Nov ;¢ 1966

o52-5a97-2
IBM NO 66-584-002

SYSTEM/4 PI ORIGINATING GROUP Department 584

ENGINEERING GONTENT APPROVED BY

M

DESCRIPTION - "
Pz
, t 4

MODEL EP

CONTRACT NO

DATE November 7, 1966

IBM CONFIDENTIAL
This document contains information of a proprietary nature. ALL INFORMATION
CONTAINED HEREIN SHALL BE KEPT IN CONFIDENCE. None of this information
shall be divulged to persons other than: IBM employees authorized by the nature
of their duties to receive such information, or individuals or organizations
authorized by the Federal Systems Division in accordance with existing policy

regarding release of company information.

= FEDERAL SYSTEMS DIVISION
- B4 ELECTRONICS SYSTEMS CENTER®
A OWEGO NEW YORK

PREFACE

This Engineering Description has been prepared for applications
engineers and Model EP users. It provides a broad based introduction to
the Model EP architecture, support software and to the concepts of micro~
programming. The technologies used in Model EP and the logical design
of the CPU and Multiplex Channel are described. Much of the information
in this document is merely descriptives of design and implementation tech-
niques and does not constitute a commitment to deliver equipment or services
in exact conformance to that described.

A companion document, Model EP Function Specification, #66-584-001,
describes the functions and features of System/4 Pi Model EP and particu=~
larizes them in relation to System/360.

These documents supersede and replace the previous Model EP,
Product Description (3-001-56). In addition to an expansion of the infor=
mation provided, these documents include numerous revisions. Most
of these are changes in detail rather than in concept but they are too numer«
ous to identify individually. :

This document has been issued in preliminary form.
It is incomplete and may contain some errors of de=~
tail. It will be completely revised and reissued early
in 1967.

.

1.0

2.0

3.0

4.0.

Microprogramming Concepts and Techniques

Table of Contents

Introduction

1.1 System/360 Compatibility

1.2 Microprogramming

1.3 Features

Architecture

2.1 General Concepts

2.2 System/360 Compatibility

2.3 System Structure

.2.3.1 Main Storage
2.3.2 Central Processing Unit
2.3.3 Arithmetic and Logical Unit
2.3.4 Program Execution
- 2.3.5 Protection Features

2.3.6 Timer Feature
2.3.7 Direct Control Feature
2.3.8 Multisystem Operation
2.3.9 Input and Output ‘
2.3.10 System Control Panel

2.4 Instruction Sets

Software

- 3.1 Language Translators

3.2 Program Checkout System (Simulator)

3.3 Service Programs

3.4 Control System

ii

Pa ge

32.

33

- 33

34
35
36

38

5.0

6.0

Detailed Description

5.1

5.2

5.3

5.4

VC PU Data Flow

Microprogramming Control

‘Main Storage

Timing System

Data Flow Timing
Local Storage Timing
ROS Timing

Main Storage - ROS

UI:.rlmUI
Lol ol ol
B W N -

Multiplex Channel Design

6.1

6.2

6.3

6.4

6.5
6.6

6.7

scoooe

Introduction

Channel -« Control Unit Interface

The Multiplexor Channel Data Flow

Multiplexor Channel Control

4.1 Micro-Control. _
4,2 Hardwired Control
4.3 Break«In
4.4 Break-~Out

Start Input/Output

6.5.1 Forming a Subchannel
6.5.2 Device Selection
6.5.3

L[] .

- Data Transfer

6.6.1 Multiplex Mode

6.6.2 Burst Mode

6.6.3 Lockout Mode

1/0 Intéfrupts

6.7.1 'Interrupté From a Device
6.7.2 Program Controlled Interrupts

iii

Interface Signaling Sequences

Page
39

39
43
49

51

58
58
59
61

63

65

- 70 .

72

7.0

6.8 Chaining
6.8.1 Data Chaining
6.8.2 Command Chaining
6.9 Other I/O Instfuctions
6.10 Direct Input/Output
6.11 Resets
6.12 Multiplexor Channel Performance
Technologies
7.1 Logic Circuits
7.2 Page and Back Panel Assembly
7.3 Interface Circuits and Interconnections
7.4 Mainstore
7.5 -Read-‘O’nly Store (ROS)
7.6 Power ‘Supplies and Distribution
7.7 Structural Design

iiii

Page
74

75
76
77
78
79
79

83

87
92
97

97

1.0 INTRODUCTION

Model EP provides the power and facilities of a large scale general -
purpose processor for use in the aerospace and mobile environment. Three
basic characteristics contribute toward the unique capabilities which it

offers:

o Architectural compatibility with System/360 reduces
the gffort and expense required to write and verify
operational programs.

o Microprogramming capability permits the incorporation
of problem oriented instructions and procedures thereby
providing the throughput of a special purpose processor -
within the context of a general purpose machine.

o A number of special features are offered which enhance
the system operation in a real~time environment and
which provide for flexible multisystem operation.

The compatibility with System/360, the computational power ob-
tained through microprogramming and the versatility offered through the
many features, have produced a processor system which introduces a

previously unavailable level of performance to the hardened environment,

1.1 System/360 Compatibility

System/4 Pi Model EP is based upon System/360 and its primary
instruction sets, status sequencing, interruption handling and input/output

‘system are fully compatible with System/360 thereby permitting bi-directional -

compatibility with ground-based computers. Provided that equivalent
facilities are available and that programs are not time~dependent, programs
written for Model EP may be run on any System/360 processor and identical
results will be obtained. Conversely, programs available for System/360
(including certaln software aids) may be used in Model EP,

 Bi-directional compatibility offers the opportunity for efficient
program development and for exact program verification in a host machine.
It provides the ability to make use of a large repertory of existing pro~
grams and to call upon a large pool of experienced programmers.

Many features and options such as storage sharing, fall within the
architectural concepts of System/360. Some of the features and options
such as the use of special macroinstructions, are not ordinarily available
in System/360 and require that specialized software be utilized. Such
software will be offered in a standard, modular package which will provide
effective support for the Model EP processor.

1.2 Microprogramming

The Model EP is a microprogrammed processor. The exact details"
of performance of each instruction are stored in a read-only memory (ROS)
and new or modified instructions may be added merely by changing the
contents of this memory. The concepts of microprogramming and an
introduction of its techniques are provided in section 4.

In real~time applications, the microprogramming facility permits
the processor to be '"'tuned'" to the application such that problem solution
times can be drastically reduced for specific requirements. One class
of special instructions that can be added is mathematical routines such
as square root, tangent, arc tangent, matrix multiply, etc. For example,
if many trigometric operations are required, such as in Euler angle con-
version, the use of sine and cosine instructions simplifies programming
" and will decrease problem solution time.

In some applications, it is necessary to perform complex and unusual
routines repetitively. Examples are searching for a specific field in a
bank of words to find if there is a match between any of the words searched
and a specific key. Another example would be computation of radar steering
angles: It is often possible to create highly specialized instructions to per~
form such applications dependent operations. Through microprogramming,
the entire response of Model EP to a specific problem may be modified
‘such that the processor will operate like a special purpose machine for
unique parts of a problem and will continue to be a powerful, general purpose .
processor for the remainder of the application requirements.

1.3 Features

Model EP offers a large number of options and features in order
that each installation may be systematically optimized. The Functional
Specification, #66-584-001, provides detail concerning the functions which
are available and their application. Briefly, the CPU may be equipped
with a variety of standard instruction sets as well as with special instructions
as mentioned above. The computational speed of the CPU may be varied
by means of choosing general registers stored in mainstore or a hardware
implementation of those registers.

The storage system may be modularly expanded in units of 8K words
to a maximum of 131K words. Memory systems from several processors
may be interconnected to form a ''storage pool' with each processor having
full access to the entire pool or with each processor having its isolated
part and each processor having access to a limited pool. The storage
protection feature may be utilized to protect specific blocks of information
for prevention oflillegal storage in the block or for both store and fetch
protection,

The input/output system is designed to allow a wide span of per-
formance for System/360 compatible channels and to permit the effective
design of special purpose channel facilities. In particular, the ability
of the storage system to accommodate multiple buses permits simultaneous
and asynchronous loading of mainstore through stand-alone channels. '

Processors are equipped with a System/360 compatible interruption
system. In addition, real-time operations may be enhanced by use of a
32 level priority interrupt system which provides programmed masking,
automatic priority resolution and automatic nesting of interrupts. Special
power supply designs are offered to accommodate widely varying power
sources and to provide automatic shutdown and restart in the event of
transient power losses.

. Multisystem operations may be achieved through the use of
shared mainstore systems, shared input/output devices and direct
communication between processors. Multisystem operation may be
controlled by means of special instructions (Test and Set, Direct Read
and Direct Write), by special features (Multisystem Signalling, and
Direct Control) and by exchanging control signals through shared I/O
devices or channel-to-channel adapters.

w3

2.0 ARCHITECTURE

2.1 General Concepts

Model EP introduces the broad base capability of large scale
processors into the aerospace and mobile environment. Model EP is

a general purpose system that can readily accommodate scientific,
control and communications applications. A Basic instruction set pro=
vides a fixed point and logical capability. A Standard instruction set
provides the addition of logical manipulations of variable field length.

A Floating Point feature may be added to either the Basic or Standard
set. Other instructions are related to a variety of special features which
are used to enhance real-time operations or provide for multisystem
operations. Special purpose instructions may be incorporated in Model EP
to optimize performance for specific applications.

Interplay of equipment and program is an essential consideration
in System/4 Pi. The system is designed to operate with a supervisory
program that coordinates and executes all I/O instructions, handles excep-
tional conditions, and supervises scheduling and execution of multiple
programs. System/4 Pi provides for efficient switching from one program
to another, as well as for the relocation of programs in storage. To the
problem programmer, the supervisory program and the equipment are
indistinguishable.

IBM can provide System/4 Pi programs that control and schedule
the use of CPU facilities, main storage, input/output devices, etc. These
programs are designed to control all system resources, including programs
supplied by the user.

2.2 System/360 Compatibility

The Model EP is based on System/360 and the architecture is
substantially identical to System/360 with the exception that:

(1) Model EP may be supplied with an instruction set which
’ is smaller than the System/360 Standard set. The
System/4 Pi Basic Set is the System/360 Standard Set
less the 12 Variable Field Length (VFL) instructions
and the 2 Convert instructions.

(2) Model EP may be supplied with instructions not available
in System/360. Such instructions may be associated with:

a. features not generally available in System/360 such
as Priority Interrupt.

“d-

b. special mathematical microinstructions such as
Square Root, Sine/Cosine, Arc Tangent, etc.

c. special application-oriented microinstructions
such as Compute Radar Angle, etc.

Based on the compatibility with System/360, the documents describing
that system may be used as valid descriptions of the Model EP. The Model
EP Functional Specification, #66-584-001, particularizes Model EP within
the context of System/360 and provides additional information about system
application, feature availability and processor operation under exceptional

conditions.

System/4 Pi is compatible with System/360; that is, any program
gives identical results on Model EP or on any System/360 model. This
rule is subject to the following limitations:

1. - The systems facilities used by a program should be
the same in each case. For example, the optional
CPU features and the storage capacity, as well as
the quantity, type, and priority of I/O equipment,
should be equivalent. System facilities are under-
stood to include instruction set availability such that

- each machine has at least the set of instructions
~" used in the program.

2. The program should be independent of the relation
- of instruction execution times and of I/O data
rates, access times, and command execution
times. '

3. The compatibility rule does not apply to detail
functions for which neither frequency of occurrence
nor usefulness of result warrants identical action
in all models. These functions, all explicitly
identified in 360 PO, are concerned with the handling
of invalid programs and machine malfunctions.

4, Certain special features such as Priority Interrupt
and Power Loss Protection/Recovery are trans=
parent to 360 architecture but their operation
usually may not be replicated on a System/360
processor,

2.3 System Structure

The material in this section has been prepared as an introduction
to those aspects of system structure which are common to both System/360
and System/4 Pi. This material is largely extracted from System/360
Principles of Operation. Changes have been incorporated to delete un-
available features, to shift emphasis, to enhance clarity and to mention
priority interrupt and special purpose input/output channels. The material
in this section is introductory in nature. The reader is referred to sttem/
360 Principles of Operation for an extensive description of the architecture
"and to System/4 Pi Functional Specification for a detailed description of
features available in Model EP.

The basic structure of a System/4 Pi consists of main storage,
a central processing unit (CPU), the input/output channels, and the input/
output devices attached to the channels through control units. It is possi-
ble for systems to communicate with each other by means of shared I/O
devices, a channel, or shared storage. Figure 1 shows the basic organi=~

zation of a single system,

Main

Storoge
Channels

Multipl
Central
Processing
Unit

Selactor

Figu.re 1. IBM System/4 Pi Basic Logical Structure

2.3.1 Main Storage

~ Storage units:may be either physically integrated with the CPU or
constructed as stand~alone units. The storage cycle speed is not directly
related to the internal cycling of the CPU,

=6

Main storage may be shared by CPU's. Fetching and storing of
data by the CPU are not affected by any concurrent I/O data transfer or by -
reference to the same storage location by another CPU. If a CPU and a
channel concurrently refer to the same storage location, the accesses
normally are granted in a sequence that assigns higher priority to references
by channels. If the first reference changes the contents of the location, any
subsequent storage fetches obtain the new contents.

Information Formats ~ The system transmits information between
main storage and the CPU in four units, of eight bits at a time. Each eight-bit
unit of information is called a byte, the basic building block of all formats.

A ninth bit, the parity or check bit, is transmitted with each byte and carries
odd parity on the byte. The parity bit cannot be affected by the program;

its only purpose is to cause an interruption when a parity error is detected.
Reference in this manual to the size of data fields and registers exclude

the mention of the associated parity bits.

Bytes may be handled separately or grouped together in fields. A
halfword is a group of two consecutive bytes and is the basic building block
of instructions. A word is a group of four consecutive bytes; a double word
is a field consisting of two words (Figure 2). The location of any field or
group of bytes is specified by the address of its leftmost byte.

Byte

‘ A) e -
11000001 - - e
o 7

Hal fword

J K
1101000111010010
15

[78

Word

| B M I 3 ;
11001001111000010111010100, |

[] 78 1516 23124 n

PR
a8
¢

Figure 2, Sample Information Formats

The length of fields is either implied by the operation to be performed
or stated explicitly as part of the instruction. When the length is implied,
the information is said to have a fixed length, which can be either one, two,
four, or eight bytes,

When the length of a field is not implied by the operation code, but

is stated explicitly, the information is sald to have variable field length,
Variable-length operands are variable in length by increments of one byte,

-

N , |

Within any program format or any fixed-length operand format, the
bits making up the format are consecutively numbered from left to right
starting with the number 0.

Addressing - Byte locations in storage are consecutively numbered
starting with 0; each number is considered the address of the corresponding
byte. A group of bytes in storage is addressed by the leftmost byte of the
group. The number of bytes in the group is either implied or explicitly
defined by the operation. The addressing arrangement uses a 24-bit binary
address to accommodate a maximum of 16,777,216 byte addresses. This
set of main-storage addresses includes some locations reserved for special
purposes.

When only a part of the maximum storage capacity is available in
a given installation, the available storage is normally contiguously address-
able, starting at address 0. An addressing exception is recognized when
any part of an operand is located beyond the maximum available capacity
of an installation.

Information Positioning - Fixed~length fields, such as halfwords and
double words, must be located in main storage on an integral boundary for
that unit of information. A boundary is called integral for a unit of infor-
mation when its storage address is a multiple of the length of the unit in
bytes. For example, words (four bytes) must be located in storage so that
their address is a multiple of the number 4. A halfword (two bytes) must
have an address that is a multiple of theinumber 2, and double words (eight
bytes) must have an address that is a multiple of the number 8.

Storage addresses are expressed in binary form. In binary, integral
boundaries for halfwords, words, and double words can be specified only by the
" binary addresses in which one, two, or three of the low-order bits, respectively,
are zero. (Figure 3). For example, the integral boundary for a word is a
binary address in which the two low-order positions are zero.

Variable-length fields are not limited to integral boundaries, and may
start on any byte location,

_Low-order Four Bits of Binary Address

—F=
r_0000 0001 {0010 (0011 (010001010110 {0111 {1000 {1001 | 1010

-| Byte | Byte | Byte | Byte | Byte | Byte | Byte Byte | Byte | Byte | Byte

\

Halfword | Halfword | Halfword | Halfword | Halfword

4 - —
Word Word Word

b
3 1

—> Double Word Double Word

)
{

Figure 3. Integral Boundaries for Halfwords, Words
and Double Words :

2.3.2 Central Processing Unit

The central processing unit (Figure 4) contains the facilities for
addressing main storage, for fetching or storing information, for arith-
metic and logical processing of data, for sequencing instructions in the
desired order, and for initiating the communication between storage and

external devices.

Storage Address

> - MAIN STORAGE
A
r= e Instructions
] v
omputer) . Variable-)

I System | Generated Fixed-Point Field-Length Floooring;Pom’ _1

: Control Il € Address | Operations Operations perations \

! ' ¥ A :
. | | . i
i | S|

A

4
16 Floating-Point Registers
Geoneral
Registers

Figure 4. Basic Concept of Central Processing
Unit Functions

The system control section provides the normal CPU control that
guides the CPU through the functions necessary to execute the instructions.

The CPU provides 16 general registers for fixed-point operands and
four floating~point registers for floating~point operands. Implementation
of these registers may be in special circuitry or in a separate area of
main storage. In either case, the address and functions of these registers
are identical.

General Registers - The CPU can address information in 16 general
registers. The general registers can be used as index registers, in
address arithmetic and indexing, and as accumulators in fixed-point arith-
metic and logical operations. The registers have a capacity of one word
(32 bits). The general registers are identified by numbers 0-15 and are
specified by a four-bit R field in an instruction (Figure 5). Some instructions

provide for addressing multiple general registers by having several R fields.

‘9“

R Field Reg No. General Registers Floating-Point Registers
0000 0 Ee=32 Bits=H B===464 Bits=——8
0001 1 | I |
0010 2 [] C]
0011 3 —

0100 4 (] (]
0101 5 C—

0110 6 (] (—
o1 7 IO | i

1000 8 I——

1001 9 I———

1010 10 I—_—|

1001 " |

1100 12 [

1ol 13]

110 14 C_—1

nn (H] E——

Figure 5. General and Floating~Point Registers

For some operations, two adjacent general registers are coupled
together, providing a two~word capacity. In these operations, the addressed
register contains the high order operand bits and must have an even address,
and the implied register, containing the low~order operand bits, has the next

higher address.

Floating-~Point Registers ~ Four floating-point registers are avail=
able for floating-point operations. They are identified by the numbers
0, 2, 4, and 6 (Figure 5). These floating-point registers are two words
(64 bits) in length and can contain either a short (one word) or a long (two
words) floating-point operand. A short operand occupies the high-order
bits of a floating~point register. The low-~order portion of the register
is ignored and remains unchanged in short-precision arithmetic, The
instruction operand code determines which type of register (general or
floating~-point) is to be used in an operation.

2.3.3 Arithmetic and Logical Unit

The arithmetic and logical unit can process binary integers and
floating~point fractions of fixed length, and logical information of either
fixed or variable length. Processing is done in parallel using a 32 bit
wide adder~shifter path and an 8 bit wide mover path which can operate

simultaneously.

Arithmetic and logical operations performed by the CPU fall into
three classes: fixed-point arithmetic, floating-point arithmetic, and
logical operations. These classes differ in the data formats used, the
registers involved, the operations provided, and the way the field length
is stated.

] Qa

Fixed-Point Arithmetic - The basic arithmetic operand is the 32-bit
fixed-point binary word. Sixteen-bit halfword operands may be specified
in most operations for improved performance or storage utilization. See
Figure 6. To preserve precision, some products and all dividends are 64

bits long.

¢ Halfword
[Sl Integer -
)

AL

Full Word

Sl J ‘ In.teger 1

[I} EY)

Figure 6. Fixed-Point Number Formats

Because the 32-bit word size readily accommodates a 24-bit address,
fixed-point arithmetic can be used both for integer operand arithmetic and
for address arithmetic. This combined usage provides economy and per~-
mits the entire fixed~point instruction set and several logical operations
to be used in address computation. Thus, multiplication, shifting, and
logical manipulation of address components are possible.

The absence of the need for recomplementation and the ease of
extension and truncation make two's-complement notation desirable for
address components and fixed-point operands. Since integer and address-
ing algorisms often require repeated reference to operands or intermediate
results, the use of multiple registers is advantageous in arithmetic se=-
quences and address calculations.

Additions, subtractions, multiplications, divisions, and comparisons
are performed upon one operand in a register and another operand either in
a register or from storage. Multiple~precision operation is made convenient
by the two's~complement notation and by recognition of the carry from one
word to another. A word in one register or a double word in a pair of adjacent
registers may be shifted left or right. A pair of conversion instructions -
CONVERT TO BINARY and CONVERT TO DECIMAL - provides transition
between decimal and binary radix (number base) without the use of tables.
Multiple~register loading and storing instructions facilitate subroutine
switching. : v '

Floating- Point Arithmetic - Floating~point numbers occur in either

of two fixed-length formats -~ short or long. These formats differ only in
the length of the fractions (Figure 7.)

-11—

Short Floating=Point Number (One Word)

ISI Characteristic l Fraction] !
o1 78) 7

Long Floating=Point Number (Double Word)

H Characteristic l Fraction %L]

[} 78 63

Figure 7. Short and Long Floating-Point Number Formats

Floating~point operands are either 32 or 64 bits long. The short
length, equivalent to seven decimal places of precision, permits a maximum
number of operands to be placed in storage and gives the shortest execution
times. The long length, used when higher precision is desired, gives up
to 17 decimal places of precision, thus eliminating most requirements for
double=~precision arithmetic.

The operand lengths, being powers of two, permit maximum
efficiency in the use of binary addressing and in matching the physical
word sizes of the different models. Floating-point arithmetic is designed
to allow easy transition between the two formats.

The fraction of a floating-point number is expressed in hexadecimal
(base 16) digits, each consisting of four binary bits and having the values
0~15. In the short format, the fraction consists of six hexadecimal digits
occupying bits 8-31. In the long format the fraction has 14 hexadecimal
digits occupying bits 8~63.

The radix point of the fraction is assumed to be immediately to the
left of the high~order fraction digit. To provide the proper magnitude for
the floating~point number, the fraction is considered to be multiplied by a
power of 16. The characteristic portion, bits 1«7 of both formats, is used
to indicate this power. The characteristic is treated as an excess 64 num-
ber with a range from =64 through 43, and permits representation of decimal
numbers with magnitudes in the range of 10-78 t5 1073,

Bit position 0 in either format is the sign (S) of the fraction. The
fraction of negative numbers is carried in true form. ‘

Four 64-bit floating-point registers are provided. Arithmetic opera~-
tions are performed with one operand in a register and another either in a
register or from storage. The result, developed in a register, is generally
of the same length as the operands., The availability of several floating~point
registers eliminates much storing and loading of intermediate results.

w]l2w=

Logical Operations - Logical information is handled as fixed-
or variable~length data. It is subject to such operations as comparison,
translation, editing, bit testing, and bit setting,

When used as a fixed-length operand, logical information can con-
sist of either one, four, or eight bytes and is processed in the general
registers (Figure 8).

Fixed-Length Logical Operand (One, Four, or Eight Bytes)

Logical Data

Figure 8. Fixed~Length Logical Information

A large portion of logical information consists of alphabetic or
numeric character codes, called alphametic data, and is used for communi~
cation with character~set sensitive I/O devices. This information has the
variable~field length format and can consist of up to 256 bytes (Figure 9).

It is processed storage to storage, left to right, an eight-bit byte at a time.

Variable-Length Logical Operand (Up to 256 Bytes)

Character Character I Character |

Figure 9. Variable-Length Logical Information ‘ ¥

2.3.4 Program Execution

The CPU program consists of instructions, index words, and
control words specifying the operations to be performed. This information
resides in main storage and general registers, and may be operated upon

. as data.

Instruction Format - The length of an instruction format can be
one, two, or three halfwords. It is related to the number of storage
addresses necessary for the operation., An instruction consisting of
only one halfword causes no reference to main storage. A two~halfword
instruction provides one storage~address specification; a three~halfword instruction
provides two storage-address specifications. All instructions must be lo=
cated in storage on integral boundaries for halfwords. Figure 10 shows
five basic instruction formats. ‘

w]3a

First Halfword 1 Second Halfword 2 Third Halfword 3
Byte] | Byte2 ’

T
Il 1

! Register Registe:'
! Operand 1 Operand 2
A~ A,

Op Code I 'Rl 1 RzJ RR Format

0 7la nn 13

.
Register Address

1
1
'
Operand 1 ! Operand 2
—A—- A

|
|
|
[}
I
|
|
|
|
|
{
!
i
OpCode | Ry [% | B | D, RX Format !
lo 78 N2 1516 1920 N |
1 ' R 1 : |
| ' 1
H Register Register Address : :
! Operand 1 Operand 3 Operand 2 , |
i
Op Code I Ry l Ry l 8, I D, RS Format : ‘
) 78 (XL} wlu 1920 , | e
! ! 1 | |
: : Immediate : Address : |
! | Operand | Operand | | !
- < '
Op Code] Iy I B, l D] Sl Formot :
10 78 516 1920 X H
i . | i '
! ! Length ! Address 1 Address |
1 Operand 1 Operand 2 Operand 1 : Operand 2 \
| e oA A~ v A ~
Op Code l 4 I Ly l 8, 1 o, I By I D, SS Format
1

78 na 1516 1920 « 3

e

Figure 10. Five Basic Instruction Formats

The five basic instruction formats are denoted by the format codes
RR, RX, RS, SI, and SS. The format codes express, in general terms,
the operation to be performed, RR denotes a register-to-register operation;
RX, a register-and-indexed-storage operation; RS, a register-and-storage
operation; SI, a storage and immediate~operand operation; and SS, a storage=
to-storage operation. An immediate operand is one contained within the
instruction. '

For purposes of describing the execution of instructions, operands
are designated as first and second operands and, in the case of branch-
on~-index instructions, third operands. These names refer to the manner
in which the operands participate. The operand to which a field in an in-
struction format applies is generally denoted by the number following the
code name of the field, for example R}, B;, L,, D,.

In each format, the first instruction halfword consists of two parts.

The first byte contains the operation code (op code). The length and format
- of an instruction are specified by the first two bits of the operation code.

q14n

Instruction Length Recording

Bit Positions Instruction Instruction
(0-1) Length Format
00 One halfword RR
01 Two halfwords RX
> 10 ‘, Two halfwords RX or SI
11 Three halfwords SS

The second byte is used either as two 4-bit fields or as a single
eight-bit field. This byte can contain the following information:

Four-bit operand register specification (R1, R2, or R3)
Four-bit index register specification (X3)

Four~bit mask (Mj)

Four-bit operand length specification (Lj or Lj)
Eight-bit operand length specification (L)

Eight-bit byte of immediate data (Ip)

In some instructions a four-b1t field or the whole second byte of the first
halfword is ignored. ‘

The second and third halfwords always have the same format:

Four-bit base register designator (B] or B2), followed by a 12-bit
displacement (D} or D). -

Address Generation - For addressing purposes, operands can be grouped
in three classes: explicitly addressed operands in main storage, immediate
operands placed as part of the instruction stream in main storage, and
operands located in the general or floating-point registers.

To permit the ready relocation of program segments and to provide
for the flexible specifications of input, output, and working areas, all in=
structions referring to main storage have been given the capacity of employ-
ing a full address.

The address used to refer to main storage is generated from the
following three binary numbers:

Base Address (B) is a 24-bit number contained in a general register
specified by the program in the B field of the instruction. The B field is
included in every address specification. The base address can be used as
a means of static relocation of programs and data. In array-type calculations,
it can specify the location of any array and, in record~type processing, it can
identify the record. The base address provides for addressing the entire
main storage. The base address may also be used for indexing purposes.

w]5a

Index (X) is a 24-bit number contained in a general register specified
by the program in the X field of the instruction. It is included only in the
address specified by the RX instruction format. The RX format instructions
permit double indexing; i.e., the index can be used to provide the address
of an element within an array. '

Displacement (D) is a 12-bit number contained in the instruction
format. It is included in every address computation. The displacement
provides for relative addressing up to 4095 bytes beyond the element or
base address. In array-type calculations the displacement can be used
to specify one of many items associated with an element. In the processing
of records, the displacement can be used to identify items within a record.

In forming the address, the base address and index are treated as
unsigned 24-bit positive binary integers. The displacement is similarly
treated as a 12-bit positive binary integer. The three are added as 24~-bit
binary numbers, ignoring overflow. Since every address includes a base,
the sum is always 24 bits long. The address bits are numbered 8«31 corres-
ponding to the numbering of the base address and index bits in the general
register.

The program may have zeros in the base address, index, or displace=~
ment fields. A zero is used to indicate the absence of the corresponding
address component. A base or index of zero implies that a zero quantity
is to be used in forming the address, regardless of the contents of general
register 0. A displacement of zero has no special significance. Initialization,
modification, and testing of base addresses and indexes can be carried out '
by fixed~point instructions, or by BRANCH AND LINK, BRANCH ON COUNT,
-or BRANCH~ON-INDEX instructions. '

As an aid in describing the logic of the instruction format, examples
of two instructions and their related instruction formats follow.

" RR FORMAT

ad | 7] 5]

[78 niz 13

Execution of the ADD instruction adds the contents of general register 9 to
the contents of general register 7 and the sum of the addition is placed in
general register 7.

RX FORMAT

Store | 3 |10 |14 | 300

° 7s nn 1518 1920 n

Execution of the STORE instruction stores the contents of general register
3 at a main~storage location addressed by the sum of 300 and the low-order
24 bits of general register 14 and 10.

=16«

Sequantial Instruction Execution - Normally, the operation of the CPU
is controlled by the instructions taken in sequence. An instruction is fetched
from a location specified by the instruction address in the current PSW, The
instruction address is then increased by the number of bytes in the instruction
fetched to address the next instruction in sequence. The instruction is then
executed and the same steps are repeated using the new value of the instruc-
tion address.

Conceptually, all halfwords of an instruction are fetched from storage
after the preceding operation is completed and before execution of the
current operation, even though physical storage word size and overlap of
instruction execution with storage access may cause actual instruction
fetching to be different. Thus, it is possible to modify an instruction in
storage by the immediately preceding instruction.

A change from sequential operation may be caused by branching,
status switching, interruptions or manual intervention.

Branching ~ The normal sequential execution of instructions is
changed when reference is made to a subroutine, when a two-way choice
is encountered, or when a segment of coding, such as a loop, is to be
repeated. All these tasks can be accomplished with branching instructions.
Provision is made for subroutine linkage, permitting not only the intro=~
duction of a new instruction address but also the preservation of the return
address and associated information.

Decision~-making is generally and symmetrically provided by the
BRANCH ON CONDITION instruction. This instruction inspects a two-bit
.condition code that reflects the result of a majority of the arithmetic,logical,
and I/O operations. Each of these operations can set the code in any one of
four states, and the conditional branch can specify any selection of these -
four states as the criterion for branching. For example, the condition code
reflects such conditions as nonzero, first operand high, equal, overflow,
channel busy, zero, etc. Once set, the condition code remains unchanged
until modified by an instruction that reflects a different condition code.

The two bits of the condition code provide for four possible condition
code settings: 0, 1, 2, and 3. The specific meaning of any setting is
significant only to the operation setting the condition code.

Loop control can be performed by the conditional branch when it
tests the outcome of address arithmetic and counting operations. For some
particularly frequent combinations of arithmetic and tests, the instructions
BRANCH ON COUNT and BRANCH ON INDEX are provided. These branches,
being specialized, provide increased performance for these tasks,

-] T

Program Status Word - A double word, the program status (PSW),
contains the information required for proper program execution. The PSW
includes the instruction address, condition code, and other fields to be
discussed. In general, the PSW is used to control instruction sequencing
and to hold and indicate the status of the system in relation to the program
currently being executed. The active or controlling PSW is called the
"current PSW.'" By storing the current PSW during an interruption, the
status of the CPU can be preserved for subsequent inspection. By loading
a new PSW or part of a PSW, the state of the CPU can be initialized or
changed. Figure 11 shows the PSW format.

vlSystem Mask l Key lAMWP[Interruption Code I
o

78 LR}H 13518 3

|ILC|CC| Pt’°95 '°| m I Instruction Address -] !

32 3334 3538 3940 L)
t

0~7 System mask . 14 Wait state (W)

0 Channel 0 mask . 15 Problem state (P) h

1 Channel 1 mask 16=31 Interruption code

2 Channel 2 mask 32-33 Instruction Length code (ILC)

3 Channel 3 mask 34-35_ Condition code (CC)
4 Channel 4 mask 36~39 Program mask :
5 Channel 5 mask 36 Fixed-point overflow mask

6 Channel 6 mask . 37 Decimal overflow mask

7 External mask 38 Exponent underflow mask

8-11 Protection key 39 Significance mask

12 ASCii-8 mode (A) 40~63 Instruction address

13 Ah_lfch!no check mask (M)

Figure 11. Program Status Word Format

Interruption - The interruption system permits the CPU to change
state as a result of conditions external to the system, in input/output (I/O)
units or in the CPU itself. Five classes of interruption conditions are
possible: I/O, program, supervisor call, external, and machine check.

Each class has two related PSW's called '"old" and '"mew'' in unique
main-storage locations (Figure 12). In all classes, an interruption involves
merely storing the current PSW in its "old" position and making the PSW
at the ''new'' position the current PSW. The ''old'" PSW holds all necessary
status information of the system existing at the time of the interruption. If,
at the conclusion of the interruption routine, there is an instruction to make
the old PSW the current PSW, the system is restored to the state prior to
the interruption and the interrupted routine continues.

Interruptions are taken only when the CPU is interruptable for the
interruption source. The system mask, program mask, and machine check
mask bits in the PSW may be used to mask certain interruptions. When
masked off, an interruption either remains pending or is ignored. The system
mask may keep I/O and external interruptions pending, the program mask may
cause four of the 15 program interruptions to be ignored, and the machine-
check mask may cause machine-check interruptions to be ignored. Other

interruptions cannot be masked off.

- o18a

Address Length Purpose

0 0000 0000 double word Initial program loading PSW
8 0000 1000 double word Initial program loading CCW1
16 0001 0000 double word Initial program loading CCW2

24 0001 1000 double word External old PSW
32 0010 0000 double word Supervisor call old PSW

40 0010 1000 double word Program old PSW
48 . 0011 0000 double word Machine check old PSW
56 0011 1000 double word Input/output old PSW
64 0100 0000 double word Channel status word
72 0100 1000 word Channel address word
76 0100 1100 word Unused

; 80 0101 0000 word Timer

' 84 0101 0100 word Unused

88 0101 1000 . double word External new PSW

96 0110 0000 double word Supervisor call new PSW
104 0110 1000 double word Program new PSW
112 0111 0000 double word Machine check new PSW
120 0111 1000 double word Input/output new PSW
128 1000 0000 Diagnostic scan-out area*

* The size of the diagnostic scan-out area depends upon the
particular system s CPU and I/O channols

Figure 12. Pebrmanent Storage Assignments

An interruption always takes place after one instruction execution is
finished and before a new instruction execution is started. However, the
occurrence of an interruption may affect the execution of the current in-
struction. To permit proper programmed action following an interruption,
the cause of the interruption is identified and provision is made to locate

the last executed instruction.

Input/Output Interruption - An I/O interruption provides a means
by which the CPU responds to conditions in the channels and I/O units.

An I/O interruption can occur only when the mask bit associated with
the channel is set to one. The address of the channel and I/0 unit involved
are recorded in bits 1631 of the old PSW, Further information concerning
the I/O action is preserved in the channel status word (CSW) that is stored

during the interruption.

Program Interruption ~ Unusual conditions encountered in a program
create program interruptions. These conditions include incorrect operands
and operand specifications, as well as exceptional results, The interruption
code identifies the interruptmn cause., Figure 13 shows the different causes

that may occur. S
} lm:rwpﬁon . Progrom Interruption

Code Cause
"1 00000001 Operation
2 00000010 Privileged operation
3 00000011 Execute
4 00000100 ’ Protection
5 00000101 . Addressing
6 00000110 Specification
7 00000111 Data
8 00001000 Fixed-point overflow
9 00001001 : Fixed-point divide
10 00001010 Decimal overflow
11 00001011 Decimal divide
12 00001100 Exponent overflow
13 00001101 Exponent underflow
14 00001110 Significance
15 00001111 Floating=point divide

Figure 13. Interruption Code for Program Interruption -=19-

Supervisor~Call Interruption - This interruption occurs as a result
of execution of the instruction SUPER VISOR CALL, Eight bits from the
instruction format are placed in the interruption code of the old PSW,
permitting an identification to be associated with the interruptions. A major
use for the instruction SUPERVISOR CALL is to switch from the problem-~
state to the supervisor state. This interruption may also be used for other

modes of status-switching.

External i,nterruption - The external interruption provides the means

by which the CPU: responds to signals from the interruption key on the
system control panel, the timer, and the external signals of the direct

control feature.

An external interruption can occur only when system mask bit 7
in the PSW is one. '

The source of the interruption is identified by the interruption code
in bits 24=31 of the PSW (Figure 14). Bits 16~23 of the interruption code are

made zero,

‘Interruption External

—Code Bit Interruption Cause Mask Bit

‘ T 24 Timer . 7 t

25 Interrupt key 7 f

T26 External signal 2 7 :

: 27 External signal 3 7 '

. 28 External signal 4 7

P29 External signal 5 7 K
- 30 External signal 6 7

L3 Extemal slgnal 7 7

Figure 14. Interruption Code for External Interruption

Priority Interruption -~ In real time applications, the computing power
of the CPU needs to be coupled with the ability to respond quickly to external
events, and to distinguish between many different external situations with a
minimum of programming. These abilities can be provided with a special
feature called Priority Interrupt. The 32 levels of priority interrupt feature
are supplemental to the single level, 6 line external interrupt feature des-
cribed above. The two systems are logically and physically independent.

The priority interrupt feature permits individual masking and hard-
ware nesting of up to 32 levels of priority. Information transmitted from
the interrupting source may be expanded to allow as many as 256 external

conditions at each level of priority.

When the priority interrupt is requested and enabled at the same
time that one of the basic System/4 Pi interrupts is requested and enabled,
resolution of priority may be controlled by the programmer to permit
the priority interruption to be serviced first.

- 220-

Machine~Check Interruption - The occurrence of a machine check (if
not masked off) terminates the current instruction, initiates a diagnostic
procedure, and subsequently causes the machine-~check interruption. A
machine check cannot be caused by invalid data or instructions. The diag-
nostic scan is performed into the scan area starting at location 128. Proper
execution of these steps depends on the nature of the machine check.

Priority of Interruptions - During execution of an instruction, several
interruption requests may occur. Simultaneous interruption requests are
honored in the following predetermined order:

Machine Check

- Program or Supervisor Call
External
Input/Output

The program and supervisor-call interruptions are mutually ex-
clusive and cannot occur at the same time.

‘When more than one interruption cause requests service, the action
consists of storing the old PSW and fetching the new PSW belonging to the
interruption which is taken first. This new PSW subsequently is stored
without any instruction execution and the next interruption PSW is fetched.
This process continues until no more interruptions are to be serviced.
When the last interruption request has been serviced, instruction execution
is resumed using the PSW last fetched. The order of execution of the
interruption subroutines is, therefore, the reverse:of the order in which
the PSW's are fetched.

Thus, the most important interruptions - I/O, external, program
or supervisor call - are actually serviced first. Machine check, when it
occurs, does not allow any other interruptions to be taken.

Program States - Over-all CPU status is determined by four types
of program-~state alternatives, each of which can be changed independently
to its opposite and most of which are indicated by a bit or bits in the PSW,
The program-state alternatives are named stopped or operating, running
or waiting, masked or interruptible, and supervisor or problem state.
These states differ in the way they affect the CPU functions and the manner
in which their status is indicated and switched. All program states are
independent of each other in théir functions, indication, and status=

switching.

Stopped or Operating States: The stopped state is entered and left
by manual procedure. Instructions are not executed, interruptions are
not accepted, and the timer is not updated. In the operating state, the
CPU is capable of executing instructions and being interrupted.

w2l

Running or Waiting State: In the running state, instruction fetching
and execution proceed in the normal manner. The wait state is normally
entered by the program to await an interruption, for example, an I/O
interruption or operator intervention from the console. In the wait state,
no instructions are processed, the timer is updated, and I/O and external
interruptions are accepted, unless masked. Running or waiting state is
determined by the setting of bit 14 in the PSW,

Masked or Interruptible State: The CPU may be interruptible or
masked for the system, program, and machine interruptions. When the
CPU is interruptible for a class of interruptions, these interruptions are
accepted, When the CPU is masked, the system interruptions remain
pending, while the program and machine~-check interruptions are ignored.
The interruptible states of the CPU are changed by changing the mask bits of
the PSW,

Supervisor or Problem State: In the problem state, all I/O instructions
and a group of control instructions are invalid. In the supervisor state, all
instructions are valid. The choice of problem or supervisor state is
determined by bit 15 of the PSW,

2.3.5 Protection Features

Two protection features are available. These features make it
possible to protect the contents of main storage from destruction or
misuse. When the store-protection feature is installed, attempts to
modify storage are monitored. The addition of the fetch-protection
feature to the store~protection feature provide for monitoring of all
accesses to storage. '

Protection is achieved by dividing main storage into blocks of 2, 048
bytes, and by associating a five-bit key with each block. Two instructions -
SET STORAGE KEY and INSERT STORAGE KEY - are provided for assign-
ing and inspecting the code in a key. The same code:may be used in .=
many keys. ' '

A user's right of access to storage is identified by a four-bit
protection key. For references caused by the CPU, the protection key
in the current PSW is used; accesses by channels are controlled by the
protection key assigned to the associated I/O operation.

When protection applies to a main-storage reference, the key in
storage is compared with the protection key associated with the reference.
Access to the location, for both operands and instructions, is granted only
when the two keys match. The keys are said to match when the four high-
order bits of the key in storage are equal to the protection key or when the
protection key is zero., When store-and-fetch protection is installed, the
low=-order bit of the key in storage is used to specify whether or not fetch-

ing is to be monitored.

w2l

When a protection mismatch is detected, the content of the protected
main-storage location remains unaltered. A protection violation due to a
CPU reference causes the instruction to be suppressed or terminated and
program execution to be altered by an interruption. A violation due to an
I/0O operation causes the I/O operation to be terminated, with the protection
mismatch indicated in the channel status word stored at the end of an I/O

operation.

2.3.6 Timer Feature

The timer consists of a full word in main-storage location 80.
The timer word is counted down at a rate determined by an external pulse
source. The timer word is treated as a signal integer following the rules
of fixed-point arithmetic. An external interruption condition is signalled
when the value of the timer word goes from positive to negative.

An updated timer value is available at the end of each instruction
execution but is not updated in the stopped state. The timer is changed by
addressing storage location 80. As an interval timer, the timer is used
to measure elapsed time over relatively short intervals. It can be set
to any value at any time. .

2.3.7 Direct Control Feature

The direct control feature provides two instructions, READ DIRECT
and WRITE DIRECT, and six external interruption lines. The read and
write instructions provide for the transfer of a single byte of information
between an external device and the main storage of the system. It is
usually most desirable to use the data channels of the system to handle
~ the transfer of any volume of information and use the direct data control
- feature to pass controlling and synchronizing information between the CPU
and special external devices.

Each of the six external signal lines, when puised; sets up the
conditions for an external interruption. '

2.3.8 Multisystem Operation

The design of System/360 permits communication between individual
CPU's at several transmission rates. The communication is possible
through shared control units, through a channel-~to~channel adapter, and
“through shared storage. Interconnection of CPU's is further enhanced by
the direct control feature (described in the previous section), which can be
used to signal from one CPU to another, and by facilities for direct address
relocation, malfunction indication, and external CPU initialization.

- w23

The relocation procedure applies to the first 4, 096 bytes of storage.
This area contains all permanent storage assignments and, generally, has
special significance to supervisory programs. The relocation is accomplished
by inserting a 12~bit prefix in each address which has the high~order 12 bits
set to zero and hence, pertains to location 0-4095., Two manually set pre=
fixes are available to permit the use of an alternative area when storage
malfunction occurs. The choice between the prefixes is determined by a
prefix trigger set during initial program loading.

To alert one CPU to the possible malfunction of another CPU, a
machine check~out signal is provided, which can serve as an external
interruption to another CPU,

Finally, provision is made for starting one CPU by a signal from
~another CPU, ,

2.3.9 Input and Output

-The following information is introductory in nature. For thorough
definition of the input/output system, see System/360 Principles of Operation.

Input/Output Devices and Control Units - Input/output operations in-
volve the transfer of information to or from main storage and an I/O de=
vice. Input/output devices include such equipment as card read punches,
magnetic tape units, disk storage, drum storage, typewriter-keyboard
devices, printers, teleprocessing devices, and process control equipment.

Many I/O devices function with an external document, such as a
punched card or a reel of magnetic tape. Some I/O devices handle only
electrical signals, such as those found in process-control networks. In
either case, I/O device operation is regulated by a control unit. The control-
unit function may be housed with the I/O device, as is the case with a printer,
or a separate control unit may be used. In all cases, the control-unit function
provides the logical and buffering capabilities necessary to operate the
associated I/O device. From the programming point of view, most control-
unit functions merge with I/O device functions, ‘

Each control unit functions only with the I/O device for which it is
designed, but each control unit has standard=signal connections with re=-
gard to the channel to which it is attached.

Input/Output Interface -~ So that the CPU may control a wide variety
of I/O devices, all control units are designed to respond to a standard set
of signals from the channel. This control-unit-to~channel connection is
called I/O interface. It enables the CPU to handle all I/O operations with

only four instructions.

~24u

Special Purpose Channels - In order to effectively integrate Model
EP into existing systems and to accommodate unusual data transfer situa=-
tions such as those arising from radar inputs, special purpose channels may
be designed and attached to a Model EP. These channels may operate as
special purpose transfer paths under control of a standard channel or they
may be entities with unique control instructions and architecture. Such
channels may be used in addition to or in place of standard channels
described below.

Channels - Standard channels connect with the CPU and main storage
and, via the I/O interface, with control units. Channels control transfer
of data between I/O devices and main storage. The CPU program is free
to resume processing data after initiating channel control of I/O operations,
including concurrent operation of several I/O devices on a single channel,
as well as concurrent operation of several other channels,

A channel may be an independent unit, complete with necessary
logical and storage capabilities, or it may time~share CPU facilities
and be physically integrated with the CPU, In either case, channel
functions are identical. Channels may be implemented, however, to have
different maximum data transfer capabilities.

The System/360 has two types of channels: multiplexor and selector.
The channel facility necessary to sustain an operation with an I/O device
is called a subchannel. The selector channel has one subchannel; the
multiplexor channel has multiple subchannels.

Channels have two modes of operation: burst and multiplex.

In the burst mode, all channel facilities are monopolized for the
duration of data transfer to or from a particular I/O device. The selector
channel functions only in the burst mode.

The multiplexor channel functions in either the burst mode or in
the multiplex mode. In the multiplex mode, the multiplexor channel can
sustain concurrent I/O operations on several subchannels. Bytes of data
are interleaved together and routed to or from the selected I/O devices and
to or from the desired locations in the main storage. In the multiplex mode,
the multiplexor channel's single data path is time~shared by the concurrently
operating I/O devices, each of which uses a subchannel.

In burst mode, the multiplexor channel's data path is pre-empted by a
burst-mode device; other devices attached to the channel cannot transfer
data or communicate with the CPU until the burst-mode device releases
" the data path. '

w2ba

Some I/O devices can operate only in burst mode. Other I/O
devices have a manual switch in the control unit that may be set to a
burst-mode or to a multiplex-mode position, when attached to a multi-
plexor channel. When attached to a selector channel, an I/O device can
operate only in burst mode.

Input/Qutput Instructions - The System/360 uses only four I/O
instructions: .

START 1I/0
TEST I/O

HALT I1/0

TEST CHANNEL

Input/output instructions can be executed only while the CPU is
in the supervisor state.

Start I/O - The START I/O instruction is used to initiate an I/O
operation. The address part of the instruction specifies the channel
and I/0O device.

Test I/O - Execution of the TEST I/O instruction sets the condition
code in the PSW to indicate the state of the addressed channel, subchannel,
and I/O device, and may cause a CSW to be stored. The instruction may
be used to clear I/O interruption conditions, selectively by device.

Halt I/O The HALT I/0O instruction terminates a channel
operation.

Test Channel - Execution of the TEST CHANNEL instruction sets
the condition code in the PSW to indicate the state of the channel addressed
by the instruction. The resulting condition code indicates one of the follow-
ing: channel available, interruption condition in channel, channel working,
or channel not operational.

Input/Output Operation Initiation - An I/O operation is initiated by a
START I/O instruction. If the necessary channel and device facilities are

- available, START I/O is accepted and the CPU continues its program. The

channel independently governs the I/O device specified by the instruction.

Channel Address Word - Successful execution of START I/O causes
the channel to fetch a channel address word (CAW) from the main-storage
location 72. The CAW specifies the byte location in main storage where the
channel program begins.

w2bw

Figure 15 shows the format for the CAW. Bits 0-3 specify the
storage-protection key that will govern the I/O operation. Bits 4~7 must
contain zeros. Bits 8-31 specify the location of the first channel command

word (C CW).

rKoy IO 00 0[Command Address ' l

B 78 \ »

Figuv;'e 15, Channel Address Word Format

Channel Command Word - The byte location specified by the CAW
is the first of eight bytes of information that the channel fetches from
main storage. These 64 bits of information are called a channel command
word (CCW), Only the START I/O instruction may cause the channel to
fetch CCW's,

One or more CCW's make up the channel program that directs
channel operations.

A channel command word can specify one of six commands:

Read

Write

Read Backward
Control

Sense

Transfer In Channel -

If more than one CCW is to be fetched, bthe CCW's are to be fetched ”
sequentially, except when transfer in channel is encountered. Figure 16
shows the format for CCW's, :

r C%’:Z‘:"d. J Data Address
]

n

)

The command code specifies the operation to be performed (read, write,
rewind, etc.). o

The data address specifies the first byte location in main srofage fora
data transfer type of operation, .

The flag bits may specify chaining to another CCW, wpprowon of a
possible incorrect=length indication, etc.

The count specifies the number of bytes for a data tronsfer operation,

Figure 16. Channel Command Word Format

A

Input/Qutput Commands

Read ~ The read command causes data to be read from the selected
I/O device and defines the area of main storage to be used.

Write - The write command causes a write operation on the
selected I/O device and defines the data in main storage to be written.

Read Backward - The read~backward command causes a read
operation in which the characters are read from the external document
in reverse order by the I/O device. Bytes read backward are placed in
descending main storage locations.

Control - The control command contains information used to

- control the selected I/O device. This control information is called an
order. Order information may be entirely contained in the command code,
or the control command may provide a data address and byte count for
additional order information in main storage such as the address of a
particular disk storage track.

Orders are peculiar to the particular I/O device in use; orders
can specify such functions as rewinding a tape unit, loading a tape
cartridge, or line skipping on a printer. A control command may cause
mechanical motion by an I/O device, or it may specify a function altogether
electronic in nature, such as setting the recording density for a tape unit
operation.

The general relationship of I/O instructions, commands, and orders
is shown in Figure 17. ‘

cry Channels Control Unit
and/or
(Decodes 1/O Device
I/0 (Decod: .
Instructions) Commands) (Decodes
Orders) i

Figure 17. Relationship of 1/0 Instructions, Commands,
‘ and Orders '

Sense - The sense command specifies the beginning main storage
location to which sense information is transferred from the selected control
unit., Omne or more bytes of sense data may be specified, depending upon
the type of I/O device. The sense data provides detailed information con~
cerning the selected 1/O device, such as a stacker-full condition of a card
reader or a file-protected condition of a reel of magnetic tape on a tape
unit. Sense data have significance peculiar to the type of I/O device involved.

w28

Transfer in Channel - The transfer-in-channel (TIC) command
specifies the location of the next CCW to be fetched and used by the
channel. The TIC command is used whenever the programmer wants
to specify a CCW that is not located at the next higher double word location
in main storage. The TIC command permits a programmer to cause
execution of any CCW, including a CCW immediately preceding a TIC
command, except that the channel will not permit a TIC command to specify
execution of another TIC command. Also, the CAW may not address a
TIC command.

Input/Output Termination - Input/output operations terminate with
the device and channel signalling end of operation and a request for an
I/0O interruption.

A command can be rejected during an attempt to execute a START 1/0,
however, by a busy condition, by a channel programming error, etc. The
condition code set in the PSW by an unsuccessful START I/O instruction
will indicate one of the following: that a channel status word (CSW) has
been stored to detail the conditions that precluded initiation of the I/O
operation, that the equipment is busy, or that the addressed equipment
is not operational. :

Channel Status Word - The channel status word (CSW) provides
information about the termination of an I/O operation. It can be formed
or reformed by START 1/O, TEST I/O, HALT I/O or by an I/O interruption.
The instruction TEST CHANNEL does. not affect the CSW, Figure 18
shows the CSW format.

l 'Key l 0000] Command Address]
°

34 78 n

N l_ Status Count 1
T

4740 8

- The key field contains the protection key used in the last operation,’

The command address specifies the location plus 8 of the last CCW
used.

The status field contains o unit status byte and a channel status byte.
The unit status byte may indicate one or more conditions, such as control
unit end, device end, busy, etc. The channel status byte may indicate o
channel programming error, a channel data check, etc.

The count field specifies the residual count of the last CCW used.

Figure 18. Channel Status Word Format

=29a

Input/Output Interruptions - Input/output interruptions are caused
by termination of an I/O operation or by operator intervention at the I/O
device. An I/O interruption stores the current PSW in the I/O old PSW
location, and places the I/O new PSW in control of the system. The I/O
new PSW, when made current by an I/O interruption, may cause CPU
" interrogation of!the channel status word, or take whatever action is con~
sidered approprlate by the programmer.

An I/O interruption request may be initiated by an I/O interruption
condition in a device, a control unit, or a channel. When a channel has
multiple I/O interruption requests pending, it establishes a priority se=~
quence for them before initiating an I/O interruption request to the CPU,
Conditions responsible for I/O interruption requests remain pending in
the I/O devices or channels until they are accepted by the CPU,

2.3,10 System Control Panel

The system control panel provides the switches, keys, and lights
necessary to operate and control the system. The need for operator
manipulation of manual controls is held to a minimum by the system de=-
sign and the governing supervisory program. The resultris fewer and
less serious operator errors.

System Control Panel Functions ~ The main functions provided by
the system control panel are the ability to: reset the system; store and
display information in main storage, in registers, and in the PSW; and
load initial program information. ‘

System Reset ~ The system-~reset function resets the CPU, the
channels, and on-line control units and I/O devices. In general, the
system is placed in such a state that processing can be initiated without
the occurrence of machine checks, except those caused by subsequent
machine malfunction,

Store and Display - The store-and-display function permits manual
intervention in the progress of a program. The function may be provided
by a supervisory program in conjunction with proper I/O equipment and
the interrupt key. Or, the system-control-panel facilities may be used to
place the CPU in the stopped state, and then to store and display information
in main storage, in general and floating-point registers, and in the ‘
instruction-address portion of the PSW,

30

Initial Program Loading - The initial-program-loading (IPL) pro=
cedure is used to begin or renew system operation. The load key is
pressed after an input device is selected with the load-unit switches.

This causes a read operation at the selected input device. Six words
of information are read into main storage and may be used for reading
more information into any part of main storage. Upon completion of
the IPL read operation, the double word from location 0 is made the
current PSW for subsequent control of the system.

The system controls are divided into three sections: operator
control, operator intervention, and customer engineering control.

Operator Control Section - This section of the system control panel
contains the operator controls required when the CPU is operating under
supervisory program control. '

The main functions provided are the control and indication of
power, the indication of system status, and operator~to-machine
communication. These include:

Power~-on key
Power~-off key
Interrupt key
Wait light
Manual light
System light
Test light
Load light
Load key

- Operator Intervention Section = This section of the system control
panel provides controls required for operator intervention into normal
programmed operation. These include: ’

System reset key

Stop key

Start key

Rate switch (single cycle or normal processing)
Storage~select switches ‘ '
Address switches

Data switches

Store key

Display key

Set IC key ‘

Address compare switches.

@3]

2.4

Instruction Sets

Detailed descriptions of each instruction set and of instruction
execution, status switching, interruptions and input/output operations

are contained in System/360 Principles of Operation.

The chart below

summarizes the instructions available.

w32m

RS Format
RR Format OpCode | Ry | Ry | By | ®2
0 78 12 1516 1920 N
R R
Op Code I | l 2] Fixed Point Logical
78 oz 18
° ' Load Multiple Shift Left Single 2
. . . . Store Multiple Shift Right Single 2
Fixed Point Floating Point Shift Left Single 2 Shift Left Double E2
Load Load S/L Shift Right Single 2 Shift Right Double E2 "
Load and Test Load and Test S/L Shift Left Double E,2
Load Complement Load Complement S/L Shift Right Double E2 Branching
Load Positive Load Positive S/L .
Load Negative Load Negative S/L g:iggﬁ g:: Ecl)%vh-Eq
Add Add Normalized S/L
Add Logical Add Unnormalized S/L
Subtract Subtract Normalized S/L $1 Format
Subtract Logical Subtract Unnormalized S/L
Compare Compare S/L Op Code [l2 I B] I D]]
Multiply E Halve S/L |
Divide E Multiply S/L 0 78 1318 1720 3
Divide S/L Input/Output Status Switching
. - g Start 170 4 Load PSW 4
Logical Status Switching Test I/0 4 Set System Mask . 4
Compare Set Program Mask 2 HaltI/O 4 Write Direct Y
AND Supervisor Call 3 ' Test Channel 4 Read Direct Y
OR Set Storage Key VA . : Diagnose
Exclusive OR Insert Storage Key z Logical | Test and Set 4
. Move
Branching Compare
Branch on Condition AND
Branch and Link OR
Branch on Count Exclusive OR
' Test Under Mask
RX Format
SS Format
| OpCode | Ry | X% | B8 | P2 | L L, | 8 515, [% D
[)] 78 112 1516 19 20 N l Op COde l] I 2 I] I 2;]] 2 I?} 2]
A T ‘w\v!rz‘“‘hls 16 19 20 3132 35 36 a7
Fixed Point Floating Point ? S Logical
Load H/F Load S/L b -1 Move 5
Add H/F Add Normalized S/L ' Move Numeric 5
Add Logical Add Unnormalized S/L , ! Move Zone 5
Subtract H/F Subtract Normalized S/L o -~ | Compare 5
Subtract Logical Subtract Unnormalized S/L | FORMAT NOTES . AND 5
Compare H/F Compare S/L H E R.mustbeeven | OR 5
Mult_iply H Multiply S/L l P F F:ﬂlwor a | Exclusive OR 5
M}xl.txply F E Stf)r.e S/L H H Halfword | Translate 5
Divide F E Divide /L L Long .1 Translate and Test 5.
Convert to Bmgry g Short o Edit TS5
gonve;it to Decimal '\ T Decimal feature — -, Edit and Mark T.5
tore H/F .Y Direct control feature = o - o
. , N/ Protection feature U —
Logical Branching N { Cq R, used as mask M S
Compare Branch on Condition i 9 R. or Rsignored
Load Address Branch and Link 3 R, and R used as immediate information
Insert Character Branch on Count 4 I. ignored
Store Character Execute 5 L, and L. used as eight-bit L field
SND All floating-point instructions are part of the floating-point fea-
R ture. '
Exclusive OR

3.0 SOFTWARE

The system programming provided for 4 Pi/EP support includes
the assembler and compiler for the language adopted, the program check=-
out system (simulator)and serviceprograms. These packages execute on
a host S/360 and interface with OS/360. Code is produced for execution
on EP. In addition, a control system is being developed for execution on
EP in a real time environment.

3.1 Language Translators
Assembler

The assembler for EP is similar to the OS/360 assembler.
Additions and modifications are as follows:

1. The assembler will - allow for easy definition of operation
codes since it may frequently be called upon to assemble
instructions which are not found in the normal instruction
set for the 4 Pi/EP,

2. Dynamic Relocation

The assembler will: provide many of the tables required
for operation of the dynamic relocation procedure in the
Control System.

Compiler

The language of the compiler designed for 4 Pi support provides
the following features:

1. Real Time Control

Scheduling of program segments or procedures are accoms=
plished by the control system based on information provided

by the user. The language contains statements that allow

the user to dynamically request and free data storage areas
and to allow the loading and overlaying of program and data
blocks under program control. Statements which facilitate

the scheduling and execution of program segments are included.
In addition the language provides a flexible method of allow=-
ing user control of interrupt conditions.

“33a

2. Optimization Control

Optimization of object code is a primary design criteria,
with the user retaining control over specification of the
type of optimization required for his application. The
user is allowed to specify Time, Space, Reentrant or
Recursive code generation as required. The user control,
in conjunction with the compiler objectives of producing
optimized code through (a) Redistribution, (b) Elimination,
(c) Simplification, and (d) Code selection, assists in
controlling the use of hardware resources.

3. Computational Capability

- The language provides a powerful computational capability
in order to meet the complex data manipulation and calcu=~
- lation requirements that arise in a real time environment.

The ability to describe and manipulate complex data arrange=-
ments includes such features as floating, fixed, complex

and integer arithmetic on both binary and decimal data with
multiple and variable precision; relational and logical
operations; loop control; array operations; subscripting;
complex data structures and strings with bit and character
referencing; movement of data with optional editing; and

an ability to use machine language code.

4. Input/Output Capabilities

The language provides a notation for the control of Input/
Output devices at a level of device independence consistent
with the requirements of a particular application. The
language allows symbolic referencing of devices consistent
with the philosophy of reducing system overhead and maxi-
mizing the flexibility of device usage. :

3.2 Program Checkout System (Simulator)

The problems encountered in checkout of time dependent programs
require facilities which allow the programmer to control the real time
environment. This is provided with a simulator program which executes
on a S/360 host computer and provides the necessary real time environment
for 4 Pi EP programs. The simulator, in addition to providing checkout
facilities, can provide valuable information through flow analysis of the
executing programs which can then be used for further program optimization.
Facilities are designed for interfacing with a user supplied FORTRAN IV
program which provides the real time inputs and interrupts for specific
applications and allows the user to simulate EP with full interrupt handling
capabilities. The simulation is handled through a set of interfacing sub-

=34«

routines which may be called by the user. A comprehensive list of user
calling sequences are made available including time snaps, dumps and

" traces. Other provisions include input/output, interrupt, and real time
control over the simulation.

3.3 Service Programs

The main items considered here are Program Preparation Processor
facilities, and thé_ system generation and maintenance facilities.

A, Program Preparation Processor

The Program Preparation Processor will operate on the
S/360 host computer and provide the following facilities:

1. Combine and link program modules which were
separately compiled or assembled into one
executable program for execution on 4 Pi EP,

2. Construct user's library files.

3. Retrieve modules from the user's library files
to be incorporated into the program.

4, Construct tables and directories required for control
of the program and modules.

‘5, . Provide error messages and program cross
reference tables.

6. Generate a program test library for use by the
simulator. : :

The Program Preparation Processor provides functions which
are similar to those provided in OS/360 with the extensions
required for interface with the 4 Pi Control System.

B, System Generation and Maintenance

An essential feature which frequently receives insufficient
attention is system generation and maintenance. System
maintenance facilities: provide for updating symbolic files
as well as generating and incorporating modifications to
the system. In a modular system, the generation facilities
must allow for easy combination of modules to provide
facilities which can be tailored to the application.

»35a

3.4 Control System

An important design goal of the control system is to provide support
to a wide range of real time applications and hardware configurations with-
out penalizing users with excessive and unnecessary overhead.

this flexibility, a basic control system is being designed and a number of

options and suboptions will be provided. For a given application, the basic

system, together with the optional modules selected can be assembled to
produce a specific system. '

The following functions are included in the control system:

.1.

Scheduling

The scheduling function manages the sequence in which
programs are executed. By associating a priority with
a specific program, the user determines the sequence
of application program execution.

Optionally, the user can select one of two scheduling
algorithms at system generation time. The first
algorithm provides for the processing of non-cyclic

‘type programs, the second provides for cyclic programs

(those programs which require periodic repeated entry).

The final user option is the specification that an interval
timer is to be associated with the scheduling routine. The

interval timer provides a means, other than program

segmentation, of returning control to the scheduler for
the possible processing of higher priority programs.

- Data Management

The data management function controls all operations
associated with input/output devices. These operations
include channel scheduling, cataloging and storage of data
files, data transfer between executable and auxiliary
storage, program and data files control, and detection

of errors occurring during input/output operations. As
with the other functions of the control system the extent
of control is specified by the user of the system.

Resources Management

The resources management function controls, allocates and
accounts for the following system resources:

Core storage

Auxiliary storage
Peripheral devices

-36-

To provide

There is a basic resources management function which
performs a configuration check on programs requested
for loading, preallocating, at load time, core and peri-
pheral devices. Resources and management also allo~
cates core, within the preallocated amount, at program
load time and when modules are loaded dynamically;
allocates core bins dynamically; and allocates peripheral
devices, within the preallocated amount, when requested
during program execution. Upon request and when a
program is cancelled or terminated, resources are returned
to the system.

An option to resources management provides buckets
management. Direct Access Storage devices designated
as '"bucket' devices are managed by this option. Buckets
are preallocated to a program at load time; allocated

and released to it, within the preallocated amount, when
requested during execution and normally released at

~ program cancellation time.

Core coalescing and rollout are offered as suboptions of
Basic Resources Management to make space in core as

‘required for loading programs of higher priority. In order

to optimize core use, all programs can be relocated
dynamically in core with the exception of a program
currently being executed by another CPU and a program
which is active in an I/O operation.

System Communication

The function of the control program which provides for
system interface with the user is called system communi~
cation. Such communications provides for messages to

and from operator stations and between application program
and system. Standard system functions such as load,
execute, terminate, change priority, etc., are provided.

The message set is minimal and is available in all levels
of the system. The construction of the communication
section is such as to allow the easy addition of application
dependent messages to the system."

Interrupt Supervision

The interrupt routines provides facilities for handling I/O,
machine, program, SVC, external, and priority interrupts.
Options provide for the batching of I/O interrupts for periodic
processing and also allow the user to specify whether external

interrupts are to be processed immediately or the processing
routine driven by priority from the program request queue.

“«3T7=

4.0 MICROPROGRAMMING CONCEPTS AND TECHNIQUES

This section was not available for inclusion in this preliminary
edition of Model EP, Engineering Design. There are several excellent
descriptions of microprogramming as it is applied to System/360. The
information in these articles is pertinent and applicable to Model EP in
.concept if not in detail.

1. The Design of Processor Controls Using a Read-Only Store
Dorothy L. Schnable IBM Report TR00.1318
Aug. 1965
2. Control Storage Systems
S. M. Pitkowsky IBM Report TR00.1360
(IBM Conf.) Nov. 1965
3. Microprogramming Manual for the IBM ‘System/360 Model 50
S. S. Husson IBM Report TR00. 1479

(IBM Conf,) July 1966

5.0 DETAILED DESCRIPTION

5.1 CPU Data Flow

The CPU data flow consists primarily of two parallel paths which
may be active simultaneously. One is a thirty-two bit wide adder/shifter
path fed by several thirty-two bit registers. The other is an 8-bit wide
mover path which performs logical operations on bytes of data selected
from various CPU registers. The CPU operates on a 0.416 microsecond
cycle time which is the time required for a register-to~register transfer
through the adder/shifter path or through the mover path. Figure 5-1 is
a block diagram of the CPU data flow.

The data flow shown on this figure may be segregated into three
different groups. The registers to the left and right of the figure (AB,
PSW, JA, JB, Q, R, E,.etc.) are largely concerned with control, instruction
fetching and storage accessing. The local storage at the top of the diagram
provides the 16 registers which may serve as accumulators, index registers
or as temporary storage registers, The working registers WA - WF and
registers BR, MR, etc., make up the general purpose data flow which
performs the detailed execution of each instruction. This general purpose
data flow is also shared by the instruction fetch system and integrated '
I/O system. :

- Register and Data Transfer Path Descriptions

o AB Register (address buffer) - This is a 16-bit register used
to hold all addresses associated with CPU storage requests.

o MK Register (mark register) - This is a 4~bit register which
is normally set simultaneously with the AB register. It is
used to control store or regenerate for each of the four bytes
of the 36-bit storage word.

o PSW Register ‘(Program Status Word Register - Status information
concerning the current operating program is contained in several
groups of registers from where it controls system operations
essential to that program mode. These groupings of registers, -
though not physically adjacent, are collectively referred to as
the PSW Register. The logical register is 64 bits in length and
is shown as an adjacent grouping on the flow diagram. The first ‘
16 bits contain the system mask, the key and the AMWP bits.

The remaining 16 bits of the first word is the interruption code
which does not require a physical register. This code is generated
by the CPU at the time of the interruption and is not retained when
a previously stored status word is reloaded. The second PSW
word contains the Instruction Length Code, the Condition Code,

and the Program Mask and a 24 bit instruction address. The four

high order address bits are not physically implemented and the
remaining 20 bit physical register is labeled JA on the flow diagram.

 w39a

| ® I 2 ® I » [} } 3t
! .
i
nEYEN
‘e’ zewo on ¥
proms 26 | s ait] c4Gun =
“ e 6R® - PRO- FPRT
. ° N wF ctre vued sungh ®-6R7T FPRO
Ll <P
BYTESTATE 2eR0 : 19 . 3
2 e 3 ny " a 3
™ o "wEs;
! ! 3 ¢ Tewoa ¢ wTomn)) 12 i E
-~ -
<_~.-=.u,?‘*" cor BT oot _ [_ea] R [on]
DaTA N i A\U
SN @ l ° »
3
b SS BUS
3 I SCAN (1= ") X N) SCAM 1 ('2-3)
LS BUS
__________ _——_——r - =} -
ADTER _BUS 4 !
1
Common —— I MOVER BUS 1
-—
CHANNEL I oy 1 [}
enrr l . 1 > ; 2 Pt uiiae § @ 9_,___1;‘ M et _ _ _ Y ___™ -
3 L4 9 3 ¢ a1e 19 3 1 ¢ hd ¢ 3 ® n ¢ ¢ Y 1le ¢ b ¢ ? 1)3 @ STORAGE | DATA BUS 3
¢ ¢ 1 ey 1 z i " 3t 4 k) ¢ 3 ® n) 31 [] 18 3 ® 3 ® 3 L) b}
P RPEIT TN IR/ R T 7 JP}/ I (T"“V A] [T u‘;\ T 1 r T v T —I l T 'C T J [T T T [T T T f T T T l [T T T]
Ao T O e ’ . / . L ME LM . LM | L ME | L MF L O , REG
: T E 5 Fr) a8 T 3 €3 () 3 [34 ¢ 3 ® 3 b 2 ® Fl ® 3%
o 3] &] =n : le2p ¢ 18 15| 2324 A I o 1E s|e 24w I
l i (3z %) 1 t I Scane
(Ot O N
CHAWNEL _ i \ J J
SCANI2(B-T,) LA 2 (8-15)
SCAN 13 (@-31)
1o
STORAGE m |
PROJECT
faad INCREMENT 1 1 1 SDAC
b — - = SCAN ? PRIORITY TUY PRIORITY INT
. ~© : EXT INT REGC MASK DESCRIDTION IN
SHIFT LEFT MPXO ° T @ q @ T
ANC BCD CORRECTION °
COMPLIMENT LOGIC . o scaNs 3 L J
¢ BI® 1
L—l nhx e
U 3 . 3
SCAN | o—rd et ® Y
MPX CNT M ¢ 3 ® 3
SCAN - -
P 7 LA S] 4 3 ® 3 ®
l [] 3 Eny
JE 1, & HOY OMES 2728 -
ceMMON -t 28 3 HOT ONE 07 ® 3
CHANNEL z 9 -, @ 3 ¢ coLd 2EROS a
MXCT S
¢ 1 L
oo
M3(T3 CARRY OUT | '
3 3t ADDER - q .-
_E N 1]
L] L3NS &) 8 » SCAN 13 O—ey
o “L (18-131)
Al v - L3l
IS LI
L T‘ =3
.
T 8. SCAN 13 (@-7) o8} ln
{ { -—0 SCAN 13(8-15) ‘ ezt
FANGAL COMMAND L) 7 ® 7 2 s
© 3 _
l N TS
sce .L’ O‘Ij 2 J_s
! IMRECT coMTROL SCAN S (28-31) ¢ 3 0 3 MOVER LOGIC
L TeVEINY [) S— -
EMIY SRS S
¢ 3 7SH1F_TER ~ ~ =
ey - . _ _ - . - - 1o
¢ 3 SCAN 18(27-31)
PriomiTy S30 1 |s3 - l -
acceey
[2 [
o ' MULTIPLY DECODE
st $31 . 3 wis| i
) se s3 ¢ ¢ ¢ s - .
P2 — [T e R ! J cP2
- 1 i 1 N . - _— . e e - —. - R P — — -
. 3 ® S .
¢ 34 18 BN Slw e 38
' ¢ SCP DATA KEYS 3 .
' Be L CTE AT CESSMIYS| e
; €21 3 4 S|e 1 &8 O CCP TihN VLS 3 ® 1 g
zpig 2ERO DETECTS| ZERO DETECTS @ STRAZEL IS-AE.S 3 TERC DETECTS el e47
7 . J i cPl E’ E[SCAN 8 (8-T) -
Pl
Figure 5-1
. SCAN IS (4-5) T T SCAN 15(67) _
- o . : i 7 : CPU Data Flow
[N P2 B »n
oR 3 3
= e Preliminar
. . . I S S S (: y)
- twan @

-40=~

JA/JB Registers (Instruction Address Registers) - 20 bits of the-
JA register together with the instruction address incrementer
and the 20 bit JB register are used to keep track of the address
in main storage of the next instruction., Because all instructions
are either 2, 4, or 6 bytes long, and main storage delivers

data in one word (4 byte) increments, the instruction address is
updated by either two or four each time it is used.

Q Register (instruction buffer) - This is a 32-bit register which
is used to buffer an instruction word. It is fed directly from

the main storage data registers and has outgates going to the

R Register, parallel adder and local storage address register.
After the last halfword of Q is gated to R, the next two halfwords
in the instruction stream are fetched from main storage and
placed in Q. This is overlapped with execute time when possible.

R Register (intermediate buffer register) - This is a 16-bit
(one halfword) transitory register between Q and E, It extends
Q register to a three halfword instruction buffer to allow over=
lapping the reloading of Q for RX, RS, and SI instructions that
~ are not on word boundaries. :

E Register (execution register) ~ This is a 16-bit register con-
taining the first halfword of the instruction which is being execu=
ted. Bits 0 and 1 of instruction specify the instruction length.
These two bits also form the instruction length code (ILC) of

' the program status word (PSW). The high-order 8 bits (bits 0-7)
are used as function branch bits for operation decoding. The
low~-order 8 bits (8~15) feed the local store address register and
the two length counters. '

WA Register (working register A) ~ This is a 32-bit register
which is a primary source of data for the adder left input. It
can be gated direct true, direct complement, left 1 true, and
left 1 complement to adder left. In addition, any single byte
of data from WA can be gated to the mover left input. Ingating
to WA is from the mover bus or the main bus.

WB Register (working register B) - This is a 32-bit register
which is a primary source of data for the adder left input. It
can be gated direct true, direct complement, left 1 true and
left 1 complement to adder left. Ingating to WB is from local
store or the main bus.

. WC Register (working register C) - This is a 32-bit register
which is a primary source of data for the adder right input. It
is gated direct true to adder right, Ingating to WC is from the
main bus, Local Store or the instruction address register JA,
This latter path is used for formatting program status words
and for address store compares.

wd]le

- WD Register (working register D) - This is a 32-bit register
which is a primary source of data for the adder right input.
It is gated direct true to adder right. In addition, any byte
of data from WD can be gated to the mover right input. In=
gating to WA is from the mover bus or the main bus.

WE Register (working register E) - This is a 32-bit register
which is gated direct true to the adder right input. It is used
for VFL and floating~point instructions. Ingating to WD is
from the main bus.

WEF Register (working register F) - This is a 32-bit register
which is gated direct true to the adder right input. It is used
for VFL and floating-point instructions. Ingating to WF is
from the main bus.

Adder - The main adder is 32 bits wide; the extra high-order
bit being necessary to implement the 2 bit-at-a-time multiply
algorithm (left inputs to the adder can be gated direct or left
1). The adder employs carry~look ahead techniques and
‘requires eight delays for a full add operation.

Mover - The mover is a functional unit used to manipulate one
byte blocks of data in half-byte increments. In addition, the
mover can perform the logical operation ""and'", "or'", and
Mexclusive or' on two bytes of data. During multiply the’
mover path is used to strip off bits of the multiplier and
assemble bytes of partial product. During divide the mover
path is used to couple bits of low~order dividend into the main
~ shifter and accumulate bytes of quotient.

BR (Bus Register) - This is a 32~bit register which temporarily
holds the shifted sum so that it may be returned to a first rank
working register or local storage. Data to be written into main
storage is also gated from BR.

MR (mover register) ~ This is an 8 bit register which temporarily
holds a byte of data so that it may be returned to a first rank
working register.

SS Register ~ This is a 4-~bit register which buffers the high~order
or low-order 4 bits of the adder output during shift operations.

The SS register together with the SF register provides coupling
for double length shift operations.

SF Register - This is a 4~bit register used in the shifter data
path. When adder outputs are shifted, the bits entering the 4-bit
SS register are temporarily sto: - “¥", Bits from SF can then
be entered into the shifter to fili v cuied positions on succeeding
shift micro~orders. This provides coupling for double length
shift operations,

“d2w

o Length Counters LA and LB - These two 4-bit counters can be
either incremented or decremented by 1. In addition, they can
be coupled into one 8-bit counter which can be decremented by
1. These counters are used for instructions having iterative
type algorithms which require counting.

o Byte Counters BA and BB - These two 2~bit counters are used

' to keep track of which WA and/or WB register byte is being
handled through the mover path. They are used to indirectly
control both byte ingating and byte outgating from these registers.

5.2 Microprogramming Control

The CPU is controlled by a permanently recorded microprogram
which is stored in a read~-only store (ROS) and is suppleménted by con~
ventional control logic. Each time the ROS is addressed, a microinstruction
is read. When decoded, the microinstruction controls the routing of data
in the CPU and provides means of 'selecting the next microinstruction.

Figure 5-2 is a block diagram of ROS. To understand the operation
of ROS, it is helpful to note its relationship to conventional controls.
Conventional controls may be characterized by sequence triggers, and by
the control lines activated by the sequence triggers as a function of the
operation to be performed and data conditions. Each cycle that the CPU
may take represents a state of the CPU as defined by the control circuitry.
Each state, in turn, specifies which control lines are to be activated during
that cycle and which state is to follow next. The defined state will cause
the next sequence trigger to be set in the following cycle. In some cases,
the next state may be contingent upon a branch condition in which one of
two or more sequence triggers must be selected.

In ROS-~controlled CPU's, the sequence triggers are replaced by
microinstructions or ROS words. Each ROS word consists of a predetermined
bit pattern and represents a state of the CPU., The addressed ROS word
controls the CPU during a particular machine cycle it is in use. When
decoded, the ROS word defines all control lines that are to be activated
during the machine cycle. Also contained in the ROS word is the address
of the next ROS word to be used. If the address of the next ROS word is
dependent on data conditions (for example, branch if overflow occurs), a
base address and the conditions to be tested (branch tests) are specified in
the ROS word. In this case, one ROS word is associated with each of the
possible data conditions; the ROS word whose associated conditions are
satisfiéd is the next to be addressed. Thus, ROS eliminates the need for
most of the complex sequencing networks.

wd3e

FIELD DECODE TO CONTROL INGATING TO

1ST RANK FROM 2ND RANK

FIELD DECODE TO CONTROL 15T RA K TO 2ND RANK
DATA TRANSFER THRU ADDER AND MOVER

AND MR

READ

l

o
ADDRESS DECODER

ROS ARRAY

RESET b SENSE LATCHES |

!

cLocki—f ROSOR | |

NOT -

CLOCK bl 5

FIXED ADDRESSES =

1
o\

s
o] | E—

1ELD DECODE TO CONTR
ROS ADDRESS/BRANCH

"AND"

B-BRANCH

T\
|

!

|

|

|

|

I

Ay

o—

SYSTEM CONTROL PANEL KEYS ¢

STORAGE DATA 8us IN (FLT] ¢

hhhh

4

NOT CLOCK

s §F 03
s £4=7

——— 2 -5

MOVER LEFT
TEERINPUT BUS 4-7

fe—

L. 3

[o ROS ADDRESS BUS

]

TEST BITS FROM
\ DATA FLOW FOR
A-BRANCH AND

FUNCTION BRANCH
BITS FROM DATA FLOW

ROS ADDRESS BACKUP REG

J

)

S

Figure 5-2 ROS Block Diagram
 (Preliminary)

wdd

ROS Microinstruction (ROS) Word

Each ROS word consists of unique predetermined bit configuration
grouped into 25 control fields (Table 5~1). The number of bits within a -
field determines the number of unique control signals (micro-orders)
available within that field. (In a 4-bit field, for example, 16 distinct
micro~orders can be defined, only one of which can be activated at any
one time). The micro-orders are grouped functionally within the fields
according to two rules. v

1. All micro~orders grouped in a field must be mutually exclusive
- since only one micro-order within that field may be specified
at a time. ‘
2. Micro-orders that are functionally similar (such as micro-orders

that control outgating to the adder right input bus) are grouped
in one field for ease of decoding.

Usually, rule 1 results in rule 2.

When - decoded, each micro-order activates one or more control
lines that condition logic gates to perform the function specified by the"
micro-order. Each micro-order is assigned a mnemonic code that de=
fines the control function performed. As an example, Table 5-2 lists
the micro-orders and associated micro-commands pertaining to the
adder function control field of the ROS word. The bit configurations
of that field and their function are also specified.

ROS Addressing and Branching

Microinstructions are not executed from sequential read-only
storage addresses under control of an instruction counter, but rather each
microinstruction explicitly states its possible successors. A given micro-
instruction may have as many as sixty-four different successors, but most
do not have more than four. The choice of a successor is made on the basis
of branching tests specified by the microinstructions. This powerful branch-
ing ability of the microprogram contributes significantly to reducing the nume=
ber of ‘words of read-only storage required.

A read-only storage address consists of twelve bits. Bits 41-46
of a microinstruction furnish directly the first six address bits (0-5) of
its successor. The next four bits of address of the succeeding micro=-
instruction may come from any of several sources. If bits'47-49 of a
microinstruction are not all zero, then the normal addressing mode is
used, in which bits 50-53 of the microinstruction are used directly as bits
6-9 of the address of the successor. If bits 47-49 of the microinstruction
are all zero, then a special addressing mode is used and bits 50-53 of the
‘microinstruction are decoded to determine the type of address generation
used. Certain of these codes cause four bits to be selected from some
register of the CPU and used as bits 6-9 of the address of the successor
microinstruction. This latter technique is termed a function branch.

wdbew

Table 5-1

ROS FIELD ASSIGNMENT

(Preliminary)
Function Bits ROSDR FLD

Parity 1 0 (for 0-29)
Mover Left Input 4 1-4 LM
Mover Rt Input 3 5-7 RM
Spare 1 8 s
Mover Action 4 9-12 MA
Mover Destination 4 13-16 MD
Adder Left Input/Action| 4 17-20 AL
Adder Right Input 3 21-23 AR
Spare 1 24 LA
Adder. Latch Ingating ‘

and Shift Control -5 25-29 AS
Parity 1 30 (for 30-64
Adder Function 3 31-33 AF
Spare 1 34
Adder Destination 6 35-40 AD
ROS Base Addr. 6 41-46 RB
ROS Addr. Cont'd Fld 3 47-49 RC
Functional Branch 4 50~53 FB
A-Branch Condition 6 54~59 AB
B-Branch Gondition 5. 60~64 BB
Parity 1 65 (for 65~99) B
Emit Field 4 66-69 EF
Memory Request 3 70-78 MR
Instruction/Operand

Request Control 3 73-75 IC
Byte Ctr Control 2 76-77 CF
Byte Ctr BA . ‘1 78 CA
Byte Ctr BB 1 79 CB
Length Ctr Control 4 80~83 LC
Stat-Setting 6 84-89 SS
Local Store Address 3 90-92 LS
Local Store Outgate 2 93-94 LO
Spare 3 95~97
Main Bus Ingate Control| 2 98-99 BC

Table 5-2

ADDER FUNCTION CONTROL FIELD AF (BITS 36-38)

(Preliminary)

Micro Order
MNEMONIC

Bit Configurations

36

37

38

Function

NOP

DPDVC

DPADC

DVI

Cc8 s

Ol S

CAR S

Cl S

0

0

0

Left and right inputs are added.
Carries are not entered or
saved.

Left and right inputs are added.
Carry from position 0 is saved
in carry out stat. A carry in
is forced also if SF = 0,

Left and right inputs are added.
Carry out stat is entered as a
carry in, '

Left and right inputs are added.
A carry in is forced if DCS is
"0" and no carry in if DCS is
"1", Carry out of adder posi-
tion 0 is gated to carry stat.

Left and right are added. Carry
from bit 8 to bit 7 is blocked
and carry out of position 8 is
entered into carry stat.

Left and right inputs are added.
Carry out of position 0 and 1
are EXOR into C stat.

Left and right inputs are added.
Carry stat on if there is carry

out of position 0, off if there is
no carry out.

Left and right inputs are added.
Carry out of position 1 is set
into C stat., Carry from posi-
tion 8 to 7 is blocked.

wd T -

The final two bits of the successor microinstruction address are
referred to as bit A and bit B. They are each determined on the basis of
tests specified in the microinstruction in the condition branch test fields.
Typical tests are of the various stats, zero tests of the adder latch, of
various counters, etc. The A and B condition branches allow a four-way
branch from any microinstruction. If only a two-way branch or no branch
is required, bit A or bit B may be set to a constant value.

The normal microprogram sequencing described above can be over=
ridden by the occurrence of either of two types of events. The first type
is the detection of an exceptional condition indicative of a program or
machine check. Invalid addresses or address specification and protected
addresses are examples of conditions detected in this manner. When such
an event occurs, the normal address of the successor microinstruction
derived as described above is ignored. Instead, a special wired-in fixed
address, characteristic of the type of event, is forced into the read-only
storage address to determine the successor microinstruction. This
technique is referred to as a microprogram trap, and is analogous to a
program trap in machine-language programming, except that no record is
kept of the address that would normally have been used.

The second type of event that can cause extraordinary microprogram
sequencing is a request by an I/O channel for service. This request in=
dicates that a channel requires the use of the microprogram control and
certain CPU facilities to handle the data or control words for an I/O unit.
The request is honored by transferring the address that would normally have
been used for the successor microinstruction to a backup register and
forcing a fixed read-only storage address instead. This process is termed
an I/O break~in. When the channel has completed use of the CPU facilities,
control is returned to the original CPU microprogram by using the contents
of the backup register as the next microinstruction address.

-485

5.3 Main Storage

The basic operating main storage is packaged in 8,192 word modules.
In addition, 256 words of "BUMP' storage are available in each module, all
main storage words are 36 bits long. A storage block diagram and timing
diagram are shown in Figures 5-3 and 5-4. The cycle time, measured from
""select'' to the succeeding ''select' pulse is 2.5 microseconds., The access
time is 900 nanoseconds, maximum, measured from the ''select' pulse.

There are two operating modes for storage, ''Read-Write' and ''Split-Cycle'
Read-Write - This mode is the normal read-restore mode.

Split-Cycle - In this mode the storage cycle consists of three parts:
read, dead time (compute time), and store. The "Select' signal
initiates the read portion. The dead-time (or compute time) is under
the control of the CPU and no limit is placed on this time. The store
portion of the split-cycle operation is initiated by the ''split-cycle store
command, "

The inputs to Main Storage (MS) are controlled by the Bus Control Unit
(BCU). Using a busy signal generated by the storage module the BCU determines
the availability of storage. Once a request for storage is honored all other
requests are held until the BCU is free to handle the request and storage is not
busy. ' :

Once a request has been granted access to storage, the BCU accepts the
address, data, and control bits for pr'ocessing and transmission to storage.
The low order 13 bits of the address is multiplexed to the Storage Address
Register (SAR) of each 8K storage module. These 13 bits (213) are sufficient
to specify each of the 8,192 word locations. The SAR provides these address
bits to the decode circuits. The three high order bits are decoded to specify
- the 8K storage module required.

The "Select' signal is sent to the seclected storage to initiate the storage
cycle., The storage timing initiates the address decoding in the storage module.
At this time, the storage module also provides the BCU with a storage busy signal.

Another signal may be sent with the storage address called '"bump''. This
signal is multiplexed to each storage module the same as the normal address.
The bump storage address is not decoded until the ''select'’ pulse initiates the
storage cycle., The bump storage area is added to the main core storage
arrays by adding two additional drive wires per plane in the Y dimension.
Although bump storage is physically part of the core array for the main
storage it does not use any of the main storage addresses. Bump storage has
its own address lines in the Y dimension, The data in bump storage is used
to store the control words for the multiplexor channel. When the Soft Local
Store option is selected, the general and/or floating point registers are also
stored in bump storage. Bump storage is not directly addressable by the
programmer,

) u49-

- Storage T . o T
,‘D‘t_\' Cootrol 1 sar 4) |“OSmark) | L
A _Set SDR . REGISTER Pob i
A Jt ~Cancel] TIME Control ; . . D eemtlala e
Bus Ctl, > AND Y : R
CP 2 ADDRESS . R
SELECT — DECODE S R
Select Inhibit % . . e
_ﬁz‘ﬁl‘ﬂl&.___; -s;i:::: 8K : ‘,;‘,’.‘,";,’:, i g
—plitWr, sl & Control) i T
SENSE . | L
| ADVANCE AMPS oL
o BUSY ’ -
«SMB (36) , B}
'y 8 & |
’ ¥ T
Control] A T
. ————’[SDR (36) . S,
- o Other - . e . . . _._.4.-.§
.. Stor: . - R ¥ . . e e e
' Gaite Figure 5-3. Storage Multiplex Bus
1.
o READ STORE CYCLE ‘ . T READ WAIT STORE 1,
2500 NS 4 b 2700 NS MIN
| SELECT M 9 ~ ‘
SPLIT CYCLE INKIBIT -])
i
. $PLIT CYCLE STORE - r""])

STORAGE ADDRESS DATA

_J__] ADVANCE

—

. 1000 NS MAX —f STORAGE INPUT DATA | N .
STORAGE BUSY | B * 1 ” "
900 NS MAX~] STORAGE DATA ! [-t

NoTE: o (FALL OF SELECT)
IS CYCLE START

Figure 5-4 Storage Timing Diagram

=50«

After 900 nanoseconds the data from the addressed storage location is
available at the storage sense amplifiers and is strobed into the Storage Data
Register (SDR). Prior to inserting the output data in the SDR, storage
generates an "'advance' pulse to the BCU., The BCU notifies the requesting
area that data from storage is available.

The BCU also supplies 4 mark bits which are used to control the
information which will be stored in the addressed location. Each of the 4 bits
is used to gate a byte (8 bits plus parity) into the SDR from the sense
amplifiers or the Storage Multiplex Bus (SMB). A 1l-bit in a mark located will
cause its associated byte of data on the SMB to be placed in the SDR. The
contents of the SDR are then restored in the addressed storage location.

Mark bits of 0000 result in no data from the CPU being placed in the SDR and
the unchanged word read from storage will be restored in the location that it
was read from resulting in a read operation. If the mark bits are 1111, the
data on the storage multiplex bus will replace the data read from storage in

the SDR and this new data will be restored resulting in a store operation. Use
of mark bits make possible the modification of words in storage on a byte basis.

To perform a split-cycle operation the BCU transmits a ''split cycle
store inhibit" signal to the memory timing circuits. At the end of the read
cycle the memory timing will be stopped until a ''split cycle store'' signal is -
received. The data in the SDR is then stored in the addressed location.

5.4 Timing System

'5.4.1 Data Flow Timing - Figure 5-5 is a simplified illustration of
Data Flow Timing.’

Conceptually, the 0.416 us CPU cycle is symmetrically divided
into two intervals. . . a 0.208 us CLOCK time and a 0,208 us NOT-
CLOCK time. Registers which are outgated to the adder or mover
are called first rank registers and are strobed at CLOCK time. Data
is good at the output of a first rank register early in clock time and
stays good throughout the remainder of CLOCK time and the following
NOT-CLOCK time. Registers which receive data from the adder/shifter
and the mover shifter are called second rank registers and are strobed
at NOT-CLOCK time. Data is good at the output of a second rank
register late in NOT-CLOCK time and remains good throughout the
following CLOCK time. '

5.4,2 Local Storage Timing - Figure 5-6 is a simplified
illustration of Local Store. Local store consists of a group of registers
which are strobed at CLOCK time of a cycle and are denoted as first rank
registers. They are driven by second rank registers, However, local
store registers are not outgated to second rank registers. Instead, they
are outgated to one of two first rank working registers in the data flow.

w5]la

CIOCk WA

True/Comp

— l

Clock &~ WD

Figure 5-5
Data Flow Timing

Adder

Not Clock

Main Bus

—_—

.208 u

=

Clock ’

ata Changingm Data good at output of WA,

1 WA, WD AWD,
' o Adder
‘ +

ata Flow Cycle Time = . 416 us>' RS R

!
h

Not Clock

Dva't‘a' r{pple S—‘ t}'l‘i'u'ﬂ.?'.i*?j i
/Shifter/BR

o P
Data good
at output of
WA, WD

Data may be

: i i
v i i
m i i
H
v

S
A

g

- chan%iné in BR

- “zC]_chk‘.‘? i

Data good at

Data good at
output of BE-

-52_

Not Clock

i i |
[) .
i N i
o N i
. s H
| !

- Data ripples from BR
output to input of WA, WB

Local Store

- Decoded Address
: GOOd : . :

.

Write main bus into local stor

IS \i l \E Y
% ,§ l l-" Reg 0 Reg 1 Reg 2 RegN
:g § | Clock l | Clock
" l Local Store Bus-Out
L l
|'9' WB R WD
Clock
Clock Figure 5-6
A Local Store Timigt;g
rue/Com :
v
; Shifter :
e ¥
Not Clock__> " BR
Main Bué
< Cycle N ole Cycle N+1 -
Clock Not Clock Clock JNot Clock
LSAR and | Local Store Decoded
Decoded Address Address good
Changing B >
Read local store to first rank |
Local Store 7/// (WB,WA) or

e

For this reason, local store appears like a memory having a
0.416 us cycle time. The local store address register is
strobed at NOT-CLOCK time of cycle N and the address is
decoded. If the ROS word controlling cycle N specifies local
store read then the selected local store register will be read
a first rank during CLOCK time of cycle N+l. A local store
read can occur simultaneously with other data transfer through
the main adder, If the ROS word controlling cycle N specifies
Local Store Write, then the information on the Bus will be

set into the selected local storage register during CLOCK
time of cycle N+,

5.4.3 ROS Timing - Figure 5-7 is a simplified illustration of
ROS.Read~Only Storage has a 0.185 us access and is cycled at
0.416 us. During NOT-CLOCK time of CPU cycle N, a 100 bit
word is being read from ROS to control CPU cycle N+l. At

clock time the 100 bit word is transferred from the ROS sense
latches to a first rank ROS data register (ROSDR1)., Note this

is the same time that the Data Flow first ranks are being strobed.
Groups of bits (fields) from ROSDRI1 are decoded to activate the
data flow path from first rank to second rank. These control point
enabling signals will be good early in CLOCK time and stay good
throughout the remainder of CLOCK time and the following NOT=-
CLOCK time. <

Certain fields of the 100 bit ROS word specify ingating to
first ranks from second ranks. Bits corresponding to these fields
- are transferred from ROSDRI1 to a second rank ROS data register
(ROSDR2) at NOT-CLOCK time. These fields are then decoded from
ROSDR2 to provide control point enabling signald which will control
the data flow from second rank to first rank during the next CLOCK
time.

5.4.4 Main Storage~ROS - Data Flow Timing Interaction -~ Figure
5-8 illustrates the relationship between CPU cycles and the main
storage cycle. These are 6 CPU cycles under one memory cycle.
For convenience, the cycles are denoted R1, R2, R3, W1, W2 and
W3. Requests for main storage are issued early in clock time of
cycle R1, The data from storage is available for setting into a

CPU first rank working register at the beginning of CLOCK time of
cycle W1, Storage requests issued under ROS control specify the
number of CPU cycles which are to elapse before the data is expected
from memory. If the requested data will not be available on the
specified cycle, the CPU clock is effectively stopped until such time
as the data becomes available. The clock is then started and the
microprogram continues. This method of interfacing ROS sequencing
‘with storage timing allows using storage systems of longer access
times and eliminates the need for excessive No-Op commands in the

ROS,

wb4m

‘Control
points for |
data flow |
from 2nd

rank to lstl
rank. l

<l

Control
points for '
data flow
from 1lst l
rank, thrul
Adder/
Shifter and|
‘Mover, tol
2nd rank.

<—.—-

Field
Decoders

Field
Decoders

Address Decoder

ROS Device

Not

ROS Sense Latches

Clock

L

I/O Backup *eg.

I

Not
I__) ROSDR1 Clock
=1 Base address of
Clock next ROS word.
Not Other
Clo‘:_l; ROSDRE Branch Contxjol | Inputs
] v ¥ ¥

ROS Address lLus

" Cycle N ' Cycle N+ >_'
| Clock - Not Clock Clock Not Clock
ROSDRI1 Form ‘
and, m next ROS m
Field A address
Decoders
s ROS address
Changmg F — >{ Figure 5-7

ROSDR2

field decode;
changing

Read command to

ROS
and|

ROS Sense

Latches set

@ Second’to first rank

controls good

Control point
enables good

irst to second rank

Control point
enables good

controls good

.

ROS Timing

The clocking system is generated from a 4.8 MHz crystal
controlled oscillator. The CLOCK and NOT-CLOCK signals
are repowered on each page to minimize clock-SKEW conditions.
Certain critical timing signals used to synchronize main store
operations are enabled by adjustable delay units in order to assure
accurate storage timing and to minimize "jitter'" between memory

modules,

-56n

ROS

AB
% Clock

Clock =% ROSDRI1

r4>ROSDRz

ot Clock

Decode

Address *
Memory ’
Request

Y . _ Q- o - Shifter

.:Clock"’: S L é ‘ P | |

o 0. Storvage Data Bus-Out * (SDBO) »‘ '

! i ! : ; . {

Stor‘age Data‘:Bus-In *(SDBI) I o 3
“¥These three signals are actually transmitted over a smgle, time-shared

Storage Mu1t1p1ex Bus (SMB)

{

.’ ‘-EfMemorzyBusy"“"‘if:‘?"‘?"j’%

3Cyc1eAccess o :

1

N R1 R3: le : WZ :W3 -
Not i ’ l; I , o

U S N O S P

T

Memory Request ‘ - Requested data

Figure 5-8
Mainstore Timing

available on SDBI

a57e T

6.0 MULTIPLEX CHANNEL DESIGN

6.1 _Introduction

The EP Multiplexor Channel is an IBM System/360 compatible
channel with several additional 4 Pi~-EP modes of operation. The channel
can accommodate up to 256 input/output sources and, depending on the
data rates of the devices, the channel may time-share its facilities in
order to simultaneously service a large number of these sources.

The channel provides a standard I/O Interface to control units,
The control units transfer and interpret standard control signals, control
the input/output devices and transfer data between the channel and the
device. All data is transferred over the I/O Interface in a uniform for=
mat of one byte (eight bits) and parity (one bit) for each transfer.

The Multiplexor Channel is fully buffered. After the initial Start
I/O instruction is given, the channel will perform a variety of control
and message transfer functions between the device and the storage system
without further attention from the CPU program. Only when the designated
functions are complete, or when exceptional conditions occur, is the pro-
gram. called on for further participation.

The EP Multiplexor Channel is physically integrated with the EP
Central Processing Unit (CPU). Many of the CPU data paths are used by
the channel and a major portion of the channel controls are under micro=~
program control. However, the channel does contain physical data paths
and control logic to the extent required to achieve efficient performance.
The channel is capable of relatively high performance but, at the same time,
the amount of hardware required is minimized by sharing CPU hardware..

The EP Multiplexor Channel can operate in one of four modes:
Multiplex, Burst, Lockout and Direct Input/Output. In the Multiplex mode,
many devices may operate simultaneously by interleaving their operations
and time-sharing the channel facilities., While only one device may actually
be using the channel at a time, the channel operation is fast enough that
‘many slow speed devices may be simultaneously serviced without conflict.

In the Burst mode, only one device at a time may use the channel
facilities. Burst mode data rates may be higher than multiplex due to the
fact that the device or control unit stays tied to the channel for the duration
of a burst transfer of data and less time is required for interface sequences.
Burst mode and Multiplex mode operations use CPU facilities when a byte
transfer is taking place. These operations are transparent to the program
being performed but they do cause 'interference' which results in an apparent
increase in program performance time. In between data transfers, the CPU
continues to operate at normal speed.

w58m=

Lockout mode is the same as Burst mode except that the CPU
facilities are dedicated to servicing the channel for the duration of the
transfer. Very high data rates are achieved in this mode at the expense
of 100% CPU interference,

Direct Input/Output is a separate type of I/O transfer operation
that utilizes the Multiplexor Channel facilities in order to minimize the
number of I/O interface and the hardware required. Direct I/O is a
means of transferring two or four bytes of data between a device and the
CPU directly under the control of a CPU instruction. The CPU is tied up
for the duration of the operation. The Direct I/O transfers usually operate
on the non-privileged mode thereby permitting direct interaction between
the problem program and specialized real-time devices. .

6.2 Channel - Control Unit Interface

The connection between the channel and the control units is called
the I/O Interface. This interface provides an information format and a
signal sequence which is used in common by all control units. The 1/0
Interface consists of 34 lines as listed in Table 1. The Bus Out and Bus
In provide data paths for all byte transfer whether the information is data,
status or address. The data paths are eight bits wide plus an odd parity
bit. The Tags provide a means of indicating when a byte of information
is on one of the Busses and what the byte is. The Selection controls are
used for scanning or selecting attached control units. The rise and fall
of the Tags and Selection Controls transmitted over the interface are
controlled by interlocked responses. This removes the dependence of the
interface on circuit speed and makes it applicable to a wide variety of cir-
cuits and data rates.

The EP I/O interface is designed to handle up to eight control units
and a maximum of 256 devices. The EP channel contains two sets of lines
for the Bus-Out, Out Tags and Out Selection Controls. One is a differential
" set; the other a single ended set. Each line is driven by a single NAND
gate. Incoming lines may be equipped to receive either single~ended or
differential signals,

a59u

Table 1

I/0O Interface Lines

BUS-OUT Position P, 0~7

BUS-IN, Position P, 0-7

Address-Out
Address=In
Command-Out
Status=In
Service-Out
‘Service=In

Operational-Out
Operational-In
Hold-Out
Select~Out
Select~In
Suppress=-Out -
Request=In

Timing-Out
Inhibit~In

BUS OUT
For transmitting data
from the channel to

_the Control Units

BUS IN

For transmitting data
from Control Units to
the channel

Tags

~ Selection Controls

Special Control Lines

Timing~Out is a 2.4 MC clock pulse. Inhibit-In is raised by a
control unit when it wishes to inhibit the parity check by the
channel on data provided by the control unit,

w60m

6.3 The Multiplexor Channel Data Flow

The multiplexor channel provides the path for data transfer between
the storage system and the control units. The Model EP multiplexor channel
is integrated; it utilizes CPU data paths and ROS control in effecting its
function. Figure 6-1 is a block diagram of the multiplexor channel data
flow. It illustrates the data paths in the channel itself as well as the CPU
data paths which ;a;.re used by the channel.

There are two 8 bit (BFR1, UAR) and one 9 bit buffer (BFR 2) in
the multiplexor channel. The 9 bit buffer contains a parity position along
with the 8 data bit positions. It is the only buffer which feeds the Bus-Out.
All outgoing data must pass through it. The Bus-In feeds both the 8 bit
Buffer 1 and Buffer 2. Normally data is placed in Buffer 2 while Buffer 1
is used for unit addresses or status bytes. The other 8 bit buffer, the
Unit Address Register (UAR) is fed by the mover and can only be gated to
the mover left input. It is used to store a unit address between channel
microroutines.

The WD backup register (WDBU) is a 32 bit register which is used
to store the contents of the WD register while the channel is using WD, At
the time the channel breaks into a CPU, the contents of WD are fed
through the Adder to the Bus Register. The Bus is gated into WDBU,

This saves any data the CPU had in WD at the time the channel breaks

in on the CPU operation. The WD register is used for channel data trans=-
fers because its full width can be gated into the Adder or each byte can

be individually gated into the mover. -

The uses for RUR and LUR registers will be explained after channel
control words have been considered. These two 32 bit registers can be
loaded from the main bus and can be gated into Adder Right. Some byte
gating into the left mover input has also been provided for special purposes.

Since the Bus Register and the Mover Register are both clocked on
CP2, the three channel buffers, as well as RUR, LUR, WDBU and WD
registers are all clocked with CP1. These registers are used when the
multiplexor channel is involved in a data transfer operation. In addition
to these register, CPU registers, WA, WB and WC are used in performing
input/output instructions.

To transfer data from main storage to a control unit, a word is
read from storage and placed in WD. The proper byte of the word in WD
is gated to the mover and out to BFR 2 in the multiplexor channel. The
contents of BFR 2 are placed on Bus-Out along with a correct parity bit.
To transfer data from a device to main storage, a control unit places the
data on the Bus~In. The channel gates the data on Bus-In into Buffer 1 or
2 and performs a parity check on the transferred byte. The contents of the
proper buffer are then gated into the left mover input, through the mover

and into the correct position of the WD register.

~61=

1 ..;..w aan8ig

~ weadelq yoolid
[suuey) roxa1dIInN

“SLiNN

T041NOD) 0L STO0YINOD

.- NOILI33S 8

T

S9vL 100

S9vVL 1N0

|

"

[>{™IT)

navoy |

i lzcazh: <o

SNa SS3yaav SOY

: .‘ i

T ALIOVS 04D Q3uvHS 3WIL ““mumw“,

. . .
: mh.za : SLINA SLINN
T04LNOI WOY4 STOHINOI T0¥LNO) OL . —_1041NO) WOou4
NOILJ373S 97 SOVL NI 100 sng NI sns
L - H N . } : .
S9vL NI .
. (\ .
. w . T A .
B ' . - : -
14 v AL 1448 DD ALYV)
! » N
. % : ¥ T / 1T N0
B T ‘ -~ o
, N39 ALI¥Vd : : >0
0 2 3 39V¥01S 0L
_, 7| 1041802 aM :
— [¥3A0W
_ /43aav
o upilh || osttes
*0QY_HINVHS - .
D JINNVHI 01 i
S¥1151934
ndJ .
_ mwalu ¥3IH10 mmu»m_www
. ¥3HIO
" naam (¥n1) va (unalnaf
- % ﬁ_ A
: ¢ 39V¥01S
: - KoY

The position of the WD register in which the byte is placed is
normally determined by the lower two bits of the data address associated
with the data transfer. The storage address is set up and the byte in WD
is inserted in the word read from storage and the revised word is stored.

6.4 Multiplex:‘or Channel Control

The controls for the channel are integrated with the CPU. The
channel is controlled by a combination of micro controls and hard wired
controls. When a data transfer operation is taking place or an I/O
instruction is being initiated, the channel is mostly micro-controlled with
a small amount of hard wired controls involved. When the channel is not
using the CPU for iether of these functions, the channel is entirely hard-
ware controlled.

The control philosophy in the EP Multiplexor Channel design is to
use the CPU only at the instant there is data to be transferred and to use
hardwired controls for the long periods required for interface sequences
or waiting for an operation to begin. This minimizes hardware costs and,
at the same time, keeps the interference to the CPU relatively low.

6.4.1 Micro-Control - When the channel breaks into the CPU operation,

a latch is set to indicate that the CPU is now operating in the '"I/O mode. "
This signal is used to turn off the decoding of certain micro-orders which
are not used by the multiplexor channel and to turn on the decoders for other
micro-orders used by the channel and not by the CPU, Thus, there are

two modes of decoding the bits from the Read-Only Storage (ROS); CPU

and I/O mode. The creation of these modes reduces the number of bits
required in each micro-word. ‘

The data flow in the channel is controlled by the following ROS
fields: :

Mover Left Input N
Mover Destination

Adder Right Input

Bus Destination

In Bus

Out Bus

Some of these fields are interpreted exactly the same in both CPU
and I/O modes of operation. Several fields have some micro-orders interpreted
differently in each mode. Other CPU mode fields are completely eliminated
in the I/O mode to create new fields for the multiplexor channel control.
The use of the first four fields in the above list is similar to CPU usage. The
In-Bus field is a redefinition of CPU field LO. The In-Bus (IB) field is used
to select the channel buffer or stats to be gated to the mover left input. The
Mover Left Input determines whether this or some other mover left input

will be gated into the mover. In other words, there are two levels of gating

. =63

on the mover left input. The Out Bus (OB) field is a redefinition of the
CPU field CF. It is used to control the data flow from the CPU or from
the Bus-In into the channel buffers. Many of the channel control functions
are also under micro-order control. Special micro-orders have been
added to the A and B branch fields to provide the capability for performing
branches in the I/O microroutines. Such branching is controlled by the
condition of special purpose latches or stats. The setting or resetting of
these stats is controlled partially by micro-orders which have been added
to the SS and LSC fields and by the Multiplexor Stat field (MS) which is a
redefinition of the CPU LS field. Some of the stats are also set as a result
of various conditions detected by hardware controls. :

The ROS output signals for controlling points within the CPU are
decoded in the CPU. The decoders which are used to set channel controls
are located on the Multiplexor Channel pages.

6.4.2 Hardwired Control ~ When the channel is not sharing CPU facilities,
it is completely under hardwired control. At such times, the multiplexor
channel is either waiting for a data transfer request from a control unit,
waiting for an instruction from the CPU, in the beginning stages of either
of these operations, or completing an interface sequence with a control
unit after a data transfer has taken place. At these times, the channel
controls are making logic decisions based on the I/O Interface sequences
or signals from the CPU.

Some of the signals sent to the channel by the CPU are those which
indicate that the channel is to perform an I/O instruction. These signals
are sent to the I/O instruction Register in the channel. This register re-
mains set until the portion of the instruction which ties up the CPU is com-

pleted.

There are two address registers associated with the channel control.
The first is a 4 bit register called the Branch Address Register (BAR).
The contents of this register are decoded to define a unique branch point
in the hardwired logic. For each branch point there are sets of unique
conditions which determine what the channel is to do next. In a given branch
point one set of conditions on the I/O Interface may cause the channel to
create the starting address of a data handling routine in the 6 bit Routine
Address Register (RAR) and request the services of the CPU. The RAR
can be set by all six bits of the A branch field enabling the microprogram
to go directly from one channel routine to another. The RAR can also be
set as the result of a hardware branch. The address in each case points
to the first word in a microroutine. ‘

6.4.3 Break~In ~ As a result of an interface sequence or an instruction
from the CPU, the channel reaches a point where it requires the use of

the CPU, The channel sets up the address of the first word in the micro=~
routine which will be used and raises a line to signal the CPU that its services
are rvequired. The starting ROS Address remains in the RAR until the CPU

bl

honors the request for service. When the request is accepted, the ROSDR
is forced to all zeros. Thus, there will be no "break~in cycle'" with no
micro-control exerted. The address in RAR is gated onto the ROS Address
Bus to fetch the first I/O mode micro-control word. Under channel control
the contents of WD are gated through the Adder into WDBU where they will
be saved for the duration of the I/O microroutine. The CPU mode address
being sent to the ROS is available in the ROS Address Backup Register. At
the time the CPU honors the I/O break-in request, it freezes the contents of
ti:is register. This saves the address of the ROS word which the CPU would
have performed next. After one full ROS cycle, the first word in the I/O
routine is read into the ROSDR and the channel is now under micro-control.
During this break=~in cycle, an "I/O mode' latch is set so that the micro-
orders in this routine will be decoded as required by the channel.

6.4.4 DBreak-Out - During the last cycle or Break-Out cycle of the I/O
processing, the micro-orders are used to put the contents of the ROS
Address Backup Register onto the ROS Address Bus. The contents of
WDBU are sent through the Adder into WD and a signal is sent to the
channel to reset the I/O mode latch. During the next cycle, the channel
is under hardware control and the CPU is performing the micro-orders it
would have done had the channel not broken in. Thus, the CPU has been
returned to its original state. :

6.5 Start Input/QOutput

The following is a brief description of the SIO opberation. The
reader is referred to the System/360 Principles of Operation for more
complete details on all of the I/O instructions other than Direct I/O.

The Start I/O instruction generates the unit address and accesses
a Channel Address Word (CAW) from a reserved location in main store.
The CAW provides the storage protect key to be used, and points to the
Channel Command Word (CCW) which is a double word in length, The
computation of the unit address obtained from the Start I/O instruction, the
storage protect key obtained by the CAW and various pleces of control
information obtained from the CCW are used to formulate a new set of
control words called Unit Control Words (UCW's), The UCW's provide
the personality for the operation which is to be performed. In the Model
EP, these words are stored in bump storage at an address which is directly
correlated with the unit address. The process of forming and storing these
control words is called "forming a subchannel.'" The following writeup will
provide a sequential description of this process.

6.5.1 Forming a Subchannel

The SIO instruction has an SI format. The contents of the register
addressed by B are added to D; to form the channel and device address
(unit address). The unit address is also the address of the subchannel and
it is used to address the locations in bump memory that are associated with
the particular device. These bump locations become the subchannel. A
subchannel is formed as follows:

,-65—

The Start I/O instruction causes a Command Address Word (CAW)
to be fetched from location 72 in main storage. The format of this word
is given below.

SP 0000 CCW Address

CAW and UCW 0 Format

The CAW contains the storage protection key, four zeros, and the
Channel Command Word (CCW) address. Eight (8) is added to the CCW
address and it, along with the protect key and zeros, are stored in bump
storage as UCW 0 (Unit Control Word). The unit address formed from
SIO instruction designates the address in bump storage for UCW 0 as
well as the other UCW's, The Command Address (CA) in UCW 0 now
points to a CCW (Channel Control Word) eight bytes away from the one
we are now going to fetch.

The unaltered CCW address (before eight was added) is used to
address main storage to fetch CCW 1.

Command Data Address

CCW 1 Format

CCW 1 contains the data address which is the address from which
the first word of data will be fetched or in which the first word of data
will be stored. An eight bit command which is to be sent to the device is
also contained in CCW 1. The data address (DA), the storage protect
key from the CAW and four bits called sequence controls are stored in
Bump next to UCW 0. This new word is UCW 1, '

SP - SC ‘ Data Address
UCW 1 Format

-66-

The codes and meaning of the sequence controls (SC) are given
below. Their use will become more apparent later in the discussion of

the channel operation,

Basically, they define whether the subchannel is

idle, busy or has an interrupt pending and what type of interrupt it is,

Sequence Controls

STATE CODE
IDLE 0000
BUSY 0001
CMD CMD Chaining End Received 0011
Channel End in IB 0101
Channel End Que'd : 0111
Device End In IB 0110

IB is the interrupt buffer located in bump storage

Four (4) is now added to the original CCW address. This new
address is used to fetch CCW 2,

7 8 15 16 31

FLAGS

000 Ignored Count

CCW 2 Format

CCW 2 contains five flag bits and a count which defines how many
bytes of data are to be transferred. The Flags are listed below.

B W N - O

CDA » Data Chaining

CC Command Chaining

SILI Suppress Incorrect Length Indication
SKIP SKIP

PCI Programmed Controlled Interruption

From the Command in CCW 1 three operation (OP) bits are formed
for use by the channel.

Code
000
001
110
011
111

100
101

The OP codes and functions are given below,
OP Code

Function
Input Forward
Input Backward
Output
Input Skip
STOP

En d STATUS - No Wrong Length Record
End STATUS - Wrong Length Record _

v ’ ~67-

The channel translates all of the commands sent to the device into
the above OP codes since these are the only ones recognized by the channel.
The last two'codes are not really operations but status indications used
by the channel.

Eight bits are used to define the Channel Status. The channel
status is used to indicate error conditions detected during the operation
of the subchannel and to carry PCI flags, which have not yet caused an
interruption, through command chaining.

The Flags, OP Channel Status, and Count are stored in Bump in
the location next to UCW 1 and become UCW 2,

0 4 5 78 1516 31

FLAGS OP Ch. ST. Count

UCW 2 Format

JUCW 0, 1 and 2 constitute a subchannel for a nonshared subchannel
that is, one which is used by only one device). A UCW 3 is required for
a shared subchannel. UCW 3 contains the unit address for the device
which is presently using the subchannel.

0 23 24 - 31

Unit Address

UCW 3 Format

Sixteen devices can share a subchannel. For shared subchannels,
the Unit Address is shifted right four places to get the unit address prime.
The unit address prime is used to address the UCW's, All devices sharing
a subchannel have the same upper four bits of unit address and thus the
same unit address prime. Because of this addressing, for each shared
subchannel there is one less non-shared subchannel. There is a maximum
of eight (8) shared subchannels. A one (1) in the high order bit of the
unit address indicates to the EP multiplexor channel that the device is
using a shared subchannel.

6.5.2 Device Selection - After the CPU has fetched CCW 1, it issues a
Start I/O Signal (SIO) to the multiplexor channel. The CPU then enters a
countdown loop. If the channel has not responded by the time the CPU has
counted to zero, a time out signal is issued. The channel should then set
CPU condition code 2 indicating that a burst mode operation is being per=~
formed and the SIO cannot be handled.

At the end of the first countdown, the CPU initiates a second
countdown. If the channel does not set the code 2 by the time the CPU "
counts out of the second loop, the channel is forced to a machine check
micro routine if the CPU is enabled for machine checks. If the CPU
is in a disable mode, a CSW is stored and condition code 1 is set.

There are a number of things which will cause the CPU to store
a Channel Status Word (CSW) and set condition code 1. For details,
the reader is referred to the System/360 Principles of Operation. However,
it should be noted here that one.such condition is that the device is selected
and it is found that for various reasons the device or control unit cannot
execute the SIO,

6.5.3 Interface Signaling Sequences - For the following discussion, it
will be assumed that both the control unit and the device are able to
perform the required operation.

Requests for data transfer have a higher priority than SIO. When
the channel gets to the polling state, it will look for data transfer requests
or instructions such as SIO. If there is a request for data transfer,
the channel will branch from the polling state to handle the data. It
will continue to do this until there are no data transfer requests. It
will then recognize the SIO, set up the proper ROS address in RAR
and break into the CPU countdown loop. The CPU will fetch CCW 2
and initiate the selection of the device. The unit address is placed in
BFR2 and Address Out is raised. Then Select Out and Hold Out are
raised, .

Select Out is wired through the control unit serially. The first
control unit inspects the unit address. If it is not an address associated
with that control unit, it propogates the Select Out signal to the next
control unit. This continues until a control unit accepts the unit address
or the Select Out comes back to the channel as Select In. In the latter
case, the operation is discontinued. In the former, the control unit will
raise Operational In and inhibit the propogation of the Select Out any
further. Thus, the control units are wired to the Select Out Signal in the
order of their priority. This fact is of significance when control units
are attempting to request service. Since Select Out is raised in response
to Request~In, a control unit cannot gain access to the channel until all
control units of higher priority have no outstanding requests for service.

Returning to SIO, the control unit which raised Operation In places
the unit address of the device on the Bus~In and raises Address-In. The
channel resets Select Out and gates the unit address into one of its buffers.
In the CPU, the unit address sent out and the one received are compared.

If they compare, the command from CCW 1 is placed in BFR2 and Command
Out is raised. The control unit inspects the command and’if it can perform
the command it sends a zero unit status and raises Status-In. The channel

n69-

gates the status byte into one of its buffers and resets Command Out. If
the unit status is zero, the CPU sets condition code 0 indicating to the
program that the operation has been initiated. The CPU ends the count-
down loop and fetches the next instruction.

The channel waits for the control unit to drop Operational~In.
If Operational-In drops,the channel assumes that the control unit has
gone to multiplex mode of operation. The channel returns to polling to
look for a request for service from this or any other device or an I/O
instruction from the CPU. If the control unit keeps Operational~In up
and brings up Service-In, the channel begins burst mode operation.

6.6 Data Transfer

For the purposes of illustration, the following discussion assumes
an input forward operation. The main difference between input and output
other than direction is that for output, the channel must fetch a data byte
before the devices request it. Also, actions taken as a result of errors
detected during output operations differ somewhat from those taken for
input operation. The following is a brief description of multiplex, burst,
and lockout operation on the multiplexor channel. ‘

6.6.1 Multiplex Mode - Between each byte transferred in the multiplex
mode the control unit drops its Operational~In Line. To initiate a data
transfer, the control unit raises its Request-In line when the I/O interface
is idle. The multiplexor channel being in the polling state will respond
with Select Out. The Select Out is propogated from control unit to control
unit., The first control unit which needs service may take over the inter=-
face and inhibits Select Out from getting to all units of lower priority. If
the unit originating the Request-In receives the Select-Out, it raises ‘
Operational~In, places the unit address on Bus-In and raises Address~In.

The channel now forces the address of a routine called Count Fetch
and Update in the RAR and requests a break-in. When the routine request
is honored by the 'CPU, the break~in procedure previously described takes
place and the Count Fetch and Update Routine is entered. The unit address
is gated from the Bus~In through a channel buffer into the CPU. Command=~
Out is raised to indicate that the address has been accepted. The unit address
is used to address UCW 2 in bump storage. The count contained in this
word is decreased by one and stored back in UCW 2, The fetch and update
is done in one split storage cycle. UCW 1 is now fetched, one is added to
the data address and it is stored back in Bump. UCW 2 is placed in the
RUR while UCW 1 is gated into the LUR.

-.70-

When the control unit raises Service~In, the channel enters a
Data Handling Routine. The data byte is gated from Bus-In through
BFR2 to the WD Register. It is placed in the proper byte position
under the control of the lower two bits of the data address now in LUR.
The data address is used to fetch a word from main storage. The lower
two bits of the data address are used to put the byte from WD into the
proper byte of the word read from storage. The word is now restored
with just the one byte change.

The count in RUR is checked to see if the byte transferred is
the last byte required. If it is, an ending procedure is entered. If it
is not, when the control unit drops Operational-In, the channel goes to the
polling state to look for another request.

6.6.2 Burst Mode - As indicated, burst mode can be forced by the control
unit holding up Operation-In immediately following SIO, Burst mode can
also be forced by the control unit holding Operational-In after a byte trans-
fer. While holding up Operational-In, the control unit raises Service-In
and the channel enters a data handling routine. The data byte is handled

in the same manner described for multiplex mode. Again, the count is
checked to determine if it is the last byte. If it is,not, the channel awaits
the next Service-In (or the fall of Operational~In if the control unit switches
to multiplex mode). When the channel is operating in the burst mode only
one control unit can be operating with it., Data rates are increased over
multiplex mode due to the fact that the device does not have to go through
initial selection each time it needs to transfer a byte of data. For the
duration of the burst operation, UCW 1 and 2 are kept in LUR and RUR.
They are stored only at the end of the burst. This reduces the number of
main memory accesses required per byte transferred from three/byte

in multiplex mode to one/byte in burst mode. In burst mode, CPU inter=
ference per byte is reduced and data rates are increased.

In burst mode, the channel is idle between each byte transfer
awaiting the next Service-In. The CPU continues its normal program
and is not interrupted until the Service=-In has occurred. When I/O request
arises, the break-in cycle will be held off if the CPU has initiated a storage
request. The channel will be required to wait as long as 3.3 usec in the
worst case with a statistical average of about 1.25 us delay in getting a
request honored.

6.6.3 Lockout Mode - Lockout mode operation is similar to burst mode
except there is no channel break-out between byte transfers. The data
rates can be higher than burst but the CPU interference is 100 percent for
the duration of the data transfer.

Lockout mode is forced on the channel and control unit by the
programmer., When an address of eight is used to address the multiplexor
channel instead of the usual zero, the multiplexor channel and the addressed

device enter the lockout mode.

Tl

6.7 I/O Interrupts

The EP multiplexor channel contains a 32 bit interrupt buffer
(IB)., This buffer is actually a location in bump storage. Information
pertaining to an I/O interrupt is stored in this buffer and then an interrupt
request is sent to the CPU. A latch called IBFULL is set when there is
interrupt information in IB and another I/O interrupt is being requested.
It is reset after the interrupt has been processed. The format of the
word in the interrupt buffer is shown below.

Q 78 1516 23 24 31
Unit Status Ignored IRPT Code Unit Address

Interrupt Buffer Format

The interrupt code (IRPT Code) indicates the type of interrupt
being requested. The upper six bits of this code are zero. The code
for the lower two bits is given below.

Interrupt Code

PCI - Channel End A .00
PCI 01
Device End 10
Channel End 11

6.7.1 Interrupts From a Device ~ When a unit status which is to cause
an I/O interrupt is presented to the channel, the channel breaks into the
CPU and fetches the sequence controls from the UCW 1 associated with
the device which is presenting the status. The channel examines the
sequence controls to determine whether they are active or inactive and
sets the interrupt code to channel end or device end respectively. Thus,
the interrupt code is more of an indication to the channel what type of
interrupt is to be performed rather than the exact cause of the interrupt.
The latter is indicated by the unit status which is placed in the IB., The
interrupt code and the unit address of the device causing the'interrupt
are also placed in the IB and the IBFULL latch is set. The channel also
stores an up-to~-date UCW 1 and 2. The IB contains device information
while the UCW contain sequence controls and the channel status, which
together indicate the state of the channel and any error conditions detected
thus far in the operation of the subchannel.

The setting of the IBFULL latch signals the CPU that an I/O
interrupt is pending. If the channel is not masked (PSW bit 0), at the
end of an instruction (End OP) the CPU will accept the interrupt provided
no higher priority interrupts have been requested. The CPU will use the
contents of the IB and UCW 0 and 2 to store a PSW (Program Status Word)
and a CSW {Channel Status Word)., The IBFULL latch is reset and the
channel continues normal operation. The CSW is a double word with the
format given below. :)

wT2w-

SP 0000 Command Address

CSW 1

SP = Storage Protect Key

0 7 8 1516 3]

Unit Status Channel Status Count

CSw 2

Among the other items stored in the PSW is an interrupt code
(bits 16-31) containing the unit address of the device causing the I/O

interrupt.

When the CPU accepts a channel end interrupt, its set the
sequence controls in a subchannel to idle. The subchannel is now
available but the device remains active until it has provided the channel

with a device end status.

If a unit status which is to cause an I/O interrupt is presented
to the channel and the interrupt buffer contains a channel end for this
device or an interrupt for some other device, the channel will not be
able to handle the new interrupt until the old one is cleared. In such case,
the channel raises Command-Out in response to Status-In causing stacking
of the status at the control unit or device. When the channel is in the
polling state and the interrupt buffer is full, the channel raises Suppress=
Out to prevent these needless presentations of suppressable requests.

6.7.2 Program Controlled Interrupts - During SIO, the channel places

the PCI Flag from the CCW in the subchannel UCW2. The channel checks

for a PCI Flag each time a byte is transferred for that subchannel. If the

PCI Flag is a one, the IB is loaded and the IBFULL latch is set. The

channel continues normal operation and the CPU handles this interrupt as it would
any other I/O interrupt. The channel can place an interrupt in the IB for a

PCI and channel end for the same device at the same time. If the IB is full

at the time the PCI Flag is detected, the channel will continue normal

operation and catch the PCI on a subsequent byte transfer for that subchannel.

If a PCI is indicated on an immediate operation, the channel stores it
in the channel status portion of the CSW and no interruption occurs.

«73m

6.8 Chaining

The EP multiplexor channel has the capability for performing both
data and command chaining. For data chaining, one command is used for
the entire operation along with more than one data address and byte count.
Data chaining provides the capability to read from or store into different
areas of main storage on a single operation. Command chaining utilizes
more than one command data address and byte count. This permits more
than one operation to take place using various areas of memory under the
control of a singlé Start I/O instruction. Since either types of chaining
utilize only a single CPU instruction, an increase in data handling efficiency
is realized by their use.

6.8.1 Data Chaining - Data chaining is indicated by a one in the data

chaining position of the flags in the CCW2 fetched by the SIO instruction

or by a chaining operation. This flag is stored in the UCW2 of the addressed
subchannel. The initial data transfer takes place under the control of the
command, count, and data address from the CCW's fetched. When the

count is reduced to zero the command address from UCWO is used to fetch

a new set of CCW's, The command address is also updated by eight and
restored in UCWO0. The channel ignores the command that is contained

in the new CCW unless it is a Transfer in Channel. The new CCW's are

used to form a set of UCW's, The OP code is not changed. No device selection
is made. The next time a data transfer is requested by the device on this
subchannel, the transfer is made under the control of the new flags, count

and data address. This process is repeated until the count goes to zero and

no chaining is indicated or until the device presents channel end status. At
such time, the operation is terminated in the same manner as any other
operation. To a control unit, data chaining appears as one continuous operation.

There is very little hardware in the channel for data chaining, as it
is performed by microroutines controlling existing channel logic.

6.8.2 Command Chaining - Command Chaining is indicated by a one in the
command chain position of the flags in the CCW2 fetched by an SIO or by a
chaining operation. The channel operation from the SIO up to the point where
the control unit presents an ending status is normal. When the control unit
presents a channel end status, the channel raises Suppress-~Out at least 250
nsec before raising Service-Out which accepts the status. This sequence
indicates to the control unit that Command Chaining will take place after the
device presents device end. Suppress-Out is dropped by the channel when
the control unit drops Operational~In. It should be noted at this point that
neither channel end or device end cause an interrupt when command chaining
is to be performed. When the device presents device end, the channel again
raises Suppress-Out at least 250 nsec before raising Select-Out in response
to Status-In. However, this time Suppress~-Out does not fall with the fall of
Operational~In. It remains up until the device is reselected to present it with

a new command,

After the device end the channel fetches the command address in
UCWO0 and uses it to fetch a new CCW1 and 2, The command address is
increased by eight and restored in UCW0. New UCW's are formed. An
initial selection sequence is used to reselect the device. The new com=
mand is set to the device. The operation from here is the same as for
SIO. With the exception of the use of Suppress-Out Command Chaining
appears like a series of SIO instructions to the control unit. When the
count reaches zero and no further command chaining is indicated, the
operation is ended normally with the usual I/O interruptions.

6.9 Other I/O Instructions

Again the reader is referred to the System/360 Principles of
Operation for details.

A, Test Channel (TCH) - The CPU issues a TCH signal to the

channel and enters a countdown loop. If the channel gets to the polling
state and there is no outstanding requests from the control units before

the CPU counts out, the channel will recognize the TCH. If the IBFULL
Latch is reset, the channel will set condition code 0 to indicate the channel
is available, If the IBFULL Latch is set, the channel will set condition
code 1 to indicate that there is an interruption pending in the channel.

If the CPU counts out before a reply is received from the channel,
the channel should set condition code 2 indicating a burst mode operation
is in progress. If the channel does not reply to the count out before a
second count out occurs, the CPU sets condition code 3 indicating that
the channel is not operational. The CPU will then return to fetch the
next instruction.

B. Test Input/Output (TIO) - The CPU issues a TIO signal to the
channel and enters a countdown loop. If the channel recognizes the TIO
before the CPU counts out,the channel fetches the UCW1 from the addressed
subchannel. If the sequence controls indicate that there is an interruption
in IB for the addressed device, the TIO stores a CSW, clears the IB and
sets condition code. This indicates that a CSW has been stored.

If the sequence controls are set to IDLE the channel selects the
addressed device to determine its state. If the device is available, the
channel sets condition code 0 indicating the device is available and the sub-
channel is idle. If the TIO detects an interruption pending at the device,

‘the unit status is accepted from the device and a CSW is stored. The

interruption condition is thus cleared and condition code 1 is set as before.
If the device is busy or the control unit contains an interruption

condition for a device other than the one addressed a busy bit is stored in
the CSW and condition code 1 is set.

“75m

If the channel does not respond to the TIO before the CPU counts
out, a time out signal is issued to the channel. The channel should respond
by setting condition code 2 indicating that the channel is busy. If the channel
fails to respond by the time the CPU counts out a second time, the same
procedure is followed as for SIO,

C. Halt Input/Output (HIO) - The CPU issues a HIO signal to the
channel and enters a countdown loop.

If the channel reaches the polling state with no request in from
any control unit, it examines the state of the addressed subchannel.
If there is a channel end type interrupt in IB for the addressed sub=-
channel, the channel sets condition code 0 and no further action is
required since the operation is obviously reaching a normal end.

If there is no interruption pending in the subchannel, the channel
attempts to select the device. If the control unit responds with the control
unit busy sequence (Status-In and Operation-In Not) the OP code in the UCW2
in the addressed subchannel is set to stop. A busy bit is stored in the CSW
and condition code 1 is set. When the device next tries to transfer data,
the channel will indicate a stop to the device. If the device is successfully
selected, the channel (upon receiving Address-In), performs an interface
disconnect sequence on the I/O interface. This is used to halt the operation
at the device. A CSW is stored and condition code 1 is set.

If the channel is in a burst mode operation (the CPU has timed out
once), an interface disconnect sequence will be presented to whatever
control unit and device are on the interface at that time independent of the
unit address in the HIO instruction. The channel sets condition code 2
indicating that a burst mode operation has been terminated.

If the channel fails to respond to the HIO by the time the CPU counts
out a second time, the same procedure is followed as for SIO.

6.10 Direct Input/Output

There are four Direct I/O instructions.* Direct Input is used to
transfer data from a device to main storage. Direct Output is used to
transfer data from main storage to a device. Sense is used to transfer
special device status information from the device to main storage. Gontrol
is used to send unique control commands to a device. All Direct I/O
operations involve the transfer of 3 bytes, us'ually one status and two data
bytes, between the device and the CPU main storage. There are no CAW's,

CCW's, UCW's or CSW's associated with Direct I/0O,

To illustrate Direct I/O, an Input operation is described. The I/O
interface sequences are essentially the same for all four instructions.
Direct I/O instructions utilize the CPU for the duration of the operation.

*As described in this section, DIO provides a non-privileged transfer of two
bytes between mainstore and device. Special implementations allow four byte

transfers, transfer between general registers and devices, etc.
N 79

The bits ir the Direct I/O instruction are used to form a data
address,unit address, and command. A DIO signal is issued to the channel.

~ When the channel reaches the polling state, it breaks into the CPU, puts

the unit address in BFR2 and raises Address-Out and Select-=Out., The
addressed devices respond with Operational-In which resets Address~Out.
No address is sent to the channel by the device and thus no comparison is
done. The Control Unit raises Service-In. The channel places the com=
mand byte on Bus-Out and raises Command~-Qut. The CPU then initiates
a countdown loop and the channel waits for a hardwire branch signal.

The control unit must drop Service-In to reset Command-Out and
then bring Service-In up again to get the first data byte. The channel
forms the address of the proper microroutine and breaks in on the CPU
countdown. The data byte is gated from the Bus~In to BFR2 to mover and
into the proper byte position of WD, In this case, the byte position is
either byte 1 if the upper half of a word is to be stored or byte 3 if the
lower half of a word is to be stored. Service~Out is raised and the channel
breaks out. The process is repeated. This time byte 0 or byte 2 is filled
in WD, Service-Out is raised and the control unit drops Operational~In,
The CPU stores the halfword at the location indicated by the data address.
The other half of the word is not altered. The CPU now fetches the next
instruction and the channel is placed in the polling state. '

Each time the channel is in a2 branch awaiting an interface sequence
from the control unit, the CPU enters a countdown loop. If the sequence is
not completed by the time the CPU counts out, the channel performs an
interface disconnect. The program is notified of this through the use of
the condition codes. This prevents a control unit from tying up the CPU
when the control unit has failed.

6.11 Resets

During the CPU system reset operation, the CPU issues a system
reset signal to the channel. This signal is used by the channel to clear out
its instruction latches, reset the BAR and General Branch Latch, reset
various channel stats, and place the channel in the polling state. The
UCW1 for each subchannel is stored as all zeros. Thus, the sequence
controls indicate idle (0000). The UCW2 for each subchannel is stored

. with the OP code set to Stop (111) and zeros in the rest of the word. Thus,

no data transfer can take place on a subchannel until after a Start I/O
has been issued for that subchannel. However, an attention interrupt may
take place prior to an SIO.

‘The system reset signal from the CPU will also cause a "System
Reset'" on the I/O Interface (Operational-Out and Suppress-Out down
concurrently). This should cause all control units to reset. The channel
can also perform a '"Selective Reset' (Suppress-Out and Operational-Out
up and the Operational~Out falls), This is done under microprogram
control to reset just the control unit which is on the interface at that

time. Other control units are not affected.

-7 =

The multiplexor channel may be reset under microprogram control.
The issuance of the Multiplexor Channel Reset causes the channel toreset
as it would for system reset but does not cause a '"System Reset'" on the
interface. A '"System Reset' or '"Selective Reset' may be microprogrammed
along with the channel reset.

6.12 Multiplexor Channel Performance

Table 2 lists estimates for multiplexor channel data rates and
the resultant CPU interference. It should be noted that actual data rates
achievable are dependent not only on the CPU and channel but also on
delays associated with the signal transition times on the I/O Interface and
the delays associated with each control unit. Each system must be analyzed

in this respect.

Table 2
Data Rate CPU Interference Mode
. 18KB 25% . Multiplex
36KB 50% Maximum Multiplex
115KB 75% Maximum Burst
400KB 100% High Speed

In multiplex mode, the transfer of a byte of data requires about
14 us of processor time and transfers may be repeated at about 18.5 us
interval. In burst mode, the first byte requires about 14 us of CPU
time but all successive bytes in the burst require about 5 us of processor
time and may be repeated at about an 8 us interval. In lockout mode,
bytes may be transferred each 2.5 us and the processor is utilized for

this entire time. ‘

Up to eight (8) control units may be attached to the EP Multiplexor
Channel. For each 8192 words of main store (256 words of Bump) there
can be up to 64 subchannels up to a maximum of 128 subchannels. There
may be up to eight (8) shared subchannels leaving 120 non-shared sub-
channels. The 8 shared subchannels, if used, are associated with the
first group of 64 subchannels. -The upper four bits of the shared subchannel
address are zero. A maximum of 256 devices may be attached through con-
trol units to the EP Multiplexor Channel. If more than 128 devices are
used, shared subchannels must be used.

7.0 TECHNOLOGIES

The term'technologies''refers to the physical components, devices
and techniques which are used in building a computer. The following
sections present preliminary descriptions of the techniques applicable
to Model EP. In general, EP is a conservative design in that it utilizes
only components and techniques which have been proven to be acceptable
in stringently monitored programs. :

7.1 Logic Circuits

The Model EP uses a series of circuits similar to the Texas
Instrument Series 5400 TTL monolithic integrated circuits. These
circuits are designed to meet military specifications and operate over
the temperature range from -55°C to 125°C, Owver 10,000 of these
devices have been purchased for engineering model fabrication and exten=-
sive circuit testing. A minimum sample size of 100 units of each type
was used for device characterization prior to circuit release. Turn-on
and turn-off delays and transition times have been characterized over
the temperature range from -55°C to #125°C with loadings from 10 to
300 mmf on each circuit output. Testing was performed to measure
turn-on and turn-off delays at worst case conditions with a combination
of Vcc 5% below nominal and temperature at -55°C with loads from 15
to 400 uufd. The data obtained from these tests has been fully utilized
to guarantee proper operation even under anticipated worst-case condi«
tions. Figure 7-1 and 7-2 shows typical rise, fall and propagation delays
for NAND gates with 50 pf load.

Simultaneously, circuit application studies were performed to
characterize the following: ‘ '

o Noise sensitivity of all circuit modules
o Noise Sources
a. - Line-to-line cross talk
b. Signal line reflections
c. Voltage spikes on ground and voltages

terminal at the flatpack due to circuit
switching on the flatpack.

d. Voltage spikes on ground and voltage
distribution caused by circuit switching.

e. Voltage drops on ground lines caused by
signal currents.

f. Pick-up signals caused by currents in the ground

and voltage distribution system flowing to
decoupling capacitors.

g. Voltage drops on signal lines in passing through
pluggable connectors,

TG

o} Signal delay on terminated and unterminated lines : ’ ;
Effect of load clustering on termination mis-match L
o Effect of various loads typified by logic design -

requirements.

o]

All testing to date shows that the design selected meets or exceeds
circuit requirements. Since finalization of the specifications, two addi-
tional integrated circuit manufacturers have stated the ability to supply
these devices. ‘ :

The flatpack types used consist of NAND gates, AND-OR-Invert
gates and Polarity Holds. A DOT~AND gate is a NAND which is modified
so that a number of NAND outputs may utilize a common collector resistor
thereby performing the DOT-AND function. In several instances, NAND
gates are selected for greater drive capability or for better breakdown
characteristics. These components are identified by special numbers
as indicated. The following list identifies the flatpacks which are utilized

- within EP, -
Description Part Number
Quad 2 Input Nand 2839
Triple 3 Input Nand 2840
Dual 4 Input Nand ' 2841
Single 8 Input Nand 2845
Dual=Dual 2 Input And-Or~Invert 2966
Single-Quad 2 Input And~Or=~Invert 2967
Quad 2 Input "Dot And" Gate 2968
Dual Polarity Hold 2836
Quad 2 Input Nand-Extended Drive 2969
Dual 4 Input Nand-Extended Drive 2970

Quad 2 Input Nand-High Breakdown 3875
Quad 2 Input "Dot And' Gate~ :
- High Breakdown 3874

The logic circuits have been designed to operate with a +5 Volt
suppiy and a total variation of £0.25 Volt at the circuit terminals.. .
Permissible fan outs are 14 units of load except for the extended drive
circuits which can drive 18 units of load. The table below indicates the
average power dissipation for typical circuits.

Nand Gate 11.4 mw
A~O-I Gate - 16 to 25, 5\mw
Polarity Hold 38 mw

-80=

TURN-ON DELAY

TURN-OFF DELAY

224
21—
20—
19 4
18+
174
16
15+
14

NSEC

12+

PS=+5.0V
CL =50 pf

TYPICAL

MIN

164

- NSEC
&
1

=55

+25
‘"TEMPERATURE °C

T
+125

MAX

/

TYPICAL

/

MIN

/

Figure 7-1. Turn-On and Turn-Off Delays Over Temperature Range

=55

I
| +25
. TEMPERATURE °C

-81-

|
+125

NSEC

22 4

124

PS=5.0V

7 LOTS, 100 FLATPACKS

MAX

144) :
13+ \ TYPICAL

10- . \) ML[:]-

-
=55

Figure 7-2.

. T
- *25 - +125
TEMPERATURE °C

Propagaf:ion Delay Over Temperature Range

-82-.

7.2 Page and Back Panel Assembly

The logic circuits are mounted on pluggable electronic subassemblies
called ''page, '(Figure 7-3) which consists of two multilayer printed circuit
boards bonded to a metal frame. An insulator separates each board from
the frame. Two 98-pin connectors, similar to the ones being used for the
Saturn V Guidance Computer, are fastened along the lower edge of the
frame. The connector was developed for the Saturn V and has demonstrated
its performance and reliability in extensive tests and field service. It has
been qualified for use in man~rated space vehicles. Feed~through con-
nections and test points are provided along the upper edge of the frame.

8.000

FEED THROUGH

DISCRETE CONNECTIONS
COMPONENT

MOUNTING AND

EGRATED CIRCUIT HEAT TRANSFER
:‘T»IT?ACK ' SURFACE
‘GUIDE PIN
AND KEY

98 PIN CONNECTORS
2 REQUIRED

FASTENER)<

METAL FRAME
e

Figure 7~3. Pluggable Electronic Subassembly

-83-0

The page is fastened to the supporting structure at the two mount-
ing flanges along an axis through the page center of gravity. Additional
support is provided by the connectors. The page will be cooled by thermal
conduction through the frame and mounting flange. Keyed guide pins pro-
ject from the lower edge of the page to prevent mis-location during in-
stallation. A tool will be furnished for page insertion and withdrawal.
Guides will be provided to facilitate handling during page insertion and
withdrawal.

The multilayer printed circuit boards are made of multiple layers
of etched copper clad epoxy~glass laminates which are bonded together
under heat and pressure. Four copper layers are used for signal inter-
connection and two layers are used for voltage and signal ground. Alternate
copper layers are used as isolation ground planes which shield the signal
layers and which establish a characteristic impedance of about 35.-for
these lines. Connections between conductor layers are made through plated
holes. These boards have been in volume production since 1962 and
have been successfully used in many systems produced by IBM including
the Titan II, Titan III, Gemini, Saturn I, and Saturn V Guidance Computers.

The integrated circuit flatpacks are soldered to etched patterns on
the surface of the multilayer printed circuit boards. These multilayer
boards allow the flatpacks to be closely spaced. Figure 7-4 shows one
side of a typical page with flatpacks mounted. Each page contains two multi-
layer boards with up to 78 flatpacks per board. Discrete components are
soldered in plated holes or on the board surface, depending on terminal
configuration. A conformal coating is applied for component support and
environmental protection, :

Component Bonding to MIB

The improvement of component packaging density and the desirability
of building large functional blocks have increased the thermal dissipation
problem on the component level. Higher operating environments have also
required closer thermal management of the packaging designs. Conformal
coating are presently being used in existing programs such as Saturn V
Launch Vehicle Computers to improve thermal dissipation and vibration re-
sistance of components mounted to MIB's, Thermal studies being performed
on the present system are in progress to determine the need for flatpack
and component bonding to improve the thermal dissipation. The results of
these studies will determine whether or not component bonding is imperative.
However, in response to this potential requirement, an investigation is in
process to provide an acceptable solution.

“84 -

Figure 7-4. Typical Integrated Circuit Subassembly

The bonding material and process must meet the following re-

quirements:

1.

2.

Provide an adequate thermal interface.

Permit simple application technique without interfering
with the soldering operation.

Withstand soldering temperatures.
Be compatible with any conformal coating system.

Maintain adequate electrical insulation during normal
operation.

Be easily severed to enable replacement of the flatpacks.

Improve the vibration resistance and minimize the stress
on the solder joints.

~85m

The selection of the best bonding material must meet these con-
flicting requirements by analysis of the trade-offs available. Studies
and vibration tests on previous programs indicate that the conformal
coating improves the vibration resistance. This reduces the design
bond strength of the bonding material and improves the probability of
meeting the requirement for easy removal during flatpack replacement.
The design of the bond must also protect the lands on the MIB by pro-
viding a weak plane at a point other than the face of the MIB. Field
maintenance requirements also usually prohibit the use of oven curing
adhesives, and require single techniques for flatpack replacement.

Preliminary evaluation of suitable materials has indicated that
one of the flexible Polyurethane Elastomers offers the best probable
compromise of the requirements discussed. A thixotropic version of the
Polyurethane elastomer conformal coating is under investigation for use
as a suitable bonding material. This material exhibits a reasonably good
pot life and has properties that permit easy removal of the components,
but still has sufficient bond strength to provide a good thermal interface.
The use of a cifferent catylist would permit room temperature curing
for field use, for both bonding and recoating the component.

Interconnections between pages are made through a back panel
assembly. A multilayer printed circuit board similar to that used for
pages is bonded to a metal support plate and connector receptable ter~
minals are soldered to plated through holes in the board. Interconnections
between assemblies in the processor utilize flat cable which maintains
the characteristic impedance.

All pluggable connections within the computer are made through
one type of connector. Itis a 98-pin connector which was designed for a
similar application in the IBM Saturn V Guidance Computer. The contacts
are a blade and form configuration providing redundant current path for
each circuit. Gaskets seal the contact interface and between the receptable
and back panel. Solder connections join the connector terminals to printed
circuit boards or wires. External connectors on the computer are a round
shell type, similar to the Bendix pygmy, using crimp connections to the
wiring harness and poke-home contacts.

7.3 Interface Circuits and Interconnections

Signals which are transmitted between processor and mainstore use
30 ohm flat cable when the processor and mainstore are in the same structure.
When they are in separate boxes, the chassis are carefully bonded and
signals are transmitted between the boxes using standard TTL drivers and
receivers. The transmission line consists of 90 ochm cable and the most
distant storage unit is equipped with terminating resistors of the proper
impedance to assure that no significant reflections will occur.

86

All other signals between EP and the outside world are transmitted
either through a single ended driver~receiver pair or else by means of a
differential driver-receiver pair.

The single ended system utilizes a TTL NAND driver which is
selected for high breakdown and the receiver is a special Nand gate
which is desigued with threshold rejection of #2 volt peak noise or
ground shift. The output of the Single Ended Receiver (SER) can drive
one unit load which must be located within the three-inch line length of
the receiver output. Typical power dissipation of an SER is 17 milliwatts.
Up to three SER's may be attached to one driver. A

When greater common mode rejection is necessary, the signals
may be transmitted differentially at TTL logic levels and may be received
by a Differential Recelver (DR) which is designed to reject common mode
noise and ground shift of up to £5 volt peak. Typical power dissipation of
a DR is 25 milliwatts. Up to five DR's may be driven from the same set

of drivers.

Generally, 90 ohm twisted pair shielded lines will be carried
between driver and receiver and shields will be terminated at one end

only.

All shields on the twisted pairs must be insulated from each other
and from ground except for the connection at one end. The shields may
be commoned at the entrance to the chassis and the common shield should
be returned to the power supply ground. Wherever cables must be run
for any distance, an external high efficiency shield should be placed around
the bundle and should be comimmoned to the chassis at one end of the cable.

Both the SER and DR transmission éystems may encounter signal
reflections which will result in delays proportional to the line length and
to the number of reflections encountered.

7.4 - Mainstore

The main storage is supplied in modules of 8,192 words of 36
bits/word. Each storage module is a destructive readout (DRO) memory
and is designed to operate at-a continuous 2.5 usec memory cycle. Each
memory cycle consists of a read followed by a write operation. The access
time for this system is approximately 0.9 usec. The memory system
utilizes a coincident current (3-D) organization. Operation is possible
over the component case temperature range of ~55°C to +100°C,

The storage element for this system is an IBM 13/21 (I.D, -O. D,

in mils) lithium nickel ferrite toroidal core. This core uses the same
basic wide temperature material used in a larger diameter IBM core

w8 T e

currently in production. The core characteristics are as follows:

Operating Temperature Range: -55°C to +100°C
Core Temperature Coefficient: ~0.00244 ma/ma/°C
Half Select Current at 26°C: 270 ma

(200 nsec Rise Time)
Worst Case "one'" (100°C}): 8.0 mv
Worst Case '‘zero' (~55°C): 2.0 mv
Switch Time 500 nsec

The plane used in the memory array (Figure 7-5) is a militarized
version of a commercial IBM plane. Automatic equipment is used to
wire the planes. This plane is approximately 6 inches by 6 inches by
0.156 inches and contains 16,284 cores. Each plane contains eight mats,
and each mat contains 2, 048 cores, thus each plane contains 4 bits/word
of the 4K memory. Welded connections are used throughout the memory
array.

This plan is being utilized because of the significant advantages
of manufacturing cost of machine wired planes and manufacturing process
control, Foarn pads are used hetween the coated core planes to satisfy
the vibration requirements.

A block diagram of the 8K memory module is shown in Figure 7-6,
The system is organized such that the ""X' half select driver which drives
the long dimension (128 x 36) is clocked first, The "X" current thus has
time to reach full amplitude at a slower rate, which reduces driver supply
voltage requirements.

Operating modes of the memory system are:

o Read~Regenerate Cycle
o Clear - Store Cycle
o Split Cycle (Read-~Compute~Store)

The systems gates, drivers, inhibit drives, and sense amplifiers
utilize integrated circuits to the degree present technology permits. The
monolithic circuits used in the memory system are basic "off-the-shelf"
units obtained from integrated circuit manufacturers. The high voltage
current address drivers, address gates, and inhibit drivers consist of
‘monolithic pre~drivers which are transformer coupled to discrete chip
output stages, The sense amplifier is basically a monolithic "off~the~
shelf'circuit" with additional resistors added for threshold setting, and
sense line terminates.

=3B

Figu're 7-5. Main Storage Memory Plane

The timing generator is of hybrid design using flat-pack chip
transistors and precision R~C networks. Decoding is accomplished by
monolithic pre-~drive stages in the address gates.

The memory power is approximately 80 watts when operating with
a 50 percent mix of ones and zeros at a continuous 2.5-usec cycle time.
The standby power is approximately 12 watts.,

Details of the Memory Assemblies are shown in Figure 7-7. The

- memory array is fabricated from core planes which are militarized version
of planes used on the IBM System/360. Each plane has 16,384 cores.
Planes are conformally coated and foam padding is placed between planes
for environmental protection of cores.

The array is mounted in a housing which serves also to mount pluggable
electronic subassemblies and acts as a thermal path. Pluggable electronic
subassemblies similar to those in the central computer are used to mount
the memory circuits. A distribution multilayer printed circuit board is
used to interconnect memory circuits and the array. The main memory
assembly is removable as a module. Electrical connections to the assembly
are made through pluggable input/output connectors.

«89a-

(s31g 9¢ £q 318) weideyq yooig 28erolg ‘9~ 9andig

ey
- A ——— — — ——— — t— — —— — —— m—— w— G . w— -

w&om, DT B BIMOI “
- ‘.Illl.ql
T ﬁ AS- Cl"lllnol. ———
" ~ 3 1
lo——fTH “ArH]
@ n -
) flocu- m«Ohmuw._U>V.=._muNHH” TOMNOS |
@ awne [O 4 HSINNI-TIDAD-11dS 1
H lg 24 + —
G)2
2 |
mlez:. N
@
: , £
sne @ awng ,ol..l.ﬂ.».
IDNVAQY f——— 3901 LI VP
B0 e (1) ~T1DA>-1NdS an 2
4 LN S¥3Alg . 2
cle——— o e— LI8IHNI ‘
Jie————— anv ~31DAD-1N4S . . A\ 4 o]
: Lo onwit - .
Ty e 1N vV A o
~U0.|||..IJ -
e
ﬂ#ﬂ— <+ .
v N- 1
0.
] x
(98) J— 350118 - 1.
HNIwWY AT
ENE -
MS1I8 9
&M 957 g x
MZ818 1.
Avyyy| XRIVW v % o
E ~3¥0>] 130010 ol
e X S (55) _ / : A
— SuIARG :
HgIHNI uAa \ ® h_vx “ X wa«wuh_
L — o 7 le—10 $S3¥aqv
AL L °3°'s$°1 e L2V, _W r=—— - - A |
i smeee |
[! saw
L-J m (I i
%
L=J I EETET A |
L_Yiva aowaw

"90-

fiquiassy a8e10lg °L-L oan31q

YO 1DINNOD 1Nd1INO-1NdNI

Q¥voe LINDYID GIINNd YIAVILLINW NOHLNSIYISIA

' AVRIV INVId 330D
3DVUNS . : \ ,
YIISNVIL :

LV3H .

YO19INNOD AVHIY
0l 1INVINOVE
A
¥IA0D
0'€ o
_ ONISNOH
\ _ T~ ¥3IN3ISV4
7
A19W3ssSvans
5INO¥1DIN

—— 31avoONWd RSZA

~91a

7.5 Read-Only Store (ROS)

The ROS has a storage capacity of up to 3072 words, 100 bits/word,
and is operated at a continuous 416 nsec cycle. The access time is approxi-
mately 155 nsec. This store is word-organized.

The storage element is a microminiature linear ferrite core de=-
signed for operation over a wide temperature environment. The pertinent
core characteristics are:

Temperature Operating Range ~55°C to H00°C
Full Select Current: 100 ma(l0 nsec rise time)
Worst Case ''one'': 10 mv.

A block diagram of a typical ROS system is shown in Figure 7-8.
The ROS-read command initiates a read cycle, and the data are available
at the sense latches 155 nsec after the read command. The reset for the
sense circuitry is generated within the ROS subassembly. A drawing
of the ROS subassembly is included in the mechanical section.

Monolithic circuits are used in the decode, drivér, detector and
latch portion of the ROS. The sense amplifier is basically of monolithic
design using capacitors for D, C. isolation.

The storage system power is approximately 13 watts based on
continuous operation at a 416 nsec cycle time. The standby power is
approximately 9.5 watts.

The ROS plane design is as shown in Figure 7-9. Core mats are .
mounted directly to multilayer interconnection boards to which the inte~
grated circuits for signal driving and sensing are mounted. Planes are
wired on automatic equipment which threads the cores, selects the per-
sonality for each plane by eliminating cores in word bit positions where
""zeros' are desired, checks the function of remaining cores, and welds
the mat terminations. A close-up of an individual mat is shown in Figure 7-10.

A typical read~only store memory assembly is shown in Figure 7-11.
The memory array is constructed of multilayer printed circuit boards
with core mats attached. Driver circuits are also mounted on these boards.

The array is positioned under a distribution multilayer printed circuit
board. This distribution board serves to electrically connect memory '
circuits and array. The read-only store assembly is removable as a module.
Electrical connections to the assembly are made through pluggable input/
output connectors.

-92-

weidelq Yoolg SOY 'g-L 2indig

h.ll .—um.mx

HOIVY 001
a— 9 [¥314NdWv
Jo1D2313a ISN3S
) |
7 —
|
- |
AOVAIVId¥3d | |3gonaa | |
SYOISISNVYL 8 auwa [| VsSOd
.
Jsawoml, |
,ooo 2ol |
» <+t _
> L momv_m_wwﬁ 4— 300230 | VSO¥
IAING A
: ”oz«.zzo“v avay
|
|
Aowawsoy I
g 001 | N

«93m

i

BB RN
It}ltl“

ll]é!l““([]ll‘lll_]&‘iﬂilililll“;lg\]y‘!ﬂ‘nlyil“l“‘l|l(l‘l"6

‘“l‘ilt;];kll[I‘l‘l]l‘l‘]l‘llzl‘ilicl

Vi [l
(BRI HH NN

Figure 7-9. ROS Page Design

“94n

95

ROS Memory Plane

Figure 7-10.

flquiessy 98e10lg Aup peoyg “11-L 2an31q

SYOLDINNOD 1NdINO-1NdNI

(¥) SQ¥VO AYOWIW

dvJ N3

30V4INS
¥34SNVYL 1V3IH

ay¥vod NOILNENISIA

IN3ISVS

S3IOVd dWV 3ISN3S

39Vd MBOBQIL //
I a0y

-96-

7.

7.

6

7

Power Supplies and Distribution

Not available at this time.

Structural Design

Not available at this time.

