
-~- ------ ------ ----- .-.. ---- --------~---... _.-
GA21·9352·1

5280-20

IBM 5280
Distributed Data
System
System Concepts

--- ----- GA21-9352-1 - - ---- ---= :-:. === 5280-20 --------,,-

IBM 5280
Distributed Data
System
System Concepts

Second Edition (June 1980)

This is a major revision of, and obsoletes, GA21·9352-O.

Because the changes and additions are extensive, this publication should be
reviewed in its entirety.

Changes are periodically made to the information herein; these changes will be
reported in technical newsletters or in new editions of this publication.

Use this publication only for the purposes stated in the Preface.

It is possible that this material may contain reference to, or information about,
IBM products (machines and programs), programming, or services that are not
announced in your country. Such references or information must not be
construed to mean that IBM intends to announce such IBM products,
programming, or services in your country.

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should be made to
your IBM representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use
the Reader's Comment Form at the back of this publication to make comments
about this publication. If the form has been removed, address your comments to
IBM Corporation, Product Information Development, Department 997,11400
Burnet Road, Austin, Texas 78758. IBM may use and distribute any of the
information you supply in any way it believes appropriate without incurring any
obligation whatever. You may, of course, continueto use the information you
supply.

© Copyright International Business Machines Corporation 1980

This manual is intended for operators, supervisors, and
programmers using the IBM 5280 Distributed Data
System. Persons using this manual should be familiar
with the use of DE/RPG programs or system utilities on
the 5280.

This manual provides conceptual information about
certain parts of the system, such as diskette storage,
and how they relate to the DE/RPG language or to the
utilities. Although this manual is not intended for the
assembler programmer, information such as data
exchange between the 5280 and another system might
be useful to such a programmer.

Unless otherwise noted, the utilities referred to in this
manual are discussed in greater detail in the IBM 5280
Utilities Reference/Operation Manual, SC21-7788.

Related Publications

• IBM 5280 General Information, GA21 -9350

• IBM 5280 Planning and Site Preparation Guide,
GA21-9351

• IBM 5280 Functions Reference Manual, GA21-9353

• IBM 5280 Message Manual, GA21-9354

• IBM 5280 Master Index, GA21-9356

• IBM 5280 Operator's Guide, GA21-9364

Preface

• IBM 5280 User's Setup Procedures, GA21-9365

• IBM 5280 Machine Verification Manual, GA21-9357

• IBM 5256 Printer Operator's Guide, GA21-9260-1

• IBM 5280 System Control Programming
Reference/Operation Manual, GC21-7824

• IBM 5280 DE/RPG Reference Manual, SC21-7787

• IBM 5280 Utilities Reference/Operation Manual,
SC21-7788

• IBM 5280 Sort/Merge Reference/Operation Manual,
SC21-7789

• IBM 5280 Assembler Language Reference Manual,
SC21-7790

• IBM 5280 Introduction to DE/RPG, SC21-7803

• IBM 5280 DE/RPG User's Guide, SC21-7804

• IBM 5280 DE/RPG Problem Determination Procedures
for the Programmer, SC21-7852

• IBM 5280 Communications Utilities Reference Manual,
SC34-0247

Preface iii

iv

CHAPTER 1. INTRODUCTION.
About this Manual
Using the 5280 Publications

CHAPTER 2. DISKETTE CONCEPTS
Diskette Types, Formats, and Storage Capacities.
Diskette Layout.

Track ..
Cylinder .. .
Sector
Index Cylinder
Diskette Addressing.

Diskette Initialization .
Allocating Data Set Space on Diskette.
Reallocating Data Set Space
Extending the Area for Data Set Labels
Number and Size of Diskette Data Sets
Creating a System Diskette

CHAPTE R 3. DATA SET CONCEPTS
Data Set Structure

Unblocked and Unspanned
Blocked and Spanned

Access Methods
Sequential Access Method.
Direct Access Method ...
Key Indexed Access Method.
Direct by Key Access Method.

Record Deletion ..
Record Insertion
Record Searching
Opening and Closing Data Sets
Recovering from I/O Errors ..
Copying Data Sets
Dynamic Allocation and Preallocation .
Deleting Data Sets
Data Set Label. . . .

Data Set Name .
Bypass Indicator
Write·Protect Indicator.
Exchange Type Indicator
Multivolume Indicator ..
Volume Sequence Number.
Creation Date ..
Record Length
Expiration Date
Verify/Copy Indicator.
Record Delete Character.

.1

.2

.3

.7
. 8
.9
.9
. 9

. 10

.10
· 11
.12
.12
· 13
· 13
.14
· 15

.17
· 17
· 17
· 18
· 18
.19

· 19
.20
· 21
.21
.22
.23
. 23
.25
. 26
.26
. 27
.27
.28
.28
.28
.28
.28
.29
.29
.29
.29
.30
.30

CHAPTER 4. DATA EXCHANGE WITH OTHER
IBM SYSTEMS

Basic Exchange
H Exchange .. .
I Exchange
Diskette Formats .

CHAPTER 5. PARTITION CONCEPTS.
Partition Interfacing ..

Program Loading ..
Switching Partitions

Console Mode

CHAPTER 6. THE COMMON AREA.
Calculating the Size of the Common Area.
The Resource Allocation Table.
The Common Functions

Contents

.31

.31

.31

.32

.32

.35

.36

.36

.37

.37

.39

.39

.41

.42

CHAPTER 7. PERFORMANCE CHARACTERISTICS. .45
Use of Memory on the 5280.
Dispatching of Jobs
Time Slice Values

Diskette Record I/O Performance.
Characteristics of the Media ..
Characteristics of the Data Set

Techniques for Improving Job Performance.
General Performance Guidelines
Diskette Usage Guidelines
DE/RPG Guidelines
Utility Performance Guidelines.

APPENDIX A .

GLOSSARY •.

INDEX

.46

.46

.47

.48

.48

.50

.51

.51

.52

.55

.57

.61

.71

.75

Contents v

vi

Chapter 1. Introduction

The IBM 5280 Distributed Data System is a multipurpose diskette-based
system that can be used in a variety of data processing applications, such as
data entry, remote job entry, and data processing.

The 5280 can consist of a programmable data station or programmable control
unit, auxiliary work stations, diskette drives, and printers, and can possess
communications capability.

The 5280 supports two programming languages: DE/RPG and assembler.

The Utilities Program Product available for the 5280 allows you to do things
such as allocate or delete data sets from a diskette, enter data, convert
existing 3740 programs to 5280 programs, or display system status.

If your 5280 has communications capabilities, the Communications Program
Product allows you to transfer data to and receive data from other systems.

The Sort/Merge Program Product allows you to sort the records in a data set
or to merge records from two data sets into one data set.

The 5280 user storage is divided into partitions. Each individual program is
executed in a partition. The 5280 can execute more than one program at the
same time.

Introduction

2

ABOUT THIS MANUAL

This manual is intended to help you understand the following aspects of the
5280:

• Diskette concepts, such as addressing, initialization, the maximum number
of data sets, and available storage.

• Data set concepts, such as access methods, layout, labels, write-protect,
security, and multivolume support.

• Data exchange, which is being able to exchange data with other systems.

• Partition concepts, such as the difference between foreground and
background partitions, how to initiate a job in a background partition, and
how background partitions can access a keyboard.

• Resource allocation table concepts, such as logical and physical device
addresses, what the common area is, and a description of the functions in
the common area.

• Performance characteristics, such as microprocessor activities and diskette
performance, and techniques for improving performance.

• Printer character sets, which include all the character sets available on the
5280.

This manual does not have to be read chapter by chapter. Simply read the
chapters as they become appropriate. For example, you might want to read
Chapter 3, Data Set Concepts, when you need to know the best way to access
a particular data set.

USING THE 5280 PUBLICATIONS

The following chart lists topics that are discussed in this and other 5280
publications, and the publications in which the topics can be found. Preferred
references are marked with an asterisk.

Topic

Available Features

Available
programs

Common area

Communications

Data entry

Data set
organization

Data stations

Diskette access
methods

Diskette care,
handling, and wear

Related Publications

*General Information
*P/anning and Site Preparation Guide
Operator's Guide
Functions Reference Manual

*General Information
Planning and Site Preparation Guide
Operator's Guide
Sort/Merge Reference/Operation Manual
System Control Programming Reference/Operation

Manual
Utilities Reference/Operation Manual

General Information
*System Concepts
*System Control Programming Reference/Operation

Manual
Functions Reference Manual

General Information
*Communications Utilities Reference Manual
DE/RPG User's Guide
DE/RPG Reference Manual

General Information
Operator's Guide
Introduction to DE/RPG
*DE/RPG User's Guide
*Utilities Reference/Operation Manual

Planning and Site Preparation Guide
*System Concepts
DE/RPG User's Guide
DE/RPG Reference Manual

*General Information
Planning and Site Preparation Guide
Operator's Guide

*System Concepts
DE/RPG User's Guide
DE/RPG Reference Manual

Operator's Guide

Introduction 3

4

Topic

Diskette formats

Error messages

Establish job
procedures

Initial Program
Load (lPL)

Inquiry into a
data base

I/O device
support

Partitions

Performance

Printer

Problem
determination

Sample
configuration

Status line

Storage
requirements

Related Publications

General Information
*System Concepts
Utilities Reference/Operation Manual

Message Manual

*Planning and Site Preparation Guide
Operator's Guide
Introduction to DE/RPG

Planning and Site Preparation Guide
Operator's Guide
*System Control Programming Reference/Operation

Manual

General Information
DE/RPG User's Guide
DE/RPG Reference Manual
*Communications Utilities Reference Manual

*General Information
DE/RPG User's Guide
DE/RPG Reference Manual

General Information
*Planning and Site Preparation Guide
System Concepts
System Control Programming Reference/Operation

Manual

System Concepts

General Information
Planning and Site Preparation Guide
Functions Reference Manual
*IBM 5256 Printer Operator's Guide

Operator's Guide
Machine Verification Manual
*Problem Determination Procedures for the Programmer
*Message Manual

General Information
*Planning and Site Preparation Guide
System Control Programming Reference/Operation

Manual

Communications Utilities Reference Manual
*Operator's Guide
Message Manual

General Information
*Planning and Site Preparation Guide
Functions Reference Manual

Topic Related Publications

System architecture Functions Reference Manual

System Planning and Site Preparation Guide
configuration *System Control Programming Reference/Operation

Manual

System diskette *System Concepts
System Control Programming Reference/Operation

Manual

System facilities *General Information

System layout

System status

System summary

Training data entry
operators

Utilities

Writing data entry
formats

Planning and Site Preparation Guide
*Functions Reference Manual

*Planning and Site Preparation Guide
User's Setup Procedures

Operator's Guide
*Utilities Reference/Operation Manual

General Information
*P/anning and Site Preparation Guide

Planning and Site Preparation Guide
*Introduction to D£/RPG
Utilities Reference/Operation Manual

General Information
Planning and Site Preparation Guide
Operator's Guide
System Concepts
*Sort/Merge Reference/Operation Manual
*Utilities Reference/Operation Manual

*Introduction to D£/RPG
D£/RPG User's Guide
D£/RPG Reference Manual
*Utilities Reference/Operation Manual

Note: To find specific references to specific topics. see the Master Index. A
brief description of each publication is given in the Planning and Site
Preparation Guide.

Introduction 5

6

Chapter 2. Diskette Concepts

The IBM diskette is a thin, flexible disk permanently enclosed in a semirigid,
protective, plastic jacket. When the diskette is properly inserted in the diskette
drive, the disk turns freely within the jacket. The diskette is inserted in the
diskette drive as follows:

As the diskette is inserted in the diskette drive, the label
must be on the left side. The drive latch must be turned
down after the diskette is inserted.

The system writes data on the diskette at specific locations (addresses). Data
written at an address remains there until it has been replaced by new data. To
read data, the desired address is found and the data is read into the 5280.
Data and programs are stored in areas on the diskette that are called data sets.
Chapter 3 is devoted to data set concepts.

Diskette Concepts 7

8

DISKETTE TYPES, FORMATS, AND STORAGE CAPACITIES

The 5280 uses three types of diskettes: the one-sided diskette (diskette 1),
with data recorded on just one side; the two-sided diskette (diskette 2), with
data recorded on both sides; and the two-sided diskette (diskette 2D), with
data recorded on both sides at double density. The diskettes come in various
formats consisting of the number of sectors per cylinder and the number of
characters (bytes) per sector. The diskette formats are:

Available Storage
Format Sectors per Bytes per in Bytes
Number Cylinder Sector (cylinders 1-74)

1 26 128 246272

Diskette 1 2 15 256 284 160

3 8 512 303 104

4 52 128 492544

Diskette 2 5 30 256 568320

6 16 512 606208

7 52 256 985088

Diskette 2D 8 30 512 1 136640

9 16 1 024 1 212416

Note: The diskette type (1, 2, or 2D) is identified on the diskette label, along
with the number of bytes per sector. On the label, the number of bytes per
sector is called the record length. Diskette formats are described in greater
detail in Chapter 5.

Although the previous chart shows the maximum amount of diskette storage,
the amount of diskette storage actually available to you depends on:

• The number of data sets and the size of the data sets allocated on the
diskette

• The type of data set structure used (discussed in Chapter 3)

• The allocation of data set space (record placement) as the result of previous
delete or allocate options

DISKETTE LAYOUT

Track

A track is the recording area on a single diskette that passes the read/write
head while the disk makes a complete revolution. The read/write head is held
by a carriage that can be moved to 77 distinct locations along a straight line
from the center of the disk. Therefore, each diskette has 77 concentric tracks
on which data can be stored. The following illustration shows where the 77
tracks are located on the diskette:

77 Tracks

The diskette drive for two-sided diskettes has a read/write head on each side.
Each track on side a of a two-sided diskette has an associated track on side 1.

Cylinder

A cylinder is one track on a one-sided diskette or a pair of associated tracks
(the corresponding tracks on opposite sides of the diskette) on a two-sided
diskette. There are 77 cylinders (numbered a to 76) on a diskette. Cylinder a
is called the index cylinder and is reserved for information describing the
diskette and its contents. (See Index Cylinder later in this chapter.) Cylinders 1
through 74 are used to store data. The last two cylinders are reserved for use
as replacements (alternative cylinders) for defective cylinders. (See Recovering
from I/O Errors in Chapter 3.)

Diskette Concepts 9

10

Sector

A sector is a portion of a cylinder, as shown in the following illustration. All
sectors on a single track are the same size, and the number of sectors on a
cylinder depends on the number of bytes per sector (see Diskette Types,
Formats, and Storage Capacities in this chapter).

Index Cylinder

Track 00

One Sector per
Track

The index cylinder (cylinder 0) contains information about the diskette, such as
volume and owner identification. The index cylinder also contains information
associated with each data set on the diskette. This includes the name of each
data set and the addresses associated with the data set extents. An extent is
the maximum space a data set can occupy. The address at the beginning of
this space is called the beginning of extent (BOE). The address at the end of
this space is called the end of extent (EO E). A data set might not use all of
the space allocated for it by the BOE and EOE addresses; therefore, another
address for end of data (EOD) exists.

Space Being Used for Data

BOE EOD EOE
+ + t
, I

Area Allocated for the Data Set (Extent)

The EOD address is used to identify the next unused area within the extent or
to indicate that data has been written to the EOE address. Although this
information is contained in the data set label, the 5280 allows allocation of
data sets by specifying the size, format, and number of records required.

Index Cylinder Layout

Sectors 1-7 of the index cylinder (cylinder 0) are reserved for information such
as the owner identifier. The rest of the sectors on the cylinder contain pointers
to the addresses of the various data sets on the diskette.

Volume 10, Owner 10, and Accessibility

Each initialized diskette has a volume identifier, an owner identifier, and an
accessibility field on cylinder O. The volume ID is a 1 to 6 character name
given to the entire diskette (volume). The owner ID is a user-defined 1 to 14
character alphameric name. Both identifiers can be entered with the diskette
initialization utility. If no identifiers are specified, the system assigns VOLID
and OWNERID.

An accessibility field on the diskette guards against unauthorized access to
data on the diskette. If the accessibility field is not left blank, the user must
enter the correct owner ID to access the data.

Diskette Addressing

A diskette address consists of a combination of cylinder number, head number,

and sector number.

The cylinder number identifies the cylinder onto which a physical record is
written or from which it is read.

The head number is the side of the diskette on which the data is to be written
or from which it is to be read. This is 0 for all one-sided diskettes and for side
1 of two-sided diskettes. The number is 1 for side 2 of two-sided diskettes.

The sector number is the sector into which the data is to be written or from
which the data is to be read.

Diskette Concepts 11

12

DISKETTE INITIALIZATION

You can initialize your diskettes by using the diskette initialization utility.
Initialization prepares a diskette for use by doing two things. It formats the
diskette for use on a system. and it checks for defective sectors. Diskettes
must be initialized before they can be used for storing data. All IBM-supplied
diskettes are initialized before they are shipped to a customer. Reinitializing is
not required unless:

• The diskette was exposed to a strong magnetic field.

• A defect has occurred in one or two cylinders. In this case. initialization can
be used to take the bad cylinder(s) out of service and use one or two of the
alternative cylinders (cylinders 75 and 76).

• A format other than the existing format is desired.

• The label area of a diskette 2D is to be expanded past 71 labels.

Nota: Although IBM-supplied diskettes are initialized. they might contain an
empty data set that has already been allocated. Use the diskette label list
utility to check for this. If a data set exists. delete it using either the
diskette/data set clear or diskette label maintenance utility.

ALLOCATING DATA SET SPACE ON DISKETTE

You can use the diskette label maintenance utility. the key entry utility. or a
DE/RPG program to allocate data sets on the diskette. Once you have loaded
the program. prompts allow you to enter the data set name and address. then
the number of records to be allocated. data exchange type. and record size.

Data sets are not always allocated sequentially on the diskette. For example.
data set 2 might be on cylinder 3. data set 3 might be on cylinder 7. and data
set 4 on cylinders 8-13. You can control the location of a data set on the
diskette only by using a totally unallocated diskette and allocating the data sets
in the order you want them.

When the information in a diskette data set is no longer needed. you can use
the diskette/data set clear utility or the delete option of the diskette label
maintenance utility to delete the data set so that the data set can become
available for other uses. However. once a data set is allocated. you cannot
increase the size of the data set without copying (reallocating) the data set to a
larger data set space.

REALLOCATING DATA SET SPACE

When you delete or reallocate an existing data set, no other data sets are
affected. If you reallocate a data set to another data set space on the same
diskette, the original space allocated to that data set is unavailable until the
diskette is compressed.

For example, assume you want to increase the size of data set 3 from 10 000
to 15 000 records. Using the allocate option of the diskette label maintenance
utility, allocate a large enough space for 15 000 records for the data set. The
reallocated data set would be located on the diskette following the last
allocated data set. provided there is enough continuous storage available. Then
use the diskette copy utility to transfer the data set to the larger space. The
new data set must have a different name at allocation time in order to copy
the data onto the same diskette.

After you have copied the data set to its new space, free up data set 3 using
the delete option of the diskette label maintenance utility. The area where the
old data set resided is not available for storage. To make the area available,
use the diskette compress utility.

Using the diskette compress utility, the entire contents of a diskette can be
moved, data set by data set. to the low address end of the diskette. This
leaves all unused space at the high address end of the diskette. Allocated data
set space is not altered; the sizes of the data sets will not increase or
decrease. Only deleted data sets are removed. Compression takes place in
both the label area and data area. All of the unallocated space on the diskette
is then in one continuous area.

EXTENDING THE AREA FOR DATA SET LABELS

Using the diskette initialization utility, you can extend the area for data set
labels on a diskette 2D. In other words, you can increase the number of data
sets that can be contained on a diskette. The extension feature should seldom
be necessary but is most efficient if you have many small data sets to store on
a diskette. The diskette initialization utility displays a prompt allowing you to
choose the number of data set labels you want on your diskette 2D, from 71
up to 1007.

A cylinder assigned for additional labels cannot be used for data. Therefore,
the amount of data storage is reduced as the storage for data set labels
increases. As the storage for labels increases, the time it takes the system to
find a specific data set, or determine that it does not exist on the diskette, also
increases. Therefore, setting aside additional space for data set labels is not
recommended unless absolutely necessary.

Diskette Concepts 13

14

NUMBER AND SIZE OF DISKETTE DATA SETS

The diskette volume identification, owner identification, and data set labels are
contained on the index cylinder. Each type of diskette can have the following
maximum number of data set labels:

Maximum Number of

Data Set Labels

Diskette 1

19

Diskette 2 Diskette 2D

45 71

Note: For a diskette 2D, see the diskette initialization utility for information on
how to extend the area for data set labels beyond 71.

If you allocate the maximum number of data set labels without using all the
available data set space, the remaining data set space becomes unavailable for
storing data. For example, assume you have a diskette 1 with 128 bytes per
sector (format 1). This diskette has 246 272 bytes available for storing data;
however, you allocate 19 data sets, each containing 50 records. Each record is
128 bytes long.

50 records
x 128 bytes

6 400
x 19 data sets

121 600 bytes of allocated storage

Now, by subtracting the allocated storage from the available storage, you can
see that 124 672 bytes of storage are not available for you to store data.

246 272 bytes available
1 21 600 bytes used

124 672 bytes unused

You can avoid this by allocating larger data sets, thus using all of the available
storage in 19 or fewer data sets.

CREATING A SYSTEM DISKETTE

If you want to copy certain IBM programs and utilities onto another diskette
for use as a system diskette, you should be aware that some of these
programs and utilities have other data sets that are necessary to run them.
Use the diskette copy utility to copy the required programs and their
associated data sets. The following table lists those programs and utilities that
need additional data sets.

Data Set
Name

SYSCON

SYSPTF

SYSDERPG

SYSASM

SYSCOPY

SYSACLC

Descriptive Name

System configuration program

PTF/PATCH program

DE/RPG compiler

Assembler

Diskette copy utility

ACL to assembler language

conversion aid

Associated Data Sets

SYSDIPL
SYSDPRT1
SYSDPRT2
SYSTBLS
SYSSCPO

SYSSCPO

SYSCMPO

SYSASM1
SYSASM2
SYSASM3
SYSASM4
SYSASM5
SYSASM6
SYSASM6C
SYSASM6D
SYSASM61
SYSASM6M
SYSASM7
SYSASM8
SYSACF

SYSUPO

SYSALCO

SYSEND

Diskette Concepts 15

16

Chapter 3. Data Set Concepts

A data set is a group of records that have the same length. This chapter
discusses things you need to know about data sets, such as how they are
structured, how they are accessed, and what happens when you insert and
delete records in a data set.

DATA SET STRUCTURE

A data set can be structured in either of two ways, and the structure you
choose determines the type of data exchange you will be using.

Unblocked and Unspanned

Unblocked and unspanned means that records are not blocked together and that
the records must each start on sector boundaries. Each record is one block of
data. On the 5280, unblocked and unspanned records cannot be longer than sectors.

128-Byte Sectors

A B C D E

} 1100' m ,~ m 100' m 100' ~ 100' ~ (

--...- --.,.- ~ --...- --...-
1 2 3 4 5

100-Byte ReCords

In the preceding example. each 100-byte record starts at the beginning of a
128-byte sector boundary. The remaining 28 bytes in each sector are not
available for data storage. Some of the potential storage space is thus wasted.

The basic and H exchange types use the unblocked and unspanned data
structure. See Chapter 4 for more. information on the basic and H exchange
types.

Data Set Concepts 17

18

Blocked and Spanned

Blocked and spanned means that records are blocked together, and that sector
boundaries are not necessarily related to record positions.

128-Byte Sectors

A B c o

' __-__ ' \, I \, A A __-__ ,

2 3 4 5

100-Byte Records

In the preceding example, 100-byte records are placed next to each other with
no regard for sector boundaries. No storage space is unused.

The I exchange type uses the blocked and spanned data structure. Unless
there is a requirement to exchange data with another system that will accept
only unblocked and unspanned data, the blocked and spanned data structure is
recommended.

ACCESS METHODS

A data set can be accessed (read and written) in several different ways. The
method you choose depends on your particular needs.

A data set consists of records that are grouped together. Although it is not
necessarily so, the records are usually similar in content. A data set that stores
a mailing list might consist of records that each contain a name field, an
address field, and a zip code field.

Sometimes a record can be identified by a field. An employee data set might
contain, among other things, an employee number field. The record could be
referred to by employee number. The data set might even be in employee
number order. In this case, the employee number field would be called the key
field, and the data set would be in key sequence.

Records are stored in the data set in sequential order. Each record has an
associated relative record number. The first record in the data set is at relative
record number 1, the second is at relative record number 2, and so forth.

Sequential Access Method

In the sequential access method, records are placed into the data set
sequentially. The first record entered occupies the first position in the data set,
the second occupies the second position, and so on. Records are retrieved in
the same order. The first record is read, then the second, and so on.

The main advantage of the sequential access method is that records can be
processed the fastest when they are processed in sequential order.

Any data set can be accessed sequentially.

Direct Access Method

In the direct access method, a relationship exists between records and their
positions in the data set. The relative position of a record might be equal to a
program counter or a value of a field within a record. The relative position
might also be derived by a formula or conversion technique. The relative
position is known as the relative record number.

The following is an example of a data set that can be accessed directly:

Employee
1000

Employee
1001

2

Employee
1002

3

Employee
1003

4

Relative Record Number

5

Employee

1005

6

In this example, a company has a maximum of 1000 employees, and they are
assigned employee numbers of 1000 through 1999. Record 1 contains data on
employee 1 DOD, record 2 contains data on employee 1001, and so forth. The
conversion technique is simply to subtract 999 from the employee number to
obtain the relative record number. Notice that record 5 is blank (a non-deleted
record). This is because no employee is currently assigned that number.

This access method provides the fastest retrieval of random data. A
disadvantage exists when a high percentage of storage spaces are vacant.

The direct access method can be used to read and write records within any
data set. The data set must be created using the sequential access method,
however. For example, using the sequential access method you could create a
data set with 10 000 blank records. To write records to the data set directly,
you would update the existing blank records.

The ADD ROUT option of the sort program creates relative record numbers that
can be used by DE/RPG for direct access.

Data Set Concepts 19

20

Key Indexed Access Method

In the key indexed access method, an entry for each record is stored in a
separate data set called an index data set. The entry consists of the record's
key and the record's location. The index data set allows a program to refer to
the records by their record keys. The key for each record must be unique.

The following is an example of a master data set and its index data set:

Record
Key /

Relative r
Record Number

Master Data Set

Relative Record Number

Index Data Set

J21212t%1/XZl i
Relative Record Number

In this example, a company has an inventory that is identified by item number.
The master data set is built sequentially, with item 603 being the first item in
the data set, item 491 being the second, and so on. At the same time, an
index data set is also being built, which contains the record key (item number)
and the relative record position of each record. As the master data set is being
built. and as records are being added, the index record is inserted in its proper
key sequence in the index data set. Optionally, the index data set can be built
using the sort program.

To access a record randomly, the index data set is accessed to find the relative
record number of the required record; then the record is directly accessed by
relative record number. With DE/RPG, for example, if you want to access item
number 127, the system first goes to the index data set and searches it until it
comes upon item number 127. The relative record number associated with
item number 127 is 4. The system then goes directly to record number 4 of
the master data set to access the record.

The main advantage of the key indexed access method is that master data sets
can be accessed randomly without knowing the relative record number for any
given record, and without maintaining the master data set in any logical order.
However, the index data set requires additional storage space.

Direct By Key Access Method

The direct by key access method is similar to the key indexed access method
except that no second data set exists. The single data set is kept in key
sequence by DE/RPG. Each time a record is added, the system inserts the
record where it should logically reside in the data set. Records are accessed by
key, as in the key indexed access method. Keys must be unique.

An advantage of the direct by key access method is that the records are kept
in logical order without the use of the sort program. A disadvantage is that as
the data set grows, the amount of time needed to insert each record might
become prohibitive.

Any data set can be accessed by the direct by key access method as long as
the key being used is in ascending sequence in the data set.

RECORD DELETION

The 5280 can delete records from a data set. When a record is deleted, the
system marks the record as deleted. To actually remove the deleted record
from the data set copy the data to a new data set using the diskette copy
utility. The default option removes the deleted records.

The following is an example of a data set with several deleted records.

Relative Record Number
2 3 4 5 6 7 8 9 10 11

Record ~I ~321~327wa 418 1 1 622 1 f Key 101 219

~/
Deleted Records

This is the same data set after you run the data set copy utility:

Record \ 101
Key 1-

Relative Record Number

2 3 4 5

219 321

6 7

621

In the direct access method, an attempt to read a deleted record results in an
error message. Attempting to read a deleted record in sequential access does
not result in an error message; the system skips over deleted records.

Note: It is possible to recover deleted records from I exchange data sets. See
Record Delete Character under Data Set Label.

Data Set Concepts 21

22

RECORD INSERTION

The 5280 can insert one or several records into a data set. When you insert
more than one record at the same time, every record from the point of
insertion to the end of the data set is moved to make room for the inserted
records.

The more records that are beyond the point of insertion, the longer the
insertion will take.

This is a two step process. First the system inserts deleted records. Then you
enter the records that are to be inserted, and the system writes those records
to the data set, one at a time. For example, you want to insert 10 records at
one time. The system inserts 10 deleted records at the point prior to the
current record. You then can enter those 10 records. If you enter. the first
three records and then stop before entering the remaining seven records, you
will have seven deleted records.

If a multiple-insertion attempt fails, try to insert one record at a time.

When you need to insert only one record with a DE/RPG program or the key
entry utility, there is an option that can speed the process considerably. If the
data set contains deleted records following the point of insertion, only those
records up to the first deletion need to be moved. The insertion occurs prior to
your current position in the data set. The following is an example of what
happens during a record insertion in DE/RPG. The data set is currently

positioned at record 72 (relative record number 23). Before insertion:

Relative Record Number

18 19 20 21 22 23 24 25 26 27 28 29

Record il Key
27 ~ 29 I 41 I 43 I 72 ~ 100 I 101 I 104 I 110 ~

L
Deleted Records

After inserting a record with a key of 52:

Relative Record Number

18 19 20 21 22 23 24 25 26 27 28 29

Record il ~ 29 I 41 I 43
Key 27 I 52 I 72 I 100 I 101 104 110~

Notice that the insertion could have occurred anywhere in the data set. For
example, if the current position had been at record 104 (relative record number
271. the insertion would have come between records 101 and 104.

Note: If the end of data (EOD) and end of extent (EOE+1) are equal. no
records will be inserted; the data set is considered full. Therefore, data sets
that might have records added later should be preallocated with room for
growth. In the case of I exchange, EOD and EOE+1 can be equal, but there still
might be room to insert records into the data set if the last sector is not full.

RECORD SEARCHING

Several different search functions are available on the 5280. You can find the
first, current, and last record in a data set. You can find and display the record

in a data set that contains a certain relative record number. Or you can find a

record that contains a specific piece of data.

Refer to the Operator's Guide for detailed information concerning searches.

OPENING AND CLOSING DATA SETS

To access a data set, a program must first open it. The open procedure
checks for such items as the share status and valid exchange type. Depending

upon how a data set is opened, the data set might be accessed (shared) by

more than one program. In DE/RPG there are three ways that a data set can

be opened:

• Unshared

• Shared read

• Shared read /write

When a data set is opened as unshared, only the program that opens the data

set has access to it. both for reading and for writing. If another program
attempts to access the data set, the requesting program will receive an error

code telling it that the data set is already opened.

Shared (shared read and shared read/write) data sets can be accessed by

more than one program at a time. Any additions made to a shared data set

must be made at the end of the data set. Because no insertions are allowed
with a shared data set, transaction data sets should always be opened as

unshared data sets.

Whether or not a second program can access a data set that has already been

opened depends on:

• How the first program opened the data set

• How the first program is using the data set

• How the second program attempts to open the data set

• How the second program intends to use the data set

Data Set Concepts 23

24

The following table shows the combinations that are possible. Allowable
combinations are marked with an asterisk.

Program 1
Doing/Allowing

R/R "

R+W/R

R/R+W * *

R+W/R+W

R '" Reading, W = Writing

"

*

" *

* *

Program 2
Doing/Allowing

R/R

R+W/R

R/R+W

R+W/R+W

If program 1 opens a data set allowing shared read, and will be both reading
and writing to the data set. program 2 will only be able to open the data set if
it opens the data set with shared read/write and only if it is going to read the
data set. If program 1 opens the data set with shared read/write and is only
going to read· the data set. program 2 can open the data set any of the ways
that allow the sharing of data sets.

When the program is through with a data set. it issues a close instruction to
the data set. Depending on how the data set was opened, this might free the
data set to be opened a different way.

RECOVERING FROM I/O ERRORS

The purpose of initializing a diskette is in part to detect defective sectors, that
is, sectors where data could be lost. If a defective sector is encountered
during initialization, the entire cylinder on which the sector resides is
considered defective, and an alternative cylinder is substituted. There can be a
maximum of two cylinder substitutions per diskette on the 5280. This is taken
care of by the system, and you do not need to be concerned with which
cylinders are defective. The one exception is the IPL diskette, where cylinder

substitution is not allowed.

A sector can become defective after initialization, even after data resides on it.
Any time the system encounters a defective sector, the program running at the
time will terminate with an error message, or an error code will be sent to the
DE/RPG program.

If a sector does become defective after data is already stored in the data set,
the data in the defective sector is lost. Depending on the length of each
record, the physical buffer length, and the exchange type, more than one
record could be lost. This is a major reason for you to have backup copies of
your diskettes.

In the event that you encounter an unrecoverable read error and you do not
have a copy of the lost records, proceed as follows:

1. Use the diskette label maintenance utility to create a data set to use for

output.

2. Use the close failure recovery program to determine the logical record
position of the failure (position n). Use EOJ to terminate the close failure
recovery program.

3. Use the diskette copy utility, specify record option, to copy records 1
through n-1.

4. Restart the diskette copy utility, specify record option, to copy a record
to position n. The contents of this particular record are unimportant at
this time. This will usually be more than one record in the I exchange.

5. Restart the diskette copy utility, specify record option, to copy records
n + 1 through the end of the data set.

6. Write a DE/RPG program to replace the lost record or records.

Data Set Concepts 25

26

COPYING DATA SETS

There will be many times when you will need to copy data from one diskette
to another. The kinds of copy available on the 5280 system are:

• Image copy-The entire contents of one diskette are copied to another
dil'kette of the same type.

Ii
• Vb/ume copy-The entire contents of a diskette of one type are copied to a

diskette of the same or another type.

• Data set copy-A single data set is copied from one diskette to another
diskette. Or up to four data sets can be combined and copied to one data
set on the same or another diskette.

• Specify record copy-Records are copied by specifying the relative record
number of the first and last record to be copied.

• Specify key copy-Records are copied from one diskette to another diskette
if the records contain a specified key or keys. Up to three keys can be
specified.

For detailed descriptions of each copy type, refer to the diskette copy utility.

DYNAMIC ALLOCATION AND PREALLOCATION

Sort/Merge Program Product the DE/RPG compiler, DE/RPG object
programs, the source entry program that accompanies the DE/RPG compiler,
and the key entry and diskette copy utilities require that an output data set be
present for output. Some of these programs give you the option of either
preallocating or dynamically allocating the output data set.

Sort/Merge Program Product always allocates the output data set dynamically.

The output data set will only be as long as is necessary to complete the
operation.

The remaining programs can have their output data sets preallocated with the
diskette label maintenance utility. You have the option of making the data set
as large as you choose.

If you choose not to preallocate the output data set, the type of dynamic
allocation depends on the program. The DE/RPG compiler gives you no choice
as to the size of the output data set that will contain the object program. The
diskette copy utility will make the output data set only as large as it needs to
be.

DE/RPG object programs, the source entry program, and the key entry utility
allow you to specify the number of records you want to allocate as a part of
dynamic allocation.

It is recommended that you allocate data sets with future growth in mind.

DELETING DATA SETS

To delete a data set, use the diskette/ data set clear or the diskette label
maintenance utility. With the diskette/data set clear utility, you have the option
of dropping the data set but retaining the data set name (and other pertinent
information, such as number of records and record length). or of freeing the
data set and the data set name from the diskette directory. The diskette label
maintenance utility always frees the data set and the data set name.

If you attempt to delete a write-protected data set, you will get a warning
message that the data set is write-protected. You then must choose whether
or not to delete the data set .

• ATA SEi LABEL

Each data set has a label that tells the system all it needs to know about the
data set. Much of the information in the data set label, such as where the data
set actually resides on the diskette, is maintained by the system.

However, much of the information can be changed at your discretion, such as
the expiration date and the write-protect indicator. The following table lists
each area of the label that you can modify, and its length in bytes.

Name

Data Set Name
Bypass Indicator
Write-Protect Indicator
Exchange Type Indicator
Multivolume Indicator
Volume Sequence Number
Creation Date
Record Length
Expiration Date
Verify/Copy Indicator
Record Delete Character

Length

8

1
2
6
4
6

The following paragraphs discuss these fields. Refer to the diskette label
maintenance utility for information on modifying these fields.

Data Set Concepts 27

28

Data Set Name

Each data set is identified by a name. The name must begin with an alphabetic
character and can be followed by up to seven alphameric (A through Z and 0
through 9) characters. The following are valid data set names:

SALES200
S
A182C3D4

The following are invalid data set names:

200SALES
CHRONICLE
NAME%

(begins with a nonalphabetic character)
(contains more than 8 characters)
(contains a nonalphameric character)

On the 5280, the VaLID specification can be included in the data-set-name
field of the load prompt to ensure the use of a particular diskette, if the same
data set name is used on more than one diskette. The syntax is *volid.dsname
where volid is the 1- to 6-character volume 10, and dsname is the data set
name.

Bypass Indicator

The bypass indicator specifies which data sets will be skipped during diskette
exchange or copy operations when you are transmitting data sets. The letter 8
indicates bypass; a blank indicates no bypass. This field is only used by
communications.

Write-Protect Indicator

The write-protect feature can be used to protect a data set so that the data
can be read but not written to. The letter P indicates write-protect; a blank
indicates no write-protect.

Exchange Type Indicator

The exchange type indicator defines the exchange type of the data set. A
blank indicates basic exchange, the letter H indicates H exchange, and the
letter I indicates I exchange. Refer to Chapter 4 for more information on
exchange types.

Multivolume Indicator

The multivolume indicator indicates whether or not a data set is continued on
another diskette volume. The letter C indicates that the data set is continued
on another diskette. The letter L indicates that this is the last diskette that
contains the data set. A blank indicates that the data set is contained on only
this diskette.

Volume Sequence Number

Volume sequence numbers indicate the sequence of volumes in a multivolume
data set. The sequence must be consecutive, beginning with 01 to a maximum
of 99. A blank indicates that the data set is contained on one diskette.

Creation Date

This field can contain the date that the data set was created. The format is
YYMMDD. For example, August 25, 1980, would be represented as 800825.

Record Length

This field contains the length of each record in the data set. The maximum
record sizes on the 5280 are:

Exchange Type

Basic
H

Expiration Date

Record Size

1 28 characters
256 characters
024 characters

This field contains the date (YYMMDD) when the data set and its label can be
deleted. There are three possible entries for this field: all blanks, all nines, or a
valid date.

At allocation time, the 5280 always assigns all blanks. This indicates that the
data set can be deleted at any time on the 5280. The data set will never be
deleted unless you request the deletion, however. All blanks also indicate that
the data set can be deleted on a system other than the 5280. (On the
System/34, for example, a data set with all blanks is considered expired and
the system will use this space as if it were unallocated.) You should use the
diskette label maintenance utility to modify this field if this diskette might be
used on another system and you do not want the data set deleted.

If the field contains 999999, the data set will never expire. To delete the data
set, it will first be necessary to change this field.

If the field contains a valid date, the system will check this date against the
date that was entered at IPL time. The data set is considered expired on and
after the date given. A valid date that has expired is treated the same as all
blanks.

If no date was given at IPL time, the data set is considered unexpired, and it
will be necessary to change this field to all blanks before you can delete the
data set.

Trying to delete an unexpired data set will result in an error message.

Data Set Concepts 29

30

Verify/Copy Indicator

This character indicates that data has been copied correctly. A V indicates

verification; a blank indicates no verification.

Record Delete Character

For the I exchange, this character is compared to the last character of a record.
If they are equal, the system considers this record deleted. By changing this

character, it is possible to recover deleted records. If you are using I exchange

and are planning to use this function, it is recommended that you reserve the

last character of each record as the delete character. Then, should you delete
a record and later decide to recover it, no pertinent data will have been lost.

With the basic and H exchanges, deleted records are marked at the beginning

of their corresponding sectors. There is no record delete character, and once a

record is deleted, it cannot be recovered.

Chapter 4. Data Exchange With Other IBM Systems

Data exchange is the capability to exchange data with other systems. To do
this, the data sets that are to be exchanged between two systems must meet
certain requirements, depending on the exchange type being used. The 5280
supports these exchange types:

• Basic

• H

• I

The requirements for these exchange types are discussed next.

BASIC EXCHANGE

The basic exchange type has all of the following characteristics:

• The diskette sector must be 128 bytes (format 1 or 4).

• The sectors must be in sequential order.

• All the records in the data set must be the same length.

• The record length and block size must be less than or equal to 128.

• The records in the data set must be unblocked and unspanned. (See
Chapter 3 for more information on unblocked and unspanned records.)

• The data set name must be 8 characters or less.

• The records must be written to the data set using the EBCDIC or ASCII
character set.

)

• The data set must be located within cylinders 1 through 73 on a type 1
diskette and 1 through 74 on a type 2 diskette.

H EXCHANGE

The H exchange type is the same as the basic exchange type except that:

• The sector size must be 256 bytes (format 7 only).

• The record length and block size must be less than or equal to 256.

• The data set must be located within cylinders 1 through 74.

Data Exchange With Other IBM Systems 31

32

I EXCHANGE
•

The I exchange has all of the following characteristics:

• All records in the data set must be the same length (less than or equal to
1024).

• All records in the data set must be blocked and spanned. (See Chapter 3
for more information on blocked and spanned records.)

• The data set name must be 8 characters or less.

• The records must be written to the data set using the EBCDIC or ASCII
character set.

• The data set must be located within cylinders 1 through 74.

DISKETTE FORMATS

The following table shows what diskette formats are needed to exchange data
with other. systems.

Diskette Format

Product Basic Exchange H Exchange I Exchange

3774 1

5/3 1

5/32 1

5/370 1

3741 1

3790 1

5/1 1

5/34 1 7 1,3,7,9

5260 1 7

5110 1;4 7

8100 1,4 7

5280 1,4 7 1-9

After knowing what diskette format you need, you can then use the following
table for additional information, such as diskette type and bytes per sector.

Diskette Diskette Max # of Tracks/ Sectors/ Bytes/ Storage
Format Type Data Sets Cylinder Track Sector Capacity

1 1 19 1 26 128

2 1 19 1 15 256

3 1 19 1 8 512

4 2 45 2 26 128

5 2 45 2 15 256

6 2 45 2 8 512

7 2D 71* 2 26 256

8 2D 71* 2 15 512

9 2D 71* 2 8 1 024

* Formats 7, 8, and 9 permit the extended label area.

Suppose you need to exchange data with a 5260. By using the Diskette
Format Table you can see that you can use either the basic or H exchange. If
you choose the H exchange, you need to go by diskette format 7. Reading
across format 7 in the above table, you can see that it requires a diskette 2D
formatted with 256-byte sectors.

246272

284160

303 104

492544

568320

606208

985088

1 136640

1 212416

Data Exchange With Other IBM Systems 33

34

Chapter 5. Partition Concepts

To enable the 5280 system to support multiprogramming, the user storage area
can be divided into partitions. A partition is a reserved area of user storage
that is exclusively available for your programs and utilities. Each partition
occupies a specific area of user storage.

The total user storage area available ranges from 32 K to 160 K. Part of this
area is occupied by the IBM-supplied program support and tables called the
common area, which will occupy approximately 6 K, 15 K, or 16 K bytes. See
Chapter 6 of this manual for more about the common area.

If you have 64 K of storage and 16 K is occupied by the common area, you
have 48 K to divide into partitions. The size and type of program to be run in
a partition should be taken into consideration when tailoring your system. The
smallest partition allowed is 6 K; the largest is 64 K.

There are two kinds of partitions: foreground partitions and background
partitions. Foreground partitions are each associated with a particular
keyboard. Because there can be a maximum of four keyboards on the 5280,
there can be up to four foreground partitions. Foreground partitions are
generally used for applications that require regular use of the keyboard, such
as data entry applications.

Background partitions are not associated with a particular keyboard until a
program is loaded. Programs that operate in the background are normally
independent in nature and require minimal operator interaction, for example,
compilers. However, a background partition can request a keyboard when
necessary. In this case, a solid rectangular block will appear on the side of the
display screen that was used to initiate the background program.

There can be a maximum of eight partitions in addition to the common area.
Therefore, if your system has three keyboards, you can define five background
partitions. However, a typical configuration will have one or two background
partitions.

The following figure shows one way that a 64 K system with three keyboards
could be partitioned:

15 K Common Area

9 K Foreground Partition 0

9 K Foreground Partition 1

6 K Foreground Partition 2

16 K Background Partition 3

9 K Background Partition 4

Partition Concepts 35

36

The first 15 K is used for the common area. The first three partitions, partition
0, partition 1, and partition 2, are associated with keyboards 0, 1, and 2
respectively. Partitions 3 and 4 are background partitions.

Notice that keyboards ° and 1 have 9 K, which will allow the running of most
utilities in foreground. Keyboard 2 is limited to running programs of 6 K or less
in the foreground: these would be programs that you have written and
compiled yourself. Anyone of the keyboards can have access to either
background partition, which means that a program product such as
Sort/Merge, which requires 16 K, can be run in partition 3 from any of the
keyboards.

PARTITION INTERFACING

Each keyboard can have one foreground and one or more background
programs running at the same time. The following paragraphs describe how to
load programs into partitions other than the one you are presently in, and how
to go from one partition to another when you have more than one program
running at the same time.

Program Loading

Loading from Foreground into Background: If you are running a program in the
foreground and need to load a background program, press the Sys Req
(System Request) key and load the program. The keyboard will then be
attached to the background partition. Press the Cncl (Cancel) key to cancel the
system request if you decide not to load the background program.

Loading from Background into Foreground: If you are running a program in the
background and need to load a foreground program, press the Attn (Attention)
key to return to the foreground and load the program. The keyboard will then
be attached to the foreground program.

Loading from Background into Background: If you are running a program in the
background and need to load a second background program, press the Sys
Req key and load the program. The keyboard will remain attached to the first
background program.

Any request to load into a partition that already has a program running will
result in an error message. A second request will terminate the old program
and load the new one if you are loading into the same partition. For example,
if you are running a program in foreground in partition 1 and attempt to load a
new program in partition 1, you will get an error message. The second time
you do this the old program will be terminated and the new program will begin
execution.

Switching Partitions

Going from Foreground to Background: If you are running a program in the
foreground, you can get to a background program in two different ways. If the
solid rectangular block appears on the side of the screen, press the Attn key
and you will be in the background program.

If you need to terminate a background program while in the foreground and
the solid rectangular block is not displayed, see Console Mode, later in this
chapter.

Going from Background to Foreground: Normal operation of the 5280 assumes
that a program running in the foreground is constantly using the keyboard.
Thus, after you are finished servicing a background keyboard request, press the
Attn key. If a background program terminates while you are in it, you will
automatically be returned to the foreground.

Going from Background to Background: Pressing the Attn key will allow you to
go from one background program to another if another background program is
requesting the keyboard.

CONSOLE MODE

The console mode should be used to terminate a background program that
cannot be accessed with the Attn key. The background program must be
associated with the keyboard that invokes this procedure. To terminate a
background program:

1. Press the Cmd key, the C key, the 8 key, and the partition number to
connect to the background partition.

2. Depending on which program is running in the background (for example,
DE/RPG or communications}, see the appropriate manual for procedures
for ending a job.

3. Once the program in the background partition ends, the system
automatically returns to the foreground partition.

When the end of job is complete, press the Attn key to restore the prompt
that might be associated with the foreground, if such a prompt is not already
displayed. If another background job is requesting the keyboard, you can press
the Attn key one again to return to the foreground prompt.

Partition Concepts 37

38

Chapter 6. The Common Area

The common area contains information and functions that can be used by any

of the devices or programs in the system. The common area is established in

the system during the IPL (initial program load) process. Depending upon the

common function option selected during system configuration, the common

area uses approximately 6 K, 15 K, or 16 K of the user storage. See
Calculating the Size of the Common Area later in this chapter for more

information on the amount of user storage required for the common area. The

common area resides in the first part of user storage. The following illustration
shows how user storage might be allocated for a 48 K system with three

partitions, one keyboard, one diskette drive, and no printers.

User Storage

16 K -Common Area

9 K -Foreground Partition

7 K -Background Partition

16 K -Background Partition

CALCULATING THE SIZE OF THE COMMON AREA

The size of the common area is determined by the common function option

being used, the ASCII table (if required), the number of keyboards, the number
of diskette drives, the number of printers on the system, and the resource

allocation table. The following chart shows the approximate size of the

common area for a system that has no printers, one diskette drive, and one

keyboard:

Common Function Common
Option Name Area Size

SYSDPRT2 6 K

SYSCFA 15 K
SYSHELP 16 K

(See The Common Functions later in this chapter for more detailed information

about each common function option.)

The tables in the common area that can cause the size of the common area to
be greater than 6 K, 15 K, or 16 K are:

• The printer configuration table. This table is present in the common area
only if one or more printers are on the system. The size of this table is:

The Common Area 39 .,

40
~

Number of
Printers

1
2
3
4
5

Additional Storage Required
for the Common Area

12 bytes
20 bytes
28 bytes
36 bytes
44 bytes

• DE/RPG and key entry utility production statistics table. The size of this
table depends upon the number of keyboards on the system:

Number of
Keyboards

2
3
4

Additional Storage Required
for the Common Area

64 bytes
128 bytes
192 bytes

• System error log table. The size of this table depends upon the number of
diskettes and printers on the system:

Number of
Devices

2-4 diskettes
5-8 diskettes
1-5 printers

Additional Storage Required
for the Common Area

130 bytes
260 bytes
130 bytes

• Printer error log table. The size of this table depends upon the number of
printers on the system:

Number of
Printers

2
3
4
5

Additional Storage Required
for the Common Area

20 bytes
40 bytes
60 bytes
80 bytes

• ASCII translation table. If this table is required, its size is 512 bytes.

• Resource allocation table. (The resource allocation table is discussed in
detail later in this chapter.) If logical IDs are specified, the size of this table
can be determined as follows:

4 bytes for each system shared or partition entry.
- 4 bytes for the end of the table.

When the system configuration program is run, you can determine the size of
the common area before you specify the partition sizes. The system displays
the amount of available user storage before the partition sizes are specified.
You can subtract the amount of available storage from the total storage (or 64
K if your system is greater than 64 K) to determine the actual common area
size.

THE RESOURCE ALLOCATION TABLE

The resource allocation table contains the logical device lOs (identifications)
that were specified for the physical devices when the system configuration
program was executed. The logical device lOs are two-character identifiers that
can be used by your user-written OE/RPG or Sort/Merge Program Product
programs in place of the four-character physical device address. This gives
programs independence from hardware configurations.

There are two types of entries in the resource allocation table: system shared
entries and partition entries. System shared entries are used (shared) by
programs that are executing in any partition. For example, if 01 was specified
as a system shared entry for diskette drive 4000, programs that are executing
in any partition can read or write data to diskette drive 4000 by using the

.Iogical 10 01. Partition entries are only used by a program executing in a
specific partition. The following illustration shows some entries that might be
contained in a resource allocation table.

Physical Device Address Logical 10

4000 01
Partition 0

5000 02

4400 01 Partition 1

4800 01 Partition 2

4000 02

4400 03
System Shared Entries

4800 04

8000 P1

Following are examples of how the logical 10 from this resource allocation
table can be used by programs executing in partitions 0, 1, and 2:

• If logical 10 03 is used in a program executing in any partition, the data is
read from or written to the diskette at physical device address 4400.

• If logical 10 02 is used in a program executing in partitions 1 or 2, the
address 4000 is obtained from the system shared entries. With partition 0,
address 5000 is used since the system will always check the partition table
first.

• If logical 10 01 is used in a program, the data is read from or written to the
diskette at the physical device address specified in the resource allocation
table. For example, if the program is executing in partition 2, the data is
read from or written to the diskette at physical device address 4800.

When the resource allocation table is created using the s'f\Stem configuration
program, you can place blank entries in the table for future use. Then at a later
time, you can use the resource allocation table utility to change the blank
entries to valid logical lOs for physical device addresses. While any logical lOs
could be used, it is recommended that diskettes be 01 through 08 and printers

be P1 through P5 to facilitate object program movement between systems
without source code changes.

The Common Area 41

42

THE COMMON FUNCTIONS

The common functions reside in a shared area that can be used by programs
executing in any partition. The program products that use the common
functions are the System Control Programming, Utilities, Sort/Merge,
Communications, Assembler, and DE/RPG. The source DE/RPG programs do
not actually call a common function; however, the DE/RPG compiler supplies
the object instructions in the generated object program to call a common
function when required. The common functions perform operations such as:

• Displaying machine check and I/O error codes.

• Displaying help messages for some error messages if the Help key is
pressed (if the SYSDPRT2 or SYSHELP option is chosen during system
configuration).

• Attaching a partition to a keyboard. (See Chapter 5 for more information on
attaching partitions.)

• Requesting the owner ID of and allowing access to an access-protected
diskette.

• Loading a program into a partition.

Three options are available for selecting the common functions you want in the
common area. You must select the appropriate option during execution of the

system configuration program. The option you select depends upon what
programs are to be run on the system. For example, common functions option
SYSCFA or SYSHELP is required for DE/RPG, the source entry program, key
entry utility, and 3740 format conversion programs. Following is a description
of each common function option.

SYSDPRT2: This option provides the basic IBM-supplied common functions.
It also provides help text for certain errors that will be displayed when the Help
key is pressed. This option can be used with all utilities (except the key entry
and the 3740 format conversion utilities), System Control Programming,

Communications, the assembler processor, and the DE/RPG compiler. When
SYSDPRT2 is selected, the common area requires approximately 6 K of user
storage, which means this option leaves the maximum amount of user storage.

SYSCF A: This option provides the same common functions as SYSDPRT2,
plus additional common functions that support DE/RPG programs, the source
entry program, the key entry, and 3740 format conversion utilities. However,
with SYSCFA, there is no help text provided when the Help key is pressed. In
this case you must use the Message Manual to determine what the error code

means. When this option is selected, the common area requires approximately
15 K of user storage .

•

SYSHELP: This option provides the same common functions as the SYSCFA
option and includes the help text capability. SYSHELP requires approximately

16 K of user storage.

If you try to execute a DE/RPG compiled program, the source entry program,
the key entry utility, or the 3740 format conversion utility using the common
function SYSDPRT2 option, a program check error occurs. In this case, you

must IPL the system using an IPL diskette that contains common functions
option SYSCFA or SYSHELP before you can run the program or utility.

The Common Area 43

44

Chapter 7. Performance Characteristics

Within the 5280 family there are three programmable controllers: the 5285, the
5286, and the 5288. All three have the same system architecture and differ
only in their configuration constraints. All three have various microprocessors
to control the operation of the entire system.

All models of the 5280 have the application microprocessor, the
keyboard/display microprocessor, and the first diskette microprocessor. The
second diskette microprocessor, the printer microprocessor, and the
communication microprocessor are optional. depending on the features
ordered.

These microprocessors and their major functions are as follows:

• Application Microprocessor
- Performs applications, arithmetic, and logic
- Controls the other microprocessors on the system
- Shares its time among the multiple jobs

• Keyboard / Display Microprocessor
- Controls all input to and output from the screen
- Performs character/field edits
- Supports from one to four keyboards
- Provides language translation
- Logs errors

• .Diskette Microprocessor
- Supports from one to four diskettes
- Supports diskettes 1, 2, and 2D
- Supports basic, H, and I exchange types
- Provides diskette data management
- Supports single and double buffering
- Blocks and deblocks diskette data
- Provides device control
- Initializes diskettes
- Logs errors

• Printer Microprocessor
- Supports up to four 5256 printers and one 5225 printer
- Routes data to the printers
- Supports single and double buffering
- Blocks and deblocks diskette data
- Logs errors

Performance Characteristics 45

46

• Communications Microprocessor
- Provides an interface between the communications line and the

communications access method (CAM)
- Provides link level control
- Supports binary synchronous communications (BSC) and synchronous

data link control (SDLC)
- Performs error handling
- Provides diagnostic support for communications

Use of Memory on the 5280

The memory on the 5280 is divided into a common area and user partitions.
See Chapter 5, Partition Concepts, for more information about partitions and
how they work.

Dispatching of Jobs

The partitions contain the application code and share the available time on the

application microprocessor. The base dispatching sequence of jobs begins with
the first foreground partition and proceeds to the next partition until all
partitions have received their allotted portions of execution time (called time
slices). Once the last background partition is serviced, the cycle begins again
with the first foreground partition. The following figure shows the normal
sequence of partition servicing.

I = Processing in partition = Flow of control
Partition
Number • -+-- ,-.......

0 Foreground 1 (FG1) I !
1 Foreground 2 (FG2) I I

2 Foreground 3 (FG3) I I

3 Foreground 4 (FG4) I I

4 Background 1 (BG1) i !
5 Background 2 (BG2) I I

6 Background 3 (BG3) I I

7 Background 4 (BG4) i i
I I _____ 1 I I '-____ 1

This sequence is interrupted when a record is completed or when a user exit
occurs, causing an attention to the application microprocessor. (Examples of
functions causing user exits are table look-ups, range checks, and user

subroutines). The partition in which the keyboard attention occurs is then
serviced. The service is immediate if the processing being interrupted is not
responding to a previous attention, or at the end of the time slice if the
interrupted partition is responding to an attention request.

Once the partition has received its time slice, processing continues with the
next sequential partition if no keyboard attention is pending. As a result of
keyboard attention servicing, the cyclical processing of partitions is disrupted,
with the result that some partitions receive more frequent time slices while
others receive proportionally fewer. The following figure illustrates the
dispatching of jobs.

• I = Processing in partition : = Flow of control
Partition
Number

0 Foreground 1 (FG1) i -
1 Foreground 2 (FG2) ~
2 Foreground 3 (FG3) • ..--'1 ~
3 Foreground 4 (FG4) • ~
4 Background 1 (BG1) i ~
5 Background 2 (BG2) • • ~
6 Background 3 (BG3)

!. ____ I !
7 Background 4 (BG4) ~

• !.----I

In the preceding figure, processing begins at FG1, proceeds in sequence with
FG2, and continues until it begins processing BG2. Before the time slice for
BG2 is completed, an attention from the keyboard attached to FG4 causes the
application microprocessor to transfer processing to a new time slice for FG4.
After FG4 is serviced, processing continues with BG1 and the sequence
continues until an attention from FG2 causes the application microprocessor to
interrupt BG4 to service FG2. After FG2 is serviced, processing continues with
FG3 and so on.

Time Slice Values

The amount of time given to jobs depends on the jobs themselves. Some jobs
receive larger time slices than others. The time slice values are as follows:

• The key entry utility, the communications access method (CAM), and
DE/RPG using a transaction data set receive 60 milliseconds per time slice.

• DE/RPG in rerun mode receives 4 milliseconds per time slice.

• All other jobs receive 12 milliseconds per time slice.

Performance Characteristics 47

48

DISKETTE RECORD I/O PERFORMANCE

This section is intended to act as a guide to diskette performance on the 5280.
Individual programmers should determine which of the following factors has

the strongest influence in a particular application program and structure the
code accordingly to obtain the best performance.

Characteristics of the Media

The 5280 diskette unit drives rotate at a constant speed of 360 revolutions per
minute (RPM), or one complete revolution every 1/6 of a second (166 ms).
The amount of data passing under the read /write heads and, therefore, the
data transfer rates and the read /write rates vary as a function of format and
recording techniques. The instantaneous data transfer rate is 1 byte every 32

microseconds for diskettes 1 and 2, and 2 bytes every 32 microseconds for

diskette 2D.

The difference between the instantaneous data transfer rate and the read rate
is that the read rate adds the overhead for reading sector lOs (address mark,
CRC, etc)' while the instantaneous data transfer rate does not add these

overhead times.

Movement to and within a data set directly affects performance. The factors
that must be taken into account in order to access data are:

• Head load time = 40 to 80 ms, depending on how far the head has to travel
to reach the intended track

• Track to track access time = 5 ms

• Head settle time = 35 ms

• Rotational delay (average) = 1/2 .of full rotation = 1/2 X 166 = 83 ms

For example, you have just closed a data set and the head is at cylinder O.
When you open a new data set, the following occurs:

• Load head = 80 ms

• Rotational delay = 83 ms to find correct header

When the first read or write I/O activity to the data set is initiated, there are
two possible results:

• Eight revolutions of the index hole have occurred without another diskette
instruction being used, and the heads have been unloaded. The diskette
microprocessor must perform all three of the following:
- Move to record = 5N ms + 35 ms where N is equal to the number of

track crossings
- Head load = 40 to 80 ms
- Rotational delay to find the correct sector = 83 ms

• The next diskette instruction has been issued prior to eight occurrences of
the index hole. The diskette microprocessor must perform both of the
following:
- Move to record = 5N + 35 ms
- Rotational delay = 83 ms

It would be most efficient to read or write a full cylinder of data (between 3.25
K and 16 K) before the next move or time increment of 5N + 35 ms. Also, the
number of head unloads and loads can be minimized when diskette I/O
instructions are issued prior to 8 occurrences of the next index hole (on the
average 7 1/2 revolutions = 1245 ms).

Average access time can be defined as the average time required to move
from one given place on the diskette to another. This requires track crossings
(N) equal to 1/3 of the total number of tracks (74), or 25. This definition
produces the following equation:

5N + 35 + rotational delay = 5(25) + 35 + 83 = 243 ms

Therefore, the average access time equals 243 ms.

Note: Figures used in Characteristics of the Media are approximate.

Performance Characteristics 49

50

Characteristics of the Data Set

The relation of multiple data sets (the number of data sets open, the location
of the data sets with regard to one another, and the amount and type of
activity within a data set) and the size of the data sets are important
performance considerations because of the track to track, head load and settle,
and rotational delays involved.

Relationship of Multiple Data Sets

Movement between multiple open data sets should be minimized in order to
minimize the various delays. If two data sets are to be open in the same
program, and you must decide whether the data sets are to reside on the same
or separate diskettes that will be in different drives, consider the following:

• If one data set is to be completely processed before the next one is
processed, they can both be placed on the same diskette with no significant
loss of performance.

• If there is to be constant interaction between the two data sets, they should
probably be placed on separate diskettes so that head action and accesses
are independent for each data set.

When there is activity between more than two data sets and there are a limited
number of drives, in general the data sets should be placed as close to each
other as possible. The one to be processed against most frequently should be
placed in front of and next to the one to be proccesed with the next most
frequency, and so on.

For example, assume you have an index data set and a master data set and
you are accessing them using the key indexed access method. The index data
set, in general, has multiple accesses for each direct access of the master data
set. Assuming either normal distribution of activity or skewed activity towards
the first two-thirds of the master data set, head movement and access time
are minimized when you place the index data set next to and before the master
data set.

Size of the Data Set

Obviously, the smaller the data set, the less time is spent in searching and
accessing within the data set, unless the data set is accessed directly.

TECHNIQUES FOR IMPROVING JOB PERFORMANCE

This section is intended for the programmer and regards tips and techniques
for improving performance of jobs on the 5280. These guidelines apply in
most, but not a", situations.

General Performance Guidelines

As explained earlier in this chapter in Dispatching of Jobs, the system gives a
time slice to each partition, usually beginning with the low-numbered
(foreground) partitions and advancing through the high-numbered (background)
partitions. The sequence of operation is interrupted by certain high-priority
events, such as keyboard entry of a field that is to be range checked. As a
result of interruptions, the performance of a program in the 5280 might be
affected by another program that is running concurrently.

To optimize the performance on the 5280, it is recommended that you do the
following:

• Configure only those partitions that you expect to use. Unused partitions
still require processor time.

• In general. partitions are serviced from lowest to highest partition number.
Run your highest-priority programs in the lowest-numbered partitions
available. Those programs that require little or no keyboard interaction
should generally be run in a background partition.

• Do not put a high-priority nonkeyboard program (for example, CAM) in a
partition that having a lower number than a program that causes a high
number of attentions to the application microprocessor. The high-priority
program could receive significantly fewer time slices than if it were placed in
a partition immediately following the highly attention-oriented program. This
is particularly true when several partitions are active concurrently.

• Minimize the number of resources, such as diskettes and data sets, that are
shared.

• As much as possible, avoid using the application microprocessor resource
during data entry. For example, to automatically fill a field with data stored
in memory, use the AUXDUP function (handled by the keyboard
microprocessor) instead of the INSERT function (handled by the application
microprocessor).

• Minimize the use of prompting messages. If prompts are used on a new job
or with new operators, prepare additional formats that eliminate a" but the
important prompts after the training period. This usually improves the
response times between records. Various location prompts require more
time than fixed location prompts.

Performance Characteristics 51

52

Diskette Usage Guidelines

This section discusses how proper placement and condition of diskettes and
data sets. memory usage. and in-memory indexes can improve diskette
performance.

The 5280 system can have up to eight diskette drives attached. If you have
two diskette microprocessors, one of the following must be true of your
system:

• There are five or more drives

• There are three or more remote drives

• There are three or more .local drives plus one or more remote drives

A local drive is one that is located in your controller- either a 5285.5286. or
5288. All other drives are remote. ..

Placement of Diskettes and Data Sets

The following guidelines should assist you in optimizing diskette usage:

• If a job uses multiple data sets. place the data sets on different diskettes to
minimize arm movement and contention. The use of multiple drives on the
same diskette microprocessor does not always improve performance.
however.

• If the system has two diskette microprocessors. assign the diskettes to
drives that equalize the workload between microprocessors. The diskettes
with device addresses in the range of 4000 through 4COO are assigned to
the first diskette microprocessor; those with 5000 through 5COO addresses
are assigned to the second diskette microprocessor.

• Do not share I/O bound microprocessors. If a microprocessor is already
overloaded. any additional burden will adversely affect all the users of the
microprocessor.

Condition of Diskettes and Data Sets ,/

In addition to the placement of diskettes and data sets, the condition of the
diskettes and data sets can influence the performance of jobs using the
diskette. Therefore, consider the following:

• Record insertion (one record only) in a data set provides the best
performance when deleted records are placed periodically throughout the
data set. In such cases, the insertion of a new record requires that the
records already in the data set be moved down only to the next deleted
record. The data set copy option of the diskette copy utility can be used to
create a data set with deleted records inserted at regular intervals.

• For the basic and H exchanges, deleted records or sectors degrade the
performance of the diskette compress and diskette print utilities, as well as
the image copy option of the diskette copy utility. For I exchange, deleted
records do not degrade performance.

• Unused labels in the label area can have an impact on the time it takes to
open a data set. On a diskette 20, for example, deleted labels in the
extended label area can affect the time it takes to open data sets.

Memory Usage

Memory usage within programs can affect the performance of diskette jobs.
The amount of buffering and record protection must be considered. These
guidelines apply to memory usage:

• For sequential processing of data sets, provide as large a buffer space as
possible. The large buffer reduces the number of physical reads.

• For 'random processing of a data set, use the smallest buffer possible. This
reduces the total number of sectors that must be read. Also, the smallest
number of records are locked when you use the smallest possible buffer,
since all records in a buffer are locked for a shared data set. Therefore,
double-buffering in this case is detrimental rather than beneficial.

Performance Characteristics 53

54

In-Memory Indexes

For a data set processed randomly by key, the performance can be enhanced
through the use of an in-memory index. The in-memory index reduces the
number of reads that are required to locate the desired record (DE/RPG
keyfile).

For cases where an index data set is used (key indexed access method), the
in-memory index is most efficient where there is one index per block of
indexed data. The number of entries required for the in-memory index can be
calculated by the following formula:

number of records in data set X (key length + 4)
sector size X number of sectors per buffer

The following must be considered:

• The formula assumes that the index is in the I exchange.

• The sector size is established by the diskette initialization utility. Depending
on the diskette type and format, the value might be 128, 256, 512, or 1024.

• For an index data set, the number of sectors per buffer is one' if the
expression (key length + 4) is a power of 2. This is true if the key length is
4, 12, or 28; otherwise the number of sectors per buffer is 2.

For cases where the master data set is used without an index (direct by key
access method), the number of entries for the in-memory index should be
adequate to assure that there are one- or two-index entries per track of data.
Allocating an excessive number of entries does not necessarily improve
performance. The number of tracks for a data set can be determined by one
of the following formulas:

• For the I exchange, the number of tracks equals:

record length X number of records
bytes per track

• For the basic and H exchanges, the number of tracks equals:

number of records
26

The number of cylinders can be determined by dividing the result of the above
expression by 2 for a diskette 2 or 2D. (For a diskette 1, track and cylinder are
equal.)

The values for the above expressions can be found in the final table of
Chapter 4.

Memory space is sacrificed for the in-memory index. To determine the amount
of memory used, the following formula applies:

bytes of memory = number of entries X (key length + 3)

DE/RPG Guidelines

This section discusses how proper format design, storage management, data
set usage, and DE/RPG usage can improve performance.

Format Design

DE/RPG performance can be affected by the manner in which the formats for
data entry, verification, and rerun are designed. Consider the following
guidelines:

• Using a large number of functions that require either service from the
application microprocessor or the heavy use of user-written subroutines
might not only affect the performance of the program itself but might also
cause degredation in the performance of other partitions. Where applicable,
the use of user exits or subroutines should be minimized.

• Verify and rerun mode might not need all the user exit or subroutine
functions provided in an entry or update format. If, for example, a format
calls for many application microprocessor functions such as self-check, table
look-up, range check, and field totals, and the purpose of the rerun is only
to recalculate batch totals, then a revised format that only calculates batch
totals would provide better performance for the rerun and less potential
contention with other partitions. Similarly, using a separate format for verify,
rather than specifying verify bypass, aids in reducing contention and in
improving performance.

• Use the INSERT function to compute a common expression in a working
storage field; then reference the working storage field for subsequent
operations such as COMP and other keywords.

Storage Management

Storage management, like proper format design, can improve performance or
allow DE/RPG jobs to have a greater flexibility in scheduling. The following
provides some guidance for use of storage:

• Some fields on a format could be unreferenced by any other statements
within the program. In such cases, a field name might not be needed. You
can reduce the program size by eliminating unreferenced named fields in
DE/RPG source programs.

• The use of tables in calculation specifications causes an increase in the
amount of memory required for a program. Regardless of the number of
table references, however, the same amount of supporting code is required
for the table. Thus, once a table is required, additional references require
only small amounts of memory for each reference.

Performance Characteristics 55

56

Data Set Usage

The use of data sets enables the DE/RPG programmer to develop jobs that
might have been difficult or impossible on previous systems. In addition to the
considerations for diskette usage described in Diskette Usage Guidelines earlier
in this chapter, the DE/RPG programmer should consider the following:

• Data sets that are to be processed using the key indexed access method
can be created most efficiently if they are created sequentially in DE/RPG.

The sort program can then be used to create the index data set or the
properly sequenced master data set.

• For jobs that are not key entry jobs, the use of larger sector sizes in data
sets improves throughput. However, the program requires additional
memory.

DE/RPG Compiler Usage

You can improve the performance of the DE/RPG compiler by considering the
following:

• DE/RPG compiles in a partition with a minimum of 9 K bytes. The
performance improves, however, if a larger partition is used. Generally, the
larger the partition provided, the better the compile performance becomes
until the optimum size of the partition is reached. The optimum size varies
for each program; where possible, however, at least a 16 K partition is
recommended for compilation.

• The work data sets used by the compiler should be spread across different
diskettes. Placing work data set SYSUT001 on a separate diskette might
significantly improve performance.

• The use of diskettes with larger sector sizes enhances the performance of
the compiler.

• Compute~bound jobs adversely affect the performance of the compile. Thus,
when compile times are to be optimized, the jobs should not be run
concurrently with heavily compute~bound jobs.

• Diskette I/O bound jobs adversely affect the performance of the compile,
particularly if the compiler partition is small (less than 16 K bytes).

Utility Performance Guidelines

This section discusses how proper use of the utilities can improve
performance. General guidelines will be discussed first, followed by the
diskette copy, diskette print. diskette compress, diskette initialization, key entry,
and communications utilities.

General Guidelines

The 5280 utilities provide a wide range of services. The following guidelines
apply to the performance of the utilities in general:

• Some utilities perform dynamic buffer allocation, depending on the partition
size in which they are executing. The partition size should be maximized for
sequential processing.

• In general, a larger partition improves performance.

• The system control programming (SCP) and utilities should be copied onto a
single diskette to minimize swapping of diskettes. Where this is done, the
initial program load (lPL) data sets must be placed first on the diskette. The
volume copy option of the diskette copy utility should be used to copy the
IPL data sets.

Diskette Copy Utility

The diskette copy utility has a number of options that can be used for a wide
variety of jobs. Depending on the operation desired, the following guidelines
can apply:

• For a complete diskette copy, the image copy option is faster than the
. volume copy option.

• Do not use the single diskette drive copy function unless there is no
alternative.

• Except for a single drive copy of the data set copy option, performance of
the diskette copy utility is not improved when the partition size is increased
beyond 24 K bytes.

• Defective sectors or deleted physical records degrade the performance of
the image copy option for basic and H exchange data sets.

• The data set copy option can be used to create data sets with deleted
records interspersed among active records. Such a data set improves
performance when random addition to a data set is required. The data set
must be preallocated to provide space at the end of the data set for
additional records.

Performance Characteristics 57

58

Diskette Print Utility

The diskette print utility functions can be used to print the contents of data
sets. Use of the utility is influenced by the following:

• Deleted physical records degrade the performance of the utility for basic
and H exchange data sets.

• The total number of printers in use on the system might affect the
throughput of the utility, but only if one of the printers in use at the time is
an IBM 5225 Printer.

• Contention for the printers on the system might affect the scheduling or
performance of the system, or both.

Diskette Compress Utility

Deleted physical records can degrade the performance of the diskette
compress utility for basic and H exchange data sets.

Diskette Initialization Utility

The diskette initialization utility places a heavy load on the diskette
microprocessor. Where possible, this utility should be run on a diskette
microprocessor being used for no other jobs. If there is only one diskette
microprocessor, you should try to run the utility in a dedicated environment.

Key Entry Utility

The key entry utility response times vary when the utility is chaining formats
via chaining or manual format selection. The response times vary according to
the complexity of the format, since the utility interprets the 3740-like format
each time the format is selected. If multiple operators are using the utility and
chaining, the response times might be lengthened significantly. When no
format change or chaining occurs, the response time is generally better than
when formats are being changed or when chaining is used. If a job chains
formats frequently, or if the job contains complex formats, it might be
desirable to code the job in DE/RPG.

Communications Utility

Communications support on the 5280 permits a wide range of uses. The
following should be considered in using communications:

• Communications throughput is not usually affected by concurrent key entry.
However, if key entry jobs have a large number of user exits or calculation
subroutines, the communications jobs might be adversely affected.

• Compute-bound jobs, such as a DE/RPG compile, can impact the
throughput of communications jobs. Wherever possible, such
compute-bound jobs should not be scheduled to run concurrently with
communications jobs.

• If maximum communications throughput is desired for a job, the job should
be scheduled to run in a dedicated environment. A cost advantage might be
gained if the job is scheduled at an hour when reduced line rates are
available.

• Small record sizes might provide less than optimum line utilization.

Performance Characteristics 59

60

Appendix A

The following table lists the character sets available on the 5280 system using
the IBM 5256 printer.

co
"0 co
c: > > co co c:

III CJ ~
c:

III co
~ "0 "0 E iii c: E

C> 0 III co
.J:; c: Z ~

~ - c: > co u 0 ~ III .J:; co
co II) c: "0 co "0 (!) .!:!! .:.!

~
III III C> III c: "0 co ... "0 C, c: co ... c: Q. co c: ...

0 ... u.. Q en c: c: co ·u .;:; en ~
co co W ~

III co co III "0
.J:; co co "0 co E

"0 c: "0 "0 .!:!! C>
E c: ::I III (.) III c: ::I ... c: c: co ... co c: ·N coc, >)(III .<:: c: c: .<:: ·co co 1:: c: II) co co

III ... c: co c: co c: ::I Qi co Q. Q.

.E co ... Q. Q. 0 ... III u:: co co ::t :::> CJ u.. :::> en en 0- co 0 « co .!:!,,

40

41 I>

42 ;~ r·

43 a • .1

44 ~

45 t3

46 a :~~

47 t:\ ;'

48 .{:: .(

49 il ')

4A I: (t. a " $ I~: .u. .S I~ I> t.= .;.: ...

4B

4C < < < < < < < r: < < < -(-(< < <

40 (((((((((

4E + + -+- + + + -+- -+- -+- -+- + + + -+- -+- -+-

4F

50 & & & & & & & & & & & c't ~~ & & &

51 f~ :1:

52 (~; ;t

53 f? t·'

Appendix A 61

O'l O'l O'l ~ O'l O'l O'l O'l tTl tTl tTl tTl tTl tTl tTl tTl tTl ~ tTl tTl Hexadecimal Value <» O'l tTl W I\) 0 '"T1 m 0 () to » co co tTl .j:>.
N

l:c' J>i :::. ~ J>: 1>:. '. " > ~. ..,. . :.:": '-' :;:::: -.' :1;' International

....... J .. _,- :.. .. : United States and Canada ..,..

....... ::-

..... ..,.. :.:~ Canada (French)

....... > =*=
.. , : France .",.... :

....... J ri--: United Kingdom ..,. .

........
'" ::;:: :;::: Spain

"
..l ~ Spanish Speaking' ..,..

"
" :,:. * -:,:::. Portugal

.' ::- '--" :;:: 1:-~ ~ Brazil

" > :;:, ... :0: Denmark and Norway":,.

....... ::- * j:. ... ~.~

Finland and Sweden ;....: .

....... ::- +.:==r Austria and Germany . .,..
'-'

....... ::- -:;::::. Belgium . .,..

....... > .~.
..... ~ :tr . Italy ..,..

....... ,
.~.

..... .;;(Japan (English) '"

.,.. ..

. 'l +K '.': Japan .(Katakana) ~. ..,.. u.:

-...J -...J -...J -...J -...J -...J -...J -...J 'J -...J -...J -...J Ol Ol Ol Ol Ol Ol Ol Ol Hexadecimal Value I:P » to CX) -...J Ol U1 -!:> W I'..l 0 "T1 m 0 (") I:P » to CX)

:;:= H-" H: H:' Ho. i!}' ;:1: m:· iT:-· os. .. J
.:-.... z! :::-:: International

=ii= _. ' .. -: .
~ United States and Canada

:ii=: :;:.:~ :=., Canada (French)

i""h . _. :;: .. -:: ::: .. France

:ii=
_. :;:.;:: United Kingdom

Zl ._. :::.:~ -:: Spain

.:::,: ".J :;:.:~ ::ii Spanish Speaking

::>~ : :;:~~ ::::! Portugal

Oi :1:: ··.~l ::; .. -:: 1-: Brazil

;::;=: .oJ ~:. .. ::: CI. Denmark and Norway

J>: :0-. .oJ ~::.::: c: Finland and Sweden

..... : ~":.:~ '-', Austria and Germany

=B= : :-
.:-.... ;=., Belgium

N-: ;:::- ·v·
.... , c ... Italy ~
.:-....

.....
-:r- ; Japan (English)

»
"0 :H:: ::.~ Japan (Katakana) "0 ~

.......
CD
::l
C. x·
»
OJ w

OJ (Xl (Xl (Xl (Xl (Xl (Xl (Xl (Xl (Xl (Xl (Xl ~
(Xl (Xl (Xl (Xl -..J -..J -..J -..J Hexadecimal Value

.j>. "TI m 0 (') (Xl):> co (Xl -..J 0> C1I W r-) 0 "TI m 0 (')

i~'" ~'fi i Ci.:. v "". :::r :.:::, m ...,. n C" ;l: :s:: = g :~ International v r.

:::r ;.C! fD 0- .. c:: il: = H ::::; United States and Canada

::r :.0 -+: m ...,. r: ,..,.. ::;.: = H ~: Canada (French)

:.: :.Q ~ ft! n w :::..: = H OJ" France

-' :.0 m n w :l: = g :~ United Kingdom

:::r :.!:: ~ :1) '"'- it w il: = g G,;:: Spain

:::r :.::: m n w a: = H ::;:.: Spanish Speaking

:::r :.Q, iT: CL :"1 :.w: ill = ii Oi Portugal

:::r :.0, m 0.. r: ::: il: = H J::~ Brazil

:::r :.:::: :t: 0.. n 0- il: = g ?S: Denmark and Norway

:::r :£! m ;::., n :::: 0.: = it 0 Finland and Sweden

:.0, :1J n w ;l: = g ,~ Austria and Germany :

:::r :.;:::, m :i v a: = n 0.:-- Belgium

-' :.Q rt: ::::;.. :'1 ,..,.. il: = H ,~ Italy :

:::r ;.Q, m '-'- : : 0- il; = .. ::::; Japan (English)

('j >J :;: ...:: Ll :.;r :...::: -# '-<. ~ H :..Jo -'. ~.j = n :~ Japan (Katakana) '-

» » » e; co co co co co co ~ co !S co co co co co co ~ Hexadecimal Value w I'.) .-. -n m 0 (') CD » co 0> U1 ~ W I'.) .-.

...;. !""l 1: XX ;::;:., F:! 10 til: .;::. "'0 ;:; ;:i :: :;::::- -. ¢ International

...;. i.:: -: ~ u ;:; ;:i ::. :;::::- -. United States and Canada

-. ,~

_.
~ u 0 =: ::. ... , '-. Canada (French) ¥, ,

...;. ,~ -; ~ 1:: 0 =i ::. :- :;::::- -. France ¥,

...;. i..,! -; ~ " ;:; ::: ::. A -. United Kingdom

...;. ,~

¥I , :0=:: u =i :: :- .-, ._. Spain

...;. ,~

¥, -: ,.:. u ;:; ::: ::. ;;:;- .-. Spanish Speaking

-. Vi rr: -: ~ '"t:: ::; -' =. :;::::- -. Portugal

...;. t.., . :f:.:. U 0 =: :: :;::::- '-. Brazil

-. b1 ~: -: ... -0 0 ;:i :: :;::::- --. Denmark and Norway

...;. t.--: -: ~ ::: 0 ;:i :: A -. Finland and Sweden

...;. i..."1 ~ -: ,.:. u 0 ;:i ::. :;::::- --. Austria and Germany

-. Vi -; ~ ::: 0 -' ::. ;;:;- '-. Belgium

...;. ,~ -; ~ u ;:; ¥, ;:i :: :;::::- -. Italy

...;. !""l ~ U ::: ;:i :: :;::::- '-. Japan (English)

6"
"* ...>j IT 0::":- Xi ! : :-f. 4: :....: 4t :..a . - Japan (Katakana) i

...... - --::s
Q. x·
:.-
(II
(71

co co co co co co co co l> l> l> l> l> l> l> l> l> l> l> l> Hexadecimal Value
Cll '-I 0) 01 .j>. W r-.,) 0 "'Tl m 0 C") co l> CD 00 '-I 0) 01 .j>.
Cll

:::;: !~ :..:-: ..,.
-H(M--: .:=:- ;.y.: -?> ~'"' t .. · :-.~ "< x :E -::: International ~! .. ~ '-'

j-,': .. < >< :E .::: !- United States and Canada

N .. < >-.: :E < >- Canada (French)

;-..: "< ::< :E -::: >- France

;"": ..• (::-:: ~ ." -::: >- United Kingdom

:--.: "< :=-:: :E -::: != Spain

E',.; "':, >:: :1:: .. .:: ::: Spanish Speaking

: .. .! ... (>:: :E -:::: ,- Portugal

:'.: .. < x :E -::: ,- Brazil

N '--(:.v.: :E -::: ::: Denmark and Norway

.,< .:-:. :E: -::: Finland and Sweden

: .. .: .. < ::-:: :E < >- Austria and Germany

;"': '< ::-:: :E -::: != Belgium

:-'': .. < ;:.:; :E -::: ,- Italy

N "< x :E .-.::: ,- Japan (English)

=::= '- : ... H :.: ~-= ., ::11 ':<. r. ... i : ~ .<j Japan (Katakana)

('") ('") ('") ('") ('") ('") ('") ('") ('") ('") ('") ('") OJ OJ OJ OJ OJ OJ OJ OJ Hexadecimal Value
OJ » co 00 "-J C'l 0'1 ~ eN ~ 0 " m Cl ('") OJ » co 00

0:· ,....., ::c c;-; ':1 rr1 C C'":: tt: :r> g ... :-=~ ..1 International

H Q T: m ,...,
: •• = tt: :D United States and Canada -'- --.

H :::c G:i '"T1 f!1 ::::: G :::::: :D- iu.. Canada (French)

H ::c i:;-J :; ,.,.., :-:
", 0' tt: !> :::: ... France :':

H -'- !..:.= fT1 C: t":! tt: !> United Kingdom

..!... Q !i f!1 C: '.0' tt: J> Spain

::c !..,:.: :: iT; :::::: c:: tt! 1> Spanish Speaking

H ::c Q ...,.., m ,..., .-. tti D :l:: Portugal

:-i ..!... G) !1 fT1 >-: ::-:: =:c: :D- c: Brazil

H :::c G) T: :-: : .. : 1J:i :D. P.1 Denmark and Norway .. '-'

H -'- G-:: -r: ::: ,...,
" .' ::rJ 1::- Do:: Finland and Sweden •• J

H S':
....... ::-; ::;:: J> ll.:; Austria and Germany -'- :..:.: ', ... '

:c G") :: r:1 :--: G ttl :D. :!r- Belgium .~.

H
..,...
-'- :..:.: !1 rn C : .. : lJ:i :D . r:;-- Italy

H : :,.:.:
..,..,

fTi :--<
" ," :J:= :1> Japan (English) .: ,_.

»
"0

I :: rr1 C? tti J> ::: = ::::- Japan (Katakana) "0 H :..:.; .~. '- ' '-'

'" :l
Co x·
»
Ol
-..J

1'0

'i c ~ > 1'0 C • u ! c

1
1'0 ;:, -g en e Ii ... - e 0

ii c z .. - c > 1'0 0 :¥ ~ .s::. 1'0

1 ... II c , 1'0 "0 ,~ .;,t e ! c -g 1'0
C 1li 1'0 "0 c;, ...

'j 0 en !:!:. ~ .;,t 1'0 C c: 1'0

'j 1'0 W ~
1'0 -i I .. "0 1'0 e -i c: 'i i 8 l c 'c ~ e i ';: ;:, c: ~ ... i ! :g, > 1'0

~ • ,t= c 'ii i 1:: .; c C i& Q. Q.

:! ... c: <3 .. c i l. c!: &! ..5 ::> u. ::> i.i: c(.::: 1'0 1'0 .., ..,

CC 0

co ()

CE <>

CF 0

00 } } e e } } } e ~ ~ U fl\ e }

01 ,J .J ,J \oj .J ,,J ..J ,J .J .J ..J ,J ..J ,J .J ..J

02 K K K K K K K K K K K K K K K 1'\

03 L I.. L I.. L. I... L I... I... L L L L L I... L

04 M M M M M M M M M M M M M M M M

05 N N N N N N N N N N N N N N N N

06 () () () 0 0 () () () () () () () () () () D

07 P P P P P P P P P F' P P P P P F-

08 (~ Q (~ Q r~ Q Q (~ Q (~ Q (~ (~ Q (~ (~

09 F~ r-< R R F~ R R R R R F< F~ F~ F~ F~ H

OA ~:

DB ,i
DC U

00 i'1

DE t1

OF Y

68

EO

El

E2

E3

E4

E5

E6

E7

E8

E9

(ij
c:
o .;:;

'" c:
'-
2l
c:

\.

,.,
,:-.

T

u

w

y

..). , ..

EA :<.

EB ()

EC tl

EE (~)

EF (")

FO o

Fl j.

F2 '")
A",.

F3

\.

~ ..
•• ":0

T

u

I,)

w

x

..,
I. ..•

()

"'j
,': ..

'" "0

'" c:
'" U

{'j

",}

T

u

IJ

I;.)

>(

""7
• < ••

()

:1.

2

s

T

u

t..J

y

:z

()

E o
"&
c:
Q
-g
.'!::
c:
;:)

s·

T

u

I)

1.0 .• 1

x
y

o

i

c:
.~

en

\.

{Ol ,.,

T

u

y

"1 " ..

()

:l.

\.

s·

T

u

v
/\

y

()

i"
:'to'

T

u

I.)

vJ

x
y

.. , , ..

o

1.

\.

T

u

'vI

x
y

()

:1.

2

~
~
o
Z
"0
c:
'" ~
'-

'" E
c:
Ql

Cl

\.

T

u

I.)

w

y

.. , , ..

()

1.

c:
Ql

]
"0 c:
'" "0 c:
~
c:

u:::

" ,.,

T

u

w

x
y

o

:l.

" ,.>

T

u

v

w

x
y

()

j.

"j
.:..

~::

,.,
1.":0

T

u

v

w

x
y

()

"j
~:-

, ..
,j .•

s

T

u

I)

w

y

z

()

"j . ,.

.!:

.!!!
0,
c:

W -c:
'" 0.

'" ...,

,.,
,.>

T

u

x
y

()

"j
II: ..

c:
'" 0.

'" ...,

T

u

)(

y

()

:I.

Appendix A 69

'" "0

'" s::: > > '" '" Q) u 3: s::: s:::
CIl '" :::I "0 Cl

.... "0 E iii s::: E 0 CIl '" > '" .!: s::: z 3: s:::
c.J 0 ~ CIl

(J) (!:) .!: '" iii iii
VI s::: "0 '" "0 VI ~ CIl CIl Cl CIl s::: "0 '" ... C> E s:::
'"

.... s::: 0. '" s::: "0 ...
'u 0 ... u. Q (J) '"

s::: s::: '" .;:; (J) ~ '" LU ::.::: iii ... E Q) '" '" CIl .!:

'"
"0 '" "C s::: "0 "0 "0 VI Cl

E s::: .;:: ::J CIl c.J CIl s::: ·c ::J C CO '" C .~ ... 'N '" ... :§l > '" ~ >< CIl 'Co s::: '" '" '"
~

s::: c: VI 0. 0. Q) ...
'" s::: 0. 0. 0 CIl ::J CIl iii

J: s::: :;) :;) « .!: '" '" U u. (J) (J) Q.. a:l 0 U. CO -, -'")

F4 -4 -4 l~ -4 ·4 -4 . ,:::. /;
'''j -4 .!.!. -4 -4 .-:~! . .. ::~. ·4 ::.:~

F5 ~:) J::" f:~' J:~' ~::; I::' I::: I::' ~:> 1::.'- ~:) ~:)
,:;-

~5 I::' ~:~: .,J .. l ,J •• .i .. I ••• > .. I ..) ... }

F6 .:~)
,

l. l. i. 6 6 , .. 6 l. 6 6 (;) i. i. .. (:) ,,' ,,' ,., ', .. ' \ .. ' .., 1 U

F7 .';. '7 'l "~I .. ,' "l .,;, ... , .':} .. ,' .. " .. " '? .. ,' "? I I I { I " I ... I " { I

F8 B ';::1 C"I P f:$ B C) D B 0 B ,") (i t") r::) n ,., '.J .J \.,1 , ... C) ,,' C .. t • .I

F9 9 ~;i (? I:? (", ':;) (? (? '? ~;) (? (? I:~) (? Ct ':.;; :"l ."

FA :$

FB
.',

J..!

Fe i)

FD ()

FE (J

FF

The following notes apply only to the International character set.

Notes:
1. Hexadecimal values 8D, AD, BD, and DA will appear on the display screen as

solid rectangular blocks.
2. Hexadecimal value B7 will appear on the display screen as Y-..
3. Hexadecimal valueB8 will appear on the display screen as Y>.
4. Hexadecimal valueB9 will appear on the display screen as %.
5. Hexadecimal value AF will appear on the display screen as ®.

70

access method: A technique for moving data between
main storage and input/output devices.

address: A name, label, or number that identifies a
register, location in storage, or any other data source.

addrout file: A record address diskette file produced by
the sort program. An addrout file contains the binary
relative record numbers of records in a diskette file, and
can be used to process the file designated as the input
file to the sort program.

addrout sort: A type of sort where the output consists
of 4-byte, binary, relative record numbers that indicate
the relative positions (1 st, 20th, 99th) of records in a
data set.

alphabetic characters: letters and other symbols,
excluding digits, used in a language.

alphameric characters: Same as alphabetic characters,
with the addition of digits 0 through 9.

alternative cylinder: A cylinder on a diskette that is
assigned in place of a cylinder that is defective.

assembler language: A source language that includes
symbolic machine language statements in which there is
a one-to-one correspondence with the instruction
formats and data formats of the computer.

attention: An action that causes the applications
microprocessor to interrupt the normal processing
flow.

background job: A job that is run in a partition which
does not have immediate access to a keyboard/display
unit.

basic data exchange: A diskette data exchange that
uses 128-byte sectors and allows only one record per
sector. The logical record length must be S 128 bytes
and is unblocked and unspanned. The basic data
exchange formats allow you to exchange data between
the 5280 and other systems that use the basic data
exchange format.

Glossary

blocking: Combining two or more records into one
block.

buffer: Storage or programming that compensates for a
difference in rate of flow of data, or time of occurrence
of events, when transmitting data from one part of a
computer system to another.

CAM: See communications access method.

collating sequence: The position each character holds
in relation to other characters according to the bit
structure.

common area: The first part of main storage that
contains the system control area, common functions,
global tables (such as ASCII and error recording), and
so on. Depending upon the common function option
selected, this area can be 6 K, 15 K, or 16 K. This area
is not available for user programs.

common function area: An area of storage within the
common area that contain routines and data that can be
accessed by programs in any of the partitions. These
routi nes' must be I BM-supplied programs.

common functions: A set of IBM-supplied
routines/programs in the common area that is used by
programs executing in any partition.

communications access method (CAM): A 5280 program
that provides the necessary link between a communications
program and the communications line. It performs
functions such as data formatting and link protocol.

compile: (ANSI definition) To prepare a machine
language program from a computer program written in
another programming language by making use of the
overall logic structure of the program, or generating
more than one machine instruction for each symbolic
statement, or both, as well as performing the function of
an assembler.

Glossary 71

copy: To read data from a source, leaving the source
data unchanged, and to write the same data elsewhere
in a physical form that may differ from that of the
source.

cylinder: The tracks that can be accessed without
repositioning the diskette drive access mechanism.

data exchange: The ability to exchange diskettes and
the data recorded on a diskette data set with· a system
or device that is different from the one recording the
data.

data processing: Performing a series of planned
instructions on information to achieve a desired result.

data recovery: Reconstruction of recorded data that
cannot be read.

data set: An organized collection of related data
records treated as a unit and existing on a diskette. In
other systems, this is sometimes referred to as a file.

data set label: A 128-byte area on the diskette index
cylinder that describes a data set.

data set name: The name associated with a data set.
The first character must be alphabetic, and the
remaining characters can be any combination of
alphabetic or numeric characters. Blanks cannot appear
between characters in a name.

OE/RPG: Data Entry with RPG subroutines. A 5280
program product that provides a means for writing data
entry and application programs for the 5280 system.

device address: Two EBCDIC characters (such as 01)
or four hex characters (such as 4COO) used to identify a
5280 input/output device such as a diskette drive,
printer, or magnetic stripe reader.

direct access: The ability to obtain data from a storage
device directly by key or relative record. Contrast with
sequential access method.

direct access method: An access method for
processing files by specifying the address (record
number) or key value of each record to be accessed.

direct by key access method: An access method for
processing index data files by specifying the key
associated with each record to be accessed. The current
key specified need not have any relative sequence with
the last key or next key to be specified.

72

diskette: A permanent storage medium used on the
5280, that is, a thin, flexible magnetic disk permanently
sealed in a cover that gives protection.

diskette drive: The mechanism used to read and write
diskettes.

execute: To cause an instruction, program, utility, or
other machine function to be performed. See execution.

execution: 1. The process of carrying out the
instructions of a computer program by a processor. 2.
The machine logic process that causes an instruction to
be executed.

extent: A continuous space on a diskette that is
occupied by or reserved for a particular data set. The
data set header label contains information such as
beginning of extent, end of extent, and end of data.

field: One or more bytes of related information in a
record.

field length: The number of positions allowed for a
given field, determined by the maximum length of
information that will be entered in the field.

foreground job: A job that is run in a partition which
has immediate access to the keyboard/display unit.

format: A specific arrangement of information in a
record or on a display screen.

hex: Hexadecimal. A number system using 16 symbols:
0-9, A-F each representing 4 bits (one-half byte).

H-type data exchange: A diskette data exchange
format that uses 256- byte sectors. It allows only one
record per sector. The logical record length must be
256 bytes; it is unblocked and unspanned. The H-type
exchange allows you to exchange data between the
5280 and other systems that use the H-type data
exchange format.

10: Identification.

index data set: A data set in which the keys from
another data set and their record position within that
data set are recorded. When index data sets are used,
the following access methods can be used: sequential;
direct by relative record number; and direct by key
value.

initialization: The process of preparing a diskette for
data by writing track and sector control information in
the volume label.

input data set: A set of records a program uses as
source information.

I-type data exchange: A diskette data exchange format
that uses 128, 256, 51 2, or 1024 byte sectors. All
records in a data set must be the same length. All
records in the data set are blocked and spanned. The
I-type exchange allows you to exchange data between
the 5280 and other systems that use I-type data
exchange.

IPL: Initial program load.

job: For the 5280, a program and associated data that
can be executed in a partition.

key: One or more characters included in a data record
that are used to identify or control the use of that data.

key field: The field within a record that identifies that
record when the direct access method by key value is
used. The key and record location for each record in the
data set are stored in the index data set when an index
is used.

main storage: 1. General purpose storage of a
computer. 2. All storage that can be addressed by
programs, from which instructions can be executed, and
from which data can be loaded directly into registers.

master data set: A collection of permanent
information; for example, a customer address data set,
which is often processed along with a transaction data
set.

multiprogramming: The concurrent execution of 2 or
more programs (up to a maximum of 8) in which each
program appears to be the only program in the system.
Programs can have exclusive use of data sets and / or
system I/O resources or can share them, depending
upon application requirements.

multivolume data set: A data set that extends beyond
a single diskette.

numeric fields: A field that contains one or more
numeric characters. Valid numeric characters are the
digits 0-9, + (plus sign). - (minus sign). . (decimal
point), blank, and, (comma).

object code: For the 5280, the four-byte instructions
from the compiler or assembler that are machine
executable. The first byte of the object code contains
the operation code.

object program: 1. A set of instructions in machine
language (object code). The object program is produced
by the compiler from the source program. 2. In the
5280, the executable program produced by the DE/RPG
compiler from a set of source statements. The object
program can be executed to control the operation of the
5280 system to perform user-designed functions.

output: Data delivered or ready to be delivered from a
device or program, usually after some processing.

partition: An area of 5280 storage in which only one
program can execute at a time.

physical record: A record whose characteristics depend
on the manner or form in which it is stored, retrieved, or
moved. A physical record may consist of all or part of a
logical record.

program: 1) (noun) A set of sequential instructions that
tells the controller where to get input, how to process it,
and where to put the results. 2) (verb) To design, write,
and test computer programs.

program product: An IBM-written, licensed program
for which a monthly charge is made. A program product
performs functions related to processing user data.

range check: A data check that verifies that the
numeric value of a field is within the upper and lower
limits.

record: A collection of related data, treated as a unit.

record length: The number of characters (or bytes)
forming a record.

relative record number: A number that specifies the
location of a record in relation to the beginning of the
data set.

resource allocation table: A table in storage that is
used to assign a logical device 10 (a name) to a physical
device address.

search: To find a record in a batch using search
arguments provided by the user.

Glossary 73

sector: 1. An area on a diskette track reserved to
record a unit of data. 2. The smallest amount of data
that can be written to or read from a disk or diskette
during a single read or write operation.

sequential access method: An access method in
which records are accessed in the order in which they
occur in the data set. Contrast with direct access
method.

sequential by key: A method of data set processing
that reads records in the order in which a keyed or
indexed data set is arranged.

Sort/Merge Program Product: A program product
which consists of three programs. The sort program is
used to arrange records (or their relative record
numbers) into a desired sequence, according to data
contained in one or more specific fields within the
records. The merge program is used to combine two
sequential sets of records into one. The command data
set display program is used to display or print the
contents of a sort/merge command data set.

source entry program: A part of the DE/RPG Program
Product that assists the user in entering DE/RPG source
statements onto a diskette.

source program: A set of instructions that represents a
particular job as defined by the programmer. These·
instructions are written in a programming language, such
as DE/RPG.

spanned record: A record that crosses a block
boundary.

special character: A character other than a digit, a
letter, or #, $, and @. For example, *, +, and % are
special characters.

status line: For the 5280, the first line on a display
screen. This line provides operational information.

system configuration: A process that specifies the
various components and devices that form a particular
operating system. System configuration combines
user-specified options and parameters with IBM
programs to produce a system having the desired form
and capacity.

74

system control programming: IBM-supplied programs
that are on a diskette. These programs are included
with each 5280 system and allow the operator to
configure the system, IPL the system, recover from
power failures, and patch IBM-supplied programs.

table: A collection of data in which each item is
uniquely identified by its position relative to the other
items.

track: A circular path or the surface of a diskette upon
which information is magnetically recorded and from
which recorded information is read.

transaction data set: A data set that contains records
associated with a specific transaction. These records are
less permanent information, such as customer orders.
Contrast with master data set.

transfer: (ANSI Definition) To send data from one
place and to receive the data at another place.

verify: To determine whether a transcription of data or
other operation has been accomplished accurately.

·volid 28

access methods 18
direct 19,21
direct by key 21
key indexed 20
sequential 19, 21

accessability 11
addressing, diskette 11
ADDRDUT option 19
allocating data set space on diskette 12
allocation, dynamic 26
application microprocessor 45, 46, 47, 51, 55
ASCII translation table 40
assembler language 1
assembler processor 42
assembler program 42
Austria and Germany 5256 character set 61

background partition 35, 39, 46, 47
basic exchange type 17, 28, 30, 31, 53, 57, 58
beginning of extent (BDE) 10
Belgium 5256 character set 61
blocked and spanned data set structure 18
Brazil 5256 character set 61
bypass indicator 28
byte 8

calculating the size of the common area 39
Canada (French) 5256 character set 61
character 8
close failure recovery program 25
closing a data set 23
common area 35, 39
common area, calculating the size of 39
common function options 39

SYSCFA 39,42
SYSDPRT2 39,42
SYSHELP 39, 43

common functions 42
communications access method
communications microprocessor
Communications Program Product
communications utility 59

47
46

1,42

compiler, DE/RPG 26, 42, 55, 59
considerations, performance 45
console mode 37
creating a system diskette 15
creation date 29
cylinder 9

data exchange 31
data set 17
data set deletion 13, 27
data set label 27

bypass indicator 28
creation date 29
data set name 28
exchange type indicator 28
expiration date 29
multivolume indicator 28
record delete character 30
record length 29
verify / copy indicator 30
volume sequence indicator 29
write-protect indicator 28

data set labels, extending the area for 13
data set name 28
data set space, reallocating 13
data set structure 17
data set, closing 23
data set, index 20
data set, master 20
data set, opening 23
data set, shared read 23
data set, shared read/write 23
data set, unshared 23
data sets, number of 14
data sets, size of 14
DE/RPG and key entry utility production

statistics table 40
DE/RPG compiler 26, 42, 56, 59
DE/RPG performance guidelines 55
DE/ RPG language 1

Index

DE/RPG program 12, 19,22,25, 26, 42, 43, 47, 55
deleting data sets 13, 27
deleting records 21
Denmark and Norway 5256 character set 61
direct access method 19,21
direct by key access method 21
diskette addressing 11
diskette compress utility 13, 58
diskette copy utility 15, 21, 25, 26, 57
diskette exchange type 8
diskette formats 8, 32
diskette 1/ D performance 48
diskette initialization 12, 25
diskette initialization utility 12, 13, 14, 58
diskette label maintenance

utility 12, 13, 25, 27

Index 75

diskette layout 9
cylinder 9
index cylinder 10

beginning of extent (BOE) 10
end of data (EOD) 10
end of extent (EOE) 10

index cylinder layout 11
diskette microprocessor 45. 52
diskette print utility 58
diskette storage capacities 8
diskette usage guidelines 52
diskette 1 8. 14
diskette 2 8. 14
diskette 20 8. 13. 14. 53
diskette/ data set clear utility 12. 27
diskette. allocating data set space on
diskette. IBM 7
diskette. IPL 25. 43
dispatching of jobs 46
dynamic allocation 26

end of data (EOD) 10.22
end of extent (EOE) 10. 22
error. read 25
exchange type 25
exchange type indicator 28

12

exchange type. basic 17.28.30.31.53.57.58
exchange type. H 17.28.30.31. 53. 57. 58
exchange type. I 18. 26. 28. 30. 32. 53
exchange types. diskette 8
expiration date 29
extending the area for data set labels 13

field. key 18
Finland and Sweden 5256 character set 61
foreground partition 35. 39. 46. 47
formats. diskette 8. 32
French 5256 character set 61

H exchange type 17.28.30.31.53.57.58
help text 42

I exchange type 18. 26. 28. 30. 32. 53
I/O errors. recovering from 25
I/O performance. diskette 48
IBM diskette 7
10. owner 11
10. volume 11

76

in-memory indexes 54
index cylinder 10
index cylinder layout 11
index data set 20
initialization 12. 25
inserting a diskette 7
inserting records 22
interfacing. partition 36
International 5256 character set 61
IPL diskette 25. 43
Italy 5256 character set 61

Japan (English) 5256 character set
Japan (Katakana) 5256 character set
job dispatching 46

61
61

key entry utility 12. 22. 26. 42. 43. 47. 58
key field 18
key indexed access method 20
key sequence 18. 21
keyboard/display microprocessor 45

loading programs 36

master data set 20
microprocessors 45. 52

application microprocessor 45. 46. 47. 51. 55
communications microprocessor 46
diskette microprocessor 45. 52
keyboard/display microprocessor 45
printer microprocessor 45

multiple data sets 50
multivolume indicator 28

number of diskette data sets 14

opening a data set 23
options. common function 39
owner 10 11

partition entries 41
partition interfacing 36
partition switching 37
partition, background 35, 39, 46, 47
partition, foreground 35, 39, 46, 47
partitions 1, 35, 42, 46, 47, 51
performance considerations 45
physical buffer 25, 53
Portugal 5256 character set 61
preallocation 26
printer configuration table 40
printer error log table 40
printer microprocessor 45
processor, assembler 42
program loading 36
program, assembler 42
program, close failure recovery 25
program, DE/RPG 12,19,22,25,26,42,43,47,55
program, source entry 26

read error 25
reallocating data set space 13
record delete character 30
record deletion 21
record insertion 22
record length 29
record searching 23
recovering from I/O errors 25
related publications, 5280 3
relative record number 18, 20
resource allocation table 41

searching for records 23
sequence, key 18, 21
sequential access method 19, 21
shared read data set 23
shared read/write data set 23
size of diskette data sets 14
Sort/ Merge Program Product 1, 19, 26, 36, 42
source entry program 26, 42, 43
Spain 5256 character set 61
Spanish Speaking 5256 character set 61
storage capacities, diskette 8
storage management 55
structure, data set 17

blocked and spanned 18
unblocked and unspanned 17

switching partitions 37
SYSCFA common function option
SYSDPRT2 common function option
SYSHELP common function option
System Control Programming 42
system diskette, creating 15
system error log table 40
system shared entries 41

39, 42
39, 42

39, 43

table, ASCII translation 40
table, DE/RPG and key entry utility

production statistics 40
table, printer configuration 40
table, printer error log 40
table, resource allocation 41
table, system error log 40
time slice values 47

unblocked and unspanned data set structure 17
United Kingdom 5256 character set 61
United States 5256 character set 61
unshared data set 23
Utilities 42
utility, communications 59
utility, diskette compress 13, 58
utility, diskette copy 15, 21, 25, 26, 57
utility, diskette initialization 12, 13, 14, 58
utility, diskette label

maintenance 12, 13, 25, 27
utility, diskette/data set clear 12, 27
utility, diskette print 58
utility, key entry 12,22,26,42,43,47,58
utility, 3740 format conversion 42, 43

verify/copy indicator 30
volume ID 11
volume sequence indicator 29

write-protection indicator 28

3740 format conversion utility
5256 character sets 61

Austria and Germany 61
Belgium 61

. Brazil 61

\1 Canada (French) 61
Denmark and Norway 61

\ Finland and Sweden 61
"~~ French 61

fnternational 61
Italy 61
Japan (English) 61
Japan (Katakana) 61
Portugal 61
Spain 61
Spanish Speaking 61
United Kingdom 61
United States and Canada

5280 Distributed Data System
5280 related publications 3

42, 43

61
1

Index 77

78

--...- ------ - ---- ---- --- -. ---- - - ---===-='='= CD

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150
Atlante. Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains. New York 10601
U.S.A.
U nternational)

GA21-9352-1

