
--- ------ - ---- ---- - ---- - - ----------_ .-

o ,....
IBM 5110
BASIC User's Guide

,....
It)

,First Edition (December 1977)

Changes are continually made to the specifications herein; any such
changes will be reported in subsequent revisions or technical newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or the IBM branch office serving your locality.

A Reader's Comment Form is at the back of this publication. If the form
has been removed, address your comments to IBM Corporation,
Publications, Department 245, Rochester, Minnesota 55901. Comments
become the property of IBM.

© Copyright International Business Machines Corporation 1977

o

c'

o

o

o

o
Preface

Before using this manual, you should be familiar
with the information in the IBM 5110 BASIC
Introduction, SA21-9306, such as:

o · Entering data from the keyboard

• The arithmetic operators

• How to enter a program

o · Using data files

• Using arrays

This manual gives you conceptual information
about using the 5110 with the BASIC language
and is intended to be used with the IBM 5110
BASIC Reference Manual, SA21-930B. The topics
covered in this manual include:

• Computer concepts for data processing

• An approach to breaking your application into
small parts to make programming easier

• Changing the sequence of execution within your
BASIC program

• Formatting the data on the display screen

• Entering uppercase and lowercase characters

• Using a procedure file to replace keyboard input

• Sounding the audible alarm

• Using tape and diskette storage

• Formatting printed reports

o · Additional tips and techniques

Since this manual is not intended to give you a
complete description of the syntax and rules
required for each BASIC command and statement,
you must use the IBM 5110 BASIC Reference
Manual for this description.

This manual does not need to be read chapter by
chapter. Instead, you can read the appropriate
chapters as required. For example, you might read
Chapter 3, Changing the Sequence of Execution In
Your BASIC Program, when you need information
on program loops.

Prerequisite Publication

IBM 5110 BASIC Introduction, SA21-9306

Related Publications

IBM 5110 BASIC Reference Manual, SA21-930B

IBM 5110 BASIC Reference Handbook, GX21-9309

IBM 5110 Customer Support Functions Reference
Manual, SA21-9311

~,
l.

"" ","

c

Ci

Contents

o
CHAPTER 1. 5110 DATA PROCESSING CONCEPTS .. 1 Chapter 6. Tape Concepts 55

Introduction 1 How to Format the Tape 55

o Advantages of Computer Data Processing 5 How to Determine the Storage Available on a
Tape Cartridge 58

CHAPTER 2. ELEMENTS OF A BASIC PROGRAM 9
Defining a Program 9 Chapter 7. Diskette Concepts 61
Processing Information 10 Diskette Wear 62

Output 10 Diskette Addressing and Layout 63

o Input 11
Process 12

Track and Cylinder 63
Sector 64

Putting it all Together 12 Index Cylinder 64
Additional Levels of Input, Process, and Output 13 Alternate Cylinders 65
Conclusion 15 Diskette Types and Formats 6.5
Basic Statements Most Commonly Used for Information Diskette Initialization 66

Processing 16 Volume ID, Owner 10, and Volume-Protect Indicator .. 66
Process Statements 17 File ID ., 66
Output Statements 18 Diskette File Write-Protect Indicator 66

Diskette File Organization 67
CHAPTER 3. CHANGING THE SEQUENCE OF Reallocating Diskette File Space 67

EXECUTION IN YOUR BASIC PROGRAM 19 Determining the Storage Available on a Diskette 68
Loops 19 Number and Size of the Diskette Files 70

o
Using the I F Statement 20

The Computed GOTO Statement 24
More about Loops-Using FOR and NEXT Statement .. 24

How the File Space is Allocated 71

Chapter 8. Introduction to Data Files 73
Functions and Subroutines 27 Files, Records, and Fields 73

Functions 27
Subroutines 30 CHAPTER 9. CHARACTERISTICS OF ACCESSING

Computed GOSUB Statement 32 DATA FILES 77
Program Chaining 33 Sequential Access 77

Direct Access by Relative Record Number 77
CHAPTER 4. FORMATTING A REPORT 35 Direct Processing by Index Key 78
Print Using and the Image Statement 35 Sequential Accessing 78
Print Using and the Form Statement 38 Direct Accessing 79

Numeric Specification-PIC 38 Maintaining Data Files 79
Character Specification-C 41 Adding Records 80

C) Format Control Specifications-X, POS, SKIP 42
Print Using with a Character Variable 46
Printer Spacing Control 47

Tagging Records for Deletion 80
Updating Records 81
Reorganizing a File 81

CHAPTER 5. SAVING AND LOADING THE WORK
AREA 49

1

0
Determining the Size a File Should Be 49
Saving and Loading Data on a Tape or Diskette File 49
Controlling the Files on Tape or Diskette 50
Maintaining Data Security 50
Protecting Your Programs 50
Protecting Your Data Files 51

o Removing Sensitive Data 53

Contents iii

.. __ .•. _------_. __•. -._ .. _ ... _ ... __ ._-- -------

CHAPTER 10. DESIGNING A RECORD AND
DETERMINING FILE SIZE FOR RECORD I/O
FILES 83

Designing a Record 83
Determining Field Size 83
Providing for a Delete Code 84
Record Expansion 84
Designing a Sample Record 84

Determining the Size of a File 85
Calculating File Space 86
Calculating Index File Space 86
Review-Calculating File Space 87

CHAPTER 11. PROCESSING A DATA FILE 89
Processing Stream I/O Files 89

Opening and Closing Stream I/O Files 89
Writing to and Reading from Stream I/O Files 91

Accessing Record I/O Files 94
Opening and Closing Record I/O Files 95
Writing to and Reading from Record I/O Files 97
More Information About Processing Record

I/O Files 106
Summarizing Record-Oriented Statements 113

CHAPTER 12. CONTROL OF YOUR 5110 115
Using the Display Screen for Input and Output 115
Using Procedure Files 119
Using the System Control Functions 120

READ FILE F LS Statement 120
WRITE FILE FLSStatement 121
Additional Use of File F LS 122
Using the UTI L Command 122

CHAPTER 13. USING ARRAYS 125
Naming Arrays 126
Defining Arrays 126
Placing Values into Arrays 129
Redimensioning Arrays 131
Difference Between Mat and Let 132
Array Operations 133

Array Addition and Subtraction 133
Scalar Multiplication 134
Indexing Function 134
Matrix Multiplication 135

CHAPTER 14. WHAT TO DO WHEN YOUR
PROGRAM DOES NOT WORK 139

Program Trace 139
Program Step 141
Comments 142

Keyboard Test Data Files 142

iv

CHAPTER 15. TIPS AND TECHNIQUES 143
Performance Considerations 143

Program Design 144
Index File Sorting 144
Print Overlap 144
Display Off 145
Main Storage Index Area 145
Data File Access Selection 148
Storage Considerations 149
Use r Storage. 149
Program Design 150
Variables 150
Progra m Statements 152
Buffers 152
Printer. 153
Using A$ 153
Precision Long and Short 153

Program Analysis Using a Cross-Reference Program .. 154
Skipping to a New Page While Printing 159

Using File F LS 159
User Program Control. 161

Locating a Character in a String 162
Testing for an Error 162
Sorting an Index File 164
Another Way to Read a Stream Input File 165

Different File Access Methods 167
Creating an Index File 168
Direct Access and Update with Key Index 170
Sequential Access by Key Index 172
Direct Access by Relative Record Number 175
Create Multiple Index 177

INDEX 179

c

o

o

o

o

o

o

Chapter 1. 5110 Data Processing Concepts

INTRODUCTION

What can you expect a computer to do with information? How do you
get information into a computer? How does a computer know what to
do with your information? What final results can you expect?

Today the computer is doing many jobs, from accounting to predicting
election results to guiding spaceships. It is often looked upon as some
kind of magical machine, but the computer performs no magic.
Everything a computer does is dependent on the people who use it
and the instructions they supply. For every job you want a computer
to do, you must give a step-by-step procedure (a program) for it to
follow. This procedure is then stored inside the computer. The
information you want is processed according to the stored
instructions.

A computer can do a wide variety of operations. It can retrieve,
almost instantly, any item of information stored in it. It can compare
any two items of information and do any arithmetic operations you
want-add, subtract, multiply, or divide. It can be instructed to do any
combination of these things in any sequence you want them done.

The computer works methodically, doing one thing at a time. When it
finishes one step, it goes on to the next, then the next, and the next,
according to instr·uctions. But it performs these steps at an almost
unbelievable speed until it comes up with the answer you want.

The work performed by a computer is called data processing. Data
processing means that information is handled according to a set of
rules. Whether you process information by hand or use a computer,
the requirements of a job remain about the same. You must have
input, which is the data you want to do something with; you must
process the data, which is the act of doing something with data
according to instructions; and you must have output, which is the
result of your processing.

5110 Data Processino Concepts

. _._---------- ._--- ._----_._._------------ . ------------_._--_ .. _----_ .. _----

2

To help you understand the 5110 and data processing, let's first look
at how an employee might process information for the. job of billing.
Assume for this job that the employee works with the following data:

• Customer orders

• Price catalogs

• Customer records

• Accounts receivable records

• Inventory files

~,
I,

c

c'

o

o

o

o

10

The employee receives a copy of the customer order after the order is
shipped. He uses this document to prepare the invoice that he sends
to the customer. To prepare the invoice, the employee:

1. Looks up, in a price catalog, the price of each item in the order

2. Multiplies the price of each item by the quantity shipped

3. Adds the total price of each item to get the total amount of the
invoice

4. Checks the customer records to see if any special discounts
apply, and adjusts the invoice accordingly

5. Types the invoice

6. Adjusts the accounts receivable records to show what the
customer owes

7. Updates the inventory files to show the reduced stock

For each invoice he prepares, the employee follows the same
procedure. In computer terms, the procedure is his program for doing
the job. The customer order is his input; the calculating and file
updating he does is processing; and the results of processing-the
invoice and the updated records-are his output.

As shown in Figure 1, computer data processing can speed up a billing
operation and reduce costly errors. Data (customer order information)
can be entered at high speed via the keyboard; many records can be
quickly referenced and updated in a magnetic storage medium (tape or
diskette); the processing unit can store and carry out instructions (a
program) and perform needed calculations; and a printer can print the
invoice.

Customer
Keyboard Order

Information

I

I Processing
Customer and Unit Printer

I nventory Data
(stores job -
instructions
and performs
calculations)

Magnetic Updates Customer
Storage and Inventory Data

Figure 1. Computer Data Processing

5110 Data Processing Concepts 3

4

The 5110 Model 1 Computing System (Figure 2) contains the following
elements, which are components of the data processing system:

• Input Elements-keyboard, tape, diskette

• Output Elements-tape, diskette, printer, display screen

• Processing Elements-main storage, tape, diskette, programs

Drives

Figure 2. 5110 Computing System Data Processing Elements

The keyboard is the device the operator uses to key (enter) data into
the processing unit.

The tape and diskette are used either as input or output devices. Input
data or programs can be entered into the system using the tape or
diskette. Output data can be stored on the tape or diskette for use in
other programs.

The printer records on paper (prints) the data sent to it by the
processing unit. This printed material is sometimes referred to as the
hard copy output.

The display screen displays output data sent to it by the processing
unit. The system uses the display screen to communicate with the
operator by displaying information keyed on the keyboard so that the
operator can verify the information· before it enters the system. The
system also displays messages that identify keying errors and provide
operator guidance or specific processing information as required.

~
'-. ... , -,,"

c

c

o

o

o

o

o

o

o

The processing unit is made up of the main storage, tape or diskette,
and programs. The tape or diskette is used to store files of
information and programs that are used by the system. Main storage
is the part of the processing unit that holds a program so that the
system can execute the steps in the program. Data is moved from
tape or diskette into main storage for use by the program being
executed.

ADVANTAGES OF COMPUTER DATA PROCESSING

If data processing is always a matter of input, processing, and output,
how is computer data processing different from manual or mechanical
data processing? Computers process large volumes of data faster,
more accurately, in less space, and with greater versatility .

• Speed. Because computers process data electronically, they
operate at remarkable speeds that save a tremendous amount of
time .

• Accuracy. A computer does exactly what it is told to do and only
what it is told to do. Because of this constant dependence on
instructions, a computer follows program after program, second
after second and hour after hour, with unvarying accuracy.

Computers also reduce transcription errors by dramatically reducing
the need for manual transcription. Once you record data on a tape
or diskette that data may never have to be written by hand
again-you can update as many different customer records, complete
as many different kinds of forms, and create as many different
reports from that data as you have application programs that use
the data. By referring to the display screen while first recording the
data, you can insure that the data is keyed correctly. Programs that
use the data can perform control total checks and balances to
continually validate the accuracy of the data.

5110 Data Processing Concepts 5

_ __ ._--_._---_. __ . __ ._-_ ... _--_ .. _------------ --_._------_. _._---_._----- ---- --

•

6

Data Compression. Computers miniaturize data. Suppose a business
enters its accounts receivable transactions in a machine-posted
register like the one shown below.

ACCOUNTS RECEIVABLE TRANSACTION REGISTER

07/11/-- PAGE 001

CUST CUSTOMER JOURNAL INVOICE CASH INVOICE JOURNAL
DATE NO NAME NO NO AMOUNT AMOUNT AMOUNT

07/11/-- 759820 SOUND OF THE SEVENTIE 063420 $ 46.23

07/11/-- 633870 OLDE VILLAGE SHOPPE 063421 89.70

07/11/-- 642990 PARAGON TV SALES 063422 20.30

07/11/-- 122620 CANNIZONI STUDIOS 063423 129.76

07/11/-- 682030 RAYMONDS RAPID REPAIR $ 63.80

07/11/-- 742950 SARATOGA VARIETY 29.72

07/11 /-- 014280 BAKER BRADLEY & CO. 43.50

07/11 /-- 872060 UNIVERSITY ELECTRIC 97.75

07/11/-- 883290 VILLAGE MUSIC & TV 07-036

07/11/-- 006280 ALLSTONS 07-037

TOTALS $234.77* $285.99*

The preceding example shows 10 sample entries, or records.
Several thousand such transaction records can be stored by the
system on one diskette. That is, the system enables you to store
large volumes of business information in an economical and
manageable form that can be processed by a machine.

$18.23CR

10.70CR

$28.93CR*

(~

~~,
I

\ , "'-_

r"
~--_/

c

....... - -._ --_._._--_._---- - -_._- --_ -----..

o

C)

o

C)

o

o

o

• Versatility. The number of different tasks a computer can do is
limited only by the number of different programs run on it. The
computer can do much more than just add, subtract, multiply, and
divide. The 5110 can, for example, prepare invoices, keep accounts
receivable up to date, print weekly paychecks, and analyze data for
thorough cost and sales analysis.

Speed, accuracy, data compression, and versatility combine to reduce
data processing errors and increase productivity. But a less obvious
advantage of computers has a more fundamental effect.

Computers impose discipline. As explained, a computer is helpless
without programs-it cannot think for itself. Neither can a computer
guess whether its programs really reflect the problems at hand-you
must see that they do. In other words, you must carefully analyze the
data processing requirements of your organization in order to take full
advantage of a computer. For instance, with the data processing
capabilities provided by a 5110, what additional cost analysis,
inventory control, and auditing procedures would you like to implement
in your organization?

The responsibility for analyzing an organization's data processing
requirements falls, of course, to management. But the discipline
imposed by a computer extends throughout the data processing
activities of the organization. Once you've designed or selected
computer programs that reflect management directives, you've
established management control that is automatically practiced each
time those programs are used.

5110 Data Processing Concepts 7

----- ------------- -----------

8

I PAGE 189

----- ("(f ~----------------~"II
ACCOUNTS RECEIVABLE TRANSACTION REGISTER II

--

DATE

07/11/--

07/11/--

07/11/--

07/11/--

07/11/--

07/11/--

07/11/--

07/11/--

07/11/--

07/11/--

CUST
NO

759820

63387Q

642990

122620

682030

742950

014280

872060

883290

006280

07/11/--

CUSTOMER
NAME

SOUND OF THE SEVENTIE

OlDE VILLAGE SHOPPE

PARAGON TV SALES

CANNIZONI STUDIOS

RAYMONDS RAP ID REPAI R

SARATOGA VARIETY

BAKER BRADLEY & CO.

UNIVERSITY ELECTRIC

VillAGE MUSIC & TV

ALLSTONS

TOTALS

JOURNAL • INVOICE CASH
NO NO AMOUNT

063420

063421

063422

063423

07 -036

07-037

$ 63.80

29.72

43.50

97.75

I NVOI CE
AMOUNT

$ 46.23

89.70

20.30

129.76

$234.77* $285.99*

PAGE 001

JOURNAL
AMOUNT

$18.23CR

10.70CR

I

,1'1
I,

$28.93CR* II
:I

D Accts Receivable
Transaction
Register 07/11/-­
~I

o
o

l ,-, '

c

o

o

o

o

o

o

Chapter 2. Elements of a BASIC Program

Before reading this chapter, you should be familiar with the
information in the 5110 BASIC Introduction, such as:

• Entering data from the keyboard

• The arithmetic operators

o Numeric and character variables

• The arithmetic operator hierarchy

o Entering a BASIC program

o The BASIC language statements REM, INPUT, GOTO, STOP,
LET, IF, FOR, NEXT, READ, DATA, RESTORE, PRINT, OPEN, CLOSE,
RESET, PUT, GET, and DIM

(I The system command used to store and retrieve programs on a
tape or diskette

In this chapter, the following topics are discussed:

o Defining a program

G Analyzing an application (problem) so that BASIC programs can be
used to process information

o The most commonly used BASIC statements

DEFINING A PROGRAM

A program is a procedure or set of instructions you establish for doing
a job. These instructions are necessary because a computer cannot
think for itself. When defining a program for the 5110, you can use a
programming language called BASIC. BASIC is a simple-to-use
programming language with which you describe how you want the
5110 to do the job.

The next section presents an approach to analyzing an application so
that a BASIC program can be used to help process information. This
approach helps you break down an application into manageable parts
so that you can apply BASIC statements you know can process the
information. Breaking down an application into manageable parts
promotes thoroughness and allows the application to be solved
(programmed) faster.

Elements of a BASIC Program 9

.... ""--." .. ~-----------.----------------------

10

PROCESSING INFORMATION

Every problem consists of three parts:

• The input data required to generate the final result

• The process (BASIC statements) required to generate the final
results

• The output, which is the final result

Each part might consist of one statement or several statements. In the
following sections, each part is discussed in more detail. Also, an
example for finding the compound interest is used to illustrate each
part.

Output

Because the output is the primary reason for a program to exist,
considering the output provides the best place to start solving a
problem. To do this, consider these questions:

1. What results are required?

2. How should the results be formatted?

3. Who uses the results? For example, should the results be
displayed or printed, or should the results be stored in the main
storage, on tape, or on diskette for later use?

Now, for the compound interest example, assume the answers to
these questions are:

1. The amount of interest earned

2. The message THE INTEREST EARNED IS: followed by the
calculated interest earned

3. Finance officers need the displayed results to evaluate different
plans

Once you have answered these questions, you know the purpose of a
program.

c

c

o

o

o

o

o

o

o

Input

After the output, you should consider what input data is required to
generate the output. To do this, consider such questions as:

1. What input is required?

2. Where does the input come from?

3. How is the input provided?

For the compound interest example, the answers to these questions

are:

1. The interest rate, number of years, and principal

2. From finance officers who need to know the amount of interest
earned for different plans

3. Through the 5110 keyboard

In our example, most of the input data will come from the keyboard;
however, other ways also exist. For example, some data might be
permanent and be included within the program (for example, headings
and labels). There might also be data that is usually constant but, for
certain applications, must be changed. This data might be coded in
the program as variables that can be modified. And, of course, data
might also be from tape or diskette.

The following list summarizes the input and output considerations so

far:

Device

Data

Input

Keyboard

I nterest rate
Number of years
Principal

Output

Display

THE INTEREST EARNED IS:
The calculated interest earned

Elements of a BASIC Program 11

-----------_ ... _-_. __ ._.__ .•.... _ _ ... _._----------------

12

Process

Once the input and output are well defined, all of the characteristics
work together to make the process part the most straightforward.

For our compound interest example, the process part consists of:

1. Defining the algorithm used to calculate the compound interest

2. Using the input to generate the results

The formula used in this example for the compound interest is:

COMPOUND INTEREST = PRINCIPAL (1 + Rate)Years
100

The BASIC statements that use the input to generate the results might
be as follows:

(:, :::: 1 + I~~ / :I. 0 0
"(:{ :::: p, -J"' Y
C,- p·j(·:O

PUTTING IT ALL TOGETHER

R is the interest rate
Y is the time in years
P is the principal
C is the compound interest

Now that you have considered the three parts of information
processing, it is time to write your program. For the compound
interest example, your program might look like this:

00:1. I] PHI j\lT I [i\~T[I? THE I j\!TE PE~:)T.. p F~ I NC I Pr,!..... (~IN:O \'E(:" Pfl ·
o O:::?O INPI . ..IT F~! P! Y
0030 (:,:::::!.+P/100
o 0 I.j. 0 n :::: (::, .,.. y
o (} ~.:.:.; 0 C :::: P .)(. D
o 0 6 0 P I~~: I j\~ T . T H [: I i\! T E I~ E ~:) T E (; Pi",! E DIG: .
OO"?O PPINT C: p

So far, you have taken a simple application and designed a program to
solve it. If the application is larger or more complex, a more detailed
structure is required. This more detailed structure involves expanding
each of the three parts (input, process, and output) into additional
levels of input, process, and output.

c

c

c

o

o

o

\ 0
'·

o

o

o

ADDITIONAL LEVELS OF INPUT, PROCESS, AND OUTPUT

For complex or large applications, you might want to break the INPUT,
PROCESS, and OUTPUT down into additional levels of input, process,
and output.

Program

1
INPUT PROCESS OUTPUT First Level

I
I

Input Process Output Additional Levels

This allows you to break each first-level INPUT, PROCESS, and
OUTPUT part into manageable parts. Let's continue with the
compound interest problem and expand the first-level INPUT portion
into additional levels of input, process, and output. That is, the INPUT
portion is going to be treated as a separate problem in itself.

First, consider the output of the INPUT portion. Here the output is
actually the input for the first-level PROCESS portion. In this case,
assume that the output must be an interest rate not greater than 18 %,
a number of years not greater than 40, and a principal not greater than
500,000.00.

Next, consider the input for the INPUT portion. The input is the same
as before (the interest rate, number of years, and principal for which
the interest earned must be calculated). However, in this case, the
finance officers might be unfamiliar with the program; therefore, there
should be prompting messages telling them what to enter.

Elements of a BASIC Program 13

14

Finally, consider the process for the INPUT portion. In this case, the
processing consists of error checking and validation of all the input
data, because you want to make sure that the interest rate is not
greater than 18 %, the number of years is not greater than 40, and the
principal is not greater than 500,000.00.

Now, taking these considerations into account, the BASIC statements
for the first-level input portion might be:

() 0 :I. 0 P I;~ J j") T 'E N T E I;{ THE I j"'! TEn E ~:~ T I;~ (~, T I::: I '{ E t, PH (, N n P P I i'··f C I P p,!... '
o o::.~o Ii\!PUT I., Y .. P
o 0 :3 0 J F I ::; :I. B Ci D 'r D 6 0
o 0 1./. () P F~ I , .. I T 'T H E I ,',·1 T E P E ~:) T p (~, 'r E J ~:) Cl PI::: ti T E R T H (:', N 1 U P [: F~ C E NT'
o 0 ~:.:; (I CiDTD :I. 0
o 0 (\ 0 I F "'i' ::; '-/. 0 [i 0 T D ? 0
o 0 'l 0 P R I NT' THE N U /'1 DE H (I F \' E j~', PSI ~::) Ci P F (:', T [: P T H P,I"'! '-I. 0 .
OODO GO TO 10
o 0 9 0 I F P ::; :::; 0 0 0 0 0 GOT (] :1. ~;.:: 0
o :I. 0 0 P P I j\! T . THE P n I ;--,} C I P (:i I... I ~:) Ci PEt·, TEn T H (:', N ~:.; 0 0 J 0 0 (I , 0 0 .
0:1.:1.0 GUlO :1.0

For complex or large applications, you could also break down the
first-level PROCESS and OUTPUT portions; however we are not going
to do that for this example.

As you break an application down into manageable parts, you might
want to have a separate program for each part. For example:

o () O!5 U~:)[I, Y , P
0010 PF<INT 'ENTEF~: THE INT[I~EST H(,:,TE, YE{~f<~:)1 t.i\lD PHIi'·ICIPt.I...·-
0020 INPUT I .. Y,P
o () ?: 0 I F I~;:I. B GOT [) lJ 0
o 0 '+ 0 P r·~ I NT' THE I NT E HE: B T I~ t"t 'r E I B G H E i~i T E Ix T H tl N 1 B PER C E NT'
o O!.:SO GOlD :I. 0
0060 IF Y~40 GOTD 90
o 0 "{' 0 P I~ I NT' "r HEN U M B [~~ D F YEt, P BIB G HE (.:) T E I~ "i' HAN '+ 0 '
OOBO GOlD :to

IF P~500000 GOlD 120 0090
0:1.00
0:1.:1.0
o :t ~.:.~ ()

PRINT 'THE PRINCIPAl... IS GREATER THAN 500000.00'
OO"i'D 1. 0
CH(':. IN' EB 0 · .,2_________ The input program is loaded from file 1 and

_________ executed.

OOlO USE I/Y'P}C

The CHAIN statement automatically loads
the program from file 2 on device E80.

0020 A:::::I. + 1/:1. 0 0 - The process program is loaded from
o O:·~O B::::At Y file 2 and executed.
00 q. () C:::: p.}!:. B
0050 CHAIN 'E80' 13

c
('

......

c

o

o

o

c)

o

o

o

o 0 O~5 I . ..I~:)E I I YIP Ie 1_--------------The output program
0010 PRINT 'THE INTEF<EST E(.~RNED If):' is loaded from
0020 P R I NT c·- P file 3 and executed.
0030 BTDP

CONCLUSION

When solving a problem using the 5110, break the problem down into
manageable parts. To do this, first focus on the program output; this
is the primary interface to the user. The output also defines what the
real purpose of the program is. Next, consider all the input data that is
required to generate the output. Finally (and only then), plan the

actual processing.

Thinking in this way should help you make the transition from knowing
the BASIC language to being able to use the BASIC languag~ and then
to generating programs that solve real problems.

Elements of a BASIC Program 15

" ----------

BASIC STATEMENTS MOST COMMONLY USED FOR INFORMATION
PROCESSING

Following is a description of some BASIC statements that you will use
(~

' ... ~., .. ",
for the input, process, and output portions of a BASIC program.

Input Statements

Statement Description
(~,'
,-_ •..... /'

INPUT Requests that you enter data
from the keyboard during the
execution of the program. The (~-'"

data entered from the keyboard ~j
is assigned to a corresponding
name (variable) specified by
the statement.

DATA Creates a string of numeric and/or
character values that can be used
by the program. The values are
assigned to a corresponding name
specified by a READ statement.

READ Assigns values to variables and
arrays from the values created by (-~
a DATA statement. '--_

OPEN Causes specified input and/or
output files to be activated.
The files can then be used
for the input and/or output
operations.

CLOSE Causes the specific input and/or
output file to be deactivated.
The files cannot then be used for
input and/ or output operations

C until they are opened again.

READ FILE Reads records from a specified
record I/O data file (see
Chapters 7 through 10) and assigns
the data to specified variables. r, , ..

DIM Specifies the size of arrays
and character variables used
by the program.

GET Reads data from a specified stream C I/O data file and assigns the data
to specified variables.

16

Process Statements

o Statement

LET

FOR

o
NEXT

GOSUB

0
RETURN

0 GOTO

IF

0

Description

Assigns the value of an expression
to a variable.

Marks the beginning of a loop and
specifies the condition of its
execution and termination .. The
N EXT statement is used to mark the
end of the loop:

o J 0 0 F D n I< :::: :I. 'r 0 :1. 0

See the FOR statement.

Transfers control to the first
statement of a subroutine. Then
when a RETURN statement is executed,
control returns to the next
statement following the GOSUB
statement:

GD~:)UB 2~.:,:,; 0

(j:l.~!J

[

0:1.00
I:::: :1.-------------,

,,'

n 2~.::.; ()

O?9 (I nF TU Hi\!------------J

A subroutine is useful when the
same statements must be executed
several times in the program.

See the GOSUB statement.

Transfers control to a specified
statement.

Causes the program action to be
determined as the result of the
evaluation of a condition.

Elements of a BASIC Program 17

Output Statements

Statement Description

PRINT Causes data to be displayed on
the display screen.

PRINT FLP Causes data to be printed on the
51;03 Printer. Data can be formatted
as it is being printed if the
PRINT FLP statement is used in
conjunction with the IMAGE and
FORM statements.

WRITE FILE Adds a new record at the end of
a record I/O file.

REWRITE FILE Updates (rewrites) a record that
already exists in a record I/O file.

PUT Writes data from specified variables
to a stream I/O file.

18

('
" --'

(~~'

\ ... _./'

(~~

\' -

r'" \
'--

c

o

o

o

C)

o

o

o

Chapter 3. Changing the Sequence of Execution in Your BASIC Program

In this chapter, the following topics are discussed:

o Using loops to do the same calculations repeatedly

• Using functions or subroutines to do the same operation several

times

• Changing to another BASIC program from a program currently being

executed

LOOPS

Suppose you want to display credit amounts of $100 to $5000 in
increments of $100, along with the monthly finance charge of 18 % per
year (.015 per month). You could do it simply enough by writing the
following statements:

o 0 :I. 0 P P I j"'! T :I. 0 O! 1 0 0 .)(. , 0 1 ~.:.:j
0020 PPlj\lT ~?OO., ~,:.~OO·)(·, O:l.~:.:.;

[I 0 3 0 P PIN T :';:; 0 O! :3 0 0 .)(. , (}:I. ~:.=.;

o 0 '+ 0 P F! I i'-.~ T '+ 0 O! '+ 0 0 .)(. , 0 1 ~:.:.i

-::.

() I.j. (? 0 P F! I j'··l T ",. 9 0 0., 1.1. ? 0 0 .)(. I 0 :I. ~::.;

0500 PRINT 5000, 5000*.0:1.5

Although this technique works correctly, it is time consuming and
tedious. In displaying an amount and its finance charge for all
amounts from 100 to 5000, what we are really doing is performing the
same operation repeatedly, but using different numbers each time.
Calculations that are to be repeated can generally be done efficiently
by a simple programming device known as a loop.

Changing the Sequence of Execution in Your BASIC Program 19

-----_._ .. _._---, .. _._-----_._-----, ... _. ,-------- ---,.._,----,.-._----- --_. --,_._,----" .. _--

20

Here's a concise method of performing the same operations shown
previously:

o 0 :I. 0 P :::: :I. 0 0
o 0 ~2 [I P P I ;-") T P.. P :)(. . 0 :I. ~.:.:.;

o 0 ::::;. 0 P :::: P + :I. 0 (I
o 0 '-I. 0 G D T D ~2 0

Here, we have created a loop in statements 20 through 40. When the
program is run, the PRINT statement will be executed once each time
the value of P increases by 100. The statement that makes the loop
possible is the GOTO statement. It alters the normal sequence of
execution by directing the computer to execute a different statement.
It does this by referring to the number of that statement. The
statement GOTO 20 directs the computer back to statement 20, which
displays the value of P and its finance charge. Statement 30 then
increases the value of P by 100, and statement 40 is executed again,
branching the program back to statement 20.

There is one problem with the loop we have shown here: there is no
provision for ending the loop. Consequently, not only will we get
results for values from 100 to 5000, but also for 5100, 5200, and so
on, unless we take some action to stop execution. In this program, we
want the loop to end after we reach the value 5000, or, put another
way, we want the loop to continue as long as P is less than or equal
to 5000. To provide this action, we should build into the loop a test
from some condition, so that when the condition is met, the loop will
end automatically.

Using the IF Statement

An IF statement says it quite concisely:

This IF statement says that if P is less than «) or equal to (=) the
value 5000, the program is to branch to statement 20. Here we have
incorporated the GOTO statements into the I F statement. Let's put this
new statement into the program and see what happens:

0010 P:::::\'OO
0020 PRINT P .. P*.015
0030 P::::P+:/'OO
00 1+0 IF P::;~.:.:.iOOO GDTD ::?O r" \ ,

...... -, -' ,.,,~

o

o

o

o

o

o

AS long as P satisfies the condition, P less than or equal to 5000,
execution will loop back to the PRINT statement. However, when P no
longer satisfies the condition-when P is greater than 5000-the loop
will end automatically and the execution will fall through the IF
statement to the next statement, which in this case is an EN D
statement signifying the end of the program.

The IF statement has many applications, some of which can be quite
sophisticated, depending on the condition tested in the statement. For
example, conditions such as the following can be tested:

o :I. 6 0 1Ft, :::: 0 Ci 0 T D (~ 0
o :t ./ 0 :r F (, :::: 0 Ci 0 T D b 0
0:1. n [I IF 1:< X/'-(-:::Z ·1' :.:.~ GUlD B 0

The first example is quite simple: if the value of the variable A is
equal to 0, branch to statement number 60. The second statement
tests the same condition as the first statement, but substitutes the
word THEN for GOTO. In the IF statement, THEN and GOTO have
exactly the same meaning. The third statement makes a test between
two sets of expressions. The first expression evaluates 8-X/Y. The
second expression evaluates Z t 2. If the value of the first expression
is less than «) the value of the second expression, the program is to
branch to statement 80.

Relational Operators

The IF statements illustrated in these examples used the symbols <, >,

and =. These symbols are part of a set of operators called relational
operators. Relational operators are used only in I F statements; they
test the relationship between two expressions. It is important to note
that relational operators do not perform any arithmetic operations.
They simply test whether or not a condition is satisfied. For example,
in statement 40, the equal sign does not mean that P is to be given
the value 5000; it tests whether the value already assigned to P equals
5000. If a condition is satisfied (if P does equal 5000 in this example},
then the condition is considered true. If a condition is not satisfied (if
P does not equal 5000), the condition is considered false. Thus, a
relational operator says that if the condition being tested is true, the
action specified is taken; otherwise, the action is not taken. Reviewing
this concept using the example IF A = 0 GOTO 60, if the condition is
true (A does equal 0), then the branch to statement number 60 is
made; otherwise the branch is not made. Instead, the program
continues with the next statement in sequence.

Changing the Sequence qf Execution in Your BASIC Program 21

---------_. __ _---_ .. _ _ ..• _. ----_ .. _--._- ..

22

The relational operators and their definitions are:

Operator

=
< > or ~
>

> = or ~
< = or ~

Here are some examples:

Meaning

Equal to
Not equal to
Greater than
Greater than or equal to
Less than or equal to

00:30 IF (:'i::::E{ GDlD ~::; n n
(I :I. ? 0 IF' P PIN T . ,:' . P P J Z E' G U 'r U :.-::) (I 0
o BOO I F (:'['Ii :,:(~ D ':!I Ci U 'r n ~,:,:,;:I.~? 0

In the first example, a test is made between the values contained in
the arithmetic variables A and B. The second example illustrates
comparison of character data. For character data, a comparison is
made according to the EBCDIC collating sequence of each character in
corresponding positions in the constant. In other words, the first
character of one constant is compared to the first character of the
other constant, the second compared to the second of the other, and
so on. In this example, the first three letters of the constants compare
equal, but when the letter N is compared to Z, they compare unequal.
The letter N, occurring before the letter Z in the alphabet, registers
less than in the collating sequence. At this point, the condition tested
would be met; that is, the character string PRINT is indeed less than
PRIZE.

In the third example, character variables are compared. Let's assume
that the variable A$ contains the value ON and the variable D$
contains ONLY. The first 2 characters match, but when the letter L is
compared to a blank, which is assumed for comparison purposes, they
do not match. Thus, the result in this case would also be true,
because the value of A$ is not equal to the value of D$. If, however,
A$ and D$ do contain matching strings, say both contain the
characters ONLY, then the test results would be false-A$ and D$
would be equal, thereby not satisfying the condition of the test. c

("
I,
\ _, ...

o

o

C)

o

o

o

o

Logical Operators

The example I F A = B tests the relationship between two expressions.
Suppose, however, that you wish to take action if more than one
relationship is true. For example, suppose that not only must A equal
B but also X must equal Y. You could make these comparisons by
using the logical AND operator, written as &:

[I I) I.j. 0 I F tl :::: D .~.« X:::: .'-(' G D T 0 :I. 0 0

Statement 40 says that if A equals B and X equals Y, then statement
100 is executed. If only one comparison, or neither comparison, is
true, program execution continues with statement 60.

The IF statement can specify two logical operators:

Operator

&
I

Meaning

AND
OR

The AND operator states that both conditions of a test must be true
for the entire expression to be true; the OR operator states that either
condition (or both) must be true for the expression to be true.

If you want to branch to statement 100 if either A equals B or X
equals V, you could write this statement:

0050 IF A=BIX=Y GOlD 100

Here are other examples of the AN D and OR operators:

o 0 "l 0 I F C '=1; ::- D '=1; ~=~ J '=1; :::: I('=1=· G [I 'r C) !:5 0
DODO IF (:·I:I.:.:(~(:i~?8:I·l::-· CtIT' CiC)TO :::;00

The first example tests an OR condition using character variables. It
says that if the value in the variable C$ is greater than the value in D$
or if the values in J$ and K$ are equal, then a branch is made to
statement 50.

The second example tests an AND condition using mixed variables. It
says that if the value in the arithmetic variable A 1 is not equal to the
value in A2 and the value in the character variable J$ is greater than
the character string CAT, then the program is to branch to statement
300; otherwise, program execution is to continue with the next
sequential statement.

Changing the Sequence of Execution in Your BASIC Program 23

-------_._--_ _ _-_._--_ _---_.-._._ .. __ ._--- ---_ _-------------

24

THE COMPUTED GOTO STATEMENT

The computed GOTO statement is a version of the GOTO statement
that gives you the ability to branch to different statements during
various stages in a program.

A computed GOTO could look like this:

A branch is made to statement 30, to statement 40, or to statement
50, based on the integer portion of the value contained in the variable
J. The integer portion may contain a value of from 1 to 3. If the value
is 1, a branch is made to the first statement shown in the list,
statement number 30. If the value is 2, the branch is to be the second
statement, number 40. If the value is 3, the branch is to the third
statement, number 50. If the value is greater than or equal to (~) 4 or
less than «) 1, program execution falls through to the statement
following the computed GOTO statement.

The expression determining the branch to be made can be a simple
variable, such as J above, or a more complicated expression, say (A +
B) / 2. If such an expression were used, its computed value would
determine the branch to be made. Consider this example:

The expression (A + B) / 2 is evaluated, and a branch is made to
statement number 200, 220, 100, or 240, depending on whether the
value is 1, 2, 3, or 4, respectively. Note also that the statement
numbers shown in the list do not have to be specified in sequential
order; that is, statement number 100 can be the third number in the
list even though it is a lower number than the others.

More about Loops-Using FOR and NEXT Statement

A still more concise method of specifying a loop is by using the FOR
and NEXT statements. For example, our program for finding and
displaying the finance charge for $100 to $5000 could be further
simplified to look like this:

o 0 :I. 0 F D P P :::: 1 () 0 'r [) ~.:.=.; 0 0 I] ~:~ T E P :I. 0 0
o 0 ~.:.~ 0 p F~ I ;\1 T P,P .)(- I 0 :I. ~.:5

no:::) 0 NE>=~'r p

C~

~ (.

"-. .. /

('
'-...- ... /

~I
.~/

o

o

o

u

o

o

c····
I

The FOR statement identifies the beginning of the loop; the NEXT
statement identifies the end of it. I n between is the statement, or
sequence of statements (we need only one for this example) that will
be executed repeatedly until the specification in the FOR statement has
been satisfied.

In our example, the FOR statement specifies that the statement in the
loop (the PRINT statement) will be executed repeatedly for successive
values of P from 100 through 5000. (An increment of 100 is added to
P for each execution of the NEXT statement.) When the value of P
exceeds 5000, execution of the loop is ended, and control is passed to
the next logically executable statement following the NEXT statement.
In this case, the following statement is a STOP statement denoting the
end of the program. However, other statements could precede it, or
the NEXT could be the last statement prior to the STOP.

The increment is always 1 unless it is explicitly stated to be otherwise;
for example:

0010 FOR P=100 TO 5000 STEP 200

This FOR statement explicitly states an increment (or step) of 200.
Thus, the statement(s) in the loop will be executed once for every odd
multiple of P from 100 to 5000 (that is, the range is 100, 300,
500, .. .4900). When the value of P exceeds 5000 (that is, when it
reaches 5100)' execution of the loop will end. The value of P will be
set back to 4900 before the next logically executable statement is
executed.

If you want to execute the loop once for every even multiple of 100 to
5000 (that is 200, 400, 600, ... 5000), you would say the following:

o 0 J 0 F D F~ P :::: ~2 0 0 T 0 ~:.=.; 0 0 0 ~:> T E P ~? 0 0

Again, when the value of P exceeds 5000 (in this case, when it
reaches 5200), execution of the loop will end. The value P will be set
back to 5000 when the next logically executable statement is executed.

As with expressions appearing in assignment statements and in the
body of PRINT statements, the specifications in FOR statements can
be quite complicated. For example, the following FOR statements are
permitted:

0030 FOR I=A TO B
0040 FOR J=8*M+Y TO At3
o 0 ~::.; 0 FOR 1< :::: ~:::; G! n (B) C T 0 ~.:.:.; ~.:.=.; 0 ~:) T E P (:i ./ B ·r ~?

Changing the Sequence of Execution in Your BASIC Program 25

26

The first example states that the initial value of I is to be taken from
the variable A and that the loop is to be executed repeatedly until the
value exceeds the value of B. The second example states that the
initial value of J is the value of the expression 8 * M + Y, and the loop
is to be executed until this value exceeds the value of A ** 3. The
third example states that the initial value of K is to be the square root
of B minus C; the loop is to be executed until the value 550 is
exceeded, and each time through the loop the value of K is to be
increased by the value of the expression A / B + 2.

You can also use more than one set of FOR/NEXT statements
together in a program by nesting one loop. Let's look at a program
that computes compound interest and uses nested FOR loops in the
process.

The mathematical formula to compute compound interest is:

A = P (1 +~) t
100

where A is the amount to be calculated, P is the principal, R is the rate
of interest, and T is the time period.

The program below shows how you can enter any amount as the
principal (P), compute interest on it using interest rates from 1 % to
20%, for each of 10 years, and display all the amounts-a total of 200
values.

I] 0':/0 PHIj\~T . ENT!:::!? PPINCI Pt'I!...·
0:1.00 I(!PI..JT P
o 1 0 ~.:.:.; P F~ I i\l T · l I i"1 E . ! • n t! T F . ! • (, i"I 0 U j\l T .
o :I. 1 0 FOP T :::: :1. T C} :I. 0
01 ::? 0 F n I~~ n:::::I. or D ;.:.~ 0
o :I. :.'::) 0 t, :::: P .)(. (:I. + F~ ./ :I. 0 0) "!'" T
o :I. 1+ 0 P P I j\! T T} H ! ('I

o :I. ~.:5 (} N E X 'r I;~

0:1.(;)0 NE>:T T

Statement 130 duplicates, in BASIC terms, the compound interest
formula. The FOR statement numbered 120 and the NEXT statement
numbered 150 delimit one loop. The first time through the loop, the
value of R, the rate variable, is set to 1. When NEXT R is reached, R
is incremented by 1 and the statements are executed again with the
new value of R. Each time through the loop the PRINT statement
prints time, rate, and amount values. This process continues until R
reaches 20 and the loop is ended.

c

('
'--_ .. -

C, ,'

c'

o

(~

o

o

o

However, this loop is enclosed, or nested, within the loop delimited by
the FOR and NEXT statements numbered 110 and 160. This outer loop
changes the value of T, the time variable, from 1 to 10. Each time the
value of T changes, the inner loop cycles through 20 times changing
the value of R. Since T changes value 10 times, the loop changing the
value of R is executed 200 times. Each time, the PRINT statement
prints new values.

A nested loop is one that is enclosed by another loop. That is, the
FOR/NEXT statements of one loop occur between the FOR/NEXT
statements of another loop, as illustrated:

Outer
Loop

Nested
Loop 1

Nested
Loop 2

FUNCTIONS AND SUBROUTINES

0
0
0

0
()

0

:I. 0 0
:I. [I 0
:I. 20

. ::.

.::.

\:.

-::.

,:;.

1 ~.::.; 0
'1 I .. <:) 0
:I. "i' 0 I

FOF~ P ,::.

FO F~ P c·

FD I~:~ T .:: .

NEXT T ..::.

NEXT I'" ':. i:·

NEXT P ..::.

As part of the BASIC language, you can define functions or write a
program segment, called a subroutine, which you expect to use several
times in your program.

Functions

User-written functions can be arithmetic or character. An arithmetic
function is named by the letters FN followed by a single letter. A
character function is named by the letters FN followed by a single
letter and the currency symbol ($).

The following can be names of arithmetic functions:

FNA
FNB
FNR
FN#

_ ... ,.-.. '" .. , .. _------.. _-_._ .. _-----

Changing the Sequence of Execution in Your BASIC Program 27

,-------------_ .. __ ... _---

28

The following can be names of character functions:

FNA$
FN#$

A user-written function is named and defined by the DEF statement.
For example:

defines the natural exponential of X squared, using the intrinsic
function EXP. The arithmetic variable X, enclosed in parentheses after
the function name FNE, is called a dummy variable. You can have
more than one dummy variable, and the list of variables can contain
both arithmetic and character dummy variables. (The expression value
substituted for each dummy variable is called an argument.) After
defining a function, the function name and its accompanying
argument(s) can be used anywhere in your program. For example:

o 0 :I. 0 :0 E F F j\~ E (><) :::: E >< P (>< l ~?)

0050 Y = FNE (.5)
o 0 () 0 :? :::: F' N E (C + :,,:,~ :>

o 0 "{' 0 P I~~ I i\~ T F N E (::!~. "? ~:,:,i) + ,,{ ,/ Z

User-defined functions can be defined in one statement or over a
group of statements. A function defined in one statement, such as the
function illustrated above, is called a single-line function. A function
defined over many statements is called a multiline function. A
multiline function begins with the word DEF, the function name, and
any arguments, the same as single-line functions. However, the DEF
statement does not contain the equal sign or an expression. Rather,
the value of the function is developed by the statements following the
DEF and is defined in a RETURN statement, which computes the value
and returns the value to the program. The end of a multiline function
is defined by the FNEND statement. Here is the way the statements in
a multiline function must be sequenced:

DEF function name [(variables, if any)]

RETURN expression

FNEND

C""\
--"

c'

o

o

o

o

Here is an example of a multiline function:

o (} :::) 0 fiEF Fi\)(:', < >< ! y)
o 0 1+ 0 1 F :/::- 0 8~ \'::- 1 Ci [I 'r 0 .S 0
o 0 ~.:.=.; 0 G [I T 0 (, ~.:5
[I 0 .::) 0 PET U H j\! X + y
o 0 (. ~.::.; n ['r 1...1 P N >< "'j'
DO"? 0 FNE:i\lD

This function uses two dummy arithmetic variables (X and Y) as
arguments. The function tests the values of both arguments. If X is
greater than 0, and Y is greater than 1, the values are added and the
sum is returned to the program. If the values do not satisfy the tested
conditions, program control transfers to statement 65. If this function
were used in the following program, C would have a value of 7 and D
would have a value of -2.

(I 0 ::::~ 0 :0 F F F i"II (:', (><., \()

o 0 1+ 0 J F X::- 0 S 'Y::- 1 D D or D oS 0
o 0 ~:5 0 G D T D <:> !:.:.i

o 0 (:) 0 !~~ [: T 1...1 F~ j\) :;(0{-- 'y
o 0 /) ~:.:o; F;~ E T 1...1 F: i') X· .. · \!
00'/0 FNFND

.::.

o :l 0 [I (, :::: ~::.;

o :I. ~.:.:: 0 :0 :::: ;.:.~

o :I. :-:; 0 C :::: F () (', (PI! B :>

o ll.j· 0 It ;::; F j\! t, (O! ~.:o~)

Changing the Sequence of Execution in Your BASIC Program 29

_______ . __ .. _ .. _ _ ... " .. _ ... __ ___ ___ . -_._-'--_._--.-___ 00_._ .. " .. _,,_ _ _ " ... _"" ",._.",, ____ . __ . __ ,, ___________

30

Subroutines

Another way of writing a group of statements to be executed at
different times in your program is to group them into a subroutine.
Execution of a subroutine begins with the GOSUB statement, where
the number specified in the statement specifies the number of the first
statement in the subroutine. For example:

100 GOSUB 200

causes the computer to skip, or branch, to statement 200, the first
statement in the subroutine. Program execution continues from that
point. To cause the computer to branch back to statement 100
(actually, to the next sequential statement following statement 100),
the last statement of the subroutine must be a RETURN statement.
This RETURN statement, unlike a RETURN used with a function,
contains no expression. A program containing a subroutine could be
sequenced like this:

r-100 GOSUB 200
...---;--..11 0

120
130
140
150
160
170
180
190 STOP
200
210
220
230
240
250

L....---260 RETURN
270 END

These are the statements that will
be executed after the RETURN.

First statement of the subroutine.

Statements executed as part of the
subroutine.

Statement 100 branches to statement 200. Statement 260 returns
control to statement 110. Statement 190 tells the computer the end of
the program has been reached. The STOP statement is similar to an
EN D statement except that higher-numbered statements may follow it.
Its use is to denote the end of program execution when the logical
conclusion of the program occurs somewhere in the middle of the
program, as shown here. The STOP statement here is equivalent to
writing GOTO 270 ..

c

o

o

o

o

o

A program illustrating the use of a subroutine is shown below. This
program determines the greatest common divisor of three integers.
The first two numbers are selected in program statements 30 and 40,
and their greatest common divisor (CD) is determined in the
subroutine, statements 200 through 310. The CD just found is
assigned to X in statement 60. The third number read in from the
INPUT statement is assigned to Y in statement 70. The subroutine is
entered a second time from statement 80 to find the greatest common
divisor (CD) of these two numbers. The result is, of course, the
greatest common divisor of the three given numbers. It is displayed
with them in statement 90.

0010 P F~ I i····!·r I Ei\!TE n 'rH F~EE I j·· •• !TFDE I~~~:) I

0020 Ii\!PI...IT t"l} n .. C
0030 :;(::::{'\
() 0 l.J. 0 Y::::B
o 0 ~.:5 0 Ci [I ~:) 1...1 :0 ::? 0 0
0060 :;<::::[i

o 0 .. ? 0 'y :::: C
oono GCJGUB 200
() 090 P P I NT I (:, I I I B I .' I C I ! I CD .
o 0 ?~:5 p n I NT (I .. B Ie .. G
0:1.00 STDP
O:~:.:O 0 C!::::Ii\!T (x/··/)
o ~.:.~ :I. 0 P :::: X···· 0 1(' .. {

o :\:.~ ~.:.~ 0 I F !~~ :::: 0 G D T D :3 0 0
o :'?3 () x::::··/
o 21.!· 0 .. (:::: p
I) ~?~.:.:.; 0 GOlD :? 00
0300 G::::'Y
O:3:!' 0 PE'ru F·::N

Changing the Sequence of Execution in Your BASIC Program 31

... _ ... _-----_. __ ._---_ .. _--_ _ _-------_. ._---_._ .. _--------_.-

32

Let's assume these numbers are entered when the INPUT statement is
executed:

ENTER THREE INTEGERS

?
60 / 90,120

The output will be:

1. 19

(.~ B
60 90

:37

C
:1.20

1::'1::'
.... 1 1

CD
~5 0

Another example of input and resulting output is:

A

ENTER THREE INTEGERS

"C,
.0

38 l l·
c

'-,r)
(.: ..

COMPUTED GOSUB STATEMENT

CD
B

(print positions)

The computed GOSUB statement is similar to the computed GOTO
statement discussed in this chapter. They both cause a branch to one
of a number of statements based on the computed value of an
expression. The difference between the two statements is that the
GOSUB branches to a subroutine; the RETURN statement in the
subroutine returns program execution to the statement following the
computed GOSUB statement.

Consider this example:

o 0 :3 [I GOb 1...1 :B :I. ~.? 0 ! :I. '? ~.:.:.; .. 1 9 ~:.:.i 0 N ::< y

A branch is made to one of three subroutines, either the one
beginning with statement 120, the one beginning with statement 175,
or the one beginning with statement 195, depending on whether the
integer portion of the value contained in the expression X - Y is 1, 2,
or 3, respectively. If the expression X - Y results in a value other than
1, 2, or 3, program execution continues with the statement following
the GOSUB.

C:

c'

c

o

o

o

PROGRAM CHAINING

With the program chaining technique, a BASIC program can be shared
with other BASIC programs. For example, suppose that when writing
a program you discover that an operation you want to perform is
available as a separate program. It could be time saving to you to be
able to use that program in conjunction with the one you are currently
writing. The CHAIN and USE statements can help you access data and
execute that program.

The CHAI N statement is used in one BASIC program to tell the
computer to stop executing the current program and start executing
another BASIC program. To tell the computer which program to start
executing, you name it in the CHAIN statement. Here's an example:

0500 CHAIN 'D40', 'PROGB'

This statement instructs the computer to begin executing the program
(in diskette drive 2) named PROGB. Note that when the CHAIN
statement is executed, the current program (the program containing
the CHAIN statement) is terminated.

Variable values in the chaining program are passed to the chained
program; that is, they become accessible for use in that program only
if they were defined in a USE statement.

In the program being chained, the USE statement specifies a list of
variables that will receive the values passed from the CHAIN
statement. For example, the value passed by J$ to PROGB can be
received by PROGB in the statement:

o 2 () () U BEl(~I) :I. B

Note that the USE statement is written in both programs and the
CHAIN statement is written in the chaining program (the program
requesting execution of another program). The USE statement must
be the first statement referencing a variable in each program.

The CHAIN and USE statements derive their value in being able to
help you string two or more programs together instead of having to
code similar program sections for individual programs. Also, CHAIN
and USE statements allow you to segment large programs. The
following is an example of CHAIN and USE.

Changing the Sequence of Execution in Your BASIC Program 33

.""---_._-_ ,,,.,,,,,,,,,._.,,,,,, _,---_._------,, , -_._ .. _ ... _ ".-

Page of SA21-9307-0
Issued 28 April 1978
By TNL: SN21-0277

34

0010 REM THIS IS PROGA
0020 USE ,J~I;

()

o 3 0 0 C H (.~ I N I III·I· 0 I I I P I:~ 0 G B I

0010 REM THIS IS PROGB

o () ~:j 0 USE I(~j;
(:.

Chaining program

Program being chained

The CHAIN statement at 0300 of PROGA causes PROGB to be loaded
into storage, then execution transfers to PROGB. The value in J$ of
PROGA is passed to K$ as specified by the USE statements in both
programs.

(~
'I

\.~ /

/-.......,
(

c

o

o

o

o

o

o

Chapter 4. Fonnatting a Report

The PRINT USING FLP statement is useful for controlling the format of
a report. PRINT USING FLP is used in conjunction with an Image or
FORM statement or character variable to print values according to the
format specified by the statement or variable. The PRINT USING FLP
statement includes the values to be printed and the statement number
or character variable of a corresponding Image or FORM statement
that specifies the format of the print line. For example:

0030 PRINT USING 40 / FLP,N / A

This statement refers to statement number 40, an Image or FORM
statement, which will cause the computer to format the arithmetic
variables N and A on the print line.

PRINT USING AND THE IMAGE STATEMENT

Statement 40 could look like this:

0040 : IN "" YRS AMT = $#""#.##

The colon beginning statement 40 identifies it as an Image statement.
The alphabetic characters are printed exactly as they appear in the
statement, and the pound sign (#) is the symbol used to indi~ate that a
value will be supplied from the output list in the PRINT USING
statement. The value of N replaces the first set of #' s, and the value
of A replaces the final set. The decimal point in the final set indicates
that the value of A is to be aligned on the decimal point in the image
specification.

If N contains the value 10 and A contains the value 1628.88, the
output line produced by statements 30 and 40 would look like:

IN 10 YRS AMT = $1628.88

In the Image statement, the pound sign (#) is used as a placeholder.
In statement 40, the first set of #'s indicates that a value is to be
displayed using two positions; the second set displays a value over six
positions aligned on a decimal point between the fourth and fifth
positions. If the value to be printed is smaller than six digits (say the
value 300.40), the first, or high-order position, would be printed with a
blank. Excess decimal positions are rounded to the number of decimal
position # signs.

Formatting a Report 35

Page of SA21-9307-0
Issued 28 April 1978
By TNL: SN21-0277

36

The Image statement can also contain a placeholder consisting of the
symbols I I I I for an exponential value. If you want to print a value
containing an exponent, the Image statement could contain the
following sequence of symbols:

*H:~ I *H:~ ~ ~ ~ ~
JHLJHJIIII

This sequence states that a value is to be printed with four digits
followed by an exponential value. An exponential value is always
printed with four positions for the format: E±dd. The letter E is
followed by a plus or minus sign indicating a positive or negative
exponent, followed by two digits. Therefore, a set of four I s must
always be specified as placeholders for exponents. If an Image
specification contains this sequence:

the following shows how different values would be printed by that
sequence:

Value

:1.2:'3
:1,2 I :'5
I :1,2:'5

Printed Format

:1.2 I 30E+0:1.
:1.2 I :'50E+0 0
:I.;,:,~ I 30E· .. ·02

The specification calls for four digits to be printed aligned on the
decimal point. Therefore, the number 123 is represented as 12.30 with
an exponent of +1. The exponent tells us two things: the direction in
which the decimal point is to be moved (+, to the right, and -, to the
left), and the number of digits over which it is to be moved. In the
first example, the exponent +1 tells us to move the decimal point one
position to the right; the number 12.30E+01 is the same as 123. In the
second example, the number 12.3 can be aligned on the decimal point
with no action required by the exponent, hence an exponent of E+OO;
the number 12.30E+00 is the same as 12.3. The third example tells us
to move the decimal point two positions to the left; 12.30E-02 is the
same as .123.

Blank positions in an array referenced by a PRINT USING statement
are significant. The entered characters of a variable do not determine
the size of the variable to be used by the PRINT USING statement.
For example, with a variable A$ dimensioned to 30 for the entry of a
name, and the name C. A. JONES entered into the variable, the PRINT
USI NG statement will use all 30 positions of the variable, including the
blank positions.

.~--.-- ..• - -... -----.

o

c·

c

c

._ _-_ .. _ ..•. - .•. -._--_ .•. _--_.

o

C)

o

o

o

o

Note that a PRINT USING statement can be ended with a semicolon (;)
to suppress printing of a new line and cause subsequent printing to
occur on the same line, as shown in the following example.

Example:

o 0 :I. 0 P n I i\l T 'F j\! T E r~ Tn It (:'1 Y , '~:) II tl T E '
0[1 :..:.:: 0 I I\! PUT D':\;
o 0 :.'::) 0 PHI NT 1...1 E; I N Ci !.t. 0 .' F I... P .' II ';1;
o 0 q. 0 : i'Y'i 0 i\l T H I... 'y' ::;:; til... I::: r; B Y ~:) ('11... E ~::: IVI t'l N f:'~1 G D F ~:~ :~:;: :H :H ~~: ~* ~* H
OO~:.:jO PPIi····1T FI...P
OO()o PHli\!"r FL.P
00"/0 pnIj\lT U:::)IND 100 .. FI...P
o 0 D 0 P n I j"'~ TUB I (·1 Ci :1.:1. 0 .. F 1.., P .. .:
o 0 9 0 P I~ I N "I" 1...1 ~;) I N G 1 :} 0 .' F I... P
0:1. 0 0 : :::::(·II...EBHtIN :::::tII...E~:::l"if:·:·li\!
01:1. 0 : N(~j"'iE j\~Uj"'IE{E n 0 pu~::.n 3(:'11...[::;::

o :I. ::.:.:: 0 i\.! E T n (:'11... I::: b
o :I. : .. ~:; 0 P n J j ! T F I... P
o :I. 1.\. 0 P n I j\j T 'E I\! 'f E:: n ::;:: ('11... E ~:) h ('1 i\!' ':::) j\l (:'1 i'" E I

o :I.~.::.iO PF-::Ii\!"(' 'DP [f···j·fEF:: Ej\!:U "CD [i')D'

o 1 .;.:':, 0 I i····j P 1...1 T (:'1';1;

o 1 .? () I F (:'1 ~I:· :::: ' E j';.!:O' Ci 0 'r CI :::::: 0 0
o :I. :3 0 P PIN "I" 'I::: i····l .. j' I::: j=.: :3 ('11... E :::>1"1 tll···l' '~::; N U j"l :0 E P I

Ol':?O I,···.!PI.JT D
o ::.:.:: 0 0 P j=.~ I ,) T 'E j\! T E:: P G n (] ~:) r:: ~:) (i I... E h '
0::.:::1. 0 IN PI.JT t'l
o ;? :~:.~ 0 P P I j') 'f I E i",l T E F! E)< PI::: j\l ~::. [: ~::. I

I) ::?3 0 I'···.! PI...IT))
o ::?!.t. I] C::::(:·I D
0250 PRINT USING 270!FI...P .. A$.. D .. A .. B;
[I ::.:~ (, 0 P I~~ I ,···~·r 1...1 E: I j') G ::.:.~ B 0 ! F I... P .. C

02BO $"""","" o ~?,} 0 GU'fO ll.j· 0
o ::~:; 0 0 ~:::: 'r D P

Formatting a Report 37

...... -------.......... -..... _--_ .. _-_ ... __ _---_ .. _-----

38

In this sample program, statements 40, 100, 110, 120, 270, and 280
are Image statements used to format the printed report shown below.

S (',1... E :;;;; jvj (', j ! E; (-,I... E f;; ivi (:'J j\.!
i'··J (:', i""'i I::: N 1...1 ivi 1·:< E F~

t':;, F F! E: :U F F~ I C' i< :.:.:.;? :L
(, I '''.1 (J H i····J :;;;; 0 j\! H (') 0
:0 1 :3(1 I 'fH '-I·U-?

;1; '.::j (':.)':J I 0 0
';Ii :.? ~:.:; :::=; 1./. I 0 0
-:/; D ~:.:.; /j I.j. 1 I] [I

':1; ~.::; ::~; '+ ,S 1 0 0

PRINT USING AND THE FORM STATEMENT

.:/:- ::::; ~.::; ::;.~ . 0 0 -:Ii ~.:.:j :::; ~,,:,~ 6 1 0 (I
':1; :I. ~::.; ~.:.:~ I (} 0 ':1; :.? :3 U ::? I 0 0
':1:· ~::.; ('):1. 1 0 () ';j; H 0 0 ~.~:; 1 () 0
':1; ~~; ~.=i /) 1 (I 0 ':1; I.,. ,) (,? 0 1 0 0

The FORM statement, offers greater formatting capabilities than the
I mage statement. For example, it provides a special code to specify
character data. It contains format control specifications to tell the
computer how to position output on a print line; one of these
specifications, SKIP, must be coded on the FORM statement to cause
a line to be printed.

Numeric Specification-PIC

The PIC specification in the FORM statement shows a picture of the
way a number should be formatted. This picture is enclosed in
parentheses. The symbols #, ., and I, previously illustrated in the
Image statement, could be used in the FORM statement in this format:

c

o

o

o

o

C)

You recall that the # symbol is used as a placeholder for a digit and
the I symbol is used as a placeholder for an exponent. The PIC
specification has these additional placeholders, or digit specifiers:

Symbol

z

*

$

+

Meaning

A leading zero is to be
replaced with a blank.

A leading zero is to be replaced
with an asterisk.

Floating dollar sign. A dollar sign
is to be printed immediately
before the first significant digit.

Floating plus sign. A plus sign for
a positive number, or a minus sign
for a negative number, is to be printed
immediately before the first
significant digit.

Floating minus sign. A minus sign
for a negative number, or a blank
for a positive number, is to be
printed immediately before the first
significant digit.

Here are examples of digit specifiers. Assume that a data item
containing the value 112233 is to be printed.

PIC Specification

PIC (ZZZZZZZ:.?Z)
PIC (Z Z :Z z Z Z =H ~~ :~:i :>

PIC (.)(..)(. ·H· :11:' ')1: .)(. N :~:: ::;.~ .>

Printed Output

o 0 1 :I. ::.:: :.:.~ 3 ::::)
11:?:?::!;3
11:?2:3:3

.)(••)(. ')1; 1 :I. :? ::? ~.~:. 3
~I; 1:1. ::.:.:::?3::::)
.. : .. :1.:1. ;?::;.~::!)3

:I. :I. ;?;.:.:: ::::) ~':::;

If a floating character (dollar sign, plus sign, or minus sign) is specified
only once at the start of a PIC specification, it does not float through
the field but instead is printed in the indicated position. For example:

PIC Specification

F) I C: (':1:· :Z: :~.:: :Z: :Z: :.;~: *:~ *:~ :~:l)
F) I C: (.{ .. :;.~ :~~ :z: :~.:. :H= ~:* ~:~)

Printed Output

Formatting a Report

---_ .. _._._ .. __ ._._._--.....• - .. -... -...... _-_._-_.- ._----------- ---

39

40

The PIC specification can also contain insertion characters to edit a
printed item. Digit specifiers indicate how the number itself is to be
treated; insertion characters simply insert additional characters into a
field, generally to improve readability. The following insertion
characters can be specified:

Symbol

B

/

+

CR
DB

Meaning

Print a blank unconditionally.

Print a comma conditionally (only if
a digit precedes the comma).

Print a slash conditionally (only
if a digit precedes the slash).

Print a decimal point conditionally
(if the value to be printed is
nonzero or zero suppression (Z)
is not in effect).

Trailing plus sign. When the
+ appears in the rightmost
position of a PIC specification,
it is treated as a trailing sign.
A plus sign is printed for a
positive number, a minus sign for
a negative number.

Trailing minus sign. When the -
appears in the rightmost position
of a PIC specification, it is
treated as a trailing sign. A
minus sign is printed for a
negative number, a blank for a
positive number.

When the characters CR or DB appear
at the end of a PIC specification,
they are treated as a trailing
sign. CR or DB is printed for a
negative number; blanks are printed
for a positive number.

c

c

c

o

C)

c

o

Here are examples of insertion characters added to the examples
previously shown:

PIC Specification

PIC (H H ~:~ B ** :~* B ** H *:~ ~*)
PIC (ZZZBZZBZ~*g:a)
PIC (ZZZ J ZZZ I :HH**)
PIC (Z Z Z Z Z 1 Z *~ 1 ** **)
PIC (·)f ·)f .)(..)(..)(..)(. ~* , ** H)
PIC (~I; ~I; ~I; ~I; $ ~; ** ~* n +)
PIC($$$I$$$I$$$,"")

Printed Output

000 :1.:1. 22~53
:1. :1. 22:·5:·5
1 :1. ~.~ I 233

:1.:1./22/33
.)(. :1.:1. 223:·!> , 00

~I;:l.l ::.~23:·5+

~I; :1. :I. 2 J 2 ~5 ~5 , 0 0

In the first example, a blank is entered after the third and fifth digits.
Because # is denoted as the digit specifier, leading zeros are not
suppressed.

The second example illustrates the blank used with the Z digit
specifier, which does suppress leading zeros.

Page of SA21-9307-0
Issued 28 April 1978
By TNL: SN21-0277

The third example illustrates the use of commas. The first comma is
not printed because no digit precedes it (zero suppression having been
specified); the second comma is printed.

The fourth example inserts slashes.

The fifth example illustrates the effect of a decimal point; because the
number 112233 is an integer number, it is aligned on the decimal
point, and zeros print out in the decimal portion of the field.

The sixth example adds a trailing sign to a field that also contains
floating dollar signs.

The last example adds commas and a decimal point to format a dollar
amount. Note that the first comma is not printed, but its absence is
marked by a blank, as it was in the third example. The dollar sign
floats over the comma.

Character Specification-C

Unlike the Image statement, the FORM statement specifies a place
where character data is to appear, indicated by the specification code
C. The actual character data is written in the PRINT USING statement.

To print both character and numeric data, a PRINT USING statement
could be written like this:

0030 PRINT USING 50 / FLP I 'COST OF'/All 'CHAIRS IS'JB:I.

Formatting a Report 41

42

The corresponding FORM statement could look like this:

The first appearance of the letter C indicates that a character string
from the PRINT statement is to be printed. The first PIC specification
describes the arithmetic variable A 1; if the value is zero, a blank is
printed in the leftmost position, followed by a zero. The second C
describes the second character string, and the second PIC describes
the variable 81.

The C specification code marks a place for character data regardless
of the number of characters to be printed. You could specify the exact
number of characters to be printed by indicating the number after the
C code. For example:

C6

This specification indicates that 6 characters are to be printed. Care
should be used when specifying a number because only that number
of characters is printed. For example, if you specify C6 to print the
character string COST OF, only the characters COST 0 will be printed.

Format Control Specifications-X, POS, SKIP

Format control specifications provide flexibility in formatting an output
line. These specifications allow you to space over a number of print
positions on a line, to specify the print position where a data item is
to begin printing, and to skip print lines.

The Xn specification spaces over n print positions. For example, X10
causes the printer to space the next 10 positions before printing a data
item.

" ', .. -- ,/

('
"'-.. /

c

C i
... ./

o

(J

o

C)

o

o

o

The POSn specification prints a data item beginning in position n. For
example, POS50 causes the next data item to print beginning in
position 50.

The SKIPn specification skips n print lines. To skip five lines, specify
SKIP5. To skip to the next line, specify SKIP1 or SKIP with no
number. For example, to cause statement 50, shown earlier, to print a
line, SKIP must be added to it:

Statement 50 is now complete, and if combined with PRINT USING
FLP statement number 30,

results in this output:

Here are additional statements using format control specifications:

Example 1:

0140 PRINT USING 145,FLP,A1,B1
o :I. '+ ~:5 F 0 F~ i"/1 P D E:; :I. ~::o; J PIC: (Z:N) , P D S 3 2 , PIC .:: ~~ ~Ii ':1; , ·:1; '=1; H , :H ~:}) .' ~::; 1< I P :I.

Statement 145 uses the POS and SKI P control specifications. POS 15
positions the printer at position 15 before printing the value contained
in A 1 described by the PIC specification. POS32 begins printing the
value of 81 at position 32. After all printing is complete, SKIP1 causes
the carriage to skip to the next line.

Example 2:

o :I. :I. [I P n I (.~ T U :3 I j"'.! G 1:1. ~.:.=.; 0' F I... P, , C U :3 or U F' '! tl :I.., 'C H (, I F~:3 I G ' .' E·::I.
o :I. :I. ~:5 F 0 H j j >< ~.::.; .' C .' P C) :3 :I. ~.::.; .. PIC (:?::H :; , P I] n ::;.~ 0 ! C.' P D ~:) :'::~;? .' PIC: .:: ~I:· -;j;. ':1; .. :i:· ~I; :i:i r :;::[. :i:[.) ! S i(I P 1

In statement 115, X5 states that the first five positions of the print line
are to be skipped, and the character data controlled by the C code, the
string COST OF, is to be printed. POS15 prints the value of A 1
beginning in position 15. POS20 prints the character string CHAIRS IS
beginning in position 20. POS32 prints the value of 81 beginning in
position 32. SKIP1 causes the line to be printed.

Formatting a Report 43

. __ .. _._----_ .. ,--_ ... _. __ ._._ .. -...•. ,._ __ ,--.. _----- -_._---------------

44

Following is a program that uses these statements.

o 1 0 0 t, :I. :::: :I. ~::j

0105 Bl=Al*115.25
[I :I. :I. 0 P n I NT 1...1 ~:) I i\! D '+ 0 .' F I... P! . COB T 0 F ' .. PI :I.., 'C H f:~' I F~ ~:) In'!:B :I.
0115 FORM X5 .. C .. POS15 .. PIC(Zij),POS20 .. C .. POS32,PIC($$$.. $$H,ijij) .. SKIP:I.
0:1.20 FOR A1=14 TO 1 STEP -1
o :I. 3 0 :n 1 :::: (, 1 :1(, :I. :I. ~:j , ::? ~.:.;

o :l. i+ 0 P P I h! T 1...1 ~3 I r·t (3 :1. I.j. ~::.; .' F I... P , i:~!:1. .' P:!.
o :1. 1.1· ~.:5 F [I H i"1 P D E; :1. ~.:5 , PIC (:Z N :; , P D ~:) :3 ::.~ , PIC (':1; ':1; ~I; ! ~I:· ~I; ij , *~ :~* :> , S I< I P :I.
o :I. ~.:.:.; I] j"'! E :~< 'r (:', :I.

This program finds the cost of 1 to 15 chairs at $115.25 each.
Statements 110 and 115 print out the first line, statements 140 and
145 print out all succeeding lines based on the loop defined between
statements 120 and 150.

Output from this program will look like this:

Print Position 6 15

C: 0 ~3 ''I'' U F :/. ~.:.:.;

11./·
:1.3
:/.:.:.::
:1.:1.
:!. ()

,:: .
.... 1

q.

•• .. 1
,.::.

:I.

20 32

';1;:1. ! .;~'):I. :::~; , ~.:.:.; 0
':1;:1. , 1.j·?H , ::;.~~:j

.~; 1 .' 3B:"~:; , 0 0
'=1:·:1. .r ::?-:':) o'l I"?:':':';
~I:·:I. , :i. ~.:.:.; ::.:.:: , ~:.:.; 0

':1;· .;.;) ::.:.::::.:.:: , 00
';1; U 0 {.~ , ./ ::.:.;
':1=· (;. r:.;):1 , ~:.:.; 0

':f) ~.:.:.; "I~' (') • ~.:~ !:.:.i

J·I.I·.;;·:.:I. , 00
':1; :';::'I.j. ~.::.i • "/ ~.:.:.i

'=1; ::? ::~:; 0 , ~5 0
':1; :I. :I. ~.:5 , ::.:.~ ~.::.;

(
,--.... ,

(.
'-'/

c

o

o

o

o

o

Example 3:

o 0 ~::.; 0 R 'l :::: ' \.,.1 I (! ~3 '
0060 IF A>B GOTD 80
o 0 (') '.::.; I? l :::: ' I... C) G I::: ~:::; ,
o 0 .. / 0 I F (I :.:.~: :C·: [i C) 'r (J D 0
o 0 .. ? ~.:.:i F: -:\; :::: ' TIE ~:) ,
o 0 [: 0 P P I i····.! 'r 1 • ..1 ~3 I j\! C:i ,) o! F I... P .' H [I j j I::: ''1' [t! , , ><)()(>< >< >< F I'·····! (l !... ~::) C: C) F~ E (:!.' ' ' ! :e ,: P ':1;

o 0 o:.? 0 F C) F~ j'''j P C) ~::) :I. I) ! C: .' PIC: (Z: ~:~:) ! C ! PIC: (Z: n) .' P C) :::) ::;.:: 0 ! C: (:' .. ':::: i< I P

Statement 90 uses the POS20 and C6 control specifications to overlay
position 20 of the print line with the value of R$. If A is 3 and B is 24,

the printed line will look like this:

Print Position 10 20 28

Formatting a Report 45

--............... _._ .. _._-_.- ---

46

PRINT USING WITH A CHARACTER VARIABLE

In addition to the Image and FORM statements for output formatting,
BASIC also allows assignment of a format to a character variable
which can then be referenced in input/output statements. Each
character variable to be used in this manner should first be
dimensioned (in a DIM statement) to the length of the format. The
format assigned to the character variable is identical to the format
following the colon in an Image statement, or the first 4 characters
can be FORM, followed by the format specifications normally entered
for a FORM statement. The following example shows the use of
character variables for formatting.

o 0 1 0 :0 :I: j .•.. j ('1 ':1; ~.;.;.; I) .' :0 ';1) :i. 0 0 .. C':I; 1 0 0 .' :u ':1; 1 0 0 .' E ':1; :I. 0 0
o I] ::.? 0 (:., ':j:. ;::: ' "'-j D ("! 'r H L ... (:;;) t'l L [: :;;;; :r~ ... (::;;; (, L E ::::; i'vj (:'1 N ti b CJ r:' *~: N a ~;: :[.::' :H ::.:;: H '
I] 0 :3 0 P R I i····J T . E I") T [: P :0 t·, T [. ,
o () '+ () J ("! P tJ 'r :0 .t-
o 0 ~.:.;.; 0 P P 1 (.1 'r u ~::; I j\J r:i
01] (':';. 0 P r: J (..!T FL P
00".:.00 PF;~li\.lT FI...P
o 0 C 0 :C·: ':1; :::: . ~::; (:',l... [: !;::; h i:'~f i'··J

o 0 (? 0 C: ':1; :::: · j\! (', i'v'i E
o 0 .? ~.:.:.; P P I i\! 'r F:·I.., p ! 1:·:-:Ii
o 0 0:.;.:' (:';. P P I j\.! T F l... P .. C: ':1;
0:1.00 PF{I'···!T FI...P
0:1.:1.0 PF~Ij····!T 'Fj\!TEn
o :l. :::::: 0 I i\.1 PUT j\.! ~I;

o :l.1.j. 0 J F j\!':I; :::: . ~;) T D P ,

::;) (:,1 .. , E E; i"'l (:, (·1
j\! 1 . ..1 ,"j n E F~

G r~u~;; ~:)
!::;;(·,i..,E::::;

o :I. ~.:.:.i 0 p I~~ I j\.! T . E i\.! 'r F F~ !3 ;::, L E h j· ... i (, j\! • ':;;;; , ! 1...1 j···1 I:{ E F~ ,
0:1.(:.0 IJ"-.!PI.JT !:;~

0:1. .. ? 0 P PI N'r . Ej\l'"j"E:: I~ G F~O~:):3 !:;)(:'ILE~:)'

0:1.:::;:0 Ii""··.!PI...IT C-:i

0:1. (? 0 P P I NT 'Lj\!TC P ex PEi'-..!:;:)En .
o :.? 0 0 I N P 1...1 T 1::.

O:?:l. 0 ·r::::c:i····E
(j .:.:.~ .::.~ 0
I) ::.?:::::: 0
O::?I.j· 0
o ::?~.:.:.i 0
O::?DO

F' l;~ T i\.! 'r F i.., F!
C-:i [I 'f [I :L:I. 0
:3'rCiP

NF'r'
!3t,I...E!;::; ,

o

o

()

0010

0 o o::;.~ [I
00:30
00 1+ 0
[I O~:.i 0
o 0 ,::'~ 0
0070
OOBO
00<';>0
0:1.00
0:1.:1. 0
O:l.~? 0
0:1. ::~) 0
0:1. 1+ 0

0

o

C)

Printer Spacing Control

You can use the contents of file FLS to control the number of lines
printed per inch (see Chapter 12 for more information about file FLS).
The printer normally prints 6 lines per inch, with 16 increments of the
print roll per line, for a total of 96 increments. You can change the
number of lines per inch by entering a number between 8 and 99 in
the tenth and eleventh positions of file FLS. The number you enter is
divided into 96 to determine the number of lines per inch. For
example, if you enter:

8 - 12
12 8
16 6
24 4
32 3

lines are printed per inch
lines are printed per inch
lines are printed per inch
lines are printed per inch
lines are printed per inch

An entry of less than 12 will cause printing to be overlapped. An entry
of zero causes suppression of spacing, which results in lines printed
right over preceding lines. Sample WRITE FILE statements for printer
spacing control are shown below:

1..·..II~~ I T E F I I... E F I... ~:) I ' '-/ (;) ,

p F~ I NT F L PI' 1 .. , I , ... J E P n I i····J T E :0 :I. P E F~
1/ .. 1 F~ I T E F I I... E F I... ~:) I ' :I. /' '
F D F~ I :::: 1 TO 6
P R I (! T F I... P.. '6 I... I I\! E f) P E I~~ INC H '
j\lE><T I
kl HIT [: F I I... E F I... ~:) I ' :I. :,:.~ ,
F 0 HI:::: :I. TO B
PHli\lT FI...P .. ' n I...Ij···!ES PEF~ 11···!CI--I'
j\lEXT I
I/..IHITEFII...E Fl...f) .. · 00'
pnINT FI...P .. 'I·'.!O ~::;PtICE TD OVEF~PF~INT'
PHINT FI...P .. ' D\"'EF~PF~INT'
PI~Ii\lT F\...P I ' DVEF~PF!Ii\!T'

.:;4:. 1... I i\~ I::: ~:) F) I::: F~ I j\! C; I··J
6 L. I , ... J E ~:} p E F·~ I i",! C H
(, I... I j····!EB PI::: n II\!CH
(:. I... I (·!Ff) PI::: n I'···!CH
':::. I... II\!ES PE PINCH
6 I...II···!E~:) PEH Ii····!CH
B I... I N E :::) P F P I j\! C H
B I... I j\! E :::) P I~~~ r;: I I\! C H
B I... I ,\!E~:) PE F~ I J'-.!CH
B I...Ii····!ES PEP INCH
H I... I,)E:::) PE n I j'\!CH
(~ Llj\!E~:) PEr;: INCH
B I... I j\!E:::) PE n INCH
n I... I I'-·!E~:) PE R I (·!CH

{ND SPACE TO OVERPRINT

Formatting a Report 47

c'

c

48

o

o

()

o

o

o

Chapter 5. Saving and Loading the Work Area

In this chapter, the following topics concerning saving and loading the
work area are discussed:

• Determining the size of a tape or diskette file

• Writing data to a tape or a diskette file

41 Getting data from a tape or diskette file

• Controlling files

• Maintaining data security

DETERMINING THE SIZE A FILE SHOULD BE

Before information can be stored on tape or diskette, the files must be
formatted by the MARK command. When you use the MARK
command, you can determine the size of a saved work area by
comparing the amount of work area available before and after you
have entered data or programs into the work area; therefore, the file
size equals the storage available before entering data or programs
minus the current storage available divided by 1024.

Saving and Loading Data on a Tape or Diskette File

You can write (save) the contents of a work area to tape or diskette
using the SAVE command. This allows you to enter data or programs
into the 5110 work area and save this information for later use.
Individual data records can also be written to a data file.

Once the contents of the work area are saved in a tape or diskette file,
that information can be read back into the work area using the LOAD
command. This allows YQU to load and execute the same program any
number of times. You can use a CHAIN statement in a program to
end that program and load and execute another program that is saved
on tape or diskette.

Saving and Loading the Work Area 49

----_._----------------_._---

50

Controlling the Files on Tape or Diskette

Once you have stored several work areas and data files on a tape or
diskette, you might want to know what files you have in your library
(stored on tape or diskette). You can use the UTIL command to
display a directory of file information for a specified tape or diskette.
The directory provides you with such information as the file number,
the file ID, and the file type. See the UTIL Command in the IBM 5110
BASIC Reference Manual, SA21-9308, for a complete description of
the information contained in the file directory.

When files on tape or diskette contain data that is no longer required,
you can mark these files unused by issuing the UTILDROP command.
Once a file is marked unused, data in the file can no longer be read
into the 5110, and the defined file space is available for other uses.

If a diskette file is no longer required, you can make the file space
available for reallocation by issuing the UTILFREE command. This
allows the file space on the diskette to be used for other numbered
files specified in the MARK command. See Diskette Concepts for
more informatron on how files are allocated on a diskette.

Maintaining Data Security

You should protect your programs and data from unauthorized access
or accidental destruction. Several functions are built into the 5110 to
assist you in protecting your programs and sensitive data.

Protecting Your Programs

After you have developed a program, you might want to keep a
duplicate (backup) copy of the program on another diskette or tape.
Then if the original program is accidentally destroyed, you still have
the backup copy available. See the IBM 5110 Customer Support
Functions Reference Manual, SA21-9311, for information on copying
programs. You can use the SAVE command to lock a program so that
it cannot be listed or modified. For example:

This command writes the program to file 5, diskette drive 1, and
permanently locks the program against listing or modifying. However,
the program can still be loaded and run:

When you lock a program, you should also keep an unlocked master
copy available in a secure area. This unlocked copy can then be used
if the program must be modified.

o

o

'C'

o

o

Protecting Your Data Files

Following are several ways to protect your data files:

• Maintain backup data files

• Use the file write-protect

• Use the diskette access-protect

• Use the SAFE switch on the tape cartridge

Maintaining Backup Data Files

You should keep a backup copy of your data files on another diskette
or tape. Then if you accidentally destroy a data file or you encounter a
faulty diskette, you can recover your data with minimum effort. To
create a backup data file, you periodically copy the master data file
onto another tape or diskette.

Using File Write Protection

Accidentally writing to the wrong data file can be prevented by using
file write-protection. You can write-protect a file, preventing data from
being written to the file, with the UTI L command. For example:

UTIL PROTECT 'MASTER',D80

Once the file is write-protected, data cannot be written to the file
using the SAVE or WRITE commands. However, you can still use the
REWRITE FILE statement to update records in the file. To turn off the
file write-protection so that you can write data to the file, use the UTIL
command. For example:

UTIL PROTECT OFF 'MASTER',D80

Saving and Loading the Work Area 51

Page of SA21-9307-0
Issued 28 April 1978
By TNL: SN21-0277

Using Diskette Access Protection

52

You can use the diskette volume ID, owner ID, and access protection
to prevent the wrong diskette from being used for an application. For
example, suppose you have a master diskette for an accounts payable
application. After you have updated the accounts payable master data
files, you could use the UTIL command to specify the volume ID,
owner ID, and access protection. For example:

This command protects the diskette with a volume ID of APMAST,
owner ID CLARK, on diskette drive 1 from being accessed. To turn off
access-protection, you use the UTI L command and exactly match the
diskette volume and owner ID. For example:

The UTIL command can be used in a procedure file to prevent the
wrong diskette from being used in an application (see Chapter 3 for
more information on proecedure files). For example, a procedure file
might contain the following records:

LOAD 3, 'AP,DAILY',D40
UTIL VOLID APMAST,CLARK,OFF,D80
I~UN

The commands in the procedure file do the following operations:

1. Load the application program from diskette drive 2.

2. Turn off access protection if the proper diskette is in diskette
drive 1.

3. Executes the application program.

4. Turn on access protection when the application program has
completed execution.

If the wrong diskette was in diskette drive 1, an error occurs when the
first command is executed, and the application program is not
executed.

,~

I,
"- .. ,/

(~ .
'----_/

c'

o

C)

C)

o

C)

o

Removing Sensitive Data

You are responsible for the security of any sensitive data. After you
are through using the system, you can remove the data in the work
area by one of the following:

• Using the LOADO command to clear the workarea

o Pressing the RESTART switch

o Turning the POWER ON/OFF switch to OFF

Several methods are available for removing sensitive data from a file.
These methods are:

o UTILDROP

o Rewriting a file (OPEN for output, then CLOSE), which makes the
old data inaccessible.

• Filling a data file with meaningless data. For example, the following
set of statements fills file 1 (on the built-in 5110 Model 1 tape unit)
with zeros:

00:1.0 DIj·· ... j (:',(100)
00::;'::0 ClPEj\., FLO., 1 EBO 1 J :1..1 DI...I·r
00::::)0 j"'i(iT PUT FLO J ti.1 [DF ~.:.:;O

00 1+ 0 [iOTO :?:; 0
o 0 ~.::; 0 ~::) TOP

Saving and Loading the Work Area 53

._----_ _ _---------_ .. _._._. __ ._------ --_ •...... -.......... _-------

\
.... ~...... ""

,

',,- ./

c

C~
54

o

o

o

Cj

o

o

C)

Chapter 6. Tape Concepts

There are 204K bytes (1 K=1 024 bytes) of tape storage available on an
IBM Data Cartridge. This tape storage is used for file headers, work
area files, and data files. In this section, the following topics are
discussed:

o How to format the tape

• How much storage on a tape cartridge is actually available to you

HOW TO FORMAT THE TAPE

You must use the MARK command to format files on the tape before
you can store work area or data records on the tape. For example:

MARK 10, 5,

1 LStarting File Number

LNumber of Files To Mark

L----Size of Files in 1,024 (1 K) Byte Increments. In this case,
the size of the marked files is 10,240 (10 0 1,024)

Once the MARK command is successfully completed by the 5110, the
tape is formatted as follows:

the beginning of
the tape storage.

Each tile contains
10,240 bytes of
storage.

This file header
indicates end of
marked tape.

/

The file headers contain information about the file, such as file
number, file name, and file type. Each file header requires 512 bytes
of tape storage.

Tape Concepts 55

-------- ... - .. _----------_ ..

56

If you want to format additional files on the tape, you must use the
MARK command again. For example:

MARK 20, 1, 6

tL----Starting File. Remember, in this
example, five files are already formatted.

l.-------Number of Files to Mark.

I-----File Size.

The tape is now formatted as follows:

4 Ii

File 6 Header

/
5 II 6

/
File 6 is formatted
after file 5.

I~
/

Unformatted
Tape

When the information in a tape file is no longer needed, you can use
the UTILDROP command to mark the file unused. The defined file
space remains available for other uses. However, once a file is
formatted, you cannot increase the size of the file without remarking
the file. When you remark an existing file, any information in that file
and the files following the re-marked file is lost. For example, assume
you want to increase the size of file 4 on tape from 10K to 15K:

) 4
II ~ 11

6 I" "-v--'

\
You want to increase the size
of file 4 by 5K.

- - . ---.--.------.------ ---

c~

o

o

o

o

After the command:

MARK 15, 1, 4 L Starting File Number

Number of Files to Format

'-------File Size

is successfully completed, the tape is formatted as follows:

II
4

/
File 4 now contains
15K bytes of tape storage.

This file header now indicates the end of
the marked tape, and any data following
this file header is lost

A formatted tape has the following characteristics:

• Files are of variable length from 1 K to 204K.

• Files can be randomly accessed; that is, you can read a file without
having to read the previous file. Data in the files can be accessed
sequentially or randomly.

• Both work area and data files can be on tape.

• Both APL and BASIC files can be on tape.

Tape Concepts 57

58

HOW TO DETERMINE THE STORAGE AVAILABLE ON A TAPE
CARTRIDGE

Each tape cartridge contains approximately 204K bytes of storage, but
the amount of tape storage actually available to you depends on:

• How many files are marked (formatted) on the tape

• How the data files were written to tape

As mentioned, each file on a tape cartridge requires one 512-byte file
header. Therefore, the more files you mark on a tape cartridge, the
more tape storage is used for file headers. For example, if you mark
one 3K file on a tape, 512 bytes of tape storage are used for the file
header. If you mark three 1 K files on tape, however, 1536 bytes of
tape storage are required for the three file headers.

One 3K File

I O.5K 3K

Three 1 K Files

O.5K 1K O.5K 1K O.5K 1K

Note, in these examples, that a total of 3K bytes of tape storage is
allocated for tape files, although, for the three 1 K files, an additional
1 K bytes of tape storage are used for headers.

The amount of data you can store in a data file depends on how the
data is written to the file. (See Chapters 8, 9, and 10 for a complete
description of writing data to the data files.) For example, when you
first write data to a data file, the individual records are sequentially
written to tape starting at the beginning of the data file. Once these
records are written to tape, the data file might look like this:

Data File

I)

1 f-------DataRecords ._~
\ / / /

Beginning of the Last Data Record Unused End of the
Data File tape Storage Data File

c

o

o

\) C
~-

(j

o

When you add data to the stream I/O data file (see Chapter 8), the
new data starts at the first 512-byte boundary after the last record in
the data file. The tape storage between the last data record and the
additional data records is unavailable for use.

Once the new data records are written to tape, the data file might
look like this:

Data File
I

I

512-Byte Boundaries (tape storage is

/ divided into 512-byte segments)

""""'

I· Data Records ----~~rf0] I---- Additional Data ~_

~ginning of unavaila' Last Data Record ~nU!.d
the Data File Tape Storage Tape Storage

As you add more data to the file, it is possible for more tape storage
to become unavailable.

Tape Concepts 59

---- ._-_._----------- --------------.-----

c:

(
,- •..... /

c
60

o

o

(j

.,

U
'~"

o

o

o

Chapter 7. Diskette Concepts

The IBM diskette is a thin, flexible disk, permanently enclosed in a
semirigid, protective, plastic jacket. When the diskette is properly
inserted in the diskette drive, the disk turns freely within the jacket.
The diskette is inserted in the diskette drive as follows:

lower corner as the diskette
is inserted in the diskette drive.
The diskette drive door must be
closed and latched after the
diskette is inserted.

Data is written on the diskette at specific address locations. These
addresses provide direct access to specific information. Data written
at an address remains there until it has been replaced by new data.
To read data, the system finds the desired address and then reads the
data into the 5110.

Before being shipped to a user, each diskette is initialized. Initialization
is a process whereby label information and data addresses are
recorded on the diskette. Initialization is discussed later in this section.

Diskette Concepts 61

62

DISKETTE WEAR

The use of flexible diskette storage provides some significant
advantages, such as low cost, compact size, multiple system functions,
and ease of media handling and storage. It should be recognized,
however, that during recording and reading, the read/write head is in
contact with the media, causing diskette wear over time. Variations in
the rate of wear will depend on the particular operating environment
and application characteristics. Care in the storage, use, and handling
can also affect diskette life. (See the guidelines in the IBM 5110
BASIC Reference Manual.) Excessive wear, handling, or contamination
can cause possible failures in recording and/or reading.

Ultimate wear is to some extent dependent upon total usage of
individual tracks. Care taken to distribute data so that accessing
occurs over the entire recording surface with about the same
frequency can extend the useful life of the diskette. Actual experience
with individual applications and environments will allow the
development of guidelines for determining when the media should be
replaced.

Unpredictable circumstances such as contamination or severe handling
can cause an early error to occur.

For all the above reasons, consideration should be given to providing
an adequate recovery plan, such as:

• Backing up critical programs and data files on a second diskette for
use in the event of an error on the primary diskette.

• Periodically moving frequently-used files to alternate locations on
the diskette (see the copy function in the IBM 5110 Customer
Support Functions Reference Manual).

I~'

o

o

o

o

o

DISKETTE ADDRESSING AND LAYOUT

A diskette address consists of a combination of cylinder number, head
number, and record number as follows:

CC H RR

tl.-____ Record (sector) Number. The sector

into which the data is to be written
or from which it'is to be read.

L..---Head Number. The side of the diskette on which
the data is to be written or from which
it is to be read. This number is 0 for all
one-sided diskettes, 0 for side 0 of
two-sided diskettes, and 1 for
side 1 of two-sided diskettes.

Cylinder Number. This number identifies the
cylinder onto which a physical record is written
or from which it is read.

Track and Cylinder

A track is the recording area that passes the read/write head while the
diskette makes a complete revolution. The read/write head is held by
a carriage that can be moved to 77 distinct locations along a straight
line from the center of the diskette. Therefore, each diskette has 77
concentric tracks on which data can be stored.

The diskette drive for two-sided diskettes has a read/write head on
each side. Each track on side 0 of a two-sided diskette has an
associated track on side 1.

A cylinder is one track on a one-sided diskette or a pair of associated
tracks (the corresponding tracks on opposite sides of the diskette) on
a two-sided diskette. There are 77 cylinders on a diskette, numbered
o to 76.

Diskette Concepts 63

64

Sector

A sector is a portion of a track. All sectors on a single track are the
same size, and the number of sectors on a track depends on the
number of bytes per sector (see Sector Types in this section).

[2fl - ""rl Track 00
/ "..- -e, \

'0' " \ \
\ l,.,. I
\ '*§~~,~

\ '-)- / ~~,
" / '.... ,,/ One Sector - --

Index Cylinder

Cylinder 0 is called the index cylinder and is reserved for information
describing the diskette and its contents. It contains information about
the diskette, such as volume and owner identification. The index
cylinder also contains information associated with each file on the
diskette. This includes the name of each file and the addresses
associated with the file extents. An extent is the maximum space a file
can occupy. The address at the beginning of this space is called the
beginning of extent (BOE). The address at the end of this space is
called the end of extent (EOE). A file might not use all of the space
allocated for it by the BOE and EOE addresses; therefore, another
address for end of data (EOD) exists.

Actual Space Currently Used for Data
I I

BOE EOD EOE

Area Allocated for the File (extent)

The EOD address is used to identify the next unused area within the
extent or to indicate that data has been written to the EOE address.
(See the diskette initialization utility in the IBM 5110 Customer Support
Functions Reference Manual, SA21-9311, for a complete description
of the index cylinder.)

r·",
""",-,.

c----"
-_ .. ,'"

o

o

o

o

Alternate Cylinders

The last two cylinders (75 and 76) are reserved for use as
replacements (alternate cylinders) for defective cylinders. The
remaining cylinders (1 through 74) are used for storing data.

DISKETTE TYPES AND FORMATS

The 5110 uses three types of diskettes:

• One-sided, where data is recorded on just one side (Diskette 1)

• Two-sided, where data is recorded on both sides (Diskette 2)

• Two-sided, where data is recorded on both sides at double density
(Diskette 2D)

The diskettes are initialized (see Disk Initialization) into various
formats, consisting of:

• The number of sectors per track

• The number of bytes per sector

The 5110 diskette formats are:

Sectors per Track Sectors per Cylinder Bytes per Sector

Diskette 1 26 26 128
15 15 256
8 8 512

Diskette 2 26 52 128
15 30 256
8 16 512

Diskette 2D 26 52 256
15 30 512
8 16 1024

Note: The diskette types (Diskette 1, 2, or 2D) are identified on the
diskette label, and the UTI L VOLI D command can be used to determine
the bytes per sector (physical record size).

Diskette Concepts 65

_ .. _._ .. _. __ _------

Page of SA21-9307-0
Issued 28 April 1978
By TN L: SN21-0277

66

DISKETTE INITIALIZATION

Diskettes must be initialized before they can be used for storing data.
All diskettes are initialized before they are shipped to a customer.
Reinitializing is not required, unless:

• The diskette was exposed to a strong magnetic field.

• A defect occurred in one or two cylinders. In this case, initialization
can be used to take the bad cylinder{s) out of service and use one
or two of the alternate cylinders.

• A sector sequence other than the sequence existing on the diskette
is desired.

• A format (number of sectors per cylinder) other than the existing
format is desired.

See the IBM 5110 Customer Support Functions Reference Manual,
SA21-9311, for a description of the disk initialization program.

VOLUME 10, OWNER 10, AND VOLUME-PROTECT INDICATOR

Each initialized diskette has a volume ID, owner ID, and volume
protect indicator. The volume ID is the identification of the diskette
volume, and the owner 10 is the identification of the diskette volume
owner. The volume-protect indicator is used to prevent unauthorized
access to the diskette volume.

The UTILVOLID command is used to display or change the volume ID
and owner ID, or to change the volume-protect indicator.

FILE 10

Each file on a diskette has a file ID (file name). When the diskette files
are formatted, a file ID is automatically generated, even though the
files are unused. For example, the file ID for file 1 is SYS0001. See
the IBM 5110 BASIC Reference Manual, for more information on file
names when storing data.

DISKETTE FILE WRITE-PROTECT INDICATOR

Each file header contains a write-protect indicator. When the
write-protect indicator is on, the file can be read into storage and
updated, but existing data on the diskette cannot be replaced with new
data. The UTI LPROTECT command invokes or removes the
write-protect indicator for a diskette file.

c

c

o

C)

o

o

o

DISKETTE FILE ORGANIZATION

You must use the MARK command to allocate file space on the
diskette before you can store work area or data records on the
diskette. For example:

MARK 10, 5, 1, 080

1
t + Diskette Drive 1
-----Starting File Number

~-----Number of Files to Format
'-------Size of the Files in 1024 (1 K) Byte Increments.

In this case, the size of the marked files is
10240 (1 Ox1 024) bytes.

Unlike tape files, diskette files are not always formatted sequentially
on the diskette. For example, file 2 might be on cylinder 3, file 3 on
cylinder 9, and file 4 on cylinder 7. You can control the location of a
file on the diskette only by using a totally unmarked diskette and
issuing MARK commands in the same order as the files are to be
formatted on the diskette.

When the information in a diskette file is no longer needed, you can
use the UTILDROP command to mark the file unused. Defined space
of the file remains available for other uses. However, once a file is
formatted, you cannot increase the size of the file without remarking
the file. Reallocating diskette file space is discussed next.

REALLOCATING DISKETTE FILE SPACE

Unlike tape files, when you re-mark an existing diskette file, no other
diskette files are affected. When you re-mark a diskette file to
increase the size, the file space presently allocated to that diskette file
is made available for other files being marked. The re-marked file will
then be located on the diskette where there is enough continuous
storage available for that file. For example, assume you want to
increase the size of file 4 from 10K to 15K by issuing a MARK 15, 1,
4, 080 command:

I

Disk
Cylinder

~ 2 3

After you issue the MAR K command
this file space is no longer allocated
for File 4.

5

Diskette Concepts 67

----------_ ... " ".,., .•. _ .. , " .. , .. ,."., .. ", .. -•..... ', ,'" ... " ... ' -.,-,-.-"", .. -".~ -.--.. - ... --.. '"' __ " ... _"." _--_ .. "'--,--.. __ .. _--

68

Once the file space previously occupied by file 4 is available, that file
space will be used by subsequent MARK command that marks a file
of 10K or smaller.

After the MARK command is successfully completed, file 4 is
formatted on the diskette at a location where at least 15K of
continuous ftorage is available.

[3 5

\
) 2

)1 ,

Unallocated Diskette Storage

/
4 W.

20K of unallocated diskette storage was
available at this location before the

MARK command was issued.

10

DETERMINING THE STORAGE AVAILABLE ON A DISKETTE

Available diskette storage varies, depending upon the type of diskette
being used. The amount of storage depends on:

• Whether data can be recorded on just one side or on both sides of
the diskette

• The number of sectors per cylinder

• The number of bytes per sector

~"',

S Diskette
(,,_.,/',

Cylinder

(--------.,
I,

.... , .•... ,.

) Another
Diskette
Cylinder

c

o

C)

()

c)

o

Each diskette has 77 cylinders. Cylinder 0 is called the index track and
is reserved for information (file headers) about the diskette files.
Cylinders 75 and 76 are alternate cylinders used as replacements for
bad cylinders. This leaves cylinders 1 through 74 available for data
storage. The following chart shows the amount of storage available
with the different types of diskettes:

Sectors per Cylinder Bytes per Sector Available Storage in
Bytes (Cylinders 1-74)

Diskette 1 26 128 246,272
15 256 284,160
8 512 303,104

Diskette 2 52 128 492,544
30 256 568,320
16 512 606,208

Diskette 20 52 256 985,088
30 512 1,136,640
16 1024 1,212,416

Although the previous chart shows the maximum amount of diskette
storage, the amount of diskette storage actually available to you
depends on:

• The number and the size of the files marked on the diskette

• The types of data files written to the diskette

• How the file space is allocated from previous MARK and UTILFREE
commands

• Whether an extended label area was requested at initialization time
(see IBM 5110 Customer Support Functions Reference Manual,
SA21-9311)

Diskette Concepts 69

._--. __ " _-...... _-------_ .. " "._-_. __ .. __ _--

70

Number and Size of the Diskette Files

Generally, there is a maximum number of files that can be on a
diskette:

Diskette 1 Diskette 2 Diskette 2D

Maximum Number
of Files

19 45 71

If you use diskette 2D, see the disk initialization program in the IBM
5110 Customer Support Functions Reference Manual, for information
on how to get additional file headers.

If you mark the maximum number of files without using all the
available file space, the remaining file space becomes unavailable for
storing data. For example, assume you have an unmarked Diskette 1
with 128 bytes per sector. This diskette has 246,272 bytes available
for storing data, and you issue the following command:

MARK 10, 19, 1, D80

[1 t In this example, diskette drive 1
IS used

Starting File Number
Number of Files to be Marked

~------Size of Each File

This command marks the diskette with the maximum of 19 files. Each
file is 10K bytes; therefore, a maximum of 190K (194,560) bytes of
storage is allocated for the files. Now, if you subtract the allocated
diskette storage from the available diskette file space:

246,272
- 194,560

51,712 --- This much diskette storage is
unused and unavailable for you
to store data.

('
'----,

c

o

0

\, 0
.. ,

o

o

o

How the File Space is Allocated

Earlier in this section, we discussed reallocating diskette file space
using the UTILFREE and MARK commands (see Reallocating Diskette
File Space). Using the UTILFREE and MARK command to reallocate
diskette file space can cause fragmented blocks of unallocated file
space on the diskette. For example, assume that a diskette has all file
space allocated except the following 15K of file space on a cylinder:

Diskette

Cylinder

~ (I 12 ~I 17 ~ 2

/
10K of Unallocated 5K of Unallocated

File Space File Space

If you need that 15K of storage to mark a new file, the storage is not

available because it is not in 15K contiguous bytes.

The fragmented blocks of unallocated file space can be made available
by the compress function (see the IBM 5110 Customer Support
Functions Reference Manual). The compress function closes the gaps
caused by the unallocated file space and places all of the unallocated

file space in one contiguous area.

Diskette Concepts 71

----....... _-----------------.

c'
72

o

o

o

o

Chapter 8. Introduction To Data Files

FILES, RECORDS, AND FIELDS

A file is a collection of related data items which are grouped together
in records. Most of us carry a driver's license. That is a record. What
about a time card? That too is a record. Each of those records
contains items related to the purpose of the specific document. The
related items are called fields. The following illustration shows a
record containing the fields of information that can be found on a
driver's license:

License No.
Drivers Name Address

Each field is related to the record in that it contains information
relating to the specific driver. A field is the amount of space set aside
for each data item. The next illustration shows a record containing the
fields of information found on a time card:

Name Location Date Serial No. Shift Start Time

A group of records makes up a file. A 5110 data file contains records
in a specific sequence just as a filing cabinet does.

The following illustration shows a record containing customer
information that would be used in making out an invoice:

Customer

Number
Name

. _._-----------

City, Street

Introduction to Data Files 73

74

The file would contain as many records as there are customer
numbers. A file should be given a unique name so that the file can be
distinguished from other files. Because the record in the previous
illustration contains customer master information, the file could be
named CUSTOMER.MASTER. A file containing master information
about the products in your inventory could be named ITEM. MASTER.

Different files can contain different record layouts. For example, the
following illustration shows a record that has items related to the item
file:

Item
Number Description

P4164 I Wi~GET
Organizing a File

Price
/ ,

13.95

Qty in

Stock

004~

An important part of any data processing job is file organization. File
organization is the arrangement of records in the file. There are two
types of files using the 5110: stream I/O and record I/O.

Stream I/O

For stream I/O, all the data items are organized sequentially on the
tape or diskette, with a comma used as the delimiter between fields.
For example, a customer master file might be formatted as follows:

Customer 1, John Smith, 4016 28th. St., City, 55555, Customer 2, Joe Jones, ...

The fields are variable in length because only the exact number of
characters is maintained. In order to read customer number 2 and the
related fields, the 5110 must start at the beginning of the file and
sequentially read each field until the desired customer information is
read.

------------------ ---

c

c

c

(J

C)

o

o

o

o

Record I/O

The corresponding fields of each record in a record I/O file must have
the same length; no delimiters (commas) are required between fields.
For example, a customer master file might be formatted as follows:

Customer 1 John Smith Customer 2 Tom Stewart

~~~~ 
11 Field 20 Field 11 Field 20 Field 
Character Character 

Record 1 (31 Characters) 

Character Character 

~ 

Record 2 (31 Characters) 

The record and field sizes are established as the application is 
designed (see Designing A Record in Chapter 10). 

Unlike stream I/O files, record I/O files can be accessed in three 
ways: 

1. Sequential. Each record is accessed in the same order they were 
written to the file. 

2. Direct. Individual records can be accessed by specifying the record 
number (relative record number). 

3. Indexed. An index is used to find an individual record in a file. 
Therefore, you do not have to know the relative record number of a 
record before you can access the record. 

The next chapter describes the characteristics of the 5110 data file 
processing methods. 

Introduction to Data Files 75 

-'-.-------.----~ .. ,.-" .. ~ .... ---.--, .... -, ... ----.. - .. -._-, .. _-------------_._-----.. --



c= 

c 

76 



o 

o 

o 

o 

o 

Chapter 9. Characteristics of Accessing Data Files 

This chapter describes the characteristics of data files when the files 
are accessed: 

• I n sequential order 

• In direct order by relative record number 

• In direct order using an index 

This chapter also discusses maintaining files. 

SEQUENTIAL ACCESS 

For both stream I/O and record I/O, a file can be accessed 
sequentially. That is, the records are accessed one after another in the 
order they occur. An example of a sequentially accessed file might be 
an employee master file. This file contains information needed for 
various reports concerning each employee, such as payroll checks. 
Because checks are processed by employee number, records are 
accessed in order. The lowest employee number is accessed and 
processed first and so on until the last record, the highest employee 
number, is accessed and processed. 

DIRECT ACCESS BY RELATIVE RECORD NUMBER 

For record I/O, files can be accessed directly using the relative record 
number. This allows you to process records in the file faster than if 
you used sequential accessing. For example, as~ume you have an item 
master file that contains stock status information on 1000 items by 
item number. If you want to know the stock status of item number 
500 in the file, direct accessing allows you to specify the record 
number containing the information. This record is then accessed 
directly and the information is available. However, if the file is 
sequentially accessed, you must read all of the preceding records 
before you can read the record that contains the information you need. 

Characteristics of Accessing Data Files 77 

---,,-,-"'''-,--,,-,------,---------------------- ----------------------------,----------,--------,--------------



Page of SA21-9307-0 
Issued 28 April 1978 
By TNL: SN21-0277 

DIRECT PROCESSING BY INDEX KEY 

78 

For record I/O, files can be accessed directly using an index to locate 
the records in the file. The file index is created as the records are 
written to the file. The index contains a key, such as customer number 
or item number, and the relative record numbers of the record. When 
you want to process a specific record, you must specify the index key 
and the system accesses the proper record using the address of the 
record associated with that key. 

After the index is created, the index can be sorted into ascending 
sequence. For example, as a file is created, the index and file are as 
follows: 

File Index Records 

However, after the index is sorted in ascending sequence, the index 
and file are as follows: 

~--------------l""""'Data File 

1401 1201. 1601 1301 1501 
File Index Records 

The diskette address of the record associated with each key remains 
the same. This allows you to access the data file in several ways. 

Sequential Accessing by Key 

When an indexed file is accessed sequentially by key, the keys are 
processed one after another in ascending order. Even if the records 
are not in order on the file, they are accessed in order using the index. 

An indexed file can also be accessed sequentially, without using the 
index. Data records are accessed sequentially, that is, first record, 
second record, and so on, from the beginning of the file to the end of 
the file. However, if the records are not sorted first, they might not be 
in order. 

Note: If you access an indexed file without using the index, and add 
or update records in the file, a key is not added to the key ,index for 
the added records, and existing keys within a record could be changed 
when you are updating a record. 

I 

c 

c 



o 

o 

o 

o 

o 

Direct Accessing 

Page of SA21-9307-0 
Issued 28 April 1978 
By TNL: SN21-0277 

Indexed files can also be accessed directly. This type of accessing 
also uses the index and is called direct accessing by key. Direct 
accessing by key permits processing of one particular record without 
regard to its relation to other records. You must first specify the key 
of the record. The key is then found in the index; the relative record 
number {adjacent to key} is used to locate the record; and the record 
is transferred to storage for processing. For example, records in a 
customer master file are to be updated to reflect current information. 
The transaction record number entries are not in order. The system 
finds the record by matching the customer number in the entry with 
the key {customer number in the index}. The address, adjacent to this 
key, is then used to find the record. 

Often an indexed file is used in several different jobs each of which 
requires a different accessing method. For example, during statement 
writing, a customer file may be accessed sequentially to allow cyclic 
statement writing. During a billing job, the same file may be accessed 
directly by key to allow the updating of specific master records. Then, 
during an aged trial balance job (each customer's outstanding balance 
is printed), the file may be accessed sequentially by key. 

Indexed files can also be accessed by relative record number. This 
method of accessing requires that the file index be bypassed. 
Records in the data file can then be accessed by using a number 
(relative record number) indicating their relative position in the file. 

MAINTAINING DATA FilES 

Once a file is created, file maintenance is often necessary. File 
maintenance means performing those activities that keep a file current 
for daily processing needs. Some file maintenance activities are 
adding, deleting, and updating records. Adding means putting a 
record in a file after the file is created. Deleting means identifying a 
record so it will not be processed with other records. Updating means 
adding or changing some data in a record. 

Characteristics of Accessing Data Files 79 



80 

Adding Records 

Records can be added to a file after the file has been created. When 
records are added to a file, they are written at the end of the file. 
Thus, the file is extended by the added records. 

Sometimes, however, the new records must be merged between the 
records already in the file. This may be necessary to keep the file in a 
particular order. In order to put the new records in the proper 
sequence, you must sort the file to create a new file -containing the 
added records in the correct location. 

When a record is added to an indexed file, the system checks to 
ensure that the record key is not a duplicate of a record key already in 
the file; if the key is not a duplicate, it is added to the end of the file. 
The keys of the added records and the keys of original records should 
be sorted, so that the keys of all the records in the file are in 
ascending sequence in the index. When the keys are in ascending 
order, the 5110 uses less time to search the index. 

Tagging Records for Deletion 

When a record becomes inactive, you might not want to process it 
with the other records. A record cannot be physically removed from 
the file during regular processing; therefore, it is necessary to identify 
or tag the record so it can be bypassed. One way to tag such a record 
is to put a code, called a delete code, in a particular location in the 
record. When the file is processed, your programs can check for the 
delete code; if the delete code is present, the record is bypassed. 

When several records in a file have been tagged for deletion, you 
should remove them from the file. This will free file space. You can 
remove the deleted records by using a program to copy the records to 
be retained onto another file. 

For an indexed file, you can also use the DELETE FILE statement to 
tag the record key in the index for the record to be bypassed. This 
does not alter the record in the master file. r· 

',--._._--

c 



o 

o 

C) 

o 

o 

o 

Updating Records 

When you update records in a file, you can edit or change some data 
on the record. For example, in an inventory file you might want to add 
the quantity of items received to the previous quantity on hand. The 
record to be updated is read (by the READ FILE statement) into 
storage, changed, and written back in its original location by the 
REWRITE FILE statement. 

Reorganizing a File 

After file maintenance activities are performed, it might be necessary 
to reorganize your file to increase processing efficiency and free file 
space. This is done by using a BASIC program to physically merge the 
added records in sequence with the records originally created, and to 
remove the records tagged for deletion by copying the existing file 
and writing it into a new file. During the copy, deleted records can be 
removed from the file, and records previously added to the file are 
copied into the new file in sequence with the original records. The old 
file can then be used to contain new data. 

A Diskette Sort feature is provided to allow you to change the order of 
record I/O files. For more information about this program, see the 
IBM Customer Support Functions Reference Manual, SA21-9311. This 

featu re allows you to sort the records and write them to a new fi Ie. 
Also, you can sort the file and write just the record numbers, which 
indicate where the records are located on the diskette, to a new file. 
This file, called an address out file, can then be used to access the 
original records. For example: 

Dan 

Address Out File 

4 

Relative Record Number 

5 3 

Glen 

Master file remains 
in the original order. 

2 

Sorted relative record 
numbers can be used to 
access the master file 
in ascendi ng order. 

Characteristics of Accessing Data Files 81 



82 

The following statements might be used in a program to access a file 
in order using the record numbers in the address out file: 

.::. 

o 0 ::::;; 0 [I F [: j\! F I I... [: F L:I. ! ':U H 0 . ! :l.! • j') (:', jo,;j F :::) . ! (',1...1... 
o (I I,j. (} U P E j'..! F J 1.., F F I... 2! ':0 F; 0 I .' ::?! I t, Ii :0 ::::; c) F·! T ' .' I I···.! 

o 0 ~.:.:.; 0 I? I::: (:', :0 F' I L [: 1 .. .1 ~:::; J j\.! Ci 0 {;':. O! F i... ::? .. P 
o 0 {.) 0 F C) r.;: j ..... j :C·: Lj. 

o 0 ./ 0 F;: E (i :0 F' I i... [: F L:!.! n Fe:::: n .' (:,':/:. 

-.-----------------------~----~----- - ---_. 

(
~\ 

I 

_._./ 

c 

c 

c 

c 



o 

o 

o 

o 

o 

o 

Chapter 10. Designing a Record and Detennining File Size for Record I/O Files 

DESIGNING A RECORD 

The applications that use a certain file determine what data is needed 
in a record. You should study these applications and then decide the 
layout of the record. Layout means the arrangement of fields in a 
record. When you design a record, you determine field length, 
location, and name. 

To illustrate these design considerations, a name and address file is 
used in this chapter. Each record in the file contains the following 
data: 

Field 

Customer number 
Name 
Street address 
City and state 
Record code 
Delete code 
(Other fields) 

Determining Field Size 

Size (number of positions) 

6 
20 
20 
20 
2 

~(total) 

116 TOTAL 

Field size depends on the nature of the data in the field. First, the 
length of the data may vary. In this example, name is 20 positions. 
The length of each customer's name varies, but 20 positions should be 
sufficient for the names. Secondly, all data in a field may be the same 
length. For example, customer number is six positions, and all six 
positions are used in each record. 

There are no firm rules for determining field size. The major problem 
involves fields with variable-length data. For example, if name is 
planned as 15 positions, and a new customer has 19 characters in his 
name, a problem arises when his record is added to the file. To avoid 
this problem, try to estimate the largest length of the data that will be 
contained in a field. Use this length to determine field size. 

Designing a Record and Determining File Size for Record I/O Files 83 

-------_ ...... __ .. _ ... _ ...... _.- -----_ .. _---_ .. _---_. __ ._ •....... _.-.. _-



84 

Providing for a Delete Code 

Records are not automatically deleted. You must place a delete code 
on a record with a BASIC REWRITE FILE statement. Then when the 
file is processed, your program can bypass the record. 

For example, you might use the delete code to indicate that a 
customer is inactive and that his account information should not be 
processed when generating a report. 

Record Expansion 

It is often wise to allow for data to be added to a record. For 
example, suppose this name and address file were created with the 
fields described, and at a later time each customer's zip code is 
needed. If all positions in the record are used, there is no place to add 
the zip code. Because record length is not yet established, we can 
allow for such additions to this record. Although it is often difficult at 
the planning stage to imagine what data might be added, it is wise to 
reserve extra space; a minimum of 10% is suggested. 

Designing a Sample Record 

Assume you are teaching a class and you decide to set up a record for 
each person. Each record will contain the person's name, his home 
address, test marks for five tests you plan to give, his average mark, 
and a code to indicate whether he is an honor student. The entries in 
the record might look like this: 

ENTRY CHARACTERS 

NAME 25 

ADDRESS 65 

GRADES 15 

AVERAGE 5 

HONORS 

111 Total 

Altogether, these entries take up 111 characters. You decide to 
include additional space in each record for possible entries to be 
added later, such as awards, special achievements, and remarks. 
Altogether, you decide to have a record with 128 characters in a file 
named CLASS with 128 positions for the record. 

\ 
.......... 

(' 
'-... _ ... " 

(~ 
,-..... ' 

c 



o 

o 

C) 

o 

o 

o 

DETERMINING THE SIZE OF A FILE 

To determine the size of a file, you must plan how many records will 
be in the file at a specified time. 

To determine the number of records in a file, consider several factors. 
First, you must know how many records will be in the file when it is 
created. If the file already exists, perhaps as a card file, use the 
number of records in this file as a base. 

You must also know whether records will be added or deleted. If 
additions are expected, how many records are expected, and how 
often will they occur? If records will be tagged for deletion, consider 
periodically removing them from the file. By removing records that 
you no longer need, you free diskette space and allow more records 
to be added. 

Only after considering these factors and the applications that use the 
file can you determine the number of records in the file. For example, 
the customer name and address file will contain 6000 records at 
creation time. It is estimated that each month 200 records will be 
added and 80 records will be deleted. It is also planned that the 
deletion records will be removed once a month. At the end of six 
months the file will contain 6720 records (1200 records are added; 480 
records are deleted). 

6000 
+1200 

7200 
- 480 

6720 

Records at creation 
Records added in six months 

Records deleted in six months 

Records in file after six months 

This example points out another factor to consider. When determining 
the number of records in a file, consider expansion for a reasonable 
time into the future (at least six months). Of course, most files have 
deletions, and thus growth is usually slow. In a file where the number 
of additions and deletions are about the same, records tagged for 
deletion need be removed only when the disk space allowed for the 
file is filled. 

Designing a Record and Determining File Size for Record I/O Files 85 

-----" .. _. __ ... _--------



86 

Calculating File Space 

To determine the file space, you must know the number of characters 
in the file. To calculate the number of characters in a file, multiply the 
number of records (allowing for expansion) by the length of each 
record. For the customer name and address file, there will be 6720 
records in the file at the end of six months. Each record contains 128 
characters. Thus, the number of characters in the file is calculated as: 

6720 
x128 

53760 
13440 
6720 

860,160 

Number of Records in the File 
Number of Characters in Each Record 

Total Characters in the File 

and the file should be marked for 860K. 

Calculating Index File Space 

If the file is indexed, the system stores the index on a file. To 
determine the space needed for the index, you must know the size of 
the index entry (an index entry consists of a key and a diskette 
address). Key lengths vary, depending upon the application up to a 
maximum of 28 characters, but diskette addresses are always 4 
characters long. Thus, the key entry is calculated as follows: 

Key Entry = Key Field Length + 4 

Note: The records in an index file must be 8, 16, or 32 characters 
long. Therefore, if the key entry is greater than 8 but less than 16, the 
index file record length is 16. Similarly, if the entry length is greater 
than 16 but less. than 32, the index record length is 32. 

In the name and address file described earlier in this chapter, the key 
field is customer number (#), and it is 6 characters long. In this case, 
the key entry is 10 (6 + 4 = 10) and the index file record length is 16 
characters. 

c 



o 

o 

o 

o 

o 

o 

o 

Now that we know the record size, we can calculate the storage 
required: 

16*6,720 = 107,520 

Thus, the index file should be marked for 105K (K = 1,024 bytes). 

After you determine the amount of space the file requires, you can 
decide where to locate the file on the diskette. A diskette can contain 
several files, depending upon their size: therefore, you should 
document the files that are on each diskette using the UTIL PRINT 
command. 

As you create more files, you can refer to the directory of ~ particular 
diskette to determine the amount of available space on that diskette. 

Review-Calculating File Space 

Calculation 1: Record Space 

To calculate the space required for the records of a file, the following 
steps are necessary: 

1. Multiply the number of records by record length to get the total 
number of characters. 

2. Mark the file to the nearest number of K bytes. 

Calculation 2: Index Space 

To calculate the amount of space required for an index, the steps are: 

1. Add 4 to the key field to get the length of the key entries. 

2. Determine index file record length, which must be 8, 16, or 32. 
Always assume the closest number that is not smaller than the 
length of the key entry to get index file record length. 

3. Multiply the index file record length by the record count to get the 
character count. 

4. Mark the file to the nearest number of K-bytes (characters). 

Designing a Record and Determining File Size for Record I/O Files 87 

----------------~------



88 

DOCUMENTING RECORD LAYOUT 

Documenting the record layout makes your BASIC program easier to 
write. The following example shows the layout of a customer master 
record: 

&-1_R-lIL....-_#_......L-_N_$_a-A_$---'_C_$_-+--__ O_th_e_r_F_ie_1 d_S ____ ~ ~ Reserved Space I D I 
1 2 3 8 9 28 29 48 49 68 69 127 1 28 

where: 

R = Record code 

# = Customer number 

N$ = Customer name 

A$ = Cu stomer street add ress 

C$ = City and state 

D = Delete code 

A record layout includes the order of the fields in the record, the 
length of each field, and the name of each field. 

Record Length 

A record may contain all predefined fields, or space may be reserved 
for data to be added to the record. In either case, all records in a 
particular file must be the same length. In your BASIC programs you 
must specify record length. Record length is the sum of the field 
lengths (including reserved space). 

In the previous example, the sum of the fields is 116 positions. 
However, the record length is established at 128, thus 12 positions are 
reserved for data that might be added at a later time. 

------------------------~~~~-

c 

c 



o 

o 

o 

c) 

o 

o 

o 

Chapter 11. Processing a Data File 

This chapter discusses how to process stream I/O and record I/O 
data files. 

PROCESSING STREAM I/O FILES 

To process a stream I/O data file, you follow this sequence: 

1. Open the data file. 

2. Sequentially read from or write to the file. 

3. Close the data file. 

Opening and Closing Stream I/O Files 

Files must be activated or opened before they can be used. A file can 
only be activated with an OPEN ~tatement in the program. For 
example: 

The word IN indicates that the file is to be used for retrieving data 
items from the file for use in the program. If the file were to be used 
for storing data, it could be opened explicitly as an output file with this 
statement: 

Now, look at the following OPEN statement: 

Processing a Data File 89 

--------_." ................. . 



90 

For input/output operations, a file must be identified with a file 
reference of FLO-FL9. In the previous example, FL3. This file reference 
is used to identify the file when you are using GET or PUT statements 
(for example, GET FL3, A, B, C). After the file reference, the device is 
specified (for example, 080). A file number and/or file name can also 
be entered for an OPEN statement. For the previous OPEN statement, 
the file number is 5 and the file name is ITEM.MASTER. For diskette 
data files, a file name must be specified when the file is created. 
However, for tape files or reading any file, the file name does not 
need to be specified. 

Normally, a file is deactivated or closed by the system after execution 
of your program. However, if you want to switch an input file to 
output (or vice versa) and continue to use it in the same program, you 
must explicitly deactivate it by using the CLOSE statement before 
reopening it. (If you did not use the CLOSE statement and attempted 
to use an output file for input or vice versa, execution of your program 
would be terminated.) CLOSE deactivates the file; a subsequent OPEN 
statement opens (reactivates) the file for its new use and repositions it 
at its beginning. For example: 

o 0 1 0 (J P E j\,! F 1.., n! ':0 U 0 ' " Lj,! '(i C C: ''I' ~3 ' .. (J 1...1 T 
o 0 :,:,:~ 0 P 1...1"1" F I... D " :0 ':I;. .. P ':1; .. i::', " E': , C: .. :0 
I,) 0 : .. ~:. 0 CI...C)~:::;C FLO 
o 0 I.i, 0 U P F f',,! F' L.:3.. ' :0 DO' .. 1.1,.. 't" C: C 'r ~3 . .. I (..! 
o 0 ~,:,:,i 0 Ci F T F 1... U J :0 ':ji ! P ':1; .. (:', ! :C: ! C: .. :0 

In this example, the values assigned to the variables 0$, R$, A, B, C, 
and D (statement 20) will be stored in file 4 (named ACCTS) on 
diskette drive 1. The file is then closed and reopened for input. 
Statement 50 then retrieves the variable values from the file. File 
reference code FL8 is used only to refer to the file opened in 
statements 10 and 40. 

- - _._--------_ .. _ .. _-------

c~ 

(\ 

"' .. _ .. / 



o 

(J 

o 

C) 

o 

o 

o 

Writing to and Reading from Stream I/O Files 

Stream I/O files can only be accessed sequentially. That is, you can 
only write or read records in sequential order starting from the 
beginning of the file. To do this, you use the PUT and GET 
statements. For example: 

(J P [: i\l F I... 1 J • :0 U 0 . .. ::? . I (l'r F n I::: ~:::;'r · .. C) 1...I·r 
p r.~ I i"'~ 'r . I::: i\l'r [: r·~: P P I i\l C: I P (:',1... . 
Ij\.!PI...IT P 

oono 
00') 0 
0100 
0:1.10 
O:l.~? 0 
0:1. :::::; 0 

FC)P T:::::I. '1'0 lO} Execute statements 130and 140 
FO n p:::: 1 TO .:? 0 ~.---- two hundred times. 
(-, :::: P .)(. ( :1. ": .. r~ ,0."" :I. 0 (I ) ,oj' 'r 

o ll.j·O PI.,I·r F·I...:I.!·r .. I?! (, _1---- Write the values of T, R, and A 
o :I. ~.:.:.; 0 i\.!E:::C'j" F~: to the data file. 
0:1. /:. 0 i····JE/ .. r T 
0.1."/0 ~3"(CIP 

The PUT statement instructs the computer to put the values contained 
in the variables T, R, and A into the file referenced by FL 1. 

Now, to read and print the data written to the file, you could use the 
following program: 

I) 0 :I. 0 (J P E (·1 F 1...:3.. . n no' .. :::.:: ! I () 
o 0 ::;!, 0 F) I? I j\!''j' • "( I j .... j F . .. . F·~: (:) 'r F . i • (:', i····j (11...1 j\.!·r . 
o 0 :::::; 0 F' CI P 'r :::::1. T (J :.:.:: 0 0 
o 0 I.!. 0 C:i [ T F 1...::::; .. (:i .' F: .. C: 
() I] ~.:.:.; 0 P F{ I i\.! T (:',. :U. C: _I ---Display the data under 
(I 0 (') (I i') C >< 'r ''1' 
o 0 "/ 0 ::;:; ''1' Ci P 

the appropriate title. 

It is not necessary to use the same variable names as when the file 
was created. The important requirement is that the values in the file 
and the variables to which they are assigned must be the same type: 
arithmetic variables for arithmetic values, character variables for 
character values. 

After the first GET is executed, the file is positioned at the next value. 
In the previous example, the GET statement is executed 200 times to 
access all the data previously stored. 

Processing a Data File 91 

._-----_ ........ _-------



Notice what happens when an input file is closed and reactivated as 
an output file. 

o 0 ~,:,:: 0 (] P E J'-.,! F I... Lj,! . :0 no' .. ::,:,~! . (::'1 F . " I j\,! 

o 0 :3 0 (3 E T F I... '+ ! (:'1 ! El ! C: ! D ! [ 

o 0 I.!, 0 J) :::: ('I 

o 0 ~,:5 0 (I :::: ::!:; (;. 

o 0 {') 0 C: :::: C + r:{ 
0070 CI...[I::::;[ FL.I+ 
o 0 n 0 0 P F N r:'I...I+! · D no' ! ::,:,::! · t'l F'! 01...1"1" 
o 0 (? 0 P 1...1 'r F !...I.!. " (:, ! B ! C 

A previously created file named AF is activated for input. In statement 
30, five values are made available to the program from file 2. In 
statements 40 through 60, new values are acquired for A, B, and C. 
Statement 70 deactivates AF, and statement 80 re-opens the file for 
output. Statement 90 places the new values for A through C into the 
file. All of the old values in the file are lost. 

Repositioning Files 

Occasionally you may have to use an input file or an output file more 
than one time in the same program. The RESET statement allows you 
to reposition the file without deactivating it (deactivation is necessary 
only when the function of a file is changed from input to output or 
vice versa). For example: 

-:: . 

. :;. 

O:!. 0 0 PEnF''j' r:'L.() ~I------- Repositions file to 
01 :1. 0 c-:;r;:"r FI... (,;.:0 ,: >< .. ',.( .. :,?: .. (:,:~ .. r,;: ! :3 its beginning 

.:: . 

. ;:. 

0:1. ~,:,:,;O nE:::3["r F'i...(? 
0:1./;.0 [iF"r FL.·:? " ><! "{ .. :,?: " C:!! F:!:;::; 

Between statements 50 and 100, the variables X, Y, Z, Q, R, and S 
could be used in one set of calculations and their values changed. 
Repositioning the file to the beginning permits the, original values in 
the file to be made available and put into variables X, V, Z, Q, R, and S 
again for different calculations or uses between statements 110 and 
150, and again between 160 and the end of the program. 

~ 
I 

\.._- .' 

,r--"" ( , 
\, ........ / 

c 

c 



o 

o 

o 

o 

o 

To add data to the end of the file, you can reset the file to its end by 
using the RESET statement with the END keyword: 

o :..:.~ 0 0 n [: ~::) E T F 1.., :I. E j •••• / :0 

This statement positions FL 1 to the end of the last data item in the 
file. PUT statements appearing after statement 0200 place additional 
data into the file. In effect, RESET FLX END changes an input file to 
an output file. In this case, the file must be open for input before you 
use the RESET END statement. 

Input/Output Error Handling 

Certain error conditions can occur while you are processing files. As 
an example, when reading through a file, you need to take action after 
the last item is read; otherwise the computer will terminate the 

program. The EOF (end of file) clause can be written in the GET 
statement to branch to another program statement when the end of 
the file is reached. 

A GET statement with an EOF clause could look like this: 

o 0 '+ 0 c) E T F I... \.:':, ! >< .' '( ! Z: .' ED FlO 0 

This statement directs the computer to statement 100 when the end of 
the file is reached. At statement 100, you could end the program, or 
close the file and continue processing, or perform any number of 
actions. The important thing is that specifying the EOF clause allows 
you to retain control of program execution. 

The EOF clause can be specified on the PUT statement as well. Note 
that if an EOF condition occurs, not all of the output data may have 
been written into the file. 

Processing a Data File 93 

------_._.",,----------- ------------,_._-_._---- .. -



94 

These are other error handling clauses: 

Clause 

10ERR n 

CONV n 

Meaning 

Branch to the statement numbered n 

if a hardware malfunction prevents 
reading or writing of a record. 10ERR 
can be specified on the GET and PUT 
statements. 

Branch to the statement numbered n 
if a conversion error occurs while a 
data item is being assigned, for example, 
if an attempt is made to read character 
data into a numeric variable. CONV can 
be specified on the GET statement but not 
on the PUT statement. 

Instead of writing these error handling clauses on many GET and PUT 
statements throughout your program, you can write them on one or 
more EXIT statements. An EXIT statement is used in conjunction with 
many input/ output statements to group error handling in one place. 
The statement could look like this: 

This statement tells the computer to branch to statement 100 when 
the end of the file is reached, to branch to statement 150 if a 
hardware error is encountered, and to branch to statement 200 if a 
data conversion error is encountered. 

ACCESSING RECORD I/O FILES 

You can access record I/O files by three methods: sequential, direct, 
and indexed. 

The sequential access method is one in which the records are 
accessed in the order in which they are entered. To use an example of 
the 50 states, if you enter the records in alphabetic order, the first 
record is Alabama, then Alaska, Arizona, Arkansas, and so on. If you 
enter them in geographic order, say with the New England states first, 
the order is Maine, New Hampshire, Vermont, and so on. In either 
case, all records are retrieved sequentially in the same order that they 
were entered. 

--------------" - --~.---------.-.----~-.. -~~--.~- ... - -_._._---

c 



o 

o 

C
"" 
J 

o 

o 

o 

In a record-oriented file, each record has a record number relative to 
the first record. If the 50 states are stored alphabetically, the Arkansas 
record has a relative record number of 4. The direct access method 
can be used to retrieve records directly by record number. 

An indexed access method is one in which each record is stored with 
a unique identification called a key. If the 50 states were stored with a 
key (for example, the key could be the name of the state), you can tell 
the 5110 which key to look for. The computer looks through an index 
until it finds the particular key and then retrieves the corresponding 
record from the master file. Thus with an index, each record can be 
retrieved directly. 

To process a record I/O file, you follow this sequence: 

1. Open the data file. 

2. Access the file sequentially, directly, or indexed directly. 

3. Close the data file. 

Opening and Closing Record I/O Files 

Record-oriented files, like stream-oriented files, must be opened 
explicitly. A record-oriented file is opened explicitly through the OPEN 
FILE statement. As you may recall, for stream-oriented files, OPEN is 
specified with the keywords IN for input or OUT for output. 
Record-oriented files are opened in the same way for input and 
output. If ALL is specified, the file can be accessed for both input and 
output without closing and reopening. 

In addition, the REel= clause (record length) must be specified after 
OUT when creating record-oriented files to specify the length (number 
of characters) of the record being written. 

CLOSE FILE is used to close files the same way for record-oriented 
files as CLOSE is used for stream-oriented files. If the statement is 
not present, the system closes the file at the end of program 
execution. 

Processing a Data File 95 

----_ .... _---....... . 



96 

Following is an example of an OPEN FILE statement for a record I/O 
file: 

i) I. '''j () D I" r:: N F 'r' F 1" L;;'>, 'D i:i i) . 

I Specifies a record I/O file. ' 

Notice the period (.) in the file name NEW.ACCOUNTS. No blanks are 
permitted in the file name. 

If you are going to use the indexed access method, you must also 
open a file for the index. For example: 

0:.":: J q r) r:: L~ j .. ...! r' I L.r i::. F' f.., .":::~.: . [: f:: {.I : .~ ':':'.~ I C~. 1...: ~:::; or C'! j ..... j E:. F:~ :::~~ I I CJ i . .J or ,I r.~: F. C: L, .::: l :.:..~ ~::~ 

o ~? :~:.i (I !J F' I::: (·.1 F J L r:: F I.., :.:':;! ':U t:: 0 ' .. ::.:.::! ' Ii"'(O L >< ' ! U I..}f , I< F \: , !< P : .. : J .' 1< L ::;: ~.? !.:,:.; 

The file reference must be the same for the master and the index file; 
however, the files must be in different locations on the media (in this 
example, files 6 and 2). After statement 220 is executed, the 5110 
automatically creates an entry in the index file when a record is written 
to the master file. The KP= and KL= parameters describe the starting 
location and number of characters of the record in the master file to 
be used as a key in the index. 

Note: If the parameter SEQ is specified in the open statement for a 
data file, that file can be used as a data exchange file with other 
systems. However, this file should only be accessed sequentially. 
Direct access of the file might not access the desired record. 

(' 
\" ..... 

(~ 
'---- . ./ 

c 

c~ 



o 

o 

o 

('- .. 
U 

o 

o 

o 

Writing to and Reading from Record I/O Files 

Creating a Record I/O File 

The WRITE FILE statement is the record-oriented counterpart to the 
PUT statement. For example, at the beginning of the school session, 
the only information available to you for each student is his name and 
address. You could write one WRITE FILE statement to enter the 
name and address for each student like this: 

You could also write one generalized WRITE FILE statement using two 
character variables for the name and address, like this: 

This statement would enter the values of the two variables N$ and A$. 

This DIM statement should be included in the program to assign a 
length of 25 to N$ and 65 to A$: 

Each record written by the WRITE FILE statement would be arranged 
in the file this way: 

Iname address unused 

26 90 128 

Note that this WRITE FILE statement writes 90 positions of the record. 
Unassigned record space is filled with blanks. Thus, record positions 
91 through 128 are blank. The WRITE FILE statement contains a 
USING clause with the statement number of the FORM statement, and 
the FORM statement describes how the entries are to be formatted 
into the record. The combination of WRITE FILE and FORM 
statements could look like this: 

o 0 ',:,=,; 0 1/ .. 1 F~ J T I::: F I !... I::: 1...1 S I i····J Ci ~,:5 ~.::j .' F I... 1 ! i",! ':Ii .. (:',':1; 

o 0 :,:.:.; ~.:.:; F D P (j F D ~::):I. .' C: .. p C) ~:::; ~.:.:: /) .. C: 

Processing a Data File 97 

---_ .. _----_._--_ .... , ... ,- "" .... , , .,' .. , .... , ... ,-,." ... ,._,." .. .- _ .. , ._,"'-'-""--'-'-' .--- ------.. -,_ .. ,._.""."" """"" ." ... _"_ .. "--,, ... 



98 

This FORM statement says that, beginning at position 1 in the record, 
the character variable N$ is to be written; beginning at position 26 of 
the record, the character variable A$ is to be written. 

I name I address I unused 

26 91 150 

The following program shows how you could enter the names and 
addresses of the students into the file named CLASS. 

Ct 0 :I. 0 (j P [: ("! F I L F F l...:!. ' D:J (} , ! 1. 'C: I.., (:.{ ::::; ::::; , .' iJ!..J·r .. F~ I::: C: L :::: :I. ::.? U ! ::::; F () 
o 0 ::.:.:: U :U J j ..... j i····.! +. ::.:.:~ :.:.:.! .' (\"t. (:':, '.:.:.; 
o 0 :"S CI P P J j\.! 'r 'F j\I"C C i? i····.! (:.{ j ..... j F ' 
o 0 1.1· 0 I j\.! P I..J T j\!.:t:. 
o 0 ~.::; 0 I F ("! .;!:. :::: ' L (:', ::::;'r' (':i (J 'r C) 'L.L 0 
o 0 (';. () F' F·~: J (..1 'r 'E i"-.. ~ 'r [: n (:', T) D i? F :;::;:3 ' 
o 0 "/ (I J (·.1 P !..J,(, (:', -;!:. 

o 0 :3 0 i ... "; r~ I ''I' I::: F ILL !...! :3 I () C-:; i.~.:' 0 ! F 1.., l. .' () ':I;. .. (',-:1; 

o 0 (.:.:: Ci F' [I F·~: (o'j F' (J ::::;:i. ! r.:: .' F' [I :3 ::.? {.) ) C: 

The program is constructed to recognize the word LAST as the end of 
input; therefore, the last input item should be coded 'LAST'. Your 
input could look like this: 

· :C·; !..l·r L [: F:: .' "..1 • :::) , I 

I :.':::: ::.:.:: :.'::; 1.. .. .1. "? (:. :;::; T r.:: F ['r! (·.1, \. '! 1 0 0 ::,:? :.'!:. I 

· C: (j U i<: ('1. E':, ' 
I : .. :::; 0 '::'i ;? ;:;;; ''1' ! .. ~: I::: r:: T! t..J I::: :3 'r (.1 I::: 1 .... .1 ... ( [I r:: I<! (..! I "..1 , 

.::. 

::. 

I :::) ('I :I: 'r H! C. (:.{ , 
I ~,,:,:: ::.:.:: ;:::; 1:::, :.:.:.; I.:.:.; :3 'r F: [' I::: "I'! j'--.. ! I "'j' • .. :I. 0 0 ::.'?;,? , 
• .. { Ci i...1 (·1 C-:i.. 1/..\. I 

, :.'::: ::.:,:: :.'!:: 0 1 /;. ~::.; :3f F: L [T) r:' L..I..'! ::;;; H I (·.1 Ci (·1 , ... ( , 

, I... (:'j ~:;;'r ' 

After the records are entered, the first record in CLASS would look 
like this: 

:Cl...! T L,E:: F< , l c:· 
', . .1: •... :: 

CO"'" 

_/ 

(~ 
....... _ .. 

c 



o 

(J 

o 

o 

o 

o 

After the file has been created, if you decide to add more records, say 
for a new student who registers late, the WRITE FILE statement can 
be used to enter additional records. No RESET statement is necessary 
as with stream-oriented files; the WRITE FILE statement automatically 
positions a file at its end. Note that additional records would not be 
sorted but would be entered in place at the end of the file. 

Now, assume an index file was also specified for the previous 
example: 

00 1 ~.:.:.i D PEi\.! F I L.[ FL:I.) 'OU 0 ' ! :::.::" , I (.! :0 F >< ' ! [11...1 "r ) 1< E \( ! 1< P :::::1. .' 1< 1.., :::: ~.:.~ ~.:.:.i 
\. I 

Use the characters in 
positions 1 through 25 
as the key. 

When formatting the key field, you should exercise care in putting the 
key into the proper position in the file. For purposes of simplicity, 
these examples use the first 25 record positions for the key. The 
occasion may arise, however, when you might have a file with the key 
starting in a position other than 1. By careful use of POS , you can 
assure that the key will be properly located. Also, you can use the 
intrinsic function KPS (FLX), to find the position, relative to 1, of the 
start of an embedded key in the file referenced by FLX, and you can 
use the intrinsic function KLN (FLX) to find the length of the key. 
These functions are described in the 5110 BASIC Reference Manual. 

After the records are entered into CLASS, additional records can be 
added and will be stored in key-indexed order. 

Reading Records from a Record I/O File 

A record I/O file can be read sequentially, directly using a relative 
record number, directly by key index, or sequentially by key index. The 
method you use depends upon the requirements of your application. 
Following is a description of the four ways to read a record I/O file. 

Processing a Data File 99 

._._ .. _._ ........ _ ... -.. _-_ .. _ .. _._ .. _- ._--_. --_._--------



100 

Sequentially 

The READ FILE statement is used to sequentially read a record I/O 
data file. For example: 

.::. 

:::: i) ::,) (I I:':: F ,:':'d:1 F:r!, :;;: ! J i,'; 'j: ;' .. j t,; i 1.'1 i'l ! j':'! ,I. j':'(:I:,. 'C.: Ii ,!' ,:U ':j:. 
(:I 'I 0 0 F C) !? ('; C:::i. 0 ! I,::: :::.:~ 0 " 1\,1 C: :i. 0 .' L: ~.:.:; 

.,:' 

Notice that the file is first opened as an input file with FL 1 as the file 
reference. The READ FILE statement uses the same file reference. 
The FORM statement (statement 100) specifies the format of the 
record. 

Each time the READ FILE statement is executed, the system reads the 
data in the next sequential record in the file. Thus, the records are 
read in the same sequence they were written to the file. 

It is not necessary to read the items in the same order in which they 
appear in the record. For example, the statement could be written: 

o 0 ':/ 0 F~ C (:', :U !,'. ::. L , 1::: !.J ~;;; I (.I C'i J 0 0 ! F 1...:1. .' C: .' :U -:/:" :t·: -:1: ... (:', + 
o 1 U 0 F C) F:~ ('j P (J ::::; ::::;;:l. .' i") C: 1 0, ,::: C) :;:;; Lj.:i. ! C: ~.:.:.; .' F' CJ :::) :I. J .' C: ::.::: 0 .' j:': C) :;::; 1 .' C::!' 0 

Nor is it necessary to read all the items in a record. If you were 
interested only in obtaining name information, you could use this 
READ FILE and FORM combination: 

o 0 :::.:: 0 F:: F (:.\ :U F I L. F 1...1 :;:;; :I. j\.! Ci 1 0 0 .' r' i... I. .. (:f'l 

o 1 0 I] F' C) F·:~ ('j p () :3 1 .' C: 1 0 

This combination might be helpful when you wish to insert test marks 
for each student. You could read through the file sequentially, obtain 
each student's record, display his name on the screen for verification, 
and enter the corresponding mark. 

c 



o 

C) 

o. 

The READ FILE statement, like the GET statement, can contain an EOF 
clause to transfer control when the end of the file is reached. In the 
program shown below, the READ FILE statement causes program 
control to branch to statement 100 at the end of the file, which is used 
to print a message. 

This program shows how you can read each student's record to insert 
a test mark. The program also introduces the REWRITE FILE 
statement (see Updating Records), which is used to update an existing 
record, and shows how OPEN and CLOSE statements can be used 
with record-oriented files. 

Opens the file for 
0020 flJi"i ,.J·:I;~.:.~~:.:.; /inputandoutput 

'

·.·.1 ('J ','.7 ••• l'J' 1· •• ·\. I:> I:.:.'. '1".' 1::".1'.1 ..• 1:.:.'. 1"'1'1 'I'"\''' .,,' ,(., 1 I l" ",. .' II/' • I .. ..... J • .I b 1..1 J "~) I .1 ,,' f'~1 ,:) b .. i'~1 .. , ... 

001.1·0 FH::tIDFII...E 1...I~:n:NC-:i I+~::.i J FL.:!.} ,J=I; J EIJF :I. 0 0 • Branch to statement 
o [I I+~.:.:.j F~~(:~ ~::~::·i .... PO~:~:I. J C ~ ~ 100 when all the 
o 0 ~.::.i 0 I .. k .I. I"'! I ... bl. ~ead name from the file. records are read. 
0060 INPI . ..I·r Ci 
o O .. ?O nEI/ .. IF~I"j'EFIL.E I...IE)Ii····1G "?~'=; .• FL.:!. .. C'] ~·-----Update the record 
o [I ·l~:.:.i FD RI','1 PD~::;:I. 0 :I. I PIC ( ZZN ) with the grade entered 
() 0 D 0 GDlCl I.j·O from the keyboard. 
0:1. 0 0 PF~Ii\ll · Ei\lD DF FII...E .... L.(:~IGT F~Ec::ORD F~E('ID' 

0:1.20 DTDP 

Record Layout 

Name Other ) ~,_D_a_t_a _______ .......... _G_r_a_de __ 

25 101 

Statement 30 opens the file. ALL is a special keyword used with 
record-oriented files to indicate that both input and output operations 
can take place on the file. ALL is required if any· rewriting operations 
are to take place. 

Statements 40 and 45 obtain the name information from the file. 
Statement 50 displays the name, allowing you to verify it and enter the 
corresponding test mark in statement 60. Statement 70 is the 
REWRITE FILE statement, which enters one data item into the record 
just read, the numeric variable G. Statement 75 says that the variable 
is to be entered beginning at position 101 of the record, in the format 
PIC(ZZ#), three digits with leading zeros suppressed. The remaining 
statements cause the program to cycle through all the records and 
close the file after the last record is handled. 

103 

Processing a Data File 101 



Page of SA21-9307-0 
Issued 28 April 1978 
By TNL: SN21-0277 

Directly Using Relative Record Number 

102 

To retrieve records directly by relative record number, specify the 
REC= clause in the READ FILE statement. If, for example, you want to 
access the Nth record, specify: 

70READ FILE USING 75, FL1, REC=N, C$, A$ 

The following example shows this method of record retrieval: 

o () :1. 0 :0 I r'l :0 0=1;2 (} 
o 0 2 0 c) PEN F I I... E F 1...:1. I ':0 DO' o'~? I 'ioo'l (I ~:) or E I;~ I 0' I N 
0040 PRINT 'INPUT REC' 
o 0 ~o:o:o; 0 I i\~ P 1...1 T I( 
005:1. IF K=O GOTO 90 
0060 F1Ei:~IDF I I...E I...I~:) I NG 70 I FI...:I. J I~EC::::I< .. X I D°:l; 
0070 FORM NC10 / C20 
o 0 BOP F1 I N T )( 0' :0 °=1; 
o I] f) 0 :;:) or (] p 

In this example, file number 2 (referenced as FL 1) on diskette drive 
one is opened for input. Statement 40 requests keyboard input, which 
is assigned to variable K in statement 50. Statement 51 tests for the 
end of the program. In statement 60 variables X and 0$ are read 
from the file referenced as FL 1, using the value of the variable K to 
access the record in the file MASTE R. Statement 70 specifies the format 
for the data being read. The data is displayed (statement 80), after 
which the program branches back to request keyboard input again. 

Directly Using an Index 

If an index file was created, records can be read from the master file 
using an index. In this case, both the master file and the index file 
must be opened: 

00:1.0 OPEN FILE FL2, 'D80',2/ 'GRADE'/IN 
0020 OPEN FILE FL2/ 'D80'/3/ 'INDEX'/IN/KEY 

t 
Specifies direct 
access by key index. 

("', 
, 

....... '" 

c· 

(~ 

"----



o 

o 

o 

o 

o 

o 

o· 

If you wanted Smith's record, you would specify his name in the KEY 
clause in the READ FILE statement: 

Direct access using a key. 
o 0 (') :,:.:,: (.J ,t· :::: I ~:::; j·· ... i T or ".;.: C:: I (:'! I I 

"/ ~.:.:.; ! F I... ::.:.::, rl< L \( ~:: ("! +. .~ F"t· ! C:i J. 

The 5110 will search for the record whose key matches in the index 
file, then will read the values from the master file record into the 
variables F$, and G$. 

The following example shows this method of record retrieval. 

o 0 :i. n :0 1 ('j :u J. ::? i) , 1< -:1:. :l. 0 
o 0 ::.:,:: 0 U F' r:: ("! F' I !.. I::: F 1.., 1 ! ':;;:; \' ::;;; , ! ::.:.:~., 'j ..... j {\~:;:; r L r.:~' , I ( . .1 

o 0 :.'::) 0 U P F ("! F 11... I::: r:' i", :L.. • ~::;; \' ~;;;; , .' :I. i ' I ( .. 1 II F >< ' i I ("! ! i< F \( 
(I 0 I.j. 0 r" I? I ("! 'r . I j\.l P 1...1''(' 1< C \( . 
o 0 ~.:5 0 J ("! F 1...1 T !< 'l 
o (} {:';. 0 F;~ I::: tl :0 r:· 11... L 1...1 ~3 I (..! Ci "? 0 ! F 1...:1. ! 1< F .. ( :::: i< J. i >::: .' :0-::;· 
o 0 "/ 0 F C) I? j'--'j ( .. 1 C: 1 (I .. C: ::.:.:~ 0 
o 0 :J 0 P I:':: I j\.1 'r >< i :U t-
O 0 F: ~.: .. ; C:i u 'r Ci I.!. 0 
o 0 i.) 0 ~:;:; T fj P 

In this example, the specific record in file number 2 (referenced as 
FL 1) is selected by the key value you enter in statement 50. If, 
however, the computer cannot find the key, it indicates an error unless 
you instruct it to take alternative action. For example, if you enter the 
key incorrectly (say you spelled the name SMIHT), the match would 
not be found. To protect program execution, include the NOKEY 
clause on the READ FILE statement: 

The NOKEY clause tells the computer that if the matching key cannot 
be found, the program should branch to statement number 200. The 
NOKEY clause for indexed files is similar to the EOF clause for 
sequentially accessed files; it permits you to retain control of program 
execution if a particular condition arises. 

Records can be read sequentially by key using the index by opening 
the index file and master file and specifying the READ FILE statement 
without the KEY parameter. 

Processing a Data File 103 

_ .. _.----" .. _ .. _-_._--- _ .... __ ... --------- _._-----



104 

Updating Records in a Record I/O File 

Part or all of a record in a record I/O file can be updated using the 
REWRITE FILE statement. When updating a record I/O file, the OPEN 
statement for that file must specify the ALL parameter. For example: 

0020 OPEN FILE FL2, '080', 3, 'MASTER', ALL 

The following sample program, which adds telephone numbers to 
records in an existing name and address file, shows how you can use 
the REWRITE FILE statement to update a record I/O file: 

0010 r.::Fi··'i 
0(1 ::? 0 F::Cj··· .. i 
o 0 :-::;: 0 :0 I ("i (·1 ·:i:· :.? :.:.:.i ! (:', J. (') :::.i ! 'r ':1; J ::.:.:: 
o 0 1.1· 0 0 P [ (·1 F J L F F !... ::.:.':.. ':U :3 0 ' .. ..:').' . I"i t·: I L . l... I ~:) T • ! f:·:·, I.. L 
o 0 :.:.:.; 0 P I::: (:'{ :0 f J L [ !..J ~:::: T (.) (-} {.) 0 ! F L.. :::.:: : i"-) ':1:· , (', -:j:. ! E:: U r :I. ::? 0 
o 0 () I) F U F: ("j C: ~.:? :.:.:.; ! C: {::. :.:.:; 
o 0 "? I) F) P I ("! "r (,,! -+ 
o 0 n 0 I ( . .1 F' I...i 'f T ':1:. 

o 0 .:.:.:. 0 F:~ E 1 ... ..1 F: :r 'r [: F J L I::: 1...1 ~:::: Ii') c-:i :I. 0 I] ! F i .. ::? ! 'r ':1:· 
o J 0 0 F' U F·:: ('j P CJ ~;::; ';.;):i. .' C: :I. ::.:.:: 
o :i. 'I. 0 C:i Ci 'r C) :.::.i 0 
o :I. ::.:.:: 0 P h~ J ("! 'r 'I::: (··1 :0 D F "..1 I::) :C·: . 
(I J :.'!:; 0 ~:::: T (] P 

When the file was originally created, each record contained space 
available for the telephone number and other data. After a record is 
read (statement 50), the name is displayed (statement 70) and the 
telephone number can be entered (statement 80). Once the telephone 
number is entered, the record in the file is updated in positions 91 
through 103 (statements 90 and 100) and the next sequential record is 
read. This process continues until the last record in the file is 
processed. After the last record is processed, an end of file (EOF) 
condition occurs and the program branches to statement 120. 

c 

c 



o 

o 

o 

o 

o 

o 

o 

If there is an index for the master file, you can access and update 
individual records without processing the file sequentially. For 
example, you could use the following program to update the telephone 
numbers of specific customers in an already existing name and 

address file: 

o 0 :i. 0 :0 I (.'j i···l·:\:· ::.:.:: ~.:.:.; ! (:'j':I; (':, ~:.:.; , 'r':\:,:L ::.:.:: 
o (I :,,::: 0 U P F (..! F I 1... L r:·1... :::.::! ' :U C: (! " .. :'!! '('j ('1 I !... , L I :3'r ' ! (:'1 1..1... 
o 0 ::::;; 0 Ct Fi F (.j F I !... C r:·1... ::.:,::! ' :u no' ! 'I-, ' T i"·! :U C >< ' .. (:'1 LI... ! i< F 'y' 

U 0 Lj. 0 I ("! P i..J 'f I<-:j:· 
o 0 ~:.:; 0 I F I( + ::::' , C:i (J 'r I,:) :I.:.:.~ (I 

o u ,<:. 0 I ("! F' t..! 'r 'r 'l. 
o 0 "/ 0 I:':: C I ... ..! F·:: I ''1' F F I!", E i..J E; I () h ::::; 0 .' j::'!.., ::? .. 1< [: \( :::: 1< "t. ..f -:Ii ! () fJ !< E >... :l. 0 0 
o 0 H 0 F fJ F~: (.'j Fi D ::;:; ':? 1 .. C:l. ::.? 

00':) I) c;cl'ru I.i· 0 
I) :I. 0 0 i:i F: J (.,l·r 'j'..J U i",'i (:', 'r C: H F CJ 1".1 (.J:C ' 
0:1. :L:) C:iCJTC) Li· U 
OJ::.::: 0 ::;:; '" C) r:' 

When this program is run, statements 40 and 60 request the 
customer's name and new telephone number. Then, if the name is 
found in the index file (KEY=K$), the master file is updated with the 
phone number (T$). If a name match is not found, the message NO 
MATCH FOUND is displayed (NOKEY=100), and the program 
requests the next name and telephone number. If a ' , is entered as 
the name, the program branches to statement 120 and stops. 

If the KEY clause (KEY=) is used in the REWRITE FILE statement, no 
READ FILE statement is required to retrieve the record first. If the KEY 
clause is specified, the record matching that key is brought in from the 
file; thus, the REWRITE FILE statement with a KEY clause retrieves as 

well as rewrites. 

The REWRITE FILE statement can write over existing data or unused 
portions of a record, but must not change the contents of the field 
containing the key information. Fields not written over remain 

unchanged. 

Processing a Data File 105 

----_._ .......... _ .. _ .. _ ... - . ..._----_ ...... _-_._._._--------------- _ .. _---_ .. _-_ .. --.. _._._--_. __ .... _--



106 

As another example of REWRITE FILE, assume that during the school 
term you give the students an extra credit project; their final grade will 
be raised by five to ten points depending on the quality of their work. 
Before the end of the term, you add in the extra credit for those 
students who handed in the project. The short program below 
illustrates how the REWRITE FILE statement can be useful in updating 
the records. 

!J 0 ::~) (I :0 I (.'j (1 + .:.:.:: ~:.:.; 

o :l. f) 0 PHI (·1 'r 'E:: (.! "i' F P ::::; T !..J :U F () T' "::; 1\.1 (:', ('j [: i:·:., (.] :0 C >::: "r !? (:', C: F~ I::: :U I "( (.'1 (:., i) 1< ' 
o :I. :i. 0 I j'') P !.J 'r i····! -:i;. i L 
o 1 ::? 0 T F ( .. 1 ':h :::: · i... {:', ::;:; T' Ci n 'r u .1.'/ U 
OJ.?; (I !? F i.. . .l !? I T C F J l.., L 1.../ ::::; :/: ;····.1 U :1 .. '\ !.:.:; i Fl... ::.) .' 1< F \/ :::. () +- i I::: i i··..,l U i< L ".( :i. ~.:.:.; 0 
o :I. :/; ~.:.:.; ;::. D r.:: (.', Fi U :::;; lLj· 0 .. PIC: < :.?: :i:;: ) 

o :I. q. 0 C:i fJ T C) J 0 0 
o ::' :.:.:.; 0 P r·~: J (·.1 "r 'i\.! [i (.'1 (\ 'f C:: H F: fJ 1...1 ( . .1 .!'i F CJ F~ , .' (!':i:-
n J ::-::0 0 Ci ur C) :L 0 0 

Statement 100 prompts you for input information. Statement 110 
accepts the student name in N$ and the mark in E. Statement 120 
tests whether the end of input has been reached; assume the last 
input data item should have the word LAST as the student's name. 
Statement 130 enters the mark recorded in E into the file after the key 
has been matched with the name in N$. Statement 135 formats the 
mark into positions 140 and 141. 

More Information About Processing Record I/O Files 

Deleting Records 

Records in an indexed file can be made unavailable with the DELETE 
FILE statement specifying the key of the record to be deleted. For 
example: 

This statement would delete (by modifying the index file) the record 
whose key matched the character value in N$, or would branch to 
statement 130 if the key could not be matched. The actual record is 
not removed. The record key in the index file is flagged, making the 
record inaccessible by key. 

----_ •... __ ......••..•.. ---

~ 
'---



o 

o 

o 

( ----­

U 

o 

o 

o 

Repositioning Files 

The RESET statement can reposition a file to its beginning. If RESET 
contains a KEY clause, the file is repositioned to the particular record 
associated with that key. If the RESET statement contains a REC= 
clause, the file is repositioned to the record specified by the REC= 

clause. 

Error Clauses on the EXIT Statement 

For record I/O files, the EXIT statement can specify these clauses in 

addition to the other clauses available: 

• NOKEY, to transfer control if no key satisfying a KEY clause can be 

found. 

• NOREC, to transfer control if the relative record number specified by 
the REC= clause cannot be found. 

• DUPKEY, to transfer control if a key specified for a new record 
already exists in a file. 

An EXIT statement specifying all error handling clauses could look like 

this: 

When using the EXIT statement, remember to include an EXIT clause 
on each appropriate input/output statement. For example, to refer to 
the EXIT statement above, the DELETE FILE statement previously 

illustrated could be written: 

() 0 ? [I :0 E I... E T E F I I... E F I... ::.:.:~ } 1< E .. { :::: I···.! ':I~ .. [ >::: I 'r :I. :3 0 

Processing a Data File 107 

--------- ----_ ..... _-----



108 

The FORM Statement-Differences Between Print and Record I/O 

The FORM statement used with record-oriented files is similar to that 
used with PRINT USING in the following ways: 

• Both contain the C character specification. 

• Both contain the replication factor (see the IBM 5110 BASIC 
Reference Manual.) 

• Both contain the PIC numeric specification, with the same digit 
specifiers and insertion characters. 

• Both contain the format control specifications X and pas. 

• Both contain character constants (see the IBM 5110 BASIC 
Reference Manual.) 

The FORM statements used are different in the following ways: 

• With record-oriented files, the FORM statement does not contain 
the SKIP format control, because there is no need for a skip 
operation. 

• With record-oriented files, numeric data can be formatted using 
other specification codes besides PIC. Additional specification 
codes are: 

NC 
PD 
S 
L 
B 

B, NC, and PD are used to store and retrieve numeric data in special 
internal formats. Except for one use of NC, they are not further 
discussed here; additional material on these codes can be found in the 
BASIC Reference Manual under ~FORM Statement.' 

(\1 
''-.. ' 

C
--~ 

-,./ 

c 



o 

o 

o 

o 

o 

o 

The NC Specification 

The one use of NC applicable to this discussion is in its relationship to 
PIC. PIC can be used only in output operations; thus, it can appear in 
FORM statements related to WRITE FILE and REWRITE FILE 
statements, but not in those related to READ FILE or REREAD FILE 
statements. To read data that was written using PIC, NC is used, 
specifying the number of positions in the record to be read. For 

example, 

NC4 

would read four positions of a number. 

If a number were written using this PIC specification: 

PIC(###) or PIC(ZZ#) 

the NC specification to retrieve it would be: 

NC3 

To retrieve only the first two of these digits, you would specify NC2. 

Earlier, this FORM statement was used to enter the two-digit numeric 

variable E into the file called GRADE: 

To retrieve that value, you could use this FORM statement: 

NC can also specify the number of decimal digits in a number, in the 

following manner: 

NC5.2 

Processing a Data File 109 

-----_._._-----_._-, ...... .,-.,._-,-, 



110 

This specification says that five positions are to be read, and a decimal 
point is to appear before the two rightmost digits. That is, the five 
positions could look like this: 

12.34 
1.234 
11234 

would be read as 12.34 
would be read as 12.34 
would be read as 112.34 

If an item were written using this PIC specification, 

PIC(###/f.:##} 

The NC specification to retrieve it would be: 

NC7.2 or NC7 

The first number specified in NC is the field width, that is, the total 
number of characters to be read, including digits, decimal points, 
commas, dollar signs, etc. The second number is the number of 
decimal digits. The following are examples of how PIC and NC can be 
used in combination: 

If PIC were specified: 

PIC(###.#/t-) 
PIC(Zll.#/t-) 
PI C($$,$$$.#/t-) 

PIC(ZZBZZBZZ) 

The Sand L Specifications 

NC would be specified: 

NC6.2 or 
NC6.2 or 
NC9.2 or 
NC8 or 

NC6 
NC6 
NC9 
NC8.0 

The specification S indicates that an item in a record is in short-form 
precision. A number in short-form precision takes up four positions in 
a record. If S is specified for an input operation, the value in the 
record is moved to the variable specified in the READ FILE or REREAD 
FILE statement; if the program is in long form precision, such a value 
is extended to long-form. If S is specified for an output operation, a 
short-form value is written from the variable specified in the WRITE 
FILE or REWRITE FILE statement into the record. 

The specification L indicates long-form precision and is the long-form 
counterpart to the S specification. A number in long-form precision 
takes up eight positions in a record. 

'C,---'" 
, ,"~~., 

C~ 

\' 
'-.,-,.--' 

c~ 



o 

o 

o 

o 

o 

o 

For an input operation, the value in the record is moved to the variable 
specified in the READ FILE or REREAD FILE statement; if the program 
is in short-form precision, long-form items are truncated to short-form 
before being used. For an output operation, a long-form value is 
written into the record from the variable specified in the WRITE FILE 
or REWRITE FILE statement. 

After all the marks for five tests and the extra credit for the project 
have been entered into the file GRADE, the first record in the file could 
look like this: 

BUTLER, J.S. 323W. 76 STREET, N.Y.,10023 ~92~84100~80~7 

26 101 140 150 

If you wanted to print the final mark and the honors status, you could 

use this program: 

o 0 :!. 0 :0 I i"'i C-:i ( ~.:.:.; ) .' ('j":j=.:!. .. j"-.• !':I:- ::.:.:~ :.:.:.; 
o 0 ::.:.:: 0 F:' P I j"-.. ! ''1' 1...1 ~::) T (..! Ci ::.:? ~.:5 ! F·I... F.. . r: It·.; (:', L j ..... j (:', F·:: i< ' ! 'H C) (..! C) i? ~:::; . 
o 0 ::? ~.:.:.; F (J n ("j P CJ :;;;; (':, .. C: .' p () ~:::; ::::;; :.:.:.; .' C: .' P (j ~:::; :.:.:.; U .' C: .' :3 1< I P ::.:.:: 
o 0 ::::;: 0 U P [: j .... ! F I I... F F i.., ::.:.:: i ':U E; 0 ' .. ::.:.::.. ' C} i? (:', :0 [ ' .. (:', L 1.., 
o 0 :.:.:.i 0 i? [: (;', D F J !...I·:: 1...1 ::::; J ("! C:i :.:.:.; :.:.:.; .. F 1.., ::.:.:: i j\.!):. : (o'j (:','1' C:i .' [: ! E C} F :L.L I.) 

f) U .:.:':, (I (:.\ :::: :::; 1 .. .1 (o'j ( C-:i ) .... / :.:.:.; .. ; .. F 
o 0 () ~.::.; I F (', ::: :i. 0 0 (:':i C) 'f () "/ 0 
(I 0 ::,:') )' (:.\ :::: :I. 0 0 
I) O·? 0 ro'j ';j:. :::: ' -} , 

o 0 "? ::? (', -:j=. :::: ' 

o 0 U 0 P P J ("! 'f i".1 ~3 I j"-·.1 [:' C: :::; i F i... P .' j") 'l ! (:', .: (.', ':j:. 

o 0 :3 :.:.:.; F [I i? (.'i P CJ :::;; (') ! C: ! p IJ :;;;; :::::; ~.:.:.i ! P J C ( ::-:-: :.( :;::;: , :;:::: ::. ! F' CJ :3 i.:'='; 0 ! C: , :::;; 1< J P :!. 
() 0 ::) 0 F? I::: t..,! F~ I 'f E;: F I L F 1.J r; I j ..... ! Ci ::? :.:.:.; ! F i... ::.:.:: .' (:', i (j 'l. 
o 0 (.:) :.::.; F CJ F~ ('j P C) ::;;: 1 ::::;: 0 i PIC ( :.?: :.?: :.?: , :.?: ), P C) :3 :!. :.'::;: :.::.; ! C: 
O:i. 0 (I CiU'rU '.::.; I] 

Statement 10 defines an arithmetic array, G, with five members, a 
character variable, M$, with one character, and a character variable, 
N$, with 25 characters. The array G is to hold the five marks for each 
student, M$ is to hold the honors character, either a + or a blank, and 

N$ is the name field. 

Processing a Data File 111 

._"._------------"--_._"".,, ...... _. __ ._--------------_._._-_ ... _-----_._ .. _-_._---------.-- --------------



112 

Statements 20 and 25 format a printed heading. Statement 30 opens 
the file for input, output, and updating operations. 

Statement 50 reads the file according to the format shown in 
statement 55. Remember that although GRADE is a key-sequenced 
file, its records can be read in sequential order if the KEY clause is not 
specified. From statement 55 we can determine that the items being 
retrieved are the name, placed into N$, five sequences of three digits 
(the five marks beginning in position 101), placed into the array G, and 
a two-digit number for extra credit, placed into E. 

Statememt 60 sums the five marks, divides the sum by 5 to find the 
average, then adds in the extra credit recorded in E, and puts the 
resulting value into A. 

Statements 65 through 72 reduce any mark that exceeds 100 and 
analyze the value of A. If the value equals or exceeds 90, a plus sign, 
indicating honor student, is placed into M$. If the value of A is less 
than 90, M$ is assigned a blank. 

Statements 80 and 85 print the student's name (N$), the final mark 
(A), and the honors code (M$). 

Statements 90 and 95 enter the final mark and the honors code into 
the record, beginning in positions 130 and 135, respectively. 

Statement 100 branches back to statement 50, and the next record is 
read. After all records are read, the program ends. 

Output from this program could be the following:_ 

Print 
Position 6 

x-:< 1 . ..1 'r L. I::: n! '''.1 I :::;; I 

C(JCJI<., (:'j I :C{ I 

.::. 

.:: . 

. ::. 

~31"'i I T H I C:. (:'1 I 

·y'DI . ..It···~C:i! 1.. .. ,1 I 

35 

DI.!· I 0 
(.;'::'/ I 0 

50 

.. : .. 

/----­
I 

\_- ' 

c 

c 

c 



o 

o 

o 

o 

o 

o 

o 

Summarizing Record-Oriented Statements 

The OPEN FILE statement explicitly opens a record-oriented file. If IN 
is specified, the file is opened for input; if OUT is specified, it is 
opened for output; if ALL is specified, it is opened for both operations. 
If the KEY clause is specified, an index file is associated with a master 
file. 

The WRITE FILE statement writes a record. In a directly or 
sequentially accessed file, each record is stored in the order in which 
it is entered. In an indexed file, each record is stored in the order in 
which it is entered, and the record key is stored along with the relative 
record num.ber in the index file. When you are retrieving or writing 
records by key, performance is improved if the index file is sorted into 
order by key. 

The READ FILE statement reads a record. In a sequentially or directly 
accessed file, each record is read sequentially, or directly by relative 
record number when the REC= clause is specified. In an indexed file, 
each record is read sequentially if the associated index file is not open. 
If the index file is open and no KEY clause is specified, the records are 
read sequentially by key. If KEY is specified, the record having a 
matching key is read. 

The REREAD FILE statement makes the last record previously read 
available again, regardless of whether the record was read sequentially 
or by key. 

The REWRITE FILE statement alters an existing record, provided that 
the file was opened with the OPEN FILE statement specifying ALL. In 
a file accessed sequentially, the last record is read and rewritten. In 
an indexed file accessed sequentially by key, the last record read is 
read and rewritten if no KEY clause is specified in the statement. If 
KEY is specified, the record having a matching key is read and then 
rewritten. If the REC= clause is specified, the record with a matching 
number is read and rewritten. 

Processing a Data File 113 

.-----.. ---.-.... ---.. 



114 

The RESET FILE statement repositions a file to its beginning. In a file 
accessed sequentially, if a KEY or REC= clause is specified, the file will 
be repositioned to the particular record associated with that key, or 
record number. 

The DELETE FILE statement deletes a record from an indexed file. The 
KEY clause is required in order to identify the record being deleted. 

The EXIT statement specifies the statement number to which control 
should be given if a particular input/output error occurs. The error key 
keywords that can be written in the statement are EOF, IOERR, CONV, 
NOKEY, NOREC, and DUPKEY. 

The CLOSE FILE statement explicitly closes a record-oriented file. 

The FORM statement specifies the format of fields in record-oriented 
files. 

r 
'-. .... ./ 

c 



o 

o 

o 

o 

C) 

o 

Chapter 12. Control of Your 5110 

This chapter discusses the following topics concerning controlling your 
5110: 

• Using the display screen for input and output 

• Using procedure files to replace keyboard input 

• Using the system control functions (FILE FLS) 

• Using the UTIL command 

USING THE DISPLAY SCREEN FOR INPUT AND OUTPUT 

You can use the WRITE FILE and READ FILE statements to write and 
read data from anywhere on the top 14 lines of the display screen. 
This allows you to use different screen formatting and data entry 
techniques. For example, the screen could be formatted as follows: 

P <':1 ~:/ (.:, (.! '~::. N a in (.~ 

~:~ t r' (.! (:' t (:'1 d d'( i::' .:::. !::. 
City 
t:; t ·:':'1 t (:' 
Zip 
r: 1::' ·:':'1 ':~. 0 n 
Do I. l <:'1'( tlfl)O I..l.n t 
{:'ICCO I..l.n tin 9 Co di::' 

1 

(:1 I. (, x Dr' } ... c!I::' n 
r-------. I.j. 01+ i····! FE' cI (-;,'r (:'1 l H 1.1.1 } ... 

Data being 
entered by 
the operator. 

BOCEI Pa 

t 
The cursor indicates 
where the data 
entered by the 
operator is displayed. 

Prompting messages displayed by the program. 

Control of Your 5110 115 

----- -.-,.,-... --.--------.-...... -, .. ------~' ........... -_ .......... _-_ .... . 



116 

When used for input and output, the display screen is treated as a 
record I/O file, similar to a record I/O file on tape or diskette. You 
must open the display screen for input/output using device 002, for 
example: 

o J 0 I] iJ P [: j\! F I 1... E F i... J " . 0 0:':': . ! t" I... L. 

L LspeCifies read and 
, write operations 

Input/output to the display screen 

The character positions on the display screen are numbered as 
follows: 

15 • 64 
14 65 • 128 
13 129"""""""- ·192 For example, character 
12 193 256 position 130 is the 
11 257 320 second character position 

10 321 384 on line 13. 

9 385 448 
8 449 512 
7 513 576 
6 577 640 
5 641 704 
4 705 768 
3 769 832 
2 833 896 

0 

r" 
\ , 

....... , ...•. / 

c 



o 

o 

o 

( -' '. \ 
~) 

o 

o 

o 

The following is a sample program that writes data to and reads data 
from the display screen: 

o (I .I. 0 :U I ("j (', ':1; ~.:.:.; (I 

o 0 ::.~) 0 U F I::: j\.! F 11... I::: F I... :I..' ' 0 0 ::.:.:: ' .' (:',1...1.., 
o 0 :.'::;: 0 i ... ..1 F:: I ''1' L F I 1.., [: 1...1 ~3 I j"-•. ! Ei I.j. 0 ! F I... 1.' . [: ("! TEl? (:', ('j r:: ~::; ~;3 (:·1 C:i r:: ' 
o 0 q. 0 F C) r.:: i·· ... i P CJ :::;; ::.:.:: '.:.:.; "? ! C: :i. ~.:.:.; .' F' [I :::;; ::.:.:: F: ~.:.:.; 

o 0 ~.:.:.; 0 I:':: I::: (·'1 :0 F:' I 1., I::: 1...1 r: I ("! C} (') 0 ! F 1..,:1. .' (:'I-=\; 

o 0 (') 0 F [I r,:: i"/i P D ::::; ::.:.:~ :::;: ~.:.:.; .' C: ~.:.:; [I 

o 0 "/ 0 F·:: [: 1..".1 F~ :I: 'f E F I I... 1::: 1...1 :;::; I i\! Ci B 0 .' F L 1.' "r H E i"'i E ~::; ::::; (:'1 C:i I::: I ::;:;: . ! (\ + 
o 0 U 0 F D F·:: ('i P () ~:::; "/ (':, (.), C:::i. ~.:.:.; ! >< ~.:.:.; .' C: ~.:.:.; 0 
o 0 (? 0 ~3 T (j P 

When this program is run, statements 030 and 040 write ENTER A 
MESSAGE starting at position 257 (line 11) on the display screen. The 
cursor is then placed at position 285 as specified in statement 0040 
(POS 285), and the program waits for input from the keyboard. The 
display screen looks like this: 

- --------- Flashing Cursor at 
position 285 

Control of Your 5110 117 

---_ .. __ ._ ... , .. _-.... _ ...... _-- . -- ........ - ........ _. __ ._-----_._-_ .. _ ............. _ ... __ ._ ..... _----------------------- ----



118 

.. _-"----_._--- ---

Now, when a message is entered from the keyboard, the display 
screen looks like this: 

Then when the EXECUTE key is pressed, statements 50 and 60 read 
the message (up to 50 characters) from the display screen, and 
statements 70 and 80 rewrite the message on line 11 and write the 
new data starting in position 769 (line 3). The display screen looks like 
this: 

.J', .... I 

.1. ':::" 

Note: You can use the WRITE FILE or REWRITE FILE statement to 
position the cursor for a following READ FILE statement. 

s 

c' 



o 

o 

o 

r" 
U 

o 

USING PROCEDURE FILES 

Page of SA21-9307-0 
Issued 28 April 1978 
By TNL: SN21-0277 

A procedure file allows you to set up and execute a series of 
programs without the need for operator intervention. The procedure 
file consists of a series of BASIC statements, commands, or data 
created using the LOADO,DAT A command or a BASIC program. After 
you enter LOADO,DATA, the system displays a line number followed 
by a colon. You may then enter statements, commands, or data just 
as you would for a standard data file. Lines in a procedure file have a 
maximum length of 64 characters. After you have entered the lines in 
your procedure file, you can use the SAVE command to save the file 
on tape or diskette_ Following is a sample procedure file: 

I...(](~IDO I D(:)T(:) 
00:1. 0 : 1...0P-ID ~::.; 

0020:RUN 
o 0 :-5 () : L, [) (:~., [I ··I~· 

00 1+0 : I~UN 
() 0 ~.:j 0 : LO(:~ID <;> 

() () 6 0 : I~UN 
0070:AI...ERT INSERT PAYROLl... DISKETTE ENTER GO TO CONTINUE 
o oao : I...DtlD :1.:1. 
0090:RUN 

After these lines are entered, the file can be saved with this SAVE 
command: 

This command saves the file (named PROC) with a record length of 64 
characters in file 4 on diskette drive 1. 

The procedure file is accessed when you enter a PROC command. A 
PROC command instructs the system to begin using the procedure file 
in the indicated file, as shown below: 

PI~DC I+/DBO 

The system then loads file 4 and begins executing the lines in the file, 
one record at a time. In the example above, after the program in file 9 
has been run, the procedure file executes the ALERT command, which 
sounds an audible alarm and causes the display screen to flash. The 
operator must press the ATTN key to stop the flashing message 
INSERT PAYROLL DISKETTE-ENTER GO TO CONTINUE. If the RUN 
I N=P command was used, .data may not be entered from the keyboard. 
Therefore, for each INPUT statement of a program being executed, 
there must be one entry available via the procedure file. After the 
operator enters GO, the procedure file loads file 11. Other commands 
valid in a procedure file are discussed in the IBM 5110 BASIC 
Reference Manual, SA21-930S. 

Control of Your 5110 119 



Page of SA21-9307-0 
Issued 28 April 1978 
By TN L: SN21-0277 

USING THE SYSTEM CONTROL FUNCTIONS 

120. 

A unique 35-byte 5110 internal storage area is provided to allow you 
to dynamically control the operation of your system. This storage area 
is called file FLS (system file). Using file FLS you can get information 
about the system, such as: total work area available, work area 
available for variables and buffer storage, number of lines printed on 
the printer, and the return code set by the las~ STOP or END 
statement. File FLS also allows you to set or use system functions, 
such as turning the display screen on and off, sounding the audible 
alarm, selecting a character set, entering lowercase alphabetic 
characters, turning trace on and off, rounding precision, file FLx, and 
number of print lines per inch. You use the READ FILE FLS statement 
to obtain the information about the system, and the WRITE FILE FLS 
statement to set or use the system functions. (File FLS is always 
open, therefore, an OPEN statement is not required before file FLS is 
used. 

READ FILE FLS Statement 

You can obtain the following list of information about the system 
using the READ FILE FLS statement: 

Information 

Total work area available 

Work area available for variables 
and buffer storage 

File FLS Position 

1-5 

6-10 

Number of lines printed 11-15 

Reserved 16-18 

Return code set by last STOP or 19-21 
EN D statement 

Unused 22-35 

For example, the statements: 

0320 READFILE USING 330,FLS,A,B,C,D 
0330 FORM NC5,NC5,NC5,POS19,NC2 

place the total work area available in variable A, the work area 
available for variables and buffer storage in variable B, and so on. 

Note: The number of lines printed is the count of the print head 
movements rather than the form's movements, because a 00 line 
spacing may be specified. 

c\ 

c 



o 

C) 

o 

o 

o 

o 

o 

WRITE FILE FLS Statement 

You can set or use certain system functions by using the WRITE FILE 
FLS statement to place the appropriate code in file FLS, as follows: 

File FLS 
System Function Position Code 

Turn the display screen off F 

Turn the display screen on N 

Turn the audible alarm on S 

Turn the audible alarm off Q 

Pulse the audible alarm 1 A 

Set keyboard input to lowercase 2 L 

character mode 

Set keyboard input to standard 2 U 
BASIC character mode 

Turn the display trace on 3 N 

Turn the display trace off 3 F 

Turn the printer trace on 4 N 

Turn the printer trace off 4 F 

Set rounding precision 5-6 o to 15 

File FLx 7-9 FLO-9 

Set number of print lines per inch 10-11 8-99 
(2.54 centimeters) For example, 
the statements 

o ::.:.:~:3 0 t·.J F.:~ I 'r F F' I L I::: 1...1 ::::; I i") (:-} 
~! I 

i..l 

o ::;::::.:.:r 0 F C) P ('i P U ::::; ::.? " C: 

place the character L in position 2 of file FLS. This causes the 5110 to 
be in lowercase character mode. That is, lowercase alphabetic 
characters are entered from the keyboard unless the shift key is used. 
The 5110 remains in lowercase character mode until the 5110 is 
changed back to standard BASIC character mode or the work area is 
cleared. 

Control of Your 5110 121 



122 

Additional Use of File FLS 

You can use positions 22 through 35 of file FLS to store data. That is, 
data written to these positions using the WRITE FILE FLS statement 
can be read using the READ FILE FLS statement. Using these 
positions of file FLS gives you the unique capability to write data in 
numeric form and then read that data in character form, and vice 
versa. For example: 

o :L 1 0 1 ("! F' I...f "r ; ..... ! 
() :!. ::.:.:: 0 L..J I:':: I 'f I::: F I !... I::: 1...1 ::::; I ("! C} 1 :::::; (I ! F'I... :;;) .' j .•... ! 
o :i. .::::; 0 I::' C) I? j"-'i F' C) :;:;; ::.:.:: ::.:.:: ! j\.! C::;:;: 
o :I. i+ 0 :0 I (I (:', -:1:. E: 
o :L ~.:.:.; 0 F: F (', :U F I L. E LI :;;:. I () C-:i 1 (';, 0 .' F l... :;;;; .' (:,':j; 

o :I. ('i 0 F U F~: j--'j P fJ :;;;; ;.:.:: ::? .' C: H 

The numeric input (N) is written to file FLS positions 22 through 30 
(statements 120 and 130); then the character equivalent of N is read 
from file FLS positions 22 through 30 (statements 150 and 160). 

Using the UTIL Command 

You can use the UTIL command to perform the following system 
control operations: 

• List the file directory 

• Rename a file 

• Change or display a diskette volume ID and owner ID 

• Drop a file 

• Write-protect a file 

• Transfer control to the Diskette Sort feature, if installed 

• Change the system default device 

(~ 
,--,/ 

c 



o 

o 

o 

o 

o 

The sort program, if installed, is internal to your 5110. You can 
transfer control to the sort program by using the statement: 

UTIL SORT 

This program allows you to sort records in a data file according to 
specified fields within the records. See the IBM 5110 Customer 
Support Functions Reference Manual, SA21-9311, for a complete 
description of the sort program. 

Normally, the 5110 Model 1 default device is E80 (the built-in tape 
unit) and the 5110 Model 2 default device is 080 (diskette drive 1). 
You can use the UTIL command to change the system default device. 
For example: 

changes the default device to diskette drive 2. 

See the IBM 5110 BASIC Reference Manual, SA21-9308, for a 
complete description of the UTIL command and functions. 

Control of Your 5110 123 



l '-... / 

(~"" 
\ ........... . 

c 
124 



o 

o 

o 

o 

o 

o 

Chapter 13. Using Arrays 

An array is a simple way to keep together data items that are related. 
For example, if you want to keep the average temperature for each 
month of the year, you could construct an array having 12 data items. 
The DIM statement can be used to define an array: 

This statement defines an arithmetic array, T, containing 12 items, or 
members. The computer recognizes an item as an array by the 
appearance of parentheses. The parentheses are used to define the 
number of items in the array. 

Arrays can be arithmetic or character. For example: 

This statement defines a character array having 12 members. 

A DIM statement can specify the length of the members of a 
character array at the same time it is defining the array: 

Here, each member of array T$ is assigned a length of 10; without the 
length specification, each member, like other character variables, 
would be assumed to be 18 characters long. All members of a 
character array have the same length. 

Using Arrays 125 

-----..•. ---.-.--- -----_._---------_ .......... _-_._-----



126 

NAMING ARRAYS 

Character arrays are named in exactly the same way as character 
variables; that is, the name must consist of a single alphabetic 
character (including the alphabet extenders) followed by the currency 
symbol(s). Thus, the name A$ can name either a character array or a 
character variable. Arithmetic arrays are named in almost the same 
way as arithmetic variables. An arithmetic array name may consist 
only of a single alphabetic character (including the alphabet extenders); 
you may recall that arithmetic variables can also be named with an 
alphabetic character followed by a digit. Thus, the name A can be 
used for either an arithmetic array or arithmetic variable, but the name 
A 1 can be used only for an arithmetic variable. 

DEFINING ARRAYS 

Defining an array in a DIM statement is known as an explicit 
declaration. There is another way to define an array through implicit 
declaration; that is, by referring to a member of an array in a program 
statement without having defined it first in a DIM statement. When 
you refer to an array member without explicitly declaring it in the DIM 
statement, the computer will recognize that you are working with an 
array and will automatically allow space for 10 members. To refer to a 
particular member of an array, you specify it by its location in the 
array. For example, T(1) refers to the first member of the array named 
T, T(2) refers to the second member, T(3) refers to the third member, 
and so on. Each number giving the location of a particular member is 
called a subscript. If the following statement appears in the program: 

only the ninth member of T would be assigned the value 69; all other 
members would remain unchanged. 

Remember that an array defined implicitly is assumed to have 10 
members. So in order for array T to contain 12 members, we must 
explicitly define it. If an array has very few members (for example, 
two or three), it would be wise to use a DIM statement, such as: 

The DIM statement, in addition to defining the number of members in 
the array, also defines the number of dimensions in the array. 

/----...., , 
( 
',-.. _-, .. -

c 

c 

c 



o 

o 

o 

u 

o 

o 

o 

So far, we have discussed only one-dimensional arrays. In BASIC, you 
can also have arrays of two dimensions. Assume that values have 
been assigned to array T, such that: 

T ( :I. ) i ~:; ::3:1. 
T ( "') ) 4::> 4 "y 

4., '.,;> 

T ( 
..... 
.:> ) ~:; '+2 

T ( '+ ) .~; 
1-' '-, 
,) .-

T ( I::' 
.,) ) ~:; 6t.t, 

T ( c) ) -:::. 73 
T ( "(' ) ~:; 79 
T ( D ) , .. '/9 :::. 

T ( <? ) , ~; <:,:,<,;> 

T ( :I. 0 ) i ~; 1::',"\ 
,,) C) 

T ( :I. :I. ) i ~:; q, lI, 

T ( 1.2 ) i ~:; ::~.;) 

Let's assume that these values represent the average temperatures for 
12 months; T(1) represents January's average, T(2) February's, and so 
on. 

For various reasons, another programmer might want to consider the 
year as divided into four quarters of three months each; he could 
define his array (call itM) as a two-dimensional array, as follows: 

In this statement, array M is defined as a two-dimensional array 
containing 12 members (the product of 4 and 3)' just like array T. The 
difference is that the members of M are distributed over two 
dimensions, whereas in T they are distributed over only one 
dimension. Conceptually, the two dimensions of M can be thought of 
as rows and columns-four rows and three columns. The first value 
would be identified as being in the first row and the first column, or as 
M{1,1); the second value would be in M{1,2), the first row, the second 
column; the third in M(1,3), the first row, third column. The fourth 
item is M{2,1), or the second row, the first column; the fifth item, 
M{2,2), would be in the second row, second column, and so on. 

Using Arrays 127 



(~r')" a y T 

or .: :I. ) 

T(2) 
T(3) 
T (1+) 
T(~:5) 

T(6) 
T ('7) 
T(B) 
T(9) 
'1'( :1.0 ) 

T ( :1.:1. :> 
or ( :1.2) 

128 

Assuming that the same temperatures assigned to array Tare 
assigned to array M, notice the difference in the way each item is 
referred to: 

T ~:. m p (' )" a -I: II r' ~~ (I)")" a y i"1 

:5l. IY/( :I. .' :I. ) Co 
Q·3 f'l( :1. I 2) F< (I IJJ :1. 
1+2 ('1 ( :I. "I '. :I. :31 I ,,,' ) , ......• 
~.) ( tIl ( 2 I :I. ) ::.~ ~57 

61+ IYI (2 I 2) :3 79 
"'}"1. 
I .. _' t-I< 2 I ::~ ) 1+ ~5B 

79 lvl ( :.~: } :I. ) 

7<? tlj ( ~':) I ::,~ ) 

69 IV/( ~L 3) 
~.=5B j"l ( 1.1. I :1. ) 

LI·I+ 1"1 ( 1+ J 2) 
3<? t"j ( I.!. I ::::) ) 

l urnn 
") 
I. ... 

1+3 
61.j· 
"?9 
I.j.q. 

Two subscripts are needed to refer to a particular member of array M; 
for example, M(3,1) refers to the temperature for July, the first month 
in the third quarter. 

Note the difference between a subscript and the array dimension 
specification. A subscript refers to a particular member of an array. It 
can be any valid arithmetic expression (for example, a numeric 
constant or an arithmetic variable). The dimension specification 
defines the number of members of an array. The dimension 
specification can appear only in a DIM statement and it must be 
indicated by unsigned integers only. An array name cannot appear in a 
DIM statement if the array has already been defined-either implicitly 
by usage or explicitly by definition in a previous DIM statement. 

You can implicitly define a two-dimensional array by using it in a 
program statement without defining it in a DIM statement first. You 
would do this by referring to a particular member, using two 
subscripts. For example, A(4,3) would refer to the item in the fourth 
row, the third column of array A. A two-dimensional array defined 
implicitly will be assigned the dimensions (10,10), or 100 members 
altogether. If the value of either dimension is to exceed 10, however, 
you must use a DIM statement to define the array as you would for a 
one-dimensional array that exceeds 10 members. Remember that DIM 
statements to define arrays must appear in the program before you 
refer to the array. 

l' 
"-'-'- ,,' 

:-3 i'" 
1.f·2 "'._/ '''} "1,' 

( ,,,' 

6<? 
~)9 

,,----..... 
;' 

( 
\ ........... -"."; 

C~ 

c 

c' 

c 



o 

o 

. e'l 

o 

C·' 

PLACING VALUES INTO ARRAYS 

Initially the system sets all arithmetic arrays to zero and all character 
arrays to blanks. Arrays can be given other values through 

Page of SA21-9307-0 
Issued 28 A1Jril 1978 
By TNL: SN21-0277 

assignment, READ, and INPUT statements, just like other variables. 
The assignment statement can assign values to individual array 
members or to all the members of the array. Here are some examples: 

o ::!; () 0 (:'1 ( I.j, I ~::,i ) :::: :I. 0 
o 3 :,:,~ 0 jvj tl T (~I :::: ( :1 ~:,:,i ) 

0330 P$(4)='PHILADELPHIA' 

The first example assigns the value 10 to the member in the fourth 
row, fifth column of the two-dimensional arithmetic array A. In the 
second example, the keyword MAT identifies A as an array" and the 
value 15 is assigned to all the members of the array. (This is a special 
form of the assignment statement and is known as the array 
assignment statement.) In the third example, the value PHILADELPHIA 
is put into the fourth member of the one-dimensional character array 
P$. 

When specifying values by means of READ and INPUT statements, 
you must remember that every array member that is to receive a value 
must be represented in the statement, and a value must be supplied 
for each member specified. Let's look at these statements: 

00:1.0 DIM T(12),T$:l.8(:l.2) 
0015 PRINT 'ENTER 3 TEMPERATURES, THEN THREE MONTHS' 
0020 INPUT T(1),T(2),T(3),T$(:I.),T$(2),T$(3) 

The DIM statement defines the arithmetic array T and the character 
array T$, each with 12 members. The INPUT statement states that 
values will be supplied at execution time for the first three members of 
each array. Execution of the INPUT statement causes the computer to 
display the question mark (?). A valid response would be: 

31,43,42,JANUARY,FEBRUARY,MARCH 

The first three values are entered into T(1), T(2), and T(3), respectively . 
The next three values are entered into T$(1), T$(2), and T$(3), 
respectively. 

Using Arrays 129 



130 

The following statement can be used to enter values for the arithmetic 
array A, consisting of three rows and four columns: 

n O;?O nIr/j f~) (:3 1 '+) 
OO~·~~O i"I{:,T INPUT {~, 

When this statement is executed, the computer displays a question 
mark, and you can enter the three values for the first row: 

The system continues to display the question mark until you have 
entered values for all matrix positions. 

Another way of assigning input values to arrays is through use of a 
FOR/NEXT group in conjunction with the READ and DATA statements. 
For example, if you wanted a list of 15 numbers assigned to an array 
named B, you could write: 

o 0 :I. () II I H B ( :1. ~.:;; :> 

0020 FOR 1=1 TO :1.5 
o O::~)O F~Et,D B': I :> 

o 0 '+ 0 N E >< T I 
0050 DATA 2}3}5 1 7}:I.:I.}13}:1.7 I :1.9}23}29 1 31}37}4:1.}43}47 

The subscript I is used to step through the values in the data table. 

c 



o 

o 

o 

o 

o 

-----_._------

REDIMENSIONING ARRAYS 

Once an array has been dimensioned by a DIM statement, it cannot be 
explicitly dimensioned again. But it can be redimensioned; that is, the 
array can be given new dimensions. A one-dimensional array can be 
redimensioned into a two-dimensional array, or it can be 
redimensioned into a one-dimensional array with a different number of 
members. Similarly, a two-dimensional array can be redimensioned 
into a one-dimensional array or a two-dimensional array having a 
different number of members in either or both dimensions. The rule 
to remember when redimensioning an array is that the total number 
of members in the new array may not exceed the total number in the 
original array. For example, the array M{12,1 0) has 120 members, the 
product of 12 and 10. It can be redimensioned as long as the new 
array does not contain more than 120 members (it can contain fewer). 
Thus, M{12,1 0) may be correctly redimensioned to M{40,3), or M(100), 
but not to M(40,4). 

One way to redimension an array is to state its new dimensions right 
after the array name in the array assignment statements. For example, 
in the array C{5,5) to C(3,4), you could use the array assignment 
statement: 

0010 MAT C(3,4)=(0) 

The word MAT is used to indicate that operations are to be performed 
on the entire array, or matrix. This statement changes the array 
dimensions to (3,4) and assigns the value zero to each member of the 
newly dimensioned array. 

Using Arrays 131 



132 

DIFFERENCE BETWEEN MAT AND LET 

It is important to note the distinction between the array assignment 
statement, identified by the word MAT, and the LET assignment 
statement. 

The following example shows a sequence of assignment statements 
and the output from each one. None of the statements are equivalent. 

0010 II I j":1 C: (:? .. :3 )"'---"'- Array C is initialized to [~~~J 
LET 

o Ol.j· I] 

c (;.:.:~ .. :1.) :::::I.-------Array C is initialized to roool 
r~ ::: { !::; ') L1 ooJ 
1~{·,···r'~A c·· ·t· I: dt r555l 
1"-":'::' "." '" '. '.:>"~ rray IS Inl la Ize 0 [L5::]J 
-,_ .. ! ~Array C is initialized to 88 

Variable C is 9 

Statement 10 defines arithmetic array C as a 2x3 array and initializes 
each member to O. Statement 20 assigns the value 1 to a member in 
the second row, first column of the array. Statement 30 assigns the 
value 5 to all members of the array. Statement 40 redimensions the 
2x3 array into a 3x2 array and assigns the value 8 to all members. 
Statement 50 does not refer to an array but to an arithmetic variable, 
C, and assigns the value 9 to it. BASIC allows you to use the same 
name to represent both an array and a simple variable in the same 
program. 

The array assignment statement can also assign the values of an array 
to another array, as long as both arrays have identical dimensions. 
Let's look at this example: 

0100 DIM Y(~),Z(4) 

Ol~jO MAT Y •• M (A·)(·En 

0180 LET Y(3)=l5 

0200 MAT Z=::Y 

_ ..• _------_._. __ ... _._ .• -_. ---

c 



o 

o 

o 

o 

o 

o 

o 

Statement 150 assigns the value of the expression A*8 to all the 
members of the array Y. The expression must always be enclosed in 
parentheses. Statement 180 assigns the value 15 to the third member 
of Y. Note the difference between the LET statement and the MAT 
statement. Statement 200 assigns the values in array Y to array Z. If 
the only change made to array Y between statements 150 and 200 
was the assignment made in statement 180, array Y will contain the 
values A *8 in members 1, 2, and 4 and the value 15 in member 3. 
Array Z will be assigned these values in the corresponding members. 

In order for the values of one array to be assigned to another, both 
arrays must have identical dimensions. For example, if Z had the 
dimension (5) or (2,2), it would have to be redimensioned to the 
dimensions of Y before it could receive Y's values. 

ARRAY OPERATIONS 

A number of different operations can be performed on arrays. 
Arithmetic arrays can be used in simple arithmetic operations, such as 
adding or subtracting the values of members in different arrays, and in 
true mathematical matrix operations such as matrix multiplication. 
Additionally, values in both arithmetic and character arrays can be 
indexed in ascending or descending order. Arrays used in arithmetic 
operations must have the same number of dimensions. Let's look at 
some of the operations available. 

Array Addition and Subtraction 

Example 1: 

0010 DIM X(S),Y(S),Z(S) 
0020 MAT X==Y+Z 

In this example, each member of the array X is to be assigned the 
sum of the corresponding members of the arrays Y and Z. The values 
of Y(1} and Z(1} are added, and the sum is assigned to X(1}; the values 
of Y(2} and Z(2} are added and assigned to X(2}, and so on. 

Example 2: 

0030 DIM X(S),Y(S),Z(S) 
o OI.J.O MAT X::=Y·_·Z 

This example is like the first example, except that the array X is 
assigned the difference between the corresponding members of the 
arrays Y and Z. 

Using Arrays 133 

-----------. -_ ... _- .. _---------_._ .... _._ ....... - .. . ._-------_ ... _-_._--_._-----_._---_._._. __ .. - ... " ........ __ . 



134 

Scalar Multiplication 

Scalar multiplication is the process whereby each member of an array 
is multiplied by the same number. 

Example: 

0035 DIM A(10,5),B(14) 
0040 MAT A(14)=(4)*B 

In statement 40, A is redimensioned to correspond to the dimensions 
of the array 8. Then, the value in each member of 8 is multiplied by 4 
and the product is assigned to the corresponding member of A; 8(1 )*4 
is assigned to A(1), 8(2)*4 to A(2), and so on. 

Indexing Function 

Indexing operations can be performed on character as well as on 
arithmetic arrays. Character arrays are indexed alphabetically, 
arithmetic arrays numerically. Arrays can be indexed in ascending or 
descending sequence by the AIDX and DIDX functions, respectively. 

Example: 

0010 DIM A$18(5)/B(5) 
0020 DAT(.i I D (.1 r,! I / I i·'lEI... I, I GLEN I .. I D.;VE I , I BILL I 

OO~O MAT READ A$ 
0050 MAT PRINT FLP,A$ 
0060 MAT B=AIDX(A$) 
0070 MAT PRINT FLP,B 

The printed output would be: 

1:3 I... EN 

:1. I.J. 

The numbers indicate the ascending character sequence of the names 
entered according to the order in which they were entered. For 
example, the 5 indicates that the fifth name entered (8 I LL) is the 
lowest character value entered, the 1 indicates that the first value 
entered (DAN) is the next lowest, and so on. 

:0 I L.I... 

c' 

~, 
I "'-.- . 

c 



o 

C) 

o 

o 

o 

The following statements could be added to print the indexed matrix: 

(10 (:5 0 FD F: I:::::!. TIJ ':.:.; 
o 0 (.~.:o 0 P F: I j\.! 'r F !... P .' ('! t· ( r·: ( I ) ) 
0:1.00 j\!E\T I 

The printed output would be: 

I:'~ I LL 
:0 (:·!i·····! 

:0 (:'!\/[ 
C:il...E:i\! 
1··1[!.., 

Matrix Multiplication 

Matrix multiplication is the process whereby the matrix product of two 
arithmetic arrays is assigned to a third array. All three arrays involved 
in matrix multiplication must be two-dimensional. 

Example 1: 

0065 DIM X(2 / 2)/Y(2 / 2)/Z(2 / 2) 
0070 MAT Z::::X·)(·Y 

~J and Y contained ~ ~J If X contained [~ 

the values of Z 0 I would be constructed as follows: 

j=a*e+b*g 
(sum of members in first row of X times members in first column of Y) 

k=a*f+b*h 
(sum of members in first row of X times members in second column of Y) 

1= c*e + d*g 
(sum of members in second row of X times members in first column of Y) 

m=c*f+d*h 
(sum of members in second row of X times members in second column of Y) 

Using Arrays 135 



136 

All the arrays shown in example 1 are two-dimensional, square, and 
have the same number of members. Arrays used in matrix 
multiplication need not be square or have the same number of 
members, but must be two-dimensional and comformable. Look at 
this example: 

0075 DIM A(2,4),B(4,3),C(2,3) 
00 B 0 t1AT C::::A~(· B 

Remember that the first subscript in a two-dimensional array indicates 
the number of rows, and the second subscript indicates the number of 
columns. (In the example above, A has two rows and four columns.) 
To be conformable for matrix multiplication, arrays must meet these 
requirements: 

• The number of columns in the first array to be multiplied must equal 
the number of rows in the second. In the example above, A(x,4)= 
B(4,x). 

• The number of rows in the receiving array must equal the number 
of rows in the first array. In the example, C(2,x)=A(2,x). 

• The number of columns in the receiving array must equal the 
number of columns in the second array. In the example, C(x,3)= 
B(x,3). 

These requirements are graphically represented below: 

l CD l 
A(2,4) 8(4,3) 

,ft 
C(2,3) 

r 
'- .. ' ' 

c 

(' 
'-_ .. / 

c 



The arrays in statements 75 and 80 are conformable and thus are valid 

o for matrix multiplication operations. 

I f A contained [: b c ~ 
and B contained k 

f 9 m n 
a p q 
r s t 

the values of C 

~ 
v ;] , would be constructed as follows: 
y 

u=a*i+b*1 +c*o+d*r 

o (sum of members in first row of A times the members in first column of B) 

v = a*j + b*m + c*p + d*s 
(sum of members in first row of A times the members in second column of B) 

w = a*k + b*n + c*q + d*t 
(sum of members in first row of A times the members in third column of B) 

x = e* i + f* I + g* a + h * r 
(sum of members in second row of A times the members in first column of B) 

y = e*j + f*m + g*p + h*s 
(sum of members in second row of A times the members in second column of B) 

C) z = e*k + f*n + g*q + h*t 
(sum of members in second row of A times the members in third column of B) 

o 

o 

o 
Using Arrays 137 

-----_ ...... -.. _._._._._ ... _---.. _ ... _----



c 

c 

c 
138 



o 

o 

o 

o 

o 

o 

o 

---.-----.. -................ . 

Chapter 14. What to Do When Your Program Does Not Work 

When your program does not work properly, you can use the 
following 5110 aids to assist you in determining what is wrong: 

• Program trace 

• Program step 

• Comments 

• Keyboard-generated data files 

PROGRAM TRACE 

Program trace allows you to trace the order in which program 
statements are executed. Each statement number is displayed (and 
printed if you specify PRINT with the RUN or GO command) as the 
statement is executed. The following example shows the display and 
printout when the RUN TRACE, PRINT command is entered. 

Sample program: 

OOlO DIM (~(~j) 

0020 PRINT 'ENTER 5 TEMPERATURE QUOTATIONS' 
0030 MAT INPUT Q 
OO~O FOR 1=1 TO 5 
o 0 ~:=; 0 T :::: T + (~ ( I ) 
O()60 NEXT I 
0070 A::::T I:j 
OOBO PRINT'S DAY MOVING AVERAGE =';A 
O()<"JO STOP 

What to Do When Your Program Does Not Work 139 

----_ .. -_ ... __ ._----_ .. _._ ... _._-- ----_._------_._----_ ... _--_. 



0 I] ., 
.1. 

0 0 ~5 

140 

The display shows: 

I~UN TI~ACE 1 pr~1NT 

0010 0020 ENTER 5 TEMPERATURE QUOTATIONS 
0030 
62 , c'>~:) 1 6B, 6:1.,6 1+ 
0040 0050 0060 0050 0060 0050 0060 0050 0060 0050 0060 0070 
0080 5 DAY MOVING AVERAGE = 6~ 
0090 

The printed output is: 

0 0 0 :::.~ (I 0 0 ::::) 0 0 0 1./. 0 (I o ~5 0 0 0 I~:I (I P 0 ~.~.; 0 0 (I {::a Ci 0 o ~.::.; 0 (i (I (.:'~ 0 
0 0 0 (':') 0 0 0 "'1 0 0 0 

.... , 
0 [I 0 I:;:' 0 (" -::;. 

Your program could stop because an error occurred, or you could stop 
execution by inserting PAUSE statement{s) in your program; for 
example: 

() () ~3~:j PAUSE 
0040 FOR 1=1 TO 5 
o O~:50 T::::T+(~ (I) 

o 0 5~j PAUSE 
0060 NEXT I 

The PAUSE statements allow you to trace and analyze just the part of 
the program that is not working correctly. When the program above 
pauses at statement 0035, you can start it again by entering GO 40, 
TRACE. The program then pauses at statement 0055. While the 
program is halted for the PAUSE statement, you can check the value 
of variables to see if your program is progressing properly. See the 
sample cross-reference program in Chapter 15, Tips and Techniques 
for a method of listing variables to determine where they are used and 
whether they are used more than once. 

You can also start and stop a program trace during program execution 
using the WRITE FILE and FORM statements. For example: 

62~.:j~:5 tJR1TEFILE USING 6260 , FLS, 'N' , • N' 
6260 FORM POS3 / C/ POS4 / C 
6300 WRITEFILE USING 6260,FLS, 'F' 1 'F' 

Statement 6255 turns on trace with output to both the display (N in 
position 3 of file FLS) and the printer (N in position 4 of file FLS). 
Trace remains on until statement 6300 when the WRITE FILE 
statement turns it off (writes an F in positions 3 and 4 of file FLS). 

0 O~.:; 0 0 0·:::·0 

c; 

r '-•...• ../ 

c 



o 

o 

o 

o 

o 

PROGRAM STEP 

With program step, you can execute a program one step at a time, 
which can be helpful when you analyze complex routines. As with 
trace, you can execute part of the program in step mode by inserting a 
PAUSE statement at the beginning of the routine (or statements) you 

want to analyze. 

For example: 

o () :1. 0 I) ]: ,0.'1 Gj': ~:.:j ) 
o 0 ~.:.~ 0 PHI NT' EN T E r·;~ !.:.:.i T E i'!, PER i~:1 TUn E n 1...1 0 T t"1 T ION ~:; . 
0030 i"ltl T I I\! PI.JT G~ 
o 0 ~·~)!.::.i PtlUSE ~I _________ Allows you to start program step 

0040 FOR 1=1 TO 5 
00 !.::.i 0 T::::T +G) ( I ) 
OObO i"'~E><T I 
o 0 (.~::.i PtlUBE 
o 0 .? 0 ti :::: T / ~:.:i 

Allows you to stop program step and/or 
--------- analyze program results. 

o OBO PHINT . ~:.:j DAY MOVING AVERAGE = . . /\ 
} 1"1 

o 0 (? 0 ~:; T n P 

When the program pauses at statement 0035, entering GO 40, STEP 
causes the program to execute one statement at a time, allowing you 

to check program results. For example: 

RUN 
ENTER 5 TEMPERATURE QUOTATIONS 

62 I 6~j I 6B I 6:1. I 6 1+ 
[JOLt· 0 I STE P -.------Begin program step at statement 40. 

T 6~-==---=---=: Request the values of variables T and I. 

T}I~ ... 

320 
Continue processing at statement 70 without 

GD70 I RUN-·----------- program step. 
5 DAY MOVING AVERAGE - 64 

What to Do When Your Program Does Not Work 141 



142 

COMMENTS 

Using comments within your program can help you remember program 
logic and aid in analyzing program problems. When you are finished 
developing your program, you can remove the comments or revise 
them for future program analysis. Comments use storage and a small 
amount of execution time. Thus, you should use comments carefully if 
you are concerned with performance or storage use. However, 
comments can be an important aid in future analysis of your program, 
especially if someone else must maintain the program. 

Keyboard Test Data Files 

When developing or analyzing a program, you might have to use test 
data .. You can use keyboard test data file(s) to create a test file on the 
display screen. You can open the screen for both input and output 
and for both stream I/O and record I/O files. For example, you can 
open line one of the screen as a stream I/O input file as shown: 

0020 OPEN FL3 1 '001' lIN 

References to file FL3 imply that data is to be entered from the 
keyboard; for example: 

This statement indicates that an alphabetic field followed by two 
numeric fields will be read from the file referenced by FL3; for 
example: 

Allen Brown, 4.80, 6085.56 

You could also use lines 1 through 14 as a record I/O file, for 
example: 

0020 OPEN FILE FL2, '002'/ALL 
o '+ 0 0 r< E A D F I L.. E lJ f.) I N G I.i.:1. 0 I Fl .. , 2 I A ~~ I B J C 
0~10 FORM POS1 / C20 / NC5 / NC3 

References to file FL2 indicate that data is to be entered from the 
keyboard. 

You can enter test data as necessary to thoroughly test your program 
during program development. When you are finished testing, you can 
change device addresses to the value you will use in your finished 
program. 

-.------------------- ---

c 

c 

r 
\--.--

c 



o 

o 

o 

C
'" 
) 

o 

o 

o 

Chapter 15. Tips and Techniques 

Often, specific examples can aid you in understanding the operation of 
a function or a group of functions. This chapter shows examples and 
describes different techniques that you may find helpful in developing 
and using your programs. 'The topics included in this chapter are: 

• Performance considerations 

• Storage considerations 

• Program analysis using a cross-reference program 

• Skipping to a new page while printing 

• Locating a character in a string 

• Testing for an error 

• Sorting an index file 

• Another way to read a stream I/O file 

• Examples of the different file access methods 

PERFORMANCE CONSIDERATIONS 

As you optimize the performance of an application, you may want to 

consider the following: 

Program design 
Index file sorting 
Print overlap 
Display off 
Main storage index area 
Data file access selection 

Tips and Techniques 143 



144 

Program Design 

Performance of an application is enhanced if it is initially designed 
carefully and thoughtfully. Flow diagrams are very helpful in designing 
efficient running systems. There are many publications on 
flowcharting that you may find helpful if you are not familiar with the 
technique. 

Index File Sorting 

Many applications, such as inventory, make use of an index file with 
pointers that allow fast access to desired records. If the index file for 
the inventory example is sorted in ascending order, access to master 
inventory records will be faster. The increased performance occurs as 
the result of the fast scan feature implemented in the 5110, which 
requires a sorted file. As new items are added to the master file, the 
item number key (item number is specified as the key) is added to the 
end of the index file. Depending on the activity of adding and deleting 
records, the index file should be periodically sorted so that the new 

index record is placed in its proper location and the unwanted index 
records are deleted. You can sort the index file using the 5110 
Diskette Sort feature; see Sorting an Index File in this chapter. 

Print Overlap 

The 5110 can overlap printer output with computer processing. If it is 
possible with your application, the printed output might be as 
illustrated below: 

o 0 ~.::.i 0 p f~ I N T F L P 
0060 CALCULATION 

o :!. I] I] PF::Ii···~·r FI...P 
0:1.:1. 0 C(:iI... CLILt!T I Dj····l 

In the above illustration, calculations to be included in the next print 
statement are being performed while the previous line is being printed. 

c 

c 



o 

o 

o 

o 

Display Off 

Some applications may require extensive periods of processing time. 
Such applications should execute faster if the display screen is turned 
off so that the 5110 does not have to take the time to keep the 
display generated. You can turn off the display screen by writing an F 
in position 1 of file FLS. This procedure is described under Using the 
System Control functions in Chapter 12. 

Main Storage Index Area 

Access to a master file record using an index file can be improved 
substantially if you maintain a main storage index area that points to 

the index file. To do this, you use the KW= parameter, which is 
included in the OPEN statement for the index file. For example, 

30 OPEN FILE FL2, '080', 9, 'TAXES', IN, KEY, KW=900 

In the above statement, 900 bytes of main storage have been allocated 
for index file pointers. Use of this storage area can best be described 
with an example. 

Tips and Techniques 145 

---_ ..... _. __ ... __ .. _-_ ..•........... _---_ ...•................••. _------_ ......... _._ ..... __ . 



146 

Consider an inventory application with the following characteristics: 

• The maximum number of items in the master file is 1000 items. 

• The key to the master file is the item number which is 12 bytes. 

• The diskette format is 256 bytes per sector. 

• The master file record size is 100 bytes per record. 

The following questions can be asked: 

• How large should the index file be? 

• How large should the storage index area be? 

Before you answer the above questions, study the following diagram 
to help you understand the use of the KW storage area and index file. 

KW=Main Storage 

Key A 

Sorted 
Index File 

,t /' One Sector---------

Description 

c 



o 

o 

o 

o 

o 

The index file, maintained in sorted order, contains each key and the 
record number of each record in the master file. A key record is 
always 8, 16, or 32 bytes. In the example, the key length (item 
number) is 12 bytes. A master file record number is 4 bytes, giving 16 
bytes total for each key record. 

The main storage index area contains the first key in a sector and the 
physical record location of the key in the index file. 

The index file sector containing the item number key is found by 
comparing the item number to the keys in storage. Because the index 
file and main storage index area are in sorted order, the sector 
location of the key index record can be quickly found. The system 
proceeds to the sector designated and reads the sector sequentially 
until it finds the matching key. After the matching key is found, the 
master file address is read and used to directly access the item master 
record. If no key match was found in the index sector, the system 
proceeds to the end of the file to see if new records have been added. 
If no key match occurs at the end of the index file, an error occurs. 

Now, to answer the first question, the index file size is found by 
multiplying the maximum number of keys by the key length, which is 
1,000*16 or 16K. The size required for the storage index area is 
calculated as follows: 

1000 / 16 * 14 = 875 bytes [ I I t 'Size of the Main Storage Index Area 
Key Length Plus 2 

Number of Key Records Per Sector (256/16) 
Maximum Number of Keys in the Index File 

This example, using KW=900 is slightly greater than the exact amount 
of storage area to contain one key for every sector in the index file. 

The above procedure produces the most efficient method of accessing 
the master file by index key. However, you need not have one key in 
storage for every sector in the index file. If storage is limited, as little 
as one key in storage (KW=14) would improve access time by starting 
the search in the middle of the index file as required. 

Tips and Techniques 147 

.. _ ... __ ..... _ .... _ ... _-_._------ .. _._._---------------



148 

Data File Access Selection 

One of the most important decisions is choosing the proper access 
method for your data files. 

Whether to use the sequential, direct, or indexed access method 
depends on your application. 

Individual Record Access 

The fastest method of access to an individual record is directly by 
means of the relative record number of the desired record. 

For example, in an inventory file it is possible to convert the item 
number into a record number. Item numbers could be 1 to 1000. Item 
number 52 would be record 52 in the file. There are more complicated 
methods for creating a relative record number; however, they are 
beyond the scope of this document. 

Indexing is the next fastest method to access individual records. A 
pointer to the master file data record is maintained in an index file. 
This is the most commonly used access method because existing keys 
such as item numbers can be used without chance of duplicates. 

Processing a file sequentially to find an individual record is time 
consuming because the file must be read from the beginning until the 
proper record is found. 

Sequential Access 

If a file can be accessed sequentially, the fastest method would be to 
sort the master file into the desired order before processing. If the file 
is processed sequentially in some cases and directly in others, it may 
be more appropriate to create a sorted index file. The system can 
then access the master file sequentially by accessing the index file 
sequentially or directly by providing a key to the index file. 

c~ 

c 



0" 

'0 

o 

o 

o 

c· 

Storage Considerations 

User Storage 

The amount of user storage available to you for application programs 
depends upon your 5110 model. Four different storage sizes are 
available: 

16K bytes 
32K bytes 
48K bytes 
64K bytes 

Any model can be up-graded to the next higher model by the addition 
of 16K of storage. In all models, approximately 4K bytes are used for 
system-related functions. The remaining storage is available for 
program and data storage. It is a good idea to subtract a buffer of 1 K 
bytes when estimating storage requirements. 

Considering a 32K machine, for example, you would subtract 5K, 
leaving 27K bytes for your program and data. The amount of storage 
used for a program is a function of many items: 

• Program Design 

Variables 
- Program statements 

Buffers '~ 

Precision 

Careful control of the above items should lead to both smaller 
programs and more efficient programs. 

Tips and Techniques 149 

._-_._---------- _. __ ._-------_ ..... "."",."-,.,_._.,.,, -------------------



150 

Program Design 

Storage is allocated for each program statement you write and each 
variable you use. Careful program design should eliminate unnecessary 
program statements and variables. A flow diagram prepared for each 
essential step of the application will aid you in writing the program. 
Commonly used calculations, such as tax calculation, can be quickly 
identified and written as a subroutine rather than rewritten in various 
parts of your programs. Your application may lend itself to being 
divided into individual programs, each with a specific function. 

• Application 

Data entry 
Data edit/ update 

- Sort 
Process/update 

- Print reports 

The above functions could describe the steps in many different 
applications. Each of these may, perhaps, also be subdivided into 
smaller programs. 

Addressing the elements of the application one at a time, rather than 
attempting to write the entire application as a single program, should 
result in easier programs to write and understand, and require less 
storage for execution. 

Variables 

Each time a new variable is used in your program the system 
automatically assigns a predetermined (default) amount of storage for 
the data in that variable. For example: 

0020 A$='JAMES SMITH' 

The character variable A$ was assigned 18 character positions in 
storage even though the data 'JAMES SMITH' occupies only 11 
positions. 

c---------
--,' 

c 



o 

o 

o 

c~ 

o 

o 

o 

If the data in A$ is constant or can be limited to 11 positions, you can 
use a dimension statement to override the default value and assign 
only the necessary 11 positions to A$, thus using only the amount of 
storage absolutely necessary. For example: 

0010 DIrl (.~~1;1:1. 

A specific amount of storage is required for the definition of each 
variable as it is encountered; this amount does not include the space 
allocated to that variable for data storage. In the above example, with 
no dimension statement, 4 bytes are required for the A$ definition, 
bringing the storage utilization to 18+4 or 22 bytes. The amount of 
storage required for the different variable definitions and data storage 
is specified in the IBM 5110 BASIC Reference Manual. 

Use of matrix variable definition can also help in conserving storage. 
Suppose four character-fields are to be used as follows: 

A$ Name 
B$ Street Address 
C$ City 
D$ State 

Assuming the data storage for each variable defaults to 18 characters, 
a total of 88 bytes of storage would be required. If the same data 
were placed in a four-element matrix, the amount of storage used 
would be 4 elements * 18 bytes of data plus 10 bytes for the matrix 
definition. For example: 

(4 * 18)+10=82 bytes 

Tips and Techniques 151 

--------- - ._--_ .. _.-.-- ....... __ ._._------..•...... _ ..... _ ..... -_. __ ._-------. 



152 

Program Statements 

Program statements also occupy storage; this is a more difficult item 
to estimate due to the complexities of each statement. As a rule of 
thumb, the approximate amount of storage required for program 
statements can be calculated by multiplying the number of program 
statements times the average number of characters (excluding 
delimiter blanks) per statement. 

Program Statement Number of Characters 

DOlO PRINT. 'ENTER PRICE' 22 
0020 INPUT P 10 
0030 PRINT ' ENTEr~ '~TY , 20 
004·0 INPUT G 10 
o 0~50 T::::P.)(·Q 9 
0060 P r~ J: NT' T D T PI L.. eDGT ' ; T 26 
0070 G(fy'O 0010 10 

In t.he above example, there is an average of approximately 16 
characters per line. The storage estimate for the program statements 
is 7 * 16 or 112 bytes. 

The actual amount of user storage available is displayed in the lower 
right corner of the display when the 5110 is in the ready state. For a 
64K system this is 65,536-4,624 or 60,912. The 4,624 bytes represent 
system work space. 

A more accurate method to determine program statement storage is to 
save the program on tape or diskette. When the program is reloaded, 
the amount of user space left will be displayed in the lower right 
corner. Subtracting this number from 60,912 yields the actual program 
statement requirements. 

The storage requirement for the example above is 60,912-60,780 or 
132 bytes. 

After execution the storage available is 60,754 bytes, indicating that 26 
bytes were assigned to variables and data when the program was run. 

Buffers 

Buffer storage is required for operation involving data files, printer 
output, and the special function using A$. 

\ 

'-

(~' 

\,--/ 

c 

c 



o 

o 

o 

c 

o 

o 

Data Files 

Each time a stream I/O data file is opened, a storage buffer of 50 
bytes plus the physical record length is allocated. The physical record 
length is 512 bytes if the file references tape, and the physical record 
length is the sector size if the file references the diskette. 

Each time a record I/O file is opened a storage buffer of 68 bytes plus 
a multiple of the physical record length is allocated. Most commonly 
the multiple is 1 or 2. The physical record length for tape is always 
512 bytes. For diskette it can be 128, 256, 512, 1024 depending on 
how the diskette was initialized. Record I/O buffers are discussed in 
the IBM 5110 BASIC Reference Manual. 

Printer 

Printer output requires a buffer storage of 200 bytes. 

Using A$ 

The using A$ parameter is used with the READ and PRINT statements 

0020 A$='FORM 3*NCS' 
0340 PRINT USING AS,FLP,A,B,C 

The first time a using A$ parameter is encountered, the 5110 
automatically allocates a 420-byte buffer, which is used by all 
subsequent using A$ statements. Statements referencing other 
variable identification (such as B$) also use the same buffer area. 

Precision Long and Short 

When a program is in execution, each numeric variable is carried in 
long precision (fifteen digits) and occupies eight character positions. 
By entering RUNS numeric variables are carried in short precision 
(seven digits) and occupy four character positions. Whether RUNS 
(short precision) is acceptable depends on the requ irements of each 
individual appl ication. 

----.-.-.... -----.. -.---.. -... 

Tips and Techniques 153 



154 

PROGRAM ANALYSIS USING A CROSS-REFERENCE PROGRAM 

Occasional/y, while writing a BASIC program with many loops, 
subroutines, and other functions, you may find that normal debugging 
techniques are unsuited due to the complexity of the program. The 
fol/owing is a cross-reference program that can be used to 
cross-reference the occurrence of variables, line numbers, functions, 
and so on, within any program saved in a file. To do this, simply load 
the cross-reference program, and respond to its prompting messages 
for the device address, number, and name of the file containing the 
program to be cross-referenced. The program to be processed must 
have been saved in source format vvith 64 or 128 character record 
length. For example: 

For details about any of the statements in the cross-reference 
program, see the 5110 BASIC Reference Manual. 

The fol/owing is a listing of the cross-reference program. 

0010 REM BASIC CROSS REFERENCE PROGRAM - REFERENCE EXTRACT 
o 0 :::.~ 0 HEI"'i 
0030 DIM NS~/B$~,C$39 
0040 DIM R$~(3000),S$~(3000),X(3000) 

0050 CS='ABCDEFGHIJKLMNOPQRSTUVWXYZ$"@0123~56789' 
0060 PRINT 'ENTER DEVICE CODE, FILE NUMBER AND FILE ID FOR PGM' 
0070 INPUT DS,F,FS 
0080 ONERROR GO TO 200 
0090 OPEN FILE FL1,DS,F,FS,IN 
0100 ONERROR SYSTEM 
o 1 :I. 0 I~ :::: F< L r·~ ( , F L 1 . ) 
0120 IF R¢6~ GOrO 150 
o :I. 3 0 II I t'l (:~ ~I; 6 0 , I"i ~I; ~) <? 
01 1.J.{) GOlD 290 
0:1.50 IF R¢128 GO TO 180 
0160 DIM AS12~,MS:l.23 

0:1.70 DOTo 290 
0180 PRINT 'RECORD LENGTH OF INPUT FILE NOT 6~ OR 128' 
0:1.90 STOP 
0200 IF &ERR~608 GOTo 270 
02:1.0 ONERROR SYSTEM 
0220 OPEN FL1,DS,F,FS,IN 
0230 WRITEFILE FLS,' FL1' 
o 21+ [I T :1. :::: :I. 
0250 DIM A$:l.28,M$:l.27 
0260 GDTO 2»0 
0270 PRINT 'ERROR DURING OPEN -'&ERR 
0280 STOP 
0290 WRITEFILE FLS, 'F' 
0300 REM 
03:1.0 REM START OF LOOP TO PROCESS INPUT RECORDS 

,-" 

( 
\ 

\...---~ 

c' 

c 



o 

o 

o 

o 

0:320 REM 
0330 GOTO 370 ON T1 
03~0 READFILE USING 350,FL1,N$,Mt,EOF 710 
0350 FORM C4,X1,C 
03t)0 GOTO 1.1·00 
0370 GET FL1,A$,EOF 710 
0380 Nt=STRCAS,l,4) 
a390 Mt=STRCAS,6) 
04·00 PRINT FLP, N~~' · M$ 
o Lt·:J. 0 GOSUE< <?70 
0~20 IF STRCM$,l,3)='REM' GOTO 330 
01.1·30 IF STR C M~~, :1.,1):::' :' GOTO 3~~() 

04~n IF STR(M$,l,4)='DATA' GOTO 330 
o 1+ ~:i 0 A ~I; :::: M 1; 
0460 REM REPLACE ALL OPERATORS WITH BLANKS 
OLI·70 r~Er'1 

0480 FOR 1=1 TO LENCA$) 
0490 IF IDX(C$,STRCAt,I,l»~O GOTO 560 
O~:jO 0 IF STr~ (A~I;, I 1:1. ) rC ' , " GOTO ~j~)O 

05:1.0 J=IDX(STRCA$/I+l),"") 
0520 STRCAt,I,J+:I.)=' , 
O~53() I::::I+ . ...1 

o ~)q. 0 GOTO ~:j6 0 
0550 STRCA$,I,l)=' , 
()~56() NEXT I 
0570 REM INPUT RECORD HAS BEEN MODIFIED - EXTRACT REFERENCES 
o ~5B 0 L::::LEN C AS ) 
0~:}90 1::::0 
0600I::::I+1 
0610 IF I>L GOTO 330 
0620 IF STI~ «(.~~~, I, :I.):::' , GOTD 600 
Ob~50 J::::IDX (STR (A~I;, I) " .) 
0640 B$=STRCA$,I,J-:l.) 
06~:jO I::::I+JMM1 
0660 X:l::::X:I.+:I. 
o c> 70S ~I; ( X:I. ) ::: N ~; 
06BO R$ (X:I.) ::::B~~ 
0690 IF ISL GOTO 620 
0700 GOTO 3:'50 
0710 REM END OF PROGRAM - SORT AND PRINT OUT 
0720 GOSUB :I. OLI·O 
0730 MAT R$(Xl)=R$ 
0740 MAT S$(X:l)=S$ 
0750 MAT X(X:I.)=(O) 
0760 MAT X=AIDX(R$) 
0770 CO::::O 
0780 FOR I=:I. TO X:I. 
0790 IF Nt=Rt(XCI» GOTO 850 
OBOO GOSUB 970 
0810 PRINT FLP, T(.~BC1), R~lqXCl» ;TAB(S};':'; 
OB20 N::::N+l 
08~50 CO::-.:O 

Tips and Techniques 155 



Page of SA21-9307-0 
Issued 28 April 1978 
By TNL: SN21-0277 

OBI.I·O N~;::::R~I; (X (I) ) 
OB~50 CO::::CO+l 
0860 IF COS10 GOlD 900 
OB70 GOBUB 970 
0880 PI~INT FI...P, TAB(5)} , : ' ; 
0890 CO:::::I. 
o 9 0 0 P I~ I NT F L P,' , ; S ~I; ( X ( I ) ) ; 
09:J.() NEXT I 
0920 PRINT FL.P 
0930 PRINT FLP, 'NUMBER OF SYMBOLS ='N 
09~O PRINT FLP, 'NUMBER OF REFERENCES ='X:J. 
09~:50 GO~)UB :L 01+0 
0960 STOP 
0970 READFILE USING 980,FLS,LO 
0980 FORM POS11 / NC5 
0990 LO=INT(LO/66)*66+66-LO 
1000 IF LOSO~LO>6 GOrO 1030 
1010 PRINT USING :J.020,FLP,' 
1020 FORM Cl,SKIPLO 
:J. 0 ~5 0 I~ElU I~N 

10~0 READFILE USING 1050,FLS,LO 
1050 FORM POSll,NC5 
1060 LO=INT(L.O/66)*66+66-LO 
1070 PRINT USING 1080 / FLP/' 
1080 FORM Cl,SKIPLO 
:1.090 RETURN 

The following is a sample printout when the cross-reference program 
is run on itself. 

01 ~J; O~·570 O~~;BO ()~590 o I·I·!:; 0 OLI·BO o LI·(]> 0 0~50 0 O~:.i:l. () 
o ~:)8 0 06~~O 0630 () 6'+ () 

f~I~I;:I. 2 : 0:1.60 02~:;() 

A~I;60 : 0:1.:30 
AIDX: 0760 
B~I:· 061.1·0 06BO 
B~I:·I+ 

, 0030 , 

C o ~·5~5 0 
C~I; O()~:;O O'+<iO 
C~~39 : 0030 
CO 0770 () 8 ~.~) 0 o B~:j 0 o 8~:; 0 0860 OB90 
C:L :1.020 :1.080 
C'+ 03~:jO 

D~~ 0070 0090 0220 
:01 t1 OO:?)O 00 1+0 0130 0160 02!:jO 
[OF () ~3'+ 0 0370 
ERF< 0200 0270 
r .. 0070 0090 0220 
F~I; 0070 0090 0220 
FILE: 0090 
FI...P 0'+00 08:1.0 OBBO 0900 0920 0930 091.1·0 1 ():I. 0 
FLS 0230 ()~~90 0970 :l 0 '+ () 
FL.:!. 0090 0220 03'+0 O~~70 
FDH O'+BO 07BO 

156 

(~ 

\, 
'-........ .,;. 

c 
o ~:j~~~ 0 o ~;5 () 

C' 

C 
l070 

C 



Page of SA21-9307-0 
Issued 28 April 1978 
By TNL: SN21-0277 

FORf'\ : () ~~~::; 0 orlBO :1.020 :1. 0 ~:j 0 lOBO 

0 
GET . O~3"l() 

GOGU: Ott·:I. 0 0720 oaoo OB70 09~:i 0 
GOTD: OOBO 0:1.20 () :\.1.1·0 o :l5 0 0:1.70 0200 0260 0330 0:360 0'-1·20 

o Lt·::3 0 Ott·,+O 0'+90 O~;O 0 o ~:;ll· 0 Ob:l.O 01.>20 0690 0700 0790 

OB60 :\.000 
I o l~B () o ll·<? 0 O~.:;OO ()~5:1.0 O~520 0~:;30 o ~:j:3 0 O~S~:;O ()~560 o ~59 0 

C) 0600 0600 06:1.0 OC.>20 06~50 061+ () o 6~j 0 0650 0690 07BO 

0790 OB:l.O 081+0 0900 09:1. 0 
IDX o 1.J·9 0 O~j:l. 0 0630 
IF 0:1.20 O:l.~:;O 0200 OLI·20 0'+30 OLI·I+ 0 Oll·('f 0 0500 06:1.0 0620 

06<»0 0790 OB60 :1. 0 0 0 
IN 0090 0220 

0 
INPU: 0070 
INT 0</90 :1.060 
J o ~:j:l. 0 O~:i20 o ~.i3 0 0630 061.\·0 06!:;0 

I... O~:;BO 06:1.0 0690 
LEN OI+BO O~5BO 

1...0 09,,{0 O('t<fO 0<)1<»0 o <";<'t 0 :1.000 :1.000 :I. 04·0 :1.060 lO60 :I. 01.>0 

M~I; 031+ 0 0:~9 0 01+00 01+20 o I.~:~ 0 01.1.1+ () o I.J.~:; 0 

i\'\~I;:l.2 : 0:1.60 o 2~:; 0 
M~f-59 : 0130 
Mf~T 0730 07'+ () o 7~:j 0 07<:'>0 
N OB20 OB20 o (t:~ 0 
N~; 031+0 O:5BO Oq·OO 0670 0790 OBI+O 
N~~ q. 0030 
NC~.:j 09BO 1. O~jO 

0 NEXT: o !5c'> 0 0'.1:1. 0 
DN 0:3:30 
ONER: OOBO 0:1.00 02:1.0 
OPEN: 0090 0220 
POS1: 09BO :1.050 
PRIN: (lObO O:l.BO 0270 01+00 OBlO O{3BO 0900 0920 o 9::~ 0 091~·0 

1010 :1.070 
p 01.:1. 0 0120 o :I.~jO '. 
R~~ 0680 0730 07:'50 0760 0790 OB10 o BI+ 0 

H~I;I+ 00 1+ 0 
RE(.:lD: 031.J·() 0970 10 1+0 
RETU: 1030 1090 
RLN · 0:1.10 · 

0 
B~I; 0670 () 71+ 0 071.J·0 ortOO 
B~~I.~ · 00 1.1.0 · BI( I P: :1.020 lO80 
STOP: 0190 0280 091.>0 
BTl=< · 0380 0390 01.1·20 OI+:~O 01.1.1+ 0 01.1'(10 O~:;O 0 o ~:j:l. 0 0~;20 o ~:;~:; () · 0<:'>20 0630 061+0 

0 
BYBT; 0:1. 0 0 0210 
T('~B · 0810 OEll0 OB8(} · TD (I LJ·8 0 07BO 
T:I. · o 2LJ· 0 O:~:30 · USIN: o :~I+ 0 0970 10:1.0 :1.0 1+0 :1.070 
~JRIT : () 2:30 0290 

0 
Tips and Techniques 157 



Page of SA21-9307-0 
Issued 28 April 1978 
By TNL: SN21-0277 

X 00 1+0 o 7~:j 0 0760 07(.1'0 OB:I.O OB'+O 0900 
Xl o :3~; 0 o C)(:") 0 0660 0670 ()(~)BO 07:3 () 07'+0 o 7!.:"jO 07BO 0(;> 1+ 0 

~ 
0 0'+(.1'0 O~:;(»O 07~:;0 0770 0830 lOOO \ 

1 o :.:.~I+ 0 O~~BO 0'+20 01+:.3 0 o I.J.:~ () o '+I.J. 0 o I+B 0 o 1.J·9 () O!50 0 05:1.0 
'-._-/' 

0~S20 o ~s~:; 0 0600 06:~O 06'+0 06~.:;0 0660 07BO 081.0 0820 

OB!50 OB90 
:1.0 OB60 
:1. 020 : :l I) :1. 0 C :I. 0 ~~ 0 : :1.000 
10'+0: 0720 o 9!;j 0 
:l.O~5(): :1. 0 1+ 0 
:l.OBO: :1.070 
:1.28 o :I. ~:; () 
:I. ~j 0 0:1.20 (~'" 
:1.80 0:1.50 ~ 

200 0080 
270 0200 
290 0:1.'+0 O:l70 0260 
~5 01+20 
3000: 00 1+0 00 1+0 004·0 
:3:30 0'+20 o 1.!·:3 0 01+'-1.0 06:1.0 0700 
3~50 0:'5'+0 
:570 o ~5:~ 0 
'+ O~58 0 () Lj.'+ 0 
1+00 0360 
!3 08:1.0 0880 
~5~jO O~:jO 0 
560 OLI·90 05'+ () C c) O:5()iO :1.000 
600 0620 
608 0200 
620 0690 
c) 1+ 0:1.20 
66 0(»90 09S)O 09(»O :1.060 lO60 lO60 
7:1.0 o ~5'+ 0 0370 
B~j 0 0790 
900 OB60 
<t70 0'+10 OBOO OB70 
9BO 0970 
NUMBER OF' SYMBDLS .... 105 
NUMBEI~ OF REF E r~ENCES .. N 376 C 

(' 
'-... ..... / 

c 
158 

----------_. 



o 

C) 

o 

o 

o 

o 

SKIPPING TO A NEW PAGE WHILE PRINTING 

Using File FLS 

In the cross-reference program (see Program Analysis Using a 
Cross-Reference Program, this chapter), lines 760 to 880 show two 
methods of skipping to a new page while printing. 

• Skip to a new page with 6 or fewer lines left 

• Skip unconditionally to a new page. 

Page of SA21-9307-0 
Issued 28 April 1978 
By TNL: SN21-0277 

Both methods use a portion of the contents of file FLS. Positions 11 
through 15 of file FLS always contain the total number of lines printed. 

0970 READFILE USING 980,FLS,LO 
0980 FORM POS11,NC5 
0990 LO=INT(LO/66)*66+66-LO 
1000 IF LO~0ILO>6 GOrO 1030 
1010 PRINT USING 1020,FLP,' 
1020 FORM Cl,SKIPLO 
:1. 0 :5 0 RET URN 
10~0 READFILE USING 1050,FLS,LO 
10S0 FORM POSll,NC5 
1060 LO=INT(LO/66)*66+66-LO 
:1.070 PRINT USING 1080, FLP, · 
1080 FORM Cl,SKIPLO 
1 090 I~ETURN 

Tips and Techniques 159 



160 

Statements 760 and 830 are READ FILE statements that access file 
FLS. Statements 770 and 840 are FORM statements specifying that 
only the 5 numeric characters beginning in position 11 of file FLS be 
acc.essed. From this point on, the two methods of page skipping 
differ. The subroutine consisting of lines 760 to 820 specifies that 
printing begin on a new page if space for 6 or fewer lines remains on 
the current page. The subroutine consisting of lines 830 to 880 
specifies that printing begin on a new page unconditionally. In both 
cases, the constant 66 (11-inch paper at 6 lines per inch) is used as 
the page length. The calculations in statements 780 and 850 use the 
data from file FLS (named LO) to determine remaining space on the 
current page. The I F statement (790) specifies the conditions for 
skipping to a new page (if space remaining is less than zero or greater 
than 6, continue printing). Statements 800 and 860 specify that blank 
lines be printed according to the FORM statements in 810 and 870. 
These FORM statements also indicate that LO is the number of lines to 
be skipped. The following examples show a breakdown of the 
calculations in lines 780 and 850. These examples assume a value for 
LO (positions 11 to 15 of file FLS) of 3200 or 670. 

Example 1 Example 2 

LO=3200 LO=670 
3200 670 
INT(LO/66) I nteger portion of INT(LO/66) This determines the number 
48 LO divided by 66. 10 of pages already printed. 

( 48)*66 Integer portion of ( 11)*66 This determines total lines 
3168 LO multiplied by 66. 660 already printed on pages. 

( 3168)+66 Lines printed on ( 660)+66 This allows for inclusion of 
3234 other pages plus 66. 726 the 66 lines available on the 

current page being printed. 

( 3234)-LO Total lines ( 726)-LO This determines the line spaces 
34 possible (including 56 remaining on the current page 

current page) (34 and 56, respectively). 
minus LO. 

(' 
\, 

'-.... ~./ 

C: 

C' 

C 

c 



o 

o 

o 

0 

o 

o 

User Program Control 

Printing can also be controlled by the user keeping track of the lines 
printed on each page. 

00:1.0 T::::··l 
() 020 H::::2 
00:30 S::::T····H 
00'+0 GDBUB :1.20 

T = lines per page 
H = lines in the page heading 
S = lines available for printing 

0050 FOR 1=:1. TO :1.10 
0060 
0070 
OOBO 
OOS>O 
O:LOO 
0:1.:1.0 
0:1.20 
o :I. :.~) 0 
() :1.'+ 0 

PI~1NT FL.P I I .. '------Print your report 
1...::::1 ..• +:1. 
IF 1...::::8 GDTD 
GDTD :1. :1. () 
GDSUB :1.20 

:I. () 0 -,---Test for printed lines equal to 
S = lines available for printing 

NEXT I-,--------Skip to a new page 
I~EM {print page heading 
P::::P+:I. 0120-0170 Set page number 
L.:::: 0 Lines printed = 0 

o :I.~:iO PI~INT FI...P 
o :I. 6 0 P I~ I N T F L. PIT PI B ( :I. !~j) I • PA G E 
0:1."7 0 I~ETU I~N 

:I. 

I::· 
,.1 

6 
7 
B 
<» 
:1.0 

:1.1 
:1.2 
:I. :3 
:1.'+ 
:1.5 

P(~GE :1. 

P(~IGE ,.) 
A· •• 

P(~GE :~ 

. ; p 

For simplicity of illustration, a page size of 7 lines was used. This 
would normally be 66 for standard printed reports. Checks, invoices, 
and other documents would require different page sizes. The page 
heading would also be more extensive; however, the concept is the 
same. 

By changing the value in variable T, you can quickly accommodate 
various sizes of paper for the same report. 

Tips and Techniques 161 



Page of SA21-9307-0 
Issued 28 April 1978 
By TNL: SN21-0277 

LOCATING A CHARACTER IN A STRING 

Another form of the computed GOTO statement uses the lOX intrinsic 
function, which allows you to determine the exact position of a 
specific character within a character string. For example, assuming 
that the operator entered N in response to input statement 920: 

09:1.0 DIt''! (")~t>:1. 

0920 PRINT 'f.1RE DIVIDEND~) TO BE r~EINVEBTED? Y DI~ N' C--'" 
I) (1:3 0 I N PUT A~I) ''--_./ 

162 

0940 GO TO 950,2000 DN IDX ('YN' JA$) 
09!.:.iO GOTD 9:1.0 
0(;>60 1:~Et1 

.)( . 

. )~ 

.)(. 

Statement 940 causes the program to branch to statement 2000 (the 
second statement number in the list, just as N is the second character 
in the string). If neither a Y or N is entered, the program repeats the 
prompt to the operator (statement 950). 

TESTING FOR AN ERROR 

The ONERROR statement provides another means of error recovery. 
This statement operates with two internal functions (& ERR and 
& LINE) to identify any type of error by error number and by the 
number of the line at which the error occurred. You can enter an 
ON ERROR statement with a GOTO parameter to transfer program 
control to a particular statement in the event of an error, as shown 
below: 

0010 ONERROR GOTD 115 
0020 
OO~3() 

00 1.1. () 
OO~:i() 

OOC)O 
0070 
OOBO 
0090 
OlOO 
0:1.:1. 0 
0:1. :I. ~=:j 

0:1.20 
0:1. ~50 

OPEN FL9, 'DBO',5, 'GEORGE',OUT 
PRINT 'ENTER PRINCIPLE' 
INPUT P 
PRINT 'TIME', 'RATE', 'AMOUNT' 
FOR T:::::I. TO :1.0 
FDI~ F>-:::::J. TO 20 
A:::: p.)(- ( :to + I~/:I. 0 0 ) t T I Calculated future value of 
PUT FI... (y , T , I~ , A 
NEXT I~ 
NEXT T 
ONEI~ROI~ SYSTEM 
CLOSE FI...9 
STOP 

principal at a rate of 
1% to 20% for 1 to 10 
years compounded yearly 

c' 

c 



o 

o 

o 

c 

o 

o 

o 

In this example, the ONERROR statement specifies that file FL9 be 
closed (statement 120) if an error occurs. If, for example, the file was 
too small to hold all the values being entered into it, the ONERROR 
statement would ensure that the file was properly closed. The file 
could then be re-marked to a larger size. 

The internal constants (& ERR and & LINE) can also be used to record 
error occurrences in a program with many input/ output statements. In 
the following example, the ONERROR statement specifies that the 
program branch to the PRINT statement (line 150). The internal 
constants & ERR and & LINE are then inserted into the displayed line 
to indicate the error number and line number at which the error 
occurred. 

00 :I. ~:.:.i ONE F< F~D F~ GDTD 11.J·f.) 
o 0 ::.~ 0 [) PEN F I...'-I'} • DB 0 . .. · tl F ' .. I N 
0030 GET FL4 .. A .. B}C .. D , E 
() 0 '+ 0 LET :O::::(] 

o 0 ~:.:.i 0 LET tl::::36 
(:I 0 l:, 0 L E 'r c :::: C + B 
00 .. / 0 CI...D~:)E FI...'+ 
o 0 BOD PEN F 1...'+.. ':0 DO' I ' tl F ' I D 1 • ..I·r 
o 0 9 (I PUT F I... q .. ' (.1 .. B .. C 
0100 CI...D~:~E FI .. ,'+ 
o 1 :I. 0 C' PEN F I...'+) , :0 B [I , .' '(.~ F ' .. I N 
0120 GET FI...4 .. A}B}C .. D,E 
o :I. :3 0 I... E T tl :::: B .)(. C 
0:1.'-1·0 LET D::::i~]""E 

() :I. '+ ~.:) CJ (] T D :I. 6 0 
0:1.46 DNEF<RDR SYSTEM 
() :I. ~5 0 P n I NT' E F~ F< [) F~' .. (~~ E n F~., 'H f:~1 G DeC u F~ I~ E :0 I~~I T I... I j"'I! E ' .' ,~~ I... I N E 
0:1.60 CLDBE FI...I.j· 
o :I. )' 0 ~:) T Ct P 

Note that the EXIT statement and the error exit clauses on 
input/output statements take precedence over the ONERROR 
statement. In other words, if an EOF condition occurs in a statement 
with an EOF exit specified, the EOF exit is taken even though the 
program might also contain an ONERROR statement. ONERROR 
SYSTEM should be the first statement of an error recovery program to 
avoid loops. Terminal errors clear internal error pointers and the 
program must go to end-of-job. 

Tips and Techniques 163 

.. "-----,,._--------



164 

SORTING AN INDEX FILE 

When you create a key-indexed file, the key and corresponding 
location of each record in the file is stored in the index file. 
Subsequent access of the file can be significantly improved if you sort 
these keys into sequence. The following sample program illustrates a 
method of sorting the record keys in the index file. This is a storage 
sort and assumes that all keys can be loaded into storage at one time. 
The size of your machine will determine the maximum number of keys 
that can be sorted in this manner. If your 5110 storage size is less 
than 64K, adjust the DIM statements (130, 160, and 190) accordingly. 
Only those statements in the sample program that pertain to the index 
sort are discussed; others may be self-explanatory. 

0010 REM INDEX FILE SORT PROGRAM 
0020 HEr", 
0030 I~~EH 

o 0 '+ 0 F~ E f'i J F B T C) n f~' G E ~3 I Z E I ~:) L E B ~3 T H (.~, N b 1.f·1< (:":-, D . ..J U D T D I r"l Fr·.!!3 I D N ~:) 
o () ~5 0 F~ E IVI F (] R I( ·=1; (:-, i\~ It X (l ceo R It I N G I... Y 

00·/0 pnINT . ENTEF~ DEVICE CODE) FILE NUi\'I:OEF~ t,ND FILE IDENT' 
() [lBO PF~:1NT . FDF< INDEX FILE TO BE ~:)DF~TE:O' ~ 
o O·:?O :n··1PI..JT :0.:/;., F .. F':I; ~Identify key index file. 
0100 DPEN FILE FL1,D$,F,F$,IN 
0:1.:1. 0 F~::::F~LN ( 'FL.:I. . ) ... -------------Length of last record in FL1. 
o 1 :.:.~ 0 I F n l:-5 2 Ei 0 T D 1. ~:j 0 -:--:-~-::-:-___ ~ 
0:/.:·50 It :1:1"1 1< ~I; 3::.:.~ ( :1. 1+ 00 ) , X ( :1.1-1· 0 [I ) Key records are always 8, 16, or 32 bytes. 
o 1 I.J. 0 GOTO 200 
o :I. ~::.; 0 I F R l: :I. () DC) T (] :I. B (} 
0:1.60 
0170 
0:1.80 IF R08 GDTD 350 
O:/.? 0 II I i"1 1< ·=I;B ( 3~:S 00 ) .. X ( :3~:5 00) • Space for 3500 8-byte keys in K$. 
o 2 0 0 F< E f1 F< E r=~, D I I\! t,I...L HE C D I~ :0 GIN THE F I I... E 
O;?:I.O 1::::1+1 
O;.:.~20 FU:::t',DFILE FL:/' .. ICI; (I:> , EOF 2'+0 • Bring all key records into storage. 
O~?:'50 GOTD 210 
0240 REM CLOSE INPUT FILE, AND DETERMINE SORTED DRDER 
02~.:.;O 1::::1····1 
02<;·>£) CLOSE F I I...E FI...:I. Set matrix size to I elements. 
0270 MAT K$(I)=K$-
02BO 
0290 
0300 
o :'~):I. 0 
o :-3;;.~ 0 

,·'If:yr X ( I :> ::::td: DX (I( ·:I~) • Ascending index value of K$ into X. 
REM REWRITE INDEX FILE IN ASCENDING SEQUENCE 
D PEN F I I .. , E F I ... :I. .' :0 ~I; , F , F ~I; , [I u·r .' HE C I ... :::: I~ 
FOR J :::: :I. TO I 
I/JI~ITEFII...E FL:!. .. I<~I; (X ( . ...1) :> -.-------- New file of keys in K$ created 

0330 NE){·r . ...1 

0::5'+0 ~:)TDP 
as indexed by X(J). 

0350 PRINT 'NOT VALID INDEX FILE RECORD LENGTH' 

c· 

c 

C~I 

c 



o 

o 

o 

o 

o 

o 

Page of SA21-9307-0 
Issued 28 April 1978 
By TNL: SN21-0277 

Statements 70 and 80 request the indicated information, which is then 
used to open the file in statement 100. The length of the last record 
accessed in the file referenced FL 1 is assigned to R in statement 110. 
In statements 120, 150, and 180, the exact record length is tested, and 
variables K$ and X are adjusted accordingly in the following statement. 
Note that, if record length is not equal to 8 (statement 180), the 
program terminates by branching to statement 350. Statements 210, 
220, and 230 read all the record keys from the index file and branch to 
statement 240 'when end of file is reached. The file is closed in 
statement 260. Statements 270 and 280 put the indexed file values in 
ascending order into matrix X (see Index Function in Chapter 2). 
Statement 300 reopens the original file (referenced FL 1) for output 
with the same record length. Finally, statements 310, 320, and 330 
write all the record key values into the file in ascending sequence 
according to their ascending order in matrix X. 

ANOTHER WAY TO READ A STREAM INPUT FILE 

Using a system file called file FLS, you can obtain an alternate form of 
stream-oriented file input. This form of input allows your program to 
get a logical record from a stream-oriented file and assign the entire 
record (including all quotation marks and commas) to one character 
variable. Thus, a BASIC program in source form and in a type 2 or 
type 9 file can be read and processed as in the preceding 
cross-reference program. Alternate stream file input can be obtained 
only from a file that is already open. You can invoke alternate file 
input by writing the file reference code (FLO-FL9) of the file in 
positions 7 through 9 of file FLS using the WRITE FILE statement (see 
the IBM 5110 BASIC Reference Manual). 

Tips and Techniques 165 



Page of SA21-9307-0 
Issued 28 April 1978 
By TNL: SN21-0277 

A logical data statement in a stream I/O file can be read into a single 
variable as illustrated: 

0010 :94560 , 'ADAMS Supply'1964,60,359,OO, '8/22/77' 

The above record could represent: 

Customer Number 
Customer Name 
Total Purchases to Date 
Last Purchase 
Date of Last Purchase 

94560 
Adams Supply 
964.60 
Amount 359.00 
8/22/77 

The data, if located in file 3 on device '080', could be read into a 
single variable as follows: 

00:1.0 OPEN FL:!., 'DOO' .,3 1 'CU~:)TDI"1ER' 1 IN 
o 0 2 0 II I t1 (.:1 ~~ ~1) 1+ 

0030 WRITEFILE USING 40 I FL.S , 'FL.:!.' 
o 0 1+ 0 F (] I~ tvl P (] S "{' 1 C 
() O!50 GET FL:I. 1 (:~~I; 

o 060 PI~INT (~~I; 

The data in A$ as printed in statement 60 would include all commas 
and quotes as well as the actual data. The output from 60 would 
appear: 

94560,'ADAMS SUPPLY',964.60,359.00,'8/22/77' 

Referring to the cross reference program earlier in this chapter, the 
program uses a type 2 or type 9 file for input as follows: 

If an error occurs, control transfers to statement 
0200. 

o 0 BOON E I. RO R GD T () ;>. 0 0 / ~a:h:e:~~;~:~~xecutes without error, a type 9 file 

n () n n (",,') " .. '. I ,." '1' 1 I'" 1'''1 I r I F" ,..." '1'" R . 
_ • 7 _ .. ' ~I\ - .. _. :,,~.~: :: .. ".~ eset err~r t~appmg. 

0:1.01) DN[F~F~OF~: ~:) y .::) 11::.1"1 /Error 608 mdlcates that a type 2 file exists and that 
the program tried to open it as a type 9 file. Control 
follows in statement 220, where the type 2 file is 

1):2 I) I] I F (:~E H 1~:.>:·:6 0 B (3DTD ~:)"? n °27POenfed. An~ ot~er error passes control to statement 
.... .. or termmatlon. 

02:1. (ION E F~ R (J F: ~::) \' ~::) T Ei ... ·l-----____ _ 
Reset error trapping. 

0220 0 PEI\! FI...:I. 1 D~I; .' F 1 F~I:· .' I i\~-~--__ _ 
- Open the type 2 file. 

02::~)O I .... .IF·~ITEFII...E FL.~::; 1 ' 

166 

" 

.. , 'I ' .... , .. -------
Invokes alternate input from a type 2 file to supply a 
logical record, including quotes and commas, in a 
single character varialbe. 

c 



o 

C) 

o 

o 

o 

With these statements, you have opened file FL 1 and you have 
dimensioned A$ and M$ to contain the logical records. By testing for 
an error in the opening of a stream file as a record file, the program 
reads either a type 9 file (fixed length reco~d) or a type 2 file (variable 
length record) with delimiter characters. This alternate mode ignores 
the commas of the type 2 file. 

Different File Access Methods 

The following programs were written to illustrate various methods of 
file accessing. Before these programs were written, the diskette was 
first marked. Unlike tape files, diskette files can be marked and then 
re-marked, if necessary, without affecting any other files. 

Programs were created to illustrate the following record I/O topics: 

• Data entry with key index file 

CD Direct access and update with key index 

o Sequential access by key index 

• Sequential access with no key 

• Direct access by relative record number 

• Create multiple index 

Each program uses the data file created by the first program. 

Page of SA21·9307·0 
Issued 28 April 1978 
By TNL: SN21·0277 

Tips and Techniques 167 



168 

Creating an Index File 

The purpose of the following program is to illustrate the method by 
which a record I/O file with a key index file is created. In this example 
an inventory master file is created with a key file of item numbers. 
The amount of data is purposely limited, and the method of data entry 
is simplified in order to focus on the method by which both the master 
and key file are created. 

Consider that you wish to store inventory data in your 5110. Fast 
access to each item is critical and the inventory data must be easily 
and quickly updated. The initial data files are created with the 
following program: 

~Inventory master file specified 

0010 OPEN FILE FL11 'D80',2 1 'ITEM,MASTER',OUT 1RECL=128 
0020 OPEN FILE FL11 'D80',l, 'ITEM,NO,INDEX',OUT,KEY,KP=1,KL=5 
o 02>0 PI~INT 'ENT[I~, ,ITEM NUMBEI~' ".. . 
001+ 0 I N PUT I ~I; Key file specified 

0050 IF I$='END' GOTO 150 
0060 PRINT 'ENTER, ,DESCRIPTION' 
OO'? 0 I N PUT :O~J; Operator entered data 
o OBO PI~~INT 'ENTEI~, ,(~TY ON H(~,ND' 

0090 INPUT (~ 
0100 PRINT 'ENTER, ,UNIT PRICE' 
01. :1. 0 I N PUT P ____ Data written to master file 
0120 WRITEFILE USING 130,FL1,I$,D$,Q,P~ . 
01.:30 FD I~M C~::j, C2 0 , PIC (ZZZZU) , PIC ( ~I;~I;~I;':I; , ~H~) I Record format specified 
0:1.1.1· () GOTD ~5 0 
o l~::;O BTOP 

In the above example, the record format is specified in statement 130. 

Item Number 
Description 
Quantity on Hand 
Unit Price 

5 characters 
20 characters 

5 characters 
8 characters 

The key field is automatically created as a result of statement 20, 
which specifies file 1 on device 080 as the key file using 5 characters 
(KL=5) starting at position 1 (KP=1) of the master file (item number) as 
the key. The overall record length is 128 bytes (RECL=128). Because 
our data consumes only 38 bytes, ample space is available for 
additional inventory data. 

~ .. 
( 

\-..-/ 

C/ 
./ 



o 

o 

o 

c' 

o 

o 

o 

After the inventory data was entered, the master data file was listed 
and is shown below: 

I{ :.? 0 :::.~ ~:) c F~ E Ihl D F~ I \/ E F~ 
A500 SCREWDRIVER 
B:30 () ))Ol...·r:::) 
~.:.:i 0 0 0 P U i"1 P :::~; .. / Lj. H D Ix ~:) [ 
~.:.:.i 0 0 ::.~~ P 1 . ..1 ,.'-j P 1,/ ~,? H 0 R :::) E 
tl :..:.:: O:.? H (11·'1 !"-·1 [: I~~ 

PI ::!~ 0 ~.:.:.i PIP E l,.J F~ E:: N C H 

~.:.:.i 000 
1::·1::· 
•••• f •• ..1 

600 

·:1; 1 I ::? ~.::.i 

·=!;H I ~.:.:.i 0 
.:!; 0 I D~.:.:.i 

./ ·=1; 9 ~:.:i I 0 0 
:I.:'? -:liE:~.::i I 00 

The order in which the items are listed is the order in which they were 
originally entered. As you look at each record you can see the record 
format (space for 5-character item number, space for 20-character 
description, and so on. 

This data file is now available for access and processing. 

The key file created in file 1 should be sorted to produce the best 
operating performance. 

Tips and Techniques 169 

_. ____ ._ . __ • •• __ •• _._ •••• _ ••• ______ . __ • _________ • ___ ••• _ •• ___ ._ .• _____ ._ ••• __ •• - •• _ •••• _ •• ___ 0.0_. ____ _ ------ _ ... __ .. ----_ .. _------_ ... --- ..... . 



Direct Access and Update with Key Index 

The purpose of the following program is to illustrate how you can 
directly access a data file by key, alter the data, and update the master 
file. This program uses the data file created by the previous program. 
The method of altering the data after it has been accessed uses a 
simplified version of the full screen formatting capability of the 5110. 
Using these concepts, you should be able to construct efficient 
routines. 

00:1. () l.><.~~::;7 I Constant for controlling cursor position Specify format 
0020 l.J::::Z+3~3:1. 
.) .) "y (l I' ""Ii I'" tl • I .. , tl '" (. of inventory 
I. l ,~). . .I .. t I ,,~; 6 + 1 ~:)~; U J • 

t'J' () \.1. ii. I::' ~I; :::: ' 1'11::' C' ('" I:' ]. I:) '1" '1' ('l ~,I ( .. I'd I"I;~ ~\I )"1 l J ••. J .,. '1" I:) I:) '1' (" I::' , data d I sp I ay \ . . ... ,,)., <. . ... It JI,( (.)1,,, . r... .... ... , ". J 
o O~; 0 E'~;::::' I TEjvI NUrvlBE ,~~ , t-- Position cursor as specified in statement 10 
o 0 f.:. 0 ~:) T F< ( ~:) ~I; J :I. .' I.!. 3 ) :::: ' F [I F~ t·'! P 0 ~:):l , C:I. 1 J X:3 , C ~::.j , X :1. B 1+ .' C I+"l J X B 0 , C :1. , C 2 0 .' C 2., ' 
0070 STR(S$,44,35)='PICCZZZZH),Cf.:.,PIC($$$$H,HH),Cl,POSW' 
o OBO REc"1 
l·.·1 t", <.;) () () F) I::' \.1 '::"1' I I::' '::'1" '1'1 (:> ')' .,:) "1' 'Y',::' :-.;. =-,: ~ C' 'j",::' ,:>' ~. I I } Ope n. m a ste ran d ... 1 ( .... ,... ..'··1·· (.) l , ..... , .. ...11, 11tl •. ) ....... 1 (I .. , .. , k f I f 
() I .. (. ..) 1.\1 ..... 1 I'" '1'1 I'" ,"','1 'I' (" 0' '1 "1' '1" ,." M l'o.lf) ]·l\I) .. ' .. ···, , '. I I U I""" ey 1 e or 

:. U J ~: ~ ;~:~~{ ;~.:: ... ;~ ;~. -':.;' , :Id ';i , 1 ' .. ~! .. ::.11, I'". , .1\~..1 ::.A } (..1 ..... , .' /" ::. Y input and output 
0:1.:1.0 UFI...,! 111...1... 11 ... 10' .. , 00 .. " ,HLI... ________ 
0:1.20 P I~ I NT '[NTE I~ I NItEX I< EY , Open screen for record I/O 
O:l.!) 0 IN PUT 1< ~I; - Enter item number desired input and output 
0:1.40 IF K$='END' GOlD 230 
l')'1 1:" (J' 1:11::' ~~ · ... II:: .. I·l I::' l!C' .,. ·.Il'" '1 l\ ('J 1::'1'1 1<' E·:·'..'::::I! ~I; '1' d; 1'1(1:. t':i I:) ~;,IL")I! \::.;".' ":)'::j l'J' -- Item is retrieved .. ,) ... , ,·l,.. ...,... " ,,) .. t~ J . . .... , .. , .., , .. 1 , } .. i , . i ! "( 1 ,I ( ,... I 10 .. ,.. • k 
() 160 FO I~;vt C~~;., C2 0 , NC~5 1 NCB, :? UStng ey 
o :I. .. ? 0 ~J r< I T E F I I... [ U ~:) I :'! c·, n ~I; , F I... 2 J E ~I; , I ~I:· , F ~I;, ' ::- ' ,D ~I;, ' -::::- ' J C~, . -:: -:: -:: ::- ::-::- ' , P,' -:: ' 
( I .. \ () 1'\ E" ., I' I'" .,. I I'" lJ ,'" .[ l\ I .... ., i')" 1"'1 ''') I' d' (" I') (" r .. ··I' I '1 ... , (. "'-
) :. b .~: :.:. (.:~ . '.~ " '.; ::: .:.:.: ~~ ;.; I'~ I.J , . ;.: '.: 1..1 :, .:: ... ':~ ... ..I~" .:, .~ J •• :)} ./..J 1\ \J .. { J ~ Item data is 

0:1. ':? 0 I .. U 1··~f·'1 I· u~::,l.·J , LA' .. 0 J i~.,:.~ , NL':J " i,6, r'~Lb , .. '" displayed 
o 20 0 F~ [I ... J I~~ I T E F I L. E US I j\113 2 1 0 1 F 1...1 , D~; , (~, p ---
'l'" I (i I'" ") 1'\ ~..: I') ... (". (" "\'l I') .,. .., . .. ..... , .. , .... , ~* . I" '1' .. , . 1 I I I '* " " ) l. "'.~:.. .. l. ·< .... 1 . U,:>6} ...... :.1.. } ... L ( l.;.~.f..f..?, .> , " .. L ( ~;~:.':;~;?" , Ht:;: Data items can be updated 
0220 130"f'Cl :1.20 
0230 PRINT 'END OF ,JOB' 
() 21+ 0 ~:) r 0 P 
o 2 ~:.:.j 0 P R I f···J T '.)( .. j(.1{. ':11; .j( • . )( • . j(. oj~ .j( • . )( .. )( • . j(. N (] 1< [ Y F (] UNIt .)(. oj( • • )( • • j( . . )(. ·i(· oj(. :11; ~( • . j(. ':11:' .)(. ' 

0::.::60 P I~ I j\lT 

Master file is updated 

The master file is available for both access and update because the 
parameter ALL is specified in both OPEN statements 90 and 100. 
OPEN statement 110 referencing device 002 prepared the display 
screen for record input and output. 

170 

c.~ 

(' 
'-_., 

c 



o 

o 

o 

o 

o 

o 

o 

The operator keys in the item number in statement 130. The 5110 
then searches the key file for that item number. When found, the key 
record points directly to the location of the data record in the 
inventory master file. The master file data is retrieved (statement 150) 
and displayed for operator viewing (statement 170). The system 
positions the cursor at the beginning of the description data field. If 
no changes are to be made, the operator simply presses the EXECUTE 
key. If changes are needed, the operator positions the cursor 
appropriately, keys the altered data, and presses the EXECUTE key. 
When the execute key is pressed, the displayed data is rewritten back 
to the master file. 

I TEtvl NUi'1HE H 

UNIT PI~IC[ 

> P U ~VI P :1. /2 H P <> 13«<»> $85,00< 

0:1. B 0 ~:.:jBB 

DE~:)CF~I PTIDN UNIT PI~ICE 

.:: ::- :l.B«<»> 

The above illustration is a copy of the display screen output. Item 
number 5002 was requested, and the quantity on hand has been 
altered to 13. Then item A202 was requested, and the quantity on 
hand was altered to 18. 

If an invalid key item number was entered, the NOKEY parameter in 
statement 150 would cause the system to print 'NO KEY FOUND' 
(statement 250) and request the next key (statement 120)., The marks 
to the left and right of each data field bracket the area where valid 
data may be entered. 

Tips and Techniques 171 

------------------_ .. _ ... __ ._------_ .... _ ....... __ ..... -_.-. --_. 



172 

Sequential Access by Key Index 

The purpose of the following program is to illustrate how the data in a 
master file can be accessed in sequential order specified by the key. 
Sequential access by key means that each key and its corresponding 
record will be accessed in alphameric order. That is, all keys beginning 
with A are accessed first, then S, and so on with numeric-only keys 
accessed last. 

o 0 :I. 0 HE ,'1 G I~'~! i"I P 1 .. , E P H [) G I~~ (~I ~'''1 T D HE A:O THE I f\! V E N T D H \( 
0020 REM DATA BAGE SEQUENTIALLY BY KEY ITEM NUMBEH 
00 :'5 0 REf',', 
[10 q, 0 I~EI"1 

OO~::.iO F<EH 
0060 DIM F$64,H$64,:O$20 
0070 REI"1 
00 B 0 Dr:':1 Tr:~1 1 I TEt"l NI...It·'IBE I~~ DESCI~I PTION 
() 0 (j' 0 F~Er::ID H~'j 

1...1 NIT P I~ ICE 1 

0:1. 0 0 P 'x :u·rr F I... P , H ~I; ~ Format output data. 
0:1.:1.0 '~EI"1 ~ 
o :I. :.:.~ 0 S T ,~ ( F ':1; , :I. , :'5 <? ) :::: • FOP H PO S:I. , X :.~; , C ~:.:.i , X'"? , C:l. ~:.:.i , )( :1. } PIC ( Z Z :Z Z H ) , )(::3, 1 

o :I. ::3 0 S T H ( F ':~ , 1+ 0 , :I. B ) :::: 1 PIC ( ~; ~~ ':,; ':Ii N 1 =H ** ) ., b ,< I P 1 
0:1. '-I. 0 F~EI'1 

O:!.~:.:.iO DPEN FILE Fl.:!., 'DBO ' ,~.:.:i, IITEI"'11'1tISTEF~' ,IN }_Keyanddata 
(1 I . n ('11') I'" lo. I I'" .,. I I'" 1"'1'1 1 r t·· '1' I "[ ····1··· '. ~ " J ('1 .,. '. I 1"1 , .•. '.' 1 .,' ;-, I I' r' \' . . . . :.6.. ..' ::.I'{ ...... 1 :: ••• _"'.' • ..Idl.. ) +, . I ::.1'1, 1'. .. , .. I'l ... ::'/(" , .. I'{, '" ::. f files specified. 
0:1.70 PF~INT FL.P 

(", 
\ 

'",- .' 

c 

0:1. B 0 FU:::tIDF I 1...1::: US I NG :I. (? 0 , FI .. ,:I. , I ~Ii, D~I; , n, P J [OF 2:? 0 - Data file is read until the 
O:I.? () FD Prj C~.:.:.i, c;.:.~ 0 J NC~::.i J i\~CB 1 ::.~ last item is encountered C 
o 2 0 0 PHI NT 1...1 BIN G F ~I; J F I... P , I ~I; J :0 ':1; J (;J , P - _/ 
O;?:I. 0 GOlD :I. B 0 - Each item is printed 
0220 PRINT If::'IB (::30) J 1 END OF ,..IDB 1 

o :?:'3 0 SlO P 

c 

c 



o 

o 

o 

o 

o 

o 

I TEl'1 NUt1BEH DE~~~CRI PTIDN 

H Pllvt ~1 E I~ 
P I PI:: 1/,1 RENCH 
~:)C REl~.lD RIVE R 
~:; C I~~ E kl It R I V E I~ 
:BDI...T~:; 

ON H~IND 

lB 
:1.3 
,::.,::. 
,J,.} 

~:.:.i 00 () 
600 

UNIT PI~ICE 

~; B . ~5 0 
~I;:I. • :?~:.:.i 
~I; 0 . B~::.i 

l~I~? 0 2 
ti :':) 0 ~::.i 
PI ~:5 0 0 
B2 0 ~~~ 
B:'50 0 
~.:.:.i 000 
~.:.iO 02 

P U l"l P :3 .l '+ H D F~ ~:; E 
PUrl P 1 /2 H D H r; 1::: :1.3 

~I; ? ~:.:.i • 0 0 
':I;B~:i . 00 

Running the program shown above automatically creates the printed 
output as illustrated. Notice that the item numbers are listed 
alphamerically, and that the on-hand quantities have been updated 
according to the previous program. 

If the key file was sorted, the next sequential key could be located 
more quickly, thus making this program execute much faster. 

Sequential Access with No Key Used 

The purpose of this program is to illustrate how your data file may be 
accessed sequentially without the use of a key index file. Even though 
a key file was created, it is not necessary to use it for every access. 
Sequential access to a master file without a key simply means to 
retrieve the records one after the other in their order of appearance in 
the file. In many cases, this will be their original order of entry. 

Tips and Techniques 173 

.- •....... __ ._ .. _._ ... _-------



174 

The following program is the same as the previous program except 
that statement 160 has been deleteq; you do not open the key file. 
The result is a listing of items exactly as they appear in the master file. 

o 0 :~:::; 0 F·~~ E ('j 
o 0 Lj. 0 F~~ E ("j 

o I] H 0 :0 (:'1 T (:'1 '1 T [: j·· ... i i\.! 1...\ i"'1 :r: [: F·~~ l...lj···.!IT PFiIC:F' 
o 0 (.~) 0 F·~: E (:'1 :U H':!:· 
0100 PRINT FLP,H$ 

o :I. ::.:.:~ (I ~::; 'r F;: ( F':!:· , :I. , :~:::; (;.:' ) :::: ' F:' U F·~: i··/i F' (j ~::;:I. , >< :~:::; .. C: ~.::.i .. >< (;. .: C:L ~.:.:: .. >< ~.::.i .. FIe ( :.;.:-: ;?: :?: :.?: :;::;: ) .' >< ~.:.:.;, ' 
o :i. :~~:; 0 :3 'r Fi ( F':!:· J q. 0 .. :I. E: ) :::: ' PIC: ( ':\:. ':1;. ':j:. ':j;. :;::;: I :H :;::;: ) ! ~:::; j< I P , 
o :I. Lj. 0 F·~: E ('i 
o :I. ~.:.:.; [I U P [: i\.! f" I l... E F I...:i. .. ':0::::: 0 ' ,::.:.::} , I T [: i·· ... i : ('i (I ::::; 'r E P , .. I (..! 
o 1 .. / 0 P r: 1 (.~ 'r F L. P 
o :1. :::;: 0 F: E (I :0 F I i... E 1...1 ~:::; I ("! Ei 1 (? 0 .. F 1...:1. , I ~!: .. ' It ':j:. } C, .' P .: [CJ F ::? ;.:.:: 0 
o :I. (.? 0 F CI F: i"/i C: ~.::.; .. C: ::.:.:: 0 .' i\.! C: ~.:.=.; .' r·.! C:::::: , ::.:.:: 
o ;.::: 0 0 P (: I I···.! 'r L.! ~3 I i\.! Ci F':!:,., F L P .. :\: ':\:. , 0 ':\:' .' I) , P 
O::.:.~:i.O C-:iCJTCJ 1:::::0 
o ::.:.:: ::.:;: 0 P P I j\.! 'r T ('::H ( :~:::; 0 ) .' 'F i\.! It C) F .. J () JJ ' 
o ~.:.:: :~:::; 0 :3 'r (J P 

The output of the above program is illustrated below: 

(:'1:.::.; (10 

:c·::~:::; 00 
~.:.:.; 000 
:.:.:.! 00 ::.? 

(:"I::.:.::O? 
(:': : .. :~; 0 :.:.:; 

I) !.J i"/i P :I. ... / ::.::: H P 
Pi...i('j P :~!:;/"q. H P 

P I PC 1.. .. .\ F~:Fi····.!C::H 

;::'1::' 
•.• J •.. .! 

·:i;· (.) ~.::.i , 0 0 
·;!:·H~.:'='; , (} 0 

This technique is handy for creating a fast listing of a data file because 
it avoids access to the key file. 

-------. ----.. -.----.----.--~-----

(' 
"---- -

',----,-

(' 
",-_/ 

c 

c 



o 

o 

o 

o 

o 

o 

Direct Access by Relative Record Number 

The purpose of the following program is to illustrate how·you can 
access a record directly if you know its location in the master file. 
This is the fastest method of access because the system can go 
directly to the desired record in the master file rather than looking up 
the location in a key file or searching for the record sequentially. 

The following program is the same as the program previously 
described under Random Access and Update Using Key Index with 
the following changes: 

Statement 100 deleted No key file is opened and specified. 

Page of SA21·9307·0 
Issued 28 Apri11~78 
By TNL: SN21·0277 

Statements 120 & 130 The operator enters a numeric record 
number rather than a key. 

Statement 150 

Statement 250 

Statement 140 

The record number is specified in 
the read statement with a REC= 
clause and a NOREC error branch. 

Error NO RECORD FOUND is displayed. 

Branch on zero rather than END. 

Tips and Techniques 175 



176 

The program and its output are shown below: Notice that record 
number 3 is actually the third record entered by the original data entry 
program. 

00:1. 0 Z::::2~:j7 

o 0 :::,~ 0 kl :::: Z: + ::5 :':S 1 
0030 DIM FS64,S$80 
0040 FS='DESCRIPTION 
0050 ES='ITEM NUMBER' 

UNIT PF'::ICE' 

0060 STRCSS,l,43)='FORM POSZ,Cl1,X3,C5,X184,C47,X80,Cl,C20,C2,' 
0070 STRCSS,44,35)='PIC(ZZZZM),C6,PIC(S$$SM,MM),Cl,POSW' 
OOBO F<E~'1 
o 0<'l0 OPEN FILE FL.:I.,' DBO ' ,2, , ITE~'''l, ~'1(.~ISTEF<' , (.~IL.L. 
0:1, :I. 0 D PEN F I I...E FI...2, , 002 ' , (.~I...L. 
0:1.20 PRINT 'ENTER RECORD NUMBER' 
o :I. ?) 0 I N PUT 1< 
0:1.40 IF K=O GOlD 230 
0150 READFII...E USING :l.60,FL.:I.,REC=K,IS,D$,Q,P,NOREC 250 
0160 FORM C5,C20,NC5,NC8,2 
o :I. "( 0 t...,1 F~ I T E F I I... E U ~:) I N Ci B ~I; , F I... 2 , E ~I; , I ~I; , F ~I;, , ::- ' ,D ~I;, , -::::- ' I El, , -:: -:: -:: ::- ::- ::- ' , P, , -:: ' 
O:l.BO READFII...E USING :l.90,FI...2,D$,Q,P,CONV :1.70 
0190 FORM POSW,C20,X2,NC5,X6,NCB,2 
0200 REWRITEFIL.E USING 2:1.0,FI...1,DS,Q,P 
0210 FORM POS6,C20,PIC(ZZZZM),PIC($$S$",MM) 
0:::::20 CiOTO 1 ::,:,~ (I 
0230 PRINT 'END OF JOB' 
021+0 BTUr 
0250 PRINT '************ NU RECORD FOUND ************' 
o 26 0 P I~ I N'r 
0270 GOlD l;,:,~O 

ITEM NUMBER B300 

DESCRIPTION UNI''j' PI~ICE 

"" ,.) 

> BOI...TS 

ENTER RECORD NUMBER 

<> 600«<»> 

Ol~50 00:1. 

c· 

c 

c 



o· 

o 

o 

c· 

o 

o 

C,' 

Create Multiple Index 

It may be desirable to have several key index files for a single master 
file. The 5110 can create one index file automatically as illustrated in 
the first data entry program. Suppose you wish to create a report 
organized alphabetically by item description. A second key file can be 
created with the item description as the key field using the following 
program. Two special key records (marker records) are required in the 
first two record locations of an unsorted key file (see the IBM 5110 
BASIC Reference Manual, Index file format). This program builds the 
first two special key records and all subsequent keys for the master 
file. 

Special Key Record 1 I All Binary 0000 I Key Field Key 
Length Position 
2 Bytes 2 Bytes 

Special Key Record 2 I A II Bin a ry 1111 I Unused 
4 Bytes 

MASTER FILE KEY Key Relative 
Record 
Number 
4 Bytes 

Tips and Techniques 177 

-------_ .. , _ ..... _ ...... __ ....... . 



178 

0010 R '~J'.~.~ .. d CREATE INDEX FILE FOR EXISTING MASTER 0020 ,., 
0030 DIM K$28,L$28,D$3,F$17 
0040 PRINT 'ENTER DEVICE CODE, FILE NUMBER AND FILE NAME' 
0050 PRINT 'FOR THE MASTER FILE TO BE USED, ' 
o 0 6 0 IN PUT n·$, F , F ~i 
0070 OPEN FILE FL1,D$,F,F$,IN 
o OBO R:::I~LN ( 'FI...1 ' ) 
00<»0 I~EM 

0100 REM GET KEY INFORMATION 
0110 PRINT 'ENTER KEY LENGTH AND KEY POSITION, 
0120 INPUT L,P . 
0130 REM 
0140 REM CHECK FOR VALIDITY 
0150 IF L~INT(L)iP~INT(P) GOTO 590 
0160 IF I ... <:/'I P<:I. GOTo ~:)90 
0170 IF R<P+L-1 GoTO 590 
0180 REt1 
0190 REM DETERMINE KEY RECORD SIZE 
020 0 ~~ 1 :::~·3::!' 
0210 IF 1...;::1~5 GOTD 2~:~iO 
0220 Rl::::1.6 
o 2 ~3 0 IF L ;:: !::; GOT 0 2 !:.:.i 0 
021.,·0 Rl::::8 
02!:;jO I~EM 

0260 REM GET INFORMATIDN FOR INDEX FILE 
0:~70 REM 
0280 PRINT 'ENTER DEVICE CODE, FILE NUMBER AND FILE NAME' 
0290 PRINT 'Fnr~ INDEX FILE TO BE BUILT' 
0300 INPUT D$,F,F$ 
0310 OPEN FILE FL2,D$,F,F$,OUT,RECL=R:I. 
0:·32 0 1~2::: I~:I. ····3 
0330 S::::O 
031+ 0 I( ·~i::::X ' 00 ' 
0350 STRCK$,2)=K$ 
0360 WRITEFILE USING 370,FL2,STRCK$,l,L),L,P 
0370 FORM C,POSR2,B2,B2 
o ~58 0 I~Et1 

0390 REM GET KEYS FROM MASTER 
04·00 J~EM 
o 1+ :/. 0 L ~Ii :::: I( $ 

0420 READFILE USING 430,FL1,STR(K$,:I.,L),EOF 540 
04·30 FORM PCl8P, C 
01+4. 0 I~~~::::& I~EC 

0450 IF S=lIK$>L$ GOTO 500 
OL~60 L$::::X' FF' 
0470 8TR(I...$,2)=L$ 
0480 WRITEFILE FL2,STR(L$,:I.,L) 
0490 S:::::/. 
O!:iO 0 REM 
0510 WRITEFILE USING 520,FL2,STR(K$,:/.,L),R3 
0520 FORM C,POSR2,B4 
05~30 GOTD L~10 

0540 IF 8=1 GOTO 580 
0550 L$:::X' FF' 
0560 STR(LS,2)=L$ 
0570 WRITEFILE FL2,STR(L$,l,L) 
0580 STOP 
0590 PRINT 'INVALID KEY LENGTH OR KEY POSITION OR NOT VALID FOR' 
0600 PRINT 'MASTER FILE RECORD LENGTH' 

. - ------ --- --._. ---

c 

(' 
"-_/ 



o 

o 

o 

C) 

o 

o 

& specification 110 
& ERR 162 
& LINE 162 
# sign as a placeholder 35 

access data 33 
access record, directly 175 
accessing individual records 105 
accessing, indexed 95, 105 
access-protect 51 
activating stream I/O files 89 
adding records 79, 80 
additional records 99 
additional use of file FLS 122 
addition, array 133 
address on diskette 63 
AIOX function 134 
ALERT command 119 
allocating file space 67, 70 
alternate cylinders 64, 66, 69 
AN 0 operator 23 
APL file 57 
application 9 
argument 28 
arithmetic array 111, 125 
arithmetic operator hierarchy 9 
arithmetic operators 9 
array 

addition 133 
arithmetic 111 
assignment 132 
dimensions 126 
member 125 
operations 133 
subtraction 133 

arrays 125 
index 133 
one-dimensional 127 
redimensioning 131 
two-dimensional 127 

assignment statement 129 
assignment, array 132 
audible alarm 119 

- ---------------------"---,----,----

BASIC 9 
BASIC file 57 
BASIC language 9 
BASIC program 9 
beginning of extent 64 
BOE 64 
branching 20, 30 
branching on error 94 
buffers, storage consideration 152 
bytes 55 
bytes available for storage 69 
bytes per sector 65, 69 

calculating file space 86 
calculating index file space- 86 
CHAIN statement 33 
character array 125 
character data 22 
character specification 41 
character string 22 
character string CAT 23 
character variable 9, 111 
CLOSE FILE statement 95, 101 
CLOSE statement 9, 16, 90 
columns 127 
comments 142 
compress function 71 
conformable 136 
control of your 5110 115 
cross-reference program 154 
cylinders, alternate 64, 66, 69 
cylinder, diskette 63, 69 
C-specification code 41 

Index 

Index 179 



data 
data cartridge 55 
data compression 6 
data file access selection 146 
data files 55 
data files, storage considerations 153 
data processing 1 

DATA statement 9, 16, 130 
deactivating a file 90 
DEF statement 28 
default device 123 
defective cylinder 66 
defining arrays 125 
delete code 80, 84 
DELETE FI LE statement 80, 106 
deleting records 79, 80, 106 
designing a record 83 
determining field size 83 
determining file size 85 
DIDX function 134 
digit specifiers 39 
DIM statement 9, 16, 97, 125, 128 
dimensions in an array 126 
direct access 77, 79 
direct access and update with key index 170 
direct access by relative record number 175 
direct accessing by key 79 
direct processing by index key 78 
diskette 3 

address 63 
cylinder 63, 69 
drives 4 
file 49 
format 65, 69 
initialization 66 
loading 61 
recovery 62 
sector 64, 65, 69 
sort 81, 144 
track 63, 65, 69 
types 65 

display off 145 
display screen 4 
dummy variable 28 
DUPKEY clause 107 

180 

EBCDIC 22 
EBCDIC collating sequence 22 
end of data 64 
ending of extent 64 
EOD 64 
EOE 64 
EOF clause 93, 101 
error checking 14 
error clause on EXIT statement 107 
error determination 139 
error handling, I/O 93 
EXIT clause 107 
EXIT statement 94, 107, 163 
explicit declaration 126, 131 

fast scan feature 144 
field size 83 
fields 73 
file 4, 73 
file access methods 167 
file FLS 120 
file FLS, additional use 122 
file headers 55 
file 10 50, 66 
file location on diskette 67 
file maintenance 79 
file reference 96 
file reference for I/O 90 
file size 85 
file space 86 
file space reallocation 67, 71 
file space, allocating 70 
files, repositioning 92 
file, indexed access 95 
FN EN 0 statement 28 
FOR 9, 17,25, 130 
FORM statement 35,97, 100, 108, 140 
format 10, 35 
format control specification 42, 43, 43 
formatting a record 97 
format,diskette 65, 67, 69 
functions 19 
function 134 

AIDX 134 
DIDX 134 

c~ 

c·........, 
~/ 

c 



--------------_ ... _._-_ .. _-_._-----_._----------------

o 

o 

o 

o 

o 

GET statement 9, 16, 91, 94 
GOSUB statement 17, 32 
GOTO statement 9, 17, 24 

hard copy output 4 
high-order position 35 

I/O error handling 93 
identifying a file 90 
lOX intrinsic function 162 
IF statement 9, 17, 20 
image statement 35 
implicit declaration 126 
index arrays 133 
index cylinder 64, 69 
index file 102, 106, 147 

creating 168 
record length 86 
size 147 
sorting 144 
space 86 

index track 69 
indexed access 75, 95, 105 
indexing function 134 
individual record, accessing 105, 148 
initialization, diskette 66 
input 1, 9, 11, 16 
input to I/O files 142 
input9 16 
input, end of 98 
INPUT statement 129 
insertion characters 40 
instructions 1 
integer 24 
interface 15 
intrinsic function 99 
inventory application 146 

K bytes 55 
KEY clause 103, 105, 107 
keyboard 3 
keyposition 99 
KW parameter 145 

L specification 110 
LAST statement 98 
length, member 125 
LET statement 9, 17 
LOAD command 49 
loading a diskette 61 
LOADO command 53 
locating a character in a string 162 
logical operators 23 
loops 19 

magnetic storage media 3 
main storage 4 
main storage index area 145 
MARK command 49, 67 
MAT 129 
matrix multiplication 133, 135 
matrix product 135 
member length 125 
member,array 125 
multiline function 28 
multiple index, creating 177 
multiplication 

matrix 135 
scalar 134 

naming arrays 126 

NC specification 108 
nested loop 26, 27 
NEXT 9, 17, 130 
NOKEY clause 103, 107 
NOREC clause 107 
numeric specification 38 
numeric variable 9 

ON ERROR statement 162 
one-dimensional arrays 127 
OPEN 9,16 
OPEN FILE statement 95, 101, 113 
OPEN statement 89 
opening record I/O files 95 
opening stream I/O files 89 
OR operator 23 
OUT statemtent 95 
output 1, 10, 112 
output from I/O files 142 
owner ID 66 

Index 181 



Page of SA21-9307-0 
Issued 28 April 1978 
By TNL: SN21-0277 

parentheses 125 
PAUSE statement 140 
performance considerations 143 
PIC specification 38, 108 
position the cursor 118 
POSn-specification 43 
precision, storage considerations 153 
printer spacing control 47 

PRINT 9.18 
PRINT FlP 18,35 
print overlap 144 
PRINT USING statement 35 
printer 3 
printer, storage considerations 153 
PROC command 119 
procedure files 119 
process 1, 12 
process data 1 
processing stream I/O 89, 95 
processing unit 3 
program 1,9 
program analysis, cross-reference program 154 
program chaining 33 
program design 144, 150 
program execution falls through 21 
program statements, storage considerations 152 
program step 141 
program trace 139 
programming device 19 
PUT statement 9, 18, 91 

random access 57 
reactivating a file 91 
read a stream I/O file 165 
READ FilE FlS statement 120, 122 
READ FilE statement 16, 100, 113, 115 
read sequentially 100 
READ statement 9, 16, 129 
reading record 99 
reallocating file space 67, 71 
RECl 95 
record 

design 83 
expansion 84 
format 97 

record I/O file 74, 75 
record I/O files, opening 95 
record length 88, 97 
record number 102, 109 
record retrieval 102, 109 

182 

records 73 
additional . 99 
deleting 106 
updating 104, 106 
reading 99 

recovery for worn diskette 62 
redimensioning arrays 131 
referencing a file 96 
related data items 125 
relational operators 21 
relative record number 77, 102, 109 
REM 9 
repositioning files 92 
REREAD FilE statement 111, 113 
RESET statement 9, 92, 107 
RESTORE 9 
retrieving data 89 
RETURN 17,28 
REWRITE FilE 18 
REWRITE FilE statement 101, 105, 113 
rows 127 

sample record 84 
SAVE command 49 
scalar multiplication 134 
sectors per cylinder 65, 69 
sectors per track 65, 69 
sequential access 57, 77, 148· 
sequential access by key index 172 
sequentially read 100 
single-line function 28 
SKIPn specification 43 
skipping to a new page while printing 159 
sort program 123 
sorting an index file 164 
specification 

& 110 
l 110 
NC 108 
PIC 108 



o 

o 

o 

o 

o 

o 

o 

statement 
assignment 129 
CLOSE 90 
CLOSE FILE 95, 101 
DATA 130 
DELETE FILE 106 
DIM 97, 125, 128 
EXIT 94, 107 
FORM 97, 100, 108, 140 
GET 91,94 
INPUT 129 
LAST 98 
OPEN 89 
OPEN FILE 95,101, 113 
OUT 95 
PAUSE 140 
PRINT USING 108 
PUT 91 
READ 129 
READ FILE 100,113,115 
REREAD FILE 111, 11 3 
RESET 92, 107 
REWRITE FILE 101, 105, 113 
WRITE FILE 97,99,113,115,140 

step 141 
stop 9 
storage availability variations 68, 71 
storage considerations 149 
storage size 149 
storage, available bytes 69 
stream I/O data file 59, 74 
stream I/O files 

activating 89 
opening 89 
processing 89, 95 
reading 165 

subroutines 
subscripts 

19,30 
128 

subtraction, array 133 
system control functions 120 

tape 3 
tape drives 4 
tape storage 55 
test data 142 
testing for an error 162 
tips and techniques 143 
trace 139 
track, diskette 63, 65, 69 
transfer of control 101 
two-dimensional arrays .127 

-'" .. _. __ .. _ .. _ ............... - ............. '-""---~----

unformatted tape 55 
updating records 79, 81, 104, 106 
USE statements 33 
user program control 161 
user storage 149 
user-written functions 27 
USING clause 97 
using file FLS, skipping to new page 159 
using the display screen for I/O 115 
UTIL command 50 
UTIL command, using 122 
UTIL DROP command 50, 67 
UTIL FREE command 50, 69, 71 
UTIL PROTECT command 66 
UTI L VOLI D command 66 

variable names, reusing 92 
variables, amount of storage for 150 
variables, character 111 
volume 10 52, 66 
volume-protect indicator 66 

work area files 55 
WRITE FILE 18 
WRITE FILE FLS statement 121, 122 
WRITE FILE statement 97,99,113,115, 140 

write-protect 51 
write-protect indicator 66 

Xn-specification 42 
5110 model 1 computing system 4 

Index 183 

--------------" ............ _-... -. --_.,----



c:' 

c 

c 

c 
184 



o 

o 

o 

o 

o 

o 

o 

alphabet extender: Anyone of the following 
three special characters: #, @, and $. 

alphabetic character: Any of the 26 letters (A 
through Z) of the English alphabet or any of the 
alphabet extenders (#, @, and $). 

alphameric character: A numeric or alphabetic 
character. 

argument: An arithmetic expression appearing in 
parentheses following a function name, either in a 
function reference (either a user-written or an 
intrinsic function) or in a pseudo variable. The 
expression represents a value that the function is 
to act upon. The function name mayor may not 
be followed by arguments. 

arithmetic array: A named table of arithmetic 
data items. An array may be implicitly declared 
through usage or explicitly declared in a DIM 
statement. BASIC allows one- and 
two-dimensional arithmetic arrays. 

arithmetic constant: A constant with a numeric 
value. The three forms of arithmetic constants 
permitted in BASIC are integer, fixed-point, and 
floating-point. 

arithmetic data item: Data having a numeric 
value. 

arithmetic expression: An arithmetic constant, a 
simple arithmetic variable, a scalar reference to an 
arithmetic array, an arithmetic-valued function 
reference, or a sequence of the above 
appropriately separated by arithmetic operators 
and parentheses. 

Glossary 

arithmetic operator: A symbol representing an 
operation to be performed upon arithmetic data. 
The arithmetic operators are: 

+ Addition and unary plus sign 

Subtraction and unary minus sign 

* Multiplication 

/ Division 

t or * * Exponentiation 

arithmetic variable: The name of an arithmetic 
data item whose value is assigned and/or 
changed during program execution. The name 
consists of a single alphabetic character or an 
alphabetic character followed by a digit. 

array: A named list or table of data items, all of 
which are the same type-arithmetic or character. 
BASIC allows one- and two-dimensional arrays. 

array declaration: The process of naming an 
array and assigning dimensions to it either 
explicitly (by the 01 M statement) or implicitly 
through usage. 

array element: See array member. 

array expression: An arithmetic expression or a 
character expression representing an array of 
values rather than a single value. It may be used 
only in an array assignment statement. 

array member: A single data item in an array; its 
position is indicated by a subscripted array 
reference. 

Glossary G-1 

_._--.. _._ .. _-- ."._'---.'------------



array variable: The name of an entire array. The 
name consists of an alphabetic character (for 
arithmetic arrays) or an alphabetic character 
followed by the dollar sign, $, (for character 
arrays). 

assignment: The process of giving values to 
variables; for example, via LET statements, READ 
statements, and INPUT statements. 

assignment symbol: The symbol =, which is used 
in an assignment statement to give a value to one 
or more variables. 

BASIC: A programming language designed for 
interactive systems and originally developed at 
Dartmouth College to encourage nonprogrammers 
to use computers for simple problem-solving 
operations. The word BASIC is an acronym for 
Beginners' All-purpose Symbolic Instruction Code. 

binary operator: A symbol representing an 
operation to be performed upon two data items, 
arrays, or expressions. The four types of binary 
operators are arithmetic, character, logical, and 
relational. 

branching: Executing a statement other than the 
next sequential one; for example, via the GOTO 
statement. 

built-in function: See intrinsic function. 

character array: A named table of character data 
items. An array may be implicitly declared through 
usage or explicitly declared in a DIM statement. 
BASIC allows one- and two-dimensional character 
arrays. 

character constant: A constant with a character 
value. It is always enclosed by a pair of single or 
double quotation marks. 

character data: Data having a character value as 
opposed to a numeric value. 

G-2 

character expression: A character constant, a 
simple character variable, a scalar reference to a 
character array, a character-valued function 
reference, or a sequence of the above separated 
by the concatenation operator (I I) and 
parentheses. 

character operator: A symbol representing an 
operation to be performed upon character data. 
The concatenation operator (I I) is the only 
character operator in BASIC. 

character string: A sequence of characters that 
represents an item of character data. 

character variable: The name of a character data 
item whose value is assigned and/or changed 
during program execution. The name consists of 
an alphabetic character followed by the dollar sign 
character ($). 

comment: A remark or note included in the body 
of a program by the programmer. It has no effect 
on the execution of the program; it merely 
documents the program. Comments are written as 
a string of characters and may appear as a part of 
any program statement that has no operands (for 
example, REM, STOP, END, and RESTORE). 

concatenation: The joining of two character data 

items by the symbol I I. 

concatenation operator: The symbol I I, used to 
concatenate, or join, two character data items. 

constant: A value that never changes. BASIC has 
two types of constants: arithmetic and character. 

control specification: (1) One of the 
specifications X or POS, used in the FORM 
statement to specify formatting of records in 
record-oriented files. (2) One of the specifications 
X, POS, or SKIP, used in the FORM statement to 
control print line formatting. 

data file: See file. 

~, 

\ 

"'---

C,I 

c: 

c 



o 

o 

o 

o 

o 

o 

o 

data form specification: (1) One of the 
specifications B, C, NC, PO, S, L, or PIC, used in 
the FORM statement to specify formatting of 
character and arithmetic values in record-oriented 
files. (2) One of the specifications C or PIC, used 
in the FORM statement to format character and 
arithmetic values on a printed line. 

data item: A single unit of data; that is, a 
constant, a variable, an array element, or a 
function reference. 

data table: The values contained in the DATA 
statements of your program. DATA statements 
are processed in statement number sequence 
(lowest to highest). The values in each DATA 
statement are collected and placed in a single 
table in order of their appearance (left to right). 

data table pointer: An indicator that moves 
sequentially through the data table, pointing to 
each value as it is assigned to a corresponding 
variable in a READ statement. Initially, the 
indicator refers to the first item in the table. It can 
be repositioned to the beginning of the table at 
any time by the RESTORE statement. 

declaration: See explicit declaration and implicit 
declaration. 

delimiter: A character that groups or separates 
data items. 

digits: the numerals 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. 

dimension specification: The specification of the 
size of an array and the arrangement of its 
members into one or two dimensions. 

direct access: The storage or retrieval of data 
independently of other data in a file (that is, 
regardless of its location relative to other data). 

dummy variable: A simple variable enclosed in 
parentheses and placed after the name of a 
user-written function in a DEF statement. The 
function performs its defined calculation on the 
expression value substituted for each dummy 
variable when the program is executed. 

E-format: Floating-point format. 

EBCDIC collating sequence: The ordering of 
character data items according to the Extended 
Binary Coded Decimal Interchange Code. 

error message: A message generated by the 
computer when an error has been detected. 

executable statement: A program statement that 
causes an action to be performed by the 
computer. 

execution error: An error discovered during 
execution of a BASIC program (for example, 

dividing by zero, or branching to a nonexisting 
statement number). 

explicit declaration: The use of a DIM statement 
to specify the number of members in an array, the 
number of dimensions in an array, or the length of 
a character variable. 

exponent (of E-format number): An integer 
constant specifying the power of ten by which the 
base (mantissa) of the decimal floating-point 
number is to be multiplied. 

exponentiation: Raising a value to a power. 

expression: A representation of a value; for 
example, variables and constants appearing alone 
or in combination with operators. Three forms of 
expressions are defined in BASIC: scalar 
(arithmetic or character), array (arithmetic or 
character), and logical. 

extended alphabet: The 26 letters of the English 
alphabet and the 3 alphabet extenders ($ # @). 

F-format: Fixed-point format. 

file: A named group of related data items that are 
stored together. In BASIC there are two types of 
files: stream-oriented and record-oriented. 

file reference: FLO through FL9. 

Glossary G-3 

,----------_ .. _-,-------,-"' ----



fixed-point constant: An arithmetic constant 
consisting of one or more digits and a decimal 
point, and optionally preceded by a sign. 

fixed-point format: The form used to express a 
fixed-point constant. 

floating-point constant: An arithmetic constant 
consisting of an integer or fixed-point constant 
followed by the letter E, followed by an optionally 
signed one- or two-digit integer constant. 

floating-point format: The form used to express 
a floating-point constant. 

full print zone: Eighteen horizontal print 
positions. In a PRINT statement, a comma is used 
to indicate that a full print zone should be used. 

function: A named expression that computes a 
single value. See also intrinsic function and 
user-written function. 

function reference: The appearance of an 
intrinsic function name or a user-written function 
name in an expression. 

generic key: An argument specified in the KEY 
clause of a record I/O statement that is less than 
the full key length defined for a corresponding 
file. 

I-format: Integer format. 

implicit declaration: (1) The specification of the 
number of members in an array or the number of 
dimensions in an array, either by a reference to a 
member of an array or by context (without the 
array being explicitly specified in a DIM 
statement). (2) The specification of the length of a 
character variable by context (without the variable 
being explicitly defined in a DIM statement). 

input: The transfer of data from an external 
medium to internal storage. 

G-4 

input list: A list of variables to which values are 
assigned from input data; the list can be made up 
of scalar variables, array member references, 
pseudo variables, array references, and array 
references with redimensioning. 

input/output: The transfer of data between an 
external medium (that is, the keyboard or a file) 
and internal storage. 

integer constant: An arithmetic constant 
containing one or more digits, optionally preceded 
by a sign. 

integer format: The form used to express an 
integer constant. 

internal constant: An arithmetic constant whose 
value is supplied by BASIC. The name of the 
internal constants are &PI, &SOR2, &E, &INCM, 
& LBKG, and & GAll. 

internal storage: A computer's main storage. 

intrinsic function: A function supplied by BASIC 

(for example, SIN, COS, or SOR). 

key: One or more consecutive characters used to 
identify a particular record in a key-sequenced file. 

key-sequenced file: A record-oriented file whose 
records are accessed according to keys. 

logical expression: A logical subexpression, or 
two logical subexpressions joined by a logical 
operator (& or I). Its value is either true or false. 

logical operator: An operator that is used in a 
logical expression. The logical operators are: & 
(AN D) and I (OR). 

long-form precision: Precision whereby, 
externally, values printed with I-format and 
F-format have a maximum of 15 significant digits, 
and values printed with E-format have a maximum 
of 15 significant digits in the mantissa. 

c 

c 

c 



o 

o 

o 

o 

o 

o 

o 

loop: A sequence of instructions that is executed 
repeatedly until a terminating condition is reached. 
The FOR statement identifies the beginning of a 
loop; the N EXT statement identifies the end of it. 

mantissa: In floating-point notation (E-format), 
the number that precedes the E. The value 
represented is the product of the mantissa and 
that power of ten specified by the exponent. 

matrix (mathematical): A two-dimensional 
arithmetic array. 

multiline function: A user-defined function that is 
defined with more than one statement. 

nesting: (1) The occurrence of a FOR/NEXT loop 
within another FOR/NEXT loop. (2) The 
occurrence of a GOSU B statement when one or 
more GOSUB statements are already active. (3) 
The use of more than one set of parentheses to 
indicate the order of evaluation in a complex 
arithmetic expression. 

nonexecutable statement: A program statement 
that specifies information for program execution. 

null character string: Two adjacent single 
quotation marks that specify a character constant 
of blank characters. 

null delimiter: One or more blanks or no 
characters at all (that is, one data item directly 
following another data item with no intervening 
space or delimiter) used in a PRINT statement to 
specify a packed print zone. 

numeric character: Any of the digits 0, 1, 2, 3, 4, 
5, 6, 7, 8, 9. 

operand: A constant, a variable, an array member 
reference, a function reference, or a 
subexpression on which an operation is to be 
performed. 

operator: A symbol specifying an operation to be 
performed. See also arithmetic operator, binary 
operator, concatenation operator, logical operator, 
relational operator, and unary operator. 

output: The transfer of data from internal storage 
to an external medium. 

output list: A list of variables from which values 
are written to an output file; the list can be made 
up of scalar expressions and array references. 

packed print zone: A section of a printed line, 
consisting of a number of horizontal print 
positions, whose size is determined by the type 
(arithmetic or character) and length of the data 
being printed. In the PRINT statement, a 
semicolon or null delimiter is used to indicate that 
a packed print zone is to be used. 

padding: The addition of one or more blanks to 
the right of a character string to extend the string 
to a required length. 

precision: The number of digits for which 
significance can be expressed. 

print zone: See full print zone and packed print 
zone. 

priority: A rank assigned to an arithmetic 
operator; it is used when an arithmetic expression 
is being evaluated. The order of priorities, from 
high to low, is exponentiation, unary operations, 
multiplication and division, addition and 
subtraction. Operations at the same priority level 
are evaluated as they are encountered (from left 
to right in the expression). 

program: A logically self-contained sequence of 
BASIC statements that can be executed by the 
computer to attain a specific result. 

programmer-defined function: See user-written 
function. 

Glossary G-5 

------_ ... _--_._ ...... _ ....... . ------_ .. _ .. _.-._. __ ... _-_ .• _----------------------_._----_. 



pseudo variable: The use of an intrinsic function 
as a receiving variable. STR is the only pseudo 
variable in BASIC. 

record: A collection of related data items treated 
as a unit. 

record-oriented file: A file in which items are 
stored in records. 

redimension specification: The assignment of a 
new dimension specification to an already existing 
array, via an array assignment statement, a READ 
statement, an INPUT statement, a GET statement, 
a READ FILE statement, or a REREAD FILE 
statement. 

redimensioning: The changing of the number of 
dimensions or the number of members in each 
dimension of a previously declared array. 

relational operator: An operator used in a logical 
subexpression. The relational operators are: 

Equal to 

;t: or < > Not equal to 

> Greater than 

< Less than 

>= or ~ Greater than or equal to 

< = or :::; Less than or equal to 

remark: See comment. 

scalar: A single data item (as opposed to an array 
of items). 

scalar expression: An arithmetic expression or a 
character expression representing a single value 
rather than an array of values. 

G-6 

sequential access: The retrieval of data 
according to the order in which the data is stored 
in a file. 

short-form precision: Precision whereby, 
externally, values printed with I-format and 
F-format have a maximum of seven significant 
digits, and values printed with E-format have a 
maximum of seven significant digits in the 
mantissa. 

significant digits: All the digits of a number 
starting with the leftmost nonzero digit~ 

simple name: Any combination of up to 8 
alphabetic and numeric characters (with no 
blanks). 

simple variable: A scalar variable (but not an 
array member). 

single-line function: A user-defined function that 
is defined in one statement (that is, the DEF 
statement) . 

special characters: Any characters allowed in 
BASIC that are not alphameric characters. 

statement number: The number that prefaces a 
BASIC statement. It can be up to four digits in 
length (in the range 0000 to 9999). 

stream-oriented file: A file in which items are 
stored as a stream of data and retrieved in 
sequential order. 

subexpression: A group within an arithmetic 
expression and used by the computer to evaluate 
that expression. 

subroutine: A program segment (sequence of 
statements) branched to by a GOSU B statement. 
The last statement of a subroutine must be a 
RETURN statement that directs the computer to 
return and execute the statement following the 
GOSUB statement. 

c 



o 

o 

o 

o 

o 

subscript: Any valid arithmetic expression (whose 
truncated integer value is greater than zero) used 
to refer to a particular member of an array. 

substring: A part of a character string. 

system-supplied constants: See internal 
constants. 

truncation: The deletion of one or more 
characters on the right of a character string to 
shorten the string to a required length. 

unary operator: An operator that precedes, and 
thus is associated with, an arithmetic expression. 
The unary operators are + (positive) and 

(negative). 

user: Anyone utilizing the services of a computing 
system. 

user-written function: A function defined by the 
user in a single-line or multiline function definition. 

variable: A name used to represent a data item 
whose value may change during execution of a 
program. 

zero suppression: The elimination of leading 
nonsignificant zeros in a number. 

Glossary G-7 



c· 

(-'" 
\ '-..... 

G-B 



c 

o 

Technical Newsletter 

IBM 5110 
BASIC User's Guide 

©IBM Corp. 1977 

This Newsletter No. SN21-0277 

Date 28 April 1978 

Base Publication No. SA21-9307-0 

File No. None 

Previous Newsletters None 

This technical newsletter provides replacement pages for the subject publication. Pa.~es to be inserted 
and/or removed are: 

33 through 36 
41,42 
51,52 
65,66 
77 through 80 
101,102 

119, 120 
129, 130 
155 through 162 
165 through 168 
175,176 
181, 182 

Changes to text and illustrations are indicated by a vertical line at the left of the change. 

Summary of Amendments 

Additions and corrections have been made to improve the accuracy and readability of the text. 

Note: Please file this cover letter at the back of the manual to provide a record of changes. 

C ;"1 BM Corporation, Publications, Department 245, Rochester, Minnesota 55901 

©IBM Corp. 1978 Printed in U.S.A. 

._---------- ----_._ .. _-------- . __ ..... _._-... _. __ .. _ ...... _----_. 



/ 



o o o o o o 
READER'S COMMENT FORM 

Please use this form only to identify publication errors or request changes to publications. Technical questions about IBM systems, changes in IBM programming 
support, requests for additional publications, etc, should be directed to your IBM representative or to the IBM branch office nearest your location. 

Error in publication (typographical, illustration, and so onl. No reply. 

Page Number Error 

Note: All comments and suggestions become the property of IBM. 

• No postage necessary if mailed in the U.S.A. 

Inaccurate or misleading information in this publication. Please tell us 
about it by using this postage-paid form. We will correct or clarify the 
publication, or tell you why a change is not being made, provided you 
include your name and address. 

Page Number Comment 

Name ________________________________________ _ 

Address 

o 
to 
~ 

~ 
o 
to 
:l> 
(I) 

(') 

s;: 
~-
~ 
c: 
c: 
CD 

(I) 

:l> 
I\J 

cO 
W 
o 
-..J 
6 



SA21-9307-0 

Fold 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY •.. 

IBM Corporation 
General Systems Division 
Development Laboratory 
Publications, Dept. 245 
Rochester, Minnesota 55901 

Fold 

FIRST CLASS 
PERMIT NO. 40 
ARMONK, N. Y. 

Fold Fold 

--- ------ ----- ---- - ---- ------------_.-
(!) 

International Business Machines Corporation 

General Systems Division 
57750 Glenridge Drive N. E. 

P.O. Box 2150 
Atlanta, Georgia 30301 
(U.S.A. only) 

General Business Group/International 
44 South Broadway 
White Plains, New York 10601 
U.S.A. 
(International) 

(") 

S 
» 
0" 
:J 

IC 

r 
:;' 
CD 

c 

~c 
o 
OJ 
» 
en 
(") 

f 
:~ 
G) 
c: 
c: 
CD 

~ 
~ 
CD 
c.. 
:;' 
c 

;c 
I\) .... 
to w 
o 
...... 
6 

~" 

~, •... - .. 




