IBM 5110

Y
2
=
o
w

’

BASIC User

apIngy S,485/)) ISV E
0LLG W8l

SA21-9307-0

‘First Edition {December 1977)

Changes are continually made to the specifications herein; any such

changes will be reported in subsequent revisions or technical newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or the IBM branch office serving your locality.

A Reader’'s Comment Form is at the back of this publication. If the form
has been removed, address your comments to IBM Corporation,
Publications, Department 245, Rochester, Minnesota 55901. Comments
become the property of IBM.

© Copyright International Business Machines Corporation 1977

O

O O

O

O

O

Preface

Before using this manual, you should be familiar
with the information in the /BM 5170 BASI/C
Introduction, SA21-9306, such as:

e Entering data from the keyboard

The arithmetic operators

How to enter a program

Using data files

e Using arrays

This manual gives you conceptual information
about using the 5110 with the BASIC language
and is intended to be used with the /BM 5710
BASIC Reference Manual, SA21-9308. The topics
covered in this manual include:

o Computer concepts for data processing

e An approach to breaking your application into
small parts to make programming easier

e Changing the sequence of execution within your
BASIC program

° Formétting the data on the display screen

o Entering uppercase and lowercase characters

e Using a procedure file to replace keyboard input
e Sounding the audible alarm

e Using tape and diskette storage

e Formatting printed reports

Additional tips and techniques

Since this manual is not intended to give you a
complete description of the syntax and rules
required for each BASIC command and statement,
you must use the /BM 5110 BASIC Reference
Manual for this description.

This manual does not need to be read chapter by
chapter. Instead, you can read the appropriate
chapters as required. For example, you might read
Chapter 3, Changing the Sequence of Execution In
Your BASIC Program, when you need information
on program loops.

Prerequisite Publication

IBM 5110 BASIC Introduction, SA21-9306

Related Publications

IBM 5110 BASIC Reference Manual, SA21-9308
IBM 5110 BASIC Reference Handbook, GX21-9309

IBM 5110 Customer Support Functions Reference
Manual, SA21-9311

C)

C

O

O

CHAPTER 1. 5110 DATA PROCESSING CONCEPTS . .1
INtrodUction. & . v v vt vt it et e e e e 1
Advantages of Computer Data Processing. 5

CHAPTER 2. ELEMENTS OF A BASIC PROGRAM. . . .9

DefiningaProgram i 9
Processing Information.o i i 10
OUTPUL & v v et et e et et e e s a s 10
2T o T 1 11
[o Yo=Y - 12
Puttingitall Together 12
Additional Levels of Input, Process, and Output 13
CoNCIUSION. & v v v e et e e e e e e 15
Basic Statements Most Commonly Used for Information
Processingcvvvi it e 16
Process Statements it it 17
OutputStatements« v vt v i it i en e 18

CHAPTER 3. CHANGING THE SEQUENCE OF

EXECUTION IN YOUR BASIC PROGRAM. 19
LOOPS .+t it e e e e e e e 19
Using the IF Statement. oo 20
The Computed GOTO Statement 24
More about Loops—Using FOR and NEXT Statement . .24
Functions and Subroutines 27
FUNCLIONS &+ . v it e i e e e e e i e 27
SUDFOULINGS « v v o o et e e e e e 30
Computed GOSUB Statement 32
Program Chainingot i 33
CHAPTER 4. FORMATTING A REPORT 35
Print Using and the Image Statement. 35
Print Using and the Form Statement. 38
Numeric Specification—PIC. 38
Character Specification—C 41
Format Control Specifications—X, POS, SKIP. 42
Print Using with a Character Variable 46
Printer SpacingControl 0ot 47

CHAPTER 5. SAVING AND LOADING THE WORK

AREA i i i e e e e 49
Determining the Size a File ShouldBe. 49
Saving and Loading Data on a Tape or Diskette File. . . .49
Controlling the Files on Tape or Diskette. 50
Maintaining Data Security. i 50
Protecting Your Programs. v .. 50
Protecting YourData Files 51
Removing Sensitive Data. 53

Contents

Chapter 6. TapeConceptso n.nn 55
How to Formatthe Tape 55
How to Determine the Storage Available on a
TapeCartridge v it i v i 58
Chapter 7. Diskette Conceptso 61
Diskette Wear. . . v v v vt vttt e e i 62
Diskette Addressingand Layout. 63
Track and Cylinder i 63
LT Yo L] 64
Index Cylinder oot 64
Alternate Cylinders oo ii i 65
Diskette Typesand Formats v 65
Diskette INitialization. ovvvvnenenneennn.ns 66
Volume 1D, Owner ID, and Volume-Protect Indicator . .66
File D .ot e e e 66
Diskette File Write-Protect Indicator. 66
Diskette File Organization. o v v v v v 67
Reallocating Diskette File Space. 67
Determining the Storage Available on a Diskette 68
Number and Size of the Diskette Files. 70
How the File Space is Allocated 71
Chapter 8. Introduction to Data Files. 73
Files, Records, and Fields 73

CHAPTER 9. CHARACTERISTICS OF ACCESSING

DATAFILES it i e e tn e 77
Sequential ACCESS v it e 77
Direct Access by Relative Record Number. 77
Direct Processing by IndexKey 78

Sequential ACCESSING v vt i 78

Direct ACCeSSING .« v v v v it e e e e e e 79
MaintainingData Files, 79

AddingRecords i, 80

Tagging Records for Deletion. 80

UpdatingRecordso 81

Reorganizinga File 81

Contents iii

CHAPTER 10. DESIGNING A RECORD AND
DETERMINING FILE SIZE FOR RECORD 1/0

e 83
DesigningaRecord 83
Determining Field Size. 83
Providing foraDeleteCode. 84
Record Expansion.c... ... 84
DesigningaSample Record 84
Determining the SizeofaFile 85
Calculating FileSpace 86
Calculating Index FileSpace 86
Review—Calculating FileSpace 87
CHAPTER 11. PROCESSING A DATAFILE 89
Processing Stream I/O Files. 89
Opening and Closing Stream I/O Files 89
Writing to and Reading from Stream [/O Files. 91
Accessing Record I/OFiles 94
Opening and Closing Record I/O Files. 95
Writing to and Reading from Record 1/O Files 97
More Information About Processing Record
I/OFileso i 106
Summarizing Record-Oriented Statements. 113
CHAPTER 12. CONTROL OF YOURS5110 115
Using the Display Screen for Input and Output. 115
Using Procedure Files. 119
Using the System Control Functions. 120
READ FILE FLSStatement 120
WRITE FILE FLS Statement. 121
Additional Useof File FLS 122
Using the UTIL Command 122
CHAPTER 13. USINGARRAYS. 125
Naming Arrays ittt e 126
Defining Arrays. oo i ittt it i e 126
Placing Values into Arrays.covvvnun... 129
Redimensioning Arrays.o v v i v i i i i 131
Difference Between Matand Let 132
Array Operations. v vttt it e 133
Array Addition and Subtraction. 133
Scalar Multiplication 134
Indexing Function., 134
Matrix Multiplication. 135

CHAPTER 14. WHAT TO DO WHEN YOUR

PROGRAMDOES NOTWORK 139
Program Trace 139
ProgramStep i 141
Commentsottt it e 142

Keyboard TestDataFiles 142

CHAPTER 15. TIPS AND TECHNIQUES.
Performance Considerations
Program Design. oo ittt e e e
Index FileSorting.cuuio..
PrintOverlap v i ittt e s e e e e
Display Off i it i e et i e e
Main Storage Index Area.,
Data File Access Selection.
Storage Considerations.
UserStorage. oo ittt e e
Program Design. oo ittt e i e
Variables e e
Program Statements. 0 e
Buffers e e e
Printer. e e e e
Using ASot e
Precision Longand Short
Program Analysis Using a Cross—Reference Program . .
Skipping to a New Page While Printing.
UsingFile FLS i i i
User Program Control.
Locating a CharacterinaString.
TestingforanError. L.
Sortingan Index File.,
Another Way to Read a Stream Input File
Different File Access Methods
Creatingan index File
Direct Access and Update with Key Index
Sequential Access by Key Index.
Direct Access by Relative Record Number.
Create Multiple Index. it

O

O

Chapter 1. 5110 Data Processing Concepts

INTRODUCTION

What can you expect a computer to do with information? How do you
get information into a computer? How does a computer know what to
do with your information? What final results can you expect?

Today the computer is doing many jobs, from accounting to predicting
election results to guiding spaceships. It is often looked upon as some
kind of magical machine, but the computer performs no magic.
Everything a computer does is dependent on the people who use it
and the instructions they supply. For every job you want a computer
to do, you must give a step-by-step procedure (a program) for it to
follow. This procedure is then stored inside the computer. The
information you want is processed according to the stored
instructions.

A computer can do a wide variety of operations. It can retrieve,
almost instantly, any item of information stored in it. It can compare
any two items of information and do any arithmetic operations you
want—-add, subtract, multiply, or divide. It can be instructed to do any
combination of these things in any sequence you want them done.

The computer works methodically, doing one thing at a time. When it
finishes one step, it goes on to the next, then the next, and the next,
according to instructions. But it performs these steps at an almost
unbelievable speed until it comes up with the answer you want.

The work performed by a computer is called data processing. Data
processing means that information is handled according to a set of
rules. Whether you process information by hand or use a computer,
the requirements of a job remain about the same. You must have
input, which is the data you want to do something with; you must
process the data, which is the act of doing something with data
according to instructions; and you must have output, which is the
result of your processing.

5110 Data Processina Concepts 1

To help you understand the 5110 and data processing, let’s first look
at how an employee might process information for the job of billing.
Assume for this job that the employee works with the following data:

Customer orders

Price catalogs

Customer records

Accounts receivable records

Inventory files

N

O

The employee receives a copy of the customer order after the order is
shipped. He uses this document to prepare the invoice that he sends
to the customer. To prepare the invoice, the employee:

1. Looks up, in a price catalog, the price of each item in the order
2. Muiltiplies the price of each item by the quantity shipped

3. Adds the total price of each item to get the total amount of the
invoice

4. Checks the customer records to see if any special discounts
apply, and adjusts the invoice accordingly

5. Types the invoice

6. Adjusts the accounts receivable records to show what the
customer owes

7. Updates the inventory files to show the reduced stock

For each invoice he prepares, the employee follows the same
procedure. In computer terms, the procedure is his program for doing
the job. The customer order is his /nput; the calculating and file
updating he does is processing; and the results of processing—the
invoice and the updated records-are his output.

As shown in Figure 1, computer data processing can speed up a billing
operation and reduce costly errors. Data (customer order information)
can be entered at high speed via the keyboard; many records can be
quickly referenced and updated in a magnetic storage medium (tape or
diskette); the processing unit can store and carry out instructions {a
program) and perform needed calculations; and a printer can print the
invoice.

Customer
Keyboard Order
Information
1
i Processing '
Customer and Unit Printer

Printed
Invoice

Inventory Data .
(stores job

instructions
f_——— and performs
calculations)
Updates Customer

and Inventory Data

Magnetic
Storage

‘ Figure 1. Computer Data Processing

5110 Data Processing Concepts

3

The 5110 Model 1 Computing System (Figure 2) contains the following
elements, which are components of the data processing system:

e Input Elements—keyboard, tape, diskette
e Output Elements—tape, diskette, printer, display screen

e Processing Elements—main storage, tape, diskette, programs

Display Main Storage
Screen

Keyboard

Diskette Printer

Drives

Tape Drives

Figure 2. 5110 Computing System Data Processing Elements

The keyboard is the device the operator uses to key (enter) data into
the processing unit.

The tape and diskette are used either as input or output devices. Input
data or programs can be entered into the system using the tape or
diskette. Output data can be stored on the tape or diskette for use in
other programs.

The printer records on paper (prints) the data sent to it by the
processing unit. This printed material is sometimes referred to as the
hard copy output.

The display screen displays output data sent to it by the processing
unit. The system uses the display screen to communicate with the
operator by displaying information keyed on the keyboard so that the
operator can verify the information before it enters the system. The
system also displays messages that identify keying errors and provide
operator guidance or specific processing information as required.

(/
\

O

-

The processing unit is made up of the main storage, tape or diskette,
and programs. The tape or diskette is used to store files of
information and programs that are used by the system. Main storage
is the part of the processing unit that holds a program so that the
system can execute the steps in the program. Data is moved from
tape or diskette into main storage for use by the program being
executed.

ADVANTAGES OF COMPUTER DATA PROCESSING

If data processing is always a matter of input, processing, and output,
how is computer data processing different from manual or mechanical
data processing? Computers process large volumes of data faster,
more accurately, in less space, and with greater versatility.

e Speed. Because computers process data electronically, they
operate at remarkable speeds that save a tremendous amount of
time.

® Accuracy. A computer does exactly what it is told to do and only
what it is told to do. Because of this constant dependence on
instructions, a computer follows program after program, second
after second and hour after hour, with unvarying accuracy.

Computers also reduce transcription errors by dramatically reducing
the need for manual transcription. Once you record data on a tape
or diskette that data may never have to be written by hand
again—you can update as many different customer records, complete
as many different kinds of forms, and create as many different
reports from that data as you have application programs that use
the data. By referring to the display screen while first recording the
data, you can insure that the data is keyed correctly. Programs that
use the data can perform control total checks and balances to
continually validate the accuracy of the data.

5110 Data Processing Concepts

5

Data Compression. Computers miniaturize data. Suppose a business

enters its accounts receivable transactions in a machine-posted

register like the one shown below.

CusT
DATE NO

07/11/-- 759820
07/11/-- 633870
07/11/-- 642990
07/11/-- 122620
07/11/-- 682030
07/11/-- 742950
07/11/-- 014280
07/11/-- 872060
07/11/-- 883290
07/11/-- 006280

ACCOUNTS RECEIVABLE TRANSACTION REGISTER

07/11/--
CUSTOMER JOURNAL
NAME NO

SOUND OF THE SEVENTIE

OLDE VILLAGE SHOPPE

PARAGON TV SALES

CANNIZONI STUDIOS

RAYMONDS RAPID REPAIR
SARATOGA VARIETY

BAKER BRADLEY & CO.
UNIVERSITY ELECTRIC

VILLAGE MUSIC & TV 07-036
ALLSTONS 07-037
TOTALS

INVOICE

NO
063420
063421
063422
063423

CASH
AMOUNT

$ 63.80
29.72
43.50
97.75

$234.77*

INVOICE
AMOUNT

$ 46.23
89.70
20.30
129.76

$285.99*

PAGE 001

JOURNAL
AMOUNT

$18.23CR
10.70CR
$28.93CR*

The preceding example shows 10 sample entries, or records.

Several thousand such transaction records can be stored by the

system on one diskette. That is, the system enables you to store
large volumes of business information in an economical and

manageable form that can be processed by a machine.

-

p

O

o Versatility. The number of different tasks a computer can do is
limited only by the number of different programs run on it. The
computer can do much more than just add, subtract, multiply, and
divide. The 5110 can, for example, prepare invoices, keep accounts
receivable up to date, print weekly paychecks, and analyze data for
thorough cost and sales analysis.

Speed, accuracy, data compression, and versatility combine to reduce
data processing errors and increase productivity. But a less obvious
advantage of computers has a more fundamental effect.

Computers impose discipline. As explained, a computer is helpless
without programs—it cannot think for itself. Neither can a computer
guess whether its programs really reflect the problems at hand-you
must see that they do. In other words, you must carefully analyze the
data processing requirements of your organization in order to take full
advantage of a computer. For instance, with the data processing
capabilities provided by a 5110, what additional cost analysis,
inventory control, and auditing procedures would you like to implement
in your organization?

The responsibility for analyzing an organization's data processing
requirements falls, of course, to management. But the discipline
imposed by a computer extends throughout the data processing
activities of the organization. Once you've designed or selected
computer programs that reflect management directives, you've
established management control that is automatically practiced each
time those programs are used.

5110 Data Processing Concepts

7

PAGE 189

DATE
07/11/--
07/11/--
07/11/--
07/11/--
07/11/--
07/11/--
07/11/--
07/11/--
07/11/--
07/11/--

cusT
NO

759820
633870
642990
122620
682030
742950
014280
872060
883290
006280

ACCOUNTS RECEIVABLE TRANSACTION REGISTER

07/11/--
CUSTOMER JOURNAL
NAME NO

SOUND OF THE SEVENTIE

OLDE VILLAGE SHOPPE

PARAGON TV SALES

CANNIZONI STUDIOS

RAYMONDS RAPID REPAIR
SARATOGA VARIETY

BAKER BRADLEY & (0.
UNIVERSITY ELECTRIC

071036

VILLAGE MUSIC & TV
ALLSTONS 07-037
TOTALS

*INVOICE

NO
063420
063421
063422
063423

CASH
AMOUNT

$ 63.80
29.72
43.50
97.75

$234.77*

INVOICE
AMOUNT

$ 46.23
89.70
20.30
129.76

$285.99*

PAGE 001

JOURNAL
AMOUNT

$18.23CR
10.70CR
$28.93CR*

«

Accts Receivable
Transaction
Register 07/11/-

Chapter 2. Elements of a BASIC Program

Before reading this chapter, you should be familiar with the
information in the 5770 BASIC Introduction, such as:

Entering data from the keyboard

The arithmetic operators

o Numeric and character variables

The arithmetic operator hierarchy

Entering a BASIC program

The BASIC language statements REM, INPUT, GOTO, STOP,
LET, IF, FOR, NEXT, READ, DATA, RESTORE, PRINT, OPEN, CLOSE,
RESET, PUT, GET, and DIM

The system command used to store and retrieve programs on a
tape or diskette

In this chapter, the following topics are discussed:
o Defining a program

o Analyzing an application (problem) so that BASIC programs can be
used to process information

o The most commonly used BASIC statements

DEFINING A PROGRAM

A program is a procedure or set of instructions you establish for doing
a job. These instructions are necessary because a computer cannot
think for itself. When defining a program for the 5110, you can use a
programming language called BASIC. BASIC is a simple-to-use
programming language with which you describe how you want the
5110 to do the job.

The next section presents an approach to analyzing an application so
that a BASIC program can be used to help process information. This
approach helps you break down an application into manageable parts
so that you can apply BASIC statements you know can process the
information. Breaking down an application into manageable parts
promotes thoroughness and allows the application to be solved
{programmed) faster.

Etements of a BASIC Program 9

PROCESSING INFORMATION
Every problem consists of three parts: (\

e The /input data required to generate the final result

o The process (BASIC statements) required to generate the final

results C\
-

e The output, which is the final result

Each part might consist of one statement or several statements. In the

following sections, each part is discussed in more detail. Also, an

example for finding the compound interest is used to illustrate each ()

N
part.
Output

Because the output is the primary reason for a program to exist,

considering the output provides the best place to start solving a

problem. To do this, consider these questions:

1. What results are required?

2. How should the results be formatted? ' N

3. Who uses the results? For example, should the results be
displayed or printed, or should the results be stored in the main

storage, on tape, or on diskette for later use?

Now, for the compound interest example, assume the answers to
these questions are:

1. The amount of interest earned

2. The message THE INTEREST EARNED IS: followed by the
calculated interest earned

3. Finance officers need the displayed results to evaluate different (\
plans

Once you have answered these questions, you know the purpose of a
program. o~

O

Input

After the output, you should consider what input data is required to
generate the output. To do this, consider such questions as:

1. What input is required?
2. Where does the input come from?
3. How is the input provided?

For the compound interest example, the answers to these questions
are:

1. The interest rate, number of years, and principal

2. From finance officers who need to know the amount of interest
earned for different plans

3. Through the 5110 keyboard

In our example, most of the input data will come from the keyboard;
however, other ways also exist. For example, some data might be
permanent and be included within the program (for example, headings
and labels). There might also be data that is usually constant but, for
certain applications, must be changed. This data might be coded in
the program as variables that can be modified. And, of course, data
might also be from tape or diskette.

The following list summarizes the input and output considerations so
far:

Input Output

Device Keyboard Display

Data Interest rate THE INTEREST EARNED IS:
Number of years The calculated interest earned
Principal

Elements of a BASIC Program

11

Process

Once the input and output are well defined, all of the characteristics
work together to make the process part the most straightforward.

For our compound interest example, the process part consists of:
1. Defining the algorithm used to calculate the compound interest
2. Using the input to generate the results

The formula used in this example for the compound interest is:

COMPOUND INTEREST = PRINCIPAL (1 +__T856>Years

The BASIC statements that use the input to generate the results might
be as foliows:

£ PRS00 R is the interest rate
Bom omdy Y is the time in years
o= Pal P is the principal

\

C is the compound interest

PUTTING IT ALL TOGETHER

Now that you have considered the three parts of information
processing, it is time to write your program. For the compound
interest example, your program might look like this:

D010 PRINT CENTER THE INTEREST, FRINCIPAL, AND
pORE THPUT R, P,Y

DOED AmleR/100

BONO BmA Ty

DOEO O Pek

VORRINT CTHE INTEREST EARNED T&:

G070 PRINT Cwp

So far, you have taken a simple application and designed a program to
solve it. If the application is larger or more complex, a more detailed
structure is required. This more detailed structure involves expanding
each of the three parts (input, process, and output) into additional
levels of input, process, and output.

YESHRE'

C

ADDITIONAL LEVELS OF INPUT, PROCESS, AND OUTPUT

For complex or large applications, you might want to break the INPUT,
PROCESS, and OUTPUT down into additional levels of input, process,
and output.

Program
INPUT PROCESS OUTPUT First Level
1
Input Process Output Additional Levels

This allows you to break each first-level INPUT, PROCESS, and
OUTPUT part into manageable parts. Let's continue with the
compound interest problem and expand the first-level INPUT portion
into additional levels of input, process, and output. That is, the INPUT
portion is going to be treated as a separate problem in itself.

First, consider the output of the INPUT portion. Here the output is
actually the input for the first-level PROCESS portion. In this case,
assume that the output must be an interest rate not greater than 18%,
a number of years not greater than 40, and a principal not greater than
500,000.00.

Next, consider the input for the INPUT portion. The input is the same
as before (the interest rate, number of years, and principal for which
the interest earned must be calculated). However, in this case, the
finance officers might be unfamiliar with the program; therefore, there
should be prompting messages telling them what to enter.

Elements of a BASIC Program

13

14

Finally, consider the process for the INPUT portion. In this case, the
processing consists of error checking and validation of all the input
data, because you want to make sure that the interest rate is not
greater than 18%, the number of years is not greater than 40, and the
principal is not greater than 500,000.00.

Now, taking these considerations into account, the BASIC statements
for the first-level input portion might be:

oL
ozn
Hoan
HRIRN Y
onn
Baa0
HRINEE
aasn
dasn
Gion
grLa
GLE0

PRINT CENTER THE INTEREST RATE, YE&RE AND PRINCEPALS
WeurT T,y ¢
TF T8 GOTo AQ

LN CTHE S TNTEREST RATE IS GREATER THAM 18 PERCENT®
(R
TR0 CGOTO %0

CTHE MUMEBER OF YEA&RES IR GRESTER THAN H0°
10
EEORG00 GOTO 1E0

PRINT CTHE PRINCTPSL TS GREATER THaAN S00, 000,007
GOTO 10

[

1

For complex or large applications, you could also break down the
first-level PROCESS and OUTPUT portions; however we are not going
to do that for this example.

As you break an application down into manageable parts, you might
want to have a separate program for each part. For example:

noos
oo

00A0
oo40
0050
ng&n
0ovo
pogn
no%a
0100
1o
G120

hntao
an20
1040
roso

UskE T,Y, P

PRINT "ENTER THE INTEREST RATE, YEA&RS, A4ND PRINCIPAL' <«
TPy Loy, F

TF Tzig GOTA 60

PRINT "THE IMTEREST RATE I8 GREATER THaN 18 PERCENT’
GOTO 10

IF Yauo GOTO 90

FRINT "THE NUMBER OF YEARS IS GREATER THAN W07

GOTO 10

IF P2B00000 GOTO 120

PRINT 'THE PRINCIPAL T8 GREATER THAN 500000,00°

GOTO L0]]
The input program is loaded from file 1 and

CHAIN "ES0,2
\executed.

The CHAIN statement automatically loads
the program from file 2 on device E80.

e 1,Y, 1,0

fA=1+1 /)00 -————The process program is loaded from
=ty file 2 and executed.

O o B

CHAaIN ‘E80°, 3

‘)

O

O

gons UsSeE I.Y.P,C The output program

010 PRINT "THE INTEREST EARNED I%5:° is loaded from

0020 PRINT C-P file 3 and executed.

0030 STOP

CONCLUSION

When solving a problem using the 5110, break the problem down into
manageable parts. To do this, first focus on the program output; this
is the primary interface to the user. The output also defines what the
real purpose of the program is. Next, consider all the input data that is
required to generate the output. Finally (and only then), plan the
actual processing.

Thinking in this way should help you make the transition from knowing

the BASIC language to being able to use the BASIC language and then
to generating programs that solve real problems.

Eiements of a BASIC Program

15

BASIC STATEMENTS MOST COMMONLY USED FOR INFORMATION
PROCESSING

Following is a description of some BASIC statements that you will use
for the input, process, and output portions of a BASIC program.

Input Statements
Statement Description

INPUT Requests that you enter data
from the keyboard during the
execution of the program. The
data entered from the keyboard
is assigned to a corresponding
name (variable) specified by
the statement.

DATA Creates a string of numeric and/or
character values that can be used
by the program. The values are
assigned to a corresponding name
specified by a READ statement.

READ Assigns values to variables and
arrays from the values created by
a DATA statement.

OPEN Causes specified input and/or
output files to be activated.
The files can then be used
for the input and/or output
operations.

CLOSE Causes the specific input and/or
output file to be deactivated.
The files cannot then be used for
input and/or output operations
until they are opened again.

READ FILE Reads records from a specified
record |/0 data file (see
Chapters 7 through 10) and assigns
the data to specified variables.

DIM Specifies the size of arrays
and character variables used
by the program.

GET Reads data from a specified stream
1/0 data file and assigns the data

to specified variables.
16

O

()
o/

Process Statements

Statement

LET

FOR

NEXT

GOSuB

RETURN

GOTO

Description

Assigns the value of an expression
to a variable.

Marks the beginning of a loop and
specifies the condition of its
execution and termination. The
NEXT statement is used to mark the
end of the loop:

gro0 FOR K o= 1L 7O 10

i

BLED NEXT K
See the FOR statement.

Transfers control to the first

statement of a subroutine. Then

when a RETURN statement is executed,
control returns to the next

statement following the GOSUB
statement:

0100 GOSUR 250
gran o= 1

REM THIS TS & SURBRCGUTINE

fasn RETURN

A subroutine is useful when the
same statements must be executed
several times in the program.

See the GOSUB statement.

Transfers control to a specified
statement.

Causes the program action to be

determined as the result of the
evaluation of a condition.

Elements of a BASIC Program

17

18

Output Statements
Statement

PRINT

PRINT FLP

WRITE FILE

REWRITE FILE

PUT

Description

Causes data to be displayed on
the display screen.

Causes data to be printed on the
5103 Printer. Data can be formatted
as it is being printed if the

PRINT FLP statement is used in
conjunction with the IMAGE and
FORM statements.

Adds a new record at the end of
a record 1/0 file.

Updates (rewrites) a record that
already exists in a record 1/0 file.

Writes data from specified variables
to a stream 1/0 file.

N

C

Chapter 3. Changing the Sequence of Execution in Your BASIC Program

In this chapter, the following topics are discussed:
o Using loops to do the same calculations repeatedly

e Using functions or subroutines to do the same operation several
times

e Changing to another BASIC program from a program currently being
executed

LOOPS

Suppose you want to display credit amounts of $100 to $5000 in
increments of $100, along with the monthly finance charge of 18% per
year (.015 per month). You could do it simply enough by writing the
following statements:

QOLG PRINT 100, 100%, 01%
gon PRINT 206, 2000, 015
TR0 PRINT J00, 300%, 015
Q00 PRINT W00, 400%, 015

i

G0 PRINT W900, w900%, 015
EO0 PRENT G000, S000%, 015

Although this technique works correctly, it is time consuming and
tedious. In displaying an amount and its finance charge for all
amounts from 100 to 5000, what we are really doing is performing the
same operation repeatedly, but using different numbers each time.
Calculations that are to be repeated can generally be done efficiently
by a simple programming device known as a /oop.

Changing the Sequence of Execution in Your BASIC Program 19

20

Here's a concise method of performing the same operations shown
previously:

grn P=100

DO2E PRINT PP G5
GO30 P=pPeLin

GOy GOTO 20

Here, we have created a loop in statements 20 through 40. When the
program is run, the PRINT statement will be executed once each time
the value of P increases by 100. The statement that makes the loop
possible is the GOTO statement. It alters the normal sequence of
execution by directing the computer to execute a different statement.
It does this by referring to the number of that statement. The
statement GOTO 20 directs the computer back to statement 20, which
displays the value of P and its finance charge. Statement 30 then
increases the value of P by 100, and statement 40 is executed again,
branching the program back to statement 20.

There is one problem with the loop we have shown here: there is no
provision for ending the loop. Consequently, not only will we get
results for values from 100 to 5000, but also for 5100, 5200, and so
on, unless we take some action to stop execution. In this program, we
want the loop to end after we reach the value 5000, or, put another
way, we want the loop to continue as long as P is less than or equal
to 5000. To provide this action, we should build into the loop a test
from some condition, so that when the condition is met, the loop will
end automatically.

Using the IF Statement

An IF statement says it quite concisely:
orn TF PERGOO GQTO 20

This IF statement says that if P is less than (<) or equal to (=} the
value 5000, the program is to branch to statement 20. Here we have
incorporated the GOTO statements into the IF statement. Let’s put this
new statement into the program and see what happens:

4010 P=100

Qo0 PRINT P, P, 015
QOED P=pP+e100

gone TF OP2E000 GOTO 20

As long as P satisfies the condition, P less than or equal to 5000,
execution will loop back to the PRINT statement. However, when P no
longer satisfies the condition-when P is greater than 5000-the loop
will end automatically and the execution will fa/l through the IF
statement to the next statement, which in this case is an END
statement signifying the end of the program.

The IF statement has many applications, some of which can be quite
sophisticated, depending on the condition tested in the statement. For
example, conditions such as the following can be tested:

BLaAl TF g0 GOTO &0
Lye IF o T &0
pree IF &

XAYAEYE GATO a0

The first example is quite simple: if the value of the variable A is
equal to 0, branch to statement number 60. The second statement
tests the same condition as the first statement, but substitutes the
word THEN for GOTO. In the IF statement, THEN and GOTO have
exactly the same meaning. The third statement makes a test between
two sets of expressions. The first expression evaluates B-X/Y. The
second expression evaluates Z42. If the value of the first expression
is less than (<) the value of the second expression, the program is to
branch to statement 80.

Relational Operators

The IF statements illustrated in these examples used the symbols <, >,
and =. These symbols are part of a set of operators called relational
operators. Relational operators are used only in IF statements; they
test the relationship between two expressions. It is important to note
that relational operators do not perform any arithmetic operations.
They simply test whether or not a condition is satisfied. For example,
in statement 40, the equal sign does not mean that P is to be given
the value 5000; it tests whether the value already assigned to P equals
5000. If a condition is satisfied .(if P does equat 5000 in this example),
then the condition is considered true. If a condition is not satisfied (if
P does not equal 5000), the condition is considered faise. Thus, a
relational operator says that if the condition being tested is true, the
action specified is taken; otherwise, the action is not taken. Reviewing
this concept using the example IF A = 0 GOTO 60, if the condition is
true (A does equal 0), then the branch to statement number 60 is
made; otherwise the branch is not made. Instead, the program
continues with the next statement in sequence.

Changing the Sequence of Execution in Your BASIC Program

21

22

The relational operators and their definitions are:

Operator Meaning

= Equal to

< >orz Not equal to

> Greater than

>=0r > Greater than or equal to
<=or< Less than or equal to

GO B00

a190 IF
Gadn IF

In the first example, a test is made between the values contained in
the arithmetic variables A and B. The second example illustrates
comparison of character data. For character data, a comparison is
made according to the EBCDIC collating sequence of each character in
corresponding positions in the constant. In other words, the first
character of one constant is compared to the first character of the
other constant, the second compared to the second of the other, and
so on. In this example, the first three letters of the constants compare
equal, but when the letter N is compared to Z, they compare unequal.
The letter N, occurring before the letter Z in the alphabet, registers
less than in the collating sequence. At this point, the condition tested
would be met; that is, the character string PRINT is indeed less than
PRIZE.

In the third example, character variables are compared. Let's assume
that the variable A$ contains the value ON and the variable D$
contains ONLY. The first 2 characters match, but when the letter L is
compared to a blank, which is assumed for comparison purposes, they
do not match. Thus, the result in this case would also be true,
because the value of A$ is not equal to the value of D$. If, however,
A$ and D$ do contain matching strings, say both contain the
characters ONLY, then the test results would be false-A$ and D$
would be equal, thereby not satisfying the condition of the test.

o

O

o

@

Logical Operators

The example IF A = B tests the relationship between two expressions.
Suppose, however, that you wish to take action if more than one
relationship is true. For example, suppose that not only must A equal
B but also X must equal Y. You could make these comparisons by
using the logical AND operator, written as &:

GOW TF As=REXsY GOTO 100
Statement 40 says that if A equals B and X equals Y, then statement
100 is executed. If only one comparison, or neither comparison, is
true, program execution continues with statement 60.

The IF statement can specify two logical operators:

Operator Meaning
& AND
I OR

The AND operator states that both conditions of a test must be true
for the entire expression to be true; the OR operator states that either
condition {(or both) must be true for the expression to be true.

If you want to branch to statement 100 if either A equals B or X
equals Y, you could write this statement:

000 ITF fe=

R

= GOTO 104

Here are other examples of the AND and OR operators:

IRIARY
gosn

TF Gl
TF ALy

MhslE GOTO S0

et 0aT S GOTO 300

The first example tests an OR condition using character variables. It
says that if the value in the variable C$ is greater than the value in D$
or if the values in J$ and K$ are equal, then a branch is made to
statement 50.

The second example tests an AND condition using mixed variables. It
says that if the value in the arithmetic variable A1 is not equal to the
value in A2 and the value in the character variable J$ is greater than
the character string CAT, then the program is to branch to statement
300; otherwise, program execution is to continue with the next
sequential statement.

Changing the Sequence of Execution in Your BASIC Program

23

24

THE COMPUTED GOTO STATEMENT

The computed GOTO statement is a version of the GOTO statement
that gives you the ability to branch to different statements during
various stages in a program.

A computed GOTO could look like this:

o0 GOTO Z0, 80,850 O
A branch is made to statement 30, to statement 40, or to statement
50, based on the integer portion of the value contained in the variable
J. The integer portion may contain a value of from 1 to 3. If the value
is 1, a branch is made to the first statement shown in the list,
statement number 30. If the value is 2, the branch is to be the second
statement, number 40. If the value is 3, the branch is to the third
statement, number 50. If the value is greater than or equal to (>) 4 or
less than (<) 1, program execution falls through to the statement
following the computed GOTO statement.

The expression determining the branch to be made can be a simple
variable, such as J above, or a more complicated expression, say (A +
B) / 2. If such an expression were used, its computed value would
determine the branch to be made. Consider this example:

GOS0 GOTO 200, 220,100,250 OM {&+B /2
The expression (A + B) / 2 is evaluated, and a branch is made to
statement number 200, 220, 100, or 240, depending on whether the
value is 1, 2, 3, or 4, respectively. Note also that the statement
numbers shown in the list do not have to be specified in sequential
order; that is, statement number 100 can be the third number in the
list even though it is a lower number than the others.

More about Loops—Using FOR and NEXT Statement

A still more concise method of specifying a loop is by using the FOR
and NEXT statements. For example, our program for finding and
displaying the finance charge for $100 to $5000 could be further
simplified to look like this:

GOL0 FOR P=100 TO 5000 STEP 100
0020 PRINT P, FP%, 015
BOEO NEX

o

O

C

The FOR statement identifies the beginning of the loop; the NEXT
statement identifies the end of it. In between is the statement, or
sequence of statements (we need only one for this example) that will
be executed repeatedly until the specification in the FOR statement has
been satisfied.

In our example, the FOR statement specifies that the statement in the
loop (the PRINT statement) will be executed repeatedly for successive
values of P from 100 through 5000. (An increment of 100 is added to
P for each execution of the NEXT statement.) When the value of P
exceeds 5000, execution of the loop is ended, and control is passed to
the next logically executable statement following the NEXT statement.
In this case, the following statement is a STOP statement denoting the
end of the program. However, other statements could precede it, or
the NEXT could be the last statement prior to the STOP.

The increment is always 1 unless it is explicitly stated to be otherwise;
for example:

aoLg FOR P=000 TO 5000 STEP 200

This FOR statement explicitly states an increment (or step) of 200.
Thus, the statement(s) in the loop will be executed once for every odd
multiple of P from 100 to 5000 (that is, the range is 100, 300,
500,...4900). When the value of P exceeds 5000 (that is, when it
reaches 5100}, execution of the loop will end. The value of P will be
set back to 4900 before the next logically executable statement is
executed.

If you want to execute the loop once for every even multiple of 100 to
5000 (that is 200, 400, 600,...5000), you would say the following:

GOLG FOR O P=200 0 TO 5000 STERP 200

Again, when the value of P exceeds 5000 (in this case, when it
reaches 5200), execution of the loop will end. The value P will be set
back to 5000 when the next logically executable statement is executed.

As with expressions appearing in assignment statements and in the
body of PRINT statements, the specifications in FOR statements can
be quite complicated. For example, the following FOR statements are
permitted:

o3n FOR
Gan b FOR
DOEg FOR

AL BTER ASRTE

Changing the Sequence of Execution in Your BASIC Program

25

26

The first example states that the initial value of | is to be taken from
the variable A and that the loop is to be executed repeatedly until the
value exceeds the value of B. The second example states that the
initial value of J is the value of the expression 8 * M + Y, and the loop
is to be executed until this value exceeds the value of A ** 3. The
third example states that the initial value of K is to be the square root
of B minus C; the loop is to be executed until the value 550 is
exceeded, and each time through the loop the value of K is to be

increased by the value of the expression A / B42.

You can also use more than one set of FOR/NEXT statements
together in a program by nesting one loop. Let's look at a program
that computes compound interest and uses nested FOR loops in the
process.

The mathematical formula to compute compound interest is:

A=p[1+R_\t
100 ;

where A is the amount to be calculated, P is the principal, R is the rate
of interest, and T is the time period.

The program below shows how you can enter any amount as the
principal (P), compute interest on it using interest rates from 1% to
20%, for each of 10 years, and display all the amounts—a total of 200
values.

GOS0 PRINT CENTER PRINCIPAL
oLt Inpdr p

0185 PRI

pLig FOR
frrag r
Rt
R
risn
0160

Tw] TO L0
Rl TO 20
WOLARALODIET

Statement 130 duplicates, in BASIC terms, the compound interest
formula. The FOR statement numbered 120 and the NEXT statement
numbered 150 delimit one loop. The first time through the loop, the
value of R, the rate variable, is set to 1. When NEXT R is reached, R
is incremented by 1 and the statements are executed again with the
new value of R. Each time through the loop the PRINT statement
prints time, rate, and amount values. This process continues until R
reaches 20 and the loop is ended.

~

However, this loop is enclosed, or nested, within the loop delimited by
the FOR and NEXT statements numbered 110 and 160. This outer loop
changes the value of T, the time variable, from 1 to 10. Each time the
value of T changes, the inner loop cycles through 20 times changing
the value of R. Since T changes value 10 times, the loop changing the
value of R is executed 200 times. Each time, the PRINT statement
prints new values.

A nested loop is one that is enclosed by another loop. That is, the
FOR/NEXT statements of one loop occur between the FOR/NEXT
statements of another loop, as illustrated:

GLO0 FOR P e e e
gron FOR R ¢ o @

I————— gran FOR T & e e
Outer Nested Nested o
Loop Loop 1 Loop 2 @

I———— BLsED MEXT T

014
D7

FUNCTIONS AND SUBROUTINES

As part of the BASIC language, you can define functions or write a
program segment, called a subroutine, which you expect to use several
times in your program.

Functions

User-written functions can be arithmetic or character. An arithmetic
function is named by the letters FN followed by a single letter. A
character function is named by the letters FN followed by a single
letter and the currency symbol ($).

The following can be names of arithmetic functions:

FNA
FNB
FNR
FN#

Changing the Sequence of Execution in Your BASIC Program

27

The following can be names of character functions:

FNAS
FN#S

A user-written function is named and defined by the DEF statement.
For example:

DOL0 DR FE O =X PO T2

defines the natural exponential of X squared, using the intrinsic
function EXP. The arithmetic variable X, enclosed in parentheses after
the function name FNE, is called a dummy variable. You can have
more than one dummy variable, and the list of variables can contain
both arithmetic and character dummy variables. (The expression value
substituted for each dummy variable is called an argument.) After
defining a function, the function name and its accompanying
argument(s) can be used anywhere in your program. For example:

DO DEF FNE (X2 o= EXP (XT3
Lol

osn FHE o

paan FriE od)
OO0 PRINT FME AR, TO)YSE

User-defined functions can be defined in one statement or over a
group of statements. A function defined in one statement, such as the
function illustrated above, is called a sing/e-line function. A function
defined over many statements is called a mu/tiline function. A
mutltiline function begins with the word DEF, the function name, and
any arguments, the same as single-line functions. However, the DEF
statement does not contain the equal sign or an expression. Rather,
the value of the function is developed by the statements following the
DEF and is defined in a RETURN statement, which computes the value
and returns the value to the program. The end of a multiline function
is defined by the FNEND statement. Here is the way the statements in
a multiline function must be sequenced:

DEF function name [(variables, if any)]

RETURN expression

FNEND

———”

o

Here is an example of a multiline function:

000 DEF FHa (K, 7

QOLE TF KE0 & Vel GOTO &0
0 BOTH G

ETURN 3y

RETURE e

FNE R

This function uses two dummy arithmetic variables (X and Y) as
arguments. The function tests the values of both arguments. - If X is
greater than O, and Y is greater than 1, the values are added and the
sum is returned to the program. If the values do not satisfy the tested
conditions, program control transfers to statement 65. If this function
were used in the following program, C would have a value of 7 and D
would have a value of -2.

nE
3 }

H,N
e B OYel GOTD AU

GOAD TEF Fig O
R

TLRERM X+
TLHEMN XY

GLan
n1a0
GLAEN C=Fpd On, B
DL 0 De=fEphy 0, 2

Changing the Sequence of Execution in Your BASIC Program 29

Subroutines

Another way of writing a group of statements to be executed at
different times in your program is to group them into a subroutine.
Execution of a subroutine begins with the GOSUB statement, where
the number specified in the statement specifies the number of the first
statement in the subroutine. For example:

100 GOSUB 200

causes the computer to skip, or branch, to statement 200, the first
statement in the subroutine. Program execution continues from that
point. To cause the computer to branch back to statement 100
(actually, to the next sequential statement following statement 100),
the last statement of the subroutine must be a RETURN statement.
This RETURN statement, unlike a RETURN used with a function,
contains no expression. A program containing a subroutine could be
sequenced like this:

—100 GOSUB 200

110
120
130
140 These are the statements that will
150 be executed after the RETURN.
160 '
170
180
190 STOP
200 First statement of the subroutine.
210
220
230 Statements executed as part of the
240 subroutine.

250

————260 RETURN

270 END

Statement 100 branches to statement 200. Statement 260 returns
control to statement 110. Statement 190 tells the computer the end of
the program has been reached. The STOP statement is similar to an
END statement except that higher-numbered statements may follow it.
Its use is to denote the end of program execution when the logical
conclusion of the program occurs somewhere in the middle of the
program, as shown here. The STOP statement here is equivalent to
writing GOTO 270. .

A program illustrating the use of a subroutine is shown below. This
program determines the greatest common divisor of three integers.
The first two numbers are selected in program statements 30 and 40,
and their greatest common divisor (CD) is determined in the
subroutine, statements 200 through 310. The CD just found is
assigned to X in statement 60. The third number read in from the
INPUT statement is assigned to Y in statement 70. The subroutine is
entered a second time from statement 80 to find the greatest common
divisor (CD) of these two numbers. The result is, of course, the
greatest common divisor of the three given numbers. It is displayed
with them in statement 90.

GOLOD PRINT CENTER THREE
0020 THPUT &, 01,0

DOXD K

BOUG ek

0050

0OH0 GOSUE

0050 PRIMT B

GOSE PRINT &, 8, 0,6
POETOP

THT {3/

X Gy

TP R=0 GOTE F010

v

200

PAGG G=Y
gL RETURN

Changing the Sequence of Execution in Your BASIC Program

31

32

Let's assume these numbers are entered when the INPUT statement is

executed:

ENTER THREE INTEGERS

?
60,290,120
The output will be:

1 19 37 9
A K ['1 I
&0 20 120 30

Another example of input and resulting output is:
ENTER THREE INTEGERS
?
32,384,772
A I3 C Cn
32 384 T2 3

COMPUTED GOSUB STATEMENT

(print positions)

The computed GOSUB statement is similar to the computed GOTO
statement discussed in this chapter. They both cause a branch to one
of a number of statements based on the computed value of an
expression. The difference between the two statements is that the
GOSUB branches to a subroutine; the RETURN statement in the
subroutine returns program execution to the statement following the

computed GOSUB statement.

Consider this example:

FOJ0 GOSUR 120,375,195 OM XY

A branch is made to one of three subroutines, either the one

beginning with statement 120, the one beginning with statement 175,
or the one beginning with statement 195, depending on whether the
integer portion of the value contained in the expression X - Y is 1, 2,
or 3, respectively. If the expression X - Y results in a value other than
1, 2, or 3, program execution continues with the statement following

the GOSUB.

S

PROGRAM CHAINING

With the program chaining technique, a BASIC program can be shared
with other BASIC programs. For example, suppose that when writing
a program you discover that an operation you want to perform is
available as a separate program. It could be time saving to you to be
able to use that program in conjunction with the one you are currently
writing. The CHAIN and USE statements can help you access data and
execute that program.

The CHAIN statement is used in one BASIC program to tell the
computer to stop executing the current program and start executing
another BASIC program. To tell the computer which program to start
executing, you name it in the CHAIN statement. Here's an example:

0500 CHALN "wg:, ' PROGR?

This statement instructs the computer to begin executing the program
(in diskette drive 2) named PROGB. Note that when the CHAIN
statement is executed, the current program (the program containing
the CHAIN statement) is terminated.

Variable values in the chaining program are passed to the chained
program; that is, they become accessible for use in that program only
if they were defined in a USE statement.

In the program being chained, the USE statement specifies a list of
variables that will receive the values passed from the CHAIN
statement. For example, the value passed by J$ to PROGB can be
received by PROGB in the statement:

0200 UBE K#18

Note that the USE statement is written in both programs and the
CHAIN statement is written in the chaining program (the program
requesting execution of another program). The USE statement must
be the first statement referencing a variable in each program.

The CHAIN and USE statements derive their value in being able to
help you string two or more programs together instead of having to
code similar program sections for individual programs. Also, CHAIN
and USE statements allow you to segment large programs. The
following is an example of CHAIN and USE.

Changing the Sequence of Execution in Your BASIC Program

33

Page of SA21-9307-0
Issued 28 April 1978
By TNL: SN21-0277

0010 REM THIS IS PROGA)
0020 USE J%
Z » Chaining program
0300 CHAIN 'T0’, 'I”RUGB'J
4
0010 REM THIS IS5 PROGE
o v Program being chained
00E0 USE Kb '

1%

The CHAIN statement at 0300 of PROGA causes PROGB to be loaded
into storage, then execution transfers to PROGB. The value in J$ of
PROGA is passed to K$ as specified by the USE statements in both
programs.

34

Chapter 4. Formatting a Report

The PRINT USING FLP statement is useful for controlling the format of
a report. PRINT USING FLP is used in conjunction with an Image or
FORM statement or character variable to print values according to the
format specified by the statement or variable. The PRINT USING FLP
statement includes the values to be printed and the statement number
or character variable of a corresponding image or FORM statement
that specifies the format of the print line. For example:

0030 PRINT USING 40,FLP,N,A

This statement refers to statement number 40, an Image or FORM
statement, which will cause the computer to format the arithmetic
variables N and A on the print line.

PRINT USING AND THE IMAGE STATEMENT

Statement 40 could look like this:
O0u0 @ IN 88 YRS AMT = SH3HH%. H#¥

The colon beginning statement 40 identifies it as an Image statement.
The alphabetic characters are printed exactly as they appear in the
statement, and the pound sign (#) is the symbol used to indicate that a
value will be supplied from the output list in the PRINT USING
statement. The value of N replaces the first set of #'s, and the value
of A replaces the final set. The decimal point in the final set indicates
that the value of A is to be aligned on the decimal point in the image
specification.

If N contains the value 10 and A contains the value 1628.88, the
output line produced by statements 30 and 40 would look like:

I 10 YRS AMT = $1638.88

In the Image statement, the pound sign (#) is used as a placeholder.

In statement 40, the first set of #'s indicates that a value is to be
displayed using two positions; the second set displays a value over six
positions aligned on a decimal point between the fourth and fifth
positions. If the value to be printed is smaller than six digits (say the
value 300.40), the first, or high-order position, would be printed with a
blank. Excess decimal positions are rounded to the number of decimal
position # signs.

Formatting a Report 35

Page of SA21-9307-0
Issued 28 April 1978
By TNL: SN21-0277

36

The Image statement can also contain a placeholder consisting of the
symbols | ||| for an exponential value. If you want to print a value
containing an exponent, the Image statement could contain the
following sequence of symbols:

A OHHTTEY
HH#.HRD)

This sequence states that a value is to be printed with four digits
followed by an exponential value. An exponential value is always
printed with four positions for the format: Etdd. The letter E is
followed by a plus or minus sign indicating a positive or negative
exponent, followed by two digits. Therefore, a set of four |s must
always be specified as placeholders for exponents. If an Image
specification contains this sequence:

HY.BEI

the following shows how different values would be printed by that
sequence:

Value Printed Format

123 13, 30E+01
12,3 L2 30E+00
L3 12, 30E-~02

The specification calls for four digits to be printed aligned on the
decimal point. Therefore, the number 123 is represented as 12.30 with
an exponent of +1. The exponent tells us two things: the direction in
which the decimal point is to be moved (+, to the right, and -, to the
left), and the number of digits over which it is to be moved. In the
first example, the exponent +1 tells us to move the decimal point one
position to the right; the number 12.30E+01 is the same as 123. In the
second example, the number 12.3 can be aligned on the decimal point
with no action required by the exponent, hence an exponent of E+00;
the number 12.30E+00 is the same as 12.3. The third example tells us
to move the decimal point two positions to the left; 12.30E-02 is the
same as .123.

Blank positions in an array referenced by a PRINT USING statement
are significant. The entered characters of a variable do not determine
the size of the variable to be used by the PRINT USING statement.
For example, with a variable A$ dimensioned to 30 for the entry of a
name, and the name C. A. JONES entered into the variable, the PRINT
USING statement will use all 30 positions of the variable, including the
blank positions.

)

‘Note that a PRINT USING statement can be ended with a semicolon ;)
to suppress printing of a new line and cause subsequent printing to
occur on the same line, as shown in the following example.

Example:

GOL0 PRINT CENTER TODAY ' &5 DaTE'

D0 TNPUT D

QO3B0 PRINT UﬁIRU Hﬂ FLP,N%

GOun CMONTHLY SaLES BY SalLESHMAN A5 OF HEREHEE

D050 PRINT FLP

poat PRINT FLP

G070 PRINT USING 100, FLE

D080 PRINT USTHNG LL0,FLP,S

D00 PRINT USING 120, FLP

G100 2 aalESMAN

CAME

: FMET Sallh
lii‘ L' i:'l

GROSEH Salizb AT R o

I"HI iR
.t.lx!l’l..} i
TF A I.l\‘H
PRIMT CENTE
THPLET T
PRINT TENTER GROSBS Balk:
NPT A
FRIWNT CENTER EXPEME
th” T B

CEMANT TS NUMBERS

GEOTO 1w
Uuﬂll S0P

Formatting a Report 37

In this sample program, statements 40, 100, 110, 120, 270, and 280
are Image statements used to format the printed report shown below.

MOWTHLY SalES BY SalESHMaN A% OF 10719577

FHPEMBES MET SelES

PRINT USING AND THE FORM STATEMENT

The FORM statement, offers greater formatting capabilities than the
Image statement. For example, it provides a special code to specify
character data. It contains format control specifications to tell the
computer how to position output on a print line; one of these
specifications, SKIP, must be coded on the FORM statement to cause
a line to be printed.

Numeric Specification—-PIC

The PIC specification in the FORM statement shows a picture of the
way a number should be formatted. This picture is enclosed in
parentheses. The symbols #, ., and |, previously illustrated in the
Image statement, could be used in the FORM statement in this format:

I N A N S LLAL BB F ¥
PLCOHS #8318

38

o

O

You recall that the # symbol is used as a placeholder for a digit and
the | symbol is used as a placeholder for an exponent. The PIC
specification has these additional placeholders, or digit specifiers:

Symbol Meaning

Z A leading zero is to be
replaced with a blank.

* A leading zero is to be replaced
with an asterisk.

$ Floating dollar sign. A dollar sign
is to be printed immediately
before the first significant digit.

+ Floating plus sign. A plus sign for
a positive number, or a minus sign
for a negative number, is to be printed
immediately before the first
significant digit.

- Floating minus sign. A minus sign
for a negative number, or a blank
for a positive number, is to be
printed immediately before the first
significant digit.

Here are examples of digit specifiers. Assume that a data item
containing the value 112233 is to be printed.

PIC Specification Printed Output

SIS T T

P e oo bt

If a floating character (dollar sign, plus sign, or minus sign) is specified
only once at the start of a PIC specification, it does not float through
the field but instead is printed in the indicated position. For example:

PIC Specification Printed Output

Formatting a Report

39

40

The PIC specification can also contain /nsertion characters to edit a
printed item. Digit specifiers indicate how the number itself is to be
treated; insertion characters simply insert additional characters into a
field, generally to improve readability. The following insertion
characters can be specified:

Symbol

B

CR
DB

Meaning
Print a blank unconditionally.

Print a comma conditionally (only if
a digit precedes the comma).

Print a slash conditionally (only
if a digit precedes the slash).

Print a decimal point conditionally
(if the value to be printed is
nonzero or zero suppression (Z)
is not in effect).

Trailing plus sign. When the

+ appears in the rightmost
position of a PIC specification,

it is treated as a trailing sign.

A plus sign is printed for a
positive number, a minus sign for
a negative number.

Trailing minus sign. When the -
appears in the rightmost position
of a PIC specification, it is
treated as a trailing sign. A
minus sign is printed for a
negative number, a blank for a
positive number.

When the characters CR or DB appear
at the end of a PIC specification,

they are treated as a trailing

sign. CR or DB is printed for a
negative number; blanks are printed
for a positive number.

()

O

Page of SA21-9307-0
Issued 28 April 1978
By TNL: SN21-0277

Here are examples of insertion characters added to the examples
previously shown:

PIC Specification Printed Output

PLCCHBBRERRBRBEN 0o L1 2233
PICCEZERZIRTHER) Ll 2233
PLOCCELL &85, B8#) 112,233
PIC uzmz/mmm L1722/ 33
PLECwaeawwwrndd, #H4) I 122335,00
PIC(SSBsssHBE+s) $LL2233+

PICChdd, $bb, bbb HH) $1L1L2, 235,00

In the first example, a blank is entered after the third and fifth digits.
Because # is denoted as the digit specifier, leading zeros are not
suppressed.

The second example illustrates the blank used with the Z digit
specifier, which does suppress leading zeros.

The third example illustrates the use of commas. The first comma is
not printed because no digit precedes it (zero suppression having been
specified); the second comma is printed.

The fourth example inserts slashes.
The fifth example illustrates the effect of a decimal point; because the
number 112233 is an integer number, it is aligned on the decimal

point, and zeros print out in the decimal portion of the field.

The sixth example adds a trailing sign to a field that also contains
floating dollar signs.

The last example adds commas and a decimal point to format a dollar
amount. Note that the first comma is not printed, but its absence is
marked by a blank, as it was in the third example. The dollar sign
floats over the comma.

Character Specification—-C
Unlike the Image statement, the FORM statement specifies a place
where character data is to appear, indicated by the specification code
C. The actual character data is written in the PRINT USING statement.

To print both character and numeric data, a PRINT USING statement
could be written like this:

0030 PRINT USING 50,FLP, "COST OF ', 4L, "CHAIRS I&',RI1

Formatting a Report 41

42

The corresponding FORM statement could look like this:
0050 FORM C,PICCZH)Y, 0, PTCCESS, S8, #1)

The first appearance of the letter C indicates that a character string
from the PRINT statement is to be printed. The first PIC specification
describes the arithmetic variable A1; if the value is zero, a blank is
printed in the leftmost position, followed by a zero. The second C
describes the second character string, and the second PIC describes
the variable B1.

The C specification code marks a place for character data regardless
of the number of characters to be printed. You could specify the exact
number of characters to be printed by indicating the number after the
C code. For example:

C6

This specification indicates that 6 characters are to be printed. Care
should be used when specifying a number because only that number
of characters is printed. For example, if you specify C6 to print the
character string COST OF, only the characters COST O will be printed.

Format Control Specifications—X, POS, SKIP

Format control specifications provide flexibility in formatting an output
line. These specifications allow you to space over a number of print
positions on a line, to specify the print position where a data item is
to begin printing, and to skip print lines.

The Xn specification spaces over n print positions. For example, X10
causes the printer to space the next 10 positions before printing a data
item.

Y

e

O

aLin
s

The POSn specification prints a data item beginning in position n. For
example, POS50 causes the next data item to print beginning in
position 50.

The SKIPn specification skips n print lines. To skip five lines, specify
SKIP5. To skip to the next line, specify SKIP1 or SKIP with no

number. For example, to cause statement 50, shown earlier, to print a
line, SKIP must be added to it:

0050 FORM C,PICOZER) ,C,PICCEES, 68, B4 , SKIP

Statement 50 is now complete, and if combined with PRINT USING
FLP statement number 30,

D030 PRINT USTNG B0, FLP, "COST OF ', al, "CHAIRE 187, Bl
results in this output:
COST OF 14 CHATRS IS $1,%10,00
Here are additional statements using format control specifications:
Example 1:

01u0 PRINMT USTHG 145, FLP, AL, B
018 FORM POSLE, PICOEEY , POSIZ, PLICOSSE, S5, #3#0 , BKIP]

Statement 145 uses the POS and SKIP control specifications. POS15
positions the printer at position 15 before printing the value contained
in A1 described by the PIC specification. POS32 begins printing the
value of B1 at position 32. After all printing is complete, SKIP1 causes
the carriage to skip to the next line.

Example 2:

PRIWT T, ml

FORM X5, 0, POSLS, PTG L PTCORRE, BEE DL BRI

In statement 115, X5 states that the first five positions of the print line
are to be skipped, and the character data controlled by the C code, the
string COST OF, is to be printed. POS15 prints the value of A1
beginning in position 15. POS20 prints the character string CHAIRS IS
beginning in position 20. POS32 prints the value of B1 beginning in
position 32. SKIP1 causes the line to be printed.

Formatting a Report

43

Following is a program that uses these statements.

GLon ml=1% (2

01O Bl=alxll%, 25
0110 PRINT USING 40,FLP, "COST OF ' ,al, CHAIRS 18,51

0115 FORM X5,0, POSLE, PICCZ#H), POSR0, 0, POSAER, PICCHSS, $5H ., #3) , BKIP
0120 FOR Al=14 TO L &TEP -1 -
B1EG Bl=a) 5 (o
G1u0 PRINT USING 1uH, FLP, &L, B N
DIME FORM POSLE, PICCZRY, POSER, PICCERSS, $%8 ., #3) , BKTP1

DLEG NEXT Al

This program finds the cost of 1 to 15 chairs at $115.25 each. C"\
Statements 110 and 115 print out the first line, statements 140 and .
145 print out all succeeding lines based on the loop defined between

statements 120 and 150.

Output from this program will look like this:

Print Position 6 15 20 32

COST OF

=

b CH&ETRE T8
1

oo
Il - ol -

L

Lo

—

@

En

Example 3:

Statement 90 uses the POS20 and C6 control specifications to overlay
position 20 of the print line with the value of R$. If Ais 3 and B is 24,
the printed line will look like this:

Print Position 10 20 28

MOME TEaM LOSES FIMal

Formatting a Report

45

46

aara
anan

1094
0100
IR
010
0150
0160
0170
11810

R

PRINT USING WITH A CHARACTER VARIABLE

In addition to the Image and FORM statements for output formatting,
BASIC also allows assignment of a format to a character variable
which can then be referenced in input/output statements. Each
character variable to be used in this manner should first be
dimensioned (in a DIM statement) to the length of the format. The
format assigned to the character variable is identical to the format
following the colon in an Image statement, or the first 4 characters
can be FORM, followed by the format specifications normally entered
for a FORM statement. The following example shows the use of
character variables for formatting.

PTI AL AL AL AL EL AL ¢
OF #esiinidy

INT

X PERSES

(e
PRIMT
PRINT
PRINT
PRIMT
THPUT
TF M
FRINT "E
INPUT &

PRINT CENTER GROSS SaLES
INPUT @

FRINT CEMTER EXPEMGES'

GelESMAN TS NaME OR EMTER BTOF TO END

LLGMAN T T NUMBERS

et
PRI

®

O

O

poLa
IREpERY
nnEn
aou0
R
RPN
aovao
{RIEERH
onsn
R
nLLn
drLaa
NLEn
flua

Printer Spacing Control

You can use the contents of file FLS to control the number of lines

printed per inch (see Chapter 12 for more information about file FLS). ;
The printer normally prints 6 lines per inch, with 16 increments of the
print roll per line, for a total of 96 increments. You can change the
number of lines per inch by entering a number between 8 and 99 in
the tenth and eleventh positions of file FLS. The number you enter is
divided into 96 to determine the number of lines per inch. For
example, if you enter:

8 — 12 lines are printed per inch
12 — 8 lines are printed per inch
16 — 6 lines are printed per inch
24 — 4 lines are printed per inch
32 — 3 lines are printed per inch

An entry of less than 12 will cause printing to be overlapped. An entry
of zero causes suppression of spacing, which results in lines printed
right over preceding lines. Sample WRITE FILE statements for printer
spacing control are shown below:

LANE PRINTED 1 PER THCH

WRITEFTLE FLS, N
PRIMT FLP, LINE PRINTED L PER THCH i/'
WRITEFILE FLS, ' L&

FOR L=l TO &
PRINT FLFP, " & LIMES PER TNCHS
MEXT T

OPER CIRCH
vOPER CTHCH
v PER INCH
PER S TMEH

12

. PER THCH'
T I

WRITEFILE FLE, " 0o

PRINT FLP, 'NO SPACE TO OVERPRINT'
PRINT FLP," OVERPRINT
PRINT FLP, " OVERPRINT

Formatting a Report

47

48

O

Chapter 5. Saving and Loading the Work Area

In this chapter, the following topics concerning saving and loading the
work area are discussed:

e Determining the size of a tape or diskette file

Writing data to a tape or a diskette file

Getting data from a tape or diskette file

Controlling files

e Maintaining data security

DETERMINING THE SIZE A FILE SHOULD BE

Before information can be stored on tape or diskette, the files must be
formatted by the MARK command. When you use the MARK
command, you can determine the size of a saved work area by
comparing the amount of work area available before and after you
have entered data or programs into the work area; therefore, the file
size equals the storage available before entering data or programs
minus the current storage available divided by 1024.

Saving and Loading Data on a Tape or Diskette File

You can write (save) the contents of a work area to tape or diskette
using the SAVE command. This allows you to enter data or programs
into the 5110 work area and save this information for later use.
Individual data records can also be written to a data file.

Once the contents of the work area are saved in a tape or diskette file,
that information can be read back into the work area using the LOAD
command. This allows you to load and execute the same program any
number of times. You can use a CHAIN statement in a program to
end that program and load and execute another program that is saved
on tape or diskette.

Saving and Loading the Work Area

49

50

Controlling the Files on Tape or Diskette

Once you have stored several work areas and data files on a tape or
diskette, you might want to know what files you have in your library
(stored on tape or diskette). You can use the UTIL command to
display a directory of file information for a specified tape or diskette.
The directory provides you with such information as the file number,
the file ID, and the file type. See the UT/L Command in the IBM 5110
BASIC Reference Manual, SA21-9308, for a complete description of
the information contained in the file directory.

When files on tape or diskette contain data that is no longer required,
you can mark these files unused by issuing the UTILDROP command.
Once a file is marked unused, data in the file can no longer be read
into the 5110, and the defined file space is available for other uses.

If a diskette file is no longer required, you can make the file space
available for reallocation by issuing the UTILFREE command. This
allows the file space on the diskette to be used for other numbered
files specified in the MARK command. See Diskette Concepts for
more informatfon on how files are allocated on a diskette.

Maintaining Data Security

You should protect your programs and data from unauthorized access
or accidental destruction. Several functions are built into the 5110 to
assist you in protecting your programs and sensitive data.

Protecting Your Programs

After you have developed a program, you might want to keep a
duplicate (backup) copy of the program on another diskette or tape.
Then if the original program is accidentally destroyed, you still have
the backup copy available. See the /BM 5170 Customer Support
Functions Reference Manual, SA21-9311, for information on copying
programs. You can use the SAVE command to lock a program so that
it cannot be listed or modified. For example:

SV D, CHMABTER LOCK, DE

This command writes the program to file 5, diskette drive 1, and
permanently locks the program against listing or modifying. However,
the program can still be loaded and run:

LOED 5, "HMasTER , DEd
When you lock a program, you should also keep an unlocked master

copy available in a secure area. This unlocked copy can then be used
if the program must be modified.

Protecting Your Data Files

Following are several ways to protect your data files:
e Maintain backup data files

e Use the file write-protect

e Use the diskette access-protect

e Use the SAFE switch on the tape cartridge

Maintaining Backup Data Files

You should keep a backup copy of your data files on another diskette
or tape. Then if you accidentally destroy a data file or you encounter a
faulty diskette, you can recover your data with minimum effort. To
create a backup data file, you periodically copy the master data file
onto another tape or diskette.

Using File Write Protection

Accidentally writing to the wrong data file can be prevented by using
file write-protection. You can write-protect a file, preventing data from
being written to the file, with the UTIL command. For example:

UTIL PROTECT "MASTER’,D80

Once the file is write-protected, data cannot be written to the file
using the SAVE or WRITE commands. However, you can still use the
REWRITE FILE statement to update records in the file. To turn off the
file write-protection so that you can write data to the file, use the UTIL
command. For example:

UTIL PROTECT OFF ‘MASTER',D80

Saving and Loading the Work Area

51 -

Page of SA21-9307-0
Issued 28 April 1978
By TNL: SN21-0277

Using Diékette Access Protection

52

You can use the diskette volume ID, owner ID, and access protection
to prevent the wrong diskette from being used for an application. For
example, suppose you have a master diskette for an accounts payable
application. After you have updated the accounts payable master data
files, you could use the UTIL command to specify the volume ID,
owner ID, and access protection. For example:

UTTL VOLID APMAST, CLARI, ON, DBO

This command protects the diskette with a volume 1D of APMAST,
owner ID CLARK, on diskette drive 1 from being accessed. To turn off
access-protection, you use the UTIL command and exactly match the
diskette volume and owner ID. For example:

The UTIL command can be used in a procedure file to prevent the
wrong diskette from being used in an application (see Chapter 3 for
more information on proecedure files). For example, a procedure file
might contain the following records:

LOATE 3, "aAP ., BATLY ", D0
UTIL VOLID APMAST, CLARK, OFF, 80
RUN

UTIL VOLIIN APMAST, CLARK, ON, 80

The commands in the procedure file do the following operations:
1. Load the application program from diskette drive 2.

2. Turn off access protection if the proper diskette is in diskette
drive 1.

3. Executes the application program.

4, Turn on access protection when the applicatipn program has
completed execution.

If the wrong diskette was in diskette drive 1, an error occurs when the
first command is executed, and the application program is not
executed.

S

O

Removing Sensitive Data

You are responsible for the security of any sensitive data. After you
are through using the system, you can remove the data in the work
area by one of the following: :

e Using the LOADO command to clear the workarea
o Pressing the RESTART switch
o Turning the POWER ON/OFF switch to OFF

Several methods are available for removing sensitive data from a file.
These methods are:

o UTILDROP

o Rewriting a file (OPEN for output, then CLOSE), which makes the
old data inaccessible.

e Filling a data file with meaningless data. For example, the following
set of statements fills file 1 (on the built-in 5110 Model 1 tape unit)
with zeros:

QoL Ol aAcLii)

GOZE OPEN FLO, "ES0, 1, 0uT
O0ED MaT PUT FLO, &, EOF 50
GO0 GOTH X0

IRIRR

Saving and Loading the Work Area

53

54

77N

@

o

N~

O

)

O

Chapter 6. Tape Concepts

There are 204K bytes (1K=1024 bytes) of tape storage available on an
IBM Data Cartridge. This tape storage is used for file headers, work
area files, and data files. In this section, the following topics are
discussed:

e How to format the tape

o How much storage on a tape cartridge is actually available to you

HOW TO FORMAT THE TAPE

You must use the MARK command to format files on the tape before
you can store work area or data records on the tape. For example:

MARK 10, 5, 1

[——‘Starting File Number

Number of Files To Mark

——————Size of Files in 1,024 (1K) Byte Increments. In this case,
the size of the marked files is 10,240 (10 X 1,024)

Once the MARK command is successfully completed by the 5110, the
tape is formatted as follows:

This file header
indicates end of
marked tape.

) / ,
JiERENEEERER |

Each tile contains Unformatted

10,240 bytes of Tape
storage.

File Headers

This hole indicates
the beginning of
the tape storage.

The file headers contain information about the file, such as file
number, file name, and file type. Each file header requires 512 bytes
of tape storage.

Tape Concepts 55

56

If you want to format additional files on the tape, you must use the
MARK command again. For example:

MARK 20, 1, 6

T——Starting File. Remember, in this e

example, five files are already formatted.

Number of Files to Mark.

File Size.

The tape is now formatted as follows:

File 6 Header

. / |
545/6\>\\\\\\N

When the information in a tape file is no longer needed, you can use
the UTILDROP command to mark the file unused. The defined file
space remains available for other uses. However, once a file is
formatted, you cannot increase the size of the file without remarking
the file. When you remark an existing file, any information in that file
and the files following the re-marked file is lost. For example, assume
you want to increase the size of file 4 on tape from 10K to 15K:

) 4

J

N

4

Al

You want to increase the size
of file 4 by 5K.

O

O

0

O O

After the command:

MARK 15, 1, 4

1-—Starting File Number

Number of Files to Format

File Size

is successfully completed, the tape is formatted as follows:

File 4 now contains This file header now indicates the end of

15K bytes of tape storage. the marked tape, and any data following
this file header is lost

A formatted tape has the following characteristics:

e Files are of variable length from 1K to 204K.

) : {1 /175740774

d

e Files can be randomly accessed; that is, you can read a file without

having to read the previous file. Data in the files can be accessed
sequentially or randomily.

e Both work area and data files can be on tape.

e Both APL and BASIC files can be on tape.

Tape Concepts

57

HOW TO DETERMINE THE STORAGE AVAILABLE ON A TAPE
CARTRIDGE

Each tape cartridge contains approximately 204K bytes of storage, but
the amount of tape storage actually available to you depends on:

o How many files are marked (formatted) on the tape
e How the data files were written to tape

As mentioned, each file on a tape cartridge requires one 512-byte file
header. Therefore, the more files you mark on a tape cartridge, the
more tape storage is used for file headers. For example, if you mark
one 3K file on a tape, 512 bytes of tape storage are used for the file
header. If you mark thrée 1K files on tape, however, 1536 bytes of
tape storage are required for the three file headers.

One 3K File

i 0.5K 3K

Three 1K Files

L

i 0.5K 1K 0.5K 1K 0.5K 1K

e N

Note, in these examples, that a total of 3K bytes of tape storage is
allocated for tape files, although, for the three 1K files, an additional
1K bytes of tape storage are used for headers.

The amount of data you can store in a data file depends on how the
data is written to the file. (See Chapters 8, 9, and 10 for a complete
description of writing data to the data files.) For example, when you
first write data to a data file, the individual records are sequentially
written to tape starting at the beginning of the data file. Once these
records are written to tape, the data file might look like this:

Data File

< Data Records - ///AV /////
Beginning of the Last Data Record Unused End of the
Data File Tape Storage Data File

N

.

N

/‘—\A

@

When you add data to the stream |/0 data file {see Chapter 8), the
new data starts at the first 512-byte boundary after the last record in
the data file. The tape storage between the last data record and the
additional data records is unavailable for use.

Once the new data records are written to tape, the data file might
look like this:

512-Byte Boundaries (tape storage is
divided into 512-byte segments)

Data File P S
[| | | | | [! I |

/ /
l«————— Data Records —————» Additional Data ////ég
\ / / [
Beginning of Unavailable Last Data Record Unused

the Data File Tape Storage Tape Storage

As you add more data to the file, it is possible for more tape storage
to become unavailable.

Tape Concepts

59

60

()

»

O

O

Chapter 7. Diskette Concepts

The IBM diskette is a thin, flexible disk, permanently enclosed in a
semirigid, protective, plastic jacket. When the diskette is properly
inserted in the diskette drive, the disk turns freely within the jacket.
The diskette is inserted in the diskette drive as follows:

" This label must be in the
lower corner as the diskette
is inserted in the diskette drive.
The diskette drive door must be
closed and latched after the
diskette is inserted.

Data is written on the diskette at specific address locations. These
addresses provide direct access to specific information. Data written
at an address remains there until it has been replaced by new data.
To read data, the system finds the desired address and then reads the
data into the 5110.

Before being shipped to a user, each diskette is initialized. Initialization
is a process whereby label information and data addresses are

recorded on the diskette. Initialization is discussed later in this section.

Diskette Concepts

61

62

DISKETTE WEAR

The use of flexible diskette storage provides some significant
advantages, such as low cost, compact size, multiple system functions,
and ease of media handling and storage. It should be recognized,
however, that during recording and reading, the read/write head is in
contact with the media, causing diskette wear over time. Variations in
the rate of wear will depend on the particular operating environment
and application characteristics. Care in the storage, use, and handling
can also affect diskette life. (See the guidelines in the /BM 57110
BASIC Reference Manual.) Excessive wear, handling, or contamination
can cause possible failures in recording and/or reading.

Uitimate wear is to some extent dependent upon total usage of
individual tracks. Care taken to distribute data so that accessing
occurs over the entire recording surface with about the same
frequency can extend the useful life of the diskette. Actual experience
with individual applications and environments will allow the
development of guidelines for determining when the media should be
replaced.

Unpredictable circumstances such as contamination or severe handling
can cause an early error to occur.

For all the above reasons, consideration should be given to providing
an adequate recovery plan, such as:

e Backing up critical programs and data files on a second diskette for
use in the event of an error on the primary diskette.

e Periodically movihg frequently-used files to alternate locations on
the diskette (see the copy function in the /BM 5710 Customer
Support Functions Reference Manual).

N

(

O

O

DISKETTE ADDRESSING AND LAYOUT

A diskette address consists of a combination of cylinder number, head
number, and record number as follows:

CC H RR

[——Record (sector) Number. The sector

into which the data is to be written
or from which it’is to be read.

Head Number. The side of the diskette on which
the data is to be written or from which
it is to be read. This number is O for all
one-sided diskettes, O for side O of
two-sided diskettes, and 1 for

. side 1 of two-sided diskettes.

L——Cylinder Number. This number identifies the
cylinder onto which a physical record is written
or from which it is read.

Track and Cylinder

A track is the recording area that passes the read/write head while the
diskette makes a complete revolution. The read/write head is held by
a carriage that can be moved to 77 distinct locations along a straight
line from the center of the diskette. Therefore, each diskette has 77
concentric tracks on which data can be stored.

A >
/ \
- N
/ ’ .\ \
[/ \ \
\ '\ | | 77 Tracks
\ \, / ' L
\ L7
\\ i 4
N v
~ rd
~o -

1

The diskette drive for two-sided diskettes has a read/write head on
each side. Each track on side O of a two-sided diskette has an
associated track on side 1.

A cylinder is one track on a one-sided diskette or a pair of associated
tracks (the corresponding tracks on opposite sides of the diskette) on
a two-sided diskette. There are 77 cylinders on a diskette, numbered
0 to 76.

Diskette Concepts

63

64

Sector

A sector is a portion of a track. All sectors on a single track are the
same size, and the number of sectors on a track depends on the
number of bytes per sector (see Sector Types in this section).

/ Track 00

\ One Sector

Index Cylinder

Cylinder 0 is called the index cylinder and is reserved for information
describing the diskette and its contents. It contains information about
the diskette, such as volume and owner identification. The index
cylinder also contains information associated with each file on the
diskette. This includes the name of each file and the addresses
associated with the file extents. An extent is the maximum space a file
can occupy. The address at the beginning of this space is called the
beginning of extent (BOE). The address at the end of this space is
called the end of extent (EOE). A file might not use all of the space
allocated for it by the BOE and EOE addresses; therefore, another
address for end of data (EOD) exists.

Actual Space Currently Used for Data
I]

BOE EOD EOE
| |]

|]
Area Allocated for the File (extent)

The EOD address is used to identify the next unused area within the
extent or to indicate that data has been written to the EOE address.
(See the diskette initialization utility in the /BM 5110 Customer Support
Functions Reference Manual, SA21-9311, for a complete description
of the index cylinder.)

//W
i
v

Alternate Cylinders
The last two cylinders (75 and 76) are reserved for use as

replacements (alternate cylinders) for defective cylinders. The
remaining cylinders (1 through 74) are used for storing data.

DISKETTE TYPES AND FORMATS
The 5110 uses thrée types of diskettes:
e One-sided, where data is recorded on just one side (Diskette 1)
e Two-sided, where data is recorded on both sides (Diskette 2)

o Two-sided, where data is recorded on both sides at double density
(Diskette 2D)

The diskettes are initialized (see Disk Initialization) into various
formats, consisting of:

e The number of sectors per track
e The number of bytes per sector

The 5110 diskette formats are:

Sectors per Track Sectors per Cylinder Bytes per Sector

Diskette 1 26 26 128
15 15 256
8 8 512
Diskette 2 - 26 52 128
15 30 256
8 16 512
Diskette 2D 26 52 256
15 . ‘ 30 512
8 16 1024

Note: The diskette types (Diskette 1, 2, or 2D) are identified on the
diskette label, and the UTILVOLID command can be used to determine
the bytes per sector (physical record size).

Diskette Concepts

Page of SA21-9307-0

Issued 28 April 1978

By TNL: SN21-0277
DISKETTE INITIALIZATION

66

Diskettes must be initialized before they can be used for storing data.
All diskettes are initialized before they are shipped to a customer.
Reinitializing is not required, unless:

e The diskette was exposed to a strong magnetic field.
e A defect occurred in one or two cylinders. In this case, initialization
can be used to take the bad cylinder(s) out of service and use one

or two of the alternate cylinders.

e A sector sequence other than the sequence existing on the diskette
is desired.

e A format (number of sectors per cylinder) other than the existing
format is desired.

See the /BM 5710 Customer Support Functions Reference Manual,
SA21-9311, for a description of the disk initialization program.

VOLUME ID, OWNER ID, AND VOLUME-PROTECT INDICATOR

Each initialized diskette has a volume ID, owner ID, and volume
protect indicator. The volume ID is the identification of the diskette
volume, and the owner ID is the identification of the diskette volume
owner. The volume-protect indicator is used to prevent unauthorized
access to the diskette voiume.

The UTILVOLID command is used to display or change the volume ID
and owner ID, or to change the volume-protect indicator.

FILE ID

Each file on a diskette has a file ID (file name). When the diskette files
are formatted, a file ID is automatically generated, even though the
files are unused. For example, the file ID for file 1 is SYS0001. See
the /BM 5110 BASIC Reference Manual, for more information on file
names when storing data.

DISKETTE FILE WRITE-PROTECT INDICATOR

Each file header contains a write-protect indicator. When the
write-protect indicator is on, the file can be read into storage and
updated, but existing data on the diskette cannot be replaced with new
data. The UTILPROTECT command invokes or removes the
write-protect indicator for a diskette file.

O)

O

DISKETTE FILE ORGANIZATION

You must use the MARK command to allocate file space on the
diskette before you can store work area or data records on the
diskette. For example:

MARK 10, 5, 1, D80
L Diskette Drive 1
Starting File Number
t——— Number of Files to Format
Size of the Files in 1024 (1K) Byte Increments.
In this case, the size of the marked files is
10240 (10x1024) bytes.

—

Unlike tape files, diskette files are not always formatted sequentially
on the diskette. For example, file 2 might be on cylinder 3, file 3 on
cylinder 9, and file 4 on cylinder 7. You can control the location of a
file on the diskette only by using a totally unmarked diskette and
issuing MARK commands in the same order as the files are to be
formatted on the diskette.

When the information in a diskette file is no longer needed, you can
use the UTILCROP command to mark the file unused. Defined space
of the file remains available for other uses. However, once a file is
formatted, you cannot increase the size of the file without remarking
the file. Reallocating diskette file space is discussed next.

REALLOCATING DISKETTE FILE SPACE

Unlike tape files, when you re-mark an existing diskette file, no other
diskette files are affected. When you re-mark a diskette file to
increase the size, the file space presently allocated to that diskette file
is made available for other files being marked. The re-marked file will
then be located on the diskette where there is enough continuous
storage available for that file. For example, assume you want to
increase the size of file 4 from 10K to 15K by issuing a MARK 15, 1,
4, D80 command:

T -

v

After you issue the MARK command
this file space is no longer allocated
for File 4.

Diskette Concepts

67

68

Once the file space previously occupied by file 4 is available, that file
space will be used by subsequent MARK command that marks a file
of 10K or smaller.

After the MARK command is successfully completed, file 4 is
formatted on the diskette at a location where at least 15K of
continuous storage is available. -

Sz > ///\//// >

Unallocated Diskette Storage

, /
) 4 // /i 10

20K of unallocated diskette storage was
available at this location before the

L

\/\\

MARK command was issued.

DETERMINING THE STORAGE AVAILABLE ON A DISKETTE

Available diskette storage varies, depending upon the type of diskette
being used. The amount of storage depends on:

e Whether data can be recorded on just one side or on both sides of
the diskette

e The number of sectors per cylinder

e The number of bytes per sector

Diskette
Cylinder

Another
Diskette
Cylinder

C

O

/\\\
J

O

Each diskette has 77 cylinders. Cylinder O is called the /ndex track and
is reserved for information (file headers) about the diskette files.
Cylinders 75 and 76 are alternate cylinders used as replacements for
bad cylinders. This leaves cylinders 1 through 74 available for data
storage. The following chart shows the amount of storage available
with the different types of diskettes:

Sectors per Cylinder Bytes per Sector Available Storage in
Bytes (Cylinders 1-74)

Diskette 1 26 128 246,272
15 256 284,160
8 512 303,104
Diskette 2 52 128 492,544
30 256 568,320
16 512 606,208
Diskette 2D 52 256 985,088
30 512 1,136,640
16 1024 1,212,416

Although the previous chart shows the maximum amount of diskette
storage, the amount of diskette storage actually available to you
depends on:

e The number and the size of the files marked on the diskette

e The types of data files written. to the diskette

e How the file space is allocated from previous MARK and UTILFREE
commands

e Whether an extended label area was requested at initialization time

(see /IBM 5110 Customer Support Functions Reference Manual,
SA21-9311)

Diskette Concepts

69

70

Number and Size of the Diskette Files

Generally, there is a maximum number of files that can be on a

diskette:
Diskette 1 Diskette 2 Diskette 2D
Maximum Number 19 45 71
of Files

If you use diskette 2D, see the disk initialization program in the /BM
5170 Customer Support Functions Reference Manual, for information
on how to get additional file headers.

If you mark the maximum number of files without using all the
available file space, the remaining file space becomes unavailable for
storing data. For example, assume you have an unmarked Diskette 1
with 128 bytes per sector. This diskette has 246,272 bytes available
for storing data, and you issue the following command:

MARK 1, D80

10, 19,
L—In this example, diskette drive 1
is used
Starting File Number

Number of Files to be Marked
Size of Each File

This command marks the diskette with the maximum of 19 files. Each
file is 10K bytes; therefore, a maximum of 190K (194,560) bytes of
storage is allocated for the files. Now, if you subtract the allocated
diskette storage from the available diskette file space:

246,272
- 194,560
51,712 =———— This much diskette storage is
unused and unavailable for you
to store data.

—

O

O

O O

How the File Space is Allocated

Earlier in this section, we discussed reallocating diskette file space
using the UTILFREE and MARK commands {see Reallocating Diskette
File Space). Using the UTILFREE and MARK command to reallocate
diskette file space can cause fragmented blocks of unallocated file
space on the diskette. For example, assume that a diskette has all file
space allocated except the following 15K of file space on a cylinder:

Diskette
Cylinder .
N / @ -
12 /// 17 2 <
| %
A / / 7
10K of Unallocated 5K of Unallocated
File Space File Space

If you need that 15K of storage to mark a new file, the storage is not
available because it is not in 15K contiguous bytes.

The fragmented blocks of unallocated file space can be made available
by the compress function (see the /BM 5170 Customer Support
Functions Reference Manual). The compress function closes the gaps
caused by the unallocated file space and places all of the unallocated
file space in one contiguous area.

Diskette Concepts

71

72

S

Chapter 8. Introduction To Data Files

FILES, RECORDS, AND FIELDS

A file is a collection of related data items which are grouped together
in records. Most of us carry a driver’s license. That is a record. What
about a time card? That too is a record. Each of those records
contains items related to the purpose of the specific document. The
related items are called fie/ds. The following illustration shows a
record containing the fields of information that can be found on a
driver’s license:

. . License No. Eyes
Drivers Name Address Date of Birth X Height X Sex

\ \ AN)

\ \ \
ROBERT JAMES | 13 FORE AVE. ANYTOWN, N.Y.| 9-30-42 | 132-5711] 5-9 |BR| M

Each field is related to the record in that it contains information
relating to the specific driver. A field is the amount of space set aside
for each data item. The next illustration shows a record containing the
fields of information found on a time card:

Name Location Date Serial No. Shift Start Time

AN N\

N 1 7
TOM ROBERTS | ENDICOTT [10-10-74 [83215 2 | 8:00

A group of records makes up a file. A 5110 data file contains records
in a specific sequence just as a filing cabinet does.

The following illustration shows a record containing customer
information that would be used in making out an invoice:

Customer Name Street City, Street Billing

Number \ Address / Code
N)

\

AV v
137250 [JAMES CONSTRUCTION CO. {13 TOPPER AVE | TROY, N.Y.| 13

Introduction to Data Files

73

The file would contain as many records as there are customer
numbers. A file should be given a unique name so that the file can be

TN
distinguished from other files. Because the record in the previous (
illustration contains customer master information, the file could be e
named CUSTOMER.MASTER. A file containing master information
about the products in your inventory could be named ITEM.MASTER.

Different files can contain different record layouts. For example, the (“
following illustration shows a record that has items related to the item R
file:
Item Qty in
Number Description Price Stock N
Y [7 7 (‘
874164 WIDGET 13.95 0043
Organizing a File
An important part of any data processing job is file organization. File
organization is the arrangement of records in the file. There are two
types of files using the 5110: stream 1/0 and record 1/0.
Stream /0
For stream 1/0, all the data items are organized sequentially on the (\
tape or diskette, with a comma used as the delimiter between fields. ~—

For example, a customer master file might be formatted as follows:

s

> Customer 1, John Smith, 4016 28th. St., City, 55555, Customer 2, Joe Jones, ...
{

Ne—

The fields are variable in length because only the exact number of
characters is maintained. In order to read customer number 2 and the
related fields, the 5110 must start at the heginning of the file and
sequentially read each field until the desired customer information is

read. C\

74

(

O

Record 1/0

The corresponding fields of each record in a record 1/0 file must have
the same length; no delimiters (commas) are required between fields.
For example, a customer master file might be formatted as follows:

L /
> Customer 1 John Smith Customer 2 Tom Stewart g
d e Vg N 7
11 Field 20 Field 11 Field 20 Field
Character Character Character Character
M~ N .~
Record 1 (31 Characters) Record 2 (31 Characters)

The record and field sizes are established as the application is
designed (see Designing A Record in Chapter 10).

Unlike stream 1/0 files, record 1/0 files can be accessed in three

ways:

1. Sequential. Each record is accessed in the same order they were
written to the file.

2. Direct. Individual records can be accessed by specifying the record
number (relative record number).

3. Indexed. An index is used to find an individual record in a file.
Therefore, you do not have to know the relative record number of a
record before you can access the record.

The next chapter describes the characteristics of the 5110 data file
processing methods.

Introduction to Data Files

75

76

C

7N
]
/

9

Chapter 9. Characteristics of Accessing Data Files

This chapter describes the characteristics of data files when the files
are accessed:

e In sequential order
e In direct order by relative record number
e In direct order using an index

This chapter also discusses maintaining files.

SEQUENTIAL ACCESS

For both stream 1/0 and record 1/0, a file can be accessed
sequentially. That is, the records are accessed one after another in the
order they occur. An example of a sequentially accessed file might be
an employee master file. This file contains information needed for
various reports concerning each employee, such as payroll checks.
Because checks are processed by employee number, records are
accessed in order. The lowest employee number is accessed and
processed first and so on until the last record, the highest employee
number, is accessed and processed.

DIRECT ACCESS BY RELATIVE RECORD NUMBER

For record 1/0, files can be accessed directly using the relative record
number. This allows you to process records in the file faster than if
you used sequential accessing. For example, assume you have an item
master file that contains stock status information on 1000 items by
item number. If you want to know the stock status of item number
500 in the file, direct accessing allows you to specify the record
number containing the information. This record is then accessed
directly and the information is available. However, if the file is
sequentially accessed, you must read all of the preceding records
before you can read the record that contains the information you need.

Characteristics of Accessing Data Files

77

Page of SA21-9307-0
Issued 28 April 1978
By TNL: SN21-0277

DIRECT PROCESSING BY INDEX KEY

For record [/0, files can be accessed directly using an index to locate
the records in the file. The file index is created as the records are
written to the file. The index contains a key, such as customer number
or item number, and the relative record numbers of the record. When
you want to process a specific record, you must specify the index key
and the system accesses the proper record using the address of the
record associated with that key.

After the index is created, the index can be sorted into ascending
sequence. For example, as a file is created, the index and file are as
follows:

- -» Data File ,
1| 2|3falslelz| |
10{40{20[60[30[s0[70]) {'° 40 20 60 30 50 70
- 4 /
File Index Records

However, after the index is sorted in ascending sequence, the index
and file are as follows:

—>Data File

4 /
1[3ls]2]elalz | (.
10[20[30f40ls0[60[70]) 10 40 20 60 30 50 70
7
File Index Records K

The diskette address of the record associated with each key remains
the same. This allows you to access the data file in several ways.

Sequential Accessing by Key

78

When an indexed file is accessed sequentially by key, the keys are
processed one after another in ascending order. Even if the records
are not in order on the file, they are accessed in order using the index.

An indexed file can also be accessed sequentially, without using the
index. Data records are accessed sequentially, that is, first record,
second record, and so on, from the beginning of the file to the end of
the file. However, if the records are not sorted first, they might not be
in order.

Note: If you access an indexed file without using the index, and add
or update records in the file, a key is not added to the key index for
the added records, and existing keys within a record could be changed
when you are updating a record.

N

Page of SA21-9307-0
Issued 28 April 1978
By TNL: SN21-0277

Direct Accessing

Indexed files can also be accessed directly. This type of accessing
also uses the index and is called direct accessing by key. Direct
accessing by key permits processing of one particular record without
regard to its relation to other records. You must first specify the key
of the record. The key is then found in the index; the relative record
number (adjacent to key) is used to locate the record; and the record
is transferred to storage for processing. For example, records in a
customer master file are to be updated to reflect current information.
The transaction record number entries are not in order. The system
finds the record by matching the customer number in the entry with
the key (customer number in the index). The address, adjacent to this
key, is then used to find the record.

Often an indexed file is used in several different jobs each of which
requires a different accessing method. For example, during statement
writing, a customer file may be accessed sequentially to allow cyclic
statement writing. During a billing job, the same file may be accessed
directly by key to allow the updating of specific master records. Then,
during an aged trial balance job (each customer’s outstanding balance
is printed), the file may be accessed sequentially by key.

Indexed files can also be accessed by relative record number. This
method of accessing requires that the file index be bypassed.
Records in the data file can then be accessed by using a number
(relative record number) indicating their relative position in the file.

MAINTAINING DATA FILES

Once a file is created, file maintenance is often necessary. File
maintenance means performing those activities that keep a file current
for daily processing needs. Some file maintenance activities are
adding, deleting, and updating records. Adding means putting a
record in a file after the file is created. Deleting means identifying a
record so it will not be processed with other records. Updating means
adding or changing some data in a record.

Characteristics of Accessing Data Files

79

80

Adding Records

Records can be added to a filé after the file has been created. When
records are added to a file, they are written at the end of the file.
Thus, the file is extended by the added records.

Sometimes, however, the new records must be merged between the
records already in the file. This may be necessary to keep the file in a
particular order. In order to put the new records in the proper
sequence, you must sort the file to create a new file -containing the
added records in the correct location.

When a record is added to an indexed file, the system checks to
ensure that the record key is not a duplicate of a record key already in
the file; if the key is not a duplicate, it is added to the end of the file.
The keys of the added records and the keys of original records should
be sorted, so that the keys of all the records in the file are in
ascending sequence in the index. When the keys are in ascending
order, the 5110 uses less time to search the index.

Tagging Records for Deletion

When a record becomes inactive, you might not want to process it
with the other records. A record cannot be physically removed from
the file during regular processing; therefore, it is necessary to identify
or tag the record so it can be bypassed. One way to tag such a record
is to put a code, called a delete code, in a particular location in the
record. When the file is processed, your programs can check for the
delete code; if the delete code is present, the record is bypassed.

When several records in a file have been tagged for deletion, you
should remove them from the file. This will free file space. You can
remove the deleted records by using a program to copy the records to
be retained onto another file.

For an indexed file, you can also use the DELETE FILE statement to
tag the record key in the index for the record to be bypassed. This
does not alter the record in the master file.

e
\.

O

Updating Records

When you update records in a file, you can edit or change some data
on the record. For example, in an inventory file you might want to add
the quantity of items received to the previous quantity on hand. The
record to be updated is read (by the READ FILE statement) into
storage, changed, and written back in its original location by the
REWRITE FILE statement.

Reorganizing a File

After file maintenance activities are performed, it might be necessary
to reorganize your file to increase processing efficiency and free file
space. This is done by using a BASIC program to physically merge the
added records in sequence with the records originally created, and to
remove the records tagged for deletion by copying the existing file
and writing it into a new file. During the copy, deleted records can be
removed from the file, and records previously added to the file are
copied into the new file in sequence with the original records. The old
file can then be used to contain new data.

A Diskette Sort feature is provided to allow you to change the order of
record 1/0 files. For more information about this program, see the
IBM Customer Support Functions Reference Manual, SA21-9311. This
feature allows you to sort the records and write them to a new file.
Also, you can sort the file and write just the record numbers, which
indicate where the records are located on the diskette, to a new file.
This file, called an address out file, can then be used to access the
original records. For example:

Relative Record Number

Master File//’\
4

1 2 3 5)

Dan Mel . Jerry Bill Glen)

7

Master file remains
in the original order.

Address Out File

Sorted relative record
numbers can be used to
access the master file

in ascending order.

Characteristics of Accessing Data Files

81

82

The following statements might be used in a program to access a file
in order using the record numbers in the address out file:

(R

DEG 0, e
PR, AT

0a0, FLEH

Flob, REC

Chapter 10. Designing a Record and Detemmining File Size for Record 1/0 Files

DESIGNING A RECORD
C/} The applications that use a certain file determine what data is needed
in a record. You should study these applications and then decide the
layout of the record. Layout means the arrangement of fields in a
record. When you design a record, you determine field length,
location, and name.

Q To illustrate these design considerations, a name and address file is
used in this chapter. Each record in the file contains the following
data:

Field Size (number of positions)
Customer number 6

Name 20

Street address 20

City and state 20

Record code 2

Delete code 1

Q (Other fields) __47 (total)
116 TOTAL

Determining Field Size

Field size depends on the nature of the data in the field. First, the
length of the data may vary. In this example, name is 20 positions.
The length of each customer’s name varies, but 20 positions should be
sufficient for the names. Secondly, all data in a field may be the same
length. For example, customer number is six positions, and all six
positions are used in each record.

O There are no firm rules for determining field size. The major problem
involves fields with variable-length data. For example, if name is
planned as 15 positions, and a new customer has 19 characters in his
name, a problem arises when his record is added to the file. To avoid
this problem, try to estimate the largest length of the data that will be

O contained in a field. Use this length to determine field size.

Designing a Record and Determining File Size for Record /O Files 83

84

Providing for a Delete Code

Records are not automatically deleted. You must place a delete code
on a record with a BASIC REWRITE FILE statement. Then when the
file is processed, your program can bypass the record.

For example, you might use the delete code to indicate that a
customer is inactive and that his account information should not be
processed when generating a report.

Record Expansion

It is often wise to allow for data to be added to a record. For
example, suppose this name and address file were created with the
fields described, and at a later time each customer’s zip code is
needed. If all positions in the record are used, there is no place to add
the zip code. Because record length is not yet established, we can
allow for such additions to this record. Although it is often difficult at
the planning stage to imagine what data might be added, it is wise to
reserve extra space; a minimum of 10% is suggested.

Designing a Sample Record

Assume you are teaching a class and you decide to set up a record for
each person. Each record will contain the person’s name, his home
address, test marks for five tests you plan to give, his average mark,
and a code to indicate whether he is an honor student. The entries in
the record might look like this:

ENTRY CHARACTERS
NAME 25
ADDRESS 65
GRADES 15
AVERAGE 5
HONORS 1

_;T:;ml

Altogether, these entries take up 111 characters. You decide to
include additional space in each record for possible entries to be
added later, such as awards, special achievements, and remarks.
Altogether, you decide to have a record with 128 characters in a file
named CLASS with 128 positions for the record.

DETERMINING THE SIZE OF A FILE

To determine the size of a file, you must plan how many records will
be in the file at a specified time.

To determine the number of records in a file, consider several factors.
First, you must know how many records will be in the file when it is
created. If the file already exists, perhaps as a card file, use the
number of records in this file as a base.

You must also know whether records will be added or deleted. If
additions are expected, how many records are expected, and how
often will they occur? If records will be tagged for deletion, consider
periodically removing them from the file. By removing records that
you no longer need, you free diskette space and allow more records
to be added.

Only after considering these factors and the applications that use the
file can you determine the number of records in the file. For example,
the customer name and address file will contain 6000 records at
creation time. It is estimated that each month 200 records will be
added and 80 records will be deleted. It is also planned that the
deletion records will be removed once a month. At the end of six
months the file will contain 6720 records (1200 records are added; 480
records are deleted).

6000 Records at creation

+1200 Records added in six months
7200

- 480 Records deleted in six months
6720 Records in file after six months

This example points out another factor to consider. When determining
the number of records in a file, consider expansion for a reasonable
time into the future (at least six months). Of course, most files have
deletions, and thus growth is usually slow. In a file where the number
of additions and deletions are about the same, records tagged for
deletion need be removed only when the disk space allowed for the
file is filled.

Designing a Record and Determining File Size for Record 1/O Files

85

Calculating File Space

To determine the file space, you must know the number of characters
in the file. To calculate the number of characters in a file, multiply the
number of records (allowing for expansion) by the length of each
record. For the customer name and address file, there will be 6720
records in the file at the end of six months. Each record contains 128
characters. Thus, the number of characters in the file is calculated as:

6720 Number of Records in the File
x128 Number of Characters in Each Record
53760
13440
6720
860,160 Total Characters in the File

and the file should be marked for 860K.

Calculating Index File Space

If the file is indexed, the system stores the index on a file. To
determine the space needed for the index, you must know the size of
the index entry (an index entry consists of a key and a diskette
address). Key lengths vary, depending upon the application up to a
maximum of 28 characters, but diskette addresses are always 4
characters long. Thus, the key entry is calculated as follows:

Key Entry = Key Field Length +4

Note: The records in an index file must be 8, 16, or 32 characters
long. Therefore, if the key entry is greater than 8 but less than 16, the
index file record length is 16. Similarly, if the entry length is greater
than 16 but less than 32, the index record length is 32.

In the name and address file described earlier in this chapter, the key
field is customer number (#), and it is 6 characters long. In this case,
the key entry is 10 (6 + 4 = 10) and the index file record length is 16
characters.

Now that we know the record size, we can calculate the storage
required:

16*6,720 = 107,520
Thus, the index file should be marked for 105K (K = 1,024 bytes).

After you determine the amount of space the file requires, you can
decide where to locate the file on the diskette. A diskette can contain
several files, depending upon their size: therefore, you should
document the files that are on each diskette using the UTIL PRINT
command.

As you create more files, you can refer to the directory of a particular
diskette to determine the amount of available space on that diskette.

Review-Calculating File Space

Calculation 1: Record Space

To calculate the space required for the records of a file, the following
steps are necessary:

1. Multiply the number of records by record length to get the total
number of characters.

2. Mark the file to the nearest number of K bytes.

Calculation 2: Index Space

To calculate the amount of space required for an index, the steps are:

1. Add 4 to the key field to get the length of the key entries.

2. Determine index file record length, which must be 8, 16, or 32.
Always assume the closest number that is not smaller than the

length of the key entry to get index file record length.

3. Muitiply the index file record length by the record count to get the
character count.

4. Mark the file to the nearest number of K-bytes (characters).

Designing a Record and Determining File Size for Record /O Files

87

88

DOCUMENTING RECORD LAYOUT

Documenting the record layout makes your BASIC program easier to
write. The following example shows the layout of a customer master

record:
R # N$ A$ c$ Other Fields ji Reserved Space | D
123 89 2829 4849 6869 127 128
where:

R = Record code

= Customer number

N$ = Customer name

A$ = Customer street address

C$ = City and state

D = Delete code
A record layout includes the order of the fields in the record, the
length of each field, and the name of each field.

Record Length

A record may contain all predefined fields, or space may be reserved
for data to be added to the record. In either case, all records in a
particular file must be the same length. In your BASIC programs you
must specify record length. Record length is the sum of the field
lengths (including reserved space).
In the previous exampie, the sum of the fields is 116 positions.

However, the record length is established at 128, thus 12 positions are
reserved for data that might be added at a later time.

Chapter 11. Processing a Data File

This chapter discusses how to process stream 1/O and record 1/0
data files.
PROCESSING STREAM 1/0 FILES
To process a stream |/0 data file, you follow this sequence:
1. Open the data file.
2. Sequentially read from or write to the file.

3. Close the data file.

Opening and Closing Stream 1/0 Files
Files must be activated or opened before they can be used. A file can
only be activated with an OPEN statement in the program. For

example:

Giela OPEN FLL,

The word IN indicates that the file is to be used for retrieving data
items from the file for use in the program. If the file were to be used
for storing data, it could be opened explicitly as an output file with this
statement:

OO0 DPEN FLL, S DEas 20 Mkl s, Uy

Now, look at the following OPEN statement:

D00 OPFEM FLE, D0 5, "TTER ., MasTER ", TH

Processing a Data File 89

90

For input/output operations, a file must be identified with a file
reference of FLO-FL9. In the previous example, FL3. This file reference
is used to identify the filte when you are using GET or PUT statements
(for example, GET FL3, A, B, C). After the file reference, the device is
specified {for example, D80). A file number and/or file name can also
be entered for an OPEN statement. For the previous OPEN statement,
the file number is 5 and the file name is ITEM.MASTER. For diskette
data files, a file name must be specified when the file is created.
However, for tape files or reading any file, the file name does not
need to be specified.

Normally, a file is deactivated or closed by the system after execution
of your program. However, if you want to switch an input file to
output (or vice versa) and continue to use it in the same program, you
must explicitly deactivate it by using the CLOSE statement before
reopening it. (If you did not use the CLOSE statement and attempted
to use an output file for input or vice versa, execution of your program
would be terminated.) CLOSE deactivates the file; a subsequent OPEN
statement opens (reactivates) the file for its new use and repositions it
at its beginning. For example:

GULa Frer, TnEg s, el s
fiaan ik

G0
RERAY

In this example, the values assigned to the variables D$, R$, A, B, C,
and D (statement 20} will be stored in file 4 (named ACCTS) on
diskette drive 1. The file is then closed and reopened for input.
Statement 50 then retrieves the variable values from the file. File
reference code FL8 is used only to refer to the file opened in
statements 10 and 40.

S ”

O

Writing to and Reading from Stream 1/0 Files

Stream 1/0 files can only be accessed sequentially. That is, you can
only write or read records in sequential order starting from the
beginning of the file. To do this, you use the PUT and GET
statements. For example:

OO0 OPEN FLL, nee 2
guoea P [PRI
NI
(Y
iz
L
i
10
dLan
hrvn

T !fl} Execute statements 130 and 140
""" L two hundred times.
{1 S8 T

FLL,T, R 6

Write the values of T, R, and A
to the data file.

The PUT statement instructs the computer to put the values contained
in the variables T, R, and A into the file referenced by FL1.

Now, to read and print the data written to the file, you could use the
following program:

CE UL

Display the data under
the appropriate title.

It is not necessary to use the same variable names as when the file
was created. The important requirement is that the values in the file
and the variables to which they are assigned must be the same type:
arithmetic variables for arithmetic values, character variables for
character values.

After the first GET is executed, the file is positioned at the next value.

In the previous example, the GET statement is executed 200 times to
access all the data previously stored.

Processing a Data File

91

Notice what happens when an input file is closed and reactivated as
an output file.

Flib, T80, 2, @l T
Pl f, B 0L T E

noan
KR

A DU

A previously created file named AF is activated for input. In statement
30, five values are made available to the program from file 2. In
statements 40 through 60, new values are acquired for A, B, and C.
Statement 70 deactivates AF, and statement 80 re-opens the file for
output. Statement 90 places the new values for A through C into the
file. All of the old values in the file are lost.

Repositioning Files

Occasionally you may have to use an input file or an output file more
than one time in the same program. The RESET statement allows you
to reposition the file without deactivating it {(deactivation is necessary
only when the function of a file is changed from input to output or
vice versa). For example:

GOS0 GET FLY, Wy, 2,0, 0,08
£

L]

an
o4

Repositions file to
AL R R E its beginning

Between statements 50 and 100, the variables X, Y, Z, Q, R, and S
could be used in one set of calculations and their values changed.
Repositioning the file to the beginning permits the, original values in
the file to be made available and put into variables X, Y, Z, Q, R, and S
again for different calculations or uses between statements 110 and
150, and again between 160 and the end of the program.

7N

~

To add data to the end of the file, you can reset the file to its end by
using the RESET statement with the END keyword:

200 RESET FLL OEND

This statement positions FL1 to the end of the last data item in the
file. PUT statements appearing after statement 0200 place additional
data into the file. In effect, RESET FLX END changes an input file to
an output file. In this case, the file must be open for input before you
use the RESET END statement.

Input/Output Error Handling

Certain error conditions can occur while you are processing files. As
an example, when reading through a file, you need to take action after
the last item is read; otherwise the computer will terminate the
program. The EOF (end of file) clause can be written in the GET
statement to branch to another program statement when the end of
the file is reached.

A GET statement with an EOF clause could look like this:
080 GET FLa,=S,.0, 8,508 1aa

This statement directs the computer to statement 100 when the end of
the file is reached. At statement 100, you could end the program, or
close the file and continue processing, or perform any number of
actions. The important thing is that specifying the EOF clause allows
you to retain control of program execution.

The EOF clause can be specified on the PUT statement as well. Note
that if an EOF condition occurs, not all of the output data may have
been written into the file.

Processing a Data File

93

94

These are other error handling clauses:
Clause Meaning

IOERR n Branch to the statement numbered n
if a hardware malfunction prevents
reading or writing of a record. I0ERR
can be specified on the GET and PUT
statements.

CONV n Branch to the statement numbered n
if a conversion error occurs while a
data item is being assigned, for example,
if an attempt is made to read character
data into a numeric variable. CONV can
be specified on the GET statement but not
on the PUT statement.

Instead of writing these error handling clauses on many GET and PUT
statements throughout your program, you can write them on one or
more EXIT statements. An EXIT statement is used in conjunction with
many input/output statements to group error handling in one place.
The statement could ook like this:

OO0 EXIT EOF 100, TOERE LSO, COMY 200

This statement tells the computer to branch to statement 100 when
the end of the file is reached, to branch to statement 150 if a
hardware error is encountered, and to branch to statement 200 if a
data conversion error is encountered.

ACCESSING RECORD 1/0 FILES

You can access record 1/0 files by three methods: sequential, direct,
and indexed.

The sequential access method is one in which the records are
accessed in the order in which they are entered. To use an example of
the 50 states, if you enter the records in alphabetic order, the first
record is Alabama, then Alaska, Arizona, Arkansas, and so on. If you
enter them in geographic order, say with the New England states first,
the order is Maine, New Hampshire, Vermont, and so on. In either
case, all records are retrieved sequentially in the same order that they
were entered.

7/
\

@

In a record-oriented file, each record has a record number relative to
the first record. If the 50 states are stored alphabetically, the Arkansas
record has a relative record number of 4. The direct access method
can be used to retrieve records directly by record number.

An indexed access method is one in which each record is stored with
a unique identification called a key. If the 50 states were stored with a
key (for example, the key could be the name of the state), you can tell
the 5110 which key to look for. The computer looks through an index
until it finds the particular key and then retrieves the corresponding
record from the master file. Thus with an index, each record can be
retrieved directly.

To process a record 1/0 file, you follow this sequence:
1. Open the data file.
2. Access the file sequentially, directly, or indexed directly.

3. Close the data file.

Opening and Closing Record 1/0 Files

Record-oriented files, like stream-oriented files, must be opened
explicitly. A record-oriented file is opened explicitly through the OPEN
FILE statement. As you may recall, for stream-oriented files, OPEN is
specified with the keywords IN for input or OUT for output.
Record-oriented files are opened in the same way for input and
output. If ALL is specified, the file can be accessed for both input and
output without closing and reopening.

In addition, the RECL= clause (record length) must be specified after
OUT when creating record-oriented files to specify the length (number
of characters) of the record being written.

CLOSE FILE is used to close files the same way for record-oriented
files as CLOSE is used for stream-oriented files. If the statement is
not present, the system closes the file at the end of program
execution.

Processing a Data File

95

96

Following is an example of an OPEN FILE statement for a record 1/0O
file:

BAAEO DPER FTLE R T 0EO T o, TR AT U BE S e 20

"Specifies a record 1/0 file.

Notice the period (.) in the file name NEW.ACCOUNTS. No blanks are
permitted in the file name.

If you are going to use the indexed access method, you must also
open a file for the index. For example:

The file reference must be the same for the master and the index file;
however, the files must be in different locations on the media (in this
example, files 6 and 2). After statement 220 is executed, the 5110
automatically creates an entry in the index file when a record is written
to the master file. The KP= and KL= parameters describe the starting
location and number of characters of the record in the master file to
be used as a key in the index.

Note: If the parameter SEQ is specified in the open statement for a
data file, that file can be used as a data exchange file with other
systems. However, this file should only be accessed sequentially.
Direct access of the file might not access the desired record.

N

()

C

Rt

Writing to and Reading from Record 1/0 Files

Creating a Record 1/0 File

The WRITE FILE statement is the record-oriented counterpart to the
PUT statement. For example, at the beginning of the school session,
the only information available to you for each student is his name and
address. You could write one WRITE FILE statement to enter the
name and address for each student like this:

WRETTEFTLE FLL, "BUTLER, &,

A OETREET, MEW YK

You could also write one generalized WRITE FILE statement using two
character variables for the name and address, like this:

OO0 WRITEFTLE FlLL, e, @At
This statement would enter the values of the two variables N$ and A$.

This DIM statement should be included in the program to assign a
length of 25 to N$ and 65 to A$:

GOLO 0T MBS, Aot

Each record written by the WRITE FILE statement would be arranged
in the file this way:

name address unused

1 26 90 128

Note that this WRITE FILE statement writes 90 positions of the record.
Unassigned record space is filled with blanks. Thus, record positions
91 through 128 are blank. The WRITE FILE statement contains a
USING clause with the statement number of the FORM statement, and
the FORM statement describes how the entries are to be formatted
into the record. The combination of WRITE FILE and FORM
statements could look like this:

Processing a Data File

97

This FORM statement says that, beginning at position 1 in the record,

the character variable N$ is to be written; beginning at position 26 of P
the record, the character variable A$ is to be written. (A
name address unused
1 ‘ 26 91 150
N,
R\ -

The following program shows how you could enter the names and
addresses of the students into the file named CLASS.

The program is constructed to recognize the word LAST as the end of
input; therefore, the last input item should be coded ‘LAST’. Your
C

input could look like this:

MY L, L0

i P

FLSHING, MWoYL, L

After the records are entered, the first record in CLASS would look

like this:

98

O

0

After the file has been created, if you decide to add more records, say
for a new student who registers late, the WRITE FILE statement can
be used to enter additional records. No RESET statement is necessary
as with stream-oriented files; the WRITE FILE statement automatically
positions a file at its end. Note that additional records would not be
sorted but would be entered in place at the end of the file.

Now, assume an index file was also specified for the previous
example:

001 OPEM FILE FLL, D800, 2, INDEX, OUT, KEY,)KP=1, KL=

-

Use the characters in
positions 1 through 25
as the key.

When formatting the key field, you should exercise care in putting the
key into the proper position in the file. For purposes of simplicity,
these examples use the first 25 record positions for the key. The
occasion may arise, however, when you might have a file with the key
starting in a position other than 1. By careful use of POS , you can
assure that the key will be properly located. Also, you can use the
intrinsic function KPS (FLX), to find the position, relative to 1, of the
start of an embedded key in the file referenced by FLX, and you can
use the intrinsic function KLN (FLX) to find the iength of the key.
These functions are described in the 5770 BAS/C Reference Manual.

After the records are entered into CLASS, additional records can be
added and will be stored in key-indexed order.

Reading Records from a Record 1/0 File

A record 1/0 file can be read sequentially, directly using a relative
record number, directly by key index, or sequentially by key index. The
method you use depends upon the requirements of your application.
Following is a description of the four ways to read a record 1/0 file.

Processing a Data File

99

100

Sequentially

The READ FILE statement is used to sequentially read a record 1/0
data file. For example:

.....

IR

i

Lo

RS E IS A R A

Notice that the file is first opened as an input file with FL1 as the file
reference. The READ FILE statement uses the same file reference.
The FORM statement (statement 100) specifies the format of the
record.

Each time the READ FILE statement is executed, the system reads the
data in the next sequential record in the file. Thus, the records are
read in the same sequence they were written to the file.

It is not necessary to read the items in the same order in which they
appear in the record. For example, the statement could be written:

Nor is it necessary to read all the items in a record. If you were

interested only in obtaining name information, you could use this
READ FILE and FORM combination:

GOS0 REATE T

i‘.l

! PO L A
grog F

CEM

This combination might be helpful when you wish to insert test marks
for each student. You could read through the file sequentially, obtain
each student’s record, display his name on the screen for verification,
and enter the corresponding mark.

'~

@)

The READ FILE statement, like the GET statement, can contain an EOF
clause to transfer control when the end of the file is reached. In the
program shown below, the READ FILE statement causes program
control to branch to statement 100 at the end of the file, which is used
to print a message.

This program shows how you can read each student’s record to insert
a test mark. The program also introduces the REWRITE FILE
statement (see Updating Records), which is used to update an existing
record, and shows how OPEN and CLOSE statements can be used
with record-oriented files.

Opens the file for

/input and output.
Flol, "D80° 3, " CLASE ", ALl

00 U AN i"i ||»i"u

ll {l II 0 READFTLE USTMNG W5,FL1, 0%, EOF 100 <— Branch to statement
0OwE FORM POSL,C ~— 100 when all the
Do5En PRINT J¢ Read name from the file. records are read.
Doa0 INPUT G

D070 REUMRITEFTLE USING V3, Fl1, § «+———————Update the record
QO7E FORM POSLOL, PTCOZERD with the grade entered
goan GoTo s from the keyboard.

Grog PRINT CEND OF FILE-LAST RECORD READ
Grag 5Top

Record Layout

/
Name) Other w
7

" 25 101 103

Data Grade

\"_-f\

Statement 30 opens the file. ALL is a special keyword used with
record-oriented files to indicate that both input and output operations
can take place on the file. ALL is required if any rewriting operations
are to take place.

Statements 40 and 45 obtain the name information from the file.
Statement 50 displays the name, allowing you to verify it and enter the
corresponding test mark in statement 60. Statement 70 is the
REWRITE FILE statement, which enters one data item into the record
just read, the numeric variable G. Statement 75 says that the variable
is to be entered beginning at position 101 of the record, in the format
PIC(ZZ#), three digits with leading zeros suppressed. The remaining
statements cause the program to cycle through all the records and
close the file after the last record is handled.

Processing a Data File 101

Page of SA21-9307-0
Issued 28 April 1978
By TNL: SN21-0277

Directly Using Relative Record Number

To retrieve records directly by relative record number, specify the
REC= clause in the READ FILE statement. If, for example, you want to
access the Nth record, specify:

70READ FILE USING 75, FL1, REC=N, C$, A$

The following example shows this method of record retrieval:

BOL0 DTH D$20

0020 OPEN FILE FLL, D80 ,2, MABTER', IN
DOM0 PRINT 'INPUT REC

0050 TNPUT K

0051 IF Ks=0 GO

00460 REAUFILE USING 70,FLIL, REC=K, X, b
0070 FORM NCLO,C20

0080 PRINT X, 0

00%0 BTOP

In this example, file number 2 (referenced as FL1) on diskette drive

one is opened for input. Statement 40 requests keyboard input, which
is assigned to variable K in statement 50. Statement 51 tests for the
end of the program. In statement 60 variables X and D$ are read

from the file referenced as FL1, using the value of the variable K to
access the record in the file MASTER. Statement 70 specifies the format
for the data being read. The data is displayed (statement 80), after
which the program branches back to request keyboard input again.

Directly Using an Index

102

If an index file was created, records can be read from the master file
using an index. In this case, both the master file and the index file
must be opened: '

0010 QPEN FILE FL2,°080°,2, GRADE', IN
0020 OPEN FILE FL2,'D80°,3, "INIEX"', IN,KEY

T

Specifies direct

access by key index.

C

./Z

O

If you wanted Smith’s record, you would specify his name in the KEY
clause in the READ FILE statement:

Direct access using a key.

R, s
LA

LALEERIMG VR,

B R0

The 5110 will search for the record whose key matches in the index
file, then will read the values from the master file record into the
variables F$, and G$.

The following example shows this method of record retrieval.

In this example, the specific record in file number 2 (referenced as
FL1) is selected by the key value you enter in statement 50. if,
however, the computer cannot find the key, it indicates an error unless
you instruct it to take alternative action. For example, if you enter the
key incorrectly (say you spelled the name SMIHT), the match would
not be found. To protect program execution, include the NOKEY
clause on the READ FILE statement:

The NOKEY clause tells the computer that if the matching key cannot
be found, the program should branch to statement number 200. The
NOKEY clause for indexed files is similar to the EOF clause for
sequentially accessed files; it permits you to retain control of program
execution if a particular condition arises.

Records can be read sequentially by key using the index by opening

the index file and master file and specifying the READ FILE statement
without the KEY parameter.

Processing a Data File

103

104

Updating Records in a Record 1/0 File

Part or all of a record in a record /0 file can be updated using the
REWRITE FILE statement. When updating a record 1/0 file, the OPEN
statement for that file must specify the ALL parameter. For example:

0020 OPEN FILE FL2, ‘D80, 3, ‘"MASTER’, ALL
The following sample program, which adds telephone numbers to

records in an existing name and address file, shows how you can use
the REWRITE FILE statement to update a record 1/0 file:

R TR

A, RO L2

FETERFLLE LIS

F E

CERDCODF GRS

When the file was originally created, each record contained space
available for the telephone number and other data. After a record is
read (statement 50), the name is displayed (statement 70) and the
telephone number can be entered (statement 80). Once the telephone
number is entered, the record in the file is updated in positions 91
through 103 (statements 90 and 100) and the next sequential record is
read. This process continues until the last record in the file is
processed. After the last record is processed, an end of file (EOF)
condition occurs and the program branches to statement 120.

)

e
-.\‘

()

If there is an index for the master file, you can access and update
individual records without processing the file sequentially. For
example, you could use the following program to update the telephone
numbers of specific customers in an already existing name and
address file:

Do

When this program is run, statements 40 and 60 request the
customer’s name and new telephone number. Then, if the name is
found in the index file (KEY=K$), the master file is updated with the
phone number (T$). If a name match is not found, the message NO
MATCH FOUND is displayed (NOKEY=100), and the program
requests the next name and telephone number. If a * * is entered as
the name, the program branches to statement 120 and stops.

If the KEY clause (KEY=) is used in the REWRITE FILE statement, no
READ FILE statement is required to retrieve the record first. If the KEY
clause is specified, the record matching that key is brought in from the
file: thus, the REWRITE FILE statement with a KEY clause retrieves as
well as rewrites.

The REWRITE FILE statement can write over existing data or unused
portions of a record, but must not change the contents of the field
containing the key information. Fields not written over remain
unchanged.

Processing a Data File

105

As another example of REWRITE FILE, assume that during the school
term you give the students an extra credit project; their final grade will
be raised by five to ten points depending on the quality of their work.
Before the end of the term, you add in the extra credit for those
students who handed in the project. The short program below
illustrates how the REWRITE FILE statement can be useful in updating
the records.

HRIR
gaan
(LA

B AR B

FATEH FOURD FOR, e

Statement 100 prompts you for input information. Statement 110
accepts the student name in N$ and the mark in E. Statement 120
tests whether the end of input has been reached; assume the last
input data item should have the word LAST as the student’s name.
Statement 130 enters the mark recorded in E into the file after the key
has been matched with the name in N$. Statement 135 formats the
mark into positions 140 and 141.

More Information About Processing Record 1/0 Files

Deleting Records

Records in an indexed file can be made unavailable with the DELETE
FILE statement specifying the key of the record to be deleted. For
example:

This statement would delete (by modifying the index file) the record
whose key matched the character value in N$, or would branch to
statement 130 if the key could not be matched. The actual record is
not removed. The record key in the index file is flagged, making the
record inaccessible by key.

)

)

C

Repositioning Files

The RESET statement can reposition a file to its beginning. If RESET
contains a KEY clause, the file is repositioned to the particular record
associated with that key. If the RESET statement contains a REC=
clause, the file is repositioned- to the record specified by the REC=
clause.

Error Clauses on the EXIT Statement

in

For record 1/0 files, the EXIT statement can specify these clauses
addition to the other clauses available:

e NOKEY, to transfer control if no key satisfying a KEY clause can be
found.

e NOREC, to transfer control if the relative record number specified by
the REC= clause cannot be found.

o DUPKEY, to transfer control if a key specified for a new record
already exists in a file.

An EXIT statement specifying all error handling clauses could look like
this:

GLann EXITOEOF EO0, TOFRE E2a, DO BS0, MIKEY 150, DUPKEY

......

When using the EXIT statement, remember to include an EXIT clause
on each appropriate input/output statement. For example, to refer to
the EXIT statement above, the DELETE FILE statement previously
illustrated could be written:

GOS0 DELETE FILE FL2Z,KEY=MNE, EXIT 180

Processing a Data File

RN

107

108

The FORM Statement-Differences Between Print and Record 1/0

The FORM statement used with record-oriented files is similar to that
used with PRINT USING in the following ways:

Both contain the C character specification.

Both contain the replication factor (see the /BM 5170 BAS/C
Reference Manual.)

Both contain the PIC numeric specification, with the same digit
specifiers and insertion characters.

Both contain the format control specifications X and POS.

Both contain character constants (see the /1BM 5110 BAS/C
Reference Manual.)

The FORM statements used are different in the following ways:

With record-oriented files, the FORM statement does not contain
the SKIP format control, because there is no need for a skip
operation.

With record-oriented files, numeric data can be formatted using
other specification codes besides PIC. Additional specification
codes are:

NC
PD

owrrw

B, NC, and PD are used to store and retrieve numeric data in special
internal formats. Except for one use of NC, they are not further
discussed here; additional material on these codes can be found in the
BASIC Reference Manual under ‘FORM Statement.”

The NC Specification

The one use of NC applicable to this discussion is in its relationship to
PIC. PIC can be used only in output operations; thus, it can appear in
FORM statements related to WRITE FILE and REWRITE FILE
statements, but not in those related to READ FILE or REREAD FILE
statements. To read data that was written using PIC, NC is used,
specifying the number of positions in the record to be read. For
example,

NC4
would read four positions of a number.
If a number were written using this PIC specification:
PIC(##H#) or PIC(ZZ#)
the NC specification to retrieve it would be:
NC3
To retrieve only the first two of these digits, you would specify NC2.

Earlier, this FORM statement was used to enter the two-digit numeric
variable E into the file called GRADE:

WS FORM POS1WE, PID I

To retrieve that value, you could use this FORM statement:
S FOREM POS O, N2

NC can also specify the number of decimal digits in a number, in the
following manner:

NC5.2

Processing a Data File 109

This specification says that five positions are to be read, and a decimal
point is to appear before the two rightmost digits. That is, the five
positions could look like this:

12.34 would be read as 12.34
1.234 would be read as 12.34
11234 would be read as 112.34

If an item were written using this PIC specification,

PIC(#HHE 1)

The NC specification to retrieve it would be:
NC7.2 or NC7

The first number specified in NC is the field width, that is, the total
number of characters to be read, including digits, decimal points,
commas, dollar signs, etc. The second number is the number of
decimal digits. The following are examples of how PIC and NC can be
used in combination:

If PIC were specified: NC would be specified:
PIC(#Ht.1H1) NC6.2 or NC6
PIC(ZZZ ##) NC6.2 or NC6
PIC(3,555.44) NC9.2 or NC9
PIC(ZzBZZBZZ) NC8 or NC8.0

The S and L Specifications

The specification S indicates that an item in a record is in short-form
precision. A number in short-form precision takes up four positions in
a record. If S is specified for an input operation, the value in the
record is moved to the variable specified in the READ FILE or REREAD
FILE statement; if the program is in long form precision, such a value
is extended to long-form. If S is specified for an output operation, a
short-form value is written from the variable specified in the WRITE
FILE or REWRITE FILE statement into the record.

The specificétion L indicates long-form precision and is the long-form
counterpart to the S specification. A number in long-form precision
takes up eight positions in a record.

&

For an input operation, the value in the record is moved to the variable
specified in the READ FILE or REREAD FILE statement; if the program
is in short-form precision, long-form items are truncated to short-form
before being used. For an output operation, a long-form value is
written into the record from the variable specified in the WRITE FILE
or REWRITE FILE statement.

After all the marks for five tests and the extra credit for the project

have been entered into the file GRADE, the first record in the file could
look like this:

BUTLER, J.S. 323W. 76 STREET, N.Y.,10023 | $92)84100§80%7 ‘ 7 ‘

1 26 101 140 150

If you wanted to print the final mark and the honors status, you could
use this program:

DM GOy, M

GUTO &

Statement 10 defines an arithmetic array, G, with five members, a
character variable, M$, with one character, and a character variable,
NS, with 25 characters. The array G is to hold the five marks for each
student, M$ is to hold the honors character, either a + or a blank, and
N$ is the name field.

Processing a Data File

111

112

Statements 20 and 25 format a printed heading. Statement 30 opens
the file for input, output, and updating operations.

Statement 50 reads the file according to the format shown in
statement 55. Remember that although GRADE is a key-sequenced
file, its records can be read in sequential order if the KEY clause is not
specified. From statement 55 we can determine that the items being
retrieved are the name, placed into N$, five sequences of three digits
(the five marks beginning in position 101), placed into the array G, and
a two-digit number for extra credit, placed into E.

Statememt 60 sums the five marks, divides the sum by 5 to find the
average, then adds in the extra credit recorded in E, and puts the
resulting value into A.

Statements 65 through 72 reduce any mark that exceeds 100 and
analyze the value of A. If the value equals or exceeds 90, a plus sign,
indicating honor student, is placed into M$. If the value of A is less
than 90, M$ is assigned a blank.

Statements 80 and 85 print the student’s name (N$), the final mark
(A), and the honors code (M$).

Statements 90 and 95 enter the final mark and the honors code into
the record, beginning in positions 130 and 135, respectively.

Statement 100 branches back to statement 50, and the next record is
read. After all records are read, the program ends.

Output from this program could be the following:.

Print
Position 6 35 50

M ME FIMal, Make HOMORS

BUTLER, 1.8,
GO, &R,

TTH, O, i, 0
YOLHE, b @70

O

O

Summarizing Record-Oriented Statements

The OPEN FILE statement explicitly opens a record-oriented file. If IN
is specified, the file is opened for input; if OUT is specified, it is
opened for output; if ALL is specified, it is opened for both operations.
If the KEY clause is specified, an index file is associated with a master
file.

The WRITE FILE statement writes a record. In a directly or
sequentially accessed file, each record is stored in the order in which
it is entered. In an indexed file, each record is stored in the order in
which it is entered, and the record key is stored along with the relative
record number in the index file. When you are retrieving or writing
records by key, performance is improved if the index file is sorted into
order by key.

The READ FILE statement reads a record. In a sequentially or directly
accessed file, each record is read sequentially, or directly by relative
record number when the REC= clause is specified. In an indexed file,
each record is read sequentially if the associated index file is not open.
If the index file is open and no KEY clause is specified, the records are
read sequentially by key. If KEY is specified, the record having a
matching key is read.

The REREAD FILE statement makes the last record previously read
available again, regardless of whether the record was read sequentially
or by key.

The REWRITE FILE statement alters an existing record, provided that
the file was opened with the OPEN FILE statement specifying ALL. In
a file accessed sequentially, the last record is read and rewritten. In
an indexed file accessed sequentially by key, the last record read is
read and rewritten if no KEY clause is specified in the statement. If
KEY is specified, the record having a matching key is read and then
rewritten. If the REC= clause is specified, the record with a matching
number is read and rewritten.

Processing a Data File

113

114

The RESET FILE statement repositions a file to its beginning. In a file
accessed sequentially, if a KEY or REC= clause is specified, the file will
be repositioned to the particular record associated with that key, or
record number.

The DELETE FILE statement deletes a record from an indexed file. The
KEY clause is required in order to identify the record being deleted.

The EXIT statement specifies the statement number to which control
should be given if a particular input/output error occurs. The error key
keywords that can be written in the statement are EOF, IOERR, CONV,
NOKEY, NOREC, and DUPKEY.

The CLOSE FILE statement explicitly closes a record-oriented file.

The FORM statement specifies the format of fields in record-oriented
files.

7N

K/“

O

Chapter 12. Control of Your 5110

This chapter discusses the following topics concerning controlling your

5110:

e Using the display screen for input and output

e Using procedure files to replace keyboard input

e Using the system control functions (FILE FLS)

e Using the UTIL command

USING THE DISPLAY SCREEN FOR INPUT AND OUTPUT

You can use the WRITE FILE and READ FILE statements to write and
read data from anywhere on the top 14 lines of the display screen.
This allows you to use different screen formatting and data entry
techniques. For example, the screen could be formatted as follows:

—(

Paves' s Mame

Sltrveet fddress

p)
ABled Mryden
By W Federal Huwy

City

atle

I

e O

Tollar Amount

focounting Sode

Data being
entered by

the operator.

- Prompting messages displayed by the program.

Booca Ha_

The cursor indicates
where the data
entered by the
operator is displayed.

Control of Your 5110

115

116

When used for input and output, the display screen is treated as a
record |/0 file, similar to a record |/0 file on tape or diskette. You
must open the display screen for input/output using device 002, for

example:

Lo

(pE

S FELE FILE

e s
O IHEET Al

t—Specifies read and

write operations

Input/output to the display screen

The character positions on the display screen are numbered as

follows:
~ §
15 1 ———64
14 65 ———=128
13 129 192
12 193 256
11 257 320
10 321 384
9 385 448
8 449 512
7 513 576
6 577 640
5 641 704
4 705 768
3 769 832
2 833 896
1
0

For example, character
position 130 is the
second character position
on line 13.

O

)

N ERTER

FLi

s

The following is a sample program that writes data to and reads data
from the display screen:

S Al

When this program is run, statements 030 and 040 write ENTER A
MESSAGE starting at position 257 (line 11) on the display screen. The
cursor is then placed at position 285 as specified in statement 0040
(POS 285), and the program waits for input from the keyboard. The
display screen looks like this:

\ Flashing Cursor at

position 285

RERL S

LS o N

Control of Your 5110

117

118

Now, when a message is entered from the keyboard, the display
screen looks like this:

THIE DaTa TH ENTERED ON LINE 11

FLiM

L . RIRER1

Al
o

Then when the EXECUTE key is pressed, statements 50 and 60 read
the message (up to 50 characters) from the display screen, and
statements 70 and 80 rewrite the message on line 11 and write the
new data starting in position 769 (line 3). The display screen looks like
this:

ERTER & MESSaGE THIG TaTe T8 ENTERED 0N LIHE 11

T THIS DaTa T8 BENTERED ORN OLTME 31

0

L B ST G2

)

and

Note: You can use the WRITE FILE or REWRITE FILE statement to
position the cursor for a following READ FILE statement.

O O

)

Page of SA21-9307-0
Issued 28 April 1978
By TNL: SN21-0277

USING PROCEDURE FILES

A procedure file allows you to set up and execute a series of
programs without the need for operator intervention. The procedure
file consists of a series of BASIC statements, commands, or data
created using the LOADO,DATA command or a BASIC program. After
you enter LOADO,DATA, the system displays a line number followed
by a colon. You may then enter statements, commands, or data just
as you would for a standard data file. Lines in a procedure file have a
maximum length of 64 characters. After you have entered the lines in
your procedure file, you can use the SAVE command to save the file
on tape or diskette. Following is a sample procedure file:

LOaT, DATA

0010 LOAT &

0020 RUN

0030 LOAD 7Y

FOu0 7 RUN

gos0.LOan ¢

004D RUM

G070 ALERT INSERT PAYROLL DISKETTE ENTER GO TO CONTINUE
pog0:LOan 11

0090 RUN

After these lines are entered, the file can be saved with this SAVE
command:

| SAVE 4, 'PROC', RECL=64, 1180

This command saves the file (named PROC) with a record length of 64
| characters in file 4 on diskette drive 1.

The procedure file is accessed when you enter a PROC command. A
PROC command instructs the system to begin using the procedure file
in the indicated file, as shown below:

I PROC 4. D80

The system then loads file 4 and begins executing the lines in the file,
one record at a time. In the example above, after the program in file 9
has been run, the procedure file executes the ALERT command, which
sounds an audible alarm and causes the display screen to flash. The
operator must press the ATTN key to stop the flashing message
INSERT PAYROLL DISKETTE-ENTER GO TO CONTINUE. If the RUN
IN=P command was used, data may not be entered from the keyboard.
Therefore, for each INPUT statement of a program being executed,
there must be one entry available via the procedure file. After the
operator enters GO, the procedure file loads file 11. Other commands
valid in a procedure file are discussed in the /BM 5110 BAS/C
Reference Manual, SA21-9308.

Control of Your 5110 119

Page of SA21-9307-0
Issued 28 April 1978
By TNL: SN21-0277

USING THE SYSTEM CONTROL FUNCTIONS

120.

A unique 3b-byte 5110 internal storage area is provided to allow you
to dynamically control the operation of your system. This storage area
is called file FLS (system file). Using file FLS you can get information
about the system, such as: total work area available, work area
available for variables and buffer storage, number of lines printed on
the printer, and the return code set by the last STOP or END
statement. File FLS also allows you to set or use system functions,
such as turning the display screen on and off, sounding the audible
alarm, selecting a character set, entering lowercase alphabetic
characters, turning trace on and off, rounding precision, file FLx, and
number of print lines per inch. You use the READ FILE FLS statement
to obtain the information about the system, and the WRITE FILE FLS
statement to set or use the system functions. (File FLS is always
open, therefore, an OPEN statement is not required before file FLS is
used.

READ FILE FLS Statement

You can obtain the following list of information about the system
using the READ FILE FLS statement:

Information File FLS Position
Total work area available 1-56

Work area available for variables 6-10
and buffer storage

Number of lines printed 11-15
Reserved 16-18

Return che set by last STOP or 19-21
END statement

Unused 22-35

For example, the statements:

0320 READFTILE USING 330,FLS,AR,C,D
0330 FORM NCE,NCH,NCH, POSLY ,NC2

place the total work area available in variable A, the work area
available for variables and buffer storage in variable B, and so on.

Note: The number of lines printed is the count of the print head
movements rather than the form’s movements, because a 00 line
spacing may be specified.

WRITE FILE FLS Statement

You can set or use certain system functions by using the WRITE FILE
FLS statement to place the appropriate code in file FLS, as follows:

System Function

Turn the display screen off
Turn the display screen on
Turn the audible alarm on
Turn the audible alarm off
Pulse the audible alarm

Set keyboard input to lowercase
character mode

Set keyboard input to standard
BASIC character mode

Turn the display trace on
Turn the display trace off
Turn the printer trace on
Turn the printer trace off
Set rounding precision
File FLx

Set number of print lines per inch

(2.54 centimeters) For example,
the statements

FURE R

File FLS
Position

N = = -

N

2 T2 C

T

01to 15
FLO-9
8-99

place the character L in position 2 of file FLS. This causes the 5110 to
be in lowercase character mode. That is, lowercase alphabetic
characters are entered from the keyboard unless the shift key is used.
The 5110 remains in lowercase character mode until the 5110 is
changed back to standard BASIC character mode or the work area is

cleared.

Control of Your 5110

121

122

Additional Use of File FLS

You can use positions 22 through 35 of file FLS to store data. That is,
data written to these positions using the WRITE FILE FLS statement
can be read using the READ FILE FLS statement. Using these
positions of file FLS gives you the unique capability to write data in
numeric form and then read that data in character form, and vice
versa. For example:

ENAN Y
(ERRERY

The numeric input (N) is written to file FLS positions 22 through 30
(statements 120 and 130); then the character equivalent of N is read
from file FLS positions 22 through 30 (statements 150 and 160).

Using the UTIL Command

You can use the UTIL command to perform the following system
control operations:

o List the file directory

o Rename a file

Change or display a diskette volume ID and owner ID

Drop a file -

Write-protect a file

Transfer control to the Diskette Sort feature, if installed

Change the system default device

o O

O

The sort program, if installed, is internal to your 5110. You can
transfer control to the sort program by using the statement:

UTIL SORT

This program allows you to sort records in a data file according to
specified fields within the records. See the /BM 57170 Customer
Support Functions Reference Manual, SA21-9311, for a complete
description of the sort program.

Normally, the 5110 Model 1 default device is E80 (the built-in tape
unit) and the 5110 Model 2 default device is D80 (diskette drive 1).

You can use the UTIL command to change the system default device.

For example:
UTEL 5YS D
changes the default device to diskette drive 2.

See the /BM 5110 BASIC Reference Manual, SA21-9308, for a
complete description of the UTIL command and functions.

Control of Your 5110

123

124

Chapter 13. Using Arrays

An array is a simple way to keep together data items that are related.
For example, if you want to keep the average temperature for each
month of the year, you could construct an array having 12 data items.
The DIM statement can be used to define an array:

DG M TOLE
This statement defines an arithmetic array, T, containing 12 items, or
members. The computer recognizes an item as an array by the
appearance of parentheses. The parentheses are used to define the
number of items in the array.
Arrays can be arithmetic or character. For example:

DO Dl THLECLE
This statement defines a character array having 12 members.

A DIM statement can specify the length of the members of a
character array at the same time it is defining the array:

G20 DM THL00L2)
Here, each member of array T$ is assigned a length of 10; without the .
length specification, each member, like other character variables,

would be assumed to be 18 characters long. All members of a
character array have the same length.

Using Arrays 125

NAMING ARRAYS

Character arrays are named in exactly the same way as character
variables; that is, the name must consist of a single alphabetic
character (including the alphabet extenders) followed by the currency
symbol(s). Thus, the name A$ can name either a character array or a
character variable. Arithmetic arrays are named in almost the same
way as arithmetic variables. An arithmetic array name may consist
only of a single alphabetic character (including the alphabet extenders);
you may recall that arithmetic variables can also be named with an
alphabetic character followed by a digit. Thus, the name A can be
used for either an arithmetic array or arithmetic variable, but the name
A1 can be used only for an arithmetic variable.

DEFINING ARRAYS

Defining an array in a DIM statement is. known as an explicit
declaration. There is another way to define an array through implicit
declaration; that is, by referring to a member of an array in a program
statement without having defined it first in a DIM statement. When
you refer to an array member without explicitly declaring it in the DIM
statement, the computer will recognize that you are working with an
array and will automatically allow space for 10 members. To refer to a
particular member of an array, you specify it by its location in the
array. For example, T(1) refers to the first member of the array named
T, T(2) refers to the second member, T(3) refers to the third member,
and so on. Each number giving the location of a particular member .is
called a subscript. If the following statement appears in the program:

D0 TL9) =69

only the ninth member of T would be assigned the value 69; all other
members would remain unchanged.

Remember that an array defined implicitly is assumed to have 10
members. So in order for array T to contain 12 members, we must
explicitly define it. If an array has very few members (for example,
two or three), it would be wise to use a DIM statement, such as:

The DIM statement, in addition to defining the number of members in
the array, also defines the number of dimensions in the array.

N

N

e

"

So far, we have discussed only one-dimensional arrays. In BASIC, you
can also have arrays of two dimensions. Assume that values have
been assigned to array T, such that:

T2 i 3
T3 3 o2
Tl i 5 57
T8 i A
TC6) 3 s
TOF) i A
TCw) i % AW
TCL0) is 5
TLLL) i L
TC1E) i ED

Let's assume that these values represent the average temperatures for
12 months; T(1) represents January’s average, T(2) February’s, and so
on.

For various reasons, another programmer might want to consider the
year as divided into four quarters of three months each; he could
define his array (call it M) as a two-dimensional array, as follows:
DOLE ore Mok, 3
in this statement, array M is defined as a two-dimensional array
containing 12 members (the product of 4 and 3), just like array T. The
difference is that the members of M are distributed over two
dimensions, whereas in T they are distributed over only one
dimension. Conceptually, the two dimensions of M can be thought of
as rows and columns—four rows and three columns. The first value
would be identified as being in the first row and the first column, or as
M(1,1); the second value would be in M(1,2), the first row, the second
column; the third in M(1,3), the first row, third column. The fourth
item is M(2,1), or the second row, the first column; the fifth item,
M(2,2), would be in the second row, second column, and so on.

Using Arrays

127

Assuming that the same temperatures assigned to array T are
assigned to array M, notice the difference in the way each item is
referred to:

Arvay T Tempevature fivyray M

T(1D K ML, 12 Column
Tow A M1, 2 Raw 1. ps 3
TE3)) MOL,3) 1 1043 u2
T e MO2, 1) 2 57 eun T3
TG & M, 2 A YTy A9
T{éD TE MO2,3) I} SE By 39
TC? 7Y M3, 1

T T M3, 3

T(9 6P M(E,3)

TCLO) S8 MOk, 1)

T{11? Rt MO, 20

TCLE) A MO, 3D

Two subscripts are needed to refer to a particular member of array M;
for example, M(3,1) refers to the temperature for July, the first month
in the third quarter.

Note the difference between a subscript and the array dimension
specification. A subscript refers to a particular member of an array. It
can be any valid arithmetic expression (for example, a numeric
constant or an arithmetic variable). The dimension specification
defines the number of members of an array. The dimension
specification can appear only in a DIM statement and it must be
indicated by unsigned integers only. An array name cannot appear in a
DIM statement if the array has already been defined—either implicitly
by usage or explicitly by definition in a previous DIM statement.

You can implicitly define a two-dimensional array by using it in a
program statement without defining it in a DIM statement first. You
would do this by referring to a particular member, using two
subscripts. For example, A(4,3) would refer to the item in the fourth
row, the third column of array A. A two-dimensional array defined
implicitly will be assigned the dimensions (10,10), or 100 members
altogether. If the value of either dimension is to exceed 10, however,
you must use a DIM statement to define the array as you would for a
one-dimensional array that exceeds 10 members. Remember that DIM
statements to define arrays must appear in the program before you
refer to the array.

128

Page of SA21-9307-0
Issued 28 April 1978
By TNL: SN21-0277

PLACING VALUES INTO ARRAYS

Initially the system sets all arithmetic arrays to zero and all character
arrays to blanks. Arrays can be given other values through
assignment, READ, and INPUT statements, just like other variables.
The assignment statement can assign values to individual array
members or to all the members of the array. Here are some examples:

0300 Adch, S =110
DAZ0 MAT fA=015)
DAF0 PH b= PHILADELPHIA'

The first example assigns the value 10 to the member in the fourth
row, fifth column of the two-dimensional arithmetic array A. In the
second example, the keyword MAT identifies A as an array, and the
value 15 is assigned to all the members of the array. (This is a special
form of the assignment statement and is known as the array
assignment statement.) In the third example, the value PHILADELPHIA
is put into the fourth member of the one-dimensional character array

PS$.

When specifying values by means of READ and INPUT statements,
you must remember that every array member that is to receive a value
must be represented in the statement, and a value must be supplied
for each member specified. Let's look at these statements:

g0 DEM TOL2,THL8012)
D015 PRINT CENTER 3 TEMPERATURES, THEN THREE MONTHS'
Q020 INPUT TC1) T TR THALY S THC2) , THERD

The DIM statement defines the arithmetic array T and the character
array T$, each with 12 members. The INPUT statement states that
values will be supplied at execution time for the first three members of
each array. Execution of the INPUT statement causes the computer to
display the question mark (?). A valid response would be:

31,43,42,JANUARY,FEBRUARY,MARCH
The first three values are entered into T(1), T{2), and T(3), respectively.

The next three values are entered into T$(1), T$(2), and T$H(3),
respectively.

Using Arrays 129

130

The following statement can be used to enter values for the arithmetic
array A, consisting of three rows and four columns:

GOED MAT INPUT A

NOE0 TEM ACE, W)

When this statement is executed, the computer displays a question
mark, and you can enter the three values for the first row:

The system continues to display the question mark until you have
entered values for all matrix positions.

Another way of assigning input values to arrays is through use of a
FOR/NEXT group in conjunction with the READ and DATA statements.
For example, if you wanted a list of 15 numbers assigned to an array
named B, you could write:

GOLE DIM BOLE

0020 FOR I=1 TO 135
DOEG READ RO

000 NEXT I

DOSE DaTe 2,35, 7,00, 03,07 009, 23,29, 30037, 01, 43,450

......

The subscript | is used to step through the values in the data table.

¢

AN

N

REDIMENSIONING ARRAYS

O Once an array has been dimensioned by a DIM statement, it cannot be
explicitly dimensioned again. But it can be redimensioned; that is, the
array can be given new dimensions. A one-dimensional array can be
redimensioned into a two-dimensional array, or it can be
redimensioned into a one-dimensional array with a different number of

(” members. Similarly, a two-dimensional array can be redimensioned

\) ' into a one-dimensional array or a two-dimensional array having a
different number of members in either or both dimensions. The rule
to remember when redimensioning an array is that the total number
of members in the new array may not exceed the total number in the

— original array. For example, the array M(12,10) has 120 members, the

Q product of 12 and 10. It can be redimensioned as long as the new
array does not contain more than 120 members (it can contain fewer).
Thus, M(12,10) may be correctly redimensioned to M(40,3), or M(100}),
but not to M(40,4).

One way to redimension an array is to state its new dimensions right
after the array name in the array assignment statements. For example,
in the array C(5,5) to C(3,4), you could use the array assignment
statement:

0010 MAT CC(3,4)=(0)

O The word MAT is used to indicate that operations are to be performed
on the entire array, or matrix. This statement changes the array
dimensions to (3,4) and assigns the value zero to each member of the
newly dimensioned array.

Using Arrays 131

132

DIFFERENCE BETWEEN MAT AND LET

It is important to note the distinction between the array assignment
statement, identified by the word MAT, and the LET assignment
statement.

The following example shows a sequence of assignment statements
and the output from each one. None of the statements are equivalent.

000
000

0020 LET ©CR, 1=l 000
\Array C is initialized to b 00

et e e e s s [555]
DOWD MAT COE, 20D Array C is initialized to

ooLn DI CO02.3) —— Array C is initialized to

Q03D MAT Cw=(5)

s 13

\ | 555]
BOEG LET Cmw 887
Array C is initialized to

\ Yy | 1Z N 884
Variable Cis 9

Statement 10 defines arithmetic array C as a 2x3 array and initializes
each member to 0. Statement 20 assigns the value 1 to a member in
the second row, first column of the array. Statement 30 assigns the
value 5 to all members of the array. Statement 40 redimensions the
2x3 array into a 3x2 array and assigns the value 8 to all members.
Statement 50 does not refer to an array but to an arithmetic variable,
C, and assigns the value 9 to it. BASIC allows you to use the same
name to represent both an array and a simple variable in the same
program.

The array assignment statement can also assigh the values of an array
to another array, as long as both arrays have identical dimensions.
Let’s look at this example:

0100 DIM Y4, Z0)
0150 MAT Y = (AXR)
0180 LET Y(3)=1%

L3

0200 MAT Z=Y

N

\\.,/'

(/—\
\

N

Statement 150 assigns the value of the expression A*B to all the
members of the array Y. The expression must always be enclosed in
parentheses. Statement 180 assigns the value 15 to the third member
of Y. Note the difference between the LET statement and the MAT
statement. Statement 200 assigns the values in array Y to array Z. If
the only change made to array Y between statements 150 and 200
was the assignment made in statement 180, array Y will contain the
values A*B in members 1, 2, and 4 and the value 15 in member 3.
Array Z will be assigned these values in the corresponding members.

In order for the values of one array to be assigned to another, both
arrays must have identical dimensions. For example, if Z had the
dimension (5) or (2,2), it would have to be redimensioned to the
dimensions of Y before it could receive Y's values.

ARRAY OPERATIONS

A number of different operations can be performed on arrays.
Arithmetic arrays can be used in simple arithmetic operations, such as
adding or subtracting the values of members in different arrays, and in
true mathematical matrix operations such as matrix multiplication.
Additionally, values in both arithmetic and character arrays can be
indexed in ascending or descending order. Arrays used in arithmetic
operations must have the same number of dimensions. Let’s look at
some of the operations available. '

Array Addition and Subtraction

Example 1:

0010 DIM X(5),Y(5),Z(5)
0020 MAT X=Y+Z

In this example, each member of the array X is to be assigned the
sum of the corresponding members of the arrays Y and Z. The values
of Y(1) and Z(1) are added, and the sum is assigned to X(1); the values
of Y(2) and Z(2) are added and assigned to X(2), and so on.

Example 2:

0030 DIM X(3),Y(5),Z(5)
0040 MAT X=Y-Z

This example is like the first example, except that the array X is

assigned the difference between the corresponding members of the
arrays Y and Z.

Using Arrays 133

134

Scalar Multiplication

Scalar multiplication is the process whereby each member of an array
is multiplied by the same number.

Example:

0035 DIM ACL0,5), B0
0040 MAT ACLUI=(h) xR

In statement 40, A is redimensioned to correspond to the dimensions
of the array B. Then, the value in each member of B is multiplied by 4
and the product is assigned to the corresponding member of A; B(1)*4
is assigned to A(1), B(2)*4 to A(2), and so on.

Indexing Function

Indexing operations can be performed on character as well as on
arithmetic arrays. Character arrays are indexed alphabetically,
arithmetic arrays numerically. Arrays can be indexed in ascending or
descending sequence by the AIDX and DIDX functions, respectively.

Example:

DOLO Dred A%L858), BUE)

D020 DATA "DAN', "MEL ', "GLEN", "DAVE ", "BILL’
DOWD MAT READ A%

gO0%S0 MaT PRINT FLP,AS$

D0&D MAT B=AllX (A%

0070 MAT PRINT FLP,R

The printed output would be:

1A MEL Gl EM DAV BILL

) 1 I g
The numbers indicate the ascending character sequence of the names
entered according to the order in which they were entered. For

example, the 5 indicates that the fifth name entered (BILL) is the

lowest character value entered, the 1 indicates that the first value
entered (DAN) is the next lowest, and so on.

O

The following statements could be added to print the indexed matrix:

Matrix Multiplication

Matrix multiplication is the process whereby the matrix product of two
arithmetic arrays is assigned to a third array. All three arrays involved
in matrix multiplication must be two-dimensional.

Example 1:

0065 TIM X(2,2),YC2,2),2¢2,2)
0070 MAT Z=XxY

If X contained | a b and Y contained fe f
c d g h

the values of Z [j k] , would be constructed as follows:
| m

j=a*e+b*g
{sum of members in first row of X times members in first column of Y)

k =a*f+b*h
(sum of members in first row of X times members in second column of Y)

I=c%*e +d¥*g
(sum of members in second row of X times members in first column of Y)

m=c*f+d*h
(sum of members in second row of X times members in second column of Y)

Using Arrays

135

136

All the arrays shown in example 1 are two-dimensional, square, and
have the same number of members. Arrays used in matrix
multiplication need not be square or have the same number of
members, but must be two-dimensional and comformable. Look at
this example:

0075 DM ACE, W), B, 3),002,3)
0080 MAT C=AxR

Remember that the first subscript in a two-dimensional array indicates
the number of rows, and the second subscript indicates the number of
columns. (In the example above, A has two rows and four columns.)
To be conformable for matrix multiplication, arrays must meet these
requirements:

e The number of columns in the first array to be multiplied must equal
the number of rows in the second. In the example above, A(x,4)=
B(4,x). '

o The number of rows in the receiving array must equal the number
of rows in the first array. In the example, C(2,x)=A(2,x).

e The number of columns in the receiving array must equal the
number of columns in the second array. In the example, C(x,3)=

B(x,3).

These requirements are graphically represented below:

0!
U

A(2,4) B(4,3)

C(2,3)

@

The arrays in statements 75 and 80 are conformable and thus are valid
for matrix multiplication operations.

i
| m
o p
r s

If A contained |a b c d and B contained
e f g h

~ 0 3 X

the values of C I:u v w] , would be constructed as follows:
X Yy z

u=a*i+b*1+c*o+d*r
(sum of members in first row of A times the members in first column of B)

v=a*j+b*m+c*p +d¥s
(sum of members in first row of A times the members in second column of B)

w =a*k +b*n +c*q +d*t
(sum of members in first row of A times the members in third column of B)

x=e*i+f*l+g*o+h*r
(sum of members in second row of A times the members in first column of B)

y=e*j+f*m +g*p + h*s

(sum of members in second row of A times the members in second column of B)

z=e*k +f*n+g*q + h*t
(sum of members in second row of A times the members in third column of B)

Using Arrays

137

138

-
)

7

C

o O

O

Chapter 14. What to Do When Your Program Does Not Work

When your program does not work properly, you can use the
following 5110 aids to assist you in determining what is wrong:

e Program trace
e Program step
e Comments

e Keyboard-generated data files

PROGRAM TRACE

Program trace allows you to trace the order in which program
statements are executed. Each statement number is displayed (and
printed if you specify PRINT with the RUN or GO command) as the
statement is executed. The following example shows the display and
printout when the RUN TRACE, PRINT command is entered.

Sample program:

0010 DIM QB

0020 PRINT "ENTER % TEMPERATURE QUOTATIONS'
0030 MAT INPUT Q

goud FOR I=1 TO 3

0050 T=T+R(I)

00460 NEXT I

0070 A=T/S

0080 PRINT "5 DAY MOVING AVERAGE =';A

0oR0 STOP

What to Do When Your Program Does Not Work

139

140

The display shows:

RUN TRACE, PRINT <j\
0010 0020 ENTER % TEMPERATURE QUOTATIONS !
0030

62,65, 68,61, 64

G0N0 0050 00460 0050 0040 0050 0060 0050 00460 0050 0060 0070
0080 %5 DAY MOVING AVERAGE = &4 '

0090 f\

The printed output is:

BOL0 D020 G030 00Ww0D GOD0 00&A0 0050 G040 DO0B0 0080 005G 0040
DOED 0040 007F0 DORD 0090

Your program could stop because an error occurred, or you could stop
execution by inserting PAUSE statement(s) in your program; for
example:

0035 PAUSE

000 FOR I=1 TO &
0050 T=T+QCI)

0055 PAUSE

0060 NEXT I

The PAUSE statements allow you to trace and analyze just the part of

the program that is not working correctly. When the program above

pauses at statement 0035, you can start it again by entering GO 40, Q—\
TRACE. The program then pauses at statement 0055. While the
program is halted for the PAUSE statement, you can check the value
of variables to see if your program is progressing properly. See the
sample cross-reference program in Chapter 15, 7ips and Techniques
for a method of listing variables to determine where they are used and
whether they are used more than once.

You can also start and stop a program trace during program execution
using the WRITE FILE and FORM statements. For example:

6250 WRITEFILE USING 6260,FLS, "N, "N’
6260 FORM POSS,C, POSH,C
6300 WRITEFILE USING &260,FLS,'F','F’ (\

Statement 6255 turns on trace with output to both the display (N in

position 3 of file FLS) and the printer (N in position 4 of file FLS).

Trace remains on until statement 6300 when the WRITE FILE

statement turns it off (writes an F in positions 3 and 4 of file FLS). (\

PROGRAM STEP

With program step, you can execute a program one step at a time,
which can be helpful when you analyze complex routines. As with
trace, you can execute part of the program in step mode by inserting a
PAUSE statement at the beginning of the routine (or statements) you
want to analyze.

For example:

poLo T G5

0020 PRINT "ENTER 5 TEMPERATURE QUOTATIONS

O0A0 MAT IMPUT Q

N03E PAUSE Allows you to start program step
goM0 FOR I=L TO 5
POS0 TeTHAIT)

0060 MEXT 1 Allows you to stop program step and/or

g f..' (nl F:"ﬁ'!#ﬁ =~ analyze program results.
1070 BT

QOR0 PRINT "5 DAY MOVING AVERAGE = A
Qoo HTOp

When the program pauses at statement 0035, entering GO 40, STEP
causes the program to execute one statement at a time, allowing you
to check program results. For example:

RUN
ENTER 5 TEMPERATURE QUOTATIONS

62,65,68,61,64
GOWo, 8TEP Begin program step at statement 40.

Request the values of variables T and 1.

T, T

b 1
T,1

220 b

Continue processing at statement 70 without

5 DAY MOVING AVERAGE = &4

What to Do When Your Program Does Not Work 141

142

COMMENTS

Using comments within your program can help you remember program
logic and aid in analyzing program problems. When you are finished
developing your program, you can remove the comments or revise
them for future program analysis. Comments use storage and a small
amount of execution time. Thus, you shouid use comments carefully if
you are concerned with performance or storage use. However,
comments can be an important aid in future analysis of your program,
especially if someone else must maintain the program.

Keyboard Test Data Files

When developing or analyzing a program, you might have to use test
data. You can use keyboard test data file(s) to create a test file on the
display screen. You can open the screen for both input and output
and for both stream 1/0 and record 1/0 files. For example, you can
open line one of the screen as a stream 1/0 input file as shown:

0020 OPEN FL3,'001",IN

References to file FL3 imply that data is to be entered from the
keyboard; for example:

03460 GET FL3,A%,R,C

This statement indicates that an alphabetic field followed by two
numeric fields will be read from the file referenced by FL3; for
example:

Allen Brown, 4.80, 6085.56

You could also use lines 1 through 14 as a record 1/0 file, for
example:

0020 OPEN FILE FL2,'002",ALL
0400 REANFILE USING W10,FL2,A%,R,C
0410 FORM POSL,C20,NCS,NC3

References to file FL2 indicate that data is to be entered from the
keyboard.

You can enter test data as necessary to thoroughly test your program
during program development. When you are finished testing, you can
change device addresses to the value you will use in your finished
program.

~—"

)

Chapter 15. Tips and Techniques

Often, specific examples can aid you in understanding the operation of
a function or a group of functions. This chapter shows examples and

describes different techniques that you may find helpful in developing

and using your programs. The topics included in this chapter are:

Performance considerations

Storage considerations

Program analysis using a cross-reference program
Skipping to a new page while printing

Locating a character in a string

Testing for an error

Sorting an index file

Another way to read a stream |/O file

Examples of the different file access methods

PERFORMANCE CONSIDERATIONS

As you optimize the performance of an application, you may want to
consider the following:

Program design

Index file sorting

Print overlap

Display off

Main storage index area
Data file access selection

Tips and Techniques 143

144

Program Design

Performance of an application is enhanced if it is initially designed
carefully and thoughtfully. Flow diagrams are very helpful in designing
efficient running systems. There are many publications on
flowcharting that you may find helpful if you are not familiar with the
technique.

Index File Sorting

Many applications, such as inventory, make use of an index file with
pointers that allow fast access to desired records. If the index file for
the inventory example is sorted in ascending order, access to master
inventory records will be faster. The increased performance occurs as
the result of the fast scan feature implemented in the 5110, which
requires a sorted file. As new items are added to the master file, the
item number key (item number is specified as the key) is added to the
end of the index file. Depending on the activity of adding and deleting
records, the index file should be periodically sorted so that the new
index record is placed in its proper location and the unwanted index
records are deleted. You can sort the index file using the 5110
Diskette Sort feature; see Sorting an Index File in this chapter.

Print Overlap

The 5110 can overlap printer output with computer processing. If it is
possible with your application, the printed output might be as
illustrated below:

oot CalCULATION

3

gomn PRIMT FLP
00D CALCINLATION

G100 PRINT FLP
DLLn CaltuLaTIoN

In the above illustration, calculations to be included in the next print
statement are being performed while the previous line is being printed.

Display Off

Some applications may require extensive periods of processing time.
Such applications should execute faster if the display screen is turned
off so that the 5110 does not have to take the time to keep the
display generated. You can turn off the display screen by writing an F
in position 1 of file FLS. This procedure is described under Using the
System Control functions in Chapter 12.

Main Storage Index Area

Access to a master file record using an index file can be improved
substantially if you maintain a main storage index area that points to
the index file. To do this, you use the KW= parameter, which is
included in the OPEN statement for the index file. For example,

30 OPEN FILE FL2, ‘D80’, 9, 'TAXES’, IN, KEY, KW=900
In the above statement, 900 bytes of main storage have been allocated

for index file pointers. Use of this storage area can best be described
with an example.

Tips and Techniques

145

146

Consider an inventory application with the following characteristics:

The maximum number of items in the master file is 1000 items.

The key to the master file is the item number which is 12 bytes.

The diskette format is 256 bytes per sector.

The master file record size is 100 bytes per record.

The following questions can be asked:

e How large should the index file be?

e How large should the storage index area be?

Before you answer the above questions, study the following diagram
to help you understand the use of the KW storage area and index file.

KW=Main Storage

L

\v—\

Record Record
3 Key A Number Key H Number
Pointer to the first key
in the sector.
Sorted
Index File
~— One Sector |
. | V4 ey I /
Record Rec R
Key A Number Key B NumjL Key H N S
/ /7] /
Master File
[{ L
\ Key A Description Key B Description W\ Key H
7/

4

_/-\

The index file, maintained in sorted order, contains each key and the
record number of each record in the master file. A key record is
always 8, 16, or 32 bytes. In the example, the key length (item
number) is 12 bytes. A master file record number is 4 bytes, giving 16
bytes total for each key record.

The main storage index area contains the first key in a sector and the
physical record location of the key in the index file.

The index file sector containing the item number key is found by
comparing the item number to the keys in storage. Because the index
file and main storage index area are in sorted order, the sector
location of the key index record can be quickly found. The system
proceeds to the sector designated and reads the sector sequentially
until it finds the matching key. After the matching key is found, the
master file address is read and used to directly access the item master
record. If no key match was found in the index sector, the system
proceeds to the end of the file to see if new records have been added.
If no key match occurs at the end of the index file, an error occurs.

Now, to answer the first question, the index file size is found by
multiplying the maximum number of keys by the key length, which is
1,000%16 or 16K. The size required for the storage index area is
calculated as follows:

1000/ 16 * 14 = 875 bytes

Size of the Main Storage Index Area
Key Length Plus 2
Number of Key Records Per Sector (256/16)
Maximum Number of Keys in the Index File

This example, using KW=900 is slightly greater than the exact amount
of storage area to contain one key for every sector in the index file.

The above procedure produces the most efficient method of accessing
the master file by index key. However, you need not have one key in

storage for every sector in the index file. If storage is limited, as little

as one key in storage (KW=14) would improve access time by starting
the search in the middle of the index file as required.

Tips and Techniques

147

148

Data File Access Selection

One of the most important decisions is choosing the proper access VN

method for your data files.

Whether to use the sequential, direct, or indexed access method
depends on your application.

Individual Record Access

The fastest method of access to an individual record is directly by

means of the relative record number of the desired record.

For example, in an inventory file it is possible to convert the item \

number into a record number. ltem numbers could be 1 to 1000.
number 52 would be record 52 in the file. There are more compl

Item
icated

methods for creating a relative recard number; however, they are

beyond the scope of this document.

Indexing is the next fastest method to access individual records.

A

pointer to the master file data record is maintained in an index file.
This is the most commonly used access method because existing keys

such as item numbers can be used without chance of duplicates.

Processing a file sequentially to find an individual record is time

consuming because the file must be read from the beginning until the (\

proper record is found.

Sequential Access

If a file can be accessed sequentially, the fastest method would be to
sort the master file into the desired order before processing. If the file

is processed sequentially in some cases and directly in others, it

may

be more appropriate to create a sorted index file. The system can
then access the master file sequentially by accessing the index file

sequentially or directly by providing a key to the index file.

Y
N

Storage Considerations

User Storage

The amount of user storage available to you for application programs
depends upon your 5110 model. Four different storage sizes are
available:

16K bytes
32K bytes
48K bytes
64K bytes

Any model can be up-graded to the next higher model by the addition
of 16K of storage. In all models, approximately 4K bytes are used for
system-related functions. The remaining storage is available for
program and data storage. It is a good idea to subtract a buffer of 1K
bytes when estimating storage requirements.

Considering a 32K machine, for example, you would subtract 5K,
leaving 27K bytes for your program and data. The amount of storage

used for a program is a function of many items:

o Program Design

— Variables

— Program statements
— Buffers %

— Precision

Careful control of the above items should lead to both smaller
programs and more efficient programs.

Tips and Techniques 149

150

Program Design

Storage is allocated for each program statement you write and each
variable you use. Careful program design should eliminate unnecessary
program statements and variables. A flow diagram prepared for each
essential step of the application will aid you in writing the program.
Commonly used calculations, such as tax calculation, can be quickly
identified and written as a subroutine rather than rewritten in various
parts of your programs. Your application may lend itself to being
divided into individual programs, each with a specific function.

e Application

Data entry

Data edit/update
— Sort
Process/update
Print reports

The above functions could describe the steps in many different
applications. Each of these may, perhaps, also be subdivided into
smaller programs.

Addressing the elements of the application one at a time, rather than
attempting to write the entire application as a single program, should
result in easier programs to write and understand, and require less
storage for execution.

Variables

Each time a new variable is used in your program the system
automatically assigns a predetermined {(default) amount of storage for
the data in that variable. For example:

0020 Ad="JAMES SMITH'
The character variable A$ was assigned 18 character positions in

storage even though the data 'JAMES SMITH’ occupies only 11
positions.

)

(

If the data in A$ is constant or can be limited to 11 positions, you can
use a dimension statement to override the default value and assign
only the necessary 11 positions to A$, thus using only the amount of
storage absolutely necessary. For example:

0010 DIEM A%LL

A specific amount of storage is required for the definition of each
variable as it is encountered; this amount does not include the space
allocated to that variable for data storage. In the above example, with
no dimension statement, 4 bytes are required for the A$ definition,
bringing the storage utilization to 18+4 or 22 bytes. The amount of
storage required for the different variable definitions and data storage
is specified in the /BM 5110 BASIC Reference Manual.

Use of matrix variable definition can also help in conserving storage.
Suppose four character-fields are to be used as follows:

A$ Name

B$ Street Address
C$ City

D$ State

Assuming the data storage for each variable defaults to 18 characters,
a total of 88 bytes of storage would be required. If the same data
were placed in a four-element matrix, the amount of storage used
would be 4 elements * 18 bytes of data plus 10 bytes for the matrix
definition. For example:

(4 * 18)+10=82 bytes

Tips and Techniques

151

Program Statements

Program statements also occupy storage; this is a more difficult item
to estimate due to the complexities of each statement. As a rule of
thumb, the approximate amount of storage required for program
statements can be calculated by multiplying the number of program
statements times the average number of characters (excluding
delimiter blanks) per statement.

.

Program Statement Number of Characters
G010 PRINT. "ENTER PRICE’ 22
0020 INPUT P 10
0030 PRINT "ENTER QTY' 20
0040 INPUT @ 10
0050 T=pPxqQ 9
0060 PRINMT "TOTaAL COST 5T 26
0070 GOTO 0010 . 10

In the above example, there is an average of approximately 16
characters per line. The storage estimate for the program statements
is7 * 16 or 112 bytes.

L3
The actual amount of user storage available is displayed in the lower
right corner of the display when the 5110 is in the ready state. For a
64K system this is 65,536-4,624 or 60,912. The 4,624 bytes represent
system work space.

A more accurate method to determine program statement storage is to
save the program on tape or diskette. When the program is reloaded,
the amount of user space left will be displayed in the lower right
corner. Subtracting this number from 60,912 yields the actual program
statement requirements.

The storage requirement for the example above is 60,912-60,780 or
132 bytes.

After execution the storage available is 60,754 bytes, indicating that 26
bytes were assigned to variables and data when the program was run.

Buffers

Buffer storage is required for operation involving data files, printer
output, and the special function using A$.

N

q
\
AN

e

)

-

o O O

O

Data Files

Each time a stream |/0 data file is opened, a storage buffer of 50
bytes plus the physical record length is allocated. The physical record
length is 512 bytes if the file references tape, and the physical record
length is the sector size if the file references the diskette.

Each time a record |/0O file is opened a storage buffer of 68 bytes plus
a multiple of the physical record length is allocated. Most commonly
the multiple is 1 or 2. The physical record length for tape is always
512 bytes. For diskette it can be 128, 256, 512, 1024 depending on
how the diskette was initialized. Record I/O buffers are discussed in
the /BM 5110 BASIC Reference Manual.

Printer

Printer output requires a buffer storage of 200 bytes.

Using A$
The using A$ parameter is used with the READ and PRINT statements

0020 A%="FORM 3xNCH'
0340 PRINT USING A%,FLP,6,E,C

The first time a using A$ parameter is encountered, the 5110
automatically allocates a 420-byte buffer, which is used by all
subsequent using A$ statements. Statements referencing other
variable identification (such as B$) also use the same buffer area.

Precision Long and Short

When a program is in execution, each numeric variable is carried in
long precision (fifteen digits) and occupies eight character positions.
By entering RUNS numeric variables are carried in short precision
(seven digits) and occupy four character positions. Whether RUNS
(short precision) is acceptable depends on the requirements of each
individual application.

Tips and Techniques

153

PROGRAM ANALYSIS USING A CROSS-REFERENCE PROGRAM

Occasionally, while writing a BASIC program with many loops,
subroutines, and other functions, you may find that normal debugging
techniques are unsuited due to the complexity of the program. The
following is a cross-reference program that can be used to
cross-reference the occurrence of variables, line numbers, functions,
and so on, within any program saved in a file. To do this, simply load
the cross-reference program, and respond to its prompting messages
for the device address, number, and name of the file containing the
program to be cross-referenced. The program to be processed must
have been saved in source format with 64 or 128 character record
length. For example:

BaVE L, TNAME” SOURCE, RECL=&4, T80

For details about any of the statements in the cross-reference
program, see the 5770 BAS/C Reference Manual.

The following is a listing of the cross-reference program.

0010 REM BASIC CROSS REFERENCE FPROGREAM - REFEREMCE EXTRACT
0020 REM

D030 DIM MW, BEY, CHIP

Q040 DIM REWCE0000, SHU 030000 , XCE000)

GOS0 Ce="ARCOHEFGHTJKLMNOPAQRSTUVHXYZEH@0122305678Y "
0060 PRINT "ENTER DEVICE CODE, FILE NUMBER AND FILE ID FOR PGM’
Qo770 TNPUT D4, F,F$

0080 ONERROR GOTO 200

0090 OPEN FILE FLL, DS, F,F4e, TN

0100 ONERROR SYSTEM

0110 E=RLMCFL1")

0120 TF Rses4 GOTO 150

D130 DIM A%L0, MESY

g1ud GOTO 290

0LE0 TF R#LE8 GOTO 180

0160 DIM ASL2W, M$123

6170 GOTO 290

0180 PRINT "RECORD LEMGTH OF INPUT FILE NOT &4 OR 128°
0L20 STOP

G200 IF &ERR2408 GOTO 270

3210 ONERROR SYSTEM

OPEM FLL, D%, F,F$, IN

WRITEFILE FLS,’ Fl.l'

Tam=l,

0250 DIM AEL28, MeL2Y

G260 GOTO 290

0270 PRINT "ERROR DURING OPEN ~"&ERE

0280 STOP

0290 WRITEFILE FLS, "F'

D300 REM

0310 REM S5TaRT OF LOOP TO PROCESS INPUT RECORDS

154

~

O

0320
0330
0340
0350
03460
0370
03810
03920
0400
o0
0420
030
puun
OuEQ
Oué&0
Ou70
0uBo

Q0

GE00
0510
0520
0530
0540
0550
0560
0570
0580
05v0
0600
0610
0620
34630
0640
1650
06610
0670
0680
D690
6700
n7Lo
0720
0730
0740
0750
0760
av7o
0780
0790
0800
ael10
0820
0830

REM

GOTO 370 ON Ti

REAIFILE USING 350,FL1,N%,M$,EOF 710
FORM CY4,X1,0

GOTO 400

GET FL1,A%,EOF 710

N$=GTR(AS, 1,4)

ME=STR(AS, 6)

PRINT FLP,N$' 'M$

GOSUE 970

IF STR(M$,1,3)="REM' GOTO 330

IF STR(MS,1,1)="1" GOTO 330
TFOBTR(M%,1,w)="DATA" GOTO 330
Ab=MS

REM REPLACE ALL OPERATORS WITH ELANKS
REM

FOR T=1 TO LENCA®)

IF IDX(C%, STROAS,T,1))#0 GOTO 560
IF STR(A®,I,1)#' """ GOTO 550
J=TOXCSTRCAS, T+1), """
STRCAS, T, J+l)s"

T+

GOTO 560

STRCA®, T,10=" °

NEXT 1

REM INPUT RECORD HAS REEN MODIFIED - EXTRACT REFERENCES

L=LENC(A$)

T=0

T=l41

IF IxlL GOTO 3340

IF STRCAS, IT,10=" " GOTO 400
JEINXCGTROASG, 1), %)
Be=8TR(AS, T, .J-1)
I=1+J-1

Xl=xK1+1

SH X1 =NG

R$ (X1 y=R%

IF Tl GOTO 620

GOTO 330

REM END OF PROGRAM ~ SORT AND PRINT 0OUT

GOSUR 1040

MAT R$(X1)=R4%

MAT SH(X1)=8%

MAT X{XLy=(0)

MAT X=ATDX{(R%D

C0=0

FOR I=1 TO X1

IF N$=R$(X(I)) GOTO 850
GOSUR 970

PRINT FLP,TABRCL) ,RE(XCI)) TARCEY) "1 "
N=N-+1

Co=0

Tips and Techniques

155

Page of SA21-9307-0
Issued 28 April 1978
By TNL: SN21-0277

0840 NE=R${(XIID

0850 Co=Co+1

08460 IF COZ10 GOTO 900

0870 GOSUR 970

0880 PRINT FLP, TAR(E), "1

0890 Co=1

0200 PRINT FLP,' ';8$(X(I));
0910 NEXT I

0920 PRINT FLP

0930 PRINT FLP, "'NUMRER OF SYMROLS ="'N
0940 PRINT FLP, 'NUMBER OF REFERENCES ='X1
0950 GOSUR 1040

0940 STOP

0970 READFILE USING 980,FLS,LO
0980 FORM POS11,NCS

0990 LO=INT(LO/66)%EL6+66~1.0
1000 IF LOZ0¥LO:6 GOTO 1030
1010 PRINT USING 1020,FLP,"
1020 FORM C1,8KIPLO

1030 RETURN

1040 READFILE USING 10%0,FLS,LO
1050 FORM POSL1,NCS

L0060 LO=INT(LO/466)%b66+66~L0
1070 PRINT USING 1080,FLP," '
1080 FORM CL,8KIPLO

1090 RETURN

The following is a sample printout when the cross-reference program
is run on itself.

At L 0370 0 0380 0 0390 0450 0uB0 0u90 0500 0510 0520 0550
v 0EB0 O 0620 0630 0640

ABLET 0140 0250

AsL0 0130

ATING 0760

Beg 0 D40 04680

Be o 0030

L v D3ED

Ces v 0050 0490

Ce39. 0030

Cooor 07T0 o 0830 0830 0850 0860 0890
ci o+ 1020 1080

Cw v 03E0

D0 0070 0090 0220

DIM v 0030 0080 0130 0160 0250

EQF 0 0340 0370

ERR ¢ 0200 0270

F v 0070 00%0 0220
Fge v 0070 0090 0220

FILE: 0090

Fl.Fooo o%00 0810 0880 0900 0920 0930 0940 1010 1070
FLG 0230 0290 0970 1040

Fl.i v 0090 0220 0340 0370

FOR + 0u80 0780

156

))

FORM:
GET

GOs:
GOTO!

I :
Inx
=
N
INPU
INT
N :
L
LN
Lo
M$

el
MEE9:
MAT
N :
NG

NbL

NOH
NEXT:
{IN

ONER
QPEM:

POSL

PRIN:
R :
R4
Rl
REAL
RETU:
RN
8%
B4
SKIP
STOP:

8TR

SYST:
Tak
TGO
T1
LSTNS
WRIT:

0350
0370
o410
0080
OUH 0
0860
0uB0
0600
0750
0u90
0120
1690
0050
0070
0590
0510
0560
0460
0970
0340
0160
0130
0730
DE20
D340
0030
0FE0
0540
0330
0080
0090
0980
0060
1010
0110
0680
0040
0340
1030
0110
0870
DOu0
1020
0150
0380
0620
0100
0810
o480
0240
0340
0230

1980

0720
0120
(0
1000
us0
0600
0810
0510
0150
0790
0220

1060
0520
0610
0Hao0
1950
0390

02450

B7u0
0820
0380

1050
0910

0100
0220
1050
0180
1070
0120
0730

0970
1090

07ug

1080
0280
0390
0630
0210
0810
07g0
0330
0970
0290

1020

peno
0140
jue0
0500
0610
0840
0630
0200
0860

0530
0620
(250
ouoo

0750
0930
ouoo

0210

0270

0150
0730

10u0

0740

1940
20
0640

0gao

1010

1050
0g70
0150
0500
0510
0620
0900

Ou2a
1000

D630

0290
u20

0760

G670

ouao

0760

0200

0u30

10u0

1080

0950
0170
0500

03520
0630
0910

0u30

1640

1000
w30

0790

0810

0790

OuhG

1070

0200
0610

06410

0l 0

0650

1000
U0

0840

0880

0810

oue0

02610
0620
01530
0650

490

1040
0n50

0900

0840

Page of SA21-9307-0
Issued 28 April 1978
By TNL: SN21-0277

0330 0360 0420
0690 0700 0790
055 0560 0590
0650 04620 0780
0500 0610 0620
1060 1060 10460
0920 0930 0940
0510 0520 05350

Tips and Techniques

157

Page of SA21-9307-0
Issued 28 April 1978
By TNL: SN21-0277

158

X

X1
o
1

10
|Lo020:
1 L030:

1040
10%50:
1080
128
150
180
200 ¢
270
290
Kt :
3000
330
| 350
X700
i :
boo
bl :
9S00
560
é :
400
608
620
&l '
6héd
TL0
a0
Qo0
A | I
Qe0

00W0
0350
LA
0240
0520
RSN
0840
1010
1000
0720
1040
1070
0150
NlL20
0150
oo
g20n
010
ouz2o
aouao
0u20
03u0
1330
0380
1E460
0810
0500
ouen
0390
0620
200
0690
120
0990
0340
0790
0860
010
0970

0750
0660
0590
0380
05E0
0890

0950

0170
0040
0430
L0
0880

0540
1000

0990
0370

0800

NUMERER OF SYMROLS
NUMEBER OF REFERENCES =

0760 0750
D460 0670
0750 0770
0u20 0430
0600 0620
0260
0040
Oull 0610
0990 1060
0870
= 105
376

0810
n&6810
0830
043D
1640

0700

1060

agnn
1730
1000
Ouh0
0450

1060

1900
0740

o480
U640

0750

0490
0780

0780

03500
0810

0eu0

0510
0820

»

~—

-

®

O

O

O

Page of SA21-9307-0
Issued 28 April 1978
By TNL: SN21-0277

SKIPPING TO A NEW PAGE WHILE PRINTING

Using File FLS

In the cross-reference program (see Program Analysis Using a
Cross-Reference Program, this chapter), lines 760 to 880 show two
methods of skipping to.a new page while printing.

e Skip to a new page with 6 or fewer lines left

o Skip unconditionally to a new page.

Both methods use a portion of the contents of file FLS. Positions 1
through 15 of file FLS always contain the total number of lines printed.

0970 READFILE USING 980,FLS, L0
0980 FORM POSLL,NCS

09920 LO0=INT(L0/66)166+66-10
1000 IF LOZ0¥LO:=& GOTO 1030
L0010 PRINT UBING 1020,FLP,°
1020 FORM CL,8KIPLO

1030 RETURN

L0u0 READFILE USING 10%0,FLS,LO
1050 FORM POS11,NCS

1060 LO=INT(LO/&6)%6E6+66~10
1070 PRINT USING 1080,FLP," 7
1080 FORM CL1,5KIPLO

1090 RETURN

Tips and Techniques 159

Statements 760 and 830 are READ FILE statements that access file

FLS. Statements 770 and 840 are FORM statements specifying that

only the b numeric characters beginning in position 11 of file FLS be (\
accessed. From this point on, the two methods of page skipping '~
differ. The subroutine consisting of lines 760 to 820 specifies that

printing begin on a new page if space for 6 or fewer lines remains on

the current page. The subroutine consisting of lines 830 to 880

specifies that printing begin on a new page unconditionally. In both r\
cases, the constant 66 (11-inch paper at 6 lines per inch) is used as N
the page length. The calculations in statements 780 and 850 use the

data from file FLS (named LO) to determine remaining space on the

current page. The IF statement (790) specifies the conditions for

skipping to a new page {(if space remaining is less than zero or greater

than 6, continue printing). Statements 800 and 860 specify that blank \
lines be printed according to the FORM statements in 810 and 870. N~
These FORM statements also indicate that LO is the number of lines to

be skipped. The following examples show a breakdown of the

calculations in lines 780 and 850. These examples assume a value for

LO (positions 11 to 15 of file FLS) of 3200 or 670.

Example 1 Example 2

L0=3200 LO=670

3200 670

INT(LO/66) Integer portion of INT(LO/66) This determines the number

48 LO divided by 66. 10 of pages already printed. C\

(48)*66 Integer portion of (11)*66 This determines total lines

3168 LO multiplied by 66. 660 already printed on pages.

(3168)+66 Lines printed on (660)+66 This allows for inclusion of

3234 other pages plus 66. 726 the 66 lines available on the

current page being printed.

(3234)-L0 Total lines (726)-L0 This determines the line spaces

34 possible (including 56 remaining on the current page
current page) (34 and 56, respectively).
minus LO.

@

160

O

O

O

User Program Control

Printing can

also be controlled by the user keeping track of the lines

printed on each page.

0010
0020
0030
0ou0
00350
00460
0070
0080
00940
0100
0110
0120
0130
0in0
01540
0140
0170

Ta=? T = lines per page
M2 H = lines in the page heading
ST -H S = lines available for printing

GOSUR 120
FOR T=1 T0O 110

PRINT FLP,I Print your report
Lﬂ = '..r -+ .'.
IF L=8 GOTO 100 Test for printed lines equal to
GOTO 110 S = lines available for printing
GOSUR 120 .
NEXT ¥ Skip to a new page
REM Print page heading
Pras e 0120-0170 { Set page number
L=0 Lines printed =0
PRINT FLP
PRINT FLP, TABRCLES)Y, ' PAGE R
RETURN
PAGE 1
P&GE 2
PéEGE 3

For simplicity of illustration, a page size of 7 lines was used. This
would normally be 66 for standard printed reports. Checks, invoices,
and other documents would require different page sizes. The page
heading would also be more extensive; however, the concept is the

same.

By changing the value in variable T, you can quickly accommodate

various sizes

of paper for the same report.

Tips and Techniques

161

Page of SA21-9307-0
Issued 28 April 1978
By TNL: SN21-0277

LOCATING A CHARACTER IN A STRING

Another form of the computed GOTO statement uses the IDX intrinsic
function, which allows you to determine the exact position of a
specific character within a character string. For example, assuming
that the operator entered N in response to input statement 920:

DIM A%l
PRINT
INPUT

0910
0920
ne3E0
neu0
DeEn
0960
a
¥
3%

GOTO 250,2000 ON IDX

"ARE DIVIDENDS

A%

GOTO Y10

REM

TO BE REINVESTED? Y OR N°

CYMN' L A%)

| Statement 940 causes the program to branch to statement 2000 (the
second statement number in the list, just as N is the second character
in the string). If neither a Y or N is entered, the program repeats the

l prompt to the operator (statement 950).

TESTING FOR AN ERROR

The ONERROR statement provides another means of error recovery.
This statement operates with two internal functions (& ERR and

& LINE) to identify any type of error by error number and by the
number of the line at which the error occurred. You can enter an
ONERROR statement with a GOTO parameter to transfer program
control to a particular statement in the event of an error, as shown

below:

0010 ONERROR GOTO 1135
0020 OPEN FL9, D805, GEORGE", QUT
0030 PRINT

0ou0

INPUT

00506 PRINT

Qea60 FOR

aove FOR R
D080 A=Px{L+R/100) 1T <———— Calculated future value of

0a90

PUT FL?,T,R,A
0100 NEXT R

0110 NEXT
ONERROR SYSTEM

0115
01320
0130

162

CLOSE
sTOP

T

"ENTER

P

PRINCIPLE"

CTIME ', CRATE ", "AMOUNT'

LT0

FlL.9

T=1 TO 10

20

principal at a rate of
1% to 20% for 1 to 10
years compounded yearly

o

N

—

\.

In this example, the ONERROR statement specifies that file FL9 be
closed (statement 120) if an error occurs. If, for example, the file was
too small to hold all the values being entered into it, the ONERROR
statement would ensure that the file was properly closed. The file
could then be re-marked to a larger size.

The internal constants (& ERR and & LINE) can also be used to record
error occurrences in a program with many input/output statements. In
the following example, the ONERROR statement specifies that the
program branch to the PRINT statement (line 150). The internal
constants & ERR and & LINE are then inserted into the displayed line
to indicate the error number and line number at which the error
occurred.

GOLE OMERROR GOTO 1udé

0020 OPEN FLW, "D80", "aF ", IN
O30 GET FLu,a, R, 0,0 E

0080 LET R=d

a0sEn &
a0
novEg G
goa0 OPEN FL4, "Dae", "aF ", OuT

powa PUT FlLu,a, R, 0

0100 CLOSE FLY

G110 orF Flae, "0ge, "aF ', I

nLao Fld, o, 8, C0,E

BLED LET d=Red

GLu0 LET Lemf-f

gAus GOTO 1460

O14é OMERROR BYSTEM

0150 PRINT "ERROR®, &ERRE, "HAS OCCURRED a7 LINE', &LINE
01460 CLOSE FL4

0170 8T0

Note that the EXIT statement and the error exit clauses on
input/output statements take precedence over the ONERROR
statement. In other words, if an EOF condition occurs in a statement
with an EOF exit specified, the EOF exit is taken even though the
program might also contain an ONERROR statement. ONERROR
SYSTEM should be the first statement of an error recovery program to
avoid loops. Terminal errors clear internal error pointers and the
program must go to end-of-job.

Tips and Techniques 163

164

SORTING AN INDEX FILE

a0Ln
020
RIRAY
a0
DoE0
0060
navao
gaan
NI
g1an
arian
G120
0130
IR
150
D160
oLvn
6180
01w

G290
0300
310

When you create a key-indexed file, the key and corresponding
location of each record in the file is stored in the index file.
Subsequent access of the file can be significantly improved if you sort
these keys into sequence. The following sample program illustrates a
method of sorting the record keys in the index file. This is a storage
sort and assumes that all keys can be loaded into storage at one time.
The size of your machine will determine the maximum number of keys
that can be sorted in this manner. If your 5110 storage size is less
than 64K, adjust the DIM statements (130, 160, and 190) accordingly.
Only those statements in the sample program that pertain to the index
sort are discussed; others may be self-explanatory.

REM ITMOEX FILE SORT PROGRAM
REM

TFOSTORAMGE STZE T8 LESH THAM &MK ADJUST DEIMEMSTONS
REM FOR K& AN X ACRCORDINGLY

REM :

PRINT "ENTER DEVICE CODE, FILE NUMBER aANIDY FILE TDENT®

PRINT "FOR INDEX FILE TO BE SORTEDS

THPUT L, F L P ‘\\\\\
OPEN FILE FLL,0%,F,F$, TN

Res RN FLL D Length of last record in FL1.
TF R#£32 GOTO 150
DM KEE2 000000, X01400)
GOTO 200

F ReLS GOATO 180
DIM KEL&6(2300),X {2300
GOTO 200

Identify key index file.

Key records are always 8, 16, or 32 bytes.

5000 Space for 3500 8-byte keys in K$.

RECORDS TN THE FILE

Ea
SEAGFTLE FLIL,K${1) , EQF 240 <«————————Bring all key records into storage.
GOTo 210

REM CLOSE ITNPUT FILE, AND DETERMINE SORTED ORDER

N

. FFTLE FT!.‘,,L//——— Set matrix size to | elements.
MET K$CT =K

MET XD y=d I XK Ascending index value of K$ into X.
REM REWRITE INDEX FILE IN ASCENINENG SEGUENCE

OPEN FILE FLL, D, F, Fs, 0UT, RECL=R

FOR J=1 T0O I

WERITEFILE FL1I,K${X 0D New file of keys in K$ created
i““f?f'!'l’; . as indexed by X(J).

I

PRINT "HOT VAl Tl INDEY FITLE RECORD LEMGTH®

W,

O

o)

Page of SA21-9307-0
Issued 28 April 1978
By TNL: SN21-0277

Statements 70 and 80 request the indicated information, which is then
used to open the file in statement 100. The length of the last record
accessed in the file referenced FL1 is assigned to R in statement 110.
In statements 120, 150, and 180, the exact record length is tested, and
variables K$ and X are adjusted accordingly in the following statement.
Note that, if record length is not equal to 8 (statement 180), the
program terminates by branching to statement 350. Statements 210,
220, and 230 read all the record keys from the index file and branch to
statement 240 when end of file is reached. The file is closed in
statement 260. Statements 270 and 280 put the indexed file values in
ascending order into matrix X (see /ndex Function in Chapter 2).
Statement 300 reopens the original file (referenced FL1) for output
with the same record length. Finally, statements 310, 320, and 330
write all the record key values into the file in ascending sequence
according to their ascending order in matrix X.

ANOTHER WAY TO READ A STREAM INPUT FILE

Using a system file called file FLS, you can obtain an alternate form of
stream-oriented file input. This form of input allows your program to
get a logical record from a stream-oriented file and assign the entire-
record (including all quotation marks and commas) to one character
variable. Thus, a BASIC program in source form and in a type 2 or
type 9 file can be read and processed as in the preceding
cross-reference program. Alternate stream file input can be obtained
only from a file that is already open. You can invoke alternate file
input by writing the file reference code (FLO-FL9) of the file in
positions 7 through 9 of file FLS using the WRITE FILE statement (see
the /BM 5110 BASIC Reference Manual).

Tips and Techniques 165

Page of SAZ1-9307-0
Issued 28 April 1978
By TNL: SN21-0277

aoen
Doen

0100

D200
0210
0220

D230

166

A logical data statement in a stream 1/0 file can be read into a single
variable as illustrated: —~

0010 19USHA0, " ADAME Supply',964.60,359.00, "8/722/77° ~

The above record could represent:

Custormer Number 94560 2
Customer Name v Adams Supply \-\,»
Total Purchases to Date 964.60
Last Purchase Amount 359.00
Date of Last Purchase 8/22/77

The data, if located in file 3 on device ‘D80, could be read into a C/

single variable as follows:

0010 OPEN FLIL, "080°,3, "CUSTOMER ", IN
0020 NIM AssL

0030 WRITEFILE USING w0,FLS, "FL1L'
00u0 FORM POSY,C

(050 GET FLL,A$

go0a0 PRINT A%

The data in A$ as printed in statement 60 would include all commas
and quotes as well as the actual data. The output from 60 would
appear:

b
94560,’ADAMS SUPPLY’,964.60,359.00,'8/22/77 C

Referring to the cross reference program earlier in this chapter, the
program uses a type 2 or type 9 file for input as follows:

If an error occurs, control transfers to statement
0200.

If this statement executes without error, a type 9 file
OHMERROR GOTO 200 / has been opened.

OPEN FILE FLIL: D%k, Reset error trapping. (\ .

OMERRORE SYSTEM Error 608 indicates that a type 2 file exists and that
the program tried to open it as a type 9 file. Control
follows in statement 220, where the type 2 file is
opened. Any other error passes control to statement

IF &ERR£408 GOTO 270 270 for termination C

OMERROR SYSTEM

Reset error trapping.

OPEN FLL DS F P INT——
Open the type 2 file.
WRITEFILE FL%,® FlL.d <

Invokes alternate input from a type 2 file to supply a C
logical record, including quotes and commas, in a
single character varialbe.

O
| ()

O

Page of SA21-9307-0
Issued 28 April 1978
By TNL: SN21-0277

With these statements, you have opened file FL1 and you have
dimensioned A$ and M$ to contain the logical records. By testing for
an error in the opening of a stream file as a record file, the program
reads either a type 9 file (fixed length record) or a type 2 file (variable
length record) with delimiter characters. This alternate mode ignores
the commas of the type 2 file.

Different File Access Methods

The following programs were written to illustrate various methods of
file accessing. Before these programs were written, the diskette was
first marked. Unlike tape files, diskette files can be marked and then
re-marked, if necessary, without affecting any other files.

Programs were created to illustrate the following record 1/O topics:

o Data entry with key index file

o Direct access and update with key index

Sequential access by key index

Sequential access with no key

Direct access by relative record number
e Create multiple index

Each program uses the data file created by the first program.

Tips and Techniques 167

168 -

aoLo
ga20
RIS
00u0
0050
00610
0070
0oao
0090
0100
o1i0
g120
0130
0140
0150

Creating an Index File

The purpose of the following program is to illustrate the method by
which a record 1/0 file with a key index file is created. In this example
an inventory master file is created with a key file of item numbers.
The amount of data is purposely limited, and the method of data entry
is simplified in order to focus on the method by which both the master
and key file are created.

Consider that you wish to store inventory data in your 5110. Fast
access to each item is critical and the inventory data must be easily
and quickly updated. The initial data files are created with the
following program:

Inventory master file specified

OPEN FILE FLL,'080°",2, "ITEM. MASTER®, QUT, RECL=12¢

OPEN FILE FLL, "08o ", 1, "TTEM . NOINDEX ", QUT, KEY , KP=1, Kl.=59
o e oy
liilill,!l\” ; E;,N TER . ETEM NUMRBER \Key file specified
IF Td="END' GOTO 150

PRINT "ENTER . . . DBESCRIPTION'
INPUT D% + Operator entered data
PRINT “ENTER . . . GTY ON HaANI
INPUT Q

PRINT CENTER . . . UNIT PRICE’
INPUT P) Data written to master file
WRITEFILE USING 130,FLL,TH,04%,Q,P /

FORM C%,C20, PIC(ZEZZZH)Y , PLICISs5E . B
GOTO 30

STOP

Record format specified

In the above example, the record format is specified in statement 130.

Item Number 5 characters
Description 20 characters
Quantity on Hand 5 characters
Unit Price 8 characters

The key field is automatically created as a result of statement 20,
which specifies file 1 on device D80 as the key file using b characters
(KL=5) starting at position 1 (KP=1) of the master file (item number) as
the key. The overall record length is 128 bytes (RECL=128). Because
our data consumes only 38 bytes, ample space is available for
additional inventory data.

After the inventory data was entered, the master data file was listed
and is shown below:

HEREWIRTVER SO00 1
SUREWIRIVER Wi HE D
BOHLTS A0
PLMP 340 HORSE ¥
PLIMP 18 HORSE
HerMER

PIPE WREMNOH

The order in which the items are listed is the order in which they were
originally entered. As you look at each record you can see the record
format (space for b-character item number, sbace for 20-character
description, and so on.

This data file is now available for access and processing.

The key file created in file 1 should be sorted to produce the best
operating performance.

Tips and Techniques

169

nolLn
6020
N30
nouQ
IR
a0
nayo
0080
nosn
0100
0110
120
0130
0140
0150
0160
01v0
0180
n1so
U’Un

170

Direct Access and Update with Key Index

The purpose of the following program is to illustrate how you can
directly access a data file by key, alter the data, and update the master
file. This program uses the data file created by the previous program.
The method of altering the data after it has been accessed uses a
simplified version of the full screen formatting capability of the 5110.
Using these concepts, you should be able to construct efficient
routines.

Constant for controlling cursor position Specify format

of inventory

1.I.I.M l ‘J><.>'4 P BHE0 data display

DESCRIPTION ON HAMD UMIT PRICE

[

et TTEM MUMBER' Position cursor as specified in statement 10 J
GTRSS, 1, 430="FORM POSZ, CLL, X3, 08, X180, 087, X80,01,020,02,
$TR($$,MM,35§m'PIC(HZZZ#),G‘ xltfmﬂq$%,ww>,c1,|uuu

R

OPEN FILE FLL, D80 ,2, ITEM.MASTER' , ALL (kjfjrf‘”':afztfr and

OPEM FILE FLL, "DE0', 1, " TTEM.ND . INDEX ", all, KEY S |

OPEN FILE FL2, 002 ,nl..l...\ input and output

PRINT "ERNTER .IANI.H...‘-" EEY" Open screen for record 1/0

ITNPUT K% <— Enter item number desired input and output

TF Ké='END' GOTO 230

READFTLE USITHG lu[l,ll L, KEY=K$, T, 0%, 0, P, NOKEY 250 —— Item is retrieved
FORM C5,020, rlr"s,;\n,"z 2 using key
WRITEFILE USING 5%, |"'|...:. s, T, Fib, 5 Db, s 0, s P,
READFILE USTNG 190, FL: m»,u P CONY 170 ltem data is
FORM POSW, G20, X2, NCS, % NCE 5 \ displayed
REWRITEF ILE LS ING 210, FL1, D%, u P

FORM POSE, G20, PIC(ZZZ7H) , PICCEESEH) Data items can be updated

GOTO 120

PRINMT TEND OF JOBY
STOP

PRIMNT " waeseaestaeacacanar e O KEY FOURDD 36260690 98 26 36 38 36 98 3596
PRINT

GOTO 120

Master file is updated

The master file is available for both access and update because the
parameter ALL is specified in both OPEN statements 90 and 100.
OPEN statement 110 referencing device 002 prepared the display
screen for record input and output.

C

The operator keys in the item number in statement 130. The 5110
then searches the key file for that item number. When found, the key
record points directly to the location of the data record in the
inventory master file. The master file data is retrieved (statement 150)
and displayed for operator viewing (statement 170). The system
positions the cursor at the beginning of the description data field. If
no changes are to be made, the operator simply presses the EXECUTE
key. If changes are needed, the operator positions the cursor
appropriately, keys the altered data, and presses the EXECUTE key.
When the execute key is pressed, the displayed data is rewritten back
to the master file.

TTEM NUMBER 5002

DESCRIPTION ON HAaND UNTT PRICE

=PUMP L2 HP W LEaaarre 485,00«

.....

annz
01840 wes

TTEM MUMBER A2

DESCRIPTION ON HAND UNTIT PRICE

FHAMMER 5 18 e hd, 25

[pEg | S

ﬂ l £ l] B4
L R WA F

The above illustration is a copy of the display screen output. Item
number 5002 was requested, and the quantity on hand has been
altered to 13. Then item A202 was requested, and the quantity on
hand was altered to 18.

If an invalid key item number was entered, the NOKEY parameter in
statement 150 would cause the system to print ‘'NO KEY FOUND’
(statement 250) and request the next key (statement 120). The marks
to the left and right of each data field bracket the area where valid
data may be entered.

Tips and Techniques 171

gora
po20
1030
R
000
nn&0
URINAL
nnao
HRIRR)
0100
nr1a
nL2a
HL30
0140
01
140
nLva
11a8q
01?0
g0
IENR);
0220
G230

172

Sequential Access by Key Index

The purpose of the following program is to illustrate how the data in a
master file can be accessed in sequential order specified by the key.
Sequential access by key means that each key and its corresponding
record will be accessed in alphameric order. That is, all keys beginning
with A are accessed first, then B, and so on with numeric-only keys
accessed last.

REM SAMPLE PROGRAM TO READ THE INVENTORY

REM DATA BASE SEQUENTIALLY BY KEY ITEM NMUMRBER

R

RE M

REM

ODIM Faad, Heah, DH20

REM

DaETE TTEM NUMBER NESCRIPTION OM HEMD UNTT PRICE:
RE&D Hb

PRIMT FLP,H% Format output data.

RE M

STROFS, L, 39 ="FORMPOSL, X%, G5, X7 005, XL, PICOZZZZH , X3,
STROFS, W0, 18)="PICCSSEEE. #1), 8KIP"

RE 4

OPEN FILE ML
OPEN FILE F
PRINT FLP
REATFTLE USIMG 190, FLL, I, 0%, 0, P, FOF 220-— Data file is read until the
FORM G5, CR0, NCS, NES ., 2 last item is encountered
PRIMT USTNG F%,FLP,Im,ﬂm,m,P<-____~__‘-~
GOTD 180 :

PRINT TARCI0), "END OF JOR®

STOR

L, rnent 5, 0
I AP 1 21 IR A §

TEM, MASTER ", TN } Key and data
TEM, MO, INDEX ", IN, KEY files specified.

Each item is printed

o O

O

TTEM NUMRBER DESCRIPTION ON HAND UNIT PRICE

A0 HAMMER 18 bh, 20
AZ0SE PLIPE WRENCH 13 hlé P
AE00 SCREMORIVER v $8, G50
Ra2n2 HUREWDRIVER G000 A
BE00 BOLTS At $0,85
IULRY PUMP 30 HORSE K $RE, 00
wSin PUMP L2 HORSE 13 85, 00

Running the program shown above automatically creates the printed
output as illustrated. Notice that the item numbers are listed
alphamerically, and that the on-hand quantities have been updated
according to the previous program.

If the key file was sorted, the next sequential key could be located
more quickly, thus making this program execute much faster.

Sequential Access with No Key Used

The purpose of this program is to illustrate how your data file may be
accessed sequentially without the use of a key index file. Even though
a key file was created, it is not necessary to use it for every access.
Sequential access to a master file without a key simply means to
retrieve the records one after the other in their order of appearance in
the file. In many cases, this will be their original order of entry.

Tips and Techniques

173

The following program is the same as the previous program except
that statement 160 has been deleted; you do not open the key file.
The result is a listing of items exactly as they appear in the master file.

Fropdle Mg A, THERED

URTT PRICES

CTTER HUMBER DESCRIPFTION
H

FLE, Hb

ESERY

The output of the above program is illustrated below:

TTEM MUMBEER O BT LMIT PRICE

This technique is handy for creating a fast listing of a data file because
it avoids access to the key file.

<1

174

)

Page of SA21-9307-0
Issued 28 April 1978
By TNL: SN21-0277

Direct Access by Relative Record Number

The purpose of the following program is to illustrate how you can
access a record directly if you know its location in the master file.
This is the fastest method of access because the system can go
directly to the desired record in the master file rather than looking up
the location in a key file or searching for the record sequentially.

The following program is the same as the program previously
described under Random Access and Update Using Key Index with

the following changes:
Statement 100 deleted

Statements 120 & 130

Statement 150

Statement 250

Statement 140

No key file is opened and specified.

The operator enters a numeric record
number rather than a key.

The record number is specified in

the read statement with a REC=
clause and a NOREC error branch.

Error NO RECORD FOUND is displayed.

Branch on zero rather than END.

Tips and Techniques 175

176

0010
IRIDER1)
G030
noun

n0&n
navo
nosn
noen
0110
0120
0130
niuo
0150
1160
DL70
n1a0
niwn
p200

0230
02u0
0250
B2an
02va

The program and its output are shown below: Notice that record
number 3 is actually the third record entered by the original data entry
program.

niM F
P * T
Fopes T

-, SEE
RLPTIOM O HAMND UNIT PRICE’
LM NUMBER'

STROEE, 1, 430="FORM POSZ,CLL, X3, G5, X180, 007, X80, 01, 020,02

STROBS, WU, 38)="PIC(ZZZZH) , 0o, PICCRSEE8 ., #4) , CL, POSW?

LR, ThR0 2, T ITER MASTER ", ALL

Lk FLE2, T a0z, Al

EMTER RECORD NUMRBER®

INPUT K

TF K= GOTO 230

READFTLE USING 1460, FLL, REC=K, T4, e, 0, P, NORETD 250
FORM 5,020, NCE,NCB, 2

HRETTEFT
READFTLE USTNG 190, FLE, 0%, 0, P, CONY 170
FE M W, 020, X2, NES, Xa, Nia . ¢

REWRITEFILE USING 210,FLL,0%,08,P

FORM POSA,C20, PICCZZZZRY ,PICCEEEEH, B

GOTO 120

PRINT "END OF JOBE

GTOR

PRENT *oeaswa6a696606960% N0 RECORD FOULINID 99636 96 36 36 36 96 36 36 96 3¢ *
PRINT

GOTO 120

TTEM NUMBER BE00

i

?

DESCRIPTION O HANT UNTT PRICE

FHOLTS | wr G00TEsrry $0, 85«

SMTER RECORD NUMBER

130

ey 0
’

EOUSTNG 5%, FLE,ES, T4, Fd, "=, 0%, "< @, "aaees’ P,

anl

Create Multiple Index

It may be desirable to have several key index files for a single master
file. The 5110 can create one index file automatically as illustrated in
the first data entry program. Suppose you wish to create a report
organized alphabetically by item description. A second key file can be
created with the item description as the key field using the following
program. Two special key records (marker records) are required in the
first two record locations of an unsorted key file (see the /BM 5110
BASIC Reference Manual, Index file format). This program builds the
first two special key records and all subsequent keys for the master
file.

Length Position
2 Bytes 2 Bytes

Special Key Record 1 | All Binary 0000 Key Field | Key

Special Key Record2 | All Binary 1111 | Unused |
4 Bytes

MASTER FILE KEY Key
Record
Number

4 Bytes

Relative ‘

Tips and Techniques 177

0010 REM CREATE INDEX ETILE EFAR N T T T A
1050 ka CREATE INUEX FILE FOR EXTSTING
0030 DIM K$28,L$28, [
0040 PRINT "ENTER DEV CODE, FILE NUMBER AND FILE NAME
0050 PRINT "FOR THE MASTER FILE TO BE USETD,

0040 INPUT U%,F,F%

8070 OPEN FILE F | L, 0%, F,Fe, 1IN

0080 R=RLN¢C'FLL

0090 REM

0100 REM GET KEY INFORMATION

0110 PRINT 'ENTER KEY LENGTH AND KEY POSITION,

0120 INPUT L,P

0130 REM

0140 REM CHECK FOR VALIDITY

0150 TF L¥INTOOIPINT(P)Y GOTO a90

0160 IF L=1¥P<1 GOTO %590

0170 IF R<P+L-1 GOTO %90

0180 REM

0190 REM DETERMINE KEY RECORD SI7E

0200 3
0210
0220
0230
G200
02%50
0260 REM GET INFORMATION FOR INDEX FILE

0270 REM

0280 PRINT ‘ENTER DEVICE CODE, FILE NUMEBER AND FILE NAME'
0290 PRINT 'FOR INDEX FILE TO BE RUTLT'

0300 INPUT I1b.r'|'$

0310 UPI‘ N l'“ EFL2, I, F,F$, 0UT, RECL=R1
0320 #

0330 H=0

0340 Ks=X'00"

U350 STRCKS, 2)=K4$

0360 WRITEFILE USING 370, FL2, 8TR(KS, SRS, P

0370 FORM €,POSR2, B2, B2

0380 REM

0390 REM GET KEYS FROM MASTER

0400 REM

0410 L$=K%

0u20 READFILE USING 430,FL1,STR(KS,1,L), EQF 540

0430 FORM POSP,C

0440 R3=&REC

04350 IF S$=11K$=L$ GOTO H00

0460 Le=X'FF"

Q470 STROLS, 2)=L%

0480 WRITEFILE FL2,8TROLS, 1, L)

0490 H=1

0500 REM

0510 WRITEFILE USING 520, FL2,8TR(K$, 1,1, R3

0520 FORM C,POSR2, By

0336 GOTO 410

0340 IF S=1 GOTO 580

03550 L$=X'FF'

03460 STR(LS, 2)=L%

0570 WRITEFILE FL2,STR(L$,1,L)

0580 STOP

0590 PRINT "INVALID KEY LENGTH OR KEY POSITION OR NOT VALID FOR®
0600 PRINT "MASTER FILE RECORD LENGTH'

MASTE R
17

178

& specification 110

& ERR 162

& LINE 162

sign as a placeholder 35

access data 33
access record, directly 175
accessing individual records 105
accessing, indexed 95, 105
access-protect 51
activating stream 1/0 files 89
adding records 79, 80
additional records 99
additional use of file FLS 122
addition, array 133
address on diskette 63
AIDX function 134
ALERT command 119
allocating file space 67, 70
alternate cylinders 64, 66, 69
AND operator 23
APL file 57
application 9
argument 28
arithmetic array 111, 1256
arithmetic operator hierarchy 9
arithmetic operators 9
array
addition 133
arithmetic 111
assignment 132
dimensions 126
member 125
operations 133
subtraction 133
arrays 125
index 133
one-dimensional 127
redimensioning 131
two-dimensional 127
assignment statement 129
assignment, array 132
audible alarm 119

Index

BASIC 9

BASIC file 57

BASIC language 9

BASIC program 9

beginning of extent 64

BOE 64

branching 20, 30

branching on error 94
buffers, storage consideration 152
bytes 55

bytes available for storage 69
bytes per sector 65, 69

calculating file space 86
calculating index file space- 86
CHAIN statement 33
character array 125

character data 22

character specification 41
character string 22

character string CAT 23
character variable 9, 111
CLOSE FILE statement 95, 101
CLOSE statement 9, 16, 90
columns 127

comments 142

compress function 71
conformable 136

control of your 5110 115
cross-reference program 154
cylinders, alternate 64, 66, 69
cylinder, diskette 63, 69
C-specification code 41

Index 179

data 1

data cartridge 55

data compression 6

data file access selection 146

data files 55

data files, storage considerations 153
data processing 1

DATA statement 9, 16, 130
deactivating a file 90

DEF statement 28

default device 123

defective cylinder 66

defining arrays 125

delete code 80, 84

DELETE FILE statement 80, 106
deleting records 79, 80, 106
designing a record 83

determining field size 83

determining file size 85

DIDX function 134

digit specifiers 39 »

DIM statement 9, 16, 97, 125, 128
dimensions in an array 126

direct access 77,79

direct access and update with key index
direct access by relative record number
direct accessing by key 79

direct processing by index key 78
diskette 3

address 63
cylinder 63, 69
drives 4

file 49

format 65, 69
initialization 66
loading 61
recovery 62
sector 64, 65, 69

sort 81, 144
track 63, 65, 69
types 65

display off 145
display screen 4
dummy variable 28
DUPKEY clause 107

180

EBCDIC 22

EBCDIC collating sequence 22
end of data 64

ending of extent 64

EOD 64

EOE 64

EOF clause 93, 101

error checking 14

error clause on EXIT statement 107
error determination 139

error handling, I/0 93

EXIT clause 107

EXIT statement 94, 107, 163
explicit declaration 126, 131

fast scan feature 144

field size 83

fields 73

file 4,73

file access methods 167
file FLS 120

file FLS, additional use 122
file headers b5b

file ID 50, 66

file location on diskette 67
file maintenance 79

file reference 96

file reference for I/O 90
file size 85

file space 86

file space reallocation 67, 71
file space, allocating 70
files, repositioning 92

fite, indexed access 95
FNEND statement 28

FOR 9,17, 25, 130

FORM statement 35, 97, 100, 108, 140
format 10, 35

format control specification 42, 43, 43 ‘

formatting a record 97
format,diskette 65, 67, 69
functions 19
function 134

AIDX 134

DIDX 134

GET statement 9, 16, 91, 94
GOSUB statement 17, 32
GOTO statement 9, 17, 24

hard copy output 4
high-order position 35

1/0 error handling 93
identifying a file 90
IDX intrinsic function 162
IF statement 9, 17, 20
image statement 35
implicit declaration 126
index arrays 133
index cylinder 64, 69
index file 102, 106, 147

creating 168

record length 86

size 147

sorting 144

space 86
index track 69
indexed access 75, 95, 105
indexing function 134
individual record, accessing 105, 148
initialization, diskette 66
input 1,9, 11, 16
input to 1/0 files 142
input9 16
input, end of 98
INPUT statement 129
insertion characters 40
instructions 1
integer 24
interface 15
intrinsic function 99
inventory application 146

K bytes 55

KEY clause 103, 105, 107
keyboard 3

keyposition 99

KW parameter 145

L specification 110

LAST statement 98

length, member 125

LET statement 9, 17

LOAD command 49

loading a diskette 61

LOADO command 53

locating a character in a string 162
logical operators 23

loops 19

magnetic storage media 3
main storage 4
main storage index area 145
MARK command 49, 67
MAT 129
matrix multiplication 133, 135
matrix product 135
member length 125
member,array 125
multiline function 28
multiple index, creating 177
multiplication

matrix 135

scalar 134
naming arrays 126

NC specification 108
nested loop 26, 27
NEXT 9,17, 130
NOKEY clause 103, 107
NOREC clause 107
numeric specification 38
numeric variable 9

ONERROR statement 162
one-dimensional arrays 127
OPEN 9, 16

OPEN FILE statement 95, 101, 113
OPEN statement 89
opening record 1/0 files 95
opening stream 1/0 files 89
OR operator 23

OUT statemtent 95

output 1, 10, 112

output from 1/0 files 142
owner ID 66

Index 181

Page of SA21-9307-0
Issued 28 April 1978
By TNL: SN21-0277

parentheses 125

- PAUSE statement 140

" performance considerations 143
PIC specification 38, 108
position the cursor 118
POSn-specification 43
precision, storage considerations 153
printer spacing control 47
PRINT 9. 18
PRINT FLP 18, 35
print overlap 144

PRINT USING statement 35
printer 3

printer, storage considerations 153
PROC command 119

procedure files 119

process 1, 12

process data 1

processing stream /O 89, 95
processing unit 3

program 1,9

program analysis, cross-reference program

program chaining 33
program design 144, 150
program execution falls through 21

program statements, storage considerations

program step 141
program trace 139
programming device 19
PUT statement 9, 18, 91

random access 57
reactivating a file 91
read a stream 1/0 file 165
READ FILE FLS statement 120, 122
READ FILE statement 16, 100, 113, 115
read sequentially 100
READ statement 9, 16, 129
reading record 99
reallocating file space 67, 71
RECL 95
record
design 83
expansion 84
format 97
record 1/0 file 74, 75
record 1/0 files, opening 95
record length 88, 97
record number 102, 109
record retrieval 102, 109

182

records 73

additional "~ 99

deleting 106

updating 104, 106

reading 99
recovery for worn diskette 62
redimensioning arrays 131
referencing a file 96
related data items 125
relational operators 21
relative record number 77, 102, 109
REM 9
repositioning files 92
REREAD FILE statement 111, 113
RESET statement 9, 92, 107
RESTORE 9
retrieving data 89
RETURN 17, 28
REWRITE FILE 18

REWRITE FILE statement 101, 105, 113

rows 127

sample record 84
SAVE command 49
scalar multiplication 134
sectors per cylinder 65, 69
sectors per track 65, 69
sequential access 57, 77, 148
sequential access by key index 172
sequentially read 100
single-line function 28
SKIPn specification 43
skipping to a new page while printing
sort program 123
sorting an index file 164
specification
& 110
L 110
NC 108
PIC 108

159

5

®

statement

assignment 129

CLOSE 90

CLOSE FILE 95, 101

DATA 130

DELETE FILE 106

DIM 97, 125, 128

EXIT 94, 107

FORM 97, 100, 108, 140

GET 91, 94

INPUT 129

LAST 98

OPEN 89

OPEN FILE 95, 101, 113

OUT 95

PAUSE 140

PRINT USING 108

PUT 91

READ 129

READ FILE 100, 113, 115

REREAD FILE 111, 113

RESET 92, 107

REWRITE FILE 101, 105, 113

WRITE FILE 97, 99, 113, 115, 140
step 141
stop 9
storage availability variations 68, 71
storage considerations 149
storage size 149
storage,available bytes 69
stream 1/0 data file 59, 74
stream 1/0 files

activating 89

opening 89

processing 89, 95

reading 165
subroutines 19, 30
subscripts 128
subtraction, array 133
system control functions 120

tape 3

tape drives 4

tape storage 55

test data 142

testing for an error 162
tips and techniques 143
trace 139 -
track, diskette 63, 65, 69
transfer of control 101
two-dimensional arrays 127

unformatted tape 55

updating records 79, 81, 104, 106
USE statements 33

user program control 161

user storage 149

user-written functions 27

USING clause 97

using file FLS, skipping to new page
using the display screen for I/0 115
UTIL command 50

UTIL command, using 122

UTIL DROP command 50, 67

UTIL FREE command 50, 69, 71
UTIL PROTECT command 66

UTIL VOLID command 66

variable names, reusing 92

variables, amount of storage for 150

variables, character 111
volume ID 52, 66
volume-protect indicator 66

work area files 55
WRITE FILE 18
WRITE FILE FLS statement 121, 122

159

WRITE FILE statement 97, 99, 113, 115, 140

write-protect 51
write-protect indicator 66

Xn-specification 42
5110 model 1 computing system 4

Index

183

184

)

alphabet extender: Any one of the following
three special characters: #, @, and $.

alphabetic character: Any of the 26 letters (A
through Z) of the English alphabet or any of the
alphabet extenders (#, @, and $).

alphameric character: A numeric or alphabetic
character.

argument: An arithmetic expression appearing in
parentheses following a function name, either in a
function reference (either a user-written or an
intrinsic function) or in a pseudo variable. The
expression represents a value that the function is
to act upon. The function name may or may not
be followed by arguments.

arithmetic array: A named table of arithmetic
data items. An array may be implicitly declared
through usage or explicitly declared in a DIM
statement. BASIC allows one- and
two-dimensional arithmetic arrays.

arithmetic constant: A constant with a numeric
value. The three forms of arithmetic constants
permitted in BASIC are integer, fixed-point, and
floating-point.

arithmetic data item: Data having a numeric
value.

arithmetic expression: An arithmetic constant, a
simple arithmetic variable, a scalar reference to an
arithmetic array, an arithmetic-valued function
reference, or a sequence of the above
appropriately separated by arithmetic operators
and parentheses.

Glossary

arithmetic operator: A symbol representing an
operation to be performed upon arithmetic data.
The arithmetic operators are:

+ Addition and unary plus sign

- Subtraction and unary minus sign

* Multiplication
/ Division
4+ or ** Exponentiation

arithmetic variable: The name of an arithmetic
data item whose value is assigned and/or
changed during program execution. The name
consists of a single alphabetic character or an
alphabetic character followed by a digit.

array: A named list or table of data items, all of
which are the same type-arithmetic or character.
BASIC allows one- and two-dimensional arrays.

array declaration: The process of naming an
array and assigning dimensions to it either
explicitly (by the DIM statement) or implicitly
through usage.

array element: See array member.

array expression: An arithmetic expression or a
character expression representing an array of
values rather than a single value. It may be used
only in an array assignment statement.

array member: A single data item in an array; its

position is indicated by a subscripted array
reference.

Glossary G-1

array variable: The name of an entire array. The
name consists of an alphabetic character (for
arithmetic arrays) or an alphabetic character
followed by the dollar sign, $, (for character
arrays).

assignment: The process of giving values to
variables; for example, via LET statements, READ
statements, and INPUT statements.

assignment symbol: The symbol =, which is used
in an assignment statement to give a value to one
or more variables.

BASIC: A programming language designed for
interactive systems and originally developed at
Dartmouth College to encourage nonprogrammers
to use computers for simple problem-solving
operations. The word BASIC is an acronym for
Beginners’ All-purpose Symbolic Instruction Code.

binary operator: A symbol representing an
operation to be performed upon two data items,
arrays, or expressions. The four types of binary
operators are arithmetic, character, logical, and
relational.

branching: Executing a statement other than the
next sequential one; for example, via the GOTO
statement.

built-in function: See /intrinsic function.

character array: A named table of character data
items. An array may be implicitly declared through
usage or explicitly declared in a DIM statement.
BASIC allows one- and two-dimensional character
arrays.

character constant: A constant with a character
value. It is always enclosed by a pair of single or
double quotation marks.

character data: Data having a character value as
opposed to a numeric value.

character expression: A character constant, a
simple character variable, a scalar reference to a
character array, a character-valued function
reference, or a sequence of the above separated
by the concatenation operator (| |) and
parentheses.

character operator: A symbol representing an
operation to be performed upon character data.
The concatenation operator (| |) is the only
character operator in BASIC.

character string: A sequence of characters that .
represents an item of character data.

-

character variable: The name of a character data
item whose value is assigned and/or changed
during program execution. The name consists of
an alphabetic character followed by the dollar sign
character ($).

comment: A remark or note included in the body
of a program by the programmer. It has no effect
on the execution of the program; it merely
documents the program. Comments are written as
a string of characters and may appear as a part of
any program statement that has no operands (for
example, REM, STOP, END, and RESTORE).

concatenation: The joining of two character data
items by the symbol | |.

concatenation operator: The symbol | |, used to
concatenate, or join, two character data items.

constant: A value that never changes. BASIC has
two types of constants: arithmetic and character.

control specification: (1) One of the
specifications X or POS, used in the FORM
statement to specify formatting of records in
record-oriented files. (2) One of the specifications
X, POS, or SKIP, used in the FORM statement to
control print line formatting. C‘\

data file: See file.

data form specification: (1) One of the
specifications B, C, NC, PD, S, L, or PIC, used in

O the FORM statement to specify formatting of
character and arithmetic values in record-oriented
files. (2) One of the specifications C or PIC, used
in the FORM statement to format character and
arithmetic values on a printed line.

Q data item: A single unit of data; that is, a
constant, a variable, an array element, or a
function reference.

data table: The values contained in the DATA
O statements of your program. DATA statements
are processed in statement number sequence
(lowest to highest). The values in each DATA
statement are collected and placed in a single
table in order of their appearance (left to right).

data table pointer: An indicator that moves
sequentially through the data table, pointing to
each value as it is assigned to a corresponding
variable in a READ statement. Initially, the
indicator refers to the first item in the table. It can
be repositioned to the beginning of the table at
any time by the RESTORE statement.

O

declaration: See explicit declaration and implicit
declaration.

delimiter: A character that groups or separates
data items.

digits: the numerals O, 1, 2, 3, 4, 5, 6, 7, 8, 9.

dimension specification: The specification of the
size of an array and the arrangement of its
members into one or two dimensions.

O direct access: The storage or retrieval of data
independently of other data in a file (that is,
regardless of its location relative to other data).

dummy variable: A simple variable enclosed in

Q parentheses and placed after the name of a
user-written function in a DEF statement. The
function performs its defined calculation on the
expression value substituted for each dummy
variable when the program is executed.

E-format: Floating-point format.

EBCDIC collating sequence: The ordering of
character data items according to the Extended
Binary Coded Decimal Interchange Code.

error message: A message generated by the
computer when an error has been detected.

executable statement: A program statement that
causes an action to be performed by the
computer.

execution error: An error discovered during
execution of a BASIC program (for example,
dividing by zero, or branching to a nonexisting
statement number).

explicit declaration: The use of a DIM statement
to specify the number of members in an array, the
number of dimensions in an array, or the length of
a character variable.

exponent {of E-format number): An integer
constant specifying the power of ten by which the
base (mantissa) of the decimal floating-point
number is to be multiplied.

exponentiation: Raising a value to a power.

expression: A representation of a value; for
example, variables and constants appearing alone
or in combination with operators. Three forms of
expressions are defined in BASIC: scalar
(arithmetic or character), array (arithmetic or
character), and logical.

extended alphabet: The 26 letters of the English
alphabet and the 3 alphabet extenders ($ # @).

F-format: Fixed-point format.
file: A named group of related data items that are
stored together. In BASIC there are two types of

files: stream-oriented and record-oriented.

file reference: FLO through FL9.

Glossary G-3

fixed-point constant: An arithmetic constant
consisting of one or more digits and a decimal
point, and optionally preceded by a sign.

fixed-point format: The form used to express a
fixed-point constant.

floating-point constant: An arithmetic constant
consisting of an integer or fixed-point constant
followed by the letter E, followed by an optionally
signed one- or two-digit integer constant.

floating-point format: The form used to express
a floating-point constant.

full print zone: Eighteen horizontal print
positions. In a PRINT statement, a comma is used
to indicate that a full print zone should be used.

function: A named expression that computes a
single value. See also intrinsic function and
user-written function.

function reference: The appearance of an
intrinsic function name or a user-written function
name in an expression.

generic key: An argument specified in the KEY
clause of a record 1/0O statement that is less than
the full key length defined for a corresponding
file.

I-format: Integer format.

implicit declaration: (1) The specification of the
number of members in an array or the number of
dimensions in an array, either by a reference to a
member of an array or by context (without the
array being explicitly specified in a DIM
statement). (2) The specification of the length of a
character variable by context {(without the variable
being explicitly defined in a DIM statement).

input: The transfer of data from an external
medium to internal storage.

input list: A list of variables to which values are
assigned from input data; the list can be made up
of scalar variables, array member references,
pseudo variables, array references, and array
references with redimensioning.

input/output: The transfer of data between an
external medium (that is, the keyboard or a file)
and internal storage.

integer constant: An arithmetic constant
containing one or more digits, optionally preceded
by a sign.

integer format: The form used to express an
integer constant.

internal constant: An arithmetic constant whose
value is supplied by BASIC. The name of the
internal constants are &Pl, &SQR2, &E, &INCM,
& LBKG, and & GALI.

internal storage: A computer’'s main storage.

intrinsic function: A function supplied by BASIC
(for example, SIN, COS, or SQR).

key: One or more consecutive characters used to

identify a particular record in a key-sequenced file.

key-sequenced file: A record-oriented file whose
records are accessed according to keys.

logical expression: A logical subexpression, or
two logical subexpressions joined by a logical
operator (& or |). Its value is either true or false.

logical operator: An operator that is used in a
logical expression. The logical operators are: &
{AND) and | (OR).

long-form precision: Precision whereby,
externally, values printed with I-format and
F-format have a maximum of 15 significant digits,
and values printed with E-format have a maximum
of 15 significant digits in the mantissa.

loop: A sequence of instructions that is executed

repeatedly until a terminating condition is reached.
Q The FOR statement identifies the beginning of a

loop; the NEXT statement identifies the end of it.

mantissa: |n floating-point notation (E-format),

the number that precedes the E. The value

represented is the product of the mantissa and
Q that power of ten specified by the exponent.

matrix {mathematical): A two-dimensional
arithmetic array.

O multiline function: A user-defined function that is
defined with more than one statement.

nesting: (1) The occurrence of a FOR/NEXT loop
within another FOR/NEXT loop. (2) The
occurrence of a GOSUB statement when one or
more GOSUB statements are already active. (3)
The use of more than one set of parentheses to
indicate the order of evaluation in a complex
arithmetic expression.

nonexecutable statement: A program statement
Q that specifies information for program execution.

null character string: Two adjacent single
quotation marks that specify a character constant
of blank characters.

null delimiter: One or more blanks or no
characters at all {that is, one data item directly
following another data item with no intervening
space or delimiter) used in a PRINT statement to
specify a packed print zone.

numeric character: Any of the digits 0, 1, 2, 3, 4,

O 5,6, 7,8,09.

operand: A constant, a variable, an array member
reference, a function reference, or a
subexpression on which an operation is to be

O performed.

operator: A symbol specifying an operation to be
performed. See also arithmetic operator, binary
operator, concatenation operator, logical operator,
relational operator, and unary operator.

output: The transfer of data from internal storage
to an external medium.

output list: A list of variables from which values
are written to an output file; the list can be made
up of scalar expressions and array references.

packed print zone: A section of a printed line,
consisting of a number of horizontal print
positions, whose size is determined by the type
(arithmetic or character) and length of the data
being printed. In the PRINT statement, a
semicolon or null delimiter is used to indicate that
a packed print zone is to be used.

padding: The addition of one or more blanks to
the right of a character string to extend the string
to a required length.

precision: The number of digits for which
significance can be expressed.

print zone: See full print zone and packed print
zone.

priority: A rank assigned to an arithmetic
operator; it is used when an arithmetic expression
is being evaluated. The order of priorities, from
high to low, is exponentiation, unary operations,
multiplication and division, addition and
subtraction. Operations at the same priority level
are evaluated as they are encountered (from left
to right in the expression).

program: A logically self-contained sequence of
BASIC statements that can be executed by the

computer to attain a specific result.

programmer-defined function: See user-written
function.

Glossary G-5

pseudo variable: The use of an intrinsic function
as a receiving variable. STR is the only pseudo
variable in BASIC.

record: A collection of related data items treated
as a unit.

record-oriented file: A file in which items are
stored in records.

redimension specification: The assignment of a
new dimension specification to an already existing
array, via an array assignment statement, a READ
statement, an INPUT statement, a GET statement,
a READ FILE statement, or a REREAD FILE
statement. :

redimensioning: The changing of the number of
dimensions or the number of members in each
dimension of a previously declared array.

relational operator: An operator used in a logical
subexpression. The relational operators are:

= Equal to

z0r <> Not equal to

> Greater than

< Less than

>= or > Greater than or equal to
<= or < Lessthan or equal to

remark: See comment.

scalar: A single data item (as opposed to an array
of items).

scalar expression: An arithmetic expression or a
character expression representing a single value
rather than an array of values.

sequential access: The retrieval of data
according to the order in which the data is stored
in a file.

short-form precision: Precision whereby,
externally, values printed with I-format and
F-format have a maximum of seven significant
digits, and values printed with E-format have a
maximum of seven significant digits in the
mantissa.

significant digits: All the digits of a number
starting with the leftmost nonzero digit.

simple name: Any combination of up to 8
alphabetic and numeric characters (with no
blanks).

simple variable: A scalar variable (but not an
array member).

single-line function: A user-defined function that
is defined in one statement (that is, the DEF
statement).

special characters: Any characters allowed in
BASIC that are not alphameric characters.

statement number: The number that prefaces a
BASIC statement. It can be up to four digits in
length (in the range 0000 to 9999).

stream-oriented file: A file in which items are
stored as a stream of data and retrieved in
sequential order.

subexpression: A group within an arithmetic
expression and used by the computer to evaluate
that expression.

subroutine: A program segment (sequence of
statements) branched to by a GOSUB statement.
The last statement of a subroutine must be a
RETURN statement that directs the computer to
return and execute the statement following the
GOSUB statement.

C

O

subscript: Any valid arithmetic expression (whose
truncated integer value is greater than zero) used
to refer to a particular member of an array.

substring: A part of a character string.

system-supplied constants: See /internal
constants.

truncation: The deletion of one or more
characters on the right of a character string to
shorten the string to a required length.

unary operator: An operator that precedes, and

thus is associated with, an arithmetic expression.

The unary operators are + (positive) and
(negative).

user: Anyone utilizing the services of a computing
system.

user-written function: A function defined by the

user in a single-line or multiline function definition.

variable: A name used to represent a data item
whose value may change during execution of a
program.

zero suppression: The elimination of leading
nonsignificant zeros in a number.

Glossary G-7

G-8

e

()
v

C

EM@ Technical Newsletter This Newsletter No. SN21-0277

Date 28 April 1978

Base Publication No. SA21-9307-0
File No. None

Previous Newsletters None

W«/

/'7</

IBM 5110
BASIC User’s Guide

©1BM Corp. 1977

This technical newsletter provides replacement pages for the subject publication, Pages to be inserted
and/or removed are:

33 through 36 119, 120
41,42 129, 130
51, 52 155 through 162
65, 66 165 through 168
77 through 80 175,176
101, 102 181, 182

Changes to text and illustrations are indicated by a vertical line at the left of the change.
Summary of Amendments
Additions and corrections have been made to improve the accuracy and readability of the text.

Note: Please file this cover letter at the back of the manual to provide a record of changes.

.,

IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901

©IBM Corp. 1978

Printed in U.S.A.

/ ~
\./"

o

o O O O o O O

READER’S COMMENT FORM

Please use this form only to identify publication errors or request changes to publications. Technical questions about IBM systems, changes in {BM programming
support, requests for additional publications, etc, should be directed to your 1BM representative or to the IBM branch office nearest your location.

Error in publication (typographical, illustration, and so on). No reply. Inaccurate or misleading information in this publication. Please tell us
about it by using this postage-paid form. We will correct or clarify the
Page Number Error publication, or tell you why a change is not being made, provided you

include your name and address.

Page Number Comment

Note: All comments and suggestions become the property of I1BM. Name

Address

@ No postage necessary if mailed in the U.S.A.

8pING s,495N JISVE OLLS WA

0-L0€6-LCVS

SA21-9307-0

FIRST CLASS
PERMIT NO. 40
ARMONK, N. Y.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY |IF MAILED IN THE UNITED STATES

POSTAGE WiILL BE PAID BY . . .

IBM Corporation .
General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

International Business Machines Corporation

General Systems Division
5775D Glenridge Drive N. E.
P.0. Box 2150

Atlanta, Georgia 30301
(U.S.A, only)

General Business Group/International
44 South Broadway

White Plains, New York 10601
US.A.

(international)

0-£0€6-12VYS 'V'S'N ul palulld 3ping s,1esn JISVE 0L LS NG

C

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150

Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway

White Plains, New hﬁ‘lﬁut
U.S.A.

(International)

SA21-9307

IBM 5110
BASIC

User’s Guide

LOE6-LCVS 'V'S'N ul palulld 3ping s18sn JISvE OLLS WAl

FOIET R BN BRI SR P Pl SN SN)

