IBM 5110
APL Reference Manual

SA21-9303-0

5110

APL Reference Manual

IBM 5110

Preface

This publication is a reference manual that provides Related Publications
specific information about the use of the IBM 5110
Computer and the APL language. It also provides
information about forms insertion and ribbon
replacement for the 5103 Printer. This publication is « APL Language, GC26-3847
intended for users of the 5110 and the APL language.

IBM 5110 APL Reference Card, GX21-9304

« IBM 5110 APL User's Guide, SA21-9302

Prerequisite Publication « IBM 5110 Customer Support Functions Reference
Manual, SA21-9311
IBM 5110 APL Introduction, SA21-9301

First Edition (December 1977)

Changes are continually made to the specifications herein; any such changes will
be reported in subsequent revisions or technical newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or the IBM branch office serving your locality.

A Reader's Comment Form is at the back of this publication. If the form has
been removed, address your comments to IBM Corporation, Publications,
Department 245, Rochester, Minnesota 55901. Comments become the property
of IBM.

© Copyright International Business Machines Corporation 1977

?%%g Part number L| 8 3 6 39 5
é ::é é:?% ‘ Date Change number

PUBLICATION DRAWING 1 Nov 77 832459

‘ 10 Jan 78 835462

IOAPR 18 |838514

22 JUN]R _ |835515

w Base form number: _SAZ] -9303 13 JULTe 836558

Title: IBM 5110
APL Reference Manual

NOTE: All items following the last row of asterisks are to be shipped.

Form/TNL

Change number
Al AN R

****************L

832459 SA21-9303-0
835462
SN21-0282
835514 SN21-0284
836558 SN21-0289

Description/Comments

HRRRRRSERRENRRFRRERURERRERRRBRRRELRERRXRRR RN ERRRRR R SR XNH

First Release

TNL to add information about 5110 compatibility with
the 5100

TNL to make miscellaneous corrections and additions.
TNL to make miscellaneous corrections.

Part number 11'8 3 6 7 0 O
— "Date Change number
PUBLICATION DRAWING 1 Nov 77 832459
122 JUrl T8 | 836536
Base form number: SA21-9302
Tite: IBM 5110
APL User's Guide

NOTE: All items following the last row of asterisks are to be shipped.

Change number
K KR K KKK KN KK KR

832459

HEE KKK A E KX KRN KRN R

36536

O

Form/TNL

e KN E RN X

SA21-9302-0

XX EXEXAXXHEXXXR

SA21-9302-1

Description/Comments
%**

First Release

é**

Major revision to clarify several operations

";,&a&>~?‘

—a W

Ar———— At W —

PUBLICATION DRAWING

Part number

4836394

Change number

832459

Date

1 Nov 77

Base form number:

Title: IBM 5110

SA21-9301

APL Introduction

NOTE: All items following the last row of asterisks are to be shipped.

Change number
EE R E LR L ELEEE LR L L]

832459

Form/TNL

BE % 3 I I K I KK W KK XX

SA21-9301-0

Description/Comments
vk Lt EEEXEEEEE S L LA RS LSRRI LR EEE SRS E R SRR R EEEE R EE L L R

First Release

éf-. / Technical Newsletter This Newsletter No. SN21-0289
/® : Date 15 June 1978

Base Publication No. SA21-9303-0

File No. None

Previous Newsletters SN21-0279
SN21-0282
SN21-0284

iBM 5110
APL Reference Manual

© 1BM Corp. 1977

This technical newsletter provides replacement pages for the subject publication. Pages to be inserted
and/or removed are:

41,42

83 through 88

88.1, 88.2 (added to accommodate moved text)
129, 130

Changes to text and illustrations are indicated by a vertical line at the left of the change.

Summary of Amendments

This technical newsletter contains additional information about the (,) inner product operator and the
following scalar functions:

® > greater than
® = equal to
® < |ess than

® > greater than or equal to

IN

less than or equal to

@ = notequal to '

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901

©1BM Corp. Printed in U.S.A.

Date 28 April 1978

4
Eﬁy Technical Newsletter This Newsletter No. SN21.0264

Base Publication No. SA21-9303-0

File No. None

Previous Newsletters gN21.0279
SN21-0282

IBM 5110
APL Reference Manual
©IBM Corp. 1978

This technical newsletter provides replacement pages for the subjéct publication. Pages to be inserted
and/or removed are:

43 through 46 225, 226

177 through 182 237 through 240

185, 186 240.1, 240.2 (text rearranged)
203 through 206 241, 242

Changes to text are indicated by a vertical line at the left of the change.

Summary of Amendments

Miscellaneous corrections and additions have been made to clarify several operations.

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901

©I1BM Corp. 1978 Printed in U.S.A.

Date 10 January 1978

/
Eﬁy Technical Newsletter This Newsletter No. SN21.0282

Base Publication No. 5A21.9303-0

File No. None

Previous Newsletters SN21-0279

IBM 5110
APL Reference Manual

©IBM Corp. 1977

This technical newsletter provides replacement pages for the subject publication. Pages to be inserted
and/or removed are:

227, 228
Changes to text are indicated by a vertical line at the left of the change.
Summary of Amendments
Additional information about 5110 compatibility with the 5100 is included in this technical newsletter.

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901

©1BM Corp. 1978 Printed in U.S.A.

EM;@ Technical Newsletter

IBM 5110

APL Reference Manual

© 1BM Corp. 1977

This Newsletter No.

Date

Base Publication No.

File No.

Previous Newsletters

SN21-0279

30 December 1977

SA21-9303-

None

None

0

This technical newsletter identifies operational characteristics of your 5110 that vary from those described
in the /BM 5710 APL Reference Manual. Please refer to this list as you use the manual.

Page

17

43

54

181

182

182, 185,
188

187

IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901

©IBM Corp. 1977

If You Are Using

APL PROC file

Diskette Recovery
Customer Support
Function on Model A1

JSORT

Serial 1/0 Feature
or write exchange
(type 2) tape file

OUTF TYPE=A

ADD to a mixed
record file

Shared Variables
with diskette

Note This Consideration

Procedure files for APL must be generated by an APL program

or a BASIC program. The BASIC SAVE command in DATA
mode cannot be used.

This is not available on a 16K machine.

Before executing)SORT be sure that the printer is switched
off. An alternative is to execute:

1) OUTSEL OFF
2) OUTSEL OUT

Failure to do so will cause a machine error.

If you are writing to Serial 1/O or writing an exchange
(type 2) tape file, the last record may not be written
correctly. You should write an extra record at the end.

If you are writing OUTF to a TYPE=A file, use file sizes

of 2K or greater.

Do not attempt to ADD to a type 15 (mixed record file)

on diskette.

Do not open diskette drive door during shared variable

operations.

Printed in U.S.A.

CHAPTER 1. OPERATION
IBM 5110 Computer Overview
Display Screen
Switches e e

Power On or Restart Procedures .

Display Screen Control
Keyboard

Attention

Hold

Execute .

Command . .

Positioning the Cursor and lnformatron on the

Display Screen

Copy Display
Indicator Lights .

Process Check .

In Process .

CHAPTER 2. ABOUT YOUR 5110 . . .
Data Representation..
Numbers
Scaled 1Representat|on (Sclentlflc Notatlon)
Numeric Value Range .
Numeric Value Precision
Character Constants
Logical Data .
Storage Requirements . .
5110 Storage Capacity and Models
Performance Considerations
Turning the Display Screen Off
Overlapped Printing .
Variable and File Names .
Name Processing
Procedure File
Creating a Procedure Frle
Using a Procedure File
Doing Input/Output Operations
Entering Data from the Keyboard .
Updating a Procedure File on Diskette
Tape Data Cartridge Handling and Care
Tape Head Cleaning Procedure
Diskette Handling and Care
Diskette Insertion
Diskette Removal . ..
Handling Defective Cyllnders
Handling Precautions . .
Device Addrassing
Default Device
Customer Support Functrons
Audible Alarm

CHAPTER 3. SYSTEM COMMANDS
Overview .
System Command Descrlptlons .

The)CLEAR Command

The JCONTINUE Command

The)JCOPY Command . . .

The)DROP Command

NNNORAWNN=S @

10
10
10

1
1
1
1
1
12
12
12
13
13
14
14
15
16
17
17
17
18
19
20
21
23
23
24
24
25
25
25
27
28
29
29

31
31
31
35
35
37
38

The JERASE Command
The)FILEID Command
The }JFNS Command

The)FREE Command .
The)LIB Command .

The)LINK Command

The JLOAD Command
The JMARK Command
The JOUTSEL Command
The)PCOPY Command
The)PROC Command .
The }PROTECT Command .
The JRESUME Command
The JREWIND Command
The)SAVE Command .
The)SI Command

The)SINL Command

The)SORT Command . .
The)SYMBOLS Command
The)VARS Command
The)VOLID Command
The)WSID Command

CHAPTER 4. PRIMITIVE (BUILT-IN)

FUNCTIONS

Primitive Scalar Functions .
The + Function: Conjugate, Plus .
The - Function: Negation, Minus .
The X Function: Signum, Times
The + Function: Reciprocal, Divide .

The [Function:
The L Function:
The | Function:
The * Function:
The @ Function:
The O Function:
The ! Function:

The ? Function:

The A Function:
The V Function:
The ~ Function:
The X Function:
The V/ Function:
The > Function:
The = Function:
The < Function:
The = Function:
The < Function:
The # Function:

Ceiling, Maximum .
Floor, Minimum
Magnitude, Residue .
Exponential, Power
Natural Log, Logarithm
Pi Times, Circular .
Factorial, Binomial
Roll

And .

Or

Not .

Nand

Nor ..
Greater Than .

Equal To .

Less Than

Greater Than or Equal To

Less Than or Equal To
Not Equal To .

Primitive Mixed Functions
The p Function: Shape, Reshape (Structure)
The , Function: Ravel, Catenate, Laminate
The / Function: Compress
The \ Function: Expand
The A Function: Grade Up
The ¥ Function: Grade Down .
The 4 Function: Take
The ¥ Function: Drop

Contents

38
39
39
40
41
43
44
45
47
48
49
50
51
b2
b2
53
53
54
54
b5
b6
57

The 1 Function: Index Generator, Index of
The ¢ Function: Reverse, Rotate .

The & Function: Transpose, Generalized Transpose

The ? Function: Deal .
The 1 Function: Decode (Base Value)
The T Function: Encode {Representation) .
The € Function: Membership
The B Function: Matrix Inverse, Matrix D|V|de -
The ¢ Function: Execute
The ¥ Function: Format
APL Operators
Reduction Operator (/)
Inner Product Operator (.)
Outer Product Operator (©)
Scan Operator {\)
Special Symbols
Assignment Arrow < .
Branch Arrow >
Quad 0O .
Quad Quote I!]
Comment A
Parentheses ()

CHAPTER 5. SYSTEM VARIABLES AND
SYSTEM FUNCTIONS

System Variables
Comparison Tolerance: DCT
Index Origin: dio
Printing Precision: Opp .

Print Width: OPW .
Random Link: [JRL .

Line Counter: OJLC
Workspace Available: Owa .
Latent Expression: Owx .
Atomic Vector: [JAV .

System Functions . T
The JCC Function: Console Control .
The [JCR Function: Canonical Representation
The JFX Function: Fix
The JJEX Function: Expunge
The OONL Function: Name List .

The OONC Function: Name Classification

CHAPTER 6. USER-DEFINED FUNCTIONS
Mechanics of Function Definition

Function Header

Branching and Labels .

Local and Global Names
Interactive Functions

Requesting Keyboard Input dunng

Function Execution .

Arranging the Output from a User—Defmed Functlon .

Bare Qutput .

Locked Functions
Function Editing . .

Displaying a User-Defmed Functlon .

Revising a User-Defined Function

Reopening Function Definition

An Example of Function Editing
Trace and Stop Controls .

Trace Control

Stop Control .

104
105
109
1
112
1156
120
121
123
124
127
127
129
132
134
136
136
136
137
137
138
138

. 139

139
140
141
142
142
143
143
143
143
144
145
145
149
151
153
153
1564

. 155

156
157
168
160
164

165
166
166
167
168
168
169
171
172
173
173
175

CHAPTER 7. TAPE, DISKETTE, DISPLAY SCREEN,

AND PRINTER INPUT AND OUTPUT
Making a Shared Variable Offer .
Surrogate Names
Specifying the Operation to be Performed
Sequential Access to Tape or Diskette Files
Direct Access to Diskette Files .
Direct Access to the Display Screen
Send Data to the Printer
Input/Qutput Operations .
Sequential Access Operations
Direct Access Operations
Creating a Direct Access Data
File (OUTF and ADD)
Updating (Read and Write) a Dlrec’t Access
File (IOR and IORH) . .
Reading a Direct Access Data F|Ie (INR)
Reading from and Writing to the Display
Screen (DISPLAY) .
Sending Data to the Pnnter (PRT)
Terminating the Operation

Assigning an Empty Vector to the Shared Varlable .

Making the Shared Variable Local to a
User-Defined Function .
Using the JEX Function or)ERASE Command .
Using the [JSVR Function . e
Retracting the Shared Variable Offer .
Return Codes . ..
Input/Output Summary

CHAPTER 8. THE 5103 PRINTER
How to Insert Forms
Continuous Forms .
Forms Path for Smglepart Forms .
Forms Path for Multipart Forms
Cut Forms . .
How to Adjust the Copy Control D|a| for
Forms Thickness .
How to Replace a Ribbon (Part Number 1136653)
How to Install the 5103 Printer Stacker

APPENDIX A. 5110 APL CHARACTER SET AND
OVERSTRUCK CHARACTERS
APPENDIX B. ATOMIC VECTOR

APPENDIX C. EBCDIC CHARACTER SET AND
SPECIAL NATIONAL GRAPHICS . .

APPENDIX D. 5110 COMPATIBILITY WITH
THE 1BM 5100

APPENDIX E. 5110 APL COMPATIBILITY WITH
IBM APLSV .

APPENDIX F. ERROR MESSAGES
APPENDIX G. ATTACHING A TV MONITOR .
GLOSSARY

INDEX .

. 177

177
178
179
179
181
186
186
187
187
188

188

188
193

194
196
197
197

198
198
198
199

. 200
. 204
. . 207
. 209
. 209
. 209

. . 209
.21

. 212
Lo 212
. 215
. 217

. 219

225

. 227

. 229

235

. 249

251

. 257

Chapter 1. Operation

1IBM 5110 COMPUTER OVERVIEW

The IBM 5110 Model 1 (Figure 1) is a computer. The IBM 5110 Model 2
differs from the Model 1 only in that the Model 2 does not have a built-in tape
unit. The 5110 has a display screen, keyboard, switches, indicator lights, and
an adapter for black and white TV monitors. The display screen and indicator
lights communicate information to the user. The keyboard and switches allow
the user to control the operations the system will perform.

Features available for the 5110 are an auxiliary tape unit (Model 1 only),
printer, up to four diskette drives, a communication adapter, and a serial /0

adapter.
Il?d;]ctator Adapter for Black
1gis and White TV Monitors
Switches [J
Brightness
Control
Display
Screen
Switches
Tape
Unit
Keyboard

Figure 1. IBM 5110 Computer

DISPLAY SCREEN

The display screen (Figure 2) can display 16 lines of information at a time, with
up to 64 characters in each line. Input (information supplied by the user) as
well as output (processed information) is displayed. The bottom two lines
(lines 1 and 0) of the display contain information entered from the keyboard.
The cursor (flashing horizontal line) indicates where the next input from the
keyboard will be displayed. If the cursor is moved t0 a position that already
contains a character, the flashing line is replaced by the flashing character. As
the 5110 processes input, all lines of the display are moved up so that
information can be entered on the two bottom lines again. The top lines of the
display are lost as the lines are moved off the display screen.

Operation 1

SWITCHES
The switches on the 5110 (Figure 1) are used for turning power on, restarting
the system, and controlling how information is displayed.

Power On or Restart Procedures

The following switches are used for turning power on to the system or
restarting the system operation.

Line Numbers

115 []

14
13
12
11
10
9
8
7
6
5
4
3 3+2 «—Input from the keyboard
2 5 «——— Qutput
1 —- «— Cursor (flashing horizontal line)
0 _ 64 character positions -

Normally, to distinguish input from output, input from the keyboard is indented
and output is displayed starting at the left edge of the display screen.

Figure 2. The 5110 Display Screen

BASIC/APL

Only dual-language machines have this switch. The switch setting determines
which language will be in operation when power is turned on or after

RESTART is pressed. If the switch setting is changed after the power is turned on or
after RESTART is pressed, the language in operation will not be changed.

Power ON/OFF

When this switch is in the ON position, power is supplied to the system. The
system performs internal checks and becomes ready in 15 to 20 seconds.
When the switch is put in the OFF position, no power is supplied to the
system.

Note: The message CLEAR WS is displayed when the system becomes ready.
If this message is not displayed after 20 seconds, restart the system operation,
(the RESTART switch is discussed next).

RESTART
This switch restarts the system operation. When it is pressed, the system
performs internal checks and becomes ready in 15 to 20 seconds. The
message CLEAR WS is displayed when the system is ready. If the system
does not display the message after 20 seconds, press RESTART again. If the
system does not become ready after several attempts, call your service
representative.
The primary uses of this switch are to restart the system operation after a
system malfunction has occurred and to change the language in operation on
dual-language machines.
Note: Any information you had stored in the active workspace will be lost
when RESTART is pressed.

Display Screen Control
The following switches are used to control how the information on the display
screen is displayed.

L32 64 R32

The three-position switch (positions 64, L32, and R32) operates as follows:

« 64-Characters are displayed in adjacent positions, and up to 64 characters
can be shown on each line.

» L32-Characters are displayed in alternate positions (blanks between}; only
the left 32 characters of the 64-character lines are shown.

» R32-Characters are displayed in alternate positions (blanks between); only
the right 32 characters of the 64-character lines are shown.

Operation

CcoPY

(Gor) (eave Y (oot) (e) (Grens) (vars) (eory) (Qwsio) (oursey) () mark YC = 2™ AY) ecere) (inserT)

Alphameric Keys Numeric keys
Figure 3. The 5110 Keyboard

REVERSE DISPLAY

This switch determines whether the display screen will display light characters
on a dark background or dark characters on a light background. The brightness
control may have to be adjusted when the switch setting is changed.

DISPLAY REGISTERS
This switch is for the service representative’s use when servicing your 5110.

Note: When you use your 5110, this switch must be in the NORMAL position.

KEYBOARD

The 5110 keyboard (Figure 3) has alphameric and numeric keys. The
alphameric keys are grouped together and are similar to those on a typewriter
keyboard. When the keys are pressed, the characters entered appear in the
input line (one of the bottom two lines) on the display screen. The top row of
alphameric keys can be used to enter numbers:; however, numbers can be
conveniently entered via the numeric keys on the right side of the keyboard.

The arithmetic symbols (+ - + X) located on the top row of the alphameric
keyboard can also be entered via keys to the right of the numeric keys.

When the system power is first turned on, the system is in standard APL
character mode. In standard APL character mode, you can enter uppercase
alphabetic characters (without using the shift key), the APL symbols (using the
shift key), and the APL system command keyword (above the top row of
numeric keys) and special character combinations {(engraved on the front of the
keys) using the CMD key.

Note: For combined APL/BASIC systems, there is also a BASIC statement
keyword engraved on the alphabetic keys. These BASIC statement keywords
are above the special APL character combinations on the keys.

You can also place the system in lowercase alphabetic character mode by:

1. Pressing the HOLD key

2. Holding down the shift () key and pressing the scroll down

In lowercase alphabetic character mode, you can enter lowercase alphabetic
characters (without using the shift key), uppercase alphabetic characters (using
the the shift key), and the APL symbols using the CMD key. The lowercase
alphabetic character mode applies only to the alphabetic keys. In lowercase
alphabetic character mode, you cannot enter the special character combinations
using the CMD key, because the CMD key is used to enter the APL symbols.

To return from lowercase alphabetic character mode to standard APL character
mode:

1. Press the HOLD key
2. Hold down the shift key while you press the scroll up () key

The characters ¥ i %6V ! and « 4 di " "% are not
shown on the keyboard; however, you can enter the first group of these
characters by using the CMD key and pressing the appropriate key as follows:

Operation

5

You can enter the second group of characters using the SHIFT key and
pressing the appropriate key as follows:

LCL0)

Note: Some of these characters change when a unique national character set,
other than EBCDIC, is specified. See Appendix C for more information on the
unique national graphics.

The keyboard contains some keys that perform operations other than those
performed by a typewriter. These keys are discussed in the following text.
Uses of the APL language symbols on the keyboard are discussed in Chapter 4
of this manual.

Attention

Pressing ATTN (attention) when entering information from the keyboard erases
everything from the cursor to the end of line O.

Pressing ATTN when entering information using shared variables to the display
screen erases everything from the cursor position to the end of the specified
input area.

When ATTN is pressed (weak interrupt) during execution of any expression or
user-defined function, the system stops operation at the end of the statement
currently being processed. To restart the execution of a user-defined function,
enter »>-[LC.

Output that was being generated before the system operation stopped may not
be displayed because there is a delay between the execution of the statement
that causes the output and the actual display of the output.

When the shift key is held and ATTN is pressed (strong interrupt) during the
execution of a statement (either inside or outside a user-defined function), the
execution of that statement stops as soon as possible. Also, the message
INTERRUPT, the statement, and a caret (A) that indicates where the statement
was interrupted are displayed. in this case, the intermediate results might be
lost, and restarting the function using +0LC might give incorrect results.

B
HOLD

When pressed once, HOLD causes all processing to stop; when pressed again,

it allows processing to resume. The primary purpose of HOLD is to permit
reading rapidly changing display information during an output operation or to
change from one character mode (standard APL or lowercase alphabetic) to the
other character mode. When the HOLD is in effect (HOLD pressed once), the
COPY DISPLAY, shift/scroll up, and shift/scroll down keys are active, and the
characters HOLD are displayed in the lower left corner of the display screen.

Notes:

1. Holding down the CMD key and pressing HOLD is restricted to use by the
service personnel.

2. When the hold is in effect (HOLD pressed once), holding down the CMD

key and using the arithmetic keys (+ - + X) on the right side of the
keyboard are restricted to use by service personnel.

Execute
When this key is pressed, the input line(s) of information on the display screen

is processed by the system. This key must be pressed for any input to be
processed.

Command

In standard APL character mode, when this key is pressed and held, pressing
an alphameric key in the top row causes the APL command keyword or
character above that key to be entered in the input line. Also, pressing the
other key causes the special character combination engraved on the front of
the key to be entered in the input line.

In lowercase alphabetic character mode, when this key is pressed and held,
pressing an alphabetic key causes the APL symbol on the key to be entered in

the input line.

Note: Holding down the CMD key and pressing HOLD is restricted to use by
the service personnel.

Operation

Positioning the Cursor and Information on the Display Screen

The following keys are used to position the cursor and information on the ;
display screen.

Forward Space .
-+

When this key is pressed once, the cursor moves one position to the right.
When this key is held down, the cursor continues to move to the right. When
the cursor reaches the last position on one input line {line 1 or 0), it wraps
around to the first position on the other input line.

Insert .
-

When the CMD key is held down and the forward space key is pressed once,

the characters at and to the right of the cursor position (flashing character) are
moved to the right one position, and a blank character is inserted at the cursor
position. The cursor does not move. For example:

Flashing Character

Before the insert operation: 123567
After the insert operation: 123 ¥ 567

When these keys are both held down, the characters continue to move to the
right and blank characters continue to be inserted.

Note: If there is a character in position 64 of line O, the insert operation will
not work.

Backspace .
-

When this key is pressed once, the cursor moves one position to the left.
When it is held down, the cursor continues to move to the left. When the
cursor reaches position 1 on one input line (line 1 or 0), it wraps around to the
last position on the other input line.

Delete

When the CMD key is held down and the backspace key is pressed once, the
character at the cursor position {flashing character) is deleted and all characters
to the right are moved over one position to the left to close up the space. The
cursor is not moved. For example:

Before the delete operation: 1234456

Flashing Character
After the delete operation: 123456

When these keys are both held down, the characters at the cursor position
continue to be deleted and all the characters to the right are moved to the left.

Scroll Up

When this key (located above the numeric keys) is pressed once, each
displayed line is moved up to the next line. As the lines are moved up, the top
line is lost as it is moved off the display screen. When this key is held down,
the lines continue to move up.

When you are doing input/output operations to the display screen using an
APL shared variable, the cursor is moved up one line when this key is pressed.
When this key is held down, the cursor continues to move up until the top line
is reached.

When the system is in the hold state (the HOLD key has been pressed once),
holding down the shift key and pressing this key causes the system to be in
standard APL character mode.

Scroll Down

When this key (located above the numeric keys) is pressed once, each
displayed line is moved to the next lower line. As the lines are moved down,
the bottom line is lost as it is moved off the display screen. When this key is
held down, the lines continue to move down.

When you are doing input/output operations to the display screen using an
APL shared variable, the cursor is moved down one line when this key is
pressed. When this key is held down, the cursor continues to move down
until the bottom line is reached.

When the system is in a hold state (the HOLD key has been pressed once),

holding down the shift and pressing this key causes the system to be in
lowercase alphabetic character mode.

Operation

Copy Display : .]
X

If there is a 5103 Printer, when the CMD key is held down and this key is
pressed once, all the information presently on the display screen is printed.
COPY DISPLAY is operational even when the system is in the hold state (the
HOLD key has been pressed once).

Note: The L32 64 R32 switch has no effect on what will be printed.

INDICATOR LIGHTS

The 5110 {Figure 1) has two indicator lights.

Process Check

When on, the PROCESS CHECK light indicates that a system malfunction has
occurred. In this case, press the RESTART switch to restart the system
operation. If the system operation cannot be successfully restarted after
several attempts, call your service representative. After the system operation is
restarted, you must reload any user-defined functions or data that was
previously in the active workspace.

In Process
The IN PROCESS light is on when the system is processing data and the display screen is
turned off during the execution of a user-defined function (see the [JCC
system function in Chapter 5). The light goes off when:

« The display screen is turned on using the [JCC system function

« A statement in the user-defined function generates results that are to be
displayed

« Execution is completed and the cursor returns
Note: If the display screen is blank (no data or cursor is displayed) and the IN

PROCESS light is off, check the brightness control before calling your service
representative.

Chapter 2. About Your 5110

DATA REPRESENTATION

Numbers

The decimal digits O through 9 and the decimal point are used in the usual
way. The character , called the negative sign, is used to denote negative
numbers. It appears as the leftmost character in the representation of any

number whose value is less than zero:

i
L.
T E e 0

“1

The negative sign, , is distinct from - (the symbol used to denote
subtraction) and can be used only as part of the numeric constant.

Scaled Representation (Scientific Notation)

You can represent numbers by stating a value in some convenient range, then
multiplying it by the appropriate power of 10. This type of notation is called
scaled representation in APL. The form of a scaled number is a number
(multiplier) followed by E and then an integer (the scale) representing the
appropriate power of 10. For example:

Number Scaled Form

Multiplier
66700 6.67E4

Scale
.00284 2.84E7 3

The E (E can be read times ten to the) in the middle indicates that this is scaled
form; the digits to the right of the E indicate the number of places that the
decimal point must be shifted. There can be no spaces between the E and the
numbers on either side of it.

Numeric Value Range

Numeric values in the 5110 can range from ~ 7.237005577332262E75 to
7.237005577332262E75. The smallest numeric value the 5110 can use is
+5.397604346934028E 79.

About Your 5110 11

Numeric Value Precision

Numbers in the 5110 are carried internally with a precision of 16 significant
digits.

Note: As with all computers, some values cannot be expressed exactly, and
certain computations are not fully accurate in the least significant (16th) digit.

Character Constants

Zero or more characters enclosed in single quotes, including overstruck
characters (see Appendix B) and blank characters (spaces), is a character
constant. The quotes indicate that the characters keyed do not represent
numbers, variable names, or functions, but represent only themselves. When
character constants are displayed, the enclosing quotes are not shown:

"HARCOEFGT If the closing quote is not
ARCIDEFG entered, the 5110
LLaianc automatically supplies the
L23ARC closing quote when EXECUTE
e THE ANSWER I1%:° is pressed.

M
THE ANSWER I8:

When a quote is required within the character constant, a pair of quotes must
be entered to produce the single quote in the character constant. For example:

TDONT T GIVE THE ANSWER AWAY'
DONCT GIVE THE ANSWER AWAY

Logical Data

Logical (Boolean) data consists of only ones and zeros. The relational functions
(> > = < £ #) generate logical data as their result; the result is 1 if the
condition was true and O if the condition was false. The output can then be
used as arguments to the logical functions (AKX vV~) to check for certain
conditions being true or false. Logical data can also be used with the
arithmetic functions, in which case it is treated as numeric 1's and O's.

STORAGE REQUIREMENTS

The following list shows how many bytes of storage are required for each data

type:
Data Type Number of Bytes Required
Character constant 1 byte per character
Whole numbers that are equal to 4 bytes

or less than 231-1

Whole numbers that are greater 8 bytes

than 23'-1

Decimal numbers 8 bytes

Logical data 1/8 Byte (1 byte can contain 8

ones or zeros)
Variable Name Number of Bytes Required

.3 characters or less 12 bytes+(4 xrank
{p p VARIABLE)) bytes

4 characters or more 1 byte per character+21
bytes+(4xrank {p p VARIABLE))
bytes

Note: All storage is allocated in 4 byte increments.

5110 STORAGE CAPACITY AND MODELS

The 5110 Models 1 and 2 can have a storage capacity of 16K (K = 1024
bytes), 32K, 48K, or 64K. The first digit in the model number indicates the
model, and the second digit indicates the storage capacity as follows:

Storage Model Number | Model Number
Capacity with Tape without Tape
16K A1 A21

32K A12 A22

48K A13 A23

64K A14 A24

About Your 5110 13

Figure 4 shows how the storage is allocated for the various requirements on a
base 5110 (Model A11 or A21).

Active Workspace

10,600
Bytes

Symbol Table (see note)

5784 5110 Internal Storage Requirements for Pointers,
Bytes Counters, etc

Note: The symbol table requires 8 bytes of storage for
each symbol allowed in the active workspace (see)]SYMBOLS
in Chapter 3).

Figure 4. Storage Allocation for a Model A11 5110

Notice that the workspace available to the user (active workspace) is 10,600
bytes, while the rernaining bytes are used for internal purposes. In the other
models, all additional storage is allocated to the active workspace. For

example, on the Model A14, the active workspace is approximately 60,000
bytes.

PERFORMANCE CONSIDERATIONS

Turning the Display Screen Off
The internal processing capability of the 5110 is increased by approximately
18% when the display screen is turned off during the execution of a
user-defined function. The [JCC (console control) system function is used to
turn the display screen on and off. For example:
X<«<10cco This statement turns the display screen off.

X<« 10cc1 This statement turns the display screen on again.

(See The OCC Function: Console Control in Chapter 5 for a complete
description of the [JCC function.)

Overlapped Printing

When data is sent to the printer, the 5110 continues (overlaps) internal
processing as the last print line is being printed. For example:

FFUNCTION
G110 Lopdt00sr 5110 starts processing statement 2 as
Lad 50 %2y the last line of the matrix generated in

statement 1 is printed.

When FUNCTION is executed, the

Therefore, to get maximum performance when data is sent to the printer, send
the data to the printer in smaller segments. The following examples show how
the data might be sent to the printer in smaller segments:

Example 1
¥ PRINTIL;AE;C;D
1 Aet DOLUMNL COLUMNZ COLUMNI COLUMNG COLLUMNG'
a2l Be 1005 pOEH0D
N e 8 0 w1
w7l Te & 0 +(+/0100)
5 AL,y CLELT D
L&l i

In this example, all the data is sent to the printer by statement 5. The
overlapped printing capability is not used.

Example 2
¥ OPRINTZ,R;C; D
1 COODLAUMNG COLUMNDZ COLUMNE COLUMMY COLUMME '
L2 e 800 vBs 1005 0 500
L3 D 8 0 v(+000 1)
Ll LINFRE I N I
57 Y

In this example, statement 2 is processed as the data from statement 1 is
printed.

Example 3
¥ PRINTA, RO
L1l COCOLUMNL COLUMND COLUMNG COLUMNY COLUMNG®
el g0 vRe 10 5 p(50)
L33 g 0 ++S000 B
Lud W

In this example, statement 2 is processed as the data from statement 1 is
printed, and statement 3 is processed as the last line of data from statement 2
is printed.

About Your 5110

15

VARIABLE AND FILE NAMES

A variable name can be up to 77 characters in length with no blanks; the first
character must be uppercase alphabetic or underscored uppercase alphabetic,
and the remaining characters can be any combination of uppercase alphabetic,
underscored uppercase alphabetic, and numeric characters. Variable names
longer than 77 characters can be used, but only the first 77 characters are
significant to the 5110.

Note: Do not use SA or TA as the first 2 characters in the variable name (see
Trace and Stop Controls in Chapter 6).

The data file names that are allowed by the 5110 depends upon the type of
file and storage media used:

» Workspace file on tape. The file name can be any combination of up to 11
alphabetic and numeric characters (with no blanks); the first character must
be alphabetic. For example:

FILE2
If more than 11 characters are entered, only the first 11 are used.

« Data file on tape. The file name can be any combination of up to 17
characters (including blanks). For example:

2 DATAFILE

If more that 17 characters (including blanks) are entered, an INVALID
PARAMETER error message is displayed.

= Workspace file on diskette. The file name can be any simple name. A simple
name is any combination of up to 8 alphabetic and numeric characters (with
no blanks); the first character must be alphabetic. For example:

FILEONE

If more than 8 characters are entered as the file name, an INVALID DISK
FILE NAME message is displayed.

« Data file on diskette. The file name can be a simple or complex name. A
complex name is two or more simple names, with each name separated by
a period(.). A complex name cannot exceed 17 characters including the
period. For example:

DATA.FILE
AN A period must separate two simple names.
FILENAME For one simple name, a period is not required.

FILE.NAME <——7 Complex names.

DISKETTE.FILENAME

Note: The names SYSAREA and ERRORSET are used by the system. You
should not use these names as diskette file names.

16

NAME PROCESSING

Following is a description of how the system uses the device/file number and
file ID parameters specified for system commands (see Chapter 3) or
input/output operations (see Chapter 7).

For operations to tape files:
» The device/file. number parameter must always be specified.

« The file ID parameter is optional, except for the)DROP command. When
this parameter is specified, the specified file 1D is checked against the tape
file ID, and the operation fails if the file IDs do not match.

For operations to diskette files:

« If only the device/file number parameter is specified, the operation is
performed to the specified diskette file.

« If only the file ID parameter is specified, the diskette files on each diskette
drive are checked for the specified file ID. The specified file ID must be
unique on the diskette(s), and the operation is performed to the appropriate
diskette file when a match is found.

« |f both the device/file number and file ID parametér aré specified, the
specified file ID is checked against the specified diskette file ID, and the
operation fails if the file IDs do not match.

Note: If the specified file number is 000 (for example, 11000 is diskette
drive 1, file number 000), the diskette files on the specified diskette drive
are checked for the specified file ID, which must be unique on the diskette.
The operation is performed to the appropriate diskette file when a match is
found.

PROCEDURE FILE

A procedure file provides an alternative to entering input from the keyboard. A
procedure file can contain any executable expression or statement that can be
entered from the keyboard; for example, system commands, function
definition, and APL expressions. When the)PROC command is issued (see
Chapter 3), these expressions or statements from the procedure file replace the
input from the keyboard.

Creating a Procedure File

A procedure file can be a sequentiél access type | (file type 2) or direct access
type | or U (file type 9) data file. Each record in the procedure file represents
one statement or expression to be executed by the 5110. These records cannot
be greater than 128 characters. See Chapter 7 for more information on
creating data files.

About Your 5110

18

Using a Procedure File

The JPROC command is used to initiate input from the procedure file. Once
the)PROC command is issued, the records (expressions or statements) in the
specified procedure file are sequentially read, displayed, and executed. The
results of the executed statements or expressions are also displayed. When
records are executed from a procedure file, except for direct access input from
the display screen (see Entering Data from the Keyboard later in this chapter),
all keyboard equivalent input comes from the procedure file. This includes the
response for [input [1 input, and the ALREADY MARKED message. For
example:

A 1111~—This user-defined function is executed from a procedure
file.

/]

The function requests [input.

The response for the [input must be the next record in
the procedure file.

If an error occurs on a statement or expression executed from the procedure
file, an error message is displayed, and the next record on the procedure file is
read and executed. The 5110 continues to read and execute input from the
procedure file until one of the following occurs:

« The last record is read from the procedure file.

« A strong interrupt is entered (hold down the shift key and press the ATTN
key).

« Another JPROC command is issued. In this case, the input then comes from
the new procedure file, and control is not returned to the previous procedure
file.

» An 1/0 error occurs when the 5110 is reading the procedure file.

« The JLINK command is issued from the procedure file.

Except when another)PROC command is issued, the 5110 returns to using
keyboard input when one of the previous conditions occurs.

Doing Input/Output Operations

When using a procedure file; you can use shared variable to do input/output
operations such as:

Read records from and write records to a data file.

Note: If the procedure file is a sequential access tape data file, the tape is
repositioned if input/output operations are performed on the same tape that
the procedure file is on. This causes an error when the next physical read
of data from the procedure file occurs. However, since each physical read
from the tape procedure file consists of 512 characters, a tape procedure
file with less than 512 characters can also be used to perform input/output
operations. In this case, the last command in the 512 characters should be
JPROC to return the 5110 to keyboard entry.

Read records from and write records to the display screen. This allows you
to enter data from the keyboard when using a procedure file.

Read records from and wtite records to the procedure file. This allows you
to update the procedure file as the records are read from the procedure file

and executed.

Send data to the printer.

See Chapter 7 for more information on these input/output operations. Entering
data from the keyboard and updating the procedure file is discussed next.

About Your 5110

19

20

Entering Data from the Keyboard

Even though the records from the procedure file replace keyboard input, you
can enter data from the keyboard using a pair of shared variables and direct
access to the display screen. For example, assume you are using a procedure
file and the following user-defined function has already been copied into the
active workspace:

VEXAMPLEENTERIDIV
EXAMPLEENTER; CTL DAT I 4
FOF 96 3 6 36 3 3 I I 6 36 I I IE I 6 96 36 IEIE I I 6 I I I8 e I W 6 I I I I I e B I I B I e I I I M I e
. VARIARLE MNaMES TO RE SHARED
ded S8V0 2 3 p CTLOATS
A {w A L2EN) Y AERRORL
£ 266 96 2 I 96 I I IE I I IE 36 36 I6 I I 696 I 6 36 I I W I I He I I D6 I Me M I I 3 I I I I I I I I e I e 96 3
ARPECIFY INPUT/OUTPUT OPERATIONS TO THE DISPLAY
CThe DISPLAY S
L0 0TLY AERRORS
CENTER MNEW OAT /When this statement is executed, the cursor appears at character position
CTle 0 203 120 903 on the display screen. Now, you can enter 120 characters from the
Wéﬂﬁl?LYL)/LRHUNH keyboard.
£ T 6 36 36 W 36 3 96 36 I 0 36 I I 36 I I 96 He I IE TEIE IE I I 6 e I 6 e I IE I I I W W e I I I I I I B I I e I I 9 I
aDTSPLAY THE INFORMATION FROM Thie KEYROARD
T After the data is entered from the keyboard and EXECUTE is pressed, the
-+ [} 120 characters starting from position 903 are assigned to DAT.
£ 36 36 96 36 90 30 36 B 6 I I 6 96 I I I I 96 I W I 96 I I W6 e I W I I I I I 96 I I I I I I I IE I I W I M I I I
aERROR MESSAGES
FRRORL CTHE SHARED VARIARLE OFFER FATLED®
) []

ERROR2: "ENTERING DATA FROM THE KEYROARD FallLEDRC

Now when the record EXAMPLEENTER is read from the procedure file and
executed, you will be able to enter data from the keyboard.

Updating a Procedure File on Diskette

When using a procedure file that is on a diskette, you can also do direct
access input/output operations to the procedure file. This allows you to
update records (statements or expressions) before they are read and executed.

If a procedure file is to be updated, it is recommended that the procedure file
be a type U data file, because a type U data file has only one record per
sector and the 5110 reads one sector at a time when executing records from a
procedure file. Type | data files might have more than one record per sector,
and the records can cross sector boundaries. Therefore, when a sector is read,
the data read might include more than one record. For example:

Sector Boundaries

N—"T

. 7/
Record X Record Y Record Z \Type I Data File
1

N J
v

When this sector is read, both record X and record Y are read into the system.

In the previous example, if record X executes a user-defined function that
updates record Y (see the following example), record Y has already been read
into the system and the updated record is not executed from the procedure
file. Instead, the original record Y is executed.

About Your 5110

21

Following is an example of a user-defined function that allows you to enter
information from the keyboard and to update the procedure file with the
information you entered.

In this example, assume that you are using a procedure file, and that the
user-defined function has already been copied into the active workspace.

VEXAMPLEWRLT A
¥ OEXAMPLEWRITE, CTLX G CTLY BATX ATY (AL R
£ 0 226 96 26 I I I I 6 N I6 96 I I I I I 6 W NI IE I I I6 I I I I I I 6 I M 6 I6 I I IE I I I I I W I I e 3 e I W
aQFFER THE VARIARLE NAMES TO BE SHARED

Ael EVO 4 B p CTLXOATXETLYDATY

S w250) ERRORD
£y Ve B D6 I I U I I I I W I IE I I I W I 6 I I I I 6 N e K I I I IE I I 96 I We I M 6 I Fe A I I I I I Mo 9 I 9 I
aSPECIFY THE INPUT/QUTPUT OPERATIONS TO THE DISPLAY AND
aTHE PROCEOURE FILE

CTLXe " OlspPLay”

AL TOTLX Y AERRORS

CTLYe"TOR 11001 "' <«——— In this example, the procedure file is on diskette drive 1, file 1.
AL TOTLYY Y AERRBORSD
0926 N I I I 6 96 96 I 36 I I B I D W He W I 6 I A6 E 96 I I 36 I6 I I D6 I I IE I I I I I W I I B 9 636 e 96 3 96
AaENTER DaTa FROM THE KEYROARD

TENTER OTHE RECORD NUMBER TO BE UPDATED

CTLXe @ 903 &

(0L TCTLXO AERRORR

BelATY The new record number is assigned to B for later use in this
CENTER O THE NEW RECORD' yser-defined function.

CTLXe & a9s 127

SO0 CTLO AERRORS

DATY must contain the information to be written to the procedure file.
GTLXe Note, in this example, that the procedure file contains 128-byte

DATY 1 281 0ATX character records.
03 36 N I I B 96 6 D6 N I I I 6 IE V6 I I I I IE 6 I I I W IE I I I I I W W I e I Mo I W I I A IE I W I IE IE I I W I I I

pUPLSTE THE PROCETURE FILE

CTiyedl, Calid, 1

ST TOTLY Y AERRBORE

CTLY &0

'PROCEDURE FILE UPHATED:

o} (}
1 9% 2 D0 I 9 I I I I IE IE I I 6 I IE I I I W I IEIE I I I I I I I I I I W IE I I A I I 6 IE A6 I I I I I IE I I

Al RROR M
ERRORL " THE
ERRORE CENTERING OATA FROM THE KEYROARD Fallpil:
+{}
ERRORR "UPLOATING THE PROCEDURE FILE FallEno:

T PG i i e el Rl
-~
3

=3 23

SBHARED VaRIABLE OFFER FallEo:

22

TAPE DATA CARTRIDGE HANDLING AND CARE

» Protect the tape data cartridge from dust and dirt. Cartridges that are not
needed for immediate use should be stored in their protective plastic
envelopes.

» Keep data cartridges away from magnetic fields and from ferromagnetic
materials that might be magnetized. Information on any cartridge exposed

to a magnetic field could be lost.

+ Do not expose data cartridges to excessive heat (more than 130°F [54°C})
or sunlight.)

« Do not touch or clean the tape surface.

« If a data cartridge has been exposed to a temperature drop exceeding 30°F
(=1°C) since the last usage, move the tape to its limits before using the
tape. The procedure for moving the tape to its limits is:

1. Use the)LIB command to move the tape to the last marked file.

2. Use the JMARK command to mark from the last marked file to the end
of the tape. For example:

JMARK 20 10 n
where n is the number of the last marked file, plus one.
3. - When ERROR 012 (end of tape) is displayed, use the)REWIND
command to rewind the tape.
TAPE HEAD CLEANING PROCEDURE
Occasional cleaning of the tape read/write head provides more reliable
operation of the tape drive. Use a soft lint-free cloth or paper towel

dampened with isopropyl alcohol to clean tape oxide from the tape head. Then
wipe the tape head dry.

Tape Read/Write Head

Ej_

Tape Drive Opening

About Yaur 5110

23

24

DISKETTE HANDLING AND CARE

Diskette Insertion

CAUTION

If a diskette has been exposed to temperatures outside the range 50°F to
125°F (10°C to 51°C), keep the diskette at room temperature for about five
minutes before inserting it in the diskette drive.

1. Open the diskette drive cover.

2. Remove the diskette from its envelope by grasping its upper edge and
and listing.

3. Insert the diskette into the diskette drive.

Note: The permanent diskette label must be in the lower right corner as the
diskette is inserted in the drive.

4. Close the diskette drive cover only after the diskette is fully inserted.

Diskette Removal
1. Open the diskette drive cover (only when the cursor is flashing).

2. Remove the diskette by grasping its upper edge and pulling it straight
out.

3. Return the diskette to its envelope.

Handling Defective Cylinders
With use, the diskette can develop areas on which readable records cannot be
written. A diskette with a defective area should be reinitialized to use one of
the alternate cylinders available. See the IBM 5110 Customer Support
Functions Reference Manual, SA21-9311, for information on the initialization
function.

Note: Before reinitializing a diskette, copy any useful data from the diskette
onto another diskette.

After the diskette has been reinitialized, record the number of the defective
cylinder on the permanent label.

Handling Precautions
Do not bend or fold the diskette.

Do not use rubber bands or paper clips on the diskette.

Do not touch or clean the exposed diskette surface.

About Your 5110 28

Do not eat, smoke, or drink while handling the diskette.

Do not use magnets or magnetic objects near the diskette. Data can be lost
from a diskette that is exposed to a magnetic field.

Do not place heavy objects on the diskette.

Do not erase labels attached to the diskette, or make any erasures on or near

the diskette. Erasure residue could get in the diskette, and this should be

avoided. To discourage erasures, it is recommended that you use a fiber-tip or

ballpoint pen when marking on the diskette labels. Mark temporary labels
before attaching them to the diskette. Alter the temporary labels with the
diskette in the envelope.

I

DEVICE ADDRESSING

The device address for the 5110 tape units and diskette drives are as follows:

Device

Built-in tape unit
Auxiliary tape unit
Diskette drive 1
Diskette drive 2
Diskette drive 3
Diskette drive 4

Device Address

11
12
13
14

About Your 5110 27

28

The following illustration shows the device address for diskette drives attached
to the 5110:

Device Address 12 Device Address 14
Device Address 1.1 Device Address 13

iy

iy
ulmuuuummunnmumnuuu mmlm""“"“””""""""I!Huu |

DEFAULT DEVICE

The default device is the tape unit or diskette drive used by the system when
only the file number is specified. For example:

JLOAD 3 DATA

Fewer than four digits are specified; therefore, the value
specified represents only the file number, and the
default device is used. -

For the Model 1, the default device is the built-in tape unit (1). For the Model 2, the
default device is the first diskette unit (11).

CUSTOMER SUPPORT FUNCTIONS
The following customer support programs are provided with the 5110:
+ Tape-to-tape copy
« Diskette-to-diskette copy
« Diskette-to-tape copy
« Diskette initialization
» Generalized loader
« Diskette recovery
« Tape recovery
+ Diskette Compress
« Label display
See the IBM 5110 Customer Support Functions Reference Manual, SA21-9311,
for a complete description of each program.
AUDIBLE ALARM
The 5110 has an audible alarm feature that can be used to signal the operator.
For example, the audible alarm can signal the completion of a user-defined
function or a procedure file {see Procedure File in this chapter). The [JCC
system function sounds the audible alarm (see Chapter 5). For example:
To sound the audible alarm, the left argument must be a 2.

200cc222

L_The audible alarm sounds for approximately 1/4 second for
each 2 in the right argument.

About Your 5110 29

30

Chapter 3. System Commands

OVERVIEW

The 5110 contains an active workspace, which is the part of internal storage
where the user's data and user-defined functions (programs) are stored. When
the power is turned off or the RESTART switch is pressed on the 5110, all the
data in the active workspace is lost. However, the contents of the active
workspace can be saved on' tape or diskette (stored workspace) and then read
back into the active workspace for use at a later time (see System Command
Descriptions in this chapter)., The contents of the active workspace then exist in
both the active workspace and on tape or diskette.

The tape and/or diskette is your library; that is, it is a place where you can
store data for later use. Before a-tape or diskette can be used, it must be
formatted. A formatted tape or diskette contains one or more files where data
can be stored. Each file has a file header, which contains information about
the file. See the)LIB system command in this chapter for a description of the
file header.

The system commands, which are used to control and provide information
about the system, are discussed next.

SYSTEM COMMAND DESCRIPTIONS
The following list shows how system commands are used to control and

provide information about the various parts of the system. Each system
command is described in detail later in this chapter.

System Commands 31

Commands That Control the Active Workspace

Command
)JCLEAR
)JCOPY
JERASE
JLOAD

)PCOPY

)SYMBOLS

)WSID

JRESUME

Meaning

Clear the active workspace.

Copy stored objects (see note 1) into the active workspace.
Erase global objects (see note 1) from the active workspace.
Replace the active workspace with a stored workspace.
Copy stored objects (see note 1) into the active workspace,
and protect objects in the active workspace from being

destroyed.

Change the number of symbols allowed in the active
workspace.

Change the active workspace ID.
Replace the active workspace with a workspace stored using

the JCONTINUE command, and reestablish the system
environment as it was when the workspace was stored.

Commands That Control the Library (Tape and/or Diskette)

Command

JCONTINUE

)DROP
JFILEID
JMARK
)FREE

)SAVE

JPROTECT

)JVOLID

32

Meaning

Write the contents of the active workspace on tape or
diskette. The active workspace can contain suspended
functions and open shared variables.

Drop a tape or diskette file.

Change the file name on a diskette volume.

Format the tape or diskette.

Make a diskette file available for reallocation.

Write the contents of the active workspace on tape or
diskette. The active workspace cannot contain suspended
functions or open shared variables.

Invoke or remove the write-protect feature on a diskette file.

Change the volume ID or access protection indicator of a
diskette device.

Commands That Provide Information about the System

Command
)FILEID
JFNS

)LIB

)Si

)SINL

)SYMBOL

)JVARS
)VOLID

WSID

Meaning

Display the file name on a diskette volume.
Display the names of the user-defined functions.
Display file headers.

Display the state indicator.

Display the state indicator and local names.

Display the number of symbols allowed and used in the active
workspace.

Display the names of the global variables.
Display thé volume ID of a diskette device.

Display the active workspace ID.

Other Commands That Control the System

Command

JLINK

JOUTSEL
JPROC
JREWIND
)SORT

Notes:

Meaning

Load microcoded programs, such as functions or
asynchronous communications.

Select printer output.
Open a procedure file.
Rewind the tape.

Transfer system control to the sort function.

1. Objects refers to both user-defined functions and variables.

2. The system commands JCONTINUE,)COPY,)DROP, JLOAD,)MARK,
JREWIND, and)SAVE will blank the top 8 to 12 lines on the display screen
when they are used.

All system commands (and only system commands) have as their first
character a right parenthesis. Each system command must begin on a new
line. Parameters (required or optional information) for the system commands
must be separated by blanks.

System Commands

33

34

Some system commands can be entered two ways:

« The system command can be entered one character at a time from the
keyboard.

« The system commands JLOAD,)SAVE, JCONTINUE,)LIB, JFNS,)VARS,
JCOPY,)WSID, JOUTSEL, and)MARK can be entered in one operation if
you hold down the CMD key while pressing the top-row key just below the
label of the command you want.

System commands can be executed two ways:
» Press EXECUTE after the parameters, if required, are entered.

< Read the system command and required parameters from a procedure file
(see The)PROC Command in this chapter).

System commands cannot be used within APL expressions and cannot be used
as part of a user-defined function (see Chapter 6).

Following is an explanation of some terms and symbols used as parameters for
system commands:

« Device/file number specifies the device and file to be used. The built~in
tape unit is device 1, the auxiliary tape unit is device 2, diskette drive 1 is
device 11, diskette drive 2 is device 12, and so on. If the value specified is
less than four digits, the default device is assumed and the value specified
represents only the file number (see Default Device in Chapter 2). If the
value specified is greater than three digits, the rightmost three digits specify
the file number and remaining digits specify the device. For example:

Device/File Number Meaning

1 For a 5110 Model 1-Tape unit 1, file 1

For a 5110 Mode! 2-Diskette drive 1, file 1
2002 Tape unit 2, file 2
12002 Diskette drive 2, file 2

« Workspace ID specifies the name of the stored workspace on the media.
See Variable and File Names in Chapter 2 for a description of the valid file
names.

» Password is any combination of up to 8 alphabetic or numeric characters
(with no blanks). If more that 8 characters are entered, only the first eight

are used.

» Object is a user-defined function or variable name.

» Parameters enclosed in brackets can be optiona!l in certain cases.

Note: See Name Processing in Chapter 2 for information on when the
device/file number and file ID parameters are optional for tape and diskette
operations.

The JCLEAR Command

The JCLEAR command clears the active workspace. A cleared workspace has
no valid name and contains no user-defined variables or functions and no data.
The workspace attributes are set to:

Index origin - 1
Workspace identification — CLEAR WS
Comparison tolerance - 1E 13
Printing width - 64

Printing precision - 5

Random number seed — 16807
Data printed - ALL
Symbols - 126

When the command is successfully completed, CLEAR WS is displayed.

Syntax
JCLEAR

There are no parameters.

The JCONTINUE Command

The JCONTINUE command, using the specified workspace ID, stores the
contents of the active workspace onto tape or diskette (the media) without
changing the active workspace. Primarily, this command stores active status,
such as suspended functions, so that an operation can be resumed later on the
same or a similar machine. When the command is successfully completed,
CONTINUED device/file number workspace ID is displayed.

System Commands 36

36

The JCONTINUE command on the 5110 is similar in function and format to the
JSAVE command (except as noted below).

Notes:

1.
2.

10.

11.

Syntax

A clear workspace cannot be written on the media.

A workspace with suspended functions can only be written on the media
with the JCONTINUE command (it cannot be written to the media by the
)SAVE command).

JCOPY and)PCOPY commands cannot specify stored workspaces that
were written on the media by the JCONTINUE command.

A stored workspace written to the media by the JCONTINUE command
cannot be loaded into a 5110 active workspace that is smaller than the
original active workspace.

If a stored workspace that was written to the media by the JCONTINUE
command is loaded into another 5110 with a larger active workspace, the
workspace available (see the [JWA system variable in Chapter 5) is the
same as when the workspace was written to the media.

If ATTN is pressed during a JCONTINUE operation, the system operation
is interrupted and the file is set to unused.

Shared variable execution status can be stored by the JCONTINUE
command. A subsequent RESUME allows the user to resume execution
if the media is restored to the same condition as when the workspace
was stored by the JCONTINUE command (see The)RESUME Command in
this chapter).)

The [JLX system function is executed if the stored workspace is loaded
by the)LOAD command. However, the [JLX system function is not
executed if the workspace is loaded by the JRESUME command.
Workspaces are stored and loaded into the active workspace faster by
the JCONTINUE command than by the }SAVE command.

IMFs (internal machine fixes) are not stored by JCONTINUE. If an IMF

is required for operation of the stored workspace, it should be reapplied

by the JLINK command (if the IMF is not already in the system) before the
workspace is reloaded.

Workspaces stored on tape by the JCONTINUE command cannot be
interchanged between the IBM 5110 and the IBM 5100.

JCONTINUE [device/file number] [workspace ID] [:password]

Where:

device/file number (optional) is the number of the device and file on the
device where the contents of the active workspace are to be written. If no
device/file number is specified, the device/file number from which the
active workspace was loaded or specified by a previous)WSID command is
used.

workspace ID (optional) is the name of the workspace to be stored. This
name must match the workspace ID of both the active workspace and the
file to be used on the media unless the file is marked unused. If the file is
marked unused, the active workspace ID and file workspace ID are changed
to this workspace ID. If no name is specified in the command, the name of
the active workspace is used.

:password (optional) is any combination of up to 8 alphabetic or numeric
characters (without blanks), preceded by a colon. This sequence of
characters must be matched when the stored workspace is to be read back
into the active workspace. If no workspace ID or password is entered, the
password associated with the active workspace (if any) is assigned to the
workspace being stored. If just the workspace ID and no password is
entered, any password associated with the active workspace is not used.

The JCOPY Command

The JCOPY command copies all or specified global objects from a stored
workspace to the active workspace. Only objects in stored workspaces that
were written on the media with the)SAVE command can be copied. When the
command is successfully completed, COPIED device/file number workspace ID
is displayed.

Notes:

1. If the active workspace contains suspended functions, objects cannot be
copied into it.

2. If the ATTN key is pressed during a JCOPY operation, the system operation
is interrupted and the amount of information copied into the active
workspace is unpredictable.

3. If the active workspace contains shared variables, objects having the same
name as a shared variable cannot be copied into the active workspace.

Syntax
JCOPY [device/file number] [workspace ID] :password [object name(s)]
Where:

device/file number (optional for diskette only) is the number of the device,
and workspace file the objects are copied from.

workspace ID (optional) is the name of the stored workspace on the media.
This parameter is optional only if the device/file number is specified.

:password is the security password assigned by a previous)WSID or)SAVE
command. If no password was assigned previously, a password cannot be
specified by this command.

object name(s) (optional) is the name of the global objects(s) to be copied from

the designated stored workspace. If this parameter is omitted, all global
objects in the designated stored workspace are copied.

System Commands

The)DROP Command

The)DROP command marks a specified file unused. After the file has been
marked unused, the data in the file can no longer be read from the media.
Once the file is marked unused, the file is available to be used in the same
manner as a newly formatted file (see The)MARK Command). When the
command is successfully completed, DROPPED device/file number file ID is
displayed.

Note: For diskette files, the JFREE command must be used if the diskette file
space is to be reallocated to another file (see The)FREE Command in this
chapter).

Syntax
)DROP [device/file number] [file ID]
Where:

device/file number (optional for diskette only) is the number of the device
and the file on the media.

file ID is the name of the file to be marked unused. This parameter is
required for all APL stored workspace files and is optional for data files if
the device/file number is specified. The name specified by this parameter
is compared to the media file ID. If the names do not match, the error
message FILE NOT FOUND is displayed.

Note: When a diskette file is dropped, the diskette file name is not changed.

The JERASE Command

The JERASE command erases the named global objects from the active
workspace. No message is displayed after the successful completion of the
command.

Notes:

1. When a pendent function is erased, the response S| DAMAGE is issued.

2. If the object being erased is a shared variable (see Chapter 7), the shared
variable will be retracted.

3. Even after the object is erased, the name remains in the symbol table (the
part of the active workspace that contains all the symbols used).

Syntax
JERASE object name(s)
Where:

object name(s) are global names separated by blanks.

The)FILEID Command

The)FILEID command is used to change or display the file name on a diskette
volume. When the JFILEID command is issued without specifying a new file
name, device file number file name is displayed. When the)FILEID command
is issued specifying a new file name, WAS device/file number file name is
displayed and the file name is changed to the new file name.

Syntax

JFILEID [device/file number] [current file name] [new file name]

Where:

device/file number {optional) is an integer that specifies the device/file
number.

current file name (optional) is the current name of the file. This parameter is
optional only if the device/file number is specified and a new name is not
specified.

new file name (optional) will be the new name for the file.

The }JFNS Command

The JFNS command displays the names of all global user-defined functions in
the active workspace. The functions are listed alphabetically. If the character
parameter is specified, the names are displayed beginning with the specified
character or character sequence.

Note: You can interrupt the)FNS command by pressing the ATTN key.

Syntax
JFNS [character(s)]

Where:

character(s) (optional) is any sequence of alphabetic and numeric characters
that starts with an alphabetic character and contains no blanks. This

sequence of characters determines the starting point for an alphabetic
listing.

System Commands 39

The JFREE Command
The JFREE command makes diskette files available for reallocation. After the
file is made available for reallocation, the space can be used for other
numbered files by the JMARK command.
When the command is successfully completed, FREED device/file number file
ID is displayed.

Syntax
JFREE [device/file number] file ID

Where:

device/file number (optional) is an integer that specifies the diskette device/file
number where the diskette file is stored.

file ID is the name of the stored file. This parameter must be specified for APL
workspace files. For data files, this parameter is optional! if the device/file
number is specified.

The JLIB Command

The)LIB command displays the file headers of the files on tape or diskette.
The file header contains the following information:

File number.

File ID. The file ID can be from 1 to 17 characters. If the file contains a
stored workspace, the file ID is the same as the stored workspace ID.

File type. The file type is a two-digit code; the following chart gives the
meaning of each code:

File Type

00
01

02
03
04
05
06

07
08
09

B9

10
1
12
15
16
17
18
19
21
22
23
24
26
72

Description

Unused file

Sequential access—exchange data file

Sequential access—general exchange data file
BASIC source file

BASIC workspace file

BASIC keys file

APL continued file—-5100 only

APL saved file

Sequential access—APL internal format data file
Direct access—exchange, general exchange, and
unblocked/unspanned data file

Direct access—unblocked/unspanned data file that can be
used for exchanging data with other products
Direct access—APL internal format data file

BASIC source file—5110 only

BASIC keys file—~5110 only

Direct access—APL mixed record data file

Patch, tape recovery, and tape copy file—=5100 only
Diagnostic file—5100 only

Communications file—5100 only

IMF file—-5100 only

Patch, tape recovery, and tape copy file—5110 only
Feature file~5110 only

IMF file—=5110 only

Diagnostic file—5110 only

APL continued file—5110 only

Storage dump—tape only

Page of SA21-93030
Issued 15 June 1978
| By TNL: SN210289

Size of the file. The files are formatted in increments of 1024-byte blocks

of storage.

Number of unused contiguous 1024-byte blocks of storage in the file.

System Commands

41

42

« (Tape only) Number of defective records (512-byte blocks) in the file; an
asterisk (*) is displayed if there are more than nine defective records.

Note: This value can indicate when you should relocate a file to avoid loss
of data due to defective areas on the tape.

« (Diskette only) Write-protect indicator; a P indicates that the file is
write-protected. That is, you cannot write data to the file. Otherwise, this
position is blank.

« (Diskette only) Starting location of the first record in the file. This hex value
is in the format CCHRR, where CC is the cylinder number, H is the head

number, and RR is the sector number.

Following is an example of a tape file header:

006 FILES 07 010,001 0

File Type——l .

Size of the File

Available Storage

Number of Defective Records

'————File ID

File Number

Following is an example of a diskette file header:

0023 FILE23 26 0020,0007 P 19104

File Type__—.J

Size of the File

Available Storage

Write Protect Indicator

Starting Location (CCHRR)

File ID

File Number

You can interrupt the)LIB command operation by pressing the ATTN key.

Page of SA21-9303-0
Issued 28 April 1978
By TNL: SN21-0284

Syntax
JLIB [device/file number]
Where:

device/file number (optional) is the number of the device and starting file
number. All file headers from that file to the end of the media are
displayed. If this parameter is not specified, the default device is assumed
and:

« For the 5110 Model 1, the display begins with the first file following the
file you are currently positioned at on tape unit 1

« For the 5110 Model 2, the display begins with the first file on diskette
drive 1

For the tape units, the device number followed by 000 displays the file
headers beginning with the first file you are currently positioned at on the
tape unit. For example, 2000 specifies tape unit 2.

For diskette drives, the device number followed by 000 displays the file
headers beginning with the first file on the diskette drive.

Note: For diskette files, only the file headers of the formatted files (see The
JMARK Command) are displayed.

The JLINK Command

The JLINK command is used to load special programs (file type 21 only), such
as asynchronous communications or customer support functions, into the 5110.

Syntax
JLINK [device/file number] [file ID]
Where:

device/file number (optional for diskette only) is the number of the device
and the number of the file that contains the microcoded programs.

file ID (optional) is the name of the file that contains the microcode
programs. This parameter is optional on diskette only if the device/file
number is specified.

Note: If an 1/0 error or workspace full condition occurs when you are using
the)LINK command, the program is not loaded and the CLEAR WS message
is displayed. In this case, you should press RESTART to clear any IMFs
(internal machine fixes), storage allocated for procedure files, or other special
programs from the active workspace. Then try the)LINK command again. If
the program loads successfully, you must also reload any required IMFs. If the
program still does not load, call your service representative.

System Commands 43

The JLOAD Command

The)LOAD command loads the contents of a stored workspace from the tape
or diskette into the active workspace, completely replacing the contents that
were in the active workspace. When the command is successfully completed,
LOADED device/file number workspace ID is displayed.

Notes:

1.

2.

Syntax

If the ATTN key is pressed during a load operation, the system operation is
interrupted and the active workspage is cleared.

Any shared variables that were established when the stored workspace was
written to the media are not automatically reestablished during a load
operation. (See The)RESUME Command for information on reestablishing
shared variables when a stored workspace was written to the media by the
JCONTINUE command.)

. The system does not successfully terminate current input/output operations

(see Chapter 7) when a)LOAD command is issued. Therefore, if a new data
file is being created or if records are being added to an existing data file
and a)LOAD command is issued without terminating the operation, the file
header is not updated and the file contents are unpredictable.

. If the stored workspace contains a latent expression (see the [JLX system

variable in Chapter 5), the latent expression is always executed when the
JLOAD command is issued.

JLOAD [device/file number] [workspace ID] :password

Where:

device/file number (optional for diskette only) is the number of the device
and the number of the file on the media.

workspace ID (optional) is the name of the stored workspace. This
parameter is optional only if the device/file number is specified.

:password is the security password assigned to the stored workspace by a
previous JWSID,)CONTINUE, or JSAVE command. If no password was
previously assigned, a password cannot be specified. If a password was
assigned to the stored workspace but is not specified, or if it is incorrectly
specified for this command, the error message WS LOCKED is displayed.

Page of SA21-9303-0
Issued 28 April 1978
By TNL: SN21-0284

The JMARK Command

The JMARK command formats the media so that the active workspace or data
can be saved on it. Each JMARK command formats a specified number of files
to a specified size. Additional files of different sizes can be formatted by
additional MARK commands.

When the operation is successfully completed, MARKED number of the last
file marked size of the last file marked is displayed.

Notes:

1.
2.

Syntax

The ATTN key is not operative during the]MARK command operation.

If the message ALREADY MARKED is displayed after a)]MARK command
has been issued, the specified file already exists on the media. To re-mark
the specified file, enter GO. If the file is not to be re-marked, press
EXECUTE to continue.

CAUTION

If an existing file on tape is re-marked, the original information in the
re-marked file and the existing files following the re-marked file cannot be
used again.

. (Diskette only) The files within the range specified by the JMARK command

are the only files on the diskette that are affected.

. {Diskette only) The user can control the location of a file on the diskette

only by using a totally unformatted diskette and issuing JMARK commands
in the same order as the files that are to be formatted on the diskette.

. (Diskette only) If a size of zero is specified, the files within the range

specified by the JMARK command are made available for reallocation. After
the file is made available for reallocation, the diskette space can be used for
other numbered files by the JMARK command.

. (Diskette only) The maximum number of files allowed on a diskette is 19 for

a diskette type 1; 45 for a diskette type 2; 71 for a diskette type 2D (unless
the diskette initialization function was used to get additional file headers;
see the IBM 5110 Customer Support Functions Reference Manual,
SA21-9311).

JIMARK size number of files to mark starting file number [device]

Where:

size is an integer specifying the size of each file in 1024-byte (1K) blocks of
storage.

System Commands 45

The following formulas can be used to determine the maximum size the file
must be marked. The formula for a workspace file (the contents of the
active workspace written to tape with a)SAVE or JCONTINUE command) is:

MAXSIZE=3+[(CLEAR-ACTIVE) + 1024
where:

« MAXSIZE is the maximum amount of media storage (number of
1024-byte blocks) that might be required to write the contents of the
active workspace to the media.

« CLEAR is the value of JWA (see Chapter 5) in a clear workspace.

. ACTIVE is the value of [JWA just before the contents of the active
workspace are written to the media.

The amount of storage actually required can vary considerably between
different workspaces because of their content, if they are on tape or
diskette, or if they were written with a)JSAVE or JCONTINUE command.

The formula for a data file (data written to the media with an APL shared
variable~see Chapter 7) when all of the data is contained in the active
workspace is:

MAXSIZE=[(without-with) + 1024
where:

« MAXSIZE is the maximum amount of media storage {(number of
1024-byte blocks) required to write the data to the media.

« WITH is the value of OWA (see Chapter 5) with the data in the active
workspace.

. WITHOUT is the value of OWA before any data to be written to the
media was stored in the active workspace.

There is no formula for determining what size to mark a data file when the
data is written to the media as it is entered from the keyboard. The amount
of media storage required depends upon how much data is entered from the
keyboard and what type of data is used. For information on how many
bytes of storage are required by the various types of data, see Storage
Considerations in Chapter 2.

Note: The file header for each marked tape file requires 0.5K bytes of
storage. Therefore, the number of bytes of tape storage required for each
file is the specified size of the file plus 0.5K.

number of files to mark is an integer specifying the number of files of the
specified size to format.

starting file number is an integer specifying the file number where formatting
is to start.

device (optional) specifies the device that contains the media to be
formatted. An entry of 1 specifies tape unit 1, 2 specifies tape unit 2, 11
specifies diskette drive 1, and 12 specifies diskette drive 2. If no entry is
made, the default device is used.

To format a tape for four 12K files, two 16K files, and three 10K files, the
following commands are required:

}MARK 12 4 1
JMARK 16 2 5 Starting File Number
JMARK 10 3 7

To format a diskette on diskette drive 1 for four 12K files, two 20K files, and
one 10K file, the following commands are required:

MARK 12 4 1 11
YMARK 20 2 5 11 Device 11 (diskette drive 1)

JMARK 10 1 7 11

The JOUTSEL Command
The JOUTSEL command specifies which data on the display will go to the
printer.
Syntax
JOUTSEL [option]
Where:
option is one of the following:

» When ALL is specified, all subsequent information that is displayed will
be printed.

« When OUT is specified, only the output is sent to the printer; input is
displayed, but it does not go to the printer.

+ When OFF is specified, none of the information displayed is printed,
unless it is assigned to an APL shared variable used by the printer (see
Chapter 7).

If no parameter is specified, ALL is assumed. After a)LOAD or JCLEAR
command or when the machine is first turned on, the ALL option is active.

System Commands

The)JPCOPY Command

The JPCOPY command copies all or specified ‘global objects from a stored
workspace into the active workspace. It is the same as the JCOPY command,
except that if the object name already exists in the active workspace, it is not
copied from a stored workspace. Therefore, the object in the active workspace
is protected from being overlaid and destroyed. Only objects in stored
workspaces that were written on the media with the JSAVE command can be
copied.

When the command is successfully completed, COPIED device/file number
workspace ID is displayed.

Notes:

1.

2.

Syntax

If the active workspace contains suspended functions, objects cannot be
copied into it.

If the ATTN key is pressed during a)JPCOPY operation, the system
operation is interrupted and the amount of information copied into the active
workspace is unpredictable.

. If the specified object name already exists in the active workspace, the

message NOT COPIED: object name is also displayed.

)PCOPY [device/file number] [workspace ID] :password [object name(s)]

Where:

device/file number (optional for diskette only) is the number of the device
and the stored workspace file.

workspace D (optional) is the name of the stored workspace on the media.
This parameter is optional only if the device/file number is specified.

:password is the security password assigned by the previous JWSID or
)SAVE command. If no password was assigned, a password cannot be
specified by this command.

object name(s) (optional) is the name of the global object(s) to be copied
from the designated stored workspace. If omitted, all global objects in the
designated stored workspace are copied, except those already in the active
workspace (if any).

The)PROC Command

The JPROC command opens an external procedure file that is used by the 5110
as an alternative to keyboard input (see Chapter 2). A procedure file contains
character records that represent any input that is possible to enter from the
keyboard, such as system commands, function definitions, or APL statements.

When a)PROC command is issued, all input comes from the procedure file
until the end-of-data is reached. Then the 5110 goes back to using regular
keyboard input.

Notes:

1. The JPROC command requires 768 bytes from the active workspace. This
space can be allocated only in a CLEAR WS; therefore, the active
workspace is always cleared the first time a)PROC command is issued. The
active workspace is not cleared for any subsequent }PROC commands
because the 768 bytes are already allocated.

2. You can establish the 768 bytes of active workspace by issuing the)PROC
command without any parameters. This allows you to clear the active
workspace, establish the 768-byte area required by the)PROC command,
use the active workspace for any APL operations, and issue subsequent
)JPROC commands when you are ready to execute statements from a
procedure file.

Syntax
JPROC [device/file number] [file ID]

Where:

device/file number (optional for diskette only) is an integer that specifies the
device /file number where the procedure file is stored.

file ID (optional) is the name of the procedure file. This parameter is
optional only if the device/file number is specified.

System Commands

49

50

The JPROTECT Command

The JPROTECT command invokes or removes the write-protect indicator on a
diskette file. When the write-protect indicator is on for a specified diskette
file, you cannot write to that diskette file. This will prevent someone from
writing data to a diskette file accidently.

Syntax
)PROTECT [device/file number] [file ID] [OFF/ON]

Where:

device/file number (optional) is an integer that specifies the device/file
number where the write-protect indicator is invoked or removed.

file 1D (optional) is the name of the diskette file. This parameter is optional
only if the device/file number is specified.

OFF /ON (optional) specifies whether the write-protect indicator is to be
removed (OFF) or invoked (ON). This parameter can be used only when the
file ID is specified. If this parameter is not specified, the write-protect
indicator is invoked.

The JRESUME Command

The JRESUME command loads the contents of a workspace that was stored by
the JCONTINUE command into the active workspace and attempts to
reestablish the system’s environment as it was when the workspace was
stored.

This includes reestablishing shared variables and reestablishing suspended
functions. For shared variables, an attempt is made to reestablish the shared
variables as follows:

-+ Diskette data files are checked to make sure they are on the proper diskette
drive. If the data files are not on the proper diskette drive, a WRONG
VOLUME error message is displayed. However, the stored workspace is
still loaded into the active workspace.

If the WRONG VOLUME error message is displayed, place the diskette
containing the correct data files in the proper diskette drive before doing
any input/output.

CAUTION
If the correct diskette is not placed in the proper diskette drive, data on the
diskette presently in the diskette drive can be overwritten and lost.

« Tape files are not checked. It is assumed that all tapes remain in the correct
position and are mounted on the correct devices. If the wrong tape is
placed in the tape drive or if the tape has been repositioned, it is possible to
overwrite in the wrong location.

« Any shared variables to the printer are reestablished.

« Any shared variables to attached serial /O devices are reestablished;
however, you are responsible for establishing the correct serial 1/0
environment (such as making sure the serial 1/0 devices are attached)
before issuing the JRESUME command.

When the JRESUME command is used, the latent expression ([JLX) is not

executed and JOUTSEL ALL is assumed unless a shared variable to the printer

was specified. When the command is successfully completed, RESUMED
device/file number workspace ID is displayed.
Syntax
)JRESUME [device/file number] {workspace ID] :password
Where:

device/file number (optional) is the number of the device and file number of
the stored workspace.

workspace ID (optional) is the name of the stored workspace. This
parameter is optional only if the device/file number is specified.

System Commands

52

:password is the security password assigned to the stored workspace by a
previous)WSID or JCONTINUE command. If no password was previously
assigned, a password cannot be specified. If a password was assigned to
the stored workspace but is not specified, or if it is specified incorrectly for
this command, the error message WS LOCKED is displayed.

The JREWIND Command

The JREWIND command rewinds the specified tape. No message is displayed
at the successful completion of this command.

Syntax
JREWIND [device number]
Where:

device number (optional) is the tape (on drive 1 or 2) to be rewound. If this
parameter is omitted, tape 1 is rewound.

The)SAVE Command

The)SAVE command stores the contents of the active workspace onto the
media without changing the contents of the active workspace. Individual global
objects can be copied from the stored workspace to the active workspace.
When this command is successfully completed, SAVE device/file number
workspace ID is displayed. Do not remove the tape or diskette until this
message is displayed.

Notes:

1. A clear workspace or a workspace with suspended function cannot be
written to the media by the)JSAVE command; however, a workspace with
suspended functions can be written to the media by the JCONTINUE
command.

2. The JCOPY and JPCOPY commands can specify stored workspaces that
were written on the media only if the)SAVE command was used.

3. Depending on the amount of data in the stored workspace, a stored
workspace that was written to the media by the)SAVE command can be
loaded into another 5110 with a smaller active workspace.

4. If ATTN is pressed during a)SAVE operation, the system operation is
interrupted and file is set to unused.

b. Shared variables cannot automatically be reestablished in the active
workspace when the workspace is stored on the media by the JSAVE
command. However, the shared variable can be automatically reestablished
in the active workspace when the workspace is stored by the JCONTINUE
command.

6. IMFs (internal machine fixes) are not stored by the JSAVE operation. If an
IMF is required, it is necessary to use the)LINK command to reload the IMF
(if the IMF is not already in the system) before the stored workspace is
reloaded.

7. Only workspaces stored on the media by the }SAVE command can be
interchanged between the 5110 and the 5100.

Syntax
")SAVE [device/file number] [workspace ID] [:password]
Where:

device/file number (optional) is the number of the device and the file on the
tape or diskette where the contents of the active workspace are to be
written. If no device/file number is specified, the device/file number from
which the active workspace was loaded or which was specified by a
previous)WSID command is used.

workspace ID (optional) is the name of the workspace to be stored. This
name must match the workspace ID of both the active workspace and the
file to be used on the media unless the file is mark unused. If the file is
marked unused, the active workspace and file workspace ID will be changed
to this workspace ID. If no name is specified in the command, the name of
the active workspace is used.

:password (optional) is any combination of up to 8 alphabetic or numeric
characters (without blanks), preceded by a colon. This sequence of
characters must be matched when the stored workspace is to be read back
into the active workspace. If no workspace ID or password is entered, the
password associated with the active workspace (if any) is assigned to the
workspace being stored. If just the workspace ID and no password is
entered, any password associated with the active workspace is not used.

The)SI Command
The)SI command displays the names of the suspended and pendent
user-defined functions. The suspended functions are indicated by an *, with
the most recently suspended function listed first, followed by the next most
recently suspended function, and so on.

Syntax

)Si

There are no parameters.

The)SINL Command
The)SINL command displays the names of the suspended and pendent
user-defined functions and the names local to each function. The suspended
functions are indicated by an *, with the most recently suspended function
listed first, followed by the next most recently suspended function, and so on.
Syntax
)SINL

There are no parameters.

System Commands

The)SORT Command

The)SORT command transfers system control to the sort feature (see the
5110 Customer Support Functions Reference Manual, SA21-9311, for a
complete description of the sort feature).

Note: If the)JSORT command is issued from a procedure file (see The)PROC
Command), the statement immediately following the)JSORT command
statement is used as the initial input to the sort feature. When the sort feature
is complete, the 5110 continues to take input from the procedure file.

Syntax
)SORT

There are no parameters.

The)SYMBOLS Command

The)SYMBOLS command is used to change or display the number of symbols
(variable names, function names, and labels) allowed in the active workspace.
The number of symbols allowed can only be changed immediately after a
JCLEAR command has been issued. In a clear workspace, the number of
symbols allowed is initially set to 125 by the 5110. When the command is
used to display the number of symbols aliowed, IS the number of symbols
allowed, number of symbols used IN USE is displayed. When the command is
used to change the number of symbols allowed, WAS the former number of
symbols allowed is displayed.

Note: When a stored workspace is loaded into the active workspace, the
number of symbols allowed in the active workspace will be the same as when
the stored workspace was written to the media.

Syntax
)JSYMBOLS [n]
Where:

n (optional) is an integer equal to or greater than 26 that specifies the
number of symbols allowed in the active workspace. Each symbol allowed
requires 8 bytes of storage in the active workspace.

Notes:

1. The number of symbols allowed is assigned in blocks of 21; therefore, the
actual number allowed can be larger than the number specified.

2. When a symbol is used in the active workspace, it remains in use even
though the object is erased or, in the case of VALUE ERROR never existed.
When the active workspace is written to tape with the)SAVE command and
subsequently reloaded, these unused names are removed from the symbol
table, and the number of symbols in use will be the same as the number of
objects in the workspace.

3. The total number of allowed symbols remains the same after you write the
workspace to the media with a)SAVE or JCONTINUE command and then
reload the workspace to the active workspace. The number of symbols in
the active workspace can be changed as follows:

a. Save the active workspace with the)SAVE command.

b. Clear the active workspace with the JCLEAR command.

c. Set the new number of symbols with the }SYMBOLS comm?d.hﬁ

d. Copy the stored workspace to the active workspace with thé JCOPY i
command. :

e. The workspace ID and [JLX must be respecified.

The)VARS Command
The)VARS command displays the names of all global variables in the active
workspace. The variables are displayed alphabetically. If the character
parameter is included, the names are displayed beginning with the specified
character sequence.

Syntax
)VARS [character(s)]
Where:

character(s) (optional) is any sequence of alphabetic and numeric characters

that starts with an alphabetic character and contains no blanks. This entry
can be used to define the starting point for an alphabetic listing.

System Commands 55

The JVOLID Command

The)VOLID (volume ID) command is used to change or display the volume ID

or change the access-protect indicator of a diskette device. When the }VOLID

command is issued without any parameters, volume ID owner ID record size is
displayed. When the)VOLID command is issued with parameters,

WAS volume ID owner ID record size is displayed.

Note: The record size cannot be changed by the)VOLID command.

~ Syntax

)JVOLID [device number] [volume ID] [owner ID] [access-protect indicator]

Where:
device number (optional) is the number of the diskette device.

volume ID (optional) will be the new identifier for the diskette volume. This
parameter can be up to 6 alphabetic and numeric characters.

owner ID (optional) is the new identifier for the owner of the diskette
volume. This parameter can be up to 14 alphabetic and numeric characters.
If this parameter is not specified, the owner ID is not changed.

access-protect indicator (optional) is specified as either ON or OFF. This
parameter can be specified only when the volume ID and owner ID
parameters are also specified. The access-protect indicator prevents
unauthorized access to the diskette volume; any attempt to access the
diskette generates an ERROR 043 message.

Following are examples of using the)VOLID command:
JVOLID Displays the volume ID, owner ID, and

record size of the diskette on diskette drive
1.

JVOLID 12 Displays the volume ID, owner ID, and
record size of the diskette on diskette drive
2.

JVOLID 11 NEW Changes the volume ID of the diskette on

diskette drive 1 to NEW; the owner ID
remains the same.

JVOLID 11 NEW JOHN Changes the owner ID of the diskette on
diskette drive 1 to JOHN; the volume ID is
also changed if the volume ID was not
already NEW.

JVOLID 11 NEW JOHN ON Sets the access-protect indicator on for the
diskette on diskette drive 1.

The)WSID Command

The)WSID (workspace ID) command is used to change or display the
device/file number and workspace ID of the active workspace. The YWSID
command is also used to change or assign the security password. If a)]SAVE
or JCONTINUE command is specified without any parameters, the contents of
the active workspace are written to the device and file number specified by the
)WSID command. When the)WSID command is issued without any
parameters, device/file number workspace ID is displayed. When the WSID
command is issued with parameters, WAS device/file number workspace ID is
displayed.

Note: The)WSID command affects only the active workspace; it cannot be
used to change any information on tape or diskette.

Syntax
JWSID [device/file number] [workspace ID] [:password]

Where:

device/file number (optional) is an integer that specifies the device/file
number where the active workspace will be stored when either the)SAVE or
JCONTINUE command is issued.

Note: If this parameter is omitted, the device/file number is cleared: a
)SAVE or JCONTINUE command will not work unless a device/file number
is specified in that)SAVE or JCONTINUE command.

workspace ID (optional) will be the new name for the active workspace. This
parameter must be entered if any other parameter is used.

:password (optional) is any combination of up to 8 alphabetic or numeric
characters (without blanks), preceded by a colon. These characters will
become the security password for the tape file when the active workspace
is written on tape.

System Commands 57

58

Chapter 4. Primitive (Built-In) Functions

APL functions are of two types: user-defined and built-in. User-defined
functions are discussed in Chapter 6. Built-in functions, called primitive
functions, are denoted by a symbol and operate on the data you supply to
them.

The value or values you supply are called arguments. Primitive functions that
use two arguments, such as A+B, are said to be dyadic; functions that use
one argument are said to be monadic, such as +B, which yields the reciprocal
of B. Arguments can be single data items (scalars), strings of data (vectors),
tables of data (matrices), or multiple tables of data (N-rank arrays). Arguments
can also be expressions or user-defined functions that result in a scalar,
vector, matrix, or N-rank array.

There are two types of primitive functions: scalar functions and mixed
functions. There are also operators that operate on the primitive functions.
Examples of the functions and operators are provided throughout this chapter
for easy reference and are set up as they would appear on the display.

PRIMITIVE SCALAR FUNCTIONS

Scalar functions operate on scalar arguments and arrays. They are extended to
arrays element by element. The shape and rank of the result depend on the
shape and rank of the arguments. For dyadic scalar functions, the relation
between the types of arguments and the shape of the result is shown in the
following table. Each scalar function is described following the table:

Argument A Argument B Result
Scalar Scalar Scalar
Array Array with the same Array with the same
shape as A shape as the
arguments
Scalar or one- Array of any Array with the
element array shape same shape as
argument B
Array of Scalar or one- Array with the same
any shape element array shape as argument A
One-element One-element array One-element array
array with the rank with the shape of
different from the the array with the
rank of A greater rank

Primitive (Built-In) Functions

59

60

The + Function: Conjugate, Plus
+

Monadic (One-Argument) Form: Conjugate +B

The conjugate function does not change the argument. The argument can be a
numeric scalar, vector, or other array, and the shape of the result is the same

as that of the argument:

+5

A
+ i
bl Hel

W

If B is an array, the function is extended to each of the elements of B. The

shape of the result is the shape of B:

Bed Fp73 72 Lo 1 2
B

"3 72 7y

-
4+ 13

3 27l

U 2

Dyadic (Two-Argument) Form: Plus A+B

The plus function results in the sum of the two arguments. The arguments can
be numeric scalars, vectors, or other arrays. Arguments must be the same
shape, unless one of the arguments is a scalar or single-element array. If the
arguments have the same shape, the result has the same shape as the

arguments:
3+3
&
2 TE
S5.T3
DAL TE 8
S
HokoLOTL O TEHHLL 200
10.2 3 711

if one argument is a scalar or single-element array, the shape of the result is
the same as that of the other input argument. The single element is applied to

every element of the multielement array:

W
7

7

LA o8

a

o
wd

a

Be2 3Zpl 2 3 4 0 4
B

3

&

I+0

&

Q@

B3

é

o

The - Function: Negation, Minus
’ +

Monadic (One-Argument) Form: Negation -B

The negation function changes the sign of the argument. The argument can be
a numeric scalar, vector, or other array. The shape of the result is the same as
that of the argument:

AeTL T3

If the argument is an array, the function is extended to each element of the

array.

Be2 Zpm2 T2 710

ey g
12
2 1

12

"y
&

Primitive (Built-ln) Functions

61

62

Dyadic (Two-Argument) Form: Minus A-B

The minus function subtracts argument B from argument A. The arguments
can be numeric scalars, vectors, or other arrays. The arguments must be the
same shape unless one of the arguments is a scalar or any single-element
array. If the arguments are the same shape, the result has the same shape as
the arguments:

5 e 10}
1
L 1)
!
9
20 Ty
o

If one argument is a scalar or a single-element array, the shape of the result is
the same as that of the other input argument. The single element is applied to
every element of the multielement array:

RBe2 Fpl 2 3 0§ 4

R
123
b 5 4
31
2 1 0
172 73
B3
2710
I 2 3

The x Function: Signum, Times
X

Monadic (One-Argument) Form: Signum XB

The signum function indicates the sign of the argument. If the argument is
negative, 1 is the result; if the argument is zero, then O is the result; if the
argument is positive, 1 is the result. The argument can be a numeric scalar,
vector, or other array. The shape of the result is the same as that of the
argument:

XUR2G 0 33
101

If the argument is an array, the function is extended to each of the elements:

Bed Zp72 7L 0 1L 23

B
2 710
P2 3

X

Dyadic (Two-Argument) Form: Times AXB

The times function result is the product of argument A times argument B. The
arguments can be numeric scalars, vectors, or other arrays. The arguments
must be the same shape, unless one of the arguments is a scalar or any
single-element array. Arguments of the same shape have the same shape

result:
2x20
W2
AKX TH
TlLa
i 1y
0o1R.3

If one argument is a scalar or a single-element array, the shape of the result is
the same as that of the other input argument. The single element is applied to
every element of the multielement array:

Be2 3pl 2 3 4 5 6

Primitive (Built-In) Functions

63

The + Function: Reciprocal, Divide
X

Monadic (One-Argument) Form: Reciprocal +B
The reciprocal function result is the reciprocal of the argument. The argument

can be a numeric scalar, vector, or other array. The shape of the result is the
same as that of the argument:

0,25
0.5

If the argument is an array, the function is extended to each of the elements:

Re2 2o 8

B
2

B
0.5 2
0.5 2

Dyadic (Two-Argument) Form: Divide A%B

The divide function result is the quotient when argument A is divided by
argument B. The arguments can be numeric scalars, vectors, or other arrays.
The arguments must be the same shape unless one of the arguments is a
scalar or a single-element array. Arguments of the same shape have the same
shape result:

T T

If one argument is a scalar-or a single-element array, the shape of the result is
the same as that of the other input argument. The single element is applied to
every element of the multielement array:

Be2 2pl 10 20 100

B
10
20 100
AR
3 0.3
0,15 0,03

Note: There are two additional rules that apply to the divide function:
1. When zero is divided by zero, the result is 1:

0-=0
1

2. Any value other than zero cannot be divided by zero:

3+0
NOMA TN ERROR
A0
s

The [Function: Ceiling, Maximum
s

Monadic (One-Argument) Form: Ceiling [B

The ceiling function result is the next integer larger than the argument (the
argument is rounded up), unless the argument already is an integer. In this
case, the result is the same as the argument. The argument can be a numeric

scalar, vector, or other array. The shape of the result is the same as that of
the argument:

Primitive (Built-1n) Functions

65

If the argument is an array, the function is extended to each of the elements:

Bed 2p1 1.3 1.5 2
[
1 L3
1.5 2
[k
12
)
&2

A

Note: The result of the ceiling function depends on the [ICT system variable
(see Chapter 5 for information on the [JCT system variable).

Dyadic (Two-Argument) Form: Maximum Al B

The maximum function result is the larger of the arguments. The arguments
can be numeric scalars, vectors, or other arrays. The arguments must be the
same shape unless one of the arguments is a scalar or any single-element
array. Arguments of the same shape have the same shape result:

Bl
&
Ara
A
6T 1.0

CHELL T TArG L 2007
S.0 20 73

If one argument is a scalar or a single-element array, the shape of the result is

the same as that of the other argument. The single element is applied to every
element of the multielement array:

BeR Zel 203 w05 4
B

The L Function: Floor, Minimum
D

Monadic (One-Argument) Form: Floor B

The floor function result is the next integer smaller than the argument (the
argument is rounded down) unless the argument is already an integer. In this
case, the result is the same as the argument. The argument can be a numeric

scalar, vector, or other array. The shape of the result is the same as that of
the argument:

L3.9 2.3

)
I}

If the argument is an array, the function is extended to each of the elements:

Be2 2pl 1.5 1.6 2
B3]
1.5

é 2

Note: The result of the floor function depends on the (JCT system variable
(see Chapter 5 for information on the [JCT system variable).

Dyadic (Two-Argument) Form: Minimum ALB

The minimum function result is the smaller of the arguments. The arguments
can be numeric scalars, vectors, or other arrays. The arguments must be the
same shape unless one of the arguments is a scalar or any single-element
array. Arguments of the same shape have the same shape result:

B4
I

A2
2

T<LO
10

1y

9.1

Primitive (Built-In) Functions

67

If one argument is a scalar or a single-element array, the shape of the result is
the same as that of the other argument. The single element is applied to every
element of the multielement array:

Bed Zpl 23 4 5 46
B
123

123

333

The | Function: Magnitude, Residue |
‘ M

Monadic (One-Argument) Form: Magnitude |B

The magnitude function result is the absolute value of the argument. The
argument can be a numeric scalar, vector, or other array. The shape of the
result is the same as that of the argument:

7.9
7.9

173
3

If the argument is an array, the function is extended to each of the elements:

Be2 207501 71 0 F.14
B
"Ha "1
0 .14
I
5.1 1

0 3,10

Dyadic (Two-Argument) Form: Residue A|B

The residue function result (when both argument A and argument B are
positive) is the remainder when argument B is divided by argument A. The
following rules apply when using the residue function:

1. If argument A is equal to zero, then the result is equal to argument B:
glé
&
2. If argument A is not equal to zero, then the result is a value between

argument A and zero (the result can be equal to zero, but not equal to
argument A). The result is obtained as follows:

a. When argument B is positive, the absolute value of argument A is
subtracted from argument B until a value between argument A and
zero is reached:

[T
A5

b. When argument B is negative, the absolute value of argument A is
added to argument B until a value between argument A and zero is
reached:

The arguments can be numeric scalars, vectors, or other arrays. The

arguments must be the same shape, unless one of the arguments is a scalar or
any single-element array. Arguments of the same shape have the same shape .
result:

R I DI

TEPTLRLE

A roud

0 &1

Primitive (Built-In) Functions 69

70

If one argument is a scalar or a single-element array, the shape of the resuit is
the same as that of the other argument. The single element is applied to every
element of the multielement array:

Be2 3pl 2 3 B0 6

B
123
o5 4

KRN
120
1@

The * Function: Exponential, Power
3

Monadic (One-Argument) Form: Exponential *B

The exponential function result is the Naperian base e (2.718281828459045)
raised to the power indicated by the argument. The argument can be a
numeric scalar, vector, or other array. The shape of the result is the same as
that of the argument:

]
2,7183

%3
20,086

If the argument is an array, the function is extended to each element of the

array:
ReR 200 1 2 03
B
o1
23
¥
1 2.7183
TLOARYL 20,0848

Dyadic (Two-Argument) Form: Power A*B

The power function result is argument A raised to the power indicated by
argument B. The arguments can be numeric scalars, vectors, or other arrays.
The arguments must be the: same shape unless one of the arguments is a

scalar, or any single-element array. Arguments of the same shape have the
same shape result:

L]
8
T D¢
0.2%
X0
1
%,
3
2RTR
0.12% 2% 3=1/2>=1/8=.125

To find the root of a number, you raise the number to the power indicated by
the reciprocal of the root. For example, to find the square root:

1 9 Léwsl
123 0h

If one argument is a scalar or a single-element array, the shape of the result is
the same as that of the other argument. The single element is applied to every
element of the multielement array:

e Zpl 2 3 4
B

12

3 4

JER

9 Lé

The @ Function: Natural Log, Logarithm
P

You form the ® symbol by overstriking the © symbol and the * symbol.

Monadic (One-Argument) Form: Natural Log @B
The natural log function result is the log of the argument B to the Naperian
base e (2.718281828459045). The argument can be a nonnegative numeric
scalar, vector, or other array. The shape of the result is the same as that of
the argument:

B, 71IE3

w20, 084

Primitive (Built-In) Functions 71

If the argument is an array, the function is extended to each element of the

array:
Re2 2pl 3 10 20
[
13
10 20
B
n 1.09868
203026 2.9957

Dyadic (Two-Argument) Form: Logarithm A®B

The logarithm function result is the log of argument B to the base of argument
A. The arguments can be numeric scalars, vectors, or other arrays. The

arguments must be the same shape, unless one of the arguments is a scalar or
any single-element array. Arguments of the same shape have the same shape

result:
pRE:Es
3
Jolwmi2. g
2025939
DO onaR v 1é
22

If one argument is a scalar or a single-element array, the shape of the result is
the same as that of the other argument. The single element is applied to every
element of the multielement array:

Be2 201 2 3 4

B
12
34
10mp
0 0.30103
0, 47712 b, 60204

The O Function: Pi Times, Circular

Monadic (One-Argument) Form: Pi Times OB

The pi times function result is the value of pi (3.141592653589793) times B.
The argument can be a numeric scalar, vector, or other array. The shape of the
result is the same as that of the argument.

ol
314l

03
Q. U248

If the argument is an array, the function is extended to each element of the

array:
Be 20l 2 34
B’
12
K
OR ,
Folwlé H.o2832
@oN2ue 12,546

Dyadic (Two-Argument) Form: Circular AOB

The circular function result is the value of the specified trigonometric function
{argument A) for the specified radians (argument B). The arguments can be
numeric scalars, vectors, or other arrays. Arguments must be the same shape,
unless one is a scalar or single-element array. Arguments of the same shape
have the same shape result. The following is a list of the values for the A
argument and the related functions performed. A negative argument A is the
mathematical inverse of a positive argument A; any values for argument A
other than the following will resuit in DOMAIN ERROR:

Value of A

0oB
10B
208B
3oB
408
50B
60B
708B
T1oB
~20B
“30B
“40B
“boB
“608B

“70B

Operation Performed

(1-B*2)% .5~

Sine B B

Cosine B

Tangent B

(1+B%2) *.5 B

Hyperbolic sine of B (sinh B)
Hyperbolic cosine of B (cosh B)
Hyperbolic tangent of B (tanh B)
Arcsin B

Arccos B

Arctan B

(T 14B*2) x b ———e
Arcsinh B _ 1
Arccosh B

Arctanh B

Primitive (Built-In) Functions 73

74

If B is 45°, here is how to solve for the sine, cosine, and tangent of B (45° is
equivalent to pi radians divided by 4):

I.} & () |+
It The left argument specifies
0. 7854 / the trigonometric function.
Lok
0.70711 Sine of B
2OR
0.70711 Cosine of B
JOR
1 Tangent of B

If B is the sine of an angle, then OOB yields the cosine of the same angle, and
conversely, if B is the cosine, 0OB yields the sine. Suppose you wanted the
sine of 30°, which is equivalent to pi divided by 6:

Belolord)

1

0.% Sine of 30°
0oR

0.864603 Cosine of 30°
He20(0+4)
I

0.86603 Cosine of 30°
goR

0.5 Sine of 30°

If one argument is a scalar or a single-element array, the shape of the result is
the same as that of the other argument. The single element is applied to every
element of the multielement array:

Aed dpl 234

R0l
2}
12
X
B
0,785y
ADBR
0,70711 0.70711
1 1.2716

The ! Function: Factorial, Binomial @
K

You form the ! symbol by overstriking the quotation mark (') and the period
(.)

Monadic (One-Argument) Form: Factorial !B

The factorial function result is the product of all the positive integers from one
to the number value of the argument. The argument can be a positive numeric
scalar, vector, or other array. The shape of the result is the same as that of
the argument:

i
24
Lx2xExly
24
L 238 5
12 & 2w 120

The factorial function also works with decimal numbers and zero, but negative
integers are not allowed. When used in this way, factorial can be defined by
use of the mathematical gamma function—{! A) is equal to gamma (A+1):

13,14
71733

1o
1

If the argument is an array, the function is extended to each of the elements:

Re2 2p0 1 203
R

2 6

Primitive (Built-In) Functions

75

76

Dyadic (Two-Argument) Form: Binomial A!B

The binomial function result is the number of different combinations of
argument B that can be taken A at a time. The result of A!B is also the
(A+1)th coefficient of the binomial expansion of the Bth power. The
arguments can be numeric scalars, vectors, or other arrays. The arguments
must be the same shape, unless one of the arguments is a scalar or any
single-element array. Arguments of the same shape have the same shape
result;

214
b

214 IW IX IY IZ]<—~—-ArgumentB
15

310 WX
0 wYy

013 WZI\ The combinations of
i XY argument B taken

213 XZ argument A(2) at a time
3 YZ

If one argument is a scalar or a single-element array, the shape of the result is
the same as that of the other argument. The single element is applied to every
element of the multielement array:

012 313
1 3 31
01 2 3 uiy
LW 64 1
Bed 200 1 2 3
&
01
23
RIS
1 5
10 10

2075 w5 L

10 10 7.87% &

If noninteger arguments are used, this function relates to the beta function as
follows: Beta (P,Q) is equal to +Qx(P-1)!P+Q-1

The ? Function

: Roll| 2
Q

Monadic (One-Argument) Form: Roll ?B

The roll function result is a randomly selected integer from O through B-1 or 1

through B

(depending on the index origin). Each integer in the range has an

equal chance of being selected. The argument can be a positive integral scalar,
vector, or other array. The shape of the result is the same as that of the

argument:

202

?300
a0

wEHOT 9

PhH b

If the argument is an array, the function is extended to each element of the

array:

1L 22
Wi 5

w12

-
4003

Bed Fepll 22 33 WL GBE A6
3

33

&b

7

28

K3

Dyadic (Two-Argument) Form

See the deal function later in this chapter under Primitive Mixed Functions.

Primitive (Built-In) Functions

77

78

The A Function: And

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: And AAB

The and function result is 1 when A and B are both 1; otherwise, the result is
0. The value of the arguments must be either O or 1. The arguments can be
scalars, vectors, or other arrays. The arguments must be the same shape,
unless one of the arguments is a scalar or any single-element array.
Arguments of the same shape have the same shape result:

And Table
Ol
0 Operator
1Al \
1 A |<— Argument A
1a0
0
00 1 1Aa0 1 0 1
00 01

____ Argument B

If one argument is a scalar or a single-element array, the shape of the result is
the same as that of the other argument. The single element is applied to every
element of the multielement array:

Re 2p0 1 L0
B

1A

The VFunction: Or

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Or AvVB

The or function result is a 1 when either or both arguments are 1; otherwise,
the result is 0. The values of the arguments must be 1 or 0. The arguments
can be scalars, vectors, or other arrays. The arguments must be the same
shape, unless one of the arguments is a scalar or any single-element array.
Arguments of the same shape have the same shape result:

Or Table
1vo
1 Operator
0 |e———— Argument A
0 0 1 1v0 1 0 1
01 11

Argument B

If one argument is a scalar or a single-element array, the shape of the result is
the same as that of the other argument. The single element is applied to every
element of the multielement array:

RBe 20 1L 0 L
H

01

01
Lvis

Primitive (Built-In) Functions 79

80

The ~ Function: Not ; l

Monadic (One-Argument) Form: Not ~B

The not function result is 1 when B is 0 and O when B is 1. The values of the
argument must be 1 or 0. The argument can be a scalar, vector, or other array.
The shape of the result is the same as that of the argument:

~)
1
~]
0
If the argument is an array, the function is extended to each element of the
array:
Be2 Xp0 1
o
D10
Lo d
w4
101
010

Dyadic (Two-Argument) Form

There is no dyadic form.

The A Function: Nand ' ~
0 T

. You form the X symbol by overstriking the and (A) and the not (~) symbols.

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Nand AAB

The nand function result is O when both A and B are 1; otherwise, the result is
1. The values of the arguments must be 1 or 0. The arguments can be
scalars, vectors, or other arrays. The arguments must be the same shape,
unless one of the arguments is a scalar or any single-element array.
Arguments of the same shape have the same shape result:

Nand Table

0%1 Operator —s A «—————— Argument A
1

11
0

0 01 1X0 1 0 1
1110

Argument B
If one argument is a scalar or a single-element array, the shape of the result is

the same as that of the other argument. The single element is applied to every
element of the multielement array:

Be2 200 1

R
01
01

LER
10

Primitive (Built-In) Functions

81

82

The ¥ Function: Nor 7 I

You form the V symbol by overstriking the or (V) and the not (~) symbols.

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Nor AVB

The nor function result is 1 when A and B are both 0; otherwise, the result is
0. The values of the arguments must be 1 or 0. The arguments can be
scalars, vectors, or other arrays. The arguments must be the same shape,
unless one of the arguments is a scalar or any single-element array.
Arguments of the same shape have the same shape resuit:

Nor Table

Operator —s ¥ ~-———— Argument A

140
0

0%0
1

0 01 1¢0 101
1000

Argument B

If one argument is a scalar or a single-element array, the shape of the result is
the same as that of the other argument. The single element is applied to every
element of the multielement array:

Bed 200 1
B

01

01
0&n

} Page of SA21-93030
| Issued 15 June 1978

The > Function: Greater Than

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Greater Than A>B

The greater than function result is 1 when argument A is greater than argument
B; otherwise, the result is 0. The arguments can be numeric scalars, vectors,
or other arrays. The arguments must be the same shape, unless one of the
arguments is a scalar or any single-element array. Arguments of the same
shape have the same shape resulit:

1,562

5.1 % 0 Ty

If one argument is a scalar or a single-element array, the shape of the result is
the same as that of the other argument. The single element is applied to every
element of the multielement array:

Be2 Jpl 2 3 4 5 4
b

3

&

3R

0

0

=
ka3

= e
oo

Notes:

1. The resuit of the > function depends on the [(JCT system variable (see
Chapter 5 for information on the [JCT system variable).

2. When the > function is used with logical data (see Chapter 2), a system

error display can occur if the number of elements in the right argument is a
muitiple of 32. The following are examples:

. Primitive (Built-In) Functions

By TNL: SN21-0289

83

| Page of SA21-9303-0

Issued 15 June 1978

. By TNL: SN21.0289 , . o

The = Function: Equal To {@

| To prevent this error, separate the statement into two statements as
! f
ollows:

Yeileld
D=y

First, assign the right argument for the >

fehe7pl function to a variable.
YRl vall
CAUTAY Y ‘Then, use the variable as the right argument

‘for the > function.

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Equal To A=B

The equal to function result is 1 when the value of argument A equals the value
of argument B; otherwise, the result is 0. The arguments (numeric or
character) can be scalars, vectors, or other arrays. The arguments must be the
same shape, unless one of the arguments is a scalar or any other
single-element array. Arguments of the same shape have the same shape

result:

0=5
0

1.650321=1,654321
1

i='4a"'
0

A'="R'
0
]

0

135 7=2 3 4

i

If one argument is a scalar or a single-element array, the shape of the result is
the same as that of the other argument. The single element is applied to every
element of the multielement array:

At w aRAlADARAF &G
101010101010

i Page of SA21-9303-0
Issued 15 June 1978
. By TNL: SN21-0289
Notes:
1. If the arguments are numeric, the result of the = function depends on the
OCT system variable {(see Chapter 5 for information on the [JCT system
variable).
2. When the = function is used with logical data (see Chapter 2), a system
error display can occur if the number of elements in the right argument is a
multiple of 32. The following are examples:

Du=YeX20]

AeRe70pl
CEMF A =R 640 ‘

To prevent this error, separate the statements as follows:

First,, assign the right argument for the =
function to.a variable. '

Then, use the variable as the right argument
for the = function.

The < Function: Less Than ;

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Less Than A<B

The less than function result is 1 when argument A is less than argument B;
otherwise, the result is 0. The arguments can be numeric scalars, vectors, or
other arrays. The arguments must be the same shape, unless one of the
arguments is a scalar or any single-element array. Arguments of the same
shape have the same shape result:

1,652
1

ery
1

T
1

0<%, 4
0

10L23400 1323

. Primitive (Built-In} Functions 85

Page of SA21-9303-0
Issued 15 June 1978

By TNL: SN21-0289

C o

If one argument is a scalar or a single-element array, the shape of the result is
the same as that of the other argument. The single element is applied to every
element of the multielement array:

Be2 3p1l 2 3 4 35 6

ra
s

iy

_ 0
- O

[
=

Notes:

1. The result of the < function depends on the [JCT system variable (see
Chapter 5 for information on the JCT system variable).

2. When the < function is used with logical data (see Chapter 2), a system
error display can occur if the number of elements in the right argument is a
multiple of 32. The following are examples:

DY X0

AERET0]

COMTEY SR AN]

To prevent this error, separate the statement into two statements as
follows:

First, assign the right argument for the <
function to a variable.

Then, use the variable as the right argument
Caltay =y for the < function.

The > Function: Greater Than or Equal To
6

Monadic (One-Argument) Form

There is no monadic form.

Page of SA21-9303-0
Issued 15 June 1978
{ By TNL: SN21-0289

Dyadic (Two-Argument) Form: Greater Than or Equal To A>B

The greater than or equal to function result is 1 when argument A is greater
than or equal to argument B; otherwise, the result is 0. The arguments can be
numeric scalars, vectors, or other arrays. The arguments must be the same
shape, unless one of the arguments is a scalar or any single-element array.
Arguments of the same shape have the same shape result:

1. 6552
0
210
0
2:2
1

If one argument is a scalar or a single-element array, the shape of the result is
the same as that of the other argument. The single element is applied to every
element of the multielement array:

Be2 3pl 2 3 4 5 6
R

123
b

3R
111
000

Notes:

1. The result of the > function depends on the OCT system variable (see
Chapter 5 for information on the (JCT system variabie).

2. When the > function is used with logical data (see Chapter 2), a system

error display can occur if the number of elements in the right argument is a
multiple of 32. The following are examples:

Dayedlel
Pele Tl

CAMTAY ZED vaL]

To prevent this error, separate the statement into two statements as
follows:

First, assign the right argument for the >
function to a variable.

Then, use the variable as the right argument
for the > function.

¢
Y

i Primitive (Built-In) Functions 87

{ Page of SA21-9303-0
! Issued 15 June 1978
By TNL: SN21.0289 :

1
The < Function: Less Than or Equal To

p R
4

i
i Monadic (One-Argument) Form
i There is no monadic form.

i Dyadic (Two-Argument) Form: Less Than or Equal To A<B

The less than or equal to function result is 1 when argument A is less than or
: equal to argument B; otherwise, the result is 0. The arguments can be numeric
: scalars, vectors or other arrays. The arguments must be the same shape,
unless one of the arguments is a scalar or any single-element array.
Arguments of the same shape have the same shape result:

- 1,652
! 1
I "0
- 1
g)
1
. 0573
0 »
5108 71 335,108 T2 7%
11400

If one argument is a scalar or a single-element array, the shape of the result is
the same as that of the other argument. The single element is applied to every
element of the multielement array:

Be2 3p1 2 3 4 5 4
&

3

&

001

R

=
ek

Notes:

1. The result of the < function depends on the [JCT system variable (see

2. When the < function is used with logical data (see Chapter 2), a system
error display can occur if the number of elements in the right argument is a
multiple of 32. The following are examples:

Nayeddel

MefeTpl
CAMTA Y ERIVANT]

Page of SA21-93030
Issued 16 June 1978
| By TNL: SN21-0289

To prevent this error, separate the statement into two statements as
follows:

YeR2pl

t 05y

First, assign the right argument for the <
function to a variable.

AeReT0pl
YR AL

Then, use the variable as the right argument
LAY TAY LY -

for the < function.

.. v

The # Function: Not Equal To

Monadic (One-Argument) Form

" There is no monadic form.

Dyadic (Two-Argument) Form: Not Equal To A=B
The not equal to function result is 1 when argument A is not equal to argument
B; otherwise, the result is 0. The arguments (numeric or character) can be
scalars, vectors, or other arrays. The arguments must be the same shape,
unless one of the arguments is a scalar or any single-element array.
Arguments of the same shape have the same shape result:

0#5
. ,
1.123#1, 12
0
ATHA
0
R
1
5.1 01 71 T3#5.1 02 0 7
DY 11

If one argument is a scalar or a single element array, the shape of the result is
the same as that of the other argument. The single element is applied to every
element of the multielement array:

ATFETABACATIAEAFAG!
010101010101

Page of SA21-93030
Issued 15 June 1978
| By TNL: SN21-0289

88.2

Notes:

1. If the arguments are numeric, the resutt of the # function depends on the
]! {CT system variable (see Chapter 5 for information on the [JCT system
¥ variable). -

The not equal to function can also be used as an exclusive or function.
When used in this manner, the value of the arguments must be either O or
1:

Exclusive Or Table

s

Operator—————— # % .

!
1
i
'

Argument A

2. When the # function is used with logical data (see Chapter 2), a system
arror display can occur if the number of elements in the right argument is a
mulitiple of 32. The following are examples:

0y 320l

AERETO
CAMEAYRTD val

To prevent this error, separate the statement into two statements as
follows:

Yeddml
(Y

Pirst, assign the right argument for the #
function to a variable.

feEReETOp L
YR valld
CAHM T A Y

Then, use the variable as the right argument
for the = function.

PRIMITIVE MIXED FUNCTIONS

The mixed functions differ from scalar functions because the shape of their
results depends on the particular mixed function rather than exclusively on the
shape of the arguments. The following list gives a brief description of each of
the mixed functions. Following the list, each function is discussed in detail:

Monadic
Mixed
Functions

pB

,B

AB

¥B

1B

o8B or
é[1]8
or ©B

}®B

5[]

+B

¥B

“Name

Shape

Ravel

Grade up

Grade down

Index
generator

Reverse

Transpose

Matrix
inverse

Execute

Format

Result

The length of each coordinate of the
argument.

A vector containing the elements of
B in the order they exist in the rows
of B.

The index values that would select
the elements of B in ascending
order.

The index values that would select
the elements of B in descending
order.

B consecutive integers starting from
the ‘index origin.

The elements of the argument

are reversed.

The coordinates of the argument are
reversed.

The.inverse of a square matrix or
the pseudoinverse of a rectangular

matrix.

Argument B executed as an
expression.

Argument B converted to a character
array.

Primitive (Built-In) Functions

89

90

Dyadic
Mixed
Functions
ApB

AB

or

A[l]lB
A[l]B
A/B or
A/[I]B or
A/B

A\B or

A\[I]B or
AXB

A+B

A+ B

A®B or
Ad[1]B
or A6B

A8®B

A?B

Name

Reshape
(structure)

Catenate

Laminate

Compress

Expand

Take

Drop

Index of

Rotate

Generalized
transpose

Deal

Result

An array of a shape specified by
A, using elements from B.

The two arguments joined along an
existing coordinate ([1] is a
positive integer).

The two arguments joined along a
new coordinate ([1] is a fraction).

The elements from B that
correspond to the 1's in A.

B is expanded to the format
specified by A; 1 in A inserts an
element from B; a0 in A inserts a O
or blank element.

The number of elements specified
by A are taken from B.

The number of elements specified
by A are dropped from B.

The first occurrence in A of the
elements in B.

The elements of B are rotated as
specified by A. If A is positive, the
elements of B are rotated to the left.
If A is negative, the elements of B
are rotated to the right.

The coordinates of B interchanged
as specified by A.

The number of elements specified
by A are randomly selected from B;
the same number is never selected
twice.

Dyadic

Mixed

Functions Name Result

ALB Decode The value of argument B expressed

(base value) in the number system specified by

argument A.
ATB Encode The representation of argument B
(representation) in the number system specified by

argument A,

AeB Membership A 1 for each element of A that can
be found in B and a O for each
element not found.

ABB Matrix Solution to one or more sets of

divide linear equations with coefficient
matrix (matrices) B and right-hand
sides A or the least squares solution
to one or more sets of linear
equations.

ATB Format Argument B converted to a character

array in the format specified by
argument A.

Note: The mixed functions reverse, rotate, compress, and expand, and the
operators (see APL Operators later in this chapter) reduction and scan can be
applied to a specific coordinate of an array. This requires the use of an index
entry [1] that indicates the coordinate to which the mixed function or operator
is applied. The value of the index entry can be from 1 to the number of
coordinates in the array; the leftmost coordinate (first coordinate) has an index
value of 1, the next coordinate has an index value of 2, and so on. A matrix,
for example, has an index value of 1 for the row coordinate and an index value
of 2 for the column coordinate. If an index entry is not specified, the last
coordinate {columns) is assumed. If a - (minus) symbol is overstruck with the
function symbol or operator symbol, the first coordinate is assumed (unless an
index value was also used). When a function or operator is applied to a
specific coordinate, the operation takes place between corresponding elements
in the specified coordinate. For example, assume you have a three-rank array:

« When the first coordinate (planes) is specified, the operation takes place
between corresponding elements in each plane.

« When the second coordinate (rows) is specified, the operation takes place
between the corresponding elements in each row per plane.

« When the third coordinate (columns) is specified, the operation takes place
between the corresponding elements in each column per plane.

Primitive (Built-In) Functions

N

The p Function: Shape, Reshape (Structure)

Monadic (One-Argument) Form: Shape pB
The shape function result is the shape of the argument; it has one element for
each coordinate of the argument, which indicates the length of that coordinate.

The argument can be any variable or constant:

' ARCT '<=————— A Vector with Four Elements

1.
el 2
el 203
K
Aed Zpl 2 3 U4 0 &
A
12 3
b9 6
PA
2 3

The shape function applied to a scalar yields an empty vector, because a scalar
has no coordinates. An empty vector is indicated by a blank result line:

p2

Blank Result Lines
p ITI

The instruction p p B yields the rank (shape of the shape, or number of
coordinates) of B:

Bed 2 3p' CARBARFARARE"

i
AR
AR
FAR
PARE
Pl
223
ool

Dyadic (Two-Argument) Form: Reshape (Structure) ApB

The reshape function forms an array of the shape specified by argument A
using element(s) from argument B. The elements of argument B are placed
into the array in row order. If there are not enough elements in argument B to
fill the array, the elements are repeated. If there are more elements in
argument B than are required to fill the array, only the required number of
elements are used. Argument A must be a nonnegative integer or vector of
nonnegative integers. The number of elements in argument A is equal to the
number of coordinates, or the rank, of the result. Argument B can be any
variable or constant. If all of the elements of argument A are nonzero, then B
cannot be an empty array:

2 Fel 2 I3 Y 6
L 23
b 5 &
W e ABRCDHEFGH"
Al
oo
EF
k18
Yo MOUSETRAPRP!
MOUSE
3 4pl23
123 123 123 123
123 123 123 123
L23F 123 123 123
Al el 23 W H & 078

A
12
R
5 &
T8
2 HeA
2 3
)
Gpt

Primitive (Built-In) Functions

93

94

The , Function: Ravel, Catenate, Laminate @
Monadic (One-Argument) Form: Ravel ,B

The ravel function results in a vector containing the element of argument B. If
argument B is an array, the elements in the vector are taken from argument B
in row order. Argument B can be a scalar, vector, or other array. The resulting
vector contains the same number of elements as argument B:

faed 2 2l 234 B &7 8

i
12
3ol
)

] I("‘l

L 23 0 85 467 8
Bed Fpt ARCDEF
=

ARG

QEF
1B

ARCIEF

Dyadic (Two-Argument) Form: Catenate or Laminate A, [I]B

The function is catenate when the [1] entry (index entry) is an integer and
laminate when the [|] entry is a fraction.

Catenate (The Index [I] Entry Is an Integer)

The catenate function joins two items along an existing coordinate. (See the
laminate function following for a description of how to join two items along a
new coordinate.) The index [1], if given, specifies which coordinate is
expanded. The index entry must be a positive scalar or one-element array. If
no index [I] is specified, the last coordinate is used. Matrices of unequal
sizes can be joined, providing the lengths of the coordinate not specified are
the same (see Catenation in Chapter 3):

ia

10
1

&

]

20

¥
e

W9 é

1011

12

Ml B
Be? 905
Al
@ %
AeD Apl 2 3F
Ped Zpfd B9
A
B
Q
L 12
M, B
I 07 8 9
& 10 L1 12
LS N B
3
&
4
12
A, E21R
07 8 9
4 10 11 12
P, L2710 20
310
& 20
19 20 30,0173A
A0
W3
&

i
)

Primitive (Built-In) Functions

95

96

Laminate (The Index [I] Entry Is a Fraction)

The laminate function joins two items by creating a new coordinate specified
by the index entry [|], which must be a positive fraction. If the index entry is
between 0 and 1, the new coordinate becomes the first coordinate; if the index
entry is between 1 and 2, the new coordinate is placed between existing
coordinates 1 and 2 (the new coordinate that is added always has a value [or
length] of 2). The following chart shows the positions of a new coordinate in
the shape vector (see the following examples) when two 3 by 3 matrices are

laminated:
Positions of New
Coordinate in the Shape
Index Value Vector
d-9 3 3
1.1- 19 3
2.1-29 3

Lamination requires either that arguments A and B are the same shape or that
one of the arguments is a scalar:

Ae3 Fpl 23 4 85 67 89
Re3 3pll 22 33 4L 55 &6 7V 88 99

A
12 3
b 85 4
789

B

11 22 33

iy E5E b6

77 88 99
Cea, L 81K
G

1 2 3
L T
T8 9

11 22 33
B4 55 46
Y 88 99
pC
23 3 Shape Vector

TETS

-9

3

Ced, D1 5R
o
2 3

Pyey ew
a'). :cf [2%)

Cen, L2 1IR
o

11

22

FA

(IRE)

i

ad v

i

2
88
Q8
el
2

Shape Vector

Shape Vector

The following examples show the result when the two matrices in the

preceding example are catenated instead of laminated:

A1 R

o A

@
3
Gé
Go
AR

DA S T T B A
S h WY BE 44
g 9 7Y B 99

Primitive (Built-In) Functions

97

The / Function: Compress
Monadic (One-Argument) Form

See Reduction Operator later in this chapter under APL Operators.

Dyadic (Two-Argument) Form: Compress A/[I]B or A/B or A+B

The compress function selects elements from argument B corresponding in
sequence to 1's in argument A. Argument A must be a logical scalar or vector
having the values 0 or 1. Argument B can be any scalar, vector, or other array.
Both arguments must have the same number of elements unless:

« One of the arguments is a scalar or single-element array.

« Argument B is a multidimensional array; then the number of elements in
argument A must be the same as the length of the argument B coordinate
being acted on.

When argument B is a multidimensional array, the [1] index entry is used to
specify the coordinate that is acted on. If the index entry is omitted, the last
coordinate (columns) is assumed. If the A£B form is used, the first coordinate
is assumed. The rank of the result is the same as the rank of argument B:

Blank Display Line (empty array)

S 4678 9 10 11 12

L2 3 u
546 78
9 10 11 12
O B P i A The first coordinate (rows) is specified; the first
1 2 3 u and third rows, as specified by argument A, are
Q10 11 12 selected.
041 1 0/7023R
2 3 The second coordinate (columns) is specified;
& the second and third columns, as specified by
10 11 argument A, are selected,
10 1AR
1 2 3 §
9 10 1L 12
01 1 0/0
23
& 7
10 11
17k
1 2 3 4
T S G -
9 10 11 12
0/%

Blank Display Line (empty array)

The \ Function: Expand

Monadic (One-Argument) Form

See Scan Operator later in this chapter under APL Operators.

Dyadic (Two-Argument) Form: Expand A\[I]B or A\B or AXB

The result of the expand function is argument B expanded as indicated by
argument A. Each 1 in argument A selects an element from argument B, and
each O in argument A inserts a O {(or blank for character data) in the result.
Argument A must be a logical scalar or vector having the values O or 1.
Argument B can be any scalar, vector, or other array. If argument B is a
vector, argument A must have the same number of 1's as the number of
elements in argument B. If argument B is a multidimensional array, argument
A must have the same number of 1's as the length of the argument B
coordinate being acted on.

When argument B is an array, the [1] index entry is used to specify the
coordinate that is acted on. If the index entry is omitted, the last coordinate
{columns) is assumed. If the AXB is used, then the first coordinate is
assumed.

If argument B is a scalar or single~element array, it is extended to a length
equal to the number of 1's in argument A. If argument B is not a scalar or
single-element array, the rank of the result is the same as the rank of the B
argument.

2

ool o1ooNt 203
102 31

Bed J3pl 23 40 4

-

B
203
W 5 6
SRS LI AN A A The first coordinate (rows) is
1 2 3 expanded; a row is inserted between
0 00 the first and second row.
WA
16 INE2dm The second coordinate {columns) is
L2 0 3 expanded; a column is inserted between
b 50 & the second and third columns.
L0 ixg
L2 3
000
b5 6

Primitive {Built-In) Functions

The A Function: Grade Up

You form the 4 symbol by overstriking the A symbol and the | symbol.

Monadic (One-Argument) Form: Grade Up AB

The grade up function result is the index values that would select the elements
of argument B in ascending order. That is, the first element of the result is
the index of the smallest element in argument B, the next element is the

index of the next smallest element in argument B, and so on. Argument B
must be a numeric vector. When two or more elements in the vector have the
same numeric value, their position in the vector determines their order in the
result (the index value of the first occurrence appears first in the output).

The number of elements in the result is the same as the number of elements

in the argument:

a3 15 2 u
A T A

heeh D1 W 3
o2 4h 5 31

00 T S I

The following example shows how the grade up function can be used to sort a
vector into ascending order:

Aell 12 16 18 15 11
A Dhal
L1012 1w 15 14 18
The result of the grade up function is not the reverse of the grade down
function because of the way equal elements are handled; see The ¥ Function:
Grade Down for an example using the grade up and grade down functions with

equal elements.

Note: The result of the A function depends on the [JIO system variable (see
Chapter 5 for information on the IO system variable).

Dyadic (Two-Argument) Form

There is no dyadic form.

100

The V Function: Grade Down

v
G

L

You form the ¥ symbol by overstriking the V symbol and the | symbol.

Monadic (One-Argument) Form: Grade Down VB

The grade down function result is the index values that would select the
elements of the numeric vector of argument B in descending order. That is,
the first element of the result is the index of the largest element in argument
B, the next element is the index of the next largest element in argument B, and
s0 on. Argument B must be a numeric vector. When two or more elements in
the vector have the same numeric value, their position in the vector determines
their order in the result (the index value of the first occurrence appears first in
the output). The number of elements in the result is the same as the number
of elements in the argument:

3 L5 2
385 109 2

Yaes 200
1385 6 24

$3 4 3 1
251 34604

n

1

I %

o

The following example shows how the grade down function can be used to
sort a vector in descending order:

Avlly 12
ALPAT
18 16 15 1w 12

1Lé

11

18 1%

11

Primitive (Built-in) Functions

101

102

The following example shows how equal elements are handled when the grade
up and grade down functions are used:

Acs 28 7 2w 10 1 2 3
A

5287 34U 10 1 2 3+ positions 2 and 9 and 5 and 10 are equal.
P

7B ML 6 8

g 61 B 37

Because the indices for the equal elements are in the same order (first
occurrence first) for both the grade down and grade up functions, the grade
down function is not the reverse of the grade up function:

ALeAl
1087 G uw 33221
ALdAl
L2233 %5 7810

Note: The result of the ¥ function depends on the (IO system variable (see
Chapter 5 for information on the (JIO system variable).
Dyadic (Two-Argument) Form

There is no dyadic form.

The 4 Function: Take

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Take A+B

The take function result is the number of elements specified by argument A,
taken from argument B. Argument B can be a scalar, vector, or other array.
Argument A must be a scalar or vector of integers. If argument B is a vector,
argument A must be a scalar. Argument A must be a vector with an element
for each coordinate of argument B. When argument A is positive, the first
elements of argument B are taken; when argument A is negative, the last
elements are taken. If argument A specifies more elements than the number of
elements in argument B, the result is padded with O's (or blanks for character

data). The shape of the result is the value of A:

b

i1 2

7L 2 3 4 5
123 4% 500

TTE1L 2 3 NG
001 23 u G

Bed bUpl 23 4

|2
L 2 3 u
50046 T 8
@ 10 11 12
2 3te
12 3
5 67
Beld 2 3l 234
23
1 2 3
b 5 4
i8] 9
10 11 12
11 1te
1
201 1tk
1
7
1 2 3te
123
W5 4
L2 3R
T o8 9
10 11 12

® 10 11

13

12

N

Primitive (Built-In) Functions

103

104

The + Function: Drop t, ‘

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Drop A+B

The drop function result is the remaining elements of arguments B after the
number of elements specified by argument A is dropped. Argument B can be
a vector or other array. Argument A must be a scalar if argument B is a
vector.

When argument B is an array, argument A must have one element for each

coordinate of argument B. When argument A is positive, the first elements of
argument B are dropped from the result; when argument A is negative, the last
elements are dropped:

38l 023

AL 2 3 NG

Bed bel 23 4 5 67 8 9 10 11 12
4]
L2 3 4
5 06 7 8
910 11 12
1 248
Vo8
i1 12
TLOT2R

95 6

The 1 Function: Index Generator, Index of

Monadic (One-Argument) Form: Index Generator 1B

The index generator function result is a vector containing the first B integers,
starting with the index origin (see (110 system variable in Chapter 5). The
argument can be a nonnegative integer that is either a scalar or a
single~element array:

v
1 2 3 4 %
At h
2]
1 2 3 u 5 4
5+ 1\ Yi~——— Each of the generated integers is added to 5.

&7 8 9 10

Dyadic (Two-Argument) Form: Index of A1B

The index of function result is the index of the first occurrence in argument A
of the element(s) in argument B. Argument A must be a vector. Argument B
can be a scalar, vector, or array. The result is the same shape as argument B.
If the element in argument B cannot be found in argument A, the value of the
index for that element is one greater than the largest index of A ([JI0+p A):

3

2085 X35 my

3

&

;-u,*~(}~ ¥ (’.{)

aali

&
9

"TARCDEFG O

Aell 232
A2

L

(TN A1

A3

fed 208 24
Bed Fpl 908 1
3

Second Element

5
!:1‘ ot

Note: The result of the 1 function depends on the [JIO system variable (see
Chapter 5 for information on the [JIO system variable).

The ¢ Function: Reverse, Rotate @

You form the ¢ symbol by overstriking the © symbol and the | symbol. A
special form of the function symbol is ©, which you form by overstriking the O
symbol and the - symbol.

Monadic (One-Argument) Form: Reverse ®[I1]B or $B or ©B

The reverse function reverses the elements of argument B. Argument B can be
any expression.

Primitive (Built-In}) Functions

108

When argument B is a multidimensional array, the index entry [1] can be used
to specify the coordinate that is acted on. If the index entry is omitted, the
last coordinate {columns) is acted on. If the ©B form is used, then the first
coordinate is acted on:

i3 3N
b3 21
B LIVE!

hd Ipd
321
H 50

A2 2 e CSAVEMUCHMORETITME '

2}
SAVE
MUGH
PLLIA
MORE L————-The first coordinate (plane) is specified;
TIME the planes are reversed.
SAavE
MUCH
PE2IA
MUCH L Thesecond coordinate (rows) is specified;
HaviE the rows in each plane are reversed.

BLIdA
EVAS L The third coordinate (columns) is
HCLIM specified; the columns in each plane are
reversed.
E RO
T
e

EVASs t The last coordinate is acted on.
HEUM

EROM
EMLT
@8

FCORE The first coordinate is acted on.
TIME

SAVE

MUCH

106

Dyadic (Two-Argument) Form: Rotate A$[I]B or AGB or A©B

The rotate function rotates the elements of argument B the number of
positions specified by argument A. If argument A is positive, then the
elements of argument B are rotated to the left (rows), or upward (columns). If
A is negative, the elements are rotated to the right {rows), or downward
{columns). Argument B can be any expression. The shape of the result is the
same as that of argument B.

When argument B is a multidimensional array, the index entry [|] can be used
to specify the coordinate that is acted on. [f the index entry is omitted, the
last coordinate (column) is acted on. If the A®B form is used, then the first
coordinate is acted on.

If argument B is a vector, then argument A must be a scalar or single-element
array. If argument B is a matrix, then argument A must be a scalar or vector.
When argument A is a vector, the number of elements in argument A must be
the same as the number of elements in the coordinate being rotated. For
example, if B is a 3 by 4 matrix (each row has four elements) and the row
coordinate is specified, A must have four elements:

200 2 3 4 S=~—— 3 4 5
ST C,

ARl R R 45 2—-1__3
b5 123

TRl 2 3NN

Fouos 102
BeZ hp 1 2 3 4 5 &7 8 9 L0 11 12
) -y I . I The first coordinate (rows) is specified;
[- ‘_'J_s + therefore, the rotation is between rows.
506 7 8
@ 10 11 12 . 5 2 7 12
10 1 200108
o2 7 12 9 6

11 |4
¢ & 11 4 J J
110 3 8 1 10 3 8

0 1 200208
1 2 3

& 7T 8 05 The second coordinate (columns) is specified;
11 12 @ 1.0 therefore, the rotation is between columns.
0 1 20R
1 200 N . .
6 7T B 05 The last coordinate is acted on.
1112 % 10
Ae-L 0 1 2
A
10 7L T2
AL IR
¢ 211 8
16 3 12
5 10 7 4

Primitive {Built-In) Functions 107

108

If argument B is an N-rank array, argument A must be a scalar or an array
with a rank that is one less than the rank of argument B. The shape of
argument A must be the same as argument B less the coordinate being acted
on:

1
I

10
13
1é

19

P

En A

25

+Jr3
R I SR

-

10
13
16

19

Do
B Aae
25

~
PN
~

8

11
14
17

20
23
26

3

Bed 3 3p 27

B
3
6
K4

12
15

18

21
2
27

o

A3 Zpl 0 0 0 20 0 0 0
A

00
20
6 0

AGLCL IR

2
23
a

11

)

17

20
Lh
26

”

~e

[>
~

8

20
23
26

/

PA

3
é
@

12
15

18

21
2
27

AGLC2IR

3
6
9

12
15

18

21
el
b

e

The shape of argument A must be the same
as argument B less the coordinate being

acted on.

The first coordinate (planes) is specified;
therefore, the rotation is between planes.

The first element
in each plane is

rotated one position 0 2 0

between planes.

The second coordi

1 0 0 /\

Argument A

A

0| o o™ The middie
element in each
plane is rotated two
positions between
planes.

nate (rows) is specified;

therefore, the rotation is between the rows.

—— Argument A

Rotation between rows of
the first plane

Rotation between rows of
the second plane

1 0 0
0 2 0
0 0 0

Rotation between rows of
the third plane

The & Function: Transpose, Generalized Transpose

You form the & symbol by overstriking the © symbol and the \ symbol.

Monadic (One-Argument) Form: Transpose &B

The transpose function reverses the coordinates of argument B. Argument B
can be any expression. If argument B is a scalar or vector, the argument is
unchanged by the function:

Wy
7
' ARCT
ARCH
Be2 3pl 2 3 4 5 6
I
2T - 2-row 3-column matrix.
W 5 &
0
1l b 3-row 2-column matrix.
25
K

Be2 3 Yo 24

1% 16
19 20
23 24

35

&
10
3

11

12

ih

18

Y

Koo Ko

(54 .
13 The coordinates are reversed.

19
23

16
20
2

Primitive (Built-In) Functions

109

110

Dyadic (Two-Argument) Form: Generalized Transpose A®B

The generalized transpose function interchanges the coordinates of argument B
as specified by argument A. Argument B can be any expression. Argument A
must be a vector or a scalar, and must have an element for each coordinate of
argument B; also, argument A must contain all the integers between O or 1
(depending on the index origin) and the largest integer specified. For example,
to transpose the rows and columns of a matrix, argument A would be 2 1:

2

Koo

e
wd

i
b

)

J3]

e

3pl

23 n 5 4

To transpose the rows and columns of a three-rank (three-coordinate) array,
argument A would be 1 3 2:

13
17

21

)
A

3
I

13
i
15

16

17
18
19
20

R
I

e

T hpa 2y

4

81
12
y
1é&
20
240
28R

An array with two planes, three rows, and four columns.

The second and third coordinates have been interchanged,
forming an array with two planes, four rows, and three
columns,

The ? Function: Deal

Monadic (One-Argument) Form

See the roll function earlier in this chapter under Primitive Scalar Functions.

Dyadic (Two-Argument) Form: Deal A?B

The deal function randomly selects numbers from O through B-1 or 1 through
B (depending on the index origin), without selecting the same number twice.
Both arguments must be single positive integers. Argument A must be less
than or equal to argurment B; argument A determines how many numbers are

selected:
19?7
i
297
7 3
Ty,
B2 L7 3 &6
Fatad
321076
Ko

270460 5 103

Primitive {Built-in) Functions 111

112

The L Function: Decode (Base Value)

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Decode ALB

The decode function result is the value of argument B expressed in the number
system specified by argument A. For example, to convert the vector 1 7 7 6 to
its value in the decimal number system (base 10):

10 10 10 1021 7 7 &
17764

The following illustration shows how it was done:

Argument A (number system) specifies the following:

10 10 10 10

L1

Ten units in each of these positions equal one unit
of the next position to the left.

Argument B is a vector with these values:

1776

The result is the same as doing the following:

' 6 The units position always represents itself.

x10 = 70

x10x10 = 700 \The value in the next position is muitiplied

10x10x10 = 1000 by the rightmost value in argument A.
1776

The value in the next position is multiplied
by the two rightmost values in argument A,
and so on.

The arguments must be numeric. If one argument is a scalar or single-element
array, the other argument can be a scalar, vector, or other array. The result will
have the rank of the larger argument minus one.

If either argument A or B is not a scalar, they both must have the same length,
or an error results.

Note: The value of the leftmost position of argument A can be zero, because

even though there must be a value in that position, it is not used when the
result is calculated. For example:

b0 10 10408 7 7 &

If either argument is a scalar, the value of that argument is repeated to match
the length of the other:

90101 o =
\ 2R A x2x2=4 1x2=2
- 3 1x2x2=4
S~ 7

If argument A is a vector and argument B is a matrix, argument A must have
an element for each row of B:

Bed Zpl 527 9L

If argument A is a matrix and argument B is a vector, each row of argument A
is a separate conversion factor; argument B must be the same length as a row
of argument A. The result will be a vector with one element for each row of
argument A:

A2 Apld 10 10 1 X 12
4]
10 10 10 /This number system could
1 % 1w’ represent yards, feet, and inches. :

el 203 1x3 x12= 36

L3253 &3 63
P 34

PR3 S A

Primitive (Built-In) Functions

113

114

If both arguments are matrices, each row of A (conversion factor) is applied to
each column of B. The result is a matrix containing the converted values for
each column of B:

fe Fefll B O3 Lé 1a 1é
Bed 2ol 202 12 3 X

)

o

8 8 &
16 16 16
J4]
b 3= 3
e Jooat 2 X 8 —-— 16
3% s 3= 3
A4 g x8=64
T = 12 x 16 = 192
83 307 2 x16 x 16 = 512
291 707 707

The following examples convert hours, minutes, and seconds to all seconds:

2460 H001 30 15

B
The following illustration shows how it was done:
Argument A (number system)
24 60 60
f—————SO units (seconds) equal one unit of

the next position to the left.

60 units (minutes) equal one unit of the
next position to the left.

24 units (hours) equal one unit of the
next position.

Argument B
1 (hour) 30 (minutes) 15 (seconds)

The result was obtained as follows:

15 = 15 seconds
30x 60 = 1800 seconds
1x60x60 = 3600 seconds

5415 seconds

The T Function: Encode (Representation)
N

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Encode ATB

This function is the reverse of the decode function. The encode function result
is the representation of argument B in the number system specified by
argument A.

Note: Be sure argument A is long enough to completely represent argument B
or an incorrect answer results.

For example, the representation of 1776 in the decimal number system (base
10):

10 10 10 10r17?76
A A

The following illustration shows how it was done:

Argument A (number system) specifies the following:

1f0 1P 1f0 110

Ten units in each of these positions equal
one unit of the next position to the left.

Argument B has this value:

1776

Primitive (Built-In) Functions 115

116

* The result is the same as doing the following:

1
10x10x10 = 1000 [1776

1000
776

10x10 = 100
g
10 [76
70
6

Note: The value of the leftmost position of argument A can be zero. For
example:

0 10 10 1071776
17 7 4

If both arguments are vectors, the result is a matrix. Each column in the result

contains the representation for each element of argument B expressed in the
number system specified by argument A:

220321

s,
£
A

If argument A is a matrix and argument B is a scalar, then the result is a
matrix. Each column of the result contains the values of argument B expressed
in the number system specified by the corresponding column of argument A:

Aed Ze8 16

A 8 x8=64 123
64

TH The result can be transposed so that
i 3 each row represents the values of
07 11 argument B expressed in the number

systems specified by argument A.

If argument A is a scalar or vector and argument B is a matrix, the result is a
matrix or N-rank array, with one plane for each element of argument A:

Ael 3 13
Bed 2035 200 6 12

e A

This number system could

3x12=36 (35

represent yards, feet, and inches.

\ 2 Feet 11 Inches
12 [35 ;

Primitive (Built-ln) Functions

117

If both arguments are matrices, the result is an N-rank array, with one plane
for each element of argument A. Each column of argument A represents a
number system:

A¢2 Zepll 20
A
10 20
10 20
Be2 2p 99 88 77 46
B
88
&b
ATR

8 }
7o)
t" } Result of the number system in

column 1 of argument A

Result of the number system in
column 2 of argument A

The following example converts seconds to seconds, minutes, and hours:

240 &0 BRLG
130 1%

The following illustration shows how it was done:

Argument A (number system)

24 60 60

L

Argument B
5415 (seconds)

The result was obtained as follows:

60 x 60 = 3600 [5415
3600
1815

60 [1815
1800

15

60 units (seconds) equal one unit of the next
position to the left.

60 units (minutes) equal one unit of the next
position to the left.

24 units (hours) equal one unit of the next
position to the left.

Primitive (Built-In) Functions

119

The € Function: Membership
Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Membership AeB

The membership function result is a 1 for each element of argument A that can
be found among the elements of argument B and a O for every element that
cannot be found. The shape of the result is the same as the shape of
argument A. Arguments A and B can be any scalar, vector, or array:

Beld 203 4 05

1
1.%el 2 3 4 5
1]
A BANNAS
1
0 e BANANAS
1
ARG & BANANA'
110
AeD 2pl 35 Y
Bedl Ypl2 BS 78
f
1 3
57
R

12 4% 78 12
BEH 78 12 ud
TE 12 ul e
12 uid 78 12

el
0o
00
Bel Bpl 24 5 7 8
A
13
BT
2
2 u 5

2w 5

ﬁéE

120

The B Function: Matrix Inverse, Matrix Divide

You form the B symbol by overstriking the [0 and the + symbols.
Monadic (One-Argument) Form: Matrix Inverse BB

The matrix inverse function inverts a nonsingular matrix or computes the
pseudoinverse of a rectangular matrix. The result is a matrix. Argument B
must be a numeric matrix, and the number of columns must not exceed the
number of rows. The number of columns in the argument is the number of
rows in the result, and vice versa.

If argument B is a nonsingular matrix, BB is the inverse of B. If the matrix
does not have an inverse, then DOMAIN ERROR results:

e 2ol 3507

i

By
L EaTE 0,37
0, &2% THLLRE
feR Zel 234

i
DOMATN ERROR
Ha

I

If argument B is a rectangular matrix, BB is the pseudoinverse of the matrix
(least squares solution):

A3 2pX H 1 2 204

A
K
L2
24

Eé

2 "1 e
0.4 Lo

Dyadic (Two-Argument) Form: Matrix Divide AEB

The matrix divide function solves one or more sets of linear equations with
coefficient matrices. Argument B must be a numeric matrix. The number of
columns in B must not exceed the number of rows. Argument A must be a
numeric vector or a matrix. The length of the first coordinate of argument A
must equal the length of the first coordinate of argument B.

Primitive (Built-In) Functions

121

122

The rank of the result is the same as the rank of argument B. The length of
the first coordinate of the result is the same as the number of columns in
argument B. If argument A is a matrix, then the second coordinate of the
result is the same length as the second coordinate of argument A.

If argument B is a square matrix and argument A is a vector, then the result is
the solution to the set of linear equations with coefficient matrix B and
right-hand sides A:

e 3
Bel 20l 2
AR

e
e

Be2 23 5 1 2

26 YHR

If argument B is a square matrix and argument A is a matrix, then the columns
of the result are the solution to the sets of linear equations with coefficient
matrix B and right-hand sides equal to the columns of A:

feDd Fp2d 146 9 4
Bel 2p3 5 12

1
26 16
YA
I
305
1
BT
T 2
1 i

If argument B is rectangular, then the result is the least squares solution to one
or more sets of linear equations:

Aed Zepll I8 T2 w07 71
Red 2p3 5 1 2 24

=)
i1 1u !
I |
11 1y T3
&
12
)
AR
i 7 1
Wb 7 "l

The £ Function: Execute : ‘

You form the ¢ symbol by overstriking the 1 and the ¢ symbols.

Monadic (One-Argument) Form: Execute 2 B

The execute function evaluates and executes argument B as an APL expression.
Argument B can be any character scalar or vector:

et 1+’
A
L+
4 £ «=——— The character vector in the variable A is executed.

3

Ce COnRZI+(Baz) du B
e
Bl
0
G
b
Fre £
&0
10

fre 1
e

L {A=RY/ AR
LY > A + B is executed only when A equals B.
A=Y/ AR

Dyadic (Two-Argument) Form

There is no dyadic form.

Primitive (Built-In) Functions 123

The 7 Function: Format ;‘ l

You form the ¥ symbol by overstriking the T and the ¢ symbols.

Monadic (One-Argument) Form: Format T B

The monadic format function result is a character array that is identical in
appearance to the one displayed when the value of argument B is requested:

Bed Hpyl2

&
2 3 4
5 o6 7 8
¢ 10 11 1z

Kerh

X

2 03 4 _
4 7 8 <—— This matrix is a character matrix.
10 11 12

G L ==

Dyadic (Two-Argument) Form: Format A% B

The dyadic format function result, like the monadic format function result, is a
character array. However, argument A is used to control the format (the
spacing and precision) of the result. Argument A is a pair of numbers: the first
number determines the total width of the format for each element, and the
second number determines the precision used.

124

If the precision number is positive, the result is in the decimal form, with the
number of decimal places specified by the precision number. If the precision
number is negative, the result is in scaled form, with the number of digits to
the left of the E specified by the precision number:

Bed 2pl2, 34 TBULHET 0 12 T0.26 TLR23. 45

B
12, 34 XYL EHAT
] 12
0,26 B D O TR
X&9 2%k
X
12,34 TEN 5T
00 12,00
| TLR6) T1RB M)
Y S N
AN A\ Width of Nine Positions

(left margin)

Ce9 "2FR
(W
102801 "3.5E01
nLoE"0L 1, 2E01
[T2.6ET01 TL 2ENR |

R e . : iy
\ Width of Nine Positions

(left margin)

If the width entry in argument A is zero, the 5110 uses a field width such that
at least one space will be left between adjacent numbers. If only a single
number is used, a width entry of zero is assumed:

Ee2vR
E

12,34 734,57
.00 12.00

[7.2&) T123.,u45
R N g
\ \ Width of Eight Positions

(left margin)

If you get a DOMAIN ERROR when using the format function, increase the
width (left digit) of the left argument.

Primitive (Built-In) Functions

125

126

You can format each column of an array differently by using a control pair in
argument A for each column of the array:

Feé 2 6 1K
l::'
12,34 "34. 6
00 12,0
RT3, Lﬂ

\ Width of Six Positions

(left margin)

Notes:

1. If the OPW system variable is set to an invalid value, OPW IMPLICIT
ERROR wiill result when the format function is used.

2. Even if the specified format causes all of the significant digits to be
truncated, the sign of the original number is retained., For example:

W27, 0004

{00 The sign is retained.

3. The format function should not be used to round a number up or down.
Instead, the floor function should be used for rounding. For example, L A+.5
rounds the value of A to the nearest integer.

APL OPERATORS

An APL operator applies one or more dyadic primitive scalar functions to
arrays. The operators are reduction, inner product, outer product, and scan.

Reduction Operator (/)

The symbol for the reduction operator is /. The forms of reduction are @/ [1]B
or @/B or@#B, where @can be any primitive dyadic scalar function that is
applied between the elements of a single vector.

The rank of the result is one less than the rank of argument B, unless

argument B is a scalar or a single-element vector; then the result is the value
of the single element of argument B. When argument B is a vector, the
reduction of that vector is the same as putting the primitive dyadic function
between the elements:

Bel 203y
+/ T
10
1424 Z 4l
10 -

If argument B is an empty vector {see Chapter 3), then the result is the identity
element, if one exists, for the specified function. For example:

X/
1 The identity element of x (times) is 1.

When argument B is a multidimensional array, the [1] index entry is used to
specify the coordinate acted on. If the index entry is omitted, the last
coordinate (columns) is acted on. If the() /B form is used, the first coordinate
is acted on. Indexing along a nonexistent coordinate will result in INDEX
ERROR.

Primitive {Built-in) Functions 127

When argument B is a multidimensional array, the coordinate of argument B
that is acted on is eliminated:

Be2 Zpl 2 3 4 0 4

1B
12 3
W5 6
+ /13
H 15 A The last coordinate (columns) is assumed;
+/020R therefore, the reduction is between columns:
& 15
+/AR 1+2+3=6
5 7 9
+/01L0R The second coordinate {in this case, columns)
5 79 is specified.

Be2 J o2l
The first coordinate (rows) is specified;

L therefore, the reduction is between rows:
8
12 1 2 3
4 5 6
16 5 7 9
1 20
21022 23 24
/LR
164 18 20 —=——————The first coordinate
T PR W T 1 {planes) is specified;
303y R4 therefore, the reduction
Fren 0 is between planes.
I
0
= /T
1
[/

T RITETS

If argument B is an array that has a coordinate whose dimension is zero, then
reduction along that coordinate yields an array whose elements are equal to
the right identity element for the function, if the right identity element exists.
The identity element for each function is given in the preceding table.

128

Inner Product Operator (.) q

The symbol for the inner product operator is . (period). The inner product
operator is used to combine any two primitive scalar dyadic functions and
cause them to operate on an array. An example of its use would be in matrix

=77 aigebra, in finding the matrix product of two matrices. The form for inner

product is: A @ . B, where @and @ are any'primitive scalar dyadic
functions. Function (@) is performed first and then@reduction is applied
between the results of function (g).

The result is an array; the shape of the array is all but the last coordinate of
argument A catenated to all but the first coordinate of argument B
{T1+¥pA){1+pB). If argument A and argument B are matrices, the elements in
each row of argument A are acted on by the elements in each column of
argument B:

A2 2p1 2 3 4
Beld Zp0 6 7 8
A

I

¢ 8 156) + (2x7) = 19
AT xE (1>5) + (2x7)

19 22
43 50

The above example is the same as doing the following for each element in the
result:

(1x5)+(2x7)
(1x&6)+(2x8)
(ExEI+ (X7

(X&) (UXE)

. Primitive (Built-In) Functions 129

Page of SA21-9303-0
| tssued 15 June 1978

| By TNL: SN21-0289

1130

The shapes of arguments A and B must conform to one of the following
conditions:

1. Either A or B is a scalar.

-t —
|
]

2. The last coordinate of argument A is the same length as the first
coordinate of argument B. (If both are matrices, the column coordinate
of argument A is the same length as the row coordinate of argument B.)

A3 201 2 3 B 5 4
; Be2 3p7 8 9 10 11 12
! A

@
- gg';%g———x3xm+(4xﬂ)=68
61 &8 75
9% 106 117
Ae T TIAN
Bel Zp "DIONDANMELTOM'
A
[IAN
E Transpose B so that the first coordinate of
LON B has the same length as the last coordinate
AN of A.
MEL
TOM
Aa, =RE
D 100 - The second row of B is equal to A.

Notice that the inner product operator can be used to find equal names in a
matrix (table). However, if you use the inner product operator with the v and #
functions, unpredictable results can occur. instead, you should use a statement
like ~AA.=B. For exampie:

mia =R

A2 2p1 2 3 4 B T i o A SR
BeD

If argument A and argument B are N-rank arrays, the elements in each row of
argument A are acted on by the elements in each plane of argument B:

Aed d 2

)
2

%y

)

T8
BeR 2 2848
8]

o

131z

13 1w
1% 16
At XB
a5 30
I FRIN

79 B
93 100
123 13n
w8 156

167 182
197 212

Primitive (Built-In) Functions 131

Outer Product Operator (° ,) J } D

The symbols for the outer product operator are ©¢ .. The outer product
operator causes a specified primitive scalar dyadic function to be applied
between argument A and argument B so that every element of argument A is
evaluated against every element of argument B. The form of the function is:
Ae , (OB, where(®is a dyadic primitive scalar function. Arguments A and B
can be any expressions. Unless argument A is a scalar, the shape of the result
is the shape of argument A catenated to the shape of argument B. If argument
A is a scalar, the shape of the result is the same as the shape of argument B:

A2
Rel 2 3 4

el 203
Red W G
A

B
5
Ao, XK
1}]
8 10

12 1%

The above example is the same as doing the following for each element in the

result: 5
: 1x3
2
il
Iy,
1%
SXE
&
2%
5]
2XE
10
K
9
Bu
13
Axw
15

132

More examples:

fe 2

e Xpl 2 3 4 6 6
e, 4R

5

&

fed 2pl 2 3 W
Bed Fm®

A

,
S
4

2+1=3

3+1=4

v0 14 g
10 11 12 4+1=5

Primitive (Built-In) Functions 133

134

Scan Operator (\)

The symbol for the scan operator is \. The forms of scan are:

@ \[11B.® \B or(P)XB, where(f)can be any scalar dyadic primitive function
and argument B is a numeric vector or other array. The scan operator, like the
reduction operator, operates on the elements of a single vector, and is the
same as putting the primitive dyadic function between the elements. But the
scan operator accumulates the results as the operation is repeated along the
vector. The shape of the result is the same as that of the input argument:

N1 2 3 NG
1 3 6 10 1% <«———————— Thisresult is the same as doing the
1 following for each element in the
1 result. The first element in the

1L+2 result is the first element of the
3 argument.
1424+3
)
14243+
10
L2430+
1%

When argument B is a multidimensional array, the [1] index entry is used to
specify the coordinate the scan is to proceed along. If the index entry is
omitted, the last coordinate (columns) is acted on. If the(® %B form is used,
the first coordinate is acted on.

Be3 Lpulld

1§
i 2 3 W
5 &6 7 8
@ 10 11 12
+\ 1 1 1B +————The first coordinate (rows) is specified; therefore,
2 3 4 the scan is between rows.
8 10 12

2124
" jle—— —The second coordinate (columns) is specified;
therefore, the scan is between columns.

14
18 21 24

e
Fed
fRr I

s
o

~g

13
17

21

15
13
30

1

3

K4

17

21

AED 3 Wpr 24
A |

DA u

& 7 8
10 11 12

% 15 16
18 19 2
2223 a2y 0
+N\[131A «——u _The first coordinate (planes) is specified;
23 L therefore, the scan operation is between planes.
& 7 8
10 11 L2

16 18 20
24 26 28
32 34 34
+\ [2 1A .——————The second coordinate (rows) is specified;
2 3 4 therefore, the scan operation is between rows

g 10 12 for each plane.
18 21 24

1S 1é
32 3 34

By 57 60
+\ I 3 1A «——————— The third coordinate (columns) is specified;
3 6 10 therefore, the scan operation is between columns
11 18 26 for each plane.

19 30 w2

27 w2 L8
5 Uw W
H3 66 90

Primitive (Built-1n) Functions

135

SPECIAL SYMBOLS

Assignment Arrow « | ~ l

The assignment arrow causes APL to evaluate everything to the right of the
arrow and associate that value with the name to the left of the arrow. For
example, A+2+3 means that 243, or 5, is assigned to the name A. When A is
used in a later APL statement, it has a value of 5.

Notes:

1. When a value assigned to a variable is used as the argument for a function,
the value assigned to the variable is used by the function, regardless of any
previous or future value assigned to the variable. For example:

A e
CAEZ)+A
é
A
3
(Ae3) +hel
7
A
3

2. To avoid confusion, a variable should not be referenced in the same
expression it is assigned, except directly to the right of the assignment. For

example:
PR
e+
A
3

Branch Arrow -+

The branch arrow is used for the following:

« To change the order in which the statements are executed in a user-defined
function. See Branching in Chapter 6 for more information on branching.

» To resume execution of a suspended function.

« To clear the state indicator.

186

Quad O

The quad is used to ask for input and to display output. To display output, the -
quad must appear immediétely to the left of the assignment arrow. The value
of the APL expression to the right of the arrow is assigned to the quad and

will be displayed. For example:

5414143
7
L2

Aclle CHARACTER DATA’
CHARACTER DATA

The 7 displayed is the value assigned to the quad. The 12 is the final
evaluation of the APL expression.

When used to ask for input, the quad can appear anywhere except to the
immediate left of the assignment arrow. Execution of the expression stops at
the quad and resumes when an expression is entered to replace the quad.
When a quad is encountered, the quad and colon symbols (O :) are displayed
to indicate that input is requested. For example:

100

See Chapter 6 for more information on quad input or output within a
user-defined function.

Quad Quote [1 @

You form the quad guote symbol by overstriking the quote symbol ' and the
quad symbol 0. The quad quote operates the same way as the quad when
requesting input, except that the data entered is treated as character data. For
example:

xell
can' T

X
CanN'T

Wt
CAN'T T

X
CANTTT!

Note: If a system command is entered for a quad quote input request, the
system command is treated as a character string and will not be executed.

See Chapter 6 for more information on quad quote input or output within a
user-defined function.

Primitive (Built-In) Functions 137

138

Comment A | n
Cc J

The comment symbol is formed by overstriking the n symbol and the ©
symbol. The comment symbol must be the first nonblank character in a ling
and indicates that the line should not be executed. For example!

VONE PLLUES TWO

C11 aTHE PURPOSE OF THIS FUNCTION I8
L20 aTO aADD TWO NUMBERS TOGETHER!
LA ONE+TWOV

&

Parentheses ()

12 PLUS 34

L)

Parentheses are used to specify the order of execution. The order of execution
is from right to left with the expressions in parentheses resolved (right to left)
as they are encountered. For example:

27

2

Zeuxéh

(SR DR L

SYSTEM VARIABLES

Chapter 5. System Variables and System Functions

System variables provide controls for the system and information about the
system to the user. These variables can be used by a function as arguments
the same as any variable.

The following is a list of the system variables and their meanings. A complete
description of each follows the list:

Variable Name

gdct
0io
Opp
Opw
ORL
Owc
OwAa
Owx
OAv

Notes:

Meaning

Comparison tolerance
Index origin

Printing precision
Printing width
Random link

Line counter
Workspace available
Latent expression
Atomic vector

1. To find the value assigned to a system variable, enter the variable name.
The value assigned to the OCT, 010, OPP, OPW, ORL, and OLX system
variables can be changed by the assignment arrow (+). For example,
entering [(J10<0 assigns the value O to the [J10 system variable.

2. The use of any system variable causes an entry to be made in the symbol
table for that symbol. Therefore, if the symbol table is full, a SYMBOL
TABLE FULL error is generated. '

3. The following system variables are implemented as part of the system for
the purpose of maintaining syntactic compatibility between the 5110 and

APL/SV or VS/APL:

Variable Name

dal

ObL
ars
grr
OuL

Meaning Default Value
Accounting information 0000

Delay 0

Time stamp 1900000000
Terminal type 0o

User load 1

Although these system variables are not generally used with the 5110, the
0AIl and 0TS system variables can be assigned a new value.

System Variables and System Functions

139

Comparison Tolerance: [(JCT

The value of this variable determines the maximum tolerance (how different the
two numbers must be to be considered unequal) when any relational function
is used and at least one argument is a noninteger. For example, two numbers
are considered unequal if the relative difference between the two numbers
exceeds the comparison tolerance value. The following illustration shows how
the comparison tolerance works with the relational functions:

+]CTxA'

/W\/ Value of argument A
0
_% I/ Real number line

A<B—n»
A<B The relationship of

A=B any value (argument B)
- A>B to argument A

*— A>B—~

A’ is the next lower integer power of 16 for the largest argument. For

example:
1&x) | 2 % w-——The First Five Integer Powers of 16.
1 16 256 4096 65934
[Tl
LU= Next lower integer power (A’) is 1;
0 therefore, the difference between the

arguments exceeds t[0CTxA’ ((1x1=.1)

RN Next lower integer power (A’) is 16;
1 therefore, the difference between the
‘ arguments does not exceed t[JCTxA’
(.1%x16=1.6).

DERw IR, Next lower integer power (A’) is 16;
) therefore, the difference between the
arguments exceeds +[JCTxA’
(.1x16=1.6).
A Next lower integer power (A’) is 256;
1 therefore, the difference between the
arguments does not exceed +[JCTxA’
(.1x256=25.6).

Note: The OCT function considers any number in decimal form a noninteger.
For example, 1000 is an integer and 1000. is a noninteger.

140

The value of the comparison tolerance variable also affects the floor and ceiling
functions. The comparison tolerance is added to the argument for the floor
function and subtracted for the ceiling function. For example:

[0Te 03

1L.2.98 2.98 +.03 = 3.01 (The integer 3 is in the range of
3 2.98 +.03.)

L&, 94 2.96 +.03=2.99
7

3,03 3.03 -.03 =3 (The integer 3 is in the range of
3 3.03-.03.)

&, 04 3.04 - .03 =3.01

In a clear workspace, the comparison tolerance value is set to 1E 13 (see
Chapter 3 for an explanation of scaled representation).

Index Origin: (IO

The value of this variable determines the index origin. The value can be either
0 or 1, which means that the first component of a vector or array is indexed
with a O or 1, depending on what the value is set to. In a clear workspace, the
value is set to 1.

The functions affected by index origin are indexing {[]), index generator (1),
index of (1), roll (?), deal (?), generalized transpose (R), grade up (4), and
grade down (V).

1100 The index values represented by the
L2 3 uvl 2 3 4 result start from O rather than 1.
0 1 2 3
hé 3 4 8
L2 370
i
n 1 2 3
101

Note: All other examples in this manual are shown with the index origin set to
1.

System Variables and System Functions

141

Printing Precision: [JPP

The value of this variable determines the number of significant digits displayed
for decimal numbers and for integers with more than 10 digits. The value of
this variable does not affect the internal precison of the system. The value can
be from 1 to 16. In a clear workspace, the value is set to 5. This means that
the number of significant digits displayed for decimal numbers or for integers
with more than 10 digits is limited to 5, and scaled representation (see Chapter
3) is used (if required). For example:

§———— Decimal Number Examples
L2305, 6
123446 Five digits are displayed, and the least
LEBWES &7 significant digit is rounded off.

12344
1230567
1, 23us

Integer Examples
123547890
L2ANGE467890
LABZuGHAT7E90 1
1 23W4AELD

Print Width: OPW

The value of this variable determines the length of the output line for both the
display and printer. The value can be from 30 to 390. In a clear workspace,
the value is 64. If this variable is set to a value greater than the length of one
line across the display, the output will overflow onto the next line.

If this variable is set to a value greater than the length of one line across the
printer, an I (O-U-T) symbol is printed in position 132 when the output
exceeds the print width.

Notes:

1. During function definition mode (see Chapter 6), the print width variable is
automatically set to 128. The variable returns to its original value when the
function is closed.

2. When you open, display, and close a function using one statement
(VFUNCTION [[0]V), the system uses the current value of the variable.

142

Random Link: (JRL

The value of this variable is used in generating random numbers. The value
can be from 1 to 23'-2. In a clear workspace, the value is 7#5 (16807). This
value is changed by the system each time a random number is generated.

Note: Making ORL local to a user-defined function produces unpredictable
results.

Line Counter: (JLC

This variable is a vector. The first element is the function statement number
currently being executed. The next element is the number of the statement {(in
another function) that invoked the function being executed. The remaining
elements follow the same pattern. The user cannot set this variable but can
display it. Attempts to modify 0JLC are ignored by the system.

Workspace Available: [JWA

The value in this variable indicates the amount of unused space (the number of
unused bytes) in the active workspace. The user cannot set the value for this
variable but can display it. Attempts to modify OWA are ignored by the
system.

Latent Expression: [JLX

A character vector assigned to the latent expression variable is automatically
executed as an expression by the execute (2) function when a stored
workspace containing the latent expression is loaded into the active workspace.

Uses of the latent expression variable include the form JLX+'G’, where a
function named G is executed when the stored workspace is made active. The
form OLX<+"""MESSAGE WHEN WORKSPACE IS MADE ACTIVE'" displays the
message MESSAGE WHEN WORKSPACE IS MADE ACTIVE when the stored
workspace is loaded into the active workspace.

System Variables and System Functions 143

Atomic Vector: [JAV

The atomic vector is a 256-element vector that includes all possible APL
characters. The following example shows how it can be used to determine the
indices of any known characters in the vector {(assuming 0IO is 1):

LR RN =D ST
gy af gy

Appendix B contains a list of the characters in the atomic vector. The most
common use of the atomic vector is for generating line feed and cursor return
characters to arrange output. The following example shows how the atomic
vector can be used to generate these characters.

The function called NAMES will display your first and last name. Each name
will start at the left margin, and each character in the name will be one line
lower than the previous character:

YHaMES
¥ oA MNAME
L1 JEdeq
L2l JeCp Bivlep, B
2T aSTATEMENT 5 CATENATES THE ARGUMENTS TOLETHER
0l mAND ALSO PUTS A BLANK CHARACTER BETWEEN EACH CHARACTER

IEL,
S B OUTPUT; T, 0500110

[OQUTPUT« (2% e 1 00NGCAY (LR

L& abTATEMENT 8 PLACES A LINE FEED CHARACTER ([AVLL&01D)
E71 alM EACH BLANK ELEMENT OF OUTPUT

ral OUTPUTEZ22 -1 1AVE 140

!

!

!

|

b aSTATEMENT 11 PLACES & CURSDR RETURN CHARACTER ([AVE1S?I)
01 a&FTER THE FIRST M

a.!}

A

Th OUTPUTEZ2XTIeNAVELE?]

<1 aNOW WHEN THE CHARACTER VECTOR QUTPUT I8 DISPLAYED,
A4 adPL RESPONDE WITH THE APPROPRIATE ACTION WHEN & LINE
1 aFEED CHARACTER (aVLLA0TY OR CURSOR RETURN CHARACTER
S1oaCAVILSTIY I8 ENCOUNTERED IN THE CHARACTER STRING

&1 DUTRUT

CWIHGTIMIAT NAMES CWINTER®

144

SYSTEM FUNCTIONS

System functions are used like the primitive (built-in) functions; they are
monadic (one argument) or dyadic (two arguments) and have explicit results. .
Following is a list of the system functions and their meanings. A complete
description of each follows the list:

System Function Meaning
type fcc operation Console control
OCR name Canonical representation
OFX name Fix
OEX name Expunge
ONL class Name list
character [ONL class Name list beginning with the specified
character
ONC name Name classification

The JCC Function: Console Control

The [JCC function controls some of the interface capabilities between the user
and the 5110.

The OCC function can be monadic (takes one argument) or dyadic (takes two
arguments). The [JCC function returns an explicit result of 1. when the function
is successfully executed; otherwise, the result is O.

In the monadic form, the [JCC function sets the system to a unique national
character set (see Appendix C). The right argument must be one of the
following characters enclosed in single quotes:

Argument Character Set

. (period) EBCDIC

0 (zero) International

1 (one) Austria/Germany
2 (two) Belgium

3 (three) Brazil

4 (four) Denmark /Norway
5 (five) Finland/Sweden
6 (six) France

7 (seven) Italy

8 (eight) Japan

9 (nine) Portugal

+ (divide) Spain

X {multiply) Spanish speaking
- {minus) United Kingdom
+ (plus) French Canadian

For example, the following instruction sets the system to United Kingdom
character set:

(e

System Variables and System Functions

145

146

In the dyadic form, the JCC function is used to:

- Turn the display screen off and on during the execution of a user-defined
function

« Sound the audible alarm

» Set the keyboard input to standard APL characters or lowercase alphabetic
characters

« Scroll the display screen up or down
« Set the left tab position for printed output

The left argument is a numeric value that specifies the type of operation. The
right argument is a numeric scalar or vector that specifies how the operation is
performed. If the right argument is a vector, the values in the vector determine
the sequence in which the operations are performed, starting with the first
element. The operations and the values for the left and right arguments are
described in the following sections.

To Turn the Display Screen Off and On During Execution of a User-Defined Function

Left Right

Argument Argument Operation

1 0 Turn the display screen off.
I 1 Turn the display screen on.

For example:
Re 1 [ICC 0

turns the display screen off. The display screen remains off until:

» The [JCC function is used to turn the display screen on again.

« The user-defined function completes execution.

» The user-defined function requests [J or [input.

« A function statement that generates displayed output is executed. For this
reason, the explicit result of the [JCC function must be assigned to a

variable so that the display screen remains off.

Note: The internal processing capability of the 5110 is increased by 18% when
the display screen is turned off.

To Sound the Audible Alarm

Left Right
Argument Argument Operation
2 0 Turns the audible alarm off.
1 Sound the audible alarm until:
« The [CC function is used to turn
the audible alarm off
« Any key on the keyboard (other than
the CMD and shift key) is pressed
2 Sound the audible alarm for
approximately 1/4 second.
For example:

2neo 2 e 2 2

e

sounds the audible alarm four times for approximately 1/4 second each time.

To Set the Keyboard Input to Standard APL Characters or Lowercase Alphabetic
Characters

Left Right
Argument Argument Operation
3 0 Set to standard APL characters.
1 Set to lowercase alphabetic characters.
For example:
Fopeo o

sets the keyboard input to lowercase alphabetic characters until the keyboard
input is set to standard APL characters.

Note: Only the alphabetic keys are affected by the JCC function.

System Variables and System Functions 147

When keyboard input is set to lowercase alphabetic characters:

« Pressing the alphabetic keys enters lowercase alphabetic characters into the
system. For example:

o
A

« When the shift key is held down, pressing the alphabetic keys enters
uppertase alphabetic characters into the system. For example:

ERpN
enters the character A.

« When the CMD key is held down, pressing an alphabetic key enters the
APL character that appears on the upper portion of the key. For example:

o
I enters the character o.

The lowercase alphabetic characters are used primarily for [1 input.

enters the character a.

To Scroll the Display Screen Up or Down

Left Right
Argument Argument Operation
4 -16 to 16 Move the information on the display

screen up or down for the specified
number of lines.

A positive value in the right argument scrolls the information on the display
screen up, and a negative value in the right argument scrolls the information on
the display screen down.

For example:

Yo Ooo 10 5

scrolls the information on the display screen down 10 lines and then up 5
lines.

Note: If a value greater than 16 or less than ~ 16 is specified, the information

on the display screen is not scrolled up or down, and the explicit result of the
(dCC function is 0.

148

To Set the Left Tab Position for Printed Output

Left Right

Argument Argument Operation

5 1 to 131 Set the tab print position where the
first character is printed on the print
line.

For example:
VN W | Y

specifies that the next output to the printer starts in the sixth position on the
print line.

When a tab position is specified, if the line to be printed extends beyond
position 132, an I (O-U-T) symbol is printed in position 132. Except for the
1/0 error messages (ERROR eee ddd), the specified tab position also
determines where the error messages are printed on the print line. See
Appendix F for the error messages.

The JCR Function: Canonical Representation

The (OCR function formats a user-defined function into a character matrix. This
function is monadic (takes one argument); the argument for the [JCR function
must be a scalar or vector of characters representing the name of an unlocked
user-defined function. For example, you have the following user-defined
function:

FINTGLIV
¥ ReEINTE A

1 Redpl

L2 Tel

X1 START:RET1eA
(! Tel+l

R

LAY /ETART
¥

System Variables and System Functions 149

, 150

The function INTG is used to create a vector whose length and contents are
specified by the input argument:

INTG W
[F R A R 1
INTG 7
N A O A
To format the function INTG into a character matrix and assign the matrix to a
variable named VAR, you would enter the following instruction:

VARE[ICR TINTG!

VAR is displayed as follows:

VAR
R&EINTEG Aw———— First row is line 0 of the function.
Redp
T¢1]
START:RLT 1A
I¢«I+1

SCLEA)Y/GTART

¥ A R<————Indicates VAR is a 6-row, 12-column matrix.
& 12

Notice that the line numbers are removed along with the opening and closing
V. Also, labels within the function are aligned at the left margin.

Now you can change matrix VAR by simply indexing the elements:

VARECY; 121¢ " T '<«—The element in row 4, column 12 is changed to |.
VAR

ReTINTE A
Reppl

Il

START :RETTeX
Lel+l
SLLEAY/8TART

To format a matrix created by the [JCR function into a user-defined function,
use the OFX function. The [JFX function is discussed next.

The [JFX Function: Fix

The OFX function forms (fixes) a user-defined function from a character matrix
{that was most likely formed by the [JCR function). This function is monadic
(takes one argument); the argument for the JFX function is the name of a
matrix to be formed into a user-defined function. If an error is encountered
(invalid character or missing single quote, for example) as the matrix is being
formed into a user-defined function, the operation is interrupted, the number
of the row in error minus one is displayed, and no change takes place in the
active workspace (the user-defined function is not formed).

To show how the [JFX function works, we will use the matrix created in the
previous example (see the JCR function). To form matrix VAR into a
user-defined function, enter the following instruction:

APL responds with the name of the

FX VAR
T NTB/ user-defined function.

The OFX function produces an explicit result (the vector of characters that
represents the name of the user-defined function), and the original definition of
the user-defined function (if there was one) is replaced.

Now the function INTG can be displayed and executed:

VINTGLIV
¥ OReINTE A

L1 Réfed
L2l Tel
X1 START:ROTI«X
[Telvl
L5 TR /BTART
v

INTG &
123405

INTG &

123405 678

System Variables and System Functions 151

152

Following is an example that shows how the [JCR and [OFX functions can be
used to modify the definition of a function within another function. This
example will use the following user-defined function:

VINTGLDIY
V R&EINTG A

L1l Redpl
£21 T+l
L31 START:ROIT1eA
ful Telwl
(I S (TEA)Y/GTART
v
INTG 4
{E T ¥ R F R 8

Format the function into a matrix:

Me[lOR ' INTG '=—— Canonical Representation

ReINTG A
ReApl

Tel
START:RETJen
Tel+l

FCLEA) /BTART

Now, define a function called CHANGE, which, when performed, will execute a
modified version of INTG.

V. CHANGE ; INTG ; Y=—INTG is made a local function so that the
1 _l ML ;1 2le 1 global version will not be changed (the
L2l YeFX M local version will not exist after the
3]

v ITNTEG I \execution of CHANGE is complete).

Assign the explicit result of the OFX
function to Y so that it will not be
displayed.

Execute the modified version of INTG.

THT(G W ~————Execute INTG.
T TR TR Y

O HANGE =——Execute CHANGE.
L 234

THNTG W <«————Execute INTG again.
ol oy

The [JEX Function: Expunge

The JEX function erases global objects or active local objects specified by the
argument from the active workspace (unless the object is a pendent or
suspended function). This function is monadic (takes one argument); the
argument must be a scalar, vector, or matrix of characters.

Thus, if object AB is to be erased, the following instruction would be entered:
[EX AR

Note: Even after the object is erased, the name remains in the symbol table
(the part of the active workspace that contains all of the symbols used). To
clear unused symbols from the symbol table, save and then reload the
workspace.

The OEX function returns an explicit result of 1 if the name is available and a O
if it is not available or if the argument does not represent a valid name. When
the OEX function is applied to a matrix of names (each row represents a
name), the result is a logical vector (zeros and/or ones) with an element for
each name. The [EX function is like the JERASE command, except that it
applies to the active referent (see Chapter 6, Local and Global Names) of a
name.

Note: If the object being expunged is a shared variable (see Chapter 7), it will
be retracted.

The [JNL Function: Name List

The ONL function yields a character matrix; each row of the matrix represents
the name of a local (active referent) or global object in the active workspace.
The ordering of the rows has no special significance. The [JNL function can be
either monadic (takes one argument) or dyadic (takes two arguments); in both
the monadic and dyadic forms, the right argument is an integer, scalar, or
vector that determines the class(es) of names that will be included in the
result. The values for the input argument and associated classes of names are:

Argument Name Class

1 Names of labels
2 Names of variables
3 Names of user-defined functions

It does not make any difference in what order the class of names appears in
the argument. For example, [OJNL 2 3 or OONL 3 2 results in a matrix of all the
variable and user-defined function names.

System Variables and System Functions 153

In the dyadic form, the left argument is a scalar or vector of alphabetic
characters that restricts the names produced to those with the same initial
character as that of the argument. For example, "AD’ ONL 2 results in a matrix
of all the variable names starting with the characters A and D.

Uses of the [ONL function include:

« Erasing objects of a certain class (and also beginning with a certain
character). For example:

[EX "EB° [INL 2

erases all the variables whose names start with B.

« Avoiding the choice of a name that already exists.

The [ONC Function: Name Classification

The ONC function is monadic (takes one argument); the argument is a scalar
or array of characters. The result of the function is a vector of numbers
representing the class of the name given in each row of the argument. The
classes of names are as follows:

Result Meaning

0 Name is available for use

1 Name of a label

2 Name of a variable

3 Name of a function

4 Name is nonstandard (not available for use)

For example:

[INC AVERAGE

\This result indicates that the name AVERAGE is

the name of a user-defined function.

3

154

Chapter 6. User-Defined Functions

APL provides an extensive set of primitive functions; nevertheless, you may
want a function to solve a special problem. APL provides a way to create a
new function, called function definition. During function definition, you use

existing APL functions to create new functions called user-defined functions.

Normally, the 5110 is in execution mode; that is, after a line has been entered
and the EXECUTE key pressed, the 5110 executes that line. To define a
function, the mode must be changed to function definition mode; after the
function is defined, the mode must be changed back to execution mode before
the function can be executed. You change the mode by entering the V (del)
symbol. The first V changes the mode to function definition mode; the second
V indicates the end of function definition and changes the mode back to
execution mode.

No statement error checking is performed during function definition mode.
That is, all error checking is performed when the statement is executed.

User-Defined Functions 155

156

MECHANICS OF FUNCTION DEFINITION

The following steps are required to define a new function:

Enter a V followed by the function header (see Function Header in this
chapter). After the function header is entered, APL responds with a [1]
and waits for the first statement of the function to be entered:

FHOME SCORE VISYTOR (function header)
r1

Enter the statements that define the operations to be performed by the
function. As each line is entered, APL automatically responds with the
next line number:

¥ OHOME SCORE VISITOR
CTHE FINAL SCORE T8:°
+/HOME
T
+/VIBTTOR

.3 2

fang o
N X3 00
R N N A

Notes:

1. Since problems can occur when you are editing statements that
exceed the print width (see JPW system variable in Chapter 5), during
function mode, the print width is automatically set to 128. This
permits statements up to a maximum of 115 characters in length to be
placed on the input line (lines 1 and 0) and edited. Editing statements
are discussed later in this chapter. The print width returns to its
original value when the function is closed.

2. When you open the function definition, display the user-defined
function, and close the function definition using one statement (see
Reopening Function Definition in this chapter), the system uses the
current value of OPW. This allows user-defined functions with long
statements to be printed on narrow paper.

3. If a user-defined function contains a statement that is greater than
115 characters in length, that statement cannot be edited and the
function cannot be written on the media. (See JCR and [JFX in
Chapter 5 for information on changing a user-defined function to a
matrix.)

Enter another V when the function definition is complete. The closing V
may be entered alone or at the end of a statement. For example:

Pl S ANTETTORY
or
RN W
Note: If the closing V is entered at the end of a comment statement,

which begins with a A symbol, the V will be treated as part of the
comment and the function will not be closed.

Function Header

The function header names the function and specifies whether a function has
no arguments (niladic), one argument (monadic), or two arguments (dyadic).

Note: Function names should not begin with SA or TA because SA and TA
are used for stop and trace control (Stop Control and Trace Control are
discussed later in this chapter).

The function header also determines whether or not a function has an explicit
result. If a function has an explicit result, the result of the function is
temporarily stored in a result variable (names in the function header) for use in
calculations outside the function. The result variable must be included in the
result statement (the statement that determines the final result of the function)
as well as the function header. For example:

Result Variable

¥ RESULTEX PLUS Y
1 RESULTEX+YV

3 OPLUS 4 The result of the function is

e temporarily stored in the result
10+3 PLUS W variable so that it can be used
17 by another function.

User-defined functions that do not have an explicit result cannot be used as
part of another expression. For example:

VoX PLUSL Y
L1 X+YY

10+3 PLUSL 4
7
ValuUE ERROR

1043 PLUSL 4

Fa

The following table shows the possible forms of the function header:

Number of Format of Header
Arguments | Type No Explicit Result | Explicit Result
0 Niladic VNAME VR<NAME
1 Monadic VNAME B VR<NAME B
2 Dyadic VA NAME B VR+A NAME B

There must be a blank between the function name and the arguments. Also,
the same symbol cannot appear more than once in the function header: thus,
Z<FUNCTION Z is invalid.

For user-defined functions, the order in which the arguments are entered is
important. For example, assume that Z<X DIVIDE Y represents a function in
whichZ is the result of X$Y. Now if 20 DIVIDE 10 is entered, the result is 2.
However, if 10 DIVIDE 20 is entered, the result is 0.5.

User-Defined Functions 167

158

Branching and Labels

Statements in a function definition are normally executed in the order indicated
by the statement numbers, and execution terminates at the end of the last
statement in the sequence. This normal order can be modified by branching.

Branching is specified by a right arrow (=} followed by a label (name) that
specifies the statement that is to be branched to. For example, the expression
+START means branch to a statement labeled START. When a label is
assigned to a statement, the label must be followed by a colon (:) and must
precede the statement. The colon separates the label from the statement:

C21 START:MeN+l

In the previous example, the label START is assigned to the second statement
in the function. In other words, START has a value of 2; however, if the
function is edited and the statement is no longer the second statement in the
function, START will automatically be given the value (or statement number) of
the new statement. (See Function Editing later in this chapter.)

Labels are local to a function—which means they can be used only within that
function. Following are some additional rules that apply to the use of labels:

« They must not appear in the function header.
« You cannot assign values to them.

+ They can be up to 77 characters in length.

« They cannot be used on comments.

« When duplicate labels or labels that duplicate a local name are used, the
first use of the label or name is the accepted use.

If the branch is to zero (=-0) or any statement number not in the function, the
function is exited when the branch statement is executed. If the value to the
right of the > is a vector (for example, +L1,L2,L3), the branch is determined
by the vector's first element. If the vector is an empty vector (there are no
elements), the branch is not executed, and the normal sequence of statement
execution continues. For example, the conditional branch =-(1>N)/START is
evaluated as follows:

1. First, the condition (I>N) is evaluated; the result is 1 if the condition is
true and O if the condition is false.

2. The result of step 1 is then used as the left argument for the compress
(A/B) function:
a. If the result of step 1 was 1, START is selected from the right
argument and a branch to the statement labeled START is taken.
b. If the result of step 1 was O, nothing is selected from the right
argument (an empty vector is the result), and the sequence of
execution falis through to the next statement.

Following are three examples of defining and using a function to determine the
sum of the first N integers. Each function uses a different method of
branching. Remember, the expression to the right of the + is evaluated, and
the result determines to what statement the branch is taken:

LfaBEL - 568 exit the function.
IT+1+1
SCHECEY

SUML 5

VoDehUMD M

50
T
CHECK i+ (T >N} /{l<=———Branch to 0 {terminate the function)
SGeg+] or fall through.
LTel+l
HUHECKY

SUM2 O

SUME G

User-Defined Functions

189

Several forms of the branch instruction are shown in the following table:

Branch Instruction Result

L AREL Branches to a statement labeled LABEL

=310 Exits function

L AREL XX =Y Branches to LABEL or exit function

SOCXKAY) S (X=Y), (XYY /Ld L2 3 Branches to L1, L2, or L3

SOLL L2 L HX=Y]) Branches to L1 or L2

S (X=Y)/ 0 : Exits function or falls through to next statement
H (X=Y) /LAREL

(XYY pLAREL } Branches to LABEL or falls through

Note: Branching will also work if a specific statement number is specified to
the right of the +. For example, +3 means branch to statement 3; or
+X<+3XA means X is assigned the value of 3 times the value of A, and the
value of X is then used as the branch to statement number. However, these
forms of branching (using statement numbers instead of labels) can cause
problems if the function is edited and the statements are renumbered.

Local and Global Names

A local name is the name of a variable or user-defined function that is used
only within a particular user-defined function. A global name is the name of a
variable or user-defined function that can be used within a user-defined
function and can also be used outside of it. An example of the use of a local
variable name would be the name of a counter used in a user-defined function
{which is not required for any use outside the function).

To make a name local to a user-defined function, it must be contained in the
function header. For example, the function header VZ<EXAMPLE X:J;l
establishes the result variable Z, the argument X, and variable J and | as local
variables. Notice that the local names, other than the result variable and
arguments, follow the right argument (if any) and are preceded by semicolons.

A local name can be the same as a global name (variable or user-defined
function) or a local name in another function. However, any reference to the
name local to the function will not change the values of any other global or
local objects (variables or user-defined functions) or cause them to be used.

160

After a user-defined function has executed, the following rules apply to the
local and global variables used by the function:

« Any value assigned to a local variable is lost.

« If a local variable had the same name as a global variable, the value of the
global variable remains unchanged.

« If the value of a global variable was changed by the function, it retains the
new value.

For example:

LOCe100
GLOB+100
¥R
L1 OGS0
L2l X234
LED GLOReLD
LWl SUHL T & L0+ GLAR+ XV

#<————————X has no value after the function has executed.
VaLUE ERROR
X
?n . Y The global value associzflted with this name was
unchanged by the function.
100
[l.{)¥# «———The global value was changed by the function
10 because the name GLOB was not made local to

the function.

Because the value of a local name disappears as soon as execution of the
function finishes, the only time you can use or display the value of a local
name is while the function to which it belongs is still executing, is suspended,
or is pendent.

Note: If a name is local to a function that calls another function, the value of
that local name can also be used by the called function.

User-Defined Functions

161

162

[
L2
L3
L]
L5
L6
77
e

C1l
L2
L3
(U
L5
W)
e b

.8

H
-

o
PRI

Fadi O S L
RN

A name local to a function that has not completed execution or that is
suspended will be inaccessible if the name is also local to a more recently
called function. Putting it another way, the value of a name that you can use
or display is always the most recent local value of the name. Of course, as
execution of the more recently called functions is completed, the next earlier
value of each local variable will again be accessible. A name can therefore be
said to have one active referent or value, and possibly several latent referents
or values. For example:

¥ DAN; XX
X100
CTHE FUNCTION DAN GIVES XX O THE vaLLUE'
XX
"AND CALLS THE FUNCTION DavE'
DAavE
WHEN DAVE T8 THROUGH EXECUTING AND EXECUTION RETURNS ' -——
TOODAN, XX ONCE AGAIN HAS THE valUE'
XAV

¥ ODAVE; XX
AXe200
THE FUNCTION DAVE GIVES XX THE Valug®
XX
"AND CALLS THE FUMCTION JERRY’
JERRY
"WHEN JERRY IS5 THROUGH EXECUTING AND EXECUTION RETURNE ' -
TO TAVE ., XX ONCE AGATN HAS THE Val.UE®
KXY —_

V OJERRY ;XX
XXe300
"THE FUNCTION JERRY GIVES XX THE VALUE'
XX
"AND RETURNG TO DAVE'V

AN
THE FUNCTION DaN GIVES XX THE VaLUE

100

AND CALLS THE FUNCTION DAVE

THE FUNCTION DAVE GIVES XX THE VAl
200

AND CALLS THE FUNCTION JERRY

THE FUNCTION JERRY GIVES XX THE VALUE

300

AND RETURNEG TO DAVE

WHEN JERRY I8 THROUGH EXECUTING aND EXECUTION RETURNS
TO DAVE, XX ONCE AGAIN HAS THE VaAlUE

200
WHEN DAVE T8 THROUGH EXECUTING AND EXECUTION RETURNS
T DAN, XX ONCE AGATN HAS THE VALUE
100
wK
VaLUE ERROR
XX
M

The)SINL command causes the SINL list (state indicator with name list; see
the [ONL function in Chapter 5) to be displayed. The SINL list contains a
complete set of referents of a name.

Note: See System Functions in Chapter 5 for an example of a local
user-defined function using the [JFX system function.

If the SINL list is scanned downward, the first occurrence of a variable name is
its active referent. If the name appears again, it is a latent referent. Global
names are not found in this list; they can be displayed with the)JVARS
command and)JFNS command.

In the following SINL display, variable P has referents as follows:

YETML

GE?l w2 X
Frud }» .} <———— The active referent of P is local to function F.
aray =0 X T
RE2 | +—————— First latent referent of P is local to function R.

Gr3l 4 X 1
As the state indicator is cleared, latent referents become active.

User-Defined Functions

163

164

INTERACTIVE FUNCTIONS

User-defined functions can display messages and/or request input from the
keyboard. The messages (character data) in the user-defined function are
enclosed in quotes. The [(quad) and [(quad quote) symbols are used to
request input from the keyboard during function execution. The following
function is an example of an interactive function that computes the amount of
interest on a capital amount for a given number of years:

L)
CENTER OTHE CAPITAL AMOUNT TN DOLLARS'
fre[]
TENTER OTHE INTEREST IN PERCENTS
T+
CEMTER OTHE PERIOD IN YEARDS
¥ &[]
TTHE RESULT I8
Axil+0, 0Ll nyy

)
ENTER THE CAPITAL AMOUNT TN DDLLARS
K
100
ENTER THE INTEREST IN PERCENT
[
&
ERTER THE PERIOD IN YEARS
{1

)

THE RESULT 18
11é& ., au
ol
ENTER THE CAPITAL AMOUNT IN NOLLARS
[1:
Looo
ENTER THE INTEREST IN PERCENT
[1:
9,80
ENTER THE PERION TN YEARS
1 |
THE RESULT 18

1530, 2

Requesting Keyboard Input during Function Execution

The [I (quad) appearing anywhere other than immediately to the left of the
assignment arrow indicates that keyboard input is required. When the [is
encountered in the function, the two symbols 0 : (a quad symbol followed by
a colon) are displayed, the display is moved up one line, and the cursor
appears. The quad and colon symbols are displayed to alert the user that input
is required. Any valid expression entered at this point is evaluated, and the
result is substituted for the quad. You can escape from a quad input request
by entering the right arrow .

An invalid entry in response to request for input results in an appropriate error
message, and the request for input is made again. Any system commands
entered will be executed, after which the request for input will again be made.
An empty input (no keying) is rejected, and the 5110 again displays the
symbols []: and awaits input.

When the quad quote [l (a quad overstruck with a quote) is used, input from
the keyboard is treated as character data. The input begins at the left margin
of the display; quotes do not need to be entered to define the data as
character data. When [input is requested, the symbols [: do not appear as
they did with a [input request. The input is entered after the flashing cursor
appears on the screen. For example:

X1
Cap' T

X
CaN'T

¥
CANTTTS

%
CANT T

Anything you enter in response to a quad quote request for input is considered
character input. Therefore, if you enter a system command or a branch arrow
() to terminate the function, the entry is treated as character data for the
function, and the system command or branch will not be executed. This can
be a problem if you are trying to escape from a quad quote input request.
Therefore, APL provides an escape for this situation. To escape from a quad
quote input request, enter the 7' symbol by holding the CMD key and pressing
the key. The function is interrupted, and the function name and the line
+

number being executed are displayed. You can then modify the function or
terminate it by entering the right arrow .

User-Defined Functions 165

166

ARRANGING THE OUTPUT FROM A USER-DEFINED FUNCTION

The output from user-defined functions can be arranged by the format function
(see the ¥ function in Chapter 4) or bare output. Bare output is discussed next.

Bare Output

After normal ouiput, the cursor is moved to the next line so that the next entry
(either input or output) wiil begin at a standard position. However, bare output,
denoted by the form [J]«X (X can be any expression), does not move the
cursor to the next iine. Therefore. more than one variabie or expression can be
displaved on the same line. For exampie:

Because the cursor does not return to the next line after bare output, when
quad quate {I'l) input is entered foilowing the bare output, the input starts after
the last character of the bare cutput. Then when the input is processed, it is
prefixed by any bare output on the input line. For example:

WIMIT LT

N A I o R It OGUTRUTY LS

C27 aTHE ’ EHT REQUESTE 1T INPUT
AT a1

CWd el DI&SPLAY THE ITHPUT

I B

OUTPUTATHNPUT
THIS 15 BaRE GUTPUTY Y _~—The cursor appears here. Now

THIS IS BaRkE OGUTPUTHEITHIS

TS B INPUT<—

After EXECUTE is
pressed, the output
line looks tike this.

Therefore, if quad quote input follows bare output (but only the input is to be
processed), the bare output must be removed from the input line. Following is
an example of a function that will remove the bare output:

FReBAREADUTPUT MSG;0T0; J

L1 [10ed

L2 MeMse

LD aCHECK THE BARE DUTPUT FOR EMBEDDED CURSOR RETURNS
L4 e 7L+ hMSEIAIAVE LS

L5 alROF ANY RARE OUTPUT PREFIX FROM THE INPUT

L& Red oy =141 40y ‘

This is how the function works:

YOUTALN) — The Bare Output
L1 BAREAGUTPUT "THIS IS BaARE QUTPUTI LY
L2321 v T\This function will remove the bare output.

DUTATHN
THIS I8 RARE OUTPUT! V!« The cursor appears here. Now enter THIS 1S [T INPUT.

-

THIS IS BARE CUTPUTIEITHIS IS 00 INPUT
THIS I8 {1 INFPUT «———— This is the final result.

If bare output consists of a character vector and backspace characters, the
display screen is scrolled down one line when the number of backspace
characters is greater than the number of characters in the character vector. For
example:

010+1
(M«(100°A"), 11p OAV[159] ~————— Backspace Character from the
Atomic Vector.

LOCKED FUNCTIONS

A locked function can only be executed, copied, or erased; it cannot be revised
or displayed in any way, nor can trace control and stop control (see Trace
Control and Stop Control later in this chapter) be changed. A function is locked,
or protected, when the function definition is opened or closed with a V(v
overstruck with ~) instead of a V.

When an error is encountered in a locked function, execution of that function is
abandoned (not suspended). If this function was invoked by another locked
function, execution of the second function is abandoned also, and so on, until
either (1) a statement in an unlocked function or (2) an input statement is
reached. Then an error message is displayed. In the first case, the execution
of the unlocked function is suspended at the statement; in the second case,
the 5110 waits for input.

Note: A locked function cannot be unlocked; therefore, if the function contains
an error, the function cannot be edited and the error corrected.

User-Defined Functions 167

168

FUNCTION EDITING

Several methods are used when the system is in function definition mode to
display and revise a user-defined function. Also, after a function definition has
been closed, the definition can be reopened and the same methods used for
further revisions or displays. (See Reopening Function Definition in this chapter.)

Displaying a User-Defined Function

Once the system is in function definition mode, part or all of a user-defined
function can be displayed as follows:

« To display the entire function, including the function header and the opening
and closing V, enter [[]1]. APL responds by displaying the function, then
waiting for the entry of additional statements.

« To display from a specified statement to the end of the function, enter
[On]. where n is the specified statement number. APL responds by
displaying the function from statement n to the end of the function, then
waiting for the last statement displayed to be edited (see Editing Statements
in this chapter).

«» To display only one statement of the function, enter [n[]]., where n is the
statement number to be displayed. APL responds by displaying statement n
and waiting for the statement to be edited (see Editing Statements in this
chapter).

The following table summarizes function display when the system is in function
definition mode:

Entry Result

(01 Displays all statements

[On] Displays all statements from n onward
{(nO] Displays statement n

Revising a User-Defined Function

Statements in a user-defined function can be replaced, added, inserted,
deleted, or edited as follows:

» To replace statement number n, enter [n] and the replacement statement.
If just [n] is entered, APL responds with [n], then waits for the
replacement statement to be entered. If the function header is to be
replaced, enter [0] and the new function header.

- To add a statement, enter [n] (n can be any statement number beyond the
last existing statement number) and the new statement. APL will respond
with the next statement number, and additional statements can be entered if
required.

e To insert a statement between existing statements, enter [n] and the new
statement. n can be any decimal number with up to four decimal digits. For
example, to insert a statement between statements 8 and 9, any decimal
number between 8.0000 and 9.0000 can be used. APL will respond with
another decimal statement number, and additional statements can be
inserted between statements 8 and 9 if required. (These and the following
statements are automatically renumbered when the function definition is
closed.)

Note: The statement number 9999.9999 is the last valid statement number.

» To delete statement n, enter [An] or display statement n, press the ATTN
key to delete the line, and then press the EXECUTE key.

Note: The [An] and closing V cannot be entered on the same line. If the

function definition is to be closed immediately after a statement has been
deleted, the closing V must be entered on the next line.

User-Defined Functions 169

170

« To edit a specific statement, use the following procedure:

1. Enter [n0] (where n is a statement number). Statement n is
displayed.

Note: The scroll keys () can be used to position a

statement on the display screen to the input lines O and 1 for editing.
To do this, use the scroll down |) key to position the

statement to lines O and 1. If the statement does not require two
lines, position the statement on line 1 and make sure another
statement is not displayed on line O.

2. Choose one of the following options:
a. To change a character, position the cursor (flashing character) at
the character to be changed. Enter the correct character.
b. To delete a character, position the cursor at the character to be
deleted. Then press the backspace () key while holding

the command {CMD) key. The character at the cursor is deleted
from the line, and the characters that were to the right of the
deleted character are moved one position to the left.

c. To insert a character, position the cursor to the position where the
character is to be inserted. Then press the forward space
() key while holding down the command (CMD) key. The

characters from the cursor position to the end of the line are moved
one position to the right. For example: [1] A+1245 should be [1]
A<12345. Position the cursor at the 4, and press the forward
space and command (CMD) keys simultaneously. The display will
look like this: [1] A<12__45. Now enter the 3.

d. To delete all or part of a line, press the ATTN key to delete
everything from the cursor position to the end of the line.

3. Press the EXECUTE key. The next statement number is displayed.

Note: If more than one statement number is entered on the same line, only
the last statement number is used. For example, if a line contained [3] [8]
[4] "NEW LINE', only statement 4 is replaced when the EXECUTE key is
pressed.

Reopening Function Definition

If you want to edit a function that has previously been closed, the function
definition must be reopened. For example, if function R is already defined, you
reopen the function definition for function R by entering VR. The rest of the
function header must not be entered or the error message DEFN ERROR is
displayed and the function definition is not reopened. The 5110 responds by
displaying [n+1], where n is the number of statements in R. Function editing
then proceeds in the normal manner.

Function definition can also be reopened and the editing or display requested
on the same line. For example, VR[3]S+S+1 edits the function by entering
the new line 3 (S<S+1) immediately. Then the 5110 responds by displaying
[4]) and awaiting continuation. The entire process can be accomplished on a
single line: VR[3]S+S+1V opens the definition of function R, enters a new
line 3, and terminates function definition. VR[[J]V causes the entire definition
of R to be displayed, after which the 5110 returns to execution mode.

Note: You cannot reopen the definition of a function, delete a statement, and
close the function (for example, VR[A4]V) on the same line, because the
closing V cannot be on the same line as the [An].

When an error occurs in a function, the function name, the line number, and
the statement in error are displayed. A caret on the following line indicates

where the 5110 stopped execution of the statement. The statement in error
can be corrected as follows:

—_

Scroll down until the caret is removed from the screen.
2. Scroll up one line.

3. Insert a V before the function name.

4. Correct the error in the statement.

5. Place a V after the statement.

6. Press the EXECUTE key.

This procedure works only if the complete statement is displayed.

User-Defined Functions 171

An Example of Function Editing

In this example, the user-defined function AVERAGE is used to show how the
methods used to revise and display functions work:

VavERAGE X Define the function.
CL3 T THIS FUNCTION CALOCULATES AVERAGES'
L2320 +/Ks {4/ X=0W

 AVERAGE

28 48 Execute and test the function.

THIS FUNMDCTION CALCULATES AVERAGES

wd

YAVERAGEDL, V1 "THE AVERAGE I%° Insert a statement,
8T DL
I "THISE FUNCTION CALTULATES AVERAGE
! THIS FUNCTION CaLUULATES AVERAGESD AND SUMS '<—Statement 1 was edited
21 L3ET CTTHE SUM_I8° to look like this.
|+ ; ?F A Add statements 3 and 4.
ViV RAGE i’ ” 1% Display the function.

.
A

PE— Display statement 1.

OFUMCTION CALDULATES AVERAGES AND SUMEB’
THE avERAGE IH°

ST LAE VS £ 3o

CTHE SUM TE°

K

AVERAGE 2 W & 8 Execute average.
THIS FUNCTION CALCULATES AVERAGES AND SUMS
THE AVERAGE 186

THE SUM 18
1)

WavERaGE L3R1 4+ K pk Replace statement 3.
N ha
A1 -) Delete statement 1.

0 e RO GE A S 4 o
GIaVERAGEADLIM X% Replace the function header.

L2

FAVERAGEASUMLIIIY Display the function.
V AVERAGEASUM X
[11 THE AVERAGE 18
£21 0 e/
£31 O THE SUM 18"
Lul o /X

AVERAGE
THE AVERAGE

w4
THE S IS

20

. E 2 H fji (YN Display the function from
Sl IS statement 3 to the end.

TRACE AND STOP CONTROLS

APL provides the ability to trace or stop execution of user-defined functions,
providing the functions are not locked (see Locked Functions in this chapter).

Trace Control

Trace control is used to display the results of selected statements as a function
executes. The display consists of the function name followed by the number
and results of the selected statement. For example:

STEVE[1] 2<————Result

Function Statement
Name Name

Statements to be treated are specified by a trace vector. The format of the
trace control function is TA STEVE<V, where STEVE is the name of the
function and V is the vector specifying the statement numbers to be traced.
For example, if TA STEVE+<2 3 5 is entered, the statement 2, 3, and 5 are
traced each time function STEVE is executed. TA STEVE+ 10 must be entered
to discontinue the tracing of function STEVE. To trace each statement of the
function, enter TA STEVE<« 1N, where N is the number of statement in the

function:
VETEVE T
L7 dedxd
C2) Bedx]
LA Ce3x)
Cul Delx]
Lal ARG DY
STEVE 2
20
TASTEVE &Y
‘STI":‘«"L 2 \Trace the first four statements
:3;;‘\\:‘”1)1' ': in function STEVE.
DlkvELEL b

STEVELZY &

STEVELW] &

20
TABTEVE ¢ 9 =—————Trace statement 2 in function STEVE.
STEVE 2

STEVELZI 4

20 .
TASTEYE 41} «——— Discontinue tracing in function STEVE.
STEVE 2

20

User-Defined Functions 173

Trace control can also be set by statements within a function. These
statements initiate tracing when a variable contains a certain value. For
example:

VETEVELDIV
¥ BTEVE T

11 AelxT
I TASTEVE ¢ 3 X A= 2 ~—— Trace statement 3 in function STEVE
L& DeEx] when A equals 2.
fyl Delpx]
(| D
Y

STEVE 2
STEVEL31 &
Lé

STEVE 3

i

Note: The following instruction establishes trace control for the first statement
of each user-defined function in the active workspace:

27007 e T A L COLINL By, et),

This instruction can be used to find out what functions are called by another
function.

The following user-defined function named TRACE establishes a trace vector
for each statement in a specified user-defined function:

VTRACE MaME
CL 2 " TAT D NAME, "1t p[JCR " NAME, " " ' ¥

174

When the function TRACE is executed, the argument must be entered in single
quotes. For example:

¥
L1
L2 Be2xl
! Cedx]
L4 Nelx]
N ARG
't;;n‘
TRACE " STEVE '<—Establish a trace vector for each
STEVE 2 statement in function STEVE.
STEVELLTY 2
STEVELZ2Y 4 Each statement of function
STEVELR] STEVE has been traced.
STEVE

STEVELSD

21

Stop Control

Stop control is used to stop the execution of a function just before specified
statements. At each stop, the function name and statement number of the
statement to be executed next is displayed. The statements are specified by a
stop vector. The format of the stop control function is SA STEVE<V, where
STEVE is the name of the function and V is the vector specifying the
statements. After the stop, the system is in the suspended state; to resume
execution, +[JLC must be entered (see Chapter 5). SASTEVE<10 (STEVE is
the function name) must be entered to discontinue the stop control function.

Stop control can be set by statements within a function. These statements
initiate halts when a variable contains a certain value. For example, SA
STEVE<«4xN>8 means stop before statement 4 in function STEVE when N is
greater than 8.

Trace control and stop control can both be used in the same user-defined
function. An attempt to set trace control or stop control for a nonexistent
function creates a variable and causes a syntax error. For example:

ICLE AR
CLEAR WS

i -L2 3
SYNTAY ERREOR
SAFe 1 02 3

IVARE

User-Defined Functions

175

176

Chapter 7. Tape, Diskette, Display Screen, and Printer Input and Output

When input and output involve the tape, diskette, display screen, or printer, an
APL shared variable can be established as the connection between the active
workspace and the 1/0 processor. That is, the value of the shared variable is
shared between the active workspace and the |/O processor.

There are two types of input/output operations: sequential access to tape and
diskette files, and direct access to diskette files and the display screen. There
is also an output operation to the printer. Sequential access means that the
records must be written to and read from the data file in sequential order.
Direct access means that specified records are directly read from or written to
the data file or display screen.

Input and output operations require the followipg steps:

1. Make a shared variable offer.

2. Specify the operation to be performed.

3. Transfer the data (perform the input/output operations).
4, Terminate the operation.

b. Retract the shared variable offer.

MAKING A SHARED VARIABLE OFFER

To establish a shared variable between the actvie workspace and the |/0
processor, the JSVO (share variable offer) system function is used. This
function is dyadic (requires two arguments), where the left argument is a 1
{which specifies the 5110 1/0 processor) and the right argument is character
data that specifies the variable name(s) being offered as a shared variable. The
5110 allows up to 12 variable names to be shared. These variable names can
be offered in one or more statements. However, if more than one name is
used as the right argument of the JSVO function, the names must be entered
as a character matrix with each row representing one name. For example:

TOEvD u L p ek

or Each row represents a separate variable name.

RIETRY
oo

el et ARG
SV NEMES

Tape, Diskette, Display Screen, and Printer Input and Output 177

Page of SA21-9303-0
Issued 28 April 1978
By TNL: SN21-0284

Direct access input and output operations require a pair of shared variables.
One variable name must start with the characters CTL, and the other name

must start with the characters DAT. After the first 3 characters, the next 15
characters in each pair of names must be identical. For example, 1 JSVO 2
4p 'CTLXDATX offers CTLX and DATX as shared variables.

The explicit result of the JSVO system function is a 2, 1, or O for each
variable name offered to be shared. For example:

I 0sv0 o u Le'ABCTH

L T T I

e e A e

A 2 indicates that the name is successfully shared with the |/O processor, a 1
indicates that a value other than 1 was used as the left argument for the
[SVO function, and a O indicates the shared variable offer failed. When a 1 is
the result, the variable name is not established as a shared variable. When a 0
is the result, an error message is also displayed (see Appendix F).

Note: Using the JSVO function without a left argument returns an explicit
result of 2 or O for each name specified in the right argument. A 2 indicates
that the name is shared with the 5110 I/0 processor, and a O indicates that
the name is not a shared variable.

SURROGATE NAMES

178

‘When offering variable names to be shared, you can establish surrogate names

by specifying two variable names in the character vector or in each row of the
character matrix. The first name is the surrogate, and the second name is the
variable to be shared.

For example:

AR R RS W W W

CTL is the variable name to be shared, and C is the surrogate.

MAMES+2 Dot UTLD DATS

NAMES
C CTL =—— CTL and DAT are the variable names to be
D DAT shared, and C and D are the surrogates.

1 0SvO NAMES

22

An explicit result is returned for the shared variable names only.

Once a surrogate name is established, the surrogate name must be used in
place of the shared variable name during input/output operations.

Page of SA21-9303-0
Issued 28 April 1978
By TNL: SN21-0284

SPECIFYING THE OPERATION TO BE PERFORMED

Once the shared variables are established, the next step is to specify the
operation to be performed. These operations consist of:

» Sequential access to tape or diskette files
» Direct access to diskette files

« Direct access to the display screen

» Sending data to the printer

After the operation is specified, the 1/0 processor assigns a return code to the
shared variable that specified the operation. A 0 n or 22 n return code
indicates that the operation was specified successfully, and any other return
code indicates that specifying the operation failed. (See Return Codes later in
this chapter.) How to specify the input/output operations is discussed next in
this ¢hapter.

Note: If a variable has a value when the name is offered to be shared, the
5110 establishes the name as a shared variable and then attempts to specify
the operation to be performed using the value already assigned to the shared
variable. If the data assigned to the shared variable is not valid for specifying
an operation to be performed, an error message is displayed and the
appropriate return code is assigned to the shared variable. To prevent this
error condition, you must make sure that the data assigned to the variable is
valid for specifying the operation to be performed or expunge (JEX) the name
before the shared variable offer is made.

Sequential Access to Tape or Diskette Files
When you are creating, adding data to, or reading a sequential access data file,
you must use a single shared variable to access the file. When using tape, you
can have only one open file on the tape at a time. An open file is a data file
that is currently being used for input/output operations. When using diskette,
you can have up to 12 open files at a time {using one shared variable for each

file).

The first data assigned to the shared variable must be a character vector that
specifies one of the following operations:

« Create a new sequential access data file.
» Add data to an existing sequential access data file.

+ Read data from a sequential access data file.

Tape, Diskette, Display Screen, and Printer Input and Output 179

180

To specify one of these operations, the character vector must be in one of the
following formats {enclosed in single quotes):

A<'OUT device/file number ID=(file ID) [MSG=OFF] [TYPE=A] ‘

|
A<‘'ADD [device/file number] [ID=(file ID})] [MSG=0OFF]’
A<'IN [device/file number] [ID=(file ID)] [MSG=OFF]’

There must be at least one blank between parameters. Following is a
description of each parameter.

OUT, ADD, or IN

This first parameter specifies whether the data is to be written to a new
sequential access file (OUT), written to an existing sequential access file
following the last record in the data file (ADD), or read from an existing
sequential access file (IN).

device/file number

This parameter specifies the appropriate diskette drive or tape unit and file
number. For example:

11003
File Number 3

Diskette Drive 1

If fewer than four digits are used, the default device is assumed (see Chapter

2), and this parameter represents only the file number. This parameter is
optional for diskette files only. See Name Processing in Chapter 2 for more
information on specifying the device/file number for diskette files.

ID = (file ID)

This parameter specifies the file identification (the name is enclosed in
parenthesis) and is used as follows:

. When a new data file (OUT operation) is created, the name is put in the file

iD field of the file header (see The)LIB Command in Chapter 3). If this

parameter is not specified for tape operations, the file ID defaults to DATA.

This parameter must be specified for diskette operations.

It is a good practice to give the data files meaningful names; for example, a

file that contains sales data could be named sales—ID=(SALES).

Notes:

1. See Variable and File Names and Name Processing in Chapter 2 for more
information on specifying the file ID.

2. For an OUT operation to an existing data file (writing new data over the
existing data), the file ID specified must match the existing file 1D for the
data file or the)DROP command must be used to drop the data file (see
Chapter 3).

Page of SA21-9303-0
Issued 28 April 1978
By TNL: SN21-0284

« When you are adding to or reading from an existing data file (ADD or IN
operations), the file 1D, if specified, is compared to the file ID in the file
header; the operations cannot be performed if these file IDs do not match.

MSG = OFF

This parameter is optional. When this parameter is specified, no error message
is displayed for nonzero return codes (see Return Codes later in this chapter),
but the return code is still assigned to the shared variable.

TYPE=Aor |

This parameter is specified only when you are creating a new data file (OUT
operations). This parameter specifies the type of file and data format to be
used for writing data to a sequential access file:

- When TYPE=A is specified, the APL internal data format is used (file type
08-see The)LIB Command); that is, the data is written to the data file in the
same format it has in the active workspace.

Note: TYPE=A is the default if this parameter is not specifed.

- When TYPE=I is specified, the general exchange data format is used (file
type 02). When the general exchange data format is used, only character
scalars and vectors can be assigned to the shared variable. Therefore,
before you store numeric data or arrays on data files using the exchange
data format, you must first use the format (%) function to change the data
to a character scalar or vector. This data file can also be used as a BASIC
language source file. When you are adding to or reading from a data file (IN
and ADD operations), the data format is determined by the existing data file
type.

Direct Access to Diskette Files

When you are creating or adding data to a direct-access diskette file, you use
a single shared variable to sequentially write the records to the file. When you
are reading from or writing to an existing direct-access data file, you use a pair
of shared variables to read or write specified records. In this case, the shared
variable name with the CTL prefix must be used to specify the operation. You
can have from 6 to 12 open diskette data files at one time. The number of
open diskette files allowed depends on how many of the files are existing
direct access files, because a pair of shared variables is required to access
these files.

The first data assigned to the shared variable must be a character vector that
specifies one of the following operations:

« Create a new direct access data file.
« Add data to an existing direct access file.
» Read data from a direct access data file.

« Update (read from and write to) a direct access data file.

Tape, Diskette, Display Screen, and Printer Input and Output 181

Page of SA21-9303-0
Issued 28 April 1978
By TNL: SN21-0284

To specify one of these operations, the character vector must be in one of the
following formats (enclosed in single quotes):

- >

-

A<'OUTF device/file number ID=(file ID) [MSG=0FF] TYPE= 4

2 C

A<'ADD [device/file number] [ID=(file ID)] [MSG=0FF]’

CTL<INR [device/file number] [ID=(file ID)] [MSG=OFF] [TYPE=N]’
CTL<'IOR [device/file number] [ID=(file ID)] [MSG=0OFF] [TYPE=N]’
CTL<«'IORH [device/file number] [ID=(file ID)] [MSG=0OFF] [TYPE=N]’

There must be at least one blank between parameters. Following is a
description of each parameter.

OUTF, ADD, INR, IOR, IORH

This first parameter specifies whether the data is to be:
« Written to a new direct access file (OUTF)

« Added to an existing direct access file after the last record in the data file
(ADD)

+ Read only from a direct access file (INR)
» Read from and/or written to a direct access file (IOR and IORH)

The results of an IOR and IORH operation are the same. When you specify
IORH, an update operation (read and write) is performed faster than if you had
specified IOR. However, the IORH operation requires more storage in the
active workspace than does the IOR operation.

Note: When INR, IOR, or IORH operations are specified, a O n or 22 n return
code indicates that the operation was successfully specified. The second
element of the return code (n) indicates the number of records in the data file.

device/file number

182

This parameter specifies the appropriate diskette drive and file number. For
example:

11003
File Number 3
Diskette Drive 1

If fewer than four digits are used, the default device is assumed (see
Chapter 2), and this parameter represents only the file number.

This parameter is optional for diskette only. See Name Processing in Chapter 2
for more information on specifying the device/file number for diskette files.

ID = (file ID)

This parameter specifies the file identification (the name is enclosed in
parentheses) and is used as follows:

« When a new data file (QUTF operation) is created, the name is put in the
file ID field of the file header (see The)LIB Command in Chapter 3). This
parameter must be specified for OUTF operations.

It is a good practice to give the data files meaningful names; for example, a
file that contains sales data could be named sales—ID = (SALES).

Notes;

1. See Variable and File Names and Name Processing in Chapter 2 for more
information on specifying the file ID.

2. For an QUTF operation to an existing data file (writing new data over the
existing data), the file ID specified must match the existing file ID for the
data file or the)DROP command must be used to drop the data file (see
Chapter 3).

« When you are adding to (ADD operations) or reading from (INR, IOR, IORH
operations) an existing data file, the file ID, if specified, is compared to the
file ID in the file header; the operations cannot be performed if these file
IDs do not match.

MSG = OFF

This parameter is optional. When this parameter is specified, no error message
is displayed for nonzero return codes (see Return Codes later in this chapter).

Tape, Diskette, Display Screen, and Printer Input and Output 183

184

TYPE=A, I, U, or M

This parameter is specified only when you are creating a new direct access
data file (OUTF operations). This parameter specifies the type of file and data
format to be used for writing data to a direct access file:

- When TYPE=A is specified, the APL internal data format is used (file type
10—see The)LIB Command in Chapter 3); that is, the data is written to the
data file in the same format it has in the active workspace. The first record
written to the data file determines the shape (p DATA) and representation
that the remaining records must have when these records are written to the
data file. Each record written to the data file must have the same shape
and internal representation because if more than one record at a time is to
be read from the file, the records are laminated together (see Update (Read
and Write) a Direct Access Data File (IOR and IORH) later in this chapter).
Following are the classifications for data internal representation:

Character

Numeric binary (all zeros and ones)

Numeric fixed point (all integers in the range -23' to 23'-1

Numeric floating point (all other values)

l

!

Data can be converted from one internal representation to another (by APL
built-in functions) as follows:

CHARACTER+«3NUMERIC
BINARY<1ANUMERIC «————This numeric data must be zeros and ones;

FIXED<|L NUMERIC however, the zeros and ones might be
FLOAT<NUMERIC + 0.0 fixed-point or floating-point internal
NUMERIC«<2CHARACTER representation.

This numeric data must be in the
range -2°! t0 22! -1.

Note: TYPE=A is the default if this parameter is not specified.

« When TYPE=I is specified, the exchange data format is used (file type 09).
When the exchange data format is used, only character scalars or vectors
can be assigned to the shared variable. Therefore, when you are storing
numeric data on data files using the exchange data format, you must first
use the format (%) function to change the data to a character scalar or
vector. The first record written to the data file determines the shape
(p DATA) that the remaining records must have when the records are written
to the data file. Each record written to the data file must have the same
shape because if more than one record at a time is to be read from the file,
the records are laminated together (see Update (Read and Write) a Direct
Access Data File (IOR and IORH) later in this chapter). The data file can also
be used as a BASIC language source file.

Page of SA21-9303-0
Issued 28 April 1978
By TNL: SN21-0284

« When TYPE=U is specified, the data assigned to the shared variable can
only be character scalars or vectors. The data is unblocked and unspanned
as it is written to the data file (file type 09 or B9); that is, each record starts
oh a sector boundary, and a record cannot exceed one sector. Therefore,
each record must be equal to or less than one sector.

Note: The file type B9 is the basis for general exchange with other
products. The 5110 assigns the file type B9 to a data file when:

— TYPE=U is specified when you are creating the data file.

— The file name is a simple name; that is, the file name cannot exceed 8
alphameric characters.

— The records in the file are not greater than 128 characters.

— The diskette sector size is 128 or 256 bytes.

Also, you can read TYPE=U (file types 09 and B9) data files sequentially
(see IN Operations in this chapter) using one shared variable.

« When TYPE=M is specified, the APL internal,data format is used (file type
15); that is, the data is written to the data file in the same format it has in
the active workspace. The first record written to the file determines how
much file storage is allocated for each additional record. For example, if the
first record written to the file uses 100 bytes of file storage, each additional
record written to the file is allocated 100 bytes of file storage (see Storage
Requirements in Chapter 2 for information on how many bytes of storage
are required for each data type). For TYPE=M data files, the records do not
have to be the same shape or representation; therefore, only one record at a
time can be read from a TYPE=M data file.

When you are adding records to or updating (reading and writing) a data file
(ADD, IOR, IORH, and INR operations), the data format is determined by the
existing data file type.

TYPE=N

This parameter is optional and can be specified only when you are reading
from or writing to an existing diskette file (IOR, IORH, and INR operations).
When TYPE=N is specified, all attributes of the file are ignored and data is not
translated from APL internal code to EBCDIC during output operations, or from
EBCDIC to APL internal code during input operations.

When TYPE=N is specified, the system treats each sector in the file as one
individual record. For example, for a 10K data file on a 512-byte-per-sector
diskette, there would be 20 records in the file. Also, when TYPE=N is
specified, only character scalars or vectors can be assigned to the shared
variable.

Note: When TYPE=N is specified, the file header can be read (but not written)
if you specify record number -1. (For information on specifying record
numbers, see Direct Access (OUTF, ADD, INR, IOR, IORH, and DISPLAY) in this
chapter.) The file header is always a 128-byte record.

Tape, Diskette, Display Screen, and Printer Input and Output 185

Page of SA21-9303-0
Issued 28 April 1978
By TNL: SN21-0284
Direct Access to the Display Screen
When you are reading data from or writing data to the display screen,
specified records are read or written using a pair of shared variables. The
shared variable name with the CTL prefix is used to specify the operation. The

first data assigned to the shared variable must be a character vector in the
following format (enclosed in single quotes):

CTL<«'DISPLAY [MSG=OFF]’

There must be at least one blank between the parameters. Following is a
description of each parameter.

DISPLAY

This first parameter specifies that the pair of shared variables are to be used to
read data from and/or write data to the display screen.

MSG = OFF

This parameter is optional. When this parameter is specified, no error message
is displayed for nonzero return codes {see Return Codes later in this chapter).

Send Data to the Printer

The first data assigned to the shared variable must be a character vector in the
following format (enclosed in single quotes):

—
A<'PRT [MSG=OFF]’ A can be any shared variable.

There must be at least one blank between the parameters. Following is a
description of each parameter.

PRT

This first parameter specifies that the shared variable is to be used to send
data to the printer.

MSG = OFF

This parameter is optional. When this parameter is specified, no error message
is displayed for nonzero return codes (see Return Codes later in this chapter).

186

INPUT/OUTPUT OPERATIONS

After the input/output operation is specified, the actual read and/or write
operations can be performed.

Sequential Access Operations

When a shared variable is used to sepcify a sequential access input or output
operation, that shared variable is used to transfer the data.

Writing Data to a Data File (OUT and ADD)

Each time data is assigned to the shared variable, the data is written to the
data file and the |/O processor assigns a return code to the shared variable. A
0 O return indicates that the data was written to the data file successfully, and
a nonzero return code indicates that the operation failed. See Return Codes in
this chapter for a description of each return code.

For OUT operations to an existing data file (writing new data over the existing
data), all the previous data in the data file can no longer be accessed.

Reading Data from a Data File (IN)

Each time the shared variable is referenced in the active workspace, the 1/0
processor assigns a new record to the shared variable. The data is read from
the data file and assigned to the shared variable in the same sequence as the
data was previously written to the data file.

Because a new record is assigned to the shared variable each time the shared
variable is referenced, no return code is assigned to the shared variable after
each IN operation. An empty vector is returned to indicate an end-of-file or
an error condition, and the proper return code is then assigned to the shared
variable.

Note: Unpredictable results occur if JAV[157] (hex 15) or JAV[245] (hex 1E)
characters are written to and then read from a TYPE=I (file type 2) data file.
These characters are special record delimiters for the 5110.

Tape, Diskette, Display Screen, and Printer Input and Qutput 187

188

Direct Access Operations

Creating a Direct Access Data File (OUTF and ADD)

When a shared variable is used to specify an OUTF operation, or an ADD
operation to an existing direct access file, that shared variable is then used to
write data to the data file. Each time data is assigned to the shared variable,
the data is sequentially written to the data file and the 1/0 processor assigns a
return code to the share variable. A 0 O return code indicates that the data
was written to the data file successfully, and a nonzero return code indicates
that the operation failed. See Return Codes in this chapter for a description of
each return code.

For an OUTF operation to an existing data file (writing new data over the
existing data), any existing data following the new data cannot be used again.

Updating (Read and Write) a Direct Access File (IOR and IORH)

To read from and write to a direct access data file requires a pair of shared
variables. One of the shared variable names must have the prefix CTL, and the
other name must have the prefix DAT. After the prefix, the next 15 characters
in each name must be identical, if specified. For example:

CTLANAME

DATANAME

The shared variable name with the CTL prefix is used to send control
information to the 1/0 processor. Also, the |/0 processor assigns the return
codes to this shared variable. The shared variable with the prefix DAT is used
to send data to or receive data from the data file.

Note: When updating a direct access file, you cannot add records to the end
of the file. Instead, you must do an ADD operation.

The control information assigned to the shared variable with the CTL prefix
must be integers in a two- or three-element vector as follows:

0
CTL<«1 starting record number [number of records]
2

Where:

» The first element specifies to read from (0), write to (1), or search by key (2)
the data file.

« The second element specifies the starting record number to read, write, or
search by key. For direct access data files, the first record in the file is
always number 0. Therefore, if record number 1 is specified, the operation
starts with the second record in the data file.

« The third element is optional. This element specifies the number of records
to read, write, or search by key. If this element is not specified, one record
is assumed.

Reading records, writing records, and search by key procedures are discussed
next.

Tape, Diskette, Display Screen, and Printer Input and Qutput

189

190

Reading Records

When the control shared variable specifies that records are to be read, the 1/0
processor assigns the specified records to the shared variable name with the
DAT prefix. If more than one record is read, the records are laminated along a
new first dimension before they are assigned to the DAT shared variable. For
example, assume that the characters A, B, and C are the first three records in
the file:

CT.X ¢ 0 0 % =—Read three records, starting with the first record in
X

CTL, the file.
g n The 1/0 processor assigns the return code to the
pliaTX CTL shared variable.
31
TAaTX Find the shape of the data assigned to the DAT
A shared variable.
T
(I The new first dimension. This value also
NAaTXEL; 1 represents the number of records read.
A
DATXE2: 13 You can specify each individual record by indexing
B the new dimension.
TaTXNE,;

Once the data read from the data file is assigned to the DAT shared variable,
the shared variable can be used like any other variable. That is, the DAT
shared variable retains its value until more data is read from the data file or
you assign a new value to the DAT shared variable. For example:

?“';i 011 ~— Read the second record in the file.
00 o ; DATX retains this value until another record
; / NAaTX is read or you assign a new value to DATX.
1

CTLXed 2 1 :

BTLX ___——~Read the third record.

00 - DATX now has this value.
BATX

y Assign a new value to DATX.
DATXe A=
AT DATX now has this value.

fy -

Writing Records

When the CTL shared variable specifies that records are to be written, the 1/0
processor writes the current value of the DAT shared variable to the data file.
If more than one record is specified to be written to the data file, the records
must be joined along a new first dimension before they are assigned to the
DAT shared variable. For example, assume you want to write the three records
A, B, and C to a data file:

DATXeX 1 prakc:

Dy T X Join the records along a new first dimension.
A
2]
o
CTLXel 0 3% Write the three records currently assigned to the
CTLX DAT shared variable to the data file.
00 <\\
Now the first three records in the data file are A,
B, and C.

To update a direct access data file, you can read the record(s) from the date
file, modify the record(s), and then write the modified record(s) back to the
data file. For example:

CTLXe0 0 3
CTLX
0o

DAaTY

&
3] } The first three records in the data file.
[
DATXLL 2 3, 1¢ ' IEF ' «— Modify the three records read from
DATX the data file.

CTLXel 0 3 Write the modified records back to the
CTLX data file at a specified location.

on \\\
Now, the first three records in the data

file are D, E, and F.

Tape, Diskette, Display Screen, and Printer Input and Output

191

192

Search by Key

Search by key can be used with direct access interchange, general interchange,
unblocked/unspanned, and APL internal format data files. When the CTL
shared variable specifies a search by key, the key value presently assigned to
the DAT shared variable is used to search the data file. The key must be:

« The same representation as the data in the data file (character, binary, fixed
point, or floating point)

« Less than or equal to 255 bytes for 256-byte-per-sector diskettes
« Less than or equal to 128 bytes for 128-byte-per-sector diskettes

« Less than or equal to the record size for unblocked/unspanned format data
files (TYPE=U)

For a search by key, the records in the data file cannot span any sector
boundaries, and the records should be sorted in ascending sequence. That is,
one sector can contain multiple records; however, the records cannot span a
sector boundary.

The key is compared with the equivalent number of beginning bytes in each
sector. The search starts with the sector containing the first record specified
and continues through the sector containing the last record specified
(determined by the number of records specified). The search is completed
when:

« The key is equal to the equivalent number of beginning bytes in the sector.
In this case, the records in the sector are assigned to the DAT shared
variable.

« The key is less than the equivalent number of beginning bytes in the sector.
In this case, the record(s) from the previous sector are assigned to the DAT
shared variable. The comparison between the key and the beginning bytes
of each sector is an unsigned binary comparison (bit by bit). Therefore, the
following collating sequences are implied:

— For interchange, general interchange, and unblocked/unspanned format
data files, the EBCDIC character sequence.

— For character data in APL internal format files, the atomic vector ((JAV)
character sequence.

— For binary data, unsigned integer sequence.

— For numeric data, an unsigned integer sequence. That is, for fixed point
data, the negative values follow the positive values. For floating point
data, the negative values are in reverse order and follow the positive
values.

« The EOD address is encountered as the specified records are being
searched. In this case, the record(s) in the last sector of the file are
assigned to the shared variable.

« All of the specified records are searched without one of the previous
conditions occurring. In this case, the search is unsuccessful, and a 1 029
return code is assigned to the CTL shared variable (see Return Codes later in
this chapter).

Notes:

1. If the key is equal to the beginning bytes of a sector, but the beginning
bytes in a previous sector searched are greater than the key, the sector
containing the bytes equal to the key will not be reached.

2. Characters records should be sorted in ascending sequence for search by
key operations.

If the search is successful and the sector contains more than one record, the
records are laminated (joined) together along a new first dimension and
assigned to the DAT shared variable. Therefore, the first dimension of the DAT
shared variable represents the number of records read and assigned to DAT.

After the search is successfully completed, the return code assigned to the
CTL shared variable is O n, where n represents the record number of the first
record assigned to the DAT shared variable.

Reading a Direct Access Data File (INR)

Reading the data from a direct access file using an INR operation requires a
pair of shared variables.

Note: Generally, an INR operation is specified when the data is to be read
from and not written to the file, This prevents data from accidently being
written to the data file.

The control information assigned to the shared variable with the CTL prefix
must be integers in a two- or three-element vector as follows:

CTL-(—g starting record number [number of records]

Where:

« The first element must be O (specifying that data is to be read from the file)
or 2 (specifying a search by key operation).

« The second element specifies the starting record number. For direct access
data files, the first record in the file is always number O. Therefore, if record
number 3 is specified, the operation starts with the fourth record in the data’
file.

« The third element is optional. This element specifies the number of records.
If this element is not specified, one record is assumed.

See Reading Records and Search by Key earlier in this chapter for a description
of how records are read from a data file or data files are searched by key,
respectively.
Tape, Diskette, Display Screen, and Printer Input and Output 193

194

Reading from and Writing to the Display Screen (DISPLAY)

To read from and write to the display screen requires a pair of shared
variables. One of the shared variable names must have the prefix CTL, and the
other name must have the prefix DAT. After the prefix, the next 15 characters
in each name must be identical, if specified. For example:

CTLDISPLAY
DATDISPLAY

The shared variable name with the prefix CTL is used to send control
information to the 1/0 processor. Also, the 1/0 processor assigns the return
code to this shared variable. The shared variable name with the prefix DAT is
used to send data to or receive data from the display screen.

The control information assigned to the shared variable with the CTL prefix
must be integers in a two- or three-element vector as follows:

CTL«—? starting character number [number of characters]

Where:

« The first element specifies that data is to be read from (0) or written to (1)
the display screen.

« The second element specifies the starting character number to read or write.
The characters are numbered as follows:

Line
(L
))
15 0 63
14 64 127
13 128 191
12 192 255
1 256 319
10 320 383
9 384 447
8 448 511
7 512 575
6 576 639
5 640 703
4 704 767
3 768 831
2 832 895
1 896 959
0 960 1023
5 f

« The third element is optional. This element specifies the number of
consecutive characters to read or write. If this element is not specified, only
one character is assumed. If the specified number of characters plus the
starting character number exceeds the value 1024 (the total number of
characters that fit on the display screen), a 15 O return code is assigned to
the CTL shared variable.

Reading Records from the Display Screen

When the CTL shared variable specifies that characters are to be read, the
cursor appears on the display screen at the character position specified by the
starting record number. You can then modify the information on the display
screen for the specified number of characters. For example, pressing ATTN
erases any data from the cursor position to the last specified character. Now,
when the EXECUTE key is pressed, the specified characters are read from the
display screen and assigned to the DAT shared variable as a character vector.

For example, assume the first 3 characters on the display screen are A, B, and
C:

CTLOIGPLAYD 0 3

—Read 3 characters.
Start with the first character.

Once the previous statement is executed, the cursor (flashing character) is at
the first character position on the display screen. Now, if you enter the 3
characters DEF and press EXECUTE:

DATRISPLAY

BEF—————— "\
CTLDTSPLAY The specified characters currently on the display
00 \are read and assigned to the DAT shared variable.

The return code is assigned to the CTL shared
variable.

Once the character vector read from the display screen is assigned to the DAT
shared variable, the shared variable can be used like any other variable in the
active workspace.

Note: When you are reading data from the display screen uéing a loop, you
should program an escape from the loop in your user-defined function. For
example:

LOOP:CTLDISPLAYeD 0 20
SCOALTCTLROISPLAY Y /70

A/ OUT =3t DATHISPLAY)Y /0UT
XeX, DLIANATIISPLAY

L. O0P . .
auT ; Branch out of the loop if the first 3 characters

read are OUT.

(X NN]

This is necessary because you cannot interrupt reading data from the display
screen using the ATTN key.

Tape, Diskette, Display Screen, and Printer Input and Output 196

Writing Records to the Display Screen

When the CTL shared variable specifies that records are to be written, the 1/0
processor writes the current value of the DAT shared variable to the display
screen. For example:

DATHISPLAY« " MEW'
CTLOTISPLAY+L 0 % <——\Write the three records N, E, and W to the first
CTLIISPLAY three positions of the display screen.

0 0«

The return code is assigned to the CTL shared
variable.

If the DAT shared variable contains more data than the CTL shared variable
specifies to be written to the display screen, only the specified number of
records are written to the display screen, starting with the first record of the
character vector assigned to the DAT shared variable. If the DAT shared
variable does not contain as many characters as specified by the CTL shared
variable, the error messages 10 STATUS: INVALID DAT and INTERRUPT are
displayed (unless MSG=0FF is specified).

Sending Data to the Printer (PRT)

When a shared variable is used to specify that data is to be sent to the printer,
data (character scalar or vectors) assigned to that shared variable is sent to the
printer. Then the 1/0 processor assigns a return code to the shared variable.
A 0 O return code indicates that the data was printed successfully, and a
nonzero return code indicates that the print operation failed. See Return Codes
later in this chapter for a description of each return code.

Note: The JOUTSEL OFF command is automatically issued by the system

during PRT operations. The JOUTSEL option returns to its previous setting
after the PRT operation is terminated.

196

TERMINATING THE OPERATION

When you no longer need a shared variable (or pair of shared variables) for a
specified operation, you can terminate the operation by:

» Assigning an empty vector to the shared variable

« Completing execution of a user-defined function in which the shared
variable is made local to that function

« Using the OEX function or JERASE command

« Using the OSVR function

Assigning an Empty Vector to the Shared Variable

For sequential access operations (IN, OUT, and ADD), the 1/0 processor
terminates the operation when you assign an empty vector to the shared
variable. For output operations, the file header is updated with information
about the file (see The)LIB Command in Chapter 3). For input operations, the
operation is also terminated when an end-of-file empty vector is read from the
data file or an error occurs due to the device {(and the proper return code is
assigned to the shared variable).

CAUTION

For OUT, OUTF, and ADD operations, if the media is removed from the
system before the operation is terminated, the data file will be unusable. Any
subsequent attempt to read from the data file will give unpredictable results.

When creating a direct access data file (OUTF and ADD operations), the 1/0
processor terminates the operation and updates the file header with the EOD
address when you assign an empty vector to the shared variable.

For direct access operations to read from and write to a data file or the display
screen (IOR, IORH, INR, and DISPLAY), the I/0 processor terminates the
operation when you assign an empty vector to the CTL shared variable.

For printer operations (PRT), the 1/0 processor terminates the operation when
you assign an empty vector to the shared variable.

The 1/0 processor assigns a return code to the shared variable after the
operation is terminated. The O O return code indicates that the operation was
terminated successfully. See Return Codes later in this chapter for a description
of each return code.

After an empty vector is used to terminate the operation, the shared variables
can be used for specifying and performing other input/output operations.

Tape, Diskette, Display Screen, and Printer Input and Output 197

198

Making the Shared Variable Local to a User-Defined Function

If a shared variable name is local to a user-defined function, the input/output
operation is automatically terminated when the user-defined function
completes execution. See Assigning an Empty Vector to the Shared Variable for
a description of what happens when the operation is terminated. In this case,
there is no return code assigned to the shared variable.

Using the [JEX Function or JERASE Command

If the shared variable is expunged ((JEX) or erased {(\ERASED), the
input/output operation is automatically terminated. See Assigning an Empty
Vector to the Shared Variable for a description of what happens when the
operation is terminated. In this case, there is no return code assigned to the
shared variable.

Using the [ISVR Function

When you no longer need a shared variable for input/output operations, you
should use the (JSVR system function to retract the shared variable offer. If
the shared variable offer is retracted before you have terminated the
input/output operation, the system will automatically terminate the operation.
See Assigning an Empty Vector to the Shared Variable for a description of what
happens when the operation is terminated. In this case, there is no return code
to the share variable.

RETRACTING THE SHARED VARIABLE OFFER

To retract the offer to share a variable between the 1/0 processor and the
active workspace, the [JSVR function is used. This function is monadic
(requires one argument); the argument is character data that specifies the
shared variable name(s) being retracted. For example:

[ISVR " NaME”

If more than one name is used in the argument of the JSVR function, the
names must be in a character matrix with each row representing one name.
For example:

[18VR W 1p ' aRCH:

or Each row represents a separate variable name.

NAMESeW Lp ' ABCDS
[IGVR NAMES

The explicit result of the [JSVR system function is a 2 or O for each shared
variable name being retracted as a shared variable.

For example:

NEVR W Le ARCDS

bt I T B
A v £ e

£

A 2 indicates that the name is successfully retracted as a shared variable with
the 1/0 processor. A O indicates that the name is not successfully retracted as
a shared variable. Normally, if a shared variable offer cannot be retracted
successfully, it was never properly established as a shared variable.

Retracting the shared variable offer does not erase the value assigned to the

variable. That is, the variable still has a value after the shared variable offer is
retracted, until the variable is expunged or erased ([JEX or JERASE).

Tape, Diskette, Display Screen, and Printer Input and Output 199

200

RETURN CODES

The 1/0 processor assigns a return code to the shared variable after each of
the following operations:

« Specifying the operation to be performed

« Writing records to a sequential access file

« Writing records to and reading records from a direct access file
» Writing records to and reading records from the display screen
« Sending data to the printer

« Terminating the operation by assigning an empty vector to the shared
variable

» Reading the last record of a sequential access file
« Reading a sequential access file when an input error occurs

The return code indicates whether or not the operation was successful. If the
return is nonzero and MSG=0FF is not specified, in most cases an error
message is also displayed. You can check the return code by referencing the
shared variable once after the operation is complete. When the shared variable
is referenced more than once to check a return code, the error messages |0
STATUS: INVALID OPERATION and INTERRUPT are generated. Therefore, if
you need to check the return code more than once, you must first assign the
return code to another variable. For example:

Se0TL In this example, CTL is a shared variable that has
i been assigned a 0 O return code.
oo
i
0
CTL The shared variable cannot be referenced
O STATUS THVALID OPERATION more than once for a return code.
INTERRELPT

"

LT

Eay
Execution of a user-defined function does not stop when a nonzero return
code is assigned to the shared variable. Therefore, the user-defined function
should check the return code that was assigned to the shared variable to make
sure that each operation is successful. For example: '

E70 0 DaTXe"OUTF 11001 Th=(NAME) TYPE=LU"

fad

OO RKeDATH) AERROR

ecse

L&D ERBOR: "HPECIFYING THE OPERATION FATLED--THE RETURN CODE IS:
‘LYK

.
.
L]

Following is a description and/or user’'s response for each return code and
error message:

Code Error Message
ON
1 eee
20 10 STATUS: INVALID FILE
30 10 STATUS: INVALID DEVICE or

10 STATUS: INVALID DEVICE NUMBER
4 0 10 STATUS: INVALID FILE NUMBER
50 10 STATUS: NOT WITH OPEN FILE
60 10 STATUS: INVALID PARAMETER
70 10 STATUS: WS FULL
80 10 STATUS: DEVICE NOT OPEN

90

Description and/or User's Response

Operation successful. When you are specifying
direct access read and write operations {IOR,
I0RH, and INR), the second element is the
number of records in the data file. When you
are doing search by key operations, the second
element is the number of the first record read.
Otherwise, the second element is zero.

Device error; the second element (eee) is the
error code (see ERROR eee ddd in Appendix F).

The specified file cannot be used for
input/output operations.

Specify the operation again, using the correct
device number.

Specify the operation again, using a valid file
number.

The specified file, device, or corresponding DAT
shared variable is already being used for
input/output operations; the current operation
must be terminated before a new operation can
be specified.

The parameters required to specify the
operation were entered incorrectly; specify the
operation again, correcting any keying errors.

There is not enough space in the active
workspace for data items and buffers
associated with the 1/0 operation. Use the
)JERASE command or the JEX function to erase
any unwanted objects; then specify the
operation to be performed again.

An attempt was made to use a shared variable,
and an 1/O operation has not been specified.
Specify the I/0 operation to be performed, or
retract the shared variable if you want to use it
as an ordinary variable.

An empty vector was read from the data file,
but the empty vector is not the end-of-file
empty vector. This return code is only a
warning.

Tape, Diskette, Display Screen, and Printer Input and Output 201

Code Error Message

10 0 10 STATUS: EXCEEDED MAXIMUM RECORD LENGTH
10 10 STATUS: INVALID DATA TYPE

12 0 I0 STATUS: FILE NOT FOUND

130 10 STATUS: FILE NOT UNIQUE

14 0 10 STATUS: WRITE PROTECT

15 0 10 STATUS: CTL DOMAIN ERROR

16 0 I0 STATUS: INVALID DAT

18 0 10 STATUS: NO DAT

202

Description and/or User’'s Response

The error was probably caused by the tape
being removed before the file was closed. The
remaining data in the file cannot be read.

The wrong type or shape of data was used; for
example, noncharacter data was sent to an
exchange file, or noncharacter data was used as
the parameters when you specified the
operation to be performed.

The diskette files were searched by file name,
but the file name was not found. Specify the
operation again, using the correct file name, or
insert the proper diskette.

The diskette files on all the diskette drives were
searched by file name, and there is more than
one file with that name. Specify the operation
again, using the device/file number parameter.

The data file is write-protected. If you want to
write on the file, use the JPROTECT command
to remove the write-protect indicator.

Invalid control information was assigned to the
CTL shared variable; for example, a record
number greater than the number of records in
the data file was specifed.

Note: For a TYPE=M (file type 15), anytime you
specify the number of records this return code
is generated. Instead, you must let the 5110
use the default value (1).

The data assigned to the DAT shared variable
cannot be written to the data file. For example,
the data has the wrong shape and/or
representation for the data file.

The DAT shared variable is not established as a
shared variable before the CTL shared variable
is used to specify a direct access input/output
operation.

Code

22 N

23 0

24 0

Error Message

10 STATUS: WRONG VOLUME

Page of SA21-9303-0
Issued 28 April 1978
By TNL: SN21-0284

Description and/or User's Response

The operation is specified successfully, and the
second element is the number of records in the
file. However, the records were written to the
file such that if the file contains a bad sector,
that sector is skipped and the record is written
to the next sector. If there are no bad sectors,
the file can be read without any problems. If
there are bad sectors, a 1 44 return code is
issued if you try to access a bad sector. If the
file contains a bad sector, you must determine
the correct record location. For example:

Record Number

1 2 3 4

IRECORD A ! RECORD B l RECORD C l RECORD D l RECORD E| \Data File 1

—

1 2 3 4

e e — A
[RECORD A { RECORD B ‘ Bad Sectorj[RECORD C [RECORD l;] ‘\Data File 2
7

In data file 1, if you specify to read record
number 2, RECORD C is read. In data file 2, if
you specify that record number 2 should be
read, a 1 44 return code is issued. Instead, you
must specify record number 3 in order to read
RECORD C.

The end of the file was encountered when the
system was creating a direct access exchange,
unblocked/unspanned, or internal format data
file (type 9 or 10). The system automatically
terminates the operation and updates the file
header when this return code is issued.

An attempt was made to read from or write to
a diskette data file, and the diskette is not on
the same diskette drive as when the operation
was specified. Place the diskette containing the
data file in the same diskette drive as when the
input/output operation was specified, and try
the operation again.

Tape, Diskette, Display Screen, and Printer Input and Output 203

Page of SA21-9303-0
Issued 28 April 1978
By TNL: SN21-0284

INPUT/OUTPUT SUMMARY

Following is a summary and examples of the steps required for input and
output:

1. Make a shared variable offer and check the resuit.

X160 2 4 p' CTLXDATX
SO SREE Y AERRBORY

ERRORL: " THE SHARED YARIARLE OFFER FATLED, '

2. Specify the operation to be performed and check the return code.

Xe'0UT 11001 ID=(SEQUENTIALY MSG=0FF TYPE=]"

Xe' AL 11001 ID=(SEQUENTIAL) MEG=0FF " }SﬂwmﬁdAm%s
Xe'IN 11001 TD=(SEQUENTIAL)Y MSG=0FF"

Xe OUTF 11001 ID=(DIRECTY MSG=0FF TYPE="
NATYe ADD 11001 ID=(DIRECT) MS8G=(0FF"

CTLXe TNR 11001 ID=(DIRECT) MEG=0FF TYPE=N'
CTLXe TOR 11004 I0=(DIRECT) MSG=0FF TYPE=N'
CTLYXe TORH 11001 ID=¢DIRECT) MEG=QFF TYPE=N
CTLXe DISPLAY MSG=0FF ")

£

> Direct Access

DATXe " PRT MSG=0FF " Printer Output

SC0#LTNATX) Z/ERROR2
° Check Return
< Code
ERRORZ: "SPECIFYING THE OPERATION FAILEDR,'®

3. Perform the input and output operations, and check the return code after
each operation.

CTLXeD 0 8 Direct access—Read five records, starting with the
first record.

CTLXel 1 0% Direct access—Write five records, starting with the
second record.

CTLX«2 10 % Direct access—Search by key five records, starting at
the sector that contains the eleventh record.

(0F1tEVECTLX)Y /ERRORS
@ Check
@ Return
o Code
ERRORZ: "1/0 OPERATION FAILED, THE RETURN CODLE I%: ' T8Y

204

Page of SA21-9303-0
Issued 28 April 1978
By TNL: SN21-0284

4. Terminate the operation and check the return code.

CTLX&xD
A1 ACTLYX) Z/ERRORY

ERRORY : " TERMINATING THE OPERATION FAILED.
5. Retract the shared variable offer and check the results.
Xe[ISVYR 2 4o ' CTLYXDATX "

PO SR AERRORS

<

ERRORE: " RETRACTING THE SHARED VARIARLE OFFER FAILED,

Note: Even after the shared variable offer is retracted, the variables still
have a value.

Tape, Diskette, Display Screen, and Printer Input and Output 205

206

Chapter 8. The 5103 Printer

The IBM 5103 Printer is available as a feature attachment and has these
characteristics:

+ Bidirectional printing (left to right, then right to left). The 5103 bidirectional
printing operates as follows:

The print head moves from the left margin and prints a line. Succeeding
lines are printed in either direction depending on which end of the new line
is closest to the current position of the print head. The print head is
returned to the left margin periodically when printing is not imminent.

« 132 characters across the print line.

Note: If the width of the forms is less than 132 characters and the JPW
system variable (see Chapter 5) is greater than the width of the forms, loss
of data will occur as the print head leaves the form.

« Capability of using individual or continuous forms. Maximum number of
copies is six, but for optimum feeding and stacking, IBM recommends a
maximum of four parts per form.

+ Adjustable forms tractor that allows the use of various width forms. The
forms can be from 3 to 14.5 inches (76.2 to 368.3 millimeters) wide for
individual forms and from 3 to 15 inches (76.2 to 381 millimeters) wide for
continuous forms.

« Print position spacing of 10 characters per inch (25.4 millimeters) and line
spacing of six lines per inch (25.4 millimeters).

« Stapled forms or continuous card stock cannot be used.

« The character printing rate is 80 or 120 characters per second. The
throughput in lines per minute is function-dependent.

- A vernier knob (located on the right side of the printer) that allows for fine

adjustment of the printing position. This knob should only be used when
the print head is in its leftmost position.

The 5103 Printer 207

208

« The forms must meet the following requirements:

Maximum Thickness

Minimum Thickness

Maximum Width

Minimum Width

Maximum length

Minimum length

Maximum Copies

Maximum Form Weight

Maximum Distance
Between Folds

Singlepart
Cut Forms

0.0075 inch
(0.019 cm)

0.003 inch
(0.0076 cm)

14.5 inches
(36.83 cm)

6 inches
(15.24 cm)

14 inches
(36.56 cm)

3 inches
(7.62 cm)

Multipart

Cut Forms

0.018 inch
(0.0457 cm)

0.003 inch
(0.0076 cm)

14.5 inches
(36.83 cm)

6 inches
(15.24 cm)

14 inches
(35.66 cm)

3 inches
(7.62 cm)

4

Continuous
Forms

0.018 inch
(0.0457 cm)

0.003 inch
(0.0076 cm)

14.87 inches
(37.76 cm)

3 inches
(7.62 cm)

4

15 Ib ream

(6804 kg)

14 inches
(35.56 cm)

HOW TO INSERT FORMS

Continuous Forms

Form Guide Rack 1.
/ 2
i Rollers g

Print Head

4.
5.
Paper Release Lever
Printer Cover Paper-Advance Knob
Vernier Knob
7.

Forms Path for Singlepart Forms
Forms Guide Rack

R01|K/f—%‘)/\(in lower position)

4 \
P|aten\‘
N

Friction Feed Rolls

Slide the top cover forward.
Push the print head to the extreme left position.

For singlepart forms, pivot the form guide rack up
and forward to a vertical position. For multipart
forms, leave the forms guide rack in the horizontal
position.

The diagrams below and to the left show the
proper forms path for singlepart and multipart

forms.

Push the paper release lever to the rear to activate
the friction feed rolls.

Place the forms on the table behind the printer.
Note: The forms must be positioned behind the
printer so that the forms feed squarely into the

printer.

Thread the paper down, over the rollers, behind
the tractors, and behind the platen.

Turn the paper-advance knob to move the paper
around the platen until you can grasp it with your
fingers.

Position these guides at the edge of the paper.

The 5103 Printer 209

Tractor Cover and Pins

Tractor Cover and Pins

210

Right Tractor Knobs

Paper
Release
Lever

Paper-Advance
Knob

10.

11.

12.

13.

14.

15.

16.

17.

18.

Opgn both tractor covers.

Pull the paper release lever forward to disengage
the friction feed rolls.

Pull the paper up and place the left margin holes
over the tractor pins. Be sure the left tractor is in
its leftmost position.

Close the left tractor cover.

Squeeze the two knobs on the right tractor, and
slide the tractor to align the pins with the right
margin holes.

Place the right margin holes over the tractor pins.
Close the right tractor cover.

For singlepart forms, pivot the forms guide rack to
a horizontal position.

Turn the paper-~advance knob to position the form
for the first line to be printed. The paper should
exit over the forms guide rack.

Note: To move the form backward, turn either
paper-advance knob backward and pull the form
from behind the printer to keep the form from
buckling at the print head.

Close the top cover.

The plastic guides on the rear of the wire rack
should be positioned (one on each side of the
forms) so as to aid in guiding the forms for proper
feeding. These guides are positioned by sliding
them back and forth.

CAUTION

The switch that senses end of forms is deactivated
when the friction feed rolls are engaged. Thus, the print
wires could hit the base platen if no forms are in the
printer.

Cut Forms

1. Remove the forms tractor by tilting it back and lifting it off.

2. Move the cut forms guide forward.

3. Slide the top cover forward.

4. Push the print head to the extreme left position.

5. Push the paper release lever to the rear to activate the friction feed rolls.

6. Place the form in position behind the platen and against the cut forms
guide.

7. Turn the paper-advance knob to position the form for the first line to be
printed. Improve the paper alignment if necessary by using the paper
release lever.

8. Close the top cover.

CAUTION

The switch that senses end of forms is deactivated when the friction feed rolls
are engaged. Thus, the print wires could hit the base platen if no forms are in
the printer.

Printer Cover

Cut Forms Guide

Paper Release Lever

Paper Advance Knob

The 5103 Printer 211

HOW TO ADJUST THE COPY CONTROL DIAL FOR FORMS THICKNESS

Q) Copy Control Dial

If you are using singlepart forms, set the copy
control dial on O.

If you are using multipart forms and the last sheet
is not legible, rotate the copy control dial toward 0
one click at a time to obtain the legibility you
desire.

If you are using multipart forms and the ribbon Is
smudging the first sheet, rotate the copy control
dial toward 8 one click at a time until smudging
stops.

HOW TO REPLACE A RIBBON (PART NUMBER 1136653)

Forms Tractor

Printer Cover POWER ON Switch

212

Turn off power to the printer.

Tilt the forms tractor back by lifting both sides
at the front.

Slide the top cover forward, then lift the front
edge of the top cover and remove it.

Ribbon Box Cover 4.

Feed Roll 5.
Release Knob

Print Head
6.

9.

Ribbon Loop

Print Head

10.

11.

12.

Ribbon Box 13.

Loop

Be sure that the print head is to the extreme left.

Turn the feed roll release knob counterclockwise
until it points to the right.

Open the ribbon box cover.

Put on the gloves supplied with the new ribbon.
Remove the old ribbon from the guides being
careful to disengage it from the clip on the print
head.

Lay the ribbon loop on the top of the ribbon in the

ribbon box, Pick up the entire ribbon and discard
it.

Ribbon Holder

Eject the new ribbon from its holder into the
ribbon box by pressing on the disk.

Remove the disk from the ribbon and discard the
disk and the holder.

Hold the coil lightly with one hand and pull about
10 inches {254 mm) of ribbon from the coil.

Form a loop from the ribbon across the print head.

The 5103 Printer 213

Upper
Guide Post

Platen

Feed Rolls

Horizontal
Guides

Left
Guide Post Guide Shoe

214

¢

OO~

/

Slot

Ribbon Box

7
ey 7
5

Feed Roll
Release Knob

14,

16.

19.

20.

21.

22.

23.

Thread the part of the loop nearest the platen
between the feed rolls and on the inside of the
upper guide post.

Turn the feed roll release knob clockwise to close
the feed rolls.

Thread the ribbon between the print head and the
platen. Be sure the ribbon is under the clip on the
print head.

Thread the other part of the loop through the slot
in the bottom of the ribbon box.

Thread the ribbon through the guide shoe and
around the left guide post.

Insert the horizontal part of the ribbon twist
(bottom edge first) between the two horizontal
guides.

Move the print head back and forth across the
platen to remove the slack from the ribbon.
Continue moving the print head until you are sure
that the ribbon feeds properly. Leave the print
head at the extreme left.

Close the ribbon box cover.

Close the printer cover and turn the power on.

Reposition the form tractor.

Note: When the printer is left unattended (such as
during lunch or overnight), make sure the print head is
to the extreme left. This prevents the ribbon ink from
bleeding onto the paper.

HOW TO INSTALL THE 5103 PRINTER STACKER

A folded-form paper stacker is supplied with 5103 printers. The wire stacker
hooks onto the back of the printer cover as shown in the drawing. The lowar
wires on the stacker should contact the metal clips on the cover.

The stacker can be bent if too much weight is applied. Under normal
conditions, printed forms should not be allowed to accumulate higher than 1
inch in the stacker.

Note that, because of the relatively small free-fall distance of the paper as it
leaves the printer, you may have to manually fold the first two or three sheets
to get the folding operation started.

The 6103 Printer 216

216

Appendix A. 5110 APL Character Set and Overstruck Characters

To form overstruck characters, enter one character, backspace and enter the
other character or use the applicable CMD/key combinations. The 5110 APL
character set consists of all the characters represented on the 5110 keyboard
plus the following overstruck characters:

Function Character , Keys Used
Comment]
Execute ®

e

Factorial, combination

Format ()
Grade down v

Grade up A

Logarithm ®

Matrix division B

Nand A

Nor v

Protected function v

Quad quote M

Rotate, reverse b

Transpose &

Compress 4 (see note)

Expand X\ (see note)

Rotate, reverse e (see note))

Note: These are variations of the symbols for these functions; they are used
when the function is acting on the first coordinate of an array.
5110 APL Character Set and Overstruck Characters 217

218

Appendix B. Atomic Vector

CHARACTER CHARADTER NAME INDEX ([110+1)

RESERVED., .« « « « « 1
RESERVEDL, v o 0 0 o e &
VETL o o 0 e e K
VED. o 0 0 s e 4

W o
CRVMED, o 0 o o s]
' ' ' ' + 0 ' . ' 1 lﬁ?
"
1 ' 3 ' ' ' 0 ' ¢ ' f
i
t : 1 + t 1 t Ll ’ ' t L
[1 ' ' ' [1 1 . ' t . (.’)
1 t] . ' ¢ 1 ' ' ' .l. U
o e e e 1
.I 3
] : t 1 ' ’ ' ' 1 0 ' : Joal
' ' 1 s i ’ ' 0 ' ' [0 L sf‘

RESERVED, « « « v v v 0 o I
OPEN BRAOCKET. . o« « « « « « 1%
CLOSE BR&ACKET v o v v v v v 0 1é
OPEN PAORENTHESTS, . v v« v v 17
CLOSE PARENTHESIS o o o« v v v 18
BEMICOLON o v v 0 0 19
GLABH . . s e e 20
SLOPE o o v v 0 e e al
LEFT @aRROW. o v v v v v v 0 28
-3 RIGHT @ARREOW . o o o v v v v v]
REGERVED ., . . v v v 0 0 @l
RESERVED., . e Jor)
DIERESTS (UPPE o
+ PLUS. v v v 0 0 0 e e @

T TN e e e BT

= -
£
Eek
—
R
2,

ot
-

>,

3%

Bal o . 0 0 0 0 o s S
X TIMES o 0 0 0 0 e e e e £
* T T T A0
% STaR. o 0 0 0 0 o e e 31
[UPSETILE v v v v 0 v 0 0 e K.Y
i DOWNSTILE v v v v 0 0 A3
i STYLE o v 0 0 e e A

A ANTE 0 e e k3]
v OR o 0 0 0 0 0 e e e e e &b
“ LESS THAN o o o v v 0 0 o e x7
MOT GREATER o o v« v v v v 0 0 A
EQUAL . o 0 0 o e e e e e e
NOT Lt

-
LS
s
R
o
ot

> GREATEF 1
ot MOT EGUAL o v 0 0 e e e g

o al.PHS . 0 s o s e U4
EREESTLON . . . o 0 e WA

1 TOT e . .
) ‘:‘{ !"i (‘..‘ ' ' ' ' ' ' ' ' ' 0 ' ' + ' ' M c:‘
i OMEDGS 0 0 0 0 0 e ¥

Atomic Vector 219

: CoMMa o

! ClaMaTioN o . . o .
i e . C
i . o e e e
,.t , , , , , . , . . . , ,
o BE SLILE BN 1 1 1 1 1 1] t 1 i 1] %
¥ N

i ARREOW,. 0 o o 0 o o e
o SHOE . o 0 o 0 o e "
) SHOE. o 0o Gy
i P P &1
1 C e e e &l
i SHOE o o 0 o 0 0w o &
n I T o &b

o MULL C&mMalL CTRCLEY o v v o 0 &0

{1 BUESTe o 0 o e iy
{4 GUIOTE A o o 0 0 o o 0 o &Y
& LOG o v o v 0 e &
G FAnND. . . o o e S
& HMORE . . .]

S
by PLE v 0 e
iz} BakR, o 0 0 0 .. T
I F T T
* SLOPE Bak 0 0 0 0 o 0 0 i
B DOMINO,. o 0 o
& fe I\'! ll I..:] i i] ' il v 1 1 1 1] 1
& PERSSMD o .« v 0 0 o e
ik Vo e e a
f o
T T
i e
I B . e e
il oo o e e .
| oo e e e e e
i1 5, N ' .
i e
4 I Ve 0
;..l]..l T 13 1 & 1] 1 . 1 t . 1 1 t L} L .
i Moo s o o
i f"*. ' ' ' ' i . f ' f f f f f f '

,\
et

220

JE—
I OEG

O i i

B i = ED D

I

23 o
ST

1

§ R TR pell el b

e NTIE F

LT R

(- LINTDHE R
fre L T 1
INESRIC) RIER T
[LE T .
SeUNDERSCORE .
T UMDERSCORE

GPACE
QUOTE
COLON

OEL (FN DEF CHAR)

s

'

1

Atomic Vector

22

CURSOR RETURM o o v v v o v
ENDOF BLOCK(CANNOT BE DIHPLAYEDD
BACKEPACE . v o o 0 o
LEMEFEED. o« v v 0 o
DL TILDE . v v v v o 0

L34

' H t i ' v 0 ' ' ' t ' 3 ' [' T
t : ¢ 1 1 3 ¢ 1 t 1 1 1 . 1 ' t v
' t t ' [1 ' 1 ' 1 . 1 t 1 t 5 '
0 ¢ ' [1 ' ' 1 1 : * t : s 1 H 1
' : : 3 ' ' ' ' 3 t 0 : ' ' t 1 1
t ' 1 ' t 1 0 1 ¢ ¢ ' 1 1 ' 1 € '

LENGTH OF Z-8YMRBOL TABLE.
Joelde T FOR COMMUNTCATION TaPkt., . .
Y P o
" ROURBLE QUOTE. . .« o 0
4 PERCENT v v v v 0 v 0

[} 1] t 1 t 1] 1 1] 1 1 1 1 1 1] il 1] 1
1 1 1] T L] 1 1] [l 1) 1] 1 1 1] 1] t T 1
L] L] i 1 1 ' 1] 1] 1 E] 1] b ' 1] 1] T
G e
. '’ 1 1 . 1] 1 1] 1] 1] 1 1 1] 1 1 3
“: (‘; EE: N .Y- 1 1 t 1] 1 1] 1 1] 1 1] 1] 1] 1 1] 1]
t 1] 1 [1 1 1] 1 I 1] 1 1] 1] 1 1 1] 1]
ﬁ {] 1 3 .)) ® : T 1 N . 3 3 ' . 1
3] 0 T
{ { ' ' ' ' f . f . . ' f ' ' ' '
d '
@ (2. ' : ' ' ¢ ' ' ' ' ' F— ' .
| F e 0 0 0 e v
L] oo f f ' f ' ' ' ‘ f ' ' f f P
h ooy o v e e e e e
‘ i 1] t t t 1] 1] * t 1 1 1 ' 1] 14 1 T

| Lo o v 0 s e e e e e
] m . .« 0 P T S T
4] "o ' ' ' f ' ' ' ' ' ' ' f v . '
QO L T S T T T S S S S SR S
8] (B . . ' . . R . R . N . . N R .
L] o} R ' ' R P R R ' ' ' ' . B ' . B
1 0 0 0 e e e aa
i) K S T T T T

b (S
113 L T T T T
Y L T T S S T T T T T

222

E S T T T T T T O
W Yoo e e ey
Z FE T T S S T T S S S S S S
4 . FOoBERACE., o 0 o
* RIGHT BRACE . o« « « v+ + « &
J! HOOK . o« o v o s 0
b L

CHate o o . .
LOMG VERTICAL LIMNE. . o + + « .
LOGICAL QR . o v v 0 v o 0w
k TICal, Bak., o . o« o o
GRAVE ACCENT. o o« o o .
&) C e e
- Mote:These uniaue graphics are. .
b For maintenance use only, They., |
" are incompatible with other . .
svatems and cannot be used for. |
% pxchange puvposes, These gvaphios
] mav he removed or changed as a. .
: resylt of maintenance or new. . .

S e I w3

+ versions of this pyroduct., o o .
:‘) J T ' 3 ' : s . ' ' ' ' ' ' ' ' ['
e e e e e e e e
1 T [} t 1 H) 1 ')] 1] 1 : T] T
e e e ey
e e e e e
e e e e e e e e
Co e e e e
v e e
e e e
s e e e e
e e e e e e e
! SLTERNATE SMRIEEK., « « .+ + + « + .
[} [} T 1 t 1 ' 1 1 ‘ 1]) [} 1] 1] 1] L} 1
s e e e
e e e e
s e e e e
T .] 1 1 3 1 T [} £ 1] 1} 1] 1 1 1 1] .
N ALTERMGTE TILDE . o o . + « « . LR
C e e e e e e 2y
e e e e e 250
hS ALTERMATE SLOPE . o o+« « .+ L . 1
ot e e s .
e e e e e
e e e e
e e .

Note: The chavacters | ([JAVEZLI81), § ([JAVER2191), | (lAVE2u21),
N O IAVE2HEDY, and v (DAVE2S10) arve similar in appearvance to the
symbols Tov Tthe APL built-~in functions, However, if these
characters are used as APL buillt-in functions, a ENTRY ERROR

ie displayved,

Atomic Vector 223

224

Appendix C. EBCDIC Character Set and Special National Graphics

The system translates the APL internal code into EBCDIC (extended binary
coded decimal interchange code) when data is written to tape or diskette. The
following chart shows the character that is displayed or printed for each
EBCDIC hexadecimal value:

0 1 2 3| 4 51| 6 7 819 A|B|C|D|E F
0
1
2
3
4 AlBlC|D|E|F|G|H[L]|e]|. Cl+ |1
5 & | J|K[L|{MINIO|P|Q@|R|[V]I®]|®)] |~
6|~ |/ s|Tlulviu|x|y|zli| |*x].]x]"
7{& 1 A A U] v | » R I O =
8|l~lajb|lc|dle| f|lag|lh]|il|t]4 FrL]-
910N itk Lim|n|lolplaly|=2]c 0 &
Al " 1wl tlu|lv|iw| x|{yltz]|n]|u]]|l e
Bla|e| v p| o x [N * VA 1| 3] #]1
cl4s|A|B|C|D]E|F[GIH|IT|[X]]| 0]NW| 8
Dl | J|K|L|M|N|O[P]|RIR|[x] ' ®| & || a
E | S| TIU VW] XY [Z]A] x| d]|a] BT
Flo| 1} 23w 567 (8[92]1]% @ |

For example, The EBCDIC character O has a hex value FO.
In the previous chart, graphics are assigned to all blank positions (except hex

40) for maintenance use only. These graphics are incompatible with other
systems and cannot be used for exchange purposes.

EBCDIC Character Set and Special National Graphics 225

Page of SA21-9303-0
Issued 28 April 1978
By TNL: SN21-0284
Some of the graphics in the previous chart change when a national character

set, other than EBCDIC, is specified. You can specify other national character
sets by:
« Using the (JCC system function (see Chapter 5)

» Pressing the HOLD key, and then holding down the shift key and pressing:

1 to select Austria/Germany 9 to select Portugal

2 to select Belgium 0 to select International

3 to select Brazil + to select Spain

4 to select Denmark/Norway x to select Spanish Speaking
5 to select Finland/Sweden - to select United Kingdom
6 to select France + to select French Canadian
7 to select Italy . to select EBCDIC

8 to select Japan

« Having your service representative change the character set that is in effect
when the power is turned on or RESTART is pressed. In this case, you can
still select any of the other character sets from the keyboard or a
user-defined function.

The following chart shows the hexadecimal value and associated national
graphics for each unique national character set:

Country Hex Po:_sition

uA SA BB OSF 6A 79 7B 7C AL CO0 DO EO
Austria/Germany A U % A~ o " #H &8 B a4 v O
Belgium [1 $ A~ ¢ " #H & 7 @ & ¢
Brazil 2 % ¢ A ¢ a4 6 A ~ b e A
Denmark/Norway # o A& A @ - @& # u B A N
Finland/Sweden § o A A @G, ¥ A O v 4 & E
France ° 8 4 A 5 - £ & 7 e é ¢
Italy S % % A ¢ o £ 8§ U & € ¢
Japan £ 1Y - 4+ # @ T 4 r %
Portugal [1 ¢ ~ & - A& O ¢ & €
International [1 ¢ ~ SR | N (B LN
Spain [1 B - A ° RN @ L
Spanish Speaking [1 -3 - f (YR (] 4 F AN
United Kingdom $! £ -) # @ - < oA
French Canadian a $ A0 H Q @ ¢ .
EBCDIC ¢ 1 % .) # 0 ~ < AN

226

Appendix D. 5110 Compatibility with the IBM 5100

The 5110 APL system differs from the 5100 APL system as follows:
+ The following system commands have been added to support the diskette:

)JFILEID)JPROTECT
)FREE JVOLID

+ The system commands)PROC,)LINK, JRESUME, and)SORT have been
added to enhance the system.

* The following system functions and variables have been added to maintain
syntactic compatibility between the 5110 and APLSV:

Default Value

0Al 0000

ObL 0

aTs 1900000000
arr 0

JuL 1

« The system variable [JCC has been added to enhance the system.
» For system commands that have device/file number and workspace |ID
parameters, only one or the other parameter needs to be specified for

diskette interface.

+ When shared variables are used, surrogate names can be specified and
used.

 Overlapped printing (one line only) occurs as the 5110 processes data.
¢ The EBCDIC character set is used for diskette files.
» Lowercase characters can be entered from the keyboard.

* The [OPW value is used during VFUNCTION[[]V.

5110 Compatibility with the IBM 5100 227

Page of SA21-9303-0
Issued 10 January 1978
By TNL: SN21-0282

228

Single or multiple records on diskette direct access data files can be read or
written when you specify the record number using a shared variable.

Records on the display screen can be read or written when you specify the
record number using a shared variable.

A strong interrupt is caused when you hold down the SHIFT key and press
the ATTN key.

References to a shared variable that has not been used to specify an
operation to be performed causes an INTERRUPT error message.

If the format function is used with a shared variable during input operations,
alternate records are not skipped if the input data is already in character
form.

File types 2, 7, and 8 can be written on tape by the 5100 and read by the
5110, and vice versa.

Only workspaces written to tape with the }SAVE command by the 5100 can
be loaded or copied into the 5110 active workspace. 5100 continued
workspaces (file type 6) and 5110 continued workspaces {file type 26) are
not compatible.

The 5110 requires 224 bytes more overhead from the user work area than
did the 5100. Therefore, some programs that executed on the 5100 might
generate a WS FULL error on the 5110.

Programs written for 5100 shared variable operations that permit you to
specify the device/file number and then use the default file name DATA will
not work for 5110 diskette files. The program must be changed so that you
must also specify a simple or complex file name.

Appendix E. 5110 APL Compatibility with IBM APLSV

The 5110 APL system differs from the IBM APLSV system primarily because
the 5110 is a single user system with different input/output devices and it has
display screen output rather than typewriter output. The differences are as
follows:

Turning power on signs the user on; therefore, no.sign-on or ID number is
required.

The 5110 active workspace is generally smaller than APLSV active
workspace. It is further limited by the 1/0 processor and shared variable
processor, which use it for input/output buffers and work areas.

The default number of symbols is 125 instead of 256, which increases the
available workspace for most users.

The library number that appears in system commands has been redefined to
a device/file number. It is a one- to five-digit number that specifies the
device and file number where a workspace is to be saved or loaded. If the
number is less than four digits, it is only the file number; default device is
assumed: otherwise, the high-order one or two digits is the device number.

The following commands are not supported because they apply only to
multiterminal systems and remote systems:

YOFE; JOFF HOLD; JCONTINUE HOLD; JPORTS; JMSGN;)MSG: JOPRN;
JOPR; all special system operator commands

The following commands are not supported because the function is not
supported:

JGROUP;)JGRPS;)JGRP
The following commands are n.of supported:
JORIGIN;)WIDTH;)DIGITS

They are available with the system variables 10, OPW, and (PP,
respectively.

5110 APL Compatibility with IBM APLSV

229

230

« The following commands have been added to support the 5110 processor
and its input/output devices:

JMARK
JOUTSEL
JREWIND

JRESUME

JFILEID

)JFREE

)JPROTECT
)VOLID
JLINK
)JPROC

JSORT

To format files
To specify which transactions are to be printed
To rewind the tape unit

To load a stored workspace and reestablish the
system environment

To change the file name on a diskette volume

To make a diskette file space available for
reallocation

To change the write-protect indicator

To change the volume ID or access protect indicator
To load microcoded programs

To open a procedure file

To transfer control to the sort utility

« The JCONTINUE command has been changed to save workspaces with
suspended functions. The parameters are the same as)SAVE but the stored
workspace cannot be copied or loaded into a 5110 with a smaller active

workspace.

« Since the 5110 system is not in a communications environment, the
RESEND message will not occur.

« 5110 is implemented with only one workspace area (no spare); therefore,
the following error messages have been added:

1. Function name [statement number] LINE TOO LONG — Cannot save
functions with statements greater than 115 characters.

2. WS TOO BIG — Workspace is too big to fit in the active workspace.

3. NOT WITH SUSPENDED FUNCTION — Only the)CONTINUE command
will work to write the workspace to tape.

- For diagnostic reasons, occurrence of SYSTEM ERROR does not clear the
workspace. The following message occurs when you attempt anything other
than)CLEAR after a system error:

NOT WITH SYSTEM ERROR

« Saved workspaces are not time-stamped and dated because the information
is not available in this system; therefore, the following messages now occur
after library operations:

COPIED device/file wsid
LOADED device/file wsid
SAVED device/file wsid
CONTINUED device/file wsid
DROPPED device/file wsid

e The)LIB command does more than list the saved workspaces. It lists all the
files on the specified device. The response, therefore, contains more
information (see)LIB command is Chapter 3).

« The following system messages have been added for the new system
commands and input/output operations:

ALREADY MARKED
DEVICE NOT OPEN
ERROR eee d

EXCEEDED MAXIMUM RECORD LENGTH
INVALID DATA TYPE
INVALID DEVICE

INVALID DEVICE NUMBER
INVALID FILE

INVALID FILE NUMBER
INVALID OPERATION
INVALID PARAMETER
MARKED b n

NOT WITH OPEN FILE
NOT WITH OPEN DEVICE
FILE NOT FOUND

FILE NOT UNIQUE

WRITE PROTECT

CTL DOMAIN ERROR
INVALID DAT

NO DAT

WRONG VOLUME
INVALID DISK FILE NAME
LINE TOO LONG

5110 APL Compatibility with IBM APLSV

231

232

« The shared variable processor on the 5110 is designed to provide an

interface between only one APL user and one |/O processor. Thus, only
one processor number is supported (1).

The response to [0SVO is 2, since, if it is a valid share, it is always
accepted before the APL user regains control. (If an unsupported processor
is specified, the response is 1.)

The response to [JSVR is the same as the response to JSVO.

Being strictly a sequential machine, the only mode of interaction is reversing
half-duplex; that is, the 1/0 processor always responds to each action by
the APL user. Therefore, the access control vector (OSVC) is always 1 1 1
1 for sequential operations and the CTL shared variable for direct access
operation.

Because there are never any outstanding offers, JSVQ always returns an
empty vector.

This is a single user system without an internal clock; therefore, the
following system variables and functions are supported as follows:

Default Value

TS — Time stamp 1900000000
Al — Accounting information 0000

OTT — Terminal type

JUuL - User list 1

0ODL - Delay

The I-beam functions have been replaced with system variables or system
functions and are not supported.

Catenation using semicolons had been replaced for format, but it is still
supported on the 5110.

Data can be exchanged between APL and BASIC or other systems via
communications; therefore, the following characters have been added to the
APL character set:

$l #I @l &' '—l %I "

The display screen is 64 characters wide; therefore, the initial values of
OPW and PP system variables are 64 and 5 instead of 120 and 10.

If the print width is altered to something greater than 64, any output that
exceeds 64 characters is wrapped to another line on the display screen.

Bare ([1) output followed by bare ([} input yields a different reply. For
APLSV, the [J input is prefixed by the same number of blanks as the
previous [output. For 5110 APL, the [N input is prefixed by the previous []
output. (See Chapter 6 for more information on bare output followed by
bare input.)

« The display screen provides the ability to edit lines of data directly;
therefore, the following changes were made to function definition:

[NDO] — Now displays line N in the display screen lines 1 and O for
editing.
[NOM] - Has the same result as [NO]; the M is erased when the

EXECUTE key is pressed.

[AN] — Allows line N to be deleted. N must be a single line
number.

The use of the ATTN key to delete a line works, but only in function
definition mode, not while entering function definition mode.

To prevent problems when displaying or editing statements in a
user-defined function, the print width (OPW) is automatically set to 128
when the 5110 is in function definition mode. The print width
automatically returns to its previous setting when the function definition
is closed.

There is only limited editing space; therefore, function statements that
are greater than 115 characters cannot be edited, and the message LINE
TOO LONG is displayed.

« The 5110 will insert a quote if an uneven number of quotes is entered.

5110 APL Compatibility with IBM APLSV 233

234

Error Message

ALREADY MARKED

DEFN ERROR

Cause

The specified file was previously
marked.

An invalid request to use the function
definition mode was made:

® A Vsymbol was erroneously used
in a statement.

® An attempt was made to reopen a
locked function.

® An attempt was made to reopen a
function using more than just the
function name.

® An attempt was made to open a new
function definition using the name
of a previously defined global
variable name.

® An invalid edit request was made in
function definition mode.

® An attempt was made to edit a
pendent function.

Appendix F. Error Messages

Error messages can result when you incorrectly use APL primitive (built-in)
functions, user-defined functions, system commands, system variables, or
input/output operations. The following list contains the APL error messages
along with some possible causes for the error condition and a suggested user’s

User’s Response
If the file(s) is to be re-marked, enter GO.
Note: For tape files, any existing data in

the files following the last re-marked file
will no longer be available.

If the statement was intended to open or
close a function, the V is valid only in the
beginning and ending positions.

Enter a corrected statement.

Enter a different function name or erase
the global variable.

Enter a valid edit request.

If the suspended function execution can
be terminated, clear the state indicator,
then edit the function.

Error Messages 235

Error Message

DEVICE NOT OPEN

DOMAIN ERROR

ENTRY ERROR

236

Cause

An attempt was made to read a data
file, and an input operation to the file
has not been specified.

The function indicated by the caret (A)
cannot operate on the arguments given:

® The result exceeds the capacity of
the 5110 (<~ 7.237 ...E75 or
>7.237 ... E75).

® A character argument cannot be
used in an arithmetic operation.

® The argument is not mathematically
defined for the function (that is,
12+ 0).

® Numeric and character data cannot
be cantenated together.

® An error occurred in a locked
function.

® Format length is incorrect.

An invalid character was entered.

User’s Response

Assign the information required to
specify the input/output operation to the
shared variable.

Determine the correct arguments for the

function in error. Then correct the
statement in error.

Enter a corrected statement.

Error Message

ERROR 001 ddd

ERROR 002 ddd

ERROR 003 ddd

ERROR 004 ddd

Page of SA21-9303-0
Issued 28 April 1978
By TNL: SN21-0284

The input/output device errors are displayed in the format ERROR eee ddd,
where eee is the error code and ddd is the device number. The device
numbers are: 500—printer; 001-built-in tape unit; 002—auxiliary tape unit;
011—diskette drive 1; 012—diskette drive 2; 013—diskette drive 3; 014—diskette
drive 4.

Many of the input/output errors relating to tape or diskette can be the result
of a machine problem or a problem with the tape or diskette itself. Some
problems that can be encountered with the tape or diskette are:

« Poor or worn oxide coating

« Binding tape cartridge spools

« Tape cartridge drive band off

» Diskette binding in the envelope

« Diskette drive hole worn too large or off center

« Diskette index hole off location

Error codes 004 to 008 for tape and error codes 015 and 045 for diskette can

be caused by the conditions listed previously, as well as by the causes listed
next. You might save yourself time and any expenses associated with a service
call if you make a thorough check of your media (tape or diskette) before

calling your service representative.

Following is a list, additional causes, and user’'s response for the input/output
device error messages.

Cause User’s-Response

Diskette drive timing malfunction. Try the operation again. |f the error
occurs a second time, call your service
representative.

Command error.
Tape error. Try the operation again. If the error

> occurs a second time, call your service
representative.

Tape error or second tape not ready.

An attempt was made to perform tape Use the)]MARK command to mark the
operations with an unmarked tape. tape. Then try the operation again.

Uneven winding of the tape. Move the tape to its limits using the
procedure described under Tape Data
Cartridge Handling and Care, in Chapter 2.

The tape head needs cleaning. Clean the tape head using the procedure
described under Tape Head Cleaning
Procedure, in Chapter 2.

Error Messages 237

Page of SA21-9303-0
Issued 28 April 1978
By TNL: SN21-0284

Error Message

ERROR 005 ddd

ERROR 006 ddd

ERROR 007 ddd

ERROR 008 ddd

ERROR 009 ddd

ERROR 010 ddd

ERROR 011 ddd

ERROR 012 ddd

238

Cause

The tape cartridge is not inserted in
the indicated tape unit.

An attempt was made to write on a
tape that is file-protected. (The SAFE
switch on the tape cartridge is in the
SAFE position.)

Tape read error.

A machine malfunction might have
occurred when data was being written
or the tape cartridge might have been
removed from the tape unit when data
or a workspace was being written to
tape.

An attempt was made to read a record
after the EOD address.

Data is to be written to a data file, but
all the space in the file has been used.

An attempt was made to write the
active workspace on tape with a }SAVE
command, but the specified file could
not contain all the information from
the active workspace.

For record 1/O operations, an attempt
was made to write a record after the

end of data.

A file number was specified that does
not exist on the tape.

The end of the tape has been reached.

User’s Response

Insert a tape cartridge and try the
operation again.

If you want to write on the tape, set the
SAFE switch on the tape cartridge off the
SAFE position.

Use the)LINK command to load the tape
recovery program to recover as much data
as possible.

Try the operation again. If the error
occurs again, copy the files following the
file that caused the errors onto another
tape. Also, if the file is a saved work-
space file, some of the data in the file
might be retrieved if you use the) COPY
command. Then use the]MARK
command and re-mark the tape from the
file that caused the error.

Use the)JMARK command to format a
larger file and do the operation again.

Use a larger file to save the active
workspace.

Specify the correct file or use the]MARK
command to mark the tape.

Use another tape cartridge.

Error Message
ERROR 013 ddd

ERROR 014 ddd

ERROR 015 ddd

ERROR 016-019 ddd

ERROR 020-023 ddd

ERROR 024 ddd

ERROR 025 ddd

ERROR 026-028 ddd

ERROR 029 ddd

ERROR 030 ddd

ERROR 031 ddd

ERROR 032-035 ddd

Cause
The specified device is not attached.

Device error.

An input/output error occurred when:

® The system was reading or writing
the volume label.

® The system was reading or writing

a file header.

Faulty diskette.

Hardware malfunction.

There is no VOL1 label on the diskette.

Invalid diskette.

Hardware malfunction.

A match was not found for a search
by key operation.

The diskette drive cover was opened
between accesses to the device.

Faulty diskette.

1/0O processor error.

Page of SA21-9303-0
Issued 28 April 1978
By TNL: SN21-0284

User’s Response

Try the operation again. If the error
occurs a second time, call your service
representative.

Use the initialization utility to reinitialize
the diskette.

Copy all available data onto another
diskette, and then use the initialization
utility to reinitialize the diskette.

Copy all available data onto another
diskette, and then use the initialization
utility to reinitialize the diskette.

Try the operation again. If the error
occurs a second time, call your service
representative.

Use the initialization utility to initialize
the diskette.

Use the initialization utility to initialize
the diskette.

Try the operation again. If the error
occurs a second time, call your service
representative.

See Chapter 7 for a description of search
by key operation,

Close the diskette drive cover, and try the
operation again.

Copy all available data onto another
diskette, and then use the initialization
function to reinitialize the diskette.

Try the operation again. If the error

occurs a second time, call your service
representative.

Error Messages 239

Page of SA21-9303-0
issued 28 April 1978
By TNL: SN21-0284

Error Message

ERROR 036 ddd

ERROR 037 ddd

ERROR 038 ddd

ERROR 039 ddd

ERROR 040 ddd

ERROR 041 ddd

ERROR 042 ddd

ERROR 043 ddd

ERROR 044 ddd

240

Cause

An attempt was made to use the
YMARK command to mark a file, and
one of the following conditions
occurred:

® More than the maximum number
of files allowed on the diskette
was specified.

® Not enough continuous space was
available on the diskette for the
file.

1/O processor error.

1/0 processor error.

Invalid file header.

An attempt was made to write to a
write-protected file.

An 1/0O operation was specified with
only the file 1D, and more than one file
on the diskette have the same file ID.

An 1/O operation was specified with
only the file ID, and no matching file
ID was found.

The file name already exists on the
diskette.

A)MARK command was issued, but
there is not enough unallocated

continuous bytes of storage available
on the diskette to format the file(s).

An attempt was made to access
a volume protected diskette.

An attempt was made to access a bad
sector in the data file.

User’s Response

Mark the files on another diskette.

Use the compress function to place all
the unallocated diskette space in one
continuous area, or mark the file on
another diskette.

Try the operation again. If the error
occurs a second time, call your service
representative.

Try the operation again. [f the error
occurs a second time, call your service
representative.

Copy all available data onto another
diskette, and then use the initialization
function to reinitialize the diskette.

If you want to write to the file, use the
JPROTECT command to remove the
write-protect indicator and then write to
the file.

Issue the command using the appropriate
file number.

Insert the correct diskette and reissue the
command, or reissue the command using
the correct file ID.

Issue the command or statement using a
new file ID.

Use the compress function to position all
the unallocated storage as continuous
bytes. Then try the)JMARK command
again. If the error occurs again, use
another diskette.

Use the)VOLID command to turn off the
volume protection indicator.

See return code 22 n in Chapter 7.

Error Message

ERROR 045 ddd

ERROR 047-049 500

ERROR 050 500

ERROR 051 500

ERROR 052-053 500

ERROR 054 500

ERROR 055-059 500

ERROR 070-072

EXCEEDED MAXIMUM RECORD
LENGTH

Cause

The diskette is inserted incorrectly.

Printer errors.

The printer has run out of forms.

The printer POWER ON/OFF switch
is turned off.

Printer errors.

The printer was turned off within two
seconds after a system command was
entered. The error continues to occur
when the printer is turned on again.

Printer errors.

Processor error.

The tape or diskette was removed
before an input/output operation
was terminated (see Chapter 7).

When the tape or diskette copy utility
was used, a header record was changed
to specify a maximum record length
less than the largest record in the file.

Page of SA21-9303-0
Issued 28 April 1978
By TNL: SN21-0284

User’s Response

Make sure the diskette is inserted
correctly and try the operation again.

Try the operation again. |f the error
occurs a second time, call your service
representative.

Insert forms in the printer (see Chapter 8).

Turn the POWER ON/OFF switch on.

Check to be certain that both the forms
tractor pins and platen are not engaged
simultaneously. If the error occurs a
second time, call your service
representative.

Save any data or user-defined functions in
the active workspace, then enter the
JCLEAR command to get the printer into
synchronism with the 5110.

See ERROR 052-053 500.
Try the operation again. If the error
occurs a second time, call your service

representative.

The data in the file cannot be used.

Use the tape or diskette copy utility and
copy the tape containing the invalid
header record again, this time specifying
a larger maximum record length.

Error Messages 240.1

Error Message

FILE NOT FOUND

FILE NOT UNIQUE

IMPLICIT ERROR

240.2

Cause

A system command or |/O operation
was specified with only the file ID,
and no matching file ID was found.

The file name already exists on the
diskette.

A system command was issued
specifying only the file 1D, and more
than one file on the diskette has the
same file ID.

The system variable that precedes the
error message was previously assigned
an invalid value or was undefined in a
function due to the system variable
being made local to the fucntion.

Note: This error message is not
displayed until the system variable in
error is used by the APL system.

User’s Response

Insert the correct diskette and reissue the
command, or reissue the command using
the correct file ID.

Issue the command or statement using a
new file 1D.

Issue the command using the appropriate
file number.

Assign a valid value to the system variable
(see Chapter 5).

Error Message

INCORRECT COMMAND

INDEX ERROR

INTERFACE QUOTA EXHAUSTED

INTERRUPT

INVALID DATA TYPE

INVALID DEVICE

Cause

A system command was entered
incorrectly :

® The command keyword was not a
valid keyword.

® One of the parameters was entered
incorrectly.

® Too many parameters were entered
for the command.

The index values given are outside the
boundaries of the array, or a primitive
function or APL operator being
subscripted by index [I] has been given
an argument that does not have an Ith
dimension.

An attempt was made to establish
more than 12 variable names as shared
variables.

The shift key was held down and the
ATTN key pressed when the 5110 was
processing data, or an invalid
input/output operation was attempted.

An attempt was made to write to an
interchange format file (TYPE = 1),
but the data is not a character scalar
or vector.

An attempt was made to specify an
input/output operation with other
than character data.

The data assigned to the shared variable
is not the correct shape and
representation for the creation of direct
access APL internal format data file.

A device was specified that does not
exist or is incorrect for the operation
to be performed.

User’s Response

Enter the command in its correct form.

If a variable is being indexed, check its
shape (p A) against the index values.

It a primitive function or operator is
being indexed, determine the rank(s)

(pp A) of its argument(s); then check the
index to see if it is equal to or less than
the required rank.

Check the index origin ([J70) to ensure
that it is consistent with the statement
being executed.

Retract any unused share variable names.

If an invalid input/output operation was
attempted, check to make sure the
operation was specified correctly.

Change-the data to a character scalar or
vector,

Enclose the information required to
specify the input/output operation in
single guotes.

You must assign data to the shared
variable that is the same shape and
representation as the first record written
to the file.

Specify the correct device number.

Error Messages 241

Page of SA21-9303-0
Issued 28 April 1978
By TNL: SN21-0284

Error Message

INVALID DEVICE NUMBER

INVALID DISK FILENAME

INVALID FILE

INVALID FILE NUMBER

INVALID PARAMETER

242

Cause

A device number that does not exist
was specified.

An attempt was made to use an invalid
diskette file name.

The file type is not valid for the
attempted operation. For example,

an attempt was made to load a data file
or read a workspace fife.

An attempt was made to access a file
number that is 1 larger that the last
marked file.

An attempt was made to load or copy a
damaged file. The file was probably
damaged by the tape being removed
from the tape unit before a save
operation was complete.

The wrong file ID was specified.

An attempt was made to load a 5100
continued file (file type 6) into a 5110.

An attempt was made to use a file
type 2 (interchange file) as a
procedure file. However, the file
has records that exceed 128
characters, or the BASIC SAVE
DATA command was used to create
the file.

The file number 0 was specified for a
)JLOAD,)JSAVE,)JCONT,)DROP,
)JCOPY, or }PCOPY command.

An attempt was made to specify an
input/output operation to a data file,
but the file number was not valid.

A keying error was made, or an
incorrect parameter was entered when
you specified an input/output
operation.

A keying error was made when you
entered the parameters for a system
command.

User’s Response

Specify the correct device number.

Change the name to a valid file name (see
Variable and File Names in Chapter 2).

Use the }LIB command to determine the
file type.

Specify the correct file number.

The data in the file is unusable. The file
can be dropped (use the)DROP
command) and reused.

Use the)LIB command to find the
correct file 1D, and reenter the statement.

Load the file into a 5100, and store the
file on tape using the }SAVE command.
Then load the saved file into the 5110.

Use shared variables to read the file, and
then rewrite the file with no records
exceeding 128 characters.

Reenter the command specifying the
correct file number.

Use the)LIB command to find the
correct file number. Then reenter the
information required to specify the
input/output operation.

Enter the information required for the
input/output operation or system
command again, correcting the keying
errors.

Effar Message

I0 BTATUS: INVALID OPERATION

LENGTH ERROR

LINE TOO LONG

NONCE

Cause

An invalid input/output operation was
attempted, such as:

® An attempt was made to read the
file header in other than
nontranslate mode (TYPE = N).

® The shared variable was referenced
more than once to check the return
code.

® A processor other than 1 (the left
argument for the [] SVO function)
was established for the shared
variable.

This message is followed by the
INTERRUPT error message.

The shapes of the two arguments are
not valid for the function indicated by
the caret (A).

An attempt was made to edit a
statement (in a user-defined function)
that is greater than 115 characters.

An attempt was made to save a
workspace that contained a
user-defined function with a statement
having more than 115 characters. In
this case, the error message is preceded
by the function name and the statement
number that caused the error.

An I-beam function was used. These
functions are not used in the 5110
APL system.

An attempt was made to index a
portion of an array with a rank greater
than 14.

An attempt was made to use a take or
drop operator on an array with a rank
greater than 9.

An attempt was made to laminate an
array with a rank greater than 20.

User’s Response

Respecify the operation using the
TYPE = N parameter, and then try the
operation again.

Assign the return code to another variable
if the return code must be checked more
than once.

Retract the shared variable offer, and
then make the offer again using a 1 as the
left argument for the [] SVO function.

Make sure the arguments are valid for the
function. Then reshape (restructure) the
arguments.

Break up the statement into two
statements, or use the [JCR and [JFX
functions to edit the statement.

Use the [JCR function to make the
user-defined function a matrix; then save
the workspace on tape.

Do not use the I-beam functions.

Display the entire array, or break the
array into smaller sections.

Break the array into smaller rank arrays.

Break the array into smaller rank arrays
and reshape.

Error Messages 243

Error Message

NOT COPIED: names

NOT FOUND: names

NOT SAVED,
THIS WS IS workspace 1D

NOT WITH OPEN DEVICE

NOT WITH SUSPENDED FUNCTIONS

NOT WITH SYSTEM ERROR

RANK ERROR

244

Cause

A)JPCOPY was issued, but each object
named in the message was not copied.
The active workspace already contained
a global object with the same name.

A)JCOPY was issued, but each object
named in the message was not copied.
The active workspace already contained
a shared variable with the same name.

An JERASE command was issued, but
the global objects named in the message
were not found in the active workspace.

A JCOPY or)JPCOPY command was
issued, but the specified global object
does not exist in this specified
workspace.

A)SAVE or JCONTINUE command
was issued, but the stored workspace
ID is not the same as the active
workspace ID.

An attempt was made to issue a system
command or specify an input/output
operation to a tape unit that is already
being used for input/output operations.

An JOUTSEL command was issued,
but printer output has been specified
for a shared variable.

An attempt was made to do a)SAVE,
)COPY, or)PCOPY operation, and the
active workspace contains a suspended
function or an open request for quad
input.

An attempt was made to do an
operation other than JCLEAR after a
SYSTEM ERROR occurred.

An attempt was made to use a function
that requires the rank of the arguments
to conform, but they do not. For
example, a function requires the rank of
the arguments to be the same, but they
are not.

An attempt was made to use an
argument whose rank is too large for
the operation.

The number of semicolons in the index
does not equal the rank minus 1.

User’s Response

Issue a JCOPY command if the nameg
objects should be copied.

Establish and use another shared variable
name, and erase the existing shared
variable name if the objects should be
copied.

Reissue the command using the caryect
object names.

Reissue the command using the corregt
object name or stored workspace.

Use the correct ID or change identifjcation
of the active workspace, using the)WSID
command; then reissue the JSAVE
command.

Terminate the input/output operatian, or
wait until the input/output operation js
complete before issuing the command ar
specifying another input/output
operation to the tape unit.

Retract the printer shared variable gffer.

Clear the suspended function or request
for quad input by using - (right arrow).

{See SYSTEM ERROR.)

Make sure the arguments are valid. Then
reshape (restructure) the arguments so
that they have the correct rank (p p A).

Use the correct number of semicolons.

Error Message

S| DAMAGE

SYMBOL TABLE FULL

SYNTAX ERROR

Cause

The state indicator was made invalid
because one of the following occurred:

® A function exists in the state
indicator list, but the function was
erased.

® A suspended function’s header was
changed or displayed [O[]].

® A label was added, removed, or
changed on the suspended statement.

More symbols were used than the
number of symbols allowed.

The symbol table in the stored
workspace is full, and a load operation
was attempted. This error is caused by
the latent expression variable even if it
has not been assigned.

The part of the statement indicated by
the caret (A) is syntactically invalid.

The symbol used for the APL built-in
function is not a valid symbol.

User's Response

Use the)SI or)SINL command to display
the state indicator. Clear out the state
indicator by entering - for each * in the
)St list.

Use the)JSAVE command to save the
workspace, use the)CLEAR command to
clear the active workspace, increase the
number of symbols allowed by using the
)SYMBOLS command, then use the
)JCOPY command to copy the stored
workspace into the active workspace.

Note: Erasing a symbol from the active
workspace does not remove it from the
symbol table however, saving the active
workspace and loading it again will
remove any unused symbols from the
symbol table.

\
Enter a corrected statement. Be sure to
check for the correct number of
parentheses and arguments.

See Appendix B for a list of the
characters that can be confused with valid
APL built-in functions. Reenter the
statement using the correct symbol for
the APL built-in function.

Error Messages 245

Error Message

SYSTEM ERROR

VALUE ERROR

WRITE PROTECTED

WRONG VOLUME

246

Cause

A malfunction occurred in the APL
system program, and the data in the
active workspace is lost.

An attempt was made to load a stored
workspace file after the file header was
changed by the tape or diskette copy
utility.

The object indicated by the caret (A)
has not been given a value:

® |If the object is a variable name, the
variable was not previously assigned
a value.

® |f the object is a function name, the
function header did not specify a
result, the function did not assign a
value to the result variable, or the
function does not exist.

An attempt was made to write
information to a diskette file, and the
write-protect indicator is on.

An attempt was made to read from or
write to a diskette data file, and the
diskette is not on the same diskette
drive as when the operation was
specified.

The RESUME command was issued and
the diskette with the data file is not in
the same drive as when the original

input/output operation was specified,

User’s Response

Enterthe)CLEAR command; if the error
continues to occur, call your service
representative,

Note: There might be some system data
areas displayed with this message.

1f SYSTEM ERROR occurred on a load
or copy operation, the error may be
caused by a bad stored workspace file.
Try foading or copying another stored
workspace file to see if the error occurs
again.

Enter)CLEAR and use the)JCOPY
command to copy the stored workspace
into the active workspace. Then use the
)SAVE command to write the data back
onto the stored workspace file. Now, the
JLOAD command can be used to load the
stored workspace into the active
workspace.

Assign a value for the indicated variable
or correct the function so that it has an
explicit result, The value must be
assigned before the object is used.

If the information is to be written to the
file, enter)PROTECT file number OFF
to remove the write-protect indicator.

Place the diskette containing the data

file in the same diskette drive as when the
input/output operation was specified, and
try the operation again.

Error Message

WS TOO BIG

Cause

One of the following conditions
occurred:

An attempt was made to load a
workspace stored with the
)JCONTINUE command into a 5110
with less internal storage.

An attempt was made to load a
workspace stored with the
JCONTINUE command into the
active workspace, but IMFs have
been applied, reducing the
available internal storage.

An attempt was made to write the
active workspace {using the
JCONTINUE command) into a file
that is too small.

User's Response

Use a 5110 with enough internal storage.

Restart to clear the IMF, load the stored
workspace into the active workspace,
)SAVE the active workspace, apply the
IMFs, then load the stored workspace
again or copy only the required objects.

Use a file that is large enough.

Error Messages 247

Error Message Cause User’s Response

WS FULL One of the following conditions Erase unnecessary objects. If there is still
occurred: not enough space:
® A JCOPY or)PCOPY command — Partition the workspace into two or
was issued, but the active workspace more workspaces with related
could not contain all of the objects functions.
requested.
— Store data in a separate workspace or
® The active workspace could not in a data file.
contain all the information required
to build a define function. — Reprogram using smaller intermediate
results.
® The active workspace could not
contain the intermediate results of — Clear the state indicator with - if
an APL expression. suspended functions exist.
® The active workspace could not — Reduce the size of the symbol table.
contain information required to do See note under)SSYMBOLS.

input/output operations.

® A workspace was written to tape Use the JCOPY command to make the
with a JSAVE command, but the stored workspace into two workspaces.
extra storage required to load the
stored workspace back into the
active workspace exceeds the
available storage.

® Too many symbols were specified Reenter the command with the correct
in a)SYMBOLS command. password specified.
WS LOCKED The workspace is password-protected, Reenter the command with the correct

but no password or the wrong password password specified.
was specified in the command.

The workspace is not Enter without a password.
password-protected, and a password
was specified.

WS NOT FOUND A)LOAD,)DROP,)COPY, or)PCOPY Reenter the command with the correct
command was issued, but there is no workspace identification.
stored workspace with the identification
specified in the command.

248

Appendix G. Attaching a TV Monitor

Generally, modifying a standard TV set and using it as a video monitor yields
less satisfactory results than a regular video monitor. This is because the same
level of quality is not built into TV receivers as is found in monitor class units.
For example, the contrast and resolution are not as good on a modified TV
receiver; thus the image is not as sharp and usually more difficult to read.

However, if you choose to modify a TV receiver and use it as a video monitor
you must observe the following or you may damage the 5110 and expose
yourself to a severe electric shock when you attempt to hook up the TV set to
the IBM 5110.

A modified TV set must have isolation between the primary line voltage and
the set’s chassis and circuitry. You can usually accomplish this by using an
isolation transformer between your outlet line voltage and the input voltage to
the TV set. This transformer should be permanently wired into the circuit. The
new input power plug must be a three-prong grounded plug with the ground
connected to the chassis of the TV set. This grounding circuit must be
electrically connected to the 5110 grounding circuit.

Before the video input is connected to anything, it should be tested to verify
that the connector's external shell is at ground potential and that no line
voltage is present on either the external shell or the center conductor.

It is the responsibility of the TV modifier to ensure that the input circuit meets
the requirements of the 5110 output and will not damage the 5110.

TV

Three-Prong Isolation
Grounded Plug Transformer

=

Output
Connector

-

7777777

Note: If you do elect to modify a TV receiver for use as a video monitor, IBM
accepts no responsibility for safety precautions during conversion and hookup,
for damages incurred to the TV receiver or 5110, or for the quality of the TV
receiver as a video monitor.

Attaching a TV Monitor 249

260

IBM is grateful to the American National Standards
Institute (ANSI) for permission to reprint its definitions
from the American National Standard Vocabulary for
Information Processing (Copyright 1970 by American
National Standards Institute, Incorporated), which was
prepared by Subcommittee X3K5 on Terminology and
Glossary of the American National Standards Committee
X3.

ANSI definitions are identified by an asterisk. An
asterisk to the right of the term indicates that the entire
entry is reprinted from the American National Standard
Viocabulary for Information Processing.

active roferent: The usage of a name that was most
recently localized, or the global usage if the name is not
localized.

active workspace: A part of internal storage where
data and user-defined functions are stored and
calculations are performed.

ADD operation: An operation using a shared variable
to add information to an existing data file.

alphameric keys: The keys on the left side of the
keyboard whose arrangement is similar to that of a
typewriter keyboard.

APL internal data format: See internal data format.
arguments: Data supplied to APL functions.

array: A collection of data that can range from a single
item to @ multidimensional data configuration. Each
element of an array must be the same type as the other

elements (all characters, all numeric, or all logical).

assign: To use the <+ (assignment arrow) to associate a
name with a value.

available storage: The number of unused 1024-byte
blocks of storage in a file on tape.

bare output: Output displayed without the cursor
returning to the next line.

Glossary

basic data exchange: A diskette data exchange format

"that uses 128-byte sectors. The basic exchange format

allows you to exchange data between the 5110 and
other IBM systems. For example, data recorded on the
diskette using a 3741 can be processed using a 5110.

branch instruction: An instruction that modifies the
normal order of execution indicated by the statement
members. Branch instructions always begin with a -
(branch arrow).

branching: Modifying the normal order of execution
indicated by the statement numbers.

built-in function: See primitive function.

byte: A unit of storage. For example, a character takes
1 byte of storage.

character constants: Characters that do not represent
numbers, variables, or functions. Character constants
are enclosed in single quotes when they are entered
{except for [input); however, the single quotes do not
appear when the character constants are displayed.

command keyword: The name of a system command
including the right parenthesis. For example, the
command keyword for the)JMARK command is JMARK.

comment: An instruction or statement that is not to be
executed. A comment is indicated by a A as the first
character.

conditional branch: A branch that is taken only when a
certain condition is true.

coordinate: A subset of data elements in an array. For
example, a matrix has a row coordinate and a column
coordinate.

cursor: The flashing character on the display that
indicates where the next input from the keyboard will be
displayed.

data file: A file on tape or diskette (file type 02, 08, 09,

10, or 15) where data is stored by means of a share
variable.

Glossary 251

defective record: A 512-byte block of storage on tape
that cannot be read.

device/file number: A number that specifies the device
and file to be used for input or output operations.

direct access data file: A diskette data file in which
records can be read from or written to by means of a
specified record number.

DISPLAY operation: An operation using a pair of
shared variables to read and write data on the display
screen.

dual-language machine: A 5110 that can execute
either APL or BASIC statements.

dyadic functions: Functions that require two arguments
{a right and a left argument).

editing: Modifying an instruction or statement that
already exists.

element: The single item of data in an array.

empty array: A variable that has a zero in its shape
vector. The array has no (zero) elements.

execute: To press the EXECUTE key to process data
on the input line.

execution: The processing of data.

execution mode: The mode that is operative when
statements or functions are executed. Contrast with
function definition mode.

explicit result: The result of a function that can be
used in further calculations. The function must contain a
result variable if it is to have an explicit result.

file: A specified amount of storage on the media. The
media is formatted into files by the JMARK command.

file ID: The name of a file on the media. If the file
contains a stored workspace, the file ID is the same as
the stored workspace ID.

file type: The identification of the type of data stored in
a file.

function body: The statements within a user-defined

function. These statements determine the operation(s)
performed by the function.

252

function definition: The definition of a new function (a
user-defined function) to solve a problem.

function definition mode: The mode that is used for
defining or editing user-defined functions. The V
symbol is used to change the mode of operation.
Contrast with execution mode.

function header: A definition that states the function
name, number of arguments, local names, and whether
or not the function will have an explicit result.

general exchange data file: A file with data in the
general exchange format.

general exchange data format: A data format
consisting of all character scalars or vectors. This file
can be used as a 5110 BASIC source file.

global names: Names having a value or function that
can be used within or outside a user-defined function
unless the name has been made local to a user-defined
function that is executing, suspended, or pendent.
Contrast with local name.

identity element: The value that generates a result
equal to the other argument of a function.

IN operation: An operation using a shared variable to
read information from a data file.

index entry [1]: (1) A value or values enclosed in
brackets that select(s) certain elements from an array.
(2) A value enclosed in brackets that determines the
coordinate of an array to be acted on by a primitive
mixed function.

index origin: Either O or 1, and the lowest value of an
index. The index origin is set to 1 in a clear workspace
and can be changed by means of the IO system
variable.

INR operation: An operation using a pair of shared
variables to read records from a direct access data file.

IOR operation: An operation using a pair of shared
variables to read records from or write records to a
direct access data file.

IORH operation: An operation using a pair of shared
variables to read records from or write records to a
direct access data file.

input: Information entered from the keyboard or read
from tape by means of a shared variable.

input line: A line consisting of the 128 positions on
lines O and 1 of the display screen. Any information on
the input line will be processed when the EXECUTE key
is pressed.

instruction: A function or series of functions to be
performed.

integer: A whole number.

interactive function: A user-defined function that
requests input from the keyboard as it executes.

internal data file: A file containing data in the internal
data format.

internal data format: The format in which the data is
stored in the 5110.

keyword: See command keyword.

labels: Names that are placed on statements in a
user-defined function for use in branching.

latent referent: The usage of a name that has been
made unavailable by a more recently called function.
The usage for that name cannot be accessed.

length: (1) The length of a vector is the number of
elements in the vector. (2) The length of a coordinate of
other arrays is the number of items specified by that
coordinate. For example, a matrix has a row coordinate
with the length of 2; therefore, the matrix has two rows.

library: A tape cartridge or diskette where data is
stored for future use.

local name: A name that is contained in the function
header and has a value specified to the user-defined
function during the execution of that user-defined
function.

locked function: A function that cannot be revised or
displayed in any way. The opening or closing V was
overstruck with a ~.

logical data: (Boolean data) Data that consists of all
ones and zeros.

matrix: A collection of data arranged in rows and
columns (rank 2).

media: Tape or diskette storage.

mixed function: A function having results that may
differ from the arguments in both rank and shape.

monadic functions: Functions that require one
argument. The argument must be to the right of the
function symbol. ,
multidimensional array: An array that has two or more
coordinates.

n-rank array: An array that has more than two
coordinates (a rank of more than 2).

niladic function: A user-defined function that does not
require any arguments.

numeric keys: The keys on the right side of the
keyboard whose arrangement is similar to that of a
calculator keyboard.

object: A user-defined function or variable name.

open data files: Tape or diskette data files that are
currently being used for input and/or output operations.

operators: Controls that have as their arguments dyadic
primitive scalar functions. These arguments are applied
to arrays in a specified way.

OUT operation: An operation using a shared variable to
write information into a sequential access data file.

OUTF operation: An operation using a shared variable
to write information (sequentially) to a direct access data
file.

output: The results of statements processed by the
5110.

overstruck character: A character formed by entering
one character, backspacing, and entering another
character. Only certain combinations of characters can
form overstruck characters.

parameters: (1) Information needed by a system
command (such as device/file number). (2) Information
required to open a data file or to specify printer output.

password: A sequence of characters that must be

matched before the contents of a stored workspace can
be loaded or copied into the active workspace.

Glossary 253

pendent function: Any function in the state indicator
list that is not a suspended function.

physical record: A 512-byte block of storage on tape
or one sector on diskette.

plane: The third coordinate of an n-rank array (planes,
rows, and columns).

primitive function: The functions that are part of the

APL language (such as , + - & X).

PRT operation: An operation using a shared variable to
output data on the printer.

rank: The number of coordinates of an array (pp).
record: Data assigned to a shared variable.

result variable: A variable to the left of the assignment
arrow in the function header where the results of the
function are temporarily stored for use in further
calculations.

return code: A code assigned to a shared variable to
indicate whether or not the operation was successful.

scalar: A single data item that does not have a
dimension (0 = p p DATA).

scalar function: A function that is applied to
corresponding elements in arguments. The results of
scalar functions are the same shape as the arguments.

scale: An integer representing the power of 10 in
scaled representation.

scaled representation: A value stated in a convenient
range and multiplied by the appropriate power of 10.

scroll: To move the information on the display screen
up or down.

shape: The length of each coordinate of an array.

sector: A portion of a diskette cylinder. A sector can
be 128, 256, 512, or 1024 bytes; however, all sectors
on a diskette cylinder must have the same number of
bytes.

sequential access data file: The data in the data file

must be retrieved in the same order as the data was
written to the data file.

254

shared variable: A variable shared by the active
workspace and shared variable processor. Used to
transfer data for input/output operations.

significant digit: *A digit that is needed for a certain
purpose, particularly one that must be kept to preserve a
specific accuracy or precision.

single-element array: An array with a shape of all 1's;
for example, a matrix with one row and one column.

state indicator: An entry that contains information on
the progress (statement number of the statement being
executed) of user-defined function execution. Can be
displayed to show all suspended and pendent
user-defined functions and localized names.

statement: A numbered instruction within a
user-defined function.

statement number: The number of a statement within
a user-defined function.

stop control (SA): A function that stops execution of a
user-defined function before the execution of a
specified statement.

stop vector: A vector that specifies the statements
when stop control is used.

stored workspace: The contents of the active
workspace stored on tape.

strong interrupt: The result of holding down the shift
key and pressing ATTN. The execution of an expression
or a user-defined function is abandoned. Also, for
user-defined functions, the pendent functions are
cleared from the state indicator.

suspended: See suspended function.

suspended execution: See suspended function.
suspended function: A function whose execution has
stopped because of an error condition, the ATTN key
being pressed, or stop control being used.

system commands: A set of commands used to
manage the active workspace and tape or printer

operations.

system functions: Functions used to change or provide
information about the system.

system operation: An operation that processes input
data.

system variable: A variable that provides controls for
the system and information about the system to the
user.

trace control (TA): A function that displays the results
of specified statements during the execution of a
user-defined function.

trace vector: A vector that specifies the statements
used in trace control.

transferring data: Using a shared variable to write data
to tape, read data from tape, or output data to the
printer.

user-defined functions: New functions using the
primitive functions but defined by the user. See function

definition mode.

variable name: A name associated with the value of a
variable.

variables: Data stored in the 5110.

vaector: An array with one dimension (1 = p p DATA).

weak interrupt: The result of pressing the ATTN key.
The execution of a user-defined function is suspended.
Contrast with strong interrupt.

workspace: See active workspace.

workspace available: The amount of unused storage
(number of unused bytes) in the active workspace
(OWA).

workspace ID: A name given to the contents of the
active workspace. A stored workspace has the same
name as the active workspace when the contents of the
active workspace were written to tape.

Glossary 255

256

{ (O-U-T) symbol 165
JCLEAR 32,35
JCONTINUE 32,35
)JCOPY 32

)JDROP 17,32
JERASE 32,38
JFILEID 32

)JENS 33,39
)JFREE 32,40
JLIB 23,33, 41
JLINK 18, 33, 43
JLOAD 32,44
JMARK 23,32,45
JOUTSEL 33,47
JOUTSEL OFF 196
)JPCOPY 32,48
)PROC 17, 33,49
}PROTECT 32, 50
JRESUME 32, 51
)JREWIND 23, 33, 52
}SAVE 32,52

)SI 33,53

)SINL 33,53
)SORT 33,54
)SYMBOLS 32,54
)VARS 33,55
)VOLID 32,56
WSID 32,57

I 1e8

[ON1 168

(N(J1 168

{1 (quad) 164
OJAv 144

[Jcc 10,145
Jcr 149

dJecT 140

Jex 153

OFrx 151

(Jinput 18

o 141

Jwc 66,143
JLx 143

[ONC 154

[IJNL 153

gep 142

(Opw 142

ORL 143

[Osvo 177
[JsvR 198
[JSVR system function
Owa 143

M (quad quote) 164
[Minput 18

-0 159

V symbol 134

active workspace 14

adapter for tv monitors 1

add data to a data file 179
add data to a file 182

ADD operation 179, 182, 187
add statements 169

adjust copy control dial 212
alphabetic character mode 5
alphabetic keys 4

already marked message 18
AND function 78

APL character set 217

APL characters 2

APL command keyword 4
APL internal code 185

APL internal data format 181, 184, 185
APL shared variable 177

APL symbols 4

arccos 73

arccosh 73

arcsin 73

arcsinh 73

arctan® 73

arctanh 73

arithmetic symbols 4

assign an empty vector 197
assignment arrow 136
asynchronous communications 43
atomic vector 144,219
attention key 6

audible alarm 29

audible alarm control with [|CC 147
auxiliary tape unit 27

backspace key 8

bare output 166

BASIC 2

BASIC source file 181
BASIC statement keyword 4
BASIC/APL switch 2

basis for general exchange 185
binomial function 76

blank character 8

branch arrow 136

branch instructions 160
branching. 158

brightness control 1

built-in functions 59

built-in tape unit 27

bytes 13

B9 185

Index

Index

257

canonical representation Jcr 149
catenate function 90, 94, 95
ceiling function 65

character 1

character constants 12
character mode 5

character set 217

circular function 73

CLEAR 32,35

CLEARWS 3

CMD key (command key) 7
comment symbol 138
communications adapter 1
comparison tolerance 35, 140
complex name 16

compress function 90
conditional branch 159
conjugate function 60
console control 14, 145
CONTINUE 32,35

control information 189, 194
COPY 32

copy control dial 212

copy display 7

cosine 73

create a new data file 179
creating a direct access file 188
CTL 178

CTL prefix 181,186

cursor 1

customer support functions 29
cylinder number 42

DAT 20,178

DAT shared variable 190, 191
data format 181, 184

deal function 77

decimal digits 11

decode (base value) function 91,112
default device 28

default file ID 180

default type 184

delete 9

delete statements 169

device addressing 27

device/file number 17,180, 182
direct access 177, 181

direct access operations 188
direct access to display screen 186
direct access type 1,17

diskette 16

diskette compress 29

diskette drives 1

diskette recovery 29
diskette-to-diskette-copy 29
diskette-to-tapecopy 29
DISPLAY 186

DISPLAY operation 194

display registers switch 4

display screen 1

display screen control with [JCC 146
display screen, read from 194
display screen, write to 194

258

displaying a user-defined function 168
divide function 64

domain error 73

DROP 17,32,38

drop function 104

dual-language machine 3

dyadic 157

dyadic format function 124

dyadic function 59

EBCDIC {(extended binary coded decimal interchange code)
EBCDIC character set 225

EBCDIC code 185

edit statements 170

enclosing quotes 12

encode (representation) function 91,115
equal to function 84

ERASE 32,38

error messages 235

ERRORSET 16

establish a shared variable 177

exchange data file 41

exchange data format 184

exchange with other products 185
exclusive OR function 88

execute function 89,123

existing data file type 185

expand function 90, 99

exponential function 70

expunge function [JEX 153,179

factorial function 75

file 16

file header 31

fileID 17

file ID, default 180

file type 15

file type 02 181

file type 08 181

file type 09 or B9 185

file type 10 184

FILEID 32,39

fix function [JFX 151

floor function 67

FNS 33,39

format function 89, 124

formatted diskette 31

formatted tape 31

format
APL internal 181,184,185
general exchange 181, 184
unblocked and unspanned 185

forms requirements 208

forward space key 8

FREE 32,40

function definition 17, 155

function editing 168

function header 156

general exchange data file 41

general exchange data format 181, 184
generalized loader 29

generalized transpose function 90, 110
global names 160

global objects 37

grade down function 89, 101

grade up function 89, 100

greater than function 83

greater than or equal to function 86

HEX value 42
HOLD key 5
hold state 9

hyperbolic cosine 73
hyperbolic sine 73
hyperbolic tangent 73

1/O error 18

1/0 processor 177

ID= (file ID) 180, 183

IMF (internal machine fix) 14, 36
IN operation 179, 187

in process 10

index generator function 89, 104
index of function 90, 105

index origin 35, 141

indicator lights 1

initialization function 25

inner product operator 129
input 1,177

input/output operations 177,187
input/output summary 204

INR operation 182, 193

insert 8

insert forms 209

insert statements 169

integer 11

interactive functions 164

internal checks 3

internal storage 31

invalid disk file name 16

invalid parameter 16

IOR operation 182, 188

IORH operation 182,188

key value 192
keyboard 1
keyboard input selection with [JCC 147

label display 29

labels 158

laminate function 90, 96
laminated records 190
latent expression [LX 143
left argument 29

less than function 85

less than or equal to function 87
LIB 23,33,41

line counter [JLC 143
LINK 18, 33,43

LOAD 32,44

local names 160

locked functions 167
logarithm function 72
logical {(boolean) data 12
L3264 R32switch 3

maghitude function 68
MARK 23, 32,45
mathematical gamma function 75
matrix 15

matrix divide function 91, 121
matrix inverse 89, 121
maximum function 66
maxsize 46

membership function 91, 120
message INTERRUPT 6
microcoded programs 43
minimum function 67

minus function 62

monadic 157

monadic format function 124
monadic functions 59
MSG=0FF 180

N-rank arrays 59

name classification function [JNC 154
name list function [JNL 153

NAND function 81

naperian base 70

- national graphics 225

natural log function 71

negation function 61

niladic 167

NOR function 82

not equal to function 88

not function 80

number of records to access 189
numeric key 4

numeric value precision 12
numeric value range 11

Index

259

object 34 reshape function 90, 93

operation to be performed 179 residue function 69

OR function 79 restart procedure 2

OUT operation 179, 187 restart switch 3

outer product operator 132 RESUME 32, 51

OUTF operation 182, 188 retract the shared variable offer 198, 199
output 2,177 return code 179

OUTSEL 33,47 return codes 200

OUTSEL OFF 196 reverse display switch 4

overlapped printing 15 reverse function 89, 105

overstruck characters 12 REWIND 23, 33,52

right argument 29

roll function 77

rotate function 90, 107
rotation function 90

pair of shared variables 178, 181
parentheses 138

password 34

PCOPY 32,48

pi times function 72 SAVE 32,52
power function 71 scaled representation 11
power on/off switch 3 scan operator 134
primitive mixed function 89 scientific notation 11
primitive scalar functions 59 scroll up key 5
printdata 186 search by key 192
print width []PW 142 search complete 192
printer 15, 207 sector 21
printer stacker 215 sector boundaries 21
printing data 196 sequential access 17,177,179
printing precision gep 142 sequential access operations 187
PROC 17,33,49 serial 1/O adapter 1
procedure file 17 set tab with [JCC 149
PROTECT 32,50 shape function 89,92
PRT 186 shared variable 9,177
PRT operation 196 shared variable offer 177
pseudoinverse of the matrix 121 shared variable pair 178, 181
S| 33,53
signum function 62
sine 73
SINL 33,53
SORT 33,54
quad 137 special character combination 4
quad quote 137 specifying the operation 179

stacker 215

standard APL character mode 4
starting character number 194
starting record number 189

stop 175
random link [JRL 143 strong interrupt 6
random number seed 35 successful operation 200
ravel function 89,94 surrogate name 178
read a direct access file 188 SYMBOLS 32,54
read data from a data file 179, 187 syntax 35
read file header 185 SYSAREA 16
read from a file 182 system functions 145
read multiple records 184, 190 system variables 139

reading a direct access file 193
reading from the display screen 194
reading records 190

reciprocal function 64

records, laminated 184

reduction operator 127

reopening function definition 171
replace a ribbon 212

replace statements 169

260

take function 90, 103

tape data cartridge 23

tape recovery 29
tape-to-tape copy 29
terminating the operation 197
times function 63

trace 173

trace and stop controls 16
transiated data 185
transpose function 89, 109
trigonometric function 74
TV monitor 249

type of file 181,184
TYPE= 181,184

TYPE=A 181, 184
TYPE=I 181,184

TYPE=M 185
TYPE=N 185
TYPE=U 185

unblocked and unspanned format 185
update a data file 182

update a direct access file 188, 191
user-defined functions 6, 155

variable and file names 16
VARS 33,55
VOLID 32,56

weak interrupt 6

workspace available [JWA 143
workspace ID 34

write data to a data file 187
write multiple records 191
write to a direct access file 188
write to a new file 182
write-protect indicator 42
writing records 191

writing to the display screen 194
WSID 32,56

5103 Printer 207
5110 compatibility 227, 229

Index

261

262

Pleace uga this form only to identify publication errors or request changes to publications. Technical questions about IBM systems, changes in IBM programming

READER’S COMMENT FORM

support, requests for additional publications, etc, should be directed to your IBM representative or to the 1BM branch office nearest your location.

Error in publication (typographical, illustration, and so on). No reply.

Page Number Error

Note: All comments and suggestions become the property of IBM.

® No postage necessary if mailed in the U.S.A.

Inaccurate or misleading information in this publication. Please tell us
about it by using this postage-paid form. We wiil correct or clarify the
publication, or tell you why a change is not being made, provided you
include your name and address.

Page Number Comment

Name

Address

Jenueyy 8dualasey 1dv

0115 Nal

0-£€0€6-L2VS

SA21-9303-0

_ — — — — —aunbuoyin — — — — —

Fold Fold
FIRST CLASS
PERMIT NO. 40
ARMONK, N. Y.
L]
]
BUSINESS REPLY MAIL -
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES R
TR
POSTAGE WILL BE PAID BY . . . S—
]
L]
I
. T
IBM Corporation o ——
General Systems Division —
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901
Fold / Fold
=== g

International Business Machines Corporation

General Systems Division
5775D Glenridge Drive N. E.
P.0. Box 2150

Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway

White Plains, New York 10601
US.A.

(International)

0-€0€6-1ZVS °V'S'N ul palutdd [enuepy 8dudiajdy 1dv 0LLS WAl

1
=
=

-

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.0. Box 2150

Atlanta, Georgia 30301
{U.S.A. only)

General Business Group/International
44 South Broadway

White Plains, New York 10601
US.A.

{International)

SA21-9303-0

0-€0€6-1ZVS. "V'S™N Ul palulld [enuepy 8ousldey TTdv OLLS gl

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088.0
	088.1
	088.2
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240.0
	240.1
	240.2
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	replyA
	replyB
	xBack

