IBM

650 MDDPM Additional Features

Indexing Accumulators

Floating-Decimal Arithmetic

Advanced Write-up

Form 22-6258-0



Copyright 1955 by
International Business Machines Corporation
590 Madison Avenue, New York 22, N.Y.

Printed in U.S. A,

Form 22-6258-0



TYPE 650 ADDITIONAL FEATURES

INDEXING ACCUMULATORS

MANY problems require the same operations to be
performed repetitively as when processing ordered ar-
rays of data. When this is the case, a large amount
of address arithmetic must be done to modify instruc-
tions so that they will operate upon the proper data.
Index registers are devices that will automatically
modify addresses and greatly facilitate the necessary
address arithmetic.

Three indexing accumulators are available for the
Type 650 MDDPM. Each of these incorporate all the
characteristics usually found in index registers, plus
the ability to be used as separate accumulators. As ac-
cumulators they may be used for accumulating small
totals, holding group multipliers, or as small high-
speed storage devices. Programming is simplified, the
number of instructions required is reduced, and, there-
fore, programming errors are reduced. Because fewer
instructions are executed, the problem solution time
will be less. Also, the logic of a program using index-
ing accumulators is simpler than the logic for a corre-
sponding non-indexed program. This, of course, eases
the burden on the programmer and tends toward
faster, more accurate programming.

Three indexing accumulators (LA.) are provided
for the Type 650. Each index accumulator retains
four decimal digits and an associated algebraic sign.
Factors may be added to or subtracted from the con-
tents of an index accumulator, or new factors may be
inserted in an index accumulator by reset add or reset
subtract operations. It is possible to test each index
accumulator for a zero or non-zero, or a positive or
negative state by means of branch operations. Each
indexing accumulator is addressable so that its con-
tents may be used as a factor in other operations.
The primary use of the indexing accumulator, how-
ever, is to modify addresses of instructions automati-
cally.

ADDRESSES OF INDEXING ACCUMULATORS

THE ADDRESSES assigned to the indexing accumulator
are as follows:

L. A. Address
A 33'005
B 8006
C 8007

These addresses may be used as the instruction ad-
dress of any instruction or as the data address of the
following instructions: 00-02, 10-11, 14-19, 30-49,
54, 60-61, 64-69, 90-99. The use of 8005, 6, or 7 as
the data address of any other operation will cause a
storage-selection error. When one of these addresses
is used as an instruction address or as the data address
of a branch instruction, the next operation executed
will be 2 wo op whose instruction address is the con-
tents of the I.A. addressed. For example, suppose
I.A.A. contains 1234 and the operation 65 0100
8005 is given. Following the reset add as specified by
code 65, the operation 00 0000 1234 will be exe-
cuted. Thus, the contents of the I.A.A. specifies that
the next instruction is to be executed from location
1234.

Data address 8005, 6, or 7 of the instructions 00-01
may be used, but nothing will happen because these
instructions do not use the data address. Because the
shift instructions use only the units digit of the data
address, an 8005, 6, or 7 data address in codes 30, 31,
35, 36 causes normal shifting of 5, 6, or 7 places, re-
spectively.

The use of 8005, 6, or 7 as the data address of any
of the other permissible instructions will cause the
contents of the indexing accumulator to be used as a
factor in the operation. When used in this manner, the
four digits of the indexing accumulator will be in the
four low-order digits of a word that has six zeros in
the high-order positions. For example, consider the
instruction 65 8006 1234. This instruction will cause
the contents of I.LA.B. to be reset-added into the
four low-order positions of the lower accumulator
and zeros to be inserted elsewhere. Because the addi-
tion is performed via the distributor, it will also con-
tain six zeros and the contents of the I.A.B. in the
four low-order positions. Signs are manipulated just
as with any other word.



AUTOMATIC ADDRESS MODIFICATION

THE PRIMARY use of indexing accumulators is to
modify addresses automatically by adding the contents
of an indexing accumulator to an address. Because
the indexing accumulator can contain either positive
or negative values, addresses can be modified by add-
ing to them or subtracting from them depending on
the sign of the indexing accumulator. Both data ad-
dresses and/or instruction addresses can be modified
by the contents of any indexing accumulator or by
two different indexing accumulators.

It is necessary to tag each address by an indicator so
that the Type 650 may know which indexing accumu-
lator should be added to the address. Addresses 2000
through 7999 have been reserved for this purpose. A
basic drum address is defined to be one in the range
0000-1999. In order to tag the basic drum addresses,
either 2000, 4000, or 6000 is added to indicate that
the contents of L.A. A, B or C, respectively, is to be
added to the basic drum address. Tagging of high-
speed storage addresses is accomplished by adding 200,
400, or 600 to the basic high-speed storage address
to indicate the use of I.A. A, B, or C, respectively.

Effective Addresses

The effective address results after a basic address
has been modified by the contents of an indexing ac-
cumulator. The following table lists all meaningful
actual addresses and the resulting effective addresses:

Actual Address  Effective Address

0000-1999 0000-1999

2000-3999 0000-1999 -+ Contents of LA. A
4000-5999 0000-1999 + Contents of I.LA. B
6000-7999 0000-1999 + Contents of LA. C
8000-8003 8000-8003

8005-8007 8005-8007

8010-8015 8010-8015

9000-9059 2000-9059

9200-9259 9000-9059 -+ Contents of LA, A
9400-9459 9000-9059 -+ Contents of LA.B

9600-9659 9000-9059 -+ Contents of LA. C

' Meaningful Addresses

The effective address determined as indicated in the
foregoing table must be a meaningful address to the
operation called for. The following table lists the
possible address that may be used with each meaning-
ful operation code:

Addresses  Code Description

0000-1999 D Drum
8000-8003 A Arithmetic unit and

console switches
8005-8007 I Indexing accumulator
8010-8015 T Tapes
9000-9059 H  High-speed storage

Meaningful
Data

op
Code Abbvr.  Address Name

00
01
02

03
04
05

06
07

08
09
10
11
12
13
14
15
16
17
18
19

NO OP D,ALT,H No Operation
STOP D,ALT,H Stop

FASN D, A,LH Floating Add Suppress
Normalization

RCT T Read Check Tape Record

RT T Read Tape Record

RTA T Read Alphamerical Tape
Record

wT T Write Tape Record

WTA T Write Alphamerical Tape
Record

LBB D Load Buffer Block

LB D Load Buffer

AU D,ALH  Add Upper

SU D,A,LH  Subtract Upper

Not Used

Not Used

DIV D,ALH  Divide

AL DAJILH Add Lower

SL D,ALH  Subtract Lower

AABL D,AJLH  Add Absolute Lower

SABL D,A,LH Subtract Absolute Lower
MULT D,ALH  Multiply

STL DH Store Lower

STU DH Store Upper

STDA DH Store Data Address
STIA D,H Store Instruction Address
STD D,H Store Distributor

BNTS D,ALH Branch No Tape Signal

Not Used

SET H Set Buffer Address
STBB D Store Buffer Block
STB D Store Buffer

SRT D,A,LT,H Shift Right

SRD D,A,I,T,H Shift and Round
FA D,A,LLH  Floating Add

FS D,ALH  Floating Subtract
FD D,A,LH Floating Divide

SLT D,AIL,T,H Shift Left

SCT D,ALLT,H Shift and Count

FAAB D,ALH Floating Add Absolute
FSAB D,A,LH  Floating Subtract Absolute
FM D,ALH  Floating Multiply
BNZA D,AJLH Branch Non-Zero A
BMNA D,AJLH Branch Minus A

BNZB D,AJLH Branch Non-Zero B
BMNB D,ALH Branch Minus B
BRNZU D,A,-LH Branch Non-Zero Upper
BRNZ D,ALLH Branch Non-Zero
BRMIN D,A,LH Branch Minus

BROV D,ALH  Branch Overflow

BNZC D,AJLLH Branch Non-Zero C



Meaningful

Op Data

Code Abbvr.  Address Name

49 BMNC D,ALH Branch MinusC

50 AA D,AH Add A

51 SA D,AH Subtract A

52 AB DAH Add B

53 SB D,AJH Subtract B

54 BRNEF D,A,LH Branch No End of File

5§ RWD T Rewind

56 WIM T Write Tape Mark

57 BSP T Backspace

58 AC D,AH AddC

59 SC D,AH Subtract C

60 RAU D,ALH Reset Add Upper

61 RSU D,A,LH  Reset Subtract Upper

62 Not Used

63 Not Used

64 DIVRU D,ALH Divide Reset Upper

65 RAL D,A,LH  Reset Add Lower

66 RSL D,A,LH Reset Subtract Lower

67 RAABL DAJLH  Reset Add Absolute Lower

68 RSABL D,ALH  Reset Subtract Absolute Lower

69 LD D,A,LLH, Load Distributor

70 RD1 H Read to Input Storage 1

71 WR1 D,H Write (Punch or Print) from Output Storage 1
72 RC1 D.H Read Conditional to Input Storage 1
73 RD2 DH Read to Input Storage 2

74 WR2 DH Write (Punch or Print) from Output Storage 2
75 RC2 D.H Read Conditional to Input Storage 2
76 RD3 DH Read to Input Storage 3

77 WR3 DH Write (Punch or Print) from Qutput Storage 3
78 RC3 DH Read Conditional to Input Storage 3
79 Not Used

80 RAA D,AH Reset Add A

81 RSA D,AH Reset Subtract A

82 RAB D,AH Reset Add B

83 RSB D,AH Reset Subtract B

84 TLU D,H Table Lookup

85 Not Used

86 Not Used

87 Not Used

88 RAC DsAaH Reset AddC

89 RSC D,AH Reset Subtract C

90 BRD 10 D,A,LH  Branch Distributor Digit 10

91 BRD 1 D,ALH Branch Distributor Digit 1

92 BRD 2 D,AJLH  Branch Distributor Digit 2

93 BRD 3 D,A,ILH Branch Distributor Digit 3

94 BRD 4 D,ALLH Branch Distributor Digit 4

95 BRD 5 D,ALH Branch Distributor Digit §

96 BRD 6 D,ALH  Branch Distributor Digit 6

97 BRD 7 D,ALH Branch Distributor Digit 7

98 BRD 8 D,A,ILH Branch Distributor Digit 8

99 BRD 9 D,ALH  Branch Distributor Digit 9



Examples of Address Modification

Actual Contents of LA. Indexed
Instruction A B C Instruction Remarks

65 0123 0124 0223+ 0075 ~ 0062+ |65 0123 0124 | No Indexing

65 2123 0124 | 0223+ 65 0346 0124 |Index D by A

65 0123 6124 0062+ |65 0123 0186 |Index I by C

65 4123 4124 0075 - 65 0048 0049 |Index D and I by B

65 4123 6124 0075 - 0062+ |65 0048 0186 |Index D by B and I by C

65 9215 8002| 0013+ 65 9028 8002 |Index D by A

65 0123 9627 0015 - |65 0123 9012 |Index I by C

65 4015 0124 2345+ 65 2360 0124|2360 causes storage selection error.

65 9210 0124 | 1983+ 65 0993 0124 ]D exceeds 10,000; carry is lost.

65 0123 4124 7878+ 65 0123 8002 ]I becomes 8002.

65 9615 9218 1011~ 0015 = |65 9000 8007 |1 becomes 8007.

65 2123 0124 | 1011~ 65 9112 0124 |D becomes “negative.” Complement 9112 causes
storage selection error.

65 2123 0124 1111- 65 9012 0124 |D becomes “negative.” Complement is meaningful,
however.

Address modification is accomplished by adding the
contents of an indexing accumulator to a basic address.
If the contents of the indexing accumulator is positive
and the resulting effective address exceeds 9999, the
carry would be lost and only the four low-order digits
of the sum would be kept as the effective address. If the
contents of the indexing accumulator is negative, the
address is modified by subtraction. Because subtrac-
tion is accomplished by adding the 10’s complement,
a carry will always occur when the difference is posi-
tive. As above, any such carries are lost. If indexing
by subtraction should result in a “negative” address,
the complement result will not be recomplemented.
This may result in a storage selection error if the com-
plement is not a meaningful address.

TESTING OF INDEXING ACCUMULATORS (lA)

THE FOLLOWING are the operations by means of which
the contents of the indexing accumulators may be
tested.

40 BNZA Branch Non-Zero LA, A

1f I.A. A contains zeros, the next instruction will
be taken from the location specified by the instruction

address. If the contents of I.A. A are not zero, the
next instruction will be taken from the location speci-

fied by the data address.

41 BMNA Branch Minus LA. A

If the sign of I.A. A is plus, the next instruction
will be taken from the location specified by the in-

struction address. If it is minus, the next instruction

will be taken from the location specified by the data
address.

42 BNZB Branch Non-Zero l.A. B

If I.A. B contains zeros, the next instruction will
be taken from the location specified by the instruction
address. If the contents of I.A. B are not zero, the
next instruction will be taken from the location speci-

fied by the data address.

43 BMNB Branch Minus LA. B

If the sign of I.A. B is plus, the next instruction
will be taken from the locations specified by the in-
struction address. If it is minus, the next instruction
will be taken from the location specified by the data
address.



48 BNZC Branch Non-Zero LA. C

1f I.A. C contains zeros, the next instruction will
be taken from the location specified by the instruction
address. If the contents of I.A. C are not zero, the
next instruction will be taken from the location speci-

fied by the data address.

49 BMNC Branch Minus LA, C

If the sign of I.A. C is plus, the next instruction
will be taken from the location specified by the in-
struction address. If it is minus, the next instruction
will be taken from the location specified by the data
address.

OPERATIONS UPON INDEXING
ACCUMULATORS

THe errecTIVE address of those instructions that op-
erate upon indexing accumulators must be 0000-1999,
8000-8003, or 9000-9059. This effective address speci-
fies what data are to be used in the operation. If the
effective address is in the range 0000-1999, the p-
address has a different significance: It is not used as
an address, but it is the actual data or amount used
by the operation. If it is in the range 8000-8003, or
9000-9059, the data used by the operation will be the
four low-order digits and sign of the storage location
specified by the address. The meaning of these state-
ments will become clear in the examples that follow.
The instruction address has its usual meaning.

50 AA Add to LA. A

The data specified by the effective data address will
be added to the contents of I.A. A.

These examples show that it is possible

1. to add a constant (in the range 0000-1999) to
A as in the first two examples

2. to add A to itself as in the third example

3. to add A to itself and to another constant (in
the range 0000-1999) as in the fourth example

4. to add B to A as in the fifth example

5. to add B to A and to another constant as in the
sixth example

6. to add to A from the four low-order positions of
a high-speed storage location as in the next three ex-
amples

The last example illustrates how addresses are modi-
fied before the operation is executed. Thus, D and I
are increased by 0500 before the contents of LA. A
are modified.

As described previously the effective address must
be type D, A, or H. The operations performed to
obtain this effective address are exactly the same here
as with any other kind of instruction. The rules re-
garding carries and complement (negative) addresses
still apply. The final addition to LA, A is algebraic,
when the effective address is type A or H and all
normal rules regarding signs apply. If, however, the
effective address is Type D, this address is always
treated as though it were plus, because the program
register carries no sign.

Examples:
Contents Contents of
Actual Indexed of LA. A Contents | 8000-8003 or
Instruction Instruction Before | After of LA. B 9000-9059

50 0001 0123 | 50 0001 0123 | 0500+ | 0501+
50 1623 0123 | 50 1623 0123 | 0500+ { 2123+
50 2000 0123 | 50 0500 0123 | 0500+ | 1000+
50 2156 0123 | 50 0656 0123 | 0500+ | 1156+
50 4000 0123 | 50 0111 0123 | 0500+ [o0611+ o111+
50 4265 0123 | 50 0154 0123 | 0500+ | 0654+ 0111~
50 8002 0123 | 50 8002 0123 | o500+ | 1611+ 7777771111+
50 9007 0123 | 50 9007 0123 | 0500+ | 7277 - 1111117777 -
50 9407 0123 | 50 9004 0123 | 0500+ | 1734+ 0003 - 0202021234+
50 2156 2123 | 50 0656 0623 | 0500+ | 1156+




All other instructions that are described in the fol-
lowing paragraphs operate in an analogous manner.
A-few examples for each are given. The general rules
given are completely sufficient for working out any
conceivable conditions.

52 AB Add to LLA. B

The data specified by the data address will be added
to the contents of I.A. B.

58 AC Add to LA. C

The data specified by the data address will be added
to the contents of I.A. C.

51 SA Subtract from LA. A

The data specified by the data address will be sub-
tracted from the contents of 1.A. A.

53 SB Subtract from LLA. B

The data specified by the data address will be sub-
tracted from the contents of I.A. B.

59 SC Subtract from LA, C

The data specified by the data address will be sub-
tracted from the contents of I.A. C.

The following operations are analogous to the pre-
vious group except that the index accumulator is reset
to zero before the data are added or subtracted into it.

80 RAA Reset Add to LLA. A

I.A. A will be reset to zero, and the data specified
by the data address will be added to it.

Examples:
Contents Contents Contents of
Actual Indexed of LA. A | A B | 8000-8003 or
Instruction Instruction Before | After 9000-9059
51 0001 0123 $1 0001 0123 | 0500+ | 0499+
51 2000 0123 51 0500 0123 | 0500+ | 0000+
51 4250 0123 | 51 0125 0123 | 0500+ | 0375+ 0125 -
51 8000 0123 51 8000 0123 | 0500+ | 7390 - 1234567890+
51 9207 0123 s1 9057 0123 | 0050+ | 7940+ 1234567890 ~
Examples:
Contents Contents of
Actual Indexed of 1L.A. A Contents 8000-8003 or
Inmstruction Instruction Before | After of LA. C 9000-9059
80 0000 0123 80 0000 0123 | 1234~ | 0000+
80 1520 0123 | 80 1520 0123 | 1234~- | 1520+
80 6000 0123 80 0175 0123 | 1234~— | 0175+ 0175+
80 6525 0123 80 0350 0123 | 1234~ | 0350+ 0175 =
80 9027 0123 80 9027 0123 | 1234- {5021~ 001212345021 -




82 RAB Reset Add to LLA. B 83 RSB Reset Subtract from 1LA. B

L.A. B will be reset to zero, and the data specified
by the data address will be added to it.

L.A. B will be reset to zero, and the data specified
by the data address will be subtracted from it.

88 RAC Reset Add to ILA. C

I.A. C will be reset to zero, and the data specified
by the data address will be added to it.

81 RSA Reset Subtract from LA. A 89 RSC Reset Subtract from LA, C

I.A. A will be reset to zero, and the data specified
by the data address will be subtracted from it.

I.A. C will be reset to zeros, and the data specified
by the data address will be subtracted from it.

Examples:
C";’ff{”t A Contents of
Actual Indexed of LA. Contents 8000-8003 or
Instruction Instruction Before | After of LA, C 9000-9059
81 1234 0123 81 1234 0123 | 0527+ | 1234~
81 7015 0123 81 1927 0123 {0527+ | 1927 - 0912+
81 7015 0123 81 0103 0123 | 0527+ | 0103 - 0912 -
81 9059 0123 81 9059 0123 |os27+ | 2301+ 0123012301 ~-




FLOATING-DECIMAL ARITHMETIC

THE PRESENT operations of the Type 650 have
proved to be satisfactory for the great majority of
problems that it has solved. There are, however, many
problems involving lengthy, complex calculations that
require extensive analysis to determine the size and
range of intermediate and final quantities. This analy-
sis and the subsequent scaling of these quantities fre-
quently require a larger percentage of the total time
required to solve the problem than the actual calcu-
lations.

Floating-decimal arithmetic circumvents this dif-
ficulty by tagging each number with a 2-digit charac-
teristic. This characteristic specifies where the decimal
point should be. Use of this technique virtually elimi-
nates the need for scaling numbers.

Floating-decimal numbers in the Type 650 look
exactly like fixed-point numbers. The only difference
between them is the way in which the arithmetic unit
interprets them when a floating-decimal operation is
needed. Seven new instructions have been added to
operate upon floating-decimal numbers. They are add,
subtract, add absolute, subtract absolute, multiply,
divide, and non-normalize add. Whenever onc of
these operations is called for, the numbers operated
upon are interpreted as follows:

(M, C) = .XXXXXXXX XX ==
O s e
M C Sign
of M

The mantissa M is eight decimal digits in length.
The decimal point of the mantissa lies to the left of
the eighth digit. The sign of the number is always
associated with the mantissa. Thus, the range of the

mantissa is
0.1<|M|<1.0

The exponent e is a two-digit integer in the range
-50< e 49

Because the sign is associated with the mantissa, it
cannot be used to indicate the exponent sign. By

10

adding 50 to the exponent, a positive number C in
the range
0<C=e-50K99

is obtained. It is the two-digit characteristic C that is
carried as a tag to specify where the decimal point of
the number really is.

To summarize then, the fixed point number, N, be-
ing represented by the floating point number (M,C,)
is determined by

For example:
1.0 would be represented as 1000000051,

Because there is no difference between fixed and
floating-decimal numbers, fixed-point operations can
be performed upon floating-decimal numbers if de-
sired. For example, it is possible to test the floating-
point number to determine whether it is zero or
non-zero; positive or negative. It is up to the pro-
grammer to determine what he wishes to do and to
write the proper sequence of instructions to perform
that operation. Similarly, the characteristic can be
separated from the mantissa by shifting and examin-
ing. It can be modified by programming; whatever
else is desired can be done. This facility for operating
upon numbers with either type of arithmetic provides
great flexibility.

OPERATION CODES

THEe ForLowING descriptions tell how each of the
seven new instructions function. Any operation that
results in a zero mantissa will force a zero exponent.

In all of these floating-decimal arithmetic operation
codes, the prior amount in the lower accumulator is
ignored by the operation. Also the lower accumulator
will be set to zeros upon completion of the operation
and its sign will be the sign of the result in the upper
accumulator. Either a divide overflow or an exponent
overflow stops the machine.



32 FA Floating Add

The floating-decimal number specified by the data
address is added to the floating-decimal number in
the upper accumulator. The rounded resule will be
retained in the upper accumulator.

33 FS Floating Subtract

The floating-decimal number specified by the data
address is subtracted from the floating-decimal num-
ber in the upper accumulator. The rounded result will
be retained in the upper accumulator.

34 FD Floating Divide

The floating-decimal number in the upper accumu-
lator is divided by the floating-decimal number speci-
fied by the data address. The rounded quotient will

be retained in the upper accumulator.

37 FAAB Floating Add Absolute

The absolute value of the floating-decimal number
specified by the data address is added to the float-
ing decimal number in the upper accumulator. The
rounded result will be retained in the upper accumu-
lator.

38 FSAB Floating Subtract Absolute

The absolute value of the floating-decimal number
specified by the data address is subtracted from the
floating-decimal number in the upper accumulator.
The rounded result will be retained in the upper ac-
cumulator.

39 FM Floating Multiply

The floating-decimal number in the upper accumu-
lator is multiplied by the floating-decimal number
specified by the data address. The rounded result is
retained in the upper accumulator.

02 FASN Floating Add, Suppress
Normalization

This code operates exactly the same as 32" (FA) ex-
cept that the normalization, which occurs after adding
the shifted numbers, is suppressed. This makes it pos-
sible to attach the same exponent to a group of num-
bers for fixed-point output.

OPERATING SPEEDS

Tue TIMES required to execute the foregoing opera-
tions are essentially the same as for corresponding
fixed-point operations. Because multiply uses only an
8-digit multiplier, it will be faster than fixed-point
multiply. The add type operations will vary in length
depending upon the number of shifts required to line
up the decimal points or to normalize the sum. The
minimum time is approximately 1.0 milliseconds and
the maximum 2.4 milliseconds; a good average is prob-
ably 1.7 milliseconds. Thus, floating-point add is
about half as fast as fixed-point add when optimum
programmed. Random programming, of course, re-
quires the same time for both types of addition,
namely 5.2 milliseconds.



650 Additional Features

-
-
<
2
-
L)
<
-
-

Form 22-6258-0

{11-56:10M)

Form 22-6258-0



	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12

