. Publication“Number

SA22-7125-3
; . . 3 IBM Enterprise Systems
] Architecture/370 and System/370
S Vector Operations
.

IBM Enterprise Systems
Architecture/370 and System/370

Vector Operations

Publication Number File Number
SA22-7125-3 §370-01

Fourth Edition (August 1988)

This edition obsoletes and replaces the previous edition, SA22-7125-2. It describes the effect of the BsA/370
architecture on the vector architecture and includes several other changes, which are indicated by a vertical
line to the left of the change.

Changes are made occasionally to the information herein; before using this publication in connection with
the operation of 1BM equipment, refer to the latest IBM System/370, 30xx, 4300, and 9370 Processors Bibli-
ography, (GC20-0001, for the editions that are applicable and current.

IBM may have patents or pending patent applications covering subject matter described herein. Furnishing
this publication does not constitute or imply a grant of any license under any patents, patent applications,
trademarks, copyrights, or other rights of 1BM or of any third party, or any right to refer to IBM in any
advertising or other promotional or marketing activities. 1BM assumes no responsibility for any infringement
of patents or other rights that may result from the use of this publication or from the manufacture, use,
lease, or sale of apparatus described herein.

1icenses under 1BM’s utility patents are available on reasonable and nondiscriminatory tertns and conditions.
Inquirices relative to licensing should be directed, in writing, to: 1BM Corporation, Director of Contracts and
Licensing, Armonk, NY, usA 10504.

References in this publication to 1BM products, programs, or services do not imply that iBM intends to make
these available in all countries in which 1BM operates.

Publications are not stocked at the address given below. Requests for iBM publications should be made to
your IBM representative or to the 1BM branch office serving your locality.

A form for reader’s comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to: 1BM Corporation, Central Systems Architecture, Department E57,
PO Box 950, Poughkeepsie, NY, USA 12602. IBM may use or distribute whatever information you supply in
any way it believes appropriate without incurring any obligation to you.

© Copyright. International Business Machines Corporation 1986, 1987, 1988. All rights reserved.

Preface

This publication contains, for reference purposes, a
detailed definition of the inachine functions pro-
vided by the 1sM System/370 and Enterprise
Systems Architecture/370™ (ESA/370™) vector
facility. The vector facility operates as a compat-
ible extension of the architectures described in the
following Principles of Operation publications:

* The System/370 architecture described in the
IBM System|370 Principles of Operation,
GA22-7000

e The System/370 extended architecture (370-xA)
described in the IBM 370-XA Principles of
Operation, SA22-7085

e The rsA/370 architecture described in the Enter-
prise Systems Architecture/370 Principles of
Operation, SA22-7200

This publication should not be considered an intro-
duction or a textbook. It is written as a reference
for use principally by assembler-language program-
mers, although anyone concerned with the func-
tional details of vecior operations may find it
useful. It describes each function at the level of
detail needed to prepare an assembler-language
program which relies on that function.

The publication does not describe all the
instructions or other functions needed to write a
complete program using vectors. The reader is
assumed to be familiar with the Principles of Opera-
tion publication that is appropriate to the system to
be used. This publication includes a description
only of functions which are added to each base

architecture as part of the vector facility. Terms
and concepts referred to in this publication but
explained in the Principles of Operation publica-
tions cited above are not explained again in this
publication.

Writing a program in assembler language requires a
familiarity with the notations and conventions of
that language, as well as with the facilities of the
operating systein under which the program is to be
run. The reader should refer to the appropriate
programming publications for such information.

Terminology

As uscd in this publication, a scalar is a single data
item, which may be a floating-point number, a
binary integer, or a sct of logical data. A vector is a
linearly ordered collection of such scalars, where
each scalar is an element of the vector. All ele-
ments of a single vector are of the same type:
floating-point numbers (floating-point vector),
binary integers (binary vector), or logical data
(logical vector).

Scalar instructions are instructions which perform
load, store, arithmetic, or logical operations on
scalars that may reside in storage, floating-point
registers, or general registers. Veclor instructions
perform similar operations on vectors that may
reside in storage or in registers of the vector facility.
Only vector instructions and related opecrations are
described in this publication. Scalar instructions
are described in the above Principles of Operation
publications.

Enterprise Systems Architecture/370 and ESA/370 are trademarks of the International Business Machines Cor-

poration.

Preface iii

This page is intentionally laft blank.

iv ESA/370 and System/370 Vector Operations

Contents

Chapter 1. Introduction

Compatibility Considerations
Vector and Scalar Operations
Model-Dependent Vector Functions

Chapter 2. Vector Facility
Vector-Facility Structure
Vector Registers
Vector-Mask Register
Vector Parameters
Section Size
Partial-Sum Number
Vector-Status Register
Vector-Mask-Mode Bit
Vector Count
Vector Interruption Index
Vector In-Use Bits
Vector Change Bits
Vector-Activity Count
Addressing Modes
Vector-Operation Control
Vector-Instruction Operands and Results
Arithmetic Vectors in Storage
Access by Sequential Addressing
Access by Indirect Element Selection
Arithmetic Vectors in Registers
Operands in Vector Registers
Operands in Scalar Registers
Bit Vectors
Vector Sectioning
Conditional Arithmetic
Vector-Mask Mode
Instructions Controlling the
Vector-Mask Mode
Common Instruction Descriptions
Instruction Classes
Instruction Formats
Field Designations
Three-Operand Instruction Formats
Summary of Instructions by Class and
Format
Class-IM and Class-IC Instructions
Class-IM Instructions
Class-IC Instructions
Storage Operands for QST and VST
Formats
Class-NC Instructions
VS-Format Instructions
Instructions in Other Classes
Vector Interruptions
Interruptible Vector Instructions

...............

2-2

23

Units of Operation 2-20
Operand Parameters 2-20
Arithmetic Exceptions 2-21
Exception-Extension Code 2-21

Types of Ending for Units of Operation 2-21
Effect of Interruptions during Execution 2-23
Setting of Instruction Address
Setting of Instruction-Length Code . . 2-23
Setting of Storage Address
Setting of Vector Interruption Index . . 2-24
Program-Interruption Conditions
Access Exceptions for Vector Operands 2-24

Exponent-Overflow Exception 2-25
Exponent-Underflow Exception 2-25
Floating-Point-Divide Exception 2-25
Specification Exception 2-25
Unnormalized-Operand Exception . .. 2-25
Vector-Operation Exception 2-26
Priority of Vector Interruptions 2-26
Program Switching 2-26
Program Use of the Restore and Save
Instructions 2-27
Restore Operations 2-27
Save Operations 2-27
Clear Operations 2-28
Save-Area Requirements 2-28
Relationship to Other Facilities 2-28
Program-Event Recording (PER) 2-28
Vector-Store Operations 2-29
Storage-Operand Consistency 2-29
Storing into Instruction Stream 2-29

Vector Instructions in an ESA/370 System 2-29
Resets
Machine-Check Handling

Validation of Vector-Facility Registers 2-30

Chapter 3. Vector-Facility Instructions . . . 3-1
Accumulate, 3-2
Add ... 3-3
AND ... 3-4
ANDtoVMR 3-5
Clear VR 3-5
Compare 3-6
Complement VMR, 3-7
Count Left Zerosin VMR 3-7
CountOnesin VMR 3-7
Divide 3-8
Exclusive OR 39
Exclusive ORto VMR 39
Extract Element 3-10
Extract VCT 3-10

Contents V

Extract Vector Mask Mode 3-10
Load 3-11
load BitIndex 3-11
Load Complement 3-14
Load Element 3-14
lLoad Expanded 3-14
Ioad Halfword 3-15
Toad Indirect 3-15
Ioad Integer Vector 3-16
Ioad Matched 3-17
Toad Negative 3-18
Ioad Positive 3-18
lLoad VCT and Update 3-19
Iload VCT from Address 3-19
load VMR 3-20
Load VMR Complement 3-20
load Zero 3-20
Maximum Absolute 3-21
Maximum Signed 3-21
Minimum Signed 3-21
Multiply L. 3-22
Multiply and Accumulate 323
Multiplyand Add 3-24
Multiply and Subtract 3-24
OR 3-26
ORto VMR 3-26
Restore VAC 3-26
Restore VMR 3-27
Restore VR 3-27
Restore VSR 3-28
Save Changed VR 3-29
Save VAC 3-30
Save VMR 3-30
Save VR 3-31
Save VSR 3-31
Set Vector Mask Mode 3-32

Vi ESA/370 and System/370 Vector Operations

Shift Left Single Logical

Shift Right Single Logical
Store
Store Compressed
Store Halfword
Store Indirect

Store Matched
Store Vector Parameters
Store VMR
Subtract
Sum Partial Sums
Test VMR
Zero Partial Sums

................

Appendix A. Instruction-Use Examples
Operations on Full Vectors
Contiguous Vectors
Vectors with Stride
Vector and Scalar Operands
Sum of Products
Compare and Swap Vector Elements
Conditional Arithmetic
Exception Avoidance
Add to Magnitude
Operations on Sparse Vectors
Full Added to Sparse to Give Full
Sparse Added to Sparse to Give Sparse
Floating-Point-Vector Conversions
Fixed Point to Floating Point
Floating Point to Fixed Point

Appendix B. Lists of Instructions

Appendix C. Condition-Code Settings

Chapter 1. Introduction

The vector facility is a compatible addition to the
IBM System/370 Architecture, the 1BM System/370
Extended Architecture (370-XA), and the 1BM Enter-
prise Systems Architecture/370 (FsA/370). Use of
the facility may benefit applications in which a
great deal of the time of the central processing unit
(cpu) is spent executing arithmetic or logical
instructions on data which can be treated as
vectors. By replacing loops of scalar instructions
with the vector instructions provided by the vector
facility, such applications may take advantage of
the order inherent in vector data to improve per-
formance.

When the vector facility is provided on a cpu, it
functions as an integral part of that cpu:

* Standard instructions of the base architectures
can be used for all scalar operations.

* Data formats which are provided for vectors
are the same as the corresponding scalar
formats.

* Long-running vector instructions are interrup-
tible in the same manner as long-running scalar
instructions; their execution can be resumed
from the point of interruption after appropriate
action has been taken.

* Program interruptions due to arithmetic
exceptions are handled in the same way as for
scalar-arithmetic instructions, and the same
fixup routines can be used with at most some
minor extensions.

* Vector data inay reside in virtual storage, with
access exceptions being handled in the cus-
tomary manner.

Compatibility Considerations

Compatibility with System/370 scalar operations
has been one of the major objectives of the vector
architecture, so as to provide the same result data
when equivalent functions are programmed on
machines without the vector facility. Compatibility
among different implementations of the vector
facility eases the migration of vector programs.
Some departures from strict compatibility are intro-
duced, however, for the sake of performance and to

provide implementers of the vector facility more
flexibility in making design choices.

Vector and Scalar Operations

Although operations on vector operands are gener-
ally compatible, element by element, with the cor-
responding scalar operations, there are certain dif-
ferences between the vector and scalar architectures:

* Operands of vector-facility instructions must be
aligned on integral boundaries; scalar-
instruction operands need not be so aligned.
(See the section “Vector-Instruction Operands
and Results” on page 2-7.)

e Vector divide and multiply operations do not
permit unnormalized floating-point operands;

the corresponding scalar instructions do.
Vector programs tay encounter the
unnormalized-operand exception. (Sec the
instruction descriptions and the section
“Unnormalized-Operand Exception” on
page 2-25.)

¢ Bccause the result of a series of floating-point
additions may depend on their sequence, the
results produced by the vector instructions
ACCUMULATE or MULTIPLY AND ACCUMU-
LATE, followed by SUM PARTIAL SUMS, are not
necessarily identical with those produced by
scalar summation loops, unless the scalar loops
are written to perform the additions in exactly
the same sequence as defined for the vector

instructions. (See the instruction descriptions
and the section “Partial-Sum Number” on
page 2-2)

» If, during execution of MULTIPLY AND ACCU-
MULATE, MULTIPLY AND ADD, or MULTIPLY
AND SUBTRACT, the multiplication of an
element pair results in an exponent underflow,
a true zero is used in place of the product even
when the exponent-underflow mask in the psw
is one. The vector and scalar results are the
same, however, when the mask bit is zero or
when an exponent underflow occurs during the
addition or subtraction. (See the instruction
descriptions and the section “Exponent-
Underflow Exception” on page 2-25.)

* Vector-facility instructions cannot safely be
used to store into the current instruction

Chapter 1. Introduction 1-1

stream, whereas all other instructions are inter-
locked to permit this. (See the section
“Vector-Store Operations” on page 2-29.)

Model-Dependent Vector Functions

Programmers should keep the following restrictions
in mind to ensure that programs which run success-
fully on one model can do so on another.

The program should not depend on specific values
of the model-dependent vector parameters (section
size and partial-sum number). Likewise, the
program should not depend on the contents of
fields that are described as “reserved” or “unde-
fined.” Specifically:

* The section size should not be treated as a
numeric constant. Thus, save-area sizes should
be computed from the section-size value
obtained at execution time. (See the section
“Save-Arca Requirements” on page 2-28.)
The section size may be obtained by executing
the instruction STORE VECTOR PARAMETERS.

* The exact result produced by the vector
instructions ACCUMULATE Or MULTIPLY AND
ACCUMULATE, followed by SUM PARTIAL
suMs, may depend on the partial-sum number
of the model because that number affects the
sequence of performing the floating-point addi-
tions.

» The program should not rely on reserved bits
0-14 of the vector-status register being zeros
when placed in a general register by the instruc-
tion EXTRACT VECTOR MASK MODE, or on the
bits being stored as zeros by SAVE VSR. (Sec
the instruction descriptions.)

« The program should not depend on any partic-
ular values being stored by the instruction SAVE
VMR in the undefined part of the save area for
the vector-mask register; nor should the
program depend on the presence or absence of
access exceptions for that portion of the VMR
save area when executing the instruction

1-2 ESA/370 and System/370 Vector Operations

RESTORE VMR Or SAVE VMR. (See the instruc-
tion descriptions.)

* When a program using vector-facility
instructions is interrupted, it cannot be safely
resumed on another machine with a different
section size or partial-sum number, unless the
interruption occurred at a point that is known
to be independent of the section size or
partial-sum number, respectively.

¢ The program should not depend on the left-
most bits of the address of a vector operand in
storage being either set to zero or left
unchanged by a vector instruction when no ¢le-
ments are due to be processed by the instruc-
tion. (See the sections “Storage Operands for
QST and VST Formats” on page 2-17 and
“VS-Format Instructions” on page 2-18.)

The program should not rely on receiving a specific
program interruption, either operation exception or
vector-operation exception, to indicate whether the
vector facility is installed in any cpu of the config-
uration, since it depends on the model which of the
two exceptions occurs. (See the section ‘“Vector-

. Operation Control” on page 2-6.)

Problem-state programs should not depend on the
setting of the vector change bits, which may be
altered by actions of the control program that are
unrelated to the actions of a problem-state
program. Supervisor-state programs can depend on
the accuracy of vector change bits that are zeros;
vector change bits may sometimes be set to one,
however, even when the corresponding vector-
register pair has not been changed. Note also that
the effect on the vector change bits of executing the
instructions RESTORE VR and RESTORE VSR
depends on whether the CPU is in the problem or
supervisor state. (See the section “Vector Change
Bits” on page 2-5.)

PER events for general-register alteration may or
may not be recognized for vector-facility
instructions.

Chapter 2. Vector Facility

Vector-Facility Structure 2-2 Class-NC Instructions 2-18
Vector Registers 2-2 VS-Format Instructions 2-18
Vector-Mask Register 2-2 Instructions in Other Classes 2-19
Vector Parameters 2-2 Vector Interruptions 2-19

SectionSize 2-2 Interruptible Vector Instructions 2-19
Partial-Sum Number 2-2 Units of Operation 220
Vector-Status Register 2-3 Operand Parameters 2-20
Vector-Mask-Mode Bit 2-3 Arithmetic Exceptions 2-21
Vector Count 2-3 Exception-Extension Code 2-21
Vector Interruption Index 2-4 Types of Ending for Units of Operation 2-21
Vector In-Use Bits 2-4 Effect of Interruptions during Execution 2-23
Vector Change Bits 2-5 Setting of Instruction Address 2-23
Vector-Activity Count 2-5 Setting of Instruction-Length Code . . 2-23
Addressing Modes 2-6 Setting of Storage Address 2-23
Vector-Operation Control 2-6 Setting of Vector Interruption Index . . 2-24

Vector-Instruction Operands and Results . . 2-7 Program-Interruption Conditions 2-24

Arithmetic Vectors in Storage 2-8 Access Exceptions for Vector Operands 2-24
Access by Sequential Addressing 2-8 Exponent-Overflow Exception 2-25
Access by Indirect Element Sclection . 2-8 Exponent-Underflow Exception 2-25

Arithmetic Vectors in Registers 2-9 Floating-Point-Divide Exception 2-25
Operands in Vector Registers 2-9 Specification Exception 2-25
Operands in Scalar Registers 2-10 Unnormalized-Operand Exception . . . 2-25

BitVectors 2-10 Vector-Operation Exception 2-26

Vector Sectioning 2-10 Priority of Vector Interruptions 2-26

Conditional Arithmetic 2-11 Program Switching 2-26
Vector-Mask Mode 2-11 Program Use of the Restore and Save
Instructions Controlling the Instructions 2-27

Vector-Mask Mode 2-12 Restore Operations 2-27

Comumnon Instruction Descriptions 2-12 Save Operations 2-27
Instruction Classes 2-12 Clear Operations 2-28
Instruction Formats 2-13 Save-Area Requirements 2-28

Field Designations 2-13 Relationship to Other Facilities 2-28
Three-Operand Instruction Formats . . 2-13 Program-Event Recording (PER) 2-28
Summary of Instructions by Class and Vector-Store Operations 2-29
Format 2-15 Storage-Operand Consistency 2-29
Class-IM and Class-IC Instructions 2-15 Storing into Instruction Stream 2-29
Class-IM Instructions 2-15 Vector Instructions in an ESA/370 System 2-29
Class-IC Instructions 2-15 Resets 2-30
Storage Operands for QST and VST Machine-Check Handling 2-30
Formats 2-17 Validation of Vector-Facility Registers 2-30

Chapter 2. Vector Facility 2-1

Vector-Facility Structure

The vector facility provides:
* The vector-facility registers:

- 16 vector registers

— A vector-mask register
— A vector-status register
— A vector-activity count

¢ 171 instructions

* The following exceptions and exception indi-
cations:

-~ An unnormalized-operand exception

— A vector-operation exception

— An exception-extension code for arithmetic
exceptions

» A vector-control bit, bit 14 of control register 0

Figure 2-1 on page 2-3 shows the registers pro-
vided by the vector facility.

Vector Registers

There are 16 vector registers, numbered 0-15. They
are used to hold one or more of the vector oper-
ands in most arithmetic, comparison, logical, load,
and store operations. Unlike the general and
floating-point registers, the vector registers are
multipurpose in that vectors of floating-point,
binary-integer, and logical data can all be accom-
modated.

Each vector register contains a number of element
locations of 32 bits each. Depending on the opera-
tion, a vector operand may occupy a single vector
register or an even-odd pair of registers. The
element locations of a vector register are identified
by consecutive element numbers, starting with 0.

Vector-Mask Register

There is one vector-mask register (VMR), which is
used as:

» The target of the result of vector-compare
operations

e The source and target of logical operations on
bit vectors

* The source of the mask for mask-controlled
operations

2-2 ESA/370 and System/370 Vector Operations

Vector Parameters

The section size and the partial-sum number are
model-dependent parameters which control certain
operations of the vector facility.

Section Size

The number of element locations in a vector reg-
ister, which is also the number of bit positions in
the vector-mask register, is called the section size.
The section size is a power of 2; depending on the
model, the section size may be 8, 16, 32, 64, 128,
256, or S512.

The element locations of a vector register, as well
as the bit positions in the vector-mask register, are
numbered from 0 to one less than the section size.

In a multiprocessing configuration, the section size
is the same for each cpu which has the vector
facility installed.

The section size of a model may be obtained by
executing the instruction STORE VECTOR PARAME-
TERS, which places the value as a 16-bit binary
integer in the left half of a word in storage.

Partial-Sum Number

The partial-sum number is the number of partial
sums produced when executing the instruction
ACCUMULATE or MULTIPLY AND ACCUMULATE.
It is also the number of vector-register elements set
to zero by the instruction ZERO PARTIAL SUMS, as
well as the number of vector-register elements
summed by the instruction SUM PARTIAL SUMS.

Depending on the model, the partial-sum number
may range from 1 up to and including the section
size.

In a multiprocessing configuration, the partial-sum
number is the same for each cpu which has the
vector facility installed.

The partial-sum number of a model may be
obtained by executing the instruction STORE
VECTOR PARAMETERS, which places the value as a
16-bit binary integer in the right half of a word in
storage.

Vector Registers

64 bits

I
32 bits

Vector-Mask
Register

—a b

o
(ad

0(0) 1(0) 2(0) 3(9) 4(0) 15(0)

e(1) 1(1) 2(1) 3(Y 4(1) ! 15(1)

[("T=Teo 1T

0(2) 1(2) 2(2) 3(2) 4(2) ! 15(2) Z
/ elements
/ / /] / // [/ / [/
0(z-1)| 1(Z-1)]] 2(z-1)| 3(Z-1)|| 4(z-1) ! 15(Z-1) MZ-l
/ 1 L

Vector-Status Register

Vector-Activity Count

F— 64 bits —] F— 64 bits —]

Note: 7 is the section size (model-dependent).

Figure 2-1. Registers of the Vector Facility

Vector-Status Register

The vector-status register (VSR) is 64 bits long and
contains five fields of information, which describe
the current status of the vector and vector-mask
registers and of a mode of operation. The fields are
arranged as follows:

Zeros (M vCeT VIX VIU|VCH

0 15 32 48 56 63

The contents of the vector-status register as a
whole may be examined by the instruction SAVE
VSR and altered by the instruction RESTORE VSR.
Bits 0-14 of the vector-status register are reserved
for possible future use and are stored as zeros by
SAVE VSR; if the instruction RESTORE VSR specifies
other than all zeros for these bit positions, a specifi-
cation exception is recognized.

Vector-Mask-Mocde Bit

When the vector-mask-mode bit (M), bit 15 of the
vector-status register, is one, the vector-mask mode
is on, and arithmetic and logical instructions are
executed under the control of bits in the vector-
mask register. When the bit is zero, the mode is
off. For details, see the section “Conditional
Arithmetic” on page 2-11.

Vector Count

The vector count (vcT), bits 16-31 of the vector-
status register, is a 16-bit unsigned binary integer.
Together with the vector interruption index, it
determines for most vector operations the number
of element locations to be processed in vector regis-
ters or the number of bit positions to be processed
in the vector-mask register.

Elements in register positions with element
numbers less than the vector count are called the
active elements of the vector register. Likewise, bits
in bit positions of the vector-mask register with bit
numbers less than the vector count are called the

Chapter 2. Vector Facility 2-3

active bits of the vector-mask register. Only the
active elements or bits take part in operations
where the number of elements or bits processed is
determined by the vector count.

The vector count may range in value from zero up
to and including the section size. A specification
exception is recognized if the instruction RESTORE
VSR attempts to place a value in the vector-count
field which excceds the section size. The instruc-
tion EXTRACT VCT may be used to examine the
vector count.

The following instructions may be used to set the
vector count. If they specify a number greater than
the section size, they set the vector count equal to
the section size.

* LOAD BIT INDEX

* LOAD VCT AND UPDATE
* LOAD VCT FROM ADDRESS

For information on using the vector count with
vectors of any length, see the section ‘“Vector
Sectioning” on page 2-10.

Vector Interruption Index

The vector interruption index (VIX), bits 32-47 of
the vector-status register, is a 16-bit unsigned
binary integer. It specifies the number of the first
element location in any vector register, or of the
first bit position in the vector-mask register, to be
processed by an interruptible vector instruction
which depends on the vector interruption index.
The vector interruption index is used to control
resumption of the operation after such an instruc-
tion has been interrupted. It is normally zero at
the start of execution, and it is set to zero at com-
pletion.

For details concerning the operation of the vector
interruption index and the effect of an interruption,
see the section ‘“Vector Interruptions” on
page 2-19.

The vector interruption index may range from zero
to the section size. It may be examined by using
the instruction SAVE VSR, and it may be set explic-
itly by RESTORE vsR. The instruction CLEAR VR
sets the vector interruption index to zero. A spec-
ification exception is recognized if the instruction
RESTORE VSR attempts to place a value in the
vector-interruption-index field which exceeds the
section size.

2-4 ESA/370 and System/370 Vector Operations

Programming Notes:

1. Since the vector interruption index is always set
to zero upon completion of any instruction
which depends on it, the program normally
need not be concerned with setting its value.

2. The vector interruption index may be set to
zero explicitly by use of the instruction CLEAR
VR with a zero operand.

3. If it is desired to operate on a vector in a vector
register starting at other than element location
0, this may be done by first setting the vector
interruption index (viX) to the initial element
number. The viX may be set by using the
instruction SAVE VSR to place the current con-
tents of the vector-status register (VSR) in
storage, placing the initial element number in
the field which corresponds to the vix, and
then returning the result to the VSR by means
of RESTORE VsR. Such modification of the vsrR
can be performed safely when the CPU is in the
problem state. If a program modifying the vsrR
is to be executed in the supervisor state,
however, additional precautions may have to
be taken; see the programming notes in the
section “Vector Change Bits” on page 2-5.

Vector In-Use Bits
The eight vector in-use bits (viu), bits 48-55 of the

vector-status register, correspond to the eight
vector-register pairs 0, 2, 4, 6, 8, 10, 12, and 14.

“The vector in-use bits indicate which vector-register

pairs are to be saved and restored by SAVE VR and
RESTORE VR. These instructions ignore vector-
register pairs for which the vector in-use bit is zero.

During execution of instructions which use the
vector registers, the vector in-use bit associated with
a vector-register pair is set to one whenever any
element in either or both of the registers is loaded
or modified. When a register is used as the source
of an operand, its vector in-use bit remains
unchanged.

The vector in-use bits are set by the instruction
RESTORE VSR. If that instruction changes a vector
in-use bit from one to zero, it causes the corre-
sponding vector-register pair to be cleared to zeros.
A vector in-use bit is set to zero when the instruc-
tion CLEAR VR clears the corresponding vector-
register pair to zeros.

See the section “Program Switching” on page 2-26
for a discussion of the vector in-use bits.

Vector Change Bits

The eight vector change bits (vcH), bits 56-63 of
the vector-status register, correspond to the eight
vector-register pairs 0, 2, 4, 6, 8, 10, 12, and 14.

The vector change bits indicate which vector-
register pairs are to be saved by the prvileged
instruction SAVE CHANGED VR. That instruction
saves a vector-register pair if the corresponding
vector change bit is one; it then sets the vector
change bit to zero.

If the vector in-use bit associated with a vector-
register pair is set to zero by the instruction CLEAR
VR or RESTORE VSR, the corresponding vector
change bit is also set to zero.

During execution of an instruction which uses the
vector registers, the vector change bit associated
with a vector-register pair is set to one whenever
any element in either or both of the registers is
loaded or modified. An exception is the instruction
RESTORE VR; when the cPU is in the supervisor
state, execution of RESTORE VR leaves the vector
change bits unchanged.

When a vector register is used as the source of an
operand, its vector change bit remains unchanged.

See the section “Program Switching” on page 2-26
for further discussion of the vector change bits.

Programming Notes:

1. The vector change bit is always zero when the
vector in-use bit is zero. When the vector
change bit is set to one, the vector in-use bit is
also set to one.

2. As pointed out in the section “Program
Switching” on page 2-26, vector change bits
are intended for use by control programs oper-
ating in the supervisor state. When the CPU is
in the problem state, the value of the vector
change bits stored by SAVE VSR is undefined;
problem-state programs should, therefore, not
depend on the value of these bits.

A program operating in the problem state
cannot set a vector change bit to zero, except
by also setting the corresponding in-use bit to

zero (clearing the vector-register pair). In the
problem state, the instruction RESTORE VSR
sets the vector change bit to one for every pair
of vector registers whose in-use bit is set to
one.

3. If a program uses the instruction RESTORE VSR
to modify the contents of the vector-status reg-
ister while the cPU is in the supervisor state,
and the program is subject to interruptions for
which the interruption handler may cause a
SAVE CHANGED VR instruction to be executed,
care must be taken to ensure that the vector
change bits reflect all modifications of the
active vector registers. A safe procedure is to
supply ones in all bit positions of the operand
of RESTORE VSR which correspond to the
vector change bits. This precaution is unneces-
sary in the problem 'state, because RESTORE
VSR then scts the vector change bits to ones
regardless of the operand.

4. A program operating in the supervisor state can
depend on the accuracy of vector change bits
that are zeros. When the program is a guest in
a virtual-machine environment, however, vector
change bits may be overindicated, so that a bit
may be set to one even when the corresponding
vector-register pair has not been changed.

Vector-Activity Count
The vector-activity count (VAC) provides a means
for measuring and scheduling the machine resources

used in executing instructions of the vector facility.

The vector-activity count has this format:

00000000

0 8 63

Bits 8-63 are a 56-bit unsigned binary integer. In
the basic form, this integer is incremented by.
adding a one in bit position 51 every microsecond
while a vector-facility instruction is being executed.
In models having a higher or lower resolution, a
different bit position is incremented at such a fre-
quency that the rate of incrementing the vector-
activity count is the same as if a one were added in
bit position 51 every microsecond during those
periods. Bits 0-7 are zeros.

Chapter 2. Vector Facility 2-5

The contents of the vector-activity count may be
obtained by executing the privileged instruction
SAVE vAC, and they may be set by means of the
privileged instruction RESTORE VAC. Bits 0-7, and
any rightmost bit positions which are not incre-
mented, are stored as zeros by SAVE VAC and are
ignored by RESTORE VAC.

When incrementing the vector-activity count causes
a carry to be propagated out of bit position 8, the
carry is ignored, and counting continues from zero.
The program is not alerted, and no interruption
occurs as a result of the overflow. Except for such
wraparound, or an explicit restore or reset opera-
tion, the value of the count never decreases.

The vector-activity count is not incremented during
exccution of the instructions RESTORE VAC and
SAVE VAC. In addition, depending on the model,
the count may not be incremented during execution
of some other short, uninterruptible instructions of
the vector facility.

The vector-activity count is incremented only when
the CPU is in the operating state.

Programming Notes:

1. The vector-activity count is not intended to be
a precise measure of vector execution time.
The count may or may not advance during the
execution of a particular vector-facility instruc-
tion. In the aggregate, however, the count
reflects the execution time of the vector portion
of normal application programs.

2. The format of the vector-activity count has
been chosen to permit the use of unnormalized
scalar floating-point instructions to perform fast
addition and subtraction of vAC values.

Addressing Modes

The operation of the vector facility is independent
of the base architecture of the cpru, except for the
method of storage addressing. The System/370
architecture provides only for 24-bit storage
addresses; the 370-XA and EBSA/370 architectures
provide the choice of operating in cither a 31-bit or

2-6 FESA/370 and System/370 Vector Operations

24-bit addressing mode. Vector operations in the
System/370 architecture are the same as in the
370-XA or ESA/370 architecture when in the 24-bit
addressing mode. In the System/370 architecture,
instructions of the vector facility may be executed
in both the EC and BC modes.

The EsA/370 architecture further expands the
addressing capability by means of access registers
(see the section “Vector Instructions in an ESA/370
System” on page 2-29).

Vector-Operation Control

When the vector facility is installed and available
on a CPU, execution of vector-facility instructions
can be completed only if bit 14 of control register
0, the vector-control bit, is one. Executing a
vector-facility instruction when the vector-control
bit is zero causes a vector-operation exception to be
recognized and a program interruption to occur.
The initial value of the vector-control bit is zero.

When the vector facility is not installed or not
available on this cPU but is installed on any other
cpPU which is or can be placed in the configuration,
executing a vector-facility instruction causes a
vector-operation exception to be recognized regard-
less of the state of the vector-control bit.

If the vector facility is not installed on any cpu
which is or can be placed in the configuration, it
depends on the model whether executing a vector-
facility instruction causes a vector-operation excep-
tion or an operation exception to be recognized.

A vector facility, though installed, is considered not
available when it is not in the configuration, when
it is in certain maintenance modes, or when its
power is off.

Figure 2-2 on page 2-7 summarizes the effect of
the vector-control bit according to whether the
vector facility is installed and whether vector
instructions can be executed by the program.

Vector Vector Facility on This CPU
Facility -
Installed on FE:::? ‘;:ts‘:ﬁ:il;n

Another In- Avail- ¥
CPU stalled able VC=0 vVC=1
Yes or No Yes Yes VOP Execute
Yes or No Yes No voP voP
Yes No (NA) voP VvOP
VOP or VOP or
No No (NA) OP OP
Explanation:
NA Not applicable
OP Operation exception
vC Vector-control bit (control register 0, bit 14)
VOP Vector-operation exception

Figure 2-2. Vector Control

Programming Notes:

1. The control program may use the vector-
control bit to defer enabling of the cpru for
vector operations and to delay allocation of a
vector-save area until a program attempts to
use the facility by executing its first vector
instruction. Because the resulting vector-
operation exception nullifies the operation, the
instruction address does not need to be
adjusted in order to resume the program.

2. The control program may also keep the vector-
control bit set to zero to prevent a program
from examining or changing the contents of the
vector-facility registers. This may be useful
when a program that does not use the vector
facility is to be run after a program that does
use the facility has been interrupted. If the
next program to use the vector registers is the
original program, then running the intervening
program with the vector-control bit set to zero
may eliminate the need for information held in
the vector facility to be saved and later
restored.

A possible exception is the vector-activity
count (VAC). When the vector-control bit is
zero, the VAC may or may not be incremented
during the brief period of detecting that an
instruction requires the vector-operation excep-
tion to be recognized. The number of times
that the VAC might be stepped in this way is
small, however, compared to the counts accu-
mulated during execution of a vector-
application program.

3. When a machine check indicating vector-facility
failure occurs, the machine has made a previ-
ously available vector facility unavailable.
Until the cause of the failure is removed and
the facility is made available again, attempting
to execute a vector instruction causes a vector-
operation exception to be recognized even
though the vector-control bit is one.

Vector-Instruction Operands and
Results

The vector facility provides for operations on
vectors of short (32-bit) and long (64-bit) floating-
point numbers, 32-bit signed binary integers, and
32-bit logical data. A few operations deal with
vectors of 16- and 64-bit signed binary integers.
There are also operations on vectors of individual
bits, which are generally used as mask bits.

All binary-arithmetic vector operations treat ele-
ments of 32-bit binary integers as signed; any fixed-
point-overflow exceptions are recognized. Binary-
comparison operations also deal with 32-bit signed
binary integers. Logical vector operations,
including shifts, treat elements as 32-bit logical
data.

Most instructions which operate on floating-point,
binary-integer, or logical vectors use a format that
explicitly designates three operands: two source
operands and one target operand. The operands
may be:

* In storage
* In a vector register, or a pair of vector registers
* In a scalar (general or floating-point) register

Instructions which use mask bits generally desig-
nate an implicit operand in the vector-mask reg-
ister, and they also may explicitly designate storage,
vector-register, and scalar-register operands.

All vector operands in storage must be aligned on
integral boundaries. When an instruction requires
boundary alignment and the storage operand is not
designated on the appropriate boundary, a specifi-
cation exception is recognized.

An instruction which processes operands in vector
or scalar registers must designate a valid register
number for each such operand. If an invalid reg-
ister number is designated, a specification exception
is recognized.

Chapter 2. Vector Facility 2=7

Figure 2-3 on page 2-9 summarizes the vector-data
formats, the associated operations, and the
boundary-alignment and register-number require-
ments.

Vectors of 16-, 32-, and 64-bit elements containing
arithmetic or logical data are collectively referred to
as arithmetic vectors. Arithmetic vectors in storage
must be on integral boundarics. The elements of
arithmetic vectors have the same formats as scalar
data of the same data type.

Vectors of individual bits_are referred to as bit
vectors (see the section “Bit Vectors” on
page 2-10).

Programming Note: Logical-data elements may
also be considered as 32-bit unsigned binary inte-
gers, but no arithmetic or comparison operations
are provided to process such vectors.

Arithmetic Vectors in Storage

Arithmetic vectors in storage may be loaded and
stored in one of two ways:

* By sequential addressing (contiguously or with
stride)
By indirect element selection

Most arithmetic, comparison, and logical
instructions may also access one of the vector oper-
ands directly from storage by sequential addressing.
Indirect element selection is available only for load
and store operations.

Access by Sequential Addressing

Vector elements are most often accessed in storage
in a regular sequence of addresses. The instruction
specifies a general register containing the starting
address and, optionally, another general register
containing the stride. The stride, which is a 32-bit
signed binary integer, is the number of element
locations by which the operation advances when
proceeding from one element to the next. The
maximum number of elements to be accessed is
specified by the vector count.

A stride of one specifies a contiguous vector, for
which successive elements are in adjacent storage
locations; this stride is the default when no general
register is specified for the stride. A stride of zero
causes the same element to be used repeatedly as
the storage operand. A negative stride causes ele-

2-8 ESA/370 and System/370 Vector Operations

ments to be accessed in a descending sequence of
addresses.

During the execution of instructions which access
an arithmetic vector in storage sequentially, the
starting address contained in the general register is
updated as successive elements in storage are
accessed. At the end of instruction execution, or at
the time of any interruption, the contents of the
general register have been updated to the storage
address of the next vector element due to be proc-
essed if instruction execution had not ended or
been interrupted. Likewise, when instructions
process a bit vector in storage, the starting address
in the general register is updated by the number of
bytes accessed during execution.

Such automatic updating of vector addresses is used
to process a vector in sections when the vector has
more elements than will fit into a vector register. It
also assists in resuming instruction execution after
an interruption.

For more details on sequential addressing, see the
section “Class-IM and Class-IC Instructions” on
page 2-15. For more information on sectioning,
see the section “Vector Sectioning” on page 2-10.

Programming Note: A contiguous vector is
implied when zero is specified in the instruction
field that designates the general register containing
the stride. This differs from a zero stride, which is
specified by placing a value of zero in the general
register containing the stride, and which causes
reuse of the same element in storage. A zero stride
is generally not desired because the scalar form of
an instruction is usually faster than repcated use of
the same storage location. (Sec the section “Oper-

Access by Indirect Element Selection

Indirect element selection permits vector clements
to be loaded or stored in an arbitrary sequence.
With the instructions used for indirect element
selection, LOAD INDIRECT and STORE INDIRECT,
the locations of the individual operand elements to
be loaded or stored are designated by a vector of
element numbers in a vector register. Each such
element number indicates the position of the corre-
sponding operand element relative to the start of
the operand vector. The number of operand ele-
ments accessed, which is also the number of
element numbers used for indirect element
selection, is equal to or less than the vector count.

Width in Bits . Valid Register Numbers
Alignment
Required in Scalar Vector
Data Type 1 16 | 32 | 64 Storage Register Register
Floating point
Short A Word Even FR Any VR
Long A | Doubleword Even FR Even VR
Binary integer
16-bit signed N Halfword — Any VR
32-bit signed B Word Any GR Any VR
64-bit signed P - - Even VR
Logical L Word Any GR Any VR
Bit M Byte — —
Explanation:
- Does not apply
A All arithmeltic, load, and store operations
B Some arithmetic and all load and store operations
FR Floating-point register
GR General register
L Logical and shift operations
M Logical operations on bits in storage and in vector-mask register; comparison
results
P 64-bit binary integers, which occur only as the result of a binary multiply oper-
ation
S Only load and store operations, which convert between 16 bits in storage and
32 bits in a vector register
VR Vector register

Figure 2-3. Types of Vector Data

The element numbers used for indirect element
selection are 32-bit signed binary integers. They
may be positive, negative, repeated, and in any
order. Successive operand elements are located in
storage at addresses 4 + wxE(0), 4 + wxE(1),
A + wxE(2), .., where A4 is the origin of the
operand vector in storage, w is the width in bytes (4
or 8) of each element, and E(0), E(1), E(2), ... are
the successive element numbers in a vector register.

General-register address updating does not apply to
the instructions LOAD INDIRECT and STORE INDI-
RECT.

Programming Notes:

1. For a discussion of address updating, see the
programmuming notes under “Vector Sectioning”
on page 2-10.

2. Vectors of element numbers may be stored as
16-bit signed binary integers when the element
numbers rernain within the range of such inte-
gers. The wvector instructions LOAD

HALFWORD and STORE HALFWORD perform
the conversion between the 16-bit and 32-bit
formats.

3. Accessing vectors in storage in the arbitrary
sequence permitted by indirect element
selection may be significantly slower than
accessing contiguous vector elements.

Arithmetic Vectors in Registers
Operands in Vector Registers

Any vector register can be designated for a vector
of short floating-point numbers, 32-bit signed
binary integers, or 32-bit logical data. Even-odd
vector-register pairs are coupled to hold long
floating-point numbers or the 64-bit signed binary
integers which result from binary multiplication.

When a vector register is modified, those elements

in the vector register beyond the last element to be
modified are left unchanged.

Chapter 2. Vector Facility 2-9

Most operations on floating-point, binary, or
logical vectors which may be performed with one
vector operand in storage and one operand in a
vector register may also be performed with both
operands in vector registers. When both operands
are in vector registers, the corresponding pairs of
elements from each vector-register operand gener-
ally have the same element number (but see the
descriptions of ACCUMULATE and MULTIPLY AND
ACCUMULATE for an exception to this rule).

Operands in Scalar Registers

Operations on floating-point, binary, or logical
vectors may specify as one source operand the con-

tents of a scalar register, that is, of a floating-point

or general register, the other operand being a
vector. This scalar operand is used repeatedly and
treated as a vector of identical elements of the same
length as the vector operand.

Some vector instructions which obtain one of the
source operands from a scalar register also produce
a scalar result, which replaces the contents of the
same scalar register.

Bit Vectors

A group of bits in contiguous bit positions is called
a bit vector. Bit vectors are the operands of logical
operations where one of the operands is in the
vector-mask register. They are used in operations
on arithmetic vectors under mask control.

A Dbit vector in storage must begin on a byte
boundary, but it may end at any bit position, the
remaining bits of the rightmost byte being ignored.
When the instruction STORE VMR stores a bit
vector with the vector count specifying a number of
bits that is not a multiple of R, the final byte stored
is padded on the right with zeros.

When used for the control of load and store opera-
tions or for arithmetic and logical operations in the
vector-mask mode, the appropriate bit vector must
first be placed in the vector-mask register. Each bit
in the vector-mask register corresponds sequen-
tially, one for one, to an element of one or both of
the vector-register operands.

Bit vectors in the vector-mask register are generated
or altered by the following vector instructions:

¢ AND TO VMR
¢ COMPARE

2-10 ESA/370 and System/370 Vector Operations

COMPLEMENT VMR
EXCLUSIVE OR TO VMR
LOAD VMR

LOAD VMR COMPLEMENT
OR TO VMR

Programming Notes:

1. Appendix A, “Instruction-Use Examples,”
shows examples of the use of bit vectors for
mask control.

2. Since the section size is a multiple of 8 and bit
vectors start on a byte boundary, every section
of a bit vector also starts on a byte boundary.
Thus, after an instruction has completed proc-
essing a full section of bits, the next bit is
always the leftmost bit of the byte specified by
the updated address.

3. When a bit vector is used as a mask to identify
selected elements of an arithmetic vector with
one bits and the remaining elements with zero
bits, the bit vector is logically equivalent to a
vector containing a set of element numbers in
ascending sequence, which may be used for
indirect selection of the arithmetic-vector ele-
ments. The vector of element numbers consists
merely of the bit indexes (bit numbers) of the
one bits in the bit vector.

A bit vector may be converted to a vector of
element numbers by the instruction LOAD BIT
INDEX. This instruction operates directly on a
bit vector in storage and produces a vector of
element numbers in a vector register; the
vector-mask register is not used.

Vector Sectioning

Vector sectioning is a programming technique for
processing vectors the length of which may exceed
the section size. Such vectors are processed by
dividing them into smaller sections and using a
loop of instructions, referred to as a sectioning
loop, which repeats the appropriate sequence of
instructions for all consecutive sections of the speci-
fied vectors. To assist with such sectioning,
addresses of vector operands in storage and bit-
vector parameters are automatically updated, and
the instruction LOAD VCT AND UPDATE is provided.

The LOAD vCT AND UPDATE instruction specifies a
general register that has initially been loaded with
the total number of vector elements to be proc-
essed. The instruction sets the vector count to the
lesser of the section size and the general-register

contents. It also subiracts this value from the
current contents of the general register, which then
contains the number of elements remaining to be
processed during subsequent passes through the
sectioning loop.

LOAD VCT AND UPDATE sets the condition code to
provide the program with an indication of whether
a complete vector has been processed. The
program may use the instruction BRANCH ON CON-
pITION for loop control to repeat the sequence of
instructions for each section. A sectioning loop
may also be closed by testing the residual count in
the general register for zero and branching back to
the start of the loop if not zero.

For most vector operations, the program can be
written such that sectioning is independent of the
section size. There are occasions, however, when
knowledge of the actual section size is desirable;
this value is available to the program by executing
the instruction STORE VECTOR PARAMETERS.

Programming Notes:

1. Examples of sectioning are shown in
Appendix A, “Instruction-Use Examples.”

2. One method of controlling the vector count for
sectioning is to place the instruction LOAD VCT
AND UPDATE at the beginning of the loop and
an appropriate BRANCH ON CONDITION
instruction at the end of the loop. This is
usually sufficient because most veetor-facility
instructions do not set the condition code. If
the sectioning loop does contain an instruction
that modifies the condition code, the final
BRANCH ON CONDITION insiruction could be
preceded by a LOAD AND TEST instruction to
test the general register containing the residual
vector count.

Appendix A, “Instruction-Use Examples” also
illustrates other techniques.

3. If a sectioning loop contains more than one
reference to the same vector in storage, such as
a load followed later by a store, the program
must ensure, by retaining a copy of the current
address, that all addresses within the loop
which specify the same vector refer to the same
section.

4. The instructions which provide indirect element
selection, LOAD INDIRECT and STORE INDI-
RECT, progress one section of element numbers
at a time. But sectioning of the vector of

element numbers used for addressing is per-
formed by a preceding instruction which loaded
or generated the element numbers by means of
sequential addressing. The indirect-selection
instructions themsslves do not provide for
address updating. FEach element address is
computed separately from an element number
and from the specified starting address, which
remains unchanged.

Conditional Arithmetic
Vector-Mask Mode

The vector-mask mode allows for conditional exe-
cution of arithmetic and logical instructions,
depending on the mask bits in the vector-mask reg-
ister.

When the vector-mask mode is in effect, operand
elements are processed if they are in positions
which correspond to mask bits that are ones. In
positions which correspond to zero mask bits, the
target locations remain unchanged, no arithmetic or
operand-access exceptions are recognized for those
positions, the corresponding change bits in storage
remain unchanged, and no PER event for storage
alteration is indicated. When the vector-mask
mode is not in effect, the mask bits are ignored,
and all active elements are processed.

The arithmetic and logical vector instructions
which are under the control of the vector-mask
mode are:

ACCUMULATE

ADD

AND

DIVIDE

'EXCLUSIVEOR

LOAD COMPLEMENT

LOAD NEGATIVE

LOAD POSITIVE

MAXIMUM ABSOLUTE
MAXIMUM SIGNED

MINIMUM SIGNED

MULTIPLY

MULTIPLY AND ACCUMULATE
MULTIPLY AND ADD
MULTIPLY AND SUBTRACT

OR

SHIFT LEFT SINGLE LOGICAL
SHIFT RIGHT SINGLE LOGICAL
SUBTRACT

® O & o 0 0 ¢ 5 & 0 6 8 ¢ ° * * o o o

Except for LOAD COMPLEMENT, LOAD NEGATIVE,

and LOAD POSITIVE, which are considered arith-

metic instructions for this purpose, load and store
instructions are not controlled by the vector-mask

Chapter 2. Vector Facility 2-11

mode; neither are instructions which modify the
vector-mask register, such as COMPARE. The
instructions LOAD EXPANDED, LOAD MATCHED,
STORE COMPRESSED, and STORE MATCHED do
depend on the vector-mask register for their exe-
cution, but this is independent of the mode setting.

For more details, see the section “Class-IM and
Class-1C Instructions” on page 2-15.

Instructions Controlling the Vector-Mask
Mode

The instruction SET VECTOR MASK MODE turns the
vector-mask mode on or off. EXTRACT VECTOR
MASK MODE places the current value of the mode
in a general register.

Programming Notes:

1. The vector-mask mode is useful when arith-
metic vector operations depend on the result of
a vector comparison. Only elements which are
to be processed are subject to arithmetic and
access exceptions.

2. Since loading, comparing, and storing are oper-
ations which are not subject to the vector-mask
mode, it is frequently possible to leave the
vector-mask mode in effect while performing
the arithmetic for an entire sectioning loop.

Common Instruction Descriptions

Many vector-facility instructions have common
characteristics and obey common rules for accessing
the elements of their vector operands. This section
describes the common aspects, which are not
repeated in individual instruction descriptions.

Some instructions contain fields that vary slightly
from the basic format, and in some instructions,
the operation performed does not follow the
general rules stated in this section. Any exceptions
to these rules are noted in the individual instruction
descriptions, as are the rules for instruction formats
and types not covered in this section.

The rules are grouped according to instruction
classes and formats.

Programming Note: Many load and all store oper-
ations on vectors are the same for binary and short
floating-point operands, so that only a single set of
operation codes is provided for them. However,

2-12 ESA/370 and System/370 Vector Operations

for programming convenience, both binary and
short floating-point mnemonics are assigned to
these operation codes.

Separate operation codes are provided for short
floating-point and binary operands when the opera-
tion must distinguish between floating-point and
general registers, as in loading or extracting an
element, or when the operation depends on the
data type, such as LOAD COMPLEMENT.

Instruction Classes

Vector-facility instructions are classified into one of
nine classes: IM, IC, IG, 1P, IZ, NC, NZ, N1, and No.
The properties of these nine instruction classes are
summarized in Figure 2-4.

Instruc- Number of Execution Vector-
. Mask-
tion Elements or Interrup-
Class Bits tible? Mode
)) : Control?
IM VCT-VIX Yes Yes
IC VCT-VIX Yes No
1G GR and VIX Yes No
P PSN-VIX Yes No
1Z SS Yes No
NC vCr No No
NZ SS No No
N1 One No No
NO None No No
Explanation:
GR Number of bits determined by contents of a
general register
PSN Number of elements determined by
partial-sum number
SS Section size
VCT Vector count
VIX Vector interruption index

Figure 2-4. Vector-I'acility Instruction Classes

The instruction classes distinguish:

¢ Whether the instruction is interruptible (1) or
not interruptible (N_),

» Whether instruction execution depends on the
vector interruption index (1M, IC, IG, IP),

¢« Whether element selection depends on the
setting of the vector-mask mode (1M),

* Whether the number of vector elements or bits
processed is variable and is controlled by the
vector count (IM, IC, NC) or by a general reg-
ister (1G),

» Whether the number of vector elements or bits
processed is fixed and is the partial-sum
number (1P) or the section size (1Z, NZ),

e Whether just one vector element is processed
(N1) or none (No).

Instruction Formats

The instruction formats used by vector-facility
instructions are shown in Figure 2-5 on page 2-14.
The first four are the base formats — QST, QV, VST,
and vv, where Q indicates that the format provides
for a scalar-register operand, ST indicates a storage
operand (with stride), and v indicates a vector-
register operand. Most of the arithmetic
instructions are available in all four of these base
formats. For the vector-comparison instructions,
the vR1 field of the base formats is interpreted as a
modifier (M1).

Bit positions which are shown in instruction
formats as shaded (////) are unassigned.

Field Designations

The field designations in the instruction formats
indicate the use of the field and the type of opera-
tion in which the field participates.

B: and D: Fields: B2 designates a base register,
and D2 is a displacement. They are used for
addressing in the same way as with scalar
instructions.

FRs Field: FR3 designates a (scalar) floating-point
register. It is a more specific description of the QRrs
field used in some instruction descriptions, and the
same rules and restrictions apply as for QRa.

GR Fleld: GR designates a (scalar) general register
or a pair of general registers. Unless otherwise indi-
cated in the individual instruction descriptions, the
contents of the general registers designated by the
GR1 and GR: fields are called the first operand and
second operand, respectively. When designating
the third operand (GRs), it is a more specific indi-
cation of the QRa field used in some instruction
descriptions, and the same rules and restrictions
apply as for QRa.

QR3 Field: QR: designates a scalar register, with
the operation code determining whether it is a
floating-point or general register. In the Qsr
format, the QRs field must not designate a general
register which is the same as that designated by the
rs2 field; otherwise, a specification exception is
recognized. For instructions in the Qv or VR
formats with only two operands, one a vector and
one a scalar, the scalar operand is called the second
operand and is designated by a QR field.

Rs Field: R3 is shown in individual instruction
descriptions as either VR3, to designate a vector reg-
ister, or GR3, to designate a general register.

RS2 Field: Rs2 designates a general register con-
taining a storage-operand address. The address is
updated during execution. The Rs2 field must not
designate the same general register as the r12 field
or, in the QsT format, as the GR3 or QRs field.

RT:2 Field: RT2 designates a general register con-
taining a stride. The field cannot designate general
register 0; if the Rtz field is zero, a stride of 1 is
specified. It also must not designate the same
general register as the Rs2 field.

VR Field: VR designates a vector register or a pair
of vector registers. The VR1i, VRz, and VR3 fields
designate the first, second, and third operands,
respectively, in vector registers or pairs of vector
registers, as required for the data type specified by
the operation code.

Three-Operand Instruction Formats

All nonstore vector instructions which explicitly
specify three operands in the QST, QVv, RSE, VST, and
vv formats use the first-operand location as the
target for the result and the second- and third-
operand locations for the source operands. These
three-operand operations may be shown symbol-
ically as:

Operand 1 = Operand 3 ¢ Operand 2

where ® represents an arithmetic or logical opera-
tion. Operand 1 is always in vector registers.
Operand 2 is in storage or in vector registers.
Operand 3 is either in vector registers or in a scalar
register. An instruction may specify the same or
different vector registers for the target and source
operands.

Chapter 2. Vector Facility 2-13

First Second Third
Halfword Halfword Halfword
[] l 1
Base Formats
QST Format Op Code QRa| RTz2{ VRi| RS2
e 16 20 24 28 31
QV Format Op Code QR3|////| VR1| VR2
0 16 20 24 28 31
VST Format Op Code VR3| RTz2| VRi{ RS2
0 16 20 24 28 31
VV Format Op Code VRa|////| VRi| VR2
0 16 20 24 28 31
Other Formats
RRE Format Op Code /111777771 GRal////
0 16 24 28 31
RSE Format Op Code Rs (////] VR1l////| B2 D2
0 16 20 24 28 32 36 47
S Format Op Code B2 D2 |
0 16 20 31
VR Format Op Code QRs|////| VRi| GR2
0 16 20 24 28 31
VS Format Op Code /1171117171777 RS2
0 16 28 131

Figure 2-5. Vector-I'acility Instruction Formats

Vector-comparison instructions are similar to these
threc-operand instructions, except that they desig-
nate a modifier (M1) instead of a first operand
(VR1), and they place the result in the vector-mask
register.

Programming Note: The base address of a storage
operand is placed in a general register designated by
the following: the Rs: field in the QsT, vs, and vsT
formats; the GRr1 field in the RRE format; and the

2-14 ESA/370 and System/370 Vector Operations

I
|
l

Bz field in the RsE and s formats. The Rs2 and
GR1 fields may designate general register 0; but the
B2 field cannot, since a zero B2 field specifies that
the base address itself is zero. Use of general reg-
ister 0 for storage addresses should, in general, be
avoided to keep storage addressing consistent
among all instruction formats for both vector and
scalar instructions. (See also the programming note
in the section “Vector Instructions in an ESA/370
System” on page 2-29.)

Summary of Instructions by Class
and Format

Figure 2-6 on page 2-16 briefly lists all instructions
of the vector facility according to class and format
within the class.

Class-IM and Class-IC Instructions

Most vector instructions are in either class IM or IC.
Instructions in both classes are interruptible, the
number of elements processed is determined by the
vector count, and they depend on the vector inter-
ruption index. Class-IM instructions are also under
the control of the vector-mask mode; class-iC
instructions are independent of the vector-mask
mode.

For both classes, the elements of each operand are
processed in sequence from element X, where X is
the initial value of the vector interruption index
(normally zero), to C—1, where C is the vector
count.

The number of elements that are processed for each
operand is called the net count. If C is greater than
X, then the net count is C—X; otherwise the net
count is zero. For vector instructions which
combine vector operands with a scalar operand, the
scalar operand is considered to be replicated as
many times as indicated by the net count.

If the net count is zero at the start of instruction
execution, the vector interruption index is set to
zero, and execution is completed immediately. No
elements are processed, no operand-access
exceptions occur, the change bits for any storage
operand remain unchanged, and no PER event for
storage alteration is indicated. Operands in vector,
floating-point, and general registers that are due to
be modified, the vector in-use bits, and the vector
change bits remain unchanged.

If the instruction is interrupted during execution,
Y—X pairs of elements have been processed, where
X and Y are the values of the vector interruption
index at the beginning of execution and at the time
of interruption, respectively. Y is then the element
number of the next element, if any, to be processed
for each operand.

When a class-IM or class-IC instruction designates a
scalar register as the location of the third operand
(in the QsT or Qv format), and the scalar register is
a floating-point register, the instruction must desig-
nate register 0, 2, 4, or 6 in the third-operand field;
otherwise, a specification exception is recognized.

Ciass-IM Instructions

For instructions in class 1M, all elements are proc-
essed as described above when the vector-mask
mode is off. When the vector-mask mode is on,
however, operand elements are fetched from storage
or from operand registers, and result elements are
placed in the target register, only for those elements
which correspond to ones in the vector-mask reg-
ister. Element positions in the target register corre-
sponding to zeros remain unchanged; no arithmetic
or operand-access exceptions are recognized for
those positions, the corresponding change bits in
storage remain unchanged, and no PER event for
storage alteration is indicated.

The first mask bit used, when the vector-mask
mode is on, is bit X of the vector-mask register,
which corresponds to vector-register element X.
The last mask bit and vector-register element proc-
essed are numbered C—1, if the instruction is com-
pleted, or Y—1, if the instruction is interrupted
during execution.

Class-IM instructions in the QsT and vsT formats
have the storage address in the RS2 register updated
during execution for every element position, regard-
less of whether the corresponding mask bit is one
or zero (see the section “Storage Operands for QST
and VST Formats” on page 2-17).

Class-IC Instructions

Execution of instructions in class 1C is independent
of the vector-mask mode. The following
instructions depend on mask bits in the vector-
mask register, but their execution is the same
whether the vector-mask mode is on or off: 1.0AD
EXPANDED, LLOAD MATCHED, STORE COMPRESSED,
and STORE MATCHED. The first mask bit used for
those instructions is bit X, corresponding to vector-
register element X. The last mask bit and vector-
register element processed are numbered C-1, if
the instruction is completed, or Y—1, if the instruc-
tion is interrupted during execution.

Chapter 2. Vector Facility 2-15

Instruction Formats When Operands Are

Instructions Class Long Short Binary | Other | Total
ADD, SUBTRACT M Four! Four! Four! 24
AND, EXCLUSIVE OR, OR M Four! 12
DIVIDE M Four! Four' 8
MULTIPLY M Four! Four'? Four! 12
MULTIPLY AND ADD IM | QST/QV/VST | QST/QV/VST? 6
MULTIPLY AND SUBTRACT IM QST/QV/VST | QST/QV/VST? 6
MULTIPLY AND ACCUMULATE IM VST/VV VST/VV? 4
ACCUMULATE IM VST/VV VST/VV? 4
LOAD COMPLEMENT M \'A% Vv \'A% 3
LOAD NEGATIVE M 'A% Vv \A% 3
LLOAD POSITIVE IM Vv \'A" \'A% 3
SHIFT LEFT SINGLE LOGICAL M RSE 1
SHIFT RIGHT SINGLE LOGICAL M RSE 1
MAXIMUM ABSOLUTE M VR VR 2
MAXIMUM SIGNED M VR VR 2
MINIMUM SIGNED IM VR VR 2
COMPARE IC Four! Four! Four!' 12
LOAD, LOAD MATCHED IC QV/VST/VV QV/ VST VV? Qv 14
STORE, STORE MATCHED IC VST vsT? 4
LOAD EXPANDED iC VST VST? 2
STORE COMPRESSED IC VST VST? 2
LOAD INTEGER VECTOR IC VST 1
LOAD HALFWORD IC VST 1
STORE HALFWORD IC VST 1
LOAD ZERO IC vV vv?: 2
LOAD INDIRECT IC RSE RSE® 2
STORE INDIRECT IC RSE RSE? 2
LOAD BIT INDEX 1G RSE 1
SUM PARTIAL SUMS P VR 1
ZERO PARTIAL SUMS P VR 1
RESTORE VR 1Z RRE 1
SAVE VR, SAVE CHANGED VR 1z RRE 2
RESTORE VSR 1Z S 1
CLEAR VR 1Z S 1
COUNT LEFT ZEROS IN YMR NC RRE 1
COUNT ONES IN VMR NC RRE 1
COMPLEMENT VMR, TEST VMR NC RRE 2

Figure 2-6 (Part 1 of 2). Summary of Vector-Facility Instructions by Class and Format

2-16 ESA/370 and System/370 Vector Operations

Instruction Formats When Operands Are
Instructions Class Long Short Binary | Other | Total

AND TO VMR NC VS 1
EXCLUSIVE OR TO VMR NC \S 1
LOAD VMR NC Vs 1
LOAD COMPLEMENT VMR NC \D) 1
OR TO VMR, STORE VMR NC Vs 2
RESTORE VMR, SAVE VMR NZ S 2
EXTRACT ELEMENT NI VR VR VR 3
LOAD ELEMENT N1 VR VR VR 3
EXTRACT VCT NO RRE 1
EXTRACT VECTOR MASK MODE NO RRE 1
LOAD VCT AND UPDATE NO RRE 1
LOAD VCTI FROM ADDRESS NO S 1
RESTORE VAC, SAVE VAC NO S 2
SAVE VSR NO S 1
SET VECTOR MASK MODE NO S 1
STORE VECTOR PARAMETERS NO S 1
Totals 53 31 41 26 17
Explanation:

! Four instruction formats are provided: QST, QV, VST, and VV.

? Operand 1 is in the long format; operands 2 and 3 are in the short format.

* Instruction in this format may be used for both short and binary operands.

Figure 2-6 (Part 2 of 2). Summary of Vector-Facility Instructions by Class and Format

Storage Operands for QST and VST
Formats

In the QsT and vsT formats, the Rs2 field designates
a general register containing the starting address,
that is, the address of the first element of the vector
operand in storage which is to be processed. The
RT2 field, if not zero, designates a general register
containing the stride; if the rRT2 field is zero, general
register 0 is not used, and a stride of one is
assumed.

The addresses of successive vector elements in
storage are A, A+wT, A+2wT, ..., where A4 is the
starting address, 7' is the stride, and w is the size of
each element in bytes. The value of wis 2, 4, or 8,
depending on whether the operation code specifies
the storage-operand elements to be halfwords,
words, or doublewords.

Each address may be obtained by adding to the
previous address the value w7, which is the stride T
shifted to the left by one, two, or three bit posi-
tions. Any carries or ones shifted out of bit posi-
tion 0 are ignored. Depending on whether the
address size is 31 or 24 bits, the rightmost 31 or 24
bits of the sum are used as the storage address,
which is also returned to the general register con-
taining the initial address; the leftmost one or eight
bit positions, respectively, of the register are set to
zeros. The register is thus updated after each unit
of operation to hold the address of the next
element, whether an element of the storage operand
has been accessed or not. All bits in the general
register containing the stride take part in the opera-
tion, with the contents of the stride register
remaining unchanged.

A stride of zero (T=0) means that the same
element location is used repeatedly. When storing

Chapter 2. Vector Facility 2-17

with a zero stride, only the last element stored is
retained in the addressed location.

A nonzero RT2 field must not designate the same
general register as the Rs2 field; likewise, the third-
operand field of a QsT-format instruction must not
designate the same general register as the Rsz field.
Otherwise, a specification exception is recognized,
and the operation is suppressed.

When the net count is not zero and one or more
elements have been accessed, the address is
updated. The leftmost bits of the Rs2 register,
depending on the address size, are sct to zeros; this
is done even when the address remains unchanged
because the stride is zero. No storage accesses are
made for elements that are skipped when the stride
is greater than one.

If no elements are processed because the net count
is zero at the start of instruction execution, no
access exceptions are recognized for the storage
operand, The storage address in the RS2 register
and the change bits for the operand remain
unchanged, and no PER event for storage alteration
is indicated.

When the net count is not zero for the instructions
LOAD EXPANDED and STORE COMPRESSED, but no
elements are processed because the bits of the
vector-mask register which correspond to vector-
register element locations to be loaded or stored are
all zeros, no operand storage accesses are made,
and the storage address in the RS2 register remains
unchanged.

In cither of these two cases where no elements are
processcd, it is undefined whether the leftmost one
or eight bit positions of the Rs2 register, depending
on whether the address size is 31 or 24 bits, are set
to zeros or remain unchanged.

When class-1M instructions are executed with the
vector-mask mode on, no access exceptions are
recognized for elements corresponding to zeros in
the vector-mask register.

Programming Notes:

1. For instructions which produce a vector result,
result clements corresponding to ones in the
vector-mask register are the same whether the
vector-mask mode is on or off. The vector-
mask mode does affect the results produced by
instructions which reduce vector operands to a

2-18 ESA/370 and System/370 Vector Operations

partial sum (ACCUMULATE and MULTIPLY
AND ACCUMULATE) or to a single scalar result,
because those results may depend on the pres-
ence or absence of each operand element.

2. The address-updating operation consists of
unsigned shifts and additions of binary integers
without overflow. Nevertheless, it is useful to
consider the stride as a signed quantity, because
adding the two’s complement of an integer to
an unsigned binary number is the same as sub-
tracting that integer.

Class-NC Instrdctions

Class-NC instructions process a variable number of
bits in the vector-mask register but do not process
any arithmetic-vector elements. The number of
bits processed is determined by the vector count.
The instructions are not interruptible and do not
depend on the vector interruption index.

Class-NC instructions use the RRE or vs format.
Class-Nc instructions in the RRE format operate on
bits in the vector-mask register. Class-NC
instructions in the vs format operate on bits in the
vector-mask register and on a bit vector in storage.

When instruction execution is completed for an
operation that modifies the contents of the vector-
mask register, any remaining rightmost bits of the
register are set to zeros.

When the vector count is zero, execution of the
instruction is completed without any bits being
processed. For an instruction of a type that modi-
fies bits in the vector-mask register when the vector
count is not zero, a vector count of zero causes all
bits of the vector-mask register to be set to zeros.
Any operand in a general register that is due to be
modified remains unchanged.

VS-Format Instructions

The vs format is used for instructions which
operate on bit vectors in storage and in the vector-
mask register. All vs-format instructions are in
class NC.

The Rrs2 field designates a general register that con-
tains the storage address of the first byte of the
second operand, the leftmost bit of which is the
first bit of the storage operand to be processed.
The first bit in the vector-mask register is the left-
most bit, bit 0. The operation proceeds with suc-

cessive bits in contiguous bit locations of the
second operand and in the vector-mask register.

When instruction execution is completed, the
address of what would have been the next byte of
the second operand is placed in the general register
designated by Rs2; that address is the integral part
of the expression 4 + (C+7)/8, where A4 is the
starting address in the Rs2 register and C is the
vector count. The updated address occupies the
rightmost 31 or 24 bit positions of the RS2 register,
depending on the address size; the leftmost bit or
eight bits, respectively, are set to zeros.

If the vector count is not a multiple of 8, the
remaining bits in the last byte used in storage are
ignored on fetching and set to zeros on storing.

If no bits are processed because the vector count is
zero, no access exceptions are recognized for the
storage operand, the storage address in the general
register designated by the Rs: field and the change
bits for the operand remain unchanged, and no PER
event for storage alteration is indicated. It is unde-
fined whether the leftmost one or eight bit posi-
tions of the Rs2 register, depending on whether the
address size is 31 or 24 bits, are set to zeros or
remain unchanged.

Programming Note: Only class-NC instructions
which modify the vector-mask register set bits
beyond the active bits to zeros. This contrasts with
COMPARE (class IC), which leaves bits in the
vector-mask register beyond the active bits
unchanged, and RESTORE VMR (class NZ), which
ignores the vector count and replaces all the bits.

Instructions in Other Classes

Details of instructions in classes I1G, IP, 17, NZ, N1,
and No are contained in the individual instruction
descriptions.

Vector Interruptions

Interruptible Vector Instructions

All instructions which can operate on multiple ele-
ments of arithmetic vectors in storage or in vector
registers are interruptible. Their execution generally
consists of multiple units of operation with inter-
ruptions being permitted between these units of
operation.

Vector instructions which can operate on only one
arithmetic-vector element, or on none at all, are not
interruptible; that is, the entire execution consists of
one unit of operation. They include instructions
which operate on multiple bits in the vector-mask
register but not on elements of arithmetic vectors.

Conceptually, vector instructions are executed
sequentially, elements of the vector operands of a
single vector instruction are processed sequentially,
and any resulting exceptions are recognized sequen-
tially. Any program interruption is due to the first
exception which is recognized and for which inter-
ruptions are allowed.

At the time of an interruption, changes to register
contents, which are due to be made by an interrup-
tible vector instruction beyond the point of inter-,
ruption, have not yet been made. Changes to '
storage locations, however, which are due to be
made by an interruptible vector instruction beyond
the point of interruption, may have occurred for
one or more storage locations beyond the location
containing the element identified by the inter-
ruption parameters, but not for any location
beyond the last element specified by the instruction
and not for any locations for which access
exceptions exist. Changes to storage locations or
register contents which are due to be made by
instructions following the interrupted instruction
have not yet been made at the time of interruption.

If an instruction is due to cause more than one

program interruption other than for PER events,
only the first one is indicated.

Chapter 2. Vector Facility 2-19

Units of Operation

The execution of an interruptible vector instruction
is considered to be divided into units of operation,
such that an interruption is permitted between
these units of operation.

The unit of operation for program interruptions,
other than for PER events alone, is one vector
element. After the last vector element has been
processed without a program interruption, the
instruction is completed in a final unit of operation.
This final unit of operation consists in advancing
the instruction address to the next instruction,
setting the vector interruption index to zero if the
instruction depends on the vector interruption
index, and, for some instructions, setting the condi-
‘tion code.

Performing the final unit of operation cannot create
any program-interruption conditions. If a program
interruption occurs while processing the last
element of a vector, the instruction remains par-
tially completed, because the final unit of operation
has not yet been performed. Thus, all elements of
a vector are processed alike, including the recogni-
tion of any program exceptions.

Only the final unit of operation of advancing the
instruction address, setting the vector interruption
index to zero, and possibly setting the condition
code is performed without processing any elements,
when an interruptible instruction which depends on
the vector interruption index is executed in the fol-
lowing situations:

¢ Tor class-IM and class-Ic instructions, the
vector interruption index equals or exceeds the
vector count.

* For the class-1P instructions SUM PARTIAL
sUMS and ZERO PARTIAL SUMS, the vector
interruption index equals or exceeds the
partial-sum number.

* For the class-I1G instruction LOAD BIT INDEX,
the specified bit count is zero, or the vector
interruption index equals the section size.

For interruptions due to an asynchronous condi-
tion (external, 1/0, repressible machine-check, or
restart), the unit of operation may be one or more
elements, depending on the model, the particular
instruction, and the condition causing the inter-
ruption. If a PER event is held pending at the time

2-20 ESA/370 and System/370 Vector Operations

an instruction is due to be interrupted by such an
asynchronous condition, a program interruption for
the PER event occurs first, and the other inter-
ruptions occur subsequently (subject to the mask
bits in the new psw) in the normal priority order.

PER events alone do not normally cause execution
of a vector instruction to be interrupted prema-
turely. For possible exceptions, see the subsection
“Priority of Indication” of the section “Program-
Event Recording” in Chapter 4, “Control,” of the
Principles of Operation publications listed on page
i,

Operand Parameters

Execution of interruptible vector instructions
involves the updating of information referred to as
the operand parameters. The operand parameters
include:

¢ The vector interruption index, for instructions
which depend on that index

e The storage address in a general register, for
instructions in the QST and vsT formats

* The bit index and bit count in a general reg-
ister, for LOAD BIT INDEX

e The floating-point scalar operand, for
MAXIMUM ABSOLUTE, MAXIMUM SIGNED,
MINIMUM SIGNED, and SUM PARTIAL SUMS

* The element numbers in a gencral-register pair,
if specified, for MAXIMUM ABSOLUTE,
MAXIMUM SIGNED, and MINIMUM SIGNED

e The vector in-use bits, for CLEAR VR and
RESTORE VSR

» The save-area address and element number in
general registers, for RESTORE VR, SAVE
CHANGED VR, and SAVE VR

Upon interruption, the operand parameters are
adjusted so as to indicate the extent to which
instruction execution has been completed. If the
instruction is reexecuted after the interruption, exe-
cution resumes from the point of interruption.

The value of the condition code or the vector
count, if due to be set upon completion of an inter-
ruptible instruction, is undefined at the point of
interruption. The conditon code and vector count
remain unchanged, however, if they are not due to
be set by the instruction.

Arithmetic Exceptions

The arithmetic exceptions which may be caused by
interruptible vector instructions are:

Exponent overflow
Exponent underflow
Fixed-point overflow
Floating-point divide
Significance
Unnormalized operand

In the following respects, the arithmetic exceptions
are the same for vector instructions as for the corre-
sponding scalar instructions: the program mask in
the psw controls the occurrence of a program inter-
ruption for fixed-point overflow, exponent under-
flow, or significance; the result for the current target
element is the same as the result for the corre-
sponding scalar operation; and bits 8-15 of the
program-interruption code indicate the type of
exception.

The binary ADD, LOAD COMPLEMENT, LOAD POSI-
TIVE, and SUBTRACT instructions for vectors do not
indicate fixed-point overflow when a program inter-
ruption is disallowed by the fixed-point-overflow
mask in the psw, unlike the corresponding scalar
instructions which can indicate overflow by setting
the condition code. Other differences, including the
definition of the unnormalized-operand exception,
which does not apply to scalar instructions, are
described in the following sections.

Exception-Extension Code

When an arithmetic exception is recognized during
execution of an interruptible vector instruction, a
nonzero exception-extension code is stored in bits
0-7 of the program-interruption code. The
exception-extension code indicates whether the
interruption was due to a noninterruptible scalar
instruction or an interruptible vector instruction,
whether the result, if any, was placed in a scalar or
vector register, the width of the result, and the
number of the register.

The arithmetic-partial-completion bit, bit 0 of the
program-interruption code, indicates that the
exception-extension code has been stored. If the
arithmetic exception is due to an interruptible
vector instruction and causes an interruption which
leaves instruction execution partially completed, bit
0 is set to one, and bits 1-7 contain further infor-

mation. If a scalar instruction was executed, bits
0-7 are set to all zeros.

If not all zeros, the information in the exception-
extension code is as follows:

avwwrrrr

0 7

Bit 0 (@) is the arithmetic-partial-completion bit;
when one, it indicates that the interrupted instruc-
tion was partially completed and that bits 1-7 have
the meaning shown below. If bit 0 is zero, bits 1-7
are also zeros.

Bit 1 (v), when one, indicates that the arithmetic
result is in vector registers. When bit 1 is zero, the
arithmetic result is in a scalar register.

Bits 2-3 (ww) contain the width of the arithmetic
result:

01 4-byte result (short or binary)
10 8-byte result (long)

Bits 4-7 (rrrr) contain the register number of the
result register designated by the interrupted instruc-
tion.

Types of Ending for Units of Operation

When execution of an interruptible vector instruc-
tion is interrupted, the current unit of operation
may end in one of five ways: completion,
inhibition, nullification, suppression, or termi-
nation. Termination of a unit of operation of a
vector instruction causes termination of the instruc-
tion; it can occur only as the result of an exigent
machine check and will not be discussed further.

When an interruption occurs after completion,
inhibition, nullification, or suppression of a unit of
operation, all prior units of operation have been
completed. The effect of the interruption on the
instruction address in the old psw stored during the
interruption, on the operand parameters, and on
the result location for the current unit of operation
is as follows:

Completion: The instruction address in the old
psw designates the interrupted instruction or an
EXECUTE instruction, as appropriate. The result
location for the current unit of operation contains

Chapter 2. Vector Facitity 2-21

the new result, as defined for the type of exception.
The operand parameters are adjusted such that, if
the instruction is reexecuted, execution of the inter-
rupted instruction is resumed with the next unit of
operation.

Inhibition: Same as completion, except that the
result location for the current unit of operation
remains unchanged. The exception-exiension code
is stored the same as if a result had been placed in
that location.

Nuilification: 'The instruction address in the old
psw designates the interrupted instruction or an
EXECUTE instruction, as appropriate. The result
location for the current unit of operation remains
unchanged. The operand parameters are adjusted
such that, if the instruction is reexecuted, execution
of the interrupted instruction is resurned with the
current unit of operation. Interruption occurs
before any arithmetic operation on the current
element has started. Because access exceptions
which nullify execution may be recognized for ele-
ments beyond the current unit of operation, access
to the current element may or may not be the
cause of the exception.

Suppresslon: Same as nullification, except that
the instruction address in the old psw designates
the next sequential instruction. Because access
exceptions which suppress execution may be recog-
nized for clements beyond the current unit of oper-
ation, access to the current element may or may
not be the cause of the exception.

The following chart summarizes the differences
between the four types of ending for a unit of oper-
ation:

Unit of Operand | Current

Opera- Instruction Parame- Result

tion Is Address ters At Location

Com- Current Next Changed

pleted instruction element

Inhibited Current Next Unchanged
instruction element

Nullified Current Current Unchanged
instruction element

Sup- Next Current Unchanged

pressed instruction elernent

If an exception which nullifies or suppresses a unit
of operation occurs during the first unit of opera-
tion of an instruction which updates a storage

2-22 FSA/370 and System/370 Vector Operations

l
l
|
I
l

address in a general register, the address remains
unchanged. But it is undefined whether the lefi-
most one or eight bit positions of the general reg-
ister, depending on whether the address size is 31 or
24 bits, are set to zeros or remain unchanged.

When the instruction is nullified or suppressed
because an exception is recognized which has
higher priority than operand-access exceptions
(such as an access exception recognized while
fetching the instruction or a vector-operation
exception), the entire contents of the general reg-
ister remain unchanged.

Programming Notes:

1. After a program interruption due to an arith-
metic exception, an interruption handler may
perform any desired fixup of the result before
resuining execution of the program.

2. When an instruction which depends on the
vector interruption index is interrupted because
of an arithmetic exception for the last element
to be processed by the instruction, and the
instruction is later reexecuted, it is completed
by advancing the instruction address, setting
the ‘vector interruption index to zero, and pos-
sibly setting the condition code, without further
processing or program interruptions for this
instruction. The same may happen afier the
vector interruption index has been set to too
high a value by the instruction RESTORE VSR.

If the last element processed before an inter-
ruption due to an arithmetic exception is the
last element of the vector register, then the
vector interruption index contains the section
size.

3. The floating-point-divide and unnormalized-
operand exceptions are defined to inhibit exe-
cation of the current unit of operation.
Inhibition differs from completion only in that
no result is defined for these exceptions, and
that the result location for the current element
remains unchanged. Inhibition differs from
nullification in that an arithmetic operation has
been performed for the current element and the
operand paramcters have been adjusted to
point to the next element.

4. When an arithmetic exception is recognized
and bit 1 of the exception-extension code is
one, the number of the associated result
element in the vector registers is always one less
than the current vector interruption index, since

all arithmetic exceptions cause either com-
pletion or inhibition of the current unit of
operation.

Effect of Interruptions during
Execution

Interruptions occurring before instruction execution
has begun, or after completion of the entire instruc-
tion, are the same as for nonvector instructions.

The effect of interruptions which occur during exe-
cution of vector-facility instructions depends on the
type of ending. Figure 2-7 shows the effect for
each interruption type that can occur during exe-
cution.

Setting of Instruction Address

The instruction address in the old psw designates
the interrupted vector-facility instruction or an
EXECUTE instruction, as appropriate, after com-
pletion, inhibition, or nullification of a unit of
operation. The instruction address designates the
next sequential imstruction after suppression of a
unit of operation.

Setting of Instruction-Length Code

When a program interruption occurs during the
execution of an interruptible vector instruction, the
instruction-length code (1Lc) that is stored is 2 or 3,
depending on whether the instruction length is two
or three halfwords, respectively. When the vector
instruction is executed under the control of an
EXECUTER instruction, the 1LC is always 2.

The 11.C is stored as described regardless of whether
the instruction address is advanced to the next
“instruction (the unit of operation is suppressed) or
the instruction address designates the interrupted
instruction (the unit of operation is completed,
inhibited, or nullified).

For information on the ILC setting for a program
interruption that occurs while fetching the instruc-
tion, see the section “Instruction-Length Code” in
Chapter 6, “Interruptions,” of the Principles of
~ Operation publications that are listed on page iii.

Programming Note: Unless an interruption occurs
during instruction fetching and prevents interpreta-
tion of the instruction, the instruction-length code

Exception-

Type Extension

of Code
Type of Interruption Ending | Stored?
Program
Addressing S No
Exponent overflow C Yes
Exponent underflow C Yes
Fixed-point overflow C Yes
Floating-point divide I Yes
Page translation N No
Protection S No
Segment translation N No
Significance C Yes
Translation specification S No
Unnormalized operand I Yes
PER event alone C No
PER event with another E E
exception

External, 1/0, Repressible Machine Check, and
Restart

Al | ¢ | o

Explanation:

C Completed unit of operation

E Action determined by the exception reported
with the PER event

I Inhibited unit of operation

N Nullified unit of operation

S Suppressed unit of operation

Figure 2-7. Interruptions during Execution of Inter-
ruptible Vector-Facility Instructions

is determined entirely by the leftmost two bits of
the operation code. The 1.C value does not depend
on whether the operation code is assigned, or
whether the instruction is installed or executed.
Thus, the 1LC is set to 2 or 3 for a vector instruc-
tion, depending on the instruction length, even
when a vector-operation exception or an operation
exception is recognized.

Setting of Storage Address

When a vector-facility instruction which updates a
vector-operand address in a general register is inter-
rupted, the address in the general register has been
updated to the point of interruption.

After completion or inhibition of a unit of opera-
tion, the updated address designates the next
operand element in storage following the one
causing the interruption.

Chapter 2. Vector Facility 2-23

After nullification or suppression of a unit of oper-
ation, the updated address designates the current
operand element; this may or may not be the same
as the element that caused the interruption, because
of access exceptions which may be recognized for
elements beyond the last one processed.

When the entire instruction has been completed
before an interruption takes place, the updated
address designates the operand element following
the last element processed.

Setiing of Vector Interruption Index

At the start of execution of an interruptible vector
instruction which depends on the vector inter-
ruption index, the vector interruption index con-
tains the number of the next element to be proc-
essed in the designated vector registers or the
vector-mask register. When such an instruction is
interrupted, the vector interruption index is set to
indicate the element within the registers at which
execution may subsequently be resumed.

After completion or inhibition of a unit of opera-
tion, the vector interruption index identifies the
next element, if any, to be processed after the one
causing the interruption.

After nullification or suppression of a unit of oper-
ation, the vector interruption index identifies the
current element; this may or may not be the
element which caused the interruption, because of
access exceptions which may be recognized for ele-
ments beyond the last one processed.

During the final step of completing the entire
instruction, the vector interruption index is set to
zero. 'This final step cannot cause any further inter-
ruptions.

When the entire instruction is nullified or sup-
pressed, the vector interruption index remains
unchanged. It also remains unaffected by the inter-
ruption of interruptible vector-facility instructions
which do not depend on the vector interruption
index and which do not set it explicitly. The vector
interruption index is explicitly set to zero by CLEAR
VR and to a specified value by RESTORE VSR.

2-24 ESA/370 and Systern /370 Vector Operations

Programming Notes:

1. Proper resumption of an interrupted instruction
depends on the vector interruption index and
the appropriate general registers being left
unchanged. '

2. If it is desired not to resume a program that
was interrupted during execution of a vector-
facility instruction but, instead, to store the
current vector-register contents by means of
vector-store instructions, or to load different
data using vector-load instructions, care must
be taken to set the vector interruption index to
zero explicitly. This may be done with a
CLEAR VR instruction; specifying a second
operand of zeros leaves the vector-register con-
tents unchanged.

Program-Interruption Conditions

When the vector facility is installed, two additional
program exceptions can occur: unnormalized
operand and vector operation. A vector-operation
exception may also occur on CcpUs without the
vector facility. All arithmetic exceptions for vector
instructions cause an exception-extension code to
be stored as part of the program-interruption code.
There are also modifications to access exceptions
and to some of the arithmetic exceptions, and addi-
tional causes for the specification exception.

Access Exceptions for Vector Operands

When a vector-facility instruction specifies an arith-
metic or bit vector in storage, access exceptions
may be recognized for one or more storage
locations beyond the location containing the
element being processed, but not for any location
beyond the last element specified by the instruction.

For contiguous operands, that is, for arithmetic
vectors which are addressed sequentially with a
stride of one and for bit vectors, access exceptions
are not recognized more than 2K bytes beyond the
current location. For noncontiguous operands,
that is, for vectors which are addressed sequentially
with a stride not equal to one and those which are
loaded or stored by indirect element selection,
access exceptions are not recognized more than
seven element locations beyond the current one.

No access exceptions are recognized for the storage
location of an operand when:

* No vector elements are to be processed because
the net count is zero,

* The instruction operates under the control of
the vector-mask register and the location of a
vector eleinent in storage corresponds 1o a zero
mask bit,

» For the instruction LOAD BIT INDEX, the speci-
fied bit count is zero or the vector interruption
index equals the section size,

 For the instructions RESTORE VR and SAVE VR,
the vector in-use bit associated with the speci-
fied vector-register pair is zero, or

* For the instruction SAVE CHANGED VR, the
vector change bit associated with the specified
vector-register pair is zero,

Programiming Note: Interruptible nonvector
instructions, such as MOVE LONG, permit access
exceptions to be recognized no more than 2K byte
locations beyond the location of the byte being
processed, which permits access exceptions for a
maximum of four operand pages, two for each
operand. This is in addition to access exceptions
during instruction fetching of up to four pages
when the instruction is the target of EXECUTE.
Interruptible vector instructions permit access
exceptions to be recognized for up to eight operand
pages, in addition to a possible four instruction
pages. The eight operand pages are not necessarily
contiguous.

Exponent-Overflow Exception

If, during execution of a MULTIPLY AND ACCUMU-
LATE, MULTIPLY AND ADD, or MULTIPLY AND
SUBTRACT instruction, the multiplication of an
element pair results in an exponent overflow, only
the multiplication part of the unit of operation is
completed, and the addition or subtraction part is
not performed. The unit of operation is completed
by placing the overflowed product, as defined for
the corresponding scalar floating-point multiply
instruction, in the result location.

Exponent-Underflow Exception

If, during execution of a MULTIPLY AND ACCUMU-
LATE, MULTIPLY AND ADD, or MULTIPLY AND
SUBTRACT instruction, the multiplication of an
element pair results in an exponent underflow, no
interruption occurs, regardless of the value of the
exponent-underflow mask in the psw. In this case,

a true zero is added in place of the product, and the
operation continues.

Floating-Point-Divide Exception

When a floating-point-divide exception is recog-
nized during execution of a vector floating-point
DIVIDE instruction, the unit of operation is inhib-
ited.

Specilfication Exception

Specification exceptions are recognized for the fol-
lowing causes in addition to the causes shown in
the section “Specification Exception” of Chapter 6,
“Interruptions,” of the Principles of Operation pub-
lications listed on page iii.

* An invalid vector-register number is designated
by a VR field of a vector instruction.

¢ The stride of an instruction in the QST or VST
format is specified to be in the same general
register as the storage address.

¢ The third operand of an instruction in the QST
format is specified to be in the same general
register as the storage address.

* The instruction RESTORE VSR attempts to load
values into the vector-status register that are

- Other than all zeros in bits 0-14,

— Greater than the section size in the vector-
count field (bits 16-31), or

— Greater than the section size in the vector-
interruption-index field (bits 32-47).

* The instruction RESTORE VR, SAVE CHANGED
VR, Or SAVE VR specifies a number in the
element-number field that is equal to or greater
than the section size, or a number in the
VR-pair field that is other than an even number
from 0 to 14.

* The instruction EXTRACT ELEMENT or LOAD
ELEMENT specifies an element number in the
second operand that is equal to or greater than
the section size.

Unnormalized-Operand Exception

An unnormalized-operand exception is recognized
when, in a vector floating-point divide or multiply
operation, a source-opcrand element has a nonzero
fraction with a leftmost hexadecimal digit of zero.
The vector floating-point instructions which may

Chapter 2. Vector Facility 2-25

cause an unnormalized-operand exception to be
recognized are DIVIDE, MULTIPLY, MULTIPLY AND
ACCUMULATE, MULTIPLY AND ADD, and MUL-
TIPLY AND SUBTRACT.

The unnormalized-operand exception is recognized
for one operand element even when there is
another operand that is zero, except that the
floating-point-divide exception, which takes preced-
ence, is recognized instead when the zero element is
the divisor of a vector DIVIDE instruction.

The unit of operation is inhibited.
The instruction-length code is 2.

The unnormalized-operand exception is indicated
by a program-interruption code of XXIE hex (or
XX9E hex if a concurrent PER event is indicated),
where XX is the exception-extension code.

Vector-Operation Exception

A vector-operation exception is recognized when a
* vector-facility instruction is executed while bit 14 of
control register 0 is zero on a cpU which has the
vector facility installed and available. The vector-
operation exception is also recognized when a
vector-facility instruction is executed and the vector
facility is not installed or available on this cpu, but
the facility can be made available to the program
either on this CPU or on another CPU in the config-
uration.

When a vector-facility instruction is executed, and
the vector facility is not installed on any cpu which
is or can be placed in the configuration, it depends
on the model whether a vector-operation exception
or an operation exception is recognized.

The operation is nullified when the vector-
operation exception is recognized.

The instruction-length code is 2 or 3.

The vector-operation exception is indicated by a
program-interruption code of 0019 hex (or 0099
hex if a concurrent PER event is indicated).

Programming Note: The definition permits a
vector-operation exception to occur even when no
cprU in the configuration has the vector facility
installed. See the section “Vector-Operation
Control” on page 2-6 for more information.

2-26 ESA/370 and System/370 Vector Operations

Priority of Vector Interruptions

Multiple program-interruption conditions for
vector-facility instructions are recognized, one after
another, according to the same priority rules as
apply to other instructions, together with the fol-
lowing rules:

e The unnormalized-operand exception has the
same priority with respect to the nonarithmetic
exceptions as the other arithmetic exceptions
which can occur for vector instructions (expo-
nent overflow, exponent underflow, fixed-point
overflow, floating-point divide, and signif-
icance).

When more than one arithmetic-exception con-
dition is recognized at the same time, unnor-
malized operand takes precedence over the
exponent-overflow and exponent-underflow
exceptions; the floating-point-divide exception
takes precedence over the unnormalized-
operand exception.

* The vector-operation exception has the same
priority as the operation exception; the two
exceptions are mutually exclusive.

e An access exception caused by the operand of
RESTORE VSR takes precedence over a specifica-
tion exception caused by the same operand.

See also the section “Multiple Program-
Interruption Conditions” in Chapter 6, “Inter-
ruptions,” of the Principles of Operation publica-
tions listed on page iii.

Program Switching

The following instructions are provided to save,
restore, and clear the vector-facility registers when
switching from one program to another. The
instructions marked “privileged” are restricted to
programs operating in the supervisor state.

* CLEAR VR
* RESTORE VAC (privileged)

* RESTORE VMR

* RESTORE VR

* RESTORE VSR

¢ SAVE CHANGED VR (privileged)
¢ SAVE VAC (privileged)

* SAVE VMR

* SAVE VR

* SAVE VSR

Saving and restoring of the vector registers is
further assisted by their associated vector in-use bits
and vector change bits. When the vector in-use bit
for a vector-register pair is zero, the saving and sub-
sequent restoring of those registers are eliminated,
thus reducing the program-switching time, because
the registers are known to contain all zeros.

For programs operating in the supervisor state, the
vector change bits may serve to reduce switching
time still further by permitting the saving of a
vector-register pair to be eliminated when its vector
in-use bit is one but its vector change bit is zero.
Although such a vector-register pair is in use, its
contents are known not to have been changed if its
vector change bit has remained zero since it was
last restored from its save area; consequently, the
previously saved information is still valid.

The vector change bits do not affect the restoring
of vector registers and, thercfore, do not help to
reduce the restore time. When an interruption-
handling portion of the control program restores
previously saved registers, restoring the contents of
a pair of vector registers is not considered a change.
Hence, executing RESTORE VR in the supervisor
state is defined not to alter the vector change bits.
Executing RESTORE VR in the problem state,
however, sets the vector change bit of the affected
vector-register pair to one, so as to protect the
integrity of its use by the control program.

Program Use of the Restore and
Save Instructions

The instructions RESTORE VR, SAVE CHANGED VR,
and SAVE VR are defined to be interruptible and to
restore or save only a single pair of vector registers
each time they are executed. When more than one
vector-register pair is to be restored or saved, the
appropriate instruction must be used in a program-
ming loop as follows.

First, the even general register to be specified by the
instruction should be set to the beginning of the
save area for the vector registers, and the odd
general register should be set to zeros. Then the
restore or save instruction should be executed. It
should be followed by a BRANCH ON CONDITION
with a mask of 5 back to the restore or save
instruction. This causes each vector-register pair, in

turn, to be restored or saved if its vector in-use bit
(or vector change bit for SAVE CHANGED VR) is
one, or to be skipped if the bit is zero.

Restore Operations

To restore the vector-status register and the vector
registers, the instruction RESTORE VSR should be
executed before the above programming loop for
RESTORE VR. A complete set of restore operations
also includes RESTORE VMR and RESTORE VAC.
RESTORE VAC should be the last restore instruction
executed to avoid having the others advance the
vector-activity count unnecessarily.

Save Operations

A complete set of save operations consists of the
instruction SAVE VAC, followed by a loop that uses
either SAVE VR or SAVE CHANGED VR, and then the
instructions SAVE VMR and SAVE VSR.

SAVE VAC is executed first, so as to avoid having
the vector-activity count advanced by the other
save operations, especially at a time when no vector
operations were performed since the last time that
the registers were restored.

Programs running in either the problem state or the
supervisor state may use the instruction SAVE VR in
the loop to save the entire contents of all vector-
register pairs for which the vector in-use bits are
ones.

Alternatively, when a program using vector-facility
instructions is interrupted and the vector registers
are to be placed back into an area from which they
were previously restored, an interruption handler in
the supervisor state may use the privileged instruc-
tion SAVE CHANGED VR in the loop. SAVE VSR
should be executed only after the vector registers
have been saved, so that the vector change bits,
which SAVE CHANGED VR sets to zeros, are saved
as zeros.

SAVE VR should be used instead of SAVE CHANGED
VR when the vector information is to be saved in
an area which may not be the one from which the
vector registers were last restored. Thus, SAVE VR
is the appropriate instruction for a machine-check-
interruption handler.

Chapter 2. Vector Facility 2-27

Clear Operations

The instruction CLEAR VR may be used to clear all
or selected pairs of vector registers and to make
sure that the vector interruption index is set to
Zero.

CLEAR VR may be executed by the control program
to ensure that all vector registers are cleared before
turning over the vector facility to a new program
requesting vector operations. It should also be exe-
cuted by the vector program to clear a vector-
register pair that is not nceded again soon. Both
measures serve to avoid unnecessary saving and
restoring,

When a vector-register pair has been cleared by
means of CLEAR VR, and the corresponding vector
in-use bit is zero, all elements in those registers
contain zeros. The zero elements in a cleared reg-
ister are valid operands. Such use of a cleared
vector register or register pair as a source of all
zeros does not set the associated vector in-use bit
to one. One or more individual elements of a
cleared vector-register pair may be replaced by an
instruction such as LOAD ELEMENT, but as soon as
any element in either or both registers of the pair
has been changed, its vector in-use bit and vector
change bit are set to ones, and the register pair is
no longer considered cleared. The vector registers
are considered to have been changed even when the
value loaded is all zeros.

The. instruction RESTORE VSR also clears a vector-
register pair when it finds that the associated vector
in-use bit is one and must be set to zero.

When either CLEAR VR or RESTORE VSR finds a
vector in-use bit that is already zero, the instruction
does not clear the vector-register pair again. If
either instruction is interrupted and later reexe-
cuted, instruction execution is resumed from the
beginning, but the instruction skips over registers
that were cleared before the interruption and have
remained cleared.

Save-Area Requirements

To make programs that save and restore registers of
the vector facility model-independent, the sizes and
addresses of the save areas should be computed at
execution time using the current section size, as
obtained by the instruction STORE VECTOR PARAM-
ETERS.

2-28 ESA/370 and System/370 Vector Operations

Figure 2-8 shows the save-area sizes and the
boundary alignment for RESTORE VR, SAVE
CHANGED VR, and SAVE VR as a function of the
section size. Boundary alignment requires that the
address of a vector-register save areca be a multiple
of the integral boundary shown in the second
column (8 times the section size). The save-area
size is given as the number of bytes required to
save all 16 vector registers; when fewer consecutive
vector registers are to be saved, this area may be
reduced correspondingly. The figure also shows the
vector-mask register (VMR), which requires 47 bits
(Z/2 bytes), where Z is the section size; the VMR
save area has no alignment requirement.

Vector Registers Bytes for
Bytes for Vector-
Section Integral 16 Vector Mask Reg-

Size Boundary Registers ister

(7) (87) (647) (Z/2)

8 64 512 4

16 128 1,024 8

32 256 2,048 16

64 512 4,096 32

128 1,024 8,192 64

256 2,048 16,384 128

512 4,096 32,768 256

Figure 2-8. Save-Area Requirements

Relationship to Other Facilities

Program-Event Recording (PER)

The following PER events are recognized for
instructions of the vector facility:

¢ Instruction fetching
¢ Storage alteration

Whether PER general-register-alteration events are
recognized for vector-facility instructions is unde-
fined.

When the net count is zero for IC- or IM-class
instructions, when the vector count is zero for
Nc-class instructions, or when all active bits in the
vector-mask registers are zeros for the STORE
MATCHED instruction, no PER storage-alteration
events are recognized.

When an interruptible vector instruction is inter-
rupted and PER storage alteration applies to storage
locations corresponding to vector elements that are
due to be changed by the instruction beyond the
point of interruption, PER storage alteration is indi-
cated if any such storage change actually occurred
and may be indicated even if such a change did not
occur. PER storage alteration is only recognized if
no access exception exists for such locations at the
time that the instruction is executed.

Vector-Store Operations

As for nonvector instructions, the processing of
vector-facility instructions generally appears to a
program running on the same cpu to follow the
conceptual sequence: The execution of one
instruction appears to precede the execution of the
following instruction, the processing of one vector
element appears to precede the processing of the
following vector element, and an interruption takes
place between instructions or between units of
operation of interruptible instructions. As dis-
cussed below, however, this conceptual sequence is
not necessarily observed by programs on other
CPUs, by channel programs, or when vector-facility
instructions are used to store into the instruction
stream.

Storage-Operand Consistency

For all vector-facility instructions, multiple accesses
may be made to all or some of the bytes of a
storage operand.

Thus, unlike instructions which make only single-
access references, intermediate results of a vector-
facility store instruction may be observed by
channel programs and by other CPU programs
accessing the same storage location concurrently.

When an interruptible store-type vector instruction
is interrupted and its execution is later resumed, a
store performed by the instruction before its inter-
ruption may be repeated when execution is
resumed.

(See the section “Storage-Operand Consistency” in
Chapter 5, “Program Execution,” of the Principles
of Operation publications listed on page iii.)

Storing into Instruction Stream

When a vector-facility instruction is executed that
causes storing into a location from which subse-
quent instructions have been prefetched, the copies
of the prefetched instructions are not necessarily
changed. (See the section “Instruction Fetching” in
Chapter 5, “Program Execution,” of the Principles
of Operation publications listed on page iii for a
complete list of functions which cause all copies of
prefetched instructions to be discarded.)

Vector Instructions in an ESA/370
System ‘

When the vector facility is part of a CPU operating
as defined by the ESA/370 architecture, operand
addresses generated for vector-facility instructions
may be translated by dynamic address translation
using segment-table designations that are specified
by access registers. Addresses translated by means
of a segment-table designation that is specified by
an access register are called AR-specified virtual
addresses.

For instructions of the vector facility, all operand
addresses are AR-specified virtual addresses when
the CPU is in the access-register mode. The access-
register number is the same as the number of the
general register containing either the base address (B
field) or the entire address (no B field). Specifically,
the access register is designated by the Rs2 field of
instructions in the QsT, vs, and vsT formats, by the
B2 field of instructions in the RSE and s formats,
and by the GRi field of the three RRE-format
instructions RESTORE VR (VRRS), SAVE CHANGED
VR (VRSVC), and SAVE VR (VRSV).

Programming Note: When the instruction field
which specifies the operand address is zero and the
CPU is in the access-register mode, access register 0
is not used; instead, the primary segment-table des-
ignation in control register 1 is specified. The
instruction field may be a B2, GR1, or Rs2 field.

Chapter 2. Vector Facility 2-29

Resets

In regard to the operation of the vector facility,
CPU reset terminates execution of the current vector
instruction and any manual operation. Pending
machine-check-interruption conditions affecting the
vector facility and check-stop states are cleared. All
copies of prefetched vector-facility instructions or
operands are discarded.

Initial cpPuU reset performs the functions of cpu
reset mentioned above and initializes the vector-
control bit, bit 14 of control register 0, to zero.

The registers of the vector facility (vector-status
register, vector-mask register, vector-activity count,
and all vecior registers) are cleared to zero by clear
reset and power-on reset.

Machine-Check Handling

Two bits of the machine-check-interruption code
are associated with the vector facility: vector-
facility failure and vector-facility source. The
vector-facility-failure bit indicates to the program
that vector-facility instructions should no longer be
used. The vector-facility-source bit is a modifier to
instruction-processing darnage, which indicates that
the vector facility is the error source.

For more details, see the section “Machine-Check
Interruption Code” in Chapter 11, “Machine-
Check Handling,” of the Principles of Operation
publications listed on page iii.

Validation of Vector-Facility Registers

The following procedure can be used to validate the
registers associated with the vector facility. The
program should first execute RESTORE VSR, speci-
fying all vector in-use bits as ones. This validates
the vector-status register by setting it without first
inspecting the previous contents. The program
should then execute RESTORE VAC, RESTORE VMR,

2-30 ESA/370 and System/370 Vector Operations

and RESTORE VR to load and validate the vector-
activity count, the vector-mask register, and the
vector registers.

Programming Notes:

1. When a vector-facility-failure condition is indi-
cated, the program should stop using any func-
tions associated with the vector facility. Thus,
no vector-facility instructions should be exe-
cuted; the vector-control bit, bit 14 of control
register 0, should be set or remain set to zero;
and the registers associated with the vector
facility should not be validated or saved.

2. Although the purpose of the vector-facility-
source bit is to indicate that the vector facility
is the source of the instruction-processing
damage, it is possible in some situations that
the bit may be set to one when failures have
occurred both in the vector facility and in other
parts of the cpu.

3. Since a vector-facility-source condition may
imply that vector-facility registers have been
damaged, the registers should be validated
before further use is attempted. If the vector-
control bit is zero, it must be set to one to
perform the validation.

4. The instruction RESTORE VR is the only
instruction which validates the vector registers,
and then only if their vector in-use bits are
ones. In particular, the instruction CLEAR VR
should not be used for validation, because this
instruction may be implemented for perform-
ance reasons such that the registers are not
actually cleared unless the program subse-
quently attempts to load or modify them.
With this design, when the program next loads
the vector register following a CLEAR VR
instruction, only those elements which are not
loaded, if any, are actually cleared at that time.
Except for the possible effect on machine-check
handling, this implementation gives the same
results as if the instruction actually cleared the
registers.

Chapter 3. Vector-Facility Instr
Accumulate 3.2
Add ... 33
AND 34
ANDtoVMR 3.5
Clear VR 3.5
Compare 3-6
Complement VMR 3-7
Count Left Zerosin VMR 3.7
Count Onesin VMR 3.7
Divide 3-8
Exclusive OR 39
Exclusive ORto VMR 39
Extract Element 3-10
Extract VCT 3-10
Extract Vector Mask Mode 3-10
load 3-11
IoadBitIndex 3-11
Load Complement 3-14
Load Element 3-14
Load Expanded 3-14
Load Halfword 3-15
Load Indirect 3-15
Load Integer Vector 3-16
ILoad Matched 3-17
Load Negative 3-18
Load Positive 3-18
Load VCT and Update 3-19
Load VCT from Address 3-19
lLoad VMR 3-20
Load VMR Complement 3-20
loadZero 3-20
Maximum Absolute 3-21

uctions
Maximum Signed 3.21
Minimum Signed 3-21
Multiply 3-22
Multiply and Accumulate 3-23
Multiplyand Add 3-24
Multiply and Subtract 3-24
OR 3-26
ORtoVMR 3-26
Restore VAC 3-26
Restore VMR 3-27
Restore VR 3-27
Restore VSR 3.28
Save Changed VR 3-29
Save VAC 3-30
Save VMR 3-30
Save VR 3-31
Save VSR 3.31
Set Vector Mask Mode 3-32
Shift Left Single Logical 3-32
Shift Right Single Logical 3.32
Store 3.32
Store Compressed 3-33
Store Halfword 3-33
StoreIndirect 3-34
Store Matched 3-34
Store Vector Parameters 3-35
Store VMR 3-35
Subtract 3-36
Sum Partial Sums 3-36
Test VMR 3-37
Zero Partial Sums 3-37

This chapter describes the instructions of the vector
facility. When the operation on each element of a
vector is the same as for a counterpart scalar
instruction, the vector-instruction description does
not repeat these details. The complete definition in
these cases can be obtained from the description of
the scalar instruction in the Principles of Operation
publications listed on page iii.

Sumimnary lists of the vector-facility instructions and
their mnemonics, formats, and operation codes are
contained in Appendix B, “Lists of Instructions.”
These lists also indicate the exceptional conditions
in operand designations, data, or results that cause
a program interruption. Condition-code settings

are summarized in Appendix C, “Condition-Code
Settings.”

In many cases, several related vector operations are
described under a single name. For example, MUL-
TIPLY in the QsT format is described as follows:

Hnemonic VR1,QR3,RS2(RT2) [QST]
Op Code QR3| RTz2} VR1| RS2
0 16 20 24 28 31
¥nemonic Op Code Operands
VMS 'A4A2! Binary
VMDS 'A492" Long
VMES 'A482! Short multiplier and

multiplicand, Tong product

Chapter 3. Vector-Facility Instructions 3-1

This figure is a “shorthand” representation for three
different instructions, one binary and two floating-
point multiply instructions. It replaces the fol-
lowing set of three figures:

VMS VR1,GR3,RS2(RT2)
[QsT, Binary operands]
'A4A2! GRa| RT2| VRi| RS2
0 16 20 24 28 31
VMDS VR1,FR3,RS2(RT2)
[QST, Long operands]
'A492' FR3| RT2| VRi| RSz
0 16 20 24 28 31
VMES VR1,FR3,RS2(RT2)

[QST, Short multiplier and
multiplicand, long product]

'AAB2! FRa| RT2| VR:i| RS2

0 16 20 24 28 31

Thus, the term “Binary” under the heading “Oper-
ands” for the first instruction indicates that the
vector elements are 32-bit signed binary integers,
that the scalar operand is taken from a general reg-
ister, and that the operation on each element pair is
performed in the same manner as the scalar MUL-
TIPLY instruction described in Chapter 7, “General
Instructions,” of the Principles of Operation publi-
cations listed on page iii.

Likewise, the terms “Short” or “Long” under the
heading “Operands” for the second and third
instructions indicate that the vector elements are
floating-point numbers in the short or long
floating-point format, respectively, that the scalar
operand is taken from a floating-point register, and
that the operation on each element pair is per-
formed in the same manner as the corresponding
scalar MULTIPLY instruction described in Chapter 9,
“Floating-Point Instructions,” of the Principles of
Operation publications listed on page iii.

Except for the new suffixes Q and s, which indicate
scalar-vector operations, each mnemonic for a
vector instruction is generally the same as the mne-
monic for the counterpart scalar instruction pre-
fixed with a v.

3-2 ESA/370 and System/370 Vector Operations

For several of the load and store instructions, the
same instruction is used for vectors in the short
floating-point format and in the 32-bit binary-
integer or logical format. Separate mnemonics are
assigned to the short and binary-logical formats for
programming convenience, but the op codes for the
two mnemonics are the same when the function is
the same.

Programming Note: Programming notes in this
section, as well as the examples in
Appendix A, “Instruction-Use Examples,” assume
normal execution of vector instructions. In partic-
ular, they assume that the program does not alter
the vector interruption index, so that each interrup-
tible vector instruction begins its operation on the
first element or element pair with the vector inter-
ruption index set to zero. If the instruction is inter-
rupted for a cause other than an arithmetic excep-
tion, and if its execution is subsequently resumed,
the vector interruption index and all other parame-
ters are assumed to have been restored to the value
they had at the time of interruption, so that the
result is the same as if the interruption had not
occurred.

Accumulate

Mnemonic VR1,RS2(RT2) [vsT]

Op Code ////] RT2| VRi| RS2

0 16 20 24 28 31
Mnemonic Op Code Operands
VACD 'A417! L.ong operand and sum
VACE 'A407! Short operand, long sum
Mnemonic VR1,VR2 [w]

Op Code ////////] VRi] .VRa2
0 16 24 28 31
Mnemonic Op Code Operands
VACDR 'A517! Long operand and sum
VACER 'A507! Short operand, long sum

Partial sums of the elements of the second-operand
vector are accumulated by adding the second-
operand elements to the contents of element posi-
tions 0 to p-1 of the first operand. The partial-sum
number p depends on the model.

The operation proceeds in an ascending sequence
of element numbers. The I-th element of the

second operand is added to the first-operand
element at a position which is the remainder of
dividing / by p, where I varies from X to C—1, X is
the initial vector interruption index (normally zero),
and C is the vector count. The operation accumu-
lates C—X elements of the second operand.

Thus, second-operand elements 0, p, 2p, ... are
accumulated into position 0 of the first operand;
second-operand elements 1, p+1, 2p+1, ... are
accumulated into position 1; and so forth. The
contents of first-operand element positions above
p—1 remain unchanged.

Every addition is performed in the same manner as
for the scalar ADD NORMALIZED (ADR) instruction,
where the second-operand elements for VACE and
VACER are extended on the right with 32 zeros,
except that the condition code is not set.

A specification exception is recognized when the
VR field designates an invalid register number. In
the vst format, a specification exception is also
recognized when the second operand is not desig-
nated on an integral boundary, or when the RT2
field is nonzero and designates the same general
register as the rs2 field.

ACCUMULATE is a class-IM instruction. It is inter-
ruptible, the vector count and vector interruption
index determine the number of elements processed,
and element selection is affected by both the
vector-mask mode and the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

» Access (fetch, operand 2 in vsT foriat)

« Exponent overflow (with exception-extension
code) ‘

« Exponent underflow (with exception-extension
code)

e Operation

» Significance (with exception-extension code)

* Specification

* Vector operation

Programming Notes:

1. ACCUMULATE is used, together with ZERO
PARTIAL SUMS and SUM PARTIAL SUMS, to
produce the scalar sum of the elements of a
vector in a manner similar to the example in
“Sum of Products” on page A-3 of
Appendix A, “Instruction-Use Examples,”
which uses MULTIPLY AND ACCUMULATE to
produce a sum of products.

2. The short-format ACCUMULATE instructions
(vAcE and VACER) add floating-point vector
elements in the short format to produce a
floating-point sum in the long format. This
creates a result of higher precision than would
an equivalent loop with the scalar short-format
ADD instructions (AE or AER, respectively),
which produces a sum in the short format.

Add

Wnemonic VR1,QR3,RS2(RT2) [QST]
Op Code QR3} RT2] VRi| RS2

0 16 20 24 28 31

Mnemonic Op Code Operands

VAS 'A4A0' Binary

VADS 'A490" Long

VAES 'A480° Short

fnemonic VR1,QR3,VR2 [Qv]
Op Code QRa|////] VRi} VR2

0 16 20 24 28 31

Mnemonic Op Code Operands

VAQ 'ASA0! Binary

VADQ 'A590" Long

VAEQ 'A580' Short

Pnemonic VR1,VR3,RS2(RT2) [VST]
Op Code VR3| RT2{ VRi| RS2

0 16 20 24 28 31

inemonic Op Code Operands

VA 'A420° Binary

VAD 'A410! Long

VAE 'A400' Short

Chapter 3. Vector-Facility Instructions 3-3

Mnemonic VR1,VRs,VR2 [vv]

Op Code VRal////1 VR1| VR:
0 16 20 24 28 31
Mnemonic Op Code Operands
VAR 'A520" Binary
VADR 'A510°' Long
VAER 'A500" Short

Element by element, the second-operand vector is
added to the third operand, and the result is placed
in the first-operand location.

The operation is performed on each pair of cle-
ments in the same manner as the corresponding
scalar operation, except that the condition code is
not set. For floating-point operands, the scalar
equivalent is ADD NORMALIZED.

A specification exception is recognized when a VR
or QR field designates an invalid register number.
In the QsT and vsT formats, a specification excep-
tion is recognized when the second operand is not
designated on an integral boundary, or when the
RT2 field is nonzero and designates the same
general register as the Rsz field. For the vas
instruction, a specification exception is also recog-
nized when the QRs field designates the same
general register as the RS2 field.

ADD is a class-IM instruction. It is interruptible,
the vector count and vector interruption index
determine the number of elements processed, and
element selection is affected by both the vector-
mask mode and the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

» Access (fetch, operand 2 in QsT and vsT
formats)

* Exponent overflow (with exception-extension
code; floating-point operands only)

* Dixponent underflow (with exception-extension
code; floating-point operands only)

* Fixed-point overflow (with exception-extension
code; binary operands only)

* Operation

» Significance (with exception-extension code;
floating-point operands only)

* Specification

* Vector operation

3-4 ESA/370 and System/370 Vector Operations

AND
VNS VR1,GR3,RS2(RT2) [QST]
'AdA4! GR3| RT2| VRi| RSz
0 16 20 24 28 31
VNQ VR1,GR3,VR2 [av]
'A5A4! GR3|////| VR1| VR2
0 16 20 24 28 31
VN VR1,VR3,RS2(RT2) [VST]
'A424" VRs| RT2} VRi| RS2
0 16 20 24 28 31
VNR VR1,VR3,VR2 [wj
'A524" VRz|////| VRi} VR2
0 16 20 24 28 31

Element by element, the AND of the second and
third operands is placed in the first-operand
location.

The operation is performed on each pair of 32-bit
elements in the same manner as the corresponding
scalar operation, except that the condition code is
not set.

For the VN and vNs instructions, a specification
exception is recognized when the second operand is
not designated on an integral boundary, or when
the RT2 field is nonzero and designates the same
general register as the Rsz field. For the vnNs
instruction, a specification exception is also recog-
nized when the GRa field designates the same
general register as the Rs: field.

AND is a class-IM instruction. It is interruptible,
the vector count and vector interruption index
determine the number of elements processed, and
element selection is affected by both the vector-
mask mode and the vector-mask register.

Condition Code: 'The code remains unchanged.

Program Exceptions:

o Access (fetch, operand 2 in QST and vsT
formats)

* Operation

* Specification

* Vector operation

AND to VMR

VNVM RS2 [vs]
'A684" /11111111111 Rs2

0 16 28 31

The AND of the second-operand bit vector and of
the active bits of the vector-mask register (VMR) is
placed in the vector-mask register. Bits beyond the
active bits are set to zeros.

AND TO VMR is a class-NC instruction. It is not
interruptible, the vector count determines the
number of bits processed, and bit selection is
affected by neither the vector-mask mode nor the
vector-mask register. The vector interruption index
is not used and remains unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

» Access (fetch, operand 2)
» Operation
* Vector operation

Clear VR

VRCL D2(B2) [S]
A6CS" B2 D2

0 16 20 31

The specified pairs of vector registers are cleared,
the associated vector in-use bits and vector change
bits are set to zeros, and the vector interruption
index is set to zero.

The second-operand address is not used to address
storage. Instead, bits 24-31 of the second-operand
address, called the sccond-operand bits, control

which vector registers are cleared. The eight
second-operand bits are associated with the eight
even-numbered vector-register pairs from 0 to 14,
and with the corresponding vector in-use bits and
vector change bits. The leftmost bits of the address
are ignored.

The vector interruption index is set to zero first,
after which the eight second-operand bits are exam-
ined in any order. If a second-operand bit and the
corresponding vector in-use bit are both ones, all
element positions of the associated pair of vector
registers are cleared to zeros; the corresponding
vector in-use bits and vector change bits are then
set to zeros. If a second-operand bit or the corre-
sponding vector in-use bit is zero, the associated
registers and bits remain unchanged.

If the instruction is interrupted before the operation
is completed, the instruction address in the current
psw identifies this instruction. If the interrupted
instruction is then reexecuted, vector-register pairs,
which were cleared and had their vector in-use bits
and vector change bits set to zeros, are not cleared
again, provided that their vector in-use bits are still
ZE10S.

CLEAR VR is a class-1z instruction. It is interrup-
tible, the section size determines the number of ele-
ments processed, and element selection is affected
by neither the vector-mask mode nor the vector-
mask register. The vector count is not used and
remains unchanged. The vector interruption index
is set.

Condition Code: The code remains unchanged.

Program Exceptions:

* Operation
* Vector operation

Programming Notes:

1. When a vector in-use bit is zero, execution
time of CLEAR VR is saved because the corre-
sponding vector-register pair is already cleared,
and the instruction does not clear those regis-
ters again.

2. CLEAR VR with a zero operand (VRcL 0)
merely sets the vector interruption index to
zero.

Chapter 3. Vector-Facility Instructions 3-5

which the result is indicated. The condition code is
not set; instead, a single result bit is set in the
vector-mask register for each element pair. The
value of the result bit is selected from one of the
modifier bits according to the comparison of the
third-operand element with the second-operand
element, as follows:

Compare
Mnemonic M1,QR3,RS2(RT2) [QsT]
Op Code QRa| RT2| M1 | RS2
0 16 20 24 28 31
Mnemonic Op Code Operands
V€S 'A4A8'! Binary
VCDS 'A498! Long
VCES 'A488' Short
Mnemonic M1,QR3,VR2 [Qv]
Op Code QRa{////| M1 | VR2
0 16 20 24 28 31
Hnemonic Op Code Operands
vVCq 'ASA8! Binary
vCDQ 'A508' Long
VCEQ 'A588' Short
Mnemonic M1,VR3,RS2(RT2) [vsT]
Op Code VRa| RT2| M1 | RS2
0 16 20 24 28 31
Mnemonic Op Code Operands
Ve 'A428' Binary
VCD 'A418" Long
VCE 'A408'! Short
Mnemonic M1i,VR3,VR2 [w]
Op Code VRal////| M1 | VRz
0 16 20 24 28 31
Mnemonic Op Code Operands
VCR 'A528"' Binary
VCDR 'A518' Long
VCER 'A508' Short

The third operand is compared with the second-
operand vector, element by element. The corre-
sponding bit in the vector-mask register is set to
one or zero, depending on the comparison result
and on the value of a modifier in bits 24-26 of the
instruction.

The comparison is algebraic and is performed on

each element pair in the same manner as the corre-
sponding scalar operation, except for the way in

3-6 ESA/370 and System/370 Vector Operations

Result of
Comparison

Modifier Bit Whose Value
Is Selected

Operands equal
Operand 3 low
Operand 3 high

MO (bit 24)
M1 (bit 25)
M2 (bit 26)

Modifier bit M3, bit 27 of the instruction, is
ignored.

Bits in the vector-mask register which do not corre-
spond to elements being compared remain
unchanged.

A specification exception is recognized when a VR
or QR field designates an invalid register number.
In the QsT and vst formats, a specification excep-
tion is recognized when the second operand is not
designated on an integral boundary, or when the
RT2 field is nonzero and designates the same
general register as the Rs2 field. For the vcs
instruction, a specification exception is also recog-
nized when the QRa field designates the same
general register as the Rs: field.

COMPARE is a class-IC instruction. It is interrup-
tible, the vector count and vector interruption index
determine the number of elements processed, and
element selection is affected by neither the vector-
mask mode nor the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

e Access (fetch, operand 2 in QsT and vsr
formats)

* Operation

* Specification

* Vector operation

Programming Notes:

1. To obtain ones in the resultant bit vector when
a desired comparison condition is found for an
element of operand 3, the modifier bits should
be specified as follows:

Modifier Bits Result Is One

If Operand-3

MO | M1 | M2 | M3 Comparison Is

0 0 0 —_ — (always 0)

0 0 1 o High

0 1 0 - Low

0 1 1 - Not equal

1 0 0 - Equal

1 0 1 — Not low

1 1 0 — Not high

1 1 1 — Any (always 1)

2. The modifier bits of the vector COMPARE
instruction correspond to the condition codes
of the scalar COMPARE instruction when an
element of vector operand 3 is the same as the
scalar operand 1 and the corresponding element
of vector operand 2 is the same as the scalar
operand 2. Thus, the value of the leftmost
three bits of the mask field of the BRANCH ON
CONDITION instruction, which causes
branching when used to test the condition code
of the scalar COMPARE, is the same as the mod-
ifier value of the vector COMPARE instruction,
which sets a vector-mask bit to one for the
same comparison condition.

3. The comparison instructions are the only ones
which both modify the vector-mask register
and are interruptible. They do not change
those bits in the vector-mask register which lie
beyond the last bit processed. This contrasts
with the noninterruptible instructions which
load or perform logical operations on the
vector-mask register; they set to zeros all bits
which lie beyond the last bit processed.

4. Unlike the related arithmetic and logical vector
instructions, the comparison instructions are
not executed under control of the vector-mask
mode.

Complement VMR

VCVM [RRE]
'A641" 1111111111111117
) 16 31

The active bits of the vector-mask register (VMR)
are complemented. Bits beyond the active bits of
the vector-mask register are set to zeros.

COMPLEMENT VMR is a class-NC instruction. It is
not interruptible, the vector count determines the
number of bits processed, and bit selection is
affected by neither the vector-mask mode nor the
vector-mask register. The vector interruption index
is not used and remains unchanged.

Condition Code: The codc remains unchanged.

Program Exceptions:

* Operation
* Vector operation

Count Left Zeros in VMR

VCZVM GR1 [RRE]
'A642" /117111]| GRy|/]1/
0 16 24 28 31

Count Ones in VMR

VCOVM GR1 ' [RRE]
'A643" /1171771 GRal//]/
0 16 24 28 31

Selected bits among the active bits of the vector-
mask register (VMR) are counted, and the count is
added to the contents of the general register desig-
nated by GRi. For the COUNT LEFT ZEROS IN VMR
instruction, the selected bits are the zero bits to the
left of the leftmost one bit. For the COUNT ONES
IN VMR instruction, the selected bits are the one
bits.

The general-register contents are treated as a 32-bit
unsigned binary integer. Any carry out of the lefi-
most bit of the sum is ignored; there is no overflow
indication.

Condition code 0, 1, or 3 is set according to
whether the active bits are all zeros, mixed zeros
and ones, or all ones. When the vector count is
zero, the general register is not altered, and condi-
tion code 0 is set.

COUNT LEFT ZEROS IN VMR and COUNT ONES IN
VMR are class-NC instructions. They are not inter-
ruptible, the vector count determines the number of
bits processed, and bit selection is affected by

Chapter 3. Vector-Facility Instructions 3=7

neither the vector-mask mode nor the vector-mask
register. The vector interruption index is not used
and remains unchanged.

Resuiting Condition Code:

0 Active bits all zeros
1 Active bits mixed zeros and ones
2 -

3 Active bits all ones

Program Exceptions:

* Operation
* Vector operation

Programming Note: When only the condition-
code result of COUNT LEFT ZEROS IN VMR or
COUNT ONES IN VMR is required, but not the actual
bit counts, the instruction TEST VMR may be used
instead.

Divide
Mnemonic VR1,FR3,RS2(RT2) [QST]
Op Code FRa| RT2| VRi| RS2
0 16 20 24 28 31
Mnemonic Op Code Operands
vDDS 'A493! Long
VDES 'A483" Short
Mnemonic VR1,FR3,VR2 [av]
Op Code FRa|////1 VR1] VRa
0 16 20 24 28 31
Mnemonic Op Code Operands
vDDQ 'A593! Long
VDEQ 'A583! Short
Mnemonic VR1,VR3,RS2(RT2) [VST]
Op Code VRa| RT2| VR1] RS2
0 16 26 24 28 31
Mnemonic Op Code Operands
VDD 'A413! Long
VDE 'A403! Short

3-8 ESA/370 and System/370 Vector Operations

Mnemonic VR1,VR3,VR2 [w]

Op Code VRa{////| VR1] VR2
0 16 20 24 28 31
Mnemonic Op Code Operands
VDDR 'A513! Long
VDER 'A503' Short

Element by element, the third operand is divided
by the second-operand vector, and the result is
placed in the first-operand location.

The operation is performed on each pair of ele-
ments in the same manner as the corresponding
scalar operation, except for two changes. When the
fraction part of a divisor element is zero, so that a
floating-point-divide exception is recognized, the
unit of operation is inhibited. Also, the operands
are not first normalized; when one or both of the
source-operand elements have a nonzero fraction
with a leftmost hexadecimal digit of zero, an
unnormalized-operand exception is recognized, and
the unit of operation is inhibited.

The floating-point-divide exception takes preced-
ence over the unnormalized-operand exception, and
both take precedence over the exponent overflow
and exponent underflow exceptions.

A specification exception is recognized when a VR
or QR field designates an invalid register number.
In the QsT and vsT formats, a specification excep-
tion is recognized when the second operand is not
designated on an integral boundary, or when the
RT2 field is nonzero and designates the same
general register as the rRs2 field.

DIVIDE is a class-1M instruction. It is interruptible,
the vector count and vector interruption index
determine the number of elements processed, and
element selection is affected by both the vector-
mask mode and the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

* Access (fetch, operand 2 in QsT and vsT
formats)

¢ Exponent overflow (with exception-extension
code)

* Exponent underflow (with exception-extension
code)

* Floating-point divide (with exception-extension
code)

¢ Operation

» Specification

¢ Unnormalized
extension code)

¢ Vector operation

operand (with exception-

Programming Notes:

1. The QsT and Qv formats provide for dividing a
scalar operand by a vector. The operation of
dividing a vector by a scalar can usually be
replaced by the (generally faster) operation of
multiplying the vector operand by the recip-
rocal of the scalar operand.

2. An unnormalized-operand exception is recog-
nized whenever a divisor element is unnormal-
ized, even if the corresponding dividend
element is zero.

Exclusive OR

VXS VR1,GR3,RS2(RT2) [QST]
'A4A6? GR3| RTz2| VRi| RS2
0 16 20 24 28 31
VXQ VRi1,GR3,VR2 fQv]
| ASAG" GRa|////| VRi| VR
0 16 20 24 28 31
VX VR1,VR3,RS2(RT2) [VST]
'A426! VRa| RT2{ VRi| RS2
0 16 20 24 28 31
VXR VR1,VR3,VR2 [WV]
'A526" VRa|////] VR1| VRe
0 16 20 24 28 31

Element by element, the EXCLUSIVE OR of the
second and third operands is placed in the first-
operand location.

The operation is performed on each pair of 32-bit
elements in the same manner as the corresponding
scalar operation, except that the condition code is
not set.

For the vx and vxs instructions, a specification
exception is recognized when the second operand is
not designated on an integral boundary, or when
the RT2 field is nonzero and designates the same
general register as the Rsz field. For the vxs
instruction, a specification exception is also recog-
nized when the GRa field designates the same
general register as the Rs2 field.

EXCLUSIVE OR is a class-IM instruction. It is inter-
ruptible, the vector count and vector interruption
index determine the number of elements processed,
and element selection is affected by both the
vector-mask mode and the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

* Access (fetch, operand 2 in Qst and vsT
formats)

* Operation

* Specification

* Vector operation

Exclusive OR to VMR

VXVM RS2 [vs]
'A686' 111111111111 RS2
0 16 28 31

The EXCLUSIVE OR of the second-operand bit
vector and of the active bits of the vector-mask reg-
ister (VMR) is placed in the vector-mask register.
Bits beyond the active bits are set to zeros.

EXCLUSIVE OR TO VMR is a class-NC instruction. It
is not interruptible, the vector count determines the
number of bits processed, and bit selection is
affected by neither the vector-mask mode nor the
vector-mask register. The vector interruption index
is not used and remains unchanged.

Condition Code: 'The code remains unchanged.

Chapter 3. Vector-Facility Instructions 3-9

Program Exceptions:

¢ Access (fetch, operand 2)
* Operation
* Vector operation

Extract Element

Hnemonic VR1,0QR3,GR2 [VR]
Op Code QRa|////| VR1| GR2

0 16 20 24 28 31

Mnemonic Op Code Operands

VXEL 'A629 " Binary or logical

VXELD 'A619' Long

VXELE 'A609* Short

The element from the vector register or vector-
register pair designated by VRi, which has the
element number contained in the general register
designated by GRa, is placed in the general or
floating-point register designated by QRa.

The element number is a 32-bit unsigned binary
integer which must be less than the section size.

For VXELE, the rightmost 32 bits of the floating-
point register designated by QRa remain unchanged.

For vxfi, if the GR2 and QRs fields designate the
same general register, the element number is
obtained from that register before it is replaced by
the specified vector element.

A specification exception is recognized when the
VR1 or QRa field designates an invalid register
number, or when the element number is equal to
or greater than the section size.

EXTRACT ELEMENT is a class-N1 instruction. It is
not interruptible, one element is processed, and its
execution is affected by neither the vector-mask
mode nor the vector-mask register. The vector
count and vector interruption index are not used
and remain unchanged.

Conditlon Code: The code remains unchanged.

3-10 ESA/370 and System/370 Vector Operations

Program Exceptions:

e Operation
¢ Specification
¢ Vector operation

Extract VCT

VXVC GR1 [RRE]
1A644 " 11111111 6R|//1/

0 16 24 28 31

The vector count, with 16 zeros appended on the
left, is placed in the general register designated by
GR1.

EXTRACT VCT is a class-No instruction. It is not
interruptible, no elements are processed, and its
execution is affecied by neither the vector-mask
mode nor the vector-mask register. The vector
count remains unchanged. The vector interruption
index is not used and remains unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

¢ Operation
* Vector operation

Extract Vector Mask Mcode

VXVMM GR: [RRE]
'A646" /1111111 6Ru(/1]
0 16 24 28 31

Bits 16-31 of the general register designated by GR:
are set to the value of bits 0-15 of the vector-status
register. Thus, bit 31 of the general register indi-
cates the current setting of the vector-mask mode.
Bits 0-15 of the general register are set to zeros.

EXTRACT VECTOR MASK MODE is a class-No
instruction. It is not interruptible, no elements are
processed, and its execution is affected by the
vector-mask mode but not by the vector-mask reg-
ister. The vector count and vector interruption
index are not used and remain unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

¢ Operation
» Vector operation

Programming Note: The program should not rely
on bits 16-30 of the general register being set to
zeros. Those bits correspond to unassigned bits of
the vector-status register, which are reserved for
possible future use.

Load

Mnemonic VR1,QR2 [ov]
Op Code QRz2|////| VRa\////

0 16 20 24 28 31

HMnemonic Op Code Operands

VLQ 'ASA9! Binary or logical

VLDQ 'A599' Long

VLEQ 'A589" ‘Short

Mnemonic VR1,RS2(RT2) [vsT]
Op Code ////] RTz| VRi| RS2

0 16 20 24 28 31

Mnemonic Op Code Operands

VL 'A409' Binary or logical

VLD 'A419° Long

VLE 'A409' Short

Mnemonic VR1,VR2 [w]
Op Code /17177771 VR1| VR2

0 16 24 28 31

Mnemonic Op Code Operands

VLR 'A509' Binary or logical

VLDR 'A519' Long

VLER 'A509' Short

Element by element, the second operand is placed
unchanged in consecutive first-operand locations.

A specification exception is recognized when a VR
or QR field designates an invalid register number.
In the vsT format, a specification exception is also
recognized when the second operand is not desig-
nated on an integral boundary, or when the RT:
field is nonzero and designates the same general
register as the RS2 field.

LOAD is a class-IC instruction. It is interruptible,
the vector count and vector interruption index
determine the number of elements processed, and
element selection is affected by neither the vector-
mask mode nor the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

* Access (fetch, operand 2 in vsT format)
¢ Operation

* Specification

* Vector operation

Load Bit Index

VLBIX VR1,GR3,D2(B2) [RSE]
/.
/

['E428' GRa{////| VR1|////] B2 DE:]
/ /

0 16 20 24 28 32 36 47

Bit by bit, the second operand is converted from a
bit vector to a vector of element numbers, the
result vector is placed in the first-operand location,
and the number of elements in the result vector is
placed in the vector count.

The result-vector elements are 32-bit signed binary
integers, which give the positions of the one bits in
the second operand, relative to the starting address
of the second operand and in sequence from left to
right. No result-vector elements are generated for
zero bits.

The GRa field must designate an even register
number to specify an even-odd pair of general reg-
isters. The registers contain a bit index and a bit
count, as follows:

GRa Bit Index

GR3+1 Bit Count

0 31

Both are treated as 32-bit signed binary integers.
The bit index identifies the first bit of the second
operand to be processed. The bit count gives the
number of bits to be processed. If the bit count is
zero or less than zero, no bits are processed. Upon

Chapter 3. Vector-Facility Instructions 3-11

completion or interruption of the instruction, the
bit index identifies the next bit to be processed, and
the bit count, if greater than zero, gives the number
of bits remaining.

The address of the byte location containing the
current bit to be processed is the sum, modulo the
address size, of the second-operand address and of a
number obtained by shifting bits 0-28 of the
current bit index right by three bit positions, with
bits equal to bit 0 being shifted into the leftmost
three bit positions (without changing the contents
of the general register). The rightmost three bits of
the current bit index designate the bit within the

byte.

Execution of the instruction consists of a repetition
of the following procedure:

If the vector interruption index is equal to
the section size, or if the bit count is zero
or less than zero, the current value of the
vector interruption index is placed in the
vector count, and the condition code is set
to reflect these values of the vector count
and the bit count; the vector interruption
index is then set to zero, and instruction
execution is completed. Otherwise, the
second-operand bit designated by the
current bit index is selected. If the selected
bit is one, the value of the bit index is
placed in the first-operand element location
designated by the vector interruption index,
and the vector interruption index is then
incremented by one. Next, regardless of
the value of the selected bit, one is added
algebraically to the bit index, and one is
subtracted from the bit count. The proce-
dure is then repeated.

Execution of the instruction may be interrupted,
but only upon return to the starting point of the
repetitive procedure. The vector count and condi-
tion code are undefined at the point of interruption.

When 31-bit addressing is in effect, incrementing
the bit index beyond the value 23!-1 may cause an
overflow, which is not signaled to the program.
The result of incrementing the bit index beyond
2%1-1 is undefined.

A specification exception is recognized when the
GRa field designates an invalid register number.

3-12 FESA/370 and System/370 Vector Operations

The B2 field should not designate the same general
register as either of the pair of registers designated
by the GRa field. The result fields (bit count, bit
index, condition code, vector count, vector inter-
ruption index, and vector register) are undefined if
Bz is nonzero and B2 = GRs3 or B2 = GRa+1.

LOAD BIT INDEX is a class-IG instruction. It is
interruptible, a general register and the vector inter-
ruption index determine the number of elements
processed, and element selection is affected by
neither the vector-mask mode nor the vector-mask
register. The vector count is set by the instruction.

Resulting Condition Code:

0 Vector count zero; bit count zero

1 Vector count zero; bit count less than zero

2 Vector count equal to section size; bit count
greater than zero

3 Vector count greater than zero; bit count zero
or less than zero

Prograin Exceptions:

¢ Access (fetch, operand 2)
¢ Operation

» Specification

* Vector operation

Programming Notes:

1. Example of LOAD BIT INDEX:

Bit Positions: ©123453678
Bit Vector: 016001101
Result Vector: 156 8

2. The bit index in the even register should
normally be set to zero by the program before
entering a sectioning loop that contains the
instruction. An initial nonzero value may be
useful to shorten a bit vector that would other-
wise contain a large number of leading zeros.

3. Assuming normal use of the instruction with
the vector interruption index initially set to
zero, LOAD BIT INDEX sets the vector count to
the number of result elements generated. The
vector count is then available to control subse-
quent vector instructions.

If condition code 2 is set, the vector count has
been set to the section size; a full section of
element numbers has been loaded by the
instruction, and more bits remain to be proc-
essed. If condition code 3 is set, the vector
count has been set to a value equal to or less

than the section size; the last or only section of
element numbers has been loaded, and no
more bits remain to be processed. If condition
code 0 or 1 is set, the vector count is zero, and
there were no bits to be processed and no | Yes
element numbers to be loaded. | VIX = SS 7

Start

v

BC > 07
L ; |
4. If all bits in the second operand are zeros, no 1N° lN" Yesl

result elements are generated, and the vector
count is set to the initial vector interruption Yes
index, which normally is zero. This may also BC <0 7 cc+3| lcce?
occur for the last pass through a sectioning
loop using this instruction, if the number of No
one bits in the second operand happens to be a
multiple of the section size, thus generating one l

or more full sections, with the remainder of the Select bit(BX)
second operand containing only zero bits. l

Subsequent vector instructions will still func- |
tion correctly, because no elements are proc- | VIX > 07
essed when the vector count is zero. No l" ; l

o VYes

Bit =17 =
5. The effect on the result fields of specifying the l
Yes

same general register for the base register of the
second operand and for the bit index or bit BC=07] |CC=-3
count is unpredictable; it may depend on the

model, on the occurrence of asynchronous VR1 = BX N°l lYes
interruptions such as /0, or on other events VIX <= VIX + 1

that are not under the direct control of the
program. .

CC=1| [CC=0

6. Programs using extremely large values of the
bit index when 31-bit addressing is in effect
must limit those values so that they cannot
lexcee:d 231——1,2;Nhich con:responds to a byte : BX < BX + 1 VCT - VIX
ocation of 2°°-1 relative to the second- BC < BC - 1 VIX < 0
operand address. Allowing the instruction to
increment the bit index to the next value may
or may not cause oveiflow; the next byte v
location might be either 228 or —228 relative to Interruption End
the second-operand address. The result may o
not be repeatable from one instruction exe- BC: Bit count in GRs+1

cution to the next. BX: Bit index in GR3

. . .. CC: Condition code
When 24-bit addressing is in effect, byte SS: Section size

addresses in storage are computed modulo 224, VCT: Vector count
so that the possibility of overflow at a bit index VIX: Vector interruption index
f 2311 does not affect the resultant address.
© oes not affect the resultant address Figure 3-1. Execution of LOAD BIT INDEX

v

7. Figure 3-1is a summary of the operation.

Chapter 3. Vector-Facility Instructions 3-13

Load Complement

Mnemonic VR1,VRa2 [vv]
Op Code /77777771 VRi| VR2

0 16 24 28 31

Mnemonic Op Code Operands

VLCR 'A562' Binary

VLCDR 'A552! Long

VLCER 'A542! Short

Element by element, the second-operand vector is
placed in the first-operand location with the oppo-
site sign. For VLCR, each result element is the
two’s complement of the corresponding source
element. For VvICDR and VICER, each result
element is the corresponding source element with
the sign bit inverted.

The operation is performed on each element in the
same manner as the corresponding scalar operation,
except that the condition code is not set.

A specification exception is recognized when a VR
field designates an invalid register number.

LOAD COMPLEMENT is a class-IM instruction. It is
interruptible, the vector count and vector inter-
ruption index determine the number of elements
processed, and element selection is affected by both
the vector-mask mode and the vector-mask register.

Condition Code: The code remains unchanged.

Prdgram Exceptions:

» Fixed-point overflow (with exception-extension
code; binary operand only)

* Operation

e Specification

* Vector operation

3-14 ESA/370 and System/370 Vector Operations

Load Element

Mnemonic VR1,QR3,GR2 [VR]

Op Code QRs|////] VR1| GRa2
0 16 20 24 28 31
Mnemonic Op Code Operands
VLEL 'A628" Binary or logical
VLELD 'A618" Long
VLELE 'A608' Short

The element in the vector register or vector-register
pair designated by VRi, which has the element
number contained in the gencral register designated
by GR2, is replaced by the scalar operand in the
general or floating-point register designated by QRas.

The element number is a 32-bit unsigned binary
integer which must be less than the section size.

A specification exception is recognized when the
VR1 or QR3 field designates an invalid register
number, or when the element number is equal to
or greater than the section size.

LOAD ELEMENT is a class-N1 instruction. It is not
interruptible, one element is processed, and its exe-
cution is affected by neither the vector-mask mode
nor the vector-mask register. The vector count and
vector interruption index are not used and remain
unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

¢ Operation
* Specification
* Vector operation

Load Expanded

Mnemonic VRi,RS2(RT2) [vsT]
Op Code ////1 RT2| VRi| RS2

0 16 26 24 28 31

Mnemonic Op Code Operands

VLY 'A40B* Binary or logical

VLYD 'A41B' Long

VLYE 'A408! Short

Element by element, successive elements of the
second-operand vector are placed unchanged in the

element locations of the first operand that corre-
spond to ones in the active bits of the vector-mask
register. Element locations of the first operand that
. correspond to zeros in the active bits of the vector-
mask register remain unchanged, and there are no
corresponding second-operand locations in storage.

A specification exception is recognized when the
vR1 field designates an invalid register number,
when the second operand is not designated on an
integral boundary, or when the rT2 field is nonzero
and designates the same general register as the Rs:
field.

When the active bits of the vector-mask register are
all zeros, no access exceptions are recognized for
the storage location specified by the second
operand.

LOAD EXPANDED is a class-IC instruction. It is
interruptible, the vector count and vector inter-
ruption index determine the number of elements
processed, and element selection is affected by the
vector-mask register but not by the vector-mask
mode.

Condition Code: The code remains unchanged.

Program Exceptions:

» Access (fetch, operand 2)
* Operation

* Specification

* Vector operation

Programming Notes:

1. The number of vector elements which are
loaded from storage and the amount by which
the address in the general register designated by
RS2 is updated correspond to the number of
ones among the active bits of the vector-mask
register.

2. The operation performed by LOAD EXPANDED
is the opposite of STORE COMPRESSED.

Load Halfword

VLH VR1,RS2(RT2) [VST]
1A429" ////] RTz2| VR1| RS2
0 16 20 24 28 31

Element by element, the second operand is
extended from a vector of 16-bit signed binary inte-
gers to a vector of 32-bit signed binary integers, and
the result is placed in consecutive first-operand
locations.

Each second-operand element is two bytes in
length. The element is extended upon loading to
32 bits by setting each of the 16 leftmost bit posi-
tions of the first-operand element equal to the sign
bit of the second-operand element.

A specification exception is recognized when the
second operand is not designated on a halfword
boundary, or when the RrT2 field is nonzero and
designates the same general register as the Rrs: field.

LOAD HALFWORD is a class-IC instruction. It is
interruptible, the vector count and vector inter-
ruption index determine the number of elements
processed, and element sclection is affected by
neither the vector-mask mode nor the vector-mask
register.

Condition Code: The code remains unchanged.

Program Exceptions:

* Access (fetch, operand 2)
¢ Operation

« Specification

* Vector operation

Load Indirect

Mnemonic VR1,VR3,D2(B2) [RSE]
/ /
ECOde VRa|////| VR1l////| Ba D—z]

/

/
¢] 16 20 24 28 32 36 47
Mnemonic Op Code Operands
VLI 'E400' Binary or logical
VLID 'E410! Long
VLIE 'E400° Short

Chapter 3. Vector-Facility Instructions 3-15

Element by element, the third operand is used to
select elements of the second-operand vector in
storage and place them unchanged in the element
positions of the first operand which correspond to
those of the third operand.

The third operand is a vector of 32-bit signed
binary integers. The address of each second-
operand element is computed as the sum of the
second-operand origin and the offset obtained from
each element of the third operand, as follows.

The second-operand origin is generated from the
basc-address (B2) and displacement (D2) fields using
the normal rules of address generation. The offset
is obtained by shifting the current third-operand
element to the left by two bits (for VLI or VLIE) or
three bits (for vLID), with zeros appended on the
right. The origin and offset are added. The right-
most 31 or 24 bits of the sum, depending on the
address size, are used as the storage address. The
second-operand element is fetched from that
address and loaded into the first-operand location
at the same element position as that from which
the third-operand element was obtained.

During the shift and addition operations, any
carries or shifts into or out of the unused bit posi-
tions on the left are ignored.

A specification exception is recognized when the
VR1 field designates an invalid register number, or
when the second operand is not designated on an
integral boundary.

LOAD INDIRECT is a class-IC instruction. It is
interruptible, the vector count and vector inter-
ruption index determine the number of elements
processed, and element selection is affected by
ncither the vector-mask mode nor the vector-mask
register.

Condition Cede: 'The code remains unchanged.

Program Exceptions:

» Access (fetch, operand 2)
* Operation

* Specification

* Vector operation

Programming Note: LOAD INDIRECT is used to
load a vector by indirect element selection. ‘The
instruction fetches elements from storage in the fol-

3-16 ESA/370 and System/370 Vector Operations

lowing sequence of addresses: A4 + wxE(0),
A+ wxE(), A + wxE(Q2), ..., where A4 is the
origin of the vector in storage, w is the width of
cach elemeni, and E(0), E(1), E(2), ... are the
element numbers contained in positions 0, 1, 2, ...
of the vector register designated by the VR field of
the instruction.

The origin is A = (Bz)+D2, where (B2) represents
the contents of the base register designated by the
Bz field, and D2 is the displacement designated by
the D2 field.

The element width w is 4 for vLI or VLIE and 8 for
VLID. The storage elements are loaded successively
into element positions 0, 1, 2, ... of the target reg-
ister designated by VRai.

Load Integer Vector

VLINT VR1,RS2(RT2) [VST]
TA42A" ////| RTz| VR1| RS2
0 16 20 24 28 31

Element by element, a vector of uniformly spaced
integers, as specified by the second-operand desig-
nation, is placed in consecutive first-operand
locations.

If the vector interruption index X is less than the
vector count, the contents of the general register
designated by Rs2 replace element X of the first
operand (normally X = 0 at the start). Then, the
contents of that general register are incremented by
adding the contents of the general register desig-
nated by RT2 (the stride), both being treated as
32-bit binary integers. Any overflow during the
addition is ignored. The vector interruption index
X is then incremented by one.

These steps are repeated for each successive first-
operand element until incrementing X causes it to
equal the vector count. The vector interruption
index is then set to zero.

The general register designated by RT2 remains
unchanged. If the rRT2 field of the instruction is
zero, general register 0 is not used for the incre-
ment; instead, the increment is +1, so that consec-
utive integers are loaded.

A specification exception is recognized when the
RT2 field is nonzero and designates the same
general register as the Rs2 field.

LOAD INTEGER VECTOR is a class-IC instruction. It
is interruptible, the vector count and vector inter-
ruption index determine the number of elements
processed, and element selection is affected by
neither the vector-mask mode nor the vector-mask
register.

Condition Code: The code remains unchanged.

Program Exceptions:

» Operation
* Specification
e Vector operation

Programming Note: The operation resembles the
generation of storage addresses for QsT- and
vsT-format instructions, except that the element
size w is 1, no storage references for operands take
place, no access exceptions for operands are recog-
nized, and all 32 bits of both general registers par-
ticipate in the operation. The result is independent
of the address size.

Performing a LOAD INTEGER VECTOR operation
also resembles the execution of a loop using the
nonvector instruction LOAD ADDRESS. They differ
in that LOAD INTEGER VECTOR does not depend on
the address size; it does not set to zeros the leftmost
one or eight bit positions. LOAD INTEGER VECTOR
can generate negative numbers, which LOAD
ADDRESS cannot.

Load Matched

Mnemonic VR1,QR2 [av]

Op Code QRz|////| VR1|////
0 16 20 24 28 31
Mnemonic Op Code Operands
VLMQ TASAA! Binary or logical
VLMDQ TA59A! Long
VLMEQ TA58A! Short

Mnemonic VR1,RS2(RT2) [vsT]
Op Code ////1 RTz2| VRi1] RS2

0 16 20 24 28 31

Mnemonic Op Code Operands

VIM 'A40A! Binary or logical

VLMD 'A41A! Long

VLME 'A40A° Short

Wnemonic VRi,VRa [v]
Op Code /71777771 VR1| VRz2

0 16 24 28 31

Mnemonic Op Code Operands

VLMR 'A50A! Binary or logical

VLMDR 'A51A° Long

VLMER 'A50A" Short

Element by element, elements of the second
operand corresponding to ones in the active bits of
the vector-mask register are placed unchanged in
the corresponding element locations of the first
operand. Elements of the second operand corre-
sponding to zeros in the active bits of the vector-
mask register are not loaded, and the corresponding
element locations of the first operand remain
unchanged.

A specification exception is recognized when a VR
or QR field designates an invalid register number.
In the vsT format, a specification exception is also
recognized when the second operand is not desig-
nated on an integral boundary, or when the RT2
field is nonzero and designates the same general
register as the rs2 field.

No access exceptions are recognized for elements of
the second operand which correspond to zeros in
the active bits of the vector-mask register; however,
the general register designated by the Rs:2 field is
updated for each of those elements.

LOAD MATCHED is a class-IC instruction. It is
interruptible, the vector count and vector inter-
ruption index determine the number of elements
processed, and element selection is affected by the
vector-mask register but not by the vector-mask
mode.

Condition Code: The code remains unchanged.

Chapter 3. Vector-Facility Instructions 3-17

Program Exceptions:

¢ Access (fetch, operand 2 in vsT format)
¢ Operation

* Specification

* Vector operation

Programming Notes:

1. The instructions LOAD and LOAD MATCHED, in
corresponding formats, perform the same func-
tion on those elements which correspond to
ones in the active bits of the vector-mask reg-
ister; that is, each such element is loaded from
the same storage location into the same vector-
register position. LOAD MATCHED differs in
that elements in storage corresponding to zeros
in the active bits of the vector-mask register are
skipped.

2. 1L.OAD, LOAD EXPANDED, and 1.OAD MATCHED,
in corresponding formats, perform the same
function when all active bit positions of the
vector-mask register contain ones.

Load Negative

Mnemonic VR1,VR2 [vv]
Op Code /71771771 VRi| VRa

0 16 24 28 31

Mnemonic Op Code Operands

VLNR 'A561! Binary

VLNDR 'A551" Long

VLNER 'A541! Short

Element by element, the negative of the absolute
value of the second-operand vector is placed in the
first-operand location.

The operation is performed on each element in the
same manner as the corresponding scalar operation,
except that the condition code is not set.

A specification exception is recognized when a VR
field designates an invalid register number.

LOAD NEGATIVE is a class-IM instruction. It is
interruptible, the vector count and vector inter-
ruption index determine the number of elements
processed, and element selection is affected by both
the vector-mask mode and the vector-mask register.

Condition Code: The code remains unchanged.

3-18 ESA/370 and System/370 Vector Operations

Program Exceptions:

e Operation
* Specification
* Vector operation

Load Positive

Mnemonic VR1,VR2 [v]
Op Code //1/////1 VRi{ VR2

0 16 24 28 31

Mnemonic Op Code Operands

VLPR 'A560 Binary

VLPDR 'A550" Long

VLPER 'A540' Short

Element by element, the absolute value of the
second-operand vector is placed in the first-operand
location.

The operation is performed on each element in the
same manner as the corresponding scalar operation,
except that the condition code is not set.

A specification exception is recognized when a VR
field designates an invalid register number.

LOAD POSITIVE is a class-IM instruction. It is inter-
ruptible, the vector count and vector interruption
index determine the number of elements processed,
and element selection is affected by both the
vector-mask mode and the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

» Fixed-point overflow (with exception-extension
code; binary operand only)

* Operation

» Specification

* Vector operation

Load VCT and Update

vLVCU GR1 [RRE]
'A645" /1111111] GRa|//]]
0 16 24 28 31

If the operand in the general register designated by
the GRu field is greater than zero, the vector count
(vcr) is replaced by the lesser of the section size
and the operand. If the operand is zero or less
than zero, the vector count is set to zero. The
general register is then updated by subtracting the
new vector count from the register contents.

The register contents are treated as a 32-bit signed
binary integer. The vector count and section size
are treated as 16-bit unsigned binary integers.

LOAD VCT AND UPDATE is a class-No instruction.
It is not interruptible, no elements are processed,
and its execution is affected by neither the vector-
mask mode nor the vector-mask register. The
vector count is set. The vector interruption index
is not used and remains unchanged.

Resuiting Condition Code:

0 Vector count zero; register result zero

1 Vector count zero; register result less than zero

2 Vector count equal to section size; register
result greater than zero

3 Vecior count greater than zero; register result
7ero

Program Exceptions:

* Operation
* Vector operation

Programiming Notes:

1. LOAD VCT AND UPDATE may be used at the
start of a sectioning loop to determine the
number of vector elements to be processed
during each pass through the loop. Before
entering the loop, the program initializes the
general-register operand to the total number of
elements in the vector. The end of the loop
may simply be a BRANCH ON CONDITION
instruction, if the condition code has not been
changed since the start of the loop, or the
branch may be preceded by LOAD AND TEST
specifying the general register as both the first
and second operand.

If LOAD VvCT AND UPDATE sets condition code
2, the vector count has been set to the section
size; a full section of vector elements are to be
processed, and more remain to be processed. If
it sets condition code 3, the vector count has a
value equal to or less than the section size, and
the last or only section is to be processed. If it
sets condition code 0 or 1, the vector count is
zero, and there are no vector elements to be
processed.

2. If LOAD AND TEST is used instead at the end of
the loop, condition code 2 simply indicates that
the general register contents are greater than
zero, and there are more elements to be proc-
essed. Any other condition code means that
there are no more elements.

3. The general-register operand remains greater
than zero at the end of instruction execution
only if condition code 2 is set. For the other
condition codes, the final register contents are
zero or negative.

Load VCT from Address

VLVCA D2(B2) [s]

'ABC4! Bz D2

0 16 20 31

If the second-operand-address value is greater than
zero, the vector count (vCr) is replaced by the
lesser of the section size and the address value. If
the second-operand-address value is zero or less
than zero, the vector count is set to zero.

If the B2 field of the instruction is not zero, the
second-operand-address value is formed by adding
the contents of the general register designated by
the B2 field and the contents of the 12-bit D2 field
of the instruction. All 32 bits in the general register
designated by the B2 field participate in the addi-
tion, which is independent of the address size. The
result of the addition is used as the operand itself
and not to address storage. It is treated as a 32-bit
signed binary integer.

If the B2 field of the instruction is zero, general reg-
ister 0 is not used; instead, the address value con-
sists of the D2 field with 20 zero bits appended on
the left.

Chapter 3. Vector-Facility Instructions 3-19

No storage references for operands take place, and
the address value is not inspected for boundary
alignment or access exceptions.

LOAD VCT FROM ADDRESS is a class-No instruction.
It is not interruptible, no elements are processed,
and its execution is affected by neither the vector-
mask mode nor the vector-mask register. The
vector count is set. The vector interruption index
is not used and remains unchanged.

Resulting Condition Code:

0 Vector count zero; second-operand address
Zero

1 Vector count zero; second-operand address less
than zero

2 Vector count equal to section size; second-
operand address greater than section size

3 Vector count greater than zero; second-
operand address less than or equal to section
size and greater than zero

Program Exceptions:

» Operation
* Vector operation

Programming Note: LOAD VCT FROM ADDRESS
may be used to set the vector count to the section
size by specifying a Bz field of zero and placing a
value greater than 511 in the D2 field.

Load VMR

VLVM RS2 [vs]
w60' /11111111111 RS

0 16 28 31

The second-operand bit vector replaces the active
bits of the vector-mask register (VMR). Bits beyond
the active bits are sct to zeros.

LLOAD VMR is a class-NC instruction. It is not inter-
ruptible, the vector count determines the number of
bits processed, and bit selection is affected by
neither the vector-mask mode nor the vector-mask
register. The vector interruption index is not used
and remains unchanged.

Condition Code: The code remains unchanged.

3-20 ESA/370 and System/370 Vector Operations

Program Exceptions:

» Access (fetch, operand 2)
* Operation
» Vector operation

Load VMR Complement

VLCVM RS2 [VS]
'A681" /11111111117 RS2
0 16 28 31

The complement of the bits from the second-
operand bit vector replaces the active bits of the
vector-mask register (VMR). Bits beyond the active
bits are set to zeros.

LOAD VMR COMPLEMENT is a class-NC instruction.
It is not interruptible, the vector count determines
the number of bits processed, and bit selection is
affected by neither the vector-mask mode nor the
vector-mask register. The vector interruption index
is not used and remains unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

* Access (fetch, operand 2)
¢ Operation
* Vector operation

Load Zero

Mnemenic VR: [w]
Op Code |//////11] VRa|/17]

0 16 24 28 31

Mnemonic Op Code Operands

VLZR 'A50B' Binary or logical

VLZDR 'AS1B'* Long

VLZER 'A50B"' Short

Element by element, all bits of the first-operand
vector are set to zeros.

A specification exception is recognized when the
VR1 field designates an invalid register number.

LOAD ZERO is a class-IC instruction. It is interrup-
tible, the vector count and vector interruption index
determine the number of element positions set to

zero, and element selection is affected by neither
the vector-mask mode nor the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

* Operation

* Specification

* Vector operation
Programming Note: The instruction LOAD ZERO is
equivalent to LOAD (VLQ, VLDQ, or VLEQ) with an

implied scalar source operand of zero. It provides
the fastest way to set a vector register to zeros.

Maximum Absolute

Mnemonic VR1,FR3,GR2 [VR]

Op Code FRa|////]| VR1| GR2
0 16 206 24 28 31
Mnemonic Op Code Operands
VMXAD 'AG12' Long
VMXAE 'A602' Short

Maximum Signed

Mnemonic VR1,FR3,GR2 [VR]
Op Code FRal////| VR1| GRz

0 16 20 24 28 31

Mnemonic Op Code Operands

VMXSD 'A610" Long

VMXSE 'A600"* Short

Minimum Signed

Mnemonic VR1,FR3,GR2 [VR]

Op Code FRa|////1 VR1| GR2
0 16 20 24 28 31
Hnemonic Op Code Operands
VMNSD 'A611! Long
VMNSE 'A601' Short

The scalar third operand and all first-operand
vector elements are compared to determine the
maximum or minimum value, which replaces the
third operand. The instruction MAXIMUM ABSO-
LUTE compares absolute values to select the
maximum. The instructions MAXIMUM SIGNED

and MINIMUM SIGNED compare signed values to
select the maximum or minimum, respectively.

The comparison of each pair of absolute or signed
operand values is performed in the same manner as
the scalar floating-point COMPARE instruction for
the same format, except that the result is the
selection of one element of the pair instead of a
condition-code setting.

The scalar third operand is compared with each
element of the first operand in turn to determine
the selected (maximum absolute, maximum signed,
or minimum signed) value. If the comparison is
unequal and the first-operand element is the
selected value, the first-operand element replaces
the third operand; otherwise, no change takes place.
The operation then continues with the next
element of the first operand in the sequence of
element numbers.

The GR2 field must be zero or even. When
nonzero, it designates an even-odd pair of general
registers. The contents of the odd general register
are treated as a 32-bit unsigned binary integer,
which is incremented by one after each first-
operand element has been processed; any carry out
of bit position 0 is ignored. Each time a new
selected value replaces the third operand, the
current contents of the odd general register, before
it is incremented, are placed in the even general reg-
ister.

When the GR: field is zero, the action associated
with the general registers is not performed, and
their contents remain unchanged.

For VMXAE, VMXSE, and VMNSE, the rightmost 32
bits of the floating-point register designated by FRrs
remain unchanged.

A specification exception is recognized when the
VR1, GR2, or FRa field designates an invalid register
number.

MAXIMUM ABSOLUTE, MAXIMUM SIGNED, and
MINIMUM SIGNED are class-IM instructions. They
are interruptible, the vector count and vector inter-
ruption index determine the number of elements
processed, and element selection is affected by both
the vector-mask mode and the vector-mask register.
When the vector-mask mode is on, no selection
takes place for first-operand elements corresponding
to zero mask bits: the third operand and the even

Chapter 3. Vector-Facility Instructions 3-21

general register remain unchanged. However, when
the GRe field is nonzero, the odd general register is
incremented by one for every first-operand element,
regardless of the mode and mask bits.

Condition Code: The code remains unchanged.

Program Exceptions:

¢ Operation
+ Specification
» Vector operation

Programming Notes:

1. Because the current third operand is compared
with every element of the first operand,
including element 0, these instructions can be
used in a sectioning loop to find the selected
value of a vector of any length. Before starting
the first, or only, section, the program should
initialize the third operand as follows.

* MAXIMUM ABSOLUTE: 7ero
* MAXIMUM SIGNED: largest negative value
* MINIMUM SIGNED: largest positive value

2. If the GR: field is not zero, and the program
initializes both of the specified pair of general
registers to zero before executing the instruc-
tion, the even register will contain the number
of the selected element, counting from the start
(clement 0) of the first section. If no element
was selected, the even register will retain its
initial contents. The odd register will contain
the cumulative number of elements processed.

When the first operand contains two or more
elements that could equally qualify as the
selected element, the instruction selects the first
one.

3. Since the element values are floating-point
numbers, the rules for floating-point compar-
ison apply, and two or more elements with dif-
ferent bit patterns may satisfy the test for
maximum or minimum value. For example,
elements with zero fractions compare equal
even though their sign and characteristic may
differ. See also the programming notes for the
COMPARE instruction in Chapter 9, “Floating-
Point Instructions,” of the Principles of Opera-
tion publications listed on page iii.

3-22 ESA/370 and System/370 Vector Operations

Muitiply
Mnemonic VR1,QR3,RS2(RT2) [QST]
Op Code QR3] RTz2| VR1] RS2
0 16 20 24 28 31
Mnemonic Op Code Operands
VMS "A4A2! Binary
VMDS 'A492' Long
VMES *A482! Short multiplier and

multiplicand, long product

Mnewmonic VR1,QR3,VR2 [av]
Op Code QR31////1 VR1} VR2
0 16 20 24 28 31
Mnemonic Op Code Operands
VMQ 'ABA2'! Binary
VMDQ 'A592" Long
VMEQ 'A582" Short muitiplier and
multiplicand, long product
Knemonic VR1,VR3,RS2(RT2) [VST]
Op Code VRa| RT2| VRi] RS2
0 16 20 24 28 31
Wnemonic Op Code Operands
VM 'A422¢ Binary
VMD 'A412! Long
VME 'A402' Short multiplier and
multiplicand, long product
Hnemonic VR1,VR3,VR2 [w]
Op Code VR3l////1 VR1] VR2
0 16 20 24 28 31
Mnemonic Op Code Operands
VMR 'A522! Binary
VMDR 'A512! Long
VMER 'A502' Short multiplier and

multiplicand, long product

Element by element, the product of the second
operand and the third operand is placed in the first-
operand location. The operation is performed on
each pair of elements in the same manner as the
corresponding scalar operation, except for the fol-
lowing differences:

* For binary operands, the third-operand desig-
nation may be any register number. FEach
element of the third operand is a 32-bit signed
binary integer, as is each element of the second
operand. The first-operand location is a
vector-register pair, which receives product ele-
ments consisting of 64-bit signed binary inte-
gers.

* For floating-point operands, the operands are
not first normalized. When one or both of the
source-operand elements have a nonzero frac-
tion with a leftmost hexadecimal digit of zero,
an unnormalized-operand exception is recog-
nized, and the unit of operation is inhibited.

A specification exception is recognized when a VR
or QR field designates an invalid register number.
In the QST and vsT formats, a specification excep-
tion is recognized when the second operand is not
designated on an integral boundary, or when the
RT2 field is nonzero and designates the same
general register as the Rsz field. For the vMs
instruction, a specification exception is also recog-
nized when the QRa field designates the same
general register as the rs2 field.

MULTIPLY is a class-IM instruction. It is interrup-
tible, the vector count and vector interruption index
determine the number of elements processed, and
element selection is affected by both the vector-
mask mode and the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

¢ Access (fetch, operand 2 in QsT and vsT
formats)

» Exponent overflow (with exception-extension
code; floating-point operands only)

* Exponent underflow (with exception-extension
code; floating-point operands only)

* Operation

* Specification

* Unnormalized operand (with exception-
extension code; floating-point operands only)

» Vector operation

Multiply and Accumulate

Mnemonic VR1,VR3,RS2(RT2) [VST] -
Op Code VRa| RTa2| VR1| RS2
0 16 206 24 28 31
Mnemonic Op Code Operands
VMCD 'A416! Long
VMCE 'A406"' Short multiplier and
multiplicand; long first
operand, product, and sum
Mnemonic VR1,VR3,VR2 [w]
Op Code VR3|////| VRi| VRz2
0 16 26 24 28 31
Mnemonic Op Code Operands
VMCDR 'A516" Long
VMCER 'A506"' Short multiplier and

multiplicand; long first
operand, product, and sum

Partial sums of the products of corresponding ele-
ments of the second and third operands are accu-
mulated by adding the products to the contents of
element positions 0 to p—1 of the first operand.
The partial-sum number p depends on the model.

The operation proceeds in an ascending sequence
of element numbers. The product of the /-th ele-
ments of the second and third operands is added to
the first-operand element at a position which is the
remainder of dividing I by p, where I varies from X
to C—1, X is the initial vector interruption index
(normally zero), and C is the vector count. The
operation accumulates C—X element products.

Thus, the products formed from second- and third-
operand elements 0, p, 2p, ... are accumulated into
position 0 of the first operand; products from ele-
ments 1, p+1, 2p+1, ... are accumulated into posi-
tion 1; etc. The contents of first-operand element
positions above p—1 remain unchanged.

Every multiplication is performed in the same
manner as the corresponding scalar floating-point,
short or long, MULTIPLY instruction, except that
the operand elements are not first normalized.
Every addition is performed in the same manner as
the scalar instruction ADD NORMALIZED (ADR),
except that the condition code is not set.

Chapter 3. Vector-Facility Instructions 3-23

When one or both of a pair of second- and third-
operand elements have a nonzero fraction with a
leftmost hexadecimal digit of zero, an
unnormalized-operand exception is recognized, and
the unit of operation is inhibited.

If the multiplication of an element pair results in an
exponent underflow, a true zero is used in place of
the product in the addition operation, and no
exception is recognized. If the multiplication
results in an exponent overflow, the product
replaces the corresponding partial-sum element, and
an exponent overflow is recognized. Exceptions in
the addition are recognized in the same manner as
for the scalar instruction ADD NORMALIZED (ADR).

A specification exception is recognized when a VR
field designates an invalid register number. In the
vsT format, a specification exception is also recog-
nized when the second operand is not designated
on an integral boundary, or when the RT2 field is
nonzero and designates the same general register as
the rs: field.

MULTIPLY AND ACCUMULATE is a class-IM instruc-
tion. It is interruptible, the vector count and vector
interruption index determine the number of ele-
ments processed, and element selection is affected
by both the vector-mask mode and the vector-mask
register.

Condition Code: The code remains unchanged.

Program Exceptions:

¢ Access (fetch, operand 2 in vsT format)

* Exponent overflow (with exception-extension
code)

* Exponent underflow (with exception-extension
code)

¢ Operation

« Significance (with exception-extension code)

 Specification

* Unnormalized
extension code)

¢ Vector operation

operand (with exception-

3-24 1:SA/370 and System/370 Vector Operations

Multiply and Add

Mnemonic VR1,FR3,RS2(RT2) [QST]
Op Code FRa| RT2| VR1| RS2
] 16 20 24 28 31
Mnemonic Op Code Operands
VMADS 'A494" Long
VMAES 'A484' Short multiplier and
multiplicand; long first
operand, product, and sum
Mnemonic VR1,FR3,VR2 [qQv]
Op Code FRa|////] VR1| VR2
¢ 16 20 24 28 31
Mnemonic Op Code Operands
VMADQ 'A594' Long
VMAEQ 'A584' Short multiplier and
multiplicand; long first
operand, product, and sum
Mnemonic VR1,VR3,RS2(RT2) [VST]
Op Code VR3| RT2| VR1| RS2
0 16 20 24 28 31
Mnemonic Op Code Operands
VMAD 'A414! Long
VMAE 'A404" Short muitiplier and

multiplicand; long first
operand, product, and sum

Multiply and Subtract

Mnemonic VR1,FR3,RS2(RT2) [QST]

Op Code FRs| RTz2| VR1| RS2

0 16 20 24

Mnemonic Op Code Operands

VMSDS 1A495" Long

VMSES 'A485"' Short multiplier and
multiplicand; long first
operand, product and
difference

28 31

Wnemonic VR:,FRs3,VR2 [av]
Op Code FRa|////| VR1| VRa
0 16 20 24 28 31
Hnemonic Op Code Operands
VMSDQ 'A595! Long
VMSEQ 'A585" Short multiplier and
multiplicand; long first
operand, product and
difference
Mnemonic VR1,VR3,RS2(RT2) [VST]
Op Code VRa] RT2} VRi1| RS2
) 16 20 24 28 31
¥nemonic Op Code Operands
VMSD 'A415' Long
VMSE 'A405! Short multiplier and

multiplicand; long first
operand, product and
difference

Element by element, the third operand is multiplied
by the second-operand vector, and the product is
added to, or subtracted from, the first-operand
vector. The sum or difference is placed in the first-
operand location.

Every multiplication is performed in the same
manner as the corresponding scalar floating-point,
short or long, MULTIPLY instruction, except that
the operand elements are not first normalized.
Every addition or subtraction is performed in the
same manner as the scalar instruction ADD NOR-
MALIZED (ADR) or SUBTRACT NORMALIZED (SDR),
respectively, except that the condition code is not
set.

When one or both of a pair of second- and third-
operand elements have a nonzero fraction with a
leftmost hexadecimal digit of zero, an
unnormalized-operand exception is recognized, and
the unit of operation is inhibited.

If the multiplication of an element pair results in an
exponent underflow, a true zero is used in place of
the product in the addition or subtraction opera-
tion, and no exception is recognized. If the multi-
plication of an element pair results in an exponent

overflow, the corresponding product replaces the
first-operand element, and an exponent overflow is
recognized. Exceptions in the addition or sub-
traction are recognized in the same manner as for
the scalar instruction ADD NORMALIZED (ADR) or .
SUBTRACT NORMALIZED (SDR), respectively.

A specification exception is fecognized when a VR
or FR field designates an invalid register number.
In the QsT and vsT formats, a specification excep-
tion is also recognized when the second operand is
not designated on an integral boundary, or when
the rRT2 field is nonzero and designates the same
general register as the Rs2 field.

MULTIPLY AND ADD and MULTIPLY AND SUB-
TRACT are class-IM instructions. They are interrup-
tible, the vector count and vector interruption index
determine the number of elements processed, and
element selection is affected by both the vector-
mask mode and the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptlons:

e Access (fetch, operand 2 in Qst and vsT
formats)

* Exponent overflow (with exception-extension
code)

* Exponent underflow (with exception-extension
code)

* Operation

« Significance (with exception-extension code)

» Specification

* Unnormalized
extension code)

e Vector operation

operand (with exception-

Programming Notes:

1. The MULTIPLY AND ADD and MULTIPLY AND
SUBTRACT operations may be summarized as:

op1 = op1 1 op3xopz

2. If the constant 1.0 is placed in the third-
operand location, MULTIPLY AND ADD (VMAFS
or VMAEQ) and MULTIPLY AND SUBTRACT
(VMSES or VMSEQ) may be used to add (sub-
tract) a vector in the short format to (from) a
vector in the long format.

Chapter 3. Vector-Facility Instructions 3-28

OR
V0S VR1,GR3,RS2(RT2) [QST]
'A4AS? GRa| RTz| VRi| RS2
0 16 20 24 28 31
vVOQ VR1,GR3,VR2 [av]
TA5A5! GR3}|////| VRi| VR
0 16 20 24 28 31
Vo VR1,VR3,RS2(RT2) [VST]
'A425! VR3| RT2{ VR1| RS2
0 16 20 24 28 31
VOR VR1,VRa,VR2 [w]
'A525! VRa|////| VRi{ VR2
0 16 20 24 28 31

FElement by element, the oR of the second and third
operands is placed in the first-operand location.

The operation is performed on each pair of 32-bit
elements in the same manner as the corresponding
scalar operation, except that the condition code is
not set.

For the vo and vos instructions, a specification
exception is recognized when the second operand is
not designated on an integral boundary, or when
the RT2 field is nonzero and designates the same
general register as the Rsz field. For the vos
instruction, a specification exception is also recog-
nized when the GRs field designates the same
general register as the Rs2 field.

OR is a class-IM instruction. It is interruptible, the
vector count and vector interruption index deter-
mine the number of elements processed, and
element selection is affected by both the vector-
mask mode and the vector-mask register.

Condition Code: The code remains unchanged.

3-26 ESA/370 and System/370 Vector Operations

Program Exceptions:

* Access (fetch, operand 2 in Qst and vsT
formats)

* Operation

 Specification

* Vector operation

OR to VMR

VOVM RS2 [vS]
weBs' /11111111111 R

0 16 28 31

The OR of the second-operand bit vector and of the
active bits of the vector-mask register (VMR) is
placed in the vector-mask register. Bits beyond the
active bits are set to zeros.

OR TO VMR is a class-NC instruction. It is not
interruptible, the vector count determines the
number of bits processed, and bit selection is
affected by neither the vector-mask mode nor the
vector-mask register. The vector interruption index
is not used and remains unchanged.

Condition Code: 'The code remains unchanged.

Program Exceptions:

* Access (fetch, operand 2)
* Operation
* Vector operation

Restore VAC

VACRS D2(B2) [S]

'A6CB' B2 D2

0 16 20 31

Bits 8-63 of the vector-activity count (VAC) are
replaced by bits 8-63 of the doubleword designated
by the second-operand address; bits 0-7 of the vAC
are set to zeros. Execution of this instruction does
not increment the vector-activity count and leaves
the loaded value unchanged.

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized.

RESTORE VAC is a class-No instruction. It is not
interruptible, no elements are processed, and its
execution is affected by neither the vector-mask
mode nor the vector-mask register. The vector
count and vector interruption index are not used
and remain unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

* Access (fetch, operand 2)
¢ Operation

* Privileged operation

* Specification

* Vector operation

Restore VMR

VMRRS D2(Bz2) [S]

'A6C3! B2 D2

0 16 20 31

The second operand replaces the entire contents of
the vector-mask register (VMR),

The length of the second operand is 47 bits (Z/2
bytes), where Z is the section size. The contents of
only the first Z bits are necessarily fetched and
placed in the VMR; additional bits may or may not
be fetched from the second operand, and access
exceptions may or may not be recognized for that
portion of the operand.

RESTORE VMR is a class-Nz instruction. It is not
interruptible, the section size determines the
number of bits processed, and bit selection is
affected by neither the vector-mask mode nor the
vector-mask register. The vector count and vector
interruption index are not used and remain

unchanged.
Condition Code: The code remains unchanged.

Programi Exceptions:

* Access (fetch, operand 2)
* Operation
* Vector operation

Restore VR

VRRS GR1 [RRE]
'A648" /1111111] 6Ral/]]/

0 16 24 28 31

If the vector in-use bit associated with a specified
pair of vector registers is one, the contents of those
vector registers are replaced by consecutive
doublewords from a storage area called the save
area of the vector-register pair. If the vector in-use
bit is zero, the vector registers remain unchanged.
In either case, the address of the save area is incre-
mented to the location of the save area of the next
pair of vector registers.

The GR:1 field must designate an even register
number to specify an even-odd pair of general reg-
isters. The odd general register contains two 16-bit
unsigned binary integers as follows: bits 0-15
contain an element number, which designates the
location of the first element pair in the vector-
register (VR) pair designated by bits 16-31. The
even general register contains a save-area address,
which identifies the storage location of the element
pair specified by the odd general register.

Graphically, the general-register contents may be
represented as follows:

GR1 (even) Save-Area Address

Element Number VR Pair

GR1+1 (odd)

0 16 31

Depending on the address size, the rightmost 31 or
24 bits of the contents of the even general register
are used as the save-area address. When the
general register is updated to the address of the next
location, the lefimost one or eight bit positions,
respectively, of the general register are set to zeros.

If the instruction is interrupted, the save-area-
address and element-number fields have been
updated to indicate the next element to be proc-
essed in the current save area and vector registers.

| The condition code is undefined at the point of
| interruption.

3-27

Chapter 3. Vecior-Facility Instructions

At the completion of the instruction, the save-area-
address field is updated to the storage location of
the next pair of vector registers, the element-
number field is set to zero, and the vR-pair field is
incremented by 2. If vector-register pair 14 was
just restored, the vR-pair field is set to 16, and the
save-area-address field is set to the next address fol-
lowing the end of the save area of vector-register
pair 14.

At the start of execution, the vR-pair field must be
an even number from 0 to 14, and the element-
number field must be less than the section size;
also, whether or not the storage location will be
accessed, the starting address of the save area for
the current VR pair must be on a boundary which
is a multiple of 8 times the section size.

The starting addresses of the save areas for the
current and next pair of vector registers are given in
the following formulas:

SAC = SAF — 8XENF
SAN SAC + 8xss

I

evaluated modulo the address size, where:

ENF Contents of the element-number field at the
beginning of the operation (normally zero)

SAC Starting address of save area for the current
VR pair

sAF Contents of the save-area-address field at the
beginning of the operation

SAN Starting address of save area for the next VR
pair

ss Section size

If the vector in-use bit examined was associated
with vector-register pair 14 and 15, condition code
0 or 2 is set according to whether the bit was zero
or one, respectively. If the vector in-use bit exam-
ined was associated with any other register pair,
condition code | or 3 is set according to whether
the bit was zero or one, respectively.

When the cpu is in the problem state, and the
vector in-use bit of the specified pair of vector reg-
isters is one, execution of this instruction sets the
vector change bit of the vector-register pair to one;
execution in the supervisor state does not alter the
vector change bits.

3-28 FESA/370 and System/370 Vector Operations

A specification exception is recognized when at the
start of execution:

e The GR:i field designates an odd register
number.

* The starting address of the save area is not a
multiple of 8 times the section size.

* The element number is equal to or greater than
the section size.

* The vR-pair field contains other than an even
number from 0 to 14.

RESTORE VR is a class-1z instruction. It is interrup-
tible, the section size and element-number field
determine the number of elements processed, and
element selection is affected by neither the vector-
mask mode nor the vector-mask register. The
vector count and vector interruption index are not
used and remain unchanged.

Resulting Condition Code:

0 VRs 14 and 15 examined and not restored

1 VR pair other than 14 and 15 examined and
not restored

2 VRs 14 and 15 restored

3 VR pair other than 14 and 15 restored

Program Exceptions:

* Access (fetch, save-area location)
* Operation

* Specification

¢ Vector operation

Programming Note: Sec the section “Program Use
of the Restore and Save Instructions” on page 2-27
for a discussion of the use of the instructions
RESTORE VR, SAVE CHANGED VR, and SAVE VR.

Restore VSR

VSRRS D2(B2) [s]

'A6C2" B2 D2

0 16 20 31

The contents of the vector-status register (VSR) are
replaced by the doubleword designated by the
second-operand address, and vector registers may
be cleared depending on the vector in-use bits.

The vector in-use bits, bits 48-55 of the vector-
status register, and the vector change bits, bits
56-63 of the register, are set in pairs sequentially
from left to right, a vector in-use bit being set
together with the corresponding vector change bit.

If the second operand specifies that a vector in-use
bit is to be set to one, it is set to one. The setting
of the corresponding vector change bit depends on
whether the instruction is executed in the super-
visor or problem state. If the vector in-use bit is
set to one while in the supervisor state, the vector
change bit is set to the value specified by the
second operand. If the vector in-use bit is set to
one while in the problem state, the vector change
bit is set to one, ignoring the second operand.

If the second operand specifies that a vector in-use
bit is to be set to zero, the old setting of the vector
in-use bit is first tested before it is changed. If the
old setting was one, all element positions of the
associated pair of vector registers are cleared to
zeros, and both the vector in-use bit and the corre-
sponding vector change bit are then set to zeros. If
the old setting was zero, both the vector in-use bit
and the corresponding vector change bit are simply
set to zeros.

If the instruction is interrupted before the operation
is completed, the instruction address in the current
psw identifies this instruction. If the interrupted
instruction is then reexecuted, vector-register pairs,
which were cleared and had their vector in-use bits
and vector change bits set to zeros, are not cleared
again, provided that their vector in-use bits are still
Z€eros.

A specification exception is recognized if any of the
following is true:

* The second operand is not designated on a
doubleword boundary,

» The value to be placed in bit positions 0-14 of
the vector-status register is not all zeros.

» The value to be placed in the vector count, bits
16-31 of the vector-status register, is greater
than the section size.

* The value to be placed in the vector inter-
ruption index, bits 32-47 of the vector-status
register, is greater than the section size.

RESTORE VSR is a class-1Z instruction. It is inter-
ruptible, the section size determines the number of

elements processed, and eclement selection is
affected by neither the vector-mask mode nor the
vector-mask register. The vector-mask mode,
vector count, and vector interruption index are set.

Condition Code: The code remains unchanged.

Program Exceptions:

» Access (fetch, operand 2)
* Operation

» Specification

* Vector operation

Save Changed VR

VRSVC GR1 [RRE]
'A649" 11111111] GR\////
0 16 24 28 31

If the vector change bit associated with a specified
pair of vector registers is one, the contents of those
vector registers are placed in consccutive
doublewords of a storage area called the save area
of the vector-register pair, and the vector change bit
is then set to zero. If the vector change bit is
already zero, the vector registers are not stored. In
either case, the address of the save area is incre-
mented to the location of the save area of the next
pair of vector registers.

If the vector change bit examined was associated
with vector-register pair 14 and 185, condition code
0 or 2 is set according to whether the bit was zero
or one, respectively. If the vector change bit exam-
ined was associated with any other register pair,
condition code 1 or 3 is set according to whether
the bit was zero or one, respectively.

The operand parameters and their updating are the
same as for the instruction RESTORE VR.

A specification exception is recognized when at the
start of execution:

» The Gr: field designates an odd register
number.

* The starting address of the save area is not a
multiple of 8 times the section size.

* The element number is equal to or greater than
the section size.

3-29

Chapter 3. Vector-Facility Instructions

* The vR-pair field contains other than an even
number from 0 to 14.

SAVFE CHANGED VR is a class-I7 instruction. It is
interruptible, the section size and element-number
field determine the number of elements processed,
and element selection is affected by neither the
vector-mask mode nor the vector-mask register.
'The vector count and vector interruption index are
not used and remain unchanged.

Resulting Condition Code:

0 vrs 14 and 15 examined and not saved

I vR pair other than 14 and 15 examined and
not saved

2 vRs 14 and 15 saved

3 VR pair other than 14 and 15 saved

Program Exceptions:

e Access (store, save-area location)
* Operation

* Privileged operation

* Specification

* Vector operation

Programming Notes:

1. The operation is the same as for SAVE VR,
except that the instruction is privileged, the
vector change bit takes the place of the vector
in-use bit, and the vector change bit is set to
zero after a vector-register pair is saved. The
-effect is that a vector-register pair is saved only
if it has been loaded or modified since the last
use of SAVE CHANGED VR designating this pair.

If the vector in-use bit is zero, the vector
change bit is also zero, so that neither instruc-
tion will perform a save operation.

2. See the section “Program Use of the Restore
and Save Instructions” on page 2-27 for a dis-
cussion of the use of the instructions RESTORE
VR, SAVE CHANGED VR, and SAVE VR.

3-30 ESA/370 and System/370 Vector Operations

Save VAC

VACSV D2(B2) [S]
'A6CA" B2 D2

0 16 20 31

The current value of the vector-activity count
(VAC) is stored at the doubleword designated by the
second-operand address. Execution of this instruc-
tion does not increment the vector-activity count
and leaves its value unchanged.

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized.

SAVE VAC is a class-No instruction. It is not inter-
ruptible, no eclements are processed, and its exe-
cution is affected by neither the vector-mask mode
nor the vector-mask register. The vector count and
vector interruption index are not used and remain
unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

_* Access (store, operand 2)
¢ Operation
¢ Privileged operation
 Specification
* Vector operation

Save VMR
VMRSV D2(B2) (s]
'A6C1’ B2 D2
0 16 20 31

The contents of the entire vector-mask register
(vMR) are placed unchanged in storage at the
second-operand location.

The length of the second operand is 4Z bits (Z/2
bytes), where Z is the section size. Only the first Z
bits of the result are defined to be the VMR con-
tents; the remaining 37 bits of the result are unde-
fined, and storing of that part of the result may or
may not take place.

SAVE VMR is a class-Nz instruction. It is not inter-
ruptible, the section size determines the number of
bits processed, and bit selection is affected by
neither the vector-mask mode nor the vector-mask
register. The vector count and vector interruption
index are not used and remain unchanged.

Condition Code: The code remains unchanged.

Program Exceptlions:

¢ Access (store, operand 2)
¢ Operation
¢ Vector operation

Save VR

VRSV GR1 ' [RRE]
'AB4A" /1111711| 6Ra\////

0 16 24 28 31

If the vector in-use bit associated with a specified
pair of vector registers is one, the contents of those
vector registers are placed in consecutive
doublewords of a storage area called the save area
of the vector-register pair. If the vector in-use bit is
zero, the vector registers are not stored. In either
case, the address of the save area is incremented to
the location of the save area of the next pair of
vector registers.

The operand parameters, their updating, and the
condition-code setting are the same as for the
instruction RESTORE VR.

A specification exception is recognized when at the
start of execution:

» The GRi field designates an odd register
number.

* The starting address of the save area is not a
multiple of 8 times the section size.

* The element number is equal to or greater than
the section size.

e The vR-pair field contains other than an even
number from 0 to 14.

SAVE VR is a class-1z instruction. It is interruptible,
the section size and element-number field determine

the number of elements processed, and element
selection is affected by neither the vector-mask
mode nor the vector-mask register. The vector
count and vector interruption index are not used
and remain unchanged.

Resuiting Condition Code:

0 VRs 14 and 15 examined and not saved

1 VR pair other than 14 and 15 examined and
not saved

2 vRs 14 and 15 saved

3 VR pair other than 14 and 15 saved

Program Exceptions:

¢ Access (store, save-area location)
¢ Operation

¢ Specification

* Vector operation

Programming Note: See the section “Program Use
of the Restore and Save Instructions” on page 2-27
for a discussion of the use of the instructions
RESTORE VR, SAVE CHANGED VR, and SAVE VR.

Save VSR

VSRSV D2(B2) [S]
'A6CO" B2 D2

0 16 20 31

The contents of the vector-status register (VSR) are
placed in storage at the doubleword location desig-
nated by the second-operand address, except that,
when the CPU is in the problem state, the value of
the vector change bits stored by the instruction is
undefined.

A specification exception is recognized when the
second operand is not designated on a doubleword
boundary.

SAVE VSR is a class-No instruction. It is not inter-
ruptible, no elements are processed, and its exe-
cution is affected by neither the vector-mask mode
nor the vector-mask register. The vector count and
vector interruption index are not used and remain
unchanged.

Condition Code: The code remains unchanged.

Chapter 3. Vector-Facility Instructions 3-31

Program Exceptions:

* Access (store, operand 2)
e Operation

» Specification

e Vector operation

Set Vector Mask Mode

VSVMM D2(B2) [$]

'A6C6 ' B2 D2

0 16 20 31

The vector-mask mode is set on or off, depending
on whether the rightmost bit, bit 31, of the second-
operand address is one or zero, respectively. The
second-operand address is not used to address data,
and all address bits other than bit 31 are ignored.

SET VECTOR MASK MODE is a class-No instruction.
It is not interruptible, no elements are processed,
and its execution is not affected by the vector-mask
register. 'The vector-mask mode is set. The vector
count and vector interruption index are not used
and remain unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

* Operation
¢ Vector operation

Shift Left Single Logical

VSLL VR1,VR3,D2(B2) [RSE]

/ /
Ees' VRa|////| VR1|////] B2 Df]
/ /

0 16 20 24 28 32 36 47

3-32 ESA/370 and System/370 Vector Operations

Shift Right Single Logical

VSRL VR1,VR3,D2(B2) [RSE]
/

[E§524' VRa|////| VR1|////| B2 DE:]
/ /

0 16 20 24 28 32 36 47

One by one, the elements in the third-operand
vector are shifted left (vSLL) or right (vsRL) by the
number of bits specified by the second-operand
address, and the result is placed in the first-operand
location.

The operation is performed on each element in the
same manner as the corresponding scalar operation.

SHIFT LEFT SINGLE LOGICAL and SHIFT RIGHT
SINGLE LOGICAL are class-IM instructions. They
are interruptible, the vector count and vector inter-
ruption index determine the number of elements
processed, and element selection is affected by both
the vector-mask mode and the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

* Operation
* Vector operation

Store

Mnemonic VR1,RS2(RT2) [VsT]
Op Code ////| RTz2 VR1| RS2

0 16 20 24 28 31

Mnemonic Op Code Operands

VST 'A40D' Binary or logical

VSTD 'A41D' Long

VSTE 'A40D’ Short

Element by element, the first-operand vector is
placed unchanged in storage at the second-operand
location.

A specification exception is recognized when the
vR1 field designates an invalid register number,
when the second operand is not designated on an
integral boundary, or when the RT2 field is nonzero
and designates the same general register as the Rs2
field.

STORE is a class-IC instruction. It is interruptible,
the vector count and vector interruption index
determine the number of elements processed, and
element selection is affected by neither the vector-
mask mode nor the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptioins:

» Access (store, operand 2)
¢ Operation

* Specification

* Vector operation

Store Compressed

Wnewonic VR:,RS2(RT2) [vsT]
Op Code ////} RTz2] VR1| RS2

0 16 20 24 28 31

¥inemonic Op Code Operands

VSTK 'A40F" Binary or logical

VSTKD 'A41F! Long

VSTKE 'A40F ! Short

Element by element, elements of the first-operand
vector corresponding to ones in the active bits of
the vector-mask register are placed unchanged in
storage at successive element locations of the
second operand.

First-operand elements corresponding to zeros in
the active bits of the vector-mask register are
skipped, and there are no corresponding element
locations of the second operand. If the active bits
of the vector-mask register are all zeros, no access
exceptions are recognized for the storage location
specified by the second operand, the change bits for
the storage operand remain unchanged, and no PER
event for storage alteration is indicated.

A specification exception is recognized when the
VR1 field designates an invalid register number,
when the second operand is not designated on an
integral boundary, or when the RT2 field is nonzero
and designates the same general register as the Rs2
field.

STORE COMPRESSED 1is a class-IC instruction. It is
interruptible, the vector count and vector inter-

ruption index determine the number of elements
processed, and element selection is affected by the
vector-mask register but not by the vector-mask
mode.

Condition Code: The code remains unchanged.

Program Exceptions:

* Access (store, operand 2)
* Operation

* Specification

* Vector operation

Programming Notes:

1. The number of vector elements which are
stored and the amount by which the address in
the general register designated by Rs2 is
updated correspond to the number of ones
among the active bits of the vector-mask reg-
ister.

2. The operation performed by STORE COM-
PRESSED is the opposite of LOAD EXPANDED.

Store Halfword

VSTH VR1,RS2(RT2) [VST]
1A42D" ////| RT2| VR1| RS2
0 16 20 24 28 31

Element by element, the rightmost 16 bits of each
first-operand vector element are placed unchanged
in storage at the second-operand location.

A specification exception is recognized when the
second operand is not designated on a halfword
boundary, or when the Rr2 field is nonzero and
designates the same general register as the rRs2 field.

STORE HALFWORD is a class-IC instruction. It is
interruptible, the vector count and vector inter-
ruption index determine the number of elements
processed, and element selection is affected by
neither the vector-mask mode nor the vector-mask
register.

Condition Code: The code remains unchanged.

Chapter 3. Vector-Facility Instructions 3-33

Program Exceptions:

* Access (store, operand 2)
* Operation
 Specification

* Vector operation

Store Indirect

Hnemonic VR1,VR3,D2(B2) [RSE]
/
IE):Code VRa{////| VRi{////| B2 DZ'
/
) 16 20 24 28 32 36 47
Mnemonic Op Code Operands
VSTI 'E401!' Binary or logical
VSTID 'E411" Long
VSTIE 'E401" Short

Element by element, the third operand is used to
select element locations of the second operand in
storage, at which elements of the first-operand
vector are placed. The element positions of the
first operand correspond to those of the third
operand.

The method of selecting elements of each operand
is the same as for LOAD INDIRECT, the amount of
left shift of the third-operand elements being two
bits for vsTl or VSTIE and three bits for vsTID.
The selected first-operand elements are stored at the
specified second-operand locations.

A specification exception is recognized when the
VR field designates an invalid register number, or
when the second operand is not designated on an
integral boundary.

STORE INDIRECT is a class-IC instruction. It is
interruptible, the vector count and vector inter-
ruption index determine the number of elements
processed, and element selection is affected by
neither the vector-mask mode nor the vector-mask
register.

Condition Code: The code remains unchanged.

Program Exceptions:

* Access (store, operand 2)
» Operation
* Specification

3-34 ESA/370 and System/370 Vector Operations

* Vector operation

Programming Note: STORE INDIRECT, which is
the opposite of LOAD INDIRECT, is used to store a
vector by indirect element selection. See also the
programming note under LOAD INDIRECT.

Store Matched

Mnemonic VR1,RS2(RT2) [vsT]
Op Code ////| RT2| VRi{ RS2

0 16 20 24 28 31

Mnemonic Op Code Operands

VSTM 'A40E" Binary or logical

VSTMD 'A41E! Long

VSTME 'A40E! Short

Element by element, elements of the first-operand
vector corresponding to ones in the active bits of
the vector-mask register are placed unchanged in
storage at the corresponding element locations of
the second operand. Elements of the first operand
corresponding to zeros in the active bits of the
vector-mask register are not stored, and the corre-
sponding second-operand locations in storage
remain unchanged.

A specification exception is recognized when the
vRr1 field designates an invalid register number,
when the second operand is not designated on an
integral boundary, or when the RT: field is nonzero
and designates the same general register as the Rs.
field.

No access exceptions and PER storage-alteration
events ‘are recognized for elements of the second
operand which correspond to zeros in the active
bits of the vector-mask register, and the corre-
sponding change bits remain unchanged; however,
the general regisier designated by the rs: field is
updated for each of those elements.

STORE MATCHED is a class-IC instruction. It is
interruptible, the vector count and vector inter-
ruption index determine the number of elements
processed, and element selection is affected by the
vector-mask register but not by the vector-mask
mode.

Condition Code: The code remains unchanged.

Program Exceptions:

* Access (store, operand 2)
* Operation

* Specification

* Vector operation

Programming Notes:

1. The instructions STORE and STORE MATCHED,
in corresponding formats, perform the same
function on those elements which correspond
to ones in the active bits of the vector-mask
register; that is, each such element is copied
from the same vector-register position into the
same storage location. STORE MATCHED differs
in that storage locations remain unchanged for
elements which correspond to zero bits.

2. STORE, STORE COMPRESSED, and STORE
MATCHED, in corresponding formats, perform
the same function when all active bit positions
of the vector-mask register contain ones,

Store Vector Parameters

VSTVP D2(B2) [s].

'A6C8' B2 D2

0 16 20 3

The 16-bit section size and the 16-bit partial-sum
number are placed in storage in the left and right
half, respectively, of the word at the location desig-
nated by the second-operand address.

A specification exception is recognized when the
second operand is not designated on a word
boundary.

STORE VECTOR PARAMETERS is a class-No instruc-
tion. It is not interruptible, no elements are proc-
essed, and its execution is affected by neither the
vector-mask mode nor the vector-mask register.
The vector count and vector interruption index are
not used and remain unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

» Access (store, operand 2)
¢ Operation

* Specification

* Vector operation

Store VMR

VSTVM RS2 [vs]
wes2' | ////00001111| Rse

0 16 28 31

The contents of the active-bit positions of the
vector-mask register are stored as a bit vector at the
second-operand location.

When the vector count is not a multiple of 8, zeros
are stored for any bits in the last byte which are to
the right of the last bit specified by the vector
count.

When the vector count is zero, no bits are stored.
No access exceptions are recognized for the second
operand, the change bits for the operand remain
unchanged, and PER storage-alteration events are
not indicated.

STORE VMR is a class-NC instruction. It is not
interruptible, the vector count determines the
number of bits processed, and bit selection is
affected by neither the vector-mask mode nor the
vector-mask register. The vector interruption index
is not used and remains unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

* Access (store, operand 2)
* Operation
* Vector operation

Chapter 3. Vector-Facility Instructions 3-35

Subtract

Mnemonic VR1,QRs

JRS2(RT2) [QST]

Op Code QRa| RT2| VR1| RS2
0 16 20 24 28 31
Mnemonic Op Code Operands
VSS 'A4A1! Binary
VsDS 'A491! Long
VSES 'A481! Short
Mnemonic VR1,QR3,VR2 fQv]

Op Code QRs|////] VR1| VR2
0 16 20 24 28 31
Mnemonic Op Code Operands
VSQ 'A5AL1Y Binary
VSDQ 'A591! Long
VSEQ 'A581"' Short

Mnemonic VR1,VR3

,RS2(RT2) [VST]

Op Code VRa| RT2| VR1| RS2
0 16 20 24 28 31
Mnemonic Op Code Operands
VS 'A421' Binary
VSD 'A411' Long
VSE 'A401" Short
Mnemonic VR1,VR3,VR2 [w]

Op Code VR3|////1 VRi| VR2
0 16 20 24 28 31
Mnemonic Op Code Operands
VSR 'A521" Binary
VSDR 'A511! Long
VSER 'A501' Short

Element by element, the second-operand vector is
subtracted from the third operand, and the result is
placed in the first-operand location.

The operation is performed on each pair of ele-
ments in the same manner as the corresponding
scalar operation, except that the condition code is
not set. For floating-point operands, the scalar
equivalent is SUBTRACT NORMALIZED. ‘

3-36 ESA/370 and System/370 Vector Operations

A specification exception is recognized when a VR
or QR field designates an invalid register number.
In the QsT and vsT formats, a specification excep-
tion is recognized when the second operand is not
designated on an integral boundary, or when the
RT2 field is nonzero and designates the same
general register as the Rs2 field. For the vss
instruction, a specification exception is also recog-
nized when the QRa field designates the same
general register as the RS2 field.

SUBTRACT is a class-IM instruction. It is interrup-
tible, the vector count and vector interruption index
determine the number of elements processed, and
element selection is affected by both the vector-
mask mode and the vector-mask register.

Condition Code: The code remains unchanged.

Program Exceptions:

¢ Access (fetch, operand 2 in QsT and vsT
formats)

* Exponent overflow (with exception-extension
code; floating-point operands only)

* Exponent underflow (with exception-extension
code; floating-point operands only)

* Fixed-point overflow (with exception-extension
code; binary operands only)

* Operation

* Significance (with exception-extension code;
floating-point operands only)

*» Specification

* Vector operation

Programming Note: 'The QsT and Qv formats
provide for subtracting a vector from a scalar
operand. The operation of subtracting a scalar
from a vector can be replaced by adding the nega-
tive of the scalar to the vector operand.

Sum Partial Sums

VSPSD VR1,FR2

TAG1A' FRz2(////| VR1{////
0 16 20 24 28 31

[VR, Long Operands]

Partial-sum elements of the first-operand vector are
added to the scalar second operand, the result
replacing the second operand.

The operand elements are floating-point numbers
in the long format, and every addition is performed

in the same manner as for the scalar ADD NORMAL-
1IZED (ADR) instruction, except that the condition
code is not set. The operation begins with adding
element X of the first operand to the second
operand, where X is the initial vector interruption
index (normally zero). It proceeds in an ascending
sequence of element numbers by successively
adding p—X first-operand elements, where p is the
model-dependent partial-sum number. The last
one to be added is element p—1. The vector inter-
ruption index is then set to zero.

If the initial vector interruption index X is equal to
or greater than p, no elements are processed, and
the scalar second operand remains unchanged. The
vector interruption index is set to zero, and instruc-
tion execution is completed.

A specification exception is recognized when the
VR1 or FR2 field designates an invalid register
number.

SUM PARTIAL SUMS is a class-IP instruction. It is
interruptible, the partial-sum number and vector
interruption index determine the number of ele-
ments processed, and element selection is affected
by neither the vector-mask mode nor the vector-
mask register. The vector count is not used and
remains unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

e Exponent overflow (with exception-extension
code)

* Exponent underflow (with exception-extension
code)

¢ Operation

* Significance (with exception-extension code)

» Specification

* Vector operation

Programming Note: An example of the use of
SUM PARTIAL SUMS is given in “Sum of Products”
on page A-3 of Appendix A, “Instruction-Use
Examples.”

Test VMR

VIVM [RRE]
'AG40" I

) 16 31

The active bits of the vector-mask register are
tested, and condition code 0, 1, or 3 is set according
to whether those bits are all zeros, mixed zeros and
ones, or all ones.

When the vector count is zero, condition code 0 is
set.

TEST VMR is a class-NC instruction. It is not inter-
ruptible, the vector count determines the number of
bits processed, and bit selection is affected by
neither the vector-mask mode nor the vector-mask
register. The vector interruption index is not used
and remains unchanged.

Resulting Condition Code:

0 Active bits all zeros
1 Active bits mixed zeros and ones
2 -

3 Active bits all ones

Program Exceptions:

* Operation
* Vector operation

Programming Note: The instruction TEST VMR
performs the testing portion of the instructions
COUNT LEFT ZEROS IN VMR and COUNT ONES IN
VMR. It may be used to distinguish the all-zeros
and all-ones conditions when the exact count is not
required.

Zero Partial Sums

VZPSD VR: [VR]

'A61B" /111717 VRl //1]
0 16 26 28 31

Partial-sum element locations of the vector-register

pair designated by VR1 are set to zero.
i

The operation begins with setting to zero element
X of the first operand, where X is the initial vector

Chapter 3. Vector-Facility Instructions 3-37

interruption index (normally zero). It proceeds in
an ascending sequence of element numbers by suc-
cessively setting to zero p—X first-operand ele-
ments, where p is the model-dependent partial-sum
number. The last one is element p—1. The vector
interruption index is then set to zero.

If the initial vector interruption index X is equal to
or greater than p, the vector-register contents and
the associated vector in-use bit and vector change
bit remain unchanged. The vector interruption
index is set to zero, and instruction execution is
completed.

A specification exception is recognized if the VR1
field designates an invalid register number.

7ZERO PARTIAL SUMS is a class-IP instruction. It is
interruptible, the partial-sum number and vector

3-38 ESA/370 and System/370 Vector Operations

interruption index determine the number of ele-
ments processed, and element selection is affected
by neither the vector-mask mode nor the vector-
mask register. The vector count is not used and
remains unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

* Operation
» Specification
* Vector operation

Programming Note: An example of the use of
ZERO PARTIAL SUMS is given in “Sum of Products”
on page A-3 of Appendix A, “Instruction-Use
Examples.”

Operations on Full Vectors A-1
Contiguous Vectors A-1
Vectors with Stride A-2
Vector and Scalar Operands A-2
SumofProducts A-3
Compare and Swap Vector Elements . . . A-3

Conditional Arithmetic A-4
Exception Avoidance A-4

Appendix A. Instruction-Use Examples

Add to Magnitude A-4
Operations on Sparse Vectors A-4
Full Added to Sparse to Give Full A-5
Sparse Added to Sparse to Give Sparse . . A-5S
Floating-Point-Vector Conversions A-6
Fixed Point to Floating Point A-6
Floating Point to Fixed Point A-6

This appendix contains a number of simple exam-
ples of the use of vector instructions.

Every example has a sectioning loop, so that
vectors of any length can be handled, independent
of the section size. The first example illustrates sec-
tioning in some detail; the others use the same or a
sirnilar technique.

The examples are wriften in assembler language.
Register operands are indicated symbolically with a
prefix G, F, or V to identify more clearly whether
an operand refers to a general register, floating-
point register, or vector register, respectively.

Comments are written to the right of the instruc-
tion or on separate lines that begin with an asterisk

(*):

Operations on Full Vectors

The following examples illustrate operations on full
vectors, where both zero and nonzero elements are
represented in storage. Vectors in storage are
accessed by sequential addressing,.

The first three examples use three different methods
of controlling the sectioning loop.

Contiguous Vectors

Two contiguous vectors 4 and B in storage are
added, and the result is stored in contiguous vector
C. The number of elements in each is specified by
N. All veciors are in the long floating-point
format.

* C=A+8

*
L GO,N Vector length to GRO
LA G1,A Address of A to GR1
LA G2,B Address of B to GR2
LA G3,C Address of C to GR3

LP VLVCU GO Load VCT, update GRO
VLD ve,G1 Load section of A

VAD VO,V0,62 Add section of B

VSTD V0,63 Store section in C

BC 2,LP Test condition code
* set by VLVCU, branch
if not last section

*

Assuming, for purposes of illustration, a vector-
section size of 8 and a vector length of 20, the
above program would process three sections in turn
(two full sections of eight elements and one partial
section of four elements) before ending the loop.
One section of 4 and one section of B are added in
vector-register pair 0 and 1. The result is stored in
a section of C, as illustrated below:

Storage Stored
Address in
¢t —> Loop
1
8 elements |+———
8 elements
C+64 —»
' 2
8 elements| Vector regis-
ters: 0, 1
C+128 —+ 3 Section
4 elements size: 8
C+160 —»
Vector C

Length: 20
Elements: 8 bytes

Since all vectors are stored contiguously, the stride
for the threc vector insiructions VLD, VAD, and

Appendix A. Instruction-Use Examples A-~1

VSTD is set to one by specifying a value of zero in
the RT2 subfield. This may be done in the assem-
bler language either by placing a zero inside the
parentheses of the stride subfield, as in:

Mnemonic VR1,VR3,RS2(0)
or by omitting the subfield, including the paren-
theses, altogether:

Mnemonic VR1,VR3,RS2

Each of these instructions automatically updates
the storage address in the designated general register
to the value that will be needed for the next time, if
any, around the loop.

The BRANCH ON CONDITION (BC) instruction tests
the condition code set by vLvcU, because none of
the intervening instructions change the condition
code. If an instruction setting the condition code
had intervened, the instruction “LTR G0,G0”
inserted before the BC instruction would test the
contents of GRo; BC would test for condition code 2
in either case.

The following table shows the condition-code
setting (cc), the vector count (vcr), and the con-
tents of the general registers at the start, before exe-
cuting the first VLVCU instruction, and at the end of
each loop thereafter.

Loop CC VCT GRO GRI GR2 GR3
Start — - 20 A B C

End1l 2 8 12 A+64 B+64 C+064
End2 2 8 4 A+128 B+128 C+128
End3 3 4 0 A+160 B+160 C+160

Vectors with Stride

'This example modifies the previous example in four
ways. All vector elements are in the short floating-
point format. The result of the addition is returned
to the storage location of vector B. Vector B is
assumed to be stored with a stride 7. Finally, a BC
instruction which tests for the end of the loop is
placed immediately after the vivcu instruction,
and the loop is closed with an unconditional
branch. This method, which could be used if addi-
tional instructions were to change the condition
code later in the loop, allows the loop to be
bypassed when the initial vector count is zero.
(Note, however, that the previous loop control also

A-2 ESA/370 and System/370 Vector Operations

works with a vector count of zero, because no ele-
ment§ would be processed if vector instructions
were executed with a zero vector count.)

* B=A+8B
*

L GO,N Vector length to GRO

LA Gl,A Address of A to GR1
LA G2,B Address of B to GR2
LR 63,62 Copy address in GR3
L G4,T Stride for B to GR4

LP VLVCU GO Load VCT, update GRO
BC 12,NXT Exit loop if VCT=0
VLE Ve,Gl Load section of A
VAE V0,v0,G62(G4)

* Add section of B

VSTE V0,63(G4) Return section to B
BC 15,LP Branch to loop start
NXT Next instruction

Two registers, GR2 and GR3, are used to specify the
current address of B, so that the two instructions
VAE and VSTE in the sectioning loop will refer to
the same section. FEach of the two instructions
updates its separate copy of the address. (If a
vector in storage is referred to more than twice
within a sectioning loop, the address could be
copied inside the loop for each use except the last,
so as to reduce the number of general registers
needed.)

Vector and Scalar Operands

This example illustrates the use of both vector and
scalar operands. It also shows how the three-
operand arithmetic vector instructions can some-
times be used to avoid a separate vector-load
instruction. A third loop-control method is used
here.

A and B are vectors of length N, and S is a scalar.
All are in the long floating-point format.

B=A"* (5-A)
LA G1,A Address of A to GR1
LR G2,G1 Copy address in GR2
LA G3,8B Address of B to GR3
L G4,N Vector length to GR4
LD Fo,S Load § into FRO
VLVCU G4 Load VCT, update GR4

LP VSDS VO,F0,G1 Compute S-A
VMD VO,V0,62 Compute A*(S5-A4)

VSTD V0,63 Store result in B
VLVCU G4 Load VCT, update GR4
BC 3,LP Branch back if VCT>0

The vsDs instruction subtracts vector 4 in storage
from the scalar S. vMD multiplies the result by
vector A, again from its storage location. VSTD
stores the product as B. There are two vLVCU
loop-control instructions, one before entry into the
loop and one at the end.

Note that the QsT-format arithmetic instruction
(vsDS) saves a separate load instruction at the
expense of having to access storage twice for the
same vector section A. Depending on the model, a
separate load instruction followed by Qv-format
arithmetic instructions may be more efficient in
some circumstances, particularly when the stride is
greater than one.

Note further that the Qst-format instructions are
defined such that vsDs subtracts a vector from a
scalar (S—V). Subtracting a scalar from a vector
(V—S) can be done conveniently by first changing
the sign of the scalar and then adding, using VADS.
Similarly, the vDDs instruction divides a scalar by a
vector (S/V). Division of a vector by a scalar
(V/S) can be performed by first taking the recip-
rocal of the scalar and then multiplying, using
vMDS. (The same comment applies to the corre-
sponding Qv-format instructions.)

Sum of Products

The use of MULTIPLY AND ACCUMULATE and
related instructions is illustrated by computing the
inner product of a row vector A, taken from a
matrix of dimensions / by J, and a column vector
B, taken from another matrix of dimensions J by
K. Each matrix is assumed to be stored in column
order. Therefore, row vector A has a stride / and a
length J, and column vector B is contiguous and
has the same length J. The inner product of the
two vectors is a scalar value that is the sum of the
element-by-element products of vectors 4 and B; it
is stored at address C.

C=SUM (A *B)
L GO,d Vector length to GRO
LA G1,A Address of A to GR1
L G2,1 Stride for A to GR2
LA G3,B Address of B to GR3

VZPSD VO Zero partial sums
LP VLVCU GO Load VCT, update GRO
VLD V2,G1(G2) Row A section to VR2
VMCD VO,V2,63 Multiply by column B
* partial sums to VRO

BC 2,LP Branch back if GRO>0
SDR FO,FO Clear FRO to zero
VSPSD VO,FO Scalar sum to FRO
STD Fo,C Store scalar sum

First the vzpsD instruction clears the partial-sum
locations in VRO to zero. Then the sectioning loop
accumulates partial sums: The VLD instruction
loads a section of row A4 (with stride) into VR2.
The vMcD instruction multiplies the elements of
row A in VR2 by elements of column B in storage
(without stride) and accumulates p partial sums in
VRO; the number p depends on the model.

After the sectioning loop is ended and all partial
sums have been accumulated in VR0, FRO is cleared
by means of SDR, and the p partial sums are then
added to rFro by use of the vspsD instruction. The
scalar sum is stored in C by STD.

Note that the program is independent of the vector-
section size and the number of partial sums, both
of which depend on the model, because the
instructions VZPSD, VLVCU, VMCD, and VsSPSD take
care of these dependencies automatically.

Compare and Swap Vector Elements

Two vectors 4 and B, both of length N, are to be
compared and their elements swapped so that
vector A will have the smaller element of each pair
and vector B the larger. The elements are 32-bit
signed binary integers and stored contiguously.

L GO,N Vector length to GRO
LA G1,A Address of A to GR1
LR 62,61 Copy address in GR2
LA G3,B Address of B to GR3
LR G4,G3 Copy address in GR4
LP VLVCU GO Load VCT, update GRO
VL Vo,G1 Section of A to VRO
VL V1,63 Section of B to VR1
VCR 2,v0,V1 Check where A>B
VSTM V0,G4 Store greater in B
VSTM V1,62 Store lesser in A
BC 2,LP Branch back if GRO>0

Appendix A. Instruction-Use Examples A-3

Conditional Arithmetic

Exception Avoidance

One use of conditional arithmetic in the vector-
mask mode is to bypass vector elements which
would cause an exception during the arithmetic
operation and to provide a predetermined alternate
result for those elements. The example divides two
vectors A and B. The divisor B is tested for zeros.
By using the vector-mask mode, no division is per-
formed for zero divisor elements, thus avoiding a
disruptive floating-point-divide exception; the corre-
sponding elements in result vector C are set to the
maximum positive value MP. All floating-point
numbers are in the long format.

In this example, performing the arithinetic condi-
tionally requires two extra vector instructions inside
the sectioning loop.

* c=A/8B

*

L GO,N Vector length to GRO

LA G1,A Address of A to GR1
LA G2,B Address of B to GR2
LR G3,62 Copy address in GR3
LA G4,C Address of C to GR4
SDR FO,FO Clear FRO to zero

LD F2,MP Load max. positive

* number MP in FR2

VSVMM 1 Vector-mask mode on
LP VLVCU GO Load VCT, update GRO

VCDS 6,F0,6G2 Compare section of B
* not equal to zero

vLDQ Vo,F2 Load MP in all elem.
* positions of VRO

ViD v2,G1 Load section of A

vbD ve,vV2,6G3 Conditionally divide
* A by section of B

VSTD V0,G4 Store section in C
BC 2,LP Branch back if GRO>0
VSVMM © Set mask mode off

Add to Magnitude

Another use of conditional arithmetic is to perform
addition to the magnitude of a vector regardiess of
signs. This may be illustrated by rounding a vector
V of length N, consisting of floating-point numbers
in the short format, to integer values. First, 0.5 is
added to the magnitude of each element. Then, the
digits to the right of the implied radix point are
truncated. The rounded vector R remains in the
short floating-point format.

A-4 ESA/370 and System/370 Vector Operations

let H and 7 be constants with the following
hexadecimal formats and values:

H = 40 80 60 00 = 0.5
Z =47 00 00 00 = 0 (unnormalized)

H is the value which is to be added to or subtracted
from each vector element, depending on its sign.

[)

The constant Z is an unnormalized zero with such
a characteristic that its addition to a short floating-
point number having a smaller characteristic forces
that number to be shifted to the right, placing the
units digit in the guard-digit position. This causes
any digits to the right of the implied radix point to
be truncated and the result to be normalized. Any
number with an equal or larger characteristic has
no significant digits to the right of the implied radix

point and remains unchanged. '

* R = ROUND (V)

*
L GO, N Vector length to GRO
LA 61,V Address of V to GR1
LA G2,R Address of R to GR2
SDR FoO,FO Clear FRO to zero
LE F2,H Load H into FR2
LNER F4,F2 Load ~H into FR4
LE F6,Z Load Z into FR6

LP VLVCU GO Load VCT, update GRO
VLE V0,61 Load section of V
VSVMM 1 Vector-mask mode on
VCEQ 12,F0,V0 Compare; set mask to

* one where 0=V
VAEQ VO,F2,V0 Add 0.5 under mask
VCWM Complement mask bits

VAEQ VO,F4,V0 Add -0.5 under mask

VSVMM 0 Vector-mask mode off
VAEQ VO,F6,V0 Add Z

VSTE V0,62 Store section of R
BC 2,LP Branch back if GRO>0

A variation of this rounding technique is incorpo-
rated in a later example of floating-point to fixed-
point conversion.

Operations on Sparse Vectors

This section gives some examples of operating on
sparse vectors, where only nonzero elements are
directly represented in storage.

When many vector elements are zero, considerable
storage may be saved by using a dense represen-
tation containing only those elements which are

nonzero. The resulting nonzero elements can be
stored in contiguous locations along with a bit
vector indicating the nonzero values in the corre-
sponding full vector. A full vector can be con-
verted to such a dense- vector by performing a not-
equal comparison of the vector to a scalar zero and
using the resulting bit vector as a mask in a STORE
COMPRESSED instruction.

For use in the following examples, assume two
vectors A and B. The full vectors are 10 elements
in length; elements 0, 2, 5, 6, 7, and 9 of vector A4
are nonzero; and elements 2, 4, 5, and 7 of vector B
are nonzero. The figures show the full vectors, the
result of a not-equal comparison to zero, and the
dense vectors for 4 and B.

Full Vector A (AF):

AO[{A1|AZ|A3]A4|AS|AG|AT7 [A8|A9

Result of comparing A # 0 (mask AM):
1910606111601

Dense Vector A (AD):

AO|AZ]A5|A6|A7|A9

Full Vector B (BF):

Bo|B1|B2|B3|B4|B5|B6|B7|B8|BI

Result of comparing B # 0 (mask BM):
6 6106116066100

Dense Vector B (BD):

B2|B4{B5|B7

Full Added to Sparse to Give Full

This example shows the addition of elements of full
vecior BF, which correspond to nonzero elements
of vector A4, to dense vector AD. The result ele-
ments are replaced in BF. The length of the full
vectors is N, which is also the number of bits in the
mask.

LA G1,AD Address of AD to GR1
SR 62,62 Clear bit index in GR2
L G3,N Bit count N to GR3

LP VLBIX v@,G2,AM Convert mask AM to

* element numbers in VRO
VLID V2,V0,BF Load BF indirectly
VAD V2,V2,G1 Add AD contiguously
VSTID v2,v0,BF Store indirectly
BC 2,LP Branch back if GR3>0

The VLBIX instruction converts the bit mask AM to
a vector of element numbers, using the general-
register pair GR2 and GR3 as the bit index and bit
count. This instruction creates up to a full section
of element numbers in VRo and places the corre-
sponding vector count in vcr for use by subse-
qguent vector instructions. GR2 and GR3 are
updated for the next pass through the loop. vLID
uses the generated element numbers to select ele-
ments of full BF to correspond to all the elements
of dense AD, which are added together by the
instruction VAD. VSTID then stores the results back
into the same elements of BF. The BcC instruction
tests the condition code set by vLBix and branches
back if there are more bits to be processed.

Sparse Added to Sparse to Give
Sparse

The following example adds dense vectors 4D and
BD to obtain dense vector CD. The mask for CD
is obtained by oRring the mask for AD with the
mask for BD, using the instruction OR TO VMR.

L GO,N Full vector length to GRO
LA G1,AD Address of AD to GR1
LA G2,BD Address of BD to GR2
LA G3,CD Address of CD to GR3
LA G4,AM Address of AM to GR4
LR G5,G4 Copy address in GRS
LA G6,BM Address of BM to GR6
LA G7,CM Address of (M to GR7
LP VLVCU GO Load VCT, update GRO
VLVM G4 Load mask AM in VMR
VLZDR VO Zeros into VRO, VR1
VLYD Vve,10 Load AD expanded
VLM G6 Load mask BM in VMR
VLZDR V2 Zeros into VR2, VR3
VLYD V2,62 Load BD expanded

VADR VO,V0,V2 Add expanded vectors
VOVM G5 OR mask AM into VMR
VSTKD V0,63 Store compressed as CD
VSTWM G7 Store VMR as mask (M
BC 2,LP Branch back if GRO>0

Appendix A. Instruction-Use Examples A-5

Floating-Point-Vector
Conversions

The conversion techniques illustrated here are
similar to the scalar examples in the Principles of
Operation publications listed on page iii, which may
be consulted for more details. The methods differ,
however, because of different characteristics of the
vector-instruction set.

Fixed Point to Floating Point

Assume a vector K of length N in storage, the ele-
ments of which are 32-bit signed binary integers.
The elements are to be converted to floating-point
numbers in the long format, and the result is to be
stored as vector W.

Assume a floating-point constant C in storage with
the following hexadecimal format and value:

¢ = CE 00 00 0C 86 00 00 00 = -231

This is an unnormalized floating-point number in
the long format with the characteristic 4F, which is
the proper characteristic for a right-aligned, unnor-
malized integer.

L GO,N Vector length to GRO
LA G1,K Address of K to GR1
LA G2,W Address of W to GR2
LD Fo,C Load C into FRO

LP VLVCU GO Load VCT, update GRO
VL V1,61 Load K into VR1
VLCER V1,V1 K + 231
VLEQ VO,F0 V== +231)
VsDQ VO,FO,V0 W = -231 -V
VSTD Ve,G62 Store W
BC 2,LP Branch back if GRO>0

Inside the sectioning loop, the VLCER instruction
(1.oAD COMPLEMENT in short floating-point
format) inverts the sign bit, bit 0, of each element
in VR1, without altering bits 1-31. Considering
these elements still as signed binary integers, the
operation is equivalent to adding 23! to each,
ignoring overflow, which changes all elements into
positive numbers in the range 0 to 2*2—1. The
VLEQ instruction places the left half of the constant
C into each element position of VR0, which has the
effect of converting the contents of VR1 to a vector
V of negative unnormalized floating-point numbers
in the long format, occupying VR0 and VR1.

A-6 FSA/370 and System/370 Vector Operations

The next instruction, vsDQ, subtracts V from the
entire constant C, which is equivalent to sub-
tracting 23! from the original elements, thus
restoring them to the range —23! to 23'—1. The
elements are normalized during this operation.

The next example presents an alternate program,
the loop of which is shorter by one vector instruc-
tion.

L GO,N Vector length to GRO
LA G1,K Address of K to GR1
LA G2,W Address of W to GR2
LD Fo,C Load C into FRO

LP VLVCU GO Load VCT, update GRO
VLDQ VO,Fo Load € into VRO, VR1

VX V1,V1,61 V= —(k+231)

VSDQ VO,FO,V0 W = -231 -}

VSTD Ve,G2 Store W

BC 2,LP Branch back if GRO>G

The vLDQ instruction loads the entire constant C
into vRo and VR1. Then, the vX instruction fetches
the elements of K from storage and EXCLUSIVE ORs
them into VR1, which contained a leftmost one fol-
lowed by 31 zeros. This inverts the sign bit, as did
VLCER in the previous example. 'The rest of the
program is the same.

Floating Point to Fixed Point

This example combines conversion from floating to
fixed point with a variation of the rounding tech-
nique shown in a previous example.

* Start of range test

L GO,N Vector length to GRO
LA G1,W Address of W to GR1
LR G2,61 Copy address to GR2
LD Fo,L FRO: upper Timit L

LNDR F2,F0 FR2: lower limit -L
LP1 VLVCU GO Load VCT, update GRO

veDS 12,F0,G0 Compare L and W; set
mask bit to one when
L is equal or low

VTWM Test mask bits

BC 5,0VFLO0 Exit if any ones

veps 2,F2,62 Compare —-L and W;
set mask bit to one
when =L is high

VTVM Test mask bits

BC 5,0VFLO Exit if any ones
LTR Go,Go Test residual count
BC 2,LP1 Branch back if GRO>0

* Start of conversion with rounding

L GO,N Vector length to GRO
LA G1,W Address of W to GR1
LA G2,K Address of K to GR2

LD Fo,G Load G into FRO
LD F2,H Load H into FR2
LD F4 .M Load M into FR4

LP2 VLVCU GO Load VCT, update GRO
VADS V0,F2,G1 Add 0.5 to W section
VSVMM 1 Vector-mask mode on
vepQ 2,F2,V0 Compare; set mask to

* one where 0.5>W
VADQ VO,F4,V0 Add -1.0 under mask

VSVMM © Set mask mode off
VADQ VO,FO,V0G Add 233

VST V1,62 Store K from VR1

BC 2,LP2 Branch back if GRO>0

Assume a vector W of length N in storage, the ele-
ments of which are floating-point numbers in the
long format. Assume this vector is to be converted
to a vector of signed binary integers, and the result
is to be stored as vector K. Assume floating-point
constants in storage with the following names,
hexadecimal formats, and values:

L =48 80 00 00 00 00 00 0O = 231
G = 4F 02 00 00 00 00 00 00 = 253
H = 40 80 60 00 0O 0O 00 00 = 0.5
M=Cl 10 60 060 00 00 00 060 = -1.0

L is the upper limit of the range of numbers which,
after truncation of the fractional part, are represent-
able as signed binary integers. Vector W is com-
pared with this limit in a separate sectioning loop
before conversion is started, so that nothing is
stored if any element of W is out of range. This
comparison loop can be omitted if all elements are
known to be within range.

H and M are the constants 0.5 and —1.0, respec-
tively. Rounding is accomplished by first adding
0.5 unconditionally to vector W, and then adding
—~1.0 conditionally where the elements are now less
than 0.5, which is equivalent to subtracting 0.5
from all initially negative elements.

The constant G is chosen such that its addition to a
number within the representable range forces that
number to be shifted to the right, with the units
digit in the guard-digit position, and the result to be
normalized to the left by one digit position. This
causes any fraction part to be truncated, leaving the
rounded integer part in the right half of the vector-
register pair.

Appendix A. Instruction-Use Examples A-7

Appendix B. Lists of Instructions

The following figures list the vector instructions by
name, mnemonic, and op code.

Explanation of Symbols in “Characteristics” Column

A
C
EO
EU
FK
IC

IF
1G

IP

LS
NC

Access exceptions

Condition code is set

Exponent-overflow exception
Exponent-underflow exception
Floating-point-divide exception

Class-1C instruction; interruptible; vector
count and vector interruption index deter-
mine number of elements processed; does
not depend on vector-mask mode
Fixed-point-overflow exception

Class-1G instruction; interruptible; general
register, vector interruption index, and
section size determine number of clements
processed; sets vector count; does not
depend on vector-mask mode

Class-1M instruction; interruptible; vector
count and vector interruption index deter-

mine number of elements processed;
depends on vector-mask mode
Class-1p instruction; interruptible;

partial-sum number and vector interruption
index determine number of elements proc-
essed; does not depend on vector-mask
mode

Class-1z instruction; interruptible; vector-
section size determines number of elements
processed; does not depend on vector-mask
mode

Arithmetic exception;
code is stored
Significance exception
Class-NC instruction; not interruptible;
vector count determines number of elements
processed; does not depend on vector-mask
mode

exception-extension

NZ.

NO

N1

QST
Qv
R*

RRE
RSE

spP
ST

VB
VE

VH
VR
\&S
VST
vuU
\'A%

Notes

Class-N7 instruction; not interruptible;
vector-section size determines number of cle-
ments processed; does not depend on vector-
mask mode

Class-No instruction; not interruptible; no
vector elements processed; does not depend
on vector-mask mode

Class-N1 instruction; not interruptible; one
vector element processed; does not depend
on vector-mask mode

Privileged-operation exception

QST instruction format

QV instruction format

PER general-register-alteration event may or
may not be recognized

RRE instruction format

RSF instruction format

s instruction format

Specification exception

PER storage-alteration event
Unnormalized-operand exception

Sets vector in-use bit and vector change bit
Vector facility and vector-operation excep-
tion

Sets vector change bit

VR instruction format

vs instruction format

VST instruction format

Leaves vector change bit unaltered

vV instruction format

Same op codec as for short; separate mne-
monic for programming convenience
Execution differs in problem state and super-
visor state

B-1

Appendix B. Lists of Instructions

Mne- Op

Name monic Characteristics Code
ACCUMULATE (1ong) YACD |VST VE|A SP|J EU EO LS IM VB|R* A417
ACCUMULATE (Yong) VACDR|VV VE SP|J EU EO LS IM VB A517
ACCUMULATE (short to long) VACE |VST VE|A SP|J EU EO LS IM VB{R* |A407
ACCUMULATE (short to long) VACER|VV VE SP|J EUEO LS IM VB A507
ADD (binary) VA VST VEJA SP}J IF IM VB|R* A420
ADD (binary) VAQ [QV VE J IF IM VB ASAQ
ADD (binary) VAR |W VE J IF IM VB A520
ADD (binary) VAS [QST VE|A SP|J IF IM VB|R* A4AQ
ADD (Tong) VAD |VST VE|A SP|{J EU EO LS IM VB|R* A410
ADD (Tong) VADQ |QV VE SP{J EUEOLS IM VB A590
ADD (Tong) VADR |VV VE SP|d EUEOLS IM VB A510
ADD (1ong) VADS 1QST VE|A SPjJ EU EO LS IM VB|R* A490
ADD (short) VAE |VST VE|A SP|{J EU EO LS IM VB|R* A400
ADD (short) VAEQ |QV VE SP{d EUEO LS IM VB A580
ADD (short) VAER |VV VE J EUEDLS IM VB A500
ADD (short) VAES |QST VE|(A SP{J EU EO LS IM VB|R* A4806
AND VN VST VEJA SP IM VB{R* Ad24
AND VNQ |QV VE IM VB A5A4
AND VNR WV VE IM VB A524
AND VNS [QST VE|A SP IM VB[R* AdA4
AND TO VMR VNVM VS VEJA NC R* A684
CLEAR VR VRCL |S VE 1Z VB A6CS
COMPARE (binary) Ve VST VEJA SP IC R* A428
COMPARE (binary) veq Qv VE IC A5A8
COMPARE (binary) VCR |WV VE IC A528
COMPARE (binary) VCS |QST VEJA SP IC R* A4A8
COMPARE (Tong) VCD VST VE|A SP IC R* A418
COMPARE (Tong) vcDQ Qv VE SP IC A598
COMPARE (Tong) VCDR {VV VE SP IC A518
COMPARE (1ong) VCDS [QST VEJA SP IC R* A498
COMPARE (short) VCE |VST VE|A SP IC R* A408
COMPARE (short) VCEQ {QV VE SP IC A588
COMPARE (short) VCER |VV VE Ic A508
COMPARE (short) VCES |QST VEJA SP IC R* A488
COMPLEMENT VMR VCVM {RRE VE NC AB41
COUNT LEFT ZEROS IN VMR VCZVM|RRE C VE NC R* AB42
COUNT ONES IN VMR VCOVMIRRE C VE NC R* A643
DIVIDE (1ong) vDD |VST VEJA SP|J U EU EO FK IM VB|R* A413
DIVIDE (long) vDDQ {QV VE SP|{J U EU EO FK IM VB A593
DIVIDE (long) VDDR |VV VE SP{J U EU EO FK IM VB A513

Figure B-1 (Part 1 of 5). Instructions Arranged by Name

B-2 ESA/370 and System/370 Vector Operations

Mne- Op

Name monic Characteristics Code
DIVIDE (long) vDDS {QST VEJA SP|J U EU EO FK IM VB|R* A493
DIVIDE (short) VDE VST VEJA SPjJ U EU EO FK IM VB|R* A403
DIVIDE (short) VDEQ |QV VE SPIJ U EU EO FK IM VB A583
DIVIDE (short) VDER |VV VE JUEUEDFK IMVB A503
DIVIDE (short) VDES |QST VEJA SP{J U EU EO FK IM VB|R* A483
EXCLUSIVE OR VX VST VEJA SP IM VB|R* A426
EXCLUSIVE OR VXQ 1Qv VE IM VB A5A6
EXCLUSIVE OR VXR |VV VE IM VB A526
EXCLUSIVE OR VXS |QST VEJA SP IM VB|R* A4A6
EXCLUSIVE OR TO VMR VXVM VS VE|A NC R* A686
EXTRACT ELEMENT (binary) VXEL VR VE SP N1 R* A629
EXTRACT ELEMENT (long) VXELDJVR VE SP N1 A619
EXTRACT ELEMENT (short) VXELE|VR VE SP N1 A609
EXTRACT VCT VXVC [RRE VE NO R* A644
EXTRACT VECTOR MASK MODE VXVMM|RRE VE NO R* A646
LOAD (binary)!? VL VST VEJA SP IC VB|R* A409
LOAD (binary) vLQ Qv VE IC VB A5A9
LOAD (binary)? VLR |WV VE IC VB A509
LOAD (Tong) VLD |VST VE|A SP IC VBI|R* A419
LOAD (Tong) VvLDQ (QV VE SP IC VB A599
LOAD (Tong) VLDR |[VV VE SP IC VB A519
LOAD (short) VLE |VST - VEIA SP IC VB|R* A409
LOAD (short) VLEQ |QV VE SP IC VB A589
LOAD (short) VLER |VV VE IC vB A509
LOAD BIT INDEX VLBIX|RSE C VEJA SP 1G VB|[R* E428
LOAD COMPLEMENT ({binary) VLCR |WV VE J IF IM VB A562
LOAD COMPLEMENT (long) VLCDRVV VE SP IM VB A552
LOAD COMPLEMENT (short) VLCER|VV VE IM VB A542
LOAD ELEMENT (binary) VLEL [VR VE SP N1 VB A628
LOAD ELEMENT (Tong) VLELD|VR VE SP N1 VB A618
LOAD ELEMENT (short) VLELE|VR VE SP N1 VB A608
LOAD EXPANDED (binary)? VLY |VST VE(A SP IC VB|R* A40B
LOAD EXPANDED (long) VLYD [VST VEJA SP IC VB(R* A41B
LOAD EXPANDED (short) VLYE |VST VE|A SP IC VB|R* A40B
LOAD HALFWORD VLH |VST VEJA SP IC VB|R* A429
LOAD INDIRECT (binary)? VLI |RSE VE|A SP IC VB E400
LOAD INDIRECT (long) VLID [RSE VE|A SP IC VB E410
LOAD INDIRECT (short) VLIE |RSE VE|A SP IC vB E400
LOAD INTEGER VECTOR VLINT|VST VE SP IC VB[R* Ad42A
LOAD MATCHED (binary)? VLM |VST VE|A SP IC VB|R* A40A

Iiigure B-1 (Part 2 of 5). Instructions Arranged by Name

Appendix B. Lists of Instructions

B-3

Mne- Op

Name monic Characteristics Code
LOAD MATCHED (binary) VIMQ {QV VE IC vB ASAA
LOAD MATCHED (binary)! VIMR {VV VE IC VB A50A
LOAD MATCHED (Tong) VIMD |VST VE|A SP IC VB|R* A41A
LOAD MATCHED (long) VLMDQ{QV VE SP IC VB A59A
LOAD MATCHED (long) VLMDR{VV VE SP IC VB A51A
LOAD MATCHED (short) VLME |VST VE|A SP IC VB|R* A40A
LOAD MATCHED (short) VLMEQ|QV VE SP IC VB A58A
LOAD MATCHED (short) VLMER|VV VE IC VB A50A
LOAD NEGATIVE (binary) VLNR {VV VE M VB A561
LOAD NEGATIVE (long) VLNDR|VV VE SP IM VB A551
LOAD NEGATIVE (short) VLNER|VV VE IM VB A541
LOAD POSITIVE (binary) VLPR {VV VE J IF IM VB A560
LOAD POSITIVE (Tong) VLPDR|VV VE SP IM VB A550
LOAD POSITIVE (short) VLPER|VV VE IM VB A540
LOAD VCT AND UPDATE VLVCU|RRE C VE NO R* A645
LOAD VCT FROM ADDRESS VLVCAIS C VE NO A6C4
LOAD VMR VLVM |VS VE|A NC R* A680
LOAD VMR COMPLEMENT VLCVM|VS VEIA NC R* A681
LOAD ZERO (binary)? VLZR |VV VE IC v8 A508
LOAD ZERO (1ong) VLZDR|VV VE SP IC VB A51B
LOAD ZERO (short) VLZER|VV VE IC VB A508
MAXIMUM ABSOLUTE (Tong) VMXAD| VR VE SP M R* A612
MAXIMUM ABSOLUTE (short) VMXAE| VR VE SP M R* A602
MAXIMUM SIGNED (1ong) VMXSD| VR VE SP M R* A610
MAXIMUM SIGNED (short) VMXSE|VR VE SP IM R* A60G
MINIMUM SIGNED (Tong) VMNSD| VR VE SP M R* A611
MINIMUM SIGNED (short) VMNSE| VR VE SP M R* A601
MULTIPLY (binary) VM VST VEJA SP IM VB|R* A422
MULTIPLY (binary) vMQ [QV VE SP IM VB A5A2
MULTIPLY (binary) VMR |VV VE SP IM VB A522
MULTIPLY (binary) VMS [QST VE|A SP IM VB|R* AdA2
MULTIPLY (long) VMD |VST VE|A SP|J U EU EO IM VB|R* A412
MULTIPLY (]ong) VMDQ |QV VE SP{J U EU EO IM VB A592
MULTIPLY (long) VMDR |VV VE SP|J U EU EO IM VB A512
MULTIPLY (long) VMDS [QST VE|A SP|J U EU EO IM VB{R* A492
MULTIPLY (short to long) VME |[VST VEJA SP|{J U EU EO IM VB|R* A402
MULTIPLY (short to long) VMEQ [qQV VE SP|J U EU EO IM VB A582
MULTIPLY (short to long) VMER |VV VE SP{J U EU EO IM VB A502
MULTIPLY (short to long) VMES [QST VEJA SP|J U EU EO IM VBIR* A482
MULTIPLY AND ACCUMULATE (Tong) VMCD |VST VEJA SP{J U EU EO LS IM VB|R* Ad16

Figure B-1 (Part 3 of 5). Instructions Arranged by Name

B-4 ESA/370 and System/370 Vector Operations

Mne- Op

Name monic Characteristics Code
MULTIPLY AND ACCUMULATE (long) VMCDR|VV VE SP{J U EU EO LS IM VB A516
MULTIPLY AND ACCUMULATE] (short |VMCE |VST VE|A SP|J U EU EO LS IM VB|R* A406
MULTIPLY AND ACCUMULATE" to long)|VMCER}VV VE SP{J U EU EO LS IM VB A506
MULTIPLY AND ADD (Tong) VMAD |VST VE|A SP|J U EU EO LS IM VB|R* A414
MULTIPLY AND ADD (long) VMADQ|QV VE SP{J U EU EO LS IM VB A594
MULTIPLY AND ADD (long) VMADS QST VE|A SP|J U EU EO LS IM VB|R* A494
MULTIPLY AND ADD (short to long) |VMAE |VST VEJA SP{J U EU EO LS IM VB |R* A404
MULTIPLY AND ADD (short to Tong) |VMAEQ[QV VE SPIJ U EU EO LS IM VB A584
MULTIPLY AND ADD (short to long) |VMAES|QST VEJA SP{J U EU EO LS IM VB {R* A484
MULTIPLY AND SUBTRACT (long) VMSD VST VE{A SPl|J U EU EO LS IM VB|R* A415
MULTIPLY AND SUBTRACT (long) VMSDQ|QV VE SP{J U EU EO LS IM VB A595
MULTIPLY AND SUBTRACT (long) VMSDS|QST VE{A SP{J U EU EO LS IM VB|R* A495
MULTIPLY AND SUBTRACTy (short VMSE VST VEJA SP|J U EU EO LS IM VB|R* A405
MULTIPLY AND SUBTRACT} to VMSEQ[QV VE SP{J UEUEOLS IM VB A585
MULTIPLY AND SUBTRACT! 1long) VMSES|{QST VEJA SP{J U EU EO LS IM VB|R* A485
OR Vo VST VEJA SP IM VBiR* A425
OR voQ Qv VE IM VB A5A5
OR VOR |VV VE IM VB A525
OR VOS [QST VE|A SP IM VB{R* A4A5
OR TO VMR VOVM VS VE|A NC R* A685
RESTORE VAC VACRS|S VE|A SP|P NO A6CB
RESTORE VMR VMRRS | S VEIA NZ A6C3
RESTORE VR VRRS |RRE C VE|A SP{2 I1Z VU|R* A648
RESTORE VSR VSRRS S VEIA SP|2 1Z VB A6C2
SAVE CHANGED VR VRSVC|RRE C VE|A SP|P 1Z VH|R* ST]A649
SAVE VAC VACSV{S VEIA SP{P NO ST{A6CA
SAVE VMR VMRSV|S VE|A NZ ST{A6C1
SAVE VR VRSV |RRE C VE{A SP 17 R* ST|A64A
SAVE VSR VSRSV|S VEIA SP|2 NO ST{A6CO
SET VECTOR MASK MODE VSVMMIS VE NO A6C6
SHIFT LEFT SINGLE LOGICAL VSLL |RSE VE IM VB E425
SHIFT RIGHT SINGLE LOGICAL VSRL |RSE VE IM vB E424
STORE (binary)? VST |VST VE|A SP IC R* ST{A40D
STORE (1ong) VSTD |VST VE|A SP| IC R* ST|A41D
STORE (short) VSTE |VST VE|A SP 1C R* ST|{A40D
STORE COMPRESSED (binary)!? VSTK |VST VE|A SP IC R* ST|A40F
STORE COMPRESSED (long) VSTKD|VST VE[A SP IC R* ST{A41F
STORE COMPRESSED (short) VSTKE|VST VE|A SP IC R* ST|A40F
STORE HALFWORD VSTH [VST VE|A SP IC R* ST|A42D
STORE INDIRECT (binary)? VSTI |RSE VE|A SP 1C ST|E401

Figure B-1 (Part 4 of 5). Instructions Arranged by Name

Appendix B. Lists of Instructions

B-5

Mne- Op

Name monic Characteristics Code
STORE INDIRECT (long) VSTID|RSE VE|A SP 1C ST|E411
STORE INDIRECT (short) VSTIE|[RSE VE[A SP IC ST|E401
STORE MATCHED (binary)? VSTM |VST VE|A SP Ic R* ST|A40E
STORE MATCHED (long) VSTMD|VST VEJA SP IC R* ST|A41E
STORE MATCHED (short) VSTME|VST VE|A SP IC R* ST|A40E
STORE VECTOR PARAMETERS VSTVP|S VEIA SP NO ST|A6C8
STORE VMR VSTVM|VS VE{A NC R* ST|A682
SUBTRACT (binary) VS VST VE|A SPJ|J IF IM VB|R* A421
SUBTRACT (binary) VSQ |QV VE J IF IM VB A5A1
SUBTRACT (binary) VSR VWV VE J - IF IM VB A521
SUBTRACT (binary) VSS |QST VE|A SP{J IF IM VB|R* AdAl
SUBTRACT (long) VSD |VST VE(A SP{J EU EO LS IM VB{R* A411
SUBTRACT (1ong) VSDQ |QV VE SPjJ EUEO LS IM VB A591
SUBTRACT (long) VSDR |VV VE SP{J EUEO LS IM VB A511
SUBTRACT (long) VSDS [QST VEJA SP|J EU EO LS IM VB|R* A491
SUBTRACT (short) VSE |VST VE[(A SP{J EU EO LS IM VB|R* A401
SUBTRACT (short) VSEQ |QV VE SP{J EU EO LS IM VB A581
SUBTRACT (short) VSER |VV VE J EUEOLS IM VB A501
SUBTRACT (short) VSES [QST VE|A SPj{J EU EO LS IM VB{R* A481
SUM PARTIAL SUMS (long) VSPSD|VR VE SP1J EU EO LS IP A61A
TEST VMR VIVM |RRE C VE NC A640
ZERO PARTIAL SUMS (long) VZPSD|VR VE SP IP VB A61B

Figure

B-6 ESA/370 and System/370 Vector Operations

B-1 (Part 5 of 5). Instructions Arranged by Name

Mne- Op

monic Name Characteristics Code
VA ADD (binary) VST VE|A SP|J IF IM VB|R* A420
VACD |ACCUMULATE (Tong) VST VEIA SP{J EU EO LS IM VB|R* A417
VACDR|ACCUMULATE (1ong) v VE SP{J EUEO LS IM VB A517
VACE |ACCUMULATE (short to long) VST VE|A SP{J EU EO LS IM VB|R* A407
VACER|ACCUMULATE (short to long) v VE SP{J EU EO LS IM VB A507
VACRS [RESTORE VAC S VE|A SP{P NO A6CB
VACSV|SAVE VAC S VE|IA SP|P NO ST|A6CA
VAD [ADD (long) VST VE|A SP|J EU EO LS IM VB|R* A410
VADQ |ADD (long) Qv VE SP{J EU EO LS IM vB A590
VADR [ADD (long) 1\ VE SP{J EU EO LS IM VB A510
VADS |ADD (long) QST VE|A SP|J EU EO LS IM VB|[R* A490
VAE |ADD (short) VST VEJA SP}J EU EO LS IM VB|R* A400
VAEQ |ADD (short) Qv VE SP|J EU EO LS IM VB A580
VAER |ADD (short) vV VE J EUEOLS IM VB A500
VAES |ADD (short) QST VE[{A SPj{J EU EO LS IM VB|R* A480
VAQ |ADD (binary) Qv VE J IF IM VB A5A0
VAR [ADD (binary) vV VE J IF IM VB A520
VAS |ADD (binary) QST VE|A SP{J IF IM VBIR* AdAQ
vVC COMPARE (binary) VST VE|A SP 1C R* A428
VCD |COMPARE (long) VST VE[A SP ic R* A418
VCDQ |COMPARE (long) Qv VE Sp 1C A598
VCDR {COMPARE (Tong) vy VE SP 1C A518
VCDS |COMPARE (1ong) QST VE|A SP 1C R* A498
VCE [COMPARE (short) VST VE{A SP I1C R* A408
VCEQ |COMPARE (short) Qv VE SP IC A588
VCER |[COMPARE (short) vV VE Ic A508
VCES |COMPARE (short) QST VE|A SP IC R* A488
VCOVM|COUNT ONES IN VMR RRE C VE NC R* AB43
VCQ |COMPARE (binary) Qv VE IC A5A8
VCR |COMPARE (binary) ' VE IC A528
VCS |COMPARE (binary) QST VE|A SP IC R* A4A8
VCVM [COMPLEMENT VMR RRE VE NC A641
VCZVM|{COUNT LEFT ZEROS IN VMR RRE C VE NC R* A642
vDD |DIVIDE (long) VST VE|A SP|J U EU EO FK IM VB|R* A413
vDDQ |DIVIDE (long) Qv VE SP]J U EU EO FK IM VB A593
VDDR [DIVIDE (long) Vv VE SP{J U EU EO FK IM VB A513
vDDS |DIVIDE (long) QST VE|A SP{J U EU EO FK IM VB|R* A493
VDE |DIVIDE (short) VST VE|A SP{J U EU EO FK IM VB{R* A403
VDEQ |DIVIDE (short) Qv VE SP{J U EU EO FK IM VB A583
VDER |DIVIDE (short) 'A% VE J U EU EO FK IM VB A503

Figure B-2 (Part 1 of 5). Instructions Arranged by Mnemonic

Appendix B. Lists of Instructions B-7

Mne- Op
monic Name Characteristics Code
VDES |DIVIDE (short) QST VE|A SP{J U EU EO FK IM VB{R* A483
VL LOAD (binary)! VST VE|A SP IC VB|R* A409
VLBIX|LOAD BIT INDEX RSE C VEJA SP IG VB|R* E428
VLCDR|LOAD COMPLEMENT (1ong) 1) VE SP IM vB A552
VLCER|LOAD COMPLEMENT (short) v VE IM VB A542
VLCR |LOAD COMPLEMENT (binary) 1} VE J IF IM VB A562
VLCVM|LOAD VMR COMPLEMENT VS VE[A NC R* A681
VLD [LOAD (long) VST VE|A SP IC VB|R* A419
VLDQ [LOAD (long) Qv VE SP IC VB A599
VLDR |LOAD (long) W VE SP IC vB A519
VLE |LOAD (short) VST VEIA SP IC VB|R* A409
VLEL |LOAD ELEMENT (binary) VR VE SP N1 VB A628
VLELD[LOAD ELEMENT (long) VR VE SP N1 VB A618
VLELE|LOAD ELEMENT (short) VR VE SP N1 VB A608
VLEQ {LOAD (short) Qv VE SP IC VB A589
VLER {LOAD (short) W VE IC vB A509
VLH |LOAD HALFWORD VST VE|A SP IC VB|R* A429
VLI {LOAD INDIRECT (binary)? RSE VE|A SP IC vB E400
VLID |LOAD INDIRECT (long) RSE VEJA SP IC VB E410
VLIE |LOAD INDIRECT (short) RSE VE|A SP ic vB E400
VLINT|LOAD INTEGER VECTOR VST VE SP IC VB|R* A42A
VLM |LOAD MATCHED (binary)? VST VEJA SP IC VB|R* A40A
VLMD |LOAD MATCHED (long) VST VE|A SP IC VB|R* A41A
VLMDQ|LOAD MATCHED (long) Qv VE sP IC VB A59A
VLMDR |LOAD MATCHED (long) v VE SP IC vB AS51A
VLME |LOAD MATCHED (short) VST VEJA SP IC VB|R* A40A
VLMEQ|LOAD MATCHED (short) Qv VE sP IC vB A58A
VLMER|LOAD MATCHED (short) 1) VE IC VB AS50A
VLMQ {LOAD MATCHED (binary) Qv VE IC VB A5AA
VLMR |LOAD MATCHED (binary)? Vv VE IC VB A50A
VLNDR|LOAD NEGATIVE (Tong) w VE SP IM VB A551
VLNER{LOAD NEGATIVE (short) vV VE IM VB A541
VLNR |LOAD NEGATIVE (binary) Vv VE IM VB A561
VLPDR|LOAD POSITIVE (Tong)) VE SP IM VB A550
VLPER|LOAD POSITIVE (short) vV VE IM VB A540
VLPR {LOAD POSITIVE (binary) Vv VE J IF IM VB A560
VLQ |LOAD (binary) Qv VE IC VB ASA9
VLR |LOAD (binary)! Vv VE IC VB A509
VLVCA|LOAD VCT FROM ADDRESS S CVE NO A6C4
VLVCU{LOAD VCT AND UPDATE RRE C VE NO R* AG45
Figure B-2 (Part 2 of 5). Instructions Arranged by Mnemonic

B-8 ESA/370 and System/370 Vector Operations

Mne- Op

monic Name Characteristics Code
VLVM |LOAD VMR A VEIA NC R* AG80
VLY |[LOAD EXPANDED (binary)! VST VEJA SP IC VB|R* A40B
VLYD [LOAD EXPANDED (long) VST VE|A SP IC VB|R* A41B
VLYE |LOAD EXPANDED (short) VST VE|A SP IC VB|R* A40B
VLZDR|LOAD ZERO (long) 1A VE SP IC vB A51B
VLZER|LOAD ZERO (short) vV VE IC VB A50B
VLZR |LOAD ZERO (binary)!? A} VE IC vB A50B
M MULTIPLY (binary) VST VE|A SP IM VB|R* Ad422
VMAD [MULTIPLY AND ADD (Tong) VST VE|A SP|J U EU EO LS IM VB|R* A414
VMADQ|MULTIPLY AND ADD (long) Qv VE SP|J UEUEO LS IM VB A594
VMADS [MULTIPLY AND ADD (long) QST VE|A SP|J U EU EO LS IM VB|R* A494
VMAE |MULTIPLY AND ADD (short to long) |VST VE|A SP{J U EU EO LS IM VB|R* A404
VMAEQ|MULTIPLY AND ADD (short to long) |QV VE SP|J UEUEO LS IM VB A584
VMAES [MULTIPLY AND ADD (short to long) |QST VE|A SP}J U EU EO LS IM VB|R* A484
VMCD |MULTIPLY AND ACCUMULATE (long) VST VE|A SP|J U EU EO LS IM VB|R* A416
VMCDRIMULTIPLY AND ACCUMULATE (long) v VE SP|J UEU EO LS IM VB A516
VMCE [MULTIPLY AND ACCUMULATE] (short |[VST VEJA SP|J U EU EO LS IM VB|R* A406
VMCER|MULTIPLY AND ACCUMULATE to long)|VWV VE SP|J U EU EO LS IM VB A506
YMD [MULTIPLY (1ong) VST VE[A SP|J U EU EO IM VB|R* A412
VMDQ |MULTIPLY (long) Qv VE SP{J U EU EO IM VB A592
VMDR |MULTIPLY (long) A} VE SP{J U EU EO IM VB A512
VMDS [MULTIPLY (Tong) QST VE[A SP{J U EU EO IM VB|R* A492
VME |MULTIPLY (short to long) VST VE|A SP{J U EU EO IM VB{R* A402
VMEQ [MULTIPLY (short to long) Qv VE SPIJ U EU EO IM VB A582
VMER |MULTIPLY (short to long) Vv VE SP|J U EU EO IM VB A502
VMES |MULTIPLY (short to long) QST VE{A SP{J U EU EO IM VB|R* A482
VMNSD [MINIMUM SIGNED (1ong) VR VE SP M R* A611
| VMNSE [MINIMUM SIGNED (short) VR VE SP M R* A601
VMQ [{MULTIPLY (binary) Qv VE SP M VB ASA2
VMR |MULTIPLY (binary) vV VE SP IM VB A522
VMRRS |RESTORE VMR S VE[A NZ A6C3
VMRSV |SAVE VMR S VE|A NZ ST{A6C1
VMS |MULTIPLY (binary) QST VE(A SP IM VBIR* A4A2
VMSD [MULTIPLY AND SUBTRACT (1ong) VST VE|JA SP|J U EU EO LS IM VBJR* A415
VMSDQ [MULTIPLY AND SUBTRACT (1ong) Qv VE SP{J UEUEO LS IM VB A595
VMSDS [MULTIPLY AND SUBTRACT (long) QST VE{A SP|J U EU EO LS IM VB|[R* A495
VMSE {MULTIPLY AND SUBTRACTy (short VST VE|[A SP|J U EU EO LS IM VB|R* A405
VMSEQ{MULTIPLY -AND SUBTRACT] to Qv VE SP|J U EU EO LS IM VB A585
VMSES |MULTIPLY AND SUBTRACT! 1ong) QST VE{A SP|J U EU EO LS IM VB|R* A485
VMXAD |[MAXIMUM ABSOLUTE (long) VR VE SP M R* A612

Figure B-2 (Part 3 of 5). Instructions Arranged by Mnemonic

Appendix B. Lists of Instructions

B-9

Mne- Op
monic Name Characteristics Code
VMXAE [MAXIMUM ABSOLUTE (short) VR VE SP M R* A602
VMXSD |[MAXIMUM SIGNED (long) VR VE SP IM R* A610
VMXSE {MAXIMUM SIGNED (short) VR VE SP IM R* A600
VN AND VST VEJA SP IM VB|R¥ A424
VNQ |AND Qv VE IM VB A5A4
VNR |AND) VE IM VB A524
VNS |AND QST VE(A SP IM VB|R* Ad4A4
VNVM |AND TO VMR VS VE|A NC R* A684
Vo OR VST VE(A SP IM VB|R* A425
voQ |OR Qv VE IM VB A5A5
VOR |OR v VE IM VB A525
VoS |OR QST VE[A SP IM VB{R* A4A5
VOVM JOR TO VMR VS VE|A NC R* A685
VRCL [CLEAR VR S VE 1Z VB A6C5
VRRS |RESTORE VR RRE C VEJA SPj|2 1Z VU|R* A648
VRSV |SAVE VR RRE C VEJA SP 12 R* ST|A64A
VRSVC|SAVE CHANGED VR RRE C VE|A SP|P IZ VH|R* ST|A649
) SUBTRACT (binary) VST VE|A SP|J IF IM VB|R* A421
VSD |SUBTRACT (long) VST VE|A SP|J. EU EO LS IM VB|R* A4l1
VSDQ [SUBTRACT (long) Qv VE SP|J EU EO LS IM VB A591
VSDR {SUBTRACT (long) w VE SPIJ EUEOLS IM VB A511
VSDS [SUBTRACT (long) QST VE|A SP|{J EU EO LS IM VB|R* A491
VSE |SUBTRACT (short) VST VEIA SP{J EU EO LS IM VB|R* A401
VSEQ |SUBTRACT (short) Qv VE SP}J EU EO LS IM VB A581
VSER |SUBTRACT (short) w VE J EUEOLS IMVB A501
VSES [SUBTRACT (short) QST VE{A SP{J EU EO LS IM VB|R* A481
VSLL |SHIFT LEFT SINGLE LOGICAL RSE VE IM VB E425
VSPSD|SUM PARTIAL SUMS (long) VR VE SP{J EUEO LS IP AG1A
VSQ |SUBTRACT (binary) Qv VE J IF IM VB A5A1
VSRL |SHIFT RIGHT SINGLE LOGICAL RSE VE IM VB E424
VSR |SUBTRACT (binary) w VE J IF IM VB A521
VSRRS {RESTORE VSR S VE|A SP|2 1Z vB A6C2
VSRSV|SAVE VSR S VE|A SP|2 NO ST|A6CO
VSS [SUBTRACT (binary) QST VE|A SP|d IF IM VB|R* AdAl
VST |STORE (binary)?! VST VE|A SP IC R* ST|A40D
VSTD |STORE (Tong) VST VE|{A SP IC R* ST[A41D
VSTE [STORE (short) VST VE|A SP IC R* ST|A40D
VSTH |STORE HALFWORD VST VE|A SP IC R* ST|A42D
VSTI [STORE INDIRECT (binary)!? RSE VEJA SP IC ST|E401
VSTID|STORE INDIRECT (Tong) RSE VE|A SP Ic ST{E411
Figure B-2 (Part 4 of 5). Instructions Arranged by Mnemonic

B-10 ESA/370 and System/370 Vector Operations

Mne- Op
monic Name Characteristics Code
VSTIE{STORE INDIRECT (short) RSE VEJA SP IC ST|E401
VSTK |STORE COMPRESSED (binary)?! VST VE(A SP IC R* ST|A46F
VSTKD[STORE COMPRESSED (long) VST VE[A SP IC R* ST{A4IF
VSTKE|STORE COMPRESSED (short) VST VEJA SP IC R* ST|A40F
VSTM |STORE MATCHED (binary)!? VST VE|A SP IC R* ST{A40E
VSTMD|STORE MATCHED (1ong) VST VE|A SP IC R* ST|A41E
VSTME [STORE MATCHED (short) VST VE|A SP IC R* ST|A40E
VSTVM|STORE VMR VS VE|A NC R* ST|A682
VSTVP|STORE VECTOR PARAMETERS) VE|A SP NO ST|A6CS
VSVMM|SET VECTOR MASK MODE) VE NO A6C6
VTVWM [TEST VMR RRE C VE NC A640
VX EXCLUSIVE OR VST VE[A SP IM VB|R* A426
VXEL |EXTRACT ELEMENT (binary) VR VE SP N1 R* A629
VXELD|EXTRACT ELEMENT (long) VR VE SP N1 A619
VXELE|EXTRACT ELEMENT (short) VR VE sP N1 A609
VXQ |EXCLUSIVE OR Qv VE IM VB A5A6
VXR |EXCLUSIVE OR w VE IM VB A526
VXS |EXCLUSIVE OR QST VE|A SP IM VB|R* A4A6
VXVC |EXTRACT VCT RRE VE NO R* A644
VXVM |EXCLUSIVE OR TO VMR D) VE|A NC R* A686
VXVMM|EXTRACT VECTOR MASK MODE RRE VE NG R* A646
VZPSD|ZERO PARTIAL SUMS (long) VR VE SP IP VB A61B
Figure B-2 (Part 5 of 5). Instructions Arranged by Mnemonic

Appendix B. Lists of Instructions

B-11

Op Mne-

Code Name monic Characteristics

A408|ADD -(short) VAE |VST VE|A SP|{J EU EO LS IM VB|R*
A401{SUBTRACT (short) VSE |VST VEIA SP{J EU EO LS IM VB|R?*
A402 [MULTIPLY (short to long) VME |VST VE|A SP|J U EU EO IM VB|R*
A403[DIVIDE (short) VDE |VST VE|A SP|J U EU EO FK IM VB|R*
A404 [MULTIPLY AND ADD (short to long) |VMAE |VST VE|A SP|J U EU EO LS IM VB|R*
A4O5IMULTIPLY AND SUBTRACT] (short |VMSE |VST VE[A SP|J U EU EO LS IM VB|R*
A406 |MULTIPLY AND ACCUMULATE! to long)|VMCE |VST VE|A SP|J U EU EO LS IM VB|R*
A407 {ACCUMULATE (short to long) VACE |VST VEJA SP|J EU EO LS IM VB|R*
A408|COMPARE (short) VCE |VST VE|A SP IC R*
A409{LOAD (binary)? VL VST VE|A SP IC VB|R*
A409|LOAD (short) VLE |VST VE|A SP IC VBIR*
A4OA|LOAD MATCHED (binary)? VLM |VST VE|A SP IC VB{R*
A4QA|LOAD MATCHED (short) VLME |VST VE|A SP IC VB|R*
A40B|LOAD EXPANDED (binary)? VLY VST VE|A SP 1C VB|R*
A40B|LOAD EXPANDED (short) VLYE |VST VE|A SP IC VB|R*
A40D|STORE (binary)? VST VST VEJA SP IC R* ST
A40D|STORE (short) VSTE |VST VEJA SP IC R* ST
A4QE |STORE MATCHED (binary)! VSTM {VST VE|A SP Ic R* ST
A4QE|STORE MATCHED (short) VSTME|VST VE|A SP IC R* ST
A40F | STORE COMPRESSED (binary)? VSTK |VST VE|A SP IC R* ST
A4QF [STORE COMPRESSED (short) VSTKE|VST VE|A SP ic R* ST
A416|ADD (1ong) VAD |VST VE|A SP{J EU EO LS IM VB|R*
A411|SUBTRACT (1ong) vsD (VST VE|A SP{J EU EO LS IM VB|R*
A412|MULTIPLY (Tong) VD |VST VE|IA SP|J U EU EO IM VB|{R*
A413[DIVIDE (long) VDD VST VE|A SP|J U EU EO FK IM VB|R*
A414MULTIPLY AND ADD (long) VMAD VST VE|A SP|{J U EU EO LS IM VB|R*
A415|MULTIPLY AND SUBTRACT (long) VMSD |VST VE|A SP|{J U EU EO LS IM VB|R*
A416 |MULTIPLY AND ACCUMULATE (long) VvMCD |VST VE|A SP{J U EU EO LS IM VB|R*
A417 |ACCUMULATE (Tong) VACD |VST VE|A SP|J EU EO LS IM VB|R*
A418|COMPARE (1ong) vehb |VST VE|A SP IC R*
A419{LOAD (Tong) VLD [VST VE[A SP IC VB{R*
A41A|LOAD MATCHED (Tong) VLMD (VST VE|A SP IC VB|R*
A41B|LOAD EXPANDED (Tong) VLYD |VST VEJA SP IC VB|R*
A41D|STORE (Tong) VSTD |VST VE[(A SP IC R* ST
A41E|STORE MATCHED (long) VSTMD|VST VEJA SP IC R* ST
A41F|STORE COMPRESSED (long) VSTKD|VST VE|A SP IC R* ST
A4206|ADD (binary) VA VST VEJA SP}J IF IM VB{R*
A421|SUBTRACT (binary) VS VST VE[A SP{J IF IM VB|R*
A422 |MULTIPLY (binary) ' VST VE|A SP IM VB|R*
A424|AND VN VST VEJA SP IM VBIR*

Figure B-3 (Part 1 of 5). Instructions Arranged by Op Code

B-12 ESA/370 and System/370 Vector Operations

Op Mne-

Code Name monic Characteristics

A425]0R Vo VST VE|A SP IM VB|R*
A426 |EXCLUSIVE OR VX VST VE|A SP IM VB|R*
A428|COMPARE (binary) vC VST VEIA SP 1C R*
A429|LOAD HALFWORD VLH |VST VE|A SP IC VB|R*
A42A1LOAD INTEGER VECTOR VLINT|VST VE SP IC VB|R*
A42D|STORE HALFWORD VSTH |VST VEJA SP IC R* ST
A480{ADD (short) VAES |QST VE{A SP|J EU EO LS IM VB|R*
A481|SUBTRACT (short) VSES {QST VE|A SP|J EU EO LS IM VB|R*
A482|MULTIPLY (short to long) VMES |QST VE|A SP{J U EU EO IM VB|R*
A483(DIVIDE (short) VDES |QST VE|A SP|J U EU EO FK IM VB|R*
A484 |MULTIPLY AND ADD] (short VMAES|QST VE|A SP|J U EU EO LS IM VB|R*
A485[MULTIPLY AND SUBTRACT- to Tong) |[VMSES{QST VE|A SP{J U EU EO LS IM VB|R*
A488)COMPARE (short) VCES |QST VE|A SP IC R*
A490|ADD (1ong) VADS {QST VEJA SP|J EU EO LS IM VB|R*
A491{SUBTRACT (long) VSDS [QST VE|A SP|J EU EO LS IM VB{R*
A492|MULTIPLY (long) VMDS {QST VE|A SP|J U EU EO IM VB|R*
A493IDIVIDE (long) VDDS QST VE|A SP|J U EU EO FK IM VB(R*
A494|MULTIPLY AND ADD (long) VMADS|QST VE|A SP|{J U EU EO LS IM VB|R*
A495 [MULTIPLY AND SUBTRACT (1ong) VMSDS|QST VE|A SP|J U EU EO LS IM VB|R*
A498| COMPARE (1ong) VCDS QST VE(A SP 1C R*
A4AO|ADD (binary) VAS |QST VE|A' SP|J IF IM VB|R*
A4A1|SUBTRACT (binary) VSS |QST VEJA SP|J IF ‘IM VB|R*
ABA2MULTIPLY (binary) VMS |QST VE|A SP IM VB|R*
A4A4 | AND VNS QST VEJA SP IM VB|R*
A4A5|OR VoS {QST VE|A SP IM VB|R*
A4A6 | EXCLUSIVE OR VXS |QST VE|A SP IM VB|R*
A4A8 |COMPARE (binary) VCS |QST VEJA SP iC R*
A500(ADD (short) VAER |VV VE J EUEOLS IMVB
A501|SUBTRACT (short) VSER |WV VE J EUEOLS IM VB
A502 |MULTIPLY (short to long) VMER VvV VE SP{J U EU EO IM VB
A503(DIVIDE (short) VDER |VV VE J UEUEODFK IM VB
A506 |MULTIPLY AND ACCUMULATE] (short |VMCER}WV VE SP|J U EU EO LS IM VB
A507 | ACCUMULATE to long) |VACER|VV VE SP|J EU EO LS IM VB
A508 | COMPARE (short) VCER |VV VE I1C
A509|LOAD (binary)? VLR WV VE IC VB
A509|LOAD (short) VLER WV VE IC VB
AS0A|LOAD MATCHED (binary)? VLMR |VV VE IC VB
A50A|LOAD MATCHED (short) VLMER|VV VE IC VB
A50B{LOAD ZERO (binary)? VLZR [WV VE IC vB
A50B|LOAD ZERO (short) VLZER|VV VE IC vB
Figure B-3 (Part 2 of 5). Instruciions Arranged by Op Code

Appendix B. Lists of Instructions

B-13

Op Mne-

Code Name monic Characteristics
A510|ADD (Tong) VADR |VV VE SP|J. EU EO LS IM VB
A511|SUBTRACT (Tong) VSDR vV VE SP{J- EU EO LS IM VB
A512 [MULTIPLY (Tong) VMDR {VV VE SP|J U EU EO IM VB
A513{DIVIDE (long) VDDR |VV VE SP|J U EU EO FK IM VB
A516 {MULTIPLY AND ACCUMULATE (1ong) VMCDR|VV VE SP]J UEUEO LS IMVB
A517 |ACCUMULATE (1ong) VACDR{VV VE SPIJ EU EO LS IM VB
A518|COMPARE (1ong) VCDR {VV VE Sp IC
A5191L0AD (Tong) VLDR |VV VE Sp IC VB
A51A|LOAD MATCHED (Tong) VLMDR|VV VE SP IC VB
A51B{LOAD ZERO (1ong) VLZDR{VV VE SP IC VB
A520|ADD (binary) VAR (W VE J IF IM VB
A521|SUBTRACT (binary) VSR |VV VE J IF IM VB
A522 IMULTIPLY (binary) VMR |VV VE SP IM VB
A524 | AND VNR |VV VE IM VB
A525|0R VOR |wV VE M VB
A526 | EXCLUSIVE OR VXR [VV VE IM VB
A528[COMPARE (binary) VCR |VV VE 1C
A540LOAD POSITIVE (short) VLPER|VV VE IM VB
A541{LOAD NEGATIVE (short) VLNER|VV VE IM VB
A542]L0AD COMPLEMENT (short) VLCER|VV VE IM VB
A550]LOAD POSITIVE (long) VLPDR|VV VE SP IM VB
A551|LOAD NEGATIVE (long) VLNDR|VV VE SP IM VB
A552|1.OAD COMPLEMENT (Tong) VLCDR|VV VE SP IM VB
A560{L0AD POSITIVE (binary) VLPR [VV VE J IF IM VB
A561|LOAD NEGATIVE (binary) VLNR VWV VE IM VB
A562|LOAD COMPLEMENT (binary) VLCR |VV VE J IF IM VB
A580[ADD (short) VAEQ jqQV VE SP|J EUEO LS IM VB
A581|SUBTRACT (short) VSEQ [QV VE SP|J EU EO LS IM VB
A582|MULTIPLY (short to long) VMEQ [qQV VE SP|J U EU EO IM VB
A583|DIVIDE (short) VDEQ {QV VE SPIJ U EU EO FK IM VB
A584 |MULTIPLY AND ADD] (short VMAEQ|QV VE SP{J U EU EO LS IM VB
A585[MULTIPLY AND SUBTRACT! to long) |VMSEQ|QV VE SP1J U EU EO LS IM VB
A588|COMPARE (short) VCEQ [QV VE SP 1C
A589|LOAD (short) VLEQ {QV VE SP IC VB
A58A|LOAD MATCHED (short) VLMEQ|QV VE SP I1C VB
A590|ADD (long) VADQ |QV VE SP{J EU EO LS IM VB
A591|SUBTRACT (1ong) VvSDQ Qv VE SPIJ EU EO LS IM VB
A592IMULTIPLY (long) vMDQ {QV VE SP{J U EU EO IM VB
A593{DIVIDE (long) vDDQ {QV VE SP]J U EU EO FK IM VB
A594|MULTIPLY AND ADD (long) VMADQ|QV VE SP{J U EU EO LS IM VB

Figure B-3 (Part 3 of 5). Instructions Arranged by Op Code

B-14 ESA/370 and System/370 Vector Operations

Op Mne-

Code Name monic Characteristics

A595 |MULTIPLY AND SUBTRACT (long) VMSDQ|{QV VE SP|J U EU EO LS IM VB
A598 |COMPARE (1ong) veDQ Qv VE SP IC
A5991LOAD (Tong) VvLDQ |{QV VE SP IC vB
A59A[LOAD MATCHED (long) VLMDQ|QV VE SP IC VB
A5AQ|ADD (binary) VAQ [QV VE IF IM VB
A5A1|SUBTRACT (binary) vsQ [QV VE IF IM VB
A5A2 |MULTIPLY (binary) VMQ Qv VE SP IM VB
A5A4AND VNQ Qv VE IM VB
AS5A5]0R vVoQ {QV VE IM VB
A5A6 [EXCLUSIVE OR vXQ [QV VE IM VB
A5A8|COMPARE (binary) veQ Qv VE IC
A5A9|LOAD (binary) vLQ |Qv VE IC vB
ASAA|[LOAD MATCHED (binary) VIMQ |QV. VE IC VB
A600 {MAXIMUM SIGNED (short) VMXSE|VR VE SP M R*
A601|MINIMUM SIGNED (short) VMNSE|VR VE SP M R*
A602 [MAXIMUM ABSOLUTE (short) VMXAE|VR VE SP M R*
A608|LOAD ELEMENT (short) VLELE|VR VE Sp N1 VB
AS09|EXTRACT ELEMENT (short) VXELE|VR VE SP N1

A610 [MAXIMUM SIGNED (long) VMXSD| VR VE SP M R*
A611|MINIMUM SIGNED (long) VMNSD | VR VE Sp M R*
A612 |MAXIMUM ABSOLUTE (1ong) VMXAD | VR VE SP IM R*
A618|LOAD ELEMENT (long) VLELD|VR VE SP N1 VB
A619|EXTRACT ELEMENT (1ong) VXELD]VR VE Sp N1
A61A|SUM PARTIAL SUMS (long) VSPSD |VR VE SP EU EO LS IP
A61B|ZERO PARTIAL SUMS (long) VZPSD{VR VE SP IP VB
A628|LOAD ELEMENT (binary) VLEL {VR VE SP N1 VB
A629{EXTRACT ELEMENT (binary) VXEL |VR VE SP N1 R*
A640{TEST VMR VIVM |RRE C VE NC
A641|COMPLEMENT VMR VCVM [RRE VE NC
A642|COUNT LEFT ZEROS IN VMR VCZVM|RRE C VE NC R*
A643| COUNT ONES IN VMR VCOVM|RRE C VE NC R*
A644 | EXTRACT VCT VXVC |RRE VE NO R*
A645|LOAD VCT AND UPDATE VLVCU|RRE C VE NO R*
A646 | EXTRACT VECTOR MASK MODE VXVMM|RRE VE NO R*
A648|RESTORE VR VRRS |RRE C VE|A SP I1Z VU[R*
A649]SAVE CHANGED VR VRSVC|RRE C VE|A SP IZ VH{R* ST
AG4A|SAVE VR VRSV [RRE C VE|A SP 12 R* ST
A680|LOAD VMR VLVM VS VE]A NC R*
A681|LOAD VMR COMPLEMENT VLCVM|VS VEI[A NC R*
A682|STORE VMR VSTVM{VS VE|A NC R* ST

Figure B-3 (Part 4 of 5). Instructions Arranged by Op Code

Appendix B. Lists of Instructions

B-15

Op Mne-

Code Name monic Characteristics

A684|AND TO VMR VNVM VS VEIA NC R*
A685{0R TO VMR VOVM [VS VEIA NC R*
A686 | EXCLUSIVE OR TO VMR VXVM |VS VEJA NC R*
A6CO|SAVE VSR VSRSV|S VEIA SP|2 NO ST
A6C1|SAVE VMR VMRSV|S VE|A NZ ST
A6C2|RESTORE VSR VSRRS|S VEIA SP|2 1Z VB
A6C3|RESTORE VMR VMRRS|S VEIA NZ
A6C4|LOAD VCT FROM ADDRESS VLVCA|S VE NO
A6C5{CLEAR VR VRCL |S VE I1Z VB
A6C6|SET VECTOR MASK MODE VSVMM|S VE NG
AGC8|STORE VECTOR PARAMETERS VSTVP{S VEIA SP NO ST
A6CA|SAVE VAC ' VACSV|S VEIA SPIP NO ST
A6CB|RESTORE VAC VACRS|S VEIA SP|P NG
E400|LOAD INDIRECT (binary)? VLI |RSE VE|A SP IC vB
E400{LOAD INDIRECT (short) VLIE |RSE VEJA SP IC VB
E401|STORE INDIRECT (binary)!? VSTI |RSE VEJA SP Ic ST
E401|STORE INDIRECT (short) VSTIE|RSE VEJA SP 1c ST
E410]LOAD INDIRECT (long) VLID [RSE VE|A SP IC VB
E411|STORE INDIRECT (long) - VSTID[RSE VE|A SP I1C ST
E424SHIFT RIGHT SINGLE LOGICAL VSRL |RSE VE IM VB
E425|SHIFT LEFT SINGLE LOGICAL VSLL |RSE VE IM VB
E428}1.0AD BIT INDEX VLBIX|RSE C VE|A SP IG VB{R*

Figure B-3 (Part 5 of 5). Instructions Arranged by Op Code

B-16 ESA/370 and System/370 Vector Operations

Appendix C. Condition-Code Settings

'This appendix lists the condition-code settings for
vector instructions which set the condition code.

Condition Code

Instruction 0 | 2 3
COUNT LEFT ZEROS All zeros Zeros and ones — All ones
IN VMR
COUNT ONES IN YMR All zeros Zeros and ones — All ones
LOAD BIT INDEX vCTI = 0, VvCT =0, VCI = sec. size, VvCr > 0,

Bit count = 0 Bit count < 0 Bit count > 0 Bit count < 0

LOAD VCI' AND VCT = 0, VCT = 0, VCT = sec. size, VCI > 0,
UPDATE New length = 0 New length < 0 New length > 0 New length = 0
LOAD VCI' FROM VvCI' = 0, VCI' = 0, VCI = sec. size, VvCT > 0,
ADDRESS Address = 0 Address < 0 Address > Address <

section size

section size

RESTORE VR

VR pair 14-15

Other VR pair

VR pair 14-15

Other VR pair

not loaded not loaded loaded loaded
SAVE CHANGED VR VR pair 14-15 Other VR pair VR pair 14-15 Other VR pair
not stored not stored stored stored
SAVE VR VR pair 14-15 Other VR pair VR pair 14-15 Other VR pair
not stored not stored stored stored
TEST VMR All zeros Zeros and ones — All ones
Figure C-1. Summary of Condition-Code Settings

Appendix C. Condition-Code Settings C-1

Index

A
access exceptions for vector operands 2-24
access of vectors in storage 2-8
access-register mode, effect on vector instructions 2-29
ACCUMULATE (VACD, VACDR, VACE, VACER)
vector instructions 3-2
active bits and elements 2-3
activity count for vectors 2-§
ADD (VA, VAD, VADQ, VADR, VADS, VAQ, VAR,
VAS) vector instructions 3-3
examples A-1
address generation 2-17
for LOAD INTEGER VECTOR 3-16
for LOAD/STORE INDIRECT 3-16
address size 2-6
address updating 2-8
in sectioning 2-10
addressing mode 2-6
alignment on storage boundary 2-7
AND (VN) vector instructions 3-4
AND TO VMR (VNVM) vector instruction 3-5
AR-specified (access-register-specified) virtual address
2-29
architecture, effect on addressing 2-6
arithmetic (conditional) 2-11
examples A-4
arithretic exceptions 2-21
arithmetic partial-completion bit 2-21
arithmetic vectors 2-8
availability of vector facility 2-6,2-26

B
binary integers 2-7
bit count 3-11
bit index 3-11
relation of to element number 2-10
bit vector 2-10
boundary alignment 2-7

C
¢hange bits 2-5
in saving and restoring 2-26
classes of vector instructions 2-12
CLEAR VR (VRCL) vector instruction 3-5
clearing of vector registers 2-28
COMPARE (VC, VCD, VCDQ, VCDR, VCDS, VCE,
VCEQ, VCER, VCES, VCQ, VCR, VCS) vector
instructions 3-6
examples A-3,A-6
compatibility of vector programs 1-1
COMPLEMENT VMR (VCVM) vector instruction 3-7
completion of unit of operation 2-21
conceptual sequence of vector operations 2-19,2-29
condition code

at point of interruption 2-20

setting of 2-20

summary C-1

use of in sectioning 2-11
conditional vector arithmetic 2-11

examples A-4,A-6
configuration of vector facility 2-6
contiguous vectors 2-8

access exceptions for 2-24

examples A-1
control bit in control register 0 2-6
conversion

of bits to element numbers 2-10

of floating-point vectors A-6
count

bit 3-11

net 2-15

vector 2-3

vector-activity 2-5
COUNT LEFT ZEROS IN VMR (VCZVM) vector

instruction 3-7
COUNT ONES IN VMR (VCOVM) vector instruction
3-7

D

data types 2-7

DIVIDE (VDD, VDDQ, VDDR, VDDS, VDE, VDEQ,
VDER, VDES) vector instructions 3-8

example A-4

E

element iii
indirect selection of 2-8
vector 2-2

element number 2-2
relation of to bit index 2-10
ESA/370 architecture, vector facility in 2-29
exception-extension code 2-21
exceptions
access 2-24
arithmetic 2-21
avoidance of A-4
exponent-overflow 2-21,2-25
exponent-underflow 2-21,2-25
fixed-point-overflow 2-7,2-21
floating-point-divide 2-21,2-25
operation 2-6
significance 2-21
specification 2-25
unnormalized-operand 2-21,2-25
vector-operation 2-6,2-26
EXCLUSIVE OR (VX, VXQ, VXR, VXS) vector
instructions 3-9

Index X-1

EXCLUSIVE OR TO VMR (VXVM) vector instruction
39

exponent-overflow exception 2-21,2-25

exponent-underflow excepiion 2-21,2-25

extension code for exceptions 2-21

EXTRACT ELEMENT (VXEL, VXELD, VXELE)
vector instructions 3-10

EXTRACT VCT (VXVC) vector instruction 3-10

EXTRACT VECTOR MASK MODE (VXVMM)
vector instruction 3-10

F

fields in vector-instruction formats 2-13
fixed-point-overflow exception 2-7,2-21
floating-point conversion (examples) A-6
floating-point-divide exception 2-21,2-25
floating-point numbers 2-7

floating-point register (in vector operations) 2-10
formats of vector instructions 2-13

G
general register (in vector operations) 2-10
avoiding GRO for addresses 2-14

I
IC (vector-instruction class) 2-15
IG (vector-instruction class) 2-12
ILC (instruction-length code) 2-23
IM (vector-instruction class) 2-15
in-use bits 2-4

in saving and restoring 2-26
index

bit 3-11

vector interruption (see vector interruption index)
indirect element selection 2-8

load instruction for 3-15

store instruction for 3-34
inhibition of unit of operation 2-22
initialization 2-28
inner product (example) A-3
instruction-length code (I1.C) 2-23
instructions (see vector-facility instructions)
interruptible vector instructions 2-19
interruption

conditions for 2-24

effect of 2-23

of vector instructions 2-19

priority of 2-26
interruption index (see vector interruption index)
invalid vector-register numbers 2-7
1P (vector-instruction class) 2-12
17. (vector-instruction class) 2-12

X-2 ESA/370 and System/370 Vector Operations

L
length of vectors (see vector count)
LOAD (VL, VLD, VLDQ, VLDR, VLE, VLEQ,
VLER, VLQ, VLR) vector instructions 3-11
LOAD BIT INDEX (VLBIX) vector instruction 3-11
example A-5
LOAD COMPLEMENT (VLCDR, VLCER, VLCR)
vector instruciions 3-14
LOAD ELEMENT (VLEL, VLELD, VLELE) vector
instructions 3-14
LOAD EXPANDED (VLY, VLYD, VLYE) vector
instructions 3-14
example A-5
LOAD HALFWORD (VLH) vector instruction 3-15
LOAD INDIRECT (VLI, VLID, VLIE) vector
instructions 3-15
example A-5
LOAD INTEGER VECTOR (VLINT) vector instruc-
tion 3-16
LOAD MATCHED (VLM, VLMD, VLMDQ,
VLMDR, VLME, VLMEQ, VLMER, VLMQ,
VI.LMR) vector instructions 3-17
LOAD NEGATIVE (VLNDR, VLNER, VLNR) vector
instructions 3-18
LOAD POSITIVE (VLLPDR, VLPER, VLPR) vector
instructions 3-18
LOAD VCT AND UPDATE (VLVCU) vector instruc-
tion 3-19
examples A-1
LOAD VCT FROM ADDRESS (VLVCA) vector
instruction 3-19
LOAD VMR (VLVM) vector instruction 3-20
LOAD VMR COMPLEMENT (VLCVM) vector
instruction 3-20
LOAD ZERO (VLZDR, VLZER, VLZR) vector
instructions 3-20
logical data 2-7
loop for sectioning 2-10

M
machine check 2-30
mask bits
bit vector for 2-10
register for 2-2
mask mode (see vector-mask mode)
MAXIMUM ABSOLUTE (VMXAD, VMXAE) vector
instructions 3-21
MAXIMUM SIGNED (VMXSD, VMXSE) vector
instructions 3-21
MINIMUM SIGNED (VMNSD, VMNSE) vector
instructions 3-21
mode
addressing 2-6
vector-mask (see vector-mask mode)
model-dependent vector functions 1-2
MULTIPLY (VM, VMD, VMDQ, VMDR, VMDS,
VME, VMEQ, VMER, VMES, VMQ, VMR, VMS)
vector instructions 3-22
examples A-2

MULTIPLY AND ACCUMULATE (VMCD,

VMCDR, VMCE, VMCER) vector instructions 3-23
example A-3

MULTIPLY AND ADD (VMAD, VMADQ, VMADS,
VMAE, VMAEQ, VMAES) vector instructions 3-24

MULTIPLY AND SUBTRACT (VMSD, YMSDQ,
VMSDS, VMSE, VMSEQ, VMSES) vector
instructions 3-24

multiprocessing considerations 2-2

N

NC (vector-instruction class) 2-18
net count (of vector elements) 2-15
nullification of unit of operation 2-22
number of vector element 2-2

NZ (vector-instruction class) 2-12
NO (vector-instruction class) 2-12

N1 (vector-instruction class) 2-12

0]
operand parameters (for interruptible vector instruction)
2-20
operands for vector instructions 2-7
operation exception 2-6
OR (VO, VOQ, VOR, VOS) vector instructions 3-26
OR TO VMR (VOVM) vector instruction 3-26
overflow
fixed-point 2-7,2-21
floating-point exponent 2-21,2-25

P

parameters
operand (for interruptible vector instruction) 2-20
vector 2-2

partial-sum number 2-2
partial sums
for ACCUMULATE 3-2
for MULTIPLY AND ACCUMULATE 3-23
for SUM PARTIAL SUMS 3-36
for ZERO PARTIAL SUMS 3-37
PER (program-event recording) 2-28
prefetching of instructions 2-29
Principles of Operation publications iii
priority of vector interruptions 2-26
program initialization 2-28
program-intercuption conditions 2-24
program switching 2-26
PSW (program-status word) after interruption 2-23

Q

QST instruction format 2-13
QV instruction format 2-13

R
register
vector-activity count 2-5
vector-mask (see vector-mask register)
vector-status 2-3
registers
floating-point 2-10
general 2-10
saving and restoring of 2-27
scalar 2-10
vector (see veclor register)
resets 2-30 '
RESTORE VAC (VACRS) vector instruction 3-26
RESTORE VMR (VMRRS) vector instruction 3-27
RESTORE VR (VRRS) vector instruction 3-27
RESTORE VSR (VSRRS) vector instruction 3-28
restoring of registers 2-27
rounding (vector examples) A-4,A-6
RRE instruction format 2-13
RSE instruction format 2-13

S
S instruction format 2-13
SAVE CHANGED VR (VRSVC) vector instruction
3-29
SAVE VAC (VACSYV) vector instruction 3-30
SAVE VMR (VMRSV) vector instruction 3-30
SAVE VR (VRSV) vector instruction 3-31
SAVE VSR (VSRSV) vector instruction 3-31
saving of registers 2-27
scalar iii
scalar operands and registers 2-10
section size 2-2
sectioning 2-10
examples A-1
sequence of vector operations 2-19,2-29
sequential addressing of vector elements 2-8
SET VECTOR MASK MODE (VSVMM) vector
instruction 3-32
examples A-4
SHIFT LEFT SINGLE LOGICAL (VSLL) vector
instruction 3-32
SHIFT RIGHT SINGILE LOGICAL (VSRL) vector
instruction 3-32
signed binary integers 2-7
significance exception 2-21
specification exception 2-25
storage-operand consistency 2-29
STORE (VST, VSTD, VSTE) vector insiructions 3-32
STORE COMPRESSED (VSTK, VSTKD, VSTKE)
vector instructions 3-33
example A-S
STORE HALFWORD (VSTH) vector instruction 3-33
STORE INDIRECT (VSTI, VSTID, VSTIE) vector
instructions 3-34
example A-5

Index X-3

STORE MATCHED (VSTM, VSTMD, VSTME)
vector instructions 3-34
examples A-3
STORE VECIOR PARAMETERS (VSTVP) vector
instruction 3-35
STORE VMR (VSTVM) vector instruction 3-35
storing into instruction stream 2-29
stride 2-8
examples A-2 ‘
in address gencration 2-17

SUBTRACT (VS, VSD, VSDQ, VSDR, VSDS, VSE,

VSEQ, VSER, VSES, VSQ, VSR, VSS) vector
instructions 3-36
examples A-2
sum of products (example) A-3
SUM PARTIAIL SUMS (VSPSD) vector instruction
3-36
example A-3
suppression of unit of operation 2-22

T
termination 2-21

TEST VMR (VI'VM) vector instruction 3-37
threc-operand instructions 2-13

U

units of operation 2-20

unnormalized-operand exception 2-21,2-25
unsigned binary integers 2-7

updating of vector addresses (see address updating)

v

VA (ADD) vector instruction 3-3

VAC (vector-activity count) 2-5

VACD (ACCUMULATE) vector instruction 3-2
VACDR (ACCUMULATE) vector instruction 3-2
VACE (ACCUMULATE) vector instruction 3-2
VACER (ACCUMULATE) vector instruction 3-2
VACRS (RESTORE VAC) vector instruction 3-26
VACSV (SAVE VAQ) vector instruction 3-30
VAD (ADD) vector instruction 3-3

VADQ (ADD) vector instruction 3-3

VADR (ADD) vector instruction 3-3

VADS (ADD) vector instruction 3-3

valid vector-register numbers 2-7

validation of vector-facility registers 2-30

VAQ (ADD) vector instruction 3-3

VAR (ADD) vector instruction 3-3

VAS (ADD) vector instruction 3-3

VC (COMPARE) vector instruction 3-6

VCD (COMPARE) vector instruction 3-6

VCDQ (COMPARE) vector instruction 3-6
VCDR (COMPARE) vector instruction 3-6
VCDS (COMPARE) vector instruction 3-6

VCE (COMPARE) vector instruction 3-6

VCEQ (COMPARE) vector instruction 3-6

X-4 ESA/370 and System/370 Vector Operations

VCER (COMPARE) vector instruction 3-6
VCES (COMPARE) vector instruction 3-6
VCOVM (COUNT ONES IN VMR) vector instruction
37
VCQ (COMPARE) vector instruction 3-6
VCR (COMPARE) vector instruction 3-6
VCS (COMPARE) vector instruction 3-6
VCT (vector count) 2-3
VCVM (COMPLEMENT VMR) vector instruction 3-7
VCZVM (COUNT LEFT ZEROS IN VMR) vector
instruction 3-7

VDD (DIVIDE) vector instruction 3-8
VDDQ (DIVIDE) vector instruction 3-8
VDDR (DIVIDE) vector instruction 3-8
VDDS (DIVIDE) vector instruction 3-8
VDE (DIVIDE) vector instruction 3-8
VDEQ (DIVIDE) vector instruction 3-8
VDER (DIVIDE) vector instruction 3-8
VDES (DIVIDE) vector instruction 3-8
vector iii

of bits 2-10

section size for 2-2
vector-activity count (VAC) 2-5
vector change bits 2-5

for saving and restoring 2-26
vector-control bit 2-6
vector count, at point of interruption 2-20
vector count (VCT) 2-3
vector element 2-2
vector facility 2-2

availability of 2-6,2-26

configuration of 2-6
vector-facility instructions 3-1

classes of 2-12

effect of interruption on 2-23

fields of 2-13

formats for 2-13

interruptible 2-19

prefetching of 2-29

storing into 2-29

summary of 2-15

threc-operand 2-13

units of operation for 2-20

“vector-facility registers 2-2

(see also vector-mask register, vector register)

validation of 2-30

vector-activity count 2-5

vector-status register 2-3
vector in-use bits 2-4

for saving and restoring 2-26
vector interruption index (VIX) 2-4

after interruption 2-24
vector length (see vector count)
vector machine check 2-30
vector-mask mode (VMM) 2-11

bit in vector-status register 2-3

examples of use A-4,A-6
vector-mask register (VMR) 2-2
vector-operation exception 2-6,2-26
vecter register (VR) 2-2

valid numbers for 2-7
vector-status register (VSR) 2-3

VIX (see vector interruption index)

VL (LOAD) vector instruction 3-11

VLBIX (LOAD BIT INDEX) vector instruction 3-11

VLCDR (LOAD COMPLEMENT) vector instruction
3-14

VLCER (LOAD COMPLEMENT) vector instruction
3-14

VLCR (LOAD COMPLEMENT) vector instruction
3-14

VLCVM (LOAD VMR COMPLEMENT) vector
instruction 3-20

VLD (LOAD) vector instruction 3-11

VLDQ (LOAD) vector instruction 3-11

VLDR (LOAD) vector instruction 3-11

VLE (LOAD) vector instruction 3-11

VLEL (LOAD ELEMENT) vector instruction 3-14

VLELD (LOAD ELEMENT) vector instruction 3-14

VLELE (LOAD ELEMENT) vector instruction 3-14

VLEQ (LOAD) vector instruction 3-11

VLER (LOAD) vecior instruction 3-11

VLH (LOAD HALFWORD) vector instruction 3-15

VLI (LOAD INDIRECT) vector instruction 3-15

VLID (LOAD INDIRECT) vector instruction 3-15

VLIE (LOAD INDIRECT) vector instruction 3-15

VLINT (LOAD INTEGER VECTOR) vector instruc-
tion 3-16

VLM (LOAD MATCHED) vector instruction 3-17

VLMD (LOAD MATCHED) vector instruction 3-17

VLMDQ (LOAD MATCHED) vector instruction 3-17

VLMDR (LOAD MATCHED) vector instruction 3-17

VLME (LOAD MATCHED) vector instruction 3-17

VLMEQ (LOAD MATCHED) vector instruction 3-17

VLMER (LOAD MATCHED) vector instruction 3-17

VLMQ (LOAD MATCHED) vector instruction 3-17

VLMR (LOAD MATCHED) vector instruction 3-17

VLNDR (LOAD NEGATIVE) vector instruction 3-18

VLNER (LOAD NEGATIVE) vector instruction 3-18

VLNR (LOAD NEGATIVE) vector insiruction 3-18

VLPDR (LOAD POSITIVE) vector instruction 3-18

VLPER (LOAD POSITIVE) vector instruction 3-18

VLPR (LOAD POSITIVE) vector instruction 3-18

VLQ (I.OAD) vector instruction 3-11

VLR (LOAD) vector instruction 3-11

VLVCA (LOAD VCI' FROM ADDRESS) vector
instruction 3-19

VLVCU (LOAD VCT AND UPDATE) vector instruc-
tion 3-19

VLVM (LOAD VMR) vector instruction 3-20

VLY (LOAD EXPANDED) vector instruction 3-14

VLYD (LOAD EXPANDED) vector instruction 3-14

VLYE (LOAD EXPANDED) vector instruction 3-14

VLZDR (LOAD ZERO) vector instruction 3-20

VLZER (LOAD ZEROQ) vector instruction 3-20

VLZR (LOAD ZERO) vector instruction 3-20

VM (MULTIPLY) vector instruction 3-22

VMAD (MULTIPLY AND ADD) vector instruction
3-24

VMADQ (MULTIPLY AND ADD) vector instruction
3-24

VMADS (MULTIPLY AND ADD) vector instruction
324

VMAE (MULTIPLY AND ADD) vector instruction
3-24

VMAEQ (MULTIPLY AND ADD) vector instruction
3-24

VMAES (MULTIPLY AND ADD) vector instruction
3-24

VMCD (MULTIPLY AND ACCUMULATE) vector
instruction 3-23

VMCDR (MULTIPLY AND ACCUMULATE) vector
instruction 3-23

VMCE (MULTIPLY AND ACCUMULATE) vector
instruction 3-23

VMCER (MULTIPLY AND ACCUMULATE) vector
instruction 3-23

VMD (MULTIPLY) vector instruction 3-22

VMDQ (MULTIPLY) vector instruction 3-22

VMDR (MULTIPLY) vector instruction 3-22

VMDS (MULTIPLY) vector instruction 3-22

VME (MULTIPLY) vector instruction 3-22

VMEQ (MULTIPLY) vector instruction 3-22

VMER (MULTIPLY) vector instruction 3-22

VMES (MULTIPLY) vector instruction 3-22

VMM (see vector-mask mode)

VMNSD (MINIMUM SIGNED) vector instruction
3-21

VMNSE (MINIMUM SIGNED) vector instruction
321

VMQ (MULTIPLY) vector instruction 3-22

VMR (see vector-mask register)

VMR (MULTIPLY) vector instruction 3-22

VMRRS (RESTORE VMR) vector instruction 3-27

VMRSV (SAVE VMR) vector instruction- 3-30

VMS (MULTIPLY) vector instruction 3-22

VMSD (MULTIPLY AND SUBTRACT) vector
instruction 3-24

VMSDQ (MULTIPLY AND SUBTRACT) vector
instruction 3-24

VMSDS (MULTIPLY AND SUBTRACT) vector
instruction 3-24

VMSE (MULTIPLY AND SUBTRACT) vector
instruction 3-24

VMSEQ (MULTIPLY AND SUBTRACT) vector
instruction 3-24

VMSES (MULTIPLY AND SUBTRACT) vector
instruction 3-24

VMXAD (MAXIMUM ABSOLUTE) vector instruction
3-21

VMXAE (MAXIMUM ABSOLUTE) vector instruction
3-21

VMXSD (MAXIMUM SIGNED) vector instruction
3-21

VMXSE (MAXIMUM SIGNED) vector instruction
3-21

VN (AND) vector instruction 3-4

VNVM (AND TO VMR) vector instruction 3-5

VO (OR) vector instruction 3-26

VOQ (OR) vector instruction 3-26

VOR (OR) vector instruction 3-26

VOS (OR) vector instruction 3-26

YOVM (OR TO VMR) vector instruction 3-26

VR (see vector register)

VR instruction format 2-13

Index X-5

VRCIL (CLEAR VR) vector instruction 3-5

VRRS (RESTORE VR) vector instruction 3-27

VRSV (SAVE VR) vecior instruction 3-31

VRSVC (SAVE CHANGED VR) vector instruction
3-29

VS (SUBTRACT) vector instruction 3-36

VS instruction format 2-13,2-18

VSD (SUBTRACT) vecior instruction 3-36

VSDQ (SUBTRACT) vector instruction 3-36

VSDR (SUBTRACT) vector instruction 3-36

VSDS (SUBTRACT) vector instruction 3-36

VSE (SUBTRACT) vector instruction 3-36

VSEQ (SUBTRACT) vector instruction 3-36

VSER (SUBTRACT) vector instruction 3-36

VSES (SUBTRACT) vector instruction 3-36

VSLL (SHIFT LEFT SINGLE LOGICAL) vector
instruction 3-32

VSPSD (SUM PARTIAL SUMS) vector instruction
3-36

VSQ (SUBTRACT) vector instruction 3-36

VSR (SUBTRACT) vector instruction 3-36

VSR (vector-status register) 2-3

VSRL (SHIFT RIGHT SINGLE LOGICAL) vector
instruction 3-32

VSRRS (RESTORE VSR) vector instruction 3-28

VSRSV (SAVE VSR) vector instruction 3-31

VSS (SUBTRACT) vector instruction 3-36

VSS (vector-section size) (see section size)

VST (STORE) vector instruction 3-32

VST instruction format 2-13

VSTD (STORE) vector instruction 3-32

VSTE (STORE) vector instruction 3-32

VSTH (STORE HALFWORD) vector instruction 3-33

VSTI1 (STORE INDIRECT) vector instruction 3-34

VSTID (STORE INDIRECT) vector instruction 3-34

VSTIE (STORE INDIRECT) vector instruction 3-34

VSTK (STORE COMPRESSED) vector instruction
3-33

X-6 ESA/370 and System/370 Vector Operations

VSTKD (STORE COMPRESSED) vector instruction
3-33

VSTKE (STORE COMPRESSED) vector instruction
3-33

VSTM (STORE MATCHED) vector instruction 3-34

VSTMD (STORE MATCHED) vector instruction 3-34

VSTME (STORE MATCHED) vector instruction 3-34

VSTVM (STORE VMR) vector insiruction 3-35

VSTVP (STORE VECTOR PARAMETERS) vector
instruction 3-35

VSVMM SET VECTOR MASK MODE) vector
instruction 3-32

VTVM (TEST VMR) vector instruction 3-37

VV instruction format 2-13

VX (EXCLUSIVE OR) vector instruction 3-9

VXEL (EXTRACT ELEMENT) vector instruction
3-10

VXELD (EXTRACT ELEMENT) vector instruction
3-10

VXELE (EXTRACT ELEMENT) vector instruction
3-10

VXQ (EXCLUSIVE OR) vector instruction 3-9

VXR (EXCLUSIVE OR) vector instruction 3-9

VXS (EXCLUSIVE OR) vector instruction 3-9

VXVC (EXTRACT VCT) vector instruction 3-10

VXVM (EXCLUSIVE OR TO VMR) vector instruction
3-9

VXVMM (EXTRACT VECIOR MASK MODE)
vector instruction 3-10

VZPSD (ZERO PARTIAL SUMS) vector instruction
3-37

z

ZERO PARTIAL SUMS (VZPSD) vector instruction
3-37

zero stride 2-8

Note:
Stapies

can cause |
probleiis .

with

automated

mail
sorting

equipment.

Please
use

pressure-

sensitive
or other
wmmed
va to
al this
.orm.

IBM Enterprise Systems Architecture/370 and System/370 READER’S
Vector Operations COMMENT

FORM
Order No. SA22-7125-3

This publication is part of a library that serves as a reference source for system analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any,
are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:
Clarity Accuracy Completeness Organization Coding Retrieval Legibility

Comments:

IBM machine type(s) and model(s) to which this comment applies.

What control program(s) do you use?

What is your occupation?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the USA.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you may
mail directly to the address in the edition notice on the back of the front cover or title page.)

SA22-7125-3

Reader’'s Comment Mailer

(o]
=
-~
(=3
=

= fold
= along

5
°

|

Fold and tape Please Do Not Staple Fold and tape E
NO POSTAGE :

NECESSARY :

IF MAILED :

IN THE :

UNITED STATES :

IRECENIREREY

L T

BUSINESS REPLY MAIL N——
[

First Class Permit No. 40 Armonk, NY L E

:

. . [
Postage will be paid by addressee: .

NS -

. . . . TR
International Business Machines Corporation ——
Department E57 ————
P.O. Box 950 ST AEIAAR |
Poughkeepsie, New York 12602 :

Fold and tape Please Do Not Staple Fold and tape 5

If you would like a reply, please print:

Your Name

Company Name Department

Street Address :

City :

N = Ci
—— — State Zip Code :fol;;m
e] " R s along
e IBM branch office serving you line

oll!

Publication Number File Number
SA22-7125-3 S$370-01

-
=
{

Printed in
USA

SA22-7125-03

RN

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	C-01
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	replyA
	replyB
	xBack

