

—_—— = SC21-7790-0
= $5280-21

IBM 5280
Distributed Data
System

Assembler Language Reference Manual

Program Number 5708-AS1

First Edition (January 1980)

This edition applies to release 1, modification O of the IBM 5280 Assembler Program
Product {Program 5708-AS1) and to all subsequent releases and modifications until
otherwise indicated in new editions or technical newsletters. Changes are periodically
made to the information herein. These changes will be reported in technical newsletters
or in new editions of this publication.

It is possible that this material may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such |BM products, programming, or services in your country.

This publication contains examples of coded statements and the resulting operations.
To illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious, and
any similarity to the names and addresses used by an actual enterprise is entirely
coincidental.

Use this publication only for the purposes stated in the Preface.

Publications are not stocked at the address below. Requests for copies of |BM publica-
tions and for technical information about the system should be made to your 1BM
representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use the
Reader’s Comment Form at the back of this publication to make comments about this
publication. If the form has been removed, address your comments to {BM Corporation,
Publications, Department 245, Rochester, Minnesota 55901. I1BM may use and
distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information
you supply.

© Copyright International Business Machines Corporation 1980

This reference manual is intended for programmers who
want to write programs for the IBM 5280 using the
assembler language. The programmer is expected to
either have previous experience using an assembler lan-
guage or be familiar with the 3741 Application Control
Language (ACL).

Using this publication, the programmer should be able to:
® Understand the general organization of main storage.

® Understand the purpose of each control statement and
the proper order for using each control statement in
an assembler program.

® Understand the purpose of each instruction and the
proper order for using each instruction in an assembler
program.

® Write a source program.

® Load the assembler program product into the IBM 5280
system, respond to the assembler prompts, assemble the
source program, and write the object program to a
diskette.

® Understand the assembly listing and cross reference
listing.

® Debug the assembler source program to get an error-free
listing.

Chapter 1 contains a general overview of how (1) a source
program is written, (2) an object program is executed, and
(3) main storage is organized. It also explains the coding
conventions used in the assembler language and in this
publication.

Chapter 2 discusses such programming concepts as tables,
subroutines, formats, external status, and self-check compu-
tations. 1t describes data management for input and output
operations.

Chapter 3 describes each control statement.

Preface

Chapter 4 describes each instruction.
Chapter 5 explains how to load the assembler program
product and how to assemble a source program. It describes

an assembly listing and cross-reference listing.

Chapter 6 describes control areas and functions. The func-
tions include optional common functions.

Chapter 7 explains how to use the ACL to assembler fan-
guage conversion program to convert ACL programs.

Appendix A lists the instruction mnemonics in alphabetic
order and gives the op code and format for each mnemonic.

Appendix B describes SCS control codes.

Appendix C describes the computations generated by the
.SELFCHK control statement parameters.

Appendix D consists of codes and charts, including
EBCDIC charts and scan codes.

Appendix E lists all error codes for the assembler program
and conversion program.

Related Publications

® /BM 5280 General Information, GA21-9350

® /BM 5280 System Concepts, GA21-9352

® /BM 5280 Functions Reference Manual (availabl€ at a
later date)

® /BM 5280 Message Manual (available at a later date)

CHAPTER 1. INTRODUCTION |
Overview of the Assembler Language 1
The Control Statementsc.00... 1
The Instructions i ittt et e e 2
The Source Program Format 2
The AssemblerProgram 3
Loadingthe ObjectCode 3
Overview of Program Execution 3
Overlapped 1/0 it et i e 4
External Status e 4
Datalnput it e e e 4
DataManipulation 4
DataOutput eeennnn. 5
OverviewofMainStorage0 vv e, 5
Logical Device Identifiers 6
Common Functions0cu0.... 6
Partitions e e e 6
Partition Control Area enunnn 8
Indicatorsand Registersc0..... 8
StOrage e e e e e e e 1"
AddressingMethods 11
PartitionWork Area uuunu.. 12
Main Storage Boundary Alignment 13
Blanks, Constants, and CodingSymbols 14
Symbols Used in ThisManual 15
CHAPTER 2. PROGRAMMING CONCEPTS 17
Tables e e e e 17
SystemTablesc.c.0cueui.... 17
DataTables ciiir e 18
Label Tablest ieueenennenn 18
DataTypesttt ittt 19
Subroutines e e e e 19
The Partition SubroutineStack 20
SubroutineReturns, .. 20
TheStatus Line0c00uiurunnn.. 22
Nondisplay of the Status Line 23
External Status and Error Conditions 24
Keyboard DataEntry 25
Modesof Entry uennn 26
Automatic Functions, 28
AutoEnter e 29
Auto Duplicate/SKip 0 i e e 29
Alternate Record Advancec.... 29
Screen Formatst e 29
Prompts e e 30
ConstantinsertData 31
Field Definitionsuue..u.. 31
Field Control e e e e e e 32
Returning (RG) Exitsuu.. 34
EditFormats 34
Data Directed Formatting 35
Field Modification Indicators 35
Diskette DataManagement 36
LabelUpdate00 ennnen. 36
Physical and Logical Buffers 36
Automatic Logical Buffering 36
Pointer /O 37
KeyedDataSets¢c..0..o... 38

Contents

SharedDataSets ¢.ciiuueennneo.. 40
SCS ConversionDataSets 40
Self-Checkttt 41
Choosing Your Algorithm 44
Using the GSCK Instruction 47
Using the IF ... CHK Instruction 47

CHAPTER 3. ASSEMBLER LANGUAGE CONTROL

STATEMENTS e e e P - |
Format it e e 51
Blanks e e e e e 51
Commentsttt tneennasaens 51
Initialize the Partition Control Area 52
START Control Statement 52
.KBCRT Control Statement 53
.EDITC Control Statement00... 56
Declare and Label Data Areast .. 57
.DCControl Statementt 57
.DCLBR Control Statement 65
.DCLDR Control Statement 65
.DCLIND Control Statementcvu... 65
.EQUATE Control Statement 66
Set Up and Initialize Device Control Blocks 67
.COMM Control Statement 67
.DATASET Control Statement 70
SetUpandlLabel Tables 76
.TABLE Control Statement 76
.LABTAB Control Statement 78
.SYSTAB Control Statement000... 79
SetUpEditFormatscccvuuu... 81
.FMTST Control Statement 82
.FMTFLD Control Statement 82
.FMTEND Control Statement 89
Set Up Screen Control Formats 89
SFMTST Control Statement 94
SFMTCTL Control Statement 95
SFMTPMT Control Statement 97
.SFMTCNS Control Statement 99
SFMTFLD Control Statement 100
.SFMTEND Control Statement 103
Field TypeKeywords c.c... 104
Field Definition Keywords 106
Control the Assembly Listing 110
.TITLE Control Statement 110
.EJECT Control Statementc.uocov... 111
SPACE Control Statement 111
Miscellaneous Control uivunun.n 111
INCLUDE Control Statement 112
SELFCHK Controi Statement 112
XTRN Control Statement 116
.END Control Statementc00... 117

CHAPTER 4.5280 ASSEMBLER LANGUAGE

INSTRUCTIONS P k]
Instructions Format, 119
Blanks e e 119
SymbolicLabels0..00.... 119
Thelnstruction Fields 120
COMMENTS . . . ottt ettt et e e e e e 120

Contents v

Storage Specifications oo 120

Labeled Addressing e 121
Base Displacement Addressing 27
Constant Specifications, 121
Register and Indicator Specifications 122
Operation Types v v v v it it ettt et 122
Assembly Time Arithmetic 128
Arithmetic Expressions, 128
The ADDR Function 129
The LENG Function 130
Changinga Declared Length 130
ChangingaDataType 130
Arithmetic/Logical Instructions 131
Binary Register Arithmetic/Logicat 131
Binary Register Shift/Rotate 135
Decimal Register Arithmetic 137
Decimal Register Shift 141
Decimal Register Zone Modification 144
Branch and Skip Instructions 145
Unconditional Branch 145
Subroutine CaltandReturn 147
Full Conditional BranchonTest 150
Short Conditional Branch on Relational Compare 154
SkiponConstantCompare 158
SkiponBitMask e 160
Skip on AND/Exclusive-ORMask 161
Exclusive-OR Write, Skipon ANDMask 162
LoopControl it 162
Communications Instructions 164
Diskette Instructionst 170
Control Operationsttt eennnnn 170
Search Operationsot ennenn 184
Printer Instructionst i e 188
Error Recovery Procedures 192
Keyboard and Display Instructions 195
Key Entry Instructions 195
Keyboard Operations 199
Data Movement Instructions 214
Load Binary Register 214
Load Decimal Register 216
Storeata Labeled Address 218
Store at Base Displacement Address 220
Exchange Data nnnn 221
Convert RegisterContents 222
Move Bytes Between Decimal Registers 225
Move BytesinStorage 226
Move Bytes Between Storage and Screen 228
Move FormattedData 231
Partition Load and Exit Instructions 233
LoadaPartition 234
ExitaPartition0t 235
The Load Parameters, 235
Partial Overlayt 237
ErrorRecovery e e e 237
Table Instructions ot i i it e e 238
Table Read Operations0 .vueu.. 239
Table Write Operations 240
Table Search Operations 243
Global Tables 246
Miscellaneous Instructions 247
Compare Logical Character Strings 247
Generate a Self-Check Digit 248
Modification for Indirect Instruction Execution 248
Search Resource Allocation Tabie 250
SetBitswithMask 251
Setindicators o e e 251

vi

System Lock and Unlock, 252
Transtation e 252

CHAPTER 5. HOW TO ASSEMBLE YOUR PROGRAM 255

The 5280 Assembler 255
Loading the Assembler into a Partition 256
The Assembler Prompts 256

The Assembler Listing v v v v v v v v v e e e e v 262
A Printed Assembly Listing 263
The Cross-Reference Listing 264
Error Messages v v v v i e 265

CHAPTERG6.CONTROLAREAS 267

System Indicators within a Partition 267

System Registers within a Partition 268

Program Check Errors 269

Keystroke Counters 269
Data Entry Keystroke Counter 269
Verify Correction Keystroke Counter 270

Common Function Routines 270

Keyboard/Display External Status 285
Restricted External Status Indicator 287
External Status Subroutines 287
External Status Conditions 288

CHAPTER 7. THE ACL TO ASSEMBLER LANGUAGE

CONVERSIONPROGRAM 297
Operation i it it e e e e e e e e e 297
Notes About the Converted Program 300

The Format of the Converted Program 300
Labels and Sequence Numbers 300
The Format of the Display Screen 301
Buffers e 302
The .FORMAT Control Statement 304
Indexed Branch Instructions 304
The OPEN Instructions 304
The ENTR Instructions 304
The ACL Deleted Record Subroutine 305
Overlapping for PRNT Instruction 305
FunctionKeys, 305
ACL Toggle Switcheso viuen.. 306
ConversionChart nens 307
Control Statements 0.0 u..n 307
INStrUCtioNS i it i e e e e e e e 308
Indicator Conversion enu.. 311

APPENDIX A. MNEMONIC TO OPERATION CODE
CONVERSION CHART AND INSTRUCTIONS FORMAT . . 315

APPENDIX B. SCS CONTROL CHARACTERS
Set Types Available for Use with the Format (Fmt)
Printer Control Character 323

. 321

APPENDIX D. KEYBOARD CODES AND EBCDIC

CHARTS <~ ¥
EBCDIC Charts for Printable Characters 347
Keyboard Functions: EBCDIC Codes and Bit Numbers 349
APPENDIX E.ERRORMESSAGES 353
Assembler Errorsand Messages0 e e ... 353
Conversion Program Errors 355

APPENDIX F.SAMPLE PROGRAM 357

GLOSSARY ¢ . vt i iiii it it saa. . 363

Contents vii

viii

Chapter 1. Introduction

The IBM 5280 is a diskette-based data entry system with partitioned main storage.
It consists of keyboard/display data stations with optional diskette drives, a com-
munications line, and printers. The 5280 operates with multiple tasks, each running
in a main storage partition. It can be used in data entry, remote batch, remote
inquiry, or preprocessing environments. Input source records can be edited, veri-
fied, and placed into main storage registers, tables, or other data areas. In main
storage, the records can be manipulated with arithmetic and logical operations.

The records can then be reformatted and written to a data set. (A data setis a
group of records stored on a diskette.) The data sets on the diskettes can then be
used as input to a data processing system.

The data stations and 1/0O (input/output) devices are described in the General
Information manual. You should be familiar with these units before you begin pro-
gramming in the 5280 assembler language. You must also be familiar with the
organization of main storage, which is described in this chapter. Preceding the
overview of main storage, this chapter gives overviews of the assembler language and
of program execution. These overviews briefly describe the format of the source
statements, the generation of the object code, how the 5280 executes the object
code instructions, and the major functions the object code can perform.

OVERVIEW OF THE ASSEMBLER LANGUAGE
The IBM 5280 assembler language consists of control statements and instructions.
The control statements define the main storage control and data areas. The instruc-
tions specify the operations and operands. No job control language is necessary for
the 5280.

The Control Statements
In your source program, a control statement is always preceded by a period (.).
Control statement parameters are written with uppercase letters. The control
statements are described in Chapter 3, where they are organized by function:
® Initialize control areas and 1/0 control blocks (IOBs)
® Declare and label data areas
® QOrganize tables

® Set up screen formats

® Set up edit formats

Control the assembly listing

Introduction 1

The Instructions
In your source program, the instructions specify the operations and the operands.
Operations are specified by arithmetic symbols or by uppercase mnemonics. Oper-
ands are specified as immediate data or as the contents of a data area. Data areas
are referred to by a label or by a base displacement address. The instructions are
described in Chapter 4, where they are organized by the types of operation they
perform. The operations include:
® Arithmetic/logical
® Branch and subroutine
® Communications input and output
® Input and output to diskette or printer
@ Input and output to keyboard/display
® Data movement
® Partition load and exit

® Table read, write, and search

® Miscellaneous

The Source Program Format

Source statements are written with a length of 72 positions per line. Parameters

are separated with spaces. You may space freely between parameters, but spaces
are not allowed between a parameter and a parameter value. A control statement
may be written on one or more lines. An instruction, however, must be complete
within the first 72 positions of a line. Comments may be written on a contro! state-
ment or instruction line, or an entire line may be written as a comment line.

Certain control statements must be written in a prescribed order. This order is
explained in Figure 3-1, Control Statement Summary in Chapter 3.

The control statements and instructions of a source program must be written to a
diskette data set before the source program can be processed by the assembler pro-
gram. Enter each line of the source program as an 80-position record. The
assembler program ignores the data in positions 73-80.

The Assembler Program

The 5280 assembler program reads the source program from the diskette and uses
it to generate the object code. It detects syntax errors in the source control state-
ments and instructions. [t converts each label and base displacement address to

an address relative to the beginning of the partition. It converts each series of
screen format control statements to a string of object code, which is referred to as
a screen format control string. From each source instruction, it generates a 4-byte
object code instruction; the first byte always contains the operation code that
determines the operation, and the other 3 bytes contain the operands. An operand
may be immediate data, a format number, a table index, or the address of data to
be operated upon. When the assembler program has converted the source program
to object code, it then writes the object code to a diskette data set. It also gener-
ates an assembly listing that can include:

® Source code and object code

® Syntax error messages

® Storage allocation messages

® Alphabetic cross-reference of symbols used in the source program

The assembly listing can be written to a printer or to a diskette data set. Chapter 5
describes how to load and execute the assembler program.

Loading the Object Code

The object code data set that is written by the assembler program must be loaded
into a main storage partition for execution. The object code for a program can be
loaded into any partition that is of sufficient size. An operator may load the object
code by responding to a load prompt. Or a program being executed in a partition
can have instructions to load another object program into another partition or into
the same partition. See Partition Load and Exit Instructions in Chapter 4 for more
information about loading the object code.

OVERVIEW OF PROGRAM EXECUTION

When the object data set is ioaded into main storage partition, control informa-
tion and address pointers are stored in a partition control area. This control infor-
mation is used by the 5280 and the 1/O devices during program execution. The
control information is followed (1) by the data areas specified in the source pro-
gram control statements and (2) by the 4-byte object code instructions.

The 5280 executes the object code instructions sequentially until a specified time
limit is expired or until an 1/O instruction is encountered. When the time limit
expires, the 5280 suspends processing in that partition. The 5280 then enters the
next partition that has been loaded with an object data set and begins executing
instructions in that partition.

Introduction

If an 1/0 instruction is encountered, the 5280 determines which 1/0 device is to
process the operation. 1t places control information into the partition control area
and issues the 1/0 instruction to the device. The 1/O device processes the 1/0
operation, using the control information in the partition control area and in the
10B that describes that 1/0 operation.

Overlapped 1/0

Certain instructions may specify overlapped 1/0. (The instruction descriptions in
Chapter 4 indicate when overlapped 1/0O may be specified.) When the 5280
encounters an 1/0 instruction that requests overlapped 1/0, it issues the instruction
to the appropriate 1/0 device. The 5280 then either: (1) remains in the current
partition and executes the instruction following the 1/0 instruction, or (2) if the
time limit has expired for the current partition, exits the current partition and
executes instructions in the next partition that contains an object data set. The
1/0 device processes the 1/0 operation concurrently with the sequential instruction
execution.

If overlapped 1/0 is not specified, the 5280 issues the 1/0 instruction to the |/O
device and exits the partition. The instruction following the 1/0 instruction is not
executed until the 1/0 instruction is completed by the device.

External Status

While an 1/0 device is processing an 1/O operation, it may encounter an external
status condition that requires operator intervention or processing by the 5280
controller. A four-digit condition code is placed into the 10B; it may also be dis-
played on the status line. These condition codes are described in Chapter 2 under
External Status and Error Conditions.

Data Input

For input via the keyboard/display, the screen format (which you specify with
control statements) determines the prompts that are displayed on the screen and
the display attributes for the screen, such as blink or underscore. The screen format
can specify which characters are valid for each individual field of the input record.
Valid fields of the input record are stored in an 1/O buffer.

For input from a diskette data set, a program instruction can direct the 5280 to
read a data set record. The records in a data set can be accessed sequentially,
directly by relative record number, or directly by key. The input record is stored
in the 1/0 buffer.

Data Manipulation

Your instructions direct the 5280 to move the record from the 1/O buffer. You can
move a complete record or individual fields of a record to registers for arithmetic/
logical operations. You can place the data into a table and can search the table
entries for logical comparisons. You can keep running totals or perform self-check

Data Output

Your program instructions and formats also control record output. Records can be
moved from main storage data areas to an /O buffer. An edit format can reformat
the record and insert punctuation. The records can then be written to a display, a
diskette data set, a printer, or the communications line.

OVERVIEW OF MAIN STORAGE

Main storage is organized into areas for system control, tables, common functions,
partitions, and a system work buffer, as illustrated in Figure 1-1.

X'0000°
System Control Block
(256 bytes)

X'00FF’

Absolute S 5 Global Tables
Addresses | - (variable length)

L
1)

B

J Common Functions
- (variable length)

L]

L
r X'0000’
First Partition

J .
- (variable length)

V)

X‘0000’
Next Partitions
(each of variable length)

1)

ﬂ
Relative) .
Addresses | X'0000’

Last Partition
(variable iength)

S | A Lo (2

LR

ﬁ

System Work Buffer
(256 bytes)

\

Figure 1-1. The Organization of Main Storage
The system control block is located in the first 256 bytes of main storage.

The fields of the system control block have fixed locations. However, all partitions,
and all storage locations within a partition, are accessed by pointers. The pointers,
which are set up and maintained by the 5280, are located in the fixed locations of
the system control block. These pointers make it possible for each of your assembler
source programs to address locations as they relate to the partition, rather than as
they relate to main storage as a whole. These relative addresses remain valid for

any partition into which your program is loaded.

Introduction 5

Logical Device Identifiers

Logical device identifiers are 2-character IDs that allow you to symbolically address
a resource independently of machine or partition configuration. The logical device
IDs are stored in a resource allocation table, which is created and loaded into the
global tables area by the system configuration portion of the SCP (System Control
Program). The resource allocation table specifies the logical devices that can be
accessed by each partition. Each resource allocation table entry contains both the
logical device ID and the physical address of that device. Whenever a program
instruction requires a device address, you can specify the 2-character ID. The 5280
searches the resource allocation table for the physical address of the device with
the matching ID. The 5280 uses the device at that physical address to access the
data set that is available to that device.

The logical device IDs are used only in program instructions. Do not enter a
logical device 1D via the keyboard in response to a prompt that requests a physical
address.

Common Functions

The common functions area contains IBM-supplied global subroutines. They can be
accessed by a subroutine call from any partition. The labels and functions of these
subroutines are listed in Chapter 6 under Common Function Routines.

PARTITIONS

There may be up to eight partitions numbered sequentially from zero. There must
be at least one partition for each keyboard. A partition is of variable length, but it
cannot cross a 64 K byte boundary. The number, size, and location of the parti-
tions is defined at system configuration time. The first 256 bytes of each partition
contains control information in fixed locations from the beginning of the partition.
The next 3840 bytes may be used as needed for indicators, decimal registers, binary
registers, or storage areas. This area is followed by a variable-length storage area.
The last 256 bytes of each partition is used for a work area. Each byte of a parti-
tion is addressable relative to the first byte of the partition. Figure 1-2 shows the
different areas of a main storage partition.

uo11ONPOoAIU|

L

*do1 ey3 1€ s1 MBIP Y34n0} 8yl pue ‘38| 6y} 1B BIL SBSSBIPPE BAIIE|es

Jewidepexsy ay) jo subip 8siyl ISy 8y ‘uonilied aBeiolS utey e jo uoneziuebaQ ayy "Z-1 8nbiy

Relative

Addresses
XMy
U»o 1 2 3 a4 5 6 7 8 9 A B c D E F
000- |
: Partition Control Area
0OF-
010- |BRO BR1 BR2 BR3 BR4 BRS BR6 BR7
1000-1015 1016-1031 1032-1047 1048-1063 1064-1079 1080-1095 1096-1111 1112-1127
o11. |BR® BRO BR10 | BR11 BR12 BR13 BR14 BR15
1128-1143 1144-1159 1160-1175 1176-1191 1192-1207 1208-1223 1224-1239 1240-1254
012- |BR16 BR17 BR18 BR19 BR20 BR21 BR22 BR23
‘h -~
01F-1gR120 BR121 BR122 BR123 BR124 BR125 BR126 BR127
020-
021-
e 4
S
OFE-
OFF-
0.
10 1 -
-~ ~

Storage Area
1

Work Buffer

RO}
R1

R2

~

R15
R16

R17

R238

R239

1

Indicators

Binary
Registers

| Decimal
Registers

Partition Control Area

The partition control area contains control information that describes the program
that is loaded into the partition and defines the 1/O devices used in the program.
The 5280 loads this information into fixed locations within the control area, using
information from the common area and from the source program control state-
ments. During program execution, the 5280 uses this control information each
time it enters the partition to determine the partition status, the {/0 status of the
program, and the address of the next executable instruction.

Indicators and Registers

Immediately following the partition control area is an area that may be used for
indicators, binary registers, and decimal registers. These bytes may be used in any
desired combination of indicators and registers as described in the following para-
graphs: if some of these bytes are not used for their binary register/decimal
register capabilities, the unused bytes may be used as storage. Figure 1-2 shows
the bytes that may be used for indicators and registers.

Indicators

The first 32 bytes of this area contain 255 one-bit indicators. In your source pro-
gram, the indicators can be represented by the letter | and the indicator number.
They are numbered sequentially from 10 to 1254. The first 100 indicators (10-199)
may be labeled, set, tested, and reset as your source program dictates. These indi-
cators are referred to as program indicators. The remaining indicators (1100-1254)
are set and maintained by the 5280, and are referred to as system indicators.
System indicators have specific meanings assigned to them, as described in Chapter
6 under System Indicators Within a Partition.

You can label program indicators with a .DCLIND control statement. When the
assembler processes the .DCLIND control statement, it assigns each specified label
to an available program indicator.

You can label system indicators with an .EQUATE control statement. The
.EQUATE control statement allows you to specify the number of the indicator you
want assigned to each label. You could use the .EQUATE statement to label pro-
gram indicators also; however, you usually don’t care which program indicator is
assigned to each label.

Two instructions are available to test indicators. The IFI instruction can test the
indicator and perform a conditional branch. The IFIR instruction tests the indicator
and performs a conditional branch, but it also resets the indicator to 0. Your pro-
gram can use these instructions to test program or system indicators.

You can use the instruction SON to set an indicator (1), or the instruction SOFF
to reset an indicator (0). See Set Indicators under Miscellaneous Instructions in
Chapter 4 for a description of these instructions.

As Figure 1-2 illustrates, the bytes that are used for the indicators are also used for
the first 16 binary registers or for the first two decimal registers. The last bit of the
sixteenth binary register, or the second decimal register, is not used as an indicator.

Binary Registers

The first 256 bytes of this area may be used for up to 128 two-byte binary registers.
Binary registers can be represented by the letters ‘BR’ followed by the register
number. The registers are numbered sequentially from BRQ to BR127. BR0O-BR15
are used as indicators (as described in the preceding paragraphs), and BR16-BR31
are used as system registers. The system registers are used and maintained by the
5280 during program execution and hold information as described in Chapter 6
under System Registers Within a Partition. You should not assign these registers

to any other purpose. The system registers should always be reserved (see the
RGLT parameter of the .START control statement). In your source program you
can access the reserved registers by register number, or you can use the .EQUATE
control statement to assign them labels.

The binary registers that are not reserved by the RGLT parameter of the START
control statement can be labeled and initialized by declare control statements in
your source program. Use the .DC control statement to label and initialize one
binary register, or the .DCLBR contro! statement to label several uninitialized
binary registers.

Although binary registers are 2 bytes in length, you can access either 1 or 4 bytes
by defining the byte length, in parentheses, following the register number or label.
If you specify a length of 1 byte (BR40(1)), only the rightmost byte of BR40 is
accessed. If you specify a length of 4 bytes (BR40(4)), the 2 bytes of BR40 and
the 2 bytes of BR41 are accessed. A binary register specification with a length of
4 bytes is referred to as a binary double register.

Binary registers are often used to hold addresses. The instructions to load a binary
register are described in Load Binary Register under Data Movement Instructions in
Chapter 4. In your source program, you can load a 2-byte binary register with:

® An unsigned decimal imteger (0-65535)

® Two EBCDIC characters

Figure 1-3 shows the hex representation of binary data in two binary registers.

High- Low-
Order Order
Byte Byte

i ——
BR76 |F O { 1 A

BR76 |[C D i O F

Figure 1-3. Binary Registers

introduction 9

10

The following examples illustrate the different ways you can refer to BR75 if you

BR75

BR75(2) specifies the full 2-byte binary register, which contains
BREG1 hexadecimal FO1A.

BREG1(2)

BREG1{1) specifies the low-order byte of BR75, which contains
BR75(1) hexadecimal 1A,

BR75(4) specifies the 4 bytes of BR75 and BR76, which contain
BREG1(4) hexadecimal FO1ACDOF.

Decimal Registers

The 3840 bytes of this area may be used for up to 240 sixteen-byte decimal
registers. Decimal registers can be represented by the letter R and the register
number. The registers are numbered sequentially from R0 to R239. The bytes
within RO and R1 are used for indicators; the bytes within R2 and R3 are used for
system registers. You should not assign R0-R3 for any other purpose. In your
source program, the decimal registers reserved by the RGLT parameter of the
.START control statement can be accessed by register number. Or you can use
the .EQUATE control statement to assign them labels.

Decimal registers not reserved by the RGLT parameter of the .START control
statement can be labeled and initialized by the declare control statements in your
source program. Use the .DC control statement to label and initialize one decimal
register, or the .DCLDR control statement to label several uninitialized decimal
registers.

Although a decimal register is 16 bytes in length, a double decimal register of 32
bytes may be specified by defining the byte length in parentheses, following the
register number or label. Decimal registers and double decimal registers are valid

in decimal arithmetic and shift operations, branch operations, and table operations.
All data in decimal registers is stored in EBCDIC notation. The instructions to
load a decimal register are in Load Decimal Register under Data Movement Instruc-
tions in Chapter 4. In your source program, you can load a 16-byte decimal
register with:

® A positive or negative decimal number (+0 to 10'€-1)
® Up to 16 EBCDIC characters

The following examples illustrate the different ways that you can refer to R120 if
you assign it the label REGX.

R120 .

REGX } specifies the 16 bytes of R120.

R120(32) o

REGX(32) specifies the 32 bytes of R120 and R121.

The contents of a decimal register may be positive or negative; the sign is deter-
mined by the zone half of the byte in the units position (byte 15) of the decimal
register. If the register contains a positive number, hex F is in the zone half; if it
contains a negative number, hex D is in the zone half. Figure 1-4 illustrates the sign
control position in a decimal register.

Sign Control Position

<
Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Zome | ... l.... e e reodecene N B Y ey BRI PRI SE S R IR TP ‘...\.‘
Digit

Figure 1-4. The Sign Control Position in a Decimal Register

The zone halves of the bytes are used for sign control; however, no checking is done
by the 5280 to determine whether the register contents are numeric or alphabetic.

Storage

Following the registers is a variable-length area of storage. The size of this area is the
size of the partition, less the 256 bytes of the partition control area and the bytes
used for indicators and registers. The instruction object code is stored in this area,
with the buffers, tables, formats, messages, device 10Bs, control tables, data, and
data structures necessary for the program.

Addressing Methods

In your source program, each byte of storage within a partition can be addressed
directly, using an assigned label, or indirectly, using a displacement and a base
address.

Direct labeled addressing of a storage location is accomplished by using a declare

control statement to assign a label to a storage area of any length. To access this
labeled area in a source program instruction, the following format is used.

label [(length)]
where:

label is the assigned label from the declare control statement. The label
addresses the leftmost byte of the storage area.

length is the length, in bytes, of the storage area. If length is not specified in

the instruction, the length defaults to the length assigned to that area by the
declare statement.

Introduction

1

12

Indirect base displacement addressing of a storage location is accomplished by
specifying in the instruction (1) the location of the base addres and (2) the dis-
placement from that base address at which the storage area is located. The length
may be specified for many, but not all, instructions. To access a storage location
by indirect addressing, one of the following formats is used.

[displacement] {[length], BRn)
[displacement] (BRn)

where:

displacement is the number of bytes (0-255) from the base address at which the
storage area is located. If the displacement is not specified, it defaults to 0.

length is the length, in bytes, of the storage area. The instruction descriptions
indicate whether or not length is allowed in the address. If a length specification
is allowed, it must be followed by a comma. If length is omitted from an instruc-
tion that allows a length specification, the comma must be retained. If the
instruction does not allow a length specification, the comma must not be
included in the address.

BRn is a binary register that contains the base address. The base address is rela-
tive to the start of the partition.

When a source program instruction that has an indirect storage address is
assembled, the displacement is added to the base address in the binary register.
The result is the relative address of the leftmost byte of the data area. This address
is placed in the object code.

Examples:

Direct: BIN1 = STOR1(2)
The contents of the byte at STOR1 and the next byte (length is 2)
are loaded into the binary register labeled BiN1.

Indirect: BIN2 = 1(2, BREG)
The displacement of 1 is added to the address stored in the binary
register labeled BREG. The contents of the byte at the resulting
address and the contents of the next byte (length is 2) are loaded
into the binary register labeled BIN2.

Partition Work Area

Following the variable-length storage area is a 256-byte work area. This area is set
up by the assembler, and it is used by the 5280 during program load and program
execution. Your assembler program should not access or change the bytes of this
work area.

MAIN STORAGE BOUNDARY ALIGNMENT

Main storage is divided by several types of boundaries. Each type of boundary
encloses an area of a specific number of bytes. Many data areas must begin on a
certain type of boundary. Figure 1-5 represents a main storage partition and

points out the different types of boundaries. The system configuration portion of

the SCP begins each partition on a 256-byte boundary and measures the length

of each partition in multiples of 256 bytes.

0 1 2 3 4 5 6 7 8 9 A B8 c D E F
000-
: Partition Control Area
00F.
010. |BRO BR1 BR2 BR3 BR4 BR5 BR6 BR7
1000-1015 1016-1031 1032-1047 1048-1063 1064-1079 1080-1095 1096-1111 11121127 RO
o11-[BR8 | BR9 BR10 | BR11 | BR12 | BR13 BR14 BR15
1128-1143 1144-1159 1160-1175 1176-1191 1192-1207 1208-1223 12241239 1240-1254 R1
012- [BR16 BR17 BR18 BR19 BR20 BR21 BR22 BR23 a2
et =

X‘0126' is on a 2-byte boundary .

X‘0124’ is on a 2-byte and 4-byte boundary.

L X’0120’ is on a 2-byte, 4-byte, and 16-byte boundary .

te———— X‘0100' is on a 2-byte, 4-byte, 16-byte, 128-byte, and 256-byte boundary.
X‘0000’ is always on a 256-byte boundary.

The address of a 2-byte boundary ends in 0, 2,4, 6,8, A, or C.
The address of a 4-byte boundary ends in 0, 4, 8, or C.

The address of a 16-byte boundary ends in 0.

The address of a 128-byte boundary ends in 00 or 80.

The address of a 256-byte boundary ends in 00.

Figure 1-56. Main Storage Boundaries

When you declare a register in your source program, the assembler places it on the
next sequential boundary appropriate for the type; it places a binary register on a
2-byte boundary and a decimal register on a 16-byte boundary. It places all other
data types on 1-byte boundaries unless you specify a boundary. When you are build-

ing a storage structure, you may want to specify a boundary. When the 5280

assembler processes your source control statements and sets up these data areas, it
skips over any storage bytes between the current location and the next appropriate

boundary in order to observe the boundary restrictions. These bytes cannot be

used by your program. Your assembly listing indicates how many storage bytes are
lost due to boundary alignment. See the examples following the description of the

.DC control statement in Chapter 3 for an illustration of boundary alignment.

Introduction

13

In your source program, you may specify optional blanks before or after an equal
sign, arithmetic operator, or parenthesis. Blanks may follow a comma but must not
precede a comma. Blanks are not allowed within a field; however, one or more
blanks must separate fields if no other delimiter is used.

A constant may be specified as a decimal value, a hexadecimal value, a binary value,
or a character. A constant may also be equated to a label; the label can be specified
in an instruction that accepts a constant. Decimal digits are simply written as digits.
Binary, hexadecimal, and character data are prefixed by a capital letter (B, X, and

C respectively) and enclosed in single quotes. For character data the capital C is
optional. Do not leave a blank between the capital letter and the first quote.

n Decimal digits

X1 Hexadecimal digits; | = 0-F

Bl Binary digits; I = 1or 0

c’ EBCDIC characters; | = any valid EBCDIC character

To specify the single quote character, use two quotes (C‘IT’'S’).

Symbols Used in This Manual

The symbols used in this manual are of two types, syntax symbols and statement
symbols. The syntax symbols are used to illustrate syntax and are not to be used in
writing your source programs. The statement symbols are a part of the language
and must be coded as shown.

Syntax Symbols

Syntax symbols are not to be coded in the source program.

Symbol

(1]

@

BRn

Rn

BRa
Rb

constant

Definition

Brackets enclose optional item(s) to be used or not, at your
discretion.

Braces enclose two or more items from which you must select one.
Three dots indicate that the preceding can be repeated.

Lowercase letters represent information you must supply. (You
must substitute your own values for the lowercase terms.)

Represents an unsigned decimal number.
Represents a signed decimal number,

Represents a range of numbers from which one number can be
selected. (The dash is not coded.)

Represents an indicator, which can be referred to by label or
number.

Represents a binary register, which can be referred to by label or
number.

Represents a decimal register, which can be referred to by label or
number.

When more than one register may be used in a statement, the letters
a, b, and c may replace the n to more clearly demonstrate the posi-

tions in the statement that the different registers may occupy.

Represents any form of constant as described in this chapter.

Introduction

15

16

Statement Symbols

Statement symbols must be used in an assembler source program as shown in the
syntax iilustrations:

Symbol

LABEL

Definition

Colon is used after symbolic labels.

Semicolon delimits statements.

Point, or period, begins control statements.

Equal sign causes the value of the data area on the left of the equal
sign to be changed according to the value of the data area on the
right of the equal sign.

Parentheses enclose certain parameter values.

Single quotes enclose literals and are used to specify numeric data
other than decimal. The use of single quotes is interchangeable with
the use of capital C and single quotes. For example, C'abc’ and ‘abc’
produce the same results.

Cornma separates parameter values.

Uppercase letters are assembler language and must be coded as
shown.

Chapter 2. Programming Concepts

This chapter discusses various data areas that are set up according to your control
statements and are used by the 5280 during program execution. The discussions

often refer to the control statements that generate the areas and the instructions

that use the areas during program execution. Each control statement is described
in Chapter 3; each instruction is described in Chapter 4.

TABLES

Tables play an important part in 5280 assembler programming. Two kinds of
tables may be set up and used by your program: data tables, which are set up by
.TABLE control statements, and label tables, which are set up by .LABTAB
control statements. Also, the assembler builds system tables, which are used by the
5280 during program execution. These system tables allow you to refer to a data
area with a label; the 5280 converts the label to an index that points into a system
table and locates the address and parameters of the area.

System Tables

When the assembler processes control statements that set up as tables, formats, or
prompts, it places the address of each table, format, or prompt in a table. This table
of addresses is a system table, and is used by the 5280 during program execution.
System tables are stored in the partition storage area. You can specify the address
of the system tables by using the .SYSTAB control statement in your source pro-
gram. Otherwise, when the assembler encounters the .END control statement, it
stores the system tables at the addresses immediately following the last address that
contains program object code. The address of each system table is stored in the
partition control area. The control statements that generate a system table argu-
ment are listed below, with the system table into which the argument is entered.

System Table Control Statements

Table control .TABLE

Edit format control .FMT series (each series = 1 argument)
Screen format control SFMT series (each series = 1 argument)
Prompt control .DC TYPE=PRMT

Duplicate and store control .DC TYPE=MDUP

Programming Concepts 17

When a source instruction refers to a prompt, table, duplicate field, store field, or
format, the instruction specifies only the label. The B280 uses this label to find

the system table entry; the system table entry provides the address and other control
parameters. The system table entries are stored sequentially, in the order they

occur in the source program. Except for the prompt system table, the first entry

in a system table is at index O; for the prompt system table, the first entry is at
index 1. The assembler places the table index into the object code instruction.

This method requires only 8 to 10 bits of the 4-byte object code to provide the
address and parameters of the requested data area. The .SYSTAB control state-
ment description in Chapter 3 describes how to specify the labels and addresses of

the system tables.

Data Tables

Contiguous fields of related data can be referred to as a data table. In your source
program, you can allocate and initialize the fields of a data table by using .DC
control statements. After you have allocated the fields, you must use the .TABLE
control statement to structure the fields into a table. The first argument in a data
table is at index 1. You may have up to 128 tables within a partition. You must
include one .TABLE control statement for each table in your source program.

You can use instructions in your source program to request that the 5280 search,
read, or write the entries in a data table. See Table Instructions in Chapter 4 for a
description of these instructions.

Data tables can be fixed length or variable length, according to your .TABLE control
statement. See the .TABLE control statement definition in Chapter 3 for an
example of .DC and .TABLE control statements that build a variable length table.

Label Tables

Label tables are tables that contain addresses; they are used by your program to
make indexed branches and indexed subroutine calls. In your source program you
use a .LABTAB control statement to set up a label table.

The parameters of the .LABTAB control statement specify the labels of the sub-
routines or instructions you wish to enter into the label table. The address of the
first label specified in the .LABTAB statement is entered at index O in the label
table, the address of the second label is entered at index 1, and so on. When you
code a GOTAB or CALLTB instruction, you specify (1) the label of the iabel table
and (2) the label table index of the subroutine or instruction you wish to execute.

The 5280 makes similar indexed branches through the label table you use for your
external status condition subroutines, if you code a separate subroutine to handle
each condition. (See Keyboard/Display External Status in Chapter 6.) You specify
this label table in the ETAB parameter of the . KBCRT control statement.

DATA TYPES
Each source instruction and control statement requires specific types of data to be
used as operands. For some operands only one type of data is accepted. For
example, the format operand of the ENTR instruction requires a screen format
specification; no other type of data is accepted. For other operands more than one
type of data may be specified. For example, the operand of the ZONE instruction
may be specified as a decimal register or as a constant.

The following data types can be used in the instruction and control statement
operands.

® Label or number of an indicator

® Label or number of a binary register

® Label or number of a decimal register

® Label of an instruction

® Label of a data storage area (from a STOR type .DC)
® Label of a prompt (from a PRMT type .DC)

® Label of a duplicate area (from a MDUP type .DC)
® L abel of an edit format

® | abel of a screen format

® Number of a data set

® [ndex of a table

® Constant

SUBROUTINES

A program can call any subroutine that is stored within the partition. Calls to
routines in the common function area are discussed under Common Function
Routines in Chapter 6.

Two source instructions can be used to call a subroutine: the CALL and CALLTB
instructions. These instructions are described in Chapter 4 under the Subroutine
Call and Return instructions. A CALL instruction must include a label or a binary
register, or both. If the CALL instruction includes a label, a normal call is made to
the statement at the specified label. If the CALL instruction specifies a binary
register and no label, a call is made to the address contained in the register. If the
CALL instruction specifies a binary register and a label, the contents of the binary
register are added to the address of the specified label, and a branch is made to the
resulting address.

Programming Concepts

The CALLTB instruction is used to make an ind

in
The label table must be set up and labeled by a LABTAB contro! statement. You
include this label table and a binary register when you write the CALLTB instruc-
tion. The binary register contains the index of the subroutine you wish to call. The
first entry in the label table is at index 0. When the CALLTB instruction is
executed, the call is made to the subroutine at the specified index into the label
table. Hf you use a separate subroutine for each external status condition, the 5280
uses this method to call the appropriate external status subroutine. The 5280 uses
BR23 to hold the index into the external status subroutine label table.

+ahle
Ci 1abie.

[«
o
‘Q

)

3

)

T
-
o
-
)
c
«3
o
£
I
g

The Partition Subroutine Stack

Whenever a subroutine call instruction is executed, the address of the next
sequential instruction is assumed to be the return address and is stored into the
partition stack. The partition stack is a system table with 2-byte entries, located in
partition storage. You may use the .SYSTAB control statement in your source
program to specify the address and size of the partition stack. Otherwise, when the
assembler encounters the .END statement it locates the beginning of the partition
stack in the address following the last address that contains program object code or
system tables. In either case, it stores the address of the beginning of the partition
stack in BR18, which is referred to as the stack pointer. When the first subroutine
call is executed, the 2-byte return address is placed in storage at the address indi-
cated by BR18. Then the address in BR18 is incremented by two, so that it points
to the next available stack entry. |f another call is executed before a return is
made to the first call, the return address for the second call is placed in the address
indicated by BR18, and BR18 is incremented by two. In this way, you can have
nested subroutine calls. You must remember, however, that each nested call adds
another 2-byte entry to the partition stack. If the partition stack extends beyond
the end of the partition, a program check error results.

Subroutine Returns

External status subroutine returns depend upon the particular external status
condition and are described under External Status and Error Conditions in this
chapter.

Other subroutines end with a RETURN instruction. When this instruction is exe-
cuted, the content of BR18 is decremented by two so it points to the last address
entered into the partition subroutine stack. If the RETURN instruction includes a
binary register, an indexed return is made. The content of the binary register is
added to the address pointed to by BR 18, and control returns to the resulting
address.

Figure 2-1 illustrates how the partition stack and stack pointer are used during sub-
routine calls and during returns.

Yes

Go to the subrou-
tine stack address
specified by BR18

Write the return
address (of the
next sequential
instruction) in the
subroutine stack

|
|

Increment BR18
by 2

Branch to the
subroutine

O

Get an
instruction
No
Is
this a
Yes
RETURN No
Decrement Execute the
BR18 by 2 instruction

1
Go to the subrou-
tine stack address
specified by BR18
1
Return to the
address stored in
this subroutine
stack position

Figure 2-1. Overview of Subroutine Calls and Returns

Programming Concepts

21

THE STATLS

LINE

The top line of the data station screen normally displays the status line. The 5280

maintains status line fields, which communicate status information to the operator.

Figure 2-2 illustrates the status line fields.

22

Position Mode

123456789 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 ... 32

P cccc S R R H H Normal Entry

P cccc S R R > HH Normal Entry,
Insert Mode

P cCcCCC-EEE E - S R R H H Keystroke
Error

P CCCC-EEE E - L L N NN NNNINNN DD ...D 1/O Error

Key

P is the partition number.

C is the current position counter.

E is the error or condition code.

S is the field shift.

> is the insert mode symbol.

R is the positions remaining in the field.

H is the hex value of the current position.

L is the logical device ID.

N is the program name (first 8 characters).

D is the data set name.

Figure 2-2. The Status Line Fields

The Partition Number

The partition number is maintained only during an attach or detach operation.
Upon completion of a successful attach operation, this status line field contains
the partition number of the attached partition. Upon completion of a successful
detach operation, this field contains the partition number of the foreground parti-
tion that is permanently associated with the keyboard.

The Current Position Counter

The current position counter is maintained only during the processing of an
ENTR command. This status line field contains the value of the position counter.
The value is automatically updated with each keystroke. The value reflects the
current position, relative to: (1) the beginning of the 1/0 buffer, (2) the first posi-
tion on the screen, (3) the first position of the record, or (4) the first position of
the field. The CNTR parameter of the .KBCRT control statement determines
which value is maintained in the counter.

The Error Code

The error code field of the status line contains the error code of the current error.
It is maintained by the 5280 to reflect all errors. If your program issues a keyboard
operation to send an error code to the status line, you may place the code in
positions 1-65 of the status line; however, the code is normally placed in positions
3-11.

The Field Shift

The field shift position of the status line is maintained only while an ENTR com-
mand is being processed. It contains the symbol that reflects the keyboard shift
for the current field or subfield.

The Insert Mode Symbol

The insert mode symbol is maintained only during the processing of an ENTR
command in insert mode, after the operator has pressed the Ins (Insert) key.

The Positions Remaining in the Field

This status line field is maintained only while an ENTR command is being processed.
It reflects the number of field positions remaining to be entered in the current input
field. If the value is greater than 99, two asterisks (**) are contained in the status
line field.

The Hex Value of the Current Position

The hex value is maintained on the status line only while an ENTR command is
being processed. It is the hex value contained in the 1/O buffer position that corre--
sponds to the current position of the cursor.

Nondisplay of the Status Line

Certain applications may require the use of every line on the screen. For these
applications, the DISPEX instruction can remove the status line from the screen so
the top line can be used to display data or prompts, or both. The 5280 maintains
the status line whether or not it is displayed on the screen. If an error occurs when
the status line is not being displayed, the DISPST instruction can temporarily
replace the current top line with the status line in order to communicate error
information to the operator. Or the FUNC parameter of the .KBCRT control state-
ment can specify that the 5280 determines whether the status line is being displayed
whenever an error occurs; if it is not, the 5280 displays it, then returns the top line
when the error is reset. The data from the top line is not lost and may be returned
to the screen after appropriate error recovery has been accomplished.

The DISPEX and DISPST instructions are discussed under Keyboard Operations in

Chapter 4. The .KBCRT control statement is discussed under .KBCRT Control
Statement in Chapter 3.

Programming Concepts

24

EXTERNAL STATUS AND ERROR CONDITIONS

When an 1/0 error condition or a condition that requires operator intervention

occurs, the 5280 generates an appropriate condition code and places it into the
I0OB of the data set that was being processed when the condition occurred. The
condition code is made up of four digits that describe the condition:

® Device reporting the condition (first digit)

® (Category of the condition {second digit)

® Condition number (third and fourth digits)
The device digits are:

Digit Device

5280 controller

Keyboard/display

Printer

Diskette

SNA communications access method

BSC communications access method
Program

OO HWN-=0

The category digits are:
Digit Device

Communications completion codes

Operator intervention required

Hard error (not retried)

Error that has been unsuccessfully retired

10B error

Soft error (has been successfully retried)
Excebtion condition

Warning message, program execution may continue
Reserved

Software termination

CONOOEOHWN-=0

The last two digits of the condition code are the condition number. The condition
number specifies the condition and varies depending upon the device and category.
All condition codes and messages will be described in the Message Manual.

The following information concerning the condition is placed into system binary
registers within the partition when the condition occurs.

Register Information

BR19 Used only with keyboard/display external status, this register con-
tains the relative address of the field in the 1/0 buffer that holds the
current record. The address is relative to the beginning of the parti-
tion and is valid only when BR21 contains a field specification.

BR20 Used only with keyboard/display external status, this register con-
tains the absolute address of the current field in the screen refresh
buffer and is valid only when BR21 contains a field specification.
The screen refresh buffer is located within the keyboard/display unit
and holds the data that appears on the screen.

BR21 Used only with keyboard/display external status, this register con-
tains a control specification or a field specification. If it contains a
field specification, it also contains the length minus one of the
current field in the 1/O buffer. See Keyboard/Display External
Status in Chapter 6 for the format of the contents of this register.

BR22 Used with all external status except keyboard/display, this register
contains the relative address of the last IOB to report external status.

BR23 Used with all external status, this register contains the index of the
current external status condition. This index can be used by your
program as the index into your external status subroutine label table.
Except for keyboard/display external status, this index is the cate-
gory digit from the condition code. See Keyboard/Display External
Status in Chapter 6 for information about this index for keyboard/
display external status.

If you write subroutines to handie certain external status conditions, such as the
keyboard/display external status conditions, your program may use the data in
these registers. Do not change the data in the system registers.

KEYBOARD DATA ENTRY

Keyboard entry of each input record is initiated with an ENTR command. The
input record is formatted according to the screen format. The operator enters
characters into the fields of the input record, and the 5280 makes character and edit
checks to make sure the characters are valid for the field, according to the specifica-
tions in the screen format. Data keys and many function keys sound a response
click from the keyboard. The characters, as they are entered, are stored into the
1/0 buffer and are displayed on the screen. For enter, update, and verify modes a
keystroke counter is incremented when each character is entered. (See Keystroke
Counters in Chapter 6 for more information.) The cursor is moved to the screen
position where the next character is to be entered. The operator can move the
cursor forward and backward within the current record.

Programming Concepts

25

The status line displays data entry information such as the current keying paosition,
the number of positions remaining to be filled in the current field, and the key-

board shift for the field.

The operator can select functions, such as duplicate or skip, by pressing the appro-
priate function keys. You can let the 5280 process keyboard functions, or you can
include your own routines to handle these functions. See the Functions Reference
Manual for more information about the keyboard functions.

Modes of Entry
The 5280 supports three basic modes for data entry:
® Enter mode, for initial data entry
® Update mode, for inspection and modification of previously entered data

® Verify mode, for having data checked for accuracy and making necessary
corrections

In addition to these basic modes, rerun mode or display mode can be selected by
your program to perform special functions. You can select one of these five modes
with the MODE parameter of the .KBCRT control statement. (See .KBCRT Con-
trol Statement in Chapter 3.) Insert mode or field correct mode is automatically
selected by the 5280 when the appropriate keystroke is entered.

Enter Mode

When the 5280 executes an ENTR command in enter mode, each data character is
displayed on the screen and placed into the 1/O buffer as it is entered. Prompts,
constant inserts, duplicate fields, skip fields, and display attributes are displayed
when the cursor moves to the first position of the field or to the attribute position;
these positions are specified in the screen format. Constant inserts are also placed
into the 1/O buffer as they are displayed. When the complete screen format has
been processed, the 1/0 buffer holds the constant inserts and the newly entered
data.

Update Mode

When the 5280 executes an ENTR command in update mode, prior instructions in
your program must have placed a previously-entered record into the 1/O buffer.
The 5280 displays prompts, display attributes, and the contents of the 1/0O buffer.
The display attributes and prompts are determined by the screen format. The
operator can enter a new data character into any record position to replace the data
character currently in the record. The new data character is displayed on the
screen and placed into the 1/O buffer as it is entered. When the operator has
completed all necessary modifications, the /O buffer contains the original data in
all positions that were not modified and the new data in the positions that were
modified.

Verify Mode

When the 5280 executes an ENTR command in verify mode, prior instructions in
your program must have placed a previously-entered record into the 1/0 buffer. The
5280 displays the prompts and display attributes as for enter mode, according to the
screen format. It does not display the contents of the 1/O buffer. As the operator
enters a data character into a record field position, it is verified against the contents
of the corresponding field position in the 1/0 buffer. If the newly entered
character matches the original character, which is in the 1/O buffer, it is displayed
on the screen and the cursor moves to the next position. If the newly entered
character does not match the original character, the cursor remains at the character
position, the original character and the remainder of the field in the 1/O buffer are
displayed, and a verify mismatch error is reported. The operator must press the
Reset key, then enter either the character displayed above the cursor or reenter

the character that caused the mismatch. If the character that is displayed above the
cursor is entered, the remainder of the field is removed from the screen and the
cursor moves to the next position. If the character that caused the mismatch is
reentered, that character is displayed above the cursor and replaces the original
character in the 1/0 buffer. A verify-correction keystroke counter is incremented
(see Keystroke Counters in Chapter 6) and the cursor moves to the next position.

If the character entered is neither the original character nor the character that
caused the mismatch, another verify mismatch error is reported. If the operator
backspaces over a data position on the screen, the position is blanked and must be
reentered and reverified.

Rerun Mode

When the 5280 executes an ENTR command in rerun mode, no data or prompts
are displayed on the screen. The status line counters, keyboard shift, and hex
display information is not maintained. The entire screen format is processed,
except that a clear-screen function that is specified at the start or end of the format
is ignored. Character and field edit checks are bypassed. Auto duplicate, auto skip,
and main storage duplicate and store functions are performed if the auto-dupsAkip
switch is turned on or if the field has the AA (absolutely automatic) attribute speci-
fied in the screen format. Constant inserts are placed into the 1/O buffer. When

an RG (return to program) exit specification is encountered in the format, the
appropriate external status condition occurs.

Rerun/Display Mode

When the 5280 processes an ENTR command in rerun/display mode, the prompts,
display attributes and the contents of the 1/0 buffer are displayed as for update
mode. The status line information is maintained. Character and field edit checks
are bypassed. Auto duplicate, auto skip, main storage duplicate and store, and RG
functions are performed as for rerun mode.

Rerun mode requires less execution time than rerun/display mode, and is the mode
usually selected for the rerun function. Rerun/display mode can be used when an
error occurs when a record is being processed in rerun mode, and the operator
must inspect the record data order to recover from the error.

Programming Concepts 27

28

Display Mode

When the 5280 executes an ENTR command in display mode, prior instructions
in your program must have placed a previously-entered record into the 1/0 buffer,
The 5280 displays prompts, display attributes and the contents of the 1/O buffer.
The display attributes and prompts are determined by the screen format. The
cursor is not displayed, and no data can be entered. |f a buzz or clear-screen func-
tion is specified at the end of the screen format, it is ignored. When the 5280 has
processed the complete screen format, the external status condition for record
advance (condition 6) occurs.

You can use display mode to inspect the prompts and display attributes of a screen
format. Do not confuse display mode with rerun/display mode.

Insert Mode

Insert mode is initiated when the operator presses the Ins key. Insert mode is valid
only when an ENTR command is being processed. When the Ins key is pressed, the
insert mode symbol is displayed on the status line. When the operator presses a
data key, the data character is inserted into the field at the current cursor position.
All field positions to the right of the cursor, and the cursor and character above the
cursor, are shifted one position to the right. Insert mode is canceled when the
operator presses the Reset key.

Field Correct Mode

Field correct mode is selected by the 5280 when it is processing an ENTR in verify
mode and the operator presses the unshifted Corr key. The cursor moves to the
first position of the field, and the field is filled with blanks in the 1/0 buffer and
on the screen. The operator can then enter data into the entire field as for enter
mode. The character and field edit checks are performed. When the cursor exits
the field in the forward direction, the 5280 returns to verify mode. The field can
now be verified.

AUTOMATIC FUNCTIONS

While the 5280 is processing formatted data entry, certain functions may be
initiated automatically as specified in your application program. These functions
include auto enter, auto duplicate/skip, and alternate record advance. You can
activate these automatic functions by including the FUNC parameter of the
.KBCRT control statement. You can activate automatic functions by providing
support in your program for the Auto Enter and Dup Skip keys. See the
Functions Reference Manual for a detailed description of all keyboard functions.

Auto Enter

If you specify auto enter in your .KBCRT control statement, the 5280 automati-
cally performs a record advance function when the operator enters the last input
position of a record.

If you do not specify auto enter, the 5280 sets the system in the awaiting record
advance state when the operator enters the last position of a record. The operator
must then press the Enter key or Rec Adv key to initiate a record advance function.

Auto Duplicate/Skip

If you specify auto duplicate/skip in your .KBCRT control statement, the 5280
automatically processes any field that is defined in your program as an auto
duplicate or auto skip field. When the cursor moves to the first position of an auto
duplicate field, the 5280 duplicates data into the field from the area specified by
your program. (See Field Definitions later in this chapter for more information
about duplicate fields.) When the cursor moves to the first position of a skip field,,
the 5280 fills the field with blanks and then moves the cursor to the first position
of the next field.

If you do not specify auto duplicate/skip in the .KBCRT control statement, a dupli-
cate field or skip field is processed as for a manual field. In order to initiate the
duplicate or skip function, the field must have also been specified as absolutely
automatic in the program, or the operator must press the Dup Skip key. (Software
must provide support for this key.)

Alternate Record Advance

If you specify alternate record advance in your .KBCRT control statement, when
the operator presses the Enter key or Rec Adv (Record Advance) key the processing
of the current record stops. Any specifications for fields or screen control that is
defined in your program for positions between the cursor position and the end of
the record are ignored.

If you do not specify alternate record advance, any specifications for fields or
screen control defined for positions between the cursor position and the end of
the record are processed. Input fields are processed as though a = (Field Advance)
key were pressed for each field.

SCREEN FORMATS

A screen format is a series of source program control statements that define each
field of a record to be entered via the keyboard. The control statements also define
the prompts and display attributes that appear on the screen while the record is
being entered. The series of control statements must begin with a SFMTST state-
ment and must end with a SFMTEND statement. You can write up to 256 screen
formats for each partition.

Programming Concepts 29

30

Y

When the assembler processes each series of controi statements, it generaies a string
of object code referred to as a screen format control string. The assembler stores
each screen format control string in the partition storage area, and places the address
of each string in a system table.

During program execution, formatted key entry is initiated by a key entry com-
mand, the ENTR command. Each ENTR command specifies the format to be used
to enter the record. The 5280 searches the system table for the address of the
screen format control string generated from the specified format. The 5280 then
processes the screen format control string in the same order that the source program
control statements were written,

Besides the .SFMTST and .SFMTEND control statements, the screen format control
series includes the following control statements:

Control
Statement Purpose

SFMTPMT To specify prompts

SFMTCNS To specify constant insert data
SFMTFLD To define each field and subfield of the record
SFMTCTL To specify keyboard, screen, and format control

The sequence of a screen format for a typical key entry job could begin with a
statement to display a prompt requesting the operator to enter a field of data.

The next format statement could define the valid characters that the operator may
enter into the field. As the operator enters the field, the 5280 checks each input
character to make sure it is valid according to the screen format statement that
defines the field. Each valid input character is placed into an 1/O buffer. The next
screen format statement could move the cursor or the pointer in the 1/O buffer
that contains the current record. Then another prompt could request the operator
to enter the next field.

When all the specifications of a screen format are processed, the complete input
record is in the current record buffer. The 5280 must then execute object code
instructions to move the data from the current record buffer to registers or other
storage areas. When the 5280 has moved the data from the buffer, another ENTR
may be issued, with the same or a different screen format specification.

Prompts

In your source program, you label and initialize each prompt by using a .DC
(declare) control statement. You must specify PRMT for the TYPE parameter and
define the prompt message with the INIT parameter. Then, when you write a
screen format using the .SFMT control statements, you specify the iabel of the
prompt with a SFMTPMT statement.

When the assembler processes your source statements, it stores the prompt labels
in a system table, |t stores the system table index for the prompt in the screen
format control string.

During program execution, when the 5280 encounters a prompt index while
processing a screen format control string, it finds the address of the appropriate
prompt at that index into the system table. It takes the prompt message from the
storage address and displays it on the screen. The prompt message is not inserted
into the current record buffer.

You can specify the screen position where each of your prompts are displayed. A
prompt can be displayed in the standard fixed prompt location, which begins in
column one of line two. You can specify a different line for the fixed prompt posi-
tion by including the FPLC parameter of the .KBCRT statement. Each current
fixed prompt replaces the previous fixed prompt on the prompt line. You can also
have the prompt displayed at the current cursor position, or at a specified number
of positions to the right or left of the current cursor position, or on the beginning
of the next line. All of these options for the placement of your prompt are
described under .SFMTPMT Control Statement in Chapter 3.

Constant insert Data

In your source program, you can specify constant data to be inserted into the
current record buffer and displayed upon the screen during program execution. The
constant data is labeled and initialized with a .DC control statement, with PRMT
specified for the TYPE parameter. It is specified in a source screen format with a
SFMTCNS statement. The 5280 finds the appropriate constant insert data by using
the prompt system table. The insert is processed as if it were a prompt, except that
the constant is displayed on the screen and inserted into the current record buffer.

Field Definitions

You can define the individual fields of the record by including a . SFMTFLD state-
ment for every field. The parameters of the .SFMTFLD statement specify the field
length and the character set that is valid for the field. Other parameters can break
a field down into a number of subfields, or indicate that the field is a data required,
automatic duplicate, or right adjust field. Parameters can also specify display attri-
butes that effect the individual field, such as blink, highlight, or underscore.

Main Storage Duplicate and Store

You can specify a main storage duplicate field, or a main storage store field, by
including an MD or MS parameter in the SFMTFLD statement that defines the field.
The MD or MS parameter specifies the label of the main storage data area. This

main storage data area must be allocated and labeled with a .DC statement that
specifies MDUP for the TYPE parameter.

When a main storage duplicate field (MD) is entered, the contents of the specified
main storage area are automatically copied into the field in the current record buffer

if one of the following is true:

® The field is also specified as auto duplicate and absolutely automatic (AD, AA
in the third FLDF position).

® The field is also specified as auto duplicate (AD in the third FLDF position) and
the auto dup/skip mode is active.

Programming Concepts

it the field is defined only as MD, duplication can be initiated by pressing the Dup
key. When the Dup key is pressed, the duplication starts at the current field posi-

tion and continues to the end of the field.

When a main storage store field (MS) is exited, the contents of the field are auto-
matically copied into the specified main storage location if one of the following is
true:

® The field is also defined as absolutely automatic (AA in the third FLDF position).

® The auto dup/skip mode is active.

Example: The following declare control statements allocate and initialize a prompt
and a constant insert and allocate a data area in main storage. The screen format
control statements use the prompt, constant insert, and data area to illustrate a
main storage store and main storage duplicate.

.DC LABEL=PTNAME TYPE=PRMT INIT="Name: ’;
.DC LABEL=CONST1 TYPE=PRMT INIT="Hello *;
.DC LABEL=DUPNAME TYPE=MDUP LEN=20;

SFMTST LABEL=PFT04 CNTL=MV;

SFMTPMT PRMT=SP,PTNAME ; display a standard position prompt
SFMTFLD FLDF=A,20,AA MS=DUPNAME;

*The operator enters a name into the 20-byte alphabetic field, which is
*specified as absolutely automatic. The characters are displayed and placed
*into the 1/0 buffer as they are entered. When the field is exited, the
*contents of the field are stored into the main storage data area labeled
*DUPNAME because the AA is specified.

SFMTCNS CNST=CONST1 BFPS=1 CSPS=NL;

*The constant is displayed on a new line, the 1/O buffer pointer is incremented
*1 to skip 1 position in the buffer, and the constant is placed into the 1/0
*buffer.

SFMTFLD FLDF=A,20,AD,AA MD=DUPNAME ;

*When the cursor moves to the first position of this field, the name is
*automatically copied from the data area labeled DUPNAME into the 1/0
*buffer and is displayed on the screen.

Field Control

You can specify control of the screen, of the keyboard, and of the format with a
SFMTCTL control statement. The parameters of this control statement can specify
display attributes for the screen, such as blink, reverse image, and nondisplay. Other
parameters can enable or disable the Dup key or specify whether a field exit key is
required to exit the current field. Other parameters can cause a field to be duplicated
or stored, cause a conditional bypass of a portion of the format, or cause a secondary
format to be processed.

Secondary Screen Format

You can specify a secondary screen format series by including a .SFMTCTL control
statement at the position where you want the secondary screen format to begin.
The .SFMTCTL statement must have an ES parameter that indicates the label
(LABEL parameter of the .SFMTST statement) of the secondary screen format.

The secondary screen format specification acts in a way similar to a subroutine
call. When an ES parameter is encountered while the primary screen format series
specifications are being processed, control goes to the first specification of the
secondary screen format. All specifications of the secondary screen format series
are processed. Then control returns to the primary screen format, to the statement
following the ES parameter.

Only one level of secondary formats is allowed.

Example: In the following example, three screen formats are used to enter a
record: the primary format FMT04, the secondary screen format FMT 16, and the
secondary screen format FMT17.

SFMTST LABEL = FMTO04; begin primary screen format.
SFMTPMT LABEL = PROMPTG; primary format displays a prompt.
SFMTCTL ES = FMT16; process complete screen format FMT16.
SFMTFMT LABEL = PROMPT7; primary format displays a prompt.
SFMTCTL ES=FMT17; process complete screen format FMT17.
SFMTPMT LABEL =PMTEOR;

.SFMTEND; primary screen format ends.

Conditional Bypass

You can specify a conditional bypass for any section of a screen format. Include a
SFMTCTL control statement with a Cl parameter at the position in the screen
format series where the bypass begins. Then include a SFMTCTL statement with
a CNTL = CE parameter at the position where the bypass section ends.

For the Cl parameter, you must specify an indicator label followed by either ON

or OFF. Use the label assigned by a .DCLIND control statement. When the 5280
encounters the bypass specification, it checks the specified indicator. If the indi-
cator is 1 and the Cl| parameter specified ON, or if the indicator is 0 and the Cl
parameter specified OFF, the 5280 bypasses all field, display attribute, and prompt
specifications between the Cl and the CE specifications. However, the cursor and
current record buffer pointer are moved past the space on the screen and in the
current record buffer where the bypassed fields, display attributes, or prompts
would have appeared. |If the bypass specifications are encountered in a forward
direction, the current field counter is incremented by the number of fields by-
passed. If itis encountered in a backward direction, the current field counter is
decremented. |f an RG (return to program), BFPS (change buffer position pointer),
CSPS (change screen position pointer), or a control specification to change status

is encountered during bypass, it is processed as normal. If an ES (execute second-
ary format) specification is encountered, the fields and control specifications of the
secondary format are processed as described above for a bypass.

Programming Concepts

Example: The secondary format FMTOG is not executed if the indicator CHECK 10

SFMTST LABEL = FMT05 CNTL =MV;

SFMTCTL CI=CHECK10, ON; the indicator is labeled CHECK10.
SFMTCTL ES = FMTO06; a secondary format specification.
SFMTCTL CNTL = CE; end bypass section,

Only one level of conditional bypass is allowed. Do not follow a Cl parameter with a
second Cl parameter before a CE specification is included. However, you can have
more than one bypass within a screen format series if each Cl parameter is followed
with a CE specification. Do not follow a Cl parameter with a SFMTST or a
.SFMTEND control statement before a CE specification is included.

Returning (RG) Exits

When you write a screen format in your source program, you may wish to
temporarily interrupt key entry in order to have program operations performed.
You can do this by including a CNTL=RG parameter in any .SFMT control state-
ment except the SFMTEND statement. The assembler sets a bit in the screen
format control string whenever it encounters an RG specification in the source
screen format. Then, when the 5280 executes the screen format control string and
encounters this bit in a forward or backward direction, it interrupts key entry and
reports external status condition 4 or 5, respectively.

You could include an RG exit immediately following an input field you want to
self-check, or immediately following an input field you want to add to a running
total.

EDIT FORMATS

Edit formats are used to reformat the fields of a record as the record is moved
between main storage and the current record buffer. Each edit format is set up by
one .FMTST control statement followed by one .FMTFLD for every field in the
record. The .FMTFLD statement specifies the iength of the field and the registers
to or from which the field is moved. It can also specify editing for the field, such
as the placement of a currency sign, decimal point, or minus sign. Each edit format
must end with a .FMTEND control statement.

The edit formats are used for several data movement instructions to move the fields
of the record to or from the current record buffer after the record has been read,
or before it is written.

Edit formats may be used for read and write instructions for the diskette drive,
communications line, and printer. When an edit format is specified in a read
instruction, the record is reformatted as it is read into the current record buffer.
The format edits the record, removing currency symbols and punctuation. The
edit format then specifies the registers or storage locations into which each field is
moved. For a write instruction, the format moves the fields from the specified
registers or storage locations to the current record buffer and replaces the currency
symbols and punctuation. The reformatted record is then written from the current
record buffer to the diskette, printer or communications line.

Data Directed Formatting

For input records, you can specify that the formatting is data directed. The
.FMTST statement allows you to specify a control character and where the control
character is located in the record. When you write a data directed read instruction,
you specify an asterisk (*) rather than a format {abel. Then, during execution of a
read operation, the 5280 selects the appropriate format by matching the control
character of the input record to the first format that has the same control character
specification.

FIELD MODIFICATION INDICATORS

There are 32 field modification indicators: 1160-1191. Each indicator represents a
field in the screen format, up to 32 fields. If there are more than 32 fields in the
format, each indicator represents every 32nd field. 1160 represents field O, field 32,
field 64 and so on. A format level zero specification is represented by one indicator
for the entire group of 1-byte fields.

When the 5280 encounters an ENTR command, it sets each field modification
indicator to zero. Each time the cursor is advanced or backspaced into a field, the
5280 sets a bit in the partition control area to zero. If data is entered into the field,
the 5280 sets the bit to 1. When the cursor exits the field, the 5280 ORs the bit
with the field modification indicator that represents the field.

Constant inserts are assigned field modification indicators. Whenever the insert is
moved into the 1/0 buffer and onto the screen, the corresponding field modifica-
tion indicator is turned on.

If an external status condition occurs while the cursor is within a field, the corre-
sponding field modification indicator has not yet been ORed with the bit in the
partition control area; therefore, it may not indicate that the field has been modi-
fied in the current record.

If your program makes a change to a field in the current record in the 1/O buffer, it
is your responsibility to update the corresponding field modification indicator.

Programming Concepts

DISKETTE DATA MANAGEMENT

Diskette operations for the 5280 include operations to read, write, search, insert,
and delete records that are stored in diskette data sets. The data sets may be
sequential or key indexed data sets. In a sequential or key data set, the 5280 can
access records sequentially, in the order they were entered. In a sequential data
set, the 5280 can access records directly, by relative record number. In a key
indexed data set, the 5280 can access records directly by key. When a key
indexed data set is opened, an index table of the keys is built automatically, or
you can choose to build your own key index table.

Label Update

By specifying a label update type data set, you can update the HDR1 labels and
sectors 1 through 7 of track 0 on the diskette index as though it were a sequential
update data set. For label update, the 5280 treats each 128-byte diskette data set
label as a record. The record number of the last label is both the EOD (end of
data) and the EOE (end of extent) record number. By specifying a label update,
erase-type data set, you can create labels without reading the existent label values.
Only the index cylinders are accessed for the label update access method.

Physical and Logical Buffers

You must set up at least one physical buffer in main storage for any program that
has 1/0 instructions. The physical buffer length must be a muitiple of 128 bytes
and must begin on a 128-byte boundary. You can use double buffering for
minimal delays in interactive programs; set up a second physical buffer so the

5280 can process data in one while an input or output operation is being performed
with the other. For keyboard/display 1/0, double buffers are required to duplicate
fields of a previous record into the same field of a current record. The 5280 keeps
track of the buffers and the records that are in the buffers.

You can block your data sets for faster execution; set up a logical buffer, and the
blocking and deblocking functions are performed automatically by the 5280. Or
you can omit the logical buffer and use pointer 1/0 to block and deblock logical
records directly to and from the physical buffer.

Automatic Logical Buffering

When the 5280 opens a data set, it finds the address of the physical buffer and the
logical buffer in the data set IOB. During 1/0 operations to or from a diskette data
set, the 5280 maintains a record counter to keep track of the record number of the
logical record currently being processed, relative to the first record of the data set.

When the 5280 is processing a sequential data set and encounters the first READ
instruction, it reads the logical records from the diskette into the physical buffer
until the physical buffer is filled. It then moves the first logical record from the
physical buffer to the logical buffer. If the READ instruction specified an edit
format, the fields of the record are edited and moved from the logical buffer
according to the format. When the 5280 encounters the second READ instruction,
it moves the second logical record from the physical buffer to the logical buffer.
No more data is read from the diskette until all the logical records currently in the
physical buffer have been processed.

Output of sequential logical records is managed in the same way. When the 5280
encounters the first write instruction, it writes the contents of the logical buffer

to the physical buffer at the record position specified by the current record counter.
Subsequent write operations place logical records into the physical buffer. The
5280 automatically writes the contents of the physical buffer to the diskette.

Pointer 1/0

When you use pointer 1/0, your program can access logical records directly from
the physical buffer. This saves storage that is required for a logical buffer, and saves
the time involved in moving the logical record from the physical buffer. Omit the
logical buffer specification in the . DATASET control statement, and specify pointer
(PTR) for the data set attribute. When you process your source program with the
5280 assembler, the assembler places the address of the physical buffer into the IOB
location reserved for the logical buffer address.

When the 5280 is processing a sequential data set that specifies pointer 1/0, and
encounters the first READ instruction, it reads the logical records from the diskette
into the physical buffer until the physical buffer is filled. The logical buffer
address in the data set 10OB points to the first logical record in the physical buffer.
The logical record is not moved to another storage location but is processed directly
from the physical buffer.

When the 5280 encounters subsequent READ instructions, it updates the logical
buffer address in the data set |OB so the address always points to the current logical
record in the physical buffer. For sequential write operations, the logical buffer
address is the address of the next logical record to be written.

You cannot use an edit format to edit and move the record fields when you use
pointer 1/O for diskette operations. However, you can place the address of the
logical record into a binary register and use it to access the individual fields of the
record using base displacement addressing. The address of the logical record is in
the 10B at displacement hex 0C-0D. The 5280 does not update this base address in
the binary register; you must replace the address before each 1/0 operation.

Programming Concepts

37

Keyed Data Sets

Keyed data sets can be read according to a specified key. When a keyed data set is
opened, an index table is built from the record keys. The index table can be built
either by the application program or automatically by the 5280, depending on the
TYPE parameter of the .DATASET control statement. |f a KR (key indexed read)
or KU (key indexed update) data set is specified, the 5280 automatically builds the
index table. If a KRN (key indexed read, no table build) or a KUN (key indexed
update, no table build) data set is specified, the application program must build the
index table. The .TABLE control statement is used to define the table. The
parameters of the .DATASET control statement and the . TABLE control statement
that are used for keyed data sets are as follows:

.DATASET Control Statement

TYPE=

KPOS=

KLEN=

TLOC=

DLTA=

Specifies one of the following keywords: KR, KU, KRN, or KUN.
In addition, may also specify ORD (records in ascending key
sequence).

Specifies the position of the key in the record.

Specifies the length of the key.

Specifies the location of the index table.

Specifies the density of the index table; optional for KR and KU
data sets but mandatory for KRN and KUN data sets.

.TABLE Control Statement

LABLE=

MAXM=

ENTRIES=

ARGL=

BYPAS=

Specifies the location of the index table (also specified for the TLOC
parameter of the .DATASET contro! statement).

Specifies the maximum number of entries that can be placed into
the index table.

Specifies the actual number of entries used in the table.

Specifies the iength of the index entry. This length can be less than or
equal to the length of the key, but it cannot be greater than the length
of the key.

Specifies the number of bytes to be associated with each index entry
that are not part of the index itself. Valid entries are 0, 1, 2, or 3.

If a nonzero entry is specified, the byte or bytes are used to hold the
relative record number of the record that corresonds to the index
entry. If O is specified, the index table entry contains only the index
entry, and the relative record number is calculated from the DLTA
specification and the relative position of the index within the index
table.

Note: These parameters are in addition to the parameters required or normally
used for a data set, as specified in Chapter 3.

38

Density of the Index Table

The density of the index table is specified with the DLTA parameter of the
.DATASET control statement. The density specifies the number of logical records
between index entries. Density may be 1 entry per record, 1 entry per track, 1
entry per 10 records, and so on. For KR and KU data sets, DLTA may be
omitted; the density is calculated by the 5280, using the length of the data set and
the length of the index table. The first entry in the index table is always for the
first record; the last entry is always for the last record. The following examples
show how the 5280 sets up index tables for various density and bypass specifica-
tions, using the sample data set in Figure 2-3.

KeyA/Data KeyB/Data KeyC/Data KeyD/Data KeyE/Data KeyF/Data KeyG/Data KeyH/Data Keyl/Data KeyJ/Data

Relative
Record
Number: 1 2 3 4 5 6 7 8 9 A

Figure 2-3. Sample Keyed Data Set Records

Examples:

Density = 1/record Density = 1/2 records Density = 1/3 records
Bypass = 2 Bypass = 3 Bypass = 0
KeyA0001 KeyA000001 KeyA

KeyB0002 KeyC000003 KeyD

KeyC0003 KeyE000005 KeyG

KeyD0004 KeyG000007 KeyJ

[_ _J KeyJOOO00A
Index Index Index
Table Table Table

Reading a Keyed Data Set

When the 5280 encounters a READ instruction for a keyed data set, the instruction
specifies a decimal register that contains the key of the record to read. The 5280
determines which entry in the index table is the highest entry that is lower than the
specified key, and which entry is the lowest that is not higher than the specified
key. The 5280 determines the relative record number for the record that corres-
ponds to each of these index entries, either by finding them in the index table (if a
nonzero BYPAS is specified) or by calculating them (if BYPAS=0). The 5280
searches the key positions of the records between these two relative record numbers
until a matching key is found, and reads the record with the matching key. if the
.DATASET control statement specifies the ORD parameter, the 5280 uses a binary
search; otherwise the 5280 uses a sequential search. If the . DATASET control
statement specifies a nonzero BYPAS and omits the ORD parameter, and if the
index has one entry per record, the 5280 searches the index for the first entry that
matches the key, then reads the data set record that corresponds to that index entry.

Programming Concepts 39

Updating a Keyed Data Set

A keyed data set can be updated by using a READ instruction with a key specified
to find the desired relative record number, then using a WRT instruction to update
the record at that record position. The 5280 does not update the index table.

Adding to a Keyed Data Set

A record can be: (1) inserted or (2) added to the end of a keyed data set. The
5280 does not update the index table. Therefore, records must not be added or
inserted unless the application program provides instructions to update or rebuild
the index before reading the data set again.

Shared Data Sets

Data sets that have share attributes specified in the .DATASET control statement
can be used simultaneously by more than one program. Corresponding share
attributes must be specified in every program that shares the data set. Improperly
specified share attributes result in an access error external status.

If a record is added to a shared data set, the EOD of ali I0Bs for that data set are
updated to the new increased value. Record inserts are not allowed for a shared
data set. Any operation that reduces the EOD or EOE value of a shared data set is
not allowed.

To make logical records more quickly available to be shared, you can use the quick
release (QR) and early write (EW) parameters in the .DATASET control statement.
These functions make direct access to update data sets more efficient because the
logical record to be read or written will be released so that other programs can use
it as soon as the operation is complete.

SCS Conversion Data Sets

When you store a data set on a diskette, you can save diskette space by using an
SCS conversion data set. An SCS conversion data set is defined by specifying

SCS in the TYPE parameter of the .DATASET control statement. When an SCS
conversion data set is processed, SCS (standard character string) control characters
are inserted by the 5280 to repiace blank characters. When you write the SCS
conversion data set to a diskette, the record length on the HDR1 label must equal
the block length. See SCS Conversion under Printer Instructions in Chapter 4 for
information about using the SCS conversion data set.

SELF-CHECK
The 5280 self-check facilities allow you to verify an input field at the time it is
entered. The self-check function can detect incorrect keystrokes and character
transpositions. It can also detect fraudulent entries.

The self-check facilities include the:

® SELFCHK control statement, to define the self-check field, register, modulus
and algorithm.

® GSCK instruction, to generate a unique self-check number for each self-check
field.

® |F ... CHK instruction, to verify the self-check field each time it is entered.

The Self-Check Field

A self-check field consists of the self-check number, which may be one or two digits
long, and the foundation. The foundation may consist of any characters available
to your 5280 keyboard. The self-check number may be assigned to any position in
the field. If the self-check number is two digits long, the two digits must be
adjacent.

The maximum length of a self-check field is 32 bytes.

The Self-Check Register

The self-check field must be placed into a decimal register, or if the self-check field
is larger than 16 bytes, a decimal double register. The 5280 right-adjusts the field
in the register. All unused register bytes are bypassed.

Figure 2-4 illustrates a self-check field with a self-check number one digit in length.

The position assigned for the self-check number is the rightmost position of the
decimal double register that acts as the self-check register.

Self-Check Register

Self-Check Field
Register ’ - ~
Position1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

06 / 09 / 19 8 0 * ARUdUd s
\ AN

Vv VA

Bypass positions are ignored. Foundation Number Self-Check
Digit Position

Figure 2-4. A Seif-Check Field in a Decimal Double Register

Programming Concepts 41

42

The Modulus

The self-check function uses a modular arithmetic. Modular arithmetic replaces a
number with its remainder after it is divided by a fixed number. This fixed number
is the modulus.

For example, clocks follow a modular arithmetic with modulus12. If you add 5 to
10 o’clock, the sum is 15 modulus12. Replace 15 with the remainder after it is
divided by 12:

1
15 modulus 12 = 12115
12
3 Remainder
|

10 o’clock + 5 3 Replaces 15. 3 o’clock

Stated another way, modular arithmetic replaces a number with the value in the
units position when the number is expressed in the base of the modulus. You can
convert a number to the base of the modulus by dividing it by the modulus and
using the remainder for the value of the units position:

i}oe-'-.o°
oé’\.'.;-.v"e l | | NP
' &80
& S
-F 1 "\f":;f’q
1 5y 15 modulus 12 = 12 [15 NS
12 1312
3 Remainder 1
l d

The value in the units position can be any number up to the modulus minus one.
For example, if the modulus is 125, the units position can contain any number up

to 124:
.\oo .
Qo'a‘&_.‘:&o‘\
| | £
31 B
4978 modulus 125 = 125 [4978 31 103,55
375
228
125

T(ﬁ Remainder
|

The Self-Check Algorithm

The basic steps of a self-check algorithm can be illustrated as follows, using 15 for

the foundation and 12 for the modulus:

1. Convert a number to the
base of the modulus.

2. The value in the units
position is the self-check
number.

Self-Check
Field
-

15

A\ od

Foundation ———l t—— Position for 1-Digit

Self-Check Number

15 modulus 12 =13,

163
N’
Self-Check

Field

Usually, however, the number converted to the base of the modulus is not the
foundation, but a number derived from the individual characters of the foundation.
The most common way to derive a number from the characters of the foundation

is to:

1. Multiply the contents of
each position in the
foundation by a weight.

2. Add the resulting products.

3. Convert this sum of the
products to the base of
the modulus.

4. The value in the units posi-
tion is the self-check
number.

Self-Check
Field

—
1 b - -
Position for 1-Digit
Weights: "8 6 &___ Self-Check Number
Products: 8 30
8 +30 = 38 sum

3

38 modulus 12 = 12[38 = 32,,
36
2

152

w
Self-Check
Field

Programming Concepts 43

Numerous variations can be added to these basic steps to design a unique algorithm.

These variations include:

1. Input translation. You can translate each character in the foundation to a
specified numeric value by using an input translate table. Input translation is
useful to assign a specific value to each alphabetic or special character in the
foundation.

2. Product table. You can find the product for the numeric value of each
foundation position by looking it up in a table rather than multiplying it by
a weight.

3. Output translation. You can translate the generated self-check number to
any specified output characters by using an output translate table. This is
useful if the self-check number can be up to two digits long (for modulus
11-100) and only one self-check number position is used in the self-check
field, or if the self-check number can be up to three digits long (for modulus
101-127).

Choosing Your Algorithm
Appendix C shows how the 5280 manipulates the self-check field according to
various parameters of the SELFCHK control statement. Use this appendix to
select the variations you want for your unique algorithm.
If you do not want to design your own algorithm, you may use one of the IBM-
supplied algorithms available with the 5280. These algorithms are referred to as
Standard Modulus 10 and Standard Modulus 11. If you use Standard Modulus 10
or 11, the 5280 assumes that your self-check field is as follows:
® The self-check number is one digit long.
® The self-check number is in the rightmost position of the self-check field.
® The foundation may be from 2 to 31 characters long.
For Standard Modulus 10 or 11, any 5280 keyboard character may be included in
the foundation. The numeric value of each foundation position is determined by
the low-order 4 bits of the EBCDIC representation of the contents of that position.
If the low-order 4 bits are 0-9, the numeric value is 0-9. If the low-order 4 bits are

A-F, the numeric value is 0.

Example:

Foundation: 6 9 7 * X Y
EBCDIC: F6 F9 F7 5C E7 E8

Value: 6 9 7 0 7 8

Standard Modulus 10

Standard Modulus 10 is designed to detect single incorrect keystrokes and single
transpositions. If you use Standard Modulus 10, the 5280 performs the following
operations to generate a self-check number for this sample self-check field:

Foundation
s b . g Gef-Check Position
712 -WwW
212 -

Self-Check Field

7 1 - W —Foundation

1. Find the numeric value for ;’:7 ;':1 |':2 Z;o |';e —EBCDIC

each foundation position. ; % 5 é é _Value
2. Multiply each value by the

corre:paning weightY The ! *1 *2 *0 *6 .

. *2 1 2 1 2 —Weights

weights alternate between 2 - - = = =

and 1, with 2 always in the 14 1 4 0 12 —Products

rightmost position of the &

foundation. 1+4 +1 +4 40 +1+2=13Sum SoF

QO,’QO
S

3. Add each digit of the result- NS

ing products. 13 modulus 10=1 3¢
4. Convert the sum to the IOJ

base of the modulus. -3

7 Complement

5. Subtract the value in the units

position from the modulus to

find the complement.

Note: If the remainder is O, 712-W7

the complement is 0. If the N —

remainder is 1, the character Self-Check Field

combination in the foundation
does not have a valid self-check
number. You must eliminate
these character combinations
when you generate self-check
numbers.

6. The complement is the self-
check number,

Programming Concepts 45

46

Standard Modulus 11

Standard Modulus 11 is designed to detect single incorrect keystrokes, single
transpositions, and double transpositions. If you use Standard Modulus 11, the
5280 performs the following operations to generate a self-check number for this

sample self-check field:

Foundation
— — Self-Check Position
6 1 2 - W
—— R —
Self-Check Field
1. Find the numeric value for 6 1 - W —Foundation
i iti t 1 t t |

each foundation position. Ff’i Fl F% 6? EG'S _EBCDIC
2. Multiply each value by the 6 1 2 —Value

corresponding weight. Weights

are the numbers from 2 to 7, 6 1 2 0 6 —Value

* * * * * .

starting in the rightmost posi- 6 5 4 '3 2 —Weights

tion of the foundation and 36 5 8 0 12 —Products

going leftward. Repeat the

numbers if necessary.

. 1 o

3 Add the whole number 36 +5 +8 +0 +12 = 61 Sum \&.@oo

products. QO',’-'Q&

\\’j.;.\\@

4, Convert the sum to the base N

of the modulus.

5. Subtract the value in the units
position from the modulus
to find the complement.

Note: If the remainder is O,
the complement is 0. If the
remainder is 10, the character
combination in the foundation
does not have a valid self-check
number. You must eliminate
these character combinations
when you generate self-check
numbers.

6. The complement is the self-check
number,

61 modulus 11 =56 6,

11
-6
5 -Complement

612-W5H
=

Self-Check Field

Using the GSCK Instruction

The GSCK instruction is used to create a new file of fixed numbers, such as
account numbers that require self-checking each time an operator enters them,
Your program must move the foundation into the self-check register before it
issues the GSCK instruction.

During the execution of a GSCK operation, the 5280 (using the algorithm you
defined with the .SELFCHK control statement) performs manipulations upon the
foundation to generate a self-check number. When the self-check number is
generated from the foundation, the 5280 can place the self-check number into the
self-check register. The foundation and its self-check number make up the
complete self-check field.

Using the IF . . . CHK Instruction

The IF ... CHK instruction is used to verify a self-check field. When an operator
enters a self-check field, your program must move the field into the self-check
register before it issues the IF . . . CHK instruction.

During the execution of an IF . . . CHK operation, the 5280 again uses your algo-
rithm to generate a self-check number from the foundation currently in the self-check
register. The 5280 then compares this self-check number with the current

contents of the self-check number position in the self-check register. The compari-
son fails when the characters now in the self-check register do not match the
characters that were in the same register positions when the GSCK operation was
performed.

Programming Concepts 47

48

Chapter 3. Assembler Language Control Statements

The 5280 assembler language control statements provide control information to the
system and allocate registers and data areas in main storage. Certain control state-
ments must occur in a specific order. Others may occur anywhere throughout the

program, interspersed with instruction statements. The prescribed order is indicated
in Figure 3-1.

To Initialize the Partition Control Area

START One is required as the first statement of a program, except for optional
listing control statements, to indicate the start of the program.

.KBCRT One is required as the second statement, to specify keyboard/display
control parameters.

.EDITC One is allowed as the third statement, to specify the edit control
characters.

To Declare and Label Data Areas

.DC One or more are allowed to allocate, label, and initialize any kind of
data area.

.DCLBR One or more are allowed following the .KBCRT statement, to allocate
and label binary registers.

.DCLDR One or more are allowed to allocate and label decimal registers, and
should follow any .DCLBR statements.

.DCLIND One or more are allowed anywhere to label user indicators.

.EQUATE One or more are allowed anywhere to label registers, constants,

expressions, and system registers.

To Set Up and Initialize Device Control Areas

.COMM One is allowed to specify the characteristics of the communications line.
.DATASET One or more are allowed to specify the characteristics of a data set.

To Set Up and Label Tables

.TABLE One or more are allowed anywhere to define the parameters of a data
table. A/l . TABLE statements must be contiguous.

.LABTAB One or more are allowed anywhere to set up a label table of specified
subroutine addresses.

SYSTAB One or more are allowed anywhere to specify the label and location of

system tables or the subroutine stack.

Figure 3-1 (Part 1 of 2). Control Statement Summary

Assembler Language Control Statements 49

To Set Up Edit Formats

FMTST
FMTFLD

.FMTEND

One or more allowed to begin each edit format specification.

One or more allowed following a .FMTST or another .FMTFLD
statement, to define an edit format field.

One is required as the last statement of an edit format specification.

To Set Up Screen Formats

.SFMTST

SFMTCTL

SFMTPMT

SFMTCNS

SFMTFLD

SFMTEND

One is required for each screen format, to indicate the start of a screen
format control specification.

One or more are allowed within a screen format series, to specify control
operations,

One or more are allowed within a screen format series, to specify a
prompt to display.

One or more are allowed within a screen format series, to specify a
constant to display and to place into the /O buffer for the current
record.

One or more are allowed within a screen format series, to define a key
entry field.

One is required as the last statement of each screen format series, to
end the screen format.

To Control the Assembly Listing

TITLE

.EJECT
.SPACE

One is allowed to specify a heading to be printed on each page of the
listing.

One or more are allowed to begin printing on the next page.

One or more are allowed to skip one or more lines.

Miscellaneous Control

INCLUDE
SELFCHK

XTRN

.END

One or more are allowed to insert another data set into the program.
One is allowed to set up the self-check contro! area and define the self-
check algorithm.

One is required if the program uses any common functions, to specify
the labels of the common functions.

One is required following all contro! statements and instructions, to
indicate the end of the program.

Figure 3-1 (Part 2 of 2). Control Statement Summary

The .TABLE control statements are the only ones that must be consecutive in your
source program. However, for best performance from the assembler, place state-
ments of the same kind together. For example, place all .FMT statements together,
all .LABTAB statements together, and all .DC statements together. Place the
.XTRN statement toward the beginning of the source program.

Control statements are listed in this chapter by the type of function the control
statement performs. The control statements are divided as indicated in Figure 3-1.
The syntax, parameters, and parameter keywords are described for each control
statement.

FORMAT

Each control statement is written for a length of 72 positions per line. Each control
statement must begin with a period (.) in the first position, followed by an upper-
case statement name and its associated parameters. The parameters may be in any
order and are separated by one or more blanks. Each parameter consists of an
uppercase parameter name, an equal sign, and a parameter value. The parameter
value may be one or more fields, with each field identified by the order of its
appearance on the line. The parameter fields are separated by commas or paren-
theses. Each control statement must end with a semicolon {;). The general format
of a control statement is as follows:

.NAME PARAMI1=XX PARAM2=XX,XX PARAM3=(XX,XX),(XX,XX} ;
Control statements may be continued from one line to the next by stopping
between two parameters. The statement is continued on the next line. Each
parameter should be complete on one line unless the parameter contains a sublist of
keywords. In this case, the sublist may be interrupted after a comma between key-
words as in the following example.

Example:

.NAME PARAM1=XX PARAM2=XX,XX PARAM3=XX,

XX PARAM4=XX ;

The end of the statement is always determined by the semicolon.

Blanks
Optional blanks may be placed before or after an equal sign or parentheses.
Blanks may follow a comma but must not precede a comma. Blanks are not

allowed within a control statement field; however, one or more blanks must separ-
ate fields if no other delimiter is used.

Comments
A comment may be included on any line, following the semicolon. An entire line
may be designated as a comment line by placing an asterisk (*) in the first position
of the line. A comment line may be included before the .START statement and
before print control statements.
Examples:

.NAME PARAM1=XX ; This is a comment on a statement line.

*This is a comment line.

Assembler Language Control Statements

iNITIALIZE THE PARTITION CONTROL ARE

»

The 5280 provides, uses, and updates much of the partition control information
during program execution. However, the assembler initializes certain control areas
during assembly, using the following control statements. This control information
is used by the 5280, but it is not changed during program execution.

The .START control statement is mandatory for every program, and the .KBCRT
statement is mandatory for every program that uses keyboard/display 1/0. The
.EDITC statement is optional.

.START Control Statement

START [ENTRY= PNAM= OPTION= ORG=
MCHK= TMSL= RGLT=] ;

The mandatory .START control statement must be the first control statement of
every program. |t specifies program name, origin, error routines, register usage
limits, and time slice factor.

Parameter
Name Description

ENTRY Entry point; the label of the instruction to be executed first.
If omitted, it defaults to the first executable instruction
encountered.

PNAM Program name; 8-character field of alphabetic or numeric
characters, enclosed in single quotes. The first character must
be alphabetic. It defaults to PROGRAM.

This name is printed in the listing header and included in the
object code. Do not specify any unprintable code for this
parameter.

OPTION Option; informs the assembler whether the code being
assembled is a main program (MAIN) or a separately assembled
subroutine (SUB). It defaults to MAIN.

ORG Origin; mandatory with parameter OPTION=SUB, to assemble
a transient overlay. |t specifies the actual location (relative to
start of partition) to place the first instruction of executable
code. Control statements preceding it are used to define shared
labels but do not produce object code. Given in decimal or hex,
ORG does not have to be a 256-byte boundary unless you are
writing a partial overlay.

MCHK Main program check errors; the label of the routine that has
been coded to handle program errors. If omitted, the program
is terminated if a program check error occurs. If you use the
common function from the common area, specify the name
CFPGMCHK, and include this name in an .XTRN control state-
ment. See Program Check Errors in Chapter 6 for more informa-
tion about main program check errors.

52

TMSL Time slice factor; a 1-byte field that specifies the maximum
length of time the controller executes instructions within the
current partition. Acceptable time limits are 4-60 milliseconds.
Default is 12 milliseconds.

RGLT Register limit; the number of 16-byte blocks you want to
reserve to use as undeclared decimal or binary registers. The
assembler skips over these 16-byte blocks during allocation of
space. The default of four reserves the first four decimal
registers, which includes all indicators, or the first 32 binary
registers.

Note: You do not have to reserve registers that you declare and label with a .DC,
.DCLBR, or .DCLDR control statement. Reserve only the registers you use in
.EQUATE control statements or the registers that you refer to by register number
rather than by label in instructions.

Examples:

START PNAM='PAYROL’
ENTRY=BEGIN MCHK=MCHKER RGLT=8;
START;

.KBCRT Control Statement

{ETAB=}

KBCRT CRBA= |ELAB=
[PRBA= TRAP= MODE= AFIL= NFIL= BKCK=
FPLC= NMIN= HLIN= CNTR= FUNC= SCREEN=] :

The .KBCRT statement specifies the location of the keyboard/display record
buffer, the handling of keyboard/display error conditions, and the initialization of
keyboard/display parameters.

This control statement is mandatory in each main program.

Parameter

Name Description

CRBA Current record buffer; the label assigned by a .DC statement for
the 1/0O buffer that holds the current record. This parameter is
mandatory.

ELAB Exception label {either ELAB or ETAB must be specified); the
label of a subroutine that handles all external status conditions.

ETAB Exception table (either ELAB or ETAB must be specified); the

label of a label table set up by a .LABTAB statement. Each
entry in the label table is the address of a subroutine that
handles one specific external status condition.

Assembler Language Control Statements

53

Parameter
Name

PRBA

TRAP

MODE

AFIL

NFIL

BKCK

FPLC

Description

Previous record buffer; the label assigned by a .DC statement for
the 1/0 buffer that holds the previous record. This parameter

is optional; if omitted, the 5280 sets the address for the PRBA
to the CRBA address.

Trap; one or more numbers that represent certain functions
normally handled by the 5280 that you want to process with
your own subroutine. The number assignments are described in
Appendix D under Keyboard Functions: EBCDIC Codes and
Bit Numbers.

The format of the input is TRAP=BITn, . .. as follows:
TRAP=BIT1,BITS

This code causes an external status condition to occur whenever
a shifted Cmd key (BI1T1) or an Ins key (BIT5) is pressed.

Mode of entry; one of the following keywords to specify the
mode of entry.

Keyword Mode

Enter

Update
Verify
Display

Rerun
Rerun/display

<$O<K<CmMm

See Modes of Entry in Chapter 2 for a description of the modes.
Default is enter (E) mode.

Alphabetic fill character; used for padding the left end of the
right-adjust alphabetic fill fields. It defaults to blank (hex 40).

Numeric fill character; used for filling the left end of right-adjust
numeric fill fields. It defaults to zero (hex FO0).

Blank check character; the character that is not permitted in a
blank checked field. It defaults to blank (hex 40).

Fixed prompt location; indicates the row at which the fixed
prompts occur on the screen. [t defaults to row 2.

Parameter
Name

NMIN

HLIN

CNTR

Description

Normal display attribute; specified as a 1-byte constant, this
entry determines the display attributes of fields not currently
being processed; the attribute is in effect after the cursor exits
the field. This parameter is normally omitted if you specify
display attributes with the DSPLY parameter in your screen
format control statements. Each bit specifies an attribute as
follows:

Bit Meaning If 1

-2 Not assigned
Column separators displayed
Blink screen
Underline
High intensity
Reverse image

NS, WO

The value for NMIN defaults to no high intensity.

Display attributes; specified as a 1-byte hex constant, this entry
determines the display attributes of the input field being
processed; the attribute is in effect when the cursor moves to

the first position of the field. This parameter is normally
omitted if you specify display attributes with the DSPLY param-
eter in your screen format control statements. Each bit

specifies an attribute, as described for NMIN. The value for
HLIN defaults to no highlighting.

Current-position counter; the value of the internal register
maintained by the system during formatted data entry. This
value is displayed in columns 3-6 of the status line while an
ENTR is being processed. The counter reflects one of the four
values listed below. It defaults to K.

K

current keying position of next keystroke to enter, relative
to first position of the record.

B — current position in the current record buffer, relative to the
beginning of the buffer, where the next data character
entered will be stored.

C — current relative position of the cursor on the screen.

F — current position within the current field, relative to the

beginning of the field, where the next data character
entered will be stored.

Assembler Language Control Statements

55

FUNC Functions; one to three functions may be specified. |f more than
one is specified, separate them with a comma:

A — auto duplicate/skip (see Auto Duplicate/Skip in Chapter 2).

C — click software function keys.

D — do not display fixed prompts on the screen.

R — auto enter (see Auto Enter in Chapter 2).

S — on keystroke error, determine if status line is currently dis-
played. If not, display it and on error reset remove it from

screen. (See Nondisplay of the Status Line in Chapter 2.)

X — alternate record advance (see Alternate Record Advance in
Chapter 2).

SCREEN Screen positions; the number of valid screen positions you wish to

use in the current program. Valid entries are 480, 960, or 1920.
Default is 480.

Examples of input:
.KBCRT CRBA=BUFRO1 PRBA=BUFR02 ELAB=ERRTN AFIL=/ NFIL=X'40";
.KBCRT CRBA=BUFFX PRBA=BUFFY ETAB=RTN1 TRAP=BIT4,BIT8
FPLC=4 CNTR=B FUNC=C, S, D;
.EDITC Control Statement
.EDITC [EDCUR= EDDEC= EDCOM= EDCNT=] ;

The .EDITC control statement specifies the edit control characters. These characters
are stored in the partition 1/O control block and are used by other control

statements.

Parameter

Name Description

EDCUR Edit currency sign; a 2-character field that specifies the currency
symbol. It defaults to C ‘$".

EDDEC Edit decimal character; a 1-character field that separates the

decimal portion of a number from the fraction. (It may be
specified by X’ ’, but numerics or hex codes of hex FO or
greater must not be used.) It defaults to C*.".

EDCOM Edit separator character; a 1-character field that specifies the
symbol used to separate groups of digits in an edited field. (It
may also be specified as X’ ’, but numerics or hex codes of hex
FO or greater must not be used.) It defaults to C’,".

EDCNT Edit control count; a 1-character field that specifies the number
of digits between the occurrence of the edit separator character.
It defaults to 3.

Note: All characters must be enclosed in single quotes; they may also be specified
as hex values.

Example:

.EDITC EDCUR=C‘FR’ EDDEC=',’ EDCOM=X'40" ;

DECLARE AND LABEL DATA AREAS
Several different control statements assign labels to data areas, but each statement
has a specific purpose. Use the following to help decide which control statement
to use.
® Use .DC to label and initialize one data area or register.
® Use .DCLIND ot label up to 30 program indicators.
® Use .DCLBR to Iabel up to 30 uninitialized binary registers.

® Use .DCLDR to label up to 30 uninitialized decimal registers.

® Use .EQUATE to label initialized decimal or binary registers reserved by the
RGLT parameter of the START statement. You must specify register numbers.

® Use .EQUATE to label system indicators. You must specify the indicator
number.

® Use .EQUATE to label a constant or expression.

.DC Control Statement

.DC [LABEL= TYPE= LEN= LEVL= LOC=
BDY= PREFIX= DISP= INIT=] ;

The .DC control statement specifies the allocation of data areas and storage

structures, and assigns labels to decimal and binary registers. It also allows you to
initialize the data set.

Assembler Language Control Statements

58

When declaring registers, it is important to deciare alii binary registers first. f you
declare decimal registers or storage areas before you declare all binary registers, you
can fill the 256 bytes of the partition that contains the 128 two-byte binary
registers. An attempt to declare a binary register beyond the binary register limit
causes an error message to be written on the assembly listing.

When using boundary alignment, remember that storage is assigned sequentially
and any bytes which are unused between boundaries cannot be recovered. Declar-
ing two 1-byte field, both on 256-byte boundaries, results in the loss of 255 bytes
between the fields. These bytes cannot be recovered. Statistics are maintained to
indicate how many bytes are lost diie to boundary alignment. These statistics are
written to the assembly listing.

Note: Any unassigned storage byte is initialized to hex 00.

Parameter
Name Description

LABEL Label; the name that refers to the storage area or register. This is
an optional parameter.

TYPE Type; specified as DEC (decimal register), BIN (binary register),
STOR (storage area), PRMT (prompt) or MDUP (duplication).
It defaults to STOR.

The PRMT type allocates and initializes space for character
strings that are used as either prompts or constant insert data
during data entry.

The MDUP parameter allocates space in main storage for duplica-
tion during data entry.

A table containing the addresses for these PRMT and MDUP areas
is created and the address of the table is stored in the keyboard/
display 1/O control block. A source statement refers to these
areas by using the label, and the system finds the address for the
area in this table.

LEN Length; the length of the area being declared, specified in bytes.
This is an optional parameter. |If TYPE=DEC, it defaults to 16.
If TYPE=BIN, it defaults to 2. For other types, the length
defaults to the length of the INIT field, or to 1 byte if no INIT
field is specified.

A length of zero is valid for a declare that uses no space. For
example, a .DC that specifies 0 length, and specifies LOC (loca-
tion) acts in the same way as the origin (ORG) parameters in the
START control statement.

Note: The LEN specification overrides the actual length of an
INIT entry. if LEN is less than the number of bytes necessary
for the INIT data, some of the INIT data is lost.

Parameter
Name

LEVL

LOC

BDY

PREFIX

Disp

Description

Level; the structure level of the area being declared. Variable
leveling builds a storage structure if a level-1 declare is followed
by one or more level-2 declares; the level-2 areas are overlaid into
the level-1 area. The level-2 declare does not affect the current
location counter. If the level-2 area extends beyond the level-1
area an overflow condition message results. However, the over-
flow message is suppressed if the preceding level-1 declare had the
length specified as zero; this allows you to assign labels without
advancing the current location counter. If omitted, it defaults to
level-1.

Location; a number that specifies the relative location for the
area being declared, or the label of a previously defined location.
When LOC is specified, the assembler will reset its internal loca-
tion counter. After processing a .DC statement with LOC speci-
fied, the location counter will equal LOC + LEN. Subsequent
storage will be assigned starting at this location. If this parameter
is omitted, the area is declared at the next sequential location.

Note: LOC cannot be specified with a LEVL=2 declare.

Boundary alignment; the type of boundary on which to locate
the first byte of the data area. Specify a numeric value that is
valid for the particular type of data area. See Main Storage
Boundary Alignment in Chapter 1 for more information. An
easy way to remember boundary alignment requirements is:

an n-byte boundary is evenly divisible by n. For example, a
binary register can begin on any boundary that is evenly divisible
by 2, a decimal register can begin on any boundary that is
evenly divisible by 16, and a buffer can begin on any boundary
that is evenly divisible by 128.

If BDY is omitted, the boundary defaults to the next sequential
boundary that is appropriate for the specified TYPE.

Note: BDY cannot be specified if LEVL=2 has been specified.

Prefix; a 1 or 2 character prefix that may be added to a level-1
declare. All level-2 declares may then be copied from a single
statement to define an identical structure several times. The
character or characters specified for the level-1 area attaches to
the level-2 labels as a prefix to prevent duplicate labels. This is
an optional parameter valid only for LEVL=1 declares.

Displacement; used only with LEVL=2 declares. Displacement

is the number of bytes into the last level-1 area where this level-2
area is defined. If omitted, the subfields are contiguous.

Assembler Language Control Statements

59

60

Parameter
Name

INIT

Description

Initialization; numeric or character data may be used to initialize
the data area. The INIT parameter must be complete on a single
line.

Decimal data is specified as decimal numbers with no quotes.

Character data must be enclosed in single quotes. It may be
preceded by an uppercase C, or the C may be omitted.

Note: [f you are sending data to a printer, do not use character
data with an EBCDIC representation of lower than hex 40, If
you must send data with an EBCDIC lower than hex 40 to the
printer, specify it as hex data.

Binary data must be enclosed in single quotes and must be pre-
ceded by an uppercase B. Binary data must be at least 8 digits

in length, and the total number of binary digits must be a multiple
of 8.

Hex data must be enclosed in single quotes and must be preceded
by an uppercase X. Hex data must be at least two hex digits in
length, and the total number of hex digits must be a mulitiple of
2.

If a constant has been equated with a label, the label may be used
for the INIT parameter, and the equated constant is placed into

the data area.

The address of a data area may be initialized into storage by
coding:

INIT=ADDR (label [* constant]);
where label is the label of the data area.
Initialization occurs as illustrated in Figure 3-2,

Note: Initialization of a decimal register with an equated constant
fills the register with binary data.

Characters

Hex

Binary

+Integer

~Integer

Decimal
Registers

Right adjust,
pad with blanks.

Right adjust,
pad with zeros.

Right adjust,
pad with zeros.

Right adjust,
pad with zeros.
Zone on low-
order byte is
X'F’; leave as
EBCDIC.

Right adjust,
pad with zeros.
Zone on low-
order byte is
X'D’; leave as
EBCDIC.

Figure 3-2. Initialization of Data Areas

Binary
Registers

Left adjust,
pad with blanks.

Right adjust,
pad with zeros.

Right adjust,
pad with zeros.

Right adjust,
pad with zeros,
convert to
binary.

Error.

Stor, MDUP, and
PRMT Areas

Left adjust,
pad with blanks.

Right adjust,
pad with zeros.

Right adjust,
pad with zeros.

Right adjust,
pad with zeros,
convert to
binary.

Error.

The following examples illustrate how the assembler allocates data areas as it

assembles the .DC control statements.

Figure 3-3 represents an area of storage in a partition. The assembler has assigned the

2 bytes of BR120 and the high-order byte of BR121 to a previously allocated data

area. The next sequential byte that is available to the assembler is the low-order byte

of BR121. The bytes of BR127 are the last bytes that can be allocated as a binary

register.

Boundaries —

Figure 3-3. Storage Bytes

Previously Next Available ___Binary
Assigned Bytes Byte Boundaries
ﬂﬁq
0 1 2 3 4 5 6 7 8 9 A B C D" E F
1F |BR120} BR121| BR122] BR123| BR124]| BR125| BR126 | BR127 R15
20_ R16
21 _ R17
22 _ R18
Assembler Language Control Statements 61

62

Figure 3-4 iliustrates how the assembier aiiocates data aieas to the bytes represented
in Figure 3-3, according to the .DC statements in Example 1.

Example 1: Boundary Alignment and Initialization; TYPE, BDY, INIT

.DC LABEL=EMP# TYPE=BIN INIT=1;
* Assembler skips to next binary
* boundary. Integer init for
* BIN type right-adjusts.
.DC LABEL=KEY1 TYPE=BIN LEN=4 INIT="ABC’;
* Character init left-adjusts.
.DC LABEL=DEPT# LEN=3 INIT=2;
* Type defaults to STOR, integer
* init right-adjusts.
.DC LABEL=EMPNAM TYPE=DEC INIT='A"; uses R16.
* Character init for DEC type right-adjusts.
.DC LABEL=YRTODATS$ TYPE=DEC INIT=6; uses R17.
* Integer init for DEC type right-adjusts.
.DC LABEL=PRMT1 TYPE=PRMT LEN=13
INIT="PRESS RESET";
* Init for PRMT type left-adjusts.
.DC LABEL=TAGS TYPE=BIN; error example
*** Error message, cannot declare a
binary register beyond relative
*** address X‘1FE".
.DC LABEL=BUFFR LEN=128 BDY=128;
* Buffers must be on a 128-byte boundary.
.DC LABEL=HOURS TYPE=STOR LEN=3;
* All uninitialized bytes are filled
* with X'00’ rather than zero {X'F0Q’)
* or blank {X‘40')

EMP# KEY1 DEPT#

10 [T T IXTooloi[ATBTCT Jooloolo2]xIX[x] R15
200 A R16
210 ojojolojofo|ojojojojo|j0|O|O|O|6 R17
220 PIRIEIS|S RIEISIE|T XXX R18
230 Dx X IxXIx I X I Ix X X[x[x] R19
- X X TRl X L
X [x| X [[x| x [x] x| [XTRTRT®TR
280 o R24
AL %\l -l
300 00}00]00, R32
N e’)
HRS Next Available Byte

= byte lost due to boundary alignment

Figure 3-4. Storage Initialization for Example 1

Figure 3-5 represents an area of overlapped storage in a partition. The assembler
has assigned the 2 bytes of BR96, the 2 bytes of BR97, and the high-order byte of
BR98 to a previously allocated data area. The next sequential byte that is available
to the assembler is the low-order byte of BR98.

Previously Next Available Byte
Assigned Bytes /

BR[100 BR}02 R12

R13

1E R14
1F R15

Figure 3-5. Storage Bytes

Assembler Language Control Statements 63

64

Example 2 shows .DC statements that use the LEVL and PREFiX parameters and
illustrates how the assembler allocates the bytes in Figure 3-5.

Example 2: Storage Structures; LEVL, PREFIX

Double Binary Register
[——

.DC LABEL=AREAB LEVL=1 TYPE=BIN 11]] [x]o1020304]x | x| x]x][X][x]r12
BDY=2 LEN=4 PREFIX=B; f
.DC LABEL=A1 LEVL=2 INIT=1; BA1 J

BA2]

BA3 |
BA4

.DC LABEL=A2 LEVL=2 INIT=2;
.DC LABEL=A3 LEVL=2 INIT=3;
.DC LABEL=A4 LEVL=2 INIT=4;
DISP may be omitted for contiguous fields.
* The level 1 area is referred to as AREAB;
* the level 2 areas as BA1, BA2, BA3, BA4,

The following shows how to use PREFIX
to define two decimal registers and
overlay them with eight binary registers
* each. The coding for the AREADX registers
can be copied for the AREADY registers.
| Y

.DC LABEL=AREADX LEVL=1 TYPE=DEC . .)
BDY=16 LEN=16 PREFIX=DX: 0008|0016]002 1}002¢]0000j0037|E7404040| R 13

.DC LABEL=A1 LEVL=2 TYPE=BIN INIT=11; —DXA1} f [1

.DC LABEL=A2 LEVL=2 TYPE=BIN INIT=22; DXA2

.DC LABEL=A3 LEVL=2 TYPE=BIN INIT=33;, ————— DXA3

.DC LABEL=A4 LEVL=2 TYPE=BIN INIT=44; DXA4

.DC LABEL=A5 LEVL=2 TYPE=BIN LEN=4

INIT=55; Double Binary Register. DXAS
.DC LABEL=A6 LEVL=2 TYPE=BIN LEN=4

INIT="X’; Double Binary Register. DXA6
* The level 1 decimal register is referred to as AREADX,

* the level 2 binary registers as DXA1, DXA2, and so on.

, .
.DC LABEL=AREADY TYPE=DEC PREFIX=DY; [5008]J0016[0021]002C]|0000]0037{E8404040] R 14
.DC LABEL=A1 LEVL=2 TYPE=BIN INIT=11; _pyATJ

.DC LABEL=A2 LEVL=2 TYPE=BIN INIT=22; DYA2} J

.DC LABEL=A3 LEVL=2 TYPE=BIN INIT=33;, —————DYA3

.DC LABEL=A4 LEVL=2 TYPE=BIN INIT=44; DYA4

.DC LABEL=A5 LEVL=2 TYPE=BIN INIT=55 LEN=4; DYAS

* Change INIT for DYAS.

.DC LABEL=A6 LEVL=2 TYPE=BIN INIT="Y' LEN=4; DYAG

.DCLBR Control Statement
.DCLBR LABEL= [,...] ;

The .DCLBR control statement declares and labels one or more binary registers with
a single statement. It may be used only for declaring registers which are not initial-
ized. The registers will contain hex 00s. You do not specify a register number. The
system assigns the labels to the next available binary registers. You can declare up
to a maximum of 30 binary registers with each .DCLBR control statement.

Parameter

Name Description

LABEL Label; lists the names of the binary registers, each name separated
by a comma.

Example:

.DCLBR LABEL=PATRN,REGB1,REGB2,CHK4;

.DCLDR Control Statement

.DCLDR LABEL= [,...] ;

The .DCLDR statement declares and labels one or more decimal registers with a
single statement. it may be used only for declaring registers which are not initial-
ized. The decimal registers will contain hex 00s. You do not specify a register
number. The system assigns the labels to the next available decimal registers. You
can declare up to a maximum of 30 decimal registers with each .DCLDR control

statement.

Parameter

Name Description

LABEL Label; lists the names of the decimal registers; each name separ-
ated by a comma.

Example:

.DCLDR LABEL=PAYMT,BAL1,RATE EXCH,TOTAL,SEND;

.DCLIND Control Statement
.DCLIND LABEL= [,...] ;
The DCLIND statement is used to declare and label one or more user indicators
(10-199) with a single statement. You do not specify indicator numbers. The

system assigns the labels to available user indicators. You can declare up to a
maximum of 30 indicators with each .DCLIND control statement.

Assembler Language Control Statements

Parameter
Name Description

LABEL Label; lists the names you assign to the indicators, each name
separated by a comma.

Example:

.DCLIND LABEL=LABL1,LABL2,LABL3,LABL4,LABLS;

.EQUATE Control Statement

.EQUATE [REG= NUMB= IND=
LABEL= EXPR=] ;

This control statement equates labels to registers, constants, indicators (10-199), or
the value of an expression. You must specify the register or indicator number

along with the label you wish to use. You may equate up to 30 register or indicator
labels with each .EQUATE control statement, or one arithmetic expression. This
statement is useful to label system registers and indicators. It is the only means to
specify an arithmetic expression in the control statements.

A labeled expression may be used in subsequent instructions as a constant or a stor-
age specification. If it is used as a storage label, the result of the expression must be
a valid storage address or an error results. Otherwise, it may be used in any
instruction that requires immediate data, such as a length or displacement
specification.

Note: Only reserved registers and self-defining terms may be used in the equate
statement. EQUATE does not check to see if the specified register already has a
label. The current EQUATE label overrides any previously assigned labels.

Parameter

Name Description

REG Registers; ordered pairs of a register (binary or decimal) followed
by alabel. Separate the register and label with a comma, enclose
each pair in parentheses, and separate the pairs with a comma.

NUMB Numbers; ordered pairs of a constant and a label. Separate the
constant and label with a comma, enclose each pair in parentheses,
and separate the pairs with a comma.

IND Ordered pairs of an indicator and a label. Separate the indicator
and label with a comma, enclose each pair in parentheses, and
separate pairs with a comma.

LABEL Expression label; used only with the EXPR parameter, it speci-

fies the name you want to assign to the result of the expression.
You may specify this label as a parameter in a subsequent
instruction. Do not use this label in an instruction that occurs
prior to this .EQUATE statement in the source program.

Parameter
Name Description

EXPR Expression; an expression of up to eight terms, separated by
arithmetic symbols. The following symbols may be used:

Symbol Meaning

+ Add

Subtract
* Multiply
/ Divide

The arithmetic operations are performed with 2-byte integers;
fractions and overflows are ignored. The arithmetic operations
are performed from left to right, although the multiply and
divide operations are performed before the add and subtract
operations. Do not include parentheses in the expression.

The terms may be any type of previously defined labels.
Examples:
.EQUATE REG=(BR5,XREG),(BR6,YREG) NUMB=(22,INDEX) IND=17,SWITCH);

.EQUATE REG=(R4,BUF7),(R5,BUF8),(R8,BUF9);

SET UP AND INITIALIZE DEVICE CONTROL BLOCKS

One device 1/0 control block (IOB) must be set up and initialized for each data set
your program uses. Use the .COMM statement for a data set that uses the com-
munications line. Use a .DATASET control statement for a data set that uses a
printer or diskette.

.COMM Control Statement
ELAB=}
.COMM [CAM=] DSN= ETAB= TYPE=
[RECL= BSIZ= LBUF= LABEL=

HTAB= VTAB=] ;
Parameters unique to BSC:
[SIDL= SIDH= RECFM=]
Parameter unique to SNA:

PLUNAME=

Assembler Language Control Statements

67

The .COMM statement specifies the characteristics of the communications line for
the current communications session. It also sets up the device 1/0 control block

in the current partition. The /BM 5280 Communications Utilities Reference
Manual, SC34-0247, describes the functions of the SNA and the BSC versions of the
communications access method, how to determine which version to use, and how
to load the access method.

Although most .COMM parameters apply to both the BSC and SNA versions of the
communication access method, some parameters are unique to one of the versions.

Parameter

Name Description

CAM Communications access method; defines the CAM as either BSC
or SNA. [f omitted, it defaults to BSC.

DSN Data-set number; a decimal number from 1 to 15 that identifies
the communications device 1/O control block. This is a manda-
tory parameter.

ETAB Error table label (either ETAB or ELAB must be specified); the
label of the label table set up by a .LABTAB statement. Each
entry in the label table is the address of a subroutine that handles
one specific external status condition.

ELAB Error subroutine label (either ETAB or ELAB must be specified);
the label of the subroutine that handles all external status
conditions.

TYPE Type; specifies attributes of the data to be processed. One entry,

file type, is mandatory. For BSC, one optional attribute key-
word may follow the type. Separate the type and attribute with
a comma.

File Type, First Position

SR Sequential read, records can be received only.

SW Sequential write; records can be transmitted but not
received.

COM General communications; sequential read, sequential write,
or sequential read and write. (BSC only)

CN Conversational; transmit one message, receive n messages.
Optional Attributes, Second Position (for BSC only)

CB Compressed blanks, to expand blank-compressed data that
is received. (The 5280 does not transmit compressed data.)

BT Blank Truncation, to truncate trailing blanks in data to be
transmitted and to insert trailing blanks in data that is
received.

Parameter
Name Description

RECL Record length; length (1-512) of the logical records. Although
this is an optional parameter in the .COMM statement, the RECL
field of the 1/0 control block must contain a valid RECL value
when the TINIT instruction is issued.

If RECL is not coded on the .COMM statement, you must
initialize the record size field of the communications 1/0 control
block as appropriate.

BSIZ Block size; maximum block size of the data to be transmitted.
Include this parameter if you specify FB (fixed length and
blocked) or VB (variable length and blocked) for the RECFM
(record format) parameter. It defaults to 256.

LBUF Logical buffer; the label assigned to the buffer by a .DC control
statement.

LABEL Label; a name to identify the 1/O control block for communica-
tions. If omitted, the 1/0 control block is assumed to be not
labeled.

HTAB Horizontal tab table; the label of a horizontal tab table that

specifies the printer tab settings.

VTAB Vertical tab table; the label of a vertical tab table that specifies
printer tab settings.

Parameters that are unique to BSC

SIDL Security ID local; character string to be sent to the host from a
local terminal on switched lines. If specified, this ID will override
the value in the communications control block, which is specified
during execution of the communications configuration utility.

If neither security ID is specified, no local ID will be sent to this
host.

SIDH Security ID host; a character string ID sent to local terminals
from the host on switched lines. [f specified, this ID will over-
ride the value in the communications control block, which is
specified during execution of the communications configuration
utility. If neither security 1D is specified, no ID will be checked.

Assembler Language Control Statements 69

70

Parameter

Name

RECFM Record format; describes the record to be processed, using one
of the following keywords. If omitted, it defaults to fixed length
(F).

Keyword Meaning

F Fixed length

\Y Variable length

FB Fixed length and blocked
VB Variable length and blocked

Parameters that are unique to SNA/SDLC

PLUNAME Primary logical unit name; a character string enclosed in single
quotes. This is an optional parameter. If specified, it will be
checked by the communications access method during
initialization.

Examples:

.COMM CAM=BSC DSN=2 TYPE=COM,BT LABEL.=COMIOB ETAB=TABLO1;

.COMM CAM=SNA DSN=3 TYPE=SW, LABEL=SNAIOB ELAB=ERRTN
PLUNAME=L0OGO1;

.DATASET Control Statement

{ETAB=}
.DATASET NAME= DSN= TYPE= | ELAB=
{DEVID=}
DEV= PB1= [PB2= RECL=
BSIZ= LBUF= LABEL= TRANS= DFLG=] ;

Parameters unique to SCS conversion data sets:

PGSIZ= LINSZ= LSTLN= [SGEA=]

Parameters unique to keyed data sets:

KPOS= KLEN= TLOC= DLTA=

The .DATASET control statement specifies the characteristics of a data set to be

referred to by the program. It generates the device 1/0 control block which
describes the characteristics of the data set to the 1/O device.

Parameter
Name

NAME

DSN

ETAB

ELAB

DEV

DEVID

TYPE

Description

Data set name; mandatory for diskette, optional for printer.
Enter the label, which was assigned by a .DC control statement,
of the area where the data set name is stored. The data set name
is described in Chapter 4 under Partition Load and Exit Instruc-
tions. Do not enter the data set name here. For | exchange data
sets, the data set name must be blank, and the period that
follows the volume identifier is optional.

Data set number; a decimal number from 1 to 15 which identifies
the data set being described. This is a mandatory parameter.

Error table label (either ETAB or ELAB must be specified); the
label of the table set up by a .LABTAB statement. Each entry
in the label table is the address of a subroutine that handles one
specific external status condition.

Error subroutine label (either ETAB or ELAB must be specified);
the label of the subroutine that handles all external status
conditions.

Device address (either DEV or DEVID must be specified); the
physical address of the device to which this data set information
is directed. A physical address is expressed as four hexadecimal
digits.

Device identifier (either DEV or DEVID must be specified); the
2-character logical device identifier that identifies the logical
device to which this data set information is directed. (See Logical
Device Identifiers in Chapter 1.)

Type; specifies the data set type, and may specify other attributes.
The first positional entry of this parameter (type) is mandatory.

It may be foilowed by as many optional second position entries as
needed. See Diskette Data Management in Chapter 2 for more
information about the data set types and attributes.

If an optional attribute is included after the type specification,
separate the type and the optional attribute with a comma.

Data Set Type, Mandatory, First Position

SR Sequential read; records can be read sequentially, or
directly by relative record number. Records cannot
be written,

SW Sequential write; records can be written but not read.

The records are accessed starting at EOD (or, if an offset
is specified, at EOD plus the offset) as specified by the
HDR1 label on the diskette.

This is the only valid type for printer data sets.

Assembler Language Control Statements

71

72

Parameter

Al a
Name

TYPE
(continued)

KR

KRN

KU

KUN

INI

Sequential update; records can be read and written
sequentially, or directly by relative record number.
Records can be added at EOD.

Key indexed read; key indexed records can be read
only, sequentially or directly by key.

Key indexed read, no table build; records can be read
only sequentially or directly by key, and you build your
own index table.

Key indexed update; key indexed records can be read,
updated, and added, sequentially or directly by key.

Key indexed update, no table build; records can be
read, updated, or added sequentially or directly by
key, and you build your own index table.

Label update; data set labels can be read and updated.
The diskette index cylinder is accessed at track O,
sector 1. Otherwise, the operation is as for sequential
update (SU).

Initialize diskette.

Optional Attributes, Second Position

SHR

SHW

SHRW

EW

Shared read; shares the data set with other jobs that
specify shared read.

Shared write; for diskette, shares the data set with other
jobs that specify shared write. For printer, shares the
same printer with other data sets that specify shared
write.

Shared read/write; shares the data set with any other
jobs that specify shared attributes. The data set can be
read and written to if the other job specifies SHRW; the
data set is write-only if the other job specifies SHW, or
is read-only if the other job specifies SHR.

Early write; for diskette, this option allows logical
records to be updated; then the entire physical buffer
is written to the diskette immediately, without waiting
until a full physical buffer has been updated.

For printer, the data in one logical record is sent to the
printer and printed immediately, without blocking.

Parameter

Name Description
TYPE QR Quick release; like EW, but affects only read operations.
(continued) The entire physical buffer is freed upon completion of

the read operation. This releases the logical records in
the buffer to be used by other jobs. Do not use QR
when writing with pointer /0.

SCS Standard character string; indicates SCS conversion.

ERS Erase; existing data is erased at open. You may not
specify ERS for a shared file. You may specify ERS
for a label update data set to erase the label area.

PTR Pointer 1/0; indicates pointer /O is being done. (See
Pointer 1/0 in Chapter 2.)

EXTC Overlapped extent check; during an open or allocate
operation, checks all extents of all other data sets to
ensure that they do not overlap this data set.

CB Compression; using |GS to eliminate blanks on stored
record.

CM Compression; as in MRJE.
CS Compression; using SNA control bytes.

TLBL Translate label; translation applies to diskette HDR1
label as well as to the data.

ORD Ordered; may be specified only with a keyed data set to
indicate that key indexed records are in ascending key
sequence.

Note: If you specify a keyed data set and include attributes for another file type,
the system assumes a keyed data set.

PB1 Physical buffer 1; the label assigned to the buffer by a .DC
control statement. This parameter is mandatory.

Note: Physical buffer lengths must begin on a 128-byte
boundary, and must be a multiple of 128, regardless of block

size or record format. This is because buffer size is specified

in the 1/O control block as a multiple of 128. For data sets
requesting conversion to SCS (standard character string) data sets,
the maximum size is 256 bytes.

Assembler Language Control Statements

73

74

Parameter
Name

PB2

RECL

BSIZ

LBUF

LABEL

TRANS

DFLG

Description
Physical buffer 2; the label assigned by the .DC statement that set

up the buffer. This buffer is used for double buffering. This
parameter is optional.

Record length; the length of the logical record to be handled. This
parameter is required for printer output and for SCS conversion
data sets; it is optional for diskette 1/0. If this parameter is
omitted for diskette, the value from the data set label is used. If
this parameter is specified for diskette, it must match the value

in the HDR1 label.

Block size; the length of the block to be handled. This parameter
is required for SCS conversion data sets; it is optional for printer
and diskette 1/0. If this parameter is omitted for diskette, the
value from the data set label is used. If this parameter is speci-
fied for diskette, it must match the value in the HDR1 label.

Logical buffer; the label assigned to the buffer by a .DC control
statement. This parameter should be omitted when using pointer
1/0 (locate mode). If omitted, the logical buffer address is
assumed to be the same as the physical buffer (PB1) address, and
the pointer 1/O flag in the data set 10B is set on.

Label; the name you wish to assign to the device 1/0 control
block for this data set. This is an optional parameter. If this
parameter is omitted, the 1/0 control block is assumed to be not
labeled.

Translate tables label; the label specified in a . TABLE control
statement that describes a pair of 256-byte tables used for code
translation (substitution). The first table is used for input trans-
lation, and the second for output. The content of each table is
identical to tables used with the equivalent instruction TRANS.
This optional parameter is used only when translation is desired.

Delete flag; the character that is placed in the HDR 1 label during
an allocate, which will be used to indicate a deleted record. This
character is placed in the last byte of a record that is operated
upon by a WRTS (write delete) instruction. A deleted record is
skipped on a READ (sequential read) and overwritten on a WRTI
(write insert) or WRT (write current) instruction. If a delete
character is specified in the HDR1 label, the HDR1 character
overrides the DFLG parameter (even if the HDR1 character is a
blank).

This parameter may be used only for an | or E exchange data set.

Parameter
Name

Description

These parameters are only for standard character string conversion of printer output
(when the second TYPE entry is SCS). These parameters are not allowed for keyed

data sets.

PGSIZ

LINSZ

LSTLN

SGEA

Page size; the number of lines per page. This parameter is manda-
tory with SCS conversion.

Line width; number of characters per line. This parameter is
mandatory with SCS conversion.

Last line; line number of the last line to print. This parameter is
mandatory with SCS conversion.

Set graphics error action; the symbol to represent unprintable
values, in the form (character, code). The default is (—,1), which
prints one dash and continues printing. The only other valid
entry is (—,3), which prints one dash and stops printing at the
end of the line.

The following parameters are only for keyed files.

KPOS

KLEN

TLOC

DLTA

Examples:

Key position; the position of the key in the record (first column
= 1). This parameter is required for keyed data sets.

Key length; the number of positions in the key. This parameter
is mandatory for keyed data sets.

Table location; the label of the table you have set up for the file
index parameters. Use the label assigned by the .TABLE state-
ment. This parameter is mandatory for keyed data sets, whether
you build your own index table or let the 5280 automatically
build the table.

Delta of index table; the number of logical records between each
index entry. This parameter is required for KRN and KUN data
sets. If this parameter is omitted, the delta is calculated from
data set length and table length.

.DATASET NAME=TXDATA DSN=3 RECL=80 BSIZ=3120 LBUF=MYAREA
PB1=WKBUF TYPE=KR,SHR ELAB=ERORTN2 DEVID=D1
KPOS=12 KLEN=8 TLOC=KEYTBL;

Assembler Language Control Statements

75

SET UP AND LABEL TABLES

The table control statements organize and assign labels to tables, but do not
initialize storage. The .LABTAB control statement organizes the labels of sub-
routines, which are used in indexed subroutine calls. The .TABLE statement organ-
izes data areas initialized by .DC control statements. These data areas are used by
the TABLE instructions. The .SYSTAB statement assigns labels and determines
locations of the system tables, which are set up and used by the 5280.

.TABLE Control Statement

.TABLE LABEL= DCLBL= ARGL= MAXM= [BYPASS] ;
ENTRIES=

A table consists of a group of contiguous fields of the same length. The content
of each field is the table argument, and the position of the field within the table
is the index of the field. The index of the first table field is one.

Table arguments may be in an ordered or unordered sequence. An ordered table
has arguments arranged in ascending or descending order according to the standard
EBCDIC collating sequence.

The .TABLE control statements build a system table that will be referred to each
time a table instruction is encountered during program execution. The system
table contains all the parameters of each table you use in your program. You must
include one .TABLE statement for each of your tables. These .TABLE statements
must be consecutive. The address of the system table is stored in the partition 1/0
control block. When a table instruction refers to the label of a table, the address
and all the parameters of that table are provided by the system table.

Space for the tables you use in your program must be allocated by .DC statements.

Parameter

Name Description

LABEL Label; the label of the table this statement defines.

DCLBL DC label; the LABEL parameter from the declare .DC statement
that assigned space for this table.

ARGL Argument length; the number of bytes in the table argument.

MAXM Maximum; the maximum number of entries allowed in this table.

Either the MAXM or ENTRIES parameter must be included for
fixed-length tables. For variable-length tables both MAXM and
ENTRIES are used.

Parameter
Name Description

ENTRIES Entries; the number of entries in the table that have been
initialized. In variable length tables this may not be the same as
the maximum number of entries. If MAXM is not included, the
maximum number of entries is equal to the number specified by
ENTRIES, and a fully initialized table is assumed. If MAXM is
inciluded and ENTRIES is omitted, the table is a fixed-length table
that is not initialized.

BYPAS Bypass; the number of bytes per table entry that are not part of
the table argument. This may be used in conjunction with LEVL
and DISP on the .DC statement to define a two-dimensional
table.

Examples: In Figure 3-6, the following .DC statements allocate space for two tables.
Then the .TABLE statements define the parameters for the two tables. The param-
eters are stored in the system table, which the 5280 builds in another area of stor-
age, and refers to during program execution.

.DC LABEL=TAB2 LEN=400; allocate level-1 space for the table.
.DC LABEL=DAT21 LEN=8 DISP=0 LEVL=2 INIT="11111111";
.DC LABEL=DAT22 LEN=2 DISP=8 LEVL=2 INIT='AA";

.DC LABEL=DAT23 LEN=8 DISP=10 LEVL=2 INIT=22222222";
.DC LABEL=DAT24 LEN=2 DISP=18 LEVL=2 INIT='BB’;
*TABLE statement defining a table with 8-byte arguments.

.TABLE LABEL=NUMBERS DCLBL=DAT21 ARGL=8 MAXM=40 BYPAS=2 ENTRIES=2;
*TABLE statement defining a table with 2-byte arguments.

.TABLE LABEL=LETTERS DCLBL=DAT22 ARGL=2 MAXM=40 BYPAS=8 ENTRIES=2;

TAB2
11111111AA2222222288

NUMBERS‘J LETTERS

EYEERRE AA

22222222 BB

Figure 3-6. Data Tables

Assembler Language Control Statements

77

78

.LABTAB Control Statement

.LABTAB LABEL= ENTRY=

The .LABTAB control statement specifies a group of subroutine or statement labels
and creates a label table of the addresses of these subroutines or statements. This
table of addresses is used to make indexed branches through a table as with the
GOTAB and CALLTB instructions. You can specify up to a total of 30 ENTRY
labels for each .LABTAB control statement.

Note: The .LABTAB tables are not used with the TABLE instructions that are
described in Chapter 4.

Parameter
Name

LABEL

ENTRY

Examples:

Description

Label; the name you wish to assign to the tabie of addresses being
created. This parameter is mandatory unless you are building a
label table of more than 30 entries. In that case, include the
LABEL parameter with the .LABTAB statement that specifies the
first 30 entries, and follow it with one or more .LABTAB state-
ments with the LABEL omitted.

Label of a subroutine or statement whose address is to be stored
in the label table. At least one but no more than 30 labels must
be entered. If two or more labels are entered, separate them with
acomma. The first entry is at index 0 in the label table, the
second entry is at index 1, and so on,

.LABTAB LABEL=MYTABLE ENTRY=EOF,EOQJ,EOT;

MYTABLE

Entry

0 EOF address
1 EOJ address
2 EOT address

Figure 3-7. Label Table

.SYSTAB Control Statement
SYSTAB [PRMT=FMT=MDUP=SFMT=STACK=] ;

The .SYSTAB control statement allows you to assign {abels and determine the loca-
tion of the system control tables and the subroutine stack. When the assembler
encounters a .SYSTAB statement, the indicated control tables and subroutine
stack are assigned locations at the address in the current location counter. You
may reserve space for the entries into the area by specifying the number of entries
to be placed into the control table or subroutine stack. |f you specify the number
of entries you may omit the label; the space for the specified number of entries will
be reserved in the table, and the table will be assigned the location in the current
location counter. If you omit the number of entries, you must specify the label;
the assembler will make the appropriate number of entries in the table but will
reserve no extra space for additional entries. See Chapter 2 for more information
about these control areas, under System Tables and The Partition Subroutine
Stack.

If the .SYSTAB statement is not included, any necessary control tables are created
and placed into the partition storage when the .END statement is encountered,
and the address of each table is stored into an assigned location in the partition
1/0 control block. The control tables are assigned no labels; if you wish to refer to
an entry in a control table, you must read the address from the appropriate area in
the partition control area.

On the assembly listing, all system tables and the subroutine stack are written
immediately following the .END statement. This is true regardless of their actual
addresses. No system tables or subroutine stack is written on the listing with the
SYSTAB control statement.

If the .SYSTAB statement is used for a separately assembled subroutine
(OPTION=SUB in the .START statement), you must initialize the control table
addresses in the partition control area at execution time. The location of each table
address is included in the following parameters.

Parameter
Name Description
PRMT Prompt control table label; specifies the name you wish to assign

to the prompt control table. You may optionally follow the label
with a comma and the number of entries to be placed into the table.

The number specified must include one extra entry to be used for
the first table entry, which the assembler always creates and fills
with zeros; specify the number of your prompts plus one.

Each entry in the table is 2 bytes long and, except for the first
entry, contains the address of a prompt created by a .DC
TYPE=PRMT control statement. You must specify the label,
or the number of entries, or both. The address of the prompt
table is placed into hex 8D-8E of the partition control area.

Assembler Language Control Statements 79

Parameter
Name

FMT

mMDuP

SFMT

STACK

Description

Format control table label; specifies the name you wish to assign
to the format control table. You may optionally follow the
label with a comma and the number of entries to be placed into
the table.

The number specified must include one extra entry to be used
for the last entry, which the assembler creates and fills with hex
Fs; specify the number of your edit formats plus one. The
assembler always creates this system table and the entry filled
with Fs whether or not you write any edit formats.

Each table entry is 2 bytes long, and contains the address of a
format created by a .FMTST control statement and its associated
.FMTFLD statements. The address of the table is placed into hex
24-25 of the partition control area. You must specify the label,
or the number of entries, or both.

Main storage duplication control table; specifies the name you
wish to assign to the MDUP control table. You may optionally
follow the label with a comma and the number of entries to be
placed in the table.

Each table entry is 2 bytes long, and contains the address of a
MDUP area created by a .DC TYPE=MDUP control statement.
The address of the table is placed into hex B6-B7 of the partition
control area. You must specify the label, or the number of
entries, or both.

Screen format contro! table label; assigns a name to the SFMT
control table. You may optionally follow the label with a comma
and the number of entries to be placed in the table.

Each table entry is 2 bytes long and contains the address of a
screen format. Each screen format is created by a .SFMTST state-
ment and its associated .SFMT statements up to and including

the .SFMTEND statement. The address of the table is placed into
hex F9-FA of the partition control area. You must specify the
label, or the number of entries, or both.

Stack label; assigns a name to the subroutine stack. For the
STACK parameter, you must specify the number of entries to be
placed in the table whether or not you specify the label. The
number required for the partition stack entries is the number of
levels your program uses for nested subroutine calls. Include
calls to common function routines, calls to external status
routines, and a call to the program check routine. It is your
responsibility to control overflow of the partition stack; the
system does not check for such overflow to prevent the stack
from extending beyond the end of the partition.

Parameter

Name Description
STACK Each stack entry is 2 bytes long and contains the return address
(continued) of the most recent subroutine call. The address of the next

available space in the subroutine stack is placed into BR18.

Note: When the number of table entries is included in a .SYSTAB parameter, it
overrides the actual number of entries generated from your control statements.
Therefore, you may reserve extra space for future entries by specifying a number

greater than the present number of entries.

Examples:

If the following two statements are the only .SYSTAB control statements in
the program, the edit format system table is automatically built when the .END

statement is processed.

.SYSTAB PRMT=PTABLE MDUP=MTABLE 4 STACK=SUBSTACK,20;

SYSTAB SFMT = ,22;

SET UP EDIT FORMATS

Certain 1/0 instructions and data movement instructions may include an edit
format. Edit formats describe punctuation, data types, and other editing require-
ments for the individual fields of a record. The instructions that may include an

edit format are:

® READ

e WRT

¢ WFMCRT

® REBF

® WRTI

& WRBF

For the READ or REBF instruction, the edit format specifies the data area to
which each input field is moved. For the READ instruction, the fields are moved
from the 1/0 buffer after the read operation occurs. For the REBF instruction, the
fields are moved from the storage area specified in the instruction.

Data directed formatting may be used with the READ or REBF instruction.

As the field moves to the data area, specified punctuation and edit characters are

removed or specified conversion occurs.

Assembler Language Control Statements

81

For the write instructicns, the edit forma the data area from which each
field is moved. For the WRT and WRTI instructions, the fields are moved to the
1/0 buffer before the write operation occurs. For the WRBF instruction, the fields
are moved to the storage area specified in the instruction. For the WFMCRT
instruction, the fields are moved to the screen, at the screen position specified in

the instruction.

As the field moves from the data area, specified punctuation and edit characters
are inserted into the field or specified conversion occurs.

In your source program, each edit format must begin with a .FMTST statement and
end with a .FMTEND statement. Any number of .FMTFLD statements necessary
may be placed between the .FMTST and .FMTFLD statements. The parameters for
the .FMTFLD and .FMTEND statements are identical.

.FMTST Control Statement
.FMTST LABEL= [CCHAR= CCOL=] ;
The .FMTST control statement identifies the start of an edit format specification.

This statement must be followed by one or more .FMTFLD statements and a
.FMTEND statement, or by a .FMTEND statement alone.

Parameter

Name Description

LABEL Format label; the name you want to assign to this format descrip-
tion. This label is used as the format parameter in instructions
that allow edit specifications format. This is a mandatory
parameter.

CCHAR Condition character; the character used in data directed format-
ting. Any single character is acceptable. This is an optional
parameter used only for data directed formatting.

CCOL Character column; the column in which the condition character is

located. Valid entries range from 1 to the maximum size of the
1/0 buffer. This is an optional parameter used only for data
directed formatting.

.FMTFLD Control Statement

FMTFLD DCLBL= [LEN= TYPE= COL= {Eloc':z}l ;

Each .FMTFLD control statement defines a data field.

Parameter
Name

DCLBL

LEN

TYPE

CoL

EDIT

Description

Declared label; the label from the control statement that declared
the register or labeled storage area into which (for READ or REBF
instructions), or from which (for WRT, WRTI, WRBF, or
WFMCRT instructions) the field is moved. The label may be
followed by an optional comma and a length specification of 1

to 256 bytes. If the length of the storage area is omitted, it
defaults to the length specified in the declare statement. The

label is mandatory.

Length; the number of bytes (1-256) to access for this field. This

is an optional parameter that defaults to 1.

Type; the type of the declared area specified by DCLBL. Valid
entries are DEC for decimal, and BIN for binary; defaults to BIN.

Column; the position of the first byte of this field, relative to the
leftmost byte of the 1/0 buffer. The valid range begins at 1, which
indicates the first byte of the buffer. This is an optional param-
eter that defaults to the next available column to the right.

Edit specification; indicates how to edit the contents of the
field during the move. This is an optional parameter that may be
included if PIC is omitted. You may specify HX, C, W, or an edit

string.

HX Converts EBCDIC to binary or binary to EBCDIC. For
example, B‘1001’ converts to or from hex F9, and
B’1010’ to or from hex C1. Do not use HX for a stor-
age area declared with TYPE = DEC.

C Specifies date edit. Slashes are inserted between each

two positions as illustrated:

XX/XX /XX

w Specifies alternate date edit. Periods are inserted
between each two positions as illustrated:

XX, XX. XX

Edit string characters may be specified only when the field is
being moved to (for READ and REBF) or from (for write
instructions) a decimal area, or a binary area with the CV

parameter specified.

You may specify more than one of the following, separated by

commas.

Assembler Language Control Statements

83

Parameter
Name

EDIT
(continued)

Description
Character

cv

FX

ZS

cp

DP

Converts decimal to binary or binary to decimal.
For example, B’1001’ converts to or from 9 and
B‘1010’ to or from 10. If you convert to binary,
you cannot specify any other edit string
characters.

Inserts the currency sign in the field, according to
the .EDITC parameter EDCUR. It is a fixed sign
and appears on the left side of the field. It is
mutually exclusive with FL. It uses two character
positions; the default is a blank to the left of a
dollar sign ($).

Indicates zero suppress. All leading zeros are
removed except one leading zero to the leftof a
decimal point if decimal character insertion is
specified.

Indicates comma punctuation as specified by the
.EDITC parameter EDCOM. It defaults to a
comma.

Indicates decimal point punctuation as specified
by the .EDITC parameter EDDEC. It defauits to
a period.

Specifies the number of digits that appear to the
right of the decimal point. Valid range is 1-15.

One of the following edit string characters may be specified.
Default is blank fill (BF).

Character

BF

AF

ZF

FL

Meaning

Indicates blank fill.

Indicates asterisk (*) fill.

Indicates zero fill.

Indicates a floating currency sign. It is mutually

exclusive with FX and uses two character positions.
It defaults to a blank to the left of a dollar sign ($).

Parameter
Name

EDIT
(continued)

PIC

Description

One of the following edit string characters may be specified. The
term zone refers to the zone portion of the rightmost byte of the

decimal register. The term field refers to the field that is moved to

or from the decimal register. Default is decimal sign (DS).
Character Meaning

DS Indicates decimal sign. The zone is hex F for
positive data, and hex D for negative data.

SS Indicates stripped sign. The zone is always
replaced with hex F.

NS Indicates negative sign. If the data is negative, the
zone has a hex D and the rightmost position of
the field has a minus sign (-). If the data is posi-
tive, the zone has a hex F and the rightmost posi-
tion of the field is blank.

S Indicates signs. Same as NS except the rightmost
position of the field has a plus sign (+) for positive
data.

CR Indicates credit. If the data is negative, the zone

is hex D and the rightmost two positions of the
field have C'CR’. If the data is positive, the zone
has hex F and the rightmost two positions of the
field are blank.

DB Indicates debit. If the data is negative, the zone
is hex D and the rightmost two positions of the
field have C'DB’. If the data is positive, the zone
is hex F and the rightmost two positions of the
field are blank.

Picture definition; a string of symbols that defines the format of
the field. This is an optional parameter that may be specified
only for a WFMCRT, WRT, or WRBF instruction that moves the
field to a decimal buffer; it is mutually exclusive with the EDIT
parameter. The number of digits represented by the PIC string
{not including punctuation) must exactly equal the number of

digits in the input field in the decimal buffer. Specify one or more

of the following, enclosed in single quotes.
Symbol Represents

9 A decimal digit. A decimal digit is accepted for
output to the corresponding position of the buffer.

V4 Suppress leading zeros. The corresponding posi-
tion in the buffer is blanked if the character is a
leading zero.

Assembler Language Control Statements

85

Parameter

Name

PIC
(continued)

Represents

Stop zero suppress. Zero suppression is stopped in
the corresponding position of the buffer. V must
be followed by a comma, slash, or period.

Note: The picture definition must not end with V.

Insert a blank if the value is 0. A blank is inserted
into the corresponding position of the buffer if the
position contains a zero.

Insert an asterisk. An asterisk is inserted into the
corresponding position of the buffer if the position
contains a leading zero.

Insert a comma. A comma is inserted into the
corresponding position of the buffer unless zero
suppression has occurred.

Insert a slash. A slash is inserted into the corre-
sponding position of the buffer unless zero
suppression has occurred.

Insert a period. A period is inserted into the
corresponding position of the buffer unless zero
suppression has occurred.

Insert a blank. A blank is inserted into the corres-
ponding position of the buffer.

Insert a currency symbol. The currency symbol
can be at a fixed position or placed to the left of
the most significant digit. To insert a currency
symbol at a fixed position, place one M at the
desired position. To insert a floating currency
symbol, place an M in all leading digit positions
of the associated field.

Insert a minus sign. A minus sign is inserted into
the corresponding position of the buffer if the
field is negative.

Insert a plus sign. A plus sign is inserted into the
corresponding position of the buffer if the field is
positive.

Parameter
Name Description

PIC Symbol Represents
(continued)
S Insert the appropriate sign. The appropriate sign
(+ or -) is inserted into the corresponding position
of the buffer.

C Insert CR. The characters CR are inserted into the
corresponding positions of the buffer if the field is
negative; otherwise the corresponding positions are
blank.

D Insert DB. The characters DB are inserted into the
corresponding positions of the buffer if the field is
negative; otherwise the positions are blank.

Example:

To read the following data from data set 4 and move it from the 1/0 buffer to
three decimal registers labeled NAME, SS#, and RATE, the following statements
may be used:

3White ElmerJ. 404772310 3.36

.FMTST LABEL=F2;

.FMTFLD DCLBL=NAME LEN=16 COL=2; skip condition
character position

.FMTFLD DCLBL=SS# LEN=9 COL=20;

.FMTEND DCLBL=RATE LEN=6 COL=31 EDIT=DP, ZF;
READ (4,F2);

After the execution of the above statements, the decimal registers contain the
foliowing data.

NAME= WHITE ELMER J
SS# = 404772310
RATE = 0000000000000336

A write instruetion that specifies F2 as the format parameter would move the
data from these registers back into the 1/0 buffer; all punctuation and edit charac-

ters would be replaced before the record is written to the 1/0 device.

The following tables show examples of PIC edit strings.

Assembler Language Control Statements

87

[=) Y e [N .
CXxampies O1 £ero suppression

Input Field Edit Word Output Field
12345 2727299 12345
00100 22299 ®¥B100
00000 272799 BBBoOo
00100 22222 B©B100
00000 22222 BBbBY
00100 rrEER **100
00000 * % ¥ LR E X X3
00100 YYYYY BB1B
10203 9Y9Y9 16283
Examples of Character Insertion
Input Field Edit Word Output Field
1234 9,999 1,234
123456 9,999.99 1,234.56
1234 22.22 12.34
1234 22V .99 12.34
0003 22.2Z BYBB3
0003 22V .99 B16.03
0000 22.27 BB
0000 ZZV.99 B.00
123456789 9,999,999.99 1,234,567.89
1234567 ** 999.99 12,345.67
0012345 **,009.99 ¥%¥%123.45
123456789 9.999.999,99 1.234.567,89
123456 99/99/99 12/34/56
123456 99.9/99.9 12.3/45.6
001234 22/2Z/22 BBB12/34
000012 22/22/Z22 BBBYBE12
000000 22/2Z/Z22Z BBBBBIBY
000000 **/**/** AR R X K R X
123456 99B99B99 121634656
123 9BB9BB9 16626183
12 9BB/9BB 18/21%

FMTEND Control Statement

.FMTEND DCLBL= [TYPE= LEN= COL= {E'DC|=T=} 1

The .FMTEND control statement indicates the last field of an edit format. The
parameters are identical to the .FMTFLD control statement.

SET UP SCREEN CONTROL FORMATS

A screen control format describes a record that is entered via the keyboard/display.
One screen control format must be specified with each ENTR instruction. When
the 5280 encounters an ENTR instruction during program execution, it directs the
keyboard/display to allow the fields of one record to be entered from the keyboard.
The screen control format specifies the length of each field and the type of data
that may be entered. The 5280 checks the characters entered into each field to
make sure it meets the specifications of the screen control format. Valid data for
each field is placed into the 1/O buffer as it is entered, according to the current
mode of entry. (See Modes of Entry in Chapter 2.) The screen control format

can also specify prompts and display attributes to be displayed as the record is
entered. The prompts and display attributes are moved to specified positions on
the screen.

During an ENTR operation, the keyboard/display maintains two pointers. The
buffer position pointer always contains the position, relative to the first byte of the
1/0 buffer, of the next available buffer position. The screen position pointer
always contains the next available screen position.

In your source program, each screen control format must begin with a .SFMTST

statement and end with a . SFMTEND statement. Between these two statements,
you may include as many of the following statements as necessary:

Statement Purpose

SFMTCTL Specify control of screen attributes, data movement, keyboard
functions, or format execution.

SFMTPMT Specify prompts to move to the screen.

SFMTFLD Describe the display attributes, field type, and keyboard functions
of an input field.

SFMTCNS Specify constant insert data to place in the I/0 buffer and to also
move to the screen.

Assembler Language Control Statements 89

90

Certain parameters or parameter keywords are common 0 moie than one .SFMT
control statement. These are as follows:

Parameter

CNTL

Description

Control; one or more keywords that specify control of the
screen attributes, keyboard functions or format execution.
The CNTL parameter may be specified in any of the .SFMT
control statements. One or more of the following keywords
may be specified for the CNTL parameter, depending on the
particular control statement.

Keyword

RG

DE

MC

Meaning

Return to program; the keyboard/display suspends
processing key entry under the current ENTR
command and sets on an external status indicator
in the KB/CRT 1/0 control biock.

If the key entry is processing in a forward direc-
tion when this parameter specification is encount-
ered, the resulting external status condition is
condition 4. The current .SFMT statement, which
contains this RG parameter, is processed before
key entry is suspended.

If key entry is processing in a backward direction
such as during a backspace when this parameter is
encountered, the resulting external status condition
is condition 5. The current .SFMT statement,
which contains this RG parameter, is not

processed before key entry is suspended.

Dup key status; changes the status that determines
whether pressing the Dup key is allowed within a
field. The Dup key is initially enabled at the start
of each screen format control series. If itis
enabled when this statement is encountered, it
becomes disabled. If it is disabled when this state-
ment is encountered, it becomes enabled.

Monocase conversion status; changes the status
that determines whether all lowercase alphabetic
characters (and any other characters in the ex-
tended international character set for which an
uppercase-lowercase relationship is defined) are
converted to their uppercase equivalents as they
are keyed, before they are inserted into the
record and displayed upon the screen. The mono-
case conversion feature is initially disabled at the
start of each screen format control series. If itis
disabled when this statement is encountered, it
becomes enabled. If it is enabled when this state-
ment is encountered, it becomes disabled.

Parameter
Name

CNTL
(continued)

DSPLY

Description
Keyword Meaning

FX Field- status; changes the status that determines
whether the Field- (Field Exit Minus) key is per-
mitted in a field defined as a numeric shift field.
The Field- key function is initially enabled at the
start of each screen format control series. If itis
enabled when this statement is encountered, it
becomes disabled. If it is disabled when this state-
ment is encountered, it becomes enabled.

sV Specify verify status; changes the status that
determines whether the mode is changed from
verify mode to special verify mode for this field.
If special verify mode is enabled when the cursor
enters the field, the mode is changed to special
verify mode. Special verify mode allows the oper-
ator to enter data into the field without the
normal verify checking against the contents of
the field in the 1/0 buffer. When the field is
exited in the forward or backward direction, the
mode is restored to verify mode. The special
verify mode status is disabled at the start of each
screen control format. If it is disabled when this
statement is encountered, it becomes enabled.
If it is enabled when this statement is encountered,
it becomes disabled.

CS Clear screen; the screen is cleared, except for the
status line, prior to processing any other CNTL
specifications within this statement.

Display attributes; specifies display attributes to affect this field
only. The 5280 replaces the display attributes currently in effect
by moving the attributes you specify in this DSPLY parameter

to the screen as immediate data. The 5280 uses the cursor posi-
tion immediately preceding the field to move the attributes to the
screen. |t also uses the cursor position immediately following
the field to return to the screen the attributes in effect before
the change. Remember to include these two cursors if you are
counting positions for the CSPS parameter. For example, if you
change display attributes for a field that is 8 positions long, the
5280 uses 10 cursor positions.

This parameter is optional and should not be used if you specified
the display attributes with the HLIN and NMIN parameters of the
.KBCRT control statement. You may specify one or more of the
following attributes, separated by commas.

Assembler Language Control Statements

91

92

Parameter

Name Description

DSPLY Symbol Meaning

{continued)
ND Nondisplay of the field
NM Normal display of the field
BL Blink the field
CS Display column separators for the field
H1 High intensity for the field
RI Reverse image for the field
UL Underline the field
Notes:

1. The ND (nondisplay) and the NM {normal display) attributes

are incompatible with any other specification.
2. If you specify UL (underline), R (reverse image), and HI

(high intensity) for the same field, display of the field is inhibited.
3. The DSPLY parameter has a different effect when specified

in a .SFMTCTL control statement than when specified in one

of the other statements. Check the DSPLY description for

the .SFMTCTL control statement.

BFPS Buffer position pointer changed; specifies a signed number (£n)
that specifies the direction and number to change the current
record buffer pointer position. This pointer determines where the
next keystroke is to be placed within the current record buffer.
This is an optional parameter.

CSPS Screen position pointer changed; changes the pointer before any
prompts, constant inserts, or input data is displayed on the screen.
This is an optional parameter. You may enter one of the

following:
Entry Meaning
*n A signed number; indicates the direction and number of

NL

Notes to CSPS:

the change.

Next line; places the pointer in the first column of the
next line.

1. You must be careful not to move any data to the screen at a position that will
allow the data to extend beyond the available screen positions. If this happens,
the data may overwrite the data on another screen.

2. NL is incompatible with ES (execute secondary format), Cl (conditional bypass),
and CP (continue at current cursor position) specifications.

The 5280 assembler generates a string of object code for each screen control format

in your source program.

Each series of control statements, which begins with a

SFMTST statement and ends with a SFMTEND statement, is used to generate one
string of object code. This string of object code is referred to as a screen format

control string.

The assembler converts the control statements to object code sequentially, so you
must code your .SFMT statements in the order you wish them to be executed.
Within each source control statement, you may specify parameters in any order.
However, there is a prescribed order in which certain parameter keyword specifica-
tions are placed in the object code string. This affects the order in which the param-
eter specifications are processed during program execution. The control statement
descriptions specify the order in which the parameter specifications are processed.

The RG (return to program) specification is always placed in the object code string
in association with another parameter specification. Therefore, if you specify
CNTL=RG in a control statement, you must specify at least one other parameter.

The RG specification is usually associated with the parameter that is first processed
in each control statement. When the object code string is being processed in a
forward direction and an RG specification is encountered, an external status 4
condition results. The RG specification is encountered after the parameter with
which it is associated is processed. However, if the object code string is being
processed in a backward direction when an RG specification is encountered, an
external status 5 condition results. The RG specification is encountered before the
parameter with which it is associated is processed.

Therefore, if you include a SFMTCTL control statement that contains only an

RG specification and an ES (execute secondary screen format) parameter, or a Cl
(conditional bypass) parameter, the RG specification is encountered after the ES

or Cl parameter has been processed. If you want the return (external status 4
condition) to be made before the secondary screen format or the conditional bypass
is processed, you must include another parameter in the control statement. The
other parameter must be higher in the processing order than the ES or Cl parameter.
Then the RG return is made, after the other parameter is processed and before the
ES or Cl parameter is processed.

An exception is made when an RG specification is included in a .SFMTFLD or a
SFMTCNS control statement. For these control statements, the RG specification
is always associated with the FLDF parameter or the CNST parameter. This is true
even if another parameter (such as BFPS) is included that is higher in the processing
order. The return (external status 4 condition) is made after the FLDF input field
or CNST constant has been entered into the 1/0 buffer. If the object code string is
being processed in a backward direction, the return (external status 5 condition) is
made before the cursor enters the FLDF or CNST field.

Assembler Language Control Statements

93

SFMTST Control Statement
SFMTST LABEL= [CNTL=] ;

The .SFMTST control statement identifies the start of a screen format control
series. Each screen format control series specifies one format for data input via
the keyboard/display unit. Each series must start with a SFMTST statement and
must end with a SFMTEND statement. No other .SFMTST statements are valid
before a .SFMTEND statement is encountered.

Parameter

Name Description

LABEL Label; identifies this screen format series, which includes all
.SFMT statements before a .SFMTEND statement is
encountered. This parameter is mandatory. This label is
specified as the format operand in an ENTR command.

CNTL Control keywords; up to four keywords are acceptable;

separate them with commas. This is an optional parameter.
Keyword Meaning
RG Return to program,

Mv Move data; before data entry keystrokes are
accepted, the contents of the current record buffer
are moved into the appropriate data input and
constant insert fields. Prompts and display attri-
butes specified within the screen format series are
moved to the screen as specified.

In update, rerun/display, or display mode, this
function is automatically invoked.

In verify mode, this function is automatically
invoked except that data fields on the screen are
blanked.

In enter mode, you must include the MV parameter
in the .SFMTST statement if you want the move
data function to be invoked. Otherwise, the
prompts and display attributes appear on the
screen when they are passed over by the cursor for
the first time. The content of the current record
buffer does not appear on the screen unless it is
rekeyed by the operator.

CS Clear screen.

cp Continue at current cursor position; begins this
screen format at the current cursor position. If
this keyword is omitted, the cursor position is
reset to line two, column one at the beginning of
data entry under the enter statement.

Example:

SFMTST LABEL=FORMAT1 CNTL=CPMV;

SFMTCTL Control Statement

SFMTCTL [Cl= CNTL= DSPLY= CSPS= BFPS= ES=] ;

The .SFMTCTL control statement specifies screen or keyboard control operations.
Although all parameters are optional, at least one parameter must be specified each
time you include the .SFMTCTL statement.

Parameter
Name

Ci

CNTL

Description

Conditional bypass indicator; the label of an indicator, followed
by OFF or ON, for a conditional bypass of a portion of this
SFMT series. This must be followed by an end of bypass control
parameter (CNTL=CE) in a .SFMTCTL statement within this
SFMT series. All statements between this statement and the
SFMTCTL statement with the CE parameter are bypassed if the
specified indicator is on and ON is indicated, or if it is off and
OFF is coded. This is an optional parameter. Only one level of
bypass is allowed. See Conditional Bypass under Screen Formats
in Chapter 2 for more information.

Control keywords; up to five keywords are allowed. If more than
one keyword is entered, separate them with a comma.

Keyword Meaning

RG Return to program. Whenever the RG keyword is
included for the CNTL parameter of a SFMTCTL
statement, at least one more keyword must also be
included.

CE End of bypass; concludes the bypass portion with-
in the format control series. A CE specification
must have been preceded by a start of bypass (Cl)
parameter in a previous control statement within
this .SFMT series.

DE Dup key status change.

MC Monocase conversion status.

FX Field exit status change.

sv Special verify mode status change.

Assembler Language Control Statements

95

Parameter

CsPS

BFPS

ES

Description

Display attribute; specifies a display screen attribute, which is
moved to the screen at the current cursor position. The fields
preceding the cursor position are not changed. The fields follow-
ing the cursor position are displayed with the display attributes
specified in the SFMTCTL statement DSPLY parameter until
another DSPLY parameter is encountered. Remember to include
this cursor position if you are counting positions for the CSPS
parameter. This is an optional parameter and should not be used
if you specified the display attributes with the HLIN and NMIN
parameters of the .KBCRT control statement. One or more of
the following keywords, separated by commas, may be entered.

Keyword Meaning

BL Blink

(] Column separators are displayed
HI High intensity

ND Nondisplay

RI Reverse image

UL Underline

NM Normal display

Note: The ND (nondisplay) and the NM (normal display) attri-
butes are incompatible with any other specification. If you

specify UL (underline), Ri (reverse image) and HI (high intensity) for
the same field, display of the field is inhibited.

Screen position pointer changed.
Buffer positions pointer changed.

Execute secondary screen format; specify the label (LABEL
parameter from the .SFMTST statement) of the secondary screen
format. When the 5280 encounters this specification, it executes
the entire secondary screen format, then returns to the primary
screen format at the specification following the ES specification.
See Secondary Screen Format under Screen Formats in Chapter
2 for more information. This is an optional parameter.

Only one level of secondary format is permitted. The secondary
format specified by this parameter must not have a secondary
format specification within its statements.

Although the parameters may be specified in any order, the order in which they
are processed is:

1. BFPS, CSPS
2. DSPLY

3. FX,MC,DE

4, ES
5. ClI
6. CE

If RG is included, it is associated with the parameter that is first in processing order.
The return {external status 4 or 5 condition) is made after that parameter is
processed in the forward or backward direction (respectively).

Example:

SFMTCTL CNTL=DE,FX CSPS=20 BFPS=+15 ES=FMT6 CI=CHK,OFF;

SFMTPMT Control Statement
SFMTPMT PRMT= [CSPS= DSPLY= CNTL=];

The SFMTPMT control statement specifies a prompt to display on the screen.
You set up and initialize the prompts with .DC control statements.

When you specify prompts for a screen format, be careful that the prompt length
is not greater than the available screen positions. If such a prompt is moved to
the screen, the prompt may extend beyond the screen into the screen area used by
another keyboard. This may overwrite and destroy the original contents of
another screen or destroy control information for your screen.

Parameter
Name Description
PRMT Prompt; you must specify one of the following for this mandatory

parameter.

SP, label Standard position prompt; specifies the LABEL
parameter of the .DC statement that set up and
initialized the prompt. The indicated prompt is
displayed at the current location of the screen posi-
tion pointer. A standard position prompt is not
redisplayed if it is encountered during backspace
operations.

Assembler Language Control Statements 97

98

Parameter
Name

PRMT
(continued)

CSPS
DSPLY

CNTL

Description

FP, label

CP,nn

Fixed position prompt; specifies the LABEL param-
eter of the .DC statement that set up and initialized
the prompt. The indicated prompt is displayed in
column 1 of the fixed prompt line. You can
specify the fixed prompt line by including the
FPLC parameter in the .KBCRT control statement.
If you omit the FPLC parameter, the fixed prompt
line defaults to line two. The line is cleared before
the prompt is displayed. A fixed prompt is redis-
played if it is encountered during backspace
operations.

Clear fixed prompt line. No label may be specified
with CP, although an optional length may be speci-
fied. If a length (nn) is specified, only the indicated
number of positions are cleared on the fixed prompt
line. If no length is specified, the entire line is
cleared from the screen.

Change screen position pointer.

Display attribute specification.

Control; only RG may be specified.

Although the parameters may be specified in any order, the order in which they are

processed is:

1. CSPS

2. DSPLY (turn on an attribute)

3. PRMT

4. DSPLY (turn off the attribute)

If RG is included, it is associated with the parameter that is first in processing
order. The return (external status 4 or 5 condition) is made after the parameter
with which it is associated is processed in the forward or backward direction

(respectively).

Examples:

SFMTPMT PRMT=SP,PMESGE3 DSPLY=BL ,HI CSPS=+7 CNTL=RG;

SFMTPMT PRMT=CP; this clears the fixed prompt line.

SFMTPMT PRMT=CP,20; this clears the first 20 positions of the fixed prompt

line.

SFMTCNS Control Statement

SFMTCNS CNST= [CSPS= BFPS= DSPLY= CNTL=] ;
The .SFMTCNS control statement specifies a constant insert field.

In enter, update, and rerun modes, a constant insert is placed into the 1/0 buffer
and displayed on the screen in the current field position. The cursor does not
appear within the constant insert field and the operator cannot enter data into the
field.

In verify mode, verification of a constant insert field is done automatically. The
contents of the field are compared to the contents of the main storage area
declared with a .DC control statement and specified with the CNST parameter
described below. If the verification is successful, a field advance is performed. If
the verification is not successful, the cursor is positioned in the leftmost position
of the constant insert field and the contents of the field in the /O buffer are dis-
played on the screen. A constant insert verify mismatch error is reported. The
operator must press the Reset key, then press either the =>I(Field Advance) key, or
a field correct key. If the =lkey is pressed, the contents of the field in the 1/0
buffer remain unchanged and a field advance is performed. If a field correct key

is pressed, the contents of the field in the 1/O buffer and on the screen are replaced
with the contents of the main storage area, then a field advance is performed. Any
data key or any function key handled by the 5280 (except a shift key) is invalid
after the Reset key is pressed.

Parameter

Name Description

CNST Constant name; the label assigned to the character string by a
.DC statement, which includes the TYPE=PRMT parameter.

CSPS Change screen position pointer.

BFPS Change buffer position pointer.

DSPLY Display attributes.

CNTL Control; only RG may be specified.

Although the parameters may be specified in any order, the order in which they are
processed is as follows:

1. BFPS, CSPS

2. DSPLY (turn on attribute)
3. CNST

4. DSPLY (turn off attribute)

If RG is specified, it is associated with the CNST parameter. The return (external
status 4 condition) is made after the constant is entered into the 1/O buffer.

Assembler Language Control Statements

99

100

Example:

.SFMTCNS CNST=PAYRATE CSPS=NL BFPS=+2 DSPLY=CS HI,UL CNTL=RG;

SFMTFLD Control Statement
SFMTFLD FLDF= [CNTL= CSPS= BFPS= PIC= DSPLY=]
The .SFMTFLD control statement defines a data field for data entry. Field type

and field definition keywords for the FLDF parameter are defined following the
SFMT control statement descriptions.

Parameter
Name Description
FLDF Field Definition; three positional keywords that specify field

type, field length, and field definition. Field type is omitted
if the PIC parameter is used.

Field type and field definition keywords are described following
the .SFMTEND control statement under Field Type Keywords
and Field Definition Keywords. Following the keyword descrip-
tions is a chart (Figure 3-8) that shows which keywords are
mutually exclusive and which require other keywords.

Note: Characters considered valid in any field type may be rede-
fined at system configuration.

Field type, mandatory first position: Mandatory unless you use
the PIC parameter. If you use PIC, omit the field type entry in
this position and retain the comma before the length entry. If
you do not use PIC, enter one or more of the following, separ-
ated by commas.

Symbol Meaning

Alphabetic shift
Numeric shift

Special characters shift
Alphabetic only
Numeric only

Special characters only
Digits only

Hex field

Signed numeric
Format level zero

MW IO <X<X=ESZ2D>»

Field Length, mandatory second position: Enter a number from
1 to the maximum number of valid positions remaining on the
screen.

Parameter
Name

CNTL

MD

Description

Field definition, optional third position: Enter one or more of
the following, separated by commas.

Symbol Meaning

FE Field exit required

RB Right adjust, blank fill (not allowed if PIC is coded)
RZ Right adjust, zero fill (not allowed if PIC is coded)
AD Auto dup

AS Auto skip

ME Mandatory enter

DR Data required

MF Mandatory fill

BC Blank check

RL Right-to-left (not allowed if PiC is coded)

BV Verify bypass

AA Absolutely automatic

BY Bypass

Control keywords; up to four optional keywords are acceptable;
separate them with commas.

Keyword Meaning

RG Return to program,

DE Dup key status change.

MC Monocase conversion status change.
FX Field- key status change.

sV Special verify mode status change.

Main storage duplication; the label of a storage location defined
for duplication by a .DC control statement, using the TYPE =
MDUP parameter. In enter, update, or field correct mode, the
data from the storage location is duplicated into the field when the
Dup key is pressed. Duplication starts at the current position
within the field and continues to the end of the field.

In verify mode, the contents of the field are verified against the
contents of the storage location. If a mismatch error occurs
during verification, the cursor stops at that position, the entire
field is displayed, and a verify mismatch error is reported. If the
operator presses the Reset key, then again presses the Dup key,
the character in the storage location replaces the character in the
1/0 buffer. Verification then continues to the end of the field.

If the field is also defined as auto dup (AD), the duplication
from storage is done automatically for the entire field if the
auto dup/skip mode is active or if the absolutely automatic (AA)
attribute is also specified for the field.

Assembler Language Control Statements

101

102

Parameter

MS Main storage store; the label of a storage location defined by a
.DC using the TYPE = MDUP parameter. In enter, update,
verify, or rerun mode, the content of the field is moved into this
storage location when the field is exited and if the auto dup
switch is on, or if the absolutely automatic (AA) attribute is
also specified for the field.

CSPS Change screen position pointer.

BFPS Change buffer position pointer.

PiC Subfield picture definition; defines subfields within the original
field.

PIC consists of one or more ordered pairs of 2-positional entries;
the first position is field length and the second position is field
type. The positional entries are separated by commas; each pair
of entries is enclosed by parentheses; and the pairs are separated
by commas.

Note: If this parameter is specified, place a blank in the field
type (first) position of the FLDF parameter for this SFMTFLD
control statement. The PIC parameter cannot be specified if
RB {right adjust, blank fill) or RZ {right adjust, zero fill) is
specified for the field definition keyword (third) position of the
FLDF parameter for this SFMTFLD control statement.

Subfield Length, First Position

A number from 1 to 8 that specifies the length of the subfield.
Subfield Type,; Second Position

Symbol Meaning

Alphabetic shift

Digits only
Hexadecimal

Numeric shift

Special characters shift
Alphabetic only
Numeric only

Special characters only

N<LX<<Z2TITOD>»

DSPLY Display attributes.

Although the parameters may be specified in any order, the order in which they are
processed is as follows:

1. BFPS, CSPS

2. DSPLY (turn on attribute)

3. DE,MC,FX

4. FLDF

5. DSPLY (turn off attribute)

If RG is included, it is always associated with the FLDF parameter. The return
(external status 4 condition) is made after the FLDF input field is entered into the
1/0 buffer.

Examples:

SFMTFLD FLDF=A,10,FE,ME CNTL=RG,DE MS=STORS CSPS=+10 BFPS=+10
DSPLY=HI;

.SFMTFLD FLDF= ,20 PIC=(8,A), (6,N), (6,A);

SFMTEND Control Statement
SFMTEND [CNTL=] ;
The .SFMTEND control statement identifies the end of a screen format series.

This must be the last statement of each screen format control series.

Parameter
Name Description
CNTL Control keywords; up to two keywords are acceptable, separated

by a comma. This is an optional parameter.

Keyword Meaning

BZ Sound buzzer; when this statement is encountered
at the end of a screen format control series, a

buzzer is sounded in the keyboard/display unit.

Cs Clear screen; the screen is cleared except for the
status line.

Assembler Language Control Statements 103

Examples:

.SFMTEND CNTL=BZ,CS;
SFMTEND;

Example of Screen Format Control Series:

SFMTST LABEL=EXAMP1 CNTL=CS MV;

SFMTPMT PRMPT=SP MSG CSPS=10 DSPLY=H|I;

SFMTFLD FLDF=,12, DR,BC CNTL=RG CSPS=NL BFPS=5 PIC=(5,A), (7,D);
.SFMTCNS CNST=KONST CSPS=+5 DSPLY=UL;

SFMTFLD FLD=N, 20,AD CNTL=DE MD=DUPDATE CSPS=+5 BFPS=1;
.SFMTEND CNTL=BZ;

Field Type Keywords

Keyword Meaning

A

104

Alphabetic shift. All characters are accepted under this character set
definition. The keyboard shift is positioned to the lower symbol of
each data key for data entry, proof, and typewriter keyboards.

Digits only. Only the digits 0-9 are accepted under this character set
definition. If any other character is keyed, an error results, The key-
board shift is positioned as for a numeric shift field (N).

Format level zero. In enter, update, or verify mode, format level zero
specifies a series of 1-byte alphabetic fields. The length of the field
specified determines the number of 1-byte fields.

Note: The field definition keywords of the FLDF parameter must
not be used if type F is specified.

Hexadecimal. Only hexadecimal characters (0-9, A-F) are accepted
under this character set definition. If any other character is keyed, an
error results. The keyboard shift is positioned to the upper symbol of
each data key for data entry and proof keyboards, or on the fower
symbol for typewriter keyboards.

Each pair of hex digits entered is combined to form one position in the
field. For example, if hex 3 and hex F are keyed, 3F is inserted into
one record position, The Alpha shift key must be used to select A
through F on the data entry or proof keyboards.

Numeric shift. All characters are accepted under this character set
definition. The keyboard shift is positioned to the upper symbol on
each data key for data entry and proof keyboards, or to the lower
symbol for typewriter keyboards.

Keyword Meaning

S

Signed numeric. The rightmost position of the field on the screen is
reserved for a sign; no data can be entered directly into this position.
The .SFMTFLD statement that defines the field must not specify digits
only (D) for the field type, and must not specify right adjust (RA) and
field exit required (FE) for the field definition keywords. These speci-
fications are already implied for a signed numeric field. To exit the

field in enter, update, or field correct mode, the Field+, Field Exit,

or Field- key must be used. If one of the first two keys is pressed, the
data is right-adjusted, the sign position is set to blank on the screen,

and the data in the record does not change. If the Field- key is

pressed, the data is right-adjusted, the sign position is set to minus on the
screen, and the zone portion of the low-order digit of the field is changed
to hex D.

This field type cannot be specified for a PIC field specification.

Special characters shift. All characters are accepted under this character
set definition. On some native language keyboards certain keytops are
divided into quadrants. The two rightside quadrants represent special
characters; the two leftside quadrants represent standard alphameric
characters. The following illustrates the quadrants.

Upper
Shift

Lower
Shift
Alphameric | Special
Characters Characters

For a special characters shift field, the keyboard is initially positioned
in lower shift. If a key is pressed that has both special and alphameric
symbols, the lower rightside special symbol is selected unless a shift key
is pressed.

This field type is valid only for the appropriate native language symbols.
If it is specified for any other keyboard, a format-control-series-error
external status condition (13) occurs.

Alphabetic only. Only the following characters are accepted under this
character set definition: A-Z, comma, period, dash, and blank. If any
other character is keyed, an error results. The keyboard shift is posi-
tioned to the lower symbol on each data key for data entry, proof, and
typewriter keyboards.

Numeric only. Only the following characters are accepted under this
character set definition: 0-9, comma, period, dash, plus, and blank. If
any other character is keyed, an error results. The keyboard shift is
positioned to the upper symbol on each data key for data entry and
proof keyboards, or on the lower symbol for typewriter keyboards.

Assembler Language Control Statements

105

\ Special characters only. Only characters defined via the character
validity table as special characters are accepted under this character set
definition. If any other character is keyed, an error results. The key-
board shift is positioned as in a special character shift field. This field
type is valid only for the appropriate native language keyboards.

Field Definition Keywords
Keyword Meaning

AA Absolutely automatic. In enter, verify, field correct, update, or rerun
mode, this keyword is used in conjunction with auto dup (AD), auto
skip (AS), or main storage (MS). Automatic processing of the dup,
skip, or store is done whether or not the auto dup/skip mode is active.
If the field is defined as auto dup (AD), main storage dup (MD), and
absolutely automatic (AA), automatic duplication from main storage
occurs.

AD Auto duplicate. AD may be specified alone or in conjunction with
main storage duplicate (MD). In an enter or update mode, if a field is
defined only as auto dup, the system automatically duplicates data
from corresponding positions in the previous record if the auto dup/
skip mode is active, or if the absolutely automatic (AA) attribute is
also specified for the field. The duplication starts at the current posi-
tion within the field and continues to the end of the field.

If a field is defined as auto dup (AD) and main storage dup (MD), the
duplication occurs as described under the main storage dup (MD)
function.

In verify mode, if a field is defined as auto dup (AD), the system auto-
matically verifies that the data in the current record buffer matches the
data in corresponding positions in the previous record buffer., Verify
mismatch error recovery from an AD field is identical to the error
recovery from manual dup.

If the auto dup function is invoked, all character and field edit checks
are released for the field; the verify checks are not released.

AS Auto skip. When an auto skip field is entered, the system automatically
fills it with blanks and skips to the next field if the auto dup/skip mode
is active or if the absolutely automatic (AA) attribute is specified in the
field definition.

In verify mode, the positions of the field are verified for blanks. If a non-
blank character is encountered, the cursor stops at the position, the
remainder of the field is displayed, and a verify mismatch error is
reported. If the operator presses the Reset key, then presses the Skip
key, a blank is inserted into the /O buffer at that position and the
verification continues.

Keyword Meaning

BC

BV

BY

DR

FE

Blank check. In enter, update, or field correct mode, the system
checks each character as it is entered to ensure that it is not a blank
character. When a field is exited, the system checks the entire field to
ensure that if one character is entered into the field, no blanks are
entered into the field. Therefore, should an operator move the cursor
over a number of blank positions in the field before keying in the first
character, the blank positions are detected before the field is exited.

The Skip, Field Exit, or Field+ key is valid in the first position of the
field; the entire field is filled with blanks.

In verify mode, the BC is ignored except during a field correct.

The code for the blank may be defined on the .KBCRT statement or
defaulted to hex 40.

Bypass in verify mode. In verify mode, the system bypasses this field.
No verification is required, and the data in the record is left unchanged.
BV overrides the auto dup (AD) and auto skip (AS) functions.

In enter or update mode the field is processed normally.

Bypass. In enter, update, verify, or rerun mode, the system passes over
this field and allows no data to be entered into it. Data already in the
field is left unchanged. (The auto dup/skip switch does not affect
processing of bypass fields.)

Data required. In enter, update, or field correct mode, the system
ensures that at least one nonblank character is present in the field. The
checking is done as the advance to the next field is being processed.

In verify mode, DR is ignored except during a field correct.

Field exit required. In enter, update, verify, or field correct mode, a
nondata key (for example Field Exit or Skip) must be pressed to leave
the field. When a data character has been keyed into the last position
of the field, the cursor remains beneath that character and blinks to
signal the operator that a field exit key is needed. [f the field is signed
numeric (S), the cursor remains to the left of the sign position. A data
key or Dup key entered at this time results in an error. The counter for
positions remaining in the field, which is maintained on the status line,
is at 01. If the operator wishes to make a correction in the field,
prssing the < key will turn off the blinking cursor and allow corrections
to be made.

FE must not be specified if RB or RZ is specified.

Assembler Language Control Statements

107

108

Keyword Meaning

ME

MF

Mandatory enter. In enter, update, or field correct mode, at least one
data character must be entered into the field before the field is exited.
Blanks are acceptable in a mandatory enter (ME) field; use the blank
check (BC) specification if you do not want blanks to be entered into
the field. The check is done as the advance to the next field is being
processed.

The ME is ignored in verify mode, except during a field correct.

A field exit or Skip key pressed in the first position of an ME field

does not satisfy the mandatory enter requirement; it results in an error.

If a field exit or Skip key is pressed in any position other than the first
position and no valid character has yet been entered, it results in an error.

Mandatory fill. In enter, update, or field correct mode, the system
ensures that if one character is entered into the field, all positions in the
field must be filled. Blanks are acceptable.

MF cannot be specified with a right-adjust (RA) specification.

In a left-to-right field, any data entry must begin in the leftmost posi-
tion of the field. After one data character is entered, the operator can
proceed through the field only by keying each position. Any attempt
to move forward in the field with a key other than a data key or space
key results in an error. Any attempt to key the first character into a
position other than the leftmost position results in an error. The Ins
(Insert) and Del (Delete) keys are invalid.

In a right-to-right field (RL), any data entry must begin in the rightmost
position of the field. After one data character is entered, the operator
can proceed through the field only by keying each position. Any
attempt to move backward in the field with a key other than a data

key or space key results in an error. An attempt to key the first charac-
ter into a position other than the rightmost position results in an error.

If the field is not filled with blanks when the cursor moves into the field,
no mandatory fill (MF) checking is performed.

The Skip, Field+, or Field- key is valid in the first position of a manda-
tory fill (MF) field. The entire field is filled with blanks, except in the
following two conditions:

1. When the Field- key is pressed in the first position of a field that
is not specified as signed numeric (S), the rightmost position is set
to minus zero.

2. When the Field- key is pressed in the first position of a signed
numeric field, the rightmost field position on the screen is set to
zero, and the sign position is set to minus. In the record buffer,
the rightmost position is set to minus zero.

Keyword

RB

Rz

RL

Meaning

Right adjust, blank fill. A right adjust field must be two or more bytes
in length, When the Field Exit, Field+, or Field- key is pressed in enter,
update, or field correct mode, the system automatically right adjusts the
data within the field, and the nondata positions on the left are filled
with the alphabetic fill character, which is normally blank. When a

right adjust is performed in a signed numeric field, the data is justified to
the next rightmost position of the field on the screen before the appro-
priate sign is inserted. If the field is processed as an auto field, or if any
other key is used to exit the field, the field is processed but no right
adjust is performed.

RB is not allowed if subfields are defined with the PIC parameter. Do
not specify FE; field exit required is implied for a right adjust field.

Right adjust, zero fill. RZ is as for RB, except the numeric fill character,
which is normally a zero, is used.

Right-to-left. The first position of the field is the rightmost position;
the last position of the field is the leftmost position. In enter, update,
field correct, or verify mode, the cursor is initially positioned in the
rightmost position of the field, which is the first manual position of the
field. The system accepts or verifies data in the field moving from the
rightmost position to the leftmost position. (For example, the keys A,
B, C entered into an RL field would appear as:

_CBA
with the cursor positioned to the left of the C.)

RL is not allowed if subfields are defined with the PIC parameter, or if
the field is a signed numeric field.

Assembler Language Control Statements

109

Field Types

A — Alpha shift

D — Digits only

H — Hex field

F — Format0

N — Numeric shift

S — Signed numeric

V — Special characters only
W — Special characters shift
X — Alphabetic only

Y — Numeric only

Field Definitions
AA — Absolutely automatic

AD{P) — Auto dup, previous record
AD(M} — Auto dup, main storage

AS — Auto skip

BC — Blank check

BV — Verify bypass

BY — Bypass

DR — Data required

FE — Field exit required
ME — Mandatory enter

MF — Mandatory fill

RB — Right adjust, blank fill
RL — Right-to-left

RZ — Right adjust, zero fill
Parameters

MD — Main storage dup

MS — Main storage store
PIC — Picture subfields

) ()
AA AD AD AS BC B8V BY DR

ADHFNS VWXY FE ME MF RB RL RZ MD MS PIC
XXX XXXXXX X
X XX XXX XXX X
X X XX XXXXX X
X X X XXX XXX X X X X X X X X X X X X X X X X X
X X X X XX XXX X
XXX XX X X X X X X X X X X X
X XX XXX X X X X
XX XX XXX X X X
XX X X X X X X X X
XX XXX XXXX X
X X X X X X X X X X X X
X * & X X
X " X X
X * X X X
X X X
X X
X X X X X X X X X X X X X X X X X
X X X
X X X X X X
X X x
X X X X X X
X X X X X X X
X X X X X X X
X X X X X X X
X X & X
X .
XXX XXXXXXX X X X X X
ADHFNS VWXY AA AD AD AS BC BV BY DR FE ME MF RB RL RZ MD MS PIC
Py (M)
Key
X = Mutually exclusive
& = if attribute at top is specified, attribute at right must also be specified.

= 1|f attribute at top is specified, one of the attributes at right must also be specified.

Figure 3-8. Field Attribute Chart

CONTROL THE ASSEMBLY LISTING

The assembly listing control statements specify headings and spacing for the
assembly listing. These control statements may be placed before or after any other
control statement or any instruction in your source program. They have no effect
on the object code. Use as many of these control statements as you wish to control
the spacing and headings of your assembly listing.

.TITLE Control Statement

110

TITLE INIT= ;

The .TITLE control statement specifies the heading to print on each page of the
assembly listing. The specified title is printed immediately following the program
name specified by the PNAM parameter of the .START control statement. If the
.TITLE statement is omitted, only the program name is printed on the listing. You
can specify more than one title. The first .TITLE statement usually precedes the
START statement. The assembler causes the heading specified by the first .TITLE
statement to be printed on each page. When the assembler encounters another
.TITLE control statement, it causes the printer to eject to the next page. Then the
heading specified by the most recent .TITLE statement is printed on the subsequent
pages.

< XESOMPZMIODP

Parameter
Name Description

INIT Initialization; a character string of 1 to 32 characters enclosed in
single quotes.

Example:

.TITLE INIT="ASSEMBLER DRIVER’;

.EJECT Control Statement

.EJECT ;

The .EJECT control statement stops the printing of the assembly listing on the
current page and continues the printing on the next page. Use this statement when-
ever you wish to skip to a new page.

Example:

.EJECT;

SPACE Control Statement
SPACE [NUMB=] ;
When the assembler encounters a .SPACE control statement it inserts one or more

blank lines in the assembly listing. This control statement should be included in the
source program in each position where you want the assembly listing to leave blank

lines.

Parameter

Name Description

NUMB Number; the number of blank lines to insert. If the parameter is
omitted, it defaults to one line.

Example:

.SPACE NUMB=4;

MISCELLANEOUS CONTROL

The miscellaneous control statements specify a data set to insert into your object
program, specify the labels of the common function subroutines your program uses,
and indicate the end of your source program.

Assembler Language Control Statements 111

.ANCLUDE Control Statement
.INCLUDE NAME= ;

The .INCLUDE control statement allows you to insert source code from another
data set into your current work file. When the assembler encounters an .INCLUDE
statement, it stops reading your source data set, goes to the specified data set and
reads it from beginning to end, then returns to your source data set. The source
data set that contains the code to insert is not changed. The source file that con-
tains your source program is not changed.

Parameter

Name Description

NAME Data set name; the name of data set you wish to insert into the
current data set. Use the complete data set name, enclosed in
single quotes.

Example:

.INCLUDE NAME='"PROG7’ ;

.SELFCHK Control Statement

SELFCHK MOD= [LABEL= FLDLEN= WGTS= CNTL=
DISP= ALTREG= INTAB= OUTTAB= PROD=] ;

The .SELFCHK control statement defines the self-check field, the self-check
register, the modulus, and the algorithm for the self-check function. The assembler
uses the parameters of the .SELFCHK control statement to set up the self-check
control area. During program execution, the 5280 uses this control area to gener-
ate the self-check number during a GSCK or IF ... CHK operation.

If you use Standard Modulus 10 or 11, see Choosing Your Algorithm under Self-
Check in Chapter 2 for a description of the algorithm. If you design your own
algorithm, see Appendix C for a description of how the .SELFCHK parameters
define your algorithm.

Parameter

Name Description

MOD Modulus; specifies the modulus for the self-check algorithm,
If you design your own algorithm, you may specify a number
from 2 to 127 and use the other parameters to define the
algorithm. Or you may specify S10 or S11 to use Standard
Modulus 10 or 11 and omit the remaining parameters.

LABEL Label; specifies the alphameric name you wish to assign to the

self-check control area.

FLDLEN Field length; the number of bytes in the self-check field.

Parameter
Name

WGTS

CNTL

Description

Weighting factors; specifies up to 32 bytes of hex digits that act
as the weights for the algorithm. The value of each byte must
be less than the value of the modulus. Enter hex 00 in the posi-
tions of the self-check number, and in all other positions that are
bypassed. When you use a product table, enter hex 01 in all
positions except the positions of the self-check number and the
positions to be bypassed.

Begin the WGTS parameter in column 1 of a new line, and code
the complete parameter on the single line. If you use a decimal
register pair for the self-check register, all 72 positions of the line
are used, as in the example following the parameter descriptions.

Control; six positional fields specify how to find the products
and how to determine the NR (rightmost number) and NL (left-
most number). The positional fields are separated by commas.
Any of the six fields may be omitted, but the comma for the
omitted field must be retained.

Field 1; if the field 1 entry is omitted and PROD is not specified
for a product table, each position of the foundation is
multiplied by the corresonding weight, and the whole
number products are summed. The sum becomes the
NR, and NL is 0.

If the field 1 entry is omitted and PROD is specified for
a product table, the product table repeats every three
characters. The NR is found by translating each position
of the foundation through the upper half of the product
table to find the products, and adding each digit of the
products. The NL is found by translating each position
of the foundation through the lower half of the product
table to find the products, and adding each digit of the
products.

D Each position of the foundation is multiplied by the
corresponding weight, and the unit digits of the products
are summed. The modulus is usually 10 if this option is

used.

) Each position of the foundation is multiplied by the
corresponding weight, and the unit digits of the products
are summed.

F Each position of the foundation is translated through the

upper half of the product table to a product, and the
digits of the products are summed to find the NR. To
find the NL, each position of the foundation is translated
through the lower half of the product table to a product,
and each digit of the products are summed. The product
table repeats every fourth digit.

Assembler Language Control Statements

113

114

Parameter
Name

CNTL
(continued)

Field 2;

Field 3;

Field 4;

Field 5;

Fieid 6;

if the field 2 entry is omitted, the NL (leftmost self-
check number) is forced to zero, and NR (rightmost
self-check number) is divided by the modulus.

The NL is forced to zero, the digits of the NR are
summed, and the sum is divided by the modulus.

The NL and NR are added, and the digits of the sum
are cross added. The hundreds digit of this sum is
added to the units digit to equal the NR, and the tens
digit is added to the carry from NR to equal the NL,

For special modulus 8 and 3; the units position of the
self-check number is converted to modulus 8, and the
tens position is converted to modulus 3. Field 1 must
not be omitted, and C cannot be specified in field 3
for a modulus less than 8.

If the field 3 entry is omitted, the NL and NR remain
unchanged.

C The NL and NR are complemented to the
modulus.

If the Field 4 entry is omitted, it defaults to 1.

1 One digit is generated or checked. If K is entered
in Field 2 and an output translate table is used,
the NL and NR are summed and the sum is trans-
lated through an output translate table.

2 Two digits are generated or checked. If E is
entered in Field 2, the NL is multiplied by 8, the
product is added to the NR, and the sum is trans-
lated through an output translate table.

If the Field 5 entry is omitted, the zone portion of NL
and NR is forced to X‘F’ to produce the DL (display-
able leftmost self-check digit) and DR (displayable
rightmost self-check digit).

The NR is used to produce a 2-digit decimal number.
The units digit is converted to the DR, and the tens
digit is converted to the DL.

If the result of this operation exceeds 99, the units
digit output is correct, and the second digit has a zone
portion of hex F and a digit portion of hex A-C.

If the Field 6 entry is omitted, all eight bits of each
byte in the input translate field are used for the input
translate number.

Parameter
Name

CNTL
{continued)

DIsP

ALTREG

INTAB

OUTTAB

Description

F Each byte in the input translate field is interpreted as
two hex digits. The rightmost hex digit becomes the
input translate character, and the leftmost hex digit
becomes a shift left count. The positions being trans-
lated and all higher positions in the register are shifted
left, with zero fill, the number of positions in the shift
count when the shifted register contains 16 bytes. All
unused high-order bytes of the original register are
bypassed.

Displacement; specifies the displacement (0-32) of the rightmost
self-check digit from the leftmost position of the register. It
defaults to zero.

If the displacement is zero, the result of a GSCK operation must
also be zero to pass the IF . .. CK operation. |f the displacement
is 1, and two self-check digits are specified, the leftmost digit

of the self-check computation must be zero to pass the IF . .. CK
operation. (The leftmost result of the GSCK operation is not
stored.)

Alternate register; specify a decimal register or register pair that
contains the weighting factors for the self-check algorithm. (f
ALTREG is specified, the weights specified by the WGTS param-
eter are ignored.

Input translate table label; specify the LABEL entry from the
.DC control statement that defined the table. The input trans-
late table can translate all foundation characters to specific hex
characters. If this parameter is omitted, the lower 4 bits of the
EBCDIC of each foundation position translates to the numerals
0-9, with A-F translating to 0.

Output translate table label; specify the LABEL from the .DC
control statement that defined the table. The value of the self-
check digit determines the buffer position of the character to be
inserted into the self-check register. 1f omitted, the output self-
check register is not transtated.

If one digit is to be generated and Field 2 specifies K, the NL
and NR are added and the sum is translated.

If Field 2 specifies E, the NL is multiplied by 8 and added to NR,
and the sum is translated.

Assembler Language Control Statements

115

116

Parameter
Name Description

PROD Product table label; specify the LABEL from the .DC control
statement that defined the product table. The product table trans-
lates the rightmost four digits of each byte in the self-check
register to the product at the corresponding position in the
product table. 1If two self-check digits are to be generated, the
second product is displaced 64 positions from the first product.

If this parameter is omitted, the products are found by using the
weights.

If the Field 2 entry is omitted, or if the Field 1 entry is U, the
NL is forced to zero.

Examples:
SELFCHK MOD=S11; no more parameters needed for Standard Modules

SFLFCHK MOD=7 LABEL=SKAREA INTAB=SKINTAB OUTTAB=SKOUTAB
WGTS=X'0605040503020105060103010401020304050604010106060403020101020300"
FLDLEN=16 CNTL=D, , ,1,D;

.XTRN Control Statement
XTRN LABEL= ;

The . XTRN control statement specifies the labels of the routines or global tables in
the common function area that your program uses. This control statement reserves all
specified 1abels as common function labels. This is a required control statement if any
calls to the common function area are initiated. See Common Function Routines in
Chapter 6 for the labels to specify.

Parameter

Name Description

LABEL Label; label of one or more common function routines or data
areas. You may specify up to 30 labels on each . XTRN statement.
Labels are separated by a comma. This parameter is mandatory.

Example:

The following statement specifies that the program is using the standard load
processor, program check error handler, and general 1/O error handler.

.XTRN LABEL= CFLOADO1,CFPGMCHK,CFGIOERR;

.END Control Statement
.END ;

The .END control statement is mandatory and must be the last control statement of
every program to specify the end of the source code. There are no parameters for
the .END statement. All system tables are built when the .END statement is
processed. If a .SYSTAB control has not caused the system tables to be built in
another location, the system tables are built at the address in the current location
counter when the .END control statement is encountered. If a SYSTAB statement
has caused the system tables to be located at other addresses, they are built at those
addresses when the .END statement is encountered.

Example:

.END; End of PAYROLS

Assembler Language Control Statements 117

118

Chapter 4. 5280 Assembler Language Instructions

Source instructions specify program operations. The 5280 assembler generates 4
bytes of object code from each source instruction.

Instructions may be interspersed with certain control statements, according to the
conventions detailed in Chapter 3.

INSTRUCTIONS FORMAT

Each source instruction contains one or more fields; each field is identified by
the order of its position within the instruction. Blanks, commas, and paren-
theses separate the fields. Each instruction must be written on a single line,
between column one and column 72. The format of a source instruction consists
of an optional symbolic label, the instruction, and an optional comment.

[Labe!:] Instruction [;Comment]

Blanks

Optional blanks may be placed before and after an equal sign, parenthesis, or
arithmetic operator. Blanks are not allowed within a field or within a binary
arithmetic/logical operator. One or more blanks must be used to separate fields if
no other delimiter is used.

Symbolic Labels
A symbolic label is a character string of one to eight characters. The first character
must be an uppercase alphabetic character (A-Z, $, @, #). The other characters

may include any uppercase or lowercase character available to your keyboard.
The label must begin in column 1 and must be followed by a colon (:).

5280 Assembler Language Instructions 119

120

The Instruction Fields

Blanks, commas, and parentheses are used to separate fields, depending upon the
particular type of instruction. If commas are used to separate optional fields, the
commas must be retained when fields are omitted that are to the left of fields
that are specified. The general format of an instruction is:

Data Movement
Result Operator Operands
where:

Result specifies the address that contains the resulting data at the completion
of the operation.

Operator may be an arithmetic symbol or a mnemonic to specify the operation.
Mnemonics may be to the left or to the right of the result, depending upon the
particular operation.

Operand may include one or more storage, register, or constant specifications,
depending upon the particular operation.

Comments

A comment may be included on any line following an instruction statement. The
comment is preceded by a semicolon. An entire line may be specified as a
comment line by placing an asterisk (*) in the first column of the line.

Examples:

LABEL: INSTRUCTION; this is a comment on an instruction line.

*This whole line is a comment line.

STORAGE SPECIFICATIONS

An instruction may refer to a location in storage by specifying one of the following
addressing methods:

® Labeled addressing.
@ Base displacement addressing.

The length of the data area may optionally be specified with either method.
These addressing methods are described in detail in Chapter 1 under Storage.

Whenever an instruction description includes the word storage either addressing
method may be used. If the instruction aliows only one of the methods, the
format of that addressing method is indicated in the instruction description.

Labeied Addressing

A storage area may be declared and labeled by a .DC control statement. An
instruction may refer to that labeled storage area by specifying the following
format:

label [{length)]
The label is the name assigned to the area by the .DC control statement. If the
optional length is omitted, it defaults to the length declared in the .DC statement.
If you want to access a number of bytes that is different from the declared length,
include the number in parentheses to the right of the label.

Base Displacement Addressing

An instruction may refer to a location in storage by using a base displacement
specification. The format of a base displacement specification is as follows:

[displacement] ([length] ,BRn)
The binary register holds the base address. The optional displacement, which may
be from 0 to 255 and defaults to 0, is added to the base address. The result is
the address of the first byte of the storage area. The optional length of the area
defaults to one byte. Except for the IFB instruction and store-a-constant
instruction (under Store at Base Displacement Address in this chapter), the comma
is retained if no length is specified.

CONSTANT SPECIFICATIONS

Certain instruction operands may be specified as a constant. Constants may be
specified in the forms described under Blanks, Constants, and Coding Symbols in
Chapter 1. A 1-byte constant may be specified in any of the following forms:
® A decimal number, 0-255
® Two hexadecimal digits, X‘Il’, where | = 0-9, A-F,
® Eight binary digits, B‘HI1I11I’, where | =0or 1.
® One EBCDIC character, C’l’, where | = any printable graphic.

The following example demonstrates the way the four forms of constants
represent the same value:

Form Representation
Decimal 193
Hexadecimal X'C1’

Binary B‘11000001'
EBCDIC C'A’or ‘A’

Whenever constant is specified in an instruction description, any form of constant
may be specified in the source instruction.

5280 Assembler Language Instructions 121

122

REGISTER AND INDICATOR SPECIFICATIONS

An instruction may refer to an indicator or a reserved register by specifying the
indicator or register number (in, BRn, or Rn). Registers may be reserved with the
RGLT parameter of the .START statement.

Labels can be assigned to indicators and registers. The control statements that
assign these labels are discussed in Chapter 1 under /ndicators and Registers. |f
an indicator or register has been assigned a label, an instruction may refer to it by
specifying the label.

In the instruction descriptions in this chapter, indicators and registers are
indicated by number specifications. Any time such a number specification is
indicated either the number or label may be used.

In certain instructions an optional length may be indicated in a register specifica-
tion. By indicating the length, in parentheses, to the right of the register
specification, you can access a binary half register (BRn(1)), a binary double
register (BRn(4)), or a decimal double register (Rn(32)).

OPERATION TYPES

Source instructions are listed in this chapter by the type of operation the
instruction performs. The instructions are divided into the following operation
types;

Keyboard/Display

Data Movement
Partition Load and Exit
Table

Miscellaneous

A Arithmetic/Logical
B Branch and Skip

C Communications
D Diskette

E Printer

X492 X

In Figure 4-1, all mnemonics are listed in alphabetic order. The operation type and
a brief description of the operation performed are included for each instruction
mnemonic,

Figure 4-2 shows the operation types and lists the mnemonics for each type.

Mnemonic

<=>
ALLOC
BINDEC
BINHEX
BRa=
BRn=
(,BRn)=
BUZZ
CALL
CALLTB
CcLC
CLICK
CLOZ
CNENTR
CRTMM
DECBIN
DECR
DISPEX
DISPST
DUP
ENABLE
ENTR
EXIT
GOTAB
GOTO
GSCK
HEXBIN
IF BRn
IFBRnO
IF Rn

IF Rn -
IFRn O
IF Rn AN
IF Rn CK
IF Rn SN
IF fmt
IFB

IFC

IFD Rn
IFDSI

Type

A1l
A2
A2
A2
At
A1l
A1l
A1l
A1l
A1
Al
M1
D1
M2
M2
M1
M2
M1
K2
B2
B2
X
K2
D1,E
K2
M3
M2
B6
K2
K2
X
K1
K1
P
B1
B1
X
M2
B4
B3
B4
B3
B3
B3
B3
B3
B3
B5
B5
B4
B3

Operation

Decimal add

Decimal subtract

Decimal multiply

Decimal divide

Binary add

Binary subtract

Binary multiply

Binary divide

Binary AND

Binary OR

Binary exclusive-OR

Exchange register data

Allocate diskette

Convert binary storage to EBCDIC
Convert binary to EBCDIC storage
Load binary register

Convert decimal register to binary
Store at base displacement address
Sound buzzer

Call subroutine

Call subroutine through table
Compare logical characters

Click keyboard

Close data set

Cancel current ENTR

Move bytes to screen

Convert EBCDIC to binary storage
Decrement, branch if 0

Display extra line

Display status line

Duplicate a byte

Enable external status

Enter data via keyboard

Exit partition

Branch through table
Unconditional branch

Generate self-check digit

Convert EBCDIC storage to binary
Branch on relational compare, binary
Branch if 0, binary

Branch on relational compare, decimal
Branch if negative

Branch if 0, decimal

Branch if positive number

Branch if self check

Branch if signed numeric

Branch on format test

Skip on bit test

Skip on character test

Branch on decimal compare
Branch on data set indicator test

Figure 4-1 (Part 1 of 3). Instruction Mnemonics

5280 Assembler Language Instructions

123

124

Mnemonic Type
IFHI B5
IFLO B5
IFH BRn B4
IFI B3
IFIR B3
INIT D1
INSBLK D2
INXEQ X
KACCPT K2
KATTCH K2
KDETCH K2
KERRCL K2
KERRST K2
KEYOP K2
label= M1
LOAD P
MMCRT M3
MOFF M3
MvC M3
MVCR M3
MVvCV M3
MVER M3
NOP B1
OPEN D1,E
POSN D1
Ra= M1
Rn= M2
READ D2
READMG K2
REBF M3
REPFLD K2
RESCAL K1
RESMXT K1
RESUME K1
RETEXT K1
RETURN B2
RL Al
RR Al
RSTMG K2
RTIMER K2
RXORW B5
SEARCH D3
SETOFF X
SETON X
SKIP WHILE B6
SL A
SLS A2
SR A
SRAT X
SRR A2
SRS A2
Figure 4-1 (Part 2 of 3), Instr

Operation

Skip on mask

Skip on mask

Branch on immediate data compare
Branch on indicator test

Branch on indicator test, and reset
Initialize diskette labels

Insert block into data set
Indirect statement execution
Accept unformatted keystrokes
Attach keyboard to partition
Detach keyboard from partition
Reset error mode

Request error mode

Keyboard operation

Store at labeled address

Load partition

Move from screen to storage
Move to decimal register offset
Move storage to storage

Move storage right to left

Move storage reverse fill

Move to corresponding decimal byte
Null operation

Open a data set

Position diskette pointer

Load decimal register
Convert/move to decimal register
Read a data set record

Read magnetic stripe buffer
Move data to registers

Redisplay field on screen
Resume entry, call subroutine
Resume entry, enable external status
Resume entry

Return and enable external status
Return from subroutine

Binary rotate left

Binary rotate right

Reset magnetic stripe reader
Read interval timer
Exclusive-OR, write

Search a data set

Set off bit

Set on bit

Loop control

Shift left, binary or decimal
Shift left signed, decimal

Shift right, binary or decimal
Search resource allocation table
Shift right and round, decimal
Shift right signed, decimal

Mnemonic

SOFF
SON
SYSLCK
SYSUNL
TBBS
TBDL
TBFH
TBFL
TBFX
TBIN
TBRD
TBRL
TBWE
TBWT
TCLOZ
TCTL
TINIT
TLCK
TOPEN
TRANS
TREAD
TRT
TTERM
TUNLCK
TWAIT
TWRT
WAIT
WFMCRT
WRBF
WRT
WRTI
WRTS
ZONE

Type

Py

OO:IOXOXO—IOOO

D1,E
M3
M3
D2, E
D2
D2
A2

Operation

Set indicator off

Set indicator on

Lock system

Unlock system

Search table, binary

Delete table entry

Search table for equal or higher
Search table for lower entry
Search table for equal entry
Insert table entry

Read table entry

Read last table entry

Extend table and write entry
Write table entry

Close communications data set
Communications device control
Initiate communications session
Lock shared table

Open communications data set
Translate

Receive communications record
Translate and test

Terminate communications
Unlock shared table

Wait for communications 1/0
Transmit communications record
Wait for 1/0 completion

Move data to screen

Store register data

Write a data set record
Insert data set record

Delete data set record

Modify decimal register zone

Figure 4-1 (Part 3 of 3). Instruction Mnemonics

5280 Assembler Language Instructions

125

126

A1l Arithmetic/Logical Binary

+= = RL
- = R R
*= X= SL
/= SR
A2 Arithmetic/Logical Decimal
+ SL SR
SLS SRS
SRR
/ ZONE
B1 Branch Unconditional
NOP GOTO GOTAB
B2 Subroutine
CALL RETURN CALLTB

B3 Branch Conditional, Full

IFBRnO IF Rn AN IF fmt

IFRnO IF Rn CK IFDSI
IF Rn - IF Rn SN IFI
IFIR
B4 Branch Conditional, Short
IF Rn IF BRn
IFD Rn IFH BRn
BS Skip
IFC IFHI RXORW
IFB IFLO
B6 L.oop Control
SKIP WHILE DECR
C Communications
TINIT TREAD TWAIT
TOPEN TWRT TCLOZ
TCTL TTERM

D1 Diskette Control

ALLOC CLOz INIT
OPEN WAIT POSN

Figure 4-2 (Part 1 of 3). Instruction Types

D2

D3

K1

K2

M1

M2

M3

T

Diskette 1/0

READ WRTS WRTI
WRT INSBLK

Diskette Search
SEARCH
Printer Instructions

OPEN WAIT
WRT cLOZ

Keyboard/Display Key Entry Commands

ENTR RESUME RESCAL
ENABLE RETEXT RESMXT

Keyboard/Display Keyboard Operations

BUZZ KACCPT KEYOP
CLICK KATTCH READMG
CNENTR KDETCH RSTMG
DISPEX KERRCL REPFLD
DISPST KERRST RTIMER

Load, Store, and Exchange

BRa= label= BRa<=>
Ra= (,BRn)= Ra <=>

Convert and Move

Rn= BINHEX BINDEC

BRn= HEXBIN DECBIN

Move Bytes

MOFF MVCR REBF

MVER MvCv WRBF

MvC CRTMM WFMCRT
MMCRT

Partition Load and Exit

LOAD EXIT

Table Control for Shared Tables

TLCK TUNLCK

Figure 4-2 (Part 2 of 3). Instruction Types

5280 Assembler Language Instructions

127

128

T2 Table Read and Write

TBRD TBDL TBWE
TBRL TBIN TBWT

T3 Table Search

TBBS TBFH TBFX

TBFL
X Miscellaneous

CLC SETON SYSLCK

DUP SETOFF SYSUNL

GSCK SON TRANS

INXEQ SOFF TRT
SRAT

Figure 4-2 (Part 3 of 3). Instruction Types

ASSEMBLY TIME ARITHMETIC

For instruction operands that require a constant or a label, you can use an
arithmetic expression, the ADDR function, or the LENG function in your source
program. You can also change the declared length of an area, or change the data
type of an area. The assembler makes the specified calculations or changes and
places the result in the object code instruction.

Arithmetic Expressions

An arithmetic expression may be specified for an instruction operand that
allows a constant or a label of a data area. An expression consisting of

Jabel * constant may replace any storage label. An expression consisting of
label-label may replace any constant. This applies only to the executable
instruction, and not to the control statements. The only control statement that
may specify an expression is the .EQUATE statement.

An arithmetic expression specified in a source instruction is composed of two

or more terms separated by arithmetic operators. A term may be a constant or a
data label. Do not use labels that are defined for decimal registers. The label does
not have to be defined before you use it in the expression.

Arithmetic operators for add (+) and subtract (-) may be used. Multiplication
and division are not allowed. The arithmetic operations are performed from
left to right, upon the constant and the address generated by the label. Do not
add a label to a label. The result must be dimensionally correct for both a
valid label and a constant.

If you use an expression for an operand that allows a length specification, do
not put a constant between the label and the length.

Right: R15=LABL(10)+6;
Wrong: R15=LABL+6 (10);

The number of terms must not total over eight for the entire instruction. This
total includes any terms to the left of the equal sign or within parentheses.

12 _3 45
5 Terms: BR26(4)+=LABL+2-A

i 234 5 6 1 8
g Terms: MVC(BR1(4),BR2,ADDR(LBL1-LBL2)+10)

An example of using assembly time arithmetic is to find the contents of a
particular byte within a buffer. The following code declares a 50-byte buffer
labeled INPUT and uses assembly time arithmetic to find the contents of the
24th byte.

.DC LABEL=SCAN TYPE=DEC; set up a decimal register.
.DC LABEL=INPUT LEN=50; set up the 50 byte storage buffer.
SCAN = INPUT(1)+23; copy contents of 24th byte into SCAN.

The ADDR Function
The ADDR function can be used as an instruction operand in place of any
constant to specify the address of a register, storage area, instruction, or control

block. This is a convenient way to load a base address register. The format of
the ADDR function is:

BRn

ADDR({ Rn } [Foffset])
label

If an offset is included for an ADDR specification in an expression, the ADDR

specification must be the first term in the expression. If the label of a data

table is used within the ADDR function, the value returned is the index into

the system table where the address of the data table is stored. The address or

index returned by the ADDR function is not checked for validity.

Examples: The following instruction places the declared address of BUFR
into BR65.

BR65=ADDR(BUFRY);

The following instruction places the address of the fourth byte of
BUFT into BR65.

BR65=ADDR(BUF R+4);

5280 Assembler Language Instructions

129

The LENG Function

The LENG function can be used as an instruction operand to specify the
declared length of an area. The format of the LENG function is:

LENG(label)

An offset cannot be included within the parentheses; however, an expression
can follow the right parentheses to change the length:

LENG(label)+4
Example: The following code moves ‘GHIJKL' into the area labeled LABL1.

.DC LABEL=LABL1 INTI="ABCDEF’ :
.DC LABEL-LABL2 INTI='"GHIJKLMNO' ;

BR30 = ADDR(LABL1) ;
BR31 = ADDR(LABL2) ;
MVC(BR30, BR31, LENG(LABL 1)) ;

Changing a Declared Length
In an instruction, you can follow any declared label with a constant enclosed in
parentheses. The value of the constant supercedes the declared length of the area
for that instruction. The declared length is not changed in storage.

Example: The following code loads ‘AB’ into BR55.

.DC LABEL= LABL1 INIT="ABCDEF’ ;

BR55 = LABL1(2) ;

Changing a Data Type

Any time you use assembly time arithmetic, you can use any of the types of
data described in Chapter 2 under Data Types. However, the result of assembly
time arithmetic is always a constant or a label of a data storage area. This is
important to remember when using a binary register with assembly time
arithmetic. Except for a binary register, when you specify a length of 1in an
instruction:

label(1)

130

the first byte of the labeled area is accessed. For a binary register, when you
specify a length of 1 in an instruction, the second (rightmost) byte of the binary
register is accessed. However, if you use the label of a binary register with a
length of 1 with an expression:

label(1)+0

the first (leftmost) byte of the binary register is accessed because the result of an
expression is a data storage area rather than a binary register.

Examples: The following code shows what is loaded into the binary register
labeled A for the different specifications.

.DC LABEL=A TYPE=BIN INIT='FFFF’ :
.DC LABEL=B TYPE=BIN INIT="1234" ;
.DC LABEL=C LEVL=2

A=C-2 ;A contains ‘OOFF’
A(1)+0=B ; A contains ‘34FF’
A=B ; Acontains ‘1234’
A =B(2) ;A contains ‘1234’

A=B(1) ;A contains ‘0034’
A=B(1)+0 ; Acontains ‘0012’

A=C ;A contains ‘0012’
A=C(2) ;A contains ‘1234’
A=C+1 ;A contains ‘0034’

ARITHMETIC/LOGICAL INSTRUCTIONS

All arithmetic/logical operations are performed upon binary or decimal registers.
The 2-byte binary registers contain unsigned binary notation. The 16-byte
decimal registers contain character or signed numeric data represented in
EBCDIC notation. Decimal register data is negative if the zone portion of the
rightmost byte contains a hex D.

Binary Register Arithmetic/Logical

Full 2-byte binary registers (BR0-BR127) may be specified in any binary
arithmetic/logical operation. One byte of a binary register (BRn(1)) may be used
as a storage reference for operands that allow a storage reference. When one
byte of a binary register is specified, only the rightmost byte is used, and the
leftmost byte is padded with zeros. A double register (BRn(4) may be specified
as the result register in double precision add and subtract operations. When a
double register is specified, the register referred to, and the next sequential
register, are used in the operation. See Binary Registers under /ndicators and
Registers in Chapter 1 for more information about binary registers.

When the length of the operand is less than the length of the result register or

result register pair, the operand is expanded to the left with zeros to the length
of the result.

5280 Assembler Language Instructions 131

132

The format for binary arithmetic/logical instructions is as follows. There must
be at least one blank between the operator and the operand.

Result Operator Operand
r =
/=
BRn [(4)] += BRn [(1)]
1 -= 4 constant
BRn &=
V= storage
\ X= J
where:

Result must specify a binary register (BRn). Except for AND, OR, and
Exclusive-OR, it may be a binary double register (BRn [4]). When the
instruction is executed, the contents of the result register are operated upon,
and the resulting data replaces the original contents of the result register. The
register specified for result can be specified for the operand.

Operand may specify a binary register, a binary half register, a constant, or a
storage location:

+= (Add)

Result Operator Operand
BRb[(1}]

BRal[(4)] += constant
storage

The data specified by the operand is logically added to the data in the result
register, and resulting data replaces the original contents of the result register.

When a binary double register is used as the result register, the operand is added
to the contents of the specified double register, and the result is right-adjusted

into the double register.

Example:

Before: BR27 00000000 00000011 BR28 11111111 11111110

BR27(4) +=2

After: BR27 00000000 00000100 BR28 00000000 00000000

-= (Subtract)

Result Operator Operand
BRb[(1)]

BRa[(4)] -= constant
storage

The data specified by the operand is logically subtracted from the contents of
the result register, and the resulting data replaces the original contents of the
result register.

When a binary double register is used for the result register, the operand is
subtracted from the contents of the specified register and the next sequential

register.

Example:

Before: BRX 00000000 00001000 BRY 00000000 00000100

BRX -=BRY
After: BRX 00000000 00000100 BRY 00000000 00000100
*= (Multiply)
Result Operator Operand
. BRb
BRa[(4)] { label }

The contents of the 2-byte labeled data area specified by the operand are
logically multiplied with the contents of the result register, and the resulting data
replaces the original contents of the result register.

When a binary double register is used as the result register, the operand is
multiplied by the contents of the leftmost register. The resulting data is right-
adjusted into the double register.

/= (Divide)
Result Operator Operand
_ BRb
BRa[{4)] /= { label }

The data specified by the operand is logically divided into the contents of the
result register, and the resulting data replaces the original contents of the
result register.

5280 Assembler Language Instructions 133

134

When a binary doubie register is used for the resuit register, the operand is
logically divided into the contents of the leftmost register, and the resulting
data replaces the contents of the leftmost register. The remainder replaces the
original contents of the rightmost register.

& = (And)

Result Operator Operand
BRb{(1)]

BRa &= constant
storage

The data specified by the operand is logically ANDed with the contents of the
result register, and the resulting data replaces the original contents of the result
register.

Example:

Before: BRX 11111111 00000000 BRY 11110000 11110000

V= (Or)

BRX &= BRY
After: BRX 11110000 00000000 BRY 11110000 11110000
Result Operator Operand
BRb[(1)]
BRa V= constant
storage

The data specified by the operand is logically ORed with the contents of the
result register, and the resulting data replaces the original contents of the result
register.

Example:

Before: BRX 11111111 00000000 BRY 11110000 11110000

BRX V= BRY

After: BRX 11111111 11110000 BRY 11110000 11110000

X = (Exclusive-OR)

Result Operator Operand
BRb([(1)]

BRa X= constant
storage

The data specified by the operand is exclusively-ORed with the contents of the
result register, and the resulting data replaces the original contents of the result
register.

Example:

Before: BRX 11111111 00000000 BRY 11110000 11110000

BRX X= BRY

After: BRX 00001111 11110000 BRY 11110000 11110000

Binary Register Shift/Rotate

The contents of a binary register, a labeled storage area, or a binary double
register (BRn (4)), may be shifted or rotated. Shift operations move the contents
of the register out of one end of the register and set the bits from which data

was shifted to zero. Rotate operations move the contents of the register out of
one end and into the other end of the register.

The first operand of a shift instruction cannot be an arithmetic expression;
however, it may be followed by a length in parentheses:

Right: label(1) SR 3
Wrong: label+1 SR 3

The format of all shift and rotate operations is as follows.

Result Operator Operand
label {len) SL

BRn SR 1-16
BRn(1) RL 1-8
BRn(4) RR 1-32
where:

Result is the register (BRn), labeled storage area, or double register (BRn({4))
that contains data to be shifted. Upon completion of the operation, the
resulting shifted data is in the result. The length, whether explicit or implied,
must be 1, 2, or 4,

Operand specifies the number of bits to shift or rotate. The number must be

greater than the number of bits contained in the result register, labeled area,
or double register.

5280 Assembler Language Instructions 135

136

Result Operator
label{len)

BRa RL
BRa(1) RL
BRa(4) RL

Operand

1-16
1-8
1-32

The data in the result register is rotated left the number of bits indicated by the
operand. Data rotated off the high-order end is moved into the low-order end of the

register.

Example:

pl\ Before:

BRX [11110000 00001111

RR (Rotate right)

Result Operator
labe!(len)

BRa RR
BRa(1) RR
BRa(4) RR

After: ,; pL

BRX RL 4 BRX [00000000 11111111]

Operand

1-16
1-8
1-32

The data in the result register is rotated right the number of bits indicated by the
operand. Data rotated off the low-order end of the register is moved into the

high-order end.

Example:

Before: ,-L—\

After:

BRX [10000000 10000000] BRX(1)RR6 BRX [10000000 00000010]

b

1 "

SL (Shift left)

Result Operator
label(len)

BRa SL
BRa(1) SL
BRa(4) SL

Operand

1-16
1-8
1-32

The data in the result is shifted left the number of bits indicated by the operand.
The bits from which data is shifted are set to zero.

Example:
Before: /—J% f—lq After:
BRX [11111111 00001111] BRXSLS8 [00001111 00000000}
These bits are shifted out These bits are
of the register and are lost. set to zero.

SR (Shift right)

Result Operator Operand
label(len)

BRa SR 1-16
BRa(1) SR 1-8
BRa(4) SR 1-32

The data in the result is shifted right the number of bits indicated by the operand.
The bits from which data was shifted are set to zero.

Example:

Before:
BR45 (11111111 00000000 BR46 [11111111 11111111 Thewe pits are shifted out of

the register and are lost.

BR45(4) SR 4
After:
BR45 [00001111 11110000 BR46 [00001111 11111111}

These bits are set to zero.

Decimal Register Arithmetic

A decimal register (R0-R239) may be specified for any arithmetic operation. A
decimal double register (Rn (32)) may be specified for the double precision
multiply and divide operations. When a decimal double register is specified, the
contents of the specified register and the next sequential decimal register are
used in the operation. See Decimal Registers under Indicators and Registers in
Chapter 1 for more information about decimal registers.

Decimal data can be positive or negative. The data is negative if the rightmost

byte of the register or register pair has a hex D in the zone portion of the rightmost
byte. Zones of the other register bytes are not checked to determine if the digit
portions contain valid numeric data. If a register contains nonnumeric data, the
operation proceeds with unpredictable results.

5280 Assembler Language Instructions 137

138

When a decimal register is altered, any ieading blanks (hex 4Q) are changed to

zeros {FQ). When a zero results from a calculation, the zero is stored as positive

as o

{hex FO) in a decimal register.

The format of decimal arithmetic instructions is as follows. All data that is
allowed for the operands is indicated.

Result Operand1 Operator Operand2
Ra
Ra
Ra ={ Rb * Rb
0-9 - Re
0-9
Rb
Ra([(32)] = * 09
0-9 Rb
_ Rc
Ra = Rb[(32)] / {1_9}
where:

Result indicates a decimal register or, for double precision multiply, a decimal
double register, into which the result of the operation is placed. If the result is
positive, all zones contain a hex F; if the result is negative, the zone of the
rightmost byte contains a hex D, and all other zones contain hex F.

Operand1 specifies the data that is operated upon. A decimal register that
holds operand1 may be specified. Except for divide, it may be the same
decimal register that is specified as the result register. Except for divide, the
contents of the register are unchanged by the operation unless it is the same
register as the result register. Except for divide, operand1 may be a single-
digit constant (0-9). If operand1 is a constant, operand2 must be a register.

For divide operations, operand1 must specify a decimal register or decimal
double register that holds the operand1 data; it must not be the same
register as the one specified for the result register. Upon completion of the
operation, the remainder of the divide operation is placed into the register or
double register specified for operand1. The original contents of the register
are lost.

Operand2 specifies data to operate upon the operand1 data. A decimal register
that holds operand2 may be specified. If operand1 is not a constant,

operand2 may be a single-digit constant. For divide, the constant may be

one to nine; for all other operations the constant may be zero to nine. For

add and subtract, operand2 may specify the same decimal register that is also
specified as operand1. The operand2 data remains unchanged by the operation
unless it is the decimal register that is also specified as the result register.

+ (Add)

Result Operand1 Operator Operand2
Ra Ra
Rb Rb
Ra = +
a Rc Rc
09 0-9

Operand2 is algebraically added to operand1, and the sum is placed in the decimal
register specified as result,

if a carry results out of the high-order position of the result register, the decimal
arithmetic overflow indicator (1124) is set on.

- (Subtract)
Result Operand1 Operator Operand2

Ra Ra

Rb
v {2} {w]
09

Operand2 is algebraically subtracted from operand1 and the remainder is placed
into the decimal register specified as result.

/ (Divide)
Result Operand1 Operator Operand2
_ Rc \
Ra= Rb[(32)] / { 1-9 }

The contents of the register or register pair specified by operand1 are divided by
operand2. The quotient is placed into the decimal register specified as result, and
the remainder is placed into the decimal register or register pair specified for
operand1. The result register must not be the same register as specified for
operand1 or operand2.

Both operand1 and operand?2 are signed quantities; if they have the same sign

the result is positive, and if they have opposite signs the result is negative. The
remainder retains the sign of the original contents of the operand1 register.

5280 Assembler Language Instructions 139

140

Division by zero is invalid and causes the decimal arithmetic overflow (1124)

and the divide error {1120} indicators to be set on. !f an error occurs during a

double precision divide, the result register is unchanged.

Before: After:
00 01 12 13 14 15 AVERAGE = TOTAL / LAST 00 01 12 13 14 15
Zone F{ F1 F| F Zone FI FIF|D
Digit 0101010 The contents of TOTAL are divided Digit 0[/0/]0]6
by the contents of LAST. Because |
AVERAGE = the two signs are opposite, the result ! AVERAGE = -6
register will contain a minus sign
Zone F| FI F{ F (D-zone in the units position). The Zone FIF]FI|F
Digit 0/ 0] 3]2 register TOTAL will retain the Digit 0/0{0]2
original sign and will hold the
TOTAL =32 remainder to the division. The TOTAL=2
register LAST remains unchanged.
Zone F| FIF|{D Zone FI FIF|F
Digit 0| 0jo|>5 Digit 010/0}|5
LAST =-5 LAST = -5
* (Multiply)
Result Operand1 Operator Operand2
Rb * 09
Raf(32)] = 09 * Rb

Operand1 is algebraically multiplied by operand2 and the product is stored in the
decimal register(s) specified as result. Neither operand1 nor operand2 may be
specified as the result register.

If a carry results out of the high order position of result, both the decimal arith-
metic overflow (1124) and the multiply overflow (1123) indicators are set on.
The low-order product is preserved.

Examples:
WAGES = HRS * RATE

The contents of the decimal registers addressed by the labels HRS and RATE are
multiplied and the product is placed into the decimal register WAGES. The
contents of HRS and RATE remain unchanged by the operation.

TOTAL(32) = QUANTY * ITEM$

The contents of the decimal registers addressed by the labels QUANTY and
ITEMS are multiplied and the product is placed in the decimal register pair
addressed by the label TOTAL. The contents of QUANTY and ITEMS remain
unchanged by the operation.

Decimal Register Shift

The contents of a decimal register can be shifted to the left or right. Any data
shifted out of one end of a decimal register is lost. Bytes from which data is
shifted are filled with zeros or blanks, depending upon the particular shift
instruction.

The format of decimal register shift instructions is as follows.

Result Operand1 Operator Operand2
SL
SLS Re
Ra= 2; SR
SRS 1-156
SRR
where:

Result indicates a decimal register into which the shifted results of the
operation is placed. If the zone of the rightmost byte contains a hex D, the
contents of the register are negative.

Operand1 indicates a decimal register which holds the data to be shifted. The
contents of this register are not changed unless it is the same register as the
one specified for result.

Operand?2 indicates the number of bytes to shift the operand1 data.
Operand2 may be a constant (1-15) or a decimal register that contains the
shift count.

If operand?2 specifies a register, a single-digit shift count (decimal 1-9) is
determined from the digit portion of the low-order position of the register. A
shift count of hex 1-F may be accomplished by setting the digit portion of
the low-order position of the decimal register to a binary number. This is
done by overlaying the rightmost 2 bytes of the decimal register with a binary
register, then loading the binary register with the hex shift count. This can be
done only in decimal registers that are located within the area of overlapped
storage that can also contain binary registers (R0-R14). See the .DC control
statement description in Chapter 3 for information about overlaying registers,

5280 Assembler Language Instructions 141

142

SL Shift Left, Blank Fill

Result Operand1 Operator Operand2
Ra Rc

Ra = SL
Rb 1-15

The bytes of the operand1 register are shifted left the number of bytes
indicated by operand2, and the shifted result is placed into the result register.

The low-order positions of the shift result contain the blank character (hex 40)
for the number of positions shifted. If a negative number is shifted left, the
D-zone is shifted left out of the units position. Therefore, the register no longer
contains a negative number.

SLS Shift Left, Zero Fill and Retain Sign

Result Operand1 Operator Operand2
Ra Rc
Ra= SLS
Rb 1-15

The bytes of the operand1 register are shifted left the number of bytes
indicated by operand2, and the shifted result is placed into the result register.
The low-order bytes of the shifted resuit contain zeros (hex F0) for the number
of positions shifted. If a negative number is shifted left, the units position of
the result register retains the D-zone.

Example:
Before: RX =RXSLS 21 After:
P
RX |FFFFFFFFFFFFFFFD RX |FFFFFFFFFFFFFFFD
0000000123456789 0000012345678900

RX contains-0000000123456789 RX contains -0000012345678900

SR (Shift 1 to Blank Decimal Register)

Result Operand1 Operator Operand2

Rn = 1 SR 1

The bytes are shifted as though operand1 were a decimal register with decimal1
in the rightmost byte, and bytes O to 14 were blanks. The rightmost byte is
shifted out of the register so the register contains only blanks. These blanks

replace the contents of the result register.

This is the quickest way to blank a decimal register

SR (Shift Right, Pad Blank)

Result Operand1 Operator Operand2

Ra Rc
Ra = SR ,
RB 1-15

The bytes of the operand1 register are shifted right the number of bytes
indicated by operand2, and the shifted result is placed into the result register.
The high-order bytes of the shifted result contain blanks (hex 40) for the
number of characters shifted. If a negative number is shifted right, the D-zone
is shifted out of the register and the register contents are no longer negative.

Example:
RX=RXSR1
Before: ! After:
RX {FFFFFFFFFFFFFFFD RX 4FFFFFFFFFFFFFFF
0123456789000000 0012345678900000

RX contains -0123456789000000 RX contains +0012345678900000

SRS (Shift Right and Retain Sign)

Result Operand1 Operator Operand2

Ra Rc
Ra { } SRS { }

Rb 1-156
The bytes of the operand1 register are shifted right the number of bytes
indicated by operand2, and the shifted result is placed into the result register.
The high-order bytes of the result register contain zero (hex F0) for the number
of bytes shifted. Any blanks present are shifted without change. If the unshifted
contents of the operand1 register contained a negative value, the result register

contains a hex D in the zone portion of the rightmost byte. All other zones
remain unchanged.

Example:
Before: RX=RXSRS4 After:
RX |FFFFFFFFFFFFFFFD RX |FFFFFFFFFFFFFFFD
1230000000000000 0000123000000000

RX contains -1230000000000000 RX contains -0000123000000000

5280 Assembler Language Instructions 143

144

SRR Shift Right, Retain Sign, and Round

Result Operand1 Operator Operand2
Ra Rc

Ra = SRR
Rb 1-15

The bytes of the operand1 register are shifted right the number bytes indicated
by operand2, and the shifted result is placed into the result register. The high-
order bytes of the shifted result contains zeros (hex FO) for the number of
positions shifted, and the units position of the shifted number retains the zone of
the original contents of the operand1 register. The result is rounded by adding

5 of like sign to the last byte shifted out of the right end of the result register
(the shift-count-minus-1 position).

Example:

RX=RXSRR 4
Before: ,_.l\ After:

RX |FFFFFFFFFFFFFFFF| RX |FFFFFFFFFFFFFFFF
0000000000136790 0000000000000014

L add 5 to round

Decimal Register Zone Modification

The zone portions of decimal register bytes can be modified. One or more
zones can be changed to a specified hex character.

The format for the zone modification instruction is as follows:

Operator Result Operand Offset Length
ZONE
()
(Ra, XV [X0-F", 1-16])
where:

Result indicates the decimal register (Ra) that has zones to modify.

Operand specifies the hex character, or the decimal register that contains
the hex character, that replaces the zones of the specified bytes in the
result register. If a decimal register is specified, the character in the zone
portion of the rightmost byte is used.

Offset specifies the number of bytes (0-15), from the leftmost byte of the
register, to be skipped before zone modification begins. Offset defaults to zero.

Length indicates the number of bytes (1-16) to modify. Length defaults to
1 byte.

The bytes of the decimal result register (Ra) are modified, starting at the byte
specified by offset and continuing to the right for the number of bytes specified
by length. The hex character specified by the operand replaces the original zone
of each byte specified. If the offset plus length exceeds 16 bytes, the bytes of
the next register are also modified.

Example:

Before: REGX |44FFFFFFFFFFFFFF
0000000002433534

=,

ZONE(REGX,X'4",2,7)

REGX=00000002433534

After: REGX |444444444FFFFFFF REGX=2433534
0000000002433534

BRANCH AND SKIP INSTRUCTIONS

Unconditional branch, conditional branch, subroutine calls, and skip operations
alter the sequential execution of a program. Unconditional branching instructions
include normal branching, indexed branching, and branching through a table.
Subroutine calls include normal calls, indexed calls, and calls through a label
table. Skip operations include a constant compare, a mask test, a bit test, and a
numeric test. The numeric test is useful for loop control.

Conditional branching instructions are divided into two types, full branches and
short branches. A short branch compares two operands for a specified relational
condition, such as greater than or equal. A branch can be made to another
instruction within +128 or -126 instructions from the short branch instruction.
Full branches can branch to an address anywhere within the current partition.
A full branch tests an operand against a specified condition or value.

Unconditional Branch

Unconditional branch instructions consist of a mnemonic and, in most cases,
an operand. Unconditional branches include branches through a table, indexed
branches, and indexed branches through a table. By using a table or index, you
have a greater capacity to manipulate the flow of your program to best accom-
plish your particular application.

The format of unconditional branch instructions is as follows:

Mnemonic Operand
NOP

label disp
GOTO {BRn [,{Iabel}] }
GOTAB BRn,label

5280 Assembler Language Instructions 145

where:
Operand specifies the address of the instruction to which the branch is made.
A binary register (BRn) may be included in the operand. This register may
hold the address of the instruction to which to branch, or it may act as an
index register for an indexed branch or a branch through a label table.
BRO must not be used.

NOP (Null Operation)

Mnemonic

NOP

The NOP instruction is used as a space filler and performs a branch to the next

sequential instruction. There are no operands for this instruction.

GOTO (Unconditional Branch)

Mnemonic Operand
label
BRn
GoTo BRn,label
BRn,disp

The labeled statement at the operand label is the next statement executed, unless
the optional binary register is included with the label. In that case, the contents
of BRn are added to the address of the instruction with the indicated label, and
the result is taken as the address of the next instruction to execute.

If a binary register is coded with no label, a branch is made to the address in
the binary register. This address should be on a 4-byte boundary.

No registers, indicators, or storage areas are changed.

Note: The resulting address is not checked for validity unless indexing is used.

GOTAB (Unconditional Branch Through Table)
Mnemonic Operand
GOTAB Brn,label
The operand /abel specifies the label of a label table defined in a .LABTAB
control statement. The contents of BRn are taken as the index into the label
table specified. The address stored at that entry position is taken as the address

of the next instruction to be executed. The first table index is 0.

No registers or storage areas are changed.

Subroutine Call and Return

A subroutine call consists of a mnemonic and an operand. You can make an
indexed call or a call through a label table. You can call a subroutine that is
stored within the current partition, or you can call a common function routine
that is stored in the common functions area. If you call any routines that are
stored in the common functions area, you must specify the routine labels in an
.XTRN control statement in your source program.

A subroutine return consists of a mnemonic. Optionally, you can include an
operand to make an indexed return. There are special return operations for
keyboard/display external status subroutines. These external status returns are
discussed under Key Entry Instructions in this chapter.

The format for subroutine calls and returns is as follows:

Mnemonic Operand
label
CALL gl:z,label
BRn,disp
RETURN {(BRn)]
CALLTB BRn,label
where:

Operand specifies the subroutine to call or the return address, as follows:

Entry Description

label The label of a subroutine.
BRn A binary register used to hold an index or address.
disp May be specified with a binary register for a call to a base dis-

placement address.

CALL (Subroutine Call}

Mnemonic Operand
label
BRn,{abel

CALL BRn,disp
BRn

5280 Assembler Language Instructions 147

148

When a call instruction is encountered, the address of the next sequential
insiruciion is siored in the subroutine stack at the addressed specified by BR18.

BR18 is then incremented by 2.

A call is made to the instruction specified by the operand. If a label is specified
without the optional binary register, the call is made to the instruction at the
label specified.

If a label is specified with a binary register, the contents of the register are
added to the address of the specified label, and the call is made to the resulting
address.

If a displacement is specified with a binary register, the displacement is added
to the address contained in the binary register, and the call is made to the
resulting address.

If a binary register is specified with no label and no displacement, the call is
taken to the address in the binary register. This address should be on a 4-byte
boundary.

After the call, the instructions of the called subroutine are executed sequentially
until the subroutine is terminated.

RETURN (Subroutine Return)

Mnemonic Operand
RETURN {(BRn}]

When a return statement is encountered in a subroutine, the subroutine is
terminated and BR18 is decremented by two. If no operand is included in the
instruction, the next statement to be executed is the statement at the address in
the partition stack location pointed to by BR18.

If a binary register is included in the instruction, the contents of the binary
register, which must be a multiple of four, are added to the address in the
partition stack location pointed to by BR18. The result is the address of the
next statement to be executed. If the resulting address is not on a 4-byte
boundary, a program check error (hex 03) results,

Example, Normal Call:

COMP1: TALY =TALY + 3 ; Subroutine start
COMPX: RETURN ; Subroutine end

SUB1: CALL COMP1 ; Call subroutine COMP1
ADDC: TALY =XY +X

When the instruction SUB1 executes, the absolute address of ADDC is placed
in the partition stack at the address specified by BR18, and a branch is made to
the subroutine at the label COMP1. The statements following COMP1 are
executed until the RETURN at statement COMPX is encountered. At this time
the address of ADDC is taken from the partition stack at the address specified
by BR18, and the next statement to be executed is ADDC.

Example, Indexed Call:
BR28 = X'08’

CALL BR28,RTN6
RTN6: X=X+ Y,;assume start RTNG at address X‘0670’

RTN7: X =Y, assume start RTN7 at address X‘0678’
When the instruction CALL BR28, RTNG6 is executed, the branch is made to
RTN7.

CALLTB (Subroutine Call Through Table)
Mnemonic Operand
CALLTB BRn, label
The label specified is the label of a label table defined in a .LABTAB control
statement. The contents of the binary register (Brn) are used as an index into
the table. The index is the entry number, not the byte displacement. The
address at the table entry indicated by the binary register is the address of the

next statement to execute, 1f BRn contains 0, the first entry position is used.

Example:

BR28 [00000000 00000011] RTNTAB

X'0850"
X‘0754’
X‘0790’
X'0820’
X'0696’
[
Index Argument

—H WN =0

The instruction CALLTB BR28,RTNTAB would call the subroutine whose first
instruction begins at address hex 0790.

5280 Assembler Language Instructions 149

Full Conditional Branch on Test

A full conditional branch tests an operand against a specified condition. If the
operand meets the condition, a branch is made to a specified branch label. The
branch label can indicate an instruction at any location in the current partition.

The format of a full conditional branch instruction is as follows. All types of
data allowed for the operand and condition is indicated for each mnemonic.

Mnemonic Operand Condition Branch
IS
IF BRn 0 GOTO label
NOT
0
IS -
IF Rn NOT AN GOTO label
CK
SN
IS
\F fmt FMT GOTO label
NOT
IFDSI dsin,dsn IS GOTO label
IFI In ON GOTO label
IFIR In NOT GOTO label
where:

Operand specifies the data to be tested.

Condition includes the keyword IS or NOT (but not both), and the condition
keyword. The condition keywords are explained in the individual operation
descriptions.

Branch includes the mnemonic GOTO, and the label of the statement to

which a branch is made if the operand meets the specified condition.

IF BRn 0 (Test Binary Register for Zero)

Mnemonic Operand Condition Branch
IF BR IS 0 GOTO label
n NOT ave

If the condition specifies IS, and the register specified for operand contains all
zeros, a branch is made to the label. Otherwise, the next sequential statement is
executed.

If the condition specifies NOT, and the register specified for operand contains
some value other than zero, a branch is made to the label. If the register contains
zero, the next sequential statement is executed.

A 1-byte half register is not allowed in this operation.

No registers, storage areas, or indicators are changed.

IF Rn (Test Decimal Register)

Mnemonic Operand Condition Branch
0
IS -
IF Rn AN GOTO label
NOT
CK
SN

The contents of the decimal register specified as the operand are tested against
the specified condition. Decimal register bytes are tested from left to right.

If the condition specifies IS, and the condition is met, a branch is made to the
instruction specified by label. If the condition is not met, the next sequential
instruction is executed.

If the condition specifies NOT, and the condition is met, the next sequential
instruction is executed. |f the condition is not met, a branch is made to the

instruction specified by the label.

The decimal register test conditions include:

Entry Description
0 The condition is met if the decimal register bytes contain only blanks
or zeros,

- The condition is met if the units position (rightmost byte) of the
decimal register contains a hex D in the zone portion.

AN As for SN, except the zone of the rightmost byte must contain hex
F unless the register contains all blanks.

CK The condition is met if the decimal register bytes contain data that
includes a self-check digit, and the self-check digit is verified as
correct by the self-check algorithm.

SN The condition is met if the decimal register bytes contain all
blanks. It is also met if the decimal register bytes contain leading
blanks followed by one or more valid numbers (hex FO-F9) and the
rightmost byte contains either a hex F or a hex D in the zone
portion. It is also met if the decimal register bytes contain all valid
numbers (hex FO-F9) and the rightmost byte contains either a
hex F or a hex D in the zone portion.

5280 Assembler Language Instructions 151

152

Example:

RX FFFFFFFFFFFFFFFF RY FFFFFFFFFFFFFFFD RZ 44444444444444FF
0000000000000170 0000000000000355 000000000000007 8
The instruction IF RXI1S0GOTO LOOPX results in no branch.
The instruction IF RY NOT - GOTO LOOPX results in no branch.
The instruction IF RY NOT AN GOTO LOOPX results in a branch to
LOOPX.
The instruction IF RZ IS SN GOTO LOOPX results in a branch to
LOOPX.

The instruction IF RZ NOT CK GOTO ERRS results in a branch to ERR5 if
the self-check digit is incorrect when verified against the self-check algorithm. if
the self-check digit is correct, the next instruction statement is executed.

IF fmt (Test Format Number)

Mnemonic Operand Condition Branch
IF fmt IS FMT GOTO label
NOT

The format specified by the operand is tested against the format used in the last
1/0 instruction. It may be used to determine what format was used in a data
directed READ.

For the operand, specify the LABEL parameter from the .FMST control
statement that set up the desired format.

If the condition specifies IS, and the format specified for operand is the same as
the format used in the last 1/0 instruction, a branch is made to the instruction at
label. Otherwise, the next sequential instruction is executed.

If the condition specifies NOT, and the format specified for operand is not the

same as the format used in the last 1/O instruction, a branch is made to the
instruction at label.

Example:
IF FORMAT®6 IS FMT GOTO LOOPX

This instruction results in a branch to LOOPX if the last format used for an
1/0 operation was FORMAT®6.

1FDSI (Test Data Set Indicator)

Mnemonic Operand Condition Branch
IFDSI dsin,dsn IS ON GOTO label
! NOT

The data set status indicator specified by the operand is tested against the
specified condition. The operand entry includes the data set status indicator
number (dsin), a comma, and the data set number (dsn). The entry for the data
set number is the DSN parameter of the .DATASET control statement that
defined the data set you wish to use. The entry for data set status indicator is a
number from 0-15. If you specify a number from 0 to 7, it represents bits 0-7

of the status byte (byte hex 00) of the data set 10B. If you specify a number from
8 to 15, it represents bits 0-7 of the data set flag byte (byte hex 13) of the

data set IOB. See the Functions Reference Manual for a description of these bits.

Example:
IFDSI 8,3 1S ON GOTO LOOP
This instruction results in a branch if bit 8 of the 10B status byte (byte hex 00)

of data set 3 contains a B‘1’; this bit is 1 if the data set is open.

{Fl (Test Indicator)

Mnemonic Operand Condition Branch
IFi In IS ON GOTO label
NOT

The indicator specified by the operand is tested against the condition IS ON or
NOT ON. If the indicator meets the condition, a branch is made to label.
Otherwise, the next sequential statement is executed.

Examples:

IF1 196 NOT ON GOTO LOOP

This instruction results in a branch if 196 contains B‘0’; it results in no branch if
196 contains B‘1'.

IF1 177 IS ON GOTO LOOP

This instruction results in a branch if 177 contains B‘1’; it results in no branch if
177 contains B‘0’.

5280 Assembler Language Instructions 153

IFIR (Test Indicator and Reset)

Mnemonic Operand Condition Branch
IFIR 1 IS ON GOTO label
n NOT abe

The indicator specified by the operand is tested against the condition IS ON or
NOT ON. If the indicator meets the condition, a branch is made to label. The
indicator is set to off (B‘0’) after the test is completed, regardiess of the result
of the test.

Examples:
197 = B‘1' 198 = B'0’
IFIR 1197 ISON GOTO LOOP

This instruction results in a branch, and 197 is reset to B‘0’.
IFIR 198 NOT ON GOTO LOOP

This instruction results in a branch, and 198 remains B‘0’.

Short Conditional Branch on Relational Compare

A short conditional branch operation compares two operands for a specified
relation condition. Except for the IFD instruction, both the zone and digit
portions of the bytes are compared. Therefore, a hex 40 (blank) will not equal a
hex FO (zero). If the result of the relational compare is true, a branch is made to
the instruction specified by the label. If the result is not true, the next sequential
statement is executed. The label must specify an instruction within +128 or -127
instructions from the short branch instruction.

The format of a short branch instruction is as follows. All types of data that
are allowed for the mnemonics and operands are indicated.

Mnemonic Operand1 Operator Operand2 Branch
4 N
E
IF BRa Q BRb GOTO label
GE
IF Rb
{IFD} Ra JGT S {0_9} GOTO label
LE
IFH BRn LT constant GOTO label
. NE J

where:
Operand1 specifies the register which contains the data to be compared.
Operator must be one of the following:
Operator Meaning

EQ Branch
if operand1 is equal to operand2.

GE Branch
if operand1 is equal to or greater than operand2.

GT Branch
if operand1 is greater than operand2.

LE Branch
if operand1 is less than or equal to operand2.

LT Branch
if operand1 is less than operand2.

NE Branch
if operand1 is not equal to operand2.

Operand2 specifies the register or constant which will be compared against
operand1.

Branch is always the mnemonic GOTO and a label. The label specifies an
instruction, which must be within +128 or -127 instructions from the branch
instruction. A branch is made to this instruction if the specified relational
condition is true.

IF BRa (Binary Register Relational Compare)

Mnemonic Operand? Operator Operand2 Branch
(£Q)
GE
IF BRa 4 (Ls; > Bb GOTO label
LT

e

The contents of the operand1 register are compared to the contents of the
operand2 register. A branch is made to the label if the relational compare is
true. Otherwise, the next sequential statement is executed.

No registers, data areas, or indicators are changed.

5280 Assembler Language Instructions 155

Examples:

BREG [11110011 11110100] CNTR (11110000 11110000 |
BREG contains X'F3F4’ CNTR contains X'FOFQ’

The instruction IF BREG EQ CNTR GOTO LOOP4 results in no branch.

The instruction |IF BREG GE CNTR GOTO LOOP4 results in a branch to LOOP4.

IF Ra (Decimal Register Relational Compare)

Mnemonic Operand1 Operator Operand2 Branch

N

2

i —
IF Ra 4 > 0-9 GOTO label
LE

LT

NE
\ S

The contents of the operand1 register are compared against operand2 for the
condition specified by the relational operator. If the result of the relational
compare is true, a branch is made to the instruction specified by the label.
Otherwise, the next sequential statement is executed.

If operand?2 is a register (Rb), the corresponding positions of the operand1 and
operand?2 registers are compared byte for byte, starting at the high order position
of each register. The standard EBCDIC collating sequence is used.

If operand? is a constant (0-9), the contents of the operand1 register are

compared against fifteen leading blanks with the specified constant in the rightmost
byte of the register. The leading blanks cannot be successfuily compared with
zeros.

No registers, data areas, or indicators are changed.
Note: You should use the IFD instruction when comparing decimal data. |FD
does not compare the zone portions of the bytes. This avoids problems resulting

from comparing bianks (hex 40) to zeros (hex F0).

Examples:

FFFF FFFF FFFF
REGT|11, REG2 | ... ,oo» REG3| ... 1007

The instruction IF REG1 NE REG2 GOTO LOOPX results in a branch to
LOOPX.

156

The instruction |F REG3 EQ7 GOTO LOOPX results in no branch. This is
because the leading zeros of REG3 are compared against leading blanks
associated with the constant 7, and hex FO does not equal hex 40.

IFD Rn (Decimal Register Relational Compare to Decimal)

Mnemonic Operand1 Operator Operand2 Branch
(EQ)
GE
GT 0-9
IFD Ra 1Le({Rb} GOTO label
LT
NE
. 7

The contents of the operand1 register are algebraically compared to operand2 for
the condition specified by the relational operator. If the result of the comparison is
true, a branch is made to the instruction specified by the label. Otherwise the

next sequential statement is executed.

If the zone portion of the rightmost byte of a decimal register contains hex D,
the contents of the register are negative. If it is not hex D, the contents of the
register are positive.

If operand2 is another decimal register (Rb), the digit portion of each corresponding
byte of the two registers and the zone portion of the rightmost byte of each
register are compared.

If operand2 is a constant, the contents of the operand1 decimal register are
compared against 15 leading blanks and the specified single-digit constant. The
constant is assumed to be a positive value.

IFH BRn (Binary Register Relational Compare to Immediate Data)

Mnemonic Operand1 Operator Operand2 Branch

- 3

EQ

GE
GT 0-255

IFH BRa 1 LE f X‘0-FF’ GOTO fabel

LT
| NE

J

The rightmost byte of the binary register specified as operand1 is compared
against the binary representation of the constant specified by operand2. A
branch is made to the instruction specified by the label if the result of the

comparison is true. Otherwise, the next sequential instruction is executed.

No registers, indicators, or data areas are changed.

5280 Assembler Language Instructions 157

Examples:

Only this byte is compared.

BREG[00000000 11110011}

The instruction |FH BREG EQ X'F3’' GOTO LOOPX results in a branch to
LOOPX.

The instruction |FH BREG GE X‘F4' GOTO LOOPX results in no branch.

Skip on Constant Compare
The contents of a specified byte are compared with a 1-byte constant.
The format for a constant compare skip instruction is as follows:
Mnemonic Test Condition Operand Result

[offset,] label IS

IFe [offset,] Rn NOT constant SKIP
IFB [disp] (BRn) IS constant SKIP
where:

Test specifies the byte that holds data to compare with the constant, as
follows.

[offset,] label specifies the label of a storage area. |f the storage area is
longer than one byte, you may specify an optional offset. The offset
specifies the offset from the first byte of the storage area where the byte is
located. Offset defaults to 0, which specifies the first (leftmost) byte of the
data area.

[offset,] Rn specifies a decimal register {Rn) and the offset (0-15) from
the leftmost byte of the register where the byte is located. For example,
7,RX indicates byte 7 of the decimal register labeled RX. The offset is
optional and defaults to zero, which specifies the leftmost byte of the
register. If the test register is a decimal register, the operand must be a
decimal register.

[disp] (BRn) specifies the base displacement address of the storage byte.
The binary register holds the base address. The displacement (0-255) is
optional and defaults to zero. A base displacement address is valid only
for the IFB mnemonic.

Note: Do not specify length for this base displacement address. Do not

precede the binary register with a comma, as is required for other base
displacement addresses.

158

Condition specifies how the test byte is compared, as follows.
Entry Description

IS Specifies that a skip takes place if the contents of the test
byte equal the specified constant.

NOT Specifies that a skip takes place if the contents of the test
byte do not equal the specified constant. This is valid only for
the 1FC mnemonic.

Operand specifies a 1-byte constant, as described near the beginning of this
chapter under Constant Specifications.

IFC (Skip on Constant Compare)

Mnemonic Test Condition Operand Result
[offset,] label IS
IFC {[offset,] Rn NOT constant SKIP

The contents of the byte specified by test are compared against the specified
constant. If IS is coded, and the test byte equals the constant, the next sequential
statement is skipped. If NOT is coded, and the contents of the test byte do not
equal the constant, the next sequential instruction is skipped. Otherwise the next
sequential instruction is executed.

Example: The following code initializes a decimal register to contain fifteen
bytes of zeros and one byte of hex FF. Hex data is right-justified into a decimal
register, so byte 15 of the decimal register contains the hex constant.

000102030405060708091011121314 15
REG [FFFFFFFFFFFFFFFF
00000000000000O0CF

.DC LABEL = REG TYPE = DEC INIT = X‘FF’;

STMT1: IFC 15,REGNOT X‘FF’ SKIP ;STMT2 is not skipped
STMT2: IFC 14,REG IS X‘FO* SKIP ;STMT3 is skipped
STMT3: IFC 15,REG IS X‘FF’ SKIP ;not executed
STMT4: IFC1,REG NOT X‘FF’ SKIP ;STMT5 is skipped
STMT5: REG=0

STMT6: IFC 15,REGNOT X'FO’ SKIP ;STMT7 is skipped

5280 Assembler Language Instructions 159

160

IFB (Base Displacement Skip on Constant Compare)

Mnemonic Test Condition Operand Result
IFB [disp] (BRn) 1S constant SKIP

The displacement is added to the base address contained in the binary register.
The contents of the byte at the resulting address are compared to the 1-byte
constant specified by operand. If the contents of the byte are equal to the
constant, the next sequential instruction is skipped. If the contents of the byte
are not equal to the constant, the next sequential instruction is executed. It is
invalid to specify NOT for the condition.

Skip on Bit Mask

The contents of a 1-byte base displacement address are masked with a 1-byte
constant. The format for a bit mask instruction is as follows:

Mnemonic Test Condition Operand Result
. ON -

IFB [disp] (BRn) {OFF} XN SKIP

where:

Test specifies a base displacement address of a storage byte. The binary
register holds the base address. The displacement (0-265) is optional and
defaults to zero.

Note: Do not specify length for this base displacement address. Do not
precede the binary register with a comma as is required for other base
displacement addresses.

Condition indicates how the bits in the test byte that are specified by the
mask are tested.

Entry Description

ON Specifies that a skip takes place if any of the masked bits are
on (B‘1').

OFF Specifies that a skip takes place if any of the masked bits are
off (B‘0").

Operand specifies the 1-byte mask that specifies which bits of the test byte
are tested.

Result is always the mnemonic SKIP.

The contents of the byte at the base displacement address are masked with the
1-byte operand. The bits that correspond with the bits in the mask that are on
(B’1") are tested against the specified condition. If one or more of these bits
meets the specified condition (ON or OFF), the skip results. Otherwise, the
next sequential instruction is executed.

Skip on AND/Exclusive-OR Mask
This mask test can perform logical operations upon one byte of a binary register.

The format for an AND,Exclusive-OR mask test instruction is as follows:

Test Mnemonic Mask1 Operand Mask2 Result
IFHI . .

IFLO BRn AND XMl IS XU SKIP
where:

Test specifies the byte of the binary register to operate upon. It includes a
binary register (BRn) and either | FH! to specify the high-order byte of the
binary register, or IFLO to specify the low-order byte.

Mask 1, Mask 2 are 1-byte constants to mask with the test byte. See Constant
Specifications near the beginning of this chapter for the forms of the constants
that may be used.

Operand is always |S.
Result is always the mnemonic SKIP.

The byte that is accessed depends on the test entry. Coding |FHI BRn indicates
the high order byte of the specified binary register (BRn). Coding {FLO BRn
indicates the low-order byte of the specified binary register (BRn). The original
contents of the binary register remain unchanged by the operation.

The contents of the indicated byte are logically ANDed with mask1, and the
result is exclusively-ORed with mask2. If the result of the operation is zero,
the next sequential instruction is skipped. Otherwise the next sequential
instruction is executed.

Examples:
High Low
—— ——
BRX 01011100 11110000
IFHI BRX AND X‘B4’ IS X‘14’ SKIP IFLO BRX AND X‘8A’ IS X‘CF’ SKIP
N A A ~
01011100 = 11110000
& 10110100 & 10001010
00010100 10000000
X 00010100 X 11001111
00000000 01001111
This instruction results in a skip. This instruction does not result in a skip.

5280 Assembler Language Instructions 161

162

Exclusive-OR Write, Skip on AND Mask

The following instruction specifies that two logical operations be performed
upon the same data. These operations can change the original contents of a
specified byte; they can also test the original contents to determine if a skip
should take place. This instruction is useful to test and set/reset lock bits with a
single instruction.

The format of the instruction is as follows:

Mnemonic Mask1 Test Mask2
RXORW (constant ,BRn ,constant)
where:

Mask 1 specifies a 1-byte constant to be exclusively-ORed with the contents of
the test byte. See Constant Specifications near the beginning of this chapter
for the forms that the constant may have.

Test specifies a binary register that contains the address of the byte to test.

Mask2 specifies a 1-byte constant to be ANDed with the contents of the test
byte. The constant may be expressed in any of the forms indicated for mask?1.

The 1-byte constant specified by mask1 is exclusively-ORed with the contents of
the test byte at the address indicated by the binary register. The original contents
of the test byte are ANDed with mask2. If the result of the AND operation is O,
a skip results. The result of the exclusive-OR operation replaces the original
contents of the test byte. If the result of the AND operation is not 0, the next
sequential instruction is executed, and the original contents of the test byte
remain unchanged.

Loop Control

Loop control can be performed with the following two instructions, which
decrement or increment a binary register, then test the register contents against
zero or a specified limit.

The format of the loop control instructions is as follows:

Mnemonic Test Condition Limit Operand
SKIP WHILE BRa LE BRb [STEP 0-255]
DECR BRn GOTO label

where:
Test indicates the binary register that is decremented or incremented.
Condition is specified only for SKIP WHILE, and is always LE.

Limit is specified only for SKIP WHILE, and indicates the limit that is
compared with the test register.

Operand is always specified for DECR, to indicate a branch label. It is
optional for SKIP WHILE, to indicate the value of the increment to add to the
test register. If itis not specified, the register is incremented by one.

SKIP WHILE (Increment Binary Register and Skip if Not Limit)

Mnemonic Test Condition Limit Operand
SKIP WHILE BRa LE BRb [STEP 0=255}

When this instruction is executed, an increment is added to the contents of the
test binary register (BRa), and the sum replaces the contents of the test binary
register (BRa). The new contents of the test register {BRa) are then compared
with the contents of the limit register (BRb). If the contents of the test register
(BRa) are lower than or equal to the limit register (BRb), the next sequential
instruction is skipped.

If the optional increment operand (STEP n) is coded, the contents of the test
register are incremented by n, where n is 0-2565. |If STEP n is not coded, the

test register is incremented by one.

Example: The following code sums the integers from 1 to 10 using SKIP WHILE
as the loop control.

.DC LABEL=SUM TYPE=BIN INIT=0; set up register for sum

.DC LABEL=NUM TYPE=BIN INIT=0; set up register for integers
.DC LABEL=LMT TYPE=BIN INIT=10; set loop limit to 10
LOOP1: SKIPWHILENUM LE LMT STEP 1;
¥ Add 1 to NUM and test for 10.
* When NUM is greater than LMT, EXIT1 EXECUTES.
EXIT1: GOTO OUT:

SUM +=NUM ; add next integer.

GOTO LOOP1 ; continue loop.

OUT: NOP ; NUM =11 and SUM = 55,

5280 Assembler Language Instructions

163

164

DECR (Decrement Binary Register and Branch |f Not 0)

Mnemonic Operand Branch
DECR BRn GOTO label

The contents of the binary register are first decremented by 1 every time this
instruction is executed, and then the decremented result is tested against 0. If the
register contents are not 0, a branch is made to the statement at label.

Example:

X#1: BREG =B'11"; initialize BRn to loop 3 times
LOOP:

ENDL: DECR BREG TO LOOP; decrement BRn by one,
* if BRn is not zero after decrement, branch to LOOP.
X#2: REGX=REGX+1

The statement labeled X#1 sets BREG to 3, then the statements from LOOP to
ENDL are executed 3 times. The third time ENDL is executed, BREG will contain
0 and the statement labeled X#2 will be the next statement executed.

COMMUNICATIONS INSTRUCTIONS

The 5280 communications facilities include a communications access method that
provides an interface between your 5280 assembler application program and the
host system. The communications access method can support either BSC (binary
synchronous communication) or SDLC (synchronous data link control). SDLC is
provided through SNA (Standard Network Architecture) and is referred to in this
manual as SNA. The following communications instructions and the .COMM
control statement described in Chapter 3 are used with the 5280 communications
access method. See the /BM 5280 Communications Utilities Reference Manual,
SC34-0247, for more information about the communications access method.

Most of the communications instructions are used for both the BSC and the SNA
versions of the communications access method. Any instruction or instruction
parameter that is unique to either the BSC or SNA versions is so indicated. The
format for the communications instructions is as follows:

Mnemonic

TINIT

TCTL

TOPEN

TWAIT

TCLOZ

TTERM

TREAD

TWRT

where:

Data Set Format Operand1 Operand2 Operand3
(1-15)

(115 Lxmr {CN)} 1)
{1-15)

(1-15)

(1-15)

{1-15)

(115 L {Iabel} a ’ { } =1

(1-15 [\abel ,F , {

Data set specifies the data set to access. Enter the DSN parameter of the
.COMM control statement that defined the data set.

Format indicates edit formatting you want during an input or output
operation, Format may be omitted (retain the comma) if no edit formatting
is desired. If you want formatting, specify one of the following:

Entry

label

Description

The label of the edit format you wish to use. Enter the
LABEL parameter of the .FMTST control statement that
started the edit format definition,

May be specified for a TREAD instruction to indicate data
directed formatting. Data Directed Formatting, in Chapter 2,
and the .FMTST control statement writeup describe this method
of format selection.

Operand1 depends upon the particular instruction and is explained with the
operand description for each instruction.

Operand2 specifies overlapped (O) or nonoverlapped (N) 1/0. It defaults to
nonoverlapped. See Overlapped //0 in Chapter 1 for more information.

Operand3 depends upon the particular instruction and is explained with the
operand description for each instruction.

5280 Assembler Language Instructions

165

166

b ol PO T e o P S Y T T N Py ey |
I [HHTHAHCE COITHIIUTHILAliUTIS OCIVIY

Mnemonic Data Set
TINIT (1-15)

For BSC and for SNA, this must be the first communications instruction in your
application program. The TINIT operation must be completed before an 1/0
instruction can be executed. For BSC, this instruction must be followed by a
TOPEN instruction.

For BSC, the TINIT instruction establishes the linkage between the COMM 0B
and your program, which is executing in a partition, and the communications
access method, which is concurrently executing in another partition. When this
instruction is executed, it prepares to establish the line connection between the
5280 and the host system.

For SNA, this instruction initializes the network by establishing the data link
and attaching a session. If log-on is required by the host system, the communica-
tions 10B must point to a logical buffer that contains the log-on data when the
TINIT instruction is issued. See the /BM 5280 Communications Utilities
Reference Manual, for information about communications sessions. Multiple
sessions may be established.

TOPEN (Open Communications Data Set)

Mnemonic Data Set

TOPEN (1-15)

This instruction opens the specified BSC communications data set 10B for
transmitting or receiving records, or for inquiry. This instruction must be issued
before any TREAD, TWRT, or TCTL instructions are issued. The TOPEN
instruction must always be followed, at any later point in your program, with

a TCLOZ instruction for the same data set.

TCTL (Communications Control)

Mnemonic Data Set Operand1 Operand2 Operand3
N
TCTL (1-15 Ly , {0} ,D1)

Operand1 specifies a hex code for one of the following control operations:

Hex

Code Operations Valid for BSC

0100 Write status

0300 Transmit EOT (The EQT function is used only to initiate the
premature termination of a transmit or receive operation.)

0400 Transmit RVI (The RVI function turns the line around.)

0500 Transmit header (SOH-heading-STX)

0600 Transmit header (SOH-heading-ET8)

0700 Transmit header (SOH-heading-ITB)

0800 Transmit header (SOH-heading-STX-ETX)

0900 Execute wrap test

0A00 Transmit online test message

0B0O Receive online test message

0001 Set compression (Expand blank-compressed data that is received.)

0002 Reset compression (Do not expand compressed data.)

0003 Set transparent mode (Transmit in transparent mode.)

0004 Reset transparent mode (Do not transmit in transparent mode.)

0005 Set trace (on)

0006 Reset trace (off)
Operations Valid for SNA

0001 Cancel

0002 Chase

0003 LU status

0004 Request shutdown

0005 Positive response

0006 Negative response

0007 Transmit signal command (SIGNAL) to the host

0008 Shutdown complete

If D is specified for operand3, the diagnostic fiag is set in the 10B, and the operation
is performed in diagnostic mode.

TWAIT (Wait for 1/0 Completion)
Mnemonic Data Set
TWAIT (1-15)
For BSC and for SNA, this instruction ensures that any transmit or receive
operation is completed before the next sequential instruction is executed. This

is generally used in conjunction with overlapped 1/O to prevent loss of data. See
Overlapped /0 in Chapter 1 for more information.

5280 Assembler Language Instructions 167

TCLOZ (Close Communications Data Set)

Mnemonic Data Set
TCLOZ (1-15)

This instruction closes the specified BSC communications data set 10B, and
signifies the end of the communications operations. Any |OB that is opened
(using TOPEN) must be closed (using TCLOZ) before another 10B is opened.

TTERM (Terminate Communications Session)
Mnemonic Data Set
TTERM (1-15)

For BSC and SNA, this instruction terminates the logical connection between
your application program and the communications access method. If a switched
line is being used, the line connection with the host is also terminated.

The communications access method remains in the background partition,
available for use by other application programs,

TREAD (Receive Communications Record)

Mnemonic Data Set Format Operand1 Operand2 Operand3

* N
TREAD (1-15 [, {'abel} — . {o} ~1)

When the TREAD instruction is executed, data is received from the host
system into the 1/0 buffer of the data set specified by the data set number. If
an edit format is indicated with a format label or the asterisk {for data directed
formatting), the data is edited and moved from the 1/0 buffer to the registers
as specified in the appropriate edit format. If no edit format is specified in the
instruction, the data remains in the 1/0 buffer at the end of the operation. If 0
is specified for operand2, successive instructions are executed concurrently with
the TREAD instruction. |f operand2 specifies N or is omitted, the TREAD
operation must be completed before any successive instructions are executed.

For SNA and for BSC, if operand1 is a minus sign, it indicates that the status is
to be received. If operand1 is omitted, it indicates that data is to be received.

For SNA and for BSC, if operand3 is a minus sign, it indicates that an entire

block of data is to be received. If operand3 is omitted, the next logical record
is received.

168

TWRT (Transmit Communications Record)

Mnemonic Data Set Format Operand1 Operand2 Operand3
N
TWRT (1-15 [,label ,F ‘1o ,Bl1)

When the TWRT instruction is executed, a record is transmitted to the host system
from the data set specified by the data set number. If the instruction specifies

an edit format, data is moved from the registers specified by the format into the

1/0 buffer, and editing is performed as specified in the format. |f no format is
specified, it is assumed that the record is already in the 1/O buffer. The record is
transmitted from the 1/O buffer. If operand2 is 0, successive instructions are
executed concurrently with the TWRT instruction. If operand2 is N or is omitted,
the TWRT instruction must be completed before successive instructions are executed.

For SNA, if operand1 is F, it indicates that this is the final record to be trans-
mitted in an interactive application. Otherwise operand1 is omitted. For BSC,
operand1 must be omitted. Retain the comma.

For SNA and for BSC, if operand3 is B, it indicates that the 1/O buffer is to be
filled with blanks at the start of the operation. If operand3 is omitted, the 1/0
buffer is not changed at the start of the operation. This operand may be
specified only for a formatted TWRT operation.

Example: The following code sets up a BSC data set with the .COMM statement.
It then initializes a BSC communications session, transmits one data record,
receives one data record, and terminates the session.

START ENTRY=INIT;
.DC LABEL=LBUFR LEN=80; logical buffer for transmit data set
.DC LABEL=DATAR LEN=132; logical buffer for receive data set
.COMM CAM=BSC DSN=1 RECL-80 LBUF=LBUFR ELAB=ERR
TYPE=SW,; set up a write sequential transmit data set I0B
.COMM CAM=BSC DSN=2 RECL=132 LBUF=DATAR ELAB=ERR
TYPE=SR; set up a read sequential receive data set IOB
ANIT TINIT(1); initialize session with host
TOPEN(1); open transmit data set |IOB
Code to move data
* to the logical buffer LBUFR
* must be included here.
TWRT(1); transmit a record from LBUFR
TCLOZ(1); close transmit data set IOB
TTERM(1);
TINIT(2);
TOPEN(2); open receive data set IOB
TREAD(2); receive a record into DATR
Code to move data from
* the logical buffer DATAR
must be included here.
TCLOZ(2); close receive data set IOB
TTERM(1); terminate session with host
ERR: ; error routine.
.END;

*

5280 Assembler Language Instructions 169

170

DISKETTE INSTRUCTIONS

The diskette instructions include operations to control, read/write, and search

a data set. The operations are performed upon data set records or, for label
update data sets, upon data set labels. Data set labels on diskette index
cylinders describe each data set that is stored on the diskette. Information
contained on the data set label includes the data set name, the exchange type,
and the diskette addresses of the BOE (beginning of extent), EOD (end of data),
and EOE (end of extent) for that data set. The data set label will be described in
detail in the Functions Reference Manual.

Records may be organized into sequential or key indexed data sets. The records
are moved between the diskette and a physical buffer in main storage. Logical
records may optionally be moved between the physical buffer and a logical
record buffer for blocking and deblocking records, or printer |/O can be used to
block and deblock records. See Diskette Data Management in Chapter 2 for a
description of the data set organizations and buffers.

During the execution of a diskette operation, the 5280 maintains a record
counter to keep track of the record number, relative to the first data set
record, of the logical record currently being processed.

Control Operations

In order to share the diskette devices with the different data sets, the 5280
maintains an OB chain for each drive. An IOB chain begins with a pointer, in
the system control area, which holds the address of the first IOB that uses the
device. This IOB in turn holds the address of the next 10B that uses the device.
When the device finishes the work described by one 10B, it goes to the next I0B
on the 10B chain. An OB address is placed on the 10B chain whenever a data
set is opened with the OPEN operation. When the data set has finished using
the device, it may be closed with the CLOZ operation, which removes the I0B
address from the 10B chain.

Besides the open and close operations, data set control includes instructions to
allocate a data set and to initialize diskettes.

The format for the data set control instructions is as follows:

Mnemonic Data Set Operands
ALLOC (1-15 ,,BRn)
OPEN (1-15 [..BRn 1)
2 w v c
CLOZ (1115 |, of" , C;. L ¢ ,BRn])
N P
WAIT [(1-15)}
INIT (1-15 BRn)
BOE
(0]
EOD
POSN (1-15 1 CURR [, \ 1)
LAST
where:

Data Set specifies the data set number. This is the DSN parameter of the
.DATASET control statement that set up the |OB for this data set. If data
set is specified as hex 0 in the WAIT instruction, it specifies the keyboard
rather than a data set. Do not specify O for any other control operation.

Operands are explained for each instruction in the operation description.

ALLOC (Allocate a Data Set)
Mnemonic Data Set Operand
ALLOC {1-15 ..BRn)

This instruction is always executed nonoverlapped. When the ALLOC operation is
executed, the data set is allocated in the physical space following the last valid
data set existing on the diskette, provided sufficient extent and label space

exists. A data set cannot be allocated between existing data sets and always
originates on a physical track/sector boundary.

The data set HDR1 label is placed in the first deleted HDR1 label space. If

there are no deleted HDR1 label spaces, the allocation cannot take place, and an
external status (3229) is presented. The HDR1 information is taken from the
data set |I0OB-and from a parameter string you prepare and place into storage. The
binary register (BRn) in the ALLOC instruction contains the address of the fifth
byte of the parameter string. Two commas must precede the binary register. The
format of the parameter string is as follows.

5280 Assembler Language Instructions 171

172

Byte Meaning

1 Data set exchange type. Enter the number that corresponds to the
appropriate exchange type:

X'00’= basic exchange

X'01'= H exchange

X'02°= | exchange (This is the type normally used)
X’'03’'= E exchange, unblocked and unspanned
X‘04'= E exchange, blocked and unspanned
X‘05’= E exchange, blocked and spanned

2-4 The number of logical records to allocate. Enter O to allocate the
maximum number of records that can be placed on the remaining

diskette space.

5 The first of up to 14 characters of an optional owner identification,
required for allocating on a secure diskette. The address stored in
the binary register always points to the first byte of this owner ID.
If the owner ID is omitted, the address points to the end blank.

end The last byte in the parameter string must always be a blank, hex 40.

Note: This parameter string can also be used to open a data set on a secure
diskette; the OPEN instruction does not use the bytes before the fifth byte.

The information that is taken from the data set 10B is as follows:

Parameter

Data set name (NAME)

Logical record length (RECL)

Block size (BSI1Z)

Delete character (DFLG)

Explanation

The data set name is mandatory for allocating a
diskette data set.

If this optional .DATASET parameter is
omitted, the length is set to equal to block size.

Except for blocked and spanned data sets, the
block size must equal, or be a muitiple of, the
logical record length. For blocked and spanned
data sets, BSIZ is an optional parameter; if
specified it must equal sector size, and if
omitted the 5280 sets it to sector size.

F or E and | exchange data sets, this character is
checked, during allocation, for a valid printable
character. Valid delete characters are A-Z, 0-9, or
one of the following symbols:

~1%HO: &

During the allocation operation, the data set organization byte of the HDR1 label
is set to blank (hex 40) for basic and H exchange data sets. It is set to D for E and
| exchange data sets. It is invalid to allocate a label update data set with the
ALLOC instruction.

Upon completion of the ALLOC operation, the allocated data set is also opened.
The HDR1 label is placed into the first 128 bytes of the physical buffer. The
opcode byte in the data set 0B is replaced with hex 00. Upon completion of
the ALLOC; or if there is an external status for (1) insufficient physical buffer
size (3430), (2) two physical buffers specified with unequal sizes (3435); or if

a 3730 warning message is presented the minimum number of 128-byte blocks
required for sufficient buffer size space is placed into hex 78 of the data set |10B.
If any other external status occurs, this number is not placed into the |0B.

OPEN (Open a Data Set)
Mnemonic Data Set Operand
OPEN (1-15 [,,.BRn])

The OPEN operation is always executed in nonoverlapped mode. When the OPEN
is executed, the 5280 searches the diskette index for the HDR1 label of the
specified data set. The search begins at the position indicated by the data set
10B at hex 30 and 31. The assembler initializes this value to zero, which causes
the search to begin with the first HDR1 label. If you know where your data
set HDR1 label is stored, you can place the position number (the first HDR1
label is at number 8) in the data set |OB to save time when the data set is
opened. If the position number in the OB is greater than 8, the search begins
with that position and continues until the desired data set HDR1 label is found
or until the last label is searched. No labels preceding the position number in
the 10B are searched. |f the desired HDR1 label is not found, or if the position
number is greater than the number of HDR1 labels existing on the diskette, an
external status (3215) is presented. When the 5280 finds the label, it places the
label number in bytes hex 30 and 31 of the data set IOB. On subsequent
OPEN:Ss, the search begins with this number unless you reset these bytes to zero.

If the data set is stored on a secure diskette, you must include the binary register
(BRn) in the OPEN instruction. The binary register contains the address of an
owner identification, as described for the ALLOC instruction. If you include
the binary register and the diskette is not a secure diskette, the binary register

is ignored. Two commas must precede the binary register.

When the desired HDR1 label is found, the expiration date is checked. [f the
date is all blanks, the data set is expired. If it is all 9s, the data set is not
expired. If the HDR1 expiration data contains a year value less than 50, the year
is assumed to be in the 21st century. If a system date is available and exceeds
the HDR1 label date, the data set is expired. An unexpired data set cannot be
opened as an erase data set.

5280 Assembler Language Instructions 173

The physical buffer is checked to ensure adequate buffer size. 1f there is an
external status for (1) insufficient size (3430) or (2} two physicai buffers
specified with unequal sizes (3435}, the OPEN is not completed and the
minimum number of 128-byte blocks required for sufficient buffer space is
placed into hex 78 of the data set |0OB. If enough space is available for the
OPEN to complete, another check is made to ensure that sufficient buffer
space is available to process the data set. |f a keyed data set does not have
sufficient buffer space to process the index table build, the OPEN does not
complete. If a sequential data set does not have sufficient buffer space to
process the data set, the OPEN completes but the minimum number of 128-byte
blocks required for sufficient buffer space is placed into hex 78 of the data set
10B, and a 3730 warning message is presented.

If the block size and logical record length are not specified in the data set 108,
the HDR1 values are used. |If they are specified in the 0B, they are compared
with the HDR1 values and an error results if they are not the same.

For an erase data set, the block size and record length on the HDR1 label are
updated to the values in the 10B if the 10B values are not zero. If no logical
record length is specified, it is assumed to be the same as the block size.

When the open completes, the address of the data set 10B is placed into the
10B chain for the device. The open-flag in the data set 1OB is set to indicate
that the data set is open. The HDR1 label is placed into the first 128 bytes of
the physical buffer (in PB1 if two physical buffers are used). For a label
update data set, however, the VOL1 label is placed into the buffer in place of
the HDR1 label.

The OPEN instruction must be used to open a data set during program
execution, or to reopen a data set. |If you reopen a data set, the data set
pointers are reset to the beginning of the data set and the parameters specified
in the .DATASET control statement are used to supply the open information.

CLOZ (Close a Data Set)
Mnemonic Data Set Operands
2 P Vv C
CLOZ (1-15 [, D , , yC , 4L ¢ .BRn])
N W * *

A CLOZ operation removes the data set |0B address from the 10B chain and
resets the open-flag in the data set IOB. The CLOZ operation is always executed
in nonoverlapped mode. If any records have been added to the data set, the
HDR1 label is updated as appropriate. Any functions specified in the operand
fields are performed. When the CLOZ operation is completed, even if external
status is presented, the opcode in the data set |OB is reset to zero.

The operand fields indicate close options. You may specify one option in

each of five fields, or you may leave any of the fields blank. If you omit a
field that is to the left of a specified field, retain the comma for the omitted
field. If you omit all the fields, a normal close as described above is performed,
with no additional functions. The operand fields are as follows.

Field 1: Close functions option. If omitted, a normal close is performed. You
may not specify R, E, or D for a shared or unexpired data set.

Entry Description

R Release; the EQE is replaced with the EOD-1 value to free unused
extent space.

E Erase; the EOD is replaced with the BOE value to create a new output-
only data set.

D Delete; the data set label is marked as deleted.

N No label update; the IOB address is removed from the 10B chain and
the 10B open-flag is reset, but the HDR1 label is not updated.

Field 2: Write-protect option. |f omitted, the contents of the write-protect
position in the HDR1 label remain unchanged.

Entry Description

P Protect; a P is placed into the write-protect position so the data set
does not accept any write operations.

w Write; clears the P from the HDR1 label so the data set can accept
writes.

Field 3: Verify/copy option. If omitted, the contents of the verify/copy
position on the HDR1 label remains unchanged.

Entry Description

\) Verified; a V is placed into the verify/copy position of the HDR1
label to indicate that the data set has been verified.

C Copy; a C is placed into the verify/copy position to indicate that the
contents of the data set have been successfully transferred. Do not

enter the C for a partial data set copy or for a null data set.

Clear; the contents of the verify/copy position are replaced with a
blank.

5280 Assembler Language Instructions

175

176

Field 4. Multivolume option. |f omitted, the contents of the multivolume
fields are left unchanged. Field 5 must also be omitted.

Entry Description

C Continued; a C is placed into the multivolume position to indicate that
the data set is continued on another diskette.

L Last; an L is placed into the multivolume position to indicate that
this is the last diskette on which a continued data set is stored.

Clear; the contents of the fields are replaced with blanks.

BRn may be specified if field 4 is spacified. The binary register contains the

sequence number for this volume of a multivolume data set. The contents of
this register are placed into the HDR1 label in the volume sequence position.
You may specify a sequence number from 01 to 99.

If an error occurs during a CLOZ, the |OB is not removed from the chain.
Overwriting the 0B by loading another program would break the chain.
However, if two consecutive CLOZ commands are issued (even if they contain
close options) that cause errors, the |0B address is removed from the 10B chain
but the HDR1 label is not updated and no optional functions are performed.

Another use for the two consecutive CLOZ instructions is to close a data set
that has been interrupted by accidental opening of the diskette door. If a

data set is being processed when the diskette door is opened, the diskette drive
makes a buzzing sound for five seconds and a 3151 error is reported. If no |/O
operation was taking place when the door was opened, you may simply close
the door and reset the error. The 5280 assumes that the data set is the same one
being processed before the door opened. However, if an |/O operation was in
the process of moving data between the physical buffer and the diskette, the
data movement is terminated but the data set is not closed; a 3251 error is
reported. Two consecutive CLOZ instructions remove the 0B address from the
10B chain. You may close an unopened or undefined data set with no effect.

WAIT (Wait for 1/0 Completion)

Mnemonic Data Set
WAIT [(1-15)]

The WAIT instruction is used when you are processing with overlapped 1/0.
When the 5280 encounters an overlapped |/O instruction, it issues the 1/0
operation to the appropriate device and immediately proceeds to execute
subsequent instructions. If a subsequent instruction accesses data that was
involved in an overlapped /O operation, you should place a WAIT instruction
immediately before that instruction. When the 5280 encounters the WAIT
instruction, it waits until all outstanding 1/0 operations for the specified data
set are completed before it executes the instructions following the WAIT. It
also detects any errors that occurred during the 1/0.

If the WAIT instruction specifies hex O for the data set, the 5280 waits until

all outstanding keyboard 1/0 operations are completed. 1f the WAIT instruction
omits the data set number, all 1/O operations for all data sets must be completed
before the 5280 proceeds with the instructions following the WAIT.

INIT (Initialize a Diskette)
Mnemonic Data Set Operand
INIT (1-15 ,BRn)

The INIT operation initializes the diskette with information from the 10B of
the specified data set. The data set must have been previously opened for
initialization (TYPE=INI on the .DATASET control statement). The diskette
may not be shared during an initialization operation. All data on the diskette
prior to the INIT is lost.

The binary register {BRn) contains the address of a parameter string you have
prepared and placed into storage. The format of the parameter string is as

follows.
Byte Bit Meaning
1 0 Head number
1-7 Track number
2 0-1 00 for type 1
01 for type 2
11 for type 2D
2-7 Number minus one of 128-byte blocks that make up the
sector size.
3-28 Sequence of sector numbers. If byte 3= hex FF, the track

specified by byte 1 is flagged as a defective track.

Each track is accessed as a separate data set. The physical sector IDs and records
are written to the track. The data set is accessed sequentially, starting at cylinder
0, head 0, sector 1. Each track must be initialized with the INIT instruction
before it can accept a write instruction. You must use instructions to write the
HDR1 labels for the index area.

POSN (Position Record Pointer)

Mnemonic Data Set Operand1 Operand2
BOE
CURR 0}
POSN (1-15 . LAST [, {N} 1)
EOD

5280 Assembler Language Instructions

177

178

When the POSN operation is executed, the current record pointer number is
modified. The diskette is repositioned to the specified record, specified in the

instruction as follows:

Operand?
Mnemonic Purpose

BOE Sets the record number to 0. The first record in the data set is
record 1, so a subsequent READ instruction that specifies next-
record (+) reads the first record of the data set. Or a subsequent
search-forward instruction begins the search with record 1.

CURR Rereads the current record (as specified by the current record
pointer} from the diskette into the physical buffer and into the
logical record buffer. The data set type must allow reads.

LAST Sets the record number to the number of the last logical record
of the data set, and reads the last record from the diskette into
the physical buffer and into the logical buffer. The data set type
must allow reads.

EOD Sets the record number to the EOD number, which is the
number of the next available record space on the diskette past
the last record (last record plus one). Subsequent write instruc-
tions that specify current-record extend the data set.

Read and Write Operations

Records can be read according to a key, or read and written by sequential
record number or relative record number. For sequential records, the system
keeps track of the record number in an internal register. For operations at the
relative record number, you must assign a binary register or register pair to hold
the relative record number. After every read or write instruction, the system
updates the internal register. You must update the assigned binary register if
you are using relative record access.

The buffer management for the following read and write operations is described
as for automatic logical buffering. If you use pointer 1/0, the logical buffer
address in the data set 0B points to the logical record within the physical
record buffer. See Diskette Data Management in Chapter 2 for more informa-
tion about pointer 1/0.

The format for read and write instructions is as follows:

Mnemonic

READ

WRT

WRTS
WRTI

INSBLK

where:

Data Set

(1-15

(1-15

(1-15

(1-15

Format

['{Iabel} '

[Jabel ,

[.label

Record

A

v

(

Rn
BRn[(4)]

+
0

BRn[(4)]

Operand1 Operand2

e
o=z
N e’

V.
3

L {g} B1)

Data Set specifies the number of the data set to read or write. The label is
the DSN parameter from the .DATASET control statement. Do not specify

0 for an 1/0 instruction.

Format specifies the label of the edit format to use. The label is the

LABEL parameter of the .FMTST control statement that defined the format.
If the format is omitted, you must move the data to or from the logical

buffer with other instructions. No format may be specified with pointer

1/0. An asterisk (*) may be specified for READ, indicating that formatting

is data directed. See Data Directed Formatting in Chapter 2 for more informa-

tion.

Note: When formatting is used, operand 1 defaults to nonoverlapped 1/0
regardless of what is specified in the instruction.

Record specifies the logical record to read or write. The following specifica-

tions are allowed.

5280 Assembler Language Instructions

179

Entry Description

(Key) Rn A decimal register may be specified (for READ only)
when using a key data set. The decimal register
contains the key of the record to read.

(Relative) BRn [{4)] When a binary register is included for a write instruc-
tion the 5280 checks the .DATASET parameters to
determine the data set type. If this is an SCS
conversion data set, the binary register is used as a
pointer to a storage area that you have declared and
stored SCS control characters. See Printer Instructions
for a description of the SCS control characters for an
SCS conversion data set.

If this is not a write instruction to an SCS conversion
data set, the binary register contains the relative
record number of a sequential data set. This number
replaces the current record number. |f necessary for
the size of the number, a binary register pair may be
used. The number is relative to the BOE (beginning
of extent) for the data set, which is record 1. The
contents of this register are not changed after the
operation, If it must be incremented, you must code
instructions for incrementation.

- A minus sign indicates the previous sequential non-
deleted record. A previous-record specification defaults
to 0 for the WRTS or WRTI instruction. A previous-
record specification does not permanently alter the
current record number for a write operation. Conse-
cutive previous-record write operations process the
same record. If a WRT instruction that specifies
previous-record is issued at EOD, the last record of the
data set is overwritten and the record pointer still
points to EOD. A read-previous operation decrements
the current record pointer.

+ A plus sign indicates the next sequential non-deleted
record. The next-record specification is the default for
the READ instruction. When a read-next operation is
executed, the current record number is incremented.

The next-record specification defaults to O for the WRTS
or WRTI instruction. If a WRT instruction specifies
next-record, the current record number is not
incremented. Consecutive next-record write operations
write the same record. If an instruction that specifies
next-record is issued at EOD, an external status is
presented.

180

Entry

Description

A zero indicates the current record number. The
current-record specification is the default for the write
operations. If a write operation is issued at EOD, the
current record number is incremented and the data
set is extended. The record is written into the EOD
space, and the EOD is incremented. The current
record number and the EOD point to the same record
space on the diskette.

If a READ instruction specifies current-record, the
current record is not incremented and the current
record is re-read.

Operand1 specifies whether the operation is executed as overlapped (0) or
nonoverlapped (N) /0. If not specified, or if formatting is to be done, it
defaults to nonoverlapped. See Over/apped //0 in Chapter 1 for more informa-

tion.

Operand2 B may be specified if a format is included for the write instructions,
but B is not allowed for READ. If B is coded, the /0 buffer is blanked at
the start of the operation.

Access Methods Valid for Each File Type

The access methods for the file types are illustrated in Figure 4-3. The keywords,
which indicate both file type and access method, are described under the TYPE
parameter of the DATASET control statement in Chapter 3.

Type: SR sw suU KR/N KU/N 1
Record: “-08Bn O % -08Bn +-0RH +-0OR + - O Bm
READ ccyvege ccve ccve ccve ccvcge
WRT u VVEC VVE vVVvyve
WRTS U E E Y
WRTI U U

INSBLK U U

Key

V = Valid.

C = Valid; current record pointer updated.

E = Valid; EOD updated if writing at EOD; otherwise current record pointer is not changed.
U = Valid; EOD updated.

Figure 4-3. Access Methods for Data Set Types

5280 Assembler Language Instructions

181

READ (Read a Data Set Record)

Mnemonic Data Set Format Record Operand1
Rn

READ (1-15 ['{Iabel} N - , {0} 1)
+
0

When the READ instruction is executed, the specified record is copied from the
physical buffer into logical 1/O buffer. If the logical record is not within the
physical buffer, logical records that include the specified record are read from the
diskette until the physical buffer is filled. Then the logical record is copied

into the logical buffer. |f formatting is to be done, the data is moved and
formatted from the logical buffer into the locations specified in the indicated
format.

WRT (Write a Record)

Mnemonic Data Set Format Record Operand1 Operand2
BRn[(4)]
- N

WRT (1-15 [,label A+ ‘1o Bl

When the WRT instruction is executed with a format, the logical |/O buffer is
blanked if the operand is coded B. The data is formatted and moved from the
locations indicated in the format into the logical 1/0O buffer. The data is written
from the logical 1/O buffer into the physical buffer, at the position indicated by
the record parameter. If you are using pointer 1/0, the logical record address in
the 10B is not modified unless you are extending the data set at EOD.

For an SCS data set, you can use the binary register normally specified for the
Record operand to specify SCS control characters. See SCS Conversion under
Printer Instructions for more information about an SCS conversion data set. See
Appendix B for a description of SCS control characters.

WRTS (Delete a Record)

Mnemonic Data Set Format Record Operand1 Operand2
N
WRTS (1-15 [label 0 , {O} ,B])

When the WRTS instruction executes, the current record is written as in the WRT
instruction. In addition, the record is marked as deleted.

182

For a basic or H exchange data set, a special address mark is used to flag a-
deleted sector. For an | or E exchange data set, the character specified by the
DFLG parameter of the . DATASET control statement is placed in the last byte
of a deleted logical record.

If you issue a WRTS to a HDR1 label on cylinder 0, side O it is written as a
physically deleted record (address mark).

If you want to delete a record at a relative record number, read the record at that
relative record number, then delete the record with the WRTS operation. You
can use WRTS at EOD to create a deleted record. In order to read a deleted
record you must use a relative record read instruction.

WRTI (Insert a Record)

Mnemonic Data Set Format Record Operand1 Operand2
N
WRTI (1-15 [label, 0, {0} ,Bl)

When the WRTI instruction is executed, the current logical record is written into
the position immediately preceding the current record. The write takes place as
for the WRT instruction. Unless the record is inserted as the last record in the
data set, the 5280 moves all records below the inserted record down one record
position. If a deleted record is present, the records move down to the deleted
record and the deleted record is removed. There must always be enough room
for 1 record at the end of the data set even if there are deleted records in the
data set. You must specify two physical buffers and a logical buffer in the
.DATASET control statement for the data set in order to use the WRTI
instruction. WRT! is not allowed for a shared data set, an SCS data set, or a
pointer 1/0 data set.

INSBLK (Insert a Block of Records)

Mnemonic Data Set Operand

INSBLK (1-15 ,BRn [{8} 1

The INSBLK operation inserts a number of logical records into the specified
data set. The binary register (BRn) specifies the number of records to insert.
The records are inserted immediately preceding the current record, and the
records following the current record are relocated, with no data loss, to make
room for the inserted records.

If there is not enough room in the data set for the inserted records, external
status is presented and the insert does not take place.

If the instruction specifies 0, the operation is executed in overlapped mode.
Otherwise it is executed in nonoverlapped mode.

5280 Assembler Language Instructions 183

184

If the current record pointer is set to EOD when this instruction is executed, you
must renosition the pointer to EQD to perform write-current operations at EOD.

The INSBLK instruction is not allowed for a shared data set, an SCS data set, or a
data set that uses pointer 1/0. To execute this instruction you must specify two
physical buffers and a logical buffer in the .DATASET control statement that
sets up the 10B for this data set.

The inserted records are treated as deleted records and may be written with the
WRTI or WRT instruction.

The WRTI instruction performs a similar operation except only one logical record
is inserted and written. The INSBLK instruction can save time when a large
number of records must be added to a data set. Performance is improved with a
greater buffer size for | and E exchange.

Upon completion of the operation, the current record pointer is modified to
point to the first of the inserted records. If an error occurs during the operation,
the contents of the current record pointer are unpredictable.

Search Operations

The 5280 can search a data set for a record that agrees with one or more mask
specifications. The 5280 reads each physical record into the physical record
buffer, then searches each logical record for the mask specifications. If a record

is found that matches the mask specifications, it is placed into the logical record
buffer and the search ends. If no matching record is found, an external status is
presented; the contents of the logical buffer depend upon the kind of search
performed. You can specify a binary search to search the data set for a specified
mask. Or you can specify a sequential search to search the data set or the current
contents of the logical record buffer for one or more relational mask specifications.

A binary search is performed to find the location within the data set of the logical
record that matches the contents of the mask specification. The data field that is
searched must be in the same record position of each record and must be in
ascending order.

A sequential search is performed to find a record that matches the contents of
one or more mask specifications. Multiple mask specifications include relational
and logical operators. There is no limit to the number of mask specifications you
can include for each sequential search. The logical operations are logical AND
and logical OR. The logical operations are performed from left to right with
AND having priority over OR. You cannot group the mask specifications to

give OR priority, such as: (FLD1 or FLD2) and FLD3. You can accomplish this
operation, however, by expanding the specifications sequence to: FLD1

AND FLD3 OR FLD2 AND FLD3. For each mask specification you may
indicate only one logical operator and one relational specification.

If translation is performed on the data set being searched, it occurs in the physical
buffer before the logical records are searched.

A record begins with position 1. The detailed format for the mask specifications
is illustrated with each search operation.

The format of the search instruction is as follows:

Mnemonic Data Set Operand1 Operand2

SEARCH (1-15 .BRn,

roxTnow

where:
Data Set indicates the data set to search.

Operand1 indicates a binary register that contains the storage address of the
mask specifications. The mask specifications must be loaded into a storage
address before you issue the SEARCH instruction. The format of the mask
specifications depends upon the kind of search performed. Each format is
explained with the search type descriptions.

Operand2 indicates the kind of search to perform. One of the search keywords
must be specified, as follows:

Operand2
Entry Description
F Forward sequential: an unordered data set is searched, starting

with the record following the current logical record and ending
with the desired record or the last data set record. Each record is
searched for the mask specifications. If a matching record is
found, it is written into the logical record buffer. If no matching
record is found, the last logical record in the data set is placed
into the logical record buffer and an external status (3702) is
presented.

If the current record pointer is at zero, the search starts at the
beginning of the data set.

5280 Assembler Language Instructions

185

186

Operand2
Entry

{continued)

Description

The format of a mask specification for a type F search is as follows:

Byte Contents
0-1 Length of the mask.
2 Relative and logical operators. The 5280 does not

check bits 0 and 1 when it processes the first mask
specification. However, every following mask
specification must have either bit 0 or bit 1 turned
on. Each mask specification can have one, and only
one, of bits 2-7 turned on. |f more than one is on,
an external status (3417) is presented.

Bit Meaning If 1

0 logical AND

1 logical OR

2 LT (less than)

3 GT (greater than)

4 LE (less than or equal)

5 GE (greater than or equal)

6 EQ (equal)

7 NE (not equal)
34 Field position in which to begin search.
5-6 Field position in which to end search.
7-n Mask.

The mask specification can be repeated from byte 0.
Follow the mask in the last specification with hex
0000 to indicate the end.

Binary; an ordered data set is searched for a record that agrees with
a mask specification. The mask specification is compared to a
field that must be located in the same position of each record and
must contain data in ascending order. If a record matching the
mask is found, it is written into the logical record buffer. if

a matching record is not found, the logical record immediately
following the relative record position where the record would
have been located is placed into the logical record buffer, and

an external status (3702) is presented. However, if the record
position would have been beyond the EOD, the last record in

the data set is placed into the logical record buffer and an
external status (3703) is presented.

Operand2
Entry
(continued) Description

The format of a mask specification for a type B search is as

follows:
Byte Contents
0-1; length of the mask.
2-3; field position in which to begin search.
4-n; mask.
Only one mask specification may be used.
R Reverse; an unordered data set is searched as for a forward

sequential (F) search, except the data set is searched in a back-
ward direction, The search begins with the record preceding the
current logical record. If the current record pointer is at zero,
the search begins at the end of the data set (at the last record).
When a matching record is found, it is placed in the logical
record buffer. If no matching record is found, the first record
in the data set is placed in the logical record buffer.

The format of the mask specification for a type R search is as for
a type F search.

L Logical record; the contents of the current logical record buffer
are searched for mask specifications. If the record matches the
mask specifications, no external status is presented. If the
record does not match, an external status (3702) is presented.

The format of the mask specifications for a type L search is as
for a type (F) search.

Examples: The following mask specification uses a binary search to search a data
set for a record containing 137, starting in position 15.

Length Mask
—— —r—
X'0003000FF1F3F7’

N’
Position

The following mask specifications search a data set for a record that satisfies
one of the following three conditions.

1. The record contains ABC in positions 1-5.
2. The record contains DE in positions 1-10 AND ABC is not in positions 1-5.

3. The record contains ABCDE in positions 6-20.

5280 Assembler Language Instructions

187

Mask OIR Mask AND Mask OR Mask

| |
EQ End lso End INE End EQ End
—_ | |~ |~ |~
X‘00030200010005C 1¢2C.30002420001000AC4C500038100010005C 1€2C300054 2000600 14C 182C3C4€50000
Start Start I Start Start End of
l_Length Length Length Length Specification
of Mask of Mask of Mask of Mask

PRINTER INSTRUCTIONS

Printer instructions include instructions to open, write, and close a data set. A
printer data set must be described in a .DATASET control statement as follows:

® There must be one physical buffer; two physical buffers are allowed for double
buffering unless the data set specifies share attributes, SCS conversion, or early
write,

® |f the logical buffer address is omitted or specified to be the same as the physical
buffer address, pointer /0 is selected by the assembler. Pointer 1/0 is not valid
for SCS conversion data sets.

® The logical record length must be specified. It must be less than or equal to
the length of the physical buffer, and less than or equal to the space allocated
for the logical buffer.

® The data set type must be sequential write (SW).

You can write a diskette data set to the printer if the data set specifications are
valid for the printer. If a diskette data set has an ALLOC (allocate) instruction,
the printer processes it as though it were an OPEN instruction. The binary register
specified with the ALLOC instruction is ignored.

SCS Conversion

The format of the printed output can be altered with SCS (standard character
string) control characters. You can insert the control characters into your data
stream, or you can use an SCS conversion data set. See Appendix B for a descrip-
tion of the SCS control characters you can use if you are not using an SCS conver-
sion data set. If you are using an SCS conversion data set, the 5280 inserts the
control characters into the data set. A data set that has SCS conversion specified
in the .DATASET control statement is referred to as an SCS conversion data set.
The 5280 inserts the SCS control characters into the SCS conversion data set
record during a write operation when the record is moved from the logical buffer
to the physical buffer. All I/O operations for an SCS conversion data set are
processed by the 5280 rather than by the |/O device, and must therefore be
specified as nonoverlapped /0.

188

You can store a data set on a diskette and save diskette space by defining the data
set as an SCS conversion data set. If you later write the data set from the diskette
to the printer, do not again request SCS conversion on the data set. This would
cause the 5280 to again try to perform the SCS conversion processing on a data
set that already contains SCS control characters. A data set that already contains
SCS control characters is referred to as an SCS data set,

SCS control characters have EBCDIC values under hex 40. In order to prevent
unpredictable printer results, do not place an EBCDIC below hex 40 into the
logical buffer. If SCS control characters are in data that is to be translated, they
must not be altered by the translation. See Translation under Miscellaneous
Instructions in this chapter for more information.

When a data set is processed during SCS conversion, presentation control characters
are substituted for four or more blanks that occur on a single line. Blank characters
that occur between the last nonblank character and the end of the line are replaced
by a new-line control character. When the 5280 processes a line equal to or

greater than the line number specified as the last line (LSTLN), an indicator (1115)
is set on. Your program may at this time cause SCS control characters to be

placed into the data stream. This is done by including a binary register with the
write instruction. The binary register holds the address of a string of control data.
When using this binary register to point to control data to insert into the data
stream, the line size (LINSIZ) and logical record length (LRECL) must be equal.
The format of the data string is as follows:

Byte Bits Meaning

0 0=1 The 5280 spaces the number of lines given in byte 1 of this
control string. If the 5280 is at or past the line specified
for the LSTLN parameter of the .DATASET control
statement, 1115 is set on. A value of zero causes only a
carriage return. Bit 0 and bit 1 are mutually exclusive.

1=1 The 5280 skips to the line number given in byte 1. If
the line number is greater than the number specified for
the PGSIZ parameter of the .DATASET control statement,
an error (2229) is reported and processing stops. A value
of zero causes only a carriage return. Bit 1 and bit 0 are
mutually exclusive.

2=1 The 5280 inserts into the physical buffer the control
characters specified in this data string. Byte 1 specifies the
number, minus 1, of control characters to insert. Byte 2 is
the first byte of control characters to insert. The control
characters may be any of the control characters described
in this appendix. The contents of the logical buffer are
moved into the physical buffer, then the control characters
are moved into the physical buffer.

If you put in any control characters that change the
presentation surface format (maximum number of lines
per page or maximum number of characters per line),
you must also update bytes 43 and 47 of the data set
10B to reflect these changes. If you put in control
characters that change the line number or character
position for the next character to be printed after the
control string is completed, you must also update bytes
41 and 46 of the data set 10B to reflect these changes.

5280 Assemblier Language Instructions

189

190

Byte Bits Meaning

=1 The 5280 moves only control characters into the physical
buffer; it does not move the contents of the logical buffer
into the physical buffer. If bit 0 or bit 1 = 1, the control
characters are generated by the 5280, 1f bit 2 =1, the
control characters are the ones specified in this data string.
4-7 Reserved

1 Space control if byte 0, bit 0 = 1. Skip control if byte O,
bit 1 = 1. Number minus 1 of bytes of control characters
if byte 0, bit2=1,

2 First byte of control characters to move to physical
buffer; used only if byte 0, bit2=1.

The .DATASET control statement that requests SCS conversion must specify a
logical buffer. You cannot use pointer |/O and specify SCS conversion concurrently.
The .DATASET control statement must also specify the logical record length
(RECL) and the physical block size (PBSIZ), line size, and they must be equal to

or less than 132 bytes. They may be overridden from the HDR1 label of a diskette
data set.

If you want to close a data set 0B that requested SCS conversion, then reopen
the same data set |0OB, you must reinitialize certain bytes of the IOB. (The
bytes at displacement hex 40, 41, and 42 must be set to hex 00. The 2 bytes at
displacement hex 44-45 must be reinitialized to the symbo! you want to use to
represent unprintable EBCDIC values [SGEA]). Reloading the program will
accomplish this reinitialization.

Pointer 1/0

Pointer 1/O may be used for a printer data set unless SCS conversion is specified.
The logical records are blocked and deblocked directly to and from the physical
buffer. The logical buffer address points to the address, within the physical
buffer, where the next logical record is to be placed. See Pointer //0 in Chapter 2
for more information.

Early Write

Early write may be specified for any printer data set to transfer one logical record
to the printer for each write operation. If early write is not specified, the data is
not sent to the printer until the physical buffer is full. Early write is always used
for SCS conversion data sets whether or not it is specified in the . DATASET
control statement. Early write data sets must not specify double physical
buffering.

Share Data Sets

The conventional method for using printer data sets is to open a data set, issue
write instructions, close the data set, then open the next data set. However, if
you want to keep an 10B open but also let other I0Bs use the same printer, you
can use share data sets. A share data set has share attributes specified in the
.DATASET control statement that sets up the data set IOB. The |0Bs that

share a printer may be in the same partition or in different partitions. Do not use
double physical buffering for a share data set; use one physical buffer and one
logical buffer. Pointer 1/0 is allowed for shared data sets. It is recommended
that you always specify early write for a share data set so the requirement for a
full physical buffer does not prevent data from being sent to the printer.

When more than one share data set |OB is open to the same printer, the printer
uses the specifications (such as lines per page and line length) from the last

I0OB that was opened. For example, if the first share 0B specifies line length
of 80 characters, then a second OB is opened that specifies line iength of 132
characters, the printer uses 132 characters for line length for printing data from
either data set.

A share data set OB retains control of the printer until the physical activity for
that data set is complete (data has been moved from the physical buffer to the
printer, and the printer has completed printing the data). If a second

share data set 10B tries to use the printer (with an OPEN or a WRT instruction)
before the physical activity for the first share 0B is complete, a 2755 warning
message is reported to the second share IOB. Subsequent retries return the 2755
warning message to the second |0B until the physical activity for the first (OB

is reported to be complete. The second share |0B then takes control of the
printer until the physical activity for the second share 0B is reported to be
complete.

It is possible for the printer to report physical activity complete for an 10B

before all the data you expect from the OB has been printed. This can happen,

for example, when the 5280 must process other instructions for the |0B between
the WRT instructions. To avoid letting a second share I0B from gaining unexpected
access to the printer, you may wish to use an indicator that prevents another

108 from using the printer and is turned off only when all the WRTs you expect
from the first IOB have been executed. Any share 0B would check this indicator
when it needs the printer, and would try to share the printer only when the
indicator is off. Or, you can avoid using share data sets; open and close each

data set 0B as it needs the printer.

5280 Assembler Language Instructions 191

Error Recovery Procedures

Error recovery depends upon: (1) the instruction stored in the data set IOB when
the error occurred, and (2) whether the operation that was being executed when
the error occurred had completed processing data. If the operation had not
completed processing data when the printer reported external status, the
instruction may need to be reissued for that operation. For example, if a write
operation is being executed and the printer reports external status before the
logical record has been processed, the WRT instruction must be reissued to reload
the logical buffer. Unless external status is reported when an OPEN is in the

data set 10B, the 5280 sets byte 13, bit 5 of the data set |OB when external status
is reported before an operation has completed processing data. If the operator
presses the Reset key, the 5280 goes to your printer external status subroutine. If
your subroutine clears the condition and then issues a RETURN, the 5280 returns
to reissue the instruction if byte 13, bit 5 is on, and returns to the next sequential
instruction if the bit is not on. (This bit can be tested with the |FDSI instruction,
using dsin 13.) If external status occurs when an OPEN is in the data set 10B, the
5280 always returns to the instruction following the OPEN when the RETURN is
issued. Your program must reissue the OPEN if you want to continue with that
10B.

A Directed Close

When a CLOZ is issued while byte 13, bit b is on, the data set is closed and any
unprinted data is lost. This is referred to as a directed close. You may want to
use a directed close when the external status condition cannot be cleared. The
closed data set can then be opened for another printer.

External Status during Close

If the printer reports external status when a CLOZ is in the data set 0B, the
5280 checks byte 13, bit 5 of the data set IOB when the RETURN is issued. If
the bit is on, the 5280 reissues the CLOZ instruction. This causes a directed

close, and can result in a loss of data. To avoid {oss of the unprinted data, you can
(1) have your subroutine keep checking byte 0, bit 2 (dsin 2) of the data set |0B
until it is turned off (physical activity complete), then issue the RETURN, (2)
direct the operator to clear the condition and allow the printer to finish printing
before pressing the Reset key, or (3) if the printer is still printing (2292 error),
direct the operator to let the printer finish printing before pressing the Reset key.

Operator Determined Error Recovery

You can let the operator determine error recovery by using function keys or key
sequences. For example, the Cmd, End of Job key sequence can be used to issue

a CLOZ for a directed close. Another function key or key sequence could call a
subroutine to check byte 0, bit 2 (dsin 2) of the data set 0B, and issue a close
when this bit is off; this could be used instead of the Reset key after a printer error.

192

Discontinuing a Print Job from the Printer

If you want to discontinue a print job from the printer before the printing is
completed, use the Cancel switch rather than the Stop switch on the printer.
Cancel causes a 2601 error; a CLOZ should be issued for this condition in your
program. The printer will finish printing the data that has been sent from the
physical buffer in main storage before it stops printing. |f you use the Stop switch,
the data that has been sent from the physical buffer in main storage is not

cleared from the printer buffer when the printer stops printing; this data is
retained until the Start switch is used, then it is printed.

The format of the printer instructions is as follows:

Mnemonic Data Set Format Operands

OPEN (1-15)

WRT (1-15 [label 0, {(N)} ,Bl)
WAIT {(0-15)

CLOz (1-15)

where:

Data Set specifies the data set number. This is the DSN parameter of the
DATASET control statement that set up the 10B for this data set. If data set
is specified as 0 in the WAIT instruction, it specifies the keyboard rather than
a data set. Do not specify O for any other instruction.

Format specifies the label of the edit format to use; specified only for the
WRT instruction. Do not specify a format if you use pointer 1/0.

Operands are explained for each instruction in the operation description.

OPEN (Open a Data Set)
Mnemonic Data Set
OPEN (1-15)

When an OPEN instruction is executed, the printer specifications are initialized
to the following:

Page size = 1, the forms control can page forward at every line.
SGEA = (-,1); print one dash and continue printing for unprintable characters.
Maximum line size = logical record length (from the .DATASET control statement).

These printer specifications can be altered by SCS control characters in the data
stream. See Appendix B for a description of the SCS control characters.

The OPEN instruction is always processed in nonoverlapped mode. The data set

must be a sequential write data set. The |0B is placed on the I0B chain, and the
open flag in the data set 10B is set to indicate that the data set is open.

5280 Assembler Language Instructions 193

WRT (Write a Record)

Mnemonic Data Set Format Operands

WRT (115 [label 0 . {g} B])

When the WRT instruction is executed with a format, the logical 1/0 buffer is
blanked if the operand B is coded. The data is formatted and moved from the
locations indicated in the format into the logical |/O buffer. The data is written
from the logical 1/0 buffer into the physical buffer unless you are using pointer
1/0. Unless early write is specified, the logical records are not written from the
physical buffer until the physical buffer is full. The zero, for write current, may
be omitted, but the comma must be retained if an operand to the right is
specified. When the data has been sent from the physical buffer to the printer,
it is placed into a printer device buffer. The physical buffer is free to accept more
logical records while the data in the printer device buffer is being printed.
Therefore, a print error can occur for data that is already sent from the physical
buffer.

If O is specified, the write is executed as overlapped |/O. See Over/apped 1/0
in Chapter 2 for more information about overlapped 1/0. If N is specified, the
write is executed as nonoverlapped 1/0.

WAIT (Wait for 1/0 Completion)
Mnemonic Data Set
WAIT (0-15)

The WAIT instruction is used when you are processing with overlapped 1/0. It

is processed as described for the diskette instructions to prevent modification of
the logical buffer prior to completion of the 1/0 instruction last issued to each 1/0
device,

CLOZ (Close a Data Set)
Mnemonic Data Set
CLOZ (1-15)

When the CLOZ instruction is executed, the 5280 checks to determine if the

data that was sent to the printer for the data set has completed printing. If it

has, the data set is closed; the 10B is removed from the IOB chain and the data set
open flag in the 10B is turned off to indicate that the data set is not open. [f it
has not completed printing, and if it is the only 1OB on the chain, the 5280 will
wait up to three minutes (approximately) for the printing to be completed. |f

the printing is completed within this time, the data set is closed. |f the printing

is not completed, a 2292 error for failure to close is reported. |f more than one
10B is on the IOB chain, the time limit is extended. If a directed close is

issued before the data has completed printing, the data still within the printer
device buffer and the data that is still within the physical buffer in main storage

is lost. See Error Recovery Procedures under Printer Instructions for a description
of a directed close.

KEYBOARD AND DISPLAY INSTRUCTIONS

The keyboard and display instructions include the key entry commands and
keyboard operations. The commands initiate formatted data entry through the
keyboard. Keyboard operations allow unformatted key entry, cause limited data
movement, and perform other tasks related to the keyboard and display screen.

A command or an operation can be requested by a program executing in either a
foreground or background partition. While a keyboard operation is being
processed for a partition, the keyboard attached to the partition is locked. If a
keyboard operation is requested while a key entry command is in process, data
entry under that command is suspended at least until the operation is completed.

Key Entry Instructions

A formatted record can be entered only when an ENTR command is being
processed. An ENTR command may be issued by a program loaded into any
partition. However, the partition must be attached to its associated keyboard.

When the 5280 encounters an ENTR while it is processing instructions within a
partition, it unlocks the keyboard attached to that partition. The keyboard/
display may then accept a record. This input record is formatted according to a
screen format control string, which is generated from a series of .SFMT control
statements and is specified in the ENTR command. The screen format control
strings are described in Chapter 2 under Screen Formats.

During key entry under an ENTR command, an external status condition may occur.
External status conditions are described in Chapter 6 under Keyboard/Display
External Status. When an external status condition occurs, the keyboard/display
locks the keyboard to temporarily suspend key entry. It sets an external status bit
and specifies the condition number in the appropriate partition control area
locations, then it notifies the 5280. When the 5280 checks the partition control
area and finds an external status condition outstanding, it executes the appropriate
external status subroutine. This subroutine handles the condition and determines
when the keyboard is unlocked and when the external status bit is turned off. If
the interrupted screen format is not completed, return from the external status
subroutine is made to the place in the format control string where the interruption
occurred. If the screen format is completed, return is made to the instruction
following the ENTR instruction.

5280 Assembler Language Instructions 195

196

The format for the key entry command and external status subroutine instruc-
tions is as foiiows:

Mnemonic

ENTR

RESUME

ENABLE

RESCAL

RETEXT

RESMXT

where:

Operands

(label

11:3])]
(iabel
(BRn
[(BRn)]

[(BRn)]

(BRn | {g})

(,POP])

Jabetl)

Operands depend upon the particular instruction and are explained with the
operand description for each instruction.

ENTR (Accept key Entry)

Mnemonic

ENTR

where:

Operand1

(label

Operand2 Operand3

[, BRn ,{8} 1)

Operand1 specifies the screen format control string with which to format the
input record. Enter the LABEL parameter from the .SFMTST statement of the
screen format you wish to use.

Operand2 specifies that the functions of the current record buffer (CRBA)
and the previous record buffer (PRBA) are alternated. The binary register
(BRn) always holds the address of the buffer that was used as the current
record buffer for the most recently completed ENTR, and that will be used as
the previous record buffer for this ENTR. If the binary register is omitted,
you must use data movement instructions, such as MVC instructions, to move
the previous record to the PRBA before each new record is input into the

CRBA.

Operand3 indicates whether the ENTR is processed an overlapped (0) or
nonoverlapped (N) I/O. This is an optional parameter that defaults to
nonoverlapped 1/Q. See Overlapped 1/0 in Chapter 1 for more information.

When the 5280 encounters an ENTR command, it sets a bit in the partition
control area to indicate to the keyboard/display that an ENTR command is
outstanding. The keyboard/display unlocks the keyboard and processes the

input of the record, according to the screen format specified by operand 1.

The prompts and display attributes specified in the screen format are moved to the
screen in the order in which they were coded. The input data is checked

against the screen format input field definitions. All valid data is placed into the
input buffer designated to hold the current record.

If operand 2 specifies the binary register (BRn), the functions of the current
record buffer and previous record buffer are alternated. If operand 3 specifies O,
overlapped 1/0 occurs.

RESUME (Resume Key Entry)
Mnemonic Operand
RESUME [(B)]
where:

Operand is an optional entry to reposition the cursor after an external status
hex 04 or 05 condition.

When data entry under an ENTR command is interrupted by an external status
condition, the appropriate external status subroutine is called. |f a RESUME is
encountered in the external status subroutine, the keyboard is unlocked and
input from the keyboard resumes under the interrupted ENTR command.
RESUME does not return control from a subroutine, nor does it clear the external
status bit in the partition control area.

If the operand (B) is included with the RESUME instruction, it is ignored except
after an external status hex 04 or 05 condition. After an external status hex 04 or
05 condition, which indicates a forward or backward pass over an RG specification,
the cursor is repositioned to the last manual position preceding the RG
specification. There must be at least one manual data position defined preceding
the RG specification when the RESUME(B) instruction is executed.
If external status hex 04 has occurred, and the operand (B) is omitted, the
format resumes processing in a forward direction with the format specification
following the RG specification.

RESCAL (Resume and Call Subroutine)
Mnemonic Operand1 Operand2
RESCAL (BRn , label)

where:

Operand1 specifies a binary register that contains either the index into the
label table or a displacement.

Operand2 specifies the label of a subroutine or a label table.

5280 Assembler Language Instructions 197

198

When a RESCAL command is encountered in an external status subroutine, the

Keyboaid is unlocked and the processing of the interrupted ENTR command is
resumed. At the same time, the subroutine specified by the operands is called

and executed.

If the operands specify a label with no binary register, the call is made to the
subroutine at that label. If a subroutine label is specified with a binary register,
the contents of the binary register are added to the address of the subroutine and
the call is made to the resulting address. |If a binary register is specified with the
label of a label table, the contents of the binary register are used as the index into
the label table. The call is made to the address at that index.

This instruction can be used when the cursor enters a screen format field that

has CNTL = RG specified in the control string specification for that field.

Entering the field causes external status condition 4; the 5280 calls the appropriate
subroutine, which includes a RESCAL command. The processing of the ENTR
continues, and the 5280 calls the subroutine specified by the RESCAL instruc-
tion. This subroutine executes, probably processing the data entered into the
field, while input for successive fields of the input record are being accepted by
the keyboard. RESCAL does not turn off the external status bit in the parti-

tion control area or return control from the external status subroutine.

ENABLE (Reset External Status Bit)

Mnemonic Operand
ENABLE [(label [,POP])]

Whenever an external status condition occurs during the processing of an ENTR,
the external status bit is set in the partition control area. If an ENABLE
instruction is encountered in the external status subroutine that is called, the

bit is cleared.

If no operand label is included in the instruction, the next sequential instruc-
tion is executed.

If a label is included in the instruction, a branch is made to the statement at
that label.

1f POP is coded, BR18 is decremented by two. It points no longer to the last
entry into the partition subroutine stack, but to the entry prior to the last entry.
The ENABLE instruction may be used when the subroutine is terminated with

a GOTO rather than a return operation.

Note: If a RESUME or RESCAL is issued before an ENABLE, you can get a
double external status condition, especially with a forward or backward pass over
an RG.

RETEXT (Subroutine Return and Enable External Status)
Mnemonic Operand
RETEXT [(BRn)]

This instruction acts as the RETURN and ENABLE instructions combined. The
subroutine is terminated and the external status bit is turned off. BR18 is
decremented by two, and the return is made to the address in the partition
subroutine stack pointed to by BR18. If the operand binary register is included,
the contents of the binary register are added to the address in the partition stack,
and the return is made to the resulting address.

RESMXT (Retext and Resume)
Mnemonic Operand
RESMXT [(BRn)]

This instruction acts as the RETURN, ENABLE, and RESUME instructions
combined. The subroutine is terminated, the external status bit is turned off,

and data entry processing is resumed. BR18 is decremented by two, and the

return is made to the address in the partition subroutine stack pointed to by BR18.
If the operand binary register is included, the contents of the binary register are
added to the address in the partition stack, and the return is made to the resulting
address.

Note: Use of RESMXT avoids possible double external status that can result
from issuing a RESUME or RESCAL before an ENABLE.

Keyboard Operations
Instructions for keyboard operations may be issued at any location in your
program. If a keyboard operation is issued while an ENTR command is being

processed, data entry under the command is suspended at least until the operation
is completed.

5280 Assembler Language Instructions 199

The format of keyboard operation instructions is as foiiows:
Mnemonic Operand1 Operand2

BUZZ

CLICK

CNENTR

DISPEX

DISPST

KACCPT (BRa, BRb)
KATTCH

KDETCH

KERRCL (BRa)
KERRST (BRa, BRb)

KEYOP (X’ [,BRa ,BRb])
READMG (BRa, BRb)

RSTMG

REPFLD

RTIMER (BRa)

The operands depend upon the particular mnemonic. They are described in the
operation description for each mnemonic,

Note: Repeated use of these instructions may result in a degradation of performance
because the schedule for processing the partitions is altered.

BUZZ (Sound Buzzer)
Mnemonic

BUZZ

The BUZZ instruction sounds the alarm on the keyboard associated with the
partition. The duration of the alarm is approximately 180 milliseconds.

This instruction can be used to signal the operator for various purposes. For
example, during key entry the operator may not watch the screen at all times.
The buzzer can bring the operator’s attention back to the screen for a particular

prompt, when a screen format control string has completed, after a record advance,
or when a background program attaches to the keyboard.

CLICK (Sound Click)
Mnemonic
CLICK
The CLICK instruction clicks the keyboard associated with the partition. The

CLICK instruction could be used after accepting keystrokes under the
KACCPT operations, to give a response click.

200

CNENTR (Cancel Current ENTR)
Mnemonic
CNENTR

The current enter command is terminated. The end of format control string
functions are executed, and data entry is no longer accepted by the keyboard/
display. On the status line, the counters, insert mode symbol, keyboard shift,
and hex display positions are set to blanks. The command opcode is set to zero.

If there is no current ENTR outstanding, the CNENTR acts as a null operation
and the next sequential instruction is executed.

This instruction may be used when an error occurs in a field and the operator
indicates that no further processing of the record should be done. It can also be
used to exit from a marked record following a record mark.

If this operation is executed in an external status subroutine during the proces-
sing of a nonoverlapped ENTR, the return issued in the subroutine is made to the
interrupted ENTR. The ENTR is reissued and processing begins at the start of
the format control string specified.

DISPEX (Display Extra Line)
Mnemonic
DISPEX

The top line on the screen can display either the status line or an extra line used
by the screen format. The status line is referred to as row 0, and the extra line
is referred to as row 1. Both row 1 and row 0 are always maintained, although
only one may be displayed at any given time. See Nondisplay of the Status Line
in Chapter 2.

The DISPEX instruction is used when the extra line (row 1) is being used in the
screen format, and the status line has been displayed in its place to report an
error. The DISPEX instruction returns the extra line to the screen, replacing the
status line.

DISPST (Display Status Line)
Mnemonic
DISPST
The DISPST instruction displays the status line (row 0) in the top line of the

screen, replacing the extra line (row 1). The extra line is maintained and may be
returned to the screen with the DISPEX instruction above.

5280 Assembier Language Instructions 201

KACCPT (Accept Keystrokes and Store)
Mnemonic Operand1 Operand2
KACCPT (BRa, Brb[(4)])
where:

Operand1 indicates a binary register that contains the storage address to which
the keystroke data is stored.

Operand2 indicates a binary register or binary double register. |f a 2-byte
binary register is specified, it contains the information described for bytes 0
and 1 below; the keystrokes are not displayed as they are entered. |f a 4-byte
binary double register is specified, it contains the information described for
bytes 0 to 3 below; the keystrokes are displayed as they are entered.

Byte Bit Meaning
0 Option flags:
0 =1 if the keyboard is to sound a response click for each
keystroke.
=0 if the keyboard is not to sound a response click.
14 Not used.
5 =1 if the monocase function is enabled.
=0 if the monocase function is not enabled.
6-7 Keyboard shift flags:
=00 for Alpha shift

=01 for Num shift
=10 for special characters shift

1 0-7 Number of keystrokes to accept, minus 1.
2 0-7 Row number where keystroke display begins.
3 0-7 Column number where keystroke display begins.

If the operand 2 register is not a binary double register, the number in the low-order
byte specifies one less than the number of keystrokes to accept. If bit zero of

the high-order byte of the operand?2 register (BRb) is not zero, the keyboard sounds
a response click for each keystroke. If bit 5 of the high-order byte is not zero,
keystrokes are converted to their uppercase equivalent as they are entered. The
keyboard is set to the shift indicated by bits 6-7. The keystroke data is stored

in main storage, starting at the byte specified by the operand 1 binary register
(BRa). The keystrokes are not displayed on the screen.

If operand 2 is a binary double register, the data is displayed as it is entered.

The rightmost binary register contains the row and column position where the
first accepted keystroke is displayed. The row number is specified in the high
order byte of the rightmost binary register, and the column number is specified in
the low-order byte. The leftmost register contains data as described above.

202

The keystroke data is stored in byte pairs. The first byte of each pair contains
the keystroke scan code, and the second byte contains the EBCDIC code
generated from the scan code. The data is not applied to an outstanding ENTER
command. Shift keys are not stored into main storage; although the keyboard is
shifted, they do not effect the keystroke count. Command key sequences are
stored except when the Command key is followed by a console request. In this
case, only the command is stored before the console function is performed. Hex
key sequences and diacritic key sequences are stored as two keystrokes. The
scan code and EBCDIC for control keys such as the Enter key are stored, but
the control function is not performed.

If this instruction is issued from a foreground partition, there should be no
ENTER command outstanding. If this instruction is issued from a background
partition, the background partition must be attached to the associated keyboard.

This instruction could be used after an error status is displayed, to accept the
Reset key.

KATTCH (Attach Keyboard/Display to Partition)
Mnemonic
KATTCH

When the KATTCH operation is executed, the partition that issued the KATTCH
instruction is attached to the associated keyboard. All keystrokes from the
attached keyboard are directed to the attached partition. A partition must be
attached to a keyboard in order to perform an ENTR, a KACCPT, or a keyboard
operation to pass scan code (KEYOP(OA)) or to pass EBCDIC (KEYOP(OB)),
KERRST, KERRCL, perform keyboard function (KEYOP(11)), or open
keyboard (KEYOP(15)).

The KATTCH operation can be initiated by the KATTCH instruction or by an
operator initiated console request,

Each foreground partition is permanently associated with (assigned to) a
keyboard/display. A background partition is associated with the keyboard/display
that was attached to the partition that loaded the background partition. One
foreground and several background partitions can be associated with a keyboard/
display, but only one partition can be attached to a keyboard/display at any

given time. If all background partitions associated with a keyboard/display are
detached (see the KDETCH instruction), the associated foreground partition is
assumed to be attached in that all function keys and command key sequences that
normally cause an external status condition are directed to the foreground
partition. Also, an automatic attach operation is performed each time a fore-
ground partition issues a keyboard 1/0 instruction, so the foreground partition
does not have to issue a KATTCH instruction.

If the attach operation is successfully completed, control returns to the second
instruction following the KATTCH instruction. |f the operation is not completed
successfully, perhaps because another background partition is attached or the
foreground partition is performing /0, control returns to the first instruction
following the KATTCH instruction.

5280 Assembler Language Instructions 203

When a partition is successfully attached to a keyboard/display, the status line
is modified to dispiay the pariition number of the newiy aitached partition.

KDETCH (Detach Keyboard)
Mnemonic
KDETCH

The KDETCH instruction releases the keyboard. 1t is issued by the program in
the partition that is currently in control of the keyboard, or by the common
function operator detach (CFPERATT) routine in response to the Attn
(Attention) key. Normally, it is better to let the operator control the detach
with the Attention key rather than to issue a KDETCH instruction from the
program,

It is essential that a KDETCH operation be executed when a partition no longer
needs the keyboard. Failure to detach the keyboard inhibits any other partition
from attaching to the keyboard. See CFPERATT and CFDETFGD under
Common Function Routines in Chapter 6 for more information.

KERRST (Request Keyboard Error Mode)
Mnemonic Operand1 Operand2
KERRST (BRa, BRb)
where:

Operand1 indicates a binary register that contains an attribute mask and
control information for the display of the status line. The format of the
information is as follows:

Byte Bit Meaning If 1

0 Attribute Mask
-2 Reserved
Column separators displayed
Biink
Underscore
Highlight
Reverse image
1 Control Information
0 Display status line if it is not currently being displayed
1 Startin column 1.
(if bit 1=0, start in column 3)
2-7 Message length minus 1, up to 63. If 63 is specified, it
indicates O bytes.

NS WO

Operand2 indicates a binary register that contains the storage address of the
message to move to the status line.

The KERRST instruction places the keyboard/display in software error mode.

When the keyboard/display unit is in error mode, all data keys, function keys, and
command key sequences are ignored. However, if the KEYOP instruction for
keyboard operation hex 11 (perform keyboard function) is issued, the keyboard
function is performed regardless of the error mode as long as the keyboard is in
an appropriate state,

Bits 3-7 of the attribute mask are exclusively ORed with bits 3-7 of the row
attribute byte (which determines the display of the row) for the top line of the
screen. If the status line is not being displayed, the extra line will have the
attributes specified.

Bytes are moved from the storage address specified by operand2 (BRb) to the
status line. The bytes are translated through the display translate table, and
attributes are translated and passed. The bytes moved from storage overwrite the
original status line data, and the original status line data is destroyed.

If the status line is currently being displayed when this instruction is executed,
the indicated message is displayed in column 1 or column 3, according to byte 1,
bit 1 of operand1 (BRa). If the status line is not currently being displayed, the
message is not displayed if byte 1, bit 0 contains 0; it is displayed if it contains 1.

This operation is invalid if the keyboard/display is already in error mode, or if
issued from an unattached partition.

The KERRST can be used by the program to signal a software detected error,
such as in a self-check field edit. An example of the KERRST instruction follows
the KERRCL operation description.

KERRCL (Request Keyboard Error Mode Reset)
Mnemonic Operand?
KERRCL (BRn)
where:

Operand1 specifies a binary register that contains an attribute mask and
control information, as for KERRST.

The KERRCL instruction takes the keyboard/display unit out of software error
mode. A change of screen attributes and display is allowed, according to the
contents of the binary register (BRn). This register contains an attribute mask
and control information as described for KERRST. If byte 1, bit 0 =1, and the
KERRST operation caused the status line to replace the extra line in the top row
of the screen, the status line is removed from the screen and the extra line is
redisplayed. Byte 1, bit 1 indicates the column in which the KERRST message
started. Byte 1, bits 2-7 indicates the number bytes (of the KERRST message) to
replace with blanks when the KERRCL executes. Byte 0, the attribute mask is

as for KERRST and can restore the attributes changed by the KERRST operation.

If an ENTR is outstanding, and bits 2-7 of byte 1 do not equal 0, the field shift,

current position counter, insert mode indicator, and positions remaining in
current field counter are restored in the status line.

5280 Assembler Language Instructions 205

The KERRCL operation is invalid unless a KERRST operation has set the
keyboard/display in error mode. It is invalid if issued from an unattached
partition.

After a KERRST operation is executed, the KERRCL operation must be
executed in order to enable the keyboard.

Example: The program can branch to ERRCK when an error in a self-check field
edit is encountered during key entry.

ERRCK: KERRST (BRX, BRY) ; keyboard in software error mode,
* blinking error message is displayed.
KACCPT (BRXX, BRYY) ; accept the Reset key.

Your program code to resolve the error.

KERRCL (BRX) ; keyboard software error mode cleared,
* blink attribute removed, message blanked.
RESUME : accept key entry under current ENTR.

The program can now request that the invalid field be rekeyed.

KEYOP (Keyboard Operation)

Mnemonic Operand1 Operand2 Operand3
KEYOP (X1’ [.BRal [.BRb])
where:

Operand1 specifies the keyboard operation code that indicates the operation
to perform.

Operand?2 indicates a binary register that contains the parameter1 information
for the operation.

Operand3 indicates a binary register that contains the parameter2 information
for the operation.

The KEYOP instruction can perform operations that have no mnemonics. It can
also perform several operations that do have their own instruction mnemonics.
These mnemonics are listed below. For mnemonics that require operands, the
entries for operand1 and operand?2 are used for parameter1 and parameter2,
respectively. Each of these mnemonics is described individually and is not
repeated for the KEYOP instruction.

Keyboard
Op Code Mnemonic Parameter1 Parameter2

10 suUzZZ

14 CLICK

05 CNENTR

0oC DISPEX

0D DISPST

09 KACCPT (BRa, BRb)
OF KERRCL (BRn)

OE KERRST (BRa, BRb)
17 READMG (BRa, BRb)
16 RSTMG

03 RTIMER (BRn)

Example: To perform the KERRST operation with the KEYOP instruction, code
the following KEYOP instruction:

KEYOP (X‘0OE’, MASKBRN, ADDRBRN)

The KEYOP instructions for operations that have no mnemonics (and can be
performed only by the KEYOP instruction) are as follows:

Keyboard

Operation Op Code
Change row attribute 07

Open keyboard/display 15

Pass scan code to keyboard 0A

Pass EBCDIC to keyboard oB
Perform keyboard function 11
Position screen position pointer 08
Release character and field edits 06

Keyboard
Mnemonic Op Code Operation

KEYOP (X'06’) Release character and field edits
The following character and field edit checks are discontinued for the current fieid:
@ Character set check

® Data required

Blank check

Mandatory enter

Mandatory fill

The checks are discontinued only until the field is exited in the forward or
backward direction. If the same field is later advanced or backspaced into, the
checks will be in effect.

5280 Assembler Language Instructions

Keyboard
ivinemonic Op Code Farameteri ParameterZ Operation

KEYOP (X‘07' ,BRa .BRb) Change row attribute

Parameter 1 specifies a binary register that contains, in the low-order byte, the
number of the row on the screen to be effected. The valid range for the row number
is from 1 to the maximum number of lines on the screen. Parameter2 specifies a
binary register that contains two 1-byte masks. The format of the masks is as foliows:

Bits Meaning
0-1 System Indicator
00= None
01= None
10= Dash (-)
11= Solid rectangle ()
2 1= Valid row starting attribute. This bit must equal 1 for bits 3-7 to be
valid.
0= Invalid row starting attribute. Bits 3-7 are ignored.
3 1= Column separators are displayed.
0= Column separators are not displayed.
4 1= Blink the row
0= Do not blink the row
5 1= Underline the row'
0= Do not underline the row
6 1= High intensity’
0= Normal intensity
7 1= Reverse image'

0= Do not reverse image

When the operation is executed, the attribute byte (which determines the display
of the row, maintained by the 5280 for the row specified in parameter1 is logically
ANDed with the mask in the high-order byte of parameter2. The result is then
exclusively ORed with the mask in the low-order byte of parameter2.

Keyboard
Mnemonic Op Code Parameter1 Operation
KEYOP (X'08’ ,BRn) Change cursor address

The contents of the binary register (BRn) specify the row (high-order byte) and
column (low-order byte) to place in the cursor address bytes of the |/O control
block. The keyboard/display uses this address as the screen position pointer to
determine the placement of fields and prompts on the screen during formatted key
entry.

If this operation is performed before an ENTR command that specifies a format
control string with CNTL = CP (continue at current screen position) in the
SFMTST statement, the format is initialized at the screen position specified in
the binary register (BRn),

it bits 5, 6, and 7 equal 111, the display of the row is inhibited.

208

If this operation is performed while an ENTR command is being processed, all
subsequent screen definitions for fields and prompts originate at the position
specified by the binary register (BRn). The cursor does not move over intervening
fields and prompts.

Note: Use of this operation while an ENTR command is being processed is not
recommended.

Keyboard
Mnemonic Op Code Parameter1 Operation
KEYOP (X‘0A’ ,BRn) Pass scan code from storage to keyboard

The binary register (BRn) contains the address in main storage of one scan code.
This scan code is moved to the keyboard associated with the partition. The scan
code is then processed as if it originated from the keyboard.

Keyboard
Mnemonic Op Code Parameter1 Operation
KEYOP (X'0B' ,BRn) Pass EBCDIC from storage to keyboard

The binary register (BRn) contains the address in main storage of one EBCDIC
code. This EBCDIC code is moved to the keyboard associated with the partition.
If the EBCDIC code corresponds to a data key EBCDIC or a function key EBCDIC,
it is then processed as if it originated from the keyboard. The associated scan code
is set to zero,

EBCDIC codes 29 (clear screen) and 2A (clear status line) are ignored in this
operation because they are not function key EBCDICs. These functions can be
performed by specifying keyboard operation code 11 (Perform Keyboard
Function).

Keyboard
Mnemonic Op Code Parameter1 Operation
KEYOP (X111’ ,BRn) Perform keyboard function

The low-order byte of the binary register (BRn) contains a function EBCDIC
{hex 01 to 2C). If the EBCDIC is a function key EBCDIC, it is processed as if
the key corresponding to that function has been pressed, with the following two
exceptions.

1. The keyboard bit map is not checked to determine whether the program
handles the function.

2. If the keyboard is software error mode, the function executes if the state
of the keyboard is appropriate. If the function is 29 (clear screen) or 2A
(clear status line), it executes regardless of the state of the keyboard. If a
function EBCDIC other than hex 01 to 2C is specified, an invalid operation
external status condition occurs. The codes for the functions will be
described in the Functions Reference Manual .

5280 Assembler Language Instructions

209

210

Keyboard
Mnemonic Op Code Parameteri Operation

KEYOP (X'15') Open keyboard/display
The keyboard/display is initialized as follows:

1. The clear screen function (29) is performed.

2. The clear status line function (2A) is performed.

3. The cursor is erased from the screen.

4, The blink attribute of the top line displayed on the screen is cleared unless a
keystroke error or software error is outstanding.

If this operation is issued from an unattached partition, an external status for
invalid operation occurs.

This operation is automatically performed during a partition load operation, and
should not normally be used by an application program.

READMG (Read Magnetic Stripe Reader)

Mnemonic Operand1 Operand2
READMG (BRa, BRb)
where:

Operand1 indicates a binary register that contains the number of bytes that
are to be read, minus 1.

Operand2 indicates a binary register that contains the address in main storage
into which the bytes are read.

When a badge is inserted into a magnetic stripe reader, the badge characters are
read into a buffer in the reader. External status condition 11 occurs for the
partition associated with the reader. Only one partition can be associated with
one reader. |If the partition is background, or if it is available to the loader, the
badge data is ignored. If external status is already outstanding at the time of the
status 11 condition, the 5280 waits until the current external status condition is
cleared before it notifies the partition.

Once a badge is inserted into the reader and the reader buffer accepts the badge
data, no other badge data is accepted until the buffer data is read or reset by a
READMG or RSTMG instruction. After the execution of a READMG instruction,
the reader is automatically reset to enable the reader to accept another badge. The
RSTMG instruction is used only when you wish to ignore the current badge data,
or at the beginning of a program to ready the reader for the first badge.

Magnetic stripe data consists of a string of from 3 to 128 bytes or characters.
The first character of a data group must be a start of message (SOM) control
character. The next-to-the-last character must be an end-of-message (EOM)
control character. The last character must be a longitudinal redundancy check
(LRC) control character of even parity for the entire data group. Any character
can be issued in the other bytes except an EOM character.

The format of the reader characters is as follows:

Name

Device flag
Error fiag

LRC flag
Parity bit
Data

Bit Meaning if 1
0 A magnetic stripe reader is installed.
1 One of the following conditions has occurred:

® Parity error

® LRCerror

® EOM missing

® |mproper badge insertion or removal
® Speed error

® Buffer address overflow

2 LRC character.
3 Odd parity for bits 4-7,
4.7 If hex 0 to 9, this is a data character.

If hex B, this is an SOM character.
If hex F, this is an EOM character.

If any byte has an error, the error flag is set in all bytes so your program can find
the error by checking only the first byte. If this flag is set, the data is invalid and
the badge must be reinserted.

The device flag should be set on for each data byte in the stripe when the READMG
instruction is executed after the external status 11. If the program executes a
READMG instruction when status 11 has not occurred, this bit is on if a reader

is installed or off if a reader is not installed.

Examples:

Reader
Character

10001011
10011111
10100000
10011001

Description

An SOM character
An EOM character
An LRC character
A data character

5280 Assembler Language Instructions

211

RSTMG (Reset Magnetic Stripe Reader)
Mnemonic
RSTMG
The RSTMG instruction enables the magnetic stripe reader to read a badge.

This instruction should be included at the beginning of a program that requires
magnetic stripe data. This ensures that the reader is ready to accept data from a
badge.

Although the magnetic stripe reader is automatically reset after the execution of
each read (READMG) instruction, the RSTMG instruction may be required in the
following instance. Once a badge is inserted into the reader, the 5280 will not
accept data from a second badge until the current badge data is read by the
READMG instruction, or the reader is reset by an RSTMG instruction. If a
RSTMG instruction is executed, the current badge data is ignored and the reader
is ready to accept another badge.

REPFLD (Replace Field or Screen)
Mnemonic

REPFLD

The REPFLD instruction uses the contents of three system binary registers as
parameters. Parameter1 is taken from BR19, parameter2 is taken from BR20,

and parameter3 is taken from BR21. When an external status condition occurs
during the processing of an ENTR, the 5280 places the following information, about
the last field processed, into the system binary registers:

Register Information
BR19 Address of the beginning of the field in the current record buffer.
BR20 Absolute address of the beginning of the field in the keyboard/

display refresh area.

212

BR21

Length of the field, minus 1, and character set specifications, as

follows:

Bits

0-3

4
5-156

Meaning

Character set

0000 = picture check field
0001 = alphabetic shift field
0010 = numeric shift field
0011 = hex field

0100 = special characters field
0101 = format level zero field
1001 = alphabetic-only field
1010 = numeric-only field
1011 = digits-only field

1100 = special-characters-only field
1 = signed numeric field
Length minus 1

When the REPFLD instruction is executed, the number of bytes indicated by BR21
are moved from main storage, starting at the relative address stored in BR19, to the
absolute address in the screen refresh area stored in BR20.

If BR21 specifies a signed numeric field, or a digits-only field or numeric-only field
that is not signed numeric, and the rightmost byte of the bytes moved is a hex DO
through D9, a minus sign is displayed in the sign position of the field, to the right
of the rightmost character. Otherwise the sign position is blank.

The data is translated and displayed as for a CRTMM instruction that specifies the
S for the attributes parameter. (See Move Bytes Between Storage and Screen, |later
in this chapter.)

REPFLD can be used when data is entered, then calculated or changed in the
current record buffer, then redisplayed.

Example: Enter 2 fields: Hours worked + Rate of pay. The program multiplies
them to find Gross pay. An RG (return to program) bit is included at end of the
field for Gross pay (a bypassed field since the program computes it). Binary
register BR19, BR20, and BR21 are set to the field for Gross pay when the RG
external status occurs. The subroutine for the RG condition computes the Gross
pay, and places it in the 1/0 buffer in the Gross pay field, then issues REPFLD
to display the computed value.

RTIMER (Read Elapsed Time Counter)

Mnemonic

RTIMER

where:

Operand

(BRn)

Operand specifies a binary register that contains the address of a 3-byte storage
area into which a timer value is read.

5280 Assembler Language Instructions

213

The elapsed time counter is an optional feature of the 5280. It measures elapsed
reai time and can be used io compuie production siatistics. Approximately

every 1.6 seconds the timer overflows. Each time it overflows, a 2-byte counter in
the system control block is incremented. The RTIMER instruction reads the
current value (* .05 seconds) of the counter and the interval timer into the 3-byte
storage area pointed to by the operand binary register. The high order two bytes
are read from the counter in the system control block. The interval timer value is

read into bits 4-7 of the low-order byte; bits 0-3 are always zero.

DATA MOVEMENT INSTRUCTIONS

The 5280 assembler language provides instructions to:

® [oad a register with a constant or with the contents of another register or
storage.

® Store a constant or the contents of a register.

® Convert binary and EBCDIC data.

® Exchange the contents of two locations.

® Move bytes of a specified length to storage or a screen.

® Move formatted data to storage or a screen.

For data movement instructions, registers can be specified by the register number or

label. Storage locations can be specified by a label or base displacement address.
Load Binary Register

One or two bytes of a binary register can be loaded from another binary register or

from a storage address. The register can also be loaded with a constant or with

the address of a labeled area. A binary register always contains binary notation with
no sign. The format for loading a binary register is as follows:

Result Operand
BRb[(1)]
BRa = storage
constant
where:

Result indicates the binary register into which data is loaded.

Operand specifies the data to be loaded into the result binary register. The
operand may be 1 or 2 bytes in length. If the operand is 1 byte, it is loaded
into the rightmost byte of the result register, and the leftmost byte of the result
register is set to zero. The operand is unchanged by the operation.

Load with Contents of Binary Register
Result Operand
BRa = BRb (1]

The contents of the operand register are loaded into the result register. if the
operand register specifies a length of 1-byte (BRb(1)}, the contents of the right-
most byte of the operand register are loaded into the rightmost byte of the

result register, and the leftmost byte of the result register is set to zero. if the

result register specifies a length of 1-byte (BRa(1)), the contents of the rightmost
byte of the operand register are loaded into the rightmost byte of the result register,
and the leftmost byte of the result register is unchanged. It is invalid to specify a
1-byte length for both registers.

Load with Labeled Storage
Result Operand
BRa = label [{1)]
The labeled byte and the next consecutive byte are loaded into the binary
result register. |If a length of 1 is specified (labei(1)), only the labeled byte
is loaded into the rightmost byte of the binary register; the leftmost byte of

the register is set to zero. If the length is omitted, the declared length of the
label is used; a length greater than two bytes is invalid.

Load with Base Displacement Storage

Result Operand

BRa [disp] ([len] ,BRb)

When this instruction is executed, the displacement (disp) is added to the
contents of the binary register (BRn) to find the relative address of the leftmost
byte specified by length (len). The contents of this 1 or 2 bytes are moved into
the result register. The data in the storage location remains unchanged. If the
length is omitted, 1-byte is used.

Load with a Constant
Result Operand

BRa = constant

The constant specified by the operand is loaded into the binary register. Any
constant less than 16 bits in length is padded on the left with zeros.

5280 Assembler Language Instructions 215

216

Load Decimal Register

One to 16 bytes may be loaded into a decimal register from another decimal
register or from a storage location. A signed constant may be loaded into the full
register, or a 1-byte constant may be loaded into a specified offset into the
register. Data in a decimal register is represented in EBCDIC notation.

The format to load a decimal register is as follows:

Result Operand
Rb

Ra= storage
constant

Load with Decimal Register

Result Operand
Ra = Rb

The contents of the operand register (Rb) replace the contents of the result register
{Ra). The operand register remains unchanged.

Load with Labeled Storage

Result Operand
Ra = label [(len)]

The result register is set to blanks (hex 40s). Then the bytes beginning at label
are loaded into the result register.

If length (len) is specified, the specified number of bytes are loaded into the
decimal register and right adjusted.

If length is not specified, the number of bytes assigned as the length of the label (by
the .DC control statement that declared the label) are loaded into the decimal
register and right adjusted. A length greater than 16 is invalid.

Note: The label must be assigned to a storage location within the first 32 K of
storage.

Example:

Statements Registers

.DC LABEL=QTY LEN=10 INIT=4455667788;

LOADX: RX=QTY(b); Length specified RX B bbb bb b bBBBLYBAIAI55EE6

LOADY: RY=QTY ;Length omitted RY ¥ ¥ b VBYB4455667788S

Load with Base Displacement Storage
Result Operand
Ra= [disp] ([len], BRn)

The operand specifies a binary register that acts as a base address register. The
displacement (disp), if specified, is added to the contents of the base address
register. The result is taken as the address of the first byte of data to load into the
result register. If length (ien) is included, the number of bytes specified, starting
at the first byte of the storage area, is moved into the decimal register and right
adjusted. If length is omitted, it defaults to 1 byte. The result register is set to
blanks (hex 40s) before the data is transferred. A length greater than 16 is invalid.

Example:
IRERERARRRANIEL
BASREG =178 Storage Positions [7|718(8]818 (8 |8
819101123145
Data j11313i{5151717 |9
@=2+178

r

The instruction REGX = 2(5,BASREG) would result in:
REGX b U ¥ b ¥ b BB YBYBIWYV3IGEE 77

Load with a Signed Constant
Result Operand
Ra= *constant
The value specified by the operand is loaded into the result decimal register. If the
sign is negative, the rightmost byte of the decimal register has hex D in the zone

portion. If the value is positive, the rightmost byte of the decimal register has hex
F in the zone partition. The data is right adjusted in the decimal register.

5280 Assembler Language Instructions 217

The constant may be specified as immediate data with decimal or hexadecimal
digits. The maximum decimal value that can be loaded with this operation is

65 535. The operand may also be an equated constant. You must include the sign
with an equated label.

When the operand is a signed constant, the unfilled high-order bytes are padded
with zeros.

When the operand is an unsigned single-digit constant (0-9), the unfilled high-order
bytes are padded with blanks.

Example: The instruction RX = -345 results in:

0001020304 0506070809 101112131415
rRX [FIF[F[E[F[F[F[F|F[F[F[F[F[F[F|D
ojofo]o]o]o]o]ofojo]o|o]o|3]4a]5

Note: If you attempt to load a register with a character, the register is loaded with
the decimal EBCDIC equivalent of the character. For example, if the specified
constant is C’A’ (hex C1), the register is loaded with 13 leading zeros (hex F0Os)
and F1F9F3 (decimal 193).

Load with a 1-Byte Constant
Resuit Operand
[offset] ,Ra = constant
The constant specified by the operand is inserted into the decimal result register
at the byte specified by offset. The constant may be specified in any of the forms
described under Constant Specifications in this chapter.

Example:

Before After

2

f
RX 6] fset

010203040506070809101112131415 00010203040506070809101112131415
Rx [T TTITTTITTITTITIRIT] 14.RX=C'/|¥ (T TTITTITITIT LIFJHL?E]

Store at a Labeled Address

One or more bytes of a decimal or binary register can be stored into a labeled
storage area. Also, a 1-byte constant can be stored into a labeled storage byte.
See Addressing Methods under Partitions in Chapter 1 for more information
about labeled addressing.

218

Data is stored into a labeled address using the following format:

Result Operand
Rn
label[(len)] = BRn
constant
where:

Result indicates the label of the storage location into which data will be stored.

Operand indicates data to store.

Store a Decimal Register
Result Operand
label [{len)] = Rn

If a length {len) is included, the rightmost number of bytes specified by the length
are moved into the labeled storage area. The storage area begins at the byte
assigned to label and continues for the number of bytes specified by length. If
length is omitted, it defaults to the Iength specified by the .DC control state-
ment that assigned the label. The labeled location must be within the first

32 K bytes of a partition.

Example:

00010203040506070809101112131415

REG2 2 (2|3 3144651616 8 8
w

f
STGE(3)=REG2
|

r——,
000102030405060708091011121314 15
stGe [8fofo [1 [[[I 1§ T J11T1]

Store a Binary Register
Result Operand
label [(len}] = BRn
If the operand is full binary register, the contents of the two register bytes are
stored into the byte specified by fabel, and the next consecutive byte. The result

storage location must not be specified as more than 2 bytes in length. If the length
is omitted, the declared length of the labeled area is used.

5280 Assembler Language Instructions 219

220

Store a Constant
Resuit Operand
label = constant
The 1-byte constant specified by the operand is loaded into the labeled byte.
Only the one labeled byte is changed. The constant may be specified in any of the
forms described under Constant Specifications at the beginning of this chapter.

Store at Base Displacement Address

Data can be stored at a base displacement address. Base displacement addressing
is described in Chapter 1 under Storage.

The format for the instructions to store data at a base displacement address is as

follows:

Result Operand
Rn

[disp] ([{len]),BRn) = BRn
constant

where:

Result indicates the storage area into which data is stored. The binary register
acts as a base address register. The contents of the base address register (BRn)
are added to the displacement (0-255), and the result is the address of the first
of the storage bytes into which data is stored. The number of bytes stored is
determined by the length specified (len).

If the result address specifies a location outside the partition, a program check
error (hex 01) occurs.

Operand indicates the register from which data is moved, or a 1-byte constant.

Store a Decimal Register
Result Operand
[disp] ([len], BRn) = Rn

The contents of the decimal register specified by the operand are stored into the
location indicated by result. The contents of the base register (BRn) are added to
the displacement (disp), and the sum is taken as the address into which the data

is stored. If length is included (len), the rightmost number of register bytes
specified by the length are moved into the storage area. The optional length
defaults to 1 byte. A length greater than 16 is invalid.

Store a Binary Register
Result Operand
[disp] ([len], BRa) = BRb

The contents of the binary register specified as operand (BRb) are stored into the
location specified by result. The displacement (disp) is added to the contents of
the binary base register (BRa), and the result is taken as the rightmost byte of
storage into which the contents of the binary register are stored. If the length of
one is specified, the contents of the low-order byte of the operand register are
stored.

Store a Constant
Result Operand
[disp] (BRa) = constant

The displacement is added to the address in BRa, and the 1-byte constant specified
by the operand is stored in the byte at the resulting address. Do not specify length
for this operation, and do not include a comma to the left of the binary register

as is required for other base displacement addresses.

Exchange Data

Data may be exchanged between two registers or between a storage area and a
binary register. The contents of a binary register may be exchanged with the
contents of another binary register or a storage location. The contents of a
decimal register may be exchanged with the contents of another decimal register.
The format for the exchange operation is as follows:

Result Operand
BRa <=> BRb

label
Ra <= Rb
where:

Result indicates the register into which the data from the operand register is
placed upon completion of the operation. Data originally in the result register
is placed in the operand register.

Operand indicates the register or storage area that exchanges contents with the
result register.

5280 Assembler Language Instructions 221

222

BRa

-

=> (Binary Register Exchange)

Result Operand
' BRb
S

The contents of the operand, which may be a binary register or a 2-byte labeled
storage area, are placed into the result register (BRa). The original contents of
the result register are placed into the operand register.

Ra <=> (Decimal Register Exchange)

Result Operand
Ra <=> Rb

The contents of the operand register are placed into the result register, and the
original contents of the result register are placed into the operand register.

Convert Register Contents

The contents of a register or labeled storage area can be converted from binary to
EBCDIC or from EBCDIC to binary. The convert operation both converts and
moves the data. Although all data is physically stored as binary bits, the bits may
represent the binary value or the EBCDIC value of the data. Each byte of decimal
EBCDIC data is divided into a zone portion and a digit portion. Therefore, to
express the value of one byte of binary data requires 1 byte of EBCDIC or 2 bytes
of hexadecimal EBCDIC. EBCDIC data, however, can be displayed on the screen.
Binary data must be converted to EBCDIC in order to be displayed. For example,
B‘11111000’' converts to EBCDIC F2F4F8 with decimal conversion and can be
displayed as 248. With hexadecimal conversion, B‘11111000’ converts to
EBCD!C C6F8 and can be displayed as F8. The format of the convert operations
is as follows:

Mnemonic Result Operand
Rn = BRn
BINDEC (Rn Jabel [(2)])

BINHEX (label [{len)], BRn)

HEXBIN (BRn , label [{len)])
BRn = Rn

DECBIN (1abel [{2)],Rn)

where:

Result indicates the register or labeled storage location into which the converted
data is moved.

Operand indicates the register or storage location that holds data to be converted
and placed into result register or storage location. The operand remains
unchanged.

Rn = (Convert Binary to Decimal)
Result Operand
Rn = BRn
The contents of the operand register (BRn) are converted to decimal, and the
decimal value is loaded into the decimal register specified as result (Rb). The
decimal value is represented as positive in the result register.
The operand register contains the original binary notation upon completion of
the operation.

BINDEC (Convert Binary Storage to EBCDIC)
Mnemonic Result Operand

BINDEC (Rn, label [(2)])

The contents of the 2-byte labeled storage area are converted from binary to
EBCDIC and placed into the decimal register.

The storage area must be 2 bytes in length. You may specify the length in the
instruction, or you may omit the length if the area was declared as 2 bytes in length.
BINHEX (Convert Binary to EBCDIC Storage)

Mnemonic Result Operand
2
BINHEX (label [(4)1, BRn)

The contents of the operand binary register (BRn) are converted to an equivalent
hexadecimal EBCDIC, and the hexadecimal EBCDIC value is loaded into the 2-byte
or 4-byte storage area specified by the label.

The length of the storage area may be specified in the instruction. If the length is
omitted, it defaults to the length specified by the .DC control statement that
labeled the storage area. Only 2 or 4 are valid for length. If a length of 2 is
specified, only the rightmost byte of BRn is used.

The contents of the binary register are converted to 2 or 4 (depending on the

length of the storage area) hexadecimal EBCDIC characters and stored into the 2 or
4 storage bytes.

5280 Assembler Language Instructions 223

224

HEXBIN (Convert Hexadecimal EBCDIC Storage to Binary)

Mnemonic Result Operand

HEXBIN (BRn, label [{i} 1)

The hexadecimal EBCDIC values at the storage iocation specified by the label
are converted to binary and loaded into the binary register specified by BRn.

The length of the storage area may be specified in the instruction, or it may
default to the length specified by the .DC statement that labeled the area. Only
2 or 4 is valid for the length.

If the length of the storage area is four bytes, the 4 hexadecimal EBCDIC
characters in the storage area are converted to 2 bytes of binary notation and
placed into the binary register specified by result. if the length of the storage
area is 2 bytes, the 2 hexadecimal EBCDIC characters are converted to 1 byte of
binary notation and placed into the rightmost byte of the binary register; the
leftmost byte remains unchanged. If the storage area contains any values other
than ‘0-9' or ‘A-F’, 1119 is set and the register contents are unpredictable.

BRn = (Convert Decimal to Binary)

Result Operand
BRn = Rn

The contents of the operand register are converted to binary notation, and the
binary notation is loaded into the result register. If the contents of the decimal
register are negative, or if the binary register overflows, the overflow indicator
(1124) is set on.

DECBIN (Convert EBCDIC to Binary Storage)

Mnemonic Result Operand
DECBIN (label [(2)], Rn)

The contents of the decimal register are converted to binary and stored in the
2-byte labeled storage area specified by result.

The length of the storage area must be 2 bytes. You may specify the length in the
instruction, or you may omit the length if the area was declared as 2 bytes in
length.,

Move Bytes Between Decimal Registers

One or more bytes can be moved from one decimal register to another. The bytes
can be moved to corresponding positions or to different positions in the receiving
register.

The format to move the partial contents between decimal registers is as follows:

Mnemonic Result Operand Offset Length
MOFF
{MVER} (Ra, Rb [,0-15, 1-16])
where:

Results indicates the decimal register to which the data is moved.
Operand indicates the decimal register from which the data is moved.

Offset specifies the offset of the leftmost byte to which data is moved. Offset
defaults to zero.

Length specifies the number of bytes (1-16) that are moved. Length defaultsto 1.

MOFF (Move to an Offset)
Mnemonic Result Operand Offset Length
MOFF (Ra, RB [,0-15 1-16])
The rightmost number of bytes specified by length are moved from the operand
register to the result register, The data is moved from left to right and placed in

the result register at the byte specified by offset.

The offset applies only to the result register (Ra), so the move is not limited to
corresponding byte positions.

Note: If the sum of offset and length is greater than 16, bytes are moved into the
register following the result register.

Example:
0001020304 0506070809 10111213 14 15 0001020304 0506070809 101112131415
Before: RX 112 RB[3J4ls[5l6[6]7]7 I8 (8] Ry [olofofofojofofoloolofo]ofoiolo}

I
MOFF(RX,RY 4,7)

]

'

0001020304 0506070809 1011121314 15
Atter: RX I[12[2[0[o[0ofofofololel7 7 [8]8]

5280 Assembler Language Instructions 225

MVER (Move to Corresponding Bytes)

Mnemonic Result Operand Offset Length

MVER (Ra, Rb [,0-15 ,1-16])

The number of bytes specified by length are moved from the operand register to
the result register, The data is moved from left to right, starting at the offset in
the operand register and placed in corresponding positions, starting at the offset, in

the result register.

The offset applies to both the operand and the result register, so the data is
always moved to corresponding positions in the result register.

Note: If the sum of offset and length is greater than 16, bytes are moved into the
register following the result register.

Example:

00010203040506070809101112131415 0001020304050607080910111213 1415

gfor: RX [T BRRB BB BB B I7] RY PO R R P EI6l666]

I i

MVER(RX,RY 4,7)
'

I

0001020304 050607080910 11121314 15

ae: RX TN RPRI2RJalaaB 77 [7 7]

226

Move Bytes in Storage

From one to 256 bytes can be moved to another storage address within the same
partition.

Mnemonic Result Operand Length
MvC
MVCR
MvCVv (BRa, BRb, 1-256)
where:

Result indicates a binary register that contains the address, relative to the start
of the partition of the leftmost byte into which data is moved.

Operand specifies a binary register that contains the address of the leftmost
byte from which data is moved.

Length specifies the number of bytes to move. The specification is a decimal
constant (1-256).

MVC (Move Characters)
Mnemonic Result Operand Length
MvC (BRa, BRb, 1-256)
The number of consecutive bytes specified by length are copied from the storage
location, beginning at the byte specified by the contents of the operand register

(BRb), into the location beginning with the byte specified by the contents of the
result register (BRa).

Data is moved starting with the leftmost byte and continuing to the rightmost byte.
Example:

.DC LABEL=FLD1@ TYPE=BIN INIT=ADDR(FLD1);
.DC LABEL=FLD2@ TYPE=BIN INIT=ADDR(FLD2);

FLD1 WX Y Z FLD1
Before: MVC(FLD1@,FLD2@,3) After:
FLD2 JABC D FLD2 [ABCD

MVCR (Move Characters Right to Left)
Mnemonic Result Operand Length
MVCR (BRa, BRb, 1-256)

The number of bytes specified by length are copied from the storage location
indicated by the operand register (BRb) into the location specified by the result
register (BRa).

Data is copied starting with the rightmost of the operand bytes specified by
length and continuing to the leftmost byte. This instruction is useful for moving
data into overlapped fields.

Example:

.DC LABEL=FLD1@ TYPE=BIN INIT=ADDR{(FLD1);
.DC LABEL=FLD2@ TYPE=BIN INIT=ADDR(FLD2);

FLD2 FLD2
FLD1 FLD1
Before: A, MVCR(FLD1@,FLD2@,5) After: et
ABCDEFGH GHFGHFGH

5280 Assembler Language Instructions 227

MVCYV (Move Characters Reverse)
Mnemonic Result Operand Length
MvCV (BRa, BRb, 1-256)
The number of bytes specified by length are copied from the storage location
specified by the contents of the operand register (BRb) into the location specified

by the contents of the result register (BRa).

While the data is copied from one location to the other, the order of the bytes is
reversed.

Data is copied from the iocation specified by the operand register (BRb) from left
to right; the data is copied into the address specified by the result register (BRa)
from right to left.

Example:

.DC LABEL=BRX TYPE=BIN INIT=ADDR(STRX);
.DC LABEL=BRY TYPE=BIN INIT=ADDR(STRY);

STRX JAB C D E | STRX JAB C D E
Before: MVCV(BRY,BRX,3) After:

STRY JVWX Y 2 STRY |C B AY Z

Move Bytes Between Storage and Screen

Data bytes may be moved directly between the display screen refresh area and main
storage. No formatting is done. Bytes are moved to or from any position in the
refresh area. A binary register is specified to contain the absolute address within
the refresh area, or the position on the screen. If a screen position is used, the
high-order byte contains the row number and the low-order byie contains the
column number,

Row Column

Brn 00001100 00001011

If row O is indicated, the bytes are moved to the status line. If row 1 is specified,
the bytes are moved to the top line of the screen, which is not displayed when
the status line is being displayed. If the position specifies column 0, external
status condition 10 (invalid operation) occurs.

Be careful to specify a valid screen position. If the position operands point
outside your screen, they may point to an area of control information within the
keyboard/display; this results in external status condition 10. invalid position
operands may also point to the area of another display screen; in this case, the
move proceeds and overwrites the data on the other screen.

228

The formats of instructions to move data between storage and screen are as

follows:

Mnemonic Result Operand Length Attributes
CRTMM (BRa, BRb, BRc L {gc} 1)
MMCRT (BRa, BRb, BRc)

where:

Result is a binary register that contains the address of the first storage byte or
screen position to which data is moved.

Operand is a binary register that contains the address of the first storage byte
or screen position from which data is moved.

Length is a binary register that contains the number of bytes, minus one, to
move. The number may be from one to the maximum number of positions
on the screen.

Attributes may be included with the CRTMM instruction to determine the
display of the bytes. They are described with the CRTMM operation description.

CRTMM (Move to Screen)

Mnemonic Result Operand Length Attributes

CRTMM (BRa, BRb, BRc [, {ng} 1

The number of bytes indicated by the length register (BRc) are moved from storage
to the screen. The bytes are moved beginning at the address indicated by the
contents of the operand register (BRb) to the address or screen position specified
by the contents of the result register (BRa). f the attributes parameter is omitted
in the instruction, the bytes are translated from EBCDIC notation to display

codes (using a translate table in keyboard/display storage) before they are placed
into the screen refresh buffer and displayed on the screen. Most data that is moved
to the screen requires this translation so the proper display graphics appear on the
screen. EBCDIC values from hex 20 through 3F are translated to display
attributes that alter the appearance of the screen, such as blank and underscore.
Therefore, any data that may contain display attributes, such as prompts, should
be moved to the screen in this way.

If NC is specified for the attributes parameter, the bytes are not translated as they

are moved from main storage to the screen refresh buffer. Data that has been
moved directly from the screen refresh buffer can be returned in this way.

5280 Assembler Language Instructions 229

if the S is specified for the attributes parameter, the bytes are transiated through
the translate table; however, before translation all EBCDIC values in the attribute
range {(hex 20 through 3F) are changed to hex 1F. Hex 1F translates to a solid
rectangle in the translate table. This allows actual data, which may contain hex
values between hex 20 and 3F, to be moved to the screen without affecting the
appearance of the screen. All hex values between 20 and 3F appear as solid
rectangles on the screen; the EBCDIC data in main storage is not altered. The hex
value position on the status line displays the hex value of the positions that are
displayed as solid rectangles if they appear within a screen format field when an
ENTR is being processed.

MMCRT (Move to Storage)
Mnemonic Result Operand Length
MMCRT (BRa, BRb, BRc)

The number of screen positions indicated by the length register (BRc) are moved
from the screen to storage. The data is moved beginning with the location

specified by the operand register (BRb) to storage, beginning at the address
specified by the result register (BRa). The display on the screen remains unchanged.

Example: The following code moves data from the screen to storage locations
labeled LETRS1, LETERS2, and NUMBS.

.DCLBR LABEL=TO@,FROM®@,LNGTH; Columns
TO®@ = ADDR(LETRS1);
FROM® = X'0302’; screen position row 3, column 2 123456789.
LNGTH = 7-1; 1
MMCRT(TO®@,FROM®@,LNGTH); moves ‘ABC DEF’ into LETRS1 2
TO@ = ADDR(LETRS2) + 4; 3 ABC DEF
FROM® = X'0306’; screen position row 3, column 6 4
LNGTH = LENG(LETRS2) - 4; Rows § 12345
MMCRT(TO®@,FROM®,LNGTH); moves ‘DEF’ into LETRS2 6
TO@ = ADDR(NUMBS) + 2; 7
FROM®@ = X’0502’; screen position row 5, column 2 8
LNGTH = 5-1; 9
MMCRT(TO@,FROM®@,LNGTH); moves 12345 into NUMBS

Storage

LETRS1 [ABC DEF
LETRS2
NUMBS 12345

230

Move Formatted Data

The following instructions move data according to a specified edit format. The
edit format is set up by the .FMT control statements, which specify:

® The storage areas to or from which data is moved (DCLBL)

® The length of the data (LEN)

® The editing of the data fields (EDIT)

The edit format can convert data to decimal, to binary, or to hexadecimal
notation. Field punctuation, such as a fixed dollar sign, a floating dollar sign, a

decimal point, sign control, and fill characters are specified by the format editing.

The instructions for formatted moves are as follows:

Mnemonic Operand1 Format Operand2 Operand3

REBF (BRa, {'fbe'})

WRBF (BRa, label [LBRb])

WFMCRT (BRa label [,BRb B 1)
' ! ! ADD

where:

Operand1 specifies a binary register that contains an address.
Format indicates the formatting of the data.
Entry Description

label is the LABEL parameter of the .FMTST control statement that
set up the edit format you wish to use.

may be specified instead in the REBF instruction to indicate that
formatting is data directed. See Data Directed Formatting in

Chapter 2 for more information.

Operand?2 is an optional entry that may be specified for WRBF or WFMCRT and
is discussed in the operation descriptions.

Operand3 may be specified only for WFMCRT and is discussed in the WFMCRT
operation description.

5280 Assembler Language Instructions 231

232

REBF (Read to Format Specifications)

Mnemonic Operand1 Format

REBF (BRa {'fbe'})

Data bytes, beginning at the address specified by the contents of the binary
register (BRa), are moved into the location specified by the DCLBL parameter of
the edit format. The number of bytes moved is determined by the LEN parameter
of the format, and editing is controlled by the EDIT parameter of the format.

In normal formatting, the instruction specifies the format label (LABEL
parameter from the .FMTST statement). For data directed formatting, the
instruction specifies an asterisk (*) instead of a label.

Example: The following code moves data from a storage location pointed to by
BUFR according to a format labeled FMT®6.

Before: 0102030405060708091011121314151617 1819202122
BUFR [T 1 706 4C4 $14. 29 1478

FMTST LABEL
.FMTFLD DCLBL
.FMTFLD DCLBL

FMT6 ; set up format
ITEM# TYPE=DEC LEN = 8 coL 1;
ITEM$ TYPE=DEC LEN 7 CcoL = 9 EDIT = $$,DP.02;

1
1]

FMTEND DCLBL = ONHAND TYPE=DEC LEN = 5 COL = 18;
REBF (BUFR, FMT6) ; move data (
ITEM# | T17064C4]
After: {1 |TEM$ { 0000000000001429)
ONHAND | 1478)

\

WRBF (Write Format to Storage)

Mnemonic Operand1 Format Operand2
WRBF (BRa, [label] [,BRb])

You can omit the format and include the binary register if you want to blank the
buffer. This is the best way to blank a buffer that is longer than 256 bytes. The
binary register can specify up to 65 535 bytes to blank. The 5280 does not check
to ensure that you do not exceed your partition size.

The contents of the locations specified by the labeled format are moved to the
address specified by the operand1 binary register (BRa). If the operand2
binary register {BRb) is included, the contents of this register are taken as the
number of bytes to blank, beginning at the location specified by the first binary
register, before the move is performed. If the second binary register is not
included, no bytes of the storage location are blanked.

WFMCRT (Write Format to Screen)

Mnemonic Operand1 Format Operand2 Operand3

B
WFMCRT (BRa , label [,BRb , {ADD} B

Data is moved to the screen, beginning at column 1 of the row specified by the
low-order byte of the operand1 register (BRa). Data is moved from the locations
specified by the labeled edit format, for the number of bytes specified by the
format. The format also specifies any punctuation that should appear on the
screen, such as a dollar sign, decimal point, or minus sign. The format must not use
more than 200 screen positions. If row O is specified, data is moved to the status
line; if row 1 is specified, data is moved to the extra line. |f operand?2 specifies a
binary register (BRb), the contents of this register are taken as the number (1-200)
of screen positions to alter before the formatted data is moved to the screen.
Operand3 specifies how to alter the screen.

If B is coded for operand3, all characters on the screen between the data fields
that are defined in the edit format are blanked for the number of bytes specified
in operand2.

If ADD is coded for operand3, only the fields that are defined in the edit format
are changed on the screen; the characters between the edit format fields remain
on the screen for the number of bytes specified by operand2.

If operand2 and operand3 are omitted, and if the edit format does not account for
all the positions on the screen within the edit format, the results are unpredictable.

Note: The fields must be in the order they appear on the screen.

PARTITION LOAD AND EXIT INSTRUCTIONS

During IPL, the IPL utility can load a program into any 5280 partition. The IPL
utility prompts the operator to enter the appropriate load parameters via the
keyboard. At any time after IPL, a program currently executing within a
partition can load another full or partial program into any available partition. The
executing program either prompts the operator to enter the load parameters via
the keyboard or obtains the load parameters from main storage. The LOAD
instruction, issued by the executing program, specifies which method is used to
obtain the load parameters.

The EXIT instruction makes a partition available to be loaded with a program.

If an error occurs during a load operation, the 5280 can handle error recovery,
or you can write your own error recovery procedures.

At IPL, every partition can be loaded with a LOAD instruction. Then, any

partition which has executed an EXIT instruction is available to be loaded by any
partition that has a LOAD instruction.

5280 Assembler Language Instructions 233

234

. . -
A LOAD instruction can be inc

>
5

t the end of every program. Then, when the
program has completed its execution, the current partition can be reloaded with
another program. Or, the EXIT instruction can be included at the end of a
program, making the partition available to be loaded by another partition. In either

case, the load parameters may be obtained from storage or from the keyboard.

An EXIT instruction should not be issued from a foreground partition. 1110 is on

if the partition is a background partition. The normal way to handle the End of Job
key is to test 1110; if it is on issue an EXIT instruction; if off, call the Standard Load
Processor. See Chapter 6 under Common Function Routines for a description of the
standard load processor.

Load a Partition

The format for the LOAD instruction is as follows.
Mnemonic Parameters Operand
LOAD {[label] [,PAE])

where:

Parameters may specify the label of the storage area where the load parameters
have been stored. The load parameters are described in this chapter. If the
label is omitted, the operator will be prompted to enter the load parameters
from the keyboard, using a global load.

Operand describes the kind of load to execute, as follows.
Entry Description

P Specifies that the load is a partial overlay into the current
partition. If P is omitted, a full partition load is executed. If P is
coded, the load parameters label must be specified, and must include
the relative address where the partial overlay begins. This 2-byte
address must be on a 256-byte boundary and must be greater than
hex 0100. You may not perform a partial overlay if you are using
the standard-load-processor prompt. (The standard load processor
is described in Chapter 6 under Common Function Routines.) See
Partial Overlay later in this chapter for more information.

A Specifies that, if a foreground partition is loading a background
partition, the foreground partition attempts to attach the back-
ground partition after it is loaded. If the attach fails, the load is
not affected. If the A is not specified, no attach is attempted.

E Indicates that, in case of error during the execution of the
LOAD instruction, you have provided error recovery instructions.
If the error occurs, control passes to the first instruction following
the LOAD. If the load operation is successful, control passes to
the second instruction following the LOAD instruction.

If E is omitted, system error recovery is used. If E is specified
and you load the current partition, E is ignored.

If an executing program loads a program (other than a partial overlay) into a
different partition, the newly loaded program begins execution in the newly
loaded partition, and the next sequential statement following the LOAD
instruction is executed in the current partition.

If an executing program loads a different program into the partition in which it
is currently executing, all open data sets within the current partition are closed,
all outstanding keyboard operations or enter commands are completed, the new
program is loaded, and the newly loaded program begins execution.

A newly loaded program begins execution with the statement specified by the
ENTRY parameter of the .START statement. If the ENTRY parameter is not
specified, the execution begins with the first executable instruction in the
program,

Exit a Partition

The EXIT instruction may be issued in a foreground or background partition.
The instruction is used to make a partition available to be loaded.

The format of the EXIT instruction is as follows.
Mnemonic
EXIT

If the EXIT instruction is issued in a background partition, a flag is set in the
system control area to indicate that the partition is available to be loaded. This
flag must be set for the background partition to be loaded by another partition.

If the EXIT instruction is issued in a foreground partition, a flag is set in the
partition control area to indicate that the partition is available to be loaded. The
flag in the system control area is not set; this allows the 5280 to process keystrokes
in the exited partition.

In both foreground and background partitions, the exit operation also detaches
the partition if it was attached to a keyboard. It closes all open data sets, and it
forces a system unlock in case the partition was locked when the EXIT instruc-
tion was issued.

The Load Parameters

When the load parameters are placed into a main storage location (instead of
being read from the keyboard), they are placed into a 43-byte area. The load
parameters include the partition number, the device ID or address, an optional
start address, and the data set name.

Partition Number: Two bytes in length, the partition number specifies the parti-

tion to load. The first byte contains the partition number (hex 0 to F). If both
bytes contain blanks, the current partition is reloaded.

5280 Assembler Language Instructions 235

236

~ .
Examples.

X'F640° Load the partition number 6.
X'4040° Reload the current partition,

Device ID: Four bytes in length, the device identification specifies the device

that contains the data set identified by the Name parameter. The device ID
consists of either a 2-character logical ID defined in the resource allocation table
or a 4-byte physical device address. |f the last 2 bytes contain blanks, the first

2 bytes contain the logical device ID that is stored in the resource allocation

table. Otherwise the 4 bytes contain a physical address. The first 2 bytes of the
physical address contain the last 2 bytes of the storage address of the |0B

pointer, which is in the system control area, for that device. The last byte
contains the device subaddress or zeros. Only the printer uses device subaddresses.

Examples:

Cc'DY’ The physical address of D1 is in the resource allocation table.
C’'4400’ This is the physical address of a diskette.

Start Address: Two bytes in length, the start address is used only when loading
a partial overlay. The start address must be greater than hex 100 and must fall on a

256-byte boundary.

If you are not loading a partial overlay you must include these 2 bytes but they are

ignored.

Examples:

X’0C00° 256 byte boundaries always have hex 00
X’1F00’ as the last two hex digits.

Data Set Name: A maximum of 36 bytes in length, the data set name consists of an
optional volume ID and the mandatory name of the data set to load. No blanks are
allowed within the data set name, but the data set name must end with a blank.

The volume 1D is specified only if volume checking is desired. The volume ID
may be up to six alphameric characters, must be preceded by an asterisk, and must
be followed by a period.

The name may be up to 8 alphameric characters for an H, |, or basic exchange data
set. For an E exchange data set the name may be up to 17 bytes consisting of one
or more simple names of up to 8 alphameric characters, with each simple name
separated by a period. For example, PROG1.PART1.A is a data set name consist-
ing of three simple names.

The final blank must follow the name.

Partial Overlay

By using a partial overlay, you can spot load a section of object code or data
into a partition without destroying the program already in the partition. You
load a partial overlay by specifying a start address in the load parameters. The
start address is the storage address where you want the overlay to begin. The
original contents of the partition remain unchanged except in the area of the
overlay. When the partial overlay load operation is completed, control returns
to the instruction following the LOAD instruction. The first 8 bytes of each
partial overlay contain information that is added by the assembler.

Specify OPTION=SUB on the .START control statement when you code a
partial overlay.

Error Recovery

Two methods of error recovery can be used if an error occurs during the execu-
tion of a LOAD instruction. The first method is to write your own error recovery
procedures. The second is to let the 5280 handle the errors.

User-Defined Error Recovery

When a program instruction loads a data set into another partition, the load
instruction can indicate that user defined error recovery procedures will handle
error recovery. If the load operation is successful, control returns to the second
instruction following the load instruction. If an error occurs during the load
operation, the system places the error code into a system binary register (BR16)
and returns control to the first instruction following the load instruction. This
instruction usually branches to the error recovery procedures.

System Error Recovery

There are four types of error recovery procedures, depending on the type of load
taking place when the error occurred. When any type of error occurs, the system
sends an error message to the screen and waits for the operator to press the Reset
key. After the reset, error recovery is as follows for the different types of loads:

Global load, using the standard load prompt from the common function area to
prompt for the load parameters to be entered from the keyboard. After reset,
the load prompt is redisplayed with the error information that was entered. The
operator can then enter the correct information.

Program instruction reloading the same partition, with the standard load prompt
in the common functions area available.

After reset, the standard load prompt is displayed, which prompts for the load
parameters to be loaded from the keyboard.

5280 Assembler Language Instructions 237

238

Program instruction reloading the same partition, with no standard load prompt
available. There is no way to retry this type of load. The main microprocessor

issues an exit instruction and goes to the next partition. The partition that was
being loaded is available to be loaded by another partition.

Program instruction loading another partition. After reset, the load instruction is not
retried. The partition that was being loaded is made available to be loaded by
another load instruction following the load instruction.

TABLE INSTRUCTIONS

The table instructions are divided into global table, table read, table write, and
table search instructions. These instructions operate on tables set up by .TABLE
control statements.

The table instructions do not operate on labe! tables set up by the .LABTAB
control statements. The .LABTAB label tables are used only to make indexed
branches, as with a CALLTB or GOTAB instruction.

The .TABLE control statements build the system table that handles the data
tables. Each data table in your program is represented by an entry in this system
table. Each system table entry contains the data table address, argument length,
number of bytes between arguments, maximum number of arguments, and the
number of arguments currently within the table. A source table instruction
specifies tha table label. The assembler places in the object code instruction the
index where the entry for that label is found in the system table. The system
table address is stored in the partition control area. The 5280 has access to all
the table parameters each time a table instruction is executed.

Table instructions for read, write, and search operations specify the table label,

a binary register, and a decimal register. The binary register holds the table index,
and the decimal register holds the table argument. More than one decimal register
may be needed, depending on the length of the argument. The 5280 uses the
smallest number of decimal registers necessary to hold the argument. (The
decimal register specification refers to the leftmost decimal register if more than
one is used.) The argument for a table operation is the rightmost n bytes of the
decimal register or registers, where n is the value given to the ARGL parameter of
the .TABLE control statement.

If an error occurs during a table operation, an indicator is set on. The indicators
used for table errors are as follows:

Indicator Meaning If 1

1125 Table search is unsuccessful.

1126 Invalid index, or table is too small to accept an added entry.

1127 A table error occurred. When 1127 is on, either 1125 or 1126 is also
set on.

Note: The 5280 does not turn these indicators off after the operation has completed.

Table Read Operations

Table arguments are read into one or more decimal registers. Either the last table
entry or the entry at a specified index can be accessed. The format for table read
instructions is as follows:

Result = Mnemonic Table
TBRD

Rn {TBRL } (label, BRn)

where:

Result indicates a decimal register, or the leftmost of the decimal registers,
into which the table argument is read.

Table indicates the table and the table index. The entry is the table label
(LABEL parameter from the .TABLE statement that entered the table into the
system table) and a binary register to hold the appropriate table index.

TBRD (Read Table Entry at Specified Index)
Result = Mnemonic Table
Rn = TBRD (label, BRn)

The argument of the table specified by label, at the index specified by the binary
register (BRn), is read into the register specified by result (Rn). If the argument
length is greater than 16 bytes, consecutive registers to the right of Rn are used. Data
is right adjusted into the smallest number of decimal registers necessary to hold

the argument. The unfilled leftmost bytes of the decimal register are not changed.
The argument length is specified by the ARGL parameter of the .TABLE statement.

TBRL (Read Last Table Entry)
Result = Mnemonic Table
Rn = TBRL (label, BRn)

The last argument of the table specified by label is read into the decimal register
specified by result (Rn). If the argument length is greater than 16 bytes, consecutive
decimal registers are used. The argument is right adjusted into the smallest

number of decimal registers necessary to hold the argument. The unfilled

leftmost bytes of the decimal register are not changed. The argument length is
determined by the ARGL parameter of the .TABLE statement.

The index of the last table argument is loaded into the binary register specified
{BRn).

5280 Assembler Language Instructions 239

240

Example:

0001020304 05060708091011121314 15
RX [FIFIFIFFR BB BB RIAIFIFIFIF

Before: 717177l7lolojolopblolof7 {77 |7
0001020304 0506070809101112131415 TABX
BRY[oJofoJojojofojojojojojoJoj1 J1 o]
1 12345
RX = TBRL(TABX, BRY) 2 23456

—3 __34567
0001020304 0506070809 1011121314 15
RXFFFFF444444FFFFF
7[7|7{7(7jojojojolojof3]a]s]6 |7

After:
000102030405060708091011121314 15
BRY PPOofopooofo o PP [I]—

Table Write Operations

Table arguments can be inserted, deleted, and written at a specified index.
Arguments can be added to variable length tables. The format for these instructions
is as follows:

Mnemonic Table Argument
TBDL (label,BRn)
TBIN
TBWE (label,BRn) = Rn
TBWT

where:

Table indicates the table and the table index. The entry is the table label
(LABEL parameter from the .TABLE statement that entered the table into the
control table), and a binary register (BRn) to hold this table index,

Argument indicates a decimal register, or the leftmost of the decimal registers,
that hold(s) the table argument to be written. The length of the argument is
determined by the ARGL parameter of the TABLE. The argument register
(Rn) is not indicated for the delete operation (TBDL).

TBDL (Delete Table Entry at Specified Index)

Mnemonic Table
TBDL (label,BRn)
The table entry at the index specified by the binary register (BRn) is deleted from

the table. Entries below the point where the deletion is made are moved upward
to fill in the space made by the deletion.

Example:

TABY TBDL(TABY,BRX) TABY
Before: 1 1111 After: 1 1111
2 2222 |~ 2 3333
3 3333

TBIN (Insert Table Entry at Specified Index)
Mnemonic Table Argument
TBIN (label, BRn) = Rn

The argument held in the decimal register or registers (Rn) is inserted into the
table specified by label, at the index specified by the binary register (BRn). The
number bytes inserted is determined by the ARGL parameter of the .TABLE
statement.

All table entries currently below the inserted entry are moved downward. This
includes the entry that was previously in the table position where the new entry
is inserted. The number of entries in the table is increased by 1, and the index
to the new table entry is loaded into the binary register specified by BRn.

TBWE (Extend Table and Write Entry)
Mnemonic Table Argument
TBWE {label,BRn) = Rn
This instruction extends a variable length table and writes the contents of the
decimal register (Rn) beyond the current last entry in the table. The length of the
argument to be written is determined by the ARGL parameter of the . TABLE

statement.

The number of entries in the table is increased by 1, and the index to the new table
entry is loaded into the binary register specified by BRn.

Note: Maximum table size is determined by the MAXM parameter of the . TABLE

statement. Any attempt to extend the table beyond MAXM results in an error. Use
caution in estimating maximum sizes of variable length tables.

5280 Assembler Language Instructions 241

242

Example:

Before:

BrY [0] TABo[mini

RX | 44444 33333

TBWT (Write Table Entry at Specified Index)
Mnemonic Table Argument

TBWT (label, BRn) = Rn

22222| TBWE (TAB9,BRY) = RX

After:
—srv[7]
TAB9
1 11111
2 22222
3 33333
L_ 4 44444

The contents of the decimal register (Rn) are copied into the table specified by
label, at the entry position indicated by the contents of the binary register (BRn).
The number of bytes written into the table is determined by the ARGL parameter

of the .TABLE statement.

Example:

Before: RX
sry (3]

-

TBWT(TABX,BRY) = RX

1
After:

TABX

666666

777777

888888

TABX
666666 |

777777

999999

Table Search Operations

Tables can be searched to find an entry equal to, lower than, or higher than a
specified argument. A table can also be searched using a binary search. The
following indicators are turned on to indicate the result of the search.

Indicator Result
| High found.
101 igher entry foun {Only one of these will be on; it does not
1102 Lower entry found. have to b t)
1103 Equal entry found. ave 1o be reset.
1125 Entry not found. (Must be reset by your program.)

The number of bytes used in the search are the rightmost n bytes of the decimal
register or registers specified, where n is the value given to the ARGL parameter
of the .TABLE control statement.

The format of the search instructions is as follows:

Result = Mnemonic Table

BRn = TBBS (label,Rn)
TBFH

BRn =1 TBFL (labet,Rn [,N])
TBFX

where:

Result indicates a binary register (BRn) into which the index of the table
entry selected by the search operation is placed upon completion of the operation.

Table specifies the search parameters.

Parameter Description

label The label of the table to search.

Rn A decimal register that contains the argument to be searched for.
The argument data is right adjusted within the register,

N May be specified on any search except the TBBS. If N is coded,

the search begins with the next entry after the current index
contained in the binary register (BRn). If N is not coded, the
search begins with the first entry,
TBBS (Binary Search for Equal Table Entry)
Result = Mnemonic Table
BRn = TBBS (label,Rn)
The labeled table is searched, by binary search, to find a table entry equal to the

data contained in the decimal register (Rn). The entries of the table being
searched must be in ascending order.

5280 Assembler Language Instructions 243

244

Hf an entry is found in the table that equals the search argument in the decimal
register, the index of that entry is placed into the specified binary register (BRn).
Indicator 1103 is set on.

If no equal entry is found, 1125 and 1127 are set on. BRn remains unchanged.

Example:

TABS

BRX = TBBS(TAB8,RY) 1 256

Before: RY - After: RY - 2 556
BRX [_4] BRX [_3}——3| 666

4 677

TBFH (Search for Equal or Higher Entry)

Result Mnemonic Table
BRn = TBFH (tabel,Rn [,N]1)

The labeled table is searched for an entry equal to or higher than the data
contained in the decimal register (Rn). The entries in the table to be searched
must be in ascending order.

If N is not coded, the search begins with the first table entry (index 1). I1f N is
coded in the instruction, the search begins with the next sequential index after
the index currently held in the binary register (BRn).

The search ends when the first equal or higher entry is found or when all table
entries between the beginning of the search and the end of the table have been
searched. If an equal or higher entry is found in the table, the index of that
entry is placed into the binary register (BRn). If no equal or higher entry is
found, 1125 and 1127 are set on. BRn remains unchanged.

Example:
TABX
BRX =TBFH (TABX,RY,N) 1 3333333
2 4444444
RY 7777777 RY 7777777 3 6666666
Before: After:
BRx [2] BRX [___4~—4 |s8888888

The first entry searched was at index 3.

TBFL (Search for Lower Entry)

Resuit = Mnemonic Table
BRn = TBFL (label, Rn [,N1)
The labeled table is searched for an entry that is lower than the data contained in

the decimal register (Rn). The entries in the table to be searched must be in
descending order.

If N is coded, the search begins at the next sequential index after the index
contained in the binary register. If N is not coded, the search begins at index 1.

The search ends when the first lower entry is found, or when all table entries
between the beginning of the search and the end of the table have been searched.
If a lower entry is found, the index of that entry is placed into the binary register
(BRn). If no lower entry is found, 1125 and 1127 are set on. BRn remains
unchanged.

Example:

TABX
Ry [333] 1[__600 Ry [_333
Before: After:
2| 500
BRX 6] BRX
300 4]
4|__300

The instruction BRX = TBFL (TABX,RY) would result in BRX containing 4.
The search would begin with entry 1 because N is not specified.

TBFX (Search for Equal Entry)
Result = Mnemonic Table
BRn = TBFX (label, Rn [,N])
The labeled table is searched for an entry equal to the data contained in the
decimal register (Rn). The entries in the table to be searched do not have to be

ordered, because all entries are searched for an equal entry.

Unless N is coded, the search begins at index1. If N is coded, the search begins
at the next sequential index after the index held in the binary register (BRn).

If any equal entry is found, the index for that entry is placed into the binary
register (BRn). If no equal entry is found, 1125 and 1127 are set on. BRn
remains unchanged.

TABS

1 (22222

2 [66666

BRX = TBFX (TABS$,RY,N) 3 [8as8s

Before grx [_2] “BRX [2] s[1

The search begins at index 3. After index 4 and 5 are searched and no equal
entry is found, 1125 and 1127 are set on and the operation terminates.

5280 Assembler Language Instructions

245

246

The following code searches an input record for a specific character:

.DATASET DSN=2 LBUF=INPUT TYPE=SR ...
.DC LABEL=INPUT LEN=256;
.TABLE LABEL=INTAB DCLBL=INPUT ARGL=1 MAXM=256;
READ(2); Get input record.
15, RY=X'40’; Search argument is a blank.
BR40(4) SR 32; Zero BR40 and BR41.
TLOOP: BR40=TBF X(INTAB, RY,N); Search.
IFIR 125 1S ON GOTO ENDLOOQP;
BR41 += 1; Increment recorder.
GOTO TLOOP; Go to resume search.
ENDLOOP: SOFF(127) ; Turn off indicator.

Global Tables

Tables in the common function area can be accessed by any partition. The label of
the table must also be included in the .XTRN control statement. The partition can
then access the table by specifying the label in a TABLE instruction.

Global tables can be read, searched and updated by any partition.

Whenever a partition accesses a global table in an instruction, the table is locked
to any other partition until the instruction is completed. However, the table can
be locked indefinitely by the TLCK instruction. The program that issued the
TLCK instruction has exclusive use of the table and must issue a TUNLCK
instruction before any other partition can access the table. The format of the
instructions to lock and unlock global tables is as follows.

Mnemonic Table

TLCK
TUNLCK {label)

where:

Table specifies the label of the global table to lock or unlock.

TLCK (Lock Shared Table)

Mnemonic Table
TLCK (label)

The table specified by label is locked for exclusive use by this partition. The
table will remain assigned exclusively to this partition until a table unlock
(TUNLCK) instruction is encountered.

If the table is already locked by another partition, the program will remain at
this instruction until the other partition issues a TUNLCK instruction.

This instruction is used only with global tables located in the common function
area.

Note: There is no automatic deadlock detection or recovery. |If two partitions
are waiting for tables held by each other, the system will lock up and require
IPL.
TUNLCK (Unlock Shared Table)
Mnemonic Table
TUNLCK (label)
This instruction frees a shared table that has been locked by the TLCK instruction.
Whenever a table has been locked, this instruction must be used in order to make
the table available to other partitions.
This instruction is used only with global tables located in the common function

area.

MISCELLANEOQOUS INSTRUCTIONS

Compare Logical Character Strings
The contents of two character strings are compared. An indicator is set on to
signify an equal to, greater than, or less than relationship. The character strings
can be from 1 to 256 bytes in length. The format of the CLC instruction is as
follows.
Mnemonic String1 String2 Length
CLC (BRa, BRb, 1-256)

where:

String1 indicates a binary register that contains the address of the first byte
of string1.

String2 indicates a binary register that contains the address of the first byte of
string2.

Length specifies the number of bytes to compare. Length may be from 1 to
256 bytes.

The two strings are compared byte for byte until the first miscompare, according

to the standard EBCDIC collating sequence. One of the following indicators is
set to indicate the result of the compare.

5280 Assembler Language Instructions 247

Indicator Condition

1103 String1 is equal to string2
1102 String1 is less than string2
1101 String1 is greater than string2

The contents of the 2 byte strings remain unchanged by the operation.

Example:
STRNG1 X'0970’ X‘09700 JABCDE
STRNG2 X'0975’ X097 |lABDDD

The instruction CLC (STRNG1, STRNGZ2, 2) would set indicator 1103.

The instruction CLC (STRNG1, STRNGZ2, 4) would set indicator 1102.

Generate a Self-Check Digit

The instruction to generate a self-check digit is used when you create a new file
of numbers that you want to self-check each time an operator enters them. For
more information about self-check numbers, see Sel/f Check in Chapter 2.

Mnemonic Operand
GSCK (Rn)
where:

Operand indicates the decimal register {Rn) or double register (Rn(32)) that
contains the self-check field.

During the execution of the GSCK operation, the 5280 uses the self-check
algorithm (specified in the .SELFCHK control statement) to generate a unique
self-check number from the foundation contained in the decimal register or
double register. The 5280 places the one or two generated digits into the self-
check digit position in the register to complete the self-check field.

Modification for Indirect Instruction Execution

Indirect instruction execution is accomplished by instruction modification

during program execution. An operand of the object code, which was generated by
a source instruction, is modified. The instruction is then executed with the
operand modification, although the original object code for the operand, which is
stored in main storage, is not changed.

Each source instruction generates 4 bytes of object code. This code is stored in
main storage. The first byte (byte 0) always contains the operation code, and the
next 3 bytes (bytes 1-3) contain the operands. See Appendix A for the operation
codes generated from each assembler mnemonic. The contents of the remaining
3 bytes of each object code instruction is described in the Function Reference
Manual.

248

The format of the INXEQ instruction is as follows:

Mnemonic Modifier Statement Byte
INXEQ (BRn[(4)], label, [0-3])
where:

Modifier indicates a binary register that contains the statement modifier.
If a binary double register is specified, all 4 bytes of the double register are
used to modify the 4 bytes of the instruction. If a 2-byte binary register is
used, only one byte of the instruction is modified, with the data in the
rightmost byte of the binary register.

Statement specifies the label of the statement to modify.

Byte specifies which byte of the object code to modify. If a binary double
register is used for the modifier, this operand is omitted and all 4 bytes are
modified. If a 2-byte binary register is used for the modifier and this operand is
omitted, it defaults to byte 1 (the operation code is byte 0).

When the INXEQ statement is executed, the byte or bytes of the object code are
logically ORed with the contents of the binary register or binary double register.
The modified statement is then executed. After the modified statement is
executed, control returns to the next sequential statement following the INXEQ
statement, unless the modified statement is a branch instruction. If the modified
statement is a branch, control branches to label specified by the branch instruction.
This instruction should not be used to modify a short branch instruction.

The original contents of the object code operand byte remain unchanged.

Any object code instruction may be modified with this instruction. A list of the
most commonly modified instructions is as follows:

Instructions that May be Modified, and Valid Modification

Modifiable
Modifiable Object Code
Instruction Operand Byte Object Code Value
MvC length 1 length-1
MVCR length 1 length-1
MVCV length 1 length-1
CLC length 1 length-1
TRANS length 1 length-1
TRT length 1 length-1
label = constant constant 1 constant
Rn = constant constant 1 constant
IFC constant 1 constant
IFHINFLO mask 2 hex AND mask
3 hex exclusive-OR mask
READ format, dsn 2,1 format number, data set
number
WRT format, dsn 2,1 format number, data set
number
Table instructions index 2 index

5280 Assembler Language Instructions

249

250

Duplicate a Byte in Storage

The contents of a byte in a main storage partition can be duplicated one to 256
times.

The format of the DUP instruction is as follows:

Mnemonic Address Number
DUP ([disp,] BRn ,1-256)
where:

Address specifies a base displacement address of the storage byte to duplicate.
The contents of the base register (BRn) are added to the displacement (0-255)
to find the address of the byte.

Number specifies the number of times to duplicate the contents of the storage
byte specified by result.

The contents of the byte at the base displacement address are duplicated for the
number of times indicated by number. The duplicated data is placed into storage
in the bytes immediately following the byte that is being duplicated.

Search Resource Allocation Table

Mnemonic Data Set Operand
SRAT (1-15 ,BRn)

The SRAT operation loads the physical address for the specified data set into

the operand binary register (BRn). When the SRAT operation is executed, the
5280 takes the logical device identifier from hex 60 and 61 of the |OB for the

data set specified in the instruction. The 5280 searches the resource allocation
table for a matching logical device identifier entry. If a match is found, the 5280
loads the binary register specified in the instruction with the corresponding physical
device address, which is stored with the logical device identifier in the resource
allocation table.

If no logical device identifier is present in the 10B, or if no match is found in the
resource allocation table, or if there is no resource allocation table, 1118 is set on
and the 5280 finds the physical device address in the partition logical 1/0 table
entry that corresponds to the specified data set.

Set Bits with Mask

The bits of 1 byte in storage can be set on or off by using a mask and logical
operations.

The format for these instructions is as follows:

Mnemonic Result Mask
SETON .
{SETOFF} ([disp], BRn, constant)

where:
Result specifies a base displacement address of the byte to be masked. The
contents of the base register (BRn) are added to the displacement (0-255)
to find the address of the byte.

Mask is a 1-byte constant, as indicated under Constant Specifications at the
beginning of this chapter.

When the SETON operation is executed, the storage byte at the address specified
by result is logically ORed with the mask, and the result replaces the original
contents of the storage byte.
When the SETOFF operation is executed, the storage byte at the address
specified by result is logically ANDed with the complement of the mask, and the
result replaces the original contents of the storage byte.

Set Indicators

Up to three indicators may be turned on or off with a single instruction.

The format of the instructions to set the indicators is as follows:

Mnemonic Operand
{oon) Jow

SOFF (la ,Ib ,Ic)
where:

Operand specifies the indicator or indicators to set on or off. Indicators are
referred to by number (10-1254) or by label. One, two, or three indicator
numbers may be specified, or the operands may be omitted.

When the SON operation is executed, the indicator or indicators specified by

operand are set on (B’1’). When the SOFF operation is executed, the indicator or
indicators are reset off (B‘0’).

5280 Assembler Language Instructions 251

System Lock and Uniock
An executing program can issue an instruction to cause the 5280 to be locked into
the current partition. The 5280 remains in the partition until the executing
program issues an instruction to release the 5280. The format of the instructions
to lock or unlock current partition is as follows:

Mnemonic Operand

SYSLCK
SYSUNL ()]

where:

Operand may be specified for SYSUNL. If the asterisk is included, the 5280
unlocks the partition but executes within the partition for the normal time
period before it exits. If the asterisk is omitted, the 5280 exits the partition
as soon as it executes the SYSUNL instruction,

When the SYSLCK instruction is executed, the 5280 is locked into the current
partition. Whenever the time limit for the 5280 to work within the partition is
exhausted, the 5280 resets the timer and continues to work within that partition
until a SYSUNL instruction is encountered. After the SYSLCK is executed, no
other partition is processed by the 5280 until the SYSUNL instruction is
encountered. You should exercise great care when using this instruction. Use
this instruction only when you want a series of instructions to be executed
without interruption (such as a time-out interruption). Do not execute 1/0
instructions or access global tables while the 5280 is locked into your partition.

When the SYSUNL instruction executes, the 5280 leaves the current partition

for a time-out, unless the asterisk is included in the instruction. If the asterisk

is included, the 5280 executes instructions within the partition for the normal time
slice before it exits the partition.

Translation

The 5280 processes all data in EBCDIC notation. However, other notation can be
read into the 1/0 buffer and translated to EBCDIC. Or data can be moved from
main storage to the 1/O buffer, translated from EBCDIC, and written in another
notation to a diskette. This translation requires a translate table. You can code
your own translate table with .DC control statements. If your 5280 common
function area contains the optional ASCil Translate Table, you may use that table
from any partition, the label is CFASCII.

If you code your own translate table, you must declare the table to begin on a
256-byte boundary. The length must be 512 bytes, divided into two separate
256-byte tables. The first 256 bytes are used for the input translate table, and the
next 256 bytes are used for the output translate table.

In the input translate table, the EBCDIC value of each input character is stored
at a displacement that corresponds to the value of the translated code. For
example, the character P is represented by D7 in EBCDIC and by hex 50 in
ASCIl. The value of hex D7 is stored at a displacement of hex 50 in the input
translate table. When the character P is read into the input buffer, the ASCII
value of hex 50 is translated to the EBCDIC value stored at displacement hex 50.

252

The output translate table stores the code value of the translated code at the
displacement into the output translate table that corresponds to the EBCDIC
value. To translate the character P to ASCII, the ASCII value of hex 50 is stored
in the output translate table at displacement hex D7.

The EBCDIC values between hex 00 and 3F are used for various keyboard/display
and printer control characters. For the printer, SCS control characters are very
difficult to translate. For example, using the printer SCS control characters

34 C8 06 (skip 6 columns), the hex 34 and 06 may be easily translated to themselves
by placing hex 34 and 06 at locations 34 and 06 respectively in the translate

table. However, the hex C8 (EBCDIC H) would have a hex 48 (ASCII H) in the
translate table causing hex 34 C8 06 to be translated to hex 34 48 06, which will
cause a printer error. Thus, it is not recommended to translate SCS data sets.

You can initiate translation in two different ways in your source program. If

you want translation performed on every record read from or written to a data set,
you can use the TRANS parameter of the .DATASET control statement to

specify the label of the appropriate translate table. The translation will occur
automatically, immediately after a physical record is read or immediately before

a physical record is written.

If you do not use the TRANS parameter, you can issue a translate instruction to
translate one record. The instruction translates the data that is pointed to by the
Operand1 register.

The format for the translate instructions is as follows:

Mnemonic Operand1 Operand2 Length Reverse

TRANS (BRa, BRb, 1-256)
TRT (BRa, BRb, 1-256 [,R])
where:

Operand1 indicates a binary register that contains the address of the leftmost
byte of the data stream to be translated.

Operand?2 indicates a binary register that contains the address of the leftmost
byte of the translate table.

Length is a constant between 1-256 that indicates how many bytes are to be
translated.

Reverse is specified only for TRT for reverse testing.

When the TRANS operation is executed, the number of bytes specified by length
is translated, character by character. The translation begins at the address stored
in the operand1 binary register (BRa). The translate table used for the translation
begins at the address specified by the operand2 binary register (BRb). Characters
in the data stream are replaced by their translated value.

When the TRT operation is executed, the test begins at the address stored in the
operand1 binary register (BRa) and continues for the number of bytes specified
for length. The transiate table used for the test begins at the address stored in the
operand?2 binary register (BRb).

5280 Assembler Language Instructions

253

254

Beginning with the data hvte specified, the EBCDIC representation of the
character at each byte is used as an offset into the translate table. If the entry at
that offset into the translate table is a zero, the test continues to the next data
byte. If the entry at that offset into the translate table is not zero, binary

register sixteen (BR16) is loaded with the relative address of the data byte, and
the rightmost byte of binary register seventeen (BR17) is loaded with the translate
table entry for the data stream character.

Data characters are tested one by one until the first nonzero translation occurs
or until the entire data stream has been tested. |f each character in the data
stream translates to a zero, BR16 and BR17 contain zero.

The original characters in the data stream are not changed.

The following indicators may be turned on according to the specified conditions.

Indicator Condition

1101 Nonzero byte not found

1102 Nonzero byte found

1103 Nonzero byte found in last position of data. {If R is coded, the

nonzero byte is found in first position).

Chapter 5. How To Assemble Your Program

THE 5280 ASSEMBLER

The 5280 assembler is stored as a data set on the assembler diskette. It must be
loaded into a main storage partition in order to process your source program. The
partition may be a foreground partition or a background partition that has a key-
board attached. The partition must be a minimum of 9 K bytes in size. You load
the assembler by entering the assembler data set name in response to the load
prompt. The assembler data set name is SYSASM.

When the assembler begins executing, it displays a series of prompts. The prompts
request the labels of up to six data sets. These data sets include the:

1. Source data set, which contains your source program.

2. Extern data set, which is an optional data set that defines common function
labels. You must include this data set if your program uses common function
routines. The extern data set is stored on the assembler diskette.

3. Work data set 1, which is used by the assembler. This data set is mandatory.
It may be allocated during the assembly. |f allocated during the assembly, it
will be deleted by the assembler upon normal termination of the assembly.

4. Work data set 2, which is required if you request a cross reference listing. This
data set may be allocated during the assembly. If allocated during the
assembly, it will be deleted by the assembler upon normal termination of the
assembly.

5. Object data set, for the object code output. This data set may be allocated
during the assembly.

6. Print data set, which is required if you write your listing to a diskette. This
data set may be allocated during assembly.

These data sets are not required to be on the same diskette. If you preallocate any
of the last four data sets, they should be specified as | exchange, with 256-byte
records and with the delete character omitted.

During execution, the assembler makes multiple passes over the source code in
order to generate the object code output. For a 9 K partition, about 285
symbols may be processed. Any additional available storage is automatically
added to the symbol table.

If you requested a cross-reference listing, the symbols from the symbol table are
copied into work data set 2. The symbols are later sorted into alphabetic order for
output.

How to Assemble Your Program 255

256

After the symbols are resolved, subsequent passes over work data set 1 develop the
object code. The final pass, over work data set 1 and the source code together, pro-
duces the object code and assembly listing. The object code is written to the speci-
fied object data set. The listing may be written to a diskette as the print data set,

or may be written to a printer. Printed output is formatted with 128 print positions
per line and requires a minimum print width of 12.8 inches. Work data set 1 and
work data set 2 are used only during the assembly process. If allocated by the
assembler, they are deleted when the assembler has completed its execution. Other-

wise, they remain on the diskette to be used for the next assembly.

Loading the Assembler into a Partition

The assembler may be loaded into a foreground or a background partition. Ifitis
loaded into a foreground partition, the keyboard/display assigned to the partition
is not available to another partition until the assembler is finished executing. Al
errors detected by the assembler are included in the assembly listing. When the
assembler encounters certain errors, the assembly stops and the error code is dis-
played on the status line. You can press the Reset key to continue the assembly,
or press the End of Job command function key to terminate the assembly.

If the assembler is loaded into a background partition, a keyboard/display must be
attached until the prompts have been displayed and the necessary input has been
accepted. The keyboard/display is then detached and available to another partition
while the assembler runs in the background partition. Error messages are included
on the program listing.

The Assembler Prompts

When the assembler begins execution, a series of prompts is displayed. Many of the
prompts display a default response. If you wish to accept the default, simply press
the Enter key. The cursor is positioned at the beginning of each response field; to
change the default response, key over the displayed default. When a separate
response is required on two or more lines, the cursor will be positioned at the first
position of the first response field. Key in your response and press the Field Exit
key. The cursor will move to the first position of the next response field.

The status line is always active while prompts are being displayed. If an error
occurs, the status line blinks and the appropriate error message is displayed. Press
the Reset key to stop the blinking, and key over the error response.

If an operator who is not familiar with assembler programming is to assemble your
program, be sure to provide information concerning all necessary data set labels,
device identification, and options you want for your assembly.

The assembler prompts are as follows.

4

Prompt 1
0 0001 It 61 F1
5280 assembler
- Options are:
- 1, List to printer X, No tisting
2, List to diskette
Select option: _ Press ENTER 10-01

.

If you select option 1, the assembly listing will be printed with 128 print positions
per line. The printer must have a minimum print width of 12.8 inches. If the paper

width is not sufficient for the printout, part of the listing is lost and damage to the

printer may occur.

If you select option 2, the assembly listing will be written to a diskette data set. A
later prompt will request the name of this data set, referred to as the print data set.

If you select either option 1 or option 2, Prompt 2 and Prompt 3 are displayed. If
you select option 3, Prompt 4 is the next prompt displayed.

Prompt 2
0 0not el Fi j
Enter assembler print options
Cross refevence (1=Yes,2=No): Included lines (1=Yes,2=No): A
Full data print (1=Yes,2=No): Evvors only (1=Yes,2=No) . (g
Literal spacing (1=Yesg,2=No)! Page gsize (Lines/Page).
Press ENTER 10-02

The assembler print options default to 66 lines per page and a cross reference with
a full data print. If you enter no (2) for the full data print option, the listing will
print no more than the first 8 bytes of object code generated from each source line.

If you choose yes (1) for included lines, any program code inserted into the program
with an .INCLUDE control statement is printed in the listing.

If you choose yes (1) for errors only, only the error messages and the lines that
caused the error messages are printed on the listing. If you specify errors only and
your program assembles error-free, only the program name and title are printed on
the listing.

How to Assemble Your Program

257

268

The spacing option effects the way your .SPACE and .EJECT control statements
are processed. M you choose yes (1) for this option, the printer will space and ao
to a new page exactly as the control statements specify. If you choose no (2) for
this option, control statement specifications are adjusted to the following
conditions.

If .SPACE control statement causes the printer to go to the next page, printing
begins on the first line of the new page rather than at the line indicated by the
control statement. For example, if the SPACE statement specifies six lines to be
skipped, and only three lines remain on the current page, printing begins on line 1
of the next page rather than on line 4.

If an .EJECT control statement is encountered when the printer is already posi-
tioned to print the top line of a page, the .EJECT statement is ignored.

Prompt 3

0 0001 n o2 4o
Enter date

lay:

Month:

Year:

Press ENTER 10-03

The date prompt is presented if Prompt 2 was used and if the date is not available
from the system control area.

Prompt 4

0 0001 A 25 E2
5280 assembler
Enter the following information for - SOURCE data set
Nata set name:
Device address:
Press ENTER

The source data set name is the label you assigned to the diskette data set in which
you recorded your source statements. Your source statements are entered as 80-
byte logicai records, although only the first 72 bytes are used. Source records may
be stored on a diskette of any exchange type. Any block size may be used, provid-
ing the block size is valid for the exchange type and sector size used.

)
)

The device address identifies the diskette drive that is to read in the source data set.

Enter the four-character physical address.

Before you press the Enter key, be sure the diskette with the specified data set is
in the diskette drive at the specified device address.

Prompt 5

nooos A 66 40 .

Nickette is volume protected,

Device DIDD, DNata set S566.

Enter ouwner identifier to access volume.

. . (4

Press ENTER 05-01

If the protect flag is set in the diskette label, Prompt 5 is displayed. Enter the 14-
character owner ID, as described in the System Concepts Manual, |f you terminate
the assembly at this point, by leaving the owner ID blank and pressing the Enter
key, the assembler data set is closed and the partition becomes available to be
loaded again.

After the data set name and device address for the source data set have been
obtained, the assembler will attempt to open the data set. |f an error occurs during
open, the status line blinks and the appropriate error code is displayed in the status
line. Press the Reset key to stop the blinking, then reenter the parameters. If the
data set is successfully opened, Prompt 6 is displayed.

Prompt 6
1
0 0001 A 25 ER2
5280 assembler
Enter the following information for —~ EXTRN data set A
ltata set name: -
Nevice address: (leave blank if none) T
Press ENTER 1005

The extern data set is a list of common function routine labels. If your source pro-
gram makes any calls to the common function area, you must enter the label of the
extern data set. The extern data set is stored on the assembler diskette.

After you enter the data set name and device address, the assembler attempts to
open the file. Errors that occur during open are handled as for the source data set
open,

Prompt 7
0 0001 A 25 E2 W
5280 assembler
Enter the following information for - ORJECT data set =N
Ilata set name: ~
llevice address:
Press FNTER 10-04
J

How to Assemble Your Program

259

The object data set is the data set the assembler will use to write the assembled
object code. Itis also used as another work data set during the assembly. After
you enter the data set name and device address, the assembler attempts to open the
data set. If the open is successful, Prompt 10 is displayed.

If the data set cannot be found at the specified device address, the assembler blinks
the status line and displays an open error message. When you press Reset, the blink-

ing stops and Prompt 8 is displayed.

Prompt 8

r 0 0026 I oL Fi
Unable to find data set
~~ To you want it allocated?
- Options ave
[1. Yes 2. No
Select option: _ Press ENTER 10-06

If you select 2, Prompt 7 is displayed again.

If you select 1, Prompt 9 is displayed with the data set name and device address
you entered for Prompt 7.

Prompt 9

0 06030 oy uo
Enter data set allocation parameters
Nata set name!
Ttevice address:
Number of vrecovds: 0 for MAX)
Press ENTER 10-07

If you wish to change the data set name or device address, use the k- (Field Back-
space) key to move the cursor to the field you want to change. Enter the number of
256-byte records that you estimate will be written. This typically allows 4 records
per 1024 bytes of the partition the program will run in.

After you enter the parameters, the assembler will attempt to allocate the data set

as indicated. If the allocation fails, the status line blinks and displays an error
message, as for an open error. Press the Reset key and reenter the parameters.

260

Prompt 10

0 0001 A 25 E2
5280 assembler
Enter the following information for ~ work data set # 1
[lata set name!
Device address.
Press ENTER 10-04

The work data set 1 is used by the assembler only during the assembly process.
After you enter the parameters, the assembler attempts to open the data set.

If the data set is not found at the specified address, the assembler blinks the status
line and displays an open error message. When you press the Reset key, the blinking
stops and Prompt 8 is displayed, as for the object data set. If you select 1, Prompt
9 is displayed again. Allocate work data set 1 as for the object data set. Work data
set 1 should be about one-half the size of the source data set. If you assemble more
than one source program at the same time, be sure to specify a different work data
set for each assembly.

After work data set 1 has been successfully opened, the subsequent prompts depend
upon your responses to the first two prompts.

If you requested an assembly listing in Prompt 1 and a cross reference in Prompt 2,
the next prompt requests the name of the work data set 2. The prompt is as for
Prompt 10, except the first line contains:

ENTER THE FOLLOWING INFORMATION FOR — WORK DATA SET 2

Work data set 2 is opened or allocated as for work data set 1. Work data set 2 is

used only during the assembly process. For work data set 1, one 16-byte record is
required for each symbol definition or reference. Estimate one record per two source
lines.

If you requested an assembly listing to a diskette in Prompt 1, the next prompt
requests the print data set name. The prompt is as for Prompt 10, except the first
line contains:

ENTER THE FOLLOWING INFORMATION FOR — PRINT FILE

The print data set is used by the assembler to write an assembly listing to a diskette.
The print data set is opened or allocated as for work data set 1.

How to Assemble Your Program

261

If you requested a printed assembly listing, Prompt 11 is displayed.

Prompt 11

r

0 0001 N 04 F8
5280 assembler

Enter printer device address:
Press ENTER
10-08

.

The printer address must be the 4-character physical address.

The assembler listing is printed with 128 print positions per line. This requires a
minimum print width of 12.8 inches.

When all necessary data sets have been opened, the assembler is ready to process
the source data set. If the assembler is executing in a background partition, the
keyboard is now detached. The status line will indicate the partition number of
the currently attached partition.

After the assembler has developed the object code, it writes the data sets and listings
according to your responses to the prompts. The object data set may be loaded into
any main storage partition for execution.

Normal error recovery is provided for the printer. However, if the printer is inter-
rupted while it is printing your listing and it cannot continue, you can recover
without reassembling your program. Press the Cmd key, then the End of Job
command function key; the load prompt is displayed by the standard-load routine.
L.oad data set SYSASMS8 from the assembler diskette. This data set then prints out
your assembly listing. The diskette(s) must be in the same diskette drive(s) as when
the assembly was stopped. The same partition must be used as was used for the
assembly.

THE ASSEMBLY LISTING

The 5280 assembler produces a conventional parallel column source-object listing.
If the assembler detected an error in a source statement, it flags the statement with
asterisks and includes an error message. The edit format and screen control format
messages are printed first, then the other messages are printed together, usually in
sequence by line number. See Appendix E for a list of the 5280 assembler error
messages. Following is an example of a printed listing and the kinds of information
it contains.

262

A Printed Assembly Listing

5280 ASSEMELER 01.00 SAMFLER - ORDER ENTRY SAMFLE FROGRAM;
ADDR OBJECT CODE LINE SOURCE CODE
Il. E2C1D4D7D3CSF240 n .START FNAM='SAMPLE2' ENTRY=START MCHK=CFPGMCHK; 00560000
0080 0010000000000000 .KBCRT CREA=I0Igum ETAR=ERRKE ; 00570000
00A6 58 .DC LABEL=SCNCIEREEVL=2 DISP=X'Ab"; SCAN CODE & CONVERTED EBCDIC 00580000
OOKE 59 .DC LABEL=MODESw LEVL=2 DISP=X'EE'; KB/CRT MODE SWITCH 00590000
0140 60 .DCLIND LAEEL=EODSW,PRNTSW,QUANSW; 004 R0
0001 61 .EQUATE NUME=(1i, TRANS), (2,PRNT); .DATASET NUMBERS 006 S0
a<u‘—* THE FOLLOWING EQUATES ARE OFTIONAL, BUT WILL FUT ENTRIES IN THE 00620000
™% CROSS REFERENCE LISTING FOR SYSTEM REGISTERS AND INDICATORS. 00630000
0114 64 .EQUATE REG=(BR10,BR10), (BRi8,BRi8), (BRL9,BR19), (BR22,BR22); 00640000
0000 45 LEQUATE IND=(I1i5,I115),(I448,1448),¢I125,1425),(I1458,1458); 00650000
0115 66 .XTRN LABEL=CFFGMCHK,CFGIOERR,CFFERATT,CFLOADOS , CFERCDSM, 00660000
67 CFATFEGD, CFDEVCHK ; 00670000
0140 0800 68 .DC LABEL=CFWKFTR TYFE=RIN INIT=ADDR(CFSAVE); C.F. WORK AREA FTR 00680000
0142 69 .DC LABEL=CFPARMi TYFE=BIN; C.F. PARAMETER REG 00690000
0144 70 .DC LABREL=CFFARM2 TYPE=RIN; C.F. FARAMETER REG 00700000
0146 74 .DCLER LABEL=WKER{; BINARY WORK REGISTERS 00710000
0148 0435 72 .DC LABEL=RWCOL TYFE=RIN INIT=X'0435'; ROW & COL FOR CRTMM 00720000
0i4A 0BC2 73 .DC LABEL=RUF@ TYPE=RIN INIT=ADDRCIOEUF); I/0 BUFFER FTR 00730000
014C OBE4 74 .DC LABEL=TXT@ TYPE=RIN INIT=ADDR(SHFCD); FTR FOR CRTMM 00740000
014E 0150 75 .DC LABEL=FRCNTL® TYFE=KIN INIT=ADDR(FRCNTL); FTR TO PRINT CONTROL 00750000
0150 8000 76 .DC LABEL=FRCNTL TYFE=RIN INIT=X'8000'; FRINTER SFACE CONTROL 00760000
0152 0006 77 .DC LAREL=Ké TYPE=RIN INIT=6; 00770000
0154 0022 78 .DC LABEL=K22 TYPE=RIN INIT=X'22'; 00780000
0156 0029 79 .DC LABEL=K29 TYPE=RIN INIT=X'29"'; 00790000
0158 3704 80 .DC LABEL=K370f TYFE=RIN INIT=X'3704'; CODE FOR EOD 00800000
0160 81 .DCLDR LABEL=WKDR{,RQUAN,RFRICE; DECIMAL WORK REGISTERS 00810000
0190 FOFOFOFOFOFOFOFO 82 .DC LABEL=LIMIT TYFE=DEC INIT=4000; QUANTITY LIMIT CHECK 00820000
01A0 F9FLFiFLFF 83 .DC LABEL=MSG9111 INIT=X'FOFiF{FL{FF'; 91ii - SELF CHECK INCORRECT 00830000
01A5 FOF9F9FGFF 84 .DC LABEL=MSG9998 INIT=X'F9FOF9FSFF'; 9998 -~ UNEXFECTED KE EXT STATUS 00840000

Hexadecimal address of the object code.

Object code generated from the source line.

Comment lines included in the source program.

Assembler adds sequential statement number, which is not included in the source code.

Source line.

RodpoBpmB

The assembler includes whatever is coded in columns 73-80 of the source line.

How to Assemble Your Program 263

264

The Cross-Reference Listing

The cross-reference iisting l1sts your program symbols in aiphabetic order. It lists
the references for each symbol, combining as many of the individual reference
records as will fit into a single line, but starting a new line for each new symbol.
The references indicate the relative record number of the source record that used
the symbol. Following is an example of a cross-reference listing.

5280 ASSEMELER 01.00

DEFINED
o

00360
00417
002114
00258
00064
00064
00064
00064
00073
00373
00094
00093
0006¢
00066
00066
00066
00066

SYMEOL COMF@

(3]
AMT [Gvzvy]
ATTN 0000
BKRG 0000
BLANKS 0014
BLNK 0000
BR10O 0014
BRi8 0024
EBR19 0026
BR22 002C
RUF@ 0040
RUFAD 0000
BUFF1{ Q000
BUFF2 0000
CFATFRGD * 0000
CFDEVCHK % 0000
CFERCDSM * 0000
CFGIOERR * 0000

CFLOADOL =

-]~

0000

LENG

000D
0004
0004
0019
0004
0002
0002
0002
0002
0002
0008
0400
0100
0000
0000
0000
0000
0000

SAMFLEZ -~
VALUE TYPFE
0BES Lg.’%
ODEB8 INST
OEA8 INST
OBES FRMT
OCRO INST
0ii4 RIN
0424 RIN
0426 ERIN
042C RIN
0i4n BIN
OEOC DATA
0300 DATA
0700 DATA
012D INST
0139 INST
0125 INST
0449 INST
0141 INST

REFERENCES

(¢1¢ e
00346
00321
00477
00248
00274
00414
00370
00307
00258
00420
00087
000914
00232
00236
00332
00309
00341

The number of the line where the symbol is defined.

Common function labels are marked with asterisks.

00373

00178
00358
00292

00259

00245
00251
0037y

003653

ORDER ENTRY SAMFLE FROGRAM;

00401

Q0L7Y

Do286 00287

00260 00263 00288 00344

Compressed address or index into the system table where the address is stored. (See

Functions Reference Manual for a description of compressed addresses for registers).

Data type.

o >

The number of each line that refers to the symbol.

Error Messages

Error messages are printed at the beginning of your assembly listing, in the follow-
ing format.

5280 ASSEMRLER 01.00 GALTESTé - ASSEMBLY ERRORS

ERROR LINE =% DESCRIFTION

Apm3002-055%11 TVEE is invalid (too large, etc)
90050-—031 FT2 is an undefined symbol
ASMO050~00032 MDUF is an undefined symbol
ASMO077~-00034 MS and MD must be identical
ASM3I002~-00035 MD is invalid (too large, etc)
ASMOOT77-00035 MS and MD must be identical
ASMOO077-00036 MS and MD must be identical
ASM3002-00036 MS is invalid (too large, etc)
ASMI002-00037 MD is invalid (too large, etc)
ASM3002-00037 M is invalid (too large, etc)
ASMO0O50-00020 l’ MDUF is an undefined symbol
ASML004-00027 34 Invalid delimiter at column #%
ASMO0346~-00057 Option or modifier not recognized
ASMO036~-00058 Option or modifier not recognized

ASM2003-00058 02 Opevand #¥ is wrong type
ASM2005-00066 02 Operand %% must not be omitted
ASM2003-00074 04 Operand % is wrong type
ASM2003-00072 014 Operand #% is wrong type
ASMO050~-00078 I8 is an undefined symbol
ASMOO50-00078 SKIF is an undefined symbol

n Error code.
Line in the assembler listing where the error occurred.

Description of the error.

Eapn

When a number appears in this column, it corresponds to the ## in the
description. For example, the 34 indicates an invalid delimiter at column 34
in line 00027. The first 02 indicates that the second operand in line 00058 is
the wrong data type.

How to Assemble Your Program 265

SYSTEM INDICATORS WITHIN A PARTITION

Chapter 6. Control Areas

The first 100 indicators within a partition may be used as you wish. The other
indicators, however, are used by the system during program execution. The indi-
cator assignments are as follows.

Indicator

1100
1101

1102

1103

1108

1109
1110
1111-114
1115
1116
1117
1118

1119

1120
1121
1122
1123
1124

1125
1126

1127

1128-159
1160-191

1192-254

Condition

Table search
TRT

CLC

Table search
TRT

CLC

Table search
TRT

CLC

External status

Program check

SCS conversion data set

Self-check operation
SRAT operation

HEXBIN operation

Divide operation
Edit format
Arithmetic operation
Multiply operation
Decimal arithmetic
operation

Table search

Table write

Table operation

Meaning if Set to 1

Reserved

Result is higher

Byte not found

String 1 is greater than string 2
Result is lower

Byte is found

String 1 is less than string 2

Result is equal

Byte found in last position (EOF)
String 1 is equal to string 2
Restricted external status process-
ing. (See Restricted External Status
Indicator |ater in this chapter.)
Program check error

Background partition

Reserved

Last line (LSTLN) overflow
Reserved

Self-check error

Resource allocation table search
error

Attempt to convert invalid EBCDIC
to hex

Divide error (denominator is zero)
Invalid conversion request in format
Decimal to binary conversion error
Multiply overfiow

Decimal arithmetic overflow

Table entry not found

Attempt to access table beyond
its limit

Table operation error

Not defined

Modified field indicators. See
Field Modification Indicators in
Chapter 2.

Used with DE/RPG

Control Areas

267

268

SYSTEM REGISTERS WITHIN A PARTITION

Several binary registers are used by the system during program execution. These
registers are listed below, with the conditions or instructions that affect each

register.
Register

BR16

BR17

BR18

BR19

BR20

BR21

BR22

BR23

BR24

BR25

BR26-31

Condition

LOAD

TRT

TRT

Subroutine

Keyboard External
Status

Keyboard External
Status
Keyboard External

Status

External Status

External Status

LOAD

Register Contents

Relative record number for relative
record reads during a program read.
Also contains error code after a
loader error

Address of the last position that
translated to a nonzero character

Function byte

Address of next available entry
position in the partition subroutine
stack

Current field starting address within
the main storage |/O buffer

Current field starting address within
the screen refresh buffer in key-
board/display control storage

Field length of current field, minus
1

Relative address of the last data set
10B to report external status. Not
used for keyboard/display status
External status condition code, to

be used as the index into the external
status subroutine

Reserved for system use

Physical device address of the device
doing the load

Reserved

In addition to these system binary registers, common function routines often use
BR33, destroying the original contents of the register. |f your program uses
common function routines, you should avoid using BR33 in your program.

PROGRAM CHECK ERRORS

The 5280 detects and reports program check errors. When a program check error
occurs, the 5280 calls the routine specified by the MCHK parameter of your
.START control statement. If you are using the common function program check
error handler routine, it places the program check error code on the status line,

as described in the program check error handler description,

The conditions that are detected by the 5280 as program check errors are:

Code Error

0200 Common function routine not available in the common area.

0201 Addressing outside of partition.

0202 Invalid operation code.

0203 Instruction not on a 4-byte boundary.

0204 ENTR issued from a background partition that is not attached to a
keyboard.

0205 Subroutine stack extended beyond partition.

0206 Invalid keyboard/display external status.

0207 Attempt to access an undefined data set.

0208 Attempt to access an undefined self-check control area.

0209 DETACH failed during an exit or load operation.

020A ATTACH failed during a load operation.

KEYSTROKE COUNTERS
The 5280 maintains two keystroke counters while an ENTR is being processed.
A data entry keystroke counter is incremented when the operator presses a key
in enter, update, or verify mode. A verify correction keystroke counter is incre-

mented when the operator presses a key to correct a verify mismatch character
in verify mode.

Data Entry Keystroke Counter

When one of the following keys is pressed in enter, update, or verify mode, the
data entry keystroke counter is incremented unless:

® An error is outstanding when the key is pressed.

® The keystroke causes an error other than a data required, blank check, or
mandatory enter error.

® The keystroke is a Field Exit, Field- {Field Exit Minus), or Skip key that is
pressed in the first position of a field and causes a mandatory enter error,

Control Areas

269

® The keystroke is for a function key that is being handled by your own sub-
routine, as specified in the keyboard bit map.

Data key

Hex key sequence

Field Advance key

Field Backspace key

Character Advance key

Character Backspace key

Record Advance key

Record Backspace key

Field Exit or Field+ key

Field- (Field Exit Minus) key

Skip key

Duplicate key

Scan code passed to the keyboard by keyboard operation 0A
EBCDIC code passed to the keyboard by keyboard operation 0B

Verify Correction Keystroke Counter
The verify correction keystroke counter is incremented when the operator presses
a key in verify mode that changes the original data in the record. If the mode is
field correct, the counter is incremented only once for the entire field.

COMMON FUNCTION ROUTINES

The common function routines described in this chapter are listed in alphabetic

270

order by title, and include:

Label Title

CFASCII ASCI| processor
CFATFBGD Attach partition routine
CFDETFGD Allow detach routine
CFDEVCHK Check/move device address
CFDUMPTR Dump/trace processor
CFERCDSM Error code with message display
CFERCDSP Error code display routine
CFGIOERR General 1/0 handler
CFHELPO1 Help text processor
CFKEYRT Keystroke router routine
CFLOADO1 Standard load processor
CFMSGDSP Message display routine
CFPERATT Operator detach routine
CFPGMCHK Program check error handler
CFSECVOL Secure volume processor

The common functions can be accessed by a program executing in any main storage
partition. When you write a source program that uses one or more of these common
functions, you must:

1. Specify the common function labels with an . XTRN control statement.

2. Enter the data set name SYSACF in response to the assembler prompt that
requests the Extern data set.

3. Specify the common function label in the program instruction or control
statement.

4, Declare a 128-byte area of storage and store the address of the area in BR32.

If your program is displaying the extra line when a common function routine is
called, the routine replaces it with the status line. When the routine completes
execution, it replaces the status line with the extra line. (See Nondisplay of the
Status Line in Chapter 2.)

The common function labels and the function descriptions are included in this
chapter. Several routines require input in addition to the address in BR32. Before
you use one of the common functions in your program, you must be famitiar with
any input or output pertaining to the function.

Registers Used by the Common Functions

During the execution of certain common functions, the 5280 uses binary registers
BR32-63, which are located within the partition that accessed the common func-
tion. You must load the address of a 128-byte register save area into BR32. When
a routine begins execution, the contents of the binary registers are copied into the
first 64 bytes of the location pointed to by BR32.

While the common function routine is executing, it places information in the binary
registers. If the common function routine in turn calls another common function
routine, the contents of the binary registers used by the first routine are copied into
the remaining 64 bytes of the register save area.

When the common function routine completes execution, the original contents of

the binary registers are restored except for BR33. The original contents of BR33
are often destroyed.

Control Areas 271

272

Allow Detach Routine (CFDETFGD)

This routine is called by a program that is executing in an attached partition. The

program calls this routine when it reaches a point where it can execute for a period

of time without needing the keyboard.

Input

® |158

Output

® 1158 is turned off

When this routine is executed, the following operations are performed.

1. 1158 is turned off to indicate that the program in the partition can execute
without using the keyboard. This indicator is checked by the standard load

processor (CFLOADO1) and the operator detach routine (CFPERATT).

2. Return is to the next sequential instruction.

ASCII Processor (CFASCII)

The ASCII processor makes the ASCI! translate table in the common area available
to the partition.

Input

® BR32-—Address of your register save area.

® BR34--Data set number.

Output

® ASCII table index number placed into data set |0B,

® Bit 2, byte hex 4D of data set IOB set to 1.

® Registers restored except BR33.

When the routine is executed, the following operations are performed.

1. The contents of BR32-63 are copied into the storage location pointed to by
BR32.

2. The routine checks to make sure the ASCII table is included in the common
area. If there is no ASCII table in the common area, an error occurs and
return is made to the next sequential instruction.

3.

If there is an ASCI| table in the common area, the system table index for the
ASCI| table is placed into displacement hex OE of the 10B specified by
BR34, and bit 2 of byte 4D is set to 1. This specifies that both the HDR1
labels and data are to be translated. |f the labels are not to be translated, the
program in the partition must clear this bit to 0.

Return is made, and the next sequential instruction is skipped.

Attach Partition Routine (CFATFBGD)

The attach partition routine attaches the calling partition to its associated keyboard.
When the keyboard is attached upon completion of this routine, the calling partition
can accept input from the operator via the keyboard.

Input

® BR32-—Address of your register save area.

® |156—If your program is displaying the extra line instead of the status line, turn
on 1156 before calling this routine so the extra line will be returned to the screen
when the return is made.

Output

® {158 is turned on.

® Registers are restored.

® The partition is attached.

When this routine is executed, the following operations are performed.

The contents of BR32-63 are copied into the storage area pointed to by
BR32.

A KATTCH instruction is issued to attach the calling partition to the
keyboard.

If the calling partition is a foreground partition, or if the calling partition is a
background and another background partition is attached to the keyboard,
the routine reissues the KATTCH instruction until the attach is successful,
then return is made.

If the calling partition is a background partition and a foreground partition

is attached to the keyboard, the keyboard alarm is sounded and an edge indi-
cator () is displayed on line 6 of the screen. The edge indicator is displayed on
the right side of the screen except for dual displays; for a dual display, the edge
indicator is displayed on the left side of one of the screens. The operator must
respond to the buzzer and edge indicator by pressing the Attn key. After the
Attn key is pressed, the attach is performed and return is made.

Return is always to the next sequential instruction.

Control Areas

273

274

Check /Move Device Address (CFDEVCHK)

This routine checks EBCDIC input and processes it for a logical device 1D or for a
physical device address.

Input

® BR32-Address of your register save area.

® BR33—Address of an input field.

® BR34—Data set number.

Output

® Device ID or physical address moved to 0B or logical /O table, or both.
® Registers restored except BR33.

When the routine is executed, the following operations are performed.

1. The contents of BR32-63 are copied into the area pointed to by BR32.

2. The address of the EBCDIC input is taken from BR33.

3. If the EBCDIC input is two characters in length, it is treated as a logical
device ID. It is moved to displacement hex 60-61 of the |OB specified by
BR34.

4, If the EBCDIC input is four characters in length, it is treated as a physical

device address. |t is tested to determine if it is a numeric value that can be
converted to a valid physical address. If it is not, an error occurs. If it is,
the physical address is not checked to assure that a device is installed. The
zones are removed from the EBCDIC bytes to convert them to four hex
digits. The first two hex digits are moved to the logical /O table in the
partition, and the second two digits are moved to the data set 0B specified
by BR34, to displacement hex 16.

5. If an error occurs and the Reset key is pressed, control returns to the next
sequential instruction. Otherwise, the next sequential instruction is
skipped.

Dump/Trace Processor (CFDUMPTR)

This routine must be called before any dump or trace operation is performed. The
Dump/trace routine opens data set 15. You must have previously defined data set
15 with a .DATASET control statement. The data set must use a 256-byte physical
buffer and a nonoverlapping 128-byte logical buffer. If you want the data set
written to a diskette, the data set labeled DUMPQOO0OO must have been previously
allocated. This data set cannot be allocated on a secure diskette. The data set
attributes must include type attributes that work on printer and diskette, such as
sequential write or shared write (TYPE = SW, SHRW).

If you want to dump or trace after an error has occurred while a common function
routine is executing, press the uppercase Cmd (Command) key, then the Dump/
trace file open key while the status line is blinking.

Input

® BR32--Address of your register save area.

® DUMPO0000—preallocated if you want to send output to diskette.

® Data set 15 defined.

Output

® Data set 15 10B opened.

® Device address for DUMP000O moved to data set 15 0B and partition logical
1/0 table.

® Registers restored.
When the routine is executed, the following operations are executed.

1. The contents of BR32-63 are copied into the 128-byte storage area pointed
to by BR32.

2. The routine checks to make sure the partition has a data set 15 defined. |f
there is no data set 15, error code 9914 is displayed. |f the operator presses
the Reset key to reset the error, return is made and the next sequential
instruction is skipped. If the operator presses the End of Job command func-
tion key to reset the error, return is made to the next sequential instruction.

3. If data set 15 is defined, the foliowing prompt is displayed on the screen:

0 noey N4 40
Dump /trace file open
Enter device addrese:

PFress FNTER

NE-02

4, The physical device address is accepted from the operator.

5, An OPEN is issued to the specified device. |f an open error occurs, the
general 1/0 handler is called. If the operator presses the Reset key to reset
the error, return is made and the next sequential instruction is skipped. If
the operator presses the End of Job command function key to reset the
error, return is made to the next sequential instruction.

Control Areas

275

If the operator presses the Cncl (Cancel) key in response to the dump/trace
prompt, return is made and the next sequential instruction is skipped.

If the operator presses the End of Job command function key in response to
the dump/trace prompt, return is made to the next sequential instruction.

If the operator presses the Sys Req (System Request) key in response to the
prompt, the standard load processor is called. That routine returns to the
dump/trace processor, and the dump/trace prompt is redisplayed.

If the operator presses the Attn (Attention) key in response to the prompt,
the allow partition detach routine is called. That routine returns to the
dump/trace processor and the dump/trace prompt is redisplayed.

If the operator enters a device address and presses the Enter key in response
to the dump/trace prompt, and the open is successful, return is made and the
next sequential instruction is skipped.

At the conclusion of the dump, the data set is closed but the EOD is not updated.
If you want to access the data set after the dump, you must use the close failure
program to update the EOD.

Error Code Display Routine (CFERCDSP)

The error code display routine displays an error code on the status line.

Input

® BR32-Address of your register save area.

® BR33—Address of the error code.

Output

® Error code displayed on status line.

When the return is called, the following operations are performed.

276

If the program is being executed in a partition that is not attached to a key-
board, the attach routine (CFATFBGD) is called to attach the partition.

The contents of BR32-63 are copied into the area pointed to by BR32.
The address of the 4-byte EBCDIC error code is taken from BR33.
The status line displays the error code, surrounded by dashes, in positions

7-12 of the status line, and positions 1-12 blink. No other change is made to
the status line.

5. The routine accepts a response from the operator, who must press the Help
key, End of Job command function key, or the Reset key. If the Help key
is pressed, the help text processor (CFHELPQ1) is called. If the Reset key is
pressed, the error code and message are removed from the screen and the
status line stops blinking. Return is made, and the next sequential instruction
is skipped. If the operator presses the End of Job command function key,
control resturns to the next sequential instruction.

Error Code with Message Display (CFERCDSM)

This routine displays an error code and message on the status line. You must
declare and store the message in a storage location, in the following format:

ccccLMMMMMMMMMMMMMMM
Where CCCC is the 4-byte error code, in EBCDIC.
L is the Iizngth-1 of the message, in binary.
M is the message, in EBCDIC.
If the length of the message is greater than 15, no message is displayed.
Input
® BR32—Address of your register save area.
® BR33—Address of error code and message.
Output
® Error code and message are displayed.
® Registers are restored, except BR33.
When this routine is executed, the following operations are performed:
1. The contents of BR32-63 are copied into the area pointed to by BR32.

2. The address of the error code and message is taken from BR33.

3. The status line displays the following information:

Position Content

1 Partition number

8-11 Error code surrounded by dashes
16-23 Program name

25-40 Message

Positions 1-40 of the status line blink.

Control Areas 277

278

4, The routine accepts a response from the operator, who must press the Heip
key, the End of Job command function key, or the Reset key. If the Help
key is pressed, the Help Text processor (CFHELPO1) is called to display help
text. If the Reset key is pressed, the error code and message are removed from
the screen and the status line stops blinking. Contro! returns from this
routine, and the next sequential instruction is skipped. If the operator presses
the End of Job command function key, control returns to the next
sequential instruction.

General 1/0 Error Handler (CFGIOERR)

This routine displays information on the status line when an 1/O device encounters
an error.

Input

® BR32-Address of your register save area.

® BR22-Address of the 0B for the data set that had the error. This address is
placed into BR22 by the 5280 when an external status condition occurs. You
must call this routine in the external status subroutine before external status is
enabled or the address may be lost.

Output

® Error information is displayed.

® Registers are restored, except BR33.

When this routine is called, the following operations are performed:

1. If the program is being executed in a partition that is not attached to a key-
board, the attach routine (CFATFBGD) is called to attach the keyboard.

2. The contents of BR32-63 are copied into the area pointed to by BR32.

3. The address of the I0B for the data set that encountered the error is taken
from BR22.

4, The status line displays error information as follows:

Position Content

1 Partition number

3-6 Physical device address

7-12 Error code surrounded by dashes
13-14 Logical device ID, if available
16-23 Program name

25-32 Data set name

Positions 1-40 of the status line blink.

5. A response is accepted from the operator, who may press the Reset key, End
of Job command function key, or the Help key. If the Help key is pressed,
the help text processor (CFHELPO1) is called to display help text. If the
Reset key is pressed, the status line stops blinking, control returns from this
routine, and the next sequential instruction is skipped. If the operator
presses the End of Job command function key, control returns to the next
sequential instruction,

The routine does not clear the error code in the data set IOB. This is to prevent
clearing a possible second external status condition.
Help Text Processor (CFHELPO1)
In an attached partition, when the operator presses the Help key in response to an
error, the help text processor searches the help text table in the common area for
a help message that corresponds to an error code.
Input
® BR32-Address of your register save area.
® BR33—A four-digit error code (stripped decimal format).
Output
® Help text displayed.
® Registers restored, except BR33.

When the routine is executed, the following operations are performed:

1. The contents of BR32-63 are copied into the location pointed to by BR32.
BR32 must contain a register save address.

2. The help text table in the common area is searched for an error code to match
the code in BR33. This code is the four-digit portions of the error code. If
a match is not found, a message stating that there is no help text for that
code is placed in positions 41-80 of the status line. [f there is a match, the
help text corresponding to the code is placed into positions 41-80 of the
status line.

3. A response is accepted from the operator, who must press the End of Job
command function key or Reset key. Positions 41-80 of the status line are
cleared.

If the End of Job command function key is pressed, return is made to the
next sequential instruction. |f the Reset key is pressed, return is made and the
next sequential instruction is skipped.

Note: Unless the partition is attached, the status line is blinking, and an error code

is in BR33, an error handling routine should be called instead of the help text
processor.

Control Areas 279

Keystroke Router Routine (CFKEYRT)
The keystroke router interprets certain keystrokes and either routes them to other
common function routines or returns to the partition. The assembler program to
handle the Attention key, System Request key, and End of Job command function
key.
Input
® BR32-—Address of your register save area.
Output
® Registers are restored,

When this routine is executed, the following operations are performed.

1. The contents of BR32-63 are copied into the 128-byte storage area pointed
to by BR32,

2. The routine interprets the following keystrokes and routes them as specified:

Key Routing
Attn (Attention) key calls the operator permit detach routine
(CFPERATT)

Sys Req (System Request) calls the standard load processor (CFLOADO1)
key

Dump/Trace Open calls the dump/trace processor (CFDUMPTR)
command function key

End of Job command returns to the next sequential instruction

function key (EOJ) following the CALL. The normal way to
process the End of Job command function
key is to check 1110 to determine if the
partition is a background partition. Ifitisa
background (1110 on), issue an EXIT. ifitis
a foreground (1110 off), issue a LOAD or call
the standard load processor.

All other returns to the partition skip the next sequential instruction.

Message Display Routine (CFMSGDSP)

This routine puts a message of up to 56 characters into the extra line of the
screen. You must declare and store the message in a storage location in the follow-
ing format:

LMMMM . ..
Where L is the length-1 of the message, in binary.
M is the message, in EBCDIC.

If you want this message to be displayed and your program is displaying the status
line instead of the extra line, issue a DISPEX instruction before calling this routine
or immediately after calling this routine.

Input

® BR32-Address of your register save area.

® BR33—Address of the message.

Output

® The message is moved to the extra line.

® Registers are restored, except BR33.

When this routine is called, the following operations are performed.

1. If the program is being executed in a partition that is not attached to a
keyboard, the attach routine (CFATFBGD) is called to attach the partition.

2. The contents of BR32-63 are copied into the area pointed to by BR32.
3. The address of the message is taken from BR33.

4. The extra line of the screen contains the following:

Position Content

1 Partition number

16-23 Program name

25-80 Message (If the binary length specifies a number greater

than 55, only the partition number and program name are
moved to the extra line.)

5. Control returns from this routine to the partition, to the next sequential
instruction,

Operator Detach Routine (CFPERATT)

The operator detach routine detaches the currently attached partition from the
keyboard. This routine is called via external status when the operator presses the
Attn key. You must include this call in your external status subroutine if you
want to allow the operator to interrupt a program executing in an attached parti-
tion. When this routine has completed executing (unless 1158 is on), the keyboard
is available to be attached to another partition.

Control Areas 281

282

Input

® 1158

Output

® The partition is detached.

® The screen is cieared.

When this routine is executed, the following operations are performed.

1. The screen is cleared.

2. The KDETCH and SYSUNL instructions are issued in the attached partition

to detach the partition and cancel any remaining execution time. See Chapter
4 for more information about these instructions.

3. If 1158 is on, the attach partition routine (CFATFBGDV is catied to reattach
the calling partition prior to returning.

If 1158 is off, the partition remains detached when the return is made.

4, Return is made to the next sequential instruction.

Program Check Error Handler (CFPGMCHK)

The program check error handler displays detected program check errors. If you
use this common function routine, you must specify the label for the MCHK param-
eter of the .START control statement (MCHK=CFPGMCHK). The 5280 calls the
routine whenever a program check error occurs. See Program Check Errors in this
chapter for a list of the errors and corresponding error codes.

Input

® BR32-Address of your register save area.

Output

® Error message is displayed.

® Registers are restored.

When the CFPGMCHK routine is called, it performs the following:

1. If the program is being executed in a partition that is not attached to the
keyboard, the attach routine (CFATFBGD) is called to attach the partition.

2. If BR32 is not zero, it copies the contents of BR32-63 into the storage area
pointed to by BR32. If BR32 is zero, the contents of BR32-63 are placed
into BR64-95. This destroys the original contents of BR64-95.

The status line displays the following information:

Position Content
1 Partition number
7-12 —02CC-
Where CC is the program check error code.
16-23 The program name
25-28 The address of the current instruction

Positions 1-40 of the status line blink.

The address of the standard load processor (CFLOADO1) is placed into the
partition control area. This ensures a return to the standard load processor
from all external status in case the program check resulted from program
code that destroyed the exit routines.

This routine accepts a response from the operator, who must press the Reset
key or End of Job command function key. When the End of Job command
function key or the Reset key is pressed, an EXIT instruction is issued if the
partition is a background partition. If it is a foreground partition, the
standard load processor is called.

While the error code information is being displayed on the status line before reset,
the operator may use the dump console function to dump the data set. See the
Functions Reference Manual for a description of the Dump console function.

Secure Volume Processor (CFSECVOL)

This routine should be called in response to a 3211 error. The secure volume
processor displays a prompt requesting the operator to enter owner ID information
when a secure diskette is being accessed.

Input

BR32—Address of your register save area.
BR34—Address of a 14-byte storage area.

BR22—Address of the I0OB of the data set that had the error. This address is
placed into BR22 when an external status condition occurs. You must call this
routine in the external status subroutine before external status is enabled. If
you call this routine when external status has not occurred, you must place the
address into BR22.

Output

® Registers are restored, except BR33.

Control Areas

283

When this routine is executed the foilowing operations are performed.
1. The contents of BR32-63 are copied into the location pointed to by BR32.
2. The address of the data set OB is taken from BR22.

3. The following prompt is displayed on the screen:

N 0006 A &6 U0

Niskette is volume protected,

Device DINND, Tlata set S588S.

Enter ouner identifier to access volume,

Press ENTER

05-01

Where ddd is the logical device 1D, or physical device address.

284

s ... is the first 17 bytes of the data set name if the name is available.

4, If the operator enters the owner identification and presses the Enter key, the
routine accepts the input from the keyboard and stores it into the storage
location pointed to by BR34. Control returns to the partition, and the next
sequential command function instruction is skipped. If the operator presses
the End of Job command function key instead of the Enter key, control returns
to the next sequential instruction.

If the operator presses the Attn key instead of the Enter key, the allow attach
routine (CFPERATT) is called. If the operator presses the System Request
key instead of the Enter key, the standard load processor (CFLOADO1) is

called. Control returns to the secure volume processor from either of these
routines, and the secure volume prompt is redisplayed.

Standard Load Processor (CFLOADO1)
The standard load processor displays the standard load prompt and issues a LOAD
instruction to load a partition. This routine should be called via an external status
subroutine when the operator presses the System Request key or when you want to
exit a foreground partition.
Input

® BR32-—Address of your register save area.

® [158—This indicator may be set by your program or by the attach partition
routine (CFATFBGD).

Output
® The partition is loaded.

® Registers are restored.

When the routine is executed, the following operations are performed.
1. The contents of BR32-63 are copied into the location pointed to by BR32.

2. The following prompt is displayed on the screen:

0001 A 17 4o
Progvram name:
Nlevice address!
Partition numbher:
Press ENTER

3. If the operator enters the load parameters and presses the Enter key, the
input is accepted. A LOAD instruction is issued, with the input used as
parameters. The LOAD is issued with the attach option. See the LOAD
instruction in Chapter 4 for more information about the load operation.

If the operator presses the Cncl key instead of the Enter key, or if the oper-
ator is loading another partition, return is made to the partition, to the next
sequential instruction.

If the operator presses the Attn key instead of the Enter key, the allow
detach routine (CFPERATT) is called.

4, If 1158 is on, the newly loaded partition is attached before control returns
to the calling partition. The calling partition is detached.

KEYBOARD/DISPLAY EXTERNAL STATUS

The 1/0 instruction that initiates key entry is the ENTR command. When the 5280
encounters an ENTR command, it issues the command to the keyboard/display. The
ENTR command specifies the format of the record as it appears on the screen. The
keyboard/display uses this screen format to display prompts and accept input fields
for each record. You use the .SFMT series of control statements in your source pro-
gram to describe the screen format for a record. Screen formats are described in
detail in Chapter 2.

Normal key entry is processed by the keyboard/display without assistance from

the 5280 controller. An external status condition occurs when the keyboard/display
unit encounters a situation that does require processing by the controller. When
such a condition occurs, the keyboard/display interrupts key entry. The controller
is notified that the keyboard/display needs assistance. Indicators are turned on in
associated 10Bs to indicate that an external status condition is outstanding. Key
entry cannot be resumed until the external status indicators are turned off.

When the controller detects the outstanding external status condition, it places
certain information in the keyboard/display 10B and into certain system registers
within the partition. It then calls the subroutine you have written to process the
condition. Your subroutine can use the information in the IOB and system
registers. The information in the I0B depends upon the particular condition and
is discussed in the following external status condition descriptions. Except as
noted in the condition descriptions, the registers contain the information as
described in Chapter 2 under External Status and Error Conditions.

285

286

BR20

BR21

Used only with keyboard/display externai status, it contains the
relative address of the start of the current field in the 1/0 buffer
that holds the current record. The address is relative to the
beginning of the partition. The contents of this register are valid
only if bits 0-4 of BR21 indicate a field specification.

Used only with keyboard/display external status, it contains the
absolute address of the start of the current field in the screen
refresh buffer. The screen refresh buffer is located within the
keyboard/display storage, and holds the data that appears on the
screen. The contents of this register are valid only if bits 0-4 of
BR21 indicate a field specification.

Used only with keyboard/display external status, this register
contains information about the type of specification being
processed when the external status condition occurred, as
follows:

BR23

Bits Meaning

0-3 Field type or format specification
0000 = picture check field
0001 = alphabetic shift field
0010 = numeric shift field
0011 = hex field
0100 = special characters shift field
0101 = format level zero field
0110 = fixed position prompt’
0111 = standard prompt or constant insert!
1001 = alphabetic only field
1010 = numeric only field
1011 = digits only field
1100 = special characters only field
1110 = display attribute’
1111 = contro! specification®

4 0 = not a signed numeric field
1 = a signed numeric field

5-15 Field length of the field, minus 1

Used only with keyboard/display external status, this contains the
ETAB index of the current external status condition.

! These specifications are not field specifications; when any of them is used, and the data in the
remainder of BR21, and in BR19 and BR20 is not valid.

Restricted External Status Indicator

By setting a system indicator, 1108, you can restrict which external status conditions
are posted to the partition and determine the way they are posted. If 1108 is on
when external status is enabled, the only conditions normally posted are external
status conditions 4, 5, 9 and 12, which are described below. All others are treated
as though an external status condition was already outstanding when they occurred.

External Status Subroutines

External status subroutines must resolve the external status condition and turn
off the external status indicators. In addition, in most cases, they must either
provide for resuming key entry under the current ENTR command or cancel the
current ENTR. These operations can be performed by including the following
instructions in the external status subroutines:

ENABLE (turn off external status indicators)
RESUME (resume key entry)

RESCAL (RESUME and call a subroutine)
RETURN (return from subroutine)

RETEXT (RETURN and ENABLE)
RESMXT (RESUME and RETEXT)
CNENTR (cancel current ENTR)

The external status indicators can be cleared by either the RETEXT instruction or
the ENABLE instruction. If you want to clear external status indicators before
you end the subroutine, you can include an ENABLE instruction in any position

in your subroutine. The last statement in your subroutine must be a RETURN
instruction. If you wish to clear external status indicators when your subroutine
has completed executing, you can include a RETEXT instruction as the last instruc-
tion statement in your subroutine. This acts as both the ENABLE and RETURN
instructions; it clears the external status indicators and ends the subroutine.

The RESUME instruction resumes key entry under the current ENTR command.
The RESUME instruction neither causes a branch nor clears external status indi-
cators. When the RESUME instruction is executed, the keyboard is unlocked and
the keyboard/display resumes processing the screen format (specified by the
current ENTR) at the point where the format was interrupted. The RESCAL
instruction can be used in place of RESUME to resume key entry. The RESCAL
instruction performs the same operation as RESUME, and in addition calls
another subroutine through a label table. Or the RESMXT instruction can be used
to perform both the RESUME and RETEXT operations. The RETURN instruction
is described under Subroutine Call and Return instructions in Chapter 4. The
RESUME, ENABLE, RESCAL, RETEXT, and RESMXT instructions are described
under Key Entry Instructions in Chapter 4.

Should you wish to cancel the current ENTR command rather than resuming key

entry, you can issue a CNENTR instruction. This instruction is described under
Keyboard Operations in Chapter 4.

Control Areas 287

If an external status subroutine issues a CNENTR, RESUME or RESCAL instruc-
tion when no ENTR command is being processed, the instruction is ignored. There-
fore, you may include these instructions for conditions that may occur whether or
not an ENTR is outstanding.

otinn
L

You can write one subroutine to handle all external status conditions, or you can
write a separate subroutine to handle each condition. If you use one subroutine for
all external status conditions, you must specify the label of the subroutine for the
ELAB parameter of the .KBCRT control statement. Whenever any external status
condition occurs, the 5280 will branch to this subroutine, This subroutine must
clear external status indicators and resume or cancel the current ENTR command.

If you write a separate subroutine for each condition, you must use the .LABTAB
control statement to enter the labels of the subroutines into a label table. The label
of the subroutine to handle condition 0 must be entered into the table first; the
label for the condition 1 subroutine must be entered next, and so on. You must
specify the label of the label table in the ETAB parameter ot the .KBCRT control
statement. Whenever an external status condition occurs, the 5280 uses the external

status condition number in BR23 as the index for an indexed subroutine call™
through the label table. It branches to the subroutine address that is entered at
that index position.

Return from an external status subroutine depends upon the external status condi-
tion. The following descriptions of the external status conditions include how to
code a return from the particular external status subroutine, and whether the
current ENTR is resumed, canceled or completed. An ENTR is completed when
all the specifications of the screen format have been processed.

External Status Conditions

Each external status condition is specified by a condition number. The 5280 stores
this number into BR23 when an external status condition occurs. If you write a
separate subroutine to handle each condition, the 5280 uses this number as the
index into your external status label table (ETAB) to call the appropriate
subroutine.

In the following condition descriptions, an external status condition is outstanding
until the external status indicators are cleared by an ENABLE, RETEXT, or
RESMXT instruction.

Condition 0: Double External Status

This condition occurs when an external status subroutine is interrupted by a

second external status condition. The second condition may be condition4 & R

7. 10, or 13. It also occurs when the Restricted External Status Indicator (1108) is
set on, and external status condition 6, 7, 10, or 13 occurs. Condition O results
from programming errors. If an ENTR command is being processed when condition
0 occurs, the external status subroutine cannot recover normal key entry by issuing
a RESUME.

When condition 0 occurs, the contents of BR19, BR20, and BR21 are meaningful
if there is an ENTR outstanding and the cursor is currently positioned within a
field. When condition 0 occurs, the following status information is stored in the
keyboard/display 10B:

Relative Address Status Information

Hex FE The condition number of the external status condition that
caused condition 0. This information remains valid until
(1) an ENTR command is executed, (2) a keyboard opera-
tion (including RESUME, RESCAL, RETEXT, and
RESMXT) is executed, or (3) an external status condition
occurs.

Condition 1: Function Key

Condition 1 results when the operator presses a function key that requires
processing by a subroutine.

If condition 1 occurs while an external status condition is outstanding or while the
restricted external status indicator (1108) is on, it does not cause condition 0. Key-
board error 1170, the code for a software overrun error, is displayed on the status
line unless a keystroke error or program error is already outstanding. The function
for the keystroke is not processed.

When condition 1 occurs the contents of BR19, BR20, and BR21 are meaningful
if there is an ENTR outstanding and the cursor is currently positioned within a field.

When condition 1 occurs, the following status information is stored in the keyboard/
display 10B:

Relative Address Status Information

Hex A7 EBCDIC code of the function key. This information
remains valid until (1) an ENTR command is executed,
(2) a keyboard operation (including' RESUME, RESCAL,
RETEXT, and RESMXT) is executed, or (3) an external
status condition occurs,

Following is a list of the functions.

Attention Function

The attention function is initiated when the operator presses the Attn (Attention)
key. The purpose of the function is defined by your program. This key is
normally used to call the common function routine CFPERATT. See Allow Detach
Routine earlier in this chapter.

Control Areas 289

200

Auto-Enter Function

The auto-enter function is initiated when the operator presses the Auto Enter key
on the data entry or proof keyboard. (On a typewriter keyboard it must be initiated
by a command function key sequence and handled by the external status 2 or 3
subroutine.) The purpose of the function is to set the auto-enter flag in the key-
board function control flag byte.

When this bit is set to 1, the automatic record advance function is enabled.

Auto-Dup/Skip Function

The auto-dup/skip function is initiated when the operator presses the Dup Skip key
on the data entry or proof keyboard. The purpose of the function is to set the
auto-dup/skip flag in the keyboard function control flag byte.

Cancel Function

The cancel function is initiated when the operator presses the Cncl (Cancel) key.
Your program defines the purpose of the function and processes the function.
Erase Function

The erase function is initiated when the operator presses the Erase Input key. The
purpose of the function is defined by your program.

Help Function

The help function is initiated when the operator presses the Help key. The purpose
of the function is to move a message to the screen. This key is normally used to
call the common function routine CFHELPO1. See Help Text Processor earlier in
this chapter.

Next Format Function

The next format function is initiated when the operator presses the Next Fmt (Next
Format) key on the data entry or proof keyboard. The purpose of the function is
to allow the operator to leave a repetitive format.

Page Forward Function

The page forward function is initiated when the operator presses the Page Fwd (Page

Forward) key on the data entry or proof keyboard. The purpose of the function is
to read the next record without writing the current record.

Print Function

The print function is initiated when the operator presses the Print key. The purpose
of the function is to specify printed output.

Record Correct Function

The record correct function is initiated when the operator presses the shifted Corr
(Correct) key on the data entry or proof keyboard. The purpose of the function is
to change from verify mode to enter mode to allow the operator to reenter an
entire record, then change back to verify mode to reverify the entire record.

Select Format Function

The select format function is initiated when the operator presses the Sel Fmt
{Select Format) key on the data entry or proof keyboard. The purpose of the func-
tion is to allow the operator to select a screen format for data entry.

System Request Function

The system request function is initiated when the operator presses the Sys Req
(System Request) key. This key is normally used to call the common function
routine CFLOADO1. See Standard Load Processor earlier in this chapter.

Condition 2: Command Key Sequence, Lowercase

This condition occurs when the operator presses a command key sequence that
requires processing by a subroutine, and the second key is in lowercase. Your pro-
gram defines and processes the command functions. If condition 2 occurs while
another external status condition is outstanding, or while the restricted external
status indicator (1108) is on, condition 0 does not result. Keyboard error 1170, the
code for a software overrun error, is displayed on the status line unless a keystroke
error or program error is already outstanding. The key-sequence command is not
processed.

When condition 2 occurs, the contents of BR19, BR20, and BR21 are meaningful
if there is an ENTR outstanding and the cursor is currently positioned within a
field.

When condition 2 occurs, the following information is stored in the keyboard/dis-
play 10B. This information remains valid until (1) an ENTR command is exe-
cuted, (2) a keyboard operation (including RESUME, RESCAL, RETEXT, and
RESMXT) is executed, or (3) an external status condition occurs.

Control Areas 291

Relative Address Status Information

Hex A6 Scan code of the second keystroke. (The scan code is a
unique code generated by the keyboard.)

Hex A7 EBCDIC of the second keystroke.

Condition 3: Command Key Sequence, Uppercase

This condition occurs when the operator presses a command key sequence that
requires processing by a subroutine, and the second key is in uppercase. Your pro-
gram defines and processes the command functions. Condition 3 is as for condition
2 except for the shift of the command key. The 10B status information and register
information is as for condition 2.

Condition 4: Forward Pass over Return (RG) Specification

This condition occurs during formatted key entry under an ENTR command; the
screen format control string is being processed in a forward direction when an RG
specification is encountered. (See note following Condition 5 for an explanation of
the RG specification.) Key entry is suspended; the Reset key or a shift key are the
only keystrokes that may be entered. If any other key is pressed, an error occurs,

The subroutine that processes condition 4 must include a RESUME command
before data keystrokes or function key sequences may be entered. If any other key
is pressed, an error occurs.

If condition 4 occurs while another external status condition is being processed,
condition 0 resuits. Key entry cannot be resumed with a RESUME command in
the condition O subroutine.

When condition 4 occurs, the contents of BR19, BR20, and BR21 pertain to the
last field exited in the forward direction. The contents of these registers are
undefined if condition 4 occurs while a Cl (check indicator for bypass) specifica-
tion is being processed, or if the RG specification is encountered before the first
field definition.

Condition 5: Backward Pass over Return (RG) Specification

This condition occurs during formatted key entry under an ENTR command; the
screen format control string is being processed in a backward direction — such as a
backspace — when an RG specification is encountered. (See note below for an
explanation of the RG specification.) Key entry is suspended; the Reset key or a
shift key are the only keystrokes that may be entered. If any other key is pressed,
an error occurs.

The subroutine that processes condition 5 must issue a RESUME(B) command
before data keystrokes or function key sequences may be entered. If any other
key is pressed, an error occurs.

If condition b occurs, the contents of BR19, BR20, and BR21 pertain to the last
field exited in the backward direction. If the RG specification is part of a field
definition, the last field exited is the next sequential field in the forward direction.
The contents of the registers are undefined if condition 5 occurs while a Cl (check
indicator for bypass) specification is being processed, or if the RG specification is
encountered before the first field definition.

Note: You include a return (RG) specification for a CNTL parameter in your
screen control format whenever you want to temporarily interrupt key entry to
execute program instruction. See Screen Formats in Chapter 2 and the .SFMT
series of control statements in Chapter 3 for more information about the RG
specification.

Condition 6: Record Advance

This condition occurs during formatted key entry under an ENTR command when
all fields within the current screen control format have been processed and the end
of record functions have been processed. The current ENTR command is completed.
After the external status subroutine has executed, control returns to the next
sequential instruction after the ENTR command.

If this condition occurs while another external status condition is being processed,
or while the restricted external status indicator is on (1108), condition O results.

When condition 6 occurs, the contents of BR19, BR20, and BR21 pertain to the last
field defined in the screen format.

Condition 7: Record Backspace
This condition occurs during formatted key entry under an ENTR command, when
the screen control format is at the first position of the first manual field and the

operator presses the Home key. The ENTR command is made complete.

If this condition occurs while another external status condition is being processed
or while the restricted external status indicator is on, condition O results.

When condition 7 occurs, the contents of BR19, BR20, and BR21 pertain to the
first field defined in the screen format.

Control Areas 293

294

Condition 8: Keystroke Error

This condition occurs when a keystroke error has occurred and you have specified
the TRAP parameter of the .KBCRT control statement in Chapter 3.

If this condition occurs while another external status condition is being processed,
or while the restricted external status indicator (1108) is set on, condition 0 does
not result. Keyboard error 1170, the code for a software overrun error, is dis-
played on the status line unless a keystroke or program error is already outstanding.

When condition 8 occurs, the contents of BR19, BR20, and BR21 are meaningful
if an ENTR is outstanding and the cursor is currently positioned within a field.

When condition 8 occurs, the following status information is stored in the key-
board/display 10B. This information remains valid until (1) an ENTR command is
executed, (2) a keyboard operation (including RESUME, RESCAL, RETEXT, and
RESMXT) is executed, or (3) an external status condition occurs.

Relative Address Status Information

Hex 84 Hex code of the keystroke error
Hex A6 Scan code of the keystroke error
Hex A7 EBCDIC cade of the keystroke error

Condition 9: Keyboard/Display Storage Parity Error

This condition occurs when a keyboard/display storage parity error is encountered
and logged into the hard error log. This error normally occurs when keyboard/dis-
play storage is accessed to process a function. If a keyboard operation caused the
parity error, the error is not reported until after the operation is completed. You
are responsible for error recovery. You may choose to either abort the job or
continue on the basis of the status information stored in the keyboard/display 10B.
If condition 9 occurs when the restricted external status indicator (1108) is on but
no other external status condition is outstanding, condition 9 is processed normally.
If a condition 9 occurs while another condition 9 is being processed, condition 0
does not result and the second condition 9 is not displayed on the status line.
Normal hard error logging is processed for the second condition 9. If condition 9
occurs while another external status condition (other than condition 9) is being
processed, condition 12 results.

When condition 9 occurs, the contents of BR19, BR20, and BR21 are meaningful
if an ENTR is outstanding and the cursor is currently positioned within a field.

When condition 9 occurs during normal operation, the following status information
is stored in the keyboard/display I0B.

Relative Address Status Information

Hex FE If bits 1 and 2 equal 00, it indicates an invalid keyboard/
display storage address, which may have resulted from a
programming error; bits 3-5 indicate the high order 3 bits
of the absolute address in keyboard/display storage where
the error occurred.

Condition 10: Invalid Operation

This condition occurs when any invalid operation request is detected. If condition
10 occurs while another external status condition is being processed or while the
restricted external status indicator is on, condition O results.

When condition 10 occurs, the contents of BR19, BR20, and BR21 are meaningful
if an ENTR is outstanding and the cursor is positioned within a field.

Condition 11: Magnetic Stripe Reader Request

This condition occurs after a badge has been inserted into the magnetic stripe
reader, when the badge information has been entered into the magnetic stripe
reader buffer. if condition 11 occurs while another external status condition is
being processed, the 5280 waits for the other external status condition processing
to complete before issuing the reader request. If condition 11 occurs while the
restricted external status indicator (1108) is on, the 5280 waits until it is turned
off before issuing the reader request.

When condition 11 occurs, the contents of BR19, BR20, BR21 are meaningful
if an ENTR is outstanding and the cursor is currently positioned within a field.

Condition 12: Keyboard/Display Storage Parity Error Double Condition

This condition occurs when a keyboard/display storage parity error (condition 9)
occurs while another external status condition {other than a condition 9) is out-
standing. The condition 9 is logged into the hard error log. The subroutine that is
processing the other external status condition is interrupted, and a branch is made
to the condition 12 subroutine. The condition 12 subroutine should be terminated
with a RETURN command rather than a RETEXT, so control returns to the inter-
rupted subroutine. When condition 12 occurs, the contents of BR19, BR20 and
BR21 is meaningful if an ENTR is outstanding and the cursor is currently posi-
tioned within a field. The status information stored in the keyboard/display |10B
is as for condition 9.

Control Areas 295

Condition 13: Screen Format Error

This condition occurs during formatted key entry when an error is detected in the
syntax of the current screen format control string. The screen format control
string is the object code generated from one series of .SFMT control statements.
See the Functions Reference Manual for a complete description of the bytes within
a screen format control. When condition 13 occurs, the currently executing ENTR
command is made complete. The foilowing list indicates the kinds of errors that
cause condition 13.

® The primary or secondary screen format has more than one start (.SFMSTS)
or end (.SFMTEND) specification.

® Anend (.SFMTEND) specification is encountered while processing within a
bypass specification. (See Conditional Bypass under Field Controf in Chapter 2
for a description of a bypass specification.)

® The screen format control string has nested bypass specifications.

® The screen format control string has nested secondary formats. (See Secondary
Screen Format under Field Control in Chapter 2 for a description.)

® The screen format control string has unmatched bypass specifications to start
bypass and end bypass.

® The screen format control string has an invalid character set byte.

® The screen format control string has an invalid subfield (PIC) specification.

® The screen format control string has an invalid control byte.

If a condition 13 occurs when another external status condition is being processed,
or while the restricted external status indicator is on, condition O results. When
condition 13 occurs, the contents of BR19, BR20, and BR21 are meaningful if an
ENTR is outstanding and the cursor is currently positioned within a field.

When condition 13 occurs, the following information is stored in the keyboard/
display 10B. This information remains valid until (1) an ENTR command is
executed, (2) a keyboard operation (including RESUME, RESCAL, RETEXT, and
RESMXT) is executed, or (3) an external status condition occurs.

Relative Address Status Information

Hex 9A Relative address of the byte within the screen format
control string that caused the error.

Chapter 7. The ACL to Assembler Language Conversion Program

The ACL (Application Control Language) to assembler language conversion pro-
gram helps you convert source programs written in ACL to assembler language
source programs. Use the conversion program each time you convert an ACL pro-
gram to an assembler language program. The conversion program should be used
only once with each program that is converted. No optimization is attempted by
the conversion program. Any further changes or modifications made to the con-
verted programs should be done directly in assembler language.

The conversion program converts most ACL instructions and control statements

to assembler language. However, certain control statements and instructions
cannot be converted by the conversion program; these must be converted to
assembler language manually. The assembler language output generated by the
ACL control statements and instructions contains a message for each line of ACL
code that must be converted manually. Error messages generated by the conversion
program are listed in Appendix E.

OPERATION
The conversion program is stored on the assembler diskette. Use the standard
load processor to load the conversion program. The name of the conversion pro-
gram data set is SYSACLC.

When the conversion program is loaded, it displays the following prompt:

Prompt 1

0 6001 A 16 40

SYSACLC - ACL TO ASM CONVERSION AID
. Insert INPUT diskette and enter:
Nata set name:

-r llevice address:

\

Press ENTER 28-01

Insert the input diskette into the selected diskette drive. Enter the name of the data
set that contains the ACL program to be converted. The data set name can contain
up to 17 characters. The ACL program is assumed to be error free. If itis stored
on a volume protected diskette, the prompt for an owner ID is displayed. (See
Prompt 5 in Chapter 5.) The input data set must remain in the diskette drive while
the conversion program is executing.

Enter the device address and press the Enter key. The device address must be four
alphanumeric characters. Do not use a logical device ID.

The ACL to Assembler Language Conversion Program 297

298

if an invaiid input data set name or an invaiid device address is eniered, an error
recovery message is displayed.

If no error occurs the following prompt is displayed.

Prompt 2

0 0001 A 16 E2 w

SYSACLC ~ ACL TO ASM CONVERSION AID

Insert OUTPUT diskette and enter:

Data set name:

llevice address: ’
Press ENTER 28-02

A default data set name, SYSIN, is displayed with the device address you entered for
the preceding prompt. You can change the data set name and device address by
keying over the defaults.

The output data set must remain in the diskette drive while the conversion pro-
gram is executing. The output data set should be at least 2.5 times the size of
the input data set, and it should be empty when the conversion program begins.
If the output data set is | exchange, the header label must contain a valid delete
character.

If an invalid device address is entered, an error message is displayed.

If the data set name you specify for the output data set is not found, the following
prompt is displayed.

Prompt 3
r 0001 Y 01 40
Output data set not found, Do vou want it allecated?
. Options ave
1, Yes
~1 2, No
SELECT OPTION: _ PRESS ENTER 28-0%

If you select 2, prompt 2 is redisplayed with the data set name and device address
you entered previously. You can change the previous entry by keying over the
existing data.

If you select 1, the output data set is allocated on the diskette at the specified device
address. After the data set is successfully allocated, prompt 4 is displayed.

Prompt 4

0 06001 Y 01 40
Do you want ACL input included as comments in output?
Options ave

1. Yes
2. No
SELECT OPTION: _ Press ENTER 28-03

Enter a 1 if you want the assembler language output only, or enter a 2 if you want
the assembler language and the original ACL statements as output. If you

chose to have the original ACL included in the output, each ACL line is

written as a comment line. Each ACL line precedes the assembler language

lines it generated.

After you enter a valid option number and press the ENTER key, the conversion
process begins. The ACL control statements and instructions are read sequentially,
then translated to corresponding assembler language control statements and
instructions.

If any ACL statement contains source code that the conversion program cannot
convert, the conversion program inserts one of the following messages in the
assembler language source at the position of the untranslatable code:

*MSG™**Message or .MSG™***Message

These messages allow you to assemble the rest of your assembler language source
while preventing loadable object code from being produced. The message that
begins with an asterisk indicates code that is loadable object code, but that may

not produce the results you expect. The message that begins with a period indicates
code that you must change. If your program generates a message that begins with a
period, the following prompt is also displayed:

Prompt 5
0 .
UNTRANSLATARLE CODE HAS BREEN FOUND, THE ASM SOURCE CANNOT RE
ASSEMBLED, CHECK THE ASM SOURCE FOR MESSAGES, A

Press ENTER 28-04

Each ACL statement that cannot be converted by the conversion program must
be converted manually.

The ACL to Assembler Language Conversion Program

299

When the ACL to assembler language conversion program has successfully
completed, the following is displayed:

Prompt 6

0 0001 Y 01 40
CONVERSION COMPLETED.
~ Options are
< 1. Restart 3., Assemble
2. Exit
SELECT OPTION: _ Press ENTER 28-79

If you select 1, the conversion program restarts at the beginning. If you choose to
exit, the standard load processor redisplays the standard load prompt. If you
select 3, the conversion program loads the IBM 5280 Assembler Program Product
(see Chapter 5) to process the data set output from the conversion program.
When the assembler encounters the untranslatable code message, it includes an
error message for that line in the assembler listing. You must convert this line

to assembler language and reassemble the program.

NOTES ABOUT THE CONVERTED PROGRAM

The following discussion describes the format of the converted program and how
the converted program may differ from the original ACL program.

The Format of the Converted Program

An ACL line often converts to more than one assembler language line. This can
cause indexed branch instructions and dynamic instruction modification in the
ACL program to produce unpredictable results in the converted program.

Each control statement in the converted program is preceded by a period in the
first column of the line. Each control statement and instruction ends with a
semicolon. A iine that begins with an asterisk is treated as a comment line.

Labels and Sequence Numbers

If a label is present in an ACL line, a colon is inserted in column 5, and this label
precedes the assembler language line or fines generated from the ACL line.

If a sequence number is present in an ACL line, the number is preceded by N and
used as a label on the assembler language line generated from the ACL line. If
more than one assembler language line is generated, the label is placed on the
first assembler language line generated from the ACL line.

300

If an ACL line does not have a sequence number, the conversion aide generates
a sequence number. The generated number is preceded by N and placed on the
assembler language line, or the first of the assembler language lines, generated
from the ACL line. For example, if the ACL program has the following instruc-
tion in line 0007:

AAAA IFD K = 0 009

it is converted to the following assembler language code:

AAAA: H
N0O007: IFDK NE 0 GOTO N00O08: ;
GOTO NO0009 ;

The Format of the Display Screen

The following illustration shows the format of the screen for ACL, and the
format of the screen for a converted program.

ACL Screen Format

|_A I
|_o]
I
|18 s8nic |
e]
] : HE I []
:Screen | AFL ! : ASM !
: Position | Buffer | Positions : Buffer | Positions !
! I
) ! | ! i !
v A 01 L 140 01 | 140
} B 1 01 1 4148 1 01 | 4148 !
b8 1 (02) ; (121-128) ! :
boC j 01 | 51120 | 01 | 51120 |
i D 1 o2 1 1120 ' 02 ! 1128 |
) L I J 1)

() implies ‘B’ or ‘M’ option in col 28 on .FIELD

The ACL to Assembler Language Conversion Program 301

302

5280 Screen Format

|_ __Status Line -___l

LA]

R |

.o P——
B

[v8 sarc T T T T

In ACL, buffers 01 and 02 contain data that is displayed. On the 5280, a screen
refresh buffer in keyboard/display storage maintains the screen display according
to the screen control format referred to in the current ENTR command. The con-
version program provides for placing the contents of buffers 01 and 02 into the
screen refresh buffer by inserting the following instruction in the converted
program:

ENTR(SFMTXXX);

Buffers

The conversion aid does not automatically declare all 56 buffers. Only the
following buffers are declared:

® Buffers 01 and 02. These buffers are contiguous and precede all other
buffers.

® Buffers initialized by a .BUFFER control statement in the ACL program.
These buffers are contiguous if their associated .BUFFER control statements

are contiguous.

® Buffers referred to in instructions that are not declared by methods (1) or (2).

Implied Usage of Buffers

Implied usage of a nondeclared buffer may produce unpredictable results. For
example, the ACL instruction PRNT allows buffer specification for a print
buffer. The buffer referred to in the PRNT instruction will be declared as a
128-byte buffer. However, the ACL .PRINTER control statement could specify
up to 132 characters per line. In ACL, the print buffer referred to in the PRNT
instruction is used for the first 128 characters, and the next sequential buffer is
used implicitly for the remaining characters. The conversion aid does not
declare the implied buffer. In the converted program, the declared print buffer
is used for the first 128 characters and the next sequential dec/ared buffer is used
for any remaining characters. |f you use more than 128 characters per line, it

is recommended that you increase the size of the declared print buffer in the
converted program.

Unlike ACL, the converted program does not store the .FIELD and .FORMAT;
information in the buffers. Therefore, any attempt to modify .FIELD state-
ments during execution of the ACL program by referring to the buffer in which
they are stored requires manual translation.

The Physical Buffer Size

ACL programs use basic exchange diskettes, which require a physical buffer size
of 128 bytes. If you plan to use a different exchange type for your converted
program, be sure your physical buffer size is valid for that exchange. | exchange,
for example, requires a physical buffer size at least twice the diskette sector size.

FIELD Buffers

The 5280 does not use buffers for the .FIELD control statements in the same

way the 3741 used them for ACL programs. The conversion aid converts the
.FIELD control statements to a screen control format and stores the screen control
format in the next available storage location.

The conversion aid does not handle all the options that were available in ACL to
assign to buffers in the .FIELD control statements. This does not affect the
functions available in the converted program.

The conversion aid requires that all .FIELD control statements that refer to the
same buffer be contiguous in the ACL program. This means that if a series of
.FIELD statements refer to a buffer, such as buffer 05, and then subsequent
.FIELD statements refer to another buffer, such as 06, the following .FIELD
statements cannot refer to the first buffer (buffer 05).

The overflow buffer (ACL columns 18-19) is ignored. If an ACL .FIELD control
statement specifies overflow into the next buffer to which .FIELD control state-
ments refer (this is usually the case), the ACL program will convert correctly.

The ACL to Assembler Language Conversion Program

303

The ACL .ENTR instructions refer to fields by field number, relative to the start of
the buffer. The conversion aid assigns screen format numbers sequentially and
converts the ACL references to these numbers. This may result in a field sequence
error of one if a field overflowed from one buffer to another in the ACL program.

If you add any screen control formats to a converted program, place them following
the last screen control format generated by the conversion aid in order to maintain
proper numbering sequences.

The .FORMAT Control Statement

The 5280 uses a currency symbol that is a/ways two characters in length, The con-

version aid attempts to allow for this when converting ACL .FORMAT control
statements.

Indexed Branch Instructions

Because more than one line of assembler langauge instructions can be generated
from one ACL instruction, indexed GOTO instructions in the ACL program

may not produce the expected result in the converted program. You can replace
the indexed GOTO instructions with GOTO instructions in the converted program.
Or you can set up a label table of addresses with a .LABTAB control statement
and replace the indexed GOTO with a GOTAB in the converted program. The
GOTAB instruction uses the label table of addresses to make the indexed branches.

The OPEN Instructions

The converted program does not automatically issue an OPEN instruction when
an 1/0 instruction specifies an unopened data set I0B. The converted program
will, however, try to open all data sets at the start of program execution.

The 5280 cannot issue an OPEN instruction to a device that already has a data
set 10B open for label update. Therefore, if the ACL program opened a diskette
data set for label update, it must be closed before any other data sets on that
diskette can be opened.

The ENTR Instructions

In ACL, an indicator is set whenever an ENTR is executed. Any assembler ENTR
instruction that was generated from an ACL ENTR instruction sets an indicator
(1227 in the converted program) when the ENTR instruction is executed. If you
add ENTR instructions to a converted program, this indicator is not automatically
set when the added ENTR instruction is executed. If you want the indicator to
be set, you must write code to set the indicator and include this code in the con-
verted program in addition to the ENTR instruction.

The ACL Deleted Record Subroutine

The 5280 does not read deleted records unless they are read by relative record
number, which in turn results in an external status condition. The ACL
deleted record subroutine, which is specified in columns 48-51 of the
.DATASET control statement in the ACL program, is not processed by the
conversion aid. The converted program will contain a message if columns
48-51 are not blank in the . DATASET statement in the ACL program.

Overlapping for PRNT Instruction

The converted program does not use overlapped |/O for printer operations. The
printer operations in the converted program use SCS conversion data sets. For

this kind of data set, overlapping is invalid.

Function Keys

In the converted program, certain function keys are substituted for the function
keys used in ACL. The following lists ACL function keys and explains how
these function keys are handled for a converted program. For a description

of how all the function keys are handled for a program originally written in
5280 assembler language, see the Functions Reference Manual.

The System Request/Attention Key

In a converted program this key is handled in the same way it is handled for
any program on the 5280.

The Reset Key

In ACL, the Reset key turns on an indicator in addition to resetting the error con-
dition. If you want this indicator turned on during the execution of a converted
program, press the Help key instead of the Reset key. When the operator presses
the Reset key in a converted program, the error condition is reset: the status line
stops blinking and the operator can enter correct keystrokes.

The Command/End of Job Key Sequence and the Help Key

If there is an error during the execution of a converted program, the status line
blinks and displays error information. While the status line is blinking, the
operator can (1) press the Reset key to reset the error and stop the blinking,

(2) press the Cmd key, then the End of Job command function key to terminate
the job, or (3) press the Help key to have help text displayed.

The ACL to Assembler Language Conversion Program 305

ACL Double-Shift Reset
During the execution of a converted program, press the Cncl key in upper shift to
emulate the function caused by pressing the Alpha shift, Num shift, and Reset
keys simultaneously during the execution of an ACL program.

The ACL Tab Key
There is no Tab key on the 5280. During the execution of a converted program,
press the Page Forward key to emulate the ACL Tab key function.

ACL T-Option Keys
The conversion aid does not check the T-option in the ACL .FIELD control
statement. Five of these keys are always handled as though the T-option in the
ACL program were specified to redefine the keys. These keys include the:
® Dup key
® Sel Prog key
® Rec Adv key
® Rec Bksp key
® Field Adv key
When any of these keys is pressed during the execution of a converted program, the
current ENTR command is terminated. Data that has been entered is preserved.
Any specified right adjust function is not performed on the current field. Special
keyboard indicator {1230 in the converted program) is set.
The Field Bksp key is handled as though the T-option in the ACL program were not
selected for this key. When the Field Bksp key is pressed during the execution of
a converted program, if the cursor is in any position of the field other than the
first position, the cursor goes back to the first position of the field. If the key is
pressed when the cursor is in the first position of the field, it is handled as for one
of the preceding five T-option keys.

ACL Toggle Switches

During the execution of an ACL program, you could use a toggle switch to change
the status of one of the following functions:

® Auto Rec Adv
® Auto Dup/Skip

® Numbers only field

The 5280 does not have these toggle switches. During the execution of a con-
verted program, you can emulate the function of the toggle switches by
pressing the following keys:

® Auto Enter key—emulates the auto Rec Adv switch
® Dup Skip key—emulates the Auto Dup/Skip switch

® Erase input key—emulates the Numbers Only setting on the Prog Num
Shift switch

When one of these keys is pressed, if the function is disabled it is enabled; if the
function is enabled it is disabled.

CONVERSION CHART

This chart is intended as a preliminary guide for ACL programmers who are
beginning to program in the 5280 assembler language. It shows the 5280
assembler language control statements and instruction mnemonics that most
closely correspond to the ACL control statements and instruction mnemonics.
All ACL control statements and instructions are listed, although not all ACL
instructions have corresponding 5280 assembler language instructions.

The 5280 assembler language has many control statements and instructions

that are not available with ACL. Instructions for table operations, conditional
branches and skips, and data movement have been greatly expanded in the 5280
assembler language. Instructions for binary arithmetic and logical operations have
been added, along with numerous mask operations for bit manipulation. There-
fore, the control statement or instruction that corresponds to ACL is not
necessarily the most appropriate 5280 assembler language control statement or
instruction to use.

Control Statements

ACL 5280
Mnemonic Mnemonic
.NAME START
.EDITC
.DATASET .DATASET
.PRINTER .DATASET
.SELF-CHECK SELFCHK
.REGISTER .DC
.FORMAT FMTST
.FMTFLD
.FMTEND
.BUFFER .DC

The ACL to Assembler Language Conversion Program 307

308

At
AL

Mnemonic

.FIELD

.END

Instructions

ACL
Mnemonic

+

~ 1

CCMD
CKPT
COMM
CRDP
CcLoz
CRDR
CRFL
CCRD
CSEL
CSTR
CWFL
CWRD
ENTR
EXCH
EXEC
EXIT

GETB

5280
Mnemonic

+

~ 1

TINIT

CLOZ

ENTR

<=

LOAD

EXIT

MvC

5280

4ot

Mnemonic

SFMTST

SFMTCTL
SFMTFLD
.SFMTCNS
SFMTPMT
.SFMTEND

.END

Operation

Add

Subtract

Divide

Multiply

Move register to register
1/0 adapter command
Checkpoint
Communications linkage
Punch a card

Close file

Read a card

Read file

Read a record from attachment
1/0 adapter control
Start character

Write file

Write a record to attachment
Keyboard input
Exchange

Execute next program

Exit program

Move data from buffer to register

Rn = disp (len,BRn)

ACL
Mnemonic

GOTO
GSCK

ICBR

AN
IF SN

IF>
IF<
If=
IF -
IFO

If CHK
IF CRD
IF FMT
IF PRT

IFC

5280
Mnemonic

GOTO
GSCK

label = constant

AN
IF Rn | SN

IF Rn GT
IFRn LT
IF Rn EQ
IF Rn -
IFRn O

1f Rn Ck

If fmt

Operation
Unconditional branch
Generate self check

Insert character in buffer

Test register numeric

If register greater than
If register less than
Compare register logical
If register minus

If register zero or blank

Self-check test

Test if card is busy
Test format number
If printer busy

Test for attachment busy

Note: This mnemonic is used for a different operation in the 5280 assembler

language.

IFD>
IFD <
IFD =

IFi
IFIR

(load) +
(load -

L
LS
LOAD

IFD LT

IFD GT

IFD EQ

IF1

IFIR

Rn=+n
Rn=-n

SL

SLS

Rn = label (len)

Compare decimal for less than
Compare decimal for greater than
Compare decimal for equal

Test indicator
Test and reset indicator

Load positive constant into register
Load negative constant into register

Shift left
Shift left signed
Load register from buffer

Note: This mnemonic is used for a different operation in the 5280 assembler

language.

MOFF
MOVE
MVER
NOP

OPEN

MOFF
MvC
MVER
NOP

OPEN

Move partial contents to register offset
Move buffers

Move partial contents, register to register
Null operation

Open a file

The ACL to Assembler Language Conversion Program

309

310

ACtH

AN -

Mnemonic

PCTL
PRNT
PUTB

RBLK
READ

REFM
RGO

RR
RS

SCE

SCN

SOFF
SON

STOR

TBFN
TBFX
TBRD
TBWT
WAIT
WBLK
WRFM
WRT
WRTE
WRTS
ZONE

5280
Mnemonic

WRT
Mvc

disp{len,BRn) = Rn

SR
REBF
READ

REBF
CALL
RETURN
SRR
SRS

IFC... IS
IFC...NOT

SOFF
SON

label(len) = Rn

TBFH
TBFX
TBRD
TBWT
WAIT
WRBF
WRBF
WRT

WRT

WRTS
ZONE

Operation

Printer skip or space
Print a line
Move from register to buffer

Shift right
Reformat registers at buffer offset
Read from [diskette]

Formatted read from buffer
Return transfer

Shift right and round
Shift right signed

Skip if character equal
Skip if character not equal

Set indicators off
Set indicators on

Store register to buffer

Search table for equal/high entry
Search table for equal entry
Read table entry

Write table entry

Wait for 1/O completion
Reformat buffer at offset
Formatted write to buffer
Write record to diskette
Write extend

Delete a record

Zone part of register

Indicator Conversion

Many ACL indicators have direct counterparts in 5280 assembler language, as
shown in the following table. When these indicators appear in SON, SOFF, (FI,
or IFIR instructions, the 5280 assembler language equivalent will be substituted.
Other ACL indicators, particularly those set from the keyboard, are simulated
by generated software. They are shown by numbers in parentheses. The
remaining indicators are not translatable or require special handling, as shown

in the footnotes. The following table lists all the ACL indicators:

ACL Assembler
Indicator Definition Set On By Set Off By Indicator
1-99 User specified User program User program 199
100-146 Reserved
147 Printer error Any printer error User program None
148 Print page Printer reaches Next prnt inst 115
overflow overflow line
spec’d in col
23-25 of
.PRINTER
149 Card I/O EOD ?/card read User program None
150 Card I/O EOJ ?*card read User program None
151-163 Reserved
154 Invalid GSCK GSCK result =10 User program 117
-MOD 11
155 RBLK/WBLK Low-order of reg User program (192)
overflow =000
156 Table index Read/write past User program 126
error end of table
157 Division error Divide by O User program 120
158 Multiply Carry from mult User program 123
overflow
159 Add/subtract Carry from +/ User program 124
overflow
160 Machine check Ind 155-159 ON User program Note 1
161 Error line System error User program or None

causing keyboard Reset key
lock or screen

flash

162 Short keyboard User program User program Note 2
buzz

163 Table high = Not found but User program or 101
entry found > entry found hdwr

164 Printer busy Print command Print done Note 3

165 Disk drive busy Disk busy Disk not busy Note 4

166 Auto rec adv Switch on Switch off (212)
switch

167 Prog num shift Switch on Switch off (213)

168 Auto dup/skip Switch on Switch off (214)
switch

169-184 Reserved

185 Sel pgm Key pressed User program/ (215)

ENTER

The ACL to Assembler Language Conversion Program 311

312

ACL

indicator

186

187
188
189
190

191
192
193

194

195

196

197
198

199

200

201
202
203
204
205
206
207
208
209
210

211
212
213
214
215
216
217
218
219
220
221
222
223
224

e e
wvernnituon
Dup

*Field cor
*New line
*Tab

Rec bksp

*Char adv
*Reset
Field adv

Skip

Right adj

Neg right adjust
{-)

Keyboard open

Field bksp

Rec adv

Special key-
board ind

Lower char adv
Lower dup
Lower field cor
Lower <
Lower #
Lower %
Lower /

Lower hex
Upper %
Upper /

Upper hex
Upper -

Lower rec adv
Lower @
Lower sel prog
Lower field adv
Upper @

Upper sel prog
Upper field adv
Upper char adv
Upper dup
Upper field cor
Upper <

Upper *

Set Oin By
Key pressed
Key pressed
Key pressed
Key pressed
Key pressed
Key pressed
Key pressed
Key pressed

Key pressed

Key pressed
Key pressed

ENTR
Key pressed

Key pressed

Ind 185, 186, 190,

193, 198, and

199
Key pressed
Key pressed
Key pressed
Key pressed
Key pressed
Key pressed
Key pressed
Key pressed
Key pressed
Key pressed

Key pressed
Key pressed
Key pressed
Key pressed
Key pressed
Key pressed
Key pressed
Key pressed
Key pressed
Key pressed
Key pressed
Key pressed
Key pressed
Key pressed

meLe o,
T DY

O_a
oLl U

User program/
ENTER

User program

User program/*

User program/*

User program/

ENTR

User program/*

User program/*

User program/
ENTR

User program/
ENTR

User program/
ENTR

User program/
ENTR

ENTR complete

User program/
ENTR

User program/
ENTR

User program/
ENTR

These may be set
off by reset, ind

187-189, 191,
or the next

Func Sel or by
the user program

Assembler

inntms

[]
igivawun

(216)

(217)
(218)
(219)
(220)

(221)
(222)
(223)

(224)

(225)
(226)

(227)
(228)

(229)

(230)

(231)
(232)
{233)
(234)
(235)
(236)
(237)
(238)
(239)
(240)

(241)
(242)
(243)
(244)
(245)
(246)
(247)
(248)
(249)
(250)
(2561)
(252)
(253)
(254)

ACL Assembler

Indicator Definition Set On By Set Off By Indicator
225 No record found Data mgmt User program
DSN 1
226 No record found Data mgmt User program
DSN 2
227 No record found Data mgmt User program
DSN 3
228 No record found Data mgmt User program
DSN 4
229 Key not in Data mgmt User program
table DSN 1
230 Key notin Data mgmt User program
table DSN 2
231 Key not in Data mgmt User program
table DSN 3
232 Key not in Data mgmt User program
table DSN 4
240 Continued CKPT completed User or new CKPT None
checkpoint
Notes:

1. The IFI instruction coenverts to:

IF BR7 IS/NOT 0;

The other instructions generate a message.
2. The SON instruction converts to:

BUZZ;

The other instructions generate a message.
3. The IFl instruction converts to:

IFDSI 2,n

where n is a number from 1 through 214;

The other instructions generate a message.

The ACL to Assembler Language Conversion Program 313

314

Appendix A. Mnemonic to Operation Code Conversion Chart and Instructions

Format

The assembler mnemonics are listed in alphabetical order. Arithmetic operators
are listed with the associated register; for example, binary add is listed as BRn+=
and decimal double precision divide as Rn(4)/. The instruction format and
operation code that is generated by the assembler are indicated for each mnemonic.
The operation code is always stored in the first byte of the 4-byte object code
instruction. The contents of the other 3 bytes will be described in the

Functions Reference Manual.

Mnemonic

ALLOC
AND

BINDEC
BINHEX

BRa = BRb
BRa<=>BRb
BRn =nn

BRn (4) -=

BRn (4) +=nn
BRn (4) -=nn
BRn (4) +=

BRn [(4)] /=
BRn &=

BRa &= d(1,BRb)
BRn &=nn

BRn V=

BR V=d(1,BRb)
BRn V=nn

BRn X=

BRa X=d{(1,BRb)
BRn X=nn

BRn +=

BRn —=
BRn[(L)] *=
BRa +=d(1,BRb)
BRa -=d(1,BRb)
BRn=(indexed)
BRn -=nn

BRn +=nn
BRn(4) -=
BRn(4) -=

BRn =Rn

BUZZ

CALL

Op
Code

34
42

A6
49
98
45
99
96
95
97
94
AB
9A
BA
98B
9C
BC
oD
9E
BE
9F
90
92
AA
BO
B2
B8
93
91
B4
B6
A7
c7
0B

Mnemonic to Operation Code Conversion Chart and Instructions Format. 315

Source
Format

ALLOC (dsn,,BRn)
IFHI/IFLO BRn AND constant IS
constant SKIP

BINDEC (Rn,label)

BINHEX (label[{L)],BRn)
BRa = BRb[(L)]/label

BRa <=> BRb/label

BRn =nn

BRa(4) -= BRb[(L)]/label {{L}]
BRn(4) += nn

BRn(4) -=nn

BRa(4) += BRb[(L)] /label [{L)]
BRn[(4)] /= label/BRb

BRa &= BRb[(L)] /label [{L)]
BRa &= [d] ([L] ,BRb)

BRn &=nn

BRa V=BRb[(L)] /label [(L)]
BRa V= [d] ([L],BRb)

BRn V=nn

BRa X=BRb[(L)] /label [{L)]
BRa X=[d] ([L],BRb)

BRn X=nn

BRa += BRb[(L)] /label[{L)]
BRa -= BRb[(L}] /label[(L)]
BRa [(4)] *=BRb

BRa += [d} ({L],BRb)

BRa -= [d] ([L],BRb)

BRa = [d]([L] ,BRb)

BRn -=nn

BRn +=nn

BRa(4) += [d] ({L] ,BRb)
BRa(4) -= [d] ([L] ,BRb)
BRn = Rn

BUZZ

CALL [BRn,] label/d

316

i i b

CALLTB

CLC

CLICK

CcLoz
CNENTR
CRTMM
d(1,BRa) = BRb
d(1,BRn) = constant
d(1,BRn) = Rn
d,Rn = constant
DECBIN
DECR
DISPEX
DISPST

DUP

ENABLE
ENTR

EXIT

GOTAB
GOTO

GOTO BRn (indexed)
GSCK
HEXBIN

IF BRn EQ

IF BRn GE/LE
IF BRn GT/LT
IF BRn NE
IFBRnO

IF fmt

IF Rn AN

IF Rn CK

IF Rn EQ

IF Rn GE/LE
IF Rn GT/LT
IF Rn NE

IF Rn SN
IFRnO

IF Rn -

IFB IS

IFB OFF

IFB ON

IFC IS

IFC NOT

IFD Rn EQ
IFD Rn GE/LE
IFD Rn GT/LE
IFD Rn NE
IFDSI

IFI

Op

08
AE
c7
23
c7
CA
A3
B9
7L
44
A7
06
c7
c7
BD
ocC
CF
2F
08
00

48
4A
6E
6F
6D
6C
03
02

oD
OE
62

63
61

60
OF
01

05

BB
B85
Bf

4E
4C
66
67

65

25
07

Source
Format

CALLTB BRn, label
CLC (BRa,BRb,L)
CLICK

CLOZ (dsn)[,N/R/E/D W/P,C/V/*,C/L/* ,BRn])

CNENTR
CRTMM(BRa,BRb,BRC [,NC/S])
[d1([L] ,BRa) = BRb

[d] (L] ,BRn) = constant

[d] ([L],BRn) = Rn

[d},Rn = constant

DECBIN {labe!,Rn)

DECR BRn GOTO label

DISPEX

DISPST

DUP (id,] BRn,L)

ENABLE ([label] ,[POP])

ENTR (sfmt[,BRn,O/N])

EXIT

GOTAB BRn,label

GOTO label

[BRn,] [label]

GSCK (Rn)

HEXBIN (BRn,label[{L)])

IF BRa EQ BRb GOTO label

IF BRa GE/LE BRb GOTO label
IF BRa GT/LT BTb GOTO label
IF BRa NE BRb GOTO label

IF BRn IS/NOT 0 GOTO label

IF fmt IS/NOT FMT GOTO label
IF Rn IS/NOT AN GOTO label
IF Rn IS/NOT CK GOTO label
IF Ra EQ Rb GOTO label

IF Ra GE/LE Rb GOTO label

IF Ra GT/LT Rb GOTO label

IF Ra NE Rb GOTO label

IF Rn IS/NOT SN GOTO label

IF Rn IS/NOT 0 GOTO label

IF Rn IS/NOT - GOTO label

IFB [d] (BRn) IS constant SKIP
IFB [d] (BRn) OFF constant SKIP
IFB [d] (BRn) ON constant SKIP
IFC [d],Rn/label IS constant SKIP
IFC [d] ,Rn/label NOT constant SKIP
IFD Ra EQ Rb GOTO label

IFD Ra GE/LE Rb GOTO label
IFD Ra GT/LT Rb GOTO label
IFD Ra NE Rb GOTO label
IFDSI n,dsn IS/NOT ON GOTO label
IFl In IS/NOT ON GOTO label

Mnemonic

IFH BRn EQ
IFH BRn GE/LE
IFH BRn GT/LT
IFH BRn NE
IFIR
INXEQ
INIT
INSBLK
KACCPT
KATTCH
KDETCH
KERRCL
KERRST
KEYOP
label = BRn
label = constant
label = Rn
label SL n
LOAD
MMCRT
MOFF

MvC

MVCR
MVCV
MVER

NOP

OPEN

POSN

READ
READMG
REBF
REPFLD
RESCAL
RESMXT
RESUME
RETEXT
RETURN
RL

Rn=

Rn <=>

Rn -

Rn +

Rn*

Rn/

Rn(32) *
Rn(32) /

Rn =BRn
Rn =d(1,BRn)
Rn = label

Op

6A
68
69

A5
33
32

QRRQ

c7
c7
A2

8L
Al
2E
CcB
1A
AC
AC
AC
19

22
26
20
c7
21

Cc3
CcDh
CD
CcD
oc
oc
Al
14
13
1

10
18
17

15

12

A6
7L
8L

Source
Format

IFH BRa EQ nn GOTO label
IFH BRn GE/LE nn GOTO label
IFH BRn GT/LT nn GOTO label
IFH BRn NE nn GOTO label
IFIR In IS/NOT ON GOTO label
INXEQ (BRn[(4)] label [,n])
INIT {dsn,BRn)

INSBLK {(dsn,,BRn [,O/N])
KACCPT

KATTCH

KDETCH

KERRCL (BRn)

KERRST (BRa, BRb)

KEYOP (nn[,BRa, BRb])
label[(L}] = BRn

label = constant

label[(L)] = Rn

label [(L)] SL n

LOAD (label [,P,A,E])

MMCRT (BRa, BRb, BRc)
MOFF (Ra, Rbl[, d, L])

MVC (BRa, BRb, L)

MVCR (BRa, BRb, L)

MVCYV (BRa, BRb, L)

MVER (Ra, Rb [,d,L])

NOP

OPEN (dsn [,,BRn])

POSN (dsn, BOE/CURR/LAST/EOD [,O/N]})
READ (dsn [,fmt, BRn/Rn/-/0/+,0/N])
READMG (BRa, BRb)

REBF (BRn, fmt)

REPFLD

RESCAL (BRn, label)

RESMXT [(BRn)]

RESUME [(B)]

RETEXT [(BRn)]

RETURN [(BRn}]

BRn [(L)] RLn

Rn = Rn/n

Ra<=>Rb

Ra=Rb-n/RC

Ra = Rb +n/Rc

Ra=Rb * n/Rc

Ra=Rb/n/Rc

Ra(32) = Rb * n/Rc

Ra = Rb(32) / Rc

Rn = BRn

Rn = [d] ([L], BRn)

Rn = label [(L)]

Mnemonic to Operation Code Conversion Chart and Instructions Format

317

318

Mnemonic

Rn=nn
Rn = -nn
RR
RSTMG
RTIMER
RXORW
SEARCH
SETOFF
SETON
SKIP WHILE
SL (binary)
SL (decimal)
SLS

SOFF

SON

SR (binary)
SR (blank register)
SR (decimal)
SRAT
SRR

SRS
SYSLCK
SYSUNL
TBBS
TBDL
TBFH
TBFL
TBFX
TBIN
TBRD
TBRL
TBWE
TBWT
TCLOZ
TCTL
TINIT
TLCK
TOPEN
TRANS
TREAD
TRT
TTERM
TUNLCK
TWAIT
TWRT
WAIT
WFMCRT
WRBF
WRT
WRTI
WRTS
ZONE

o ToY

Up
Code

46

47

Al
Cc7
c7
43

24

B3
B1

AQ
A1l
1C
1D
41

40
A1l
16
16
2B
1F
1E
2C
2D
55
57

50
54
53
56
52
52
51

51

3F
3F
22
58
22
A8
2A
A9
23
59
36
3A
36
3E
3C
30
31

35
1B

Source

Format

Rn = +nn

Rn =-nn

BRn [(L)] RRn

RSTMG

RTIMER (BRn)

RXORW (constant, BRn, constant)
SEARCH (dsn, BRn, B/F/R/L)
SETOFF ([d], BRn,nn)
SETON ([d], BRn,nn)

SKIP WHILE BRa LE BRb [STEP nn]
BRn [(L)] SLn
Ra=RbSLn

Ra=RbSLSn

SOFF (la [, Ib, Ic])

SON (ta [, Ib, Ic])

BRn [(L)] SRn

Rn=1SR1

Ra = Rb SR n/Rc

SRAT (dsn, BRn)

Ra=Rb SRR n

Ra - RbSRSn

SYSLCK

SYSUNL {(*)]

BRn = TBBS (label, Rn)
TBDL (label, BRn)

BRn = TBFH (label, Rn [,N])
BRn = TBFL (label, Rn [,N])
BRn = TBFX (label, Rn [,N])
TBIN (label, BRn) = Rn

Rn = TBRD (label, BRn)

Rn = TBRL (label, BRn)
TBWE (label, BRn) = Rn
TBWT (label, BRn) = Rn
TCLOZ (dsn)

TCTL (dsn, X‘I!* [,O/N, D])
TINIT (dsn)

TLCK (label)

TOPEN (dsn)

TRANS (BRa, BRb, L)
TREAD (dsn [,fmt,~,0/N,-])
TRT (BRa, BRb, L [, R])
TTERM (dsn)

TUNLCK (labet)

TWAIT (dsn)

TWRT (dsn [,fmt,F,O/N,B])
WAIT [(dsn)]

WFMCRT (BRa [,fmt,BRb,B/ADD])
WRBF (BRa[,fmt,BRb])
WRT (dsn[,fmt,BRn/-/0/+,0/N,B})
WRT! (dsn[,fmt,,0/N,B])}
WRTS (dsn[,fmt,,O/N,B])
ZONE (Ra,Rb/nn [d,L])

Key

d is a displacement.

dsn is the data set number.

fmt is the label of the edit format.

L is a length specification (except for the SEARCH instruction, which

uses L as a keyword).

n is a single digit decimal value (0-9).

nn is a numeric value.

sfmt is the label of the screen format.

/ separates two or more parameters when only one may be specified.

Do not include this symbol in the instruction.

{1 Enclose optional parameters. Do not include these symbols in the
instruction.

Mnemonic to Operation Code Conversion Chart and Instructions Format 319

320

Appendix B. SCS Control Characters

The SNA subset support for the printer is accomplished through SCS (standard
character string) control characters. You code these control characters in the
printer output data stream. The data stream contains output data for the printer to
print and control characters that direct the printer to format the data as you specify.
The format of the data stream is:

CC Data CC Data CC Data

where CC is the control characters.

The following chart describes the general functions provided by the printer control
characters. A detailed description of each control character follows the chart.

SCS Control

Character Hex Code Function

Bell 2F Bell; sound bell on printer

CR oD Carrier return

FF (1] Forms feed

Fmt 2B... Format
2BC1nnhh Horizontal (SHF)
2BC2nnvwv Verical (SVF)
2BC8nngguu Graphic error (SGEA)

IRS 1E Interchange record separator

LF 25 Line feed

NL 15 Next line

NUL 00 No operation

PP 34... Print position
34C0Onn Horizontal absolute
34C8nn Horizontal relative
34C4nn Vertical absolute
344Cnn Vertical relative

SCS Control Characters

321

322

® Bell

Function: This control character stops printing, sounds the audible alarm, if
installed, and turns on the Attention indicator.

Code: X2F’
Results: When the printer microprocessor detects this control character, it:

1. Allows all preceding data to be printed and all preceding control characters
to be executed

2. Turn the Ready indicator off

3. Turns the Attention indicator on

4. Sounds the audible alarm, if installed

5. Stops printing

6. Stops formatting

7. Returns an unavailable status to the controller
® CR (Carrier Return)

Function: This control character performs a carrier return to the first print position
on the same line.

Code: X'OD’

Results: The horizontal print position logically moves to the first print position on
the same line. If it already is at the first print position, no operation occurs.

® FF (Forms Feed)

Function: This control character moves the paper to the next logical page as speci-
fied by the Set Vertical Format control character {(see Fmt) in this topic.

Default: 1 {ogical page = 1 logical line.
Code: X'OC’

Results: The print position moves to the first logical print line and first logical
print position of the next logical page.

® Fmt (Format)

Function: This control character defines data formatting for a specified length
(provided in the parameter).

Default: Logical line length = 132 character positions; logical page length = 1 line.

Format of this control character:

Code

X'2B’

Set Type

Start of formatted data stream.
Must include: SHF, SVF, or SGEA
{Note)

Associated
Parameters

Length of formatted
data stream,

Note: The following chart shows the various set types and their associated

parameters.

Set Types Available for Use with the Format (Fmt) Printer Control Character

Set Type Format
SHF (set

Horizontal
Format)

SVF (Set

Vertical

Format)

SGEA
(Set
Graphic
Error
Action)

C1tnnhh

C2nnvwv

C8nnggxx

Values of Parameters

nn = number of bytes in the
SHF string

hh = maximum horizontal
print position (greater than
or equal to 1 and less than
or equal to 132). The
default is 132,

nn = number of bytes in the
SVF string.

vv = maximum number of lines
on a page greater than or equal
to 1 and less than or equal to
255). The default is a page
length of one line.

nn = number of bytes in the
SGEA string. See Note.

gg = unprintable character
option

01=No stop, no status.
02=Defaults to 01.
03=Stop, hard error status.
Unit not available
04=Defaults to 03.

The default for xx is 01.

Description of Set Type

Sets the maximum print
position (MPP), which is
the value of the print line
length.

Sets the maximum print
line (MPL) on the logical
page; it overrides the
physical device logical
page.

Sets the way the printer
will respond when it en-
counters an unacceptable
symbol in the data stream.
Note: nn must be at least
1 and not greater than 3
for the SGEA set type.

SCS Control Characters

323

324

The following charts show the characteristics of the SHF and SVF set types.

Valid Values for the SHF and SVF Set Types

Set Type
Code Parameters Results (MPL and MPP) Error
SHF
(2BC1innhh nn=00 MPP=132 Invalid SCS parameter
nn=01 MPP=132 None
nn=02
hh=00 MPP=132 None
nn=02
hh=1-84 MPP=1-132 as specified None
nn=02
hh=85-FF MPP=132 Invalid SCS parameter
nn=03-FF MPP=132 Invalid SCS parameter
SVF
2BC2nnvv nn=00 MPL=1 Invalid SCS parameter
nn=01 MPL=1 None
nn=02
vww=00 MPL=1 None
nn=02
vw=1-FF MPL=1-255 as specified None
nn=03-FF MPL=1 Invalid SCS parameter

® /RS (Interchange Record Separator)

Function: This control character does the same thing that NL does.
Code: X‘1E’

® LF (Line Feed)

Function: This control character moves the paper one line without altering the
print position.

Code: X'25°
Results: Moves the paper logically to the same print position on the following line.

If you use this control character on the last line of a page, it will move the print
position to the first line of the next page.

® NL (New Line)

Function: This control character moves the paper to the next line.

Code: X'15'

Results: The print position moves to the first print position on the next line if it

is not coded on the last line of the page. If you code this on the last line, it moves
the paper to the first print position on the first line of the next page.

e NUL

Function: No-op

Code: X'00’

Results: No characters are printed and no functions are performed.
® PP (Print Position)

Function: This control character moves the logical print position as determined
by the associated parameters.

Restrictions: The absolute parameters (see the following explanation) must be
equal to or less than the page length. If the absolute horizontal parameter is less
than the current print position, the printer microprocessor treats it as a separate
line and inserts a CR control character in the printer data stream. |f the absolute
vertical parameter is less than the current line number, the microprocessor treats
it as a new page. If both are equal, no operation is performed. Relative values
must indicate a move to but not past the end of the line or page. A value of O is
not valid, and no operation is performed.

Code and Format:

X'34’ Function Parameter Value Parameter
(Hex) (Decimatl)
Note 1 Note 2

The results are determined by the parameters as described in the following notes.

SCS Control Characters

325

326

Notes:

1.

The fo!ln\u!ng chart shows the tynes of moves available and indicates what the

oW

cs OF TR0V

PP CC accomplishes for each type.

Function

Absolute
horizontal move

Absolute vertical
move

Relative
horizontal move

Relative vertical
move

Function

Absolute horizontal

move (X’34C0Onn’)

Absolute vertical
move (X'34C4nn’)

Function Parameter
(Hex)

Cco

c4

C8

4C

Value
Parameter (nn)
00

00<nn<132

nn>max PP

00

current PP
<nn<max PP

0<nn<current PP

nn>max PP

To QvaLiaunT EIVTLTOY Yei o i+

Value Parameter
{Decimal)

Numeric value of horizonta!l posi-
tion (less than or equa! to the end
of the line)

Numeric value of vertical position
(less than or equal to the end of
page)

Numeric value of horizontal move-
ment from the present position
(less than or equal to the end of the
line).

Numeric value of vertical movement
from the present position (less than
or equal to the end of the page).

. The following chart shows the relationships of the parameters.

Results

No-op; the current print position
is unchanged; no error.

The print position becomes the
value of nn.

Error; invalid SCS parameter.

No-op; the current print position
is unchanged; no error,

The print position becomes the
value of nn and remains on the
same logical page.

The print position becomes the
value of nn and goes to the next

logical page.

Error; invalid SCS parameter.

Function

Relative horizontal
move (X‘34C8nn’)

Relative vertical
move (X’'344Cnn’)

Value
Parameter (nn)

00

nn+current
PP <max PP

nn+current
PP >max PP
00

nn+current
PP <max PP

nn+current
PP >max PP

Results

No-op; the current print position
is unchanged; no error.

The new print position is equal to
the current print position plus
the value of nn.

Error; invalid SCS parameter.
No-op; the current print position
is unchanged; no error.

The print position becomes the
value of the current print position

plus the value of nn.

Error; invalid SCS parameter.

SCS Control Characters

327

328

Appendix C. Self-Check Computations

The description of The Se/f-Check Algorithm under Self-Check in Chapter 2
outlines general steps for an algorithm. The 5280 self-check function provides
variations to the general steps with an input translate table, a product table,
and an output translate table. Variations in the way the input is translated,
the way the products are added, and the way the output is translated are also
available. With these variations, the self-check algorithm you describe with the
SELFCHK control statement may be summarized with the following steps:

1. Determine input value for each foundation position.

2. Obtain products and sum the products.

3. Convert the resulting sum.

4, Determine output for the self-check number or numbers.

These steps, and the parameters of the .SELFCHK control statement that

effect each step, are illustrated in Figure C-1. The .SELFCHK parameters

that describe the self-check register (FLDLEN, DISP) are not included in

the figure, nor are the parameters that specify the modulus (MOD) or the label
of the self-check control area (LABEL). The fields in the figure (Field 1 through

Field 6) represent the positional fields of the CNTL parameter.

A detailed description of each step, and how it is effected by the SELFCHK
parameters, follows the figure.

Self-Check Computations 329

330

1. Determine input value for each foundation position.

f
INTAB
omitted

The low-order 4 bits of
the EBCDIC for each
position are used for the
value.

—

INTAB
spe‘ciﬁed

r]
Field 6 = B Field6 = F
The iow-order 4 bits
of each input transiate
table byte are used for
the value; the high-
order 4 bits are used as
a shift‘ left count.

All 8 bits of each input
translate table byte are
used for the value.

L]

2. Obtain products for each input value {the product is expressed as two numbers, the NR [rightmost number] and the NL [leftmost

number] }, and sum the products.

f
PROD
omlitted

r 1
Random wieghts are used Calculated weights are used
for a muitiply type for a divide type algorithm.
algorithrln. l

Multiply weights times input
vallues to find products.

f .
Field 1 =8 Field 1 =U

Sum whole number Suln the units

Fie!d]1 =D

Fueldr1 =t

Product table repeats
every 3 characters.

Sum the digits of

products. digits of products. the products.
NR = sum NR = sum NR = rightmost sum
NL Lo 0 NIi =0 NL L leftmost sum

1
PROD
specified

|

1
Field1=F

Product table repeats
every 4 characters.

Prgducts are found in the
product table.

NR is found in the first half of
the table.

NL is found in the second half
of the table.

A 4

3. Convert resulting sum (converted result is expressed as the DR [rightmost digit] and the DL [leftmost digit]).

Field2=8 Field2 =D Field2 =K Field2=E
Sum NR + NL. Sum digits of Cross add sum of NL + NR. Special 8 and 3.
NR +NL.
DR = modulus of sum DR = modulus of sum of DR = 8 modulus NR
DL =0 DR = modulus of sum odd-positioned digits DL | = 3 modulus NL
I DL =0 of NL + NR
DL = modulus of sum of
carry from DR, plus
| sum of remaining digits
1
Y
4. Determine the output for the self-check number. |
Field3 =1 Field3=C
No mlmplemem Convert DR and DL to
the complement of the
modﬁnu&
T
[
OUTTAB OUTTAB
omitted specified
Field5 =t Field5=D
. Use DR and DL. Use DR only.
Fieid4 =1 Fieid4 = 2 Field4 =1 ield4 =2 Field4 =1 Field4 =2
Y
Force an Force an F Force an F Force an F Field2=E DR = rightmost
F zone to DR zone to DR zone to units zone to units number.
for the for rightmost position of DR position of DR DR + DL =sum. DR + (DL * 8) DL = leftmost
self-check number; for self-check for rightmost Sum translates =sum. Sum number.
number. force an F number. number; force to self-check translates to
zone to DL an F zone to number. self-check
for leftmost remaining posi- number.
number. tions of DR for

leftmost number.

Figure C-1. Self-Check Computations According to .SELFCHK Parameters

1. Determine input value for each foundation position.

INTAB
omitted

The low-order 4 bits of the
EBCDIC for each position
are used for the value.

If no input translate table is specified, the low order 4 bits of the EBCDIC for each
foundation position are used for the input value. For example, if the foundation
is:

A478B770
the EBCDIC for the foundation position is:

High order bits: CFFFCFFF
Low order bits: 14782770

The input value for the foundation positions is: 14782770.

INTAB
specified

If an input translate table is specified, the value must be determined from the table.

An input translate table can provide a different numeric value for each character.
You must set up and initialize the input translate table with .DC control state-
ments. The table must be 256 bytes in length. Initialize the table so that the
numeric value for each character is stored into the table at the displacement

that corresponds to the hex value of the character. For example, the hex value
of the character A is C1; the numeric value for the character A must be stored

at displacement X'C1’ into the input translate table.

Figure C-2 shows, on the left, the displacement for each of the 5280 keyboard

characters. The right side of Figure C-2 shows a sample input translate table,
with numeric values entered for each keyboard character.

Self-Check Computations 331

332

Displacements

Sample Table

123456789 ABCDEFTF

1213 14 1516 17

1920 21 2223 24

26 27 28 29 30 31 32

33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57

58 59 60 61 62 63 64 65 66

707172737475 76 77 78

79 80 81 82 83 84 85 86 87

89 90 91 92 93 94 95 96

0123456789 ABCDEF 0
0 0
1 1
2 2
3 3
4|1 ¢ . < (+ | 4 11
5[& '$) ;o 518
6[- 7/ b, % > ? 6 |25
7 C @ = 7
8 abcdefg i 8
9 j k1 m opagqr 9
Al ~s t uv wx vy z A
B B
Cl|} ABCDEFGH.I C|e7
D[V JKLMNOPAOQR D |68
ENN STUVWXYZ E |69
FlJo1 234567809 F [oo

01 02 03 04 05 06 07 08 09

Figure C-2. Input Translate Table Displacements and Sample Table

Many bytes in the input translate table are not initialized, such as the bytes
from displacement hex 00 to hex 3F. The assembler fills any uninitialized

bytes with hex 00.

INTAB
specified

Field6 =0
All 8 bits of each input

translate table byte are
used for the value.

If an input translate table is specified, and if Field 6 of the CNTL parameter is
blank, all 8 bits of the input translate table bytes are used for the input value.

For example, the letter M is at displacement hex D4; the sample table has the
value 82 at displacement hex D4. Therefore, the input value for the letter M is 82.

INTAB
specified

Field6 = F

The low-order 4 bits of
each input translate table
byte are used for the
value; the high-order 4 bits
are used as a shift left
count.

If an input translate table is specified, and field 6 of the CNTL parameter specifies
F, the low order 4 bits of each input translate table byte are used for the input
value, and the high order 4 bits are used as a shift left count. In the example above,
the input translate table byte contained 82; the input value is 2 and the shift left
count is 8. The foundation position, and all high order positions are shifted to the
left 8 positions.

2. Obtain products for each input value, and sum the products.

PROD
omlitted
U !
Random weights are used Calculated weights are used
for a multiply type for a divide type algorithm.
algorithm.

Multiply weights times input
values to find products.

If no product table is specified, products are obtained by muitiplying the input
value by the corresponding weight. The weights are specified with the WGTS
parameter. Enter a hex 00 in each position that corresponds to a self-check digit
and to a position that is bypassed. Enter a 1-byte weight for each position that
corresponds to a foundation position. The weight must be lower in value than the
modulus.

For a muitiply type algorithm, random weights are used. The following example
shows how to assign weights for a self-check register assuming a modulus of 9,

a field length (FLDLEN) of 21, and two self-check digit positions at the right

of the register.

WGTS=X'00000000000000000000000807060504030102030405060708070605040000°;

Vv

Bypass Foundation Number Self-Check
Positions Positions Digit positions

The input value for the rightmost foundation number position is multiplied by
hex 03, and so on.

Divide type algorithms require specific calculated weights. An algorithm that
involves divide operations can be expressed as follows:

Divide the foundation by some number and the remainder is the check digit(s).

These divide type algorithms can be defined with the SELFCHK control statement
by determining the correct weights for the equivalent divide operation and using
the divisor for the modulus. The weights are determined by dividing the desired
divisor into 1000000000000000 with the remainder of each step the weight for
the corresponding position of the foundation, starting from the rightmost

position.

Self-Check Computations

333

For example: 0142 . ., etc.
7 1000000000000000
0

N @]~ Sl
18 8l

-
ols &

. etc.

Weighting factors for the above example,
with the self-check digit in the rightmost
position and the foundation number four

positions in length, are: X'000000000000060203010£’
Lebsiububdutubutnite)
Bypass Positions heck Digit

When using a divide type algorithm, Field 1 and Field 2 of the CNTL parameter
of the .SELFCHECK control statement must be blank.

When weights are determined, they are multiplied by the input value of each
foundation position, and the result is the product. The products are then added,
and the 5280 establishes two results that are stored internally. The two results
are referred to as the NR (rightmost number) and the NL (leftmost number).
These two results provide flexibility for numerous algorithms. When only one
result is appropriate NL is forced to 0.

There are three options for adding the calculated products. Field 1 of the CNTL
parameter specifies how the products are added to produce the NR and NL.

As part of the process of obtaining the modulus, the 5280 internally converts

the products and sums of the products to the number base of the modulus.

That is, if the modulus is 11, the products and sums of products is expressed in
base 11. Usually, your algorithm is such that the effects of this conversion can
be ignored. Only if your algorithm deviates from the common algorithm as noted
in the examples do these effects have to be considered.

Multiply weights times input
values to find products.

|

Field[1 =b

Sum whole number

products.
NR = sum
NL =0

334

If Field 1 is blank, the input value is multiplied by the weight for each foundation
position, and the whole number products are added. The sum is used for the NR,

and the NL is forced to 0.

Example:

Numeric value of characters 3 12 10 4 6
Weights 5 4 3 2 1
Products 15 48 30 8 6
Summation 15 +48 430 +8 +6
NR equals 107

NL equals O

Multiply weights times input
values to find products.

Field 1=U

Sum the units digits
of the products.

NR = sum
NL =0

107

If Field 1 specifies U, the input value is multiplied by the weight for each
input position, and the units positions of the products are added. This sum is

used for the NR, and NL is forced to 0.

Example:

Numeric value of characters 3 12 10 4 6
Weights 5 4 3 2 1
Products 1? 4? 3(‘) Ef (15
Summation b+ 8+ 0+ 8+ 6
NR = 27

NL =0

27

Self-Check Computations

335

336

Commonly, if this option is used, the modulus is 10. The following is an example
of modulus 11 and considers the effects of expressing the prodict and sum in
the number base of the modulus.

Example: Assume modulus 11

Numeric value of characters 3 12 10 4 6

Weights 5 4 3 2 1

Products (base 10) 15 48 30 8 6

Products (base 11) 141 4!1 28 T T

Summation (base 11) 4 +4 +8 +8 +6 = 28 base 11

NR =28

NL =0

Multiply weights times input
values to find products.

Field 1=D

Sum the digits of
the products

NR = rightmost sum
NL = leftmost sum

If Field 1 is D, the input value is multiplied by the weight for each foundation
position, and the units positions of the products are added. This sum is used for
the NR. Also, the remaining positions of the products are added; this sum is

used for the NL.

Example:
Numeric value for characters 3 12 10 4 6
Weights 5 4 3 2 1
Products 1i'> 4? (‘) T T
Summation l5 +8 |+0 +8 +6 = 27
1T +4 43 =8
NR =27
NL =8

Usually the weights are such that the products are less than 100 so the sum of
NR and NL is equivalent to taking the sum of each digit of the product. For

the example above:
NR +NL=27+8-35
Summing each digit of the products:

1+5+4+8+3+0+8+6 = 3b

Commonly, if this option is used the modulus is 10. The following is an example

if the modulus is 11 and considers the effects of expressing the product and

sums in the base of the modulus.

Numeric value for characters
Weights

Products (base 10)
Products (base 11)

Summation (base 11)

[$)]
H
w
N
—_

15 48 30 8 6
IR
u l-+4 l:-S +8 +6 = 28 base 11
1 +4 +2 = 7 base 11

PROD
specified
| I I
Field1=8 Field1=F
Product table repeats Product table repeats

every 3 characters.

every f characters

|
Products are found in the
products table.

NR is found in the first half

of the table.

NL is found in the second

half of the table.

You can use a product table rather than weights to find the product for each

foundation position. You must set up and initialize the 128-byte product table

with .DC control statements. Do not use a .TABLE control statement to
organize the product table, Specify the iabel of the product table for the

PROD parameter of the .SELFCHK control statement. For the WGTS parameter,

enter hex 00 in the self-check number position(s) and in any positions to be
bypassed. Enter hex 01 in all foundation positions.

Although you do not organize the table with a . TABLE control statement, you can
think of the product table as a data table with eight 16-byte arguments. The first
four arguments are used to find the NR, and the second four arguments are used

to find the NL. If no NL is appropriate, initialize the second four arguments

with hex 00s. If Field 1 of the CNTL parameter is blank, the product table repeats
every 3 characters; if Field 1 is F the product table repeats every 4 characters.

When the 5280 uses the product table to find the product for a foundation

character, the position of the character in the self-check register determines which

argument of the product table the 5280 uses.

When the appropriate argument is determined, the 5280 uses the low-order 4 bits of
the EBCDIC for the foundation character to determine which byte within the argu-

ment holds the product to use.

Self-Check Computations

337

The following illustration shows which argument of the product table is used for
each nosition in a self-check register of up 10 32 bytes, On the right are the
positions for a product table that repeats every 3 characters (Field 1 =); on the
left are the positions for a product table that repeats every 4 characters (Field 1
= F).

Product Table
Register Positions Positions Register Positions

04 08 12 16 20 24 28 32 (00 throughOF 02 05 08 11 14 17 20 23 26 29 32
03 07 11 15 19 23 27 31 10through 1F 01 04 07 10 13 16 19 22 25 28 31
02 06 10 14 18 22 26 30 20 through 2F 03 06 09 12 15 18 21 24 27 30
01 05 09 13 17 21 25 29 30 through 3F {not used)

04 08 12 16 20 24 28 32 40 through4F 02 05 08 11 14 17 20 23 26 29 32
02 07 11 15 19 23 27 31 50 throughb5F 01 04 07 10 13 16 19 22 25 28 31
02 06 10 14 18 22 26 30 60 through 6F 03 06 09 12 15 18 21 24 27 30
01 05 09 13 17 21 25 29 70 through 7F (not used)

To find the product for the character in position 26 of the self-check register,
the 5280 uses argument 3 of the product table (positions hex 20 through 2F) if
Field 1 = F; it uses argument 1 of the product table (positions 00 through OF)
if Field 1 is blank. The following example shows how the character in the 26th
position of the self-check register is translated to the NR, assuming the product
table repeats every 4 characters (Field 1 = F),

Example:

1234567 89 1111213 14 15 16 17 18 19 20 21 22 23 24 25(26)27 28 29 30 31 32

[06 / 09/ 1980 * ARdcs #4778 |

/ B\C;hi)@

Register Positions 012 3‘/4/5‘;7 8 9 ABCDEF

n 0]1234567890-=qgwer

04 08 12 16 20 24 28 32 1Mt yui opasdfghijkI1 ;

03 07 11 15 19 23 27 E/Z'zxdvbnm,./!@#$%

02 06 10 14 18 22(26{30 3l¢ &* () +QWERTYUI O

01 05 09 13 17 21 25 29 41P ASDFGHJ KL: "ZXCV

04 08 12 16 20 24 28 32 5|B N M, 71234567890

02 07 11 15 19 23 27 31 6l- =gwer t yui opasdf f
02 06 10 14 18 22 26 30 71g hj ki1 ; " zxcvbnm,

01 05 09 13 17 21 25 29
n The register position determines which product table argument to use.
For position 26, use the third product table argument,

B The EBCDIC of the character determines which byte in the argument to use. For
‘c’ the EBCDIC is hex 83; use the fourth byte (byte 3).

The NR for the character is 'd’, or EBCDIC hex 84. If an NL is used, it is found
in the fourth byte of the seventh argument: NL = ‘w’, or EBCDIC hex A6.

338

3. Converting resulting sum.

The sum of the products (NR and NL) is converted to the base of a modulus,
according to Field 2 of the CNTL parameter. The units positions of the result
of this conversion is expressed as the DR (rightmost digit) and the DL (leftmost
digit) to prevent confusing them with the NR and NL.

Field2=8
Sum NR + NL.

DR = modulus of sum
DL=0

If Field 2 is blank, the NR and NL are added together, and the sum is converted to
a base equal to the modulus specified in the MOD parameter. The units positions
of the result is stored as the DR; only one result is appropriate so the DL is forced
to 0.

Example:

The modulus is 10

From the sum of products NR =107
(Numbers in base 10) NL= 0
NR + NL = 107

Modulus is taken on 107; the value of the units position is the result.

DR=7
DL=0

Example:
The modulus is 11

From the sum of products NR = 28 base 11
(Numbers in base 11) NL = 7 base 11

NR + NL = 34 base 11

Modulus is taken on 34 base 11; the value of the units position is the
result so:

DR=4
DL=0

Field2=0

Sum digits of
NR + NL.

DR = modulus of sum
DL=0

Seif-Check Computations 339

340

If Field 1 = D, the NR and NL are added together, then each digit of the sum is
added; this new sum is converted to a base equal to the modulus specified in the
MOD parameter. The units positions of the result is stored as the DR; only one
result is appropriate so the DL is forced to 0.

Example:

The modulus is 10

From the sum of products NR =107
(Numbers in base 10) NL= 0

NR + NL =107
Sum of each digit 1+0+7 =8

Modulus is taken on 8; value of units position is the result so:

DR=8
DL=0

Commonly, if this option is used the modulus is 10. The following is an example if
the modulus is 7 and take into account the effects of expressing the values to the
base of the modulus.

Example:
Modulus is 7
From the sum of products NR = 26 base 7

(Numbers in base 7) NL = 16 base 7
NR + NL =45 base 7
4+5 = 12 base 7

Modulus is taken on 12 base 7; value of units position is the result so:

DR=2
DL=0
Field 2 =K

Cross add sum of NL + NR.

DR = modulus of sum of odd-
positioned digits of
NL + NR

DL = modulus of sum of carry
from DR, plus sum of
remaining digits.

If Field 2 = K, the NR and NL are added together, then each odd-positioned digit
of this sum is added; this new sum is converted to a base equal to the modulus
specified in the MOD parameter, and the units position of this converted result is
stored as the DR. Each even-positioned digit of the sum is added, and the remaining
positions from the DR are added; this new sum is converted to a base equal to the
modulus specified in the MOD parameter, and the units position of this converted
result is stored as the DL.

Example:

Modulus is 10.
From the sum of products NR = 1746
NL = 0
NR + NL =1746
Sum digits for first
modulus (odd position). 746 = 13

First modulus is taken on 13.
Result is units position value,
so:

DR =3

Remainder of first modulus

equals. 1.

1
Sum digits for second modulus. 144 = T
Add remainder for second modulus. 1+45=6

Second modulus is taken on 1, so:
DL=6

Commonly, if this option is used, the modulus is 10. If modulus 10 is not used, all
the numbers and summations would be in the base of the modulus.

Field2=E

Special 8 and 3.

DR = 8 modulus NR
DL = 3 modulus NL

If Field 2 = E, the NR and NL are treated separately. The NR is converted to
base 8, and the units position of this converted result is stored as the DR. The NL
is converted to base 3, and the units position of this converted result is stored as
the DL. This option should be used only if you use an output translate table.

Self-Check Computations

341

342

Example:

Modulus is 10.
From the sum of products NR =27
Modulus 8 taken on 27
27 base 10 = 33 base 8
so result is:
DR=3
From sum of products NL=8
Modulus 3 taken on 8
8 base 10 = 22 base 3
so result is:
DL=2

4, Determine the output for the self-check number.

The output for the self-check number is determined by Field 3, which specifies
whether to complement the DR and DL, by the OUTTAB parameter, which
specifies whether an output translate table is used, and by Field 4, which specifies
whether the self-check number is one or two digits. If the output translate

table is omitted, Field 5 is also used to determine whether the DR and DL, or only
the DR is used.

|
Fiell 3= Field3=C

No complement Convert DR and DL to the
complement of the modulus.

If Field 3 is blank, no complement is taken. If Field 3 is C, the DR and DL are taken
to the complement of the modulus. This has the effect of subtracting the modulus
value from the DR and DL value.

Example:
Modulus is 11. DR=7
DL=0
Complement DR to 11. 11-7=4
DR=4
Complement DL to 11. 11-0=0
DL=0 The complement of 0 will always be 0.

Note: If you specify E for Field 2 (special 8 and 3), do not specify C for Field 3 if
your modulus is less than 8.

OUTTAB

omitited
2
FieIT[rs = Field 5=D
UseiDR and DL
] |
Field 4 =1 Field4 =2
Forcean F Force an F

zone to DR for zone to DR for

the self-check the rightmost

number. number; force
an F zone to
DL for left-
most number.

If no output translate table is specified, and Field 5 of the CNTL parameter is
blank, both the DR and DL are used to determine the self-check number output.

If Field 4 = 1, only one self-check digit is output for the self-check number. An
F zone is forced to the hexadecimal representation of the DR, and this is used
for the self-check number.

Example:

DR=7

Hexadecimal representation of DR 07
Force an F zone to the DR F7

The self-check number is 7,
which is displayed and printed as 7

If Field 4 = 2, two digits are output for the self-check number. An F zone is
forced to the hexadecimal representation of the DR, and this is used for the
rightmost digit; an F zone is forced to the hexadecimal representation of the
DL, and this is used for the leftmost digit.

Example:
DR=7 Hexadecimal 07
DL=3 Hexadecimal 03

Force an F zone
to the DR and DL F7F3

The self-check number is F7F3,
which is displayed and printed as 73.

Usually, if this option is used, the DR and DL have a value of less than 10.

Self-Check Computations 343

344

OUTTAB

omitted
I 1
Field5 =1t Field5=D
Use DR only.
Field4 =1 Field 4 = 2
Force an F Force an F zone
zone to the to the units posi-

units position tion of DR for the

of DR for the rightmost number;

self-check force an F zone

number. to the remaining
positions of DR
for the leftmost
number.

If Field 5 = D, only the DR is used to determine the self-check number output.

If Field 4 = 1, only one digit is output for the self-check number. An F zone
is forced to the units position of the DR, and this is used for the self-check number.

Example:

DR =10

Force an F zone to the units position. FO
The self-check number is FO, which is
displayed and printed as 0.

If Field 4 = 2, two digits are output for the self-check number. An F zone is forced
to the units position of the DR, and this is used for the rightmost digit; an F zone
is forced to the remaining positions, and this is used for the leftmost digit.

Example:

DR =123

Force an F zone to the units position F3

Force an F zone to the remaining

positions FC (12 is Cin hex)

The self-check number is F3FC, which is
displayed as 3 and printed as 3.

This option is usually used if:
® The modulus is greater than 10, there are 2 check digits, and the DL is 0.
® The modulus is 10 or less, and there is only one check digit.

For this option, DR usually has a maximum value of less than 100.

OUTTAB
specified

Fiel?4= 1 Field 4 = 2

]
Field2=E

DR + DL = sum. DR + (DL *8) =

Sum translates sum. Sum translates
to self-check to self-check number.
number.

The output translate table is usually used if the modulus is greater than 10 and
there is a single self-check digit. The 5280 uses the value of the DR or the DR and
the DL to determine the byte of the output translate table that contains the
character to insert into the self-check register.

You must set up and initialize the output translate table with .DC control
statements. The number of translation characters in the table need be only as
great as the modulus.

If Field 4 of the CNTL parameter is 1, the DR and DL values are added, and the
sum is used to find the character in the translate table.

If Field 4 = 1 and Field 2 = E, the DL value is multiplied by 8 and the product
is added to the DR value. This sum is used to find the character in the translate
table.

OUTTAB
specilﬁed

{ 1
Field 4 =1 Field 4 =2

DR = rightmost number.
DL = leftmost number.

If Field 4 = 2, the value of the DR is used to find the character in the translate
table for the rightmost digit, and the value of the DL is used to find the character
in the translate table for the leftmost digit.

Self-Check Computations

345

346

Second
Hex
Digit

Appendix D. Keyboard Codes and EBCDIC Charts

EBCDIC CHARTS FOR PRINTABLE CHARACTERS

First
Hex
Digit —= 0

0

8]

o~ Ul D

m D> e L -

moom o 0

e

«

»

i+

9

A R c
" 13 {
- £ A
5 ¥ R
t R C
u F D
v § E
w 1 F
X G
y H
Z I
i - -
i | 6
b # 0
4 &
B é

)

IBRM 5256 STANDARD CHARACTER SET

LANGUAGE :

INTERNATIONAL

=]

E

1Y 3

B

-~ &~ W

Keyboard Codes and EBCDIC Charts 347

First
Hex

Second Digit—0

Hex
Digi

348

K

t3

o U bd Gl

IEBM 5256 STANDARD CHARACTER SET

LANGUAGE :

ik

US..AND._CANADA

m

n

m ©o 0 @ D

-n

I @

n e T o 2 X - x

N < X £ < C© —~A U

8]

o N o U > U

KEYBOARD FUNCTIONS: EBCDIC CODES AND BIT NUMBERS

The EBCDIC is the code that is placed into byte hex A7 of the keyboard/display
10B. The bit number is the number used for the TRAP parameter of the .KBCRT
control statement.

EBCDIC

X'00’

X01’

X'02'

X'03’

X'04’

X'05’

X'06’

X07*

X'08’

X'09’

X'0A’

X'0B’

X'oc’

X'0D’

Bit
Number

4]

«©

10

1

12

Key

CcMD

CMD

RESET

INS
Del

Alpha

or Num

Num
Shift

Alpha
Shift

Kata
Shift

Description

Invalid scan code generated from trans-
late table or hardware. An error code
is presented to the operator,

Command key prefix to select command
function.

Shifted command key.

Keyboard overrun; keyboard has lost
two keystrokes due to hardware key-
stroke buffer overrun.

Invalid keystroke; the code is generated
directly from the scan code translate
table or the World Trade translate table.

Reset function; reset error condition, or
reset Hex key command, or insert
function,

Insert function; initiate character insert.
Delete function; initiate character delete,
Alpha shift, with the Alpha key pressed.

Numeric shift, with the * (Shift) key or
Num key pressed; uses the lower half of
the scan code translate table.

Shift lock, with the * (Shift Lock) key
pressed; locks shift to use upper half of
scan code translate table.

Katakana numeric shift, with the
Num Shift key pressed; uses upper
half of scan code translate table.

Katakana Alphabetic shift, with the
Alpha shift key pressed; uses lower
half of scan code translate table.

Katakana shift, with the Kata Shift

key pressed; uses lower half of
World Trade translate table.

Keyboard Codes and EBCDIC Charts

349

350

EBCDIC

X'OE’

XOF’

X'12’

X113

X114’

X'15’

X'16’
X117’

X'18'

X119’

X"1A’

X1B’

X1C’

X"1D’

X"1E’

X1F’

X220’

X21

[= 398
DIt

Number

13

14

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Key
Sym
Shift

Lock

Field
Exit,
Field+
Field -
Skip

Alpha

or Num

Num
Shift

Alpha
Shift

Kata
Shift

Sym
Shift

Lock

Dup

Description

Katakana upper shift; with Sym

Shift key pressed; uses upper half

of the World Trade translate table,
Katakana shift lock; with the Lock key
pressed; locks the shift to Kata Shift
or to Katakana Alpha shift.

Move cursor up; valid only for format
level zero.

Move cursor down; valid only for
format level zero.

Moves cursor to the first position on
the next line; valid only for format

level zero.

Field exit function.

Field exit minus function.
Skip function.

Alpha shift, with the Alpha key
released.

Numeric shift, with the *(Shift) key
or Num key released.

Shift lock, with the * (Shift Lock)
key released.

Katakana numeric shift, with the Num
Shift key released.

Katakana alphabetic shift, with the
Alpha Shift key released.

Katakana shift, with the
Kata Shift key released.

Katakana upper shift, with the
Sym Shift key released.

Katakana shift lock, with the
Lock key released.

Duplicate function.

Field advance function.

Bit

EBCDIC Number Key Description

X'22' 33 k= Field backspace function.

X'23' 34 Corr Field correct function.

X'24' 35 Enter/ Record advance function
Rec Adv

X'25’ 36 Home Record backspace function.

X'26’ 37 - Character advance function.

X'27' 38 — Character backspace function.

X'28' 39 Hex Hex command function key.
command
function
key

- 40 Keystroke error, detected and

normally handled by the keyboard/
display.

X29° - No key Clear screen function; blanks all
is asso- positions on the screen except
ciated the status line.
with this
function.

X"2A’ - No key Clear status line function; blanks
is asso- all positions on the status line.
ciated
with this
function.

X'2B’ - No key Keystroke with this EBCDIC is
is asso- ignored.
ciated
with this
function.

X'2C’ 43 = Field-/dash combination key.

Functions from 2D-3F are handled by your program, with external status
condition 1 subroutines.

X'2D-32’ Not assigned; you may assign these
codes to special functions for your
applications.

X33’ Sel Select format function.

Fmt

Keyboard Codes and EBCDIC Charts 351

352

X35’

X'36'

X'37

X'38'

" X'39’

X'3A’

X'3B’

X'3C’

X'3D’

X'3E’

X'3F’

Bit
Number

Key

Dup
Skip

Auto
Enter

Cncl

Page
Fwd

Next
Fmt

Prnt

Erase
Inpt

Sys
Req

Attn

Help

Switches the auto dup/skip flag.
Switches the auto enter flag.

Cancel function; defined and processed
by your program.

Page forward function; to read the
next record without writing out the
current record, processed by your
program,

Next format function; to aliow the
operator to exit a repetitive format,

processed by your program.

Print function; to initiate output
from the printer.

Not used.

Erase input function.

Record correct function; initiated by
the shifted Corr key.

System request function.

Attention function.

Help function; to request a help message.

ASSEMBLER ERRORS AND MESSAGES

Miscellaneous Errors

0002
0003

Symbol table full
Cross-reference table full

Sequence or Location Assignment Errors

0004
0005
0006
0007
0009
0010

0011
0012
0013
0017
0022
0023
0024
0025
0026

Location counter inappropriate for register
Table statements not contiguous

Invalid sequence of .FMT or .SFMT

Statement must precede first instruction in SUB
Invalid parameter combination

One or more required parameters omitted

Label is multiply defined

Invalid combination of labels in expression
Length of LEVL=2 exceeds length of LEVL=1
Unable to open included data set

Branch target out of range

Statement not allowed in SUB assembly
START must be first statement in program
Control statement sequence error

.KBCRT statement required in program

Invalid Operand in Instruction

0032
0033
0034
0035
0036
0037
0038
0039

Instruction description not in table
Unbalanced parentheses

Must not use same register twice
Extra operands in instruction
Option or modifier not recognized
Third operand is not Rn, +, 0, or -
Invalid data set number

Appendix E. Error Messages

Error Messages

3563

354

Invalid Parameter in Control Statement

0040
0041
0042
0043
0044
0045
0046
0047
0048
0049

0050
0051
0052

Format parameter not valid

Invalid shift count

Displacement not multiple of 8

Displacement plus length too large

Pad length exceeds 64

MAXM * (ARGL + BYPASS) > table length
MAXM x (ARGL + BYPASS) < table length
PB1 and PB2 must be on a 128-byte boundary
SCS conversion not allowed in keyed file

SCS conversion not specified, assumed

xxxxxxxx is an undefined symbol
Must not use both ELAB and ETAB
Either ELAB or ETAB must be used

Screen Format and Edit Format Messages

0070
0071
0072
0074
0075
0076
0077
0078
0079
0080

Unfinished BYPASS in series

BYPASS not permitted within a BYPASS

Must not have RG alone

Cursor position exceeds screen size

Must not have NORMAL and another attribute
BYPASS end with no BYPASS initiated

MD and MS must be identical

No .FMTEND on previous edit format

No .SFMTEND on previous screen format

No start statement for this series

Messages That Reference a Column Number

1001
1002
1003
1004
1005
1006

invalid delimiter at column ##

Unrecognized keyword left of column ##
Sublist too long, truncated at column ##

More than 8 operands, truncated at column #HH
Unbalanced parentheses

Duplicate keyword left of column ##

Messages That Reference an Operand Number

2001
2002
2003
2004
2005

Code conversion error in operand ##
Invalid value (too large, etc) in operand #
Operand ## is wrong type

Operand ## is wrong length

Operand ## must not be omitted

Messages That Contain a Variable Keyword

3001 xxxxxxxx has a conversion error
3002 xxxxxxxx is invalid {too large, etc)
3003 xxxxxxxx is the wrong data type
3004 xxxxxxxx is the wrong length
3005 xxxxxxxx must not be omitted

Control Statement Error

4001 Too many prompts, constants or MPUPs
4002 Too many screen format strings

4003 Too many edit format strings

4004 Too many table definitions

4005 Too many indicators

5002 TYPE is not STOR/BIN/DEC/PRMT/MDUP
5003 PRMT is not SP/FP/CP

5004 FLDF(1) is not A/N/W/X/Y/Z/D/R/S/F
5005 PIC(2) is not A/N/W/X/Y/Z/D/H

5006 Ci(2) is not ON/OFF

5007 Invalid combination of EDIT specifications

5011 TYPE(1) is not SR/SW/SU/KR/KRN/KU/KUN/!
5012 OPTION is not MAIN/SUB

5013 CNTR s not K/B/C/F

5015 TYPE(1) is not COM/SR/SW/CN

5016 TYPE(2) is not CB/CM/BT

5017 CAM is not BSC/SNA

5018 RECFMis not F/FB/V/VB

5020 MOD is not S10 or S11 or numeric

5027 Either DEV or DEVID must be used

CONVERSION PROGRAM ERRORS
Error Cause and Recovery

9400 You have entered invalid data for a data set name, a device address, or
an option. Respecify the invalid entry.

9900 You have issued an EOJ command. Terminate the current prompt.

9998 An unexpected external status condition has occurred. Terminate the
current prompt,

Error Messages 355

356

Appendix F. Sample Program

Your assembler diskette contains two sample source programs, labeled SYSASMP
and SYSACLP. SYSACLP is an ACL program that can be converted to 5280
assembler language by using the ACL to 5280 assembler language conversion aid.
SYSACLP was originally published as a sample program in A Programmer’s
Introduction to the Application Control Language, GA21-9195-1, SYSASMP

is a source program that performs the same job as the original ACL program but
has been written in 5280 assembler language to make better use of the language.
The assembler listing for SYSASMP is illustrated in this appendix. You may
assemble the sample program with any of the options available, but to obtain

a listing like the one in this appendix, select the following assembler listing options:

Cross reference: Yes Included lines: Yes
Full data print: No Errors only: No
Literal spacing: No Page size: 84

Following the listing is an example of the output from the sample program.

Sample Program 357

8G¢

5280

ADDK

0000
0080
00A&
OOKE
0140
0001

0114
0000
0115

0140
0142
0144
0146
0148
0144

ASSUMBLER 01,00

OBJECT CODE

E2C1D4D7D3CS5F 240
0010000000000000

0800

0435
082

SAMPLED OKDER

LINE

ENTRY SAMFLE FROGRAM,

SOUREE CODE

to

on

RESTRICTIONS

AR A R A KK A K A X AEAXTKE X TR TR X KT R XX T A K KT X ¥ L ¥ ¥ X ¥ X X KX K% KX KK

Host other
ATTENTION, CURSOR LEFT and RIGHT,
usual significance. fither function
keys are ignoved.

header are placed below

NAME - Order entry sample progiam

FURFOSE Tllustrate ascembler coding techniq

diskette. and optionally write

OFERATION —~ The user i1s prompted for.

. Data set name and address.
2. Printer address (optional)
3. Header record data fields.
4. Detail record data fields.
5. Additional detail records.

Fress the SELECT FOKMAT key to ent
Fress the HOME key to backspace into previous vecords.
function keys (RECORD ADVANCE, SYSTEM REQUEST,

OUTFUT - Header vecord written to diskette
co

Lumns contents

- # customer no. (self check)
order mo.

date

salesman no.

post office

ship code (table Look-up)
not used, blank

il vecord written to diskette:
Lumns contents

- B customer no. (from header
- i6 order no. (from header)
- 24 item no.

= 29 quantity (limit check?)

- 36 unit erice

- 49 amount = quantity # price

ues.

FUNCTION - Fromept for header and detail vecord data, write vecovds

to a printer log also.

Also allows updating of previously entered vecovds.
The printer 15 not used when scrol
previously entered «ecords.

Ling ov updating

er a new header record.

CMD EDJ) have their
keys and the command

)

0 character D - indicates detail

8
50 -128 not used, blank
Printed log (optional):
The header data and the first detail record are formatted
the same line. Additional detail records for the same
it without repeating header data.

- Basic common function area (SYSDPRT2) is required.
The output dataset must be previously allocated.

AXEENE KR E XX KK KX KX KK KR KX A X KK EX KX K E XK A KA KKK X E KX X XK X & %

LSTART FNAM='SAMPLE2' ENTRY
.KECRT CREA=I0OBUF ETAE=ER|

.DC LABE CNCD

.DC LABEL=MODESW LEVL=2 DISF
ODSW, PRNTSW, QUANSW;

.DCLIND LABE
LEQUATE NUMB=(4

RKB
DISI

LEV

, TRANS) , (2,PRNT) ;

START MCHK=CFPGMCHK ;

‘AL SCAN CODE & CONVERTED EECDIC
"HE'; KB/CRT MODE SWITCH

.DATASET NUMBERS

* THE FOLLDWING EQUATES ARE OFTI1ONAL, BUT WILL FUT ENTRIES IN THE
» CROSS REFERENCE LISTING FOR SYSTEM REGISTERS AND INDICATORS.
LEQUATE REG=(BRi0,ER10), (BR1i8,BK18), (BR19,BR19), (BR22,BR22) ;
LEQUATE IND=(I115,11145),(I118,I148),(1125,1425),(1158,1458);

LXTRN LAREL:

CFATFBGD, CFREVCHK;

IN INIT=ADDR(CFSAVE),
N

FFARM2 TYFE=BIN;
.DCLER LAREL=WKEBR{;

.DC LABEL=RWCOL
.DC LABEL=BUF@

TYPE=KIN INIT=X'0435',;
TYPE=EIN INIT=ADDR(IORUF);

CFPGMCHK , CFGIDERR, CFFERATT, CFLOADOS , CFERCDSM,

C.F. WORK AREA FTR
C.F. FARAMETER REG
C.F. FARAMETER REG
BINARY WORK REGISTERS
KOW & COL FOR CRTMM
I/0 BUFFER FTR

5280 ASSEMELER 01.00

ADDK

044C
01 4E
0150
0452
0154
0156
0158
0160
0190
01A0
0145

0200
0208

0280
0288
0290
0300
0700
0800
0840
0888

VB2
0L
V8L
08CA
0BD2
o8be
08DA
0BEA4
0802
08DA
08DF
08ES
0914

0942

096E
09746
097E
0986
0986
098D
0994
099k
09a2

OBJECY CODE

08E4
0150
8000
0006
0022
0029
3704

FOF OF OF OF OF OF OF &
FOF{FIF1FF
F9F9F9FaFF

0000000000000000
0000000008C2FF 00

0000000000000000
©000000000840FF 00
0D50800000000000

E3DYCADSE 2404040

0201020102040201

0986000506000005
0986000500060005
0EQC000401000004

E3DYEAC3ID24040
DYCLCID3I404040
D7DSE2E3404040
C1CPDP40404040
C3D&GEADSE3CSDY

FFOF?a

070199
OF4{B50702B8
0F419607038C
OF 41820187
OF41#707048D
0F 418202034084
OF83

FFOF9A

SAMFLE2 -
LINE

74 .DL LABEL
75 .DC LAKEL
76 .DU LABEL
77 .DC LABEL:
78 .DC LABEL
79 .DU LABEL
B0 .DU LAKREL:
81 .DCLDR LA
82 .DU LAREL
83 .DC LABEL
84 .DC LABEL:

86 » YRANSAC

ORDER ENTEY SAMFLE FROGRAM,

SOURCE CODE

TXT#
CNTL@
FRCNTL

=Né
=N22
=K29
=KN3701

=LIMIT TYRE-
=MSGY111 INT
=M5G9998 INI

TION DATA SET DEFINITION

INIT=X'3701",
BEL=WKDR1, KQUAN , RFRILE ,
EC

INIT=1000,
FOFIFIF1FF ",
'FOFIFPFBFF ",

INIT=ADDR(SHFLUD) ; FTR FOR CRKTMM
INIT=ADDR(FKRCNTL), FI1R TO FRINT CONTROL

FRINTER SFACE CONTROL

CODE FOR EOD
DECIMAL WOKN REGISTERS
QUANTITY LIMIT CHECK

9111 - SELF CHECK INCORECT
PY9H - UNEXFECTED KB EXT STATUS

B7 .DATASET DSN=TRANS DEVID=D1 KECL=12B KSIZ=0 TYFE-SU NAME=DSNAME
88 LEUF =10BUF PE1=BUFF1 ELAB=DSNERK,

90 * PRINTER
?1 .DATASET
2

9?4 .DC LABEL:
95 .DC LABEL
96 .DC LABEL
97 .DC LABEL:
98 .DC LABEL

100 » LOGICAL
101 .DC LABEL

DEF INITION
DSN=FRNT DL
FGSIZ=66 LINSZ=1

X'B0OO' RECL=120 BST

22%4 TYFE=SW,SCS

LBUF=FREUF FEL{=BUFF2 ELAF=GIJERK,
2

=BUFFL LEN=1024 ED 2
BUFF2 LEN=256 FKEDY=128
CFSAVE LEN=44;
=FREUF LEN=120,
=DSNAME LEN=10,

BUFFER FOR DISNETTEL & RCYETARD

S LOBUF LEN 108

102 D06 LEVL=2 INDT =" FRANS ANERHOON"

103 . DL

104 DU
105 .DC
106 .DC
107 .DC
108 .DC
109 .DC
110 DU
111 .DC
112 D€
143 .pc

LABEL ™ n LEN
LAKEL ~{IKDNO i
LABEL=DATE
LABEL=MANNO

B DISF=0.
i

LEN=8B DISF=16,

LEN=S,
2 LABEL=FRICE LEN=7,
LABEL=AMT LEN=13,
2 LAREL=UNTL LEN=1 DISF=?%,

115 .SELFCHK MOD=310;

117 » TAELE O
118 .TABLE LA
119 .TABLE LA
420 .TAKLE LA
121 (DC LABEL
22 .0 LEVL:
123 .DU LEVL
124 .DZ LEVL=
125 .DL LEVL:
126 .DO LEVL=

128 * SUREEN
129 LIFMTST L
130 SFMTFMT
131 L SEMTFMT
132 SFMTFMT
133 . SFMIFLD
134 _SFMTPMT
135 LSFMIFLD
136 (SFMTEND;

138 LSFMTST L

F TEXT FOR SHIF CODE
BEL = SHIFTXT DCLK
BEL: SHIFID CLEB
BEL=RGRTN

2 POST N
2 ‘ALK '
2 LEN=7 INIT='COUNTER

YHIFCOUDE ARGL

PATASET UFEN CARAML TERY
CUSTOMER NU.
URDEK N
BATE
SALESHAN NU L
FOST OFFICE
SHIF CUDE
1TEM NO.
QUANTITY
FRICE

QUAN * PRICE
CONTROL. CHAK

STANDARD SELF (HEUN

=7 ENTRIES-S,

FORMATS “0R DATASET UFEN FROMFIS

ABEL (TRANS CNTL=CE, My,
FRMT TITLE,

FRMT TRANS1 CSFSNL;
FRM1=SF, TRANS2 CSF
FLDF=A,8 CoFS=¢3,;
FRMT=SF, TRANSZS USFSaNL,
FLDF=N, 4, EC CSFS=43,

AREL=PRFRINT CNTL=ES, M0,

FRUMFT FUK TRANSACTION FILE

DATASET NAME

DEVICE ADDRESY

FROMFT FOR PRINTER ADDRESS

6G€ wesboiyg ajdweg

-

5280 ASSEMELER

ADDR

09D2
0905
09DE
OES
OYER

OPED
OA07
0AOF
0640
oAaD
OASE
0AT7

0A92
0A9S
0AYH
0AAQ
DAASL
0AAL
OAKRZ
OAR7
OABD
0AC2
OACH
0ACD
VAD3
0ADA

0ADC
0ADF
OAETD
OAEE
0Af 1

OAF3
OAF &
OAF Y
(-1 8
OBO4
ORO7?
OKOD
OHLO
ORL9
OBLF
OR2S
OK28
OR3G
B34
OB37
OBat
OB43
ORA4t
0BS54
OB3A
OB60
o6

OR68
ORTO
OR7S
OR7Y
GEBY

OHB6
OBBF

OBAT
ORA?
OEE1

OHCY
OEDA
OKDF

OBES

01.00

ORJECT CODE

070199

OF AL K5070598
OF 21 8ROF 418202
OF ALALOT7069A
0F 82

E2CIDADVD3CS540D6
CSDYE3CSDPA0E3CH
l“iéOCM)él)'{D‘ﬂ)d[ﬁ

)LJ

FFOFaa
OF41CF 070787
OF 4483 7007
OF 4183070884
0OF41813K0784
OF 4183070983
0F 4181 3085
OF 419A070A8 7
0F 4131 IR
OF 41890 /0B84
0F41812189
0F4181070C88
OF 418101004484
OF83

FFOFB2
040095
OF21A10F417F01D3
060CA 7

OFB3

FFOFB2

OF 6480

OF A1 7FOLEF071498
071498

071498

OFS1CAOF 2480
070E83

0F 218 0F 4181 3R07
OF4183070F87

0F 4181 7H04B4

OF 6487

OF 51 7FO2900EAROT
10970EAD

Q71190

OF 21E10F 41850100
4680
OF31EB20F417FO1DE
OF 4182071284

OF 4181 3R0684

OF 4353071385

OF 4181 4AR0CET

OF 83

C3EAECESDOHDALTDY
D&DYL AL DY

251
D 74540[}04[1
CYD740C3D6CA
ELCBLYD /A0C30ACA
CPEICSDA
DBEAC{DSEICYE 318
USE Z2C3CHCHCAE 240
54 BLIES

C1DADGE ADSE S
4040404040404040

GRAM ;

SOURCE CODE

M .
TR THE FOLLOWING INFORMATION FOR TRANSACTION DATA SET:';

SAMFLE2 - ORDER ENTRY SAMFLE PRO
LINE
139 .SFMTFMT PRMT=SF,TITLE;
140 (SFMTPMT PRMT=SP,PRINTH
141 SFMTFLD FLDF=N, 4, EC
142 (SFMTFMT PRMT=SP, PRINT2
143 . SFMTEND;
145
144
147
148
149
150
154
153 # SCREEN FORMATS FOR UF\DLN EN”\Y
154 . SFMTST LAREL=FRHDR CNTL
1595 SP,HEADRYL
156 D,8,RZ
157 T=SF, HEADRZ
154 =0,8,RZ, DR
159 FRMT=SF,

FLDF =D

.AFHTFHT FRMT S‘F',H[:hDHb
LSFMTFLD FLDF=A,1,RC,DR
LSFMTEND

FRMT=SF, BLQNKS CSFS=
FRMT=SF, BLANKS ;
FRMT=5F, BLANKS ;

. CSPS=-75 CNTL= CE;
LSFMTFMT PRMI=SF, DETLS;
SFMIFLD FLDF=D,8,RZ,DR CSFS=
SFMTEMT T=S1 LSPS=4;
.SFMIFLD FLDF=D,3,RZ,DR CSFS=2
LSFMT L C UANSW, OFF ;

- SFMTFMT ~273 DSILY=HI, BL
SF,DETL3;
MT=SF,DETLA;

Fl DE=h,1,BC,DR CSFS=+6
CNTL =i RG

=240

LSFMTEHMT
CSFMTFLD
FMTFMT
LSFMTCTL
LSFMTEMY
SFMTFLD
LSEMTEMY
LSFMTFLD
LSFMTEND

CNTL

o LABEL=HEADK1
. LAREL=HEADRZ
LAREL =HEADK3
.DC LAREL=HEADR4
» LABEL=HEADRS
. LAHBEL=HEADK&
LABEL=HEADR?
© LABEL=DETYL. 1

INL
INIT=

INLT=
LEN=2

DATA SET NAME';
DEVICE ADDRESS';

CUSTOMER

DRI;ER
DATE
SALESMAN
F.o0.

SHIF CODE

ENTER FRINTER DEVICE ADDRESS’,
lNll—r'lLﬁUF BLANK IF NOT FRINTING';

FROMFT FOR HEADER DATA

FROMFT FOR SHIF CODE ERKOK
SHIF CODE ERROR

: BFPS=34;

CLEAR FIXED FROMFT LINE

FROMFT FOR DETAIL RECORD DATA
BYFASS IF UFDATING

CLEAR LINE 5

END BYPASS

ITEM
HEFPS=16,

QUANTITY
CNTL =R

~ FREVIOUS DETAIL I [NE

G;
EYFASS IF QUANTITY IS Ok

QUANTITY ERROR MESSAGE
QUANTITY ERROR OFTIONS

BFFS=+50;

CLEAR FIXED PROMFT LINE

=CE; END HBYFASS,
FRICE

AMOUNT
CNTL=RG;

'DATE !

‘ANOUON'
5 INIT=* *;

RESTORE CSFS & KFFS

5280 ASSEMBLER 01.00

ADDK

ORFE
0Co1
0CoY
0c10
oci?

oCn8
ocpe
OCEO

0po0O
oDo4a

OBJECT CUDE LINE

213
FEFFA0 214
80420060070708D2 215
0764040408DA00 216
0C64090608DFF 2
3468110COBESER02

FFFF40
076007070802
0A600TO70BCA
0A6BO70508D20008
046001010808
0C60090908DA
2960060608E4

2HAIFF AL
04760054
49460
OROOOL2D
CF800000
99440001
P94208CA
ORO00L3Y
00000C54
876108C2
876168E8
2241FFO0
25810C5%
2604 0
4000F

F

OBOOO1 2D
LFB00100
4C4008CE
00000CKHO
99440002
994208CE
0K0001 39
00000CB4
2242FF00
25810C85
4003 FFFF

BP404A00
EDAEA4A00
OHO0012D
CF800200
B06108E4
53014664
047D0OCDHY
OEO0012D
CFB800300
00000CCO

52004661
B66188E4
CAS24L49

03140D34
©07010D05
99507003
04730CF9
29505003
JOCOFF 4K
29508000
30D2024E
3045FFOB

SAMFLE2

* EDIT Fi
SEMTST L
JFMTFLD
SFMTFLD

FMTFLD
AFMIFNI)

* EDIT FI
SFMEST L
JFMTFLD
SFMTFLD
MTFLD
M

©

SEMTFLD
~FMTEND

START

OFNTRN

2 OFNFR
4

* FPROMP
BUNK

cusT:

SHIF:

SHIFOK

* WRITE

FRTHD
i

1
WRTHD

ORDER ENTRY SAMFLE FROGRAM,
SOURCE CODE

DRMATS
AREL =
DCLEL
DCLBL=QUAN
DOLBL=PRICE
DCLEBL=AMT

FOR FRINTER

TYFE=DEC

LEN= iH

ORMATS FOR FRINTER
AREL DRFMT ;
DELEL=CUSTHM

.

TYl

L
TYFE=DEC
TYFE=DEC

L BL =F
I)Ll BL=SHFCD

SRAT (TRANS, WKREA) ;

IFIR 1148 IS ON GDYO OFNTRN;
BINHEX (TOBUF(4)+8, WKBR1);
CALL CFATFEGD;

ENTR (FRTRANS);

CFPARM2 = TRANS;

CFPARMY = ADDR(TOBUF+8);
CALL CFDEVCHK

GOTO OFNTRN,

WRDR1 = TOBUF(8);

DSNAME (87 = WKDRY,

OFEN (TRANS) ;

OF
IFDST 8, TRANS NOT ON GOTO OFNTRN;

FOSN (TRANS,EOQD)
SON (EODSW)

CALL CFATFRGD;

ENTR (FRFRINTY,

IFC 12, TORUF NOT C' ' SKIF;
GOTO ELNK,

CFPARM2 FRN

CFRPARML = M’)D‘\(]UBUF*i 2y,
CALL CFDEVCHK;

GOTO OFNFR;

OFEN (FRNT)

IFDSI B,TR‘I)’JS’ NOT ON GOTD OFNFR;

SON (FRNTSW)

T FOR HEADER DATA

OCRUF@) = C' *;

DUF (0,BUFE@,79);

CALL CFATFEGD;

ENTR (FRHDR);

WKDR1 = SHFCD(1),

WKEBR1 = THFX(SHIFID,WKDR1Y;
IFIR I425 NOT ON GOTO SHIFOK;
CALL CFATFHGD;

ENTR (PKSHIF);

GOTO SHIF;

WKDK1 = THRD(SMIFTXT,WKBR1);
SHFCD = WKDR{;
CRTMM (RWCOL, TXTE@,Ké) ,

HEADER RECOKD
IF BR1O IS O GOTO READ;

IFI FRNTSW NOT UN GOTO WRTHD;
FRCNTL = X'9003

IFIR T115 NOT UN GOTD PRTHD;
PRCNTL = X'5003

WRT (PRNL,FRLNI’[(!),

FRENTL = X'8000°

WRT (FRNT,HDRFMT, FRCNTL(’. By
WRT (TRANS,,0);

(‘UL 60,

CE,DF, 2,

GET DEV ADDK OF 'Di*

EBR IF SKRAT FAILED

ELSE USE AS DEFAULT FOR FRMT
ASSURE KB IS ATTACHED

FROMFT FOR TRANS. FILE FARMS
DEN FOR CFDEVCHK

DEV ADDR FTR

VALIDATE AND STORE DEVICE ADDK
BR TO REFROMFT IF INVALID

MOVE DATASET NAME

EN TRANSACTION FILE

BR IF OFEN FAILED
FREFARE TO ADD TO EXISTING DATA
INDICATE AT EOD

ASSURE KB IS ATTACHED
FROMFT FOR FRINTER PARMS

ER IF FRINTER NOT REQ'D

DSN FOR CFDEVCHK

DEV ADDR FTR

VALIDATE AND STORE DEVICE ADDR
ER TOQ REFROMFT IF INVALID

OFEN FRINTER

BR IF OFEN FAILED

INDICATE FRINTER FRESENT

SEED A BLANK

ELANK THE BUFFER
ASSURE KB ATTACHED
FROMFT FOR CUST NO,ETC.
GET SHIF CODE

LOOK UF IN TABLE

BR IF CODE FOUND 0K
ASSUKE KE ATTACHED
ELSE GIVE ERROR FROMFT
RECHECK SHIF CODE

GET TEXT FOR SHIF CODE
FUT IN RECORD EUFFER
MOVE TO DISFLAY SCREEN

BR IF RECORD WAS NOT MODIFIED

BR IF NOT FRINTING

SET FOR TRIFLE SFACE

SKIF IF NOT AT END OF FAGE

SET FOR FAGE SKIF

SFACE EEFOKRE PRINTING

SET FOR SFACE SUFFRESS

WRITE TO FRINTER, SPACE SUFFRESS
WRITE TO DISKETTE

09¢

$280 A,
ADDR

oLog

Opoc
Q1o
opta
0p1a

oD
Do
opra
(9]
[
CDBO

D34
0p2g
“pic
D40
apasa

04
oD
Gps
oDHa
opse
ansi
GDAC
OD&4
R ksl
0Dt
an7e
VD4

oD
[t
onya
0Dva
oDya
Onva
oDpYa
0D94
onva
0ODea
0DYa
0Dy
0DYe

0DAD
0DA4
oDAY
ODAC
ODHO
ODEA
ODHY.

ODHL
ODHL
oDLo
opc4
opey
oDCe

oDDO
oDDhO
0DD4
oDDB

SSEMBLER 01.00

OBJECT CODE

Q7OLODEY

EP2404A10
HDIF4A10
OROCODL2D
CrEL0400

03140D34
07010D29
30520408
44040941
JOALFFOB
07000D0C

L0410009
GE000DOC
ALLA091 4,
DOUOOCEE
0000014

DVUHODAS
GUOV0EO0
AOOOFFE

TFALGOCD
AL TGO

50D 7%
ACULETFY
GLOGHO00

UDYAODELODDOODY 4
OEOOOE ABOEABOEBO

PI4201A5
QBO00LDS
00000DA0

23510000
23520000
C7050000
076E0DES
2F000000
0B000141
00000DE4

73460086
6A463E0T
4£A463DOA
6A463304
00000EAB

?84700A6
LARLITF2
00000EAB

SAMPLED

LINE

ORDER ENTRY SAMFLE FROGRAM;
SOURCE CODE

IF1 EOGDSW NOT ON GOTO KEAD, EBR 1

* FROMFT FOR DETAIL F\thRD DATA

DETL 16 (HUF@)
: DUF (164, R BLAN
ITEM CALL CFATFHGD;
ENTR (FRDETL);
* WKITE DETAIL RECORD
IF ER10 IS O GOTO READ, ER I
IFT FRNTSW NOT ON GOTO WRTDT; BRI
WRT (FRNT,DFLFMT,, B), WRLT
295 WRTDT CNTL = C'D*,
296 WRT (TRANS,,0); WRITI
297 IF1 EODSW IS ON 6OTO DETL;
299 % READ FROM TRANSACI’ION rn,g DETA DIRECTE
300 READ READ (TRANS . %,
301 IFY EODSW 1S M mm] DETL KR T
302 SELECT IFC CNTL IS C'D' SKIF, SK
303 GOTO CUST; ILSE
304 GOTO ITEM; UFDA
J06 % DINRETYE AND PRINTER ExTERNAL STATUS
307 DSKFRR WEERS - 4 Do, GET
kDL LFOWNBEE TR ORATOL GOTH Tip, wE o1
A00 DEOERR LALL CPGIOERK, [
510 GOTO E0, R
331 RETURN; ELsE
342 LOD SON (EODSW) ; INDL
EIR WRER L sW GET
314 WRHRE X+ LHAN
3145 HODESW = WNKRY . BUT
Mo IFDSY 8, PRNT NOT ON GOTO DRETN, SN
X7 SON (FRNTSW)Y ELZE
3440 DRRTN RETURN GO D

344

349

351
352
353
354

* KREYBOARD
LABE
RCAD, RCEN, KERK, NEXS, INOF, MAGK u[%S,FC

LLABTAR

DEXS
Loms
hERR
NEXS
INOF
MAGR
WEXS
FCSE

FXTERNAL STATUS
“ERRRE ENTRY=DEXS, FUNC, COMK, COI

.{

: EIE
i g -
i i0

i 1i-
B i‘.’
CFFAKML = ADDR(MSGY9298) bLT
CALL CFERCDSM;

30T0 EGQY, BR I

END OF JOB - NORMAL OR ERROR

EOQJ

EOJ1

FUNC

COMK

CLOZ (TRANS); CLOS!
CLOZ (FRENT); PRIN
CNENTR CANC

IFI T41C NOT ON GOTOD E0JL;
EXIT;

CALL CFLOAROY; SHOW
GOTO EOJL, REFE
; i-

WRERL SCNCDC(2) TEST

TFH WKER1 EQ X' 3L GOTO ATTN; BR I
IFH WKBKL EQ X' 3D° GOTO SYSKQ, BR
IFH WKERS EQ X'33° GOTO SELFMT, BR

GOTO KKTIN, BR T
i 2

WKERYL = SCNCDC1), TEST
IFH WKHRE EQ X*37' GOTO EOJ; BRI

GOTO KAKRIN, BROT

F UFDATING OLD RECORDS

SEED A BLANK

K THE BUFFER

ASSURE KE ATTACHED
FROMFT FOR ITEM NO. ETC.

F RECORD WAS NOT MODIFILCD
F NOT FRINTING
E TO PRINTER

CONTROL CODE FDR DATA DIR FMT

E TO DISKNETTE

BR TO DO NEXT ITEM

D FORMAT

READ NEXT RECORD

F REACHED EQD

* IF DETAIL RECORD

UFDATE HEADER RECORD
TE DETAIL RECORD

ERROR CODE FEOM IDE
Foal LG OF DATA

CPOST T STATUS LINE

FOEND OF JUE FENFONSTE
GO BACK & TEY AGAIN
CATE AT EOD

KK T MIDE kYT

GE UFDATE 10 IHYI K MODE
IT KACK

IF IF FRINTER NOT AVALLABLL
SWITCH BACK ON

TUKN FRINT
0 NEXT TTEM

MY, FWRG, BRRG,

CS
DULIPH t EXTERNAL STATUS
SHIFTED COMMAND REY
KEY STROKE ERROR
1/0 MEMORY FARITY ERROK
INVALID OFERATION
MAG STRIFE REA
170 MEMORY lﬁF\ITV ERKOR
INVALID SFMT SERIES
MESSAGE FTR

FOST ERROK MSGE TO STATUS LINE
FONSE

¥ END OF JOB RE

E H'\ANAACT}ON DATA SET
TER A
EL FO. BLI: ENTR STMT

(EGROUND FARTITION
ROUND FARTITION
LOAD FROMFT

AT IF NECESSARY

FUNCTION KEY
CONVERTED EBCDIC

F ATTENTTION REY

IF SYSTEM REQUEST KEY
IF SELECT FORMAT KEY
0 IGNORE KEY

UNSHIFTED COMMAND KEY
SCAN CUDE

£ CMD EOJ KEY

0 IGNOKE KEY

5280 ASSEMBLER

ADDR

opbe
ODEO
ODEA4

ODES
ODEC

ODFO
ODF4
ODF8
ODFC

QE00

0EB8
0EBC
0E90
0EF4
OE98
QEC
QEAQ
OEA4

OEAB
OEA8
OEA8
OEAC
CEF0Q

0040

01.00
ORJECT CODE

07000EAY
C7050000
0CO10CHO

OE000131
00000EAB

C7050000
OBR000O{2D
OB000141
00000EAB

81610126
53024661
08470£14
08C208DA0?1108ES
0D?40E200E3COEAC

B876408C2
QE610EAB
994201A0
OE000125
0000CDA0
CD000001
00000EA8

847108DA
67917408
A002FFFF
00000EAS

AED90911
00000E64
0CO40ES?
CDO000O1
C7115400
00000EAS

4102FFFF
C0000EAS

868108DF
186171814
BCH1BBES
€3000000
00000EAB

AEC40911
C7115600
2044FFO7
410004FF
984700BE
9PBA6000F
9D460040
A24700BE
93240002
00000D3C

079E0EBO
0C010000
CD010000

0000008000€00200

SAMFLEZ - ORDEK ENTRY SAMFLE FHOGRAM,
LINE SOURLE U
356 SELFMT IFI EODSW NOT ON GOTO KKIN,
357 CNENTR,
358 ENAELE (BLNK,FOF)
360 ATTN CALL LFFERATT,
361 GOTO NRTN,
363 SYSFQ CNENTK
364 CALL CFATHEGD,
365 CALL CFLOADOR,
366 GOTO KRTN,
368 FWRC:
369 *
370 WRDRY = BRL9+0,
371 WKBR1 = TEFX(RGKTN,WROR1) .
372 GOTAE WRERL RGROUT,
373 .LAKTAE LABEL=BUFAL ENTRY
374
376 CUSTROUT:WKDR3 = CUSTM
377 IF WKDRE IS CK GOTO RKTN,
378 CFFARMI = ADDR(MSGS111),
379 CALL CFERCDSM,
380 GOTO EOJ,
381 RESUME (E),
382 GOTO KRTN,
384 QUANROUT:RQUAN = QUAN
385
386 SON (RUANSW)
387 GOTO KRTN
389 QUANCK: IFC CNTL 15 C'R' SKIF,
390 GOTO QUANOK,
391 ENAELE ;
392 RESUME (E';
393 NEYOF (X'11',822),
394 GOTO KRTN
396 QUANOK: SOFF (QUANSW),
397 GOTO KRTN
399 FRCEROUTRFRICE = FRICE
400 WKDR1 = RQUAN # RFRICE,
401 AMT = WKDK1;
402 REFFLD;
403 GOTO KRTN.
405 RCEK .
406 IFC CNTL IS C'D* SKIF,
407 KEYOF (X'11',K29),
408 READ (TRANS, ,-)
409 SOFF (EODSW, PRNTSW),
410 WKBRi = MODESW,
a1 WKBR
412 WKBR1
413 MODESW
414 HR18 -
415 GOTO SELECT,
417 RKRG i
418 RCAD
419 KRTN IFI 1158 IS ON GOTO MRTNE
a20 RETEXT,
421 KRTNL RESMXT;
423 LEND;
0CAB FIRST INSTRUCTION ADDRESS
OEEE MAXIMUM LOCATION COUNTER
OEEE SUEKOUTINE STACK ADDRESS

REAY CONTAINS BUFFER ADDKE

CUSTM, QUAN,

WROTO IGNORF [F UFDATING FILE
CAMCEL LNTRR
AR TO STAKT NEW HEADER

I'ERMIT ANDTHEK FARTITION ATTACH

CANCEL FOSSTHLE ENTER
ASTURE AE ATTACHED
ROMEY FOR LOADING BACKGROUND

A4 - FOWAKD FANS OVER R

OF CURKENT F1ILD
OFY ADDKESS WITHOUT CONVEKSLON
FIND DATA ADDRESY IN TAKLL

30 TO CORKE SFUNDING ROUTINE
CNTL, AMT,

LLABTAB LABEL=KGROUT ENTRY = FISE,CUSTRIUT, QUANKOUT , QUANCK , PREERDUT .

Q0S5E

TEST CUSTOMER NO .
1F

BR LF CHECN 15 On
GET MESSAGE
PUST CRRUR MSGE TQ STATUS LINI

BR IF END OF JOB RESFUNSE
B FACE TO CUSTOMER NO.
LET OFERATOR TRY AGAIN

GET QUANTITY IN DEC KEG

IFD RQUAN LE LIMIT GOTO QUANOK, &R (F HELDW MAXIMUM

BOUNDAKY ALTGNMENT BYTE LDSS

£.NAKLE ERROR FROMFT
ASK OFERATOR TO VERIFY

SKIF IF 'RETRY'

BK IF KEFLY "ACCEFT®, CONTINUZ
KE -ENABLE KEYHBOARD INTERRUFTS
FIELD HAUCKNSFACE TU QUANTITY

RECHECK QUANTITY

HYFASS ERKOR FROMFT
FROMET FOR FRICE

GET FRICE IN DEC KEG
MULTIFLY FRICE # QUANTITY
STORE IN DATA BUFFER
REFLACE IN DISFLAY

LET OFERATOR TRY AGAIN

7 - RECORD BACKNSFACE

SKIF IF DETAIL RECORD

ELSE CLEAR HEADER FROM SCREEN
READ FREVIOUS RECORD

SET UFDATE MODE, STOF FRINTING
GET NE/CRT MODE RYTE

CLEAKR MODE HITS, KEEF OTHERS
SET 10 UFDATE MODE

FUT IT BACK

FOF SUBRTN STACK - NO RETURN
DETEKMINE IF HEADER OR DETAIL

5 - HACKWARD FASS QUER RG
& - KECORD ADVANCE

B& IF ATTACHED

RETUKN, ENARLE

KETURN, ENAKLE, RESUME

19¢ welboug ajdwes

RIS
DEF INED

00112
00360
00417
00241
00258
00064
00044
00064
0064
00073
00373
00094
00095
00066
00066
00066
Q0066
00066
00069
00070
00066
00066
00096

00260
00103
00376
00105
00286
00209
00206
00207
00208
00209
00210
00323
00318
00307
00098
00214
00312
00060
00336
00343
00324
00330
00344
00368
00309
00224
00598
00199
00200
00204
00202
00203
00204
00327
00404
00288
00109
00065
006045
00065
00065
00325
00419
00421
00078
00079
00080
00077
00082
00328

MELER 0.00

SYMKOL

am
ATTN
BRKG

CF DEVCHK
CFERLDSM
CFUTVERK
CELOADVY
CFFARMI

[R0)

0000
0000
2000
0014
0000
Goia
0024

LENG

000D
]
0004
0019
0004
000
0002

0004
0004
0004
0004
000A
0003
0004
0000
0004
0004
001C
0004
0004
0004
0004
0003
0008
0005
0004
0008
0005
0009
0016
0004
0080
0004
0008
0000
0000
0000
0000
0004
0004
0004
0002
0002
0002
0002
0010
0004

SAMFLED

VALUE

o8Es
ODEB
OEAY

TYFPE

DT

URDER ENTKY SAMFLE FRKOGRAM,

REFERENCES

00218
06346
00321

QeI
00248
00274
00414
00370
00307
00258
003120

00087
00091

00n3e
00256
0033

00.9%
00321
00321
003063
002

00308

00321

00281
00155
00157
00159
00161
00163
00165
00170
00321
00057
00304
00215
00277
00230
00264
00419
00321
00349
00419
00393
00407
00308
00274
00385
00321

00373 00401

00178 00179
00358
00292

00259 60286 00287

00245 00260 00265 00ZBE 00364
00251

00379

00345

00256 00331 00378

00249

00302 00373 00389 00406

00373 00374

a
00304

00239

00243 00283 00297 00301 00312 00356 00409
00333 00353 00380
00342

7
00374

00073 00087 00231 00235 00238 00247 00250

00354 00356 00361 00344 00377 00382 00387 00394 00397 00403

5280 ASSEMBLER 01.00

DEFINED

00106
00059
00083
00084
00326
00245
00232
00104
00107
00097
00399
00076
00075
00175

SYMEOL

MANNO
MODESW
MSG9111
MSG9998
NEXS
OFNFR
OFNTRN
ORDNQ
POSTO
FREUF
PRCEROUT
PRCNTL
FRCNTLE
FPRDETL
FRHDR
PRICE
FPRINTA
FRINT2
FRNT
FRNTSW
PRERINT
PRSHIP

QUANOK

SELECT
SELFMT

SHIF
SHIFCODE
SHIFID
SHIFOK
SHIFTXT
SHFCD

TRANSE
TRANS2
TRANS3
TXTe
MEXS
WKER 1L

WKDR 1
WRTDT
WRTHD

comPe

0000
0000
0000
0000
0000
0000
0000
0000

The following is

00000026

00001834

12245678

00085326

SAMPLE2

LENG

0002
0001

0004
0002

0010
0004
0004

VALUE

08DB
OORE
0140
01R5
0D%4
oces
0C54
0BCA
08DA
0840
OE&C
0450
014E
OAF3
oAy
08DF

> OASE

0A77
0002
0000
09CF
0ADC
oCF8
09A9
08DA
0EAC
0E&4
0E3C
0000
OEAB
0E80
oD34
DEL4
097E
0180
0170
0148
00A6
oD3C
obpC
oLco
0986
0976
0Coe
098E
0BE4
ocas
ODFO
OYED
0001
0A07
0A40
0A4D
o14c
0D94
0146

0160
oD28
0D04

TYFE

ORDER ENTRY SAMFLE PROGRAM;

REFERENCES

00225
00313

00315

00254
00237

00276

00281

00399

00249

00275

00373
00390

00386

00283

' 00400

00385

1
5 00352

00119

00139
00229

00233
00353
00239

a sample of output:

12/

o
N

5/ 79

12/25/79 02

AUSTIN

ROCHE STER

TRU

ALR

00410

00241

00278

00253
00293

00384

00394

00292

00400

00262

00234

00263
00371
00262

Ch

00413

00280

00279 00281 00294 00316 00337

00317 00409

00240 00241 00242 00254 00282 00296

00269 00307 00308 00313 00314 00315
00372 00410 00411 00412 00413
00263 00269 00270 00370 00371 00376

00054321
00067893
00053241

00030256
VOOTIBLE

00300 00336 00408

00345 00346 00347 00348

00377 00400 00404

P T
SRR KRR LA
LT

SAERRARENR] A, 74
B R o

362

access method: A technique for moving data between
main storage and input/output device.

active data set: A data set being used by a program.

address: A name, label, or number that identifies a
register, location in storage, or any other data source.

alphabetic characters: Letters and other symbols,
excluding digits, used in a language.

alphabetic field: One or more alphabetic characters of
related information in a record.

alphabetic shift: A control (attribute or key) for
selecting the alphabetic character set in an alphameric
keyboard.

alphameric characters: Same as alphabetic characters,
with the addition of digits O through 9.

alphameric field: One or more alphameric characters of
related information in a record.

arithmetic expression: An expression that contains
arithmetic operations and that can be reduced to a
single numeric value. An arithmetic expression is
evaluated from left to right with multiplication and
division preceding addition and subtraction.

alternate record advance: A function that causes the
system to stop processing the current record and ignore
any specifications between the cursor position and the
end of the record when the Enter or Record Advance
key is pressed.

application program: A program that processes user
data to perform a particular data processing task; for
example, inventory control or payroll.

ASCII: (ANSI definition) American National Code for
Information Interchange. The standard code, using a
coded character set consisting of 7-bit coded characters
(8 bits including parity check), used for information
interchange among data processing systems, data
communication systems, and associated equipment. The
ASCII set consists of control characters and graphic
characters.

Glossary

assembler: A computer program that prepares an
object program from a source program written in a
symbolic source language.

assembler language: A source language that includes
symbolic machine language statements in which there is
a one-to-one correspondence with the instruction
formats and data formats of the computer.

attribute: A characteristic. For example, attributes of a
data set include record length, label, and creation date.
Attributes of a displayed field could include high
intensity, reverse image, and column separators.

auto dup: Automatic duplication. 1. The process of
automatically copying the contents of a field in a
previous record or a storage area into the corresponding
positions of the current record. 2. The process of
automatically verifying the contents of a field in the
current record with the contents of the corresponding
positions of a previous record or a storage area.

auto record advance: Automatic record advance. A
movement forward to the next sequential record without
manual intervention when current record is completely
entered and the auto rec adv switch is on.

auto skip: Automatic skip. In enter mode, if the auto
skip/dup switch is on, the process of automatically
filling an auto skip field with blanks and advancing to
the next field. In verify mode, the process of verifying
that all the positions in the field are blank.

auto verify: Automatic verify. In verify mode, auto dup
fields are checked against the same fields in the
previous record. See auto dup, 2.

auxiliary duplication: The process of copying or
verifying data from a named storage location into a field.

awaiting field exit: The state of the keyboard when
the operator has entered the last position of a field that
is defined as a field exit required field.

awaiting record advance: The state of the keyboard
when the operator has entered the last position of a
record with a key other than the Record advance key,
and the Auto-enter function is not enabied.

Glossary 363

background job: A job that is run in a partition which

Amnn -~ + H H M
does not have immediate access to 2 keyboard /display

WS ATy evara/ LISy

unit.

base displacement addressing: An addressing method
that involves setting up a base address from which
other addresses can be calculated.

basic data exchange: A diskette data exchange that
uses 128-byte sectors and allows only one record per
sector. The logical record length must be < 128 bytes,
and is unblocked and unspanned. The basic data
exchange formats allow you to exchange data between
5280 and other systems that use the basic data
exchange format.

binary: Base 2 arithmetic.

binary register: A two-byte register in partition storage
which contains binary notation and is used for binary
arithmetic/logical operations.

binary search: At each step of the search the set of
items is partitioned into two equal parts so that the
search starts at the middle.

blank check: A check of a field to ensure that there are
no blank characters (hex 40) in the field.

blank fill: To fill a field with blank characters (hex 40).

blocking: Combining two or more records into one
block.

boundary alignment: The positioning of data areas
such as registers or blocks, on an appropriate boundary
for that type of data.

branch instruction: An instruction that changes the
sequence in which the instructions in a computer
program are executed. Execution of instructions
continues at the address specified in the branch
instruction.

BSC: Binary synchronous communications.

buffer: An area of storage that is temporarily reserved
for use in performing an input/output operation, into
which data is read or from which data is written.

CAM: Communications access method.

character constant: Any combination of characters,
including blanks, enclosed in apostrophes.

364

collating sequence: The order each character hoids in
relation to other characters according to the bit
structure.

column separators: A display screen attribute that
shows vertical lines preceding each position of a field on
a display. These lines do not occupy positions on the
display. For example LALB1C.

command function keys: The 14 keys on the top row
of the data station keyboard that are used with the
command key to request functions.

comments: Words or statements in a program that
serve as documentation rather than instructions to an
assembler or compiler.

common area: The first part of main storage that
contains the system control area, common functions,
global tables (such as ASCIl and error recording), and so
on. Depending upon the common function option
selected, this area can be 6 K, 14 K, or 16 K. This area
is not available for user programs.

common functions: A set of IBM-supplied programs
in the common area that is used by programs executing
in any partition.

communications access method (CAM): A 5280
program that provides the necessary link between a
communications program and the communication line. It
performs functions such as data formatting and link
protocol.

concurrent: (ANSI Definition) Pertaining to the
occurrence of two or more activites within a given
interval of time.

configuration: The group of machines, devices,
features, and programs that make up a data processing
system.

constant: A data item that does not change during the
execution of a program. This item represents itself and
is actually used in processing rather than being a field
name representing the data. For example, ‘cost’ is a
name representing a field containing data that changes.
The constant 100 is actual data used that does not
change.

control block: A storage area used by a program to
hold control information.

controller: A device that controls operation of one or
more input/output devices; for example, a work station
controller.

copy: To read data from a source, leaving the source
data unchanged, and to write the same data elsewhere
in a physical form that may differ from that of the
source.

counter: A register or storage location used to
accumulate the number of occurrences of an event.

cursor: A movable horizontal line (underscore) on a
display screen, used to indicate where the next
character entered by the operator will appear. It blinks
when no additional entry is allowed and the system is
awaiting the Enter key.

cylinder: The tracks that can be accessed without
repositioning the diskette drive access mechanism.

data-directed format selection: Format selection is
determined by the data contained in the record.

data required: A field attribute that indicates an
operator must enter at least one non-blank character
into the displayed field.

data set: An organized collection of related data
records treated as a unit and existing on a diskette.

data set label: A 128-byte area on the diskette index
cylinder that describes a data set.

data set name: The name associated with a data set.
The first character must be alphabetic, and the
remaining characters can be any combination of
alphabetic or numeric characters. Blanks cannot appear
between characters in a name.

data stream: Data transferred by stream-oriented
transmission, as a continuous stream of data elements
in character form.

data table: A table defined by the .TABLE control
statement.

decimal register: A 16-byte register wherein data is
stored in EBCDIC or signed decimal numbers and is
used for arithmetic/logical operations.

default value: A value automatically chosen by the
system when a value is not specified by the user.

DE/RPG: Data Entry with RPG subroutines. A 5280
program product that provides a means for writing
programs that provide the function required for a
specific job.

device address: Four hex characters used to identify a
5280 1/0 device such as a diskette drive or printer.

diacritic: A modifying mark that changes the phonetic
value of a character. When you enter a diacritic from
the keyboard, the cursor does not advance until another
character is entered to combine with the diacritic.

diacritic table: A table that defines diacritic characters
and valid diacritic-character composites for graphic
display.

direct access: The ability to obtain data from a storage
device directly by key or relative record. Contrast with
sequential access.

direct access method: An access method for
processing files by specifying the address (record
number) or key value of each record to be accessed.

direct addressing: A method of addressing in which
the addressed storage location contains the desired
data. See also indirect addressing.

direct by key access method: An access method for
processing index data files by specifying the key
associated with each record to be accessed. The current
key specified need not have any relative sequence with
the last key or next key to be specified.

displacement: The number of bytes from the beginning
of a partition or block to the beginning of a particular
data area.

display attributes: The characteristics assigned to a
field record that control the way the data is displayed.

double register: Two decimal or binary registers used
together as one data area. In a program, the leftmost
register is referenced, followed by the length in
parentheses (4 for binary, 32 for decimal).

dup: Abbreviation for duplicate.
EBCDIC (extended binary-coded decimal interchange

code): A character set containing 256 eight-bit
characters.

Glossary 365

edit format: A description of a record that is read from

Aol adba caeittan & H i
a GiSKetle, wriitien G a diskette or pr:n!er, or moved

from one storage location to another. An edit format is
set up by a FMT series of control statements, and
defines the fields, puncutation, data types, and other
editing requirements of the record.

ELAB/ETAB: Parameter in the COMM and DATASET
statements which specifies the name of a routine (ELAB)
or table (ETAB) to be used to handle error conditions.

enter mode: The mode in which the operator initially
enters data through a display station. Some editing and
interaction may occur. See also verify mode; update
mode.

E-type data exchange: A diskette data exchange
format that uses blocked and spanned, blocked and
unspanned, or unblocked and unspanned records. Block
size can be up to 16,256 bytes.

extent: A continuous space on a diskette that is
occupied by or reserved for a particular data set.

extra line: Row 1 of the screen refresh buffer, which
can be displayed on the top row of the screen in place
of the status line.

field: One or more bytes of related information in a
record.

field attribute: See attribute.

foreground job: The keyboard/display unit is
immediately available to the partition where the job is
being executed.

format level: The identification associated with a
format.

format 0 (zero): A format for display stations that
allows entering information on an unformatted display.

global load: A load operation that uses the standard
load prompt. A global load is initiated by the system
when the load parameters are not specified for a LOAD
instruction in an assembler program, and when an error
occurs when using the Standard Load Processor.

global table: A table in the common area. The first two
global tables are the error recording tables. if the ASCII
translate table is selected during system configuration,
the ASCII translate table is another global table.

366

hex: Hexadecimal. A number system using 16 symbols:
0-9, A-F each representing 4 bits (one-half byte).

H-type data exchange: A diskette data exchange
format that uses 256-byte sectors. It allows only one
record per sector. The logical record length must be
256 bytes; it is unblocked and unspanned. The H-type
exchange allows you to exchange data between 5280
and other systems that use the H-type data exchange
format.

index data set: A data set in which the keys from
another data set and their record position within that
data set are recorded. When index data sets are used,
the following access methods can be used: sequential;
direct by relative record number; and direct by key
value.

index register: A register whose contents can be
added to or subtracted from the operand address before
or during execution of a computer instruction.

indexed address: An address that is modified by the
content of an index register before or during the
execution of an instruction.

indexed instruction: An instruction that requires
address modification before the data byte is fetched
from storage.

indirect addressing: A method of addressing in which
the addressed storage location contains the address of
the desired data. See also direct addressing.

initial program load (IPL): A sequence of events that
loads the system programs and prepares the system for
execution of jobs.

input data set: A set of records a program uses as
source information.

input/output control block (I0B): A data area that
may be used to pass the required information from the
calling program to the input/output supervisor for data
operations.

input record: A data record that is transferred to
computer storage for processing.

insert field: A field not present in the enter record, but
which will be inserted by the system and will be present
in the output record.

instruction: A statement that specifies an operation to
be performed by the computer and the locations in
storage of all data involved in that operation.

10B: Input/output control block.

10B pointer: A 4-byte block in the system control area
that contains the address of a device I0OB and other
information (such as, if the device is installed).

IPL: Initial program load.

I-type data exchange: A diskette data exchange format
that uses 128, 256, 512, or 1024 byte sectors. All
records in a data set must be the same length. All
records in the data set are blocked and spanned. The
I-type exchange allows you to exchange data between
the 5280 and other systems that use the |-type data
exchange.

keyboard/display storage: An area of control storage
separate from amin storage, which provides control
information and refresh areas for processing keystrokes
and for displaying characters on the screen.

label table: A table of addresses set up by the
.LABTAB control statement, and used for indexed
branches and indexed subroutine calls.

logical record: A record independent of its physical
environment. Portions of the same logical record may
be located in different physical records, or several logical
records or parts of logical records may be located in one
physical record, depending on the exchange type being
used.

Magnetic Stripe Reader feature: Allows use of the
5280 system only after a valid badge (operator ID) is
read by an attached magnetic stripe reader.

main storage: 1. General purpose storage of a
computer. 2. Storage that can be addressed by
programs, from which instructions can be executed, and
from which data can be loaded directly into registers.

main storage duplication field: See auxiliary
duplication.

main storage store field: A field that is automatically
stored from the current record buffer into a main
storage location.

mandatory enter: A field attribute that indicates an
operator must enter at least one character into the
displayed field.

mandatory fill: A field attribute that indicates an
operator must enter all or none of the displayed field.

mask: A pattern of characters that is used to control
the retention or elimination of another group of
characters.

multinational character set: The 188-character (or
184 character) display and printer character set available
with the 5280.

multivolume data set: A data set that extends beyond
the boundaries of a single data set. It can be extended
on the same diskette or on another diskette.

nondisplay: A field attribute that prevents display of
data. It can be used for fields containing confidential
information.

null character: The hexadecimal character 00.

numeric fields: A field that contains one or more
numeric characters. Valid numeric characters are the
digits 0-9 and + (plus sign), - {minus sign), . (decimal
point), blank, and , (comma).

numeric shift: A control (attribute or key) for selecting
the numeric character set in an alphameric keyboard.

object code: The four-byte instructions from the
compiler or assembler that are machine executable. The
first byte of the object code contains the operation
code.

object program: A set of instructions in machine
language (object code). The object program is produced
by the assembler from the source program.

offset: The distance from the beginning of a register or
record to the beginning of a particular field.

output data set: A data set containing the data that
results from processing.

packed data field: One byte is used to store two

numeric digits. Bits O through 3 for one digit and bits 4
through 7 for the other.

Glossary 367

packed decimai formai: Each byte within a field
represents two numeric digits except the rightmost byte,
which contains one digit in bits O through 3 and the sign
in bits 4 through 7. For all other bytes, bits O through 3
represent one digit; bits 4 through 7 represent one digit.
For example, the decimal value +123 is represented as
0001 0010 0011 1111. Contrast with zoned decimal
format.

pad: To fill unused positions in a field with dummy
data, usually zeros or blanks.

partition: An area of 5280 storage in which a program
can execute.

partition pointer: Contains the address of the
beginning of a partition. The partition pointer aiso
contains flags to indicate the status of the partition
(such as whether the partition is a foreground or
background partition).

physical record: A record whose characteristics depend
on the manner or form in which it is stored, retrieved, or
moved. A physical record may consist of all or part of a
logical record.

program listing: A computer printout that gives
information about the source program, such as source
statements, diagnostic messages, indicators used,
storage addresses of fields and constants used.

program product: An IBM-written, licensed program
for which a monthly charge is made. A program product
performs functions related to processing user data.

reformatting: The rearrangement of an addition or
elimination of fields in a record.

refresh: The continuous redisplaying of data on the
display screen to prevent the data from fading out.

refresh buffers: Areas in keyboard/display storage that
are used to refresh each row of display characters on
the screen. The refresh area for the status line is in an
area separate from the refresh area for the other rows
on the screen.

relative addressing: A means of addressing
instructions and data areas by designating their location
in relation to the location counter or to some symbolic
symbol. Relative addresses of areas within a partition
are relative to the beginning of the partition.

relative record number: A number that specifies
the location of a record in relation to the beginning
of the data set.

368

resource allocation table: A table in storage that is
used to assign a logical device ID {(a name) to a physical
device.

return-to-program exit: See RG exit.

RG exit: A user exit that interrupts the processing of a
screen format to give control to a user’s routine.

SCP: See system control program.

screen format: A description of a record that is
entered via the keyboard/display. A screen format is set
up by a SFMT series of control statements, and defines
the fields, prompts, control specifications, and display
attributes of the record.

screen format control string: The object code that is
generated by a series of SFMT control statements.

SCS conversion data set: A data set that has SCS
conversion specified in the .DATASET control statement
that defined the data set. The system automatically
inserts SCS control characters into an SCS conversion
data set.

SCS data set: A data set that contains SCS control
characters. Contrast with SCS conversion data set.

SDLC: Sychronous data link control.

self-check field: A field, such as an account number,
consisting of a base number and a self-check digit. For
data entry applications, the self-check digit entered by
the operator is compared to the self-check digit
computed by the system. If the operator makes a
mistake when entering (keying) a self-check field, an
error message is displayed.

sequential access method: An access method in
which records are accessed in the order in which they
occur in the file. Contrast with direct access method.

sequential by key: A method of data set processing
that accesses records in the order in which a keyed or
indexed data set is arranged.

SNA: Systems network architecture.

source program: A set of instructions that represents a
particular job as defined by the programmer. These
instructions are written in a programming language, such
as GSLE.

spanned record: 1. A record that corsses a block
boundary. 2. A record that is stored in more than one
block.

stack pointer: The binary register (BR18) used for
subroutine calls and returns. During a subroutine call,
the stack pointer contains the address of the next
available entry in the subroutine stack; during a
subroutine return, it contains the address of the last
entry in the subroutine stack.

standard load prompt: The screen format stored in the
common area that is used to prompt for load
parameters during a global load or by the Standard Load
Processor.

status line: Usually, the first line on a display screen.
This line provides operational information.

stripped zone: See packed data field.

subroutine stack: A table of return addresses used for
subroutine returns.

Synchronous data link control (SDLC): A discipline
for managing synchronous, transparent, serial-by-bit
information transfer over a communications line.

syntax: (ANSI definition) 1. The structure of
expressions in a language. 2. The rules governing the
structure of a language.

system configuration: A process that specifies the
various components and devices that form a particular
operating system. System configuration combines
user-specified options and parameters with IBM
programs to produce a system having the desired form
and capacity.

system control programs: IBM-supplied programs
that are on a diskette. These programs are included
with each system and allows the opoerator to configure
the system, IPL the system, and recover from power
failures.

system control area: 256 bytes starting at address
X'00°. This area contains information such as the
address of each partition, device OB pointers, system
flags, machine storage size, and so on.

system table: A table set up and used by the system
to store the addresses of screen formats, edit formats,
prompts, data tables, and duplicate or store fields.

system network architecture (SNA): A total
description of logical structure, formats, protocols, and
operation sequences for transmitting information
throughout a communications network.

timeout: A time interval during which a station waits
for a certain operation to occur. Some timeouts are
automatic hardware functions and some are program
functions.

update mode: The mode in which the operator selects
certain records for review and correction. See also enter
mode; verify mode.

verify: To determine whether a transcription of data or
other operation has been accomplished accurately.

verify bypass field: A field that was entered, but does
not need to be verified.

verify mode: The mode in which the operator rekeys
data from a source document that has already been
keyed in order to check that the data has been entered
correctly. See also enter mode; update mode.

zero fill: To fill with the numeric value zero.

zero suppress: The elimination of preceding zeros in a
number. For example, 0057 becomes 57 when zero
suppressed.

zoned decimal format: Representation of a decimal
value by 1 byte per digit. Bits O through 3 of the
rightmost byte represent the sign; bits O through 3 of all
other bytes represent the zone portion; bits 4 through 7
of all bytes represent the numeric portion. For example,
the decimal value +123 is represented as 1111 0001
1111 0010 1111 0011. Contrast with packed decimal
format.

zoned field: A field that contains data in the zoned
decimal format.

Glossary 369

370

+ 139
+= 132
&= 134
* 140
*= 133
- 139
-= 133
/ 139
/= 133

absolutely automatic field 106
accept key entry (ENTR) 196
accept unformatted keystrokes (KACCPT) 202
access methods 181
ACL conversion 297
add, binary 132
add, decimal 139
ADDR function 60, 129
addressing methods
base displacement addressing 12, 121
direct addressing 11, 121
AFIL (.KBCRT parameter) 54
algorithm, self-check 43
ALLOC 171
allocate 171
allow detach routine (CFDETFGD) 272
alphabetic fill character 54
alphabetic only field 105
alphabetic shift field 104
alternate record advance 29
alternate register 115
ALTREG (.SELFCHK parameter) 115
AND instruction 161
AND, binary 134
application control language 297
ARGL (.TABLE parameter) 76
arithmetic expressions 129
arithmetic instructions, binary 131
arithmetic instructions, decimal 137
ASCII processor 272
ASCI| translate table 252
assembler diskette 255
assembler error messages 353
assembly listing 110, 262
assembly time arithmetic 128
attach a partition 203
attach partition routine (CFATFBGD) 273

auto dup field 106

auto dup skip field 29

auto skip field 106

automatic functions 28, 106
automatic logical buffering 36
awaiting record advance 29

background partition 203
badge reader characters 210
base displacement addressing 12, 121

Index

base displacement skip on constant compare 160

BDY (.DC parameter) 59
beginning of extent 170
BFPS (.SFMT series parameter) 92
BFPS (.SFMTCNS parameter) 99
BFPS (.SFMTCTL parameter) 96
BFPS (.SFMTFLD parameter) 102
binary arithmetic 131
binary register relational compare 155
binary registers 9

declare a register 65

double binary registers 9

load 214

store 219

system registers 9, 268
binary search, data set 186
binary search, table 243
BINDEC 223
BINHEX 223

bit numbers for keyboard functions 349

BKCK (.KBCRT parameter) 54
blank a decimal register 142
blank check character 54
blank check field 107
blanks 14

in a control statement 51

in an instruction 119
block size 69, 74, 172
boundaries 13
boundary alignment 13, 59
braces 15
brackets 15
branch instructions 145
branch on relational compare instructions
branch on test instructions 150
branch through table 146
BSIZ 172

154

Index

371

BSIZ (.COMM parameter) 69
BSIZ (.DATASET parameter) 74
buffer position pointer 89, 92
buffers 36

buz 103

BUZZ 200

BYPAS (.TABLE parameter) 77
bypass 77

bypass field 33, 95, 107
bypass in verify mode field 107

CALL 147

call through table 149
CALLTB 149

CAM (.COMM parameter) 68
cancel current ENTR 201
category digits 24

CCHAR (.FMTST parameter) 82
CCOL (.FMTST parameter) 82
CFASCH 272

CFATFBGD 273

CFDETFGD 272

CFDEVCHK 274

CFDUMPTR 274
CFERCDSM 277

CFERCDSP 276

CFGIOERR 278

CFHELPO1 279

CFKEYRT 280

CFLOADO1 284

CFMSGDSP 280

CFPERATT 281

CFPGMCHK 282

CFSECVOL 283

change cursor address 208
change data type 130
change row attribute 208

check/move device address routine (CFDEVCHK)

Cl (SFMTCTL parameter) 95
CLC 247
clear screen 91, 103
CLICK 200
close a data set

communications 168

diskette 174

printer 194
CLOZ 174,194
CNENTR 201
CNST (.SFMTCNS parameter) 99
CNTL (.SELFCHK parameter) 113
CNTL (.SFMT series parameter) 90
CNTL (.SFMTCNS parameter) 99
CNTL (.SFMTCTL parameter) 95
CNTL (.SFMTEND parameter) 103
CNTL (.SFMTFLD parameter) 101
CNTL (.SFMTST parameter) 94
CNTR (.KBCRT parameter) 55

372

COL (.FMTFLD parameter) 83
COIMiments

on control statements 51

on instructions 120
common function labels 259
common function routines 270
common functions 116
communications 67
communications access method (CAM) 68
communications control 166
communications instructions 164
compare logical character strings 247
compression 73
condition character, data directed formatting
condition code format 24
condition number, external status 24
conditional branch instructions 150, 154
conditional bypass 33, 95
constant insert field 31, 99
constant, store 221
constants 14, 121
control statement summary 49
conversion of data, in edit format 83
conversion program errors 365
convert data 222 -
CRBA {.KBCRT parameter) 53
cross-reference listing 264
CRTMM 229
CSPS (.SFMT series parameter) 92
CSPS (.SFMTCNS parameter) 99
CSPS (.SFMTCTL parameter) 96
CSPS (.SFMTFLD parameter) 102
current position pointer 22, 55
current record buffer 53, 196
current record pointer 177

coding symbole 14

data directed formatting 35
data entry, keyboard 25
data movement 214
data required field 107
data set indicator 1563
data set label 170
data set name 71, 172, 236
data set number 68
data set type 68, 71
data tables 18
data types 19, 130
change data type 130
DCLBL (.FMTFLD parameter) 83
DCLBL (.TABLE parameter) 76
DECBIN 224
decimal register arithmetic 137
decimal register relational compare 156
decimal register shift instructions 141
decimal register zone modification 144

82

decimal registers 10
declare a register 65
double decimal registers 10
load 216
store 219
declare binary registers 65
declare control statements 57
declare decimal registers 65
declare indicators 65
DECR 164
decrement binary register and branch 164
delete a data set 175
delete a record 182
delete a table entry 240
delete character 172
delete flag 74
delta 75
density of index tables 39
detach keyboard 204
detach partition routine 281
DEV (.DATASET parameter) 71
device address 71, 274
device identifier 71
DEVID (.DATASET parameter) 71
DFLG 172
DFLG (.DATASET parameter) 74
digits only field 104
direct addressing 11, 121
directed close, for printer 192
diskette control operations 170
diskette index 173
diskette initialization 72, 177
DISP (.DC parameter) 59
DISP (.SELFCHK parameter) 115
DISPEX 201
displacement 11
display attributes 91
display extra line 201
display mode 28
display status line 201
DISPST 201
divide, binary 133
divide, decimal 139
DL, self-check 339
DLTA (.DATASET parameter) 75
double buffering 36
DR, self-check 339
DSN (.COMM parameter) 68
DSN (.DATASET parameter) 71
DSPLY 102
DSPLY (.SFMT series parameter) 91
DSPLY (.SFMTCNS parameter) 99
DSPLY (.SFMTCTL parameter) 96
dump/trace processor (CFDUMPTR) 274
DUP 250
dup field 31, 101

dup key status 90
duplicate a byte 250

early write 190

EBCDIC charts 347

EDCNT (.EDITC parameter) 57
EDCOM (.EDITC parameter) 57
EDCUR (.EDITC parameter) 56
EDDEC (.EDITC parameter) 56
EDIT (.FMTFLD parameter) 83
edit control characters 56

edit control count 57

edit currency symbol 56

edit decimal character 56

edit format 34, 81, 179, 231
edit format label 82

edit format system table 80

edit separator character 56

edit string characters 83

ELAB (.COMM parameter) 68
ELAB (.DATASET parameter) 71
ELAB (.KBCRT parameter) 53
elapsed time counter 213
ENABLE 198

end of data 170

end of extent 170

enter mode 26

ENTR 196

ENTRIES (.TABLE parameter) 77
ENTRY (.LABTAB parameter) 78
ENTRY (.START parameter) 52
equate 66

erase a data set 175

erase data set 73

error code display routine (CFERCDSP) 276
error code with message display (CFERCDSM) 277
error label 53, 68, 71

error messages on listing 265
error messages, assembler 353
error messages, conversion program 355
error mode 204

error recovery during load 234, 237
error table 53, 68, 71

errors only listing 257

ES (.SFMTCTL parameter) 96
ETAB (.COMM parameter) 68
ETAB (.DATASET parameter) 71
ETAB (.KBCRT parameter) 53
exchange data 221

exchange type 172

exclusive OR write, skip on AND mask 162
exclusive OR, binary 135

EXIT 235

EXPR (.EQUATE parameter) 67
expression, equate 67
expressions 128

Index

373

extern data set 259

external status 24
condition code format 24
system binary registers 25

external status subroutines for keyboard/display

external status, keyboard/display 285
extra line 201

field attribute chart 110

field correct mode 28

field definition, edit format 83
field definition, screen format 100
field exit minus key status 91
field exit required field 107

field modification indicators 35
field type 100, 104

fixed position prompt 98

fixed prompt location 54

FLDF (.SFMTFLD parameter) 100
FLDLEN (.SELFCHK parameter) 112
FMT (.SYSTAB parameter) 80
foreground partition 203

format level zero field 104
format, of control statements 51
format, of instructions 119

FPLC (.KBCRT parameter) 54

full data print 257

FUNC (.KBCRT parameter) 56

general 1/0 handler (CFGIOERR) 278
generate a self-check digit 248
global tables 246

GOTAB 146
GOTO 146
GSCK 248

HDR1 label 183
HDR?1 label, translate 73
HDR1 labels 36
for SCS conversion data sets 40
update 36
help text processor (CFHELPO1) 279
hex value of current position 23
hexadecimal field 104
HEXBIN 224
HLIN (_(KBCRT parameter) 55

374

horizontal tab table 69
HTAB (.COMM parameter) 69

1/0 control block 67, 70
IF 150
IF BRa 155
IFBRNn O 150
IF fmt 152
IF Ra 156
IFRn - 151
IF Rn AN 151
IF Rn CK 151
IF Rn SN 151
IFRn O 151
IFB 160
IFC 159
iIFD 157
IFDSI 153
IFH 157
IFHI 161
IFl 153
IFIR 154
IFLO 161
immediate data, binary relational compare
included lines 112
increment binary register and skip 163
IND (.EQUATE parameter) 66
index of data table 238
index tables 38

density of index tables 39
indexed call 147, 149
indicators 8, 243

system indicators 8, 267

field modification indicators 35

indirect instruction execution 248
INIT 177
INIT (.DC parameter) 60
INIT (.TITLE parameter) 111
initialization of data areas 60
initialize a data area 60
initialize a diskette 177
initialize a listing titte 110
initialize communications session 166
initialize diskette 72
input translate table, self-check 115, 331
INSBLK 183
insert a block of records 183
insert a record 183
insert a table entry 241
insert mode 28
instruction labels 119
instructions 119
INTAB (.SELFCHK parameter) 115
INXEQ 248

157

I0B 67,70
10B chain 170, 174

KACCPT 202
KATTCH 203
KDETCH 204
KERRCL 205
KERRST 204

key entry 195

key indexed read data set 72

key indexed update data set 72
keyboard function bit numbers 349
keyboard operations 199

keyed data set 38, 180

KEYOP 206

keystroke counters 269

keystroke router routine (CFKEYRT) 280
KLEN (.DATASET parameter) 75
KPOS (.DATASET parameter) 75

label table 18, 78
label update 36, 72, 174, 175
labeled addressing 121
last line (for SCS conversion) 75
LBUF (.COMM parameter) 69
LBUF (.DATASET parameter) 74
LEN (.DC parameter) 58
LEN (.FMTFLD parameter) 83
LENG function 130
length specification 130
changing declared length 130
declared length 58
of edit format field 83
LEVL (.DC parameter) 59
line size (for SCS conversion} 75
LINSZ (.DATASET parameter) 75

listing 262
literal spacing 258
load

binary register 214
decimal register 216
partition 233
LOAD 234
load parameters 233, 235
load the assembler 256
LOC (.DC parameter) 59
lock system 252
logical buffer 36, 69, 74
logical device identifier (ID) 6, 71
logical instructions 131
logical record length 172

loop control 162
LSTLN (.DATASET parameter) 75

magnetic stripe reader 210, 295

main storage boundaries 13

main storage duplicate 102

main storage duplicate field 31

main storage partitions 5

main storage store 102

main storage store field 31

mandatory enter field 108

mandatory fill field 108

mask 161, 162

MAXM (.TABLE parameter) 76

MCHK (.START parameter) 52

MD (.SFMTFLD parameter) 101

MDUP (.SYSTAB parameter) 80

message display routine (CFMSGDSP) 280

MMCRT 230

mnemonic to op code conversion chart 315

mnemonics list 123

MOD (.SELFCHK parameter) 112

MODE (.KBCRT parameter) 54

modes of entry 26, 54

modification of instruction 248

modify zone, decimal register 144

modulus, self-check 42, 112
standard modulus 10 45
standard modulus 11 46

MOFF 225

monocase conversion status 90

move data 225

MS (.SFMTFLD parameter) 102

mulitiply, binary 133

multiply, decimal 140

multivolume option 176

MvCc 227

MVCR 227

MVCV 228

MVER 226

NAME 172

NAME (.DATASET parameter) 71
NAME (.INCLUDE parameter) 112
NFIL (.(KBCRT parameter) 54

NL, seif-check 334

NMIN (.KBCRT parameter) 55
non-display of the status line 23
NOP 146

NR, self-check 334

null operation 146

NUMB (.EQUATE parameter) 66

Index

375

NUMB (.SPACE parameter) 111
numeric fiii characier 54
numeric only field 105

numeric shift field 104

op code 315
OPEN 173, 193
open a data set
communications 166
diskette 173
printer 193
open keyboard/display 210
operator detach routine (CFPERATT) 281
OPTION (.START parameter) 52
OR, binary 135
ORD 73
ordered key data set 73
ORG (.START parameter) 52

output translate table, self-check 115, 345

OUTTAB (.SELFCHK parameter) 115
overlapped extent check 73
overlapped fields 227

overlapped 1/O 176

page size (for SCS conversion) 75
partial overlay 234, 237
partition control area 8
partition subroutine stack 20, 80
partition work area 12
partitions 6
pass EBCDIC to keyboard 209
Pass scan code to keyboard 209
PB1 (.DATASET parameter) 73
PB2 (.DATASET parameter) 74
perform keyboard function 209
PGSIZ (.DATASET parameter) 75
physical buffer 36, 73, 173
PIC (.FMTFLD parameter) 85
PIC (.SFMTFLD parameter) 102
picture definition 84, 102
PLUNAME (.COMM parameter) 70
PNAM (.START parameter) 52
pointer 1/0 37,73
pointer 1/0, for printer 190
pointers 5
screen position pointers 89
subroutine stack pointer 20
POP 198
position current record pointer 177
positions remaining in field 23
POSN 177

376

PRBA 54, 196
PRRBA (KBRCRT parameter) 54
PREFIX (.DC parameter) 59
previous record buffer 54, 196
PRMT (.SFMTPMT parameter) 97
PRMT (.SYSTAB parameter) 79
PROD (.SELFCHK parameter) 116
product table 116
product table, self-check 333, 337
program check error handler (CFPGMCHK)
program check errors 269, 282
prompt system table 79
prompts 29
fixed position prompts 54, 98
standard position prompts 97

quick release data set 73

read

a table entry 239

communications 168

diskette 182

magnetic stripe reader 210
READ 182
READMG 210
REBF 232
receive communications record 168
RECFM (.COMM parameter) 70
RECL 172
RECL (.COMM parameter) 69
RECL (.DATASET parameter) 74
record length 69, 74
REG (.EQUATE parameter) 66
registers 8

binary registers 9

system registers 9, 268, 286

decimal registers 10

declare a register 65

double binary registers 9
relational compare, binary 155
relational compare, decimal 156
relative record number 180
release a data set 175
release character and edit fields 207
REPFLD 212
replace field on screen 212
rerun mode 27
rerun/display mode 27

RESCAL 197
reset external status bit 198
RESMXT 199

282

resource allocation table 6, 250
restricted external status indicator 287

RESUME 197

resume and call subroutine 197
RETEXT 199

retext and resume 199
RETURN 148

return and enable external status 199
returning (RG) exits 34, 90, 93
RG 34, 90, 93, 292

RGLT (.START parameter) 53
right adjust, blank fill field 109
right adjust, zero fill field 109
right-to-left field 109

RL 136

rotate instructions, binary 135
rotate left, binary 136

rotate right, binary 136

RR 136

RSTMG 212
RTIMER 213
RXORW 162

SCREEN (.KBCRT parameter) 56

screen attributes 90, 208

screen format 29, 89, 296
secondary screen format 33

screen format control string 30, 93, 195, 296

screen position pointer 89, 92

SCS control characters 321

SCS conversion data set 40, 73, 180, 182, 188
for diskette 40

SEARCH 184

search a table 243

search resource allocation table 250

secondary format 96

secondary screen format 33

secure diskette 172, 173

secure volume processor (CFSECVOL) 283

security ID 69

self-check 112

self-check algorithm 43

self-check computations 329

self-check digit 248

self-check field 41

self-check modulus 42

self-check register 41

sequential search 185

sequential read data set 71

sequential update data set 36

sequential write data set 71

set bits with mask 251

set graphics error action (for SCS conversion) 75

set indicators 251

SETOFF 251

SETON 251

SFMT (.SYSTAB parameter) 80
SGEA (.DATASET parameter) 75
share data set, for printer 191
share data sets 40

shared tables 246

shift instructions, decimal 141
shift left, binary 136

shift left, blank fill, decimal 142
shift left, zero fill, decimal 142
shift right and round, decimal 144
shift right, binary 137

shift right, pad blank, decimal 143
shift right, retain sign, decimal 143
shift 1 to blank register, decimal 142
shift/rotate instructions, binary 135
short branch instructions 154
SIDH (.COMM parameter) 69
SIDL (.COMM parameter) 69

sign control position 11

signed numeric field 105

skip on AND/exclusive OR mask 161
skip on bit mask 160

skip on constant compare 158
SKIP WHILE 163

SL 136, 142

SLS 142

SOFF 251

software error mode 204

SON 251

special characters only 106

special characters shift field 105
special verify status 91

SR 137, 142
SRAT 250
SRR 144
SRS 143

STACK (.SYSTAB parameter) 80
stack pointer 20
standard load processor 284
standard position prompt 97
statement symbols 14
status line 22
non-display of the status line 23
storage structures 59
store
binary register 219
constant 221
decimal register 219
store field 31, 101
subfield definition (PIC) 102
subfields 84
subroutine instructions 147
subroutine stack 80
subroutines 19
calls 20, 147
calls through table 149
partition subroutine stack 20
returns 20
subtract, binary 133
subtract, decimal 139

Index

377

symbolic labels 119
symbols 14
statement symbols 16
syntax symbols 15
SYSACLC 297
SYSLCK 252
system control block 5
pointers 5
system indicators 8, 267
system registers 9, 268, 286
system table 17, 79, 238
for edit formats 80
for main storage duplication 80
for prompts 79
for screen formats 80
SYSUNL 252

table (data table)
argument 238
control statements 76
index 238
system table 238
tables 17
data tables 18
label tables 18
system tables 17

TBBS 243
TBDL 240
TBFH 244
TBFL 244
TBFX 245
TBIN 241
TBRD 239
TBRL 239
TBWE 241
TBWT 242
TCLOZ 168
TCTL 166

terminate communications session 168
test binary register for 0 150

test data set indicator 153

test decimal register 151

test format number 152

test indicator 153

test indicator and reset 154

time slice factor 53

TINIT 166

TLCK 246

TLOC (.DATASET parameter) 75
TMSL (.START parameter) . 53
TOPEN 166

TRANS 253

TRANS (.DATASET parameter) 74
translate and test 252

translate HDR1 label 73

translate table 74, 252

378

transmit communications record

TRAP 349

TRAP (.KBCRT parameter)
TREAD 168

TRT 253

TTERM 168

TUNLCK 247

TWAIT 167

TWRT 169

TYPE (.COMM parameter) 68

TYPE (.DATASET parameter)
TYPE (.DC parameter) 58
TYPE (.FMTFLD parameter)

unconditional branch 145
unlock system 252
update mode 26

v= 134
variable leveling 59

54

169

"

83

verify correction keystroke counter

verify mismatch error 27
verify mode 27
verify/copy option 175
vertical tab table 69
volume ID 236

VTAB (.COMM parameter)

WAIT 176, 194
wait for 1/0 completion
communications 167
diskette 176
printer 194
weighting factors 113
weights, self-check 333
WFMCRT 233
WGTS (.SELFCHK parameter)
WRBF 232
write
a table entry 239
communications 169
diskette 182
write delete 182
write insert 183
write-protect 175
WRT 182

113

270

WRT! 183
WRTS 182

X= 135

zone 11
ZONE 144

zone modification, decimal

144

Index

379

380

Please use this form only to identify publication errors or request changes to publications. Technical questions about IBM systems, changes in | BM programming

support, requests for additional publications, etc, should be directed to your 1BM representative or to the IBM branch office nearest your location.

Error in publication (typographical, illustration, and so on). No reply.

Page Number Error

1BM may use and distribute any of the information you supply in any way
it believes appropriate without incurring any obligstion whatever. You may,
of course, continue to use the information you supply.

@ No postage necessary if mailed in the US.A,

Inaccurate or misleading information in this publication. Please tell us
about it by using this postage-paid form. We will correct or clarify the
publication, or tell you why a change is not being made, provided you
include your name and address.

Page Number Comment

Name

Address

|enuepy 8cuaiaay 19NPOId

weiboid Jo|quiassy

08LL12DS

S§C21-7790

Fold and tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N. Y.

POSTAGE WILL BE PAID BY ADDRESSEE

IBM CORPORATION

Product Information Development
Dept. 997

11400 Burnet Road

Austin, Texas 78758

Fold and tape Please do not staple

International Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150

Atlanta, Georgia 30301
(U.S.A. only)

General Business Group/International
44 South Broadway

White Plains, New York 10601
US.A.

(International)

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

SC21-7790

Intarnational Business Machines Corporation

General Systems Division
4111 Northside Parkway N.W.
P.O. Box 2150

Atlanta, Georgia 30301
(U.5.A, only)

General Business Group/International
44 South Broadway

White Plains, New York 10601
U.S.A.

(International)

0644-12Z28 "V'S'N ul patulyd (1Z-0B2SS "ON #lid) |BNUBYY BIUBIafeH 10NPOid wesBouy Jajquuassy

