
Systems

GA22-7082-0
File No. S370-01

IBM MUltiply-Add Facility

-~- ------- ----- --- --- -. ---- -- ----------_.-

First Edition (January 1982)
Changes are periodically made to the information herein; before using this
publication in connection with the operation of IBM equipment, refer to the latest
IBM System/370 and 4300 Processors Bibliography, GC20-0001, for the editions that
are applicable and current.

It is possible that this material may contain reference to, or information about,
IBM products (machines and programs), programming, or services that are not
announced in your country. Such references or information must not be
construed to mean that IBM intends to announce such IBM products,
programming, or services in your country.

Publications are not stocked at the address given below; requests for IBM
publications should be made to your IBM representative or to the IBM branch
office serving your locality.

A form for reader's comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to IBM Corporation,
Product Publications, Dept. B98, PO Box 390, Poughkeepsie, NY, U.S.A. 12602.
IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982

Preface

This publication describes the multiply-add facility
that helps the processor perform specific mathematical
computations, such as matrix multiplication, inversion,
and decomposition. These computations occur in
many applications, including finite element analysis,
linear programming, and statistical analysis.

The facility consists of one instruction, MUL TIPL Y
AND ADD, which may be used in library subroutines
that perform such mathematical functions. The
instruction may be used in either the System/370
mode or the ECPS: VSE mode, if the model provides
the mode.

The reader should be familiar with the IBM
System/370 Principles of Operation, GA22-7000, or
the IBM 4300 Processors Principles of Operation for
ECPS:VSE Mode, GA22-7070, as appropriate.

The facility discussed in this publication is not
necessarily available on every model. The publication
of this manual does not imply any intention by mM to
provide this facility on models other than those for
which it is announced. For information concerning
the availability of this facility on any specific model,
refer to the latest edition of the functional
characteristics manual for the specific model.

Preface iii

Contents

Multiply-Add Facility • • • • . •• 1 MULTIPLYANDADD 2
Overview .. 1 Resulting Condition Code: 4

Vectors in Storage 1 Program Exceptions: 4
Instruction Execution 1 Programming Notes 5

MULTIPLY AND ADD Instruction 2

Contents v

Multiply-Add Facility

Overview

The multiply-add facility consists of the MUL TIPL Y
AND ADD instruction. This instruction performs a
combination of vector multiplication and addition
operations which may replace the inner loop of
common matrix computations. Its function may be
described as:

A = (B x S) + c.

B is a vector that is multiplied by the scalar S. The
product is added to the vector C and the sum replaces
vector A.

The three vectors (A, B, and C) are in storage. Each
consists of one or more floating-point numbers called
the elements of the vector. Scalar S is a floating-point
number that previously was loaded into floating-point
register O. The floating-point numbers a~e all
normalized and in the long format of 64 bits, except
that vector C may contain unnormalized elements.

Vectors in Storage

The vectors in storage must be aligned on doubleword
boundaries, so that their addresses are multiples of 8.
The elements of a vector may be contiguous (in
adjacent storage locations), or they may be spaced
apart. The same number of elements are processed in
each vector.

The increment in bytes from the address of one vector
element to the next is called the element separation~
For contiguous elements, the element separation is 8.
If the elements are not contiguous, the element
separation must be a multiple of 8. The element
separation for vector C is always the same as for
vector A, but it may differ from the element
separation for vector B.

For example, consider an N X N matrix that is stored
in column order, the convention used for FORTRAN
programs. The elements of a column vector are
contiguous, and the column vector has an element
separation of 8. The elements of a row vector,
however, are not contiguous, and a row vector has an
element separation of 8N. The vector of elem~nts
along the major diagonal of the matrix has an element
separation of 8(N + 1). All three types of vector

contain N vector elements.

Vectors A, B, and C all may be different, if their
storage locations do not overlap; or any two or all
three may be the same. If either of the two operand
vectors partially overlaps the result vector in storage,
the effect is unpredictable.

Instruction Exec"tion

The MUL TIPL Y AND ADD instruction performs a
sequence of operations that is essentially equivalent to
the execution of the following floating-point
instructions on each set of vector elements:

LOAD (LD)
MULTIPLY (MDR)
ADD NORMALIZED (AD)
STORE (STD)

Load an element of B
Multiply by scalar S
Add an element of C
Store the result in A

Arithmetically, the result is the same as if those
instructions were embedded in a simple loop that also
included instructions to increment the storage
addresses from one vector element to the next, and an
instruction to branch back until all elements are
processed.

The MUL TIPL Y AND ADD instruction differs from
such a loop in that no interruptions occur when an
arithmetic exception occurs, such as exponent
overflow or underflow, even though the program mask
in the PSW may permit the interruption. Instead, an
arithmetic exception causes instruction execution to be
completed and a nonzero condition code to be set
before the result for the current elements is stored.

The MULTIPLY AND ADD instruction also differs in
that execution is completed without storing the result
element, and a nonzero condition code is set, when
the instruction encounters an unnormalized
multiplication operand or a vector element that is not
correctly aligned in storage. If no such exceptional
conditions are recognized, condition code 0 is set to
indicate normal execution.

The MUL TIPL Y AND ADD instruction should be
followed by a BRANCH ON CONDITION
instruction to test for condition code o. A nonzero
condition code causes branching to a program of
floating-point scalar instructions which use the same
storage addresses in order to reprocess the current

Multiply-Add Facility 1

vector elements. If the scalar instructions encounter
the same exception, an interruption occurs, causing the
same action that occurs when any other floating-point
instruction is executed. No new exception-handling
programs are required. See Programming Note 2 at
the end of the instruction description for an example.

The MUL TIPL Y AND ADD instruction may have
other types of interruptions, such as page faults and
I/O or external interruptions. As with the
COMPARE LOGICAL LONG (CLCL) and MOVE
LONG (MVCL) instructions, the instruction, when
re-executed, resumes at the point of interruption.

MULTIPL Y AND ADD Instruction

MULTIPLY AND ADD

IB243 1

o 16 24 28 31

The MUL TIPL Y AND ADD instruction performs the
vector multiplication and addition operations:

A = (B x S) + c

where A, B, and C are three vector operands and S is
a scalar. The vector operands are in storage, where
they must be aligned on doubleword boundaries. The
scalar operand and all vector elements are
floating-point numbers in the long format. The scalar
and the elements of operand B must be normalized
numbers, but the elements of operand C may be
normalized or unnormalized. The elements generated
for operand A are normalized.

The scalar operand is in floating-point register O. The
vector operands in storage are specified by the
contents of as many as six general registers. Three of

2

the general registers are fixed, and any others are
designated by the R 1 and R2 fields of the instruction.

General register 1 contains a 32-bit unsigned binary
integer, which represents the number of elements in
each vector. Bits 8-31 of general registers 2 and 3
specify the address of the first element of operands A
and B, respectively.

The R 1 field, if nonzero, designates a pair of general
registers, called the even Rl register (numbered R 1)

and the odd Rl register (numbered Rl + 1). Bits 8-31
of the even R 1 register contain the element separation
for operands A and C, and bits 8-31 of the odd Rl
register contain the element separation for operand B.
The element separation for a vector is the increment in
bytes from the address of one vector element in
storage to the address of the next element. The
element separation is treated as a signed binary
integer. If the Rl field is zero, however, the field does
not designate general registers 0 and 1. Instead, the
elements of all three vector operands are specified as
contiguous in storage, and element separations of 8
are implied. The Rl field must be zero or contain an
even number; otherwise, a specification exception is
recognized, and instruction execution is suppressed.

The R2 field, if nonzero, designates a general register,
called the R2 register; bits 8-31 of the R2 register
contain the address of operand C. If the R2 field is
zero, however, the field does not designate general
register 0; instead, the address of operand C is the
same as for operand A, as specified by general register
2.

For all of these general registers, except general
register 1, the contents of bits 0-7 are ignored.

Graphically, Figure 1 shows the contents of the
general registers, where GRl, GR2, and GR3
represent general registers 1, 2, and 3, respectively.

GR1

GR2

GR3

R +1
(R~;tO)

Number of Elements

0

I11111111I Address of Operand A

0 8

111111111I Address of Operand B

0 8

11111111
Element Separation
of Operands A and C

a 8

Element Separation
11111111 of Operand B

a 8

31

1
000

1
29 31

1
000

1
29 31

000

29 31

000

29 31

R2 1//1///111 Address of Operand C 10001
(R2~0)~----~----------------~~

a 8 29 31

Figure 1. General-Register Assignment

Figure 2 summarizes the sources of the operand
addresses and the element separations, according to
whether the R 1 and R2 fields are zero or nonzero.

Source of Element
Field Address Separation

R1 R2 A B C A and C B

=0 =0 (2) (3) (2) 8 8
=0 ;to (2) (3) (R~) 8 8
;to =0 (2) (3) (2 (R 1) (R1+1)
;to ;to (2) (3) (R2) (R 1) (R1+1)

Explanation:

(R) Contents of general
register R

Figure 2. Operand Addresses and Element Separations

Execution of the instruction begins with three tests
performed in the order stated. First, if general register
1 contains zero, condition code 0 is set. Next, if the
fraction of the operand in floating-point register 0 is

nonzero but has a zero leftmost hexadecimal digit,
condition code 2 is set. Finally, bits 29-31 of all
general registers that contain vector-operand
addresses and element separations are tested for zeros;
if any of those bits is one, condition code 3 is set.

If any of the preceding tests results in a condition code
being set, instruction execution is completed, and
register and storage contents remain unchanged.
Otherwise, the operation proceeds by repeating the
following steps until instruction execution is
completed:

1. If the fraction of the element at the address of
operand B is nonzero but has a zero as the
leftmost hexadecimal digit, condition code 2 is set,
and instruction execution is completed. If
condition code 2 is not set, go to step 2.

2. If condition code 2 is not set, the element of
operand B is multiplied by the contents of
floating-point register O. If either number to be
multiplied has a zero fraction, the product is set to
a true zero. The product and the element at the
address of operand C are then added. Register
and storage contents remain unchanged during
this step.

3. If an exponent-overflow exception is recognized
during either the multiplication or the addition, it
is not treated as a program-interruption condition.
Instead, condition code 1 is set, and instruction
execution is completed.

If an exponent-underflow exception is recognized
during either the multiplication or the addition, or
if a significance exception is recognized during the
addition, the exception is not treated as a
program-interruption condition. Instead,
instruction execution depends on the settings of
the exponent-underflow and significance masks in
the PSW:

• When the mask that corresponds to the
recognized exception is one, condition code 1
is set, and instruction execution is completed.

• When the exponent-underflow mask is zero,
expon~nt underflow during the multiplication
causes a true zero, instead of the product, to
be- added to the second-operand element.
Exponent underflow during the addition
causes a true zero to replace the result of the

Multiply-Add Facility 3

addition, and instruction execution continues.

• When the significance mask is zero, a
significance exception causes a true zero to
replace the result of the addition, and
instruction execution continues.

Exponent overflow or underflow during the
multiplication is recognized even if the addition
could bring the result back into the representable
range.

Exponent overflow or underflow is not recognized
during the multiplication if the product in step 2 is
set to a true zero.

4. If instruction execution continues, the result·
element is stored at the location specified by
general register 2. Then, if R} is zero, 8 is added
to the contents of general registers 2 and·3; if R}
is zero and R2 is not zero, 8 is added to the
contents of the R2 register. If R} is not zero, the
contents of the even and odd Rl registers·are
added to the contents of general registers 2 and 3,
respectively. If both Rl and R2 are not zero, the
contents of the even R 1 register are added to the
contents of the R2 register. For all these
additions, carries out of bit position 8 are ignored,
and bit positions 0-7 of the updated general
registers are set to zeros. Floating-point register
0, the Rl registers, and the elements in storage for
operands Band C remain unchanged.

5. The contents of general register 1 are decremented
by one. If the result is zero, condition code 0 is
set, and instruction execution is completed.

For each set of elements, the multiplication operation
is the same as for the floating-point instruction
MUL TIPL Y (MD), and the addition operation is the
same as for ADD NORMALIZED (AD). Only the
operand sources, the result target, and the handling of
exception conditions differ. \

Execution of the instruction i~ interruptible for any
interruption condition for which the CPU is enabled,
other than an exponent-overflow,
exponent-underflow, or significance exception. A unit
of operation consists of one Of more repetitions of the
preceding five steps, with any interruption occurring at
the end of step 5 or when the instruction is completed.

When an interruption occurs during execution and the
interruption condition is not one that causes

4

termination, general register 1 indicates the number of
elements remaining to be processed. The operand
addresses have been updated to indicate the next set
of elements to be processed, and the condition code is
unpredictable.

Access exceptions for operands may be recognized for
storage locations othet than the locations containing
the·current vector elements. For each operand,
however, aCcess exceptions are not recognized for
more than one element beyond the current element.

When ge"neral register 1 contains zero at the start of
. instruction execution, no access exceptions are
recognized for any operand, the change bits for
operand A remain unchanged, and no PER event for
storage alteration is iridicated.

The storage location of operand A may coincide with
the location of operand B or C, if the same
first;.element addresses and the same element
separations are specified. If both conditions are not
satisfied and partial overlap occurs between the
location of operand A and the location of operand B
or C, the result is· unpredictable. The result is also
unpredictable if R} = 2 or, for R2 ¢ 0, if:

R2 < 4,
R2 Rl' or
R2 Rl+l.

Resulting Condition Code:

o

1

2

3

All elements are processed

Exponent overflow, exponent underflow, or
significance loss

Unnormalized scalar or operand-B element

No elements are processed for other reasons

Program Exceptions:

Access (fetch, operands Band C; store, operand
A)

Operation (if the facility is not installed)

Specification

Programming Notes

1. Unlike the scalar floating-point instructions
MULTIPLY and ADD NORMALIZED, the
MUL TIPL Y AND ADD instruction does not
process operands that are not aligned on
double word boundaries in storage. Moreover, it
does not multiply unnormalized operands. The
MUL TIPL Y AND ADD instruction also does not
cause a program interruption when an arithmetic
exception condition is recognized. Instead, the
instruction sets a condition code other than 0, so
that scalar floating-point instructions may be used
to perform the arithmetic.

If execution of the MUL TIPL Y AND ADD
instruction sets a condition code other than 0,
fewer than the specified number of vector
elements were processed. General register 1
contains the number of elements remaining to be
processed in each vector. The general registers
containing addresses have been updated to
address the next set of ~lements to be processed.
This allows the program to issue scalar
floating-point instructions that attempt to process
these elements.

If, during the execution of these scalar
instructions, an exponent-overflow,
exponent-underflow, or significance exception is
recognized, a program interruption can occur
which may invoke the same fixup routines that are
used for all floating-point instructions. If an
unnormalized operand is encountered or a vector
in storage is unaligned, the scalar instructions can
process the elements.

Programming Note 2 contains a programming
example.

2. The following example in assembler language
illustrates the type of programming that is
recommended. By adding linkage and
initialization instructions, a library subroutine is
created that may be called from a high-level
language, such as FORTRAN.

The example uses the DC assembler instruction to
define the appropriate MULTIPLY AND ADD
instruction as a hexadecimal constant.

MADD. EQ.U *
DC Xl B2430046 1 Multiply and Add inst
BC 8,CONT Test condition code °

* Do following instructions if CC not °
LD 2,0(,3) Load element of B
MDR 2,0 Multiply by S
AD 2,0(,6) Add element of C
STD 2,0(,2) Store element of A
LA 2,0(2,4) Update address of A
LA 3,0(3,5) Update address of B
LA 6,0(6,4) Update address of C
BCT 1,MADD Branch if not done

CO NT EQ.U * Continue

In this. example, the R 1 and R2 fields of the
MUL TIPL Y AND ADD instruction designate
general registers 4 and 6. Thus, the number of
elements is in general register 1, the addresses for
operands A, B, and C are in general registers 2, 3,
and 6, and the element separations are in general
registers 4 (for operands A and C) and 5 (for
operand B). The MUL TIPL Y AND ADD
instruction is followed by the BRANCH ON
CONDITION instruction and by a loop
containing the equivalent scalar floating-point
instructions, which are executed only when a
nonzero condition code occurs. The loop uses
floating-point register 2 as a working register.

Note that this loop performs the same operations
asthe preceding MULTIPLY AND ADD
instruction, except as follows:

a. The storage operands may be unaligned, and
the element separation need not be a multiple
of 8.

b. The multiplication operands may be
unnormalized numbers.

c. Exponent overflow causes an interruption; and
exponent underflow and significance loss
cause an interruption, if permitted by the PSW
masks.

d. A floating-point working register is needed.

e. The preceding example shows no initial test for
a zero number of elements in general register
1 because the loop is not entered.

For the special instances in which C equals A or in
which the vector elements are contiguous, the
program may be simplified accordingly.

Multiply-Add Facility 5

3. Any two or all three vectors may be the same,

6

if both the addresses and the element separations
are the same. Partial overlap in the storage areas
for Band C may occur if neither vector overlaps
with the result vector A. Partial overlap with the
result vector, however, has unpredictable effects,
which may differ from one model to another or
from one execution to another. The machine does
not check for partial overlap with the result
vector.

If vector C is the same as vector B, the same
address should be loaded into general register 3
and into the R2 register. The R2 field should not
designate general register 3. Otherwise, register 3
may be updated either once or twice for each
element, depending on the model. Similarly, the
R2 field should not designate general register 2 if
C equals A. Thus, an R2 field containing 2 mayor
may not have the same effect as an R2 field
containing O.

4. The instruction should not be used to store data
into its own location. The effect is unpredictable
because the instruction may be refetched from
storage and reinterpreted, even in the absence of
an interruption during execution. The exact point
in the execution at which such a refetch may occur
is unpredictable.

5. See the section "Interruptible Instructions" in
Chapter 5, "Program Execution," of the
appropriate Principles of Operation publication for
more information concerning interruptible
instructions. Also, see the programming notes at
the end of the section "Program-Event
Recording" in Chapter 4, "Control," of that
publication regarding redundant PER events that
may occur when an interruptible instruction is
resumed after an interruption.

I
I
I
I
I
I
I
I
I

IBM Multiply-Add Facility

Order No. GA22-7082-0

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. You may use this form to communicate your comments about this publication,
its organization, or subject matter, with the understandiIlg that IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the front cover or title page.)

Reader's Comment Form

F old and tape Plea .. Do Not Staple

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

F old and tape Please Do Not Staple

==-= ~® - ----- ---- - ---- -------------- - . -

F old and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

CD c:
:.J
CJ
c: o «

1::J
"'0
LL

o ...
~
u
I

I

-- -- ----
Fold and tape I

I
I ,
GI
c:
:J
Cl
c:
0 «

1::J
"'0
LL

0 ..
~

(.)

I
I
I

OJ
s:
s:
c
;::+
-C'
-<
k
0-
Il
Q)

~.
;+
-<
Il

CD

z
?
en
w
o
6

-c ..,
5'
r+
CD
0-

5'
C en
}>

G)

»
I\J
I\J
.!..J
0
(X)
I\J
6

GA22-7082-0

--- -® ----- -------- - ---- - - --------_~_'f'_

"'TI

CD

Z
P
en
w
-....J
o
6

	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	replyA
	replyB
	xBack

