OLLS

[l

IBM 5110

BASIC User’s 'Guide

8pInY s,488M) JISVE
0LLG WEl

SA21-9307-2

Third Edition (April 1979)

This is a major revision of, and obsoletes, SA21-9307-1 and Technical
Newsletter SN21-0303. This publication should be reviewed in its
entirety.

Changes are periodically made to the information herein, changes will be
reported in Technical Newsletters or in new editions of this publication.

This publication contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

Use this publication only for the purpose stated in the Preface.

Publications are not stocked at the address below. Requests for copies
of IBM publications and for technical information about the system
should be made to your IBM representative or to the branch office
serving your locality.

This publication could contain technical inaccuracies or typographical
errors. Use the Reader's Comment Form at the back of this publication
to make comments about this publication. If the form has been removed,
address your comments to IBM Corporation, Publications, Department
245, Rochester, Minnesota 55901. Comments become the property of
IBM.

IBM may use and distribute any of the information you supply in any way

it believes appropriate without incurring any obligations whatever. You
may, of course continue to use the information you supply.

© Copyright International Business Machines Corporation 1977, 1978, 1979

Preface

Before using this manual, you should be familiar
with the information in the /BM 57110 BASIC
Introduction, SA21-9306, such as:

e Entering data from the keyboard

e The arithmetic operators

e How to enter a program

e Using data files

e Using arrays

This manual gives you conceptual information
about using the 5110 with the BASIC language
and is intended to be used with the /BM 5710
BASIC Reference Manual. The topics covered
in this manual include:

e Computer concepts for data processing

e An approach to breaking your application into
small parts to make programming easier

e Changing the sequence of execution within your
BASIC program

o Formatting the data on the display screen

e Entering uppercase and lowercase characters

e Using a procedure file to replace keyboard input
e Sounding the audible alarm

o Using tape and diskette storage

o Formatting printed reports

e Additional tips and techniques

Since this manual is not intended to give you a
complete description of the syntax and rules
required for each BASIC command and statement,
you must use the /BM 5110 BASIC Reference
Manual for this description.

This manual does not need to be read chapter by
chapter. Instead, you can read the appropriate
chapters as required. For example, you might read
Chapter 3, Changing the Sequence of Execution In
Your BASIC Program, when you need information
on program loops.

Prerequisite Publication

IBM 5110 BAS/C Introduction, SA21-9306

Related Publications
IBM 5110 BASIC Reference Manual, SA21-9308
IBM 5110 BASIC Reference Handbook, GX21-9309

IBM 5110 Customer Support Functions Reference
Manual, SA21-9311

CHAPTER 1. 5110 DATA PROCESSING
CONCEPTS
Introduction
Advantages of Computer Data Processing
CHAPTER 2. ELEMENTS OF A BASIC
PROGRAM
Defining a Program
Processing Information
Output
Input
Process
Putting it all Together
Additional Levels of Input, Process, and
Output
Conclusion
Basic Statements Most Commonly Used for
Information Processing
Input Statements
Process Statements
Output Statements

..............

CHAPTER 3. CHANGING THE SEQUENCE OF
EXECUTION IN YOUR BASIC PROGRAM . .
Loops
Using the IF Statement
Relational Operators
Logical Operators
The Computed GOTO Statement
More about Loops—Using FOR and
NEXT Statement
Functions and Subroutines
Functions
Subroutines
Computed GOSUB Statement
Program Chaining

CHAPTER 4. FORMATTING A REPORT
Print Using and the Image Statement
Print Using and the Form Statement
Numeric Specification—PIC
Character Specification—C
Format Control Specifications—X, POS, SKIP . .
Print Using with a Character Variable
Printer Spacing Control

19
19
20
21
23

‘24

24
27
27
30
32
33

35
35
38
38
41
42
46
47

Contents

CHAPTER 5. SAVING AND LOADING THE
WORK AREA
Determining the Size a File Should Be
Saving and Loading Data on a Tape or
Diskette File
Controlling the Files on Tape or Diskette
Maintaining Data Security
Protecting Your Programs
Protecting Your Data Files
Maintaining Backup Data Files
Using File Write Protection
Using Diskette Access Protection
Removing Sensitive Data

CHAPTER 6. TAPE CONCEPTS
How to Format the Tape
How to Determine the Storage Available on

a Tape Cartridge

CHAPTER 7. DISKETTE CONCEPTS
Diskette Wear
Diskette Addressing and Layout
Track and Cylinder
Sector
Index Cylinder
Alternate Cylinders
Diskette Types and Formats
Diskette Initialization
Volume ID, Owner ID, and Volume-Protect
Indicator00
File ID
Diskette File Write-Protect Indicator
Diskette File Organization
Reallocating Diskette File Space
Determining the Storage Available on a Diskette
Number and Size of the Diskette Files
How the File Space is Allocated

.........
...................

Contents

CHAPTER 8. INTRODUCTION TO DATA

FILES 73
Files, Records, and Fields 73
OrganizingaFile 74
Stream /0 e ... 74
Record /O 75
CHAPTER 9. CHARACTERISTICS OF
ACCESSING DATAFILES 77
Sequential Access . e e e e ... 77
Direct Access by Relative Record Number 77
Direct Processing by IndexKey 78
Sequential Accessingby Key 78
Direct Accessing 79
Maintaining Data Files 79
Adding Records B - 0]
Tagging Records for Deletlon. C e e 80
Updating Records 81
Reorganizinga File 81
CHAPTER 10. DESIGNING A RECORD
AND DETERMINING FILE SIZE FOR
RECORD I/O FILES = 3
DesigningaRecord 83
Determining Field Size 83
Providing fora Delete Code 84
Record Expansion B - 7
Designing a Sample Record . -
Determining the SizeofaFile 85
Calculating File Space 86
Calculating Index File Space 86
End of File Condition -V
Review—Calculating File. Space B - V 4
Documenting Record Layout 88
Record Length s e e i e v 88
CHAPTER 11. PROCESSING ADATAFILE. . . 89
Processing Stream 1/0 Files 89
Opening and Closing Stream |/O Flles 89
Writing to and Reading from Stream
1/0O Files X
Accessing Record 1/0 Flles. .. A -/
Opening and Closing Record 1/0 F|Ies 95

Writing to and Reading from Record 1/O Files . 97
More Information About Processing Records

I/OFiles107
End of File Condition 108
Summarizing Record-Oriented Statements 115
Permitted READ/REREAD, WRITE/REWRITE
Statements. 117

CHAPTER 12. CONTROL OF YOUR 5110
Using the Display Screen for Input and Output
Using Procedure Files R
Using the System Control Funct|ons e

READ FILE FLS Statement .

WRITE FILE FLS Statement

Additional Use of File FLS

Using the UTIL Command

CHAPTER 13. USING ARRAYS

Naming Arrays

Defining Arrays

Placing Values into Arrays

Redimensioning Arrays . .

Difference Between MAT and LET

Array Operations . ..
Array Addition and Subtractlon -
Scalar Multiplication .
Indexing Function .
Matrix Multiplication .

CHAPTER 14. WHAT TO DO WHEN YOUR
PROGRAM DOES NOT WORK
Program Trace
Program Step .
Comments
Keyboard Test Data F||es

CHAPTER 15. TIPS AND TECHNIQUES
Performance Considerations
Program Design .
Index File Sorting . . .
Print Overlap .
Display Off .
Main Storage Index Area
Data File Access Selection .
Rounding a Number Internally
Storage Considerations .
User Storage .
Program Design .
Variables . .
Program Statements
Buffers

. 119

119
123
125
125
126
127
127

129
130
130
133
134
135
136
136
137
137
138

.- 1A

141
143
144
144

. 145

145
146
146
146
147

147

150
151
152
162
153
163
154
155

Program Analysis Using A Cross-Reference
Program
Skipping to a New Page While Printing
Using File FLS
User Program Control
Locating a Character ina String
Testing foran Error
Sorting an Index File
Another Way to Read a Stream Input File
Different File Access Methods
CreatinganIndex File
Direct Access and Update with Key Index
Sequential Access by Key Index
Sequential Access With No Key Used
Direct Access by Relative Record Number
Creating Multiple Indexes

GLOSSARY

Contents

v

vi

Chapter 1. 5110 Data Processing Concepts

INTRODUCTION

What can you expect a computer to do with information? How do you
get information into a computer? How does a computer know what to
do with your information? What final results can you expect?

Today the computer is doing many jobs, from accounting to predicting
election results to guiding spaceships. It is often looked upon as some
kind of magical machine, but the computer performs no magic.
Everything a computer does is dependent on the people who use it
and the instructions they supply. For every job you want a computer
to do, you must give a step-by-step procedure (a program) for it to
follow. This procedure is then stored inside the computer. The
information you want is processed according to the stored
instructions.

A computer can do a wide variety of operations. It can retrieve,
almost instantly, any item of information stored in it. It can compare
any two items of information and do any arithmetic operations you
want-add, subtract, multiply, or divide. It can be instructed to do any
combination of these things in any sequence you want them done.

The computer works methodically, doing one thing at a time. When it
finishes one step, it goes on to the next, then the next, and the next,
according to instructions. But it performs these steps at an almost
unbelievable speed until it comes up with the answer you want.

The work performed by a computer is called data processing. Data
processing means that information is handled according to a set of
rules. Whether you process information by hand or use a computer,
the requirements of a job remain about the same. You must have
input, which is the data you want to do something with; you must
process the data, which is the act of doing something with data
according to instructions; and you must have output, which is the
result of your processing.

5110 Data Processing Concepts 1

To help you understand the 5110 and data processing, let’s first look
at how an employee might process information for the job of billing.

Assume for this job that the employee works with the following data:
e Customer orders

e Price catalogs

Customer records

e Accounts receivable records

Inventory files

The employee receives a copy Qf the customer order after the order is
shipped. He uses this document to prepare the invoice that he sends
to the customer. To prepare the invoice, the employee:

1. Looks up, in a price catalog, the price of each item in the order
2. Multiplies the price of each item by the quantity shipped

3. Adds the total price of each item to get the total amount of the
invoice

4, Checks the customer records to see if any special discounts
apply, and adjusts the invoice accordingly

5. Types the invoice

6. Adjusts the accounts receivable records to show what the
customer owes

7. Updates the inventory files to show the reduced stock

For each invoice he prepares, the employee follows the same
procedure. In computer terms, the procedure is his program for doing
the job. The customer order is his input; the calculating and file
updating he does is processing; and the results of processing—the
invoice and the updated records—are his output.

As shown in Figure 1, computer data processing can speed up a billing
operation and reduce costly errors. Data (customer order information)
can be entered at high speed via the keyboard; many records can be
quickly referenced and updated in a magnetic storage medium (tape or
diskette); the processing unit can store and carry out instructions (a
program) and perform needed calculations; and a printer can print the
invoice.

Customer
Keyboard Order
Information
I
e — Processing .
Customer and Unit Printer

Printed
Invoice

Inventory Data

(stores job
instructions
and performs
calculations)
Updates Customer

and Inventory Data

Magnetic
Storage

Figure 1. Computer Data Processing

5110 Data Processing Concepts

The 5110 Model 1 Computing System (Figure 2) contains the following
elements, which are components of the data processing system:

e Input Elements—keyboard, tape, diskette
o Output Elements—tape, diskette, printer, display screen

e Processing Elements—main storage, tape, diskette, programs

Display Main Storage
Screen

Keyboard

Diskette Printer

Drives

Tape Drives

Figure 2. 5110 Model 1 Computing System Data Processing Elements

The keyboard is the device the operator uses to key (enter) data into
the processing unit.

The tape and diskette are used either as input or output devices. Input
data or programs can be entered into the system using the tape or
diskette. Output data can be stored on the tape or diskette for use in
other programs.

The printer records on paper (prints) the data sent to it by the
processing unit. This printed material is sometimes referred to as the
hard copy output.

The display screen displays output data sent to it by the processing
unit. The system uses the display screen to communicate with the
operator by displaying information keyed on the keyboard so that the
operator can verify the information before it enters the system. The
system also displays messages that identify keying errors and provide
operator guidance or specific processing information as required.

The processing unit is made up of the main storage, tape or diskette,
and programs. The tape or diskette is used to store files of
information and programs that are used by the system. Main storage
is the part of the processing unit that holds a program so that the
system can execute the steps in the program. Data is moved from
tape or diskette into main storage for use by the program being
executed. '

ADVANTAGES OF COMPUTER DATA PROCESSING

If data processing is always a matter of input, processing, and output,
how is computer data processing different from manual or mechanical
data processing? Computers process large volumes of data faster,
more accurately, in less space, and with greater versatility.

e Speed. Because computers process data electronically, they
operate at remarkable speeds that save a tremendous amount of
time.

e Accuracy. A computer does exactly what it is told to do and only
what it is told to do. Because of this constant dependence on
instructions, a computer follows program after program, second
after second and hour after hour, with unvarying accuracy.

Computers also reduce transcription errors by dramatically reducing
the need for manual transcription. Once you record data on a tape
or diskette that data may never have to be written by hand
again-you can update as many different customer records, complete
as many different kinds of forms, and create as many different
reports from that data as you have application programs that use
the data. By referring to the display screen while first recording the
data, you can insure that the data is keyed correctly. Programs that
use the data can perform control total checks and balances to
continually validate the accuracy of the data.

5110 Data Processing Concepts 5

e Data Compression. Computers miniaturize data. Suppose a business

enters its accounts receivable transactions in a machine-posted

register like the one shown below.

DATE
07/11/--
07/11/--
07/11/--
07/11/--
07/11/--
07/11/--
07/11/--
07/11/--
07/11/--
07/11/--

CUsT
NO

759820
633870
642990
122620
682030
742950
014280
872060
883290
006280

ACCOUNTS RECEIVABLE TRANSACTION REGISTER

07/11/--
CUSTOMER JOURNAL
NAME NO

SOUND OF THE SEVENTIE
OLDE VILLAGE SHOPPE
PARAGON TV SALES
CANNIZONI STUDIOS
RAYMONDS RAPID REPAIR
SARATOGA VARIETY
BAKER BRADLEY & CO.
UNIVERSITY ELECTRIC

VILLAGE MUSIC & TV 07-036
ALLSTONS 07-037
TOTALS

INVOICE ~ CASH
NO AMOUNT
063420
063421
063422
063423
$ 63.80
29.72
43.50
97.75
$234.77*

INVOICE

AMOUNT
$ 46.23

89.70
20.30
129.76

$285.99%

PAGE 001

JOURNAL
AMOUNT

$18.23CR
10.70CR
$28.93CR*

The preceding example shows 10 sample entries, or records.

Several thousand such transaction records can be stored by the

system on one diskette. That is, the system enables you to store
large volumes of business information in an economical and

manageable form that can be processed by a machine.

e Versatility. The number of different tasks a computer can do is
limited only by the number of different programs run on it. The

computer can do much more than just add, subtract, multiply, and

divide. The 5110 can, for example, prepare invoices, keep accounts
receivable up to date, print weekly paychecks, and analyze data for
thorough cost and sales analysis.

Speed, accuracy, data compression, and versatility combine to reduce

data processing errors and increase productivity. But a less obvious

advantage of computers has a more fundamental effect.

[PAGE 189

ACCOUNTS RECEIVABLE TRANSACTION REGISTER
07/11/-- PAGE 001 l
Cust CUSTOMER JOURNAL *INVOICE CASH INVOICE JOURNAL

DATE NO NAME NO NO AMOUNT AMOUNT AMOUNT ! |
07/11/-- 759820 SQUND OF THE SEVENTIE 063420 $ 46.23 ' l |I |
07/11/-- 633870 OLDE VILLAGE SHOPPE 063421 89.70 l 1! | __J
07/11/-- 642990 PARAGON TV SALES 063422 20.30
07/11/-- 122620 CANNIZONI STUDIOS 063423 129.76 ! I
07/11/-- 682030 RAYMONDS RAPID REPAIR $ 63.80
07/11/-- 742950 SARATOGA VARIETY 29.72
07/11/-- 014280 BAKER BRADLEY & CO. 43.50
07/11/-- 872060 UNIVERSITY ELECTRIC 97.75
07/11/-- 883290 VILLAGE MUSIC & TV 07-036 $18.23CR
07/11/-- 006280 ALLSTONS 07-037 10.70CR

TOTALS $234.77* $285.99* $28.93CR*

«

Accts Receivable
Transaction
Register 07/11/--

O

5110 Data Processing Concepts 7

Computers impose discipline. As explained, a computer is helpless
without programs—it cannot think for itself. Neither can a computer
guess whether its programs really reflect the problems at hand-you
must see that they do. In other words, you must carefully analyze the
data processing requirements of your organization in order to take full
advantage of a computer. For instance, with the data processing
capabilities provided by a 5110, what additional cost analysis,
inventory control, and auditing procedures would you like to implement
in your organization?

The responsibility for analyzing an organization’s data processing
requirements falls, of course, to management. But the discipline
imposed by a computer extends throughout the data processing
activities of the organization. Once you've designed or selected
computer programs that reflect management directives, you've
established management control that is automatically practiced each
time those programs are used.

Chapter 2. Elements of a BASIC Program

Before reading this chapter, you should be familiar with the
information in the 5770 BAS/C Introduction, such as:

Entering data from the keyboard

The arithmetic operators

Numeric and character variables

The arithmetic operator hierarchy

Entering a BASIC program

The BASIC language statements REM, INPUT, GOTO, STOP,
LET, IF, FOR, NEXT, READ, DATA, RESTORE, PRINT, OPEN, CLOSE,
RESET, PUT, GET, and DIM

The system command used to store and retrieve programs on a
tape or diskette :

In this chapter, the following topics are discussed:
o Defining a program

o Analyzing an application (problem) so that BASIC programs can be
used to process information

e The most commonly used BASIC statements

DEFINING A PROGRAM

A program is a procedure or set of instructions you establish for doing
a job. These instructions are necessary because a computer cannot
think for itself. When defining a program for the 5110, you can use a
programming language called BASIC. BASIC is a simple-to-use
programming language with which you describe how you want the
5110 to do the job.

The next section presents an approach to analyzing an application so
you can use a BASIC program to help process information. This
approach helps you divide an application into manageable parts. This
way you can apply BASIC statements to process the information.
Dividing an application into manageable parts promotes thoroughness
and allows the application to be solved (programmed) faster.

Elements of a BASIC Program 9

PROCESSING INFORMATION
Every problem consists of three parts:
e The /input data required to generate the final result

e The process (BASIC statements) required to generate the final
results

e The output, which is the final result
Each part might consist of one statement or several statements. In the
following sections, each part is discussed in more detail. Also, an
example for finding the compound interest is used to illustrate each
part.

Output
Because the output is the primary reason for a program to exist,
considering the output provides the best place to start solving a
problem. To do this, consider these questions:
1. What results are required?
2. How should the results be formatted?
3. Who uses the results? For example, should the results be

displayed or printed, or should the results be stored in the main

storage, on tape, or on diskette for later use?

Now, for the compound interest example, assume the answers to
these questions are:

1. The amount of interest earned

2. The message THE INTEREST EARNED IS: followed by the
calculated interest earned

3. Finance officers need the displayed results to evaluate different
plans

Once you have answered these questions, you know the purpose of a
program.

Input

After the output, you should consider what input data is required to
generate the output. To do this, consider such questions as:

1. What input is required?
2. Where does the input come from?
3. How is the input provided?

For the compound interest example, the answers to these questions
are:

1. The interest rate, number of years, and principal

2. From finance officers who need to know the amount of interest
earned for different plans

3. Through the 5110 keyboard

In our example, most of the input data will come from the keyboard;
however, other ways also exist. For example, some data might be
permanent and be included within the program (for example, headings
and labels). There might also be data that is usually constant but, for
certain applications, must be changed. This data might be coded in
the program as variables that can be modified. And, of course, data
might also be from tape or diskette. ‘

The following list summarizes the input and output considerations so
far:

Input Output

Device Keyboard Display

Data Interest rate THE INTEREST EARNED IS:
Number of years The calculated interest earned
Principal

Elements of a BASIC Program

11

12

Process

Once the input and output are well defined, all of the characteristics
work together to make the process part the most straightforward.

For our compound interest example, the process part consists of:
1. Defining the algorithm used to calculate the compound interest
2. Using the input to generate the results

The formula used in this example for the compound interest is:

COMPOUND INTEREST = PRINCIPAL (1 +___F1‘889>Years

The BASIC statements that use the input to generate the results might
be as follows:

o= LeRALO0 R is the interest rate
Bom @ty Y is the time in years
G PR P is the principal

5 p p

C is the compound interest

PUTTING IT ALL TOGETHER

Now that you have considered the three parts of information
processing, it is time to write your program. For the compound
interest example, your program might look like this:

Q010 PRINT CENTER THE INTEREST, PRINCIPAL, AND
Go20 INPUT R,P,Y

DOAD A=l+RA00

OO0M0 B=ptY

D054 O=PeR

G060 PRINT CTHE INTEREST EARNED IS

Qo7 PRINT C-p

So far, you have taken a simple application and designed a program to
solve it. If the application is larger or more complex, a more detailed
structure is required. This more detailed structure involves expanding
each of the three parts (input, process, and output) into additional
levels of input, process, and output.

YEARE

ADDITIONAL LEVELS OF INPUT, PROCESS, AND OUTPUT

For complex or large applications, you might want to break the INPUT,
PROCESS, and OUTPUT down into additional levels of input, process,
and output.

Program
INPUT PROCESS OUTPUT First Level
]
Input Process Output Additional Levels

This allows you to break each first-level INPUT, PROCESS, and
OUTPUT part into manageable parts. Let's continue with the
compound interest problem and expand the first-level INPUT portion
into additional levels of input, process, and output. That is, the INPUT
portion is going to be treated as a separate problem in itself.

First, consider the output of the INPUT portion. Here the output is
actually the input for the first-level PROCESS portion. In this case,
assume that the output must be an interest rate not greater than 18%,
a number of years not greater than 40, and a principal not greater than
500,000.00.

Next, consider the input for the INPUT portion. The input is the same
as before (the interest rate, number of years, and principal for which
the interest earned must be calculated). However, in this case, the
finance officers might be unfamiliar with the program; therefore, there
should be prompting messages telling them what to enter.

Elements of a BASIC Program

13

14

Finally, consider the process for the INPUT portion. In this case, the
processing consists of error checking and validation of all the input
data, because you want to make sure that the interest rate is not
greater than 18%, the number of years is not greater than 40, and the
principal is not greater than 500,000.00.

Now, taking these considerations into account, the BASIC statements
for the first-level input portion might be:

Galo
a2
0030
0040
G054
G0a0
aavo
{HRIRERY]
aovd
Gla0
g1ia
0120

PRINT CENTER THE INTEREST RATE, YEARS AND PRINCIPAL®
IWNpuT I,v, ¢

F T318 GoTo a0

PRENT "THE TINTEREST RATE IS GREATER THAMN 18 PERCENT
GOTO 10

TF oYyzwg GOTO 240

PRINT CTHE NUMEBER OF YEARS I8 GREATER THAN 40°

GOTO 10

F O P2EH00000 GOTO 1240

PRINT "THE PRINCIPAL I8 GREATER THAN S00,000.00°
GOTQ 1o

113

For complex or large applications, you couid also break down the
first-level PROCESS and OUTPUT portions; however we are not going
to do that for this example.

As you break an application down into manageable parts, you might
want to have a separate program for each part. For example:

0005
0010
0020
0030
0040
00350
0060
0070
0080
govao
0100
0110
0120

0010
ooz2o
0030
80u0
0050

UsE I,Y,9¢
PRIWNT "ENTER THE INTEREST RaATE, YEARS, AND PRINCIPAL ' -

IMeuT Ly, P

TF =18 GOTO &0

PRINT “THE INTEREST RATE I8 GREATER THAN 18 PERCENT®
GOTO 1o

IF Yah0 GOTO 90

PRINT "THE NUMEBER OF YEARS I8 GREATER THAN 40°

GOTO 10

IF PEBo0000 GOTO 120

PRINT "THE PRINCIPAL IS5 GREATER THAN S00000.00°

S0TO 10)
The input program is loaded from file 1 and

CHAIN 'E80°",2
\executed.

The CHAIN statement automatically loads
the program from file 2 on device E8O0.

Uuse 1I,Y,pP,C

=141/ 00-<+——The process program is loaded from
Bty file 2 and executed.

Coe=pPrR

CHAIN 'E80°',3

000% USE I.Y,P, 0 The output program
0010 PRINT 'THE INTEREST EARNED IS:° is loaded from
0020 PRINT C—-P ’ file 3 and executed.
0030 8TOP

CONCLUSION

When solving a problem using the 5110, break the problem down into
manageable parts. To do this, first focus on the program output; this
is the primary interface to the user. The output also defines what the
real purpose of the program is. Next, consider all the input data that is
required to generate the output. Finally (and only then), plan the
actual processing.

Thinking in this way should help you make the transition from knowing

the BASIC language to being able to use the BASIC language and then
to generating programs that solve real problems.

Eiements of a BASIC Program 15

BASIC STATEMENTS MOST COMMONLY USED FOR INFORMATION
PROCESSING

Following is a description of some BASIC statements that you will use
for the input, process, and output portions of a BASIC program.

Input Statements
Statement Description

INPUT Requests that you enter data
from the keyboard during the
execution of the program. The
data entered from the keyboard
is assigned 1o a corresponding
name (variable) specified by
the statement.

DATA Creates a string of numeric and/or
character values that can be used
by the program. The values are
assigned to a corresponding name
specified by a READ statement.

READ Assigns values to variables and
arrays from the values created by
a DATA statement.

OPEN Causes specified input and/or
output files to be activated.
The files can then be used
for the input and/or output
operations.

CLOSE Causes the specific input and/or
output file to be deactivated.
Then the files cannot be used
for input and/or output
operations until they are
opened again.

READ FILE Reads records from a specified
record |/0 data file (see
Chapters 7 through 10) and assigns
the data to specified variables.

DIM Specifies the size of arrays
and character variables used
by the program.

GET Reads data from a specified stream
1/0 data file and assigns the data
to specified variables.

Process Statements

Statement

LET

FOR

NEXT

GOSUB

RETURN

GOTO

Description

Assigns the value of an expression
to a variable.

Marks the beginning of a loop and
specifies the condition of its
execution and termination. The
NEXT statement is used to mark the
end of the loop:

GLo0 FOR K = 1 TO 10

GLEG NEXT K
See the FOR statement.

Transfers control to the first

statement of a subroutine. Then

when a RETURN statement is executed,
control returns to the next

statement following the GOSUB
statement:

0100 GOSUR 250
olE0 T o

L]

L5
i

GA%0 REM THIS I5 A SUBROUTINE

1

0290 RETURN

A subroutine is useful when the
same statements must be executed
several times in the program.

See the GOSUB statement.

Transfers control to a specified
statement.

Causes the program action to be

determined as the result of the
evaluation of a condition.

Elements of a BASIC Program

17

18

Output Statements
Statement

PRINT

PRINT FLP

WRITE FILE

REWRITE FILE

PUT

Description

Causes data to be displayed on
the display screen.

Causes data to be printed on the
5103 Printer. Data can be formatted
as it is being printed if the

PRINT FLP statement is used in
conjunction with the IMAGE and
FORM statements.

Adds a new record at the end of
a record 1/0 file.

Updates (rewrites) a record that
already exists in a record 1/0 file.

Writes data from specified variables
to a stream /O file.

Chapter 3. Changing the Sequence of Execution in Your BASIC Program

In this chapter, the following topics are discussed:
e Using loops to do the same calculations repeatedly

e Using functions or subroutines to do the same operation several
times

e Chaining to another BASIC program from a program currently being
executed

LOOPS

Suppose you want to display credit amounts of $100 to $5000 in
increments of $100, along with the monthly finance charge of 18% per
year (.015 per month). You could do it simply enough by writing the
following statements:

Lo, L00w, gL

Snf, 200w, 0LE

FO0, F00w, 015

WO, WO0w, 015

aoLa
[IRTheRt
G030

Wergd, wwO0s, 01
OO0, S0, 015

Although this technique works correctly, it is time consuming and
tedious. In displaying an amount and its finance charge for all
amounts from 100 to 5000, what we are really doing is performing the
same operation repeatedly, but using different numbers each time.
Calculations that are to be repeated can generally be done efficiently
by a simple programming device known as a /oop.

Changing the Sequence of Execution in Your BASIC Program 19

20

Here’s a concise method of performing the same operations shown
previously: :

galn pP=300

0020 PRINT P, Px, 015
GOxRD P=Pelin

foug GOTo 2o

Here, we have created a loop in statements 20 through 40. When the
program is run, the PRINT statement will be executed once each time
the value of P increases by 100. The statement that makes the loop
possible is the GOTO statement. [t alters the normal sequence of
execution by directing the computer to execute a different statement.
It does this by referring to the number of that statement. The
statement GOTO 20 directs the computer back to statement 20, which
displays the value of P and its finance charge. Statement 30 then
increases the value of P by 100, and statement 40 is executed again,
branching the program back to statement 20.

There is one problem with the loop we have shown here: there is no
provision for ending the loop. Consequently, not only will we get
results for values from 100 to 5000, but also for 5100, 5200, and so
on, unless we take some action to stop execution. In this program, we
want the loop to end after we reach the value 5000, or, put another
way, we want the loop to continue as long as P is less than or equal
to 5000. To provide this action, we should build into the loop a test
from some condition, so that when the condition is met, the loop will
end automatically.

Using the IF Statement

An IF statement says it quite concisely:
a0 IF PIREOO0 GOTO 214

This IF statement says that if P is less than (<) or equal to (=) the
value 5000, the program is to branch to statement 20. Here we have
incorporated the GOTO statements into the IF statement. Let's put this
new statement into the program and see what happens:

agio p=10Q

no20 PRINT P, Px, Q1%
QO30 P=Pelon

goung IF P3E000 GOTO 20

As long as P satisfies the condition, P less than or equal to 5000,
execution will loop back to'the PRINT statement. However, when P no
longer satisfies the condition—when P is greater than 5000—-the loop
will end automatically and the execution will fal/l through the IF
statement to the next statement, which in this case is an END
statement signifying the end of the prdgram.

The IF statement has many applications, some of which can be quite
sophisticated, depending on the condition tested in the statement. For
example, conditions such as the following can be tested:

0L&60 IF a=0 GOTO &0
0170 TF A=0 THEN &0
e IF B-XsY2212 GOTO 80

The first example is quite simple: if the value of the variable A is
equal to 0, branch to statement number 60. The second statement
tests the same condition as the first statement, but substitutes the
word THEN for GOTO. In the IF statement, THEN and GOTO have
exactly the same meaning. The third statement makes a test between
two sets of expressions. The first expression evaluates B-X/Y. The
second expression evaluates Z+2. If the value of the first expression
is less than (<) the value of the second expression, the program is to
branch to statement 80.

Relational Operators

The IF statements illustrated in these examples used the symbols <, >,
and =. These symbols are part of a set of operators called relational
operators. Relational operators are used only in IF statements; they
test the relationship between two expressions. It is important to note
that relational operators do not perform any arithmetic operations.
They simply test whether or not a condition is satisfied. For example,
in statement 40, the equal sign does not mean that P is to be given
the value 5000; it tests whether the value already assigned to P equals
5000. If a condition is satisfied (if P does equal 5000 in this example),
then the condition is considered true. If a condition is not satisfied (if
P does not equal 5000), the condition is considered false. Thus, a
relational operator says that if the condition being tested is true, the
action specified is taken; otherwise, the action is not taken. Reviewing
this concept using the example IF A = 0 GOTO 60, if the condition is
true (A does equal 0), then the branch to statement number 60 is
made; otherwise the branch is not made. Instead, the program
continues with the next statement in sequence.

Changing the Sequence of Execution in Your BASIC Program

21

22

The relational operators and their definitions are:

Operator Meaning

= Equal to

< >o0rz Not equal to

> Greater than

>=0r > Greater than or equal to
<=orc< Less than or equal to

Here are some examples:

O30 TF f=R GOTO =500
G190 IF CPRINT < PRIZE
Gaon IF ad<0 GOTO S99

GOTO 300

In the first example, a test ig made between the values contained in
the arithmetic variables A and B. The second example illustrates
comparison of character data. For character data, a comparison is
made according to the EBCDIC collating sequence of each character in
corresponding positions in the constant. In other words, the first
character of one constant is compared to the first character of the
other constant, the second compared to the second of the other, and
so on. In this example, the first three letters of the constants compare
equal, but when the letter N is compared to Z, they compare unequal.
The letter N, occurring before the letter Z in the alphabet, registers
less than in the collating sequence. At this point, the condition tested
would be met; that is, the character string PRINT is indeed less than
PRIZE.

In the third example, character variables are compared. Let's assume
that the variable A$ contains the value ON and the variable D$
contains ONLY. The first 2 characters match, but when the letter L is
compared to a blank, which is assumed for comparison purposes, they
do not match. Thus, the result in this case would also be true,
because the value of A$ is not equal to the value of D$. If, however,
A$ and D$ do contain matching strings, say both contain the
characters ONLY, then the test results would be false—A$ and D$
would be equal, thereby not satisfying the condition of the test.

Logical Operators

The example IF A = B tests the relationship between two expressions.
Suppose, however, that you wish to take action if more than one
relationship is true. For example, suppose that not only must A equal
B but also X must equal Y. You could make these comparisons by
using the logical AND operator, written as &:

QOu0 ITF A=REX=Y GOTO 100
Statement 40 says that if A equals B and X equals Y, then statement
100 is executed. If only one comparison, or neither comparison, is

true, program execution continues with statement 60.

The IF statement can specify two logical operators:

Operator Meaning
& AND
I OR

The AND operator states that both conditions of a test must be true
for the entire expression to be true; the OR operator states that either
condition (or both) must be true for the expression to be true.

If you want to branch to statement 100 if either A equals B or X
equals Y, you could write this statement:

aoE0 ITF pA=REx=Y GOT0O 100

Here are other examples of the AND and OR operators:

gove IF CH=Didde
J

goae IF Al#A28

A00

The first example tests an OR condition using character variables. It
says that if the value in the variable C$ is greater than the value in D$
or if the values in J$ and K$ are equal, then a branch is made to
statement 50.

The second example tests an AND condition using mixed variables. It
says that if the value in the arithmetic variable A1 is not equal to the
value in A2 and the value in the character variable J$ is greater than
the character string CAT, then the program is to branch to statement
300; otherwise, program execution is to continue with the next
sequential statement.

Changing the Sequence of Execution in Your BASIC Program

23

THE COMPUTED GOTO STATEMENT

The computed GOTO statement is a version of the GOTO statement
that gives you the ability to branch to different statements during
various stages in a program.

A computed GOTO could look like this:
0Lo0 GOTH Z0,40,%0 ON O

A branch is made to statement 30, to statement 40, or to statement
50, based on the integer portion of the value contained in the variable
J. The integer portion may contain a value of from 1 to 3. If the value
is 1, a branch is made to the first statement shown in the list,
statement number 30. If the value is 2, the branch is to be the second
statement, number 40. If the value is 3, the branch is to the third
statement, number 50. If the value is greater than or equal to (>) 4 or
less than (<) 1, program execution falls through to the statement
following the computed GOTO statement.

The expression determining the branch to be made can be a simple
variable, such as J above, or a more complicated expression, say (A +
B) / 2. If such an expression were used, its computed value would
determine the branch to be made. Consider this example:

GOWE0 GOTO 200,200, 000,200 ON (a+RO /2
The expression (A + B) / 2 is evaluated, and a branch is made to
statement number 200, 220, 100, or 240, depending on whether the
value is 1, 2, 3, or 4, respectively. Note also that the statement
numbers shown in the list do not have to be specified in sequential

order; that is, statement number 100 can be the third number in the
list even though it is a lower number than the others.

MORE ABOUT LOOPS-USING FOR AND NEXT STATEMENT

A still more concise method of specifying a loop is by using the FOR
and NEXT statements. For example, our program for finding and
displaying the finance charge for $100 to $5000 could be further
simplified to look like this:

Gl FOR P=100 TO 5000 STEP 100
G020 PRINT P, Pe. 015
GOEG MNEXT P

The FOR statement identifies the beginning of the loop; the NEXT
statement identifies the end of it. In between is the statement, or
sequence of statements (we need only one for this example) that will
be executed repeatedly until the specification in the FOR statement has
been satisfied.

In our example, the FOR statement specifies that the statement in the
loop (the PRINT statement) will be executed repeatedly for successive
values of P from 100 through 5000. (An increment of 100 is added to
P for each execution of the NEXT statement.) When the value of P
exceeds 5000, execution of the loop is ended, and control is passed to
the next logically executable statement following the NEXT statement.
In this case, the following statement is a STOP statement denoting the
end of the program. However, other statements could precede it, or
the NEXT could be the last statement prior to the STOP.

The increment is always 1 unless it is explicitly stated to be otherwise;
for example:

L FOR P=100 TO 5000 STER 200

This FOR statement explicitly states an increment (or step) of 200.
Thus, the statement(s) in the loop will be executed once for every odd
multiple of P from 100 to 5000 (that is, the range is 100, 300,
500,...4900). When the value of P exceeds 5000 (that is, when it
reaches 5100), execution of the loop will end. The value of P will be
set back to 4900 before the next logically executable statement is
executed.

If you want to execute the loop once for every even multiple of 100 to
5000 (that is 200, 400, 600,...5000), you would say the following:

GO0 FOR P=200 7O 5000 STEP 200

Again, when the value of P exceeds 5000 (in this case, when it
reaches 5200), execution of the loop will end. The value P will be set
back to 5000 when the next logically executable statement is executed.

As with expressions appearing in assignment statements and in the
body of PRINT statements, the specifications in FOR statements can
be quite complicated. For example, the following FOR statements are
permitted:

Q030 FOR L= TO R

Goug FOR

JmEueY TO A3
0050 FOR K=

GIRCED O 1O BEL BTEP A/R2

Changing the Sequence of Execution in Your BASIC Program

25

26

The first example states that the initial value of | is to- be taken from
the variable A and that the loop is to be executed repeatedly until the
value exceeds the value of B. The second example states that the
initial value of J is the value of the expression 8 * M + Y, and the loop
is to be executed until this value exceeds the value of A ** 3. The
third example states that the initial value of K is to be the square root
of B minus C; the loop is to be executed until the value 550 is
exceeded, and each time through the loop the value of K is to be
increased by the value of the expression A / B4+2.

You can also use more than one set of FOR/NEXT statements
together in a program by nesting one loop. Let's look at a program
that computes compound interest and uses nested FOR loops in the
process.

The mathematical formula to compute compound interest is:

100

where A is the amount to be calculated, P is the principal, R is the rate
of interest, and T is the time period.

The program below shows how you can enter any amount as the
principal (P), compute interest on it using interest rates from 1% to
20%, for each of 10 years, and display all the amounts—a total of 200
values.

Qo900 PRINT TENTER PRINCIPALS

proo Iwpur p

GRS PRINT CTIME", "RATE, " AMOUNT
0110 FOR T=1 TO 10

aLaa R=d T 20

G130 A=Prl+RALG0FT

Giu0 PRIN

niun
a1aa

Statement 130 duplicates, in BASIC terms, the compound interest
formula. The FOR statement numbered 120 and the NEXT statement
numbered 150 delimit one loop. The first time through the loop, the
value of R, the rate variable, is set to 1. When NEXT R is reached, R
is incremented by 1 and the statements are executed again with the
new value of R. Each time through the loop the PRINT statement
prints time, rate, and amount values. This process continues until R
reaches 20 and the loop is ended.

However, this loop is enclosed, or nested, within the loop delimited by
the FOR and NEXT statements numbered 110 and 160. This outer loop
changes the value of T, the time variable, from 1 to 10. Each time the
value of T changes, the inner loop cycles through 20 times changing
the value of R. Since T changes value 10 times, the loop changing the
value of R is executed 200 times. Each time, the PRINT statement
prints new values.

A nested loop is one that is enclosed by another loop. That is, the
FOR/NEXT statements of one loop occur between the FOR/NEXT
statements of another loop, as illustrated:

01310 FOR P e o o
0120 FOR R o o

|——l']1:.’§ﬂ FOR T ¢ « o
Outer Nested Nested o
Loop Loop 1 Loop 2 o

l————ﬂlf.’iﬂ NEXT T o o o

0160 NEXT R ¢ «
0170 NEXT P o « @

FUNCTIONS AND SUBROUTINES

As part of the BASIC language, you can define functions or write a
program segment, called a subroutine, which you expect to use several
times in your program.

Functions

User-written functions can be arithmetic or character. An arithmetic
function is named by the letters FN followed by a single letter. A
character function is named by the letters FN followed by a single
letter and the currency symbol ($).

The following can be names of arithmetic functions:
FNA
FNB

FNR
FN#

Changing the Sequence of Execution in Your BASIC Program

28

The following can be names of character functions:

FNAS
FN#$

A user-written function is named and defined by the DEF statement.
For example:

DOLO DEF FNE CO=EXPOXT?)

defines the natural exponential of X squared, using the intrinsic
function EXP. The arithmetic variable X, enclosed in parentheses after
the function name FNE, is called a dummy variable. You can have
more than one dummy variable, and the list of variables can contain
both arithmetic and character dummy variables. (The expression value
substituted for each dummy variable is called an argument.) After
defining a function, the function name and its accompanying
argument(s) can be used anywhere in your program. For example:

DOLO DEF FNE (X)) = EXP (X2
4

D050 Y = FNE (L 5)

0060 Z = FNE (D)

D070 PRINT FNE (3, 75)+v/7

User-defined functions can be defined in one statement or over a
group of statements. A function defined in one statement, such as the
function illustrated above, is called a single-line function. A function
defined over many statements is called a multiline function. A
multiline function begins with the word DEF, the function name, and
any arguments, the same as single-line functions. However, the DEF
statement does not contain the equal sign or an expression. Rather,
the value of the function is developed by the statements following the
DEF and is defined in a RETURN statement, which computes the value
and returns the value to the program. The end of a multiline function
is defined by the FNEND statement. Here is the way the statements in
a multiline function must be sequenced:

DEF function name [(variables, if any)]

RETURN expression

FNEND

Here is an example of a multiline function:

QO30 DEF FNa (X,

QoG IR Xe0 & Yl GOTO &0
GOS0 GOTO &5

Q&0 RETURN XY

G0&% RETL
O FMERD

This function uses two dummy arithmetic variables (X and Y) as
arguments. The function tests the values of both arguments. If X is
greater than O, and Y is greater than 1, the values are added and the
sum is returned to the program. If the values do not satisfy the tested
conditions, program control transfers to statement 65. If this function
were used in the following program, C would have a value of 7 and D
would have a value of -2.

OOFG DEF FMa (X,Y)

goung ITF X=0 & Yxl GOTO A0
GOS0 GOTO &%

DOHD RETURM X+Y

Q04T RETURN XY

BOTH FNEMD

@

o
N RIRY
0120
0130 ¢ i, B
0180 D= 0,30

Changing the Sequence of Execution in Your BASIC Program 29

30

Subroutines

Another way of writing a group of statements to be executed at
different times in your program is to group them into a subroutine.
Execution of a subroutine begins with the GOSUB statement, where
the number specified in the statement specifies the number of the first
statement in the subroutine. For example:

100 GOSUB 200

causes the computer to skip, or branch, to statement 200, the first
statement in the subroutine. Program execution continues from that
point. To cause the computer to branch back to statement 100
(actually, to the next sequential statement following statement 100),
the last statement of the subroutine must be a RETURN statement.
This RETURN statement, unlike a RETURN used with a function,
contains no expression. A program containing a subroutine could be
sequenced like this:

— 100 GOSUB 200
110)

120
130
140 These are the statements that will
150 be executed after the RETURN.
160

170

180 |
190 STOP

~~200] First statement of the subroutine.
210
220
230 Statements executed as part of the
240 subroutine.

250 J

——260 RETURN

270 END

Statement 100 branches to statement 200. Statement 260 returns
control to statement 110. Statement 190 tells the computer the end of
the program has been reached. The STOP statement is similar to an
END statement except that higher-numbered statements may follow it.
Its use is to denote the end of program execution when the logical
conclusion of the program occurs somewhere in the middle of the
program, as shown here. The STOP statement here is equivalent to
writing GOTO 270.

A program illustrating the use of a subroutine is shown below. This
program determines the greatest common divisor of three integers.
The first two numbers are selected in program statements 30 and 40,
and their greatest common divisor (CD) is determined in the
subroutine, statements 200 through 310. The CD just found is
assigned to X in statement 60. The third number read in from the
INPUT statement is assigned to Y in statement 70. The subroutine is
entered a second time from statement 80 to find the greatest common
divisor (CD) of these two numbers. The result is, of course, the
greatest common divisor of the three given numbers. It is displayed
with them in statement 90.

GO0 PRINT CENTER THREE INTEGERS:
Qo220 TNPUT &, 8, C

DOI0 Ky

GO0 YR

00E0 GOSUER 200

PO&0 K=
Qoo Y=
Goae GOSUR 200

aa90 PRINT "a, "R, G, o
pO9% PRINT &, 8, 0,6

grog sTop

G200 G=INT(XA)

0210 ReX-Quy

PFOoR=Q GOTO 300

1AM Y=R

Q250 Garo 200
0AEO0 Gy

GARL0 RETURN

Changing the Sequence of Execution in Your BASIC Program

31

32

Let's assume these numbers are entered when the INPUT statement is
executed:
ENTER THREE INTEGERS
? -
&0,90,120
The output will be:

1 19 Xt 55 (print positions)
A B [! o
60 @0 120 30

Another example of input and resulting output is:
ENTER THREE INTEGERS
?
32,384,772
() & [(1
3 384 T2 8

COMPUTED GOSUB STATEMENT

The computed GOSUB statement is similar to the computed GOTO
statement discussed in this chapter. They both cause a branch to one
of a number of statements based on the computed value of an
expression. The difference between the two statements is that the
GOSUB branches to a subroutine; the RETURN statement in the
subroutine returns program execution to the statement following the
computed GOSUB statement.

Consider this example:
QO30 GOSUR 120,075, 19% ON XY

A branch is made to one of three subroutines, either the one
beginning with statement 120, the one beginning with statement 175,
or the one beginning with statement 195, depending on whether the
integer portion of the value contained in the expression X - Y is 1, 2,
or 3, respectively. If the expression X - Y results in a value other than
1, 2, or 3, program execution continues with the statement following
the GOSUB.

PROGRAM CHAINING

With the program chaining technique, a BASIC program can be shared
with other BASIC programs. For example, suppose that when writing
a program you discover that an operation you want to perform is
available as a separate program. It could be time saving to you to be
able to use that program in conjunction with the one you are currently
writing. The CHAIN and USE statements can help you access data and
execute that program.

The CHAIN statement is used in one BASIC program to tell the
computer to stop executing the current program and start executing
another BASIC program. To tell the computer which program to start
executing, you name it in the CHAIN statement. Here’s an example:

0500 CHaTN "one, PROGR.

This statement instructs the computer to begin executing the program
(in diskette drive 2) named PROGB. Note that when the CHAIN
statement is executed, the current program (the program containing
the CHAIN statement) is terminated.

Variable values in the chaining program are passed to the chained
program; that is, they become accessible for use in that program only
if they were defined in a USE statement.

In the program being chained, the USE statement specifies a list of
variables that will receive the values passed from the CHAIN
statement. For example, the value passed by J$ to PROGB can be
received by PROGB in the statement:

0200 USE K418

Note that the USE statement is written in both programs and the
CHAIN statement is written in the chaining program (the program
requesting execution of another program). The USE statement must
be the first statement referencing a variable in each program.

The CHAIN and USE statements derive their value in being able to
help you string two or more programs together instead of having to
code similar program sections for individual programs. Also, CHAIN
and USE statements allow you to segment large programs. The
following is an example of CHAIN and USE.

Changing the Sequence of Execution in Your BASIC Program

33

a0lLo
HRIMAT

G300

RIN R
aaEn

3

REM THIS

3

> Chaining program

s
N

+ Program being chained

The CHAIN statement at 0300 of PROGA causes PROGB to be loaded
into storage, then execution transfers to PROGB. The value in J$ of
PROGA is passed to K$ as specified by the USE statements in both

programs.

Chapter 4. Formatting a Report

The PRINT USING FLP statement is useful for controlling the format of
a report. PRINT USING FLP is used in conjunction with an Image or
FORM statement or character variable to print values according to the
format specified by the statement or variable. The PRINT USING FLP
statement includes the values to be printed and the statement number
or character variable of a corresponding Image or FORM statement
that specifies:the format of the print line. For example:

DOX0 PRINT USING 40 PR S

This statement refers to statement number 40, an Image or FORM
statement, which will cause the computer to format the arithmetic
variables N and A on the print line.

PRINT USING AND THE IMAGE STATEMENT

Statement 40 could look like this:
Q00 1 TN #B# YRS AMT = $HH8H, #H

The colon beginning statement 40 identifies it as an Image statement.
The alphabetic characters are printed exactly as they appear in the
statement, and the pound sign (#) is the symbol used to indicate that a
value will be supplied from the output list in the PRINT USING
statement. The value of N replaces the first set of #'s, and the value
of A replaces the final set. The decimal point in the final set indicates
that the value of A is to be aligned on the decimal point in the image
specification.

If N contains the value 10 and A contains the value 1628.88, the
output line produced by statements 30 and 40 would look like:

I 10 YRE aAMT = $146328,88

In the Image statement, the pound sign (#) is used as a placeholder.

In statement 40, the first set of #'s indicates that a value is to be
displayed using two positions; the second set displays a value over six
positions aligned on a decimal point between the fourth and fifth
positions. If the value to be printed is smaller than six digits (say the
value 300.40), the first, or high-order position, would be printed with a
blank. Excess decimal positions are rounded to the number of decimal
position # signs.

Formatting a Report 35

36

The Image statement can also contain a placeholder consisting of the
symbols | ||| for an exponential value. If you want to print a value
containing an exponent, the Image statement could contain the
following sequence of symbols:

HHEOHBTILHE
BEOEMI

This sequence states that a value is to be printed with four digits
followed by an exponential value. An exponential value is always
printed with four positions for the format: E+dd. The letter E is
followed by a plus or minus sign indicating a positive or negative
exponent, followed by two digits. Therefore, a set of four |s must
always be specified as placeholders for exponents. If an Image
specification contains this sequence:

WL HEL L]

the following shows how different values would be printed by that
sequence:

Value Printed Format

The specification calls for four digits to be printed aligned on the
decimal point. Therefore, the number 123 is represented as 12.30 with
an exponent of +1. The exponent tells us two things: the direction in
which the decimal point is to be moved (+, to the right, and -, to the
left), and the number of digits over which it is to be moved. In the
first example, the exponent +1 tells us to move the decimal point one
position to the right; the number 12.30E+01 is the same as 123. In the
second example, the number 12.3 can be aligned on the decimal point
with no action required by the exponent, hence an exponent of E+00;
the number 12.30E+00 is the same as 12.3. The third example tells us
to move the decimal point two positions to the left; 12.30E-02 is the
same as .123.

Blank positions in an array referenced by a PRINT USING. statement
are significant. The entered characters of a variable do not determine
the size of the variable to be used by the PRINT USING statement.
For example, with a variable A$ dimensioned to 30 for the entry of a
name, and the name C. A. JONES entered into the variable, the PRINT
USING statement will use all 30 positions of the variable, including the
blank positions.

gaLo
ngzo

QO30
aaun
IRIAY
paan
RTINS
noao
aowo
n1ao
0410
praan
130
aiud
0450
hran
aLvo
nien
0190
o200
0210
(1220
02350
0240
fr2E0
0260
0970
020
LEDRAR T
Gxa0

Note that a PRINT USING statement can be ended with a semicolon (;)
to suppress printing of a new line and cause subsequent printing to

occur on the same line, as shown in the following example.

Example:

PRINT
INPUT i
PRIMT
FMONMTHLY B#
PRINT FLP

PRINT FLFP

PRENT UISING
PRINT UGIMNG
PRENT LISTNG
VEALEDMAN

M AME
H MET
PRINT e
PRINT "N
PRINT "OR
ITNPUT A%
TF iyt
PRINT
INPLUT T
PRINT
INPUT A
PRINT
INPUT B
oy R
PRINT USTHNG
PRINT UEIHG
PHEBNEEE

NI

GO
S0

1w

CEMTER
LG TMG W0
LES &Y

100, FLLY
11r,llih;
(S

ENTE R

GOT0
EMTER

"EWTER

TENTER

RUHHEREN B

: HTHERT, B

TOOAY " "5 DATE”
LR T
Bl

»

120, i
BalESMan

MUMBE R

Gl

SMAN TR

Sale NaME”
BN T

i

A0
SEe

Sal.b

N

GROSS Salis

EXPENGES:

O,a,8:

FLP,QJ
"Pﬂ Fl.P, G

SMaN AL OF

GOMNUMEER"

HEHHY

GROEs

4 440

PR

Sl S

R

EXPENSES

THRY HY

Formatting a Report

37

38

in this sample program, statements 40, 100, 110, 120, 270, and 280
are Image statements used to format the printed report shown below.

MORTHLY SALES BY SALESHMAN a8 OF 10719777

HalESMAN
NAME MNUMBER GROSS S4LES EXPENSES NET S56LED

SO0 BEEARL, 00

g gaoan
HRO0F, 00
FUPR0, 00

FEENS 00
PRINT USING AND THE FORM STATEMENT

The FORM statement offers greater formatting capabilities than the
Image statement. For example, it provides a special code to specify
character data. It contains format control specifications to tell the
computer how to position output on a print line; one of these
specifications, SKIP, must be coded on the FORM statement to cause
a line to be printed.

Numeric Specification—PIC

The PIC specification in the FORM statement shows a picture of the
way a number should be formatted. This picture is enclosed in
parentheses. The symbols #, ., and |, previously illustrated in the
Image statement, could be used in the FORM statement in this format:

PICOBE #H31EED

You recall that the # symbol is used as a placeholder for a digit and
the | symbol is used as a placeholder for an exponent. The PIC
specification has these additional placeholders, or digit specifiers:

Symbol

z

Meaning

A leading zero is to be
replaced with a blank.

A leading zero is to be replaced
with an asterisk.

Floating dollar sign. A dollar sign
is to be printed immediately
before the first significant digit.

Floating plus sign. A plus sign for

a positive number, or a minus sign

for a negative number, is to be printed
immediately before the first

significant digit.

Floating minus sign. A minus sign
for a negative number, or a blank
for a positive number, is to be
printed immediately before the first
significant digit.

Here are examples of digit specifiers. Assume that a data item
containing the value 112233 is to be printed.

PIC Specification

PLCCHEREBEHRR)
PYCCZZEZEZEEE
PTG C a3 36 36 6 0 44)
PITCCRESEEEE8H)
PICCH+4tee B8
PLC e HEHHHEE)

Printed Output

000112233
11 X

LR R R
$1L1L3233
+1 12233
112233

If a floating character (dollar sign, plus sign, or minus sign) is specified
only once at the start of a PIC specification, it does not float through
the field but instead is printed in the indicated position. For example:

PIC Specification

PLCSZIZIIHAN)

Printed Output

oy ey e
B

Formatting a Report

39

The PIC specification can also contain /nsertion characters to edit a
printed item. Digit specifiers indicate how the number itself is to be
treated; insertion characters simply insert additional characters into a
field, generally to improve readability. The following insertion
characters can be specified:

Symbol Meaning
B Print a blank unconditionally.

, Print a comma conditionally (only if
a digit precedes the comma).

/ Print a slash conditionally (only
if a digit precedes the slash).

Print a decimal point conditionally
(if the value to be printed is
nonzero or zero suppression (Z)
is not in effect).

+ Trailing plus sign. When the
+ appears in the rightmost
position of a PIC specification,
it is treated as a trailing sign.
A plus sign is printed for a
positive number, a minus sign for
a negative number.

- Trailing minus sign. When the -
appears in the rightmost position
of a PIC specification, it is
treated as a trailing sign. A
minus sign is printed for a
negative number, a blank for a
positive number.

CR When the characters CR or DB appear
DB at the end of a PIC specification,
they are treated as a trailing
sign. CR or DB is printed for a
negative number; blanks are printed
for a positive number.

Here are examples of insertion characters added to the examples
previously shown:

PIC Specification Printed Output
PLICORERBESEEEEH) o0 11 22353
PIOCEZERTERZHER) L2233
PLOCEEE E0E, %) L13, 233
PLCCZZZEE /5878 LL/732 /33
FOUCs ey s madd | $4) i

PICCRSSss bt v
FLICOhSS, S84, 6%, HH) $1L12, 233,00

In the first example, a blank is entered after the third and fifth digits.
Because # is denoted as the digit specifier, leading zeros are not
suppressed.

The second example illustrates the blank used with the Z digit
specifier, which does suppress leading zeros.

The third example illustrates the use of commas. The first comma is
not printed because no digit precedes it (zero suppression having been
specified); the second comma is printed.

The fourth example inserts slashes.

The fifth example illustrates the effect of a decimal point; because the
number 112233 is an integer number, it is aligned on the decimal
point, and zeros print out in the decimal portion of the field.

The sixth example adds a trailing sign to a field that also contains
floating dollar signs.

The last example adds commas and a decimal point to format a dollar
amount. Note that the first comma is not printed, but its absence is
marked by a blank, as it was in the third example. The dollar sign
floats over the comma.

Character Specification—-C

Unlike the Image statement, the FORM statement specifies a place
where character data is to appear, indicated by the specification code
C. The actual character data is written in the PRINT USING statement.

To print both character and numeric data, a PRINT USING statement
could be written like this:

QO30 PRINT USING 506, FLP, "COST OF ', al, "CHAIRS 18, ®1

Formatting a Report

41

42

The corresponding FORM statement could look like this:
050 FORM C,PTC0Z8 0, PTCORES, $58, 8D

The first appearance of the letter C indicates that a character string
from the PRINT statement is to be printed. The first PIC specification
describes the arithmetic variable A1; if the value is zero, a blank is
printed in the leftmost position, followed by a zero. The second C
describes the second character string, and the second PIC describes
the variable B1.

The C specification code marks a place for character data regardless
of the number of characters to be printed. You could specify the exact
number of characters to be printed by indicating the number after the
C code. For example:

C6

This specification indicates that 6 characters are to be printed. Care
should be used when specifying a number because only that number
of characters is printed. For example, if you specify C6 to print the
character string COST OF, only the characters COST O will be printed.

Format Control Specifications—X, POS, SKIP

Format control specifications provide flexibility in formatting an output
line. These specifications allow you to space over a number of print
positions on a line, to specify the print position where a data item is
to begin printing, and to skip print lines.

The Xn specification spaces over n print positions. For example, X10
causes the printer to space the next 10 positions before printing a data
item.

The POSn specification prints a data item beginning in position n. For
example, POS50 causes the next data item to print beginning in
position 50.

The SKIPn specification skips n print lines. To skip five lines, specify
SKIP5. To skip to the next line, specify SKIP1 or SKIP with no
number. For example, to cause statement 50, shown earlier, to print a
line, SKIP must be added to it:

GOS0 FORM C,PICOEHY 0L PICOEES, S8, 838, 8KIP

Statement 50 is now complete, and if combined with PRINT USING
FLP statement number 30,

30 PRINT USTNG S0, FLP, "COBET OF ' La), "OHATRE 15, Bl
results in this output:
COBT OF I8 CHATRE IS $1,5%10,00
Here are additional statements using format control specifications:
Example 1:

TLW0 PRINT USING
Dius FORM POSLS, P

CPTCOREE, BEE. BHY L GRIPL

Statement 145 uses the POS and SKIP control specifications. POS15
positions the printer at position 15 before printing the value contained
in A1 described by the PIC specification. POS32 begins printing the
value of B1 at position 32. After all printing is complete, SKIP1 causes
the carriage to skip to the next line.

Example 2:
1
CLLO PRINT USING L15,FLP, "COST OF ', al, "CHATRS I8, R1
QLIRS FORM XG5, 0, POSLE, PICCEHY, POS20,C, POSER, PICCSSE, B58, #8) , BKIPL

In statement 115, X5 states that the first five positions of the print line
are to be skipped, and the character data controlled by the C code, the
string COST OF, is to be printed. POS15 prints the value of A1
beginning in position 15. POS20 prints the character string CHAIRS IS
beginning in position 20. POS32 prints the value of B1 beginning in
position 32. SKIP1 causes the line to be printed.

Formatting a Report 43

44

0100
010%
0110
0115
0120
0130
o1uo
0143

Following is a program that uses these statements.

Al=l
Bl=Al®l13, 29
PRINT USING 11%,FLP, 'COST OF ',Al, CHAIRS I8',B1

FORM X3&,C, POS :L.:, PICCZA)Y, POB20,0, POSI2, PIC(SSE, b4 HHIt) , BKIP

FOR Al=14 TO 1 STEP -1

Bl=fAlxlld.29

PRINT USING 143G,FLP,AL, B

FORM POSLS, PICCZH) , POS3E2, PIC(ESS, $EH . HH) , BKIP

This program finds the cost of 1 to 15 chairs at $115.25 each.
Statements 110 and 115 print out the first line, statements 140 and
145 print out all succeeding lines based on the loop defined between
statements 120 and 150.

Qutput from this program will look like this:

Print Position 6 15 20 32

cCosT OF 1% CHAIRS 18 G, 728,75
1 $#1,4613.%0

13 %1, 498,25

12 $1,383.00

11 1,267,775

10 %1, 1%2.50

9 $1,037.25

a8 HhoR2. 00

K 806,75

& $491.50

5 HETEH 2D

4 el 00

3 $ILSE,?H

2 230,50

i $115%.25

s
0040
00 &5
Doy
007s
noes
n0en

Example 3:

Repe ' W IME

PRIN
FORM

1

e B

Ao B RS

TOUSTNG 90, FLP,HOME TEaM
POSLO.C,PICOZSEY 0L PIO

Statement 90 uses the POS20 and C6 control specifications to overlay
position 20 of the print line with the value of R$. If A is 3 and B is 24,
the printed line will look like this:

Print Position 10 20 28

HOME TE&M LOSES FINaL SCORE 3-24

Formatting a Report

45

46

aaLa
go2i
aoEd
HRIEERY

iiroq
nria
1340
Oiua
1154

b

G1a0
01va
IR

PRINT USING WITH A CHARACTER VARIABLE

In addition to the Image and FORM statements for output formatting,
BASIC also allows assignment of a format to a character variable
which can then be referenced in input/output statements. Each
character variable to be used in this manner should first be
dimensioned (in a DIM statement) to the length of the format. The
format assigned to the character variable is identical to the format
following the colon in an Image statement, or the first 4 characters
can be FORM, followed by the format specifications normally entered
for a FORM statement. The following example shows the use of
character variables for formatting.

DIM ABS0, BSL00, 0100, 06100, ES100

THONTHLY § SOLESMAN AS OF Hus#isng
FRINT "ENTER
TNPUT D%
PRINT USING &%, FLP, D%
FRINT Fl.F
PRINT FLP
T T

SilESMAN
MHUMEE R

X PENSES NET®

SelEs?

i
L, D
N

i

PRINT FL
PRINT Fl.
FRINT CENTER SoLESHMAN" "5 NOME OR ENMTER STOP TO ENDC
THPUT NY

TF M$="5TOP GOTO 2380

PRINT "ENTER SoLESMAN"H NUMBER'

IHPUT 5

PRINT TENTER GROSS SaliBEs’

TMPuT G

FRINT CENTER EXPENS

PHEHE U FHBHE HES

0010
0020
0030
0040
00%o
0040
007o
0080
0090
0100
0110
0120
0130
GLu0
0150
01460
0170
0180
0190

PRINTER SPACING CONTROL

You can use the contents of file FLS to control the number of lines
printed per inch (see Chapter 12 for more information about file FLS).
The printer normally prints 6 lines per inch, with 16 increments of the
print roll per line, for a total of 96 increments. You can change the
number of lines per inch by entering a number between 8 and 99 in
the tenth and eleventh positions of file FLS. The number you enter is
divided into 96 to determine the number of lines per inch. For

example, if you enter:

8 — 12 lines are printed per inch
12 — 8 lines are printed per inch
16 — 6 lines are printed per inch
24 — 4 lines are printed per inch
32 - 3 lines.are printed per inch

An entry of less than 12 will cause printing to be overlapped. An entry
of zero causes suppression of spacing, which results in lines printed
right over preceding lines. Sample WRITE FILE statements for printer

spacing control are shown below:

WRITEFILE FLS,®
PRINT FLP, ' LINE
WRITEFILE FLS,®
FOR I=1 TO &
PRINT FLP, & LINES PER INCH'
NEXT I

98"
PRINTED 1
146

WRITEFILE FL&,"® 13
FOR I=1 TO 8

PRINT FLP, '8 LINES PER INCH®
NEXT 1T

WRITEFILE FLS," ag’
FOR I=1 TO 12

PRINT FLP, "12 LINES PER INCH'
NEXT I

WRITEFILE FL&,' oo’

PRINT FLP
PRINT FLP, "NO SPACE TO OVERPRINT®
PRINT FLP,' OVERPRINT®
PRINT FLP,'

PER INCH®

OVERPRINT "

TN N =~

AR

L INE

o

COO0NEE I O O O O

Fex]
Al

g

(=

"

T IIIIIIIITI IS

riTriTitTs

PRINTED

LINES
LINES
LINES
LINES
LINES

FLATAEALILAS

Formatting a Report

1 PER INCH

INCH
INCH
INCH
INCH
INCH
INCH
INCH

Sound Juned

IRINT

47

48

Chapter 5. Saving and Loading the Work Area

In this chapter, the following topics concerning saving and loading the
work area are discussed:

® Determining the size of a tape or diskette file

Writing data to a tape or a diskette file

Getting data from a tape or diskette file

Controlling files

e Maintaining data security

DETERMINING THE SIZE A FILE SHOULD BE

Before information can be stored on tape or diskette, the files on the
tape or diskette must be formatted by the MARK command. To
determine the size of a file needed to contain data to be saved, type in
the LOADO command and note the available storage size. This figure
is the amount of storage available in the work area for processing
programs. Load a program and note the amount of storage remaining.
Subtract the remaining size from the empty size. Then divide the
difference by 1024 and round up to find the size needed to mark the
file.

SAVING AND LOADING DATA ON A TAPE OR DISKETTE FILE

You can write (save) the contents of a work area to tape or diskette
using the SAVE command. This allows you to enter data or programs
into the 5110 work area and save this information for later use.
Individual data records can also be written to a data file.

Once the contents of the work area are saved in a tape or diskette file,
that information can be read back into the work area using the LOAD
command. This allows you to load and execute the same program any
number of times. You can use a CHAIN statement in a program to
end that program and load and execute another program that is saved
on tape or diskette.

Saving and Loading the Work Area 49

CONTROLLING THE FILES ON TAPE OR DISKETTE

Once you have stored several work areas and data files on a tape or
diskette, you might want to know what files you have in your library
(stored on tape or diskette). You can use the UTIL command to
display a directory of file information for a specified tape or diskette.
The directory provides you with such information as the file number,
the file ID, and the file type. See the UT/L Command in the /IBM 5110
BASIC Reference Manual for a complete description of the information
contained in the file directory.

When files on tape or diskette contain data that is no longer required,
you can mark these files unused by issuing the UTILDROP command.
Once a file is marked unused, data in the file can no longer be read
into the 5110, and the defined file space is available for other uses.

If a diskette file is no longer required, you can make the file space
available for reallocation by issuing the UTILFREE command. This
allows the file space on the diskette to be used for other numbered
files specified in the MARK command. See Chapter 7, Diskette
Concepts for more information on how files are allocated on a
diskette.

MAINTAINING DATA SECURITY

You should protect your programs and data from unauthorized access
or accidental destruction. Several functions are built into the 5110 to
assist you in protecting your programs and sensitive data.

PROTECTING YOUR PROGRAMS

After you have developed a program, you might want to keep a
duplicate (backup) copy of the program on another diskette or tape.
Then if the original program is accidentally destroyed, you still have
the backup copy available. See the /BM 5770 Customer Support
Functions Reference Manual for information on copying programs.
You can use the SAVE command to lock a program so that it cannot
be listed or modified. For exampie:

SAVE S, TMABTER, LOCK, 180
This command writes the program to file 5, diskette drive 1, and
permanently locks the program against listing or modifying. However,
the program can still be loaded and run:

LOAT &, "MASTER , Dign
When you lock a program, you should also keep an unlocked master

copy available in a secure area. This unlocked copy can then be used
if the program must be modified.

PROTECTING YOUR DATA FILES
Following are several ways to protect your data files:
® Maintain backup data files |
e Use the file write-protect
e Use the diskette access-protect

e Use the SAFE switch on the tape cartridge

MAINTAINING BACKUP DATA FILES

You should keep a backup copy of your data files on another diskette
or tape. Then if you accidentally destroy a data file or you encounter a
faulty diskette, you can recover your data with minimum effort. To
create a backup data file, you periodically copy the master data file
onto another tape or diskette.

Using File Write Protection

Accidentally writing to the wrong data file can be prevented by using
file write-protection. You can write-protect a file, preventing data from
being written to the file, with the UTIL command. For example:

UTIL PROTECT ‘MASTER’,D80

Once the file is write-protected, data cannot be written to the file
using the SAVE or WRITE commands. However, you can still use the
REWRITE FILE statement to update records in the file. To turn off the
file write-protection so that you can write data to the file, use the UTIL
command. For example:

UTIL PROTECT OFF ‘"MASTER’,D80

Saving and Loading the Work Area 51

52

Using Diskette Access Protection

You can use the diskette volume ID, owner ID, and access protection
to prevent the wrong diskette from being used for an application. For
example, suppose you have a master diskette for an accounts payable
application. After you have updated the accounts payable master data
files, you could use the UTIL command to specify the volume ID,
owner ID, and access protection. For example:

UTTL VOLTIN AaPMAST, CLARIK, ON, D80

This command protects the diskette with a volume ID of APMAST,
owner ID CLARK, on diskette drive 1 from being accessed. To turn off
access-protection, you use the UTIL command and exactly match the
diskette volume and owner ID. For example:

UTIL VOLID aPMasT, CLARK, OFF, B8

The UTIL command can be used in a procedure file to prevent the
wrong diskette from being used in an application {see Chapter 3 for
more information on proecedure files). For example, a procedure file
might contain the following records:

LOATD 3, 4P, DaATLY T, Tk
LTTL WOLID aPMast, ClLaii, OFF, D80
FLIW
UTTL VOLID arMasT, CLARK, ON, 180
The commands in the procedure file do the following operations:

1. Load the application program from diskette drive 2.

2. Turn off access protection if the proper diskette is in diskette
drive 1.

3. Execute the application program.

4. Turn on access protection when the application program has
completed execution.

If the wrong diskette was in diskette drive 2, an error occurs when the
first command is executed, and the application program is not
executed.

REMOVING SENSITIVE DATA

You are responsible for the security of any sensitive data. After you
are through using the system, you can remove the data in the work
area by one of the following:

e Using the LOADO command to clear the workarea
e Pressing the RESTART switch
e Turning the POWER ON/OFF switch to OFF

Several methods are available for removing sensitive data from a file.
These methods are:

e UTILDROP

e Rewriting a file (OPEN for output, then CLOSE), which makes the
old data inaccessible.

e Filling a data file with meaningless data. For example, the following
set of statements fills file 1 (on the built-in 5110 Model 1 tape unit)
with zeros:

Qo0 DM adLa0)

Qo220 OPEN FLO, "E80, 1L, 0uT
G030 MAT PUT FLGO, &, EQF 50
Gown GOTO 30

ooung sTop

Saving and Loading the Work Area 53

54

Chapter 6. Tape Concepts

There are 204K bytes (1K=1024 bytes) of tape storage available on an
IBM Data Cartridge. This tape storage is used for file headers, work
area files, and data files. In this section, the following topics are
discussed: '

® How to format the tape

e How much storage on a tape cartridge is actually available to you

HOW TO FORMAT THE TAPE

You must use the MARK command to format files on the tape before
you can store work area or data records on the tape. For example:

MARK 10, 5, 1

LStar’cing File Number

Number of Files To Mark

Size of Files in 1,024 (1K) Byte Increments. In this case,
the size of the marked files is 10,240 (10 X 1,024)

Once the MARK command is successfully completed by the 5110, the
tape is formatted as follows:

This file header
indicates end of
marked tape.

L J
) = /' HENEREREN |
This hole indicates W

Each fiie contains Unformatted

10,240 bytes of Tape
storage.

File Headers

the beginning of
the tape storage.

The file headers contain information about the file, such as file
number, file name, and file type. Each file header requires 512 bytes
of tape storage.

Tape Concepts 55

56

If you want to format additional files on the tape, you must use the
MARK command again. For example:

MARK 20, 1, 6

L——Starting File. Remember, in this

example, five files are already formatted.

Number of Files to Mark.

File Size.

The tape is now formatted as follows:

File 6 Header

_ / ,
> 4 5 6 \\}\W

File 6 is formatted Unformatted
after file 5. Tape

When the information in a tape file is no longer needed, you can use
the UTILDROP command to mark the file unused. The defined file
space remains available for other uses. However, once a file is
formatted, you cannot increase the size of the file without remarking
the file. When you remark an existing file, any information in that file
and the files following the re-marked file is lost. For example, assume
you want to increase the size of file 4 on tape from 10K to 15K:

) 4

-

: A

e

AL,

You want to increase the size
of file 4 by bK.

After the command:

MARK 15, 1, 4

I—-Starting File Number

Number of Files to Format

File Size

is successfully completed, the tape is formatted as follows:

Y

) — < /257777007

156K bytes of tape storage. the marked tape, and any data following
this file header is lost

A formatted tape has the following characteristics:

Files are of variable length from 1K to 204K.

Files can be randomly accessed; that is, you can read a file without
having to read the previous file. Data in the files can be accessed
sequentially or randomly.

e Both work area and data files can be on tape.

Both APL and BASIC files can be on tape.

If you want to save the data in files 5 and 6, the files should be copied
to a backup tape before you mark the original tape. After increasing
the size of file 4 (MARK 15,1,4), files 5 and 6 can be remarked and
copied from the backup tape to the original tape.

Tape Concepts 57

58

HOW TO DETERMINE THE STORAGE AVAILABLE ON A TAPE
CARTRIDGE '

Each tape cartridge contains approximately 204K bytes of storage, but
the amount of tape storage actually available to you depends on:

e How many files are marked (formatted) on the tape
e How the data files were written to tape

As mentioned, each file on a tape cartridge requires one 512-byte file
header. Therefore, the more files you mark on a tape cartridge, the
more tape storage is used for file headers. For example, if you mark
one 3K file on a tape, 512 bytes of tape storage are used for the file
header. If you mark three 1K files on tape, however, 1536 bytes of
tape storage are required for the three file headers.

One 3K File

Y

5 0.5K 3K

L~

Three 1K Files

3 0.5K 1K 0.5K 1K 0.5K 1K

S,

Note, in these examples, that a total of 3K bytes of tape storage is
allocated for tape files, although, for the three 1K files, an additional
1K bytes of tape storage are used for headers.

The amount of data you can store in a data file depends on how the
data is written to the file. See Chapters 8, 9, and 10 for a complete
description of writing data to the data files. For example, when you
first write data to a data file, the individual records are sequentially
written to tape starting at the beginning of the data file. Once these
records are written to tape, the data file might look like this:

Data File

-~ Data Records

L 4

\

Beginning of the Last Data Record Unused End of the

Data File Tape Storage Data File

When you add data to the stream 1/0 data file (see Chapter 8), the
new data starts at the first 512-byte boundary after the last record in
the data file. The tape storage between the last data record and the
additional data records is unavailable for use.

Once the new data records are written to tape, the data file might
look like this:

512-Byte Boundaries (tape storage is
divided into 512-byte segments)

Data File —m,
| ! | | | | | | [

Beginning of Unavailable Last Data Record /Unused

the Data File Tape Storage Tape Storage

As you add more data to the file, it is possible for more tape storage
to become unavailable.

Tape Concepts

I
l«————— Data Records ———————pf //u— Additional Data //////Al
/ 7

59

60

Chapter 7. Diskette Concepts

The IBM diskette is a thin, flexible disk, permanently enclosed in a
semirigid, protective, plastic jacket. When the diskette is properly
inserted in the diskette drive, the diskette turns freely within the
jacket. The diskette is inserted in the diskette drive as follows:

|||||||||||“||||| |
[l

This label must be in the
lower corner as the diskette

is inserted in the diskette drive.
The diskette drive cover must be
closed and latched after the
diskette is inserted.

Data is written on the diskette at specific address locations. These
addresses provide direct access to specific information. Data written
at an address remains there until it has been replaced by new data.
To read data, the system finds the desired address and then reads the
data into the 5110.

Before being shipped to a user, each diskette is initialized. Initialization

is a process whereby label information and data addresses are
recorded on the diskette. Initialization is discussed later in this section.

Diskette Concepts 61

62

DISKETTE WEAR

The use of Flexible Diskette Storage provides some significant
advantages, such as low cost, compact size, multiple system functions,
and ease of media handling and storage. It should be recognized,
however, that during recording and reading, the read/write head is in
contact with the media causing diskette wear over a period of time.
Variations in the rate of wear will depend on the particular operating
environment and application characteristics. Care in the storage, use,
and handling can also affect diskette life. See the guidelines in the
IBM 5110 BASIC Reference Manual. Excessive wear, handling, or
contamination can cause possible failures in recording and/or reading.

Ultimate wear is to some extent dependent upon total usage of
individual tracks. Care taken to distribute data so that accessing
occurs over the entire recording surface with about the same
frequency can extend the useful life of the diskette. Actual experience
with individual applications and environments will allow the
development of guidelines for determining when the media should be
replaced.

Unpredictable circumstances such as contamination or severe handling
can cause an early error to occur.

For all the above reasons, consideration should be given to providing
an adequate recovery plan, such as:

e Backing up critical programs and data files on a second diskette for
use in the event of an error on the primary diskette.

e Periodically moving frequently-used files to alternate locations on
the diskette; see the Copy Functions in the /BM 5110 Customer
Support Functions Reference Manual.

DISKETTE ADDRESSING AND LAYOUT

A diskette address consists of a combination of cylinder number, head
number, and record number as follows:

CC H RR

T——Record (sector) Number. The sector

into which the data is to be written
or from which it is to be read.

Head Number. The side of the diskette on which
the data is to be written or from which

it is to be read. This number is O for all
one-sided diskettes, O for side O of

two-sided diskettes, and 1 for

side 1 of two-sided diskettes.

———Cylinder Number. This number identifies the
cylinder onto which a physical record is written
or from which it is read.

Track and Cylinder

A track is the recording area that passes the read/write head while the
diskette makes a complete revolution. The read/write head is held by
a carriage that can be moved to 77 distinct locations along a straight
line from the center of the diskette. Therefore, each diskette has 77
concentric tracks on which data can be stored.

7 - \
T SN
[/ \ \
\ ‘\ o | [77 Tracks
\ \ / [l
\ ~ d

1

The diskette drive for two-sided diskettes has a read/write head on
each side. Each track on side O of a two-sided diskette has an
associated track on side 1.

A cylinder is one track on a one-sided diskette or a pair of associated
tracks (the corresponding tracks on opposite sides of the diskette) on
a two-sided diskette. There are 77 cylinders on a diskette, numbered
0 to 76.

Diskette Concepts

64

Sector

A sector is a portion of a track. All sectors on a single track are the
same size, and the number of sectors on a track depends on the

number of bytes per sector. See Diskette Types and Formats in this

section.

Vs _ \ Track 00
l, - _.\ \\‘/

\
\
/
o l -7 \One Sector

Index Cylinder

Cylinder 0 is called the index cylinder and is reserved for information
describing the diskette and its contents. It contains information about

the diskette, such as volume and owner identification. The index
cylinder also contains information associated with each file on the
diskette. This includes the name of each file and the addresses

associated with the file extents. An extent is the maximum space a file

can occupy. The address at the beginning of this space is called the
beginning of extent (BOE). The address at the end of this space is

- called the end of extent (EOE). A file might not use all of the space
allocated for it by the BOE and EOE addresses; therefore, another
address for end of data (EOD) exists.

Actual Space Currently Used for Data
| |

BOE EOD EOE
L L I

1 |
Area Allocated for the File {extent)

The EOD address is used to identify the next unused area within the
extent or to indicate that data has been written to the EOE address.
See the Diskette Initialization function in the /BM 5110 Customer
Support Functions Reference Manual for a complete description of the
index cylinder.

Alternate Cylinders
The last two cylinders (75 and 76) are reserved for use as

replacements (alternate cylinders) for defective cylinders. The
remaining cylinders {1 through 74) are used for storing data.

DISKETTE TYPES AND FORMATS
The 5110 uses three types of diskettes:
e One-sided, where data is recorded 6n just one side (Diskette 1)
e Two-sided, where daté is recorded on both sides (Diskette 2)

e Two-sided, where data is recorded on both sides at double density
(Diskette 2D)

The diskettes are initialized, see Diskette Initialization in the Customer
Support Functions Reference Manual, into various formats consisting of:

e The number of sectors per track
e The number of bytes per sector

The 5110 diskette formats are:

Sectors per Track Sectors per Cylinder Bytes per Sector

Diskette 1 26 26 128
15 15 256
8 8 512
Diskette 2 26 52 128
15 30 256
8 16 512
Diskette 2D 26 52 256
15 30 512
8 16 1024

Note: The diskette types (Diskette 1, 2, or 2D) are identified on the
diskette label, and the UTILVOLID command can be used to determine
the bytes per sector (physical record size).

Diskette Concepts

DISKETTE INITIALIZATION

Diskettes must be initialized before they can be used for storing data.
All diskettes are initialized before they are shipped to a customer.
Reinitializing is not required, unless:

e The diskette was exposed to a strdng magnetic field.

e A defect occurred in one or two cylinders. In this case, initialization
can be used to take the bad cylinder(s) out of service and use one
or two of the alternate cylinders.

® A sector sequence other than the sequence existing on the diskette
is desired.

e A format (number of sectors per cylinder) other than the existing
format is desired.

See the /IBM 5110 Customer Support Functions Reference Manual for
a description of the disk initialization program.

VOLUME ID, OWNER ID, AND VOLUME-PROTECT INDICATOR

Each initialized diskette has a volume ID, owner ID, and
volume-protect indicator. The volume ID is the identification of the
diskette volume, and the owner ID is the identification of the diskette
volume owner. The volume-protect indicator is used to prevent
unauthorized access to the diskette volume.

The UTILVOLID command is used to display or change the volume ID
and owner ID, or to change the volume-protect indicator.

FILE ID

Each file on a diskette has a file ID (file name). When the diskette files
are formatted, a file ID is automatically generated, even though the
files are unused. For example, the file ID for file 1 is SYS0001. See
the /BM 5110 BAS/C Reference Manual, for more information on file
names when storing data.

DISKETTE FILE WRITE-PROTECT INDICATOR

Each file header contains a write-protect indicator. When the
write-protect indicator is on, the file can be read into storage and
updated, but existing data on the diskette cannot be written over with
new data. The UTILPROTECT command invokes or removes the
write-protect indicator for a diskette file.

DISKETTE FILE ORGANIZATION

You must use the MARK command to allocate file space on the
diskette before you can store work area or data records on the
diskette. For example:

MARK 10, 5, 1, D80

1 t — Diskette Drive 1
———— Starting File Number
Number of Files to Format

Size of the Files in 1024 (1K) Byte Increments.
In this case, the size of the marked files is
10240 (10x1024) bytes.

Unlike tape files, diskette files are not always formatted sequentially
on the diskette. For example, file 2 might be on cylinder 3, file 3 on
cylinder 9, and file 4 on cylinder 7. You can control the location of a
file on the diskette only by using a totally unmarked diskette and
issuing MARK commands in the same order as the files are to be
formatted on the diskette.

When the information in a diskette file is no longer needed, you can
use the UTILDROP command to mark the file unused. Defined space
of the file remains available for other uses. However, once a file is
formatted, you cannot increase the size of the file without remarking
the file. Reallocating diskette file space is discussed next.

REALLOCATING DISKETTE FILE SPACE

Unlike tape files, when you re-mark an existing diskette file, no other
diskette files are affected. When you re-mark a diskette file to
increase the size, the file space presently allocated to that diskette file
is made available for other files being marked. The re-marked file will
then be located on the diskette where there is enough continuous
storage available for that file. For example, assume you want to
increase the size of file 4 from 10K to 15K by issuing a MARK 15, 1,
4, D80 command:

Disk
Cylinder

ya /

- . /5 -

/

After you issue the MARK command
this file space is no longer allocated
for File 4.

Diskette Concepts

68

Once the file space previously occupied by file 4 is available, that file
space will be used by subsequent MARK command that marks a file
of 10K or smalier.

After the MARK command is successfully completed, file 4 is
formatted on the diskette at a location where at least 15K of
continuous storage is available.

N\

"7

: : V//////</////// ©) Cinem

Unallocated Diskette Storage

Another

Diskette

N_/N\

Cylinder

/

20K of unallocated diskette storage was
available at this location before the

MARK command was issued.

Note: If you are marking more than one file on the diskette, the
system checks the starting file and each subsequent file within the
range you specify for a file that contains data. If any of these files
contain data, the ALREADY MARKED message is displayed. The
UTILFREE command can be used to free space occupied by files that
are no longer needed.

DETERMINING THE STORAGE AVAILABLE ON A DISKETTE

Available diskette storage varies, depending upon the type of diskette
being used. The amount of storage depends on:

o Whether data can be recorded on just one side or on both sides of
the diskette

o The number of sectors per cylinder

e The number of bytes per sector

Each diskette has 77 cylinders. Cylinder O is called the /ndex track and
is reserved for information (file headers) about the diskette files.
Cylinders 75 and 76 are alternate cylinders used as replacements for
bad cylinders. This leaves cylinders 1 through 74 available for data
storage. The following chart shows the amount of storage available
with the different types of diskettes:

Sectors per Cylinder Bytes per Sector Available Storage in
: Bytes (Cylinders 1-74)

Diskette 1 26 128 246,272
15 256 284,160
8 512 303,104
Diskette 2 52 ' : 128 492,544
30 256 568,320
16 512 606,208
Diskette 2D 52 256 985,088
30 512 1,136,640
16 1024 1,212,416

Although the previous chart shows the maximum amount of diskette
storage, the amount of diskette storage actually available to you
depends on:

e The number and the size of the files marked on the diskette

e The types of data files written to the diskette

e How the file space is allocated from previous MARK and UTILFREE
commands

e Whether an extended label area was requested at initialization time
See the /BM 5110 Customer Support Functions Reference Manual.

Diskette Concepts

69

70

Number and Size of the Diskette Files

Generally, there is a maximum number of files that can be on a
diskette:

Diskette 1 Diskette 2 Diskette 2D

Maximum Number 19 - 45 71
of Files

If you use Diskette 2D, see the disk initialization program in the /BM
5110 Customer Support Functions Reference Manual, for information
on how to get additional file headers.

If you mark the maximum number of files without using all the
available file space, the remaining file space becomes unavailable for
storing data. For example, assume you have an unmarked Diskette 1
with 128 bytes per sector. This diskette has 246,272 bytes available
for storing data, and you issue the following command:

MARK 10, 19, 1, D80

‘]____ Diskette Drive 1
Starting File Number

Number of Files to be Marked
Size of Each File

This command marks the diskette with the maximum of 19 files. Each
file is 10K bytes; therefore, a maximum of 190K (194,560) bytes of
storage is allocated for the files. Now, if you subtract the allocated
diskette storage from the available diskette file space:

246,272
- 194,560
51,712 «——— This much diskette storage is
unused and unavailable for you
to store data.

How the File Space is Allocated

Earlier in this section, we discussed reallocating diskette file space
using the UTILFREE and MARK commands; see Reallocating Diskette
File Space. Using the UTILFREE and MARK commands to reallocate
diskette file space can cause fragmented blocks of unallocated file
space on the diskette. For example, assume that a diskette has all file
space allocated except the following 15K of file space on a cylinder:

Diskette
Cylinder

f 12 / / 17 2 S
N / / / 7
10K of Unallocated 5K of Unallocated

File Space File Space

If you need that 15K of storage to mark a new file, the storage is not
available because it is not in 15K contiguous bytes.

The fragmented blocks of unallocated file space can be made available
by the compress function; see the /BM 5110 Customer Support
Functions Reference Manual. The compress function closes the gaps
caused by the unaliocated file space and places all of the unallocated
file space in one contiguous area.

Diskette Concepts 71

72

Chapter 8. Introduction To Data Files

FILES, RECORDS, AND FIELDS

A file is a collection of related data items which are grouped together
in records. Most of us carry a driver’s license. That is a record. What
about a time card? That too is a record. Each of those records
contains items related to the purpose of the specific document. The
related items are called fie/ds. The following illustration shows a
record containing the fields of information that can be found on a
driver’'s license:

License No. E
Drivers Name Address Date of Birth \ Height vis Sex

\ \ \ I

AY \
ROBERT JAMES | 13 FORE AVE. ANYTOWN, N.Y.| 9-30-42 | 132-5711| 59 | BR{ M

Each field is related to the record in that it contains information
relating to the specific driver. A field is the amount of space set aside
for each data item. The next illustration shows a record containing the
fields of information found on a time card:

Name Location Date Serial No. Shift Start Time

AN N\

N 7 7 7
TOM ROBERTS | ENDICOTT [10-10-74 | 83215 2 | 8:00

A group of records makes up a file. A 5110 data file contains records
in a specific sequence just as a filing cabinet does.

The following illustration shows a record containing customer
information that would be used in making out an invoice:

Customer Name Street City, Street Billing
Number \ Address / Code
\ \ , /

X
137250 | JAMES CONSTRUCTION CO.|13 TOPPER AVE | TROY, N.Y.|[13

Introduction to Data Files 73

74

The file would contain as many records as there are customer
numbers. A file should be given a unique name so that the file can be
distinguished from other files. Because the record in the previous
illustration contains customer master information, the file could be
named CUSTOMER.MASTER. A file containing master information
about the products in your inventory could be named ITEM.MASTER.

Different files can contain different record layouts. For example, the
following illustration shows a record that has items related to the item
file:

ltem Qty in
Number Description Price Stock

—

\ T 7
874164 WIDGET 13.95 0043

Organizing a File

An important part of any data processing job is file organization. File
organization is the arrangement of records in the file. There are two
types of files using the 5110: stream |1/0 and record 1/0.

Stream 1/0

For stream 1/0, all the data items are organized sequentially on the
tape or diskette, with a comma used as the delimiter between fields.
For example, a customer master file might be formatted as follows:

.

> Customer 1, John Smith, 4016 28th. St., City, 565555, Customer 2, Joe Jones,

SN

The fields are variable in length because only the exact number of
characters is maintained. In order to read customer number 2 and the
related fields, the 5110 must start at the beginning of the file and
sequentially read each field until the desired customer information is
read.

Record 1/0

The corresponding fields of each record in a record 1/0 file must have
the same length; no delimiters (commas) are required between fields.
For example, a customer master file might be formatted as follows:

£ o
> Customer 1 John Smith Customer 2 Tom Stewart T S
' N R NP, BN Vg [4
11 Field 20 Field 11 Field 20 Field
Character Character Character Character
N—— Nt~y .~
Record 1 (31 Characters) Record 2 (31 Characters)

The record ar]d field sizes are established as the application is
designed; see Designing A Record in Chapter 10.

Unlike stream |/0 files, record 1/0 files can be accessed in three
ways:

1. Sequential. Each record is accessed in the same order they were
written to the file.

2. Direct. Individual records can be accessed by specifying the record
number (relative record number).

3. Indexed. An index is used to find an individual record in a file.
Therefore, you do not have to know the relative record number of a
record before you can access the record. See Data Files and
Access Methods in the /IBM 5110 BASI/C Reference Manual for more

information.

The next chapter describes the characteristics of the 5110 data file
processing methods.

Introduction to Data Files 75

76

Chapter 9. Characteristics of Accessing Data Files

This chapter describes the characteristics of data files when the files
are accessed:

o In sequential order
e In direct order. by relative record number
e In direct order using an index

This chapter also discusses maintaining files.

SEQUENTIAL ACCESS

For both stream |/O and record 1/0, a file can be accessed
sequentially. That is, the records are accessed one after another in the
order they occur. An example of a sequentially accessed file might be
an employee master file. This file contains information needed for
various reports concerning each employee, such as payroll checks.
Because checks are processed by employee number, records are
accessed in order. The lowest employee number is accessed and
processed first and so on until the last record, the highest employee
number, is accessed and processed.

DIRECT ACCESS BY RELATIVE RECORD NUMBER

For record 1/0, files can be accessed directly using the relative record
number. This allows you to process records in the file faster than if
you used sequential accessing. For example, assume you have an item
master file that contains stock status information on 1000 items by
item number. If you want to know the stock status of item number
500 in the file, direct accessing allows you to specify the record
number containing the information. This record is then accessed
directly and the information is available. However, if the file is
sequentially accessed, you must read all of the preceding records
before you can read the record that contains the information you need.

Characteristics of Accessing Data Files 77

78

DIRECT PROCESSING BY INDEX KEY

For record 1/0, files can be accessed directly using an index to locate
the records in the file. The file index is created as the records are
written to the file. The index contains a key, such as customer number
or item number, and the relative record numbers of the record. When
you want to process a specific record, you must specify the index key
and the system accesses the proper record using the address of the
record associated with that key.

After the index is created, the index can be sorted into ascending
sequence. For example, as a file is created, the index and file are as
follows:

—» Data File ,
1 2]3]als]elz | | -
10|40(20}60|30|50{70) 10 40 20 60 30 50 70
) 7 7
File Index Records

However, after the index is sorted in ascending sequence, the index
and file are as follows:

—Data File

10 40 20 60 30 50 70

[3]sl2lelalz [{
10[20[30]40[50[60[70|)
4

File Index Records

The diskette address of the record associated with each key remains
the same. This allows you to access the data file in several ways.

Sequential Accessing by Key

When an indexed file is accessed sequentially by key, the keys are
processed one after another in ascending order. Even if the records
are not in order on the file, they are accessed in order using the index.

An indexed file can also be accessed sequentially, without using the
index. Data records are accessed sequentially, that is, first record,
second record, and so on, from the beginning of the file to the end of
the file. However, if the records are not sorted first, they might not be
in order.

Note: If you access an indexed file without using the index, and add
or update records in the file, a key is not added to the key index for
the added records, and existing keys within a record could be changed
when you are updating a record.

Direct Accessing

Indexed files can also be accessed directly. This type of accessing
also uses the index and is called direct accessing by key. Direct
accessing by key permits processing of one particular record without
regard to its relation to other records. You must first specify the key
of the record. The key is then found in the index; the relative record
number (adjacent to key) is used to locate the record; and the record
is transferred to storage for processing. For example, records in a
customer master file are to be updated to reflect current information.
The transaction record number entries are not in order. The system
finds the record by matching the customer number in the entry with
the key (customer number in the index). The address, adjacent to this
key, is then used to find the record.

Often an indexed file is used in several different jobs each of which
requires a different accessing method. For example, during statement
writing, a customer file may be accessed sequentially to allow cyclic
statement writing. During a billing job, the same file may be accessed
directly by key to allow the updating of specific master records. Then,
during an aged trial balance job (each customer’s outstanding balance
is printed), the file may be accessed sequentially by key.

Indexed files can also be accessed by relative record number. This
method of accessing requires that the file index be bypassed.
Records in the data file can then be accessed by using a number
(relative record number) indicating their relative position in the file.

MAINTAINING DATA FILES

Once a file is created, file maintenance is often necessary. File
maintenance means performing those activities that keep a file current
for daily processing needs. Some file maintenance activities are
adding, deleting, and updating records. Adding means putting a
record in a file after the file is created. Deleting means identifying a
record so it will not be processed with other records. Updating means
adding or changing some data in a record.

Characteristics of Accessing Data Files

Adding Records

Records can be added to a file after the file has been created. When
records are added to a file, they are written at the end of the file.
Thus, the file is extended by the added records.

Sometimes, however, the new records must be merged between the
records already in the file. This may be necessary to keep the file in a
particular order. In order to put the new records in the proper
sequence, you must sort the file to create a new file containing the
added records in the correct location.

When a record is added to an indexed file, the system checks to
ensure that the record key is not a duplicate of a record key already in
the file; if the key is not a duplicate, it is added to the end of the file.
The keys of the added records and the keys of original records should
then be sorted, so that the keys of all the records in the file are in
ascending sequence in the index. When the keys are in ascending
order, the 5110 uses less time to search the index.

Tagging Records for Deletion

When a record becomes inactive, you might not want to process it
with the other records. A record cannot be physically removed from
the file during regular processing; therefore, it is necessary to identify
or tag the record so it can be bypassed. One way to tag such a record
is to put a code, called a delete code, in a particular location in the
record. When the file is processed, your programs can check for the
delete code; if the delete code is present, the record is bypassed.

When several records in a file have been tagged for deletion, you
should remove them from the file. This will free file space. You can
remove the deleted records by using a program to copy the records to
be retained onto another file.

For an indexed file, you can also use the DELETE FILE statement to
tag the record key in the index for the record to be bypassed. This
does not alter the record in the master file.

Updating Records

When you update records in a file, you can edit or change some data
on the record. For example, in an inventory file you might want to add
the quantity of items received to the previous quantity on hand. The
record to be updated is read (by the READ FILE statement) into
storage, changed, and written back in its original location by the
REWRITE FILE statement.

Reorganizing a File

After file maintenance activities are performed, it might be necessary
to reorganize your file to increase processing efficiency and free file
space. This is done by using a BASIC program to physically merge the
added records in sequence with the records originally created, and to
remove the records tagged for deletion by copying the existing file
and writing it into a new file. During the copy, deleted records can be
removed from the file, and records previously added to the file are
copied into the new file in sequence with the original records. The old
file can then be used to contain new data.

A Diskette Sort feature is provided to allow you to change the order of
record 1/0 files. For more information about this program, see the
IBM Customer Support Functions Reference Manual. This feature
allows you to sort the records and write them to a new file. Also, you
can sort the file and write just the record numbers, which indicate
where the records are located on the diskette, to a new file. This file,
called an address out file, can then be used to access the original
records. For example:

Relative Record Number

Master Fllem
1 2 3 4 5 P
Dan Mel Jerry Bill Glen ‘x

7

Master file remains
in the original order.

Address Out File

Sorted relative record
numbers can be used to
access the master file

in ascending order.

Characteristics of Accessing Data Files

82

The following statements might be used in a program to access a file
in order using the record numbers in the address out file:

R&3
<

I3

0030 OPEN FILE FLL, D80, 1L, "NaMES ', AlL
GO0 OPFEN FILE FLZ,"DEO 2, "ADDEORT ", IN
0050 READ FILE USING 0480, FLZ2,R

Goa0 FORM Bl

QU700 READ FILE FLL, REC=R,A%

o

Chapter 10. Designing a Record and Detemining File Size for Record 1/0 Files

DESIGNING A RECORD

The applications that use a certain file determine what data is needed
in a record. You should study these applications and then decide the
layout of the record. Layout means the arrangement of fields in a
record. When you design a record, you determine field length,
location, and name.

To illustrate these design considerations, a name and address file is
used in this chapter. Each record in the file contains the following

data:

Field Size (number of positions)
Customer number 6

Name 20

Street address 20

City and state 20

Zip code 5

Record code 2

Delete code 1

(Other fields) 47 (total)

121 TOTAL
Determining Field Size

Field size depends on the nature of the data in the field. First, the
length of the data may vary. in this example, name is 20 positions.
The length of each customer’s name varies, but 20 positions should be
sufficient for the names. Secondly, all data in a field may be the same
length. For example, customer number is six positions, and all six
positions are used in each record.

There are no firm rules for determining field size. The major problem
involves fields with variable-length data. For example, if name is
planned as 15 positions, and a new customer has 19 characters in his
name, a problem arises when his record is added to the file. To avoid
this problem, try to estimate the largest length of the data that will be
contained in a field. Use this length to determine field size.

Designing a Record and Determining File Size for Record 1/0 Files 83

Providing for a Delete Code

Records are not automatically deleted. You must place a delete code
on a record with a REWRITE FILE statement. Then when the file is
processed, your program can bypass the record.

For example, you might use the delete code to indicate that a
customer is inactive and that his account information should not be
processed when generating a report.

Record Expansion

It is often wise to allow for data to be added to a record. For
example, suppose this name and address file was created with the
fields described, and at a later time an addition to each customer’s zip
code is needed. If all positions in the record are used, there is no
place to make the addition. Because record length is being
established, we can allow for such additions to this record. Although it
is often difficult at the planning stage to imagine what data might be
added, it is wise to reserve extra space; a minimum of 10% is
suggested.

Designing a Sample Record

Assume you are teaching a class and you decide to set up a record for
each person. Each record will contain the person’s name, his home
address, test marks for five tests you plan to give, his average mark,
and a code to indicate whether he is an honor student. The entries in
the record might look like this:

ENTRY CHARACTERS
NAME 25
ADDRESS 65
GRADES 15
AVERAGE 5
HONORS 1

111 Total

Altogether, these entries take up 111 characters. You decide to
include additional space in each record for possible entries to be
added later, such as awards, special achievements, and remarks.
Altogether, you decide to have a record with 128 characters in a file
named CLASS.

DETERMINING THE SIZE OF A FILE

To determine the size of a file, you must plan how many records will
be in the file at a specified time.

To determine the number of records in a file, consider several factors.
First, you must know how many records will be in the file when it is
created. If the file already exists, perhaps as a card file, use the
number of records in this file as a base.

You must also know whether records will be added or deleted. If
additions are expected, how many records are expected, and how
often will they occur? If records will be tagged for deletion, consider
periodically removing them from the file. By removing records that
you no longer need, you free diskette space and allow more records
to be added.)

Only after considering these factors and the applications that use the
file can you determine the number of records in the file. For example,
the customer name and address file will contain 6000 records at
creation time. It is estimated that each month 200 records will be
added and 80 records will be deleted. It is also planned that the
deletion records will be removed once a month. At the end of six
months the file will contain 6720 records (1200 records are added: 480
records are deleted).

6000 Records at creation

+1200 Records added in six months
7200

- 480 Records deleted in six months
6720 Records in file after six months

This example points out another factor to consider. When determining
the number of records in a file, consider expansion for a reasonable
time into the future (at least six months). Of course, most files have
deletions, and thus growth is usually slow. In a file where the number
of additions and deletions are about the same, records tagged for
deletion need to be removed only when the diskette space allowed for
the file is filled.

Designing a Record and Determining File Size tor Record 1/O Files

85

Calculating File Space

To determine the file space, you must know the number of characters
in the file. To calculate the number of characters in a file, multiply the
number of records (allowing for expansion) by the length of each
record. For the customer name and address file, there will be 6720
records in the file at the end of six months. Each record contains 128
characters. Thus, the number of characters in the file is calculated as:

6720 ‘Number of Records in the File
x128 Number of Characters in Each Record
860,160 Total Characters in the File

and the file should be marked for 840K.

Calculating Index File Space

If the file is indexed, the system stores the index on a file. To
determine the space needed for the index, you must know the size of
the index entry {an index entry consists of a key and a diskette
address). Key lengths vary, depending upon the application up to a
maximum of 28 characters, but diskette addresses are always 4
characters long. Thus, the key entry is calculated as follows:

Key Entry = Key Field Length + 4

Note: The records in an index file must be 8, 16, or 32 characters
long. Therefore, if the key entry is greater than 8 but less than 16, the
index file record length is 16. Similarly, if the entry length is greater
than 16 but less than 32, the index record length is 32.

In the name and address file described earlier in this chapter, the key
field is customer number (#), and it is 6 characters long. In this case,
the key entry is 10 (6 + 4 = 10) and the index file record length is 16
characters.

Now that we know the record size, we can calculate the storage
required:

16*6,720 107,520

Thus, the index file should be marked for 105K (K 1,024 bytes).

End of File Condition
It is important to allocate sufficient file space for an indexed data file
and the corresponding index key file. If an EOF (end of file) condition
occurs, the data file and the key file may contain an unequal number
of records. Recovery procedures will be necessary to replace the

missing records. See the /BM 5110 Customer Support Functions
Reference Manual for more information on recovery procedures.

After you determine the amount of space the file requires, you can
decide where to locate the file on the diskette. A diskette can contain
several files, depending upon their size: therefore, you should
document the files that are on each diskette using the UTIL PRINT
command.

As you create more files, you can refer to the directory of a particular
diskette to determine the amount of available space on that diskette.

Review-Calculating File Space

Calculation 1: Record Space

To calculate the space required for the records of a file, the following
steps are necessary:

1. Multiply the number of records by record length to get the total
number of characters.

2. Divide the total number of characters by 1,024 and round up the
quotient.

3. Mark the file to the round-up number of K-bytes.

Calculation 2: Index Space

To calculate the amount of space required for an index, the steps are:
1. Add 4 to the key field to get the length of the key entries.

2. Determine index file record length, which must be 8, 16, or 32.

Designing a Record and Determining File Size for Record 1/O Files

88

3. Multiply the index file record length by the record count to get the
character count.

4. Divide the character count by 1,024, then round up the quotient.

5. Mark the file to the round—up number of K-bytes (characters).

DOCUMENTING RECORD LAYOUT

Documenting the record layout makes your BASIC program easier to
write. The following example shows the layout of a customer master

record:
R # N$ AS$ Cc$ Other Fields 52 Reserved Space | D
123 89 2829 4849 6869 127 128
where:
R = Record code

Customer number

N$ = Customer name

A$ = Customer street address

C$ = City and state

D = Delete code
A record layout includes the order of the fields in the record, the
length of each field, and the name of each field.

Record Length

A record may contain all predefined fields, or space may be reserved
for data to be added to the record. In either case, all records in a
particular file must be the same length. In your BASIC programs you
must specify record length. Record length is the sum of the field
lengths (including reserved space).
In the previous example, the sum of the fields is 116 positions.

However, the record length is established at 128, thus 12 positions are
reserved for data that might be added at a later time.

Chapter 11. Processing a Data File

This chapter discusses how to process stream 1/0 and record 1/0
data files.
PROCESSING STREAM 1/0 FILES
To process a stream 1/0 data file, you follow this sequence:
1. Open the data file.
2. Sequentially read from or write to the file.

3. Close the data file.

Opening and Closing Stream 1/0 Files

Files must be activated or opened before they can be used. A file can
only be activated with an OPEN statement in the program. For
example:

GOLO QPEN FLL, 080, 2, IM
The word IN indicates that the file is to be used for retrieving data
items from the file for use in the program. If the file were to be used
for storing data, it could be opened explicitly as an output file with this
statement:

QO20 OPEN FLL, "080°, 2, NaME" , QuT

Now, look at the following OPEN statement:

G210 OPEN FL3J, "DSE0 5, "TTEM, MARTER ", IN

Processing a Data File 89

90

For input/output operations, a file must be identified with a file
reference of FLO-FL9. In the previous example, FL3. This file reference
is used to identify the file when you are using GET or PUT statements
(for example, GET FL3, A, B, C). After the file reference, the device is
specified (for example, D80). A file number and/or file name can also
be entered for an OPEN statement. For the previous OPEN statement,
the file number is 5 and the file name is ITEM.MASTER. For diskette
data files, a file name must be specified when the file is created.
However, for tape files or reading any file, the file name does not
need to be specified.

Normally, a file is deactivated or closed by the system after execution
of your program. However, if you want to switch an input file to
output {or vice versa) and continue to use it in the same program, you
must explicitly deactivate it by using the CLOSE statement before
reopening it. (If you did not use the CLOSE statement and attempted
to use an output file for input or vice versa, execution of your program
would be terminated.) CLOSE deactivates the file; a subsequent OPEN
statement opens (reactivates) the file for its new use and repositions it
at its beginning. For example:

aoin

o, TAlOTE T GUT

IRIEERT
Gong

SnEe e,
I LS I VO T ¢ I

In this example, the values assigned to the variables D$, R$, A, B, C,
and D (statement 20) will be stored in file 4 (named ACCTS) on
diskette drive 1. The file is then closed and reopened for input.
Statement 50 then retrieves the variable values from the file. File
reference code FL8 is used only to refer to the file opened in
statements 10 and 40.

Writing to and Reading from Stream 1/0 Files

Stream 1/0 files can only be accessed sequentially. That is, you can
only write or read records in sequential order starting from the
beginning of the file. To do this, you use the PUT and GET
statements. For example:

GO0 OPEN FLL, "080°, 2, "INTEREST, DUT

GOP0 PRINT "ENTER PRINCIPAL®

DLOD INpUT P

GL10 FOR T=1 TO 10 Execute statements 130 and 140
0120 FOR R=1 TO 20~ two hundred times.

OL30 A=Pe(l+RA1L0038T

A0 PUT FLL,T,R, A Write the values of T, R, and A
G150 NEXT R to the data file.

0140 NEXT T

D170 S8Top

The PUT statement instructs the computer to put the values contained
in the variables T, R, and A into the file referenced by FL1.

Now, to read and print the data written to the file, you could use the
following program:

G010 OPEN FLE, "800, 2, I

Q020 PRINT "TIME® . "RATE ', "AMOUNT?
QO30 FOR T=1 TO 200

Dong GET FLEB, 4,8,

G050 PRINT &, 8,0 Display the data under
BOa0 MEXT T the appropriate title.
puvo sTop

It is not necessary to use the same variable names as when the file
was created. The important requirement is that the values in the file
and the variables to which they are assigned must be the same type:
arithmetic variables for arithmetic values, character variables for
character values.

After the first GET is executed, the file is positioned at the next value.

In the previous example, the GET statement is executed 200 times to
access all the data previously stored.

Processing a Data File

9

92

Notice what happens when an input file is closed and reactivated as
an output file.

0020 OPEN FL4, 080,02, "aF" IN
QOFG GET Flbuw, o, B0 0 E
Q000 Fed

0050 '

goan
gowan Flab

D00 OREN FLW, "DEe 2, taF, nur
go20 PUT Flu, a8, 0

A previously created file named AF is activated for input. In statement
30, five values are made available to the program from file 2. In
statements 40 through 60, new values are acquired for A, B, and C.
Statement 70 deactivates AF, and statement 80 re-opens the file for
output. Statement 90 places the new values for A through C into the
file. All of the old values in the file are lost.

Repositioning Files

Occasionally you may have to use an input file or an output file more
than one time in the same program. The RESET statement allows you
to reposition the file without deactivating it {(deactivation is necessary
only when the function of a file is changed from input to output or
vice versa). For example:

GOE0 GET FLY, XY, 2, 0,108

4

F.y Repositions file to
FLY LKLY LD LR B its beginning

DLE0 RESET FLY
DLa0 GET FLY, XY, 2, 60,1k, 5

Between statements 50 and 100, the variables X, Y, Z, Q, R, and S
could be used in one set of calculations and their values changed.
Repositioning the file to the beginning permits the original values in
the file to be made available and put into variables X, Y, Z, Q, R, and S
again for different calculations or uses between statements 110 and
150, and again between 160 and the end of the program.

To add data to the end of a file, you can use the RESET statement

with the END keyword. When RESET END is specified to a stream 1/0
file opened for input, the file is closed and reopened for output. In
effect, RESET FLx END changes an input file to an output file. The file
is reset so that writing of new data begins at the end of any existing

data in the file.

DR00 RESET FLL END

This statement positions FL1 at the end of the last data item in file
one. PUT statements appearing after statement 0200 place additional
data into the file.

Input/Output Error Handling

Certain error conditions can occur while you are processing files. As
an example, when reading through a file, you need to take action after
the last item is read; otherwise the computer will terminate the
program. The EOF (end of file) clause can be written in the GET
statement to branch to another program statement when the end of
the file is reached. '

A GET statement with an EOF clause could look like this:
QO0HO GET FLG, X, Y, &, E0F 100

This statement directs the computer to statement 100 when the end of
the file is reached. At statement 100, you could end the program, or
close the file and continue processing, or perform any number of
actions. The important thing is that specifying the EOF clause allows
you to retain control of program execution.

The EOF clause can be specified on the PUT statement as well. Note

that if an EOF condition occurs, not all of the output data may have
been written into the file.

Processing a Data File 93

94

These are other error handling clauses:
Clause Meaning

IOERR n Branch to the statement numbered n
if a hardware malfunction prevents
reading or writing of a record. IOERR
can be specified on the GET and PUT
statements.

CONV n Branch to the statement numbered n
if a conversion error occurs while a
data item is being assigned, for example,
if an attempt is made to read character
data into a numeric variable. CONV can
be specified on the GET statement but not
on the PUT statement.

Instead of writing these error handling clauses on many GET and PUT
statements throughout your program, you can write thermn on one or
more EXIT statements. An EXIT statement is used in conjunction with
many input/output statements to group error handling in one place.
The statement could look like this:

D080 EXIT OEOF 100, TOERR 150, 00NV 200

This statement tells the computer to branch to statement 100 when
the end of the file is reached, to branch to statement 150 if a
hardware error is encountered, and to branch to statement 200 if a
data conversion error is encountered.

ACCESSING RECORD 1/0 FILES

You can access record 1/0 files by three methods: sequential, direct,
and indexed.

The sequential access method is one in which the records are
accessed in the order in which they are entered. To use an example of
the 50 states, if you enter the records in alphabetic order, the first
record is Alabama, then Alaska, Arizona, Arkansas, and so on. If you
enter them in geographic order, say with the New England states first,
the order is Maine, New Hampshire, Vermont, and so on. In either
case, all records are retrieved sequentially in the same order that they
were entered.

In a record-oriented file, each record has a record number relative to
the first record. If the 50 states are stored alphabetically, the Arkansas
record has a relative record number of 4. The direct access method
can be used to retrieve records directly by record number.

An indexed access method is one in which each record is stored with
a unique identification called a key. If the 50 states were stored with a
key (for example, the key could be the name of the state), you can tell
the 5110 which key to look for. The computer looks through an index
until it finds the particular key and then retrieves the corresponding
record from the master file. Thus with an index, each record can be
retrieved directly.

To process a record 1/0 file, you follow this sequence:
1. Open the data file.
2. Access the file sequéntially, directly, or indexed directly.

3. Close the data file.

Opening and Closing Record 1/0 Files

Record-oriented files, like stream-oriented files, must be opened
explicitly. A record-oriented file is opened explicitly through the OPEN
FILE statement. As you may recall, for stream-oriented files, OPEN is
specified with the keywords IN for input or OUT for output.
Record-oriented files are opened in the same way for input and
output. If ALL is specified, the file can be accessed for both input and
output without closing and reopening.

In addition, the RECL= clause (record length) must be specified after
OUT when creating record-oriented files to specify the length {(number
of characters) of the record being written.

CLOSE FILE is used to close files the same way for record-oriented
files as CLOSE is used for stream-oriented files. If the statement is
not present, the system closes the file at the end of program
execution.

Processing a Data File

95

96

Following is an example of an OPEN FILE statement for a record 1/0
file:

D150 OPEN FILE FLZ, D800, "NEW, ACCOUNTE ", OUT, RECL=128

‘Specifies a record 1/0 file."

Notice the period (.) in the file name NEW.ACCOUNTS. No blanks are
permitted in the file name.

If you are going to use the indexed access method, you must also
open a file for the index. For example:

B0 OPEN FILE
a2t OPEN FILE

The file reference must be the same for the master and the index file;
however, the files must be in different locations on the media (in this
example, files 6 and 2). After statement 220 is executed, the 5110
automatically creates an entry in the index file when a record is written
to the master file. The KP= and KL= parameters describe the starting
location and number of characters of the record in the master file to
be used as a key in the index.

Note: If the parameter SEQ is specified in the open statement for a
data file, that file can be used as a data exchange file with other
systems. However, this file should only be accessed sequentially.
Direct access of the file might not access the desired record.

00D

Writing to and Reading from Record 1/0 Files

Creating a Record I/0 File

The WRITE FILE statement is the record-oriented counterpart to the
PUT statement. For example, at the beginning of the school session,
the only information available to you for each student is his name and
address. You could write one WRITE FILE statement to enter the
name and address for each student like this:

WRITEFILE FLI, "BUTLER, J08, ", 823 W, 76 STREET, NEW YORK®

You could also write one generalized WRITE FILE statement using two
character variables for the name and address, like this:

OO0 WRITEFTLE FL1.M%, A%
This statement would enter the values of the two variables N$ and A$.

This DIM statement should be included in the program to assign a
length of 25 to N$ and 65 to A$:

GOLO OTM NE25, Aa5

Each record written by the WRITE FILE statement would be arranged
in the file this way:

name address unused

1 26 90 128

Note that this WRITE FILE statement writes 90 positions of the record.
Unassigned record space is filled with blanks. Thus, record positions
91 through 128 are blank. The WRITE FILE statement contains a
USING clause with the statement number of the FORM statement, and
the FORM statement describes how the entries are to be formatted
into the record. The combination of WRITE FILE and FORM
statements could look like this:

GOS0 WRITEFILE WSTHG 5%, FLL, NS, a%
GO5E FUORM POSL, O, POS24, 0

Processing a Data File

97

98

This FORM statement says that, beginning at position 1 in the record,
the character variable N$ is to be written; beginning at position 26 of
the record, the character variable A$ is to be written.

name address unused

1 26 91 150

The following program shows how you could enter the names and
addresses of the students into the file named CLASS.

P 1 { B A 4 W

gL

FTLE FL

PRINT E
THPUT N
TF N LAasT

FRINT

The program is constructed to recognize the word LAST as the end of
input; therefore, the last input item should be coded 'LAST'. Your
input could look like this:

ORTREET, WY.L, L002E

WEST MEW YORK, N, 070947

STREET, FLUSHIMG, .Y, 11358 .

After the records are entered, the first record in CLASS would look
like this:

EUTLER, J. 8. 323 W, ThH GTREET, N.Y,

T, RECL =

128, 5K

10023

After the file has been created, if you decide to add more records, say
for a new student who registers late, the WRITE FILE statement can
be used to enter additional records. No RESET statement is necessary
as with stream-oriented files; the WRITE FILE statement automatically
positions a file at its end. Note that additional records would not be
sorted but would be entered in place at the end of the file.

Now, assume an index file was also specified for the previous
example: ‘

ag

0OLE OPEN FILE FLL, "D80°, 2, TINDEX ", OUT, KEY, KP=1, KL

Use the characters in

positions 1 through 25

as the key.

Wh\en formatting the key field, you should exercise care in putting the
key into the proper position in the file. For purposes of simplicity,
these examples use the first 25 record positions for the key. The
occasion may arise, however, when you might have a file with the key
starting in a position other than 1. By careful use of POS , you can
assure that the key will be properly located. Also, you can use the
intrinsic function KPS (FLx), to find the position, relative to 1, of the
start of an embedded key in the file referenced by FLx, and you can
use the intrinsic function KLN (FLx) to find the length of the key.
These functions are described in the 5770 BAS/C Reference Manual.

After the records are entered into CLASS, additional records can be
added and will be stored in key-indexed order.

Reading Records from a Record 1/0 File
A record 1/0 file can be read sequentially, directly using a relative
record number, directly by key index, or sequentially by key index. The

method you use depends upon the requirements of your application.
Following is a description of the four ways to read a record 1/0 file.

Processing a Data File

99

100

Sequentially L

The READ FILE statement is used to sequentially read a record 1/0
data file. For example:

QOLO OPEN FILE FLL, "DE0, " PaYROLL S, IN

Lx)

GOS0 REAT FILE USTHNG 100, FLL, A%, B, 0, D%
GLaG { RELI ST L e

1

Qe GoTn w9
Notice that the file is first opened as an input file with FL1 as the file
reference. The READ FILE statement uses the same file reference.
The FORM statement {statement 100) specifies the format of the
record.

Each time the READ FILE statement is executed, the system reads the
data in the next sequential record in the file. Thus, the records are
read in the same sequence they were written to the file.

It is not necessary to read the items in the same order in which they
appear in the record. For example, the statement could be written:

PO LT

CHCED, POENL, O, POBLL

Nor is it necessary to read all the items in a record. If you were
interested only in obtaining name information, you could use this
READ FILE and FORM combination:

guwi i
:

T L
grLon i

THEM P

This combination might be helpful when you wish to insert test marks
for each student. You could read through the file sequentially, obtain

each student’s record, display his name on the screen for verification,
and enter the corresponding mark.

The READ FILE statement, like the GET statement, can contain an EOF
clause to transfer control when the end of the file is reached. In the
program shown below, the READ FILE statement causes program
control to branch to statement 100 at the end of the file, which is used
to print a message.

This program shows how you can read each student’s record to insert
a test mark. The program also introduces the REWRITE FILE
statement; see Updating Records in Chapter 9, which is used to
update an existing record, and shows how OPEN and CLOSE
statements can be used with record-oriented files.

aaan
RIRCRS!
0
HRTE S

Opens the file for
1

/input and output.

R R LA SELL e E 111 {} =——— Branch to statement
1,6 \/ 100 when all the
E Read name from the file. records are read.

Lind

Pt BT
R N R N

vl i +==—————"pdate the record
with the grade entered
from the keyboard.

CEMDOOF FILE-LAST RECORD READ

Record Layout

Name Other Data Grade

__/J\
o N

1 25 101 103

Statement 30 opens the file. ALL is a special keyword used with
record-oriented files to indicate that both input and output operations
can take place on the file. ALL is required if any rewriting operations
are to take place.

Statements 40 and 45 obtain the name information from the file.
Statement 50 displays the name, allowing you to verify it and enter the
corresponding test mark in statement 60. Statement 70 is the
REWRITE FILE statement, which enters one data item into the record
just read, the numeric variable G. Statement 75 says that the variable
is to be entered beginning at position 101 of the record, in the format
PIC(ZZ#), three digits with leading zeros suppressed. The remaining
statements cause the program to cycle through all the records and
close the file after the last record is handled.

Processing a Data File 101

Directly Using Relative Record Number

To retrieve records directly by relative record number, specify the
REC= clause in the READ FILE statement. If, for example, you want to
access the Nth record, specify:

70READ FILE USING 75, FL1, REC=N, C$, A$

The following example shows this method of record retrieval:

G010 DIM DE20

0020 OPEN FILE FLI1, D80 ,2, "MASTER", IN
0ou0 PRINT "INPUT RECS

G050 INPUT K

0051 IF K=0 GOTO 90

0060 READFILE USING 70,FL1,REC=K,X, D%
0070 FORM NCLO,CZ20

0080 PRINT X, D¢

Go8s GOTo ui

aov0 STOP

In this example, file number 2 (referenced as FL1) on diskette drive 1
is opened for input. Statement 40 requests keyboard input, which is
assigned to variable K in statement 50. Statement 51 tests for the end
of the program. In statement 60, a record is read from the MASTER
file and data from the record is placed in variables X and D$.
Statement 70 specifies the format for the data being read. The data is
displayed (statement 80), after which the program branches back to
request keyboard input again.

Directly Using an Index

If an index file was created, records can be read from the master file
using an index. In this case, both the master file and the index file
must be opened:

guLd OPE®N
HRIDERY

L
ey GERM ey R
e, THEEO L E, CINDEXE" TN

Specifies direct
access by key index.

102

If you wanted Smith’s record, you would specify his name in the KEY
clause in the READ FILE statement:

Direct access using a key.

TE LS KEY = P, G

The 5110 will search for the record whose key matches in the index
file, then will read the values from the master file record into the
variables F$, and G$.

The following example shows this method of record retrieval.

In this example, the specific record in file number 2 (referenced as
FL1) is selected by the key value you enter in statement 50. If,
however, the computer cannot find the key, it indicates an error unless
you instruct it to take alternative action. For example, if you enter the
key incorrectly {say you spelled the name SMIHT), the match would
not be found. To protect program execution, include the NOKEY
clause on the READ FILE statement:

The NOKEY clause tells the computer that if the matching key cannot
be found, the program should branch to statement number 200. The
NOKEY clause for indexed files is similar to the EOF clause for
sequentially accessed files; it permits you to retain control of program
execution if a particular condition arises.

Processing a Data File 103

104

Sequentially by Key Index

You can read records sequentially by key using the index by opening
the index file and master file and specifying the READ FILE statement
without the KEY parameter.

When an indexed file is created, you must open both the data file that
contains your records and the index file created by the system.

If you omit the KEY= parameter, the system accesses the record with
the next higher key than the last record accessed. This is called
sequential access by key index.

You can also combine the direct access by key and sequential access
by key by specifying a KEY= parameter on the first access only. This
gives you the records in ascending sequence beginning with the key
specified in the KEY= parameter.

if you specify a key in a KEY= or KEY> parameter that is longer than
the key in the key index file, the specified key is truncated to the
length of the key in the index file. If you specify a key that is shorter
than the key in the index file, only the characters you specifed will be
used in the search. If the key field is made up of several parts, for
example, then you could access the first record on part of the key as
shown:

Division Department Employee Number

Key Field

0010 DIM K$3,A$3

0080 K$= 003’

0090 READ FILE FL1, KEY=K$,A$,...
0100 IF A$=K$ THEN 1000

0200 READ FILE FL1,A$,...
0210 GOTO 100

1000

The program would access the first record with division equal to 003 and then
access all records with division 003 in sequence by key, assuming the master
file is in ascending sequence by key.

Updating Records in a Record 1/0 File

Part or all of a record in a record |/0 file can be updated using the
REWRITE FILE statement. When updating a record 1/0 file, the OPEN
statement for that file must specify the ALL parameter. For example:

0020 OPEN FILE FL2, 'D80’, 3, ‘'MASTER’, ALL

The following sample program, which adds telephone numbers to
records in an existing name and address file, shows how you can use
the REWRITE FILE statement to update a record 1/0 file:

ga1d
R
nasEn
IR
I R3]
GOan
RHESH
GO
i
TRRIRE
IR
g1z
L

When the file was originally created, each record contained space
available for the telephone number and other data. After a record is
read (statement 50), the name is displayed (statement 70) and the
telephone number can be entered (statement 80). Once the telephone
number is entered, the record in the file is updated in positions 91
through 103 (statements 90 and 100) and the next sequential record is
read. This process continues until the last record in the file is
processed. After the last record is processed, an end of file (EOF)
condition occurs and the program branches to statement 120.

Processing a Data File 105

If there is an index for the master file, you can access and update
individual records without processing the file sequentially. For
example, you could use the following program to update the telephone
numbers of specific customers in an already existing name and
address file:

Ch L TR, MOREY LOD

When this program is run, statements 40 and 60 request the
customer’s name and new telephone number. Then, if the name is
found in the index file (KEY=KS$), the master file is updated with the
phone number (T$). If a name match is not found, the message NO
MATCH FOUND is displayed (NOKEY=100), and the program
requests the next name and telephone number. If a * " is entered as
the name, the program branches to statement 120 and stops.

If the KEY clause (KEY=) is used in the REWRITE FILE statement, no
READ FILE statement is required to retrieve the record first. If the KEY
clause is specified, the record matching that key is brought in from the
file; thus, the REWRITE FILE statement with a KEY clause retrieves as
well as rewrites.

The REWRITE FILE statement can write over existing data or unused
portions of a record, but must not change the contents of the field
containing the key information. Fields not written over remain
unchanged.

106

As another example of REWRITE FILE, assume that during the school
term you give the students an extra credit project; their final grade will
be raised by five to ten points depending on the quality of their work.
Before the end of the term, you add in the extra credit for those
students who handed in the project. The short program below
illustrates how the REWRITE FILE statement can be useful in updating
the records.

QoS0 0IM NS

LU PRINT CENTER STUDENT' 5 NAME AND EXTRS CREDIT MaRk:
DLLO THPUT N

ETIR:

1 Ll
TLE WSTMG 13

0l LITE S FLE HEY =G, B NOKEY L850
! FORM POSLIS0, PTOOZH

0 GOTO 100

R STOOTNG MATOH FOUND FOR®, M

Bial ARIRt;

grva

Statement 100 prompts you for input information. Statement 110
accepts the student name in N$ and the mark in E. Statement 120
tests whether the end of input has been reached; assume the last
input data item should have the word LAST as the student’s name.
Statement 130 enters the mark recorded in E into the file after the key
has been matched with the name in N$. Statement 135 formats the
mark into positions 140 and 141.

More Information About Processing Record 1/0 Files

Deleting Records

Records in an indexed file can be made unavailable with the DELETE
FILE statement specifying the key of the record to be deleted. For
example:

G070 DELETE FILE FL2,EEY=NG, NOKEY 130

This statement would delete (by modifying the index file) the record
whose key matched the character value in N$, or would branch to
statement 130 if the key could not be matched. The actual record is
not removed. The record key in the index file is flagged, making the
record inaccessible by key.

Processing a Data File 107

Repositioning Files

The RESET statement can reposition a file to its beginning. If RESET
contains a KEY clause, the file is repositioned to the particular record
associated with that key. If the RESET statement contains a REC=
clause, the file is repositioned to the record specified by the REC=
clause.

Error Clauses on the EXIT Statement

For record 1/0 files, the EXIT statement can specify these clauses in
addition to the other clauses available:

e NOKEY, to transfer control if no key satisfying a KEY clause can be
found.

e NOREC, to transfer control if the relative record number specified by
the REC= clause cannot be found.

e DUPKEY, to transfer control if a key specified for a new record
already exists in a file.

An EXIT statement specifying all error handling clauses could look like
this:

POMOKEY LEO, DUPKEY 200

When using the EXIT statement, remember to include an EXIT clause
on each appropriate input/output statement. For example, to refer to
the EXIT statement above, the DELETE FILE statement previously
illustrated could be written:

0090 DELETE FILE FLZ,KEY=NS$,EXIT 180

End of File Condition

It is important to allocate sufficient file space for an indexed data file
and the corresponding index file. If an EOF (end of file) condition
occurs, the data file and the key file can contain an unequal number of
records. Recovery procedures will be necessary to replace the missing
records. See the /BM 5110 Customer Support Functions Reference
Manual for more information about recovery procedures.

108

The FORM Statement—Differences Between Print and Record 1/0

The FORM statement used with record-oriented files is similar to that
used with PRINT USING in the following ways:

Both contain the C character specification.

Both contain the replication factor (see the /BM 5710 BASIC
Reference Manual.)

Both contain the PIC numeric specification, with the same digit
specifiers and insertion characters.

Both contain the format control specifications X and POS.

Both contain character constants (see the /BM 5170 BAS/C
Reference Manual.)

The FORM statements used are different in the following ways:

With record-oriented files, the FORM statement does not contain
the SKIP format control, because there is no need for a skip
operation.

With record-oriented files, numeric data can be formatted using
other specification codes besides PIC. Additional specification
codes are:

NC
PD

wrrom

B, NC, and PD are used to store and retrieve numeric data in special
internal formats. Except for one use of NC, they are not further
discussed here; additional material on these codes can be found in the
BASIC Reference Manual under ‘FORM Statement.”’

Processing a Data File

109

110

The NC Specification

The one use of NC applicable to this discussion is in its relationship to
PIC. PIC can be used only in output operations; thus, it can appear in
FORM statements related to WRITE FILE and REWRITE FILE
statements, but not in those related to READ FILE or REREAD FILE
statements. To read data that was written using PIC, NC is used,
specifying the number of positions in the record to be read. For
example,

NC4
would read four positions of a number.
If a number were written using this PIC specification:
PIC(##H#) or PIC(ZZ#)
the NC specification to retrieve it would be:
NC3
To retrieve only the first two of these digits, you would specify NC2.

Earlier, this FORM statement was used to enter the two-digit numeric
variable E into the file called GRADE:

OLRS FofM POSI0, PIOCEHE
To retrieve that value, you could use this FORM statement:

BOSE FOEe POSLWG, NOZ

NC can also specify the number of decimal digits in a number, in the
following manner:

NCb.2

This specification says that five positions are to be read, and a decimal
point is to appear before the two rightmost digits. That is, the five
positions could ook like ‘this:

12.34 would be read as 12.34
1.234 would be read as 12.34
11234 would be read as 112.34

If an item were written using this PIC specification,

PIC({HHE 1Hf)

The NC specification to retrieve it would be:
NC7.2 or NC7

The first number specified in NC is the field width, that is, the total
number of characters to be read, including digits, decimal points,
commas, dollar signs, and so on. The second number is the number
of decimal digits. The following are examples of how PIC and NC can
be used in combination:

If PIC were specified: NC would be specified:
PIC(HH) NC6.2 or NC6
PIC(ZZZ #4}) NC6.2 or NC6
PIC($$,$55.74}) ' NC9.2 or NC9
PIC(ZZBZZBZZ) NC8 or NC8.0

Processing a Data File

11

112

The S and L Specifications

The specification S indicates that an item in a record is in short-form
precision. A number in short-form precision takes up four positions in
a record. If S is specified for an input operation, the value in the
record is moved to the variable specified in the READ FILE or REREAD
FILE statement and extended to long-form. If S is specified for an
output operation, a short-form value is written from the variable
specified in the WRITE FILE or REWRITE FILE statement into the
record.

The specification L indicates long-form precision and is the long-form

counterpart to the S specification. A number in long-form precision
takes up eight positions in a record.

P LE, T EMORET " OUT, RETL=8U

O R
Ol

The data record produced by the preceding program is printed below.
Lines 010 and 020 write an item in short form in POS 10. Lines 020
and 030 read the same item into variable B. The program consists of
four positions of data in short precision from variable ‘A’, eight
positions of data in long precision from variable ‘B, and 16 positions
of numeric data from variable ‘C".

GO0 Fr i F LHuu™ IREEE7RY0 LS

v

!
A B C

For an input operation, the value in the record is moved to the variable
specified in the READ FILE or REREAD FILE statement. For an output
operation, a long-form value is written into the record from the
variable specified in the WRITE FILE or REWRITE FILE statement.
After all the marks for five tests and the extra credit for the project
have been entered into the file GRADE, the first record in the file could
look like this:

BUTLER, J.S. 323W. 76 STREET, N.Y.,10023 | $92¥84100H80h7 ‘ 7 l

1 26 101 140 150

If you wanted to print the final mark and the honors status, you could
use this program:

0L
0110

Statement 10 defines an arithmetic array, G, with five members, a
character variable, M$, with one character, and a character variable,
N$, with 25 characters. The array G is to hold the five marks for each
student, M$ is to hold the honors character, either a + or a blank, and
N$ is the name field.

Processing a Data File

113

114

Statements 20 and 25 format a printed heading. Statement 30 opens
the file for input, output, and updating operations.

Statement 50 reads the file according to the format shown in
statement 55. Remember that although GRADE is a key-sequenced
file, its records can be read in sequential order if the KEY clause is not
specified. From statement 55 we can determine that the items being
retrieved are the name, placed into N$, five sequences of three digits
(the five marks beginning in position 101), placed into the array G, and
a two-digit number for extra credit, placed into E.

Statement 60 sums the five marks, divides the sum by 5 to find the
average, then adds in the extra credit recorded in E, and puts the
resulting value into A.

Statements 65 through 72 reduce any mark that exceeds 100 and
analyze the value of A. If the value equals or exceeds 90, a plus sign,
indicating honor student, is placed into M$. If the value of A is less
than 90, M$ is assigned a blank.

Statements 80 and 85 print the student's name (N$), the final mark
(A), and the honors code (M$).

Statements 90 and 95 enter the final mark and the honors code into
the record, beginning in positions 130 and 135, respectively.

Statement 100 branches back to statement 50, and the next record is
read. After all records are read, the program ends.

Output from this program could be the following:

Print
Position 6 35 50

- Flual, MaRE HOMOR S

........

SUMMARIZING RECORD-ORIENTED STATEMENTS

The OPEN FILE statement explicitly opens a record-oriented file. If IN
is specified, the file is opeéned for input; if OUT is specified, it is
opened for output; if ALL is specified, it is opened for both operations.
If the KEY clause is specified; an index file is associated with a master
file.

The WRITE FILE statement writes a record. In a directly or
sequentially accessed file, each record is stored in the order in which
it is entered. In an indexed file, each record is stored in the order in
which it is entered, and the record key is stored along with the relative
record number in the index file. When you are retrieving or writing
records by key, performance is improved if the index file is sorted into
order by key.

The READ FILE statement reads a record. In a sequentially or directly
accessed file, each record is read sequentially, or directly by relative
record number when the REC= clause is specified. In an indexed file,
each record is read sequentially if the associated index file is not open.
If the index file is open and no KEY clause is specified, the records are
read sequentially by key. If KEY is specified, the record having a
matching key is read. ‘

The REREAD FILE statement makes the last record previously read
available again, regardless of whether the record was read sequentially
or by key.

The REWRITE FILE statement alters an existing record, provided that
the file was opened with the OPEN FILE statement specifying ALL. In
a file accessed sequentially, the last record is read and rewritten. In
an indexed file accessed sequentially by key, the last record read is
read and rewritten if no KEY clause is specified in the statement. If
KEY is specified, the record having a matching key is read and then
rewritten. If the REC= clause is specified, the record with a matching
number is read and rewritten.

Processing a Data File 115

116

The RESET FILE statement repositions a file to its beginning. In a file
accessed sequentially, if a KEY or REC= clause is specified, the file will
be repositioned to the particular record associated with that key, or
record number.

The DELETE FILE statement deletes a record from an indexed file. The
KEY clause is required in order to identify the record being deleted.

The EXIT statement specifies the statement number to which control
should be given if a particular input/output error occurs. The error key
keywords that can be written in the statement are EOF, IOERR, CONV,
NOKEY, NOREC, and DUPKEY.

The CLOSE FILE statement explicitly closes a record-oriented file.

The FORM statement specifies the format of fields in record-oriented
files. '

Permitted READ/REREAD, WRITE/ REWRITE Statements

The following chart list the various OPEN statements which can be
used with the READ, REREAD, WRITE, and REWRITE statements.
Each OPEN statement is listed with the function that it performs. In
addition, several notes are provided for added clarity.

!

How File(s) Opened READ WRITE Notes .
OPEN FILE FL1. . .OUT, RECL= WRITE Creates a master file
OPEN FILE FL1. . .OUT, KEY, KP=, KL= and an index file. The
time it takes to create
the files will be
reduced if the files are
built in key sequence.
OPEN FILE FL1. . .IN READ
OPEN FILE FL1. . .IN, KEY READ KEY=
REREAD
OPEN FILE FL1. . .ALL READ WRITE Successive READS
OPEN FILE FL1. . .ALL, KEY READ KEY= REWRITE (without KEY=) will
REREAD REWRITE access the master file
KEY= in order by ascending
key. WRITE will add a
new master and index
record. o
OPEN FILE FL1...OUT, RECL= WRITE Creates a new file
(previous data
destroyed).
OPEN FILE FL1. . .0UT WRITE Adds to an existing
file.
OPEN FILE FL1. . .IN READ
READ REC=
REREAD
OPEN FILE FL1. . .ALL READ WRITE
READ REC= REWRITE
REREAD REWRITE
KEY=

Processing a Data File 117

118

Chapter 12. Control of Your 5110

This chapter discusses the following topics concerning controlling your
5110:

e Using the display screen for input and output
e Using procedure files to replace keyboard input
e Using the system control functions (FILE FLS)

e Using the UTIL command

USING THE DISPLAY SCREEN FOR INPUT AND OUTPUT

You can use the WRITE FILE and READ FILE statements to write and
read data from anywhere on the top 14 lines of the display screen.
This allows you to use different screen formatting and data entry
techniques.

Control of Your 5110 119

120

When used for input and output, the display screen is treated as a
record 1/0 file, similar to a record 1/0 file on tape or diskette. You
must open the display screen for input/output using device 002, for
example:

ELO0 OFEN FILE FLL, 008, all

LSpekciﬁes read and

write operations
Input/output to the display screen

The character positions on the display screen are numbered as

follows:
e

—
(15 1 ————64
14 65 ——128
13 120 -=—"_192 ——————For example, character
12 193 256 position 130 is the
11 257 320 second character position
10 321 384 on line 13.
9 385 448
8 449 512
7 513 576
6 577 640
5 641 704
4 705 768
3 769 832
2 833 896
1
0

CARTR!

The following is a sample program that writes data to and reads data
from the display screen:

HoLo
0020
0030
00u0
00%0
00460
onvo
0as0
0090
n100
0110
0120
01LEn
0140
0150

OPEN FILE FLL, 002, ALL
WRITEFILE USING Z0,FLL1, "NAME", "all

R, TCITY?

FORM POSEW,C,POSILE, C, POSRL2,C, POBYL

READFTLE USING 50,FL1,N%$

FORM POS?1, 018

REWRITEFILE USING 70,FLL,N%$

FORM POSPL,0C, POSLED

READFILE USING 90,FL1,A%

FORM POSLEGS, C18

REWRITEFILE USING 110,FL1, A%

FORM POSLSS, C, POSZLY

READFITLE USING 130,FLL,CH

FORM POS21LY, 018

REWRITEFILE USING 150,FLL, NS, A%, C$
FORM POSS??, "YOU ENTERED, POS6UL,C

C K2, 0, X2, 0

When this program is run, statements 020 and 030 write 'NAME’,
‘ADDR’, and ‘CITY’ starting at positions 84, 212, and 148 on the
display screen. The cursor is then placed at position 91 as specified in
statement 030 (POS 91), and the program waits for input from the
keyboard. The display screen looks like this:

Flashing Cursor at
position 91.

HRIERE

(15

Control of Your 5110

121

N

122

Now, after you enter responses to ‘NAME’ and ‘ADDR’ from the
keyboard, the display screen looks like this:

NAME JUANTTA GIST
AR 123 SOMEWHERE AVE
CITY

RUN

Statements 040 and 050 read the response to ‘'NAME’ from the screen
in position 91. The statements 060 and 070 position the cursor at
position 165 for the subsequent reading of the response to ‘ADDR’.

MAME AUANITA GIST
ANTE 123 SOMEWHERE AVE
CITy WHOVTLLE, MM

YOU ENTERED:
SUANITA GIST 123 SOMEWHERE AVE WHOVILLE, MN

0120 219

H0uLE 001

Note: The REWRITE FILE and the FORM statements in lines 060 and
070 positions the cursor at position 155 for the next READ FILE. To
do this, you must force something to write, in this case the variable
N$ is written.

Notes about full screen management:

® You can position the cursor on the display screen by ending the
FORM statement used by a WRITE or REWRITE statement with a
POSn or an Xn specification.

e Data to be displayed by a WRITE FILE or REWRITE FILE can be
located in:
— The statement itself (lire 20 'NAME', ‘ADDR’, ‘CITY’).
— Constants used by the statement (line 140, N$, A$, C3).
— The constants in the FORM statement (line 150 "YOU ENTERED’).

e The CMD key and the 9 key on the numeric keyboard will position
the cursor at the beginning of the next line providing the 9 key is
not otherwise defined.

USING PROCEDURE FILES

A procedure file allows you to set up and execute a series of
programs without the need for operator intervention. The procedure
file consists of a series of BASIC statements, commands, or data
created using the LOADO,DATA command or a BASIC program. After
you enter LOADO,DATA, the system displays a line number followed
by a colon. You may then enter statements, commands, or data just
as you would for a standard data file. Lines in a procedure file have a
maximum length of 64 characters. After you have entered the lines in
your procedure file, you can use the SAVE command to save the file
on tape or diskette. Followinsj is a sample procedure file:

VOPAYROLL DISEETTE EWTER GOOTO CONTINUE

e LOan 14
%0 R

Control of Your 5110 123

124

After these lines are entered, the file can be saved with this SAVE
command:

SavE W, PROCT RECL=4AY, DIB0

This command saves the file (named PROC) with a record length of 64
characters in file 4 on diskette drive 1.

The procedure file is accessed when you enter a PROC command. A
PROC command instructs the system to begin using the procedure file
in the indicated file, as shown below:

PROC 4,08

The system then loads file 4 and begins executing the lines in the file,
one record at a time. In the example above, after the program in file 9
has been run, the procedure file executes the ALERT command, which
sounds an audible alarm and causes the display screen to flash. The
operator must press the ATTN key to stop the flashing message
INSERT PAYROLL DISKETTE-ENTER GO TO CONTINUE. If you
replace the diskette containing the PROC command, do not use the
same file number (4 in this example) while the PROC command is
active. If the RUN INP command was used, data may not be entered
from the keyboard. Therefore, for each INPUT statement of a program
being executed, there must be one entry available via the procedure
file. After the operator enters GO, the procedure file loads file 11.
Other commands valid in a procedure file are discussed in the /BM
5110 BASIC Reference Manual.

USING THE SYSTEM CONTROL FUNCTIONS

A unique 3b-byte 5110 internal 'storage area is provided to allow you
to dynamically control the operation of your system. This storage area
is called file FLS (system file). Using file FLS you can get information
about the system, such as: total work area available, work area
available for variables and buffer storage, number of lines printed on
the printer, and the return code- set by the last STOP or END
statement. File FLS also allows you to set or use system functions,
such as turning the display screen on and off, sounding the audible
alarm, selecting a character set, entering lowercase alphabetic
characters, turning trace on and off, rounding precision, file FLx, and
number of print lines per inch. You use the READ FILE FLS statement
to obtain the information about the system, and the WRITE FILE FLS
statement to set or use the system functions. (File FLS is always
open, therefore, an OPEN statement is not required before file FLS is
used.

READ FILE FLS Statement

You can obtain the following list of information about the system
using the READ FILE FLS statement:

Information File FLS Position
Total work area available 1-5

Work area available for variables 6-10
and buffer storage

Number of lines printed 11-15
Reserved 16-18

Return code set by last STOP or 19-21
END statement

Unused 22-35

For example, the statements:

place the total work area available in variable A, the work area
available for variables and buffer storage in variable B, and so on.

Note: The number of lines printed is the count of the print head

movements rather than the form’s movements, because a 00 line
spacing may be specified.

Control of Your 5110 125

WRITE FILE FLS Statement

You can set or use certain system functions by using the WRITE FILE
FLS statement to place the appropriate code in file FLS, as follows:

File FLS
System Function Position Code

Turn the display screen off 1 F
Turn the display screen on 1 N
Turn the audible alarm on 1 S
Turn the audible alarm off 1 Q
Pulse the audible alarm 1 A

2 L

Set keyboard input to lowercase
character mode

Set keyboard input to standard 2 U
BASIC character mode

Turn the display trace on 3 N
Turn the display trace off 3 F
Turn the printer trace on 4 N
Turn the printer trace off 4 F

Set rounding precision 5-6 0 to 15
File FLx 7-9 FLO-9
Set number of print lines per inch 10-11 8-99
(2.54 centimeters)

Comparison tolerance 12-18

For example, the statements:

place the character L in position 2 of file FLS. This causes the 5110 to
be in lowercase character mode. That is, lowercase alphabetic
characters are entered from the keyboard unless the shift key is used.
The 5110 remains in lowercase character mode until the 5110 is
changed back to standard BASIC character mode or the work area is
cleared.

126

Additional Use of File FLS

You can use positions 22 through 35 of file FLS to store data. That is,
data written to these positions using the WRITE FILE FLS statement
can be read using the READ FILE FLS statement. Using these
positions of file FLS gives you the unique capability to write data in
numeric form and then read that data in character form, and vice
versa. For example:

THPUT N
WRTTEF T
Friie P

0LED
ENRRY

WSTNG L840, FLE, A%

P

0160 FORM
The numeric input (N) is written to file FLS positions 22 through 30
(statements 120 and 130); then the character equivalent of N is read
from file FLS positions 22 through 30 (statements 150 and 160).

Using the UTIL Command

You can use the UTIL command to perform the following system
control operations:

e List the file directory
e Rename a file

Change or display a diskette volume ID and owner ID

Drop a file

Write-protect a file

Transfer control to the Diskette Sort feature, if installed

Change the system default device

Control of Your 5110 127

128

The sort program, if installed, is'internal to your 5110. You can
transfer control to the sort program by using the statement:

UTIL SORT

This program allows you to sort records in a data file according to
specified fields within the records. See the /BM 5110 Customer
Support Functions Reference Manual for a complete description of the
sort program.

Normally, the 5110 Model 1 default device is E80 (the built-in tape
unit) and the 5110 Model 2 default device is D80 (diskette drive 1).
You can use the UTIL command to change the system default device.
For example:

UTTL S5Y5 g

changes the default device to diskette drive 2.

See the /1BM 5110 BASIC Reference Manual for a complete description
of the UTIL command and functions.

Chapter 13. Using Arrays

An array is a simple way to keep together data items that are related.
For example, if you want to keep the average temperature for each
month of the year, you could construct an array having 12 data items.
The DIM statement can be used to define an array:

BOLG DM TOLE)
This statement defines an arithmetic array, T, containing 12 items, or
members. The computer recognizes an item as an array by the
appearance of parentheses. The parentheses are used to define the
number of items in the array.
Arrays can be arithmetic or character. For example:

GOE0 DM THISOLE
This statement defines a character array having 12 members.

A DIM statement can specify the length of the members of a
character array at the same time it is defining the array:

GOZ20 DM TsiooLz
Here, each member of array T$ is assigned a length of 10; without the
length specification, each member, like other character variables,

would be assumed to be 18 characters long. All members of a
character array- have the same length.

Using Arrays 129

NAMING ARRAYS

Character arrays are named in exactly the same way as character
variables; that is, the name must consist of a single alphabetic
character (including the alphabet extenders) followed by the currency
symbol(s). Thus, the name A$ can name either a character array or a
character variable. Arithmetic arrays are named in almost the same
way as arithmetic variables. An arithmetic array name may consist
only of a single alphabetic character (including the alphabet extenders);
you may recall that arithmetic variables can also be named with an
alphabetic character followed by a digit. Thus, the name A can be
used for either an arithmetic array or arithmetic variable, but the name
A1 can be used only for an arithmetic variable.

DEFINING ARRAYS

Defining an array in a DIM statement is known as an explicit
declaration. There is another way to define an array through implicit
declaration; that is, by referring to a member of an array in a program
statement without having defined it first in a DIM statement. When
you refer to an array member without explicitly declaring it in the DIM
statement, the computer will recognize that you are working with an
array and will automatically allow space for 10 members. To refer to a
particular member of an array, you specify it by its location in the
array. For example, T(1) refers to the first member of the array named
T, T(2) refers to the second member, T(3) refers to the third member,
and so on. Each number giving the location of a particular member is
called a subscript. If the following statement appears in the program:
B Towiman
only the ninth member of T would be assigned the value 69; all other
members would remain unchanged.

Remember that an array defined implicitly is assumed to have 10
members. So in order for array T to contain 12 members, we must
explicitly define it. If an array has very few members (for example,
two or three), it would be wise to use a DIM statement, such as:

BOLE DEM &2y, BOE)

The DIM statement, in addition to defining the number of members in
the array, also defines the number of dimensions in the array.

So far, we have discussed only one-dimensional arrays. In BASIC, you
can also have arrays of two dimensions. Assume that values have
been assigned to array T, such that:

TCL) i 31
T2 i 43
TCE) i% 2
TCW) i uY
TCH) is b
T{H) ia T3
T is Y
T8 i % Y
T{P) R &Y
T(LO) i ua
TCLL in L4
TCL i A9

Let's assume that these values represent the average temperatures for
12 months; T(1) represents January's average, T(2) February’s, and so
on.

For various reasons, another programmer might want to consider the
year as divided into four quarters of three months each; he could
define his array (call it M) as a two-dimensional array, as follows:

OORS [Moy, 2

In this statement, array M is defined as a two-dimensional array
containing 12 members (the product of 4 and 3), just like array T. The
difference is that the members of M are distributed over two
dimensions, whereas in T they are distributed over only one
dimension. Conceptually, the two dimensions of M can be thought of
as rows and columns—four rows and three columns. The first value
would be identified as being in the first row and the first column, or as
M(1,1); the second value would be in M(1,2), the first row, the second
column; the third in M(1,3), the first row, third column. The fourth
item is M(2,1), or the second row, the first column; the fifth item,
M(2,2), would be in the second row, second column, and so on.

Using Arrays

131

132

Arvvay T

TCL
T3
T3
TCWD
T(5S
T4
TP
T8
T(93
T{10
{

-

—d ——
=
C® o

1t
11
13

o

{

-

Assuming that the same temperatures assigned to array T are
assigned to array M, notice the difference in the way each item is
referred to:

Tempevature frray M

31 MOd, 1) Column
W3 MOoL, 2 Row 1 g
W MOL,3) 1 31043
5 MO2, 1) 2 5Y &4
Ly M2, 20 3 Y 79
TE M2, 3) L LE o MY
T MO3, 13

T M3, 2

6y M3, 30

Wi MOk, 1)

iy MO, 20

3 MW, 3)

Two subscripts are needed to refer to a particular member of array M;
for example, M(3,1) refers to the temperature for July, the first month
in the third quarter.

Note the difference between a subscript and the array dimension
specification. A subscript refers to a particular member of an array. It
can be any valid arithmetic expression (for example, a numeric
constant or an arithmetic variable). The dimension specification
defines the number of members of an array. The dimension
specification can appear only in a DIM statement and it must be
indicated by unsigned integers only. An array name cannot appear in a
DIM statement if the array has already been defined—either implicitly
by usage or explicitly by definition in a previous DIM statement.

You can implicitly define a two-dimensional array by using it in a
program statement without defining it in a DIM statement first. You
would do this by referring to a particular member, using two
subscripts. For example, A(4,3) would refer to the item in the fourth
row, the third column of array A. A two-dimensional array defined
implicitly will be assigned the dimensions (10,10), or 100 members
altogether. If the value of either dimension is to exceed 10, however,
you must use a DIM statement to define the array as you would for a
one-dimensional array that exceeds 10 members. Remember that DIM
statements to define arrays must appear in the program before you
refer to the array.

3
I
73
69
3%

PLACING VALUES INTO ARRAYS

Initially the system sets all arithmetic arrays to zero and all character
arrays to blanks. Arrays ¢an be given other values through
assignment, READ, and INPUT statements, just like other variables.
The assignment statement can assign values to individual array
members or to all the members of the array. Here are some examples:

The first example assigns the value 10 to the member in the fourth
row, fifth column of the two-dimensional arithmetic array A. In the
second example, the keyword MAT identifies A as an array, and the
value 15 is assigned to all the members of the array. (This is a special
form of the assignment statement and is known as the array
assignment statement.) In the third example, the value PHILADELPHIA
is put into the fourth member of the one-dimensional character array

P$.

When specifying values by means of READ and INPUT statements,
you must remember that every array member that is to receive a value
must be represented in the statement, and a value must be supplied
for each member specified. Let’s look at these statements:

ore 7
PR

INPLT

The DIM statement defines the arithmetic array T and the character
array T$, each with 12 members. The INPUT statement states that
values will be supplied at execution time for the first three members of
each array. Execution of the INPUT statement causes the computer to
display the question mark (?). A valid response would be:

FLLo0E, 02, JANUARY , FERRLUARY , MARCH
The first three values are entered into T(1), T(2), and T(3), respectively.

The next three values are entered into T$(1), T$(2), and T$(3),
respectively.

The following statement can be used to enter values for the arithmetic
array A, consisting of three rows and four columns:

20 DM A05, 4
GOED MaT TNPUT &

Using Arrays 133

134

When this statement is executed, the computer displays a question
mark, and you can enter the three values for the first row:

The system continues to display the question mark until you have
entered values for all matrix positions.

Another way of assigning input values to arrays is through use of a
FOR/NEXT group in conjunction with the READ and DATA statements.
For example, if you wanted a list of 15 numbers assigned to an array
named B, you could write:

The subscript | is used to step through the values in the data table.

REDIMENSIONING ARRAYS

Once an array has been dimensioned by a DIM statement, it cannot be
explicitly dimensioned again. But it can be redimensioned; that is, the
array can be given new dimensions. A one-dimensional array can be
redimensioned into a two-dimensional array, or it can be
redimensioned into a one-dimensional array with a different number of
members. Similarly, a two-dimensional array can be redimensioned
into a one-dimensional array or a two-dimensional array having a
different number of members in either or both dimensions. The rule
to remember when redimensioning an array is that the total number
of members in the new array may not exceed the total number in the
original array. For example, the array M(12,10) has 120 members, the
product of 12 and 10. It can be redimensioned as long as the new
array does not contain more than 120 members (it can contain fewer).
Thus, M(12,10) may be correctly redimensioned to M(40,3), or M(100),
but not to M(40,4). '

One way to redimension an array is to state its new dimensions right
after the array name in the array assignment statements. For example,
in the array C(5,5) to C(3,4), you could use the array assignment
statement:

0010 MAT C(3,4)=00)

The word MAT is used to indicate that operations are to be performed
on the entire array, or matrix. This statement changes the array
dimensions to (3,4) and assigns the value zero to each member of the
newly dimensioned array.

DIFFERENCE BETWEEN MAT AND LET

It is important to note the distinction between the array assignment
statement, identified by the word MAT, and the LET assignment
statement. ;

The following example shows a sequence of assignment statemeénts
and the output from each one. None of the statements are equivalent.

000
G010 DM GOz is initiali
| Array C is initialized to oogl
D020 LET 002, 1Ly=ls a0 Ol
T~ Array Cis initialized to | 00
BOX0 MAT C=0%) \ 558
5 5 5]
DOMD MAT [0, D e n) e
GOUD MAT DO, 2y Array C is initialized to 555
D050 LET C=% *8 8
Array C is initialized to
88
Variable Cis 9 88

Statement 10 defines arithmetic array C as a 2x3 array and initializes
each member to 0. Statemeént 20 assigns the value 1 to a member in
the second row, first column of the array. Statement 30 assigns the
value 5 to all members of the array. Statement 40 redimensions the
2x3 array into a 3x2 array and assigns the value 8 to all members.
Statement 50 does not refer to an array but to an arithmetic variable,
C, and assigns the value 9 to it. BASIC allows you to use the same
name to represent both an array and a simple variable in the same
program.

The array assignment statement can also assign the values of an array
to another array, as long as both arrays have identical dimensions.
Let’s look at this example:

0100 DIM Yuw),ZH)
0150 MAT Y = (AxXR)
0180 LET Y(3)=1%

@

0200 MAT Z=Y

Using Arrays 135

136

Statement 150 assigns the value of the expression A*B to all the
members of the array Y. The expression must always be enclosed in
parentheses. Statement 180 assigns the value 15 to the third member
of Y. Note the difference between the LET statement and the MAT
statement. Statement 200 assigns the values in array Y to array Z. If
the only change made to array Y between statements 150 and 200
was the assignment made in statement 180, array Y will contain the
values A*B in members 1, 2, and 4 and the value 15 in member 3.
Array Z will be assigned these values in the corresponding members.

In order for the values of one array .to be assigned to another, both
arrays must have identical dimensions. For example, if Z had the
dimension (5) or (2,2), it would have to be redimensioned to the
dimensions of Y before it could receive Y’s values.

ARRAY OPERATIONS

A number of different operations can be performed on arrays.
Arithmetic arrays can be used in simple arithmetic operations, such as
adding or subtracting the values of members in different arrays, and in
true mathematical matrix operations such as matrix multiplication.
Additionally, values in both arithmetic and character arrays can be
indexed in ascending or descending order. Arrays used in arithmetic
operations must have the same number of dimensions. Let’s look at
some of the operations available.

Array Addition and Subtraction

Example 1:

0010 DIM XSy, Y), 205
0020 MAT X=Y+Z

In this example, each member of the array X is to be assigned the
sum of the corresponding members of the arrays Y and Z. The values
of Y(1) and Z(1) are added, and the sum is assigned to X(1); the values
of Y(2) and Z(2) are added and assigned to X{2), and so on.

Example 2:

0030 DIM X{5),Y(5),Z2(5)
0040 MAT X=Y-Z

This example is like the first example, except that the array X is
assigned the difference between the corresponding members of the
arrays Y and Z.

Scalar Multiplication

Scalar multiplication is the p'rocess whereby each member of an array
is multiplied by the same number.

Example:

0035 DIM ACLO,S),BO1Y)
0040 MAT ACLUI=(H) %R

In statement 40, A is redimensioned to correspond to the dimensions
of the array B. Then, the value in each member of B is multiplied by 4
and the product is assigned to the corresponding member of A; B(1)*4
is assigned to A(1), B(2)*4 to A(2), and so on.

Indexing Function

Indexing operations can be performed on character as well as on
arithmetic arrays. Character arrays are indexed alphabetically,
arithmetic arrays numerically. Arrays can be indexed in ascending or
descending sequence by the AIDX and DIDX functions, respectively.

Example:

0010 DIM a%l8ch), B

Q020 DATA TDAN', "MEL ', "GLEN', "DAVE", "BILL'
D0uD MAT READ A%

D050 MAT PRINT FLP,A$

00460 MAT B=ALDX M%)

po70 MAT PRINT FLP,R

The printed output would be:

AN ME L Gl BN OavE BILL

The numbers indicate the ascending character sequence of the names.
For example, the 5 indicates that the fifth name (BILL) is the lowest
character value; the 1 indicates that the first name (DAN) is the next
highest, and so on.

Using Arrays 137

The following statements could be added to print the indexed matrix:

ooEy FOR Y=1 TO &
GO0 PRINT FLP AS(E(T Y
G100 NEXT I

The printed output would be:

BrLL
[

TR
G

Matrix Multiplication

Matrix muiltiplication is the process whereby the matrix product of two
arithmetic arrays is assigneéd to a third array. All three arrays involved
in matrix multiplication must be two-dimensional.

Example 1:

00635 DIM XC2,2),Y(2,2),2(2,2
0070 MAT Z=XxY

If X contained [a b and Y contained [e f
c d g h
the valuesof Z | j k| ,would be constructed as follows:
| m
j=a%e+b*g
(sum of merbers in first row of X times members in first column of Y)

k =a*f+b*h
(sum of members in first row of X times members in second column of Y)

I=c*e+d*g
(sum of members in second row of X times members in first column of Y)

m=c*f+d*h
(sum of members in second row of X times members in second column of Y)

138

All the arrays shown in example 1 are two-dimensional, square, and
have the same number of members. Arrays used in matrix
multiplication need not be square or have the same number of
members, but must be two-dimensional and conformable. Look at
this example:

0075 DIM AC2,4), B4, 3,002,353
0080 MAT C=Axp

Remember that the first subscript in a two-dimensional array indicates
the number of rows, and the second subscript indicates the number of
columns. (In the example above, A has two rows and four columns.)
To be conformable for matrix multiplication, arrays must meet these
requirements:

e The number of columns in the first array to be multiplied must equal
the number of rows in the second. In the example above, A(x,4)=
B(4,x).

e The number of rows in the receiving array must equal the number
of rows in the first array. In the example, C(2,x)=A(2,x).

e The number of columns in the receiving array must equal the
number of columns in the second array. In the example, C(x,3)=
B(x,3).

These requirements are graphically represented below:

O
U,

A(2,4) B(4,3)

C(2,3)

Using Arrays

139

140

The arrays in statements 75 and 80 are conformable and thus are valid
for matrix multiplication operations.

i
| m
o p
r s

If A contained |a b c d and B contained
e f g h

0 I3 K

the values of C [u v w] , would be constructed as follows:
X y z

u=a*i+b*1+c*o+d*r
(sum of members in first row of A times the members in first column of B)

v=a¥*j+b*m+c*p +d¥s
(sum of members in first row of A times the members in second column of B)

w=a*k +b*n +c*q+d*t
(sum of members in first row of A times the members in third column of B)

x=e*i+f*l+g*o+h*r
(sum of members in second row of A times the members in first column of B)

y=e*j+ f*m +g*p + h*s
(sum of members in second row of A times the members in second column of B)

z=e*k + f*n+g*g + h*t
(sum of members in second row of A times the members in third column of B)

Chapter 14. What to Do When Your Program Does Not Work

When your program does not work properly, you can use the
following 5110 aids to assist you in determining what is wrong:

e Program trace
e Program step
e Comments

o Keyboard-generated test data files

PROGRAM TRACE

Program trace allows you to trace the order in which program
statements are executed. Each statement number is displayed (and
printed if you specify PRINT with the RUN or GO command) as the
statement is executed. The following example shows the display and
printout when the RUN TRACE, PRINT command is entered.

Sample program:

0010 DIM QACH)

0020 PRINT 'ENTER %5 TEMPERATURE QUOTATIONG'
0030 MAT INPUT §

000 FOR I=1 TO %

0050 T=T+ACI)

00460 NEXT I

0070 A=T/S

0080 PRINT "5 DAY MOVING AVERAGE =';A

0090 sTO0P

What to Do When Your Program Does Not Work 141

142

poLo o020 003
G050 Q040 007

The display shows:

RUN TRACE, PRINT

0010 0020 ENTER %5 TEMPERATURE QUOTATIONS
0030

&H2,6%,68,461, 64

Q040 0050 0040 DOS0 0060 0050 0060 0050 0060 0050 0040 0070

0080 %5 DAY MOVING AVERAGE = &u
0090

The printed output is:

GO&0 00%0 DO0AG DOS0 0060

Your program could stop because an error occurred, or you could stop
execution by inserting PAUSE statement(s) in your program; for
example:

0035 PAUSE

DOM0 FOR T=1 TO 9
0050 T=T+R(I1)
0055 PAUSE

0060 NEXT I

The PAUSE statements allow you to trace and analyze just the part of
the program that is not working correctly. When the program above
pauses at statement 0035, you can start it again by entering GO 40,
TRACE. The program then pauses at statement 0055. While the
program is halted for the PAUSE statement, you can check the value
of variables to see if your program is progressing properly. See the
sample cross-reference program in Chapter 15, Tips and Techniques
for a method of listing variables to determine where they are used and
whether they are used more than once.

You can also start and stop a program trace during program execution
using the WRITE FILE and FORM statements. For example:

H25%5 WRITEFILE USING 6260,FLE, "N, "N’
4260 FORM POS3,C, POSH, T
H300 WRITEFILE USING &6260,FLS, "F", "F’

Statement 6255 turns on trace with output to both the display (N in
position 3 of file FLS) and the printer (N in position 4 of file FLS).
Trace remains on until statement 6300 when the WRITE FILE
statement turns it off {(writes an F in positions 3 and 4 of file FLS).

G050

G040

PROGRAM STEP

With program step, you can execute a program one step at a time,
which can be helpful when you analyze complex routines. As with

trace, you can execute part of the program in step mode by inserting a °
PAUSE statement at the beginning of the routine (or statements) you
want to analyze.

For example:

g010 DIM g8

Q020 PRIMT "ENTER % TEMPERATURE QUOTATIONS'

0030 MAT INPUT @

DOZE PAUSE : Allows you to start program step
00u0 FOR T=1 T0O %
QGOS0 T=THE 1)

0040 NEXT I

N0&%S Palls
QO7F0 A=T%
D080 PRINT "9 DAY MOVING AVERAGE = ' g
Goen aTop

Allows you to stop program step and/or
analyze program results.

When the program pauses at statement 0035, entering GO 40, STEP
causes the program to execute one statement at a time, allowing you
to check program results. For example:

RUN
ENTER & TEMPERATURE QUOTATIONS

62,6%5,68,61,6u

GOWOo,8TEP Begin program step at statement 40.
T, 1 Request the values of variables T and |,
62 /
T,1
3320 i

Continue processing at statement 70 without
program step.

GO70, RUN
woDAY MOVING AVERAGE = &b

What to Do When Your Program Does Not Work 143

144

COMMENTS

Using comments within your program can help you remember program
logic and aid in analyzing program problems. When you are finished
developing your program, you can remove the comments or revise
them for future program analysis. Comments use storage and a small
amount of execution time. Thus, you should use comments carefully if
you are concerned with performance or storage use. However,
comments can be an important aid in future analysis of your program,
especially if someone else must maintain the program.

Keyboard Generated Test Data Files

When developing or analyzing a program, you might have to use test
data. You can use keyboard test data file(s) to create a test file on the
display screen. You can open the screen for both input and output
and for both stream 1/0 and record 1/0 files. For example, you can
open line one of the screen as a stream 1/0 input file as shown:

0020 OPEN FL3, 0017, 1IN

References to file FL3 imply that data is to be entered from the
keyboard; for example:

0360 GET FL3,A%,8,0C

This statement indicates that an alphabetic field followed by two
numeric fields will be read from the file referenced by FL3; for
example:

Allen Brown, 4.80, 6085.56

You could also use lines 1 through 14 as a record 1/0 file, for
example:

0020 OPEN FILE FL2,7002",ALL
0400 READFILE USING 410,FL2,4%,8,C
0410 FORM POSL,C20,NCH,NC3

References to file FL2 indicate that data will be read from the display
screen.

You can enter test data as necessary to thoroughly test your program
during program development. When you are finished testing, you can
change device addresses to the value you will use in your finished
program.

Chapter 15. Tips and Techniques

Often, specific examples can aid you in understanding the operation of
a function or a group of functions. This chapter shows examples and
describes different techniques that you may find helpful in developing
and using your programs. The topics included in this chapter are:

Performance considerations

Storage considerations

Program analysis using a cross-reference program
Skipping to a new page while printing

Locating a character in a string

Testing for an error

Sorting an index file

Another way to read a stream |/0 file

Examples of the different file access methods

PERFORMANCE CONSIDERATIONS

As you optimize the performance of an application, you may want to
consider the following:

Program design

Index file sorting

Print overlap

Display off

Main storage index area
Data file access selection

Tips and Techniques 145

146

Program Design

Performance of an application is enhanced if it is initially designed
carefully and thoughtfully. Flow diagrams are very helpful in designing
efficient running systems. There are many publications on
flowcharting that you may find helpful if you are not familiar with the
technique.

Index File Sorting

Many applications, such as inventory, make use of an index file with
pointers that allow fast access to desired records. If the index file for
the inventory example is sorted in ascending order, access to master
inventory records will be faster. The increased performance occurs as
the result of the fast scan feature implemented in the 5110, which
requires a sorted file. As new items are added to the master file, the
item number key (item number is specified as the key) is added to the
end of the index file. Depending on the activity of adding and deleting
records, the index file should be periodically sorted so that the new
index record is placed in its proper location and the unwanted index
records are deleted. You can sort the index file using the 5110
Diskette Sort feature; see Sorting an Index File in this chapter.

Print Overlap

The 5110 can overlap printer output with computer processing. If it is
possible with your application, the printed output might be as
illustrated below:

ooLo CaLCuLAaTION

aamn PRINT FLE
00a0 CalCULAT IO

0100 PRINT FLP
BLLn CalCulaTIion

In the above illustration, calculations to be included in the next print
statement are being performed while the previous line is being printed.

Display Off

Some applications may require extensive periods of processing time.
Such applications should execute faster if the display screen is turned
off so that the 5110 does not have to take the time to keep the
display generated. You can turn off the display screen by writing an F
in position 1 of file FLS. This procedure is described under Using the
System Control functions in Chapter 12.

Main Storage Index Area

Access to a master file record using an index file can be improved
substantially if you maintain a main storage index area that points to
the index file. To do this, you use the KW= parameter, which is
included in the OPEN statement for the index file. For example,

D030 OPEN FILE FL2Z, 080" N, "TAXES' , IN,KEY, KW=900
In the above statement, 900 bytes of main storage have been allocated

for index file pointers. Use of this storage area can best be described
with an example.

Tips and Techniques 147

148

Consider an inventory application with the following characteristics:

o The maximum number of items in the master file is 1000 items.

o The key to the master file is the item number which is 12 bytes.

e The diskette format is 256 bytes per sector.

e The master file record size is 100 bytes per record.

The following questions can be asked:

e How large should the index file be?

e How large should the storage index area be?

Before you answer the above questions, study the following diagram
to help you understand the use of the KW storage area and index file.

KW=Main Storage

ya

NC—

Record Record
3 Key A Number Key H Number
Pointer to the first key
in the sector.
Sorted
Index File
One Sector
. |)4 /!/ /
cova | R | kevs [fee | iR
/ 7/ /
Master File
i { L
S Key A Description Key B Description)X Key H
7/

4

\\./.\

The index file, maintained in sorted order, contains each key and the
record number of each record in the master file. A key record is
always 8, 16, or 32 bytes. In the example, the key length (item
number) is 12 bytes. A master file record number is 4 bytes, giving 16
bytes total for each key record.

The main storage index area contains the first key in a sector and the
physical record location of the key in the index file.

The index file sector containing the item number key is found by
comparing the item number to the keys in storage. Because the index
file and main storage index area are in sorted order, the sector
location of the key index record can be quickly found. The system
proceeds to the sector designated and reads the sector sequentially
until it finds the matching key. After the matching key is found, the
master file address is read and used to directly access the item master
record. If no key match was found in the index sector, the system
proceeds to the end of the file to see if new records have been added.
If no key match occurs at the end of the index file, an error occurs.

Now, to answer the first question, the index file size is found by
multiplying the maximum number of keys by the key length, which is
1,000*16 or 16K. The size required for the storage index area is
calculated as follows:

1000/ 16 * 14 = 875 bytes

Size of the Main Storage Index Area
Key Length Plus 2
Number of Key Records Per Sector (256/16)
Maximum Number of Keys in the Index File -

This example, using KW=900 is slightly greater than the exact amount
of storage area to contain one key for every sector in the index file.

The above procedure produces the most efficient method of accessing
the master file by index key. However, you need not have one key in
storage for every sector in the index file. If storage is limited, as little
as one key in storage (KW=14) would improve access time by starting
the search in the middle of the index file as required.

Tips and Techniques

149

Data File Access Selection

One of the most important decisions is choosing the proper access
method for your data files.

Whether to use the sequential, direct, or indexed access method
depends on your application.

Individual Record Access

The fastest method of access to an individual record is directly by
means of the relative record number of the desired record.

For example, in an inventory file it is possible to convert the item
number into a record number. Item numbers could be 1 to 1000. ltem
number 52 would be record 52 in the file. There are more complicated
methods for creating a relative record number; however, they are
beyond the scope of this document.

Indexing is the next fastest method to access individual records. A
pointer to the master file data record is maintained in an index file.
This is the most commonly used access method because existing keys
such as item numbers can be used without chance of duplicates.

Processing a file sequentially to find an individual record is time
consuming because the file must be read from the beginning until the
proper record is found.

Sequential Access

If a file can be accessed sequentially, the fastest method would be to
sort the master file into the desired order before processing. If the file
is processed sequentially in some cases and directly in others, it may
be more appropriate to create a sorted index file. The system can
then access the master file sequentially by accessing the index file
sequentially or directly by providing a key to the index file.

Rounding a Number Internally

Sometimes when you are making calculations on the 5110, it can be
too accurate, as in the following payroll calculation example.

0010 H=36.75

0020 R= $5.37

0030 G=H*R

0040 PRINT USING 50,G

0050 : GROSS PAY IS ####.##

When the payroll calculation is executed, the gross pay is rounded and
displayed as $197.35. However, the value in G is actually $197.3475. If
G is calculated repeatedly, then added to a total, it is possible that the
total individual gross pay that is printed will not be equal to the
computed total. To prevent the 5110 from calculating an unequal total,
you should round the number internally to two decimal places.

To round the number internally to two decimal places, insert the
following user-defined function in the program:

DEF FNR(X)=SGN(X)*((INT((ABS(X)}+5E-3) *100))/100)

In the preceding payroll calculation example, line 0030 should now
read

0030 G= FNR(H*R)

Tips and Techniques 151

152

STORAGE CONSIDERATIONS

User Storage

The amount of user storage available to you for application programs
depends upon your 5110 model. Four different storage sizes are
available:

16K bytes
32K bytes
48K bytes
64K bytes

Any model can be up-graded to the next higher model by the addition
of 16K of storage. In all models, approximately 4K bytes are used for
system-related functions. The remaining storage is available for
program and data storage. It is a good idea to subtract a buffer of 1K
bytes when estimating storage requirements.

Considering a 32K machine, for example, you would subtract 5K,
leaving 27K bytes for your program and data. The amount of storage__
used for a program is a function of many items:

e Program Design

Variables

Program statements
Buffers

Precision

|

Careful control of the above items should lead to both smaller
programs and more efficient programs.

Program Design

Storage is allocated for each program statement you write and each
variable you use. Careful program design should eliminate unnecessary
program statements and variables. A flow diagram prepared for each
essential step of the application will aid you in writing the program.
Commonly used calculations, such as tax calculation, can be quickly
identified and written as a subroutine rather than rewritten in various
parts of your programs. Your application may lend itself to being
divided into individual programs, each with a specific function.

e Application

Data entry

Data edit/update
— Sort
Process/update
Print reports

The above functions could describe the steps in many different
applications. Each of these may, perhaps, also be subdivided into
smaller programs.

Addressing the elements of the application one at a time, rather than
attempting to write the entire application as a single program, should
result in easier programs to write and understand, and require less
storage for execution.

Variables
Each time a new variable is used in your program the system
automatically assigns a predetermined (default) amount of storage for
the data in that variable. For example:
0020 Ad="JAMES SMITH®
The character variable A$ was assigned 18 character positions in

storage even though the data "JAMES SMITH’ occupies only 11
positions.

Tips and Techniques 153

154

If the data in A$ is constant or can be limited to 11 positions, you can
use a dimension statement to override the default value and assign
only the necessary 11 positions to A$, thus using only the amount of
storage absolutely necessary. For example:

0010 DIM A$Ll

A specific amount of storage is required for the definition of each
variable as it is encountered; this amount does not include the space
allocated to that variable for data storage. In the above example, with
no dimension statement, 4 bytes are required for the A$ definition,
bringing the storage utilization to 18+4 or 22 bytes. The amount of
storage required for the different variable definitions and data storage
is specified in the /BM 5110 BASI/C Reference Manual.

Use of matrix variable definition can also help in conserving storage.
Suppose four character-fields are to be used as follows:

A$ Name

B$ Street Address
C$ City

D$ State

Assuming the data storage for each variable defaults to 18 characters,
a total of 88 bytes of storage would be required. If the same data
were placed in a four-element matrix, the amount of storage used
would be 4 elements * 18 bytes of data plus 10 bytes for the matrix
definition. For example:

(4 * 18)+10=82 bytes

Program Statements

Program statements also occupy storage; this is a more difficult item
to estimate due to the complexities of each statement. A program
statement may use from 18 through 77 characters, depending upon
the content of the statement.

The actual amount of user storage available is displayed in the lower

right corner of the display when the 5110 is in the ready state. For a

64K system this is 65,5636-4,624 or 60,912. The 4,624 bytes represent
system work space.

A more accurate method to determine program statement storage is to
save a program on tape or diskette. When the program is reloaded,
the amount of user space left will be displayed in the lower right
corner. Subtracting this number from 60,912 yields the actual program
statement requirements.

Buffers

Buffer storage is required for operation involving data files, printer
output, and the special function using A$.

Data Files

Each time a stream 1/O data file is opened, a storage buffer of 50
bytes plus the physical record length is allocated. The physical record
length is 512 bytes if the file references tape, and the physical record
length is the sector size if the file references the diskette.

Each time a record 1/0 file is opened, a storage buffer of 68 bytes
plus a multiple of the physical record length is allocated. Most
commonly, the multiple is 1 or 2. The physical record length for tape
is always 512 bytes. The physical record length for a diskette can be
128, 256, 512, or 1024 bytes depending on how the diskette is
initialized. Record /0O buffers are discussed in the /BM 5110 BASIC
Reference Manual.

Printer

Printer output requires a buffer storage of 200 bytes.

Using A$

The using A$ parameter is used with the READ and PRINT statements

0020 Ad="FORM JNCH"
0340 PRINT USING a%,FLP,A,R,C

The first time a using A$ parameter is encountered, the 5110
automatically allocates a 420-byte buffer, which is used by all
subsequent using A$ statements. Statements referencing other
variable identification, such as B$ also use the same buffer area.

Tips and Techniques 155

PROGRAM ANALYSIS USING A CROSS-REFERENCE PROGRAM

Occasionally, while writing a BASIC program with many loops,
subroutines, and other functions, you may find that normal debugging
techniques are unsuited due to the complexity of the program. The
following cross-reference program can be used to cross-reference the
occurrence of variables, line numbers, functions, and so on, within any
program saved in a file. To do this, simply load the cross-reference
program, and respond to its prompting messages for the device
address, number, and name of the file containing the program to be
cross-referenced. The program to be processed must have been
saved in source format with 64-or-128-character record length. For

example:
SAVE L, TMAME " SOURCE , RECL =44, I8

Note: The example cross-reference program will execute in a 5110 with
16K of storage. For a 16K system, remove all remarks and set the array
elements (line 0040) to 800. Be sure the redimensioned array elements
do not cause the program to exceed the main storage requirements of the
machine. If the system’s main storage requirements are exceeded, an
error will occur. For details about the cross-reference program, see the
IBM 5110 BASIC Reference Manual.

The following is a listing of the cross-reference program.

0010 REM RASIC CROSE REFERENCE PROGRAM
0020 REM
D030 DIM N$W, Bl G439
0034 REM PROGRAM RUNS IN 64K STORAGE,
0035 REM -~ FOR 16K STORAGE, REMOVE ALL REM'S, SET ARRAY ELEMENTS
00346 REM -~ TO 800 IN FOLLOWING STATEMENT.,
000 DIM RELCIO00), H$4C3000) ,XC3000)
0050 CH="ARCHEFGHTJKLMNOPQRETUVHXYZSHQO 123054789 "
G0&0 PRINT 'ENTER DEVICE CODE, FILE NUM, FILE ID FOR PGM'
G070 INPUT XI%,F,F¢
0080 ONERROR GOTO 200
0090 OPEN FILE FLL,0%,F,F&,IN
0100 ONERROR SYSTEM
0110 R=RLNCFLLY)
0120 IF R#&W GOTO 150
0130 DIM A%H0, MESY
D10 GOTO 290
0150 ITF ReAL28 GOTO 180
0160 DITM A%L24, MS123
0170 GOTO 290
0180 PRINT "RECORD LENGTH OF INPUT FILE NOT &4 OR 128"
¢1e0 sTOp
0200 TF &ERR#£408 GOTO 270
0210 ONERROR SYSTEM
0220 OPEN FLL, D, F,F4$, IN
0230 WRITEFILE FLS,' Flae
0240 Ti=1
156

0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
03%0
03460
0R70
0380
0390
o400
0410
0420
0u30
0L
0450
Ou&l
Q470
OuEo
o490
auEon
0510
0%20
0530
0540
0550
0560
0HE7T0
0580
0590
0600
0610
(t&20
Q&AN
0640
0650
04660
N&670
G480
0690
a07a0n
07ia
0720
0730
07u0
0750
0van
0770
0veo
07w
0800
gglLa

nDIrM A$128, ME1L27

GOTO 290

PRINT "ERROR DURING OPEN ~"&ERR
8TOP

WRITEFILE FLS, 'F’

REM

REM START OF LOOP TO PROCESS INPUT RECORDS
REM

GOTO 370 ON T1 .
READFTILE USING 350,FL1,N$,M$,EOF 710
FORM Cu,X1,0C

GOTO oo

GET FLL,A%,EQF 710

Ne=GTROAS, 1,4

ME=GTR(AS, &)

PRINT FILP,N$" "M%

GOSUR 970

IF GTROMS, 1,3)y="REM' GOYTO 330

IF STROMS, L, 1="1" GOTO 330
TFO8TROMS, L, 0y="DATA" GOTO 330
AdemME

REM REPLACE ALl OPERATORS WITH RLANKS
REM

FOR T=1 TO LENC&S)

IF TOX(OE, STROAE, T, 1340 GOTO 540
TF STROA%H, L, 4# " GOTO 550
JEIDXGTROAE, T+L, ")
STROASE, T, Jeld="

T=1+. -

GOTO 540

STROAS, T, 1=

NEXT T

REM INPUT RECORD HAS BEEN MODIFIED ~ EXTRACT REFERENCES
LemlENCAS)

L)

Tamled

IF Te=L GOTO 330

TF STRAs, T, 1y=" " GOTOD &00
JuETUXCETROAE, TY, Y)
Be=STROGA%, T, J-1)

T=l4+d-1

Kl=xX1+1

B (X1) =NE

R (XL y=Re

TF Tal GOTo 620

GOTO 330

REM END OF PROGRAM - SORT AND PRINT OQUT
GOSUER 1040

MAT RECX1LI=RY

MAT SEIX1L)=G%

MAT X{XL)=(0)

MAT A=ALDX(R$D

CO=0

FOR I=1 TO X1

TF N$=R&EX(DY)Y GOTO 850

GOSUR 970

o e v e :} --.‘. -!; g ;".:‘([\:.:‘ ;I: ;
PRINT FLP,TARCLY , RECCCLY) TARCD Tips and Techniques

167

158

0820
0830
agu0
0850
na6n
087
0880
nasd
URIRY
0vLn
0920
0930
09u0
0950
0940
0e7a
neson
0990
1000
1010
1020
Lo30
Lonn
1050
1060
1070
1080
1090

i

% O AN
Aasal
AT

B
Begh
o
Co

CH39.

o
1
Ch
I
0
EQF
ERR
I

F o

1
t

*
3

FILE:

N==N+ 1

0=0

NB=RELIXCI))
COo=C0+1

IF Coz10 GOTo 900
GOSUR 970

PN[NT FLP, TARCE), "

FRINT FLP,
NEXT I
PRINT FL.P :
PRINT FLF, "NUM OF SYMBOLS
PRINT FLP, "NUM OF REFERENCES
GOSUR 10u0

sTop

READFTLE USTNG 980, FLS, LD
FORM POSL1,NCS
LO=INT(LO/66)%66+66~1.0

IF LOz0RLO=6 GOTO 1030

PRINT USING 1020,FLP, "
FORM C1,8KIPLOD

RETURN

READFILE USING 1090, FLS, L0
FORM POSLL, NCS
LO*INT(LU/éé)ﬂé6+&éwLU

PRINT USING 1080,FLP,"
FORM C1,38KIPLO

RETLIRN

HEOXCTN),;

I o

The following is a sample printout when the cross-reference program

is run by itself.

D370 0380 0F90 0uE0 Qus0

nEen 0¢JU D&ED 0 D&MD
gran 03%0

0130

07a0

Doy 0480

0030

0350

Gouo owen

D030

0770 0830 0850 08%0 0840

1020 1080
03E0
pove o0R0 02320

0030 0080 0130 0L&60 0250

D3u0 0370
0200 0270
povo aowd UJ?&
povo aovo
LRIRRY

ﬁﬂﬂﬂ 10 0880 0900 0920

0230 U”Qﬂ 970 1040
noen : G340 0370
pugn OTﬁH

Gues 0H00 0%L0

geso

G930 0%w0 L0L0

0520

107vo

e

W

0

FORM: 03%E0 0 0980 1020 1050 1080

GET 0370

GOSU oul0 0VR0 0800 08v0 0950

GOTO: 0080 0120 0140 01%0 0170 0200 0260 0330 03460 0w20
Coo0WED OWWQ 0uv0 0H00 0540 0610 0420 04690 0700 0790
o ngasn 1000

I COOauE0 00 0m00 05100 0%20 0 0530 oS30 0HH0 0560 0590

D400 04600 0&10 0420 0430 0440 0650 0650 04690 0780

g7eo 0BLO 08RO 0900 0910

oue0 0EHL0 04630

GLe0 0LS0 0200 0WwEe 0wE0 0w kY0 0500 0610 0620

Ba%0 070 0840 1000

INnooroaovn 0230

INPUC Q070

INT o 0990 10460

o COBRLD 0WR0 0BRZE0 0630 06D 0450

TX
IF

" 05H0 0410 08%0

LaliiM owEn 0nad

L0 0970 0990 090 0990 1000 1000 1080 1040 L1060 1060
M$ o DBMO 0EY0 D00 08RO DW30 OkuD o OW50

MeLEr 0LAG 0250

MESEy . 0L30
MaT o [
N I (5 13
N -
R

g0 0vEH0 07e0
193ED
puon g6V 0 0TR0 08kl

1050
neLa

MEXT HS&0

One 0 03EG

[INE R oposy nion 02140
: govg oZa2o

POSL nwsn Losn

PRIM: D0&0 OLE0 09T w00 0810 UES0 0900 0920 0930 0940
: Loig 1ow0

DL0 0120 01N

GaRn 07E0 0T3O 0FA0D 0FRD 0 0810 0840

aown

gand 09T 0 Loun

LOEE 1090

oL

O VI A (B R T | BV (R

nouwn

Loza 10840

plen oz 094D

ORGS0 0390 420 0930 OGWWG 090 0500 0810 05200 0550
Do a2t U&E0 0 D&MD

BYST, La0 o210

Tak D@ELe ogLe o oB8o

T 0wWs0 o 0vEn

T1 pooooEung 0330

[RIZNE I DAWG 0970 LoLn 1own Lovo

WRIT: 0230 0390

0

Tips and Techniques 159

160

N (-
1020
LOZQ:
SRR
1030
Logo:
Lag
150
1840
200
270
290

3 :
000
Y|
250
Zvn o
i}

ERIA

[
‘u'

C e

B4

é

400

IR

G20
&l
&

7L
850 o
00
970
@0
MUMELE R
NUMBEE R

(URILTRY
03%0
ueQ
D240
auan
&5
1860
Lo
1o00
n7an
AR
1070
QLEo
Diao
DLEn
augn
0200
IR
LR
RIERY

13E0
03840
Nian
oL
G500
LN
A0
0620
IR
a0
120
nyed
03u0
0790
a6
ou14
0970

OF SYMBOLS

7E0
&0
0590
0380
(5%

0890

0950

0170
D0uo
0430
040
DERY

En0
Laao

aeen

ngno

7a0
N&61
0750
ou20
DaND

G240

aiun
L0

1990

aavo

OF REFERENCES =

0750
0670
0770
D30
0620

a1

LO&0

10%

Até

agln
D&en
ae3n
Ou30
iéhn

avoo

Loaa

&0
0730
1000
QU0
650

Lasn

(900
0740

HERER)
&HEQ

0750

90
07780

0780

0500
agLo

0940

0510
0820

SKIPPING TO A NEW PAGE WHILE PRINTING

Using File FLS

In the cross-reference program (see Program Analysis Using a
Cross-Reference Program, this chapter), lines 970 to 1090 show two
methods of skipping to a new page while printing.

e Skip to a new page with 6 or fewer lines left
e Skip unconditionally to a new page

Both methods use a portion of the contents of file FLS. Positions 11
through 15 of file FLS always contain the total number of lines printed.

D970 READFILE USING 980,FLS, L0
0980 FORM POSLL,NCH

090 LO=INT(LO/766) 08648610
1000 IF LOZ0ELO=6 GOTO 1030
LOL0 PRINT UBING 1020,FLP,"
Lo20 FORM CL,SKIPLO

LOZ0 RETURN

LOWG READFILE USING 1050, FLS, L0
1040 FORM PDSLL,NCS

LO&D LO=INT(LO/&&)Y nb6+86~1.0
1070 PRINT USING 1080,FLP,
Lagd FORM CL, SKIPLO

1090 RETURN

Tips and Techniques 161

Statements 970 and 1040 are READ FILE statements that access file
FLS. Statements 980 and 1050 are FORM statements specifying that
only the 5 numeric characters beginning in position 11 of file FLS be
accessed. From this point on, the two methods of page skipping
differ. The subroutine consisting of lines 970 to 1030 specifies that
printing starts on a new page if space for 6 or less lines remains on
the current page. The subroutine consisting of lines 1040 to 1090
specifies that printing starts on a new page unconditionally. In both
cases, the constant 66 (11-inch paper at 6 lines per inch) is used as
the page length. The calculations in statements 990 and 1060 use the
data from file FLS (named LO) to determine remaining space on the
current page. The IF statement (1000) specifies the conditions for
skipping to a new page (if space remaining is less than zero or greater
than 6, continue printing). Statements 1010 and 1060 specify that
blank lines be printed according to the FORM statements in 1020 and
1070. These FORM statements also indicate that LO is the number of
lines to be skipped. The following examples show a breakdown of the
calculations in lines 990 and 1060. These examples assume a value for
LO (positions 11 to 15 of file FLS) of 3200 or 670.

Example 1 Example 2

L0=3200 LO=670

3200 670

INT(L.0/66) Integer portion of INT(LO/66) This determines the number

48 LO divided by 66. 10 of pages already printed.

(48)*66 Integer portion of (11)*66 This determines total lines

3168 LO multiplied by 66. 660 already printed on pages.

(3168)+66 Lines printed on (660)+66 This allows for inclusion of

3234 other pages plus 66. 726 the 66 lines available on the

current page being printed.

(3234)-L0 Total lines (726)-LO This determines the line spaces

34 possible (including 56 remaining on the current page
current page) (34 and 56, respectively).
minus LO.

162

User Program C

Printing can

ontrol

also be controlled by the user keeping track of the lines

printed on each page.

gorn
Go20
G030
0040
G50
00&0
a0vo
aaen
aosn
n1o0
ario
0120
013%0
Diug
0150
aLa0
0170

)

&

i3

10

11
12
13
14

T = lines per page
H = lines in the page heading

1M S = lines available for printing
OSUR 120
FOR T=1L TO 110

[I

PRINT FLP,T Print your report

I |

IF L=8 GOTO 100<—————Test for printed lines equal to
GOTO 110 S = lines available for printing
GOsUE 120

HEXT I Skip to a new page

REM Print page heading

Fras P 0120-0170 {Set page number

Lo () Lines printed = 0

PRINT FLP
FRINT FLP, TARCLS), " PAGE R
RETLRM

PEGE 1
PaGE &
PéGE X

dond

For simplicity of illustration, a page size of 7 lines was used. This
would normally be 66 for standard printed reports. Checks, invoices,

and other do

cuments would require different page sizes. The page

heading would also be more extensive; however, the concept is the

same.

By changing
various sizes

the value in variable T, you can quickly accommodate
of paper for the same report.

Tips and Techniques

163

LOCATING A CHARACTER IN A STRING

Another form of the computed GOTO statement uses the IDX intrinsic
function, which allows you to determine the exact position of a
specific character within a character string. For example, assuming
that the operator entered N in response to input statement 920:

0910 DIM ARl

0920 PRINT ‘ARE DIVIDENDS TO BE REINVESTEDY Y OR N°

O9E0 INPUT A%
090 GOTO 950,2000 ON LDX (YN AE)
nesg GOTO 10 '
D960 RIEM
a
¥*
3

Statement 940 causes the program to branch to statement 2000 (the
second statement number in the list, just as N is the second character
in the string). If neither a Y or N is entered, the program repeats the
prompt to the operator (statement 950).

TESTING FOR AN ERROR

The ONERROR statement provides another means of error recovery.
This statement operates with two internal functions (& ERR and

& LINE) to identify any type of error by error number and by the
number of the line at which the error occurred. You can enter an
ONERROR statement with a GOTO parameter to transfer program
control to a particular statement in the event of an error, as shown

below:
D010 ONERROR GOTO 115
0020 DPEN FLY, "DEO S, "GEORGE, OUT
G030 PRINT "ENTER PRINCIPLE’

GO0 INPUT P
G050 PRINT "TIME', "RATE", "AMOUNT’
Gos0 FOR T=1 TO 10

GOV0 FOR R=1 TO 240

G08R0 A=Pxdl+R/100) 4T «<————~Calculated future value of
0090 PUT FL?,T,R,A principal at a rate of
0100 NEXT R 1% to 20% for 1 to 10

GLLO MEXT T

0115 ORERROR SYSTEM
0120 CLOSBE FLY?

G1LE0 STOP

years compounded yearly

In this example, the ONERROR statement specifies that file FL9 be
closed (statement 120) if an error occurs. If, for example, the file was
too small to hold all the values being entered into it, the ONERROR
statement would ensure that the file was properly closed. The file
could then be re-marked to a larger size.

The internal constants (& ERR and & LINE) can also be used to record
error occurrences in a program with many input/output statements. In
the following example, the ONERROR statement specifies that the
program branch to the PRINT statement (line 150). The internal
constants & ERR and & LINE are then inserted into the displayed line
to indicate the error number and line number at which the error
occurred.

0OLE ONERROR GOTO 1ué
0020 OPEN FLY, D80, "aF ", IN

GO0 GET FLM, AR, 0C,0,F

0oug LET

GOS0 LEY

oa&an | (o

0avn 0L Fl

0080 OPEN FL4, "DE0, "aF , ouy
QavE PUT FLY, a4, 8,0

0L00 CLOSE FL4Y

0LL0 OPEN FLM, '080°, "aF ", IN

GL20 GET FlWw, s, 8B, C,0,F

L3I0 LET Aol

BIW0 LET D=~

DAuS GOTO 160

Olhe ONERROR SYSTEM

GLG0 PRINT CERROR®, &ERR, "HAS OQCCURRED AT LINE', &LINE
H1a&0 CLOSBE FlLu

gLyn 8rTop

Note that the EXIT statement and the error exit clauses on
input/output statements take precedence over the ONERROR
statement. In other words, if an EOF condition occurs in a statement
with an EOF exit specified, the EOF exit is taken even though the
program might also contain an ONERROR statement. ONERROR
SYSTEM should be the first statement of an error recovery program to
avoid loops. Terminal errors clear internal error pointers and the
program must go to end-of-job.

Tips and Techniques 165

166

SORTING AN INDEX FILE

a01a
URIDERY
G030
(0
TR
dosn
aava
Hoada
HRIRgH
4100
a1ia
120
0130
LB RER]
A
0160
aLvn

0190
0200
0210
0220

02330

;G

When you create a key-indexed file, the key and corresponding
location of each record in the file is stored in the index file.
Subsequent access of the file can be significantly improved if you sort
these keys into sequence. The following sample program illustrates a
method of sorting the record keys in the index file. This is a storage
sort and assumes that all keys can be loaded into storage at one time.
The size of your machine will determine the maximum number of keys
that can be sorted in this manner. If your 5110 storage size is less
than 64K, adjust the DIM statements (130, 160, and 190) accordingly.
Only those statements in the sample program that pertain to the index
sort are discussed; others may bé self-explanatory.

REM THOEX FILE SORT PROGRAM

REG
REM
FEM TF STORAGE SIZE IS5 LESS THAN &K ADJUST DIMENSTUNG

REM FOR K$ Al X aCCORDINGLY

REM

PRINT CENTER DEVICE CODE, FILE NUMBER AND FILE IDENTS

PRINT CFOR INDEX FILE TO BE SORTED ™S

ITHPUT D% F, F4 \\\‘Idenﬁfyl<eyindex file.

OPEN FILE FlT,Hm,F,F%,IN

e LM LT Length of last record in FL1.
EE uUTn 150

200 KOO0

GOTO Zoo

TF Rl FHTU 1“3

Yekid k 2.

Key records are always 8, 16, or 32 bytes.

.
5000, XC3E00) Space for 3500 8-byte keys in KS$.
1IN |"|l Lo BECORT I THE FILE

REM REZ

: - FLL,EsoD, FOF 24 «=—————Bring all key records into storage.
Goro 2l U

REM CLOSBE INPUT FILE, AND BETERMINE
Tel-1

CLOSE FILE H‘—l’—_____’___/— Set matrix size to | elements.
i'm'T' l’ AN ED S

..... PORTED ORDER

ATy = A TIK (K)~ Ascending index value of K$ into X.
THOE X FILE In EZNU TG SEGUENCE

-1 _l_ B, F RS, OUT, RECL=

FL1 JKECK DY) New file of keys in K$ created
as indexed by X(J).

20 B
ETOP
PRINT HOT VALID INDEX FILE RECORD LENGTH'

Statements 70 and 80 request the indicated information, which is then
used to open the file in statement 100. The length of the last record
accessed in the file referenced FL1 is assigned to R in statement 110.
In statements 120, 150, and 180, the exact record length is tested, and
variables K$ and X are adjusted accordingly in the following statement. ;
Note that, if record length is not equal to 8 (statement 180), the
program terminates by branching to statement 350. Statements 210,
220, and 230 read all the record keys from the index file and branch to
statement 240 when end of file is reached. The file is closed in
statement 260. Statements 270 and 280 put the indexed file values in
ascending order into matrix X (see /ndex Function in Chapter 2).
Statement 300 reopens the original file (referenced FL1) for output
with the same record length. Finally, statements 310, 320, and 330
write all the record key values into the file in ascending sequence
according to their ascending order in matrix X.

ANOTHER WAY TO READ A STREAM INPUT FILE

Using a system file called file FLS, you can obtain an alternate form of
stream-oriented file input. This form of input allows your program to
get a logical record from a stream-oriented file and assign the entire
record (including all quotation marks and commas) to one character
variable. Thus, a BASIC program in source form and in a type 2 or
type 9 file can be read and processed as in the preceding
cross-reference program. Alternate stream file input can be obtained
only from a file that is already open. You can invoke alternate file
input by writing the file reference code (FLO-FL9) of the file in
positions 7 through 9 of file FLS using the WRITE FILE statement (see
the /BM 5110 BASIC Reference Manual).

Tips and Techniques 167

aoeo
nown

n1ano

D200
0210
Hpege

e s

N30

168

A logical data statement in a stream /O file can be read into a single
variable as illustrated:

D010 IYNEAD, TADAME Supply’, 94k, 60,359 .00, "8/22/777°

The above record could represent:

Customer Number 94560
Customer Name Adams Supply
Total Purchases to Date 964.60

Last Purchase Amount 359.00
Date of Last Purchase . 8/22/77

The data, if located in file 3 on device ‘D80’, could be read into a
single variable as follows:

naLo L st E, CCUSTOMER® , TN
aaz2o ik

0030 COUSTHG B0, FLE, TFLLS
0040 A

00 Fhl,as
00&0 PRINT A%

The data in A$ as printed in statement 60 would include all commas
and quotes as well as the actual data. The output from 60 would
appear:

94560, ADAMS SUPPLY",964.60,359.00,8/22/77°

Referring to the cross reference program earlier in this chapter, the
program uses a type 2 or type 9 file for input as follows:

If an error occurs, control transfers to statement

0200.

If this statement executes without error, a type 9 file
CINERREOR GOTO 200 / has been opened.
CRFEN FTLE FLl Dk FFs, I Reset error trapping.

OMERROR SYSTEM Error 608 indicates that a type 2 file exists and that
the program tried to open it as a type 9 file. Control
follows in statement 220, where the type 2 file is
e opened. Any other error passes control to statement
FOEERR#AHOE GOTO 27 P——
[F &FERNMALD HOTO 270 270 for termination.

OMERROR SYSTEM

Reset error trapping.

OPEN FLLD$ F P INT———
Open the type 2 file.
WRITEFILE FLS, FL.ol

Invokes alternate input from a type 2 file to supply a
logical record, including quotes and commas, in a
single character variable.

The cross reference program opens file FL1 and dimensions A$ and
M$ to contain the logical records. By testing for an error in the
opening of a stream file as a record file, the program reads either a
type 9 file (fixed length record) or a type 2 file (variable length record)
with delimiter characters. This alternate mode ignores the commas of
the type 2 file.

Different File Access Methods
The following programs were written to illustrate various methods of
file accessing. Before these programs were written, the diskette was
first marked. Unlike tape files, diskette files can be marked and then
re-marked, if necessary, without affecting any other files.
Programs were created to illustrate the following record 1/0 topics:

e Data éntry with key index file

e Direct access and update with key index

Sequential access by key index

Sequential access with no key
e Direct access by relative record number
e Create multiple index

Each program uses the data file created by the first program.

Tips and Techniques 169

170

gara
0020
0030
0040
GO%a
D040
aova
RIRERY
00940
0100
o110
0120
0130
0140
NS0

CREATING AN INDEX FILE

The purpose of the following program is to illustrate the method by
which a record 1/0 file with a key index file is created. In this example
an inventory master file is created with a key file of item numbers.
The amount of data is purposely limited, and the method of data entry
is simplified in order to focus on the method by which both the master
and key file are created.

Consider that you wish to store inventory data in your 5110. Fast
access to each item is critical and the inventory data must be easily
and quickly updated. The initial data files are created with the
following program:

Inventory master file specified

OPEM FILE FLL, 080,22, "ITEM MASTER ", OUT, REQL =128

OPEN FILE FLL, "080° 1, "TTEM NG, TMNOEX ,0UT, K

DITNT CENTER TV MEE Y

;gﬁﬁ; TiNTLH e e s ETEM NUMBER Key file specified
IF Th="ENDY GOTO 150

PRINT "ENTER . . , DESCRIPTION
INPUT T4 * Operator entered data
PRENT "ENTER . . . Q7Y ON HaNID
INPUT Q

PRINT CENTER . . . UNIT PRICE:

INPUT P J - Data written to master file
WRITEFILE USING L30,FLL, TH, D, 0,0 —

FORM C5, 020, PICCZZZZH)Y , PICI4%, #8)~————Record format specified
GaTa 30

s5T0OP

In the above example, the record format is specified in statement 130.

Item Number 5 characters
Description 20 characters
Quantity on Hand 5 characters
Unit Price 8 characters

The key field is automatically created as a result of statement 20,
which specifies file 1 on device D80 as the key file using 5 characters
(KL=5) starting at position 1 (KP=1) of the master file (item number) as
the key. The overall record length is 128 bytes (RECL=128). Because
our data consumes only 38 bytes, ample space is available for
additional inventory data.

After the inventory data was entered, the master data file was listed
and is shown below:

BR202 SCREWDRIVER ’ 5000 Bl 25
AGON SOREWORIVER) i $8, 50
BAGD BOLTS A0n 0, 89
G000 PUMP 3/ HORSE ToOHPn. 00
G002 PUMP 172 HORSE 12 485,00
AZOE HAMMER 22 bé 20

ABNE PIPE WRENCH 1A %1675
The order in which the items are listed is the order in which they were
originally entered. As you look at each record you can see the record
format (space for 5-character item number, space for 20-character
description, and so on.

This data file is now available for access and processing.

The key file created in file 1 should be sorted to produce the best
operating performance. '

Tips and Techniques 171

noLo
0020
0030
aouQ
G050
IRF
anvn
URIRER)
n0%o
0100
niLa
G120
01340
G140
0150
01460
0170
0180
01%0
0200
gz2ia
02320
0230
0240
0250
G240
027

172

DIRECT ACCESS AND UPDATE WITH KEY INDEX

The purpose of the following program is to illustrate how you can
directly access a data file by key, alter the data, and update the master
file. This program uses the data file created by the previous program.
The method of altering the data after it has been accessed uses a
simplified version of the full screen formatting capability of the 5110.
Using these concepts, you should be able to construct efficient
routines.

Constant for controlling cursor position Specify format

of inventory
data display

oI F

Fédl, BHEH0

F="TESCRIPTION ON HAMD UNIT PRICE
Ed=TTEM NUMBER' § Position cursor as specified in statement 10
STROBS, 1, 030="FORM POSBZ,CLL,XE, 08, X184, 007, X80,01L,020,02,
STROGS, L, 38 = PICCZZZENY , CoH, PICORESEH, #8), 0L, POSW

REM

OPEM FILE FL1,°

OPEN FILE FLL, "D80 5, "TTEM, NO, INDEX ", AL, KEY input and output

OPEN FILE FLZ2, 002, aLL \

PFRINT TENTER INDEX KEY' Open screen for record 1/0

ITNPUT K% <— Enter item number desired input and output

TF O K#="END" GOTO 230 . .
REATFTLE USTNG 150, FLL,EEY=K®, I$, 0%, 60, P, NOKEY 25(<— Itqm is retrieved
using key

CTLE USIMG 5%, FL2,ES, T$,Fe, ">, 0%, "o 0, "aaxrez P,

READFILE USING 190,FL2, 06,0, P, CONV 170 ltem data is
FORM POSW, 020, X2, NCS, X6, NCE . 2 ‘\\\\\\ displayed

REWRITEFTLE USING 210,FL1,0%,Q,P ~
FORM POSE&, CR0, PICCZZZEH)Y, PICOSSSHH ., #H) Data items can be updated
GOTO 1320

PRINT "END OF JOR N Master file is updated
5TOP

PRINT aseaaaereasescacsese NGO OKEY FOUMIU 5658269 36 36 96 3 3% 3 30 °
PRINT

GOTO 120

DEO 2, ITEM. MABTER ', ALl ng’f‘imgtfr and

WHRITEF

The master file is available for both access and update because the
parameter ALL is specified in both OPEN statements 90 and 100.
‘OPEN statement 110 referencing device 002 prepared the display
screen for record input and output.

The operator keys in the item number in statement 130. The 5110
then searches the key file for that item number. When found, the key
record points directly to the location of the data record in the
inventory master file. The master file data is retrieved (statement 150)
and displayed for operator viewing (statement 170). The system
positions the cursor at the beginning of the description data field. If
no changes are to be made, the operator simply presses the EXECUTE
key. If changes are needed, the operator positions the cursor
appropriately, keys the altered data, and presses the EXECUTE key.
When the execute key is pressed, the displayed data is rewritten back
to the master file.

TTEM NUMEER i

DESCRIPTION 0 HAND UNIT PRICE

PUMP 172 HP o LESacses 85,00«

woed
0180 568

CITEM NUMEER A2N2

DESCRIPTION 0N HAND LUNTT PRICE

*HAMMER = RS R B, PE

A202
0180 HY6

The above illustration is a copy of the display screen output. Item
number 5002 was requested, and the quantity on hand has been
altered to 13. Then item A202 was requested, and the quantity on
hand was altered to 18.

If an invalid key item number was entered, the NOKEY parameter in
statement 150 would cause the system to print ‘'NO KEY FOUND’
(statement 250) and request the next key (statement 120). The marks
to the left and right of each data field bracket the area where valid
data may be entered.

Tips and Techniques 173

174

go1o
faazo
no30
RIERY
n0%0
N0&0
govo
ango
ao9a
0100
n110
0120
0130
0140
01LE0
bisg
0Lvo
1180
0190
3200
0210

SEQUENTIAL ACCESS BY KEY INDEX

The purpose of the following program is to illustrate how the data in a
master file can be accessed in sequential order specified by the key.
Sequential access by key means that each key and its corresponding
record will be accessed in alphameric order. That is, all keys beginning
with A are accessed first, then B, and so on with numeric-only keys
accessed last.

REM SAMPLE PROGRAM TO READ THE INVENTORY

REM DATA BASE SEQUENTIALLY BY KEY ITEM NUMRER

REM

RE M

REM

DEM Feadl, Heal, D20

REM

Date "TTEM NUMBER DESCRIPTION 0N HAND UNET PRICE"
REATY H$

PRINT FLP,H$ Format output data.

RExM

BTROFS, 40, 18="PICISShE, B8, BKIP

REM

OFEN FIL

EooFLL, "0E0 %, ITTEM, MASTER S, TN } Key and data
L FLAL L TDE0 T L, TTTEM NG, INDEX ", TN, EEY files specified.
PRINT FLP
READFTLE USIHNG 190, FLL, T4, 0%, 4, P,EQF 220<— Data file is read until the
FORM CH,C20,NCE, NCB ., 2 last item is encountered
PRINT USTNG F$,FLP,I%,Hﬁ,Q,P<-_‘__“*hh‘—
GOTO 180 Each item is printed
PRINT TaRCE0), "END OF JOR'
LHTOR

ITEM NUMBER NESCRIPTION ON HAND UNIT PRICE

ALD2 HeaMME R 18 hé, 2N
ARNE PLPE WRENCH 13 lé, P
AS00 SCREWORIVER O $E, B0
R202 SCREWDRIVER Soon $1, 2%
BEOG RO TS ain 0,85
ango PUMP 274 HORSE K $95, 00
S0 PUMP L/2 HORSE 13 HAH. 00

Running the program shown above automatically creates the printed
output as illustrated. Notice that the item numbers are listed
alphamerically, and that the on-hand quantities have been updated
according to the previous program.

If the key file was sorted, the next sequential key could be located
more quickly, thus making this program execute much faster.

SEQUENTIAL ACCESS WITH NO KEY USED

The purpose of this program is to illustrate how your data file may be
accessed sequentially without the use of a key index file. Even though
a key file was created, it is not necessary to use it for every access.
Sequential access to a master file without a key simply means to
retrieve the records one after the other in their order of appearance in
the file. In many cases, this will be their original order of entry.

Tips and Techniques 175

The following program is the samé as the previous program except
that statement 160 has been deleted; you do not open the key file.
The result is a listing of items exactly -as they appear in the master file.

gnid

This technique is handy for creating a fast listing of a data file because
it avoids access to the key file.

176

DIRECT ACCESS BY RELATIVE RECORD NUMBER

The purpose of the following program is to illustrate how you can
access a record directly if you know its location in the master file.
This is the fastest method of access because the system can go
directly to the desired record in the master file rather than looking up
the location in a key file or searching for the record sequentially.

The following program is the same as the program previously
described under Random Access and Update Using Key Index with
the following changes:

Statement 100 deleted No key file is opened and specified.

Statements 120 & 130 The operator enters a numeric record
number rather than a key.

Statement 150 The record number is specified in

the read statement with a REC=
clause and a NOREC error branch.

Statement 250 Error NO RECORD FOUND is displayed.

Statement 140 Branch on zero rather than END.

Tips and Techniques 177

The program and its output are shown below: Notice that record
number 3 is actually the third record entered by the original data entry

program.

RN

an

R

|

P

N HAND UNIT PRICE

SR EN O EED, O, G20, 02,
L WY, OO0, POSWY

PEEY UE PLL IR

o

ik, Akl

PR e, T ITEM L Me
AP 1 1 RS STWE W
HECORD MUMBER'

Lo BEC=I, T, D, G, P, MORED 2350
; : ! R A l

dLLONY LT

S T T W R P £

b PILCRRREHE, B

3

Coap a0 e e w e e MU RMECORT R CILIRETE 0 6 S 96 0 % e 6

TTEM MUMBER BALG

O HaNT URET PRICE

FEOLTE CE Sty U

A
ENTER RECORD NRMBER

i3)

178

CREATING MULTIPLE INDEXES

It may be desirable to have several key index files for a single master
file. The 5110 can create one index file automatically as illustrated in
the first data entry program. Suppose you wish to create a report
organized alphabetically by item description. A second key file can be
created with the item description as the key field using the following
program. Two special key records (marker records) are required in the
first two record locations of an unsorted key file (see the /BM 5770
BASIC Reference Manual, Index file format). This program builds the
first two special key records and all subsequent keys for the master
file.

Special Key Record 1 All Binary 0000 Key Field | Key
I Length Position
2 Bytes 2 Bytes

Special Key Record 2 | All Binary 1111 | Unused I
4 Bytes

MASTER FILE KEY Key
Record
Number

4 Bytes

Relative ‘

Tips and Techniques 179

180

0010
0020

0030
0ou0
0050
0060
0070
0080
0090
0100
0110
0120
0130
01na
0150
0160
0170
0180
0190
0200
0210
03?0

U’éU
0270
0280
0290
0300
0310
0320
0330
0340
0350
0340
0370
0380
0390
0400
0410
0u20
0430
040
0uS0
0460
o470
0480
090
0500
0510
0520
0536
0G40
0550
0560
0570
0580
0590
0600

REM CREATE INDEX FILE FOR EXISTING MASTER
DIM K$28, L5268, 1163, F$17

PRINT "ENTER MEVICE CODE, FILE NUMBER AND FILE NAME'
PRENT ‘FOR THE MASTER FILE TO RE USED. '
INPUT T, F,F$

OPEN FILE FL1,D%,F,F$, IN

RaRLNC ' FLL)

REM

REM GET KEY INFORMATION

PRINT "ENTER KEY LENGTH AND KEY POSITION,®
INPUT L, P

REM

REM CHECK FOR VALIDITY

TF L#EINT (L) IPAINTCP) GOTO 590

IF LeliPl GOTO %90

IF ReP+L-1 GOTO %90

REM

REM DETERMINE KEY RECORU SIZE

L2133 GOTO 250
RJ 216
L L 2 GOTO 260

RlM GET INFORMATION FOR INDEX FILE

REM

PRINT CENTER DEVICE CODE, FILE NUMBER AND FILE NAME'
PRINT "FOR INDEX FILE TO RE BUTLT'

INPUT 1%, F, Fé

UPPN F]LF Flad, 0%, F, F4,0UT, RECL=R1

K$MX 00"

HBTRCKH, 20 =K%

WRITEFTLE USING 370, FL2,8TROIKSH, 1,L), L, P
FORM C, POSR2, B2, R2

RIEM

REM GET KEYS FROM MASTER

REM

L= K4

READFTLE USING u30,FLL,STRKS, 1, L), EOF G40
FORM POSP,C

R3=&REC

IF S=1§KxL GOTO 500

=X FF

STR(LS, 2)=L%

WRITEFTLE FLZ,8TROLS, 1,L)

Gl

REM

WRITEFILE USING $520,FL2,8TRKS, 1,L), R3
FORM C,POSR2, BU

GOTO u1o0

IF =1 GOTO %80

L=X'FF*

STRCOLS, 2)=L%

WRITEFILE FL2,8TR(L%,1,L)

STOP

PRINT ‘"INVALID KEY LENGTH OR KEY POSITION OR NOT VALID FOR'®
PRINT ‘MASTER FILE RECORD LENGTH'

alphabet extender: Any one of the following
three special characters: # @, and 3.

alphabetic character: Any of the 26 letters (A
through Z) of the English alphabet or any of the
alphabet extenders (#, @, and $).

alphameric character: A numeric or alphabetic
character.

argument: An arithmetic expression appearing in
parentheses following a function name, either in a
function reference (either a user-written or an
intrinsic function) or in a pseudo variable. The
expression represents a value that the function is
to act upon. The function nhame may or may not
be followed by arguments.

arithmetic array: A named table of arithmetic
data items. An array may be implicitly declared
through usage or explicitly declared in a DIM
statement. BASIC allows one- and
two-dimensional arithmetic arrays.

arithmetic constant: A constant with a numeric
value. The three forms of arithmetic constants
permitted in BASIC are integer, fixed-point, and
floating-point.

arithmetic data item: Data having a numeric
value.

arithmetic expression: An arithmetic constant, a
simple arithmetic variable, a scalar reference to an
arithmetic array, an arithmetic-valued function
reference, or a sequence of the above
appropriately separated by arithmetic operators
and parentheses.

Glossary

arithmetic operator: A symbol representing an
operation to be performed upon arithmetic data.
The arithmetic operators are:

+ Addition and unary plus sign

- Subtraction and unary minus sign

* Multiplication
/ Division
4+ or ** Exponentiation

arithmetic variable: The name of an arithmetic
data item whose value is assigned and/or
changed during program execution. The name
consists of a single alphabetic character or an
alphabetic character followed by a digit.

array: A named list or table of data items, all of
which are the same type—arithmetic or character.
BASIC allows one- and two-dimensional arrays.

array declaration: The process of naming an
array and assigning dimensions to it either
explicitly (by the DIM statement) or implicitly
through usage.

array element: See array member.

array expression: An arithmetic expression or a
character expression representing an array of
values rather than a single value. It may be used
only in an array assignment statement.

array member: A single data item in an array; its

position is indicated by a subscripted array
reference.

Glossary 181

array variable: The name of an entire array. The
name consists of an alphabetic character (for
arithmetic arrays) or an alphabetic character
followed by the dollar sign, $, (for character
arrays).

assignment: The process of giving values to
variables; for example, via LET statements, READ
statements, and INPUT statements. .
assignment symbol: The symbol =, which is used
in an assignment statement to give a value to one
or more variables.

BASIC: A programming language designed for
interactive systems and originally developed at
Dartmouth College to encourage nonprogrammers
to use computers for simple problem-solving
operations. The word BASIC is an acronym for
Beginners’ All-purpose Symbolic Instruction Code.

binary operator: A symbol representing an
operation to be performed upon two data items,
arrays, or expressions. The four types of binary
operators are arithmetic, character, logical, and
relational.

branching: Executing a statement other than the
next sequential one; for example, via the GOTO
statement.

built-in function: See /ntrinsic function.

character array: A named table of character data
items. An array may be implicitly declared through
usage or explicitly declared in a DIM statement.
BASIC allows one- and two-dimensional character
arrays.

character constant: A constant with a character
value. It is always enclosed by a pair of single or

double quotation marks.

character data: Data having a character value as
opposed to a numeric value.

182

character expression: A character constant, a
simple character variable, a scalar reference to a
character array, a character-valued function
reference, or a sequence of the above separated
by the concatenation operator (| |) and
parentheses.

character operator: A symbol representing an
operation to be performed upon character data.
The concatenation operator (| |) is the only
character operator in BASIC.

character string: A sequence of characters that
represents an item of character data.

character variable: The name of a character data

item whose value is assigned and/or changed
during program execution. The name consists of
an alphabetic character followed by the dollar sign
character ($).

comment: A remark or note included in the body
of a program by the programmer. It has no effect
on the execution of the program; it merely
documents the program. Comments are written as
a string of characters and may appear as a part of
any program statement that has no operands (for
example, REM, STOP, END, and RESTORE).

concatenation: The joining of two character data
items by the symbol | |.

concatenation operator: The symbol | |, used to
concatenate, or join, two character data items.

constant: A value that never changes. BASIC has
two types of constants: arithmetic and character.

control specification: (1) One of the
specifications X or POS, used in the FORM
statement to specify formatting of records in
record-oriented files. (2) One of the specifications
X, POS, or SKIP, used in the FORM statement to
control print line formatting.

data file: See file.

data form specification: (1) One of the
specifications B, C, NC, PD, S, L, or PIC, used in
the FORM statement to specify formatting of
character and arithmetic values in record-oriented
files. (2) One of the specifications C or PIC, used
in the FORM statement to format character and
arithmetic values on a printed line.

data item: A single unit of data; that is, a
constant, a variable, an array element, or a
function reference.

data table: The values contained in the DATA
statements of your program. DATA statements. .
are processed in statement number sequence
(lowest to highest). The values in each DATA
statement are collected and placed in a single
table in order of their appearance (left to right).

data table pointer: An indicator that moves
sequentially through the data table, pointing to
each value as it is assigned to a corresponding
variable in a READ statement. Initially, the
indicator refers to the first item in the table. It can
be repositioned to the beginning of the table at
any time by the RESTORE statement.

declaration: See explicit declaration and implicit
declaration.

delimiter: A character that groups or separates
data items.

digits: the numerals 0, 1, 2, 3,4, 5, 6, 7, 8, 9.

dimension specification: The specification of the
size of an array and the arrangement of its
members into one or two dimensions.

direct access: The storage or retrieval of data
independently of other data in a file (that is,
regardless of its location relative to other data).

dummy variable: A simple variable enclosed in
parentheses and placed after the name of a
user-written function in a DEF statement. The .
function performs its defined calculation on the
expression value substituted for each dummy
variable when the program is executed.

E—férmat: Floating-point format.

EBCDIC collating sequence: The ordering of
character data items according to the Extended
Binary Coded Decimal Interchange Code.

error message: A message generated by the
computer when an error has been detected.

executable statement: A program statement that
causes an action to be performed by the
computer.

execution error: An error discovered during
execution of a BASIC program (for example,
dividing by zero, or branching to a nonexisting
statement number).

explicit declaration: The use of a DIM statement
to specify the number of members in an array, the
number of dimensions in an array, or the length of
a character variable.

exponent (of E-format number): An integer
constant specifying the power of ten by which the
base (mantissa) of the decimal floating-point
number is to be multiplied.

exponentiation: Raising a value to a power.

expression: A representation of a value; for
example, variables and constants appearing alone
or in combination with operators. Three forms of
expressions are defined in BASIC: scalar
(arithmetic or character), array (arithmetic or
character), and logical.

extended alphabet: The 26 letters of the English
alphabet and the 3 alphabet extenders ($ # @).

F-format: Fixed-point format.
file: A named group of related data items that are
stored together. In BASIC there are two types of

files: stream-oriented and record-oriented.

file reference: FLO through FL9.

Glossary 183

fixed-point constant: An arithmetic constant
consisting of one or more digits and a decimal
point, and optionally preceded by a sign.

fixed-point format: The form used to express a
fixed-point constant.

floating-point constant: An arithmetic constant
consisting of an integer or fixed-point constant
followed by the letter E, followed by an optionally
signed one- or two-digit integer constant.

floating-point format: The form used to express
a floating-point constant.

full print zone: Eighteen horizontal print
positions. In a PRINT statement, a comma is used
to indicate that a full print zone should be used.

function: A named expression that computes a
single value. See also /intrinsic function and
user-written function.

function reference: The appearance of an
intrinsic function name or a user-written function
name in an expression.

generic key: An argument specified in the KEY
clause of a record |/0 statement that is less than
the full key length defined for a corresponding
file.

I-format: Integer format.

implicit declaration: (1) The specification of the
number of members in an array or the number of
dimensions in an array, either by a reference to a
member of an array or by context (without the
array being explicitly specified in a DIM
statement). (2) The specification of the length of a
character variable by context (without the variable
being explicitly defined in a DIM statement).

input: The transfer of data from an external
medium to internal storage.

184

input list: A list of variables to which values are
assigned from input data; the list can be made up
of scalar variables, array member references,
pseudo variables, array references, and array
references with redimensioning.

input/output: The transfer of data between an
external medium (that is, the keyboard or a file)
and internal storage.

integer constant: An arithmetic constant

containing one or more digits, optionally preceded
by a sign.

integer format: The form used to express an
integer constant.

internal constant: An arithmetic constant whose
value is supplied by BASIC. The name of the
internal constants are &Pl, &SQR2, &E, &INCM,
& LBKG, and & GALI.

internal storage: A computer’s main storage.

intrinsic function: A function supplied by BASIC
(for example, SIN, COS, or SQR).

key: One or more consecutive characters used to
identify a particular record in a key-sequenced file.

key-sequenced file: A record-oriented file whose
records are accessed according to keys.

logical expression: A logical subexpression, or
two logical subexpressions joined by a logical
operator (& or |). Its value is either true or false.

logical operator: An operator that is used in a
logical expression. The logical operators are: &
(AND) and | (OR).

long-form precision: Precision whereby,
externally, values printed with I-format and
F-format have a maximum of 15 significant digits,
and values printed with E-format have a maximum
of 15 significant digits in the mantissa.

loop: A sequence of instructions that is executed
repeatedly until a terminating condition is reached.
The FOR statement identifies the beginning of a
loop; the NEXT statement identifies the end of it.

mantissa: In floating-point notation (E-format),
the number that precedes the E. The value
represented is the product of the mantissa and
that power of ten specified by the exponent.

matrix (mathematical): A two-dimensional
arithmetic array.

multiline function: A user-defined function that is
defined with more than one statement.

nesting: (1) The occurrence of a FOR/NEXT loop
within another FOR/NEXT loop. (2) The
occurrence of a GOSUB statement when one or
more GOSUB statements are already active. (3)
The use of more than one set of parentheses to
indicate the order of evaluation in a complex
arithmetic expression.

nonexecutable statement: A program statement
that specifies information for program execution.

null character string: Two adjacent single
quotation marks that specify a character constant
of blank characters.

null delimiter: One or more blanks or no
characters at all (that is, one data item directly
following another data item with no intervening
space or delimiter) used in a PRINT statement to
specify a packed print zone.

numeric character: Any of the digits 0, 1, 2, 3, 4,
5,6,7,8 9.

operand: A constant, a variable, an array member
reference, a function reference, or a
subexpression on which an operation is to be
performed.

operator: A symbol specifying an operation to be
performed. See also arithmetic operator, binary
operator, concatenation operator, logical operator,
relational operator, and unary operator.

output: The transfer of data from internal storage
to an external medium.

output list: A list of variables from which values
are written to an output file; the list can be made
up of scalar expressions and array references.

packed decimal: Method of storing data on magnetic
media wherein one hexadecimal byte contains two
decimal digits.

packed print zone: A section of a printed line,
consisting of a number of horizontal print
positions, whose size is determined by the type
{arithmetic or character) and length of the data
being printed. In the PRINT statement, a
semicolon or null delimiter is used to indicate that
a packed print zone is to be used.

padding: The addition of one or more blanks to
the right of a character string to extend the string
to a required length.

precision: The number of digits for which
significance can be expressed.

print zone: See full print zone and packed print
zZone.

priority: A rank assigned to an arithmetic
operator; it is used when an arithmetic expression
is being evaluated. The order of priorities, from
high to low, is exponentiation, unary operations,
multiplication and division, addition and
subtraction. Operations at the same priority level
are evaluated as they are encountered (from left
to right in the expression).

program: A logically self-contained sequence of
BASIC statements that can be executed by the

computer to attain a specific result.

programmer-defined function: See user-written
function.

Glossary 185

pseudo variable: The use of an intrinsic function

as a receiving variable. STR is the only pseudo
variable in BASIC.

record: A collection of related data items treated
as a unit.

record-oriented file: A file in which items are
stored in records.

redimension specification: The assignment of a
new dimension specification to an already existing
array, via an array assignment statement, a READ
statement, an INPUT statement, a GET statement,
a READ FILE statement, or a REREAD FILE
statement.

redimensioning: The changing of the number of
dimensions or the number of members in each
dimension of a previously declared array.

relational operator: An operator used in a logical
subexpression. The relational operators are:

= Equal to

z0r <> Not equal to

> Greater than

< Less than

>z or = Greater than or equal to
<= or < Lessthan or equal to

remark: See comment.

scalar: A single data item (as opposed to an array
of items).

scalar expression: An arithmetic expression or a

character expression representing a single value
rather than an array of values.

186

sequential access: The retrieval of data
according to the order in which the data is stored
in a file.

short-form precision: Precision whereby,
externally, values printed with I-format and
F-format have a maximum of seven significant
digits, and values printed with E-format have a
maximum of seven significant digits in the
mantissa. '

significant digits: All the digits of a number
starting with the leftmost nonzero digit.

simple name: Any combination of up to 8
alphabetic and numeric characters {with no
blanks).

simple variable: A scalar variable (but not an
array member).

single-line function: A user-defined function that
is defined in one statement (that is, the DEF
statement).

special characters: Any characters allowed in
BASIC that are not aiphameric characters.

statement number: The number that prefaces a
BASIC statement. It can be up to four digits in
length (in the range 0000 to 9999).

stream-oriented file: A file in which items are
stored as a stream of data and retrieved in
sequential order.

subexpression: A group within an arithmetic
expression and used by the computer to evaluate
that expression.

subroutine: A program segment (sequence of
statements) branched to by a GOSUB statement.
The last statement of a subroutine must be a
RETURN statement that directs the computer to
return and execute the statement following the
GOSUB statement.

subscript: Any valid arithmetic expression (whose
truncated integer value is greater than zero) used
to refer to a particular member of an array.

substring: A part of a character string.

system-supplied constants: See internal
constants.

truncation: The deletion of one or more
characters on the right of a character string to
shorten the string to a required length.

unary operator: An operator that precedes, and
thus is associated with, an arithmetic expression.
The unary operators are + (positive) and

- (negative).

user: Anyone utilizing the services of a computing
system.

user-written function: A function defined by the

user in a single-line or multiline function definition.

variable: A name used to represent a data item
whose value may change during execution of a
program.

zero suppression: The elimination of leading
nonsignificant zeros in a number.

Glossary

187

188

<= less than or equal to 22

> greater than 22

>= greater than or equal to 22

= equal to 22

not equal to 22

| symbol as placeholder for exponent 39
[11] symbols for exponential value 36
&ERR 164

&LINE 164
sign as a placeholder 35
: image 35

accessing individual records 106
accessing record 1/0 files 94
accessing records directly 177
access 75

direct 75
indexed 75
method 150

sequential 75
access-protection 52
activating stream /0 files 89
adding data to stream 1/0 data file = 59
adding records 79, 80
adding records to a file 99
adding files to tape 56
additional placeholders 39
additional use of file FLS 127
addition, array 136
address on diskette 63
address out file 81
addresses of files 64
AIDX function 137
ALERT command 124
ALL a special keyword 101
allocating file space b5, 67, 70
alternate cylinders 65, 69
analysis of cross-reference program 156
AND operator 23
argument 28
arithmetic array 113, 129
arithmetic functions 27

Index

arrays 129
addition 136
arithmetic 136
assignment 135

defining_ 130
dimensions 130
indexing 137

member 129
member iength 129
naming 130
one-dimensional 131
operations 136
redimensioning 134
subscripts 132
subtraction 136
two-dimensional 131
assignment statement 133
assignment, array 135
audible alarm 124, 126

backup copies 50

BASIC programming language 9
beginning of extent 64

BOE 64

branching 20, 30

branching on error 94

buffers, storage consideration 155
bytes available for storage 69
bytes per sector 65, 69

calculating file space 86
calculating index file space 86
CHAIN statement 33

change sequence of execution 19
changing owner ID 66

changing volume ID 66

character array 129

character functions 27

character specification with C 41
character string printing 42

Index

189

character variable 113
characteristics of formatted tape 57
clearing storage 53
CLOSE FILE statement 95, 101
CLOSE statement 16, 90
closing stream 1/0 files 90
columns 131
comments for programs 144
comparing character constants 22
comparing character variables 22
comparison tolerance 126
compress function 71
computed GOSUB statement 32
conformable 139
control of your 5110 119
controlling format of reports 35
controlling number of lines printed 47
copying tape files 57
CONV 94
creating a record 1/0 file 97
creating index file 170
cross-reference program 156
cylinder number 63
cylinders 63

alternate 65, 69

diskette 63, 69
C-specification code a1

data compression 6

data file access selection 150
data file protection 57

data files, storage considerations 155
data processing 1

data processing system 4
DATA statement 16, 134
deactivating a file 90

debugging program 141

DEF statement 28

default device 128

defining arrays 129

delete code 80, 84

DELETE FILE statement 80, 107
deleting records 79, 84, 107
designing a record 83
determining field size 83
determining file size 49, 85

190

determining storage available on tape
determining storage available on diskette
DIDX function 137
digit specifiers 39
DIM statement 16, 97, 129, 132
dimensions in an array 130
direct access 75, 77

by key 79

58

by relative record number 75, 77, 177

with key index 172
direct processing by index key 78
direct record 1/0 file access 94

direct record retrieval 102
diskette 4
access protection 52
address 63

alternate cylinder 65
cylinder 63, 69
file organization 67
format 65, 69
index cylinder 64
initialization 61, 66
loading 61, 66
owner ID 66
reinitialization 66
sector 64, 65, 69
size 65, 69
sort 81, 146
storage availability variations 68
track 63, 65, 69
types 65
unit 4
volume ID 66
volume-protect indicator 66
wear 62
display off 147
display screen 4
display screen, using for 1/0 119
displaying directory of file information
documentation 144
dummy variable 28
DUP KEY clause 108

50

editing printed items 40
end of data 64

end of extent 64

end of file clause 101
end of file condition
EOD 64

EOE 64

EOF 87, 108
EOF clause 93
EOF condition 87, 108
error clause on EXIT statement
error handling, /0 93

error testing 164

execution sequence change 19
EXIT clause 108
EXIT statement 94, 108, 165
explicit declaration 130
extent, file 64
fast scan feature 146
field size 83
fields 73
file 73
access methods 169
addresses 64
allocation 55, 67, 70
extent 64
FLS 125
FLS, additional use 127
ID 66
maintenance 79
organization 67, 74
reference 96
reference for /O 90
repositioning 92
size 85
space 86
space reallocation 67, 71
FNED statement 28
FOR statement 17, 24, 134
FORM statement 35, 97, 100, 109, 116
format control specification 42
format, diskette 65, 69
formatted tape characteristics 57

87, 108

108

formatting 35

file 49

output 35

record 97

report 35

tape 55

with character variables 46

with the FORM statement 35
freeing files 50
frequently used input statements 17
frequently used output statements 18
function

AIDX 137

arithmetic names 27

character names 27

defined with DEF 28

DIDX 137

GET statement
GOSUB 17
GOSUB statement
GOTO statement

16, 91, 94

17, 30, 32
17,24

hard copy output 4
head number 63
high-order position 35

I1/0 error handling 93

IBM diskette 61
identifying a file 90

IDX intrinsic function 164
IF statement 17, 20
image statement 35
implicit declaration 130
increasing tape file size 56
index arrays 137

index cylinder 64

Index

191

index file 102, 149
creating 170
record length 86

size 87,149
sorting 146
space 86

index record 1/0 file access 94
index track 69

indexed access 75

indexing function 137

individual record, accessing 106, 150
initialization of diskette 61

input 1, 11
device 4
elements 4
end of 98

statement 16
statements frequently used 17
to 1/0 files 144
INPUT, statement 133
insertion characters, PIC 40
instructions 1
intrinsic function 99

KLN 99

KPS 29
inventory application 148
I0ERR 94

KEY clause 103, 108
KEY parameter 104
keyboard 4

KLN, intrinsic function 99
KPS, intrinsic function 99
KW= parameter 147

L specification 112

LAST statement 98

length, member 129

length, member of an array 129
LET statement 17, 135

lines printed 125, 163

line spacing 126

LOAD command 49

192

loading a diskette 61
loading work area 49
locating a character in a string 164
locking a program 50
logical operators 23
AND 23
OR 23
long-form precision 112
loops 19, 24, 27
nested 27
lowercase 125

maintaining data files 79
main storage 5

main storage index area 147
MARK command 49, 67
marking file space for reallocation 50
marking unused files 50
MAT 133

MAT statement 136

matrix multiplication 136, 138
matrix product 138

maximum file space 64
member,array 129

multiline function 28

multiple index, creating 179
multiplication matrix 138
multiplication scalar 137

names of arithmetic functions —27
naming arrays 130

NC specification 110

nested laop 26

NEXT statement 17, 24, 134
NOKEY clause 103, 108

NOREC clause 108

number and size of diskette files 70
number of lines printed 125
numeric specification, PIC 38

ONERROR statement 164
one-dimensional arrays 131
OPEN FILE statement 95, 101, 115, 117, 120
OPEN statement 16, 117
opening record 1/0 files 95
opening stream 1/0 files 89
OR operator 23
organizing a file 74
OUT statemtent 95
output 1, 10

device 4

elements 4

from 1/0 files 144

statements frequently used 18
overlapped printing 146
owner ID 66
overflow 161

page overflow 161
parentheses 129
parentheses in arrays 129
PAUSE statement 143
performance considerations 145
PIC specification 109
PIC specification in the FORM statement 38
placing values into arrays 133
POS-specification 42
position the cursor 121
precision 112

long-form 112

short-form 112
PRINT FLP statement 18
print overlap 146
print position 43
PRINT statement 18
PRINT USING FLP statement 35
PRINT USING statement 109
PRINT USING with a character variable 46
printer spacing control 47, 126
printer storage considerations 155
printing character strings 42
problems with programs 141
PROC command 123
procedure files 123
process 1, 12
process data 1
process statements 17

processing elements 4
processing stream |I/O 89
program 1
analysis of cross-reference 156
chaining 33
comments 144
design 146, 153
_execution falls through 21
problems 141
statement storage consideration 154
step 143
trace 141
programming language, BASIC 9
protecting data files 51
PUT statement 18, 91

random access 57

reactivating a file 89

read a stream 1/0 file 167

READ FILE FLS statement 125

READ FILE statement 16, 100, 115, 117, 119
read record 1/0 files sequentially 100

read sequentially 100

" READ statement 16, 133

reading from record 1/0 files 97, 100
reading from stream 1/0 files 91
reallocating file space 67, 71

RECL= 95
record 73
design 83

expansion 84

1/0 file 74, 75

1/0 file access 94

1/0 file opening 95

layout 88

length 88

length, RECL= 95

number 63, 102

oriented statements 115

retrieval 102, 109
records 73

added to a file 99

deleting 107

updating 105
redimensioning arrays 134
referencing a file 96
reinitializing diskettes 66
related data items 129

Index

193

relational operators 21 sbecifying loops 24

relative record number 77, 102 with NEXT 24

removing sensitive data 53 with FOR 24

reoganizing a file 81 statement, assignment 133
repositioning files 92 statement, chain 33

REREAD FILE statement 113, 115, 117 statement, FORM 35, 116
RESET file statement 92, 116 statement, Image 35

RESET statement 92, 108 o statement, PRINT USING FLP 35
retrieving data 89 statement, USE 33

RETURN statement 17, 28 statements for information processing 16
REWRITE FILE statement 18, 101, 105, 115, 117 statements

rewrite file statement 84 CLOSE 90

rounding a number internally 151 CLOSE FILE 95, 101, 116
rows 131 DATA 134

DELETE FILE 107, 116
DIM 97, 129, 132
EXIT 94, 108, 116
FORM 35, 97, 109, 116

GET 91, 94
INPUT 133
S specification 112 LAST 98
sample record 84 ONERROR 164
SAVE command 49, 124 OPEN FILE 95, 101, 115
saving contents of work area 49 ouT 95
saving work area 49 PAUSE 143
scalar multiplication 137 PRINT USING 109
sectors per cylinder 65, 69 . PUT 91
sectors per track 65, 69 = READ 133
security, maintaining data 50 READ FILE 100, 115, 119
sensitive data, removing 53 REREAD FILE 113, 115
sequence of execution change 19 RESET 92, 108
sequential access 75,77, 150 RESET FILE 116
by key 78, 104 REWRITE FILE 101, 105, 115
by key index 174 USE 33
with no key 175 WRITE FILE 97, 99, 115, 119

sequential record 1/0 file access 94
sequentially read 100
sequentially read record 1/0 files 100
short-form precision 112
single-line function 28
size of a file, determining 85
SKIP specification 38, 43 storage size 152
skipping print lines 43 storage, available 125
skipping to a new page while printing 161 stream 1/0 data files 74
sort program 128
sorting an index file 166
spacing during printing 42, 47, 126 opening 89
special keyword, ALL 101 processing 89
specification 109 reading 167

L 112

step 25, 143

stop 30

storage availability variations of diskette 68
storage available on diskette 69

storage available on tape 55

storage considerations for 5110 152

activating 89
closing 90

reading from 91

NC 110 writing to 91
PIC 109
S 112

194

subroutines 30

subscripts 132

subtraction, array 136

symbols | | || for exponential value 36
system control functions 125

tagging records for deletion 80
tape format b5

tape storage b5

tape storage, determination of 58
tape unit 4

test data for a test file 144
testing for an error 164

tips and techniques 145

trace 141
track, diskette 63, 65, 69
transfer of control 101

translation, menu to character 127
turn on/off audible alarm 126
turn on/off display 126, 147
two-dimensional arrays 131

types of diskettes 65

unused files 50

update with key index 172

updating records 79, 81, 105
uppercase 126

USE statement 33

user program control 163

user storage 152

user-written functions 27

using a loop 27

using display screen for 1/0 120
using file FLS, skipping to new page 161
using the display screen for 1/0O 119
using the UTIL command 127

UTIL command 50

UTIL command, using 127

UTIL PROTECT command 66

UTIL VOLID command 66
UTILDROP command 50, 67
UTILFREE command 50, 69, 71

values placed into arrays 133
variable names, reusing 92
variables, amount of storage for 153
variable, character 113

volume ID 66

volume-protect indicator 66

workarea available 125
WRITE FILE FLS statement 126

WRITE FILE statement 18, 97, 99, 115, 117, 119

write-protect indicator 66
write-protection 51

writing to record 1/0 files 97
writing to stream 1/0 files 91

X-specification 42

5110 Model 1 Computing System 4

Index

195

196

READERf MMENT FORM

riease use this form only to identify publication errors or request changes to publications. Technical questions about IBM systems, changes in |BM programming
support, requests for additional publications, etc, should be directed to your IBM representative or to the IBM branch office nearest your location.

Error in publication (typographical, illustration, and so on). No reply.

Page Number Error

Note: All comments and suggestions become the property of IBM.

@ No postage necessary if mailed in the U.S.A.

Inaccurate or misleading information in this publication. Please tell us
about it by using this postage-paid form. We will correct or clarify the
publication, or tell you why a change is not being made, provided you
include your name and address.

Page Number Comment

Name

Address

8pIng s,188N JISvE

oLls wal

¢-L0g6-LZVS

S§A21-9307-2

Fold and tape - Please do not staple

NO POSTAGE
NECESSARY |F
MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N. Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

IBM CORPORATION
General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

Fold and tape Please do not staple

International Business Machines Corporation

General Systems Division

4111 Northside Parkway N.W. .
P.O. Box 2150

Atlanta, Georgia 30301

(U.S.A. only)

General Business Group/International
44 South Broadway

White Plains, New York 10601
U.S.A,

(International)

—_— — — — — —aunjbuoyin) — — — — —

©een niSvaolls nNeg!

|

flunj]

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150

Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway

White Plains, New York 10601
U.S.A.

(Internationat)

SA21-9307-2
L

IBM5110
BASIC

User’s Guide

CTLOEELZYS 'V'S'N Ul paluLg 8pInND 5,435N DISYR OLLS WEI

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	x1
	x2
	x3

