
--- ------ - ---- ---- - ---- - - ----------_ .-

IBM 5110
BASIC Introduction

--- ------ - ---- ---- - ---- - - ----------_ .-

IBM 5110
BASIC Introduction

Preface

This manual introduces the IBM 5110 Computer
and its BASIC programming capability. It is
intended to provide the users of these products
with the information necessary to operate the
5110 using the BASIC language.

Related Publications

• IBM 5110 BASIC Reference Manual, SA21-9308

• IBM 5110 BASIC User's Guide, SA21-9307

• IBM 5110 BASIC Reference Handbook,
GX21-9309

• IBM 5110 General Information and Physical
Planning Manual, GA21-9300

• IBM 5110 Computing System Setup Procedure,
SA21-9318

First Edition (January 1978)

Changes are continually made to the specifications herein; any such
changes will be reported in subsequent revisions or technical newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or the IBM branch office serving your locality.

A Reader's Comment Form is at the back of this publication. If the form
has been removed, address your comments to IBM Corporation,
Publications, Department 245, Rochester, Minnesota 55901. Comments
become the property of IBM.

© Copyright International Business Machines Corporation 1978

o

(~)

Preface

This manual introduces the IBM 5110 Computer
and its BASIC programming capability. It is
intended to provide the users of these products
with the information necessary to operate the
5110 using the BASIC language.

Related Publications

• IBM 5110 BASIC Reference Manual, SA21-9308

• IBM 5110 BASIC User's Guide, SA21-9307

• IBM 5110 BASIC Reference Handbook,
GX21-9309

• IBM 5110 General Information and Physical
Planning Manual, GA21-9300

• IBM 5110 Computing System Setup Procedure,
SA21-9318

First Edition (January 1978)

Changes are continually made to the specifications herein; any such
changes will be reported in subsequent revisions or technical newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or the IBM branch office serving your locality.

A Reader's Comment Form is at the back of this publication. If the form
has been removed, address your comments to IBM Corporation,
Publications, Department 245, Rochester, Minnesota 55901. Comments
become the property of IBM.

© Copyright International Business Machines Corporation 1978

o

(~)

Contents

CHAPTER 1. INTRODUCTION. 1 CHAPTER 4. HOW TO WRITE A PROGRAM 49

(~
About This Manual The LET Statement 49

~'"
About BASIC Using Remarks 50
About the 5110 Listing Program Contents 52

Alphameric Keys 4 Branches . 52
Numeric Keys 4 The GOTO Statement 52
Operating Keys 5 The I F Statement 53

("'" BASIC Command Keywords 6 Loops 57
I;,

BASIC Statement Keywords 6
Arithmetic Operator Keys 6 CHAPTER 5. OTHER WAYS TO PUT

Getting Started 6 VALUES INTO PROGRAMS 67
Entering and Displaying Data 7 The READ, DATA, and RESTORE Statements. 67

Entering Lowercase Alphabetic The I N PUT Statement 69
Characters 12 Prompting Your Input 70

Correcting Keying Errors . 13 Entering Character Variables
Into Programs 71

CHAPTER 2. HOW YOUR SYSTEM HANDLES A Review of What You've Done. 72
ARITHMETIC 19

Arithmetic Operators. 19 CHAPTER 6. MAKING CHANGES TO YOUR
Variables 21 PROGRAMS. 73

Variables That Stand For Numbers 21 Correcting Keying Errors 73

C
Performing Several Functions in Inserting New Lines 73
the Same Expression . 24 Replacing One Line With Another 75

The Sequence of Arithmetic Operations 24 Removing a Line 76
Positive / Negative Operators 27 Renumbering Statement Lines . 77
Variables That Stand For Characters . 29
Using Calculation Results 30 CHAPTER 7. MORE ABOUT THE PRINT

STATEMENT 79
CHAPTER 3. ENTERING, RUNNING, AND Making Headings 80
STORING A PROGRAM 33 Math Calculations in Print Statements 81

Entering a Program 33
Correcting Your Keying Errors 34 CHAPTER 8. SETTING UP YOUR OWN FORMAT-

Running the Program 34 PRINT USING AND IMAGE STATEMENTS 83
Automatic Statement Numbering 38 Example of Printing 86
Sample Run 38

C:
Using Tape or Diskette Storage CHAPTER 9. DATA FILES. 89

(Your Library) 39 Activating and Deactivating Files 89
Marking Your Media. 42 Creating a Tape or Diskette File 90
SAVE Command 43 Retrieving a File . 91
LOAD Command 44 Repositioning Files . 92
Listing a Directory of Programs 44

A Review of What You've Done. 47

C

c
iii

Contents

CHAPTER 1. INTRODUCTION. 1 CHAPTER 4. HOW TO WRITE A PROGRAM 49

(~
About This Manual The LET Statement 49

~'"
About BASIC Using Remarks 50
About the 5110 Listing Program Contents 52

Alphameric Keys 4 Branches . 52
Numeric Keys 4 The GOTO Statement 52
Operating Keys 5 The I F Statement 53

("'" BASIC Command Keywords 6 Loops 57
I;,

BASIC Statement Keywords 6
Arithmetic Operator Keys 6 CHAPTER 5. OTHER WAYS TO PUT

Getting Started 6 VALUES INTO PROGRAMS 67
Entering and Displaying Data 7 The READ, DATA, and RESTORE Statements. 67

Entering Lowercase Alphabetic The I N PUT Statement 69
Characters 12 Prompting Your Input 70

Correcting Keying Errors . 13 Entering Character Variables
Into Programs 71

CHAPTER 2. HOW YOUR SYSTEM HANDLES A Review of What You've Done. 72
ARITHMETIC 19

Arithmetic Operators. 19 CHAPTER 6. MAKING CHANGES TO YOUR
Variables 21 PROGRAMS. 73

Variables That Stand For Numbers 21 Correcting Keying Errors 73

C
Performing Several Functions in Inserting New Lines 73
the Same Expression . 24 Replacing One Line With Another 75

The Sequence of Arithmetic Operations 24 Removing a Line 76
Positive / Negative Operators 27 Renumbering Statement Lines . 77
Variables That Stand For Characters . 29
Using Calculation Results 30 CHAPTER 7. MORE ABOUT THE PRINT

STATEMENT 79
CHAPTER 3. ENTERING, RUNNING, AND Making Headings 80
STORING A PROGRAM 33 Math Calculations in Print Statements 81

Entering a Program 33
Correcting Your Keying Errors 34 CHAPTER 8. SETTING UP YOUR OWN FORMAT-

Running the Program 34 PRINT USING AND IMAGE STATEMENTS 83
Automatic Statement Numbering 38 Example of Printing 86
Sample Run 38

C:
Using Tape or Diskette Storage CHAPTER 9. DATA FILES. 89

(Your Library) 39 Activating and Deactivating Files 89
Marking Your Media. 42 Creating a Tape or Diskette File 90
SAVE Command 43 Retrieving a File . 91
LOAD Command 44 Repositioning Files . 92
Listing a Directory of Programs 44

A Review of What You've Done. 47

C

c
iii

CHAPTER 10. ARRAYS
Defining an Array

DIM Statement for One-Dimensional
Arrays

DI M Statement for Two- Dimensional
Arrays

DIM Statement for Character
Variables

Elements of Arrays
Assigning Values to Array Elements
Another Way to Assign Values
to Arrays

Assigning Values to an Entire Array
at Once

Working With Elements of Arrays.
Printing Arrays
Putting One- Dimensional Arrays
Together in a Program

Two- Dimensional Array
Arithmetic With Arrays

Addition and Subtraction With Arrays
Multiplication and Division
Averaging Two Sets of One- Dimensional

Arrays
Averaging Two- Dimensional Arrays
Matrix Multiplication. . .
Taking a Matrix Transpose . .
The Identity Matrix
Taking the Inverse of a Matrix

CHAPTER 11. MORE THINGS YOU CAN DO
WITH BASIC

Finding Square Roots
Some General System Functions
Arithmetic Constants . .
Conversion Functions
Array / Matrix Functions .
Record File Functions
Trigonometric Functions
Logarithms and Exponents
Other Functions

iv

93
95

95

96

96
97
98

100

101
102
103

104
105
106
107
107

108
109
109
109
110
110

111
111
112
114
115
115
116
116
117
117

CHAPTER 12: IF YOU HAVE TROUBLE 119
Forgetting to Save Corrected Programs. 119

0 Endless Loops or Output 119
Numbers Are Not What They
Seem To Be . 119

How Can A Vague Idea Become
A Program? 121

,~-JI CHAPTER 13. EXERCISES 123
...... ".

Exercises for Chapter 2. BASIC
Arithmetic. 124

Exercises for Chapter 4. How to
Write a Program . 128

Exercises for Branching (Chapter 4) 131 tf-~,

Exercises for Loops (Chapter 4) . 134
" i

Exercises for Chapter 5. Other Ways
to Put Values into Programs . 137

Exercise for Chapter 8. Setting Up
Your Own Format-PRINT USING
and Image Statements 139

Exercise for Chapter 10. Arrays . 140
Exercises for Chapter 11. More Things
You Can Do With BASIC 143

APPENDIX A. BASIC STATEMENTS AND
COMMANDS 147

BASIC Statements. 147
BASIC System Commands 150
Editing Function . 151 J~,)'

APPENDIX B. CUSTOMER SUPPORT
FUNCTIONS 153

,Ii' -'-,

~tp/

()

CHAPTER 10. ARRAYS
Defining an Array

DIM Statement for One-Dimensional
Arrays

DI M Statement for Two- Dimensional
Arrays

DIM Statement for Character
Variables

Elements of Arrays
Assigning Values to Array Elements
Another Way to Assign Values
to Arrays

Assigning Values to an Entire Array
at Once

Working With Elements of Arrays.
Printing Arrays
Putting One- Dimensional Arrays
Together in a Program

Two- Dimensional Array
Arithmetic With Arrays

Addition and Subtraction With Arrays
Multiplication and Division
Averaging Two Sets of One- Dimensional

Arrays
Averaging Two- Dimensional Arrays
Matrix Multiplication. . .
Taking a Matrix Transpose . .
The Identity Matrix
Taking the Inverse of a Matrix

CHAPTER 11. MORE THINGS YOU CAN DO
WITH BASIC

Finding Square Roots
Some General System Functions
Arithmetic Constants . .
Conversion Functions
Array / Matrix Functions .
Record File Functions
Trigonometric Functions
Logarithms and Exponents
Other Functions

iv

93
95

95

96

96
97
98

100

101
102
103

104
105
106
107
107

108
109
109
109
110
110

111
111
112
114
115
115
116
116
117
117

CHAPTER 12: IF YOU HAVE TROUBLE 119
Forgetting to Save Corrected Programs. 119

0 Endless Loops or Output 119
Numbers Are Not What They
Seem To Be . 119

How Can A Vague Idea Become
A Program? 121

,~-JI CHAPTER 13. EXERCISES 123
...... ".

Exercises for Chapter 2. BASIC
Arithmetic. 124

Exercises for Chapter 4. How to
Write a Program . 128

Exercises for Branching (Chapter 4) 131 tf-~,

Exercises for Loops (Chapter 4) . 134
" i

Exercises for Chapter 5. Other Ways
to Put Values into Programs . 137

Exercise for Chapter 8. Setting Up
Your Own Format-PRINT USING
and Image Statements 139

Exercise for Chapter 10. Arrays . 140
Exercises for Chapter 11. More Things
You Can Do With BASIC 143

APPENDIX A. BASIC STATEMENTS AND
COMMANDS 147

BASIC Statements. 147
BASIC System Commands 150
Editing Function . 151 J~,)'

APPENDIX B. CUSTOMER SUPPORT
FUNCTIONS 153

,Ii' -'-,

~tp/

()

(
'''"' " ~,.

/

c

c

Chapter 1. Introduction

ABOUT THIS MANUAL

This manual will show you how to operate the 5110 using the BASIC
language. If you are already familiar with the BASIC language, you
may be able to skip most of the language-only topics and simply learn
how to operate the 5110. If you are not familiar with the BASIC
language, you should read the manual from cover to cover while
performing the suggested keying operations or examples on your
5110. Not all of the features and functions of the BASIC language are
discussed in this manual. For more information about the 5110 or the
BASIC language, see the IBM 5110 BASIC Reference Manual,
SA21-9308, or the IBM 5110 BASIC User's Guide, SA21-9307.

This manual assumes that your 5110 has been installed and checked
out. If this is not the case, use the IBM 5110 Customer Setup Manual,
SA21-9318, to install your system.

ABOUT BASIC

BASIC is an interactive computer language; that is, whatever you enter
into the system is processed immediately. BASIC has many built-in
functions that allow you to effectively solve your problems. BASIC
also allows you to write programs using BASIC language statements
and facilities. These programs can be stored on the tape cartridge or
diskette for later use.

BASIC is a good language to experiment with. Nothing you do from
the keyboard can damage the system; and the more you experiment,
the more you will learn about BASIC and the system.

ABOUT THE 5110

The 5110 Model 1 (Figure 1) is a computer designed to help solve your
business problems. The display screen and indicator lights
communicate information to you, and the keyboard and switches allow
you to control the operations the system will perform. The 5110
Model 2 is identical to the 5110 Model 1 except that it does not
contain the built-in tape unit.

Before you begin to use the 5110, you should become familiar with the
keys and the control panel {Figure 1}. The control panel consists of a
series of switches, which will be explained later.

Introduction

(
'''"' " ~,.

/

c

c

Chapter 1. Introduction

ABOUT THIS MANUAL

This manual will show you how to operate the 5110 using the BASIC
language. If you are already familiar with the BASIC language, you
may be able to skip most of the language-only topics and simply learn
how to operate the 5110. If you are not familiar with the BASIC
language, you should read the manual from cover to cover while
performing the suggested keying operations or examples on your
5110. Not all of the features and functions of the BASIC language are
discussed in this manual. For more information about the 5110 or the
BASIC language, see the IBM 5110 BASIC Reference Manual,
SA21-9308, or the IBM 5110 BASIC User's Guide, SA21-9307.

This manual assumes that your 5110 has been installed and checked
out. If this is not the case, use the IBM 5110 Customer Setup Manual,
SA21-9318, to install your system.

ABOUT BASIC

BASIC is an interactive computer language; that is, whatever you enter
into the system is processed immediately. BASIC has many built-in
functions that allow you to effectively solve your problems. BASIC
also allows you to write programs using BASIC language statements
and facilities. These programs can be stored on the tape cartridge or
diskette for later use.

BASIC is a good language to experiment with. Nothing you do from
the keyboard can damage the system; and the more you experiment,
the more you will learn about BASIC and the system.

ABOUT THE 5110

The 5110 Model 1 (Figure 1) is a computer designed to help solve your
business problems. The display screen and indicator lights
communicate information to you, and the keyboard and switches allow
you to control the operations the system will perform. The 5110
Model 2 is identical to the 5110 Model 1 except that it does not
contain the built-in tape unit.

Before you begin to use the 5110, you should become familiar with the
keys and the control panel {Figure 1}. The control panel consists of a
series of switches, which will be explained later.

Introduction

2

What follows is a brief description of the keys. How you use the keys
will be described later. For now, familiarize yourself with the names
and locations of keys on the system. Figure 2 shows a BASIC-only
keyboard, and Figure 3 shows a combined BASIC/ APL keyboard.

If your system is equipped to operate either BASIC or APL programs,
you may be unfamiliar with the symbols appearing at the top and on
the front of the alphameric keys (Figure 3). For BASIC operations,
even on a BASIC-only machine (Figure 2) where they are not shown
on the key top, these symbols can be displayed or printed, although
their APL functions do not apply to BASIC operations. See the IBM
5110 BASIC Reference Handbook, GX21-9309, for the APL characters
and their locations.

Switch

Display
Screen

CMD Key

PROCESS

Switch

IN PROCESS
Indicator

REVERSE

DISPLAY BASIC/APL
Switch

Switch

DISPLAY
REGISTERS/NORMAL

Tape
Cartridge

1--4+~-- Arithmetic
Operator
Keys

EXECUTE Key

Shift Keys

Figure 1. IBM 5110 Model 1 Computer

()

;(")-

\ ... \

,4 ').\

~.",_f

()
2

What follows is a brief description of the keys. How you use the keys
will be described later. For now, familiarize yourself with the names
and locations of keys on the system. Figure 2 shows a BASIC-only
keyboard, and Figure 3 shows a combined BASIC/ APL keyboard.

If your system is equipped to operate either BASIC or APL programs,
you may be unfamiliar with the symbols appearing at the top and on
the front of the alphameric keys (Figure 3). For BASIC operations,
even on a BASIC-only machine (Figure 2) where they are not shown
on the key top, these symbols can be displayed or printed, although
their APL functions do not apply to BASIC operations. See the IBM
5110 BASIC Reference Handbook, GX21-9309, for the APL characters
and their locations.

Switch

Display
Screen

CMD Key

PROCESS

Switch

IN PROCESS
Indicator

REVERSE

DISPLAY BASIC/APL
Switch

Switch

DISPLAY
REGISTERS/NORMAL

Tape
Cartridge

1--4+~-- Arithmetic
Operator
Keys

EXECUTE Key

Shift Keys

Figure 1. IBM 5110 Model 1 Computer

()

;(")-

\ ... \

,4 ').\

~.",_f

()

c:

c

~"BBBGGBB[","MI~·"··" ~" 8[~;:"IEJEJ
QOOJOJCD[)(IJCDOG]CJO •• ••••
CDGJGJGJGJCDGJQGJCDOO [JOG CJ
[J GJ GJ GJ GJ GJ CJ GJ [J OJ OJ CfJ GJ GJ GJ 0

_ GJGJGJGJGJGJCDO[JQCO _ DOC] 0

Figure 2. BASIC-Only Keyboard

BASIC C§J ~~G£:J ~ G!!:U~(RENUM J[CaIC ReSUI.]~ D:](7c;Ir:::Ir::l
APL ()LOAD)(§D@§.)~~~(2§)~()OUTSEL)~CD~~L:J

(0)0 []

OCJOJOJCD[)(IJCDCDCDCJCO •• ••••
CD CD CD CO CD CD (l) OJ (J] CD GJ 0 [J 0 G G
CD OJ CD GJ CO CD CJ GJ rn OJ OJ CfJ GJ GJ GJ G

_ [[)(IJGJGJCDCDCDO[JOJcoa DOC] 0
((0)0 []

Figure 3. Combined BASIC/ APl Keyboard

Introduction 3

c:

c

~"BBBGGBB[","MI~·"··" ~" 8[~;:"IEJEJ
QOOJOJCD[)(IJCDOG]CJO •• ••••
CDGJGJGJGJCDGJQGJCDOO [JOG CJ
[J GJ GJ GJ GJ GJ CJ GJ [J OJ OJ CfJ GJ GJ GJ 0

_ GJGJGJGJGJGJCDO[JQCO _ DOC] 0

Figure 2. BASIC-Only Keyboard

BASIC C§J ~~G£:J ~ G!!:U~(RENUM J[CaIC ReSUI.]~ D:](7c;Ir:::Ir::l
APL ()LOAD)(§D@§.)~~~(2§)~()OUTSEL)~CD~~L:J

(0)0 []

OCJOJOJCD[)(IJCDCDCDCJCO •• ••••
CD CD CD CO CD CD (l) OJ (J] CD GJ 0 [J 0 G G
CD OJ CD GJ CO CD CJ GJ rn OJ OJ CfJ GJ GJ GJ G

_ [[)(IJGJGJCDCDCDO[JOJcoa DOC] 0
((0)0 []

Figure 3. Combined BASIC/ APl Keyboard

Introduction 3

4

Alphameric Keys

The alpha keys are similar to those on a standard typewriter, except
that there are no lowercase characters. The alpha characters are all
uppercase, even though they are in the lowercase position on the
keys. Thus, you do not use the shift key for alpha characters.

If you want to enter an upper-shift character, you must hold down the
shift key and then press the key to enter the character, just as you
would to type an uppercase character on an ordinary typewriter.

You can also enter lowercase alphabetic characters from the keyboard.
How you enter lowercase alphabetic characters is discussed later in
this chapter.

Numeric Keys

Either the top row of alphameric keys or the special calculator
arrangement of numeric keys on the right of the keyboard can be used
to enter numbers.

o

4

Alphameric Keys

The alpha keys are similar to those on a standard typewriter, except
that there are no lowercase characters. The alpha characters are all
uppercase, even though they are in the lowercase position on the
keys. Thus, you do not use the shift key for alpha characters.

If you want to enter an upper-shift character, you must hold down the
shift key and then press the key to enter the character, just as you
would to type an uppercase character on an ordinary typewriter.

You can also enter lowercase alphabetic characters from the keyboard.
How you enter lowercase alphabetic characters is discussed later in
this chapter.

Numeric Keys

Either the top row of alphameric keys or the special calculator
arrangement of numeric keys on the right of the keyboard can be used
to enter numbers.

o

c:

c

c

Operating Keys

The dark gray keys with the legend names CMD, EXECUTE, ATTN,
and HOLD, and the dark gray keys with the arrows are special
operating keys (Figure 4). The dark gray keys with the arrows and the
spacebar (used to enter blank characters) automatically repeat the
operation they perform when held down.

Forward Space Key

Backspace Key

/

IfYOU get an error,

press .this key to mak:

Attention Key the dIsplay stop flash mg.

Scroll Up Key

Scroll Down Key .HO. EXECUTE Key

Shift Key

Space Bar

Figure 4. Special Operating Keys

Introduction 5

c:

c

c

Operating Keys

The dark gray keys with the legend names CMD, EXECUTE, ATTN,
and HOLD, and the dark gray keys with the arrows are special
operating keys (Figure 4). The dark gray keys with the arrows and the
spacebar (used to enter blank characters) automatically repeat the
operation they perform when held down.

Forward Space Key

Backspace Key

/

IfYOU get an error,

press .this key to mak:

Attention Key the dIsplay stop flash mg.

Scroll Up Key

Scroll Down Key .HO. EXECUTE Key

Shift Key

Space Bar

Figure 4. Special Operating Keys

Introduction 5

6

BASIC Command Keywords

The words listed above the top row of alphameric keys (1-0) are
BASIC command keywords that you can enter by holding down the
CMD key and then pressing the key below the desired command. For
example, to enter the LOAD command keyword, hold down the CMD
key and press 1. These commands and their use are described later.

BASIC Statement Keywords

Notice the special character combinations of BASIC keywords
engraved on the front of the alphabetic keys. If you have a combined
APL/BASIC machine, there is also an APL special character
combination on the front of the key. You can enter the BASIC
keywords by holding down the CM D key and then pressing the
appropriate key. You will see how these BASIC keywords are used as
you become familiar with the BASIC language.

BASIC Statement Keyword

APL Special Character Combination

Note: You can use the APL special character combination only when
you are using your system as an APL machine.

Arithmetic Operator Keys

The four keys to the right of the calculator arrangement of numeric
keys are the arithmetic operator keys that are used to perform
division, multiplication, subtraction, and addition. These operator keys
also appear on the alphameric keyboard. In BASIC the symbol/is
used for division, and the symbol * is used for multiplication.

GETTING STARTED

Make sure the switches on your control panel are set as follows:

Switch Setting

L32 64 R32 64

DISPLAY REGISTERS/NORMAL NORMAL

BASIC/ APL (combined machines only) BASIC

\~)1
.......

,r-- ".
,...'

6

BASIC Command Keywords

The words listed above the top row of alphameric keys (1-0) are
BASIC command keywords that you can enter by holding down the
CMD key and then pressing the key below the desired command. For
example, to enter the LOAD command keyword, hold down the CMD
key and press 1. These commands and their use are described later.

BASIC Statement Keywords

Notice the special character combinations of BASIC keywords
engraved on the front of the alphabetic keys. If you have a combined
APL/BASIC machine, there is also an APL special character
combination on the front of the key. You can enter the BASIC
keywords by holding down the CM D key and then pressing the
appropriate key. You will see how these BASIC keywords are used as
you become familiar with the BASIC language.

BASIC Statement Keyword

APL Special Character Combination

Note: You can use the APL special character combination only when
you are using your system as an APL machine.

Arithmetic Operator Keys

The four keys to the right of the calculator arrangement of numeric
keys are the arithmetic operator keys that are used to perform
division, multiplication, subtraction, and addition. These operator keys
also appear on the alphameric keyboard. In BASIC the symbol/is
used for division, and the symbol * is used for multiplication.

GETTING STARTED

Make sure the switches on your control panel are set as follows:

Switch Setting

L32 64 R32 64

DISPLAY REGISTERS/NORMAL NORMAL

BASIC/ APL (combined machines only) BASIC

\~)1
.......

,r-- ".
,...'

C\'\·
.'

c

If your system has the BASIC/ APL switch, it can execute either BASIC
or APL language statements. The language used is selected only
during the power up procedure or when the RESTART switch is
pressed. Make sure your system is plugged in and turn the power on.
If the power is already on, press RESTART and wait a few seconds.
During this time, the system performs internal checks to make sure it
is operating correctly. Do not press any keys while these internal
checks are being made. If you inadvertently press a key, you must
press RESTART to continue.

If an error is detected during these checks, the PROCESS CHECK
indicator may come on. If the PROCESS CHECK indicator comes on,
press RESTART. The system will again perform the internal checks. If
the light comes on again, call for maintenance service.

The IN PROCESS indicator comes on whenever the display screen is
blank, which indicates that the system is doing internal processing.

ENTERING AND DISPLAYING DATA

Next, let's look at the display screen. Your display screen should look
like this:

(I (·.lr·,!(.!i\1 0 U 1

If the READY message does not appear, press RESTART again, and
wait a few seconds. If the READY message still does not appear, call
your maintenance personnel.

Introduction 7

C\'\·
.'

c

If your system has the BASIC/ APL switch, it can execute either BASIC
or APL language statements. The language used is selected only
during the power up procedure or when the RESTART switch is
pressed. Make sure your system is plugged in and turn the power on.
If the power is already on, press RESTART and wait a few seconds.
During this time, the system performs internal checks to make sure it
is operating correctly. Do not press any keys while these internal
checks are being made. If you inadvertently press a key, you must
press RESTART to continue.

If an error is detected during these checks, the PROCESS CHECK
indicator may come on. If the PROCESS CHECK indicator comes on,
press RESTART. The system will again perform the internal checks. If
the light comes on again, call for maintenance service.

The IN PROCESS indicator comes on whenever the display screen is
blank, which indicates that the system is doing internal processing.

ENTERING AND DISPLAYING DATA

Next, let's look at the display screen. Your display screen should look
like this:

(I (·.lr·,!(.!i\1 0 U 1

If the READY message does not appear, press RESTART again, and
wait a few seconds. If the READY message still does not appear, call
your maintenance personnel.

Introduction 7

8

The LOAD 0 (zero) message indicates that the system has a clear work
area. The flashing underline (_) between the LOAD 0 and READY
messages is called a cursor. It tells you where the next character you
enter will be displayed. The READY message indicates that the
system is ready to receive your instructions. The number in the lower
right corner, indicated by the NNNNN on the display screen drawing,
is the number of character positions (bytes) in the work area available
for your instructions and data. This number changes during
processing. The number is omitted on the remaining display screen
drawings in the manual. The number following NNNNN (001) indicates
the cursor position on the screen.

The display screen can contain up to 16 lines of data. The bottom line
indicates the status of the system and specifies the number of bytes
available in the work area (NNNNN) and current cursor position. The
line next to the bottom displays the input you are entering from the
keyboard. The remaining lines display the preceding 14 lines that have
been entered and processed. When the data on the input line is
processed, that line is moved up one line, leaving the input line empty
so that more data can be entered. Up to 64 characters of data can be
entered per line.

Before you start entering data into the system, press the •

key and then hold down the key and press the 0
key (located on the right side of the keyboard). This places your
system in the same character set used for the examples in this
manual. See the IBM 5110 BASIC Reference Manual for a description
of the character sets available with your 5110. Also, for some 5110
systems, the same character might appear on several keys on the
keyboard. When doing the keying operations in this manual, always
use the key with the character engraved in white on the top of the
key.

Now let's enter some data into the system. Enter the following
problem using the numeric keys and arithmetic operator keys:

Notice that the characters are displayed as each key is pressed. To
process the data you just entered, you must press the EXECUTE key.
Press EXECUTE now.

o

,'f""\

\,,/

;('" "'>,

I

' ..)1

8

The LOAD 0 (zero) message indicates that the system has a clear work
area. The flashing underline (_) between the LOAD 0 and READY
messages is called a cursor. It tells you where the next character you
enter will be displayed. The READY message indicates that the
system is ready to receive your instructions. The number in the lower
right corner, indicated by the NNNNN on the display screen drawing,
is the number of character positions (bytes) in the work area available
for your instructions and data. This number changes during
processing. The number is omitted on the remaining display screen
drawings in the manual. The number following NNNNN (001) indicates
the cursor position on the screen.

The display screen can contain up to 16 lines of data. The bottom line
indicates the status of the system and specifies the number of bytes
available in the work area (NNNNN) and current cursor position. The
line next to the bottom displays the input you are entering from the
keyboard. The remaining lines display the preceding 14 lines that have
been entered and processed. When the data on the input line is
processed, that line is moved up one line, leaving the input line empty
so that more data can be entered. Up to 64 characters of data can be
entered per line.

Before you start entering data into the system, press the •

key and then hold down the key and press the 0
key (located on the right side of the keyboard). This places your
system in the same character set used for the examples in this
manual. See the IBM 5110 BASIC Reference Manual for a description
of the character sets available with your 5110. Also, for some 5110
systems, the same character might appear on several keys on the
keyboard. When doing the keying operations in this manual, always
use the key with the character engraved in white on the top of the
key.

Now let's enter some data into the system. Enter the following
problem using the numeric keys and arithmetic operator keys:

Notice that the characters are displayed as each key is pressed. To
process the data you just entered, you must press the EXECUTE key.
Press EXECUTE now.

o

,'f""\

\,,/

;('" "'>,

I

' ..)1

(""'." ':.

c'·

c

The display screen shows:

:~:.~ +:.':)
I::'
. • ..1

Notice that the instruction you entered, 2+3, is on the left margin of
the display screen, while the answer, 5, is indented one position from
the left margin on the next line. The indentation allows a sign (- or +)

to be displayed.

Enter and execute 125+75 by pressing the following keys:

0080[JO

This display screen shows:

L C) (::0 II

The appearance of your display can be changed by switches on the
control panel. The REVERSE DISPLAY switch allows you to change
from black characters on a white background to white characters on a
black background, or vice versa. Change the switch settings and select
the type of display you feel most comfortable with. You may have to
adjust the BRIGHTNESS control switch as you change from one
background to the other.

Introduction 9

(""'." ':.

c'·

c

The display screen shows:

:~:.~ +:.':)
I::'
. • ..1

Notice that the instruction you entered, 2+3, is on the left margin of
the display screen, while the answer, 5, is indented one position from
the left margin on the next line. The indentation allows a sign (- or +)

to be displayed.

Enter and execute 125+75 by pressing the following keys:

0080[JO

This display screen shows:

L C) (::0 II

The appearance of your display can be changed by switches on the
control panel. The REVERSE DISPLAY switch allows you to change
from black characters on a white background to white characters on a
black background, or vice versa. Change the switch settings and select
the type of display you feel most comfortable with. You may have to
adjust the BRIGHTNESS control switch as you change from one
background to the other.

Introduction 9

10

Now watch the display as you set the L32 64 R32 switch to the L32
position. With the switch in this position, the leftmost 32 characters
on each line are displayed with a space between characters. With the
switch in the L32 position, your display screen shows:

I... () ,:\ It 0
"-, + -7.
.,' J

~.:.i

:I. :? r.~ .~ .. {
r::'

.. I ._!

"-, 0 0 A' ••

p [" ti D y

Now set the switch in the R32 position and notice that the display is
blank (except for the storage number and cursor position). In the R32
position, the rightmost 32 characters are displayed with a space
between characters.

Return the switch to the 64 position, and notice that all characters are
displayed without the space in between. For the exercises in the
remainder of this book, keep the switch in the 64 position.

There are two dark gray keys with narrow white arrows above the
numeric keyboard. These keys move the display lines (except the
status line) up or down. The scroll up key. moves the display

lines up one line, and the scroll down key. moves the

display lines down one line. Both keys continue to move the display
lines if they are held down. Now use the scroll down key. to
move the display down two lines.

The display screen shows:

I...D (I fl (I

::.?+?:

.• ') 1::' + '~:.o I:.; The value 200 is now on the input line and

.I. '::: ":: .. I can be used as input .
.... :.::: U U

PFi:;D"{

o
/-)
~~,-.j '.

"'"- '''\
~, I'

/ ".

"',-jf

:(~)

10

Now watch the display as you set the L32 64 R32 switch to the L32
position. With the switch in this position, the leftmost 32 characters
on each line are displayed with a space between characters. With the
switch in the L32 position, your display screen shows:

I... () ,:\ It 0
"-, + -7.
.,' J

~.:.i

:I. :? r.~ .~ .. {
r::'

.. I ._!

"-, 0 0 A' ••

p [" ti D y

Now set the switch in the R32 position and notice that the display is
blank (except for the storage number and cursor position). In the R32
position, the rightmost 32 characters are displayed with a space
between characters.

Return the switch to the 64 position, and notice that all characters are
displayed without the space in between. For the exercises in the
remainder of this book, keep the switch in the 64 position.

There are two dark gray keys with narrow white arrows above the
numeric keyboard. These keys move the display lines (except the
status line) up or down. The scroll up key. moves the display

lines up one line, and the scroll down key. moves the

display lines down one line. Both keys continue to move the display
lines if they are held down. Now use the scroll down key. to
move the display down two lines.

The display screen shows:

I...D (I fl (I

::.?+?:

.• ') 1::' + '~:.o I:.; The value 200 is now on the input line and

.I. '::: ":: .. I can be used as input .
.... :.::: U U

PFi:;D"{

o
/-)
~~,-.j '.

"'"- '''\
~, I'

/ ".

"',-jf

:(~)

("""',,"

.,'

c

Use the forward space key and move the cursor to the right

of 200. Notice that the cursor (the underline) is replaced by a flashing
character as you space the cursor through the numeric characters. The
flashing character serves the same function as the cursor; it indicates
the position in the line where input from the keyboard will be
displayed. Now, press the following keys:

o GJ [_0 ___)

The display screen shows:

You are now familiar with the format of the display screen. From this
point on, only the line or lines being discussed will be shown.

Introduction 11

("""',,"

.,'

c

Use the forward space key and move the cursor to the right

of 200. Notice that the cursor (the underline) is replaced by a flashing
character as you space the cursor through the numeric characters. The
flashing character serves the same function as the cursor; it indicates
the position in the line where input from the keyboard will be
displayed. Now, press the following keys:

o GJ [_0 ___)

The display screen shows:

You are now familiar with the format of the display screen. From this
point on, only the line or lines being discussed will be shown.

Introduction 11

12

Entering lowercase Alphabetic Characters

Although only the standard BASIC alphabetic characters are shown on
the 5110 keyboard, you can enter lowercase alphabetic characters by
changing the 5110 to lowercase character mode. One way to change
the 5110 to lowercase character mode is to press the HOLD key (the
characters HOLD are displayed in the lower left corner of the screen),
then hold down the SHIFT'key and press the scroll down II key,

The 5110 is now in lowercase character mode. For example, press
the Q key. The display screen looks like this:

k

Now, hold down the shift key and press the Q key. The

display screen looks like this:

kK

Finally, hold down the command key and press the Q

key. The display screen looks like this:

kK'

In this example, you are not going to execute the data just entered
from the keyboard, Instead, press the scroll up II key once to

remove the data from the input line. Now, to return the 5110 to the
standard BASIC character mode, press the HOLD key, and then hold
down the shift key and press the scroll up .. key, The

5110 is now in standard BASIC character mode.

Note: All the entries in this manual are entered in standard BASIC
character mode.

()

,\, ... ,,'

,.()
12

Entering lowercase Alphabetic Characters

Although only the standard BASIC alphabetic characters are shown on
the 5110 keyboard, you can enter lowercase alphabetic characters by
changing the 5110 to lowercase character mode. One way to change
the 5110 to lowercase character mode is to press the HOLD key (the
characters HOLD are displayed in the lower left corner of the screen),
then hold down the SHIFT'key and press the scroll down II key,

The 5110 is now in lowercase character mode. For example, press
the Q key. The display screen looks like this:

k

Now, hold down the shift key and press the Q key. The

display screen looks like this:

kK

Finally, hold down the command key and press the Q

key. The display screen looks like this:

kK'

In this example, you are not going to execute the data just entered
from the keyboard, Instead, press the scroll up II key once to

remove the data from the input line. Now, to return the 5110 to the
standard BASIC character mode, press the HOLD key, and then hold
down the shift key and press the scroll up .. key, The

5110 is now in standard BASIC character mode.

Note: All the entries in this manual are entered in standard BASIC
character mode.

()

,\, ... ,,'

,.()

c·····

Correcting Keying Errors

The system has a number of very useful functions that allow you to
correct errors made while entering data. On a line-by-line basis, at any
time, you can

• Replace a character

• Delete a character

• Insert a character

Replace a Character

To replace a character, move the cursor with the backspace key II
or forward space key II until it is at the incorrect character. The

cursor moves one character space in the direction of the arrow each
time the appropriate arrow key is pressed. These keys will continue to
move the cursor if they are held down. The incorrect character is then
replaced simply by keying the correct character over the incorrect
character. (In some instances, characters can be combined to form a
character not on the keyboard; for example, the period and quotation
mark combine to make an exclamation mark. If you want to replace
one of these characters (the. or ') with the other, you should
backspace to the character, press the spacebar to blank the character,
backspace again, then enter the desired character.}

For example, you want to do the problem 22+12, but you press the
following keys:

88088
The display screen shows:

Introduction 13

c·····

Correcting Keying Errors

The system has a number of very useful functions that allow you to
correct errors made while entering data. On a line-by-line basis, at any
time, you can

• Replace a character

• Delete a character

• Insert a character

Replace a Character

To replace a character, move the cursor with the backspace key II
or forward space key II until it is at the incorrect character. The

cursor moves one character space in the direction of the arrow each
time the appropriate arrow key is pressed. These keys will continue to
move the cursor if they are held down. The incorrect character is then
replaced simply by keying the correct character over the incorrect
character. (In some instances, characters can be combined to form a
character not on the keyboard; for example, the period and quotation
mark combine to make an exclamation mark. If you want to replace
one of these characters (the. or ') with the other, you should
backspace to the character, press the spacebar to blank the character,
backspace again, then enter the desired character.}

For example, you want to do the problem 22+12, but you press the
following keys:

88088
The display screen shows:

Introduction 13

14

To correct this error, the cursor must be moved back one position
(under the second 1) so that character can be rekeyed. Now, press
the backspace key II once. To correct the keying error and

execute the problem, press the following keys:

Delete a Character

To delete a character, you also use the backspace key. or the

forward space key II to position the cursor. Once the cursor is in

the position of the character to be deleted (the character is flashing),
hold down the CMD key and press the backspace key. once.

The character is then deleted, and any characters to the right are
shifted one position to the left to close up the space left by the
deletion.

For example, you want to do the problem 13+45, but you press the
following keys:

CJOOCJ08
The display screen shows:

o

,"----'"

" .. ,,1

14

To correct this error, the cursor must be moved back one position
(under the second 1) so that character can be rekeyed. Now, press
the backspace key II once. To correct the keying error and

execute the problem, press the following keys:

Delete a Character

To delete a character, you also use the backspace key. or the

forward space key II to position the cursor. Once the cursor is in

the position of the character to be deleted (the character is flashing),
hold down the CMD key and press the backspace key. once.

The character is then deleted, and any characters to the right are
shifted one position to the left to close up the space left by the
deletion.

For example, you want to do the problem 13+45, but you press the
following keys:

CJOOCJ08
The display screen shows:

o

,"----'"

" .. ,,1

(":~"'

'" (
~'

c

c

Press the backspace key to move the cursor (flashing character) back
to the 2. Look at the labels that appear above the backspace and
forward space keys: Delete and Insert. To perform the delete function,
hold down the CMD key while you press. once.

The display screen shows:

"" " " fl h" This character IS as mg.

Now press EXECUTE to execute the problem. Pressing the EXECUTE
key processes the entire line regardless of the position of the cursor.

You can also use the • key to delete all the characters from the

cursor position to the end of the line. For example, you press the
following keys:

80800008
The display screen looks like this:

However, you only want to do the problem 8+6. Now, press the
backspace key and move the cursor back to the -. then press.

The display screen looks like this:

Press the EXECUTE key to execute the problem.

Introduction 15

(":~"'

'" (
~'

c

c

Press the backspace key to move the cursor (flashing character) back
to the 2. Look at the labels that appear above the backspace and
forward space keys: Delete and Insert. To perform the delete function,
hold down the CMD key while you press. once.

The display screen shows:

"" " " fl h" This character IS as mg.

Now press EXECUTE to execute the problem. Pressing the EXECUTE
key processes the entire line regardless of the position of the cursor.

You can also use the • key to delete all the characters from the

cursor position to the end of the line. For example, you press the
following keys:

80800008
The display screen looks like this:

However, you only want to do the problem 8+6. Now, press the
backspace key and move the cursor back to the -. then press.

The display screen looks like this:

Press the EXECUTE key to execute the problem.

Introduction 15

16

Insert a Character

To insert a character, position the cursor using the backspace key II
or the forward space key II' then hold down the CMD key and

press the forward space II key once. This operation moves

the flashing character (and all other characters to the right of it) one
position to the right, creating the space you need to insert one
character. The cursor is not moved and is now displayed as an
underline. To insert the character, simply press the character key. If a
character is in the last (64th) position of the line, the insert function is
ignored.

For example, you want to do the problem 123*6, but you press the
following keys:

OO~8
'l

The display screen shows:

To correct the error, press the backspace key to move the cursor
(flashing character) back to the 3. Look at the labels that appear above
the backspace and forward space keys: Delete and Insert. To perform
the insert function with the cursor position at the 3, hold down the
CMD key while you press II once.

The display screen shows:

o

i""
'\..",.,,/

o
16

Insert a Character

To insert a character, position the cursor using the backspace key II
or the forward space key II' then hold down the CMD key and

press the forward space II key once. This operation moves

the flashing character (and all other characters to the right of it) one
position to the right, creating the space you need to insert one
character. The cursor is not moved and is now displayed as an
underline. To insert the character, simply press the character key. If a
character is in the last (64th) position of the line, the insert function is
ignored.

For example, you want to do the problem 123*6, but you press the
following keys:

OO~8
'l

The display screen shows:

To correct the error, press the backspace key to move the cursor
(flashing character) back to the 3. Look at the labels that appear above
the backspace and forward space keys: Delete and Insert. To perform
the insert function with the cursor position at the 3, hold down the
CMD key while you press II once.

The display screen shows:

o

i""
'\..",.,,/

o

C"'~
/

C
'" -,

(~:

C:

c

To correct the keying error and execute the problem, press the
following keys:

[]

There is one more way to correct a keying error. If you make several
errors halfway through the line, you can backspace the cursor to the
character following the last correct character and then press the ATTN
(attention) key. This causes everything from the cursor position to the
end of the line to be cleared from the display screen.

Because the data from the input line is not processed until the
EXECUTE key is pressed, you can visually verify any input before it is
processed. However, if you do press EXECUTE before you notice a
mistake, you can simply enter the input again, or you can use the
scroll down key .. to move the input back to the input

line and correct it. When the corrections have been made, press
EXECUTE again.

For example, you want to do the problem 135+280, but you entered
and executed 134+280. The display screen shows:

J 3 11,:--:::'>::;::0
'-I·ll.!·

To correct the original input, press the scroll down key a three

times to get the original input back to the input line. The display
screen shows:

i ":; LI .. (.. ~:);.::: n

·~~h~S character is flashing.

You may now correct the error, and then process the data again by
pressing EXECUTE.

Introduction 17

C"'~
/

C
'" -,

(~:

C:

c

To correct the keying error and execute the problem, press the
following keys:

[]

There is one more way to correct a keying error. If you make several
errors halfway through the line, you can backspace the cursor to the
character following the last correct character and then press the ATTN
(attention) key. This causes everything from the cursor position to the
end of the line to be cleared from the display screen.

Because the data from the input line is not processed until the
EXECUTE key is pressed, you can visually verify any input before it is
processed. However, if you do press EXECUTE before you notice a
mistake, you can simply enter the input again, or you can use the
scroll down key .. to move the input back to the input

line and correct it. When the corrections have been made, press
EXECUTE again.

For example, you want to do the problem 135+280, but you entered
and executed 134+280. The display screen shows:

J 3 11,:--:::'>::;::0
'-I·ll.!·

To correct the original input, press the scroll down key a three

times to get the original input back to the input line. The display
screen shows:

i ":; LI .. (.. ~:);.::: n

·~~h~S character is flashing.

You may now correct the error, and then process the data again by
pressing EXECUTE.

Introduction 17

o
/'),

(, .. }I

".~,. ,Ii

18

o
/'),

(, .. }I

".~,. ,Ii

18

(
'"
"

c

C"
y'

Chapter 2. How Your System Handles Arithmetic

The following examples show some common, simple arithmetic
operations you can do on your system.

ARITHMETIC OPERATORS

Arithmetic

Add 5 and 8

Before you begin these simple operations, you should know that some
of the arithmetic signs (called operators) you are accustomed to using
are different when you use the BASIC language. For example, the
multiply sign (x) is not used in BASIC. Instead, the asterisk (*) is used
for multiplication. Similarly, the divide sign (t) is replaced by the slash
(/) in BASIC. The sign for exponentiation (raising to a power) in
BASIC is t (the upper shift character on the Y key) or **. Now enter
these problems:

You Press The Display Screen Shows

80G]

Subtract 8 from 5 [JOG]

Multiply 5 times 8

[JOG]

How Your System Handles Arithmetic 19

(
'"
"

c

C"
y'

Chapter 2. How Your System Handles Arithmetic

The following examples show some common, simple arithmetic
operations you can do on your system.

ARITHMETIC OPERATORS

Arithmetic

Add 5 and 8

Before you begin these simple operations, you should know that some
of the arithmetic signs (called operators) you are accustomed to using
are different when you use the BASIC language. For example, the
multiply sign (x) is not used in BASIC. Instead, the asterisk (*) is used
for multiplication. Similarly, the divide sign (t) is replaced by the slash
(/) in BASIC. The sign for exponentiation (raising to a power) in
BASIC is t (the upper shift character on the Y key) or **. Now enter
these problems:

You Press The Display Screen Shows

80G]

Subtract 8 from 5 [JOG]

Multiply 5 times 8

[JOG]

How Your System Handles Arithmetic 19

20

Arithmetic You Press The Display Screen Shows

Divide 5 by 8

5 to the power of 2 GJii8

4 to the power of 2

(Hold dlwn the shift key
and press the Y key to get
t symbol.)

Problems: Using Addition, Subtraction, Multiplication, and Division

I.~ oj(' ':11:' :~:,:~

1 (:'

1. Find the total number of cars that a dealer sold during one week
if his daily sales were 3, 5, 2, 6, 7, 3 and 4.

2. Find the net number of cars removed from the same dealer's lot
if 20 people had trade-ins.

3. Find the dealer's average profit per car if he made a total profit
of $2700 for the sales in problem 1.

4. Find the dealer's total earnings if he made $20 on each car sold.

Possible Solutions

Problem 1:

:3 + ~::.; + ::? + (':,,:., '~! -+- :,:::' + 1+

:::) 0

o

,I~, I

(~)

20

Arithmetic You Press The Display Screen Shows

Divide 5 by 8

5 to the power of 2 GJii8

4 to the power of 2

(Hold dlwn the shift key
and press the Y key to get
t symbol.)

Problems: Using Addition, Subtraction, Multiplication, and Division

I.~ oj(' ':11:' :~:,:~

1 (:'

1. Find the total number of cars that a dealer sold during one week
if his daily sales were 3, 5, 2, 6, 7, 3 and 4.

2. Find the net number of cars removed from the same dealer's lot
if 20 people had trade-ins.

3. Find the dealer's average profit per car if he made a total profit
of $2700 for the sales in problem 1.

4. Find the dealer's total earnings if he made $20 on each car sold.

Possible Solutions

Problem 1:

:3 + ~::.; + ::? + (':,,:., '~! -+- :,:::' + 1+

:::) 0

o

,I~, I

(~)

(
"""" .;

"-L.L~~//

C~

c'

Problem 2:

.:'; U : .. :.: U

:1.0

Problem 3:

::.:.:: .. ? 0 0 ,'" :.":' 0
()

Problem 4:

)(-;;\',

(~:. 0

VARIABLES

You can store data, either direct input that you enter from the
keyboard or the result of a calculation. These stored items are called
variables. Each variable has a name associated with it. Whenever you
use the name of a variable, BASIC supplies the value associated with
that name.

Variables That Stand for Numbers

You can name a variable in BASIC with a single character of the
extended BASIC alphabet (A-Z, @, $, and #). A BASIC variable can
also be named with one of the preceding letters or symbols followed
by a single digit (0 through 9). Typical variable names are A2, #9, and
B1. You can name a maximum of 319 different numeric variables in
BASIC.

Assigning Values to Variables

Variables are assigned values by means of the equal (=) sign. The
value to the right of the = sign is assigned to the name to the left of
the = sign. After you assign a value to a variable, you can use the
variable in a calculation.

How Your System Handles Arithmetic 21

(
"""" .;

"-L.L~~//

C~

c'

Problem 2:

.:'; U : .. :.: U

:1.0

Problem 3:

::.:.:: .. ? 0 0 ,'" :.":' 0
()

Problem 4:

)(-;;\',

(~:. 0

VARIABLES

You can store data, either direct input that you enter from the
keyboard or the result of a calculation. These stored items are called
variables. Each variable has a name associated with it. Whenever you
use the name of a variable, BASIC supplies the value associated with
that name.

Variables That Stand for Numbers

You can name a variable in BASIC with a single character of the
extended BASIC alphabet (A-Z, @, $, and #). A BASIC variable can
also be named with one of the preceding letters or symbols followed
by a single digit (0 through 9). Typical variable names are A2, #9, and
B1. You can name a maximum of 319 different numeric variables in
BASIC.

Assigning Values to Variables

Variables are assigned values by means of the equal (=) sign. The
value to the right of the = sign is assigned to the name to the left of
the = sign. After you assign a value to a variable, you can use the
variable in a calculation.

How Your System Handles Arithmetic 21

22

Examples

To illustrate the use of variables, enter the following:

~ooo

r:: ~:: t,·}.; :I (:
!. :.:.: 0

and

After you press the
EXECUTE key, you have
created a variable named A

with a value of 12.

The result of a calculation
can also be assigned
to a variable.

o

22

Examples

To illustrate the use of variables, enter the following:

~ooo

r:: ~:: t,·}.; :I (:
!. :.:.: 0

and

After you press the
EXECUTE key, you have
created a variable named A

with a value of 12.

The result of a calculation
can also be assigned
to a variable.

o

mOGJ8008

morn 0 [] [_0_)

til:',:·:·,::':""··::
, , ','0

.:,'.:.:: :."' ... '.'.' ""'.'.1 I. ,' ...

. ,,' .," ..

c

I ':'. '_'I

~

c

I :: C ... ' (":-'i

~
c

You can change the value
of a variable the same
way you assigned the
original value.

You can also use the
variable and change its
value in the same
instruction.

This is a useful
programming tool
that will be explained
further in a later chapter
of this book.

If you want to know the
current value of a variable,
you simply enter the name
of the variable.

If you use the name of
a variable to which you
have not previously
assigned a value, the
system automatically
assumes its value

is zero (0).

How Your System Handles Arithmetic 23

mOGJ8008

morn 0 [] [_0_)

til:',:·:·,::':""··::
, , ','0

.:,'.:.:: :."' ... '.'.' ""'.'.1 I. ,' ...

. ,,' .," ..

c

I ':'. '_'I

~

c

I :: C ... ' (":-'i

~
c

You can change the value
of a variable the same
way you assigned the
original value.

You can also use the
variable and change its
value in the same
instruction.

This is a useful
programming tool
that will be explained
further in a later chapter
of this book.

If you want to know the
current value of a variable,
you simply enter the name
of the variable.

If you use the name of
a variable to which you
have not previously
assigned a value, the
system automatically
assumes its value

is zero (0).

How Your System Handles Arithmetic 23

24

Performing Several Functions in the Same Expression

In the preceding examples, only one arithmetic function was used in
each example. However, you are not restricted to writing instructions
with only one function. Any number of functions can occur in the
same instruction. As soon as you use more than one function,
however, you must be concerned about the order in which they are
used.

The Sequence of Arithmetic Operations

BASIC has a prescribed order of arithmetic execution called arithmetic
hierarchy. When two or more operators such as +, -, *, /, or tare
used, arithmetic is performed according to this hierarchy. That is,
operators with higher priorities are performed first, while operators
with the same priority are performed as they are encountered from left
to right.. The arithmetic hierarchy in BASIC is:

1. Operations enclosed in parentheses (highest priority)

2. Mathematical functions (for example, sine, cosine, or square root)

3. Exponentiation (t or **)

4. Positive/ negative operations (described later)

5. Multiplication and division (*, /)

6. Addition and subtraction (+, -) (lowest priority)

When an operation is enclosed in parentheses, it is performed first,
even though the operator enclosed in the parentheses may have a
lower priority than the operators outside the parentheses. As a result,
the prescribed order of execution can be changed if you use
parentheses. Operations enclosed in parentheses are executed in
BASIC before operations outside parentheses, regardless of the
hierarchy of the operators.

Some examples of arithmetic hierarchy are:

3+4/5

4/5+3

In both of these examples, the 4 is first divided by the 5 because the
divide operation has the highest priority. The .8 result is then added to
the 3, giving a final result of 3.8.

o

f~\

'""._ ..)"

()
24

Performing Several Functions in the Same Expression

In the preceding examples, only one arithmetic function was used in
each example. However, you are not restricted to writing instructions
with only one function. Any number of functions can occur in the
same instruction. As soon as you use more than one function,
however, you must be concerned about the order in which they are
used.

The Sequence of Arithmetic Operations

BASIC has a prescribed order of arithmetic execution called arithmetic
hierarchy. When two or more operators such as +, -, *, /, or tare
used, arithmetic is performed according to this hierarchy. That is,
operators with higher priorities are performed first, while operators
with the same priority are performed as they are encountered from left
to right.. The arithmetic hierarchy in BASIC is:

1. Operations enclosed in parentheses (highest priority)

2. Mathematical functions (for example, sine, cosine, or square root)

3. Exponentiation (t or **)

4. Positive/ negative operations (described later)

5. Multiplication and division (*, /)

6. Addition and subtraction (+, -) (lowest priority)

When an operation is enclosed in parentheses, it is performed first,
even though the operator enclosed in the parentheses may have a
lower priority than the operators outside the parentheses. As a result,
the prescribed order of execution can be changed if you use
parentheses. Operations enclosed in parentheses are executed in
BASIC before operations outside parentheses, regardless of the
hierarchy of the operators.

Some examples of arithmetic hierarchy are:

3+4/5

4/5+3

In both of these examples, the 4 is first divided by the 5 because the
divide operation has the highest priority. The .8 result is then added to
the 3, giving a final result of 3.8.

o

f~\

'""._ ..)"

()

("''". ~,

C

C

C

Another example is:

(3+4)/5

In this example, the 3 and 4 are first added because they are enclosed
in parentheses. The result, 7, is then divided by 5, giving a final result
of 1.4.

In the expression

16+ 23-4+ 133-8

addition and subtraction occur from left to right in the following
sequence:

16
+ 23

39
4

35
+133

168
8

160

Interim result

Interim result

Interim result

Final result

However, when parentheses are added, the sequence of operations
can change:

(16+23)-((4+133)-8)

In this example, the operations occur in the following sequence:

1. Proceeding from left to right, the 16
expression in the first set of + 23
parentheses is evaluated. 39 Interim result 1

2. The parenthetical expression within 4
the second set of parentheses is +133
evaluated next. 137 Interim result 2

3. The second set of parentheses 137
is now evaluated. 8

129 Interim result 3

4. Finally, the subtraction (having the 39 Interim result 1

same priority as addition) is per- -129 Interim result 3 --
formed and the result is displayed. - 90 Final result

How Your System Handles Arithmetic 25

("''". ~,

C

C

C

Another example is:

(3+4)/5

In this example, the 3 and 4 are first added because they are enclosed
in parentheses. The result, 7, is then divided by 5, giving a final result
of 1.4.

In the expression

16+ 23-4+ 133-8

addition and subtraction occur from left to right in the following
sequence:

16
+ 23

39
4

35
+133

168
8

160

Interim result

Interim result

Interim result

Final result

However, when parentheses are added, the sequence of operations
can change:

(16+23)-((4+133)-8)

In this example, the operations occur in the following sequence:

1. Proceeding from left to right, the 16
expression in the first set of + 23
parentheses is evaluated. 39 Interim result 1

2. The parenthetical expression within 4
the second set of parentheses is +133
evaluated next. 137 Interim result 2

3. The second set of parentheses 137
is now evaluated. 8

129 Interim result 3

4. Finally, the subtraction (having the 39 Interim result 1

same priority as addition) is per- -129 Interim result 3 --
formed and the result is displayed. - 90 Final result

How Your System Handles Arithmetic 25

26

Although the numbers and operators in this expression are the same
as those in the previous example, the parentheses completely change
the order of the operations and the final result.

Now, determine the result of the following expression by entering the
numbers, then pressing the EXECUTE key:

4+(3*(4-2))

The order of the arithmetic operations is: 4-2=2, 3x2=6, and 46=4096.

The display screen shows:

. ~ I,

Figure 5 shows other examples of arithmetic expressions.

This is the Way it This is the Way

Looks as Arithmetic: it Looks in BASIC: This is What it Means:

a+b+c (A+B+C)/2 First add A, B, and C;

2 divide the sum by 2.

+b+c a -
A+(B+C)/2 Add Band C, divide the

2 sum by 2; add the result

toA.

3a+4 3* A+4 Multiply A by 3; then

add 4.

3(a+4) 3*(A+4) Add A and 4; multiply

the sum by 3.

x2+7 Xt2+7 Square X and add 7.

(X+7)2 (X+7)t2 Add X and 7; square the

quantity.

(x+1)2 (X+1)t2/2 Add X and 1; square the
2 quantity; divide the

result by 2.

(x;)
(Xt2/2) *(X+Y)/3 Square X and divide by

(x+y) 2; add X and Y and multiply
3 by the previous result; divide

that result by 3.

Figure 5. Examples of Arithmetic and BASIC Expressions

o

/' '"
(. II

"'1>\
"LJ'

rf '""
\.)1'

(..)
26

Although the numbers and operators in this expression are the same
as those in the previous example, the parentheses completely change
the order of the operations and the final result.

Now, determine the result of the following expression by entering the
numbers, then pressing the EXECUTE key:

4+(3*(4-2))

The order of the arithmetic operations is: 4-2=2, 3x2=6, and 46=4096.

The display screen shows:

. ~ I,

Figure 5 shows other examples of arithmetic expressions.

This is the Way it This is the Way

Looks as Arithmetic: it Looks in BASIC: This is What it Means:

a+b+c (A+B+C)/2 First add A, B, and C;

2 divide the sum by 2.

+b+c a -
A+(B+C)/2 Add Band C, divide the

2 sum by 2; add the result

toA.

3a+4 3* A+4 Multiply A by 3; then

add 4.

3(a+4) 3*(A+4) Add A and 4; multiply

the sum by 3.

x2+7 Xt2+7 Square X and add 7.

(X+7)2 (X+7)t2 Add X and 7; square the

quantity.

(x+1)2 (X+1)t2/2 Add X and 1; square the
2 quantity; divide the

result by 2.

(x;)
(Xt2/2) *(X+Y)/3 Square X and divide by

(x+y) 2; add X and Y and multiply
3 by the previous result; divide

that result by 3.

Figure 5. Examples of Arithmetic and BASIC Expressions

o

/' '"
(. II

"'1>\
"LJ'

rf '""
\.)1'

(..)

(~

c

c'

As you can see, the more complicated the arithmetic expression looks,
the more complicated the BASIC expression looks. When you are
writing BASIC expressions, remember that parentheses must always
be in balanced pairs-as many right parentheses as left parentheses. If
a statement gets too complicated, you can usually break it down into
several simpler statements.

Positive/Negative Operators

The plus (+) and minus (-) signs indicate that a number is positive or
negative. When used for this purpose, the + and - signs have a higher
priority in the arithmetic hierarchy than they have when used for
addition and subtraction. In the following example:

-2+2-3

the 2 is raised to the second power, and the minus is assigned to the
result before the subtraction of the 3.

One rule that you must follow is that you cannot use two operators
sequential/y, except ** which is the same as +. Sequential operators
must be separated by parentheses. This rule applies to both the
arithmetic operators (+, -, *, /, and +) and the positive/negative
operators (+ and -). For example, enter 7-3 as 7 +-3. The flashing
display screen shows:

The lower arrow indicates the syntax error. Press ATTN to stop the
flashing screen, then enter the corrected expression, 7 + (-3). A
complete description of system error messages is included in the IBM
5110 BASIC Reference Manual, SA21-930B.

How Your System Handles Arithmetic 27

(~

c

c'

As you can see, the more complicated the arithmetic expression looks,
the more complicated the BASIC expression looks. When you are
writing BASIC expressions, remember that parentheses must always
be in balanced pairs-as many right parentheses as left parentheses. If
a statement gets too complicated, you can usually break it down into
several simpler statements.

Positive/Negative Operators

The plus (+) and minus (-) signs indicate that a number is positive or
negative. When used for this purpose, the + and - signs have a higher
priority in the arithmetic hierarchy than they have when used for
addition and subtraction. In the following example:

-2+2-3

the 2 is raised to the second power, and the minus is assigned to the
result before the subtraction of the 3.

One rule that you must follow is that you cannot use two operators
sequential/y, except ** which is the same as +. Sequential operators
must be separated by parentheses. This rule applies to both the
arithmetic operators (+, -, *, /, and +) and the positive/negative
operators (+ and -). For example, enter 7-3 as 7 +-3. The flashing
display screen shows:

The lower arrow indicates the syntax error. Press ATTN to stop the
flashing screen, then enter the corrected expression, 7 + (-3). A
complete description of system error messages is included in the IBM
5110 BASIC Reference Manual, SA21-930B.

How Your System Handles Arithmetic 27

28

You must use parentheses to separate consecutive operators, as in the
following examples:

Invalid Valid

6+-4 6+(-4)

3*-1.5 3*(-1.5)

8--4 8-(-4)

Try to solve the fol/owing problems using your system. Remember to
press EXECUTE after entering each problem.

Answers

The order of arithmetic operators applies when variables are used
also. For example, evaluate the following expression, where A=12 and
B=4:

A times B plus (2 to the power of B)

The correct answer is 64.

A Note About Numbers

When you use numbers in BASIC, they can be:

• Integers (whole numbers) such as:

2, -76, 842, 10000000, or 999111

• Decimal numbers such as:

-1.5, 3.7772, 0.00081, or -457.25

• Numbers in exponential format such as:

6E7 (meaning 6x107) or 5.4E-3 (meaning 5.4x10-3)

o

()

o
28

You must use parentheses to separate consecutive operators, as in the
following examples:

Invalid Valid

6+-4 6+(-4)

3*-1.5 3*(-1.5)

8--4 8-(-4)

Try to solve the fol/owing problems using your system. Remember to
press EXECUTE after entering each problem.

Answers

The order of arithmetic operators applies when variables are used
also. For example, evaluate the following expression, where A=12 and
B=4:

A times B plus (2 to the power of B)

The correct answer is 64.

A Note About Numbers

When you use numbers in BASIC, they can be:

• Integers (whole numbers) such as:

2, -76, 842, 10000000, or 999111

• Decimal numbers such as:

-1.5, 3.7772, 0.00081, or -457.25

• Numbers in exponential format such as:

6E7 (meaning 6x107) or 5.4E-3 (meaning 5.4x10-3)

o

()

o

c

c'

A Note About Names

When you name numeric variables in BASIC, they can be:

• A single character of the extended BASIC alphabet (A-Z, @, $, or #)
such as:

$, C, or V

• A single character of the extended BASIC alphabet (A-Z, @, $, and
#) followed by a single number such as:

A4, $6, $3, or T3

Variables That Stand for Characters

While you usually think of variables as standing for numbers, in BASIC
you can let a variable stand for combinations of characters such as
words or names. If a variable is going to represent a word or a name,
it is called a character variable. You name character variables with
one letter of the extended BASIC alphabet (A-Z, @, $, and #) followed
by a dollar sign ($). The dollar sign tells the system that the variable is
a character variable.

To assign a word or name to a character variable, you enclose the
word or name in single quotation marks following the equal sign.
When character data is displayed, the single quote marks do not
appear. For example:

A$='HARVEY SMITH'

Here are the general rules:

• A character variable is named by a single letter of the extended
BASIC alphabet followed by a dollar sign ($).

• To assign a value to the character variable, enclose the words or
names you are assigning in single quotation marks following the
equal sign.

• The maximum length of a character variable is 255 characters
(default length is 18 characters).

How Your System Handles Arithmetic 29

c

c'

A Note About Names

When you name numeric variables in BASIC, they can be:

• A single character of the extended BASIC alphabet (A-Z, @, $, or #)
such as:

$, C, or V

• A single character of the extended BASIC alphabet (A-Z, @, $, and
#) followed by a single number such as:

A4, $6, $3, or T3

Variables That Stand for Characters

While you usually think of variables as standing for numbers, in BASIC
you can let a variable stand for combinations of characters such as
words or names. If a variable is going to represent a word or a name,
it is called a character variable. You name character variables with
one letter of the extended BASIC alphabet (A-Z, @, $, and #) followed
by a dollar sign ($). The dollar sign tells the system that the variable is
a character variable.

To assign a word or name to a character variable, you enclose the
word or name in single quotation marks following the equal sign.
When character data is displayed, the single quote marks do not
appear. For example:

A$='HARVEY SMITH'

Here are the general rules:

• A character variable is named by a single letter of the extended
BASIC alphabet followed by a dollar sign ($).

• To assign a value to the character variable, enclose the words or
names you are assigning in single quotation marks following the
equal sign.

• The maximum length of a character variable is 255 characters
(default length is 18 characters).

How Your System Handles Arithmetic 29

30

Using Calculation Results

When you are entering a series of expressions in which the result
from one expression is used in the next expression, you can use the 8 key (while holding down the CMD key) to insert the result

of the last expression. This is the calc result function. Notice that Calc
Result is listed above the 8 key. For example, key the following:

and

o

,.(--- ~

I,~" ,,)1

;("

'\", i"

()
30

Using Calculation Results

When you are entering a series of expressions in which the result
from one expression is used in the next expression, you can use the 8 key (while holding down the CMD key) to insert the result

of the last expression. This is the calc result function. Notice that Calc
Result is listed above the 8 key. For example, key the following:

and

o

,.(--- ~

I,~" ,,)1

;("

'\", i"

()

(""'"

c:

c

c

The display screen shows:

Notice that the system inserted the result of A*C into the second
expression.

The calc result function will always insert the result of the last
calculator expression (character expressions as well as arithmetic
expressions). You must hold down the CM D key while you
press 0 for the calc result function. Arithmetic results are

enclosed in parentheses to avoid any conflict with adjacent operators
in case the result is negative. Character results are enclosed in single
quotation marks, just as they were when they were assigned.

Up to this point, you have been operating the system as a calculator.
Any of the operations described thus far can be performed any time
the system is waiting for you to enter input, with two exceptions:

• When a BASIC program is in operation and it stops for keyboard
input required by an INPUT statement, you cannot perform any
calculator operations .

• When you are entering data to create a keyboard-generated data
file (explained later), you cannot perform any calculator operations.

Any time, other than the exceptions listed, you can enter any of the
calculations described.

You can also stop a program during its operation to display or change
the values of variables, then continue the program. This is extremely
useful when you are checking a program for proper operation.

The following chapters discuss how to program your system using the
BASIC language. Exercises for this and following chapters are
provided in Chapter 13.

How Your System Handles Arithmetic 31

(""'"

c:

c

c

The display screen shows:

Notice that the system inserted the result of A*C into the second
expression.

The calc result function will always insert the result of the last
calculator expression (character expressions as well as arithmetic
expressions). You must hold down the CM D key while you
press 0 for the calc result function. Arithmetic results are

enclosed in parentheses to avoid any conflict with adjacent operators
in case the result is negative. Character results are enclosed in single
quotation marks, just as they were when they were assigned.

Up to this point, you have been operating the system as a calculator.
Any of the operations described thus far can be performed any time
the system is waiting for you to enter input, with two exceptions:

• When a BASIC program is in operation and it stops for keyboard
input required by an INPUT statement, you cannot perform any
calculator operations .

• When you are entering data to create a keyboard-generated data
file (explained later), you cannot perform any calculator operations.

Any time, other than the exceptions listed, you can enter any of the
calculations described.

You can also stop a program during its operation to display or change
the values of variables, then continue the program. This is extremely
useful when you are checking a program for proper operation.

The following chapters discuss how to program your system using the
BASIC language. Exercises for this and following chapters are
provided in Chapter 13.

How Your System Handles Arithmetic 31

32

01

tf-"
'~-~'

o
32

01

tf-"
'~-~'

o

(:~"

Chapter 3. Entering, Running, and Storing a Program

A program is your way to communicate with the system to solve a
problem. The key words in this statement are communicate and to
solve a problem. All programming is oriented toward problem solving.
You can solve a problem by first analyzing the problem, then by
formulating the solution. This involves communication. You can
communicate with the system using the BASIC or APL language, as
opposed to your communicating with other people in the English
language. Thus, a program is little more than a means of translating
your instructions to solve a problem into a language that the system
understands.

ENTERING A PROGRAM

The following discussion shows you how to enter a BASIC program
into the system and then how to execute that program. Also in this
chapter, you will learn how to save a program on a magnetic tape
cartridge or diskette, then load the program back into the system for
execution again.

The program you will enter calculates accumulated savings. This
calculation requires adding to the initial principal the interest earned at
a specified rate for some period of time; in this case we use years.
Enter the statements just as they are shown in the following example.
Don't forget to press EXECUTE after entering each statement. You
can enter the statements character-by-character or use the BASIC
statement keyword keys with the CMD key. If the system detects an
error in a statement you have entered, the keyboard becomes inactive
(except for ATTN and HOLD), and the display will flash. To stop the
flashing display, press ATTN, then correct the error.

o 0 :l. 0 F: I::: ('! P!? IJ C,i !.:: (>, ('! T U C (I LeI... {\ "\' F ('! C: C Ij ('j IJ L (! T [n ~:::; i~'1 \/ I i\! C b
o 0 ::,:':: 0 I' F: J (.,1 T 'J (,! I r T (', L P P J (-..! C J F' ('! L
o 0 :,'!:' 0 I P 1...1 T r)
o 0 I.j, 0 I r" F' ::;; 0 C:i C) T ("I (I J 0 0
o 0 ~,:,:,; 0 F I) I (.,I'r 'J j'-.I "f L h: F ::::; T F: ('f T F ') , j'..,j 1..1 "'!({ F I? C) F Y F t! F: ~:::;';) ,
o 0 (, (I :r (,) P 1.J'f F:, j'-)

(} n",:: (}
00::;::
00 (?
0:1.0

,:::; :::: F' '!l' (Jo} P J n f))1' (1
P P I i"-..1 T '(\ C, ;J i'l I...! L (:', T [II
C:i C) T C) c: 0 (I

~:::;T (J P

Entering, Running, and Storing a Program 33

(:~"

Chapter 3. Entering, Running, and Storing a Program

A program is your way to communicate with the system to solve a
problem. The key words in this statement are communicate and to
solve a problem. All programming is oriented toward problem solving.
You can solve a problem by first analyzing the problem, then by
formulating the solution. This involves communication. You can
communicate with the system using the BASIC or APL language, as
opposed to your communicating with other people in the English
language. Thus, a program is little more than a means of translating
your instructions to solve a problem into a language that the system
understands.

ENTERING A PROGRAM

The following discussion shows you how to enter a BASIC program
into the system and then how to execute that program. Also in this
chapter, you will learn how to save a program on a magnetic tape
cartridge or diskette, then load the program back into the system for
execution again.

The program you will enter calculates accumulated savings. This
calculation requires adding to the initial principal the interest earned at
a specified rate for some period of time; in this case we use years.
Enter the statements just as they are shown in the following example.
Don't forget to press EXECUTE after entering each statement. You
can enter the statements character-by-character or use the BASIC
statement keyword keys with the CMD key. If the system detects an
error in a statement you have entered, the keyboard becomes inactive
(except for ATTN and HOLD), and the display will flash. To stop the
flashing display, press ATTN, then correct the error.

o 0 :l. 0 F: I::: ('! P!? IJ C,i !.:: (>, ('! T U C (I LeI... {\ "\' F ('! C: C Ij ('j IJ L (! T [n ~:::; i~'1 \/ I i\! C b
o 0 ::,:':: 0 I' F: J (.,1 T 'J (,! I r T (', L P P J (-..! C J F' ('! L
o 0 :,'!:' 0 I P 1...1 T r)
o 0 I.j, 0 I r" F' ::;; 0 C:i C) T ("I (I J 0 0
o 0 ~,:,:,; 0 F I) I (.,I'r 'J j'-.I "f L h: F ::::; T F: ('f T F ') , j'..,j 1..1 "'!({ F I? C) F Y F t! F: ~:::;';) ,
o 0 (, (I :r (,) P 1.J'f F:, j'-)

(} n",:: (}
00::;::
00 (?
0:1.0

,:::; :::: F' '!l' (Jo} P J n f))1' (1
P P I i"-..1 T '(\ C, ;J i'l I...! L (:', T [II
C:i C) T C) c: 0 (I

~:::;T (J P

Entering, Running, and Storing a Program 33

34

Now read your entries on the display screen to see if you have
entered the program correctly. If you find a keying error, the next
paragraph describes how to correct the error before you run the
program. If your system has an attached printer, you can hold down
the CMD key and press the GJ key below Copy Display to get a

copy of the displayed data. Note that this key is blank on a
BASIC-only keyboard. The copy display function provides you with
printed copy of all 16 lines of data.

Correcting Your Keying Errors

To correct or change a statement line of a program already entered in
the system, use the gray scroll keys (and •) to position

the incorrect line to be changed on the input line right above the
READY message line. When pressed momentarily, these keys move
all information on the top 15 lines up or down one line position. When
you hold these keys down, the display lines will repeatedly move up or
down. When the line you want to change is positioned correctly,
which is easy to identify because the first character will be flashing,
you can use the forward space or backspace key to position the
cursor at the character to be corrected. You can then use insert and
delete functions to make the change. Remember, these functions are
activated only when you hold down the CM D key and
press (Insert) or. (Delete). After all changes

have been made to the line, press EXECUTE to reenter the line.

RUNNING THE PROGRAM

After you have entered the statement lines of the sample program,
you are ready to run the program. To run the program, enter RUN,
then press EXECUTE. Any error during execution causes the display to
flash. Press A TIN to stop the flashing screen, then correct the error.
You will have to enter RUN again to execute the program. When you
run the program, the display screen shows:

PI...IN
I I'---! I T J (i L P f.~ I 1-') C: J Pi:; L ';)

o

/--""

" ... "

34

Now read your entries on the display screen to see if you have
entered the program correctly. If you find a keying error, the next
paragraph describes how to correct the error before you run the
program. If your system has an attached printer, you can hold down
the CMD key and press the GJ key below Copy Display to get a

copy of the displayed data. Note that this key is blank on a
BASIC-only keyboard. The copy display function provides you with
printed copy of all 16 lines of data.

Correcting Your Keying Errors

To correct or change a statement line of a program already entered in
the system, use the gray scroll keys (and •) to position

the incorrect line to be changed on the input line right above the
READY message line. When pressed momentarily, these keys move
all information on the top 15 lines up or down one line position. When
you hold these keys down, the display lines will repeatedly move up or
down. When the line you want to change is positioned correctly,
which is easy to identify because the first character will be flashing,
you can use the forward space or backspace key to position the
cursor at the character to be corrected. You can then use insert and
delete functions to make the change. Remember, these functions are
activated only when you hold down the CM D key and
press (Insert) or. (Delete). After all changes

have been made to the line, press EXECUTE to reenter the line.

RUNNING THE PROGRAM

After you have entered the statement lines of the sample program,
you are ready to run the program. To run the program, enter RUN,
then press EXECUTE. Any error during execution causes the display to
flash. Press A TIN to stop the flashing screen, then correct the error.
You will have to enter RUN again to execute the program. When you
run the program, the display screen shows:

PI...IN
I I'---! I T J (i L P f.~ I 1-') C: J Pi:; L ';)

o

/--""

" ... "

'" ("'." .. '.

('.",'.'
~,

c

You will recognize the prompting message INITIAL PRINCIPAL? as part
of the second statement in the sample program. This is a PRINT
statement, which directs information to be displayed.

Note that the bottom question mark is flashing. The flashing question
mark is a result of the INPUT statement in the sample program. The
INPUT statement causes the question mark to be flashed to indicate
that you are to enter information from the keyboard for the program.

Now respond to the request for data to be entered by keying a value
for initial principal, then press EXECUTE. You can enter any number of
digits you want. The maximum number of significant digits that the
system will assign to any variable (your variable is P for principal) is 15
digits. You can include a decimal point, which does not count as a
digit entry, but you must not enter commas. (Commas indicate
multiple variables to the system.)

If you enter a decimal number with more than six digits to the right of
the decimal point, any digits beyond the sixth are rounded when the
answer for savings is displayed. The system is initialized to round
numbers at the sixth decimal position. However, the rounding position
can be changed to any position from 1 to 15 with the RD= command,
which sets the rounding position. To set the system to round all
displayed or printed results and calculations at the second decimal
position, you would enter: RD=2.

The rounding command can also be included with the GO and RUN
commands as described in the IBM 5110 BASIC Reference Manual,
SA21-930B. Remember that whenever you turn the power on or press
RESTART, the rounding position is set at 6.

All examples in this manual are run with the rounding position set to 6
digits (RD=6). If you change the rounding position, different results
will be displayed.

You must remember that when using any programming language,
including BASIC, you are communicating with the machine, telling it
what you want it to do. Thus, you should define precisely what the
machine does not know to avoid unnecessary problems.

You can enter values for the accumulated savings program as many
times as you want. After you enter values for interest and years in
response to the flashing question mark and press EXECUTE, the
system will display the information you specified and compute the
answer.

Entering, Running, and Storing a Program 35

'" ("'." .. '.

('.",'.'
~,

c

You will recognize the prompting message INITIAL PRINCIPAL? as part
of the second statement in the sample program. This is a PRINT
statement, which directs information to be displayed.

Note that the bottom question mark is flashing. The flashing question
mark is a result of the INPUT statement in the sample program. The
INPUT statement causes the question mark to be flashed to indicate
that you are to enter information from the keyboard for the program.

Now respond to the request for data to be entered by keying a value
for initial principal, then press EXECUTE. You can enter any number of
digits you want. The maximum number of significant digits that the
system will assign to any variable (your variable is P for principal) is 15
digits. You can include a decimal point, which does not count as a
digit entry, but you must not enter commas. (Commas indicate
multiple variables to the system.)

If you enter a decimal number with more than six digits to the right of
the decimal point, any digits beyond the sixth are rounded when the
answer for savings is displayed. The system is initialized to round
numbers at the sixth decimal position. However, the rounding position
can be changed to any position from 1 to 15 with the RD= command,
which sets the rounding position. To set the system to round all
displayed or printed results and calculations at the second decimal
position, you would enter: RD=2.

The rounding command can also be included with the GO and RUN
commands as described in the IBM 5110 BASIC Reference Manual,
SA21-930B. Remember that whenever you turn the power on or press
RESTART, the rounding position is set at 6.

All examples in this manual are run with the rounding position set to 6
digits (RD=6). If you change the rounding position, different results
will be displayed.

You must remember that when using any programming language,
including BASIC, you are communicating with the machine, telling it
what you want it to do. Thus, you should define precisely what the
machine does not know to avoid unnecessary problems.

You can enter values for the accumulated savings program as many
times as you want. After you enter values for interest and years in
response to the flashing question mark and press EXECUTE, the
system will display the information you specified and compute the
answer.

Entering, Running, and Storing a Program 35

36

The statements in the sample program are described in the following
paragraphs. In addition, Appendix A contains a short definition of all
the BASIC statements used in the system.

Statement

10 REM ACCUMULATED
SAVINGS

20 PRINT 'INITIAL PRINCIPAL?'

30 INPUT P

40 IF P=O GOTO 100

Meaning

The REM (remark) statement
can appear anywhere in the
program, but has no effect on
program execution. This
statement is used to insert
comments into the BASIC
program.

This PRINT statement specifies
that INITIAL PRINCIPAL? be
displayed. The single quotation
marks around INITIAL
PRINCIPAL? indicate that it is a
character constant and that the
entire character string is to be
displayed.

The I N PUT statement allows you
to assign values from the
keyboard to variables when your
program is running. In this
example, the variable P will
receive the value you enter. The
system displays a question mark
in position 1 of the input line to
indicate that keyboara input is
expected.

The I F statement transfers
control to a specified statement
when a specified condition is
met. In this statement, the
program will terminate when you
enter 0 for the principal. As long
as you want to calculate savings,
you can enter values for the
principal, interest, and years.
When you are finished, however,
just enter 0 for principal and the
program goes to statement 100
(STOP).

o

'f -"
'\,. ,,,/

36

The statements in the sample program are described in the following
paragraphs. In addition, Appendix A contains a short definition of all
the BASIC statements used in the system.

Statement

10 REM ACCUMULATED
SAVINGS

20 PRINT 'INITIAL PRINCIPAL?'

30 INPUT P

40 IF P=O GOTO 100

Meaning

The REM (remark) statement
can appear anywhere in the
program, but has no effect on
program execution. This
statement is used to insert
comments into the BASIC
program.

This PRINT statement specifies
that INITIAL PRINCIPAL? be
displayed. The single quotation
marks around INITIAL
PRINCIPAL? indicate that it is a
character constant and that the
entire character string is to be
displayed.

The I N PUT statement allows you
to assign values from the
keyboard to variables when your
program is running. In this
example, the variable P will
receive the value you enter. The
system displays a question mark
in position 1 of the input line to
indicate that keyboara input is
expected.

The I F statement transfers
control to a specified statement
when a specified condition is
met. In this statement, the
program will terminate when you
enter 0 for the principal. As long
as you want to calculate savings,
you can enter values for the
principal, interest, and years.
When you are finished, however,
just enter 0 for principal and the
program goes to statement 100
(STOP).

o

'f -"
'\,. ,,,/

Statement Meaning

(~~ 50 PRINT 'INTEREST RATE?, This statement displays the
NUMBER OF YEARS?' character string INTEREST

RATE?, NUMBER OF YEARS?

60 INPUT R,N This statement specifies that the

C~' variables Rand N will receive
the values you enter for interest
rate and number of years,
respectively. Again, a question
mark will be displayed to

(~~'o,. indicate that keyboard input is
expected. Values you enter must

L , ~/

be separated by a comma.

70 S=P*(1+R/100)+N This statement indicates that the
value of S (savings) is equal to
the value of P (principal)
multiplied by 1 plus the value R
(rate divided by 100 to convert
to percent), raised to the power
of N (number of years).

80 PRINT 'ACCUMULATED This statement indicates that
~

C SAVINGS AFTER',N;'YEARS the characters enclosed in
IS' ;S single quotation marks are to be

displayed, with the values for S
and N inserted where shown.
The value of N is the number of
years you entered, and the value
of S was calculated in statement
70.

90 GOTO 20 The GOTO statement transfers
control to a specified line
number. In this statement,
control is transferred to the

C' statement at line number 20.
This provides for a number of
savings calculations to be made
repetitively.

C
100 STOP The STOP statement indicates

the end of execution of a BASIC
program and terminates
operations.

C
Entering, Running, and Storing a Program 37

Statement Meaning

(~~ 50 PRINT 'INTEREST RATE?, This statement displays the
NUMBER OF YEARS?' character string INTEREST

RATE?, NUMBER OF YEARS?

60 INPUT R,N This statement specifies that the

C~' variables Rand N will receive
the values you enter for interest
rate and number of years,
respectively. Again, a question
mark will be displayed to

(~~'o,. indicate that keyboard input is
expected. Values you enter must

L , ~/

be separated by a comma.

70 S=P*(1+R/100)+N This statement indicates that the
value of S (savings) is equal to
the value of P (principal)
multiplied by 1 plus the value R
(rate divided by 100 to convert
to percent), raised to the power
of N (number of years).

80 PRINT 'ACCUMULATED This statement indicates that
~

C SAVINGS AFTER',N;'YEARS the characters enclosed in
IS' ;S single quotation marks are to be

displayed, with the values for S
and N inserted where shown.
The value of N is the number of
years you entered, and the value
of S was calculated in statement
70.

90 GOTO 20 The GOTO statement transfers
control to a specified line
number. In this statement,
control is transferred to the

C' statement at line number 20.
This provides for a number of
savings calculations to be made
repetitively.

C
100 STOP The STOP statement indicates

the end of execution of a BASIC
program and terminates
operations.

C
Entering, Running, and Storing a Program 37

The numbers preceding the statements are called statement numbers.
They are necessary so the system knows the proper sequence of your
instructions. BASIC statement numbers in the 5110 can have values
from 0001 through 9999. You can use consecutive numbers if you
wish, but normally you should leave room for expansion between the
statement numbers so that changes can be made more easily (see
Making Changes to Your Program). When you enter statement
numbers, you do not need to include the leading zeros. They will be
added by the system when the statement is entered.

After you have computed your last savings calculation, you can end
the program operation by entering 0 for the requested principal and
pressing EXECUTE.

Automatic Statement Numbering

Instead of manually entering the statement numbers in a BASIC
program, you can instruct the system to provide statement numbers
for you. You can do this with the AUTO command. Simply enter
AUTO and press EXECUTE. Notice that the word AUTO is displayed
above statement number 0010. From this point on, the system
numbers your statements in increments of 10. Automatic numbering
continues until you enter anything other than an AUTO-numbered
BASIC statement (a command word, for example, LIST) in the input
line. You can res\ore automatic numbering by entering AUTO NNNN,
where NNNN is the statement number you want to begin with.

Sample Run

Let's use the accumulated savings program to calculate the amount of
savings generated by an investment of $1000 for 10 years at a rate of
5%.

Note the Comma to
Separate the Variables

You Enter PtJN
Number of Years = 10 System Requests Input- I N:I: T:I: (l'u,

Initial Principal = $1000---:1. 0 0 0
System Requests input-INT'"PE::;T r: t :, fE';) ! Nl.jhI-:n:::F: CJF YTt1F<::::;";)

Interest Rate = 5 ~,::,;! 10
The Answer (,CCl.jf'iLIL(.~',TED :3t',VINU:;::; (,FTEP :I. 0
Syste m Requests New- J (~ I 'r I (l L P I~ J (\1 C: I P (:11... ';)

Principal ,_
II

You Enter to End ______
u

Prog~m READY
System Indicates it is ~
Ready to Proceed

38

We'll Call This
$1628.89

/;/' :1, X><X:X><

Cursor Amount of Storage
Position Available

()

,{' "1\

"~_l

()

The numbers preceding the statements are called statement numbers.
They are necessary so the system knows the proper sequence of your
instructions. BASIC statement numbers in the 5110 can have values
from 0001 through 9999. You can use consecutive numbers if you
wish, but normally you should leave room for expansion between the
statement numbers so that changes can be made more easily (see
Making Changes to Your Program). When you enter statement
numbers, you do not need to include the leading zeros. They will be
added by the system when the statement is entered.

After you have computed your last savings calculation, you can end
the program operation by entering 0 for the requested principal and
pressing EXECUTE.

Automatic Statement Numbering

Instead of manually entering the statement numbers in a BASIC
program, you can instruct the system to provide statement numbers
for you. You can do this with the AUTO command. Simply enter
AUTO and press EXECUTE. Notice that the word AUTO is displayed
above statement number 0010. From this point on, the system
numbers your statements in increments of 10. Automatic numbering
continues until you enter anything other than an AUTO-numbered
BASIC statement (a command word, for example, LIST) in the input
line. You can res\ore automatic numbering by entering AUTO NNNN,
where NNNN is the statement number you want to begin with.

Sample Run

Let's use the accumulated savings program to calculate the amount of
savings generated by an investment of $1000 for 10 years at a rate of
5%.

Note the Comma to
Separate the Variables

You Enter PtJN
Number of Years = 10 System Requests Input- I N:I: T:I: (l'u,

Initial Principal = $1000---:1. 0 0 0
System Requests input-INT'"PE::;T r: t :, fE';) ! Nl.jhI-:n:::F: CJF YTt1F<::::;";)

Interest Rate = 5 ~,::,;! 10
The Answer (,CCl.jf'iLIL(.~',TED :3t',VINU:;::; (,FTEP :I. 0
Syste m Requests New- J (~ I 'r I (l L P I~ J (\1 C: I P (:11... ';)

Principal ,_
II

You Enter to End ______
u

Prog~m READY
System Indicates it is ~
Ready to Proceed

38

We'll Call This
$1628.89

/;/' :1, X><X:X><

Cursor Amount of Storage
Position Available

()

,{' "1\

"~_l

()

c

c

c'

USING TAPE OR DISKETTE STORAGE (YOUR LIBRARY)

So far, you have used only the 5110 active work area. The active work
area is the part of 5110 internal storage where calculations are
performed; it is also the place where your programs are stored. When
you set the 5110 POWER ON/OFF switch to OFF, or press RESTART,
the data in the active work area is lost. However, before turning the
power off or pressing RESTART, you can save the data in your active
work area by writing the contents of your active work area on a tape
cartridge or diskette. This media' (tape or diskette) is like a library; you
can write the contents of your active work area on the media (like
placing a book on a library shelf) and, at a later time, put the
information stored on the media back into the active work area (like
taking the book off the library shelf to use it again).

The library consists of one or more files (each file is like a book). Just
as each book in a library has a name, each file that contains
information on the media also can have a name (file identification).

The IBM 5110 system commands are your means of controlling the
active work area and storage media. Look at the labels above the
alphameric keyboard. These are the system command keywords,
which you can enter by simply pressing the CM D key with the
appropriate key below the label. The system command keywords can
also be entered character by character. There are some system
commands that do not appear on the labels above the keyboard. All
of the system commands are described in detail in the IBM 5110
BASIC Reference Manual, SA21-930B.

In the following example, you will see how some of the system
commands work. First, a tape cartridge or diskette must be inserted
into your system.

If you are using a tape cartridge:

1. Be sure that the tape does not contain data required for further
use.

2. Check the tape cartridge security arrow in the corner of the
cartridge. Figure 6 shows the arrow pointing to SAFE. When the
arrow is in this position, the tape cannot be written on. To be
able to write on the tape, use a paper clip or a coin to turn the
arrow away from SAFE.

3. Insert the tape cartridge. Figure 7 shows how a magnetic tape
cartridge is inserted into the 5110. Press the cartridge in until it is
firmly seated.

Entering, Running, and Storing a Program 39

c

c

c'

USING TAPE OR DISKETTE STORAGE (YOUR LIBRARY)

So far, you have used only the 5110 active work area. The active work
area is the part of 5110 internal storage where calculations are
performed; it is also the place where your programs are stored. When
you set the 5110 POWER ON/OFF switch to OFF, or press RESTART,
the data in the active work area is lost. However, before turning the
power off or pressing RESTART, you can save the data in your active
work area by writing the contents of your active work area on a tape
cartridge or diskette. This media' (tape or diskette) is like a library; you
can write the contents of your active work area on the media (like
placing a book on a library shelf) and, at a later time, put the
information stored on the media back into the active work area (like
taking the book off the library shelf to use it again).

The library consists of one or more files (each file is like a book). Just
as each book in a library has a name, each file that contains
information on the media also can have a name (file identification).

The IBM 5110 system commands are your means of controlling the
active work area and storage media. Look at the labels above the
alphameric keyboard. These are the system command keywords,
which you can enter by simply pressing the CM D key with the
appropriate key below the label. The system command keywords can
also be entered character by character. There are some system
commands that do not appear on the labels above the keyboard. All
of the system commands are described in detail in the IBM 5110
BASIC Reference Manual, SA21-930B.

In the following example, you will see how some of the system
commands work. First, a tape cartridge or diskette must be inserted
into your system.

If you are using a tape cartridge:

1. Be sure that the tape does not contain data required for further
use.

2. Check the tape cartridge security arrow in the corner of the
cartridge. Figure 6 shows the arrow pointing to SAFE. When the
arrow is in this position, the tape cannot be written on. To be
able to write on the tape, use a paper clip or a coin to turn the
arrow away from SAFE.

3. Insert the tape cartridge. Figure 7 shows how a magnetic tape
cartridge is inserted into the 5110. Press the cartridge in until it is
firmly seated.

Entering, Running, and Storing a Program 39

40

Figure 7
" II) Sert"

109 a
Cartrid

ge lot
o the 5110 Nt

odel1

r"\
:("",

o

\
'V~)Ji

a

40

Figure 7
" II) Sert"

109 a
Cartrid

ge lot
o the 5110 Nt

odel1

r"\
:("",

o

\
'V~)Ji

a

c

el,

,Y

c

c

If you are using a diskette:

1. Be sure the diskette is initialized and contains no data required
for other uses.

2.

3.

Diskette initialization is the process of providing identification
labels and other system information on diskettes. The
initialization routine is among the customer support functions
provided on diskette from IBM. You can select the initialization
routine using the LINK command, as shown in the IBM 5110
Customer Support Functions Reference Manual, SA21-9311.

Note: Diskettes supplied by IBM are initialized before they are
sent to you.

Remove the diskette from the protective envelope (Figure 8).

Insert the diskette into diskette drive 1, as shown in Figure 9.

11\111\11\1\\1111\1\11111111\1111\11111111110

~8 "'I] ",/ I

/ ~

Figure 8. Removing the Diskette from the Protective

Envelope
111

This label must be in
the lower right corner
as the diskette is
inserted.

Figure 9. Inserting a Diskette in Diskette Drive 1

Entering, Running, and Storing a Program 41

c

el,

,Y

c

c

If you are using a diskette:

1. Be sure the diskette is initialized and contains no data required
for other uses.

2.

3.

Diskette initialization is the process of providing identification
labels and other system information on diskettes. The
initialization routine is among the customer support functions
provided on diskette from IBM. You can select the initialization
routine using the LINK command, as shown in the IBM 5110
Customer Support Functions Reference Manual, SA21-9311.

Note: Diskettes supplied by IBM are initialized before they are
sent to you.

Remove the diskette from the protective envelope (Figure 8).

Insert the diskette into diskette drive 1, as shown in Figure 9.

11\111\11\1\\1111\1\11111111\1111\11111111110

~8 "'I] ",/ I

/ ~

Figure 8. Removing the Diskette from the Protective

Envelope
111

This label must be in
the lower right corner
as the diskette is
inserted.

Figure 9. Inserting a Diskette in Diskette Drive 1

Entering, Running, and Storing a Program 41

42

Marking Your Media

To prepare a tape or diskette with one file of any size, or several files
of the same size in the same operation, you enter a MARK command.
The MARK command can be entered anytime that READY is indicated
on the display screen. It will not interfere with your programs. For our
exercise, we are assuming that you are beginning a new media (no
files have been marked). We will mark three files, each containing
2048 or 2K character positions (K is equal to 1024). This exercise
provides enough space on your media to contain three programs (one
in each file) of approximately 35 statements each. Tape files for the
5110 are numbered sequentially beginning with 1. Should you later
decide to add more files, you can do so as long as you do not exceed
the physical limits of your media.

A tape contains space for approximately 200K of storage, minus the
leading and trailing data for each data file, which equals 0.5K per file.
Thus, a tape can contain approximately 132 1 K files, 44 4K files, or
any combination of file sizes up to 200K, including the required 0.5K
per file. For information on diskette capacities, see the IBM 5110
BASIC User's Guide, SA21-9307.

Note: If you are not using a new tape cartridge, you must first ensure
that your tape does not contain important data belonging to someone
else. This is necessary because any existing data beyond the file you
MARK is erased when you MARK the tape again. The system displays
a warning message when you attempt a MARK command to a file that
is already marked. To continue marking the file, press A TIN to stop
the flashing screen, press the scroll up key once to move the display
up one line, enter GO in positions 1 and 2, then press EXECUTE. To
discontinue the MARK operation, enter GO END, then press EXECUTE.

To mark the tape in our exercise, press the following keys:

~~~~~~~~~~~~~ 
~ ~ I ' Y J 

Size of Files Number of Files Starting File / 
To Be To Format Number 
Formatted Device. If you are using tape storage, 

specify E80. If you are using diskette 
storage, specify 080 (diskette drive 1). 
See the 5110 BASIC Reference Manual 
for details on device addresses. 

You have now marked the media for three files of 2K characters each, 
starting with file 1. The READY message is displayed when the media 
preparation is completed. We will now save the savings program on 
your media. If you want to mark additional files, remember that you 
should begin with file number 4. 

o 

If-"\ 

' ..... jV 

C) 
42 

Marking Your Media 

To prepare a tape or diskette with one file of any size, or several files 
of the same size in the same operation, you enter a MARK command. 
The MARK command can be entered anytime that READY is indicated 
on the display screen. It will not interfere with your programs. For our 
exercise, we are assuming that you are beginning a new media (no 
files have been marked). We will mark three files, each containing 
2048 or 2K character positions (K is equal to 1024). This exercise 
provides enough space on your media to contain three programs (one 
in each file) of approximately 35 statements each. Tape files for the 
5110 are numbered sequentially beginning with 1. Should you later 
decide to add more files, you can do so as long as you do not exceed 
the physical limits of your media. 

A tape contains space for approximately 200K of storage, minus the 
leading and trailing data for each data file, which equals 0.5K per file. 
Thus, a tape can contain approximately 132 1 K files, 44 4K files, or 
any combination of file sizes up to 200K, including the required 0.5K 
per file. For information on diskette capacities, see the IBM 5110 
BASIC User's Guide, SA21-9307. 

Note: If you are not using a new tape cartridge, you must first ensure 
that your tape does not contain important data belonging to someone 
else. This is necessary because any existing data beyond the file you 
MARK is erased when you MARK the tape again. The system displays 
a warning message when you attempt a MARK command to a file that 
is already marked. To continue marking the file, press A TIN to stop 
the flashing screen, press the scroll up key once to move the display 
up one line, enter GO in positions 1 and 2, then press EXECUTE. To 
discontinue the MARK operation, enter GO END, then press EXECUTE. 

To mark the tape in our exercise, press the following keys: 

~~~~~~~~~~~~~ 
~ ~ I ' Y J

Size of Files Number of Files Starting File /
To Be To Format Number
Formatted Device. If you are using tape storage,

specify E80. If you are using diskette
storage, specify 080 (diskette drive 1).
See the 5110 BASIC Reference Manual
for details on device addresses.

You have now marked the media for three files of 2K characters each,
starting with file 1. The READY message is displayed when the media
preparation is completed. We will now save the savings program on
your media. If you want to mark additional files, remember that you
should begin with file number 4.

o

If-"\

' jV

C)

c

c

c

In the following examples, if you are using diskette storage, specify
device address DBO (diskette drive 1) instead of device address EBO
(built-in tape drive).

SAVE Command

The SAVINGS program can be saved on tape or diskette with the
SAVE command.

To save the sample program on tape, enter SAVE, then enter the
number of the file you want to save it in, followed by EBO, which is
the device address of the Model 1 built-in tape unit. You will save the
program in file 1, so enter SAVE 1,'SAVINGS',EBO. The READY
message will be displayed to tell you when the program is saved on
tape. (You needn't be concerned with the numbers following the
READY message.) While the program is being saved, you will notice
the tape in the cartridge moving back and forth. This is normal,
because the system is reading each segment of data after it is written.
This ensures that the information is saved correctly.

To save the program on diskette, you will need a file number, a file
name, and a device address. Use file number 1 and file name
SAVINGS. Enter SAVE 1,'SAVINGS',DBO. To save the program on
diskette, you must enter the device address of diskette drive 1, which
is DBO. To prove that the program has been saved, and that you can
load it back into storage, the program stored in the system must first
be erased.

There are three ways to do this:

• Enter LOADO and press EXECUTE. This clears machine storage and
prepares it to accept input from the keyboard or programs loaded
from tape. This is the recommended way to clear machine storage.

• Press the RESTART switch. This restarts the machine to the same
status as when the power was turned on. The internal diagnostics
are performed again; thus, this method requires 10-15 seconds
depending on the amount of storage in your machine. This method
is recommended only when the PROCESS CHECK indicator comes
on, or when you change from BASIC to APL or APL to BASIC.

• Set the power switch to OFF, then set it back to ON. The same
diagnostics are performed as during RESTART.

To clear the machine. enter LOADO and press EXECUTE. To prove the
program no longer exists in the machine, enter RUN and press
EXECUTE. The system will respond with an error message to let you
know this cannot be done because there is no program in storage.
Press A TIN to continue.

Entering, Running, and Storing a Program 43

c

c

c

In the following examples, if you are using diskette storage, specify
device address DBO (diskette drive 1) instead of device address EBO
(built-in tape drive).

SAVE Command

The SAVINGS program can be saved on tape or diskette with the
SAVE command.

To save the sample program on tape, enter SAVE, then enter the
number of the file you want to save it in, followed by EBO, which is
the device address of the Model 1 built-in tape unit. You will save the
program in file 1, so enter SAVE 1,'SAVINGS',EBO. The READY
message will be displayed to tell you when the program is saved on
tape. (You needn't be concerned with the numbers following the
READY message.) While the program is being saved, you will notice
the tape in the cartridge moving back and forth. This is normal,
because the system is reading each segment of data after it is written.
This ensures that the information is saved correctly.

To save the program on diskette, you will need a file number, a file
name, and a device address. Use file number 1 and file name
SAVINGS. Enter SAVE 1,'SAVINGS',DBO. To save the program on
diskette, you must enter the device address of diskette drive 1, which
is DBO. To prove that the program has been saved, and that you can
load it back into storage, the program stored in the system must first
be erased.

There are three ways to do this:

• Enter LOADO and press EXECUTE. This clears machine storage and
prepares it to accept input from the keyboard or programs loaded
from tape. This is the recommended way to clear machine storage.

• Press the RESTART switch. This restarts the machine to the same
status as when the power was turned on. The internal diagnostics
are performed again; thus, this method requires 10-15 seconds
depending on the amount of storage in your machine. This method
is recommended only when the PROCESS CHECK indicator comes
on, or when you change from BASIC to APL or APL to BASIC.

• Set the power switch to OFF, then set it back to ON. The same
diagnostics are performed as during RESTART.

To clear the machine. enter LOADO and press EXECUTE. To prove the
program no longer exists in the machine, enter RUN and press
EXECUTE. The system will respond with an error message to let you
know this cannot be done because there is no program in storage.
Press A TIN to continue.

Entering, Running, and Storing a Program 43

44

In order to run the program again, it must first be loaded into storage
from where it was stored on the tape or diskette. The LOAD
command is used to place the program back into storage.

LOAD Command

To load the SAVINGS program back into 5110 storage, enter LOAD,
then enter the number and/or name of the file containing the program
you want to load. In this example, type in 1 for file 1, then enter
device address E80 for tape or 080 for diskette. Complete this
sequence by pressing EXECUTE. The READY message tells you that
the program is loaded and can be executed again. Run the program
again by entering RUN, then pressing EXECUTE.

Practice the SAVE and LOAD commands by changing the file number
and file name when you again save the sample program on tape or
diskette and load it back into the system.

Listing a Directory of Programs

When you save a program, it goes into your collection of programs
and data on tape or diskette. You may find it necessary at times to
list a directory of the programs you have in the files on tape or
diskette. To do this, you use the UTIL command. The UTIL command
instructs the system to list the following information about each file on
tape or diskette:

• File number

• File identification

• File type

• Amount of storage allocated to the file

• Amount of unused storage in the file

• Number of defective areas (on tape only)

• File protection status (on diskette only)

• Data set starting location (on diskette only)

• Function keys defined in the file

o

,[-);1,
,~ ,

10-•••• ,1

o
44

In order to run the program again, it must first be loaded into storage
from where it was stored on the tape or diskette. The LOAD
command is used to place the program back into storage.

LOAD Command

To load the SAVINGS program back into 5110 storage, enter LOAD,
then enter the number and/or name of the file containing the program
you want to load. In this example, type in 1 for file 1, then enter
device address E80 for tape or 080 for diskette. Complete this
sequence by pressing EXECUTE. The READY message tells you that
the program is loaded and can be executed again. Run the program
again by entering RUN, then pressing EXECUTE.

Practice the SAVE and LOAD commands by changing the file number
and file name when you again save the sample program on tape or
diskette and load it back into the system.

Listing a Directory of Programs

When you save a program, it goes into your collection of programs
and data on tape or diskette. You may find it necessary at times to
list a directory of the programs you have in the files on tape or
diskette. To do this, you use the UTIL command. The UTIL command
instructs the system to list the following information about each file on
tape or diskette:

• File number

• File identification

• File type

• Amount of storage allocated to the file

• Amount of unused storage in the file

• Number of defective areas (on tape only)

• File protection status (on diskette only)

• Data set starting location (on diskette only)

• Function keys defined in the file

o

,[-);1,
,~ ,

10-•••• ,1

o

C'·,·,
J

c·

c

A UTIL command for a typical tape directory is shown below.

UTIL 01R1,E80

The resulting output for tape is shown in the following example:

User Identification A~torage (in KI

:1.:1. OlO .. OOf) 0
0) 010,,009 0

/
00:1. INTEF<Nf:iL.
o 0 2 ~~; D tJ I~ C [
[; 0 /) 1< F Y ::::. 'j ,,:> O:l. 0 J (} 0 (? O:l. 1::;

1:2 01.0, OO'? 0 ~,~;,;
:1.:1. OJO;OO':? 0
12 0 0,09 0 7

/ 'I I Defined Function Keys
File Type

Defective Areas on Tape
Unused Storage (in K) (' * 'd' t ethan In Ica es mor

[I () '+ 1< [: \' ><

o 0 ~.:j LUCI< E::U

OOf.\EYY

File Number

nine defective areas)

For a diskette file directory, a UTIL statement is:

UTIL 01R1,080

The resulting output for diskette is shown in the following example:

U001
(1) 0 :~:.~
00 0 ::~:,

/user Identification

I (·1 'r E h: r··.l

rta Set Starting Location

o 001
~:)OI.J HC:[

o 0 0 I.j. 1< E Y' ><
o 0 O~::.i LUC:I<ED
o 0 (I .::;, 1< ['('y'

\
File Number

010 .. OOO~)
:1.::;.:: 0 0,000(;.:'
l?
:1.1

0010 J 000(;:'
OO:l.O)OOO'?

File TYP!

1

:? (I 1 II 0 'r 0 ()?

Unused Storage (in K)

P 02011
P
P
p O{,O:l.l

\ OilO"
Defined Function Keys

File Protection Indicator

For additional information about directory listings, see the IBM 5110
BASIC Reference Manual, SA21-930B.

Entering, Running, and Storing a Program 45

C'·,·,
J

c·

c

A UTIL command for a typical tape directory is shown below.

UTIL 01R1,E80

The resulting output for tape is shown in the following example:

User Identification A~torage (in KI

:1.:1. OlO .. OOf) 0
0) 010,,009 0

/
00:1. INTEF<Nf:iL.
o 0 2 ~~; D tJ I~ C [
[; 0 /) 1< F Y ::::. 'j ,,:> O:l. 0 J (} 0 (? O:l. 1::;

1:2 01.0, OO'? 0 ~,~;,;
:1.:1. OJO;OO':? 0
12 0 0,09 0 7

/ 'I I Defined Function Keys
File Type

Defective Areas on Tape
Unused Storage (in K) (' * 'd' t ethan In Ica es mor

[I () '+ 1< [: \' ><

o 0 ~.:j LUCI< E::U

OOf.\EYY

File Number

nine defective areas)

For a diskette file directory, a UTIL statement is:

UTIL 01R1,080

The resulting output for diskette is shown in the following example:

U001
(1) 0 :~:.~
00 0 ::~:,

/user Identification

I (·1 'r E h: r··.l

rta Set Starting Location

o 001
~:)OI.J HC:[

o 0 0 I.j. 1< E Y' ><
o 0 O~::.i LUC:I<ED
o 0 (I .::;, 1< ['('y'

\
File Number

010 .. OOO~)
:1.::;.:: 0 0,000(;.:'
l?
:1.1

0010 J 000(;:'
OO:l.O)OOO'?

File TYP!

1

:? (I 1 II 0 'r 0 ()?

Unused Storage (in K)

P 02011
P
P
p O{,O:l.l

\ OilO"
Defined Function Keys

File Protection Indicator

For additional information about directory listings, see the IBM 5110
BASIC Reference Manual, SA21-930B.

Entering, Running, and Storing a Program 45

46

The following commands have been discussed in this chapter:

AUTO -

MARK -

LOAD -

SAVE -

RD=

Automatically provides BASIC statement numbers

Prepares a tape cartridge or diskette for data or
programs to be saved

Loads the 5110 storage with data from tape,
diskette, or from the keyboard

Saves the BASIC program in 5110 storage on tape
or diskette

Specifies rounding of decimal numbers

RUN Executes a BASIC program

UTI L Lists a directory of tape or diskette file information

(()

46

The following commands have been discussed in this chapter:

AUTO -

MARK -

LOAD -

SAVE -

RD=

Automatically provides BASIC statement numbers

Prepares a tape cartridge or diskette for data or
programs to be saved

Loads the 5110 storage with data from tape,
diskette, or from the keyboard

Saves the BASIC program in 5110 storage on tape
or diskette

Specifies rounding of decimal numbers

RUN Executes a BASIC program

UTI L Lists a directory of tape or diskette file information

(()

('''~.'' '.

c

c

c

A REVIEW OF WHAT YOU'VE DONE

After reading this far and doing the exercises described, you should be
able to perform the following functions with your system:

• Use as a calculator
Addition
Subtraction
Multiplication

- Division
Exponentiation
Use of positive/negative operators
Use of parentheses in arithmetic hierarchy

- Use of arithmetic constants

• Correct keying errors
Replace a character
Delete a character

- Insert a character
- Make corrections in a line

• Use variables
- Assign values to variables
- Display variable values

• Enter short, simple programs
- Change program lines

Run programs
Erase programs

- Store programs on tape or diskette
- Load programs from tape or diskette

• Clear the machine storage

Entering, Running, and Storing a Program 47

('''~.'' '.

c

c

c

A REVIEW OF WHAT YOU'VE DONE

After reading this far and doing the exercises described, you should be
able to perform the following functions with your system:

• Use as a calculator
Addition
Subtraction
Multiplication

- Division
Exponentiation
Use of positive/negative operators
Use of parentheses in arithmetic hierarchy

- Use of arithmetic constants

• Correct keying errors
Replace a character
Delete a character

- Insert a character
- Make corrections in a line

• Use variables
- Assign values to variables
- Display variable values

• Enter short, simple programs
- Change program lines

Run programs
Erase programs

- Store programs on tape or diskette
- Load programs from tape or diskette

• Clear the machine storage

Entering, Running, and Storing a Program 47

o

/ ."\

0",,-.1"

:0
48

o

/ ."\

0",,-.1"

:0
48

C
-'"'~'"" \,

J

c

Chapter 4. How to Write a Program

In the following pages, you are going to write more BASIC programs
and learn to use some fundamental tools for writing programs. From
this point on in the manual we will not show you the keys to press.
We will just say to enter and then give you the data you should enter.
Exercises for this chapter are provided in Chapter 13.

The LET Statement

A LET statement consists of four parts: a statement number, a
variable to the left of an equal sign, an equal sign, and a quantity or a
computation (called an expression) to the right of the equal sign. In
BASIC programming, a LET statement means:

1. Evaluate the expression on the right side of the equal sign, and

2. Assign that value to the variable on the left side of the equal
sign.

In BASIC, you can have statements such as

0030 LET X=X+1

while you couldn't in math. In BASIC this statement means to take
whatever value X now has, add 1 to it, and replace the old value of X
with this new value.

Incidently, you can omit the word LET from a LET statement in a
program. These two statements

0010 LET X=A+B

0010 X=A+B

mean exactly the same thing. Most of our examples will not show the
word LET because it's not necessary to include it.

The following program uses simple arithmetic. Try to look at the
program as a step-by-step method for solving a particular problem.

Problem

Last month you went to the dentist and had an examination and
X-rays. That cost $25. You had two teeth filled. That cost $24. Your
insurance will pay for 75 % of everything over $15. How much do you
have to pay, and how much does the insurance pay?

How to Write a Program 49

C
-'"'~'"" \,

J

c

Chapter 4. How to Write a Program

In the following pages, you are going to write more BASIC programs
and learn to use some fundamental tools for writing programs. From
this point on in the manual we will not show you the keys to press.
We will just say to enter and then give you the data you should enter.
Exercises for this chapter are provided in Chapter 13.

The LET Statement

A LET statement consists of four parts: a statement number, a
variable to the left of an equal sign, an equal sign, and a quantity or a
computation (called an expression) to the right of the equal sign. In
BASIC programming, a LET statement means:

1. Evaluate the expression on the right side of the equal sign, and

2. Assign that value to the variable on the left side of the equal
sign.

In BASIC, you can have statements such as

0030 LET X=X+1

while you couldn't in math. In BASIC this statement means to take
whatever value X now has, add 1 to it, and replace the old value of X
with this new value.

Incidently, you can omit the word LET from a LET statement in a
program. These two statements

0010 LET X=A+B

0010 X=A+B

mean exactly the same thing. Most of our examples will not show the
word LET because it's not necessary to include it.

The following program uses simple arithmetic. Try to look at the
program as a step-by-step method for solving a particular problem.

Problem

Last month you went to the dentist and had an examination and
X-rays. That cost $25. You had two teeth filled. That cost $24. Your
insurance will pay for 75 % of everything over $15. How much do you
have to pay, and how much does the insurance pay?

How to Write a Program 49

50

What to Do

1. Find the total dentist bill (call it 0).

2. Subtract $15 to find the amount eligible for insurance (call it E).

3. Take 75% of the result (call it I). That's how much the insurance
pays.

4. Subtract the insurance money from the total bill 0 to find out
how much money you owe (call this M).

5. Display how much you have to pay and how much the insurance
will pay (M and I).

The following BASIC statements, which you will e(lter later, can be
used to solve this problem:

0010 0=25+24
0020 E=D-15
00301=.75*E
0040 M=O-I
0050 PRINT M,I
0060 STOP

Notice the PRINT statement. Because you want to know both your
payment and the insurance payment, you can specify both M and I in
the same statement. Any time you want to display the value of more
than one variable, you can use a single PRINT statement if you list the
variables and separate them with commas or semicolons.

USING REMARKS

You can make your programs easier to work with, and easier for other
people to use, if you include descriptions of what the statements do in
the program. These descriptions are known as remark statements.
You write remarks as if they were statements in the BASIC program,
but they don't serve any function in the execution of the program.
They are solely for information. You can insert them anywhere in a
program.

50

What to Do

1. Find the total dentist bill (call it 0).

2. Subtract $15 to find the amount eligible for insurance (call it E).

3. Take 75% of the result (call it I). That's how much the insurance
pays.

4. Subtract the insurance money from the total bill 0 to find out
how much money you owe (call this M).

5. Display how much you have to pay and how much the insurance
will pay (M and I).

The following BASIC statements, which you will e(lter later, can be
used to solve this problem:

0010 0=25+24
0020 E=D-15
00301=.75*E
0040 M=O-I
0050 PRINT M,I
0060 STOP

Notice the PRINT statement. Because you want to know both your
payment and the insurance payment, you can specify both M and I in
the same statement. Any time you want to display the value of more
than one variable, you can use a single PRINT statement if you list the
variables and separate them with commas or semicolons.

USING REMARKS

You can make your programs easier to work with, and easier for other
people to use, if you include descriptions of what the statements do in
the program. These descriptions are known as remark statements.
You write remarks as if they were statements in the BASIC program,
but they don't serve any function in the execution of the program.
They are solely for information. You can insert them anywhere in a
program.

C
;--,,'-~

,/

" C'''''',',',,

c'

c

To include a remark in a program, you write a BASIC statement called
REM. It has a line number like any other BASIC statement. Following
the line number, you enter the letters REM followed by any remark
you want. Examples of REM statements are:

40 REM THIS PROGRAM COMPUTES BATTING AVERAGES

70 REM AT THIS POINT, PRINT OUT THE RESULTS

10 REM DENTBILL

You'll see other examples of REM statements as you go through this
manual.

You should now be ready to enter the program from the system
keyboard. To enter and execute the program, follow the instructions
below. Remember to press EXECUTE after each line is entered.

Instructions

Clear storage

Enter the statements

Run the program

Display Screen Shows

(I 0 ~.:_:.i 0 j"vj ::~ D -,,- :::
o 0 (:< 0 F' r:.:~ I !"--.l-r rei;, J
(I 0 --i' 0 ~::;r () p

Remember that the idea in this program, and any other programs you
write, is to break down what you want to do into logical sequential
steps. It may help to use this tactic: Ask yourself what is the very
first thing I have to do? What is the next? And so on. You can make
a list of what you have to do and then convert each item in the list to
a BASIC statement. Thus, you will always have a sequence of
statements that will solve the problem in an orderly step-by-step
fashion.

The dentbill program is not a typical program because it works on only
one set of data that is a part of the program. Most programs are
written to use many sets of data and use data that is not a direct part
of the program. Later program examples will explain this in detail.

How to Write a Program 51

C
;--,,'-~

,/

" C'''''',',',,

c'

c

To include a remark in a program, you write a BASIC statement called
REM. It has a line number like any other BASIC statement. Following
the line number, you enter the letters REM followed by any remark
you want. Examples of REM statements are:

40 REM THIS PROGRAM COMPUTES BATTING AVERAGES

70 REM AT THIS POINT, PRINT OUT THE RESULTS

10 REM DENTBILL

You'll see other examples of REM statements as you go through this
manual.

You should now be ready to enter the program from the system
keyboard. To enter and execute the program, follow the instructions
below. Remember to press EXECUTE after each line is entered.

Instructions

Clear storage

Enter the statements

Run the program

Display Screen Shows

(I 0 ~.:_:.i 0 j"vj ::~ D -,,- :::
o 0 (:< 0 F' r:.:~ I !"--.l-r rei;, J
(I 0 --i' 0 ~::;r () p

Remember that the idea in this program, and any other programs you
write, is to break down what you want to do into logical sequential
steps. It may help to use this tactic: Ask yourself what is the very
first thing I have to do? What is the next? And so on. You can make
a list of what you have to do and then convert each item in the list to
a BASIC statement. Thus, you will always have a sequence of
statements that will solve the problem in an orderly step-by-step
fashion.

The dentbill program is not a typical program because it works on only
one set of data that is a part of the program. Most programs are
written to use many sets of data and use data that is not a direct part
of the program. Later program examples will explain this in detail.

How to Write a Program 51

52

LISTING PROGRAM CONTENTS

Because the dentbill program is currently in the system work area, we
can now list the statements of the program on the display screen with
the LIST system command. Enter LIST, then press EXECUTE. The
statements of the dentbill program now appear on the display screen.

The LIST command causes the first 14 lines of the program to be
displayed. You can then use the scroll up key to view additional lines
of the program.

It isn't necessary to list the entire program each time you want to see
a particular part of it. You can list any 14-line portion of the program
by entering the last line number you want displayed after the
command keyword LIST. For example, LIST 30 would display
statement numbers 10, 20, and 30 of the dentbill program, with
statement 30 on line 1.

BRANCHES

The system normally executes programs line by line according to the
line numbers of the statements. However, you can vary this sequential
order and transfer control to a line number other than the next
sequential one. This is called branching. Two of the statements you
can use for branching are the GOTO and IF statements.

The GOTO Statement

This statement tells the system to go to a specific line number. A
GOTO statement at line 20 of a program that tells the system to go to
line number 60 would look like this:

0020 GOTO 60

o

()
52

LISTING PROGRAM CONTENTS

Because the dentbill program is currently in the system work area, we
can now list the statements of the program on the display screen with
the LIST system command. Enter LIST, then press EXECUTE. The
statements of the dentbill program now appear on the display screen.

The LIST command causes the first 14 lines of the program to be
displayed. You can then use the scroll up key to view additional lines
of the program.

It isn't necessary to list the entire program each time you want to see
a particular part of it. You can list any 14-line portion of the program
by entering the last line number you want displayed after the
command keyword LIST. For example, LIST 30 would display
statement numbers 10, 20, and 30 of the dentbill program, with
statement 30 on line 1.

BRANCHES

The system normally executes programs line by line according to the
line numbers of the statements. However, you can vary this sequential
order and transfer control to a line number other than the next
sequential one. This is called branching. Two of the statements you
can use for branching are the GOTO and IF statements.

The GOTO Statement

This statement tells the system to go to a specific line number. A
GOTO statement at line 20 of a program that tells the system to go to
line number 60 would look like this:

0020 GOTO 60

o

()

c'''·.·.~.··
v

(...• ,. \
./

c

c

The I F Statement

An IF statement can test whether a variable is equal to, greater than,
or less than another variable or constant of the same data type. The
I F statement includes a GOTO statement. The I F statement operates
this way:

1. The IF statement tests the condition you define.

2. If the answer to the test is yes, the condition is true; the system
will go to the line number that you entered in the I F statement.

3. If the answer is no, the system ignores the rest of the IF
statement and goes directly to the next sequential line in the
program.

Here's an example of an IF statement:

0040 IF X=O GOTO 80

In this statement, if X is ·0, the system goes to line 80. If X is not 0, it
goes on to the next line in the program.

The six tests you can make with the IF statement are:

• Equal to, =

• Not equal to, ;t or < >

• Greater than, >

• Less than, <

• Greater than or equal to, ~ or > =

• Less than or equal to, ~ or < =

The system stores < > as ;t, >= as ~, and < = as ~; thus, even though
you enter < > the system will display ;t when you list the statements.

How to Write a Program 53

c'''·.·.~.··
v

(...• ,. \
./

c

c

The I F Statement

An IF statement can test whether a variable is equal to, greater than,
or less than another variable or constant of the same data type. The
I F statement includes a GOTO statement. The I F statement operates
this way:

1. The IF statement tests the condition you define.

2. If the answer to the test is yes, the condition is true; the system
will go to the line number that you entered in the I F statement.

3. If the answer is no, the system ignores the rest of the IF
statement and goes directly to the next sequential line in the
program.

Here's an example of an IF statement:

0040 IF X=O GOTO 80

In this statement, if X is ·0, the system goes to line 80. If X is not 0, it
goes on to the next line in the program.

The six tests you can make with the IF statement are:

• Equal to, =

• Not equal to, ;t or < >

• Greater than, >

• Less than, <

• Greater than or equal to, ~ or > =

• Less than or equal to, ~ or < =

The system stores < > as ;t, >= as ~, and < = as ~; thus, even though
you enter < > the system will display ;t when you list the statements.

How to Write a Program 53

54

Some examples of IF statements are:

This IF Statement:

0130 IF X>10 GOTO 40

0190 IF Y<21 GOTO 10

0010 IF A1 ~5 GOTO 60

0030 IF A2;tX GOTO 75

Means:

If the value of X is greater than
10, go to line 40.

If the value of Y is less than 21,
go to line 10.

If the value of A 1 is greater than
or equal to 5, go to line 60.

If the value of A2 is not equal to
the value of X, go to line 75.

The following program examples describe more about how to break
down a problem into the BASIC statements required to use your
system to solve a problem. Again,. as opposed to most typical
programs, the sample programs will use data internal to the programs.
After you've seen how data within a program can be manipulated,
you'll be shown how to supply program data from outside the
program.

Although it may not be necessary in all instances, it is a good idea to
enter a LOADO command before entering any program statements.
This ensures that the system work area is clear. Remember also that
you can use the AUTO command to provide automatic statement
numbering.

Program Example 1

You are in charge of billing people for orders of dresses. There are
two styles, one at $108 a dozen and one at $136 a dozen. On orders
of $500 or over, there is a 10% discount. For the account you are
now working on, there are two dozen orders for the first dress and
three dozen orders for the second dress.

The program to determine the bill is:

o (I :I. I) F< E h PRO G F (, \"\ T CJ FIG U F E IJ I...! T I:t I ~::; c,: U I..,! j\! T ~; C) (1 [I P D [: F~ ~:::;

0020 (,::::2
0030 f{::::3

0050 If T~500 GOTO 0070
o 0 {. 0 :0 :::: , :I. .)!. 'r
o 0 -/ 0 P F< :r NT! U ' ·1'····:0
o 0 ~:~ 0 E; 'r (J P

o

54

Some examples of IF statements are:

This IF Statement:

0130 IF X>10 GOTO 40

0190 IF Y<21 GOTO 10

0010 IF A1 ~5 GOTO 60

0030 IF A2;tX GOTO 75

Means:

If the value of X is greater than
10, go to line 40.

If the value of Y is less than 21,
go to line 10.

If the value of A 1 is greater than
or equal to 5, go to line 60.

If the value of A2 is not equal to
the value of X, go to line 75.

The following program examples describe more about how to break
down a problem into the BASIC statements required to use your
system to solve a problem. Again,. as opposed to most typical
programs, the sample programs will use data internal to the programs.
After you've seen how data within a program can be manipulated,
you'll be shown how to supply program data from outside the
program.

Although it may not be necessary in all instances, it is a good idea to
enter a LOADO command before entering any program statements.
This ensures that the system work area is clear. Remember also that
you can use the AUTO command to provide automatic statement
numbering.

Program Example 1

You are in charge of billing people for orders of dresses. There are
two styles, one at $108 a dozen and one at $136 a dozen. On orders
of $500 or over, there is a 10% discount. For the account you are
now working on, there are two dozen orders for the first dress and
three dozen orders for the second dress.

The program to determine the bill is:

o (I :I. I) F< E h PRO G F (, \"\ T CJ FIG U F E IJ I...! T I:t I ~::; c,: U I..,! j\! T ~; C) (1 [I P D [: F~ ~:::;

0020 (,::::2
0030 f{::::3

0050 If T~500 GOTO 0070
o 0 {. 0 :0 :::: , :I. .)!. 'r
o 0 -/ 0 P F< :r NT! U ' ·1'····:0
o 0 ~:~ 0 E; 'r (J P

o

(
r~"" . ,11\

~..JI

~,1, ("""',",

c

c'

c'

This program solves the problem in the following steps:

1. It finds the total order (line 40).

2. It tests to see if the total is less than $500 (line 50). If it is, the
program goes to line 70 and displays the total. The discount D
will be 0 in this case, and the totals will be displayed.

3. For orders of $500 or over, the program computes the 10%
discount on line 60. Then it continues to line 70 to display the
total.

Note: D will be 0 when the order is less than $500 because each time
the system starts to execute a program after a RUN command, it
automatically sets the value of all numeric variables to O. Character
variables are set to blanks. This is called initialization. The values
remain zeros or blanks until a statement in the program assigns a
different value. This means that you never have any problem with
values being left over from the last time you ran the program.

Upon execution of this program, the display screen shows:

{, ::.:.~ , I.J.

Thus, the total order is $624, the allowable discount is $62.40, and the
amount to be billed is $561.60. The cents columns in the dollar figures
do not print because the system has no way of determining how many
significant digits you want printed. You will be shown how to have
numbers printed in the exact format you want in a later chapter.

How to Write a Program 55

(
r~"" . ,11\

~..JI

~,1, ("""',",

c

c'

c'

This program solves the problem in the following steps:

1. It finds the total order (line 40).

2. It tests to see if the total is less than $500 (line 50). If it is, the
program goes to line 70 and displays the total. The discount D
will be 0 in this case, and the totals will be displayed.

3. For orders of $500 or over, the program computes the 10%
discount on line 60. Then it continues to line 70 to display the
total.

Note: D will be 0 when the order is less than $500 because each time
the system starts to execute a program after a RUN command, it
automatically sets the value of all numeric variables to O. Character
variables are set to blanks. This is called initialization. The values
remain zeros or blanks until a statement in the program assigns a
different value. This means that you never have any problem with
values being left over from the last time you ran the program.

Upon execution of this program, the display screen shows:

{, ::.:.~ , I.J.

Thus, the total order is $624, the allowable discount is $62.40, and the
amount to be billed is $561.60. The cents columns in the dollar figures
do not print because the system has no way of determining how many
significant digits you want printed. You will be shown how to have
numbers printed in the exact format you want in a later chapter.

How to Write a Program 55

56

Program Example 2

You are moving. You get estimates from two movers and want to
know which mover will be cheaper. Mover A charges $40 an hour and
estimates that the work will take 5 hours. Mover B charges $32.50 an
hour and estimates that the work will take 8 hours. If both movers
cost the same, you'll hire Mover B because he has a better reputation.
Here is the program:

(.~UTO

o 0 :I. I) ~l :::: ~:.=.; ')I:' q, 0
o 0 2 (I B :::: 0 ~, :::) ;;,:: , ',:.:.;
() 0 ::::;: (I F~: E t1 T E ~:) "r T I] ~::; E E t·; H D I ~:::; C H [: (.~ P E F:
(I 0 I.j. (I I F (I :: E·: Ci D T D 0:1. 0 0
0050 REM GO HERE IF B CHEAPER
0060 PRINT 'B CHEAPER OR EQUAL
00*/0 PRINT 1-:':

oono GTOP
0090 REM GO HERE IF A CHEAPER
o :I. 0 0 P R I 1\1 "r '() C: HE,; F [I~ ,
(I 1 1. 0 P f< I N T j.:,

[I :I. ::? 0 ~::; T D P

Here is how this program works:

1. In lines 10 and 20, it figures the total cost for each mover.

2. In line 40, it tests to determine which one of two paths to take.
Either the program will go to line 100, or it will continue with
lines 50, 60, 70, and 80. This test determines which mover is
cheaper.

3. If Mover A is cheaper, the program goes to line 100. Line 100
lets you know that Mover A has the contract and displays the
total price. Notice line 100. It is a PRINT statement, but it has
single quotation marks around the words A CH EAPER. You can
write a PRINT statement that displays the words entered if you
enclose the words in single quotation marks. If line 100 is
executed, the words A CH EAPER will be displayed. Line 110 has
no quotation marks. It is a PRINT statement for variable A, and
will display the value of variable A. After the PRINT statements,
the program ends at line 120.

4. If Mover B is cheaper, the program continues with line 50. Line
60 is a PRINT statement containing the words B CHEAPER OR
EQUAL in single quotation marks. If line 60 is executed, the
words B CHEAPER OR EQUAL will be displayed. Line 70 will
display the value of variable B. After the PRINT statements, the
program comes to line 80, a STOP statement, which ends the
program.

56

Program Example 2

You are moving. You get estimates from two movers and want to
know which mover will be cheaper. Mover A charges $40 an hour and
estimates that the work will take 5 hours. Mover B charges $32.50 an
hour and estimates that the work will take 8 hours. If both movers
cost the same, you'll hire Mover B because he has a better reputation.
Here is the program:

(.~UTO

o 0 :I. I) ~l :::: ~:.=.; ')I:' q, 0
o 0 2 (I B :::: 0 ~, :::) ;;,:: , ',:.:.;
() 0 ::::;: (I F~: E t1 T E ~:) "r T I] ~::; E E t·; H D I ~:::; C H [: (.~ P E F:
(I 0 I.j. (I I F (I :: E·: Ci D T D 0:1. 0 0
0050 REM GO HERE IF B CHEAPER
0060 PRINT 'B CHEAPER OR EQUAL
00*/0 PRINT 1-:':

oono GTOP
0090 REM GO HERE IF A CHEAPER
o :I. 0 0 P R I 1\1 "r '() C: HE,; F [I~ ,
(I 1 1. 0 P f< I N T j.:,

[I :I. ::? 0 ~::; T D P

Here is how this program works:

1. In lines 10 and 20, it figures the total cost for each mover.

2. In line 40, it tests to determine which one of two paths to take.
Either the program will go to line 100, or it will continue with
lines 50, 60, 70, and 80. This test determines which mover is
cheaper.

3. If Mover A is cheaper, the program goes to line 100. Line 100
lets you know that Mover A has the contract and displays the
total price. Notice line 100. It is a PRINT statement, but it has
single quotation marks around the words A CH EAPER. You can
write a PRINT statement that displays the words entered if you
enclose the words in single quotation marks. If line 100 is
executed, the words A CH EAPER will be displayed. Line 110 has
no quotation marks. It is a PRINT statement for variable A, and
will display the value of variable A. After the PRINT statements,
the program ends at line 120.

4. If Mover B is cheaper, the program continues with line 50. Line
60 is a PRINT statement containing the words B CHEAPER OR
EQUAL in single quotation marks. If line 60 is executed, the
words B CHEAPER OR EQUAL will be displayed. Line 70 will
display the value of variable B. After the PRINT statements, the
program comes to line 80, a STOP statement, which ends the
program.

c

c:

c

After you run the program, the display screen shows:
\

Loops

Here is a new problem. You are a rug salesperson. All your rugs
come in rolls 12 feet wide. Your customers buy rugs in varying
lengths depending on how long their rooms are. You want to make a
chart of how many square yards of rug are required for rooms of
different lengths. The most popular room sizes start at 9 feet long (a
12 by 9 foot rug) and increase a foot at a time (12 by 10, 12 by 11,
and so on) until they reach 12 by 20.

You will write a program that computes the number of yards in a 12
by 9 rug, then a 12 by 10 rug, on up to a 12 by 20 rug.

To compute the number of square yards in each of the 12 different
sized rugs, you have to find the number of square feet and divide by
9. The main computation step is:

0020 LET Y=(12*X)/9

where Y is the number of square yards, and X is the length of each
different rug. To display the value of Y, you would use this statement:

0030 PRINT Y

The value of X has to increase by 1, from 9 to 10 on up to 20. You
could write a program like this:

0010 X=9
0020 Y=(12*X)/9
0030 PRINT Y
0040 X=10
0050 Y=(12*X)/9
0060 PRINT Y

and so on until X=20

How to Write a Program 57

c

c:

c

After you run the program, the display screen shows:
\

Loops

Here is a new problem. You are a rug salesperson. All your rugs
come in rolls 12 feet wide. Your customers buy rugs in varying
lengths depending on how long their rooms are. You want to make a
chart of how many square yards of rug are required for rooms of
different lengths. The most popular room sizes start at 9 feet long (a
12 by 9 foot rug) and increase a foot at a time (12 by 10, 12 by 11,
and so on) until they reach 12 by 20.

You will write a program that computes the number of yards in a 12
by 9 rug, then a 12 by 10 rug, on up to a 12 by 20 rug.

To compute the number of square yards in each of the 12 different
sized rugs, you have to find the number of square feet and divide by
9. The main computation step is:

0020 LET Y=(12*X)/9

where Y is the number of square yards, and X is the length of each
different rug. To display the value of Y, you would use this statement:

0030 PRINT Y

The value of X has to increase by 1, from 9 to 10 on up to 20. You
could write a program like this:

0010 X=9
0020 Y=(12*X)/9
0030 PRINT Y
0040 X=10
0050 Y=(12*X)/9
0060 PRINT Y

and so on until X=20

How to Write a Program 57

58

This program uses a LET statement to increase the value of X.
However, there is a better way. You can make a loop. A loop is just
what it sounds like. It is a series of program steps that are repeated.
It looks like this :

Start of loop

Carry out the
instructions

End of loop

Go back and
start again

Two things have to happen to this loop to make it work. It has to
have some way to change the values it uses before it loops up to the
top and starts again. And it has to have some way to know when to
stop, or the program will run indefinitely.

First Loop Method

So far you have these program statements:

0020 Y=(12*X)/9
0030 PRINT Y

You want to start with X equal to 9, so put a LET statement ahead of
these two statements assigning 9 as the first value of X. It will also
help if you print the value of X with the computed value of Y, so the
table will be more self-explanatory. Now, the program looks like this:

0010 X=9
0020 Y=(12*X)/9
0030 PRINT X,Y

To avoid specifying X=10, X=11, and so on, write a general statement
that will keep increasing the value of X by 1. That statement is:

0040 X=X+1

/ ''',

''\ .. f

58

This program uses a LET statement to increase the value of X.
However, there is a better way. You can make a loop. A loop is just
what it sounds like. It is a series of program steps that are repeated.
It looks like this :

Start of loop

Carry out the
instructions

End of loop

Go back and
start again

Two things have to happen to this loop to make it work. It has to
have some way to change the values it uses before it loops up to the
top and starts again. And it has to have some way to know when to
stop, or the program will run indefinitely.

First Loop Method

So far you have these program statements:

0020 Y=(12*X)/9
0030 PRINT Y

You want to start with X equal to 9, so put a LET statement ahead of
these two statements assigning 9 as the first value of X. It will also
help if you print the value of X with the computed value of Y, so the
table will be more self-explanatory. Now, the program looks like this:

0010 X=9
0020 Y=(12*X)/9
0030 PRINT X,Y

To avoid specifying X=10, X=11, and so on, write a general statement
that will keep increasing the value of X by 1. That statement is:

0040 X=X+1

/ ''',

''\ .. f

C·'
./~

c

c

c'

c

Remember that while this statement looks peculiar in a mathematical
sense, it's perfectly valid in BASIC. It says: Assign the value of X to
be equal to the old value of X plus 1.

By adding statement 40 to the program, you've changed the value of X
and completed the steps required to make the loop operate once.
Now you have to add a GOTO statement to go back to the beginning
of the loop:

0050 GOTO 20

You go to line 20 because you only have to go back to the
computation step, not to line 10 where you originally set X equal to 9.

After the system goes to line 20, it computes and displays the yardage
again, but this time for X equal to 10. It arrives at line 40 again and
changes X to 11; then it goes back to line 20 to compute the next
yardage. This process continues, increasing the value of X by 1 after
each loop.

Ending a Loop

One thing is missing from an otherwise perfect loop. It never ends.
Not at X=20, not at X=30, because X just keeps increasing. If you are
sitting in front of your system while this program is running, you can
stop this loop whenever you want to by pressing ATTN. But this is
obviously not an ideal method. You can make the loop stop
automatically if you build in a test with an I F statement to see when
you've processed enough values of X. In this program, you want the
loop to stop when the value of X passes 20. Consider this IF
statement:

0050 IF X>20 GOTO 70

Line 70 will be a STOP statement.

The IF test goes before the GOTO statement that branches to line 20.
If you put it after the GOTO statement, it will never be executed. This
is the finished program:

0010 X=9
0020 Y=(12*X)/9
0030 PRINT X,Y
0040 X=X+1
0050 IF X>20 GOTO 0070
0060 GOTO 0020
0070 STOP

How to Write a Program 59

C·'
./~

c

c

c'

c

Remember that while this statement looks peculiar in a mathematical
sense, it's perfectly valid in BASIC. It says: Assign the value of X to
be equal to the old value of X plus 1.

By adding statement 40 to the program, you've changed the value of X
and completed the steps required to make the loop operate once.
Now you have to add a GOTO statement to go back to the beginning
of the loop:

0050 GOTO 20

You go to line 20 because you only have to go back to the
computation step, not to line 10 where you originally set X equal to 9.

After the system goes to line 20, it computes and displays the yardage
again, but this time for X equal to 10. It arrives at line 40 again and
changes X to 11; then it goes back to line 20 to compute the next
yardage. This process continues, increasing the value of X by 1 after
each loop.

Ending a Loop

One thing is missing from an otherwise perfect loop. It never ends.
Not at X=20, not at X=30, because X just keeps increasing. If you are
sitting in front of your system while this program is running, you can
stop this loop whenever you want to by pressing ATTN. But this is
obviously not an ideal method. You can make the loop stop
automatically if you build in a test with an I F statement to see when
you've processed enough values of X. In this program, you want the
loop to stop when the value of X passes 20. Consider this IF
statement:

0050 IF X>20 GOTO 70

Line 70 will be a STOP statement.

The IF test goes before the GOTO statement that branches to line 20.
If you put it after the GOTO statement, it will never be executed. This
is the finished program:

0010 X=9
0020 Y=(12*X)/9
0030 PRINT X,Y
0040 X=X+1
0050 IF X>20 GOTO 0070
0060 GOTO 0020
0070 STOP

How to Write a Program 59

60

Looking at this program, you should be able to see that lines 50 and
60 can be combined to make a more efficient program that looks like
this:

0010 X=9
0020 Y={12*X}/9
0030 PRINT X,Y
0040 X=X+1
0050 IF X~20 GOTO 0020
0060 STOP

Now, enter and run the program. After you run the program, the
display screen shows:

1(,

1 8 . 5 /) .:::. (;. {;. ""?

::"~ 0
;"~ 1 . :.-5 3 :3 :3 : .. :~; :?;

You can press HOLD to stop the upward movement of the data. To
continue, press HOLD a second time.

There is another way to make a loop in a program. At the beginning
of the loop, instead of setting X equal to its first value, you enter the
entire range of values that X will use. In the rug example, you would
write

0010 FOR X=9 TO 20

Then you write the statements that solve the problem and print the
results:

0020 Y={12*X}/9
0030 PRINT X,Y

o

()
60

Looking at this program, you should be able to see that lines 50 and
60 can be combined to make a more efficient program that looks like
this:

0010 X=9
0020 Y={12*X}/9
0030 PRINT X,Y
0040 X=X+1
0050 IF X~20 GOTO 0020
0060 STOP

Now, enter and run the program. After you run the program, the
display screen shows:

1(,

1 8 . 5 /) .:::. (;. {;. ""?

::"~ 0
;"~ 1 . :.-5 3 :3 :3 : .. :~; :?;

You can press HOLD to stop the upward movement of the data. To
continue, press HOLD a second time.

There is another way to make a loop in a program. At the beginning
of the loop, instead of setting X equal to its first value, you enter the
entire range of values that X will use. In the rug example, you would
write

0010 FOR X=9 TO 20

Then you write the statements that solve the problem and print the
results:

0020 Y={12*X}/9
0030 PRINT X,Y

o

()

C:t

c

c

Then you tell the system to go to the next value of X and repeat the
loop:

0040 NEXT X

FOR and NEXT statements always go in pairs: FOR at the beginning
of the loop and NEXT at the end. The system automatically repeats
the loop as many times as you told it to in the FOR statement. When
it finishes, it goes on to the statement following the NEXT statement.

Using the FOR and NEXT statements, the rug program looks like this:

0010 FOR X=9 TO 20
0020 Y=(12*X)/9
0030 PRINT X,Y
0040 NEXT X
0050 STOP

In a FOR statement, you can name any arithmetic variable to be the
control variable, and you can make its range of values anything you
want. The control var¢iable is to the left of the equal sign. The range
(to the right of the equal sign) doesn't have to be given in numbers.
You can use other variables for the range, for example:

0060 FOR J=A TO B

0120 NEXT J

Steps

When you write a FOR statement, the system increases the value in
steps of 1 (for example, 1 to 2 to 3, or 18 to 19 to 20 to 21).
However, sometimes you may want to use just even numbers, or odd
numbers, or every tenth number. If your loop requires a value other
than steps of 1, you can specify the step value whether you are using
FOR and NEXT statements or a LET statement to control the loop.

If you write a loop that uses a LET statement, you can write these LET
statements:

0100 X=X+2 To change X in steps of 2

0050 X=X+10 To change X in steps of 10

How to Write a Program 61

C:t

c

c

Then you tell the system to go to the next value of X and repeat the
loop:

0040 NEXT X

FOR and NEXT statements always go in pairs: FOR at the beginning
of the loop and NEXT at the end. The system automatically repeats
the loop as many times as you told it to in the FOR statement. When
it finishes, it goes on to the statement following the NEXT statement.

Using the FOR and NEXT statements, the rug program looks like this:

0010 FOR X=9 TO 20
0020 Y=(12*X)/9
0030 PRINT X,Y
0040 NEXT X
0050 STOP

In a FOR statement, you can name any arithmetic variable to be the
control variable, and you can make its range of values anything you
want. The control var¢iable is to the left of the equal sign. The range
(to the right of the equal sign) doesn't have to be given in numbers.
You can use other variables for the range, for example:

0060 FOR J=A TO B

0120 NEXT J

Steps

When you write a FOR statement, the system increases the value in
steps of 1 (for example, 1 to 2 to 3, or 18 to 19 to 20 to 21).
However, sometimes you may want to use just even numbers, or odd
numbers, or every tenth number. If your loop requires a value other
than steps of 1, you can specify the step value whether you are using
FOR and NEXT statements or a LET statement to control the loop.

If you write a loop that uses a LET statement, you can write these LET
statements:

0100 X=X+2 To change X in steps of 2

0050 X=X+10 To change X in steps of 10

How to Write a Program 61

62

If you're using FOR and NEXT statements for the loop, you add the
word STEP and the size of the step to the FOR statement. For
example:

0010 FOR X=1 TO 25 STEP 2

gives you odd values of X from 1 to 25 (1, 3, 5, 7 ...).

0030 FOR D=10 TO 100 STEP 10

gives you 10, 20, 30, up to 100.

For even values of D from 1 to 20, you would write:

0020 FOR D=2 TO 20 STEP 2

Notice that D is set to 2 because the first even number you want is 2.

If you omit the word STEP and the value from the FOR statement, you
automatically get steps of 1. You can also include fractional steps, for
example:

0030 FOR 1=1 TO 3 STEP .1

Loops Within Loops

Here's a problem in which two values change: Find the annual amount
of interest (A) at the interest rates (I) of 5 %, 6 %, 7 %, 8 %, 9 %, and
10% on principals (P) ranging from $100 to $1000 in steps of $100.

This problem can be solved by a program that uses two loops-one for
changing the interest and one for changing the principal. Do the
interest loop first:

0030 FOR 1=5 TO 10

0040 A=(1/1 OO}*P

0050 PRINT P, I, A

0060 NEXT I

} This computes

and displays A,

P, and I.

This creates a

loop for I to vary

from 5% to 10%.

Now all that's left is to define P, because the program doesn't know
where to find the values for P. The P loop has no computations of its
own; it only defines the values for P:

0020 FOR P=100 TO 1000 STEP 100

0070 NEXT P

/1(- "",

,,-,1

.1"-)\

'\.j"

o
62

If you're using FOR and NEXT statements for the loop, you add the
word STEP and the size of the step to the FOR statement. For
example:

0010 FOR X=1 TO 25 STEP 2

gives you odd values of X from 1 to 25 (1, 3, 5, 7 ...).

0030 FOR D=10 TO 100 STEP 10

gives you 10, 20, 30, up to 100.

For even values of D from 1 to 20, you would write:

0020 FOR D=2 TO 20 STEP 2

Notice that D is set to 2 because the first even number you want is 2.

If you omit the word STEP and the value from the FOR statement, you
automatically get steps of 1. You can also include fractional steps, for
example:

0030 FOR 1=1 TO 3 STEP .1

Loops Within Loops

Here's a problem in which two values change: Find the annual amount
of interest (A) at the interest rates (I) of 5 %, 6 %, 7 %, 8 %, 9 %, and
10% on principals (P) ranging from $100 to $1000 in steps of $100.

This problem can be solved by a program that uses two loops-one for
changing the interest and one for changing the principal. Do the
interest loop first:

0030 FOR 1=5 TO 10

0040 A=(1/1 OO}*P

0050 PRINT P, I, A

0060 NEXT I

} This computes

and displays A,

P, and I.

This creates a

loop for I to vary

from 5% to 10%.

Now all that's left is to define P, because the program doesn't know
where to find the values for P. The P loop has no computations of its
own; it only defines the values for P:

0020 FOR P=100 TO 1000 STEP 100

0070 NEXT P

/1(- "",

,,-,1

.1"-)\

'\.j"

o

c····"
./

(''''''

/

c

The P loop goes around the I loop:

P
Loop ~OOPC

o 0 2 (I F 0 1:< P ::;; :1. (lOT 0 1. 0 (I 0 ~:) T E P 1 0 0
0030 FOR I::::~.::.; TO 10
004· 0 (,:::: (1./1 (I 0) 11": p
OO~::.;O PF;~INT P .. I .. t)
0060 NEXT I
0070 (\!EXT P
00 no ~)TO p

You must put one loop entirely inside the other so that the system will
stay in one loop and finish it completely (compute all the values for I
for a single value of P) before it goes on to the next value of P. In this
program, the system starts with P equal to $100, then it comes to the
I loop and sets I equal to 5 %. It goes on to compute the interest on
$100 at 5%,6%,7%,8%,9%, and 10% because it keeps repeating
the I loop until I equals 10. When it finishes all the different interests
on $100, it goes to line 70, which is the bottom of the P loop. Here,
control loops back to line 20, which increases P to $200, and starts on
the I loop again, this time with P equal to $200 and with I again
ranging from 5% to 10%. The program continues in these loops until
all of the values of P have been used. Then you have all the amounts
of interest you wanted.

To run the program:

When the display screen shows
READY, enter the statements: LOAD (I

AUTO
0010 REM INTEREST
0020 FOR P=100 TO 1000 STEP 100
0030 FOR 1=5 TO 10
004· 0 A::: (1.1 100) * P
0050 PF~INT PJl,(.l
0060 NEXT I
0070 NEXT P
(lOBO STOP

How to Write a Program 63

c····"
./

(''''''

/

c

The P loop goes around the I loop:

P
Loop ~OOPC

o 0 2 (I F 0 1:< P ::;; :1. (lOT 0 1. 0 (I 0 ~:) T E P 1 0 0
0030 FOR I::::~.::.; TO 10
004· 0 (,:::: (1./1 (I 0) 11": p
OO~::.;O PF;~INT P .. I .. t)
0060 NEXT I
0070 (\!EXT P
00 no ~)TO p

You must put one loop entirely inside the other so that the system will
stay in one loop and finish it completely (compute all the values for I
for a single value of P) before it goes on to the next value of P. In this
program, the system starts with P equal to $100, then it comes to the
I loop and sets I equal to 5 %. It goes on to compute the interest on
$100 at 5%,6%,7%,8%,9%, and 10% because it keeps repeating
the I loop until I equals 10. When it finishes all the different interests
on $100, it goes to line 70, which is the bottom of the P loop. Here,
control loops back to line 20, which increases P to $200, and starts on
the I loop again, this time with P equal to $200 and with I again
ranging from 5% to 10%. The program continues in these loops until
all of the values of P have been used. Then you have all the amounts
of interest you wanted.

To run the program:

When the display screen shows
READY, enter the statements: LOAD (I

AUTO
0010 REM INTEREST
0020 FOR P=100 TO 1000 STEP 100
0030 FOR 1=5 TO 10
004· 0 A::: (1.1 100) * P
0050 PF~INT PJl,(.l
0060 NEXT I
0070 NEXT P
(lOBO STOP

How to Write a Program 63

64

Run the program

To see a portion of the
program results, press
HOLD. To continue
execution, press HOLD
again.

The display screen shows
a portion of the output
when you pressed HOLD.
For example:

BOO
900
<;'00
(?O 0
<,7' 00
900
<too
1000
1000
:1.000
1000
1000
:1.000

r~UN

Loops within loops must always be nested like this:

.--------- FOR X ...

r----FOR Y ...

Outside Inside

Loop Loop

'----NEXTY

'--------- NEXT X

:1.0

....
{

B

10
r::'
'.J

6
'"1

9
10

so that the inner loop is fully completed each time before the outside
one is begun again. Two loops must never overlap like this:

FOR X ...

r---- FOR Y ...

NEXT X

L---NEXTY

o

eo \. ,I'
lj.!::'

''',1

~'=';I+

63
-~. ")
I k..

B:I.
90
~.::,; 0
t·O
70
eo
?O
:I. 00

"l" ~~/

{

64

Run the program

To see a portion of the
program results, press
HOLD. To continue
execution, press HOLD
again.

The display screen shows
a portion of the output
when you pressed HOLD.
For example:

BOO
900
<;'00
(?O 0
<,7' 00
900
<too
1000
1000
:1.000
1000
1000
:1.000

r~UN

Loops within loops must always be nested like this:

.--------- FOR X ...

r----FOR Y ...

Outside Inside

Loop Loop

'----NEXTY

'--------- NEXT X

:1.0

....
{

B

10
r::'
'.J

6
'"1

9
10

so that the inner loop is fully completed each time before the outside
one is begun again. Two loops must never overlap like this:

FOR X ...

r---- FOR Y ...

NEXT X

L---NEXTY

o

eo \. ,I'
lj.!::'

''',1

~'=';I+

63
-~. ")
I k..

B:I.
90
~.::,; 0
t·O
70
eo
?O
:I. 00

"l" ~~/

{

(::":

c

c

Remember, one loop must always be completely enclosed by the
other.

Here is another example of loops. This is a program to find X2, X3, X4,
and X5 with X equal to 1 to 10.

The outside

loop changes

X from 1 to 10.

The inside loop C
changes Y from

2to 5.

001. 0 F~EH POIAE I~~~:~
0020 FOR X=1 TO 10
0030 FOR Y=2 TO 5
OOll·O PRINT X .. Xty
o 0 ~:5 0 NEXT 'y"

0060 NEXT X
0070 STC)P

Notice that the inside Y loop is fully contained in the outside X loop.
Run the program as shown:

When the display screen shows
READY, enter the statements:

Run the program

The display screen shows
(use the HOLD key to display
any 15-line portion of the
displayed results):

0010 PEr1 POtAtE Fi:S
0020 FOR X=l TO 10
0030 FOR Y=2 TO 5
o 0 Lt· 0 P F~ I N T X.. >:"~·r y
OO~.iO NEXT Y
00(.0 NE::X::T)<

0070 ~3TOP

'~I...I h!

C)

fl'

:1.0
10
:1.0
10

16BO'l
f.:.1.t.
~:51 ::?
Lt· (I?6

81
··1 ... ·29
6~.:.i(:.1

~::.j S;· I) 1+ 9
100
1000
:1.0000
100000

How to Write a Program 65

(::":

c

c

Remember, one loop must always be completely enclosed by the
other.

Here is another example of loops. This is a program to find X2, X3, X4,
and X5 with X equal to 1 to 10.

The outside

loop changes

X from 1 to 10.

The inside loop C
changes Y from

2to 5.

001. 0 F~EH POIAE I~~~:~
0020 FOR X=1 TO 10
0030 FOR Y=2 TO 5
OOll·O PRINT X .. Xty
o 0 ~:5 0 NEXT 'y"

0060 NEXT X
0070 STC)P

Notice that the inside Y loop is fully contained in the outside X loop.
Run the program as shown:

When the display screen shows
READY, enter the statements:

Run the program

The display screen shows
(use the HOLD key to display
any 15-line portion of the
displayed results):

0010 PEr1 POtAtE Fi:S
0020 FOR X=l TO 10
0030 FOR Y=2 TO 5
o 0 Lt· 0 P F~ I N T X.. >:"~·r y
OO~.iO NEXT Y
00(.0 NE::X::T)<

0070 ~3TOP

'~I...I h!

C)

fl'

:1.0
10
:1.0
10

16BO'l
f.:.1.t.
~:51 ::?
Lt· (I?6

81
··1 ... ·29
6~.:.i(:.1

~::.j S;· I) 1+ 9
100
1000
:1.0000
100000

How to Write a Program 65

o

[-~

'(,I"

66

o

[-~

'(,I"

66

("''''''''

/'

c'

c

Chapter 5. Other Ways to Put Values into Programs

In all the programs we've written, we've tried to:

• Write a program to solve the problem using general expressions.

• Supply specific values for the expressions and run the program with
the specific values.

The advantage of programming in this way is that the bulk of the
program doesn't change every time you want to solve the same
problem with different numbers. You only need to change the
numbers, not the programmed expression, when you want to run the
program using different numbers.

We are now going to look at other ways to supply specific numbers
for programs. Exercises for this chapter are provided in Chapter 13.

THE READ, DATA, AND RESTORE STATEMENTS

To assign 10 values, say the numbers 1 through 10, to 10 variables,
you could use 10 LET statements:

0010 LET A=1
0020 LET 8=2
0030 LET C=3

0100 LET J=10

Using 10 LET statements can be tedious. Another way to enter these
numbers is with one DATA statement:

0200 DATA 1,2,3,4,5,6,7,8,9,10

The DATA statement causes values to be placed in an internal data
table. You can use one or several DATA statements to do this. Values
in DATA statements are put into the data table sequentially, in the
order in which they are entered. The values must be separated by
commas. The following set of statements would have the same effect
as the single preceding DATA statement:

0200 DATA 1,2,3
0210 DATA 4,5,6
0220 DATA 7,8,9,10

Other Ways to Put Values into Programs 67

("''''''''

/'

c'

c

Chapter 5. Other Ways to Put Values into Programs

In all the programs we've written, we've tried to:

• Write a program to solve the problem using general expressions.

• Supply specific values for the expressions and run the program with
the specific values.

The advantage of programming in this way is that the bulk of the
program doesn't change every time you want to solve the same
problem with different numbers. You only need to change the
numbers, not the programmed expression, when you want to run the
program using different numbers.

We are now going to look at other ways to supply specific numbers
for programs. Exercises for this chapter are provided in Chapter 13.

THE READ, DATA, AND RESTORE STATEMENTS

To assign 10 values, say the numbers 1 through 10, to 10 variables,
you could use 10 LET statements:

0010 LET A=1
0020 LET 8=2
0030 LET C=3

0100 LET J=10

Using 10 LET statements can be tedious. Another way to enter these
numbers is with one DATA statement:

0200 DATA 1,2,3,4,5,6,7,8,9,10

The DATA statement causes values to be placed in an internal data
table. You can use one or several DATA statements to do this. Values
in DATA statements are put into the data table sequentially, in the
order in which they are entered. The values must be separated by
commas. The following set of statements would have the same effect
as the single preceding DATA statement:

0200 DATA 1,2,3
0210 DATA 4,5,6
0220 DATA 7,8,9,10

Other Ways to Put Values into Programs 67

68

Once the values are in the table, you use the READ statement to
assign them to variables. Here's an example:

0200 DATA 1,2,3,4,5,6,7,8,9,10
0210 READ A,B,C,D,E,F,G,H,I,J

The READ statement locates the values in the data table and assigns
them (in order) to the variables-the value 1 to the variable A, 2 to B, 3
to C, and so on.

You don't have to assign all of the values in the data table at one time.
For example:

0200 DATA 1,2,3,4,5,6,7,8,9,10
0210 READ A,B,C

will cause the first three values in the table to be assigned to A, 8,
and C, respectively. Another READ statement will take up where the
last one left off. Thus:

0420 READ D,E,F,G

will assign the values 4, 5, 6, and 7 to D, E, F, and G, respectively.

You must be careful, though, not to try to read more values than the
table contains. For example, still another READ statement:

0440 READ H,I,J,K

would be requesting values for four variables when only three
numbers (8, 9, and 10) are left in the table. This will cause an error.

If you want, you can use the values in the data table more than once.
At any point in your program, you can instruct the system to assign
from the beginning of the table again, even if you haven't read all the
values in the table. To go back to the beginning of the table, use the
RESTORE statement:

0100 RESTORE

o
/(

o
68

Once the values are in the table, you use the READ statement to
assign them to variables. Here's an example:

0200 DATA 1,2,3,4,5,6,7,8,9,10
0210 READ A,B,C,D,E,F,G,H,I,J

The READ statement locates the values in the data table and assigns
them (in order) to the variables-the value 1 to the variable A, 2 to B, 3
to C, and so on.

You don't have to assign all of the values in the data table at one time.
For example:

0200 DATA 1,2,3,4,5,6,7,8,9,10
0210 READ A,B,C

will cause the first three values in the table to be assigned to A, 8,
and C, respectively. Another READ statement will take up where the
last one left off. Thus:

0420 READ D,E,F,G

will assign the values 4, 5, 6, and 7 to D, E, F, and G, respectively.

You must be careful, though, not to try to read more values than the
table contains. For example, still another READ statement:

0440 READ H,I,J,K

would be requesting values for four variables when only three
numbers (8, 9, and 10) are left in the table. This will cause an error.

If you want, you can use the values in the data table more than once.
At any point in your program, you can instruct the system to assign
from the beginning of the table again, even if you haven't read all the
values in the table. To go back to the beginning of the table, use the
RESTORE statement:

0100 RESTORE

o
/(

o

(,"'-,"

y

(','''' ~,

j

c~

c

c

Let's assume that you want to assign the values 1, 2, and 3 to three
variables A, B, and C, in that order. Then later in the program you
want to assign the same values to D, E, and F. These statements will
do just that:

0030 DATA 1,2,3,4,5,6

0060 READ A,B,C

0100 RESTORE READ FROM START OF DATA TABLE
0110 READ D,E,F

Notice that you can include a comment in the RESTORE statement.
The words READ FROM START OF DATA TABLE have no effect on
what your program is doing; they merely serve as a reminder to you,
when you look at the program, of what the RESTORE statement is
doing. Your comment can say anything you want it to say, as long as
it fits on one line with the RESTORE statement.

It's important to remember, when using READ and DATA statements,
that no matter how many DATA statements you include in your
program, only one data table is created before any READ statement is
executed. The table is created from all the OAT A statements in your
program, regardless of where they appear-at the beginning, at the
end, or scattered throughout. Each of the following three sets of
statements has the same effect:

0200 OAT A 1 ,2,3
0210 DATA 4,5,6
0220 READ H,I,J,K,L,M

0200 READ H,I,J,K,L,M
0210 DATA 1,2,3
0220 DATA 4,5,6

0200 DATA 1,2,3
0210 READ H,I,J,K,L,M
0220 DATA 4,5,6

THE INPUT STATEMENT

Both the assignment statement (LET) and the DATA statement use
constants-unchanging data items that are part of your program-to
assign values to variables. You have to know, at the time you're
writing your program, what values you want to assign.

Other Ways to Put Values into Programs 69

(,"'-,"

y

(','''' ~,

j

c~

c

c

Let's assume that you want to assign the values 1, 2, and 3 to three
variables A, B, and C, in that order. Then later in the program you
want to assign the same values to D, E, and F. These statements will
do just that:

0030 DATA 1,2,3,4,5,6

0060 READ A,B,C

0100 RESTORE READ FROM START OF DATA TABLE
0110 READ D,E,F

Notice that you can include a comment in the RESTORE statement.
The words READ FROM START OF DATA TABLE have no effect on
what your program is doing; they merely serve as a reminder to you,
when you look at the program, of what the RESTORE statement is
doing. Your comment can say anything you want it to say, as long as
it fits on one line with the RESTORE statement.

It's important to remember, when using READ and DATA statements,
that no matter how many DATA statements you include in your
program, only one data table is created before any READ statement is
executed. The table is created from all the OAT A statements in your
program, regardless of where they appear-at the beginning, at the
end, or scattered throughout. Each of the following three sets of
statements has the same effect:

0200 OAT A 1 ,2,3
0210 DATA 4,5,6
0220 READ H,I,J,K,L,M

0200 READ H,I,J,K,L,M
0210 DATA 1,2,3
0220 DATA 4,5,6

0200 DATA 1,2,3
0210 READ H,I,J,K,L,M
0220 DATA 4,5,6

THE INPUT STATEMENT

Both the assignment statement (LET) and the DATA statement use
constants-unchanging data items that are part of your program-to
assign values to variables. You have to know, at the time you're
writing your program, what values you want to assign.

Other Ways to Put Values into Programs 69

70

The INPUT statement allows a little more flexibility. This statement
names the variables that are to receive values, but allows you to wait
until you are running your program to actually supply the values. For
example:

0050 INPUT X,Y,Z

means that you will supply values from the keyboard for X, Y, and Z
when your program is run. You'll know when it's time to supply the
values because a flashing question mark will be displayed. When you
see this, you should enter your values, one for each variable in the
INPUT statement-in this case, three. The values are entered all on one
line, separated by commas. Thus, when you've entered the
information, the display screen shows:

1. 8~i I 205., 1. 91.

By entering these numbers, you've assigned 185 to X, 205 to Y, and
191 to Z.

You have to be certain, when entering your values, to enter exactly the
same number of values as there are variables in the INPUT statement
in your program. The question mark will keep flashing until the correct
number of values is entered. If you enter too many values, the excess
values are ignored. After the last value is entered, press EXECUTE to
continue program execution.

Prompting Your Input

Because a lot of time can elapse between the time you write a
program and the time you run it, you may have difficulty remembering
exactly how many values you have to enter. This is especially true
when your program contains more than one I N PUT statement. Then
you have to keep track of which one comes first.

You can have your program keep track for you by reminding you what
has to be entered. All you have to do is include a PRINT statement
immediately before the INPUT statement in your program. For
example, if your program averages bowling scores, you could use
these statements:

0045 PRINT 'ENTER THREE BOWLING SCORES'
0050 INPUT X,Y,Z

o
/(''!>

,()~

,/ "

()
70

The INPUT statement allows a little more flexibility. This statement
names the variables that are to receive values, but allows you to wait
until you are running your program to actually supply the values. For
example:

0050 INPUT X,Y,Z

means that you will supply values from the keyboard for X, Y, and Z
when your program is run. You'll know when it's time to supply the
values because a flashing question mark will be displayed. When you
see this, you should enter your values, one for each variable in the
INPUT statement-in this case, three. The values are entered all on one
line, separated by commas. Thus, when you've entered the
information, the display screen shows:

1. 8~i I 205., 1. 91.

By entering these numbers, you've assigned 185 to X, 205 to Y, and
191 to Z.

You have to be certain, when entering your values, to enter exactly the
same number of values as there are variables in the INPUT statement
in your program. The question mark will keep flashing until the correct
number of values is entered. If you enter too many values, the excess
values are ignored. After the last value is entered, press EXECUTE to
continue program execution.

Prompting Your Input

Because a lot of time can elapse between the time you write a
program and the time you run it, you may have difficulty remembering
exactly how many values you have to enter. This is especially true
when your program contains more than one I N PUT statement. Then
you have to keep track of which one comes first.

You can have your program keep track for you by reminding you what
has to be entered. All you have to do is include a PRINT statement
immediately before the INPUT statement in your program. For
example, if your program averages bowling scores, you could use
these statements:

0045 PRINT 'ENTER THREE BOWLING SCORES'
0050 INPUT X,Y,Z

o
/(''!>

,()~

,/ "

()

C"
-'

C:

Then, when the program is run, instead of just a question mark
appearing when it's time to enter your values, these lines will be
displayed:

E j\.! T [R T H F< E E B D I;.J L I (! [i ~:) C D F< [: ~~;

When you've entered your values, the display screen will show:

ENTER THREE BOWLING SCORES

You can write any reminder message that you want in the PRINT
statement, as long as you enclose it in single quotation marks.

You also have to remember that the PRINT statement has to fit
entirely on one line. If your message is so long that it doesn't fit, you
might consider using several consecutive PRINT statements:

0040 PRINT 'ENTER 12 AVERAGE TEMPERATURES'
0050 PRINT 'FOR JANUARY TO DECEMBER'
0060 INPUT M,N,O,P,O,R,S,T,U,V,W,X

ENTERING CHARACTER VARIABLES INTO PROGRAMS

You've been entering numeric variables into programs in this section,
but any of the methods you've used will let you supply values for
character variables as well. You have already seen how to do this with
a LET statement. For INPUT and READ statements, you just use valid
character variables where we've been using numeric variables. Note
that you need not enclose character data in single quotation marks
when you enter it for a DATA statement or in response to the flashing
question mark for an INPUT statement, unless the data must include a
quotation mark, a comma, or leading blanks. For example, if you want
a program to keep track of a person's height and weight, you can
enter the person's name, height, and weight with these READ and
DATA statements:

0010 READ N$,H,W
0020 DATA TOM JON ES,6.1 ,184

Other Ways to Put Values into Programs 71

C"
-'

C:

Then, when the program is run, instead of just a question mark
appearing when it's time to enter your values, these lines will be
displayed:

E j\.! T [R T H F< E E B D I;.J L I (! [i ~:) C D F< [: ~~;

When you've entered your values, the display screen will show:

ENTER THREE BOWLING SCORES

You can write any reminder message that you want in the PRINT
statement, as long as you enclose it in single quotation marks.

You also have to remember that the PRINT statement has to fit
entirely on one line. If your message is so long that it doesn't fit, you
might consider using several consecutive PRINT statements:

0040 PRINT 'ENTER 12 AVERAGE TEMPERATURES'
0050 PRINT 'FOR JANUARY TO DECEMBER'
0060 INPUT M,N,O,P,O,R,S,T,U,V,W,X

ENTERING CHARACTER VARIABLES INTO PROGRAMS

You've been entering numeric variables into programs in this section,
but any of the methods you've used will let you supply values for
character variables as well. You have already seen how to do this with
a LET statement. For INPUT and READ statements, you just use valid
character variables where we've been using numeric variables. Note
that you need not enclose character data in single quotation marks
when you enter it for a DATA statement or in response to the flashing
question mark for an INPUT statement, unless the data must include a
quotation mark, a comma, or leading blanks. For example, if you want
a program to keep track of a person's height and weight, you can
enter the person's name, height, and weight with these READ and
DATA statements:

0010 READ N$,H,W
0020 DATA TOM JON ES,6.1 ,184

Other Ways to Put Values into Programs 71

72

You could also use an INPUT statement:

0010 INPUT N$,H,W

and then respond to the flashing question mark like this:

TOM JONES,S.1,184

A REVIEW OF WHAT YOU'VE DONE

All of the following methods of assigning values to variables are
useful:

• LET statements

• READ, DATA, and RESTORE statements

• I N PUT statements with data supplied from the keyboard

You can use a combination of these methods if you have a program
where some values don't change, some change occasionally, and
others change often.

()

/

72

You could also use an INPUT statement:

0010 INPUT N$,H,W

and then respond to the flashing question mark like this:

TOM JONES,S.1,184

A REVIEW OF WHAT YOU'VE DONE

All of the following methods of assigning values to variables are
useful:

• LET statements

• READ, DATA, and RESTORE statements

• I N PUT statements with data supplied from the keyboard

You can use a combination of these methods if you have a program
where some values don't change, some change occasionally, and
others change often.

()

/

c

c

c'

c

Chapter 6. Making Changes to Your Programs

It is very important that you be able to make changes to your
programs. You may have to change a program to supply values for
variables, to make corrections, to add lines, or to remove lines. There
are several ways you can change a program, either as you write it or
after you write it.

CORRECTING KEYING ERRORS

If you make mistakes while entering your program statements or
commands, you already know how to fix them. As you catch the
errors, you can:

• Use the backspace or forward space key to position the cursor at
the incorrect character, then simply enter the correct character.

• Use the insert or delete function to insert or delete characters.

• Use the scroll up and scroll down keys to position a line to be
corrected.

• Press A TIN to delete all characters starting with and to the right of
the cursor position.

INSERTING NEW LINES

The following program, called phone, computes charges for local
telephone calls. The rate for local calls in this example is 10 cents for
the first three minutes or less, and 2 cents for each additional minute
or fraction of a minute. We'll write a general program, but we'll
purposely omit the actual length of any call. These are the variables
we'll use:

T Total length of the call in whole minutes
T1 Amount of time over 3 minutes
C Charge for the call

Making Changes to Your Programs 73

c

c

c'

c

Chapter 6. Making Changes to Your Programs

It is very important that you be able to make changes to your
programs. You may have to change a program to supply values for
variables, to make corrections, to add lines, or to remove lines. There
are several ways you can change a program, either as you write it or
after you write it.

CORRECTING KEYING ERRORS

If you make mistakes while entering your program statements or
commands, you already know how to fix them. As you catch the
errors, you can:

• Use the backspace or forward space key to position the cursor at
the incorrect character, then simply enter the correct character.

• Use the insert or delete function to insert or delete characters.

• Use the scroll up and scroll down keys to position a line to be
corrected.

• Press A TIN to delete all characters starting with and to the right of
the cursor position.

INSERTING NEW LINES

The following program, called phone, computes charges for local
telephone calls. The rate for local calls in this example is 10 cents for
the first three minutes or less, and 2 cents for each additional minute
or fraction of a minute. We'll write a general program, but we'll
purposely omit the actual length of any call. These are the variables
we'll use:

T Total length of the call in whole minutes
T1 Amount of time over 3 minutes
C Charge for the call

Making Changes to Your Programs 73

74

The program is:

o [1:1. (I IF T>3 GIJTO OOll·(I

0020 PRINT 'CfiLL L.E~::;~3 THi;':IN OR E(~U{,I...:3 hIN .. :1.0 C::ENT CHtIR(3E'
0030 GOlD 0:1.00
o 0 Lj. [I T 1 ::: T 3
I] 0 !.:.:.i 0 C :::: . :I. + . 0 ;.? .)(. T :I.
o 0.;':')0 PF·~INT 'I...Ej··'!OTH DF C(:~I...L.'

0070 PRINT T
oono PI:~INT 'CHt,PGE FIJP Ctil...L'
0090 PRINT C:
0100 ~:;TDP

Enter this program. After we add a statement to assign a value to T,
you'll be able to run the program.

To assign a value to T, you can use READ and DATA statements:

READ T

DATA 8 (for an 8 minute call)

You can insert these statements before line 10.

Now enter:

5 READ T

Press EXECUTE and enter:

6 DATA 8

and press EXECUTE again.

To see what has been done with these statements, enter the LIST
command.

'!t ... ,,'

,(

',-~.

74

The program is:

o [1:1. (I IF T>3 GIJTO OOll·(I

0020 PRINT 'CfiLL L.E~::;~3 THi;':IN OR E(~U{,I...:3 hIN .. :1.0 C::ENT CHtIR(3E'
0030 GOlD 0:1.00
o 0 Lj. [I T 1 ::: T 3
I] 0 !.:.:.i 0 C :::: . :I. + . 0 ;.? .)(. T :I.
o 0.;':')0 PF·~INT 'I...Ej··'!OTH DF C(:~I...L.'

0070 PRINT T
oono PI:~INT 'CHt,PGE FIJP Ctil...L'
0090 PRINT C:
0100 ~:;TDP

Enter this program. After we add a statement to assign a value to T,
you'll be able to run the program.

To assign a value to T, you can use READ and DATA statements:

READ T

DATA 8 (for an 8 minute call)

You can insert these statements before line 10.

Now enter:

5 READ T

Press EXECUTE and enter:

6 DATA 8

and press EXECUTE again.

To see what has been done with these statements, enter the LIST
command.

'!t ... ,,'

,(

',-~.

(
'.' ..

_. f

e'l

c'

c

The display screen shows:

OOO~5 r-~[tfD T
0006 D(~)Ttl :3
o 0 :I. 0 1FT::. 3 GOT 0 0 0 l~ (I
o 0 :.~~ 0 P f< I t··~ T 'c tiLl... L E ~3 ~~; T H (:i (,1 () F~ [(~ !..J (:i !... :::) j) IN., :I. 0 C: [N T C H (.~) F{ G E '
0030 c-:iOTO 0100
o 0 \.t. I) T 1 ::: T 3
o I) ~; 0 C::::,:I. + , o;? ~(. T :I.
00(:.0 PPINT 'I...EN[i'rH elF C:~)LL'

I) 0 'f' 0 P F~ I N T 'f
0080 PRINT 'CHARGE FOR CALL'
OO~;)O PI~~INT C
o :I. 0 0 ~:::; T D P

The system has taken the two lines and inserted them in the program
(as lines 5 and 6) before line 10. By entering a line number and any
valid BASIC statement, you have given an instruction. This instruction
starts with a line number, and tells the system you are adding a line
and where to add it.

Now you can see why it is convenient to have the line numbers
increase by 10's; it gives you the chance to insert up to nine new lines
between every two original lines.

You can now run the phone program by entering the RUN command.

REPLACING ONE LINE WITH ANOTHER

Let's try a different value for T in the phone program. This time T is
21 minutes. You'll have to change line 6, the DATA statement, to use
this new value.

Enter the following statement, then press EXECUTE:

6 DATA 21

Making Changes to Your Programs 75

(
'.' ..

_. f

e'l

c'

c

The display screen shows:

OOO~5 r-~[tfD T
0006 D(~)Ttl :3
o 0 :I. 0 1FT::. 3 GOT 0 0 0 l~ (I
o 0 :.~~ 0 P f< I t··~ T 'c tiLl... L E ~3 ~~; T H (:i (,1 () F~ [(~ !..J (:i !... :::) j) IN., :I. 0 C: [N T C H (.~) F{ G E '
0030 c-:iOTO 0100
o 0 \.t. I) T 1 ::: T 3
o I) ~; 0 C::::,:I. + , o;? ~(. T :I.
00(:.0 PPINT 'I...EN[i'rH elF C:~)LL'

I) 0 'f' 0 P F~ I N T 'f
0080 PRINT 'CHARGE FOR CALL'
OO~;)O PI~~INT C
o :I. 0 0 ~:::; T D P

The system has taken the two lines and inserted them in the program
(as lines 5 and 6) before line 10. By entering a line number and any
valid BASIC statement, you have given an instruction. This instruction
starts with a line number, and tells the system you are adding a line
and where to add it.

Now you can see why it is convenient to have the line numbers
increase by 10's; it gives you the chance to insert up to nine new lines
between every two original lines.

You can now run the phone program by entering the RUN command.

REPLACING ONE LINE WITH ANOTHER

Let's try a different value for T in the phone program. This time T is
21 minutes. You'll have to change line 6, the DATA statement, to use
this new value.

Enter the following statement, then press EXECUTE:

6 DATA 21

Making Changes to Your Programs 75

76

If you list the program now, the display screen shows:

0005 F~~EAD T
0006 Df.}T(~ ::'::1
0010 IF T>3 GOTD 0040
0020 PRINT 'CALL LESS THAN OR EQUAL 3 MIN, 10 CENT CHARGE'
0030 GOTD 0101)
00 1./.0 T 1. ::::T ·_·3
0050 C::::, 1+, 02·)fTl.
0060 PRINT 'LENGTH OF CALL'
0070 PRINT T
0080 PRINT 'CHARGE FOR CALL'
0090 PRINT C
0100 STOP

See what happened? The system replaced the old line 6 with the new
line 6.

When you want to replace a line, simply enter the same line number
as the line you want to replace and enter the new line. The system
replaces the old line in storage with the new one after you press
EXECUTE.

Remember that you can use the SAVE command if you want to save
the program on tape or diskette.

REMOVING A LINE

In the phone program, we will now include an INPUT statement so we
can run the program with many changing values for T. We can replace
the READ statement with an INPUT statement, but the DATA
statement must be deleted. To do this, first list the program. Now
enter the number of the line you want to delete, then enter DEL and
press EXECUTE. To delete line 6, enter 6 DEL, then press EXECUTE.
Line 5 can be replaced by the following procedure: enter 5 INPUT T
and press EXECUTE. List the program again, and the display screen
shows:

OOO~:5 INPUT T
0010 IF T>3 GOlD 0040
OO:?O PPINT 'Ct~ll..L. L.E~3~:) TH(:'IN UP [01...1(11...:3 r'IIr"'!" :1.0 CENT CH!:~)f.~~GF·

00::50 GOTel 0100
o () I.j. (I T :I. ;;: T 3
o 0 ~S (I C ::.~ . 1 + , 0 ~.? :1(' T :I.
o ObO PPINT 'LEt···!ClTH OF C:{\I...L·
00'/0 pr~:It··.!T T
oono PPli\!T 'CH(.iPGE FDr-.:~ C(:', I... I... ,
(\ 0 f) (I P ~: I f\.! 'r c
0:1.00 ~~TDP

f,

"\',,, •• 1"

()
76

If you list the program now, the display screen shows:

0005 F~~EAD T
0006 Df.}T(~ ::'::1
0010 IF T>3 GOTD 0040
0020 PRINT 'CALL LESS THAN OR EQUAL 3 MIN, 10 CENT CHARGE'
0030 GOTD 0101)
00 1./.0 T 1. ::::T ·_·3
0050 C::::, 1+, 02·)fTl.
0060 PRINT 'LENGTH OF CALL'
0070 PRINT T
0080 PRINT 'CHARGE FOR CALL'
0090 PRINT C
0100 STOP

See what happened? The system replaced the old line 6 with the new
line 6.

When you want to replace a line, simply enter the same line number
as the line you want to replace and enter the new line. The system
replaces the old line in storage with the new one after you press
EXECUTE.

Remember that you can use the SAVE command if you want to save
the program on tape or diskette.

REMOVING A LINE

In the phone program, we will now include an INPUT statement so we
can run the program with many changing values for T. We can replace
the READ statement with an INPUT statement, but the DATA
statement must be deleted. To do this, first list the program. Now
enter the number of the line you want to delete, then enter DEL and
press EXECUTE. To delete line 6, enter 6 DEL, then press EXECUTE.
Line 5 can be replaced by the following procedure: enter 5 INPUT T
and press EXECUTE. List the program again, and the display screen
shows:

OOO~:5 INPUT T
0010 IF T>3 GOlD 0040
OO:?O PPINT 'Ct~ll..L. L.E~3~:) TH(:'IN UP [01...1(11...:3 r'IIr"'!" :1.0 CENT CH!:~)f.~~GF·

00::50 GOTel 0100
o () I.j. (I T :I. ;;: T 3
o 0 ~S (I C ::.~ . 1 + , 0 ~.? :1(' T :I.
o ObO PPINT 'LEt···!ClTH OF C:{\I...L·
00'/0 pr~:It··.!T T
oono PPli\!T 'CH(.iPGE FDr-.:~ C(:', I... I... ,
(\ 0 f) (I P ~: I f\.! 'r c
0:1.00 ~~TDP

f,

"\',,, •• 1"

()

c

c:

c

c

...... _---" .•... __ ._---- ---

The system has replaced line 5 and deleted line 6.

When you want to delete a line, simply enter the statement number,
then enter DEL, and press EXECUTE. A new listing of the program will
show the line deleted. You can also use the DEL function to delete
several lines. For example, you could delete lines 0070 through 0090
by entering:

0070 DEL 0090

RENUMBERING STATEMENT LINES

In the phone program, the statement numbers are not sequential by
10' s. If you want the numbers to start with 0010 and increase by 10,
you can simply use the RENUM command. This command will assign
the number 0010 to the INPUT T statement and number the remaining
statements from 0020 to 0110.

In addition, the GOTO statements (original lines 10 and 30) will be
altered to transfer execution to the appropriate renumbered statement.
To see the result of a renumber operation, list the phone program,
then enter RENUM and press EXECUTE. After you list the program
again, the display screen shows:

0010 HEr-1ft T
o 0 2 0 IFT::- 3 Ci fJ T [I 0 0 ~,::.; (I
o 0 2) (I P PIN T 'C: PI L L I... E ~3 ~) T H () N U PEG! 1...1 (:" L "_.' I") I N I :!. I) C: E N T C H {) r< D [,
o 0 1+ 0 CJ I] T DOl :t 0
o 0 ~,i (I T:I. ::: T 3
o 0 () I] C :::: . :I. + , 0:2 ":'(, T 1.
o 0 '"i' 0 P PIN T 'I... E N [} "r H D F C: (i L. L '
OOBO PPII'·,!T T
o 0 (,? (I P ~~ I NT' C: H (:'1 PC] E F D P C:: {l L I... '
0:1.00 PFINT C
o 1 J. 0 ~:; 'r (I P
o 1 ::,:: 0 P PI,) 'r H

Making Changes to Your Programs 77

c

c:

c

c

...... _---" .•... __ ._---- ---

The system has replaced line 5 and deleted line 6.

When you want to delete a line, simply enter the statement number,
then enter DEL, and press EXECUTE. A new listing of the program will
show the line deleted. You can also use the DEL function to delete
several lines. For example, you could delete lines 0070 through 0090
by entering:

0070 DEL 0090

RENUMBERING STATEMENT LINES

In the phone program, the statement numbers are not sequential by
10' s. If you want the numbers to start with 0010 and increase by 10,
you can simply use the RENUM command. This command will assign
the number 0010 to the INPUT T statement and number the remaining
statements from 0020 to 0110.

In addition, the GOTO statements (original lines 10 and 30) will be
altered to transfer execution to the appropriate renumbered statement.
To see the result of a renumber operation, list the phone program,
then enter RENUM and press EXECUTE. After you list the program
again, the display screen shows:

0010 HEr-1ft T
o 0 2 0 IFT::- 3 Ci fJ T [I 0 0 ~,::.; (I
o 0 2) (I P PIN T 'C: PI L L I... E ~3 ~) T H () N U PEG! 1...1 (:" L "_.' I") I N I :!. I) C: E N T C H {) r< D [,
o 0 1+ 0 CJ I] T DOl :t 0
o 0 ~,i (I T:I. ::: T 3
o 0 () I] C :::: . :I. + , 0:2 ":'(, T 1.
o 0 '"i' 0 P PIN T 'I... E N [} "r H D F C: (i L. L '
OOBO PPII'·,!T T
o 0 (,? (I P ~~ I NT' C: H (:'1 PC] E F D P C:: {l L I... '
0:1.00 PFINT C
o 1 J. 0 ~:; 'r (I P
o 1 ::,:: 0 P PI,) 'r H

Making Changes to Your Programs 77

01

o
- 78

01

o
- 78

C"'''. 1,\

,r

c

c

Chapter 7. More About the PRINT Statement

We've seen the PRINT statement used to display the values of
variables and to display comments exactly as entered in the statement.
We've also seen that to display a comment exactly as you entered it,
you must enclose the comment in single quotation marks. You should
remember, then, that if you include this line in a program:

0050 PRINT ~X'

when line 50 is executed, the display screen will show:

x

and not the value of X, which would be displayed if line 50 were

0050 PRINT X

Within a single PRINT statement, you can mix character and arithmetic
variables and constants. You must use commas or semicolons to
separate the values to be displayed. These separators (delimiters)
control spacing of the displayed data. For this example, no separator
is required between the variables and character constants. The only
instance in which a comma or semicolon is not required is between a
character constant and a variable, as in this example.

Here's an example of a program that computes annual interest for any
rate and principal that you enter:

0010 Ii",/PLIT PiP
o 0 :? 0 1 :::: (p ,/ :I. 0 0 :', : .. :' p
o 0 3 0 P F 1 r...l"r 'T H [(:'1 (..I j",! tJ (', LIN 'f P E ~3 T (:1 T . P' P L PC F N T 0 (.! ':\=.' p' I ~) ':j:.' 1

00 Lj. 0 bTU P

PUj\.!

When you run this program and use values of 7 and 825, here's what
you see:

PFPCE(..ll C)(·) I::" "'J _OJ r:*
.",1 { , ("..1

More About the PRINT Statement 79

C"'''. 1,\

,r

c

c

Chapter 7. More About the PRINT Statement

We've seen the PRINT statement used to display the values of
variables and to display comments exactly as entered in the statement.
We've also seen that to display a comment exactly as you entered it,
you must enclose the comment in single quotation marks. You should
remember, then, that if you include this line in a program:

0050 PRINT ~X'

when line 50 is executed, the display screen will show:

x

and not the value of X, which would be displayed if line 50 were

0050 PRINT X

Within a single PRINT statement, you can mix character and arithmetic
variables and constants. You must use commas or semicolons to
separate the values to be displayed. These separators (delimiters)
control spacing of the displayed data. For this example, no separator
is required between the variables and character constants. The only
instance in which a comma or semicolon is not required is between a
character constant and a variable, as in this example.

Here's an example of a program that computes annual interest for any
rate and principal that you enter:

0010 Ii",/PLIT PiP
o 0 :? 0 1 :::: (p ,/ :I. 0 0 :', : .. :' p
o 0 3 0 P F 1 r...l"r 'T H [(:'1 (..I j",! tJ (', LIN 'f P E ~3 T (:1 T . P' P L PC F N T 0 (.! ':\=.' p' I ~) ':j:.' 1

00 Lj. 0 bTU P

PUj\.!

When you run this program and use values of 7 and 825, here's what
you see:

PFPCE(..ll C)(·) I::" "'J _OJ r:*
.",1 { , ("..1

More About the PRINT Statement 79

80

If your system has an attached printer, you can specify that the data
be printed by entering PRINT FLP in place of PRINT in line 30. All of
the capabilities of and restrictions for the PRINT statement also apply
to PRINT FLP. A comma must separate the FLP and the first value.

MAKING HEADINGS

Suppose you have a loop in a program that computes mileage
allowances (at 12 cents a mile) for company auto trips (of 10 to 50
miles in steps of 5 miles):

0010 FOR X=10 TO 50 STEP 5
0020 PRINT X, .12*X
0030 NEXT X
0040 STOP

When you run this program, the display screen shows:

PUt···1
:I. 0 1 ''') . .\#.,

:I. I::' 1 ~::: •• .J

20 :~:.:: 1+
"-,I::' .. :: ::5
-7,
.... 1 0 ~~; (,

::5 ~.:5 I.j. ,
,': ..

q. 0 '-I. H
q·~5 t::'

... ! I.j.
J::' (I (:0: .• ..1

You can make headings for these columns by entering a PRINT
statement before the loop:

0005 PRINT 'MILES','MILEAGE ALLOWANCE'

When you run the program again, the display screen shows:

P l..,li'--.!
j") :I: L. [~:;

:1.0
:I. ~.:.:.;

~? 0

i····j I I...Et·,(3E f,·,I...I...I]I/ . .IP,NCE
:I. • ~?

:,-). (:.

l.j .• ?
q .. n
~5 , 1+

o
(\

~i .. -)'

/(''\

I~t ,)

80

If your system has an attached printer, you can specify that the data
be printed by entering PRINT FLP in place of PRINT in line 30. All of
the capabilities of and restrictions for the PRINT statement also apply
to PRINT FLP. A comma must separate the FLP and the first value.

MAKING HEADINGS

Suppose you have a loop in a program that computes mileage
allowances (at 12 cents a mile) for company auto trips (of 10 to 50
miles in steps of 5 miles):

0010 FOR X=10 TO 50 STEP 5
0020 PRINT X, .12*X
0030 NEXT X
0040 STOP

When you run this program, the display screen shows:

PUt···1
:I. 0 1 ''') . .\#.,

:I. I::' 1 ~::: •• .J

20 :~:.:: 1+
"-,I::' .. :: ::5
-7,
.... 1 0 ~~; (,

::5 ~.:5 I.j. ,
,': ..

q. 0 '-I. H
q·~5 t::'

... ! I.j.
J::' (I (:0: .• ..1

You can make headings for these columns by entering a PRINT
statement before the loop:

0005 PRINT 'MILES','MILEAGE ALLOWANCE'

When you run the program again, the display screen shows:

P l..,li'--.!
j") :I: L. [~:;

:1.0
:I. ~.:.:.;

~? 0

i····j I I...Et·,(3E f,·,I...I...I]I/ . .IP,NCE
:I. • ~?

:,-). (:.

l.j .• ?
q .. n
~5 , 1+

o
(\

~i .. -)'

/(''\

I~t ,)

C'~

c

You will be shown later how you can change the mileage allowance
column to include trailing zeros, which will make it more readable as
dollars and cents.

MATH CALCULATIONS IN PRINT STATEMENTS

The PRINT statement allows you to include math calculations along
with variables and words. Therefore, if you just want a calculation
done and the result displayed, you can do it in a single PRINT
statement. For example, you can write

0010 INPUT X
0020 PRINT X,Xt2

instead of writing

0010 INPUT X
0020 Y=Xt2
0030 PRINT X,Y

More About the PRINT Statement 81

C'~

c

You will be shown later how you can change the mileage allowance
column to include trailing zeros, which will make it more readable as
dollars and cents.

MATH CALCULATIONS IN PRINT STATEMENTS

The PRINT statement allows you to include math calculations along
with variables and words. Therefore, if you just want a calculation
done and the result displayed, you can do it in a single PRINT
statement. For example, you can write

0010 INPUT X
0020 PRINT X,Xt2

instead of writing

0010 INPUT X
0020 Y=Xt2
0030 PRINT X,Y

More About the PRINT Statement 81

82

o

,(
'\, ,i

o
82

o

,(
'\, ,i

o

c'

c'

c

Chapter 8. Setting Up Your Own Format-PRINT USING and Image Statements

A more flexible way to display results is to use a statement called
PRINT USING. This statement allows you to display variables using a
particular format. You specify the format in a separate BASIC
statement called an image or FORM statement, or you can assign the
format to a character variable in an assignment statement. The PRINT
USING statement is used together with an image or FORM statement
or character variable. The image/FORM statement can appear
anywhere in a program and can be used by any number of PRINT
USING statements. A character variable used with a PRINT USING
statement must have been previously defined with a DIM and/or
assignment statement. For details on the FORM statement, see the
IBM 5110 BASIC Reference Manual, SA21-930S. Exercises for this
chapter are provided in Chapter 13.

The image statement is a BASIC statement, but it looks different from
the other BASIC statements. Following the statement number is a
colon (:). After the colon, you enter the exact wording and format that
you want your results to have. You leave room for any variable values
by using # signs where the values belong. When the program is run,
the system substitutes real values for the # signs and displays the data
in the image statement (including any blank spaces you leave). A
sample PRINT USING statement and its image statement are:

0020 PRINT USING 30,G,N
0030 :GROSS SALES ARE ###.## AND NET PROFITS ARE ###.##

Notice that single quotation marks were not used around the character
data in line 0030. This is true of all image statements, unless, of
course, you want quotation marks to appear in the displayed or
printed data.

Setting Up Your Own Format-PR INT USING and Image Statements 83

c'

c'

c

Chapter 8. Setting Up Your Own Format-PRINT USING and Image Statements

A more flexible way to display results is to use a statement called
PRINT USING. This statement allows you to display variables using a
particular format. You specify the format in a separate BASIC
statement called an image or FORM statement, or you can assign the
format to a character variable in an assignment statement. The PRINT
USING statement is used together with an image or FORM statement
or character variable. The image/FORM statement can appear
anywhere in a program and can be used by any number of PRINT
USING statements. A character variable used with a PRINT USING
statement must have been previously defined with a DIM and/or
assignment statement. For details on the FORM statement, see the
IBM 5110 BASIC Reference Manual, SA21-930S. Exercises for this
chapter are provided in Chapter 13.

The image statement is a BASIC statement, but it looks different from
the other BASIC statements. Following the statement number is a
colon (:). After the colon, you enter the exact wording and format that
you want your results to have. You leave room for any variable values
by using # signs where the values belong. When the program is run,
the system substitutes real values for the # signs and displays the data
in the image statement (including any blank spaces you leave). A
sample PRINT USING statement and its image statement are:

0020 PRINT USING 30,G,N
0030 :GROSS SALES ARE ###.## AND NET PROFITS ARE ###.##

Notice that single quotation marks were not used around the character
data in line 0030. This is true of all image statements, unless, of
course, you want quotation marks to appear in the displayed or
printed data.

Setting Up Your Own Format-PR INT USING and Image Statements 83

84

This is the way these two statements work together:

0020 PRINT USING 30,G,N "-

The line number of / 1 ~ The variables, separated by commas,
the image statement. is required. whose values are going to be displayed

or printed in the format specified in
the image statement.

0030 :GROSS SALES ARE ###:n# AND NET PROFITS ARE ###.##

/ / \
This identifies the image The value of G will be The value of N will be
statement; it does not inserted here when the inserted here when the
appear when the state- line is displayed or line is displayed or
ment is executed. printed instead of printed instead of

###.##. ###.##.

If these two statements were part of a program, with G equal to
103.72 and N equal to 21.45, at the time you ran the program, the
system would display:

r~ 1:/ n c~ C c; i:. 1 I::' C ,'::' I~I I::' '.1. (I :.'.~ 1 -1:.
1

r .•.. ~ f.'t N It NET P P 0 FIT ~::; (:1 P [::.~ 1 1 '-I.~::'; .\ ... ' ... , '-'" ..•...... , " ... ' .

Display Position 1

You can also specify a character variable in place of the line number
of an image or FORM statement in the PRINT USING statement. For
example:

0020 A$='GROSS SALES ARE ##11.## AND NET PROFITS ARE ##11.##'
0030 PRINT USING A$,G,N

Before being used in this manner, character variables must have been
previously dimensioned to the length of the image (see Arrays,
Chapter 11) in a DIM statement.

o

f~·

~,,'

()
84

This is the way these two statements work together:

0020 PRINT USING 30,G,N "-

The line number of / 1 ~ The variables, separated by commas,
the image statement. is required. whose values are going to be displayed

or printed in the format specified in
the image statement.

0030 :GROSS SALES ARE ###:n# AND NET PROFITS ARE ###.##

/ / \
This identifies the image The value of G will be The value of N will be
statement; it does not inserted here when the inserted here when the
appear when the state- line is displayed or line is displayed or
ment is executed. printed instead of printed instead of

###.##. ###.##.

If these two statements were part of a program, with G equal to
103.72 and N equal to 21.45, at the time you ran the program, the
system would display:

r~ 1:/ n c~ C c; i:. 1 I::' C ,'::' I~I I::' '.1. (I :.'.~ 1 -1:.
1

r .•.. ~ f.'t N It NET P P 0 FIT ~::; (:1 P [::.~ 1 1 '-I.~::'; .\ ... ' ... , '-'" ..•...... , " ... ' .

Display Position 1

You can also specify a character variable in place of the line number
of an image or FORM statement in the PRINT USING statement. For
example:

0020 A$='GROSS SALES ARE ##11.## AND NET PROFITS ARE ##11.##'
0030 PRINT USING A$,G,N

Before being used in this manner, character variables must have been
previously dimensioned to the length of the image (see Arrays,
Chapter 11) in a DIM statement.

o

f~·

~,,'

()

("",
~,

)(

(

''''I

,/

(
"'~'

."./

c

o

c'

An image statement always begins with a colon. When you enter the
signs, as stand-ins for variable values, you are really telling the 5110
how many spaces to leave for the values. If a value needs more space
than you indicated, a row of asterisks will be displayed or printed
instead of the value when the statement is executed. In these
statements:

0040 PRINT USING 50,Z,Z+3
0050 :Z IS ## AND Z CUBED IS ##

there are only two spaces indicated for each value. If Z is 3, the
displayed result would be:

.t.. I ~; 3 (.1 N II Z CUB E [I I f:) 27

But if Z is 5, then 53 is 125, which is three spaces long. The displayed
result would be:

The asterisks mean that the answer was too long for the space you
indicated.

When you use # signs to indicate space for your variable values in an
image statement, you can also control how many decimal places you
want the value to have when it is displayed or printed. You do this by
inserting a decimal point in the string of # signs wherever you want
the decimal point to go in the result. For example, when you are using
dollars and cents, insert a decimal point two places from the right, as
in this example:

0100 PRINT USING 110,S
0110 :THE SERVICE CHARGE FOR YOUR ACCOUNT IS $###.##

If S were 23.47, the result would be displayed as follows when you
ran the program:

THE S E P V I C [C H tl R (3 E F [I H YO I.J R tl C C [I U NT I ~:::; ':\> ? 3 . '+ 7

If your system has a printer, you can use the PRINT USING FLP
statement to format your data. All the capabilities of the PRINT
USING statement also apply to the PRINT USING FLP statement.

Setting Up Your Own Format-PRINT USING and Image Statements 85

("",
~,

)(

(

''''I

,/

(
"'~'

."./

c

o

c'

An image statement always begins with a colon. When you enter the
signs, as stand-ins for variable values, you are really telling the 5110
how many spaces to leave for the values. If a value needs more space
than you indicated, a row of asterisks will be displayed or printed
instead of the value when the statement is executed. In these
statements:

0040 PRINT USING 50,Z,Z+3
0050 :Z IS ## AND Z CUBED IS ##

there are only two spaces indicated for each value. If Z is 3, the
displayed result would be:

.t.. I ~; 3 (.1 N II Z CUB E [I I f:) 27

But if Z is 5, then 53 is 125, which is three spaces long. The displayed
result would be:

The asterisks mean that the answer was too long for the space you
indicated.

When you use # signs to indicate space for your variable values in an
image statement, you can also control how many decimal places you
want the value to have when it is displayed or printed. You do this by
inserting a decimal point in the string of # signs wherever you want
the decimal point to go in the result. For example, when you are using
dollars and cents, insert a decimal point two places from the right, as
in this example:

0100 PRINT USING 110,S
0110 :THE SERVICE CHARGE FOR YOUR ACCOUNT IS $###.##

If S were 23.47, the result would be displayed as follows when you
ran the program:

THE S E P V I C [C H tl R (3 E F [I H YO I.J R tl C C [I U NT I ~:::; ':\> ? 3 . '+ 7

If your system has a printer, you can use the PRINT USING FLP
statement to format your data. All the capabilities of the PRINT
USING statement also apply to the PRINT USING FLP statement.

Setting Up Your Own Format-PRINT USING and Image Statements 85

86

Example of Printing

There are three sales representatives in your department, and you are
responsible for making a monthly report showing their sales figures
for each week of the month. You can write a program that will
automatically print the report for you in an attractive format.

This is how the variables in the program are named. Each sales
representative is assigned a letter: A, B, and C. Starting with the first
sales representative, the variables are:

A$ - Name
A 1 - Sales total for week 1
A2 - Sales total for week 2
A3 - Sales total for week 3
A4 - Sales total for week 4
A5 Sales total for the month

and so on for sales representatives Band C

There are these other variables:

M$
W$, X$, Y$, and Z$ -
T1, T2, T3, and T4 -
T5

Name of the month
Last day of each week in the month
Totals for everybody for each week
Total for everybody for the month

o

,. "

\~
"\,._ . .l'

86

Example of Printing

There are three sales representatives in your department, and you are
responsible for making a monthly report showing their sales figures
for each week of the month. You can write a program that will
automatically print the report for you in an attractive format.

This is how the variables in the program are named. Each sales
representative is assigned a letter: A, B, and C. Starting with the first
sales representative, the variables are:

A$ - Name
A 1 - Sales total for week 1
A2 - Sales total for week 2
A3 - Sales total for week 3
A4 - Sales total for week 4
A5 Sales total for the month

and so on for sales representatives Band C

There are these other variables:

M$
W$, X$, Y$, and Z$ -
T1, T2, T3, and T4 -
T5

Name of the month
Last day of each week in the month
Totals for everybody for each week
Total for everybody for the month

o

,. "

\~
"\,._ . .l'

c

Supply sales
representat ives
names.
Enter dates
for the weeks.

Supply sales
figures.

Compute
monthly
totals.

Print figures
and sales
representatives
names.

Compute
weekly and
grand totals.

Print totals.

For this program, you have to supply the month's sales figures, the
name of the month, and the last day of each week covered. The
report is then printed automatically. Now enter the following program:

o 0 ton I::: h P f~ U 13 P f":-, ivi F I] P P PIN TIN G M 0 N 'r H I... "-(~::; (.':) L E ~~; I? F PO f< T
(021) tl~~::::' (IDLE I~ ,
(I 0 3 0 f: .~; ~:: ' B J P P L E '
0040 C$~'CUBBINS'

PHI NT' EN T E P M () NTH.. L () f:) T II f~ Y 0 F [t, C H hJ E [: l< '
INPUT M$.. W$.. X$,Y$.. Z$
P F< I NT 'ENTE P F I Cit./ PEf:; FD R (~DI..,E P ,

0080 INPUT Al,A2 .. A3,A4
00<10 PI~INT 'ENTER FICiUPE~3 FOP f{IPPLE'
0100 INPUT Bl,B2,B3,B4
o :I. 1. 0 P r~ I NT' E N T E R F I D 1...I1~ E ~:; F C) F~ C: 1...1 B [: I N ~~) ,
o :I. 2 0 I (.... ! P 1 . ..1 Tel., c ~.:~ .' C 3 .' C '+

{,

':,' :1.3 (I (.1 ~:)::::(i:l. + tl ::~+(.i 2) + ~il.l'
0140 B5=Bl+B2+B3+B4
fl :I. ~:.; [I C ~.:,:,i :::: C: 1 -:-- C :2 -}- C :3 + C '+
o 1 6 (I P R I NT I...I~) It,·,! CJ I) 1 7 0 .. F L P .. rl':j:,
o 1 -; 0 : ' i [I NTH I... "'(~~:; t" L [':::; PI::: P D r~~ T F 0 F;~ j"'j C) '" THO F H H H H ~~: l:t H H *~ H
0100 PI:{INT FLP
o :I. ~1 0 P I~ I N T 1...1 ~::; I N Ci (I :.::: 0 0 .. F I... P
0200 :SALESMAN WEEK ENDING
0210 PRINT USING 0220,FLP,W$,X$,Y$,Z$
o ;,:: ::.~ 0 ~* H H fi H H
0230 PPINT FLP
I,) 2LJ· 0 P R I N T 1...1 ~::) 1 NCO :::.~ 7 (I .. F L. P ,I (I .~; .. f-~) 1 .. f.', :,:: .. tl:::' .. tll+

I) ::,:: ~5 I] P 1< I NT 1 • ..1 ::;) I N r:i I] ~? '7 (I .' F I... P,C: -:j:. , C 1 , C ;.:.:: .. C:.3 I C Lj,

o 2 (, 0 P f,~ I NT U ~::> I N G 0 2 '(' (I } F I... P .. C .~; , C: 1. , C::2 , C::3 " C 1+
I) 2 '(-' 0 : H H ~~ H tt H H a H H ff , R: H *~ f' ~i tf I **~:t. H *~ H ** , H **
o 2 BOT :J. :::: (11 -}- B :1. + C l
. 2 (? 0 T ;2 :::: (:, 2 + D ::? + C ?

T 3 :::: () 3 + D:3 + C::5
T q, ::~ f~',l~ 'Y' r: L~ + C 1+

o 3 2 0 T ~5 :::: (:'j'.:.:j + E: I,:,:,; + C ~5
J330 PPINT FLF

,
':: ~~ ::~: ~I p .Il:~ (:!): ~l:! ':-1 ~:! ~3 I N ~=~ !J, ~ ::; :.;; 0 ~', ::'l.. p ~~ ~~: ~I~ ~'~ ~T: ::,:,:: ,,I, :'1,' ::::~ .. ~~ jl.:, ,.', :T: ~; .. : 1~ l'
U "~ ,::.1 I.J : ... (,:, .. , :::;. H Yt t1 n H: , i'¥ H i't to? t~ \"i' tt , H H tt ,:~ H H n , h H

) 3 {. (I ~:) T () P

Note that a PRINT FLP statement with nothing after it causes a blank
line to be printed. This form of the statement is used in lines 0180,
0230, and 0330 to include blank lines in the printed report.

Setting Up Your Own Format-PRINT USING and Image Statements 87

c

Supply sales
representat ives
names.
Enter dates
for the weeks.

Supply sales
figures.

Compute
monthly
totals.

Print figures
and sales
representatives
names.

Compute
weekly and
grand totals.

Print totals.

For this program, you have to supply the month's sales figures, the
name of the month, and the last day of each week covered. The
report is then printed automatically. Now enter the following program:

o 0 ton I::: h P f~ U 13 P f":-, ivi F I] P P PIN TIN G M 0 N 'r H I... "-(~::; (.':) L E ~~; I? F PO f< T
(021) tl~~::::' (IDLE I~ ,
(I 0 3 0 f: .~; ~:: ' B J P P L E '
0040 C$~'CUBBINS'

PHI NT' EN T E P M () NTH.. L () f:) T II f~ Y 0 F [t, C H hJ E [: l< '
INPUT M$.. W$.. X$,Y$.. Z$
P F< I NT 'ENTE P F I Cit./ PEf:; FD R (~DI..,E P ,

0080 INPUT Al,A2 .. A3,A4
00<10 PI~INT 'ENTER FICiUPE~3 FOP f{IPPLE'
0100 INPUT Bl,B2,B3,B4
o :I. 1. 0 P r~ I NT' E N T E R F I D 1...I1~ E ~:; F C) F~ C: 1...1 B [: I N ~~) ,
o :I. 2 0 I (.... ! P 1 . ..1 Tel., c ~.:~ .' C 3 .' C '+

{,

':,' :1.3 (I (.1 ~:)::::(i:l. + tl ::~+(.i 2) + ~il.l'
0140 B5=Bl+B2+B3+B4
fl :I. ~:.; [I C ~.:,:,i :::: C: 1 -:-- C :2 -}- C :3 + C '+
o 1 6 (I P R I NT I...I~) It,·,! CJ I) 1 7 0 .. F L P .. rl':j:,
o 1 -; 0 : ' i [I NTH I... "'(~~:; t" L [':::; PI::: P D r~~ T F 0 F;~ j"'j C) '" THO F H H H H ~~: l:t H H *~ H
0100 PI:{INT FLP
o :I. ~1 0 P I~ I N T 1...1 ~::; I N Ci (I :.::: 0 0 .. F I... P
0200 :SALESMAN WEEK ENDING
0210 PRINT USING 0220,FLP,W$,X$,Y$,Z$
o ;,:: ::.~ 0 ~* H H fi H H
0230 PPINT FLP
I,) 2LJ· 0 P R I N T 1...1 ~::) 1 NCO :::.~ 7 (I .. F L. P ,I (I .~; .. f-~) 1 .. f.', :,:: .. tl:::' .. tll+

I) ::,:: ~5 I] P 1< I NT 1 • ..1 ::;) I N r:i I] ~? '7 (I .' F I... P,C: -:j:. , C 1 , C ;.:.:: .. C:.3 I C Lj,

o 2 (, 0 P f,~ I NT U ~::> I N G 0 2 '(' (I } F I... P .. C .~; , C: 1. , C::2 , C::3 " C 1+
I) 2 '(-' 0 : H H ~~ H tt H H a H H ff , R: H *~ f' ~i tf I **~:t. H *~ H ** , H **
o 2 BOT :J. :::: (11 -}- B :1. + C l
. 2 (? 0 T ;2 :::: (:, 2 + D ::? + C ?

T 3 :::: () 3 + D:3 + C::5
T q, ::~ f~',l~ 'Y' r: L~ + C 1+

o 3 2 0 T ~5 :::: (:'j'.:.:j + E: I,:,:,; + C ~5
J330 PPINT FLF

,
':: ~~ ::~: ~I p .Il:~ (:!): ~l:! ':-1 ~:! ~3 I N ~=~ !J, ~ ::; :.;; 0 ~', ::'l.. p ~~ ~~: ~I~ ~'~ ~T: ::,:,:: ,,I, :'1,' ::::~ .. ~~ jl.:, ,.', :T: ~; .. : 1~ l'
U "~ ,::.1 I.J : ... (,:, .. , :::;. H Yt t1 n H: , i'¥ H i't to? t~ \"i' tt , H H tt ,:~ H H n , h H

) 3 {. (I ~:) T () P

Note that a PRINT FLP statement with nothing after it causes a blank
line to be printed. This form of the statement is used in lines 0180,
0230, and 0330 to include blank lines in the printed report.

Setting Up Your Own Format-PRINT USING and Image Statements 87

.--------.--.----~----.-.~---

88

i~,DI ... E t<:

r:IPPI...E
C \...1 B B I i"'~ ~:)

If your system has a printer, you can run the program by entering a
RUN command and pressing EXECUTE. If your system does not have
a printer, enter a RUN command, then enter P=D. For example: RUN
P=D, then press EXECUTE. This command directs all printed output to
the display screen.

During a sample running of this program, the display screen showed:

PUN
ENTER j'1DNTH.. Lf.\f;;T Dr,Y OF Ef.1CH I,..IEEI<

JULY I 7 , 14 , 21 , 28
ENTER FIGURES FOR ADLER

12.50,500.00,400,00 .. 895,50
EN T E R FIG U ~: [: ~~) FOR B I P PI... E

:::~;q., ~:iO., ('8, <)0., ~500, 00, lOO, 00
ENTE I~ F I GU F~:E~:) FO R CI..JBP I NS

300,00,800,00 .. 700,00,43.25

For this program the printed or displayed output was:

1 ::.? , '.:.:.iO
::::;LJ· • ~;O

300.00

31.J··/, 00

I,"EEI< [N:O I t,·.!Ci
lQ·

BOO.OO

I.J·OO , 00
!:.:.i 0 [I .00
lOO.OO

:I.,soo.oo

100.00
'+3, ;.:.::!5

TDTt,!...

l:JO:J ,00
7:1.3, '+0

1 DI.t·::::; .2!.:5

o

.--------.--.----~----.-.~---

88

i~,DI ... E t<:

r:IPPI...E
C \...1 B B I i"'~ ~:)

If your system has a printer, you can run the program by entering a
RUN command and pressing EXECUTE. If your system does not have
a printer, enter a RUN command, then enter P=D. For example: RUN
P=D, then press EXECUTE. This command directs all printed output to
the display screen.

During a sample running of this program, the display screen showed:

PUN
ENTER j'1DNTH.. Lf.\f;;T Dr,Y OF Ef.1CH I,..IEEI<

JULY I 7 , 14 , 21 , 28
ENTER FIGURES FOR ADLER

12.50,500.00,400,00 .. 895,50
EN T E R FIG U ~: [: ~~) FOR B I P PI... E

:::~;q., ~:iO., ('8, <)0., ~500, 00, lOO, 00
ENTE I~ F I GU F~:E~:) FO R CI..JBP I NS

300,00,800,00 .. 700,00,43.25

For this program the printed or displayed output was:

1 ::.? , '.:.:.iO
::::;LJ· • ~;O

300.00

31.J··/, 00

I,"EEI< [N:O I t,·.!Ci
lQ·

BOO.OO

I.J·OO , 00
!:.:.i 0 [I .00
lOO.OO

:I.,soo.oo

100.00
'+3, ;.:.::!5

TDTt,!...

l:JO:J ,00
7:1.3, '+0

1 DI.t·::::; .2!.:5

o

("

"','1,,

.--,/lr

c

c

Chapter 9. Data Files

A file is a collection of related data items that are stored together.
Your system can process both stream-oriented files and
record-oriented files. In a stream-oriented file, all the data items are
stored as a sequential stream of data, in the order in which they are
entered. Data items in a record-oriented file can also be stored
sequentially in the order they are entered, but they can be retrieved
according to an identification field called a key or logical record
number.

For a complete description of stream/record-oriented files, see the
IBM 5110 BASIC User's Guide, SA21-9307.

ACTIVATING AND DEACTIVATING FILES

Files must be activated or opened before they can be used within a
program. A stream-oriented file must be opened by an OPEN
statement in a program. A record-oriented file must be opened by an
OPEN FILE statement. The following example shows the format of an
OPEN statement:

0050 OPEN FL1,'E80',2'INVTY',OUT

FL 1 is the file reference, which can be from FLO to FL9, but must be
the same as the file reference in the GET or PUT statement. 'E80' is
the device address of the tape unit built into the 5110 Model 1. The
number 2 specifies which physical file on tape is going to be used.
This number can be specified as a variable. The word OUT indicates
that the file is to be used for storing data items (with PUT statements)
in the file for use in the program.

If you are opening a file on diskette, replace 'E80' in the sample
statements with '080' (device address of diskette drive 1) and enter
the name of the file on diskette. The file name is required when you
create a file on diskette.

If a record-oriented file were to be created with WRITE FILE
statements, it could be opened as an output file with this statement:

0100 OPEN FILE FL1,'D80',2,'INVTY',OUT,RECL=128

Note: See the IBM 5110 BASIC Reference Manual, SA21-9308, for a
complete description of the OPEN statement.

Data Files 89

("

"','1,,

.--,/lr

c

c

Chapter 9. Data Files

A file is a collection of related data items that are stored together.
Your system can process both stream-oriented files and
record-oriented files. In a stream-oriented file, all the data items are
stored as a sequential stream of data, in the order in which they are
entered. Data items in a record-oriented file can also be stored
sequentially in the order they are entered, but they can be retrieved
according to an identification field called a key or logical record
number.

For a complete description of stream/record-oriented files, see the
IBM 5110 BASIC User's Guide, SA21-9307.

ACTIVATING AND DEACTIVATING FILES

Files must be activated or opened before they can be used within a
program. A stream-oriented file must be opened by an OPEN
statement in a program. A record-oriented file must be opened by an
OPEN FILE statement. The following example shows the format of an
OPEN statement:

0050 OPEN FL1,'E80',2'INVTY',OUT

FL 1 is the file reference, which can be from FLO to FL9, but must be
the same as the file reference in the GET or PUT statement. 'E80' is
the device address of the tape unit built into the 5110 Model 1. The
number 2 specifies which physical file on tape is going to be used.
This number can be specified as a variable. The word OUT indicates
that the file is to be used for storing data items (with PUT statements)
in the file for use in the program.

If you are opening a file on diskette, replace 'E80' in the sample
statements with '080' (device address of diskette drive 1) and enter
the name of the file on diskette. The file name is required when you
create a file on diskette.

If a record-oriented file were to be created with WRITE FILE
statements, it could be opened as an output file with this statement:

0100 OPEN FILE FL1,'D80',2,'INVTY',OUT,RECL=128

Note: See the IBM 5110 BASIC Reference Manual, SA21-9308, for a
complete description of the OPEN statement.

Data Files 89

90

Normally, a file is deactivated or closed by the system after execution
of your program. However, if you want to switch an input file to
output (or vice versa) and continue to use it in the same program, you
must deactivate it by using the CLOSE [FI LE] statement before
reopening it. (If you did not use the CLOSE statement and attempted
to use an output file for input or vice versa, execution of your program
would be terminated.) The CLOSE statement deactivates the file; a
subsequent OPEN statement opens (reactivates) the file for its new
use and repositions it at its beginning. Under ordinary circumstances,
the CLOSE statement is optional, and the system will close a file at the
end of program execution.

The CLOSE statement is required, however, if you use the same file
for both input and output operations in the same program. This does
not apply to record-oriented files opened with the ALL parameter (see
OPEN FILE Statement in the IBM 5110 BASIC Reference Manual,
SA21-9308). The CLOSE statement is also required if several different
files are accessed by the same program.

CREATING A TAPE OR DISKETTE FILE

The following compound interest program can be used to produce an
output listing containing 600 values in 200 lines:

o :I. 0 0 P F< J ,",I T '[(! T F P P PIN C I P (",I... '
o 0 :::":~ 0 I N P 1...1 T I""'

o 0 ::::;: 0 P P I (I T F I... F' .. 'T J ti ['.' 'P (I "r E '.' '(:", ("j [I 1...1 NT'
I) 0 q" 0 F 0 F:~ "r :::: :I. T (J :I. 0
o 0 ~:":"i 0 FOP P ~:: :I. T U :::~ 0
0060 A~P*(1+R/l00)tT
[I 0 "/ 0 P R I N T F I... P.. "r.. H "' (:",
00:::::0 r\![:x:"r I~

OO?O j\!E><T "f
0:1.00 r;TDP

The PRINT statement in this program is executed 200 times to
produce an output listing containing the values. These values could be
grouped as an output file on tape or diskette. In fact, instead of
printing them, you could store them in the file and use them later. By
adding an OPEN statement and substituting a PUT statement for the
PRINT statement (line 0070), you can create a tape or diskette file; for
example:

0025 OPEN FL 1 ,'E80',2,OUT

0070 PUT FL 1 ,T,R,A

o

o
90

Normally, a file is deactivated or closed by the system after execution
of your program. However, if you want to switch an input file to
output (or vice versa) and continue to use it in the same program, you
must deactivate it by using the CLOSE [FI LE] statement before
reopening it. (If you did not use the CLOSE statement and attempted
to use an output file for input or vice versa, execution of your program
would be terminated.) The CLOSE statement deactivates the file; a
subsequent OPEN statement opens (reactivates) the file for its new
use and repositions it at its beginning. Under ordinary circumstances,
the CLOSE statement is optional, and the system will close a file at the
end of program execution.

The CLOSE statement is required, however, if you use the same file
for both input and output operations in the same program. This does
not apply to record-oriented files opened with the ALL parameter (see
OPEN FILE Statement in the IBM 5110 BASIC Reference Manual,
SA21-9308). The CLOSE statement is also required if several different
files are accessed by the same program.

CREATING A TAPE OR DISKETTE FILE

The following compound interest program can be used to produce an
output listing containing 600 values in 200 lines:

o :I. 0 0 P F< J ,",I T '[(! T F P P PIN C I P (",I... '
o 0 :::":~ 0 I N P 1...1 T I""'

o 0 ::::;: 0 P P I (I T F I... F' .. 'T J ti ['.' 'P (I "r E '.' '(:", ("j [I 1...1 NT'
I) 0 q" 0 F 0 F:~ "r :::: :I. T (J :I. 0
o 0 ~:":"i 0 FOP P ~:: :I. T U :::~ 0
0060 A~P*(1+R/l00)tT
[I 0 "/ 0 P R I N T F I... P.. "r.. H "' (:",
00:::::0 r\![:x:"r I~

OO?O j\!E><T "f
0:1.00 r;TDP

The PRINT statement in this program is executed 200 times to
produce an output listing containing the values. These values could be
grouped as an output file on tape or diskette. In fact, instead of
printing them, you could store them in the file and use them later. By
adding an OPEN statement and substituting a PUT statement for the
PRINT statement (line 0070), you can create a tape or diskette file; for
example:

0025 OPEN FL 1 ,'E80',2,OUT

0070 PUT FL 1 ,T,R,A

o

o

(
'-' ,

, y

This PUT statement instructs the system to put the values contained in
the variables T, R, and A into the file that is defined in the OPEN
statement with the same file reference (FL 1). As far as the system is
concerned, both PUT and PRINT mean output; the only difference is
whether the output goes to a tape or diskette file, or to the printer or
display screen. Semicolons cannot be used to separate variables in a
PUT statement; use only commas.

RETRIEVING A FILE

To access data in a tape or diskette file, you use the GET statement,
which is the input counterpart to the PUT statement. The file must
first be opened, as shown below.

0050 OPEN FL 1,'E80',2,IN

To access the first set of values from the file created with the
preceding PUT statement (statement 0070, above), you can use the
following GET statement. The file reference (FL 1) must be the same
as the file reference in the OPEN statement that defines the specific
file.

0070 GET FL 1,T,R,A

This statement assigns the first three values contained in the file to
the variables T, R, and A. It is not necessary to use the same variable
names that were used when the file was created; for example, we
could assign these values to variables X, Y, and Z. The important
requirement is that the values in the file and the variables to which
they are assigned must be the same type-arithmetic variables for
arithmetic values, and character variables for character values.

After the first GET statement is executed, the file is positioned at the
next value. Thus, a second GET statement referring to FL 1 would
access the next three values in the file. If we wanted to access all the
values stored previously, we could issue the GET statement 200 times,
or enclose one GET statement in a loop as follows:

0050 OPEN FL 1,'E80',2,IN
0060 FOR X=1 TO 200
0070 GET FL 1,T,R,A
0080 PRINT T,R,A
0090 NEXT X

These statements would print the 200 values for each T, R, and A.

Data Fi les 91

(
'-' ,

, y

This PUT statement instructs the system to put the values contained in
the variables T, R, and A into the file that is defined in the OPEN
statement with the same file reference (FL 1). As far as the system is
concerned, both PUT and PRINT mean output; the only difference is
whether the output goes to a tape or diskette file, or to the printer or
display screen. Semicolons cannot be used to separate variables in a
PUT statement; use only commas.

RETRIEVING A FILE

To access data in a tape or diskette file, you use the GET statement,
which is the input counterpart to the PUT statement. The file must
first be opened, as shown below.

0050 OPEN FL 1,'E80',2,IN

To access the first set of values from the file created with the
preceding PUT statement (statement 0070, above), you can use the
following GET statement. The file reference (FL 1) must be the same
as the file reference in the OPEN statement that defines the specific
file.

0070 GET FL 1,T,R,A

This statement assigns the first three values contained in the file to
the variables T, R, and A. It is not necessary to use the same variable
names that were used when the file was created; for example, we
could assign these values to variables X, Y, and Z. The important
requirement is that the values in the file and the variables to which
they are assigned must be the same type-arithmetic variables for
arithmetic values, and character variables for character values.

After the first GET statement is executed, the file is positioned at the
next value. Thus, a second GET statement referring to FL 1 would
access the next three values in the file. If we wanted to access all the
values stored previously, we could issue the GET statement 200 times,
or enclose one GET statement in a loop as follows:

0050 OPEN FL 1,'E80',2,IN
0060 FOR X=1 TO 200
0070 GET FL 1,T,R,A
0080 PRINT T,R,A
0090 NEXT X

These statements would print the 200 values for each T, R, and A.

Data Fi les 91

92

REPOSITIONING FILES

You may have an occasion to use an input file or an output file more
than once in the same program. The RESET statement allows you to
reposition the file without deactivating it (deactivation is necessary
only when the function of a file is changed from input to output or
vice versa). For example:

0020 OPEN FL4,'ESO',4,IN
0030 GET FL4,X,V,Z,Q,R,S

0100 RESET FL4
0110 GET FL4,X,V,Z,Q,R,S

0150 RESET FL4
0160 GET FL4,X,V,Z,Q,R,S

Between statements 0030 and 0100, the variables X, V, Z, Q, R, and S
could be used in one set of calculations and their values changed. By
repositioning the file, the original values in the file could again be
made available and put into variables X, V, Z, Q, R, and S for different
calculations or uses between statements 0110 and 0150, and again
between statement 0160 and the end of the program. Actua"y, the
RESET statement used in this way functions for files in the same way
that the RESTORE statement functions for the data table created by
the DATA statement.

To add data to the end of the file, you can reset it to its end by using
the RESET statement with the END keyword:

0200 RESET FL 1 END

This statement positions FL 1 to the end of the last data item in the
file. PUT statements appearing after statement 0200 will place
additional values in the file. In effect, RESET END allows you to build
onto a file. (See RESET Statement in the IBM 5110 BASIC Reference
Manual, SA21-930S.)

o

J " }'

92

REPOSITIONING FILES

You may have an occasion to use an input file or an output file more
than once in the same program. The RESET statement allows you to
reposition the file without deactivating it (deactivation is necessary
only when the function of a file is changed from input to output or
vice versa). For example:

0020 OPEN FL4,'ESO',4,IN
0030 GET FL4,X,V,Z,Q,R,S

0100 RESET FL4
0110 GET FL4,X,V,Z,Q,R,S

0150 RESET FL4
0160 GET FL4,X,V,Z,Q,R,S

Between statements 0030 and 0100, the variables X, V, Z, Q, R, and S
could be used in one set of calculations and their values changed. By
repositioning the file, the original values in the file could again be
made available and put into variables X, V, Z, Q, R, and S for different
calculations or uses between statements 0110 and 0150, and again
between statement 0160 and the end of the program. Actua"y, the
RESET statement used in this way functions for files in the same way
that the RESTORE statement functions for the data table created by
the DATA statement.

To add data to the end of the file, you can reset it to its end by using
the RESET statement with the END keyword:

0200 RESET FL 1 END

This statement positions FL 1 to the end of the last data item in the
file. PUT statements appearing after statement 0200 will place
additional values in the file. In effect, RESET END allows you to build
onto a file. (See RESET Statement in the IBM 5110 BASIC Reference
Manual, SA21-930S.)

o

J " }'

("
/

c

c

Chapter 10. Arrays

With the. BASIC language, you can keep groups of similar data
(arithmetic or character) together by organizing them into arrays. An
array is a collection of data items that is referred to by a single name.
Exercises for this chapter are provided in Chapter 13.

Arithmetic arrays are named by a single letter of the extended
alphabet. Thus, the letter A can stand for a single arithmetic variable
or an arithmetic array or both, while the symbol A2 can only stand for
a single arithmetic variable. A single letter stands for an array when it
has been defined in a DIM (dimension) statement, which is described
later. All elements of an arithmetic array are initially set to 0 when the
program is executed.

Character arrays, like simple character variables, are named by a single
letter of the extended alphabet followed by a dollar sign ($). Each
element of a character array can be up to 255 characters in length.
Each element is initially set to blank characters when program
execution begins.

BASIC arrays can be either one or two dimensions. A one-dimensional
array can be thought of as a row of successive data items. A
two-dimensional array can be thought of as a rectangular matrix of
rows and columns. A representation of a one-dimensional array A
containing four elements is:

Array A
A(l) A(2) I A(3) A(4)

A representation of a two-dimensional array B with four rows and
three columns is:

Array B
B(l,l) B(1,2) B(1,3)

B(2,1) 8(2,2) B(23)

B(3,1) 8(3,2) B(33)

B(4.1) 8(4.2) B(4 3)

Arrays 93

("
/

c

c

Chapter 10. Arrays

With the. BASIC language, you can keep groups of similar data
(arithmetic or character) together by organizing them into arrays. An
array is a collection of data items that is referred to by a single name.
Exercises for this chapter are provided in Chapter 13.

Arithmetic arrays are named by a single letter of the extended
alphabet. Thus, the letter A can stand for a single arithmetic variable
or an arithmetic array or both, while the symbol A2 can only stand for
a single arithmetic variable. A single letter stands for an array when it
has been defined in a DIM (dimension) statement, which is described
later. All elements of an arithmetic array are initially set to 0 when the
program is executed.

Character arrays, like simple character variables, are named by a single
letter of the extended alphabet followed by a dollar sign ($). Each
element of a character array can be up to 255 characters in length.
Each element is initially set to blank characters when program
execution begins.

BASIC arrays can be either one or two dimensions. A one-dimensional
array can be thought of as a row of successive data items. A
two-dimensional array can be thought of as a rectangular matrix of
rows and columns. A representation of a one-dimensional array A
containing four elements is:

Array A
A(l) A(2) I A(3) A(4)

A representation of a two-dimensional array B with four rows and
three columns is:

Array B
B(l,l) B(1,2) B(1,3)

B(2,1) 8(2,2) B(23)

B(3,1) 8(3,2) B(33)

B(4.1) 8(4.2) B(4 3)

Arrays 93

94

To illustrate the use of one- and two-dimensional arrays, suppose you
are keeping weather statistics on the average temperature and the
inches of rainfall for 12 months. You can write a program to keep
each set of that data in arrays:

• Names of the months

• Average temperature for each month

• Total rainfall for each month

You can arrange the data as three one-dimensional arrays:

Arrav 1 Arrav 2 Arrav 3

Average

Names of Months Temperature Rainfall

January 28 3.47

February 31 2.10

March 35 2.95

April 49 4.82
May 60 3.02

June 64 2.87

July 75 2.04

August 81 1.89
September 71 2.74

October 59 2.90

November 46 1.85

December 37 2.35

Or as one two-dimensional array:

Array 1

Month I TemD I Rainfall

1 28 3.47
2 31 2.10

3 35 2.95

4 49 4.82

5 60 3.02

6 64 2.87

7 75 2.04

8 81 1.89

9 71 2.74

10 59 2.90
11 46 1.85

12 37 2.35

o
l;

(-~
~ . .;

/ "
'~I.

"

!(;

;(~:.

0
94

To illustrate the use of one- and two-dimensional arrays, suppose you
are keeping weather statistics on the average temperature and the
inches of rainfall for 12 months. You can write a program to keep
each set of that data in arrays:

• Names of the months

• Average temperature for each month

• Total rainfall for each month

You can arrange the data as three one-dimensional arrays:

Arrav 1 Arrav 2 Arrav 3

Average

Names of Months Temperature Rainfall

January 28 3.47

February 31 2.10

March 35 2.95

April 49 4.82
May 60 3.02

June 64 2.87

July 75 2.04

August 81 1.89
September 71 2.74

October 59 2.90

November 46 1.85

December 37 2.35

Or as one two-dimensional array:

Array 1

Month I TemD I Rainfall

1 28 3.47
2 31 2.10

3 35 2.95

4 49 4.82

5 60 3.02

6 64 2.87

7 75 2.04

8 81 1.89

9 71 2.74

10 59 2.90
11 46 1.85

12 37 2.35

o
l;

(-~
~ . .;

/ "
'~I.

"

!(;

;(~:.

0

(,-

c

0'

The second example is really a modified combination of the three one­
dimensional arrays. The first column has been changed to the numeric
representation of the months because the names of the months
(character data) cannot be included in the same array with numeric
data.

It will be much easier to use the weather data if we keep it together in
three one-dimensional arrays, or in one two-dimensional array, than it
would be if we considered it as 36 separate variables. This chapter
will show you how to work with arrays in BASIC programs.

DEFINING AN ARRAY

When you want to work with an array, you must first tell the system
that you are using an array and not ordinary variables. This is called
defining your array. Defining the array merely involves telling the
system how big the array is going to be so the system can leave room
for it, and telling the system what kind of data will be in it. (Later on
you enter the data, but this is not part of defining the array.)

The data for your arrays can be numeric data or character data. You
can define an array to contain either kind of data, but it must contain
only one kind of data. You can't mix characters and numbers in a
single array. That's why we used the numbers of the months instead
of their names when we put the weather data in a two-dimensional
array.

An array composed of numbers is called an arithmetic array. It is
named by a single letter of the extended alphabet such as A or T.

An array composed of character data is called a character array. It is
named by a single letter of the extended alphabet followed by a dollar
sign ($); for example, N$ or Q$.

To define either kind of array, you use a statement called DIM. In the
DIM statement, you name the array and include the size of it in
parentheses after the name.

DIM Statement for One-Dimensional Arrays

For a one-dimensional array, the size is a single number. Thus, to
define an arithmetic one-dimensional array A with 12 elements, your
DIM statement is:

0010 DIM A(12)

Arrays 95

(,-

c

0'

The second example is really a modified combination of the three one­
dimensional arrays. The first column has been changed to the numeric
representation of the months because the names of the months
(character data) cannot be included in the same array with numeric
data.

It will be much easier to use the weather data if we keep it together in
three one-dimensional arrays, or in one two-dimensional array, than it
would be if we considered it as 36 separate variables. This chapter
will show you how to work with arrays in BASIC programs.

DEFINING AN ARRAY

When you want to work with an array, you must first tell the system
that you are using an array and not ordinary variables. This is called
defining your array. Defining the array merely involves telling the
system how big the array is going to be so the system can leave room
for it, and telling the system what kind of data will be in it. (Later on
you enter the data, but this is not part of defining the array.)

The data for your arrays can be numeric data or character data. You
can define an array to contain either kind of data, but it must contain
only one kind of data. You can't mix characters and numbers in a
single array. That's why we used the numbers of the months instead
of their names when we put the weather data in a two-dimensional
array.

An array composed of numbers is called an arithmetic array. It is
named by a single letter of the extended alphabet such as A or T.

An array composed of character data is called a character array. It is
named by a single letter of the extended alphabet followed by a dollar
sign ($); for example, N$ or Q$.

To define either kind of array, you use a statement called DIM. In the
DIM statement, you name the array and include the size of it in
parentheses after the name.

DIM Statement for One-Dimensional Arrays

For a one-dimensional array, the size is a single number. Thus, to
define an arithmetic one-dimensional array A with 12 elements, your
DIM statement is:

0010 DIM A(12)

Arrays 95

96

To define character array N$ with 20 elements, your statement is:

0010 DIM N$(20)

To define both together, your statement is:

0010 DIM A(12), N$(20)

DIM Statement for Two-Dimensional Arrays

For two-dimensional arrays, the size is two numbers, one for each
dimension. The first number is the number of rows in the array; the
second number is the number of columns in the array.

To define array W with 12 rows and 3 columns, the DIM statement is:

0010 DIM W(12,3)

Character array A$ with 3 rows and 4 columns is defined by:

0010 DIM A$(3,4)

You can define all your arrays in a single DIM statement. You can also
mix definitions of one- and two-dimensional arrays in a single DI M
statement.

DIM Statement for Character Variables

The DIM statement is also used to define the length of character
variables to be referenced in a program (such as by a PRINT USING
statement, as previously described). The DIM statement to define a
character variable has the following format:

0010 DIM A$49,B$8(10)

In this example, character variable A$ has been assigned a length of
49 characters, and character array B$ has been assigned 10 elements
of 8 characters each. Once you have defined a length for a character
variable, you can assign a value of that length. If you do not define a
length in a DIM statement, the character variable has an assumed
(default) length of 18 characters.

o

96

To define character array N$ with 20 elements, your statement is:

0010 DIM N$(20)

To define both together, your statement is:

0010 DIM A(12), N$(20)

DIM Statement for Two-Dimensional Arrays

For two-dimensional arrays, the size is two numbers, one for each
dimension. The first number is the number of rows in the array; the
second number is the number of columns in the array.

To define array W with 12 rows and 3 columns, the DIM statement is:

0010 DIM W(12,3)

Character array A$ with 3 rows and 4 columns is defined by:

0010 DIM A$(3,4)

You can define all your arrays in a single DIM statement. You can also
mix definitions of one- and two-dimensional arrays in a single DI M
statement.

DIM Statement for Character Variables

The DIM statement is also used to define the length of character
variables to be referenced in a program (such as by a PRINT USING
statement, as previously described). The DIM statement to define a
character variable has the following format:

0010 DIM A$49,B$8(10)

In this example, character variable A$ has been assigned a length of
49 characters, and character array B$ has been assigned 10 elements
of 8 characters each. Once you have defined a length for a character
variable, you can assign a value of that length. If you do not define a
length in a DIM statement, the character variable has an assumed
(default) length of 18 characters.

o

c~

c'

c

C'
j'

ELEMENTS OF ARRAYS

Each individual item in an array is called an element of the array.
When you want to refer to a particular element of an array, instead of
the whole array, you talk about the position of that element in the
array. For example, if you want to refer to the third element of
one-dimensional array H, you would refer to it as H(3). To refer to the
element in the first row and third column of array W, you use W(1,3).
The position goes in parentheses after the name of the array. For
two-dimensional arrays, the first number is always the number of the
row, the second number is always the number of the column.

If we look at the weather example as three one-dimensional arrays, we
can call the array with the names of the months M$, the array of
temperature data T, and the array of rainfall data R. If we consider the
weather data as one two-dimensional array, called W, the numbers of
the months are in column 1, the temperature data is in column 2, and
the rainfall data is in column 3. If you wanted to refer to January in a
program statement, you would refer to either M$(1) or W(1, 1).

Here are all the months and the way you refer to them in arrays M$
and W:

Is in this Position:

This Month: In Array M$ In Array W:

1 (January) M$(l) W(l,l)

2 (February) M$(2) W(2,1)

3 (March) M$(3) W(3,1)

4 (April) M$(4) W(4,1)

5 (May) M$(5) W(5,1)

6 (June) M$(6) W(6,1)

7 (July) M$(7) W(7,1)

8 (August) M$(8) W(8,1)

9 (September) M$(9) W(9,1)

10 (October) M$(10) W(10,1)

11 (November) M$(ll) W(ll,l)

12 (December) M$(12) W(12,1)

Note that the month names are not used in array W, although the
corresponding month number is used.

If we include the temperature and rainfall data, the first element in
each one-dimensional array-M$(1), T(1), R(1)-or the first row in array
W-W(1,1), W(1,2), W(1,3)-will be data for January; the second
element in each one-dimensional array, or the second row in W. will
be data for February; and so on.

Arrays 97

c~

c'

c

C'
j'

ELEMENTS OF ARRAYS

Each individual item in an array is called an element of the array.
When you want to refer to a particular element of an array, instead of
the whole array, you talk about the position of that element in the
array. For example, if you want to refer to the third element of
one-dimensional array H, you would refer to it as H(3). To refer to the
element in the first row and third column of array W, you use W(1,3).
The position goes in parentheses after the name of the array. For
two-dimensional arrays, the first number is always the number of the
row, the second number is always the number of the column.

If we look at the weather example as three one-dimensional arrays, we
can call the array with the names of the months M$, the array of
temperature data T, and the array of rainfall data R. If we consider the
weather data as one two-dimensional array, called W, the numbers of
the months are in column 1, the temperature data is in column 2, and
the rainfall data is in column 3. If you wanted to refer to January in a
program statement, you would refer to either M$(1) or W(1, 1).

Here are all the months and the way you refer to them in arrays M$
and W:

Is in this Position:

This Month: In Array M$ In Array W:

1 (January) M$(l) W(l,l)

2 (February) M$(2) W(2,1)

3 (March) M$(3) W(3,1)

4 (April) M$(4) W(4,1)

5 (May) M$(5) W(5,1)

6 (June) M$(6) W(6,1)

7 (July) M$(7) W(7,1)

8 (August) M$(8) W(8,1)

9 (September) M$(9) W(9,1)

10 (October) M$(10) W(10,1)

11 (November) M$(ll) W(ll,l)

12 (December) M$(12) W(12,1)

Note that the month names are not used in array W, although the
corresponding month number is used.

If we include the temperature and rainfall data, the first element in
each one-dimensional array-M$(1), T(1), R(1)-or the first row in array
W-W(1,1), W(1,2), W(1,3)-will be data for January; the second
element in each one-dimensional array, or the second row in W. will
be data for February; and so on.

Arrays 97

98

So far, however, there is no data in any of the arrays. We have only
defined the names and sizes. After you define an array, the system
sets the values of all its elements to 0 (for arithmetic arrays) or blanks
(for character arrays).

Assigning Values to Array Elements

To assign values to array elements (the names of the months, the
temperatures, or the rainfall), you use the methods of assigning values
that you've been using all along.

LET Statements

You can use a LET statement to assign a value to an element of an
array. So if the average temperature for January is 28°, you could
write either of these statements:

0020 LET T(1 }=28
0020 LET W(1,2}=28

This method is acceptable if you only have a few values to assign, but
it is time-consuming if the array is large. In the weather example, we
would need 36 separate LET statements to assign all the data to the
arrays. Nevertheless, the LET statement is handy if you only want to
assign a few values, or if you want to change a value you have already
assigned.

Remember that if you are assigning a value to an element of a
character array in an assignment statement, you enclose the
characters you are assigning in single quotation marks. For example:

0020 LET M$(1 }=' JAN UARY'

DATA and READ Statements

Another way to assign values is to use DATA and READ statements.
You use these the same way you do for variables. For example:

or

0020 READ M$(1 }'M$(2}'M$(3)
0030 DATA JANUARY,FEBRUARY,MARCH

0020 READ W(1, 1 },W(2, 1 },W(3, 1}
0030 DATA 1,2,3

o

;f --"

"'_" .. ,1

98

So far, however, there is no data in any of the arrays. We have only
defined the names and sizes. After you define an array, the system
sets the values of all its elements to 0 (for arithmetic arrays) or blanks
(for character arrays).

Assigning Values to Array Elements

To assign values to array elements (the names of the months, the
temperatures, or the rainfall), you use the methods of assigning values
that you've been using all along.

LET Statements

You can use a LET statement to assign a value to an element of an
array. So if the average temperature for January is 28°, you could
write either of these statements:

0020 LET T(1 }=28
0020 LET W(1,2}=28

This method is acceptable if you only have a few values to assign, but
it is time-consuming if the array is large. In the weather example, we
would need 36 separate LET statements to assign all the data to the
arrays. Nevertheless, the LET statement is handy if you only want to
assign a few values, or if you want to change a value you have already
assigned.

Remember that if you are assigning a value to an element of a
character array in an assignment statement, you enclose the
characters you are assigning in single quotation marks. For example:

0020 LET M$(1 }=' JAN UARY'

DATA and READ Statements

Another way to assign values is to use DATA and READ statements.
You use these the same way you do for variables. For example:

or

0020 READ M$(1 }'M$(2}'M$(3)
0030 DATA JANUARY,FEBRUARY,MARCH

0020 READ W(1, 1 },W(2, 1 },W(3, 1}
0030 DATA 1,2,3

o

;f --"

"'_" .. ,1

(::'

C'

c

c

Again, when you are using large amounts of data, listing them all
separately in a READ statement is not practical. In this example, you
can take advantage of a FOR-NEXT loop to assign values:

or

0020 FOR 1=1 TO 12
0030 READ T(I)
0040 NEXT I
0050 DATA 28,31,35,49,60,64,75,81,71,59,46,37

0020 FOR 1=1 TO 12
0030 READ W(I,2)
0040 NEXT I
0050 DATA 28,31,35,49,60,64,75,81,71,59,46,37

These statements assign all the average temperature data to array T or
to the second column of array W. (For array W, since we are
assigning values only to the second column, we used a constant of 2
in the READ statement.) You can't avoid specifying 12 values in the
DATA statement, but a loop like this makes the READ statement
easier to handle.

When assigning values to array W, you could, in fact, use one READ
statement and two loops to assign all the data at once. It would look
like this:

0020 FOR 1=1 TO 12
0030 FOR J=1 TO 3
0040 READ W(I,J)
0050 NEXT J
0060 NEXT I

Arranged this way, the loops let you enter the data for each row of
the array in succession. Your DATA statements might look like this:

0070 DATA 1,28,3.47
0080 OAT A 2,31,2.10
0090 DATA 3,35,2.95

We've entered the data for each row of array W in a separate DATA
statement because it is easier to visualize the data that way. You
could, however, string out the data so that more than one row appears
in a DATA statement like this:

0070 DATA 1,28,3.47,2,31,2.10,3,35,2.95 ...

This way you could enter as many data items in each DATA statement
as will fit on a line. The important thing is that the data must appear
in the same order as if you were entering it row by row.

Arrays 99

(::'

C'

c

c

Again, when you are using large amounts of data, listing them all
separately in a READ statement is not practical. In this example, you
can take advantage of a FOR-NEXT loop to assign values:

or

0020 FOR 1=1 TO 12
0030 READ T(I)
0040 NEXT I
0050 DATA 28,31,35,49,60,64,75,81,71,59,46,37

0020 FOR 1=1 TO 12
0030 READ W(I,2)
0040 NEXT I
0050 DATA 28,31,35,49,60,64,75,81,71,59,46,37

These statements assign all the average temperature data to array T or
to the second column of array W. (For array W, since we are
assigning values only to the second column, we used a constant of 2
in the READ statement.) You can't avoid specifying 12 values in the
DATA statement, but a loop like this makes the READ statement
easier to handle.

When assigning values to array W, you could, in fact, use one READ
statement and two loops to assign all the data at once. It would look
like this:

0020 FOR 1=1 TO 12
0030 FOR J=1 TO 3
0040 READ W(I,J)
0050 NEXT J
0060 NEXT I

Arranged this way, the loops let you enter the data for each row of
the array in succession. Your DATA statements might look like this:

0070 DATA 1,28,3.47
0080 OAT A 2,31,2.10
0090 DATA 3,35,2.95

We've entered the data for each row of array W in a separate DATA
statement because it is easier to visualize the data that way. You
could, however, string out the data so that more than one row appears
in a DATA statement like this:

0070 DATA 1,28,3.47,2,31,2.10,3,35,2.95 ...

This way you could enter as many data items in each DATA statement
as will fit on a line. The important thing is that the data must appear
in the same order as if you were entering it row by row.

Arrays 99

100

INPUT Statements

You can use INPUT statements to assign values from the keyboard to
array elements. You can list all the array element names in the INPUT
statement, or you can write a FOR and NEXT loop-similar to the ones
for READ-to specify the names of the elements that are to recieve
values.

For example, you can assign values to the one-dimensional rainfall
array R with this statement:

0020 INPUT R(1),R(2),R(3),R(4)'R(5)

or with these statements:

0020 FOR 1=1 TO 12
0030 INPUT R(I)
0040 NEXT I

You can assign the rainfall data to the third column of array W with
these statements:

0020 FOR 1=1 TO 12
0030 INPUT W(I,3}
0040 NEXT I

As with the READ statement, you can write a double loop for an
INPUT statement so that you can supply all the data for array W at
once. In all instances, the system flashes a question mark on the
display screen when the system is ready for you to enter the data
from the keyboard. However, if your INPUT statement is in a loop, the
system flashes a question mark each time the loop is executed. This
means you supply one item of data, wait for the next question mark,
supply the next item of data, and so on. You will have to enter the
data one item at a time, waiting fQr a question mark after each entry.

Another Way to Assign Values to Arrays

Instead of using a loop with a READ or INPUT statement to assign
values, you can write a READ or INPUT statement such as:

0020 MAT READ M$
0030 MAT INPUT N

o

100

INPUT Statements

You can use INPUT statements to assign values from the keyboard to
array elements. You can list all the array element names in the INPUT
statement, or you can write a FOR and NEXT loop-similar to the ones
for READ-to specify the names of the elements that are to recieve
values.

For example, you can assign values to the one-dimensional rainfall
array R with this statement:

0020 INPUT R(1),R(2),R(3),R(4)'R(5)

or with these statements:

0020 FOR 1=1 TO 12
0030 INPUT R(I)
0040 NEXT I

You can assign the rainfall data to the third column of array W with
these statements:

0020 FOR 1=1 TO 12
0030 INPUT W(I,3}
0040 NEXT I

As with the READ statement, you can write a double loop for an
INPUT statement so that you can supply all the data for array W at
once. In all instances, the system flashes a question mark on the
display screen when the system is ready for you to enter the data
from the keyboard. However, if your INPUT statement is in a loop, the
system flashes a question mark each time the loop is executed. This
means you supply one item of data, wait for the next question mark,
supply the next item of data, and so on. You will have to enter the
data one item at a time, waiting fQr a question mark after each entry.

Another Way to Assign Values to Arrays

Instead of using a loop with a READ or INPUT statement to assign
values, you can write a READ or INPUT statement such as:

0020 MAT READ M$
0030 MAT INPUT N

o

("."

c'

These statements tell the system to read in values for the entire array.
The letters MAT stand for the word matrix.

This method of assigning values with a MAT READ statement has no
effect on your DATA statements. Thus, to assign the temperature data
to one-dimensional array T, you could write these statements:

0020 MAT READ T
0030 DATA 28,31,35,49,60,64,75,81,71,59,46,37

If you use a MAT READ W statement, you would have to enter the
data for the entire array in DATA statements. You assign the data row
by row with these statements:

0020 MAT READ W
0030 DATA 1,28,3.47
0040 DATA 2,31,2.10
0050 DATA 3,35,2.95

or with these statements:

0020 MAT READ W
0030 DATA 1,28,3.47,2,31,2.10,3,35,2.95

If you use a MAT INPUT statement to assign values to an array, the
system will signal you with a flashing question mark, as usual, when it
is ready for you to enter data from the keyboard. If you are supplying
values for a one-dimensional array, just type in all the values on a
single line. If you are supplying values for a two-dimensional array,
type in all the data row by row. Remember that the values must be
separated by commas.

Assigning Values to an Entire Array at Once

If you want every element of an array to have the same value, such as
all l' s or all 0' s, you can assign that value to each element of the array
with the following statement:

0030 MAT A=(O)

You could also assign to every element of an array the value of a
variable or the value of an arithmetic expression with this statement:

0050 MAT T =(X)

or this statement:

0060 MAT M=(X+Y*Z)

Arrays 101

("."

c'

These statements tell the system to read in values for the entire array.
The letters MAT stand for the word matrix.

This method of assigning values with a MAT READ statement has no
effect on your DATA statements. Thus, to assign the temperature data
to one-dimensional array T, you could write these statements:

0020 MAT READ T
0030 DATA 28,31,35,49,60,64,75,81,71,59,46,37

If you use a MAT READ W statement, you would have to enter the
data for the entire array in DATA statements. You assign the data row
by row with these statements:

0020 MAT READ W
0030 DATA 1,28,3.47
0040 DATA 2,31,2.10
0050 DATA 3,35,2.95

or with these statements:

0020 MAT READ W
0030 DATA 1,28,3.47,2,31,2.10,3,35,2.95

If you use a MAT INPUT statement to assign values to an array, the
system will signal you with a flashing question mark, as usual, when it
is ready for you to enter data from the keyboard. If you are supplying
values for a one-dimensional array, just type in all the values on a
single line. If you are supplying values for a two-dimensional array,
type in all the data row by row. Remember that the values must be
separated by commas.

Assigning Values to an Entire Array at Once

If you want every element of an array to have the same value, such as
all l' s or all 0' s, you can assign that value to each element of the array
with the following statement:

0030 MAT A=(O)

You could also assign to every element of an array the value of a
variable or the value of an arithmetic expression with this statement:

0050 MAT T =(X)

or this statement:

0060 MAT M=(X+Y*Z)

Arrays 101

102

The value you are assigning must be enclosed in parentheses so that
the system knows it is not the name of another array.

If you omit the parentheses, you can make one array an identical copy
of another array by using this statement:

0070 MAT R=S

In this statement, you don't use parentheses because you are, in fact,
referring to another array in this assignment statement.

This method of assigning values is limited, however. You can't use the
following statement:

0040 MAT R=-S

to set the values of the elements of array R equal to the negative
values of the elements of array S. To do that, you would have to write
this statement:

0040 MAT R=(-1 }*S

(See Arithmetic with Arrays later in this chapter for more
information.)

Working with Elements of Arrays

After you assign values to elements of arrays, you can perform
calculations with individual array elements. You use elements of arrays
just as you use any variable in any BASIC statement. Nothing is
different except that you are keeping a set of variables together for
your own convenience in organizing data. Each element still has a
value and can act as an independent variable.

o

.('"

',~-j-

Ci
102

The value you are assigning must be enclosed in parentheses so that
the system knows it is not the name of another array.

If you omit the parentheses, you can make one array an identical copy
of another array by using this statement:

0070 MAT R=S

In this statement, you don't use parentheses because you are, in fact,
referring to another array in this assignment statement.

This method of assigning values is limited, however. You can't use the
following statement:

0040 MAT R=-S

to set the values of the elements of array R equal to the negative
values of the elements of array S. To do that, you would have to write
this statement:

0040 MAT R=(-1 }*S

(See Arithmetic with Arrays later in this chapter for more
information.)

Working with Elements of Arrays

After you assign values to elements of arrays, you can perform
calculations with individual array elements. You use elements of arrays
just as you use any variable in any BASIC statement. Nothing is
different except that you are keeping a set of variables together for
your own convenience in organizing data. Each element still has a
value and can act as an independent variable.

o

.('"

',~-j-

Ci

C:

C~'

c

c

Printing Arrays

Elements of arrays, like ordinary variables, can be used in any PRINT
or PRINT FLP statement. Some examples of PRINT and PRINT USING
statements that include array elements are:

0020 PRINT T(3)'T(4),M$(2)'W(10,2),X,Y,Z
0030 PRINT FLP,'THE AVERAGE RAINFALL FOR JANUARY IS:',W(1,3)
0080 PRINT USING 90 FLP,M$(3)'R(3)
0090 :FOR THE MONTH OF :;;#;;##!!;;;/#/ THE RAINFALL WAS #.##

In addition, you can print an entire array jf you insert MAT before the
PRINT statement. For example, the statement

0090 MAT PRINT FLP,T

will print the entire one-dimensional temperature array T. The
statement

0060 MAT PRINT FLP,W

will print the entire two-dimensional weather array W. It will be
printed row by row.

You cannot enter arrays and ordinary variables together in a MAT
PRINT statement, although they can be intermixed in a simple PRINT
statement if the array reference is preceded by MAT.

Arrays 103

C:

C~'

c

c

Printing Arrays

Elements of arrays, like ordinary variables, can be used in any PRINT
or PRINT FLP statement. Some examples of PRINT and PRINT USING
statements that include array elements are:

0020 PRINT T(3)'T(4),M$(2)'W(10,2),X,Y,Z
0030 PRINT FLP,'THE AVERAGE RAINFALL FOR JANUARY IS:',W(1,3)
0080 PRINT USING 90 FLP,M$(3)'R(3)
0090 :FOR THE MONTH OF :;;#;;##!!;;;/#/ THE RAINFALL WAS #.##

In addition, you can print an entire array jf you insert MAT before the
PRINT statement. For example, the statement

0090 MAT PRINT FLP,T

will print the entire one-dimensional temperature array T. The
statement

0060 MAT PRINT FLP,W

will print the entire two-dimensional weather array W. It will be
printed row by row.

You cannot enter arrays and ordinary variables together in a MAT
PRINT statement, although they can be intermixed in a simple PRINT
statement if the array reference is preceded by MAT.

Arrays 103

104

Putting One-Dimensional Arrays Together in a Program

Now we'll put the three one-dimensional weather arrays, M$, T, and R,
together in a sample program that will keep all the data and display it
when you run the program:

0010 REM THIS PROGRAM KEEPS WEATHER DATA
0020 DIM M$18(12),T(12),R(12)
0030 FOR 1=1 TO 12
OO~O READ M$(I),T(I),RCI)
o 0 ~::j 0 NEXT 1
0060 DATA JANUARY ,28,3.47'
0070 DATA FEBRUARY ,31,2.1
0080 DATA MARCH ,35,2.95
0090 DATA APRIL ,49.414.82
0100 DATA MAY ,6013.02
0110 DATA JUNE ,64,2.87
(I 1 ;? (I D t~i or r:'o,1 U L Y' ! 7 ~5 ! 2 . 0 L~
0:1.30 Df:,Tpl (~!.JGUf.1T ,81 11. B9
01~O DATA SEPTEMBER ,71,2.74
0150 DATA OCTOBER ,59,2.9
0160 DATA NOVEMBER ,~6!1.85

0170 DATA DECEMBER ,37,2.35
0180 PRINT USING 0190,FLP
0:1.90 j\',DNTH (~\lG TEr',P Rtllf-..!F()LI...
0200 FOR 1=:1. TO 12
o ;o:.:~ :I. (I P R I NT I...I~) I N G (I 2 3 [I .' F I... P .' h ~:. (I) } T (I) I r~~ (I)
o 2 ::o:.:~ 0 (.... ! E :x: or I
(I :::. ::~) 0 : ** N *:1 :i* H H H *:;: ** it H H ** *:1 H . H
o ;?I.j. 0 ~~:;TO P

FOR :1.97'+

This program uses FOR and NEXT loops to simplify handling the large
number of values involved in these arrays. Notice that instead of
writing a FOR and NEXT loop for each array when we were assigning
values to the members, we wrote a single loop that worked across the
three arrays instead of completing each 12-element array individually.
Of course, the OAT A statements had to have their data in the same
order.

We also used a loop to display the data. It lets us use a single PRINT
USING statement with a single image statement to print out 12 lines
of data.

'\) ;

,d- --,\

1\".0>.,1

104

Putting One-Dimensional Arrays Together in a Program

Now we'll put the three one-dimensional weather arrays, M$, T, and R,
together in a sample program that will keep all the data and display it
when you run the program:

0010 REM THIS PROGRAM KEEPS WEATHER DATA
0020 DIM M$18(12),T(12),R(12)
0030 FOR 1=1 TO 12
OO~O READ M$(I),T(I),RCI)
o 0 ~::j 0 NEXT 1
0060 DATA JANUARY ,28,3.47'
0070 DATA FEBRUARY ,31,2.1
0080 DATA MARCH ,35,2.95
0090 DATA APRIL ,49.414.82
0100 DATA MAY ,6013.02
0110 DATA JUNE ,64,2.87
(I 1 ;? (I D t~i or r:'o,1 U L Y' ! 7 ~5 ! 2 . 0 L~
0:1.30 Df:,Tpl (~!.JGUf.1T ,81 11. B9
01~O DATA SEPTEMBER ,71,2.74
0150 DATA OCTOBER ,59,2.9
0160 DATA NOVEMBER ,~6!1.85

0170 DATA DECEMBER ,37,2.35
0180 PRINT USING 0190,FLP
0:1.90 j\',DNTH (~\lG TEr',P Rtllf-..!F()LI...
0200 FOR 1=:1. TO 12
o ;o:.:~ :I. (I P R I NT I...I~) I N G (I 2 3 [I .' F I... P .' h ~:. (I) } T (I) I r~~ (I)
o 2 ::o:.:~ 0 (.... ! E :x: or I
(I :::. ::~) 0 : ** N *:1 :i* H H H *:;: ** it H H ** *:1 H . H
o ;?I.j. 0 ~~:;TO P

FOR :1.97'+

This program uses FOR and NEXT loops to simplify handling the large
number of values involved in these arrays. Notice that instead of
writing a FOR and NEXT loop for each array when we were assigning
values to the members, we wrote a single loop that worked across the
three arrays instead of completing each 12-element array individually.
Of course, the OAT A statements had to have their data in the same
order.

We also used a loop to display the data. It lets us use a single PRINT
USING statement with a single image statement to print out 12 lines
of data.

'\) ;

,d- --,\

1\".0>.,1

c

C'I

C~'
y

After you enter the statements and run the program, the display
screen shows:

i"lCJNTH
. ...!(.:iNUt", r:Y
FEBPU(')F~Y

f"l('~I~:CH

(,:,PRIL
t"lAY
"..1 t.! f"'! E
. .JUI...Y

~3E PTEiviBE R
UCTUBER
r···~DVEriBE I~

DECEt1BE P

i='iVG TEM P

31

0:1.
./ :I.

Two-Dimensional Array

"r I::'
'.::a I '.J

?l
:::~; . (I

I.~ • n
3.0

::.:? • 0
j ,

r:. "il
~':.. I I

2.9
1 I (?
::? . q.

Now we'll do the same thing with the two-dimensional array W. This
time we'll use MAT READ Wand MAT PRINT FLP, W statements
instead of using loops to assign the weather data and print it. If your
system does not have a printer, skip this program because the output
exceeds the limits of the screen:

(~UTO
o 0 lOR E h T H I ~~ P P 0 C) F: ti (.j I< E [P ~~:; D () T (, I j\~ (:', ? Ii I i"'l (:-, P p (, --Y'

o I] ::.? 0 D J h 1.1 (:1.:2 .. :3)
OO::~:.O !"j(lT F~E(~,D 1:'-1
o 0 I.j. 0 D ti T (:) 1.., ::.:,:: n ! :::j I ~::.; .. :;:.:: .. :.'::):1. ! ? . :l. ! :; ! ::5 ~:5 ! :3 , .' q .. ' 1+ .-:/ ! Lj. • ::::; .. ~:.j ! {;. 0 ! :::::; I

o O~~.iO D(,:,Tt) .f:, ... • f.;.I.j ... ::?, (/ 1"/ ")'I.:.j!:? I U) Btl 1 . .:.) .. (?, ".:':1.., 2,)'" :I. (I .. 15?! ::? I (.~)

o (I 6 0 D (i T (, :l:\..' q. (. ! :I. • i~} } :I. :::.~ .. :3"? .. ~:: I q.
o 0 -I:.' 0 P PIt···.! T 1...1 ~~; :r. r,! GOO B 0 ! F I... P
o 0 no: ftl 0 NTH (, 'v' [i 'r E h P P (\ I,···! Ft·! L L F D R :I. r:))' 4·
0090 MAT PRINT FLP .. W
ii 1 0 0 ~:; T D P

Arrays 105

c

C'I

C~'
y

After you enter the statements and run the program, the display
screen shows:

i"lCJNTH
. ...!(.:iNUt", r:Y
FEBPU(')F~Y

f"l('~I~:CH

(,:,PRIL
t"lAY
"..1 t.! f"'! E
. .JUI...Y

~3E PTEiviBE R
UCTUBER
r···~DVEriBE I~

DECEt1BE P

i='iVG TEM P

31

0:1.
./ :I.

Two-Dimensional Array

"r I::'
'.::a I '.J

?l
:::~; . (I

I.~ • n
3.0

::.:? • 0
j ,

r:. "il
~':.. I I

2.9
1 I (?
::? . q.

Now we'll do the same thing with the two-dimensional array W. This
time we'll use MAT READ Wand MAT PRINT FLP, W statements
instead of using loops to assign the weather data and print it. If your
system does not have a printer, skip this program because the output
exceeds the limits of the screen:

(~UTO
o 0 lOR E h T H I ~~ P P 0 C) F: ti (.j I< E [P ~~:; D () T (, I j\~ (:', ? Ii I i"'l (:-, P p (, --Y'

o I] ::.? 0 D J h 1.1 (:1.:2 .. :3)
OO::~:.O !"j(lT F~E(~,D 1:'-1
o 0 I.j. 0 D ti T (:) 1.., ::.:,:: n ! :::j I ~::.; .. :;:.:: .. :.'::):1. ! ? . :l. ! :; ! ::5 ~:5 ! :3 , .' q .. ' 1+ .-:/ ! Lj. • ::::; .. ~:.j ! {;. 0 ! :::::; I

o O~~.iO D(,:,Tt) .f:, ... • f.;.I.j ... ::?, (/ 1"/ ")'I.:.j!:? I U) Btl 1 . .:.) .. (?, ".:':1.., 2,)'" :I. (I .. 15?! ::? I (.~)

o (I 6 0 D (i T (, :l:\..' q. (. ! :I. • i~} } :I. :::.~ .. :3"? .. ~:: I q.
o 0 -I:.' 0 P PIt···.! T 1...1 ~~; :r. r,! GOO B 0 ! F I... P
o 0 no: ftl 0 NTH (, 'v' [i 'r E h P P (\ I,···! Ft·! L L F D R :I. r:))' 4·
0090 MAT PRINT FLP .. W
ii 1 0 0 ~:; T D P

Arrays 105

106

The printed output is:

NONTH FD F< 197LI'

1 1')0
A •• 1 •• " ::~:: I ~.:.:.i

r) 31 .. :

"I 3~:.; '.J

'+ q.(? '+.8
r.:' , 60

{j (;.",.

""J 7~.:.i ,

c·
t .. ' Dl :1.,9

(} "(":I. .") ":.'
.~ ••• , 1

:I. 0 ~.:':;9

:I. :I. LI, (. :1..9

:I. I') ::~; O? :: .. ::.? , 1.1·

ARITHMETIC WITH ARRAYS

Suppose, instead of weather data for one year, you have weather data
for two years. This data can be in two arrays. You are interested in
averaging the temperatures and rainfall over the two years and making
new arrays to contain the two-year averages. To see how to do this,
let's look at the two sets of temperature data. If you assume that they
are in two one-dimensional arrays called A and B, then to find the
average temperature for each month over the two years, you have to
add the two temperatures for January and divide by 2, add the
temperatures fpr February and divide by 2, and so on.

o

(

1\,

I •• ../

106

The printed output is:

NONTH FD F< 197LI'

1 1')0
A •• 1 •• " ::~:: I ~.:.:.i

r) 31 .. :

"I 3~:.; '.J

'+ q.(? '+.8
r.:' , 60

{j (;.",.

""J 7~.:.i ,

c·
t .. ' Dl :1.,9

(} "(":I. .") ":.'
.~ ••• , 1

:I. 0 ~.:':;9

:I. :I. LI, (. :1..9

:I. I') ::~; O? :: .. ::.? , 1.1·

ARITHMETIC WITH ARRAYS

Suppose, instead of weather data for one year, you have weather data
for two years. This data can be in two arrays. You are interested in
averaging the temperatures and rainfall over the two years and making
new arrays to contain the two-year averages. To see how to do this,
let's look at the two sets of temperature data. If you assume that they
are in two one-dimensional arrays called A and B, then to find the
average temperature for each month over the two years, you have to
add the two temperatures for January and divide by 2, add the
temperatures fpr February and divide by 2, and so on.

o

(

1\,

I •• ../

(".'.'
,I

c~:

c
C~I

Addition and Subtraction with Arrays

You can do all the addition in one step, adding the entire array A to
the entire array B, with this statement:

0010 MAT C=A+B

Again, the letters MAT stand for matrix. The preceding statement
causes each element of array A to be added to the corresponding
element of array B and the result to be stored in the corresponding
element of array C.

The same kind of addition statement works if you want to add
two-dimensional arrays. If all the weather data for the first year is in
two-dimensional array T and for the second year in two-dimensional
array U, and you want the result in array V, the statement is:

0040 MAT V=T+U

Each element of array T is added to the corresponding element of
array U. This includes the columns with the numbers of the months
and the columns with the rainfall.

Similarly, if you want to subtract each element of an array from the
corresponding element of another array, you would write this
statement:

0050 MAT C=A-B

The letters MAT always tell the system to work with an entire array.
Just remember that you must define all the arrays, including the one
which is receiving the results, in a 01 M statement at the start of your
program. Also, you can only add or subtract when all the arrays
named have the same dimensions. You can't, for example, add a
14-element array to a 12-element array.

Multiplication and Division

We have seen how to add and subtract array elements. Now what
about dividing by 27 Before we can divide, we must see how to
multiply, because BASIC doesn't let you divide arrays directly; you can
only multiply. You can multiply each element of an array (called A, for
example) by a constant, a single variable, or an arithmetic expression
with this statement:

0030 MAT C=(2)* A

Arrays 107

(".'.'
,I

c~:

c
C~I

Addition and Subtraction with Arrays

You can do all the addition in one step, adding the entire array A to
the entire array B, with this statement:

0010 MAT C=A+B

Again, the letters MAT stand for matrix. The preceding statement
causes each element of array A to be added to the corresponding
element of array B and the result to be stored in the corresponding
element of array C.

The same kind of addition statement works if you want to add
two-dimensional arrays. If all the weather data for the first year is in
two-dimensional array T and for the second year in two-dimensional
array U, and you want the result in array V, the statement is:

0040 MAT V=T+U

Each element of array T is added to the corresponding element of
array U. This includes the columns with the numbers of the months
and the columns with the rainfall.

Similarly, if you want to subtract each element of an array from the
corresponding element of another array, you would write this
statement:

0050 MAT C=A-B

The letters MAT always tell the system to work with an entire array.
Just remember that you must define all the arrays, including the one
which is receiving the results, in a 01 M statement at the start of your
program. Also, you can only add or subtract when all the arrays
named have the same dimensions. You can't, for example, add a
14-element array to a 12-element array.

Multiplication and Division

We have seen how to add and subtract array elements. Now what
about dividing by 27 Before we can divide, we must see how to
multiply, because BASIC doesn't let you divide arrays directly; you can
only multiply. You can multiply each element of an array (called A, for
example) by a constant, a single variable, or an arithmetic expression
with this statement:

0030 MAT C=(2)* A

Arrays 107

108

The multiplier a/ways goes in parentheses so the system knows it is
not another array, and it must always go before the *. For division,
you merely multiply the array by 1 over the divisor, or by a decimal
number such as 0.5. Therefore, to divide each element of array A by
2, you would use this statement:

0080 C=(1/2)*A

Averaging Two Sets of One-Dimensional Arrays

If the weather data is kept in two sets of one-dimensional arrays, A
and 8 for temperature and C and D for rainfall, a program for
averaging the two sets of data and assigning the results to master
arrays T and R might look like this:

0010 DIM M$18(12),A(12),B(12),C(12),D(12),T(12),R(12)
00::: 0 ~1(.:i T I~[AD 11'1:·
0030 DATA JAN} FEB } MAR , ARP , MAY } JUNE , JULY ,
0040 DATA SEPT, OCT , NOV ! DEC
o 0 ~:.:.i (I i\11:~i T HE?)D (:" J:-: , C , Ii
0060 DATA 20,21,22,23,24,25,2,27,28,29,3(1,31
0070 DATA 10,12,14,16,18 20,22,24,28,30,31
o 0 n 0 1:1 A T A 2) 2 } :2 , 2 1 :.3 , 3 , ::5 , I.j. , Lj .. ' '+ , ~.:.:.i } ~:~i

o 0 (? 0 II t, T tl ~5, ~:.i .' ~:.i) '-I. , '-I. , I.!. .' ~.:: , :~.~ , ::? .' 1 1 :3 , ;.~~

o :I. 0 (I M (:1 T T :::: f~1 + B
01:1.0 MAT T=(112)*T
0:1.20 M(~T 1?::::C+[t
0:1.30 MAT R=(1/2)*R
0:1.40 FOR 1=1 TO 12
o 1 ~j (I PHI N T F I... P ! j j ~:. (I) .' ·r (I) .. F: (I)
0160 NEXT I
0:1.70 f5TOP

We defined arrays T and R in the DIM statement on line 10, as well as
arrays M$, A, 8, C, and D. Note that we only need one array for the
names of the months, no matter how many years of data we have
stored in other arrays.

o

(-."'.

\\~._.i

108

The multiplier a/ways goes in parentheses so the system knows it is
not another array, and it must always go before the *. For division,
you merely multiply the array by 1 over the divisor, or by a decimal
number such as 0.5. Therefore, to divide each element of array A by
2, you would use this statement:

0080 C=(1/2)*A

Averaging Two Sets of One-Dimensional Arrays

If the weather data is kept in two sets of one-dimensional arrays, A
and 8 for temperature and C and D for rainfall, a program for
averaging the two sets of data and assigning the results to master
arrays T and R might look like this:

0010 DIM M$18(12),A(12),B(12),C(12),D(12),T(12),R(12)
00::: 0 ~1(.:i T I~[AD 11'1:·
0030 DATA JAN} FEB } MAR , ARP , MAY } JUNE , JULY ,
0040 DATA SEPT, OCT , NOV ! DEC
o 0 ~:.:.i (I i\11:~i T HE?)D (:" J:-: , C , Ii
0060 DATA 20,21,22,23,24,25,2,27,28,29,3(1,31
0070 DATA 10,12,14,16,18 20,22,24,28,30,31
o 0 n 0 1:1 A T A 2) 2 } :2 , 2 1 :.3 , 3 , ::5 , I.j. , Lj .. ' '+ , ~.:.:.i } ~:~i

o 0 (? 0 II t, T tl ~5, ~:.i .' ~:.i) '-I. , '-I. , I.!. .' ~.:: , :~.~ , ::? .' 1 1 :3 , ;.~~

o :I. 0 (I M (:1 T T :::: f~1 + B
01:1.0 MAT T=(112)*T
0:1.20 M(~T 1?::::C+[t
0:1.30 MAT R=(1/2)*R
0:1.40 FOR 1=1 TO 12
o 1 ~j (I PHI N T F I... P ! j j ~:. (I) .' ·r (I) .. F: (I)
0160 NEXT I
0:1.70 f5TOP

We defined arrays T and R in the DIM statement on line 10, as well as
arrays M$, A, 8, C, and D. Note that we only need one array for the
names of the months, no matter how many years of data we have
stored in other arrays.

o

(-."'.

\\~._.i

c::"+

Averaging Two-Dimensional Arrays

If the two sets of weather data are stored in two-dimensional arrays X
and V, a program for averaging the data might look like this:

(JUJU
o 0 ;,::~ (I
o o::!:.
0(1 l.j. 0

0:,::,;0
00 t. 0
00 "? 0

[IT ;"1 J
I"i T e:::

i::; :;.~ T ;;:::}
i:: (;! 'r t't Data for Arrays X and Y

(l(:-fTr\j

1',', i::'; ',I) "1'

o [I E 0 l"i (:'1 'I" vJ
i) 0 i,? (I f I? !.
u (I :I. 0 [: l\~D

We defined array W along with arrays X and V in the DIM statement
at the start of the program. Note that the numbers of the months,
which are in column 1 of both arrays X and V, are added in statement
0070 along with the rest of the data in arrays X and V. But when we
divide by 2 in statement 0080, we get back the original numbers 1
through 12.

Matrix Multiplication

To multiply a matrix by another matrix, first be sure that the two
matrices have compatible dimensions: if A is a 4x5 matrix, then B
must have 5 rows; for example, B can be a 5x7 matrix. This
multiplication looks like:

T

There are no parentheses because both A and a are matrices.
Matrices A, a, and C should all be defined in a DIM statement before
you use the multiplication statement. Matrix C must have dimensions
equal to the number of rows in matrix A and the number of columns
in matrix B.

Taking a Matrix Transpose

Vou can transpose a matrix (interchange its rows and columns) with a
single statement, like this:

Matrix a assumes a value equal to the transpose of matrix A. When
defining matrix a, remember that it must have dimensions opposite to
those of A.

Arrays 109

c::"+

Averaging Two-Dimensional Arrays

If the two sets of weather data are stored in two-dimensional arrays X
and V, a program for averaging the data might look like this:

(JUJU
o 0 ;,::~ (I
o o::!:.
0(1 l.j. 0

0:,::,;0
00 t. 0
00 "? 0

[IT ;"1 J
I"i T e:::

i::; :;.~ T ;;:::}
i:: (;! 'r t't Data for Arrays X and Y

(l(:-fTr\j

1',', i::'; ',I) "1'

o [I E 0 l"i (:'1 'I" vJ
i) 0 i,? (I f I? !.
u (I :I. 0 [: l\~D

We defined array W along with arrays X and V in the DIM statement
at the start of the program. Note that the numbers of the months,
which are in column 1 of both arrays X and V, are added in statement
0070 along with the rest of the data in arrays X and V. But when we
divide by 2 in statement 0080, we get back the original numbers 1
through 12.

Matrix Multiplication

To multiply a matrix by another matrix, first be sure that the two
matrices have compatible dimensions: if A is a 4x5 matrix, then B
must have 5 rows; for example, B can be a 5x7 matrix. This
multiplication looks like:

T

There are no parentheses because both A and a are matrices.
Matrices A, a, and C should all be defined in a DIM statement before
you use the multiplication statement. Matrix C must have dimensions
equal to the number of rows in matrix A and the number of columns
in matrix B.

Taking a Matrix Transpose

Vou can transpose a matrix (interchange its rows and columns) with a
single statement, like this:

Matrix a assumes a value equal to the transpose of matrix A. When
defining matrix a, remember that it must have dimensions opposite to
those of A.

Arrays 109

110

The Identity Matrix

You can make any square matrix (a 2x2 matrix, or a 12x12 matrix, for
example) into an identity matrix (a matrix with ones on its diagonal and
zeros everywhere else). You start by defining a square matrix, called I,
for example:

:I. 0 :0 I r··1 I <: '+ I I.j. :>

Then you write this statement:

2 0 ~1 i~ T I :::: I D N

This creates a matrix I that looks like this:

1
o
o
o

o
1
o
o

o
o
1
o

o
o
o
1

From then on in your program, you can use I to do calculations that
require a 4x4 identity matrix.

Taking the Inverse of a Matrix

If you want to find the inverse of matrix A (the inverse is the matrix
that gives you the identity matrix when you multiply it by A), you do it
with a single program statement:

f.~ 0 r1 f~ T I~ ::: I N V (A)

Remember that for a matrix to have an inverse, it must be square (2x2,
12x12, etc.), and its determinant must not be equal to zero. You can
check the determinant by using a built-in function called DET. DET(A)
computes the determinant of matrix A. Before you use INV, then, you
can test DET(A) with an I F statement like this:

6~.:.:.i IF DET «(~:> :::: 0 GOlD B'.:.:i

If you try to take the inverse when the determinant is zero, you will
cause an error that will stop your program from running.

o

'\ ,

,(.~'\

''l .. '"

o
110

The Identity Matrix

You can make any square matrix (a 2x2 matrix, or a 12x12 matrix, for
example) into an identity matrix (a matrix with ones on its diagonal and
zeros everywhere else). You start by defining a square matrix, called I,
for example:

:I. 0 :0 I r··1 I <: '+ I I.j. :>

Then you write this statement:

2 0 ~1 i~ T I :::: I D N

This creates a matrix I that looks like this:

1
o
o
o

o
1
o
o

o
o
1
o

o
o
o
1

From then on in your program, you can use I to do calculations that
require a 4x4 identity matrix.

Taking the Inverse of a Matrix

If you want to find the inverse of matrix A (the inverse is the matrix
that gives you the identity matrix when you multiply it by A), you do it
with a single program statement:

f.~ 0 r1 f~ T I~ ::: I N V (A)

Remember that for a matrix to have an inverse, it must be square (2x2,
12x12, etc.), and its determinant must not be equal to zero. You can
check the determinant by using a built-in function called DET. DET(A)
computes the determinant of matrix A. Before you use INV, then, you
can test DET(A) with an I F statement like this:

6~.:.:.i IF DET «(~:> :::: 0 GOlD B'.:.:i

If you try to take the inverse when the determinant is zero, you will
cause an error that will stop your program from running.

o

'\ ,

,(.~'\

''l .. '"

o

("I",

Chapter 11. More Things You Can Do With BASIC

FINDING SQUARE ROOTS

You can determine square roots automatically with your 5110. Instead
of writing your own formula for determining the square root of a
number, you use the letters SOR, followed by the number whose
square root you want to know enclosed in parentheses. For example,
SQR (X) finds the square root of X, where X is 0 or a positive number.

You can use SOR in any of your arithmetic expressions, and the
expressions inside the parentheses can involve any kind of arithmetic.
For example:

is entered as SQR (X+Y)

-vx+~+z
is entered as SQR ((X+Y+Z)/5)

~ is entered as SQR (A+X/2)

Other conversion and trigonometric functions and conversion
constants in BASIC are discussed in this chapter.

More Things You Can Do With BASIC 111

("I",

Chapter 11. More Things You Can Do With BASIC

FINDING SQUARE ROOTS

You can determine square roots automatically with your 5110. Instead
of writing your own formula for determining the square root of a
number, you use the letters SOR, followed by the number whose
square root you want to know enclosed in parentheses. For example,
SQR (X) finds the square root of X, where X is 0 or a positive number.

You can use SOR in any of your arithmetic expressions, and the
expressions inside the parentheses can involve any kind of arithmetic.
For example:

is entered as SQR (X+Y)

-vx+~+z
is entered as SQR ((X+Y+Z)/5)

~ is entered as SQR (A+X/2)

Other conversion and trigonometric functions and conversion
constants in BASIC are discussed in this chapter.

More Things You Can Do With BASIC 111

112

SOME GENERAL SYSTEM FUNCTIONS

Your system provides you with the following general functions in
addition to square root. To use these functions, simply substitute the
name of your own variable for the character inside the parentheses.
Exercises for this chapter are provided in Chapter 13.

ABS(X)

LEN(C)

Gives the absolute value of X.

Gives the location of the C2 character string within
the C1 character string (relative to position 1). If
C2 does not appear in C" the value of lOX is zero.

Gives the length of the C character string, less
trailing blanks. If C is all blanks, the value of LEN
is zero.

INT(X) Gives the integer part of X.

RND or RND(X) Generates a random number between 0 and 1.

SGN(X) Determines the sign of variable X, and returns a
value of -1, 0, or +1, depending on whether X is
negative, zero, or positive.

o

"--,,,
" l

112

SOME GENERAL SYSTEM FUNCTIONS

Your system provides you with the following general functions in
addition to square root. To use these functions, simply substitute the
name of your own variable for the character inside the parentheses.
Exercises for this chapter are provided in Chapter 13.

ABS(X)

LEN(C)

Gives the absolute value of X.

Gives the location of the C2 character string within
the C1 character string (relative to position 1). If
C2 does not appear in C" the value of lOX is zero.

Gives the length of the C character string, less
trailing blanks. If C is all blanks, the value of LEN
is zero.

INT(X) Gives the integer part of X.

RND or RND(X) Generates a random number between 0 and 1.

SGN(X) Determines the sign of variable X, and returns a
value of -1, 0, or +1, depending on whether X is
negative, zero, or positive.

o

"--,,,
" l

c~

c

You can also include expressions inside the parentheses, for example:

INT(X t 2+Y*12)

You might use SGN(X) to find out if X is positive:

SGN(X)

The RND function is a little different from the other functions. You can
use RND alone, without a value, to generate a random number
between 0 and 1. Each subsequent use of RND in the program will
generate a new random number. However, if you rerun the program
with a new RUN command, the random numbers generated will be the
same as the numbers generated the first time you ran the program.
To avoid this, you can use RND(X) to start different sets of random
numbers each time you run your program. The value of X is used by
the process that develops the random number. If you want a random
number that is a whole integer instead of a decimal number between 0
and 1, multiply the result of RND or RND(X) by a constant (depending
on what range you want the random numbers to have); and then use
the INT function to make the result an integer.

For example:

INT(RND*10) Produces a random integer between 0 and 9.

INT(RND*100) Produces a random integer between 0 and 99.

INT(RND*1000) Produces a random integer between 0 and 999.

More Things You Can Do With BASIC 113

c~

c

You can also include expressions inside the parentheses, for example:

INT(X t 2+Y*12)

You might use SGN(X) to find out if X is positive:

SGN(X)

The RND function is a little different from the other functions. You can
use RND alone, without a value, to generate a random number
between 0 and 1. Each subsequent use of RND in the program will
generate a new random number. However, if you rerun the program
with a new RUN command, the random numbers generated will be the
same as the numbers generated the first time you ran the program.
To avoid this, you can use RND(X) to start different sets of random
numbers each time you run your program. The value of X is used by
the process that develops the random number. If you want a random
number that is a whole integer instead of a decimal number between 0
and 1, multiply the result of RND or RND(X) by a constant (depending
on what range you want the random numbers to have); and then use
the INT function to make the result an integer.

For example:

INT(RND*10) Produces a random integer between 0 and 9.

INT(RND*100) Produces a random integer between 0 and 99.

INT(RND*1000) Produces a random integer between 0 and 999.

More Things You Can Do With BASIC 113

114

ARITHMETIC CONSTANTS

There are special constants in BASIC that are used to convert pounds,
inches, and gallons to metric kilograms, centimeters, and liters
respectively. Normally, when you want to switch from the U.S.
measuring system to the metric system, you multiply the measured
quantity by a fixed constant to obtain the equivalent measurement in
the metric system. For example, 1 Ib equals 0.454 ... kg, so 2 Ibs
equal 2*0.454 ... kg. With BASIC, instead of remembering what the
conversion multipliers are, the 5110 can provide them for you. These
constants are:

• & INCM, which has a value of 2.54 (centimeters per inch)

• & LBKG, which has a value of 0.45359237 (kilograms per pound)

• & GAll, which has a value of 3.785411784 (liters per gallon)

In addition, BASIC has three built-in arithmetic constants to represent
the values of:

1. e {natural log) = 2.718281828459045

2. 'iT {pi} = 3.141592653589793

3. -v2 (square root of 2) = 1.414213562373095

For example, if you want to use 'iT in an equation, you don't need to
type in 3.14 You just use the special BASIC constant. Here are
the special symbols that BASIC recognizes for these constants:

For This Constant: Use This Symbol:

e (natural log) &E

'iT (pi) &PI

.v2 (square root of 2) &SQR2

You might use one of these constants in a program that calculates the
area of a circle (AREA = 'iTR2 is the formula). Your program statement
would read:

50 LET A= & PI*R+2

You can use these constants anywhere in your programs.

o

/,f",

'\..}

o
114

ARITHMETIC CONSTANTS

There are special constants in BASIC that are used to convert pounds,
inches, and gallons to metric kilograms, centimeters, and liters
respectively. Normally, when you want to switch from the U.S.
measuring system to the metric system, you multiply the measured
quantity by a fixed constant to obtain the equivalent measurement in
the metric system. For example, 1 Ib equals 0.454 ... kg, so 2 Ibs
equal 2*0.454 ... kg. With BASIC, instead of remembering what the
conversion multipliers are, the 5110 can provide them for you. These
constants are:

• & INCM, which has a value of 2.54 (centimeters per inch)

• & LBKG, which has a value of 0.45359237 (kilograms per pound)

• & GAll, which has a value of 3.785411784 (liters per gallon)

In addition, BASIC has three built-in arithmetic constants to represent
the values of:

1. e {natural log) = 2.718281828459045

2. 'iT {pi} = 3.141592653589793

3. -v2 (square root of 2) = 1.414213562373095

For example, if you want to use 'iT in an equation, you don't need to
type in 3.14 You just use the special BASIC constant. Here are
the special symbols that BASIC recognizes for these constants:

For This Constant: Use This Symbol:

e (natural log) &E

'iT (pi) &PI

.v2 (square root of 2) &SQR2

You might use one of these constants in a program that calculates the
area of a circle (AREA = 'iTR2 is the formula). Your program statement
would read:

50 LET A= & PI*R+2

You can use these constants anywhere in your programs.

o

/,f",

'\..}

o

c

c

CONVERSION FUNCTIONS

BASIC has some built-in ways to convert values from one measuring
system to another.

DEG(X)

RAD(X)

CHR(X)

CEN(X)

FAH(X)

NUM(C)

Gives the number of degrees in X radians.

Gives the number of radians in X degrees.

Gives the equivalent character string of arithmetic
expression X.

Gives the centigrade (Celsius) equivalent of X degrees
Fahrenheit.

Gives the Fahrenheit equivalent of X degrees centigrade
(Celsius).

Gives the arithmetic value of character string C.

ARRAY/MATRIX FUNCTIONS

Several BASIC functions allow you to operate on all the elements of
an array by a single reference to the array. These functions are as
follows:

AIDX(A)

DET(A)

DIDX(A)

(A)=IDN

INV(A)

PRD(A)

SUM(A)

TRN(A)

Gives the indexed locations of the elements in array A
in ascending order.

Gives the determinant of array A.

Gives the indexed locations of the elements in array A
in descending order.

Gives the identity matrix of array A.

Gives the inverse of matrix A.

Gives the product of all the elements of array A.

Gives the sum of the elements of array A.

Gives the transpose matrix of array A.

More Things You Can Do With BASIC 115

c

c

CONVERSION FUNCTIONS

BASIC has some built-in ways to convert values from one measuring
system to another.

DEG(X)

RAD(X)

CHR(X)

CEN(X)

FAH(X)

NUM(C)

Gives the number of degrees in X radians.

Gives the number of radians in X degrees.

Gives the equivalent character string of arithmetic
expression X.

Gives the centigrade (Celsius) equivalent of X degrees
Fahrenheit.

Gives the Fahrenheit equivalent of X degrees centigrade
(Celsius).

Gives the arithmetic value of character string C.

ARRAY/MATRIX FUNCTIONS

Several BASIC functions allow you to operate on all the elements of
an array by a single reference to the array. These functions are as
follows:

AIDX(A)

DET(A)

DIDX(A)

(A)=IDN

INV(A)

PRD(A)

SUM(A)

TRN(A)

Gives the indexed locations of the elements in array A
in ascending order.

Gives the determinant of array A.

Gives the indexed locations of the elements in array A
in descending order.

Gives the identity matrix of array A.

Gives the inverse of matrix A.

Gives the product of all the elements of array A.

Gives the sum of the elements of array A.

Gives the transpose matrix of array A.

More Things You Can Do With BASIC 115

116

RECORD FILE FUNCTIONS

BASIC provides three functions that allow you to inquire about
record-oriented file status where C='FLO-FL9'. These functions are:

KLN(C) Gives the length (in bytes) of the key field in file C.

KPS(C) Gives the beginning position of the key field in file C.

RLN(C) Gives the last record length for file C.

TRIGONOMETRIC FUNCTIONS

BASIC has functions that automatically perform trigonometric
operations for you. Just substitute your own variable or expression
where the variable X appears in the following list:

SIN (X) Gives the sine of X radians.

COS (X) Gives the cosine of X radians.

TAN(X) Gives the tangent of X radians.

COT(X) Gives the cotangent of X radians.

SEC(X) Gives the secant of X radians.

CSC(X) Gives the cosecant of X radians.

ASN(X) Gives the arc sine (in radians) of X.

ACS(X) Gives the arc cosine (in radians) of X.

ATN(X) Gives the arc tangent (in radians) of X.

HCS(X) Gives the hyperbolic cosine of the real number X.

HSN(X) Gives the hyperbolic sine of the real number X.

HTN(X) Gives the hyperbolic tangent of the real number X.

o

f(-'

\\,""j

.(,

116

RECORD FILE FUNCTIONS

BASIC provides three functions that allow you to inquire about
record-oriented file status where C='FLO-FL9'. These functions are:

KLN(C) Gives the length (in bytes) of the key field in file C.

KPS(C) Gives the beginning position of the key field in file C.

RLN(C) Gives the last record length for file C.

TRIGONOMETRIC FUNCTIONS

BASIC has functions that automatically perform trigonometric
operations for you. Just substitute your own variable or expression
where the variable X appears in the following list:

SIN (X) Gives the sine of X radians.

COS (X) Gives the cosine of X radians.

TAN(X) Gives the tangent of X radians.

COT(X) Gives the cotangent of X radians.

SEC(X) Gives the secant of X radians.

CSC(X) Gives the cosecant of X radians.

ASN(X) Gives the arc sine (in radians) of X.

ACS(X) Gives the arc cosine (in radians) of X.

ATN(X) Gives the arc tangent (in radians) of X.

HCS(X) Gives the hyperbolic cosine of the real number X.

HSN(X) Gives the hyperbolic sine of the real number X.

HTN(X) Gives the hyperbolic tangent of the real number X.

o

f(-'

\\,""j

.(,

c'

c

These functions deal in radians. If your program measures angles in
degrees instead of radians, combine the RAD or DEG functions with
these functions to keep the results in degrees. For example, to find
the sine of D degrees, you can use this statement:

0040 LET S=SIN(RAD(D))

Or to find the arc sine of X in degrees instead of radians, you can use
this statement:

0070 LET A=DEG(ASN(X))

LOGARITHMS AND EXPONENTS

BASIC also has functions that automatically take logarithms and
calculate exponents for you:

EXP(X) Gives the natural exponent of X (ex).

LGT(X) Gives the logarithm of X to the base 10.

LOG(X) Gives the logarithm of X to the base e.

LTW(X) Gives the logarithm of X to the base 2.

OTHER FUNCTIONS

MAX(X1, •••) Gives the maximum value of the character or
numeric scalars X 1, ••• (scalars must be all
character or all numeric).

MIN(X
1

, •••) Gives the minimum value of the character or numeric
scalars X 1 , ••• (scalars must be all character or
numeric).

More Things You Can Do With BASIC 117

c'

c

These functions deal in radians. If your program measures angles in
degrees instead of radians, combine the RAD or DEG functions with
these functions to keep the results in degrees. For example, to find
the sine of D degrees, you can use this statement:

0040 LET S=SIN(RAD(D))

Or to find the arc sine of X in degrees instead of radians, you can use
this statement:

0070 LET A=DEG(ASN(X))

LOGARITHMS AND EXPONENTS

BASIC also has functions that automatically take logarithms and
calculate exponents for you:

EXP(X) Gives the natural exponent of X (ex).

LGT(X) Gives the logarithm of X to the base 10.

LOG(X) Gives the logarithm of X to the base e.

LTW(X) Gives the logarithm of X to the base 2.

OTHER FUNCTIONS

MAX(X1, •••) Gives the maximum value of the character or
numeric scalars X 1, ••• (scalars must be all
character or all numeric).

MIN(X
1

, •••) Gives the minimum value of the character or numeric
scalars X 1 , ••• (scalars must be all character or
numeric).

More Things You Can Do With BASIC 117

o

;f""
,(,~~

o
118

o

;f""
,(,~~

o
118

('

C'
./

c

Chapter 12. If You Have Trouble

This chapter discusses some common problems and errors that you
may encounter when you write your BASIC programs.

FORGETTING TO SAVE CORRECTED PROGRAMS

Problem: You've written a program and it doesn't work; so you go
back and make corrections to it. The next day you run the program
and you get the same incorrect results.

W hat To Do: You probably forgot to save the corrected version of the
program. Correct the program again, then save the new version of the
program. If you forget to save an original program, you must reenter
the entire program.

ENDLESS LOOPS OR OUTPUT

Problem: Your program is executing a loop and you didn't include any
way to end the loop in the program. (Yolf.'.may suspect something is
wrong if you are waiting a long time for results and nothing seems to
be happening.) Or you might be getting large amounts of output that
you don't want. It doesn't have to go on forever.

What to Do: Press ATTN. Processing will stop immediately after
execution of the current statement. If the problem is with a loop, list
the program and insert a statement to end the loop when you've
processed enough data. Enter GO or press EXECUTE to continue.

NUMBERS ARE NOT WHAT THEY SEEM TO BE

Problem: You are puzzled because you know a number should be a
whole number, like 1, and the system prints out an answer as a
decimal number, like .999999. Or else you test two numbers you think
are equal and the system says they are not. Or you add a table of
numbers across the rows and down the columns and then compare
the grand totals you derive both ways and the totals do not match.
Yet you can't find anything wrong with your program.

If You Have Trouble 119

('

C'
./

c

Chapter 12. If You Have Trouble

This chapter discusses some common problems and errors that you
may encounter when you write your BASIC programs.

FORGETTING TO SAVE CORRECTED PROGRAMS

Problem: You've written a program and it doesn't work; so you go
back and make corrections to it. The next day you run the program
and you get the same incorrect results.

W hat To Do: You probably forgot to save the corrected version of the
program. Correct the program again, then save the new version of the
program. If you forget to save an original program, you must reenter
the entire program.

ENDLESS LOOPS OR OUTPUT

Problem: Your program is executing a loop and you didn't include any
way to end the loop in the program. (Yolf.'.may suspect something is
wrong if you are waiting a long time for results and nothing seems to
be happening.) Or you might be getting large amounts of output that
you don't want. It doesn't have to go on forever.

What to Do: Press ATTN. Processing will stop immediately after
execution of the current statement. If the problem is with a loop, list
the program and insert a statement to end the loop when you've
processed enough data. Enter GO or press EXECUTE to continue.

NUMBERS ARE NOT WHAT THEY SEEM TO BE

Problem: You are puzzled because you know a number should be a
whole number, like 1, and the system prints out an answer as a
decimal number, like .999999. Or else you test two numbers you think
are equal and the system says they are not. Or you add a table of
numbers across the rows and down the columns and then compare
the grand totals you derive both ways and the totals do not match.
Yet you can't find anything wrong with your program.

If You Have Trouble 119

120

What Happened: This problem occurred because the system sees
numbers in a different way than we do. Internally, it translates the
numbers you enter into a specialized form that it can deal with, and, in
the translation, the number is often changed slightly. It may be
changed because the system rounds it off, or it may be changed
because the system can only approximate some numbers that we think
of as concrete and whole. Consider this: You are adding 1/3 + 1/3 +
1/3. You know the answer is 1. But if you had to use only decimal
notation, you would have to add .33333 + .33333 + .33333 and your
answer would be .99999 no matter how long you made the strings of
3s. The system suffers from this kind of limitation. It knows how to
represent numbers in very few ways, so it can't change its viewpoint
to suit the problem. There's nothing much you can do about this
except learn to interpret the system answers as approximate.
Fortunately, the approximation is generally extremely close to the real
answer, and in many cases, you're not aware of any difference at all.
Think of it as evidence of the human brain's superiority over the
system; human beings can be flexible.

There are some programming techniques that can sometimes be used
to circumvent this problem. If a PRINT statement seems to be giving
you trouble, try substituting a PRINT USING and image combination to
suppress extraneous digits or force an integer value when you might
be getting an exponential value.

If an arithmetic expression is not yielding expected results, see if it
combines both multiplication and division operations; the problem
usually arises if division precedes multiplication in an expression
evaluation. Try to multiply first and divide second (provided you can
do so without changing the meaning of the expression) and you
should get better results. For example, if we changed

001./·0 A (I/1.00)~(·P

to

00 1+0 '-:':1 P:I(·I/:l00

in the interest example in Chapter 4 (see Loops Within Loops), we
would get the integer results we would expect to get and not the odd
decimal numbers that we had been getting.

/

120

What Happened: This problem occurred because the system sees
numbers in a different way than we do. Internally, it translates the
numbers you enter into a specialized form that it can deal with, and, in
the translation, the number is often changed slightly. It may be
changed because the system rounds it off, or it may be changed
because the system can only approximate some numbers that we think
of as concrete and whole. Consider this: You are adding 1/3 + 1/3 +
1/3. You know the answer is 1. But if you had to use only decimal
notation, you would have to add .33333 + .33333 + .33333 and your
answer would be .99999 no matter how long you made the strings of
3s. The system suffers from this kind of limitation. It knows how to
represent numbers in very few ways, so it can't change its viewpoint
to suit the problem. There's nothing much you can do about this
except learn to interpret the system answers as approximate.
Fortunately, the approximation is generally extremely close to the real
answer, and in many cases, you're not aware of any difference at all.
Think of it as evidence of the human brain's superiority over the
system; human beings can be flexible.

There are some programming techniques that can sometimes be used
to circumvent this problem. If a PRINT statement seems to be giving
you trouble, try substituting a PRINT USING and image combination to
suppress extraneous digits or force an integer value when you might
be getting an exponential value.

If an arithmetic expression is not yielding expected results, see if it
combines both multiplication and division operations; the problem
usually arises if division precedes multiplication in an expression
evaluation. Try to multiply first and divide second (provided you can
do so without changing the meaning of the expression) and you
should get better results. For example, if we changed

001./·0 A (I/1.00)~(·P

to

00 1+0 '-:':1 P:I(·I/:l00

in the interest example in Chapter 4 (see Loops Within Loops), we
would get the integer results we would expect to get and not the odd
decimal numbers that we had been getting.

/

(~

c

c

HOW CAN A VAGUE IDEA BECOME A PROGRAM?

First decide on your ultimate goal, then simplify it. Pick a goal that's
less ambitious and more realistic. Draw a picture, find the output lines
generated by the computer; they become the PRINT statements in
your program. Find the lines typed by the human; they become the
INPUT statements. Write the PRINT and INPUT statements on paper,
with a pencil, and leave blank lines between them. Fill in the blanks
later by asking yourself how you'd get the answer if you didn't have a
computer.

• Would you use a mathematical formula?

Get it into your program, but remember that the left side of the
equation must have just one variable and that BASIC executes
according to the rule of hierarchy.

• Would you use a memorized list, such as English-French dictionary,
the population of each state, or the weight of each chemical
element?

That list becomes your data and you need to read it. If you'll use
the list more than once, you may restore or use subscripts.

• Would your reasoning repeat?

If you know how often to repeat, say FOR NEXT. If you are not
sure how often, say GO TO or IF THEN. If the repetition occurs
only after several other activities have intervened, call the repeated
part a subroutine, put it at the end of your program, and say
GOSUB.

• Would you choose among several alternatives?

Say IF THEN. To make the computer choose arbitrarily, say IF RND
< .5 THEN

• Would you compare two things (A and B)?

Say IF A=B THEN

Trim your program. Skim through it and ~Iiminate any lines that are
silly, such as a GOTO that goes to the next'·line, a GOTO that goes to
STOP, a GOTO that goes to a GOTO, a THEN that goes to the next
line, a THEN that just skips to a GOTO, or an IF followed by an IF that
has the opposite condition.

If You Have Trouble 121

(~

c

c

HOW CAN A VAGUE IDEA BECOME A PROGRAM?

First decide on your ultimate goal, then simplify it. Pick a goal that's
less ambitious and more realistic. Draw a picture, find the output lines
generated by the computer; they become the PRINT statements in
your program. Find the lines typed by the human; they become the
INPUT statements. Write the PRINT and INPUT statements on paper,
with a pencil, and leave blank lines between them. Fill in the blanks
later by asking yourself how you'd get the answer if you didn't have a
computer.

• Would you use a mathematical formula?

Get it into your program, but remember that the left side of the
equation must have just one variable and that BASIC executes
according to the rule of hierarchy.

• Would you use a memorized list, such as English-French dictionary,
the population of each state, or the weight of each chemical
element?

That list becomes your data and you need to read it. If you'll use
the list more than once, you may restore or use subscripts.

• Would your reasoning repeat?

If you know how often to repeat, say FOR NEXT. If you are not
sure how often, say GO TO or IF THEN. If the repetition occurs
only after several other activities have intervened, call the repeated
part a subroutine, put it at the end of your program, and say
GOSUB.

• Would you choose among several alternatives?

Say IF THEN. To make the computer choose arbitrarily, say IF RND
< .5 THEN

• Would you compare two things (A and B)?

Say IF A=B THEN

Trim your program. Skim through it and ~Iiminate any lines that are
silly, such as a GOTO that goes to the next'·line, a GOTO that goes to
STOP, a GOTO that goes to a GOTO, a THEN that goes to the next
line, a THEN that just skips to a GOTO, or an IF followed by an IF that
has the opposite condition.

If You Have Trouble 121

122

o
(}

~.~

" /
o

122

o
(}

~.~

" /
o

C:

c

Chapter 13. Exercises

This chapter contains exercises for you to study and enter with your
system if you wish. The exercises are arranged by chapter, and give
you practice with the statements that you learn in each chapter. Do
only the exercises for the chapter you have just studied; exercises for
more advanced chapters contain statements you haven't covered yet.

After you finish the book, you can look back at exercises from earlier
chapters and see that with more advanced BASIC techniques, some of
the earlier programs can be modified and made more efficient.

Feel free to make up examples of your own. Practice is the best way
to become a proficient programmer. Have fun! If you need to make
corrections to your own examples, refer to Chapter 6.

Note: Not all chapters are represented in this exercise section. This is
because some chapters do not contain material for which exercises are
relevant.

Exercises 123

C:

c

Chapter 13. Exercises

This chapter contains exercises for you to study and enter with your
system if you wish. The exercises are arranged by chapter, and give
you practice with the statements that you learn in each chapter. Do
only the exercises for the chapter you have just studied; exercises for
more advanced chapters contain statements you haven't covered yet.

After you finish the book, you can look back at exercises from earlier
chapters and see that with more advanced BASIC techniques, some of
the earlier programs can be modified and made more efficient.

Feel free to make up examples of your own. Practice is the best way
to become a proficient programmer. Have fun! If you need to make
corrections to your own examples, refer to Chapter 6.

Note: Not all chapters are represented in this exercise section. This is
because some chapters do not contain material for which exercises are
relevant.

Exercises 123

124

Exercises for Chapter 2. BASIC Arithmetic

Problem 1

Find the length of side C in this right triangle:

B=11

A=17 (C=~A2 +B2 is the formula)

The Program

0010 (}::::17
o O;.:!.O B:::::I.:I.
0030 C=SQR(At2~'Bt2)

001.,·1) PI~~INT C
o 0 ~.:.; 0 :;;;: "I" U P

Problem 2

Last season, Slugs Hoolihan, the baseball player, was up at bat 521
times. He made 130 base hits-15 home runs, 6 triples, 21 doubles and
the rest singles. What is Slugs' batting average? What about his
slugging average?

Note: The batting average is the number of hits divided by the
number of times at bat; the slugging average is:

(home runs*4)+(triples*3)+(doubles*2)+(singles*1)
number of times at bat

The Program

o 0 :I. 0 P E h F I j\! D (1 N II P R I i"'~ T H I ~:; F! (, TTl N Ci (:1 'v' E R {, i3 [
o 0 ::.:: 0 ("J :::: 1. 3 0 / ~:.:.; ::,? 1
OO~':::;O PRINT f~

o 0 '+ 0 R E f'I FIN It f.\ N [t P P I i····l T T H F ~:::; I... U (3 U I N C-:i (, V F H {-, Ci F
o 0 ~.:5 0 ~::; 1 :::: :\. ~5 ':I('I.j. + (:. 1(' :.3 + ::.~~ 1 .)~ ::.~ + (:I. :3 0 :\.'.::.; (, ;? 1)
o 0 6 0 G :::: S 1. ./ ~.;.; ::? 1.
o 0)' 0 P F;~ It··.! T ~~;

o 0 D 0 ~::; TOP

124

Exercises for Chapter 2. BASIC Arithmetic

Problem 1

Find the length of side C in this right triangle:

B=11

A=17 (C=~A2 +B2 is the formula)

The Program

0010 (}::::17
o O;.:!.O B:::::I.:I.
0030 C=SQR(At2~'Bt2)

001.,·1) PI~~INT C
o 0 ~.:.; 0 :;;;: "I" U P

Problem 2

Last season, Slugs Hoolihan, the baseball player, was up at bat 521
times. He made 130 base hits-15 home runs, 6 triples, 21 doubles and
the rest singles. What is Slugs' batting average? What about his
slugging average?

Note: The batting average is the number of hits divided by the
number of times at bat; the slugging average is:

(home runs*4)+(triples*3)+(doubles*2)+(singles*1)
number of times at bat

The Program

o 0 :I. 0 P E h F I j\! D (1 N II P R I i"'~ T H I ~:; F! (, TTl N Ci (:1 'v' E R {, i3 [
o 0 ::.:: 0 ("J :::: 1. 3 0 / ~:.:.; ::,? 1
OO~':::;O PRINT f~

o 0 '+ 0 R E f'I FIN It f.\ N [t P P I i····l T T H F ~:::; I... U (3 U I N C-:i (, V F H {-, Ci F
o 0 ~.:5 0 ~::; 1 :::: :\. ~5 ':I('I.j. + (:. 1(' :.3 + ::.~~ 1 .)~ ::.~ + (:I. :3 0 :\.'.::.; (, ;? 1)
o 0 6 0 G :::: S 1. ./ ~.;.; ::? 1.
o 0)' 0 P F;~ It··.! T ~~;

o 0 D 0 ~::; TOP

("""

Problem 3

Here are the results of an election:

Candidate District 1 District 2 District 3

Adams
Biller
Campbell

4106
3729
4002

2890
3515
3131

2981
2493
3012

Figure out the total vote and what percent of the total each candidate
received.

The Program

o 0 1. 0 ~i ~;::: I (~D i~"1 i"1 E: I

0020 A=4106+2809+2981
o 0 :.?:; 0 B .~; ::; , B ILL E H I
0040 B=3729+3515+2493
o 0 ~.:5 0 C '~i :::: ' C PI I';, P B [: L I... '
o I) f.:. 0 C :::: '+ (I I] 2 + ::5 1 :.3 :I. + ::3 0 1 ::?
o 0 <O{' 0 l ::: tl + f·: + C
00 H 0 i~11 :'-':(.:-I./T

o 0 9 0 I{ 1 ::: B ,/ T
o 1 (I 0 C 1 :::: C ,/ 'r
o 1 1 0 r~ E t,) P r-;~ I N T T D 'r () L, \/ D
01::20 PPINT l
o :l. 3 [I P F,~ I N T tl'~:',' t! ! tl J
0140 PRINT B$JBIBl
0150 PRINT CS,C,C!

Exercises 125

("""

Problem 3

Here are the results of an election:

Candidate District 1 District 2 District 3

Adams
Biller
Campbell

4106
3729
4002

2890
3515
3131

2981
2493
3012

Figure out the total vote and what percent of the total each candidate
received.

The Program

o 0 1. 0 ~i ~;::: I (~D i~"1 i"1 E: I

0020 A=4106+2809+2981
o 0 :.?:; 0 B .~; ::; , B ILL E H I
0040 B=3729+3515+2493
o 0 ~.:5 0 C '~i :::: ' C PI I';, P B [: L I... '
o I) f.:. 0 C :::: '+ (I I] 2 + ::5 1 :.3 :I. + ::3 0 1 ::?
o 0 <O{' 0 l ::: tl + f·: + C
00 H 0 i~11 :'-':(.:-I./T

o 0 9 0 I{ 1 ::: B ,/ T
o 1 (I 0 C 1 :::: C ,/ 'r
o 1 1 0 r~ E t,) P r-;~ I N T T D 'r () L, \/ D
01::20 PPINT l
o :l. 3 [I P F,~ I N T tl'~:',' t! ! tl J
0140 PRINT B$JBIBl
0150 PRINT CS,C,C!

Exercises 125

126

Problem 4

You are shopping for an air conditioner. You need one between 5000
and 6000 BTUs. You want to find the one with the highest energy
efficiency ratio (EER) because it will be the most economical to
operate. The EER is defined as:

number of BTUs
number of watts

Here are the air conditioners you are considering:

A
B

C

5000 BTUs
6000 BTUs
5500 BTUs

Which model should you buy?

The Program

00 l. 0 ('1::::~5 (100 I/B2 0
o O;.~~O D::::f.:.O 0 O/?:l 0
0030 C::::~:.;~:.;OO/G~:';O

00 1+0 PI~INT A .. B .. C
OO~.:.iO ~:;TC)P

Problem 5

820 watts
910 watts
850 watts

You are renting a car to make a one-day trip of about 275 miles. Here
are the rates for three companies:

Acme Rent-a-Car
Better Deals Rentals
Cheap Car

$17 a day
$12 a day
$8 a day

17 ¢ a mile (includes gas)
22¢ a mile (includes gas)
10¢ a mile (not including gas)

Figure the gas at 14 M PG and 58¢ a gallon. Which car is the best
deal?

The Program

o 0 1. 0 i~i .~~ :::: ' f:~ C f/l E '
0020 A=17+,17*275
00 ::::) 0 P R I NT I;'~; J tl
0040 B$='BETTER DEALS'
o O~SO I{::::l.;.~:~+. ?2*2~)

0060 PRINT B·t o' B
0070 C$='CHEAP CAR'
0080 (=8+.1*275+(275/14)*,58
00<»0 PRINT C·¥.,C
0:1.00 ~3TOP

o

'f~ -,,~

"'~, ,f

126

Problem 4

You are shopping for an air conditioner. You need one between 5000
and 6000 BTUs. You want to find the one with the highest energy
efficiency ratio (EER) because it will be the most economical to
operate. The EER is defined as:

number of BTUs
number of watts

Here are the air conditioners you are considering:

A
B

C

5000 BTUs
6000 BTUs
5500 BTUs

Which model should you buy?

The Program

00 l. 0 ('1::::~5 (100 I/B2 0
o O;.~~O D::::f.:.O 0 O/?:l 0
0030 C::::~:.;~:.;OO/G~:';O

00 1+0 PI~INT A .. B .. C
OO~.:.iO ~:;TC)P

Problem 5

820 watts
910 watts
850 watts

You are renting a car to make a one-day trip of about 275 miles. Here
are the rates for three companies:

Acme Rent-a-Car
Better Deals Rentals
Cheap Car

$17 a day
$12 a day
$8 a day

17 ¢ a mile (includes gas)
22¢ a mile (includes gas)
10¢ a mile (not including gas)

Figure the gas at 14 M PG and 58¢ a gallon. Which car is the best
deal?

The Program

o 0 1. 0 i~i .~~ :::: ' f:~ C f/l E '
0020 A=17+,17*275
00 ::::) 0 P R I NT I;'~; J tl
0040 B$='BETTER DEALS'
o O~SO I{::::l.;.~:~+. ?2*2~)

0060 PRINT B·t o' B
0070 C$='CHEAP CAR'
0080 (=8+.1*275+(275/14)*,58
00<»0 PRINT C·¥.,C
0:1.00 ~3TOP

o

'f~ -,,~

"'~, ,f

C:

Problem 6

Equations of this form:

AX2+BX+C=0

(quadratic equations) can be solved for the two values of X with these
formulas:

-8+v'8 2 -4AC
X= 2A

-8-v'8 2 -4AC
X= 2A

Write a program for these formulas. Using it, solve this equation for
X:

6X2_29X+28=0

The Program

o 0 1 0 (.l :::: (,

OO? 0 [{::;:·_·2<?

0030 C::::2B
o 0 '-I. 0)(1 ::: (.... B -+- S (~~ R (B "t 2 _ .. 4· 0)(. f~·1 .)1: C)) / (2·)1: f~)

0050 X2=(-B-SQR(Bt2-~*A*C»/(?*A)
0060 PRINT It., :::<::~.~

0070 ~:)TDP

Try it for other equations by changing the values of A, B, and C. Note
that this program will not work for some values of A, B, and C. Try it
for X2+X+1 =0, or A=1, B=1, C=1. The computer will tell you why it
doesn't work, if you don't already know.

Exercises 127

C:

Problem 6

Equations of this form:

AX2+BX+C=0

(quadratic equations) can be solved for the two values of X with these
formulas:

-8+v'8 2 -4AC
X= 2A

-8-v'8 2 -4AC
X= 2A

Write a program for these formulas. Using it, solve this equation for
X:

6X2_29X+28=0

The Program

o 0 1 0 (.l :::: (,

OO? 0 [{::;:·_·2<?

0030 C::::2B
o 0 '-I. 0)(1 ::: (.... B -+- S (~~ R (B "t 2 _ .. 4· 0)(. f~·1 .)1: C)) / (2·)1: f~)

0050 X2=(-B-SQR(Bt2-~*A*C»/(?*A)
0060 PRINT It., :::<::~.~

0070 ~:)TDP

Try it for other equations by changing the values of A, B, and C. Note
that this program will not work for some values of A, B, and C. Try it
for X2+X+1 =0, or A=1, B=1, C=1. The computer will tell you why it
doesn't work, if you don't already know.

Exercises 127

128

Exercises for Chapter 4. How to Write a Program

Problem 1

Dr. Lemming sees an average of 60 patients a week in his office.
Before he sees each patient, he washes his hands with a liquid
antiseptic soap that he buys in gallon jugs. Each time he washes his
hands, he uses a teaspoon of soap (there are 6 teaspoons in an
ounce). How many weeks will the gallon last? If he also uses a half
ounce of hand cream at the end of each day, seven days a week, to
keep his hands from chapping from all the washing, how much hand
cream does he use up with each gallon of soap?

The Program

o 0 :J. 0 P [: r'l F I Ci U F: [THE TOT i=', I... N U t'i DE F< I] F I.J.J {:l ~:) H E f;; I N (, C') {~II...I... UN
o 0 ? 0 'r ;::: :.-5 2 :H.,ll' ,)(, ()

(I 0 3 0 P E t-'i D I 'v' IDE B ,,{ () 0 IA (:i f:) H E S (:', l·,.1 E F K TO FIN :0 ,) t..ll'-i I< I::: r~: C) F 1..1.1 [E I< ~:)
o 0 1+ 0 I.~,I :::: T ,,/ /;. (I
o O~,:,:,iO PPINT t·,)
o 0 6 0 P E f'i F I ,) 0 H 0 l~ i'1 U C H H i:~ to..! [I C PEt! i"'1 N E F 1:1 E It J N 1,..1 1,oJ E E K b
o 0 "/ 0 C :::: . ~,:,:.; ,:Ii; .. /)(-1.. • ..1

OOUO PPII\!T C
o 0 (1' I) ~:::; T IJ P

Note: The calculation in line 20 is based on six teaspoons an ounce,
32 ounces a quart, 4 quarts a gallon. The calculation in line 70 is
based on half an ounce a day, seven days a week, for W weeks.

()

.,\, , .J"

:(,r"
--~

128

Exercises for Chapter 4. How to Write a Program

Problem 1

Dr. Lemming sees an average of 60 patients a week in his office.
Before he sees each patient, he washes his hands with a liquid
antiseptic soap that he buys in gallon jugs. Each time he washes his
hands, he uses a teaspoon of soap (there are 6 teaspoons in an
ounce). How many weeks will the gallon last? If he also uses a half
ounce of hand cream at the end of each day, seven days a week, to
keep his hands from chapping from all the washing, how much hand
cream does he use up with each gallon of soap?

The Program

o 0 :J. 0 P [: r'l F I Ci U F: [THE TOT i=', I... N U t'i DE F< I] F I.J.J {:l ~:) H E f;; I N (, C') {~II...I... UN
o 0 ? 0 'r ;::: :.-5 2 :H.,ll' ,)(, ()

(I 0 3 0 P E t-'i D I 'v' IDE B ,,{ () 0 IA (:i f:) H E S (:', l·,.1 E F K TO FIN :0 ,) t..ll'-i I< I::: r~: C) F 1..1.1 [E I< ~:)
o 0 1+ 0 I.~,I :::: T ,,/ /;. (I
o O~,:,:,iO PPINT t·,)
o 0 6 0 P E f'i F I ,) 0 H 0 l~ i'1 U C H H i:~ to..! [I C PEt! i"'1 N E F 1:1 E It J N 1,..1 1,oJ E E K b
o 0 "/ 0 C :::: . ~,:,:.; ,:Ii; .. /)(-1.. • ..1

OOUO PPII\!T C
o 0 (1' I) ~:::; T IJ P

Note: The calculation in line 20 is based on six teaspoons an ounce,
32 ounces a quart, 4 quarts a gallon. The calculation in line 70 is
based on half an ounce a day, seven days a week, for W weeks.

()

.,\, , .J"

:(,r"
--~

(
'.' . ,

,--/

>, (",',"'"

c

c~

c

c

Problem 2

Figure out the earned-run average for a baseball pitcher who pitched
187 innings and allowed 61 earned runs. An earned run average is
calculated by dividing the number of earned runs by the number of
innings pitched, and then multiplying the result by 9 (for 9 innings a
game).

The Program

o 0 :I. 0 P E t-'i ~~;l.J P PLY· T H F D (1 T (:"\
o 0 2 0 [: :::: {. 1
o 0 3 0 1 :::: 1 H··?
00 I.j. 0 PEi"i F I NIt THE (,\l'r: P('IGE (,(III P P I NT IT
o (I ~,:5 0 [1 :::: E /' J
o 0 6 (I tl :::: [: 1 .)(. (?
0070 PPlr·,.!T (:,
o 0 n 0 ~::; ·f C) P

Try this program for a pitcher who pitched four innings and allowed
eight runs; a pitcher who pitched 20-1/3 innings and allowed four runs
(remember that 20-1/3 must be entered as 61/3); try your own
numbers.

Exercises 129

(
'.' . ,

,--/

>, (",',"'"

c

c~

c

c

Problem 2

Figure out the earned-run average for a baseball pitcher who pitched
187 innings and allowed 61 earned runs. An earned run average is
calculated by dividing the number of earned runs by the number of
innings pitched, and then multiplying the result by 9 (for 9 innings a
game).

The Program

o 0 :I. 0 P E t-'i ~~;l.J P PLY· T H F D (1 T (:"\
o 0 2 0 [: :::: {. 1
o 0 3 0 1 :::: 1 H··?
00 I.j. 0 PEi"i F I NIt THE (,\l'r: P('IGE (,(III P P I NT IT
o (I ~,:5 0 [1 :::: E /' J
o 0 6 (I tl :::: [: 1 .)(. (?
0070 PPlr·,.!T (:,
o 0 n 0 ~::; ·f C) P

Try this program for a pitcher who pitched four innings and allowed
eight runs; a pitcher who pitched 20-1/3 innings and allowed four runs
(remember that 20-1/3 must be entered as 61/3); try your own
numbers.

Exercises 129

130

Problem 3

Find out how much sad Mr. Harris has to buy to cover his 70x28 foot
lawn. If sad is 11.5¢ a square foot, how much will it cost?

The Program

0010 REM FIND THE NUMBER OF SQUARE FEET
0020 F::::70*28
0030 REM FIND THE COST
o o I.j. 0 C::::F·)f I 11~5

OO~50 pr~INT C.I F
0060 STOP

Problem 4

You are supplying hamburgers for a party. There will be 17 adults and
14 children. Each hamburger will have three ounces of meat in it.
Kids can eat two hamburgers each, adults three. How much meat do
you have to buy?

The Program

0010 REM HOW MANY HAMBURGERS TOTAL?
0020 H:::: 17*3+ :l.1.!·*2
0030 REM HOW MANY OUNCES IS THAT?
o o I.J. 0 D::::3~'H

0050 REM HOW MANY POUNDS?
0060 P::::O/16
0070 PRINT P.I H
OOBO f:)TOP

Problem 5

You are arranging a charter flight. The plane costs $10,000 to hire.
There are 117 seats on it. You want to add on a 5 % surcharge for
profit and a $2.50 per person airport tax. How much is each ticket?

0010 REM FIND THE BASE COST OF EACH SEAT
0020 ~:;::::lOOOO/l17

0030 REM ADD ON THE PROFIT AND THE TAX
OO~O T=S+,05*S+2~5
OO~:;O PF~INT T
0060 STOP

o

/ ."
~t" ... l

(~)
130

Problem 3

Find out how much sad Mr. Harris has to buy to cover his 70x28 foot
lawn. If sad is 11.5¢ a square foot, how much will it cost?

The Program

0010 REM FIND THE NUMBER OF SQUARE FEET
0020 F::::70*28
0030 REM FIND THE COST
o o I.j. 0 C::::F·)f I 11~5

OO~50 pr~INT C.I F
0060 STOP

Problem 4

You are supplying hamburgers for a party. There will be 17 adults and
14 children. Each hamburger will have three ounces of meat in it.
Kids can eat two hamburgers each, adults three. How much meat do
you have to buy?

The Program

0010 REM HOW MANY HAMBURGERS TOTAL?
0020 H:::: 17*3+ :l.1.!·*2
0030 REM HOW MANY OUNCES IS THAT?
o o I.J. 0 D::::3~'H

0050 REM HOW MANY POUNDS?
0060 P::::O/16
0070 PRINT P.I H
OOBO f:)TOP

Problem 5

You are arranging a charter flight. The plane costs $10,000 to hire.
There are 117 seats on it. You want to add on a 5 % surcharge for
profit and a $2.50 per person airport tax. How much is each ticket?

0010 REM FIND THE BASE COST OF EACH SEAT
0020 ~:;::::lOOOO/l17

0030 REM ADD ON THE PROFIT AND THE TAX
OO~O T=S+,05*S+2~5
OO~:;O PF~INT T
0060 STOP

o

/ ."
~t" ... l

(~)

"1' ("

C!

c'

Exercises for Branching (Chapter 4)

Problem 1

The Smiths and the Hoopers live next door to each other. They are
both driving to Cape Cod, which is 350 miles away, for a vacation.
The Smiths leave at 8 a.m. and average 48 miles an hour. The
Hoopers leave at 10:30 a.m. and they drive at an average of 52 miles
an hour. Who gets there first?

The Program

0010
I) 0 ;?O
0030
00 ll· I)
o O:.iO
0060
0070
OOBO
00<;>0
0100
0:1.:1.0

~:):::: 3 ~5 0 /'+ B
H :::: ::5 ~o:i 0 / ~5 ;.:::
IF S<H+2,5 GO TO 0090
IF 8=H+2.5 GOTO 0120
REM HOOPERS GET THERE FIRST
PRINT 'THE HOOPERS GET THERE FIRST'
CiO''j'O (1:1.:3 0
R E f'l THE ~:; t'i I T H ~) (3 [T THE REF I F: ~3 T
PRINT 'THE SMITHS GET THERE FIRST'
[iOTO 0 :1.30
I~[f" THE'°r' t,RF<IVE ('IT THE [;;(~'tt')E TIiviE

0120
0:1.30

PRINT 'THE SMITHS AND HOOPERS ARRIVE TOGETHER'
S'fOP

Exercises 131

"1' ("

C!

c'

Exercises for Branching (Chapter 4)

Problem 1

The Smiths and the Hoopers live next door to each other. They are
both driving to Cape Cod, which is 350 miles away, for a vacation.
The Smiths leave at 8 a.m. and average 48 miles an hour. The
Hoopers leave at 10:30 a.m. and they drive at an average of 52 miles
an hour. Who gets there first?

The Program

0010
I) 0 ;?O
0030
00 ll· I)
o O:.iO
0060
0070
OOBO
00<;>0
0100
0:1.:1.0

~:):::: 3 ~5 0 /'+ B
H :::: ::5 ~o:i 0 / ~5 ;.:::
IF S<H+2,5 GO TO 0090
IF 8=H+2.5 GOTO 0120
REM HOOPERS GET THERE FIRST
PRINT 'THE HOOPERS GET THERE FIRST'
CiO''j'O (1:1.:3 0
R E f'l THE ~:; t'i I T H ~) (3 [T THE REF I F: ~3 T
PRINT 'THE SMITHS GET THERE FIRST'
[iOTO 0 :1.30
I~[f" THE'°r' t,RF<IVE ('IT THE [;;(~'tt')E TIiviE

0120
0:1.30

PRINT 'THE SMITHS AND HOOPERS ARRIVE TOGETHER'
S'fOP

Exercises 131

132

Problem 2

You are looking for an apartment. You find two, one on your own,
and one through an agent. You like them equally, so your choice will
be based strictly on cost. Here are the details:

Apartment 1: The rent is $225 a month and does not include utilities.
You figure $15 a month for gas and electric. There is a two-year
lease.

Apartment 2: The rent is $230 a month. It includes gas and electricity.
You must pay the agent 10% of a year's rent. The lease is for two
years.

Which should you take? What will be your average monthly cost over
the two years?

The Program

0010 Al=24*(225+15)
0020 A2=24*230+,l*<12*230)
0030 IF Al~A2 GOTO 0080
0040 REM APARTMENT 2 IS CHEAPER
o 0 ~,:,:,; 0 (vl :::: (::', ::,? / :::,:~ 1+
0060 PF,~INT 't,Pf:,RT~lENT ::? C:HFt1PFF{:" j''1DNTHLY' CO~:::;T I~:):'

0070 GOTD Ol~50
o OCO i"j::::(:ll/:?I.j·

0090 IF A2=Al GOrO 0140
o :I. 0 0 r~ E f'l (~ P (:":j F< T i"I E i"'~ T :/. I b C H E (j P E H
0110 P R I NT t! fltl PTt"iENT :I. C!--IEt, PE P! r"lDNTHL.. Y CO~:)T I~):'
0:1.20 GDTD O:1.~':':;O
o :1. :3 0 R E r't THE \' C D ~::; T T H I::: ~:) (.:1 rlj E
o :I. 1+ 0 P I~ 1 NT' THE Y B D T H H tl V E (.~ ~'1 0 NTH I... yeO S T () F : .
O:l.~:';O PPINT f"l
0:1.60 STOP

o

132

Problem 2

You are looking for an apartment. You find two, one on your own,
and one through an agent. You like them equally, so your choice will
be based strictly on cost. Here are the details:

Apartment 1: The rent is $225 a month and does not include utilities.
You figure $15 a month for gas and electric. There is a two-year
lease.

Apartment 2: The rent is $230 a month. It includes gas and electricity.
You must pay the agent 10% of a year's rent. The lease is for two
years.

Which should you take? What will be your average monthly cost over
the two years?

The Program

0010 Al=24*(225+15)
0020 A2=24*230+,l*<12*230)
0030 IF Al~A2 GOTO 0080
0040 REM APARTMENT 2 IS CHEAPER
o 0 ~,:,:,; 0 (vl :::: (::', ::,? / :::,:~ 1+
0060 PF,~INT 't,Pf:,RT~lENT ::? C:HFt1PFF{:" j''1DNTHLY' CO~:::;T I~:):'

0070 GOTD Ol~50
o OCO i"j::::(:ll/:?I.j·

0090 IF A2=Al GOrO 0140
o :I. 0 0 r~ E f'l (~ P (:":j F< T i"I E i"'~ T :/. I b C H E (j P E H
0110 P R I NT t! fltl PTt"iENT :I. C!--IEt, PE P! r"lDNTHL.. Y CO~:)T I~):'
0:1.20 GDTD O:1.~':':;O
o :1. :3 0 R E r't THE \' C D ~::; T T H I::: ~:) (.:1 rlj E
o :I. 1+ 0 P I~ 1 NT' THE Y B D T H H tl V E (.~ ~'1 0 NTH I... yeO S T () F : .
O:l.~:';O PPINT f"l
0:1.60 STOP

o

(
'''''~'

>/

c

c'

Problem 3

Mr. and Mrs. Richards are figuring out their income tax and they are
trying to decide whether to file joint or separate returns. Mr. Richards'
taxable income is $8,750. Mrs. Richards' taxable income is $10,312.

For separate returns, this is the schedule:

taxable income $8,000-10,000, pay $1,630 + 28 % of amount over
$8,000

taxable income $10,000-12,000 pay $2,190 + 32 % of amount over
$10,000

For a joint return, this is the schedule:

taxable income $16,000-20,000, pay $3,260 + 28 % of amount over
$16,000

The Program

o 0 :I. (I PEtit F T (-) U F~ E C: C) f::; T 0 F :::) E P t, P (:, T E PET U P N :::)
o 0 :2 0 I 1 ~= B 7 ~.5 0
o 0 3 (I I :::.~ :::: 1 0 3 :I. :2
0040 T1=1630+.28*(I:1.-8000)
o 0 ~.; 0 T ? :::: ? 1 (? (I + . ::5 :~.~ .J':. (I ;.~ :I. 0 0 0 0 :;
0060 T3::::T:I.+T::.?
o 0 ./ 0 E E r'l F J G 1...1 P E CD :3 T [I F .J DIN T PET U P N
OOBO I:::)::::11+1:2
o 0 9 0 T I.f. :::: 3 :::.~ .f.:. 0 + . :2 n .j(. (I :5 :I. (, (I 0 0)
0100 REM SEE WHICH IS CHEAPER
o 1. :I. 0 IF T:3 -:: T 1+ c:J [I lUI] 11.f· 0
I] :I. ~? 0 P R I f\! T 'C 0 ~:; T [I F "..1 (J I (\! T PET 1...1 I~ t\! I ~::; I... E: ::::; ::::; .
0:1.30 GOlD O:l.~50
o 11+ 0 P P I j\! T 'C C) :3 T D F n E p ti F< (:, T E PET 1...1 P N b I C L E :::. '::; ,
Ol~.:50 PI~~INT · . ..JDINT F.~ETI.JRi\! C::C):::;T::3'
o 1 c') 0 P PIN T T 1+
0:1. {' 0 P 1:< I NT . ~)E p(:, P{i T E RETU Pi\if:; C:Df::;T'
OlBO PRINT T3
0:1. 9 0 f;TD P

Exercises 133

(
'''''~'

>/

c

c'

Problem 3

Mr. and Mrs. Richards are figuring out their income tax and they are
trying to decide whether to file joint or separate returns. Mr. Richards'
taxable income is $8,750. Mrs. Richards' taxable income is $10,312.

For separate returns, this is the schedule:

taxable income $8,000-10,000, pay $1,630 + 28 % of amount over
$8,000

taxable income $10,000-12,000 pay $2,190 + 32 % of amount over
$10,000

For a joint return, this is the schedule:

taxable income $16,000-20,000, pay $3,260 + 28 % of amount over
$16,000

The Program

o 0 :I. (I PEtit F T (-) U F~ E C: C) f::; T 0 F :::) E P t, P (:, T E PET U P N :::)
o 0 :2 0 I 1 ~= B 7 ~.5 0
o 0 3 (I I :::.~ :::: 1 0 3 :I. :2
0040 T1=1630+.28*(I:1.-8000)
o 0 ~.; 0 T ? :::: ? 1 (? (I + . ::5 :~.~ .J':. (I ;.~ :I. 0 0 0 0 :;
0060 T3::::T:I.+T::.?
o 0 ./ 0 E E r'l F J G 1...1 P E CD :3 T [I F .J DIN T PET U P N
OOBO I:::)::::11+1:2
o 0 9 0 T I.f. :::: 3 :::.~ .f.:. 0 + . :2 n .j(. (I :5 :I. (, (I 0 0)
0100 REM SEE WHICH IS CHEAPER
o 1. :I. 0 IF T:3 -:: T 1+ c:J [I lUI] 11.f· 0
I] :I. ~? 0 P R I f\! T 'C 0 ~:; T [I F "..1 (J I (\! T PET 1...1 I~ t\! I ~::; I... E: ::::; ::::; .
0:1.30 GOlD O:l.~50
o 11+ 0 P P I j\! T 'C C) :3 T D F n E p ti F< (:, T E PET 1...1 P N b I C L E :::. '::; ,
Ol~.:50 PI~~INT · . ..JDINT F.~ETI.JRi\! C::C):::;T::3'
o 1 c') 0 P PIN T T 1+
0:1. {' 0 P 1:< I NT . ~)E p(:, P{i T E RETU Pi\if:; C:Df::;T'
OlBO PRINT T3
0:1. 9 0 f;TD P

Exercises 133

134

Exercises for Loops (Chapter 4)

Problem 1

In 1960, the population of Alpha City was 753,580. Its growth rate
was 3.7% a year. In 1960, the population of Betaville was 529,430. Its
growth rate was 5.1 % a year. If the growth rates keep steady, when
can you expect the population of Betaville to surpass that of Alpha
City?

The Program

0010),::::0
o O~?O A::::7!.53~5BO

o 030 B::::~52'~)LJ·30

o () I.J. 0 Y :::: Y + 1.
() 0 ~:.:.i 0 ~l :::: fi + . O:3'l~: ~',
o 0 c:. 0 E·: ::::)) + . 0 ~.:.:.; 1 ,)I., B
o 0 '7 0 I F B ::; ~~, G [I T 0 (I 0 I.j. 0
o 0 BOY:::: Y + :I. ~-; 6 0
0090 PRINT . BET(.l\/ILI...E !'· . .IILL.. H{lVE hOI~[PEOPLE THf'1i\! tlLPHt, CITY IN:'
0:1.00 PRINT Y
0:1.:1.0 S)TDP

Note: Line 10 assigns an initial value of zero to variable Y. As we
mentioned in the text, this line is not really necessary; the system
gives an initial value of zero to all numeric variables before it begins to
execute any BASIC program.

Problem 2

If you make a sum of integers like this:

1 +2+3+4+5+6+7+8 ...

how many numbers can you add before you exceed 1000?

The Program

0010 N::::N+:I.
o 0 2 I] ~:) :::: ~3 ... N
0030 IF f:)<:l.OOO GOTt] 00:1.0
00 1+0 Pf.~INT I YOU [~'<CEED :1.000 1,..JHFr·,,! \'01...1 TR'y TD t,DII THE NUi"lBEP:'
OO~.iO PPINT N
0060 ~:;TOP

()

():
134

Exercises for Loops (Chapter 4)

Problem 1

In 1960, the population of Alpha City was 753,580. Its growth rate
was 3.7% a year. In 1960, the population of Betaville was 529,430. Its
growth rate was 5.1 % a year. If the growth rates keep steady, when
can you expect the population of Betaville to surpass that of Alpha
City?

The Program

0010),::::0
o O~?O A::::7!.53~5BO

o 030 B::::~52'~)LJ·30

o () I.J. 0 Y :::: Y + 1.
() 0 ~:.:.i 0 ~l :::: fi + . O:3'l~: ~',
o 0 c:. 0 E·: ::::)) + . 0 ~.:.:.; 1 ,)I., B
o 0 '7 0 I F B ::; ~~, G [I T 0 (I 0 I.j. 0
o 0 BOY:::: Y + :I. ~-; 6 0
0090 PRINT . BET(.l\/ILI...E !'· . .IILL.. H{lVE hOI~[PEOPLE THf'1i\! tlLPHt, CITY IN:'
0:1.00 PRINT Y
0:1.:1.0 S)TDP

Note: Line 10 assigns an initial value of zero to variable Y. As we
mentioned in the text, this line is not really necessary; the system
gives an initial value of zero to all numeric variables before it begins to
execute any BASIC program.

Problem 2

If you make a sum of integers like this:

1 +2+3+4+5+6+7+8 ...

how many numbers can you add before you exceed 1000?

The Program

0010 N::::N+:I.
o 0 2 I] ~:) :::: ~3 ... N
0030 IF f:)<:l.OOO GOTt] 00:1.0
00 1+0 Pf.~INT I YOU [~'<CEED :1.000 1,..JHFr·,,! \'01...1 TR'y TD t,DII THE NUi"lBEP:'
OO~.iO PPINT N
0060 ~:;TOP

()

():

c

c'

Problem 3

Make a sales-tax reference chart for yourself. The sales tax in your
state is 7 %, and you want your chart to go from $0 to $10 in steps of
10¢.

The Program

o 0 :I. 0 FOR >< :::: 0 T D :I. [I f::; T E P 1:1.
OO;.:.~O PI~:INT X, ,07':1(')(
0030 NEXT X
0040 STDP

Problem 4

A bank teller decides to do an experiment to liven up his day. Every
time a customer asks for change of a dollar, he makes change with a
different combination of coins. Using half dollars, quarters, dimes,
nickels, and pennies, how many customers can he give change to
before he has to repeat a combination? Print out the combination and
the total number of combinations.

The Program

00:1.0 C::::O
o 020 P I~ IN T I H ~II... V E S I , I (~U t~ I~ T F 1< S I , I II I 1"'1 E S I , I N I C I(E I... S· I , I PEN N I E S .
0030 FOR p=o TO :1.00 STEP 5
0040 FOR N=O TO 20
0050 FOR D=O TO 10
o 0 6 0 F 0 F~ (;~ :::: 0 T [) 1+
0070 FOR H=O TO 2
0080 S=H*50+Q*25+D*10+N*5+P
0090 IF S~100 GOlD :1.20
0:1. 0 () C::::C+ :1.

0:1.:1.0 PRINT H,Q,D,N,P
O:l.:.:.~O NEXT H
0:1.30 NEXT Q
0:1. 1+ () NEXT [I

o :I. ~:.:.i 0 i\!E)(T N
0:1.60 NEXT P
(I :I. '"? () P I~ I NT' THE T (] T (i I... N U t'l B E H 0 F CON It I N ~I l I ON S I E;: .
0:1.80 PRINT ("
0:1. 90 ~:)TDP

Exercises 135

c

c'

Problem 3

Make a sales-tax reference chart for yourself. The sales tax in your
state is 7 %, and you want your chart to go from $0 to $10 in steps of
10¢.

The Program

o 0 :I. 0 FOR >< :::: 0 T D :I. [I f::; T E P 1:1.
OO;.:.~O PI~:INT X, ,07':1(')(
0030 NEXT X
0040 STDP

Problem 4

A bank teller decides to do an experiment to liven up his day. Every
time a customer asks for change of a dollar, he makes change with a
different combination of coins. Using half dollars, quarters, dimes,
nickels, and pennies, how many customers can he give change to
before he has to repeat a combination? Print out the combination and
the total number of combinations.

The Program

00:1.0 C::::O
o 020 P I~ IN T I H ~II... V E S I , I (~U t~ I~ T F 1< S I , I II I 1"'1 E S I , I N I C I(E I... S· I , I PEN N I E S .
0030 FOR p=o TO :1.00 STEP 5
0040 FOR N=O TO 20
0050 FOR D=O TO 10
o 0 6 0 F 0 F~ (;~ :::: 0 T [) 1+
0070 FOR H=O TO 2
0080 S=H*50+Q*25+D*10+N*5+P
0090 IF S~100 GOlD :1.20
0:1. 0 () C::::C+ :1.

0:1.:1.0 PRINT H,Q,D,N,P
O:l.:.:.~O NEXT H
0:1.30 NEXT Q
0:1. 1+ () NEXT [I

o :I. ~:.:.i 0 i\!E)(T N
0:1.60 NEXT P
(I :I. '"? () P I~ I NT' THE T (] T (i I... N U t'l B E H 0 F CON It I N ~I l I ON S I E;: .
0:1.80 PRINT ("
0:1. 90 ~:)TDP

Exercises 135

136

Because of the way the loops are nested in this program, it is
time-consuming to execute. A better and faster method is shown in
the following program.

0010 PRINT I H Q D
0020 FOR H=O TO 2
0030 FOR Q=O TO 4-2*H
0040 FOR D=O TO 10-5*H-2,5*Q
0050 FOR N=O TO 20-10*H-5*Q-2*D
0060 P=100-50*H-25*Q-l0*D-5*N
o 0 "'l 0 C :::: C -{-- 1
0080 PRINT FLP,H;Q;D;N;P
0090 NEXT N
0:1.00 NEXT D
0:1.10 NEXT Q
0120 NEXT H
0130 PRINT FLP, 'TOTAL WAYS ='C

N P'

o

("" ,,)1

136

Because of the way the loops are nested in this program, it is
time-consuming to execute. A better and faster method is shown in
the following program.

0010 PRINT I H Q D
0020 FOR H=O TO 2
0030 FOR Q=O TO 4-2*H
0040 FOR D=O TO 10-5*H-2,5*Q
0050 FOR N=O TO 20-10*H-5*Q-2*D
0060 P=100-50*H-25*Q-l0*D-5*N
o 0 "'l 0 C :::: C -{-- 1
0080 PRINT FLP,H;Q;D;N;P
0090 NEXT N
0:1.00 NEXT D
0:1.10 NEXT Q
0120 NEXT H
0130 PRINT FLP, 'TOTAL WAYS ='C

N P'

o

("" ,,)1

C,.··""
/

Exercises for Chapter 5. Other Ways to Put Values into Programs

Problem 1

Make a general program for figuring out batting averages and slugging
averages. When you run the program, you will have to enter the
ballplayer's name (N$), the number of times he was up to bat (8), the
number of home runs (R), triples (T), doubles (0), and singles (5). The
program will compute the averages and will print the results.

The Program

0010 IPUT N~I:·

0020 IPUT B}R}T,D)S
o 0 3 0 H :::: R + T 4- :0 + ~:)
00 I.j. 0 (~::::H/"r:

o 0 !.::.; 0 PHI NT "r HE: S E tl RET H E E; T t! T I f::; TIC ~::; F DR: I

0060 PF~INT N':~

0070 PRlt··.!T I TOT(.-lL :Of~ITTINC; t"f\iEPt',DF IS:'
o 0 n I) P r~: I N T f~l

o 0 r; (I tl ::.:~ :::: (I.j. 1(' I~ + 3 :,.:. T + 2 ')1:' 1:1 + ~:;) ./ E-:

o 1 0 0 P I~ I NT' ~3 L U U GIN (3 A V E l~ (1 C F I ~3: .
0:1.:1.0 PRINT (12

0120 bTC)P

Problem 2

You are giving typing tests to applicants for typing jobs. The test is
five minutes long. After counting the number of words the applicant
typed in five minutes, you subtract 1 0 words for each error, and then
you divide the result by 5. The minimum passing score is 50 words
per minute, but if the score is between 45 and 50, you will let the
applicant take the test one more time.

Write a general program that will let you type in the applicant's name,
the total words, and the number of errors. The program should then
compute the score and tell you if the applicant passed or not, or
whether the applicant should be allowed to take the test again.

Exercises 137

C,.··""
/

Exercises for Chapter 5. Other Ways to Put Values into Programs

Problem 1

Make a general program for figuring out batting averages and slugging
averages. When you run the program, you will have to enter the
ballplayer's name (N$), the number of times he was up to bat (8), the
number of home runs (R), triples (T), doubles (0), and singles (5). The
program will compute the averages and will print the results.

The Program

0010 IPUT N~I:·

0020 IPUT B}R}T,D)S
o 0 3 0 H :::: R + T 4- :0 + ~:)
00 I.j. 0 (~::::H/"r:

o 0 !.::.; 0 PHI NT "r HE: S E tl RET H E E; T t! T I f::; TIC ~::; F DR: I

0060 PF~INT N':~

0070 PRlt··.!T I TOT(.-lL :Of~ITTINC; t"f\iEPt',DF IS:'
o 0 n I) P r~: I N T f~l

o 0 r; (I tl ::.:~ :::: (I.j. 1(' I~ + 3 :,.:. T + 2 ')1:' 1:1 + ~:;) ./ E-:

o 1 0 0 P I~ I NT' ~3 L U U GIN (3 A V E l~ (1 C F I ~3: .
0:1.:1.0 PRINT (12

0120 bTC)P

Problem 2

You are giving typing tests to applicants for typing jobs. The test is
five minutes long. After counting the number of words the applicant
typed in five minutes, you subtract 1 0 words for each error, and then
you divide the result by 5. The minimum passing score is 50 words
per minute, but if the score is between 45 and 50, you will let the
applicant take the test one more time.

Write a general program that will let you type in the applicant's name,
the total words, and the number of errors. The program should then
compute the score and tell you if the applicant passed or not, or
whether the applicant should be allowed to take the test again.

Exercises 137

138

The Program

0010 PRINT 'ENTER NAME, NUMBER OF WORDS, NUMBER OF MISTAKES'
0020 INPI.JT N~I;,hl/M

0030 S=(W-10*M)!5
(I 0 I.~ 0 P R I NT' T E B T I~ E SUI .. , T E; F C) F{: '
o 0 ~:.; 0 P F~ I N T N ~I:·
0060 PRINT 'WORDS PER MINUTE TYPED'
0070 PRINT S
0080 IF 8<45 GOTD 0120
0090 IF 8<50 GOTD 0140
0100 PRINT 'APPLICANT PASSED TEST'
01:1.0 GOTO 02:1.0
0120 PRINT 'APPLICANT DID NOT PASS TEST'
0:1.30 GOlD 0210
0:1.40 PRINT 'HAS APPLICANT ALREADY TAKEN TEST? ENTER YES OR NO'
O:J.~50 INPUT ,:~.~~

0160 IF A$='YES' GOTO 0190
0170 PRINT 'LET APPLICANT TRY AGAIN'
OlBO GOTD 02:1.0
0190 PI~INT '/~PPI...JCf~INT H(.18 H/~ID Tl"IO(2) TI~IES'

020 0 G D T (] 0 :1. 20
02:1.0 STOP

Notes:
1. In line 150, we asked for a word instead of a number as input. In

line 160, we tested the word. Character variables are just as valid
as numeric variables in INPUT statements and IF statements. Just
remember to name a character variable with a letter followed by a
dollar sign, and to use quotes when you are referring to the value
of the character variable.

2. Notice the way the testing in lines 80 and 90 is done. If a score is
below 45, we get rid of it right away (line 80). The next test (line
90) only has to test if the score is below 50 to find scores between
45 and 50, since everything below 45 has already been eliminated.
After the two tests, we know that any scores surviving to line 100
are above 50, so we don't have to test them again.

o

;(."
\", .. i

138

The Program

0010 PRINT 'ENTER NAME, NUMBER OF WORDS, NUMBER OF MISTAKES'
0020 INPI.JT N~I;,hl/M

0030 S=(W-10*M)!5
(I 0 I.~ 0 P R I NT' T E B T I~ E SUI .. , T E; F C) F{: '
o 0 ~:.; 0 P F~ I N T N ~I:·
0060 PRINT 'WORDS PER MINUTE TYPED'
0070 PRINT S
0080 IF 8<45 GOTD 0120
0090 IF 8<50 GOTD 0140
0100 PRINT 'APPLICANT PASSED TEST'
01:1.0 GOTO 02:1.0
0120 PRINT 'APPLICANT DID NOT PASS TEST'
0:1.30 GOlD 0210
0:1.40 PRINT 'HAS APPLICANT ALREADY TAKEN TEST? ENTER YES OR NO'
O:J.~50 INPUT ,:~.~~

0160 IF A$='YES' GOTO 0190
0170 PRINT 'LET APPLICANT TRY AGAIN'
OlBO GOTD 02:1.0
0190 PI~INT '/~PPI...JCf~INT H(.18 H/~ID Tl"IO(2) TI~IES'

020 0 G D T (] 0 :1. 20
02:1.0 STOP

Notes:
1. In line 150, we asked for a word instead of a number as input. In

line 160, we tested the word. Character variables are just as valid
as numeric variables in INPUT statements and IF statements. Just
remember to name a character variable with a letter followed by a
dollar sign, and to use quotes when you are referring to the value
of the character variable.

2. Notice the way the testing in lines 80 and 90 is done. If a score is
below 45, we get rid of it right away (line 80). The next test (line
90) only has to test if the score is below 50 to find scores between
45 and 50, since everything below 45 has already been eliminated.
After the two tests, we know that any scores surviving to line 100
are above 50, so we don't have to test them again.

o

;(."
\", .. i

C".'"."
"

C
'~"'"

/

c

c

Exercise for Chapter 8. Setting Up Your Own Format-PRINT USING
and Image Statements

You are a teacher and you want to write a program that will figure out
and print a report of grades for each student at the end of the term.
There have been three exams during the term, and a final exam. The
grade for the term will be a letter grade based on an average of the
exam scores according to this table:

90 and over} A
80-below 90 B
70-below 80 C

(passing)

below 70 D (not passing)

In computing the average, the final exam has twice as much weight as
any of the other three exams. The printed report is meant for the
individual student, not you or the office, so it should be intelligible to
him, and it should be personalized.

The Program

0010 PRINT 'HAVE ALL STUDENTS BEEN PROCESSED? ENTER YES OR NO'
0020 INPUT tl·:t>
0030 IF f'i~I;::::'YES' GOlD 310
o 0 '+ () P R I NT' EN l E H N (~M E 0 F S T 1...1 It E NT'
OO:jO INPUT N~;

0060 PRINT 'ENTER GRADES FOR EXAMS'
0070 INPUT El,E2,E3,F
o oao (~:::: (El +E~?+E3+21('F) /!:.:.;
0090 IF A<70 GOTO 180
0100 IF A<80 GOTD 160
0110 IF A<90 GOlD 140
() :1.20 G':I;::::' A '
0:1.30 GOTD 1?O
o :1. 1+0 G'~;::::' B'
O:l.~50 GOTD :I.?O
o :1.60 G~;::::' C '
O:/."?O GOlD 190
o :1.80 G~I;::::':O'

0190 PF~INT FI ... r J • FINt,L GI~{i[lES FOt~ :' INS
O;?OO PRINT FLP,' YOUR GH(~DE FDF~ THE FII~ST EXAM l,J(~S: ' .. El
02:1.0 PRINT FLP, 'YOUR GRADE FOR THE SECOND EXAM WAS: . ,E2
02~.~O PRINT FI .. ,P J • YDUI;{ GI~(~:OE FDI~ THE THI F~:O EX(.:lt'l I"'A~:): ',E3
0~?30 PI~INT FI...P J • YOUR GI~fiDE FDI~ THE FIN(~L.. I",IP,E: 'I F
0240 PRINT USING 250,FLP,A,G$
0250 :YOUR FINAL AVERAGE IS """I"" AND YOUR FINAL.. GRADE IS "
0260 IF G$='D' GOTO 290
0270 PRINT FLP, 'CONGRATULATIONS ON PASSING THIS COURSE! .
02BO GOTD 300
0290 PRINT FLP, 'YOU DID NOT PASS, MAKE AN APPOINTMENT TO SEE ME'
0300 GOlD :1.0
0310 ~:)TOP

Exercises 139

C".'"."
"

C
'~"'"

/

c

c

Exercise for Chapter 8. Setting Up Your Own Format-PRINT USING
and Image Statements

You are a teacher and you want to write a program that will figure out
and print a report of grades for each student at the end of the term.
There have been three exams during the term, and a final exam. The
grade for the term will be a letter grade based on an average of the
exam scores according to this table:

90 and over} A
80-below 90 B
70-below 80 C

(passing)

below 70 D (not passing)

In computing the average, the final exam has twice as much weight as
any of the other three exams. The printed report is meant for the
individual student, not you or the office, so it should be intelligible to
him, and it should be personalized.

The Program

0010 PRINT 'HAVE ALL STUDENTS BEEN PROCESSED? ENTER YES OR NO'
0020 INPUT tl·:t>
0030 IF f'i~I;::::'YES' GOlD 310
o 0 '+ () P R I NT' EN l E H N (~M E 0 F S T 1...1 It E NT'
OO:jO INPUT N~;

0060 PRINT 'ENTER GRADES FOR EXAMS'
0070 INPUT El,E2,E3,F
o oao (~:::: (El +E~?+E3+21('F) /!:.:.;
0090 IF A<70 GOTO 180
0100 IF A<80 GOTD 160
0110 IF A<90 GOlD 140
() :1.20 G':I;::::' A '
0:1.30 GOTD 1?O
o :1. 1+0 G'~;::::' B'
O:l.~50 GOTD :I.?O
o :1.60 G~;::::' C '
O:/."?O GOlD 190
o :1.80 G~I;::::':O'

0190 PF~INT FI ... r J • FINt,L GI~{i[lES FOt~ :' INS
O;?OO PRINT FLP,' YOUR GH(~DE FDF~ THE FII~ST EXAM l,J(~S: ' .. El
02:1.0 PRINT FLP, 'YOUR GRADE FOR THE SECOND EXAM WAS: . ,E2
02~.~O PRINT FI .. ,P J • YDUI;{ GI~(~:OE FDI~ THE THI F~:O EX(.:lt'l I"'A~:): ',E3
0~?30 PI~INT FI...P J • YOUR GI~fiDE FDI~ THE FIN(~L.. I",IP,E: 'I F
0240 PRINT USING 250,FLP,A,G$
0250 :YOUR FINAL AVERAGE IS """I"" AND YOUR FINAL.. GRADE IS "
0260 IF G$='D' GOTO 290
0270 PRINT FLP, 'CONGRATULATIONS ON PASSING THIS COURSE! .
02BO GOTD 300
0290 PRINT FLP, 'YOU DID NOT PASS, MAKE AN APPOINTMENT TO SEE ME'
0300 GOlD :1.0
0310 ~:)TOP

Exercises 139

140

Exercise for Chapter 10. Arrays

Here is the 1972 Internal Revenue schedule for single taxpayers. Write
a program using this schedule so that a clerk can enter any amount of
taxable income and have the tax figured automatically.

Schedule X-Single Taxpayers Not Qualifying for Rates in
Schedule V or Z

If the
amount on
line 55 of of the
form 1040 But not amount
is over: over: pay: plus: over:

$ ----- $ 500 $ 00 14% $ 000
$ 500 $ 1000 $ 7Q 150/0 $ 500
$ 1000 $ 1500 $ 145 160/0 $ 1000
$ 1500 $ 2000 $ 225 17% $ 1500
$ 2000 $ 4000 $ 310 19% $ 2000
$ 4000 $ 6000 $ 690 21 % $ 4000
$ 6000 $ 8000 $ 1110 24% $ 6000
$ 8000 $ 10,000 $ 1590 25% $ 8000
$ 10,000 $ 12,000 $ 2090 270/0 $ 10,000
$ 12,000 $ 14,000 $ 2630 29% $ 12,000
$ 14,000 $ 16,000 $ 3210 31 % $ 14,000
$ 16,000 $ 18,000 $ 3830 34% $ 16,000
$ 18,000 $ 20,000 $ 4510 36% $ 18,000
$ 20,000 $ 22,000 $ 5230 38% $ 20,000
$ 22,000 $ 26,000 $ 5990 40% $ 22,000
$ 26,000 $ 32,000 $ 7590 45% $ 26,000
$ 32,000 $ 38,000 $ 10,290 50% $ 32,000
$ 38,000 $ 44,000 $ 13,290 55% $ 38,000
$ 44,000 $ 50,000 $ 16,590 60% $ 44,000
$ 50,000 $ 60,000 $ 20,190 62% $ 50,000
$ 60,000 $ 70,000 $ 26,390 64% $ 60,000
$ 70,000 $ 80,000 $ 32,790 66% $ 70,000
$ 80,000 $ 90,000 $ 39,390 68% $ 80,000
$ 90,000 $100,000 $ 46,190 690/0 $ 90,000
$100,000 -------- $ 53,090 70% $ 100,000

A B c D

To write this program, we are going to use four arrays:

A: Maximum amount of income in each category
B: Minimum tax for that bracket
C: Percent at which excess is taxed
D: Amount over column

We don't need to make an array for the minimum amount of income
in each income bracket, because we will not use it; instead, we will
test to see what bracket the income belongs to in the same way we
tested the typing scores in problem 2 from Chapter 5. Also, column D
is exactly the same as column A except each element is bumped by
one place.

o

/('"

'\,---'"

140

Exercise for Chapter 10. Arrays

Here is the 1972 Internal Revenue schedule for single taxpayers. Write
a program using this schedule so that a clerk can enter any amount of
taxable income and have the tax figured automatically.

Schedule X-Single Taxpayers Not Qualifying for Rates in
Schedule V or Z

If the
amount on
line 55 of of the
form 1040 But not amount
is over: over: pay: plus: over:

$ ----- $ 500 $ 00 14% $ 000
$ 500 $ 1000 $ 7Q 150/0 $ 500
$ 1000 $ 1500 $ 145 160/0 $ 1000
$ 1500 $ 2000 $ 225 17% $ 1500
$ 2000 $ 4000 $ 310 19% $ 2000
$ 4000 $ 6000 $ 690 21 % $ 4000
$ 6000 $ 8000 $ 1110 24% $ 6000
$ 8000 $ 10,000 $ 1590 25% $ 8000
$ 10,000 $ 12,000 $ 2090 270/0 $ 10,000
$ 12,000 $ 14,000 $ 2630 29% $ 12,000
$ 14,000 $ 16,000 $ 3210 31 % $ 14,000
$ 16,000 $ 18,000 $ 3830 34% $ 16,000
$ 18,000 $ 20,000 $ 4510 36% $ 18,000
$ 20,000 $ 22,000 $ 5230 38% $ 20,000
$ 22,000 $ 26,000 $ 5990 40% $ 22,000
$ 26,000 $ 32,000 $ 7590 45% $ 26,000
$ 32,000 $ 38,000 $ 10,290 50% $ 32,000
$ 38,000 $ 44,000 $ 13,290 55% $ 38,000
$ 44,000 $ 50,000 $ 16,590 60% $ 44,000
$ 50,000 $ 60,000 $ 20,190 62% $ 50,000
$ 60,000 $ 70,000 $ 26,390 64% $ 60,000
$ 70,000 $ 80,000 $ 32,790 66% $ 70,000
$ 80,000 $ 90,000 $ 39,390 68% $ 80,000
$ 90,000 $100,000 $ 46,190 690/0 $ 90,000
$100,000 -------- $ 53,090 70% $ 100,000

A B c D

To write this program, we are going to use four arrays:

A: Maximum amount of income in each category
B: Minimum tax for that bracket
C: Percent at which excess is taxed
D: Amount over column

We don't need to make an array for the minimum amount of income
in each income bracket, because we will not use it; instead, we will
test to see what bracket the income belongs to in the same way we
tested the typing scores in problem 2 from Chapter 5. Also, column D
is exactly the same as column A except each element is bumped by
one place.

o

/('"

'\,---'"

(".
/

("""'" .,

(""

c'

c

The columns of the schedule are labeled to show which column
corresponds to which array.

The Program

(llj

onn
U (I () " :I. i.j. 0 0 n
1+ q. Lf (j .' ~;:; 0 c n

Exercises 141

(".
/

("""'" .,

(""

c'

c

The columns of the schedule are labeled to show which column
corresponds to which array.

The Program

(llj

onn
U (I () " :I. i.j. 0 0 n
1+ q. Lf (j .' ~;:; 0 c n

Exercises 141

142

Here are two square matrices:

[

14
10
13

-2
o

27
7J [-1 -8 6
4 5

-3
24

2
-5~ 38

9

Write a program that prints their sum, difference, product, and
inverses (if the inverses exist).

The Program

0010 DIi'1 r.,(3,3), B(3, 3)! C(3,3)
0020 MAT READ AlB
o 0 ::3 0 D PI T {i :I. 1+ ! ····2 1)' ! :I. 0 , 0 ; B .. 1:-5 } 27' , '+
0040 DATA -1,-3,-5,6,24 .. 38,5,2 .. 9
0050 PRINT FLP, 'THESE ARE THE MATRICES FOR THE COMPUTATIONS'
0060 MAT PRINT A,B
o 070 11(~T C::::i:~I+B

o 0 BOP H I NT Fl .. , p.. ' THE I P ~:) U i"1 I ~3 '
o O?O MtlT PHINT FLP., C
o 1 0 0 M (..'1 T C :::: (.i B
o :I. :l. 0 P IX I NT F L P,' THE I P It IFF E PEN C F I ~:) ,
0:1.20 MtlT PPINT FL.P! C
o :/. 3 0 tvl r.1 T C :::: (.:,1(· B
o :I. 1+ 0 P R I NT F L. PI' THE:I: n M f-'i T P I >< P R U 1:1 U C T I ~:) ,
o :I.~.:.:.;O N(~:IT PHINT FLP, C
o :I. 6 0 I F DE T ((:-1) :::: 0 G D T 0 :..:.~ ~.:.:.; 0
o :I.)' 0 t'l {~ T C :;:: I N \/ ((~)
o :l. B () PHI NT F I... P.. 'T H E I N \/ E I~ b F [) F (:~ I b '
0:1.90 MAT PRINT FLP,C
o ;.~ 0 0 I FIlE T (B) :::: 0 G D T D 2"/ 0
0210 MAT C=INV(B)
0220 PRINT FI...P, 'THE INVERbE OF DIS'
0230 MAT PRINT FLP,C
o :\:.~I.j. 0 GOlD :'?D 0
o :?~.:.:.; 0 p n I NT FL. p} 'THE DETE Pli J Nf~t···1T DF t, lEO I THE HE I ~:) NO I NVE Rf;F '
o :,:.~6 0 GOlD :..:.~ 00
o ::.:./ 0 PHI NT F L P,' THE :0 I::: T E I~ i'1 I N (1 N T D F D I ~:) 0 I THE HE I ~:> N [I I N V E F~ ~:) E .
o ::.~ B 0 ~::) TOP

o

,("

'~ ... -.,'"

o
142

Here are two square matrices:

[

14
10
13

-2
o

27
7J [-1 -8 6
4 5

-3
24

2
-5~ 38

9

Write a program that prints their sum, difference, product, and
inverses (if the inverses exist).

The Program

0010 DIi'1 r.,(3,3), B(3, 3)! C(3,3)
0020 MAT READ AlB
o 0 ::3 0 D PI T {i :I. 1+ ! ····2 1)' ! :I. 0 , 0 ; B .. 1:-5 } 27' , '+
0040 DATA -1,-3,-5,6,24 .. 38,5,2 .. 9
0050 PRINT FLP, 'THESE ARE THE MATRICES FOR THE COMPUTATIONS'
0060 MAT PRINT A,B
o 070 11(~T C::::i:~I+B

o 0 BOP H I NT Fl .. , p.. ' THE I P ~:) U i"1 I ~3 '
o O?O MtlT PHINT FLP., C
o 1 0 0 M (..'1 T C :::: (.i B
o :I. :l. 0 P IX I NT F L P,' THE I P It IFF E PEN C F I ~:) ,
0:1.20 MtlT PPINT FL.P! C
o :/. 3 0 tvl r.1 T C :::: (.:,1(· B
o :I. 1+ 0 P R I NT F L. PI' THE:I: n M f-'i T P I >< P R U 1:1 U C T I ~:) ,
o :I.~.:.:.;O N(~:IT PHINT FLP, C
o :I. 6 0 I F DE T ((:-1) :::: 0 G D T 0 :..:.~ ~.:.:.; 0
o :I.)' 0 t'l {~ T C :;:: I N \/ ((~)
o :l. B () PHI NT F I... P.. 'T H E I N \/ E I~ b F [) F (:~ I b '
0:1.90 MAT PRINT FLP,C
o ;.~ 0 0 I FIlE T (B) :::: 0 G D T D 2"/ 0
0210 MAT C=INV(B)
0220 PRINT FI...P, 'THE INVERbE OF DIS'
0230 MAT PRINT FLP,C
o :\:.~I.j. 0 GOlD :'?D 0
o :?~.:.:.; 0 p n I NT FL. p} 'THE DETE Pli J Nf~t···1T DF t, lEO I THE HE I ~:) NO I NVE Rf;F '
o :,:.~6 0 GOlD :..:.~ 00
o ::.:./ 0 PHI NT F L P,' THE :0 I::: T E I~ i'1 I N (1 N T D F D I ~:) 0 I THE HE I ~:> N [I I N V E F~ ~:) E .
o ::.~ B 0 ~::) TOP

o

,("

'~ ... -.,'"

o

c:

C"
v

Exercises for Chapter 11. More Things You Can Do with BASIC

Problem 1

Make a chart of the values of sine and cosine of X, as X goes from 0°
through 360 0 in 45 0 steps.

The Program

o 0 lOP PIN 'r 'Ii [: Ci i=< [E ::::; ..' '~::: 1\1'!
o 0 ? 0 F D F~ >< :::: 0 TO :-3 (. I) E T E F i.j. '.::';

o 0 :3 0 Y' :::: R (I II (~< ;:
0040 PRINT XISIN(Y)!COS(Y)
o 0 ~.:.; 0 NEXT ><
0060 ~:)TOP

Problem 2

You are going to bake a cake. The recipe calls for an 8-inch square
pan. You only have an 8-inch round pan, and a 9-inch round pan.
Which pan will have a surface area closest to the required one?

The Program

00:1. 0 f:;B~::B~~B

0020 R8=&PI*(4t2)
0030 R9=&PI*(4,5t2)
o 0 1+ 0 II :I. :::: ~:) n F~ B
o 0 ~:5 0 P I~ I NT' T H F B INC H P i~ N I ~:~ , .' n 1. J '~:;)

o 0 b 0 1:1 2 :::: ~:) B I~ 'ji
007'0 IF D2<O GOTO 100
() 0 BOP PIN T 'T HE? INC H P (:, N I ~:) , .' I b Q U (~! i~ E INC H E ~3 ~:; f"l tl L I... F P ,
0090 GOTO :1.10
o :I. () 0 P F~ I NT' THE i.y INC H P f., N I f; I ! D 2! . ~::; C~ l...l ,~! HE :I: N C H E ~:) BID G E F~ ,
o :l. 1. 0 :0 2 :::: A B ~:) (II:?)
0120 IF D1<D2 GOlD 150
o 1 3 0 P Ix I NT' THE ? INC H P (.~, N I ~:; C I... (] ~:) I::: I~~ l (] THE R E Q 1...1 I P E D ~:) I Z E '
o :I. 1+ 0 GOT 0 16 0
O:l.~.:.:.iO PF~INl 'THE B li"·lCH Pf.,N In CI...O~3Elx TO THE PEQUIF~ED ~:;IZE'

0:1.60 ~:)TDP

Exercises 143

c:

C"
v

Exercises for Chapter 11. More Things You Can Do with BASIC

Problem 1

Make a chart of the values of sine and cosine of X, as X goes from 0°
through 360 0 in 45 0 steps.

The Program

o 0 lOP PIN 'r 'Ii [: Ci i=< [E ::::; ..' '~::: 1\1'!
o 0 ? 0 F D F~ >< :::: 0 TO :-3 (. I) E T E F i.j. '.::';

o 0 :3 0 Y' :::: R (I II (~< ;:
0040 PRINT XISIN(Y)!COS(Y)
o 0 ~.:.; 0 NEXT ><
0060 ~:)TOP

Problem 2

You are going to bake a cake. The recipe calls for an 8-inch square
pan. You only have an 8-inch round pan, and a 9-inch round pan.
Which pan will have a surface area closest to the required one?

The Program

00:1. 0 f:;B~::B~~B

0020 R8=&PI*(4t2)
0030 R9=&PI*(4,5t2)
o 0 1+ 0 II :I. :::: ~:) n F~ B
o 0 ~:5 0 P I~ I NT' T H F B INC H P i~ N I ~:~ , .' n 1. J '~:;)

o 0 b 0 1:1 2 :::: ~:) B I~ 'ji
007'0 IF D2<O GOTO 100
() 0 BOP PIN T 'T HE? INC H P (:, N I ~:) , .' I b Q U (~! i~ E INC H E ~3 ~:; f"l tl L I... F P ,
0090 GOTO :1.10
o :I. () 0 P F~ I NT' THE i.y INC H P f., N I f; I ! D 2! . ~::; C~ l...l ,~! HE :I: N C H E ~:) BID G E F~ ,
o :l. 1. 0 :0 2 :::: A B ~:) (II:?)
0120 IF D1<D2 GOlD 150
o 1 3 0 P Ix I NT' THE ? INC H P (.~, N I ~:; C I... (] ~:) I::: I~~ l (] THE R E Q 1...1 I P E D ~:) I Z E '
o :I. 1+ 0 GOT 0 16 0
O:l.~.:.:.iO PF~INl 'THE B li"·lCH Pf.,N In CI...O~3Elx TO THE PEQUIF~ED ~:;IZE'

0:1.60 ~:)TDP

Exercises 143

144

Problem 3

Write a program where the system thinks of a number and you have
to guess the number.

The Program

o 0 :l. 0 P R I NT' EN T [P (~ r) \,' t',,! 1.J h b E R .
OO:~O INPI.JT tl
o 0 3 0 P F< I N'r 'G 1...1 F f:) G THE N 1..) (1 Il E f< I l H 0 UGH T 0 FIT " I S DE T IlJ E EN :I. & 1 0 0 '
I] I] 1+ 0 P R I I\! T . Y C) U H {:i \/ [D T PIE !3
0050 N=INT(RND(A)*100+1)

()

0060 IF T~8 GOlD 0190 / ~

00 (-' 0 T=::: T + l~l. ~.
o 0 BOP R I NT J r'j (:1 K E (, C-:i U I::: t:: ~::: '
00</0 INPUT G
0100 IF G=N GOTO 0160
0110 IF G>N GOTO 0140
o :I. ~? 0 P PI,) T 'i"l Y N 1...1 t'l D [P I ~::. H I G H E P .
0:1.30 (3DTO 00(:,0
o :1.1.1· {) P f(I NT' j"\ Y N U i"1 B [. P I ~:;; L. U 1,...1 F P ,
Ol~,:50 GUlD 00';''';.0
o :I. t, 0 P F~ I r·~ T 'C 0 N G I~ (If U 1... (:j T I tJ N ~:::;! y' 0 U CJ 1...1 [L ~;:; E II IT'
o 1. "7 0 P R I NT' I T l U D I< Y 0 f..J ',T!' Ci t..J E: ~:~; ~::; E: ~:) ,
0100 GCJTU 0:200
o :I. <? 0 P R I NT' ~:3 D I? P Y·., y' D 1...1 H (i D n Ci U [S ~:) E b I t','y' N U h B E P fA (., f:~ , " N
0200 PRINT 'DO YOU WANT TO PLAY AGAIN? :I.=Y[8! O=NO'
02:1. 0 INPI.JT r:
0220 IF B=O GOTO 0260
023 (I ~i::~N

o 2lj· 0 T:::: 0
02~.:.iO nOlO 0030
02()O r:;TUP

Note: In line 50, RND(A) generated a random number between a and
1. Multiplying it by 100 scaled the number between a and 99. Since
we wanted the number to be between 1 and 100, we added 1 to the
result. Then we applied the INT function to extract just the integer
part of the number.

l'

1\ __ ",'1'-

144

Problem 3

Write a program where the system thinks of a number and you have
to guess the number.

The Program

o 0 :l. 0 P R I NT' EN T [P (~ r) \,' t',,! 1.J h b E R .
OO:~O INPI.JT tl
o 0 3 0 P F< I N'r 'G 1...1 F f:) G THE N 1..) (1 Il E f< I l H 0 UGH T 0 FIT " I S DE T IlJ E EN :I. & 1 0 0 '
I] I] 1+ 0 P R I I\! T . Y C) U H {:i \/ [D T PIE !3
0050 N=INT(RND(A)*100+1)

()

0060 IF T~8 GOlD 0190 / ~

00 (-' 0 T=::: T + l~l. ~.
o 0 BOP R I NT J r'j (:1 K E (, C-:i U I::: t:: ~::: '
00</0 INPUT G
0100 IF G=N GOTO 0160
0110 IF G>N GOTO 0140
o :I. ~? 0 P PI,) T 'i"l Y N 1...1 t'l D [P I ~::. H I G H E P .
0:1.30 (3DTO 00(:,0
o :1.1.1· {) P f(I NT' j"\ Y N U i"1 B [. P I ~:;; L. U 1,...1 F P ,
Ol~,:50 GUlD 00';''';.0
o :I. t, 0 P F~ I r·~ T 'C 0 N G I~ (If U 1... (:j T I tJ N ~:::;! y' 0 U CJ 1...1 [L ~;:; E II IT'
o 1. "7 0 P R I NT' I T l U D I< Y 0 f..J ',T!' Ci t..J E: ~:~; ~::; E: ~:) ,
0100 GCJTU 0:200
o :I. <? 0 P R I NT' ~:3 D I? P Y·., y' D 1...1 H (i D n Ci U [S ~:) E b I t','y' N U h B E P fA (., f:~ , " N
0200 PRINT 'DO YOU WANT TO PLAY AGAIN? :I.=Y[8! O=NO'
02:1. 0 INPI.JT r:
0220 IF B=O GOTO 0260
023 (I ~i::~N

o 2lj· 0 T:::: 0
02~.:.iO nOlO 0030
02()O r:;TUP

Note: In line 50, RND(A) generated a random number between a and
1. Multiplying it by 100 scaled the number between a and 99. Since
we wanted the number to be between 1 and 100, we added 1 to the
result. Then we applied the INT function to extract just the integer
part of the number.

l'

1\ __ ",'1'-

(

('

REMEMBER, BASIC IS A GOOD LANGUAGE TO EXPERIMENT WITH.

THE MORE YOU EXPERIMENT, THE MORE YOU LEARN.

CI

c
Exercises 145

(

('

REMEMBER, BASIC IS A GOOD LANGUAGE TO EXPERIMENT WITH.

THE MORE YOU EXPERIMENT, THE MORE YOU LEARN.

CI

c
Exercises 145

o

o
146

o

o
146

("

(:1:

C~\

C /

Appendix A. BASIC Statements and Commands

A complete list of the statements and commands in the BASIC
language that are used by your system is shown below. A brief
description of each statement and command is included. Although all
the statements and commands are not discussed in this manual, each
is described in detail in the IBM 5110 BASIC Reference Manual,
SA21-930B.

BASIC STATEMENTS

CHAIN

CLOSE

CLOSE FILE

DATA

DEF

DELETE FILE

DIM

END

EXIT

FNEND

FOR

FORM

Ends a program, then loads and
begins executing another program.

Deactivates open stream-oriented
files.

Deactivates open record-oriented
files.

Creates an internal data table of
values.

Defines a function to be used in the
program.

Deletes a record from a key-accessed
file.

Specifies the size (dimensions) of an
array or character variable.

Ends a program.

Transfers program control if errors
occur during input/output operations.

Ends a function defined in a DEF
statement.

Begins a loop.

Specifies the format of records in a
file created for access by individual
record or printed output.

BASIC Statements and Commands 147

("

(:1:

C~\

C /

Appendix A. BASIC Statements and Commands

A complete list of the statements and commands in the BASIC
language that are used by your system is shown below. A brief
description of each statement and command is included. Although all
the statements and commands are not discussed in this manual, each
is described in detail in the IBM 5110 BASIC Reference Manual,
SA21-930B.

BASIC STATEMENTS

CHAIN

CLOSE

CLOSE FILE

DATA

DEF

DELETE FILE

DIM

END

EXIT

FNEND

FOR

FORM

Ends a program, then loads and
begins executing another program.

Deactivates open stream-oriented
files.

Deactivates open record-oriented
files.

Creates an internal data table of
values.

Defines a function to be used in the
program.

Deletes a record from a key-accessed
file.

Specifies the size (dimensions) of an
array or character variable.

Ends a program.

Transfers program control if errors
occur during input/output operations.

Ends a function defined in a DEF
statement.

Begins a loop.

Specifies the format of records in a
file created for access by individual
record or printed output.

BASIC Statements and Commands 147

[MAT] GET Assign values from a stream-oriented
file to variables.

0
GOSUB Transfers program control to the

beginning of a subroutine.

GOTO Transfers program control to a
/' "

specific statement.
\~l ~ ,-

IF Transfers program control depending
on specific conditions.

Image Specifies the format of printed or J' '"
displayed data. I")/1

[MAT] INPUT Assigns values from the keyboard to
variables during program execution.

[LET] Assigns values to variables.

MAT Assigns values to all elements of an
array.

NEXT Ends a loop (see FOR).

ONERROR Transfers program control when
BASIC statement errors occur.

OPEN Activates stream-oriented files for
input or output.

OPEN FILE Activates record-oriented files for
input, output, or both.

PAUSE Interrupts program execution.

[MAT] PRINT (FLP) Displays or prints the values of
specified variables, expressions, or
constants.

" ,.;'
[MAT] PRINT USING (FLP) Displays or prints the values of

specified variables, expressions, or
constants in a format defined in an
image statement or variable or FORM

,,.(

statement.

" ~'

148

[MAT] GET Assign values from a stream-oriented
file to variables.

0
GOSUB Transfers program control to the

beginning of a subroutine.

GOTO Transfers program control to a
/' "

specific statement.
\~l ~ ,-

IF Transfers program control depending
on specific conditions.

Image Specifies the format of printed or J' '"
displayed data. I")/1

[MAT] INPUT Assigns values from the keyboard to
variables during program execution.

[LET] Assigns values to variables.

MAT Assigns values to all elements of an
array.

NEXT Ends a loop (see FOR).

ONERROR Transfers program control when
BASIC statement errors occur.

OPEN Activates stream-oriented files for
input or output.

OPEN FILE Activates record-oriented files for
input, output, or both.

PAUSE Interrupts program execution.

[MAT] PRINT (FLP) Displays or prints the values of
specified variables, expressions, or
constants.

" ,.;'
[MAT] PRINT USING (FLP) Displays or prints the values of

specified variables, expressions, or
constants in a format defined in an
image statement or variable or FORM

,,.(

statement.

" ~'

148

[MAT] PUT Writes the values of specified

(' - variables into a tape or diskette
stream-oriented file.

[MAT] READ Assigns values from the internal data
table (see DATA) to variables or array

(~ .. '. elements.
,/

[MAT] READ FILE [USING] Assigns a record from a
record-oriented file to a variable.

REM Inserts comments or remarks in a

C:": program.

RESET [FILE] Repositions a tape or diskette file to
its beginning, end, or specified record
position.

RESTORE Causes values in the internal data
table (see DATA) to be assigned
starting with the first value in the
table.

RETURN Ends a subroutine or user-defined
function.

C II. [MAT] REWRITE FILE [USING] Rewrites a specified record in a
record-oriented file.

STOP Ends a program.

USE Saves values of variables between
two programs to be executed by a
CHAI N statement.

[MAT] WRITE FILE [USING] Adds a record to the end of a
record-oriented file.

C': y

C
~I

y

c\
BASIC Statements and Commands 149

[MAT] PUT Writes the values of specified

(' - variables into a tape or diskette
stream-oriented file.

[MAT] READ Assigns values from the internal data
table (see DATA) to variables or array

(~ .. '. elements.
,/

[MAT] READ FILE [USING] Assigns a record from a
record-oriented file to a variable.

REM Inserts comments or remarks in a

C:": program.

RESET [FILE] Repositions a tape or diskette file to
its beginning, end, or specified record
position.

RESTORE Causes values in the internal data
table (see DATA) to be assigned
starting with the first value in the
table.

RETURN Ends a subroutine or user-defined
function.

C II. [MAT] REWRITE FILE [USING] Rewrites a specified record in a
record-oriented file.

STOP Ends a program.

USE Saves values of variables between
two programs to be executed by a
CHAI N statement.

[MAT] WRITE FILE [USING] Adds a record to the end of a
record-oriented file.

C': y

C
~I

y

c\
BASIC Statements and Commands 149

BASIC SYSTEM COMMANDS

ALERT

AUTO

eSKIP

GO

LINK

LIST

LOAD

MARK

MERGE

PRoe

RD=

RENUM

REWIND

RUN

150

Alerts the operator from the
procedure file (see PROC command).

Automatically provides numbers for
BASIC statements.

Skips within a procedure file on a
specified condition.

Resumes execution of a program that
was halted.

Allows loading of customer support
functions such as tape recovery and
diskette/tape copy.

Displays or prints the BASIC program.

Loads storage with data from tape or
diskette or data from the keyboard.
Also see Function Keys in the IBM
5110 BASIC Reference Manual,
SA21-930B.

Prepares a tape cartridge or diskette
for programs or data to be saved.

Combines programs on tape or
diskette with programs in storage or
data on tape or diskette with data in
storage.

Initiates the execution of a procedure
file, which contains programs,
commands, and/or data.

Specifies the number of digits at
which rounding occurs for displayed
or printed results.

Renumbers the statements in storage.

Rewinds the tape cartridge.

Executes a BASIC program.

o

,,-- -"
~. ___ J.

BASIC SYSTEM COMMANDS

ALERT

AUTO

eSKIP

GO

LINK

LIST

LOAD

MARK

MERGE

PRoe

RD=

RENUM

REWIND

RUN

150

Alerts the operator from the
procedure file (see PROC command).

Automatically provides numbers for
BASIC statements.

Skips within a procedure file on a
specified condition.

Resumes execution of a program that
was halted.

Allows loading of customer support
functions such as tape recovery and
diskette/tape copy.

Displays or prints the BASIC program.

Loads storage with data from tape or
diskette or data from the keyboard.
Also see Function Keys in the IBM
5110 BASIC Reference Manual,
SA21-930B.

Prepares a tape cartridge or diskette
for programs or data to be saved.

Combines programs on tape or
diskette with programs in storage or
data on tape or diskette with data in
storage.

Initiates the execution of a procedure
file, which contains programs,
commands, and/or data.

Specifies the number of digits at
which rounding occurs for displayed
or printed results.

Renumbers the statements in storage.

Rewinds the tape cartridge.

Executes a BASIC program.

o

,,-- -"
~. ___ J.

SAVE

SKIP

UTIL

EDITING FUNCTION

DEL

KEYx

c

c

Saves the BASIC program or data on
tape or diskette.

Unconditionally skips records in a
procedure file.

Displays or prints a directory of the
contents of a diskette or tape. Also
allows files to be renamed, dropped,
freed, and protected, and initiates the
SORT function (feature).

Deletes a statement or a group of
statements from storage.

Allows editing of key groups, where
X = 0 to 9.

BASIC Statements and Commands 151

SAVE

SKIP

UTIL

EDITING FUNCTION

DEL

KEYx

c

c

Saves the BASIC program or data on
tape or diskette.

Unconditionally skips records in a
procedure file.

Displays or prints a directory of the
contents of a diskette or tape. Also
allows files to be renamed, dropped,
freed, and protected, and initiates the
SORT function (feature).

Deletes a statement or a group of
statements from storage.

Allows editing of key groups, where
X = 0 to 9.

BASIC Statements and Commands 151

o
'l' '" I.,)

[~,

'(}

152

-- -- ._-----_._---------- -----

o
'l' '" I.,)

[~,

'(}

152

-- -- ._-----_._---------- -----

(-",

c',

c

Appendix B. Customer Support Functions

The following customer support functions are available for execution
on 5110 systems having storage of 16K to 64K bytes. Details of the
customer support functions are available in the IBM 5110 Customer
Support Functions Reference Manual, SA21-9311.

• Loader

• Diskette initialization

• Diskette-to-diskette copy

• Tape-to-diskette copy

• Diskette-to-tape copy

• Tape-to-tape copy

• Diskette compress

• Diskette recovery

• Tape data recovery

• Tape header recovery

• Diskette label display

• Sort diskette files into a desired sequence (optical feature)

• Compress diskette files to make unused space available

Customer Support Functions 153

(-",

c',

c

Appendix B. Customer Support Functions

The following customer support functions are available for execution
on 5110 systems having storage of 16K to 64K bytes. Details of the
customer support functions are available in the IBM 5110 Customer
Support Functions Reference Manual, SA21-9311.

• Loader

• Diskette initialization

• Diskette-to-diskette copy

• Tape-to-diskette copy

• Diskette-to-tape copy

• Tape-to-tape copy

• Diskette compress

• Diskette recovery

• Tape data recovery

• Tape header recovery

• Diskette label display

• Sort diskette files into a desired sequence (optical feature)

• Compress diskette files to make unused space available

Customer Support Functions 153

o
('~
, J

f
\.,c .. i '

154

o
('~
, J

f
\.,c .. i '

154

c:~:

c

c

c

(A)=I DN identity matrix 115
about BAS I C 1

about the 5110 1
about this manual
ABS(x) absolute value of x 112
ACS(x) arc cosine of x (in radians) 116
activating files 89
adding to data files 92
addition 6, 19, 107
addition with arrays 107
AIDX(A) indexed locations in ascending order 115
alphabetic characters, entering lowercase 12
al phameric keys 2, 4
another way to assign values to arrays 100
APL special character combination 6
APL/BASIC combined keyboard 3
APL/BASIC switch 2
arithmetic arrays 95, 106
arithmetic constants 114
arithmetic hierarchy 24
arithmetic operator keys 2, 6
arithmetic operators 19
arithmetic with arrays 106
arrays 93

addition 107
another way to assign values 100
arithmetic 95, 106
assigning values

to an entire array at once 101
to array elements 98

averaging 108
character 93, 95
defining 93, 95
division 107
elements 97, 102
exercise 140
functions 115
multiplication 107
one-dimensional 104
printing 103
subtraction 107
two-dimensional 105
with arithmetic 106

ASN{x) arc sine of x (in radians) 116
assigning values 21,49,67,98, 100, 101

to an enti re array at once 101
to array elements 98
to variables 21

ATN(x) arc tangent of x (in radians) 116
ATTN (attention) key 15,17,27,33
AUTO command 38, 46
automatic statement numbering 38
averaging

two sets of one-d imensional arrays 108
two-dimensional arrays 109

backspace key 5
BAS I C arrays 93
BASIC command keywords 6
BASIC description 1
BASIC statement keywords 6,33, 147
BASIC statements 147
BASIC system commands 150
BASIC-only keyboard 3
BASIC/APL combined keyboard 3
BASIC/APL switch 2
branches 52
BRIGHTNESS control switch 2, 9

calc result function 30
calculation results, using 30
cartridge inserting 39,40
CEN(x) centigrade of x degrees 115
centimeters per inch (&INCM) 114
character arrays 93, 95
character variables 29,55, 71
CH R (x) arithmetic expression of x 115
clearing storage 43
CLOSE statement 90
closing tape files 90
CMD key 2,5,14,15,31
combined BASIC/APL keyboard 3
command (CMD) key 2,5, 14, 15,31
command, BASIC keywords 6, 150
commands

AUTO 38,46
GO 35
LOAD 44,46
MARK 42,46
RD= 35,46
RUN 35,46
SAVE 43,46
UTIL 44,46

Index

Index 155

c:~:

c

c

c

(A)=I DN identity matrix 115
about BAS I C 1

about the 5110 1
about this manual
ABS(x) absolute value of x 112
ACS(x) arc cosine of x (in radians) 116
activating files 89
adding to data files 92
addition 6, 19, 107
addition with arrays 107
AIDX(A) indexed locations in ascending order 115
alphabetic characters, entering lowercase 12
al phameric keys 2, 4
another way to assign values to arrays 100
APL special character combination 6
APL/BASIC combined keyboard 3
APL/BASIC switch 2
arithmetic arrays 95, 106
arithmetic constants 114
arithmetic hierarchy 24
arithmetic operator keys 2, 6
arithmetic operators 19
arithmetic with arrays 106
arrays 93

addition 107
another way to assign values 100
arithmetic 95, 106
assigning values

to an entire array at once 101
to array elements 98

averaging 108
character 93, 95
defining 93, 95
division 107
elements 97, 102
exercise 140
functions 115
multiplication 107
one-dimensional 104
printing 103
subtraction 107
two-dimensional 105
with arithmetic 106

ASN{x) arc sine of x (in radians) 116
assigning values 21,49,67,98, 100, 101

to an enti re array at once 101
to array elements 98
to variables 21

ATN(x) arc tangent of x (in radians) 116
ATTN (attention) key 15,17,27,33
AUTO command 38, 46
automatic statement numbering 38
averaging

two sets of one-d imensional arrays 108
two-dimensional arrays 109

backspace key 5
BAS I C arrays 93
BASIC command keywords 6
BASIC description 1
BASIC statement keywords 6,33, 147
BASIC statements 147
BASIC system commands 150
BASIC-only keyboard 3
BASIC/APL combined keyboard 3
BASIC/APL switch 2
branches 52
BRIGHTNESS control switch 2, 9

calc result function 30
calculation results, using 30
cartridge inserting 39,40
CEN(x) centigrade of x degrees 115
centimeters per inch (&INCM) 114
character arrays 93, 95
character variables 29,55, 71
CH R (x) arithmetic expression of x 115
clearing storage 43
CLOSE statement 90
closing tape files 90
CMD key 2,5,14,15,31
combined BASIC/APL keyboard 3
command (CMD) key 2,5, 14, 15,31
command, BASIC keywords 6, 150
commands

AUTO 38,46
GO 35
LOAD 44,46
MARK 42,46
RD= 35,46
RUN 35,46
SAVE 43,46
UTIL 44,46

Index

Index 155

commands, BASIC system 150
conversion constants 114
conversion functions 115
copy display function 34
correcting keying errors 13, 34, 73

delete a character 14
insert a character 16
replace a character 13

correcting your keying errors 34
COS(x) cosine of x radians 116
COT(x) cotangent of x radians 116
creating

a diskette fi Ie 90
a tape file 90

CSC(x) cosecant of x radians 116
cursor 8
customer support functions 153

data files 89
DAT A statement 67, 98
deactivating files 89
defining an array 93, 95
DEG(x) degrees in x radians 115
DEL function 76
delete a character 14
delete function 15
description 1
DET(a) determinant 115
device address 89
DIDX(a) indexed locations in descending order 115
DIM statement 93

character variables 96
one-dimensional arrays
two-dimensional arrays

directory listing of programs
diskette file, creating a 90
diskette initialization 41

95
93,96

44

diskette inserting in diskette drive 41
diskette removing from envelope 41
diskette storage or tape, using (your library) 39
DISPLAY REGISTERS/NORMAL switch 2,6
display screen 2, 7
display stop flashing 5
displaying data 7
division 6, 19, 107

156

editing function 151
elements of arrays 97, 102
ending a loop 59
endless loops 119
endless output 119
entering a program 33
entering character variables into programs 71
entering data 7
entering lowercase alphabetic characters 12
error correction 13,33, 34, 73
example of printing 86
EXECUTE key 2, 5, 33
exercises

arrays 140
BASIC arithmetic 124
branching 131
how to write a program 128
loops 134
more things you can do with BASIC 143
other ways to put values into programs 137
setting up your own format-PRINT USING

and image statements 139
EXP(x) natural exponent of x 117
exponentiation 19, 20, 24
exponents 117
expression 49

FAH(x) fahrenheit of x degrees 115
finding square roots 111
flashing question mark 35, 70, 101
flash ing screen 27, 33
FO R statement 61, 100
forgetting to save corrected programs
formatting output 83
forward space key 5, 11, 13

general system functions 112
GET statement 89
getting started 6
GO command 35
GOTO statement 37,52, 59

119

o

~~-.~

1'llh,_J,'

commands, BASIC system 150
conversion constants 114
conversion functions 115
copy display function 34
correcting keying errors 13, 34, 73

delete a character 14
insert a character 16
replace a character 13

correcting your keying errors 34
COS(x) cosine of x radians 116
COT(x) cotangent of x radians 116
creating

a diskette fi Ie 90
a tape file 90

CSC(x) cosecant of x radians 116
cursor 8
customer support functions 153

data files 89
DAT A statement 67, 98
deactivating files 89
defining an array 93, 95
DEG(x) degrees in x radians 115
DEL function 76
delete a character 14
delete function 15
description 1
DET(a) determinant 115
device address 89
DIDX(a) indexed locations in descending order 115
DIM statement 93

character variables 96
one-dimensional arrays
two-dimensional arrays

directory listing of programs
diskette file, creating a 90
diskette initialization 41

95
93,96

44

diskette inserting in diskette drive 41
diskette removing from envelope 41
diskette storage or tape, using (your library) 39
DISPLAY REGISTERS/NORMAL switch 2,6
display screen 2, 7
display stop flashing 5
displaying data 7
division 6, 19, 107

156

editing function 151
elements of arrays 97, 102
ending a loop 59
endless loops 119
endless output 119
entering a program 33
entering character variables into programs 71
entering data 7
entering lowercase alphabetic characters 12
error correction 13,33, 34, 73
example of printing 86
EXECUTE key 2, 5, 33
exercises

arrays 140
BASIC arithmetic 124
branching 131
how to write a program 128
loops 134
more things you can do with BASIC 143
other ways to put values into programs 137
setting up your own format-PRINT USING

and image statements 139
EXP(x) natural exponent of x 117
exponentiation 19, 20, 24
exponents 117
expression 49

FAH(x) fahrenheit of x degrees 115
finding square roots 111
flashing question mark 35, 70, 101
flash ing screen 27, 33
FO R statement 61, 100
forgetting to save corrected programs
formatting output 83
forward space key 5, 11, 13

general system functions 112
GET statement 89
getting started 6
GO command 35
GOTO statement 37,52, 59

119

o

~~-.~

1'llh,_J,'

('~'

C'"

(~~~'
_/

C"
/

c

c

HCS(x) hyperbolic cosine 116
HO LD key 5, 33, 60, 64
how can a vague idea become a program 121
how to write a program 49
how your system handles arithmetic 19
HSN(x) hyperbolic sine 116
HTN(x) hyperbolic tangent 116

identity matrix 110

IDX(C 1 , C2) 112
I F statement 36,53,59
if you have trouble 119
im age statement 83
I N PROCESS indicator 2, 7
indicator

IN PROCESS 2, 7
PROCESS CH ECK 2, 7

in itial ization, diskette 41
initial izing variables 55
INPUT statement 35,69,100
insert a character 16
insert function 16
inserting a cartridge 39,40
inserting a diskette in diskette drive
inserting new lines 73
inserting program statements
INT(x) integer part of x
INV(a) inverse 115

keyboard
BASIC-only 3

112

combined BASIC/APL 3

73

keying errors, correcting 13, 34, 73
keys

ATTN (attention) 5, 15
alphameric 2,4
arithmetic operator 2, 6
backspace 5
CMD (command) 2
EXECUTE 2,5
forward space 5, 11
HO LD 5, 33, 60, 64
numeric 2,4
scroll down 5, 10
scroll up 5, 10
shift 2,4, 5
special operator 2

41

keywords 6
kilograms per pound (&LBKG) 114
KLN(c) length 116
KPS(c) beginning position 116

LEN (c) length of c 112
LET statement 49, 69, 98
LGT(x) logarithm of x to the base 10 117
LIST command 52
listing a directory of programs 44
listing program contents 52
liters per gallon (&GALI) 114
LOAD command 8, 44, 46
LOG(x) logarithm of x to the base e 117
logarithms 117
loops -57, 119
loops within loops 62
lowercase character mode 12
L TW(x) logarithm of x to the base 2 117
L32 64 R32 switch 2, 6, 10

making changes to your programs 73
making headings 80
manual description 1
MAR K command 42, 46
marking your media 42
math calculations in print statements 81
MAT INPUT statement 100
MAT PRINT statement 103
MAT READ statement 100
mathematical functions 24
matrix

functions 115
identity 110
multiplication 109
tak ing a transpose 109
taking the inverse 110

MAX(xl, ...) maximum value 117
MIN(xl,' ..) minimum value 117
more about the PRINT statement 79
more things you can do with BASIC 111
multiplication 6,19, 107,109

Index 157

('~'

C'"

(~~~'
_/

C"
/

c

c

HCS(x) hyperbolic cosine 116
HO LD key 5, 33, 60, 64
how can a vague idea become a program 121
how to write a program 49
how your system handles arithmetic 19
HSN(x) hyperbolic sine 116
HTN(x) hyperbolic tangent 116

identity matrix 110

IDX(C 1 , C2) 112
I F statement 36,53,59
if you have trouble 119
im age statement 83
I N PROCESS indicator 2, 7
indicator

IN PROCESS 2, 7
PROCESS CH ECK 2, 7

in itial ization, diskette 41
initial izing variables 55
INPUT statement 35,69,100
insert a character 16
insert function 16
inserting a cartridge 39,40
inserting a diskette in diskette drive
inserting new lines 73
inserting program statements
INT(x) integer part of x
INV(a) inverse 115

keyboard
BASIC-only 3

112

combined BASIC/APL 3

73

keying errors, correcting 13, 34, 73
keys

ATTN (attention) 5, 15
alphameric 2,4
arithmetic operator 2, 6
backspace 5
CMD (command) 2
EXECUTE 2,5
forward space 5, 11
HO LD 5, 33, 60, 64
numeric 2,4
scroll down 5, 10
scroll up 5, 10
shift 2,4, 5
special operator 2

41

keywords 6
kilograms per pound (&LBKG) 114
KLN(c) length 116
KPS(c) beginning position 116

LEN (c) length of c 112
LET statement 49, 69, 98
LGT(x) logarithm of x to the base 10 117
LIST command 52
listing a directory of programs 44
listing program contents 52
liters per gallon (&GALI) 114
LOAD command 8, 44, 46
LOG(x) logarithm of x to the base e 117
logarithms 117
loops -57, 119
loops within loops 62
lowercase character mode 12
L TW(x) logarithm of x to the base 2 117
L32 64 R32 switch 2, 6, 10

making changes to your programs 73
making headings 80
manual description 1
MAR K command 42, 46
marking your media 42
math calculations in print statements 81
MAT INPUT statement 100
MAT PRINT statement 103
MAT READ statement 100
mathematical functions 24
matrix

functions 115
identity 110
multiplication 109
tak ing a transpose 109
taking the inverse 110

MAX(xl, ...) maximum value 117
MIN(xl,' ..) minimum value 117
more about the PRINT statement 79
more things you can do with BASIC 111
multiplication 6,19, 107,109

Index 157

naming arrays 93, 95
natural log (e) 114
negative operators 24, 27
nested loops 62
NEXT statement 61, 100
N UM (c) arithmetic value of c 115
numbers are not what they seem to be 119
numeric keys 2,4
numeric variables 21, 55

one-dimensional arrays 104, 108
OPEN statement 89
opening tape files 89
operating keys 5
operators 19, 27
other functions 117
other ways to put values into programs 67
output, end less 119

parentheses 24
performing several functions in the same
expression 24

pi (1T) 114
positive operators 24, 27
POWER ON/OFF switch 2, 7
PRD(a) product 115
PR I NT F LP statement 87
PRINT statement 35,50,70,79
PRINT USING statement 83
printing arrays 103
printing blank lines 87
printing example 86
PROCESS CHECK indicator 2, 7
program contents, listing 52
program storage 39
prompting message 70
prompting your input 70
PUT statement 89
putting one-dimensional arrays together

in a program 104

158

RAD(x) radians in x degrees 115
raising to a power 19
R D= command 35, 46
ready message 7
READ statement 67, 98
record file functions 116
R EM (remark) statement 36, 50
remark (REM) statement 36, 50
remarks, using 50
removing a line 76
removing diskette from envelope 41
RENUM command 77
renumbering statement lines 77
replace a character 13
replacing one line with another 75
repositioning files 92
RESET statement 92
RESTART switch 2, 7,43
RESTO REstatement 67
retrieving a file 91
REVERSE DISPLAY switch
review of what you've done
RLN(c) last record 116

2,9
47, 72

RND random number 112
RND(x) random number 112
rounding numbers 35
RUN command 35,46
RUN P=D command 88
running the program 34

SAF E arrow 39, 40
sample run 38
SAVE command 43,46
saving the program on diskette 43
screen display 2
scroll down key 5, 10
scroll up key 5, 10
SEC(x) secant of x radians 116
sequence of arithmetic operations 24
setting up your own format-PRINT USING and

image statements 83
SGN(x) sign of x 112
shift keys 2, 5
SIN(x) sine of x radians 116
some general system functions 112
space bar 5
special character combination 6
special operating keys 2, 5
square roots 111, 114
standard BASIC character mode 12
starting 6
statement keywords 6,33, 147

o

o

naming arrays 93, 95
natural log (e) 114
negative operators 24, 27
nested loops 62
NEXT statement 61, 100
N UM (c) arithmetic value of c 115
numbers are not what they seem to be 119
numeric keys 2,4
numeric variables 21, 55

one-dimensional arrays 104, 108
OPEN statement 89
opening tape files 89
operating keys 5
operators 19, 27
other functions 117
other ways to put values into programs 67
output, end less 119

parentheses 24
performing several functions in the same
expression 24

pi (1T) 114
positive operators 24, 27
POWER ON/OFF switch 2, 7
PRD(a) product 115
PR I NT F LP statement 87
PRINT statement 35,50,70,79
PRINT USING statement 83
printing arrays 103
printing blank lines 87
printing example 86
PROCESS CHECK indicator 2, 7
program contents, listing 52
program storage 39
prompting message 70
prompting your input 70
PUT statement 89
putting one-dimensional arrays together

in a program 104

158

RAD(x) radians in x degrees 115
raising to a power 19
R D= command 35, 46
ready message 7
READ statement 67, 98
record file functions 116
R EM (remark) statement 36, 50
remark (REM) statement 36, 50
remarks, using 50
removing a line 76
removing diskette from envelope 41
RENUM command 77
renumbering statement lines 77
replace a character 13
replacing one line with another 75
repositioning files 92
RESET statement 92
RESTART switch 2, 7,43
RESTO REstatement 67
retrieving a file 91
REVERSE DISPLAY switch
review of what you've done
RLN(c) last record 116

2,9
47, 72

RND random number 112
RND(x) random number 112
rounding numbers 35
RUN command 35,46
RUN P=D command 88
running the program 34

SAF E arrow 39, 40
sample run 38
SAVE command 43,46
saving the program on diskette 43
screen display 2
scroll down key 5, 10
scroll up key 5, 10
SEC(x) secant of x radians 116
sequence of arithmetic operations 24
setting up your own format-PRINT USING and

image statements 83
SGN(x) sign of x 112
shift keys 2, 5
SIN(x) sine of x radians 116
some general system functions 112
space bar 5
special character combination 6
special operating keys 2, 5
square roots 111, 114
standard BASIC character mode 12
starting 6
statement keywords 6,33, 147

o

o

c:

c

c

c

statement numbering, automatic 38, 77
statements 147
status line 8
steps 61
stop flashing screen 27,33
STOP statement 37
storage capacity 8
storing a program 39
subtraction 6, 19, 107
subtraction with arrays 107
SUM(a) sum 115
switches

BASIC/APL 2
B~IGHTNESS control 2,9
DISPLAY REGISTERS/NORMAL 2,6
L3264 R32 2,6,10
POWER ON/OFF 2, 7
RESTART 2,7,43
REVERSE DISPLAY 2,9

system commands 150
system functions 112

taking a matrix transpose 109
taking the inverse of a matrix 110
TAN(x) tangent of x radians 116
tape cartridge 2, 39
tape file, creating a 90
tape files 39, 89
tape or diskette storage, using (your library) 39
trigonometric functions 116
TRN(a) transpose 115
two-dimensional array 105, 109

using calculation results 30
using remarks 50
using tape or diskette storage (your library) 39
UTIL command 44,46

variables 21, 71, 95
assigning values 21
initializing 55
numeric 21, 55
performing several functions in the same

expression 24
positive/negative operators 27
sequence of arithmetic operations 24
that stand for characters 29
that stand for numbers 21
using calculation results 30

working with elements of arrays 97, 102
write a program, how to 49

5110 description

Index 159

c:

c

c

c

statement numbering, automatic 38, 77
statements 147
status line 8
steps 61
stop flashing screen 27,33
STOP statement 37
storage capacity 8
storing a program 39
subtraction 6, 19, 107
subtraction with arrays 107
SUM(a) sum 115
switches

BASIC/APL 2
B~IGHTNESS control 2,9
DISPLAY REGISTERS/NORMAL 2,6
L3264 R32 2,6,10
POWER ON/OFF 2, 7
RESTART 2,7,43
REVERSE DISPLAY 2,9

system commands 150
system functions 112

taking a matrix transpose 109
taking the inverse of a matrix 110
TAN(x) tangent of x radians 116
tape cartridge 2, 39
tape file, creating a 90
tape files 39, 89
tape or diskette storage, using (your library) 39
trigonometric functions 116
TRN(a) transpose 115
two-dimensional array 105, 109

using calculation results 30
using remarks 50
using tape or diskette storage (your library) 39
UTIL command 44,46

variables 21, 71, 95
assigning values 21
initializing 55
numeric 21, 55
performing several functions in the same

expression 24
positive/negative operators 27
sequence of arithmetic operations 24
that stand for characters 29
that stand for numbers 21
using calculation results 30

working with elements of arrays 97, 102
write a program, how to 49

5110 description

Index 159

160

o

~---~

11~ ... }

/

1'"
~~,_ i

160

o

~---~

11~ ... }

/

1'"
~~,_ i

o n "1P o READER,OMENT FORM
f) ~

\ j~

Please use this form only to identify publication errors or request changes to publications. Technical questions about I BM systems, changes in I BM programming
support, requests for additional publications, etc, should be directed to your IBM representative or to the I BM branch office nearest your location.

Error in publication (typographical, illustration, and so onl. No reply.

Page Number Error

Note: All comments and suggestions become the property of IBM.

• No postage necessary if mailed in the U.S.A.

Inaccurate or misleading information in this publication. Please tell us
about it by using this postage-paid form. We will correct or clarify the
publication, or tell you why a change is not being made, provided you
include your name and address.

Page Number Comment

Name

Address

~.
I,
'-

OJ
l> OJ
!:!? ~
(")

~ a
Q.
c
~
o·
:I

~
0

en
l>
~
cO
w o
0)

6

o READER,OMENT FORM

Please use this form only to identify publication errors or request changes to publications. Technical questions about I BM systems, changes in I BM programming
support, requests for additional publications, etc, should be directed to your IBM representative or to the IBM branch office nearest your location.

Error in publication (typographical, illustration, and so onl. No reply.

Page Number Error

Note: All comments and suggestions become the property of IBM.

• No postage necessary if mailed in the U.S.A.

Inaccurate or misleading information in this publication. Please tell us
about it by using this postage-paid form. We will correct or clarify the
publication, or tell you why a change is not being made, provided you
include your name and address.

Page Number Comment

Name

Address

OJ
l>
!:!?
()

~ a
Q.
c
~ o·
:I

OJ

~

~
0

en
l>
~
cO
w o
0)

6

SA21-9306-0

Fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Fold

--- ------ ----- ---- - ---- ------------_.-
®

POSTAGE WILL 8E PAID 8Y •••

IBM Corporation
General Systems Division
Development La boratory
Pu bl ications, Dept. 245
Rochester, Minnesota 55901

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
U.S.A.
(I nternational)

Fold

FIRST CLASS
PERM IT NO. 40
ARMONK, N. Y.

Fold

I
I

~O
c: ...

:(.,.:
~ ...
o
CD »
~
()

~
;;
ro
a.
5'
c

C
»
I\J ...
cO
~
0)

6

:(--:
(, •....• J

SA21-9306-0

Fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Fold

--- ------ ----- ---- - ---- ------------_.-
®

POSTAGE WILL 8E PAID 8Y •••

IBM Corporation
General Systems Division
Development La boratory
Pu bl ications, Dept. 245
Rochester, Minnesota 55901

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
U.S.A.
(I nternational)

Fold

FIRST CLASS
PERM IT NO. 40
ARMONK, N. Y.

Fold

I
I

~O
c: ...

:(.,.:
~ ...
o
CD »
~
()

~
;;
ro
a.
5'
c

C
»
I\J ...
cO
~
0)

6

:(--:
(, •....• J

~ ~ n READER,OMENT FORM
tj ~

\ y?

Please use this form only to identify publication errors or request changes to publications. Technical questions about I BM systems, changes in I BM programming
support, requests for additional publications, etc, should be directed to your IBM representative or to the IBM branch office nearest your location.

Error in publication (typographical, illustration, and so on). No reply.

Page Number Error

Note: All comments and suggestions become the property of IBM.

• No postage necessary if mailed in the U.S.A.

Inaccurate or misleading information in this publication. Please tell us
about it by using this postage·paid form. We will correct or clarify the
publication, or tell you why a change is not being made, provided you
include your name and address.

Page Number Comment

Name

Address

1'-:
I ~

"

c:I
l> en
(")

;a
a
Co
c:
n o·
::::l

CD
~
(1J
0

en
l>
~
cO
w o en
6

READER,OMENT FORM

Please use this form only to identify publication errors or request changes to publications. Technical questions about I BM systems, changes in I BM programming
support, requests for additional publications, etc, should be directed to your IBM representative or to the IBM branch office nearest your location.

Error in publication (typographical, illustration, and so on). No reply.

Page Number Error

Note: All comments and suggestions become the property of IBM.

• No postage necessary if mailed in the U.S.A.

Inaccurate or misleading information in this publication. Please tell us
about it by using this postage·paid form. We will correct or clarify the
publication, or tell you why a change is not being made, provided you
include your name and address.

Page Number Comment

Name

Address

c:I
l> en
(")

;a
a
Co
c:
n o·
::::l

CD
~
(1J
0

en
l>
~
cO
w o en
6

SA21-9306-O

Fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Fold

--- ------ ----- ---- - ---- ------------_.-
®

POSTAGE WILL BE PAID BY •••

IBM Corporation
General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
U.S.A.
(I nternational)

Fold

FIRST CLASS
PERMIT NO. 40
ARMONK, N. Y.

Fold

I
I

~O
c: ..
»
0"
::l
cc
r

1·,~_ .l
I
I
I
I irtf--~

1'11"1.)-

I

~
~
(1)

a.
5'
C

C
»
~
to
~
0)

6

~

\ .. 7

SA21-9306-O

Fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Fold

--- ------ ----- ---- - ---- ------------_.-
®

POSTAGE WILL BE PAID BY •••

IBM Corporation
General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
U.S.A.
(I nternational)

Fold

FIRST CLASS
PERMIT NO. 40
ARMONK, N. Y.

Fold

I
I

~O
c: ..
»
0"
::l
cc
r

1·,~_ .l
I
I
I
I irtf--~

1'11"1.)-

I

~
~
(1)

a.
5'
C

C
»
~
to
~
0)

6

~

\ .. 7

o

o

o

o

o

o

o

- --_ .. _---_._-----------_ .•. _--_ ..• ----.--_.- --_._--_ .. --- .-_ _._-

o

o

o

o

o

o

o

- --_ .. _---_._-----------_ .•. _--_ ..• ----.--_.- --_._--_ .. --- .-_ _._-

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
U.S.A.
U nternationaH

SA21-9306-0

I I
I I

1 1

c
o

o "';:; _ CJ

~u.g
:;Ecn2
al«~
_al-

()

,/ -",

'"I, ,-

/

"- i

OJ s:
~
0
OJ
}>

~
(')

~
(3
a.
c
~
o·
::I

~
~
CD

/" \,. a.
::I

\., ..)1 c
en
~
en
}>

~
cO f···· w
0
0)

'\.. .. ji~ 6

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
U.S.A.
U nternationaH

SA21-9306-0

I I
I I

1 1

c
o

o "';:; _ CJ

~u.g
:;Ecn2
al«~
_al-

()

,/ -",

'"I, ,-

/

"- i

OJ s:
~
0
OJ
}>

~
(')

~
(3
a.
c
~
o·
::I

~
~
CD

/" \,. a.
::I

\., ..)1 c
en
~
en
}>

~
cO f···· w
0
0)

'\.. .. ji~ 6

