650 DATA PROCESSING SYSTEM BULLETIN

BASIC OPERATION CODES, PROGRAM OPTIMIZING, PROGRAM LOADING

This Bulletin ohsoletes the following sections of 22-6060-1:
1. Operation Codes
2. Optimum Programming
3. Loading Routines

Operation Codes

The basic operation codes arc discussed in these func-
tional groups:

1. Arithmetic Codes
a. Add
b. Subtract
¢. Multiply
d. Divide
2. Store Codes
3. Shift Codes
4. Branching Codes
5. Miscellaneous Codes
6., Table Lookup
7. Absolute Arithmetic Codes

The input-output codes are discussed in 650 M bul-

letin, Form G24-5001, which covers the three input-
output units (533, 537, 407) .

Arithmetic Codes

Sign Analysis
In all arithmetic operations, the contents of the storage
location specified by the p-address of the instruction is
moved first to the distributor. Sign analysis then takes
place according to the rules of algebra. Three items
enter into sign analysis:
I. Sign of the factor in the accumulator at the
beginning of the operation.
2. Type of operation: add, subtract, multiply, di-
vide. :
3. Sign of the factor in the distributor (p-address
factor) .
These items are analyzed to determine the sign of
the accumulator at the completion of the operation.
A complete listing of all possible results of sign
analysis can be obtained from a basic formula (Figure
1). Figure 2 is a complete listing of these results.

© 1958 by International Business Machines Corporation

[£A]xx[£B][C]

SIGNOF OPCODE SIGN OF SIGN OF
ACCUMULATOR DISTRIBUTOR ACCUMULATOR
AT BEGINNING AT END OF
OF OPERATION OPERATION

Figure 1. Basic Sign Analysis Formula

ADD
(+A)+(+B)=(+C)
(+A)+H(—B)=(xC)*
(—A)+(+B)=(E£C)*
(—A)+(=B)=(—0)

SUBTRACT
(+A) = (—B)=(+C)
(+A)—(+B)=(£0)"
(—A) = (=B)=(xO)*
(—A)—(+B)=(—C)

MULTIPLY
(+A)YX(+B)=(+C)
(+A)X(=B)=(—C)
(—A)X(+B)=(—C)
(—A)X(=B)=(+Q)

DIVIDE
(+A)+(+B)=(+Q) (+R)
(+A)+(—B)=(—Q) (+R)
(A= (+B)=(—-Q) (—R)
(—A)+(=B)=(+Q) (—R)

*Sign determined by the larger of the two factors (A, B).

Figure 2. Results of Sign Analysis

15 ALO (Add to Lower). This code causes the contents
of the p-address of the instruction to be added to the
contents of the lower half of the accumulator. The
upper half of the accumulator will be affected by any
carries from the high-order position of the lower accu-
mulator.

The 15 Aro code initiates this sequence of steps:

1. Move the contents of the p-address location to
the distributor.
Make sign analysis.

3. Combine (in the adder) the contents of the dis-
tributor with the contents of the lower half of
the accumulator, and rcturn the results to the
lower accumulator.

4, Combine (in the adder) the contents of the
upper half of the accumulator with zeros that are
supplied automatically by the machine. The re-
sults are returned to the upper accumulator.

Figure 3 shows examples of the results obtained

using the 15 aro code. Each program step is processed
in successive blocks. Program step 4 (15-8001-0005) can
be executed faster than the other steps, because no
movement of data from a storage location to the dis-
tributor is necessary.

Loc. oF INSTRUCTION OPERATION i
INSTR. p. o, oy ABBREVIATION
0001 15 0051 0002 ALO
0002 15 0052 0003 ALO
0003 15 0053 0004 ALO
0004 15 8001 0005 ALO
0005 15 8002 0006 ALO
0006 15 8003 XXXX ALO

ACCUMULATOR 8002

5]
BEFORE [OIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIDIOLJ

SUPPLIED BY MACHINE 8001 DISTRIBUTOR
00000000 0O0O0[4]8]3[7{9]1]0]2{5

FROM GEN, STOR.
K - <« LOCATION 0051

8003 ACCUMULATOR
END OF STEP 1 Iololololo|010l010IOI4l8I3|7I9|110l?la{ol+J

SUPPLIED BY MACHINE DISTRIBUTOR
FROM GEM, STOR.

000000000 0L|4| ll1131319]2[7[01+J<—~mm.o~'oo§z

[8003 ACCUMULATOR 2 S|
END OF STEP 2 lplolo!olowlolololllo|2I4l9l7I4l9l lzlol+l

SUPPLIED BY MACHINE DISTRIBUTOR

000000000 ololololII4!8|319I2|«I~I<———i§%’ﬂ%‘§"o§§?“'

I 8003 ACCOMUlA‘IOR
IOIOIOIO!O!OIOIOIOI110I214181216|5|6IOI1L+J

\ DISTRIBUTOR
SUPPLIED BY MACHINE [Lsoor o! NO MOVEMENT OF

2 Z
000000000 ofofo[ol1T4T83]9[2 I)| l«—wylr;fc‘gis&nv

ACCUMULATOR
END OF STEP 4 [0[0] olofofololoTal|el 2l 4Tef7I81Té] 7| 6[+J

SUPPLIED BY MACHINE

—
000000000 0|0|2J410I7Iull|6|716L_I*——i"c?-_'I}M‘.°3¥>§§

5003 ACCUMULATOR 2 [S]
END OF STEP 5 |0]0|0|0\0|0|0|0]0|][0|4[9]3]5|6|3|3|5l2|+]

SUPPLIED BY MACHINE 8001 DISTRIBUTOR S FROM UPPER
00000000O0O0O0[0]0]0]0]0]O|0[O] O] 1]+ [« accum. soos
ACCUMDLATOR 800z | S

[o |
END oF STER 6 l010l010|0101 o[olol1]ol45]3]5[&33I5]3(+]

Figure 3. 15 ALO Operation

2

65 RAL (Reset and Add to Lower). This code is almost
identical in function to the 15 ALo code. It causes the
contents of the p-address of the instruction to be added
into the lower accumulator, after having reset the
entirc accumulator (20 positions) to zero. The zero
accumulator automatically assumes a plus sign.

The 65 raL code initiates this sequence of steps:

1. Move contents of the p-address location to the
distributor.

2. Reset the entire accumulator.

8. Make sign analysis.

Combine (in the adder) contents of the distri-
Dbutor with contents (zeros) of the lower accu-
mulator and return the results to the lower
accumulator.

5. Combine contents (zeros) of the upper accumu-
lator with the automatically supplied zeros (in
the adder) and return the results (zeros) to the
upper accumulator.

Figure 4 shows examples ol the results obtained
using the 65 raL code. Figure 41 is a method of clear-
ing the upper accumulator to zero and retaining the
contents of the lower. Figure 4E is a method of shifting
the contents of the upper accumulator ten positions to
the right. This method is faster than shifting ten posi-
tions using the 30 srT code.

LOCATION INSTRUCTION OPERATION
INSTRUCTION | o DATA INSTR. ABBREY.
0001 65 0051 0002 RAL
0002 65 | 0053 0003 RAL
0003 65 8001 XXXX RAL

ACCUMULAYO]
seroRE Dlolalslllzlllllalvl4l4lsl7|6ielzlllolol l

A DISTRIBUTOR 8001
© 000000000 0I418I3|7]9l1|o|zl5|6|+J+-{g°g,f;,rmﬂmcs

ACCUMULATOR

0z |5
END OF STEP 1 |o[o]o|o|olololololoulalsm9\1[0[2}516I]I

DISTRIBUTOR 800y | S

B. 00 00000O0O 0[010]0|]|4|3l3|9]—[5|]_‘__PKOA\GENERMSTO!AOE

LOCATION

[s L]
END OF STEP 2 IOIO!OIOIOIOIOIOIO 010|0101Ui|31319| 2|51-|

DISTRIBUTOR 8001

5]
C. 000000000 0[6[0]01114{8]3[9[2[5]]<—|Asvm\uzmmn

8003 ACCUMULATOR

oz 5]
moormm[o|o|o|o|o|o|o|o]o]o{o]olol1l4I8]3I9l2] [-]
[ootojes8002][xxXxX] RAL |

ACCUMULATOR

erone Iololalshm]h|e|9|4}4|3|716181211]0|0[+|

DISTRIBUTOR 8001
D. 000000000 oH+—;&%ﬁ¢°§&;

8003 "ACCUMULATOR 8002 |5

AFTER ofofofofojojojo]jof4}4]3{7{6[8]2]1]0(0}+

[oo11]65[8003]xxXX] RAL |

[so0s ACCUMULATOR 5002 | S|
werone [0]0[3151112171812 414131 716]8]2]1]010]+}

[oismmsutor eoor |
E. 000000000 0[0[0I3E11]211 1180+ rccom soms

ACCUMULATOR

AmnIOIOIOI0|0|0|0|0l0|0|0|0|3|5|llzhh[9|+|

Figure 4. 65 RAL Operation

10 AUP (Add to Upper). This code is similar in func-
tion to the 15 aLo code. The only significant difference
is that the contents of the p-address location are added
to the contents of the upper half of the accumulator.
A carry from the high-order position of the upper
accumulator will set up an overflow condition that
can stop program execution or be interrogated by an
operation code.
The 10 aup code initiates this sequence of steps:

1. Move the contents of the p-address location to
the distributor.

2. Make sign analysis.

3. Combine (in the adder) contents of the lower
accumulator with zeros supplied automatically
by the machine and return. the results to the
lower accumulator.

4. Combine (in the adder) contents of the upper
accumulator with the contents of the distributor
and return the results to the upper accumulator.

Figure 5 shows examples of results obtained using

the 10 aup code.

LOCATION INSTRUCTION OPERATION
INSTRUCTION | o DATA INSTR. ABBREY.
0052 10 Q002 0053 AUP
0053 10 0003 0054 AUP
0054 10 8001 0055 AUP
0055 10 8002 0056 AUP
0056 10 8003 XXXX AUP
[8003 8002 | S
serone [or]ololo}ololo)o[ololoIo[ololoi413|5|7|+]
8001 [S] SUPPLIED BY MACHINE

[
LocATmNoocz-""L18|3[7|9|110!2|5|6l+|0 000000000

8003

s
e oF st 1 l5|8|3[7l9l1|0I2|5l6IOIOIOIOIOIOI413|5|7I+I

FROM G. S.

8001
Locmwm—vlololoh141313|9|2!5[-|o 000000000

I | 002 |G|
moorseez [53]3[6[4]2[6[3[3[1]0[o]Jofofoo]4[a]5[7]+]

f 001 | S
— [0JoJo1T4]8]3]9]2]5|-lo 0o 000000 OO

USE LAST DATA
ENTERED

[s003 | s002 | S|
eoorster s [518]3[4[9]4]2[4]0[¢6[0[0fof0f0f0[4[3]5]7]+]

accumulator after resetting the entire accumulator to
zero. As in the 65 RAL code, the reset accumulator has
a plus sign.
The 60 rAU code initiates this sequence of steps:
1. Move contents of the p-address location to the
distributor.

2. Reset the entire accumulator.

N

Make sign analysis.

4. Combine contents of the lower accumulator
(zeros) with the automatically supplied zeros and
return the results to the lower accumulator.

5. Combine contents of the upper accumulator
(zeros) with the contents of the distributor and
return the results to the upper accumulator.

Figure 6 shows examples of the results obtained

using the 60 raU code. Figure 6E is a method of clear-
ing the lower accumulator to zero and retaining the
contents of the upper. Figure 6D is a method of shift-
ing the contents of the lower accumulator 10 positions
to the left. This method is faster than shifting ten
positions using the 85 sLT code.

LOCATION INSTRUCTION OPERATION
INSTRUCTION | op DATA INSTR, ABBREY.
0001 40 0051 0002. RAU
0002 60 0052 0003 RAU
0003 60 8001 XXXX RAU

l 8003 I 8002 [SI

wione [0]0[3[s]1121[1]8]7[4]4]3]7]e[8[2]1ofo]+]
A, w001 [s]
fé‘é’“o?af'——»rrslsl7|9l1Io|2[5I6I—I

8003 SI
END OF STEP 1 |4|313|7|9[1|0I215|6Iolo[o[o[o[olo]o[o[oj |
B. B wo_[s]
moms s —»(ofolo]1[4]8]a[o[2]5]+]

LOC. 0032

[ooy 5]
o o 1o 2 ‘Ololol,]4|8|3|9]2|5louo]ololo[ololololﬂ
C' 8001
LASTDATA_‘,rlolol][4[8[3|912|5i+]

ENTERED

[s]

I 8002
END OF STEP 3 |0|0l0|1|4|8[3[9'2]5|0I0I0|0|010[0I010I0|+]
[oot1qeo]s002[xxxx[RAU |

[8001 |5 |
—> |0foJoJofofof4]3]5]7l+loooo0o00o0000

FROM LOWER ACC,
8002

[6003 [so02_[S |
e orsiee 4 [5]8]34[9]4]6]716]3l0[0JoJololo[4]3]5]7]+]

FROM UPPER ACC.
8003

[5001 | § |
— |5]8][3]4]9]4]6]7]6]3]+]0 0000000 0 0

| 8003 I 002 |61
END OF STEP 5 ovemow@L]|6[6]918[9]3[5'2{“0[0[0'0]?'0(4!315[7‘4—]

I 6003 8002 ISI
serore |00 [3]5[1[2][1] 1]8]9|4|4|3|7|6|8|2|I|0]0|+J
D. | s001 S|
rRom ->I4I4I3I 7lel 8 2[1] o] 0[+J

LDWER ACCUMU\.ATOR

8003 | sz | S|
AFTER f4l4[3|7L6[8|2|1Io|0 [ofoJoloJoJoJoJolo]o]+]

[oo1 1[60]3003|xxxxl RAU |

Figure 5. 10 AUP Operation

60 RAU (Reset and Add to Upper). This code is almost
identical in function to the 65 rRAL code. The only
significant difference is that the contents of the p-ad-
dress location are added into the upper half of the

serone IOI01315|112HM8I9IAI4IaI7I6lslzlxlolol+1
E. [o [5]
m’?sn ACCUMULATOR_—_’loloialsI|I2111118L9 I"‘J

[8003 s002 |S
wrex [0Jo[3[511]2[1T1{8]9 lofofoJofololofolofol+]

Figure 6. 60 RAU Operation

16 SLO (Subtract from Lower). With the exception of
sign analysis, this code functions the same as the 15
ALO code. As in the 15 ALo code, carries from the high-
order position of the lower accumulator will affect the
upper accumulator. The sequence .of steps for this
code is the same as the 15 aLo code.

Figure 7 shows examples of results obtained using
this code.

LOCATION INSTRUCTION OPERATION

ABBREV.

INSTRUCTION| gp DATA INSTRUCTION
0100 16 0250 0101 SLO
010} 16 0251 0102 SLO
0102 16 0252 XXXX SLO

[soes I w0z | 5]
serore | 0] 0] 0]0J0J0J0]o]olo ofofololofoJoJo]2l1]-}

r I3
ZT2T8T 2] 21 2161 5131 - ti6etnon oaso

[sooa | ooz |S]
o o e 1 [0] 0] 0]0]0JoJoJoJoJo 7114l 8[2]2]9]6]3]2]+i

[15]
(BIoTal7T T4l 4] 8T 910] - =825 oast

[soos T 002 |51
END OF STEP 2 [0|0|0|0|0jO]OJOIOJ 1 [2[1[8[5]3[7]‘”5'2'2["']

- 5] FROM G. S.
]]|8|2l4l5l0I0I3]]l+l<_lOCATION 0252

[s00s | ooz [S!
eno or step 3 [0] 0] 0]0[0J0JoJoJololéloJol2]o2T4l4lo]1]+]

Figure 7. 16 SLO Operation

LOCATION INSTRUCTION OPERATION

ABBREV,

NsrRUCHon| op DATA INSTR.
1987 66 0097 1124 RSL
1124 66 1127 XXXX RSL
[soos | 602 15|
serore O] OJO[T][7]812[1[9[3[4]o[éT6]5]1[al0]9]6 +]

A

[w0y [5]
[oToToToT4le1 i8I 113 +] «—— lothutn oo

[8003 | w02 |S|
eo or ster v [oJoJ0JooJoJofo[o[o]o[o]ofo]4[o]TT8]113]-]

B. 8001 |S
ofol1Tol4l3[7] 2] 5] 6]=] —— [&ndni vz

[Toons I @[LH
o or e 2 [0]0]0]0]0]0]0]0[0]0f0]0l1[0[4[3] 7] 2L 5] 6]+
[ore3feslsooz[xxxx] RSt |

[e00n T a0z |5]
seeone (0] 0 [0 [1]7]B]2[1[913140 6] 6511 0[0] %6+
C

[soor]S}
[4To[efe[sTaToTof oT 6]+] -——auiac:

LOWER ACCUMULATOR
8003 - 8002 |5
aser [0f0]0J0J0Q[0[0f0jofoj4f0jsls]|5[110[0]2]6f-

[poosfes]sooa]xxxx] Rst |

[_eo0s | so0z_|S |
nﬂoue|0|0|0|]I7r8|2]]]9]3|4]0[6|6l5]||0|0l9|6]—|

D.

I a0 |5
{ofoJoT1]7[8]2[1ToT8 |- | «—— etk Sunuiaron

00! so02_|S
AFTER I-O_‘OO_:‘IOIOLOlO]l)IO]OlO{OLOJOIII7[8|21|]9 31+

Figure 8. 66 RSL Operation

4

66 RSL (Reset and Subtract from Lower). With the
exception of sign analysis, this code functions the same
as the 65 raL code. Figure 8 shows examples of results
obtained using this code. Figure 8C is a method of
clearing the upper accumulator and retaining the
contents of the lower with a change of sign.

11 SUP (Subtract from Upper). With the exception
of sign analysis, this code functions the same as the
10 Aup code. As in the 10 AuP code, carries from the
high-order position of the upper accumulator set up an
overflow condition. Figure 9 shows examples of results
obtained using the 11 sup code.

tocATION INSTRUCTION OPERATION

INSTRUCTION | op DATA INSTR. ABBREV.
0762 11 0915 1147 SuUrp
1147 11 0100 0555 SUP
0555 11 0208 XXXX SUP

8003 |

s00z_[S]
serore [0] 0] 0JofoJoTolofolofoTofololol 4 8Ta3T7 1 +}

[2001 | S}
tocanen oms—>{0[of ol 1T48]3]9]2] 5] -}

8003 8002 | S
eno of sTep 11001 0f114181319]2}151010]/0j0]01418]3|7]!1[+

[so01 [S]
e ae—>0]0[of o] 3fe[1]4] 6] 6] +}

[a00a T a0z S|
eno or ster 2 { 0] 0] 0] 1] 09 2[4 5T 9] ofo]o o]0l 4] 8371]+]

[8001 |5]
:g%rT%Ns‘ozos_"wlO' of1T2T1T4Tel5]3]+]

[sous | soo2 15|
eo o see 3 | OJOJOJO[1 T2]2 1 9] 3] o oo oI 5] [6]2]21-]

Figure 9. 11 SUP Operation

61 RSU (Reset and Subtract from Upper). With the
exception of sign analysis, this code functions the same
as the 60 rau code. Figure 10 shows results obtained
using the 61 rsu code. Figure 10D is a method of clear-
ing the lower accumulator and retaining the contents
of the upper with a changed sign.

INDEPENDENT AGCUMULATOR OPERATIONS
The upper and lower halves of the accumulator can be
used for concurrent independent accumulation. This
is made possible because independent operation codes
are provided for each half.

To assure that the independent answers are correct,
keep in mind that:

1. The sign of both must be the same.

2. The total amount accumulated in each half can-

not exceed 10 digits.

3. A reset code (60, 61, 65, 66, 67, 68) resets both
halves of the accumulator.

LOCATION INSTRUCTION oFeRATION
INSTRUCTION | OP DATA INSTR, ABDREY.
0467 61 0031 1615 RSU
1615 61 0320 XXXX RS U
[0o | ooz | S|
wrore [110] 4[1]s[8]9]3]5171718[o]1]4a]2[3]3]2]5]+]
A
. s |S

fgoc':n%ns'oosy_——’ro[olélsi‘tl]I3|7|215I‘L]

[so0s [s002 | S|
eno or ster 1 |0]0] 6814 1]3]7[2[5[0fo]o]ofoJo]oJo]ofo[-]

B. | a0t S|
FroM O sz ——>10]0]0Jo] o [4]8]1]5]3]-]

[8003 | ooz [S
ewoorsree 2 [0] 00 o9f4]8]1]5]3{ofo]ofofoofofofo]o]+]

(7506 1]8002]xxXX] RSU |

[e00a | w0z |5
serore [110]4[116[8]9[3]5]717]2[0o]1142]3]3]2]5]+]

C.
[00t _[5]
oo —[7[8ToTi 49 [3[3]2]5[+]

[003 | 8002 |5
e {71810 [1]4]9[3]3]2]s[0ofofolo]ofo]ofofo]o]-]

[175161][s003[xXxX] RSU |

[s003 | 5002 |5]
seeore [1]0]4]1]6]8[9]3]5[7{7[8]ol1]4]o]3]3]2]5]-]

[a0 | S|
o —=[1]0]4]1Te[8[9]3]5]7[-]

800

L 3 | 8002 !S—|
amen [1]0]411]6[8[9[3]5]7]0]0]ololo(ofofolofol+]

Figure 10. 61 RSU Operation

4. Shifting operations affect both halves of the ac-
cumulator,

5. Concurrent independent operations are gener-
ally confined to addition, subtraction,-and stor-
ing.

Figure 9, step 3, is an example of what can occur
when an operation on the upper accumulator causes
change of sign. If the amounts in the upper and lower
halves were independent values, the lower would be
incorrect because it is a complement figure.

19 MPY (Multiply). This code causes the 650 to multi-
ply the contents of the location specified by the
p-address of the instruction by the contents of the upper
accumulator. The maximum size factors are:

1. Multiplier — 10 digits
2. Multiplicand ~— 10 digits
3. Product — 20 digits

Before the 19 mpy code is used in the program, the
multiplier must be placed in the upper accumulator.
When a 19 instruction is executed, the multiplicand
factor is automatically placed in the distributor (where
sign analysis is made) before the actual multipli-
cation is begun. The storage location of the multi-
plicand is specified by the p-address of the 19 mpy

instruction. At the completion of the multiply opera-
tion, the product is in the accumulator, the mutipli-
cand is still in the distributor, and the multiplier is
lost. The operations necessary to position factors for
decimal-point alignment and to half-adjust results are
described under Shifting.

The actual multiplication is accomplished by re-
peated addition of the multiplicand (distributor)
under control of the multiplier (upper accumulator) .
The general sequence of steps of the actual multipli-
cation (Figure 11) is:

1. Shift the contents of the entire accumulator one
position to the left. This places the high order
position of the multiplier in a special storage
position where it is analyzed.

2. Add the contents of the distributor (multipli-
cand) into the lower accumulator twice.

3. Shift the contents of the entire accumulator one
position to the left. This places the ninth posi-
tion of the multiplier (zero) in the special stor-
age position for analysis.

4. Because of the zero, no addition of the distri-
butor is necessary. Therefore, another left shift
of one position is taken. This continues through
the five remaining zeros.

5. When the third position of the multiplier (5) is
placed in the analysis position, the distributor
is added into the lower accumulator five times.

6. Lefeshift the accumulator one position and
analyze the 4. Shifting, analyzing, and adding
continue until all ten positions of the multiplier
have been used.

The time taken to complete a multiply operation
depends upon the sum of all digits in the multiplier.
In Figure 11, a total of 19 additions is required to
complete the operation. This is true for any arrange-
ment of the digits (2, 5, 4, 8) . If the factors in Figure
11 (distributor — upper accumulator) are reversed,
the operation is completed sooner because only 10
additions are required.

The sequence of steps initiated by a 19 Mpy code is:

1. Move the contents of the p-address location to the
distributor.

e

Sign analysis.

3. Actual multiplication.

ot

11111111t
X2000000548
2222222830888888828

ooz 151

001 |S|

——
START I2|OlOIO|0|0I0I5|4|810I0I0|0I0I0|0I010101+I

|
OO I+

8002

8001

SHIET LEFT AND l"
'
¥

I sl
ANALYZE |0|0|0|0]0|0|5|4|B|0|0|0|010|0[0|010[O|0]+J

| H
OO T ITLo]

ADD DISTRIBUTOR 002

8001

TO LOWER ACCUMU-

FIOIOIOIOI0I5|4l8|0|2l2l2|2|2|2|2l2|2|2l+l<—11IH'IH‘IH‘I'IHH_I

LATOR TWICE

SHIFT LEFT AND | | om0 o |S
ANALYZE ;olol‘o]‘oTo[_lo 5] 4|‘8l0|2|2|2‘|2|2|2']2‘ [Z21212] “0H+

8001

I [s]
N KA KRR AN AN AR AR ENRREY

-

8002

800°

SHIFT LEFT AND i I [s]
£01010I0|0I514I810!212I2I2I2|2l212121210101+J

L Is]
NN RN AR AR KX

ANALYZE
R e
PROCEDURE THE SAME FOR THE NEXT 4 ZEROS

SHIFT LEFT AND

soor | S |

r
|
1
15
LY

| [2 [S]
ANALYZE [4|s|o|2|2|2|2|2|2|2|2|2|2|o|o|010|o|o|o|+|

[
Do+

ADD DISTRIBUTOR 8002

8001 |S|

TO LOWER ACCUMU-

| Is] |
I4I8IOl212I21212I2I2l7l7l7|5l51515l51515I+}<—11hl1|1|111|1I1|1|1|+|

LATOR 5 TIMES

SHIFT LEFT AND [_eooa

8001

i [2 [s]
ANALYZE :_]8[0[2]2]2|2|2|2]2|7[717|5[5|5|5|5|5|5i0|+}

|
Hlllmlllmlllmu

ADD DISTRIBUTOR 8002

8001 l

|
TO LOWER ACCUMU- [§T0 2 2] 2 22212 [EIZ TIPS TP [P Io 31514

ﬂL—hlllllllllHllllllLJ]

LATOR 4 TIMES

SHIFT LEFT AND 8002

8001

T s | s}
ANALYZE 18 |O|2|2|2|2I2|2|2|8]2|l|9|9|9|9|9|9|9|4]0 +]

[[s]
O AT i +]

ADD DISTRIBUTOR

8001

| [s] | [s]
TO LOWER ACCUMU- lo|2|2|2|2|2|2|2|8|3|o|a|8|B]8|8|8I8]2I8i+]<—ﬂIlIIJIII[IIIIHIIIIJ

LATOR 8 TIMES

END OF OPERATION

Figure 11. General Multiplication Operation

19-0231-XXXX

8002 Ii[
serone W9F4]2]711 [|316[5Iolo|o|0|olol010|0}0LJ
I soor [S|

A. |0|0]l|2|3|4l5|6‘7lalj‘——‘tocmon 0231
a0z |5

AFTER |oLo|1|1|o|4lo[3|8|3 |4|9|5|91213[0\4l7|01ﬂ

19-0232-XXXX

so0z_ [S]
18191412|7|111|31615 Iolololololololllll1 [+]
[soon [S]

B. R)lol1I2I3I415l6|718BJ*—EE%‘KI%NS‘W

so02_ | S|

8003
Arm«loloh|1lo|4I01419l4|4I9I5I9I213|OI4I7IOU

19-0232-XXXX

J_go03 | oz [S]
BEFORE [3|¢|4|2|7|1|1]3]6[5|9|9|9|9|9|~9|9|9|9|91+J

8001

C. l |||2|3|4l516|718J_J<—‘wcm0N 0232

[_soos] g0z |S|
AFTER]o[ol]|][o|4|0]3|3|2[4|9i7|]|5|7| 6] 1148 -] icorrecr answer
100711040382 4959 230 47 0 - CORRECTANSWER

Figure 12. 19 MPY Opcration

6

If the lower half of the accumulator contains some
number at the start of the multiply operation, the
absolute value of that number will be added to the
absolute value of that portion of the product developed
in the upper half of the accumulator (Figure 12B).
While multiplying, the regular rules of carry apply.
Therefore, a sufficiently large number in the lower
accumulator could increase the value of the multiplier,
resulting in an erroneous answer (Figure 12C).

14 DIV (Divide). This code causes the 650 to divide
the contents of the entire accumulator by the contents
of the location specified by the p-address of the instruc-
tion. The remainder is retained in the upper half of the
accumulator at the completion of the operation. The
quotient is developed in the lower half of the accumu-
lator. The dividend factor is lost.

64 DVR (Divide and Reset Upper). This code is iden-
tical to the 14 piv code except that the remainder is
not retained. At the completion of the 64 pvrR opera-
tion, the upper accumulator is zero, and the lower
accumulator contains the quotient.

The maximum size factors are:

1. Dividend — 20 digits (accumulator) *

2. Divisor — 10 digits (distributor) *

3. Quotient — 10 digits (lower accumulator)

4. Remainder — 10 digits (upper accumulator)

*The absolute value of the divisor must be greater
than the absolute value of that part of the dividend
that is in the upper half of the accumulator. If this
rule is not observed, a quotient overflow occurs and
program execution halts. Also, a quotient overflow
occurs when a division by zero is attempted. When
program execution halts, the program register can
contain either the divide (14, 64) instruction or the
next instruction of the program. If the overflow occurs
before the next instruction is entered into the program
register, the divide instruction will still be in the
program register when program execution stops. If the
overflow occurs after the next instruction is entered
into the program register, the next instruction is in
the program register when program execution stops.

Before either divide code (14, 64) is used in the
program, the dividend must be placed in the accumu-
lator. The dividend can be shifted for decimal point
alignment prior to the actual division, provided the
precedingrule (*) is observed. When the divide instruc-
tion is analyzed, the divisor is automatically placed in
the distributor prior to the beginning of the actual
division. The storage location of the divisor is specified
by the p-address of the divide instruction.

The sequence of steps, initiated by a divide code, is:

1. Move contents of the p-address location to the
distributor

2. Sign analysis

3. Actual division.

At the completion of the divide operation, the
divisor is still in the distributor, the quotient is in the
lower hall of the accumulator, the remainder (if re-
tained) is in the upper half of the accumulator, and
the dividend is lost. Figures 13 and 14 are examples of
results obtained using the 14 piv and 64 pvr codes.

Because it is possible for the quotient and remainder
to have the same or different signs, each half of the
accumulator will have its own sign at the completion
of a divide operation. This is the only condition under
which the upper accumulator can have a sign different
from the lower accumulator. The dual sign condition
remains until another arithmetic reset, multiply, or
divide operation is performed. At this point, the re-
mainder sign is lost and the entire accumulator reverts
to the sign of the quotient.

For this reason, the remainder should be stored on
the drum before the next arithmetic operation. When
the remainder is stored under these conditions, it is
stored with the correct sign. If a multiply operation

14-1783-XXXX

[eo0s DIVIDEND sz |S|
BEFORE [ololololololo|o|o|0[0lo|o|0Lo[of4[é[8[ﬂ+]

GIVISOR 8001 [S|

v 1m—>f\)|010|010|0|0| 1{2]5] +J

REMAINDER QUOTIENT 8002 Is]

mmIolololol0lo\o|0|Sl7|+|0|0|010|0|0l0|013|71 +

14-0152-XXXX

rF"io]olo|o|o|oiolonolozo|o|oloualalzl |

2_>IOIOIOIOIOIOIol1I2I51 l

FROM G. §.
LOCATION 015!

REMAINDER QUOTIENT

Is]
A¥TER Iolol0|o[o|o[o|o|5|7l+IOIOIOIOIOIOLOlOBUJ -]

14-1236-XXXX

[ao0a DIVIDEND I5]
mmlololo[olo[olololo[o]olo|o|o|0l01416|a|2] |
DIVIsOR 001 15]

ToeAToN 1m—>10IOIOIOIOI0[0!1l2t5I+|

REMAINDER QUOTIENT

maaIOIOIOIOIOIOIOIOISM ol lerte i

14-1016-XXXX

DIVIOEND

mmlolojomo|ololalslzI1l0I3I4IOII|0I210101+I

DIVISOR

B001
Totaron m(,—»lOIo] ofofofofo]1]2[5 l+l

[so0s ooz |[S]
e | OVERFLOW]

Figure 13. 14 DIV Operation

64-1783-XXXX

[so03 DIVIDEND 8002 |S]
seroe W[OIOIO[O!0l0|°lOIOIOIOIOIOIOUMG12H
DIVISOR s001_ |S]

fo2ATioN 175:1—’[0[0'0[0'010!0]]|2|5|+|

QUOTIENT 800z [S]

avteR motoloio|o|o|o|o|o|o|o1o|oIoTolololal7l+J

64-0152-XXXX DIVIDEND w0z 5]
serORE o o o|o|o|o[o|o|o|o(o[o}o|o]o]o|4]6 3jz[+j
DIVISOR a0 |S]

:g%':nchsolsz—’l’_rol0|0|0|0|OJIIQHI l

QUOTIENT w0z |5
AFTER [a[olololo|o|o|o|010I0I0I0|01010I0IOIa|7I-l

64-1236-XXXX S]

[8003 DIVIDEND o0z |
aeroRe [olo]olololo]ololo]o[ololololo|o|4]6[eiz|-]

DIVISOR goor 15]

FROM G. §. _‘,rlo|0|0|0|0[0|ll2l5l +]

LOCATION 1236

QUOTIENT 8002

AFTER IEFOIOIOIOIOIoIoIOLOUOIOIOIOIOIOI013l7| l

64-1016-XXXX OIVIDEND 50z | S|
BEFORE |0|010|0|0|0|0|8 5|"|HOI3I4]0[1 [olzTolol~]
DIVISOR 8001
1B2ATION .m-—vaIOIOIOIOIOlIlzlsl l
[sooa 8002 |51
AFTER [OVERFLOW

Figure 14. 64 DVR Operation

is executed any time after a 14 prv operation, but
before a reset operation, the multiplier sign is placed
in the remainder sign position. If a store-upper-accu-
mulator code is executed after the multiply, that part
of the product in the upper accumulator is stored with
the sign of the multiplier, rather than the sign of the
product. 1f the branch-minus code (46 BmI) is used
after a divide operation, the sign of the quotient is
tested and not the sign of the remainder.

Division in the 650 is accomplished in a manner
almost opposite to that of multiplication. The divisor
factor (distributor) is subtracted from that part of the
dividend factor which is in the upper accumulator. The
count of the number of subtractions is kept in the

8844 +67=132

[8003 [8002 [S]
[6JoToT6ToT6Tolofol8l8[4[4]oTofofofofofo]+]

[oot [S]
susteacr O] 0JOJOJOJ0J0]0T&17(+]

OVERDRAW | 8003 | s002_ | S|

[oToToToToTolo o5l 8 115 el0foTolofoTolo] -]

[so0r_ [S]
soo sack [0]0T0J0[0]0JOfOf6]7]+]

8002

[8003 | [S]
{o[oToTofofoTofolo 8] 2[4 4[oo[o]0]ojofo[+]

| soos I 8002 ||
wer swer [0]0]00J0[0]0]0[8[8]44[0]cfo]ofo[olo[ol+]

{ 8ol |S
surracr [0] 0F0J00]0f0T0T 6] 7]+]

[soos | 8002 | S|
suip up 157 quoment oieir [0] 0]0] 0]0]0]0]o] 2] 1{4]4]ofofofoloJolof1l+]

8001

| Is]
susteacy [OJO[OJ O] OJOTO[OT6] 7]~}

[“ao0a | 8002 1 5]
overoraw (0] 0]0]0]0J0] 0] 04[5 5[5 91559l ol2llo]-]

8001 |S]
aov sack (0] 0[OJOJO]OJOJOT¢[7]+]

[_ao0s I w0z [5]
[oToTo ol oJololol2[1 14T4lololololofolol 1] «]

[6003 | sooz | S|
wrr suer [0]0]0]0[0]0]0]21114]4]0]ololololo]ol1]o]+]

[oot 1S}
sustract 3 Times [0]0]0]0J0[0J0]0 617 [+]

[_so03 | 8002 (S
auio ue 2w auotient oo [0] 0] 0]0]0J0Jo[0] 1]3[4]ofofofoJoJofof1]3]+

[" ool S|
susreact [O]OJOJOJOTO]O]0]8]7]+]

[soos | sooz |5 |
overoraw |0] 0]0]0]01010]0]5]3[5]91919191919[91817 1]

[s001 |5
w00 sace [0fofo[o0fofo[ofe]7{+]

[8002] sooz |S|
[oolofofofo[o[o[1Ta[4]oTo]olofo ool 1]3]+]

[e00 | B0z |S]
wer srr [0]0]0]0]0Jo]ol 1134 o]Jo]ololoJolol 1 3To]+]

[9001 | S|
SUBTRACT 2 TIMES |0|0]0]0[01010I0I6L7jﬂ

[so03 T sooz_ | S|
[o]oJoTofofoJofofoJo{ofo]o]ofofolof1][3]2]+]

Figure 15. General Divide Operation

8

lower accumulator and becomes the quotient. As in

multiplying, shifting the contents of the accumulator

to the left plays an important part in the operation.
Figure 15 show the general sequence of steps:

1. The contents of the distributor are successively
subtracted from the contents of the upper ac-
cumulator until an overdraw occurs. After the
overdraw occurs, the distributor contents are
added back into the upper accumulator. The
number of subtractions before the overdraw is
entered into the units position of the lower
accumulator as the first digit of the quotient,

2. Shift the entire accumulator one position to the
left.

3. Repeat step 1.
4. Repeat step 2. Shifting and subtraction continue
until ten shift cycles have been taken.

Store Codes

These codes move information from the process sec-
tion (accumulator-distributor) to some location in
general storage. Information moving from the accumu-
lator to general storage passes through the distributor.
This replaces the former contents of the distributor
with the information being stored. In general, store
codes operate this way:

1. The Op code determines what unit (upper ac-
cumulator, lower accumulator, distributor) is to
be stored.

2. The p-address designates the location in general
storage where the information is to go. Only
general storage location addresses (0000-1999)
are valid when using store codes (the addition of
Immediate Access Storage and Indexing Registers
increases the range of valid addresses) .

Moving information from one storage location to

another does not destroy or modify the contents of the
sending location. Only the receiving location has its
information changed. Any storage unit ‘can be read-
from, as often as necessary, without affecting its con-
tents. .
20 STL (Store Lower Accumulator). This code causes
the contents of the lower half of the accumulator, with
its sign, to be placed in the general storage location
specified by the p-address of the instruction. The 20
sTL code initiates this sequence of steps:

1. Move contents of lower accumulator to distri-
butor.

2. Move the new contents of the distributor to the
general storage location specified by the p-address
of the 20 sTL instruction.

Figure 16 is an example of the use of the 20 sTL code.

20-1904-XXXX
BEFORE

ooz |S |

I—[4I0I4I5I3I2I8l7l7I0I0|0I°1515I3I8|812I_I

I a0t [S]
{ofofofoJo]12[?]4]8+}

0123456789 +

AFTER

R TErEEEEE s 2

T s |5]
{oToJoJo]5 53 8 8]2]-]

Figure 16. 20 STL Operation

21 STU (Store Upper Accumulator). This code causes
the contents of the upper half of the accumulator to
be placed in the general storage location specified by
the p-address of the instruction. Normally, the sign
stored is that of the entire accumulator. However, if
the 21 stu is performed following a 14 pIv operation,
and before another division, multiplication, or reset
operation takes place, the sign stored is that of the
remainder and not the sign of the quotient. Figure
17 shows examples of results obtained using the 21
STU code.

22 SDA (Store Data Address of Lower Accumulator).
This code causes positions 8-5 of the lower accumu-
lator to be moved to the distributor, replacing the
former contents of positions 8-5 of distributor. The
contents of the distributor are then moved to the
general storage location specified by the p-address of
the instruction. The sign stored in this operation is
the sign of the distributor and not the sign of the
accumulator. In general, this operation code has its
major use in the process of instruction-modification.

21-0005-XXXX
BEFORE

[s T3]
|0|4|0|415|3|2|8|7l7|0|0|0|0|5]5|3|3]8|2LJ

soot|S|
|0|010|0|0|1|2|9|4|B|+]

0123456789 + 0005)

AFTER

[s00s | o0z | S|
[o[4[o]4]513 2] 8]7]7[0o[olofol5]5] 388 2(-]

8001

LI4IOI415I3I2!8|7I7IJ

0404532877 — 0005

21-0003-XXXX
BEFORE

[remamoer Ts] quorient __ |S|
{oToToTe 3 4Te 211 [+ [ofoTiT4ToT8]7[s2T1{-]

8001

[OlOIOIOI0I0I7I9l3I6I l

0123456789 -+ 0003

AFTER

[REMAINDER [s] quotient 15|
f0|0|0|6|3|4|912l1|||+10|011|4|9|8‘7|6|2|ll -]

Y

8001

10I01016131419I2|1hu

0006349211 + 0003)

Figure 17. 21 $TU Operation

The sequence of steps initiated by a 22 spA instruc-

ion is:

1. Move contents of positions 8-5 of lower accumu-
lator to positions 8-5 of distributor. (The only
information changed in distributor is in posi-
tions 8-5) .

2. Move contents of the entire distributor, with its
sign, to the general storage location specified
by the p-address of the instruction.

Figure 18 shows results obtained using the 22 spA

code.

22-1955-XXXX

BEFORE
| “s003 [300

2 |S|
LoJoJofofoToTol3Ti 2| 4Te 6l [3I8 1111719+

8001 |S
31112]121716(8]0[4]9]|-

0123456789 +

3185388049 —

Figure 18. 22 SDA Operation

23 S1A (Store Instruction Address of Lower Accumu-
lator). This code causes positions 4-1 of the lower
accumulator to be moved to the distributor, replacing
the contents of positions 4-1 of the distributor. The
entire contents of the distributor, with its sign, are
then placed in the general storage location specified
by the p-address of the 23 sia instruction. As in the
22 spa code, the sign stored with this operation is the
sign of the distributor, and not of the accumulator.

10

As in the 22 spa code, this code is used in instruc-

“tion-modification.

The sequence of steps, initiated by a 23 s1a code, is:

1. Move contents of positions 4-1 of lower accumu-
lator to positions 4-1 of distributor.

2. Move contents of entire distributor, with its
sign, to the general storage location specified by
the p-address of the instruction.

Figure 19 shows an example of the results obtained

when using the 23 s1a code.

23-1955-XXXX

BEFORE
8003 | 8002

{ Is]
[oJoJoloToloTo] 3T T214]e 8] s[3[8 1]117]o]+]

[oot | S|
[T T2[2] 76 8]0 4l9(-]

0123456789 +

3122761179~ |

Figure 19. 23 SIA Operation

24 STD (Store Distributor). This code causes the con-
tents of the distributor, with its sign, to be placed in
the general storage location specified by the p-address
of the instruction.

Shift Codes

All shifting operations are accomplished within the
accumulator. The contents of both halves of the ac-
cumulator are shifted right or left as indicated by the

Op code. All positions made vacant by the shift are
filled with zeros. The sign of the accumulator is not
affected by the shift operation. The distributor is not
affected by the shift operation.

The shifting of all significant digits of a negative
number out of the accumulator will result in a minus
zero. Shifting after a 14 piv operation (before a reset,
multiply, or divide) does not change the signs associ-
ated with the upper and lower halves of the accumu-
lator, and may also result in a minus zero.

In any shift operation two things must be con-
sidered:

1. Which way (right or left) is the accumulator to

be shifted?

2. How many positions is it to shift?

The operation code determines the direction of the
shift, and the units position of the p-address deter-
mines the number of positions shifted. In all cases the
entire p-address of a shift instruction must be valid.

30 SRT (Shift Right). This operation code causes the
contents of the entire accumulator to be shifted to the
right. The number of places shifted is specified by the
units digit of the p-address. A maximum shift of 9
positions is possible. A p-address with a units digit of
zero will result in no shift. All numbers shifted off the
right end of the accumulator are lost. The left-hand
positions are filled with zeros as the shift takes place.

Figure 20 gives examples of results obtained when
using the 30 srT code.

30-1832-XXXX

8003 8002 S
BEFORE [9]9]8[7[615(4]3 3l4]5]6[7]8]2]9
AFTER [olol9[olsl7lel5l4 3211 [112]3]4]5]e[7]8

N
—
N

—

30-1830-XXXX

8003 8002
9l9[81714[5]4]3[2[1[1[2[3]4[5[6]7]812]9
9l9l8|7[6]514[3[211[112[3{4]516(7]8[219]-

BEFORE
AFTER

Figure 20. 30 SRT Operation

31 SRD (Shift Right and Round). This operation code
causes the contents of the entire accumulator to be
shifted to the right. The number of positions shifted
is specified by the units digit of the p-address. At the
completion of the shift, a 5 is added to the last digit
shifted out of the accumulator (minus 5 if the dccu-
mulator sign is negative) to half adjust the amount
in the accumulator. A p-address with a units digit of
1-9 causes a shift of 1-9, respectively, with rounding.
A p-address with units digit of 0 will result in a right
shift of 10 with rounding.

Figure 21 shows results obtained when using the 31
SRD code.

31-1832-XXXX

8003 8002 S
BEFORE [9|918|716({51413]2]1]1]2{314]516]7|8]9!17}+ 5
DURING [o]0[9l9[8]7|6[5[4(3[2]111]2]1314[5(61{7i8]+]}|15
AFTER [olololo[8]7]6]5[{4[3]12]1]1{2[3]4[{5[6]7]9]«

8003 8002 S
BEFORE (919187 [6151413|2|1]1]12{31415/6/718]|92{9|+ i
DURING0000000000998765432]++5
AFTER ololojolojolo]ololoi9|9[8[716{514[3]2]1]+

Figure 21. 31 SRD Operation

35 SLT (Shift Left). This code causes the contents of
the entire accumulator to be shifted to the left. The
number of places shifted is specified by the units digit
of the p-address. A maximum shift of 9 positions is
possible. A p-address with a units digit of 0 results in
no shift. All numbers shifted out of the left end of the
accumulator are lost. Zeros are inserted at the right
end of the accumulator as the shifting takes place.
Digits shifted out of the left end of the accumulator
do not cause an overflow condition.

Figure 22 shows results obtained when using the 35
SLT code.

35-0436-XXXX

8003 8002 S
BEFORE |[9[9[8[71615(4[3[2[1[1[2]3]4[5]6[7[8]99]+
AFTER [4]3]2[1[1]2[3]4]5]6]7]8]2[2]0o]clofofofo]+
35-0430-XXXX

8003 8002 S
BEFORE [9[9[8[7[6]51413]2[1[1]2]3]4[5[6[7[8]9[9[+
AFTER [9]9]817[6]5]4]3[2|1{1[2][3]4[5(6]|7[8]9]9[+

Figure 22. 35 SLT Operation

36 SCT (Shift Left and Count). This operation code
has multiple functions as follows:

1. The contents of the entire accumulator are
shifted to the left. The maximum number of
left shifts that can be taken is determined by the
units digit of the p-address and the position
(counting from left to right) of the first signifi-
cant digit (1-9) in the upper accumulator. Up
to 10 shifts are possible. The number of shifts
taken can be less than that specified by the units
position of the p-address but never more. A units

11

digit of zero indicates a maximum of ten shifts,
A units digit of nine indicates a maximum of
nine shifts, etc.

A count of the number of positions that the
accumulator shifted to the left is placed in the
2 low order positions of the accumulator at the
completion of the shift operation. The value of
the count number is determined by the number
of shifts taken and the units digit of the data
address of the shift instruction. If the units digit
of the p-address is zero, the two low-order posi-
tions of the accumulator will contain a number
that indicates, in true form, the exact number
of shifts taken (Figure 28). If the units digit of
the p-address is some number other than zero
(1-9) the count number placed in the 2 low-order
positions of the accumulator is determined this
way:

A. 36-0000-XXXX

BEFORE
AFTER

8003 8002

oJofoJolololo]ololo

112]3e]8]4]5]7]0]9

+ [

112[3]6l8]4l5]7[0]

olofofololo]olol1]0

+

B. 36-0000-XXXX

BEFORE
AFTER

MAXIMUM SHIFT

COUNT OF 10 IN LOW ORDER POSITIONS

BOOI

8002

oJofoJof0]1T2]3T6]8

4]5[7]0[9]0[0]0]0]0

+ i

112[3]sl8l4]5]7 0]°

olojojofololo]olo]s

+

C. 36-000Q-XXXX

BEFORE
AFTER

LESS THAN MAX. SHIFT

——
COUNT OF 05 IN LOW ORDER POSITIONS

8003

8002

1]2]3Te]8]4[5]7]0]?

8] 1[7]4[3[3]2]6]5]9

+ |w»r

1[2]3]6[8]4]5]7]0]?

s[11714[3[3]2]¢

[
——

+

D. 36-0000-XXXX

BEFORE
AFTER

NO SHIFT

COUNT OF 00 IN LOW ORDER POSITIONS

8003

8002

S

0[1]2[3]6]Bl4[5]7]%

8[1]7]4[3]3[2]6]5]2

+

ONE SHIFT

12[3]68]4[5]7]9]8

117]4]3]3]2]6l5]0]1]+
—

COUNT OF 01 IN LOW ORDER POSITIONS

The sct operation can be stopped in two ways:

1.

A digit, other than zero, is sensed in the high-
order position of the accumulator. This stop
takes place whenever the number of shifts taken
is EQUAL TO or LESS THAN the number of shifts
called for by the units digit of the p-address
(Figure 23A, B, C, D; 24A, B, C, D).

No ssignificant digit has been sensed in the high-
order position of the accumulator by the time the
accumulator has been shifted the number of
positions called for by the p-address. This type of
stop results in an overflow condition. This over-
flow condition can be interrogated at the dis-
cretion of the programmer by the Branch Over-
flow code. If an overflow condition occurs during
any 36 scr operation, the number 10 will be
placed in the two low-order positions of the ac-
cumulator (Figures 23E; 24E).

A. 36-0006-XXXX

BEFORE
AFTER

8002

o[az)oio]o]o]o]l]zla]é

g[4[5]7]0o]9]0]0[0]0

+ [}

1]2]3]6[8]4][5]7]0]?

4]
oJojofofofofofo]T]0

+

B. 36-0006-XXXX '

BEFORE
AFTER

—

MAXIMUM SHIFT

COUNT OF 10 IN LOW ORDER POSITIONS

8003

8002

OJoJojol1T2]3[é]8]4

5]71o]9fofofo]oo]0

+ i

1]12]3]6]8]4]5]7]0[¢%

olojololojolo]o[0]8

+

C. 36-0006-XXXX

BEFORE
AFTER

—y—

LESS THAN MAXIMUM SHIFT

COUNT OF 08 IN LOW-ORDER POSITIONS. THIS COUNT IS THE
SUM OF THE TENS COMPLEMENT OF 6 (4) AND THE NUMBER OF

SHIFTS TAKEN (4).

8003

8002

1]2[3[e]8]4]5]7]o]9

6519

+

112]3]6]8]4]5|7]o]®

sl1]7]4]3]3]2]
8l11714]3[3[2]s[0]0
- \—V—J

NO SHIFT

COUNT OF 00 IN LOW ORDER POSITIONS.

E. 36-0000-XXXX

BEFORE
AFTER

8003

8002

ofoJoJoJooJolo]olo

of112[3]4]e[8]5]7]¢

+ |

o[1]2]3]4le]8]5]7]¢

olofoJo]olofolo]1]o

+

OVERFLOW

D. 36-0006-XXXX

COUNT OF 10 IN LOW ORDER POSITIONS

Figure 23. 36 SCT Operation—Maximum 10 Shifts

a. The tens complement of the units position is
used for the base of the count.
b. The number of shifts taken is added to the
tens complement (Figure 24 B, D).
If a shift and count operation is called for and
no shift takes place, the two low-order digits of
the accumulator are replaced by zeros regardless
of the value in the units position of the p-address
(Figure 23C; 24C). If a shift and count operation
is called for and only one shift is executed, the
units digit of the original accumulator contents
is replaced by zero (Figure 23C; 24D).

BEFORE
AFTER

8003

8002

S

ol1]2]3s]8]4]5]7]°

gl1]7[4[3]3]2]6]5]¢

+

1[2]3]el8]4]5]7]9]8

+

1]7]4]313]2]6]5]0]5
__Y—J

ONE SHIFT

COUNT OF 05 IN LOW ORDER POSITIONS. THE
COUNT IS THE SUM OF THE TENS COMPLEMENT OF
6 {4) AND YHE NUMBER OF SHIFTS (1).

E. 36-0006-XXXX

8003 8002 S
oJofoJoJolofo]1]z]3l6]8]4]5]7][9lo]ololo]+
ol1]2]3]é[8l4[5]7|9l0]o]o]ojo]ojofol1fof+] overrow

\W_J

COQUNT OF 10 IN LOW ORDER POSITIONS

Figure 24. 36 SCT Operation—Maximum Less Than 10 Shifts

Branching Codes

Branching codes provide the 650 with a means of
making logical decisions. Branching codes make it pos-
sible for the machine to determine which one of two
arcas of the program is to be used to continue the
processing. Branching codes, in effect, ask a question

that can be answered vEs or No. The answer deter-
mines where the next instruction of the program is
located.

An example of the use of a branching code in a pro-
gram is a payroll application. It must be determined
if the employee has reached the maximum FICA tax

COMPUTE
GROSS
PAY

HAS

MAX. E.L.C. A,

TAX BEEN
PAID?

YES

COMPUTE COMPUTE
FLCA NET
PAY

Figure 25. Branching Point

that he must pay this year. The answer determines
which way his earnings are processed. Figure 25 is a
partial block diagram of this part of a payroll job.

A branch code consists of three parts: the two digit
op copr (determines the area to be interrogated) and
two possible choices for the location of the next in-
struction. When the answer to the question is YEs, the
next instruction is specified by the p-address. If the
answer to the question is No, the next instruction is
specified by the 1-address.

44 NZU (Branch on Non-Zevo in Upper Accumulator).
This code causes the contents of the upper accumu-
lator to be examined for zero. In effect, the question
asked is “Is there any significant digit (1-9) in the
upper accumulator?” If there is, the location of the
next instruction to be executed is specified by the
p-address. If the contents of upper accumulator are
zero, the location of the next instruction to be execu-
ted is specified by the r-address. The sign of the ac-
cumulator is ignored. Figure 26 gives examples of the
results obtained using this code.

A LOCMF.QN INSTRUCTION OPERATION 2002 8002 z
INSTR. on DATA INSTR. ABBREY, UPPER ACCUMULATOR LOWER ACCUMULATOR g
0152 | 44| 0155 0156 | *NzU 0,0,1,2.3,4,5,7,8,6]8,0,7,0,6,418,2.9,5|+
0155 | 21| 1982 | 0156 STU 0,0,1,2,3,4,5,7,86/8,0,7,0,6,4,3,2,9,5 |+
ik i) A010.112,3,4.15,7,816]810,7,0,6,4,3,2,%,5]+
*Next instruction located at 0155 (Branch)
B [0152 [44] 0155 [0156 | * NZU 10,0,0,0,0,0,0,1,2,310,0,0,0,0,0,0,0,0,0T+
0 21| 19 0156 STU 10,0,0,0,0,0,0,1,2,3[0,0,0,0,0,0,0,0,0,0}+ .
%%, 0.9,0,0,0,0,0,1,2,3]0,0,0,0,0,0,0,0,0,0+
*Next instruction located at 0155 (Branch)

C [[o152 [44] o155 | o156 | *Nzy _ [0,0,1,2,34,5,6,7,8[040,0,0,0,0,0,0,0,0{-
L / | 1 I ,,, I / 0,0,1,2,3,4,5,6,7,8/0,0,0,0,0,0,0,0,0,04-~
i 0,0.1,2,3 4,5,6,7,8]0,0,0,0,0,0,0,0,0,0]-
*Next instruction located at 0155 (Branch)

D [o152 Taa] o155 1 0156 | *NZU 0,0,0,0,0,0,0,0,0,0]8,0,7,0,6,4,8,2,915]*

0156 0 XXXX STL 0,0,0,0,0,0,0,0,0,0/8,0,7,0,6,4,3,2,9,5]+
*Next instruction located at 0156 {(No Branch)
E 0,0,0, -

0156 | * N7

o152 144
0156

*Next instruction located at 0156 (No Branch)

Figure 26. 44 NZU Operation

LOCATION INSTRUCTION OPERATION 8003 8002 z
OF ABBREV. UPPER ACCUMULATOR LOWER ACCUMULATOR 4
INSTRUCTION | OP DATA | INSTRUCTION

1800 45 1804 1812 * NZE 0;0,0,0,0,0,0;1,2;310,0;0;0;0;0,0,0,0;0}+

]804 d 2] 0008 18] 9 \‘ o 0|0|0|'0|0|0|0|]|2|3 0|0|0|0|0(0|0|0|0|0 +
R T Y 0, 0, 0404040,04 74 2130,01040,0,040,0,0,0]+
*Next instruction located at 1804 (Branch)

B.
1800 45 1804 1812 * NZE 0]0[0|0|0|0|0|0l0|0 0|0|0|0|0|0|0|]|2|3 +
1804 21 0008 1811 STU 0,040,040,0,0,0,0,0f040,0,0,0,0,0,1,2,3]+
0|O|0|0|0|0|0|0|0|0 0]O|0|O|0|0|0|]|2|3 +
*Next instruction located ot 1804 (Branch))
C.

1800 | 45 1804 1812 | * 0,0,0,0,0,0,0,0,0,0 0|0|0|0|01010|04018 -
\\‘\\iﬁk\ﬁ@l\\\\‘?ﬁ&\‘&\\‘&i&\&\\\\\%&\\\\ 0,0,0,0,0,0,0,0,0,0(0,0,0,0,0,0,0,0,0,0{-
&\\‘&‘S\&:‘%}&\\\&&\“&iﬁ%&k\\\\%&m 0,0,0,0,9,0,0,040,040,0,0,0,0,0,0,0,0,0]~
*Next instruction located at 1812 (No Branch)

Figure 27. 45 NZE Operation
A.

LOCATION INSTRUCTION OPERATION 2003 a002 z
INSTRUCTION | op DATA INSTRUCTION ABBREY. UPPER ACCUMULATOR LOWER ACCUMULATOR 2

0150 | 46 | 0153 0154 * BMI 0,0,0,0,0,0,0,1,2,3]0,0,0,0,0,0,0,0,0,0]-

O d 21 0027 0180 T 0y0,040,0,0,0;142;3]0,0;£10,0;040,0,0,0(-

kS O T T, O sSsSSOESsSsSsSsSsSs TS S = Y o Fonae -
AR R R e I 04,040, 040,40, 0, 7,2, 3]0,9,0,0,6,0,0,0,0,0
*Next instruction located at 0153 (Branch)

B +
+
*Next instruction located at 0154 (No Branch)
, C.
0150 46 0153 0154 * BMI 0,0,0,0,0,0,0,0,0,0}0,0,0,0,0,0,0,1,2,3]-
0153 20 0027 0180 STL 9,0,0,0,0,0,0,0,0,0/0,0,0,0,0,0,0,1,2,3[~
0,0,0,0,0,0,0,0,0,0}0,0,0,0,0,0,0,1,2,3]-
*Next instruction located at 0153 (Branch)
’ D.
U194 *BMI 0,0,0,0,0,0,0,0,0,0}0,0,0,0,0,0,0,1,2,3}+
A T T Y 0,0,0,0,0,0,0,0,0,0}0,0;0,0,0,0,0,1,2,3[+
0,0,0,0,0,0,0,0,0,0{0,0,0,0,0,0,0,1,2,3]+
*Next instruction located at 0154 (No Branch)
E.

0150 46 0153 0154 * BMI 9,0,0,0,0,0,0,0,0,040,0,0,0,0,0,0,0,0,0]-

0153 20 0027 0180 STL 0,0,0,0,0,0,0,0,0,0{0,0,0,0,0,0,0,0,0,0]-

T MmO ._.s X z
AR TR TSR T T ¢4 0,0,0,0,0,0,0,0,0]0,0,0,0,0,0,0,0,0,0

\“\\ l46] 0153 | 0154 | BM d 0,0,0,0,0,0,0,0,0,01+
&E\\\§§§\\§‘e\‘l\\\\\\?&\\‘\\l\§\\\\\\\\\§\\\\\\\\\\\ 0,0,0,0,0,0,040,0 ng +

154 2 040,0;0;,040;0,0;0;0(+

*Next instruction located at 0154 (No Branch)

Figure 28. 46 BMI Operation

14

A LOCATION OF INSTRUCTION OPERATION a002 8002 F 5001 z
. INSTRUCTION [~ Py, e ABBREV. UPPER ACCUMULATOR LOWER ACCUMULATOR 2 DISTRIBUTOR 2
0100 | 60 | 0103 | 0157 RAU [8,4,3.1,5.6,0,7,9,2]0,0,0,0,0,0,0;0,0,0+|8,4,3;1,5,6,0,7,9,2]+

0157 |10 | otio_| o115 AUP (2,014,9,9,8,98,6,7]0,0,0,0,0,0,0,0,0,01+[3,6,1,84;2;9,0, 75+

0115 147 | ons 0120 * BOV 210,4,9,9,8,9,8,6,7]0,0,0,0,0,0,0,0,0,0]+{36,1181432,9,0,7;5[+

*‘Next instruction located at 0118 (Branch)

B 0100 65 0103 0157 RAL 0,0,0,0,0,0,0,0,0,0]/8,4,3,1;5,6;0,7,9;21+ 8(4,3,1,5(640,7,9,2|+
. Q0157 15 0110 0115 ALO 0,0,0,0,0,0,0,0,0,1(2,0,4,9,5:819,8,6.:7 |+ 3.6,11814;2,9,0,7,5+
ol Ta7 T ome | o120 | * 8OV]0,0,0,0,0,0,0,0,0,1]2,0,4,9,9,8,9,8,6,7|+]3,6,1,8/4,2,°0,75[+

—*Next instruction located at 0120 (No Branch)

Figure 29. 47 BOV Operation

45 NZE (Branch on Non-Zero Accumulator). This
code causes the contents of the entire accumulator to
be examined for zero. In effect, the question asked is
“Is there any significant digit (1-9) in the entire accu-
mulator?” If there is, the location of the next instruc-
tion is specified by the p-address. If the contents of the
entire accumulator are zero, the location of the next
instruction is specified by the raddress. The sign of
the accumulator is ignored. Figure 27 is an example of
the use of the 45 NzE code.

46 BMI (Branch on Minus Accumulator). This code
causcs the sign of the accumulator to be examined for
minus. In effect, the question asked is “Is the sign of
the accumulator minus?” If it is, the next instruction
to be executed is specified by the p-address. If it is
plus, the next instruction to be executed is specified
by the r-address. The contents of the accumulator are
ignored.

If this branch code is used after a divide (14-b1v)
operation, the sign of the quotient is tested, and not
the sign of the remainder.
~ Keep in mind, when using the 46 BmI code, that it
is possible for the accumulator to be both zero and
minus at the same time.

Figurc 28 shows results obtained using the 46 BmI
code.

47 BOV (Branch on Overflow). This code causes the
machine to examine the accumulator to see if an over-
flow condition has occurred. A verifiable overflow con-
dition can be set up by excecding the capacity of the
accumulator on arithmetic operations (plus or minus),
or under those conditions described in the 36 scT code.
A non-verifiable overflow condition (which will always
stop the machine) can result from division if the ma-
chine tries to develop a quotient of more than 10 digits.

The question asked by the 47 Bov is “Has an over-
flow occurred?” If it has, the next instruction to be
executed is specified by the p-address. If no overflow
occurred, the location of the next instruction is speci-
fied by the 1-address.

A further -condition is necessary for this instruction
to be effective. On the control console is a switch
labeled oveErRFLOW, with two positions: SENSE and STOP.
With this switch set to stor, an overflow will cause an
immediate stop of program execution. With the switch
set to SENSE, the 47 Bov code is effective. Also, when any
overflow occurs, the overrLow light on the control
console is lighted. Execution of the 47 Bov code resets
the overflow condition and turns off the overrLow
light. Another overflow must occur before the circuit
is reactivated. Figure 29 illustrates the results of the
47 Bov code.

90-99 BD 0-9 (Branch on Digit Eight in a Distributor
Position). This code causes the machine to examine
a particular position of the distributor for the presence
of an eight or nine. Codes 91-99 test positions 1-9 of
the distributor; code 90 tests position 10 (high order).
If an eight is present, the location of the next instruc-
tion is specified by the p-address. If a nine is present,
the location of the next instruction is specified by the
r-address. The presence of any digit other than 8 or 9
causes program execution to stop. Figure 30 illustrates
the results obtained using the Branch Distributor
codes.

LocATION INSTRUCTION OFERATION o -
INSTR. or DATA INSTR. ABBREV. DISTRIBUTOR 2
0500 69 | 0010 0513 LDD 04070,0400,0,7,%38]+
0513 91 0516 0518 *BD1 0;0,0,0,040,0,7,9,8][+
X NN N 0,0,0,0,0;0,0,7,9,8+

3 ~ d 040;0,0,0;0,0,7,%,81+

0516 [60 | 0001 | XXXX
*Next instruction located at 0516 (Branch)

0500 [69 | _0io_| 0513 0,0,0,0,0,0,0,7,8,9]+
0513 91 0516 0518 0,0,0,0,0,0,0,7,8,9|+
92 0521 0523 0,0,0,0,0,0,0,7,8,9}+

N iy 0,0,0,0,040,0,7,8,9|+

XXXX

*Next instruction located at 0518 (No Branch)
**Next instruction located at 0521 (Branch}

0500 | 69] 0010 | 0513 LDD 0,0,0,0,0,0,0,7,9,9]-
0513191 | 0516 | 0518 *BD1 0,0,0,0,0,0,0,7,9,9]-
0518 |92 | 052 0523 ¥BD2 0,0,0,0,0,0,0,7,9,9]-
0523 | 93 | 0526 | 0528 **BD3 0,0,0,0,0,0,0,7,9,9]-

*No Branch
**Error Stop

Figure 30. Branch Distributor Operation

Read Codes. The read codes (70rpl, 72rcl, 73rp2,
75rc3, 76rp3, 78rc8) also have a branching function.
When a read code is executed, the question asked is
“Was the Loap hub on the control panel impulsed to
indicate that the information now in the synchronizer
entered from a roap card?” If the Loap hub was im-
pulsed, the location of the next instruction is specified
by the p-address of the read instruction. If the LoaD
hub was not impulsed, the location of the next in-
struction is specified by the 1-address.

Miscellaneous Codes

00 NOP (No Operation). This code performs no opera-
tion. The p-address is bypassed, and the machine auto-
matically refers to the location specified by the
r-address. The p-address must be valid to prevent a
storage selection error.

01 HLT (Stop-Halt). This code is conditioned by the
PROGRAMMED switch on the control console. When the
switch is set to stop, this code stops program execu-
tion. When the switch is set to RUN, this code is treated
like the Nor code.

69 LDD (Load Distributor). This code causes the con-
tents of the general storage location specified by the
p-address to be placed in the distributor. This code, in
conjunction with the 24 stp code is used to transfer
information from one general storage location to
another. Figure 31 illustrates the use of these codes.

LOCATION INSTRUCTION OPERATION
INSTRUCTION | OP DATA INSTR, ABBREV.
0001 69 0004 0003 LDD
0003 24 0027 XXXX STD

Table Lookup

The table lookup feature of the IBM 650 Data Proces-
sing System permits a table reference to be performed
in a2 minimum time and with a minimum program-
ming effort. The single instruction used in table lookup
tells the machine to make a sequential search of a
table. This search will continue until the desired item
in the table is found, or some other condition indicated
by the programmer has occurred. This eliminates the
need for the many programmed comparisons that
would otherwise be necessary to find any given item
in a table.

‘Before beginning with the detailed description of
the table lookup feature the following terminology
should be understood:

TABLE an arrangement in condensed form for
ready reference of statistics, measures,
etc. '

ARGUMENT the known reference factor necessary
to find a desired item in a table.

FUNCTION the unknown factor or factors within
a table associated with the known
reference factor (argument).

A table, therefore, will consist of a series of argu-
ments (reference factors) . Associated with each argu-
ment will be one or more functions (data within the
table) .

Table arguments are stored on the drum in ascend-
ing sequence by their absolute value (argument signs
are ignored). Arguments may be a maximum of 10

69 LDD

6005120517 + 0004

0418310000+

0027

6005120517 + 0004

6005120517 + 0027
A

24 STD

[oo [S]
{61000,5,1,210,5,1,7 |+

[8001 |S|
16)01015;1)2,0,5,1;71+}

Figure 31. Relocating Information in Storage

16

digits in size and are stored, 48 in each band of general
storage, except for the last band of a table, which may
contain fewer. The last two storage locations in each
band (0048-49; 0098-99; 0148-49; etc.) cannot be used
to store table arguments; they may be used to store
functions, instructions, etc. Table arguments must be
stored in successive drum locations starting with the
first word in a band (0000, 0050, 0100, etc.) .

The table lookup operation will cause a scarch of
the table to be made beginning with the first table
location. The searching argument (in the distributor)
will be compared against each of the table arguments
until a table argument is found which is either equal-
to or higher-than the scarch argument. Therefore,
a table does not need to contain table arguments for
all of the possible search arguments that will be en-
countered. When a search argument is not in the
table, the search will stop on the next higher table
argument. Interpolation can be accomplished by pro-
gramming.

The fact that the search stops on a next higher
number, as well as an equal, makes it possible to have
the table argument and the associated function located
in the same word. If this is done, the argument must
be stored in the most significant positions of the word
(to the left).

EXAMPLE A—84-0000

COMPARE }ef

Functions may also be stored a fixed number of
locations away from the argument. Thus, having
found the location (N) of the argument, the function is
located at N 4 ¢, (where ¢ is fixed separation factor of
the functions from the arguments).

The table lookup operation code (84 TLU) indicates
to the machine that the TLU search is to be made. The
band in which the search is to begin is indicated by
the p-address of the TLU instruction. The search always
begins at the first word of the band (0000, 0050, 0100,
etc.). Therefore, if the instruction 84-0000 is given,
the search begins at location 0000 of general storage.
Likewise, if the instruction 84-0023 is given, the search
still begins at location 0000.

Once the table search has been initiated, a count
is kept of the number of drum locations that are passed
without finding the argument that is being searched
for. When the desired table argument is found, the
count of locations passed is added to the p-address of
the TLU instruction. The result of this addition is then
placed in the lower accumulator, positions 8-5. This
placement is automatic and is the end result of the
TLU operation.

In Figure 32A the argument and function are in the
same storage location. Note that the instruction given
is 84-0000. The correct argument is found in location

»
ru‘

8001 g

0,0,0,2,0,0,0,00,0

F

\ ARGUMENT FUNCHA
00650+
00638+
00016+

00010

00020
00030

0000
0001
0002

SEARCH ARGUMENT

8003 8002

0,1,0000,0.4,78

6,0,4,8,1,7 0,1,1,5}+

BEFORE TLU FOUND

0,1000,00 4,78

6,0,00,0,1,0,1,15[+

AFTER TLU FOUND

EXAMPLE B—84-0003

e
(| COMPARE

8001

(%3

0000

0,0,0,2,0,0,00,0,0]+

0001
0002
0003
0004
0005

/ \ 00010 00000+ &
ARGUMENT

(00020 00000+
Fu@

00030 00000+
00000 00650+
00000 00638 +
00000 00016+

8003 8002

0,1,0,0,0,0,0,4,78

6,0,4,8,1,7,0,1,

BEFORE TLU FOUND

0,1,0,0,0,0,0 4,78

6IOIOIOI()Iltlol‘lI

1,5+
1,5]+ | aFter Lu FoUND

Figure 32, Generalized TLU Operation

0001 (one location has been passed belore the correct
location was found). Therefore, 1 is added to the
original p-address of 0000, and the result (0001) is
placed in positions 85 of the lower accumulator. In
Figure 32B the argument and function are not in the
same storage location. Rather, the functions are located
in the three storage locations immediately after the
arguments. In this case, the instruction given is 84-
10008. The search still begins at location 0000, and the
correct argument is still located at 0001. Because one
location has been passed before the correct argument
is found, 1 is added to the p-address (0003); and the
result (0004) is placed in the lower accumulator, posi-
tions 8-5. This is the correct location of the table
function.

It is convenient to use this method to handle short
tables where the size of the argument or the function
makes it impossible to locate them both in the same
storage location. This method is applicable only where
the number of table arguments is 48 or less. Also, it
is possible to store several short tables in one band,
provided proper placement of the argument will cause
the search to be effective only in the applicable section
of the band. When this method is used, it is necessary
[or the first argument of each table to be greater in
value than the last argument of the previous table.

General Operation

Before the 84 TLU instruction is executed, the known
search argument must be placed in the distributor.
This is usually done with a 69 Lpp instruction. The
general sequence of steps in a TLU operation is:

1. Load distributor with known search argument.

2. Issue table lookup instruction. The p-address of
this instruction determines in which band the
search will begin.

3. Starting with the first word of the selected band,
begin the automatic comparison between the
contents of the storage location and the distri-
butor. This search and comparison will continue
until the argument in the storage location is
either cqual-to or higher-than the known search
argument in the distributor.

4. A count is kept of the number of locations
passed. This is done automatically by the ma-
chine. (If the table arguments cxceed 48, it will
be necessary to use more than one band of
general storage. In this case the first 48 table
arguments are placed in the first selected band
and the overflow go on the next higher adjacent
band).

5. 1f the machine goes through the first band with-
out locating the desired argument, the search

and comparison is automatically interrupted at
the end of the 48th table argument. During the
remaining two words of this band, the p-address
of the TLU instruction is modified by the factor
of 50, and the scarch is moved to the next higher
band. The search continues with the first word
of the new band.

6. When an equal or higher condition occurs, the
number of words passed in the band is added to
the p-address of the TLU instruction. The result
of this addition is placed in positions 8-5 of the
lower accumulator. This is done on a direct re-
placement basis. The other positions of the ac-
cumulator are not affected. At the completion
of the TLU operation, the search argument is still
in the distributor.

7. If the table argument and function are not in
the same storage location, some modification of
the contents of the accumulator is necessary
(except for the example previously noted).

It is important that an end-of-table—end-of-search
indication be incorporated into the table. Several
methods of indicating end-of-search are possible. The
most frequently used is to insert an argument of all
9's as the last argument of the table, to terminate TLU.

If no end-of-table indication is provided, a search
argument larger than any of those in the table will
cause the machine to continue searching until it en-
counters a location that contains a number equal-to
or higher-than the search argument. Under this condi-
tion, the address of the location on which the search
stopped would be used as the address obtained from
the TLU operation. If no equal or greater number is
encountered, the machine stops when it attempts to
scarch location 2000 (invalid address).

If an end-of-table indication is undesirable, it is
possible to compare the known argument with the last
table argument. This way, it can be assured that the
known argument falls within the range of the table.

On the TLU operation, the table arguments are
validity checked. If any word in the table is invalid,
the TLU operation stops and the address of the invalid
word appears in the address lights on the console.

84 TLU (Table Lookup). This code performs an auto-
matic table lookup using the p-address as the location
of the band in which to begin the search. The 1-address
is used to locate the next instruction of the program.
The argument for which the search is to be made must
be in the distributor before this command is given.
The address of the table argument equal-to or higher-
than the search argument is placed in positions 8-5 of
the lower accumulator. The search argument remains,
unaltered, in the distributor.

‘ READ CARD

LOCATE

EMPLOYEE

RATE (TLU)

CALCULATE
- HOURS X RATE

= GROSS

STORAGE ENTRY WORDS

1

2

MEMORY ADDRESS

EMPLOYEE NO. 0001

HRS. WORKED 0002

LOAD CARD

INPUT CARD

R S I A SN N I B}
7,0,5,8,3,0,0,0,0,0

B TR NS IO DU OO HN A B |
0,6,0,0,0,0,0,3,947

tocaTioN INSTRUCTION OPERATION 003 8002 2 8001 z

INerR ABBREV. UPPER ACCUMULATOR LOWER ACCUMULATOR [} DISTRIBUTOR g

. o DATA INSTR, @

11 8000 70 0001 0140 RD1 0,0,0,0,0,0,0,0,0,0{0,0,0,0,0,0,0,0,0,0[+{0,0,0;0,0,0,0,0,040}+
2] 0140 65 | 0143 0148 RAL 0,040,0,0,0,0,0,0,0/6,0,0,0,0,0,0,1,0,0[+[6,0,0,0,0,0,0,1,0,0}+
3] 0148 69 | 0001 0104 LDD 0,0,0,0,0,0,0,0,0,0{6,0,0,0,0,0,0,1,0,0{+}2,0,5,8,3,040,0,0,0}+
41 0104 84 | 0500 8002 TLU 0,0,0,0,0,0,0,010,0/6(0,0,5,01640,1;0;0]|+{2;015,8;3;0,0;0,0301+
5] 8002 40 | __ 0506 0100 RAU 2,0,5,8,3,0,0,2,1,5/0,0,0,0,0,0,0,0,0,0(+/2,0,5/83,0,0,2,15]+
6] 0100 35 | 0005 0113 SLT 0,0(241,540,0,0,0,0/6,0,0,0,0,0,0,0,0,0}+{2,0,5,8;3,070,2,1(5+
71 0113 30 0005 0125 SRT 0,0,0,0,0,0,0,2,1,5{0,0,0,0,0,0,0,0;,0,0(+/2,0,5;84310,0,2,1,5|+
8] 0125 |19 0002 XXXX MPY 0,0,0700,070,0,0,0/0;0,0,0,0,8,5¢3;55]|+{04010,040101013,%2;7]+

Figure 33. TLU Program Illustration

Program Example

Figure 38 is a sample block diagram and program
using TLU. It is presented to show how TLU can be used
in combination with other codes. The purpose of the
program is to compute each employee’s gross earnings
from the information punched in his time card and
information located by the TLu. The formula is:

HOURS X RATE = GROSS

Total-hours-worked is punched in the employee’s
time card. The rate is found by a TLU operation on
employee number. As each card is read, the employee
number (5 digits) is entered into the high-order posi-
tions (10-6) of word 0001, and the total-hours-worked
(3 digits) is entered into the low-order positions of
word 0002.

The table is stored on the drum beginning at word
0500. Each table word contains both the table argu-
ment (employee number) and associated function
(rate). Figure 34 shows the first 10 table words. In
addition to the table, program, and data, a skeleton
instruction (60 0000 0100) is stored in word 0143.

DRUM TABLE
EMPLOYEE PAY
DRUM NUMBER RATE
WORD (ARGUMENT)
0500 02176
0501 03841
0502 17238
0503 17239
0504 18448
0505 20011
0506 20583
0507 21456
0508 34112
0509 35489

Figure 34. Drum Table

PROGRAM ANALYSIS

Program Step 1 — the data from the employee time
' card is read into storage.

the skeleton instruction is placed in
the lower accumulator.

Program Step 2 —

the search argument is loaded into
the distributor.

Program Step 3 —

the table search is begun. As a result
of finding the item in location 0506.
the skeleton instruction is modified
to 60 0506 0100.

Program Step 5 — use the modified instruction to place
the contents of the found location
in the upper accumulator.

Program Step 4 —

Program Step 6 — shift the accumulator to the left to
lose employce number.

Program Step 7 — shift the accumulator to the right to
reposition rate.

Program Step 8 — multiply hours-worked by the rate to
determine gross. At the end of this
step the gross wages are in the lower
accumulator. The direction taken
by the program would now depend
upon that part of the block diagram
which would follow the example.
The next step could be (31 0001
xxxx) which would round the gross
wages to the nearest penny.

Other Consideralions
Before a TLU operation is performed, careful considera-
tion must be given to the application itsell. In some
cases optimum results can be obtained from other pro-
gramming techniques.

One such technique is where the search argument
is a 4-digit number that falls in a block between the
limits of 0000-1999. In this case the search argument

19

can be used as a direct address to locate the function.

Another area for consideration is where the table
arguments may have the same absolute value but dif-
ferent signs. Because signs are not considered during
TLU, two separate tables would probably be used.
Where signs are a consideration it is possible that only
one set of arguments would be stored and two different
function locations used. The correct function location
is then determined by the sign of the search argument.

Absolute Arithmetic Codes

The absolute arithmetic codes enable the absolute
value (magnitude) of the incoming factor to be added
or subtracted from the accumulator. During sign
analysis, the sign of the value in the distributor is
ignored and assumed to be positive. The absolute
value in the distributor is always added or subtracted
in the lower half of the accumulator.

17 AML (Add Magnitude to Lower). This code causes
the contents of the p-address location. to be added to
the contents of the lower half of the accumulator. The
sign of the factor in the distributor is always assumed
to be positive. When the operation is completed, the
distributor contains the p-address factor with its actual
sign. Figure 85 shows the results obtained when using
the 17 aML code.

17-0123-XXXX

8003 so02_ | S|

[|
seroRE m1013|4|3|21810|0|9|l|4|7|6!5|9I013I2181+I

8001
|0|0|0l010|010[5|3|9I-|":§1%A:T%Nsom

[o0 [woz_|S]
aen (003]4T3[2]8]0]0 9 [114]7 65[5[018]6]7]+]

17-0123-XXXX

[“so0s | . o0z 15|
serore {003 T4T3T2 8 0]0To[1T4]7]6l5]9]013]2]8-]

r el 'SI FROM G. §.
Q = [*"1ocatioN 0123
FTOIOIOIOIO|015ISI9J I“ [

8003

AFTER l010|317«13|218|0|019|l|4l7|6[§]8|9l71819LJ

Figure 85. 17 AML Operation

67-0123-XXXX

soo2_ | S]

BEFORE Mglahla]zle[oloh|1|4|7|615]9|0|3|2]3| |

8001

[[s}
IO‘I—0|0|0|0]0|0[5I3|9|'|“[g?:':r%Ns'mn

8003 | s002_ | S|
amer [0]0[0]0[0J0]0]olo]o]olofafolololol5[31%]+]

67-01 24-XXXX

800z | S|
serore Uo]314la}2|3lo|o|9]1l4|7l6|5I9I0I3l2|81+J

8001
r(ﬂOIOi0|0l0|0|5|319|+f“wcmon 0124

[“sa0a 8002 (S|
AFter |o|o|ot0|o|ololo|oToIololololololol5l3I9I+I
Figure 36. 67 RAM Operation

20

67 RAM (Reset and Add Magnitude to Lower). This
code resets the entire accumulator to plus zero and
adds the contents of the p-address location into the
lower half of the accumulator as a positive factor
regardless of its actual sign. When the operation is
completed, the distributor contains the p-address
factor with its actual sign. Figure 36 shows the results
obtained when using the 67 rRam code.

18 SML (Subtract Magnitude from Lower). This code
causes the contents of the p-address location to be sub-
tracted from the contents of the lower half of the
accumulator. The sign of this factor is always assumed
to be positive. When the operation is completed, the
distributor contains the p-address factor with its actual
sign. Figure 37 shows the results obtained when using
the 18 smL code.

18-0123-XXXX

l 8003 I 8002 | |
serore {0J0fo]oJo[ofo]ofoJolofolofolofolo1T2]3}+]

8001

[[s]
l0|0IOI0|0I0lolsl3l9l JlBeknion orzs

[soos w0z | S|
AFTER |010}0|0T0|0|0[01010|0|0|0|0l0|0|0|411|6J-J

18-0124-XXXX

8002 |G|
sEroRE IolololoIololololololololololol0I0|1I2I31+I

8001

[[s]
[ofofofofoJofo[5] 3o +=iacaman ors

| so03] a0z [S)
~mx [0J0JoJo]ofofolofofofofofofofofofof4]1]6]-]

Figure 387. 18 SML Operation

68 RSM (Reset and Subtract Magnitude from Lower).

. This code resets the entire accumulator to plus zero

and subtracts the contents of the p-address location
into the lower half of the accumulator as a positive
factor, regardless of its actual sign. When the operation
is completed, the distributor contains the p-address
factor with its actual sign. Figure 38 shows the results
obtained with using the 68 rsm code.

68-0124-XXXX

002 S|
serore Lo]o|o]o]o|olojo[o[oiolololololololll2| {+]

0[0]0J0]0T0T0 53T o [+l iottron o124

8002

[s [
AFTER [_|o|o|ololololo|o|o|o|o|o|olo]o]olsl319r]

68-0123-XXXX

002 [S]
BEFORE Iolo[o[oiolo]olo[ololo[ololololo[¢|2|3f+|

Il 8001
|0I01010I01010l5|3|9l-Jeté%%.‘énfom

I 8003 [8002 ISI
arer [0JOJOT0T0J0J0JofoJo]oJoJoJoJoToTo]5[3]9]-]

f1gure 38. 68 RSM Operation

Optimum Programming

The 650 has been designed for high process speed and
ease of programming. The programmer is not burdened
with timing restrictions because internal interlocks are
provided that prevent one instruction from interfering
with another.

If the 650 is to operate efficiently, the data and in-
structions used in a problem must be so located in stor-
age as to be immediately available to the drum reading
heads when the program calls for them. That is, they
must be in their optimum location. For example,
(Figure 39) if an instruction calls for data from loca-
tion B at the time the drum is passing the read heads,
it is immediately available (optimum location) . How-
ever, if the same instruction calls for data from location
A, the drum must make almost a complete revolution
before the data is available to the read heads. During
this time, processing is stopped, waiting for the data
to become available. Even though location ¢ is not
the optimum location, it is much better than location
A. The same logic applies to instructions as they are
called for during the course of program execution.

The non-productive waiting or searching time
caused by poorly located data and instructions can be
greater than the time it takes to actually execute the
instruction. To realize the maximum efficiency of the
system, the programmer should consult the Optimum
Program Chart, Form X24-6219, which will guide him
in the selection of the best storage locations for the
data and instructions to be used in the problem.

/

POSITION OF READ HEADS

Figure 39. Locating Optimumly

Techniques

Any problem in which the speed of input or output
is appreciably less than maximum because of lengthy
process time, can be improved by optimum program-
ming techniques. The amount of gain depends on the
particular problem and the degree of optimizing ap-
plied by the programmer. Not every instruction can be
in an optimum location, because occasionally conflict
will occur between instructions, For example, data in
an optimum location for a store operation may not be
in an optimum location for a later add operation,

Further, an instruction that is preceded by several
branch instructions cannot easily be in the optimum
location for each of these branch instructions.

Once it has been determined that optimum pro-
gramming will be used, these techniques can be
followed:

1. The program can be optimized as it is written.

Normally, with this procedure, locations chosen
at the beginning of the problem are poorly
located for processing in a later section of the
problem.
This technique lends itself to rapid program-
ming and is almost as fast as programming se-
quentially. Even though the latter sections of
the problem are not completely optimized, the
degree of optimization will result in a significant
increase in over-all speed. In this respect, this
type of optimization justifies the small amount
of additional effort required.

2. The second method of optimizing requires a cer-

tain amount of planning before programming.
Instead of optimizing each program step as it is
written, the programmer must think ahead to
visualize the possible effect on later steps that
will use the same data, or perhaps branch to the
same instruction.
Many possibilities exist when programming this
way. After the program has been completed, a
simple re-arrangement at the beginning could
possibly improve a later portion of the problem.
It may be necessary to re-program the problem
several times to achieve maximum machine effi-
ciency. Obviously, such a procedure requires
more time than sequential programming or
method 1.

3. Another method uses interpretive and assembly
routines such as Symbolic Optimum Assembly
Program (soap). This system is described in
Form 32-7646.

The second method of optimizing should be used
only when method 1 does not produce maximum input
or output. The problems justilying this method of
optimizing are those which are run frequently and in
which the small time saving on every run is significant
over an extended period. It is not always necessary to
program the entire problem this way, but only those
segments or subroutines that are most frequently used.

To establish rules of optimum programming, each
operation has been analyzed to determine the number
of word-times required for its analysis and execution.
In most cases, it is not practical to optimum-program
such operations as multiplication, division, and table

21

lookup, because of the wide variation of factors.

From a timing standpoint, there are 40 drum loca-
tions (one per band) that are time-equivalent. Words
0001, 0051, 0101, etc., all pass the read heads at the
same time. Similarly, words 0002, 0052, 0102, etc., all
pass the read heads at the same time. Thus, if optimum
programming indicates a location of 0005, the infor-
mation can be placed in 0005, 0055, 0105, etc., with-
out changing the time required for the operation.
Once an optimum location has been determined, there
are 39 additional locations that are equally accessible.
Another factor of importance is that the r-address of
many instructions can be optimum within a range
of locations. This is because the 650 can overlap
arithmetical processing with the search for the next
instruction.

Accumulator Considerations

Because the 650 uses a 20-position accumulator and
because the entire accumulator is involved in arith-
metic and shifting operations, each half of the accumu-
lator is synchronized to specific word times. The lower
half (8002) is synchronized to even words. The upper
half (8003) is synchronized to odd words. This means,
when any arithmetic or shifting operation is to be
performed it is necessary to wait for an even word time
before the operation can begin. This is why the opti-
mum program chart may show differences in timing
for odd-even locations. Similarly, store-accumulator
operations must wait for an even word when the lower
is to be stored, and an odd word when the upper is to
be stored. Likewise any operation that involves the
accumulator may be affected by these considerations.
The optimum program chart covers all possible condi-
tions.

Input-Output Interlocks
Interlocks are provided in the input-output units to
assure that when the program calls for any input and/
or output (Op codes 70-78) , the mechanical operation
is begun before program exccution is allowed to ad-
vance to the 1-address of the input-output instruction.
Because these interlocks are on mechanical devices,
the 1-addresses of the associated program instructions
need not be optimized. The exact amount of time that
program execution is stopped depends on:
1. the amount of process time exclusive of input-
output commands
2. the specific input-output unit involved (533, 537,
407)
3. the operation (RD, WR, RC/wR) called for

533 Interlock Time

Each rp or wr instruction for the 533 results in an
average of 61 ms interlock time. This is true only if

22

the section (input or output) receiving the command
is operating at less than its maximum rate.

537 Interlock Time

Each wr instruction for the 537 results in an average
of 60 ms interlock time. Each rp or combination
RC/WR instruction results in an average of 90 ms inter-
lock time. In each case the 537 is assumed to be
operating at less than maximum rate.

407 Interlock Time

To determine the average interlock time for the 407
it is necessary to know the amount of computing time.
When the compute time is known, 650 Bulletin 6,
(Form 32-7990) can be used to determine average
interlock time.

Available Computing Time
If the input-output units are to run at maximum
speed, the computing time between each input-output
command cannot exceed certain maximums that are
set by the speed of the input-output device being used.
Any input-output cycle, once started, cannot be
repeated until the cycle in progress has been com-
pleted. The cycle times for the various input-output
units are:

1. 533 input — 300 ms

2. 533 output — 600 ms

8. 537 input-output — 390 ms (approximate)

4. 407 input — output — 400 ms

To determine the computc time available during
any one cycle, the interlock time of the unit is sub-
tracted from the total time available during the cycle.

For example, assume a system using a 533 for input-
output, and an application that requires one input and
one output card for each transaction. The maximum
possible speed is 100 transactions per minute, deter-
mined by the output of the 533. This in turn sets a
maximum of 600 ms for each transaction. To deter-
mine the available compute time, the interlock times
(61 ms for input 4 61 ms for output) are subtracted
from the total available time. This gives 478 ms as
the available compute time.

How many instructions can be executed in 478 ms?
This is determined primarily by the degree of optimi-
zation used by the programmer. Studies have shown
that a well-optimized program will execute about 3
instructions per drum revolution. In 478 ms the drum
will make about 100 revolutions (4.8 ms per revolu-
tion) , which indicates that about 300 instructions can
be executed and still maintain maximum output. The
same principles can be applied to any input-output
unit or combination of units. The over-all speed will
be set by the speed of the slowest unit kept running
at maximum rate.

IBM OPTIMUM PROGRAM CHART—650 DATA PROCESSING SYSTEM

of Inst.
n,ne Operation Data Instruction Operation Data Instruction
Add-Subtract:10, ! EVEN d-+5) 8000, 8003
. v [t s s | 117
9 61,65,66,67.68. . : ODD d+4 :
R VEVEN | d+21+423 EVEN " n+7
:é:g no| o MEYN9) | nb3 dizo+2zm obD 8001 n+6
i . i EVEN " n-+9
< CEVEN | d+é1423 ©ODD 8
n | DIV(I4)LOVRISH) | nt3 b +61+22q nt
' ODD | d+60+22q n LDD(69) n+6
EVEN n+7
EVEN] 0 n+3 n+4 o0b LDD(49) 8002 A
ODD n+4 n+5 X EVEN oy
N EVEN| s n+4 nt5 38 oD LDD(69) 8003 ot7
Il ODD n+3 n+4 4 {8000,8001
s B BMI(46) nt3 nr4 = 8001,
N o g All Add-Subtract 8003)
z: T BOV(47) n+3 n+5 < {Accumulators) EVEN d+54#
S 2 BD 0(90), BD9(99) ntd nt5 x d+4#
I < z
Hi ° z
A3ZZ
[u'ciig
&8 LDD(49)
n_|\DD(69), STD{24) n+3 d+3
T EVEN A+5
0 n TLU(84) n+3 " 5pb Ato
Bl [NOF(00), HLT(0T) T nt4
il EVEN n+5
> B STL(20) 4 d+3
BN EVEN n+4
- EVEN +3
Sl o0 | SDA22), SIA(23) A d+3
Wl EVEN| SRT(30), SLT(35), n+6
=3 ODD | SCT(36), $==0 nt5
/Bl EVEN | SRT(30), SLT(35), nt7
E- 3l ODD | SCT(36), 5=1,2 n+é
I EVEN| SRT(30), SLT(35), (n+7 thru (25+3)
\Jll ODD | SCT(36), $=3-9 n+6 thru (25+2)
4B EVEN n+7 thru (254-3)
s =l opp | SCTR6) $=10 *"i n+6 they (25-+2)
E | EVEN (n—+7 thry (25+5)
s opp | SROB1)$=1-10 n+6 thry (25+4)
:,
35
w3
E 0L
£33
R
£5<
3
Qi
z

DECIMAL

INDEXING REG. CODES
FLOATING

iy A
*Add one to the "I'" Address if a complement cycle s taken,
**Where a Low-High limit is indicated for an "I" Address, the following In-
struction should be optimized from the High limit. This applies only when
the "I" Address is placed between the specifiad limits,

Add two if a complement cycie Is taken.

I Instruction address specified by the Indexing Register. The times shown
inciude the execution of the NOP{00) instruction which follows an "I"
Address of 8005-6-7.

4 The access time to 90XX locations is always equivalent to an

optimum drum location if 1AS is not interlocked.

9.
o
2%
(ﬁ"
[=]
[=]
aZ
<

Figure 40. Optimum Program Chart

23

Using The Optimum Program Chart

The Optimum Program Chart (Figure 40) is a tool
to aid the programmer. Its format is similar to the 650
Planning Chart, Form X24-6151 and 650. Program
Sheet Form X24-6181. It is divided into functional
groups. All of the arithmetic codes are in one section.
All of the branching codes are in another section and
the miscellaneous codes (shifting, storing, etc.) are in
another section. Because 800X addresses require spe-
cial consideration when used as sources of data or
instructions, they are set aside in a special section.

Arithmetic Codes

To illustrate the use of the arithmetic section of the
optimum program chart, the hypothetical problem in
Figure 41 will be programmed. Factors A and B are
entered from the input card. Factors ¢ and p are con-
stants that are stored in the machine during program
loading. Figure 41 also shows the skeleton and com-
pleted programs.

The r-address of the rpl instruction is made 0048 so
that factor A, entered into 0001 from the card, will be
in an optimum location. Location 0048 was chosen by
using the section of the chart on arithmetic codes and
by working backward from the fixed location 0001.
The chart shows that the optimum p-address of an
add code is 3 words away from where the instruction
is located in storage (n 4 3). Because the p-address
location is fixed in this case, the location of the instruc-
tion (n) is optimized by subtracting 3 from the
p-address. The 1-address of the rp command is not
optimized with respect to its p-address because the
input-output interlock, described previously, acts be-
tween these two addresses.

To select the optimum raddress for the 60 rav
instruction, the chart shows (in the section labeled
Arithmetic Codes) that 5 is added to the p-address
when it is an EveEN numbered location and 4 is added
when the p-address is an obp numbered location. This
makes the optimum r1-address 0055. Location 0055 is
chosen rather than 0005 because 0005 is in the read-in
area and any information in this location is lost on
a read-in cycle.

PROBLEM: (A+B—C)x (D) =E

When the raddress of the 60 raU instruction is
chosen, it becomes the location of instruction (n) of
the 10 Aup command. The p-address for the 10 aup
command can now be set. The arithmetic codes section
of the chart shows that the optimum location is 3
words away from the location of instruction. This
makes the optimum p-address 0008. Note that this is
still within the read-in area and factor B can easily be
entered into 0008 using control-panel wiring. In this
way, the control panel actively assists the program-
mer in achieving program efliciency. For this reason,
control panel planning should go hand in hand with
programming. '

After the p-address of the 10 aur command is set,
the 1-address can be chosen by using the chart. Because
the p-address is an EVEN location the 1-address is b
words away from the p-address. This makes the opti-
mumn I-address 0013.

The p-address of the 11 sur command can now be
optimized and will be 0016, which is n (0013) 4 3 as
shown by the chart. This is factor ¢ and it is loaded
into the machine at the same time the program is
loaded.

The r-address of the 11 sur command is placed 5
words away from the p-address because the data is in
an eveN location. NotE: if a conflict arosc later for
location 0016, the p-address of the 11 sup instruction
could be-changed to location 0017 without changing
the r-address or affecting the operating speed.

The p-address of the 19 mpy command is placed 3
words away from the instruction location as indicated
by the chart. Unless the exact value of the multiplier
factor (upper accumulator) is known, the 1-address
cannot be optimized.

Note that the optimum p-address of all arithmetic
codes is 3 words away from the location of the instruc-
tion (n -+ 3). During this time the instruction is
analyzed to determine what is to be done and the
necessary circuitry is set up to read the data into the
distributor. If the data is in an optimum location it
will immediately enter the distributor. If it is not in
an optimum location, time is lost while the drum
moves to the data location. Once the data has entered

Location Instruction Location Instruction .
of Operation of Operation
Instruction | OP Data [nstruction Abbrev. [nstruction { OP Dato Instruction Abbrev.
8000 |70 | 0001 RD1 8000 70 | 0001 0048 RD1
60 | 0001 RAU +A 0048 60 | 0001 0055 RAU
10 AUP +8 0055 10 | 0008 0013 AUP
i1 SuUp -C 0013 11 0016 0021 SUP
19 XXXX - MPY xD 0021 J19 | 0024 | XXXX MPY

Figurc 41. Optimizing Arithmetic Codes

24

the distributor, the arithmetic operation will proceed
while the 1-address of the instruction is analyzed and
the next instruction is entered from the drum into
the program register. In this way, as soon as one opera-
tion is completed, the analysis of the next will begin.
No time is lost searching for the instruction when the
optimum location is used.

Branching Codes

These codes make tests to determine the location of
the next instruction to be executed. In all cases, faster
program execution will result when branching logic
is designed so that a majority of the branches are taken
from p-addresses. In other words, design program logic
so that the branching questions are being answered
vES most of the time.

When a series of branch instructions are being used,
they should be arranged in such a way that the most
frequently encountered item 1is tested _first. For
example, an inventory application could have three
types of input cards: receipts, on-order and issues. To
determine what process routine to use, a series of

READ CARD

PROCESS
ISSUE

PROCESS
RECEIPT

PROCESS

ON-ORDER? ON-ORDER

Cea D

Figure 42. Branch Code Logic

branch distributor instructions could be set up. The
sequence of tests would depend on the relative number
of cards of cach type that will be encountered. If
issues are the largest quantity followed by receipts and
on-order cards, program logic is best designed as shown
in Figure 42.

Another point to consider is the effect of EVEN-0DD
location on the execute time of the 44 NzU™and 45 ~Nze
operations. Note that the EVEN-opD consideration f[or
one is the opposite of the other. There may be times
when either operation will give the desired test results.
In this case, choose the one that will give the lowest
operating time depending on whether n is EVEN or obp.

Shifting Codes

The time it takes to execute a shift operation depends
on the number of positions the accumulator is to be
shifted. Because the time is variable and because only
the accumulator is involved in the shift, the r-address
of the shift instruction can be optimum within a range
of locations that gives the programmer a degrce of
flexibility when conllict for locations arise. While the
shifting operation is being performed, the 650 can
enter the next instruction into the program register.
However, for programming purposes, the high limit
is used for the n of the next instruction.

Example: The r-address of the following shift in-
struction is to be optimized as is the p-address of the
following instruction:

n Or DaTta INST
0117 30 0007 XXXX SRT
15 XXXX ALO

When the formula shown on the optimum program
chart is applied, the 1-address low limit is 0123 (n - 6)
and the high limit is 0133 (25 4 2). The 1-address can
be placed anywhere between these two limits. When
the 15 aLo p-address is optimized, the high limit (0133)
must be used.as n. This is true even if the 1-address of
the 30 srT command is set at 0123. Therefore, the
optimum p-address for the 15 ALo command is 0136.

In many instances, the programmer can use the con-
trol panel of the input-output units to shift informa-
tion as it is being entered into or taken out of the
system. Whenever this is possible, it should be done,
because it reduces program execution time by elimi-
nating a shift instruction.

800X Addresses

Because the storage-entry switches (8000), distributor
(8001), lower accumulator (8002), and upper accumus-
lator (8003), are addressable, they may be used as p-
and 1-addresses in many instructions. When an 800X
address is so used, special rules apply for integrating
these instructions into the program that is being
optimized.

8000. Because 8000 is immediately accessible, any
timing associated with its use is the same as an opti-
mum drum location, except when it is the r-address of
certain add-subtract instructions. Also, when used as
the 1-address a shift instruction, it is equivalent to the
high limit.

Example: Optimize the 1-address of the following
instruction:

n Or
1587 10

INST
XXXX AUP

Data
8000

The chart indicates that the optimum 1-address in
this case is n - 8 because n (1587) is opp. This makes
1595 the optimum r-address. In this case 8000 is equi-
valent to 1590 (n -4 3). Because this is an EVEN word
time, the 1-address is d - 5 or 1595.

Examples: Optimize the p-address of the sccond
instructions:

n Or DATA INST
0001 24 0004 8000 STD
8000 10 XXXX AUP

The chart shows that 8000 is the equivalent of d +- 3
when it is the 1-address of a 24 sTp instruction. There-
fore, the effective n of the 10 Aur command is 0007 and
the optimum p-address is 0010.

n Or DaTta INsT
0001 11 0004 8000 sup
8000 10 XXXX AUP

The chart shows that 8000 is the equivalent of
d 45 (d-EVEN) unless a complement cycle is taken,
in which case it would be d + 7. An accumulator com-
plement cycle can only occur if a 10 ave, 11 sup, 15
ALO, 16 sLo or 18 sML operation results in a change of
accumulator sign from plus to minus. The additional
two word times are used to change the results in the
accumulator from a complement amount to a true
amount with a minus sign. Therefore, the effective
location of the second instruction is either 0009 or
0011 depending on the factors involved. This makes
the p-address optimum at either 0012 or 0014.

n Or DAaTa INsT
0001 69 8000 8000 LDD
8000 10 XXXX AUP

The equivalent drum word for the r-address of the
69 Lop command is 0007 (n 4 6) as shown by the chart.
This in turn is the effective n of the 10 Aup command.
Therefore, the optimum p-address is 0010.

8001. The distributor, like the storage entry switches
(8000), is immediately accessible. Therefore, the times
associated with an 8001 address are the same as 8000
except when it is used as the p-address of an arithmetic
operation, in which case the time may be less.

Example: Optimize the 1-address:

n Or
1587 10

The chart shows that the optimum 1-address is
n -~ 6 when n is opp. Therefore, the optimum r-address
is 1598 which is two words faster than the same instruc-
tion with an 8000 p-address. The time is reduced be-
cause it is not necessary to move data to the distributor

before beginning the add operation.

INST
XXXX AUP

DaATA
8001

8002. The lower accumulator can only rcad out on
EVEN word times. This means that in some cases an
instruction with an 8002 address will take longer to
cxecute than the same instruction with an optimized
drum address.

Example: Optimize the 1-address:

n Or
1588 60

INST
XXXX RAU

DATA
8002

The chart shows that the optimum 1-address in this
case is n 4+ 9 because n is eveN. Therefore, the 1-address
is 1597.

- Examples: Optimize the p-address of the second

instructions:
n Or DaTta INsT
0001 11 0004 8002 SUP
8002 10 XXXX AUP

The chart shows that 8002 is the equivalent of d | 6
unless a complement cycle is taken, in which case it
would be d -+ 8. Therefore, the effective n of the
second instruction is either 0010 or 0012. This places
the p-address at 0013 or 0015.

n Opr DaTaA INsT
0001 65 8002 8002 RAL
8002 10 XXXX AUP

The equivalent drum word for the 1-address of the
65 raL command is 0009 (n - 8). However, becausc
this is an opp word and 8002 is available only on an
EVEN word, the equivalent location must move to 0010.
This is then the effective n of the second instruction
and, therefore, the optimum p-address would be 0013.

8003. The upper accumulator can only read out at
oop word times. This can have an effect similar to the
EVEN word consideration for 8002.

Example: Optimize the p-address of the second in-
struction:

n Or DATA INST
0001 60 8003 8003 RAU
8003 15 XXXX ALO

The equivalent drum word for the i-address of the
60 rau command is 0009 (n -} 8). Because this is an
opp word, 8003 can read out immediately. Therefore,
0009 is the effective n of the second instruction and the
optimum p-address is 0012.

Programming From Fixed Locations

To illustrate another possible approach to optimum
programming, the program shown in Figure 33 will
be stripped of all addresses that are not fixed and then
optimized from the chart. Figurc 43 shows the skeleton
program. The fixed locations are:

1. rol instruction — 8000

2. Employee number — 0001
3. Start of table search — 0500
4. r1-address of TLU instruction — 8002
5. Hours worked — 0002
Locg;uon Instruction Operation
Instruction | OP Data Instruction Abbrey.
8000 | 701 0001 RD1
65 RAL
69 1 0001 LDD
841 0500 8002 1LY
8002 | 60 § XXXX RAU
35 { 0005 SLT
30 | 0005 SRT
192 | 0002 | XXXX MPY
Figure 43.

Some of the addresses cannot be effectively optimized
because of the nature of the instruction of which they
are part. These are:

I. 1-address of the rpl instruction because of the
input-output interlock previously described.
There is no way of accurately predicting the
position of the drum when this interlock is re-
moved.

2. r-address of the rau (60) command. Because the
TLU can stop anywhere within the table, the
word time when the instruction from 8002 enters
the program register is unknown as is the p-ad-
dress of the raU command.

3. r1-address of the mpy (19) command because the
execution time of this command is determined
by the size of the multiplier factor.

Working within the framework of the fixed locations
and those addresses that cannot be effectively opti-
mized, the remaining locations can be chosen.

The first location to be chosen is that of the third
instruction (69 Lpp). This point is selected because
the p-address is fixed. The optimum program chart
shows that the best p-address of a 69 Lbp code is n - 3.
Because 0001 is fixed, it is only necessary to subtract 3
from 0001 to get the optimum location (0048) of the
instruction. This in turn fixes the 1-address of the
previous instruction (65 RAL).

The next step is to continue working backward to
choose the p-address of the 65 RAL instruction. The
chart shows that the optimum location of the 1-address
is either d 4+ 5 or d 44 depending on whether the
p-address is in an EVEN or opp location. Therefore, the
p-address will be 0043. An analysis here shows that
the 1-address of the 65 rAL instruction could be either
0047 or 0048 without affecting machine speed. How-
ever, by looking forward it can be seen that if employee
number were shifted to 0002 on the input, a two word
time difference occurs.

The next step is to determine the 1-address of the
rpl instruction. Because we are still working back-
ward, this will be determined by the p-address of the
65 raL command. The chart shows the optimum p-ad-
dress is n -+ 3. This gives 0040 as the best r-address for
the rol instruction. Figure 44 shows the skeleton pro-
gram with the preceding addresses added and what the
program might look like if employee number were
entered into 0002.

Location Instruction Location fnstruction

of of

Insteuction | OP Data | Insteuction Instruction | OP Data { Instruction
| 8000 70| 0001 0040 8000 |70 0001 0042
0040 65 0043 0048 0042 | 65 0045 0049
0048 169 { 0001 0049 169 | 0002

84 | 0500 8002

8002 | 60 | XXXX

35 | 0005

30 | 0005

19 { 0002
Figure 44.

The next step is to optimize the 1-address of the 69
Lop instruction. The r-address can be within a wide
range of limits because the next instruction (TLU) has a
fixed starting time. In this case the lower limit is set by
the p-address of the 69 Lop command while the upper
limit is set by the TLu command itself (all TLU opera-
tions start at the beginning of a band — 0000, 0050,

27

0100, etc.) . The low limit is 0004 (d 4- 3) and the high
limit is 0047. This allows the programmer a great deal
of flexibility in later stages of the program. For pur-
poses of illustration 0054 is used.

An examination of the rest of the program indicates
that programming should now move to the next fixed
location (0002) . From this point optimizing proceeds
backward until the previously addressed instructions
are reached.

To determine the best location (n) for the 19 mMpy
command, % is subtracted from the fixed p-address.
This places the 19 Mpy command in location 0049.
This in turn becomes the high limit for 1-address of
the 80 srT command. The range of limits for a right
shift of 5 is either 7-13 or 6-12 dependent on whether
the command is in an EvEN or opp location. The low
limit of the 1-address is then 0043, and the location of
the 30 srRT command is 0037. If a conflict exists for
location 0049, the 1-address of the 30 srT command can
be shifted to 0047, 0046, etc., without affecting operat-
ing speed, ‘

The range of limits for a left shift of 5 is the same
as the right shift of 5. With 0037 chosen as the location
of the 30 skt command this in turn gives the high
limit for the 1-address of the 85 sLT command. The
low limit is 0031. The 35 sLT instruction would be
located at 0025. This in turn becomes the r-address
of the 60 rRaU command, which is entered into the sys-
tem as a constant in location 0043 at the time the
program is loaded.

This method of programming results in the fastest
possible execution time that is consistent with prob-
lem limitations. Figure 45 shows the completed pro-
gram. -

L°cg:'°“ Instruction Operation
instruction | OP Data Instruction Abbrev.
8000 70 1 0001 0040 . RD1
0040 65 1 0043 0048 RAL
0048 69 | 0001 0054 LDD
0054 84 | 0500 8002 TLU
8002 60 | XXXX 0025 RAU
0025 35 | 0005 0037 SLT
0037 30 | 0005 0049 SRT
0049 19 | 0002 XXXX MPY

Figure 45.

28

Sequence Chart (Figure 46)

The sequence chart shows the steps taken in the inter-
pretation and execution of the various types of opera-
tions and the word times required for each step. In
several cases the scquence chart branches into two
parallel paths; this is to show that two functions are
being performed simultaneously. One of the parallel
branches represents the arithmetical process, and the
other, the process of obtaining the next instruction,

Analyze the steps carried out by the machine in the
performance of any operation; in every case certain
fundamental word times are required. Begin considera-
tion of each instruction at the time the instruction has
been located. Starting at this point, the first word time
of every operation is used to transfer the instruction
from its memory location into the program register.
The next word time is used to transfer the operation
code to the operation register, and the data address,
to the address register. The steps performed during
the word times beyond this point depend upon the
particular instruction being cxecuted.

Consider, for example, an instruction calling for an
add lower (15) operation. Assume that the add lower
instruction is in location 0001. Then, as location 0001
passes the reading heads, the instruction is rcad into
the program register (1 word time). As location 0002
passes the reading heads, the operation code (15) is
transferred to the operation register, and the data
address (XXXX) is transferred to the address register.
As location 0003 passes the reading heads, the control
circuits necessary to perform addition are set up, and
the distributor is signaled to read in. When the loca-
tion specified by the data address passes the reading
heads, its contents will be rcad into the distributor.
Therefore, if the data address of the add lower instruc-
tion had been 0004, the search time for the factor to
be added would be zero. Thus, location 0004, or any
of the 39 other locations having the same angular
position, would be the optimum location for data
in this example.

Assuming the data is in location 0004, the factor to
be added enters the distributor as location 0004 passes
the reading heads. The machine is now ready to add

. the factor in the distributor to the contents of the

lower half of the accumulator. Because location 0005
is ready to pass the reading heads, the machine is
starting an odd word time. The accumulator contents
can only be read into the adder beginning with an
even word time. For this reason, nothing is accom-
plished as location 0005 passes the reading heads.
As location 0006 passes the reading heads, the contents
of the distributor are added into the Jower half of the
accumulator. Simultaneously with the actual addition
operation, a restart signal is given to the program

control system. During the time location 0007 is pass-
ing the reading heads, the contents of the upper half
of the accumulator are passing through the adder, and
the instruction address is transferred to the address
register.

If complementing the accumulator contents is not
necessary, the arithmetical interlock A is removed as
location 0008 passes the reading heads, and the pro-
gram register is readied to read in the next instruction.
Therefore, if the instruction address of the add lower
instruction had been 0009, the search time for the next
instruction would be zero. Thus, location 0009, or any
of the other 39 locations having the same angular posi-
tion, would be the optimum location for the next
instruction in this example.

If it is necessary to complement the accumulator
contents, the over-all timing is not affected. Under this
condition, the simultaneous operation continues while
the next instruction is read into the program register,
and the operation code and data address are trans-
ferred into the operation and address registers. Thus,
the next instruction in process reaches the interlock
point just as the interlock is removed. ‘

The foregoing add operation and the location of
the next instruction require eight word times for exe-
cution when optimum programming is used. The same
two functions could require as much as 106 word
times if the data and next instruction were placed in
the worst possible locations. Of course, the factors
would rarely fall in such poor relationship to each
other; but when sequential locations for instructions
are used, it can easily be seen that each operation
and location of the next instruction must take at least
51 word times.

Referring to the sequence chart again, multiplica-
tion, division, and shifting operations may vary in the
number of word times required for the arithmetical
function. These operations offer latitude for position-
ing the succeeding instruction depending upon the

time required for the multiply, divide, or shift func-
tion.

To continue with the example, assume that the in-
struction found in location 0009 calls for a shift right
of three positions. The instruction is read into the
program register as location 0009 passes the reading
heads. During the time location 0010 passes the reading
heads, the operation code and data address are trans-
ferred to the operation and address registers. Because
no drum data location is used in a shift operation, the
only concern of the programmer is in positioning the
following instruction.

As location 0011 passes the reading heads, the shift
control is readied. Accumulator read-out can begin
immediately, because location 0012 (even word time)
is ready to pass the reading heads. Parallel operations
begin at this point. During word time 0012, actual
shifting is begun, and the restart signal is given to the
control unit. The next word time (0013) is used to
complete a shift of one position and to transfer the
instruction address to the address register. During
word time 0014, the second position of shifting is
begun, and the program register is signaled to receive
the next instruction.

At this point, latitude for positioning the succeed-
ing instruction is available. The next instruction could -
be in location 0015, which would be the lower limit
for optimum location. However, the shifting operation
is not completed until word 0017, and interlock A is
not removed until 0018. Therefore, the instruction
could be placed in location 0016 or 0017 and still have
the new operation code and data address in the opera-
tion and address registers by the end of word time
0018 when the interlock is removed. Thus, location
0017 is the upper limit for optimum location of the
instruction. Any of the three locations 0015, 0016, or
0017 gives zero access time for obtaining the instruc-
tion.

29

Read/Write Codes

And [nterlocks
(70-78)
m) @ Interlock A Set As This Point |s Passed.
| to PR DA fo AR It Cannot Be Passed Again
OP to OP R Until Removed By Completion
OF Arithmetic Or Shift Operation.
Load Dist. 69 Ty 7T St } | L e e e
L T R R B (R N U R A YA
Enable Distr. Search for Data to 1A to AR Enable PR Search for
Read In Data Loc. Distrib. Read In next Instr.
| [1
@ ' © or (2 o !
Adds Distributor Compliment Remove
Subtracts to Accum. Neg. Sum Interfock A
10, 11, 15,16, 17, 18, (3 O) (0 or (1) If Req.
60, 61, 65, 66, 67, 68 |Enable Distr. Search for Data to Wait for
Read In Data Loc. Distributor Even | | | _I
W o T T oew
Restart 1A 1o AR Enable PR Search for
Signal Read In next Instr,
’— M (I*') I 0
Multipl ultiply or Remove
D‘;vigay __________ Div. Loop Interlock A
14,19, 64 Q)] (0) to (49) ()] (0) or (1)
Enable Distr. Search for Data to Wait for
Read In Data Loc. Distributor Even | { e e e _{
() i [€) [(n I (0) to (49)
Restart IAto AR Enable PR Search for * Multiply Loop Requires (20) fo (200)
Signal Read In next Instr. Word Times.
Divide Loop Requires {60) to (240)
| { Word Times.
2 U
Per Shift Remove
Shi
s |
30, 35 Q)] (0) or (1)
Enable Wait for
Shift Contr. Even | { | -]
@or ' T T e]
Restart 5ig. IA fto AR Encble PR Search for
(unless Read In next Instr.
Shift 0)
|]
@ U
Shift and Per Shift Remove
Count I (Shift Loop) Interlock A
36 1) 0) or (1)
Enable Wait for
Shift Contr, Even | | e _‘
@o(m T T T @
Restart Sign. 1A to AR Enable PR Search for
(unless Xog # 0) Read In next Instr.
| | 1
@ ! 2 U
5 Per Shift Round Remove
Shift and
| (Shift Loop) interfock A
Round i
31 {) (0) or (1)
| Enable Wait for
I'Shift Contr. Even f ! S _l Sl
|)) LY
{ Restart IA to AR Enable PR Search for
: Signal Read in next Instr.,
1
continuved

Figure 46A.

30

Store
Lower
20

Store
Upper
21

Store Data Address
Store Inst, Address
22,23

Store Distributor
24

NzU
44

NZE
45

BMI
46

BOV 47
BDI-8
21-98

BDO, 9
90,99

TLU 84

NOP
HLT
00,01

Figure 46B.

| | | | | L e
M @Mt | e @ M M Ok 1
Enable Distr. Wait for L. Accum. Search for Store IA to AR Enable PR Search for
Read In Even to Distrib. Data Loc. Data Read In next fnstr.
l | b e | | | o e _I
) © or (1) | ™ U e o @ M 70 e 49
Enable Distr. Wait for U. Accum. Search for Store IA to AR Enable PR Search for
Read In Odd to Distr. Data Loc. Data Read (n next Instr.
T S N | R —— 4
(0) or (1) [§)] (0) to (49) ! [§)] Q)] m (0) to (49)
Wait for L. Accum. Search for Store 1A to AR Enable PR Search for
Even to Distr, Data Loc. Data Read In next Instr,
—}_ _______ L | | | o _1
) Oee oo o T m T @)
Enable Search for Store IA to AR Enable PR Search for
Position Sel. Dato Loc. Data Read in next Instr.
I} H e e e ._1
@or() T ©@or(h I () (@)
Wait for 1A to AR Enable PR Search for
Even If Req. Read In next Instr.
| | R, _|
@or () | @eor() ' T (@0
Wait for IA to AR Enable PR Search for
Odd If Req. Read (n next Inskr, NOTATION -
| = Instruction
op = Operation Code of Instruction
DA = Data Address of Instruction
1A = Instruction Address of Instruction
—‘—!‘ ———————— “I PR = Program Register
(© or (1) () (0) to (49) AR = Address Register
1A to A.R Enable PR Search for oPR - Operation Register
If Required Read In next Instr.
T e |
M ©or (1) (@ or(l (0) 1o (49)
Test and IA to AR Enable PR Search for
Enable PR If Regq. Read in if next Instr,
Read In if No Branch=
Branching ing Occurs
Qceurs
| ! b e
M T @am | () | @ .
Test IA to AR Enable PR Search for
If Req. Read In next Instr.
(S — TR — : | | | | | b
(O] (0) to (49) 0) to (?) [} M ©or() ' [¢H] m (U] (0) to (49)
Enable Search for Search for Correct Add to PR Wait for Insert Address 1A to AR Enabie PR Search for
Position Sel . First Argum. Correct Argum, Even in L. Accum, Read In next Instr.
Argura, Found
e
U} () (0) to (49)
1A to AR Enable PR Search for
Read in next Instr.,

31

Program Loading

After program writing is completed, each instruction
is punched into a card. These cards (load cards) are
then used to enter the program into the 650. Load
cards can include not only the instructions, but also
the constants, tables, etc., used to process the data.

Pressing the computer-reset key conditions the ma-
chine to get the next instruction from the storage-entry
switches (8000). If the Loap hubs on the input unit
control-panel are activated by a 12-impulse, the next
instruction location, after a read instruction, is speci-
fied by the p-address of the read command. Both of the
above facts enter into the understanding of loading
routines.

One Instruction Per Card

Each load card has punched in it a two-step program
and the data (instruction to be loaded) that the pro-
gram is to operate on. In addition, each card is desig-
nated a load card by control-panel wiring. One
instruction is used to move the data (instruction being
loaded) from the read-in area to the distributor. The
other instruction moves the data from the distributor
to another storage location (assigned by the program-
mer when the program is written). One additional
instruction is necessary to complete the program. It is
a Rp command that is used to enter the other two
instructions and the data into the machine. This is
usually set-up in the storage-entry switches (8000).

To illustrate the action of this loading routine two
of the instructions from the program in Figure 45 are
loaded. Figure 47 shows the loading program and two
standard load cards (Form 853862X), punched to
load the raL (0040) and Lpp (0048) instructions.

Card columns 1-10 contain the instruction that
moves the data (columns 31-40) from the read-in area
to the distributor. Card columns 11-20 are used for
indicative information. Card columns 21-30 contain
the instruction that moves the data (columns 31-40)
from the distributor to the storage location assigned
by the programmer. Card columns 31-40 contain the
data (instruction being loaded) that the other two
instructions operate upon.

The instruction being loaded must have a sign
punch over the units position..-Card columns 41-45
contain the operation abbreviation. The remainder of
the card columns can be used for indicative informa-
tion as desired. This card has been designed for punch-
ing directly from the 650 Planning Chart Form
X24-6151.

The read-in area (1951-1960) is chosen because none
of the instructions being loaded are assigned to these
locations. This in turn determines the address to be
punched in columns 3-6 (1954) and 7-10 (1953) of
each load card. Further, the choice of read-in area also

32

determines the setting of the storage-entry switches
(70-1951-xxxx). If a different read-in area is chosen,
the punching in columns 3-10 of the load card would
be changed to the addresses of the 4th and 3rd words
of the selected read-in area. Also, the p-address portion
of the rp instruction in 8000 would be changed to the
Ist word of the read-in area.

Assume that cards A and B in Figure 47 are the first
of a group of load cards to be entered into the machine.
The load cards are placed into the read hopper of the
input-output machine; the computer reset key is
pressed and then the start key on the input-output
device is pressed. As a result:

1. Three cards are run-in.

2. As the first two cards (A-B) pass first reading,
the 12-punch in column 45 indicates, through
control panel wiring, that these are load cards.

3. The first card (A) is automatically entered into
the input synchronizer; columns 1-10 into word
I; columns 11-20 into word 2; columns 21-30
into word 3; etc.

The program-start key is then pressed to begin load-
ing. Because the computer-reset key was pressed, the
location of the first instruction is 8000. Instruction
execution proceeds as follows:

1. The first instruction (70-1951-xxxx) transfers the
information (card A) from the input synchro-
nizer to general storage and also initiates a
mechanical cycle to refill the input synchronizer.

2. Because the rLoap hub was impulsed, the next
instruction is indicated by the p-address (1951)
of the rp command. This instruction (69-1954-
1953) was entered into the machine when the
information from card a was transferred from
the input synchronizer to general storage.

3. The 69 (Lop) command moves the data (65-0043-
0048) from storage word 1954 to the distributor.
The data word must have a sign punched over
its units position to prevent a validity-error.

4. The next instruction (24-0040-8000), located in
word 1953, moves the data (65-0043-0048) from
the distributor to storage location 0040. This is
the location assigned by the programmer.

5. The program then returns to the storage-entry
switches (8000), and the process is repeated for
Card B. This will load the next instruction
(69-0001-0054) into location 0048. The reading
and loading will continue until all instructions
are loaded.

The cards can be arranged in any desired order,
depending on the extent of the indicative inflormation.

Location Instruction
of
Instruction | OP Data Instruction

Operation
Abbrev.

8000 |70 | 1951 XXXX

RD1

1951 [69 | 1954 1953

LDD A

1953 |24 | 0040 8000

STD

8000 |70 | 1951 XXXX

RD1

1951 169 | 1954 1953

LDD B

1953 |24 | 0048 8000

STD

& 4|1 1] 411 =13 & jij|4qs'tfti:|E1E.E 04 30045RAL

STAND, LOADING COD{J|PR03| BLOCK | CARD Rl24 R JOTION] INGTRUCTION TO BF. LOADEQJO

REMARKS

R |

BLOCK NO, [GARD NO.| i3 rauction | INSTRUCTION 70 BE LOADED | opqJatpn

REMARKS

00'0000-000UDU‘OUOBUDWDDOM"UH‘D 1O o

1 2 143 0 78 8 101112 13ll131!17IIIQNZI22‘23102,520;272.29101132‘3334!538!31303540"42434445

H.[IIHMHHlIlllIlH11'1111‘111111[11]1511111|]1|1

|

22'2222(2222222ZZ22222[]2'2222!222222:2222:222222222
| .

33|3333|333[|3333333333333333333333:333[]:333333]]33

| -! -] P I
stanthro Dcoclon indkrucTidh
LOADING BLOCK | TAR0 | {01 “oF | 000 TO BE OPERATION
e NUMBER HUNDER L [l Loaoeo
T T T]

nﬁsaaﬁesssasasassssssqassshsssuéass#ssssassss
1ﬂ111ﬂ111177711777111ﬂ7111h1777n771n117777717
aﬁasudssoassssaassaaoﬁasssbasssmsaamsssnasaas
aﬁsnsﬁsnssSﬂEiizsssssdsasﬁessesmsssmssss

899
12(3 488l78 900 11131“5lﬁl'l!!19102!&!23202!2!]21152§M3|37I33M3538|311‘34094241“45“414349505(5153505558575559506!62&30‘8!%676859707! 72737475 790 77 70 79 80

650 LOAD CARD

ONE INSTRUCTION PER CARD

CARD A

REMARKS

E.‘E*ll '5‘54|1 ERJE e QPCH._ SON0SIN00TN054 Ll'lIl
/ STAND. LOAGING COO[J[PROS] Lock [cARD |R| 24 p,;;:;‘g:,g,q aoennmsmcmn 70 8E moe o

BLOCK_NO, [CARD HO.| airuotion | INSTRUCTION TO BE LOADED | oPJATION

REMARKS

000Uoﬂﬂﬂﬂﬁﬂﬂomﬁﬁfﬂnﬁ_ﬂ'ﬁ"l g ogpooppodpooas
78 9 10)11 12]13 14 15 12|17 16 t9{2olzs 22173 24 20 26127 20 20 30[22153 36 30 6130 38 39 M041 42 43 44 45
ﬂll‘?‘]TI]|1|1|l'1|Il'lll“l:111u:lll|1‘||l
)]
22'2222!22222222222222”2'22221222222:2222:222222222

1
33,3333333“3333333333333333333333:3333:3333”3333
|
- ! ! ”
STANUARD E avock | omo | | M weolon wsTructiontl] (AL
4

VB | |] | ey

T T

uﬁseeﬁssssesseessssttqsssswsssnsksséaasesasss

7ﬂ177n111111111711717ﬂ7711h11111n771n11111171

adsssMasneassaassaaaaﬁnssnhsas»masswaasaaassa
0

F.

smsuasmnassssssssss 99/999919990309899i9903/39999

1213 48 817 8 9 10/t 1213 14 19 16{17 18 13

21 22123 24 29 28127 28 29 30|31 52{33 34 35 38137 38 39 4047 42 43 44 45/48 4T 48 40 50 51 52 53 54 55 50 57 58 50 60 61 6263 64 6368 6769697071 1273 TA 7576 77 T8 TH &0

650 LOAD CARD
ONE INSTRUCTION PER CARD

CARD B

Figure 47. Loading Program and Cards

The cards can be sorted, collated, or listed in any
desired manner for analyzing the program.

Because of its simplicity and flexibility, this method
is suggested as the basic means for loading programs

that are to be tested. Once a program has been tested
and proved correct, it is a simple matter to convert
the program to a multiple-instruction-per-card routine
to save time in reloading. The original single-item

33

cards also provide the easiest method of reproducing
the program by simple listings.

More Than One Instruction Per Card

It may be desirable, after a program has been proven
to reduce the number of cards necessary to load the
program. This can be accomplished by placing several
instructions in each load card. Each card can contain
up to eight instructions. Because it is usually desirable
to have some means of identification punched into all
program load cards, something less than eight instruc-
tions per card is recommended. Note: any loading
method using more than two instructions per card
requires storing a loading routine on the drum.

Four Instructions per Card

This routine enters four instructions from a card. In
addition, the card contains the addresses of the loca-
tions into which the instructions are to be stored. The
loading routine consists of nine instructions, five of
which are stored on the drum, and four that are en-
tered from each card as it is read. The program consists
of a read instruction, followed by four sets of load and
store distributor instructions. The four store-distri-
butor instructions are punched into the cards, with
the data address of each as the location into which the
adjacent word is to be loaded. .

The five instructions to be stored on the drum can
be loaded from single-item load cards. A sixth card
could then be used to effect the switch into the four-
per-card routine just loaded.

After all the load cards have been processed, it is
necessary to transfer to the main program just loaded.
This can be accomplished in one of several ways:

1. If the first card following the program deck is
not a load card, the switch to the main program
can be accomplished by using the r-address of the
read instruction.

2. Another method of switching to the main pro-
gram is to change the 1-address of the last store-
distributor instruction in the last program load
card. The raddress used would simply be the
location of the first instruction in the main pro-
gram. By proper choice of the r-address of the
last store-distributor instruction in any load card,
cards containing one, two, or threc instructions
can also be processed by the four-per-card load-
ing routine.

Figure 48 is an example of a routine for loading

four instructions per card, using locations 1951-1960
as the read-in arca.

34

Lcc;:fﬁon Instruction Operation

Instruction | OP Data Instruction Abbrev.
1999 170 1995 0000 RD1 *
1995 |69 1952 1951 LDD *
1951 124 | XXXX 1996 STD **
1996 | 69 1954 1953 LDD *
1953 124 | XXXX 1997 STD o
1997 169 1956 1955 LDD *
1955 124 | XXXX 1998 STD o
1998 |69 1958 1957 LDD *
1957 124 | XXXX 1999 STD b

*These instructions kept on the drum,

**These instructions are read into the 650 on each load card.
The data addresses specify the location into which each of
the four pieces of information is to be stored.

Figure 48. Four Instructions per Card

Seven Instructions per Card
This routine is used to load as many as seven instruc-
tions from a single load card. The eighth word is used
as a control word and is punched with the address
into which the first instruction is to be entered and
the number of instructions to be entered from that
particular card. Because only one address is in each
card, the instructions from each card are loaded into
consecutive drum locations.

Figure 49 shows a routine to load as many as seven
instructions per card, using the control-word layout
just mentioned.

Location Instruction
of Operation
Instruction | OP | Data | Instruction Abbrav.

1988 [70 | 1994 M {2} S— (Transfer control 1o location M if no load card).

1994 165 | 1951 1979 RAL . _

1979 169 | 1982 1986 LDD

1986 122 1 1982 1989 SDA

1989 | 35 0004 1981 SLT Prepare to store starting with location F.

1981 §15 { 8001 1990 ALO A

1990 |22 | 1978 1984 SDA

1984 [65 | 1991 1992 RAL

1992 |10 | 1982 8002 AUP

gggg ;‘i (]?.5)2) ?233 's-?g } Store ward | in lacation F-+1— 1.

1977 |10 | 1980 | 1985 AUP } Modly insuctons in._ preparation o sere

1985 |15 | 8001 1993 _ALO word |

1993 |11 1978 1983 SUP Test to see if word N~ 1 has been stored, If

1983 | 44 1987 1988 NZU s0, read the nexi card.

1987 110 8001 8002 __AUP Prepare to store word 1+1.

1982 {24 | 0000 1977 STD

1991 [69 | 1952 8003 LDD Constants

1980 {00 | 0cO01 0000

1978 [24 | F+N 1977 STD Temporary storage

1951 {00 F 000N Cantrol word punched in load card F is address
where first word on cord s to be entered. N is
the numbsr of words tg be entered.

Figure 49. Seven Instructions per Card

Index

Absolute Arithmetic Codes 20 Optimizing 8000 oL R
Add Magnitude to Lower Accumulator (17-AML) 20 Optimizing 8001 26
Add to Lower Accumulator (15-ALO) 2 Optimizing 8002 26
Add to Upper Accumulator (10-AUP) 3 Optimizing 8003 27
Argument (TLU) i 16 Program Loading 32
Arithmetic Operation Codes. 1 Programming from Fixed Locations..................... .. 27
Available Computing Time 22 Reset and Add to Lower Accumulator (65-RAL) 2
Branching Operation Codes e 12 Reset and Add to Upper Accumulator (60-RAU) 3
Branching Function of Read Codes. 16 Reset and Add Magnitude to Lower Accumulator (67-RAM) 20
Branch on Digit Eight in a Distributor Position (90-99-BD 0-9) 15 Reset and Subtract from Lower Accumulator (66-RSL) ... 4
Branch on Minus Accumulator (46-BMI).............. ... 15 Reset and Subtract Magnitude from Lower (68-RSM) 20
Branch on Non-Zero Accumulator (45-NZE) 15 Reset and Subtract from Upper Accumulator (61-RSU) ... 4
Branch on Non-Zero in Upper Accumulator (44-NZU) 13 Sequence Chart 28
Branch on Overflow (47-BOV) 15 Seven Instructions per Card Program Loading....... 34
Divide (14-DIV) oo 6 Sign Analysiso 1
Divide and Reset Upper Accumulator (64-DVR) 6 . Shift Operation Codes.................... 10
Four Instructions per Card Program Loading 34 Shift Left (85-SLT) i 11
Function (TLU) i i 16 Shift Left and Count (86-SCT) 11
Independent Accumulator Operations. 4 Shift Right (30-SRT) 11
Input-Output Unit Interlocks 22 Shift Right and Round (81-SRD) 11
Interlock Time—~533 22 Stop-Halt (01-HLT) 16
Interlock Time — 537 22 Store Operation Codes 8
Interlock Time —407 22 Store Data Address of Lower Accumulator (22-SDA) 9
Load Distributor (69-LDD) 16 Store Distributor (24-STD) ... 10
Miscellaneous Operation Codes 16 Store Instruction Address of Lower Accumulator (23-8IA) .. 10
Multiply (19-MPY) 5 Store Lower Accumulator (20-8TL) 8
No Operation (00-NOP) 16 Store Upper Accumulator (21-STU) 9
One Instruction per Card Program Loading. 32 Subtract from Lower Accumulator (16-SLO) 4
Operation Codes 1 Subtract Magnitude from Lower Accumulator (18-SML).... 20
Optimum Programmingo 21 Subtract from Upper Accumulator (11-SUP) 4
Optimum Programming Accumulator Considerations....... 22 Table Lookup i 16
Optimum Program Chart 23,24 Table (TLU) ... 16
Optimum Programming Techniques 21 Table Lookup (84-TLU) 18
Optimizing Arithmetic Codes. 24 TLU End-of-Table — End-of-Search 18
Optimizing Branching Codes 25 'TLU General Operation 18
Optimizing Shifting Codes. 25 TLU Other Considerations. 19

Optimizing 800X Addresses........................ 26 TLU Program Example. 19

B

International Business Machines Corporation
590 Madison Avenue, New York 22, N. Y. Printed in U.S.A. G24-5002-0 9/58

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36

