GC30-3003-0

IBM 3705
Communications Controller

Systems Assembler Language

Program Numbers OS 360H-TX-O35
DOS 360H-TX-036

Release Number 1

O

LISV

g

Preface

This publication is a reference manual for the systems pro-
grammer, the systems engineer and the applications program-
mer coding in the IBM Communications Controller Assem-
bler Language.

The publication is similar to the IBM System/360
Operating System Assembler Language publication,
G(C28-6514. The Communications Controller Assembler
is similar to the OS assembler (level F) and the DOS assem-
bler (level D). The similarity is intended to aid the Com-
munications Controller programmer who already has OS
or DOS assembler knowledge

Chapter 1 introduces the assembler language and de-
scribes the major differences between the language and the
OS and DOS assembler language. Chapter 2 presents basic
assembler language concepts. Chapter 3 describes instruc-
tion alignment, machine instruction mnemonics, machine
formats and briefly describes the extended mnemonics.

Abbreviations

attrib attribute

(B) base register

D displacement

E external register
Gbl Global

I immediate

K’ count attribute
Lcl Local

L’ length attribute
m a bit position

n name

N’ number attribute
O operand

First Edition (June 1972)

Chapter 4 discusses the instructions to the assemblers, in-
cluding symbol definition, data definitions, program sec-
tioning and linkages, symbolic linkages, base register in-
structions, listing control and program control instructions.
Chapter 5 describes the macro language and the procedures
for its use.

Appendixes A through E contain a summary of assem-
bler language features and usage. Appendix F describes
the job control language and the storage requirements
necessary to produce an assembly, and Appendix G con-
tains messages and codes helpful in debugging a program.

Before using this publication, the reader should be fami-
liar with basic programming concepts and techniques. The
prerequisite publication is Introduction to the IBM 3705
Communications Controller, GA27-3051. Corequisite to
this publication is the IBM 3705 Communications Conirol-
ler Principles of Operation, GC30-3004.

The contents of this publication apply to both OS and
DOS users unless noted differently in the text.

P a bit position in a register

R register

RA register to immediate address
RE register to external register
RI register to immediate

RR register to register

RS register to storage

RSA register to storage with additional operation
RT register or branch or both
S.P. symbolic parameter

S.S. sequence symbol

T transfer address

™ type attribute

Changes are periodically made to the information herein; any such changes will be

reported in subsequent revisions or Technical Newsletters.

Requests for copies of IBM publications should be made to your IBM representative

or to the IBM branch office serving your locality.

This manual has been prepared by the IBM Systems Development Division, Publica-
tions Center, Department EO1, P.O.Box 12275, Research Triangle Park, North

Carolina 27709. A form for reader’s comments is provided at the back of this publi-
cation. If the form has been removed, comments may be sent to the above address.

Comments become the property of IBM.

© Copyright International Business Machines Corporation 1972

Chapter 1: Introduction to the Assembler Language 1
The Assembler Program 1
The Assembler Language 1
Machine OperationCodes 1
Auxiliary Functions and Programmer Aids 1
Macro Instructions Lo 2
Usesof the Assembler 2
Chapter 2: Basic Assembler Language Concepts 3
Assembler Language Coding Conventions 3
Assembler Language Structure 3
TEIMS & v o o et e e e e e e e e e e e e e e 3
Symbols e 3
Self-defining Terms« 4
Location Counter References S
Symbol Length Attribute Reference , , 5
Terms in Parentheses 5
ExXpressions 6
Evaluation of Expression 6
Absolute and Relocatable Expressions 6

Chapter 3: Communications Controller Machine Instructions 9

Instruction Alignment and Checking 9
Operand Fields and Subficlds 9
Machine Instruction Mnemonic Codes 9
Machine Instruction Examples 10
RR Format 0.... 10
RSFormat 10
RSAFormat 11
RTFormat 11
RIFormat o v i it i it e i e e e i2
RAFormat 12
REFormat 13
EXITFormat o v v v o v v v v i v v 13
Extended MnemonicCodes 13
Chapter 4: Communications Controller Assembler
Instructions |, 15
Symbol Definition Instructions 15
EQU-Equate Symbol 15
EQUR - Equate Symbol to Register Expression 15
Data Definition Instructions 15
DC-DefinecConstant 16
Operand Subfield 1: Duplication Factor 16
Operand Subfield 2: Type 17
Operand Subfield 3: Length 17
Operand Subfield 4: Constants 17
Character Constant (C) 17
Hexadecimal Constant (X) 18
Binary Constant (B). 18
Fixed-Point Constants (F,H) 18
AddressConstants 18
Complex Relocatable Expressions 18
A-type Address Constants 18
Y-type Address Constants 18
R-type Address Constants 18
V-type Address Constants 19
DS - Define Storage 19
Using the Duplication Factor to Force Alignment . . . 20
CW - Define Control Word 20
Program Sectioning and Linking Instructions 20
Control Section 0o oL 20
Control Section Location Assignment 21

START - Start Assembly
CSECT - Identify Control Section
Unnamed First Control Section
DSECT - Identify Dummy Section
COM - Define Blank Common Control Section
Symbolic Linkages
ENTRY - Identify Entry Point Symbol
EXTRN - Identify External Symbol
Base Register Instructions
USING - Use Base Address Register
DROP - Drop Base Address Register
Listing Control Instructions
TITLE - Identify Assembly Output
EJECT - Start New Page
SPACE - Space Listing
PRINT - Print Optional Data
Program Control Instruction
ICTL - Input Format Control
ISEQ - Input Sequence Checking
PUNCH - Punch a Card
REPRO - Reproduce Following Card
ORG - Set Location Counter
CNOP - Conditional No Operation
COPY - Copy Predefined Source Coding
END - End Assembly

Chapter 5: The 1BM Communications Controller

Macro Language
Introduction
The Macro Instruction Statement
The Macro Definition
The Macro Library
Varying the Generated Statement
Variable Symbols
Types of Variable Symbols
Assigning Values to Variable Symbols . . .
Global SET Symbols
Macro Definitions e
MACRO - Macro Definition Header
Macro Instruction Prototype
Statement Format
Model Statements
Name Field
Operation Field
Operand Field
Comments Field
Symbolic Parameters
Concatenating Symbolic Parameters
Comments Statements
Copy Statements
MEND - Macro Definition Trailer
Macro Instructions L
Macro Instruction Operands
Statement Format
Omitted Operands
Operand Sublists
Inner Macro Instructions
‘Levcels of Macro Instructions
Conditional Assembly Instructions
SET Symbols
Defining SET Symbols
Using Variable Symbols
Attributes

Contents

...... 22

it

Type Attribute (T*) 41 &SYSNDX - Macro Instruction Index 56

Length Attribute (') 42 &SYSECT - Current Control Section. 57
Count Attribute (K) 42 &SYSLIST - Macro Instruction Operand 58
Number Attribute (N) 42 Keyword Macro Definitions and Instructions 58
Sequence Symbols oL 42 Keyword Prototype 58
LCLA, LCLB, LCLC - Define Local Set Symbols 43 Keyword Macro Instructions . . . «» . . o o o v o . . 59
SETA - Set Arithmetic e e 43 Mixed-Mode Macro Definitions and Instructions. 60
Evaluation of Arithmetic Expressions. 44 Mixed-Mode Prototype o o o oot 60
. Using SETA Symbols 44 Mixed-Mode Macro Instruction 60
SETC - Set Character 45
Type Attributeo 45
Character Expression 45
Substring Notation 46
USil’lg SETC Symbols 46 Appendix A: Assembler Languages - Features
SETB-Set Binary 47 Comparison 63
Evaluation of Logical Expressions 47 T nnnnnnnn e
Using SETB Symbols 48 Appendix B: Instruction Format 67
AIF - Conditional Branch 48
AGO - Unconditional Branch 49 Appendix C: Summary of Constants 69
ACTR - Conditional Assembly Loop Counter 50
ANOP - Assembly No Operation 50 Appendix D: Assembler Instructions Summary 71
Conditional Assemblv Elements 51
Extended Features of the Macro Language 51 Appendix E: Macro Language Summary 75
MEXIT - Macro Definition Exit 51
MNOTE - Request for Error Message 52 Appendix F: Job Controi Language Summary 79
Global and Local Variable Symbols 53
Defining Local and Global SET Symbols 53 Appendix G: Communication Controller Assembler
Using Local and Global SET Symbols 53 Messages 85
Subscripted SET Symbols 55
System Variable Symbols 56 Index . . -o 103
lllustrations
Figure Title Page Figure Title Page
1 Register to Register Format 10 19 DC Statement Format 16
2 Examples of RR Instruction 10 20 Type Codes for Constants 17
3 Register to Storage Format 10 21 DS Statement Format 19
4 Examples of RS Instruction 11 22 CW Statement Format 20
5 Register to Storage with Additional Storage 23 START Statement Format 21
Format 11 24 CSECT Statement Format 21
6 Examples of the RSA Instruction 11 25 DSECT Statement Format 22
7 Branch Operation Format 11 26 COM Statement Format 23
8 Examples of the RT Instruction 12 27 ENTRY Statement Format 23
9 Register to Immediate Operand Format 12 28 EXTRN Statement Format 24
10 Examples of the RI Instruction 12 29 USING Statement Format 24
11 Register to Inmediate Address Format 12 30 DROP Statement Format 24
12 Examples of the RA Instruction. 13 31 TITLE Statement Format 25
13 Register to External Register Format 13 32 EJECT Statement Format 25
14 Examples of the RE Instruction 13 33 SPACE Statement Format 25
15 ExitFormat 13 34 PRINT Statement Format 26
16 Extended Mnemonics 14 35 ICTL Statement Format 26
17 EQU Statement Format 15 36 ISEQ Statement Format 27
18 EQUR Statement Format 15 37 PUNCH Statement Format 27

Figure

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Title

REPRO Statement Format
ORG Statement Format
CNOP Statement Format
COPY Statement Format
END Statement Format
Macro Definition Header
Macro Instruction Prototype
COPY Statement Format
MEND Statement Format
Macro Instruction Format
Local SET Symbol Statement Format
SETA Statement Format
SETC Statement Format
SETB Statement Format
AIF Statement Format
AGO Statement Format
ACTR Statement Format
ANOP Statement Format
Elements of Conditional Assembly Instructions .
MEXIT Statement Format
MNOTE Statement Format

Figure

59
60
61
62
63
64

65
66
67
68
69
70
A
72

73

74
75

Title

Global SET Symbol Statement Format
Keyword Prototype Statement Format
Keyword Macro Instruction Format
Mixed-Mode Prototype Statement Format . . .
Mixed-Mode Macro Instruction Format
Assembler Language -- Features
Comparison (3 Parts)
Instruction Format (2 Parts)
Summary of Constants
Assembler Statements
Macro Language Elements
Conditional Assembly Expressions
Attributes oL
Variable Symbols
Job Control Statements for Assembly
Under OS
Job Control Statements for Assembly
Under DOS
Work Space for Assembly Under OS
Work File Requirements for a 2311 and a
2314 Under DOS

IBM Communications Controller programs are writtenin a
symbolic language. Source program statements coded in
this language must be translated into Communications
Controller machine language before program execution.
The 3705 OS and DOS assemblers are available to assemble
programs written in Communications Controller assembler
language. In their external structure, the Communications

Controller assemblers are very similar to the IBM System/360

0S and DOS assemblers. Some of the major differences be-
tween the Communications Controller and the System/360
assemblers are:

e no literals
o no floating point arithmetic
® new operation codes

(See Appendix A for a detailed comparison of IBM assem-
bler features, and Appendix B for a listing of the Com-
munications Controller mnemonics.)

THE ASSEMBLER PROGRAM

The assemblers translate source statements into machine
language, assign storage locations to instructions and other
elements of the program, and perform auxiliary assembler
functions that you can designate. These functions parallel
the types of functions performed by the OS and DOS as-
semblers. The output of the assembler program is the
object module. The object module is in the input format
required by the linkage editor component of the IBM Sys-
tem/360 Operating System and System/360 Disk Operating
System.

THE ASSEMBLER LANGUAGE

The assembler language is based on a collection of mne-
monic symbols that represent:

e IBM Communications Controller machine-language op-
eration codes.

e Auxiliary functions to be performed by the assemblers.

This language is augmented by other symbols which you can
use to represent storage addresses or data. The assembler
language also enables you to define and use macro instruc-
tions.

Chapter 1: Introduction To The Assembler Language

Machine Operation Codes

The assembler language consists of 51 machine instructions.
These are represented to the assembler by mnemonic opera-
tion codes, usually followed by one or more operands. It also
provides extended mnemonic codes for certain Branch and
certain Store instructions.

The majority of the machine instructions are register-ori-
ented. That is, they represent operations involving two rcg-
isters, a register and immediate data, or a register and a stor-
age area. The assembler converts the machine instructions
into two or four bytes of object code, depending on the
length assigned to the particular operation code. (See
Chapter 3 and Appendix B for a detailed description.)

Auxiliary Functions and Programmer Aids

The assembler language contains mnemonic assembler in-
struction operation codes; you may also instruct the assem-
bler program to perform auxiliary functions; these functions
will have no effect on the machine language object program
produced.

Instructions to the assembler are written as assembler
pseudo operation codes, with or without operands. These
instructions perform such functions as delimiting the be-
ginning and end of sections of code, defining data areas, and
specifying base registers. (See Chapter 4 and Appendix D
for a detailed description.)

In addition to the above, the instructions to the assem-
bler provides the following auxiliary functions to aid you in
writing your programs:

e Variety in data representation: In writing source state-
ments, you may use decimal, binary, hexadecimal or
character representation of machine language binary
values. (See Chapter 4 and Appendix C for more detail.)

e Relocatability: The assemblers allow symbols to be de-
fined in one assembly and referred to in another, thus
linking separately assembled programs. This permits both
reference to data and transfer of control between pro-
grams. (See Program Sectioning and Linking Instructions,
in Chapter 4.)

o Program listings: The assemblers produce a listing of the
source program statements and the resulting object pro-
gram statements it assembles. You can partially control
the form and the content of each listing. (See Listing
Control Instructions, in Chapter 4.)

Introduction to the Assembler Language 1

o Error indications: The assembler analyzes each source
program for actual and potential errors in the use of the
language. Detected errors are indicated in the program
listings. (See Appendix G for messages produced as a
result of error.)

Macro Instructions

The macro language provides a convenient way to generate
a desired sequence of assembler language statements that
may be needed at more than one point in a program.

The macro language simplifies the coding of programs,
reduces the chance of programming errors, and ensures that
standard instruction sequences are used to accomplish desired
functions.

Another facility of the macro language is called condi-
tional assembly. This allows you to include in your source
program some statements that may or may not be assem-
bled, depending upon conditions evaluated at the time the
program is assembled. These conditions are usually values
that may be defined, set, changed, and tested during the
assembly process. You may code conditional-assembly
statements both within source program statements and with-
in macro definitions. (See Chapter 5 for a more detailed
description and Appendix E for a summary of the macro
language.)

2 IBM 3705 Communications Controller Assembler Language

Uses of the Assembler

The uses of the Communications Controller assembler in-
cludes: (1) preassembling user-written block handling
routines, and (2) assembling the control program genera-
tion macros and application-dependent modules during the
control program generation procedure.

The assembler enables you to add to the IBM-supplied
Network Control Program (NCP) modules, block handling
routines (BHRs) that are unique to your applications. Using
the controller assembler language, you code BHRs to process
the data in message blocks going to or coming from a station.
Then you use the assembler to create object modules that
are stored in the same library with the IBM-supplied NCP
object modules. At NCP generation time, if you have coded
the appropriate macros, the BHRs you have written are
link-edited together with the IBM modules to form the
NCP load module.

The assembler is also used to assemble Emulation pro-
gram modules during the generation procedure. While the
Emulation Program does not require alteration to perform
its function; you could assemble and link-edit your codz
into the Emulation program using this assembler.

ASSEMBLER LANGUAGE CODING CONVENTIONS

The coding conventions for the Communications Controller
assembler language are the same as for the OS and DOS as-
sembler languages. For a review of these conventions, see
IBM System/360 Operating System Assembler Language,
GC28-6514-6.

ASSEMBLER LANGUAGE STRUCTURE
The basic structure of the language is as follows:
A source statement comprises:

e A name entry (usually optional). Must begin in column
one and end before column nine. The name entry must
begin with an alphabetic character

e An operation entry (required). Must be preceded and
followed by a blank

e An operand entry (usually required). Must be preceded
and followed by a blank.

e Comments entry (optional)
A name entry is:

® A symbol

A operation entry is:

e A mnemonic operation code representing a machine,
assembler, or macro instruction operation

An operand entry is:

e One or more operands comprising one or more expres-
sion which, in turn, contain a term or an arithmetic
combination of terms

TERMS

This chapter explains how you can use terms and arith-
metic combinations of terms in instruction operands.

Every term represents a value. The assembler may assign
this value (symbols, symbol length attribute, location coun-
ter reference) or the value may be inherent in the term itself
(self-defining term). The Communications Controller as-
semblers do not permit the use of literals.

The assemblers reduce an arithmetic combination of
terms to a single value.

The types of terms and the rules for their use are de-
scribed in the following text.

Chapter 2: Basic Assembler Language Concepts

Symbols

A symbol is a character or a combination of characters used
to represent locations or arbitrary values. Symbols, through
their use in name fields and in operands, provide you with an
efficient way to name, and to refer to a program element.

The three types of symbols are: ordinary, variable, and
sequence.

e Ordinary symbols are used as name entries or operands,
they must conform to these rules:

The symbol must not consist of more than eight char-
acters. The first position must be an alphabetic
character; the other positions may be any combina-
tion of alphameric representation.

A symbol can have no special character or blanks.

In the following text, the unqualified word symbol refers to
an ordinary symbol.

e Variable symbols are used within the source program or
marco definition to assign different values to one symbol.
Begin Variable symbols with an ampersand (&), followed
by one to seven alphameric characters, the first of which
must be alphabetic. A complete description of variable
symbols appear in Chapter 5: The IBM Communica-
tions Controller Macro Language.

o Sequence symbols consist of a period (.), followed by
one to seven letters and/or numbers, the first of which
must be alphabetic. Use sequence symbols to indicate
the position of statements within the source program or
macro definition. Through their use you can vary the
sequence in which the assembler processes statements.
A complete discussion of sequence symbols appears in
Chapter 5: The IBM Communications Controller Macro
Language.

Defining Symbols: The assemblers assign a value to each
symbol appearing as a name entry in a source statement. The
values assigned to symbols naming storage areas, instructions,
constants, and control sections are the addresses of the
leftmost bytes of the storage fields containing the named
items. Since the addresses of these items may change with
program relocation, the symbols naming them are relocat-
able terms.

A symbol used as a name entry in the Equate Symbol
(EQU) assembler instruction is assigned the value designated
in the operand entry of the instruction. Since the operand

Basic Assembler Language Concepts 3

entry may represent a relocatable value or an absolute (that
is, unchanging) value, the symbol is considered a relocatable
term or an absolute term, depending upon the value it is
equated to.

A symbol used as a name entry in the Equate Symbol
to Register Expression (EQUR) assembler instruction is as-
signed the value of the grouping in the operand field. A
register expression defines a particular byte of a register.
The symbol is considered to be neither absolute nor relocat-
able. Its occurrence in an expression is governed by the
special rules described under EQUR - Equate Symbol to
Register Expression, in Chapter 4.

The value of a symbol may not be negative and may not
exceed 2181, or 262,143.

Note: The assembly program always checks to see that
the value of a symbol is not negative and not larger than
218.1. However, depending upon the model of the Com-
munications Controller being programmed, this may cause
a problem. The extended addressing feature on the

larger models (for example, the IBM 3705 Communica-
tions Controller Model 3) with storage capacity greater
than 65,535 allows you to address more storage, but for

a modei 2 the maximum you can safely address is

65,535. The difference between the limit of storage and
the maximum address allowable in the register is an area
which will cause an addressing exception. See Introduc-
tion to the IBM 3705 Communications Controller,
GA27-3051-0 for a discussion of models and storage
capacities by model. For a discussion of extended ad-
dressing, storage addressing, and address exception, see
I{BM 3705 Communications Controller Principles of Opera-
tion, GC30-3004.

A symbol is said to be defined when it appears as the
name of a source statement. (A special case of symbol de-
finition is described under Program Sectioning and Linking
Instructions, in Chapter 4.)

Symbol definition also involves the assignment of a
tength attribute to the symbol. (The assembler maintains
an internal table--the symbol table--in which the values and
attributes of symbols are kept. When the assembler encoun-
ters a symbol in an operand, it refers to the assembler tables
for the value associated with the symbol.) The length attri-
hute of a symbol is the length, in bytes, of the storage field
whose address is represented by the symbol. There are ex-
ceptions to this rule: for example, in the case where a symbol
has been defined by an equate to location counter value
{EQU *) or to a self-defining term, the length attributes of
the symbol is 1. These and other exceptions are noted under
the applicable instructions. Regardless of the number of
times the constant is generated, the length attribute is never
attected.

4 IBM 3705 Communications Controller Assembler Language

General Restrictions on Symbols: A symbol may be de-
fined only once in an assembly. That is, each symbol used
as the name of a statement must be unique within that as-
sembly. However, a symbol may be used in the name field
more than once as a control section name (that is, defined in
the START, CSECT, or DSECT assembler statements), be-
cause the coding of a control section may be suspended and
then resumed at any subsequent point. The CSECT or
DSECT statement that resumes the section must be named
by the same symbol that initially named the section; thus,
the symbol that names the section must be repeated. Such

usage is not considered to be a duplication of a symbol
definition.

Self-Defining Terms

A self-defining term is one whose value is inherent in the
term. It is not assigned a value by the assemblers. For
example, the decimal self-defining term 15 represents a
value of 15. The length attribute of a self-defining term is
always 1.

The four types of self-defining terms are: decimal, hexa-
decimal, binary, and character. Use of these terms is spoken
of as decimal, hexadecimal, binary, or character representa-
tion of the machine-language binary value or bit configura-
tion they represent.

Self-defining terms are absolute terms, since the values
they represent do not change upon program relocation.

Using Self-Defining Terms: Self-defining terms are the
means of specifying machine values or bit configurations
without equating the values to symbols and using the
symbols.

Self-defining terms may be used to specify such pro-
gram elements as immediate data, masks, registers, ad-
dresses, and address increments. The type of term selectzd
(decimal, hexadecimal, binary, or character) depends on
what is being specified.

The use of a self-defining term is distinct from the use
of data constants. When a self-defining term is used in a
machine-instruction statement, its value is assembled into
the instruction. When a data constant is referred to in the
operand of an instruction, its address is assembled into the
instruction. Self-defining terms are always right-justified;
truncation or padding with zeros, if necessary, occur on the
left.

Decimal Self-Defining Term:, A decimal self-defining terrm
is an unsigned decimal number written as a sequence of
decimal digits. High-order zeros may be used (for example,
007). A decimal self-defining term is assembled as its binary
equivalent. A decimal self-defining term may not consist of
more than six digits or exceed 262,143 (218.1). Some ex-
amples of decimal self-defining terms are: 8, 147, 4092,
and 00021.

Note: For models without extended addressing, a
decimal self-defining term may not consist of more than
four digits or exceed 65,535 (216-1). See also Extended
Addressing, Storage Addressing, and Address Exception
in the publication, IBM 3705 Communications Con-
troller Principles of Operation, GC30-3004.

Hexadecimal Self-Defining Term: A hexadecimal self-de-
fining term consists of one to five hexadecimal digits
enclosed by apostrophes and preceded by the letter X:
X‘C49> A hexadecimal term may not exceed X‘3FFFEF’
(218-1).

Note: For models without extended addressing, a hexa-
decimal term may not exceed X’FFFF’ (2t6.1).

Binary Self-Defining Term: A binary self-defining term is
written as an unsigned sequence of 1s and Os enclosed in
apostrophes and preceded by the letter B, as follows:
B’10001101°. This term would appear in storage as shown,
occupying one byte. A binary term may have up to 18 bits
represented, or as noted above, 16 bits without extended
addressing.

Character Self-Defining Term: A character self-defining
term consists of one or two characters enclosed by apos-
trophes. It must be preceded by the letter C. All letters,
decimal digits, and special characters may be used in a char-
acter term. In addition, any of the remainder of the 256
EBCDIC characters may be designated in a character self-de-
fining term. Examples of character self-defining terms are
as follows:
cr (O
C‘AB” C13

Because of the use of both apostrophes in the assembler
language and ampersands in the macro language as syntactic
characters, observe the following rule when using these char-
acters in a character term.

For each apostrophe or ampersand desired in a character
self-defining term, you must write two apostrophes or am-
persands. For example, you code the character value A
as ’A’”; for an apostrophe followed by a blank, you code
» 7 Code an ampersand && in order for one & to be a
self-defining term.

Each character in the character sequence is assembled
as its eight-bit code equivalent. The two apestrophes or
ampersands that must be used to represent an apostrophe or
ampersand within the character sequence are assembled as
one apostrophe or ampersand.

(blank) (apostrophes are a 5-8 punch}

Location Counter Reference

The Location Counter: A location counter is used to as-
sign storage addresses to program statements. As each
machine instruction or data area is assembled, the location
is first adjusted to the proper boundary for the item, if ad-
justment is necessary, and then incremented by the length

of the assembled item. Thus, it always points to the next
available storage location. If the statement is named by a
symbol, the value attribute of the symbol is the value of the
location counter after boundary adjustment, but before
addition of the length.

The assembler maintains a location counter for each
control section of the program and manipulates each loca-
tion counter as previously described. Source statements
for each section are assigned addresses from the location
counter for that section. The location counter for each suc-
cessively declared control section assigns locations in con-
secutively higher areas of storage. Thus, if a program has
multiple control sections, all statements identified as belong-
ing to the first control section will be assigned from the lo-
cation counter for section 1, the statements for the second
control section will be assigned from the location counter
for section 2, etc. This procedure is followed whether the
statements from different control sections are interspersed
or written in control section sequence.

The location counter setting can be controlled by using
the START and ORG assembler instructions. The counter
affected by either of these assembler instructions is the
counter for the control section in which they appear. The
maximum value for the location counter is 2181,

You may refer to the current value of the location
counter at any place in a program, by using an asterisk as a
term in an operand. The asterick represents the location of
the first byte of currently available storage (that is, after
any required boundary adjustment). Using an asterisk as
the operand in a machine-instruction statement is the same
as placing a symbol in the name field of the statement and
then using that symbol as an operand of the statement.
Because a location counter is maintained for each control
section, a location counter reference designates the location
counter for the section in which the reference appears. A
location counter reference may not be used in a statement
which requires the use of a predefined symbol, with the ex-
ception of the EQU and ORG assembler instructions.

Symbol Length Attribute Reference

The length attribute of a symbol (the length in bytes) may
be used as a term. Reference to the attribute is made by
coding L, followed by the symbol, as in:

L’BETA

The length attribute of BETA will be substituted for the
term.

Note: The length attribute of * is equal to the length of
the instruction in which it appears, except in EQU to *,
in which case the length attribute is 1.

Terms in Parentheses

Terms in parentheses are reduced to a single value; thus, the
terms in parentheses, in effect, become a single term.
Arithmetically combined terms, enclosed in parentheses,

Basic Assembler Language Concepts 5

may be used in combination with terms outside the par-
entheses, as follows:

14+BETA—(GAMMA—-LAMBDA)

When the assembly program encounters terms in paren-
theses in combination with other terms, it first reduces the
combination of terms inside the parentheses to a single
value that may be absolute or relocatable, depending on the
combination of terms. This value is then used in reducing
the rest of the combination to another single value.

Terms in parentheses may be included within a set of
terms in parentheses:

A+E—~(C+D—(E+F) +10)

The innermost set of terms in parentheses is evaluated
first. Five levels of parentheses are allowed; a level of par-
entheses is a left parenthesis and its corresponding right
parenthesis. Parentheses that occur as part of an operand
format do not count in this limit.

EXPRESSIONS

This section describes the expressions used in coding oper-
and entries for source statements. Two types of expres-
sions, absolute and relocatable, are presented together with
the rules for determining these attributes of an expression.

An expression is composed of a single term or an arith-
metic combination of terms. The following are examples of
valid expressions:

¥ BETA*10

AREA 1+X2D’ B’101’

432 CABC

N-25 29

FIELD+332 I’FIELD

FIELD LAMBDA+GAMMA

(EXIT-ENTRY +1) +GO TEN/TWO
ALPHA—-BETA/(10+AREA*L’FIELD)--100
The rules for coding expressions are:

® An expression cannot start with an arithmetic operator,
(+—/*); Therefore, the expression —A+BETA is invalid,
but the expression 0—A+BETA is valid.

® An expression cannot contain two terms or two opera-
tors in succession.

® An expression cannot consist of more than 16 terms.

® An expression cannot have more than five levels of
parentheses.

Evaluation of Expression

A single-term expression (for example; 29, BETA, *,
{’SYMBOL) takes on the value of the term involved.

A multiterm expression (for example; BETA+10,
ENTRY-EXIT, 25*10+A/B), is reduced to a single value,
as follows:

#® Each term is evaluated.

6 IBM 3705 Communications Centroller Assembler Language

o Every expression is computed to 32 bits and then trun-
cated to the rightmost 18 bits with extended addressing,
or to 16 bits without extended addressing.

e Arithmetic operations are performed from left to right
except that multiplication and division are done before
addition and subtraction (for example, A+B*C is evalu-
ated as A+(B*C), not (A+B)*C). The computed result
is the value of the expression.

e Division always yields an integer result; any fractional
portion of the result is dropped. For example, 1/(2*10)
vields a zero result, whereas (10*1)/2 yields 5.

e Division by zero is permitted and yields a zero results.

The innermost level of parenthesized expressions is processed
before the rest of the terms in the expression. For example,
in the expression A+BETA*(CON-10), the term CON-10

is evaluated first, and the resulting value is used in computing
the final value of the expression. Final values of expressions
must be in the range of 0 through 218.1, 0r 216-1 without
extended addressing although intermediate results have a
range of 231 through 231..

Note: In A-type address constants, the full 32-bit final
expression result is truncated on the left to fit the specif-
ified or implied length of the constant.

Absolute and Relocatable Expressions

An expression is absolute if its value is unaffected by pro-
gram relocation.

An expression is relocatable if its value depends upon
program relocation.

The two types of expressions, absolute and relocatable,
take on these characteristics from the term or terms compos-
ing them.

Absolute Expressions: An absolute expression can be an
absolute term or any arithmetic combination of absolute
terms. An absolute term can be a non-relocatable symbol
or any of the self-defining terms or the length attribute
reference. All arithmetic operations are permitted between
absolute terms.

An expression is absolute, even though it contains re-
locatable terms (RT), under the following conditions:

o The relocatable terms must be paired. Each pair of terms
must have the same relocatability; each pair must con-
sist of terms with opposite signs. The paired terms do
not have to be contiguous (for example: relocatable
term + absolute term - relocatable term).

o No relocatable term can enter into a multiply or divide
operation; thus, relocatable term - relocatable term *10
is invalid, but (relocatable term - relocatable term) *10
is valid.
The pairing of relocatable terms (with opposite signs

and the same relocatability) cancels the effect of relocation,

since both symbols would be relocated by the same amount.

Therefore, the value represented by the paired terms re-
mains constant, regardless of program relocation. For ex-
ample, in the absolute expression A—Y+X, Aisan absolute
term, and X and Y are relocatable terms with the same re-
locatability. If A equals 50, Y equals 25, and X equals 10,
the value of the expression is 35. If X and Y are relocated
by a factor of 100, their values are then 125 and 110, how-
ever, the expression would still be evaluated as 35 (50-125+
110=35).

An absolute expression reduces o a single absolute value.

The following examples illustrate absolute expressions. A is
an absolute term: X and Y are relocatable terms with the
same relocatability.

A-Y+X

A

A*A

X-Y+A

*_Y (A reference to the location counter must be paired
with another relocatable term from the same control sec-
tion; that is, with the same relocatability.)

Relocatable Expressions. A relocatable expression is one
whose value changes by 7 if the program in which it ap-
pears is relocated n bytes away from its originally assigned
area of storage. All relocatable expressions must have a
positive value.

A relocatable expression can be a relocatable term. A
relocatable expression can contain relocatable terms--alone
or in combination with absolute terms, under the following
conditions:

o All relocatable terms but one must be paired. Pairing is
described in the preceding text under Absolute Ex-
pressions.

e The unpaired term must not be directly preceded by a
minus sign; --Y+X—Z is invalid.

o No relocatable term can enter into a multiply or divide
operation.

A relocatable expression reduces to a single relocatable
value. This value is the value of the odd relocatable term,
adjusted by the values represented by the absolute terms
and/or paired relocatable terms associated with it. The
relocatable value is that of the odd relocatable term.

For example, in the expression W—X+W—10, W and X
are relocatable terms with the same relocatable value. If,
initially W equals 10 and X equals 5, the value of the ex-
pression is 5; however, upon relocation, this value will
change. If a relocation factor of 100 is applied, the value
of the expression is 105. Note that the value of the paired
terms, W—X, remains constant at 5, regardless of reloca-
tion. Thus, the new value of the expression, 105, is the
result of the value of the odd term (W), adjusted by the
values of W—X and 10.

The following examples illustrate relocatable expres-
sions. A is an absolute term; W and X are relocatable terms
with the same relocatable value; Y is a relocatable term with
a different relocatable value.

Y-32*A WX+*

W-X+Y A*A+W-W+Y

* (reference to W—-X+W
location counter) Y

Basic Assembler Language Concepts 7

Chapter 3: Communications Controller Machine Instructions

Machine instructions request the Communications Control-
ler to perform a sequence of operations during program
execution time. Machine instructions may be represented
symbolically as assembler language statements. The sym-
bolic format of each varies according to the actual ma-
chine-instruction format. Within each basic format, further
variations are possible. See Machine Instruction Examples
following, and Chapter 4 of IBM 3705 Communications
Controller Principles of Operation, GC30-3004.

A mnemonic operation code is written in the opera-
tion field, and one or more operands are written in the
operand field.

Any machine-instruction statement may be named by a
symbol, which assembler statements can use as an operand.
The value attribute of the symbol is the address of the left-
most byte assigned to the assembled instruction. The
length attribute of an instruction having the RA format is
4. All other instructions have length attributes of 2.

INSTRUCTION ALIGNMENT AND CHECKING

The assembler aligns all machine instructions automatically,
on halfword boundaries. The byte skipped due to align-
ment is filled with hexadecimal zeros. Expressions spec-
ifying storage addresses are checked to ensure that they
refer to appropriate boundaries for instructions in which
they are used. Register numbers are also checked for cor-
rectness (for example; odd-numbered registers in byte
instructions). Displacements are checked to ensure proper
alignment.

OPERAND FIELDS AND SUBFIELDS

Some symbolic operands are written as a single field, and
other operands are written as a field followed by one or two
subfields. In instructions containing two operand fields, a
comma must separate the two. Subfield(s) of an operand
field must be enclosed within parentheses. When two sub-
fields are contained within parentheses, they must be sepa-
rated by commas.

Fields and subfields in a symbolic operand may be re-
presented either by absolute or by relocatable expressions,
depending on what the field requires. (As defined earlier,
an expression consists of one term or a series of arithmeti-
cally combined terms.) In addition, each operand field
containing a byte selection may be represented with a sym-
bolic register expression. Symbolic register expressions

allow symbolic representation of specific register bytes.
See Chapter 4, EQUR.

Note: Blanks may not appear in an operand unless they
are provided by a character self-defining term. Thus,
blanks may not intervene between fields and their
comma separation or between parentheses and fields.

MACHINE INSTRUCTION MNEMONIC CODES

The mnemonic operation codes are designed to be easily
remembered codes that indicate the functions of the Com-
munications Controller instructions.

The first character generally specifies the function:

A—Add
B—Branch
C—Compare
I-Insert
L—Load

N—And

0-0OR
S—Subtract
T—Test
X—Exclusive OR

There are four exceptions. The store function is re-
presented by the first two characters, ST. Three functions,
input, output, and exit are represented by IN, OUT, and
EXIT.

The data length--C for character (8 bits) or H for half-
word (16 bits) -- appears next in some instructions. Ex-
amples are:

LH Load halfword IC Insert character
STH Store halfword STC Store character
The letter R represents register notation. For instance:
AR Add register
CCR Compare character register
XHR Exclusive OR halfword register
In three instructions the letter O represents offset:
LOR Load with offset register
LCOR Load character with offset register
LHOR Load halfword with offset register

T (in ICT and STCT) or CT (in BCT) represents count.
M in TRM (test register under mask) represents mask.

In addition to the preceding machine instructions, the
assembler converts a number of extended mnemonic codes

Communications Controller Machine Instructions 9

into corresponding machine instructions. See Figure 9,]
Extended Mnemonics. Name Operation Operand
ALPHALI LHR 1,2
MACHINE-INSTRUCTION EXAMPLES ALPHA2 LHR REG1. REG2
The examples that follow are grouped according to ma- BETAl CR 3,5
chine-instruction format. They illustrate the various sym- BETA2 CR THREE, FIVE
bolic operand formats. (Assume that all symbols used in GAMMAL ACR 3(1), 5(0)
the examples are defined elsewhere in the same assembly.) GAMMA?2 ACR HITHREE, LOFIVE
Implied addressing and the function of the USING as-
sembler instruction are discussed further under Base Reg- Figure 2, Examples of RR Instruction
ister Instructions,
AR E The operands of ALPHA 1, BETA 1, and GAMMA 1
ormat are decimal self-defining values, which are absolute expres-
The RR instruction format denotes a register-to-register sions. The operands of ALPHA2 and BETA?2 are symbols
operation. See Figure 1 for the format of the RR that are equated elsewhere to absolute values. The operands
instructions. of GAMMA? are symbols that are equated elsewhere to
symbolic register expressions.
Basic Assembler RS Format
Machi 0, Field Applicable
acnine perand Fie ppcas The RS instruction format denotes a register-to-storage
Format Format Instructions " . .
operation. See Figure 3 for the format of the RS instruc-
RR | RI(N1),R2(N2) LCR ACR SCR CCR tion.
Q1 Q2 XCR OCR NCR LCOR
RI1,R2 LHR AHR SHR CHR Basic Assembler
OHR NHR XHR LHOR Machine Operand Field Applz'cable
LR AR SR CR Format Format Instructions
XR OR NR LOR .
BALR RS R(n) , D(B) IC STC
Q s
Iigure 1. Register-to-Register Format R D(B) L ST LH STH
S
R, R1, and R2 are absolute expressions that specify gen- Figure 3. Register-to-Storage Format
cral registers. The general register numbers are 0 through
7. Note that for all instructions H_HOWlng byte selection, R, R1, and R2 are absolute expressions that Specify gen-
only the odd-numbered registers are valid. eral registers. The general register numbers are 0 through
N, N1, and N2 are absolute expressions that specify a 7. Note that for all instructions allowing byte selection,
byte. The value of the expression may be 0 or 1. Zero only the odd-numbered registers are valid.
indicates the high-order or leftmost byte. One indicates D is an absolute expression that specifies a displacement.
the low-order or rightmost byte. Note that for ACR, A value of 0-127 may be specified. (Note: The displace-
SCRj AR SR, and BCT, a value _Of 1 for Nl orN ment for LH and STH must be a multiple of 2, and the
implies bytes 0 and 1 rather than just the rightmost displacement for L and ST must be a multiple of 4.)
byte.

B is an absolute expression that specifies a base reg-
Q, Q1, and Q2 are symbolic register expressions that ister. Register numbers are 0-7.
specify a register-byte combination. (See EQUR.
pecily a regt y mbination. (See EQUR.) M is an absolute expression that specifies a bit. The
See Figure 2 for examples of this instruction format. value of the expression may be 0-7.

10 IBM 3705 Communications Controlier Assembler Language

N, N1, and N2 are absolute expressions that specify a
byte. The value of the expression may be 0 or 1. Zero
indicates the high-order or leftmost byte. One indicates
the low-order or rightmost byte. Note that for ACR,

SCR, ARI, SRI, and BCT a value of 1 for N1 or N implies

bytes 0 and 1, rather than just the rightmost byte.

S is either an absolute or relocatable expression that
specifies an implied address (used with a USING state-
ment). The assembler selects a proper base and displace-
ment, based on the symbol value and the USING infor-
mation.

Register 0 implies direct addressable storage when used
as a base register for 10, STC, LH, STH, L, and ST. Use
of D (displacement) without B (base) implies register 0.

When 0 is used for the R operand in STH and ST, a con-
stant of zeroes is stored.

See Figure 4 for examples of the RS instruction.

Name Operation Operand
ALPHA1 L 1,12(4)
ALPHA2 L REGI, ZETA (4)
BETA1 L 2,PI
BETA2 L REG2, PI
GAMMAI1 IC 3(D), 12(4)
GAMMA?2 IC HITHREE, 12(4)

Figure 4. Examples of the RS Instruction

Both ALPHA instructions specify explicit addresses;
REG! and ZETA are absolute symbols. Both BETA in-
structions specify implied addresses; PI represents a re-
locatable value. The assembler will determine the proper
register and displacement values, based upon USING infor-
mation. The first operand of GAMMA? is a symbol that is
equated elsewhere to a symbolic register expression.

RSA Format

The RSA instruction format denotes a register-to-storage
with additional operation. See Figure 5 for the format of
the RSA instruction.

R, R1, and R2 are absolute expressions that specify gen-

eral registers. The general register numbers are O through
7. Note that for all instructions allowing byte selection,

only the odd-numbered registers are valid.

N, N1, and N2 are absolute expressions that specify a
byte. The value of the expression may be 0 or 1. Zero
indicates the high-order or leftmost byte; one indicates
the low-order or rightmost byte. Note that for ACR,
SCR, ARI, SRI, and BCT a value of 1 for N1 or N im-
plies bytes 0 and 1, rather than just the rightmost byte.

Q, Q1, and Q2 are symbolic register expressions that
specify a register-byte combination. (See EQUR.)

See Figure 6 for examples of the RSA instructions.

Name Operation Operand
ALPHA ICT 3(1),6
BETA ICT HITHREE, SIX
GAMMA STCT 3(0), SIX
GAMMA STCT LOTHREE, 6

Figure 6. Examples of the RSA Instruction

SIX has been equated to an absolute value elsewhere in

the program. HITHREE has been equated to a symbolic
register elsewhere in the program.

RT Format

The RT instruction format denotes a branch operation. See
Figure 7 for the format of the RT instruction.

Basic Assembler _
Machine | Operand Field Applicable
Format Format Instructions
RT R(N,M) , T BB

QM)

R(N) ,T BCT

Q

T B BCL BZL

Basic Assembler)
Machine Operand Field Appllcal')le
Format Format Instructions
RSA | R(N) ,B ICT STCT
Q

Figure 5. Register-to-Storage with Additional Operation Format

Figure 7. Branch Operation Format

R, R1, and R2 are absolute expressions that specify gen-

eral registers. The general register numbers are 0 through
7. Note that for all instructions allowing byte selection,

only the odd-numbered registers are valid.

Communications Controller Machine Instructions 11

M is an absolute expression that specifies a bit. The
value of the expression may be 0-7.

N, N1, and N2 are absolute expressions that specify a
byte. The value of the expression may be 0 or 1. Zero
indicates the high-order or leftmost byte; one indicates
the low-order or rightmost byte. Note that for ACR,
SCR, ARI, SRI, and BCT, a value of 1 for N1 or N im-
plies bytes 0 and 1, rather than just the rightmost byte.

T is a relocatable expression that specifies a transfer
address. The assembler determines the proper displace-
ment, based upon the transfer address value and the loca-
tion counter value. The relocatability of the transfer
address must be the same as the relocatability of the in-
struction which makes reference to it as an operand; that
is, they must both be associated with the same control
section.

Q, Q1, and Q2 are symbolic register expressions that
specify a register-byte combination. (See EQUR))

See Figure 8 for examples of the RT instruction.

Name Operation Operand
ALPHA BB 3(0, 6), ADDR
ALPHAL1 BCT CTR(1), ADDRI1
BZL ADDR3
GAMMAI BB LOFIVE (4), ADDR

Iigure 8. Examples of the RT Instruction

In ALPHA1, CRT is a symbol which has been equated
to an absolute value elsewhere in the program. In GAMMAL,
LOFIVE is a symbol that is equated elsewhere to a symbolic
register expression.

Rl Format

The Rl instruction format denotes a register-to-immediate
operand operation. See Figure 9 for the format of the RI
instruction.

W—Basic Assembler
Machine Operand Field Applicable
Format Format Instructions
RI R(N),I LRI ARI SRI CRI
Q NRI ORI TRM XRI

Uigure 9. Register to Immediate Operand Format

12 IBM 3705 Communications Controller Assembicr Language

R, R1, and R2 are absolute expressions that specify gen-

eral registers. The general register numbers are 0 through
7. Note that for all instructions allowing byte selection,

only the odd-numbered registers are valid.

I is an absolute expression that provides immediate data.
The value of the expression may be 0-255.

N, N1, and N2 are absolute expressions that specify a
byte. The value of the expression may be O or 1. Zero
indicates the high-order or leftmost byte; one indicates
the low-order or rightmost byte. Note that for ACR,
SCR, ARI, SRI, and BCT a valtue of 1 for N1 or N im-
plies bytes O and 1, rather than just the rightmost byte.

Q, Q1, and Q2 are symbolic register expressions that
specify a register-byte combination. (See EQUR.)

See Figure 10 for examples of the Rl instructions.

Name Operation Operand
ALPHA1 NRI 3(0), X04°
ALPHA2 SRI 3(0), FOUR
ALPHA3 ARI REG(0), FOUR
BETALl CRI 3(1),Ce6
GAMMAL ARI LOSEVEN, 22

Figure 10. Examples of the RI Instruction

FOUR and REG have been equated to absolute values
elsewhere in the program. LOSEVEN has been equated to
a symbolic register expression elsewhere in the program.

RA Format

The RA instruction format denotes a register-to-immediate
address operation. See Figure 11 for the format of the RA
instruction.

Basic Assembler '

Machine Operand Field Applicable

Format Format Instructions
RA R, A BAL LA

Figure 11. Register to Immediate Address Format

R, R1, and R2 are absolute expressions that specify gen-
eral registers. The general register numbers are 0 through
7. Note that for all instructions allowing byte selection,
only odd-numbered registers are valid.

A may be either an absolute or a relocatable express1on
The value of the expression may range from 0to 2161,
or with extended addressing from O to 218,

See Figure 12 for examples of the RA instruction.

Name Operation Operand
ALPHAL1 LA 3, 1000
ALPHA2 LA 3, ADDR1
BETAl BAL 4,X240°
BETA2 BAL 4, ADDR2

Figure 12. Examples of the RA Instruction

The ALPHA1 and BETALI instructions specify absolute
addresses. The addresses in the ALPHA?2 and BETA?2 in-
struction can be absolute or relocatable.

RE Format

The RE instruction format denotes a register-to-external
register operation. See Figure 13 for the format of the RE
instruction.

Basic Assembler

Machine Operand Field Applicable

Format Format Instructions
RE R,E IN OUT

Figure 13. Register to External Register Format

R, R1, and R2 are absolute expressions that specify gen-
eral registers. The general register numbers are 0 through
7. Note that for all instructions allowing byte selection,
only the odd-numbered registers are valid.

E is an absolute expression that specifies an external
register. The value of the expression may be 0-127.

An external register is a register in the Communications
Controller that the control program must access through
input and output instructions. See External Registers in
IBM 3705 Communications Controller Principles of Opera-
tion, GC30-3004. See Figure 14 for examples of the RE
instruction.

Name Operation Operand
ALPHAL IN 2,10
ALPHA2 IN REG2, EXTREG10
BETAl ouT 2, X’3F’
BETA2 ouT REG2, EXTREGY6

Figure 14. Examples of the RE Instruction

The operands of the ALPHA1 and BETAL instructions
are decimal self-defining values. The operands of ALPHA2
and BETA?2 are symbols that are equated elsewhere to
absolute values.

EXIT Format

The EXIT instruction format denotes an exit from the
active program level. See Figure 15 for the format of the
EXIT instruction.

Basic Assembler

Machine Operand Field Applicable

Format Format Instructions
EXIT EXIT

Figure 15. Exit Format

See Chapter 4: Instruction Set, in IBM 3705 Communica-
tion Controller Principles of Operations.

EXTENDED MNEMONIC CODES

For the convenience of the programmer, the assembler
provides extended mnemonic codes. The codes are not
part of the set of machine instructions, but are translated
by the assembler into the corresponding operation and
condition combinations.

The allowable extended mnemonic codes, their operand
formats, and their machine-instruction equivalents are
shown in Figure 16, Extended Mnemonics.

Communications Controller Machine Instructions 13

Extended Code

Meaning

Equivalent
Machine [nstruction

BR R2
NOP

BND D (B)
BND S

BLG A
BBE R(P), T

STZ D (B)
STZ S
STHZ D (B)

STHZ S

BO T

Branch Register
No Operation
Branch Indirect
Branch Indirect
Branch Long
Branch on Bit
Extended
or

Store Zeros

Store Zeros

Store Halfword
Zeros

Store Halfword
Zeros

Used After
Compare
instructions:

Branch on
Equal
Branch on Low
(that is, branch
if the first oper-
and is less than
second operand)

Used after Add
instructions:

Branch on
Overflow

I'igure 16. Extended Mnemonics

LR O,R2
B *4+2
L 0, D(B)
L 0,S
BAL 0, A
BB R (0,P),
T for P<8
BB R (1,P-8),
T for P28
ST 0, D(B)
ST 0,8
STH 0, D(B)
STH 0,S
BZL T
BCL T
BCL T

Note: In the BBE extended code, P represents an abso-
lute expression that specifies a bit in byte O or 1 of'a
register. The value of the expression must be between

O and 15. All other operand values have the same mean-
ing, as in the standard machine instruction format.

14

IBM 3705 Communications Controller Assembier Language

Chapter 4:

Assembler instructions are requests to the assembler to per-
form certain operations during the assembly. Assembler
instruction statements, in contrast to machine-instruction
statements, do not cause machine instructions to be in-
cluded in the assembled program. Some statements, such
as DS and DC, generate no instructions but cause storage
areas to be set aside for constants and other data. Others,
such as EQU and SPACE, are effective only at assembly
time; they generate nothing in the assembled program

and have no effect on the location counter.

SYMBOL DEFINITION INSTRUCTIONS

EQU - Equate Symbol

The EQU instruction is used to define a symbol by assigning
to it the length, value, and relocatability attributes of an
expression in the operand field. See Figure 17 for the
format of the EQU statement.

Name Operation Operand

EQU an absolute or

relocatable expression

variable symbol
or ordinary
symbol

Figure 17. EQU Statement Format

The expression in the operand field may be absolute re-
locatable. Any symbols oppearing in the expression must
be previously defined.

The symbol in the name field is given the same length,
value, and relocatability attributes as the expression in the
operand field. The length attribute of the symbol is that of
the leftmost (or only) term of the expression. In the case
of EQU to * or to a self-defining term the length attribute
is 1. The value attribute of the symbol is the value of the
expression.

The EQU instruction is the means of equating symbols
to register numbers, immediate data, and other arbitrary
values. The following examples illustrate how this might
be done:

REG2
TEST

EQU 2
EQU X3F

(general register)
(immediate data)

Communications Controller Assembler Instructions

EQUR - Equate Symbol to Register Expression

The EQUR instructjon is used to assign a symbol to a reg-
ister expression. A register expression defines a particular
byte of a register. The symbol defined in the EQUR state-
ment may be used in a symbolic machine instruction in
place of an explicitly defined byte. See Figure 18 for the
format of the EQUR statement.

Name Operation Operand

symbol EQUR an expression grouping

of the form R(N) or Q

Figure 18. EQUR Statement Format

R is an absolute expression of value 1, 3, 5, or 7, and N
is an absolute expression of value zero or one. Any symbols
appearing in the expressions must be previously defined.

Q is a previously defined symbolic register expression.

The symbol in the name field is given the value of the
grouping in the operand field. The symbolic register ex-
pression is allowed only in the operands of machine instrue-
tions or other EQUR instructions. Mixed expressions--that
is, arithmetic combinations of symbolic register expressions
with other symbolic register expressions or with absolute
or relocatable expressions--are not allowed. The following
examples are valid definitions and usages of symbolic reg-
ister expressions:

CTR EQUR 3(0)

BCT CTR,DONE

BB CTR(2),DONE

BB CTR(BIT2),DONE
CTR2 EQUR CTR

DATA DEFINITION INSTRUCTIONS

There are three data definition instruction statements:
Define Constant (DC), Define Storage (DS), and Define
Control Word (CW).

These statements are used (1) to enter data constants
into storage, (2) to define and reserve areas of storage,
and (3) to specify the contents of control words. The
statements can be named by symbols so that other program
statements can refer to the generated fields.

Communications Controller Assembler Instructions 15

DC - Define Constant

The DC instruction is used to enter constant data into
storage. It can specify one constant or a series of con-
stants. A variety of constants can be specified: fixed-point,
hexadecimal, character, and storage addresses. (Data con-
stants are generally called constants unless they are created
from storage addresses, in which case they are called address
constants.) See Figure 19 for the format of the DC state-
ment.

Operand

Name Operation
any symbol or DC one or more operands,
blank separated by commas,

written in the format
described in the text.

Figure 19, DC Statement Format

DOS -- only one operand permitted.

Each operand consists of four subfields: the first three
describe the constant, and the fourth subfield provides the
nominal value(s) for the constant(s). The first and third sub-
fields can be omitted, but the second and fourth must be
specified. Nominal value(s) for more than one constant can
be specified in the fourth subfield, for most types of con-
stants. Each constant so specified must be of the same
type; the descriptive subfields that precede the nominal
value apply to all of them. No blanks can occur within any
of the subfields (unless provided as characters in a char-
acter constant or a character self-defining term), nor can
they occur between the subfields of an operand. Similarly,
blanks cannot occur between operands and the commas
that separate them when multiple operands are being
specified.

The subfields of each DC instruction operand are written
in the following sequence:

] 2 3 4
Duplication Type Length Nominal Values
Factor

Although the constants specified within one operand
must have the same characteristics, each operand can specify
a different type of constant. For example, in a DC instruc-
tion with three operands, the first operand might specify
four fixed-point constants; the second, a hexadecimal con-
stant; and the third, a character constant.

16 IBM 3705 Communications Controller Assembler Language

The symbol that names the DC instruction is the name
of the constant (or first constant if the instruction speci-
fies more than one). Relative addressing (for example,
SYMBOL+2) can be used to address the various constants
if more than one has been specified, because the number
of bytes allocated to each constant can be determined.

The value attribute of the symbol naming the DC instruc-
tion is defined as the address of the leftmost byte (after
alignment) of the first, or only, constant. The length attri-
bute depends upon (1) the type of constant being defined,
and (1) the presence of a length specification. Implied
lengths are assumed for the various types of constants, in
the absence of a length specification. If more than one
constant is defined, the length attribute is the length in
bytes (specified or implied) of the first constant.

Boundary alignment also varies according to the type of
constant being specified and the presence of a length speci-
fication. Some types of constants are aligned only to a
byte boundary, but the DS instruction can be used to force
halfword or fullword boundary alignment for them. This
is explained under DS - Define Storage below. Other con-
stants are aligned on halfword or fullword boundaries, in
the absence of a length specification. If length is specified,
no boundary alignment occurs for such constants.

Bytes that must be skipped to align the field at the
proper boundary are not considered to be part of the con-
stant. In other words, the location counter is incremented
to reflect the proper boundary (if any increment is neces-
sary) before the address value is established. Thus, the
symbol naming the constant will not receive a value attri-
bute that is the location of a skipped byte.

Any bytes skipped in aligning statements that do not
cause information to be assembled are not zeroed, such as
DS statements. However, bytes skipped to align a DC state-
ment are zeroed.

Operand Subfield 1: Duplication Factor

The duplication factor may be omitted. If specified, it
causes the constant(s) to be generated the number of times
indicated by the factor. The factor may be specified, either
by an unsigned decimal self-defining term or by an absc-
lute expression that is enclosed by parentheses. The dupli-
cation factor is applied after the constant is assembled. All
symbols in the expression must be previously defined.

A duplication factor of zero is permitted and achieves
the same result as it wouldbe a DS instruction. A DC in-
struction with a zero duplication factor does not produce
control dictionary entries. See Forcing Alignment under
DS - Define Storage, tollowing.

Note: If duplication is specified for an address con-
stant containing a location counter reference, the value
of the location counter used in each duplication is in-
cremented by the length of the operand.

Operand Subfield 2: Type

The type subfield defines the type of constant being speci-
fied. From the type specification, the assembler determines
how it is to interpret the constant and translate it into the
appropriate machine format.

Figure 20 lists the type codes for constants.

Code Type of Constant Machine Format

C Character 8-bit code for each character

X Hexadecimal 4-bit code for each hexi-
decimal digit

B Binary Binary format

F Fixed-point Fixed-point binary format;

normally a fullword
Fixed-point binary format;
normally a halfword

H Fixed-point

A Address value of address; normally
a fullword

Y Address value of address; normally
a halfword

R Address value of address; normally
a halfword

V Address space reserved for external

symbol address; each
address is normally a

fullword

Figure 20. Type Codes for Constants

Operand Subfield 3: Length

The length subfield is written as Ln, where n is an unsigned
decimal self-defining term or an absolute expression en-
closed by parentheses. Any symbols in the expression must
be previously defined. The value of n represents the number
of bytes of storage that are assembled for the constant. An
implied length is used if a length modifier is not present. A
length modifier may be specified for any type of constant,
but no boundary alignment will be provided when a length
modifier is given.

Operand Subfield 4: Constant

This subfield supplies the constant (or constants) described
by the subfields that precede it. A data constant (C,X,B,
F, H) is enclosed by apostrophes. An address constant (A,
Y, R, V) is enclosed by parentheses. Two or more constants

in the subfield must be separated by commas, and the
entire sequence of constants must be enclosed by the appro-
priate delimiters (apostrophes or parentheses).

All types of constants except character (C), hexadecimal
(X), and binary (B) are aligned on the proper boundary
unless a length modifier is specified. In the presence of a
length modifier, no boundary alignment is performed. If an
operand specifies more than one constant, any necessary
alignment applies to the first constant only. Thus, for an
operand that provides five fullword constants, the first
would be aligned on a fullword boundary, and the rest
would automatically fall on fullword boundaries.

The total storage requirement of an operand is the pro-
duct of the length times the number of constants in the
operand times the duplication factor (if present) plus any
bytes skipped for boundary alignment of the constant. If
more than one operand is present, the total storage require-
ment is the sum of the requirements for each operand.

If an address constant contains a location counter refer-
ence, the location counter value that is used is the storage
address of the first byte that the constant will occupy. Thus,
if several address constants in the same instruction refer to
the location counter, the value of the location counter
varies from constant to constant. Similarly, if a single con-
stant is specified (and it is a location counter reference)
with a duplication factor, the constant is duplicated with a
varying location counter value.

The types of constants are discussed in the following
text.

Character Constant - C: Any of the valid 256 EBCDIC
characters can be designated in a character constant. Only
one character constant can be specified per operand.

Special consideration must be given to representing
apostrophes and ampersands as characters. Each single
apostrophe or ampersand desired as a character in the con-
stand must be represented by a pair of apostrophes or am-
persands. Only one apostrophe or ampersand appears in
storage.

The maximum length of a character constant is 256
bytes. No boundary alignment is performed. Each char-
acter is translated into one byte. Double apostrophes or
double ampersands count as one character. If no length
modifier is given, the size in bytes of the character con-
stant is equal to the number of characters in the constant.
If a length modifier is provided, the result varies as follows:

e If the number of characters in the constant exceed the
specified length, as many bytes as necessary are dropped
from the right.

o If the number of characters is less than the specified
length, the excess bytes are filled with blanks on the
right.

Commounications Controller Assembler Instructions 17

Hexadecimal Constant - X: A hexadecimal constant con-
sists of one or more of the hexadecimal digits, which are
0-9 and A-F. Only one hexadecimal constant can be speci-
fied per operand. The maximum length of a hexadecimal
constant is 256 bytes (512 hexadecimal digits). No bound-
ary alignment is performed.

Constants that contain an even number of hexadecimal
digits are translated as one byte per pair of digits. If an odd
number of digits is specified, the leftmost bytes has the
leftmost four bits filled with a hexadecimal zero, and the
rightmost four bits contain the odd (first) digit.

If no length modifier is given, the implied length of the
constant is half the number of hexadecimal digits in the
constant (assuming that a hecadecimal zero is added to an
odd number of digits). If a length modifier is given, the
constant is handles as follows:

o If the number of hecadecimal digit pairs exceeds the
specified length, the necessary bits (and/or bytes) are
dropped from the left.

o If the number of hexadecimal digit pairs is less than the
specified length, the necessary bits (and/or bytes) are
added to the left and filled with hexadecimal zeros.

Binary Constant - B: A binary constant must be written,
Is and Os enclosed in apostrophes. Only one binary con-
stand can be specified in an operand. Duplication and
length can be specified. The maximum length of a binary
constant is 256 bytes.

The implied length of a binary constant is the number
of bytes occupied by the constant, including any padding
necessary. Padding or truncation takes place on the left.
The padding bit used is a 0.

Fixed-Point Constants - F and H: A fixed-point constant
is written as an unsigned decimal integer. The assembler
converts the decimal integer to a binary number. If the
value of the number exceeds the length specified or implied,
as many bits as necessary are dropped (truncated) from
the left. Any duplication factor present is applied after
the constant is assembled.

An implied length of four bytes is assumed for a full-

word (F) and two bytes for a halfword (H), and the constant

is aligned to the proper fullword or halfword boundary if a
length is not specified. However, any length up to, and
including, eight bytes may be specified for either type of
constant by a length modifier, in which case no boundary
alignment occurs.

Address Constants: An address constant is a storage ad-
dress that is translated into a constant. An address con-
stant, unlike data constants, is enclosed in parentheses.

There are four types of address constants: A, Y,R,
and V.

Complex Relocatable Expressions: A complex relocatable
expression can be used only to specify an A-type, R-type,
or 1-type (but not a V-type) address constant. These ex-

18 IBM 3705 Communications Controller Assembler Language

pressions contain two or more unpaired relocatable terms
and/or negative relocatable terms in addition to any abso-
lute or paired relocatable terms that may be present. A
complex relocatable expression may consist of external
symbols and designate an address in an independent assem-
bly that is to be linked and loaded with the assembly con-
taining the address constant.

A-Type Address Constant: This constant is specified as an
absolute, relocatable, or complex relocatable expression.
(An expression may be single-term or multi-term.) The
value of the expression is calculated to 32 bits; the expres-
sion may range from -23! to 231.1. The implied length

of an A-type constant is four bytes, and the alignment is to
a fullword boundary unless a length is specified, in which
case no alignment will occur. The length that may be
specified depends on the type of expression used for the
constant; a length of one to four bytes may be used for an
absolute expression, while a length of only three or four
bytes may be used for a relocatable or complex relocatable
expression.

Y-Type Address Constant:

CAUTION

Relocatable Y-type constants must not be specified
in programs destined to be executed at addresses
above 65,535 in Communications Controller storage.
Relocatable Y-type address constants cannot be han-
dled by the linking editor.

A Y-type address constant has much in common with
the A-type constant. It, too, is specified as an absolute
relocatable, or complex relocatable expression. The value
of the expression is also calculated to 32 bits. The range
of the expression is 21545215 -1; however, the maximum
value of the expression can be only 215-1. The value is
then truncated, if necessary, to the specified or implied
length of the field and assembled into the rightmost bits
of the field.

The implied length of a Y-type constant is two bytes,
and alignment is to a halfword boundary unless a length is
specified, in which case no alignment will occur. The
maximum length of a Y-type address constant is two bytes.
If length specification is used, a length of two bytes may
be designated for a relocatable or complex expression and
one or two bytes for an absolute expression.

DOS - The linkage editor can process Y-type address
constants.

R-Type Address Constant:

CAUTION

Relocatable, R-type constants must not be specified in
programs destined to be executed at addresses above
65.535 in Communications Controller storage.

An R-type address constant has much in common with
the Y-type constant. It is specified as an absolute, relocat-
able, or complex relocatable expression. The value of the
expression is calculated to 32 bits. The range of the expres-
sion is -215 to 215-1. The implied length of an R-type con-
stant is two bytes, and alignment is to a halfword boundary
unless a length is specified, in which case no alignment will
occur. The only length specification allowed is two bytes.

The primary function of the R-type constant is to pro-
vide a two-byte relocatable address constant processable
by the OS linkage editor. TheLinkage Editor record (RLD)
generated for the R-type constant indicates a length of three
(rather than two), and points to the byte preceding the con-
stant. During linkage editing, the high-order byte (the byte
preceding the R-type constant) is not disturbed as long as
the constant is not relocated to a value above 65,535. Note
that no R-type constant can be assembled in the two bytes
of any CSECT.

V-Type Address Constant: This constant is used to reserve
storage for the address of an external symbol that is used for
branching to other programs. The constant may not be used
for external data references within an overlay program.

The constant is specified as one relocatable symbol, which
need not be identified by an EXTRN statement. Whatever
symbol is used is assumed to be an external symbol because
it is supplied in a V-type address constant.

Note that specifying a symbol as the operand of a V-type
constant does not constitute a definition of the symbol for
this assembly. The implied length of a V-type address con-
stant is four bytes, and boundary alignment is to a fullword.
A length modifier may be used to specify a length of either
three or four bytes, in which case no boundary alignment
occurs. It must be emphasized that a V-type address con-
stant length of less than four can and will be processed by
the Communications Controller Assembler but cannot be
handled by the linkage editor.

DS - Define Storage

The DS instruction is used to reserve areas of storage and to
assign names to those areas. The use of this instruction is
the preferred way to symbolically define storage for work
areas, input/output areas, etc. The size of a storage area
that can be reserved by using the DS instruction is limited
only by the maximum value of the location counter. See
Figure 21 for the format on the DS statement.

Name Operation Operand
any symbol or DS one or more operands,
blank separated by commas,

written in the format
described in the text.

Figure 21, DS Statement Format

DOS - Only one operand is permitted.

The format of the DS operand is identical to that of
the DC operand; exactly the same subfields are employed,
and they are written in exactly the same sequence as they
are in the DC operand. Although the formats are identical,
there are two differences in the specification of the
subfields:

o The specification of data (subfield 4), though mandatory
isa DC operand, is optional in a DS instruction. If the
constant is specified, it must be valid.

o The maximum length that may be specified for char-
acter (C) and hexadecimal (X) field types is 65,535
bytes, rather than 256 bytes.

If a DS operand specifies a constant in subfield 4, and
no length is specified in subfield 3, the assembler determines
the length of the data and reserves the appropriate amount
of storage. It does not assemble the constant. The ability
to specify data and have the assembler calculate the stor-
age area that would be required for such data is a conveni-
ence to the programmer. If you know the general format
of the data that will be placed in the storage area during
program execution, all you need do is show it as the fourth
subfield in a DS operand. The assembler then determines
the correct amount of storage to be reserved, thus relieving
you of length considerations.

If the DS instruction is named by a symbol, its value
attribute is the location of the leftmost byte of the re-
served area. The length attribute of the symbol is the length
(implied or explicit) of the type of data specified. Should
the DS have a series of operands, the length attribute for
the symbol is developed from the first item in the first op-
erand. Any positioning required for aligning the storage
area to the proper type of boundary is done before the ad-
dress value is determined. Bytes skipped for alignment are
not set to zero.

Each field type (for example; hexadecimal, character,
binary) is associated with certain characters, as shown in
Appendix C: Summary of Constants. These will deter-
mine which field-type code should be selected for the op-
erand of the DS instruction and whether length or duplica-
tion factor information should be included.

For example, the F-type field has an implied length of
four bytes; the leftmost byte is aligned to a fullword bound-
ary. Thus, you could specify an F-type field, without a
length modifier, in order to reserve four bytes aligned to a
fullword boundary. For an eight-byte field similarly
aligned, you could specify an F-type field with a length
modifier of eight. However, to reserve an F-type field
larger than eight bytes (the largest you can specify with a
length modifier alone), you would specify a duplication
factor. Remember, however, that boundary alignment is not
automatic if you specify a length modifier. See Using the
Duplication Factor to Force Alignment, following.

Data constants of types C, X, and B have an implied

Communications Controller Assembler Instructions 19

length of one byte unless the data characters are specified,
in which case the assembler calculates the length (but does
not assemble the data). If you wish to define a field of
more than one byte, without specifying the data, you must
include a length modifier.

Although no alignment occurs, field types C and X per-
mit large data areas of up to 65,535 bytes to be defined,
using the length modifier.

Note: A DS statement causes the storage area to be
reserved but not set to zeros. No assumption should be
made as to the contents of the reserved area.

Using the Duplication Factor to Force Alignment

The location counter can be forced to a fullword or half-
word boundary by using the appropriate field type (for
example, F or H) with a duplication factor of zero. This
method may be used to obtain boundary alignment that
otherwise would not be provided. For example, the follow-
ing statements would set the location counter to the next
halfword boundary and then reserve storage space for a
128-byte ficld (whose leftmost byte would be on a half-
word boundary).

DS OH
AREA DS CL128

CW-Define Control Word

The CW instruction provides a convenient way to define
and generate a four-byte control word. Control words in
the Communications Controller, although fullwords in
length, must be alighed on halfword boundaries. The CW
automatically performs this alignment and causes any
skipped bytes to be zeroed. See Figure 22 for the format
of the CW statement.

Name Operation Operand
any symbol or cw four operands, separated
blank by commas, specifying

the contents of the con-
trol word in the format
described in the text.

Figure 22. CW Statement Format

All four operands must appear. They are written, from
left to right, as follows:

1. An absblute expression that specifies the command
code. The value of this expression is placed in bits 0-1
of the control word.

2. An absolute expression that specifies the flags set in
bits 2-3.

20 IBM 3705 Communications Controller Assembler Language

3. An absolute expression that specifies the count. The
value of this expression is right-justified in bits 4-13.

4. An expression specifying the data address. This value
is treated as a three byte, A-type constant. The value of
this expression is in bits 14-31. The data address must
be halfword-aligned.

The following is an example of a CW statement:
ANYNAME cw 2,B’01’,50,READAREA

[f you code a symbol in the name field of the CW instruc-
tions, it is assigned the address value of the leftmost byte
of the control word. The length attribute of the symbol
is 4.

PROGRAM SECTIONING AND LINKING INSTRUCTIONS

It is often convenient, or necessary, to write a large pro-
gram in sections. The sections may be assembled separate-
ly, then combined into one object program. The assembler
provides facilities for creating multisectioned programs and
for symbolically linking separately assembled programs or
program sections. The total number of control sections,
dummy sections, and external symbols must not exceed
255.

Control Section

The concept of program sectioning is a consideration at
coding time, assembly time, and load time. To the pro-
grammer, a program is a logical unit. You may want to
divide it into sections called control sections; if so, you
write it in such a way that control passes properly from
one section to another, regardless of the relative physical
position of the sections in storage.

A control section is a block of coding that can be relo-
cated, independently of other coding, at load time without
altering or impairing the operating logic of the program. It
is normaly identified by the CSECT instruction. However,
if it is desired to specify a tentative starting location, the
START instruction may be used to identify the first control
section.

To the assembler, there is no such thing as a program;
instead, there is an assembly, which consists of one or more
control sections. (The terms “assembly” and “program”,
however, are often used interchangeably.) An unsectioned
program is treated as a single control section. To the link-
age editor, there are no programs, only control sections that
must be fashioned into a load module.

The output of the assembler consists of the assembled
control sections and a control dictionary. The control
dictionary contains information the linkage editor needs
to complete cross-referencing between control sections as
it combines them into an object program. The linkage
editor can take control sections from various assemblies
and combine them properly, with the help of the corre-
sponding control dictionaries. Successful combination of

separately assembled control sections depends upon the
techniques used to provide symbolic linkages between the
control sections.

Whether you write an unsectioned program, a multi-
section program, or part of a multisection program, you
know what will be entered into storage eventually because
you have described storage symbolically.

Though you may not know where each section appears
in storage, you will know what storage contains. There is
no constant relationship between control sections. Thus,
knowing the location of one control section does not make
another control section addressable by relative addressing
techniques.

Control Section Location Assignment

Control sections can be intermixed because the assembler
provides a location counter for each control section. Loca-
tions are assigned to control sections as if the sections are
placed in storage consecutively, in the same order as they
first occur in the program. Each control section subsequent
to the first begins at the next available double-word
boundary.

START--Start Assembly

The START instruction can be used to give a name to the
first (or only) control section of a program. It can also be
used to specify an initial location counter value for the
program. This location counter value is ignored by the
linkage editor. See Figure 23 for the format of the START
statement.

Name Operation Operand

any symbol or START

blank

a self-defining term or
blank

Figure 23. START Statement Format

If a symbol names the START instruction, the symbol
is established as the name of the control section. If not,
the control section is considered to be unnamed. All
subsequent statements are assembled as part of that control
section. This continues until a CSECT instruction identify-
ing a different control section or a DSECT instruction is
encountered. A CSECT instruction named by the same
symbol that names a START instruction is considered to
identify the continuation of the control section first
identified by the START. Similarly, an unnamed CSECT
that occurs in a program initiated by an unnamed START
is considered to identify the continuation of the unnamed
control section.

The symbol in the name field is a valid relocatable
symbol whose value represents the address of the first byte
of the control section. It has a length attribute of 1.

The assembler uses the self-defining term specified by
the operand as the initial location counter value of the
program. This value should be divisible by eight. For
example, either of the following statements could be used
to assign the name PROG?2 to the first control section
and to indicate an initial assembly location of 2040. If the
operand is omitted, the assembler sets the initial location
counter value of the program at zero. The location counter
is set at the next double-word boundary when the value of
the START operand is not divisible by eight. The follow-
ing is an example of START statement.

PROG2 START 2040
PROG2 START X'7F8’

Note: The START instruction may not be preceded
by any code that will cause an unnamed control section
to be assembled (See Unnamed First Control Section,
following.)

CSECT-Identify Control Section

The CSECT instruction identifies the beginning or the
continuation of a control section. The format is described
in Figure 24.

Name Operation Operand

any symbol or CSECT

blank

Figure 24, CSECT Statement Format

If a symbol names the CSECT instruction, the symbol
is established as the name of the control section; other-
wise, the section is considered to be unnamed. All state-
ments following the CSECT are assembled as part of that
control section until a statement identifying a different
control section is encountered (that is, another CSECT or
a DSECT instruction).

The symbol in the name field is a valid relocatable symbol
whose value represents the address of the first byte of the
control section. It has a length attribute of 1.

Several CSECT statements with the same name may
appear within a program. The first statement is considered to
identify the beginning of the control section; the rest of
the statement identify the resumption of the section.

Thus, statements from different control sections may be
interspersed. They are properly assembled (assigned conti-
guous storage locations) as long as the statements from the
various control sections are identified by the appropriate
CSECT instructions.

Communications Controller Assembler Instructions 21

Unnamed First Control Section

All machine instructions and many assembler instructions
must belong to a control section. If such an instruction
precedes the first CSECT instruction, the assembler will
consider it to belong to an unnamed control section (also
referred to as private code), which will be the first (or only)
control section in the module.

The following instructions will not cause this to happen,
since they are not required to belong to a control section:

Common Control Sections (COM)
Dummy Control Sections (DSECT)
Marco Definitions

Conditional Assembly Instructions
Comments

COPY (depends upon the copied code)
EJECT

ENTRY

EXTRN

ICTL

ISEQ

PRINT

PUNCH

REPRO

SPACE

TITLE

No other assembler or machine instructions can precede
a START instruction.

Resumption of an unnamed control section at later
points can be accomplished through unnamed CSECT
statements. A program can contain only one unnamed
control section. It is possible to write a program that does
not contain CSECT or START statements, in which case
the program will be assembled as one unnamed control
section.

DSECT -- Identify Dummy Section

A dummy section represents a control section that is as-
sembled but is not part of the object program. A dummy
section is a convenient means of describing the layout of
an area of storage without actually reserving the storage.
(It is assumed that the storage is reserved, either by some
other part of the same assembly or by another assembly.)
See Figure 25 for the format of the DSECT statement.

Name Operation Operand

variable symbol DSECT
or ordinary

symbol

not used; should be blank

Tigure 25. DSECT Statement Format

22 IBM 3705 Communications Controller Assembler Language

The DSECT instruction identifies the beginning or
resumption of a dummy section. More than one dummy
section may be defined in this assembly, but each must
be named.

‘The symbol in the name field is a valid relocatable
symbol whose value represents the first byte of the sec-
tion. It has a length attribute of 1.

Program statements belonging to dummy sections may
be interspersed throughout the program or may be written
as a unit. In either case, the appropriate DSECT instruc-
tion should precede each set of statements. When multiple
DSECT instructions with the same name are encountered,
the first is considered to initiate the dummy section, and
the rest to continue it.

All assembler language instructions may occur within
dummy sections.

Symbols that name statements in a dummy section may
be used in USING instructions. Therefore, thay may be
used in program elements (for example: machine-instruc-
tions and data definitions) that specify storage addresses.

Note: A symbol that names a statement in a dummy sec-
tion may be used in an A-type address constant only if it
is paired with another symbol (with the opposite sign)
from the same dummy section.

Dummy Section Location Assignment: A location counter
is used to determine the relative locations of named pro-
gram elements in a dummy section. The location counter
is always set to zero at the beginning of the dummy section,
and the location values assigned to symbols that name
statements in the dummy section are relative to the initial
statement in the section.

Addressing Dummy Sections: You may wish to describe
the format of an area whose storage location will not be
determined until the program is executed. You can de-
scribe the format of the area in a dummy section and use
symbols defined in the dummy section as the operands of
machine instructions. References to the storage area may
be made as follows:

1. Provide a USING statement specifying both a general
register that the assembler can assign to the machine
instructions as a base register and a value from the dum-
my section that the assembler may assume the register
contains.

2. Ensure that the same register is loaded with the actual
address of the storage area.

The values assigned to symbols defined in a dummy sec-
tion are relative to the initial statement of the section.
Thus, all machine instructions which refer to names defined
in the dummy section will, at execution time, refer to
storage locations relative to the address loaded into the
register.

COM -- Define Blank Common Control Section

The COM assembler instruction identifies and reserves a
common area of storage that may be referred to by inde-
pendent assemblies that have been linked and loaded for
execution as one overall program.

Appearances of a COM statement after the initial one
indicate the resumption of the blank common control
section.

When several assemblies are loaded, each designating
a common control section, the amount of storage reserved
is equal to the longest common control section. See Figure
26 for the format of the COM statement.

Name Operation Operand

sequence symbol COM blank

or blank

Figure 26. COM Statement Format

The common area may be divided into subfields, through
use of the DS and DC assembler instructions. Names of sub-
fields are defined relative to the beginning of the common
section, as in the DSECT control section.

No instructions or constants appearing in a common con-
trol section are assembled. Data can be placed only in a
common control section, through execution of the program.
A blank common control section may include any assem-
bler language instructions.

If the assignment of common storage is done in the same
manner by each independent assembly, reference to a loca-
tion in common by any assembly results in the same location
being referred to. When assembled, blank common location
assignment starts at zero.

SYMBOLIC LINKAGES

Symbols may be defined in one program and referred to
in another, thus effecting symbolic linkages between inde-
pendently assembled programs. The linkages can be com-
pleted only if the assembler is able to provide information
about the linkage symbols to the linkage editor, which re-
solves these linkage references at load time. The assembler
places the necessary information in the control dictionary
on the basis of the linkage symbols identified by the
ENTRY and EXTRN instructions.

In the program where the linkage symbol is defined
(that is, used as a name), it must also be identified to the
assembler by means of the ENTRY assembler instruction.
It is identified as a symbol that names an entry point, which
means that another program may use that symbol in order
to branchor reference data. The assembler places this in-
formation in the control dictionary.

Similarly, the program that uses a symbol defined in
some other program must identify it by the EXTRN assem-
bler instruction. It is identified as an externally defined
symbol (that is, defined in another program) that is used to
link to the point of definition. The assembler places this
information in the control dictionary.

Another way to obtain symbolic linkage is by using the
V-type address constant. Information on writing V-type
constants appears earlier in this chapter under Data Defini-
tion Instructions. It is sufficient here to note that this
constant may be considered an indirect linkage point. It is
created from an externally defined symbol, but that symbol
does not have to be identified by an EXTRN statement.

The BAL and BALR instructions may be used with
ENTRY and EXTRN statements, to branch between sepa-
rately assembled control sections. The BAL instruction
operand is coded in an EXTRN statement in the assembly
in which the BAL appears. The BALR instruction is used
by loading the branch register with a V-constant or an
A-constant whose operand is identified with an EXTRN.

In both cases, the branch label must be identified by an
ENTRY statement in the assembly where it appears.

ENTRY - ldentify Entry-Point Symbol

The ENTRY instruction idéntifies linkage symbols that

are defined in this program but may be used by some other
program. See Figure 27 for the format of the ENTRY
statement.

Name Operation Operand

sequence symbol | ENTRY

or blank

one or more relocatable
symbols separated by
commas, that also ap-
pears as a statement name

Figure 27. ENTRY Statement Format

An assembly may contain a maximum of 100 ENTRY
symbols. ENTRY symbols that are not defined (not ap-
pearing as statement names), aithough invalid, will also
count towards this maximum of 100 ENTRY symbols.

The symbols in the ENTRY operand field may be used
as operands by other programs. An ENTRY statement
operand may not contain a symbol defined in a dummy
section or blank common control section.

Note: The name of a control section does not have to
be identified by an ENTRY instruction when another
program uses it as an entry point. The assembler auto-
matically places information on control section names
in the control dictionary.

Communications Controller Assembler Instructions 23

EXTRN -- Identify External Symbol

The EXTRN instruction identifies linkage symbols that are
used by this program but which are defined in some other
program. Each external symbol must be identified: this
includes symbols that name control sections. See Figure
28 for the format of the EXTRN statement.

Name Operation Operand

addressable. See Figure 29 for the format of the USING
statement.

Name Operation Operand

sequence symbol | USING

or blank

from two to eight expres-
sions of the form v, r1, 12,
3,....17

EXTRN | one or more relocatable
symbols, separated by

commas

sequence symbol
or blank

Iigure 28. EXTRN Statement Format

The symbols in the operand field may not appear as
names of statements in this program.

A V-type address constant does not have to be defined
by an EXTRN statement.

When external symbols are used in an expression, they
may not be paired. Each external symbol must be con-
sidered as having a unique relocatability attribute.

The total number of control sections, dummy sections,
and external symbols in an assembly must not exceed 255.

BASE REGISTER INSTRUCTIONS

The addressing technique in certain Communications Con-
troler instructions requires the use of a base register that
contains the base address and a displacement which is added
to the contents of the base register.

You may specify a symbolic or implicit address and re-
quest the assembler to determine its storage address, com-
posed of a base register and a displacement. You can rely
on the assembler to perform this service by indicating which
general registers are available for assignment and what values
the assembler can assume each contains. The USING and
DROP instructions convey this information to the
assembler.

USING -- Use Base Address Register

The USING instruction indicates that one or more general
registers are available for use as base registers. This instruc-
tion also states the base address value that the assembler
can assume will be in the registers at object time. A USING
instruction does not load the registers specified. It is your
responsibility to see that the specified base address values
are placed into the registers. A reference to any name in a
control section cannot occur in a based machine instruc-
tion before the USING statement that makes that name

24 IBM 3705 Communications Controller Assembler Language

Figure 29. USING Statement Format

Operand v must be an absolute or relocatable expression.
Operand v specifics a value that the assembler can use as a
base address. The other operands must be absolute expres-
sions, with values between 1 and 7. The operand rl speci-
fies the gencral register that can be assumed to contain the
base address represented by operand v. Operands 12
through r7 specify registers that can be assumed to contain
v+128, v+256, v+384,--, respectively.

If you change the value in a base register currently being
used and wish the assembler to compute displacement from
this value, you must tell the assembler the new value by
another USING statement. In the following example, the
assembler first assumes that the value of ALPHA is in reg-
ister 7. The second statement then causes the assembler to
act as though ALPHA+1000 is the value in register 7.

USING ALPHA,7
USING ALPHA+1000,7

DROP -- Drop Base Register

The DROP instruction specifies a previously available reg-
ister that may no longer be used as a base register. See
Figure 30 for the format of the DROP statement.

Name Operation Operand
sequence symbol DROP | up to seven absolute ex-
or blank pressions of the form

rl,2,...,17

Figure 30. DROP Statement Format

The expressions indicate general registers previously
named in a USING statement that are now unavailable for
base addressing. The register values may range from 1
through 7. The following statement, for example, prevents
the assembler from using registers 5§ and 7:

DROP 5,7

It is not necessary to use a DROP statement when the
base address being used is changed by a USING statement;
nor are DROP statements needed at the end of the source
program.

A register made unavailable by a DROP instruction can

be made available again by a subsequent USING instruction.

LISTING CONTROL INSTRUCTIONS

The listing control instructions are used to identify an as-
sembly listing and assembly output cards, to provide blank
lines in an assembly listing, and to designate how much de-
tail is to be included in an assembly listing. In no case are
instructions or constants generated in the object program.
With the exception of PRINT, listing control statements are
not printed in the listing.

Note: TITLE, SPACE, and EJECT statements will not
appear in the source listing unless the statement is con-
tinued onto another card. Then the first card of the
statement is printed. However, none of these three
types of statements, if generated as macro instruction
expansion, will ever be listed, regardless of continuation.

TITLE - Identify Assembly Output

The TITLE instruction enables the programmer to identify
the assembly listing and assembly output cards. See Figure
31 for the format of the TITLE statement.

Name Operation Operand

TITLE a sequence of characters

enclosed in apostrophes

special sequence
or variable symbol
or blank

Figure 31. TITLE Statement Format

The name field can contain a special symbol of from one
to four alphabetic or numeric characters, in any combina-
tion. The contents of the name field is punched into col-
umns 73-76 of all output cards for the program except
those produced by the PUNCH and REPRO assembler in-
struction. Only the first TITLE statement in a program
may have a special symbol or variable symbol in the name
field. The name field of all subsequent TITLE statements
contains either a sequence symbol or a blank.

The operand field can contain up to 100 characters
enclosed in apostrophes. The contents of this operand
field is printed at the top of each page of the assembly
listing.

Special consideration must be given to representing
apostrophes and ampersands as characters. Each single

apostrophe or ampersand desired as a character in the con-
stant must be represented by a pair of apostrophes or am-
persands. Only one apostrophe or ampersand appears in
storage.

A program may contain more than one TITLE state-
ment. Each TITLE statement provides the heading for
pages in the assembly listing that follow it, until another
TITLE statement is encountered. Each TITLE statement
causes the listing to be advanced to a new page (before the
heading is printed).

EJECT - Start New Page

The EJECT instruction causes the next line of the listing to
appear at the top of a new page. This instruction provides

a convenient way to separate routines in the program list-
ing. See Figure 32 for the format of the EJECT statement.

Name Operation Operand

sequence symbol | EJECT not used; should be blank

or blank

Figure 32. EJECT Statement Format

If the line before the EJECT statement appears at the
bottom of a page, the EJECT statement has no effect. Two
EJECT statements may be used in succession to obtain a
blank page. A TITLE instruction followed immediately by
an EJECT instruction will produce a page with nothing but
the operand entry (if any) of the TITLE instruction. Text
following the EJECT instruction will begin at the top of
the next page.

SPACE - Space Listing

The SPACE instruction is used to insert one or more blank
lines in the listing, see Figure 33.

Name Operation Operand

sequence symbol | SPACE

or blank

a decimal value or blank

Figure 33. SPACE Statement Format

Communications Controller Assembler Instructions 25

A decimal value is used to specify the number of blank
lines to be inserted in the assembly listing. A blank operand
causes one blank line to be inserted. If this value exceeds
the number of lines remaining on the listing page, the state-
ment will have the same effect as an EJECT statement.

PRINT - Print Optional Data

The PRINT instruction is used to control printing of the
assembly listing, see Figure 34.

Operation Operand

sequence symbol | PRINT one to three operands

or blank

IFigure 34. PRINT Statement Format

The one to three operands may include an operand from
each of the following groups, in any sequence:

e ON - A listing is printed.
OFF - No listing is printed.

o GEN - All statements generated by macro in-
structions are printed

o NOGEN - Statements generated by macro instructions
are not printed; however, the macro instruction itself will

appear in the listing, with the exception of MNOTE which

will print regardless of NOGEN.

» DATA
listing.

@ NODATA - Only the leftmost eight bytes are printed
on the listing.

A program may contain any number of PRINT state-
ments. A PRINT statement controls the printing of the
assembly listing until another PRINT statement is encount-
ered. Each option remains in effect until the correspond-
ing opposite option is specified.

Until the first PRINT statement (if any) is encountered,
PRINT, ON, NODATA, GEN is assumed.

The hierarchy of print control statements is:

1. ON and OFF
2. GEN and NOGEN
3. DATA and NODATA

Thus, with the following statement nothing would be
printed:

PRINT OFF, DATA, GEN

- Constants are printed out in full in the

26 IBM 3705 Communications Controller Assembler Language

PROGRAM CONTROL INSTRUCTIONS

Program control instructions are used to specify the end

of an assembly, to set the location counter to a value or
word boundary, to insert previously written coding in the
program, to check the sequence of input cards, to indicate
statement format, and to punch a card. Except for the
CNOP and COPY instructions, none of these assembler
instructions generate instructions or constants in the object
program.

ICTL - Input Format Control

The ICTL instruction permits altering the normal format
of source program statements see Figure 35. The ICTL
statement must precede all other statements in the source
program and can be used only once.

Name Operation Operand

blank ICTL one to three decimal

self-defining values of the

form b, e, ¢

Figure 35. ICTL Statement Format

Operand b specifies the beginning column of the source
statement. It must always be specified and must be within
140, inclusive.

Operand e specifies the end column of the source state-
ment. The end column, when specified, must be within
41-80, inclusive; when not specified, it is assumed to be
71. The end column must not be less than the begin ccl-
umn +5. The column after the end column is used to in-
dicate whether or not the next card is a continuation card.

DOS - The end column must not be less than the begin
column +4.

Operand c specifies the continue column of the source
statement. The continue column, when specified, must be
within 2-40 and must be greater than b. If the continue
column is not specified, or if column 80 is specified as the
end column, the assembler assumes that there are no conti-
unation cards, and all statements are contained on a single
card.

The operand forms b,,c (no end column), and b, (no
comma allowed) are invalid.

If no ICTL statement is used in the source program, the
assembler assumes that 1, 71, and 16 are the begin, end.
and continue columns, respectively.

Example: ICTL 25 designates the begin column as 25;
since the end column is not specified, it is assumed to be
71. No continuation codes will be recognized because no
continue column is specified.

ISEQ -- Input Sequence Checking

The ISEQ instruction is used to check the sequence of in-
put cards. (A sequence error is considered serious, but the
assembly is not terminated.) See Figure 36 for the format
of the ISEQ statement.

Name Operation Operand

blank ISEQ two decimal self-de-
fining values of the

form 1, r; or blank

Figure 36. ISEQ Statement Format

The operands 1 and r, respectively, specify the leftmost
and rightmost columns of the field in the input cards to be
checked. Operand r must equal or exceed operand 1. Col-
umns to be checked must not be between the begin and end
columns.

Sequence checking begins with the first card following
the ISEQ statement. Comparison of adjacent cards makes
use of the eight-bit internal collating sequence. Each card
checked must have a sequence number higher than that of
the preceding card.

An ISEQ statement with a blank operand terminates the
operation. (Note that this ISEQ statement is also sequence
checked.) Checking may be resumed with another ISEQ
statement.

Sequence checking is performed only on statements
contained in the source program. Statements inserted by
the COPY assembler instruction are not checked for correct
sequence; macro definitions in a macro library also are not
checked.

PUNCH -- Punch A Card

The PUNCH assembler instruction causes the data in the
operand to be punched into a card. As many PUNCH
statements as are necessary may be used. See Figure 37 for
the PUNCH statement format.

Name Operation Operand

PUNCH 1 to 80 characters en-

closed in apostrophes

sequence symbol
or blank

Figure 37. PUNCH Statement Format

Using character representation, the operand is written
as a string of up to 80 characters enclosed in apostrophes.
All characters, including blank, are valid. The position
immediately to the right of the left apostrophe is regarded
as column one of the card to be punched. Substitution is
performed for variable symbols in the operand.

Special consideration must be given to representing
apostrophes and ampersands as characters. Each apostro-
phe or ampersand desired as a character in the constant
must be represented by a pair of apostrophes or ampersands.
Only one apostrophe or ampersand appears in storage.

PUNCH statements may occur anywhere within a pro-
gram except before macro definitions. They may occur
within a macro definition, but not between the end of a
macro definition and the beginning of the next macro de-
finition. If a PUNCH statement occurs before the first
control section, the resultant card will precede all other
cards in the object program card deck; otherwise, the card
will be punched in place. No sequence number or identi-
fication is punched in the card.

REPRO - Reproduce Following Card

The REPRO assembler instruction causes data on the fol-
lowing statement line to be punched into a card. The data
is not processed; it is punched in a card, and no substitution
is performed for variable symbols. No sequence number or
identification is punched on the card. One REPRO instruc-
tion produces one punched card. The REPRO instruction
may not appear before a macro definition. REPRO state-
ments that occur before all statements composing the first
or only control section will punch cards which precede all
other cards of the object deck. See Figure 38 for the
REPRO statement format.

Name Operation Operand

sequence symbol | REPRO |blank

or blank

Figure 38. REPRO Statement Format

The line to be reproduced may contain any combination
of up to 80 valid characters. Characters may be entered
starting in column 1 and continuing through column 80
of the line. Column 1 of the line corresponds to column
1 of the card to be punched.

ORG - Set Location Counter

The ORG instruction is used to alter the setting of the loca-
tion counter for the current control section. See Figure 39
for the ORG statement format.

Communications Controller Assembler Instructions 27

Name Operation Operand

sequence symbol ORG

or blank

a relocatable expression
or blank

tigure 39. ORG Statement Format

Any symbols in the expression must have been previously
defined. The unpaired relocatable symbol must be defined
in the same control section in which the ORG statement
appears.

The location counter is set to the value of the expression
in the operand. If the operand is omitted, the location
counter is set to the next available (unused) location for
that control section.

An ORG statement must not be used to specify a loca-
tion below the beginning of the control section in which
it appears. The following is invalid if it appears less than
500 bytes from the beginning of the current control
section:

ORG *-500

To reset the location counter to the next available byte in
the current control section, the following statement is used:

ORG

If previous ORG statements have reduced the value of the
location counter for the purpose of redefining a portion of
the current control section, an ORG statement with an
omitted operand can then be used to terminate the effects of
such statements and restore the location counter to its high-
est setting plus one.

Note: By using the ORG statement, two instructions
may be given the same location counter values. In such
a case, the second instruction will not always eliminate
the effects of the first instruction. Consider the follow-
ing examples:

ADDR DC A(LOC)
ORG *4
B DC C'BETA’

In this example, the value of B (BETA) will be destroyed
by the relocation of ADDR during linkage editing.

CNOP - Conditional No Operation

The CNOP instruction lets you align an instruction at a
specific halfword boundary. If any bytes must be skipped
in order to align the instruction properly, the assembler
ensures an unbroken instruction flow by generating no-op-
eration instructions. (If the CNOP is coded on as odd
boundary, one byte of zero padding is generated to force
the CNOP to an even boundary.)

28 IBM 3705 Communications Controller Assembler Language

The CNOP instruction ensures the alignment of the loca-
tion counter, to a halfword, fullword, or doubleword
boundary. If the location counter is already properly
aligned, the CNOP instruction has no effect. If the specified
alignment requires the location counter to be incremented,
one to three no-operation instructions are generated, each
of which uses two bytes. See Figure 40 for the CNOP
statement format.

Name Operation Operand

CNOP | two absolute expressions

of the form b, w

sequence symbol

or blank
L ,

Figure 40. CNOP Statement Format

Any symbols used in the expressions in the operand
field must have been previously defined.

Operand b specifies at which byte in a fullword or
double-word the location counter is to be set; b can be 0, 2,
4, or 6. Operand w specifies whether byte b is in a full-
word (w=4) or doubleword (w=8). The following pairs of
b and w are valid:

bw Specifies

04 Beginning of a fullword

24 Middle of a fullword

0,8 Beginning of a doubleword

2,8 Second halfword of a doubleword

4,8 Middle (third halfword) of a doubleword
6,8 Fourth halfword of a doubleword

COPY - Copy Predefined Source Coding

The COPY instruction obtains source-language coding from
a library and includes it in the program currently being as-
sembled. See Figure 41 for the COPY statement format.

Name Operation Operand

blank COPY

one symbol

Iigure 41. COPY Statement Format

The operand is a symbol that identifies a partitioned data
set member to be copied from either the system macro
library or a user library concatenated to it.

The assembler inserts the requested coding immediately
after the COPY statement is encountered. The requested

coding may not contain any COPY, END, ICTL, ISEQ,
MACRO, or MEND statements.

If identical COPY statements are encountered, the
coding they request is brought into the program each time.
All statements include in the program via the copy function
are processed using the standard format, regardless of any
ICTL instructions in the program.

END - End Assembly

The END instruction terminates the assembly of a program.
It may also designate a point in the program or in a sepa-
rately assembled program to which control may be trans-
ferred after the program is loaded. The END instruction
must always be the last statement in the source program. If
an external symbol is used in the expression, the value of
the expression must be 0. See Figure 42 for the END
statement format.

The format of the END instruction statement is as
follows:

Name Operation Operand

a relocatable expression
or blank

a sequence symbol END
or blank

Figure 42. END Statement Format

The operand specifies the point to which control may be
transferred when loading is complete. This point is usually
the first machine instruction in the program.

Note: Editing errors in system macro definitions (macro
definitions included in a macro library) are discovered
when the macro definitions are read from the macro
library. This occurs after the END statement has been
read. They will therefore be flagged after the END
statement. If the programmer does not know which of
his system macros caused an error, it is necessary to
punch all system macro definitions used in the program,
including inner macro definitions, and insert them in the
source program as programmer macro definitions, since
programmer macro definitions are flagged in-line. To aid
in debugging, it is advisable to test all macro definitions
as programmer macro definitions, before incorporating
them in the library as system macro definitions.

Communications Controller Assembler Instructions 29

Chapter 5: The IBM Communications Controller Macro Language

INTRODUCTION

IBM Communications Controller macro language is an ex-
tension of the Communications Controller assembler
language. The language provides a convenient way to gen-
erate a desired sequence of assembler language statements
many times, in one or more programs. The macro definition
is written only once, and a single statement, a macro in-
struction statement, is written each time you want to gen-
erate the desired sequence of statements.

This facility simplifies the coding of programs, reduces
the chance of programming errors,and ensures that standard
sequences of statements are used to accomplish desired
functions.

An additional facility, called conditional assembly, al-
lows you to code statements which may or may not be as-
sembled, depending upon conditions evaluated at assembly
time. These conditions are usually tests of values, which
may be defined, set, changed, and tested during assembly.
The conditional assembly facility may be used without
using macro instruction statements.

The Macro Instruction Statement

A macro instruction statement (hereafter called a “macro
instruction”) is a source program statement. The assembler
generates a sequence of assembler language statements for
each occurrence of the same macro instruction. The gen-
erated statements are then processed like any other assem-
bler language statement. -

Macro instructions can be tested by placing them before
the assembly cards of a test program.

Three types of macro instructions may be written: posi-
tional, keyword, and mixed-mode macro instructions. Posi-
tional macro instructions require the programmer to write
the operands of a macro instruction in a fixed order. Key-
word macro instructions permit the programmer to write
the operands of a macro instruction in a variable order.
Mixed-mode macro instructions permit the programmer to
use the features of both positional and keyword macro in-
structions in the same macro instruction.

The Macro Definition

A macro definition is a set of statements that provides the
assembler with: (1) the mnemonic operation code and the
format of the macro instruction, and (2) the sequence of
statements the assembler generates when the macro instruc-
tion appears in the source program.

Every macro definition consists of (1) a macro detini-
tion header statement, (2) a macro instruction prototype
statement, (3) zero or more model statements. Within the
definition you can code COPY statements, MEXIT,
MNOTE, or conditional assembly instructions and (4) a
macro definition trailer statement.

The macro definition header and trailer statements in-
dicate to the assembler the beginning and end of a macro
definition.

The macro instruction prototype statement specifies
the mnemonic operation code and the type of the macro
instruction.

The model statements are used by the assembler to
generate the assembler language statements that replace
each occurrence of the macro instruction.

The COPY statements can be used to copy model state-
ments, MEXIT, MNOTE or conditional assembly instruc-
tions from a system library into a macro definition.

The MEXIT instruction can be used to terminate pro-
cessing of a macro definition.

The MNOTE instruction can be used to generate an
error message when the rules for writing a particular macro
instruction are violated.

The conditional assembly instructions can be used to
vary the sequence of statements generated for each occur-
rence of a macro instruction. Conditional assembly instruc-
tions may also be used outside macro definitions; that is,
among the assembler language statements in the program.

The Macro Library

The same macro definition may be made available to more
than one source program by placing the macro definition in
the macro library. The macro library is a collection of
macro definitions that can be used by all assembler language
programs in an installation. Once a macro definition has
been placed in the macro library, it may be used by writing
its corresponding macro instruction in a source program.
Macro definitions must be in the system macro library
under the same name as the prototype. The procedure for
placing macro definitions in the macro library is described
in IBM System/360 Operating System Utilities, GC28-6586.
DOS - The procedure for entering Disk Operating Sys-
tem macros in the System Source Statement
Library is described in IBM System/360 Disk
Operating System. System Control and System
Services Program, GC24-5036. DOS macros are
placed in the A sublibrary of the System Source
Statement Library.

The IBM Communications Controller Macro Language 31

Varying The Generated Statements

Each time a macro instruction appears in the source pro-
gram, it is replaced by the same sequence of assembler
language statements. Conditional assembly instructions,
however, may be used to vary the number and format of
the generated statements.

Variable Symbols

A variable symbol is a type of symbol that is assigned dif-
ferent values by either the programmer or the assembler.
When the assembler uses a macro definition to determine
what statements are to replace a macro instruction, variable
symbols in the model statements are replaced with the
values assigned to them. By changing the values assigned
to variable symbols, the programmer can vary parts of the
generated statements.

A variable symbol is written as an ampersand, followed
by from one through seven letters and/or digits, the first
of which must be a letter. Elsewhere, two ampersands
must be used to represent an ampersand.

Types of Variable Symbols

There are three types of variable symbols: symbolic param-
eters, system variable symbols, and SET symbols. The SET
symbols are further broken down into SETA symbols,
SETB symbols, and SETC symbols.

Assigning Values to Variable Symbols

Symbolic parameters are assigned values by the program-
mer each time he writes a macro instruction.

System variable symbols are assigned values by the as-
sembler each time it processes a macro instruction.

Set symbols are assigned values by the programmer by
means of conditional assembly instructions.

Global SET Symbols

The values assigned to SET symbols in one macro defini-
tion may be used to vary the statements that appear in
other macro definitions. All SET symbols used for this
purpose must be defined by the programmer as global SET
symbols. A symbol is global when it has the same meaning
throughout the entire program and all its segments. All
other SET symbols (that is, those which may be used to
vary statements that appear in the same macro definition)
must be defined by the programmer as local SET symbols.
Local SET symbols and the other variable symbois (that
is, symbolic parameters and system variable symbols) are
local variable symbols. Global SET symbols are global
variable symbols.

32 IBM 3705 Communications Controller Assembler Language

MACRO DEFINITIONS
A macro definition consists of:

1. A macro definition header statement

2. A macro instruction prototype statement

3. Zero or more model statements, COPY statements,
MEXIT, MNOTE, or conditional assembly instructions

4. A macro definition trailer statement

Except for MEXIT, MNOTE, and conditional assembly
instructions described in the preceding text, this portion of
this manual describes all of the statements that may be used
to prepare macro definitions.

Macro definitions appearing in a source program must
appear before all PUNCH and REPRO statements and all
statements that pertain to the first control section. Speci-
fically, only the listing control instructions (EJECT,
PRINT, SPACE, and TITLE), - ICTL, and ISEQ instruc-
tions, and comment statements can occur before the macro
definitions. All but the ICTL instruction can appear be-
tween macro definitions if there is more than one defini-
tion in the source program.

A macro definition cannot appear within a macro defini-
tion, and the maximum number of continuation cards for a
macro definition statement is two.

DOS - Only one continuation card for a macro defini-
tion is allowed.

MACRO -- Macro Definition Header

The macro definition header statement indicates the be-
ginning of a macro definition. It must be the first statement
in every macro definition. The format of this statement is
shown in Figure 43.

Name Operation Operand

Blank MACRO Blank

Figure 43. Macro Definition Header

Macro Instruction Prototype

The macro instruction prototype statement (hereafter
called the prototype statement) specifies the mnemonic
operation code and the format of all macro instructions
that refer to the macro definition. It must be the second
statement of every macro definition. The format of this
statement is shown in Figure 44.

Name Operation Operand

A symbolic par-
ameter or blank

A symbol |One or more symbolic
parameters separated
by commas or blank

Figure 44. Macro Instruction Prototype

The symbolic parameters are used in the macro defini-
tion to represent the name field and operands of the cor-
responding macro instruction. A description of symbolic
parameters appears under Symbolic Parameters.

The name field of the prototype statement may be
blank, or it may contain a symbolic parameter.

The symbol in the operation field is the mnemonic op-

eration code, which must appear in all macro instructions
that refer to the macro definition. The mnemonic opera-
tion code must not be the same as the mnemonic operation
code of another macro definition in the source program or

of a machine or assembler instruction.
The operand field may contain 0 to 200 symbolic

parameters, separated by commas. If there are no symbolic
parameters, comments may not appear.

DOS - The operand field may contain 0 to 100
symbolic parameters, separated by commas.

The following is an example of a prototype statement:
&NAME MOVE &TO, &FRCM

Statement Format

The prototype statement may be written in a format dif-
ferent from that used for assembler language statements.
The alternate format described here allows you to write an
operand on each line and allows the interspersing of oper-
ands and comments in the statement.

In the alternate format, as in the normal format, the
name and operation fields must appear on the first line of
the statement, and at least one blank must follow the op-
eration field on that line. Both types of statement formats
may be used in the same prototype statement.

The rules for using the alternate statement format are:

1. If an operand is followed by a comma and a blank and
the column after the end column contains a nonblank
character, the operand field may be continued on the
next line, starting in the continue column. More than
one operand may appear on the same line.

2. Comments may appear after the blank that indicates the
end of an operand, up to and including the end column.

3. If the next line starts after the continue column, the
information entered on the next line is considered com-
ments and the operand field'is considered terminated.
Any subsequent continuation lines are considered
comments.

Note: A prototype statement may be written on as
many continuation lines as necessary. When using
normal format, the operands of a prototype statement
must begin on the first statement line or in the continue
column of the second line.

The following examples illustrate (1) the normal state-
ment format, (2) the alternate statement format, and (3)
the combination of both statement formats.

Name Operation Operand Comments

NAME! OP1 OPERANDI1,0PERAND?2, X
OPERAND3
THIS IS THE NORMAL X
STATEMENT FORMAT

NAME2 OP2 OPERANDI, THIS IS X
THE AL
OPERAND2,0PERAND3, X
TERNATE STATEMENT
FORMAT

NAME3 OP3 OPERANDI1, THIS IS A X
COMB
OPERAND2,0PERAND3, X
OPERAND4, OPERAND 5
INATION OF BOTH X
STATEMENT FORMATS

Model Statements

Model statements are the macro definition statements from
which the desired sequences of assembler language state-
ments are generated. Zero or more model statements may
follow the prototype statement. A model statement con-
sists of from one to four fields. They are, from left to
right: the name, operation, operand, and comments fields.
The fields in the model statement must correspond to the
fields in the generated statement.

Model statement fields must follow the rules for paired
apostrophes, ampersands, and blanks as macro instruction.
operands (see Macro Instruction Operands following).

Though model statements must follow the normal
continuation card conventions, statements generated from
model statements may have more than two continuation
lines. Substituted statements may not have blanks in any
field except between paired apostrophes. They may not
have leading blanks in the name or operand fields.

Name Field

The name field may be blank, or it may contain an ordinary
symbol, a variable symbol, or a sequence symbol. It may
also contain an ordinary symbol concatenated with a vari-
able symbol or a variable symbol concatenated with one or
more other variable symbols.

The IBM Communications Controller Macro Language 33

Variable symbols may not appear in the name field of
ACTR, COPY, END, ICTL, ISEQ, or statements. The
characters * and -* may not be substituted for a variable
symbol.

Operation Field

The operation field may contain a machine instruction, any
assembler instruction listed in Chapter 4 (except END,
ICTL, ISEQ, or PRINT), a macro instruction, or a variabie
symbol. It may also contain an ordinary symbol concate-
nated with a variable symbol or a variable symbol concate-
nated with one or more other variable symbols.

Variable symbols may not be used to generate:

#» Macro instructions

Assembler instructions appearing elsewhere than in
Chapter 4

® END, ICTL, ISEQ, PRINT, or REPRO instructions

Variable symbols may also be used outside of macro
definitions to generate mnemonic operation codes, with
the preceding restrictions.

'The use of COPY instructions is described under COPY
STATEMENTS following.

Variable symbols in the line following a REPRO in-
struction will not be placed by their values.

Operand Field

The operand field may contain ordinary symbols or vari-
able symbols, but variable symbols may not be used in the
operand field of COPY, END, ICTL, or ISEQ instructions.

Comments Field

The comments field may contain any combination of char-
acters. No substitution is performed for variable symbols
appearing in the comments field. Only generated statements
will be printed in the listing.

Symbolic Parameters

A symbolic parameter is a type of variable symbol that
is assigned values when you write a macro instruction. You
may vary statements that are generated for each occurrence
of a macro instruction by varying the values assigned to
symbolic parameters.

A symbolic parameter consists of an ampersand followed
by from one through seven letters and/or digits, the first
of which must be a letter. Elsewhere, two ampersands must
be used to represent an ampersand.

You should not use &SYS as the first four characters of
a symbolic parameter.

The following are valid symbolic parameters:

&READER &LOOP2
&A23456 &N
&X4F?2 &$4

34 1BM 3705 Communications Controller Assembler Language

The following are invalid symbolic parameters:

CARDAREA (first character is not an ampersand)

&256B (first character after ampersand is not
a letter)

&AREA2456 (more than seven characters after the
ampersand)

&BCD%34 (contains a special character other
than initial ampersand)

&IN AREA (contains a special character (blank)

other than initial ampersand)

Any symbolic parameters in a model statement must
appear in the prototype statement of the macro definition.

'The following is an example of a macro definition. Note
that the symbolic parameters in the model statements ap-
pear in the prototype statement.

Header MACRO

Prototype &NAME MOVE &TC,&FROM
Model &NAME ST 2,SAVE
Model L 2,&FROM
Model ST 2,&TO

Model L 2,SAVE
Trailer MEND

Symbolic parameters in model statements are replaced
by the characters of the macro instruction that correspond
to the symbolic parameters.

In the following example, the characters HERE,
FIELDA, and FIELDB of the MOVE macro instruction
correspond to the symbolic parameters &NAME, &TC, and
&FROM, respectively, of the MOVE prototype statement:

HERE MOVE FIELDA,FIELDB

Any occurrence of the symbolic parameters &NAME,
&TO, and &FROM in a model statement will be replaced
by the characters HERE, FIELDA, and FIELDB, respect-
ively. If the preceding macro instruction were used in a
source program, the following assembler language state-
ments would be generated:

HERE ST 2,SAVE
L 2,FIELDB
ST 2,FIELDA
L 2,SAVE

The following example illustrates another use of the
MOVE macro instruction, using operands different from
those in the preceding example:

Macro LABEL MOVE IN,OUT
Generated LABEL ST 2,SAVE
Generated L 2,0UT
Generated ST 2,IN
Generated L 2,.SAVE

If a symbolic parameter appears in the comments field
of a model statement, it is not replaced by the correspornd-
ing characters of the macroinstruction.

Concatenating Symbolic Parameters

If a symbolic parameter in a model statement is immedi-
ately preceded or followed by other characters or by another
symbolic parameter, the characters that correspond to the
symbolic parameter are combined in the generated state-
ment with the other characters or the characters that cor-
respond to the other symbolic parameter. This process is
called concatenation.

The macro definition, macro instruction, and generated
statements in the following example illustrate these rules:

Header MACRO

Prototype &NAME MOVE &TY ,&P,&TO,&FROM
Model &NAME ST&TY 2,SAVEAREA
Model L&TY 2,&P&FROM
Model ST&TY 2,&P&TO
Model L&TY 2,SAVEAREA
Trailer MEND

Macro HERE MOVE H,FIELD,A,B
Generated HERE STH 2,.SAVEAREA
Generated LH 2,FIELDB
Generated STH 2,FIELDA
Generated LH 2,SAVEAREA

The symbolic parameter &TY is used in each of the four
model statements to vary the mnemonic operation code
of each of the generated statements. The character H in
the macro instruction corresponds to symbolic parameter
&TY. Since &TY is preceded by other characters (that is,
ST and L) in the model statements, the character that
corresponds to &TY (that is, H) is concatenated with the
other characters to form the operation fields of the gen-
erated statements.

The symbolic parameters &P, &TO, and &FROM are
used in two of the model statements to vary part of the
operand fields of the corresponding generated statements.
The characters FIELD, A, and B correspond to the sym-
bolic parameters &P, &TO, and &FROM, respectively.
Since &P is followed by &FROM in the second model
statement, the characters that correspond to them (that is,
FIELD and B) are concatenated to form part of the op-
erand field of the second generated statement. Similarly,
FIELD and A are concatenated to form part of the operand
field of the third generated statement.

If you wish to concatenate a symbolic parameter with a
letter, digit, left parenthesis, or period following the sym-
bolic parameter, you must immediately follow the symbolic
parameter with a period. A period is optional if the sym-
bolic parameter is to be concatenated with (1) another
symbolic parameter or (2) with a special character other
than a left parenthesis or another period that follows it,
(3) If a symbolic parameter is immediately followed by a
period, then the symbolic parameter and the period are
replaced by the characters that correspond to the symbolic
parameter. A period that immediately follows a symbolic

parameter does not appear in the generated statement.
The following macro definitions, macro instruction,
and generated statements illustrate these rules:

Header MACRO

Prototype &NAME MOVE &P,&S,&R1,&R2
Model &NAME ST &R1,&S.(&R2)
Model L &R1,&P.B

Model ST &R1,&P.A
Model L &R1,&S.(&R2)
Macro HERE MOVE FIELD,SAVE,2 4
Generated HERE ST 2,SAVE(4)
Generated L 2,FIELDB
Generated ST 2,FIELDA
Generated L 2,SAVE(4)

The symbolic parameter &P is used in the second and
third model statements, to vary part of the operand field of
each of the corresponding generated statements. The
characters FIELD of the macro instruction correspond to
&P. Since &P is to be concatenated with a letter (that is,

B and A) in each of the statements, a period immediately
follows &P in each of the model statements. The period
does not appear in the generated statements.

Similarly, the symbolic parameter &S is used in the first
and fourth model statements to vary the operand fields of
the corresponding generated statements. &S is followed by
a period in each of the model statements, because it is to
be concatenated with a left parenthesis. The period does
not appear in the generated statements.

Comments Statements

A model statement may be a comments statement. A
comments statement consists of an asterisk in the begin
column, followed by comments. The comments statement
is used by the assembler to generate an assembler language
comments statement, just as other model statements are
used by the assembler to generate assembler language
statements. No variable symbol substitution is performed.

You may also write, in a macro definition, comments
statements that are not to be generated. These statements
must have a period in the begin column, immediately fol-
lowed by an asterisk and the comments.

The first statement in the following example will be
used by the assembler to generate a comments statement.
the second statement will not.

* THIS STATEMENT WILL BE GENERATED

¥ THIS ONE WILL NOT BE GENERATED

To get a truly representative sampling of the various
language components used effectively in writing macro
instructions, you may list all or selected macro instructions
from the SYS1.GENLIB or the SYS1.MACLIB by using
the IEBPTPCH system utility covered in the S/360 OS,
Utilities Manual, GC28-6586. This utility program lists

The IBM Communications Controller Macro Language 35

macros with the System/360 mnemonics; however, the
concepts are the same for the Communications Controller.

DOS - You may list all or selected macro instructions
with the SSERV program. This program is de-
scribed in IBM System/360 Disk Operating
System: System Control and Service Programs,
GC24-5036. This utility program lists macros
with the System/360 mnemonics; however, the
concepts are the same for the Communications
Controller.

Copy Statements

COPY statements may be used to copy model statements
and MEXIT, MNOTE, and conditional assembly instruc-
tions into a macro definition, just as they may be used out-
side macro definitions to copy source statements into an
assembler language program. The format of the COPY
statement is shown in Figure 45.

The format of this statement is:

Name Operation Operand

Blank COPY

A symbol

{'ipure 45. COPY Statement Format

The operand is a symbol that identifies a partitioned data
set member to be copied from either the system macro li-
brary or a user library concatenated to it. The symbol must
not be the same as the operation mnemonic of a definition
in the macro library. Any statement that may be used in a
macro definition may be part of the copied coding, except
MACRO, MEND, COPY. and prototype statements.

DOS - The operand is a symbol that identifies a book
to be copied from the private source statement
library.

When considering statement positions within a program,
the code included by a COPY instruction statement should
be considered, rather than the COPY itself. For example,
if 4 COPY statement in a macro definition brings in global
and local definition statements, it may appear immediately
after the prototype statement. However, global definition
statements must precede local definition statements if
global and local definition statements are also specified
explicitly in the macro definition that contains the COPY
statements. The COPY must occur between the explicit
giobal definition statements and the explicit local definition
statements.

36 IBM 3705 Communications Controller Assembler Language

Mend -- Macro Definition Trailer

The macro definition trailer statement indicates the end of
a macro definition. It can appear only once within a macro
definition and must be the last statement in every macro
definition. The format of this statement is shown in Fig-
ure 46.

Name Operation Operand

A sequence symbol | MEND Blank

or blank

Figure 46. MEND Statement Format

MACRO INSTRUCTIONS

The format of a macro instruction is shown in Figure 47.

(Name Operation Operand

Any symbol or Mnemonic 0-100 operands,

blank operation separated by commas.
code

{igure 47, Macro Instruction Format

DOS - 0-100 operands, separated by commas.

The name field of the macro instruction may contain
a symbol. The symbol will not be defined unless a sym-
bolic parameter appears in the name field of the prototype
and the same parameter appears in the name field of a gen-
erated model statement.

The operation field contains the mnemonic operation
code of the macro instruction. The mnemonic operaticn
code must be the same as the mnemonic operation code of
a macro definition in the source program or in the macro
library.

DOS -- The mnemonic operation code must be the
same as the mnemonic operation code of a
macro definition in the source program or in
the Private Source Statement Library.

The macro definition with the same mnemonic opera-
tion code is used by the assembler to process the macro in-
struction. If a macro definition in the source program and
one in the macro library have the same mnemonic operation
code, the macro definition in the source program is used.

DOS - If a macro definition in the source program and
one in the Private Source Statement Library
have the same mnemonic operation code, the
macro definition in the source program is used.

The placement and order of the operands in the macro
instruction is determined by the placement and order of the
symbolic parameters in the operand field of the prototype
statement.

Macro Instruction Operands

Any combination of up to 255 characters may be used as a
macro instruction operand, provided the following rules
concerning apostrophes, parentheses, equal signs, amper-
sands, commas, and blanks are observed.

DOS - Any combination of up to 127 characters may
be used as a macro instruction operand if the
following rules concerning apostrophes, paren-
theses, equal signs, ampersands, commas, and
blanks are observed.

Puaired Apostrophes: An operand may contain one or more
quoted strings. A quoted string is any sequence of char-
acters that begins and ends with an apostrophe and contains
an even number of apostrophes.

The first quoted string starts with the first apostrophe
in the operand. Subsequent quoted strings start with the
first apostrophe after the apostrophe that ends the previous
quoted string.

A quoted string ends with the first even-numbered apos-
trophe that is not immediately followed by another
apostrophe.

The first and last apostrophes of a quoted string are
called paired apostrophes. The following example contains
two quoted strings. The first and fourth and the fifth and
sixth apostrophes are each paired apostrophes.

‘A“B’C’D,

An apostrophe not within a quoted string, immediately
followed by a letter and immediately preceded by the let-
ter L (when L is preceded by any special character other
than an ampersand), is not considered in determining paired
apostrophes. For instance, in the following example, the
apostrophe is not considered:

L’SYMBOL
>AL’SYMBOL’ is an invalid operand.

Paired Parentheses: There must be an equal number of left
and right parentheses. The nth left parenthesis must ap-
pear to the left of the nth right parenthesis.

Paired parentheses are a left parenthesis and a following
right parenthesis without any other parentheses intervening.

If there is more than one pair, each additional pair is deter-
mined by removing any pairs already recognized and reap-
plying the above rule for paired parentheses. For instance,
in the following example the first and fourth, the second
and third, and the fifth and sixth parentheses are each
paired parentheses:

(A(B)OD(E)

A parenthesis that appears between paired apostrophes
is not considered in determining paired parentheses. For
instance, in the following example, the middle parenthesis
is not considered.

Q)]

Equal Signs: An equal sign can occur only between paired
apostrophes or paired parentheses. The following examples
illustrate these rules:

,C=D,

E(F=G)

Ampersands: Except as noted under “Inner Macro Instruc-
tions,” each sequence of consecutive ampersands must be
an even number of ampersands. The following example
illustrates this rule:

&&123&8&&&

Commas: A comma indicates the end of an operand, unless
it is placed between paired apostrophes or paired paren-
theses. The following example illustrates this rule:

(A,B)C]

Blanks: Except as noted under “Statement Format,” a
blank indicates the end of the operand field, unless it is
placed between paired apostrophes. The following example
illustrates this rule:

ABC

The following examples are valid macro instruction
operands:

SYMBOL A+2

123 (TO(8),FROM)

X’ 189A 0(2,3)

L’NAME AB&&9

*TEN = 10° "PARENTHESIS IS)’
"QUOTE IS *” ‘COMMA IS

The following examples are invalid macro instruction
operands:

WNAME (odd number of apostrophes)

5A)B (number of left parentheses
does not equal number of
right parentheses)

(15B) (blank not placed between
paired apostrophes)

’ONE’ IS°1’ (blank not placed between

paired apostrophes)

The IBM Communications Controller Macro Language 37

Statement Format

Macro instructions may be written, using the same alternate
format that can be used to write prototype statements. If
this format is used, a blank does not always indicate the end
of the operand field. The alternate format is described
under the subsection “Macro Instruction Prototype.”

Omitted Operands

if an operand that appears in the prototype statement is
omitted from the macro instruction, then the comma that
would have separated it from the next operand must be
present. If the last operand(s) is omitted from a macro
instruction, then the comma(s) separating the last
operand(s) from the next previous operand may be
omitted.

The following example shows a macro instruction,
preceded by its corresponding prototype statement. The
macro instruction operands that correspond to the third
and sixth operands of the prototype statement are omitted
in this example.

EXAMPLE &A, &B, &C, &D, &E, &F
EXAMPLE 17, *+4,, AREA, FIELD (6)

If the symbolic parameter that corresponds to an omit-
ted operand is used in a model statement, a null character

value replaces the symbolic parameter in the generated state-

ment; that is, in effect, the symbolic parameter is removed.
For example, the first statement, following is a model state-
ment that contains the symbolic parameter &C. If the op-
erand that corresponds to &C was omitted from the macro
instruction, the second statement would be generated from
the model statement:

L THERE&C. 25,THIS
L THERE?2S, THIS

Operand Sublists

A sublist may occur as the operand of a macro instruction.

Sublists provide the programmer with a convenient way
to refer to a collection of macro instruction operands as a
single operand or as a single operand in a collection of
operands.

A sublist consists of one or more operands, separated by
commas and enclosed in paired parentheses. The entire
sublist, including the parentheses, is considered to be one
macro instruction operand.

{f a macro instruction is written in the alternate state-
ment format, each operand of the sublist may be written on
a separate line; the macro instruction may be written on as
many lines as necessary.

If &P1 is a symbolic parameter in a prototype statement,
and the corresponding operand of a macro instruction is a
sublist, then &P1(n) may be used in a model statement to
refer to the nth operand of the sublist, where n may have a

¥ IBM 37C5 Communications Controller Assembler Language

value greater than or equal to 1. N may be specified as a
decimal integer of any arithmetic expression allowed in a
SETA instruction. If the nth operand is omitted, then
&P1(n) would refer to a null character value.

If the sublist notation is used but the operand is not a
sublist, then &P1 (1) refers to the operand, and &P1 (2),
&P1 (3), ... refer to a null character value. If an operand
has the form (), it is treated as a character string and not
as a sublist.

For example, consider the following macro definition,
macro instruction, and generated statements:

Header MACRO

Prototype &NAME ADD &NUM,®,&AREA
Model LA ® (1), &NUM (1)
Model LA ® (2), &NUM (2)
Model LA ® (3), &NUM (3)
Model AR ® (1), ® (2)
Model AR ® (1), ® (3)
Model ST ® (1), &AREA
Trailer MEND

Macro ADD (A,B,C),(R1,R2,R3),SUM
Generated LA R1, A

Generated LA R2,B

Generated LA R3,C

Generated AR R1,R2

Generated AR R1,R3

Generated ST R1, SUM

The operand of the macro instruction that corresponds
to symbolic parameter &NUM is a sublist. One of the op-
erands in the sublist is referred to in the operand field of
three of the model statements. For example, &NUM (1)
refers to the first operand in the sublist corresponding to
symbolic parameter &NUM. The first operand of the sub-
list is A. Therefore, A replaces &NUM (1) to form part of
the generated statement.

Note: When referring to an operand in a sublist, the left
parenthesis of the sublist notation must immediately
follow the last character of the symbolic parameter; for
example, &NUM (1). A period should not be placed
between the left parenthesis and the last character of the
symbolic parameter.

A period may be used between these two characters
only when the programmer wants to concatenate the left
parenthesis with the characters that the symbolic parameter
represents. The following example shows what would be
generated if a period appeared between the left parenthesis
and the last character of the symbolic parameter in the
first model statement of the above example.

Prototype &NAME ADD &NUM,®,&AREA.
Model L ®,&NUM.(1)
Macro ADD (A,B,C),R1,SUM
Generated L RL(A,B,C)(1)

The symbolic parameter &NUM is used in the operand
field of the model statement. The characters (A,B,C) of
the macro instruction correspond to &NUM. Since &NUM
is immediately followed by a period, &NUM and the period
are replaced by (A,B,C). The period does not appear in
the generated statement. The resulting generated statement
is an invalid assembler language statement.

Inner Macro Instructions

A macro instruction may be used as a model statement in
a macro definition. Macro instructions used as model
statements are called inner macro instructions. See the
seventh statement in the example following.

A macro instruction that is not used as a model state-
ment is referred to as an outer macro instruction.

The rule for inner macro instruction parameters is the
same as that for outer macro instructions. Any symbolic
parameters used in an inner macro instruction are replaced
by the corresponding characters of the outer macro instruc-
tion. An operand of an outer macro instruction sublist
cannot be passed as a sublist to an inner macro instruction.

The macro definition corresponding to an inner macro
instruction is used to generate the statement that replace
the inner macro instruction.

The ADD macro instruction of the previous example
is used as an inner macro instruction in the example
following.

The inner macro instruction contains two symbolic
parameters, &S and &T. The characters (X,Y,Z) and J of
the macro instruction correspond to &S and &T, respec-
tively. Therefore, these characters replace the symbolic
parameters in the operand field of the inner macro
instruction.

The assembler then uses the macro definition that cor-
responds to the inner macro instruction to generate state-
ments to replace the inner macro instruction. The fifth
through the tenth generated statements have been gen-
erated for the inner macro instruction. See Operand Sub-

lists preceding for a description of the inner macro instruc-
tion ADD.

1 Header MACRO

2 Prototype coMP &R1, &R2, &S, &T, &U
3 Model SR &R1, &R2

4 Model LA &R2, &T

5 Model CR &R1, &R2

6 Model BZL &U

7 Inner ADD &S, (5,6,7), &R2
8 Model &U AR &R1, &R2

9 Trailer MEND

Macro K COMP 3,4 (X,Y,2),I.K
1 Generated SR 34

2 Generated LA 4]

3 Generated CR 3,4

4 Generated BZL K

5 Generated LA 5,X
6 Generated LA 6,Y
7 Generated LA 1,2
8 Generated AR 5,6
9 Generated AR 5,7
10 Generated ST 5,4
11 Generated K AR 34

Further relevant limitations and differences between
inner and outer macro instructions will be covered under
the pertinent sections on sequence symbols, attributes, etc.

Note: An ampersand that is part of a symbolic param-
eter is not considered in determining whether a macro
instruction operand contains an even number of con-
secutive ampersands.

Levels of Macro Instructions

A macro definition that corresponds to an outer macro
instruction may contain any number of inner macro instruc-
tions. The outer macro instruction is called a first-level
macro instruction. Each of the inner macro instructions is
called a second-level macro instruction.

The macro definition that corresponds to a second level
macro instruction may contain any number of inner macro
instructions. These macro instructions are called third-level
macro instructions, etc.

The number of levels of macro instructions that may be
used depends upon the complexity of the macro definition
and the amount of storage available.

CONDITIONAL ASSEMBLY INSTRUCTIONS

The conditional assembly instructions allow the program-
mer to: (1) define and assign values to SET symbols that
can be used to vary parts of generated statements, and (2)
vary the sequence of generated statements. Thus, the pro-
grammer can use these instructions to generate many dif-
ferent sequences of statements from the same macro
definition.

There are 13 conditional assembly instructions, 10 of
which are described in this portion of the manual. The
other three conditional assembly instructions -- GBLA,
GBLB, and GBLC -- are described in Extended Features of
the Macro Language, following. The instructions are:

LCLA SETA AIF ANOP
LCLB SETB AGO
LCLC SETC ACTR

The primary use of the conditional assembly instructions
is in macro definitions, although any of them may be used
in an assembler language source program.

Where the use of an instruction outside macro definitions
differs from its use within macro definitions, the difference

The IBM Communications Controller Macro Language 39

is described in the subsecuent text.

The LCLA, LCLB, and LCLC instructions may be used
t define and assign initial values to SET symbols.

The SETA, SETB, and SETC instructions may be used
to assign arithmetic, binary, and character values, re-
spectively, to SET symbols. The SETB instruction is de-
scribed after the SETA and SETC instructions, because the
operand field of the SETB instruction is a combination of
the operand fields of the SETA and SETC instructions.

The AIF, AGO, and ANOP instructions may be used
with sequence symbols to vary the sequence in which state-
ments are processed by the assembler. The programmer can
test attributes assigned by the assembler to symbols or
macro instruction operands to determine which statements
are to be processed. The ACTR instruction may be used to
vary the maximum number of AIF and AGO branches.

iixamples illustrating the use of conditional assembly
instructions are included throughout this discussion. A
chart summarizing the elements that can be used in each
instruction is shown in Figure 56.

Set Symbols

SET symbols are one type of variable symbol. The sym-
bolic parameters are another type of variable symbol. SET
symbols differ from symbolic parameters in three ways:
(1) where they can be used in an assembler language source
program, (2) how they are assigned values, and (3) whether
or not the values assigned to them can be changed.

Symbolic parameters can be used only in macro defini-
tions, whereas SET symbols can be used inside and outside
macro definitions.

Symbolic parameters are assigned values when the pro-
grammer writes a macro instruction, whereas SET symbols
are assigned values when the programmer writes SETA,
SETB, and SETC conditional assembly instructions.

Hach symbolic parameter is assigned a single value for
one use of a macro definition, whereas the values assigned
lo each SETA, SETB, and SETC symbol can change during
one use of a macro definition.

Defining SET Symbols

SET symbols must be defined by the programmer before
they are used. When a SET symbol is defined, it is assigned
im initial value. SET symbols may be assigned new values
iy means of the SETA, SETB, and SETC instructions. A
SET symbol is defined when it appears in the operand field
of an LCLA, LCLB, or LCLC instruction.

40 IBM 3705 Communications Controller Asscinbler Language

Using Variable Symbols

The SETA, SETB, and SETC instructions may be used to
change the values assigned respectively. When a SET sym-
bol appears in the name, operation, or operand field of a
model statement, the current value of the SET symbol (that
is, the last value assigned to it) replaces the SET symbol in
the statement.

For example, if &A is a symbolic parameter, and the
corresponding characters of the macro instruction are the
symbol HERE, then HERE replaces each occurrence of &A
in the macro definition. However, if &A is a SET symbol,
the value assigned to &A can be changed, and a different
value can replace each occurrence of &A in the macro
definition.

The same variable symbol may not be used as a sym-
bolic parameter and as a SET symbol in the same macro
definition.

The following example illustrates this rule:

&NAME MOVE &TO, &FROM

If the preceding statement is a prototype statement, then
&NAME, &TO, and &FROM may not be used as SET sym-
bols in the macro definition.

The same variable symbol may not be used as two dif-
ferent types of SET symbols in the same macro definition.
Similarly, the same variable symbol may not be used as two
different types of SET symbols outside macro definitions.

For example, if &A is a SETA symbol in a macro defini-
tion, it cannot be used as a SETC symbol in that definition.
Similarly, if &A is a SETA symbol outside macro defini-
lions, it cannot be used as a SETC symbo! outside macro
definitions.

Ttic same variable symbol may be used in two or more
macro definitions and outside macro definttions. If such
is the case, the variable symbol will be considered a different
variable symbol each time it is used.

For example, if &A is a variable symbol (either SET sym-
bol or symbolic parameter) in one macro definition, it can
be used as a variable symbol (either SET symbol or sym-
bolic parameter) in another definition. Similarly, if &A is a
variable symbol (SET symbol or symbolic parameter) in a
macro definition, it can be used as a SET symbol outside
macro definitions.

All variable symbols may be concatenated with other
characters, in the same way that symbolic parameters may
be concatenated with other characters. The rules for con-
catenating symbolic parameters with other characters was
previously described under Symbolic Parameters.

Variable symbols in macro instructions are replaced by
the values assigned to them immediately prior to the start
of processing the definition. If a SET symbol is used in
the operand field of a macro instruction, and the value
assigned to the SET symbol is equivalent to the sublist nota-
tion, the operand is not considered a sublist.

Attributes

The assembler assigns attributes to macro instruction
operands and to symbols in the program: the length - bytes
or bits; the count - number of characters comprising a sym-
bol; and the number - the number of operands in a sublist.
These attributes may be referred to only in conditional
assembly instructions or expressions.

There are four kinds of attributes: type, length, count,
and number. Each kind of attribute is discussed in the
paragraphs that follow.

If an outer macro instruction operand is a symbol be-
fore substitution, then the attributes of the operand are the
same as the corresponding attributes of the symbol. The
symbol must appear in the name field of an assembler lan-
guage statement or in the operand field of an EXTRN
statement in the program. The statement must be outside
macro definitions and must not contain any variable
symbols.

If an inner macro instruction operand is a symbolic
parameter, then the attributes of the operand are the same
as the attributes of the corresponding outer macro instruc-
tion operand. A symbol appearing as an inner macro in-
struction is not assigned the same attributes as the same
symbol appearing as an outer macro instruction.

If a macro instruction operand is a sublist, the program-
mer may refer to the attributes of either the sublist or each
operand in the sublist. The type and length attributes of a
sublist are the same as the corresponding attributes of the
first operand in the sublist.

All the attributes of macro instruction operands may be
referred to in conditional assembly instructions within
macro definitions. However, only the type and length at-
tributes of symbols may be referred to in conditional de-
finitions. Symbols appearing in the name field of generated
statements are not assigned attributes.

Each attribute has a notation associated with it. The
notations are:

Attribute Notation
Type T
Length L
Count K
Number N

You may refer to an attribute in the following way:

1. In a statement that is outside macro definitions, you
may write the notation for the attribute immediately

followed by a symbol. (For example, T'"NAME refers
to the type attribute of the symbol NAME.)

2. In a statement that is in a macro definition, you may
write the notation for the attribute immediately follow-
ed by a symbolic parameter. (For example, L’&NAME
refers to the length attribute of the characters in the
macro instruction that correspond to symbolic param-
eter &NAME; L’&NAME (2) refers to the length attri-
bute of the second operand in the sublist that corres-
ponds to symbolic parameter &NAME.)

Type Attribute (T’)

The type attribute of a macro instruction operand or a
symbol is a letter.

The following letters are used for symbols that name DC
and DS statements and for outer macro instruction operands
that are symbols that name DC or DS statements:

A A-type address constant, implied
length, aligned

Binary constant.

Character constant

Full-word fixed-point constant,
implied length, aligned

Fixed-point constant, explicit
length

Half-word fixed-point constant,
implied length, aligned

A-, V-, R- or Y-type address
constant, explicit length

V-type address constant,
implied length, aligned

Hexadecimal constant

Y-type or R-type address constant,
implied length, aligned

~ o Q maw

<X <

The following letters are used for symbols (and outer
macro instruction operands that are symbols) that name
statements other than DC or DS statements or that appear
in the operand field of an EXTRN statement:

Machine instruction
Control section name
Macro instruction
External symbol

CW assembler instruction

z-E -

The following letters are used for inner and outer macro
instruction operands only:

N Self-defining term
0} Omitted operand

The following letter is used for inner and outer macro
instruction operands that cannot be assigned any of the
above letters. This includes inner macro instruction op-
erands that are symbols.

The IBM Communications Controller Macro Language 41

This letter is also assigned to symbols that name EQU
and EQUR statements, to any symbols occurring more than
once in the name field of source statements, and to all sym-
bols naming statements with expressions as modifiers.

U Underfined

You may refer to a type attribute in the operand field
of a SETC instruction or to a type attribute in character

relations in the operand fields of SETB or AIF instructions.

Length Attribute (L°)

The length attribute of a macro instructions operands and
symbols is a numeric value.

The length attribute of a symbol (or of a macro instruc-
tion operand that is a symbol) is as described in Chapter 2
of this publication. Reference to the length attribute of a
variable symbol is illegal except for symbolic parameters
in SETA, SETB and AIF statements.

Conditional assembly instructions must not refer to the
length attributes of symbols or macro instruction operands
whose type attributes are the letters M, N, O, T, or U.

You may refer to the length attributes in the operand
field of a SETA instruction or to the length attributes in
arithmetic relations in the operand fields of SETB or AIF
instructions.

Count Attribute (K’)

You may refer to the count attribute of macro instruction
operands only.

The value of the count attribute is equal to the number
of characters in the macro instruction operand. It includes
all characters in the operand, excluding the delimiting com-
mas. If the operand is a sublist, that operand includes the
beginning and ending parenthesis and the commas within
the sublist. The count attribute of an omitted operand is
7ero. These rules are illustrated by the following examples:

Operand Count Attribute
ALPHA 5
{JUNE,JULY,AUGUST) 18
2(10,12) 8
A(2) 4
AR’ 6
o 3
’e 2

if a macro instruction operand contains variable sym-
bols, the character that replace the variable symbols,
rather than the variable symbols, are used to determine
the count attribute.

You may refer to the count attribute in the operand
field of a SETA instruction or to the count attribute in
arithmetic relations in the operand fields of SETB and AIF
instructions that are part of a macro definition.

42 IBM 3705 Communications C'ontroller Assembler Language

Number Attribute (N°)

You may refer to the number attribute of macro instruc-
tion operands only.

The number attribute is a value equal to the number of
operands in an operand sublist. The number of operands
in an operand sublist is equal to one plus the number of
commas that indicate the end of an operand in the sublist.

The following examples illustrate this rule:

(A,B,C,D,E) S operands
(A, ,C,D,E) 5 operands
(A,B,C,D) 4 operands
(,B,C,D, E) 5 operands
(A, B, C, D’) 5 operands
(A,B,C,D,),) 6 operands

if the macro instruction operand is not a sublist, the
number attribute is one. If the macro instruction operand
is omitted, the number attribute is zero.

You may refer to the number attribute in the operand
field of a SETA instruction or to the number attribute
in arithmetic relations in the operand fields of SETB and
AIF instructions that are part of a macro definition.

Sequence Symbols

‘The name field of a statement may contain a sequence
symbol. Sequence symbols provide you with the ability to
vary the sequence in which statements are processe. by the
assembler.

A sequence symbol is used in the operand field of an
AIF or AGO statement to refer to the statement named
by the sequence symbol.

A sequence symbol is considered to be local to a macro
definition.

A sequence symbol may be used in the name field of
any statement that does not contain a symbol or SET sym-
bol except a prototype statement, a MACRO, LCLA,
LCLB, LCLC, GBLA, GBLB, GBLC, ACTR, ICTL, ISEQ,
or COPY instruction.

A sequence symbol consists of a period, followed by one
through seven letters and/or digits, the first of which must
be a letter.

The following are valid sequence symbols:

.READER .A23456

.LOOP2 X4F?2

.N .54

The following are invalid sequence symbols:

CARDAREA (first character is not a period)

.246B (first character after period is not
a letter)

.AREA2456 (more than seven characters after
period)

.BCD%84 (contains a special character other

than initial period)

IN AREA (contains a special character (blank)

other than initial period)

If a sequence symbol appears in the name field of a macro

instruction, and the corresponding prototype statement con-
tains a symbolic parameter in the name field, the sequence
symbol does not replace the symbolic parameter wherever
it is used in the macro definition.

The following examples illustrates this rule:

Name Operation Operand
MACRO
1 &NAME MOVE &TO0, &FROM
2 &NAME ST 2, SAVEAREA
L 2, &FROM
ST 2, &TO
L 2, SAVEAREA
MEND
3 .SYM MOVE FIELDA, FIELDB
4 ST 2, SAVEAREA
L 2, FIELDB
ST 2, FIELDA
L 2, SAVEAREA

The symbolic parameter &NAME is used in the name
field of the protytype statement (statement 1) and the
first model statement (statement 2). In the macro instruc-
tion (statement 3), sequence symbol (.SYM) corresponds
to the symbolic parameter &NAME. &NAME is not re-
placed by .SYM and therefore, the generated statement
(statement 4) does not contain an entry in the name field.

LCLA, LCLB, LCLC - Define Local Set Symbols

The format of these instructions is shown in Figure 48.

Name Operation Operand
Blank LCLA, One or more variable
LCLB, or |symbols that are to be
LCLC used as SET symbols,
separated by commas.

Figure 48. Local SET Symbol Statement Format

The LCLA, LCLB, and LCLC instructions are used to
define and assign initial values to SETA, SETB, and SETC
symbols, respectively. The SETA, SETB, and SETC sym-
bols are assigned the initial values of 0, 0, and null character
value, respectively.

You should not define any SET symbol whose first
four characters are &SYS.

All LCLA, LCLB, or LCLC instructions in a macro
definition must appear immediately after the prototype

statement and GBLA, GBLB,or GBLC instructions. All
LCLA, LCLB, or LCLC instructions outside macro defini-
tions must appear after all GBLA, GBLB, and GBLC in-
structions outside macro definitions, before all conditional
assembly instructions and PUNCH and REPRO statements
outside macro definitions, and before the first control sec-
tion of the program.

SETA - Set Arithmetic

The SETA instruction may be used to assign an arithmetic
value to a SETA symbol. The format of this instruction is
shown in Figure 49.

Name Operation Operand

A SETA symbol SETA | An arithmetic expression

Figure 49, SETA Statement Format

The expression in the operand field is evaluated as a
signed 32-bit arithmetic value that is assigned to the SETA
symbol in the name field. The minimum and maximum
allowable values of the expression are 23 and +2311,
respectively.

The expression may consist of one term or an arithmetic
combination of terms. The terms that may be used alone
or in combination with each other are self-defining terms,
variable symbols, and the length, count, and number at-
tributes. Self-defining terms are described in Chapter 2,
Basic Assembler Language Concepts, of this publication.

Note: A SETC variable symbol may appear in a SETA
expression only if the value of the SETC variable is one
of eight decimal digits. The decimal digits will be con-
verted to a positive arithmetic value.

The arithmetic operators that may be used to combine
the terms of an expression are + (addition), - (subtraction),
* (multiplication), and / (division).

An expression may not contain two terms or two op-
erators in succession, nor may it begin with an operator.

The following are valid operand fields of SETA
instructions:

&AREA +X2D’ &N/25
&BETA*10 &EXIT-K’&ENTRY+1
L’&HERE+32 29

The following are invalid operand fields of SETA
instructions:

&AREAX’C’ (two terms in succession)
&FIELD+— (two operators in succession)
—~&DELTA*2 (Begins with an operator)

*+32 (begins with an operator; two
operators in succession)

NAME/15 (NAME is not a valid term)

The IBM Communications Controller Macro Language 43

Evaluation of Arithmetic Expressions

The procedure used to evaluate the arithmetic expression
in the operand field of a SETA instruction is the same as
that used to evaluate arithmetic expressions in assembler
language statements. The only difference between the two
types of arithmetic expressions is the terms that are allowed
in each expression.

The following evaluation procedure is used:

1. Each term is given its numerical value.

2. The arithmetic operations are performed, moving from
left to right, with multiplication and/or division being
performed before addition and subtraction.

3. The computed result is the value assigned to the SETA
symbol in the name field.

The arithmetic expression in the operand field of a SETA
instruction may contain one or more sequences of arithmet-
ically combined terms that are enclosed in parentheses. A
sequence of parenthesized terms may appear within another
parenthesized sequence. Only five levels of parentheses are
allowed, and an expression may not consist of more than
16 terms. Parentheses required for sublist notation, sub-
string notation, and subscript notation count toward this
limit. A counter is maintained for each SETA statement
and increased by one for each occurrence of a variable
symbol, as well as for the operation entry. The maximum
value this counter may attain is 35.

The following are examples of SETA instruction op-
erand fields that contain parenthesized sequences of terms:

(L’&HERE+32)*39
&AREA+X’ 2D’/ (&EXIT-K’&ENTRY+1)
&BETA*10%(&N/25/(&EXIT-K’&ENTRY+1))

The parenthesized portion or portions of an arithmetic
expression is evaluated before the remainder of the terms
in the expression are evaluated. If a sequence of par-
enthesized terms appears within another parenthesized
sequence, the innermost sequence is evaluated first.

Using SETA Symbols

The arithmetic value assigned to a SETA symbol is sub-
stituted for the SETA symbol when it is used in an arith-
metic expression. If the SETA symbol is not used in an
arithmetic expression, the arithmetic value is converted
to an unsigned integer, with leading zeros removed. If the
value is zero, it is converted to a single zero.

The following example illustrates this rule:

MACRO
&NAME MOVE &TO, &FROM
LCLA &A, &B, &C, &D
I &A SETA 10
2 &B SETA 12
3 &C SETA &A—-&B
4 &D SETA &A+&C

44 {BM 3705 Communications Controller Assembler Language

&NAME ST 2,SAVEAREA

5 L 2,&FROM&C
6 ST 2,&TO&D
L 2,SAVEAREA
MEND
HERE MOVE FIELDA,FIELDB
HERE ST 2,SAVEAREA
L 2,FIELDB2
ST 2,FIELDAS
L 2,SAVEAREA

Statements 1 and 2 assign to the SETA symbols &A and
&B the arithmetic values +10 and +12, respectively. There-
fore, statement 3 assigns the SETA symbol &C the arithme-
tic value -2 is converted to the unsigned integer 2. When &C
is used in statement 4, however, the arithmetic value -2 is
used. Therefore, &D is assigned the arithmetic value +8.
When &D is used in statement 6, the arithmetic value +§
is converted to the unsigned integer 8.

The following example shows how the value assigned
to a SETA symbol may be changed in a macro definition:

MACRO
&NAME MOVE &TO, &FROM
LCLA &A
1 &A SETA 5
&NAME ST 2,SAVEAREA
2 L 2,&FROM&A
3 &A SETA 8
4 ST 2,&TO&A
L 2,SAVEAREA
MEND
HERE MOVE FIELDA,FIELDB
HERE ST 2,SAVEAREA
L 2,FIELDBS
ST 2,FIELDAS
L 2,SAVEAREA

Statement 1 assigns the arithmetic value +5 to SETA
symbol &A. In statement 2, &A is converted to the un-
signed integer 5. Statement 3 assigns the arithmetic value
+8 to &A. In statement 4, therefore, &A is converted to
the unsigned integer 8, instead of S.

A SETA symbol may be used with a symbolic parameter
to refer to an operand in an operand sublist. If a SETA
symbol is used for this purpose, it must have been assigned
a positive value.

Any expression that may be used in the operand field of
a SETA instruction may be used to refer to an operand
in an operand sublist.

The following macro definition may be used to add the
last operand in an operand sublist to the first operand in
an operand sublist and store the result at the first operand.
A sample macro instruction and generated statements fol-
low the macro definition.

MACRO

1 ADDX &NUMBER,®
LCLA &LAST
2 &LAST SETA N’& NUMBER
L ® (1), &NUMBER (1)
3 L ® (2), &NUMBER
(&LAST)
AR ® (1), ® (2)
ST ® (1), &NUMBER (1)
MEND
4 ADDX (A, B, C, D, E), 34)
L 3,A
L 4,E
AR 3,4
ST 3,A

&NUMBER is the first symbolic parameter in the op-
erand field of the prototype statement (statement 1). The
corresponding characters (A, B, C, D, E) of the macro in-
struction (statement 4) are a sublist. Statement 2 assigns to
&LAST the arithmetic value +5, which is equal to the num-
ber of operands in the sublist. Therefore, in statement 3,
&NUMBER (&LAST) is replaced by the fifth operand of
the sublist.

SETC -- Set Character

The SETC instruction is used to assign a character value
to a SETC symbol. The format of this instruction is shown
in Figure 50.

Name Operation Operand

A SETC symbol SETC One operand, of the
form described in the

following text.

Figure 50, SETC Statement Format

The operand field may consist of the type attribute, a
character expression, a substring notation, or a concatena-
tion of substring notations and character expressions. A
SETA symbol may appear in the operand of a SETC state-
ment. The result is the character representation of the
decimal value, unsigned, with leading zeros removed. If the
value is zero, one decimal zero is used.

Type Attribute

The character value assigned to a SETC symbol may be a
type attribute. If the type attribute is used, it must appear
alone in the operand field. The following example assigns

to the SETC symbol &TYPE the letter that is the type at-
tribute of the macro instruction operand corresponding to
the symbolic parameter &ABC.

&TYPE SETC T &ABC
Character Expression

A character expression consists of any combination of up
to 255 characters enclosed in apostrophes.

DOS - A character expression consists of any com-
bination of characters enclosed in apostrophes
(127 characters maximum).

The first eight characters in a character value enclosed
in apostrophes in the operand field are assigned to the
SETC symbol in the name field. The maximum size char-
acter value that can be assigned to a SETC symbol is eight
characters.

Evaluation of Character Expressions: The following state-
ment assigns the character value AB%4 to the SETC symbol
&ALPHA:

&ALPHA SETC *AB%A’

More than one character expression may be concaten-
ated into a single character expression by placing a period
between the terminating apostrophe of one character ex-
pression and the opening apostrophe of the next character
expression. For example, either of the following state-
ments may be used to assign the character value ABCDEF

to the SETC symbol &BETA:
&BETA SETC ’ABCDEF’
&BETA SETC ’ABC’.’DEF’

Two apostrophes must be used to represent an apos-
trophe that is part of a character expression.

The following statement assigns the character value
L’SYMBOL to the SETC symbol &LENGTH:

&LENGTH SETC L’ ’SYMBOL’

Variable symbols may be concatenated with other char-
acters in the operand field of a SETC instruction, according
to the general rules for concatenating symbolic parameters
with other characters.

If &ALPHA has been assigned the character value
AB%4, the following statement may be used to assign the
character value AB%4RST to the variable symbol
&GAMMA:

&GAMMA SETC ’A&ALPHA RST’

Two ampersands must be used to represent an ampersand
that is not part of a variable symbol. Both ampersands be-
come part of the character value assigned to the SETC
symbol. They are not replaced by a single ampersand.

The IBM Communications Controller Macro Language 45

The following statement assigns the character value
HALF&& to the SETC symbol &AND:

&AND SETC "HALF&&’

Substring Notation

The character value assigned to a SETC symbol may be a
substring character value. Substring character values permit
the programmer to assign part of a character value to a
SETC symbol.

{f'you want to assign part of a character value to a
SETC symbol, you must indicate to the assembler in the
operand field of a SETC instruction: (1) the character
value itself, and (2) the part of the character value he wants
to assign to the SETC symbol. The combination of (1) and

2} in the operand field of a SETC instruction is called a
substring notation. The character value that is assigned to
the SETC symbeol in the name field is called a substring
character value.

Substring notation consists of a character expression,
immediately followed by two arithmetic expressions that
arc separated from each other by a comma and are en-
closed in parentheses. The two arithmetic expressions may
be any expression that is allowed in the operand field of a
SETA instruction.

The first expression indicates the first character in the
character expression that is to be assigned to the SETC
symbol in the name field. The second expression indicates
the number of consecutive characters in the character
expression (starting with the character indicated by the
first expression) that are to be assigned to the SETC sym-
bol. If a substring asks for more characters than are in
the character string, only the characters in the string will
be assigned.

The maximum size substring character value that can be
assigned to a SETC symbol is eight characters. The maxi-
mum size character expression the substring character
value can be chosen from is 255 characters. If a value
greater than 8 is specified, the leftmost 8 characters will be
used.

DOS - The maximum size character expression the
substring character value can be chosen from
is 127 characters.

The following are valid substring notations:

’&ALPHA’ (2, 5)

'AB%4 (& AREA+2, 1)
"&ALPHA.RST’ (6, &A)
"ABC&GAMMA’ (&A, &AREA+2)

The following are invalid substring notations:

*&BETA’ (4, 6)
{blanks between character value and arithmetic
expressions)

46 IBM 3705 Communications Controller Assembler Language

’L”SYMBOL’ (142-EXYZ)

{only one arithmetic expression)
’AB&4&ALPHA’ (8 &FIELD*2)

{arithmetic expressions not separated by a comma)
'BETA’ 4,6

{arithmetic expressions not enclosed in parentheses)

Using SETC Symbols

The character value assigned to a SETC symbol is substi-
tuted for the SETC symbol when it is used in the name,
operation, or operand field of a statement.

For example, consider the following macro definition,
macro instruction, and generated statements:

MACRO
&NAME MOVE &TO, &FROM
LCLC &PREFIX
1 &PREFIX SETC FIELD’
&NAME ST 2,SAVEAREA
2 L 2,&PREFIX&FROM
3 ST 2,&PREFIX&TO
L 2,SAVEAREA
MEND
HERE MOVE A,B
HERE ST 2,SAVEAREA
L 2,FIELDB
ST 2,FIELDA
L 2,SAVEAREA

Statement 1 assigns the character value FIELD to the
SETC symbol &PREFIX. In statements 2 and 3, &PREFIX
is replaced by FIELD.

The following example shows how the value assigned
to a SETC symbol may be changed in a macro definition:

MACRO
&NAME MOVE &TO, &FROM
LCLC &PREFIX
1 &PREFIX SETC FIELD’
&NAME ST 2,SAVEAREA
2 L 2,&PREFIX&FROM
3 &PREFIX SETC ’AREA’
4 ST 2,&PREFIX&TO
L 2,SAVEAREA
MEND
HERE MOVE A, B
HERE ST 2,SAVEAREA
L 2,FIELDB
ST 2,AREA
L 2,SAVEAREA

Statement 1 assigns the character value FIELD to the
SETC symbol &PREFIX; therefore, &PREFIX is replaced

by FIELD in statement 2. Statement 3 assigns the char-

acter value AREA to &PREFIX; therefore, &PREFIX

is replaced by AREA, instead of FIELD, in statement 4.
The following example illustrates the use of a substring

notation as the operand field of a SETC instruction:

MACRO
&NAME MOVE &TO, &FROM
LCLC &PREFIX
1 &PREFIX SETC &TO° (1, 5)
&NAME ST 2,SAVAREA
2 L 2,&PREFIX&FROM
ST 2,&TO
L 2,SAVEAREA
MEND
HERE MOVE FIELDA,B
HERE ST 2,SAVEAREA
L 2,FIELDB
ST 2,FIELDA
L 2,SAVEAREA

Statement 1 assigns the substring character value FIELD
(the first five characters corresponding to symbolic param-
eter &TO) to the SETC symbol &PREFIX; therefore,
FIELD replaces &PREFIX in statement 2.

SETB -- Set Binary

The SETB instruction may be used to assign the binary
value 0 or 1 to a SETB symbol. The format of this instruc-
tion is shown in Figure 51.

Name Operation Operand

SETB |AOoralenclosed or
not enclosed in parenthe-

ses, or a logical expression

A SETB symbol

enclosed in parentheses.

Figure 51. SETB Statement Format

The operand field may contain a O or a 1 or a logical
expression enclosed in parentheses. A logical expression
is evaluated to determine if it is true or false; the SETB
symbol in the name field is then assigned the binary value
1 or 0, corresponding to true or false, respectively.

A logical expression consists of one term or a logical
combination of terms. The terms that may be used alone or
in combination with each other are arithmetic relations,
character relations, and SETB symbols. The logical oper-
ators used to combine the terms of an expression are AND,
OR, and NOT.

An expression may not contain two terms in succession.
A logical expression may contain two operators in suces-
sion only if the first operator is either AND or OR and the

second operator is NOT. A logical expression may begin
with the operator NOT. It may not begin with the oper-
ators AND or OR.

An arithmetic relation consists of two arithmetic ex-
pressions, connected by a relational operator. A character
relation consists of two character values connected by a
relational operator. The relational operators are EQ
(equal), NE (not equal), LT (less than), GT (greater than),
and GE (greater than or equal).

Any expression that may be used in the operand field of
a SETA instruction may be used as an arithmetic expression
in the operand field of a SETB instruction. Anthing that
may be used in the operand field of a SETC instruction
may be used as a character value in the operand field of a
SETB instruction. This includes substring and type attri-
bute notations. The maximum size of the character values
that can be compared is 255 characters.

DOS - The maximum size of the character values
that can be compared is 127 characters.

The relational and logical operators must be immedi-
ately preceded and followed by at least one blank or other
special character. Each relation may or may not be enclos-
ed in parentheses. If a relation is not enclosed in paren-
theses, it must be separated from the logical operators by
at least one blank or other special character.

The following are valid operand fields of SETB
instructions:

(&AREA+2 GT 29)
(CAB%4’ EQ '&ALPHA’)
(T’&ABC NE T’&XYZ)
(T’&P12 EQ’ F)
(&AREA+2 GT 29 OR &B)
(NOT &B AND &AREA+X2D’ GT 29)
(C&C’ EQ’ MD")
©
The following are invalid operand fields of SETB
instructions:

&B (not enclosed in parentheses)
(T°&P12 EQ °F’ &B)
(two terms in succession)
(CAB%4’ EQ ’ALPHA’ NOT &B)
(The NOT operator must be preceded by AND or OR)
(AND T’&P12 EQ °F’)
(expression begins with AND)

Evaluation of Logical Expressions

The following procedure is used to evaluate a logical ex-
pression in the operand field of a SETB instruction:

1. Each term (that is, arithmetic relation, character rela-
tion, or SETB symbol) is evaluated and given its logical
value (true or false).

2. The logical operations are performed by moving from

The IBM Communications Controller Macro Language 47

W =

left to right, with NOTSs being performed before ANDs,
and ANDs being performed before ORs.

3. The computed result is the value assigned to the SETB
symbol in the name field.

The logical expressiori in the operand field of a SETB
instruction may contain one or more sequences of logically
combined terms that are enclosed in parenthese. A sequ-
ence of parenthesized terms may appear within another
parenthesized sequence.

The following are examples of SETB instruction op-
erand fields that contain parenthesized sequences of terms.

(NOT (&B AND &AREA+X"2D’ GT 29))
(&B AND (T°&P12 EQ °F’ OR &B))

The parenthesized portion or portions of a logical expres-

sion are evaluated before the rest of the terms in the expres-
sion are evaluated. If a sequence of parenthesized terms
appears within another parenthesized sequence, the inner-
most sequence is evaluated first. Five levels of parentheses
are permissible.

Using SETB Symbols

The logical value assigned to a SETB symbol is used for the
SETB symbol appearing in the operand field of an AIF in-
struction or another SETB instruction.

If a SETB symbol is used in the operand field of a SETA
instruction or in arithmetic relations in the operand fields
of AIF and SETB instructions, the binary values 1 (true)
and O (false) are converted to the arithmetic values +1 and
0, respectively.

If a SETB symbol is used in the operand field of SETC
instruction, in character relations in the operand fields of
AIF and SETB instructions, or in any other statement, the
binary values 1 (true) and O (false), are converted to the
character values 1 and O, respectively.

The following example illustrates these rules. It is as-
sumed that ’&TO EQ 4 is true, and K’&TO EQ 0 is false.

MACRO
&NAME MOVE &TO, &FROM
LCLA &AL
LCLB &B1, &B2
LCLC &Cl1
&B1 SETB (L’&TO EQ 4)
&B2 SETB (K’&TO EQ 0)
&AL SETA &B1
&C1 SETC "&B2’
ST 2,SAVEAREA
L 2.&FROM&AL
ST 2,&TO&C1
L 2,SAVEAREA
MEND
HERE ~ MOVE FIELDA, FIELDB
HERE ST 2,SAVEAREA

48 IBM 3705 Communications Controller Assembler Language

L 2,FIELDBI1
ST 2,FIELDAO
L 2,SAVEAREA

Because the operand field of statement 1 is true, &B1
is assigned the binary value 1; therefore, the arithmetic
value +1 is substituted for &B1 in statement 3. Because
the operand field of statement 2 is false, &B2 is assigned
the binary value 0; therefore, the character value O is sub-
stituted for &B2 in statement 4.

Concatenating Substring Notations and Character Expres-
sions: Substring notations may be concatenated with
character expressions in the operand field of a SETC instruc-
tion. If a substring notation follows a character expression,
the two may be concatenated by placing a period between
the terminating apostrophe of the character expression and
the opening apostrophe of the substring notation.

For example, if &ALPHA has been assigned the char-
acter value AB%4, and &BETA has been assigned the char-
acter value ABCDEF, then the following statement assigns
&GAMMA the character value AB%4BCD:

&GAMMA SETC ’ALPHA’ . "&BETA’ (2,3)

If a substring notation precedes a character expression
or another substring notation, the two may be concaterated
by writing the opening apostrophe of the second item im-
mediately after the closing parenthesis of the substring
notation.

You may optionally place a period between the closing
parenthesis of a substring notation and the opening apos-
trophe of the next item in the operand field.

If &ALPHA has been assigned the character value AB%A4,
and &ABC has been assigned the character valur 5RS, either
of the following statements may be used to assign &WORD
the character value AB%45RS:

Name Operation Operand
&WORD SETC "&ALPHA’ (1,4) *&ABC’
&WORD SETC

"&ALPHA’ (1,4) "&ABC’(1,3)

If a SETC symbol is used in the operand field of a SETA
instruction, the character value assigned to the SETC sym-
bol must be one to eight decimal digits.

If a SETA symbol is used in the operand field of a SETC
statement, the arithmetic value is converted to an unsigred
integer with leading zeros removed. If the value is zero, it
is converted to a single zero.

AIF -- Conditional Branch

The AIF instruction is used to conditionally alter the sequ-
ence in which source program statements or macro defini-
tion statements are processed by the assembler. The assem-
bler assigns a maximum count of 4096 AIF and AGO
branches that may be executed in the source program or in
a macro definition. When a macro definition calls an inrier

macro definition, the current value of the count is saved and

a new count of 4096 is set up for the inner macro definition.

When processing in the inner definition is completed and a
return is made to the higher definition, the saved count is
restored.

DOS - The assembler assigns a maximum count of
150 AIF and AGO branches that may be exe-
cuted in the source program or in a macro de-
finition. When a macro definition calls an
inner macro definition, the current value of
the count is saved and a new count of 150 is
set up for the inner macro definition.

The format of this instruction is shown in Figure 52:

Name Operation Operand

A sequence symbol [AIF
or blank

A logical expression en-
closed in parentheses,
immediately followed by
a sequence symbol.

Figure 52, AIF Statement Format

Any logical expression that may be used in the operand
field of a SETB instruction may be used in the operand
field of an AIF instruction. The sequence symbol in the
operand field must immediately follow the closing paren-
thesis of the logical expression.

The logical expression in the operand field is evaluated
to determine if it is true or false. If the expression is true,
the statement named by the sequence symbol in the oper-
and field is the next statement processed by the assembler.
If the expression is false, the next sequential statement is
processed by the assembler.

The statement named by the sequence symbol may
precede or follow the AIF instruction.

If an AIF instruction is in a macro definition, then the
sequence symbol in the operand field must appear in the
name field of a statement in the definition. If an AIF in-
struction appears outside macro definitions, then the sequ-
ence symbol in the operand field must appear in the name
field of a statement outside macro definitions.

The following are valid operand fields of AIF
instructions:

(&AREA+X’2D’ GT 29). READER
(T’&P12 EQ °F’) . THERE
(&FIELD3’ EQ’°) . NO3

The following are invalid operand fields of AIF
instructions:

(T’&ABC NE T’&XYZ) (no sequence symbol)
X4F2 (no logical expression)

(T’&ABC NE T’&XYZ) . X4F2
(blanks between logical expression and sequence
symbol)

The following macro definition may be used to generate
the statements needed to move a fullword fixed-point num-
ber from one storage area to another. The statements will
be generated only if the type attribute of both storage
areas is the letter F.

MACRO
&N MOVE &T, &F
1 AIF (T’&T NE T°&F). END
2 AIF (T’&T NE ’F’) . END
3 &N ST 2,SAVEAREA
L 2,&F
ST 2,&T
L 2,SAVEAREA
4 .END MEND

The logical expression in the operand field of statement
1 has the value frue if the type attributes of the two macro
instruction operands are not equal. If the type attributes
are equal, the expression has the logical value faise.

Therefore, if the type attributes are not equal, statement
4 (the statement named by the sequence symbol .END) is
the next statement processed by the assembler. If the type
attributes are equal, statement 2 (the next sequential state-
ment) is processed.

The logical expression in the operand field of statement
2 has the value frue if the type attribute of the first macro
instruction operand is not the letter F. If the type attribute
is the letter F, the expression has the logical value faise.

Therefore, if the type attribute is not the letter F, state-
ment 4 (the statement named by the sequence symbol
END) is the next statement processed by the assembler.
If the type attribute is the letter F, statement 3 (the next
sequential statement) is processed.

AGO -- Unconditional Branch

The AGO instruction is used to unconditionally alter the
sequence in which source program or macro definition
statements are processed by the assembler. The assembler
assigns a maximum count of 4096 AIF and AGO branches
that may be executed in the source program or in a macro
definition.

When a macro definition calls an inner macro definition,
the current value of the count is saved and a new count of
4096 is set up for the inner macro definition. When pro-
cessing in the inner definition is completed and a return is
made to the higher definition, the saved count is restored.

DOS - The assembler assigns a maximum count of 150
AIF and AGO branches that may be executed
in the source program or in a macro definition.
When a macro definition calls an inner macro
definition, the current value of the count is

saved and a new count of 150 is set up for the

The IBM Communications Controller Macro Language 49

inner macro instruction. When processing in
the inner definition is completed and a return
is made to the higher definition, the saved
count is restored.

The format of this instruction is shown in Figure 53:

Name

Operand

Operation

A sequence symbol | AGO A sequence symbol

or blank

Figure 53, AGO Statement Format

The statement named by the sequence symbol in the
operand field is the next statement processed by the
assembler.

The statement named by the sequence symbol may
precede or follow the AGO instruction.

If an AGO instruction is part of a macro definition,
then the sequence symbol in the operand field must appear
in the name field of a statement that is in that definition.
If an AGO instruction appears outside macro definitions,
then the sequence symbol in the operand field must appear
in the name field of a statement outside macro definitions.

The following example illustrates the use of the AGO
instruction:

MACRO
&NAME MOVE &T, &F
1 AIF (T°&T &Q’F’) . FIRST
2 AGO .END
3 .FIRST AIF (T’&T NE T’&F). END
&NAME ST 2,SAVEAREA
L 2, &F
ST 2,&T
L 2, SAVEAREA
4 .END MEND

statement 1 is used to determine if the type attribute
of the first macro instruction operand is the letter F. If th
type attribute is the letter F, statement 3 is the next state-
ment processed by the assembler. If the type attribute is
not the letter F, statement 2 is the next statement processed
by the assembler.

Statement 2 is used to indicate to the assembler that
the next statement to be processed is statement 4 (the
statement named by sequence symbol .END).

ACTR -- Conditional Assembly Loop Counter

The ACTR instruction is used to assign a maximum count
{different from the standard count of 4096) to the number
of AGO and AIF branches executed within a macro defini-
tion or within the source program.

DOS - Different from the standard count of 150

50 iBM 3705 Communications Controller Assembler Language

The format of this instruction is as follows in Figure 54:

Name Operation Operand

Blank ACTR | Any valid SETA expres-

sion

Figure 54. ACTR Statement Format

This statement, which can occur only immediately after
the global and local declarations, causes a counter to be set
to the value in the operand field. The counter is checked
for zero or a negative value; if it is not zero or negative, it
is decremented by one each time an AGO or AIF branch
is executed. If the count is zero before decrementing, the
assembler will take one of two actions:

1. If processing is being performed inside a macro defini-
tion, the entire nest of macro definitions will be termi-
nated and the next source statement will be processed.

2. If the source program is being processed, an END card
will be generated.

An ACTR instruction in a macro definition affects only
that definition; it has no effect on the number of AIF and
AGO branches that may be executed in other macro defini-
tions called.

ANOP -- Assembly No Operation

The ANOP instruction facilitates conditional and uncondi-
tional branching to statements named by symbols or vari-
able symbols.

The format of this instruction is shown in Figure 55:

Name Operation Operand

A sequence symbol | ANOP Blank

Figure 55. ANOP Statement Format

If you want to use an AIF or AGO instruction to branch
to another statement, you must place a sequence symbol in
the name field of the statement to which you want to
branch. However, if you have already entered a symbol or
variable symbol in the name field of that statement, you
cannot place a sequence symbol in the name field. Instead,
you must place an ANOP instruction before the statement
and then branch to the ANOP instruction. This has the
same effect as branching to the statement immediately after
the ANOP instruction.

The following example illustrates the use of the ANOP
instruction:

MACRO

&NAME MOVE &T, &F

LCLC &TYPE

1 AIF (T’&T EQ 'F’). FTYPE

2 &TYPE SETC 'H

3 FTYPE ANOP

4. &NAME ST&TYPE 2, SAVEAREA
L&TYPE 2, &F
ST&TYPE 2,&T
L&TYPE 2, SAVEAREA
MEND

Statement 1 is used to determine if the type attribute
of the first macro instruction operand is the letter F. If
type attribute is not the letter F, statement 2 is the next
statement processed by the assembler. If the type attribute
is the letter F, statement 4 should be processed next.
However, since there is a variable symbol (&NAME) in the
name field of statement 4, the required sequence symbol
(.FTYPE) cannot be placed in the name field. Therefore,
an ANOP instruction (statement 3) must be placed before
statement 4.

Then, if the type attribute of the first operand is the
letter F, the next statement processed by the assembler is
the statement named by sequence symbol .FTYPE. The

value of &TYPE retains its initial null character value be-
cause the SETC instruction is not processed. Since
.FTYPE names an ANOP instruction, the next statement
processed by the assembler is statement 4, the statement
following the ANOP instruction.

Conditional Assembly Elements

The following chart (Figure 56) summarizes the elements
that can be used in each conditional assembly instruction.
Each row in this chart indicates which elements can be
used in a single conditional assembly instruction. Each
column is used to indicate the conditional assembly instruc-
tions in which a particular element can be used.

The intersection of a column and a row indicates wheth-
er an element can be used in an instruction, and if so, in
what fields of the instruction the element can be used. For
example, the intersection of the first row and the first col-
umn of the chart indicates that symbolic parameters can
be used in the operand field of SETA instructions.

Variable Symbols
SET Symbols Attributes
S.P.| SETA SETB SETC T"L’ | K’N> S.S.

SETA O [NO O 0 03 | oo
SETB 0 | 0 NO 0 0'0° 0%?
SETC 0 |0 0 NO O
AIF 0 |0 o o o0'0% 0%* No
AGO NO
ANOP N
ACTR 0 |0 o 0% o |oo

1Only in character relations
2 Only in arithmetic relations
3 Only if one to eight decimal digits

Figure 56. Elements of Conditional Assembly Instructions

EXTENDED FEATURES OF THE MACRO LANGUAGE

The extended features of the macro language allow you to:

. Terminate processing of a macro definition

. Generate error messages

. Define global SET symbols

. Define subscripted SET symbols

. Use system variable symbols

. Prepare keyword and mixed-mode macro definitions
and write keyword and mixed-mode macro definitions.

SN AW =

MEXIT -- Macro Definition Exit

The MEXIT instruction is used to indicate to the assembler
that it should terminate processing of a macro definition.
The format of this instruction is:

Name Operation Operand 1
A sequence symbol | MEXIT Blank
or blank

Figure 57. MEXIT Statement Format

The IBM Communications Controller Macro Language 51

The MEXIT instruction may be used only in a macro
definition.

If the assembler processes a MEXIT instruction that is
in a macro definition corresponding to an outer macro in-
struction, the next statement processed by the assembler is
the next statement outside macro definitions.

If the assembler processes a MEXIT instruction that is
in a macro definition corresponding to a second- or
third-level macro instruction, the next statement processed
by the assembler is the next statement after the second- or
third-level macro instruction in the macro definition,
respectively.

MEXIT should not be confused with MEND. MEND
indicates the end of a macro definition. MEND must be the
last statement of all macro definitions, including those that
contain one or more MEXIT instructions.

The following example illustrates the use of the MEXIT
instruction:

MACRO
&NAME MOVE &T, &F
1 AIF (T’&T EQ ’F’) .OK
2 MEXIT
3 0K ANOP
&NAME ST 2, SAVEAREA
L 2,&F
ST 2,&T
L 2, SAVEAREA
MEND

Statement 1 is used to determine if the type attribute
of the first macro instruction operand is the letter F. If the
type attribute is the letter F, the assembler processes the
remainder of the macro definition, starting with statement
3. If the type attribute is not the letter F, the next state-
ment processed by the assembler is statement 2. Statement
2 indicates to the assembler that it is to terminate proces-
sing of the macro definition.

MNOTE -- Request for Error Message

The MNOTE instruction may be used to request the as-
sembler to generate an error message. The format of this
instruction is shown in Figure 58.

Name Operation Operand

A sequence symbol,] MNOTE | A severity code, followed
variable symbol or by a comma, followed by
blank any combination of
characters enclosed in
apostrophes

Figure 58. MNOTE Statement Format

52 IBM 3705 Communications Controller Assembler Language

The operand of the MNOTE instruction may also be
written, using one of the following forms:

MNO MNOTE severity code, 'message’
MNP MNOTE ‘message’
MNQ MNOTE ‘message’

The MNOTE instruction may be used only in a macro
definition. Variable symbols may be used to generate the
MNOTE mnemonic operation code, the severity code, and
the message.

The severity code may be a decimal integer from 0
through 255 or an asterisk. If it is omitted, 1 is assumed.
The severity code indicates the severity of the error, a
higher severity code indicating a more serious error.

DOS - In DOS the severity code is for your informa-
tion only. It is not used by the DOS assembler
or control program.

When MNOTE * occurs, the statement in the operand
field will be printed as a comment.

Two apostrophes must be used to represent an apos-
trophe enclosed in apostrophes in the operand field of an
MNOTE instruction. One apostrophe is listed for each pair
of apostrophes in the operand field. If any variable symbols
are used in the operand field of an MNOTE instruction, they
are replaced by the values assigned to them. Two amper-
sands must be used to represent an ampersand that is not
part of a variable symbol in the operand field of an MNOTE
statement. One ampersand is listed for each pair of amper-
sands in the operand field.

The following example illustrates the use of the MNOTE
instruction:

MACRO
&NAME MOVE &T, &F
MNOTE * 'MOVE MACRO GEN’
1 AIF (T’&T NE T’&F) M1
2 AIF (T’&T NE °F’) . M2
3 &NAME ST 2, SAVEAREA
L 2, &F
ST 2,&T
L 2, SAVEAREA
MEXIT
4 Ml MNOTE "TYPE NOT SAME’
MEXIT
5 M2 MNOTE *TYPE NOT F’
MEND

Statement 1 is used to determine if the type attribute
of both macro instruction operands are the same. If they
are, statement 2 is the next statement processed by the
assembler. If they are not, statement 4 is the next state-
ment processed by the assembler. Statement 4 causes an
error message to be printed in the source program listing
indicating that the type attributes are not the same.

Statement 2 is used to determine if the type attribute
of the first macro instruction operand is the letter F. If

the type attribute is the letter F, statement 3 is the next
statement processed by the assembler. If the attribute is
not the letter F, statement S is the next statement proc-
essed by the assembler. Statement 5 causes an error mes-
sage (indicating that the type attribute is not F) to be
printed in the source program listing.

Global and Local Variable Symbols

The following are local variable symbols:
1. Symbolic parameters

2. Local SET symbols

3. System variable symbols

Global SET symbols are the only global variable
symbols.

The GBLA, GBLB, and GBLC instructions define global
SET symbols, just as the LCLA, LCLB, and LCLC instruc-
tions define the SET symbols described above. Hereafter,
SET symbols defined by LCLA, LCLB, and LCLC instruc-
tions are called local SET symbols.

Global SET symbols communicate values between
statements in one or more macro definitions and state-
ments outside macro definitions. However, local SET
symbols communicate values between statements in the
same macro definition or between statements outside
macro definitions.

If a local SET symbol is defined in two or more macro
definitions or in a macro definition and outside macro
definitions, the SET symbol is considered to be a different
SET symbol in each case. However, a global SET symbol
is the same SET symbol each place it is defined.

A SET symbol must be defined as a global SET symbol
in each macro definition in which it is to be used as such.
A SET symbol must be defined as a global SET symbol
outside macro definitions, if it is to be used in this manner.

If the same SET symbol is defined as a global SET sym-
bol in one or more places and as a local SET symbol else-

where, it is considered the same symbol wherever it is de-

fined as a global SET symbol, and as a different symbol
wherever it is defined as a local SET symbol.

Defining Local and Global SET Symbols

Local SET symbols are defined when they appear in the
operand field of an LCLA, LCLB, or LCLC instruction
(described under Defining SET Symbols, previously
discussed).

Global SET symbols are defined when they appear in
the operand field of a GBLA, GBLB, or GBLC instruction.
The instruction format is shown in Figure 59.

Name Operation Operand

Blank GBLA, One or more variable

GBLB, or | symbols that are to be
GBLC used as SET symbols,
separated by commas.

Figure 59. Global SET Symbol Statement Format

The GBLA, GBLB, and GBLC instructions define
global SETA, SETB, and SETC symbols, respectively, and
assign the same initial values as the corresponding types of
local SET symbols. However, a global SET symbol is as-
signed an initial value by only the first GBLA, GBLB, or
GBLC instruction processed in which the symbol appears.
Subsequent GBLA, GBLB, or GBLC instructions processed
by the assembler do not affect the value assigned to the
SET symbol.

You should not define any global SET symbols whose
first four characters are &SYS.

If a GBLA, GBLB, or GBLC instruction is part of a
macro definition, it must immediately follow the proto-
type statement, or another GBLA, GBLB, or GBLC in-
struction. GBLA, GBLB, and GBLC instructions outside
macro definitions must appear (1) after all macro defini-
tions in the source program, (2) before all conditional as-
sembly instructions and PUNCH and REPRO statements
outside macro definitions, and (3) before the first control
section of the program.

All GBLA, GBLB, and GBLC instructions in a macro
definition must appear before all LCLA, LCLB, and LCLC
instructions in that macro definition. All GBLA, GBLB,
and GBLC instructions outside macro definitions must ap-
pear before all LCLA, LCLB, and LCLC instructions out-
side macro definitions.

Using Local and Global SET Symbols

The following examples illustrate the use of global and
local SET symbols. Each example consists of two parts.
The first part is an assembler language source program.
The second part shows the statements that would be gene-
rated by the assembler after it processed the statements in
the source program,
Example 1: This example illustrates how the same SET
symbol can be used to communicate: (1) values between
statements in the same macro definitions, and (2) dif-

ferent values between statements outside macro
definitions.

The IBM Communications Controller Macro Language 53

MACRO
&NAME LOADA
1 LCLA &A
2 &NAME IR 5, &A
3 &A SETA &A+1
MEND
4 LCLA &A
FIRST LOADA
5 LR 5, &A
LOADA
6 LR 5,&A
END FIRST
FIRST LR 5,0
LR 5,0
LR 50
IR 5,0
END FIRST

&A is defined as a local SETA symbol in a macro de-
finition (statement 1) and outside macro definitions (state-
ment 4). &A is used twice within the macro definition
(statements 2 and 3) and twice outside macro definitions
(statements 5 and 6).

Since &A is a local SETA symbol in the macro definition
and outside macro definitions, it is one SETA symbol in the
macro definition, and another SETA symbol outside macro
definitions. Therefore, statement 3 (which is in the macro
definition) does not affect the value used for &A in state-
ments 5 and 6 (which are outside macro definitions). More-
over, the use of LOADA between statements 5 and 6 alters
&A from its previous value as a local symbol within that
macro definition since the first act of the macro definition
is to set &A to zero.

Example 2: This example illustrates how a SET sym-
bol can be used to communicate values between state-
ments that are part of a macro definition and statements
outside macro definitions.

MACRO
&NAME LOADA
1 GBLA &A
2 &NAME IR 5, &A
3 &A SETA &A+1
MEND
4 GBLA &A
FIRST LOADA
5 LR 5, &A
ILOADA
6 LR 5, &A
END FIRST
FIRST LR 5,0
LR 5,1
LR 5,1
LR 5,2
END FIRST

54 IBM 3705 Communications Controller Assembler Language

&A is defined as a global SETA symbol in a macro de-
finition (statement 1) and outside macro definitions (state-
ment 4). &A is used twice within the macro definition
(statements 2 and 3) and twice outside macro definitions
(statements 5 and 6).

Since &A is a global SETA symbol in the macro defini-
tion and outside macro definitions, it is the same SETA
symbol in both cases. Therefore, statement 3 (which is in
the macro definition) affects the value used for &A in state-
ments 5. and 6 (which are outside macro definitions).

Example 3: This example illustrates how the same SET
symbol can be used to communicate: (1) values be-
tween statements in one macro definition, and (2) dif-
ferent values between statements in a different macro
definition.

&A is defined as a local SETA symbol in two different
macro definitions (statements 1 and 4). &A is used twice
within each macro definition (statements 2, 3, 5, and 6).

Since &A is a local SETA symbol in each macro defini-
tion, &A may have a different value in one macro defini-
tion, from that in another. Therefore, statement 3 (which
is in one macro definition) does not affect the value used
for &A in statement 5 (which is in the other macro defini-
tion). Similarly, statement 6 does not affect the value
used for &A in statement 2.

MACRO
&NAME LOADA
1 LCLA &A
2 &NAME LR 5, &A
3 &A SETA &A+1
MEND
MACRO
LOADB
4 LCLA &A
5 LR 5,&A
6 &A SETA &A+]
MEND
FIRST LOADA
LOADB
LOADA
LOADB
END FIRST
FIRST LR 5,0
LR 5,0
LR 5,0
LR 5,0
END FIRST

Example 4: This example illustrates how a SET symbol
can be used to communicate values between statements
that are part of two different macro definitions.

&NAME

[

&NAME

w

FIRST

FIRST

MACRO
LOADA
GBLA
LR
SETA
MEND

MACRO
LOADB
GBLA
LR
SETA
MEND

LOADA
LOADB
LOADA
LOADB
END

LR
LR
LR
LR
END

&A
5, &A
&A+1

&A
5,&A
&A+1

FIRST

5,0
5,1
5,2
5,3
FIRST

&A is defined as a global SETA symbol in two different
macro definitions (statements 1 and 4). &A is used twice
within each macro definition (statements 2, 3, 5, and 6).

Since &A is a global SETA symbol in each macro defini-
tion, it is the same SETA symbol in each macro definition,
Therefore, statement 3 (which is in one macro definition)
affects the value used for &A in statement 5 (which is in
the other macro definition). Similarly, statements 6 affect
the value used for &A in statement 2.

Example 5: This example illustrates how the same SET

symbol can be used to communicate: (1) values between

statements in two different macro definitions, and (2)
different values between statements outside macro

definitions.

&NAME

2 &NAME
3 &A

w

FIRST

MACRO
LOADA
GBLA
LR
SETA
MEND

MACRO
LOADB
GBLA
LR
SETA
MEND

LCLA
LOADA
LOADB
LR

&A
5, &A
&A+1

&A
5,&A
&A+1

&A

5, &A

LOADA
LOADB
9 LR 5,&A

END FIRST

FIRST LR 5,0
LR 5,1
LR 5,0
LR 5,2
LR 5,3
LR 5,0
END FIRST

&A is defined as a global SETA symbol in two different
macro definitions (statements 1 and 4), but it is defined
as a local SETA symbol outside macro definitions (state-
ment 7). &A is used twice within each macro definition
and twice outside macro definitions (statements 2, 3, 5,
6,8 and 9).

Since &A is a global SETA symbol in each macro de-
finition, it is the same SETA symbol in each macro defini-
tion. However, since &A is a local SETA symbol outside
macro definitions, it is a different SETA symbol outside
macro definitions.

Therefore, statement 3 (which is in one macro defini-
tion) affects the value used for &A in statement 5 (which
is in the other macro definition), but it does not affect the
value used for &A in statements 8 and 9 (which are outside
macro definitions). Similarly, statement 6 affects the value
used for &A in statement 2, but it does not affect the value
used for &A in statements 8 and 9.

Subscripted SET Symbols

Both global and local SET symbols may be defined as sub-
scripted SET symbols. The local SET symbols defined
previously were all nonsubscripted SET symbols.

Subscripted SET symbols provide the programmer with
a convenient way to use one SET symbol plus a subscript
to refer to many arithmetic, binary, or character values.

A subscripted SET symbol consists of a SET syimbol
immediately followed by a subscript that is enclosed in
parentheses. The subscript may be any arithmetic expres-
sion that is allowed in the operand field of a SETA state-
ment. The subscript may not be O or negative.

The following are valid subscripted SET symbols:

&READER (17)
&A23456(&S4)
&XAF2(25+&A2)

The following are invalid subscripted SET symbols:

&XA4F2 (no subscript)

(25) (no SET symbol)
&X4F2 (25) (subscript does not immediately follow
SET symbol)

The IBM Communications Controller Macro Language 55

Defining Subscripted SET Symbols: To use a subscripted
SET symbol, you must write in a GBLA, GBLB, GBLC,
LCLA, LCLB, or LCLC instruction, a SET symbol im-
mediately followed by a decimal integer enclosed in paren-
theses. The decimal integer, called a dimension, indicates
the number of SET variables associated with the SET sym-
bol. Every variable associated with a SET syrabol is assigned

an initial value that is the same as the initial value assigned to

the corresponding type of nonsubscripted SET symbol.

If a subscripted SET symbol is defined as global, the
same dimension must be used with the SET symbol each
timne it is defined as global.

The maximumdimension that can be used with a SETA,
SETB, or SETC symbol is 2500.

DOS - The maximum dimension that can be used with

a SETA, SETB, or SETC symbol is 255.

A subscripted SET symbol may be used only if the dec-
laration was subscripted; a nonsubscripted SET symbol
may be used only if the declaration had no subscript.

The following statements define the global SET symbols
&SBOX, &WBOX, and &PSW, and the local SET symbol
&TSW. &SBOX has 50 arithmetic variables associated with
it, &WBOX has 20 character variables, &PSW and &TSW
each have 230 binary variables.

GBLA &SBOX (50)
GBLC &WBOX (20)
GBLB &PSW (230)
LCLB &TSW (230)

Using Subscripted SET Symbols: After you have associated
a number of SET variables with a SET symbol, you may
assign values to each of the variables and use them in other
statements.

If the statements in the previous example were part
of a macro definition, (and &A was defined as a SETA
symbol in the same definition), the following statements
could be part of the same macro definition:

1 &A SETA 5

2 &PSW (&A) SETB (6 LT 2)

3 &TSW (9) SETB (&PSW (&A))
4 L 3, &SBOX (45)
5 L 4, &WBOX (17)
6 L 5, AREA

7 AR 2,3

8 CR 5,4

Statement 1 assigns the arithmetic value 5 to the non-
subscripted SETA symbol &A. Statements 2 and 3 then
assign the binary value 0 to subscripted SETB symbols
&PSW (5) and &TSW (9), respectively. Statements4, 5
and 6 generate statements that load register 3,4, and 5
with the values in storage represented by &SBOX (45),
&WBOX (17) and AREA, respectively. Statements 7 and

56 IBM 3705 Communications Controller Assembler Language

8 generate statements that add register 3 to register 2 and
compare the contents of register 4 with the contents of
register 5.

System Variable Symbols

System variable symbols are local variable symbols that are
assigned values automatically by the assembler. There are
three system variable symbols: &SYSNDX, &SYSECT,
and &SYSLIST. System variable symbols may be used in
the name, operation and operand fields of statements in
macro definitions, but not in statements outside macro
definitions. The may not be defined as symbolic param-
eters or SET symbols, nor may they be assigned values by
SETA, SETB, and SETC instructions.

&SYSNDX -- Macro Instruction Index

The system variable symbol &SYSNDX may be concate-
nated with other characters to create unique names for
statements generated from the same model statement.

&SYSNDX is assigned the four-digit number 0001 for
the first macro instruction processed by the assembler, and
it is incremented by one for each subsequent inner and
outer macro instruction processed.

If &SYSNDX is used in a model statement, SETC or
MNOTE instruction, or a character relation in a SETB or
AIF instruction, the value substituted for &SYSNDX is
the four-digit number of the macro instruction being
processed, including leading zeros.

If &SYSNDX appears in arithmatic expressions (for
example, in the operand field of a SETA instruction), the
value used for &SYSNDX is an arithmetic value.

Throughout one use of a macro definition, the value of
&SYSNDX may be considered a constant, independent
of any inner macro instruction in that definition.

The example in the next column illustrates these rules,
It is assumed that the first macro instruction processed,
OUTER 1, is the 106th macro instruction processed by
the assembler.

Statement 7 is the 106th macro instruction processed.
Therefore, &SYSNDX is assigned the number 0106 for
that macro instruction. The number 0106 is substituted
for &SYSNDX when it is used in statements 4 and 6.
Statement 4 is used to assign the character value 0106 to
the SETC symbol &NDXNUM. Statement 6 is used to
create the unique name B0106.

MACRO

INNER

GBLC &NDXNUM
1 A&SYSNDX SR 2.5

CR 2.5
2 BZL B&NDXNUM

3 B A&SYSNDX
MEND
MACRO
&NAME OUTERI
GBLC &NDXNUM
4 &NDXNUM SETC *&SYSNDX’
&NAME SR 2,4
AR 2,6
5 INNERI
6 B&SYSNDX LA 2,100
MEND
7 ALPHA OUTERI
8 BETA OUTERI
ALPHA SR 2,4
AR 2,6
A0107 SR 2,5
CR 2,5
BZL B0106
B A0107
B0106 LA 2, 1000
BETA SR 2,4
A AR 2,6
A0109 SR 2,5
CR 2,5
BZL B0108
B A0109
B0108 LA 2, 1000

Statement 5 is the 107th macro instruction processed.
Therefore, &SYSNDX is assigned the number 0107 for
that macro instruction. The number 0107 is substituted
for &SYSNDX when it is used in statements 1 and 3.

The number 0106 is substituted for the global SETC sym-
bol &NDXNUM in statement 2,

Statement 8 is the 108th macro instruction processed.
Therefore, each occurrence of &SYSNDX is replaced by
the number 0108. For example, statement 6 is used to
create the unique name B0108.

When statement 5 is used to process the 108th macro
instruction, statement 5 becomes the 109th macro in-
struction processed. Therefore, each occurrence of
&SYSNDX is replaced by the number 0109. For example,
statement 1 is used to create the unique name A0109.

&SYSECT -- Current Control Section

The system variable symbol &SYSECT may be used to re-
present the name of the control section in which a macro
instruction appears. For each inner and outer macro in-
struction processed by the assembler, &SYSECT is assigned
a value that is the name of the control section in which the
macro instruction appears.

When &SYSECT is used in a macro definition, the value
substituted for &SYSECT is the name of the last CSECT,
DSECT, or START statement that occurs before the macro

instruction. If no named CSECT, DSECT, or START state-
ments occur before a macro instruction, &SYSECT is as-
signed a null character value for that macro instruction.

CSECT or DSECT statements processed in a macro de-
finition affect the value for &SYSECT for any subsequent
inner macro instructions in that definition, and for any
other outer and inner macro instructions.

Throughout the use of a macro definition, the value of
&SYSECT may be considered a constant, independent of
any CSECT or DSECT statements or inner macro instruc-
tions in that defmition.

Statement 8 is the last CSECT, DSECT, or START
statement processed before statement 9 is processed.
Therefore, &SYSECT is assigned the value MAINPROG
for macro-instruction OUTERI in statement 9.
MAINPROG is substituted for &SYSECT when it appears
in statement 6.

Statement 3 is the last CSECT, DSECT, or START
statement processed before statement 4 is processed.
Therefore, &SYSECT is assigned the value CSOUT]1 for
macro-instruction INNER in statement 4. CSOUT1 is
substituted for &SYSECT when it appears in statement 2.

Statement 1 is used to generate a CSECT statement
for statement 4. This is the last CSECT, DSECT, or
START statement that appears before statement 5;
therefore, &SYSECT is assigned the value INA for
macro-instruction INNER in statement 5. INA is sub-
stituted for &SYSECT when it appears in statement 2.
The next example illustrates these rules.

Name Operation Operand

MACRO

INNER
1 &INCSECT CSECT
2 DC

MEND

MACRO

OUTERI

CSECT

DS 100C

4 INNER INA

5 INNER INB

6 DC A(&SYSECT)
MEND

MACRO

7 OUTER?2
DC A(&SYSECT)
MEND

CSECT

DS 200C
9 OUTERI1

10 OUTER2

MAINPROG CSECT
DS 200C

&INCSECT

A(&SYSECT)

3 CSOUT!1

8 MAINPROG

The IBM Communications Controller Macro Language 57

CSOUT1 CSECT
DS 100C
INA CSECT
DC A(CSOUT!)
INB CSECT
DC A(INA)
DC A(MAINPROG)
DC A(INB)

Statement 1 is used to generate a CSECT statement for
statement 5. This is the last CSECT, DSECT, or START
statement that appears before statement 10. Therefore,
&SYSECT is assigned the value INB for macro-instruction
OUTER?2 in statement 10. INB is substituted for&SYSECT
when it appears in statement 7.

&SYSLIST -- Macro Instruction Operand

The system variable symbol &SYSLIST provides you with
an alternative to symbolic parameters for referring to
positional macro instruction operands.

&SYSLIST and symbolic parameters may be used in the
same macro definition.

&SYSLIST(n) may be used to refer to the nth positional
macro instruction operand. In addition, if the nth operand
is a sublist, then &SYSLIST (n,m) may be used to refer to
the mth operand in the sublist, where n and m may be any
arithmetic expressions allowed in the operand field of a
SETA statement. M may be equal to, or greater than, 1
and N has a range of from 1 to 200.

DOS - A range of 1 to 100.

The type, length, and count attributes of &SYSLIST(n)
and &SYSLIST(n,m) and the number attributes of
&SYSLIST(n) and &SYSLIST may be used in conditional
assembly instructions. N’&SYSLIST may be used to refer
to the total number of positional operands in a macroin-
struction statement. N’&SYSLIST(n) may be used to
refer to the number of operands in a sublist. If the nth
operand is omitted, N’ is zero; if the nth operand is not
a sublist, N’ is one.

The following procedure is used to evaluate
N’&SYSLIST:

1. A sublist is considered to be one operand.
2. The count insludes specifically omitted (by means
of commas) operands.

Examples:
Macro Instruction N&SYSLIST
MAC K1=DS 0

MAC , K1=DC

MAC FULL,,F(‘1’,2’),K1=DC
MAC ,

MAC

(=3 S

58 IBM 3705 Communications Controller Assembler Language

Keyword Macro Definitions and Instructions

Keyword macro definitions provide an alternate way of
preparing macro definitions.

A keyword macro definition enables you to reduce the
number of operands in each macro instruction that cor-
responds to the definition and to write the operands in any
order.

The macro instructions that correspond to the macro
definitions just described (hereafter called positional macro
instructions and positional macro definitions, respectively)
require the operands to be written in the same order as the
corresponding symbolic parameters in the operand field of
the prototype statement.

In a keyword macro definition, you can assign standard
values to any symbolic parameters that appear in the op-
erand field of the prototype statement. The standard
value assigned to a symbolic parameter is substituted for
the symbolic parameter, if you do not write anything in
the operand field of the macro instruction to correspond
to the symbolic parameter.

When a keyword macro instruction is written, you need
write only one operand for each symbolic parameter whose
value you want to change.

Keyword macro definitions are prepared in the same
way as positional macro definitions, except that the proto-
type statement is written differently and &SYSLIST may
not be used in the definition.

Keyword Prototype
The format of this statement is shown in Figure 60.

Name Operation Operand

A symbolic par-
ameter or blank

A symbol | One or more operands of
the form described in the
following text, separated
by commas.

Figure 60. Keyword Prototype Statement Format

Each operand must consist of a symbolic parameter,
immediately followed by an equal sign and, optionally,
followed by a standard value. This value must not include
a keyword.

A standard value that is part of an operand must im-
mediately follow the equal sign.

Anything that may be used as an operand in a macro
instruction, except variable symbols, may be used as a
standard value in a keyword prototype statement. The

rules for forming valid macro instruction operands have
been previously discussed.
The following are valid keyword prototype operands:

&READER=
&LOOP2=SYMBOL

The following are invalid keyword prototype operands:

CARDAREA (no symbolic parameter)
&TYPE (no equal sign)
&TWO=123 (equal sign does not immediately

follow symbolic parameter)
(standard value does not imme-
diately follow equal sign)

&AREA=X’189A’

The following keyword prototype statement contains
a symbolic parameter in the name field and four operands
in the operand field. The first two operands contain
standard values. The mnemonic operation code is MOVE,

&N MOVE &R=2,& A=8,&T=,&F=

Keyword Macro Instruction

After you have prepared a keyword macro definition, you
may use it by writing a keyword macro instruction.

The format of a keyword macro instruction is shown
in Figure 61.

Name Operation Operand

A symbol, sequence| Mnemonic | Zero or motre operands of

symbol, or blank | operation |the form described in the
code following text, separated
by commas.

Figure 61. Keyword Macro Instruction Format

Each operand consists of a keyword immediately fol-
lowed by an equal sign and an optional value which may
not include a keyword. Anything that may be used as an
operand in a positional macro instruction may be used as
a value in a keyword macro instruction. The rules for form-
ing valid positional macro instruction operands are detailed
in the preceding text under Macro Instruction Prototype.

A keyword consists of one through seven letters and
digits, the first of which must be a letter.

The keyword part of each keyword macro instruction
operand must correspond to one of the symbolic param-
eters that appears in the operand field of the keyword
prototype statement. A keyword corresponds to a sym-
bolic parameter if the characters of the keyword are iden-
tical to the characters of the symbolic parameter that
follow the ampersand.

The following are valid keyword macro instruction
operands:

LOOP2=SYMBOL
TO=

The following are invalid keyword macro instruction
operands:

&X4F2=0(2, 3) (keyword does not begin with a

letter)

CARDAREA=A+2 (keyword is more than seven
characters)

=(TO (8) ,(FROM)) (no keyword)

The operands in a keyword macro instruction may be
written in any order. If an operand appeared in a keyword
prototype statement, a corresponding operand does not
have to appear in the keyword macro instruction. If an
operand is omitted, the comma that would have separated
it from the next operand need not be written.

The following rules are used to replace the symbolic
parameters in the statements of a keyword macro
definition:

1. If a symbolic parameter appears in the name field of the
prototype statement and the name field of the macro
instruction contains a symbol, the symbolic parameter
is replaced by the symbol. If the name field of the
macro instruction is blank or contains a sequence
symbol, the symbolic parameter is replaced by a null
character value.

2. If a symbolic parameter appears in the operand field of
the prototype statement and the macro instruction
contains a keyword that corresponds to the symbolic
parameter, the value assigned to the keyword replaces
the symbolic parameter.

3. If a symbolic parameter was assigned a standard value
by a prototype statement and the macro instruction does
not contain a keyword that corresponds to the symbolic
parameter, the standard value assigned to the symbolic
parameter replaces the symbolic parameter. Otherwise,
the symbolic parameter is replaced by a null character
value.

Note: If a standard value is a self-defining term, the
type attribute assigned to the standard value is the
letter N. If a standard value is omitted, the type at-
tribute assigned to the standard value is the letter O.
All other standard values are assigned the type attribute
U.

The following keyword macro definition, keyword
macro instruction, and generated statements illustrate
these rules.

Statement 1 assigns the standard values 2 and S to the
symbolic parameters &R and &A, respectively. Statement
6 assigns the values FA, FB, and THERE to the keywords

The IBM Communications Controller Macro Language 59

T, F, and A, respectively. The symbol HERE is used in
the name field of statement 6.

Since a symbolic parameter (&N) appears in the name
field of the prototype statement (statement 1) and the cor-
responding characters (HERE) of the macro instruction
(statement 6) are a symbol, &N is replaced by HERE in
statement 2.

MACRO
1 &N MOVE &R=2 & A=S,&T=&F=
2 &N ST &R, &A
3 L &R, &F
4 ST &R, &T
5 L &R, &A
MEND
6 HERE MOVE T=FA,F=FB,A=THERE
HERE ST 2, THERE
L 2,FB
ST 2,FA
L 2, THERE

Since &T appears in the operand field of statement 1
and statement 6 contains the keyword (T) that corresponds
to &T, the value assigned to T (FA) replaces &T in state-
ment 4. Similarly, FB and THERE replaces &F and &A
in statement 3 and in statements 2 and 5, respectively.
Note that the value assigned to &A in statement 6 is used
instead of the value assigned to &A in statement 1.

Since &R appears in the operand field of statement 1,
and statement 6 does not contain a corresponding key-
word, the value assigned to &R (2) replaces &R in state-
ments 2, 3,4, and 5.

Operand Sublists: The value assigned to a keyword and
the standard value assigned to a symbolic parameter may
be an operand sublist. Anything that may be used as an
operand sublist in a positional macro instruction may be
used as a value in a keyword macro instruction and as a
standard value in a keyword prototype statement. The
rules for forming valid operand sublists are detailed in the
preceding text under Operand Sublists.

Keyword Inner Macro Instructions: Keyword and posi-
tional inner macro instructions may be used as model
statements in either keyword or positional macro
definitions.

Mixed-Mode Macro Definitions and Instructions

Mixed-mode macro definitions allow you to use the features
of keyword and positional macro definitions in the same
macro definition.

Mixed-mode macro definitions are prepared in the same
way as positional macro definitions, except that the proto-
type statement is written differently. If &SYSLIST is used,

60 IBM 3705 Communications Controller Assembler Language

it refers only to the positional operands in the prototype.
Subscripting past the last positional parameter will yield
an empty string and a type attribute of 0.

Mixed-Mode Prototype

The format of this statement is shown in Figure 62;

Name Operation Operand

Two or more operands of
the form described in the
following text, separated

by commas.

A symbolic par- A symbol

ameter or blank

Figure 62. Mixed-Mode Prototype Statement Format

The operands must be valid operands of positional and
keyword prototype statements. All of the positional op-
erands must precede the first keyword operand. The rules
for forming positional operands are discussed under Macro
Instruction Prototype. The rules for forming keyword op-
erands have been previously discussed under Keyword
Prototype.

The following sample mixed-mode prototype statement
contains three positional operands and two keyword
operands:

&N MOVE &TY &P &R, &TO=,&F=

Mixed-Mode Macro Instruction

The format of a mixed-mode macro instruction is shown
in Figure 63:

!' Name Operation Operand

A symbol, sequence [Mnemonic | Zero or more operands of
symbol, or blank |operation |the form described in the
code following text, separated

by commas.

Figure 63. Mixed-Mode Macro Instruction Format

The operand field consists of two parts. The first part
corresponds to the positional prototype operands. This
part of the operand field is written in the same way that
the operand field of a positional macro instruction is
written.

The second part of the operand field corresponds to
the keyword prototype operands. This part of the operand

field is written in the same way that the operand field of a
keyword macro instruction is written. The rules for writing
keyword macro instructions have been described previously
under Keyword Macro Instruction.

The following mixed-mode macro definition, mix-
ed-mode macro instruction, and generated statements
illustrate these facilities:

Name Operation Operand
MACRO
1 &N MOVE &TY, &P, &R &TO=&F=
&N ST&TY &R,SAVE
L&TY &R, &P&F
ST&TY &R, &P&TO
L&TY &R, SAVE
2 HERE MOVE H,,2,F=FB,TO=FA

HERE STH 2, SAVE
LH 2, FB
STH 2,FA
LH 2, SAVE

The prototype statement (statement 1) contains three
positional operands (&TY, &P, and &R) and two keyword
operands (&TO and &F). In the macro instruction (state-
ment 2), the positional operands are written in the same
order as the positional operands in the prototype statement
(the second operand is omitted). The keyword operands
are written in an order that is different from the order of
keyword operands in the prototype statement.

Mixed-mode inner macro instructions may be used as
model statements in mixed-mode, keyword, and posi-
tional macro definitions. Keyword and positional inner
macro instructions may be used as model statements in
mixed-mode macro definitions.

The IBM Communications Controller Macro Language 61

Appendix A: Assembler Languages -- Features Comparison

Features not shown below are to all blers. In the chart:
Dash = Not allowed.

X As defined in Operating System/360 Assembler Language Manual, GC28-6514
Basic 7090/7094
Programming | Support BPS 8K Tape, | DOS/TOS | OS Communications | Communications
Feature Support Package BOS 8K Disk | Assembler | Assembler | Controller Controller
Basic Assembler Assemblers Assembler-DOS | Assembler-OS
Assembler
No. of Continuation Cards/Statement 0 0 1 1 2 1 2
(exclusive of macro instructions)
Input Character Code EBCDIC BCD & EBCDIC| EBCDIC EBCDIC EBCDIC EBCDIC EBCDIC
ELEMENTS:
Maximum characters per symbol 6 6 8 8 8 8 8
Character self-defining terms 1 Char. only X X X X X X
Binary self-defining terms -- -- X X X X X
Length attribute reference -- -- X X X X X
d.iterals -- -- X X X - - -
Extended mnemonics -- X X X X X X
Maximum Location Counter value 2]6 -1 224 -1 224 -1 224 -1 224 -1 2IB -1 2Ie -1
Multiple Control Sections per assembly -- -- X X X X X
EXPRESSIONS:
Operators +a +-*/ +=*/ =/ +-x/ o/ =/
Number of terms 3 16 3 16 16 16 16
Levels of parentheses -- -- 1 5 5 5 5
Complex relocatability -- -- X X X X X
ASSEMBLER INSTRUCTIONS:
DC and DS
Expressions allowed as modifiers -- -- -- X X X X
Multiple operands -- -- -- X X -- X
Multiple constants in an operand -- -- Except X X -- X
Address
Constants
Bit length specifications -- -- -- X X -- - -
Scale modifier -- -- X X X -- - -
Exponent modifier -- -- X X X -- - -
DC types Except Except Except L Except L X Except Except
B, P, 2 B, V, L E, D, L, P, E, D, L, P,
VvV, Y, 5, L Z,Q,S Z,Q,S
DC duplication factor Except A X Except S X X X X

Figure 64, Features Comparison (Part 1 of 3)

Appendix A: Assembler Languages ~ Features Comparison 63

Basic
Programming | 7090/7094 BPS 8K Tape, | DOS/TOS | OS Communications | Communications
Feature Support Support BQS 8K Disk | Assembler | Assembler | Controller Controller
Basic Package Assemblers Assembler-DOS Assembler-OS
Assembler Assembler
DC duplication factor of zero -- -- Except S X X X X
DC length modifier Except X X X X X X
H, E, D
DS types Only C, Only C, Except L Except L X Except Except
H, F, D H, F, D E,D, L, P, E,D, L, P,
Z,Q,S5 Z, Q,
DS length modifier Only C Only C X X X X X
DS maximum length modifier 256 256 256 65,535 65,535 65,535 65,535
DS constant subfield permitted -- -- X X X X X
CcOoPY -- -- -- X X X X
CSECT -- -- X X X X X
DSECT - - -- X X X X X
ISEQ -- -- X X X X X
LTORG -- - X X X -- - -
PRINT -~ -- X X X X X
TITLE -- - - X X X X X
COM == -- -- X X X X
ICTL 1 operand 1 operand X X X X X
(1 or25
only)
USING 2 operands 2-17 operands| 6 operands X X X X
(operand 1 (operand 1
relocatable relocatable
only) only)
DROP 1 operand X 5 operands X X X X
only
cow operand 2 X X X X -- -
(relocatable
only)
ORG no blank no blank X X X X X
operand operand
ENTRY | operand 1 operand 1 operand X X X X
only only only
EXTRN 1 operand 1 operand | operand X X X X
only (max 14) | only only
CNOP 2 decimal 2 decimal 2 decimal X X X X
digits digits digits
PUNCH - - -- bl X X X X
REPRO - == X X X X X
Macro instructions - - - X X X X X
OPSYN -- - - -- - - x! - -
EQU X X X X X X X
EQUR -- -- -- -- - - X X
CXD X X X X X - - --
DXD X X X X X -- - =
cw -- -- - - -- -- X X

! Assembler F only

Figure 64. Features Comparison (Part 2 of 3)

64 IBM 3705 Communications Controller Assembler Language

BPS 8K Tape, BOS 16K

Macro Facility Features BOS 8K Disk Disk/Tape os Communications | Communications
Assemblers A bl A bl Controller Controller
A bler -DOS A bler -OS
Operand Sublists -- X X X X
Attributes of macro=instruction operands inside macro -- X X X X

definitions and symbols used in conditional assembly
instructions outside macro definitions.

Subscripted SET symbols -- X X X X
Maximum number of operands 49 100! 200 100 200
Conditional assembly instructions outside macro definition -- X X X X

Maximum number of SET symbols

global SETA 16 * * * .
global SETB 128 * * * M
global SETC 16 * * * "
local SETA 16 * * » «
local SETB 128 * * * "
local SETC 0 * * * *

* The number of SET symbols permitted is variable, depending upon available main storage.

Note: The maximum size of a character expression is 127 DOS/TOS Assembler D and 255 characters
in OS and Assembler F.

200 for Assembler F

Figure 64. Features Comparison (Part 3 of 3)

Appendix A: Assembler Languages - Features Comparison 65

Appendix B: Instruction Format

Instruction Format Code Mnemonic Operand Field Format*
Branch RT B T

Branch on C Latch RT BCL T

Branch on Z Latch RT BZL T

Branch on Bit RT BB R(N,M), T
Branch on Count RT BCT RMN),T

Branch and Link RA BAL R, A

Branch and Link Register RR BALR R1,R2

Add Register RR AR R1,R2

Add Halfword Register RR AHR R1,R2

Add Character Register RR ACR R1 (N1), R2 (N2)
Add Register Immediate RI ARI R(N), I

Subtract Register RR SR R1,R2

Subtract Halfword Register RR SHR R1,R2

Subtract Character Register RR SCR R1 (N1), R2 (N2)
Subtract Register Immediate RI SRI R(N), I

Insert Character RS IC R (N),D (B)
Insert Character and Count RSA ICT R(N),B

Load RS L R, D (B)

Load Halfword RS LH R,D (B)

Load Register RR LR R1, R2

Load Halfword Register RR LHR R1,R2

Load Character Register RR LCR R1 (N1), R2 (N2)
Load Register Immediate RI LRI R(N),I

Load Address RA LA R, A

Load with Offset Register RS LOR R1,R2

Load Halfword with Offset Reg. RR LHOR R1,R2

Load Character with Offset Reg. RR LCOR R1 (N1), R2 (N2)
Store RS ST R, D (B)

Store Halfword RS STH R, D(B)

Store Character RS STC R (N), D (B)
Store Character and Count RSA STCT R(N),B
Compare Register RR CR R1, R2

Compare Halfword Register RR CHR R1,R2

Compare Character Register RR CCR R1 (N1), R2 (N2)
Compare Register Immediate RI CRI R(N),I

AND Register RR NR RI1,R2

AND Halfword Register RR NHR R1,R2

AND Character Register RR NCR R1 (N1), R2 (N2)
AND Register Immediate RI NRI R(N), I

OR Register RR OR R1,R2

OR Halfword Register RR OHR R1, R2

OR Character Register RR OCR R1 (N1), R2 (N2)
OR Register Immediate RI ORI R(N), I

Exclusive OR Register RR XR R1,R2

Exclusive OR Halfword Register RR XHR R1,R1

Figure 65. Instruction Format (Part 1 of 2)

Appendix B: Instruction Format

67

Instruction Format Code Mnemonic Operand Field Format*
Exclusive OR Register Immediate RI XRI R(N), I
Exclusive OR Character Register RR XCR R1 (N1), R2 (N2)
Test Register Under Mask RI TRM R(N),I
Exit EXIT EXIT
Input RE IN R,E
Qutput RE ouT R,E
Notes:
*QOperand Field Symbol Description
B an absolute expression that specifies a base register.
D an absolute expression that specifies a displacement.
E an absolute expression that specifies an external regjster.
1 an absolute expression that provides immediate data.
M an absolute expression that specifies a bit.
N N, N1, and N2 are absolute expressions that specify a byte.
The value may be either 0 or 1.
Q Q, Q1, and Q2 are symbolic register expressions that specify

Yigure 65, Instruction Format (Part 2 of 2)

68

IBM 3705 Communications Controller Assembler Language

a register-byte combination. (See EQUR.)

R, R1, and R2 are absolute expressions that specify general
registers. Registers are numbered O through 7.

Either an absolute or relocatable expression specifying an
impiied address (used in conjunction with a USING
statement).

A relocatable expression that specifies a transfer address.

Appendix C: Summary of Constants

Number of
Implied Length Length Modifier | Specified Constants Per Truncation/Padding

Type | (Bytes) Alignment Range By Operand Side

C as needed byte 1to 256%* characters one right

X as needed byte 1to 256* hexadecimal one left
digits

B as needed byte 1 to 256 binary digits one left

F 4 fullword 1to8 decimal multiple left
digits

H 2 halfword 1to8 decimal multiple left
digits

A 4 fullword 1to 4** any multiple left
expression

A% 4 fullword 3or4 relocatable multiple left
symbol

R 2 halfword 2 only any multiple left
expression

Y 2 halfword 1to2 any multiple left
expression

*In a DS assembler instruction C and X type constants may have length specification to 65535.

**Errors will be flagged if significant bits are truncated or if the value specified cannot be contained
in the implied length of the constant.

Figure 66. Summary of Constants

Appendix C: Summary of Constants 69

OPERATION
ACTR
AGO

AIF

ANOP
cw
CNOP
COM
Ccory
CSECT
DC

DROP

DS

DSECT

EJECT
END

ENTRY

EQU

EQUR

EXTRN

NAME ENTRY
Must not be present
A sequence symbol or not present

A sequence symbol or not present

A sequence symbol

Any symbol or not present

A sequence symbol or not present
A sequence symbol or not present
Must not be present

Any symbol or not present

Any symbol or not present

A sequence symbol or not present

Any symbol or not present

A variable symbol or an ordinary
symbol

A sequence symbol or not present
A sequence symbol or not present
A sequence symbol or not present
A variable symbol or an ordinary
symbol

A variable symbol or an ordinary
symbol

A sequence symbol or not present

Appendix D: Assembler Instructions

OPERAND ENTRY
An arithmetic SETA expression
A sequence symbol

A logical expression enclosed in parentheses,
immediately followed by a sequence symbol

Must not be present

Four operands, separated by commas

Two absolute expressions, separated by a comma
Must not be present

A symbol

Must not be present

One or more operands, separated by commas

One to sixteen absolute expressions, separated
by commas

One or more operands, separated by commas

Must not be present

Must not be present
A relocatable expression or not present

One or more relocatable symbols, separated by
commas

An absolute or relocatable expression

An expression grouping of the form R (N) or Q.

One or more relocatable symbols, separated by
commas

Appendix D: Assembler Instructions 71

OPERATION NAME ENTRY OPERAND ENTRY

GBLA Must not be present One or more variable symbols that are te be used
as SET symbols, separated by commas 2

GBLB Must not be present One or more variable symbols that are to be used
as SET symbols, separated by commas 2

GBLC Must not be present One or more variable symbols that are to be used
as SET symbols, separated by commas 2

ICTL Must not be present One to three decimal values, separated by commas
ISEQ Must not be present Two decimal values, separated by a comma
LCLA Must not be present One or more variable symbols that are to be used

as SET symbols, separated by commas 2

LCLB Must not be present One or more variable symbols that are to be used
as SET symbols, separated by commas 2

LCLC Must not be present One or more variable symbols separated by commas

MACRO ! Must not be present Must not be present

MEND A sequence symbol or not present Must not be present

MEXIT ! A sequence symbol or not present Must not be present

MNOTE ! A sequence symbol, a variable symbol A severity code, followed by a comma, followed

or not present by any combination of characters enclosed in

apostrophes

ORG A sequence symbol or not present A relocatable expression or not present

PRINT A sequence symbol or not present One to three operands

PUNCH A sequence symbol or not present One to eighty characters, enclosed in apostrophes

REPRO A sequence symbol or not present Must not be present

SETA A SETA symbol An arithmetic expression

SETB A SETB symbol AOoral, orlogical expression, enclosed in
parentheses

SETC A SETC symbol A type attribute, a character expression, a substring

notation, or a concatenation of character expres-
sions and substring notations

SPACE A sequence symbol or not present A decimal self-defining term or not present

START Any symbol or not present A self-defining term or not present

72 1BM 3705 Communications Controller Assembler Language

OPERATION NAME ENTRY OPERAND ENTRY

TITLE 3 A special symbol (O to 4 characters), One to 100 characters, enclosed in apostrophes
a sequence symbol, a variable symbol,
or not present

USING A sequence symbol or not present An absolute or relocatable expression followed by
1 to 16 absolute expressions, separated by commas

Notes:
1 May be used only as part of a macro definition.

2 SET symbols may be defined as subscripted SET symbols.

3 See Chapter 4, Communications Controller Assembler Instructions,
for a description of the name entry.

Appendix D: Assembler Instructions 73

ASSEMBLER STATEMENTS

Instruction

Name Entry

Operand Entry

Model Statements 3.4

An ordinary symbol, a variable symbol,
sequence variable symbol, a combination
of variable symbols and other characters
that is equivalent to a symbol, or not
present.

Any combination of characters
(including variable symbols)

Prototype Statement 1

A symbolic parameter or not present

Zero or more operands that are
symbolic parameters, separated by
commas, followed by zero or more
operands (separated by commas) of
the form symbolic parameter, equal
sign, optional standard value

Macro Instruction Statement !

An ordinary symbol, a variable symbol,
a sequence symbol, a combination of
variable symbols and other characters
that is equivalent to a symbol, 2 or

not present

Zero or more positional operands,
separated by commas, followed by
zero or more keyword operands
(separated by commas) of the form
keyword, equal sign, value 2

Assembler Language Statement 4

An ordinary symbol, a variable symbol,
a sequence symbol, a combination of
variable symbols and other characters
that is equivalent to a symbol, or not
present

Any combination of characters
(including variable symbols)

Notes:
l

2

May be used only as part of a macro definition.

macro instruction is processed.

()

Variable symbols appearing in a macro instruction are replaced by their values before the

Variable symbols may be used to generate assembler language mnemonic operation codes

as listed in Chapter 4, except ACTR, COPY, END, ICTL, CSECT, DSECT, ISEQ, PRINT,
REPRO, and START. Variable symbols may not be used in the name and operand
entries of the following instructions: COPY, END, ICTL, and ISEQ. Variable symbols
may not be used in the name entry of the ACTR instruction.

Figure 67. Assembler Statements

74 IBM 3705 Communications Controller Assembler Language

No substitution for variables in the line following a REPRO statement is performed.

Figures 68, 69, 70, and 71 in this appendix summarize
the macro language.
Figure 68 indicates which macro language elements
may be used in the name and operand entries of each
statement.
Figure 69 is a summary of the expressions that may

Appendix E: Macro Language Summary

be used in macro instruction statements.

Figure 70 is a summary of the attributes that may
be used in each expression.

Figure 71 is a summary of the variable symbols that
may be used in each expression.

Variable Symbols
Global SET Symbols Local SET Symbols System Variable Symbols Attributes

Symbolic Sequence
Statement | Parameter SETA SETB SETC SETA SETB SETC |&SYSNDX | &SYSECT | &SYSLIST Type Length Count Number | Symboi
MACRO)
Prototype | Name
Statement | Operand
GBLA Operand
GBLB Operand
GBLC Operand
LCLA Operand
LCLB Operand
LCLC Operand
Model Name Name Name Name Name Name Nome Name Name Name Name
Statement | Operation | Operation | Operation | Operation | Operation | Operation | Operation | Operation | Operation| Operation

Operand Operand | Operand Operand | Operand Operand |Operand | Operand | Operand | Operand
SETA 2 Name 3 9 Name 3 o 2

Operand Operand | Operand Operand’ | Operand Operand | Operand” | Operand Operand Operand | Operand | Operand

[N S

SETB Name Name

Oper(md6 Opemru‘!6 Operand Opemnd6 Opemnd6 Operand Operundé Opemnd6 Operand4 Q)erand6 Opemnd4 Operund5 Opemncl5 C)percmd5
SETC 7 8 Name 7 P Name

Operand Operand” | Operand Operand | Operand Operand™ |Operand | Operond | Operand | Operand | Operand
AIF 6 5 Name

Opemnd6 Operand”~ | Operand Opertznd6 Opemnd6 Operand Operundé Operond6 Opemnd4 Open:md6 Opemncl4 0perond5 Operand Q;eronds Operand
AGO Name

Operand

ACTR Operond2 Operand Operund3 Operund2 Operand Opemnd3 Ope mnd2 Operand Opomnd2 Operond | Operand | Operand
ANOP Name
MEXIT Name
MNOTE Cperand Operand | Operand Operand | Operand Operand |Operand | Operand | Operand | Operand Name
MEND Name
Outer Name Name Name Name Name Name Name
Macro Operand | Operand Operand | Operand Operand | Operand
Inner Name Name Name Name Nome Nome Name Naome Name Name Nome
Macro Operand Operand | Operand Operand | Operand Operand |Operand | Operand | Operand | Operand
Assembler Name Name Nome Nome Nome Name Nome
Language Operation | Operation | Operation | Operation | Operation | Operation
Statement Operand | Operand Operand | Operand Operand | Operand
1. Variable symbols in macro=instructions are replaced by their values before processing.
2. Only if value is self-defining term.
3. Converted to arithmetic +1 or +0.
4. Only in character relations.
5. Only in arithmetic relations.
6. Only in arithmetic or character relations,
7. Converted to unsigned number.
8. Converted to character 1 or 0.
9. Only if one to eight decimal digits.

Figure 68. Macro Language Elements

Appendix E: Macro Language Summary 75

Expression Arithmetic Expressions Character Expressions Logical Expressions

May contain 1. Self-defining terms 1. Any combination of characters 1. SETB symbols
2. Llength, count, and number enclosed in apostrophes 2. Acrithmetic relations'
attributes 2. Any variable symbol enclosed 3. Character relations 2
3. SETA and SETB symbols in apostiophes
4. SETC symbols whose value 3. A concatenation of variable
is 1-8 decimal digits symbols and other characters
5. Symbolic parameters if the enclosed in apostrophes
corresponding operand is a self- 4. A request for a type attribute
defining term

6. &SYSLIST(n) if the corresponding
operand is a self-defining term

7. &SYSLIST(n,m) if the corresponding
operand is a self-defining term

8. &SYSNDX
Operators are +,~,*, and / concatenation, with a period (.) AND, OR, and NOT parentheses
parentheses permitted permitted
Range of values 2Y e n2¥ 4 0 through 255 characters® 0 (false) or 1 (true)
May be used in 1. SETA operands 1. SETC operands 3 1. SETB operands
2. Arithmetic relations 2. Character relations? 2. AIF operands
3. Subscripted SET symbols
4. &SYSLIST
5. Substring notation
6. Sublist notation

' An arithmetic relation consists of two arithmetic expressions related by the operators GT, LT, EQ, NE, GE, or LE.

2 A character relation consists of two character expressions related by the operator GT, LT, EQ, NE, GE, or LE. The type attribute
notation and the substring notation may also be used in character relations. The maximum size of the character expressions that can be
compared is 255 characters for OS and 127 characters for DOS, see chapter 5 under SETC - SET CHARACTER. If the two character
expressions are unequal size, then the smaller one will always compare less than the larger.

3 Maximum of eight characters will be assigned.

Figure 69. Conditional Assembly Expressions

"

Attribute Notation May be used with: May be used only if type May be used in
attribute is:
Type T Symbols outside macro (May always be used) 1. SETC operand fields
definitions; symbolic parameters, 2. Character relations

&SYSLIST(n), and &SYSLIST(n, m)
inside macro definitions

Length L Symbols outside macro Any leter except M, N, O, Arithmetic expressions
definitions; symbolic parameters, T, and U
&SYSLIST(n), and &SYSLIST(n,m)
inside macro definitions

Count K' Symbolic parameters corresponding Any letter Arithmetic expressions
to macro instruction operands,
&SYSLIST(n), and &SYSLIST(n, m)
inside macro definitions

Number N' Symbolic parameters, &SYSLIST, Any letter Arithmetic expressions
and &SYSLIST(n) inside macro
definitions

*NOTE: There are definite restrictions in the use of these attributes. Refer to text, Chapter 5, under Attributes.

Figure 70. Attributes

76 IBM 3705 Communications Controller Assembler Language

Variable Symbol Defined by: Initiolized, or set to: Value changed by: May be used in:
Symbolic' Prototype Corresponding o (Constant throughout 1. Arithmetic expressions, If operand is
parameter statement instruction operand definition) self-defining term
2. Character expressions
SETA LCLA or GBLA 0 SETA 1. Arithmetic expressions
instruction instruction 2. Character expressions
SETB LCLB or GBLB 0 SETB 1. Arithmetic expressions
instruction instruction 2. Character expressions
3. Logical expressions
SETC LCLC or GBLC Null character value SETC 1. Arithmetic expressions, if value is self-
instruction instruction defining term
2. Character expressions
&SYSNDX' The assembler Macro instruction index (Constant throughout 1. Arithmetic expressions
definition; unique for 2. Character expressions
each macro
instruction)
&SYSECT' The assembler Control section in (Constant throughout Character expressions
which macro instruction definition; set by
appears CSECT, DSECT, and
START)
&5YSLIST' The assembler Not applicable Not applicable N'&SYSLIST in arithmetic expressions

&SYSLIST(n)'
&SYSLIST(n,m)’

The assembler

Corresponding macro
instruction operand

(Constant throughout
definition)

1. Arithmetic expressions if operand is self-
defining term
2. Character expressions

! May be used only in macro definitions.

Figure 71. Variable Symbols

Appendix E: Macro Language Summary 77

Appendix F: Storage Requirements and Job Control Language

COMMUNICATIONS CONTROLLER JOB CONTROL
LANGUAGE FOR OS

Figure 72 shows the control statements necessary to assem-
ble a Communications Controller program under OS.

1//aSM EXEC PGM=IFKASM, REGION=50K -
2 //SYSLIB DD DSNAME=SYS1.MAC3705, DISP=SHR
3 //SYSUT1 DD DSNAME=&SYSUT1, UNIT=SYSSQ, SPACE=(1700, (400, 50)),
// SEP=(SYSLIB)
4 //SYSUT2 DD DSNAME=&SYSUT?2, UNIT=SYSSQ, SPACE=(1700, (400, 50))
5 //SYSUT3 DD DSNAME=SYSUT3, SPACE=(7200, (400,50))
// UNIT=(SYSSQ, SEP=(SYSUT2, SYSUT1, SYSLIB))
6 //SYSPRINT DD SYSOUT=A
7 //SYSPUNCH DD SYSOUT=B
//SYSIN DD *
Program to be assembled
/*

Notes:

1 PARM=or COND=parameters may be added to this
statement by the EXEC statement that calls the
procedure. The system name IFKASM identifies the
IBM Communications Controller Assembler.

2 This statement identifies the macro library data set.
The data set name SYS1.MAC3705 is an IBM
designation.

3,4, 5 These statements specify the assembler utility data
sets. The device classname used here, SYSSQ, may
represent a collection of tape drives, or direct-access
units, or both, The I/O units assigned to this name
are specified by theinstallation when the system is
generated. A unit name, (for example, 2311) may
be substituted for SYSSQ. The DSNAME parameters

Figure 72, Job Control Statement for Assembly Under OS

guarantee use of dedicated work files if this feature
is part of the scheduler.

The SEP=subparameter in statement 5 and the
SPACE=parameter in statements 3, 4, and 5 are
effective only if the device assigned is a direct-access
device: otherwise they are ignored. The space
required depends upon the make up of the source
program. The Job Control Language publication
explains space allocation.

6 This statement defines the standard system output
class, SYSOUT=A, as the destination for the assem-
bler listing.

7 This statement describes the data set that will con-
tain the object module produced by the assembler.

Appendix F: Storage Requirements and Job Control Language 79

You may catalog the procedure to simplify your assem-
bly, see the IEBUPDTE Program, in the publication IBM
System/360 Operating System: Utilities, GC28-6586.

COMMUNICATIONS CONTROLLER JOB CONTROL
FOR DOS

Figure 73 lists the control cards necessary to assemble a
Communications Controller program under DOS. The
card groups are listed in the order in which they must ap-
pear. All job control cards enter the system via SYSRDR;
all others, via SYSIPT. The same device may be assigned

for both SYSRDR and SYSIPT. If the device is a disk file,
the combined file must be designated as SYSIN. Job Con-
trol statements are described in /BM System/360 Disk Op-
erating System, System Control and System Service
Programs, GC24-5036.

Note 1: Only those assignments and options not already
in effect are required.

Note 2: Assignments for SYSIN and/or SYSOUT must
be accomplished by permanent assignments. For details
see the publication DOS System Control and System
Service Programs.

Card Group Card Arrangement Comments

Job Control //JOB First card in group; always required
/| ASSGN SYSSLB, .. Required for macros and copy code
// ASSGN SYSIPT, .. Source program input
// ASSGN SYSLST, .. Program listing
// ASSGN SYS001, ...
// ASSGN SYS002, ... Work files
// ASSGN SYS003, ...
// ASSGN SYSPCH, .. Required when DECK option is specified
// ASSGN SYSLNK, .. Required when assemble-and-execute is specified
//OPTION DECK,. .. Optional; used to indicate desired assembler functions
/| EXEC IFTASM Required

Assembler Input Source Deck Source statements (machine, assembler, and macro

instructions)

/¥ Indicates end-of-data set

Job Control /& End of job statement

1 SYSSLB is assigned to a private source statement library.

Figure 73. Job Control Statements for Assembly Under DOS

80 IBM 3705 Communications Controller Assembler Language

ASSEMBLER STORAGE REQUIREMENTS
OS Storage Requirements

The primary storage requirement for the assembler when
operating in an MFT partition is a minimum of 48K bytes.
The Assembler requires a minimum of 50K when operating
in an MVT region.

Auxiliary Storage Requirements
The residence requirements are as follows:

Three Directory records

Device Tracks
type needed
2301 8
2302 29
2303 32
2311 40
2314 22

The work space requirements are described in
Figure 74.

Dictionary Capacities

The capacity of the general dictionary (global dictionary
and all local dictionaries) is up to 64 blocks of 1024 bytes
each. The division of the dictionary into global and local

sections is done dynamically: as the global dictionary be-
comes larger, it occupies blocks taken from the local dic-
tionary area. Thus, the global dictionary is always core-res-
ident. As it expands into the local dictionary area, the
local dictionaries may overflow onto a utility file. The

size of the dictionaries in core depends upon core avail-
ability. The minimum core allocation is three blocks for
the global and two blocks for each local dictionary.

If an assembly is terminated, at collection time, with
either a GLOBAL DICTIONARY FULL message or a
LOCAL DICTIONARY FULL message, you can take one
or more of the following steps:

1. Split the assembly into two or more parts and assemble
each separately.

2. Allocate more core for the assembler (the global and
local dictionaries together can occupy up to 64K).

3. Specify a smaller SYSLIB blocksize and try the assem-
bly again.

4. Specify a smaller blocksize for the utility files (normal
minimum is 1700 bytes).

If the assembly is terminated, at generation time, with
a GENERATION TIME DICTIONARY AREA OVER-
FLOW message, you should allocate more core to the as-
sembler and reassemble your program.

The assembler can usually handle 400 ordinary symbols
without overflow in its minimum core, see Primary Storage
Requirements above. The assembler can process one addi-
tional symbol for each 18 bytes above minimum core
storage.

DOS Storage Requirements

The primary storage requirements for the Assembler is
a minimum of 12K.

The auxiliary storage requirements are as follows:
e Residence requirements,

Core Image Library

Device Tracks
type needed
2311 46
2314 23
Relocatable Library
Device Tracks
type needed
2311 68
2314 40

e Work file requirements,
The number of tracks can be determined from figure
75. Note that figure 75 is expressed in number of
bytes. The approximate number of tracks can be
calculated by dividing the number of bytes that are

required by 3000 for a 2311, or by 6000 for a 2314 file.

These numbers represent the approximate number of
text bytes, per track, for a 2311 file and a 2314 file,
respectively.

For assemblies with macros, you must count the
number of statements in the macro definitions and
use the procedure just described.

Appendix F: Storage Requirements and Job Control Language 81

Number of Tracks Required
Number of Assembler
Data Set Source Cards Operating In 2301 | 2302 | 2303 | 2311 | 2314 | 231 23051 2305-2 | 3330
Drum | Disk | Drum | Disk |Disk Data Drum Drum Disk
Cell

50K 2 6 6 8 5 14 3 3 3

150 100K 2 8 8 8 8 15 3 3 3

200K 2 8 8 8 8 15 3 3 3

50K 4 15 15 20 1 35 6 6 6

SYSUT1 500 100K 5 19 19 20 19 37 6 6 6
200K 5 19 19 20 19 37 6 6 6

50K 7 29 29 38 29 67 10 10 "

1000 100K 9 34 34 37 34 68 10 10 "

200K 9 34 34 37 34 68 10 10 "

50K 2 6 6 7 6 13 2 2 3

150 100K 2 7 7 7 7 13 2 2 3

200K 2 7 7 7 7 13 2 2 3

50K 4 14 14 18 14 32 5 5 5

SYSUT2 500 100K 5 17 17 18 17 33 5 5 6
200K 5 17 17 18 17 33 5 5 6

50K 7 26 26 34 26 60 9 9 10

1000 100K 8 30 30 33 30 60 9 9 10

200K 8 30 30 33 30 60 9 9 10

50K 1 3 3 3 3 6 1 1

150 100K 1 3 3 3 3 6 1 1

200K 1 3 3 3 3 6 1 1

50K 1 4 4 5 4 9 2 2 2

SYSUT3 500 100K 2 5 5 5 5 10 2 2 2
200K 2 5 5 5 5 10 2 2 2

50K 2 6 6 8 6 14 3 2 3

1000 100K 2 8 8 8 8 15 3 3 3

200K 2 8 8 8 8 15 3 3 3

Note: These estimates are based on the assumption that no macro instructions are used in the source program. The storage required for
SYSUT3 increases when macro instructions are used, and it is approximately equal to the storage required for SYSUT1, for a 100

card program.

Figure 74. Work Space for Assembly Under OS

82 IBM 3705 Communications Controller Assembler Language

Number of Bytes per Statement

Statements

SYSLNK SYS001 SYS002 SYS003
1for1 15 150 150 36

Figure 75. Work File Requirements for a 2311 and a 2314 Under DOS

Note: Only three files are required for an assembly
SYS001, SYS002, and SYS003; SYSLNK would be
used when you specify LINK on the OPTION card.
Each statement places a space requirement on each
file, for example, a 10 statement source program with a
call to one macro containing 20 statements will need

the following bytes on each file. Assume a 2311 is used.

SYSLNK
15(10) + 15(20) = 15(30) = 450 bytes
450/3000 = .15 = 1 track

SYS001 and SYS002
150(10) + 150(20) = 150(30) = 4500
4500/3000 = 1.5 = 2 tracks

SYS003
36(10) + 36(20) = 36(30) = 1080
1080/3000 = 36= 1 track

Appendix F: Storage Requirements and Job Control Language 83

Appendix G: Communications Controller Assembler Messages

Component Name

IFK = OS
IFT =DOS

Program Producing Message

IBM Communications Controller Assembler program during assembly
of assembler instructions

Audience and Where Produced

For programmer: Assembler listing in SYSPRINT data set

For operator: Console

Message Format

ss, ¥**[FKnnn text (in SYSPRINT)
xx [FKnnn text (on console)
ss

Severity code indicating effect of error on execution of program being
assembled:

Informational message; no effect on execution

0 Informational message; normal execution is
expected

Warning message; successful execution is probable

Error; execution may fail

12 Serious error; successful execution is improbable
16 Terminal error; successful execution is impossible
20 Assembler program terminated abnormally

nnn
Message serisl number

text
Message text

XX
Message reply identification (absent, if operator reply not
reqiired)

Note: IFT messages ending with an “I”” are printed on both messages appearing on SYSLOG will be prefaced by an
SYSLST and SYSLOG unless one of the messages indi- “A”. 110I and 1111 errors can be detected at any point
cates that SYSLST or an unidentifiable unit is defective, during assembly.

in which case they will appear on SYSLOG only. The

Appendix G: Communications Controller Assembler Messages 85

1121 through 1151 errors are detected immediately
upon assembly attempt - no assembly listing is printed.
In either case the assembly is terminated, the source is
bypassed to a /* or EOF, and control is returned to the
supervisor via EOJ. The subsequent steps of a multi-
ple step JOB are not bypassed unless they also are
defective.

IFKOO1 CUFLICATION FRCTOR EEROR
IFT001

Explanation: A duplication factor is not an absolute
expression. There is an * in duplication factor expres-
sion. There is invalid syntax in expression.

Severity Code: 12

Programmer Response: The duplication factor must
be specified by an absolute expression enclosed in par-
entheses or by an unsigned decimal self-defining term.
(See Data Definition Instructions in Chapter 4.)

IFKO02 RELOCATABLE DUPLICATICN
FACTOR
IFT002

Explanation: A relocatable expression has been used to
specify the duplication factor.

Severity Code: 12

Programmer Re sponse: The duplication factor must

be specified by either an unsigned decimal self-defining
term, or by an absolute expression that is enclosed with-
in parentheses.

IFKOO3 LENGTH ER
IF¥7003

e}

OR

Explanation: The length specification is out of permis-
sible range or specified invalidly; * in length expression;
invalid syntax in expression; no left-parenthesis delimiter
for expression.

Severity Code: 12

Programmer Response: Ensure that the length specifi-
cation is within permissible range and that the syntax
is valid.

IFKOO4 RELOCATABLE LENGTH
IFTO04

Explanation: A relocatable expression has been used
to specify length.

Severity Code: 12

Programmer Responses: The length specification must
be either an unsigned decimal self-defining term, or an
absolute expression enclosed within parentheses.

86 IBM 3705 Communications Controller Asseinbler Language

IFKOO5 INVALID SYNTAX TN OEERAND
IFTO00S

Explanation: Syntax invalid (for example, symbolic
register expression combined with another term).

Severity Code: 12

Programmer Response: Ensure that the syntax in the
operand of the particular instruction used is correct.

LFK006 INVALID CRIGIN
IFT1006

Explanation: The location counter has been reset to a
value less than the starting address of the control section;
ORG operand is not a simply relocatable expression or
specifies an address outside the control section.

Severity Code: 12

Programmer Response: Ensure that the use of the ORG
instruction does not reset the location counter to an
address outside the control section.

IFKOO07 LOCATICN COUNTER ERRCR
IFTIC07

Explanation: Either the location counter has exceeded
218-1, or it has passed out of the control section in the
negative direction.

Severity Code: 12

Programmer Response: This control section is too
large. It must be broken into several smaller control
sections and reassembled. Possibly an error was made in
coding an ORG or DS instruction. Ensure that the in-
struction is free from error on reassemble. (See Loca-
tion Counter Reference under Terms, in Chapter 2.)

IFKO08 INVALID CISPLACEMENT
IFT008

Explanation: The transfer address of a branch instruc-
tion is outside the allowable range or the displacement
of a base register instruction is outside the allowable
range.

Severity Code: 8

Programmer Response: Ensure that either the transfer
address, or the displacement of a base register instruc-
tion is inside the allowable range. (See Location Coun-
ter Reference under Terms in Chapter 2 and USING
under Base Register Instructions, in Chapter 4.)

IFKQO0S MISSING CEERAND
IFTI009

Explanation: Statement requires an operand entry and
none is present.

Severity Code: 12

Programmer Response: Insert operand entry where
indicated and reassemble program.

IFK0O10 INCORRECT REGISTER
SEECIFICATTION
1FT1010
Explanation: The value specifying the register is not
an absolute value within the range 0-7, an even register
is specified where an odd register is required, or a reg-
ister was used where none can be specified.

Servity Code: 12

Programmer Response: Ensure that the registers used
are within the range of 0-7 and that the use of a register
is permissible in the operation.

IFKO11 INVALID CRIGIN FOR
RELCCATABLE R-TYPE CONSTANT
IFT011

Explanation: An R-type address constant is assembled
at location 0.

Severity Code: 8

Programmer Response: Probable user error. Ensure
that the instruction is not assembled at location O.

IFK012 (No message is assigned to
this number.)

IFT012

IFKO13 (No message is assigned to
this number.)

IFT013

IFKO14 (No message is assigned to
this number.)
IFTO14

TIFK015 (No message is assigned to
i ber.
1FT015 this number.)

IFKO16 INVALID NAME
IFT1016

Explanation: A name entry is incorrectly specified;

for example, it contains more than eight characters, it
does not begin with a letter, or it has a special character
imbedded.

Severity Code: 8

Programmer Response: Ensure that all name entries
contain no more than eight characters, that they begin
with a letter, and that they do not have any special
characters imbedded.

TIFKO017 DATA ITEM TOC LARGE
IFT1017

Explanation: The constant is too large for the data type
or for the explicit length.

Severity Code: 8

Programmer Response: Lower the value or reduce the
length of the constant to within permissible range. See
Chapter 4 for a discussion of values for the various data
types.

IFKO18 INVALID SIMBOL
IF1018

Explanation: The symbol specification is invalid; for
example, it has more than eight characters, or it has an
imbedded special character.

Severity Code: 8

Programmer Response: Ensure that symbols have no
more than eight characters and that they contain no
imbedded special characters.

IFK0O19 EXTERNAYL NAME EBRRCR
IFTI019

Explanation: A CSECT and a DSECT statement have
the same name: a symbol is used more than once in an
EXTRN.

Severity Code: 8

Programmer Response: Replace the duplicate CSECT
or DSECT name or symbol name in EXTRN.

IFK020 INVALIC IMMEDIATE FIELD
IFT020

Explanation: The value of the immediate operand ex-
ceeds 255; the operand requires more than one byte of
storage; the operand is not an acceptable type.

Severity Code: 8

Programmer Response: Ensure that the immediate op-
erand value does not exceed 255, and that it does not
require more than one byte of storage. Also ensure
that the operand type is acceptable.

Appendix G: Communications Controller Assermbler Messages 87

IFK021 SYMBOL NCT PREVIOUSLY expression is specified where a relocatable expression
DEFINED is required; a relocatable term is involved in multiplica-
IFT021 tion or division.
Explanation: An expression requiring that all symbols Severity Code: 8

be previously defined contains at least one symbol not
predefined Programmer Response: Ensure that where absolute ex-

pressions are required, only absolute expressions are

Severity Code: 8 specified. Ensure that where relocatable expressions

Programmer Response: Define the symbol requiring are required, only relocatable expressions are specified.
definition and reassernble the program. Ensure that relocatable terms are not involved in multi-
plication or division. (See Absolute and Relocatable
IFK022 ESD TABLE OVERFLOW Expressions under Expressions, in Chapter 3.)
IFT1022

IFK026 TCO HANWYT LEVELS OF

Explanation: The combined number of control sections 1FI026 PARENTEESES

and dummy sections plus the number of unique symbols

in EXTRN statements and V-type constants exceeds Explanation: An expression specifies more than 5
255. levels of parentheses.

Severity Code: 12 Severity Code: 12

Programmer Response: Ensure that the combined num- Programmer Response: Ensure that no expression con-
ber of CSECTs and DSECTSs plus the number of unique tains more than 5 levels of parentheses. (See Terms in
symbols in EXTRN statements and V-type constants do Parentheses under Terms, in Chapter 2.)

not exceed 255
IFK027 TOO MANY TERMS

IFK023 EREVIOUSLY DEFINEL NRME IFTQ27
IFT1023
Explanation: More than 16 terms are specified in an
Explanation: The symbol which appears in the name expression.
field has appeared in the name field of a previous Severity Code: 12
statement.)

Programmer Response: Ensure that no more than 16

Severity Code: 8 e g .
4 terms are specified in an expression.

Programmer Response: Redefine the duplicate symbol
in the name field and reassemble the program. IFK028 REGISTER NOT USED
IFT023
IFKO24 UNDEFINED SYMBOL
IFTO024 Explanation: A register specified in a DROP statement
is not currently in use.

Explanation: A symbol being referred to has not been Severity Code: 4

defined in the program.

. Programmer Response: Execution is probable, the DROP
Severity Code: 8

statement was probably not needed. (See DROP under

Programmer Response: Ensure that all symbols being Base Register Instructions, in Chapter 4.)
referred to have been defined. (See Symbols under
Terms, in Chapter 2.) IFK029 CW ERROR

IFT029

TFK025 RELOCATARILITY EREQE
IFTI025 Explanation: The command code or FLAG value ex-
ceeds 3, or the count exceeds 1023 in a CW Instruction.

to

Explanation: A relocatable expression, a complex re-
locatable expression, or a symbolic register is specified
where an absolute expression is required; an absolute Programmer Response: Ensure that the command code or

expression, symbolic register, or complex relocatable FLAG value does not exceed 3 and that the count does

Severity Code: 8

88 IBM 3705 Communications Controller Assembler Language

not exceed 1023. (See CW under Data Definitions In-
structions, in Chapter 4.)

IFK030 INVALID CNOP
IFT030

Explanation: An invalid combination of operands is
specified.

Severity Code: 12

Programmer Response: Ensure that the CNOP state-
ment operands are properly specified. (See CNOP
under Program Control Instructions, Chapter 4.)

IFKO31 UNKNOWN TYPE
IFTO031

Explanation: Incorrect type designation is specified
in a DC or DS.

Severity Code: 8

Programmer Response: Ensure that the type designa-
tions specified in a DC or DS are correct.

IFK032 OF-CODE NOT ALLOWED
T0 BE GENERATED
IFT032

Explanation: Variable symbols may not be used to
generate:

e Macro instructions

e Assembler instructions not appearing in Chapter 4
e END, ICTL, ISEQ, PRINT, or REPRO instructions.
Severity Code: 8

Programmer Response: Probable user error. Make sure
source is correct and reassemble if necessary. If the
problem recurs, do the following before calling IBM:

o Have the user source program, user macro defini-
tions, and associated listings available.

e Ifthe COPY statement was used, execute the OS
IEBPTPCH utility program to obtain a copy of the
PDS member specified in the COPY statement. For
DOS--execute the DOS SSERV program for a copy
of the book specified in the COPY statement.

IFKO33 ALIGNMENT ERROR
I1IFTO033

Explanation: The address referred to is not aligned to
the proper boundary for this instruction, for example,
the START operand is not a multiple of 8, or the RS
instruction displacement is not divisible by 2 or 4.

Severity Code: 4

Programmer Response: Make sure that the address
referred to is aligned to the proper boundary for this
instruction.

IFKO34 INVALID OP-CODE
IFTO34

Explanation: Syntax error; for example, there are more
than eight characters; or the operation field is not fol-
lowed by a blank.

Severity Code: 8

Programmer Response: Ensure that syntax is correct;
that is, a blank separates the operation field from the
operand field, and that there is a comma between
operands.

IFKO0O35 ADDRESSABILITY ERROR
IFTO035

Explanation: The address referred to does not fall
within the range of a USING instruction.

Severity Code: 8

Programmer Response: Make sure the address referred
to falls within the range of a USING instruction, and
reassemble if necessary. If the problem recurs, do the
following before calling IBM:

o Have the user source program, user macro defini-
tions, and associated listings available.

e If the COPY statement was used, execute the OS
IEBPTPCH utility program to obtain a copy of the
PDS member specified in the COPY statement. For
DOS--execute the DOS SSERV program for a copy
of the book specified in the COPY statement.

IFK036 (No message 1is assigned

to this number)

IFT036 OPERAND FIELD MUST BE

BLANK

Explanation: Operand found for an operation code
which does not allow operands. (This message may be
produced by the assembler if an operand is present in a
COM or EJECT, statement when the operation field has
been created by variable symbol substitution. Operands
in these statements are not used but are not in error).

Severity Code: Variable

Programmer Response: Remove the illegal operand, if
necessary, and reassemble.

Appendix G: Communications Controller Assembler Messages 89

IFK0O37 MNCTE STATEMENT
IFT037

Explanation: This indicates that an MNOTE statement
has been generated from a macro definition. The text
and severity code of the MNOTE statement will be
found in line in the listing.

Severity Code: Variable

Programmer Response: Ensure that the error noted has
been corrected, and reassemble.

IFK038 ENTRY ERKOR
IFTO038

Explanation: There might be more than 100 ENTRY
operands in this program. A symbol in the operand of
an ENTRY statement appears in more than one ENTRY
statement; it is undefined; it is defined in a dummy
section or in blank common; or it is, equated to a sym-
bol defined by an EXTRN statement.

Severity Code: §
Programmer Response: Ensure that all ENTRY oper-

ands are defined, not duplicated in another ENTRY
statement.

Severity Code: 8

Programmer Response: Probable user error. Make sure
source is correct and reassemble if necessary. If the pro-
blem recurs, do the following before calling IBM:

e Have the user source program, user macro definitions,
and associated listings available.

o If the COPY statement was used, execute the OS
IEBPTPCH utility program to obtain a copy of the
PDS member specified in the COPY statement. For
DOS--execute the DOS SSERV program for a copy
of the book specified in the COPY statement.

IFKO42 SINGLE TERM LOGICAL EXPRES-

STON IS NOT A SETB SYMBOL

IFT042

Explanation: The single term logical expression has
not been declared as SETB symbol. A single term
logical explanation is valid onty for a SETB symbol.

Severity Code: 8

Programmer Response: Make sure that the single term
logical expression in question is declared as a SETB sym-
bol. (See SETB under Conditional Assembly Instruc-
tions, in Chapter 5.)

IFK039 INVALID DELIMITER
TFT039 TFKO43 SET SYMBCL PREVIOUSLY
DEFINED

IFI0U3

Lixplanation: This message can be caused by any syntax
error; for example; missing delimiter, special character
used which is not a valid delimiter, delimiter used illeg-
ally, operand missing, (that is, nothing between de-
limiters), unpaired parentheses, imbedded blank in
expression.

Explanation: A SET symbol has been previously
defined.

Severity Code: 8

FProgrammer Response: Probable user error. Make sure

source is correct and reassemble if necessary. If the

Severity Code: 1
everity Code: 12 problem recurs, do the following before calling IBM:

Programmer Response: Ensure that any of the condi-

tions listed is corrected and reassemble. o Have the user source program, user macro definitions

and associated listings available.

e If the COPY statement was used, execute the OS
IEBPTPCH utility program to obtain a copy of the
PDS member specified in the COPY statement. For
DOS--execute the DOS SSERV program for a copy
of the book specified in the COPY statement.

’

IFKO40 GENERATED RECCRD TOC LCKG
IFI040

Lxplanation: There are more than 236 characters in a
generated statement (DOS - more thant 187 characters).

Severity Code: 12

Programmer Resporse: Ensure that there are no more
than the maximum number of characters in a generated
statement.

IFKO44 SET SYMBOL USAGE INCCN-
SISTENT WITH DECLARATICN

IFT04y

YFKO41 UNDECLARED VARIABIE SYMBCL

IFTO41 txplanation: A SET symbol has been declared un-

dimensioned, but is subscripted, or has been declared

Explanation: A variable symbol is not declared in a
defined SET symbol statement or in a macro prototype.

[BM 3705 Communications Controller Assembler Language

dimensioned, but is unsubscripted.
Severity Code: 8

Programmer Response: Ensure that SET symbol usage
is consistent with SET symbol declarations. If the
problem recurs, do the following before calling IBM:

e Have the user source program, user macro definitions
and associated listings available.

e If the COPY statement was used, execute the OS
IEBPTPCH utility program to obtain a copy of the
PDS member specified in the COPY statement. For
DOS--execute the DOS SSERYV program for a copy
of the book specified in the COPY statement.

IFKO4S5 ILLEGAL SYMEOLIC PARAMETER
IFT0U45

Explanation: An attribute has been requested for a
variable symbol which is not a legal symbolic parameter.

Severity Code: 8

Programmer Response: Probable user error. Make sure
source is correct and reassemble if necessary. If the
problem recurs, do the following before calling IBM:

e Have the user source program, user macro definitions,
and associated listings available.

e If the COPY statement was used, execute the OS
IEBPTPCH utility program to obtain a copy of the
PDS member specified in the COPY statement.

IFKOU6 AT LEAST ONE Y TYPE CR F

T{PE CONSTIANT IN ASSEMBLY
IFTOU6

Explanation: One or more relocatable Y-type or R-type
constants in assembly; relocation may result in an ad-
dress greater than two bytes in length.

Severity Code: 4

Programmer Response: Use an A-type constant if your
program will be link edited above 64K bytes.

IFKOU47 SEQUENCE SYMBCL PREVIOUSLY
DEFINED
IFTI047

Explanation: Invalid use of sequence symbol. This
error results from erroneously coding the same sequence
symbol more than once in a single macro definition.

Severity Code: 12

Programmer Response: Ensure that there is no dupli-
cation of sequence symbols in a single macro definition.
(See Sequence Symbols under Conditional Assembiy
Instructions, in Chapter 5.)

IFKO48 SYMBOLIC PARAMETER PREVICUSLI!

DEFINED OR SYSTEM VARIABLE
SYMBOL DECLARED A5 SYMEOLIC
PARAMETER

IFTO48

Explanation: A symbolic parameter has been pre-
viously defined, or a system variable symbol has been
declared as a symbolic parameter.

Severity Code: 12

Programmer Response: See Variable Symbols under
Introduction in Chapter 5, and Symbolic Parameters
under Macro Definitions, also in Chapter 5. Make sure
source is correct and reassemble if necessary. If the
problem recurs, do the following before calling IBM:

e Have the user source program, user macro definitions,
and associated listings available.

e If the COPY statement was used, execute the OS
IEBPTPCH utility program to obtain a copy of the
PDS member specified in the COPY statement.

IFKOU9 VARIABLE SYMBCL MATCEES A

PARAMETER

IFTI049

Explanation: A variable symbol is identical to a par-
ameter resulting in a doubly defined symbol.

Severity Code: 12

Programmer Response: Probable user error. Make sure
source is correct and reassemble if necessary. If the
problem recurs, do the following before calling IBM:

e Have the user source program, user macro definitions,
and associated listings available.

IFK0O50 INCONSISTENT GLOBAL

CLECLARATIONS

IFT050

Explanation: A global SET variable symbol (that is,
defined in more than one macro definition, or in a macro
definition and in the source program) is inconsistent in
SET type or dimension.

Severity Code: 8

Programmer Response: Make sure all SET symbols,
global or local, are consistent in type or dimension, and
reassemble if necessary. If the problem recurs, do the
following before calling IBM:

e Have the user source program, user macro definitions,
and associated listings available.

e If the COPY statement was used, execute the OS
IEBPTPCH utility program to obtain a copy of the

Appendix G: Communications Controller Assembler Messages 91

PDS member specified in the COPY statement. For 2. Allocate more core for the assembler (OS—the global
DOS--execute the DOS SSERV program for a copy and local dictionaries, together, can occupy up to
of the book specified in the COPY statement. 64K).

3. (OS only) Specify a smaller SYSLIB blocksize.
Thus, if BLKSIZE=3600, try BLKSIZE=1800, or
BLKSIZE=1200. Reblock the library to the size
chosen, and try the assembly again.

TIFKOS1 MACRO DEFINITION
PREVIOUSLY DEFINED

I571051
IFKO54 LOCAL DICTIONARY FULI

Explanation: A prototype operation field is the same
IFTO54

as a machine or assembler instruction or a previous pro-

totype. This message is not produced when a program-
mer macro matches a system macro. The programmer

macro will be assembled with no indication of the cor-
responding system macro.

Severity Code: 12

Lrogrammer Response: Ensure that the programmer
macros are not previously defined and also that the
operation field of the macro prototype is not identical
to a machine or assembler operand. If the problem
recurs, do the following before calling IBM:

e Have the user source program, user macro definitions,
and associated listings available.

ITFKOS2 NAME FIELD COXTAINS
TLLEGAL SET SIMBOL
IFT052

fixplanation: SET symbol in name field does not cor-
tespond to the SET statement type.

Severity Code: 8
Programmer Response: Ensure that SET symbols in
the name fields correspond to SET statement types,

and reassemble if necessary. If the problem recurs,
o the following before calling IBM:

& Have the user source program, user macro definitions,
and associated listings available.

If the COPY statement was used, execute the OS
IEBPTPCH utility program to obtain a copy of the
PDS member specified in the COPY statement. For
DOS--execute the DOS SSERV program for a copy
of the book specified in the COPY statement.

Explanation: The local dictionary is full; current macro
is aborted or if the operation is in open code, assembly
is terminated.

Severity Code: 12
Programmer Response: Probable user error. Do one or
more of the folowing:

1. Split the assembly into two or more parts, and as-
semble each separately.

2. Allocate more core for the assembler (OS-the global
and local dictionaries, together, can occupy up to
64K).

3. (OS only) Specify a smaller SYSLIB blocksize. Thus,
if BLK(OS only) SIZE=3600, try BLKSIZE=1800 or
BLKSIZE=1200. Reblock the library to the size
chosen, and try the assembly again.

IFKO55 INVALID ASSEMBLER OPTION (S)

ON THE EXECUTE CARD

I¥T055 (No message is assigned to

this number.)

Explanation: An assembler option specified on the
EXECUTE card is invalid (OS only).

Severity Code: 8

Programmer Response: Make sure all assembler options
specified are correct and reassemble if necessary. If
problem recurs, do the following before calling IBM:

e Make sure that MSGLEVEL=(1, 1) was specified in
the JOB statement.

e IHave the user source program, user macro definitions,
and associated listings available. (See Appendix F,
Storage Requirements and Job Control Language.)

IFKO53 GICBAL DICTIONARY FULL
I¥T053 IFK0O56 ARITHMETIC OVERFLOW
IFT056

tixplanation: The global dictionary is full; assembly
is terminated.

Severity Code: 12

Programmer Response: Probable user error. Do one or
more of the following:

1. Split the assembly into two or more parts and as-
semble each separately.

42 IBM 3705 Communications Controller Assembler Language

Iixplanation: The intermediate or final result of an
expression is not within the range of -231¢0 231.1.

Severity Code: 8

Programmer Response: Ensure that the intermediate
or final result of expression is within the range of
23146 231,

IFK0O57 SUBSCRIET EXCEEDS MAXIMNUM
DIMENSICH

IFTO57

Explanation: &SYSLIST or symbolic parameter sub-
script exceeds 200 (DOS - exceeds 100) or is negative
or zero; or SET symbol subscript exceeds dimension.

Severity Code: 8

Programmer Response: Ensure that the &SYSLIST or
symbolic parameter subscript does not exceed the maxi-
mum allowable number and that it is a positive num-
ber. (See Extended Features of the Macro Language

in Chapter 5.)

TFK0O58 RE-ENTRANT CHECK FATIED
IFT058 (No message is assigned to
this number.)
Explanation: An instruction has been detected which,
when executed, might store data into a control section
or a common area. This message is generated only when
requested by control cards and it simply indicates a
possible re-entrant error.

Severity Code: 4

Programmer Response: Ensure that the detected in-
struction does not store data in a control section or
a common area.

Note: The DOS assembler does not check for re-

entry; therefore, there is no DOS message.

IFK059 UNDEFINED SEQUENCE SYMBCL
IFI059

Explanation: An operand sequence symbol does not
appear as a sequence symbol in a name field.

Severity Code: 12

Programmer Response: Ensure that the operand sequ-
ence symbol in question appears in a name field. (See
Sequence Symbols under Conditional Assembly In-
structions in Chapter 5.)

IFKO60 ILLEGAL ATTRIBUTE NOTATION
IF1060

Explanation: L was requested for a parameter whose
type attribute does not allow these attributes to be
requested.

Severity Code: 8

Programmer Response: Remove the L' request for the
parameter in question and reassemble if necessary. If
the problem recurs, do the following before calling
IBM:

o Have the user source program, user macro definitions,
and associated listings available. (See Attributes
under Conditional Assembly Instructions in Chapter
5)

IFKO61 ACTR COUNTER EXCEEDED
IFTI061

Explanation: Conditional assembly loop counter has
been exceeded; conditional assembly has been
terminated.

Severity Code: 12

Programmer Response: Ensure that the number of AGO
and AIF statements do not exceed the standard value of
4096 for OS 150 for DOS or the value assigned by you
through the ACTR instruction. Make sure source is
correct and reassemble if necessary. If the problem
recurs, do the following before calling IBM:

e Have the user source program, user macro definitions,
and associated listings available. (See ACTR under
Macro Definitions in Chapter 5.)

IFK062 CENERATED STRING GREATER
THAN 255 CHARACTERS

IFT062 GENERATED STRING GREATER
THAN 127 CHARACTERS

Explanation: The maximum size character expression

from which the character value can be chosen is 255

characters for OS; 127 for DOS.

Severity Code: 8

Programmer Response: Probable user error. Make sure
source is correct and reassemble if necessary. If the
problem recurs, do the following before calling IBM:

e Have the user source program, user macro definitions,
and associated listings available.

IFKO63 EXPRESSION 1 OF SUBSIRING
IS Z2RO CR MINUS
IFT063

Explanation: Expression 1 of the substring notation
indicates the first character in the character expression
that is to be assigned. It, therefore, must be a positive
value.

Severity Code: 8

Programmer Response: Probable user error. Make sure
source is correct and reassemble if necessary. If the
problem recurs, do the following before calling IBM:

e Have the user source program, user macro definitions,
and associated listings available. (See Substring
Notation under SETC - Set Character, in Chapter 5.)

IFKO64 EXPRESSION 2 CF SUBSIRING

IS ZERO OR MINUS

IFT1064

Explanation: Expression 2 in substring notation indi-
cates the number of consecutive characters in the char-
acter expression that are to be assigned to the SETC
symbol. It, therefore, must have a positive value.

Appendix G: Communications Controller Assembler Messages 93

Severity Code: 8

Programmer Response: Probable user error. Make sure
source is correct and reassemble if necessary. If the
problem recurs, do the following before calling IBM:

o Have the user source program, user macro definitions,
and associated listings available. (See Substring
Notation under SETC - Set Character, in Chapter 5.)

IFKO65 INVALID OR ILLEGAL TERM IN

ARITHMETIC EXPRESSICN

IFT065

Explanation: The value of a SETC symbol used in the
arithmetic expression is not composed of decimal digits,
or the parameter is not a self-defining term.

Severity Code: 8

Programmer Response: Ensure that the value of a SECT

symbol used in the arithmetic expression is composed of

decimal digits and that the parameter is a self-defining

term. If the problem recurs, do the following before

calling IBM:

o Have the user source program, user macro definitions,
and associated listings available.

IFKO066 UNDEFINED OR CUPLICATE KEY

WORD OPERAND OR EXCESSIVE
POSITIONAL OPERANDS

IFT1066

Ixplanation: The same keyword operand occurs more
than once in the macro instruction; a keyword is not
defined in a prototype statement; in a mixed mode
macro instruction, more positional operands are speci-
fied than are specified in the prototype.

Severity Code: 12

Programmer Response: Ensure that there are no dupli-

IFK068 GENERATICN TIME DICTIONAERY

AREA OVERFLOWED

IFT068

Explanation: Not enough storage allocated to the as-
sembler; for OS (only), the blocksize is too large.

Severity Code: 12

Programmer Response: Probable user error. Do one or
more of the following before calling IBM for program-
ming support:

1. Split the assembly into two or more parts and as-
semble each separately.

2. Allocate more core to the assembler (the global and
local dictionaries, together, can occupy up to 64K).

3. (For OS only) Specify a smaller SYSLIB blocksize.
Thus, if BLKSIZE=3600, try BLKSIZE=1800 or
BLKSIZE=1200, reblock the library to the size
chosen, and try the assembly again.

4. Have the user source program, user macro definitions,
and associated listings available.

IFK069 EXPRESSICN 2 CF SUBSIRING

GREATER THAN 8 CHARACTERS

IFT069

Explanation: Expression 2 of substring must not be
greater than 8.

Severity Code: 8

Programmer Response: Respecify the value of expres-
sion 2 to some value not greater than eight characters,
and reassemble if necessary. If the problem recurs, do
the following before calling IBM:

o Have the user source program, user macro definitions,
and associated listings available.

cate or underfined keyword operands, and that there
are no more positional operands than are specified in
the prototype.

IFK067 EXPRESSICN 1 CF SUBSTRING
GREATER THAN LENGTH OF

i CHARACTER EXPRESSION
IFT067

Explanation: Expression 1 of the substring must not
be greater than the length of the character expression
to which it refers.

Severity Code: 8

Programmer Response: Ensure that expression 1 of the
substring is not greater than the length of the character

expression to which it refers. (See Substring Notation
under SETC - Set Character, in Chapter 5.)

94 IBM 3705 Communications Controller Assembler Language

IFK070 (No message is assigned to
this number.)
IFPTI070

IFKO71 ILLEGAL OCCURRENCE CF LCL,

GBL, OR ACTR STATEMENT
IFTO071

Explanation: Local or global declaration; or the ACTR
statement is not in proper place in the program.

Severity Code: 8

Programmer Response: Ensure that the local or global
declaration or ACTR statement is in the proper place,

and reassemble if necessary. If the problem recurs, do
the following before calling IBM:

o Have the user source program, user macro definitions,
and associated listings available.

IFKO72 ILLEGAL RANGE ON ISEQ
STATEMENT
IFT072

Explanation: One or more columns to be sequ-
enced-checked are between the “begin” and “‘end”
columns of the statement.

Severity Code: 4

Programmer Response: Ensure that any column tobe
sequence-checked falls outside the range of the “begin”
and “‘end” columns of the statement.

e Have the user source program, user macro definitions,

and associated listings available.

IFK073 ILLEGAL NAME FIELT
IFT073

Explanation: Either a statement which requires a name

has been written without a name; or a statement which
has a name is not allowed to have a name; or a name
entry required to be a sequence symbol is not a sequ-
ence symbol.

Severity Code: 8

FProgrammer Response: Ensure that statements requiring

a name have one; that any statement having an illegal
name be corrected by removing the name; and that any
name required to be a sequence symbol is a sequence
symbol.

IFKO74 ILLEGAL STATEMENT IN COPY
CCDE OR SYSTEM MACRO
IFTO74

Explanation: A statement being copied was a COPY,
END, ICTL, ISEQ, MACRO, MEND, or a model state-
ment in a macro containing an END, PRINT, COPY,
ISEQ, ICTL.

Severity Code: 8

Programmer Response; Check statements to be copied
to ensure that they are not illegal.

IFK0O75 ILLEGAL STATENENT OUTSIDE
OF A MACEO DEFINITION

IFTO075

Explanation: A statement that is allowed only in a
macro definition was encountered in OPEN code; for
example, period asterisk (.*), MNOTE statement.

Severity Code: 8

Programmer Response: Ensure that statements that are
allowed only in macro definitions are not used in OPEN
code.

IFKO76 SEQUENCE ERROR
IFT076

Explanation: A statement with a sequence number
lower than the preceding statement was found when
using the ISEQ instruction.

Severity Code: 12

Programmer Response: Ensure that all statements with
sequence numbers after the ISEQ instruction are in
proper sequence. (See ISEQ, in Chapter 4.)

IFR077 ILLEGAL CONTINUATICN CARD
IF1077

Explanation: Either there are too many continuation
cards; or there are non-blanks between the “begin”
and “continue” columns on the continuation card;

or a card not intended as a continuation was treated as
such because of a punch in the continuation column of
the preceding card.

Severity Code: 8

Programmer Response: Ensure that the rules for the
use of continuation cards are observed:

1. A non-blank character must be in column 72.
2. A continuation card begins in column 16.
3. The limit on the number of continuation cards must
be observed. (See ICTL, in Chapter 4.)
IFK078 (No message is assigned to
this nunber.)
IFT078 MACRO MNEMONIC OP-COLE
TABLE OVERFLOW
Explanation: Not enough storage has been allocated to
the assembler; or there is an unusually large number of
macro mnemonic op-codes, causing the table to over-
flow. (See Appendix F, Storage Requirements and Job
Control Language.)

Severity Code: 12

Programmer Response: Probable user error. Do one or
more of the following:

1. Split the assembly into two or more parts and as-
semble each separately.
2. Allocate more core to the assembler.

IFKO79 ILLEGAL STATENMENT IN
MACRO DEFINITION
IF1079

Explanation: This operation is not allowed within a
macro definition.

Severity Code: 8

Appendix G: Communications Controller Assembler Messages 95

Programmer Response: Probable user error. Make sure
source is correct and reassemble if necessary. If the
problem recurs, do the following before calling IBM:

e Have the user source program, user macro definitions,
and associated listings available.

e If the COPY statement was used, execute the OS
IEBPTPCH utility program to obtain a copy of the
PDS member specified in the COPY statement. For
DOS--execute the DOS SSERV program for a copy
of the book specified in the COPY statement.

IFKO80 ILLEGAL START CARD
IF1080

Explanation: Statements affecting, or depending upon,
the location counter have been encountered before a
START statement.

Severity Code: 8

Programmer Response: Ensure that there is no state-
ment affecting, or depending upon, the location counter
before a START statement. (See START in Chapter 4.)
For DOS--execute the DOS SSERV program for a copy
of the book specified in the COPY statement.

IFK0OB81 ILLEGAL FORMAT IN GEIL
OR LCL STATEMENTS
1F1081

Explanation: An operand is not a variable symbol.
Severity Code: 8

Programmer Response: Ensure that the format in GBL
or LCL statements is correct; that is, that all operands
are variable symbols.
IFK082 ILLEGAL DIMENSION SPECIFI-
CATYON IN GBL OR LCL

STATEMENT
IF1082

Explanation: Dimension is other than 1 to 2500.
Severity Code: 8

Programmer Response: Ensure that the dimension speci-
fication in each global or local statement is within the
range of 1 to 2500 for OS, 1 to 255 for DOS.

TFK083 SET STATEMENT NAME FIELD
NOT A VARIABLE SYMBOL
IFTO083

Explanation: The name field in a SET statement is not
a variable symbol.

Severity Code: 8

96 [BM 3705 Communications Controller Assembler Language

Programmer Response: Ensure that the name field in
the SET statement is a variable symbol.

IFKO84 ILLEGAL OPERAND FIELD

FCRMAT IN CONDITIONAL
ASSEMBLY STATEMENT
IF1084

Explanation: Syntax is invalid (for example; AIF state-
ment operand does not start with a left parenthesis):
operand of AGO is not a sequence symbol; operand of
PUNCH, TITLE, MNOTE is not enclosed in quotes.

Severity Code: 8

Programmer Response: Ensure that the syntax in condi-
tional assembly statements is valid. The preceding ex-
planation gives examples,

IFK085 INVALID SYNTAX IN
EXERESSION

IFT085

Explanation: Invalid delimiter; too many terms in the
expression; too many levels of parentheses; two oper-
ators in succession; two terms in succession; or illegal
character.

Severity Code: 8

Programmer Response: Ensure that the syntax in ex-
pression is valid. The preceding explanation gives
examples.

IFK086 ILLEGAL USAGE OF SYSTEM
VARIABLE SYMBOL
I¥T086

Explanation: A system variable symbol appears in the
name field of a SET statement, is used in a mixed mode
or keyword macro definition, is declared in a GBL or
LCL statement, or is an unsubscripted &SYSLIST in a
context other than N’&SYSLIST.

Severity Code: 4

Programmer Response: Ensure that system variable
symbols do not appear illegally. The preceding ex-
planation gives some examples.

IFKO87 NO ENDING APOSTROPHE
IFT087

Explanation: There is an unpaired apostrophe or am-
persand in the statement.

Severity Code: 8

Programmer Response: Ensure that each apostrophe
or ampersand is paired, where necessary.

IFK088 UNDEFINED OPERATION CODE
IFTO083

Explanation: A symbol in the operation code field does

not correspond to a valid machine or assembler opera-
tion code or to any operation code in a macro proto-
type statement,

Severity Code: 12

Programmer Response: Ensure that the proper opera-
tion codes are used; in every instance.

IFK089 INVALID ATTRIEUTE NOTATION

I¥T089

Explanation: Syntax error inside a macro definition R
for example, the argument of the attribute reference
is not a symbolic parameter.

Severity Code: 8

Programmer Response: Probable user error. Make
sure source is correct and reassemble if necessary.

If the problem recurs, do the following before calling
IBM:

e Have the user source, program, user macro definitions

and associated listings available.

o If the COPY statement was used, execute the OS
IEBPTPCH utility program to obtain a copy of the
PDS member specified in the COPY statement for
DOS, execute the DOS SSERYV program to obtain

a copy of the book specified in the COPY statement.

IFKO90 INVALID SUBSCRIPT
IF1090

Explanation: Syntax error (for example; double sub-
script where a single subscript is required, or vice versa;
there is no right parenthesis after subscript).

Severity Code: 8

Programmer Response: Ensure that the syntax of sub-
scripts used is correct. The preceding explanation
gives examples.

IFKO91 INVALID SELF-TCEFINING TERM

IFT091

Explanation: Value is too large or is inconsistent
with the data type; that is, one byte of immediate
data is greater than X‘FF*,

Severity Code: 8

Programmer Response: Ensure that the value is
consistent with the data type.

IFK0S92 INVALID FOEMAT FOR
VARIABLE SYMBOL

IFT092
Explanation: The first character after the amper-
sand is not alphabetic; or the variable symbol con-
tains more than eight characters, or a double amp-
ersand was not used in a TITLE card or a character
self-defining term.

Severity Code: 8

Programmer Response: Ensure that the format for
variable symbols is correct; for example, that there
are no more than eight characters and that the first
character after the ampersand is alphabetic.

IFKO93 UNBALANCED PARENTHESIS OR
EXCESSIVE LEFT PARENTHESES

IFTI093

Explanation: End of statement encountered before
all parenthesis levels are satisfied; may be caused by
an imbedded blank or other unexpected terminator,
or by failure to have a punch in the continuation
column.

Severity Code: 8

Programmer Response: Ensure that there is both a
left and a right parenthesis. Some examples of
unbalanced parentheses are provided in the preceding
explanation.

IFKO94 INVALID OR ILLEGAL NAME OR
OPERATION IN PROTOTYPE

TETO94 STATEMENT

Explanation: Name is not blank or is not a variable
symbol, or variable symbol in name field is subscript-
ed, or there is a violation of rules for forming a vari-
able symbol (must begin with an ampersand (&) and
be followed by from one to seven letters and/or
numbers, the first of which must be a letter); or
statement following the MACRO statement is not a
valid prototype statement.

Severity Code: 12

Programmer Response: Ensure that the name or op-
eration in the prototype statement is legal and valid.

IFKOS5 ENTRY TABLE OVERFLOW
IFT095

Explanation: Number of ENTRY symbols (that is,
ENTRY instruction operands) exceeds 100.

Severity Code: 8

Programmer Response: Make sure that the number
of ENTRY symbols does not exceed 100.

Appendix G: Communications Controller Assembler Messages 97

IFK096 MACRO INSTRUCIICN ORK PECTO

TYPE OPERAND EXCEEDS 255
CHARACTERS

IFI096 MACRO INSTRUCTION OR PRCTO

TYPE OPERAND EXCEEDS 127
CHARACTERS

Explanation: Macro instruction or prototype operand
exceeds the maximum length allowed: 255 for OS
or 127 for DOS.

Severity Code: 12

Programmer Response: Ensure that the macro instruc-
tion or prototype operand does not exceed the maxi-
mum number of characters allowable.

IFK097 INVALID FORMAT IN MACRO

INSTRUCTION OPERAND OR
PROTOTYPE PARAMETER

IFT097

Explanation: This message can be caused by:

1. Nlegal “=",

2. Asingle “&” appears somewhere in the standard
value assigned to a prototype keyword parameter.

3. First character of a prototype parameter is not “&*.

4. Prototype parameter is a subscripted variable
symbol.

5, Invalid use of alternate format in prototoye state-
ment; for example:

10 16 72
PROTO &A, &B,
or
PROTO &A, &B X
&C

6. Unintelligible prototype parameter; for example,
“&A* or “&A&&”.

7. Illegal (non-assembler) character appears in proto-
type parameter or macro instruction operand.

Severity Code: 12

Programmer Response: Probable user error. Make sure
source is correct and reassemble if necessary. The
preceding explanation gives some examples. If the
problem recurs, do the following before calling 1BM:

e Have the user source program, user macro definitions,
and associated listings available,

IFKU98 EXCESSIVE NUMBER OF

CPERANDS OR PARAMETERS

IFT098

98

Explanation: Either the prototype has more than 200
parameters, (DOS more than 100 parameters) or the
macro instruction has more than 200 operands (DOS
more than 100 operands).

Severity Code: 12

IBM 3705 Communications Controlier Assembler Language

Programmer Response: Ensure that the prototype
contains no more than 200 parameters for OS (100
for DOS), or that the macro instruction contains no
more than 200 operands for OS (100 for DOS).

IFK099 EFCSITICNAL MACRO INSTRUC
TION OPERAND, PROTOTYPE
PARAMETER, EXTRA CCMMA
FCLLOWS KEYWORD

IF1099

Explanation: A keyword macro has been improperly
coded.

Severity Code: 12

Programmer Response: Ensure that the proper operand
is used after a keyword. Y-type address constant 47.

IFK100 STATEMENT CCMPLEXITY
EXCEEDED
IFTI100

Explanation: For OS, more than 50 operands in an
assembler instruction (32 for DC and DS statements)

or more than 50 terms in a statement; for DOS, more
than 35 operands in an assembler instruction (1 for

DC and 1 for DS) or more than 50 terms in a statement.

Severity Code: 8

Programmer Response: Ensure that the complexity
of each statement is not exceeded.

IFK101 EOD ON SYSIN
IFT101 EOD ON SYSIN CR SYSIET

Explanation: EOD before END card.
Severity Code: 12

Programmer Response: Ensure that there is an END
card in the deck. Make sure /* does not precede the
END card.

IFK102 INVALID OR ILLEGAL ICTL
IFT102

Explanation: The operands of the ICTL are out of
range, or the ICTL is not the first statement in the
input deck.

Severity Code: 16

Programmer Response: Ensure that the ICTL is the
first statement in the input deck and that the operands
are in the proper range. (See /CTL, in Chapter 4.)

IFK103 ILLEGAL NAME IN OPERAND
FIELD OF COPY CARD
IFT103

Explanation: Syntax error; for example, symbol has
more than eight characters or has an illegal character.

Severity Code: 12

Programmer Response: Ensure that the operand of the
copy statement conforms to the rules for names. Prob-
able user error.

IFK104 COPY CODE NOT FOUND
IFT104

Explanation: The operand of a COPY statement speci-
fied COPY text which cannot be found in the library.

Severity Code: 12

Programmer Response: Ensure that the correct name
was used for COPY text in the library.

Also ensure that the COPY code really exists in the
library if the correct name was specified. Probable
user error.

e Have the user source program, user macro definitions,
and associated listings available.

o If the COPY statement was used, execute the OS
IEBPTPCH utility program to obtain a copy of the
PDS member specified in the COPY statement.

IFK105 EOD ON SYSTEM MACRO LIBRARY
IFI105 EOD ON SOURCE STATEMENT
LIBRARY

Explanation: EOD before MEND card; MEND statement
missing from macro definition: COPY code not found
while editing a macro; macro definition truncated; or
EOF encountered while reading a macro or copy code.

Severity Code: 12

Programmer Response: Probable user error. Make sure
source is correct, and reassemble if necessary. If the
problem recurs, do the following before calling IBM:

e Have the user source program, user macro definitions,
and associated listings available.

o If the COPY statement was used, execute the OS
IEBPTPCH utility program to obtain a copy of the
PDS member specified in the COPY statement.

IFK106 (No message is assigned to

this number.)
IFT106

IFK107 INVALID OPERAND
I¥T107

Explanation: Invalid syntax in DC operand (for ex-
ample; invalid hexadecimal character in hexadecimal

DC); operand string too long for X, B, C, DCs; operand
unrecognizable (contains invalid value, or incorrectly
specified).

Severity Code: 4

Programmer Response: Make sure that syntax in the
DC operand is correct. The preceding explanation
gives good examples of what may be incorrect. (See
DC - Define Constant, in Chapter 4.)

IFK108 PREMATURE FEOD
IFT108

Explanation: Indicates an internal assembler error or
a machine error.

Severity Code: 16

Programmer Response: Reassemble; if the problem
recurs, do the following before calling IBM:

e Have the user source program, user macro definitions,
and associated listings available.

e If the COPY statement was used, execute the OS
IEBPTPCH utility program to obtain a copy of the
PDS member specified in the COPY statement.

o Make sure that MSGLEVEL= (1, 1) was specified
in the JOB statement.

IFK109 (No message is assigned to
this number.)
IFT109

IFK110 EXPRESSICN VALUE TOC LARGE
IFT110

Explanation: Value of expression is greater than
262,143. Expressions in EQU and ORG statements
are flagged if (1) they include terms previously defined
as negative values, or (2) positive terms give a result of
more than 18 bits in magnitude.

Severity Code: 8

Programmer Response: Probable user error. Make sure
source is correct and reassemble if necessary. If the
problem recurs, do the following before calling IBM:

e Have the user source program, user macro definitions,
and associated listings available.

e If the COPY statement was used, execute the OS
IEBPTPCH utility program to obtain a copy of the
PDS member specified in the COPY statement.

IFK111 SYSGO DD CARD MISSING
NCLCAD OPTION USED

Explanation: DD statement for SYSGO is incorrect or
missing; NOLOAD option is taken.

Appendix G: Communications Controller Assembler Messages 99

Severity Code: 16

Programmer Response: Probable user error. If neces-
sary, supply the missing DD statement or make sure
that the information on the DD statement is correct
and reassemble. If the problem recurs, do the following
before calling IBM:

o Have the user source program, user macro definitions,

and associated listings available.

e If the COPY statement was used, execute the OS
IEBPTPCH utility program to obtain a copy of the
PDS member specified in the COPY statement.

® Make sure that MSGLEVEL= (1, 1) was specified in
the JOB statement.

IFT111I ABORT-~-UNEXPECTED EOF
ON SYSxxx

Explanation: EOF has occured on an assembler work
file that does not support multivolume files. It usually

results from a short tape, or from reading a tape reflective

marker. This is probably user error.
System Response: The job step is terminated.

Programmer Response: If the problem recurs, have the
system log, printer output, and the job stress available
to complete your problem determination action.

Operator Response: (1) If SYSxxx is assigned to a
tape, mount a longer tape or use a 1600 BPI tape drive
instead of an 800 BPI drive, or (2) reassign the work
files to disk and rerun the job, or (3) if SYSxxx is as-
signed to a disk, submit larger extents and rerun the
job.

IFK112 SYSPUNCH DD CARD MISSING

NODECK OPTICN USED

Explanation: DD statement for SYSPUNCH is incor-
rect or missing; NODECR option is taken.

Severity Code: 16

Programmer Response: Probable user error. If neces-
sary, supply the missing DD statement or make sure
that information on DD statement is correct and reas-
semble. If the problem recurs, do the following before
calling IBM:

» Have the user source program, user macro definitions,
and associated listings available.

o If the COPY statement was used, execute the OS
IEBPTPCH utility program tc obtain a copy of the
PDS member specified in the COPY statement.

o Make sure that MSGLEVEL=(1, 1) was specified
in the JOB statement.

100 IBM 3705 Communications Controller Assembler Language

IFK113 INVALID BYTE SELECTICN
JET113

Explanation: Byte specification is not an absolute
expression of value O or 1.

Programmer Response: Make sure that byte selection
is an absolute expression of value of 0 or 1.

Operator Response: Issue the LISTIO command to
check the assignments, and enter the correct work file
assignments if possible.

IFT1141I ABORT--NO UNIT ASSIGNED
FCR SYSPCH

Explanation: The OPTION [DECK] is in effect and
SYSPCH is not assigned. This is probably a user error.

System Response: The job step is terminated.

Programmer Response: Submit an assignment for
SYSPCH, or specify OPTION [NODECK] and resubmit
the job.

If the problem recurs, do the following to complete
your problem determination action:

1. Retain the LISTIO listing.
2. Have the job stream, program listing, and system
log available.

Operator Response: Execute the LISTIO command
and verify assignments. Submit an assign for SYSPCH
and rerun the job.

IFT115 ABORT-PERMANENT I/0 ERROR
ON SY¥Sxxx

Fxplanation: An unrecoverable error on the named
file prevents further processing: if the named file is
SYSxxx, the unit code of the DTF that caused the

error does not match any valid unit. This is usually
the result of an accidental overlap that destroys the
DTF. This is probably a hardware error.

System Response: The job step is terminated.

Programmer Response: Rerun the job, using another
disk pack or tape reel, or use another unit for the disk
pack or tape reel.

If the problem recurs, do the following to complete
your problem determination action:

1. Execute the ROD command and EREP, and retain
the output.
2. Have the job stream and system log available.

Operator Response: Execute the LISTIO command for
SYSxxx to determine the physical unit to which it is

assigned. Move the disk pack or tape reel to another
physical device and reassign SYSxxx to that unit, or
mount another disk pack or tape reel and rerun the job.

IFT115I ABORT--INVALID DUAL ASSGN
SYISPCH-SYSIPT [SYSLST])

Explanation: SYSPCH and SYSIPT are both assigned
to the same unit, which is not a 1442N 1 or 1520B 1
card reader, or SYSPCH and SYSLST are both assigned
to the same unit, which is not a disk. This is probably
a user error.

System Response: The job step is terminated.

Programmer Response: Check the LISTIO listing to
determine the dual assignments. Reassign the indicated
logical units to separate devices or, the required device
type.

If the problem recurs, retain the LISTIO output, the
job stream, system log, and supervisor listing to com-
plete your problem determination actions.

Operator Response: Execute LISTIO to determine the
current assignments. Reassign the two indicated logical
units to separate devices or to the required device type.

IFT1161 AEORT--INVALID PHYSICAL
UNIT FOR SYSxxx

Explanation: The assignment for a work file(s) are not

valid:

o The device type is not valid, or the assembler is link
edited for devices different from those assigned.

e The UA (unassign) or IGN (ignore) option was
specified for the assembler.

o The specified mode setting is not valid.

e For the assembler, the work file device types are not
consistent. (SYS003 is correct.)

Only the first invalid unit is named in the message. This
is probably a user error.

System Response: The job step is terminated.

Programmer Response: Use the LISTIO output to
determine the cause for the message. Use CSERV to
display the phase named “ASSEMBLY” and check
byte X‘1C*, bits 5, 6, and 7 for the device type speci-
fied at link-edit time as work files.

Bit 5: 1=2400
Bit 6: 1=2314
Bit 7: 1-2111
the job.

If the problem recurs, do the following to complete
your problem determination action: '

1. Have the LISTIO and CSERYV output available.
1. Have the job stream and system output available.

Correct the assignment and resubmit

Operator Response: Issue the LISTIO command to
check the assignments and enter the correct work file
assignments if possible.

IFK116 (Nc message is assigned to
this nunmber.)

IFK117 (No message is assigned to
this number.

I¥FT117)

IFK118 (No message is assigned to
this nunber.)

IFT118

IFK119 ILLEGAL EXTERNAL REGISTER
IFT119

Explanation: External register specification is not an
absolute expression from 0 to 127.

Programmer Response: Respecify the register, using
an absolute expression from 0 to 127.

IFT120 INVALID BIT SELECTICN
IFK120

Explanation: Bit specification is not an absolute ex-
pression from 0 to 7.

Programmer Response: Respecify the bit selection using
bits starting with O through 7.

IFT121 INVALID USE OF SYMBCIIC
REGISTER
IFK121

Explanation: A symbolic register expression is specified
where an absolute, relocatable, or complex relocatable
expression is required, or a symbolic register expression
appears in a multiterm expression.

Programmer Response: Replace the invalidly specified
symbolic register expression with the appropriate abso-
lute, relocatable or complex relocatable expression re-
quired for reassemble. See EQUR in Chapter 4 for a
discussion of symbolic registers.

IFK997 SYSPRINT DD CARD MISSING

NOLIST OPTION USED

IFT997I (No message is assigned to

this number.)

Explanation: DD statement for SYSPRINT is incorrect

or missing; NOLIST option taken.

System Response: Printed on console typewriter.
Severity Code: 0

Programmer Response: Probable user error. If neces-
sary, supply the missing DD statement or make sure

Appendix G: Communications Controller Assembler Messages 101

that information on the DD statement is correct; reas-
semble. If the problem recurs, do the following before
calling IBM:

» Have the user source program, user macro definitions,

and associated listings available.

e If the COPY statement was used, execute the OS
IEBPTPCH utility program to obtain a copy of the
PDS member specified in the COPY statement.

e Make sure that MSGLEVEL=(1, 1) was specified in
the JOB statement.

IFK998 ASSEMBLY TERMINATED
MISSING DATA SET FOR
{dd name)
IFT998I (No messagde is assigned
to this number.)

Explanation: DD statement(s) for data set(s), SYSIN,
SYSUT1, SYSUT?2, SYSUT3, and/or SYSPRINT is
incorrect or missing.

System Response: Printed on SYSPRINT, if possible;
otherwise, on the console typewriter.

Severity Code: 20

Programmer Response: Probable user error. Supply
the missing DD statement(s) or make sure that infor-

mation on DD statement(s) is correct; reassemble. If
the problem recurs, do the following before calling IBM:

e Have the user source program, user macro definitions,
and associated listings available.

102 1BM 3705 Communications Controller Assembler Language

e If the COPY statement was used, execute the OS
IEBPTPCH utility program to obtain a copy of the
PDS member specified in the COPY statement.

e Make sure that MSGLEVEL= (1,1) was specified in
the JOB statement. °

TFK999 ASSEMBLY TEEMINATED,

JOBNAME, STEPNAME,
ADDRESS, DEVICE

DDNAME, OPERATICN
ATTEMPTED, ERRCR
DESCRIPTION.

(No message is assigned
to this number.)

UNIT

IFT9991I

Explanation: Indicates a permanent I/O error. This
message is produced by the SYNADAF macro instruction.

System Response: Printed on SYSPRINT, if possible;
otherwise, on the console typewriter.

Severity Code: 20

Programmer Response: Reassemble. If the problem
recurs, do the following before calling IBM:

e Have the user source program, user macro definitions,
and associated listings available.

e If the COPY statement was used, execute the OS
IEBPTPCH utility program to obtain a copy of the
PDS member specified in the COPY statement.

e Make sure that MSGLEVEL= (1,1) was specified
in the JOB statement.

&SYS 53

&SYSECT 57
&SYSLIST 58
&SYSNDX 56

absolute cxpression 6
absolute terms 4

ACTR
defined 50
format 50

address constant
A-Type 18
R-Type 18
V-Type 19
Y-Type 18

addressing

dummy sections 22

external control control sections 23
AGO

examples 50

format 50
AlF

cxamples 49

format 49

maximum count 48

rules for use 49
alignment, forcing with duplication factor 20
ampersand, rules foruse S
ampersands 37

ANOP
example 51
format 50
use of 50

apostrophe, rules for use 5

arithmetic expression
cvaluation 44
parenthesized terms 44

SETA 43
SETB 47
assembler

auxiliary storage requirements 81
dictionary capacities 81
primary storagc requirements 81
assecmbler instructions 71
assembler mnemonics 67
assembler storage requirements 81
assembly no operation SO

attribute
(see also specific attribute)
count 42
how referred to 41
length 42

notation 41

number 42

operand sublists 42

symbols 41

type 41

types 41
attributes, summary of 76
A-Type address constant 18

base register 24
binary constant 18

Index

blank common 23
blanks 37
boundary alignment 16

character constant 17
CNOP instruction
defined 28
examples 28
format 28
COM instruction
defined 23
format 23
commas 37
comments entry 3
common arca 23
complex relocatable expressions 18
concatenating symbolic parameters 35
conditional assembly elements 51
conditional assembly expressions 75
conditional assembly instructions
examples 39
primary use 39
conditional assembly loop counter 50
conditional branch 48

constant
address 18
binary 18

character 17

fixed-point 18

hexadecimal 18
constants, summary of 69
control section 20
COPY instruction

defined 28

format 28
COPY statements 36
count attribute 42
CSECT instruction

blanks 16

format 21

unnamed first control section 22
current control scction 57
CW instruction

boundary alignment 20
example 20

format 20

rules foruse 20

DC instruction
format 16
operand subficlds 16
subfields 16
blanks 16
constant 17
duplication factor 16
length 17
type 17
defining SET symbols 40
defining symbols 3
DROP instruction
example 24

format 24
DS instruction
format 19

Index

103

DS instruction (continued)
maximum length 19
DSECT
location assignment 22
rules for addressing 22
DSECT instruction
defined 22
format 22
dummy section
addressing 22
location assignment 22

EJECT instruction

defined 25

format 25
END instruction

defined 29

format 29
entry

comments 3

name 3

operand 3

operation 3
ENTRY instruction

defined 23
format 23

maximum allowed 23
EQU instruction

cxample 15

format 15
cqual signs 37
EQUR instruction

example 1§

format 15
error messages (see MNOTE) 52
evaluation of logical expressions 47
expressions

absolute 6

cvaluation 6

relocatable 7

summary chart 76
extended mnemonic codes 13
EXTRN instruction

format 24

limitations 24

fixed-point constant 18
forcing alignment with duplication factor 20

GBLA 53
GBLB 53
GBLC 53

global SET symbols 32
global variable symbols 53

hexadecimal constant 18

ICTL instruction

begin column 26

end column 26

format 26

rules for use 26
inner macro instruction 39
input format control 26
instruction alignment 9
ISEQ instruction

format 27

rules foruse 27

104 IBM 3705 Communications Controller Assembler Language

job control language
disk operating system 80
operating system 79

K’(see count attribute) 42
keyword inner macro instructions 60
keyword macro instruction

defined 31
examples 59
format 59

operand sublists 60

L'(see length attribute) 42
length attribute 42
local SET symbols 43
local variable symbols 53
location counter

defined 5

maximum value 5
location counter refercnce 5

machine instruction
examples 10
formats 10

EXIT 13
RA 12
RE 13
RI 12
RR 10
RS 10
RSA 11

macro definition

comments statement 35

COPY statements 36

defined 31

header 32

MEND 36

model statement 33

prototype 32
macro definition header 32
macro instruction

format 36

in linc testing 31

inner 39

levels of 39

operand sublist 38

operands 37

statement format 38
macro instruction index (&SYSNDX) 56
macro instruction operand (&SYSLIST) 58
macro instruction prototype

alternate format 33

cxample 33

format 33
macro language summary 75
macro library 31
MEND

format 36

macro definition trailer 36
MESSAGES and CODES 85
MEXIT

defined 51

cxamples 52

format 51

MEND contrasted 52
mixed-mode macro instruction

defined 31

format 60
mixed-mode prototype

example 61

mixed-mode prototype (continued)
format 60
mnemonic operation code 67
MNOTE
ampersands 52
apostrophes 52
crror message 52
examples 52
format 52
severity code 52
model statement 33
multisection program 21

N'(see number attribute) 42
name cntry 3
number attribute 42

omitted operands 38
operand entry 3
operand subfield 9
operand sublists
defined 38
example 38
operation cntry 3
operator
arithmetic 43
relational 47
ordinary symbols 3
ORG instruction
example 28
format 28

paired apostrophes 37
paircd parentheses 37
parenthesized terms §
positional macro instruction
defined 31
omitted operands 38
PRINT instruction
format 26
operands 26
program sectioning 20
defined 20
PUNCH instruction
defined 27
format 27
rules for use 27

quotation marks (see apostrophes) 5
quoted strings 37

RA format
defined 12
examples 13

RE format

defined 13
cxamples 13
rclational operators 47
rclocatable expressions 7
REPRO instruction
defined 27
format 27
request for error message (see MNOTE) 52
RI format

defined 12
examples 12
RR format

defined 10

RR format (continued)
examples 10

RS format
defined 10
examples 11

RSA format
defined 11
cxamples 11

RT format
defined 11
examples 12

R-Type address constant 18

sequence checking 27
sequence symbols
examples 42
name ficld 42
use of 42
SET arithmetic 43
SET character 45
set location counter 27
SET symbols 32
global 32
SETA
allowable values 43
arithmetic operators 43
evaluation of opcrators 44
examples 44
format 43
parenthesized terms 44
use of 44
SETB
examples 48
format 47
parenthesized terms 48
relational operators 47
rules foruse 47
usc of 48
SETC
concatenating character expressions 45
evaluation of 45
format 45
substring notation 46
type attribute 45
use of 46
SPACE instruction
defined 25
format 25
START instruction
cxamples 21
format 21
storage, common 23
subscripted SET symbols 55
defining 56
using 56
substring notation
defined 46
examples 46
first expression 46
maximum size 46
sccond expression 46
symbolic parameters
concatenation of 35
example 34
symbols
defining 3
ordinary 3
sequence 3
variable 3
SYSLNK 83
system variable symbols 32
SYS001 83

Index

105

SYS002 83
$YS003 83

T(see type attribute) 41
terms 3
in parentheses 5
self-defining 4
binary S
character 5
decimal 4
hexadecimal S
using 4
TITLE instruction
defined 25
format 25
rules foruse 2§
type attribute 41

type codes for constant 17,

106 IBM 3705 Communications Controller Assembler Language

unconditional branch 49
unsectioned program 21
using global SET symbols 54
USING instruction

defined 24
example 24
format 24

using local SET symbols 54
using variable symbols 40

variable symbols 3
assigning values 32
restriction on use 40
types of 32

V-Type address constant 19

Y-Type address constant 18

......‘.....‘........‘......“...0...............0..........0...‘..l....................0....l.......‘0.....t...........'l.O..‘......O".....'..’...‘.‘..

READER’S COMMENT FORM

IBM 3705 Order No. GC30-3003-0
Communications Controller
Assembler Language

e How did you use this publication?

As a reference source O
As a classroom text O
As. ..o i, O

e Based on your own experience, rate this publication . ..

As a reference source: e e e e
Very Good Fair Poor Very
Good Poor
Asatext: ... S
Very Good Fair Poor Very
Good Poor
® Whatis your 0CCUPation?vt ittt ittt

e We would appreciate your other comments; please give specific page and line references
where appropriate. If you wish a reply, be sure to include your name and address.

e Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC30-3003-0

YOUR COMMENTS, PLLEASE . . .

Your answers to the questions on the back of this form, together with your comments,
help us produce better publications for your use. Each reply is carefully reviewed by the
persons responsible for writing and publishing this material. All comments and sugges-
tions become the property of IBM.

Please note: Requests for copies of publications and for assistance in using your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY .

IBM Corporation
P. 0. Box 12275
Research Triangle Park
North Carolina 27709

Attention: Publications Center, Dept. EO1

B

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold

FIRST CLASS
PERMIT NO. 569

RESEARCH TRIANGLE PARK

NORTH CAROLINA

——— e e T e e e e e e e e e e e = = — U BUOJY 1N = mm e e e e

abenbue Ja|quiassy 13({011U0D SUOIIEIIUNWWOY GO/E INE!

"V'S'N Ul patuLig

0-€00€-0£3D

GC30-3003-0

LBV

®

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenua, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

abenBue Jajquiassy 45}|0JIUOD SUOIIBDIUNWWOD GOLE WEI

"V'S'N Ul palulid

0-€00€-0£3D

	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	replyA
	replyB
	xBack

