OLLG

IBM 5110

APL Introduction

uoRINPONU| 14y
0LLG NSI

§A2193010

IBM 5110
APL Introduction

5110

APL Introduction

IBM 5110

SA21-9301-0

Preface

This manual discusses the mechanics of using APL
with the IBM 5110 Computer. It is intended to
provide the users of this system with information
necessary to operate the system using the APL
language.

Related Publications
e /BM 5110 APL User’s Guide, SA21-9302
o /|BM 5110 APL Reference Manual, SA21-9303

e /BM 5110 APL. Reference Card, GX21-9304

First Edition (December 1977)

Changes are continually made to the specifications herein; any such changes
will be reported in subsequent revisions or technical newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or the IBM branch office serving your locality.

A form for reader’'s comments is at the back of this publication. if the form

is gone, address your comments to IBM Corporation, Publications, Department
245, Rochester, Minnesota 55901.

© International Business Machines Corporation 1977

CHAPTER 1. INTRODUCING THE 1BM 5110
About this Manual
About the APL Language .
About the System
Alphameric Keys .
Numeric Keys .
Operating Keys
APL System Command Keywords
Arithmetic Function Keys .
Getting Started .
Entering and Displaying Data
Correcting Keying Errors
Replacing a Character
Deleting a Character .
Inserting a Character
Entering Lowercase Alphabetic Characters
CHAPTER 2. INTRODUCING THE APL
LANGUAGE
Types of Functions in APL .
Addition, Subtraction, Multiplication, and
Division
Another Arithmetic Functron Ralsrng a Number
to a Power
Finding the Root of a Number
Storing Data in the 5110 for Later Use
Performing Several Functions in the Same
Expression
Specifying the Order of Executron Usrng
Parentheses
Using Strings of Numbers and Tables
Using APL with Strings of Numbers (Vectors)
Using APL with Tables of Numbers {Matrices)
Referring Only to Certain Numbers in a String or
Table of Numbers (Indexing)
You Are Not Limited to Using Only Numbers

CHAPTER 3. APL FUNCTIONS THAT REQUIRE
ONE ARGUMENT

How Many Arguments Are Requwed by an APL
Built-In Function? .

APL Function Symbols That Are a Comblnatlon
of Two Characters .

Determining the Whole Numbers Nearest a
Fraction . .

Rounding to the Nearest WhoIe Number .

Sorting a Vector in Ascending or Descending

Sequence . '

—
ONOI D DBNNN=S ===

- = e wa
1IN - O

17
17

17
19
20
20
21
22
22
23
25
27
29
31
31
31

32
32

33

Contents

Generating a Random Number

Generating Consecutive Numbers
Generating an Empty Vector .

Finding the Shape of an Existing Varlable

CHAPTER 4. APL FUNCTIONS THAT
REQUIRE TWO ARGUMENTS
Relational Functions . .
Why Two Numbers Identical in Appearance
Are Not Always Equal .
An Example Using a Relational Functron
Logical Functions
And
Or.
Finding the Larger of Two Numbers
Finding the Smaller of Two Numbers .
Finding the Index of a Value in a Vector .
Generating a Random Sequence of Numbers .
Selecting Certain Elements (Compressing) From
a Vector or Matrix . .
Expanding a Vector or Matrix
Joining Two Items Together
Building a Vector of Results Using Catenatlon
Finding the Logarithm of a Number

CHAPTER 5. APPLYING THE SAME FUNCTION
TO ALL THE ELEMENTS OF A VECTOR
COLLECTIVELY (REDUCTION).

Plus Reduction

Using Plus Reductlon to Flnd the Average
Using Plus Reduction to Sum the Products of
Two Vectors .

Minus Reduction (Alternatrng Sum)

Maximum Reduction: Finding the Largest Value
in a Vector .

Minimum Reduction: Flndrng the Smallest Value
in a Vector

Or Reduction: Checkmg for a Specrflc Value
in a Vector

And Reduction: Checkmg for All Values in Two
Vectors Being Equal .

CHAPTER 6. USING THE BUILT-IN
FUNCTIONS .

Now Let's Look at the Thlngs You Can Do

34
35
35

36
37

39
39
40
41
42
44
45
46
46

47
48
50
52
54

56
56
56

59
59

60

60

61

61

62
62

CHAPTER 7. FUNCTION DEFINITION
What Is Function Definition? .
How Is a Function Defined? . .
Testing Your Function Before Using It
How To Use the Trace and Stop Features
Trace TA
Stop SA .

What To Do If You Make a Mtstake When Deflmng

Your Function .
Displaying the Entire Functlon

Adding One or More Statements at the End of

the Function .
Replacing Statements wuthln a Functlon
Inserting One or More Statements in a
Function . ..
Deleting a Statement from a Functlon .
Displaying a Specific Statement or from a
Specific Statement to the End of a Function
Modifying a Single Statement .
Editing the Function Header .
A Faster Way to Add, Replace, or Insert One
Statement in a Function .
Types of Function Headers
Why Have a Result Variable? .
Local and Global Names .
Branching, Labels, and Looping .
Branching and Labels
Looping . . .
How To Enter Data during Functlon Executlon

74
74
74
76
78
78
78

80
81

82
83

84
85

86
86
87

88
90
91
92
94
94
97
98

CHAPTER 8. WHAT YOU CAN DO WHEN
YOUR FUNCTION STOPS .

When the Attention Key |s Pressed .

When the Stop Feature Is Used .

When an Error is Encountered in the Functlon .

When a O Character Is Entered for a [7] Input
Request

Finding Out What Functlons Are Suspended

Using the Hold Key To Stop Processing

CHAPTER 9. USING TAPE OR DISKETTE
STORAGE (YOUR LIBRARY)
What Are System Variables? .

APPENDIX A. OVERSTRUCK CHARACTERS .

INDEX .

101
101
103
104

105

105
106

107

114

118

120

Chapter 1. Introducing the IBM 5110

ABOUT THIS MANUAL

This manual will show you how to operate the IBM 5110 using the APL
language. If you are not familiar with the APL language, you should do
the suggested keying operations or examples on your 5110 while reading
the manual from cover to cover. If you are familiar with the APL
language, you should read Chapters 1 and 2 to learn how to operate the
5110; however, you may then want to skip to Chapter 7. Not all of the
features or functions of the APL language are covered in this manual.
For more information about the 5110 or the APL language, see the /BM
5110 APL User’'s Guide, SA21-9302, or the /BM 5110 APL Reference
Manual, SA21-9303.

This manual was written with the assumption that the 5110 has been
set up and checked out. If the 5110 has not been set up, use the setup
procedure in the /BM 5110 Setup Procedure, SA21-9318, before
continuing to read this manual.

ABOUT THE APL LANGUAGE

APL has many built-in functions that allow you to effectively solve your
problems. However, if you need a special function to solve a problem,
APL also allows you to define your own functions. The functions you
define are similar to programs written in other computer languages.

APL is a good language to experiment with; nothing you do from the
keyboard can damage the 5110, and the more you experiment, the more
you will learn about APL.

ABOUT THE SYSTEM

The IBM 5110 Model 1 (Figure 1) is a computer designed to help you
solve problems. The IBM 5110 Model 2 differs from the Model 1 in
that the Model 2 does not have a built-in tape unit. The display screen
and indicator lights communicate information to you, and the
keyboard and switches allow you to control the operations the system
will perform.

Before you begin to use the 5110, you should become familiar with the
keys and control panel. The control panel switches will be discussed
later. Following is a brief description of the keys (Figure 2); how you
use the keys will be discussed later.

Introducing the IBM 5110 1

Alphameric Keys

The alpha keys are similar to those on a standard typewriter, except that
there are no lowercase characters. In standard APL character mode, the
alpha characters are all uppercase, even though they are i
position on the keys. Thus, you do not use the shift key
alpha characters.

If you want to enter an upper shift character, you must hold down the
shift key and then press the key to enter the character, just as you
would to type an uppercase character on an ordinary typewriter.

You can also enter lowercase alphabetic characters from the keyboard.
How you enter lowercase alphabetic characters is discussed later in this
chapter.

Numeric Keys

Either the top row of alphameric keys or the special calculator arrange-
ment of numeric keys can be used to enter numbers.

Operating Keys

The black key labeled EXECUTE, the dark gray keys with the legend
names CMD, ATTN, and HOLD, and the dark gray keys with the arrows

~are all special operating keys. The keys with the arrows and the space-
bar, which is used to enter blank characters, automatically repeat the
operation they perform when held down.

Backspace Key
Forward Space Key
Attention Key

Scroll Up Key

Scroll Down Key

Hold Key

R

Execute Key

REVERSE
IN PROCESS DISPLAY RESTART
Indicator Switch Switch

PROCESS BASIC/APL DISPLAY

CHECK Indicator Switch REGISTERS/NORMAL
Error Switch
Message
List

Brightness L32 64 R32
Control_ switch

ON/OFF
Tape
P Cartridge
(Model 1 only)

Switch

Display
Screen

Arithmetic
Function
Keys

\/Special Operator Keys
7 —|
Y &0

Alphameric
Keys

_U/ Numeric Keys

EXECUTE Key

Shift Key

Figure 1. The 5110 Computer

Introducing the IBM 5110 3

APL System Command Keywords

The words that are above the top row of numeric keys are system command
keywords, which you can enter by holding down the CMD key and then
pressing the key below the desired keyword. For example, to enter
)LOAD, hold down CMD and press the 1 key. The system commands

and their uses are discussed later, in Chapter 9.

Also, notice the special character combinations engraved on the front of
the alphabetic keys. |f you have a combined APL/BASIC machine, there
is also a BASIC statement keyword engraved above the special character
combination on the front of the key. You can enter the special charac-
ter combination by holding down the CMD key and then pressing the
appropriate key. You will see how these special character combinations
are used as you become familiar with the APL language.

! BASIC Statement Keyword
K

/ PAUSE APL Special Character Combination
0]

Arithmetic Function Keys

The four keys to the right of the calculator arrangement of numeric keys
are the arithmetic function keys. These keys are used to perform division,
multiplication, subtraction, and addition. There are also keys on the
alphameric keyboard that perform these functions. Notice that the + and
x symbols are used for division and multiplication.

GETTING STARTED

Make sure the switches on your IBM 5110 are set as follows:

Switch Setting
L3264 R32 (5110 only) 64
BASIC/APL (combined machines only) APL
DISPLAY REGISTER/NORMAL NORMAL

If your 5110 has the BASIC/APL switch, it can execute both BASIC and
APL language statements. The language to be used is selected by the user
before power up or during the restart sequence.

Make sure your 5110 is plugged in and turn power on. [f power is
already on, press RESTART and wait about 20 seconds. During this
time, the 5110 performs internal checks to make sure it is operating
correctly.

After 30 seconds, if the message CLEAR WS has not appeared in the
lower left corner of the display screen, an error has been detected during
the internal checks. In this case, press RESTART. The 5110 will per-
form the internal checks again. If the CLEAR WS message does not
appear after several tries, call your service representative.

Introducing the IBM 5110 &

pieogAa)) ayy °Z ainbi4

Special Operating Keys

/A
corPY
(roao) (O save J(Gcont Y (s) (Crns) (0 vars J(Ccory) (Cwsio) (outse] (O mark) (Y O'SPAY) GeLere) (inserT)
" - < < = = > + A -
1 2 3 4 5 8 7 8 o + bl
? w € 0 ~ + 4 2 [s} * -
a W € R T Y U i) P . = EXECUTE
ONC\[/ ONLN|ASIND |/ SA T2\l ~\/ » ncc\|/ ® \|/ e \|/0uC /
cMD @ r L - v 8 , o () : T
A s D F G H J K L [] #
\i/ nua\|f OPu a g ¥ Iy .. 0 rnl /
[« 2 n V] 1 T I B \ &
l - | z X c v B : M s / $ -
— /ocR\l/ oFx \|l/ » \|/mevi\[/ + \[/ + \[/ o \ \li/ \V/ \

Alphameric Keys

Numeric Keys

ENTERING AND DISPLAYING DATA

First, let's look at the display screen. Normally, infermation displayed
by APL begins at the left edge of the display screen, and the input from
the keyboard is indented when it is displayed. The small horizontal
flashing line indicates the position on the line where the next input from
the keyboard will be displayed. This flashing line is called the cursor.
The cursor moves as each character is displayed.

The display screen can contain up to 16 lines of data. Each line has 64
positions across the display screen. The bottom two lines are used to
display input, and the remaining 14 lines contain a history of the opera-
tions you have performed.

Line | 64 Character Positions
Numbers
15 [A
14
13
12
1
10
9
8
7
6
5 This message is displayed when your 5110
4 is ready for use.
3
2 CLEAR WS Cursor (flashing line)—display of keyboard
1 - / input normally begins indented six positions
0 on line 1.
e J

There are 128 positions available for input from the keyboard; that is,
there are 64 positions available on line 1 and 64 positions on line 0. When
position 64 of line 1 is used as you enter data from the keyboard, the
cursor moves to the left margin of line 0. The cursor is then at position
65 of the possible 128 positions available for input.

Introducing the 1BM 5110

Now let’s enter some data into the 5110 using the numeric keyboard
and the arithmetic function keys. Press the following keys:

Notice that the characters are displayed as each key is pressed. To
process the data you just keyed, you must press the EXECUTE key.
Press the EXECUTE key now.

The display screen will look like this:

CLEAR WS

243

[
P

Notice that the expression you entered, 2+3, appears indented on the
display screen; the answer, 5, appears on the left margin of the next line;
and the cursor appears on the next line. The information displayed
moves up each time the EXECUTE key is pressed.

Enter and execute the expression 125+75 by pressing the following keys:

U000 otd

The display screen will look like this:

CLEAR W&
e e

L4
wd

125475

200

The appearance of your display can be changed by the REVERSE
DISPLAY and L32 64 R32 switches on the control panel. The
REVERSE DISPLAY switch allows you to change from black characters
on a white background to white characters on a black background and
vice versa. Change the switch and select the type of display you feel
most comfortable with. You may have to adjust the brightness control
as you change from one to the other.

Now, watch the display as you set the L32 64 R32 switch to the L32
position. With the switch in this position, the leftmost 32 characters on
each line are displayed with an extra space between each character. The
rightmost 32 characters on each line will not be displayed. With the
switch in the L32 position, your display should look like this:

in the R32 position, the rightmost 32 characters are displayed with a
space between each character. Now, set the switch in the R32 position
and notice that the display is blank because there were no characters in
the rightmost 32 positions of the display screen.

Return the switch to the 64 position, and notice that all characters are
displayed without the space in between. For exercises in the remainder
of this book, keep the switch in the 64 position.

There are two keys above the numeric keys that move the display line
up or down. The up arrow (scroll up key) moves the display up

one line and the down arrow (scroll down key) moves the display
down one line. As the lines are moved up or down, the displayed
information on any line that is moved off the display screen is lost. Also,
the cursor returns to position 7 on line 1 when either scroll key is used.
Either key continues to move the display lines if it is held down. Now
use the down arrow to move the display down one line.

The display will look like this:

CLEAR WS
243

The value 200 is now on the input line and
can be used as input. Notice that input can
begin in any position on the line.

Introducing the IBM 5110

Now press the following keys:

e e

The display screen will look like this:

CLEAR WS

23
5
125+7%
200 +510
250
_

Now that you are familiar with the display screen, only the line or lines
being discussed will be shown.

CORRECTING KEYING ERRORS
The IBM 5110 has a number of very useful features that allow you to
correct errors made when data was entered. On a line-by-line basis, at
any time, you can:
® Replace a character

o Delete a character

® [nsert a character

Replacing a Character

To replace a character, move the cursor with the backspace key

or forward space | key, until the cursor is positioned at the

incorrect character. The cursor moves one character space in the
direction of the arrow each time the appropriate key is pressed. These
keys continue to move the cursor if they are held down. When the cursor
is at the incorrect character, you replace the incorrect character by
simply keying the correct character.

For example, you want to do the problem 22+12. But you press the
following keys:

OO

The display screen looks like this:

To correct the error, the cursor must be moved back one position (under
the second 1) so that the character can be rekeyed. Now press the
backspace key one time. Note that the cursor is replaced by a

flashing character. The flashing character serves the same function as the
cursor; it indicates the position on the line where the next input from the
keyboard will be displayed. Now to correct the error and execute the
problem, press the following keys:

Deleting a Character

To delete a character, you also use the backspace key or forward

space key to move the cursor. Once the cursor is in the position

of the character to be deleted (the character is flashing), hold down the
CMD key and press the backspace key once. The character is then deleted
and any characters to the right are shifted one position to the left to

close up the space left by the deletion.

Introducing the IBM 5110

1

For example, you want to do the problem 13+45. But you press the
following keys:

JUoLt

The display screen looks like this:

123+48.

Press the backspace key and move the cursor (flashing character) back

to the 2. Look at the labels that appear above the backspace and

forward space keys: DELETE and INSERT. To delete the 2, hold down the
CMD key while you press once.

The display screen looks like this:

L3+

This character is flashing.

Now press the EXECUTE key to execute the problem.

Inserting a Character

To insert a character, position the cursor using the backspace key

or forward space key; then hold down the CMD key and press

the forward space key once. This operation moves the flashing
character (and all other characters to the right of it) one position to the
right, creating the space you need to insert one character. The cursor is
not moved. Now, to insert the character, simply press the desired key.

For example, you want to do the problem 123x6. But you press the
following keys:

O

The display screen looks like this:

13%6..

To correct the error, press the backspace key and move the cursor

(flashing character) back to the 3. Look at the labels that appear above

the backspace and forward space keys: DELETE and INSERT. To perform
the insert function, with the cursor positioned at the 3, hold down the

CMD key while you press once.

The display screen looks like this:

L34

Now to correct the keying error and execute the problem, press the
following keys:

Introducing the IBM 5110

13

14

There is one more way to correct a keying error. |f you make several
errors part way through the line, you can backspace the cursor to the
character following the last correct character and then press the ATTN
(attention) key. Everything from the cursor position to the end of the
input line will be cleared from the display.

Since the data from the input line is not processed until the EXECUTE
key is pressed, you can visually verify any input before it is processed.
However, if you do press the EXECUTE key before you notice a
mistake, you can simply enter the input again or you can use the down
arrow (scroll down key) to move the input back down to the

input line to correct it. Either way, you must press the EXECUTE key
again.

For example, you want to do the problem 135+280, but you enter and
execute 134+280. The display screen looks like this:

134+3280
iy

To correct the input, press the down arrow . three times to clear

the result from the screen. The display screen now looks like this:

1A +250

Then press the up arrow once to move the original input back

up to the first input line so that it can be corrected.

ENTERING LOWERCASE ALPHABETIC CHARACTERS

Although only the standard APL alphabetic characters are shown on
the 5110 keyboard, you can enter lowercase alphabetic characters by
changing the 5110 to lowercase character mode. One way to change
the 5110 to lowercase character mode is to press the {8 key (the

characters HOLD are displayed in the lower left corner) and then hold
down the shift key and press the scroll down . key. The

5110 is now in lowercase character mode. For example, press the
key. The display screen looks like this:
A

a__

Now, hold down the shif

key and press the key. The

display screen looks like this:
an

Finally, hold down the command key and press the key.

The display screen looks like this:

af o

In this example, you are not going to execute the data just entered from
the keyboard because you will get an error. Instead, press the scroll up
EN key once to remove the data from the input line. Now, to

return the 5110 to the standard APL character mode, press the

key and then hold down the shif key and press the scroll up

key. The 5110 is now in standard APL character mode.

Note: See Console Control in the IBM 5110 APL User’s Guide,
SA21-9302, for more information on how to enter lowercase characters.

Introducing the IBM 5110

15

16

From this point on, we will discuss the APL language and use examples
in the following format to illustrate what we are discussing. You enter
the expressions that are indented. The results displayed on your 5110

should be the same as the results shown in this manual.

EXAMPLES:

3+ «=——— Expressions To Be Entered

7 \
Results

Remember, the data you key is not processed until
the EXECUTE key is pressed.

Chapter 2. Introducing the APL Language

TYPES OF FUNCTIONS IN APL
There are two types of functions in APL: user-defined functions
(programs) and those that are built into the APL language. The APL
built-in functions are denoted by special symbols. User-defined
functions are discussed later, in Chapter 7.
The built-in functions operate on data supplied, called arguments.
For example:

2 +
B

Left Argument

3
Right Argument

uilt-in Function (addition)

ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION

D Machines with APL Only
+ X

Combined Machines

Alphameric Keys Arithmetic Function Keys

Four commonly used built-in functions (+ - x +) perform the normal
arithmetic operations when they are used. These symbols are located
on the top row of the alphameric keys and also to the right of the
numeric keys.

Introducing the APL Language 17

18

EXAMPLES:

3+¢é ~<—— Add 3 and 6.

AXH Multiply 3 times 6.
18
84
4 > The right argument is subtracted from the left argument.
8

H \ The high horizontal bar is the negative sign. Compare it
with the minus which is the symbol for subtraction; the
negative sign appears near the top of the character instead
of on the center line.

&l
2 > The left argument is divided by the right argument.
H+8

As you have seen in the example, the negative sign is different from the
minus. When you are doing arithmetic operations in APL, do not use
the minus to represent negative numbers or the negative sign for
a subtract operation. 2

Problems: Using Addition, Subtraction, Multiplication, and Division

1. Find the total number of cars that a dealer sold during one week if
his daily sales were 3,5, 2,6, 7, 3and 4.

2. Find the net number of cars removed from the same dealer’s lot if
20 people had trade-ins.

3. Find the dealer’s average profit per car if he made a total profit of
$2700 for the sales in problem 1.

4. Find the dealer’s total earnings if he made $20 on each car sold.

Possible Solutions

Problem 1:

TG Db T TN

Problem 2:

Al
Problem 4:
2R3

&00

ANOTHER ARITHMETIC FUNCTION—RAISING A NUMBER

TO A POWER
ol

Another arithmetic function that you are probably familiar with is
raising a number to a power. In APL, you use the « function to raise
the left argument to the power specified by the right argument.

EXAMPLES:

%} +=— 3raised to the second power.

15

A3 +————— 2 raised to the third power.

Introducing the APL Language

19

Finding the Root of a Number

You can use the power function x to find the root of a number. To do
this, you simply raise the number to the power 1+n, where n is the root
you want to find.

EXAMPLES:

i3 (1 +7) = The square root of 4.

s, 5 Another way to enter the instruction to find a
2 square root of a number (.5 is the same as 1+2).
gw(1+3)
e The cube root of 8.

STORING DATA IN THE 5110 FOR LATER USE

You can store data, either direct input that you enter from the keyboard
or the result of a calculation. These stored items are called variables.
Each variable has a name associated with it. Whenever you use the name of a
variable, APL supplies the value associated with that name. A variable
name can be up to 77 characters long (with no blanks); the first
character must be alphabetic; the remaining characters can be any
combination of alphabetic and numeric characters. It is good practice
to use names that represent the data you are storing. For example, if
you want to store a value that is the area of a rectangle you might use
the name AREA: or if you want to store some sales data, you might use
the name SALES.

You create a variable by assigning the data to a name. To assign a value
to a name, you use the assignment arrow <. The value to the right of
the <« is assigned to the name to the left of the <.

EXAMPLES:

PRICE €99, 50 = After you press the EXECUTE key, you
HALESEPRICEXLD have created a variable named PRICE

PRICE with a value of 99.50.
995
SALES The result of a calculation can also be
P95 assigned to a variable.
If you want to know the current value of

a variable, you simply enter the name of
the variable.

PRICE+H6, 75 You can change the value of a variable
PRICE the same way you assigned.the original
86,75) value,
CEPRICE+SLO

PRICE You can also use the variable and change
PEHLTH its value in the same instruction.
You cannot use a name as a variable if
/ it does not have a value assigned to it.
COST-8AaLES
ValUE ERROR The error message indicates why the

COST+SALES instruction failed.

Fas
\ The caret (A) indicates where the

« instruction failed.

Note: Do not be concerned at this time
about the error message that is displayed;
all of the 5110 APL error messages and
suggested user’s responses are described
in the IBM 5110 APL Reference Manual,
SA21-9303.

PERFORMING SEVERAL FUNCTIONS IN THE SAME EXPRESSION

In the preceding examples, only one arithmetic function was used in
each example. However, you are not restricted to writing expressions
with only one function. Any number of functions can occur in the
same instruction. As soon as you use more than one function, however,
you must be concerned about the order in which they are used. /n APL,
the rightmost function in any expression is executed first, then the next
rightmost, and so on.

Introducing the APL Language

21

22

EXAMPLES:

Order of execution is right to left.

I x4l =— 4 is added to 2, and that result is multiplied by 3.

18
4 3% 2 <——— 3is multiplied by 2, and that result is added to 4.

10

Remember that an APL function uses as its right
argument the resuit of the expression to its right.

SPECIFYING THE ORDER OF EXECUTION—USING PARENTHESES

In APL, parentheses are used the same way as they are in conventional
arithmetic: the expressions inside the parentheses are executed before

the expressions immediately outside them.

EXAMPLES:

{ X% 2+ «—— The expression 3x2 is evaluated first and the
10 result is added to 4.

(e E) R
\ The expression 4+3 is evaluated first and the

W
result is multiplied by 2.

Remember, the rule of the order of execution
is from right to left with the expressions in
parentheses resolved first and from right to
left as they are encountered.

USING STRINGS OF NUMBERS AND TABLES

A powerful feature of APL is the way it handles strings and tables of data.
So far, you have used APL with only single numbers (called scalars): but
APL also works with strings of numbers (vectors) and tables (matrices).
The functions you have performed using single numbers are simply
extended to each number in a string or a table. For example, if you have
a string of numbers assigned to a variable named SALES, you can add 2
to each number in the string by simply entering 2+SALES.

Using APL with Strings of Numbers (Vectors)

A string of numbers is called a vector. When you enter a string of numbers,
there must be at least one blank between each number; each number is
called an element of the vector.

EXAMPLES:
1uk v 3n

1w 293y
STRINGEIUWY 146 39 2
STRING

1l 16 39 2
SALESE12S 220 316 90
SALEGK 1D —

1250 2200 3160 900
SALES

125 220 316 0
PRICEe. 50 1.00 7% 1.10
TOTAL e SALESXPRICE
TOTAHL |

G215 RRO T 99
L2 ual 5 g

5710 ‘___:::::::Z::=>
L5

56

LENGTH

12 3+4 5
ERROR
123+ 45

S

You have entered a five-element
vector (a string of five numbers).

A vector can be assigned to a
variable name.

Each element (number) in the
vector can be operated on by
a single number.

Note that the value of SALES
has not changed.

Each element in a vector can be
operated on by the
corresponding element in
another vector with the same
number of elements.

There must be at least one
blank between the elements
of the vector, or the result
will be different.

You cannot use two vectors
that do not have the same
number of elements unless

one of the arguments is a
single number (single element).

Introducing the APL Language

23

24

Problems: Using Strings of Numbers

1.

2.

Find the squares of the numbers from 1 to 5.
Find the squares, cubes, and fourth powers of the numbers 2 and 3.

A small mutual fund broker specializes in five funds. He wants to
know how much of each fund he had sold at the close of the day.
By 4:00 PM, he had sold $1500, $3200, $1200, $2300, and $2400,
respectively, of the five funds. In the last hour of the day, he sold
$100, $500, $300, $200 and $0 of the respective funds. Write a
single APL statement to determine his closing sales figures for each
fund.

The five funds in problem 3 sold for $7.30, $11.58, $3.45, $2.17
and $5.56 per share. How many shares of each fund were sold?

The broker receives the following percentages of commission on the
five funds: 3.25, 2.5, 3.0, 3.75 and 3.5. How much did he earn
from each fund today? What are his total earnings for the day?

Possible Solutions

Problem 1:

12 3 u 5%
O I

Problem 2:

I

g 2

& Al

Ed
2 Fw3
]
2 Raely

14 81

Problem 3:

LS00 3200 1200 2300 20400+100 %00 300 200 0
L6Go 3700 1500 2500 2400

Problem 4:

LA00 3700 1500 2500 2400-+7,30 11,58 Z. 05 2,17 5,58
S92 18 319052 43N, 78 115201 431,659
Problem 5:

LA00 3700 1500 2500 2000x 0325 0250 ,0300 .03 .";
BEORR205 uE 9%, 8y

=i i 1] CTPEeEY, B0

Using APL with Tables of Numbers (Matrices)

A table of numbers is sometimes called a matrix. The numbers in the
matrix are arranged in rows and columns; each number is called an
element of the matrix.

r—Column

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15 |[«—Row

L An individual element in row 3,
column 4 of the matrix.

You can use the reshape p function to create matrices. The left argu-
ment specifies the number of rows and columns, and the right argument
specifies the data or variable name for the data to be placed in the matrix.

Introducing the APL Language

25

26

EXAMPLES:

The first number in the left argument
specifies the number of rows; the second
number specifies the number of columns.

The right argument specifies the values to

TaRLE

be placed element by element into the
rows of the matrix.

There must be a blank between the
numbers specifying rows and columns.

If there are not enough elements in the

123
Wolo2

VECTOReL 2 3 4 % & 7 8
HATRIXe3 ZpVECTOR
MATRIY ¢

right argument to fill the matrix, the
elements are repeated.

o 10 11 12
If there are more elements in the right
argument than are required to fill the

matrix, only the first (leftmost) elements
are used.

FOUReHpVECTOR
FOUR

The reshape p function can also be used
to create a vector.

The number of elements in the vector.

L2 3 n

MATRIM 410

Each element in the matrix can be operated

12 13
w1 16
1718 19

el 23 u G 67
€3 ZpNUMBERS+G

NUMEBE R
¥ AMPLES
EXAMPLES
& 78
9 10 1
12 13 14
RESULTSeEXAMPLES+MATRI
RESULTS ‘

(S

s

on by a single number (remember, the
value of MATRIX is not changed).

8 %
Remember that APL executes an
expression from right to left—the
result of NUMBERS+5 is used as
the right argument for the reshape

p function.
X

Each element in a matrix can be operated

Too7 11
13 1% 1
19 21 23

on by the corresponding element in another
matrix of the same shape.

EXAMPLES—continued

562 2oNUMBERS

MATRIXONUMEE R & <«—————— A matrix and a vector
RANK ERROR

MATRIXxNUMRBERS or

PN

MATRIXxLESS two matrices that do not have
LENGTH ERROR the same shape (number of rows

MATRIXXLESS and columns) cannot be used

A unless one of the arguments is

a single number.

REFERRING ONLY TO CERTAIN NUMBERS IN A STRING OR TABLE
OF NUMBERS (INDEXING)
. [|

Indexing is a way to refer to only certain elements in a string or table
by specifying the position of the element you want. The numbers you
use to specify the positions of the elements are called index numbers.
These index numbers are enclosed in brackets [] following the vector
or matrix to which they apply.

EXAMPLES:

TEMPe&E P4 78 &5 80 8% 72

TEMPL2] You can refer to a single
T element.

TEMPLE 1 20
TEHo&8 W t You can refer to several

elements. Notice that the
elements are displayed in
the order in which you
indexed them.
TEMPLZ2TI+TEMPLR 1 21

IO D A k You can index and use
other functions in the
same expression.

TEMPLT? 188 You can change a single
TEMP element of a vector.
AE THOTE &N B0 8% 88
TEMPLZE &7
TEMFLE &1 \You can also change several
a7 elements.

Introducing the APL. Language

27

28

EXAMPLES—continued

TEMPLS 1132 56
W

TEMP / Notice that the new values
56 TW 70 6% 32 70 B8 are assigned in the same order
as the index numbers.

For a matrix, you need

an index number for the
rows and an index number
for the columns—these
numbers are separated

by a semicolon.

TIMESe3 3pNUMRBE RS ~———————Remember, we have previously

TIMES assigned a value to NUMBERS.
|23
b5 6
;8w

Left side of the ; specifies
the row(s).

_ Right side of the ; specifies
the column(s).

— You can refer to a single

element
TIMESLZ, 2 /

or

!i:j
TIMESL3 2 31 you can refer to several

o v elements. In this case, you
TIMESTL,; 1 21 have referred to the second

12 and third elements in the
TIMESEZ 3,2 3] third row.

Notice that when you refer
to more than one row and
more than one column, your
result is @ matrix.

EXAMPLES—continued

f If you do not specify a
TIMESE?,] column, you get the whole
b5 4 row.
TIMESTE ;31
3 &6 9 t If you do not specify a row,
you get the whole column.

These values (the third
TIMESD ;1 31 column) are displayed
10X horizontally, because they
I & are a string of numbers
T (vector).

Note: Even when you select
entire rows or columns, the
semicolon is still required to
make it clear whether the
index number is for the rows
or columns.

TIMESEZ LAxTIMESLE ;) 3 d<«—— You can index and use
Xé other functions in the

TIMESES,; 210 same expression.
TIMES \
123 You can change the value of

g & elements in a matrix.

YOU ARE NOT LIMITED TO USING ONLY NUMBERS
K

Although the examples so far have used only numeric data, APL also
works with character data. Character data, for example, can be used

for headings on a table or to create a list of names. When you enter
character data, you must enclose the data in single quote characters (’).
These single quote characters indicate that the data is character data and
is not a variable name, a number, or a function. When character data is
displayed, the single quote marks do not appear.

Character data, like numeric data, can be a single character (scalar), a
string of characters (vector), or a table of characters (matrix). Unlike
numeric data, when you have a character vector or matrix, each character
is a separate element and is not separated from the other elements by a
blank. In fact, a blank in the character data is also a character (blank
character).

Introducing the APL Language

29

30

EXAMPLES:

iR Single character
A (scalar).

ARG —-—
ARG String of three

A3 characters (three-
e BN \ element vector).

T This expression does
not vield a result of
5, because the values
are characters, not

numbers.
NUMBER«WSHE
TERE T SNUMBER
NOMATN ERROR You cannot add
TLE3 T ANUMBER character data and
A numeric data.

¥ To place a quote within
CTION T DD THATS the character string,
GOM'T DO THAT you must use a pair

THANKS YOU ARE WELCOME of quotes.
THANKS \
YOU ARE WELCOME Character data can be

assigned to a variable

name.
i ‘ Blank characters.
NaMESe SaM JOHNJACKTOM
MATRIXNeY 4 pNAMES Create a character
MAaTRIXM matrix, each row
M represents a name.
AOHN
ALK
TOM
NAaMESES & 7 81
JOHN p,
MATRIXNEZ] Indexing works with
JOMHN character data also.

So far, you have used APL with some common arithmetic functions.
You have also seen how APL works with scalars (single data items),
vectors (strings of data), and matrices (tables of data). However, you
are not limited to just the functions we have discussed so far. In the
following chapters, you will be introduced to more things you can do
with APL.

Chapter 3. APL Functions That Require One Argument

In this chapter you will use some APL functions to do the following:
e Determine the whole numbers nearest a fraction.

® Sort a vector into ascending or descending order.

e Generate a random number.

e Find the shape of an existing variable.

There are additional APL functions that require one argument; however,
these functions will be discussed later, in Chapter 6.

HOW MANY ARGUMENTS ARE REQUIRED BY AN APL BUILT-IN
FUNCTION?

In this chapter, you will use APL functions with one argument. In the
next chapter, you will use some of the same APL function symbols with
two arguments. As you will see, these symbols perform different APL
functions when they are used with one and with two arguments. When
you use an APL function with one argument, the argument must be to the
right of the function symbol.

APL FUNCTION SYMBOLS THAT ARE A COMBINATION OF TWO
CHARACTERS

Some of the APL function symbols you will use are a combination of

two characters. You remember that when correcting keying errors, if

you positioned the cursor at a certain character and pressed another key,

a new character would replace the original character. However, certain
APL symbols require two characters, one struck over the other. For

these symbols, key the first character, backspace, and key the second
character. It does not matter in which order the characters are keyed.

The symbols that are a combination of two characters are called overstruck
characters. Appendix A shows the overstruck characters and the keys
required to enter them.

Note: If you key an overstruck character and then want to change it, you

can position the cursor at the character and key another character. The
new character will replace the overstruck character.

APL Functions That Require One Argument 31

32

DETERMINING THE WHOLE NUMBERS NEAREST A FRACTION ("
(,. s) Lo

When you want to disregard the fractional part of a number and just
consider the nearest whole number, you can use the floor | and ceiling [
functions. The floor function will round the number down to the next
smaller whole number and the ceiling function will round the number up
to the next larger whole number.

EXAMPLES:

e, 5y

LB ‘

IR

”
>If the number is already a whole number, the
X result is the same as the argument.

[5 The result for the floor and ceiling functions is
A determined according to the number’s position
on the number line:

(smaller) (larger)

(- | I [|
T T T T 1
43727101234

Rounding to the Nearest Whole Number

It is a common practice to round numbers to the nearest whole number.
You can do this by adding .5 to the number and then using the floor
function.

EXAMPLES:

Xéeb, 4+, ¥~mmm——o—— Rounds 4.4 to the nearest whole number.
X

K&l He,
LLX

we
!} 4——————— Rounds 4.6 to the nearest whole number.

LXeW e 5
by)
. AR > These examples could also be entered this way.
e U, 6+.5
Y2
A

SORTING A VECTOR IN ASCENDING OR DESCENDING SEQUENCE

e WO

The grade up 4 and the grade down ¥ functions can be used to sort a
numeric vector into ascending or descending sequence, because they
give you the indices of the argument in ascending or descending order.

EXAMPLES:
ACBD WY S22 3T 2% W 58 1EH 96
i /The largest value.is the ninth
8 5% 4 273 619 element.
The smallest value is the
eighth element.
Benland Indexing A this way sorts the
B elements of A in ascending
1S 29 37 u8 58 &2 W 80 96 order.
Remember, when indexing
elements in a vector, the
index numbers or the
index expression must be
enclosed in [1.
Py
1L & 3TN H 8
CenleAal The elements of A are sorted
Ls in descending order.

PéH B0 TH H2 HBE uE 37 29 1%

APL Functions That Require One Argument

GENERATING A RANDOM NUMBER
Q

To generate a random number, you can use the roll function ?, which
generates a random number between 1 and the value of the argument.

EXAMPLES:
KePdh Generates a number between 1 and 6.

w The result can be any number between 1 and 6.
Xe26 & & 6
" \ When this function is used with a vector, a

L 3 1 3 random number is generated for each element.

GENERATING CONSECUTIVE NUMBERS l 2]
|

There are times when you will want to generate a vector of consecutive
numbers from one value to another value. You can do this by entering
an instruction like this:

VECTOReL 2 3 4 % & 7 8
VECTOR
123 w56 78

However, you can also use the index generator function 1, which generates
consecutive numbers from 1 to the value specified by the argument.

EXAMPLES:

18 Eight consecutive numbers
L 234 8 6 7 8 —

w4

YEL TR 5+ % =————Fjve added to each consecutive number
VECTOR

& 7T 8 v L0
LIRS First 6 powers of 2

200 8 146 32 64

Generating an Empty Vector

An empty vector is just that—a vector with nothing in it (no elements).
Why have a vector with nothing in it? As you will see later, when joining
two items together or branching in a user-defined function, there are
times when you will want to generate an empty vector. One way to
generate an empty vector is to use 1 0.

EXAMPLES:

NaME

VaLUE ERROR An error occurs if you use a variable name that does
NAME not have a value assigned.
S

N&ME ¢ 1 (| =——— Generate an empty vector.
P ME
The result is a blank display line (no value).

FINDING THE SHAPE OF AN EXISTING VARIABLE

As you learned in Chapter 2, the left argument of the reshape function
determined the number of elements in a vector or the number of rows
and columns in a matrix. Thus, the number of elements in a vector or

a matrix is referred to as the shape of the vector or matrix. For example,
the shape of matrix M, which has two rows and three columns, is: 2 3.
To find the shape of an existing variable, you can use the shape function

0 -

EXAMPLES:

Blank display line—the shape of a scalar
PpVECTOR is an empty vector.

pMETRE X

pEtT———

EMPTY el Generates an empty vector.
EHPTY

Number of elements in the vector.

Number of rows and columns in the matrix.

Blank display line.
plEEMPTY
0 Number of elements in an empty vector.

APL Functions That Require One Argument

Chapter 4. APL Functions That Require Two Arguments

In this chapter you will use some APL functions that require two
arguments. You can use these functions to do the following:

e Compare the arguments to determine whether one is equal to, greater
than, or less than the other argument.

e Process logical data—true (1°s) and false (O’s} data.

e Find the larger of two numbers.

e Find the smaller of two numbers.

e Find the index of a value in a vector.

e Generate a random sequence of numbers.

e Compress (select certain elements from) a vector or matrix.
e Expand a vector or matrix by inserting zeros or blanks.

e Join two items together.

Find the logarithm of a number.

There are additional APL functions that require two arguments; however,
these functions will be discussed later, in Chapter 6.

36

RELATIONAL FUNCTIONS

When solving problems with APL, you might want to test the relationship
between two values. For example, you might want to test a counter to
see if it has reached a certain value; or you might want to do something
different in the solution to your problem, depending on whether a certain
condition is true or false. The following APL functions are used to test
the relationship between two values:

Function Symbol Key

Greater than >

Less than <

Greater than or equal to

v

Less than or equal to

IN

Equal to =

Not equal to #

When these functions are used, the relationship between the two values
is evaluated, and a 1 results if the relationship is true, and a 0 if false.

APL Functions That Require Two Arguments 37

38

EXAMPLES:

Aaeli
Be20
f=R
0
A= 10
1
AR
1
AR
1
AER
0
AE T ARE!
e DEF
=R
00 0 >
Ea Y
111

The = and # functions also work with character
data. Remember, each element is compared with
the corresponding element in the other argument.

Why Two Numbers Identical in Appearance Are Not Always Equal

APL stores all numeric values with an internal precision of 16 decimal
digits; however, decimal values with more than five significant digits are
normally rounded off to five digits before they are displayed. Thus,
occasionally, different numbers will look alike when displayed.

EXAMPLES:

Al =3
Be, 33333
14
0,33333 Only five of the 15 digits are displayed.
I
0.,33333
A The values are not equal.

[app [1PP is a system variable that determines how
many significant digits will be displayed. This
variable is automatically set to 5 when the
power is turned on or RESTART is pressed.
(The system variables are discussed in
Chapter 9.)

[1F P e | % ~———————Set the [JPP system variable so that 15
14 significant digits will be displayed.

0, IZRABIZTZZZXZIRRY
B \
0,33333 Notice the difference between the two values.

[IFrPes \
Set the []PP system variable back to 5.

Remember, the value displayed may not be the exact value that the 5110
has stored for the variable.

An Example Using a Relational Function

Suppose the correct answer to a problem has been stored as a variable
called RIGHT, and the answer supplied by a student has been stored as
a variable called ANSWER. To keep track of the student’s score, you
want to add 1 to his score if his answer is the same as the right answer;
otherwise, you want to leave his score unchanged.

APL Functions That Require Two Arguments

39

If the student got the problem right, it is true that ANSWER=RIGHT.
To add 1 to his score only if his answer is equal to the right answer, you
could enter this instruction:

SCORE«SCORE+ANSWER=RIGHT

Then the amount added to SCORE is 1 when the two values are equal
and 0 when they are not equal.

Suppose that instead of adding 1 when the student is right, you want to
give some problems more weight than others. The weight of the current
problem is stored under the variable WEIGHT. If the student gets the
problem right, you want to add WEIGHT to his score; otherwise, you
want to leave his score unchanged. You could enter this instruction:

SCORE«SCORE+WEIGHTxANSWER=RIGHT
If the student’s answer is equal to the right answer, then ANSWER=
RIGHT has the value 1, so the amount added is WEIGHT x 1. But if
the answers are not equal, then the amount added is WEIGHT x O,
which is 0.
LOGICAL FUNCTIONS
The logical functions take only ones and zeros as arguments and are used

to check for certain conditions. (They usually check the results of
relational functions.) The fundamental logical functions are:

Function Symbol Key

And A

Or v

In our discussion of the logical functions, we will use tables like the
following one to show the possible results of the logical functions:

Logical Function—— A 0 1 < Values of the Right Argument
0 0 0
1 l 0 1 ~— Results

t Values of the Left Argument

To use this table, simply find the value of the right argument on top of
the table and the value of the left argument on the left side of the table.
Then, follow the column represented by the right argument down and the
row represented by the left argument across. Where they intersect is the
result of the logical function when those values are supplied as arguments.
For example, find out what the result of 1 A O is as follows:

Follow the value of the right
argument down.

Follow the value

of the left They intersect here; thus,
argument across. 1 the result is 0.
And A
0
m
A 0 1 -——Right argument.
3t
0 0 0
1 0 1 <—The result is 1 only if both arguments are 1.
t Left argument.

The And function is used to check for two conditions being true.

For example, suppose you want to know when the items that cost more
than $100.00 have a quantity less than 10. You could use the following

instruction:

CCAST=1002ACQUANTITY =10
L Theresultis 1 when the

quantity is less than 10.

The result is 1 when the cost
is greater than 100.

Notice how the parentheses in this instruction specify the order of
execution.

APL Functions That Require Two Arguments

41

42

EXAMPLES:

QUANTITY 8
COBT«120
(COST=L00) A CQUANTITY <103
1 Both conditions are true.
GUANTILTY 2%
(COST=L00)A(QUANTITY =102
] At least one condition is
not true.

-—— Right argument.

-«—The result is 1 if either argument (or both) is 1.

Left argument.

The Or function is used to check for at least one of two conditions being
true.

For example, suppose you want to know when either the inventory for a
certain item is less than 10 or the orders for that item exceed the inventory.
You could use the following instruction:

CINVENTORY <1 0)v CORDERS = INVENTORY)

I—The result is 1 when the orders

are greater than the inventory.

The result is 1 when the inventory
is less than 10.

EXAMPLES:

INVENTORY 15
ORDERS«S
CINVENTORY =1 0)v(ORDERS = INVENTORY)

0 T —— Both conditions
ORNERS €25 are false.
CINVENTORY=10)v(ORDERS = INVENTORY)

1

At least one of
the conditions
is true.

Problems: Using Relational and Logical Functions

1. Itisvital to build error checking into all space systems to prevent
catastrophe. For example, two indicators checking one condition
are commonplace. If either or both of the indicators show danger,
action must be taken.

Assume that the A indicator is over its limit at 1.3725 amperes and
the B indicator is over its limit at 1.5365 amperes. Enter an
expression that will result in a 1 when one or both indicators are
outside their limits; the indicators read 1.3732 and 1.56362,
respectively.

2. A survey was conducted by the PTA in which the teacher and the
parent of the child each evaluated ten of the child’s characteristics.

One child’s teacher replied 1,0, 1, 1,0, 1,0, 0, 1, O to the questions
dealing with his characteristics. His parent answered 1,0, 0, 1,0, 1,
1,0,0,0.

Show which questions the teacher and parent both replied to with
al.

Possible Solutions

Problem 1:

CLLOSRANHE1, B3420 v B3P0, 3732

Problem 2:

Cvl0xd 001 1 01 00 1L 0A1 00 3L 0L 1000
Loow o &s0000

APL Functions That Require Two Arguments

43

44

FINDING THE LARGER OF TWO NUMBERS [D
5

The result of the maximum [function is the larger of the two arguments.

EXAMPLES:

Aed
Bed
Al i

(RXFEYAXA
34

To see how you could use the maximum function, suppose you work for

a department store. Each month the store calculates the amount charged
and the amount paid by each customer. Your job is to find the difference
between the total accumulated charges and the total accumulated payments
for each customer. This difference is stored in a variable named BALDUE.
The store also charges a service charge of 1.5% of the unpaid balance each
month. You could find this charge with the following instruction:

CHARGE € BALOUEX 615

However, some of the customers have overpaid their bills. For them,
BALDUE is a negative number and shows as a credit on their monthly
statements. |f you calculate the service charge by the instruction just
shown, you will be paying them interest at a rate of 1.56%. Instead, the
store prefers to calculate the service charge as 1.5% of the balance due
or of 0, whichever is greater. To do this, you ¢ould use the following
instruction:

CHARGE &, G130 BALIDUE

FINDING THE SMALLER OF TWO NUMBERS [| '
)

The result of the minimum | function is the smaller of the two arguments.

EXAMPLES:
Aes
BHed
ALE
5

(BB Aaxd

2%

Celd W7
e3 2 8
CL

R

v

7

Problems: Using the Maximum and Minimum Functions

1. Find the largest dollar expenditure for the following gasoline

purchases:

a. 16.8 gal at 57.9 cents per gal
b. 13.5 gal at 60.9 cents per gal
c. 15.6 gal at 62.9 cents per gal

2. For the following purchases, find the smallest quantity of nuts

received:

a. 71 cents for walnuts at 33 cents per Ib
b. 53 cents for cashews at 27 cents per |b
c. 64 cents for pecans at 29 cents per |b

Suggested Solutions

Problem 1:

(16 .8x,

9,812

Problem 2:

HEMCLE,

DAL ABPIVLG ., A%, A2Y

CPL=330 L 08327 64+29

L9463

APL Functions That Require Two Arguments

45

FINDING THE INDEX OF A VALUE IN A VECTOR
f

When you want to find out if a value is an element in a vector, and if it
is, which element it is, you use the index of function (1). The index of
function gives you the position (index) of the first occurrence in the

left argument of the values in the right argument. If a value in the right
argument is not in the left argument, the result is 1 plus the length of the
left argument.

EXAMPLES:

MNeQ
Q3 3% 23 8 16 29N

At ARCIEF G

Ay CAFE" \
1 &5
Be2 L
Cel 325 14 4 Index of the first occurrence.

(]
5 F Index generator function.

i

Index of function.

~
(R
/

Value does not occur in the
left argument; the result is 1
plus the length of the left
argument.

GENERATING A RANDOM SEQUENCE OF NUMBERS
Q

In Chapter 3, you used the roll function (? with one argument) to generate
one random number. But by using the deal function (? with two arguments)
you can generate a random sequence of numbers without generating the
same number twice. That is, the deal function generates the number of
random numbers specified by the left argument from 1 through the value
specified by the right argument. The random numbers are selected so that
no two numbers are the same. Therefore, the left argument cannot be
greater than the right argument. If you specify the left argument equal

to the right argument, you get all the numbers from 1 through the number
specified by the right argument, in random order.

EXAMPLES:

205
S ou May be any two different numbers
10710 between 1 and 5.

38 10 6 % 24 1 '?\
These numbers can be in any order, as

you will see if you enter this
instruction several times.

SELECTING CERTAIN ELEMENTS (COMPRESSING)
FROM A VECTOR OR MATRIX '

/

You can use the compress function / to select certain elements from a
vector or matrix. The left argument must be a vector of all 1’s and O’s
or an expression that results in such a vector. When you select elements
from a vector the number of elements in each argument must be the
same; the corresponding elements of the right argument are retained for
each 1 in the left argument.

EXAMPLES:
Vel 2 3 4 5 6 7 8
o1 3 01 1 1sv
L3 w6 78

0000000 0sv

Result is an empty vector.
Ael 00 0 0 0 0 1
N/

L0 1 o/ aptn:
ac

APL Functions That Require Two Arguments 47

48

When selecting elements from a matrix, you must select and omit entire
rows or columns. To do this, you must specify the coordinate (rows or
columns) to be acted on by using an index value [I]. The index value is
1 if the first coordinate (rows) will be acted on and 2 if the second
coordinate (columns) will be acted on.

EXAMPLES:

Bed Upold

I

1 2% 4

I T R & ‘

P N U T A Remember, the left argument must contain a
1 for each item to be selected and a O for each
item to be omitted.

01 00 0e
s5oA T O b The first coordinate (rows) is specified.
L0 L 050208 :

3 L The second coordinate (columns) is specified.

5o :

@11

10 1 078

1o \

oo If no index entry is specified, the last

A coordinate {columns) is acted on.

EXPANDING A VECTOR OR MATRIX
/

You can use the expand \ function to insert blanks or zeros in a

vector or matrix. The left argument must be a vector of all 1's or Os or
an expression that results in such a vector. The number of 1’s in the
left argument must be equal to the number of elernents in the right
argument. The O’s in the left argument indicate where the blanks or
zeros will be inserted; blanks are inserted in a character vector or matrix
and zeros are inserted in a numeric vector or matrix.

EXAMPLES:

R T VI B D N A
| o3 0oy

LA A A I R A AT S U
)R

When you expand a matrix, entire rows or columns of blanks or zeros
are inserted. As when using the compress function, you can specify the
coordinate (rows or columns) to be acted on by using an index value
[I]. The index value is 1 if the first coordinate (rows) is to be acted on
and 2 if the second coordinate (columns) is to be acted on. If no index
entry is specified, the last coordinate (columns) is acted on.

EXAMPLES:

The left argument must contain a 1 for each
row or column being acted on. That is, the
number of ones in the left argument must be
equal to the coordinate being acted on (for

Log o N example, the number of rows or columns).
30 u l——————— Insert columns.
R TV I I IO B
B L Insert rows.
ou
Y
02
30y
e If no index entry is specified, the last
[coordinate (columns) is acted on.
AR
I
L0
[
[

Problems: Using the Compress and Expand Functions

1. Define a vector called ACCTS containing these five accounts: 56
103 100 13 0. Select those with balances of $100 or
more.

2. Define the matrix DATA<3 35 19. Then insert arow in
DATA, with the values 20, 21, and 22, after the first row.

Possible Solutions

Problem 1:
Al h 103 LGD 13X 0
(ACCTSE1 00 /080T S
LOE 1006

APL Functions That Require Two Arguments

49

50

Problem 2:

1 0

7o

DATACS Fp?
UATA

3

&

9

DATA¢L 0 1 INCLIDATA
nATA

X

0

o)

Q
BaTal2,; Je20 21 22
DT

LA

5008

a

JOINING TWO ITEMS TOGETHER @

You use the catenate function (,) to join two vectors together to make

asingle

vector by placing a comma between the left and right arguments.

The number of elements in the resulting vector is the sum of the number
of elements in the two vectors being joined (catenated).

EXAMPLES:

L2 3

CAHTEN

ooMal

el 203
Bell 56
I
W% &
B
12 3
Ce"CAT!
e ENC
et aTION'
(P
ATION

A
L

N ERROR-<——— A vector must be either all numbers or all

R characters; therefore, you cannot catenate
A character data to numeric data.

You also use the catenate function to join two matrices together. To do
this, you can use an index value [I] to specify which coordinate is to be
extended (that is, whether the number of rows or the number of columns

is to increase). The index value is 1 if the first coordinate (number of

rows) is to be extended and 2 if the second coordinate (number of columns)
is to be extended. When no coordinate is specified, the last coordinate
(columns) is acted on.

EXAMPLES:

Aed 2pal
e 2plaely

(&)
1 2
3 i

&
56
Vo

AW e B You have just joined two columns to two
1 25 & existing columns (increased the number of
3478 columns).

AR
125 & \
3 uo7 o8

When no coordinate is specified, the last

(AT A & coordinate (columns) is acted on.
12
34
) In this case, you have joined two rows to two
T8 existing rows (increased the number of rows).

When you catenate two matrices, the arguments must conform—that is
the lengths of the columns (number of rows) must be the same if the
columns are to be catenated and the length of the rows (number of
columns) must be the same if the rows are being catenated.

r

APL Functions That Require Two Arguments

51

52

EXAMPLES:

AED D pl

a
iy 4
TR
Ce2 Jpd
G
b b &
& 6 b
P N [S
LENGTH FRR{OR <————The length error was caused because the row
P TR D T I coordinate was specified when A and C have rows
A of different lengths.
4
A
4
6
C
6 6 6
iy [21 =———— Note that the matrices can be joined along the
bbb s b b column coordinate, since the lengths of the
W SH b columns are the same.

Building a Vector of Results Using Catenation

Suppose that as you work through a series of problems you want to
accumulate the answers. One way to do this is to catenate each new
result to a vector of results previously obtained. If the most recent
result is in a variable called LATEST and all the former results are in a
vector called RESULT, you could use the following instruction:

RESULT«RESULT,LATEST

Note: The first time this instruction is executed, there is no value for
RESULT. Therefore, before you use this instruction, you should enter
the following instruction:

RESULT+«10
This instruction gives RESULT an initial value (makes it an empty
vector).
EXAMPLES:
LATESTe1L0+5
RESULTERESULT, LATEST
VALUE ERROR RESULT does not have a
RESGUL T RESULT, LATEST value; therefore, it is not a
A variable and cannot be used
in an instruction.
Give RESULT an initial
RESUL T 0 ‘// value (empty vector).
RESULT
Blank display.
RESULTERESULT LATEST
RESULT Now RESULT can be used.
15
LATEST«15%5+1 0
RESULTERESGULT, LATEST
RESULLT
15 25

Problem: Using the Catenate Function
Assign codes to variables as follows: A<‘l’, B<‘T’, C<‘D’, D«‘R’, E<'GH’,

F<'YO’, G«’ ’, and H«‘U’. Then see what message is displayed if you
catenate the variables in the following sequence:

FHGCACGABGDAEB

APL Functions That Require Two Arguments

53

54

Possible Solution

Ae" T

Be T

Ce'T"

e "R’

Ee ' GH'

Fe'vQ:

he ' !

He L

Fob, G Cotu GG, 8RB, G, 0,6, E, R

YOU DID IT RIGHT

FINDING THE LOGARITHM OF A NUMBER
[e] P

You use the logarithm & function to find the log of the right argument to
the base specified by the left argument. The log of a number B to a base
A is the power needed to raise A to the value B.

EXAMPLES:
A
Befws
B

£

A® i =—————The log of B to the base A.

.3
v

Problem: Using the Logarithm Function
1. What is the logarithm of 256 to the base 2?

2. To what power must 10 be raised in order for it to equal 100000?

Possible Solutions
Problem 1:
gl DESUTLN

8

Problem 2:
L0®100000

APL Functions That Require Two Arguments 55

Chapter 5. Applying the Same Function to all the Elements of a Vector
Collectively (Reduction)

It is often useful to have the sum (or the product, or the maximum, for
example) of all the elements in a vector. APL has a simple procedure for
applying the same function to all the elements of a vector collectively.
This function is called reduction, because it reduces a numeric vector
down to a single number that represents the sum, the product, or the
maximum, for example. The reduction operator is /. The left argument
is the function that is applied to all the elements in a vector; the vector
is the right argument.

You may have noticed that the reduction operator and the compress
function have the same symbol. However, you can tell the difference
between the compress function and the reduction operator by the left
argument. For the compress function, the left argument is a vector of
1’s and 0’s and for the reduction operator, the left argument is an APL
built-in function.

PLUS REDUCTION

EXAMPLES:
el 2 3 0
A

1+ 24+ 3444 5 <~————Adding all the elements of A together is the
1% same as +/A.

Using Plus Reduction To Find the Average

The reduction operator is useful for finding the average of the elements
in a vector. Suppose vector X is as follows:

56

The following expression could be used to find the average of the
elements in X:

AVEE (+/ X+ pX
aviG

Y 15N
2075

Now let’s analyze the previous expression.

1. We find the number of elements in X (the length of X):

&

2. Then we calculate the sum of the elements in X:

3. Now we can find the average by dividing 16.5 by 6:

AMGE LS 56

AV

Reduction

57

58

Problems: Using Plus Reduction

1. Using reduction, find the average amount that a certain family
spends each week on food. The weekly grocery bills for November
were $31.05, $29.78, $25.44, and $35.98.

2. Temperatures of a laboratory solution were recorded over a
12-hour period:

AM — 75.8°
AM - N9
AM - 77.0
AM - 803
10 AM - 85.1°
11 AM - 822
12 Noon — 83.2°
PM - 84.9°
PM — 85.3°
PM - 85.0°
PM — 825°
PM - 80.9°
PM - 78.4°

©CoO~NO®

OO WN =

Find the average temperature.

Possible Solutions

Problem 1:

BILLSe31L, 05 29,78 25,44 35,98
AVGE (+ARTLLES Y pRTLLS

AV

Problem 2:
TEMPe?S,8 71.9 77.0 80.% 85,1 2.2 83.2 84.9 85,3 85,0
Y o80.9 B4
AVOE CHSTEMPY = pTEMP
AVEH

80,962

82,

Using Plus Reduction to Sum the Products of Two Vectors

Suppose that PRICE is a variable that contains the price list for various
items sold by a store, and Q1 and Q2 are two vectors indicating the
quantity of these items ordered by two customers. Then the total bill
for customer 1 is the sum of the product of PRICE times Q1, and the
total bill for customer 2 is the sum of the product of PRICE times Q2.

EXAMPLES:

PRICE+ . &6 1.40 27,10 2,39 14,00 7.460 8.45 2.80
Qle 0 2 1 0 0 0 0
QIel2 7 05 0 0 0 10
+/QLXPRICE
06,59

+H/QDXPRICE

MINUS REDUCTION (ALTERNATING SUM)

EXAMPLES:
Aed o2 1N
-0
2
B d M «————/A is the same as this expression.

—ry
The following illustration shows why the answer is ~ 2.

Direction of processing is from right to left.

3 -2-1-4~«~———First operation (subtract 4 from 1; the result is 73).
\—\,./

\/ Second operation (subtract ~ 3 from 2; the result
is)

3 - b w— __ Third operation (subtract 5 from 3; the final result
N — is —-2)

Result.

Reduction

59

60

MAXIMUM REDUCTION: FINDING THE LARGEST VALUE IN A VECTOR

To select the largest single element in a vector, you can reduce the
vector using the maximum [function.

EXAMPLES:
RALDUVE €62, 15 127 4. u2 18,65 Amount owed
[/ BaLIUE by all the

L customers of a
store.
—_—
Largest amount

owed.

MINIMUM REDUCTION: FINDING THE SMALLEST VALUE IN A VECTOR

To select the smallest single element in a vector, you can reduce the
vector using the minimum | function.

EXAMPLES:

NUMREReL 1é& M 7 7%
LANUMEBER

OR REDUCTION: CHECKING FOR A SPECIFIC VALUE IN A VECTOR

Suppose you want to know whether a certain value exists in a long
vector. You could use Or reduction (v) to find the answer.

EXAMPLES:
l—\ Generate a vector of 50 random numbers.
NUMRE 55f“50 " 100 The result of NUMBERS=8 is a vector
v /NUMBERS =8 consisting of a 0 for each element of
0 NUMBERS that does not equal 8 and a

1 for any element that does equal 8.

When the vector (result of NUMBERS=8)
is reduced (the Or function is placed
between each element), the result is 1 if
at least one of the elements was 1.

A displayed result of 1 indicates that the
value 8 was in NUMBERS anda 0
indicates that it was not.

AND REDUCTION: CHECKING FOR ALL VALUES IN TWO VECTORS
BEING EQUAL

You can use And reduction (x)to determine whether corresponding
elements of two vectors are equal.

EXAMPLES:
Two vectors
/that have the
KEYeLl, 0L L.763 1,888 1.,234g 1, 20700 same number
LOCKe1 . 01 1.763 1.898 1.23us .20 of elements.
ALKEY=LOCK
] At least one of

the elements of
KEY does not
match the
corresponding
element of
LOCK.

Reduction 61

Chapter 6. Using the Built-in Functions

62

This chapter contains a summary of the things you can do with the APL
built-in functions. Some of the functions have already been discussed

in the previous chapters and all of the functions are described in the /1BM
5110 APL Reference Manual, SA21-9303. Also, there is an example
included for each function; you should enter these examples on your
5110 to see how these functions work.

Note: Many of these functions provide special computational capabilities.

NOW LET'S LOOK AT THE THINGS YOU CAN DO

Things You Can Do Function Name Keys

APL Functions That Require One Argument (see Chapter 3
for more information)

e Determine the next larger whole Ceiling l r
number S
[W, &8 b <——————If the number is already a whole number,
) the same number is the result.
e Determine the next smaller whole Floor
number o
L4, &8 2 «—————If the number is already a whole number,
y 2 the same number is the result.
e Sort a string of numbers in Grade up
ascending order H M
diaeX 7T O3 9 1 Indices of A in ascending order
5 3 1L 20
Al &Al Sorts A using the indices

1@ 37 ?

Things You Can Do

® Sort a string of numbers in
descending order

o201

73

Hex 7T 2 9 4

35

ALYal
21

Generate a random number

6

numbers

12 3

columns

Generate a consecutive string of

(]

W 5

Determine the length of a string
or the number of rows and
in a table

Function Name

Grade down

Keys

(] G

Indices of A in descending order

Sorts A using the indices

Roll

>
Q

The result can be any number between

1 and 6.

Index generator

14
I

Generates a string of five consecutive

numbers.

Shape

P
R

Length of the string named A

same instruction (the number of rows and

columns)

Reshape function (discussed in Chapter 2)

Shape function

Using the Built-In Functions

63

64

Things You Can Do Function Name Keys

APL Functions That Require Two Arguments (see Chapter 4
for more information)

The result from the following six functions is 1 if the relationship
specified by the APL function is true; otherwise the result is O.

e Determine whether two values Equal to @
are equal
BA=33
1
e Determine whether the left Greater than
argument is greater than the ’

right argument

oy

L&
1
e Determine whether the left Less than
argument is less than the right 3
argument
KA
1
e Determine whether the left Greater than or >
argument is greater than or equal equal to 6
to the right argument
R D N
L1
e Determine whether the left Less than or <
argument is less than or equal to equal to 4
the right argument
Ghb Y
11
e Determine whether two values Not equal to
are not equal B

sy
(F i

Things You Can Do

Function Name Keys

The following two logical functions are usually used to check
the results from relational operations. Logical functions can
use only 1's and O’s as arguments. The result is 1 when the

condition being checked for is met; otherwise, the result is O.

Determine whether two conditions And

are true 0
Lal 0

10

Determine whether at least one
of two conditions is true

Find the smaller of two numbers

Find the index of a given value
in a vector

Generate a specific number of
different random numbers

A6

Or v
g
Maximum f
S
Minimum L
D
Index of

=

The right argument is found in the third
position of the left argument, which is a
vector.

Deal ?
Q

Can be any three different numbers
between 1 and 6

Using the Built-In Functions

65

66

Things You Can Do

Function Name Keys

e Compress (select certain elements Compress
from) a vector or matrix /
100 172 3 4 5
208 Selects the elements that correspond to

e Expand a vector or matrix

10 1 0 L0 L ooNE 3D

the ones in the left argument

Expand

\
/

0 n 05 0=

e Join two arguments together

CCAT S TENT L TATION?
CATENATION

e Find the log of a number

204

L

Inserts elements according to the zeros

in the left argument

Catenate

Logarithm o *
(0] P]

Log of 8 to the base 2

APL Functions In Addition To The Ones Already Discussed In
Previous Chapters (see the IBM 5110 APL. Reference Manual,
SA21-9303, for more information)

e Change the sign of a number

¢ Find the reciprocal of a number

Negation

Signum

The result is "1 for a negative number,
0 for 0, and 1 for a positive number.

Reciprocal

Things You Can Do
® Raise e (2.71828) to a power
®1 3
2.718% 20,086
® Find the log of a number to the

base e

@2, 7183 20,086

® Multiply a number by pi
(3.14159)

ol 3
Solhls 9ouug

e Find the product of all whole
numbers between 1 and a
specified number

el

® ChangealtoaOoraOtoal

~1 0

® Determine whether at least one
of two conditions is false

01

® Determine whether two conditions

are false

Function Name

Exponential

Natural log

Pi times

Factorial

Logical not

Nand

Nor

Keys

L))

The result is the same as 1x2x3x4.

The result is 1 when at least one argument
is 0; otherwise the result is O.

v -
9 T

1¢1 0 <=—————— Theresult is 1 when both arguments are 0;

00

otherwise the result is 0.

Using the Built-In Functions

67

68

Things You Can Do

e Change a scalar or matrix into a
vector

MATRIX&Z Apré
MATRIX

123

b 5 6
SHMATRIX

123 w56

® Execute a character string as an
APL expression

i 2an

e Convert numeric data into
character data

Function Name Keys

Ravel i

The result is a vector.

Execute ° !
3 B

Format . T
N N

fi4 ¥ 214~ How to use this function with two arguments
) is discussed in the /BM 5110 APL Reference

24 -

Manual, SA21-9303.

o ~— This is a character value.

\ A is a two-element {(character) vector.

e Find the value of a number
without regard to the sign of
the number

153 "o
HA Wé

e [nvert a square matrix or compute
the pseudo-inverse of a rectangu-
lar matrix

Baes 2pl 305 7

e Reverse the elements in a vector
or matrix

o LIVE"
EVIL

Absolute value
™M

Matrix inverse

Reverse o
0

Things You Can Do Function Name Keys

® Find the remainder left over from Residue (remainder)

a divide operation

318
2 2 is the remainder of 8 divided by 3.

® Find the values for the trigono- Circular o
metric functions of an angle

JOREO The left argument specifies the trigonometric

il,\ function (in this case, tangent).
The result is the tangent of 45° (x : 4 radians).

® Find the number of combinations Binomial
of a number taking so many at a (combination) K
time
Sy
& Four items taken two at a time can make

six different combinations.

e Find out if a certain value (left Membership
argument) exists in a vector or £
matrix

CARET @ " BANANA ~—The result is 1 if the value in the left argument

L 10 exists in the right argument; otherwise the
result is 0.
® Express a value in another Decode (base value) a
number system
2060 4001 30 1%
S L - Expresses 1 hour 30 minutes 15 seconds

in all seconds

® Represent a value in a specified Encode
number system (representation) N

2460 H075H1S
1 30 1% Represents 5415 seconds in hours, minutes,
and seconds

Using the Built-In Functions

69

70

Function Name

Matrix divide N 0
X L

Things You Can Do

e Solve one or more sets of linear
equations with coefficient

matrices
24 PHRER Zp3 %5 102
A
e Take a certain number of elements Take
from a vector or matrix y
Fiael 23 45
12 A These three elements were taken from the
vector.
e Drop a certain number of elements Drop
from a vector or matrix Y
Aiia)
5 The result is the elements remaining after
the specified number of elements have

been dropped.

e Join two arguments together by Laminate @

forming an array with an
additional dimension : . .
/ Join along a new first dimension.

AL T B Y
Two vectors are joined to form a matrix.

o Rotate the elements in a vector Rotate
m

or matrix as specified by the
left argument

P U T S ¥
‘ Rotates the vector two positions

SRR R

Things You Can Do Function Name Keys

e Create data arrangements with at Reshape
least one dimension (a data R
arrangement with two dimensions

has both rows and columns)
«— Each number in the left argument is called

ARRAY+2 3 Jpif a coordinate—this N-rank array has three
BRRAY coordinates.
12 3
W54 Last coordinate is the columns.
’ gHoow . -
7 = ’ Next to the last coordinate specifies rows.
10 11 1 Leftmost coordinate is the planes.
K S L A Planes
La 17 1@
GRREAYL S, 3 You can index elements within N-rank arrays
16 by putting a semicolon between coordinates.
e |nterchange coordinates (such as Transpose or
rows and columns of a matrix) generalized 0 !
of an array transpose
nSERAY =— When used with one argument, this function
1 10 reverses the coordinates.
L X
o4 Note: This function could also be used with
a left argument that specifies how the
I coordinates are to be interchanged.
5o
g 17
A
Q@

Using the Built-In Functions 71

Things You Can Do Operator Name Keys

APL Operators

An APL operator applies certain built-in functions to all the
elements of a vector or matrix. The reduction operator has
already been discussed in Chapter 5.

e Apply the same function Reduction
collectively to all the elements !
of a vector

+/1 2 3 G

15 The sum of the elements
A3 & °F 19 2
el The largest element
L7232 & 77 1w 2
o The smallest element
e Apply the same function Scan .
cumulatively to each element

of a vector (the result of each
operation is used in the next
operation)

5l 3 3N

13 & 10
1
1
E 3 The scan function works the same as if you
3 entered these instructions. Remember, the
L4243

individual functions are executed from right

& to left.
L+2+344

10

e Generate operation tables for
various APL functions and data

Outer product

° H
g .

72

2 b &6 8B . Amultiplication table of numbers

1 through 4

Things You Can Do Operator Name

¢ Find the matrix product of two Inner product
matrices

Aed 2pl 23 4
Bed 2p 85 6 78
A+ xR
19 22
B3 50

e Table look-up Inner product

fréd bt MM IANE JACKKATE "
1
DN
SeE
HALK
KATE
VAN A g
1000 John is the first name in th
CALE A, sl

Keys

The matrix product of matrices A and B

e table.

00 1 0 Jack is the third name in the table.

Using the Built-In Functions

73

Chapter 7. Function Definition

74

WHAT IS FUNCTION DEFINITION?

Although APL has many built-in functions, there will be times when
you want a special function to solve a problem. APL allows you to

define your own functions (called user-defined functions) and store

them for repeated use.

HOW IS A FUNCTION DEFINED?
G

You use existing APL functions to create a new user-defined function.
The new function consists of:

e A function header containing the name of the function and other
information (the types of function headers are discussed later in
this chapter).

e An expression or series of expressions, called statements, which define
the operation(s) to be performed.

When executing APL expressions, the IBM 51 10 is in execution mode;
however, before a new function can be defined, the mode must be
changed to function definition mode. The v (del) symbol is used to
change the 5110 from one mode to another. FFor example, to change
from execution mode to function definition mode, a V is entered as the
first character in the function header; then after the function is defined,
another Vv is entered to close the function definition and change the
mode back to execution mode. Once the 5110 is back in execution
mode, you can execute your user-defined function.

Now, to show how a function is defined, let's create a function to find
the hypotenuse of a right triangle. The expression used for this could
be written as ((A*2)+(B*2))*.5, where we square the lengths of the two
sides A and B and then take the square root of their sum, which is the
length of the hypotenuse. The function must have a name by which it
can be identified, so let’s name this function HYP. Now enter the
opening V (to place the 5110 in function definition mode) and the
function header, as follows:

VHP & HYP 3 <—— Function header.
(I _\
APL responds with the number of the first

statement (expression) to be entered.

As each statement is entered, the next statement number is displayed.
Now enter the remainder of the function as follows:

HP& CCARD) 4+ (BR2))%, 5 ~——— Expression

v <\
Closing V — Changes mode back

to execution mode.

Notice that the names in the function header (other than the function
name itself) are all used in the body of the function. In particular,
notice how the result variable name, HP, is assigned the final result by a
statement in the function.

The display screen will now look like this:

VHPed HYP R
LI HP& AR+ (RR2) yw, 5
L3231 ¥

Note: |f you make a mistake when entering this function, see What To Do
If You Make a Mistake When Defining Your Function later in this chapter.

When you entered the closing v, the function HYP was stored in your
active workspace, so you can use it just like any other APL function
with two arguments.

EXAMPLE:
Lengths of the two sides.
3 OHYP i
b Length of the hypotenuse.
X4
Y8
X HYP Y
1a
Re3% & Like other APL functions, the arguments can be
L&} 8 in different forms.
R HYP L
w10

Whenever you want to use HYP, just enter its name with the arguments
you want. The symbol for the calculation of the hypotenuse of a
right triangle is HYP, just as the symbol for addition is +.

Function Definition

75

76

A function can have only one instruction, like HYP, or it can contain
many instructions.

EXAMPLE:

VHP¢A HYPL B «—— The function HYP could also have been
A2 ey 2 defined like this.
Baeliw?
QeDIeRe / Note that the closing V can also be on the
T HP«Sx, WY same line as the last instruction.
A HYPL 4
T Same result as HYP,

e Enaln

Problems: Using Function Definition

1. Define a function that displays the sum of any two numbers.
Then use the function.

2. Define a function that displays the area of any rectangle.
Then use the function.

Possible Solutions

Problem 1:

HeM SUM N
F11 GeM+NV
& BUM X
9

Problem 2:

VaeLENGTH AREA WINTH
CLT AeLENGTHOWIDTH
21 v

WOARES G
20

TESTING YOUR FUNCTION BEFORE USING IT
Once you define your function, you should always try using it with

data that will give you a known result. For example, suppose that in
the function HYP you used the following expression by mistake:

Should have been %
(AR (REDIIXVE

You would get an answer, but it would not be the right answer for the
hypotenuse of a right triangle.

When you test your function, one of the following will occur:

The 5110 will display the result you expect.

e The 5110 will display an error message.

The 5110 will display a result, but not the result you expect.

Nothing will happen.

If the 5110 Displays the Result You Expect
Great! Your function works.

Note: Even though your function worked one time, you may want to
test it some more to make sure it will work for each application you
intend to use it for.

If the 5110 Displays an Error Message

You can use the /BM 5110 APL Reference Manual, SA21-9303, to find
out what the error message means and what you must do to correct it.

Note: An error condition will cause the execution of your function to
stop; see Chapter 8 for more information on what to do when your
function stops executing.

If the 5110 Displays a Result Other Than the One You Expect, or
If Nothing Happens

In either of these cases, you have two alternatives:

® Display the entire function and check it for errors. Displaying the
Entire Function is discussed later in this chapter.

® Use the trace and stop features (discussed next) to help find the
problem.

Note: When a user-defined function is used and nothing happens
(that is, neither result nor the cursor appears on the display screen)
or a result is repeated continuously, the function is probably

looping. In this case, press the ATTN key to stop (suspend) function
execution. Chapter 8 contains information on what to do when your
function stops.

Function Definition

HOW TO USE THE TRACE AND STOP FEATURES
T H S _H

Trace TA

The trace feature allows you to watch the execution of your function,
statement by statement. That is, the final result calculated for each
statement traced is displayed. You can either trace all of the statements
or just certain statements in a function, To use the trace feature,

enter T4, the function name, «, and the statement numbers to be
traced. For example:

TAEXAMPLE«L 2 3 4 9 6
e R N
LThe statement numbers to be traced

The name of the function to be traced

The previous statement could also be entered as follows:

TAEXAMPLE 16

Generates a vector of numbers from 1 to 6

Stop S A

The stop feature allows you to stop the execution of your function just
before a specified statement is executed. That is, function execution

is temporarily suspended (suspended functions will be discussed in greater
detail in Chapter 8). After function execution has stopped, the 5110
displays the number of the next statement to be executed. To use the
stop feature, enter S, the function name, <, and the numbers of the
statements before which function execution is to stop. For example:

SAEXAMPLEER &

N

The specified statement numbers

The name of the function

After function execution has stopped, you can start it again by entering
+[] LC. [JLC (line counter) is a system variable that contains the next
statement number to be executed; see Chapter 9 for more information
about system variables, and the /BM 5110 APL Reference Manual,
SA21-9303, for a complete description of the [J LC system variable.

Now let's use trace and stop to find a problem in a function.

EXAMPLES:

VHPeA HYPX R
CLY "THE HYPOTENUSE 1& ' —~—Defines a function that calculates the
L2 AReax?D hypotenuse of a right triangle.

L3 R2epx2

LWl SepR+Rnn This function has an error in it.
L% HPe§ xM
Tests the function using data for which
X HYPX 4 /the correct result is known. The result

THE HYPOTENUSE 18 should be 5.
1205
Using the trace feature to find the problem

TAHYPXe2 3 4 5
I HYPX 4
THE HYPOTENUSE
HYPXE21 9
HYPXE3T 14

HYPXLW oy The correct result was obtained in each
HYPXEST 102.% statement except statement 5; therefore,
12,5 statement 5 probably contains the error.

TAHYPXe 0 To turn off the trace feature, use 10 as
the statement to be traced.

The 5110 responds with the function
name, statement number, and the result
of the statement being traced.

SAHYPXey W
Using the stop feature to find the problem

I HYPX i
THE HYPOTENUSE 18
The 5110 responds with the function

MY PX1 —_— name and the next statement number

B to be executed.
B2 When the function is stopped, you can
14 enter the variables to see if they con-
tain the expected values.

S ~— Continue execution by entering »~[]LC.
HYPXI5] Execution stops at the next statement
5 specified for the stop feature.
28
LG All the variables contained the correct
L2 % values; therefore, statement 5 must be
in error.

SAHYPXe 0
\ To turn off the stop feature, use 10 as

the statement to be stopped at.

Note: How to correct an error in a
function is discussed next.

Function Definition

79

WHAT TO DO IF YOU MAKE A MISTAKE WHEN DEFINING
YOUR FUNCTION

If you make a mistake when defining your function, you can correct it
by editing the function. When editing a function, you can do the
following:

e Display the entire function.

e Add one or more statements at the end of the function.

e Replace statements.

e |nsert one or more statements.

e Delete a statement from the function.

e Display a specific statement or from a specific statement to the end
of the function.

e Modify a single statement.

If you notice your mistake as you are defining your function, you can
correct it without reopening the function definition (the 5110 is already
in function definition mode). However, if the function definition is
closed, you must first reopen it. To do this, you must enter the v
followed only by the function name. If you enter the complete function
header, you will get an error message.

Now, let's define a function to use in doing some function editing.
Enter the following:

VETAT X
Mo ¥

/K

This function calculates the average, smallest, and largest number in a
vector of numbers. Notice that this function does not have a result
variable in the function header; however, it will still display the results.
The reason for having a result variable in your function will be
discussed later.

Displaying the Entire Function ([[])
l | l L | 1 l

To display a function, you enter [[]] immediately after any statement
number or as shown in the following example.

EXAMPLE:

This instruction opens, displays, and closes

| i

VETATLY the function definition.
V 8TAT X

MNepX

(+/%)+N \ _———Displayed function.

L/X

[/¥ Try the function.

STaT 2 9 1

e e

Function Definition 81

82

Adding One or More Statements at the End of the Function

To add statements to a function, you open the function definition and
the number of the first available line is displayed. Then you can enter
the statements you want to add.

EXAMPLE:

The 5110 displays the number of the first
available line.

ST «————~0pen the function.
S (7 7X)~ 7/ XV

T Add this statement to find the range of the
numbers in the vector. The V closes the function
(you are only adding one line).

YRTAT [[}1V¥ «——— Display the function.
VOSTAT X

I HepX
3 (S .‘/
: :"]i L /X X)+N -~—— Displayed function.
I [7%
I- %

(1A%~ /%

STAT % 2 1 «——Try the function.

Replacing Statements within a Function

To replace statements, the statement number to be replaced must be
enclosed in brackets [] followed by the new statement.

EXAMPLE:

VSTAT [[)]] <~ This instruction opens and displays the

V 8TAT X function.
11 Ne&pX
L2 {+/X)+N
L33 L/ X Displayed function.
LW 7%
LS (/XY= /X
§
‘ The 5110 displays the number of the first
/ available line.
i) Notice that you can specify another state-
Féd L2 (+/X)+pXW ment number by enclosing it in brackets.

Now, replace statement 2 with this state-
ment for finding the average. The V closes
the function.

In this example, you could also use the scroll
down key & and scroll up key § il

to place statement 2 on the input line 1. Then
statement 2 can be corrected; however, you
must make sure that statement 3 does not
appear on line 0 before you press EXECUTE.

YESTATIL Y =—————— Display the modified function.
¥ STAT X

1 Né X
Lal (+/ X Y
L3 ./ ~————— Displayed function.
uld I/ .‘"
N (/X)L /X
¥
STAaT 9 1 2
i
1
@
3

Function Definition

83

84

Inserting One or More Statements in a Function

To insert statements in a function, you must use a decimal statement
number that is between the numbers of the statements where you want
to insert the new statement. For example, to insert a statement between
statements 1 and 2, you could use the statement number 1.5 or any
decimal number between 1 and 2.

EXAMPLE:

Open the function.

The 5110 displays the number of the first
blank line.

WEHTHY
Fa 1.5 X Insert a staternent between statements 1 and 2;
) I the inserted statement displays the vector of
T1.61 ¥ numbers.

If you do not enter V , the 5110 responds
with another decimal statement number.

Enter the closing V.

YSTATE[] 1Y <«——— Display the function.
¥V os5TaT X

M px

¥

(4/7%)+pX . _—— Notice that the 5110 has renumbered the
LK statement numbers.

oy
P

Ly /X

v

STaT 9 21

Deleting a Statement from a Function
H

To delete a statement from a function, you enter [An], where n is the
number of the statement you want to delete.

EXAMPLE:

VSTATLE]1 =—— Open and display the function.

V 8TAT X
rid NepX
L2 X
l: 21 (/%)= pX |, — Displayed function.
s l.£X
LS /X
[N (/XY /X The 5110 displays the next available statement
F// number.

L¥Y Cawd Remove statement 4; you no longer need to
51 v know the smallest number.

Note: The closing V must not be entered on
the same line as [A n]; you must enter it on
another line or an error will occur.

VESTATIEIIV =——Display the modified function.

¥ 8TAT X
L1 NéepX .
naa X L
2371 C+/ K pX ~———— Displayed function—the original line 4 was
Lud /X deleted and the statements were renumbered.
(N (/XY /X

Y

STaT 2 9 1

29 1
n
@
a

You can also delete a statement by displaying the statement on input
line 1, pressing the ATTN key (to blank the entire expression), and then
pressing EXECUTE. Displaying a specific statement is discussed next.

Function Definition

85

Displaying a Specific Statement or from a Specific Statement to the
End of a Function

You have already seen how to display the entire function; you can also
display only one statement or each statement from a certain statement
to the end of the function. To display one statement, you enter [n[]],
where n is the statement number you want to display. To display each
statement from a certain statement to the end of the function, you
enter [[In], where each statement from statement n to the end of the
function is to be displayed.

EXAMPLE:

VETATIE 31 ¥+———Display statement 3.
L3l {(+/X)+pX

YATATLEM 1V ————Display each statement from statement 4 to
(N I'#X the end of the function.
50 (/X)L /¥

Modifying a Single Statement

You can correct keying errors in a statement of a function the same way
you correct keying errors made during entering of instructions in
execution mode. That is, the same procedures for inserting, deleting, or
replacing characters are used. To correct keying errors in function
definition mode, you must currently be entering the statement in error
or you must display the statement you want to correct.

EXAMPLE:

VETATIE 2]

Open the function and display statement 2.

£2 X
£21 N
L3} Vv

Enter an N to replace the X in the displayed line.
(You now want to know the number of elements

\ in the VeCtor.)

The 5110 responds with [3]; now enter the closing V.

VSTATIL[]1¥ ——— Display the function.

Vv STAT X
L1l NépX
L2 N
3] (+/X)+pX p=——N has replaced the X.
| /X
| /XD LK
v
STaT 2 9 1
X
I
]
a8

Editing the Function Header

You can edit the function header the same way you would edit any
other statement in the function. To do this, you specify statement O as
the statement to be edited.

EXAMPLE:

VETATLOISTATL X V<——The original function header is

VESTATLLIN \ replaced with this function header.

V STaTl X

L1l Né&pX Display the function.

a2l N

L3 {(+/X)=pX Note: Do not be concerned at this
Lul X time if the error message Sl

(R ([AX)~L7X

DAMAGE is displayed; this error

v message and a suggested user response
is described in the /BM 51710 APL
Reference Manual, SA21-9303.

VETATEIV -
ERROR

You cannot display the function
STAT because the function no
longer has that name.

IHEFN
VOHTAT

Function Definition

87

88

A Faster Way to Add, Replace or Insert One Statement in a Function

If your function is closed and you have only one statement to add,
replace, or insert, you can do it using only one instruction. For
example, the following instruction opens, changes, and closes the

function definition:

Opens the STAT1 function.

Specifies that statement 3 is to be edited.
Replaces the existing statement 3.

Closes the STAT1 function.

VETATIEXI(+ /X0 + NV

EXAMPLE:

r1l
K21
31
W3
W

3
I
o
@

THIG

L1l
L21
37
Il
53
L4l
L3

o

.

I
1
Y
a

\';I

v

v

VETATILLIV Display the STAT1 function.
STATL X

NepX

N

(+/X)+pX

/X

(AXY~ /X

VETATLLAT THIS STATEMENT WAS ADDED ¥

Add a statement to the function.

STAT1L 2 9 1 Now try the function.

STATEMENT WAS ALDED

VOTATIEL31(+/X) +N¥<————Replace a statement.
VSTQT1E3.SJL/XV*\\\\\\\\
VaTaTLopIv Insert a statement.

STATL X \
NepX

N

(4 /X)+N

/¥

[AX

([AXy~LA5X

"THIS STATEMENT WAS AllED

araTL 2 9 1

THIS STATEMENT WAS ADDED

Function Definition

Display the modified function.

89

90

TYPES OF FUNCTION HEADERS

Like the APL built-in functions, you can have user-defined functions
with one or two arguments. You can also have user-defined functions
without any arguments. The number of arguments required by a
function is defined in the function header. For example:

vRESULT<«ARGUMENT1 FUNCTIONNAME ARGUMENT2
ZThis function requires two arguments.

vRESULT<«FUNCTIONNAME ARGUMENT

\

This function requires one argument.

v RESULT<«FUNCTIONNAME

A’his function requires no argument.

When a function is executed, the value used for an argument is assigned
to the variable name that appears as the argument in the function
header. This variable is then used in the function. For example, you
might have the following function:

VRen DIVIDE &
L1 RedsRY

If you enter 10 DIVIDE 2, the value 10 is assigned to A and the value 2
is assigned to B. Now when the statement A : B is executed, the result
is b,

Note: For some user-defined functions (as with some built-in functions),
it is important that you enter the arguments in the proper order. For
example, if you enter 2 DIVIDE 10, the answer would be 0.2 instead of 5.

When you define a function with one argument, the argument must be
to the right of the function name; otherwise, the argument will be
treated as the function name, and vice versa.

EXAMPLES:

VReéd AREAL B<————— Two arguments—this function finds
[L11 ReAXRBY the area of a rectangle.
12 AREAL 12

il
VReSQRT X One argument—this function finds
L1 ReXox, 5Y the square root of a number.
Al B9 16 25 34
SART A The argument can be a vector.

234 36

VR«DTCH No argument—this function simulates
L11 Re?d & the roll of two dice.
21 W

LICE

15 The results can be any pair of numbers
niceE between 1 and 6.
3y

WHY HAVE A RESULT VARIABLE?

So far in our discussion of user-defined functions, we have usually
defined functions with a result variable. A result variable is a variable in
which the result of a function is temporarily stored for use in an APL
expression. When your function has a result variable, it is said to have
an explicit result. Without an explicit result, your function cannot be
used in an APL expression.

The following function has a result variable; therefore, it has an explicit
result.

Result Variable

VRESULTEQTY TTEMX CosT
CLT RESULTeCOST=QTY W

Result Variable

The result variable must appear in both the function header and the body
of the function (it must be included in the statement where the final
result is determined).

Function Definition

91

92

EXAMPLES:

FQTY ITEM COST <«————— Define a function without an
11 COST+QTYV explicit result.
10 ITEM &0

0.0&

STORE«10 ITEM .60 The result of the function cannot
0.06 be used in APL expressions.
valUE ERROR

STORE«10 ITEM D.6&

A

10410 TTEM |60
0.06

VALUE ERROR
10410 TTEM 0.6

A

YREGULT® TTEMY (& <«———Define a function with an explicit
13 RESULTeC+QV result.

10 ITEMY &0

.0
STORFE« L0 ITEMY &0 The result of the function can now
STORE be used in an APL. expression.
0,04
\ 1o+10 TTEMY .60 Remember, if you plan to use the
1

function you are defining in an APL
expression, you must provide a
result variable.

LOCAL AND GLOBAL NAMES

A name appearing in a user-defined function can be either /ocal or
global. A global name has the same value during the execution of a
function as it has outside of the function. A local name has a value that
is available only while the function is active. Any name appearing in the
function header (except the function name) is a local name. So far we
have seen that a function header can contain a result variable and argu-
ments. Because these variable names are contained in the function
header, they are local to the function. But other names can also be
made local to the function if they are placed in the function header
following the right argument (if any) with a semicolon preceding each
name. For example, the function header v LOOP R;l;J makes the right
argument R and the variables | and J local to the function. Now to see
how local and global names work, let’s use some.

EXAMPLES:

VGLORAL Define a function without
F11 GAe3 any local names.
21 GRey
L33 GCen
41 GA+GRAGOV

GLORAL
12
GA ?
3
GR Because these names are global
4. variables, they also exist out-
GC side the function.

VL.OCAL ;LA; LR, L.L <——— Define a function with all
L1 LAl e G local names.
E27 LRBey I
LX) LCes

Notice how the names are

Wl La+lLBelLCV made local to the function.
LOCAL
12 Execute LOCAL, then enter the variable
Ly names to see what values they represent.
ValLUE ERROR
L.é Because these variable names are
A local to the function, they repre-
LR sent a value only during the
VaLuUE ERRQR execution of the function.
LR
A
LG

VaLUE ERROR

LG Define a function using both
A local (GA and GB) and giobal
(GC) names.

VOOMBINATION,; GA; GR

L1l Gasd Local names that are the same

21 GReV? — as existing global names.

L3171 GCeB

Ll GA+GRAGOV Global name.
COMBINATION

21
iy
3 Notice that outside the function,
GR the existing global values (previously
. established by the function GLOBAL)
GG are used. The new values (6 and 7)
g existed only during the execution of

the function.
Because this variable name is not

local to the function, the global
value was changed.

Function Definition

93

Now, you are probably wondering why you should make variable names
local to a function. Following are some reasons for using local variables:

e Let's assume you have defined a function named COUNT that uses a
variable named X. At some later time, you assign the result of an
important calculation to a global variable named X. Now if you
execute COUNT, the following conditions can occur:

1. 1f X was made local to COUNT, the global value of X is not
changed.

2. If X was not local to COUNT, the global value of X (the
results of your important calculation) is changed.

e You can conserve space in your active workspace by not storing the
values for variables you do not use outside a function.

BRANCHING, LABELS, AND LOOPING

Branching and Labels

Statements in a user-defined function are normally executed in the order
indicated by the statement numbers, and execution terminates at the end
of the last statement in the sequence. However, this normal orde, ot
execution can be modified by branching (transferring to another point

in the sequence). Branching is indicated by a right arrow - followed by
a label that specifies the statement to be branched to.

For example, the expression ~START means branch to a statement
labeled START. When a label is assigned to a statement, the label is
followed by a colon and must precede the statement. The colon separates
the label from the statement:

L20 GTART: NeN+],

LE1 285TART

In the previous illustration, the label START is assigned to the second
statement in the function. In this case, START has a value of 2; however,
if the function is edited and the statement is no longer the second
statement in the function, START will automatically be given the value
of the new statement number. Now as the function executes, when
statement 5 is executed, a branch is taken to the statement labeled
START. If the same label appears more than once in a function, any
branches taken to that label always branch to the first statement with

the label.

Labels are local to a function; that is, fhey can be used only within that
function. Following are some rules that apply exclusively to the use of
labels:

® They must not appear in the function header.
® You cannot assign values to them.

There are two types of branch statements you can use—unconditional
branches and conditional branches:

® Unconditional branches are branches that are taken each time the
branch statement is executed. You have already seen an example of
an unconditional branch, [5] ~START, where the branch to the
statement labeled START is taken each time statement 5 is executed.
Another common use of an unconditional branch is -0, which causes
the execution of the function to be terminated.

® Conditional branches are branches that are taken depending upon
some condition that exists at the time the branch statement is executed.
Conditional branches are used, for example, to branch to a statement
if a condition is true and to otherwise continue with the next
statement (fall through). This type of branch can be entered like
this:

+(CONDITION)/N

The branch to statement N is taken if the condition is true; otherwise
the next statement is executed. For example, APL executes the
branch statement »(1>N)/START as follows:

1. First, the condition (I1>N) is evaluated; the result is 1 if the
condition is true and O if the condition is false.

2. The result of step 1 is then used as the left argument for the
compress (/) function:

a. If the result of step 1 was 1, START is selected from the right
argument and a branch to the statement labeled START is
taken.

b. If the result of step 1 was 0, nothing is selected from the right
argument (an empty vector is the result). A branch to an
empty vector means execute the next statement in sequence
(fall through).

Function Definition

95

96

in the following example, you will use two variations of a function to
determine the sum of each number from 1 to the value of the argument
(each function will use a different method of branching).

EXAMPLES:

[
L2
L3
ull
L5

6l

VSeSUM2 N
Ge
L&l
CHECK : = (T»N) /0 <~———Branch to 0 {(terminate the function) or fall
Qe84+ through to the next statement.
Tel+1
SCHECKY : Unconditional branch to CHECK.
SUMZ 5

YaHehGUME N
Ge0
Te0
CHECK : Geb+]
Tel+wl
S TENDY ZCHE (K ¥ =——— Branch to CHECK or fall through.

Looping

A repéated segment of a function is called a loop; when you have a loop
in.your program, you must provide a way to get out of the loop.

.EXAMPLE:

v0.oap This function executes a
L1l 1«0

continuous loop.
C27 LAREL: "THIS PROGRAM CONTAINS A LOOP:
L31 Telwl
CHD 9LARELY

LOOP

THIS PROGRAM CONTAINS a LOOP
“THIS PROGRAM CONTAINS A LOOP
THIS PROAGRAM CONTAINS A LOOP
THIS PROGRAM CONTAINS A LOQP
THIS PROGRAM CONTAINS A LOOPF
THIS PROGRAM CONTAINS A LOOP Note: To stop execution
THIS PROGRAM CONTAINS & LOOP of LOOP, press the ATTN
key.
LOORLE3] The name of the function

and the statement number
where execution stopped is
displayed.

V9LOOPLDW I+ I3 /L.ABEL V=————— Provide a way to get out of
VLOOPLOAV the loop.
v LOOP \
L1 e Display the function.
el LAREL: CTHIS PROGRAM CONTAINS A LOOP:
31 Telwl
LW LX) LAREL
'cf
LOOP

THIS PROGRAM CONTAINSG & LOOP
THIS PROGRAM CONTAINS A LOOP The loop is executed three
THIS PROGRAM CONTAINGS & LOOP times.

Function Definition

97

98

HOW TO ENTER DATA DURING FUNCTION EXECUTION
L K

So far you have defined functions for which you have supplied the data
for the function as arguments. This method of supplying data limits you
to two input arguments, and you must be familiar with the function so
that you can enter the required arguments in the correct order. However,
you can also define user-defined functions that display requests for input
data as the function executes. This type of function allows you to input
any amount of data; and you can also define your function so that it
specifies what type of data is to be entered. To do this, you use the

0 (quad) or M (quad quote) symbols in your function to request input
from the keyboard. Whena [J is encountered in a function, execution
stops and [J: is displayed to indicate that the system is waiting for
numeric or character input (character data must be enclosed in single
quotes) from the keyboard. When a [1 is encountered in a function,
execution stops, the cursor appears, and the system waits for input from
the keyboard; but in this case, everything on the input line from position
1 1o the cursor or the last character entered (whichever is the farthest on
the input line) is treated as character input, even though you do not use
enclosing single quotes when you enter the data.

EXAMPLE:

Enter the following user-defined function to determine the final score of a
baseball game:

VRASERALL

CLT CENTER THE NaME OF THE VISITING TEAM'
L0 VIGTITe) —

C3T "ENTER THEIR SCORE BY INNING'
SCORE]
ROTHE NatE OF THE HOME TEAM'
HEME &[]
TENTER THEITR SCORE BY IMNING'
HECORE ¢{]-
TOFINAL SCORE Wabk:

T

variables.

The score by inning was: REDS —

0 03
BLUES — 0 31

0
0

102 25
002 30

The input from the
keyboard will replace
the [] or [and be
assigned to the

EXAMPLE (continued)

Now execute the function:

Notice how the messages
/ identify the type of key-
BASERALL y board input required.

ENTER THE NaME OF THE VISITING TEAM

REDS This character data is not
enclosed in single quotes
because it was requested

ENTER THEIR SCORE EBY INNING by a [in the function.
fl:

‘ 0L 0 20 3 280 This is not character data
ENTER THE NaME OQF THE HOME TEAH because it was requested by a
RLUES 0 and is not enclosed in

ENTER THEIR SCQRE BY ITNNING single quotes.

. 000231300 Note: A []: indicates that

THE FINal SCORE Wa%: the keyboard input is reques-

RETHS ted by [] in the function; no

13 O: (blank line) indicates :

BLAUES that the keyboard input isi

4 requested by 7 in the
function.

When you are using interactive functions, there may be times when you
need to escape from a request for input. Normally, pressing the ATTN
key causes the execution of your function to stop; however, pressing the
ATTN key during a request for input does not stop the function (the
function continues to wait for input to be entered). Therefore, APL
provides a way to escape from input requests. To escape from a [] input
request, you enter -, which causes execution of your function to be
terminated.

To escape from a [input request, you must enter the ¥ (OUT) character.
You enter this character by holding the CMD key and pressing the

+

key once, and then pressing the EXECUTE key. This will cause the
execution of your function to stop. What you can do next when your
function stops is discussed next, in Chapter 8.

Function Definition 99

EXAMPLE:

RASERALL Let's use the BASEBALL
ENTER THE NAME OF THE VISITING TEAM fpnction to s_how how to
RENS escape from input requests.
ENTER THEIR SCORE RY TINNING
L 3 Entering - in response to
a [J input request causes the
execution of the function
BASERALL to be terminated.
ENTER THE NAME OF THE VISITING TEAM
3 Try escaping from a [1] by
entering . Your entry was
treated as a character, and
used as the visiting team’s
ENTER THEIR SCORE RY TNNING name.
[1:
111 4111111 Enter some numbers so that
ENTER THE NaME OF THE HOME TEAM the next ['] input request

will be displayed.

INTERRUPT
BASERALLLAT HOME«I
~ (holding CMD and pressing

the key once) causes
+

the execution of the function
to stop.

_\ .
— Entering the U character

100

Chapter 8. What You Can Do When Your Function Stops

The execution of your user-defined function will stop when:

e The ATTN key is pressed.

e The stop feature is used.

e An error is encountered in the function.

e A Dcharacter (the CMD key held and the key pressed once)

+

| is entered for a '] input request.

A function that has stopped executing for one of the preceding reasons
is called a suspended function. A suspended function is still active, since

its execution can be resumed later.

Now let’s look at what you can do when your function stops executing.

WHEN THE ATTENTION KEY 1S PRESSED
When you press the ATTN key during the execution of your user-
defined function, the function stops executing at the end of the state-
ment currently being executed. In this case, the 5110 displays the
function name and the next statement number to be executed.
After your function stops executing, you can do one of the following:
e Edit the function.

e Execute the function again.

e Execute another user-defined function.

e Execute system commands except for)JSAVE, JCOPY, and }PCOPY.
The system commands are described in the /BM 5710 APL Reference
Manual, SA21-9303.

e Terminate the function by entering .

What You Can Do When Your Function Stops 101

Generally, after you have stopped your function by pressing the ATTN
key, you will want to resume execution of the function at a later time.
To do this, you enter ~[] LC. [LC is a system variable that contains the
statement number of the next statement to be executed (see the /BM
5110 APL Reference Manual, SA21-9303 for a complete description of
the 1 LC system variable).

Note: If you want to resume execution at a statement other than the
one immediately following the last statement executed, enter ->n (where
n is the statement number at which you want to resume execution).

EXAMPLES:

VSFUNCTION; COUNT Define a function
L1 COUNTeQ with a continuous
E21 LOOP: "THIS FUNCTION CONTAINSG & LOOP° loop.

E30 COUNTeCOUNT+1

Cul »L00P

L5 "THES FUNCTION LOOPED
L6 COUNT

L7131 "TIMES'V

SFUNCTION

THIS FUHCTION CONTAINS A LOGOP Press the ATTN
THIS FUNCTION CONTAINS & LOOP key to stop execution
THIS FUNCTION CONTAINS A LODOP of the function.
THIS FUNCTION CONTAING A LOGP

THIS FUNCTION CONTAINS A LOOP

THIG FUNCTION CONTAINS A LOOP

THIS FUNCTION CONTAINS A LQOP

SFUNCTIONES] The function is

suspended at the
statement number

VEFUNCTIONDW I CCOUNT < 3) /LOOPY shown in the [] on

your display screen.
LG T

T Edit the function so

that it does not
contain a continuous

\ loop.

Resume execution
of the function.

102

EXAMPLES—continued

THIS FUNCTION LOOPED

K4 The value shown

TIMES here on your display
screen is the number
of times the function

looped.
SFUNCTION Now execute the
THIS FUNCTION CONTAINS A LOOQP function again.

THIS FUNGTION CONTAING A LOOP
THIS FUNGTION CONTAING A LOOP
THIS FUNGCTION LOOPED

3

TIMES

Note: When the shift key is held down and the ATTN key is pressed
during the execution of an APL statement or expression (either within
or outside a user-defined function), the execution of the statement or
expression stops immediately. The message INTERRUPT, the statement
being processed, and the caret (1) that indicates where the statement
was interrupted is displayed. You can use this method to interrupt
statements that take a long time to execute. However, any results
generated by the statement or expression before it was interrupted
might not exist after the interrupt.

WHEN THE STOP FEATURE IS USED

You are already familiar with the stop feature, which was discussed in
Chapter 7. When using the stop feature (as when using the ATTN key),
you can do the following:

e Edit the function.

e Execute the function again.

e Execute another user-defined function.

e Execute system commands except for)SAVE,)COPY, and)PCOPY.
e Resume function execution by entering ~[JLC.

® Terminate the function by entering - .

What You Can Do When Your Function Stops

103

104

WHEN AN ERROR IS ENCOUNTERED IN THE FUNCTION

The reason the execution of your function stopped in this case, unlike
the reasons in the other two cases, cannot be controlled by you. That
is, the 5110 automatically stops the execution of your function and
displays an error message when an error occurs in the function. The
error messages and a suggested user’s response for each error are
described in the /1BM 5110 APL Reference Manual, SA21-9303.

Errors in a user-defined function are sometimes difficult to find and
correct. The error message displayed indicates where the execution of
the statement stopped, and why; but the reason the failure occurred at
that point might have been because a mistake (either a keying error or

an error in the solution to the problem) was made earlier in the statement
or because a mistake was made in an even earlier statement in the
function. Following are some hints to help you find errors in a statement
or expression that is failing or giving the wrong results.

e Check the expression (statement) you entered for any keying errors.

e Analyze the execution of the expression from right to left. Remember,
APL executes an expression from right to left with the expressions in
parentheses resolved (right to left) as they are encountered.

e Use the shape p function to make sure the shapes of the arguments
are what you expect. For example, suppose you have a function
named CAT that catenates two vectors together to form one vector;
however, one of the arguments you supplied was a matrix (this
causes a LENGTH ERROR).

e Enter the names to check the values of the arguments to make sure
they are what you expect (local variables in a suspended function
can be displayed, since the function is still active).

e Break the expression down and execute it in smaller segments.
Theup 88 and down n arrows (scroll up and scroll down

keys) make it easy for you to break the expression down; that is,
you can execute the expression as APL does (from right to left with
expressions in parentheses resolved as they are encountered). To do
this, you enter the first operation performed by APL, for which the
result will be displayed. Then press the down arrow three times and
the up arrow once to remove the previous result from the display
screen (so that it is not on the input line when the EXECUTE key
is pressed again) and to place the instruction you just entered in a
position for you to add more operations. Now you can add the next
operation to the instruction, and the next, until the error in the
instruction is found.

e Display intermediate results from the expression using the 0 . This
does not change the final result. For example:

B[+ e 2
I

21

Itis important that you maintain a history (either a printout on the
printer or a handwritten copy) of what you did when you were trying
to find the cause of an error. Then if you cannot find the error and you
think the problem is caused by the 5110, this history will help your
service representative determine where the problem is.

When a function has stopped because an error occurred, as when pressing
the ATTN key or using the stop feature, you can do the following:

e Edit the function.

e Execute the function again.

® Execute another user-defined function.

e Execute system commands except for)SAVE,)COPY, and)PCOPY.
° Resdme execution of the function by entering -~ LC.

® Terminate the function by entering - .

WHEN A D CHARACTER IS ENTERED FOR A [INPUT REQUEST

In Chapter 7, you used the O character to escape from a [input request
and to stop function execution. In that case, the 5110 displayed the
message INTERRUPT, the function name, and the statement that
requested the input. After your function stops, you can do the same
operations that you did when the function stopped for any other reason.
However, in most cases, you will want to terminate the function by
entering .

FINDING OUT WHAT FUNCTIONS ARE SUSPENDED

The state indicator contains the function name and the number of the
statement to be executed next for each suspended function. To display
the state indicator, you enter)SI or)SINL. See the /BM 5710 APL
Reference Manual, SA21-9303, for more information on the state
indicator.

What You Can Do When Your Function Stops 105

106

USING THE HOLD KEY TO STOP PROCESSING

We have already discussed the ways a user-defined function can be
suspended. You can also stop the execution of a function by pressing the
HOLD key once. In fact, this stops the entire system from processing

any data. To resume processing after pressing the HOLD key, you must
press the HOLD key again. The HOLD key is useful when the information
on the display screen is changing rapidly; that is, you can stop processing,
read the displayed information, and then resume processing.

EXAMPLES:

VHOLIF Define a function.
11 He
Caod CPRESS THE HOLD KEY TO STOP PROCESHINGS
a1 LOOP:HeH+1
I3 M
51 4+ (H#25) 7L0O0PY

HOLIF
PRESS THE HOLD KEY TO STOP PROCESSING
1

)

&

3 The value displayed here on your

: display screen indicates how many

- times the function looped before
processing stopped.

HOLD Notice that the characters HOLD

are displayed in the bottom left
corner of the display screen when
the HOLD key is pressed once.

Now press the HOLD key again to resume processing.

Chapter 9. Using Tape or Diskette Storage (Your Library)

So far you have used only the 5110 active workspace. The active work-
space is the part of the 5110’s internal storage where the calculations
are performed; it is also the place where the variables and user-defined
functions are stored.- When you set the 5110 POWER ON/OFF switch
to OFF or press RESTART, the data in the active workspace is lost.
However, before turning the power off or pressing RESTART, you can
save the data in your active workspace by writing the contents of the
active workspace on a tape cartridge or diskette. This media (tape or
diskette) is like a library; that is, you can write the contents of your
active workspace on the media (like placing a book on the library shelf)
and, at a later time, put the information stored on the media back into
the active workspace (like taking the book off the library shelf to use

it again).

The library consists of one or more files (each file is like a book), and
just as each book in the library has a name, each file that contains
information on the media also can have a name (file identification).

The IBM 5110 system commands are your means of controlling the
active workspace and storage media (library). Look at the labels above
the alphameric keyboard; you can enter these system command key-
words by simply pressing the CMD key with the appropriate key below
the label. The system command keywords can also be entered character
by character. Notice that each system command begins with a) symbol.
There are some system commands that do not appear on the labels
above the keyboard. All of the 5110 system commands are discussed

in detail in the /BM 5110 APL Reference Manual, SA21-9303.

In the following example, you will see how some of the system com-
mands work. First, a tape cartridge or diskette must be inserted into
your system.

If you are using a tape cartridge:

1. Be sure the tape contains no data required for any further use.

2. Make sure that the SAFE switch (Figure 3) does not point to SAFE.

3. Insert the tape cartridge (Figure 4).

Using Tape or Diskette Storage (Your Library)

107

If you are using a diskette:

1. Be sure the diskette is initialized and contains no data required for
any further use.

Note: The IBM-supplied diskettes are initialized before they are
sent to a customer.

2. Remove the diskette from the protective envelope (Figure 5).

3. Insert the diskette into diskette drive 1 (Figure 6).

108

Make_ sure the SAFE switch

is in this position.

Figure 3. The SAFE Switch

Insert the tape cartridge as shown.

Figure 4. Inserting a Tape Cartridge

Using Tape or Diskette Storage (Your Library) 109

110

Figure 5. Removing the Diskette from the Protective Envelope

e T

—— T
llll\l\\ll\\lllllIIHHHIIIIIIIIIIIIIHIHTD\]
43

This label must be in
the lower right corner
as the diskette is
inserted.

Figure 6. Inserting a Diskette in Diskette Drive 1

EXAMPLES:

Press RESTART on your 5110; all the data that was in the active workspace is now
lost.

CLEAR WS This message will be displayed
when the 5110 is again ready
for you to enter data.

Enter the following function and variable so that you can store them on the media
for later use:

VEXAMPLE ; R; NAME
C17 "THIS FUNCTION COUNTS THE CHARACTERS IN YOUR NAME®
LZ21 "NOW ENTER YOUR NAME'
[31 NAMEeD
L4l "THERE ARE"
L3 e, NAME
Lé61 "CHARACTERS IN YOUR NAME 'V

VARTIABLE« 'LET' 'S SAVE THIS DATA"

Now try the function EXAMPLE to see if it works.

YNNG The)FNS system command
EXaMPLE displays user-defined function
names in the active workspace.

TIVARS The)VARS system command
VARIARLE displays the global variable
names in the active workspace.

Before the storage media can be used, the files you want to use must be formatted.

Using Tape or Diskette Storage (Your Library) 111

112

The MARK cormmand formats
files on the media. This com-
mand specifies:

— Size of the files to be

formatted
— Number of files to format

— Starting file number

by

YMARK 16 3 1
MARKED 0003 0016

— Device. If you are using

tape storage, specify 1
(tape drive 1). However,
if you are using diskette
storage, specify 11 (disk-
ette drive 1) instead of
tape drive 1. See the
IBM 5110 APL Reference
Manual for the default
device used by the system
if the device is not
specified.

APL will respond with MARKED,
number of the last file marked,
and the size of the files. If the
file you want to use has been
marked before, you will get a
message ALREADY MARKED.
In this case, enter GO and press
the EXECUTE key to reformat
the tape files.

Note: If you enter the]MARK command by holding down the CMD key and pressing
the key, the command is displayed as follows:
0

IMARK KB NFSFDEY

ng

-These characters identify the

parameters required for the
command and must be replaced
with the required information.
KB stands for the size of the files
to be formatted in K(1024) byte
blocks; NF stands for the number
of files to be marked; SF stands
for the starting file number; DEV
stands for the device number the
media is on.

After the)MARK command is executed, the files are formatted in blocks of 1024 bytes.
For example, the size of the files just formatted is sixteen 1024-byte blocks (or 16,384
total bytes). See the /IBM 5110 APL User’s Guide, SA21-9302, for information on

what size to format files.

Now let’s write the contents of the active workspace on the media. In the following
examples, if you are using diskette storage, specify device 11 (diskette drive 1) instead
of device 1 (tape drive 1). For example, device/file number 1001 should be 11001 for
diskette.

FCONTIMUE 1001 ¥ NF(<——This becomes the name of the
CONTINUED 1001 INFO file on tape.

This specifies the device/file
number (device 1, file 001)
to which the contents of the
active workspace are written.

JCLEAR You do not have to turn the
CLEAR Ws power off or press RESTART
to clear all of the existing data
out of the active workspace;
you can use this sytem
command.

The data in a stored workspace can be placed back into the active workspace.

o JROAI 1001 INFO <« The stored workspace name
LOAUET 1001 INFO (workspace 1D).

"The device/file number from
which the stored workspace
will be loaded.

Using Tape or Diskette Storage (Your Library)

113

114

YFNS
EXAMPLE. > Now the data that was stored
YVARS on the media is in the active

VARTARLE workspace once again.

The remaining system commands are described in the /BM 5110 APL Reference
Manual. Try using these system commands to see how they work.

So far, you have learned how to write the entire contents of the active
workspace on the media. However, you can also write one variable at a
time to a file on the media. This data can then be read from the media

at a later time in the same order as it was written to the media. For

more information on how to do this, see the /BM 5110 APL User’s Guide.

WHAT ARE SYSTEM VARIABLES?

System variables are variables within the active workspace that control
the system. All system variables begin with the [J symbol and are set to
an initial value by the 5110 in a clear workspace. See the /BM 5110
APL Reference Manual for a complete description of each system
variable. In the following example, you will see how the value of some
system variables can be changed and how this affects certain APL
functions.

EXAMPLES:

The index origin [J1O system variable determines the index origin. The value of

the []10 system variable can be either 0 or 1, which means that the first element of

a vector or array is indexed with a 0 or 1 depending upon what the [J1O system

variable is set to. The APL functions 1 ? A ¥ and indexing ([1) are affected by the
[0 10 system variable.

1o You can display the value of a
system variable the same way you
display the value of any variable.

The []10 system variable is
initially set to 1 by the system.

Results when the []10 system
variable is set to 1.

373

312 These numbers can be in any
(1100 order,

01 2 34 You can change the value of
33 some system variables.

120
Notice how the results of these
APL functions change when the
[J10 system variable is changed.

These numbers can be in any
order. Notice that the values
start from 0.

The printing precision [JPP system variable determines the number of significant
digits displayed.

[pp
o The [JPP system variable is
1+3 initially set to 5 by the system.

1=+ Five significant digits are
0,33 displayed.

Now only two significant digits
are displayed.

The comparison tolerance [JCT system variable determines how close two numbers
must be when you are using the relational. floor, or ceiling functions.

cT The []CT system variable is
LE"13 initially set to 1E~ 13 by the
COGGEERR G | BEREREET system.
0 \
[CT&1E "5 These two values are not
COBHHEB G BREEEET considered equal.
1 \
Now these two values are
considered equal.
YCLEAR The workspace is clear and the
CLEAR WH = system variables are once again

set to their original values.

Using Tape or Diskette Storage (Your Library)

115

116

REMEMBER, APL IS A GOOD LANGUAGE
TO EXPERIMENT WITH. THE MORE YOU

EXPERIMENT, THE MORE YOU LEARN.

Using Tape or Diskette Storage (Your Library) 117

Appendix A. Overstruck Characters

Using Using the CMD
These Key and Pressing

Name Character Keys This Key
Comment A

C
Compress # (See note) ‘ I{ l
Execute e

B
Expand % (See note) ' I

¥}
Factorial, Combination ! .]
Format 7 =

N
Grade Down ¥ v

G
Grade Up A A

H
Logarithm ® *]

P
Matrix Division 8]

F
Nand A
Nor v

<

Protected Function

118

Using Using the CMD

These Key and Pressing
Name Character Keys This Key
Quad Quote m
Rotate, Reverse [0)
‘Rotate, Reverse e (See note)
Transpose &

Note: These are variations of the symbols for these functions; they
are used when the function is to act on the first coordinate of an array.

Overstruck Characters 119

Index

)JCLEAR command 112, 1156

)CONTINUE command
)FNS command 111
)LOAD command 112
)MARK command 112
)VARS command 111
(11 48,49, 51

() 81

[On] 86

[n[J] 86

(An] 85

0 98

: 98

[IcT 115

(no 114

ppP 39,115

M 98

-[]LC 79,102
Ocharacter 99, 105
Vsymbol 74

[function 32, 44

| function 32,45

A functien 33

¥ function 33

? function 34, 46

1 function 25, 35

p function 35

< function 37

< function 37

> function 37

> function 37

= function 37

function 37

A function 40, 41

v function 40, 42
/function 47,48

, function 560

® function 54

active workspace 107
adding statements 82
addition 17
alpha keys 2

120

alphameric keys 2
ALREADY MARKED
alternating sum 59
and function A 40, 41
and reduction 51
APL language 1

APL system command keywords

arguments 17, 31,90
arithmetic function keys

arithmetic operations 17

assign avalue 20
assignment arrow 20

112

4

attention key (see ATTN key)

ATTN key 4, 14,77, 101

average 56

backspace key 4, 10, 11, 12

BASIC/APL switch 4
black background 9
black characters 9
blank character 29
branching 94
brightness control 9

buitt-in functions 1, 17, 62

calculator arrangement 4

catenate function, 50
ceiling function [32
character data 29
CLEARWS 4

closing Vv 75

CMD key 4, 11
column 25

command keywords 4

comparison tolerance [JCT

compress function/ 47
conditional branch 95
conform 51

consecutive numbers 34
control panel 1

115

4

coordinate, acted on 48, 49
correct a keying error 13
correcting keying errors 10
cursor 7

deal function ? 46

default device 112

del symbol 74

delete a character 11

deleting statements 85

diskette 107, 108, 110

diskette drive 110

display appearance 9

display global variable names 111
display registers/normal switch 4
display screen 1,7

displayed information 7, 8

displaying a statement 86, 87
displaying data 7

displaying from a specific statement 86
displaying the entire function 81
displays user-defined function names 111
division 17

down arrow 9, 14, 75

editing a function 80

editing the function header 87
empty vector 35, 53

entering data 7

entering data during function execution 98
equal to function= 37

error in the function 104
error message 21, 77, 104
escape from input requests 99
EXECUTE key 4,8, 14
execution mode 74

expand a vector or matrix 48
expand function \ 48
explicit result 91

features 1

files 107

flashing line 7
floor function | 32
format files 112

forward space key 4, 10, 11, 12
function body 75

function definition 74
function definition mode 74
function editing 80

function execution stops 101
function header 74, 87, 91, 92
functions 1

global names 92

global variable names 111

grade down function ¥ 33

grade up function 4 33

greater than function > 37

greater than or equal to function > 37

history 7
HOLD key 4, 106
HYP function 74

index generator function 1 34
index numbers 27

index of a value 46

index of function 1 46
index origin (JIO 114
index value [I] 48, 49, 51
indexed 33

indexing 27

indicator lights 1

input 7

input line 9

insert a character 12
insert blanks or zeros 48
insert tape cartridge 107
inserting statements 84
instructions 74
interactive functions 99
internal checks 4

internal precision 39

Index

121

join two items 47

keyboard 1,6
keying errors 10
keys 1

keywords 4, 107

labels 94

larger of two numbers 44

less than function < 37

less than or equal to function < 37
library 107

local names 92

local variables 94

logarithm function® 54

logarithm of a number 54

logical functions 40

looping 77,97

lost lines 9

lowercase alphabetic characters 15
lowercase character mode 15

L32 64 R32 switch 4,9

matrices 22

matrix 25, 29
maximum function [44
maximum reduction 60
minimum function | 45
minimum reduction 60
minus 18

minum reduction 59
modifying a statement 86
move display lines 9
multiplication 17

negative numbers 18
negative sign 18

not equal to function 2 37
numeric keys 4

122

operating keys 4

or function v 40, 42

or reduction 6

order of execution 21,22
overstruck character 31

parentheses 22

place a stored workspace into the active
workspace 112

plus reduction 56

portable computer 1

power function * 12

power up sequence 4

printing precision [JPP 115

quad input 98
quad quote input 98

random nurnber 34, 46
reduction 56

relational functions 37
reopen function definition 80
replace a character 10
replacing statements 83
request for input data 98
reshape function 25
restart sequence 4

restart switch 4

result variable 75, 80, 91
reverse display switch 29
roll function ? 34

root of a number 20
rounding off numbers 32
row 25

SAFE switch 107
scalar 29

scroll down 75, 86
scroll down key 4,9
scrollup 75, 86

‘scroll up key 4,9

selecting certain elements 47
semicolon 28

set up procedure 1

shape 35

shape function p 35

shift key 2

single quote characters 29
smaller of two numbers 45
sorting a vector 33

special character combinations
standard APL character mode
standard typewriter 2

state indicator 105
statement number 75
statements 74

stop control feature 103
stop execution 78

stop feature 78

stop processing 106

storage media 107

storing data 20

strings of numbers 22
subtraction 17

suspended functions 78, 101
switches 1,4

system command keywords 4, 107

system commands 107
system variables 114

tables 22

tape cartridge 107
testing your function 76
trace feature 78

turn off stop 79

turn off trace 79
typewriter 2

unconditional branch 95
up arrow 9, 14,75
user-defined functions 17, 74

variable name >20
variables 20
vectors 22,29

white background 9
white characters 9

write the active workspace to tape

5110 Model 1 1
5110 Model 2 1

Index

123

124

READER'’S CUMMENT FORM

Please use this form only to identify publication errors or request changes to publications. T_ech nical questions about IBM systems, changes in 1BM programming
support, requests for additional publications, etc, should be directed to your IBM representative or to the |BM branch office nearest your location.

Error in publication (typographical, illustration, and so on). No reply.

Page Number Error

Note: All comments and suggestions become the property of 1BM.

® No postage necessary if mailed in the U.S.A.

Inaccurate or misleading information in this publication. Please tell us
about it by using this postage-paid form. We will correct or clarify the
publication, or tell you why a change is not being made, provided you
include your name and address.

Page Number Comment

Name

Address

uonONPOU| dV

OoLLg NGi

0-10€6-LCVS

SA21-9301-C

-__.-_._...__.———.——-—.__-_—-.—.——___..—_._.——_____.—.___.___—_._.

FIRST CLASS
PERMIT NO. 40
ARMONK, N. Y.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY . ..

IBM Corporation

General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

uo1ONPOIIU| TdV 0’ ~ WA

—_— — — — — — aujbuoyin — — — — —

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.0. Box 2150

Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway

White Plains, New York 10601
US.A.

(International)

TR N Ul palulid

We6-12vS

—
—J
-
=
E— =
v

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W,
P.O. Box 2150

Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway

White Plains, New York 10601
US.A.

(International)

SA21-9301-0

uondnpo.ul 1dv 0L LS WAl

0-l0€6-12¥S VSN ui pajutid

	0000
	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	replyA
	replyB
	xBack

