
IBM System/370

Mathematical Assists

~ ---

Publication Number
SA22-7094-1

File Number
S370-01

Second Edition (December 1984)

This edition obsoletes the previous edition, SA22-7094-0. It
describes several new mathematical-function facilities. Changes
or additions to the text or illustrations are indicated by a
vertical line in the margin to the left of the change.

Changes are made periodically to the information herein; before
using this publication in connection with the operation of IBM
equipment, refer to the latest IBM Systemj370 and 4300
Processors Bib1 iograpby, GC20-0001, for the editions that are
applicable and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any func­
tionally equivalent program may be used instead.

Publications are not stocked at the address given below.
Requests for IBM publications should be made to your IBM repre­
sentative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, Product Publications, Department
B98, PO Box 390, Poughkeepsie, NY, U.S.A. 12602. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1984

This publication describes a number of
facilities which provide instructions to
improve performance in certain mathemat­
ical computations. The description is
in three parts. The first part
describes the multiply-and-add facility.
The second part covers the square - root
facility. The third part describes
facilities which evaluate certain math­
ematical functions; they are the
arctangent, common-logarithm, exponen­
tial, natural-logarithm, raise-to-power,
and sine-cosine facilities.

The instructions are valid in any archi­
tectural mode (System/370, ECPS:VSE, or
370-XA) available on a model equipped
with the corresponding mathematical­
assist facility. The reader should be
familiar with the IBM System/370 Princi­
ples of Operation, GA22-7000, the IBI1
4300 Processors Principles of Operation
for ECPS:VSE Mode, GA22-7070, or the IBM
System/370 Extended Architecture Princi­
ples of Operation, SA22-7085, as appro­
priate, and particularly with Chapter 9,
"Floating-Point Instructions," of any of
those publications.

PREFACE

The facilities discussed in this publi­
cation are not available on every model.
At the time of publication, they are
available only on some models of the IBM
4341, 4361, and 4381 Processors, but all
the facilities are not provided on every
one of those models. Publication does
not imply any lntention by IBM to
provide the facilities on models other
than those for which they are announced.
For current information concerning the
availability of the facilities on any
specific model, refer to the latest
edition of the functional character­
istics publication for the model.

Terminology

As used in this publication, a floating­
point scalar is a single floating-point
number. A floating-point vector is a
linearly ordered collection of floating­
point numbers, each number being an
element of the vector. Consequently, a
vector consists of a set of elements,
each of which is a scalar.

Preface iii

This page is intentionally left blank.

iv IBM System/370 Mathematical Assists

Multiply-and-Add Facility
Overview

Vectors in Storage
Instruction Execution

Instruction Description
MULTIPLY ANv ADD Instruction

Square-Root Faciiity
Square-Root Exception

Instruction Description
SQUARE ROOT Instruction

Mathematical-Function Facilities
Mathematical Constants

1
1
1
1
2
2

ii
11
11
11

13
14

CONTENTS

Instruction Descriptions
ARCTANGENT Instruction
COMMON LOGARITHM Instruction
COSINE Instruction
EXPONENTIAL Instruction
NATURAL LOGARITHM Instruction
RAISE TO POWER Instruction
SIN~ Instruction

Instruction Characteristics

Appendix. I nstruction Summary

Index

14
14
15
16
16
17
18
19
20

21

23

Contents v

OVERVIEW

The MULTIPLY AND ADD instruction per­
forms a combination of vector multipli­
cation and addition operations which may
replace the inner loop of co~uon matrix
computations. Its function may be
described as:

A = (B * S) + C

where * indicates multiplication. B is
a vector that is multiplied by the
scalar S. The product is added to the
vector C, and the sum replaces vector A.

The three vectors CA, B, and C) are in
storage. Each consists of one or more
floating-point numbers called the ele­
ments of the vector. Each vector con­
tains the same number of elements.
Scalar S is a floating-point number pre­
viously loaded into floating-point reg­
ister O. The floating-point numbers are
all in normalized form and in the long
format of 64 bits, except that vector C
may contain unnormalized elements.

Vectors in Storage

All elements of the vectors must be
located in storage on doubleword bounda­
ries, so that their addresses are multi­
ples of 8. Successive elements of a
vector are uniformly spaced; they may be
contiguous (in successive doublewords)
or separated by other data. The same
number of elements are processed in each
vector.

The increment in bytes from the address
of one vector element to the next is
called the element separation. For con­
tiguous elements, the element separation
is 8. If the elements are not contig­
uous, the element separation must be a
constant multiple of 8. The element

MUL TIPLY-AND-ADD FACILITY

separation for vector C is always the
same as for vector A, but it may differ
from the element separation for vector
B.

For example, consider an N-by-N matrix
that is stored in column order, the con­
vention used for IBM Systemi370 FORTRAN
programs. The elements of a column
vector are contiguous, and the column
vector has an element separation of 8.
The elements of a row vector, however,
are not contiguous, and a row vector has
an element separation of 8N. The vector
of elements along the major diagonal of
the matrix has an element separation of
8 CN + 1). All three vector types
contain N vector elements.

Vectors A, B, and C all may be dif­
ferent, if their storage locations do
not overlap; or any two or all three may
coincide. If either of the two source­
operand vectors partially overlaps the
result vector in storage, the result is
undefined.

I nstruction Execution

The MULTIPLY AND ADD instruction per­
forms a sequence of operations that is
essentially equivalent to the execution
of the following floating-point
instructions on each set of corre­
sponding vector elements:

LOAD (LD)
MULTIPLY (MDR)

ADD NORMALIZED (AD)
STORE (STD)

Load element of B
Multiply by
scalar S
Add element of C
Store result in A

Arithmetically, the result is the same
as if those instructions were embedded
in a simple loop that also included
instructions to increment the storage
addresses from one vector element to the

Multiply-and-Add Facility 1

next, and an instruction to branch back
until all elements have been processed.

The MULTIPLY AND ADD instruction differs
from such a loop in that the recognition
of an exceptional arithmetic condition
(exponent overflow, exponent underflow,
or significance loss) does not cause a
program exception to be recognized and
an interruption to occur, even though
the program mask in the PSW may permit
the interruption. Instead, the occur­
rence of such a condition causes
instruction execution to be completed
and a nonzero condition code to be set;
the result for the current set of ele­
ments is not stored, and no more ele­
ments are processed.

The MULTIPLY AND ADD instruction also
differs when the instruction encounters
an unnormalized multiplication operand
or a vector element that is not located
on a doubleword boundary in storage;
execution is completed without storing
the result element, and a nonzero condi­
tion code is set.

The MULTIPLY AND ADD instruction should
be followed by a BRANCH ON CONDITION
instruction to test for a zero condition
code, indicating normal execution.
Detection of a nonzero condition code
may be used to cause execution of a
series of floating-point instructions,
other than MULTIPLY AND ADD, which refer
to the same storage addresses and
reprocess the current vector elements.
If an exception is then encountered, an
interruption occurs, which allows the
usual action to be taken. No new
exception-handling programs are
required. See Programming Note 2 at the
end of the instruction description for
an example.

The MULTIPLY AND ADD instruction may be
interrupted during execution for other
causes, such as access exceptions, and
I/O or external interruptions. As with
the COMPARE LOGICAL LONG (CLCL) and MOVE
LONG (MVCL) instructions, the instruc­
tion, when reexecuted, resumes at the
point of interruption.

2 IBM System/370 Mathematical Assists

INSTRUCTION DESCRIPTION

The inclusion of an instruction mnemonic
in the description does not necessarily
imply that the mnemonic is recognized by
current assembler programs. A pro­
grammer wishing to use this instruction
in assembler-language programs with an
assembler which does not recognize the
mnemonic may use an appropriate macro to
assist with the translation of the
instruction into machine language.

MULTI PLY AND ADD Instruction

MADS [RRE]

I I
'B243' 1////////1 Rl

I I

o 16 24 28 31

The MULTIPLY AND ADD instruction per­
forms the vector multiplication and
addition operations:

A = (B * S) + C

where A, B, and C are three vector oper­
ands, S is a scalar, and * indicates
multiplication. The vector operands are
in storage, where they must be aligned
on doubleword boundaries. The scalar
operand and all vector elements are
floating-point numbers in the long
format. The scalar and the elements of
operand B must be in normalized form;
the elements of operand C may be in nor­
malized or unnormalized form. The ele­
ments generated for operand A are
normalized.

The scalar operand is in floating-point
register o. The vector operands in
storage are specified by the contents of
as many as six general registers. Three
of the general registers have a fixed
assignment, and any others are desig­
nated by the Rl and R2 fields of the
instruction.

General register 1 contains a 32-bit
uns igned binary integer, which repres­
entr···--tte·---numher--u£--ehments-----in-eacir-
vector. General registers 2 and 3
specify the address of the first element
of operands A and B, respectively.

The Rl field, if nonzero, designates a
pair of general registers, called the
even Rl register (numbered R1) and the
odd Rl register (numbered R1+1). The
even Rl register contains the element
separation for operands A and C, and the
odd Rl register contains the element
separation for operand B. The element
separation for a vector is the increment
in bytes from the address of one vector
element in storage to the address of the
next element, If the Rl field is zero,
however, the field does not designate
general registers 0 and 1. Instead, the
elements of all three vector operands
are specified as contiguous in storage,
BIld element separations of 8 are
implied. The Rl field must be zero or
contain an even number; otherwise, a
specification exception is recognized.

The R2 field, if nonzero, designates a
general register, called the R2 reg­
ister, which contains the address of
operand C. If the R2 field is zero,

however, the field does not designate
general register 0; instead, the address
of operand -£--±s--the ··samen-as--for operand
A, as specified by general register 2.

The number of general-register bit posi­
tions that are used to specify an
address or element separation depends on
the mode of operation. The System/370
and ECPS :VSE architectural modes have
only 24-bit addressing, whereas the
370-XA architectural mode offers the
choice of 24-bit or 31-bit addressing.
When 24-bit addressing is in effect, bit
positions 8-31 are used as a 24-bit
address or element separation, and the
contents of bits O~7 are ignored. When
31-bit addressing is in effect, bit
positions 1-31 are used as a 31-bit
address or element separation, and the
contents of bit 0 are ignored.

Figures 1 and 2 illustrate the contents
of the general registers for the two
types of addressing, where GRl, GR2, and
GR3 represent general registers 1, 2,
and 3, respectively. Figure 1 shows the
register layout for 24-bit addressing
(System/370, ECPS:VSE, or 370-XA).
Figure 2 shows the layout for 31-bit
addressing (370-XA only).

Multiply-and-Add Facility 3

GR1 GR1

Number of Elements Number of Elements

0 31 0 31

GR2 (R2=0) GR2 (R2=0)
I I I I I I I I

I I Address of I I I I Address of I I
1////////1 Operands A and C 10001 1/1 Operands A and C 10001
I I I I I I I I

0 8 29 31 0 1 29 31

GR2 (R2#0) GR2 (R2#0)
I I I I I I I I
1////////1 Address of Operand A 10001 1/1 Address of Operand A 10001
I I I I I I I I

0 8 29 31 0 1 29 31

GR3 GR3
I I I I I I I I
1////////1 Address of Operand B 10001 1/1 Address of Operand B 10001
I I I I I I I I

0 8 29 31 0 1 29 31

Rl (R1 #0) Rl (R1 #0)
I I I I I I I I

I I Element Separation I I I I Element Separation I I
1////////1 of Operands A and C 10001 1/1 of Operands A and C 10001
I I I I I I I I

0 8 29 31 0 1 29 31

R1+1 (R1 #0) R1+1 (R1 #0)
I I I I I I I I

I I Element Separation I I I I Element Separation I I
1////////1 of Operand B 10001 1/1 of Operand B 10001
I I I I I I I I

0 8 29 31 0 1 29 31

R2 (R2#0) R2 (R2#0)
I I I I I I I I
1////////1 Address of Operand C 10001 1/1 Address of Operand C 10001
I I I I I I I I

0 8 29 31 0 1 29 31

Figure 1. General-Register Assignment Figure 2. General-Register Assignment
with 24-Bit Addressing with 31-Bit Addressing

4 IBM System/370 Mathematical Assists

Figure 3 summarizes the sources of the
operand addresses and the element sepa­
~ationST according--to- \.rhether tha-R-t--and
Rz fields are zero or nonzero.

I I I

I I Source of I Element I
IFieldl Address I Separation I
I I I I I I I I
IR11Rzi A I B I C IA and ci B I
I 1 t 1 I I 1 I I I I

1=01=01(2)1 (3)1(2) I 8
I

8
I

I I I I

1=01#01(2)1 (3)I(Rz)1 8 1 8 I
f t _ I _I r_ 1,_, 1,,_ I

CRl)
I ,~ I

I r U I =u I t ~) I l ~) I l ~) I I l.K1Tl)I
1#01#01(2)1 (3)I(Rz)1 (R1) I (R1+1)1
I I I I , I I I !

IExplanation: I
I

I I
I (R) Contents of general I
I register R I
I I

Figure 3. Operand Addresses and Element
Separations

Execution of the instruction begins with
three tests performed in the following
order: First, if general register 1
contains zero, condition code 0 is set.
Next, if the fraction of the operand in
floating-point register 0 is nonzero but
unnormalized (the leftmost hexadecimal
digit is zero), condition code 2 is set.
Finally, bits 29-31 of all general reg­
isters that contain vector-operand
addresses and element separations are
tested for zeros; if any of those bits
is one, condition code 3 is set.

If anyone of the preceding tests sets
the condition code, the remaining tests
are omitted, instruction execution is
completed, and register and storage con­
tents remain unchanged. Otherwise, the
operation proceeds by repeating the fol­
lowing steps until instruction execution
is completed or interrupted:

1. If the fraction of the element at
the address of operand B is nonzero
but unnormalized (the leftmost
hexadecimal digit is zero), condi­
tion code 2 is set, and instruction

execution is completed. Otherwise,
instruction execution continues.

2. If instruction execution continues,

3.

the element of operand B is multi­
plied by the contents of floating­
point register O. If either number
to be multiplied has a zero frac­
tion, the product is set to a true
zero. The product and the element
at the address of operand C are then
added. Register and storage con­
tents remain unchanged during this
step.

If an exponent-overflow condition
occurs during either the multipli­
cation or the addition, it is not
treated as a program exception.
Instead, condition code 1 is set,
and instruction execution is com­
pleted.

If an exponent-underflow condition
occurs during either the multipli­
cation or the addition, or if the
addition produces a zero result
fraction, the condition is not
treated as a program exception.
Instead, instruction execution
depends on the settings of the
exponent-underflow and significance
masks in the PSW:

• When the mask that corresponds
to the recognized condition is
one, condi t ion code 1 is set,
and instruction execution is
completed.

•

•

When the exponent-underflow mask
is zero, exponent underflow
during the multiplication causes
a true zero, instead of the
product, to be added to the
operand-C element. Exponent
underflow during the addition
causes a true zero to replace
the result of the addition, and
instruction execution continues.

When the significance mask is
zero and the addition produces a
zero result fraction, a true

Multiply-and-Add Facility 5

zero replaces the result, and
instruction execution continues.

Exponent overflow or exponent
underflow during the multiplication
is recognized even if the addition
would bring the result back into
the representable range.

Exponent overflow or exponent
underflow during the multiplication
is not recognized if the product in
step 2 is set to a true zero.

4. If instruction execution continues,
the result element is stored at the
location specified by general reg­
ister 2. Then, if Rl is zero, 8 is
added to the contents of general
registers 2 and 3; if Rl is zero and
R2 is not zero, 8 is also added to
the contents of the R2 register. If
Rl is not zero, the contents of the
even and odd Rl registers are added
to the contents of general registers
2 and 3, respectively; if both Rl
and R2 are not zero, the contents of
the even Rl register are also added
to the contents of the R2 register.

5. The contents of general register 1
are decremented by one. If the
result is zero, condition code 0 is
set, and instruction execution is
completed.

If the scalar factor in floating-point
register 0 is zero, it depends on the
model whether an unnormalized element of
operand B is recognized and condition
code 2 is set in step 1, or whether
instruction execution instead proceeds
to step 2 and sets the product in step 2
to zero.

In step 2, the multiplication operation
is the same as for the floating-point
instruction MULTIPLY (MD), and the addi­
tion operation is the same as for ADD
NORMALIZED (AD). Only the operand
sources, the result target, and the han­
dling of exception conditions differ.

6 IBM System/370 Mathematical Assists

During the additions in step 4, carries
out of bit position 8 for 24-bit
addressing and carries out of bit posi­
tion 1 for 31-bit addressing are
ignored; bit positions 0-7 or bit posi­
tion 0, respectively, of the updated
general registers are set to zeros.

Floating-point register 0, the element­
separation registers, and the elements
in storage for operands B and C remain
unchanged.

Execution of the instruction is inter­
ruptible by any interruption condition
for which the CPU is enabled, other than
an exponent-overflow, exponent­
underflow, or significance exception. A
unit of operation consists of one or
more repetitions of the preceding five
steps, with any interruption occurring
at the end of step 5 or when the
instruction is completed.

When an interruption occurs during exe­
cution and the interruption condition is
not one that causes termination, general
register 1 indicates the number of ele­
ments remaining to be processed. The
operand addresses have been updated to
indicate the next set of elements to be
processed, and the condition code is
unpredictable.

Access exceptions for operands may be
recognized for storage locations other
than the locations containing the
current vector elements. For each
operand, however, access exceptions are
not recognized for more than one element
beyond the current element or for
element locations beyond the last
element specified.

If any of the three tests made at the
start of instruction execution sets the
condition code, so that instruction exe­
cution is completed immediately, then no
access exceptions are recognized for any
operand, the change bits for operand A
are unaffected, and no PER event for
general-register alteration or storage
alteration is indicated.

The storage location of operand A may
coincide with the location of operand B
OI---- _~--- ___ if the __ ~ ___ £irs1:_ .. elemerrt
addresses and the Sruue element sepa=
rations are specified. If both condi­
tions are not satisfied and partial
overlap occurs between the location of
operand A and the location of operand B
or C, the contents of the location of
operand A are undefined. Those contents
are also undefined if Rl = 2 or, for
R2 -# 0, if:

R2 < 4, or
R2 = R1 , or
R2 = R1+1.

Resulting Condition Code:

o All elements processed
1 Exponent overflow, exponent under­

flow, or significance loss
2 Unnormalized scalar or operand-B

element
3 Element address or separation not

mUltiple of 8

Program Exceptions:

• Access (fetch, operands Band C;
store, operand A)

• Operation (if the mul tiply-and-add
facility is not installed)

• Specification

Programming Notes

1. Unlike the scalar floating-point
instructions MULTIPLY and ADD NOR­
ML~LIZED, the MTJLTIPLY AND ADD
instruction requires operands to be
aligned on doubleword boundaries in
storage. Moreover, unlike scalar
MULTIPLY, it does not multiply
unnormalized operands. The MULTIPLY

AND ADD instruction also does not
cause a program interruption when an
atithmati~exceptiOll-.- -condition- -- is
recognized for which the CPU is
enabled. In all these cases, the
instruction sets a nonzero condition
code so that scalar floating-point
instructions may be used to perform
the arithmetic.

If execution of the MULTIPLY fu~ ADD
instruction sets a nonzero condition
code, fewer than the specified
number of vector elements were proc­
essed. General register 1 contains
the number of elements remaining to
be processed in each vector. The
general registers containing
addresses designate the set of ele­
ments which caused the exceptional
condition. The program may then
execute scalar floating-point
instructions in an attempt to
process these elements.

If, during the execution of these
scalar instructions, an exponent­
overflow, exponent-underflow, or
significance exception is recog­
nized, and the corresponding program
interruption is allowed, the inter­
ruption may invoke standard fixup
routines for these causes. If an
unnormalized operand is encountered
or a vector in storage is unaligned,
the scalar instructions can process
the elements.

2. The following example in assembler
language illustrates the type of
programming that is recommended. By
adding linkage and initialization
instructions, a library subroutine
is created that may be called from a
high-level language, such as
FORTRAN.

Multiply-and-Add Facility 7

L1 MADS 4,6 MULTIPLY AND ADD
BC 8,L2 Test condition code °

* Do following instructions if CC not °
LD 2,0(0,3) Load element of B
MDR 2,0 Multiply by S
AD 2,0(0,6) Add element of C
STD 2,0(0,2) Store element of A
LA 2,0(4,2) Update address of A
LA 3,0(5,3) Update address of B
LA 6,0(4,6) Update address of C
BCT 1,L1 Branch if not done

* End of equivalent instructions
L2 EQU * Continue

In this example, the Rl
fields of the MULTIPLY

and
AND

Rz
ADD

instruction designate general regis­
ters 4 and 6. Thus, the number of
elements is in general register 1;
the addresses for operands A, B, and
C are in general registers 2, 3, and
6; and the element separations are
in general registers 4 (for operands
A and C) and 5 (for operand B). The
MULTIPLY AND ADD instruction is fol­
lowed by a BRANCH ON CONDITION
instruction and by a loop containing
equivalent scalar floating-point
instructions, which are executed
only when a nonzero condition code
occurs. The loop uses floating­
point register 2 as a working reg­
ister.

Note that this loop performs the
same operations as one iteration of
the preceding MULTIPLY AND ADD
instruction, except:

• The storage operands may be una­
ligned, and the element sepa­
rations need not be a multiple
of 8.

• The multiplication operands may
be in unnormalized form.

• Exponent overflow causes an
interruption; and exponent
underflow and significance loss
cause an interruption ~ if per-

8 IBM System/370 Mathematical Assists

•

•

mitted by the program mask in
the PSW.

A floating-point working reg­
ister is needed.

The loop needs no initial test
for a zero number of elements in
general register 1, because the
MULTIPLY AND ADD instruction
sets condition code 0 for this
case.

For the special instances in which
vectors C and A coincide or in
which successive vector elements
are in successive doublewords, the
routine may be simplified accord­
ingly.

3. Any two or all three vectors may
coincide. The vectors coincide if
both their addresses and their
element separations are the same.
Partial overlap in the storage areas
for B and C may occur if neither
vector overlaps with the result
vector A. Partial overlap with the
result vector, however, has unpre­
dictable effects, which may differ
from one model to another or from
one execution to another. No check
is made for partial overlap with the
result vector.

If vector C coincides with vector B,
the same address should be loaded
into general register 3 and into the
Rz register. The Rz field should
not designate general register 3;
otherwise, it is unpredictable
whether register 3 is updated once
or twice for each set of elements
processed. Similarly, the Rz field
should not designate general reg­
ister 2 if vector C coincides with
vector A. Thus, an Rz field con­
taining 2 mayor may not have the
same effect as an Rz field con­
taining O.

4. Register and storage contents remain
unchanged when instruction execution

ends before any elements have been
processed successfully,

5. See the section "Interruptible
Instructions" in Chapter 5, "Program
Execution," of the appropriate Prin­
ciples of Operation publication for
more information concerning inter­
ruptible instructions. Also, see
the programming notes at the end of
the section "Program-Event
Recording" in Chapter 4, "Control, It
of that publication regarding redun­
dant PER events that may occur when
an interruptible instruction is
resumed after an interruption.

6. Special precautions must be taken if
MULTIPLY AND ADD is made the target
of EXECUTE. See the programming
note concerning interruptible
ins truct ions under EXECUTE in
Chapter 7, "General Instructions,"
of the appropriate Principles of
Operation publication.

7. The MULTIPLY AND ADD instruction is
not equivalent to the loop con­
tainin.g £calaL £loat~PQint
instructions in the above example if
accessing an operand in storage
causes an addressing or protection
exception. If such an exception is
recognized, execution of the MUL­
TIPLY AND ADD instruction may be
terminated such that the results
left in the storage areas and in the
general registers are unpredictable,
and the condition code may not indi­
cate an exceptional arithmetic con­
dition for the elements being
processed. Therefore, the program
must not rely on the results and
attempt to resume execution after an
addressing or protection exception.
(See the section "Termination" in
Chapter 5, "Program Execution," of
the appropriate Principles of Opera­
tion publication.)

Multiply-and-Add Facility 9

This page is intentionally left blank.

10 IBM System/370 Mathematical Assists

The square-root facility consists of the
SQUARE ROOT instruction and the square­
root exception. The instruction, which
extracts the square root of a floating­
point operand in either the long or
short format, is four bytes long and
uses the RRE instruction format. The
source operand resides in a floating­
point register, and the result is placed
in a floating-point register. When a
positive, nonzero source operand is
encountered which is unnormalized, it is
first normalized at the start of the
operation, but without changing the con­
tents of the source-operand location.
Nonzero results are always normalized.
A zero result is made a true zero.

The numeric result of the square-root
operation on a valid operand is deter­
mined by the rules of arithmetic. If
the result can be represented exactly in
the specified floating-point format, the
exact result is produced. If the result
cannot be represented exactly, it is
rounded to the neares t number that is
representable in the specified floating­
point format.

"-Jl operand that is less than zero is
invalid. If the SQUARE ROOT instruction
is executed with an invalid operand, a
square-root exception is recognized.

Square-Root Exception

A square-root exception is recognized
when the second operand of SQUARE ROOT
is less than zero.

The operation is suppressed.

The instruction-length code is 2.

The square-root exception is indicated
by a program-interruption code of OOID
hex (or 009D hex if a concurrent PER
event is indicated).

SQUARE-ROOT FACILITY

INSTRUCTION DESCRIPTION

The inclusion of instruction mnemonics
in the description does not necessarily
imply that the mnemonics are recognized
by current assembler programs. A pro­
grammer wishing to use this instruction
in assembler-language programs with an
assembler which does not recognize the
mnemonics may use appropriate macros to
assist with the translation of the
instruction into machine language.

SQUARE ROOT Instruction

SQDR R1,Rz [RRE, Long Operands]

I I
'B244' I11111111I Rl Rz

I I

0 16 24 28 31

SQER R1,Rz [RRE, Short Operands]

I I
'B24S' I11111111I Rl Rz

I I

0 16 24 28 31

The normal ized and rounded square root
of the second operand is placed in the
first-operand location.

When the fraction of the second operand
is zero, the sign and characteristic of
the second operand are ignored, and the
operation is completed by placing a true
zero in the first-operand location.

When the second operand is less than
zero, a square-root exception is recog­
nized.

When the second opera..TId is normalized
and greater than zero, the character­
istic, fraction, and sign of the result
are produced as follows:

Square-Root Facility 11

•

•

•

•

The result characteristic is one­
half of the sum of the operand char­
acteristic and either 64, if the
operand characteristic is even, or
65, if it is odd.

If the operand characteristic is
odd, the operand fraction is shifted
right one digit position, the right­
most digit entering the guard-digit
position.

An intermediate-result fraction is
produced by computing without
rounding the square root of the
operand fraction, after any right
shift as described. The
intermediate-result fraction con­
sists of the 15 most significant
hexadecimal digits of the square­
root result in the long format, or
seven in the short format, where
both formats include a guard digit
on the right.

A one is added to the leftmost bit
of the guard digit of the interme­
diate result, any carry is propa­
gated to the left, and the guard
digit is dropped to produce the
result fraction.

• The result sign is made plus.

When the second operand is unnormalized
and greater than zero, the operand is
first normalized. The operation then
proceeds as for normalized operands.

The Rl and R2 fields must designate reg­
ister 0, 2, 4, or 6. Otherwise, a spec­
ification exception is recognized.

Condition Code:
unchanged.

Program Exceptions:

The code remains

• Operation (if the square-root
facility is not installed)

• Specification
• Square root

12 IBM System/370 Mathematical Assists

Programming Notes

1. The use of the SQUARE ROOT instruc­
tion with short operands (SQER) is
illustrated by the examples in
Figure 4.

I I I I I
Decimal I I Operand I Decimal I Result I

I I (hex) I Value I (hex) Value 1
I 1
142 190000125.0
140 4000001 0.250
140 Boooool 0.50
141 Boooool B.O

I

1 I I
141 50000015.0 I
140 Boooool0.50 I
140 B504F3IO.7071 ... 1
1412D413DI2.B2B4···1
I I I

Figure 4. Square-Root Examples

2. The result fraction is correctly
normalized without any further left
or right shifts of the
intermediate-result fraction and
without any further exponent adjust­
ment. Rounding cannot cause a carry
out of the leftmost digit.

3. Although a characteristic greater
than 127 or less than zero may tem­
porarily be generated during, the
operation, the result characteristic
is always within the representable
range, and no exponent overflow or
underflow occurs.

Specifically, the smallest nonzero
operand in the long format consists
of a one bit, preceded on the left
by 63 zeros. This operand is an
unnormalized number with a value of
16- 78

, and its square root is 16- 39
•

The normalized representation of
this result has a characteristic of
26 (decimal). Similarly, the square
root of the largest representable
operand has a characteristic of 96
(decimal). The instruction, there­
fore, cannot produce a nonzero
result with a characteristic outside
the range of 26 to 96.

The mathematical-function facilities
include instructions which perform some
of the mathematical operations that are
commonly included as basic functions in
higher-level programming languages. The
instructions are ARCTANGENT, COMMON LOG­
ARITHM, COSINE, EXPONENTIAL, NATURAL
LOGARITHM, RAISE TO POWER, and SINE.
They operate on floating-point numbers
in either the long or short format.

Each instruction is four bytes long and
uses the RRE format. The source operand
is in a floating-point register, and the
result is placed in a floating-point
register. When a nonzero source operand
is encountered which is urmormalized, it
is first normalized at the start of the
operation, but without changing the con­
tents of the source-operand location=
Nonzero results are always normalized.
A zero result is made a true zero.

When a mathematical-function instruction
performs a floating-point operation in
the short format, the rightmost 32 bits
of the source register are ignored as
the operand is fetched. When the
instruction places a short-format result
in the target register, the rightmost 32
bit positions of the register remain
unchanged.

The specific result produced by one of
these instructions for a particular
source operand or operand pair either
equals or approximates the mathemat­
ically exact result. ~~en it is neces­
sary to approximate the exact result,
the instruction returns one of the two
normalized floating-point numbers which
are the nearest neighbors of the infi­
nitely precise result; which of the two
numbers is returned depends on the algo­
rithm employed in the implementation.
Thus, the maximum error is less than one
unit in the last place of the normalized
result.

MATHEMATICAL-FUNCTION FACILITIES

Arithmetic exceptions such as exponent
overflow, operands outside the range
implemented for a particular function,
and other exceptional conditions do not
cause a program interruption but are
indicated by the condition code. If the
operation is performed successfully, the
instruction sets condition code 0; oth­
erwise, the instruction a nonzero condi­
tion code, as described for each
instruction, and the result location
remains unchanged.

Different models may implement a dif­
ferent selection of these instructions,
or none at all. The operand range
covered for a given instruction may not
always be the same from one model to
another. When an instruction operand is
outside the operand range implemented by
the model on which the instruction is
executed, condition code 3 is set.
Refer to the functional-characteristics
manual of a particular model for the
selection of instructions and their
operand ranges.

To avoid model-dependent operation, a
program using one of the mathematical­
flL~ction instructions should be accompa­
nied by a subroutine which performs the
entire function without relying on that
instruction. Each use of the instruc­
tion should always be followed by a con­
ditional branch to test the condition
code. I f the code is not zero, indi -
cating an exceptional condition such as
operands that are outside the imple­
mented range, a branch to the subroutine
may then be used to complete the opera­
tion or to handle the exception appro­
priately.

Programming Notes

1. The instructions evaluate the fol­
lowing mathematical functions:

Mathematical-Function Facilities 13

r = arctan(x)
r = log (x)

r = cos (x)
r = exp(x)
r = In(x)

r = y**x
r = sin (x)

for ARCTANGENT,
for COMMON
LOGARITHM,
for COSINE,
for EXPONENTIAL,
for NATURAL
LOGARITHM,
for RAISE TO POWER,
for SINE,

where operand x is in the register
designated as the second-operand
location, operand y is in the reg­
ister designated as the first­
operand location, and ** indicates
exponentiation. The result, r, is
placed in the first-operand
location, replacing the operand y,
if any.

2. NATURAL LOGARITHM and EXPONENTIAL
perform inverse operations; that is,
within operand ranges appropriate to
each function, they approximate the
relations:

x = In(exp(x)) and x = exp(ln(x))

Similarly, COMMON LOGARITHM and
RAISE TO POWER with a base (first
operand) of 10 perform inverse oper­
ations which approximate the
relations:

x = log(10**x) and x = 10**(log(x))

3. The result of using RAISE TO POWER
to evaluate y**0.5 for a positive y
may differ slightly from the result
of applying SQUARE ROOT to the same
operand in the same floating-point
format. Likewise, the result of
using RAISE TO POWER to evaluate
y**(±n) , where y is positive and n
is an integer, may not be the same
as the result obtained by using MUL­
TIPLY and DIVIDE instructions.

14 IBM System/370 Mathematical Assists

Mathematical Constants

In the instruction descriptions, e
refers to the mathematical constant with
the approximate value 2.718281828 ... and
pi refers to the mathematical constant
with the approximate value
3.141592653 ...

INSTRUCTION DESCRIPTIONS

ARCTANGENT Instruction

For long operands:

I I
'B294' 1////////1 Rl

I I

o 16 24 28 31

For short operands:

I I
'B295' 1////////1 Rl

I I

o 16 24 28 31

The arctangent of the second operand is
placed in the first-operand location.
The operand and the result are
floating-point numbers in the same
format.

The result is in radians, normalized,
and smaller in magnitude than pi/2. A
nonzero result has the same sign as the
operand. If the operand has a zero
fraction, the result is a true zero.

If the normalized result would have a
characteristic that is less than zero
(exponent underflow), condition code 1
is set; the setting of the exponent­
underflow mask bit in the PSW has no
effect. If the second operand is
outside the operand range implemented by
the model, condition code 3 is set. In
both cases where a nonzero condition
code is set, the first-operand location
remains unchanged.

If the operation is completed normally,
condition code 0 is set.

The R1 and R2 fields must designate reg­
ister 0, 2, 4, or 6; otherwise, a spec­
ification exception is recognized.

Resulting Condition Code:

° Valid operation
1 Exponent underflow
2
3 Invalid operation

Program Exceptions:

I • Operation (if the arctangent
I
I •

facility is not installed)
Specification

I
I
I Programming Note

Exponent underflow can occur only when a
nonzero second operand is unnormalized
and so small that the result after nor­
malization would have a characteristic
less than zero.

COMMON LOGARITHM Instruction

For long operands:

I I
'B284' I11111111I R1

I I

o 16 24 28 31

For short operands:

I I
'B28S' I11111111I R1

I I

o 16 24 28 31

The common logarithm (the logarithm to
the base 10)
p-laGed--in·· -.t-he
lne operand
floating-point
format.

of the second operand
fi~st-op@rand.10-cation ..
and the result are
numbers in the same

The result
operand is
true zero.

is
plus

normalized. If
one, the result

the
is a

If the second operand has a zero frac­
tion or is negative, or if the second
operand is outslae ~ne operand range
implemented by the model, condition code
3 is set, and the first-operand location
remains unchanged. Otherwise, the oper­
ation is completed normally, and condi­
tion code ° is set.

The Rl and R2 fields must designate reg­
ister 0, 2, 4, or 6; otherwise, a spec­
ification exception is recognized.

Resulting Condition Code:

° Valid operation
1
2
3 Invalid operation

Program Exceptions:

•

•

Operation (if the common-logarithm
facility is not installed)
Specification

Programming Note

Exponent underflow ca~~ot occur, because
the result is either zero or suffi­
cient 1y greater than zero in magnitude
to be representable as a normalized
floating-point number.

Mathematical-Function Facilities 15

COSINE Instruction

For long operands:

i , i
'B28A' 1111/11111 Rl

I I

o 16 24 28 31

For short operands:

i i
'B28B' I11111111I Rl

I I

o 16 24 28 31

The cosine of the second operand in
radians is placed in the first-operand
location. The operand and the result
are floating-point numbers in the same
format.

The result is normalized and never
greater in magnitude than one. I f the
operand has a zero fraction, the result
is exactly plus one.

If the second operand is outside the
operand range implemented by the model,
or if the absolute value of the second
operand is not less than pi multiplied
by 250 (long) or pi multiplied by 2 18

(short), then the first-operand location
remains unchanged, and condition code 3
is set. Otherwise, the operation is
completed normally, and condition code 0
is set.

The Rl and R2 fields must designate reg­
ister 0, 2, 4, or 6; otherwise, a spec­
ification exception is recognized.

Resulting Condition Code:

o
1
2
3

Valid operation

Invalid operation

16 IBM System/370 Mathematical Assists

Program Exceptions:

I •
I

Operation (if the sine-cosine
facility is not installed)
Specification I •

I
I
I Programming Note

Mathematically, the cosine of pil2, or
of any odd multiple of pil2, is zero.
In practice, the floating-point operands
nearest to those values are sufficiently
different from a multiple of pil2 that
the result cannot be zero or produce
exponent underflow.

EXPONENTIAL Instruction

For long operands:

I I
'B282' I11111111I Rl Rz

I I

0 16 24 28 31

For short operands:

I I
'B283' I11111111I Rl R2

I I

0 16 24 28 31

The result of raising the mathematical
constant e to the power of the second
operand is placed in the first-operand
location. The operand and the result
are floating-point numbers in the same
format.

The result is normalized. If the
operand has a zero fraction, the result
is exactly plus one.

I f the normalized result would have a
characteristic that is less than zero
(exponent underflow), condition code 1
is set; the setting of the exponent­
underflow mask bit in the PSW has no
effect. If the normalized result would
have a characteristic that is greater
than 127 (exponent overflow), condition

code 2 is set. If the second operand is
outside the operand rfuLge implemented by
~he-mede-lj--GGrui-i"tiGIlc--Gde J is sat-. In
all three cases where a nonzero condi­
tion code is set, the first-operand
location remains unchanged.

If the operation is completed normally,
condition code 0 is set.

The Rl and R2 fields must designate reg­
ister 0, 2, 4, or 6; otherwise, a spec­
ification exception is recognized.

Resulting Condition Code:

o Valid operation
1 Exponent underflow
2 Exponent overflow
3 Invalid operation

Program Exceptions:

• Operation (if the exponential
facility is not installed)

• Specification

NATURAL LOGAR ITHM Instruction

For long operands:

I I
'B280' I!!!!!!!!! Rl

I I

o 16 24 28 31

For short operands:

I I
'B281 f !////////! Rl

I I

o 16 24 28 31

The natural logarithm (the logarithm to
the base e) of the second operand is
placed in the first-operand lo_catioR.
The operand
floating-point
format.

the ~_-1
CUIU

numbers
a.l.e

in the same

The resul t is
operand is plus
true zero.

normalized. If the
one, the result is a

If the second operand has a zero frac­
tion or is negative, or if the second
operand is outside the operand range
implemented by the model, the first­
operand location remains unchanged, and
condition code 3 is set. Otherwise, the
operation is completed normally, and
condition code 0 is set.

The Rl ~~d R2 fields must designate reg­
ister 0, 2, 4, or 6; otherwise, a spec­
ification exception is recognized.

Resulting Condition Code:

o Valid operation
1
2
3 Invalid operation

Program Exceptions:

• Operation (if the natural-logarithm
facility is not installed)

• Specification

Programming Note

Exponent underflow cannot occur) because
the result is either zero or suffi­
ciently greater than zero in magnitude
to b.e representable as a normalized
floating-point number.

Mathematical-Function Facilities 17

RAISE TO POWER Instruction

For long operands:

I I
'B286' 1////////1 Rl R2

I I

0 16 24 28 31

For short operands:

I I
'B287' 1////////1 Rl R2

I I

0 16 24 28 31

The first operand is raised to the power
of the second operand, and the result is
placed in the first-operand location.
The operands and the result are
floating-point numbers in the same
format.

The result is normalized. If the first
operand has a zero fraction and the
second operand is greater than zero, the
result is a true zero. If the first
operand has a nonzero fraction and the
second operand has a zero fraction, the
result is exactly plus one.

For the operation to be valid, (1) the
first operand must be greater than zero,
or (2) if the first operand has a zero
fraction, the second operand must be
greater than zero, or (3) if the first
operand is less than zero, the second
operand must have a zero fraction.

If the normalized result would have a
characteristic that is less than zero
(exponent underflow), condition code 1
is set; the setting of the exponent-

18 IBM System/370 Mathematical Assists

underflow mask bit in the PSW has no
effect. If the normalized result would
have a characteristic that is greater
than 127 (exponent overflow), condition
code 2 is set. If the operation is
invalid, or if either operand is outside
the operand range implemented by the
model, condition code 3 is set. In all
three cas es where a nonzero condit ion
code is set, the first-operand location
remains unchanged.

If the operation is completed normally,
condition code 0 is set.

The Rl and R2 fields must designate reg­
ister 0, 2, 4, or 6; otherwise, a spec­
ification exception is recognized.

Resulting Condition Code:

° Valid operation
1 Exponent underflow
2 Exponent overflow
3 Invalid operation

Program Exceptions:

I •
I

Operation (if the raise-to-power
facility is not installed)
Specification I •

I
I
I Programming Note

I
I
I
I
I
I
I
I
I

Whether the operation is valid depends
on the signs and on the zero or nonzero
values of the two operands. Figure 5
summarizes the conditions under which
the operation is invalid, causing condi­
tion code 3 to be set, or valid, causing
condition code ° to be set except when
exponent underflow (code 1) or exponent
overflow (code 2) occurs.

!
I

I
I
I
i
1
I
I
I
I

I I
I

Second I
I I I

Fi£-s-t t Ope-Farui- l
Operand I i

I I I I
1< 01= 01> 01

I I I I I
I < 0 I I I N 1 I I
I I I I I
I = 0 I I I I , z I , I 1 I I
1 > 0 1 V I N ! V I I

i I ! I I
I

'Explanation: ,
I I

I , I Invalid I
I N Valid, result is one. I
I V Valid I
I z Valid, result is zero. I
! I

Figure 5. Operand Validity

Not shown above is the possibility that
condition code 3 is set because an oth­
erwise valid operand is outside the
range implemented by the model.

SINE Instruction

For long operands:

I I
'B28a t I11111111I Rl i' I'",,,, i

o 16 24 28 31

For short operands:

I I
'B289' 1////////1 Rl

I I

o 16 24 28 31

The sine of the second operand in
radians is placed in the first-operand
location. The operand and the result
are floating-point numbers in the same
format.

The result is normalized and never
greater in magnitude than one. If the

operand has a zero fraction, the result
is a true zero.

If the normalized result would have a
characteristic that is less than zero
(exponent underflow), condition code 1
is set; the setting of the exponent­
underflow mask bit in the PSW has no
effect. If the second operand is
outside the operand range implemented by
the model, or if the absolute value of
the second operand is not less than pi
multiplied by 250 (long) or pi multi­
plied by 2 18 (short), then conal~lon
code 3 is set. In all those cases where
a nonzero condition code is set, the
first-operand location remains
unchanged.

If the operation is completed normally,
condition code 0 is set.

The Rl and R2 fields must designate reg­
ister 0, 2, 4, or 6; otherwise, a spec­
ification exception is recognized.

Resulting Condition Code:

o
1
2
3

Valid operation
Exponent underflow

Invalid operation

Program Exceptions:

! •
I

Operation (if the sine-cosine
facility is not installed)
Specification I •

I

Programming Note

Mathematically, the sine of pi, or of
any multiple of pi, is zero. In prac­
tice, except for a zero operand, the
floating-point operands nearest to those
values are sufficiently different from a
mUltiple of pi that the result cannot be
zero or produce exponent underflow.

Exponent underflow can occur only when a
nonzero second operand is unnormalized
and so small that the result after nor-

Mathematical-Function Facilities 19

malization would have a characteristic
less than zero.

INSTRUCTION CHARACTERISTICS

Figure 6 summarizes various character­
istics of the mathematical-function
instructions, including any restrictions
on the operand and result range of each
instruction, whether special conditions
cause nonzero condition codes to be set,

and the resul ts produced by some
instructions for certain unique oper­
ands. All instructions set condition
code 0 when execution is completed
normally, and all set condition code 3
when an operand is outside the operand
range implemented by the model.

I ~I ---------------.----------------------1r-----------------,1----------------~1
I I Range Restrictions on I Condition Code I I
I I I I I I I
I I Function Operands I Result I 1 I 2 3 I Special Values I
I ~I --------~------_+I----~I--rl-+------~I----------~I
I IARCTANGENT I Irl ~ pi/2lEU l

l IIf x=O, then r=O I
I I COMMON LOGARITHM x > ° I I x ~ ° I If x=l, then r=O I
I I COS INE I x I < L I r I ~ 1 I I I If x=O, then r=l I
I I EXPONENTIAL I r > ° I EU I EO I If x=O, then r=l I
I I NATURAL LOGARITHM I x > ° I I x ~ ° I If x=l, then r=O I
I I I I I I I I
I IRAISE TO POWER I (y>O)& any x r ~ 0 lEU lEO 1(y=O)&(~O)IIf(y=O)&(x>O), r=O I
I I (y**x) I (y=O)&(x>O) I I I (y<O)&(x;tO) I If(y;tO)&(x=O), r=l I
I I I (y<O)&(x=O) I I I I I
I I SINE I I x I < L I r I ~ 1 I EU 1 I I I If x=O, then r=O I
I I I I I I I I
I Explanation: I
I I
I & "and" I
I EO Exponent overflow I
I EU Exponent underflow I
I EU l Exponent underflow can be caused only by a very small, unnormalized operand. I
I L Limit: pi*2 sD for long operands, pi*2 l8 for short operands I
I r Result; placed in first-operand location I
I r=O Result is true zero. I
I x Operand; obtained from second-operand location I
I x=O Second operand has zero fraction. I
I y Operand (only for some instructions); obtained from first-operand location I
I y=O First operand has zero fraction. I
I I

Figure 6. Instruction Characteristics

20 IBM System/370 Mathematical Assists

APPENDIX. INSTRUCTION SUMMARY

I

I
I Name
I
IARCTANGENT (long)
IARCTANGENT (short)
I COMMON LOGARITHM (long)
I COMMON LOGARITHM (short)
I COSIN'E (long)
ICOSINE (short)
I
IEXPONENTIAL (long)
IEXPONENTIAL (short)
IMULTIPLY AND ADD
INATURAL LOGARITHM (long)
INATURAL LOGARITH}1 (short)
I
IRAISE TO POWER (long)
IRAISE TO POWER (short)
ISINE (long)
!SINE (short)
ISQUARE ROOT (long)
ISQUARE ROOT (short)
I

Explanation:

I

I
I
I

I I
IRRE C ZTI
IRRE C ZTI
IRRE C Lci
IRRE C Lci
IRRE C SNI
IRRE C SNI
I I
I I
IRRE C EPI
IRRE C EPI
IRRE C MAl
IRRE C LNI
IRRE C LNI
I I
IRRE C RPI
IRRE C RPI
IRRE C SNI
IRRE C SNI
jRRE QRj
IRRE QRI
! !

Characteristics

SP
SP
SP
SP
SP
SP

SP
SP

A SP II
SP
SP/

I
spi
spi
spi
spi
spj SQ
spi SQ

I

A Access exceptions for logical addresses
C Condition code is set.
EP Exponential facility
II Interruptible instruction
LC Common-logarithm facility
LN Natural-logarithm facility
MA Multiply-and-add facility
QR Square-root facility
R PER general-register-alteration event
RP Raise-to-power facility
RRE RRE instruction format
SN Sine-cosine facility
SP Specification exception
SQ Square-root exception

I ST PER storage-alteration event
I I ZT Arctangent facility

I

Figure 7. Summary of Mathematical-Assist Instructions

I I
lop I
ICodej
I I
IB2941
IB29S1
IB2841
IB28S1
IB28AI
IB28BI
I I
IB2821
IB2831

R STIB2431
IB2801
IB2811
I I
IB2861
IB2871
IB2881
IB2891
jB244j
IB24S1
! I

Appendix. Instruction Summary 21

This page is intentionally left blank.

22 IBM System/370 Mathematical Assists

A

access exceptions for MULTIPLY AND ADD
6

accuracy
for mathematical functions 13
for SQUARE ROOT 11

address, 24-bit and 31-bit 3
architectural mode 3
ARCTANGENT instructions 14

B

boundary alignment of vector elements 1

c

change bit for MULTIPLY AND ADD 6
COMMON LOGARITHM instructions 15
condition code

for mathematical functions 13
for MULTIPLY AND ADD 2

contiguous vector elements 1
COSINE instructions 16

E

e (mathematical constant) 14
error bounds

for mathematical functions 13
for SQUARE ROOT 11

exceptions
for mathematical functions 13
for ~JLTIPLY ~ND ADD 2
square-root 11

exponent overflow
for EXPONENTIAL 16
for MULTIPLY AND ADD 2
for RAISE TO POWER 18

exponent underflow
for ARCTANGENT 14
for EXPONENTIAL 16

for MULTIPLY AND ADD 2
for RAISE TO PO~~R
for SINE 19

1Q
.LV

EXPONEN1IAL instructions 16

F

facilities
arctangent 14
common-logaritr@ 15
exponential 16
multiply-and-add 1
natural-logarithm 17
raise-to-power 18
sine-cosine 16,19
square-root 11

interruptible instruction 2

L

logarithm
common 15
natural 17

M

INDEX

MADS (MULTIPLY AND ADD) instruction 2
mathematical constants e and pi 14
matrix computations 1
mode of operation 3
MULTIPLY AND ADD (MADS) instruction 2

N

NATURAL LOGARITHM instructions 17

Index 23

o

overflow

p

for EXPONENTIAL 16
for MULTIPLY AND ADD 2
for RAISE TO POWER 18

PER (program-event recording) for MUL­
TIPLY AND ADD 6

pi (mathematical constant) 14

R

RAISE TO POWER instructions 18
rounding for SQUARE ROOT 11

s

scalar iii
SINE instructions 19
SQDR (SQUARE ROOT) instruction 11
SQER (SQUARE ROOT) instruction 11
SQUARE ROOT (SQDR,SQER) instructions 11
square-root exception 11

24 IBM System/370 Mathematical Assists

u

underflow
for ARCTANGENT 14
for EXPONENTIAL 16
for MULTIPLY AND ADD 2
for RAISE TO POWER 18
for SINE 19

unit of operation for MULTIPLY AND ADD
6

unnormalized operands

v

for mathematical-function
instructions 13

for MULTIPLY AND ADD 1
for SQUARE ROOT 11

vector iii

t

IBM System/370 Mathematical Assists

Order No. SA22-7094-1

READER'S
COMMENT
FORM

TltJs manual is part of a library that serves as a reference source for systems analysts; programmers, a...'1d

92_~@J~J'~(>fIJ3M~Y~J~Il:1~' Y Qll p:1a)I __ ll~_~!hi~ [orm to cO~1lI!t~::t!e_yg~r_~QII'lII'leI!!~_~Q<:>!-l1!lli~1'!-l~Jic~t~()n-,_
its orgapization, or subject matter; with the understanding that IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed

appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality,

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the front cover or title page.)

SA22-7094-1

Reader's Comment Form

(')

s.
g

" o
c:
~
o
:::I
IQ

r
:i'
(I)

I
I
I
I
I
I
1
I
I
I·
I
I
I
I
I

Fold and tape Please Do Not Staple Fold and tape I
, ••..••.•••••••.••••.••••••••.•••••••.•.•.•••.•.•..•••.•.••....••..•.•••.••....••.••••.•.••.••.•••••.••.•.•••..••.•.•...•••••••.••.•••••.•••.•.•••••...•.••••..•..••..•..•..•.•.•••••.•.•••••..•.•••••••..•.•. 1

Fold and tape

--------- - ------- - ---- - - -----------,-
00

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department B98
P.O. Box 390
Poughkeepsie, New York 12602

Please Do Not Staple

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UN ITED STATES

Fold and tape

'T1

co
z
~
en
w
-....J
o
6

	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	replyA
	replyB

