
,aM 5110 APt. \ntroduction

--..- ------ ___ 4-- ----- -. ----- - - -------------" -

o ,...
IBM 5110 ,...
APL Introduction It)

SA21-9301-0

Preface

This manual discusses the mechanics of using APL
with the IBM 5110 Computer. It is intended to
provide the users of this system with information
necessary to operate the system using the AP L
language.

Related Publications

• IBM 5110 APL User's Guide, SA21-9302

• IBM 5110 APi. Reference Manual, SA21-9303

• IBM 5110 APL Reference Card, GX21-9304

First Edition (December 1977)

Changes are continually made to the specifications herein; any such changes
will be reported in subsequent revisions or technical newsletters.

Requests for copies of I BM publications should be made to your IBM
representative or the I BM branch office serving your local ity.

A form for reader's comments is at the back of this publication. If the form
is gone, address your comments to I BM Corporation, Publications, Department
245, Rochester, Minnesota 55901.

© International Business Machines Corporation 1977

CHAPTER 1. INTRODUCING THE IBM 5110

About this Manual
About the APL Language "

About the System
Alphameric Keys.
Numeric Keys. .

Operating Keys
APL System Command Keywords

Arithmetic Function Keys.

Getti ng Started
Enterinu and Displaying Data.
Correcting Keying Errors

Repliacing a Character
Deleting a Character.
Inserting a Character

Enterin!J Lowercase Alphabetic Characters

CHAPTER 2. INTRODUCING THE APL
LANGUAGE

Types of Functions in APL
Addition, Subtraction, Multiplication, and

Division
Another Arithmetic Function-Raising a Number

to a Power
Finding the Root of a Number .

Storing Data in the 5110 for Later Use
Performing Several Functions in the Same

Expression
Specifying the Order of Execution-Using

Parentheses
Using Strings of Numbers and Tables .

Using APL with Strings of Numbers (Vectors)
Using APL with Tables of NIJmbers (Matrices)

Referring Only to Certain Numbers in a String or
Table of Numbers (Indexing)

You Are Not limited to Using Only Numbers .

CHAPTER 3. APL FUNCTIONS THAT REQUIRE
ONE ARGUMENT

How Many Arguments Are Required by an APL
Built-In Function?

APL Function Symbols That Are a Combination
of Two Characters.

Determining the Whole Numbers Nearest a
Fraction ". . . .

Rounding to the Nearest Whole Number
Sorting a Vector in Ascending or Descending

Sequence. ". . .

1

1
2
2
2
4
4
5
7

10
10
11
12
15

17
17

17

19
20
20

21

22
22
23
25

27
29

31

31

31

32
32

33

Contents

Generating a Random Number .
Generating Consecutive Numbers

Generating an Empty Vector .
Finding the Shape of an Existing Variable

CHAPTER 4. APL FUNCTIONS THAT
REQUI RE TWO ARGUMENTS

Relational Functions
Why Two Numbers Identical in Appearance

Are Not Always Equal

An Example Using a Relational Function
Logical Functions

And
Or.

Finding the Larger of Two Numbers
Finding the Smaller of Two Numbers
Finding the Index of a Value in a Vector
Generating a Random Sequence of Numbers.
Selecting Certain Elements (Compressing) From

a Vector or Matrix. . . .

Expanding a Vector or Matrix
Joining Two Items Together

Building a Vector of Results Using Catenation
Finding the Logarithm of a Number

CHAPTER 5. APPLYING THE SAME FUNCTION
TO ALL THE ELEMENTS OF A VECTOR
COLLECTIVELY (REDUCTION). . . .

Plus Reduction
Using Plus Reduction to Find the Average
Using Plus Reduction to Sum the Products of
Two Vectors. "

Minus Reduction (Alternating Sum)
Maximum Reduction: Finding the Largest Value

in a Vector
Minimum Reduction: Finding the Smallest Value

in a Vector
Or Reduction: Checking for a Specific Value

in a Vector
And Reduction: Checking for All Values in Two

Vectors Being Equal

CHAPTER 6. USING THE BUILT-IN
FUNCTIONS

Now Let's Look at the Things You Can Do

34
34
35
35

36
37

39
39
40
41
42
44
45
46
46

47
48
50
52
54

56
56
56

59
59

60

60

61

61

62
62

iii

CHAPTER 7. FUNCTION DEFINITION
What Is Function Definition? . . .
How Is a Function Defined?
Testing Your Function Before Using It

How To Use the Trace and Stop Features
Trace T!J.
Stop S!J.. . .'

What To Do If You Make a Mistake When Defining
Your Function

Displaying the Entire Function
Adding One or More Statements at the End of
the Function.

Replacing Statements within a Function
Inserting One or More Statements in a

Function

Deleting a Statement from a Function.
Displaying a Specific Statement or from a
Specific Statement to the End of a Function

Modifying a Single Statement.
Editing the Function Header.
A Faster Way to Add, Replace, or Insert One

Statement in a Function
Types of Function Headers
Wlhy Have a Result Variable?
Local and Global Names

74
74
74
76
78
78
78

80
81

82
83

84
85

86
86
87

88
90
91
92

Branching, Labels, and Looping 94
Branching and Labels 94
Looping. 97

How To Enter Data during Function Execution 98

iv

CHAPTER 8. WHAT YOU CAN DO WHEN
YOUR FUNCTION STOPS. . .

When the Attention Key Is Pressed. . . .
When the Stop Feature Is Used

When an Error Is Encountered in the Function

When a Q) Character Is Entered for a [!] Input
Request

Finding Out What Functions Are Suspended.
Using the Hold Key To Stop Processing

CHAPTER 9. USING TAPE OR DISKETTE
STORAGE (YOUR LIBRARY)

What Are System Variables?

101
101
103
104

105
105
106

107
114

APPENDIX A. OVERSTRUCK CHARACTERS 118

INDEX 120

Chapter 1. Introducing the IBM 5110

ABOUT THIS MANUAL

This manual will show you how to operate the IBM 5110 using the APL
language. If you are not familiar with the APL language, you should do
the suggested keying operations or examples on your 5110 while reading
the manual from cover to cover. If you are familiar with the APL
language, you should read Chapters 1 and 2 to learn how to operate the
5110; however, you may then want to skip to Chapter 7. Not all of the
features or functions of the APL language are covered in this manual.
For more information about the 5110 or the APL language, see the IBM
5110 APL User's Guide, SA21-9302, or the IBM 5110 APL Reference
Manual, SA21-9303.

This manual was written with the assumption that the 5110 has been
set up and checked out. If the 5110 has not been set up, use the setup
procedure in the IBM 5110 Setup Procedure, SA21-9318, before
continuing to read this manual.

ABOUT THE APL LANGUAGE

APL has many built-in functions that allow you to effectively solve your
problems. However, if you need a special function to solve a problem,
APL also allows you to define your own functions. The functions you
define are similar to programs written in other computer languages.

APL is a good language to experiment with; nothing you do from the
keyboard can damage the 5110, and the more you experiment, the more
you will learn about APL.

ABOUT THE SYSTEM

The IBM 5110 Model 1 (Figure 1) is a computer designed to help you
solve problems. The IBM 5110 Model 2 differs from the Model 1 in
that the Mod~1 2 does not have a built-in tape unit. The display screen
and indicator lights communicate information to you, and the
keyboard and switches allow you to control the operations the system
will perform.

Before you begin to use the 5110, you should become familiar with the
keys and control panel. The control panel switches will be discussed
later. Following is a brief description of the keys (F igure 2); how you
use the keys will be discussed later.

Introducing the IBM 5110

2

Alphameric Keys

The alpha keys are similar to those on a standard typewriter, except that
there are no lowercase characters. In standard APL character mode, the
alpha characters are all uppercase, even though they are in the lowercase
position on the keys. Thus, you do not use the shift key for
alpha characters.

If you want to enter an upper shift character, you must hold down the
shift key and then press the key to enter the character, just as you
would to type an uppercase character on an ordinary typewriter.

You can also enter lowercase alphabetic characters from the keyboard.
How you enter lowercase alphabetic characters is discussed later in this
chapter.

Numeric Keys

Either the top row of alphameric keys or the special calculator arrange­
ment of numeric keys can be used to enter numbers.

Operating Keys

The black key labeled EXECUTE, the dark gray keys with the legend
names CMD, ATTN, and HOLD, and the dark gray keys with the arrows

, are all special operating keys. The keys with the arrows and the space­
bar, which is used to enter blank characters, automatically repeat the
operation they perform when held down.

Backspace Key

Forward Space Key

Attention Key

Scroll Up Key

Scroll Down Key

I Hold Key

~ •• lI.a •
Execute Key

\N PROCESS
\nd\cator

PROCE.SS C\-\ECK \nd\cator
Enol"

Brightness L3264 R32 Contfo\" switch ~
POWE.R
ON/O\:f
switch

RE\lERSE
O\SPLA'<
switch

RESTART
switch

BAS\C/APL
Switch

O\SPLA'< REG\S1ERS/NORMAL Switch

Tape
Cartridge ~Mode\ 1 on\'/)

specia\ operator Keys

ArithmetiC

4

APL System Command Keywords

The words that are above the top row of numeric keys are system command
keywords, which you can enter by holding down the CMD key and then
pressing the key below the desired keyword. For example, to enter
} LOAD, hold down CMD and press the 1 key. The system commands
and their uses are discussed later, in Chapter 9.

Also, notice the special character combinations engraved on the front of
the alphabetic keys. If you have a combined APL/BASIC machine, there
is also a BASIC statement keyword engraved above the special character
combination on the front of the key. You can enter the special charac­
ter combination by holding down the CMD key and then pressing the
appropriate key. You will see how these special character combinations
are used as you become familiar with the APL language.

BASIC Statement Keyword

APL Special Character Combination

Arithmetic Function Keys

The four keys to the right of the calculator arrangement of numeric keys
are the arithmetic function keys. These keys are used to perform division,
multiplication, subtraction, and addition. There are also keys on the
alphameric keyboard that perform these functions. Notice that the -T and
x symbols are used for division and multiplication.

GETTING STARTED

Make sure the switches on your IBM 5110 are set as follows:

Switch

L3264 R32 (5110 only)
BASIC/ APL (combined machines only)
DISPLAY REGISTER/NORMAL

Setting

64
APL
NORMAL

If your 5110 has the BASIC/APL switch, it can execute both BASIC and
AP L language statements. The language to be used is selected by the user
before power up or during the restart sequence.

Make sure your 5110 is plugged in and turn power on. If power is
already on, press REST ART and wait about 20 seconds. During this
time, the 5110 performs internal checks to make sure it is operating
correctly.

After 30 seconds, if the m~ssage CLEAR WS has not appeared in the
lower left corner of the display screen, an error has been detected during
the internal checks. In this case, press RESTART. The 5110 will per­
form the internal checks again. If the CLEAR WS message does not
appear after several tries, call your service representative.

Introducing the IBM 5110 5

0') "T1 cEo
c: ...
CD

~

-I ::r
CD

" CD
<
C'"
0
II) ... c..

Special Operating Keys

--------........ ----~-----...... ---------
COpy

()LOAD)~~(IgD~~~~GOUTSEL)~G::::JDISPLAy [OELETE)(INSERT}

~~----------------------~------------------------~~ Alphameric Keys Numeric Keys

ENTERING AND DISPLAYING DATA

First, let's look at the display screen. Normally, inf0rmation displayed
by APL begins at the left edge of the display screen, and the input from
the keyboard is indented when it is displayed. The small horizontal
flashing line indicates the position on the line where the next input from
the keyboard will be displayed. This flashing line is called the cursor.
The cursor moves as each character is displayed.

The display screen can contain up to 16 lines of data. Each line has 64
positions across the display screen. The bottom two lines are used to
display input, and the remaining 14 lines contain a history of the opera­
tions you have performed.

Line 1-4------64 Character Positions -------. I
Numbers

15

14

13

12

11

10

9

8

7

6

5

4

3
2

1

o

,---~

"'11""\1'" WI'"' ~ L .. , ::.1""'<, _ •.• ;) =-------------
This message is displayed when your 5110

is ready for use.

Cursor (flashing line)-display of keyboard
input normally begins indented six positions

on line 1.

There are 128 positions available for input from the keyboard; that is,
there are 64 positions available on line 1 and 64 positions on line O. When
position 64 of line 1 is used as you enter data from the keyboard, the
cursor moves to the left margin of line O. The cursor is then at position
65 of the possible 128 positions available for input.

Introducing the IBM 5110 7

8

Now let's enter some data into the 5110 using the numeric keyboard
and the arithmetic function keys. Press the following keys:

000
Notice that the characters are displayed as each key is pressed. To
process the data you just keyed, you must press the EXECUTE key.
Press the EXECUTE key now.

The display screen will look like this:

CLEFII~ WS
2+:::~

Notice that the expression you entered, 2+3, appears indented on the
display screen; the answer, 5, appears on the left margin of the next line;
and the cursor appears on the next line. The information displayed
moves up each time the EXECUTE key is pressed.

Enter and execute the expression 125+75 by pressing the following keys:

O[J[JOO[J

The display screen will look like this:

CLEli P tJ.]~:)

2+3
1::'
•••• 1

200

The appearance of your display can be changed by the REVERSE
DISPLAY and L32 64 R32 switches on the control panel. The
R EVE RSE D ISPLA Y switch allows you to change from black characters
on a white background to white characters on a black background and
vice versa. Change the switch and select the type of display you feel
most comfortable with. You may have to adjust the brightness control
as you change from one to the other.

Now, watch the display as you set the L32 64 R32 switch to the L32
position. With the switch in this position, the leftmost 32 characters on
each line are displayed with an extra space between each character. The
rightmost 32 characters on each line will not be displayed. With the
switch in the L32 position, your display should look like this:

C L F A R I,) S
>OJ'
,)

C'
d

I::' "}, {
I::'

,.} •••• 1

::.~ 0 0

In the R32 position, the rightmost 32 characters are displayed with a
space between each character. Now, set the switch in the R32 position
and notice that the display is blank because there were no characters in
the rightmost 32 positions of the display screen.

Return the switch to the 64 position, and notice that all characters are
displayed without the space in between. For exercises in the remainder
of this book, keep the switch in the 64 position.

There are two keys above the numeric keys that move the display line
up or down. The up arrow (scroll up key) moves the display up

one line and the down arrow (scroll down key) moves the display

down one line. As the lines are moved up or down, the displayed
information on any line that is moved off the display screen is lost. Also,
the cursor returns to position 7 on line 1 when either scroll key is used.
Either key continues to move the display lines if it is held down. Now
use the down arrow to move the display down one line.

The displ.ay will look like this:

CI...E(:~R J...JS
:~:,~+3

I::'

d :I. ~?~.::.i.t. 7~~ The value 200 is now on the input line and

200 ~ can be used as input. Notice that input can

begin in any position on the line.

Introducing the IBM 5110 9

10

Now press the following keys:

o [] [_0---,)

The display screen will look like this:

CI .. ,EAI~ WS
;.:.::+3

:I. 2~::;+ 7~.:j
20 0 +~)O

2~.)O

Now that you are familiar with the display screen, only the line or lines
being discussed will be shown.

CORRECTING KEYING ERRORS

The IBM 5110 has a number of very useful features that allow you to
correct errors made when data was entered. On a line-by-line basis, at
any ti me, you can:

• Replace a character

• Delete a character

• I nsert a character

Replacing a Character

To replace a character, move the cursor with the backspace key

or forward space key, until the cursor is positioned at the

incorrect character. The cursor moves one character space in the
direction of the arrow each time the appropriate key is pressed. These
keys continue to move the cursor if they are held down. \l\lhen the cursor
is at the incorrect character, you replace the incorrect character by
simply keying the correct character.

For example, you want to do the problem 22+12. But you press the
following keys:

00000
The display screen looks like this:

22+:1.:1.

To correct the error, the cursor must be moved back one position (under
the second 1) so that the character can be rekeyed. Now press the
backspace key one time. Note that the cursor is replaced by a

flashing character. The flashing character serves the same function as the
cursor; it indicates the position on the line where the next input from the
keyboard will be displayed. Now to correct the error and execute the
problem, press the following keys:

Deleting a Character

To delete a character, you also use the backspace key or forward

space key to move the cursor. Once the cursor is in the position

of the character to be deleted (the character is flashing), hold down the
eM D key and press the backspace key once. The character is then deleted
and any characters to the right are shifted one position to the left to
close up the space left by the deletion.

Introducing the IBM 5110 11

12

For example, you want to do the problem 13+45. But you press the
following keys:

0800[J[J

The display screen looks like this:

:J. 23+1+~:j

Press the backspace key and move the cursor (flashing character) back
to the 2. Look at the labels that appear above the backspace and
forward space keys: DELETE and INSERT. To delete the 2, hold down the
CMD key while you press once.

The display screen looks like this:

l3+1+~:5

\
This character is flashing.

Now press the EXECUTE key to execute the problem.

Inserting a Character

To insert a character, position the cursor using the backspace key

or forward space key; then hold down the CM D key and press

the forward space key once. This operation moves the flashing

character (and all other characters to the right of it) one position to the
right, creating the space you need to insert one character. The cursor is
not moved. Now, to insert the character, simply press the desired key.

For example, you want to do the problem 123x6. But you press the
following keys:

The display screen looks like this:

To correct the error, press the backspace key and move the cursor
(flashing character) back to the 3. Look at the labels that appear above
the backspace and forward space keys: DE LETE and I NSE RT. To perform
the insert function, with the cursor positioned at the 3, hold down the
CMD key while you press once.

The display screen looks like this:

:I. .. _:::~::< 6

Now to correct the keying error and execute the problem, press the
following keys:

Introducing the IBM 5110 13

14

There is one more way to correct a keying error. If you make several
errors part way through the line, you can backspace the cursor to the
character following the last correct character and then press the ATTN
(attention) key. Everything from the cursor position to the end of the
input line will be cleared from the display.

Since the data from the input line is not processed until the EXECUTE
key is pressed, you can visually verify any input before it is processed.
However, if you do press the EXECUTE key before you notice a
mistake, you can simply enter the input again or you can use the down
arrow (scroll down key) to move the input back down to the

input line to correct it. Either way, you must press the EXECUTE key
again.

For example, you want to do the problem 135+280, but you enter and
execute 134+280. The display screen looks like this:

134+:~:.~BO

To correct the input, press the down arrow three times to clear

the result from the screen. The display screen now looks like this:

:l.3 1++:2BO

Then press the up arrow once to move the original input back

up to the first input line so that it can be corrected.

ENTERING LOWERCASE ALPHABETIC CHARACTERS

Although only the standard APL alphabetic characters are shown on
the 5110 keyboard, you can enter lowercase alphabetic characters by
changing the 5110 to lowercase character mode. One way to change
the 5110 to lowercase character mode is to press the. key (the

characters HOLD are displayed in the lower left corner) and then hold
down the Shift" key and press the scroll down • key. The

5110 is now in lowercase character mode. For example, press the
key. The display screen looks like this:

a

Now, hold down the shift key and press the key. The

display screen looks like this:

aA

Finally, hold down the command key and press the key.

The display screen looks like this:

In this example, you are not going to execute the data just entered from
the keyboard because you wi II get an error. I nstead, press the scroll up a key once to remove the data from the input line. Now, to

return the 5110 to the standard APL character mode, press the.

key and then hold down the shift key and press the scroll up

a key. The 5110 is now in standard AP L character mode.

Note: See Console Control in the IBM 5110 APL User's Guide,
SA21-9302, for more information on how to enter lowercase characters.

Introducing the IBM 5110 15

16

From this point on, we will discuss the APL language and use examples
in the following format to illustrate what we are discussing. You enter
the expressions that are indented. The results displayed on your 5110
should be the same as the results shown in this manual.

EXAMPLES:

'7
~5 . .;..1+ • Expressions To Be Entered

------------- Results

Remember, the data you key is not processed until
the EXECUTE key is pressed.

Chapter 2. Introducing the APL Language

TYPES OF FUNCTIONS IN APL

There are two types of functions in APL: user-defined functions
(programs) and those that are built into the APL language. The APL
built-in functions are denoted by special symbols. User-defined
functions are discussed later, in Chapter 7.

The built-in functions operate on data supplied, called arguments.
For example:

2 + 3

t
t
Right Argument

Built-in Function (addition)

Left Argument

ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION

8 0 Machines with APL Only

O(I)OO or

8 0 Combined Machines

Alphameric Keys Arithmetic Function Keys

Four commonly used built-in functions (+ - x -;-) perform the normal
arithmetic operations when they are used. These symbols are located
on the top row of the alphameric keys and also to the right of the
numeric keys.

Introducing the APL Language 17

18

EXAMPLES:

3+(~) .. ~-- Add 3 and 6.

~.~ x 6 ... -- Multiply 3 times 6.

:l.B

I... B I... > The right argument is subtracted from the left argument.
;--- q··· .. n

'''i+ ~ The high horizontal bar is the negative sign. Compare it

with the minus which is the symbol for subtraction; the
negative sign appears near the top of the character instead
of on the center line.

2 :.:~:~l > The left argument is divided by the right argument.

o I ~~.i

As you have seen in the example, the negative sign is different from the
minus. When you are doing arithmetic operations in APL, do not use
the minus to represent negative numbers or the negative r:;t sign for
a subtract operation. l2J

Problems: Using Addition, Subtraction, Multiplication, and Division

1. Find the total number of cars that a dealer sold during one week if
his daily sales were 3, 5, 2, 6, 7, 3 and 4.

2. Find the net number of cars removed from the same dealer's lot if
20 people had trade-ins.

3. Find the dealer's average profit per car if he made a total profit of
$2700 for the sales in problem 1.

4. Find the dealer's total earnings if he made $20 on each car sold.

Possible Solutions

Problem 1:

3+~,:i+2+6+ "l+3+1~.

30

Problem 2:

30····20
:1.0

Problem 3:

90

Problem 4:

20x30
600

ANOTHER ARITHMETIC FUNCTION-RAISING A NUMBER
TOAPOWER Q

Another arithmetic function that you are probably familiar with is
raising a number to a power. In APL, you use the * function to raise
the left argument to the power specified by the right argument.

EXAMPLES:

3')(':? ~.--- 3 raised to the second power .
.....
',Y

~.:,::·)(·:::S ... --- 2 raised to the third power.

Introducing the APL Language 19

20

Finding the Root of a Number

You can use the power function * to find the root of a number. To do
this, you simply raise the number to the power 1-:-n, where n is the root
you want to find.

EXAMPLES:

'H(' (l'~' 2) -1-- The square root of 4.

,+-)(.• ~:.:; _1---- Another way to enter the instruction to find a

square root of a number (.5 is the same as 1-:-2).
B·)(· (:1.··;·3)

;.:.~ ~4--------- The cube root of 8.

STORING DATA IN THE 5110 FOR LATER USE: []

You can store data, either direct input that you enter from the keyboard
or the result of a calculation. These stored items are called variables.
Each variable has a name associated with it. Whenever you use the name of a
variable, AP L supplies the value associated with that name. A variable
name can be up to 77 characters long (with no blanks); the first
character must be alphabetic; the remaining characters can be any
combination of alphabetic and numeric characters. It is good practice
to use names that represent the data you are storing. For example, if
you want to store a value that is the area of a rectangle you might use
the name AR EA; or if you want to store somE~ sales data, you might use
the name SALES.

You create a variable by assigning the data to a name. To assign a value
to a name, you use the assignment arrow +-. The value to the right of
the +- is assigned to the name to the left of thH +- •

EXAMPLES:

995

96 . 7~5

P I~ ICE 'E"(1'9 , !:50 • After you press the EXECUTE key, you
~~:f:~~.:I:~~~.~~··PI~ICEx:l. 0 '\.. have created a variable named PRICE

I· ,,1. L~_ "" with a value of 99.50.

B(:-:-'LE~; The result of a calculation can also be

assigned to a variable.

If you want to know the current value of
a variable, you simply enter the name of
the variable.

P RICE 'i-B6 , 7!:':; -41---- You can change the value of a variable
p r~ I CE the same way you assigned the original

value.

P F~ ICE ~ .. P F~ I !J::: of- :I. 0
PRICE - You can also use the variable and change

its value in the same instruction.

_______ You cannot use a name as a variable if
__________ it does not have a value assigned to it.

cos'I' ":"St~II...EG
\h1l..,UE E I~ I~CH< • The error message indicates why the

/_~-----

instruction failed.

The caret (A) indicates where the
I instruction failed.

Note: Do not be concerned at this time
about the error message that is displayed;
all of the 5110 AP L error messages and
suggested user's responses are described
in the IBM 5110 APL Reference Manual,
SA21-9303.

PERFORMING SEVERAL FUNCTIONS IN THE SAME EXPRESSION

In the preceding examples, only one arithmetic function was used in
each example. However, you are not restricted to writing expressions
with only one function. Any number of functions can occur in the
same instruction. As soon as you use more than one function, however,
you must be concerned about the order in which they are used. In APL,
the rightmost function in any expression is executed first, then the next
rightmost, and so on.

Introducing the APL Language 21

22

EXAMPLES:

:tB

:1.0

Order of execution is right to left.

:.~ x 2+1+ .. 1-- 4 is added to 2, and that result is multiplied by 3.

q.+:3 x 2 ... -- 3 is multiplied by 2, and that result is added to 4.

Remember that an APL function uses as its right
argument the result (llf the expression to its right.

SPECIFYING THE ORDER OF EXECUTION-USING PARENTHESES rn w
In APL, parentheses are used the same way as they are in conventional
arithmetic: the expressions inside the parentheses are executed before
the expressions immediately outside them.

EXAMPLES:

10

1. 1+

(3 x::?) ... ll· -·--The expression 3x2 is evaluated first and the
result is added to 4.

('+-.<3) x:::: ~ The expression 4+3 is evaluated first and the

result is multiplied by 2.

Remember, the rule of the order of execution
is from right to left with the expressions in
parentheses resolved first and from right to
left as they are encountered.

USING STRINGS OF NUMBERS AND TABLES

A powerful feature of APL is the way it handles strings and tables of data.
So far, you have used AP L with only single nUlmbers (called scalars): but
APL also works with strings of numbers (vectors) and tables (matrices).
The functions you have performed using single numbers are simply
extended to each number in a string or a table. For example, if you have
a string of numbers assigned to a variable named SALES, you can add 2
to each number in the string by simply entering 2+SALES.

Using APL with Strings of Numbers (Vectors)

A string of numbers is called a vector. When you enter a string of numbers,
there must be at least one blank between each number; each number is
called an element of the vector.

EXAMPLES:

1. I.~I+ ::.:: <;' 35 ~I------- You have entered a five-element
:I. 14. 1+ :2 9 3~:.) vector (a string of five numbers).

ST I~ ING~:J.I.j·I+ 1. {) 39 2
STRING

:I. '+LJ· 1.6 ~'59 ;;.::
SALES~1.25 220 31.6 90

A vector can be assigned to a
variable name.

SI~·~I...ES x :I. 0 ... --------- Each element (number) in the
:I. ;':::~:5 0 2200 3:1. 6 I] <:1 00 vector can be operated on by

a single number.

S(."1 I ..• EF) · .. 1----------
:1.::?~5 2:?O ~·!:;:l.6 90

p I~ I CE ~ ... ~:.:i 0 :I.. I] 0 . ·l~.:.:j

TOTAL~SALESxPRICE
:t . :I. 0

Note that the value of SALES
has not changed.

TOTti!... t'--________ Each element in a vector can be

6 ;.:.:: . ~:5 22 0 2:.3 7 99 operated on by the
corresponding element in
another vector with the same
number of elements.

:I. ::.:: 1+ + ll· ~:.:;

~5 "/ :I. 0

:I. ::.:.:: 3+\4· ~.; ---------
I...ENG·fH E 1:< 1=<0 I~

:I. 23+1+~5

There must be at least one
blank between the elements
of the vector, or the result
will be different.

You cannot use two vectors
that do not have the same
number of elements unless
one of the arguments is a
single number (single element).

Introducing the APL Language 23

24'

Problems: Using Strings of Numbers

1. Find the squares of the numbers from 1 to 5.

2. Find the squares, cubes, and fourth powers of the numbers 2 and 3.

3. A small mutual fund broker specializes in five funds. He wants to
know how much of each fund he had sold at the close of the day.
By 4:00 PM, he had sold $1500, $3200, :$1200, $2300, and $2400,
respectively, of the five funds. In the last hour of the day, he sold
$100, $500, $300, $200 and $0 of the respective funds. Write a
single APL statement to determine his closing sales figures for each
fund.

4. The five funds in problem 3 sold for $7 .~lO, $11.58, $3.45, $2.17
and $5.56 per share. How many shares of each fund were sold?

5. The broker receives the following percentages of commission on the
five funds: 3.25, 2.5, 3.0, 3.75 and 3.5. How much did he earn
from each fund today? What are his total earnings for the day?

Possible Solutions

Problem 1:

:I. 2 3 ll· :~j ~. ;2

1. 1+ 9 :I. (~.) ~.:.:: !5

Problem 2:

r) :-:),)(,2 .. '-
1+ 9

...) 3,)(,3 .,: ..
n .") .. ~'

....... I

r)

::)·)t '+ A".:

:I. L \.J B :t.

or

2,)(,2 :-5 LJ·

'+ B :I.b
31122 3 '-I.

~;i
.,..) .. ~.
JI: •• I Bl

Problem 3:

1500 3200 1200 2300 2~00+100 500 300 200 0
1600 3700 1500 2500 2400

Problem 4:

16 () 0 37 0 0 :I. ~.:; 0 0 2 ~:j 0 0 21+ 0 I] ,,;·7 . 3 0 :I. 1 . !::.; B 3. '-I. ~.:.; 2.:1. 7 ~:.:j. ~:.; b
19.18 319.52 434.78 1152.:1. 431.65

Problem 5:

52 92.5 45 93.75 84
~::.; ::.~ . 0 0 ... (.".;0:'::' • ~;.:.; 0 + 1+ ~:.:; . 0 0 + (? 3 . ..,., ~:5 + n I.j. • 0 0

Using APL with Tables of Numbers (Matrices)

I

A table of numbers is sometimes called a matrix. The numbers in the
matrix are arranged in rows and columns; each number is called an
element of the matrix.

rColumn

2 3 4 5

6 7 8 9 10

11 12 13 14 15 I-ROW
An individual element in row 3,

column 4 of the matrix.

You can use the reshape p function to create matrices. The left argu­
ment specifies the number of rows and columns, and the right argument
specifies the data or variable name for the data to be placed in the matrix.

Introducing the APL Language 25

26

EXAMPLES:

r-------------- The first number in the left argument

1\ spedfies the number of rows; the second
number specifies the number of columns.

2 :::~ (oi:l 2 3 1+
:I. ~\:.~ ~:~

I.~ ~5 l)
t ... _______ The' right argument specifies the values to

be placed element by element into the
rows of the matrix.

T (.~ B I... E ~ .. 2 ::5 (.I :I.
T ~IBL.E

There must be a blank between the
numbers specifying rows and columns.

1 :? :.3 ,------------- If there are not enough elements in the
I.f. :I. ::? right argument to fill the matrix, the

elements are repeated.

VECTOR~:I. 2 3 4 5 6 7 8 9 10 1:1. :1.2
MI~ITI~IX~··:3 :.3(JVECTOR If there are more elements in the right
t·itlT I~ I X +1-_________ argument than are required to fill the

:I. :,:,:: 3 matrix, only the first (leftmost) elements
1+ ~:,:; (~'i

are used.
'l B 9

'r --------- The reshape p function can also be used
+ to create a vector.

F D U r~ ~ .. I+ (.> VEe T c) I~

F[)UI~ tL __________ Th,~ number of elements in the vector.
:\. 2 ::5 1+

t'i 1~'~ll R I X + :I. 0 Each element in the matrix can be operated
l:l. :I. 2 :I. 3 +l.-.. __________ on by a single number (remember, the

J,l.I, :I. ~5 1 (:) value of MATRIX is not changed).
:1.7 lB :1.9

NUMBERS~:I. 2 3 4 5 6 7 8 9
EXAMPLES~3 3pNUMBERS+5
EXf~M PI...ES

'(' B
<,1' :I. 0 :1.:1.

Remember that APL executes an
expression from right to left-the
result of NUMBERS+5 is used as

12 :1.3 11+
RESUL.lS~EXAMPLES+MAlRIX

the right argument for the reshape
p function.

"'1
I~E~:)UI... TG

I:.~ :l:l.
:I.:'::> :t. ~5 :I. 7
:1.9 2:1. 2:::~

11-_______ Each element in a matrix can be operated

on by the corresponding element in another
matrix of the same shape.

EXAMP LES-continued

:3 '+

t...ESS~··2 2(.)NUMBEI:~S

1. .• 1::: ~:) ~:)

nAT I~ 1)(~< N1...It-iBE I<~:)""----A matrix and a vector
RAN I(E I~ l~ D I~

f'1(.~ T I~ I X x NUt-iBE I~B or

t-i (.~I T I~ I X x I... F ~3 ~:> ... ------ two matrices that do not have
I... ENG THE I~ H (] I~ the same shape (numb€:r of rows

MfYrl~ I X x I...E~:)S and columns) cannot be used
unless one of the arguments is
a single number.

REFERRING ONLY TO CERTAIN NUM8ERS IN A STRING OR TABLE
OF NUMBERS (INDEXING) CIJ CD

Indexing is a way to refer to only certain elements in a string or table
by specifying the position of the element you want. The numbers you
use to specify the positions of the elements are called index numbers.
These index numbers are enclosed in brackets [] following the vector
or matrix to which they apply.

EXAMPLES:

7'+

TEMP~68 74 78 65 80 85
TEt-iP[::.::] ,----------you can refer to a single

element.
·rEt·1p[:.":~ :I. 2]

78 6B 7'4· t------------you can refer to several

'r F i"i P I:: :? ::I + T E 1'1 P I:: :.":S :I. 2 ::I

elements. Notice that the
elements are displayed in
the order in which you
indexed them.

:I.~:.:.j2 :1.'-1·2 :I.'+B ·I:.....---------Youcanindexanduse
other functions in the
same expression.

TEMP[""i"']~"BB .. ,--------you can change a single
TEt-i P element of a vector.

68 74 78 65 80 85 88

70 70

TEi'i P I:: :':~ 6 J~ .. "/ 0_
TEi'-iP[3 6::1 -You can also change several

elements.

Introducing the APL Language 27

28

EXAMP LES-continued

:::.:: 3

'T'I::'MI:>lo'~1 "1 i·· "X';> 1::° L ... _'-' ,;,,, .. ~o

T E M P '- __________ Notice that the new values
"7 0 6~;:; 32 "70 BB are assigned in the same order

as the index numbers.

TJMEG~"~~ 3(.>NUMBERS ---­
or I MES

For a matrix, you need
an index number for the
rows and an index number
for the columns-these
numbers are separated
by a semicolon.

Remember, we have previously
assigned a value to NUMBERS.

l.~. ~:.:.i ()

"/ B 9

,::.
"'}

,::. I
B

T :I: t'tE G 1:::3 .; ;.:.~ 3] ------_

TIt1ESI:: l.;:I. 2]

<;') ...
':,'

/Left side of the; specifies
the row(s).

/' Right side of the; specifies
the column(s).

you can refer to several
elements. In this case, you
have referred to the second
and third elements in the
third row.

Notice that when you refer
to more than one row and
more than one column, your
result is a matrix.

EXAMPLES-continued

:I.
1+
"7
f

:':~6

:1.

1+
... ,
f

.----------- If you do not specify a
T I t1ES I:: ::.~ t J column, you get the whole

row.
TIMES!::.; 3::1
<i~~ If you do not specify a row,

you get the whole column.

These values (the third

3
c'>
(.y'

2
0
n
0

T J t-1EB I:: .;:1. 3::1 column) are displayed
horizontally, because they
are a string of numbers
(vector).

Note: Even when you select
entire rows or columns, the
semicolon is still required to
make it clear whether the
index number is for the rows
or columns.

T:I: f'H::~:) I::~? .; :I. ::I x·r I ~iE~:) I:: :::~;.; 3]- You can index and use

other functions in the

T I t-·lE:::> I:: 2.; 2::1 ~ .. 0_________ same expression.
T I i'1 E f:> _________

:3 You can change the value of

T :I: f'1 E ~:) I:: :I. .; :I. ::I ~ .. 2 + 3
·r I ME:::> I:: :1 .. ; :1.::1

elements in a matrix.

YOU ARE NOT LIMITED TO USING ONLY NUMBERS

Although the examples so far have used only numeric data, APL also
works with character data. Character data, for example, can be used
for headings on a table or to create a list of names. When you enter
character data, you must enclose the data in single quote characters (').
These single quote characters indicate that the data is character data and
is not a variable name, a number, or a function. When character data is
displayed, the single quote marks do not appear.

Character data, like numeric data, can be a single character (scalar), a
string of characters (vector), or a table of characters (matrix). Unlike
numeric data, when you have a character vector or matrix, each character
is a separate element and is not separated from the other elements by a
blank. In fact, a blank in the character data is also a character (blank
character) .

Introducing the APL Language 29

30

EXAMPLES:

A

2+::~

, ,~ , 4------------,--- Single character
(scalar).

'(.~BC '-... - __________ _

String of three
characters (three­
element vector).

'2+3'

NU~1BE Ri··I+~:S6

, :1. ~,~3 ' +NUMBE 1:<

---- This expression does
not yield a result of
5, because the values
are characters, not
numbers.

OOr·1 A I N E I~ I~ () I~ -.. -------------- You cannot add
• :I. 23 ' +NUMBE I~ character data and

l\ numeric data.

tr---------------To place a quote within
':OON' 'T DD THt.,T' the character string,

DON'T DD TI'U:', T you must use a pair
THANI< Si" I y'OI..,! {11~E I...JFLCDriE', of quotes.

THI~NI<S ~
YOU (11:~ E t\J E I... C (] M E Character data can be

~:)(:1M

·.JOHN
. ...II~~CI(
TOM

. .JOHN

JOHN

assigned to a variable
name .

.---------.,.----- Blank characters.
;"J ' . '1'" .. , I ••••• I-;~ I "'IIl- I J A 1

'
'Y' (.) M ~ , I . (.~I M ::. ~:) i.. ~:dk , .. U .. I'''! ,. .. L \ I ~, n

i'11~IT I~ I XN~"'-I· 1+ ,:)NAt1E~:) ·---'---Create a character
j'-1f1 T I:,: I XN matrix, each row

represents a name.

N I~' r1 E ~:) I:: ~:.:; {. '/ B ::;
l

i"it,ll:,: I X:N I:: ::.:~ ,;J~-------·--~lndeXing works with
character data also.

So far, you have used APL with some common arithmetic functions.
You have 'also seen how APL works with scalars (single data items),
vectors (strings of data), and matrices (tables of data). However, you
are not limited to just the functions we have discussed so far. In the
following chapters, you will be introduced to more things you can do
with APL.

Chapter 3. APL Functions That Require One Argument

In this chapter you will use some APL functions to do the following:

• Determine the whole numbers nearest a fraction.

• Sort a vector into ascending or descending order.

• Generate a random number.

• Find the shape of an existing variable.

There are additional APL functions that require one argument; however,
these functions will be discussed later, in Chapter 6.

HOW MANY ARGUMENTS ARE REQUIRED BY AN APL BUILT-IN
FUNCTION?

In this chapter, you will use APL functions with one argument. In the
next chapter, you will use some of the same APL function symbols with
two arguments. As you will see, these symbols perform different APL
functions when they are used with one and with two arguments. When
you use an APL function with one argument, the argument must be to the
right of the function symbol.

APL FUNCTION SYMBOLS THAT ARE A COMBINATION OF TWO
CHARACTERS

Some of the APL function symbols you will use are a combination of
two characters. You remember that when correcting keying errors, if
you positioned the cursor at a certain character and pressed another key,
a new character would replace the original character. However, certain
APL symbols require two characters, one struck over the other. For
these symbols, key the first character, backspace, and key the second
character. It does not matter in which order the characters are keyed.
The symbols that are a combination of two characters are called overstruck
characters. Appendix A shows the overstruck characters and the keys
required to enter them.

Note: If you key an overstruck character and then want to change it, you
can position the cursor at the character and key another character. The
new character wi II replace the overstruck character.

APL Functions That Require One Argument 31

32

DETEBMINING THE WHOLE NUMBERS NEAREST A FRACTION

When you want to disregard the fractional part of a number and just
consider the nearest whole number, you can use the floor L and ceiling r
functions. The floor function will round the number down to the next
smaller whole number and the ceiling function will round the number up
to the next larger whole number.

EXAMPLES:

I..B

rn

C~"3

Ie

~: =---;r7[:-: -------If the number is already a whole number, the
' •• J result is the same as the argument.

__ ~:.-_----:=:------ The result for the floor and ceiling functions is
~ determined according to the number's position

on the number line:

(smaller) (larger)
++11111++

4 -3 '-2"1 0 1 2 3 4

Rounding to the Nearest Whole Number

It is a common practice to round numbers to the nearest whole number.
You can do this by adding .5 to the number and then using the floor
function.

EXAMPLES:

1+

X~··I+ , L~+ • ~:.:.i"I----- Rounds 4.4 to the nearest whole number.
I 'x'

x ~ .. I.j. , 6+ , ~::;.I----- Rounds 4.6 to the nearest whole number.
L \j

L X ~ .. I+ , 1+ + , ~.:j
1+ ~

X 'i"!.. 1+ , (:) + , ~.:.:; .------:::::-- These examples could also be entered this way.

I::'
... J

SORTING A VECTOR IN ASCENDING OR DESCENDING SEQUENCE

CD CD CD CD
The grade up Li and the grade down t functions can be used to sort a
numeric vector into ascending or descending sequence, because they
give you the indices of the argument in ascending or descending order.

EXAMPLES:

A~80 ~5 62 37 29 7~ 58 15 96
It I A

8 I:) 1+ :? 7 3 6 :I. 9-.........
- The largest value. is the ninth

element .

- The smallest value is the

eighth element.

B~··(.:·I I:: (t~~I::I ... ---------- Indexing A this way sorts the

:1.5 29 37 ~5 58 62 7~ 80 96

't' (.~I
9 1 637 2 ~ 5 8

elements of A in ascending

order.

Remember. when indexing
elements in a vector. the
index numbers or the
index expression must be
enclosed in [] .

C ~ .. t-I I:: tp (..) ::I .. 1-----------The elements of A are sorted

C in descending order.
96 80 7~ 62 58 ~5 37 29 15

APL Functions That Require One Argument 33

34

GENERATING A RANDOM NUMBER

To generate a random number, you can use the roll function ?, which
generates a random number between 1 and the value of the argument.

EXAMPLES:

x ~ .. ? b -41--____ Generates a number between 1 and 6.

X
~:.:j ------------The result can be any number between 1 and 6.

X~··?6 6 6
X

6

:L 3 :I. ::5
~ When this function is used with a vector, a

random number is generated for each element.

GENERATING CONSECUTIVE NUMBERS CD
There are times when you will want to generate a vector of consecutive
numbers from one value to another value. You can do this by entering
an instruction like this:

VECTOR~:I. 2 3 4 5 6 7 8
VECTnl~

:I. :? :3 1+ ~:.:; l> ""(' D

However, you can also use the index generator function 1, which generates
consecutive numbers from 1 to the value specified by the argument.

EXAMPLES:

I
·'. n I::. .- _) -;j ______ Eight consecutive numbers

:I. 2 ::5 + d 6 i b

l) -.}

B (

:::.~ q. B

VECTO I:~o{--~.::.i+ -\ ~:_:.i -Five added to each consecutive number
V[CTDI~
...... ·r :1.0 ·7

:?-)(- ... 6 1 First 6 powers of 2
16 32 61.J·

Generating an Empty Vector

An empty vector is just that-a vector with nothing in it (no elements).
Why have a vector with nothing in it? As you will see later, when joining
two items together or branching in a user-defined function, there are
times when you will want to generate an empty vector. One way to
generate an empty vector is to use 10.

EXAMPLES:

N(.0:-.t1E
V(iI...UF E I~ RD P ~.--- An error occurs if you use a variable name that does

N(.~t1E not have a value assigned.

N (.~, t1 E ~oo 0\ 0 ---Generate an em pty vector.
N(ii'o;E

The result is a blank display line (no value).

FINDING THE SHAPE OF AN EXISTING VARIABLE CD
As you learned in Chapter 2, the left argument of the reshape function
determined the number of elements in a vector or the number of rows
and columns in a matrix. Thus, the number of elements in a vector or
a matrix is referred to as the shape of the vector or matrix. For example,
the shape of matrix M, which has two rows and three columns, is: 2 3.
To find the shape of an existing variable, you can use the shape function
p.

EXAMPLES:

~:> c I~ I... ;:0:0, P o~oo qo
\I E C: T (j P ~oo 2 '+ 6 B
f"1(1TI~~lXo~00;? :::~p ~Reshape function (has two arguments).
p ~3 C (~lloo' (~, I~
---------- Blank display line-the shape of a scalar

is an empty vector.

'+ _ ... ---=-:~-::-::-------
i:;i'°ll~o:olor F~: J oXo Number of elements in the vector.

:~:o:: :::~ -------____ _

Number of rows and columns in the matrix.

Ei"j PT'{ ~oo \ U ~.------ Generates an empty vector.
Ei"'lPT'{

----------Blank display line.
eEi'1PT

O

o(

o ~4--------------Number of elements in an empty vector.

APL Functions That Require One Argument 35

Chapter 4. APL Functions That Require Two Arguments

36

In this chapter you will use some APL functions that require two
arguments. You can use these functions to do the following:

• Compare the arguments to determine whether one is equal to, greater
than, or less than the other argument.

• Process logical data-true (1 's) and false (D's) data.

• Find the larger of two numbers.

• Find the smaller of two numbers.

• Find the index of a value in a vector.

• Generate a random sequence of numbers.

• Compress (select certain elements from) a v€!ctor or matrix.

• Expand a vector or matrix by inserting zeros or blanks.

• Join two items together.

• Find the logarithm of a number.

There are additional APL functions that require two arguments; however,
these functions will be discussed later, in Chapter 6.

RELATIONAL FUNCTIONS

When solving problems with APL, you might want to test the relationship
between two values. For example, you might want to test a counter to
see if it has reached a certain value; or you might want to do something
different in the solution to your problem, depending on whether a certain
condition is true or false. The following APL functions are used to test
the relationship between two values:

Function Symbol

Greater than >

Less than <

Greater than or equal to

Less than or equal to

Equal to =

Not equal to

Key

,-;-) -
~

ru
rn
Gi .. ,' .. :.,.' .. , .. ,.,.: ... , ,.:=-..... ::·,.: ... ,.: •. ,'., .. ,.' .. ~

r:t
UJW

When these functions are used, the relationship between the two values
is evaluated, and a 1 results if the relationship is true, and a 0 if false.

APL Functions That Require Two Arguments 37

EXAMPLES:

I~~ ~··:L 0
B~··20
I~I;:;:B

0
(.~::::B····:I. 0

:I.
I~::;B

1
A;x~B

:I.
(."1;::B

0
t~~·· I~BC

B~·· nEF
(.·~::::B

(I 0 0 ~ The:: and =F functions also work with character
rlt-B ----------- data. Remember, each element is compared with

:I. :I. :1. the corresponding element in the other argument.

38

Why Two Numbers Identical in Appearance Are Not Always Equal

APL stores all numeric values with an internal precision of 16 decimal
digits; however, decimal values with more than five significant digits are
normally rounded off to five digits before they are displayed. Thus,
occasionally, different numbers will look alike when displayed.

EXAMPLES:

A.··:I. ';':3
Hf- . :3:3:3::~:3
(.~

o .333:33 --------Only five of the 15 digits are displayed.
B

() . :3:-5:3:3 3

o
1::-
· .. 1

('~::::B ·-------The values are not equal.

[] p p ------- 0 PP is a system variable that determines how
many significant digits will be displayed. This
variable is automatically set to 5 when the
power is turned on or RESTART is pressed.
(The system variables are discussed in
Chapter 9.)

[] P Pi" :1. ~:.:; .. Set the 0 PP system variable so that 15
I~I significant digits will be displayed.

0.333333333333333
B ~

o . :::r::)33~~ • Notice the difference between the two values.
npp~··I::;

.. , .. - Set the DPP system variable back to 5.

Remember, the value displayed may not be the exact value that the 5110
has stored for the variable.

An Example Using a Relational Function

Suppose the correct answer to a problem has been stored as a variable
called RIGHT, and the answer supplied by a student has been stored as
a variable called ANSWE R. To keep track of the student's score, you
want to add 1 to his score if his answer is the same as the right answer;
otherwise, you want to leave his score unchanged.

APL Functions That Require Two Arguments 39

40

If the student got the problem right, it is true that ANSWER=RIGHT.
To add 1 to his score only if his answer is equal to the right answer, you
could enter this instruction:

seQ R E-f- SeQ R E+ANSWE R= RIG HT

Then the amount added to SeQ R E is 1 when the two values are equal
and a when they are not equal.

Suppose that instead of adding 1 when the student is right, you want to
give some problems more weight than others. The weight of the current
problem is stored under the variable WEIGHT. If the student gets the
problem right, you want to add WEIGHT to his score; otherwise, you
want to leave his score unchanged. You could enter this instruction:

SeQRE-f-SeQRE+WEIGHTxANSWER=RIGHT

If the student's answer is equal to the right answer, then ANSWE R=
RIGHT has the value 1, so the amount added is WEIGHT x 1. But if
the answers are not equal, then the amount added is WEIGHT x 0,
which is O.

LOGICAL FUNCTIONS

The logical functions take only ones and zeros as arguments and are used
to check for certain conditions. (They usually check the results of
relational functions.) The fundamental logical functions are:

Function Symbol Key

And

Qr v

In our discussion of the logical functions, we will use tables like the
following one to show the possible results of the logical functions:

Logical Function- 1\ 0 1 --Values of the Right Argument

0 0 0

1 0 1 .-...-- Results

Values of the Left Argument

To use this table, simply find the value of the right argument on top of
the table and the value of the left argument on the left side of the table.
Then, follow the column represented by the right argument down and the
row represented by the left argument across. Where they intersect is the
result of the logical function when those values are supplied as arguments.
For example, find out what the result of 1 A 0 is as follows:

Follow the value
of the left
argument across.

And CJ

A 0

0 0

1 0

1

0

1

.--------- Follow the value of the right

argument down.

I
01

01 o

-Right argument.

They intersect here; thus,

the result is O.

- The result is 1 only if both arguments are 1.

t'-_________ Left argument.

The And function is used to check for two conditions being true.

For example, suppose you want to know when the items that cost more
than $100.00 have a quantity less than 10. You could use the following
instruction:

(COST>100)A(QUANTITY<10)

~-----The result is 1 when the

quantity is less than 10.

~--------------The result is 1 when the cost

is greater than 100.

Notice how the parentheses in this instruction specify the order of
execution.

APL Functions That Require Two Arguments 41

Or

· ..

42

EXAMPLES:

(~UANT I TY ~"B
CDS T ~. :I. ::.~ 0
(COST>100)A(QUANTITY<:l.O)

:I. --------------------- Both conditions are true.
(~UI-:'1NT I TY ~"2~::;
(COST>:l.OO)A(QUANTITY<:l.O)

o · ---------------------At least one condition is
not true.

v 0 1 - Right argument.

0 0 1 -The result is 1 if eithl~r argument (or both) is 1.

1 1 1

.J;... _________ Left argument.

The Or function is used to check for at least one of two conditions being
true.

For example, suppose you want to know when either the inventory for a
certain item is less than 10 or the orders for that item exceed the inventory.
You could use the following instruction:

(I NVENTO I~Y -:::1. 0) v «(] I~DE I~S::- I NVENTOI<Y)

L The result is 1 when the orders

are greater than the inventory.

L--_________ The result is 1 when the inventory

is less than 10.

EXAMPLES:

I NVENTO I~Y ~"1~)
(] RDE I~f:)i··~::;
(INVENTORY<lO)v(ORDERS>INVENTORY)

0 ... _________________________ Both conditions

o I~DE I~Si··2~::;
(INVENTORY<lO)v(ORDERS>INVENTORY)

are false.

:1. _------------------------
At least one of
the conditions
is true.

Problems: Using Relational and Logical Functions

1. It is vital to build error checking into all space systems to prevent
catastrophe. For example, two indicators checking one condition
are commonplace. If either or both of the indicators show danger,
action must be taken.

Assume that the A indicator is over its limit at 1.3725 amperes and
the 8 indicator is over its limit at 1.5365 amperes. Enter an
expression that will result in a 1 when one or both indicators are
outside their limits; the indicators read 1.3732 and 1.5362,
respectively.

2. A survey was conducted by the PTA in which the teacher and the
parent of the child each evaluated ten of the child's characteristics.

One child's teacher replied 1,0, 1, 1,0, 1,0,0, 1,0 to the questions
dealing with his characteristics. His parent answered 1, 0, 0, 1, 0, 1,
1,0,0, O.

Show which questions the teacher and parent both replied to with
a 1.

Possible Solutions

Problem 1:

1.

Problem 2:

(,10)xl 0 1. :I. 0 1 0 0 1 OAl 0 0 :I. 0 :I. :I. 0 0 0
:I. 004 060 0 0 0

APL Functions That Require Two Arguments 43

44

FINDING THE LARGER OF TWO NUMBERS [0
The result of the maximum r function is the larger of the two arguments.

EXAMPLES:

t-. ~"" ~:;
B~""6

r.".rB

To see how you could us~ the maximum function, suppose you work for
a department store. Each month the store calc:ulates the amount charged
and the amount paid by each customer. Your job is to find the difference
between the total accumulated charges and thel total accumulated payments
for each customer. This difference is stored in a variable named BALDUE.
The store also charges a service charge of 1.5% of the unpaid balance each
month. You could find this charge with the following instruction:

CHARGE~BALDUEX,015

However, some of the customers have overpaid their bills. For them,
BALDUE is a negative number and shows as a credit on their monthly
statements. If you calculate the service charge by the instruction just
shown, you will be paying them interest at a rate of 1.5%. Instead, the
store prefers to calculate the service charge as 1.5% of the balance due
or of 0, whichever is greater. To do this, you Gould use the following
instruction:

FINDING THE SMALLER OF TWO NUMBERS CD
The result of the minimum L function is the smaller of the two arguments.

EXAMPLES:

2~:j

:1. ")
h .. "1

(4 ~- !.:,:j

Bf·b
t'~L B

C~" :I.
D~"3
eLI)
"'}

i

1+ "? <"i
'')
~: .. B 7

Problems: Using the Maximum and· Minimum Functions

1. Find the largest dollar expenditure for the following gasoline
purchases:
a. 16.8 gal at 57.9 cents per gal
b. 13.5 gal at 60.9 cents per gal
c. 15.6 gal at 62.9 cents per gal

2. For the following purchases, find the smallest quantity of nuts
received:
a. 71 cents for walnuts at 33 cents per Ib
b. 53 cents for cashews at 27 cents per I b
c. 64 cents for pecans at 29 cents per Ib

Suggested Solutions

Problem 1:

9.812LJ·

Problem 2:

APL Functions That Require Two Arguments 45

46

FINDING THE INDEX OF A VALUE IN A VECTOR OJ
When you want to find out if a value is an element in a vector, and if it
is, which element it is, you use the index of function (1). The index of
function gives you the position (index) of the first occurrence in the
left argument of the values in the right argument. If a value in the right
argument is not in the left argument, the result is 1 plus the length of the
left argument.

EXAMPLES:

1+

Ni--B
23 33 23 8 16 29\N

PI~" I rlBCDEFG I

f~\ ICf~FE'

B~"2 LI_

C~ .. 1 3 ::.:~ ,::-
,.J - Index of the first occurrence.

,....-------------- Index generator function.

~---------- Index of function.

- Value does not occur in the
left argument; the result is 1
plus the length of the left
argument.

GENEnATING A RANDOM SEQUENCE OF NUMBERS GJ
In Chapter 3, you used the roll function (? with one argument) to generate
one random number. But by using the deal function (? with two arguments)
you can generate a random sequence of numbers without generating the
same number twice. That is, the deal function generates the number of
random numbers specified by the left argument from 1 through the value
specified by the right argument. The random numbers are selected so that
no two numbers are the same. Therefore, the left argument cannot be
greater than the right argument. If you specify the left argument equal
to the right argument, you get all the numbers from 1 through the number
specified by the right argument, in random order.

EXAMPLES:

~::; 1+ ------------
lO?:l.O

May be any two different numbers
between 1 and 5.

I::" '7..
,.J d B :1.0 b 9 2 4· 1. 7,

""'" These numbers can be in any order, as
you will see if you enter this
instruction several times.

SELECTING CERTAIN ELEMENTS (COMPRESSING)
FROM A VECTOR OR MATRIX CD

You can use the compress function / to select certain elements from a
vector or matrix. The left argument must be a vector of all 1 's and D's
or an expression that results in such a vector. When you select elements
from a vector the number of elements in each argument must be the
same; the corresponding elements of the right argument are retained for
each 1 in the left argument.

EXAMPLES:

V~":I. :? ")'

":> '+ I;;'
d 6 "'}

(B
:I. 0 :L :/. 0 :I. :I. :I,/V

:1. :';~ '+ 6 7 B
0 0 0 0 0 0 0 O/V

Result is an empty vector,
I~'~I ~" 1, 0 0 0 0 0 0 :I.
(1/V

:I. B
:I. 0 :1. 0/ I (.~BCD I

{1C

APL Functions That Require Two Arguments 47

48

When selecting elements from a matrix, you must select and omit entire
rows or columns. To do this, you must specify the coordinate (rows or
columns) to be acted on by using an index value [I]. The index value is
1 if the first coordinate (rows) will be acted on and 2 if the second
coordinate (columns) will be acted on.

EXAMPLES:

:I. '~')

~.:.

. .. /
(

I::'
.,.J

9 :I. 0 :1.:1. :I. :? Remember, the left argument must contain a
~ 1 for each item to be selected and a 0 for each
~ item to be omitted.

I] :I. O/[:I.]B
~.:.:,i 6 7 ot The first coordinate (rows) is specified.

1
1::-...,
,'OJ
',:.' 1

:I.
I::'
... .1

D :I. "

"j.'

... :)

...)
i

:I.

::5
)'

:t.

:I.

:I.

01.0./[2::1:0

o :I. 0/:0

....... ---The second coordinate (columns) is specified.

~ I f no index entry is specified, the last
coordinate (columns) is acted on.

EXPANDING A VECTOR OR MATRIX OJ
You can use the expand \ function to insert blanks or zeros in a
vector or matrix. The left argument must be a vec:tor of all 1's or D's or
an expression that results in such a vector. The number of 1's in the
left argument must be equal to the number of elements in the right
argument. The D's in the left argument indicate where the blanks or
zeros will be inserted; blanks are inserted in a character vector or matrix
and zeros are inserted in a numeric vector or matriix.

EXAMPLES:

:I. :I. 0 0 :I.
"

:I. '''i '7 '+ \ .. : .. ,;)

:I. r) 0 :?~ 0 1+

:I. :I. 0 :I. I] :I. \'" (1 :HC:: r I
(;.13 C· :0

When you expand a matrix, entire rows or columns of blanks or zeros
are inserted. As when using the compress function, you can specify the
coordinate (rows or columns) to be acted on by using an index value
[I]. The index value is 1 if the first coordinate (rows) is to be acted on
and 2 if the second coordinate (columns) is to be acted on. If no index
entry is specified, the last coordinate (columns) is acted on.

EXAMPLES:

,-:;--------The left argument must contain a 1 for each
row or column being acted on. That is, the
number of ones in the left argument must be
equal to the coordinate being acted on (for
example, the number of rows or columns).

'--------Insert columns.

'-------- I nsert rows.

If no index entry is specified, the last
coordinate (columns) is acted on.

Problems: Using the Compress and Expand Functions

1. Define a vector called ACCTS containing these five accounts: 56
103 100 13 O. Select those with balances of $100 or
more.

2. Define the matrix DATA.:-3 3 p 19. Then insert a row in
DATA, with the values 20, 21, and 22, after the first row.

Possible Solutions

Problem 1:

(iCCT~:)·~··~.:":.i6 lO~::~, 00:1.30
(t~ C C T ~::) ~:: 1 0 (J) / {\ f": C T S

:1.03 100

APL Functions That Require Two Arguments 49

50

Problem 2:

:1.

'+
'7 ,

'1
~ ... : ..
I::'
,J

B

:3
6
9

D (:'1 T i:~1 C; •• :3 :3 (.) 'I. (i
DATA

DATA~l 0 1 l\[lJDATA
0;:) T (i

1 ")
.... :. :3

() 0 o
'.j.

1::'
,_I

{ B
"',")
/',; : ..

1
20 '") :I. ")'")

,,: : : ..
1.1· ,::. I.)1

t' B ')

JOINING TWO ITEMS TOGETHER 0
You use the catenate function (,) to join two vectors together to make
a single vector by placing a comma between the left and right arguments.
The number of elements in the resulting vector is the sum of the number
of elements in the two vectors being joined (catenated).

EXAMPLES:

1 r\ "T
A:. -:>

'I-
,::.
,.I ':~I

(~I ~ .. :I. r\ 3 A':.

B~··I.J· r.~
••• J 6

el I B

'+ ~:.=.; (;

[: .. (1

:I. :::.~ "r. d

c~·· ' C(.:iT '
D~- ' EN '
E ~ .. ' I~~ T I [I N '
C.' :0 .. E

CI~'~ITENI~I T I ON

I~~I I C
DnMI~~IIN [I~I~()R-·--­

(.~I .. C
A vector must be either all numbers or all
characters; themfore, you cannot catenate
character data to numeric data.

You also use the catenate function to join two matrices together. To do
this, you can use an index value [I] to specify which coordinate is to be
extended (that is, whether the number of rows or the number of columns
is to increase). The index value is 1 if the first coordinate (number of
rows) is to be extended and 2 if the second coordinate (number of columns)
is to be extended. When no coordinate is specified, the last coordinate
(columns) is acted on.

EXAMPLES:

1. r)
A"o.

3 '+
,::- 6 •••• 1
••• J
i B

:I. ;.:.~

3 '4·

:I. .OOj
,-: ..

:::~ q.

:1. ~~
:.:~ '4·
,:: .
• J 6
••• J

B i

~.:.=;

"{I

A~··':> r) .,.'+ ,: .. (.)

B~- ~.~ 2(.)'++ \.'+
I~

B

'\ I"i .. [2::1B I ---- You have just joined two columns to two

6
B

existing columns (increased the number of
columns).

i:~) B
~:.:jb~
...., B When no coordinate is specified, the last

A, I: 1.]n~ coordinate (columns) is acted on.

In this case, you have joined two rows to ~wo
existing rows (increased the number of rows).

When you catenate two matrices, the arguments must conform-that is,
the lengths of the columns (number of rows) must be the same if the
columns are to be catenated and the length of the rows (number of
columns) must be the same if the rows are being catenated.

APL Functions That Require Two Arguments 51

52

EXAMPLES:

1~~"2 2 ~)LJ·
(.~

'+ 1+

'+ I.!.
c~·· ::.~ 3(:)6
C

6 (j 6
6 J (~) C)

Fl/l::lJC
I... ENG THE F~ I~ () I~ _'II ---The length error was caused because the row

I~~I J I:: 1.::1 C coordinate was specified when A and C have rows
of different lengths.

A { t---:--+---:--t.

C { ~-:--I---:-.....f...--:---t
(~" I:: :.:::::1 C _01-_- Note that the matrices can be joined along the

I~. 1+ /J /,) I.> column coordinate, since the lengths of the
1+ 1+ 6 6 /; columns are the same.

Building a Vector of Results Using Catenation

Suppose that as you work through a series of problems you want to
accumulate the answers. One way to do this is to catenate each new
result to a vector of results previously obtained. If the most recent
result is in a variable called LATEST and all the former results are in a
vector called R ESU L T, you could use the following instruction:

RESULT+- RESUL T,LATEST

Note: The first time this instruction is executed, there is no value for
R ESU L T. Therefore, before you use this instruction, you should enter
the following instruction:

RESULT+-10

This instruction gives R ESU L T an initial value (makes it an empty
vector).

EXAMPLES:

I...ATEBT ~ .. :I. () +~5

RESULT~RESULTJLATEST
V I~~ L U E E ~< I~ (J I~ ... -----------R ESU L T does not have a

:1. ~5

I~E~:)l.JI...T~ .. I~ESUI...T 1 1 ... I~~TEG .. r value; therefore, it is not a
variable and cannot be used
in an instruction.

I~EBULT~" .~ I) -

F<ESUI...T

RESUI...·"j' <:"I~ESUL. T .' L(4 TEST

Give RESULT an initial
value (empty vector).

Blank display.

I~ESUI .. ,T .. 1---------- Now RESULT can be used.

I... i:~ T E ~::) T .~ .. :I. !.:.;; + :I. 0
RESULT~RESULTJI...ATEST

I~E~)ULT

Problem: Using the Catenate Function

Assign codes to variables as follows: A-<-'I', B-<-'T', C-<-'D', D+-'R', E-<-'GH',
F-<-'YO', G+-' ',and H-< 'U'. Then see what message is displayed if you
catenate the variables in the following sequence:

FHGCACGABGDAEB

APL Functions That Require Two Arguments 53

54

Possible Solution

A~- ' I '
Of" T'
C~ .. ' II'
D~" ' I~ ,
E ~- ' GH '
Ft·' YO'
G~ .. ' ,

Hf-'U'
F,H,G,C,A,C,G,A,B,G,D,A,E,B

YOU DID IT RIGHT

FINDING THE LOGARITHM OF A NUMBER m Q
You use the logarithm ~ function to find the log of the right argument to
the base specified by the left argument. The log of a number B to a base
A is the power needed to raise A to the value B.

EXAMPLES:

B

(.~1~··2

B~"I~')('3

H

t'1(~)B -"---The log of B to the base A.

Problem: Using the Logarithm Function

1. What is the logarithm of 256 to the base 27

2. To what power must 10 be raised in order for it to equal 1000007

Possible Solutions

Problem 1:

B

Problem 2:

10(+>:1.00000

APL Functions That Require Two Arguments 55

Chapter 5. Applying the Same Function to all the Elements of a Vector
Collectively (Reduction)

56

It is often useful to have the sum (or the product, or the maximum, for
example) of all the elements in a vector. APL has a simple procedure for
applying the same function to all the elements of a vector collectively.
This function is called reduction, because it reduces a numeric vector
down to a single number that represents the sum, the product, or the
maximum, for example. The reduction operator is /. The left argument
is the function that is applied to all the elements in a vector; the vector
is the right argument.

You may have noticed that the reduction operator and the compress
function have the same symbol. However, you can tell the difference
between the compress function and the reduction operator by the left
argument. For the compress function, the left argument is a vector of
1's and D's and for the reduction operator, the left argument is an APL
built-in function.

PLUS REDUCTION

EXAMPLES:

:I. ~.:;

1 ,::'
.. J

(.~I ~ .. :I. ;? :·s 1+ ~:.:.;

+/ i~~

:I. ·t·:?+3+1++~:.:;-.---Adding all the elements of A together is the
same as +/A .

Using Plus Reduction To Find the Average

The reduction operator is useful for finding the average of the elements
in a vector. Suppose vector X is as follows:

The following expression could be used to find the average of the
elements in X:

i:~ V G ~ .. (+ / X) -;. (.) :x:
(:;VG

Now let's analyze the previous expression.

1. We find the number of elements in X (the length of X):

2. Then we calculate the sum of the elements in X:

+ .. /)(

3. Now we can find the average by dividing 16.5 by 6:

..... '" 1::'
,,':.. (._J

(.~l V (,(-- :I. l-" ~_:j.:. 6
(:IVG

Reduction 57

58

Problems: Using Plus Reduction

1. Using reduction, find the average amount that a certain family
spends each week on food. The weekly urocery bills 'for November
were $31.05, $29.78, $25.44, and $35.98.

2. Temperatures of a laboratory solution were recorded over a
12-hour period:

6 AM 75.8°
7 AM 71.9°
8 AM 77.0°
9 AM 80.3°

10 AM 85.1°
11 AM 82.2°
12 Noon 83.2°

1 PM 84.9°
2 PM 85.3°
3 PM 85.0°
4 PM 82.5°
5 PM 80.9°
6 PM 78.4°

Find the average temperature.

Possible Solutions

Problem 1:

BILLS~31,05 29,78 25.~~ 35,98

I~'~ V G ~ .. (-+- / f.-: I I... L S) .~. (.> B I 1...1... S

Problem 2:

TEMP~75,8 71,9 77,080,3 85.1 82,2 83,2 8~.9 85.3 85,0 82,
~::j B 0 . 9 7 B , 1+
(.~ V G~" (+ / l F t1 P) .. ;. j:> T E M P

AVG

Using Plus Reduction to Sum the Products of Two Vectors

Suppose that PR ICE is a variable that contains the price list for various
items sold by a store, and 01 and 02 are two vectors indicating the
quantity of these items ordered by two customers. Then the total bi II
for customer 1 is the sum of the product of P RICE times 01, and the
total bill for customer 2 is the sum of the product of P RICE times 02.

EXAMPLES:

PRICE~.66 1.~0 27.10 2.39 l~.OO 7.60 8.~5 2.80
Q1~O 0 2 1 0 0 0 0
Q2~12 7 0 5 0 0 0 10
+/(~1 x PI~ICE

+/(~2x PI~ICE

MINUS REDUCTION (ALTERNATING SUM)

EXAMPLES:

''''')
,,: ..

'-") ,.

I~~ f· :·s 2 1 I~.

"-/A

3 2·_·:1. ,+ ... --- fA is the same as this expression.

The following illustration shows why the answer is -2.

Direction of processing is from right to left.

3 - 2 - 1 - 4 -.----First operation (subtract 4 from 1; the result is -3).
'-v-'"

2V- -31-_ Second operation (subtract -3 from 2; the result
is 5).

2 + 3
~

3 - 5 _.----- Third operation (subtract 5 from 3; the final result
~ is-2).

1-21 ------- Result.

Reduction 59

60

MAXIMUM REDUCTION: FINDING THE LARGE:ST VALUE IN A VECTOR

To select the largest single element in a vector, you can reduce the
vector using the maximum r function.

EXAMPLES:

:1.27

BAI...DUE~"62, :1.~:5 :1.27 1+ ,1+2 10, C)!.::; -'--Amountowed
r IBf.)l..DUE by all the

custor:ners of a
store.

----- Largest amount
owed.

MINIMUM REDUCTION: FINDING THE SMALL.EST VALUE IN A VECTOR

To select the smallest single element in a vector, you can reduce the
vector using the minimum l function.

EXAMPLES:

"'j'" .,
NUMBER~l 16 ~ 7 -9
I../NUMBEI<

OR REDUCTION: CHECKING FOR A SPECIFIC VALUE IN A VECTOR

Suppose you want to know whether a certain value exists in a long
vector. You could use Or reduction (v) to find the answer.

EXAMPLES:

o

t'----- Generate a vector of 50 random numbers.

NUMBE RB~-5 O? 1. 00
v INUMBE I~B::::B

The result of NUMBERS=8 is a vector
consisting of a a for each element of
NUMBERS that does not equal 8 and a
1 for any element that does equal 8.

When the vector (result of NUMBERS=8)
is reduced (the Or function is placed
between each element), the result is 1 if
at least one of the elements was 1.

A displayed result of 1 indicates that the
value 8 was in NUMBERS and a a
indicates that it was not.

AND REDUCTION: CHECKING FOR ALL VALUES IN TWO VECTORS
BEING EQUAL

You can use And reduction (,,)to determine whether corresponding
elements of two vectors are equal.

EXAMPLES:

/

TWO vectors
that have the

(.... ~ f ' " , .. " .. , , '~ '\'~ , ,") .. " ' , 1'\ , , , .. 1,1::,) '.L ,0.1. .I. I (6,~ .I. I ~:,bt .I. I ,,~,\~+6 .I. I ",:,,:,~ (,:,~ same number
I...OCI{ ~<1. I 01 :L I 7 6~f) :1. I B98 :I. 1231+6 :I. 122'('2 of elements.
A/I< EY::::I...DCI{

o ~.-- At least one of
the elements of
KEY does not
match the
corresponding
element of
LOCK.

Reduction 61

Chapter 6. Using the Built-in Functions

62

This chapter contains a summary of the things you can do with the AP L
built-in functions. Some of the functions have already been discussed
in the previous chapters and all of the functions are described in the IBM
5110 APL Reference Manual, SA21-9303. Also, there is an example
included for each function; you should enter these examples on your
5110 to see how these functions work.

Note: Many of these functions provide specia~ computational capabilities.

NOW LET'S LOOK AT THE THINGS YOU CAN DO

Things You Can Do Function Name Keys

APL Functions That Require One Argument (see Chapter 3
for more information)

• Determine the next larger whole
number

Ceiling

r '+ . (:.B 6 .. _----If the number is already a whole number,
the same number is the result.

• Determine the next smaller whole
number

Floor IT)
1,,4, . 6B ~,:,:: .. ·----If the number is already a whole number,

the same number is the result.

• Sort a string of numbers in
ascending order

Gracie up

I::' ",
"J ',:)

:I. ::?

:I.

")'

~J

(t)t,i"3 '7 :~,:: ~ Indices of A in ascending order

:2 1+-------
,~I:: it.(~d >4 Sorts A using the indices

"1 'i

Things You Can Do

• Sort a string of numbers in
descend i ng order

tpA~<5 ""1 9

I." 2 :I, :3 I'" ,:'-

Function Name

Grade down

_Indices of A in descending order

Al::tpA::t I -------Sorts A using the indices
(» "1 ~~ '') .. " .. 1

• Generate a random number Roll

?6

Keys

GJITJ

~':~ ~I------------The result can be any number between
1 and 6,

• Generate a consecutive string of
numbers

\ ~5

I ndex generator

1 2 :'5 1+ ~:5 ~.------- Generates a string of five consecutive
numbers,

• Determine the length of a string
or the number of rows and
columns in a table

Shape

~ __ :(J:A~ _____ --- Length of the string named A
~:5 --

(J MAT I~ I X ~ .. 2 3 (.> \ f.) - Creates a table and finds its shape in the

l same instruction (the number of rows and
columns)

Reshape function (discussed in Chapter 2)
1. ::,:: :3
1+ !:,:j 6

Shape function

Using the Built-In Functions 63

64

Things You Can Do Function Name Keys

APL Functions That Require Two Arguments (see Chapter 4
for more information)

The result from the following six functions is 1 if the relationship
specified by the APL function is true; otherwise the result is O.

• Determine whether two values
are equal

33::::33
1

• Determine whether the left
argu ment is greater than the
right argu ment

:1.6>7
:I.

• Determine whether the left
argument is less than the right
argument

3<1+
1

• Determine whether the left
argument is greater than or equal
to the right argument

:I. :I.

• Determine whether the left
argument is less than or equal to
the right argu ment

1 :I.

• Determine whether two values
are not equal

:I. (I

Equal to

Greater than

Less than

Greater than or
equal to

Less than or
equal to

Not equal to

Things You Can Do Function Name

The following two logical functions are usually used to check
the results from relational operations. Logical functions can
use only 1 's and O'S as arguments. The result is 1 when the
condition being checked for is met; otherwise, the result is O.

• Determine whether two conditions
are true

1. (I

• Determine whether at least one
of two conditions is true

lv:l. 0
:I. :I.

• Find the larger of two numbers

,::

• Find the smaller of two numbers

~51 .. 1+
1.1·

• Find the index of a given value
in a vector

And

Or

Maximum

Minimum

Index of

Keys

OJ
3 ~I------------The right argument is found in the third

position of the left argument, which is a

vector.

• Generate a specific number of
different random numbers

Deal

::.:: :-5 :I. _---------Can be any three different numbers
between 1 and 6

Using the Built-In Functions 65

66

Things You Can Do

• Compress (select certain elements
from) a vector or matrix

1. 0 0 :I. 12 :3 1+ ~:;

Function Name Keys

Compress CD
---, 1::-
.. ':. ,.J 4 • Selects the elements that correspond to

the ones in the left argument

• Expand a vector or matrix Expand

:I. 0 :I. 0 :I. 0 :I. 0\2 3 4 5
::.:: 0 :':~ 0 1·1· () ~::j () ---------Inserts elements according to the zeros

• Join two arguments together

, C i:~' T . .. I F N ' .. ',~~,'r ION ·
C,~~TEN'~IT ION

• Find the log of a number

in the left argument

Catenate

Logalrithm

2(t)B ~.------- Log of 8 to the base 2
.. ,
-.:)

APL Functions In Addition To The Ones Already Discussed In
Previous Chapters (see the IBM 5110 APL Reference Manual,
SA21-9303, for more information)

• Change the sign of a number Negation []
····3 '.'q.

"·3 1+

• Find the sign of a number Signum

... t 0 :I. --------- The result is "1 for a negative number,
o for 0, and 1 for a positive number.

5 Find the reciprocal of a number Reciprocal

0.33333

Things You Can Do

• Raise e (2.71828) to a power

·~:I. :.~

2, 7:1.B::~ 20. OBb

• Find the log of a number to the
base e

m2.7:1.B3 :?O.OB6

• MUltiply a number by pi
(3.14159)

0:1. 3
3. :l.1.~:l.6 9, I+::.~I+B

• Find the product of all whole
numbers between 1 and a
specified number

! 1+

Function Name Keys

Exponential o
Natural log GJO

Pi times

Factorial CJO

~? q .• f----------- The result is the same as 1 x2x3x4.

• Change a 1 to a a or a a to a 1

Nt 0
o :I.

• Determine whether at least one
of two conditions is false

Logical not

Nand CDQ
o 1

:I. ~:I. I) ~.------ The result is 1 when at least one argument
is 0; otherwise the result is O.

• Determine whether two conditions
are false

Nor [DGJ
o (I

:I. C::I. I) ~.------ The result is 1 when both arguments are 0;
otherwise the result is O.

Using the Built-In Functions 67

68

Things You Can Do

• Change a scalar or matrix into a
vector

:I. "')
~.: ..

1+ 1::-
... 1

:3
I.>

M I~ T r{ I X ~" 2 :'5 p \ b
t'11~T I~ I X

1 t11~TRIX

Function Name

Ravel

:I. 2 :,3 1+ ~.) 6 ~I------ The result is a vector.

• Execute a character string as an
AP L expression

• Convert numeric data into
character data

Execute

Format

Keys

o

[JITJ

CJCIJ
1~1~"l" 21+ ... ------ How to use this function with two arguments
(~I is discussed in the IBM 5110 APL Reference

Manual, SA21-9303.

This is a character value.

A is a two-element (character) vector.

• Find the value of a number
without regard to the sign of
the number

I ~,:,:,i3 "'1+6

• Invert a square matrix or compute
the pseudo-inverse of a rectangu­
lar matrix

I~II~~I ~ .. 2 ? (.> 1.
"'0 . B7~5
o . 62~:,:j

3 !,:.:; 7
o .37!:,:;

"'0 • l2!,:,:j

• Reverse the elements in a vector
or matrix

(~ . I... IVE .
EVIL

Absolute value CD

Matrix inverse

Reverse CDGJ

Things You Can Do

• Find the remainder left over from
a divide operation

Function Name Keys

Residue (remainder)

2 ... 1--------.,...----- 2 is the remainder of 8 divided by 3.

• Find the values for the trigono­
metric functions of an angle

Circular

:3~The left argument specifies the trigonometric
:1. function (in this case, tangent).

The result is the tangent of 45° (1T .. 4 radians).

• Find the number of combinations
of a number taking so many at a
time

Binomial
(combination) GJCJ

I.> ... 1------------ Four items taken two at a time can make
six different combinations.

• Find out if a certain value (left
argument) exists in a vector or
matrix

Membership

I ~~BC I € I Hl~NANA '-The result is 1 if the value in the left argument

:1. :I. 0 exists in the right argument; otherwise the
result is O.

• Express a value in another
number system

~::jq·:I.!5 -. .. -----------

• Represent a value in a specified
number system

21+ 6 0 6 0 T ~7i 1+ :J. 5

Decode (base value)

Expresses 1 hour 30 minutes 15 seconds
in all seconds

Encode
(representation)

:1. 30 :I.~) -------- Represents 5415 seconds in hours, minutes,
and seconds

Using the Built-In Functions 69

70

Things You Can Do

• Solve one or more sets of linear
equations with coefficient
matrices

1 :I.

• Take a certain number of elements
from a vector or matrix

',3 t {:i~,.:t :? :-3 1+ !5

Function Name Keys

Matrix divide

Take

J ::? :',~ ... ---------- These three elements were taken from the
vector.

• Drop a certain number of elements
from a vector or matrix

Drop

1.,_ ~~:; ... ----------- The result is the elements remaining after

• Join two arguments together by
forming an array with an

the specifiE!d number of elements have
been dropped.

Laminate o
additional dimension

/ Join along a nE~W first dimension.

1 ? 3 4 5![.5J6 789 0
J 2 3 1.1- ~:_:_; ... -----------, Two vectors are joined to form a matrix.

• Rotate the elements in a vector
or matrix as specified by the
left argument

:-, (I) J ~: .. : 3 1+ ~.:.:j

.S 1+ ~::.; :I. ~,:~ .. 1-------

Rotate GJITJ

Rotates the vector two positions

Things You Can Do

• Create data arrangements with at
least one dimension (a data
arrangement with two dimensions
has both rows and columns)

Function Name Keys

Reshape

Each number in the left argument is called ~
i:~"~: I:Ui·.,o'~ .. 2 ~':~ :-5 (oi .~ :I. B a coordinate-this N-rank array has three

:I. . ")
I: ..

I.!. I::'
... • .t

'7 B

''''I~.I;AY [t coordinates .
,:>
6 Last coordinate is the columns.

:1.0 :1.:1.

Next to the last coordinate specifies rows.

'-------- Leftmost coordinate is the planes.

:I. 3 :1.'+ :I. ~s -----Planes
:1.6:1.7:1.0 ~

I~':'d~: 1:~:i:'1 y [::? ; :::) ; :I. ::I You can index elements within N-rank arrays
by putting a semicolon between coordinates. :1.6

• Interchange coordinates (such as
rows and columns of a matrix)
of an array

Transpose or
general ized
transpose

(TID
t"~(1 F~ I~I~ Y ------ When used with one argument, this function

:I. :1.0 reverses the coordinates.
1+ :I. ::::)
'/ J.::'}

'''j :I. :I.
I::'
,,} :I. q.

B 1 ":1
t

:3 :l
....•
~:.:

{:i :I. t::·
.. J

<? 1 B

Note: This function could also be used with
a left argument that specifies how the
coordinates are to be interchanged.

Using the Built-In Functions 71

72

Things You Can Do Operator Name Keys

APL Operators

An APL operator applies certain built-in functions to all the
elements of a vector or matrix. The reduction operator has
already been discussed in Chapter 5.

• Apply the same function
collectively to all the elements
of a vector

Reduction []

+/ 1 r) :.~ 1+ I:'
.A J

:I. I::' I -------------The sum 01f the elements

r ,l :::~ ::.~ 6 77 :1.9 2
""j"'1
, I -------------The largest element •

I.. /32 (:':. 7'l :I. I:.'Y" :?
::.~ ------------- The smallest element I

• Apply the same function
cumulatively to each element
of a vector (the result of each
operation is used in the next
operation)

Scan []

+\:1. 2 :::~; 1+
:I. 3 6 10

:I.
:I.

:1.+2

1 +)+:::S+I+

:1.0

The scan function works the same as if you
entered these instructions. Remember, the
individual functions are executed from right
to left.

• Generate operation tables for
various AP L functions and data

Outer product

(.:, ~ .. :I. ~.~: :3 1+
(1 -!; X (,

1 r\ :::s I.~ :.

DC]

:.:.:: 1.1· 6 n _---- A multiplication table of numbers

:':~ 6 n :I.
,n"

. ? ,. .•.. 1 through 4

'+ B :I. ."\ 1 6 .. ::.

Things You Can Do

• Find the matrix product of two
matrices

,~ t·· 2 ;.:.~ f> :I. ::.:~ 3 '-I.
B~"2 2(:> ~; 6 ""1 B
f~+. xB

Operator Name Keys

Inner product

1. <? :~:.~ 2 _ _------- The matrix product of matrices A and B
1+ ~'5 ~:.:; 0

• Table look-up I nner product

JOHN
J(.~INE

JtlCI<
I<A'rE

A~~ 4p'JOHNJANEJACKKATE'
(~l

, . ..JOHN ' .". , ::::N(.~I
:I. 0 0 0 -------- John is the first name in the table.

, J f~1 C I< ' /\ , :::: t.~ (.~I
I) I) :I. O~.-------- Jack is the third name in the table.

Using the Built-In Functions 73

Chapter 7. Function Definition

74

WHAT IS FUNCTION DEFINITION?

Although APL has many built-in functions, there will be times when
you want a special function to solve a problem. APL allows you to
define your own functions (called user-defined functions) and store
them for repeated use.

HOW IS A FUNCTION DEFINED? GJ
You use existing APL functions to create a new user-defined function.
The new function consists of:

• A function header containing the name of tlhe function and other
information (the types of function headers are discussed later in
this chapter) .

• An expression or series of expressions, called statements, which define
the operation(s) to be performed.

When executing APL expressions, the IBM 51110 is in execution mode;
however, before a new function can be defined, the mode must be
changed to function definition mode. The IJ (del) symbol is used to
change the 5110 from one mode to another. For example, to change
from execution mode to function definition mode, a IJ is entered as the
first character in the function header; then after the function is defined,
another 'V is entered to close the function defiinition and change the
mode back to execution mode. Once the 5110 is back in execution
mode, you can execute your user-defined function.

Now, to show how a function is defined, let's create a function to find
the hypotenuse of a right triangle. The expression used for this could
be written as ((A *2)+(B *2)) * .5, where we square the lengths of the two
sides A and B and then take the square root of their sum, which is the
length of the hypotenuse. The function must have a name by which it
can be identified, so let's name this function HYP. Now enter the
opening v (to place the 5110 in function definition mode) and the
function header, as follows:

VHP~-('l HYP B - Function header.
I:: 1:] ~~ _____ ~.

- APL responds with the number of the first
statement (expression) to be entered.

As each statement is entered, the next statement number is displayed.
Now enter the remainder of the function as follows:

H p~ .. ((A~(·2)'" (B~·2)).)f • ~~ -.,---- Expression V----____________ _
Closing 'V - Changes mode back
to execution mode.

Notice that the names in the function header (other than the function
name itself) are all used in the body of the function. In particular,
notice how the result variable name, HP, is assigned the final result by a
statement in the function.

The display screen will now look like this:

VHP~-(:) HYP H
I:: :1.::1 H P ~ .. ((A +(. 2) + (:B 1(. 2))~. . ~j
[2J V

Note: If you make a mistake when entering this function, see What To Do
If You Make a Mistake When Defining Your Function later in this chapter.

When you entered the closing 'V, the function HYP was stored in your
active workspace, so you can use it just like any other APL function
with two arguments.

EXAMPLE:

Lengths of the two sides.

~j ... ---------- Length of the hypotenuse.

:LO

5 10

X~··6

YE··B
X HYP

I~ E··:3 c)
I...~ .. I+ B
f.~ HYP

y

L > like other APL functions, the arguments can be
in different forms.

Whenever you want to use HYP, just enter its name with the arguments
you want. The symbol for the calculation of the hypotenuse of a
right triangle is HYP, just as the symbol for addition is +.

Function Definition 75

76

A function can have only one instruction, like HYP, or it can contain
many instructions.

EXAMPLE:

V'HPE-I-'='i HYPL.. B - The function HYP could also have been
I: :L::I (~2~"(~')(-2 defined like this.
I:: 2::1 B2E" B')('2
I: 3] S E·· A 2 + B 2
I:: 1+:1 H P~"B;;(' . ~.:iV -

::~ HYPI ... 1.1.

- Note that the closing \j can also be on the
same line as the last instruction.

~; ... ------------ Same result as HYP.

Problems: Using Function Definition

1. Define a function that displays the sum of any two numbers.
Then use the function.

2. Define a function that displays the area of any rectangle.
Then use the function.

Possible Solutions

Problem 1:

\/G~"i'1 ~:)UM N
[:1.::1 S~ .. r·1+NV'

.:':'~ ~:) U t1 :-3

Problem 2:

\7 (.:) E .. L.. E N C; T H A I~ E t-, WID T H
[:1.::1 f~~"I...ENGTH x fl..! I nTH
[2] v

20

TESTING YOUR FUNCTION BEFORE USING IT

Once you define your function, you should always try using it with
data that will give you a known result. For example, suppose that in
the function HYP you used the following expression by mistake:

r---- Shou Id have been *
. , A ,..) (Y.' "))) t " .. (", .. ,.)(- ,:.~ + 13 .)(. ,:.. . X. ,,)

You would get an answer, but it would not be the right answer for the
hypotenuse of a right triangle.

When you test your function, one of the following will occur:

• The 5110 will display the result you expect.

• The 5110 will display an error message.

• The 5110 will display a result, but not the result you expect.

• Nothing will happen.

If the 51iO Displays the Result You Expect

Great! Your function works.

Note: Even though your function worked one time, you may want to
test it some more to make sure it will work for each application you
intend to use it for.

I f the 5110 Displays an Error Message

You can use the IBM 5110 APL Reference Manual, SA21-9303, to find
out what the error message means and what you must do to correct it.

Note: An error condition will cause the execution of your function to
stop; see Chapter 8 for more information on what to do when your
function stops execut,ing.

If the 5110 Displays a Result Other Than the One You Expect, or

If Nothing Happens

In either of these cases, you have two alternatives:

• Display the entire function and check it for errors. Displaying the
Entire Function is discussed later in this chapter.

• Use the trace and stop features (discussed next) to help find the
problem.

Note: When a user-defined function is used and nothing happens
(that is, neither result nor the cursor appears on the display screen)
or a result is repeated continuously, the function is probably
looping. In this case, press the ATTN key to stop (suspend) function
execution. Chapter 8 contains information on what to do when your
function stops.

Function Definition 77

78

HOW TO USE THE TRACE AND STOP FEATURES CD W ww
Trace T fj

The trace feature allows you to watch the execution of your function,
statement by statement. That is, the final resul!t calculated for each
statement traced is displayed. You can either trace all of the statements
or just certain statements in a function. To use the trace feature,
enter T f:.. , the function name, +- , and the statement numbers to be
traced. For example:

T IJ.EXAM PL.E ~ .. :t. 2 :3 '+ ~:.) 6
~~ l LThe statement numbers to be traced

The name of the function to be traced

The previous statement could also be entered as follows:

T/\EX(:ii"1PI...E~·· \ 6

t
Generates a vector of numbers from 1 to 6

Stop Sf:..

The stop feature allows you to stop the execution of your function just
before a specified statement is executed. That is, function execution
is temporarily suspended (suspended functions will be discussed in greater
detail in Chapter 8). After function execution has stopped, the 5110
displays the number of the next statement to be executed. To use the
stop feature, enter SA, the function name, ~-, and the numbers of the
statements before which function execution is to stop. For example:

~:) {~, F X f~1 ,,,\ P I... E ~ .. 3 t:\
"--~ \

r The specified statement numbers

The name of the function

After function execution has stopped, you can start it again by entering
-+0 LC. 0 LC (line counter) is a system variable that contains the next
statement number to be executed; see Chapter 9 for more information
about system variables, and the IBM 5110 APL Reference Manual,
SA21-9303, for a complete description of the 0 LC system variable.

Now let's use trace and stop to find a problem in a function.

EXAMPLES:

VHP~MA HYPX B
[:I. ;] 'THE HY POTENUSE I B ' -Defines a function that calculates the
[2] A::.~~-A*2 hypotenuse of a right triangle.

[3::1 B2~-B*'2
I: 4] This function has an error in it.
[5]

Tests the function using data for which
3 HY PX LI. -------- the correct result is known. The result

THE HYPOTENUSE :r.s should be 5.
:L 2\, ~5

Using the trace feature to find the problem

T f.!. H Y P X ~ .. 2 ~~ '+ ~5
:3 HYPX 4·

THE HYPOTENUSE
The 5110 responds with the function
name, statement number, and the result
of the statement being traced. HYPXI::2] (.»

HYPXI::3] :1.6
HYPX['+] ':>'::j ~ The correct result was obtained in each
H Y P X I:: ~) ::I ;: ::.~ • !:5 statement except statement 5; therefore,
:L 2 . !:.) statement 5 probably contains the error.

Tb.HYPX~·."\ 0 -------To turn off the trace feature, use to as
the statement to be traced.

Using the stop feature to find the problem

3 HYPX '+
THE HYPOTENUSE IS

.....
_----------- The 5110 responds with the function

H Y P X ['-1.::1 name and the next statement number

9
,,") to be executed.

(-I ... · .. ====---====-=-
B2 -------------- When the function is stopped, you can

enter the variables to see if they con­
tain the expected values.

··~·nl .. ,c ---------- Continue execution by entering +DLC.

H'r' P X I:: !:'=;::I ------------- Execution stops at the next statement
specified for the stop feature.

"~[JL.C

Sb,HY PX ~ .. \ 0 _

All the variables contained the correct
values; therefore, statement 5 must be
in error.

- To turn off the stop feature, use 10 as
the statement to be stopped at.

Note: How to correct an error in a
function is discussed next.

Function Definition 79

80

WHAT TO DO IF YOU MAKE A MISTAKE WHENI DEFINING
YOUR FUNCTION

If you make a mistake when defining your function, you can correct it
by editing the function. When editing a function, you can do the
following:

• Display the entire function.

• Add one or more statements at the end of the function.

• Replace statements.

• I nsert one or more statements.

• Delete a statement from the function.

• Display a specific statement or from a specific statement to the end
of the function.

• Modify a single statement.

If you notice your mistake as you are defining your function, you can
correct it without reopening the function definition (the 5110 is already
in function definition mode). However, if the function definition is
closed, you must first reopen it. To do this, you must enter the 'V

followed only by the function name. If you enter the complete function
header, you will get an error message.

Now, let's define a function to use in doing some function editing.
Enter the following:

"i ~::; T (.) T X
I:: :I. J N ~ .. I~))(

[)J (+/X:; ··:··N
[: .. :~] I../X
['-I . .'] r .,/ >< \;.'

This function calculates the average, smallest, and largest number in a
vector of numbers. Notice that this function does not have a result
variable in the function header; however, it wiill still display the results.
The reason for having a result variable in your function will be
discussed later.

Displaying the Entire Function OJ W CIJ
To display a function, you enter [0] immediately after any statement
number or as shown in the following example.

EXAMPLE:

t:::l.J
[2::1
[3]

1: 1+]

'+
:I.
9

This instruction opens, displays, and closes
rr-------------II I I
; ~ t..-------------"
'\I~:>T(.~Tt::U:·IV

V STAT X
Nt··(.)(

(+.lX)-:-·N

the function definition.

- Displayed function.

L.lX
fiX / Try the function.

2 <1 :I.

Function Definition 81

82

Adding One or More Statements at the End of the IFunction

To add statements to a function, you open thl~ function definition and
the number of the first available line is displayed. Then you can enter
the statements you want to add.

EXAMPLE:

[~:.;]

L1J
r: :;:.~ ::I
[:3]

1::!4]
['.:.:.;]

q.

1
9
D
\

The 5110 displays the number of the first
available line.

v S T (.~ T • Open the function.
(j"/X)·· .. I/XV

.. ------- Add this statement to find the range of the
numbers in the vector. The 'iJ closes the function
(you are only adding one line).

V~:)T td' I:: [1::1 \7- Display the function.
V ST':~T)(

N~"()X

(+/X) .. : .. N

I../X
f/X
<I"/X) I../X

- Displayed function.

ST()T <j> 2 1 -Try the function.

Replacing Statements within a Function

To replace statements, the statement number to be replaced must be
enclosed in brackets [] followed by the new statement.

EXAMPLE:

[:I.]

[2]
[3]

r: I.~]
I:: ~7j::l

VSTAT [IJ] 1t-----This instruction opens and displays the
'\I S TAT X function.

N~-,~)X

(+/X) ·:··N
I .. /X
r/x
<r/X)····L/X

;--0---- Displayed function.

The 5110 displays the number of the first
available line.

I • .---------- Notice that you can specify another state-
[1.>] [2::1 < +/X) ·::'(.)X'\/ ment number by enclosing it in brackets.

VSTi~T[[]]\l
'\,1 ~3T(.:lT ''x'

'"
[:I.] N~··(.)X

[2] (+ I X) .:., (.i X
[3] I../X
1: 1+ :I r 'v / .'\

I:: ~.)] (r/X) .. ··I.../X
V

ST(~T <t 1

Now, replace statement 2 with this state­
ment for finding the average. The V closes
the function.
In this example, you could also use the scroll

down key. and scroll up key •

to place statement 2 on the input line 1. Then
statement 2 can be corrected; however, you
must make sure that statement 3 does not
appear on line 0 before you press EXECUTE,

I ----- Display the modified function.

.. Displayed function.

")
~: ..

Function Definition 83

84

Inserting One or More Statements in a Function

To insert statements in a function, you must use a decimal statement
number that is between the numbers of the statements where you want
to insert the new statement. For example, to insert a statement between
statements 1 and 2, you could use the statement number 1.5 or any
decimal number between 1 and 2.

EXAMPLE:

VbT (i'Y

1::1.6::1 V

Open the function.

/ The 5110 displays the number of the first

/~ blank line.

)(41 Insert a staternent between statements 1 and 2;
~ the inserted statement displays the vector of

"- ~ numbers.

If you do not enter 'iJ ,the 5110 responds
with another decimal statement number.

Enter the closing 'iJ.

v ~:) T (~ T I:: [] ::I \7 ---- Display the function . •
V ~)T (.1 T '/ l',

I"" 1 ::I N~" p:X:
I::~} J X
[3J (+/X) ":"eX '-.... _-- Notice that the 5110 has renumbered the --I:: 1+::1 L ./)(statement numbers.
I:: ~::;::I r ./\
[6] I, !'"/X) ····1 .. .IX

V

9 '~'. .1 ... ::

'+
:l
<)

n

Deleting a Statement from a Function CD
To delete a statement from a function, you enter [t... n] , where n is the
number of the statement you want to delete.

EXAMPLE:

V
[l]
[2]
[3]

1:: 1+ J
[~5 J
[6J

V

VSTAT[[]] • ----Open and display the function .

STAT X
N~··(.)X

X
< +/X) ":"pX ______ Displayed function.

I../X
f/X
</""/X)· .. ·L/X The 5110 displays the next available statement

number.

[7] I:: /),1+ J • --------Remove statement 4; you no longer need to

I:: ~5 J V

V
[l::l
I: :.~ J
[:3]

[1+ ::I
[~) J

V

29:1.
4·
9
B

know the smallest number.

Note: The closing V must not be entered on
the same line as [t... n]; you must enter it on
another line or an error will occur.

\'JBTAT[[]]V • ----Display the modified function .
STf:IT X
N~"pX

X
(+ / X) .: .. j:> X 7--_ Displayed function-the original line 4 was

r/x deleted and the statements were :-enumbered.
<I"'/X) L/X

STI:)T 2 9 1.

You can also delete a statement by displaying the statement on input
line 1, pressing the ATTN key (to blank the entire expression), and then
pressing EXECUTE. Displaying a specific statement is discussed next.

Function Definition 85

86

Displaying a Specific Statement or from a Specific Statement to the
End of a Function

You have already seen how to display the entiire function; you can also
display only one statement or each statement from a certain statement
to the end of the function. To display one statement, you enter [nO] ,
where n is the statement number you want to display. To display each
statement from a certain statement to the end of the function, you
enter [On] , where each statement from statement n to the end of the
function is to be displayed.

EXAMPLE:

Xl ~:) T f~ T I:: 3 [I ::I \/-""--- Display statement 3.
[3] (+/X)":"pX

[1+ ::I
I:: ~.:.:.i::l

Xl ~:) T (~T I:: n 1+ :1 V -'" --Display each statement from statement 4 to
r ./:x: the end of the function.
<r/X)····L/X

Modifying a Single Statement

You can correct keying errors in a statement of a function the same way
you correct keying errors made during entering of instructions in
execution mode. That is, the same procedures for inserting, deleting, or
replacing characters are used. To correct keying errors in function
definition mode, you must currently be entering the statement in error
or you must display the statement you want to correct.

EXAMPLE:

~--Open the function and display statement 2.
[2] -
[2 :] N ~------- Enter an N to replace the X in the displayed line.
[3] V (You now want to know the number of elements

in the vector.)

The 5110 responds with [3] ; now enter the closing \l.

VSTA1TI]]V - Display the function.
V STAT X

[:I.] N~"pX

[~!] N
[3::1 (... /X) .: .. (JX - N has replaced the X.
[lI·] rlX
[~5] . <r/X) .. ··l./X

'V

STAT 2 9 :L

Editing the Function Header

You can edit the function header the same way you would edit any
other statement in the function. To do this, you specify statement 0 as
the statement to be edited.

EXAMPLE:

[:I.]

[2J
[3]
[1.1.]

[5::1

VSTAT[O]STI~Tl X V.. The original function header is
VBTATl [[]]'\i' _________ replaced with this function header.

V STAT:!. X ~
N~(JX Display the function.
N
(-+- / X) .~ .. (.> X
['/X .
(r/X)·-L.lX

Note: Do not be concerned at th is
time if the error message SI
DAMAGE is displayed; this error
message and a suggested user response
is described in the IBM 5110 APL
Reference Manual, SA21-9303.

VBTAT[[]JV ------- You cannot display the function
II E F N E I~ R () I~ ST A T because the function no

VElAT longer has that name.
/\

Function Definition 87

88

A Faster Way to Add, Replace or Insert One Statement in a Function

If your function is closed and you have onlv one statement to add,
replace, or insert, you can do it using only one instruction. For
example, the following instruction opens, changes, and closes the
function defi nition:

Opens the STAT1 function.

Specifies that statement 3 is to be edited.

;

. Replaces the existing statement 3.

/ ,lOses the STAT! function.

V~3TtITl [3] <: +./X) ··:··NV

EXAMPLE:

VBTATl [IJ]V-·------- Display the STATl function.

V STATl X
[:1.] N~··(.)X

[2] N
[3] (+/X)":"(.>X
[J.~] I"/X
[~5 ::I (r / X) "-1.. I X

V

VSTAT1[6]'THIS STATEMENT WAS ADDED 'V -- Add a statement to the function.

:-5
'+
(.~

B

S T (~T:I. 2 9 :I. ------Now try the function.

THIS STATEMENT WAS ADDED

VS T (.) T 1. [3:1 (+ / X) '~'NV • Replace a statement.
V'STAT:I.1:3, 5]1 /XV
17STAT:I. r::D]'i1~ ----Insert a statement.

[1.]
[2]
[3]

V STAll X _______
N~"I~)X Display the modified function.

I:: '+:1
[5]
[f.) ::I
[7J

3
4·
:I.
Si
B

'v

N
(+/X) .. : .. N
1./X
I"/X
(l"lX)·· .. LlX
'THIS STATEMENT WAS ADDED

~:)T(~T:I. 2 ? :I.

TH I~; BT f.'iTEMENT WAS (:)DDED

Function Definition 89

90

TYPES OF FUNCTION HEADERS

Like the APL built-in functions, you can have user-defined functions
with one or two arguments. You can also have user-defined functions
without any arguments. The number of arguments required by a
function is defined in the function header. For example:

v RESULT +ARGUMENTl FUNCTIONNAME ARGUMENT2

4iS function requires two arguments.

v RESULT +FUNCTIONNAME ARGUMENT

4iS function requires one argument.

v RESULT +FUNCTIONNAME

~iS function requires no argument.

When a function is executed, the value used for an argument is assigned
to the variable name that appears as the argument in the function
header. This variable is then used in the function. For example, you
might have the following function:

\l R ~ .. (.~ II I V I II E B
I:: 1] I~ ~ .. (1 .. : .. B \l

If you enter 10 DIVIDE 2, the value 10 is assi!~ned to A and the value 2
is assigned to B. Now when the statement A+ B is executed, the result
is 5.

Note: For some user-defined functions (as with some built-in functions),
it is important that you enter the arguments in the proper order. For
example, if you enter 2 DIVIDE 10, the answer would be 0.2 instead of 5.

When you define a function with one argument, the argument must be
to the right of the function name; otherwise, the argument will be
treated as the function name, and vice versa.

EXAMPLES:

V I~~"A A r~EA 1 B~f---- Two arguments-this function finds
[1. J I~~"A X BV the area of a rectangle.

12 AI~EA:I. 12
l'+'·~

VI~~"SQRT X ~f------ One argument-this function finds
[1::1 R~' X ~(- I !::.i V the square root of a number.

f~t·, :1. q. 9 16 2~,:j :'56
n(~I~T A ~.-------- The argument can be a vector.

:L 23L~~:j6

VR~-DICE ~f------- No argument-this function simulates
[:1.::1 F~~"?6 6 the roll of two dice.
[2] 'i,l

DICE
1 r.~ ~ The results can be any pair of numbers

,.. DIe E between 1 and 6.

3 4-

WHY HAVE A RESULT VARIABLE?

So far in our discussion of user-defined functions, we have usually
defined functions with a result variable. A result variable is a variable in
which the result of a function is temporarily stored for use in an APL
expression. When your function has a result variable, it is said to have
an explicit result. Without an explicit result, your function cannot be
used in an APL expression.

The following function has a result variable; therefore, it has an explicit
result.

/Result Variable

VI~EbUI...Tt"(~TY ITEi'"iX C(]~:)T
1::1.::1 RE~:;UI...T+'''COST'':''(~TY 'i,l

t
Result Variable

The result variable must appear in both the function header and the body
of the function (it must be included in the statement where the final
result is determined).

Function Definition 91

92

EXAMPLES:

V(~TY ITEM CDST ~.---- Define a function without an
[1:1 CDST-H~TYV explicit result.

:1.0 ITEM .60
0.06

o . 0 b be used in APL expressions.
STD'~E~-:l.() ITEM '7~() The result of the function cannot

Vi~lI...UE E I~ RD I~
STDRE~:I.() ITEM 0.6
.... \

:1.0+:1.0 ITEM .60
0,06
VALUE ERH(JR

10+:1.0 ITEt1 0.6

'\7RE~:;UI...T.:"(~ ITEt1Y C~.---De'fine a function with an explicit
I:: :I. J I~ E SUI... T ~ .. C ':" (~ V result.

0, Of.:.

10.06

10 ITEi"lY . 60

~~~ :T: (? '~I~~~ ~ .. :I. () I T E t·1 Y . f.) () 7 The result of the function can now 
~:; J U 1< f.:. / be used in an AP L expression. 

1 0 +:1. 0 I TEf,Y .60 Remember, if you plan to use the 

function you are defining in an APL 
expression, you must provide a 
result variable. 

LOCAL AND GLOBAL NAMES 

A name appearing in a user-defined function can be either local or 
global. A global name has the same value during the execution of a 
function as it has outside of the function. A local name has a value that 
is available only while the function is active. Any name appearing in the 
function header (except the function name) is a local name. So far we 
have seen that a function header can contain a result variable and argu­
ments. Because these variable names are contained in the function 
header, they are local to the function. But other names can also be 
made local to the function if they are placed in the function header 
following the right argument (if any) with a semicolon preceding each 
name. For example, the function header V LOOP R;I;J makes the right 
argument R and the variables I and J local to the function. Now to see 
how local and global names work, let's use some. 



EXAMPLES: 

V'GLOBAI... .. 1----------- Define a function without 
I: 1.] G A E·· 3 any local names. 
[2] GBE··'.j. 
[:3] GCE··!:i 
[4] GA+GB+GCV' 

GLDBAL 
1.2 

GB ,...., -------------- Because these names are global 
GA ! 

4· variables, they also exist out-
GC side the function. 

V I... OC AI... i I ... A i I ... E< i L.e ------- Define a function with all 
[:I.] 1 ... A~··3 ~l local names. 
[2] L.BE··'.j. 
[ 3 ::t I ... C *"" ~:; Notice how the names are 
[1.1·] Lr~+LB+I...C\l made local to the function. 

LDCAI... 
:1.2 

VALUE 

I...B 
\li:)LUE 

LC 
V i:) L.. U E E I~ R () I~ 

Execute LOCAL, then enter the variable 

names to see what values they represent. 

Because these variable names are 
local to the function, they repre­
sent a value only during the 
execution of the function. 

I...C / Define a function using both 
,.... local (GA and GB) and global 

(GC) names. 
VCOMBINATIDN; Dr:); DB 

I: :1.::1 GAf·6 :===============_- Local names that are the same 
I: 2:1 GBE·· 7' : as existing global names. 

1::3::1 GCEuB -~:-::-__________ ~ 
[1.1·] GA+GB+(JC\i' Global name. 

COMBINf~TIc)N 

21. 
G~I 

:3 --.... -~_~~~-;.....~-_~-------------=====--Notice that outside the function, 
__ G B the existing global values (previously 

'+ established by the function GLOBAL) 
GC 

B 
are used. The new values (6 and 7) 
existed only during the execution of 
the function. 

Because this variable name is not 
local to the function, the global 
value was changed. 

Function Definition 93 



94 

Now, you are probably wondering why you should make variable names 
local to a function. Follow;ng are some reasons for using local variables: 

• Let's assume you have defined a function named COUNT that uses a 
variable named X. At some later time, you assign the resu It of an 
important calculation to a global variable named X. Now if you 
execute COUNT, the following conditions can occur: 

1. If X was made local to COUNT, the global value of X is not 
changed. 

2. If X was not local to COUNT, the global value of X (the 
results of your important calculation) is changed . 

• You can conserve space in your active workspace by not storing the 
values for variables you do not use outside a function. 

BRANCHING, LABELS, AND LOOPING 

Branch ing and Labels 

Statements in a user-defined function are normally executed in the order 
mdicated by the statement numbers, and execution terminates at the end 
of the last statement in the sequence. However, this normal ord6.' uf 
execution can be modified by branching (transferring to another point 
in the sequence). Branching is indicated by a right arrow + followed by 
a label that specifies the statement to be branched to. 

For example, the expression +START means branch to a statement 
labeled START. When a label is assigned to a statement, the label is 
followed by a colon and must precede the statement. The colon separates 
the label from the statement: 

[~.~] bTi:)I~T: N~··N+:t. 

In the previous illustration, the label START ils assigned to the second 
statement in the function. In this case, START has a value of 2; however, 
if the function is edited and the statement is no longer the second 
statement in the function, START will automatically be given the value 
of the new statement number. Now as the function executes, when 
statement 5 is executed, a branch is taken to the statement labeled 
START. I f the same label appears more than once in a function, any 
branches taken to that label always branch to the first statement with 
the label. 



Labels are local to a function; that is, they can be used only within that 
function. Following are some rules that apply exclusively to the use of 
labels: 

• They must not appear in the function header. 

• You cannot assign values to them. 

There are two types of branch statements you can use-unconditional 
branches and conditional branches: 

• Unconditional branches are branches that are taken each time the 
branch statement is executed. You have already seen an example of 
an unconditional branch, [5] +START, where the branch to the 
statement labeled START is taken each time statement 5 is executed. 
Another common use of an unconditional branch is +0, which causes 
the execution of the function to be terminated. 

• Conditional branches are branches that are taken depending l:Jpon 
some condition that exists at the time the branch statement is executed. 
Conditional branches are used, for example, to branch to a statement 
if a condition is true and to otherwise continue with the next 
statement (fall through). This type of branch can be entered like 
this: 

+(CONDITION)/N 

The branch to statement N is taken if the condition is true; otherwise 
the next statement is executed. For example, APL executes the 
branch statement +(1 ~N)/START as follows: 

1. First, the condition (I ~N) is evaluated; the result is 1 if the 
condition is true and ° if the condition is false. 

2. The result of step 1 is then used as the left argument for the 
compress (/) function: 
a. If the result of step 1 was 1, START is selected from the right 

argument and a branch to the statement labeled START is 
taken. 

b. If the result of step 1 was 0, nothing is selected from the right 
argument (an empty vector is the result). A branch to an 
empty vector means execute the next statement in sequence 
(fall through). 

Function Definition 95 



96 

In the following example, you will use two varicltions of a function to 
determine the sum of each number from 1 to the value of the argument 
(each function will use a different method of branching). 

EXAMPLES: 

'iJ~3f·f.)UM2 N 
[ :I.] s~" () 
[2::1 l~-l 

1:::3::1 CHECI<: ..• ( I::- N) /0 _ .. --Branch to 0 (terminate the function) or fall 
I:: 1+] S~"S+ I through to the next statement. 
[~:.:jJ I~-I+:L 

I:: f>::I "~CHECI( 'i,l ~.--------- Unconditional branch to CHECK. 
SUr12 ~5 

V~:)~··SUM3 N 
[ :I. J ~:) ~ .. 0 
[~,:'::::I I~" 0 
I:: 3::1 CHECI<: G<:··~~;+ I 
I:: q.::I I ~ .. I + 1 
I:: ~.:.:.;::I "9 ( I::; N) /CHECK '\I-4---Branch to CHECK or fall through. 

~:) U M:-3 !:.:i 



Looping 

A repeated segment of a function is called a loop; when you have a loop 
in.your program, you must provide a way to get out of the loop . 

. EXAMPLE: 

V I... 00 P .I------------This function executes a 
I:: :1.::1 
[2::1 
[:3::1 
[q.::I 

I ~ .. () continuous loop. 

LABEL: 'THIS PROGRAM CONTAINS A LOOP' 
I ~"I +:1. 
·~L.ABEI...V 

L.OOP 
THIS 
THIS 
THIS 
THIS 
THIS 
THIS 
THIS 

PI~DGRAM 
p I~(]GR(~M 
p J~(JGI~AM 
P I~OG I~(~,M 
P I~OG Rf.,M 
P J~OG I~(~M 
PI~nGI~(~M 

CONlAINf:; A 
CONTAINS A 
CONlf.1INS A 
CONTAINS (~ 

CONTAINS f~ 
CONTAINS A 
CONTAINS (~ 

LOOP 
LOOP 
LOOP 
LOOP 
I ... OOP 
LOOP 
LOOP 

Note: To stop execution 
of LOOP, press the ATTN 
key. 

1 .. ,00 P [3:1 .1--------------The name of the function 
and the statement number 
where execution stopped is 
displayed. 

'\71...00 P [: '-1.::1 .. ~ ( I ~\~3) I I... ABEL'V-1--- Provide a way to get out of 
'\l1 .. ,O()P[[]::tV the loop. 

V LOOP 
[ :I. ::t Ii .. 0 Display the function. 

:: 2 ] I... (:1 BEl...: 'T H I ~:; p F~ D G I~ (~) tvl CD N T A I N G (~ I... 0 0 P , 
[3J I~"I+:I. 

[4] ~(I~3)/I...ABEL 

LDOP 
THI~~\ PI~DGI~AM CONl(~ INS f~', I...OOP}-
TH I S P F~CH31~AM CDNT (1 I N~) (~ L.OO P The loop is executed three 
lHI~3 PF~OGI~f.,rl CONT(~INS (:':, I ... OOP times. 

Function Definition 97 



98 

H.OW TO ENTER DATA DURING FUNCTION EXECUTION CO GJ 
So far you have defined functions for which you have supplied the data 
for the function as arguments. This method o~ supplying data limits you 
to two input arguments, and you must be fa,miliar with the function so 
that you can enter the required arguments in the correct order. However, 
you can also define user-defined functions that display requests for input 
data as the function executes. This type of function allows you to input 
any amount of data; and you can also define your function so that it 
specifies what type of data is to be entered. To do this, you use the 
D (quad) or [!] (quad quote) symbols in your function to request input 
from the keyboard. When-a D is encountered in a function, execution 
stops and D: is displayed to indicate that the system is waiting for 
numeric or character input (character data must be enclosed in single 
quotes) from the keyboard. When a [!J is encountered in a function, 
execution stops, the cursor appears, and the system waits for input from 
the keyboard; but in this case, everything on the input line from position 
1 to the cursor or the last character entered (whichever is the farthest on 
the input line) is treated as character input, eVlm though you do not use 
enclosing single quotes when you enter the data. 

EXAMPLE: 

Enter the following user-defined function to determine the final score of a 
baseball game: 

V'n(~,S[Btll ... L 
1:::1.::1 • ENTE R THE N(~IME OF THE V I ~:) I T I NG TEAtJj' 

I: 2 J V I !3 I T ~"el ~--~~~:::~:;--;:-:--:;:-;:7;:7:;:-~-;=:-;----_ 
[;~=)::I • ENTE I~ THE I Ix SeD r~E BY I NN I NG . The input from the 
I:: ",,::I \l~:~CD HE ~,,[] • keyboard will replace 
I:: ~::.;::I • [NTE I~ THE Ntd1E OF THE HOi"l[ TEAt'1' the D or [!] and be 
I:: 6 ::I H (} j"1 E:: <:" el I assigned to the 
I:: "{' J . FNTE I~ THE J H ~:)CU PF B'{ I j'··!N I NCi . variables. 
[DJ H~:)Cnl~E~"n-4-------------' 
I:: <? ::I • THE FIN {, I... ~3 COR F 1..J (:) S : 
I:: :I. 0 J \, J ~:) I T 
I:: 1 :1.::1 + / \l ~:) COR F 
I:: :1.2] HOj1E 
I:: 13] +,/Hf)COI~[\i' 

The score by inning was: REDS - 0 1 0 2 0 3 2 5 0 
BLUES - 0 0 0 2 3 3 0 0 



EXAMPLE (continued) 

Now execute the function: 

________ 
Notice how the messages 
identify the type of key-

BAbEBAL.L . board input required. 

ENTE R THE Nf1ME OF THE V I SIT I NG TE(~t-1 
I~ED~J .. 1---------------------This character data is not 

enclosed in single quotes 
because it was requested 

ENTE I~ THE I P ~:)LD I~E BY I NN I NG 
[I: 

by a [!] in the function. 

o 1 0 ::.~ 0 3 ::~ ~:.; 0 -1--------- This is not character data 
[NTL H THE NAhE OF THE 1··IOt-IE TE(.:d1 because it was requested by a 
BLU[~J 0 and is not enclosed in 

ENTEI~ THEII~~ f:)COI~E B'{ INNINU single quotes. 
[]: 

() 0 023 1 300 
THE F I Nt,/... ~)CU HE v,II~~:): 

REDS 
:1.3 
BI...UF~:) 

Note: AD: indicates that 
the keyboard input is reques­
ted by 0 in the function; no 
0: (blank line) indicates 
that the keyboard input is! 
requested by [!J in the 
function. 

When you are using interactive functions, there may be times when you 
need to escape from a request for input. Normally, pressing the ATTN 
key causes the execution of your function to stop; however, pressing the 
ATTN key during a request for input does not stop the function (the 
function continues to wait for input to be entered). Therefore, APL 
provides a way to escape from input requests. To escape from a D input 
request, you enter -*, which causes execution of your function to be 
terminated. 

To escape from a [!] input request, you must enter the UJ (OUT) character. 
You enter this character by holding the CMD key and pressing the 0 
key once, and then pressing the EXECUTE key. This will cause the 
execution of your function to stop. What you can do next when your 
function stops is discussed next, in Chapter 8. 

Function Definition 99 



100 

EXAMPLE: 

Bf.,BEBALI... -41--------------­
ENTER THE NAME OF THE VISITING TEAM 
REDS 
ENTER THEIR SCORE BY INNING 
U: 

.~-41--------------------------·-----------

HP,SEB('~I...L 

ENTER THE NAME OF THE VISITING TEAM 
~ 

ENTER THEIR SCORE BY INNING 
[I: 

Let's use the BASEBALL 
function to show how to 
escape from input requests. 

. Entering -+ in response to 
a 0 input request causes the 
execution of the function 
to be term i nated. 

Try escaping from a [!] by 
entering -+. Your entry was 
treated as a character, and 
used as the visiting team's 
name. 

1 :I. :I. :I. :I. :L :I. 1. 1-.1---------------- Enter some numbers so that 
ENTER THE NAME OF THE HOME TE(.~M the next [!] input request 
nr will be displayed. 

I NTE 1~1~l.J PT 
BI'-'1SEBI'-'iLL L b::l HOME f'l~1 - Entering the OJ character 

(holding CMD and pressing 

the 0 key once) causes 

the execution of the function 
to stop. 



Chapter 8. What You Can Do When Your Function Stops 

The execution of your user-defined function will stop when: 

• The ATTN key is pressed. 

• The stop feature is used. 

• An error is encountered in the function. 

• A UJ character (the CMD key held and the 0 key pressed once) 

is entered for a [!] input request. 

A function that has stopped executing for one of the preceding reasons 
is called a suspended function. A suspended function is still active, since 
its execution can be resumed later. 

Now let's look at what you can do when your function stops executing. 

WHEN THE ATTENTION KEY IS PRESSED 

When you press the ATTN key during the execution of your user­
defined function, the function stops executing at the end of the state­
ment currently being executed. I n this case, the 5110 displays the 
function name and the next statement number to be executed. 

After your function stops executing, you can do one of the following: 

• Edit the function. 

• Execute the function again. 

• Execute another user-defined function. 

• Execute system commands except for )SAVE, )COPY, and )PCQPY. 
The system commands are described in the IBM 5110 APL Reference 
Manual, SA21-9303. 

• Terminate the function by entering -+. 

What You Can Do When Your Function Stops 101 



102 

Generally, after you have stopped your function by pressing the ATTN 
key, you will want to resume execution of thE~ function at a later ti.me. 
To do this, you enter -+0 LC. 0 LC is a system variable that contains the 
statement number of the next statement to be executed (see the IBM 
5110 APL Reference Manual, SA21-9303 for a complete description of 
the 0 LC system variable). 

Note: If you want to resume execution at a statement other than the 
one immediately following the last statement executed, enter --+n (where 
n is the statement number at which you want to resume execution). 

EXAMPLES: 

\7SFUNCTIDN i COUNT ... ------------- Define a function 
I: :l:1 COUNT~" 0 with a continuous 
[2J LDOP:' THIS FUNCTION C[)NTAIN~:; f~1 L.OOP· loop. 
e 3] CDUNTE··CnUNT+:!. 
[1+::1 ";I...OOP 
[~5] 'THIS FUNCTION LOOPED' 
[6] COUNT 
[7] 'TIMEB' 'v 

~:; FUN C TID N 
THIS FUNCTION CDNTAINS A LOOP 
THIS FUNCTION CONTAINS A LOOP 
THIS FUNCTION CONTAINS A LOOP 
THIS FUNCTION CONTAINS A LOOP 
THIS FUNCTION CONTAINS A LOOP 
THI~3 FUNCTION CONTAINS A LOOP 
THIS FUNCTION CONTAINS A LOOP 

Press the ATTN 
key to stop execution 
of the function. 

~3FUNCTION[3] -1----------------- The function is 
suspended at the 
statement number 

VGFUNCT I ON I:: 1+::1,,; (COUNT -:::-5) /I...DO P,\;' shown in the [ ] on 
________________ your display screen. 

";[]I...C 

----- Edit the function so 
that it does not 

________ contain a continuous 

_________ loop. 

Resume execution 
of the function. 



EXAMPLES-continued 

THIS FUNCTION LOOPED 
7 .,-------------------------------------------------
TIMES 

The value shown 
here on your display 
screen is the number 
of times the function 
looped. 

SF lJ NeT ION 1'--------------------------- Now execute the 
THIS FUNCTION CONTAINS A LOOP function again. 

THIS FUNCTION CONTAINS A LOOP 
THIS FUNCTION CONTAINS A LOOP 
THIS FUNCTION LOOPED 
:5 
TIMES 

Note: When the shift key is held down and the ATTN key is pressed 
during the execution of an APL statement or expression (either within 
or outside a user-defined function), the execution of the statement or 
expression stops immediately. The message INTERRUPT, the statement 
being processed, and the caret (/\ ) that indicates where the statement 
was interrupted is displayed. You can use this method to interrupt 
statements that take a long time to execute. However, any results 
generated by the statement or expression before it was interrupted 
might not exist after the interrupt. 

WHEN THE STOP FEATURE IS USED 

You are already familiar with the stop feature, which was discussed in 
Chapter 7. When using the stop feature (as when using the ATTN key), 
you can do the following: 

• Edit the function. 

• Execute the function again. 

• Execute another user-defined function. 

• Execute system commands except for )SAVE, )COPY, and )PCOPY. 

• Resume function execution by entering -+ 0 LC. 

• Terminate the function by entering -+ . 

What You Can Do When Your Function Stops 103 



104 

WHEN AN ERROR IS ENCOUNTERED IN THE FUNCTION 

The reason the execution of your function stopped in this case, unlike 
the reasons in the other two cases, cannot be controlled by you, That 
is, the 5110 automatically stops the execution of your function and 
displays an error message when an error OCCUII"S in the function. The 
error messages and a suggested user's response for each error are 
described in the IBM 5110 APL Reference Manual, SA21-9303. 

Errors in a user-defined function are sometimes difficult to find and 
correct. The error message displayed indicates where the execution of 
the statement stopped, and why; but the reason the failure occurred at 
that point might have been because a mistake! (either a keying error or 
an error in the solution to the problem) was made earlier in the statement 
or because a mistake was made in an even earlier statement in the 
function. Following are some hints to help you find errors in a statement 
or expression that is failing or giving the wrong results. 

• Check the expression (statement) you ente'red for any keying errors. 

• Analyze the execution of the expression from right to left. Remember, 
AP L executes an expression from right to left with the expressions in 
parentheses resolved (right to left) as they are encountered. 

• Use the shape p function to make sure the shapes of the arguments 
are what you expect. For example, suppose you have a function 
named CAT that catenates two vectors together to form one vector; 
however, one of the arguments you supplied was a matrix (this 
causes a LENGTH ERROR). 

• Enter the names to check the values of the arguments to make sure 
they are what you expect (local variables in a suspended function 
can be displayed, since the function is still active). 

• Break the expression down and execute it iin smaller segments. 
The up a and down • arrows (scroll up and scroll down 

keys) make it easy for you to break the expression down; that is, 
you can execute the expression as APL does (from right to left with 
expressions in parentheses resolved as they are encountered). To do 
this, you enter the first operation performed by APL, for which the 
result will be displayed. Then press the down arrow three times and 
the up arrow once to remove the previous result from the display 
screen (so that it is not on the input line when the EXECUTE key 
is pressed again) and to place the instruction you just entered in a 
position for you to add more operations. Now you can add the next 
operation to the instruction, and the next, until the error in the 
instruction is found. 



• Display intermediate results from the expression using the 0 . This 
does not change the final result. For example: 

:3 x I.!.+~::';""::? 
2l 

:3 x n~-I.t·+I]~··!:S····~? 
:.3 ... ___ --:-r _____ ' 
''(_1--_ .... 1 

It is important that you maintain a history (either a printout on the 
printer or a handwritten copy) of what you did when you were trying 
to find the cause of an error. Then if you cannot find the error and you 
think the problem is caused by the 5110, this history will help your 
service representative determine where the problem is. 

When a function has stopped because an error occurred, as when pressing 
the ATTN key or using the stop feature, you can do the following: 

• Edit the function. 

• Execute the function again. 

• Execute another user-defined function. 

• Execute system commands except for )SAVE, )COPY, and )PCOPY. 

• Resume execution of the function by entering -+0 LC. 

• Terminate the function by entering -+ . 

WHEN A UJCHARACTER IS ENTERED FOR A [!] INPUT REQUEST 

In Chapter 7, you used the m character to escape from a [!] input request 
and to stop function execution. I n that case, the 5110 displayed the 
message II NTE R R UPT, the function name, and the statement that 
requested the input. After your function stops, you can do the same 
operations that you did when the function stopped for any other reason. 
However, in most cases, you will want to terminate the function by 
entering -+ . 

FINDING OUT WHAT FUNCTIONS ARE SUSPENDED 

The state indicator contains the function name and the number of the 
statement to be executed next for each suspended function. To display 
the state indicator, you enter )51 or )SI N L. See the IBM 5110 APL 
Reference Manual, 5A21-9303, for more information on the state 
indicator. 

What You Can Do When Your Function Stops 105 



106 

USING THE HOLD KEY TO STOP PROCESSING • 
We have already discussed the ways a user-defined function can be 
suspended. You can also stop the execution ot a function by pressing the 
HOLD key once. In fact, this stops the entire system from processing 
any data. To resume processing after pressing the HOLD key, you must 
press the HOLD key again. The HOLD key is useful when the information 
on the display screen is changing rapidly; that is, you can stop processing, 
read the displayed information, and then resume processing. 

EXAMPLES: 

VHOLDF .'f----___ Define a function. 
1::1.::1 !--If' 0 
[2] 'PF~ESS THE HOLD I<EY TO STOP PROCESSING' 
L 3 ::I I... 0 D P : H~" H + 1 
['+::1 H 
I: ~.) :1 ··t ( H ¢ :.:.~~) ) / I... 0 () P V 

HDI...DF 
P PEG S THE HOI... D I( E Y TO S T () P P I~ 0 C E ~:) SIN G 

~.; ( .... ------------ The value displayed here on your 
) display screen indicates how many 

times the function looped before 
processing stopped. 

HOLD -,----------- Notice that the characters HOLD 
are displayed in the bottom left 
corner of the display screen when 
the HOLD key is pressed once. 

Now press the HO LD key again to resume processing. 



Chapter 9. Using Tape or Diskette Storage (Your Library) 

So far you have used only the 5110 active workspace. The active work­
space is the part of the 5110's internal storage where the calculations 
are performed; it is also the place where the variables and user-defined 
functions are stored. When you set the 5110 POWER ON/OFF switch 
to OF F or press R ESTA RT, the data in the active workspace is lost. 
However, before turning the power off or pressing RESTART, you can 
save the data in your active workspace by writing the contents of the 
active workspace on a tape cartridge or diskette. This media (tape or 
diskette) is like a library; that is, you can write the contents of your 
active workspace on the media (like placing a book on the library shelf) 
and, at a later time, put the information stored on the media back into 
the active workspace (like taking the book off the library shelf to use 
it again). 

The library consists of one or more files (each file is like a book), and 
just as each book in the library has a name, each file that contains 
information on the media also can have a name (file identification). 

The IBM 5110 system commands are your means of controlling the 
active workspace and storage media (library). Look at the labels above 
the alphameric keyboard; you can enter these system command key­
words by simply pressing the CMD key with the appropriate key below 
the label. The system command keywords can also be entered character 
by character. Notice that each system command begins with a ) symbol. 
There are some system commands that do not appear on the labels 
above the keyboard. All of the 5110 system commands are discussed 
in detail in the IBM 5110 APL Reference Manual, SA21-9303. 

In the following example, you will see how some of the system com­
mands work. First, a tape cartridge or diskette must be inserted into 
your system. 

I f you are usi ng a tape cartridge: 

1. Be sure the tape contains no data required for any further use. 

2. Make sure that the SAFE switch (Figure 3) does not point to SAFE. 

3. Insert the tape cartridge (Figure 4). 

Using Tape or Diskette Storage (Your Library) 107 



108 

If you are using a diskette: 

1. Be sure the diskette is initialized and contains no data required for 
any further use. 

Note: The I BM-supplied diskettes are initialized before they are 
sent to a customer. 

2. Remove the diskette from the protective envelope (Figure 5). 

3. Insert the diskette into diskette drive 1 (Figure 6). 



F' IgUre 4. 

Make 
is in SUre th 

this p .e SAF 
OSlti 

£ SW' 
On. Itch 

F' 19Ure 3. Thes AFES 
""itch 

e tap ec artrid 
ge as sh oWn. 

~
/nSertth 

-----

Insert; n9 a To apec 
artridge 

U· Sing T. 
ape Or O· 

Iskett eSt orage (y 
OUr Lib rary) 109 



Figure 5. Removing the Diskette from the Protective Envelope 

Figure 6. Inserting a Diskette in Diskette Drive 1 

110 



EXAMPLES: 

Press RESTART on your 5110; all the data that was in the active workspace is now 
lost. 

CLEfil~ 1"'8 •• ------------ This message will be displayed 

when the 5110 is again ready 
for you to enter data. 

Enter the following function and variable so that you can store them on the media 
for later use: 

VEXAMPLEjRiNAME: 
[lJ 'THIS FUNCTION COUNTS THE CHARACTERS IN YOUR NAME' 
[2J 'NOW ENTER YOUR NAME' 
[:~ J NAME f·r.J 
[4·J 'THERE ARE' 
[~)] P I NAME 
[6J 'CHARACTERS IN YOUR NAME'V 

VARIABLE~'LET' 'S SAVE THIS DATA' 

Now try the function EXAMPLE to see if it works. 

) FNS ~.----------­
EX(:'iMPLE 

The) FNS system command 

displays user-defined function 
names in the active workspace. 

) \lf~r~G -.---------- The )VARS system command 
Vf~) HI f.1BLE displays the global variable 

names in the active workspace. 

Before the storage media can be used, the files you want to use must be formatted. 

Using Tape or Diskette Storage (Your Library) 111 



112 

I j ! 
H1ARK 1. 6 :~ :1. 

MARKED 0003 00:1.6 

t 
1 

The )MARK command formats 
files on the media. This com­
mand specifies: 

Size of the files to be 
formatted 
Number of files to format 
Starting file number 
Device. If you are using 
tape storage, specify 1 
(tape drive 1). However, 
if you are using diskette 
storage, specify 11 (disk­
ette drive 1) instead of 
tape drive 1. See the 
IBM 5110 APL Reference 
Manual for the default 
device used by the system 
if the device is not 
specified. 

APL will respond with MARKED, 
number of the last file marked, 
and the size of the files. If the 
file you want to IUse has been 
marked before, you will get a 
message ALREADY MARKED. 
In th is case, enter GO and press 
the EXECUTE key to reformat 
the tape files. 

Note: If you enter the )MARK command by holding. down the CMD key and pressing 

the CD key, the command is displayed as follows: 

)MARK KB NF DEV 
'~------~------_I 

,. These characters identify the 
parameters required for the 
command and must be replaced 
with the required information. 
KB stands for the size of the files 
to be formatted in K(1024) byte 
blocks; N F stands for the number 
of files to be marked; SF stands 
for the starting file number; DEV 
stands for the device number the 
media is on. 

After the )MAR K command is executed, the files are formatted in blocks of 1024 bytes. 
For example, the size of the files just formatted is sixteen 1024-byte blocks (or 16,384 
total bytes). See the IBM 5110 APL User's Guide, S.A21-9302, for information on 
what size to format files. 



Now let's write the contents of the active workspace on the media. In the following 
examples, if you are using diskette storage, specify device 11 (diskette drive 1) instead 
of device 1 (tape drive 1). For example, device/file number 1001 should be 11001 for 
diskette. 

) CONT:I: NUE :I. 00:1. INFO 4 This becomes the name of the 
(···n·'·I·I··I·~··ILII····r· :J()Ol ., .. ,. ~ . .. ' ... h .. 1'( :: .• .1.. '" NI·· () file on tape. 

This specifies the device/file 
number (device 1, file 001) 
to which the contents of the 
active workspace are written. 

) CLEt:~,I~ ~.~---------- You do not have to turn the 
LLE,:H< lAJ~:) power off or press RESTART 

to clear all of the existing data 
out of the active workspace; 
you can use this sytem 
command. 

The data in a stored workspace can be placed back into the active workspace. 

)LOAD 
LD(~iDEn :I. 0 (}:I. 

:I. 0 O:L IN F D 4 The stored workspace name 
INF()~ - (workspace 10). 

~'The device/file number from 
which the stored workspace 
will be loaded. 

Using Tape or Diskette Storage (Your Library) 113 



114 

)FNS 
EXAMPLE ~ Now the data that was stored 

) Vt",RB -~---------- on the media is in the active 

VARIABLE workspace once again. 

The remaining system commands are described in the IBM 5110 APL Reference 
Manual. Try using these system commands to see how they work. 

So far, you have learned how to write the entire contents of the active 
workspace on the media. However, you can also write one variable at a 
time to a file on the media. This data can then be read from the media 
at a later time in the same order as it was written to the media. For 
more information on how to do this, see the IBM 5110 APL User's Guide. 

WHAT ARE SYSTEM VARIABLES? 

System variables are variables within the active workspace that control 
the system. All system variables begin with the 0 symbol and are set to 
an initial value by the 5110 in a clear workspace. See the IBM 5110 
APL Reference Manual for a complete description of each system 
variable. I n the following example, you will see how the value of some 
system variables can be changed and how this affects certain APL 
functions. 

EXAMPLES: 

The index origin 010 system variable determines the index origin. The value of 
the 010 system variable can be either 0 or 1, which means that the first element of 
a vector or array is indexed with a 0 or 1 depending upon what the 010 system 
variable is set to. The APL functions l ? ~ Wand indexing ([] ) are affected by the 
[J 10 system variable. 

[lID _1------------ You can display the value of a 
1· system variable the same way you 

display the value of any variable. 

The 010 system variable is 
initially set to 1 by the system. 

Results when the [] 10 system 
variable is set to 1. 



3?:3 
:3 1 2 •• --------------- These numbers can be in any 

[] I () ~- 0 
\ ~5 

order. 

o :/. 2 :3 1+ 
3';>:'5 

You can change the value of 
some system variables. 

:I. 2 0 
Notice how the results of these 
APL functions change when the 
010 system variable is changed. 

These numbers can be in any 
order. Notice that the values 
start from O. 

The printing precision 0 PP system variable determines the number of significant 
digits displayed. 

[]PP 
::j ~.----------------- The OPP system variable is 

:/. .. ;·3 initially set to 5 by the system. 
o . ~53:333 

0.33 

[]P P~"2 
:/. -;.:3 Five significant digits are 

displayed. 

Now only two significant digits 
are displayed. 

The comparison tolerance OCT system variable determines how close two numbers 
must be when you are using the relational. floor, or ceiling functions. 

11:. '-:1.3 
[JeT •• ------------ The OCT system variable is 

initially set to 1 E-13 by the 
I::-I::·'::·r.:'r.:· 1::- / .... r.:·'::·I::-~"":'t:· "'} () . '~:J'J'.!~':::" . ,.!,Io.l,'-I." ~ system. 

OL r ~- .1.1::. .,,1 These two values are not 

:L 

~~~~~~/- ~~~~~~7 . 
• •. J...}"J •. J •. ,1,.Je)·· I".I •. J •• .I ... I,,J I ~consldered equal,

Now these two values are
considered equal.

) C L..~E~· {~~ ~I~ ________ --- The workspace is clear and the
CI...EA R WS ... system variables are once again

set to their original values.

Using Tape or Diskette Storage (Your Library) 115

116

REMEMBER, APL IS A GOOD LANGUAGE

TO EXPERIMENT WITH. THE MORE YOU

EXPERIMENT, THE MORE YOU LEARN.

Using Tape or Diskette Storage (Your Library) 117

Appendix A. Overstruck Characters

Name Character

Comment

Compress f

Execute

Expand

Factorial, Combination

Format

Grade Down

Grade Up

Logarithm

Matrix Division

Nand

Nor

Protected Function

118

(See note)

(See note)

Using
ThE!se
Keys

Using the CMD
Key and Pressing
This Key

~~ W
(\") 0 rn _lliJ _ l!J

(71 G"J r7l
tlIW ill} l!J

~ ~ lJJ
r;~ ~ 0
~~ CO
~~ OJ
G:) Q r;lH
tIlliY 18 ~

_~ CD
(ol r:I n
-~ L0

~~-
GJ LJ am til)

~-

Name Character

Quad Quote

Rotate, Reverse

Rotate, Reverse e

Transpose

(See note)

Using
These
Keys

Using the CMD
Key and Pressing
This Key

~~GJ
CkJ CD iii tiM _ L!0

~~ GJ
~~(I)

Note: These are variations of the symbols for these functions; they
are used when the function is to act on the first coordinate of an array.

Overstruck Characters 119

Index

)CLEAR command 112, 115
)CONTI NUE command '112
)FNS command 111
) LOAD command 112
)MAR K command 112
)VARS command 111
[I] 48,49,51
[01 81
[On] 86
[n[J] 86
[.6n] 85

IJ 98

0: 98
OCT 115
[JIO 114
OPP 39, 115
[!J 98
~[JLC 79, 102
Q) character 99, 105
Vsymbol 74
I function 32,44
L function 32,45
ti function 33
~ function 33
? function 34,46
1 function 25,35
p function 35
< function 37
<: function 37
> function 37
>- function 37
= function 37
*- function 37
1\ function 40,41
v function 40,42
/ -function 47,48
, function 50
® function 54

active workspace 107
adding statements 82
addition 17
alpha keys 2

120

alphameric keys 2
ALREADY MARKED 112
alternating sum 59
and function 1\ 40,41
and reduction 51
APL language

APL system command keywords 4
arguments 17,31,90
arithmetic function keys 4
arithmetic operations 17
assign a value 20
assignment arrow 20
attention key (see ATTN key)
ATTN key 4,14,77,101
average 56

backspace key 4, 10, 11, 12
BASIC/APL switch 4
black background 9
black charac:ters 9
blank character 29
branching 94
brightness control 9
built-in functions 1,17,62

calculator arrangement 4
catenate function, 50
ceiling function I 32
character data 29
CLEAR WS 4

closing V 75
CMDkey 4,11
column 2!5
command keywords 4
comparison tolerance OCT 115
compress function / 47
conditional branch 95
conform ~i1

consecutive numbers 34
control panlal 1

coordinate, acted on 48,49
correct a keying error 13
correcting keying errors 10
cursor 7

deal function? 46
default device 112
del symbol 74
delete a character 11
deleting statements 85
diskette 107, 108, 110
diskette drive 110
display appearance 9
display global variable names 111
display registers/normal switch 4
display screen 1, 7
displayed information 7,8
displaying a statement 86, 87
displaying data 7
displaying from a specific statement 86
displaying the entire function 81
displays user-defined function names 111
division 17
down arrow 9, 14, 75

editing a function 80
editing the function header 87
empty vector 35, 53
entering data 7
entering data during function execution 98
equal to function = 37
error in the function 104
error message 21, 77, 104
escape from input requests 99
EXECUTE key 4,8, 14
executi on mode 74
expand a vector or matrix 48
expand function \ 48
explicit result 91

featurels
files 107
flashing line 7
floor function L 32
format files 112

forward space key 4, 10, 11,12
function body 75
function definition 74
function definition mode 74
function editing 80
function execution stops 101
function header 74,87, 91,92
functions 1

global names 92
global variable names 111
grade down function 'if 33
grade up function ~ 33
greater than function > 37
greater than or equal to function ~ 37

history 7
HOLD key 4,106
HYP function 74

index generator function 1 34
index numbers 27
index of a value 46
index of function 1 46
index origin 010 114
index value [I] 48,49,51
indexed 33
indexing 27
indicator lights
input 7
input line 9
insert a character 12
insert blanks or zeros 48
insert tape cartridge 107
inserting statements 84
instructions 74
interactive functions 99
internal checks 4
internal precision 39

Index 121

join two items 47

keyboard 1, 6
keying errors 10
keys 1
keywords 4, 107

labels 94
larger of two numbers 44
less than function < 37
less than or equal to function s 37
library 107
local names 92
local variables 94
logarithm function ® 54
logarithm of a number 54
logical functions 40
looping 77,97
lost lines 9
lowercase alphabetic characters 15
lowercase character mode 15
L32 64 R32 switch 4,9

matrices 22
matrix 25, 29
maximum function r 44-
maximum reduction 60
minimum function L 45
minimum reduction 60
minus 18
minum reduction 59
modifying a statement 86
move display lines 9
multiplication 17

negative numbers 18
negative sign 18
not equal to function ~ 37
numeric keys 4

122

operating ke'ys 4
or function v 40,42
or reduction 6
order of execution 21, 22
overstruck character 31

parentheses 22
place a storEld workspace into the active

workspace 112
plus reduction 56
portable computer
power function * 12
power up sequence 4
printing precision DPP 115

quad input 98
quad quote input 98

random number 34,46
reduction 56
relational functions 37
reopen function definition 80
replace a character 10
replacing st.atements 83
request for input data 98
reshape function 25
restart sequence 4
restart switch 4
result variable 75, 80, 91
reverse display switch 29
roll function? 34
root of a number 20
rounding off numbers 32
row 25

SAFE switch 107
scalar 29
scroll down 75,86
scroll down key 4,9
scroll up 75, 86

scrolll up key 4, 9
selecting certain elements 47
semiGolon 28
set up procedure
shape! 35
shape function p 35
shift key 2
single quote characters 29
smaller of two numbers 45
sorting a vector 33
special character combinations 4
standard APL character mode 2
standard typewriter 2
state Indicator 105
statement number 75
statements 74
stop c:ontrol feature 103
stop execution 78
stop feature 78
stop processing 106
storage media 107
storing data 20
strings of numbers 22
subtraction 17
suspended functions 78, 101
switches 1, 4
system command keywords 4, 107
system commands 107
system variables 114

tables 22
tape cartridge 107
testing your function 76
trace fc~ature 78
turn off stop 79
turn off trace 79
typewriter 2

unconditional branch 95
up arrow 9, 14, 75
user-defined functions 17, 74

variable name 20
variables 20
vectors 22, 29

white background 9
white characters 9
write the active workspace to tape 112

5110 Model 1
5110 Model 2

Index 123

124

READER'S CuMMENT FORM

Please use this form only to identify publication errors or request changes to publications. Technical questions about IBM systems, changes in I BM programming
support, requests for additional publications, etc, should be directed to your IBM representative or to the IBM branch office nearest your location.

Error in publication (typographical, illustration, and so on). No reply.

Page Number Error

Note: All comments and suggestions become the property of IBM.

• No postage necessary if mailed in the U.S.A.

Inaccurate or misleading information in this publication. Please tell us
about it by using this postage-paid form. We will correct or clarify the
publication, or tell you why a change is not being made, provided you
include your name and address.

Page Number Comment

Name __ __

Address

»1:0
~s:
- 01
::J
.-+
~

0 c..
c
(")
.-+ o·
::J

--0

en »
I\J

cO
W o -6

SA21-9301-0

Fold Fold

BUSINESS REPLY MA~
NO POSTAGE STAMP NECESSARY IF MAILED IN THE ur~

Fold

--- -
~::~~

®

POSTAGE WILL BE PAID BY •.•

I BM Corporation
General Systems Division
Development Laboratory
Pu bl ications, Dept. 245
Rochester, Minnesota 55901

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30301
(U.:S.A. only)

General Business Group/l nternational
44 South Broadway
White Plains, New York 10601
U.S.A.
(International)

FIRST CLASS
PERMIT NO. 40
ARMONK, N. Y.

Fold

(')

S
»
0'
::J

CD

r
:i"
CD

OJ

~
0
»
-0
r
::::l
r-+

(3
a.
c
(')

!:!.
0
::::l

~
::::l
r-+
(1)

a.
::::l

C
S-

CI)

»
!IV

to
w
jI

--- ------ ----= a::l r= ===-=':'=
!J

International Business Machines Corporation

Generai Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
U.S.A.
U nternational)

SA21-9301-0

m
s::
~
o
»
"'0
r
;-
r+

8.
c n
r+
0'
:l

:,c
~'
CD a.
5'
c en »
en »
~
cO
w
g
6

	0000
	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	replyA
	replyB
	xBack

