48-character set and the
60-character set.

If tNO arguments (48 and BCD or 60 and EBCDIC) are specified,
either argument may appear first. One or more blanks must
separate the arguments.

Example: To specify that the source program is in the 48
character set:

*PROCESS CHAR SET (48);

COMPILEINOCOMPILE[(WIEI§)]
CI~£I [(WIEI~)]

54

The COMPILE options control whether the final stage of
processing is carried out by the optimizing compiler.

The PL/I optimizing compiler compiles in three stages;
preprocessing, syntax c~ecking, and compilation. Preprocessing
is the expansion of macro statements, syntax checking is
checking that the procedure is syntactically valid PL/I,
compilation is the actual production of compiled code.
Processing can be stopped after either of the first two stages
if errors are found. The COMPILEINOCOMPILE options can be used
to prevent unnecessary processing if errors are found during
preprocessing or syntax checking, or to force compilation
regardless of errors. Errors are divided into four classes:

Warning.

E Error.

An error may have occurred.

An error has been detected but execution
may be successful.

S severe Error.
An error has been detected which will
prevent successful execution.

U Unrecoverable Error.
An error has been detected that prevents
further processing by the compiler.

The various COMPILEINOCOMPILE options have the following
meanings:

NOCOMPILE No compilation in any circumstances.

NOCOMPILE(W) No compilation if a warning, error,
severe error, or unrecoverable
error is detected.

NOCOMPILE(E) No compilation, if error, severe
error, or unrecoverable error is
detected.

NOCOMPILE(S) No compilation if a severe error or
unrecoverable error is detected.

COMPILE Compilation will proceed regardless of
errors found except unrecoverable errors.

Example: To prevent compilation if an error of severity E is
found:

*PROCESS NOCOMPILE (E);

CONTROL('password')

The CONTROL option specifies that any compiler options deleted
when t~e compiler was installed are to be available for this
compilation. You must still specify the appropriate keywords to
use the options. The CONTROL option must be specified with a
password that is establis~ed for each installation; use of an

.incorrect password will cause processing to be terminated.

'password' is a character string, not exceeding eight
characters in length.

Example: To specify that the deleted option DUMP applies to
this compilation where the password is SESAME:

COUNT1 NO£OUNT
cTINCr

*PROCESS CONTROL ('SESAME') DUMP;

The COUNT option specifies that code will be generated that
causes a count to be kept of the number of times each statement
is executed in a particular run of a program. The results are
written as a table to SYSLST when the program terminates.

Programs compiled with the COUNT option require SYSLST to be
assigned to a suitable device when they are executed. For
example:

assgn syslst printer

The COUNT option requires that the GOSTMT option is also
specified. If it is not, a message is generated during
execution and a statement frequency count table is not
produced.

Example: To compile a program that will generate a statement
frequency count table:

DECK I NODECK
QIND

*PROCESS COUNT GOSTMT;

The DECK option on CMS specifies that the compiler is to
produce TEXT file and write it to the file or device assigned
to SYSPCH. Columns 73-76 of each card contain a code to
identify the object module; tAis code comprises the first four
characters of the first label in the external procedure
represented by the object module. Columns 77-80 contain a 4-
digit decimal number: the first card is numbered 0001, the
second 0002~ and so on.

Chapter 3: The DOSPLI Command and Compiler Options 55

Note that under eMS, the object program is written to SYSPCR
and DEC~ ~! be seeci[ie£ if ~ ob~£! E!:Qg~!!! 12 !:~gui!:~Q:
This differs from DOS/VS practice where the object program 1S
written to SYSLNK and the DECK option results in an additional
copy of the object program being generated. Under DOS/VS,
NODECK is the recommended default.

Example: To specify that an object module be pro~uced:

*PROCESS DECK;

DUMPltl~~
DUI!!QQ

The DUMP option specifies that the compiler is to produce a
formatted dump of main storage if the compilation terminates
abnormally (usually due to an I/O error or compiler error).
This dump is written on the file associated with ddname
SYSPRINT. Dump ~as a nurober of suboptions useful to those
dealing ~ith the internals of the compiler. Details of the
suboptions of DUMP are given in the DOS PL/I Optimizing
Compiler: Program Logic.

Example: To produce a dump after abnormal termination of the
compiler:

*PROCESS DUMP;

DYNBUFI~Q2YNBU~

56

The DYNBUF option controls how the storage for file buffers is
acquired. If DYNBUF is specified, the storage is acquired
dynamically during execution. If NODYNBUF is specified, the
storage is acquired during compilation and becomes part of the
object module generated by the comp-iler.

T~e advantage of specifying DYNBUF is that the storage for
buffers is only acquired when needed. Thus DYNBUF can reduce
the object module storage requirements and, provided that all
files are not open at one time, the execution time storage
requirements.

The advantage of specifying NODYNBUF is that it saves the time
overhead involved in acquiring buffer storage during execution.

When DYNBUF is specified, it pays to open and close files as
they are needed so that space is available for some other use
when it is not required for file buffers. If NODYNBUF is
specified, tne buffer space forms a permanent part of the
object module and there is no advantage in opening and closing
files as they are required. The advantage lies in opening and
closing all files at once, because this is quicker than opening
and closing files individually.

Example: To specify that buffers for files will be acquired
dynamically during execution of the compiled program:

*PROCESS DYNBUF;

The ESD option specifies that the external symbol dictionary

(ESD) is to be listed in the co~piler listing.

Example: To produce a listing of the external symbol
dictionary:

FLAG(!IWIEIS)
F(!lwIEIS)

*PROCESS ESDi

Tne FLAG option specifies the m1n1mum severity of error for
wnicn a message is to be listed in the compiler listing. The
format of the FLAG option is:

FLAG (I)

FLAG{w)

FLAG(E)

FLAG(S)

List all messages.

List all except informatory
messages. (If you specify FLAG, with no
argument FLAG(W) is assumed.)

List all except warning and
informatory messages.

List only severe error and
unrecoverable error messages.

Example: To specify tnat all messages including informatory
messages be listed:

*PROCESS FLAG(i);

FLOW(n, m)I~OFLO~

Tlle FLOW compiler option specifies that code will be produced
enabling the transfers of control most recently executed in a
program to be listed wnen an ON statement with the SNAP option,
or when a CALL PLIDUMP statement is executed. This enables you
to follow tAe patn tnrougb tne most recently executed
statements ~hen an error occurs during execution. The format
of tne FLOW option is:

FLOW(n, m)

n is the number of transfers of control that will
be listed with associated statement numbers.

m is the number of transfers of control between
procedures tAat will be listed with associated
procedure names.

nand m must be decimal integers and may not exceed 32767. If
either value is zero, tlle associated listing will not be
produced.

The list will start witn tlle earliest available information and
continue to the point where the CALL PLIDUMP statement or the
ON statement witn tlle SNAP option was executed.

Programs compiled with the FLOW option require SYSLST to be
assigned when they are executed.

For example: assgn syslst printer

Chapter 3: The DOSPLI Command and Compiler Options 57

Example: To specify that a flow trace will be kept containing
50 branches between statements and 20 branches between
procedures:

*PROCESS FLOW (50, 20);

GOSTMTINOGQ~TMI
GSI~~2

The GOSTMT option specifies that statement numbers from the
source program will be included in execution-time error
messages. Alternatively, these statement numbers can be derived
by using the offset address, and the table produced by the
OFFSET option. The offset address is always included in
execution-time messages.

The GOSTMT option results in the compiler generating a
statement number table and thus has a space overhead in the
object module.

Example: To specify that statement numbers will be included in
execution time messages:

*PROCESS GOSTMT;

INCLUDEI~QiNCLUD~
INCININC

The INCLUDE option specifies that %INCLUDE statements are to be
handled without the overhead of using the full preprocessor
facilities. If preprocessor statements other than %INCLUDE are
used in the program, the MACRO option must be used.

The INCLUDE option will be overridden if the MACRO option is
also specified.

Example: To specify that text is to be included but that no
other preprocessor facilities are required:

*PROCESS INCLUDE;

!~20ugCEINOINSOURCE

!2I NIS

The INSOURCE option specifies that the compiler is to include a
listing of the source program (including preprocessor
statements) in the compiler listing. This option is applicable
only when t~e preprocessor is used, therefore the MACRO option
must also apply.

Example: To specify t~at a listing showing the source program
before preprocessing is to be generated:

*PROCESS INSOURCE MACRO;

LIMSCONVINOLIMSCONV
LSCINLSC

58

The LIMSCONV option specifies that the compiled program will
not have to handle certain types of conversion in data- or

list-1irected input. This reduces the size of the object
module produced because the modules to handle such input need
not be included in the executable program phase.

If the LIMSCONV option is i~ effect, only the following types
of input are allowed for the variable types shown:

Bit (or character containing bit strings) to bit variable.

~haracter to character .or picture character variable.

Fixed- or floating-point decimal constants (or character
strings that represent such constants) t6 arithmetic
variable.

Thus all the usual conversions are allowed, and only the more
unusual forms which are allowed by PL/I but seldom used are
prohibited. If one of the prohibited types of input is found
by a program compiled with the LIMSCONV option, the CONVERSION
condition is raised and an on-code generated. The on-codes are
listed in the language reference manual for this compiler. The
LIMSCONV option only affects programs that contain list- or
data-directed input.

Example: To limit the types of inpu~ for list- or data­
directed stream I/O to those listed above, and thus reduce the
size of the executable program by preventing the linking of
unnecessary library modules:

*PROCESS LIMSCONVi

LI~ECOUNT(n) ILINECOUNT(55)
LC (n)

The LINECOUNT option specifies the number of lines to be
included in each page of the compiler listing, including
heading lines and blank lines. The format of the LINECOUNT
option is:

LINECOUNT(n)

where nnw is the number 'of lines. It must be
in the range 1 through 32161, but
if you specify less than 1, only the heading of the
listing will be printed.

Example: To specify that compiler listings will be written
30 lines to a page:

*PROCESS LINECOUNT (30);

The LINKINOLINK options are intended for use on non-terminal
systems and ~ave no effect on CMS/DOS.

LIST[(m, n)]I~OL!§~
!

The LIST option specifies ~hat the compiler is to include a
listing of the compiled code (in a form similar to IBM
System/360 assembler language instructions) in the compiler
listing.

Chapter 3: The DOSPLI Command and Compiler Options 59

The values m and n allo~ you to specify the range of statements
for ~hich the list ~ill be produced. If m and n are omitted
the complete program is included in the listing.

Example: To specify that a listing of compiled code from
statement 10 through statement 20 is to be generated:

*PROCESS LIST(lOr 20)~

r-1ACRO I NOMACRO
MI~~

The MACRO option specifies that the source program is to be
processed by the preprocessor. This option should only be used
when preprocessor facilities other than inclu~ion are required.
For inclusionr the INCLUDE option provides better performance.

Example: To specify that the program is to be processed by the
preprocessor:

*PROCESS MACRO;

The MAP option specifies that the compiler is to produce tables
showing the organization of tAe static storage for the object
module. These tables consist of a static internal storage map
and the static external control sections. The MAP option is
normally used with the LIST option.

Use of the MAP option also results in the generation of a
variables offset map which lists static internal and automatic
variables ~ith the offsets from their defining bases. This
simplifies finding variables in a dump.

Example: To specify that a listing of static storage and a
variable offset map be produced:

*PROCESS MAP;

MARGINI (. c") I ~OM8B2IN!
MI('c') I~~!.

60

The MARGINI option specifies that the compiler is to indicate
the position of the margins by including in the listings of the
PL/I program a specified character in the column preceding the
left-hand margin, and in the column following the right-hand
margin.. Any text in the source input ~hich precedes the left­
hand margin ~ill be shifted left one column, and any text that
follows the right-hand margin will be shifted right one column.
Thus the text outside the source margins can be easily
detected. The MARGINI option applies to both the SOURCE and
INSOURCE listings.

The MARGINI option has the format:

MARGINI('c')

~here "c" is the character to be printed as
the margin indicator.

Example: To specify that the margins of the source program are

to be marked wit~ an ~ in the compiler listings:

*PROCESS MARGINI('~');

MAR(m, n [,c])
MARGINS(m,n[,c)
IBM Default: MARGINS(2,12)

The MARGINS option specifies which part of each compiler input
record will be scanned by the compiler for PL/I statements, and
the position of any ANS control character used to format the
listing.

The format of the MARGI~S options is:

MARGINS (m,n,c)

where:

m is the column number of the leftmost column that will be
scanned by the compiler. m must not exceed 100.

n is the column number of the rightmost column that will be
scanned by tne compiler. n must not be less than mf nor
greater than 100.

c is the column of t~e ANS printer control character. It must
not exceed 100:and it must be outside the values specified for
m and n. A value of 0 for c indicates that no ANS control
character is present. rhe control character applies only to
listings on a line printer. Only the following control
characters can be used:

(blank) Skip one line before printing.

o Skip two lines before printing.

Skip three lines before printing.

+ Skip no lines before printing.

1 Start new page.

Any other c~aracter is taken to be blank. If the value c is
greater than the maximum length of a source statement record,
the compiler will not be able to recognize it; consequently the
listing will not nave the required format.

Example: To specify that the source program is contained in
columns 1 to 10 of the input file and a printer control
character appears in column 80:

MDECKINOMDECK
MDI~MD

*PROCESS MARGINS(1,10,80);

The MDECK option specifies that the preprocessor is to produce
a copy of its output (see MACRO option) and write it to the
file defined by SYSPCH. The MACRO option produces 84 byte
records; however, tne last four bytes, which contain sequence
numbers, are ignored for the output from MDECK option. Thus

Chapter 3~ Tne DOSPLI Command and Compiler Options 61

MDECK allows you to retain the output from the preprocessor as
a deck of 80-column punched cards.

Example: To specify that a copy of preprocessor output is to
be written onto the virtual card punch:

*PROCESS MDECK;

NAME('object-module-name')
N('object-module-name')

The NAME option should not be used on eMS/DOS.

NESTINONES~

The NEST option specifies that the listing resulting from the
SOURCE option will indicate, for each statement, the begin­
block level and the do-group level; thus displaying the program
structure. The levels are shown by numbers in the left hand
margin.

Example: To specify that the source listing will contain
indications of begin-block and do-group level:

*PROCESS NEST SOURCE;

OFFSETINOO[~SEI
OFINQE

The OFFSET option specifies that the compiler is to print a
table of statement numbers for each procedure with their offset
addresses relative to the primary entry point of the procedure.
This table can be used to ident~fy a statement from an
execution-time error message if the GOSTMT option is not in
effect.
Example: To specify that a table associating statement numbers
and offsets in compiled code is to be generated in the listing
file:

* PROCESS OFFSET;

OPTIMIZE(TIMEIQI2)I~QQPT!M!!~
OPT(TIMEIQI2)INO~I

62

The OPTIMIZE option specifies the type of optimization
required:

NOOPTIMIZE specifies fast compilation speed, but inhibits
optimization for faster execution and reduced
main storage requirements.

OPTIMIZE (TIME) speclfies that the compiler is to optimize the
machine instructions generated to produce a very
efficient object program. A secondary effect of
this type of optimization can be a reduction in
t~e amount of main storage required for the
object module. The use of OPTIMIZE(TIME) can
result in a substantial increase in compile time
over NOOPTIMIZE.

OPTIMIZECO) is the equivalent of NOOPTIMIZE.

OPTIMIZE(2) is t~e equivalent of OPTIMIZECTIME).

The language reference manual for this compiler includes a full
discussion of optimization. OPTIMIZE will be accepted if
spelled in the English manner: OPTIMISE.

Example: To specify that the compiled code will be optimized
for tne best performance:

*PROCESS OPTIMISE;

OPTIONS I NOOPTIONS
OPINO~

The OPTIONS option specifies that the compiler is to include in
the compiler listing a list showing the compiler options used
during this compilation. This list includes those options
applied by 1efault, and t~ose specified in a *PROCESS
statement.

Example: To specify that a listing will be produced sAowing
all options used for a compilation:

*PROCESS OPTIONS;

SIZE(yyyyyylyyyKIMAX)
SZ(YYYYYYlyyyKI~AX)

The SIZE option can be used to limit the amount of main storage
used by the compiler. rhe SIZE option can be expressed in
three forms:

SIZECyyyyyy)

SIZE(yyyK)

SIZE(MAX)

specify that the compiler should attempt to
obtain ~yyyyy bytes of main storage for
compilation. Leading zeros are not
required.

Specify that the compiler should attempt to
obtain YY.YK bytes of main storage for
compilation (lK=1024). Leading zeros are
not required.

Specify that the compiler should attempt to
obtain as much main storage as it can.

The IBM default, and tAe most usual value to be used, is
SIZE(MAX). This permits the compiler to use as much main
storage in the partition or region as it can.

When a limit is specified, the amount of main storage used by
the compiler depends on how the operating system has been
generated, and the method used for storage allocation. The
compiler assumes that buffers, data management routines, and
processing phases take up a fixed amount of main storage, but
this amount can vary unknown to the compiler.

Example: To specify that the compiler will operate in
approximately lOOK:

*PROCESS SIZE (lOOK);

Chapter 3: The DOsPLI Command and Compiler Options 63

SODRCEI!!OSQURCE
SI~2

The SOURCE option ~pecifies that the compiler is to include in
the compiler listing a listing of the source program. The
source program listed is eitner the original source input or.
if the MACRO or INCLUDE option applies. the output from the
preprocessor.

Example: To produce a listing of the source program:

*PROCESS SOURCE;

STORA3EIN02TOB~GE
STGINSTG

The STORAGE option specifies that the compiler is to include in
the compiler listing a table giving the main storage
requirements for the object module.

Example: To specify that a table giving main storage
requirements for the program will be generated:

*PROCESS STORAGE;

SYNTAXI~OS!~!~~[(WIEI§)]
SYNI~§YN[(WIEI2)]

64

The SYNTAX options control whether the compiler is to continue
into syntax checking after initialization (or after
preprocessing if tne MACRO option applies).

The PL/I optimizing compiler compiles in three stages; .
preprocessing. syntax checking, and compilation. Preprocessing
is the expansion of PL/I macro statements. syntax checking is
checking that t~e program is syntactically valid PL/I,
compilation is the actual production of compiled code.
Processing can be stopped after preprocessing or
initialization. either unconditionally, or if a certain level
of error is found. ~lternatively, syntax checking can be
forced regardless of any errors (except unrecoverable errors)
found in preprocessing. or compiler initialization.

Errors are divided into four classes:

W Warning. An error may have occurred.

E Error. An error has been detected but execution
may be successful.

S Severe Error.
An error has been detected which will
prevent successful execution.

U Unrecoverable Error.
~n error has been detected that prevents
further compilation.

The various SYNT~X options have the following effects:

NOSYNTAX

NOSYNTAX(W)

The compiler will not continue into t~e syntax
checking phase.

No syntax checking if a warning. error. severe

NOSYNTAX(E)

NOSYNTAX(S)

SYNTAX

error, or unrecoverable error is detected.

No syntax checking if an error, severe error, or
unrecoverable error is detected.

No syntax checking if a severe error or
unrecoverable error is detected.

TAe compiler will carry out syntax checking
phase regardless of any errors (apart from
unrecoverable errors) found in preprocessing.

If the SOURCE option applies, the compiler will generate a
source listing even if syntax checking is not performed.

The use of this option can prevent wasted runs ~hen debugging a
PL/I program that uses the preprocessor.

Example: To prevent syntax checking if a severe error is found
in preprocessing~

*PROCESS NOSYNTAX(S)i

WORKFILE(direct-access-storage-device-type)
IBM default: WORKFILE(2311)

The WORKFILE option specifies t~e type of direct access storage
device that ~ill be used by the compiler for. work files during
compilation. The WORKFIL~ option is intended to be used where
a non-standard device type is required for a particular
compilation.

When the WORKFILE option is used, the symbolic device names
SYSOOl and SYS002 must be assigned the channel and devices
used, and an ASSGN and a DLBL command must be issued to define
the data sets for eaCh workfile. The file names used in the
commands must be IJSYSOl and IJSYS02. The amount of space :
required for the data sets is described in QOS: ~L/I QE~!~izin~

QQmpile~~ 2y~te~ !nIQ~m~iion.

Optimum compilation speed is achieved if SYSOOl and SYS002 are
on different volumes with full cylinders allocated to each data
set. If only one volume is available, SYS001 and SYS002 should
use a split-cylinder extent allocation with the cylinders
divided equally between tAe data sets.

The size and total number of records written by the compiler
onto these data sets is listed at tbe end of the compilation;
it var1es widely according to the size and nature of the source
program and tAe amount of main storage available. However.
250K bytes of storage for each data set should be sufficient
for compiling programs containing up to 500 source statements.

Example: To specify that the compiler is to use a 2314 direct
access storage device for its workfiles:

*PROCESS WORKFILE(2314);

Note that a number of ASSGN and DLBL commands would also be
required to achieve the result. See above.

XREFINOXREF

Chapter 3: The DOSPLI Command and Compiler Options 65

_ 66

The XREF option specifies that the compiler is to include in
the compiler listing, a list of all identifiers used in the
PL/I program, together ~ith the numbers of the statements in
which tney are declared or referenced. This is kno~n as a
cross-reference listing.

(Label reference on END statements are not included. For
example, assume that statement number 20 in the procedure PROCl
is END PROC1;. In this situation statement number 20 will not
appear in the cross reference listing for PROC1.)

If both ATTRIBUTES and XREF apply, the two listings are
combined into one table.

Example: To specify that an attribute and cross-reference
listing will be producedi

*PROCESS ATTRIBUTES XREFi

Appendix A: An EXEC Procedure for the PL/I User

EXEC procedures are sets of CMS commands that are held in an EXEC file
and executed by specifyinq tne name of the file. They simplify carrying
out repetitive tasks and are well suited to the job of setting up the
assignments anj DLBL commands necessary to compile and execute a DOS
PL/I program.

If you use CMS only for developing and executing DOS PL/I programs,
the EXEC procejure snown below could be adopted as all or part of, your
PROFILE EXEC. If you only occassionally use DOS PL/I, the EXEC
procedure could be given a suitable name, stored, and executed when
required.

Creating an EXEC Proced~~~

~n EXEC proce1ure is created using the Editor, specifying the filetype
EXEC. You use the input mode of the editor to key in the input, just as
you do with PLIOPT files. For example, to create an EXEC procedure
called PLDOS you would enter:

edit pldos exec
NEW FILE:
EDIT:
input
INPUT:
(You would enter the EXEC procedure here)

When you had completed the procedure you would leave the input mode
by entering a null line and, when you had corrected any errors, file it
with a FILE subcommand. It could then be executed by specifying the
name PLOOS.

The name you choose for your EXEC file should not be the name of a
CMS command. If it is, it will be impossible to execute the command
until the EXEC procedure is either renamed or deleted.

The EXEC procedure shown below sets DOS on, issues the ~SSGN and DLBL
commands for the PL/I libraries, and the GLOBAL command for a DOSL:B.
It also spools SYSLST to your virtual reader so that any execution tim~
error messages will be available for reading at the terminal. When this
EXEC procedure has been executed, it will be possible to compile simply
by issuing the DOSPLI command, and to execute by issuing the FETCH and
START commands. Thus by use of this or a similar EXEC procedure, you
can free yourself to concentrate on the PL/I program itself, rather than
being concerned with tne mechanics of running it~

The example below is fully commented so that you can choose which
parts of the procedure are suitable for you. Comments are the lines
starting with an asterisk and can be omitted from the procedure you use.
EXEC procedures are a powerful tool. They can be passed arguments, and
execution of commands can be made conditional upon the success of
previous operations or on other factors~ Full details are given in the
VM/370: CMS User's Guide. It should be noted that the DOSPLI command is
itself an EXEC procedure. Consequently, if you wish to specify DOSPLI
in an EXEC procedure of your own, you must specify:

EXEC DOSPLI

Appendix A: An EXEC Procedure for the PL/I User 67

EX~~21e of a suitable EXEC

* DEVICE 350 IS ASSUMED TO CONTAIN DOS/VS SYSRES
2P LINK SYSTEM 350 350 RR ALL
ACCESS 350 F
* DEVICE 353 IS ASSUMED TO CONTAIN A PRIVATE RELOCAT LIBRARY
* CONTAINING PL/I RESIDENT LIBRARY MODULES NECESSARY DURING LINK EDITING
2P LINK SYSTEM 353 353 RR ALL
* DEVICE 352 IS ASSUMED TO BE A PRIV~TE CORE IMAGE LIBRARY
* CONTAINING rHE PL/I TRANSIENT LIBRARY, NECESSARY DURING EXECUTION
CP LINK SYSTEM 352 352 RR ALL
* SET DOS ON WITH MODE OF DISK CONTAINING DOS SYSRES
SET DOS ON F
* ASSIGN SYSIPT TO CMS DISK THAT WILL CONTAIN SOURCE PROGRAM
ASSGN SYSIPT A
* ISSUE ACCESS; ASSGN, AND DLBL COMMANDS FOR PL/I LIBRARIES
ACCESS 352 E
ACCESS 353 G
ASSGN SYSCLB E
ASSGN SYSRLB G
DLBL IJSYSCL E DSN PRIVAT CORE IMAGE LIB (SYSCLB PERM
DLBL IJSYSRL G DSN PRIVAT RELOCAT LIB (SYSRLB PERM
* ISSUE GLOBAL FOR DOSLIB USED. NOTE THAT THIS DOSLIB SHOULD BE
* SPECIFIED IN DOSLKED COMMAND
GLOBAL DOsLIB YOURLIB
* SPOOL PRINTED OUTPUT TO READER SO THAT EXECUTION TIME ERROR MESS~GES
* wILL BE ACCESSIBLE FROM TERMINAL
ASSGN SYSLST PRINT
CP SPOOL PRINTER TO *

68

*PROCESS entering on 3277 15
*PROCESS statement 15

"INCLUDE data 24,58
creating on CMS 16
without using preprocessor

as line editing symbol

Ql as line editing symbol

" as line editing symbol

[as line editing symbol

~-disk 10,21
ACCESS command 2,23
A..G'GREGA.TE option 53
A.~SERV 30
AMSERV command

example of use 31

9

8

9

8

58

A.NS printer control c~aracter 61
A.SCII data sets 41
ASSGN command 4
A.SSOCFLE environment attribute 41
asterisk

*PROCESS statement 15
at character (Ql) as line editing synbol 8
attention key 10
ArTN key, (see attention key)
~TTRIBUTES option 53

backspace character 9
BA.CKwARDS attribute 41
B:O 53
BEGIN command 9
bracket as line editing symbol 8

c as line editing symbol 8
capital letters 11,16
case M and U 16
:~TAL03 option 53
cataloged procedures 14
cent sign as line editing symbol 8
CHANGE subcommand of EDIT 13
character deletion 9
CHARDEL, character delete symbol 9
CH1\RSET 53
checkpoint/restart facility 41
:MS disk modes 23
CMS/DOS system

background 3

CMS/DOS system (continued)
command summary 3

CMS, system requirements 2
code, source

columns used for 61

Index

listing of with LIsr option 60
commands and subcommands 4

1\CCESS 2
AMSERV 30
ASSGN 4
BEGIN 9
CASE M 16
CASE U 16
CHANGE 13
DLBL 4
DOSLIB 4
DOSLKED 4,27
OOSPLI 18
DSERV 4
EDIT 11
ERASE 35
ESERV 4
FCOBOL 4
FETCH 4,27
FILE 11,14
GLOBAL 27
HT 9
HX 9
immediate 9
IPL 8
LINK 2
LISTDS 4
LISTFILE 3
LOAD 27
LOGIN see L()GON
LOGOFF 35
LOGON 5
L()GOUT see L()G()FF
PRINT 3
PSERV 4
QUERY 4
QUIT 14
RSERV 4
RT 9
SAVE 14
SET 4
SPOOL 2
SSERV 4
START 27
TER~INAL 8

compilation 18
assignment output disk 21
failure of 18

C()MPILE option 54
compiler 47

accessing compiler and libraries 23
alphabetical list of options 53
DOSPLI command 47
files 23
files generated by 21
improvinq performance if in DOS core

image library 23

Index 69

compiler (continued)
invoking 18
LISTING file 21
options and defaults summary 49
options listed by function 51
output 21
specifying non-default options 15·
TEXT file 21

compiler options
list of defaults 47

compiling non-CMS source programs 25
CONTROL option 55
conventions, PL/I

DISPLAY and REPLY 43
conversational I/O

witn DISPLAY and REPLY 43
core image library

accessing 23
improving performance if compiler is
in 24

correcting typing errors 8
COUNT option 55
CP debug 37
CP environment 6

returning to 9
CP/370 7

data
entering 8
transmitting 8

'data set~ 29
example of reading PL/I 31

debugging 37,38
example 38

DECK option 56
deleted options

explanation 48
deleting

DOSLIB file members 36
erasing 36
executable program p~ases 36
files ER~SE command 36
incorrectly typed characters (see
logical cnaracter delete symbol)

incorrectly typed lines (see logical
line delete symbol)

disk
~-disk 21
output disk 21
parent disk 21
source disk 21
source program not on 24
transferring source to 24

DISPLAY statement 43
DLBL command 4
DOS CMS system

linkage editor 28
DOS data sets 29

example of reading fro~ PL/I 32
DOSLIB command 4
DOSLIB file 27,28

compressing 28
creating 27
deleting 36
executing 27
improving performance 28

DOSLKED command 4,27

70

DOSLNK file 28
example of use 28

DOSPLI command 47
example and discussion 18
options and defaults 47
syntax 47

DSERV command 4
DU~P opt ion 56
DYNBUF option 56

EBCDIC 53
EDIT command. 11
edit mode 14
Editor, CMS 11

using to create %INCLUDE data 16
entering data 8
ERASE command 35
error messagr~s

example of accessing 33
escape symbol 9
ESD option 57
ESERV command 4
EVENT option 41
EXEC procedure 67

example of 68
EXEC, profile 10
execution

compiled program 27
DOSLIB file 27
TExr file 27

fast %INCLUDE compiler option 58
FCOBOL 4
FETCH command 4,27
FETCH statement 41
FILE command 11,14
filemode 23
filename 11

naming PLI~PT files 11
fIles

creating 21
deletina 36
DOSLIE -27,28
DOS!.NK 28
example of reading CMS files 30
LISTING 21
PLI 15
PLIOPT 14,15
reading CMS files from PL/I program 29
TEXT 21,27
used by compiler 23

FLAG option 57
FLOW option 57

compile time 58
forty eight character set 53
FUNC environment attribute 41

GLOBAL command 27
GOSTMT option 58

halting execution, HX command 9
halting typing, Hr command 9
HT (halt typing) command. 9
HX (halt execution> command 9

/

identifier, virtual mac~ine 5
IJSYSSL 23
IJS~SOl 23
IJSYS02 23
immediate commands 9
INCLUDE com~iler option 58
INCLUDE statements 24
included text 24

using editor to create 16
INPur mode 14
INSOURCE option 58
instructions for using manual 1
IPL command 7
ISAM datasets 41

keyboard, locking 5,8

LIMSCONV option 58
line deletion 8
line editing symbols 8

using in PL/I program 16
LINECOUNT option 59
LINK cornman::! 2
LINK option 59
linkage editor 28

for non-CMS object programs 33
LIsr option 60
LISTDS command 4
LISrFILE comman::! 3
LISTING file 21
listings 21
locking of keyboard 8
logical character ::!elete symbol 8
logical line delete sy~bol 8
logical line en1 symbol 9
logical units

incorrectly assigned for compilation 18
LOGIN command see LOGON cornman::!
LOGOFF 35
LOGOFF HOLD command 36
LOGON comman1 5
LOGOUT command see LOGOFF cornman::!
lOl,,1er case 11

character string constants 16
input 16

machine language level ::!ebugging 37
M~:RO option 58,60

INCLUDE as alternative 58
manual, arrangement of 1
MAP option 60
M~RGINI option 60
MARGINS 11
M~RG~NS compiler option 61
MDECK option 62

NEST option 62
NOAGGREGATE ~ption 53
NO~TTRIBUTES option 53
NOCOMPILE option 54
NOCOUNT option

compile time 55
NODECK option 56

NODECK option (continued)
preventing creation of object

program 19
NODUMP option 56
NODYNBUF option 56
NOESD option 57
NOFLOW option 57
NOGOSTMT option 58
NO INCLUDE compiler option 58
NOINSOURCE option 58
NOLIMSCONV option 58
NOLINK option 59
NOLIST option 60
NOMACRO option 60
NOMAP option 60
NOMARGINI option 60
NOMDECK option 62

NEST 62
NONEST 62

non-CMS files
altering with editor 14

non-CMS object program
link editing 32

non-CMS source programs 25
NONEST option 62
NOOFFSET option 62
NOOPTIMIZE option 62
NOOPTIONS option 63
NOSOURCE option 64
NOSTORAGE option 64
NOSYNTAX option 64
null line 14
number sign (#) as line editing symbol 9

object program
not created because of NODECK option 19

OFFSET option 62
OPTIMIZE option 62
Optimizing Compiler (see compiler)
options 61

compiler 58,61,65
AGGREGATE 53
ATTRIBUTES 53
CATALOG 53
CHARSET 53
COMPILE 54
CONTROL option 55
COUNT 55
DECK 56
DUMP 56
DYNBUF 56
ESD 57
FLAG 57
FLOW 57
GOSTMT 58
INCLUDE 58
INSOURCE 58
LIMSCONV 58
LINECOUNT 59
LINK 59
LIST 60
MACRO 60
MAP 60
MARGINI 60
MARGINS 61
MDECK 62
NOAGGREGATE 53

Index 71

options (continued)
compiler (continued)

NOATTRIBUTES 53
NOCOMPILE 54
NOCOUNT 55
NODECK 56
NODUMP 56
NODYNBUF 56
NOESD 57
NOFLOW 57
NOGOSTMT 58
NOINSOURCE 58
NOLIMSCONV 58
NOLINK 59
NOLIST 60
NOMACRO 60
NOMAP 60
NOMARGINI 60
NOMDECK 62
NOOFFSET 62
NOOPTIMIZE 62
NOOPTIONS 63
NOSOURCE 64
NOSTORAGE 64
NOSYNTAX 64
NOXREF 66
OFFSET 62
OPTIMIZE 62
OPTIONS 63
SIZE 63
SOURCE 64
STORAGE 64
SYNTAX 64
WORKFILE 65
XREF 66

list of defaults 47
listed by function 51
requirements for debugging 21
summary of functions 51

OPTIONS option 63
output disk of object module after

compilation 21

parent disk 21
parenthesis as line editing symbol 9
password

virtual machine 5
PL/I libraries

accessing 23
PL/I Optimizing Compiler (see compiler)
PL/I program 11

columns for input 11
PL/I restrictions 41

ASCII data sets 41
ASSOCFLE environment attribute 41
BACKWARDS attribute 41
checkpoint restart facility 41

. EVENT .option 41

72

FETCH statement q1
FUNC environment attribute 41
ISAM datasets 41
REGIONAL files 41
RELEASE statement 41
sort facility 41
teleprocessing files 41
VBS-format records 41
VS-forrnat records 41

PL/I source code 61
position in record 61

PLI files 15
PLICKPT 41
PLIOPT file 14
PLISORT 41
pound signet) as line editing symbol 9
preprocessor statements 58

%INCLUDE without using preprocessor 58
PRINT command 3
printer control character 61
PROCESS statement 15
profile EXEC 9
PSERV command 4

QUERY command 3,4
QUIT command 14
quotes as line editing symbol 9

records
VBS-format 41
VS-format 41

REGIONAL files 41
restrictions 41

RELEASE statement 41
relocatable library

accessing 23
REPLY option 43
restrictions

PL/I, (see PL/I restrictions) 41
RSFRV command 4
RT (resume typing) command 9

SAVE command 14
secondary input text 24
secondary input to compiler 58
SET command 4
sixty character set 53
SIZE option 63
sort facility 41
source code 61

position in record 61
source disk and reSUlting output disks for
compilation 21

SOURCE option 64
source statement books 14
SPOOL command 2
SSERV command 4
star PROCESS statements 15
START option 27
stopping 9

execution HX command 9
typing (terminal output) HT command 9

STORAGE option 64
storage requirements for CMS 2
stream input

improving performance with LIMSCONV 58
suhcommands (see commands and subcommands)
switched line connection, retaining 35
syntax conventions, summary 45
SYNTAX option 64
SYSLST 18

incorrectly assigned 18
SYSPCH 18

incorrectly assigned 18

system requirements for CMS
SYS001 18

incorrectly assigned 18
SYS002 18

incorrectly asigned 18

tape 41
BACKWARDS attribute 41

teleprocessing files 41
TERMINAL command 8
terminal session

ending 35
starting 5

TEXT file 27
creating 21
executing 27

transmitting data 8
typing errors, correcting 8

upper case 11,16
userid 5

2 VBS-format records 41
VM/370 2

introduction to 2
VS-format records 41
VSAM 29,30

example of use 31

WORKFILE option 65
workfiles, compiler 23

XINPUT 23
XPRINT 23
XPUNCH 23

3277 15
specifying compiler options 15

48-character set 53

60-character set 53

Index 73

i'
ii"

Reference
Line

Terminal Printout Comments

35 *Tne source program is now created, and is ready to compile, link edit
36 *and execute.
37 access 390 g
38 G (350) R/O - DOS
39 R;
40 set dos on g
41 R;
42 assgn sysipt a
43 R;
44 dospli bunny
45 R;
46 edit bunny listing
47 EDIT
48 locate/compiler diagnostic messages
49 NOT FOUND
50 EOF
51 quit

Access the DOS SYSRES volume as one
of your CMS disks.

Activate CMS/OOS environment.

Assign SYSIPT to CMS disk containing
source program.
Enter compilation command.

Inspect listing file for results.

Look for messages.
Not found so compilation OK.

Leave the edit mode.
52 R;
*** * The program has now been compiled and a TEXT file created which
53 * can be link-edited with PL/I resident library modules so that an
54 * executable phase can be created on a DOSLIB library.
55 assgn sysrlb b Assign PL/I resident library.
56 R;
57 dlbl ijsysrl b dsn privat relocat lib(sysrlb perm
58 R; DLBL for resident library.
59 doslked bunny mylih Link edit the TEXT file onto a DOSLIB
60 R; library called MYLIB.

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

* The source program is now link edited and is ready for execution,.
* it can be retained in this form.
assgn sysclb b
R;
dlbl ijsyscl b dsn privat corim lib
R;
global doslib mylib
R;
assgn syslst printer
R;
spool printer to *
R;
fetch bunny (start
EXECUTION BEGINS •••
WHAT'S UP DOC?
R;
print bunny listing
R;

Assign the PL/I transient library.

(sysclb perm
OLBL for transient library.
specify doslib to be searched for
program phase specified in FETCH.
Assign SYSLST so that error
messages will be available.
Spool error messages to reader" so that
they are available at terminal.
Start the execution,.
Message from CMS.
Display message from program because
terminal is virtual console,.
Print the listing file to retain record.

erase bunny * Erase files created by program
R; to save space,.
logoff End the terminal session,.
CONNECT= 00:40:24 VIRTCPU=000:03:.95 TOTCPU= 000:22:09
LOGOFF AT 09:30:21 GMT 07/04/75 Message when you log off.

Figure F.l. Sample Terminal Session

Sample Terminal Session 75

Ih
\'

)1"

SAMPLE TERMINAL SESSION

Reference
Line

Terminal Printout comments

Programmer input in lower case.
System response in upper case.

VM/370 ONLINE
logon patti
ENTER PASSWORD:

Message when you switch on.
Logon with name of virtual machine.

1
2
3
4
5
6
7
8

(password entered here)
10G~SG 09/12/00 07/04/75
(other data depending on your
ipl cms

Printing normally suppressed.
Message when you logon.

installation)

CMS 3.0 PLC 0 WEDNESDAY 04/07/75
You request CMS to be loaded.
shows version of CMS loaded.

9 * CMS has been entered and the file containing the PL/I program
10 *can now be created. Note that lines starting with * are comments in CMS
11 edit bunny pliopt EDIT command naming PLIOPT file
12 NEW FILE to be created.
13 EDIT
14 preserve
15 'tats 1
16 input
17 INPUT
18 *PROCESS OPTIMIZECTIME);
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34

EDIT
restore
input
INPUT
bunny:proc options (main) ;
display('what"s down@@@@Up doc?');
end;

type
*PRCCESS OPTI~IZE (TIME);

BUNNY:PROC OPTIONS(MAIN);
DISPLAY('WHAT"S UP DOC?');
END;

EOF
file
Ri

Alter tabs to enter *PROCESS
statement, which must start in column
one. By default all input to PLIOPT
files is moved on column right.
Enter *PROCESS stateroent.
Null line(carriage return only)
to return to edit mode.
Restore standard PLIOPT tabs.
Return to input to enter rest of program.
Message shows you are in input mode.
Start of program~ Column one can be used.
"@@@a" are line editing symbols. See notes.

Null line to return to edit mode.
Edit subcommand to get file contents
displ~yed.

Note that input has been moved one column
right and changed to upper case (see notes).
End of file reached.
File the program on your CMS A-disk.
Ready message. see notes.

o

o

o

Explanation of Programming Example
The diagram shows a terminal session that covers the complete process
of keying-in, compiling, link-editing, and executing a PL/I program
under CMS/DOS. In the figure, the numbers on the left are used as references
to the notes below, which either provide fuller explanations than there is
room for on the figure, or point to the section of the book where further
information is available. The Contents List at the start of the book will
enable you to find these sections.

It is intended that this figure should be used as an overview by those who
are familiar with terminal systems, and, as such, it aims to highlight the
important features of using PL/I under CMS/DOS. The figure can also be used
as an aide-memoire to remind you of the steps involved in running a DOS PL/I
program. The PL/I program has been deliberately kept trivial so that it
will not obscure the points being made about CMS/DOS.

Notes
Line Number

1-4

1

6-8

11-34

14-19

18

24

30,31

34

31-52

54-15

68-11

78-82

Comments

For information on logging-on see "Starting the Session -
the LOGON command" in chapter 1.
On typewriter-type terminals, such as the IBM 2141.
it may be necessary to press the attention key or
its equivalent to unlock the keyboard.
For information on loading CMS see "Invoking CMS - the IPL Command"
in chapter 1.
For information on keying-in and filing your PL/I program see
"Entering the Program - the EDIT and FILE Commands" in chapter 1.
For information on using the *PROCESS statement, see
"Use of non-default Compiler Options" under "Entering the Program -
the EDIT and FILE commands" in chapter 1.
For information on OPTIMIZE and other DOS PL/I Optimizing
compiler options see chapter 3.
"@@@@" deletes the previous four characters. For information on
this and other logical line editing symbols see "Line Editing
Symbols" under "Invoking CMS - the IPL Command".
For information on the effects of the PL/I DISPLAY statement
under CMS see "Conventions" in chapter 2.
PLIOPT files have their input moved one column to the right
because PL/I default margins are 2 through 12. Thus the
movement obviates the need to key in the leading blank
before PL/I statements. By default, all input is translated to
upper case. To override this see "Lowercase Character String
Constants" under "Entering the Program - The EDIT and FILE
Commands" in chapter 1.
The Ready message may take the form shown, or a longer form
giving information on CPU usage.
For information on entering the CMS/DOS environmnet and compiling
the program see "Compiling the Program - rhe DOSPLI Command"
in chapter 1.
For information on link-editing and execution see
"Executing a DOS PL/I Program" in chapter 1.
For information on accessing execution-time error messages see
"Accessing Error Messagesft under "Executing a DOS PL/I Program"
in chapter 1.
For information on logging off and erasing files see
"Ending the Terminal Session - The LOGOFF Command" in chapter 1.

~I
o

~I
a:
»1
0'
::J

~I
3'
• I

DOS
PL/I Optimizing Compiler:
CMS User's Guide

Order No. SC33-00S1-0

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

READER'S
COMMENT
FORM

What is your occupation? _____________________________ _

Number of latest Technical Newsletter (if any) concerning this publication: __________ _

Please indicate in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an.IBM office
or representative will be happy to forward your comments.)

