
\8M 5110 A.PL Reference Man
ua

'

SA21-9303-0

o -r-

Preface

This publication is a reference manual that provides
specific information about the use of the IBM 5110
Computer and the APL language. It also provides
information about forms insertion and ribbon
replacement for the 5103 Printer. This publication is
intended for users of the 5110 and the APL language.

Prerequisite Publication

IBM 5110 APL Introduction, SA21-9301

First Edition (December 1977)

Related Publications

• IBM 5110 APL Reference Card, GX21-9304

• APL Language, GC26-3847

• IBM 5110 APL User's Guide, SA21-9302

• IBM 5110 Customer Support Functions Referencl~
Manual, SA21-9311

Changes are continually made to the specifications herein; any such changes will
be reported in subsequent revisions or technical newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or the I BM branch office serving your locality.

A Reader's Comment Form is at the back of this publication. If the form has
been removed, address your comments to I BM Corporation, Publications,
Department 245, Rochester, Minnesota 55901. Comments become the property
of IBM.

© Copyright International Business Machines Corporation 1977

____ ..au ~

...... ~I..mstt. ~ _ DlIMQIJ ~ ----= ~=:= --............ _-....._ --
Date Change number

!-----~-+-."'--"'--.--.--.--,,--.--

PUBLICATION DRAWING

Base form number: SA21-9303
Title: IBM 5110

APL Reference Manual

NOTE: All items following the last row of asterisks are to be shipped.

Change number Form/TN l Description/Comments

1 Nov 77 832459
1--------+-------"---------1

10 Jan 78 835462
IOAPR 18 835514

2..2 JUN 18 835515

\! JUL 16 836558

~----------~----------.----------

**************** ************** **
832459 SA21-9~03-0 First Release
835462

835514

836558

SN21-0282

SN21-0284

SN21-0289

TNL to add information about 5110 compatibility with
! the 5100

TN L to make miscellaneous corrections and additions.

TN L to make miscellaneous corrections.

jfi---- ---- .--- .-..-_ , __ -=..._ -.......:wI

.... ______ "£1 - --- -... _--- - ... -----.---.... - _ ... ----- .. - , --

.. PUBLICATION DRAWING

_ partn~mbe~_J~Jl 3 6 7 9 0]

f--N-o-;~F ... ·83~~;gO num~~
1--__________________________ I __ ?~_'2-__ \L~~_'_l~~~ __ +-8_3_6_5_3_6 ______ --11

I
I

Base form number: SA21-9302 1
Title: I BfJl 5110

APL User's Guide I---------__ f---------.-------'---l

1---------.--.--/---------------1

NOTE: All items following the last row of asterisks are to be shipped.

1--

Chunae number Form/TN L Description/Comments
****************~**************~**

832459 Sf~21 - 9302 - 0 First Release
**************** .**************+************************************** ****i***************

836536 SA21-9302-1 Major revision to clarify several operations

'----------.....L...-------I-----:-, .. ~~?-waf---~.:.....:· ___________________ ~ __ -J

.- - -­.---- --.
.... - - ===.~.

-.----.. ----.. ------ ---;,;r~n~·~·~~·I-483 6 39 4~
~, -" ::-=- --==-=-==--.~=::::::--:::::::::- --='-~=-:=-~ _._---­_.- _.-

PUBLICATION DRAWING

Ba~e form number: SA21-9301
Title: IBM 5110

APL Introduction

NOTE: All items following the last row of asterisks are to be shipped.

Date Change number I

I-----_____ +-_ -------___ . ______ ~
1 Nov 77 832459

~-------.--I-.--- _.--.--.. ------.

--l-------.---- -.----

~------ ---jf----------.-.. ------

I-________ ..L-______ . _______ _

I=F=====:.=======;::::-=====--.. ---------r---~-------.----:-.. --.... - -:-.:.=----.-----:::=----.::-.:::=-:.=::=...--;::.:.- ..:' -=-::: :. ' .. :

Change number Form/TN L Description/Comments
****************~**************~**
832459 SA21-9301-0 First Release

J

-.. -'-.-~

~::~~~/TeChnical Newsletter

i
This Newsletter No. SN21-0289

Date 15 June 1978

Base Publication No. SA21-9303-O

IBM 5110
APL Reference Manual

© IBM Corp. 1977

File No. None

Previous Newsletters SN21-0279
SN21-0282
SN21-0284

This technical newsletter provides replacement pages for the subject publication. Pages to be inserted
and/or removed are:

41,42
83 th rough 88
88.1, 88.2 (added to accommodate moved text)
129,130

Changes to text and illustrations are indicated by a vertical line at the left of the change.

Summary of Amendments

This technical newsletter contains additional information about the (•) inner product operator and the
following scalar functions:

• > greater than

• equal to

• < less than

• 2: greater than or equal to

• ~ less than or equal to

• 7- not equal to

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901

©IBM Corp. Printed in U.S.A.

I

Technical Newsletter This Newsletter No. SN21-0284

Date 28 April 1978

IBM 5110
AP L Reference Manual

© IBM Corp. 1978

Base Publication No. SA21-9303-0

File No. None

Previous Newsletters SN21-0279

SN21-0282

This technical newsletter provides replacement pages for the subject publication. Pages to be inserted
and/or removed are:

43 through 46
177 through 182
185, 186
203 through 206

225, 226
237 throug,h 240
240.1, 240.2 (text rearranged)
241,242

Changes to text are indicated by a vertical line at the left of the change.

Summary of Amendments

Miscellaneous corrections and additions have been made to clarify several operations.

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901

©IBM Corp. 1978 Printed in U.S.A.

Technical Newsletter This Newsletter No. SN21~0282

Date 10 January 1978

Base Publication No. SA21-9303-0

File No. None

Previous Newsletters SN21-0279

IBM 5110
APL Reference Manual

© IBM Corp. 1977

This technical newsletter provides replacement pages for the subject publication. Pages to be inserted
and/or removed are:

227,228

Changes to text are indicated by a vertical line at the left of the change.

Summary of Amendments

Additional information about 5110 compatibility with the 5100 is included in this technical newsletter.

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901

© IBM Corp. 1978 Printed in U.S.A.

Technical Newsletter This Newsletter No. SN21-0279

Date 30 December 1977

Base Publication No. SA21-9303-0

File No. None

Previous Newsletters None

IBM 5110
APL Reference Manual

© IBM Corp. 1977

Th is technical newsletter identifies operational characteristics of your 5110 that vary from those described
in the IBM 5110 APL Reference Manual. Please refer to this list as you use the manual.

Page

17

43

54

181

182

182,185,
188

187

If You Are Using

APL PROC file

Diskette Recovery
Customer Support
Function on Model A 1

)SORT

Serial I/O Feature
or write exchange
(type 2) tape file

OUTF TYPE==A

ADD to a mixed
record file

Shared Variables
with diskette

Note This Consideration

Procedure files for APL must be generated by an APL program
or a BASIC program. The BASIC SAVE command in DATA
mode cannot be used.

This is not available on a 16K machine.

Before executing)SORT be sure that the printer is switched
off. An alternative is to execute:

1) OUTSEL OFF
2) OUTSEL OUT

Failure to do so will cause a machine error.

If you are writing to Serial I/O or writing an exchange
(type 2) tape file, the last record may not be written
correctly. You should write an extra record at the end.

If you are writing OUTF to a TYPE=A file, use file sizes
of 2K or greater.

Do not attempt to ADD to a type 15 (mixed record file)
on diskette.

Do not open diskette drive door during shared variable
operations.

IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901

©IBM Corp. 1977 Printed in U.S.A.

CHAPTER 1. OPERATION
IBM 5110 Computer Overview
Display Screen
Switches.

Power IOn or Restart Procedures
Display Screen Control

Keyboard
Attention
Hold
Executel .
Command
Positioning the Cursor and Information on the

Display Screen
Copy Display

Indicator Lights .
Process Check
In Procl3ss .

CHAPTER 2. ABOUT YOUR 5110
Data Representation ..

Numbers
Scaled IRepresentation (Scientific Notation)
NumeriG Value Range .
Numeric Value Precision
Charactler Constants
Logical Data .

Storage Requirements
5110 Storage Capacity and Models
Performance Considerations

Turning the Display Screen Off
Overlapped Printing .

Variable and File Names
Name Processing
Procedure IFile

Creating a Procedure File
Using a Procedure File
Doing Input/Output Operations
Entering Data from the Keyboard .
UpdatinlQ a Procedure File on Diskette

Tape Data Cartridge Handling and Care
Tape Head Cleaning Procedure
Diskette Hlmdling and Care

Diskette Insertion
Diskette Removal .
Handlinn Defective Cylinders .
Handlinn Precautions

Device Addressing
Default Device
Customer Support Functions
Audible Alarm

CHAPTER 3. SYSTEM COMMANDS
Overview.
System Command Descriptions

The)CLEAR Command
The)CONTINUE Command
The)COPY Command.
The)DROP Command

1
1
1
2
2
3
4
6
7
7
7

8
10
10
10
10

11
11
11
11
11
12
12
12
13
13
14
14
15
16
17
17
17
18
19
20
21
23
23
24
24
25
25
25
27
28
29
29

31
31
31
35
35
37
38

The)ERASE Command
The)FILEID Command
The)FNS Command
The)FREE Command
The)UB Command.
The)UNK Command
The)LOAD Command
The)MARK Command
The)OUTSEL Command
The)PCOPY Command
The)PROC Command .
The)PROTECT Command
The)RESUME Command
The)REWIND Command
The)SAVE Command
The)SI Command
The)SINL Command
The)SORT Command.
The)SYMBOLS Command
The)VARS Command
The)VOUD Command
The)WSID Command

CHAPTER 4. PRIMITIVE (BUILT-IN)
FUNCTIONS

Primitive Scalar Functions
The + Func~ion: Conjugate, Plus.
The - Function: Negation, Minus.
The x Function: Signum, Times
The t Function: Reciprocal, Divide.
The r Function: Ceiling, Maximum.
The L Function: Floor, Minimum
The I Function: Magnitude, Residue
The * Function: Exponential, Power
The e Function: Natural Log, Logarithm
The 0 Function: Pi Times, Circular .
The ! Function: Factorial, Binomial
The ? Function: Roll
The A Function: And
The v Function: Or
The'" Function: Not
The 7\ Function: Nand
The V Function: Nor
The > Function: Greater Than
The = Function: Equal To .
The < Function: Less Than
The ~ Function: Greater Than or Equal To
The ~ Function: Less Than or Equal To
The;: Function: Not Equal To .

Primitive Mixed Functions
The p Function: Shape, Reshape (Structure)
The , Function: Ravel, Catenate, Laminate
The / Function: Compress
The \ Function: Expand
The ~ Function: Grade Up
The t Function: Grade Down
The t Function: Take
The ..J. Function: Drop

Contents

38
39
39
40
41
43
44
45
47
48
49
50
51
52
52
53
53
54
54
55
56
57

59
59
60
61
62
64
65
67
68
70
71
72
75
77
78
79
80
81
82
83
84
85
86
87
88
89
92
94
98
99

100
101
103
104

iii

The 1 Function: Index Generator, Index of 104
The <t> Function: Reverse, Rotate. 105
The ~ Function: Transpose, Generalized Transpose 109
The ? Function: Deal 111
The .1 Function: Decode (Base Value) 112
The T Function: Encode (Representation) 115
The e: Function: Membership 120
The m Function: Matrix Inverse, Matrix Divide 121
The .2. Function: Execute 123
The $" Function: Format 124

APL Operators 127
Reduction Operator U) . 127
Inner Product Operator (•) 129
Outer Product Operator (0 •) 132
Scan Operator (\) . 134

Special Symbols 1 36
Assignment Arrow + 136
Branch Arrow -+ 1 36
Quad 0 . . . 137
Quad Quote [!] 137
Comment A . 138
Parentheses () 138

CHAPTER 5. SYSTEM VARIABLES AND
SYSTEM FUNCTIONS. . . . 139

System Variables 139
Comparison Tolerance: OCT. 140
Index Origin: 010 . . 141
Printing Precision: 0 PP 142
Print Width: 0 PW . 142
Random Link: oRL . 143
Line Counter: oLC . . 143
Workspace Available: oWA 143
Latent Expression: 0 LX. . . 143
Atomic Vector: oAV 144

System Functions 145
The OCC Function: Console Control 145
The OCR Function: Canonical Representation 149
The oFX Function: Fix . . . 151
The oEX Function: Expunge 153
The oNL Function: Name List 153
The oNC Function: Name Classification 154

CHAPTER 6. USER-DEFINED FUNCTIONS
Mechanics of Function Definition

Function Header
Branching and Labels . .
Local and Global Names

Interactive Functions
Requesting Keyboard Input during

Function Execution
Arranging the Output from a User-Defined Function

Bare Output . . .
Locked Functions

Function Editing
Displaying a User-Defined Function .
Revising a User-Defined Function
Reopening Function Definition .
An Example of Function Editing

Trace and Stop Controls
Trace Control
Stop Control. . . .

iv

155
156
157
158
160
164

165
166
166
167
168
168
169
171
172
173
173
175

CHAPTER 7. TAPE, DISKETTE, DISPLAY SCREEN,
AND PRINTER INPUT AND OUTPUT.

Making a Shared Variable Offer.
Surrogate Names
Specifying the Operation to be Performed

Sequential Access to Tape or Diskette Files
Direct Access to Diskette Files . . .
Direct Access to the Display Screen
Send Data to the Printer

Input/Output Operations. . . .
Sequential Access Operations
Direct Access Operations . .
Creating a Direct Access Data

File (OUTF and ADD)
Updating (Read and Write) a Direct Access

File (lOR and 10RH)
Reading a Direct Access Data File (I N R)
Reading from and Writing to the Display

Screen (DISPLAY)
Sending Data to the Printer (PRT)

Terminating the Operation
Assigning an Empty Vector to the Shared Variable
Making the Shared Variable Local to a

User-Defined Function
Using the oEX Function or)ERASE Command
Using the oSVR Function

Retracting the Shared Variable Offer.
Return Codes.
Input/Output Summary

CHAPTER 8. THE 5103 PRINTER
How to Insert Forms

Continuous Forms
Forms Path for Singlepart Forms
Forms Path for Multipart Forms
Cut Forms

How to Adjust the Copy Control Dial for
Forms Thickness

How to Replace a Ribbon (Part Number 1136653)
How to Install the 5103 Printer Stacker

APPENDIX A. 5110 APL CHARACTER SET AND
OVERSTRUCK CHARACTERS .

177
177
178
179
179
181
186
186
187
187
188

188

188
193

194
196
197
197

198
198
198
199
200
204

207
209
209
209
209
211

212
212
215

217

APPENDIX B. ATOMIC VECTOR 219

APPENDIX C. EBCDIC CHARACTER SET AND
SPECIAL NATIONAL GRAPHICS. '" 225

APPENDIX D. 5110 COMPATIBILITY WITH
THE IBM 5100 '" 227

APPENDIX E. 5110 APL COMPATIBILITY WITH
IBM APLSV 229

APPENDIX F. ERROR MESSAGES 235

APPENDIX G. ATTACHING A TV MONITOR 249

GLOSSARY 251

INDEX. . . 257

Chapter 1. Operation

IBM 5110 COMPUTER OVERVIEW

The IBM 5110 Model 1 (Figure 1) is a computer. The IBM 5110 Model 2
differs from the Model 1 only in that the Model 2 does not have a built-in tape
unit. The 5110 has a display screen, keyboard, switches, indicator lights, and
an adapter for black and white TV monitors. The display screen and indicator
lights communicate information to the user. The keyboard and switches allow
the user to control the operations the system will perform.

Features available for the 5110 are an auxiliary tape unit (Model 1 only)'
printer, up to four diskette drives, a communication adapter, and a serial I/O
adapter.

Adapter for Black
Indicator
Lights

and White TV Monitors

Display
Screen

Switches

Figure 1. IBM 5110 Computer

DISPLA V SCREEN

Unit

The display screen (Figure 2) can display 16 lines of information at a time, with
up to 64 characters in each line. Input (information supplied by the user) as
well as output (processed information) is displayed. The bottom two lines
(lines 1 and 0) of the display contain information entered from the keyboard.
The cursor (flashing horizontal line) indicates where the next input from the
keyboard will be displayed. If the cursor is moved to a position that already
contains a character, the flashing line is replaced by the flashing character. As
the 5110 processes input, all lines of the display are moved up so that
information can be entered on the two bottom lines again. The top lines of the
display are lost as the lines are moved off the display screen.

Operation

2

SWITCHES

The switches on the 5110 (Figure 1) are used for turning power on, restarting
the system, and controlling how information is displayed.

Power On or Restart Procedures

The following switches are used for turning power on to the system or
restarting the system operation.

Line Numbers

~
15

14

13

12
11

10

9

8
7

6
5
4

3 3+2 ___ I nput from the keyboal d
2 5 ... Output

1

o
-- ______ Cursor (flashing horizontal line)

"41 64 character positions --------1

Normally, to distinguish input from output, input from the keyboard is indented
and output is displayed starting at the left edge of the display screen.

Figure 2. The 5110 Display Screen

BAS/C/APL

Only dual-language machines have this switch. The switch setting determines
which language will be in operation when power is turned on or after
RESTART is pressed. If the switch setting is changed after the power is turned on or
after RESTART is pressed, the language in operation will not be changed.

Power ON/OFF

When this switch is in the ON position, power is supplied to the system. The
system performs internal checks and becomes ready in 15 to 20 seconds.
When the switch is put in the OFF position, no power is supplied to the
system.

Note: The message CLEAR WS is displayed when the system becomes ready.
If this message is not displayed after 20 seconds, restart the system operation,
(the RESTART switch is discussed next).

RESTART

This switch restarts the system operation. When it is pressed, the system
performs internal checks and becomes ready in 15 to 20 seconds. The
message CLEAR WS is displayed when the system is ready. If the system
does not display the message after 20 seconds, press RESTART again. If the
system does not become ready after several attempts, call your service
representative.

The primary uses of this switch are to restart the system operation after a
system malfunction has occurred and to change the language in operation on
dual-language machines.

Note: Any information you had stored in the active workspace will be lost
when RESTART is pressed.

Display Screen Control

The following switches are used to control how the information on the display
screen is displayed.

L32 64 R32

The three-position switch (positions 64, L32, and R32) operates as follows:

• 64-Characters are displayed in adjacent positions, and up to 64 characters
can be shown on each line.

• L32-Characters are displayed in alternate positions (blanks between); only
the left 32 characters of the 64-character lines are shown.

• R32-Characters are displayed in alternate positions (blanks between); only
the right 32 characters of the 64-character lines are shown.

Operation 3

copy

(I LOAD)~(1 co NT)@D~~~~(lOUTSEL)~G:J DISPLAY (OELETE}f INSERT)

Alphameric Keys Numeric keys

Figure 3. The 5110 Keyboard

4

REVERSE DISPLAY

This switch determines whether the display screen will display light characters
on a dark background or dark characters on a light background. The brightness
control may have to be adjusted when the switch setting is changed.

DISPLAY REGISTERS

This switch is for the service representative's use when servicing your 5110.

Note: When you use your 5110, this switch must be in the NORMAL position.

KEYBOARD

The 5110 keyboard (Figure 3) has alphameric and numeric keys. The
alphameric keys are grouped together and are similar to those on a typewriter
keyboard. When the keys are pressed, the characters entered appear in the
input line (one of the bottom two lines) on the display screen. The top row of
alphameric keys can be used to enter numbers; however, numbers can be
conveniently entered via the numeric keys on the right side of the keyboard.
The arithmetic symbols (+ - t x) located on the top row of the alphameric
keyboard can also be entered via keys to the right of the numeric keys.

When the system power is first turned on, the system is in standard APL
character mode. In standard APL character mode, you can enter uppercase
alphabetic characters (without using the shift key), the APL symbols (using the
shift key), and the APL system command keyword (above the top row of
numeric keys) and special character combinations (engraved on the front of the
keys) using the CMD key.

Note: For combined APL/BASIC systems, there is also a BASIC statement
keyword engraved on the alphabetic keys. These BASIC statement keywords
are above the special APL character combinations on the keys.

You can also place the system in lowercase alphabetic character mode by:

1. Pressing the HOLD key

2. Holding down the shift (
(.) key

) key and pressing the scroll down

In lowercase alphabetic character mode, you can enter lowercase alphabetic
characters (without using the shift key), uppercase alphabetic characters (using
the the shift key), and the- APL symbols using the CM D key. The lowercase
alphabetic character mode applies only to the alphabetic keys. In lowercase
alphabetic character mode, you cannot enter the special character combinations
using theCMD key, because the CMD key is used to enter the APL symbols.

To return from lowercase alphabetic character mode to standard APL character
mode:

1. Press the HOLD key

2. Hold down the shift key while you press the scroll up (•) key

The characters ,t.,' -()- : •• \ (:: ! I ~ and ,J'tyl rll ... I I i~ are not

shown on the keyboard; however, you can enter the first group of these
characters by using the CMD key and pressing the appropriate key as follows:

Operation 5

6

You can enter the second group of characters using the SHIFT key and
pressing the appropriate key as follows:

Note: Some of these characters change when a unique national character set,
other than EBCDIC, is specified. See Appendix C for more information on the
unique national graphics.

The keyboard contains some keys that perform operations other than those
performed by a typewriter. These keys are discussed in the following text.
Uses of the APL language symbols on the keyboard are discussed in Chapter 4
of this manual.

Attention.

Pressing ATTN (attention) when entering information from the keyboard erases
everything from the cursor to the end of line O.

Pressing ATTN when entering information using shared variables to the display
screen erases everything from the cursor position to the end of the specified
input area.

When ATTN is pressed (weak interrupt) during execution of any expression or
user-defined function, the system stops operation at the end of the statement
currently being processed. To restart the execution of a user-defined function,
enter +OLC.

Output that was being generated before the system operation stopped may not
be displayed because there is a delay between the execution of the statement
that causes the output and the actual display of the output.

When the shift key is held and ATTN is pressed (strong interrupt) during the
execution of a statement (either inside or outside a user-defined function), the
execution of that statement stops as soon as possible. Also, the message
INTERRUPT, the statement, and a caret (A) that indicates where the statement
was interrupted are displayed. In this case, the intermediate results might be
lost, and restarting the function using +OLC might give incorrect results.

•• HOld_

When pressed once, HO LD causes all processing to stop; when pressed again,
it allows processing to resume. The primary purpose of HOLD is to permit
reading rapidly changing display information during an output operation or to
change from one character mode (standard APL or lowercase alphabetic) to the
other character mode. When the HOLD is in effect (HOLD pressed once), the
COpy DISPLAY, shift/scroll up, and shift/scroll down keys are active, and the
characters HOLD are displayed in the lower left corner of the display screen.

Notes:
1. Holding down the CMD key and pressing HOLD is restricted to use by the

service personnel.
2. When the hold is in effect (HOLD pressed once), holding down the CMD

key and using the arithmetic keys (+ - t x) on the right side of the
keyboard are restricted to use by service personnel.

Execute

When this key is pressed, the input line(s) of information on the display screen
is processed by the system. This key must be pressed for any input to be
processed.

Command

In standard APL character mode, when this key is pressed and held, pressing
an alphameric key in the top row causes the APL command keyword or
character above that key to be entered in the input line. Also, pressing the
other key causes the special character combination engraved on the front of
the key to be entered in the input line.

In lowercase alphabetic character mode, when this key is pressed and held,
pressing an alphabetic key causes the APL symbol on the key to be entered in
the input line.

Note: Holding down the CMD key and pressing HOLD is restricted to use by
the service personnel.

Operation 7

8

Positioning the Cursor and Information on the Display Screen

The following keys are used to position the cursor and information on the
display screen.

Forward Space II1II

Insert

When this key is pressed once, the cursor moves one position to the right.
When this key is held down, the cursor continues to move to the right. When
the cursor reaches the last position on one input line (line 1 or 0), it wraps
around to the first position on the other input line .

•
When the CMD key is held down and the forward space key is pressed once,
the characters at and to the right of the cursor position (flashing character) are
moved to the right one position, and a blank character is inserted at the cursor
position. The cursor does not move. For example:

Before the insert operation:

When these keys are both held down, the characters continue to move to the
right and blank characters continue to be inserted.

Note: If there is a character in position 64 of line 0, the insert operation will
not work.

Backspace II
When this key is pressed once, the cursor moves one position to the left.
When it is held down, the cursor continues to move to the left. When the
cursor reaches position 1 on one input line (line 1 or 0)' it wraps around to the
last position on the other input line.

Delete •
When the CMD key is held down and the backspace key is pressed once, the
character at the cursor position (flashing character) is deleted and all characters
to the right are moved over one position to the left to close up the space. The
cursor is not moved. For example:

Before the delete operation: 12344~
/" Flashing Character

After the delete operation: 123456

When these keys are both held down, the characters at the cursor position
continue to be deleted and all the characters to the right are moved to the left.

Scroll Up •

When this key (located above the numeric keys) is pressed once, each
displayed line is moved up to the next line. As the lines are moved up, the top
line is lost as it is moved off the display screen. When this key is held down,
the lines continue to move up.

When you are doing input/output operations to the display screen using an
APL shared variable, the cursor is moved up one line when this key is pressed.
When this key is held down, the cursor continues to move up until the top line
is reached.

When the system is in the hold state (the HOLD key has been pressed once),
holding down the shift key and pressing this key causes the system to be in
standard APL character mode.

Scroll Down a
When this key (located above the numeric keys) is pressed once, each
displayed line is moved to the next lower line. As the lines are moved down,
the bottom line is lost as it is moved off the display screen. When this key is
held down, the lines continue to move down.

When you are doing input/output operations to the display screen using an
APL shared variable, the cursor is moved down one line when this key is
pressed. When this key is held down, the cursor continues to move down
until the bottom line is reached.

When the system is in a hold state (the HOLD key has been pressed once),
holding down the shift and pressing this key causes the system to be in
lowercase alphabetic character mode.

Operation 9

10

Copy Display QJ
If there is a 5103 Printer, when the CMD key is held down and this key is
pressed once, all the information presently on the display screen is printed.
COpy DISPLAY is operational even when the system is in the hold state (the
HOLD key has been pressed once).

Note: The L32 64 R32 switch has no effect on what will be printed.

INDICATOR LIGHTS

The 5110 (Figure 1) has two indicator lights.

Process Check

When on, the PROCESS CHECK light indicates that a system malfunction has
occurred. In this case, press the RESTART switch to restart the system
operation. If the system operation cannot be successfully restarted after
several attempts, call your service representative. After the system operation is
restarted, you must reload any user-defined functions or data that was
previously in the active workspace.

In Process

The I N PROCESS light is on when the system is processing data and the display screen is
turned off during the execution of a user-defined function (see the OCC
system function in Chapter 5). The light goes off when:

• The display screen is turned on using the OCC system function

• A statement in the user-defined function generates results that are to be
displayed

• Execution is completed and the cursor returns

Note: If the display screen is blank (no data or cursor is displayed) and the IN
PROCESS light is off, check the brightness control before calling your service
representative.

Chapter 2. About Your 5110

DATA REPRESENTATION

Numbers

The decimal digits 0 through 9 and the decimal point are used in the usual
way. The character -: called the negative sign, is used to denote negative
numbers. It appears as the leftmost character in the representation of any
number whose value is less than zero:

o .. MI+

·-1.1·

.M~3···· -2

The negative sign, , is distinct from - (the symbol used to denote
subtraction) and can be used only as part of the numeric constant.

Scaled Representation (Scientific Notation)

You can represent numbers by stating a value in some convenient range, then
multiplying it by the appropriate power of 10. This type of notation is called
scaled representation in APL. The form of a scaled number is a number
(multiplier) followed by E and then an integer (the scale) representing the
appropriate power of 10. For example:

Number Scaled Form

6.J7E4
Multiplier

66700
t Scale
-.00284 2.84E 3

The E (E can be read times ten to the) in the middle indicates that this is scaled
form; the digits to the right of the E indicate the number of places that the
decimal point must be shifted. There can be no spaces between the E and the
numbers on either side of it.

Numeric Value Range

Numeric values in the 5110 can range from 7.237005577332262E75 to
7.237005577332262E75. The smallest numeric value the 5110 can use is
±5.397604346934028E-79.

About Your 5110 11

12

Numeric Value Precision

Numbers in the 5110 are carried internally with a precision of 16 significant
digits.

Note: As with all computers, some values cannot be expressed exactly, and
certain computations are not fully accurate in the least significant (16th) digit.

Character Constants

Zero or more characters enclosed in single quotes, including overstruck
characters (see Appendix B) and blank characters (spaces), is a character
constant. The quotes indicate that the characters keyed do not represent
numbers, variable names, or functions, but represent only themselves. When
character constants are displayed, the enclosing quotes are not shown:

, f~BCDEF(3 ' ·--------,-If the closing quote is not

ABCDEFG entered, the 5110
, :I. 2:3ABC ' automatically supplies the

:I. 2::~ABC closing quote when EXECUTE
t1~" 'THE f~NS~~E HIS: ' is pressed.
M

THE ANf.)t~E RIB:

When a quote is required within the character constant, a pair of quotes must
be entered to produce the single quote in the character constant. For example:

'DON' 'T GIVE THE ANSWER AWAY'
DON'T GIVE THE ANSWER AWAY

Logical Data

Logical (Boolean) data consists of only ones and zeros. The relational functions
(> ~ = < ~ ~) generate logical data as their result; the result is 1 if the
condition was true and 0 if the condition was false. The output can then be
used as arguments to the logical functions (A 7\ vV' "') to check for certain
conditions being true or false. Logical data can also be used with the
arithmetic functions, in which case it is treated as numeric 1's and O's.

STORAGE REQUIREMENTS

The following list shows how many bytes of storage are required for each data
type:

Data Type

Character constant

Whole numbers that are equal to
or less than 231 _1

Whole numbers that are greater
than 231 _1

Decimal numbers

Logical data

Variable Name

.3 characters or less

4 characters or more

Number of Bytes Required

1 byte per character

4 bytes

8 bytes

8 bytes

1/8 Byte (1 byte can contain 8
ones or zeros)

Number of Bytes Required

12 bytes+(4 x rank
(p p VARIABLE)) bytes

1 byte per character+21
bytes+(4 x rank (p pVARIABLE))
bytes

Note: All storage is allocated in 4 byte increments.

5110 STORAGE CAPACITY AND MODELS

The 5110 Models 1 and 2 can have a storage capacity of 16K (K = 1024
bytes), 32K, 48K, or 64K. The first digit in the model number indicates the
model, and the second digit indicates the storage capacity as follows:

Storage Model Number Model Number
Capacity with Tape without Tape

16K A11 A21
32K A12 A22
48K A13 A23
64K A14 A24

About Your 5110 13

14

Figure 4 shows how the storage is allocated for the various requirements on a
base 5110 (Model A11 or A21).

10,600
Bytes

Active Workspace

1--------- --------- - ------------
(Suggested 1M F Area, 1 ,000 Bytes)

t------------------ ------------
Symbol Table (see note)

5784 5110 Internal Storage Requirements for Pointers,
Bytes Counters, etc

L"---_____
Note: The symbol table requires 8 bytes of storage for
each symbol allowed in the active workspace (see)SYMBOLS
in Chapter 3).

Figure 4. Storage Allocation for a Model A11 5110

Notice that the workspace available to the user (active workspace) is 10,600
bytes, while tre remaining bytes are used for internal purposes. In the other
models, all additional storage is allocated to the active workspace. For
example, on the Model A 14, the active workspace is approximately 60,000
bytes.

PERFORMANCE CONSIDERATIONS

Turning the Display Screen Off

The internal processing capability of the 5110 is increased by approximately
18 % when the display screen is turned off during the execution of a
user-defined function. The Dcc (console control) system function is used to
turn the display screen on and off. For example:

x + 1 DCC 0 This statement turns the display screen off.

x + 1 Dcc 1 This statement turns the display screen on again.

(See The DCC Function: Console Control in Chapter 5 for a complete
description of the DCC function.)

Overlapped Printing

When data is sent to the printer, the 5110 continues (overlaps) internal
processing as the last print line is being printed. For example:

'VFUNCT I ON -t---When FUNCTION is executed, the
[:1.] :I. 0 :I. 0 e (\, :I. 0 0) 5110 starts processing statement 2 as
I:: 2] ("\ ~5 0) .)f 2 'V the last line of the matrix generated in

statement 1 is printed.

Therefore, to get maximum performance when data is sent to the printer, send
the data to the printer in smaller segments. The following examples show how
the data might be sent to the printer in smaller segments:

Example 1

'i} PI:~INT1; (.~.; r:; C;:o
[1- A~' COLUMN:I. COLUMN2 COLUMN3 COLUMN4 COLUMNS'
[2 B~ 10 5 p(\SO)
[3 C~ 8 0 ,B
[4 D~ 8 0 ,(+/[1] B)
[5 A,[l] C,[l] D
[6 V

In this example, all the data is sent to the printer by statement 5. The
overlapped printing capability is not used.

Example 2

V PF~INT2iB;C;D
[1] · CDI ... Uf'lN:l COI...Ur·iN2 CDLUMN3 CDI...Ut'lNI.J· COI...Uf1N~5'
[2] C~ 8 0 ,B~ 10 5 p(,50)
[3] D~ 8 0 ,(+/[:l.J B)
[Lt·] C,C:I.] It
I::~'=';::I 'i,l

In this example, statement 2 is processed as the data from statement 1 is
printed.

Example 3

Xl PRINTJ;B;C
[:1. J ' CDI...Ut'lN 1 COI...Ut·1N2 COLU~'IN3 CDI...UMNI.f· COI...UMN~5'
[2J 8 0 ,B~ :1.0 5 p(\50)
[3J 8 0 ,+/[1J B
I:: Lt·::I V

In this example, statement 2 is processed as the data from statement 1 is
printed, and statement 3 is processed as the last line of data from statement 2
is printed.

About Your 5110 15

16

VARIABLE AND FILE NAMES

A variable name can be up to 77 characters in length with no blanks; the first
character must be uppercase alphabetic or underscored uppercase alphabetic,
and the remaining characters can be any combination of uppercase alphabetic,
underscored uppercase alphabetic, and numeric characters. Variable names
longer than 77 characters can be used, but only the first 77 characters are
significant to the 5110.

Note: Do not use S~ or T ~ as the first 2 characters in the variable name (see
Trace and Stop Controls in Chapter 6).

The data file names that are allowed by the 5110 depends upon the type of
file and storage media used:

• Workspace file on tape. The file name can be any combination of up to 11
alphabetic and numeric characters (with no blanks); the first character must
be alphabetic. For example:

FILE2

If more than 11 characters are entered, only the first 11 are used.

• Data file on tape. The file name can be any combination of up to 17
characters (including blanks). For example:

2DATAFILE

If more that 17 characters (including blanks) are entered, an INVALID
PARAMETER error message is displayed.

• Workspace file on diskette. The file name can be any simple name. A simple
name is any combination of up to 8 alphabetic and numeric characters (with
no blanks); the first character must be alphabetic. For example:

FILEONE

If more than 8 characters are entered as the file name, an INVALID DISK
FILE NAME message is displayed.

• Data file on diskette. The file name can be a simple or complex name. A
complex name is two or more simple names, with each name separated by
a period(.). A complex name cannot exceed 17 characters including the
period. For example:

DATA. FILE
' ------A period must separate two simple names.

FILENAME • For one simple name, a period is not required.
FILE.NAME • 7Complex names.
DISKETTE. FI LENAM E

Note: The names SYSAREA and ERRORSET are used by the system. You
should not use these names as diskette file names.

NAME PROCESSING

Following is a description of how the system uses the device/file number and
file I D parameters specified for system commands (see Chapter 3) or
input/output operations (see Chapter 7).

For operations to tape files:

• The device/file number parameter must always be specified.

• The file ID parameter is optional, except for the)DROP command. When
this parameter is specified, the specified file ID is checked against the tape
file ID, and the operation fails if the file IDs do not match.

For operations to diskette files:

• If only the device/file number parameter is specified, the operation is
performed to the specified diskette file.

• If only the file I D parameter is specified, the diskette files on each diskette
drive are checked for the specified file ID. The specified file ID must be
unique on the diskette(s), and the operation is performed to the appropriate
diskette file when a match is found.

• If both the device/file number and file ID parameter are specified, the
specified file ID is checked against the specified diskette file ID,and the
operation fails if the file' I Ds do not match.

Note: If the specified file number is 000 (for example, 11000 is diskette
drive 1, file number 000), the diskette files on the specified diskette drive
are checked for the specified file ID,which must be unique on the diskette.
The operation is performed to the appropriate diskette file when a match is
found.

PROCEDURE FILE

A procedure file provides an alternative to entering input from the keyboard. A
procedure file can contain any executable expression or statement that can be
entered from the keyboard; for example, system commands, function
definition, and APL expressions. When the)PROC command is issued (see
Chapter 3), these expressions or statements from the procedure file replace the
input from the keyboard.

Creating a Procedure File

A procedure file can be a sequential access type I (file type 2) or direct access
type I or U (file type 9) data file. Each record in the procedure file represents
one statement or expression to be executed by the 5110. These records cannot
be greater than 128 characters. See Chapter 7 for more information on
creating data files.

About Your 5110 17

18

Using a Procedure File

The)PROC command is used to initiate input from the procedure file. Once
the)PROC command is issued, the records (expressions or statements) in the
specified procedure file are sequentially read, displayed, and executed. The
results of the executed statements or expressions are also displayed. When
records are executed from a procedure file, except for direct access input from
the display screen (see Entering Data from the Keyboard later in this chapter),
all keyboard equivalent input comes from the procedure file. This includes the
response for 0 input l!J input, and the ALREADY MARKED message. For
example:

f~ II II - This user-defined function is executed from a procedure
[] : file.
:.~+~
.; ~ The function requests 0 input.

The response for the 0 input must be the next record in
the procedure file.

If an error occurs on a statement or expression executed from the procedure
file, an error message is displayed, and the next record on the procedure file is
read and executed. The 5110 continues to read and execute input from the
procedure file until one of the following occurs:

• The last record is read from the procedure file.

• A strong interrupt is entered (hold down the shift key and press the A TIN
key).

• Another)PROC command is issued. In this case, the input then comes from
the new procedure file, and control is not returned to the previous procedure
file.

• An I/O error occurs when the 5110 is reading the procedure file.

• The)L1NK command is issued from the procedure file.

Except when another)PROC command is issued, the 5110 returns to using
keyboard input when one of the previous conditions occurs.

Doing Input/Output Operations

When using a procedure file, you can use shared variable to do input/output
operations such as:

• Read records from and write records to a data file.

Note: If the procedure file is a sequential access tape data file, the tape is
repositioned if input/output operations are performed on the same tape that
the procedure file is on. This causes an error when the next physical read
of data from the procedure file occurs. However, since each physical read
from the tape procedure file consists of 512 characters, a tape procedure
file with less than 512 characters can also be used to perform input/output
operations. In this case, the last command in the 512 characters should be
)PROC to return the 5110 to keyboard entry.

• Read records from and write records to the display screen. This allows you
to enter data from the keyboard when using a procedure file.

• Read records from and write records to the procedure file. This allows you
to update the procedure file as the records are read from the procedure file
a nd executed.

• Send data to the printer.

See Chapter 7 for more information on these input/output operations. Entering
data from the keyboard and updating the procedure file is discussed next.

About Your 5110 19

[:1.::1
[2]
[:'3]

[1.1,]

I:: ~::.i::l

[bJ
[""{,::I

[BJ
[<?]

1":1.0]
1":1.:1.]

Entering Data from the Keyboard

Even though the records from the procedure file replace keyboard input, you
can enter data from the keyboard using a pair of shared variables and direct
access to the display screen. For example, assume you are using a procedure
file and the following user-defined function has already been copied into the
active workspace:

VEXAMPLEENTERCO]V
V EXAMPLEENTER;CTL;DAT;A

A**
A DFFE I~~ \lPII~ I {~HI...E N{~r1ES TD BE SH(~ I~ED

A~:I. OSVO 2 3 p'CTLDAT'
~(v/(2¢A»/ERRORl

A**
HSPECIF"'(INPUT/OUTPUT DPEn(~,TIONS TO THE DISPLP,y

CTI...<; .. ' D I~:; PLf., Y ,
~(O~ltCTL)/ERRDR2

'. ~:~ N T E I~ :~H:: ~~: D ~~ T (~When this statement is executed, the cursor appears at character position
C r L~" (.I :,' 0 ,j :I. : 0 903 on the display screen. Now, you can enter 120 characters from the
.+ (() :i(: :I. t C T I...) / E I~ F~ 0 I~~ ~,:.~ keyboard.

1":1.2] A**
I" :I. :'5] H :0 I ~:) p LI~ Y THE I N F D F~ M (~ TID N F F~ 0 i'1 T;; i::: I(F Y B D (~ R It
r :1.1.1·::1 DAT I After the data is entered from the keyboard and EXECUTE is pressed, the
r :I. ~.:.:.i::l .+ 0 120 characters starting from position 903 are assigned to OAT.

I":l.b]
r :1.''''::/
[:l.B::I
1:::1. <;)]

[20]

20

A**
,..,EI~H()n NESBAGEB
ERRDR:I.: 'THE SHARED VARIABLE OFFER FAILED'

.. ~ 0
ERROH2: 'ENTERING DATA FROM THE KEYBOARD FAILED'

Now when the record EXAMPLEENTER is read from the procedure file and
executed, you will be able to enter data from the keyboard.

Updating a Procedure File on Diskette

When using a procedure file that is on a diskette, you can also do direct
access input/output operations to the procedure file. This allows you to
update records (statements or expressions) before they are read and executed.

If a procedure file is to be updated, it is recommended that the procedure file
be a type U data file, because a type U data file has only one record per
sector and the 5110 reads one sector at a time when executing records from a
procedure file. Type I data files might have more than one record per sector,
and the records can cross sector boundaries. Therefore, when a sector is read,
the data read might include more than one record. For example:

-I (

~~~~~~~~_R_e_cO_r_d~Y~~_R_e_c_o_~~z~~~~~~~~~~pel Da~ F~e 

When this sector is read, both record X and record Yare read into the system. 

In the previous example, if record X executes a user-defined function that 
updates record Y (see the following example), record Y has already been read 
into the system and the updated record is not executed from the procedure 
file. Instead, the original record Y is executed. 

About Your 5110 21 



[1::1 
1::2::1 
[:'5::1 
[1+::1 
I:: ~::;::I 
[6] 
[",(::I 

LB] 
[9::1 
[:1.0::1 
[:1.:1.::1 
1:::1.2] 
I:: 1:'5::1 
[ :1.'+::1 
[:1, ~:,:,i::l 

1:::1. 1.)::1 
1:::1. 7] 
[:l.BJ 

Following is an example of a user-defined function that allows you to enter 
information from the keyboard and to update the procedure file with the 
information you entered. 

In this example, assume that you are using a procedure file, and that the 
user-defined function has already been copied into the active workspace, 

VEXAMPLEWRITECO::lV 
V EXAMPLEWRITE;CTLX;CTLY;DATX;DATY;A;B 

A******************************************************** 
FI OFFE R THE \l(~ R I ,~BI",E NA~1E~:) TO BE SH(~ RED 
A~1 08VO 4 4 p'CTLXDATXCTLYDATY' 
~(Y/(2~A»/ERRORl 

A******************************************************** 
H S PEe I F '( THE I N PUT / nUT PUT 0 PER (.1 T I [I N B TOT HE :0 I ~:) PI... t·, 'Y (::', N II 
ATHE PROCEDURE FILE 

C T I... X ~., · DIS P I... (~, Y , 
~(O~:l.tCTLX)/ERROR2 

Cll... y 0 • I [) I~~ :1.:1. 00:1. '_ In this example, the procedure file is on diskette drive 1, file 1. 
~(O~:l.tCTLY)/ERROR2 

A******************************************************** 
A EN T E F~ Ii A T p, F F~ 0 i"l THE I( E Y B 0 (.~, F~ D 

'ENTER THE RECORD NUi"lBER TO BE UPDATED' 
C T I... X ~.. 0 90 3 :'!; 
~(O~:l.tCTLX)/ERROR2 

BE"DAT)< .1--------- The new record number is assigned to B for later use in this 
. ENTE I~ THE NEt,,1 I~ECO I~~D ' user-defined function. 

[:1.9::1 CTI...X~ 0 896 :1.27 
I:: 20 ] ,,~ ( O:i:l. t C T I... X ) / E I~:: F~ (] F~;? DA TY must contain the information to be written to the procedure file. 
[2:1. ::I C T LX <:" '\ 0 Note, in this example, that the procedure file contains 128-byte 
1::22::1 DATY!:":I.;,:,~8t:OI:~,TX character records. 

[23] A******************************************************** 
[21+::1 i-'lI...IPD(~,TE THE PRDCEDUF~E FILE 
1::25::1 CTLY~:I./(!B)/:I. 

[26::1 ~(O~:l.tCTLY)/ERROR3 

[ 27::1 C T I... Y (:" \ 0 
[28::1 'PROCEDURE FILE UPDATED' 
[~.~'?::I ,,~O 

[30::1 H******************************************************** 
[3:1.::1 AERROR MESSAGES 
I:: :'52 ::I E I~ I~ n H:I. : 'T H E ~:; H i~' I~~ ED V (.~, H I (.~, B LED F F E I~~ F (:~ I I... ED' 
[~53] ,,~o 

I:: 31.1· ::I E F~ F~ (] I~ 2: . EN T E F? I N G :0 (~, T (~, F F~ D M THE 1< E Y B 0 i~' r~ :0 F p, I I... ED' 
[3~:5] '+0 
I:: ~'~) f.) ::I E I~ I~ [) F~ :'5: 'U P D {~, "I" I N G THE P I~ [I C E :0 U PI::: F I I... F F i~' J LED ' 

V 

22 



TAPE DATA CARTRIDGE HANDLING AND CARE 

• Protect the tape data cartridge from dust and dirt. Cartridges that are not 
needed for immediate use should be stored in their protective plastic 
envelopes. 

• Keep data cartridges away from magnetic fields and from ferromagnetic 
materials that might be magnetized. Information on any cartridge exposed 
to a magnetic field could be lost. 

• Do not expose data cartridges to excessive heat (more than 130°F [54°C]) 
or sunlight. 

• Do not touch or clean the tape surface. 

• If a data cartridge has been exposed to a temperature drop exceeding 30°F 
(-1 °C) since the last usage, move the tape to its limits before using the 
tape. The procedure for moving the tape to its limits is: 

1. Use the )LlB command to move the tape to the last marked file. 

2. Use the )MARK command to mark from the last marked file to the end 
of the tape. For example: 

)MARK 20 10 n 

where n is the number of the last marked file, plus one. 

3.· When ERROR 012 (end of tape) is displayed, use the )REWIND 
command to rewind the tape. 

TAPE HEAD CLEANING PROCEDURE 

Occasional cleaning of the tape read/write head provides more reliable 
operation of the tape drive. Use a soft lint-free cloth or paper towel 
dampened with isopropyl alcohol to clean tape oxide from the tape head. Then 
wipe the tape head dry. 

u ... ·--+---Tape ReadlWrite Head 

Tape Drive Opening 

About Your 5110 23 



24 

DISKETTE HANDLING AND CARE 

Diskette Insertion 

CAUTION 
If a diskette has been exposed to temperatures outside the range 50° F to 
125°F (10°C to 51°C), keep the diskette at room temperature for about five 
minutes before inserting it in the diskette drive. 

1. Open the diskette drive cover. 

2. Remove the diskette from its envelope by grasping its upper edge and 
and listing. 

3. Insert the diskette into the diskette drive. 

Note: The permanent diskette label must be in the lower right corner as the 
diskette is inserted in the drive. 

I 

~ ! I 
I I 

~:;-~ 

1111111111111111111111111111111111111111111111111 

4. Close the diskette drive cover only after the diskette is fully inserted. 



Diskette Removal 

1. Open the diskette drive cover (only when the cursor is flashing). 

2. Remove the diskette by grasping its upper edge and pulling it straight 
out. 

3. Return the diskette to its envelope. 

Handling Defective Cylinders 

With use, the diskette can develop areas on which readable records cannot be 
written. A diskette with a defective area should be reinitialized to use one of 
the alternate cylinders available. See the IBM 5110 Customer Support 
Functions Reference Manual, SA21-9311, for information on the initialization 
function. 

Note: Before reinitializing a diskette, copy any useful data from the diskette 
onto another diskette. 

After the diskette has been reinitialized, record the number of the defective 
cylinder on the permanent label. 

Handling Precautions 

Do not bend or fold the diskette. 

Do not use rubber bands or paper clips on the diskette. 

Do not touch or clean the exposed diskette surface. 

About Your 5110 28 



26 

Do not eat, smoke, or drink while handling the diskette. 

Do not expose the diskette to excessive heat or sunlight. 

! / 
/ / 

Do not use magnets or magnetic objects near the diskette. Data can be lost 
from a diskette that is exposed to a magnetic field. 



Do not place heavy objects on the diskette. 

Do not erase labels attached to the diskette, or make any erasures on or near 
the diskette. Erasure residue could get in the diskette, and this should be 
avoided. To discourage erasures, it is recommended that you use a fiber-tip or 
ballpoint pen when marking on the diskette labels. Mark temporary labels 
before attaching them to the diskette. Alter the temporary labels with the 
diskette in the envelope. 

D 

DEVICE ADDRESSING 

The device address for the 5110 tape units and diskette drives are as foJlows: 

Device 

Built-in tape unit 
Auxiliary tape unit 
Diskette drive 1 
Diskette drive 2 
Diskette drive 3 
Diskette drive 4 

Device Address 

1 
2 

11 
12 
13 
14 

About Your 5110 27 



28 

The following illustration shows the device address for diskette drives attached 
to the 5110: 

Device Address 12 Device Address 14 

DEFAU L T DEVICE 

The default device is the tape unit or diskette drive used by the system when 
only the file number is specified. For example: 

)LOAD 3 DATA 

t .... ----Fewer than four digits are specified; therefore, the value 
specified represents only the file number, and the 
default device is used. 

For the Model 1, the default device is the built-in tape unit (1). For the Model 2, the 
default device is the first diskette unit (11). 



CUSTOMER SUPPORT FUNCTIONS 

The following customer support programs are provided with the 5110: 

• Tape..,to-tape copy 

• Diskette-to-diskette copy 

• Diskette-to-tape copy 

• Diskette initialization 

• Generalized loader 

• Diskette recovery 

• Ta pe recovery 

• Diskette Compress 

• Label display 

See the IBM 5110 Customer Support Functions Reference Manual, SA21-9311, 
for a complete description of each program. 

AUDIBLE ALARM 

The 5110 has an audible alarm feature that can be used to signal the operator. 
For example, the audible alarm can signal the completion of a user-defined 
function or a procedure file (see Procedure File in this chapter). The Dcc 
system function sounds the audible alarm (see Chapter 5). For example: 

/r---To sound the audible alarm, the left argument must be a 2. 

20CC~ 

L The audible alarm sounds for approximately 1 /4 second for 
each 2 in the right argument. 

About Your 5110 29 



30 



Chapter 3. System Commands 

OVERVIEW 

The 5110 contains an active workspace, which is the part of internal storage 
where the user's data and user-defined functions (programs) are stored. When 
the power is turned off or the RESTART switch is pressed on the 5110, all the 
data in the active workspace is lost. However, the contents of the active 
workspace can be saved on: tape or diskette (stored workspace) and then read 
back into the active workspace for use at a later time (see System Command 
Descriptions in this chapter). The contents of the active workspace then exist in 
both the active workspace and on tape or diskette. 

The tape and/or diskette is your library; that is, it is a place where you can 
store data for later use. Before a tape or diskette can be used, it must be 
formatted. A formatted tape or diskette contains one or more files where data 
can be stored. Each file has a file header, which contains information about 
the file. See the )LlB system command in this chapter for a description of the 
file header. 

The system commands, which are used to control and provide information 
about the system, are discussed next. 

SYSTEM COMMAND DESCRIPTIONS 

The following list shows how system commands are used to control and 
provide information about the various parts of the system. Each system 
command is described in detail later in this chapter. 

System Commands 31 



Commands That Control the Active Workspace 

Command 

)CLEAR 

)COPY 

)ERASE 

)LOAD 

)PCOPY 

)SYMBOLS 

)WSID 

)RESUME 

Meaning 

Clear the active workspace. 

Copy stored objects (see note 1) into the active workspace. 

Erase global objects (see note 1) from the active workspace. 

Replace the active workspace with a stored workspace. 

Copy stored objects (see note 1) into the active workspace, 
and protect objects in the active workspace from being 
destroyed. 

Change the number of symbols allowed in the active 
workspace. 

Change the active workspace ID. 

Replace the active workspace with a workspace stored using 
the )CONTINUE command, and reestablish the system 
environment as it was when the workspace was stored. 

Commands That Control the Library (Tape and/or Diskette) 

Command 

)CONTINUE 

)DROP 

)FILEID 

)MARK 

)FREE 

)SAVE 

)PROTECT 

)VOLID 

Meaning 

Write the contents of the active workspace on tape or 
diskette. The active workspace can contain suspended 
functions and open shared variables. 

Drop a tape or diskette file. 

Change the file name on a diskette volume. 

Format the tape or diskette. 

Make a diskette file available for reallocation. 

Write the contents of the active workspace on tape or 
diskette. The active workspace cannot contain suspended 
functions or open shared variables. 

Invoke or remove the write-protect feature on a diskette file. 

Change the volume I D or access protection indicator of a 
diskette device. 



Commands That Provide Information about the System 

Command Meaning 

)FILEID Display the file name on a diskette volume. 

)FNS Display the names of the user-defined functions. 

)LlB Display file headers. 

)SI Display the state indicator. 

)SINL Display the state indicator and local names. 

)SYMBOL Display the number of symbols allowed and used in the active 
workspace. 

)VARS Display the names of the global variables. 

)VOLID Display the volume 10 of a diskette device. 

)WSID Display the active workspace 10. 

Other Commands That Control the System 

Command 

)LlNK 

)OUTSEL 

)PROC 

)REWIND 

)SORT 

Notes: 

Meaning 

Load microcoded programs, such as functions or 
asynchronous communications. 

Select printer output. 

Open a procedure file. 

Rewind the tape. 

Transfer system control to the sort function. 

1. Objects refers to both user-defined functions and variables. 
2. The system commands )CONTINUE, )COPy, )DROP, )LOAD, )MARK, 

)REWIND, and )SAVE will blank the top 8 to 12 lines on the display screen 
when they are used. 

All system commands (and only system commands) have as their first 
character a right parenthesis. Each system command must begin on a new 
line. Parameters (required or optional information) for the system commands 
must be separated by blanks. 

System Commands 33 



34 

Some system commands can be entered two ways: 

• The system command can be entered one character at a time from the 
keyboard. 

• The system commands )LOAD, )SAVE, )CONTINUE, )UB, )FNS, )VARS, 
)COPV, )WSID, )OUTSEL, and )MARK can be entered in one operation if 
you hold down the CMD key while pressing the top-row key just below the 
label of the command you want. 

System commands can be executed two ways: 

• Press EXECUTE after the parameters, if required, are entered. 

• Read the system command and required parameters from a procedure file 
(see The )PROC Command in this chapter). 

System commands cannot be used within APL expressions and cannot be used 
as part of a user-defined function (see Chapter 6). 

Following is an explanation of some terms and symbols used as parameters for 
system commands: 

• Device/file number specifies the device and file to be used. The built-in 
tape unit is device 1, the auxiliary tape unit is device 2, diskette drive 1 is 
device 11, diskette drive 2 is device 12, and so on. If the value specified is 
less than four digits, the default device is assumed and the value specified 
represents only the file number (see Default Device in Chapter 2). If the 
value specified is greater than three digits, the rightmost three digits specify 
the file number and remaining digits specify the device. For example: 

Device/File Number 

2002 
12002 

Meaning 

For a 5110 Model 1-Tape unit 1, file 1 
For a 5110 Model 2-Diskette drive 1, file 1 
Tape unit 2, file 2 
Diskette drive 2, file 2 

• Workspace 10 specifies the name of the stored workspace on the media. 
See Variable and File Names in Chapter 2 for a description of the valid file 
names. 

• Password is any combination of up to 8 alphabetic or numeric characters 
(with no blanks). If more that 8 characters are entered, only the first eight 
are used. 

• Object is a user-defined function or variable name. 

• Parameters enclosed in brackets can be optional in certain cases. 

Note: See Name Processing in Chapter 2 for information on when the 
device/file number and file ID parameters are optional for tape and diskette 
operations. 



The )CLEAR Command 

The )CLEAR command clears the active workspace. A cleared workspace has 
no valid name and contains no user-defined variables or functions and no data. 
The workspace attributes are set to: 

Index origin 
Workspace identification -
Comparison tolerance 
Printing width 
Printing precision 
Random number seed 
Data printed 
Symbols 

1 
CLEAR WS 
1 E 13 
64 
5 
16807 
ALL 
125 

When the command is successfully completed, CLEAR WS is displayed. 

Syntax 

)CLEAR 

There are no parameters. 

The )CONTINUE Command 

The )CONTINUE command, using the specified workspace 10, stores the 
contents of the active workspace onto tape or diskette (the media) without 
changing the active workspace. Primarily, this command stores active status, 
such as suspended functions, so that an operation can be resumed later on the 
same or a similar machine. When the command is successfully completed, 
CONTINUED device/file number workspace 10 is displayed. 

System Commands 35 



36 

The )CONTINUE command on the 5110 is similar in function and format to the 
)SAVE command (except as noted below). 

Notes: 
1. A clear workspace cannot be written on the media. 
2. A workspace with suspended functions can only be written on the media 

with the )CONTINUE command (it cannot be written to the media by the 
)SAVE command). 

3. )COPY and )PCOPY commands cannot specify stored workspaces that 
were written on the media by the )CONTINUE command. 

4. A stored workspace written to the media by the )CONTINUE command 
cannot be loaded into a 5110 active workspace that is smaller than the 
original active workspace. 

5. If a stored workspace that was written to the media by the )CONTINUE 
command is loaded into another 5110 with a larger active workspace, the 
workspace available (see the OWA system variable in Chapter 5) is the 
same as when the workspace was written to the media. 

6. If ATTN is pressed during a )CONTINUE operation, the system operation 
is interrupted and the file is set to unused. 

7. Shared variable execution status can be stored by the )CONTINUE 
command. A subsequent )RESUME allows the user to resume execution 
if the media is restored to the same condition as when the workspace 
was stored by the )CONTINUE command (see The )RESUME Command in 
this chapter). 

8. The 0 LX system function is executed if the stored workspace is loaded 
by the )LOAD command. However, the OLX system function is not 
executed if the workspace is loaded by the )RESUME command. 

9. Workspaces are stored and loaded into the active workspace faster by 
the )CONTINUE command than by the )SAVE command. 

10. IMFs (internal machine fixes) are not stored by )CONTINUE. If an IMF 
is required for operation of the stored workspace, it should be reapplied 
by the )LlNK command (if the IMF is not already in the system) before the 
workspace is reloaded. 

11. Workspaces stored on tape by the )CONTINUE command cannot be 
interchanged between the IBM 5110 and the IBM 5100. 

Syntax 

)CONTINUE [device/file number] [workspace ID] [:password] 

Where: 

device/file number (optional) is the number of the device and file on the 
device where the contents of the active workspace are to be written. If no 
device/file number is specified, the device/file number from which the 
active workspace was loaded or specified by a previous )WSI D command is 
used. 

workspace ID (optional) is the name of the workspace to be stored. This 
name must match the workspace I D of both the active workspace and the 
file to be used on the media unless the file is marked unused. If the file is 
marked unused, the active workspace ID and file workspace ID are changed 
to this workspace ID. If no name is specified in the command, the name of 
the active workspace is used. 



:password (optional) is any combination of up to 8 alphabetic or numeric 
characters (without blanks), preceded by a colon. This sequence of 
characters must be matched when the stored workspace is to be read back 
into the active workspace. If no workspace I D or password is entered, the 
password associated with the active workspace (if any) is assigned to the 
workspace being stored. If just the workspace ID and no password is 
entered, any password associated with the active workspace is not used. 

The )COPV Command 

The )COPY command copies all or specified global objects from a stored 
workspace to the active workspace. Only objects in stored works paces that 
were written on the media with the )SAVE command can be copied. When the 
command is successfully completed, COPIED device/file number workspace 10 
is displayed. 

Notes: 
1. If the active workspace contains suspended functions, objects cannot be 

copied into it. 
2. If the ATTN key is pressed during a )COPY operation, the system operation 

is interrupted and the amount of information copied into the active 
workspace is unpredictable. 

3. If the active workspace contains shared variables, objects having the same 
name as a shared variable cannot be copied into the active workspace. 

Syntax 

)COPY [device/file number] [workspace ID] :password [object name(s)] 

Where: 

device/file number (optional for diskette only) is the number of the device, 
and workspace file the objects are copied from. 

workspace ID (optional) is the name of the stored workspace on the media. 
This parameter is optional only if the device/file number is specified. 

:password is the security password assigned by a previous )WSI D or )SAVE 
command. If no password was assigned previously, a password cannot be 
specified by this command. 

object name(s) (optional) is the name of the global objects(s) to be copied from 
the designated stored workspace. If this parameter is omitted, all global 
objects in the designated stored workspace are copied. 

System Commands 37 



38 

The )DROP Command 

The )DROP command marks a specified file unused. After the file has been 
marked unused, the data in the file can no longer be read from the media. 
Once the file is marked unused, the file is available to be used in the same 
manner as a newly formatted file (see The )MARK Command). When the 
command is successfully completed, DROPPED device/file number file 10 is 
displayed. 

Note: For diskette files, the )FREE command must be used if the diskette file 
space is to be reallocated to another file (see The )FREE Command in this 
chapter). 

Syntax 

)DROP [device/file number] [file 10] 

Where: 

device/file number (optional for diskette only) is the number of the device 
and the file on the media. 

file 10 is the name of the file to be marked unused. This parameter is 
required for all APL stored workspace files and is optional for data files if 
the device/file number is specified. The name specified by this parameter 
is compared to the media file 10. If the names do not match, the error 
message FILE NOT FOUND is displayed. 

Note: When a diskette file is dropped, the diskette file name is not changed. 

The )ERASE Command 

The )ERA5E command erases the named global objects from the active 
workspace. No message is displayed after the successful completion of the 
command. 

Notes: 
1. When a pendent function is erased, the response 51 DAMAGE is issued. 
2. If the object being erased is a shared variable (see Chapter 7), the shared 

variable will be retracted. 
3. Even after the object is erased, the name remains in the symbol table (the 

part of the active workspace that contains all the symbols used). 

Syntax 

)ERA5E object name(s) 

Where: 

object name(s) are global names separated by blanks. 



The )FILEID Command 

The )FILEID command is used to change or display the file name on a diskette 
volume. When the )FILEID command is issued without specifying a new file 
name, device file number file name is displayed. When the )FILEID command 
is issued specifying a new file name, WAS device/file number file name is 
displayed and the file name is changed to the new file name. 

Syntax 

)FILEID [device/file number] [current file name] [new file name] 

Where: 

device/file number (optional) is an integer that specifies the device/file 
number. 

current file name (optional) is the current name of the file. This parameter is 
optional only if the device/file number is specified and a new name is not 
specified. 

new file name (optional) will be the new name for the file. 

The )FNS Command 

The )FNS command displays the names of all global user-defined functions in 
the active workspace. The functions are listed alphabetically. If the character 
parameter is specified, the names are displayed beginning with the specified 
character or character sequence. 

Note: You can interrupt the )FNS command by pressing the ATTN key. 

Syntax 

)FNS [character(s)] 

Where: 

character(s) (optional) is any sequence of alphabetic and numeric characters 
that starts with an alphabetic character and contains no blanks. This 
sequence of characters determines the starting point for an alphabetic 
listing. 

System Commands 39 



40 

The )FREE Command 

The )FREE command makes diskette files available for reallocation. After the 
file is made available for reallocation, the space can be used for other 
numbered files by the )MARK command. 

When the command is successfully completed, FREED device/file number file 
10 is displayed. 

Syntax 

)FREE [device/file number] file ID 

Where: 

device/file number (optional) is an integer that specifies the diskette device/file 
number where the diskette file is stored. 

file 10 is the name of the stored file. This parameter must be specified for APL 
workspace files. For data files, this parameter is optional if the device/file 
number is specified. 



The )LlB Command 

The )LlB command displays the file headers of the files on tape or diskette. 
The file header contains the following information: 

• File number. 

• File 10. The file 10 can be from 1 to 17 characters. If the file contains a 
stored workspace, the file 10 is the same as the stored workspace 10. 

• File type. The file type is a two-digit code; the following chart gives the 
meaning of each code: 

File Type 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 

B9 

10 
11 
12 
15 
16 
17 
18 
19 
21 
22 
23 
24 
26 
72 

Description 

Unused file 
Sequential access-exchange data file 
Sequential access-general exchange data file 
BASIC source file 
BASIC workspace file 
BASIC keys file 
APL continued file-5100 only 
APL saved file 
Sequential access-APL internal format data file 
Direct access-exchange, general exchange, and 
unblocked / unspanned data file 
Direct access-unblocked / unspanned data file that can be 
used for exchanging data with other products 
Direct access-APL internal format data file 
BASIC source file-5110 only 
BASIC keys file-5110 only 
Direct access-APL mixed record data file 
Patch, tape recovery, and tape copy file-51 00 onty 
Diagnostic file-5100 only 
Communications file-5100 only 
IMF file-5100 only 
Patch, tape recovery, and tape copy file-511 0 onty 
Feature file-511 0 only 
IMF file-5110 only 
Diagnostic file-5110 only 
APL continued file-5110 only 
Storage dump-tape only 

• Size of the file. The files are formatted in increments of 1024-byte blocks 
of storage. 

• Number of unused contiguous 1024-byte blocks of storage in the file. 

Page of SA21-9303'() 
Issued 15 June 1978 
By TNL: SN2H)289 

System Commands 41 



42 

• (Tape only) Number of defective records (512-byte blocks) in the file; an 
asterisk (*) is displayed if there are more than nine defective records. 

Note: This value can indicate when you should relocate a file to avoid loss 
of data due to defective areas on the tape. 

• (Diskette only) Write-protect indicator; a P indicates that the file is 
write-protected. That is, you cannot write data to the file. Otherwise, this 
position is blank. 

• (Diskette only) Starting location of the first record in the file. This hex value 
is in the format CCHRR, where CC is the cylinder number, H is the head 
number, and RR is the sector number. 

Following is an example of a tape file header: 

006 FILE6 

File Type r o:r' DOl. 0 

Size of the File 

Available Storage-------' 

Number of Defective Records ----

'---File 10 

--------File Number 

Following is an example of a diskette file header: 

o 023 FILE2~~ :.:.~6 0020 10 () 07 P 1 (/101.1· 

File Type _t t 
Size of the File~ 
Available Storage-------...... 

Write Protect Indicator -----__ ....1 

Starting Location (CCH R R) ----------1 

File ID 

'------- File Number 

You can interrupt the }LlB command operation by pressing the ATTN key. 



Syntax 

)LlB [device/file number] 

Where: 

device/file number (optional) is the number of the device and starting file 
number. All file headers from that file to the end of the media are 
displayed. If this parameter is not specified, the default device is assumed 
and: 

• For the 5110 Model 1, the display begins with the first file following the 
file you are currently positioned at on tape unit 1 

• For the 5110 Model 2, the display begins with the first file on diskette 
drive 1 

For the tape units, the device number followed by 000 displays the file 
headers beginning with the first file you are currently positioned at on the 
tape unit. For example, 2000 specifies tape unit 2. 

For diskette drives, the device number followed by 000 displays the file 
headers beginning with the first file on the diskette drive. 

Page of SA21-9303-0 
Issued 28 April 1978 
By TNL: SN21-0284 

Note: For diskette files, only the file headers of the formatted files (see The 
)MARK Command) are displayed. 

The )UNK Command 

The )LlNK command is used to load special programs (file type 21 only), such 
as asynchronous communications or customer support functions, into the 5110. 

Syntax 

)LlNK [device/file number] [file ID] 

Where: 

device/file number (optional for diskette only) is the number of the device 
and the number of the file that contains the microcoded programs. 

file 10 (optional) is the name of the file that contains the microcode 
programs. This parameter is optional on diskette only if the device/file 
number is specified. 

Note: If an I/O error or workspace full condition occurs when you are using 
the )LlNK command, the program is not loaded and the CLEAR WS message 
is displayed. In this case, you should press RESTART to clear any IMFs 
(internal machine fixes), storage allocated for procedure files, or other special 
programs from the active workspace. Then try the )LlNK command again. If 
the program loads successfully, you must also reload any required IMFs. If the 
program still does not load, call your service representative. 

System Commands 43 



44 

The )LOAD Command 

The )LOAD command loads the contents of a stored workspace from the tape 
or diskette into the active workspace, completely replacing the content;; that 
were in the active workspace. When the command is successfully completed, 
LOADED device/file number workspace ID is displayed. 

Notes: 
1. If the A TIN key is pressed during a load operation, the system operation is 

interrupted and the active workspaGe is cleared. 
2. Any shared variables that were established when the stored workspace was 

written to the media are not automatically reestablished during a load 
operation. (See The )RESUME Command for information on reestablishing 
shared variables when a stored workspace was written to the media by the 
)CONTINUE command.) 

3. The system does not successfully terminate current. input/ output operations 
(see Chapter 7) when a )LOAD command is issued. Therefore, if a new data 
file is being created or if records are being added to an existing data file 
and a )LOAD command is issued without terminating the operation, the file 
header is not updated and the file contents are unpredictable. 

4. If the stored workspace contains a latent expression (see the 0 LX system 
variable in Chapter 5)' the latent expression is always executed when the 
)LOAD command is issued. 

Syntax 

)LOAD [device/file number] [workspace ID] :password 

Where: 

device/file number (optional for diskette only) is the number of the device 
and the number of the file on the media. 

workspace 10 (optional) is the name of the stored workspace. This 
parameter is optional only if the device/file number is specified. 

:password is the security password assigned to the stored workspace by a 
previous )WSID, )CONTINUE, or )SAVE command. If no password was 
previously assigned, a password cannot be specified. If a password was 
assigned to the stored workspace but is not specified, or if it is incorrectly 
specified for this command, the error message WS LOCKED is displayed. 



The )MARK Command 

Page of SA21-9303-0 
Issued 28 April 1978 
By TNL: SN21-0284 

The )NiARK command formats the media so that the active workspace or data 
can be saved on it. Each )MARK command formats a specified number of files 
to a specified size. Additional files of different sizes can be formatted by 
additional )MARK commands. 

When the operation is successfully completed, MARKED number of the last 
file marked size of the last file marked is displayed. 

Notes: 
1. The ATTN key is not operative during the )MARK command operation. 
2. If the message ALREADY MARKED is displayed after a )MARK command 

has been issued, the specified file already exists on the media. To re-mark 
the specified file, enter GO. If the file is not to be re-marked, press 
EXECUTE to continue. 

CAUTION 
If an e,xisting file on tape is re-marked, the original information in the 
re-marked file and the existing files following the re-marked file cannot be 
used again. 

3. (Diskette only) The files within the range specified by the )MARK command 
are the only files on the diskette that are affected. 

4. (Diskette only) The user can control the location of a file on the diskette 
only by using a totally unformatted diskette and issuing )MARK commands 
in the same order as the files that are to be formatted on the diskette. 

5. (Diskette only) If a size of zero is specified, the files within the range 
specified by the )MARK command are made available for reallocation. After 
the file is made available for reallocation, the diskette space can be used for 
other numbered files by the )MARK command. 

6. (Diskette only) The maximum number of files allowed on a diskette is 19 for 
a diskette type 1; 45 for a diskette type 2; 71 for a diskette type 2D (unless 
the diskette initialization function was used to get additional file headers; 
see the IBM 5110 Customer Support Functions Reference Manual, 
SA21-9311 ). 

Syntax 

)MARK size number of files to mark starting file number [device] 

Where: 

size is an integer specifying the size of each file in 1024-byte (1 K) blocks of 
storage. 

System Commands 45 



46 

The following formulas can be used to determine the maximum size the file 
must be marked. The formula for a workspace file (the contents of the 
active workspace written to tape with a )SAVE or )CONTINUE command) is: 

MAXSIZE=3+ r (CLEAR-ACTIVE) + 1024 

where: 

• MAXSIZE is the maximum amount of media storage (number of 
1024-byte blocks) that might be required to write the contents of the 
active workspace to the media. 

• CLEAR is the value of OWA (see Chapter 5) in a clear workspace. 

• ACTIVE is the value of DWA just before the contents of the active 
workspace are written to the media. 

The amount of storage actually required can vary considerably between 
different workspaces because of their content, if they are on tape or 
diskette, or if they were written with a )SAVE or )CONTINUE command. 

The formula for a data file (data written to the media with an APL shared 
variable-see Chapter 7) when all of the data is contained in the active 
workspace is: 

MAXSIZE= r (without-with) + 1024 

where: 

• MAXSIZE is the maximum amount of media storage (number of 
1024-byte blocks) required to write the data to the media. 

• WITH is the value of OWA (see Chapter 5) with the data in the active 
workspace. 

• WITHOUT is the value of DWA before any data to be written to the 
media was stored in the active workspace. 

There is no formula for determining what size to mark a data file when the 
data is written to the media as it is entered from the keyboard. The amount 
of media storage required depends upon how much data is entered from the 
keyboard and what type of data is used. For information on how many 
bytes of storage are required by the various types of data, see Storage 
Considerations in Chapter 2. 

Note: The file header for each marked tape file requires 0.5K bytes of 
storage. Therefore, the number of bytes of tape storage required for each 
file is the specified size of the file plus 0.5K. 

number of files to mark is an integer specifying the number of files of the 
specified size to format. 

starting file number is an integer specifying the file number where formatting 
is to start. 



device (optional) specifies the device that contains the media to be 
formatted. An entry of 1 specifies tape unit 1, 2 specifies tape unit 2, 11 
specifies diskette drive 1, and 12 specifies diskette drive 2. If no entry is 
made, the default device is used. 

To format a tape for four 12K files, two 16K files, and three 10K files, the 
following commands are required: 

)MARK 12 4 

)MARK 16 2 

)MARK 10 3 

1 

5 ~ Starting File Number 

7 

To format a diskette on diskette drive 1 for four 12K files, two 20K files, and 
one 10K file, the following commands are required: 

)MARK 12 4 

)MARK 20 2 

)MARK 10 

5 

7 

11 

117 Device 11 (diskette drive 11 
11 

The )OUTSEL Command 

The )OUTSEL command specifies which data on the display will go to the 
printer. 

Syntax 

)OUTSEL [ option] 

Where: 

option is one of the following: 

• When ALL is specified, all subsequent information that is displayed will 
be printed. 

• When OUT is specified, only the output is sent to the printer; input is 
displayed, but it does not go to the printer. 

• When OFF is specified, none of the information displayed is printed, 
unless it is assigned to an APL shared variable used by the printer (see 
Chapter 7). 

If no parameter is specified, ALL is assumed. After a )LOAD or )CLEAR 
command or when the machine is first turned on, the ALL option is active. 

System Commands 47 



48 

The )PCOPV Command 

The )PCOPV command copies all or specified global objects from a stored 
workspace into the active workspace. It is the same as the )COPV command, 
except that if the object name already exists in the active workspace, it is not 
copied from a stored workspace. Therefore, the object in the active workspace 
is protected from being overlaid and destroyed. Only objects in stored 
works paces that were written on the media with the )SAVE command can be 
copied. 

When the command is successfully completed, COPIED device/file number 
workspace 10 is displayed. 

Notes: 
1. If the active workspace contains suspended functions, objects cannot be 

copied into it. 
2. If the ATTN key is pressed during a )PCOPV operation, the system 

operation is interrupted and the amount of information copied into the active 
workspace is unpredictable. 

3. If the specified object name already exists in the active workspace, the 
message NOT COPIED: object name is also displayed. 

Syntax 

)PCOPV [device/file number] [workspace ID] :password [object name(s)] 

Where: 

device/file number (optional for diskette only) is the number of the device 
and the stored workspace file. 

workspace 10 (optional) is the name of the stored workspace on the media. 
This parameter is optional only if the device/file number is specified. 

:password is the security password assigned by the previous )WSID or 
)SAVE command. If no password was assigned, a password cannot be 
specified by this command. 

object name(s) (optional) is the name of the global object(s) to be copied 
from the designated stored workspace. If omitted, all global objects in the 
designated stored workspace are copied, except those already in the active 
workspace (if any). 



The )PROC Command 

The )PROC command opens an external procedure file that is used by the 5110 
as an alternative to keyboard input (see Chapter 2). A procedure file contains 
character records that represent any input that is possible to enter from the 
keyboard, such as system commands, function definitions, or APL statements. 

When a )PROC command is issued, all input comes from the procedure file 
until the end-of-data is reached. Then the 5110 goes back to using regular 
keyboard input. 

Notes: 
1. The )PROC command requires 768 bytes from the active workspace. This 

space can be allocated only in a CLEAR WS; therefore, the active 
workspace is always cleared the first time a )PROC command is issued. The 
active workspace is not cleared for any subsequent )PROC commands 
because the 768 bytes are already allocated. 

2. You can establish the 768 bytes of active workspace by issuing the )PROC 
command without any parameters. This allows you to clear the active 
workspace, establish the 768-byte area required by the )PROC command, 
use the active workspace for any APL operations, and issue subsequent 
)PROC commands when you are ready to execute statements from a 
procedure file. 

Syntax 

)PROC [device/file number] [file 10] 

Where: 

device/file number (optional for diskette only) is an integer that specifies the 
device/file number where the procedure file is stored. 

file ID (optional) is the name of the procedure file. This parameter is 
optional only if the device/file number is specified. 

System Commands 49 



50 

The )PROTECT Command 

The )PROTECT command invokes or removes the write-protect indicator on a 
diskette file. When the write-protect indicator is on for a specified diskette 
file, you cannot write to that diskette file. This will prevent someone from 
writing data to a diskette file accidently. 

Syntax 

)PROTECT [device/file number] [file ID] [OFF/ON] 

Where: 

device/file number (optional) is an integer that specifies the device/file 
number where the write-protect indicator is invoked or removed. 

file ID (optional) is the name of the diskette file. This parameter is optional 
only if the device/file number is specified. 

OFF ION (optional) specifies whether the write-protect indicator is to be 
removed (OFF) or invoked (ON). This parameter can be used only when the 
file ID is specified. If this parameter is not specified, the write-protect 
indicator is invoked. 



The )RESUME Command 

The )RESUME command loads the contents of a workspace that was stored by 
the )CONTINUE command into the active workspace and attempts to 
reestablish the system's environment as it was when the workspace was 
stored. 

This includes reestablishing shared variables and reestablishing suspended 
functions. For shared variables, an attempt is made to reestablish the shared 
variables as follows: 

'. Diskette data files are checked to make sure they are on the proper diskette 
drive. If the data files are not on the proper diskette drive, a WRONG 
VOLUME error message is displayed. However, the stored workspace is 
still loaded into the active workspace. 

If the WRONG VOLUME error message is displayed, place the diskette 
containing the correct data files in the proper diskette drive before doing 
any input/output. 

CAUTION 
If the correct diskette is not placed in the proper diskette drive, data on the 
diskette presently in the diskette drive can be overwritten and lost. 

• Tape files are not checked. It is assumed that all tapes remain in the correct 
position and are mounted on the correct devices. If the wrong tape is 
placed in the tape drive or if the tape has been repositioned, it is possible to 
overwrite in the wrong location. 

• Any shared variables to the printer are reestablished. 

• Any shared variables to attached serial I/O devices are reestablished; 
however, you are responsible for establishing the correct serial I/O 
environment (such as making sure the serial I/O devices are attached) 
before issuing the )RESUME command. 

When the )RESUME command is used, the latent expression (OLX) is not 
executed and )OUTSEL ALL is assumed unless a shared variable to the printer 
was specified. When the command is successfully completed, RESUMED 
device/file number workspace 10 is displayed. 

Syntax 

)RESUME [device/file number] [workspace 10] :password 

Where: 

device/file number (optional) is the number of the device and file number of 
the stored workspace. 

workspace ID (optional) is the name of the stored workspace. This 
parameter is optional only if the device/file number is specified. 

System Commands 51 



52 

:password is the security password assigned to the stored workspace by a 
previous )WSID or )CONTINUE command. If no password was previously 
assigned, a password cannot be specified. If a password was assigned to 
the stored workspace but is not specified, or if it is specified incorrectly for 
this command, the error message WS LOCKED is displayed. 

The )REWIND Command 

The )REWIND command rewinds the specified tape. No message is displayed 
at the successful completion of this command. 

Syntax 

)REWIND [device number] 

Where: 

device number (optional) is the tape (on drive 1 or 2) to be rewound. If this 
parameter is omitted, tape 1 is rewound. 

The )SAVE Command 

The )SAVE command stores the contents of the active workspace onto the 
media without changing the contents of the active workspace. Individual global 
objects can be copied from the stored workspace to the active workspace. 
When this command is successfully completed, SAVE device/file number 
workspace ID is displayed. Do not remove the tape or diskette until this 
message is displayed. 

Notes: 
1. A clear workspace or a workspace with suspended function cannot be 

written to the media by the )SAVE command; however, a workspace with 
suspended functions can be written to the media by the )CONTINUE 
command. 

2. The )COPY and )PCOPY commands can specify stored workspaces that 
were written on the media only if the )SAVE command was used. 

3. Depending on the amount of data in the stored workspace, a stored 
workspace that was written to the media by the )SAVE command can be 
loaded into another 5110 with a smaller active workspace. 

4. If A TIN is pressed during a )SAVE operation, the system operation is 
interrupted and file is set to unused. 

5. Shared variables cannot automatically be reestablished in the active 
workspace when the workspace is stored on the media by the )SAVE 
command. However, the shared variable can be automatically reestablished 
in the active workspace when the workspace is stored by the )CONTINUE 
command. 

6. IMFs (internal machine fixes) are not stored by the )SAVE operation. If an 
IMF is required, it is necessary to use the )UNK command to reload the IMF 
(if the IMF is not already in the system) before the stored workspace is 
reloaded. 

7. Only workspaces stored on the media by the )SAVE command can be 
interchanged between the 5110 and the 5100. 



Syntax 

)SAVE [device/file number] [workspace ID] [:password] 

Where: 

device/file number (optional) is the number of the device and the file on the 
tape or diskette where the contents of the active workspace are to be 
written. If no device/file number is specified, the device/file number from 
which the active worksJPace was loaded or which was specified by a 
previous )WSID command is used. 

workspace 10 (optional) is the name of the workspace to be stored. This 
name must match the workspace I D of both the active workspace and the 
file to be used on the media unless the file is mark unused. If the file is 
marked unused, the active workspace and file workspace I D will be changed 
to this workspace ID. If no name is specified in the command, the name of 
the active workspace is used. 

:password (optional) is any combination of up to 8 alphabetic or numeric 
characters (without blanks), preceded by a colon. This sequence of 
characters must be matched when the stored workspace is to be read back 
into the active workspace. If no workspace I D or password is entered, the 
password associated with the active workspace (if any) is assigned to the 
workspace being stored. If just the workspace I D and no password is 
entered, any password associated with the active workspace is not used. 

The )SI Command 

The )SI command displays the names of the suspended and pendent 
user-defined functions. The suspended functions are indicated by an *, with 
the most recently suspended function listed first, followed by the next most 
recently suspended function, and so on. 

Syntax 

)SI 

There are no parameters. 

The )SINL Command 

The )SINL command displays the names of the suspended and pendent 
user-defined functions and the names local to each function. The suspended 
functions are indicated by an *, with the most recently suspended function 
listed first, followed by the next most recently suspended function, and so on. 

Syntax 

)SINL 

There are no parameters. 

System Commands 53 



54 

The )SORT Command 

The )SORT command transfers system control to the sort feature (see the 
5110 Customer Support Functions Reference Manual, SA21-9311, for a 
complete description of the sort feature). 

Note: If the )SORT command is issued from a procedure file (see The )PROC 
Command), the statement immediately following the )SORT command 
statement is used as the initial input to the sort feature. When the sort feature 
is complete, the 5110 continues to take input from the procedure file. 

Syntax 

)SORT 

There are no parameters. 

The )SYMBOLS Command 

The )SYMBOLS command is used to change or display the number of symbols 
(variable names, function names, and labels) allowed in the active workspace. 
The number of symbols allowed can only be changed immediately after a 
)CLEAR command has been issued. In a clear workspace, the number of 
symbols allowed is initially set to 125 by the 5110. When the command is 
used to display the number of symbols allowed, IS the number of symbols 
allowed, number of symbols used IN USE is displayed. When the command is 
used to change the number of symbols allowed, WAS the former number of 
symbols allowed is displayed. 

Note: When a stored workspace is loaded into the active workspace, the 
number of symbols allowed in the active workspace will be the same as when 
the stored workspace was written to the media. 



Syntax 

)SYMBOLS [n] 

Where: 

n (optional) is an integer equal to or greater than 26 that specifies the 
number of symbols allowed in the active workspace. Each symbol allowed 
requires 8 bytes of storage in the active workspace. 

Notes: 
1. The number of symbols allowed is assigned in blocks of 21; therefore, the 

actual number allowed can be larger than the number specified. 
2. When a symbol is used in the active workspace, it remains in use even 

though the object is erased or, in the case of VALUE ERROR never existed. 
When the active workspace is written to tape with the )SAVE command and 
subsequently reloaded, these unused na~es are removed from the symbol 
table, and the number of symbols in use will be the same as the number of 
objects in the workspace. 

3. The total number of allowed symbols remains the same after you write the 
workspace to the media with a )SAVE or )CONTINUE command and then 
reload the workspace to the active workspace. The number of symbols in 
the active workspace can be changed as follows: 
a. Save the active workspace with the )SAVE command. 
b. Clear the active workspace with the )CLEAR command. 
c. Set the new number of symbols with the )SYM BOLS comm~ _____ 
d. Copy the stored workspace to the active workspace with th( )COPY ," 
command.- -

e. The workspace ID and OLX must be respecified. 

The )VARS Command 

The )VARS command displays the names of all global variables in the active 
workspace. The variables are displayed alphabetically. If the character 
parameter is included, the names are displayed beginning with the specified 
character sequence. 

Syntax 

)V ARS [ character(s) ] 

Where: 

character(s) (optional) is any sequence of alphabetic and numeric characters 
that starts with an alphabetic character and contains no blanks. This entry 
can be used to define the starting point for an alphabetic listing. 

System Commands 55 



56 

The )VOLIO Command 

The )VOLIO (volume 10) command is used to change or display the volume 10 
or change the access-protect indicator of a diskette device. When the )VOLIO 
command is issued without any parameters, volume 10 owner ID record size is 
displayed. When the )VOLIO command is issued with parameters, 
WAS volume 10 owner 10 record size is displayed. 

Note: The record size cannot be changed by the )VOLIO command. 

Syntax 

)VOLIO [device number] [volume 10] [owner 10] [access-protect indicator] 

Where: 

device number (optional) is the number of the diskette device. 

volume 10 (optional) will be the new identifier for the diskette volume. This 
parameter can be up to 6 alphabetic and numeric characters. 

owner ID (optional) is the new identifier for the owner of the diskette 
volume. This parameter can be up to 14 alphabetic and numeric characters. 
If this parameter is not specified, the owner lOis not changed. 

access-protect indicator (optional) is specified as either ON or OFF. This 
parameter can be specified only when the volume 10 and owner ID 
parameters are also specified. The access-protect indicator prevents 
unauthorized access to the diskette volume; any attempt to access the 
diskette generates an ERROR 043 message. 

Following are examples of using the )VOLIO command: 

)VOLIO 

)VOLIO 12 

)VOLIO 11 NEW 

)VOLIO 11 NEW JOHN 

)VOLIO 11 NEW JOHN ON 

Displays the volume 10, owner 10, and 
record size of the diskette on diskette drive 
1. 

Displays the volume 10, owner 10, and 
record size of the diskette on diskette drive 
2. 

Changes the volume 10 of the diskette on 
diskette drive 1 to NEW; the owner 10 
remains the same. 

Changes the owner 10 of the diskette on 
diskette drive 1 to JOHN; the volume 10 is 
also changed if the volume 10 was not 
already NEW. 

Sets the access-protect indicator on for the 
diskette on diskette drive 1. 



The )WSID Command 

The )WSID (workspace 10) command is use.d to change or display the 
device/file number and workspace 10 of the active workspace. The )WSIO 
command is also used to change or assign the security password. If a )SAVE 
or )CONTINUE command is specified without any parameters, the contents of 
the active workspace are written to the device and file number specified by the 
)WSIO command. When the )WSIO command is issued without any 
parameters, device/file number workspace ID is displayed. When the )WSIO 
command is issued with parameters, WAS device/file number workspace ID is 
displayed. 

Note: The )WSIO command affects only the active workspace; it cannot be 
used to change any information on tape or diskette. 

Syntax 

)WSID [device/file number] [workspace 10] [:password] 

Where: 

device/file number (optional) is an integer that specifies the device/file 
number where the active workspace will be stored when either the )SAVE or 
)CONTINUE command is issued. 

Note: If this parameter is omitted, the device/file number is cleared; a 
)SAVE or )CONTINUE command will not work unless a device/file number 
is specified in that )SAVE or )CONTINUE command. 

workspace ID (optional) will be the new name for the active workspace. This 
parameter must be entered if any other parameter is used. 

:password (optional) is any combination of up to 8 alphabetic or numeric 
characters (without blanks), preceded by a colon. These characters will 
become the security password for the tape file when the active workspace 
is written on tape. 

System Commands 57 



58 



Chapter 4. Primitive (Built-In) Functions 

APL functions are of two types: user-defined and built-in. User-defined 
functions are discussed in Chapter 6. Built- in functions, called primitive 
functions, are denoted by a symbol and operate on the data you supply to 
them. 

The value or values you supply are called arguments. Primitive functions that 
use two arguments, such as AT B, are said to be dyadic; functions that use 
one argument are said to be monadic, such as T B, which yields the reciprocal 
of B. Arguments can be single data items (scalars), strings of data (vectors), 
tables of data (matrices), or multiple tables of data (N-rank arrays). _Arguments 
can also be expressions or user-defined functions that result in a scalar, 
vector, matrix, or N-rank array. 

There are two types of primitive functions: scalar functions and mixed 
functions. There are also operators that operate on the primitive functions. 
Examples of the functions and operators are provided throughout this chapter 
for easy reference and are set up as they would appear on the display. 

PRIMITIVE SCALAR FUNCTIONS 

Scalar functions operate on scalar arguments and arrays. They are extended to 
arrays element by element. The shape and rank of the result depend on the 
shape and rank of the arguments. For dyadic scalar functions, the relation 
between the types of arguments and the shape of the result is shown in the 
following table. Each scalar function is described following the table: 

Argument A Argument B Result 

Scalar Scalar Scalar 

Array Array with the same Array with the same 
shape as A shape as the 

arguments 

Scalar or one- Array of any Array with the 
element array shape same shape as 

argument B 

Array of Scalar or one- Array with the same 
any shape element array shape as argument A 

One-element One-element array One-element array 
array with the rank with the shape of 

different from the the array with the 
rank of A greater rank 

Primitive (Built-In) Functions 59 



60 

The + Function: Conjugate, Plus [J 
Monadic (One-Argument) Form: Conjugate +B 

The conjugate function does not change the argument. The argument can be a 
numeric scalar, vector, or other array, and the shape of the result is the same 
as that of the argument: 

I::' 
' .. } 

"'1::-
, .. I 

A~" .. '~S 
+tl 

If B is an array, the function is extended to each of the elements of B. The 
shape of the result is the shape of B: 

o 

'''3 
o 

:I. 

... ;.:.~ 

:I. 

B~2 3p-3 -2 -1 0 1 2 
n 

I') 
,: .. 

+B 
"'1 

I') 
,': .. 

Dyadic (Two-Argument) Form: Plus A+B 

The plus function results in the sum of the two arguments. The arguments can 
be numeric scalars, vectors, or other arrays. Arguments must be the same 
shape, unless one of the arguments is a scalar or single-element array. If the 
arguments have the same shape, the result has the same shape as the 
arguments: 

~5. 73 

'''1 .2 
S.t :I. -1 -3+5.1 2 0 4 

10.2 ::5 "'1 :I. 



If one argument is a scalar or single-element array, the shape of the result is 
the same as that of the other input argument. The single element is applied to 
every element of the multielement array: 

B~"2 3p1 2 3 I.J. ~j t) 
H 

1 2 ~5 
L~ ~:; 6 

~3+B 
Iof. ~S 6 
7 8 9 

B+~5 
L~ I;:' 

,.} 6 
7 8 (? 

The - Function: Negation, Minus 0 
Monadic (One-Argument) Form: Negation -8 

The negation function changes the sign of the argument. The argument can be 
a numeric scalar, vector, or other array. The shape of the result is the same as 
that of the argument: 

"'1 "':3 

A~" -'1 "'~3 

A 

If the argument is an array, the function is extended to each element of the 
array. 

B~"2 3p ... :~ 
B 

'-:'5 "'2 '''1 
(I :I. 2 

·· .. B 
:'5 2 :to 

o ''':l "'2 

- '') 
4' .. "':L 0 :t. 2 

Primitive (Built-In) Functions 61 



62 

Dyadic (Two-Argument) Form: Minus A-B 

The minus function subtracts argument B from argument A. The arguments 
can be numeric scalars, vectors, or other arrays. The arguments must be the 
same shape unless one of the arguments is a scalar or any single-element 
array. If the arguments are the same shape, the result has the same shape as 
the arguments: 

3~"2 

:I. 
I+ .... ~.:; 

1+ .. - ~'5 

l "':1. "'3-"5.,). 2 (I "'1+ 

{} "':1. 

If one argument is a scalar or a single-element array, the shape of the result is 
the same as that of the other input argument. The single element is applied to 
every element of the multielement array: 

:I. 2 3 
Lt· !.:; 6 

B~2 3p1 2 3 ~ 5 6 
B 

~5"- B 
21.0 

"':1. "'2 -:'5 
B-3 

"';'::: "'1 0 

:I. 2 3 

The x Function: Signum, Times CD 
Monadic (One-Argument) Form: Signum x B 

The signum function indicates the sign of the argument. If the argument is 
negative, -, is the result; if the argument is zero, then 0 is the result; if the 
argument is positive, , is the result. The argument can be a numeric scalar, 
vector, or other array. The shape of the result is the same as that of the 
argument: 



If the argument is an array, the function is extended to each of the elements: 

B~2 3p-2 -1 0 1 2 3 
13 

"'2 .n:1. 0 
:I. 

xB 
"':1. ''':1. 0 

:I. :1. :I. 

Dyadic (Two-Argument) Form: Times A x B 

The times function result is the product of argument A times argument B. The 
arguments can be numeric scalars, vectors, or other arrays. The arguments 
must be the same shape, unless one of the arguments is a scalar or any 
single-element array. Arguments of the same shape have the same shape 
result: 

1.j·.2 
3x "'6 

n.:1. B 
o. ? L~ x:3 6 1:1. ... Lt· 

fr:l.2.;.:.~ "':1.6 

If one argument is a scalar or a single-element array, the shape of the result is 
the same as that of the other input argument. The single element is applied to 
every element of the multielement array: 

:I. 2 3 
!.t. ~.:S 6 

B~2 3p:l. 2 3 4 5 6 
B 

Primitive (Built-In) Functions 63 



64 

The';' Function: Reciprocal, Divide GJ 
Monadic (One-Argument) Form: Reciprocal .;. B 

The reciprocal function result is the reciprocal of the argument. The argument 
can be a numeric scalar, vector, or other array. The shape of the result is the 
same as that of the argument: 

.. :-Lj. 

··:··2 

If the argument is an array, the function is extended to each of the elements: 

B~··~.~ 2 p2 . ~7.i 

··:-B 
o . ~:; 
I] ,!5 

o . ~5 
I] . ~.:5 

'1 A: •• 
") 
~: .. 

Dyadic (Two-Argument) Form: Divide A';' B 

The divide function result is the quotient when argument A is divided by 
argument B. The arguments can be numeric scalars, vectors, or other arrays. 
The arguments must be the same shape unless one of the arguments is a 
scalar or a single-element array. Arguments of the same shape have the same 
shape result: 

,.) 
.::... 

6-:··3 

· .. 3 .. ;····2 



If one argument is a scalar or a single-element array, the shape of the result is 
the same as that of the other input argument. The single element is applied to 
every element of the multielement array: 

B~2 2pl 10 20 100 
B 

:I. :1. 0 
20 :1.00 

:-5.~ .. B 
:3 
o I :I.~"5 

0,:3 
0.03 

Note: There are two additional rules that apply to the divide function: 

1. When zero is divided by zero, the result is 1: 

0+0 
1 

2. Any value other than zero cannot be divided by zero: 

:~..:" 0 
DOMr!) I N E R I~O R 

:3":·0 
/\ 

The r Function: Ceiling, Maximum OJ 
Monadic (One-Argument) Form: Ceiling r B 

The ceiling function result is the next integer larger than the argument (the 
argument is rounded up), unless the argument already is an integer. In this 
case, the result is the same as the argument. The argument can be a numeric 
scalar, vector, or other array. The shape of the result is the same as that of 
the argument: 

, .... 1. 1::-
,.} I .J 

rl.!· 
'+ 

Primitive (Built-In) Functions 65 



66 

If the argument is an array, the function is extended to each of the elements: 

1 2 
2 2 

:I. 

B~":;? 2(.>:/. 
:0 

1 I ~:5 

rn 

·1 -y ...... ~. 
'1 .. : .. 

Note: The result of the ceiling function depends on the OCT system variable 
(see Chapter 5 for information on the OCT system variable). 

Dyadic (Two-Argument) Form: Maximum ArB 

The maximum function result is the larger of the arguments. The arguments 
can be numeric scalars, vectors, or other arrays. The arguments must be the 
same shape unless one of the arguments is a scalar or any single-element 
array. Arguments of the same shape have the same shape result: 

LJ· r 6 

31""2 
•• y 

.. ~. 
···t::.r ... :1. (I 

···6 
~5 1:1. 1 _. :I. _. 3 r~::; I 1 2 0 -·1+ 

~~} • :I. 0 ···3 

If one argument is a sCC\llar or a single-element array, the shape of the result is 
the same as that of the other argument. The single element is applied to every 
element of the multielement array: 

:I. 
Lj. 

3 
1+ 

2 
I::· 
·_1 

.. )." 
••• J 

1::-
· •. 1 

::5 

B~2 3pl 2 3 4 5 6 
H 



The L Function: Floor, Minimum rn 
Monadic (One-Argument) Form: Floor L B 

The floor function result is the next integer smaller than the argument (the 
argument is rounded down) unless the argument is already an integer. In this 
case, the result is the same as the argument. The argument can be a numeric 
scalar, vector, or other array. The shape of the result is the same as that of 
the argument: 

~5 "'3 
L. Lt· 

'+ 

If the argument is an array, the function is extended to each of the elements: 

:I. 1 
:I. 2 

B~2 2pl 1.5 1.6 2 
B 

1 :I. • ~:; 
1.6 2 

1..13 

Note: The result of the floor function depends on the OCT system variable 
(see Chapter 5 for information on the OCT system variable). 

Dyadic (Two-Argument) Form: Minimum ALB 

The minimum function result is the smaller of the arguments. The arguments 
can be numeric scalars, vectors, or other arrays. The arguments must be the 
same shape unless one of the arguments is a scalar or any single-element 
array. Arguments of the same shape have the same shape result: 

'+ L c) 
'+ 

M·bl.. -1 (I 

!5.1. (I M.I.!. 

~:5 . :I. "'1 ""+ 

Primitive (Built-In) Functions 67 



68 

If one argument is a scalar or a single-element array, the shape of the result is 
the same as that of the other argument. The single element is applied to every 
element of the multielement array: 

1 2 ~~ 
LI· ~:5 6 

1. 2 3 
~1 3 ~5 

B~2 3p1 2 3 4 5 6 
B 

:31..B 

The I Function: Magnitude, Residue IT) 
Monadic (One-Argument) Form: Magnitude I B 

The magnitude function result is the absolute value of the argument. The 
argument can be a numeric scalar, vector, or other array. The shape of the 
result is the same as that of the argument: 

17.9 
7.9 

If the argument is an array, the function is extended to each of the elements: 

B~2 2p-S.l -1 0 3.14 
B 

"'~.:j I 1. 
o 

IB 
!.:i • :1. 
o 

"'1 
3. ill· 

:I. 
3.1.4· 



Dyadic (Two-Argument) Form: Residue A I B 

The residue function result (when both argument A and argument Bare 
positive) is the remainder when argument B is divided by argument A. The 
following rules apply when using the residue function: 

1. If argument A is equal to zero, then the result is equal to argument B: 

016 

2. If argument A is not equal to zero, then the result is a value between 
argument A and zero (the result can be equal to zero, but not equal to 
argument A). The result is obtained as follows: 

a. When argument B is positive, the absolute value of argument A is 
subtracted from argument B until a value between argument A and 
zero is reached: 

b. When argument B is negative, the absolute value of argument A is 
added to argument B until a value between argument A and zero is 
reached: 

31 ···!S 

:I. 

The arguments can be numeric scalars, vectors, or other arrays. The 
arguments must be the same shape, unless one of the arguments is a scalar or 
any single-element array. Arguments of the same shape have the same shape 
result: 

:I. 

o 

017 
7 

710 
o 

'-2 I :1.2 . :3 
"':1. 17 

"':::.:~ 1 _. :1. 2 I 3 
... 0 . :.3 

:1..7 

1 1 -':2 . 3 a ~5 
[I .6:1. ~7.; 

Primitive (Built-In) Functions 69 



70 

If one argument is a scalar or a single-element array, the shape of the result is 
the same as that of the other argument. The single element is applied to every 
element of the multielement array: 

1 2 :·3 
1+ ~5 6 

:I. ~.~ 0 
:I. :::.~ 0 

B~2 3pl 2 3 ~ 5 6 
B 

31B 

The * Function: Exponential, Power CO 
Monadic (One-Argument) Form: Exponential * B 

The exponential function result is the Naperian base e (2.718281828459045) 
raised to the power indicated by the argument. The argument can be a 
numeric scalar, vector, or other array. The shape of the result is the same as 
that of the argument: 

.)(. :I. 

20 • OB6 

If the argument is an array, the function is extended to each element of the 
array: 

o :I. 
2 :3 

B~-2 21~)O 1 2 3 
B 

·).:B 
:I. 
7'.3BC"ll 

2.7:1.B3 
20.0B6 



Dyadic (Two-Argument) Form: Power A * 8 

The power function result is argument A raised to the power indicated by 
argument B. The arguments can be numeric scalars, vectors, or other arrays. 
The arguments must be the' same shape unless one of the arguments is a 
scalar, or any single-element array. Arguments of the same shape have the 
same shape result: 

8 

:I. 

3 

To find the root of a number, you raise the number to the power indicated by 
the reciprocal of the root. For example, to find the square root: 

:I. ,+ 9 :I. 6,)(,,,:,2 
:L 2 3 I~. 

If one argument is a scalar or a single-element array, the shape of the result is 
the same as that of the other argument. The single element is applied to every 
element of the multielement array: 

:1. 2 
~'3 !.t. 

B~"2 ;;~(.>:I. 2 ::5 ,+ 
B 

H~(-2 

:1. 
('1 

,+ 
:1.6 

The 8 Function: Natural Log, Logarithm m CO 
You form the 8 symbol by overstriking the 0 symbol and the * symbol. 

Monadic (One-Argument) Form: Natural Log 88 

The natural log function result is the log of the argument B to the Naperian 
bc;lse e (2.718281828459045). The argument can be a nonnegative numeric 
scalar, vector, or other array. The shape of the result is the same as that of 
the argument: 

:l 
<+) 2 0 I () B f.) 

Primitive (Built-In) Functions 71 



72 

If the argument is an array, the function is extended to each element of the 
array: 

B~~2 2p:t. 3 :1.0 20 
B 

:1. :3 
:1.0 20 

(f)B 

o 
2.3026 

:I. • O<?B6 
2 . 99~57 

Dyadic (Two-Argument) Form: Logarithm Afi8 

The logarithm function result is the log of argument B to the base of argument 
A. The arguments can be numeric scalars, vectors, or other arrays. The 
arguments must be the same shape, unless one of the arguments is a scalar or 
any single-element array. Arguments of the same shape have the same shape 
result: 

:5. :1. I}):t. 2 . B 
~.:.~ . 2!5 :·5 l l· 

:2 3 '+(f)B ? :1.6 

If one argument is a scalar or a single-element array, the shape of the result is 
the same as that of the other argument. The single element is applied to every 
element of the multielement array: 

B~" 2 :? p :I. 2 :-3 1+ 
H 

1. 0 (~)D 
o 
o . '+ '7 7 :I. ~.:.~ 

0.30:1.03 
0.60206 

The 0 Function: Pi Times, Circular CD 
Monadic (One-Argument) Form: Pi Times 08 

The pi times function result is the value of pi (3.141592653589793) times B. 
The argument can be a numeric scalar, vector, or other array. The shape of the 
result is the same as that of the argument. 

<:):\. 

:3. :1,1.1·16 
o:~ 

<,;;0. 1·1· 2 I.J. B 



If the argument is an array, the function is extended to each element of the 
array: 

B~"2 ::?(.>1 2 ~5 1+ 
B 

oB 
~5. l'+lb 
~'J • '+2'+B 

6.2B:32 
:1.2.566 

Dyadic (Two-Argument) Form: Circular AOB 

The circular function result is the value of the specified trigonometric function 
(argument A) for the specified radians (argument B). The arguments can be 
numeric scalars, vectors, or other arrays. Arguments must be the same shape, 
unless one is a scalar or single-element array. Arguments of the same shape 
have the same shape result, The following is a list of the values for the A 
argument and the related functions performed. A negative argument A is the 
mathematical inverse of a positive argument A; any values for argument A 
other than the following will result in DOMAIN ERROR: 

Value of A Operation Performed 

OoB 

10B 

20B Cosine B 

30B 

40B 

50B Hyperbolic sine of B (sinh B) 

60B Hyperbolic cosine of B (cosh B) 

70B Hyperbolic tangent of B (tanh B) 

Arcsin B 

Arccos B 

Arctan B 

Arccosh B 

70B Arctanh B 

Primitive (Built-In) Functions 73 



74 

If 8 is 45°, here is how to solve for the sine, cosine, and tangent of 8 (45° is 
equivalent to pi radians divided by 4): 

n~··O-: .. I+ 
B The left argument specifies 

() . 7B~.)I+ /-------the trigonometric function. 
:l.oB 

o . .., 0 '7:1. j,4t-------Sine of 8 

20B 
() . 7 () 7 :1. 1 41-----_ Cosine of 8 

~5()B 

l ..... -----------Tangent of 8 

If 8 is the sine of an angle, then 008 yields the cosine of the same angle, and 
conversely, if 8 is the cosine, 008 yields the sine. Suppose you wanted the 
sine of 30°, which is equivalent to pi divided by 6: 

Eu<1. () «J-:--6) 
Ii 

o . ~j .... ·-----------Sine of 30° 
Ot1B 

0, 8660:3 .... ·---------Cosine of 30° 
B ~ .. ~~ 0 ( (:) .~. 6 ) 
B 

O. 8660~3 .... ·---------Cosine of 30° 
OoB 

o . 5 .... ,-----------Sine of 30° 

If one argument is a scalar or a single-element array, the shape of the result is 
the same as that of the other argument. The single element is applied to every 
element of the multielement array: 

:J. 2 
3 1+ 

A~··::!. 2(.>1 2 3 LI· 
B~"D .. : .. L~ 
i~ 

o . 7B~5lj· 
A()B 

0,7071:1. 
1 

O.707l1 
:1..2716 



The ! Function: Factorial, Binomial Q 0 
You form the ! symbol by overstriking the quotation mark (') and the period 
( . ). 

Monadic (One-Argument) Form: Factorial ! B 

The factorial function result is the product of all the positive integers from one 
to the number value of the argument. The argument can be a positive numeric 
scalar, vector, or other array. The shape of the result is the same as that of 
the argument: 

! 1.1· 

! :1. 2 :3 '-I. !5 
:I. 2 6 21.~ 1,20 

The factorial function also works with decimal numbers and zero, but negative 
integers are not allowed. When used in this way, factorial can be defined by 
use of the mathematical gamma function-{ ! A) is equal to gamma (A+1): 

! 3 . :1.1+ 
"( . 1,7:3:3 

!O 
1 

If the argument is an array, the function is extended to each of the elements: 

o :1. 

2 :~ 

B~"2 2(.'10 l. 2 :.3 
B 

!B 
:1. :1. 

6 

Primitive (Built-In) Functions 75 



76 

Dyadic (Two-Argument) Form: Binomial AlB 

The binomial function result is the number of different combinations of 
argument B that can be taken A at a time. The result of AlB is also the 
(A+l )th coefficient of the binomial expansion of the Bth power. The 
arguments can be numeric scalars, vectors, or other arrays. The arguments 
must be the same shape, unless one of the arguments is a scalar or any 
single-element array. Arguments of the same shape have the same shape 
result: 

2!1.f. 
6 

2!6 w x y Z I ...... t:----Argument B 

15 
3!0 

0 
0!3 

1 
The combinations of )4.-----
argument B taken 

2!3 argument A(2) at a time 

3 

If one argument is a scalar or a single-element array, the shape of the result is 
the same as that of the other argument. The single element is applied to every 
element of the multielement array: 

1 ~5 

1 1+ 

o :t. 

::5 

(-; 

0 1 2 :3! :3 
:I. 
0 1 '1 ::5 I+! I.J. .... 
1+ :1. 

H~··2 2(.) 0 :1. 2 3 
n 

B ! ~::j 
:I. 

:1. 0 10 
1+ • 5 Lt· 2 ! _.I.J. ~5 

1 0 :I. 0 ""(. B"1 ~5 6 

If noninteger arguments are used, this function relates to the beta function as 
follows: Beta (P,O) is equal to tOX(P-l) 1 P+O-l 



The 7 Function: Roll GJ 
Monadic (One-Argument) Form: Roll ?8 

The roll function result is a randomly selected integer from 0 through B ... 1 or 1 
through B (depending on the index origin). Each integer in the range has an 
equal chance of being selected. The argument oan be a positive integral soalar, 
vector, or other array. The shape of the result is the same as that of the 
argument: 

?300 
202 

-;>:'300 
::5 

?~5 '7 <:; 
:~ :I. 1.1, 

?6 6 
I::' 
,,,I '+ 

") , 
! t) 6 

(;. (;; 

If the argument is an array, the function is extended to each element of the 
array: 

B~2 3pl1 22 33 44 55 66 
F.~ 

1:1. 22 ~5::5 
LI,I+ ~:i ~5 66 

?B 
~:,i 12 2B 
2 3 ~5~:,:.i 

Dyadic (Two-Argument) Form 

See the deal function later in this chapter under Primitive Mixed Functions. 

Primitive (Bl,llIt-ln) Function. 77 



78 

The A Function: And CD 
Monadic (One-Argument) Form 

There is no monadic form. 

Dyadic (Two-Argument) Form: And A A B 

The and function result is 1 when A and B are both 1; otherwise, the result is 
O. The value of the arguments must be either 0 or 1. The arguments can be 
scalars, vectors, or other arrays. The arguments must be the same shape, 
unless one of the arguments is a scalar or any single-element array. 
Arguments of the same shape have the same shape result: 

And Table 
OAl 

0 Operator 
:I.A:I. 

l. _ Argument A 

lAO 
0 o 0 

0 0 :I. :I.AO :I. 0 :I. 
() 0 () :I. 

o 

'---- Argu ment B 

If one argument is a scalar or a single-element array, the shape of the result is 
the same as that of the other argument. The single element is applied to every 
element of the multielement array: 

o :I. 

:I. 0 

o 1 
:l 0 

:B ~ .. 2 2 (.) 0 :I. :I. 0 
B 

lAB 



The v Function: Or GJ 
Monadic (One-Argument) Form 

There is no monadic form. 

Dyadic (Two-Argument) Form: Or Av B 

The or function result is a 1 when either or both arguments are 1; otherwise, 
the result is O. The values of the arguments must be 1 or O. The arguments 
can be scalars, vectors, or other arrays. The arguments must be the same 
shape, unless one of the arguments is a scalar or any single-element array. 
Arguments of the same shape have the same shape result: 

ivO 
:I. 

OvO 
o 

o 0 1. i vO 1 0 1. 
o :I. 1 1 

Or Table 

Operator 

'" v ·'i':.:'I· .... ---Argument A 

If one argument is a scalar or a single-element array, the shape of the result is 
the same as that of the other argument. The single element is applied to every 
element of the multielement array: 

o :I. 
() :1. 

:I. :I. 

:I. :1. 

n~"2 21~)() :1. 0 :I. 
B 

:tv£< 

Primitive (Built-In) Functions 79 



80 

The'" Function: Not IT) 
Monadic (One-Argument) Form: Not """ B 

the not function result is 1 when B is 0 and 0 when B is 1. The values of the 
argument must be 1 or O. The argument can be a scalar, vector, or other array. 
The shape of the result is the same as that of the argument: 

o 

If the argument is an array, the function is extended to each element of the 
array: 

Bt·2 ~'5 (J () 1. 
B 

0 1 0 
1 () :I. 

NB 
:I. 0 :I. 
0 l. 0 

Dyadic (Two-Argument) Form 

There is no dyadic form. 



The 7\ Function: Nand GJ GJ 
You form the 7\ symbol by overstriking the and (A) and the not (-) symbols. 

Monadic (One-Argument) Form 

There is no monadic form. 

Dyadic (Two-Argument) Form: Nand A7\B 

The nand function result is 0 when both A and Bare 1; otherwise, the result is 
1. The values of the a'rguments must be 1 or O. The arguments can be 
scalars, vectors, or other arrays. The arguments must be the same shape, 
unless one of the arguments is a scalar or any single-element array. 
Arguments of the same shape have the same shape result: 

O~l 
1 

o 
() 0 1 lXO 1 0 1 

3. 1 1 0 

Nand Table 

??'I·4---- Argument A 

If one argument is a scalar or a single-element array, the shape of the result is 
the same as that of the other argument. The single element is applied to every 
element of the multielement array: 

Bt"2 2(.)0 :I. 
B 

0 :I. 
0 :I. 

:I.XB 
:J. 0 
:I. 0 

Primitive (Built-In) Functions 81 



82 

The ,; Function: Nor CD OJ 
You form the v symbol by overstriking the or (v) and the not ("') symbols. 

Monadic (One-Argument) Form 

There is no monadic form. 

Dyadic (Two-Argument) Form: Nor Av B 

The nor function result is 1 when A and B are both 0; otherwise, the result is 
O. The values of the arguments must be 1 or O. The arguments can be 
scalars, vectors, or other arrays. The arguments must be the same shape, 
unless one of the arguments is a scalar or any single-element array. 
Arguments of the same shape have the same shape result: 

Nor Table 

1~O ------- Argument A 

0 
O~O 

1 
0 0 l. 1~O 1 0 1 

1 0 0 0 

If one argument is a scalar or a single-element array, the shape of the result is 
the same as that of the other argument. The single element is applied to every 
element of the multielement array: 

B~··:.:.~ 2(.)0 :1. 

B 
0 1 
0 1 

Ot::B 
:I. 0 
:I. [I 



The > Function: Greater Than CD 
Monadic (One-Argument) Form 

There is no monadic form. 

Dyadic (Two-Argument) Form: Greater Than A>8 

Page of SA21-9303.() 
Issued 15 June 1978 
By TNL: SN21.()289 

The greater than function result· is 1 when argument A is greater than argument 
B; otherwise, the result is O. The arguments can be numeric scalars, vectors, 
or other arrays. The arguments must be the same shape, unless one of the 
arguments is a scalar or any single-element array. Arguments of the same 
shape have the same shape result: 

1.56>2 
o 

o 

o 

1 
1.123>l..123 

o 
5.1 -1 -3>5.12 0 -'l~ 

.0 0 0 1 

If one argument is a scalar or a single-element array, the shape of the result is 
the same as that of the other argument. The single element is applied to every 
element of the multielement array: 

Bf-2 3p1 2 3 1+ 5 6 
B 

1 "'1 3 ,;.. 

ll· r:;" 
'-} 6 

3>B 
1 1 0 
0 0 0 

Notes: 
1. The result of the > function depends on the OCT system variable (see 

Chapter 5 for information on the OCT system variable). 
2. When the> function is used with logical data (see Chapter 2), a system 

error display can occur if the number of elements in the right argument is a 
multiple of 32. The following are examples: 

t'j .::" F{ .:; .... ? 0 (' :I. 
,: (I.;. ,," /:, :; ::- Ei I:: 'I. (.1." J 

, Primitive (Built-In) Functions 83 



Page of SA21-9303'() 
Issued 15 June 1978 
By TNL: SN21'()28~ 

To prevent this error, separate the statement into two statements as 

follows: 

First, assign the right argument for the > 
function to a variable. 

( (.l~ -t~!) ::-'l----- ;Then, use the variable as the right argument 
ifor the> function. 
1 

The = Function: Equal To (r:l 
lL.:...J 

Monadic (One-Argument) Form 

There is no monadic form. 

Dyadic (Two-Argument) Form: Equal To A=B 

The equal to function result is 1 when the value of argument A equals the value 
of argument B; otherwise, the resun is O. The arguments (numeric or 
character) can be scalars, vectors, or other arrays. The arguments must be the 
same shape, unless one of the arguments is a scalar or any other 
single-element array. Arguments of the same shape have the same shape 
result: 

o 

1 

o 

o 

o 

0 _1::' 
-- .J 

1.654321=1,654321 

1::' A' 

'A'::::'B' 

. 1. ' :::::1. 

1 "5 -,:-.: 23 '+ 5 
OJ 0 0 

If one argument is a scalar or a single-element array, the shape of the result is 
the same as that of the other argument. The single element is applied to every 
element of the multielement array: 

'A':'ABACADAEAFAG' 
101 010 1 0 1 010 



Notes: 
1. If the arguments are numeric, the result of the = function depends on the 

OCT system variable (see Chapter 5 for information on the OCT system 
variable). 

2. When the = function is used with logical data (see Chapter 2). a system 
error display can occur if the number of elements in the right argument is a 
multiple of 32. The following are examples: 

O::::Y<;"32 (.):1, 

,:1 ~ .. B ~ .. 7 () (.) :I. 
( 6'+ l' (~I ) :::: B I:: \ 6'+ ::I 

To prevent this error, separate the statements as follows: 

The < Function: Less Than ,OJ 
Monadic (One-Argument) Form 

There is no monadic form. 

First" assign the right argument for the = 
function to. a variable. 

Then, use the variable as the right argument 
for the = function. 

Dyadic (Two-Argument) Form: Less Than A<8 

The less than function result is 1 when argument A is less than argument B; 
otherwise, the result is O. The arguments can be numeric scalars, vectors, or 
other arrays. The arguments must be the same shape, unless one of the 
arguments is a scalar or any single-element array. Arguments of the same 
shape have the same shape result: 

1.65<2 
1 

-'2 -:: 0 

1 

1 
0-:: _. '+ . I.~ 

o 
1..:1.23<1.123 

o 
!5 . 1. 

01.0 

Page of SA21-9303-O 
Issued 16 June 1978 
8y TNL: SN21-0289 

. Primitive (Built-In) Functions 85 



I 
Page of SA21-9303-O 

Issued 15 .JU".8 19.78 
By TNL: S~214?289 

1 
I· 
I 
I . 

If one argument is a scalar or a single-element array. the shape of the result is 
the same as that of the other argument. The single element is applied to every 
element of the multielement array: 

B+-2 3pl 2 3 4- 5 6 
B 

1 2 3 
L~ 5 6 

3<B 
0 0 0 
1 1. 1 

B<3 
1 1 0 
0 0 0 

Notes: 

1. The result of the < function depends on the OCT system variable (see 
Chapter 5 for information on the OCT system variable). 

2. When the < function is used with logical data (see Chapter 2), a system 
error display can occur if the number of elements in the right argument is a 
multiple of 32. The following are examples: 

0-:: '( ~ .. 3~2 I~J:I. 

(~I ~ .. n ~ .... ? 0 e :I. 
( 6 '+ l i:~1 ) -:: n I:: \ 61.1· ::I 

To prevent this error, separate the statement into two statements as 
follows: 

'y ~ .. ?: ::.:.~ (. :I. 
o <'{ First, assign the right argument for the < 

function to a variable. 

Then, use the variable as the right argument 
for the < function. 

The 2: Function: Greater Than or Equal To ( ~ ) 

Monadic (One-Argument) Form 

There is no monadic form . 

. 86 



Dyadic (Two-Argument) Form: Greater Than or Equal To A~B 

\ 

Page of SA21-9303'() 
Issued 15 June 1978 

I By TNL: SN21'()~9 

The greater than or equal to function result is 1 when argument A is greater 
than or equal to argument B; otherwise, the result is O. The arguments can be 
numeric scalars, vectors, or other arrays. The arguments must be the same 
shape, unless one of the arguments is a scalar or any single-element array. 
Arguments of the same shape have the same shape result: 

l.65;::2 
o 

o 

1 
5.1 1 3 

1 O:~1; 0 

If one argument is a scalar or a single-element array, the shape of the result is 
the same as that of the other argument. The single element is applied to every 
element of the multielement array: 

Bf-2 3p1 '') 3 '+ 5 6 .:.. 

B 
1 '') 

.:.. 3 
L~ a:.-

... 1 6 
3~:B 

1 1 l. 
0 0 0 

Notes: 
1. The result of the ~ function depends on the OCT system variable (see 

Chapter 5 for information on the OCT system variable). 
2. When the ~ function is used with logical data (see Chapter 2). a system 

error display can occur if the number of elements in the right argument is a 
multiple of 32. The following are examples: 

i:'~1 ,::" :0 ~" "? 0 p t 
( ':::' 1.1, ,t, i~i ) ;:: B I:: 't {, 1+ ::I 

To prevent this error, separate the statement into two statements as 
follows: 

"'( ,:" :3 ::,:: e t 
0;::''( First, assign the right argument for the ~ 

function to a variable. 

Then, use the variable as the right argument 
for the ~ function. 

: Primitive (Built-In) Functions B7 



Page of SA21-9303'() 
Issued 15 June 1978 
By TNL: SN21'()289 

The S Function: Less Than or Equal To \(J] 

188 

Monadic (One-Argument) Form 

There is no monadic form. 

Dyadic (Two-Argument) Form: Less Than or Equal To ASB 

The less than or equal to function result is 1 when argument A is less than or 
equal to argument B; otherwise, the result is O. The arguments can be numeric 
scalars, vectors or other arrays. The arguments must be the same shape, 
unless one of the arguments is a scalar or any single-element array. 
Arguments of the same shape have the same shalle result: 

l. .65::;2 
l. 

-2~; 0 
1 

-3~; -I') ..:.. 

1 
0< .. " ..:.. 

0 
5 . 1 -1 

1 :1' 0 0 
- 3 -:: I::' 1 .".'~.' .• ' - ? - £:-_..J. '.'9 "" ,., 

If one argument is a scalar or a single-element array, the shape of the result is 
the same as that of the other argument. The single element is applied to every 
element of the multielement array: 

B~2 3p1 2 3 4- 5 6 
B 

1 " 3 ..:.. 

L~ 5 6 
3::;B 

0 0 l. 
1 l. 1. 

Notes: 
1. The result of the S function depends on the OCT system variable (see 

2. When the S function is used with logical data (see Chapter 2), a system 
error display can occur if the number of elements in the right argument is a 
multiple of 32. The following are examples: 

(~I ;; .. n ~ .. 7 0 e :1. 
( /) '+ -t tl ) ::; B I:: \ 61.!· ::I 



I 

Page of SA21-9303'() 
Issued 16 June 1978 
By TNL: SN21'()289 

To prevent this error, separate the statement into two statements as 
follows: 

First, assign the right argument for the ~ 
function to a variable. 

Then, use the variable as the right argument 
for the ~ function. 

The ;t Function: Not Equal To (l] 
Monadic (One-Argument) Form 

. There is no monadic form. 

Dyadic (Two-Argument) Form: Not Equal To A;tB 

The not equal to function result is 1 when argument A is not equal to argument 
B; otherwise, the result is O. The arguments (numeric or character) can be 
scalars, vectors, or other arrays. The arguments must be the same shape, 
unless one of the arguments is a scalar or any single-element array. 
Arguments of the same shape have the same shape result: 

1 
1.123¢1.123 

o 
'A'~'A' 

o 

1 
5.1 1 -1 -3¢5.1 2 0 -4 

01" 1 1 

If one argument is a scalar or a single element array, the shape of the result is 
the same as that of the other argument. The single element is applied to every 
element of the multielement array: 

'A'~'ABACADAEAFAG' 

o 1 0 1 0 1 0 1 010 1 

88.1 



I Page of SA21-9303'() 

I 
Issued 15 June 1978 

. By TNL: SN21-0289 

88.2 

Notes: 
1. If the arguments are numeric, the result of the ~ function depends on the 

OCT Systl:tOl vsrJal)I' ($~e C~pter 5 for j~fQrmatiQn .on theDCT sYltem 
Variable}. . 

The not equal to function can also be .used as an exclusive or function. 
When used in this manner, the value of the arguments must be either 0 or 
1 : 

Exclusive Or Table 

Operator:~--- _Argument A 

--/J'rnlllT\'~n" B 

2. When the ~ function is used with logical data (see Chapter 2), a system 
error display can occur if the number of elements in the right argument is a 
mulltiple of 32. The following are examples: 

(~ ~-n ~ .. 7' 0 ,.:0 :I. 
( 6'+ "t f~ ) ;t B I:: \ 6'+ ::I 

To prevent this error, separate the statement into two statements as 
follows: 

( 6'+ l' PI ) i '( 

Pirst, assign the right argument for the ~ 
function to a variable. 

Then, use the variable as the right argument 
for the ~ function. 



PRIMITIVE MIXED FUNCTIONS 

The mixed functions differ from scalar functions because the shape of their 
results depends on the particular mixed function rather than exclusively on the 
shape of the arguments. The following list gives a brief description of each of 
the mixed functions. Following the list, each function is discussed in detail: 

Monadic 
Mixed 
Functions 

pB 

,B 

1B 

<l>B or 
<I> [I] B 
or eB 

~B 

mB 

.tB 

vB 

Name 

Shape 

Ravel 

Grade up 

Grade down 

Index 
generator 

Reverse 

Transpose 

Matrix 
inverse 

Execute 

Format 

Result 

The length of each coordinate of the 
argument. 

A vector containing the elements of 
B in the order they exist in the rows 
of B. 

The index values that would select 
the elements of B in ascending 
order. 

The index values that would select 
the elements of B in descending 
order. 

B consecutive integers starting from 
the index origin. 

The elements of the argument 
are reversed. 

The coordinates of the argument are 
reversed. 

The inverse of a square matrix or 
the pseudoinverse of a rectangular 
matrix. 

Argument B executed as an 
expression. 

Argument B converted to a character 
array. 

Primitive (Built-In) Functions 89 



Dyadic 
Mixed 
Functions Name Result 

ApB Reshape An array of a shape specified by 
(structure) A, using elements from B. 

A,B Catenate The two arguments joined along an 
or existing coordinate {[ I ] is a 
A,[I]B positive integer}. 

A,[I]B Laminate The two arguments joined along a 
new coordinate {[ I] is a fraction}. 

AlB or Compress The elements from B that 
AI [I] B or correspond to the l' s in A. 

AlB 

A\B or Expand B is expanded to the format 
A \ [I] B or specified by A; 1 in A inserts an 
A\B element from B; a 0 in A inserts a 0 

or blank element. 

A+B Take The number of elements specified 
by A are taken from B. 

A~B Drop The number of elements specified 
by A are dropped from B. 

AlB Index of The first occurrence in A of the 
elements in B. 

Act>B or Rotate The elements of B are rotated as 
Act> [I] B specified by A. If A is positive, the 
or AeB elements of B are rotated to the left. 

If A is negative, the elements of B 
are rotated to the right. 

A~B Generalized The coordinates of B interchanged 
transpose as specified by A. 

AlB Deal The number of elements specified 
by A are randomly selected from B; 
the same number is never selected 
twice. 

90 



Dyadic 
Mixed 
Functions Name Result 

A.lB Decode The value of argument B expressed 
(base value) in the number system specified by 

argument A. 

ATB Encode The representation of argument B 
(representation) in the number system specified by 

argument A. 

AEB Membership A 1 for each element of A that can 
be found in B and a 0 for each 
element not found. 

AIiIB Matrix Solution to one or more sets of 
divide linear equations with coefficient 

matrix (matrices) Band right- hand 
sides A or the least squares solution 
to one or more sets of linear 
equations. 

A1fB Format Argument B converted to a character 
array in the format specified by 
argument A. 

Note: The mixed functions reverse, rotate, compress, and expand, and the 
operators (see APL Operators later in this chapter) reduction and scan can be 
applied to a specific coordinate of an array. This requires the use of an index 
entry [I] that indicates the coordinate to which the mixed function or operator 
is applied. The value of the index entry can be from 1 to the number of 
coordinates in the array; the leftmost coordinate (first coordinate) has an index 
value of 1, the next coordinate has an index value of 2, and so on. A matrix, 
for example, has an index value of 1 for the row coordinate and an index value 
of 2 for the column coordinate. If an index entry is not specified, the last 
coordinate (columns) is assumed. If a - (minus) symbol is overstruck with the 
function symbol or operator symbol, the first coordinate is assumed (unless an 
index value was also used). When a function or operator is applied to a 
specific coordinate, the operation takes place between corresponding elements 
in the specified coordinate. For example, assume you have a three-rank array: 

• When the first coordinate (planes) is specified, the operation takes place 
between corresponding elements in each plane. 

• When the second coordinate (rows) is specified, the operation takes place 
between the corresponding elements in each row per plane. 

• When the third coordinate (columns) is specified, the operation takes place 
between the corresponding elements in each column per plane. 

Primitive (Built-In) Functions 91 



92 

The p Function: Shape, Reshape (Structure) CD 
Monadic (One-Argument) Form: Shape p B 

The shape function result is the shape of the argument; it has one element for 
each coordinate of the argument, which indicates the length of that coordinate. 
The argument can be any variable or constant: 

1+ 

""X 
.... I 

:I. 2 :3 
1+ ~:; 6 

(J' ABeD ' ..... ----- A Vector with Four Elements 

A~2 3pi 2 3 4 5 6 
(.l 

(.> (.~ 

The shape function applied to a scalar yields an empty vector, because a scalar 
has no coordinates. An empty vector is indicated by a blank result line: 

p2 
~. _ I ..... I ~ Blank Result Lines 

~ 

The instruction p p B yields the rank (shape of the shape, or number of 
coordinates) of B: 

Cf~l~ 

B(.ll~ 

FAI~ 
(.ll~~E 

B~2 2 3p'CARBARFARARE' 
B 

~)B 



Dyadic (Two-Argument) Form: Reshape (Structure) Ap B 

The reshape function forms an array of the shape specified by argument A 
using element(s) from argument B. The elements of argument B are placed 
into the array in row order. If there are not enough elements in argument B to 
fill the. array, the elements are repeated. If there are more elements in 
argument B than are required to fill the array, only the required number of 
elements are used. Argument A must be a nonnegative integer or vector of 
nonnegative integers. The number of elements in argument A is equal to the 
number of coordinates, or the rank, of the result. Argument B can be any 
variable or constant. If all of the elements of argument A are nonzero, then B 
cannot be an empty array: 

2 
1 2 ::5 
q, ~5 c) 

I.~ 2~) · ABCDEFGH . 
AB 
CD 
EF 
GH 

!5 (.. .. MDUSEr Hf.~ p · 
MOUSE 

:.3 14·(:>123 
12~5 123 :t.2~·5 123 
:L:~~:~ :1.2~3 l:~~3 :L2:~~ 
:1.23 :1.23 :1.23 :1.23 

:I. ;.:.~ 

3 1+ 
!:) 6 
7 B 

:I. 2 "I 
"I 

1+ !5 6 

1.1 •• 1 •••••• 

A~~ 2pl 2 3 4 5 6 7 8 
A 

2 3Pf~ 

b(.) 
. .. . 

Primitive (Built-In) Functions 93 



94 

The , Function: Ravel, Catenate, Laminate 0 
Monadic (One-Argument) Form: Ravel ,8 

The ravel function results in a vector containing the element of argument B. If 
argument B is an array, the elements in the vector are taken from argument B 
in row order. Argument B can be a scalar, vector, or other array. The resulting 
vector contains the same number of elements as argument B: 

:1. 2 

7 B 

A~2 2 2pl 2 3 ~ 5 6 7 8 
A 

I ~~J 

:I. 2 3 I.j. ~.:.:.; .~) .. ? B 

f~BC 

:OEF 

B~"2 3 f:~ . f~BCDEF . 
B 

.' B 
ABCDEF 

Dyadic (Two-Argument) Form: Catenate or Laminate A, [1]8 

The function is catenate when the [I] entry (index entry) is an integer and 
laminate when the [I] entry is a fraction. 



Catenate (The Index [/] Entry Is an Integer) 

The catenate function joins two items along an existing coordinate. (See the 
laminate function following for a description of how to join two items along a 
new coordinate.) The index [I], if given, specifies which coordinate is 
expanded. The index entry must be a positive scalar or one-element array. If 
no index [I] is specified, the last coordinate is used. Matrices of unequal 
sizes can be joined, providing the lengths of the coordinate not specified are 
the same (see Catenation in Chapter 3): 

(~~ .. :I. I.~ 

B~"""{ 9 !:5 
i~) 13 

Ii· l (y !.:.) 

A~2 3pl 2 3 4 5 6 
B~2 3p7 8 9 10 11 12 
A 

12:3 
'+ !::j 6 

B 
"7 B ? 

:1.0 :1.:1. :1.2 
i~} B 

:1. ") 
ih. 

"X ,.J 

1.1· ~:.:i 6 
""{ 

:1.0 
I~ ) [:1.:113 

:I. '1 
4· ... 3 

1.1· ~.=; 6 -, B 9 
10 1:1. :1.2 

f~ J [2]13 
:1. .") 3 "7 ih. 

I.~ !5 b 10 

B (y 

1:1. 12 

B ? 
11 1 ;? 

f:~ OJ [2]10 20 
:I. 'i ,: .. :3 10 
'-I. e:' 

••• J 6 20 
:1.0 20 30 J [:I. ]f~ 

:1.0 20 30 
:I. r) •• y 

J': •• ,;") 

1.1· ~:.:j 6 

Primitive (Built-In) Functions 95 



96 

Laminate (The Index [I] Entry Is a Fraction) 

The laminate function joins two items by creating a new coordinate specified 
by the index entry [I], which must be a positive fraction. If the index entry is 
between 0 and 1, the new coordinate becomes the first coordinate; if the index 
entry is between 1 and 2, the new coordinate is placed between existing 
coordinates 1 and 2 (the new coordinate that is added always has a value [or 
length] of 2). The following chart shows the positions of a new coordinate in 
the shape vector (see the following examples) when two 3 by 3 matrices are 
laminated: 

Positions of New 
Coordinate in the Shape 

Index Value Vector 

.1 - .9 3 3 

1.1 - 1.9 3 3 

2.1 - 2.9 3 3 

Lamination requires either that arguments A and B are the same shape or that 
one of the arguments is a scalar: 

2 

A~3 3pl 2 3 4 5 6 7 8 9 
B~3 3pl1 22 33 44 55 66 77 88 99 
A 

1 2 ~'5 

'+ ~j f.) 

"789 
B 

11 ;'~2 ~33 
1+4 5~:5 61.) 
77 88 99 

CE .. A I I: ,8:1B 
C 

:L 2 3 
4 ~j 6 
'789 

11 22 33 
'+4 a::-t:-

•. IJ 66 
77 88 99 

f)C 

3 ~'5 • Shape Vector 



C~"A I r :I. ~:.i]H 

C 
:1. "') 

I: .. "1 ..... 
:1. :1. 22 ~53 

'.J. ~5 6 
1.1,1.1· ~:,i ~::i 66 

""1 B ? 
"') .... 
I ( OB 9<.1 

(.>C 
:3 "') 

A •• "''' ''') • -------- Shape Vector 

C~"f:~l , [: :~~ :I. ::IB 
C 

:I. :I. :I. 
") ") ") 
I: .. A',. /loon 

:-5 :-5~3 

q. 1.1. 1+ 
!':'=; ~5~:5 

6 6b 

7 77 
B BB 
(') 
.~ <?9 

eC 
:3 ~'5 ::? • --------Shape Vector 

The following examples show the result when the two matrices in the 
preceding example are catenated instead of laminated: 

(.L. [:1.:JB 
:1. 2 :.3 
I.J. ~:.; 6 
""1 B <? 

:I. :1. ::~ :~~ 3~'5 

'+'+ !.:.:j!5 66 
77 BB 9? 

{~ I [2:J)?'{ 
:I. ") :3 :1.:1. 22 -.. -.. 

4' .. .. ~. "~) 

'+ I::' 
· .. 1 b !.j.I.J. ~7.i !,:.:i 6b 

7 B 9 77 BB 9<1 

Primitive (Built-In) Functions 97 



98 

The I Function: Compress m 
Monadic (One-Argument) Form 

See Reduction Operator later in this chapter under APL Operators. 

Dyadic (Two-Argument) Form: Compress AI [I]B or AlB or AfB 

The compress function selects elements from argument B corresponding in 
sequence to l' s in argument A. Argument A must be a logical scalar or vector 
having the values 0 or 1. Argument B can be any scalar, vector, or other array. 
Both arguments must have the same number of elements unless: 

• One of the arguments is a scalar or single-element array. 

• Argument B is a multidimensional array; then the number of elements in 
argument A must be the same as the length of the argument B coordinate 
being acted on. 

When argument B is a multidimensional array, the [I] index entry is used to 
specify the coordinate that is acted on. If the index entry is omitted, the last 
coordinate (columns) is assumed. If the AlB form is used, the first coordinate 
is assumed. The rank of the result is the same as the rank of argument B: 

:L '") 
.:0. 

:I. 
I::" 
d 

(? 

:1. 

9 

'") 
A-.. 

b 
10 

1 
9 

."") 
I. ... 

6 
:1.0 

:I. 
~:.:j 

9 

0 

1 1 
::3 

0 0 

B~"~5 
B 

2 :-5 
6 "1 

:1.0 1. :I. 
:I. 0 

~? :1 
:1.0 1.:1. 

0 1 
::3 
"'( 

:l :I. 
1 0 

::.~ :-5 
10 :1.:1. 

I] :I. 
3 
"7 

1 :1. 
liB 

,.) 
1/.: .. ~'5 

6 .'j' 

:1. 0 :1.:1. 

0 '") I.J. h'" 

:1./:1. 2 ~5 

0/:1: 2 
3 /Blank Display Line (empty array) 

4p:l. 2 3 4 5 6 7 8 9 :1.0 :1.:1. 12 

'+ 
8 

:1. ~.~ 

:1.1 [ :L~ The first coordinate (rows) is specified; the first 
Lt· --- and third rows, as specified by argument A, are 

:I. 2 selected. 
:1. O/[2:JB 

:l.fB 

'+ 
1.2 
1 OIB 

LJ· 
B 

:1.2 

~ The second coordinate (columns) is specified; 
the second and third columns, as specified by 
argument A, are selected. 

OIB 
-----------Blank Display Line (empty array) 



The \ Function: Expand CD 
Monadic (One-Argument) Form 

See Scan Operator later in this chapter under APL Operators. 

Dyadic (Two-Argument) Form: Expand A\[I]B or A\B or A~B 

The result of the expand function is argument B expanded as indicated by 
argument A. Each 1 in argument A selects an element from argument B, and 
each 0 in argument A inserts a 0 (or blank for character data) in the result. 
Argument A must be a logical scalar or vector having the values 0 or 1. 
Argument B can be any scalar, vector, or other array. If argument B is a 
vector, argument A must have the same number of 1's as the number of 
elements in argument B. If argument B is a multidimensional array, argument 
A must have the same number of l' s as the length of the argument B 
coordinate being acted on. 

When argument B is an array, the. [I] index entry is used to specify the 
coordinate that is acted on. If the index entry is omitted, the last coordinate 
(columns) is assumed. If the A~B is used, then the first coordinate is 
assumed. 

If argument B is a scalar or single-element array, it is extended to a length 
equal to the number of 1's in argument A. If argument B is not a scalar or 
single"'element array, the rank of the result is the same as the rank of the B 
argument. 

1 () 2 

:I. ::,~ 3 
Lt· ~:; 6 

:I. 2 :3 
000 
I.f. ~:5 6 

:I. 
,.) 
-:.. 0 

1+ ~5 (I 

:I. ;.:.~ 3 
() 0 0 
1+ 1::-

"J (,) 

:1. 0 :I. :I. 0\:1. 2 
-., 
,~ 

3 0 
B~"2 31~) :I. 2 ~3 1+ ~:.i 6 
B 

:I. (I :I. \ .. [ :It .... ' _:l_B ____ The first coordinate (rows) is 
- expanded; a row is inserted between 

the first and second row. 

1. :I. 0 :I. \ I:: 2::1 13 The second coordinate (columns) is 
-z ,.1 fl----expanded; a column is inserted between 
6> the second and third columns. 

:1. I) :I.\B 

Primitive (Built-In) Functions 99 



100 

The'" Function: Grade Up CD IT] 
You form the ~ symbol by overstriking the b. symbol and the I symbol. 

Monadic (One-Argument) Form: Grade Up ~B 

The grade up function result is the index values that would select the elements 
of argument S in ascending order. That is, the first element of the result is 
the index of the smallest element in argument S, the next element is the 
index of the next smallest element in argument S, and so on. Argument S 
must be a numeric vector. When two or more elements in the vector have the 
same numeric value, their position in the vector determines their order in the 
result (the index value of the first occurrence appears first in the output). 
The number of elements in the result is the same as the number of elements 
in the argument: 

$3 1 I::' 
.. J 

r) 
.\" .. 1+ 

"") 
A" .. Lt· :1. I::' 

.... 1 :3 
I~ (~I ~ .. 6 ") c:· 1 '+ 3 .\0 .. ,J 

1.1· ") .f.) ~.7} ::5 :I. ~: .. 
(b~:~; I) ::) :I. I::' 

.• J 
'''j .. : .. 

I.J. 6 :I. 3 I::' '''j 
'H.I .-: .. 

The following example shows how the grade up function can be used to sort a 
vector into ascending order: 

A~14 12 16 18 15 11 
(:;'1 I:: ¢I(~] 

11 12 14 15 16 18 

The result of the grade up function is not the reverse of the grade down 
function because of the way equal elements are handled; see The , Function: 
Grade Down for an example using the grade up and grade down functions with 
equal elements. 

Note: The result of the ~ function depends on the 010 system variable (see 
Chapter 5 for information on the 010 system variable). 

Dyadic (Two-Argument) Form 

There is no dyadic form. 



The ., Function: Grada Down CD CIJ 
You form the' symbol by overstriking the \J symbol and the I symbol. 

Monadic (One-Argument) Form: Grade Down 'B 
The grade down function result is the index values that would select the 
elements of the numeric vector of argument B in descending order. That is, 
the first element of the result is the index of the largest element in argument 
a, the next element is the index of the next largest element in argument a, and 
so on. Argument a must be a numeric vector. When two or more elements in 
the vector h(:lve the same numeric value, their position in the vector determines 
their order in the result (the index value of the first occurrence appaars first in 
the output). The number of elements in the result is the same as the number 
of elements in the argument: 

't'~5 1- ~:; 2 1+ 
:~ ~.:; :I. '+ '1 

~: .. 
I~A~"6 :~~ ~,~ j, 1+ :~ 

1 :.3 I'" 6 ") 1+ .":J ': .. 
,:5 6 :~ :L 5 I') 

A., 

") 
.:" ~S :1. :'5 6 4· 

The following example shows how the grade down function can be used to 
sort a vector in descending order: 

A~14 12 16 18 15 1j, 
AC'PA] 

18 16 j,5 j,4 12 11 

Primitive (Built-In) Functions 101 



102 

The following example shows how equal elements are handled when the grade 
up and grade down functions are used: 

A4"~; 2 8 7 :3 4 10 1 2 3 
A 

I'" 
~..., ") 

.o!, B "'1 ~3 LI· :I. 0 l. 2 ~5' Positions 2 and 9 and 5 and 10 are equal. 
IPA 

""1 :3 LI, l 6 8 

B 611.~:3"'1 

Because the indices for the equal elements are in the same order (first 
occurrence first) for both the grade down and grade up functions, the grade 
down function is not the reverse of the grade up function: 

AC'*"A:J 
lO 8 7 5 4 3 :3 2 2 1 

ACdlA] 
1 2 2 3 3 4 5 7 8 10 

Note: The result of the' function depends on the 010 system variable (see 
Chapter 5 for information on the 010 $ystem variable). 

Dyadic (Two-Argument) Form 

There is no dyadic form. 



The t Function: Take GJ 
Monadic (One-Argument) Form 

There is no monadic form. 

Dyadic (Two-Argument) Form: Take AtB 

The take function result is the number of elements specified by argument A, 
taken from argument B. Argument B can be a scalar, vector, or other array. 
Argument A must be a scalar or vector of integers. If argument B is a vector, 
argument A must be a scalar. Argument A must be a vector with an element 
for each coordinate of argument B. When argument A is positive, the first 
elements of argument B are taken; when argument A is negative, the last 
elements are taken. If argument A specifies more elements than the number of 
elements in argument B, the result is padded with 0' s (or blanks for character 
data). The shape of the result is the value of A: 

1 :2 

0 0 

:1. 
5 
9 

:I. 
1::' 
d 

1 
4· 

"? 
:1.0 

:I. 

:I. 

"1 

:I. 
'+ 

'7 
:1. 0 

.") 
-:.. 

~j 

71'1 ,") 
~5 I.j . ~:5 ..: .. 

3 '+ ~::i 0 0 
"'7"1" 1 :~~ ~5 '.~ I'" ;:1 

:I. 'i :5 '+ ~:5 .. '" 
B~":5 '+(.)1 2 :5 I.~ ~5 6 7 B (.;> :1.0 :1.:1. :1.2 
D 

2 :~ '+ 
6 7 B 

:1.0 :I. :1. :I. ':) ..... 
'i 3tD .:.. 

:? :-5 
(,) 7 

B~"::.~ 2 3p:l. 2 3 ~ 5 6 7 8 9 :1.0 :1.1 :1.2 
J:l 

:2 ::5 
~j 6 

8 9 
:1.:1. :1.2 

:I. :I. :l.tD 

.") 
"·w :I. ltH 

1 r) 
.:: .. 3tB 

:~ 

6 
"':1. ") .,. ... :51'B 

8 9 
1:1. :1.2 

Primitive (Built-In) Functions 103 



104 

The ~ Function: Drop CD 
Monadic (One-Argument) Form 

There is no monadic form. 

Dyadic (Two-Argument) Form: Drop A ~ B 

The drop function result is the remaining elements of arguments B after the 
number of elements specified by argument A is dropped. Argument B can be 
a vector or other array. Argument A must be a scalar if argument B is a 
vector. 

When argument B is an array, argument A must have one element for each 
coordinate of argument B. When argument A is positive, the first elements of 
argument B are dropped from the result; when argument A is negative, the last 
elements are dropped: 

:I. ") 
4';,. 

1:'-
-,J 6 
9 10 

"7 
I 8 

:1.:1. 1 ':) .... 

1 2 
c:· 
..} 6 

B~3 ~pl 2 3 4 5 6 "7 8 9 10 11 12 
B 

~3 ,+ 
"7 B 

:L :1. 1 ':> A .. 

1 2·~B 

.- :I. -·2~· H 

The t Function: Index Generator, Index of 

Monadic (One-Argument) Form: Index Generator t B 

The index generator function result is a vector containing the first B integers, 
starting with the index origin (see 010 system variable in Chapter 5). The 
argument can be a nonnegative integer that is either a scalar or a 
single-element array: 

\5 
1 2 3 1.)- ~::; 

A~" '( 6 
t1 

:t. :~ 3 I.f, ~j 6 
!5+ \ !::,i ~ Each of the generated integers is added to 5. 

6 "7 B 9 10 



Dyadic (Two-Argument) Form: Index of AlB 

The index of function result is the index of the first occurrence in argument A 
of the element(s) in argument B. Argument A must be a vector. Argument B 
can be a scalar, vector, or array. The result is the same shape as argument B. 
If the element in argument B cannot be found in argument A, the value of the 
index for that element is one greater than the largest index of A (OIO+pA): 

;? ..... ·----------------Second Element 
, f',BCDEFG' ~ .. C ' 

f:~ ~ .. :1.:1. ;.:.~ ::.:!. ::3 ::3 1.f.1+ ~::i ~S 

A \ 2;.:.~ 

i:~~··9 . ", 
.:. •... B B 2 f.:, I.J . i··, <:: • 

B~-2 :3 (J 1 9 B :I. I::' ..... 2 
B 

:I. 9 C) 
\ ... 

:I. ~:.:.i "'j 
I: .. 

A '. B 
9 :I. :.3 
, ...• {., .... :. 
:'1 7 AO •• 

Note: The result of the 1 function depends on the 010 system variable (see 
Chapter 5 for information on the 010 system variable). 

The <I> Function: Reverse, Rotate W m 
You form the <I> symbol by overstriking the 0 symbol and the I symbol. A 
special form of the function symbol is a, which you form by overstriking the 0 

symbol and the - symbol. 

Monadic (One-Argument) Form: Reverse <I>[I]B or <l>B or aB 

The reverse function reverses the elements of argument B. Argument B can be 
any expression. 

Primitive (Built-In) Functions 105 



106 

When argument B is a multidimensional array, the index entry [I] can be used 
to specify the coordinate that is acted on. If the index entry is omitted, the 
last coordinate (columns) is acted on. If the e B form is used, then the first 
coordinate is acted on: 

I~)]. 2 :3 I.f­
'+ ::5 2 :I. 

E\/IL 

r10 F~E 
TIt'lE 

~\'101~E 

TIt'IE 

~::)t1VE 

i'1UCH 

f"iUCH 
S~:l\lE 

TII"iE 
j-'10 F~E 

EVtiS 
HCI...Ii"l 

EI~Oh 
Et'IIT 

EVi~S 

HeLIN 

EI~Dt"i 
Er--1IT 

''"lORE 
TIi"lE 

SA\lE 
i'1UCH 

I~) 'I __ ,IVE' 

A~2 2 4p 'SAVEMUCHMORETIME' 
(~ 

(1)[:1.:1 A 
t L-------The first coordinate (plane) is specified; 

the planes are reversed. 

.:1)[2:1A 

• L...------The second coordinate (rows) is specified; 
the rows in each plane are reversed. 

(1)[3]f~ 

':I)f~ 

t L...------The third coordinate (columns) is 
specified; the columns in each plane are 
reversed. 

t '-------The last coordinate is acted on. 

(~~ (.~I 

t '-------The first coordinate is acted on. 



Dyadic (Two-Argument) Form: Rotate A<t>[I]B or A<t>B or ASB 

The rotate function rotates the elements of argument B the number of 
positions specified by argument A. If argument A is positive, then the 
elements of argument B are rotated to the left (rows), or upward (columns). If 
A is negative, the elements are rotated to the right (rows), or downward 
(columns). Argument B can be any expression. The shape of the result is the 
same as that of argument B. 

When argument B is a multidimensional array, the index entry [I] can be used 
to specify the coordinate that is acted on. If the index entry is omitted, the 
last coordinate (column) is acted on. If the ASB form is used, then the first 
coordinate is acted on. 

If argument B is a vector, then argument A must be a scalar or single-element 
array. If argument B is a matrix, then argument A must be a scalar or vector. 
When argument A is a vector, the number of elements in argument A must be 
the same as the number of elements in the coordinate being rotated. For 
example, if B is a 3 by 4 matrix (each row has four elements) and the row 
coordinate is specified, A must have four elements: 

4-

3 

~:.i :1. 
,') 
,,'M :.~ 

7(~ :1. 
I~. ~5 :1. 2 

B~<5 4p :I. 2 3 4 5 6 7 8 9 10 11 12 
B 

:1. ~.~ 3 
~5 6 7 
<;> :I. () :1.:1. i

The first coordinate (rows) is specified; 
1+ therefore, the rotation is between rows. 
B 

:I. 0 ~22(\}[1JB 15 2 ,7 [12 
7 12 9 6 l11 4 

~ J lOJJ 9 6 :1.1 
:I. 10 3 

:I. 

1:1. 

:1. 
6 

'') 
A-•• 

. .., 
( 

12 

2 
7 

() :L 

0 

3 
B 
<7 
:1. 
:5 
B 

2(»[2JB 

'+ \ 
~:.:; "------The second coordinate (columns) is specified; 

to therefore, the rotation is between columns. 

2<»B 
1+" 
I::" 
•• J 

"------The last coordinate is acted on. 

1l 12 <7 :1.0 
A~"MM:L 0 :I. 2 
(.~ 

-l 0 ... :1. M'2 
Acl) [ :I.::IB 

9 2 :1.:1. B 
:I. 6 3 12 
5 :1. 0 

Primitive (Built-In) Functions 107 



108 

If argument B is an N-rank array, argument A must be a scalar or an array 
with a rank that is one less than the rank of argument B. The shape of 
argument A must be the same as argument B less the coordinate being acted 
on: 

B4<5 
B 

1- 2 ~~ 

'+ c· 
,J 6 

7 B 9 

10 1. :I. l. ~~ 
:I. ~3 :I.1.f. 1 c' .0 

16 17 18 

19 20 21 
:~2 23 2'+ 
25 26 27 

pB 

3 3p\27 

333 
A~3 3p1 0 0 0 2 0 0 0 0 
A 

1 () () _____ The shape of argument A must be the same 

o 2 () ~ as argument B less the coordinate being 

o () () acted on. 

pA 
3 3 

A(J)[lJB 

3 '- The first coordinate (planes) is specified; 
6 therefore, the rotation is between planes. 

10 
4-
'7 

:1.9 

23 
8 

1 :I. 

9 

12 
The first element 0 0 r-----.---..--""l~ Argu ment A 

13 
16 

1 
'1 ") 
~, 

25 

4 
'7 
1 

10 
13 
16 

19 
22 
'11::-
..:.,>.J 

1::' 
"I 15 

17 :1.8 

20 2:1. 
:1.4- 24 
26 27 

A(f)[2JB 

in each plane is 
rotated one position 0 
between planes. 

0 

2 

0 The middle 
element in each 
plane is rotated two 
positions between 
planes. 

2 '3L a::' 
,J 

8 * The second coordinate (rows) is specified; 

:l7 12 
1:1. 1 ~5 
14- :1.8 

20 21 
23 2'+ 
26 27 

therefore, the rotation is between the rows. 

1 0 0 

0 2 0 

0 0 0 

/r------ Argument A 

Rotation between rows of 
he first plane t 
Rotation between rows of 
he second plane t 

Rotation between rows of 
he third plane t 



The I!/ Function: Transpose. Generalized Transpose CD m 
You form the ~ symbol by overstriking the 0 symbol and the \ symbol. 

Monadic (One-Argument) Form: Transpose ~B 

The transpose function reverses the coordinates of argument B. Argument B 
can be any expression. If argument B is a scalar or vector, the argument is 
unchanged by the function: 

ABCD 
tQ'ABC[I' 

B~2 3pl 2 3 ~ 5 6 
B 

:L 2 :5 ..... --------- 2-row 3-column matrix. 
I.~ ~j 6 

tQB 
1 ~ ..... ---------- 3-row 2-column matrix. 
2 5 
3 6 

B~"2 :3 L~ p \ 2'+ 
B 

2 3 '+ 
6 "7 8 

10 :L:I. 12 

J~ 1. '~. 1 ~.~ 1. 6 
:t1iffi :1. i3 j. <"I 2 0 
it 22 2:3 2 LI· 

tQB 

2 1'+ 
b lB 

10 '') r) 
"OM ,:.. 

:3 1. ~:5 ~ The coordinates are reversed. 
"7 :1.9 

it ::.~3 

'+ :1.6 
8 20 

12 2'+ 

Primitive (Built-'n) Functions 109 



110 

Dyadic (Two-Argument) Form: Generalized Transpose A~B 

The generalized transpose function interchanges the coordinates of argument B 
as specified by argument A. Argument B can be any expression. Argument A 
must be a vector or a scalar, and must have an element for each coordinate of 
argument B; also, argument A must contain all the integers between 0 or 1 
(depending on the index origin) and the largest integer specified. For example, 
to transpose the rows and columns of a matrix, argument A would be 2 1: 

B~"2 
B 

1 'j 
A'_ :3 

I.!. ~:; 6 

:I. 1.1· 

2 c:-

'K' 
"1 
,J 6 

To transpose the rows and columns of a three-rank (three-coordinate) array, 
argument A would be 1 3 2: 

1 '") 
.w. 

1::-
,.1 b 
<y 10 

13 1 1". 

-:1.7 10 
2:1. 22 

:I. I::' 
.,1 

") ,,' .. b 
3 7 
1+ B 

13 :1.7 
:1.4 10 
15 19 
1. t) 20 

B~"2 
B 

3 
"7 

11. 

:/. ~.:; 

1. <» 
2~5 

:1. :-5 
9 

10 
1 :1. 
:I ") . .:.. 

21 
'') ,') 
A· .. A.. 

2~~ 
~!I.,. 

~.~ 1+ (.) \ 24, 

I~. 

B 

:1.6 
20 
21+ 
2~B 

An array with two planes, three rows, and four columns. 

The second and third coordinates have been interchanged, 
forming an array with two planes, four rows, and three 
columns. 



The 1 Function: Deal m 
Monadic (One-Argument) Form 

See the roll function earlier in this chapter under Primitive Scalar Functions. 

Dyadic (Two-Argument) Form: Deal A 18 

The deal function randomly selects numbers from 0 through 8-1 or 1 through 
8 (depending on the index origin); without selecting the same number twice. 
80th arguments must be single positive integers. Argument A must be less 
than or equal to argument 8; argument A determines how many numbers are 
selected: 

1'?7 
1,1, 

2?7 
'7 :~ 

"1?7 
~::; ") 

I.' .. :I. 7 :3 6 1+ 
"1?7 

J!!' 
...J 3 2 :1. 7 6 1.1, 

"l'?"1 
") 
A .. '7 6 1+ ~j :I. :3 

Primitive (Built-In) Functions 111 



112 

The.l Function: Decode (Base Value) (JJ 
Monadic (One-Argument) Form 

There is no monadic form. 

Dyadic (Two-Argument) Form: Decode A.LB 

The decode function result is the value of argument B expressed in the number 
system specified by argument A. For example, to convert the vector 1 7 7 6 to 
its value in the decimal number system (base 10): 

10 10 10 1011 7 7 6 
1776 

The following illustration shows how it was done: 

Argument A (number system) specifies the following: 

10 10 10 10 

t .... _1"--....... 1 _ .... 1 ___ Ten units in each of these positions equal one unit 
of the next position to the left. 

Argument B is a vector with these values: 

1 776 

The result is the same as dOing the following: 

ilf x10x10 == 
::::::::, .. :;:::.; 

x10x10x10 == 

6 The units position always represents itself. 
70 

700 ~""-------The value in the next position is multiplied 
1 000 by the rightmost value in argument A. 
1776 

The value in the next position is multiplied 
by the two rightmost values in argument A, 
and so on. 

The arguments must be numeric. If one argument is a scalar or single-element 
array, the other argument can be a scalar, vector, or other array. The result will 
have the rank of the larger argument minus one. 



If either argument A or B is not a scalar, they both must have the same length, 
or an error results. 

Note: The value of the leftmost position of argument A can be zero, because 
even though there must be a value in that position, it is not used when the 
result is calculated. For example: 

o 10 10 1011 7 7 6 
i .""J .... i . 
• 1. I (\.! 

If either argument is a scalar, the value of that argument is repeated to match 
the length of the other: 

••• j 
.I. i o·:u 

.-) ,.) '1 
~ ... .. ': ... ~; .. 

0 

.I. 

1 

:I. 

1= 1 
Dx 2 = 0 

Ix 2 x 2 = 4 ~';"" .. , 
~--------------------------5 

1 = 1 
1 x 2 = 2 

x2x2=4 
{~ ------------------------------------------7 

If argument A is a vector and argument B is a matrix, argument A must have 
an element for each row of B: 

t 5 :3 
.? i)i 1.\. 

B~2 3pl 5 2 7 9 4 
:B 

If argument A is a matrix and argument B is a vector, each row of argument A 
is a separate conversion factor; argument B must be the same length as a row 
of argument A. The result will be a vector with one element for each row of 
argument A: 

A~2 3p10 10 10 1 3 :1.2 
(1 

:I. 0 :1. 0 :I. 0 /ThiS number system could 
:I. 3:1.2 represent yards, feet, and inches. 

(:1 1 :I. '") 
....... :.3 

3 
2x 12 = 24 

1 x 3 x 12 = 36 
:I. ::.~ ::~:; i . . :~ "_, ..... 1----------------------------------------63 • 

f:~i .I. 
1") 3 I.j. .. ,".. 

::.:~31.J· :I. :I. ;.:.:: 

Primitive (Built-In) Functions 113 



114 

If both arguments are matrices, each row of A (conversion factor) is applied to 
each column of B. The result is a matrix containing the converted values for 
each column of B: 

A~"2 
B~"3 

3eB B B :1.6 :1. .~) :I. 1.:-

{, 

D B B 
:1.6 :1.1.:. :1.6 

B 
:I. :~.~ 

2el ~.~~ ") :1.2 ::5 3 ...... 

3 = 3 
12 x 16 = 192 

2x16x16=512 
29:1. '{' 0 7 ..... ----------------707 

3= 3 
2x 8 = 16 

lx 8 x 8 = 64 
(1.1, B 

~~------------83 
~::: :.3' :~ :.:.~ ul 

.. ., 
.. ~:. 

The following examples convert hours, minutes, and seconds to all seconds: 

:':::'+ 60 60.1.:1. :~O :I.~.:.:; 

The following illustration shows how it was done: 

Argument A (number system) 

24 60 60 

1 

tL-...-_____ 60 units (seconds) equal one unit of 

the next position to the left. 

'----------60 units (minutes) equal one unit of the 
next position to the left. 

'---------------24 units (hours) equal one unit of the 
next position. 

Argument B 

1 (hour) 30 (minutes) 15 (seconds) 

The result was obtained as follows: 

15 
30x 60 

1 x 60 x 60 

15 seconds 
1800 seconds 
3600 seconds 
5415 seconds 



The T Function: Encode (Representationl m 
Monadic (One-Argument) Form 

There is no monadic form. 

Dyadic (Two-Argument) Form: Encode AT B 

This function is the reverse of the decode function. The encode function result 
is the representation of argument B in the number system specified by 
argument A. 

Note: Be sure argument A is long enough to completely represent argument B 
or an incorrect answer results. 

For example, the representation of 1776 in the decimal number system (base 
10): 

1.0 :1.0 :1.0 :1.01'1776 
:1. -, 7 c) 

The following illustration shows how it was done: 

Argument A (number system) specifies the following: 

1p 1f \0 1t<--0 ___ _ 
L- - Ten units in each of these positions equal 

one unit of the next position to the left. 

Argument B has this value: 

1776 

Primitive (Built-In) Functions 115 



116 

, The result is the same as doing the following: 

1 
10x10x10 = 1000 11776 

1 Ox1 0 = 100 

10 

1000 
776 

ds) 
700 

70 
6 

Note: The value of the leftmost position of argument A can be zero. For 
example: 

I) :1.0 :1.0 lOT:t7""l6 
:I. ""1 ""? 6 

If both arguments are vectors, the result is a matrix. Each column in the result 
contains the representation for each element of argument B expressed in the 
number system specified by argument A: 

1 :I. 0 
:[ 0 :I. 

12:1. 
:t '+ B 

16 16 T 17 36 24 

1 

16 fT7 
16 
1 



If argument A isa matrix and argument B is a scalar, then the result is a 
matrix. Each column of the result contains the values of argument B expressed 
in the number system specified by the corresponding column of argument A: 

:I. 
o 

A~-3 2 ~)B :1.6 
i~l 

),/ 

8 x8 = 64 1123 
.M.. 

59 
71 

8 159 
M. 
i3 

-------The result can be transposed so that 
each row represents the values of 
argument B expressed in the number 
systems specified by argument A. 

If argument A is a scalar or vector and argument B is a matrix, the result is a 
matrix or N-rank array, with one plane for each element of argument A: 

A ~- :I. ~~ :I. ::.:~ 

B~"2 2 ~)3~:.; 2 Lt· 6) :I. 2 
A 

1 :-5 :l.2~'----This number system could 
B represent yards, feet, and inches. 

f.~ T B 
o 
o 

:l 

o 
(I 

Primitive (Built-In) Functions 117 



118 

If both arguments are matrices, the result is an N-rank array, with one plane 
for each element of argument A. Each column of argument A represents a 
number system: 

A ... 2 2f>10 20 
A 

10 20 
:1.0 20 

7 

B~2 2p 99 88 77 66 
B 

8B 
66 

ArB 
B } 
6 

~ } 

B } 
f.) 

B } 
6 

Result of the number system in 
column 1 of argument A 

Result of the number system in 
column 2 of argument A 



The following example converts seconds to seconds, minutes, and hours: 

:::.~I.j. .f.:, [I bOT !5Q·:I. ~:.i 

:I. 30 :I. ~:i 

The following illustration shows how it was done: 

Argument A (number system) 

24 60 60 

t 60 units (seconds) equal one unit of the next 
position to the left. 

1.--------60 units (minutes) equal one unit of the next 

position to the left. 

L..-_________ 24 units (hours) equal one unit of the next 

position to the left. 

Argument B 

5415 (seconds) 

The result was obtained as follows: 

1 
60 x 60 = 3600 15415 

3600 

18:) 
60 11815 

1800 
15 

Primitive (Built-In) Functions 119 



120 

The € Function: Membership Q 
Monadic (One-Argument) Form 

There is no monadic form. 

Dyadic (Two-Argument) Form: Membership A € B 

The membership function result is a 1 for each element of argument A that can 
be found among the elements of argument B and a 0 for every element that 
cannot be found. The shape of the result is the same as the shape of 
argument A. Arguments A and B can be any scalar, vector, or array: 

:I. 

0 

:I. 

:I. 

1 :I. 

:I. :3 
c:· .'" 
,oJ I 

:1.2 
I.j.!.:j 

7B 
1 ':> A .. 

() 0 
() () 

:I. :3 
~5 7 

:I. :~ 

7 B 
1+ I::' 

.. J 

:1. 
.-) 
""-u 

:I. 0 
:I. :I. 

0 

1+~5 

7B 
:1.2 
L~ ~:.i 

1.1· 

:I. 
'''1 

.-

I.J. 

:I .• ~:.i":.:I. 2 :3 I.f. ~5 

· A' 0):: • DANNA I 

A~"2 

B~"I+ 

A 

B 
7B 
:1.2 
Lf· ~; 
7B 

A+:·:B 

B~"'+ 
A 

B 
1:'-
... J 

') 
11.° •• 

B 
~5 

f.l +:.: B 

2(.>:1. 3 ~:.; '"( 
'+ (.>:1. 2 I+~:.) 7B 

:1.2 
1.1· ~:j 

7B 
:1.2 



The m Function: Matrix Inverse, Matrix Divide (]] m 
You form the m symbol by overstriking the 0 and the -t symbols. 

Monadic (One-Argument) Form: Matrix Inverse ma 

The matrix inverse function inverts a nonsingular matrix or computes the 
pseudoinverse of a rectangular matrix. The result is a matrix. Argument B 
must be a numeric matrix, and the number of columns must not exceed the 
number of rows. The number of columns in the argument is the number of 
rows in the result, and vice versa. 

If argument B is a nonsingular matrix, mB is the inverse of B. If the matrix 
does not have an inverse, then DOMAIN ERROR results: 

(I ~ .. ~? 2 (.) :I. :::::, ~:.=.; .. ? 
t'l 

:1. ::5 
c:· ... , 
,,J I 

I~! tl 
"'0 ,B7~:j 
o . 62~:.:.i 

O,37!.::.i 
... 0 , :I. 2~:5 

f~ ~ .. 2 ::!. (.> :I. ;.:.~ 3 .(:) 
I~ 

mi:~1 

DD~\/i(.~1 I N E I~ 1:<0 F< 
1:3 A 
/'" 

If argument B is a rectangular matrix, mB is the pseudoinverse of the matrix 
(least squares solution): 

A~-3 '') "X ..... (J ..•. , I::' 
,J :I. 2 2 '+ 

(.~ 

~'5 I::' 
,,J 

:1 . ... ) 
10" •• 

1") '+ .. : .. 
1:3 t~ 

") ... :1. . .. ;.~ 
.. 0 •• 

"'j, 0 6 :I. . ..... .I:.: 

Dyadic (Two-Argument) Form: Matrix Divide Ama 

The matrix divide function solves one or more sets of linear equations with 
coefficient matrices. Argument B must be a numeric matrix. The number of 
columns in B must not exceed the number of rows. Argument A must be a 
numeric vector or a matrix. The length of the first coordinate of argument A 
must equal the length of the first coordinate of argument B. 

Primitive (Built-In) Functions 121 



122 

The rank of the result is the same as the rank of argument B. The length of 
the first coordinate of the result is the same as the number of columns in 
argument B. If argument A is a matrix, then the second coordinate of the 
result is the same length as the second coordinate of argument A. 

If argument B is a square matrix and argument A is a vector, then the result is 
the solution to the set of linear equations with coefficient matrix Band 
right-hand sides A: 

f~I~"8 ::5 
:O~"2 :::.~ (.> 1. :~~ ::5 

... 
:I. 

AIHD 
;.:.~ :-5 

Bi··2 2e3 !:.; :I. ") 
0·: •• 

B 
::5 I::' 

.~J 

:I. ") .•.•.• 

~.:~ (::. 9Ear: 
'''J 
1 :I. 

If argument B is a square matrix and argument A is a matrix, then the columns 
of the result are the solution to the sets of linear equations with coefficient 
matrix Band right- hand sides equal to the columns of A: 

::5 
:I. 

I::' 

"'" "~ .\".: 

1 6 
6 

u.:._ 

1 

!,~~ .. ;? 2(.>26 :1.6 9 6 
H~"2 ~\:.~ (.):.3 ~:.; :I. 2 
t'l 

B 

(~lmB 

If argument B is rectangular, then the result is the least squares solution to one 
or more sets of linear equations: 

i:~~"3 

B ~-:.3 
f~ 

1. :I. 1I.J, 

'+ 7 
1. :I. :1.'+ 

B 
"y !5 ,::0 

:I. ''') 
.\" ... 

") 
0·: •• '+ 

f:~EHB 
.- Lt· 

'+ 6 

31~) :I. :I. 11+ 
2p:3 I::' :I. ..... 

••• ,t") 

~: .. 
"':1. 
.... U) 

.': .. 

.....• :} 

°l 

"'r) 1+ .. '~ 
'') 
A~ :? 

'7 
1+ 

''':1. 

:I. 
"':1. 



The .t Function: Execute W CD 
You form the .t symbol by overstriking the 1. and the 0 symbols. 

Monadic (One-Argument) Form: Execute .t B 

The execute function evaluates and executes argument B as an APL expression. 
Argument B can be any character scalar or vector: 

:1.+2 

.... 
,) 

:1.0 

(.~~ .. ' :I. +2 . 
(~ 

.~. A ..... ----- The character vector in the variable A is executed. 

c~··· «A')~2)+(B')('2) )~'. ~5' 

A~<3 

H~··ll· 

.foe 

A~"6 
B~;'B 

.t.e 

(.,~ .. :I. 
H~"2 
.t. (A::::B) / • (-H·B· 
A~" 2 > A + B is executed only when A equals B . 

. ~. (A::::B) / • A+B · 

Dyadic (Two-Argument) Form 

There is no dyadic form. 

Primitive (Built-In) Functions 123 



124 

The 'I' Function: Format GJ OJ 
You form the lP" symbol by overstriking the T and the 0 symbols. 

Monadic (One-Argument) Form: Format lP" B 

The monadic format function result is a character array that is identical in 
appearance to the one displayed when the value of argument B is requested: 

B~··::5 I.J. (.> , 12 
B 

1 '") 
': .. ~~ lJ. 

~::j /,) ul B 
9 10 1.1 :I. ::.~ 

X~"l'B 

X 
:1. ") 

t:.. 3 ll· 

5 6 -, B - This matrix is a character matrix. 
<"1 :L 0 1:1. 1 ':> .... 

Dyadic (Two-Argument) Form: Format A'iP B 

The dyadic format function result, like the monadic format function result, is a 
character array. However, argument A is used to control the format (the 
spacing and precision) of the result. Argument A is a pair of numbers: the first 
number determines the total width of the format for each element, and the 
second number determines the precision used. 



If the precision number is positive, the result is in the decimal form, with the 
number of decimal places specified by the precision number. If the precision 
number is negative, the result is in scaled form, with the number of digits to 
the left of the E specified by the precision number: 

B~3 2p12,3~ -3~,567 0 12 -0,26 -123,45 
B 

1.2,3~ 

o 
'"0 ,26 

X~9 

X 
12 , ~~L~ 

,00 

- :':~ ~ , ~:.:j 6) 7 
12 

... 1. 2 :.~ , ~ ~:.:j 

.- ::3 1+ , ~.:j 7 
:L2,OO 

C~"9 -~:.~l·B 

C 
1. , ::.~ E 0 :1. .., 3 , ~.) E 0 1. 
o , 0 E'" O:l 1 , 2E 01 

N'r) 6[' ... (. 11 - oj I·)r.·· () '} I t: .. ,. • J. J., ... ~.I:-- I:.. I 

~~ 

Width of Nine Positions 

(left margin) 

Width of Nine Positions 

(left margin) 

If the width entry in argument A is zero, the 5110 uses a field width such that 
at least one space will be left between adjacent numbers. If only a single 
number is used, a width entry of zero is assumed: 

Ef·2 'rB 
E 

12,34· 
,00 

-3l~ . 57 
12.00 

Width of Eight Positions 

(left margin) 

If you get a DOMAIN ERROR when using the format function, increase the 
width (left digit) of the left argument. 

Primitive (Built-In) Functions 125 



126 

You can format each column of an array differently by using a control pair in 
argument A for each column of the array: 

F~··t.) 2 6 II B 
F 

12 . 3 LI· .M3 1+. 6 
.00 12.0 

.M ':) t .M j ":)"~ Lu 
• h .. ., •• 4...... I ...:! 

Notes: 

Width of Six Positions 

(left margin) 

1. If the OPW system variable is set to an invalid value, OPW IMPLICIT 
ERROR will result when the format function is used. 

2. Even if the specified format causes all of the significant digits to be 
truncated, the sign of the original number is retained. For example: 

1+ 2 l ... , 0 0 0 LI· 

{,OO The sign is retained. 

3. The format function should not be used to round a number up or down. 
Instead, the floor function should be used for rounding. For example, L A+.5 
rounds the value of A to the nearest integer. 



APL OPERATORS 

An APL operator applies one or more dyadic primitive scalar functions to 
arrays. The operators are reduction, inner product, outer product, and scan. 

Reduction Operator (f) QJ 
The symbol for the reduction operator is I. The forms of reduction are (j)1 [ I ] B 
or 01 B or <Dt B, where <D can be any primitive dyadic scalar function that is 
applied between the elements of a single vector. 

The rank of the result is one less than the rank of argument Bt unless 
argument B is a scalar or a single-element vector; then the result is the value 
of the single element of argument B. When argument B is a vector, the 
reduction of that vector is the same as putting the primitive dyadic function 
between the elements: 

B~··:I. 2 :-3 1+ 
+/B 

:1.0 
1 +2+3+1.J· 

:1.0 

If argument B is an empty vector (see Chapter 3)' then the result is the identity 
element, if one exists, for the specified function. For example: 

:I. I The identity element of x (times) is 1. 

When argument B is a multidimensional array, the [I] index entry is used to 
specify the coordinate acted on. If the index entry is omitted, the last 
coordinate (columns) is acted on. If the (j),l B form is used, the first coordinate 
is acted on. Indexing along a nonexistent coordinate will result in INDEX 
ERROR. 

Primitive (Built-In) Functions 127 



128 

When argument B is a multidimensional array, the coordinate of argument B 
that is acted on is eliminated: 

t.) 

o 

1 

:1. 
1+ 

") 
I: .. 
I:'" 
".1 

j I::' .. ,.I 

3 

B~2 3p1 2 3 ~ 5 6 
B 

b 
+/l-:'. 

'-.... --------The last coordinate (columns) is assumed; 
+ I I:: 2::1 B therefore, the reduction is between columns: 

+IB "" 1+2+3=6 

... / I: 1. ::I f.! ~The second coordinate (in this case, columns) 

~
iS specified. 

B ~ .. ::~ 3 4- (.) \ 21+ 
B The first coordinate (rows) is specified; 

3 4 therefore, the reduction is between rows: 

"7 B 
:1.1 12 

11+ 1.~) :L 6 
:l.B :1. <'I 20 

4 
5 

2 
§. 
7 

3 

~ 
9 

21 22 2:.3 24-
+/[l:JB 

1. 6 :I. B 2 O----------The first coordinate 
21+ 2b 2B (planes) is specified; 

30 32 34- 3b therefore, the reduction 
D4" \ 0 is between planes. 

B 

+/B 

:::.:/B 

riB 
"'7 I 237E7~.:; 

If argument B is an array that has a coordinate whose dimension is zero, then 
reduction along that coordinate yields an array whose elements are equal to 
the right identity element for the function, if the right identity element exists. 
The identity element for each function is given in the preceding table. 



I 
! 

Inner Product Operator ( .) 0 
j 

J,,:~~...:..:'~- ,-

The symbol for the inner product operator is • (period). The inner product 
operator is used to combine any two primitive scalar dyadic functions and 
cause them to operate on an array. An example of its use would ~e in matrix 
algebra, in'findirigthi~matriM prijductoftiNo matriCes. ~i1i& fOrm for inner 
product is: A <D. ® B, where <Vand @ are any I primitive scalar dyadic 
functions. Function @ is performed first and then(f)reduction is applied 
between the results of function @. 

The result is an array; the shape of the array is all but the last coordinate of 
argument A catenated to all but the first coordinate of argument B 
(-1 + pA),(1 + p B). If argument A and argument B are matrices, the elements in 
each row of argument A are acted on by the elements in each column of 
argument B: 

.~ a, 
3 1+ 

1 6 

A~2 2pl 2 3 1+ 
Bi"2 2~)~) 6 -, B 
A 

'Ii 8 _------(1 ><5) + (2x7) = 19 
"'~ A+. xB 

'9,"'22 
1+3 50 

The above example is the same as doing the following for each element in the 
result: 

(lx5)+(2x,?) 

(lx6)+(2x8) 

(3X~j)+(lp:7) 

43 
( 3 x 6 ) ... ( ll· x 8 ) 

50 

: Primitive (Built·ln) Functions 129 



I Page of SA21-9303"() 
, Issued 15 June 1978 
jay TNL: SN21-:9289 

i 130 

The shapes of arguments A and B must conform to one of the following 
conditions: 

1. Either A or B is 8 scalar. 

3 If 

A+:2 2.,:>1 2 3.'4-
8"'5 
A 

B 
t:1 /---A-+-,-X-S--:(1 x5)+(2x5)=15 

35 

2. The last coordinate of argument A js the same length as the first 
coordinate of argument B. (If both are matrices, the column coordinate 
of argument A is the same length as the row coordinate of argument B.) 

A~3 

B"'2 
A 

1 ~ 

5 6 
B 

7,. 9 
10 iii 12 

2p1 
3p7 

2 3 If 5 6 
8 ('} 10 11 l? ..... 

27 ~~i""'X':;;"~-3--':(3 x8) + (4 x 11) = 68 

61 .8 75 
95 106 117 

DAN 

DDN 
DAN 
t1EL.. 
TDM 

o 1 

A(- 1 D~~N . 
B~~ 3p 'DONDANMELTOM' 
fi 

B 

I
Transpose B so that the first coordinate of 
B has the same length as the last coordinate 
of A. 

A .. '\ ::::t\.lB 

o 0 .... ,--------- The second row of B is equal to A. 

Notice that the inner product operator can be used to find equal names in a 
matrix (table). However, if you use the inner product operator with the v and ;t 

functions, unpredictable results can occur. instead, you should use a statement 
like "'AA.=B. For example: 

"-'i:'1,"--, ::::ti:!B 

:I. 0 :I. :I. 



If af(;J~men~ A and argument Bare N-rank arrays, the elements in each row of 
arQ~ment A are acted on by the elements in each plane of argument B: 

A~" :~~ :~ 2p\B 
f:!) 

:t. ::.~ 

3 q. 

t:.) 6 
'7 a 

X':{~"2 ") It-,. 2pB+\B 
E{ 

<;> :1. 0 
:1.:1. :1.2 

1. ~'5 t l+ 
:L ~:.:; :1,6 

A+, xl-:{ 

:3t:5 :'~8 

'+:1. 1+'+ 

'79 (36 
9:3 :1. 0 0 

1 ~~:3 :1.31+ 
j, '+~:j j. ~) f.) 

11.) 7 :t. 8:.:.~ 
:1.97 ~~l2 

Primitive (Built-In) Functions 131 



132 

Outer Product Operator (0 .) 0 0 
The symbols for the outer product operator are 0 •• The outer product 
operator causes a specified primitive scalar dyadic function to be applied 
between argument A and argument B so that every element of argument A is 
evaluated against every element of argument B. The form of the function is: 
A 0 • <D B, where <D is a dyadic primitive scalar function. Arguments A and B 
can be any expressions. Unless argument A is a scalar, the shape of the result 
is the shape of argument A catenated to the shape of argument B. If argument 
A is a scalar, the shape of the result is the same as the shape of argument B: 

') ..... 

I') 
.:.. 1.1· 

:1. 2 

'+ 

C> 

~5 

1::-
,) 

A~"2 
Bt-:1. 2 
(.~ 

If 
1+ 
An I xB 
B 
A ... :I. 2 
B~ .. 3 '+ 
A 

B 

i~O I xB 
1.1, ~5 

B :1.0 
1, ~,~ 1, !5 

:'3 LI· 

~~ 
~.:5 

The above example is the same as doing the following for each element in the 
result: 

1, x ~~ 
3 

1. X '+ 
'+ 

:1. X ~:; 
I::' 
,) 

2x~5 

b 
2X4, 

B 
2 ~< ~:; 

10 
~5 X :'5 

<;> 

3XLI, 

:1.2 
~) X ~:; 

1,!:5 



More examples: 

:~ '4· !:) 
6 '7 H 

A~··:.;~ 

B ( .. ~~~ :3' (.> .1. :.;~ 3' l.~ :::; 6 

A~> I +.f:~ 

A ~ .. :;~ 2 p .1. ~;~ ~:~ I.~ 

Bf'<3' :3" (.> \ 9 

I~ 

:~~ 
.n 

3 , ... ,:) 6 
'7 H 9 

2: 4 .. f.}f~ . .+.}.; 

(->.7.: 

.~;~ ~:~ 3" ~3' 

,::. 
,.J 

':r \"' 
6 

.t 
I.~ 

'f' 
8 $> .10 

<Iii I.,. !::i 

6 "? n 
9:LO :L:I. 

6 
F.J 9 

.10 .1.1. :/.=;~ 

1+1==2 

2+1::::3 

3+1==4 

Jif"} 6 '? 

H 9:i.() 

:£:1. :/.;~:L3 

4+1==5 



134 

.Scan Operator (\1 Q 
The symbol for the scan operator is \. The forms of scan are: 
CD \ [I]B, CD \B or(f)~B, where(f)can be any scalar dyadic primitive function 
and argument B is a numeric vector or other array. The scan operator, like the 
reduction operator, operates on the elements of a single vector, and is the 
same as putting the primitive dyadic function between the elements. But the 
scan operator accumulates the results as the operation is repeated along the 
vector. The shape of the result is the same as that of the input argument: 

+\l 2 3 '+ 5 
1 3 6 1. 0 l. 5 ...... 1------- This result is the same as doing the 

:to 

:I. following for each element in the 

:1.+2 

:I. +2+:3+'+ 

result. The first element in the 
result is the first element of the 
argument. 

When argument B is a multidimensional array, the [I] index entry is used to 
specify the coordinate the scan is to proceed along. If the index entry is 
omitted, the last coordinate (columns) is acted on. If the CD ~ B form is used, 
the first coordinate is acted on. 

:I. ") .. '~ 
1::-,., (.) 

9 10 

2 
B 

:I.B 

9 1.9 

l 3 
!:5 1 :1. 
9 1.9 

:I. ~? 
6 B 

1 !:5 :I.B 

B ~ .. :.~ 4· p \ 1 2 
B 

3 '.~ 
7 8 

:I.l 1 ':) .... 
+\[:I.]B .. --------The first coordinate (rows) is specified; therefore, 

3 
lO 
2l 

30 
+\B 

I.> 
:tB 
~~ 0 

+\B 
3 

:to 
21 

LI· 
l2 
24· 

4-2 

10 
2b 
4-2 

l.f. 
1.2 
24· 

the scan is between rows. 

.. ---------The second coordinate (columns) is specified; 
therefore, the scan is between columns. 



:to 2 
5 6 
9 1.0 

1.3 1.4-
:1.7 :t.8 
2:1. 22 

:1. I') 
,: .. 

c' .., 6 
(y :t.0 

:1.'+ :t.t> 
22 2'+ 
30 :32 

l. 2 
6 B 

:t, ~:; :l.B 

:I. ~~ :1. 1+ 
:'50 32 
~5 :t, ~5'+ 

:I. :3 
~,:; :I. :t, 
<;.> :1.9 

:I. ~3 ~,:?7 

:1.7 :'55 
21 '+ :'3 

Ai"2 :3 ,+p \ 24· 
A 

~3 '+ 
7 B 

1:1. 12 

:1.5 :1.6 
:t.9 :~O 

23 2'+ .. 
+\[:l.JA .. The first coordinate (planes) is specified; 

:.3 q. therefore, the scan operation is between planes. 

'7 8 
:I. :1. :1.2 

1.8 20 
::,~6 20 
:34, ~~6 

+\[2::tA .. The second coordinate (rows) is specified; 
~3 4, therefore, the scan operation is between rows 

:1.0 1.2 for each plane. 
2:1. 2L~ 

:1. ~7; :1,6 
~:~ 1.1, ~~6 

~57 60 
+\[3JA .. -..----- The third coordinate (columns) is specified; 

(,!') 

:1.8 
30 

1+2 
~:; '~. 
t)6 

:1, () 

26 
'+2 

~j8 

71+ 
90 

therefore, the scan operation is between columns 

for each plane, 

Primitive (Built-In) Functions 135 



136 

SPECIAL SYMBOLS 

Assignment Arrow -4- Q 
The assignment arrow causes APL to evaluate everything to the right of the 
arrow and associate that value with the name to the left of the arrow. For 
example, A .... 2+3 means that 2+3, or 5, is assigned to the name A. When A is 
used in a later APL statement, it has a value of 6. 

Notes: 
1. When a value assigned to a variable is used as the argument for a function, 

the value assigned to the variable is used by the function, regardless of any 
previous or future value aSSigned to the variable. For example: 

6 

3 

'7 

I~~"I.J· 
(A~<5)+A 

A 

A 

2. To avoid confusion, a variable should not be referenced in the same 
expression it is assigned, except directly to the right of the assignment. For 
example: 

A~··2 

A~"A+l 
A 

8ranch Arrow "+' Q 
The branch arrow is used for the following: 

• To change the order in which the statements are executed in a user-defined 
function. See Branching in Chapter 6 for more information on branching. 

• To resume execution of a suspended function. 

• To clear the state indicator. 



Quad 0 (]J 
The quad is used to ask for input and to display output. To display output; the 
quad must appear immediately to the left of the assignment arrow. The value 
of the APL expression to t~e right of the arrow is assigned to the quad and 
will be displayed. For example: 

~5+[]~""'++:3 
""' ( 

A~[]~'CHARACTER DATA' 
CHA r~ACTE I~ DATA 

The 7 displayed is the value assigned to the quad. The 12 is the final 
evaluation of the APL expression. 

When used to ask for input, the quad can appear anywhere except to the 
immediate left of the assig:nment arrow. Execution of the expression stops at 
the quad and resumes when an expression is entered to replace the quad. 
When a quad is encountered, the quad and colon symbols (0 : ) are displayed 
to indicate that input is requested. For example: 

[]: 

'+ 
:1. 0 0 

See Chapter 6 for more information on quad input or output within a 
user-defined function. 

Quad Quote 1!1 (]J '[8 
You form the quad quote symbol by overstriking the quote symbol ' and the 
quad symbol O. The quad! quote operates the same way as the quad when 
requesting input, except tHat the data entered is treated as character data. For 
example: 

C(.~N' T 
x 

Ci~N' T 
X~""'YI 

'C~)N' T'T' 
X 

'CAN'T'l' 

Note: If a system comm8Rd is entered for a quad quote input request, the 
system command is treated as a character string and will not be executed. 

See Chapter 6 for more information on quad quote input or output within a 
user-defined function. 

Primitive (Built-In) FUnctions 137 



138 

Comment AGJ CJ 
The comment symbol is formed by overstriking the n symbol and the t) 

symbol. The comment symbol must be the first nonblank character in a lihe 
and indicates that the line should not be executed. For example: 

~10NE PLUS Tl~O 

[:I.] HTHE PURPOSE OF THIf:> FUNCTION IB 
[2J AID ADD TWO NUMBERS TOGETHER! 
[3] ONE+TlAIDV 

:I. 2 PLUS :'5 1+ 

Parentheses ( ) o:J [JJ 
Parentheses are used to specify the order of execution. The order of executidn 
is from right to left with the expressions in parentheses resolved (right to left) 
as they are encountered. For example: 

3+ 1+ X 6 
27 

(3+ 1+) xc> 
1+2 



Chapter 5. System Variables and System Functions 

SYSTEM VARIABLES 

System variables provide controls for the system and information about the 
system to the user. These variables can be used by a function as arguments 
the same as any variable. 

The following is a list of the system variables and their meanings. A complete 
description of each follows the list: 

Variable Name 

Notes: 

OCT 
010 
Opp 

OPW 
ORL 
OLC 
OWA 
OLX 
OAV 

Meaning 

Comparison tolerance 
Index origin 
Printing precision 
Printing width 
Random link 
Une counter 
Workspace available 
Latent expression 
Atomic vector 

1. To find the value assigned to a system variable, enter the variable name. 
The value assigned to the OCT, 010, OPP, OPW, ORL, and OLX system 
variables can be changed by the assignment arrow (+). For example, 
entering 010+0 assigns the value 0 to the 010 system variable. 

2. The use of any system variable causes an entry to be made in the symbol 
table for that symbol. Therefore, if the symbol table is full, a SYMBOL 
TABLE FULL error is generated. . 

3. The following system variables are implemented as part of the system for 
the purpose of maintaining syntactic compatibility between the 5110 and 
APL/SV or VS/ APL: 

Variable Name 

OAI 
DOL 
OTS 
OTT 
OUL 

Meaning 

Accounting information 
Delay 
Time stamp 
Terminal type 
User load 

Default Value 

o 0 0 0 
o 
1900 0 0 0 0 0 0 
o 

Although these system variables are not generally used with the 5110, the 
OAI and OTS system variables can be assigned a new value. 

System Variables and System Functions 139 



140 

Comparison Tolerance: OCT 

The value of this variable determines the maximum tolerance (how different the 
two numbers must be to be considered unequal) when any relational function 
is used and at least one argument is a noninteger. For example, two numbers 
are considered unequal if the relative difference between the two numbers 
exceeds the comparison tolerance value. The following illustration shows how 
the comparison tolerance works with the relational functions: 

o 

,. 
~A>B 

±DCTxA' 
~ Value of argument A 

Real number line 

The relationship of 
any value (argument B) 
to argument A 

A' is the next lower integer power of 16 for the largest argument. For 
example: 

:I. 6·)(' 0 :1. 2 :3 '+ -The First Five I nteger Powers of 16. 
1 16 256 4096 65536 

nCT~". :1. 
:1. LI·:::: 1. ~S . 

o 

1. ~5:::: 1. 6 • 
1. 

2~53::::2~j!::.i . 
o 

1. 

Next lower integer power (A') is 1; 
therefore, the difference between the 
arguments exceeds :tOCTxA' (.1 x 1 =.1) 

Next lower integer power (A') is 16; 
therefore, the difference between the 
arguments does not exceed :tOCTXA' 
(.1 x 16=1.6). 

Next lower integer power (A') is 16; 
therefore, the difference between the 
arguments exceeds :tOCTXA' 
(.1 x 16=1.6). 

Next lower integer power (A') is 256; 
therefore, the difference between the 
arguments does not exceed :tOCTxA' 
(.1 x 256=25.6). 

Note: The OCT function considers any number in decimal form a noninteger. 
For example, 1000 is an integer and 1000. is a noninteger. 



The value of the comparison tolerance variable also affects the floor and ceiling 
functions. The comparison tolerance is added to the argument for the floor 
function and subtracted for the ceiling function. For example: 

I.!. 

[]CT~" . 0:3 
1..2.90 

I.. :~:.~ .96 

1"3.01.!· 

2.98 + .03 = 3.01 (The integer 3 is in the range of 
2.98 + .03.) 

2.96 + .03 = 2.99 

3.03 - .03 = 3 (The integer 3 is in the range of 
3.03 - .03.) 

3.04 - .03 = 3.01 

In a clear workspace, the comparison tolerance value is set to 1 E 13 (see 
Chapter 3 for an explanation of scaled representation). 

Index Origin: 010 

The value of this variable determines the index origin. The value can be either 
o or 1, which means that the first component of a vector or array is indexed 
with a 0 or 1, depending on what the value is set to. In a clear workspace, the 
value is set to 1. 

The functions affected by index origin are indexing ([ ]), index generator ( t ), 
index of (t), roll (7)' deal (7)' generalized transpose (~), grade up (!), and 
grade down ('). 

n I D~~ 0 
t ") 

• 0: •• 
~x 

' .. 1 

0 :l ") 
~: .. :.3 

d)l> ::3 
:I. 2 3 0 

\ ll· 
0 :I. ;.:.~ :.3 

[] I D~ .. :1. 

1.\. '1. :I. 

q. ~5 

") ...... ::3 1+ 
The index values represented by the 
result start from 0 rather than 1 . 

Note: All other examples in this manual are shown with the index origin set to 
1. 

System Variables and System Functions 141 



142 

Printing Precision: Dpp 

The value of this variable determines the number of significant digits displayed 
for decimal numbers and for integers with more than 10 digits. The value of 
this variable does not affect the internal precison of the system. The value can 
be from 1 to 16. In a clear workspace, the value is set to 5. This means that 
the number of significant digits displayed for decimal numbers or for integers 
with more than 10 digits is limited to 5, and scaled representation (see Chapter 
3) is used (if required). For example: 

tr------- Decimal Number Examples 

:t 2::51.J·~5. 6 
:I. 23l1·6 .... ·---------Five digits are displayed, and the least 

1 2 ~~) 1.1· ~:.i 6 . "( 
:I. • ~?31+6E~::.; 

significant digit is rounded off. 

Ir------Integer Examples 

:J. 231+~)6 7090 
1 :?'31+~56 7B9 0 

1231+~:';6 "to? 0:1. 
:I. • 2:3 1+6/:::I. () 

Print Width: DpW 

The value of this variable determines the length of the output line for both the 
display and printer. The value can be from 30 to 390. In a clear workspace, 
the value is 64. If this variable is set to a value greater than the length of one 
line across the display, the output will overflow onto the next line. 

If this variable is set to a value greater than the length of one line across the 
printer, an Ul (O-U-T) symbol is printed in position 132 when the output 
exceeds the print width. 

Notes: 
1. During function definition mode (s~e Chapter 6)' the print width variable is 

automatically set to 128. The variable returns to its original value when the 
function is closed. 

2. When you open, display, and close a function using one statement 
(V FUNCTION [0] V), the system uses the current value of the variable. 



Random Link: ORL 

The value of this variable is used in generating random numbers. The value 
can be from 1 to 231 _2. In a clear workspace, the value is 7*5 (16807). This 
value is changed by the system each time a random number is generated. 

Note: Making ORL local to a user-defined function produces unpredictable 
results. 

Line Counter: OLC 

This variable is a vector. The first element is the function statement number 
currently being executed. The next element is the number of the statement (in 
another function) that invoked the function being executed. The remaining 
elements follow the same pattern. The user cannot set this variable but can 
display it. Attempts to modify OLC are ignored by the system. 

Workspace Available: DWA 

The value in this variable indicates the amount of unused space (the number of 
unused bytes) in the active workspace. The user cannot set the value for this 
variable but can display it. Attempts to modify OWA are ignored by the 
system. 

Latent Expression: 0 LX 

A character vector assigned to the latent expression variable is automatically 
executed as an expression by the execute (.1) function when a stored 
workspace containing the latent expression is loaded into the active workspace. 

Uses of the latent expression variable include the form OLX+'G', where a 
function named G is executed when the stored workspace is made active. The 
form OLX+"'MESSAGE WHEN WORKSPACE IS MADE ACTIVE'" displays the 
message MESSAGE WHEN WORKSPACE IS MADE ACTIVE when the stored 
workspace is loaded into the active workspace. 

System Variables and System Functions 143 



r :I. ] 

[2] 
[3] 
[I.j.] 

I:: ~:;] 
[6] 
[7] 
[B] 
I:: (.Y'::I 

r :I. 0 ::I 
r :I. :I. :I 
[ :1.2] 
r 1:.3] 
r :1.1.1·] 

r 1 !5J 
r 16] 

\.' ... 

I 
P 

G 

I. ... J 

I 
f'..! 

''I'' 

144 

n 
',1 

'\l 

I 

E 

Atomic Vector: DAV 

The atomic vector is a 256-element vector that includes all possible APL 
characters. The following example shows how it can be used to determine the 
indices of any known characters in the vector (assuming 010 is 1): 

U(:,'v' \ ' i~IBC ' 
B'l 88 SO:; 

Appendix B contains a list of the characters in the atomic vector. The most 
common use of the atomic vector is for generating line feed and cursor return 
characters to arrange output. The following example shows how the atomic 
vector can be used to generate these characters. 

The function called NAMES will display your first and last name. Each name 
will start at the left margin, and each character in the name will be one line 
lower than the previous character: 

\7Ni:',i'1ES I:: []::I Xl 
A NAMES B;DUTPUT;I;J;OIO 
n I O~M 1 
J ~ ( f:> ,I B ) + I ~ .. (.i .. f:, 

ii::,Tr-:'ITEriENl ~5 CATENI~IT[~:) THE ~iF,~GUi"lENTS TOGETHEF~: 

AAND ALSO PUTS A BLANK CHAPACTER BETWEEN EACH CHARACTER 
() U T P 1...1 T ~ .. ( ( 2 X ,..I ) {. :I. 0:> \ ( .. f~) .. ( ,I B ) 

A S T f:, T E ("i E NT B P L i:':) C E S i~' LIN E FEE It C H (:':) I~ (:':) C T I::: I~ ([] f:' V I:: :I. 6 0 ::I :> 
RIN EACH BLANK ELEMENT OF OUTPUT 
OUTPUTI::2x\J-l]~nAVI::160] 

fl:3T(:~ITEr'IENT :1.:1. PL,(,C:ES f~i CUF<SDF< I~ETI...IF<N CHtiF<~lCTEF< ([lAV[ 1.~57]) 
RAFTER THE FIRST NAME 
OUTPUT[2xIJ~DAV[:l.57] 

I~i NDI..·,J t·JHEN THE CHA I~,~,CTE F< \/[CTO f,;: OI . ..IT PUT I ~3 It I ::) PL~l YED .. 
RAP!... RESPONDS WITH THE APPROPRI~ft-~ETION WHEN A LINE 
AFEED CHARACTER (DAVI::160::l) OR CURSOR RETURN CHARACTER 
fl '( [] ti V I:: :l. !5 7:1:' I ::) EN C DUN T ERE II I NTH E C H (i H (.~I C T [ R ~:; T R I N G 

OUTPUT 

'VIRGINIA' NAMES 'WINTER' 

r"~ 
1 

('1 

P '. 



SYSTEM FUNCTIONS 

System functions are used like the primitive (built-in) functions; they are 
monadic (one argument) or dyadic (two arguments) and have explicit results. 

Following is a list of the system functions and their meanings. A complete 
description of each follows'the list: 

System Function Meaning 

type OCC operation Console control 
OCR name Canonical representation 
DFX name Fix 
DEX name Expunge 
ONL class Name list 

character DNL class Name list beginning with the specified 
character 

ONC name Name classification 

The Dcc Function: Console Control 

The Dcc function. controls some of the interface capabilities between the user 
and the 5110. 

The Dcc function can be monadic (takes one argument) or dyadic (takes two 
arguments). The Dcc function returns an explicit result of 1 when the function 
is successfully executed; otherwise, the result is O. 

In the' monadic form, the Dec function sets the system to a unique national 
character set (see Appendix C). The right argument must be one of the 
following characters enclosed in single quotes: 

Argument Character Set 

(period) EBCDIC 
0 (zero) International 
1 (one) Austria / Germany 
2 (two) Belgium 
3 (three) Brazil 
4 (four) Denmark/ Norway 
5 (five) Finland / Sweden 
6 (six) France 
7 (seven) Italy 
8 (eight) Japan 
9 (nine) Portugal 
T (divide) Spain 
x (multiply) Spanish speaking 

- (minus) United Kingdom 
+ (plus) French Canadian 

For example, the following instruction sets the system to United Kingdom 
character set: 

IJce 

System Variables and System Functions 145 



146 

In the dyadic form, the Dee function is used to: 

• Turn the display screen off and on during the execution of a user-defined 
function 

• Sound the audible alarm 

• Set the keyboard input to standard APL characters or lowercase alphabetic 
characters 

• Scroll the display screen up or down 

• Set the left tab position for printed output 

The left argument is a numeric value that specifies the type of operation. The 
right argument is a numeric scalar or vector that specifies how the operation is 
performed. If the right argument is a vector, the values in the vector determine 
the sequence in which the operations are performed, starting with the first 
element. The operations and the values for the left and right arguments are 
described in the following sections. 

To Turn the Display Screen Off and On During Execution of a User-Defined Function 

Left 
Argument 

For example: 

I~~·· :I. [ICC 0 

Right 
Argument 

o 

Operation 

Turn the display screen off. 

Turn the display screen on. 

turns the display screen off. The display screen remains off until: 

• The Dee function is used to turn the display screen on again. 

• The user-defined function completes execution. 

• The user-defined function requests 0 or [!] input. 

• A function statement that generates displayed output is executed. For this 
reason, the explicit result of the Dee function must be assigned to a 
variable so that the display screen remains off. 

Note: The internal processing capability of the 5110 is increased by 18 % when 
the display screen is turned off. 



To Sound the Audible Alarm 

Left 
Argument 

2 

For example: 

Right 
Argument 

o 

2 

2 [ICC 2 2 2 2 

Operation 

Turns the audible alarm off. 

Sound the audible alarm until: 

• The Oee function is used to turn 
the audible alarm off 

• Any key on the keyboard (other than 
the eMD and shift key) is pressed 

Sound the audible alarm for 
approximately 1 /4 second. 

sounds the audible alarm four times for approximately 1 /4 second each time. 

To Set the Keyboard Input to Standard APL Characters or Lowercase Alphabetic 
Characters 

Left 
Argument 

3 

For example: 

Right 
Argument 

o 

Operation 

Set to standard APL characters. 

Set to lowercase alphabetic characters. 

sets the keyboard input to lowercase alphabetic characters until the keyboard 
input is set to standard APL characters. 

Note: Only the alphabetic keys are affected by the Oee function. 

System Variables and System Functions 147 



148 

When keyboard input is set to lowercase alphabetic characters: 

• Pressing the alphabetic keys enters lowercase alphabetic characters into the 
system. For example: 

enters the character a. 

• When the shift key is held down, pressing the alphabetic keys enters 
uppercase alphabetic characters into the system. For example: 

G (}] enters the character A. 

• When the CMD key is held down, pressing an alphabetic key enters the 
APL character that appears on the upper portion of the key. For example: 

[J(}] enters the character ex. 

The lowercase alphabetic characters are used primarily for 1!1 input. 

To Scroll the Display Screen Up or Down 

left 
Argument 

4 

Right 
Argument 

-16 to 16 

Operation 

Move the information on the display 
screen up or down for the specified 
number of lines. 

A positive value in the right argument scrolls the information on the display 
screen up, and a negative value in the right argument scrolls the information on 
the display screen down. 

For example: 

1+ [ICC .... :1. 0 

scrolls the information on the display screen down 10 lines and then up 5 
lines. 

Note: If a value greater than 16 or less than 16 is specified, the information 
on the display screen is not scrolled up or down, and the explicit result of the 
Dcc function is O. 



To Set the Left Tab Position for Printed Output 

Left 
Argument 

5 

For example: 

!:,=j [ICC 6 

Right 
Argument 

1 to 131 

Operation 

Set the tab print position where the 
first character is printed on the print 
line. 

specifies that the next output to the printer starts in the sixth position on the 
print line. 

When a tab position is specified, if the line to be printed extends beyond 
position 132, an UI (O-U-T) symbol is printed in position 132. Except for the 
I/O error messages (ERROR eee ddd), the specified tab position also 
determines where the error messages are printed on the print line. See 
Appendix F for the error messages. 

The OCR Function: Canonical Representation 

The OCR function formats a user-defined function into a character matrix. This 
function is monadic (takes one argument); the argument for the OCR function 
must be a scalar or vector of characters representing the name of an unlocked 
user-defined function. For example, you have the following user-defined 
function: 

':.lINTG[[]::I'/ 
V I~~-INTG A 

I:: :1. ] R ~ .. f~l (.) 0 
[2::1 I~<I. 
[3] START:R[I::I~A 

['+::1 I ~ .. I +:1. 
[S] ~(ISA)/START 

\7 

System Variables and System Functions 149 



t150 

The function I NTG is used to create a vector whose length and contents are 
specified by the input argument: 

INTG 1.1· 

I.~ '+ '+ '-I. 
INTG 7 

"7 "7 ""1 "7 "7 "7 ""1 

To format the function I NTG into a character matrix and assign the matrix to a 
variable named VAR, you would enter the following instruction: 

V f~ I~ ~ .. [] C I~ I I NT G . 

VAR is displayed as follows: 

VI~R 

I~~" I NTG A ... ----First row is line 0 of the function. 
H ~ .. () (.> () 

I ~-l 
~::) T (l r~ T : ~~ I:: I :I ~ .. (~ 
I ~ .. I +:1. 
.. ~ ( I ::; ~~ ) .I B T A r~ T 

{JVAI~ ... ---Indicates VAR is a 6-row, 12-cotumn matrix. 

Notice that the line numbers are removed along ~ith the opening and closing 
'V. Also, labels within the function are aligned at the left margin. 

Now you can change matrix V AR by simply indexing the elements: 

VA R [I.J. ; l2:3 f- I I · -The element in row 4, column 12 is changed to I. 
VA r~ 

R<-' I NTG A 
1~~··t·IPO 

I t·l 
~:) T (.~ F~ T : R [: I :I ~ .. I 
I ~ .. 1+:1. 
.. ~ ( I ::; ~~ ) .I S T A r~ T 

To format a matrix created by the OCR function into a user-defined function, 
use the OFX function. The DFX function is discussed next. 



The OFX Function: Fix 

The DFX function forms (fixes) a user-defined function from a character matrix 
(that was most likely formed by the OCR function). This function is monadic 
(takes one argument); the argument for the DFX function is the name of a 
matrix to be formed into a user-defined function. If an error is encountered 
(invalid character or missing single quote, for example) as the matrix is being 
formed into a user-defined function, the operation is interrupted, the number 
of the row in error minus one is displayed, and no change takes place in the 
active workspace (the user-defined function is not formed). 

To show how the OFX function works, we will use the matrix created in the 
previous example (see the .oCR function). To form matrix VAR into a 
user-defined function, enter the following instruction: 

APL responds with the name of the 
user-defined function. 

The OFX function produces an explicit result (the vector of characters that 
represents the name of the user-defined function), and the original definition of 
the user-defined function (if there was one) is replaced. 

Now the function I NTG can be displayed and executed: 

VINTG[[]]'\/ 
V F~~·· I NTG f~ 

[:1.::1 R~"i~l ~:, (I 

[2] I~·l. 

[3J START:R[I]~I 

[1.1·] I~"I+:I. 

[5::1 ~(I~A)/START 

"'J 

I NTG ~:j 

:I. 2 ~3 '+ !.5 
INTG B 

:I. '") 
,;.. 3 '+ ~.:i 6 ""1 B 

System Variables and System Functions 151 



152 

Following is an example that shows how the OCR and OFX functions can be 
used to modify the definition of a function within another function. This 
example will use the following user-defined function: 

VINTG[[]::IV 
\l R~"INTG A 

[1::1 HE··(.l~)O 

[2] I~:I. 

[3::1 START:R[I::I~A 

[lJ.] IE"I+l 
[5J ~(I~A)/START 

V 

INTO I.j. 
1.1. 1+ 1+ LI. 

Format the function into a matrix: 

ME"[]CR 'INTO '- Canonical Representation 
M 

RE .. INTG t~ 

r~ E" f.~~) () 

I E"l 
ST(.lr~T: f{[ I J~A 
I~"I+1 
.. ~ (I ~;td /STAf<T 

Now, define a function called CHANGE, which, when performed, will execute a 
modified version of INTG. 

[:1.::1 
[2] 
I:: ~5::1 

1+ I.J. 

:I. '') 
,,~ ... 

!.f. LI· 

'iJ CHANGE; I NTG ; Y-INTG is made a local function so that the 

V 

1+ 

:-5 

Lt· 

j\1 I:: I.J. ; :I. 2 :I « .. ' I . global version will not be changed (the 

Y ~ .. q ~~ X t'1 ~ local version will not exist after the 
I N11 . .1 1.1. execution of CHANGE is complete). 

Assign the explicit result of the 0 FX 
function to Y so that it will not be 
displayed. 

Execute the modified version of INTG. 

INTG loJ. I Execute INTG. 
I.~ 

CHt-1NGE I Execute CHANGE. 
LI· 

INTG I.J. I Execute INTG again. 
1+ 



The DEX Function: Expunge 

The DEX function erases global objects or active local objects specified by the 
argument from the active workspace (unless the object is a pendent or 
suspended function). This function is monadic (takes one argument); the 
argument must be a scalar, vector, or matrix of characters. 

Thus, if object AB is to be erased, the following instruction would be entered: 

[lEX · f~B . 

Note: Even after the object is erased, the name remains in the symbol table 
(the part of the active workspace that contains all of the symbols used). To 
clear unused symbols from the symbol table, save and then reload the 
workspace. 

The DEX function returns an explicit result of 1 if the name is available and a 0 
if it is not available or if the argument does not represent a valid name. When 
the DEX function is applied to a matrix of names (each row represents a 
name), the result is a logical vector (zeros and/or ones) with an element for 
each name. The DEX function is like the )ERASE command, except that it 
applies to the active referent (see Chapter 6, Local and Global Names) of a 
name. 

Note: If the object being expunged is a shared variable (see Chapter 7), it will 
be retracted. 

The DNL Function: Name List 

The DNL function yields a character matrix; each row of the matrix represents 
the name of a local (active referent) or global object in the active workspace. 
The ordering of the rows has no special significance. The DNL function can be 
either monadic (takes one argument) or dyadic (takes two arguments); in both 
the monadic and dyadic forms, the right argument is an integer, scalar, or 
vector that determines the class(es) of names that will be included in the 
result. The values for the input argument and associated classes of names are: 

Argument 

2 
3 

Name Class 

Names of labels 
Names of variables 
Names of user-defined functions 

It does not make any difference in what order the class of names appears in 
the argument. For example, DNL 2 3 or DNL 3 2 results in a matrix of all the 
variable and user-defined function names. 

System Variables and System Functions 153 



154 

In the dyadic form, the left argument is a scalar or vector of alphabetic 
characters that restricts the names produced to those with the same initial 
character as that of the argument. For example, 'AD' ONL 2 results in a matrix 
of all the variable names starting with the characters A and D. 

Uses of the ONL function include: 

• Erasing objects of a certain class (and also beginning with a certain 
character). For example: 

[lEX · B' []NI... 2 

erases all the variables whose names start with B. 

• Avoiding the choice of a name that already exists. 

The ONC Function: Name Classification 

The ONe function is monadic (takes one argument); the argument is a scalar 
or array of characters. The result of the function is a vector of numbers 
representing the class of the name given in each row of the argument. The 
classes of names are as follows: 

Result 

o 

2 
3 
4 

For example: 

Meaning 

Name is available for use 
Name of a label 
Name of a variable 
Name of a function 
Name is nonstandard (not available for use) 

[INC f.lVE F~ADE 
"j 

, --------------ThiS result indicates that the name AVERAGE is 
the name of a user-defined function. 



Chapter 6. User-Defined Functions 

APL provides an extensive set of primitive functions; nevertheless, you may 
want a function to solve a special problem. APL provides a way to create a 
new function, called function definition. During function definition, you use 
existing APL functions to create new functions called user-defined functions. 

Normally, the 5110 is in execution mode; that is, after a line has been entered 
and the EXECUTE key pressed, the 5110 executes that line. To define a 
function, the mode must be changed to function definition mode; after the 
function is defined, the mode must be changed back to execution mode before 
the function can be executed. You change the mode by entering the 'iJ (del) 
symbol. The first 'iJ changes the mode to function definition mode; the second 
'iJ indicates the end of function definition and changes the mode back to 
execution mode. 

No statement error checking is performed during function definition mode. 
That is, all error checking is performed when the statement is executed. 

User-Defined Functions 155 



156 

MECHANICS OF FUNCTION DEFINITION 

The following steps are required to define a new function: 

1. Enter a V followed by the function header (see Function Header in this 
chapter). After the function header is entered, APL responds with a [1] 
and waits for the first statement of the function to be entered: 

VHDi\'lE ~:::;C::(JPE 'v'ISITOI:~ (function header) 

[1::1 

2. Enter the statements that define the operations to be performed by the 
function. As each line is entered, APL automatically responds with the 
next line number: 

V HOME SCORE VISITOR 
1:::1.::1 'THE FINf~11... ~~COI~:E I~::>:' 
[2] +/HDt1E 
[3] 'TO' 
[~J +/VISITOR 

Notes: 
1. Since problems can occur when you are editing statements that 

exceed the print width (see OPW system variable in Chapter 5), during 
function mode, the print width is automatically set to 128. This 
permits statements up to a maximum of 115 characters in length to be 
placed on the input line (lines 1 and 0) and edited. Editing statements 
are discussed later in this chapter. The print width returns to its 
original value when the function is closed. 

2. When you open the function definition, display the user-defined 
function, and close the function definition using one statement (see 
Reopening Function Definition in this chapter), the system uses the 
current value of Dpw. This allows user-defined functions with long 
statements to be printed on narrow paper. 

3. If a user-defined function contains a statement that is greater than 
115 characters in length, that statement cannot be edited and the 
function cannot be written on the media. (See OCR and OFX in 
Chapter 5 for information on changing a user-defined function to a 
matrix.) 

3. Enter another V when the function definition is complete. The closing V 
may be entered alone or at the end of a statement. For example: 

[4J +/VISITORV 
or 

I:: ~.:.:.i::l '\l 

Note: If the closing V is entered at the end of a comment statement, 
which begins with a A symbol, the V will be treated as part of the 
comment and the function will not be closed. 



• 

Function Header 

The function header names the function and specifies whether a function has 
no arguments (niladic), one argument (monadic), or two arguments (dyadic). 

Note: Function names should not begin with 58 or T 8 because 58 and T 8 
are used for stop and trace control (Stop Control and Trace Control are 
discussed later in this chapter). 

The function header also determines whether or not a function has an explicit 
result. If a function has an explicit result, the result of the function is 
temporarily stored in a result variable (names in the function header) for use in 
calculations outside the function. The result variable must be included in the 
result statement (the statement that determines the final result of the function) 
as well as the function header. For example: 

___ -----7Result Variable 
V RESULT~X PLUS Y 

[lJ RESULT~X+YV 
:5 PLUS 1+ - _______ The result of the function is 

'7 ~ temporarily stored in the result 
1 0 + :3 P L U B LJ· variable so that it can be used 

1 '7 by another function. 

User-defined functions that do not have an explicit result cannot be used as 
part of another expression. For example: 

'v X PLUS:!. y' 
I:: :1.:1 X+Y'\l 

1 0 +~~ PLUS 1. 4· 
'7 
VAI...I..JE E I~ r~() R 

1 0 +~5 PLUS:I. LI· 

The following table shows the possible forms of the function header: 

Number of Format of Header 
Arguments Type No Explicit Result Explicit Result 

0 Niladic V'NAME V'R+NAME 
1 Monadic V'NAME B V'R+NAME B 
2 Dyadic V'A NAME B V'R+A NAME B 

There must be a blank between the function name and the arguments. Also, 
the same symbol cannot appear more than once in the function header; thus, 
Z+FUNCTION Z is invalid. 

For user-defined functions, the order in which the arguments are entered is 
important. For example, assume that Z+X DIVIDE V represents a function in 
whichZ is the result of Xi-V. Now if 20 DIVIDE 10 is entered, the result is 2. 
However, if 10 DIVIDE 20 is entered, the result is 0.5. 

User-Defined Functions 167 



158 

Branching and Labels 

Statements in a function definition are normally executed in the order indicated 
by the statement numbers, and execution terminates at the end of the last 
statement in the sequence. This normal order can be modified by branching. 

Branching is specified by a right arrow (-+-) followed by a label (name) that 
specifies the statement that is to be branched to. For example, the expression 
-+-START means branch to a statement labeled START. When a label is 
assigned to a statement, the label must be followed by a colon (:) and must 
precede the statement. The colon separates the label from the statement: 

In the previous example, the label START is assigned to the second statement 
in the function. In other words, START has a value of 2; however, if the 
function is edited and the statement is no longer the second statement in the 
function, START will automatically be given the value (or statement number) of 
the new statement. (See Function Editing later in this chapter.) 

Labels are local to a function-which means they can be used only within that 
function. Following are some additional rules that apply to the use of labels: 

• They must not appear in the function header. 

• You cannot assign values to them. 

• They can be up to 77 characters in length. 

• They cannot be used on comments. 

• When duplicate labels or labels that duplicate a local name are used, the 
first use of the label or name is the accepted use. 



If the branch is to zero (+0) or any statement number not in the function, the 
function is exited when the branch statement is executed. If the value to the 
right of the + is a vector (for example, +L1,L2,L3). the branch is determined 
by the vector's first element. If the vector is an empty vector (there are no 
elements)' the branch is not executed, and the normal sequence of statement 
execution continues. For example, the conditional branch +(I?: N)/START is 
evaluated as follows: 

1. First, the condition (I >. N) is evaluated; the result is 1 if the condition is 
true and 0 if the condition is false. 

2. The result of step 1 is then used as the left argument for the compress 
(A/ B) function: 
R. If the result of step '1 was 1, START is selected from the right 

argument and a branch to the statement labeled START is taken. 
b. If the result of step 1 was 0, nothing is selected from the right 

argument (an empty vector is the result), and the sequence of 
execution falls throu~h to the next statement. 

Following are three examples of defining and using a function to determine the 
sum of the first N integers. Each function uses a different method of 
branching. Remember, the expression to the right of the + is evaluated, and 
the result determines to what statement the branch is taken: 

'\l ~3 .~ .. ~::~ I.. ,I i'1 :I. 1',·1 
I:: 1 :I ~:).~ .. I) 
[2] 1·:: .. :1. 

[3] CHECK: ·H .. (.YBEI .. ,}( I ~;N- Branch to LABEL if L~N; otherwise, 
['-I.] 

I:: ~S::l 
[f.:.J 

L(.~IJ::~EL : S·~ .. ~:)+ I 
I .~ .. I +:1. 
"}CHECI< v' 

v ~::; ~- s I.J i''''i ~? j\! 

[:I.] S~ .. O 
I '~"l 

exit the function. 

[2::1 
[]] 
['-I.] 

CHECK : .. ~. ( 1::- N ) ; O ... ·---Branch to 0 (terminate the function) 

or fall th rough. 
I:: ~5::1 I ~ .. I +:1. 
I:: 6::1 ··tCHECI< 'i,l 

\l ~:) .~ .. E; U i"} :::) N 
/:: 1 ::I ~::; ~ .. 0 
I:: 2 J I ~ .. 0 
[3] CHECK:S0S+1 
[1+::1 I~:"I":"l 

.. ~ ( I::; N) .. /[:I--IE[I( ,\.7'<1-. ---Branch to CHECK or fall through. 

User-Defined Functions 159 



Branch Instruction 

"~L..(.~BEI ... 
.. ~ I) 

·~I...ABEI ..• x X::::y 

Several forms of the branch instruction are shown in the following table: 

Result 

Branches to a statement labeled LABEL 
Exits function 

.. ~< (X<Y) I <X::::)')., (X>Y) )/1...:1. J 1...2J 1...~3 

.~(L..:I. J L.2) [l.+X::::Y::I 

Branches to LABEL or exit function 
Branches to L 1, L2, or L3 
Branches to L 1 or L2 

.. ~ (X::::Y) /0 

··t (X::::Y) II...ABEI ... 
··t (X::::Y) ~)L(.lBEI... 

Exits function or falls through to next statement 

} Branches to LABEL or falls through 

Note: Branching will also work if a specific statement number is specified to 
the right of the +. For example, -+3 means branch to statement 3; or 
+X+3xA means X is assigned the value of 3 times the value of A, and the 
value of X is then used as the branch to statement number. However, these 
forms of branching (using statement numbers instead of labels) can cause 
problems if the function is edited and the statements are renumbered. 

Local and Global Names 

160 

A local name is the name of a variable or user-defined function that is used 
only within a particular user-defined function. A global name is the name of a 
variable or user-defined function that can be used within a user-defined 
function and can also be used outside of it. An example of the use of a local 
variable name would be the name of a counter used in a user-defined function 
(which is not required for any use outside the function). 

To make a name local to a user-defined function, it must be contained in the 
function header. For example, the function header VZ+EXAMPLE X;J;I 
establishes the result variable Z, the argument X, and variable J and I as local 
variables. Notice that the local names, other than the result variable and 
arguments, follow the right argument (if any) and are preceded by semicolons. 

A local name can be the same as a global name (variable or user-defined 
function) or a local name in another function. However, any reference to the 
name local to the function will not change the values of any other global or 
local objects (variables or user-defined functions) or cause them to be used. 



After a user-defined function has executed, the following rules apply to the 
local and global variables used by the function: 

• Any value assigned to a local variable is lost. 

• If a local variable had the same name as a global variable, the value of the 
global variable remains unchanged. 

• If the value of a global variable was changed by the function, it retains the 
new value. 

For example: 

LDC(:·· :1.00 
GI...DB~··:I. 0 0 
VRESULT~EXAMPLE;LOC;X 

[ :I. J I... c) C ~ .. ;:5 () 
I:: ::.:: ] )( ~ .. 2 ~5 
[3] GI...OB~··:l.O 

[4] RESUI...T~I...DC+GI...OB+XV 

EX(.~i'1PLE 

><·,-----x has no value after the function has executed. 
V(.:lI...UE E I~ I~() ,~: 

100 

10 

X 
.A. ~ The global value associated with this name was 
I... 0 C unchanged by the function. 

G l.. 0 B -.'---The global value was changed by the function 
because the name GLOB was not made local to 
the function. 

Because the value of a local name disappears as soon as execution of the 
function finishes, the only time you can use or display the value of a local 
name is while the function to which it belongs is still executing, is suspended, 
or is pendent. 

Note: If a name is local to a function that calls another function, the value of 
that local name can also be used by the called function. 

User-Defined Functions 161 



162 

[1] 

[2] 
[ ~~:I 
C L~] 
[~:i :I 
[6::1 
["?] 

[B] 

1:::1. ] 
r ':)-
.. e\., 

[3 
I:: LI· 
I" c:· ..... J 

[I.> 
1""" .. I .. 

[B::I 

'V 

'iJ 

A name local to a function that has not completed execution or that is 
suspended will be inaccessible if the name is also local to a more recently 
called function. Putting it another way, the value of a name that you can use 
or display is always the most recent local value of the name. Of course, as 
execution of the more recently called functions is completed, the next earlier 
value of each local variable will again be accessible. A name can therefore be 
said to have one active referent or value, and possibly several latent referents 
or values. For example: 

DANjXX 
XX~":I.()O 

'THE FUNCTION DAN GIVES XX THE 'v'ALI...IE' 
XX 
'AND CALLS THE FUNCTION DAVE' 
DAVE 
'WHEN DAVE IB THI~OUGH EXECI...ITING AND EXECUTION r~ETUI~NS' --...., 
'TO DANI XX ONCE AGAIN HAS THE VALUE' 
XXV 

DAVE;XX 
XX ~ .. ::.~ 00 
'THE FUNCTION DAVE GIVES XX THE VALUE' 
XX 
'AND CALLS THE FUNCTION JERRY' 
"JE R r~y 
'WHEN JERRY IS THROUGH EXECUTING AND EXECUTION RETURNS' 
'TO DAVEI XX ONCE AGAIN HAS THE VALUE' 
XXV-------------------------------------------------------I 

'V .JE 1t.I~Y ; XX 
I:: 1 ::I X X ~ .. ~~ () () 
[2] 'THE FUNCTION JERRY GIVES XX THE VALUE' 
I:: ~5:1 XX 
[LI·] 'AND I~ETURNS TO DAVE' 'V---------------------' 



DAN 
THE FUNCTION DAN GIVES XX THE VALUE 
:1. () () 

(~ND CALLB THE FUNCT I ON DAVE 
THE FUNCTION DAVE GIVES XX THE VALUE 
200 
AND CALLS THE FUNCTION JERRY 
THE FUNCTION JERRY GIVES XX THE VALUE 
:300 
AND RETURNS TO DAVE 
WHEN JERRY IS THROUGH EXECUTING AND EXECUTION RETURNS 
TO D(~VE I XX ONCE ('~GA I N H(~S THE Vf~)I ... UE 
200 
WHEN DAVE IS THROUGH EXECUTING AND EXECUTION RETURNS 
TO DAN, XX ONCE AGAIN HAS THE VALUE 
:1.00 

XX 
VALUE E I~ I~O I~ 

XX 

The )SINL command causes the SINL list (state indicator with name list; see 
the ONL function in Chapter 5) to be displayed. The SINL list contains a 
complete set of referents of a name. 

Note: See System Functions in Chapter 5 for an example of a local 
user-defined function using the OFX system function. 

If the SINL list is scanned downward, the first occurrence of a variable name is 
its active referent. if the name appears again, it is a latent referent. Global 
names are not found in this list; they can be displayed with the )VARS 
command and )FNS command. 

In the following SINL display, variable P has referents as follows: 

G[7] 
F[I.,.] 

(~[ 3] 
F~ [2] 
(3[3] 

)~3Ii\~L 

·)(·Z X I 
P ...J ...... --- The active referent of P is local to function F. 

*·C X T 
p .................. _-- First latent referent of P is local to function R. 
Z. X I 

As the state indicator is cleared, latent referents become active. 

User-Defined Functions 163 



164 

INTERACTIVE FUNCTIONS 

User-defined functions can display messages and/ or request input from the 
keyboard. The messages (character data) in the user-defined function are 
enclosed in quotes. The D (quad) and [!] (quad quote) symbols are used to 
request input from the keyboard during function execution. The following 
function is an example of an interactive function that computes the amount of 
interest on a capital amount for a given number of years: 

'i,j' CI 
1:::1.::1 'ENTER THE C::tlPITt":~L ('~f1c}I...INT IN D()I .. ,L(~)RS' 
I:: 2 ::I (::) ~ .. [] 
I:: 3] , ENTE I~: THE I NTE I~E~:)T IN PE F·~CENT ' 
[1+] I·~··[] 

[5] 'ENTER THE PERIOD IN YEARS' 
I:: {, :I .y' .~ .. [] 
[7] 'THE RESULT IS' 
[8] AX(:I.+O,OlxI)*YV 

C1 
EN T E I~ THE C (.~ PIT tll .. , A t'l DUN TIN It D 1...1... t"~·1 R S 
/]: 

100 
ENTER THE INTEREST IN PERCENT 
IJ: 

·::i 
I •• J 

Ei\!TE F~ THE PE r~ I OIt I N ·y'E(.~ R~:) 

[]: 
.'.) 
.,; .. 

THE I~EbUI... T I ~:~ 
:1.:1. 6, (:.:,'-1. 

C1 
ENTEr~ THE CtlPIT(.~I .. , tlf··1DUNT IN DDl...l...tlRS 
[]: 

1000 
EN T E I~ THE I NT E PES TIN P E I:~ C E , ... ! T 
[I: 

ENTER THE PERIDD Ii···~ YEtlr-~S 
[]: 

I::· 
.. J 

THE 1~:ESUI...T IS 
:I. ~5::::) [I ,2 



Requesting Keyboard Input during Function Execution 

The 0 (quad) appearing anywhere other than immediately to the left of the 
assignment arrow indicates that keyboard input is required. When the 0 is 
encountered in the function, the two symbols 0: (a quad symbol followed by 
a colon) are displayed, the display is moved up one line, and the cursor 
appears. The quad and colon symbols are displayed to alert the user that input 
is required. Any valid expression entered at this point is evaluated, and the 
result is substituted for the quad. You can escape from a quad input request 
by entering the right arrow -+. 

An invalid entry in response to request for input results in an appropriate error 
message, and the request for input is made again. Any system commands 
entered will be executed, after which the request for input will again be made. 
An empty input (no keying) is rejected, and the 5110 again displays the 
symbols 0: and awaits input. 

When the quad quote [!] (a quad overstruck with a quote) is used, input from 
the keyboard is treated as character data. The input begins at the left margin 
of the display; quotes do not need to be entered to define the data as 
character data. When [!] input is requested, the symbols 0: do not appear as 
they did with a 0 input request. The input is entered after the flashing cursor 
appears on the screen. For example: 

X ~"[~I 

CAN'T 
X ~"I~I 

'C(.:lN' 'T' 
,l 
i\ 

. CAN' · T' 

Anything you enter in response to a quad quote request for input is considered 
character input. Therefore, if you enter a system command or a branch arrow 
(-+) to terminate the function, the entry is treated as character data for the 
function, and the system command or branch will not be executed. This can 
be a problem if you are trying to escape from a quad quote input request. 
Therefore, APL provides an escape for this situation. To escape from a quad 
quote input request, enter the UI symbol by holding the CMD key and pressing 
the [] key. The function is interrupted, and the function name and the line 

number being executed are displayed. You can then modify the function or 
terminate it by entering the right arrow -+. 

User-Defined Functions 165 



166 

ARRANGING THE OUTPUT FROM A USER-DEFINED FUNCTION 

The output from user-defined functions can be arranged by the format function 

(see the -.p function in Chapter 4) or bare output. Bare output is discussed next. 

Bare Output 

After normal output, the cursor is moved to the next line so that the next entry 

(either input or output) wiil beqin at a standard position. However, bare output, 

denoted by the form ~J+X (X can be any expression), does not move the 

cursor to the next hne.fherefore, more than one variable or expression can be 

displayed on the same line. For Hxarnple: 

,.. 1'11"1[(::; Y 
I:: 1 0] I.'.I~ .. ,\( 
[2J n~' TIMES 
1:::3] el~" y 
I:: 1.1.::1 e!~··· I ~::; 

I:: ~.::.;::t >< x '{V 

· r 1I'.'iE~::; q. 
~.:,~ T I ("'1 E ~::) 1,1· I ~3 r~ 

Because the cursor does not return to the next line after bare output, when 

quad quote (l!J) input is entered following the bare output, the input starts after 

the last character of the bare output. Then when the input is processed, it is 

prefixed bv any bare output on the input line. For example: 

v U U T F' U T /\ J j'--.! P tJ l 
I:: 1::1 1'] ';' . 'r 1-1 :r ':::; I I.:? B t! P F C)!J T P tJr ! ! ! . 
I:: :2 ::I nT H [ N [: X 1 b T Pi T I.:: i'I E N T P [ 0 U E ~:; "I" ~::; e] I N PUT 
[3] Ii':J{·e] 
I:: q. ::I F! N (J t\J II I ~::; P L (1 \' T H LIN P 1...1 T 
I:: ~.::';::I v 

I J 1...1 T P 1...1 T l\ I N P 1...1 T 
r H I ~:) I ~::. B (I h: F D 1...1 T P 1...I·r t ! .... ..--The cursor appears here. Now 

enter THIS IS [!) INPUT. 

! TH I ~:::; I ~3 ['] I f···l PU"i~ 

j 

After EXECUTE is 

pressed. the output 

line looks like this. 



Therefore, if quad quote input follows bare output (but only the input is to be 
processed), the bare output must be removed from the input line. Following is 
an example of a function that will remove the bare output: 

VR~BARE~OUTPUT MSG;OID;J 
:1.::1 nIDi··:I. 
2] [']~··i'1SG 

3::1 ACHECK THE BARE OUTPUT FOR EMBEDDED CURSOR RETURNS' 
4] J~-1+($MSG)\DAV[:l.57] 
~:.i ::I (-l D R 0 P ~~I N Y B (.:ll~ E 0 u·r PUT PRE FIX. F R [I i··'l THE I N PUT 

[6::1 R~«64IJ-:l.)+:I.)'MV I 

This is how the function works: 

'~I () U T l\ I i'\!. _____ The Bare Output 

[:I.] BARE60UTPUT 'THIS IS BARE OUTPUT!!!' 
I:: 2::1 V '-..This function will remove the bare output. 

OI...ITb.IN 
TH I S I G B(~) I~E 01...11 PI...IT! ! ! ... ,--The cursor appears here. Now enter THIS IS [!] INPUT. 

THIS IS BARE OUTPUT! ! !THIS IS M INPUT 
T HIS I S I~I I i"'~ PI...I T I This is the final result. 

If bare output consists of a character vector and backspace characters, the 
display screen is scrolled down one line when the number of backspace 
characters is greater than the number of characters in the character vector. For 
example: 

010+1 
[!]+(10p'A'), 11p OAV[159] -~---Backspace Character from the 

Atomic Vector. 

LOCKED FUNCTIONS 

A locked function can only be executed, copied, or erased; it cannot be revised 
or displayed in any way, nor can trace control and stop control (see Trace 
Control and Stop Control later in this chapter) be changed. A function is locked, 
or protected, when the function definition is opened or closed with a 'V ("iJ 
overstruck with "') instead of a "iJ. 

When an error is encountered in a locked function, execution of that function is 
abandoned (not suspended). If this function was invoked by another locked 
function, execution of the second function is abandoned also, and so on, until 
either (1) a statement in an unlocked function or (2) an input statement is 
reached. Then an error message is displayed. In the first case, the execution 
of the unlocked function is suspended at the statement; in the second case, 
the 5110 waits for input. 

Note: A locked function cannot be unlocked; therefore, if the function contains 
an error, the function cannot be edited and the error corrected. 

User-Defined Functions 167 



168 

FUNCTION EDITING 

Several methods are used when the system is in function definition mode to 
display and revise a user-defined function. Also, after a function definition has 
been closed, the definition can be reopened and the same methods used for 
further revisions or displays. (See Reopening Function Definition in this chapter.) 

Displaying a User-Defined Function 

Once the system is in function definition mode, part or all of a user-defined 
function can be displayed as follows: 

• To display the entire function, including the function header and the opening 
and closing 'iJ, enter [0]. APL responds by displaying the function, then 
waiting for the entry of additional statements. 

• To display from a specified statement to the end of the function, enter 
[ On ], where n is the specified statement number. APL responds by 
displaying the function from statement n to the end of the function, then 
waiting for the last statement displayed to be edited (see Editing Statements 
in this chapter). 

• To display only one statement of the function, enter [nO], whete n is the 
statement number to be displayed. APL responds by displaying statement n 
and waiting for the statement to be edited (see Edifing Statements in this 
chapter). 

The following table summarizes function display when the system is in function 
definition mode: 

Entry 

[0] 
[On] 
[nO] 

Result 

Displays all statements 
Displays all statements from n onward 
Displays statement n 



Revising a User-Defined Function 

Statements in a user-defined function can be replaced, added, inserted, 
deleted, or edited as follows: 

• To replace statement number n, enter [n] and the replacement statement. 
If just [n] is entered, APL responds with [n], then waits for the 
replacement statement to be entered. If the function header is to be 
replaced, enter [0] and the new function header. 

• To add a statement, enter [n] (n can be any statement number beyond the 
last existing statement number) and the new statement. APL will respond 
with the next statement number, and additional statements can be entered if 
required. 

• To insert a statement between existing statements, enter [n] and the new 
statement. n can be any decimal number with up to four decimal digits. For 
example, to insert a statement between statements 8 and 9, any decimal 
number between 8.0000 and 9.0000 can be used. APL will respond with 
another decimal statement number, and additional statements can be 
inserted between statements 8 and 9 if required. (These and the following 
statements are automatically renumbered when the function definition is 
closed.) 

Note: The statement number 9999.9999 is the last valid statement number. 

• To delete statement n, enter [!J. n] or display statement n, press the A TIN 
key to delete the line, and then press the EXECUTE key. 

Note: The [!J. n] and closing \I cannot be entered on the same line. If the 
function definition is to be closed immediately after a statement has been 
deleted, the closing \I must be entered on the next line. 

User-Defined Functions 169 



170 

• To edit a specific statement, use the following procedure: 

1. Enter [nO] (where n is a statement number). Statement n is 
displayed. 

Note: The scroll keys ( •• ) can be used to position a 

statement on the display screen to the input lines 0 and 1 for editing. 
To do this, use the scroll down ( • ) key to position the 

statement to lines 0 and 1. If the statement does not require two 
lines, position the statement on line 1 and make sure another 
statement is not displayed on line O. 

2. Choose one of the following options: 
a. To change a character, position the cursor (flashing character) at 

the character to be changed. Enter the correct character. 
b. To delete a character, position the cursor at the character to be 

deleted. Then press the backspace (. ) key while holding 

the command (CMD) key. The character at the cursor is deleted 
from the line, and the characters that were to the right of the 
deleted character are moved one position to the left. 

c. To insert a character, position the cursor to the position where the 
character is to be inserted. Then press the forward space 
(. ) key while holding down the command (CMD) key. The 

characters from the cursor position to the end of the line are moved 
one position to the right. For example: [1] A+1245 should be [1] 
A+12345. Position the cursor at the 4, and press the forward 
space and command (CMD) keys simultaneously. The display will 
look like this: [1] A+12_ 45. Now enter the 3. 

d. To delete all or part of a line, press the ATTN key to delete 
everything from the cursor position to the end of the line. 

3. Press the EXECUTE key. The next statement number is displayed. 

Note: If more than one statement number is entered on the same line, only 
the last statement number is used. For example, if a line contained [3] [8] 
[ 4] , N EW LI N E', only statement 4 is replaced when the EXECUTE key is 
pressed. 



Reopening Function Definition 

If you want to edit a function that has previously been closed, the function 
definition must be reopened. For example, if function R is already defined, you 
reopen the function definition for function R by entering V R. The rest of the 
function header must not be entered or the error message DEFN ERROR is 
displayed and the function definition is not reopened. The 5110 responds by 
displaying [n+1], where n is the number of statements in R. Function editing 
then proceeds in the normal manner. 

Function definition can also be reopened and the editing or display requested 
on the same line. For example, V R [ 3] 5+5+1 edits the function by entering 
the new line 3 (5+5+1) immediately. Then the 5110 responds by displaying 
[ 4] and awaiting continuation. The entire process can be accomplished on a 
single line: VR[3]5+5+1 V opens the definition of function R, enters a new 
line 3, and terminates function definition. V R [ 0 ] V causes the entire definition 
of R to be displayed, after which the 5110 returns to execution mode. 

Note: You cannot reopen the definition of a function, delete a statement, and 
close the function (for example, V R [ b,4] V) on the same line, because the 
closing V cannot be on the same line as the [b, n ] . 

When an error occurs in a function, the function name, the line number, and 
the statement in error are displayed. A caret on the following line indicates 
where the 5110 stopped execution of the statement. The statement in error 
can be corrected as follows: 

1. Scroll down until the caret is removed from the screen. 

2. Scroll up one line. 

3. Insert a V before the function name. 

4. Correct the error in the statement. 

5. Place a V after the statement. 

6. Press the EXECUTE key. 

This procedure works only if the complete statement is displayed. 

User-Defined Functions 171 



An Example of Function Editing 

In this example, the user-defined function AVERAGE is used to show how the 
methods used to revise and display functions work: 

Vf',\lE R(:'IGE >:~ -.------------------- Define the function. 
1:::1.] 'T!--IIB FUNCTION Ct,l..CUl...t,TEG {:)VER(.~,GES I 

[2J +/X~(+/X=X)V 
i~)VERf~G[ 2 1+ .(:) B-.----------------Execute and test the funCtion. 

THI~:) FUNCTION Ct:,I...CI..JI...'{:lT[~:) i~VEI~i~~GEG 

";ltiVE F<(.lGE 1:::1. , 7':1 'THE t,VE R{',GE I B ~-'--------Insert a statement. 

[1,8] [10:l:·~~~~~~~~~~~~~~~~~~~~~~Di~l~dMem~t1. 
[::1.::1 'THI~::; FUNCTION Ct,I...CI.JI...I~)TEf) (.lVEH(.~)GEf:)· -
[:I.] . THI~:~ FUi····!CTIClN Ct)I...CUL(.~·ITES f~)VEI~~f)[iE~:) {lND :3Ui"IS '--Statement 1 was edited 
I:: 2::1 I:: :':) ] 'THE ~;:;Ui'1 .. 1:3 ' to look like this. 
I:: 1.(.::1 + /)( '\1 --------------------Add statements 3 and 4, 

V(."iVEI~f~GE[[]::I\;,-'·------------------Displaythefunction. 
v (-,VE R,-:,:)GE )-~ 

I:: :I. ::I ' T H I ~::~ F U C",! C T I [I N C: (.~l L C 1...11 .. , ,~) T E f:) f) V [: F~ f:~' G E G f:~l N D S 1...1 M f:) , 
[2J 'THE AVERAGE IS' 
I:: ~5::1 + IX .. : .. ( + /X::::){ ) 
I::~::I 'THE SUM IS' 
[~5] +/X 

\7 

r:"iVE Rtl[i[ 2 Lt· 6 B ... ---------------- Execute average, 
'fH I S FLINCT I Of"! Ci~I...CI...lI...{·1 lES f~'\"'E R,~,CiES (iND SUI"i~:) 
THE {lV!::: 1:«lGE I ~::; 

20 

";l~~'I\/E Pc:':,GE 1:::3 J +/}(~: .. eX;-+ .. --------------Replace statement 3, 

I:: 1.\. ::I I:: t" :t.::I • Delete statement 1, 
I:: 2::1 I:: 0:1 ~~IVE I:U~)GE/~,~:n..li"~ ';('\/ " Replace the function header, 

'~ltl ... /EPi~)OEl,I:::~I...Ii"l[U::l'i,J-l---------------- Display the function. 
'\;: (,VF l~t,GE!:"SUI''I X 

1:::1.::1 I THE i~)VE P(iGE I ~:) , 
[2::1 +/X··:··(.:,X 
1:::3::1 'THE ~::;Ui"i I 3 ' 
[1+::1 +.lX 

." v 

AVERAGE~SUM 2 4 6 8 
'fH[ t''''lEI~i~GE IS 
I::' 
"..1 

THE ~::;Ui"1 I:3 
20 

";/('.\/[ 1~:t,GE,,:\~::)I...Ii"l I:: [13::1 'i,l-4--------------Display the function from 
[3::1 , THE S I..H'l I ~:) , statement 3 to the end. 

112 



TRACE AND STOP CONTROLS 

APL provides the ability to trace or stop execution of user-defined functions, 
providing the functions are not locked (see Locked Functions in this chapter). 

Trace Control 

Trace control is used to display the results of selected statements as a function 
executes. The display consists of the function name followed by the number 
and results of the selected statement. For example: 

/STEVE[,] 2 .... ·---Result 

Function Statement 
Name Name 

Statements to be treated are specified by a trace vector. The format of the 
trace control function is T 11 STEVE+V, where STEVE is the name of the 
function and V is the vector specifying the statement numbers to be traced. 
For example, if T fj. STEVE+-2 3 5 is entered, the statement 2, 3, and 5 are 
traced each time function STEVE is executed. T fj. STEVE+- 1 0 must be entered 
to discontinue the tracing of function STEVE. To trace each statement of the 
function, enter T fj. STEVE+ 1 N, where N is the number of statement in the 
function: 

VSTEVE I 
[:1.] A~··:l.xI 

[2] B-&.··2xI 
[3] C~"3X I 
['-I.] D~··I.~xI 

[~.=.;] A+H+C+D'V 
STEVE 2 

T l!.STEVE ~ .. \ '.j. 
.. , "f' 1M

• V f:" ... ) ~ b ::. ::. .,- Trace the first four statements 
STEVE [ :1.::1 2 in function STEVE. 
BTEVEC2] I.~ 

STEVE!::]] C> 
BTEVECI+] B 
20 

T l!.STEVE ~"2 .... ·---Trace statement 2 in function STEVE. 

STEVE 2 
STEVE!:;,?,] 1+ 
20 

20 

T l!.BTEVE ~ .. \ 0 ~.--- Discontinue tracing in function STEVE. 
STEVE 2 

User-Defined Functions 173 



174 

Trace control can also be set by statements within a function. These 
statements initiate tracing when a variable contains a certain value. For 
example: 

VBTEVE[[]]V 
'iJ STEVE I 

[: l ] I~ ~ •• :I. x I 
I: 2::1 T l~,STEVE ~··3 x A::::2- Trace statement 3 in function STEVE 
[: 3::1 C~"3 X I when A equals 2. 
[1+] D~··I.J·x I 
[~5] A+C+D 

V 
BTEVE 2 

STEVE[:.3] 6 
:1.6 

STEVE :] 
21+ 

Note: The following instruction establishes trace control for the first statement 
of each user-defined function in the active workspace: 

.t. "':1. .J, I • 0 · I • (.) • I • T . I'/) • I ( ( ([]NL.. 3) I • ~ •• • ) I • :I. • ) I • I I 

This instruction can be used to find out what functions are called by another 
function. 

The following user-defined function named TRACE establishes a trace vector 
for each statement in a specified user-defined function: 

VT r~I~CE N(.)j"lE 
I:: :1.::1 l'T t" · J N (.) r1 E.. 'E", 1 t (.> [] C I~' . . .. N t~ N E J • • • • ~7 



When the function TRACE is executed, the argument must be entered in single 
quotes. For example: 

'VGTEVE[[]]'V 
V STEVE I 

I:: :I. ::I (1 ~ .. :I. )( I 
I: 2 ::I B ~ .. ;.:.~ )( I 
I:: ::3 ::I C ~ .. ~·3 )( I 
I:: '+ ::I It ~ .. '+ x I 
I::~.=i] (1+B+C+D 

V 
T I~ f.) C E '~:) T E V [ '-- Establ ish a trace vector for each 
STE\lE 2 statement in function STEVE. 

STE\lE 1:::1.::1 ;;.:: 
STEVE I:: 2::1 I.J.-..------ Each statement of function 
GTE\l[ [:3::1 t::. STEVE has been traced. 
STE'v'[[I+::I B 
STEVE I:: ~::.i::l 20 

20 

Stop Control 

Tt"nTE\lE~·· \ 0 
~:)TEVE 2 

Stop control is used to stop the execution of a function just before specified 
statements. At each stop, the function name and statement number of the 
statement to be executed next is displayed. The statements are specified by a 
stop vector. The format of the stop control function is Sil STEVE+V, where 
STEVE is the name of the function and V is the vector specifying the 
statements. After the stop, the system is in the suspended state; to resume 
execution, -+-DLC must be entered (see Chapter 5). SilSTEVE+ 1 0 (STEVE is 
the function name) must be entered to discontinue the stop control function. 

Stop control can be set by statements within a function. These statements 
initiate halts when a variable contains a certain value. For example, Sil 
STEVE+4x N>8 means stop before statement 4 in function STEVE when N is 
greater than 8. 

Trace control and stop control can both be used in the same user-defined 
function. An attempt to set trace control or stop control for a nonexistent 
function creates a variable and causes a syntax error. For example: 

) CI...E{~II~ 
CI...E(~F~ IAIS 

Sl~'IF·~··:I. 2 :-3 

Sl~,F .~.. :I. 2 ::5 

) V(~ HE 
.. 1
_· 

I··· .. 

I ""i .. " :. . ... :. ..~. 

User-Defined Functions 175 



176 



Chapter 7. Tape, Diskette, Display Screen, and Printer Input and Output 

When input and output involve the tape, diskette, display screen, or printer, an 
APL shared variable can be established as the connection between the active 
workspace and the I/O processor. That is, the value of the shared variable is 
shared between the active workspace and the I/O processor. 

There are two types of input/output operations: sequential access to tape and 
diskette files, and direct access to diskette files and the display screen. There 
is also an output operation to the printer. Sequential access means that the 
records must be written to and read from the data file in sequential order. 
Direct access means that specified records are directly read from or written to 
the data file or display screen. 

Input and output operations require the followiOg steps: 

1. Make a shared variable offer. 

2. Specify the operation to be performed. 

3. Transfer the data (perform the input/output operations). 

4. Terminate the operation. 

5. Retract the shared variable offer. 

MAKING A SHARED VARIABLE OFFER 

To establish a shared variable between the actvie workspace and the I/O 
processor, the Dsvo (share variable offer) system function is used. This 
function is dyadic (requires two arguments), where the left argument is a 1 
(which specifies the 5110 I/O processor) and the right argument is character 
data that specifies the variable name(s) being offered as a shared variable. The 
5110 allows up to 12 variable names to be shared. These variable names can 
be offered in one or more statements. However, if more than one name is 
used as the right argument of the Dsvo function, the names must be entered 
as a character matrix with each row representing one name. For example: 

:I. n r: \l [I I.j. :I. "',' (', F' (" n . 

or . . ... .. , :.. :: m' .," > Each row represents a separate variable name. 

I\! t':~'lvll::, ~::; ~ .. I+ :I. P FI I-.~ C V 
:I. [] ~::; VON (:', j'yl E ~::) 

Tape, Diskette, Display Screen, and Printer Input and Output 177 



Page of SA21-9303-0 
Issued 28 April 1978 
By TNL: SN21-0284 

Direct access input and output operations require a pair of shared variables. 
One variable name must start with the characters CTL, and the other name 
must start with the characters OAT. After the first 3 characters, the next 15 
characters in each pair of names must be identical. For example, 1 OSVO 2 
4p 'CTLXDATX' offers CTLX and DATX as shared variables. 

The explicit result of the OSVO system function is a 2, 1, or 0 for each 
variable name offered to be shared. For example: 

1 DSVO ~ lp'ABCD' 

A 2 indicates that the name is successfully shared with the I/O processor, a 1 
indicates that a value other than 1 was used as the left argument for the 
OSVO function, and a 0 indicates the shared variable offer failed. When a 1 is 
the result, the variable name is not established as a shared variable. When a 0 
is the result, an error message is also displayed (see Appendix F). 

Note: Using the OSVO function without a left argument returns an explicit 
result of 2 or 0 for each name specified in the right argument. A 2 indicates 
that the name is shared with the 5110 I/O processor, and a 0 indicates that 
the name is not a shared variable. 

SURROGATE NAMES 

178 

When offering variable names to be shared, you can establish surrogate names 
by specifying two variable names in the character vector or in each row of the 
character matrix. The first name is the surrogate, and the second name is the 
variable to be shared. 

For example: 

1 [l ::::; \l C) . C: C: T !... • 

/ 
CTL is the variable name to be shared, and C is the surrogate. 

NAMES~2 5p'C [TLD DAT' 

NAMES 

C CTL '1CTL and OAT are the variable names to be 

o OAT shared, and C and 0 are the surrogates. 

1 OSVO NAMES 

2 2 .... ---An explicit result is returned for the shared variable names only. 

Once a surrogate name is established, the surrogate name must be used in 
place of the shared variable name during input/output operations. 



SPECIFYING THE OPERATION TO BE PERFORMED 

Once the shared variables are established, the next step is to specify the 
operation to be performed. These operations consist of: 

• Sequential access to tape or 'diskette files 

• Direct access to diskette files 

• Direct access to the display screen 

• Sending data to the printer 

Page of SA21-9303-0 
Issued 28 April 1978 
By TNl: SN21-0284 

After the operation is specified, the I/O processor assigns a return code to the 
shared variable that specified the operation. A 0 n or 22 n return code 
indicates that the operation was specified successfully, and any other return 
code indicates that specifying the operation failed. (See Return Codes later in 
this chapter.) How to specify the input/output operations is discussed next in 
this chapter. 

Note: If a variable has a value when the name is offered to be shared, the 
5110 establishes the name as a shared variable and then attempts to specify 
the operation to be performed using the value already assigned to the shared 
variable. If the data assigned to the shared variable is not valid for specifying 
an operation to be performed, an error message is displayed and the 
appropriate return code is assigned to the shared variable. To prevent this 
error condition, you must make sure that the data assigned to the variable is 
valid for specifying the operation to be performed or expunge (OEX) the name 
before the shared variable offer is made. 

Sequential Access to Tape or Diskette Files 

When you are creating, adding data to, or reading a sequential access data file, 
you must use a single shared variable to access the file. When using tape, you 
can have only one open file on the tape at a time. An open file is a data file 
that is currently being used for input/output operations. When using diskette, 
you can have up to 12 open files at a time (using one shared variable for each 
file). 

The first data assigned to the shared variable must be a character vector that 
specifies one of the following operations: 

• Create a new sequential access data file. 

• Add data to an existing sequential access data file. 

• Read data from a sequential access data file. 

Tape, Diskette, Display Screen, and Printer Input and Output 179 



180 

To specify one of these operations, the character vector must be in one of the 
following formats (enclosed in single quotes): 

A-<-'OUT device/file number 1O=(file 10) [MSG=OFFj [TYPE=~]' 
A+'ADD [device/file number] [ID=(file ID)] [MSG=OFF]' 
A+'IN [device/file number] [ID=(file ID)] [MSG=OFF]' 

There must be at least one blank between parameters. Following is a 
description of each parameter. 

OUT, ADD, or IN 

This first parameter specifies whether the data is to be written to a new 
sequential access file (OUT), written to an existing sequential access file 
following the last record in the data file (ADD)' or read from an existing 
sequential access file (IN). 

device / file number 

This parameter specifies the appropriate diskette drive or tape unit and file 
number. For example: 

UOO3 

\ 'File Number 3 

Diskette Drive 1 

If fewer than four digits are used, the default device is assumed (see Chapter 
2), and this parameter represents only the file number. This parameter is 
optional for diskette files only. See Name Processing in Chapter 2 for more 
information on specifying the device/file number for diskette files. 

ID = (file 10) 

This parameter specifies the file identification (the name is enclosed in 
parenthesis) and is used as follows: 

• When a new data file (OUT operation) is created, the name is put in the file 
ID field of the file header (see The )L/B Command in Chapter 3). If this 
parameter is not specified for tape operations, the file I D defaults to DATA. 
This parameter must be specified for diskette operations. 

It is a good practice to give the data files meaningful names; for example, a 
file that contains sales data could be named sales-ID=(SALES). 

Notes: 
1. See Variable and File Names and Name Processing in Chapter 2 for more 

information on specifying the file I D. 
2. For an OUT operation to an existing data file (writing new data over the 

existing data), the file ID specified must match the existing file ID for the 
data file or the )DROP command must be used to drop the data file (see 
Chapter 3). 



Page of SA21-9303-0 
Issued 28 April 1978 
By TNL: SN21-0284 

• When you are adding to or reading from an existing data file (ADD or IN 
operations), the file 10, if specified, is compared to the file 10 in the file 
header; the operations cannot be performed if these file IDs do not match. 

MSG = OFF 

This parameter is optional. When this parameter is specified, no error message 
is displayed for nonzero return codes (see Return Codes later in this chapter), 
but the return code is still assigned to the shared variable. 

TYPE = A or I 

This parameter is specified only when you are creating a new data file (OUT 
operations). This parameter specifies the type of file and data format to be 
used for writing data to a sequential access file: 

• When TYPE=A is specified, the APL internal data format is used (file type 
08-see The )LlB Command); that is, the data is written to the data file in the 
same format it has in the active workspace." 

Note: TYPE=A is the default if this parameter is not specifed. 

• When TYPE=I is specified, the general exchange data format is used (file 
type 02). When the general exchange data format is used, only character 
scalars and vectors can be assigned to the shared variable. Therefore, 
before you store numeric data or arrays on data files using the exchange 
data format, you must first use the format (~) function to change the data 
to a character scalar or vector. This data file can also be used as a BASIC 
language source file. When you are adding to or reading from a data file (IN 
and ADD operations), the data format is determined by the existing data file 
type. 

Direct Access to Diskette Files 

When you are creating or adding data to a direct-access diskette file, you use 
a single shared variable to sequentially write the records to the file. When you 
are reading from or writing to an existing direct-access data file, you use a pair 
of shared variables to read or write specified records. In this case, the shared 
variable name with the CTL prefix must be used to specify the operation. You 
can have from 6 to 12 open diskette data files at one time. The number of 
open diskette files allowed depends on how many of the files are existing 
direct access files, because a pair of shared variables is required to access 
these files. 

The first data assigned to the shared variable must be a character vector that 
specifies one of the following operations: 

• Create a new direct access data file. 

• Add data to an existing direct access file. 

• Read data from a direct access data file. 

• Update (read from and write to) a direct access data file. 

Tape, Diskette, Display Screen, and Printer Input and Output 181 



Page of SA21-9303-0 
Issued 28 April 1978 
By TNL: SN21-0284 

To specify one of these operations, the character vector must be in one of the 
following formats (enclosed in single quotes): 

A+-'OUTF device/file number ID=(file ID) [MSG=OFF] [TYPE=~]' 
[lD=(file 10)] [MSG=OFF]' A-<i-'ADD [device/file number] 

CTL~INR [device/file number] 
CTL+-'IOR [device/file number] 
CTL+-'IORH [device/file number] 

[ID=(file 10)] [MSG=OFF] [TYPE=N]' 
[ID=(file 10)] [MSG=OFF] [TYPE=N]' 

[ID=(file 10)] [MSG=OFF] [TYPE=N]' 

There must be at least one blank between parameters. Following is a 
description of each parameter. 

OUTF, ADD, INR, lOR, IORH 

182 

This first parameter specifies whether the data is to be: 

• Written to a new direct access file (OUTF) 

• Added to an existing direct access file after the last record in the data file 
(ADD) 

• Read only from a direct access file (I N R) 

• Read from and/or written to a direct access file (lOR and IORH) 

The results of an lOR and IORH operation are the same. When you specify 
IORH, an update operation (read and write) is performed faster than if you had 
specified lOR. However, the IORH operation requires more storage in the 
active workspace than does the lOR operation. 

Note: When INR, lOR, or IORH operations are specified, a 0 n or 22 n return 
code indicates that the operation was successfully specified. The second 
element of the return code (n) indicates the number of records in the data file. 

device/file number 

This parameter specifies the appropriate diskette drive and file number. For 
example: 

1J~ 

~'-File Number 3 

Diskette Drive 1 

If fewer than four digits are used, the default device is assumed (see 
Chapter 2), and this parameter represents only the file number. 

This parameter is optional for diskette only. See Name Processing in Chapter 2 
for more information on specifying the device/file number for diskette files. 



10 .. (file 10) 

This parameter specifies the file identification (the name is enclosed in 
parentheses) and is used as follows: 

• When a new data file (OUTF operation) is created, the name is put in the 
file 10 field of the file header (see The )L1B Command in Chapter 3). This 
parameter must be specified for OUTF operations. 

It is a good practice to give the data files meaningful names; for example, a 
file that contains sales data could be named sales-IO = (SALES). 

Notes: 
1. See Variable and File Names and Name Processing in Chapter 2 for more 

information on specifying the file 10. 
2. For an OUTF operation to an existing data file (writing new data over the 

existing data), the file 10 specified must match the existing file 10 for the 
data file or the )OROP command must be used to drop the data file (see 
Chapter 3). 

• When you are adding to (ADD operations) or reading from (lNR, lOR, IORH 
operations) an existing data file, the file 10, if specified, is compared to the 
file 10 in the file header; the operations cannot be performed if these file 
IDs do not match. 

MSG-OFF 

This parameter is optional. When this parameter is specified, no error message 
is displayed for nonzero return codes (see Return Codes later in this chapter). 

Tape, Diskette, Display Screen, and Printer Input and Output 183 



184 

TYPE = A, I, U, or M 

This parameter is specified only when you are creating a new direct access 
data file (OUTF operations). This parameter specifies the type of file and data 
format to be used for writing data to a direct access file: 

• When TYPE=A is specified, the APL internal data format is used (file type 
10-see The )LlB Command in Chapter 3); that is, the data is written to the 
data file in the same format it has in the active workspace. The first record 
written to the data file determines the shape (p DATA) and representation 
that the remaining records must have when these records are written to the 
data file. Each record written to the data file must have the same shape 
and internal representation because if more than one record at a time is to 
be read from the file, the records are laminated together (see Update (Read 
and Write) a Direct Access Data File (lOR and IORH) later in this chapter). 
Following are the classifications for data internal representation: 

Character 
Numeric binary (all zeros and ones) 
Numeric fixed point (all integers in the range _231 to 231 _1 
Numeric floating point (all other values) 

Data can be converted from one internal representation to another (by APL 
built-in functions) as follows: 

CHARACTER+-cp NUMERIC 

BINARY+-1 A NUMERIC • This numeric data must be zeros and ones; 

FIXED+-L NUMERIC~ however, the zeros and ones might be 
FLOAT+-NUMERIC + 0.0 fixed-point or floating-point internal 
NUMERIC+-~CHARACTER representation. 

This numeric data must be in the 
range _231 to 23 1 -1. 

Note: TYPE=A is the default if this parameter is not specified. 

• When TYPE=I is specified, the exchange data format is used (file type 09). 
When the exchange data format is used, only character scalars or vectors 
can be assigned to the shared variable. Therefore, when you are storing 
numeric data on data files using the exchange data format, you must first 
use the format (cp) function to change the data to a character scalar or 
vector. The first record written to the data file determines the shape 
(p DATA) that the remaining records must have when the records are written 
to the data file. Each record written to the data file must have the same 
shape because if more than one record at a time is to be read from the file, 
the records are laminated together (see Update (Read and Write) a Direct 
Access Data File (lOR and IORH) later in this chapter). The data file can also 
be used as a BASIC language source file. 



Page of SA21-9303-0 
Issued 28 April 1978 
By TNL: SN21-0284 

• When TYPE=U is specified, the data assigned to the shared variable can 
only be character scalars or vectors. The data is unblocked and unspanned 
as it is written to the data file (file type 09 or B9); that is, each record starts 
on a sector boundary, and a record cannot exceed one sector. Therefore, 
each record must be equal to or less than one sector. 

Note: The file type B9 is the basis for general exchange with other 
products. The 5110 assigns the file type B9 to a data file when: 

TVPE=U is specified when you are creating the data file. 
The file name is a simple name; that is, the file name cannot exceed 8 
alphameric characters. 

- The records in the file are not greater than 128 characters. 
The diskette sector size is 128 or 256 bytes. 

Also, you can read TYPE=U (file types 09 and B9) data files sequentially 
(see IN Operations in this chapter) using one shared variable. 

• When TVPE=M is specified, the APL internal. data format is used (file type 
15); that is, the data is written to the data file in the same format it has in 
the active workspace. The first record written to the file determines how 
much file storage is allocated for each additional record. For example, if the 
first record written to the file uses 100 bytes of file storage, each additional 
record written to the file is allocated 100 bytes of file storage (see Storage 
Requirements in Chapter 2 for information on how many bytes of storage 
are required for each data type). For TVPE=M data files, the records do not 
have to be the same shape or representation; therefore, only one record at a 
time can be read from a TYPE=M data file. 

When you are adding records to or updating (reading and writing) a data file 
(ADD, lOR, IORH, and INR operations), the data format is determined by the 
existing data file type. 

TYPE = N 

This parameter is optional and can be specified only when you are reading 
from or writing to an existing diskette file (lOR, IORH, and INR operations). 
When TVPE=N is specified, all attributes of the file are ignored and data is not 
translated from APL internal code to EBCDIC during output operations, or from 
EBCDIC to APL internal code during input operations. 

When TVPE=N is specified, the system treats each sector in the file as one 
individual record. For example, for a 10K data file on a 512-byte-per-sector 
diskette, there would be 20 records in the file. Also, when TVPE=N is 
specified, only character scalars or vectors can be assigned to the shared 
variable. 

Note: When TVPE=N is specified, the file header can be read (but not written) 
if you specify record number -1. (For information on specifying record 
numbers, see Direct Access (OUTF, ADD, INR, lOR, IORH, and DISPLAY) in this 
chapter.) The file header is always a 128-byte record. 

Tape, Diskette, Display Screen, and Printer Input and Output 185 



Page ofSA21-9303-0 
Issued 28 April 1978 
By TN L: SN21-0284 

186 

Direct Access to the Display Screen 

When you are reading data from or writing data to the display screen, 
specified records are read or written using a pair of shared variables. The 
shared variable name with the CTL prefix is used to specify the operation. The 
first data assigned to the shared variable must be a character vector in the 
following format (enclosed in single quotes): 

CTL+'DISPLAY [MSG=OFF)' 

There must be at least one blank between the parameters. Following is a 
description of each parameter. 

DISPLAY 

This first parameter specifies that the pair of shared variables are to be used to 
read data from and / or write data to the display screen. 

MSG = OFF 

This parameter is optional. When this parameter is specified, no error message 
is displayed for nonzero return codes (see Return Codes later in this chapter). 

Send Data to the Printer 

PRT 

The first data assigned to the shared variable must be a character vector in the 
following format (enclosed in single quotes): 

~ 
A+'PRT [MSG=OFF]' 

I 
A can be any shared variable. 

There must be at least one blank between the parameters. Following is a 
description of each parameter. 

This first parameter specifies that the shared variable is to be used to send 
data to the printer. 

MSG = OFF 

This parameter is optional. When this parameter is specified, no error message 
is displayed for nonzero return codes (see Return Codes later in this chapter). 



INPUT/OUTPUT OPERATIONS 

After the input/output operation is specified, the actual read and/or write 
operations can be performed. 

Sequential Access Operations 

When a shared variable is used to sepcify a sequential access input or output 
operation, that shared variable is used to transfer the data. 

Writing Data to a Data File (OUT and ADD) 

Each time data is assigned to the shared variable, the data is written to the 
data file and the I/O processor assigns a return code to the shared variable. A 
o 0 return indicates that the data was written to the data file successfully, and 
a nonzero return code indicates that the operation failed. See Return Codes in 
this chapter for a description of each return code. 

For OUT operations to an existing data file (writing new data over the existing 
data), all the previous data in the data file can no longer be accessed. 

Reading Data from a Data File (IN) 

Each time the shared variable is referenced in the active workspace, the I/O 
processor assigns a new record to the shared variable. The data is read from 
the data file and assigned to the shared variable in the same sequence as the 
data was previously written to the data file. 

Because a new record is assigned to the shared variable each time the shared 
variable is referenced, no return code is assigned to the shared variable after 
each IN operation. An empty vector is returned to indicate an end-of-file or 
an error condition, and the proper return code is then assigned to the shared 
variable. 

Note: Unpredictable results occur if DAV[157] (hex 15) or DAV[245] (hex 1E) 
characters are written to and then read from a TYPE=I (file type 2) data file. 
These characters are special record delimiters for the 5110. 

Tape, Diskette, Display Screen, and Printer Input and Output 187 



188 

Direct Access Operations 

Creating a Direct Access Data File (OUTF and ADD) 

When a shared variable is used to specify an OUTF operation, or an ADD 
operation to an existing direct access file, that shared variable is then used to 
write data to the data file. Each time data is assigned to the shared variable, 
the data is sequentially written to the data file and the I/O processor assigns a 
return code to the share variable. A 0 0 return code indicates that the data 
was written to the data file successfully, and a nonzero return code indicates 
that the operation failed. See Return Codes in this chapter for a description of 
each return code. 

For an OUTF operation to an existing data file (writing new data over the 
existing data), any existing data following the new data cannot be used again. 

Updating (Read and Write) a Direct Access File (lOR and IORH) 

To read from and write to a direct access data file requires a pair of shared 
variables. One of the shared variable names must have the prefix CTL, and the 
other name must have the prefix OAT. After the prefix, the next 15 characters 
in each name must be identical, if specified. For example: 

CTLANAME 

DATANAME 



The shared variable name with the CTL prefix is used to send control 
information to the I/O processor. Also, the I/O processor assigns the return 
codes to this shared variable. The shared variable with the prefix DAT is used 
to send data to or receive data from the data file. 

Note: When updating a direct access file, you cannot add records to the end 
of the file. Instead, you must do an ADD operation. 

The control information assigned to the shared variable with the CTL prefix 
must be integers in a two- or three-element vector as follows: 

o 
CTL+ 1 starting record number [number of records] 

2 

Where: 

• The first element specifies to read from (0), write to (1), or search by key (2) 
the data file. 

• The second element specifies the starting record number to read, write, or 
search by key. For direct access data files, the first record in the file is 
always number O. Therefore, if record number 1 is specified, the operation 
starts with the second record in the data file. 

• The third element is optional. This element specifies the number of records 
to read, write, or search by key. If this element is not specified, one record 
is assumed. 

Reading records, writing records, and search by key procedures are discussed 
next. 

Tape, Diskette, Display Screen, and Printer Input and Output 189 



190 

Reading Records 

When the control shared variable specifies that records are to be read, the I/O 
processor assigns the specified records to the shared variable name with the 
OAT prefix. If more than one record is read, the records are laminated along a 
new first dimension before they are assigned to the OAT shared variable. For 
example, assume that the characters A, B, and C are the first three records in 
the file: 

C T L X ~.. 0 0 3 ..- Read three records, starting with the first record in 
CTI...X the file. 

o 0 .... -----------The I/O processor assigns the return code to the 
~)DATX CTL shared variable. 

:3 :I. 

A shared variable. ~ 
D A T X .... ------ Find the shape of the data assigned to the OAT 

B 
C '---------- The new first dimension. This value also 

A 

c 

DATXC:1. i:l represents the number of records read. 

DA TX [2; J ~ You can specify each individual record by indexing 
/the new dimension. 

nf~TX[::~; :I 

Once the data read from the data file is assigned to the OAT shared variable, 
the shared variable can be used like any other variable. That is, the OAT 
shared variable retains its value until more data is read from the data file or 
you assign a new value to the OAT shared variable. For example: 

CTI...X~"O 
CTLX 

:I. 1. -- Read the second record in the file. 

o 0 ------....--DATX retains this value until another record 
/' Df.tTX is read or you assign a new value to DATX. 

B 
CTLX~" 0 ') j .. ''-.:. Read the third record. 
C T L. X "-----

0') -------. /nATX DATXnowhasthisvalue. 

C 
DATX~'" A '-

- Assign a new value to DATX. 

___ :.D.:...A:...:T~X~ _____ -DATX now has this value. 
A ... 



Writing Records 

When the CTL shared variable specifies that records are to be written, the I/O 
processor writes the current value of the OAT shared variable to the data file. 
If more than one record is specified to be written to the data file, the records 
must be joined along a new first dimension before they are assigned to the 
OAT shared variable. For example, assume you want to write the three records 
A, 8, and C to a data file: 

D~~ITX~"3 :1. ~). f.lBC · 
D A T X \~--------- Join the records along a new first dimension. 
(.~ 

H 
C 

C T L X ~ .. :I. 0 :3 0041--- Write the three records currently assigned to the 
CTI...X OAT shared variable to the data file. o 0 _________ _ 

Now the first three records in the data file are At 
8, and C. 

To update a direct access data file, you can read the record(s) from the data 
file, modify the record(s), and then write the modified record(s) back to the 
data file. For example: 

c·rl...x~"o 0 3 
CTI...X 
o 0 

DATX 

~} 0041--------______ The first three records in the data file. 
C 

D 
r" , ... .. 

Dr.ITX[ :1. 2 
Df~TX 

~~ ; ::H·· I DEF · - Modify the three records read from 
the data file. 

CTL)<~··:I. () 3 .. '------Write the modified records back to the 
C r I... X data file at a specified location. 

I] 1] .. -----------.. Now, the first three records in the data 
file are Ot E, and F. 

Tape, Diskette, Display Screen, and PriMer Input and Output 191 



192 

Search by Key 

Search by key can be used with direct access interchange, general interchange, 
unblocked/unspanned, and APL internal format data files. When the CTL 
shared variable specifies a search by key, the key value presently assigned to 
the OAT shared variable is used to search the data file. The key must be: 

• The same representation as the data in the data file (character, binary, fixed 
point, or floating point) 

• Less than or equal to 255 bytes for 256-byte-per-sector diskettes 

• Less than or equal to 128 bytes for 128-byte-per-sector diskettes 

• Less than or equal to the record size for unblocked/unspanned format data 
files (TYPE=U) 

For a search by key, the records in the data file cannot span any sector 
boundaries, and the records should be sorted in ascending sequence. That is, 
one sector can contain multiple records; however, the records cannot span a 
sector boundary. 

The key is compared with the equivalent number of beginning bytes in each 
sector. The search starts with the sector containing the first record specified 
and continues through the sector containing the last record specified 
(determined by the number of records specified). The search is completed 
when: 

• The key is equal to the equivalent number of beginning bytes in the sector. 
In this case, the records in the sector are assigned to the OAT shared 
variable. 

• The key is less than the equivalent number of beginning bytes in the sector. 
In this case, the record(s) from the previous sector are assigned to the OAT 
shared variable. The comparison between the key and the beginning bytes 
of each sector is an unsigned binary comparison (bit by bit). Therefore, the 
following collating sequences are implied: 

For interchange, general interchange, and unblocked/unspanned format 
data files, the EBCDIC character sequence. 
For character data in APL internal format files, the atomic vector (OAV) 
character sequence. 
For binary data, unsigned integer sequence. 
For numeric data, an unsigned integer sequence. That is, for fixed point 
data, the negative values follow the positive values. For floating point 
data, the negative values are in reverse order and follow the positive 
values. 



• The EOO address is encountered as the specified records are being 
searched. In this case, the record(s) in the last sector of the file are 
assigned to the shared variable. 

• All of the specified records are searched without one of the previous 
conditions occurring. In this case, the search is unsuccessful, and a 1 029 
return code is assigned to the CTL shared variable (see Return Codes later in 
this chapter). 

Notes: 
1. If the key is equal to the beginning bytes of a sector, but the beginning 

bytes in a previous sector searched are greater than the key, the sector 
containing the bytes equal to the key will not be reached. 

2. Characters records should be sorted in ascending sequence for search by 
key operations. 

If the search is successful and the sector contains more than one record, the 
records are laminated (joined) together along a new first dimension and 
assigned to the OAT shared var:-iable. Therefore, the first dimension of the OAT 
shared variable represents the number of records read and assigned to OAT. 

After the search is successfully completed, the return code assigned to the 
CTL shared variable is 0 n, where n represents the record number of the first 
record assigned to the OAT shared variable. 

Reading a Direct Access Data File (lNR) 

Reading the data from a direct access file using an INR operation requires a 
pair of shared variables. 

Note: Generally, an IN R operation is specified when the data is to be read 
from and not written to the file. This prevents data from accidently being 
written to the data file. 

The control information assigned to the shared variable with the CTL prefix 
must be integers in a two- or three-element vector as follows: 

o 
CTL+- 2 starting record number [number of records] 

Where: 

• The first element must be 0 (specifying that data is to be read from the file) 
or 2 (specifying a search by key operation). 

• The second element specifies the starting record number. For direct access 
data files, the first record in the file is always number O. Therefore, if record 
number 3 is specified, the operation starts with the fourth record in the data 
file. 

• The third element is optional. This element specifies the number of records. 
If this element is not specified, one record is assumed. 

See Reading Records and Search by Key earlier in this chapter for a description 
of how records are read from a data file or data files are searched by key, 
respectively. 

Tape, Diskette, Display Screen, and Printer Input and Output 193 



194 

Reading from and Writing to the Display Screen (DISPLAY) 

To read from and write to the display screen requires a pair of shared 
variables. One of the shared variable names must have the prefix CTL, and the 
other name must have the prefix OAT. After the prefix, the next 15 characters 
in each name must be identical, if specified. For example: 

CTLOISPLAY 
OATOISPLAY 

The shared variable name with the prefix CTL is used to send control 
information to the I/O processor. Also, the I/O processor assigns the return 
code to this shared variable. The shared variable name with the prefix OAT is 
used to send data to or receive data from the display screen. 

The control information assigned to the shared variable with the CTL prefix 
must be integers in a two- or three-element vector as follows: 

o 
CTL-+-

1 
starting character number [number of characters] 

Where: 

• The first element specifies that data is to be read from (0) or written to (1) 
the display screen. 

• The second element specifies the starting character number to read or write. 
The characters are numbered as follows: 

Line 

15 0 63 
14 64 127 
13 128 191 
12 192 255 
11 256 319 
10 320 383 
9 384 447 
8 448 511 
7 512 575 
6 576 639 
5 640 703 
4 704 767 
3 768 831 
2 832 895 
1 896 959 
0 960 1023 

• The third element is optional. This element specifies the number of 
consecutive characters to read or write. If this element is not specified, only 
one character is assumed. If the specified number of characters plus the 
starting character number exceeds the value 1024 (the total number of 
characters that fit on the display screen), a 15 0 return code is assigned to 
the CTL shared variable. 



Reading Records from the Display Screen 

When the CTL shared variable specifies that characters are to be read, the 
cursor appears on the display screen at the character position specified by the 
starting record number. You can then modify the information on the display 
screen for the specified number of characters. For example, pressing ATTN 
erases any data from the cursor position to the last specified character. Now, 
when the EXECUTE key is pressed, the specified characters are read from the 
display screen and assigned to the OAT shared variable as a character vector. 

For example, assume the first 3 characters on the display screen are A, B, and 
C: 

CTI...DIBPL(.lY~··O () '-') 

[ {-Read 3 characters. 

Start with the first character. 

Once the previous statement is executed, the cursor (flashing character) is at 
the first character position on the display screen. Now, if you enter the 3 
characters OEF and press EXECUTE: 

DEF------

o 0 
The specified characters currently on the display 
are read and assigned to the OAT shared variable. 

The return code is assigned to the CTL shared 
variable. 

Once the character vector read from the display screen is assigned to the OAT 
shared variable, the shared variable can be used like any other variable in the· 
active workspace. 

Note: When you are reading data from the display screen using a loop, you 
should program an escape from the loop in your user-defined function. For 
example: 

LOOP:CTLDISPLAY~{) 0 20 
~(O~ltCTLDISPLAY)/O 
~(A/'OUT'=3tDATDISPLAY)/OUT 

X~X,[lJDATDISPLAY \ 
··~L..D()P 
() U T : Branch out of the loop if the first 3 characters 

: read are OUT . 
• • 

This is necessary because you cannot interrupt reading data from the display 
screen using the ATTN key. 

Tape, Diskette, Display Screen, and Printer Input and Output 196 



196 

Writing Records to the Display Screen 

When the CTL shared variable specifies that records are to be written, the I/O 
processor writes the current value of the OAT shared variable to the display 
screen. For example: 

nATnISPI .. ,AY~" I NEW' 
C T I... DIS P I... A Y ~<1. 0 3 - Write the three records N, E, and W to the first 
C T I... It I S P I... A Y three positions of the display screen. o 0 _________________ __ 

The return code is assigned to the CTL shared 
variable. 

If the OAT shared variable contains more data than the CTL shared variable 
specifies to be written to the display screen, only the specified number of 
records are written to the display screen, starting with the first record of the 
character vector assigned to the OAT shared variable. If the OAT shared 
variable does not contain as many characters as specified by the CTL shared 
variable, the error messages 10 STATUS: INVALID OAT and INTERRUpj are 
displayed (unless MSG=OFF is specified). 

Sending Data to the Printer (PRT) 

When a shared variable is used to specify that data is to be sent to the printer, 
data (character scalar or vectors) assigned to that shared variable is sent to the 
printer. Then the I/O processor assigns a return code to the shared variable. 
A 0 0 return code indicates that the data was printed successfully, and a 
nonzero return code indicates that the print operation failed. See Return Codes 
later in this chapter for a description of each return code. 

Note: The )OUTSEL OFF command is automatically issued by the system 
during PRT operations. The )OUTSEL option returns to its previous setting 
after the PRT operation is terminated. 



TERMINATING THE OPERATION 

When you no longer need a shared variable (or pair of shared variables) for a 
specified operation, you can terminate the operation by: 

• Assigning an empty vector to the shared variable 

• Completing execution of a user-defined function in which the shared 
variable is made local to that function 

• Using the OEX function or )ERASE command 

• Using the DSVR function 

Assigning an Empty Vector to the Shared Variable 

For sequential access operations (IN, OUT, and ADD), the I/O processor 
terminates the operation when you assign an empty vector to the shared 
variable. For output operations, the file header is updated with information 
about the file (see The )UB Command in Chapter 3). For input operations, the 
operation is also terminated when an end-of-file empty vector is read from the 
data file or an error occurs due to the device (and the proper return code is 
assigned to the shared variable). 

CAUTION 
For OUT, OUTF, and ADD operations, if the media is removed from the 
system before the operation is terminated, the data file will be unusable. Any 
subsequent attempt to read from the data file will give unpredictable results. 

When creating a direct access data file (OUTF and ADD operations), the I/O 
processor terminates the operation and updates the file header with the EOD 
address when you assign an empty vector to the shared variable. 

For direct access operations to read from and write to a data file or the display 
screen (lOR, IORH, INR, and DISPLAY)' the I/O processor terminates the 
operation when you assign an empty vector to the CTL shared variable. 

For printer operations (PRT)' the I/O processor terminates the operation when 
you assign an empty vector to the shared variable. 

The I/O processor assigns a return code to the shared variable after the 
operation is terminated. The 0 0 return code indicates that the operation was 
terminated successfully. See Return Codes later in this chapter for a description 
of each return code. 

After an empty vector is used to terminate the operation, the shared variables 
can be used for specifying and performing other input/output operations. 

Tape, Diskette, Display Screen, and Printer Input and Output 197 



198 

Making the Shared Variable Local to a User-Defined Function 

If a shared variable name is local to a user-defined function, the input/output 
operation is automatically terminated when the user-defined function 
completes execution. See Assigning an Empty Vector to the Shared Variable for 
a description of what happens when the operation is terminated. In this case, 
there is no return code assigned to the shared variable. 

Using the DEX Function or )ERASE Command 

If the shared variable is expunged (DEX) or erased OERASEO)' the 
input/ output operation is automatically terminated. See Assigning an Empty 
Vector to the Shared Variable for a description of what happens when the 
operation is terminated. In this case, there is no return code assigned to the 
shared variable. 

Using the DSVR Function 

When you no longer need a shared variable for input/output operations, you 
should use the OSVR system function to retract the shared variable offer. If 
the shared variable offer is retracted before you have terminated the 
input/ output operation, the system will automatically terminate the operation. 
See Assigning an Empty Vector to the Shared Variable for a description of what 
happens when the operation is terminated. In this case, there is no return code 
to the share variable. 



RETRACTING THE SHARED VARIABLE OFFER 

To retract the offer to share a variable between the I/O processor and the 
active workspace, the DSVR function is used. This function is monadic 
(requires one argument); the argument is character data that specifies the 
shared variable name(s) being retracted. For example: 

nsv F~ , NAt1E ' 

If more than one name is used in the argument of the DSVR function, the 
names must be in a character matrix with each row representing one name. 
For example: 

[]SV R I.,. 1. I~) , ('~E{CD • 

or > Each row represents a separate variable name. 

NAMES~ .. I+ :I.~)' (.\BCD ' 
[]SV I~ Nf~r,ES 

The explicit result of the DSVR system function is a 2 or 0 for each shared 
variable name being retracted as a shared variable. 

For example: 

[]SV F~ 1+ :I. (.) , ABeD I 

A 2 indicates that the name is successfully retracted as a shared variable with 
the I/O processor. A 0 indicates that the name is not successfully retracted as 
a shared variable. Normally, if a shared variable offer cannot be retracted 
successfully, it was never properly established as a shared variable. 

Retracting the shared variable offer does not erase the value assigned to the 
variable. That is, the variable still has a value after the shared variable offer is 
retracted, until the variable is expunged or erased (DEX or )ERASE). 

Tape, Diskette, Display Screen, and Printer Input and Output 199 



200 

RETURN CODES 

The I/O processor assigns a return code to the shared variable after each of 
the following operations: 

• Specifying the operation to be performed 

• Writing records to a sequential access file 

• Writing records to and reading records from a direct access file 

• Writing records to and reading records from the display screen 

• Sending data to the printer 

• Terminating the operation by assigning an empty vector to the shared 
variable 

• Reading the last record of a sequential access file 

• Reading a sequential access file when an input error occurs 

The return code indicates whether or not the operation was successful. If the 
return is nonzero and MSG=OFF is not specified, in most cases an error 
message is also displayed. You can check the return code by referencing the 
shared variable once after the operation is complete. When the shared variable 
is referenced more than once to check a return code, the error messages 10 
STATUS: INVALID OPERATION and INTERRUPT are generated. Therefore, if 
you need to check the return code more than once, you must first assign the 
return code to another variable. For example: 

(:HuC"fL I In this example, CTL is a shared variable that has 

: ~ been assigned a 0 0 return code. 

en .. · ~ The shared variable cannot be referenced 

o 0 

I) I) 

I 0 ~:)T (:~ TUS : I NV~~II" .. I DOPE H(.~ T I DN more than once for a return code. 
IN·rEF~F~~I...IPT 

ell... 

Execution of a user-defined function does not stop when a nonzero return 
code is assigned to the shared variable. Therefore, the user-defined function 
should check the return code that was assigned to the shared variable to make 
sure that each operation is successful. For example: 

[ .. / ::I :0 f:~1 T )( ~." · D U T F :1.:1. I) 0:1. I II :::: ( N tl r1 E) T Y· P E :::: 1...1 • 

[8J ~(Oi:l.tX~IIATX)/ERROR 

.. ~~.)( 

[:1.7::1 ··to 



Code 

o N 

1 eee 

2 0 

3 0 

4 0 

5 0 

6 0 

7 0 

8 0 

9 0 

Following is a description and/or user's response for each return code and 
error message: 

Error Message 

10 STATUS: INVALID FILE 

10 STATUS: INVALID DEVICE or 
10 STATUS: INVALID DEVICE NUMBER 

10 STATUS: INVALID FILE NUMBER 

10 STATUS: NOT WITH OPEN FILE 

10 STATUS: INVALID PARAMETER 

10 STATUS: WS FULL 

10 STATUS: DEVICE NOT OPEN 

Description and/or User's Response 

Operation successful. When you are specifying 
direct access read and write operations (lOR, 
10RH, and INR), the second element is the 
number of records in the data file. When you 
are doing search by key operations, the second 
element is the number of the first record read. 
Otherwise, the second element is zero. 

Device error; the second element (eee) is the 
error code (see ERROR eee ddd in Appendix F). 

The specified file cannot be used for 
input/ output operations. 

Specify the operation again, using the correct 
device number. 

Specify the operation again, using a valid file 
number. 

The specified file, device, or corresponding DAT 
shared variable is already being used for 
input/output operations; the current operation 
must be terminated before a new operation can 
be specified. 

The parameters required to specify the 
operation .were entered incorrectly; specify the 
operation again, correcting any keying errors. 

There is not enough space in the active 
workspace for data items and buffers 
associated with the I/O operation. Use the 
)ERASE command or the DEX function to erase 
any unwanted objects; then specify the 
operation to be performed again. 

An attempt was made to use a shared variable, 
and an I/O operation has not been specified. 
Specify the I/O operation to be performed, or 
retract the shared variable if you want to use it 
as an ordinary variable. 

An empty vector was read from the data file, 
but the empty vector is not the end-of-file 
empty vector. This return code is only a 
warning. 

Tape, Diskette, Display Screen, and Printer Input and Output 201 



Code 

10 0 

11 0 

12 0 

13 0 

14 0 

15 0 

16 0 

18 0 

202 

Error Message Description and/or User's Response 

10 STATUS: EXCEEDED MAXIMUM RECORD LENGTH The error was probably caused by the tape 
being removed before the file was closed. The 
remaining data in the file cannot be read. 

10 STATUS: INVALID DATA TYPE The wrong type or shape of data was used; for 
example, noncharacter data was sent to an 
exchange file, or noncharacter data was used as 
the parameters when you specified the 
operation to be performed. 

10 STATUS: FILE NOT FOUND 

10 STATUS: FILE NOT UNIQUE 

10 STATUS: WRITE PROTECT 

10 STATUS: CTL DOMAIN ERROR 

10 STATUS: INVALID DAT 

10 STATUS: NO DAT 

The diskette files were searched by file name, 
but the file name was not found. Specify the 
operation again, using the correct file name, or 
insert the proper diskette. 

The diskette files on all the diskette drives were 
searched by file name, and there is more than 
one file with that name. Specify the operation 
again, using the device/file number parameter. 

The data file is write-protected. If you want to 
write on the file, use the )PROTECT command 
to remove the write-protect indicator. 

Invalid control information was assigned to the 
CTL shared variable; for example, a record 
number greater than the number of records in 
the data file was specifed. 

Note: For a TYPE=M (file type 15), anytime you 
specify the number of records this return code 
is generated. Instead, you must let the 5110 
use the default value (1). 

The data assigned to the DAT shared variable 
cannot be written to the data file. For example, 
the data has the wrong shape and / or 
representation for the data file. 

The DAT shared variable is not established as a 
shared variable before the CTL shared variable 
is used to specify a direct access input/ output 
operation. 



Code Error Message 

22 N 

23 0 

24 0 10 STATUS: WRONG VOLUME 

Page of SA21-9303-0 
Issued 28 April 1978 
By TNL: SN21-0284 

Description and/or User's Response 

The operation is specified successfully, and the 
second element is the number of records in the 
file. However, the records were written to the 
file such that if the file contains a bad sector, 
that sector is skipped and the record is written 
to the next sector. If there are no bad sectors, 
the file can be read without any problems. If 
there are bad sectors, a 1 44 return code is 
issued if you try to access a bad sector. If the 
file contains a bad sector, you must determine 
the correct record location. For example: 

Record Number 

~o 1 2 3 4 

'[ R-E-CO-R-D-A-I'R-E-C-O-RD-B-----.I-R-EC-O~;;-~~~RD D I RECORDUData File 1 

o 1 2 3 4 

I RECORD A I RECORD B I Bad Sec~r J-RE~~RD; [;;~~-;;;-~u -\ Data File 2 

In data file 1, if you specify to read record 
number 2, RECORD C is read. In data file 2, if 
you specify that record number 2 should be 
read, a 1 44 return code is issued. Instead, you 
must specify record number 3 in order to read 
RECORD C. 

The end of the file was encountered when the 
system was creating a direct access exchange, 
unblocked/unspanned, or internal format data 
file (type 9 or 10). The system automatically 
terminates the operation and updates the file 
header when this return code is issued. 

An attempt was made to read from or write to 
a diskette data file, and the diskette is not on 
the same diskette drive as when the operation 
was specified. Place the diskette containing the 
data file in the same diskette drive as when the 
input/ output operation was specified, and try 
the operation again. 

Tape, Diskette, Display Screen, and Printer Input and Output 203 



Page of SA21-9303-0 
Issued 28 April 1978 
By TNL: SN21-0284 

INPUT/OUTPUT SUMMARY 

Following is a summary and examples of the steps required for input and 
output: 

1. Make a shared variable offer and check the result. 

X~10SVO 2 4 p'CTLXDATX' 
.. ~. ( V''/ 2 ;:,': >< ) ./ E F·:~ P [I P :!. 

ERROR1: 'THE SHARED VARIABLE OFFER FAILED,' 
2. Specify the operation to be performed and check the return code. 

X~'OUT 11001 ID=(SEQUENTIAL) MSG=OFF TYPE=I'} 
X~" I ADD :1.:1. 00:1. I It:::: (SE(~UENT I AI...) r'lSG::::OFF' Sequential Access 

X~'IN :1.1001 ID=(SEQUENTIAL) MSG=OFF' 
X~'OUTF 11001 ID=(DIRECT) MSG=OFF TYPE=U' 
DATX~'ADD 1:1.001 ID=(DIRECT) MSG=OFF' 
CTI...X ~- ' IN F< :1.:1. 0 1]:1. I D:::: ( D I I~ECT) t"iSG::::OFF T'{ PE::::N ' Direct Access 
CTLX~'IOR 11001 ID=(DIRECT) MSG=OFF TYPE=N' 
CTLX~'IORH 1:1.001 ID=(DIRECT) MSG=OFF TYPE=N' 
CTI...X~'DISPLAY MSG=OFF' 

DATX~'PRT MSG=OFF' Printer Output 

~(O~ltDATX)/ERROR2 

Check Return 
Code 

ERROR2: 'SPECIFYING THE OPERATION FAILED, ' 

3. Perform the input and output operations, and check the return code after 
each operation. 

CTLX~"l :1. !5 

CTL.X ~"2 :I. 0 ~:5 

~(O~ltSV~CTL.X)/ERROR3 

Direct access-Read five records, starting with the 
first record. 

Direct access-Write five records, starting with the 
second record. 

Direct access-Search by key five records, starting at 
the sector that contains the eleventh record. 

Check 
Return 
Code 

ERROR3: 'I/O OPERATION FAILEItI THE RETURN CODE IS: · 11'SV 

204 



4. Terminate the operation and check the return code. 

CTLXf' \ 0 
.. ~ (O;.~l tCTL.X) /EI~r~()RI+ 

ERROR~: 'TERMINATING THE OPERATION FAILED, 
5. Retract the shared variable offer and check the results. 

X~nSVR 2 4p'CTL.XDATX' 
oot ( ........ ,,/ ::? ;i.::X: ) .. ,/ E r~ F~~ [I P ~.:.:.; 

Page of SA21-9303-0 
Issued 28 April 1978 
By TNL: SN21-0284 

ERRORS: 'RETRACTING THE SHARED VARIABLE OFFER FAILED, 

Note: Even after the shared variable offer is retracted, the variables still 
have a value. 

Tape, Diskette, Display Screen, and Printer Input and Output 205 



206 



Chapter 8. The 5103 Printer 

The IBM 5103 Printer is available as a feature attachment and has these 
characteristics: 

• Bidirectional printing (left to right, then right to left). The 5103 bidirectional 
printing operates as follows: 

The print head moves fJ!'Om the left margin and prints a line. Succeeding 
lines are printed in either direction depending on which end of the new line 
is closest to the current position of the print head. The print head is 
returned to the left mar9in periodically when printing is not imminent. 

• 132 characters across the print line. 

Note: If the width of the forms is less than 132 characters and the DpW 
system variable (see Chapter 5) is greater than the width of the forms, loss 
of data will occur as the print head leaves the form. 

• Capability of using individual or continuous forms. Maximum number of 
copies is six, but for optimum feeding and stacking, IBM recommends a 
maximum of four parts per form. 

• Adjustable forms tractor that allows the use of various width forms. The 
forms can be from 3 to 14.5 inches (76.2 to 368.3 millimeters) wide for 
individual forms and from 3 to 15 inches (76.2 to 381 millimeters) wide for 
continuous forms. 

• Print position spacing of 10 characters per inch (25.4 millimeters) and line 
spacing of six lines per inch (25.4 millimeters). 

• Stapled forms or continuous card stock cannot be used. 

• The character printing rate is 80 or 120 characters per second. The 
throughput in lines per minute is function-dependent. 

• A vernier knob (located on the right side of the printer) that allows for fine 
adjustment of the printing position. This knob should only be used when 
the print head is in its leftmost position. 

The 5103 Printer 207 



• The forms must meet the following requirements: 

Singlepart Multipart 
Cut Forms Cut Forms 

Maximum Thickness 0.0075 inch 0.018 inch 
(O.019 cm) (O.0457 cm) 

Minimum Thickness 0.003 inch 0.003 inch 
(O.0076 cm) (O.OO76 cm) 

Maximum Width 14.5 inches 14.5 inches 
(36.83 cm) (36.83 cm) 

Minimum Width 6 inches 6 inches 
(15.24 cm) (15.24 cm) 

Maximum length 14 inches 14 inches 
(35.56 cm) (35.56 em) 

Minimum length 3 inches 3 inches 
(7.62 cm) (7.62 cm) 

Maximum Copies 4 

Maximum Form Weight 

Maximum Distance 
Between Folds 

208 

Continuous 
Forms 

0.018 inch 
(O.0457 cm) 

0.003 inch 
(O.0076 cm) 

14.87 inches 
(37.76 cm) 

3 inches 
(7.62 cm) 

4 

15 Ib ream 
(6804 kg) 

14 inches 
(35.56 cm) 



HOW TO INSERT FORMS 

Continuous Forms 

Form Guide Rack 

r ----f.::: Release Lever 

r;:er.ldvance Knob 

Vernier Knob 

I:orms Path for Singlepart Forms 

1. Slide the top cover forward. 

2. Push the print head to the extreme left position. 

3. For singlepart forms, pivot the form guide rack up 
and forward to a vertical position. For multipart 
forms, leave the forms guide rack in the horizontal 
position. 

The diagrams below and to the left show the 
proper forms path for singlepart and multipart 

forms. 

4. Push the paper release lever to the rear to activate 
the friction feed rolls. 

5. Place the forms on the table behind the printer. 

6. 

Note: The forms must be positioned behind the 
printer so that the forms feed squarely into the 
printer. 

Thread the paper down, over the rollers, behind 
the tractors, and behind the platen. 

7. Turn the paper-advance knob to move the paper 
around the platen until you can grasp it with your 
fingers. 

/Forms Guide Rack 
Rollers ~If'(' I .. ) 
~/ /.- --J\ In ower positIOn 

/~JA 
Pla~{jr ~ ~r~ L) I 

Forms Path for Multipart Forms 

ROller~ ---=--~Forms Guide Rack 

x~ 
~at<J 1 

\7 
Friction Feed Rolls 

Position these guides at the edge of the paper. 

The 5103 Printer 209 



Tractor Cover and Pins 

Right Tractor Knobs 

210 

8. Op~n both tractor covers. 

9. Pull the paper release lever forward to disengage 
the friction feed rolls. 

10. Pull the paper up and place the left margin holes 
over the tractor pins. Be sure the left tractor is in 
its leftmost position. 

11. Close the left tractor cover. 

12. Squeeze the two knobs on the right tractor, and 
slide the tractor to align the pins with the right 
margin holes. 

13. 

14. 

15. 

16. 

Place the right margin holes over the tractor pins. 

Close the right tractor cover. 

For singlepart forms, pivot the forms guide rack to 
a horizontal position. 

Turn the paper-advance knob to position the form 
for the first line to be printed. The paper should 
exit over the forms guide rack. 

Note: To move the form backward, turn either 
paper-advance knob backward and pull the form 
from behind the printer to keep the form from 
buckling at the print head. 

17. Close the top cover. 

18. The plastic guides on the rear of the wire rack 
should be positioned (one on each side of the 
forms) so as to aid in guiding the forms for proper 
feeding. These guides are positioned by sliding 
them back and forth. 

CAUTION 
The switch that senses end of forms is deactivated 
when the friction feed rolls are engaged. Thus, the print 
wires could hit the base platen if no forms are in the 
printer. 



Cut Forms 

1. Remove the forms tractor by tilting it back and lifting it off. 

2. Move the cut forms guide forward. 

3. Slide the top cover forward. 

4. Push the print head to the extreme left position. 

5. Push the paper release lever to the rear to activate the friction feed rolls. 

6. Place the form in position behind the platen and against the cut forms 
guide. 

7. Turn the paper-advance knob to position the form for the first line to be 
printed. Improve the paper alignment if necessary by using the paper 
release lever. 

8. Close the top cover. 

CAUTION 
The switch that senses end of forms is deactivated when the friction feed rolls 
are engaged. Thus, the print wires could hit the base platen if no forms are in 
the printer. 

Cut Forms Guide 

Paper Advance Knob 

The 5103 Printer 211 



Printer Cover 

212 

HOW TO ADJUST THE COPY CONTROL DIAL FOR FORMS THICKNESS 

1. If you are using singlepart forms, set the copy 
control dial on O. 

2. If you are using multipart forms and the last sheet 
is not legible, rotate the copy control dial toward 0 
one click at a time to obtain the legibility you 
desire. 

3. If you are using multipart forms and the ribbon Is 
smudging the first sheet, rotate the copy control 
dial toward 8 one click at a time until smudging 
stops. 

HOW TO REPLACE A RIBBON (PART NUMBER 1136653) 

POWE R ON Switch 

1. Turn off power to the printer. 

2. Tilt the forms tractor back by lifting both sides 
at the front. 

3. Slide the top cover forward, then lift the front 
edge of the top cover and remove it. 



Ribbon Box Cover 

~ 

Loop 

4. 

5. 

Be sure that the print head is to the extreme left. 

Turn the feed roll release knob counterclockwise 
until it points to the right. 

6. Open the ribbon box cover. 

7. Put on the gloves supplied with the new ribbon. 

8. Remove the old ribbon from the guides being 
careful to disengage it from the clip on the print 
head. 

9. Lay the ribbon loop on the top of the ribbon in the 
ribbon box. Pick up the entire ribbon and discard 
it. 

Disk 

Ri bbon Holder 

10. Eject the new ribbon from its holder into the 
ribbon box by pressing on the disk. 

11. Remove the disk from the ribbon and discard the 
disk and the holder. 

12. Hold the coil lightly with one hand and pull about 
10 im;:hes (254 mm) of ribbon from the coil. 

13. Form a loop from the ribbon across the print head. 

The 5103 Printer 213 



Left 
Guide Post 

214 

Upper 
Guide Post Platen 

Guide Shoe Slot 

Feed Rolls 

Ribbon Box 

14. Thread the part of the loop nearest the platen 
between the feed rolls and on the inside of the 
upper guide post. 

15. Turn the feed roll release knob clockwise to close 
the feed rolls. 

16. Thread the ribbon between the print head and the 
platen. Be sure the ribbon is under the clip on the 
print head. 

17. Thread the other part of the loop through the slot 
in the bottom of the ribbon box. 

18. Thread the ribbon through the guide shoe and 
around the left guide post. 

19. Insert the horizontal part of the ribbon twist 
(bottom edge first) between the two horizontal 
guides. 

20. Move the print head back and forth across the 
platen to remove the slack from the ribbon. 
Continue moving the print head until you are sure 
that the ribbon feeds properly. Leave the print 
head at the extreme left. 

21. Close the ribbon box cover. 

22. Close the printer cover and turn the power on. 

23. Reposition the form tractor. 

Note: When the printer is left unattended (such as 
during lunch or overnight), make sure the print head is 
to the extreme left. This prevents the ribbon ink from 
bleeding onto the paper. 



HOW TO INSTALL THE 5103 PRINTER STACKER 

A folded-form paper stacker is supplied with 5103 printers. The wire stacker 
hooks onto the back of the printer cover as shown in the drawing. The lower 
wires on the stacker should contact the metal clips on the cover. 

The stacker can be bent if too much weight is applied. Under normal 
conditions, printed forms should not be allowed to accumulate higher than 1 
inch in the stacker. 

Note that, because of the relatively small free .. fall distance of the paper as it 
leaves the printer, you may have to manually fold the first two or three sheets 
to get the folding operation started. 

The 6103 Printer 215 



216 



Appendix A. 5110 APL Character Set and Overstruck Characters 

To form overstruck characters, enter one character, backspace and enter the 
other character or use the applicable CMD/key combinations. The 5110 APL 
character set consists of all the characters represented on the 5110 keyboard 
plus the following overstruck characters: 

Function Character Keys Used 

Comment 

Execute 

Factorial, combination 

Format w 

Grade down ~ 

Grade up th 

Logarithm ® 

Matrix division W 

Nand 1\ 

Nor V 

Protected function V 

Quad quote [!] 

Rotate, reverse ¢ 

Transpose ~ 

Compress f (see note) 

Expand ~ (see note) 

Rotate, reverse e (see note) 

Note: These are variations of the symbols for these functions; they are used 
when the function is acting on the first coordinate of an array. 

5110 AP L Character Set and Overstruck Characters 217 



218 



CH(.'~I~ACTEF: CH(~Rf~C"j'ER NAI"'iE 

I: 
::I 

/ 
\ 
~" 

,,~ 

+ 

)( 

r 
L 

v 

0-: 

I~EBE I~VE:O. • 
I~E~:)E I~VED. . , , . . 
I~ESE I~V[D. . 
I~ E ~::) E R V E:O. , . 
I~~ [: ~::; E I~ \/ E II. . 
I~~ E ~:) E F< \I E II I • • I I • 

F1 I::: BE 1~\lE:O • 
F<E~:)E I:(VED, I 

I~EBE R\lED I I 

I?ESE I:,~VED I • , I 

F~EBE: I~VED. . . • . I 

I~EBEF<VED. I , , • • 

I~~ E ~:) E I~ 'v' E:O. . , , , I , 

F<EBEF~VED, . I • I I , 

(] PEN B F<(,~C::I< ET, . 
CLDSE BI:«(.~ICI<E'r I 

OPEN PARENTHESIS. I, 

CLUBE Pf:~RENTHEBIS I , • 

BEt'1ICOI...ON , I • , I 

~:)L(.'~BH I • I • • , , 

SLDPE . . I • , , I 

LEFT (.~'II~ I~OL"J • 
I~ I (3 H T f~ I~ F~ 0 ~J I • I I I • 

I I t I • 

RE~:)E RVED. , . 
DIERESIB (UPPERSHIFT 1) 
PLU!3. . . , . , 
l:{ i~II:~~ . . 
T I f"'j[S . . . 
DIVIDE, 
STf:~F~, . 
UPbTJI..,E I 

:OIJt,..,IN~:)T I 1...1::: • 
~:)T I 1...1::: , • • 
j~lND I I • t 

DI~, , I I I 

LESS THt-IN 
NOT (3F<E(.~ITER 

[G!Uf:~1... I • • 

I I , 

i , 

NCIT L.ESn, I , I I I I I 

G I~Ef~) TE H THt-IN I 

NOT EG!U(.~L. 
(.:11... PHA I 

E p~::; I LON 
10')"(,:) I • 

I:~~HO I I 

Di\iEI3('"~ , 

Appendix B. Atomic Vector 

, . 

, I 

, , I 

i • t • 

I I , 

I I t 

" , 

. . . . 

INDEX ([lJ04":i.) 

~::,j 

l \.) 

"f' 
B 
(? 

:1.0 
:1.:1. 
:1.2 
:1.3 
:1.'01-
:I. ~:.=.; 

:1.6 
:1.7 
lB 
:1,;;; 
:::,~ 0 

'+0 
q, :1, 

1.1,2 

'+3 

Atomic Vector 219 



220 

....••• 

t­
. !. 

:::a 

n 
1..1 

:u: 

(-}) 

':"':. 

j 
... .. 

C:i 
H 
I 

I ... ...• 

I... 

CO ivij ..... j(:', I I I • • • • • • • • 

QUOTE DOT (EXCLAMATION) 
C: I peL. [: ~:) TIL. E . .... 
:0 t, ~:~; E. . 
TOP . . 
CI F;:CI...E. . 
ql...II:::F::Y· • I 

'r I 1...:0 [ . . 
LJ P (:1 F~: F-~ D 1/,1 • 
:OCJt· .. li\~ t, F;: HUkl. . . 
D PE:i\! ~3HUE: . 
CI...D~::;E ~::)HOE. . 
C(:',p I • ; • • 

[:1 . ..1 P . I • I • 

1...1 i····! :0 E F·{ ~:::; C: (] F<: I::: I 

C I F:CI...E SHOE 
:u:····[·:Et",ivi I • I 

I···.! 1...11...1... (~::; jvj t,I...L. C IRe I... E ) 
Ol...!t,:o. I • • I 

t:! 1...\ CJ 'r E I) U (:1:0 I 

I...DEi I 

!···It·,i\!D I 

NOF~ . 
L. (:', i··· .. j P .... C: D jvj i"') I::: i\! T . 
:U E I... 'r (:', ~::) TIl... I::: 
DEI... ~:::;'r I 1...[ . 
C1 F·::CLE B(:·,I~::. 

~31... (:1 ~3 HE·: (:', r·;: 
~::; I... D P E I{ (:', F~ 
DOjviINU. . 
Tel P j\!UI... . . 
L:{',~:::;E j'··lUI.... 
(·,I· ... i P E r~ ~3 f~~' j\! II 

PCIUc···lD . . 
:OUI...I...(:·, F;:. . 
l...'i\.!I...I::::;F:O. . • . . 
'r n (~, C: I::: (T D E: 1... T (", ) . 
~3 'r D P (:::) D E 1 .. , 'r (:',) 1 

{1 
E{ 
C: 
:0 
[ I 

F 
Ci . I • • 

H . 
I . 
... .1 

1< . 
1.. •• 

C) I I I I I 

61.j· 

.' .. ,' 
, ... , I 

7:1.. 

···1···.· 
{ .. :> 

..·.11::· 
" .... , 

":.1;:'. 
J I .. } 

",,00'1 

{ { 

fOl ~:~ 

DO 
D:I. 

BI.J· 

<?"l 
9B 
(?9 
100 
:1.0:1. 
:I. 0:::.:: 



T 
U 
V 
1"..1 

x 
y 

, . ..... 
I.!. 
I::' 
'''} 

..... 
... 

.... 
V 

s .... 
T . 
u .. 
\/ 
kl . 
)< 
y 

A-UNDERSCORE •..... , •. 
B .... UNDE I~~)CO F~E . 
C .... Ut··.lDE F~~:)CO RE. . 
D-UNDERSCORE .... , ... , .. 
E .... UNDE RBCO F·~E . 
F .... UNDEI~SCDRE . 
G .... l...lj···.!DE F<SCD I~E . 
H·· .. 1...1 N:C1E I~:~:)CD PE . 
I ·· .. I.JN:C1E I~:SCD RE . 
,J .... UNDE F·~SCD 1:<:[ . 
I< .... UNDE R~:;C::O F<E . 
L .... UNDE I~SCO I:<E . 
i'yl .... Ut···.!DE F?~:>c:n PE . 
i\~ .... I...II···J.DE F~:~:)CD I~E . 
D .... UNDE I~::~:)CD F·~E . 
P .... UNDEPbCOI~E . 
U .... UNDE F<SCD HE . 
R''',Uh!:C1E F~~:)CD RE. . 
~:)""I...If\!D[ F;:SCD PE . 
T .... I...INDE F;':BC[I\:<E , 
U .... UI···.lDEF;,:BCOF·~E. , . 
\/ .... I...Ir-.l:OE \~:SCO I~E . 
l ... I· .. ·UNDE F;:ECD I~E , 
X-UNDERSCORE ..... . 
Y-UNDERSCORE ...... , ... , 
/-UNDEF?SCORE, . , , .... . 
DELTA-UNDERSCORE. 
o 
:I. 
.... , 
1'::. I 

..... 
-.:: .. 
I.J .• 

..? 
J , t • I I • • f • 

DOT .. 
o \l E F~ I·:·: f:~ I~ 
BPf:'~CE . 
(~~I.JDTE r 

COLON . .,.. 
DEI... erN DEF CHAR) . 

1 O~; 
:l (I I.J. 
1 0 ~5 
:I. 0 C') 

:1.07 
:1. OB 
:1. 09 
1:1.0 
:I. :i.:I. 
:1.:1.2 
:I. :1.:3 
:I. :1.'+ 
:I. :I. ~.:5 

:1.:1.6 
:1.:1.7 
:I.:I.B 
:1.:1.9 

2:1. 

.l.2B 

:I. :::~; 0 
:1. :.~:; :I. 

:I. :.~:; :::) 
:1.3 1.1. 
:1. :':::; ~~j 

:I. 3.:~·) 

:l.3{? 
:1. 1+ (I 
:1.1+:1. 
:1.1.1· ~? 
11.J·3 
:I.I.!.'+ 
:I. I.j. ~.:; 

:1.'+.:';';. 
:l.1.!·7 
:l.1.!·B 
:\.I+') 
:I. ~.:.:j () 

:I. ~:.:.; :I. 
:I.~52 

:1. ~::;3 

:I. ~:51+ 
:I. ~::; ~.::; 

Atomio Vector 221 



222 

III 

(~ 

f 
<.:,I 

h 

..i 
I< 

l 
m 
n 
o 
p 
q 
l" 

t 
u 
IJ 

c U I~ S () F~ I~ E T U I~ N I I I I I I I I I I :l ~5 ./ 
END OF BLOCK(CANNOT BE DISPLAYED) 158 
I{,0,CI< S Pf~lCE I I I • 

I...INEFEED. . 
DEI... TILDE 

I...ENG·rH OF Z····bYI'1:BDI .. , ·ftIBI .. ,E, 
(]·· .. U···,T FDI~ CDt'iiviUNIC{iTIDN T(.~IPE I 

I...OGICf~1... NU"i' , "., I 

DDUBLE (~UDT[, 

PEI~CENT , 
• It. , t I 

CENT. 

~:, , 

b 
(" 

d 
(.~ , 

of , 
<,:] 

h , 

.J ' 
k 
l I 

m , 
n , 
o 
P I 

q 

r" I 

I , , 

~:; . . 
t 
u 
IJ I 

:I. ~':';9 
:I. ,:~':I 0 
:I. I~):l. 
1 .:-:> :::.~ 

1.::> :::) 
:l.61.j· 

:1.(;":,6 
16 ""l 
16B 
:I. ~~"j~? 
:1.70 
:I.·l :I. 
:1. "r·1 

::.~ 

1 "'i"I.j. 

:I. "l'::} 
:l.BO 
:l.B:i. 

:I.B::::; 
lBt.t· 
:I. !::J ~_:.=.; 

lBt:> 

lDB 
lBc) 
:I. (?O 
:!.9:1. 
1(?2 
1 '-'):3 
1 (?I.j. 

:I. '~:'>~5 

:I. (?9 
200 
20:1. 
::.~ 0 2 
203 
20'-1· 
20!5 
206 
~.~~ 0 7 
20B 



t..1 

X 

-{ 

}. 

"('{ 

"'1 

.r 

:±: 

lIJ • • 

X 

)l 

:.~ . 
LEFT B I~I~CE . 
I~ I G H T E·: F~ I~'~I C E 
HDD1{ . 
FD F~K . 

LONG VERTICAL LINE. 
I...OG I Ci::il... D I~ . 
V E F< TIC til... E: (i I:':: • 

G F~tl\lE {iCCEi .... ~T. 

No t e : Th f:~~:;f::. lJ.n i qU('~ <,:Jr·.:":iPh i c~:; <:i'l" (~. • 

for maintenance use only. They. 
are incompatible with other. 
systems and cannot be used for. 
exchange purposes. These graphics 
may be removed or changed as a . 
result of maintenance or new. 
versions of this product. 

ALTERNATE SHRIEK. 

;.:.~09 

:?:I. 0 
2:1.1 

2:1. :.3 
::?:I.'+ 
2:1. ~.:5 

:::.~:1. 6 

;?:LB 
2:1. S'J 

22:1. 
2::?2 

2~.:.~ I.j. 

22~5 
",).,.) i. 
AO .. J':1f \ •• 1 

2;.~·"? 

22B 
229 
2:.30 
2:3:1. 

:::: ~'5 ~.:5 
236 
237 

~.:.::I.J. 0 
::.::l.j·1 

:::.::I.j.:::) 
21.j·l.j· 

21.j·~:.:.; 

21.j·f:, 
2 I.j. 7 
;?I.j·D 
2'+9 
:::. ~.:5 () 
~? ~.:5:\. 

:.~:: !.:.:j :::.~ 

2 ~::i:.3 
2~~jl.l· 

2~:;~.:5 

Note: The characters (OAVC218J), (DAV[219J)/! (DAV[2~2J), 
tI ([]AV[2'+8]) I c:)nd \ ([]AV[2!:.):I.::I) (:~r'(~ ~)imi l(iH' in cilppec))"cilnr.:e to the 
5 y en b () l ~:; of () )" t h (.~ A P L b u i l t .. - i n fun c t i () n f:; I H () lIJ (~ V (~lM I i f the f:) (~ 
c: h a )" a r.: t (~. i" f:; a 1" e u ~:; (~CI (:\ ~; A P L.. b u i l t .... i n fun c t i () n ~:; I crt EN T I~ y E I~ I~ [) r~ 
i s d i ~:;p lay (~ cI • 

Atomic Vector 223 



224 



Appendix C. EBCDIC Character Set and Special National Graphics 

The system translates the APL internal code into EBCDIC (extended binary 
coded decimal interchange code) when data is written to tape or diskette. The 
following chart shows the character that is displayed or printed for each 
EBCDIC hexadecimal value: 

0 1 2 3 4 5 6 7 8 9 A B C 0 

0 

1 

2 

3 

4 A B C D E F r ., H I (" ,. , .:: ( 
"" .... "" .... "" .- . - M .. .... 

5 & .. J K I... M N () P ~~ R ! $ * ) .... . - .... " .. .... 

6 - / S T U V W X y I 
, % , 

I .... .... " .. on. . ... . ... .... . ... .... 

7 & 
.. 

b. lTJ V 
, 

tt @ 
, 

1\ , 

8 N a b (" d f~ f q h i t .J, ::; r 

9 [] j 1< t m n () p q l" ::> <:: 0 

A - tI S t u v , ... x y 'l. n -t.J .I. r 

B 01 € , P (,) )( \ V t.\ T ::I 

C -( A B C D E F r H I N N (' (~ . ., A V ,. 

0 )- .J K I... M N () P (~ R :r. • ~ 41 

E \ S T U V W X Y I f ~. .. I 8 

F 0 :I. ,.) 3 4· 5 6 7 B 9 I N Q) 
AO •• v 

For example, The EBCDIC character 0 has a hex value FO. 

In the previous chart, graphics are assigned to all blank positions (except hex 
40) for maintenance use only. These graphics are incompatible with other 
systems and cannot be used for exchange purposes. 

E F 

+ I 

; -, 

::- ';) 

" ,," 

I.. ~ 

-E--

;:: 0 

:t , 
.,.. ~ 

r1 A 

1;1 'f 

.+' 

EBCDIC Character Set and Special National Graphics 225 



Page of SA21-9303-0 
Issued 28 April 1978 
By TNL: SN21-0284 

226 

Some of the graphics in the previous chart change when a national character 
set, other than EBCDIC, is specified. You can specify other national character 
sets by: 

• Using the Dcc system function (see Chapter 5) 

• Pressing the HOLD key, and then holding down the shift key and pressing: 

1 to select Austria / Germany 
2 to select Belgium 
3 to select Brazil 
4 to select Denmark/ Norway 
5 to select Finland/Sweden 
6 to select France 
7 to select Italy 
8 to select Japan 

9 to select Portugal 
o to select International 
T to select Spain 
x to select Spanish Speaking 
- to select United Kingdom 
+ to select French Canadian 
. to select EBCDIC 

• Having your service representative change the character set that is in effect 
when the power is turned on or RESTART is pressed. In this case, you can 
still select any of the other character sets from the keyboard or a 
user-defined function. 

The following chart shows the hexadecimal value and associated national 
graphics for each unique national character set: 

Country Hex Position 

L~A ~":;A ~;B ~":;F 6A 7fl -:'lB 7C Al CO [10 

Austria/Germany A (j $ 1\ 0 « § 6 a u 

Belgium $ 1\ U tt <fi "e & 

Brazil ~~ $ ~~ 1\ ~ a 6 A tI 0 "e 

Denmark/Norway tt :0: Po 1\ ~ tt: ~ u ~ <1 

Finland/Sweden § :0: ,., 1\ 0 -e A 0 u a it 

France () § $ 1\ U f. J -e t} 

Italy () "e $ 1\ 0- ,i i § \" ii ~ 

Japan t. ¥ tt @ -( )-

Portugal 'f, 1\ 0 A 6 ~ a 

International $ 1\ tt @ tI -( )-

Spain F~ rl N @ -( )-

Spanish Speaking $ ;1 N @ -( )-

United Kingdom $ f. « @ -( )-

French Canadian J $ 1\ U .. @ e & 

EBCDIC (: $ tt @ tI -( )-

EO 

0 

~ 

\ 

\ 

~ 

~ 

~ 

$ 

~~ 

\ 

\ 

\ 

\ 

\ 



Appendix D. 5110 Compatibility with the IBM 5100 

The 5110 APL system differs from the 5100 APL system as follows: 

• The following system commands have been added to support the diskette: 

)FILEID 
)FREE 

)PROTECT 
)VOLID 

• The system commands )PROC, )LlNK,)RESUME, and )SORT have been 
added to enhance the system. 

• The following system functions and variables have been added to maintain 
syntactic compatibility between the 5110 and APLSV: 

OAI 
DOL 
OTS 
Orr 
OUL 

Default Value 

o 0 0 0 
o 
1900 0 0 0 0 0 0 
o 

• The system variable OCC has been added to enhance the system. 

• For system commands that have device/file number and workspace 10 
parameters, only one or the other parameter needs to be specified for 
diskette interface. 

• When shared variables are used, surrogate names can be specified and 
used. 

• Overlapped printing (one line only) occurs as the 5110 processes data. 

• The EBCDIC character set is used for diskette files. 

• Lowercase characters can be entered from the keyboard. 

• The OPW value is used during VFUNCTION[D]V. 

5110 Compatibility with the IBM 5100 227 



Page of SA21-9303-0 
Issued 10 January 1978 
By TNL: SN21-0282 

• Single or multiple records on diskette direct access data files can be read or 
written when you specify the record number using a shared variable. 

• Records on the display screen can be read or written when you specify the 
record number using a shared variable. 

• A strong interrupt is caused when you hold down the SHIFT key and press 
the ATTN key. 

• References to a shared variable that has not been used to specify an 
operation to be performed causes an INTERRUPT error message. 

• If the format function is used with a shared variable during Input operations, 
alternate records are not skipped if the input data is already in character 
form. 

• File types 2, 7, and 8 can be written on tape by the 5100 and read by the 
5110, and vice versa. 

• Only workspaces written to tape with the )SAVE command by the 5100 can 
be loaded or copied into the 5110 active workspace. 5100 continued 
workspaces (file type 6) and 5110 continued workspaces (file type 26) are 
not compatible. 

• The 5110 requires 224 bytes more overhead from the user work area than 
did the 5100. Therefore, some programs that executed on the 5100 might 
generate a WS FULL error on the 5110. 

• Programs written for 5100 shared variable operations that permit you to 
specify the device/file number and then use the default file name DATA will 
not work for 5110 diskette files. The program must be changed so that you 
must also specify a simple or complex file name. 



Appendix E. 5110 APL Compatibility with IBM APLSV 

The 5110 APL system differs from the IBM APLSV system primarily because 
the 5110 is a single user system with different input/output devices and it has 
display screen output rather than typewriter output. The differences are as 
follows: 

• Turning power on signs the user on; therefore, no sign-on or 10 number is 
requfred. 

• The 5110 active workspace is generally smaller than APLSV active 
workspace. It is further limited by the I/O processor and shared variable 
processor, which use it for input/output buffers and work areas. 

• The default number of symbols is 125 instead of 256, which increases the 
available workspace for most users. 

• The library number that appears in system commands has been redefined to 
a device/file number. It is a one- to five-digit number that specifies the 
device and file number where a workspace is to be saved or loaded. If the 
number is less than four digits, it is only the file number; default device is 
assumed; otherwise, the high-order one or two digits is the device number. 

• The following commands are not supported because they apply only to 
multiterminal systems and remote systems: 

)OFF; )OFF HOLD; )CONTINUE HOLD; )PORTS; )MSGN; )MSG; )OPRN; 
)OPR; all special system operator commands 

• The following commands are not supported because the function is not 
supported: 

)GROUP; )GRPS; )GRP 

• The following commands are not supported: 

)ORIGIN; )WIDTH; )DIGITS 

They are available with the system variables 010, OPW, and OPP, 
respectively. 

5110 APL Compatibility with IBM APLSV 229 



230 

• The following commands have been added to support the 5110 processor 
and its input/output devices: 

)MARK 

)OUTSEL 

)REWIND 

)RESUME 

)FILEID 

)FREE 

)PROTECT 

)VOLID 

)LlNK 

)PROC 

)SORT 

To format files 

To specify which transactions are to be printed 

To rewind the tape unit 

To load a stored workspace and reestablish the 
system environment 

To change the file name on a diskette volume 

To make a diskette file space available for 
reallocation 

To change the write-protect indicator 

To change the volume ID or access protect indicator 

To load microcoded programs 

To open a procedure file 

To transfer control to the sort utility 

• The )CONTINUE command has been changed to save workspaces with 
suspended functions. The parameters are the same as )SAVE but the stored 
workspace cannot be copied or loaded into a 5110 with a smaller active 
workspace. 

• Since the 5110 system is not in a communications environment, the 
RESEND message will not occur. 

• 5110 is implemented with only one workspace area (no spare); therefore, 
the following error messages have been added: 

1. Function name [statement number] LINE TOO LONG - Cannot save 
functions with statements greater than 115 characters. 

2. WS TOO BIG - Workspace is too big to fit in the active workspace. 

3. NOT WITH SUSPENDED FUNCTION - Only the )CONTINUE command 
will work to write the workspace to tape. 

• For diagnostic reasons, occurrence of SYSTEM ERROR does not clear the 
workspace. The following message occurs when you attempt anything other 
than )CLEAR after a system error: 

NOT WITH SYSTEM ERROR 



• Saved works paces are not time-stamped and dated because the information 
is not available in this system; therefore, the following messages now occur 
after library operations: 

COPIED device/file wsid 
LOADED device/file wsid 
SAVED device/file wsid 
CONTINUED device/file wsid 
DROPPED device/file wsid 

• The )LlB command does more than list the saved workspaces. It lists all the 
files on the specified device. The response, therefore, contains more 
information (see )LlB command is Chapter 3). 

• The following system messages have been added for the new system 
commands and input/output operations: 

ALREADY MARKED 
DEVICE NOT OPEN 
ERROR eee d 
EXCEEDED MAXIMUM RECORD LENGTH 
INVALID DATA TYPE 
INVALID DEVICE 
INVALID DEVICE NUMBER 
INVALID FILE 
INVALID FILE NUMBER 
INVALID OPERATION 
INVALID PARAMETER 
MARKED b n 
NOT WITH OPEN FILE 
NOT WITH OPEN DEVICE 
FILE NOT FOUND 
FILE NOT UNIQUE 
WRITE PROTECT 
CTL DOMAIN ERROR 
INVALID DAT 
NO DAT 
WRONG VOLUME 
INVALID DISK FILE NAME 
LINE TOO LONG 

5110 APL Compatibility with IBM APLSV 231 



232 

• The shared variable processor on the 5110 is designed to provide an 
interface between only one APL user and one I/O processor. Thus, only 
one processor number is supported (1). 

The response to OSVO is 2, since, if it is a valid share, it is always 
accepted before the APL user regains control. (If an unsupported processor 
is specified, the response is 1.) 

The response to OSVR is the same as the response to DSVO. 

Being strictly a sequential machine, the only mode of interaction is reversing 
half-duplex; that is, the I/O processor always responds to each action by 
the APL user. Therefore, the access control vector (OSVC) is always 1 1 1 
1 for sequential operations and the CTL shared variable for direct access 
operation. 

Because there are never any outstanding offers, OSVQ always returns an 
empty vector. 

• This is a single user system without an internal clock; therefore, the 
following system variables and functions are supported as follows: 

DTS -
OAI 
OTT 
OUL -
ODL -

Time stamp 
Accounting information 
Terminal type 
User list 
Delay 

Default Value 

1900 a a a a a a 
a a a a 

a 

• The I-beam functions have been replaced with system variables or system 
functions and are not supported. 

• Catenation using semicolons had been replaced for format, but it is still 
supported on the 5110. 

• Data can be exchanged between APL and BASIC or other systems via 
communications; therefore, the following characters have been added to the 
APL character set: 

$, #, @, &,'-, %, " 

• The display screen is 64 characters wide; therefore, the initial values of 
OPW and Dpp system variables are 64 and 5 instead of 120 and 10. 

If the print width is altered to something greater than 64, any output that 
exceeds 64 characters is wrapped to another line on the display screen. 

• Bare ([!]) output followed by bare ([!]) input yields a different reply. For 
APLSV, the [!] input is prefixed by the same number of blanks as the 
previous [!] output. For 5110 APL, the [!] input is prefixed by the previous [!] 
output. (See Chapter 6 for more information on bare output followed by 
bare input.) 



• The display screen provides the ability to edit lines of data directly; 
therefore, the following changes were made to function definition: 

[NO] 

[NOM] 

[6N] 

Now displays line N in the display screen lines 1 and 0 for 
editing. 

Has the same result as [NO]; the M is erased when the 
EXECUTE key is pressed. 

- Allows line N to be deleted. N must be a single line 
number. 

The use of the A TIN key to delete a line works, but only in function 
definition mode, not while entering function definition mode. 

To prevent problems when displaying or editing statements in a 
user-defined function, the print width (OPW) is automatically set to 128 
when the 5110 is in function definition mode. The print width 
automatically returns to its previous setting when the function definition 
is closed. 

There is only limited editing space; therefore, function statements that 
are greater than 115 characters cannot be edited, and the message LI N E 
TOO LONG is displayed. 

• The 5110 will insert a quote if an uneven number of quotes is entered. 

5110 APL Compatibility with IBM APLSV 233 



234 



Error MI9ssage 

ALREADY MARKED 

DEFN ERROR 

Appendix F. Error Messages 

Error messages can result when you incorrectly use APL primitive (built-in) 
functions, user-defined functions, system commands, system variables, or 
input/ output operations. The following list contains the APL error messages 
along with some possible causes for the error condition and a suggested user's 
response. 

Cause 

The specified file was previously 
marked. 

An invalid request to use the function 
definition mode was made: 

• A \7symbol was erroneously used 
in a statement. 

• An attempt was made to reopen a 
locked function. 

• An attempt was made to reopen a 
function using more than just the 
function name. 

• An attempt was made to open a new 
function definition using the name 
of a previously defined global 
variable name. 

User's Response 

If the file(s) is to be re-marked, enter GO. 

Note: For tape files, any existing data in 
the files following the last re-marked file 
will no longer be available. 

If the statement was intended to open or 
close a function, the \7 is valid only in the 
beginning and ending positions. 

Enter a corrected statement. 

Enter a different function name or erase 
the global variable. 

• An invalid edit request was made in Enter a valid edit request. 
function definition mode. 

• An attempt W(,lS made to edit a If the suspended function execution can 
pendent function. be terminated, clear the state indicator, 

then edit the function. 

Error Messages 235 



Error Message 

DEVICE NOT OPEN 

DOMAIN ERROR 

ENTRY ERROR 

236 

Cause 

An attempt was made to read a data 
file, and an input operation to the file 
has not been specified. 

User's Response 

Assign the information required to 
specify the input/output operation to the 
shared variable. 

The function indicated by the caret (A) Determine the correct arguments for the 
cannot operate on the arguments given: function in error. Then correct the 

statement in error. 
• The result exceeds the capacity of 

the 5110 « -7.237 ... E75 or 
>7.237 ... E75). 

• A character argument cannot be 
used in an arithmetic operation. 

• The argument is not mathematically 
defined for the function (that is, 
12+ 0). 

• Numeric and character data cannot 
be cantenated together. 

• An error occurred in a locked 
function. 

• Format length is incorrect. 

An inval id character was entered. Enter a corrected statement. 



Error Message 

ERROR 001 ddd 

ER ROR 002 ddd 

ERROR 003 ddd 

ER ROR 004 ddd 

The input/output device errors are displayed in the format ERROR eee ddd, 
where eee is the error code and ddd is the device number. The device 
numbers are: 500-printer; 001-built-in tape unit; 002-auxiliary tape unit; 
011-diskette drive 1; 012-diskette drive 2; 013-diskette drive 3; 014-diskette 
drive 4. 

Many of the input/output errors relating to tape or diskette can be the result 
of a machine problem or a problem with the tape or diskette itself. Some 
problems that can be encountered with the tape or diskette are: 

• Poor or worn oxide coating 

• Binding tape cartridge spools 

• Tape cartridge drive band off 

• Diskette binding in the envelope 

• Diskette drive hole worn too large or off center 

• Diskette index hole off location 

Error codes 004 to 008 for tape and error codes 015 and 045 for diskette can 
be caused by the conditions listed previously, as well as by the causes listed 
next. You might save yourself time and any expenses associated with a service 
call if you make a thorough check of your media (tape or diskette) before 
calling your service representative. 

Following is a list, additional causes, and user's response for the input/ output 
device error messages. 

Cause User's·Response 

Page of SA21-9303-O 
Issued 28 April 1978 
By TN L: SN21-0284 

Diskette drive timing malfunction. Try the operation again. If the error 
occurs a second time, call your service 
representative. 

Command error. 

Tape error. 

Tape error or second tape not ready. 

Try the operation again. If the error 
occurs a second time, call your service 
representative. 

An attempt was made to perform tape Use the )MARK command to mark the 
operations with an unmarked tape. tape. Then try the operation again. 

Uneven winding of the tape. Move the tape to its limits using the 
procedure described under Tape Data 
Cartridge Handling and Care, in Chapter 2. 

The tape head needs cleaning. Clean the tape head using the procedure 
described under Tape Head Cleaning 
Procedure, in Chapter 2. 

Error Messages 237 



Page of SA21-9303-0 
Issued 28 April 1978 
By TNL: SN21-0284 

Error Message 

ERROR 005 ddd 

ERROR 006 ddd 

ER ROR 007 ddd 

ERROR 008 ddd 

ERROR 009 ddd 

ERROR 010 ddd 

ERROR 011 ddd 

ERROR 012 ddd 

238 

Cause 

The tape cartridge is not inserted in 
the indicated tape unit. 

An attempt was made to write on a 
tape that is file-protected. (The SAFE 
switch on the tape cartridge is in the 
SAFE position.) 

Tape read error. 

A machine malfunction might have 
occurred when data was being written 
or the tape cartridge might have been 
removed from the tape unit when data 
or a workspace was being written to 
tape. 

An attempt was made to read a record 
after the EOD address. 

User's Response 

I nsert a tape cartridge and try the 
operation again. 

If you want to write on the tape, set the 
SAF E switch on the tape cartridge off the 
SAF E position. 

Use the )LlNK command to load the tape 
recovery program to recover as much data 
as possible. 

Try the operation again. If the error 
occurs again, copy the files following the 
file that caused the errors onto another 
tape. Also, if the file is a saved work­
space file, some of the data in the file 
might be retrieved if you use the ) COpy 
command. Then use the )MARK 
command and re-mark the tape from the 
file that caused the error. 

Data is to be written to a data file, but Use the )MARK command to format a 
all the space in the file has been used. larger file and do the operation again. 

An attempt was made to write the 
active workspace on tape with a )SAV E 
command, but the specified file could 
not contain all the information from 
the active workspace. 

For record I/O operations, an attempt 
was made to write a record after the 
end of data. 

Use a larger file to save the active 
workspace. 

A file number was specified that does Specify the correct file or use the )MARK 
not exist on the tape. command to mark the tape. 

The end of the tape has been reached. Use another tape cartridge. 



Error Message 

ERROR 013 ddd 

ERROR 014 ddd 

ERROR 015 ddd 

ERROR 016-019 ddd 

ERROR 020-023 ddd 

ER ROR 024 ddd 

ERROR 025 ddd 

ERR 0 R 026-028 ddd 

ERROR 029 ddd 

ERROR 030 ddd 

ER ROFt 031 ddd 

ERROR 032-035 ddd 

Cause 

The specified device is not attached. 

Device error. 

An input/output error occurred when: 

• The system was reading or writing 
the volume label. 

• The system was reading or writing 
a file header. 

Faulty diskette. 

Hardware malfunction. 

User's Response 

Page of SA21-9303-0 
Issued 28 April 1978 
By TNL: SN21-0284 

Try the operation again. If the error 
occurs a second time, call your service 
representative. 

Use the initialization utility to reinitialize 
the diskette. 

Copy all available data onto another 
diskette, and then use the initialization 
utility to reinitialize the diskette. 

Copy all available data onto another 
diskette, and then use the initialization 
utility to reinitialize the diskette. 

Try the operation again. If the error 
occurs a second time, call your service 
representative. 

There is no VOL 1 label on the diskette. Use the initialization utility to initialize 
the diskette. 

Invalid diskette. Use the initialization utility to initialize 
the diskette. 

Hardware malfunction. Try the operation again. If the error 
occurs a second time, call your service 
representative. 

A match was not found for a search 
by key operation. 

The diskette drive cover was opened 
between accesses to the device. 

Faulty diskette. 

I/O processor error. 

See Chapter 7 for a description of search 
by key operation. 

Close the diskette drive cover, and try the 
operation again. 

Copy all available data onto another 
diskette, and then use the initialization 
function to reinitialize the diskette. 

Try the operation again. If the error 
occurs a second time, call your service 
representative. 

Error Messages 239 



Page of SA21·9303-O 
Issued 28 April 1978 
By TNL: SN21·0284 

Error Message 

ERROR 036 ddd 

ERROR 037 ddd 

ERROR 038 ddd 

ERROR 039 ddd 

ERROR 040 ddd 

ERROR 041 ddd 

ERROR 042 ddd 

ER ROR 043 ddd 

ERROR 044 ddd 

240 

Cause 

An attempt was made to use the 
)MARK command to mark a file, and 
one of the following conditions 
occurred: 

• More than the maximum number 
of files allowed on the diskette 
was specified. 

• Not enough continuous space was 
available on the diskette for the 
file. 

I/O processor error. 

I/O processor error. 

Invalid file header. 

An attempt was made to write to a 
write·protected file. 

An I/O operation was specified with 
only the file 10, and more than one file 
on the diskette have the same file 10. 

An I/O operation was specified with 
only the file 10, and no matching file 
10 was found. 

The file name already exists on the 
diskette. 

A )MARK command was issued, but 
there is not enough unallocated 
continuous bytes of storage available 
on the diskette to format the file(s). 

An attempt was made to access 
a volume protected diskette. 

An attempt was made to access a bad 
sector in the data file. 

User's Response 

Mark the files on another diskette. 

Use the compress function to place all 
the unallocated diskette space in one 
continuous area, or mark the file on 
another diskette. 

Try the operation again. If the error 
occurs a second time, call your service 
representative. 

Try the operation again. If the error 
occurs a second time, call your service 
representative. 

Copy all available data onto anothe'r 
diskette, and then use the initialization 
function to reinitialize the diskette. 

If you want to write to the file, use the 
)PROTECT command to remove the 
write·protect indicator and then write to 
the file. 

Issue the command using the appropriate 
file number. 

Insert the correct diskette and reissue the 
command, or reissue the command using 
the correct file 10. 

Issue the command or statement using a 
new file 10. 

Use the compress function to position all 
the unallocated storage as continuous 
bytes. Then try the )MARK command 
again. If the error occurs again, use 
another diskette. 

Use the )VOLIO command to turn off the 
volume protection indicator. 

See return code 22 n in Chapter 7. 



Error Message 

ERROR 045 ddd 

ERROR 047-049500 

ERROR 050500 

ERROR 051 500 

ERROR 052-053 500 

ERROR 054500 

ERR 0 R 055-059 500 

ERROR 070-072 

EXCEEDED MAXIMUM RECORD 
LENGTH 

Cause 

The diskette is inserted incorrectly. 

Printer errors. 

The printer has run out of forms. 

The printer POWER ON/OFF switch 
is turned off. 

Printer errors. 

User's Response 

Page of SA21-9303-O 
Issued 28 April 1978 
By TNL: SN21-0284 

Make sure the diskette is inserted 
correctly and try the operation again. 

Try the operation again. If the error 
occurs a second time, call your service 
representative. 

Insert forms in the printer (see Chapter 8). 

Turn the POWER ON/OFF switch on. 

Check to be certain that both the forms 
tractor pins and platen are not engaged 
simultaneously. If the error occurs a 
second time, call your service 
representative. 

The printer was turned off within two Save any data or user-defined functions in 
seconds after a system command was the active workspace, then enter the 
entered. The error continues to occur )CLEAR command to get the printer into 
when the printer is turned on again. synchronism with the 5110. 

Printer errors. 

Processor error. 

The tape or diskette was removed 
before an input/output operation 
was terminated (see Chapter 7). 

When the tape or diskette copy utility 
was used, a header record was changed 
to specify a maximum record length 
less than the largest record in the file. 

See ERROR 052-053500. 

Try the operation again. If the error 
occurs a second time, call your service 
representative. 

The data in the file cannot be used. 

Use the tape or diskette copy utility and 
copy the tape containing the invalid 
header record again, this time specifying 
a larger maximum record length. 

Error Messages 240.1 



Error Message 

FILE NOT FOUND 

FILE NOT UNIQUE 

IMPLICIT ERROR 

240.2 

Cause 

A system command or I/O operation 
was specified with only the file 10, 
and no matching file 10 was found. 

The file name already exists on the 
diskette. 

A system command was issued 
specifying only the file 10, and more 
than one file on the diskette has the 
same file 10. 

The system variable that precedes the 
error message was previously assigned 
an invalid value or was undefined in a 
function due to the system variable 
being made local to the fucntion. 

Note: This error message is not 
displayed until the system variable in 
error is used by the APL system. 

User's Response 

Insert the correct diskette and reissue the 
command, or reissue the command using 
the correct file 10. 

Issue the command or statement using a 
new file 10. 

Issue the command using the appropriate 
file number. 

Assign a valid value to the system variable 
(see Chapter 5). 



Error Message 

INCOFtRECT COMMAND 

INDEX ERROR 

INTERFACE QUOTA EXHAUSTED 

INTERRUPT 

INVALID DATA TYPE 

INVALID DEVICE 

Cause 

A system command was entered 
incorrectly: 

• The command keyword was not a 
valid keyword. 

• One of the parameters was entered 
incorrectly. 

• Too many parameters were entered 
for the command. 

The index values given are outside the 
boundaries of the array, or a primitive 
function or APL operator being 
subscripted by index [I] has been given 
an argument that does not have an Ith 
dimension. 

An attempt was made to establish 
more than 12 variable names as shared 
variables. 

The shift key was held down and the 
ATTN key pressed when the 5110 was 

User's Response 

Enter the command in its correct form. 

If a variable is being indexed, check its 
shape (p A) against the index values. 

If a primitive function or operator is 
being indexed, determine the rank(s) 
(p p A) of its argument(s); then check the 
index to see if it is equal to or less than 
the required rank. 

Check the index origin (DIO) to ensure 
that it is consistent with the statement 
being executed. 

Retract any unused share variable names. 

If an invalid input/output operation was 
attempted, check to make sure the 

processing data, or an invalid operation was specified correctly. 
input/output operation was attempted. 

An attempt was made to write to an 
interchange format file (TYPE = I), 
but the data is not a character scalar 
or vector. 

An attempt was made to specify an 
input/output operation with other 
than character data. 

The data assigned to the shared variable 
is not the correct shape and 

Change-the data to a character scalar or 
vector. 

Enclose the information required to 
specify the input/output operation in 
single quotes. 

You must assign data to the shared 
variable that is the same shape and 

representation for the creation of direct representation as the first record written 
access APL internal format data file. to the file. 

A device was specified that does not 
exist or is incorrect for the operation 
to be performed. 

Specify the correct device number. 

Error Messages 241 



Page of SA21-9303-0 
Issued 28 April 1978 
By TNL: SN21-0284 

Error Message 

INVALID DEVICE NUMBER 

INVALID DISK FILENAME 

INVALID FILE 

INVALID FILE NUMBER 

INVALID PARAMETER 

242 

Cause 

A device number that does not exist 
was specified. 

User's Response 

Specify the correct device number. 

An attempt was made to use an invalid Change the name to a valid file name (see 
diskette file name. Variable and File Names in Chapter 2). 

The file type is not valid for the Use the) LI B command to determine the 
attempted operation. For example, file type. 
an attempt was made to load a data file 
or read a workspace file. 

An attempt was made to access a file 
number that is 1 larger that the last 
marked file. 

Specify the correct file number. 

An attempt was made to load or copy a The data in the file is unusable. The file 
damaged file. The file was probably can be dropped (use the )DROP 
damaged by the tape being removed command) and reused. 
from the tape unit before a save 
operation was complete. 

The wrong file 10 was specified. 

An attempt was made to load a 5100 
continued file (file type 6) into a 5110. 

An attempt was made to use a file 
type 2 (interchange file) as a 
procedure file. However, the file 
has records that exceed 128 
characters, or the BASIC SAVE 
DATA command was used to create 
the file. 

The file number 0 was specified for a 
)LOAD, )SAVE, )CONT, )DROP, 
)COPV, or )PCOPV command. 

An attempt was made to specify an 
input/output operation to a data file, 
but the file number was not valid. 

A keying error was made, or an 
incorrect parameter was entered when 
you specified an input/output 
operation. 

A keying error was made when you 
entered the parameters for a system 
command. 

Use the ) LI B command to find the 
correct file I D, and reenter the statement. 

Load the file into a 5100, and store the 
file on tape using the )SAVE command. 
Then load the saved file into the 5110. 

Use shared variables to read the file, and 
then rewrite the file with no records 
exceeding 128 characters. 

Reenter the command specifying the 
correct file number. 

Use the) LI B command to find the 
correct file number. Then reenter the 
information required to specify the 
input/output operation. 

Enter the information required for the 
input/output operation or system 
command again, correcting the keying 
errors. 



t:H~f Message 

IP $TATUS: INVALID OPERATION 
I 

~f:N~TH ERROR 

f..H't~ TOO LONG 

NONCE 

Cause 

An invalid input/output operation was 
attempted, such as: 

• An attempt was made to read the 
file header in other than 
nontranslate mode (TYPE = N). 

• The shared variable was referenced 
more than once to check the return 
code. 

• A proqessor other than 1 (the left 
argument for the 0 SVO function) 
was established for the shared 
variable. 

This message is followed by the 
INTERRUPT error message. 

The shapes of the two arguments are 
not valid for the function indicated by 
the caret (1\). 

An attempt was made to edit a 
statement' (in a user-defined function) 
that is greater than 115 characters. 

An attempt was made to save a 
workspace that contained a 
user-defined function with a statement 
having more than 115 characters. In 
this case, the error message is preceded 
by the function name and the statement 
number that caused the error. 

An I-beam function was used. These 
functions are not used in the 5110 
APL system. 

An attempt was made to index a 
portion of an array with a rank greater 
than 14. 

An attempt was made to use a take or 
drop operator on an array with a rank 
greater than 9. 

An attempt was made to laminate an 
array with a rank greater than 20. 

User's Response 

Respecify the operation using the 
TYPE = N parameter, and then try the 
operation again. 

Assign the return code to another variable 
if the return code must be checked more 
than once. 

Retract the shared variable offer, and 
then make the offer again using a 1 as the 
left argument for the 0 SVO function. 

Make sure the arguments are val id for the 
function. Then reshape (restructure) the 
arguments. 

Break up the statement into two 
statements, or use the OCR and OFX 
functions to edit the statement. 

Use the OCR function to make the 
user-defined function a matrix; then save 
the workspace on tape. 

Do not use the I-beam functions. 

Display the entire array, or break the 
array into smaller sections. 

Break the array into smaller rank arrays. 

Break the array into smaller rank arrays 
and reshape. 

Error Messages 243 



Error Message 

NOT COPIED: names 

NOT FOUND: names 

NOT SAVED, 
THIS WS IS workspace ID 

NOT WITH OPEN DEVICE 

NOT WITH SUSPENDED FUNCTIONS 

NOT WITH SYSTEM ERROR 

RANK ERROR 

244 

Cause 

A )PCOPV was issued, but each object 
named in the message was not copied. 
The active workspace already contained 
a global object with the same name. 

User's Response 

Issue a )COPV command if the namep 
objects should be copied. 

A )COPV was issued, but each object Establish and use another shared v~fiaple 
named in the message was not copied. name, and erase the existing shared 
The active workspace already contained variable name if the objects should ~e 
a shared variable with the same name. copied. 

An ) E RASE command was issued, but Reissue the command using the corf~~t 
the global objects named in the message object names. 
were not found in the active workspace. 

A )COPV or )PCOPV command was 
issued, but the specified global object 
does not exist in this specified 
workspace. 

A )SAVE or )CONTINUE command 
was issued, but the stored workspace 
I D is not the same as the active 
workspace I D. 

An attempt was made to issue a system 
command or specify an input/output 
operation to a tape unit that is already 
being used for input/output operations. 

An )OUTSE L command was issued, 
but printer output has been specified 
for a shared variable. 

An attempt was made to do a )SAVE, 
)COPV, or )PCOPV operation, and the 
active workspace contains a suspended 
function or an open request for quad 
input. 

An attempt was made to do an 
operation other than )CLEAR after a 
SYSTEM ERROR occurred. 

An attempt was made to use a function 
that requires the rank of the arguments 
to conform, but they do not. For 
example, a function requires the rank of 
the arguments to be the same, but they 
are not. 

An attempt was made to use an 
argument whose rank is too large for 
the operation. 

Reissue the command using the corfe~t 
object name or stored workspace. 

Use the correct I D or change identif,caliqn 
of the active workspace, using the )WS'Q 
command; then reissue the )SAVE 
command. 

Terminate the input/output oper~'i~n, or 
wait until the input/output oper~tiQ" is 
complete before issuing the commct"ld or 
specifying another input/output 
operation to the tape unit. 

Retract the printer shared variable Qffer. 

Clear the suspended function or req~est 
for quad input by using -+ (right arrow). 

(See SYSTEM ERROR.) 

Make sure the arguments are valid. T"on 
reshape (restructure) the argument,. $0 

that they have the correct rank (p p A). 

The number of semicolons in the index Use the correct number of semicolon~. 
does not equal the rank minus 1. 



Error Message 

SI DAMAGE 

SYMBOL TABLE FULL 

SYNTAX ERROR 

Cause 

The state indicator was made invalid 
because one of the following occurred: 

• A function exists in the state 
indicator list, but the function was 
erased. 

• A suspended function's header was 
changed or displayed [00] . 

• A label was added, removed, or 
changed on the suspended statement. 

More symbols were used than the 
number of symbols allowed. 

User's Response 

Use the )SI or )SINL command to display 
the state indicator. Clear out the state 
indicator by entering -+ for each * in the 
)SI list. 

Use the )SA V E command to save the 
workspace, use the )CLEAR command to 
clear the active workspace, increase the 

The symbol table in the stored number of symbols allowed by using the 
workspace is full, and a load operation )SYMBOLS command, then use the 
was attempted. This error is caused by )COPY command to copy the stored 
the latent expression variable even if it workspace into the active workspace. 
has not been assigned. 

The part of the statement indicated by 
the caret (/\) is syntactically invalid. 

The symbol used for the APL built-in 
function is not a valid symbol. 

Note: Erasing a symbol from the active 
workspace does not remove it from the 
symbol table however, saving the active 
workspace and loading it again will 
remove any unused symbols from the 
symbol table. 

Enter a corrected statem'ent. Be sure to 
check for the correct number of 
parentheses and arguments. 

See Appendix B for a I ist of the 
characters that can be confused with valid 
APL built-in functions. Reenter the 
statement using the correct symbol for 
the APL built-in function. 

Error Messages 245 



Error Message 

SYSTEM ERROR 

VALUE ERROR 

WRITE PROTECTED 

WRONG VO LUM E 

246 

Cause 

A malfunction occurred in the APL 
system program, and the data in the 
active workspace is lost. 

An attempt was made to load a stored 
workspace file after the file header was 
changed by the tape or diskette copy 
utility. 

User's Response 

Enter the )CLEAR command; if the error 
continues to occur, call your service 
representative. 

Note: There might be some system data 
areas displayed with this message. 

If SYSTEM ERROR occurred on a load 
or copy operation, the error may be 
caused by a bad stored workspace file. 
Try loading or copying another stored 
workspace file to see if the error occurs 
again. 

Enter )CLEAR and use the )COPY 
command to copy the stored workspace 
into the active workspace. Then use the 
)SAVE command to write the data back 
onto the stored workspace file. Now, the 
) LOAD command can be used to load the 
stored workspace into the active 
workspace. 

The object indicated by the caret (1\) Assign a value for the indicated variable 
has not been given a value: or correct the function so that it has an 

explicit resulto The value must be 
• If the object is a variable name, the assigned before the object is used. 

variable was not previously assigned 
a value. 

• If the object is a function name, the 
function header did not specify a 
result, the function did not assign a 
value to the result variable, or the 
function does not exist. 

An attempt was made to write 
information to a diskette file, and the 
write-protect indicator is on. 

An attempt was made to read from or 
write to a diskette data file, and the 
diskette is not on the same diskette 
drive as when the operation was 
specified. 

The RESUME command was issued and 
the diskette with the data file is not in 
the same drive as when the original 
input/output operation was specified. 

If the information is to be written to the 
file, enter )PROTECT file number OF F 
to remove the write-protect indicator. 

Place the diskette containing the data 
file in the same diskette drive as when the 
input/output operation was specified, and 
try the operation again. 



Error Message 

WS TOO BIG 

Cause 

One of the following conditions 
occurred: 

User's Response 

• An attempt was made to load a Use a 5110 with enough internal storage. 
workspace stored with the 
)CONTINUE command into a 5110 
with less internal storage. 

• An attempt was made to load a 
workspace stored with the 
)CONTINUE command into the 
active workspace, but IMFs have 
been applied, reducing the 
available internal storage. 

• An attempt was made to write the 
active workspace (using the 
)CONTINUE command) into a file 
that is too small. 

Restart to clear the IMF, load the stored 
workspace into the active workspace, 
)SAVE the active workspace, apply the 
IMFs, then load the stored workspace 
again or copy only the required objects. 

Use a file that is large enough. 

Error Messages 247 



Error Message 

WS FULL 

WS LOCKED 

WS NOT FOUND 

248 

Cause 

One of the following conditions 
occurred: 

• A )COPY or )PCOPY command 
was issued, but the active workspace 
could not contain all of the objects 
requested. 

• The active workspace could not 
contain all the information required 
to build a define function. 

• The active workspace could not 
contain the intermediate results of 
an APL expression. 

• The active workspace could not 
contain information required to do 
input/output operations. 

• A workspace was written to tape 
with a )SAVE command, but the 
extra storage required to load the 
stored workspace back into the 
active workspace exceeds the 
available storage. 

• Too many symbols were specified 
in a )SYMBOLS command. 

The workspace is password-protected, 

User's Response 

Erase unnecessary objects. If there is still 
not enough space: 

Partition the workspace into two or 
more workspaces with related 
functions. 

Store data in a separate workspace or 
in a data file. 

Reprogram using smaller intermediate 
results. 

Clear the state indicator with -+ if 
suspended functions exist. 

Reduce the size of the symbol table. 
See note under )SYMBOLS. 

Use the )COPY command to make the 
stored workspace into two workspaces. 

Reenter the command with the correct 
password specified. 

Reenter the command with the correct 
but no password or the wrong password password specified. 
was specified in the command. 

The workspace is not 
password-protected, and a password 
was specified. 

Enter without a password. 

A )LOAD, )DROP, )COPY, or )PCOPY Reenter the command with the correct 
command was issued, but there is no 
stored workspace with the identification 
specified in the command. 

workspace identification. 



Appendix G. Attaching a TV Monitor 

Generally, modifying a standard TV set and using it as a video monitor yields 
less satisfactory results than a regular video monitor. This is because the same 
level of quality is not built into TV receivers as is found in monitor class units. 
For example, the contrast and resolution are not as good on a modified TV 
receiver; thus the image is not as sharp and usually more difficult to read. 

However, if you choose to modify a TV receiver and use it as a video monitor 
you must observe the following or you may damage the 5110 and expose 
yourself to a severe electriC shock when you attempt to hook up the TV set to 
the IBM 5110. 

A modified TV set must have isolation between the primary line voltage and 
the set's chassis and circuitry. You can usually accomplish this by using an 
isolation transformer between your outlet line voltage and the input voltage to 
the TV set. This transformer should be permanently wired into the circuit. The 
new input power plug must be a three- prong grounded plug with the ground 
connected to the chassis of the TV set. This grounding circuit must be 
electrically connected to the 5110 grounding circuit. 

Before the video input is connected to anything, it should be tested to verify 
that the connector's external shell is at ground potential and that no line 
voltage is present on either the external shell or the center conductor. 

It is the responsibility of the TV modifier to ensure that the input circuit meets 
the requirements of the 5110 output and will not damage the 5110. 

Three-Prong 
Grounded Plug 

Isolation 
Transformer 

~_II~ 

TV Output 
Connector 

Note: If you do elect to modify a TV receiver for use as a video monitor, IBM 
accepts no responsibility for safety precautions during conversion and hookup, 
for damages incurred to the TV receiver or 5110, or for the quality of the TV 
receiver as a video monitor. 

Attaching a TV Monitor 249 



250 



I BM is grateful to the American National Standards 
Institute (ANSI) for permission to reprint its definitions 

from the American National Standard Vocabulary for 

Information Processing (Copyright 1970 by American 

National Standards Institute, Incorporated), which was 

prepared by Subcommittee X3K5 on Terminology and 

Glossary of the American National Standards Committee 

X3. 

ANSI de'finitions are identified by an asterisk. An 

asterisk to the right of the term indicates that the entire 

entry is reprinted from the American National Standard 

VocabuJclry for Information Processing. 

active mferent: The usage of a name that was most 
recently localized, or the global usage if the name' is not 
localized. 

active workspace: A part of internal storage where 
data and user-defined functions are stored and 
calculations are performed. 

ADD operation: An operation using a shared variable 
to add information to an existing data file. 

alphameric keys: The keys on the left side of the 
keyboard whose arrangement is similar to that of a 
typewriter keyboard. 

APL intEtrnal data format: See internal data format. 

arguments: Data supplied to APL functions. 

array: A collection of data that can range from a single 
item to fil multidimensional data configuration. Each 
element of an array must be the same type as the other 
elements (all characters, all numeric, or all logical). 

assign: To use the + (assignment atrow) to associate a 
name with a value. 

avaiiablEt storage: The number of unused 1024-byte 
blocks of storage in a file on tape. 

bare output: Output displayed without the cursor 
returning to the next line. 

Glossary 

basic data exchange: A diskette data exchange format 
that uses 12S-byte sectors. The basic exchange format 
allows you to exchange data between the 5110 and 

other IBM systems. For example, data recorded on the 
diskette using a 3741 can be processed using a 5110. 

branch instruction: An instruction that modifies the 
normal order of execution indicated by the statement 
members. Branch instructions always begin with a .... 
(branch arrow). 

branching: Modifying the normal order of execution 
indicated by the statement numbers. 

built-in function: See primitive function. 

byte: A unit of storage. For example, a character takes 
1 byte of storage. 

character constants: Characters that do not represent 
numbers, variables, or functions. Character constants 
are enclosed in single quotes when they are entered 
(except for [!]input); however, the single quotes do not 
appear when the character constants are displayed. 

command keyword: The name of a system command 
including the right parenthesis. For example, the 
command keyword for the )MARK command is )MARK. 

comment: An instruction or statement that is not to be 
executed. A comment is indicated by a A as the first 
character. 

conditional branch: A branch that is taken only when a 
certain condition is true. 

coordinate: A subset of data elements in an array. For 
example, a matrix has a row coordinate and a column 
coordinate. 

cursor: The flashing character on the display that 
indicates where the next input from the keyboard will be 
displayed. 

data file: A file on tape or diskette (file type 02, OS, 09, 
10, or 15) where data is stored by means of a share 
variable. 

Glossary 251 



defective record: A 512-byte block of storage on tape 
that cannot be read. 

device/file number: A number that specifies the device 
and file to be used for input or output operations. 

direct access data file: A diskette data file in which 
records can be read from or written to by means of a 
specified record number. 

DISPLAY operation: An operation using a pair of 
shared variables to read and write data on the display 
screen. 

dual-language machine: A 5110 that can execute 
either APL or BASIC statements. 

dyadic functions: Functions that require two arguments 
(a right and a left argument). 

editing: Modifying an instruction or statement that 
already exists. 

element: The single item of data in an array. 

empty array: A variable that has a zero in its shape 
vector. The array has no (zero) elements. 

execute: To press the EXECUTE key to process data 
on the input line. 

execution: The processing of data. 

execution mode: The mode that is operative when 
statements or functions are executed. Contrast with 
function definition mode. 

explicit result: The result of a function that can be 
used in further calculations. The function must contain a 
result variable if it is to have an explicit result. 

file: A specified amount of storage on the media. The 
media is formatted into files by the )MARK command. 

file 10: The name of a file on the media. If the file 
contains a stored workspace, the file 10 is the same as 
the stored workspace 10. 

file type: The identification of the type of data stored in 
a file. 

function body: The statements within a user-defined 
function. These statements determine the operation(s) 
performed by the function. 

252 

function definition: The definition of a new function (a 
user-defined function) to solve a problem. 

function definition mode: The mode that is used for 
defining or editing user-defined functions. The 'iJ 
symbol is used to change the mode of operation. 
Contrast with execution mode. 

function header: A definition that states the function 
name, number of arguments, local names, and whether 
or not the function will have an explicit result. 

general exchange data file: A file with data in the 
general exchange format. 

general exchange data format: A data format 
consisting of all character scalars or vectors. This file 
can be used as a 5110 BASIC source file. 

global names: Names having a value or function that 
can be used within or outside a user-defined function 
unless the name has been made local to a user-defined 
function that is executing, suspended, or pendent. 
Contrast with local name. 

identity element: The value that generates a result 
equal to the other argument of a function. 

IN operation: An operation USing a shared variable to 
read information from a data file. 

index entry [I]: (1) A value or values enclosed in 
brackets that select(s) certain elements from an array. 
(2) A value enclosed in brackets that determines the 
coordinate of an array to be acted on by a primitive 
mixed function. 

index origin: Either 0 or 1, and the lowest value of an 
index. The index origin is set to 1 in a clear workspace 
and can be changed by means of the 010 system 
variable. 

INR operation: An operation using a pair of shared 
variables to read records from a direct access data file. 

lOR operation: An operation using a pair of shared 
variables to read records from or write records to a 
direct access data file. 

IORH operation: An operation using a pair of shared 
variables to read records from or write records to a 
direct access data file. 



input: Information entered from the keyboard or read 
from tape by means of a shared variable. 

input line: A line consisting of the 128 positions on 
lines 0 and 1 of the display screen. Any information on 
the input line will be processed when the EXECUTE key 
is pressed. 

instruction: A function or series of functions to be 
performed. 

integer: A whole number. 

interactive function: A user-defined function that 

requests input from the keyboard as it executes. 

internal data file: A file containing data in the internal 
data format. 

internal data format: The format in which the data is 
stored in the 5110. 

keyword: See command keyword. 

labels: Names that are placed on statements in a 
user-defined function for use in branching. 

latent referent: The usage of a name that has been 
made unavailable by a more recently called function. 
The usage for that name cannot be accessed. 

length: (1) The length of a vector is the number of 

elements in the vector. (2) The length of a coordinate of 
other arrays is the number of items specified by that 
coordinate. For example, a matrix has a row coordinate 
with the length of 2; therefore, the matrix has two rows. 

library: A tape cartridge or diskette where data is 
stored for future use. 

local name: A name that is contained in the function 
header and has a value specified to the user-defined 
function during the execution of that user-defined 
function. 

locked function: A function that cannot be revised or 
displayed in any way. The opening or closing 'V was 
overstruck with a "'. 

logical data: (Boolean data) Data that consists of all 
ones and :zeros. 

matrix: A collection of data arranged in rows and 
columns (rank 2). 

media: Tape or diskette storage. 

mixed function: A function having results that may 
differ from the arguments in both rank and shape. 

monadic functions: Functions that require one 
argument. The argument must be to the right of the 
function symbol. 

multidimensional array: An array that has two or more 
coordinates. 

n-rank array: An array that has more than two 
coordinates (a rank of more than 2). 

niladic function: A user-defined function that does not 
require any arguments. 

numeric keys: The keys on the right side of the 
keyboard whose arrangement is similar to that of a 
calculator keyboard. 

object: A user-defined function or variable name. 

open data files: Tape or diskette data files that are 
currently being used for input and / or output operations. 

operators: Controls that have as their arguments dyadic 
primitive scalar functions. These arguments are applied 
to arrays in a specified way. 

OUT operation: An operation using a shared variable to 
write information into a sequential access data file. 

OUTF operation: An operation using a shared variable 
to write information (sequentially) to a direct access data 
file. 

output: The results of statements processed by the 
5110. 

overstruck character: A character formed by entering 
one character, backspacing, and entering another 

character. Only certain combinations of characters can 
form overstruck characters. 

parameters: (1) Information needed by a system 
command (such as device/file number). (2) Information 
required to open a data file or to specify printer output. 

password: A sequence of characters that must be 
matched before the contents of a stored workspace can 
be loaded or copied into the active workspace. 

Glossary 253 



pendent function: Any function in the state indicator 
list that is not a suspended function. 

physical record: A 512-byte block of storage on tape 
or one sector on diskette. 

plane: The third coordinate of an n-rank array (planes, 
rows, and columns). 

primitive function: The functions that are part of the 
APL language (such as , + - T x). 

PRT operation: An operation using a shared variable to 
output data on the printer. 

rank: The number of coordinates of an array (p p). 

record: Data assigned to a shared variable. 

result variable: A variable to the left of the assignment 
arrow in the function header where the results of the 
function are temporarily stored for use in further 
calculations. 

return code: A code assigned to a shared variable to 
indicate whether or not the operation was successful. 

scalar: A single data item that does not have a 
dimension (0 = p p DATA). 

scalar function: A function that is applied to 
corresponding elements in arguments. The results of 
scalar functions are the same shape as the arguments. 

scale: An integer representing the power of 10 in 
scaled representation. 

scaled representation: A value stated in a convenient 
range and multiplied by the appropriate power of 10. 

scroll: To move the information on the display screen 
up or down. 

shape: The length of each coordinate of an array. 

sector: A portion of a diskette cylinder. A sector can 
be 128, 256, 512, or 1024 bytes; however, all sectors 
on a diskette cylinder must have the same number of 
bytes. 

sequential access data file: The data in the data file 
must be retrieved in the same order as the data was 
written to the data file. 

254 

shared variable: A variable shared by the active 
workspace and shared variable processor. Used to 
transfer data for input/output operations. 

significant digit: *A digit that is needed for a certain 
purpose, particularly one that must be kept to preserve a 
specific accuracy or precision. 

single-element array: An array with a shape of all 1's; 
for example, a matrix with one row and one column. 

state indicator: An entry that contains information on 
the progress (statement number of the statement being 
executed) of user-defined function execution. Can be 
displayed to show all suspended and pendent 
user-defined functions and localized names. 

statement: A numbered instruction within a 
user-defined function. 

statement number: The number of a statement within 
a user-defined function. 

stop control (511): A function that stops execution of a 
user-defined function before the execution of a 
specified statement. 

stop vector: A vector that specifies the statements 
when stop control is used. 

stored workspace: The contents of the active 
workspace stored on tape. 

strong interrupt: The result of holding down the shift 
key and pressing ATTN. The execution of an expression 
or a user-defined function is abandoned. Also, for 
user-defined functions, the pendent functions are 
cleared from the state indicator. 

suspended: See suspended function. 

suspended execution: See suspended function. 

suspended function: A function whose execution has 
stopped because of an error condition, the ATTN key 
being pressed, or stop control being used. 

system commands: A set of commands used to 
manage the active workspace and tape or printer 
operations. 

system functions: Functions used to change or provide 
information about the system. 



system operation: An operation that processes input 
data. 

system variable: A variable that provides controls for 
the system and information about the system to the 
user. 

trace control (T6): A function that displays the results 
of speci'fied statements during the execution of a 
user-de'fined function. 

trace vector: A vector that specifies the statements 
used in trace control. 

transferring data: Using a shared variable to write data 
to tape, read data from tape, or output data to the 
printer. 

user-de'fined functions: New functions using the 
primitivE' functions but defined by the user. See function 
definition mode. 

variable name: A name associated with the value of a 
variable. 

variables: Data stored in the 5110. 

vector: An array with one dimension (1 = p p DATA). 

weak interrupt: The result of pressing the AnN key. 
The execution of a user-defined function is suspended. 
Contrast with strong interrupt. 

workspace: See active workspace. 

workspace available: The amount of unused storage 
(number of unused bytes) in the active workspace 
(OWA). 

workspace 10: A name given to the contents of the 
active workspace. A stored workspace has the same 
name as the active workspace when the contents of the 
active workspace were written to tape. 

Glossary 255 



256 



fD (O-U-T) symbol 165 
)CLEAR 32,35 
)CONTINUE 32,35 
)COPY 32 
)DROP 17,32 
)ERASE 32,38 
)FILEID 32 
)FNS 33,39 
)FREE 32,40 
)LlB 23,33,41 
)LlNK '18,33,43 
)LOAD 32,44 
)MARK 23,32,45 
)OUTSEL 33,47 
)OUTSEL OFF 196 
)PCOPY 32,48 
)PROC17, 33,49 
)PROTECT 32, 50 
)RESUME: 32,51 
)REWIND 23,33,52 
)SAVE 32,52 
)SI 33, f;3 
)SINL 33,53 
)SORT :~3, 54 
)SYMBOLS 32,54 
)VARS 33,55 
)VOLID 32,56 
)WSID 32,57 
[[]J 168 
[0 N] 168 
[NO] 168 
o (quad) 164 
DAV 144 
OCC 10,145 
OCR 149 
OCT 140 
o EX 15,3 
o FX 151 
Oinput '18 
010 14'1 
o LC 66,143 
o LX 143 
ONC 154 
ONL 153 
OPP 142 
OPW 142 
ORL 143 
OSVO 177 
OSVR 198 
o SVRsystem function 199 
OWA 143 
[!] (quad quote) 164 
[!] input '18 
-+0 159 
V symbol 134 

active workspace 14 
adapter for tv monitors 
add data to a data file 179 
add data to a file 182 
ADD operation 179,182,187 
add statements 169 
adjust copy control dial 212 
alphabetic character mode 5 
alphabetic keys 4 
already marked message 18 
AND function 78 
APL character set 217 
AP L characters 2 
APL command keyword 4 
APL internal code 185 
AP L internal data format 181, 184, 185 
APL shared variable 177 
AP L symbols 4 
arccos 73 
arccosh 73 
arcsin 73 
arcsinh 73 
arctan' 73 
arctanh 73 
arithmetic symbols 4 
assign an empty vector 197 
assignment arrow 136 
asynchronous communications 43 
atomic vector 144,219 
attention key 6 
audible alarm 29 
audible alarm control with 0 CC 147 
auxiliary tape unit 27 

backspace key 8 
bare output 166 
BASIC 2 
BASIC source file 181 
BASIC statement keyword 4 
BASIC/APL switch 2 
basis for general exchange 185 
binomial function 76 
blank character 8 
branch arrow 136 
branch instructions 160 
branching 158 
brightness control 1 
built-in functions 59 
built-in tape unit 27 
bytes 13 
B9 185 

Index 

Index 257 



canonical representation 0 CR 149 
catenate function 90,94,95 
ceiling function 65 
character 1 
character constants 12 
character mode 5 
character set 21 7 
circular function 73 
CLEAR 32,35 
CLEAR WS 3 
CMD key (command key) 7 
comment symbol 138 
communications adapter 1 
comparison tolerance 35,140 
complex name 16 
compress function 90 
conditional branch 159 
conjugate function 60 
console control 14, 145 
CONTINUE 32,35 
control information 189, 194 
COpy 32 

copy control dial 212 
copy display 7 
cosine 73 
create a new data file 179 
creating a direct access file 188 
CTL 178 
CTL prefix 181, 186 
cursor 1 
customer support fu nctions 29 
cylinder number 42 

OAT 20,178 
OAT shared variable 190,191 
data format 181, 184 
deal function 77 
decimal digits 11 
decode (base value) function 91,112 
default device 28 
default file 10 180 
default type 184 
delete 9 
delete statements 169 
device addressing 27 
device/file number 17,180,182 
direct access 177, 181 
direct access operations 188 
direct access to display screen 186 
direct access type 1, 17 
diskette 16 
diskette compress 29 
diskette drives 1 
diskette recovery 29 
diskette-to-diskette-copy 29 
diskette-to-tape-copy 29 
DISPLAY 186 
DISPLAYoperation 194 
display registers switch 4 
display screen 1 
display screen control with 0 CC 146 
display screen, read from 194 
display screen, write to 194 

258 

displaying a user-defined function 168 
divide function 64 
domain error 73 
DROP 17,32,38 
drop function 104 
dual-language mach ine 3 
dyadic 157 
dyadic format function 124 
dyadic function 59 

EBCDIC (extended binary coded decimal interchange code) 6 
EBCDIC character set 225 
EBCDIC code 185 
edit statements 170 
enclosing quotes 12 
encode (representation) function 91, 115 
equal to function 84 
ERASE 32,38 
error messages 235 
ERRORSET 16 
establish a shared variable 177 
exchange data file 41 
exchange data format 184 
exchange with other products 185 
exclusive OR function 88 
execute function 89, 123 
existing data file type 185 
expand function 90,99 
exponential function 70 
expunge function 0 EX 153,179 

factorial function 75 
file 16 
file header 31 
file 10 17 
file 10, default 180 
file type 15 
file type 02 181 
file type 08 181 
file type 09 or B9 185 
file type 10 184 
FILEID 32,39 
fix function 0 FX 151 
floor function 67 
FNS 33,39 
format fu nction 89, 1 24 
formatted diskette 31 
formatted tape 31 
format 

APL internal 181,184,185 
general exchange 181,184 
unblocked and unspanned 185 

forms requirements 208 
forward space key 8 
FREE 32,40 
function definition 17, 155 
function editing 168 
fu nction header 1 56 



general exchange data file 41 
general exchange data format 181, 184 
general ized loader 29 
generalized transpose function 90,110 
global names 160 
global objects 37 
grade down function 89,101 
grade up function 89, 100 
greater than function 83 
greater than or equal to function 86 

HEX value 42 
HOLD key 5 
hold state 9 
hyperbol ic cosine 73 
hyperbolic sine 73 
hyperbol ic tangent 73 

I/O error 18 
I/O processor 
10= (file 10) 

177 
180, 183 

IMF (internal machine fix) 14,36 
IN operation 179, 187 
in process 10 
index generator function 89,104 
index of function 90,105 
index origin 35,141 
indicator lights 1 
initialization function 25 
inner product operator 129 
input 1,177 
input/output operations 177, 187 
input/output summary 204 
INR operation 182,193 
insert 8 
insert forms 209 
insert statements 169 
integer 11 
interactive fu nctions 164 
internal checks 3 
internal storage 31 
invalid disk file name 16 
invalid parameter 16 
lOR operati()n 182,188 
10RH operation 182,188 

key value 192 
keyboard 
keyboard input selection with 0 CC 147 

label display 29 
labels 168 
laminate function 90,96 
laminated records 190 
latent expression 0 LX 143 
left argument 29 
less than function 85 
less than or equal to function 87 
LIB 23,33,41 
line counter 0 LC 143 
LINK 18,33,43 
LOAD 32,44 
local names 160 
locked fu net ions 167 
logarithm function 72 
logical (boolean) data 12 
L32 64 R32 switch 3 

magn itude fu nction 68 
MAR K 23, 32,45 
mathematical gamma function 75 
matrix 15 
matrix divide function 91, 121 
matrix inverse 89,121 
maximum function 66 
maxsize 46 
membership function 91,120 
message INTERRUPT 6 
microcoded programs 43 
minimum function 67 
minus function 62 
monadic 157 
monadic format function 124 
monadic functions 59 
MSG=OFF 180 

N-rank arrays 59 
name classification function 0 NC 154 
name list function 0 N L 153 
NAND function 81 
naper ian base 70 

. national graphics 225 
natural log function 71 
negation function 61 
niladic 157 
NOR function 82 
not equal to function 88 
not function 80 
number of records to access 189 
numeric key 4 
numeric value precision 12 
numeric value range 11 

Index 259 



object 34 
operation to be performed 1 79 
OR fu nction 79 
OUT operation 179, 187 
outer product operator 132 
OUTF operation 182,188 
output 2, 177 
OUTSEL 33,47 
OUTSEL OFF 196 
overlapped printing 15 
overstruck characters 12 

pair of shared variables 178, 181 
parentheses 138 
password 34 
PCOPY 32,48 
pi times function 72 
power function 71 
power on/off switch 3 
primitive mixed function 89 
primitive scalar functions 59 
print data 186 
pri nt width 0 PW 142 
printer 15, 207 
printer stacker 215 
printing data 196 
printing precision D PP 142 
PROC 17,33,49 
procedure file 17 
PROTECT 32,50 
PRT 186 
PRT operation 196 
pseudoinverse of the matrix 121 

quad 137 
quad quote 137 

random link D RL 143 
random number seed 35 
ravel function 89,94 
read a direct access file 188 
read data from a data file 179, 187 
read file header 185 
read from a file 182 
read multiple records 184,190 
reading a direct access file 193 
reading from the display screen 194 
reading records 190 
reciprocal function 64 
records, laminated 184 
reduction operator 1 27 
reopening function definition 171 
replace a ribbon 212 
replace statements 169 

260 

reshape fu nction 
residue fu nction 
restart procedure 
restart switch 3 
RESUME 32,51 

90,93 
69 
2 

retract the shared variable offer 
return code 179 
retu rn codes 200 
reverse display switch 4 
reverse function 89,105 
REWIND 23,33,52 
right argument 29 
roll function 77 
rotate function 90, 107 
rotation function 90 

SAVE 32,52 
scaled representation 11 
scan operator 134 
scientific notation 11 
scroll up key 5 
search by key 192 
search complete 192 
sector 21 
sector boundaries 21 

198,199 

sequential access 17, 177, 179 
sequential access operations 187 
serial I/O adapter 1 
set tab with D CC 149 
shape function 89,92 
shared variable 9, 177 
shared variable offer 177 
shared variable pair 178, 181 
SI 33,53 
signum function 62 
sine 73 
SINL 
SORT 

33,53 
33,54 

special character combination 4 
specifying the operation 179 
stacker 215 
standard APL character mode 4 
starting character number 194 
starting record number 189 
stop 175 
strong interrupt 6 
successful operation 200 
surrogate name 178 
SYMBOLS 32,54 
syntax 35 
SYSAREA 16 
system functions 145 
system variables 1 39 



take function 90, 103 
tape data cartridge 23 
tape recovery 29 
tape-to-tape copy 29 
terminating the operation 197 
times function 63 
trace 173 
trace and stop controls 16 
translated data 185 
transpose function 89,109 
trigonometric function 74 
TV monitor 249 
type of file 181,184 
TVPE'" 181,184 
TVPE=A 181, 184 
TVPE"" I '181,184 
TVPE=M 185 
TVPE=N 185 
TVPE=U 185 

unblocked and unspanned format 185 
update a delta file 182 
update a direct access file 188, 191 
user-defined functions 6, 155 

variable and file names 16 
VARS 33,55 
VOLID 32,56 

weak interrupt 6 
workspace available 0 WA 143 
workspace I D 34 
write data to a data file 187 
write multiple records 191 
write to a direct access file 188 
write to a new file 182 
write-protect indicator 42 
writing records 191 
writing to the display screen 194 
WSID 32,56 

5103 Pri nter 207 
5110 compatibility 227,229 

Index 261 



262 



READER'S COMMENT FORM 

Please use this form only to identify publication errors or request changes to publications. Technical questions about IBM systems, changes in I BM programming 
support, requests for additional publications, etc, should be directed to your IBM representative or to the IBM branch office nearest your location. 

Error in publication (typographical, illustration, and so on). No reply. 

Page Number Error 

Note: All comments and suggestions become the property of IBM. 

• No postage necessary if mailed in the U.S.A. 

Inaccurate or misleading information in this publication. Please tell us 
about it by using this postage-paid form. We will correct or clarify the 
publication, or tell you why a change is not being made, provided you 
include your name and address. 

Page Number Comment 

Name ______________________________________ _ 

Address 

»­
-0 OJ 
r~ 
:DCJ1 
CD -" ..... -" 
~ 0 
CD 
::J 
(") 
CD 

~ 
Q) 

::J 
C 
~ 

en » 
~ 
cO 
w 
o 
w 
6 



SA21·9303·0 

Fold 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Fold 

m 

POSTAGE WILL BE' PAID BY ••• 

IBM Corporation 
General Systems Division 
Development Laboratory 
Pu bl ications, Dept. 245 
Rochester, Minnesota 55901 

International Business Machines Corporation 

General Systems Division 
57750 Glenridge Drive N. E. 
P.O. Box 2150 
Atlanta, Georgia 30301 
(U.S.A. only) 

General Business Group/International 
44 South Broadway 
White Plains, New York 10601 
U.S.A. 
(I nternational) 

Fold 

FIRST CLASS 
PERMIT NO. 40 
ARMONK, N. Y. 

Fold 

C') 

S 

iii 
s: 
~ .... 
0 
» 
"'tI 
r 
JJ 
~ 
CD 
@ 
:::I 

Q 
s: 
III 
:::I 
c: 
!!!.. 

~ 
:;' 
r+ 

3. 
:;' 
c 
en 
?> 
en » 
~ 
cO 
Co) 

0 
Co) 

6 



--- -
I: :S=-~ 
==-=~= 

International Business Machines Corporation 

General Systems Division 
4111 Northside Parkway N. W. 
P.O. Box 2150 
Atlanta, Georgia 30301 
(U.S.A. only) 

General Business Group/International 
44 South Broadway 
White Plains, New York 10601 
U.S.A. 
(I nternational) 

SA21-9303-0 


	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088.0
	088.1
	088.2
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240.0
	240.1
	240.2
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	replyA
	replyB
	xBack

