650 DATA PROCESSING SYSTEM BULLETIN

SOAP 2L, SOAP 2L. TAPE, SOAP 4000, AND SOAP 42

This bulletin obsoletes the SOAP IIA bulletin, Form J24-4001
(as well as previous editions of the SOAP IIA bulletin).

SOAP 2L assembly program replaces SOAP IIA, and
SOAP 2L Tape replaces Tape SOAP IIA. SOAP 2L
and SOAP 2L Tape incorporate major improvements
over the two programs they replace.

SOAP 2L is a multiple machine-pass assembly pro-
gram. Programs containing any number of symbols can
be assembled without the sectioning, prior to process-
ing, that is required when programs using more than
400 symbols are assembled by SOAP IL. SOAP 2L is
used for program assembly employing a card input-
output configuration 1M 650 Model 2 (2000-word
drum) Data Processing System. SOAP 2L Tape is used
for program assembly employing a 650 Model 2 tape
system. Both programs can assemble programs written
for any configuration of the 650 Model 2 system. They
use the same basic processing methods differing mainly
in speed, input-output procedures, and system require-
ments. SOAP 2L Tape is the faster of the two programs
because it can use IAS for storing frequently-used con-
stants and program loops and for temporary storage
locations,

The minimum system requirement for running SOAP
2L is an 18M 650 Model 2 card input-output configura-
tion equipped with the alphabetic special feature, spe-

© 1961 by International Business Machines Corporation

cial-character group I device, and a total of 12 co-selec-
tors. In addition, SOAP 2L Tape requires at least two
1BM 727 Magnetic Tape Units.

SOAP 4000 assembly program is used on an Bm 650
Model 4 (4000-word drum) system to assemble pro-
grams written for a 650 Model 4. SOAP 42 program is
used on a 650 Model 2 (2000-word drum), to assemble
programs written for a 650 Model 4. Most of the im-
provements and programming features of SOAP 2L
and SOAP 2L Tape are incorporated in SOAP 4000 and
SOAP 42. The minimum system requirement for these

~ two assembly programs is the same as for SOAP 2L, ex-

cept for the 650 drum capacity already given.

The information presented in this bulletin supple-
ments that given in the 18Mm Reference Manual SOAP 11
for the 18M 650 Data Processing System, C24-4000. Only
changes and additions to the SOAP II assembly pro-
gram are presented. Other than these modifications, the
information given in the manual still applies.

Requests for copies of condensed program decks
and listings should specify which of the four versions
(SOAP 2L, SOAP 2L Tape, SOAP 4000, or SOAP 42) is
desired. Requests should be made in the usual manner,
through the local 1BM sales representative or sales office.

SOAP 2L and SOAP 2L Tape

Program Assembly

Basically, translation and assembly of symbolic pro-
gram instructions by SOAP 2L are accomplished in the
same manner as by SOAP II. However, SOAP 2L can
be used to assemble long programs without the section-
ing formerly required to insure that the number of
symbols in any one section did not exceed a set maxi-
mum. When SOAP 2L is used, only the separation of
the output into two parts (i.e., completely assembled
and partially-assembled cards) is required. The par-
tially-assembled cards are then used as input to the fol-
lowing machine pass. In the case of SOAP 2L Tape, the
assembly process is completely automatic, and no card
handling is required because only completely assem-
bled cards are punched.

Specific information concerning the assembly of pro-
grams with SOAP 2L is included in the following para-
graphs.

Input Cards

The specifications for input cards (i.c., symbolic in-
struction cards) for the initial pass of SOAP 2L are
identical to those of SOAP 11, except for one additional
restriction: column 80 of the input cards must not con-
taina 12,1, 2, 3, 4, 5, 6, or 7 punch. The presence of one
or more of these punches in column 80 will cause im-
proper assembly.

As will be seen, program cards assembled with SOAP
2L contain only a 9 punch in column 80. Therefore,
symbolic programs can be reassembled with SOAP 2L.

Assembly

SOAP 2L and SOAP 2L Tape function the same as
SOAP II up to the point at which the maximum number
of symbols have been entered into the symbol table. At
this point assembly is suspended and a partial-assembly
phase is begun. During this phase no entries are made
in the availability- or symbol-tables and no pseudo-
operation code (except HED) is exccuted. Partial as-
sembly consists of reading all symbols and checking
these symbols against the symbol table. If a symbol is
found in the table, its equivalent location is inserted
into the output field (either of a card or of a tape rec-
ord) reserved for the assembled instruction, and a digit
is inserted into a control word as an indication that the
symbol has been translated. At the beginning of the
next pass the symbol table is cleared in preparation for
the construction of a new table. The symbolic informa-
tion contained in a partially-assembledscard is repro-
duced into the appropriate output field.

2

During a machine pass, the indication that a given
symbol has been previously translated prevents the pro-
gram from entering that symbol into the symbol table
and assigning it a new location thereby destroying pro-
gram continuity. Retention of the symbolic information
in its original form permits subsequent reassembly of a
program.

SOAP 2L

When this version is used, the partial-assembly phase is
begun following the assembly of the card containing
the 228th symbol. During this phase, partially assem-
bled instructions are punched out as described above,
and the control digits are translated into a combination
of punches (see Output Cards) that are punched into
column 80 of the output cards.

Following each machine pass the output deck must
be checked to determine whether the last output card
contains a 9 punch in column 80 or whether it is an
availability-table card. If either of these conditions is
found, assembly is complete. Otherwise, all cards con-
taining a 9 punch in column 80 must be removed from
the output and held pending completion of assembly.
(Note: All completely assembled cards will be together
at the front of the output deck.) The remainder of the
output deck is used as input for the next pass.

When all output cards of a pass are found to be as-
sembled, the sections previously removed from output
decks are placed together to form one program deck
(sce Figure 1). The final deck, when correctly placed
together, will be numbered sequentially throughout the
entire deck.

Example: Assume that the symbolic card shown in Fig-
ure 2 is read after assembly is suspended. Also as-
sume that the symbols SOME and NEXT are found
in the symbol table to correspond to locations 0542
and 1349, respectively. The corresponding output
card is punched as shown in Figure 3.

SOAP 2L TAPE

During assembly of a program with this version, as-
sembly is suspended following the card (or tape rec-
ord) containing the 200th symbol. However, cards are
punched out during the assembly phase only. At the
beginning of the first partial-assembly phase, all re-
maining cards are read, partially assembled, and writ-
ten on tape. Upon completion of this phase, the next
assembly phase is begun automatically. Input to the
program is taken from the tape previously written.
Again during this pass assembled cards are punched,
assembly is suspended following the processing of the
record containing the 200th symbol, and incompletely
assembled cards are written on tape. The process con-
tinues until the program is completely assembled. (Sce
Figure 4 for schematic diagram.)

Input

Output

Symbolic
Program Deck

r Partially

Assembled
______ L _cards |
Assembled
SOAP 2L Cards
1st Pass
Assembled
Cards
2nd Pass

—_
}

—
[}

Assembled
Cards

Final Deck

Figure 1. Program Assembly Using SOAP 2L (Source Deck Contains 229-456 Symbols)

/ SOME STUANY | NEXT
T[s[cocalion] o TR ADDR.| T [INJ§ R ADOR]T. REMARKS
[! : L Pl | H
[TOENTICATION I, CARD NO_,,[,UOCATION }, S|, ASSEMELED INSTRUCTION 2d) !;,TI“SI,,LOCAHONII,, OF ,,],,Enloon a2] 'NSTR-ADOR gifssTlas REMARKS ol
00‘0000|00000ii[l000000000'0000:000000}000&00“000‘.0000 "§070:0 §0 0{0]010 J0[0J0 00 0000 00 0fojojoje[ojo[ojo
|2:345”7nomnm:numwunmnn‘luzmzslnzwawazizwzmlﬂmss uma;««wnu:msw!smussmr[usmmnuuuunuesmmzuumanu,..u
111111111IIIII1lIlll111I[llll(IIll|1;1111}111111Ill|Hl«ll'li|l|111!‘111‘11111”111111 Htjt
' i] ' _ 8 0 A P IT
‘2211222{2222222222222222|2222|222222[2222:2222TS'l 1 T T HARBRRRAY
| | | | | Y1 ~ DATA INSTR. ;(‘:“55;“5
smasamsaa333333333333q333ﬂ33333m333m33ﬂswe””’”“ Pl aoomess (2] aorffs |2 AT | g
s[E|N ot lerel2]8
1 | PlRIR
STANDARD slalaTaWaslataajalaaasalaisassjaladdssdasassn
LOADING IDENTIFICATION N;;:ER 24:LOI:AT|0N:BOOO I::TS:UMCBT';E& : ! : : 1 HANNA A
CoDE | | 555I55|55|555!I55 5B 555515555555555(5/5(5/5/5(5/5(5
| | - — e KEY PUNCH —_—
0'5{3665|556666666666666BtGGGBIBGBGSS:B565:666856&.6866!668:566655:55565665565666606036666
| | |
77{7777:7177711777777177:7177:777777:7777:7777777[77777:777!777777:7.777777777777777777777
|
i
38:8008‘[888888880888088&8888:888808:8888'8888,888|88888:888:8'0898“‘883003880088808888888ﬂ
1 | | I 4 : |
99'9999'9599999999999999|9999|999999'9999'9999999199999‘999'999998$999998999&9999999999999
12134586078 awnmamsmmwgozlzzlzmzszslz':zeznom_a_z!mmszsl:m:mwu4z43lu4s4e474skssomszumsscsﬂgmaﬂnl@m_mmuw 11 7207374175781 77{78(79108

Figure 2. Symbolic Input Card

— l l TiS LIOCAEN |OF'. iTA ADDR.T.INI R ADDR] T~ REMARKS
[01640542 650096213649 SOME _|SITLIANY ijxr l
[IDENTICATION oI CARD NO. o|,L OCATON [S |,y ASSEMBLED INSTRUCTION 5o [517|zsS]as LOCATIO OR 3olsrJRTARADOR. 42 INSTR. ADDR 4 {oaT les REMAHES .
omuonmnlllﬁunooulouoool 0000 0 o0 00100 0 ofefojii0 0 O Oj! ofo0 Foo[sloio g ojooooo00000800 0j0|6|0
1 2|ls 45 6817 8 9 10[11 1213 14 15 1617 18 mzozlzzlzaznm:mm:w 32(:3:4:5%1373«:9 uuu:mwuw;4ssos1!azswmmm:usmsu 52]63 64 65 66 67 58 89 70 7t 72{73|74|75{76]77{ 78 78{80
1!'111'1111111111IIIIH‘HIHIIIHIHlll|I111111|1HH|l1 IRERNIEERE I RARRERRR R i
; ; } | | | s 0O AP IT
!m222h22222222222222|mzzzlzzzzzmzzzl2222ﬂs . T ARRARARL
~| ! | ! l | M LOCATION 4 DATA A INSTR. A REMARKS § : ¥ § 3 ;: 3
3&3a3m333333333333333q333ﬂ33333m333m3|33;e W] rooress || noorfls | HHARRRNE
SIEN X rlEl8
stanfaro can } } ASSEMBLED|444:4 uﬂuqn4uqu4u4u4u4u4u4u4u
LOADING IENTIFICATION | (1o o 24 |LOCATION8 0 0 O NSTRUCTION | | i i
qee N] 5|5/5i5 5B 5/515 515055 55/ 5 5 5!5155 5555555 5/5/5/5/5/5/5,3
| | ——— e KEY PUNCH ——-
ﬁ:BEGGmGGGBBGBBBH 66616658}6666 6!6666:86Ii6666||BBSGIBBG{BGBBBG{GGBG6666666666666666666
| | | |
77h111v177111111177777&777P77717P717h711711n1771P77P11771P|1777111171171117717T
| |
|
BB:SSBB:lHB88888B88888810ﬂ88}'8'3BGBIBSIBIHBHHIHHB:BBB!HISHMBBHB_HHHBHHHHB‘I
| | { : [
sislsms99093sssssasssmasamssesswslsmssslsssmssssmss%essssmssaasssssosssss ICIEIEN
1213 458178 81011 !213"151!17\918302!22|23242526l21202ﬂ303132'33‘:»3536‘373830-:’,141 42043144 45 4G 47145149 50,01 152 53 54 55156(671¢8 59 60 8) 2i63 64 65 6 67 68 68 70 71 72{73174i75) 78 71112179180 |

Figure 3. Partially-Assembled Output Card e

In partially-assembled cards, the operation code punched into columns 31 and 32 has no significance;
nor do any addresses punched into columns 23.26 and 33-40 which are not indicated, by the appropri-
ate punch in column 80, as having been translated. The operation code will be identical with the
operation code in the last completely-assembled card. Any addresses not transloted will be the same
as the last translated address of that field. For information pertaining to the punching in column 80,
see Output Cards.

Partially Partially
Assembled Assembled
Cards Cards
=&
Symbolic 7 Assembled
Program 7, Cards
Deck % T
‘,"‘ Assembled Cards
____________ d /
SOQAP ‘Assembled
2L Tape Cards 7
Input P ; /
3rd Pass 7 %
S Vi
| | 2nd Pass
> -
>~ 1st Pass
Output Assembled Cards |

Figure 4. Program Assembly Using SOAP 2L Tape (Source Deck
Contains 402-600 Symbols)

Symbol Table

With SOAP 2L the number of symbols contained in the
symbol table at the start of partial-assembly phase will
be 228, 229, or 230 (or 200, 201, or 202 with SOAP 2L
Tape). This is because partial assembly is begun after
assembly of the card containing the 228th (or 200th)
symbol, and this card may have one or two new sym-
bols in addition to the 228th (or 200th). Although no
more than 230 (or 202) symbols are ever loaded into the
table, an allowance is made for a few additional loca-
tions in the table. This allowance permits more rapid
partial assembly than would be possible if the entire
table were filled.

Output Cards

All output cards are punched with one or more identi-
fying digits in column 80. These are:

Identification Meaning

9 Completely-assembled cards (no other punches
will appear in such cards).

8 Incompletely-assembled cards (may appear alone
or in combination with 4, 5, 6, or 7).

I-address translated.
D-address translated.
Location translated.

First incompletely assembled card of the machine
pass.

R S BN |

NoTE: Because only completely-assembled cards are
punched by SOAP 2L Tape, only a 9-punch appears
in column 80 of the output cards from that version.

Sequence Checking Assembled Program Deck

The cards (exceépt the first five loading-routine cards)
of the five-instructions-per-card program deck are se-
quence-numbered in columns 7-10. When the program
deck is loaded, the cards are checked to see that they are
insequence and that none are missing. If either condition
isdetected, a programmed halt occurs with an instruction
in the program register of the form 01 XXXX XXXX,
where the I-address is the sequence number of the first
card of the two being compared when the error is de--
tected. If a sequence-error halt occurs, the restart pro-
cedure is to clear the read hopper, correct the sequence,
and reload, starting at the beginning of the deck.

Miscellaneous: SOAP 2L

When used as program cards, incompletely-assembled
cards will be passed and not loaded into any drum loca-
tion. When listed on the 1Bm 407 Accounting Machine,
such cards will cause BYpas to be printed to the right
of the remarks (except HED and comments cards).
Byras will also be printed for EQU or SYN cards of
the final deck, which were bypassed because of unde-
fined symbolic or regional instruction addresses.

If an availability table is to be reloaded during a mul-
tiple-pass assembly to restore previous availability con-
ditions, the table must be loaded before the 228th sym-
bol is encountered.

The multifile-assembly procedure (i.e., the stacking
of two or more symbolic programs with intervening
BOP cards) described under Multifile Assembly: BOP
in the SOAP II Reference Manual should not be used
unless it is known that each program contains fewer
than 228 distinct symbols.

Miscellaneous: SOAP 2L Tape

Programs assembled by SOAP 2L Tape must have, as
the last program card, a card punched XYZ in columns
48-50 (symbolic op-code field). This card, however, will
not appear in the output of the program.

If an availability table is to be reloaded during a mul-
tiple-pass assembly to restore previous availability con-
ditions, the table must be loaded before the 200th sym-
bol is encountered.

Programming Features

Additional Pseudo Instructions

In addition to the pseudo-operation codes described in
the SOAP II Reference Manual, five other pseudo-in-
structions can be used. Their explanations and illustra-
tions of their use follow.

DLA (DYNAMIC LEVEL AVAILABLE)

This pseudo operation makes available to the program
the equivalent dynamic locations between, and includ-
ing, the two locations specified in the D-address and
the I-address of the DLA pseudo instruction. Equiva-
lent dynamic drum locations are those occupying the
same word position around the drum, regardless of the
band (for example, 0014, 0064, 0114, 1914, 3964). The
drum locations specified in the D- and I-address must
be of the same dynamic level.

In Figure 5, the first DLA pseudo instruction makes
available to the program the one drum location, 0048.
The second DLA makes available to the program .drum
locations 0049, 0099, 0149, 0199, 0249, and 0299. Thus,
if a large block of storage has been reserved for storing
a table that is to be searched using a TLU operation,
the last two storage locations in each band of the block
can be made available to the program by using only
two DLA pseudo instructions (see Figure 6).

DLA cards are not only used as part of symbolic
input to program assembly, but are produced as output

41[42[43i44 - - 47]48i49, 50[51152- _ -55] 5657~ -60! 61- -72|SOAP I COL,
41{42]43144- -47]48149,50]|51152- -55|56|57;58~ ~61:62|63- -72[|soAP T COL
T|S OPER.| DATA [I| INSTR. ACCU
P|N|LOCATION| 5pe | ADDRESS |&| ADDRESS é REMARKS UPPER 8003
T 1. 71 1' 1'
1l ITINT TT |AILI |ZIATIO |
1 1 i
; % ; |
i ;Bi LR]| (0000 04909 !
; D;LA 10048 ioo48 |
! 'LA| (00409 102909 :
| BN N ' |
\ O oo o :
| [l
! i ! | !
Figure 5. Single and Multiple Drum Locations Made Available
41[42]43144 - - 47]48149 50[51152- -55 5<s§57- '6°.r 61- -72|SOAP 1 COL,
41142[43144- -47(4849,50[51152- -55|56|57;58~ - 61i62|63- -72| SOAP T %(():L
T[S OPER.| DATA [I| INSTR. | ACCU
pN[LOCATION| “5pE | apDREss |8 ADDRESS CL; REMARKS UPPER 8003
T 1 T
1 IENITI A;LI ZEATIO N| | T :
i | I | .
! - -1t - - % N '
1: B!LR 1000 11799 TABLE !
1 1 1 |
oo ;
1/ |[PROGR|AIM ! ! — :
1 T T T
D :
‘; D,:LA i1048 ;1798 .
' DILA| 10409 11799 |
ekl L :
! ! ! :

Figure 6. Last Two Drum Locations in Each, Band of Table Area Made Available

-

6

Y Y _
0000008000 XXXX DLA xxxx xxxX 9 9
Standard Card Op D !
Loading No.
Code
1 10 1720 |48 61 73 80

Y represents a 12-punch.

Figure 7. DLA Output Card Format

from the assembly as well. Output DLA cards are pro-
duced as a result of the pseudo instruction, PAT, and

they indicate the available storage locations by dy-

namic levels. The format of DLA output cards is shown
in Figure 7.

Card number (columns 17-20) of all DLA output
cards for a program is the same as the card number of
the output PAT card that precedes them.

.DLA output cards can be used to reinstate the avail-
ability table they represent. The procedure is to place
an RDR card first, followed by the output DLA cards.

Because the availability table is punched out in the
form of DLA cards, altering or updating the availabil-
ity table is quite easy. Thus, an availability table can be
altered to reflect a corrected storage status after patch-
ing a program, by appropriate removal, addition, or
alteration to, DLA output cards. For example, if a user
discovers after program assembly that one additional
storage location is needed, he can examine his DLA
output cards. He picks out a card that indicates one
available storage location (for example, DLA 1610
1610), notes the address, and uses it to make the patch.
He then discards the DLA card representing the loca-
tion used. The remaining DLA output cards, if loaded
as input following an RDR card, reinstate the corrected
availability table for the assembled program.

One or more consecutive DLA cards immediately fol-
lowing a PAT card in the input deck will be bypassed.
They will neither appear in the output as DLA cards
nor affect the present availability table. Therefore it is
not necessary to remove DLA output cards from a sym-
bolic deck previously produced as output from an as-
sembly, when the symbolic deck is to be used as input
for reassembly.

At the completion of a PAT pseudo operation, the
entire drum is unavailable to the assembly program, as
though a reserve-drum pseudo instruction were given.
Thus a measure of drum security is automatically ef-
fected, guarding against duplicate assignment of drum
locations by the assembly program, or inadvertent over-
lay of information on the drum. To proceed with subse-
quent program assembly immediately after obtaining

the availability;table output, the user specifies the loca-
tions that are to be made available for further assembly.
Such specification can be accomplished by using as
input either (1) an appropriately-prepared BLA card,
or (2) the appropriate DLA output cards obtained after
a previous program assembly.

PST (PUNCH SYMBOL TABLE)

This pseudo instruction permits punching the contents
of the symbol table together with the equivalent abso-
lute addresses. The symbols and their equivalents are
punched into the equivalence (EQU) card format.

Example: Assume the symbol table and equivalence
table contain the following entries when a PST card
is encountered.

Symbol Table Equivalence Table
EDPM 00 0100 0462
TAX
WAGES
FICA 00 1807 0025

Cards would be punched as follows.)
OP D-Address I-Address
PST (blank) (blank)
EQU EDPM 0100
EQU TAX 0462
EQU WAGES 1807
EQU FICA 0025

Note: 1. Symbols that are headed when entered into
the symbol table will be headed when
punched.

2. Al EQU cards will be numbered 0000.

3. If a PST card is encountered during the par-
tial assembly phase, no symbol table punch-
out will occur.

The SOAP 2L and SOAP 2L Tape programs also in-
clude a test of the 650 console sign switch. This is made
at the beginning of the second and of each succeeding
machine pass of a program assembly. If, when the test
is made, the sign switch is set to minus (—), a punchout
of the contents of the symbol table will occur. That is,
all symbols used in the preceding pass will be punched
into EQU cards.

Because the above described features are included in
the program, and because the PST pseudo-op code is
not executed during a partial assembly phase, a punch-
out of all symbols used in a program may be obtained
by setting the sign switch to minus (—) and placing a
PST card at the end of the input deck. This will cause
a punchout of the contents of the table at the beginning
of each machine pass (except the first) and upon com-
pletion of assembly.

If the only PST card included in the program is at
the end of the input deck, no symbol will be punched
more than once, unless redefined by an EQU or SYN
card.

The EQU cards obtained from a symbol table punch-
out have two principal uses.

A. The cards may be sorted on the symbols or equiva-
lents and listed for reference. Such listings are use-
ful for detecting incorrect absolute addresses and
erroneous symbols not discovered during pre-assem-
bly desk checking.

. Some or all of the EQU cards, together with the
availability table, can be reloaded to establish as-
sembly conditions if it becomes necessary to incor-
porate changes or new symbolic sub-programs into
an assembled program.

RDR (RESERVE DRUM)

This pseudo instruction rapidly reserves the entire
drum. It is particularly useful in conjunction with as-
sembling a program that requires less than half the
storage capacity of the drum. When a symbolic pro-
gram is ready to be assembled, an RDR card is placed
ahead of the BLA card that designates the portion of
the drum to be used for the assembly. Drum reserva-
tion (RDR) is completed substantially faster than block
reservation (BLR). For example, an entire 2000-word
drum can be reserved by performing an RDR pseudo
instruction in three seconds, compared to the 180 sec-
onds required for a BLR pseudo instruction. Figure 8
illustrates the use of the RDR pseudo operation in as-
sembling a 250-instruction subroutine in drum loca-
tions 3700-3999.

The procedure formerly required (that is, not using
the reserve drum pseudo operation RDR) was the
slower method of reserving that part of the drum not
required by the program. Figure 9 illustrates the block-
reservation method formerly used.

SEQ (ASSIGN SEQUENTIALLY)

This pseudo operation causes the assembly program to
assign sequential numbers to L-, D-, and/or I-address
portions of instructions or data. For example, in Part I,
Figure 4, SOAP II Reference Manual, the drum loca-
tions 0000-0009 are reserved for storing a rate table.
The data composing the table must be placed on the
drum. One way to do this is to assign the appropriate
drum location for each rate. A better way is to use the
pseudo operation SEQ as shown in Figure 10. The as-
sembly program automatically assigns sequential L-
address locations to the constants that make up the rate
table. The first L-address assigned is that specified in
the L-address part of the SEQ pseudo instruction. As-
signment is terminated when the program encounters
an SEQ pseudo instruction in which the L-, D-, and
I-addresses are blank.

Sequential assignment of storage locations (drum and
IAS) to L-, D-, and/or I-addresses of instructions and
data by the assembly program is accomplished if:

1. An SEQ pscudo instruction with the desired starting
location(s) in its L-, D-, and/or I-address, is used.
In Figure 10, the pseudo instruction used is 0000
SEQ (blank) (blank), which will cause sequential
number assignments in the L-addresses of the con-
stants of the table starting with number 0000.

41/42/43144 - -47]48149,50|51152- -55 56js7~ -60] J61- -72[SOAP 1 COL.
414243144~ -47|4849,50|51152- -55[56|5758~ -61:6263- -72] |SOAP T COL.
T{S OPER. DATA TT INSTR. | ACCU
PINJLOCATION| copE | ADDRESS &| ADDRESS ‘CL; REMARKS UPPER 8003
1 T :
| R{D R 5 ;
! B LAl !3700 13999 :
i i i i i
| ! 1 { N
Figure 8. Reserving the Drum and Making Available a Block of Drum Locations
41[42[43144- -47]4849,50|51152- -55] |56:57- -60| [61- -72]SOAP 1 COL,
4142/43144- -47|48149,50]51152- -55|5657158- ~6162|63- -72] {soAP T COL
T|S OPER. DATA T1T INSTR. | ACCU
PN|LOCATION| coDE | ADDRESS |6] ADDRESS cL; REMARKS UPPER 8003
{ T i 1 :
| BILR| {0000 {36009 ;
: i ! : E
Figure 9. Reserving a Block of Drum Location‘si

8

-
»

F

4W42043/44 - - 47]48149 50[51152- -55] J56:57- -60]]61- -72[SOAP I COL.
411424344~ -47]48149,50[51152- -55[56/57:58- -61:62]63- -72] lsoar HA%%IG
3 OPER.| DATA [I| INSTR. |

p|N|LocATION CODE | ADDRESS |&] ADDRESS é REMARKS UPPER 8003
| 1 1 T
; 51CD | {0002 0011 :
| BILR| ;1951 1960} |[READ AREA, |
i REG|Plo0o27]|]| lo030 PUNCH AREAi AssqmbledTobleW.fh
i | RATE TABL E| Assigned L-Addresses
, BLR| [0000 0009 LA T i AP S |
10000[siEQ | | S.TORE : (====TABLE ===-)
! I g 0000 0126 TABLE : 0000 00 0000 0126
T T :
! ‘0 0 0000 0137 : 0001 00 0000 0137
! ool 'ooaao 0148 | 0002 00 0000 0148
; 00 0000 0160 5 0003 00 0000 0160
; ool {0000 0173 ; 0004 00 0000 0173
| lo 0 0000 0187 ; 0005 00 0000 0187
‘ 100l 10000 10202 1 0006 00 0000 0202

00l 0000 10218 | 0007 00 0000 0218
00| '0000 Eozas ' 0008 00 0000 0235

| 00| !0000 10253 ' 0009 00 0000 0253
T T } .
| S|EQ } é

i [1 !
SITART|RICD| 1950 ! READ _CARD |
T T 1
! DD| 1951 1 STORE :
! SITD |PLO0OO1 IDENT
E PCH|[P 0001 SITART| |[PUNCH '
T T 1
! X' FR |SITART ! :

Figure 10. Using SEQ to Assign L-Addresses of Table

2. The instruction or the data to which sequential num-
bers are to be assigned has either a blank L-, D-,
and/or I-address or a symbolic L-, D-, and/or I-ad-
dress not previously defined.

In connection with condition 2, if an instruction or a
word of data contains either an absolute entry or a sym-
bolic entry not previously defined in the L-, D-, and/or
I-address, no sequential number(s) is assigned. Instead,
the absolute entry or the previous definition appears in
the L-, D-, and/or I-address of the assembled output
for the instruction. Furthermore, the next sequential
number assigned by the assembly program, after such
an interruption as that just mentioned, is sequential as
though the interruption had not occurred. Thus, se-
quential numbers are skipped in those instructions con-
taining absolute entries (Figure 11, such as in the in-
struction NZA 9004 9006, where the IAS location 9004
is skipped) or symbolic entries previously defined.

Recommended practice is to reserve the block of
drum locations that are to be assigned by the SEQ
pseudo instruction. The user can do this at the begin-
ning of the main program during initialization. In Fig-
ure 10, the drum locations were reserved by the pseudo
instruction BLR 0000 0009.

Figure 11 illustrates the use of the SEQ pseudo in-
struction in assigning sequential drum L-addresses and
sequential core I-addresses for a drum-stored core-exe-
cuted closed subroutine.

If sequential assignment of table values is to be
made, locations xx48 and xx49 should not be used (so
that TLU operations function properly). Also, if assign-
ment is to resume at locations xx50 or xx00, another
SEQ pseudo instruction is required, containing the ap-
propriate starting numbers. For example, in Figure 10,
if the ten rates of the table were to be stored sequen-
tially on the drum beginning at location 0045, the
proper entries would be as shown in Figure 12.

4142|4344~ -47]48149 50[51152- -55] |56i57- -60]]61- -72[SOAP 1 COL
414243144~ -47)4849,50[51152- -55 5T657358- -61162/63- -72] lsoapm coL
[RJocamon| S| 288 W] ST 0w |t
1 JUNITI AELI ZATIO|N
| R |
| BILR| 10000 {0005 i
1
{ [Y O P
CIALLI NIG |SiEQUE |NICIE :
; R;A L K
; LDD|EXIT KIFACT |
1 |SUBROIUTI |NE clajLic K |FIACTORI AL
KIFACTISET!| 19000 '
! L|I B 00 0‘0 200¢ % Assigned Locations :
j0000|SEQ 9001 - L D |
| S{TD 9006 0000 24 9006 9001
R;A Al 18002 : : 0001 80 8002 9002
l sIXAl 0001 ! ! 0002 51 0001 9003
| IMzal| 9004 | 8006 ; 0003 40 9004 9006
! RIAU| 18002 i 0004 60 8002 9005
' M{PY| {8005 '9 002 | 0005 19 8005 9002
| SlEQ]| | ! f
Figure 11. Using SEQ to Assign L- and I-Addresses of Subroutine
41[42]43144~ - 47]48149 505152~ -55] [56:57- -60] |41~ ~72|SOAP 1 COL,
4142143144~ -47/48149,50|51152- -55/56]57158 -61@6263- -72] |soAP I COL
N A e T
! P S e : Assembled Table With
E BILR| 0045 0056| |[RATE TAB LEi LAssigge';i l--»‘\lgldressesI
[0045[8EQ ; S TORE] (===~ TABLE ~===)
:l 090 0000 ‘0126 | ITABLE 0045 00 0000 0126
L ‘00 000 3 i 0046 00 0000 0137
' 00| '0000 148 0047 00 0000 0148
{0050 SIEQ L
1 00| 10000 10160 i 0050 00 0000 0160
00l 10000 0173 | 0051 00 0000 0173
0ol 0000 0187 E 0052 00 0000 0187
| 0ol 'oo0oao 0202 0053 00 0000 0202
' 00 0000 0218 ! 0054 00 0000 0218
00} {0000 0235 § 0055 00 0000 0235
! ool '0000| | 0253 L 0056 00 0000 0253
! S EQ E ‘
1 || ! .
SiTART RCD 1950 ;: READ CARD ‘
| 1
f == e T +
{ -

¢
Figure 12. Using SEQ to Assign Locations in More than One Band

10

s

TAP (SEARCH LIBRARY TAPE)

This pseudo instruction can be used when assembling
a symbolic program using symbolic routines (programs,
subroutines) previously stored on magnetic tape. The
magnetic tape prepared for such use, sometimes called
a library tape, is described under SOAP Librarian. The
format of the TAP pseudo instruction is shown in Fig-
ure 13.

The entry in the L-address part of the TAP instruc-
tion is the location of the first program instruction (that
is, the entry point) of the routine to be called in from
tape. The location entry may be in symbolic, regional,
or absolute form.

The TAP pseudo instruction is placed in a symbolic
source program at the point where a specific routine
stored on a library tape is to be incorporated in the as-
sembled output.

The assembly program, when it encounters a TAP .

pseudo instruction, searches the library tape for the
routine entry point. When the entry point is located,
the corresponding routine is read from tape onto the
drum. The assembly program processes the called rou-
tine, producing an output TAP card followed by as-
sembled output cards from the called routine. The
assembly program continues assembling the source
program, beginning with the symbolic instruction fol-
lowing the TAP pseudo instruction. Figure 14 shows
the format of the output TAP card. Figure 15 is an ex-

cerpt from a symbolic program using TAP pseudo in-
structions to’call in tape-stored subroutines at assembly
time. Figure 16 is a listing of the symbolic card output
produced from the library tape-to-card transfer; it rep-
resents the contents of the library tape. In Figure 16 the
line of numerical information on the listing that pre-
cedes the first instruction and the line that follows the
last instruction have no significance in each routine, ex-
cept to indicate the beginning and the end of each rou-
tine. Figure 17 is a listing of the assembled output pro-
duced, using both the program of Figure 15 and the
library tape represented by Figure 16 as input to the
SOAP 2L Tape assembly program.

BDO Operation Code

BDO is not considered a valid symbolic operation code
for Branch on 8 in (Distributor) Position 10 in SOAP 11,
SOAP IIA, and Tape SOAP IIA (see footnote on page
24, SOAP II Reference Manual). However, both BDO
and BDO are valid symbolic operation codes in SOAP
2L and SOAP 2L Tape, and are assembled as-numeri-
cal operation code 90.

Y Y LN an ‘r
0000008000 X000 1| | xxxxxTAP 9 9
1 10 17200 41 50 73 80

Figure 14. Format of an Output TAP Card

41|42[43144 - -47|4849,50[51152- -55 56@57- -60| [61- -72|SOAP 1 COL,
41/42l43144- -47|48149,50|51152- -55|56|57:58- -61162{63- -72| |SOAP T COL
T|S OPER. DATA TT INSTR. | ACCU
p|N|LOCATION| opE | ADDRESS |8 ADDRESS é REMARKS UPPER 8003
[1 T T
N T I A L
XIXXXX T;AP (;blank)

| N
(blank) .

?

1

|

i

]

{
|
i
!
|
1
T
I
I
:
1

Figure 13. Format of TAP Pseudo Instruction

11

4114243144~ - 47[48149,5051152- -55] [56:57- -60] [61- -72|SOAPI COL,
41|42]43144- -47]48149,50[51152- -55/56/57:58- - 6116263~ -72| |SOAP I COL
IT’EI'-?CA"ON 8<§DR_E ADDRESS é ADDRESS é e PR B0
! wleo |ule - o - :
g L'DD UNPCK !
; SITL[Y/0004]| |[BGRAB . [
S:lTLl TAP !
BIGRABIRIAL |BBBB i
! D1 V|71 o
; RS L 8003 NEG REMNDR!
; AlLO|B/BBB !
| LIDD Z10 000 :
silLojel1 00T !
| BMI E/RRB !
| AlLo | 18001 P{ACKR ;
UNPCKITIAP 5 | :
Z000O0|TIAP ; !
911001 ;00| 0000 9100 L
I T R e P -j- - -]
| ! ! }

Figure 15. Excerpt from a Symbolic Progrém Using TAP Pseudo Operations

Literal Constant

Programs quite commonly make use of numerical con-
stants. A 650 program written in symbolic language for
assembly using SOAP II might contain instructions in-
volving a numerical constant as indicated in Figure 18.
The first symbolic instruction in Figure 18 referring to
the constant 0000000001 requires a separate entry on
the program sheet (and a separate card punched from
it) to store the constant 0000000001+ in symbolic loca-
tion ONE.

The concept of the literal constant, however, not only
provides for a symbolic program operation using a
constant, but alsoproduces a type-1 literal card. This
card, when loaded, causes the constant to be stored in a
symbolic location as well, provided the literal-constant
symbol has not been previously defined. The preceding
action results from one instruction.

Use literal constants in a program initially as follows.
Specify the symbolic name of the constant in the D-
address part of the instruction. Specify the numerical
value of the constant in the remarks field of the instruc-

.

12

tion. Each of these two entries is explained subse-
quently.

D-ADDRESS, COLUMNS 51-55

Enter the symbolic name of the literal constant in this
field of the instruction. Its form must be either bbXXX
(for a positive constant) or bMXXX (for a negative con-
stant), where X may be any valid character, including
blank. However, there must be at least one non-blank
character in columns 53-55.

REMARKS, COLUMNS 63-72

Enter the numerical value of the literal constant in this
field of the instruction. The constant may be in the
range 1 to 9999999999, The location within this field is
immaterial. For example, if the constant 1 is being
specified, it may be placed in any one column from 63
through 72, provided the remaining columns of the
field are blank. Prior to being stored at loading-time in
the symbolic location specified, the literal constant is
right-justified.

6066 &07 g
8012 5680121857 1956
LOAD CARD .
ROUTINE

8012 5580128000 1958

0000 0000000000 0000 1956 0000000001 0037

INIT CNDTN

CDS READY
BEGIN INV
RECD NOW
RECD NEXT
PER CONST
CASH AVAIL

0000 -0 -0 03 o Aalos 5
0000 2790501953 0000 81951 2790501955 1954
37 20000 LDO WORD2
37 STD Y0002
37 LDD WORD4
37 STD Y0004
37 LDD WORD®&
37 STD Y0006
37 LDD WORDS5
37 STD Y0005
37 LDD WORD7
37 STD Y0007
37 RAL 20001 STL1
0000 8990903091 0000 28373 7961730000 9100
37 STL1 STL Y0001
37 PCH Y0001
37 SLO 11
37 NZE STL1
37 HLT 0000 START
280 WORD® 03 0000 0280
280 WORDS 02 1000 0280
700 WORD4 03 0000 0700
1702 WORD2 01 0000 1702
500 WORD7 00 0000 0500
1 11 00 0000 0001
6900 0090908090 0000 092090 0090900000 9091
37 START RCD 20000
37 RAL 20008
37 SRT 0005
37 DIV 2501
37 NZU CDCOD
37 RAL 20009
37 SRT 0006
37 DIV 501
37 NZU CDCOD FINE
0000 T00P 70 0000 0000
37 CDCOD RAL 700P JMPIN
6463 9790767700 7664 17477 7961730000 6975
37 UNPCK RAL 20002
37 SLT 0002
37 STU MONTH
37 LDD ZERO
37 SDA NEEDA
37 SLO 8001
37 SLT 0003
37 STL NEEDB FLIPL
0000 7565656462 0000 67369 8283730000 7791

RIGHT JUST

DATA POSIT

DATA POSIT

0000 0000000000 0000 1956 0000000000 0037

0000 0000000000 0000 1956 2419560037 0037

6183 7776826983 €100 1956 0037

2419560037

Figure 16. Symbolic Listing of Library Tape

Figure 19 shows several examples of entries on the
650 program sheet using literal constants. No program
continuity is intended in these examples.

The assembled output of the first instruction would
be:

RAL bbONE 1bbbbbbbbb
1 LIT 1bbbbbbbbb

The assembled output of

would be:

ALO DbMFIC 14400bbbbb XXXX 15 YYYY Z7727Z
1 LIT 14400bbbbb YYYY - 00 0001 4400

The assembled output of the third instruction would
be:

SUP bb6bb bbbbbbbbb6 XXXX 11 YYYY ZZZZ
1 LIT bbbbbbbbb6 YYYY 00 0000 0006

The assembled output of the last instruction would
be:

RSL. bMb2C bbbb200bbb XXXX 66 YYYY ZZZZ
1 LIT bbbb200bbb YYYY - 00 0000 0200

Punching of literal constants is suspended during
partial assembly and resumed in the multi-pass phase.

XXXX 65 YYYY Z727Z
YYYY 00 0000 0001

the second instruction

If the user reassembles a program that used literal
symbols, causing generation of literal constant cards,
new literal constant cards are generated and the previ-
ous literal cards are bypassed during reassembly.

Once a literal constant has been used initially as just
described, subsequent operations using it can be per-
formed by specifying the operation code and the sym-
bolic name. The contents of the remarks field have no
effect upon the literal constant. Because the remarks
are reproduced in the output card, the field can be used
for remarks in the usual manner. For example, if the
first instruction shown in Figure 20 is the first use of the
symbolic name, bb5bb (representing the literal con-
stant 0000000005+), the constant, at program-loading
time, will be stored in the location whose symbolic
name is bb5bb and will be reset-added to 8002. This
same literal constant can be used subsequently by an
appropriate instruction, such as the second one in Fig-
ure 20. That instruction adds to 8002 the previously-
defined constant, bb5bb, whose numerical value is

13

16 LOD UNPCK 0043 69 0046 0099
17 STL Y0004 BGRAB 0046 20 1930 0083
18 1 STL1 TAP
19 STLL STL Y0001 0039 20 1927 0030
20 PCH Y0001 INIT CNDTN 0030 71 1927 0027
21 SLO 11 0027 16 0080 0035
22 NZE STL1 0035 45 0039 0139
23 HLT 0000 START CDS READY 0139 01 0000 0093
24 WORD6 03 0000 0280 BEGIN INV 0050 03 0000 0280
25 WORDS 02 1000 0280 RECD NOW 0100 02 1000 0280
26 WORD4 03 0000 0700 RECD NEXT 0150 03 0000 0700
27 WORD2 01 0000 1702 PER CONST 0200 01 0000 1702
28 WORD?7 00 0000 0500 CASH AVAIL 0250 00 0000 0500
29 11 00 0000 0001 080 00 0000 0001
30 BGRAB RAL BBBB 0083 65 0017 0071
31 DIV 71 0071 14 0074 0085
32 RSL 8003 NEG REMNDR 0085 66 8003 0143
33 ALO BBBB 0143 15 0017 0121
34 L.DD 20000 0121 69 0124 1950
35 SLO 91001 0l24 16 0077 0081
36 BMI ERRB 0081 46 0034 0135
37 ALO 8001 PACKR 0034 15 8001 0041
38 1 UNPCKTAP
39 UNPCK RAL 20002 0099 65 1952 0107
40 SLT 0002 RIGHT JUST 0107 35 0002 0113
41 STU MONTH 0113 21 0018 0171
42 LOD ZERO 0171 69 0010 0163
43 SDA NEEDA DATA POSIT 0163 22 0067 0070
44 SLO 8001 0070 16 8001 0127
45 SLT 0003 0127 35 0003 0185
46 STL NEEDB FLIP] DATA POSIT 0185 20 0189 0042
47 1 Z0000TAP
48 20000 LDD WORD2 LLOAD CARD 1950 69 0200 0003
49 STD Y0002 ROUTINE 0003 24 1928 0131
50 LDD WORD4 0131 69 0150 0053
51 STD Y0004 0053 24 1930 0133
52 LDD WORD6 0133 69 0050 0103
53 STD Y0006 0103 24 1932 0235
54 L.DD WORDS5 0235 69 0100 0153
55 STD Y0005 0153 24 1931 0084
56 LDD WORD?7 0084 69 0250 0203
57 STD Y0007 0203 24 1933 0086
58 RAL 20001 STL1 0086 65 1951 0039 -
59 91001 00 0000 9100 0077 00 0000 9100
Figure 17. Assembled Output of Program Shown in Figure 15
| T Y
41]42[43144- -47[48149,50[51152- -55] |56:57- -60] 161~ -72| SOAP I COL,
1] T 1
41|42]43144- -47/48149,50]51152- -55|56/57158- -61162]63- -72| SOAP TI COL.
TiS LOCATION OPER. DATA 1 INSTR. 71 REMARKS ACCU
PIN CODE | ADDRESS |G| ADDRESS 'G UPPER 8003
T T | R T
]
. MR B R
T 1
g R_i'A U |OINE S, TX L
T
1]
SITX -t |-l - - : !
i : H
| ik BBl M B . P
| 1
1 . | |l
| i {
} : -
| 1}
| S :
]
: . | e
i | ;
| s : s
1
o;NE 0.0 0000 0001 CONSTANT i
1 T 1
1 1
1 l : .

7
Figure 18. Typical Use of a Constant in a SGAP 11 Instruction

14

e

ol Tei- - © -72[SOAP 1 COL

41]42]43144 - -47]4849,50[51152- -55| 5657 -
A1|42l43144- -47]48149,50{51152- -55|56{57:58- -61162|63- -72l [SOAPT COL,
T[S OPER.| DATA INSTR. | | ACCU
P|NJLOCATION] cope | ADDRESS é ADDRESS é REMARKS UPPER 8003
1 T :v
| RIAL |bbONE 1, . ;
; ALO [BMFIC 1.4.400
; S{UP |blb6bb | 6!
| RIS L |biMb2C } 200, i N
Figure 19. Using Literal Constants
41|142|43144 - -47]48149,50|51152- -55] |56:57- -60] 161- -72|SOAP 1 COL,
41{4243144- -47|4849,50(51152- -55(56|57158- -61:62|63- -72l [SOAP T COL
TS OPER.| DATA [I[INSTR, | ACCU
P|N|LOCATION] cope | ApDRESs |G| ADDRESS ’é REMARKS UPPER 8003
T T :
el el oo el a
| RIALIbS5bD | XXX 5 ;
o= —
| AlLob!lb5bb | [XIXX '
| o= fde - - i
Figure 20. First and Subsequent Use of a Literal Constant
41142]43144 - -47|48'49.5051;52- -55 15657 - -60 |61- -72/ SOAP 1 COL,
41(42]43144- -4748149,50[51152- -55[56|57:58- - 61:62|63- -72] [SOAPT COL.
TIS OPER.| DATA INSTR, | ACCU
P|NJLOCATION copE | ADDRESS cl; ADDRESS é REMARKS UPPER 8003
1 1 T
; EQU biblbb j0011 1 ;
; EQU|bMPIb Al0020| 3141509
{ EQulbb144]| IMFICA]| |14 400 L

Figure 21. Literal Constants in Equivalence Expressions

0000000005, Literal constants can be used in conjunc-
tion with the two predefining pseudo operations, EQU
and SYN.

LITERAL CONSTANTS IN EQUIVALENCE (EQU) EXPRESSIONS

The literal constant symbol written in the D-address is

assigned the equivalent of the expression written in the -

I-address. Also, the numerical value of the literal con-
stant written in the remarks field is stored in the loca-
tion represented by the I-address at program-loading
time. The I-address can be absolute, regional, or sym-
bolic. If the I-address is regional or symbolic, it must
have been previously defined. The examples shown in
Figure 21 illustrate the use of literal constants in equiv-
alence expressions.

The first pseudo instruction in Figure 21 establishes
an equivalence between the literal constant symbol

bblbb and the absolute address 0011. It punches a lit-
eral card which, when loaded, stores the literal constant
0000000001} in location 0011.

The second pseudo instruction in Figure 21 estab-
lishes an equivalence between the literal constant sym-
bol bMPIb and the regional address A0020. It punches
a literal card which, when loaded, stores the literal con-
stant 0000314159— in the location whose regional ad-
dress is A0020, Region A must have been previously
defined by an REG card.

The third expression in Figure 21 establishes an
equivalence between the literal constant symbol bb144
and the symbolic address MFICA. It punches a literal
card which, when loaded, stores the literal constant
0000014400 in the location whose symbolic address is
MFICA. The symbolic address MFICA must have been

previously defined.

15

41]42/43144- - 47]48149.50[51152- -55] [56:57- -60] |61- -72[SOAP.I COL.
41)42143144- -47]48149,50|51152- -555657158- -61162[63- -72] |sOAP T COL
PN LOCATION gg?:?é AE_SII?SS é AL%SRTIE'%S Ié REMARKS TR A0S

| SEYN b{}bTWO bj1304 2 ,

5 SIYN[b/MEPS EiPSIL 271828

g S;’YNbJ:b9bb T{0015 99999900041;

i I l] !

Figure 22. Literal Constants in Synonym Expressions

LITERAL CONSTANTS IN SYNONYM (SYN) EXPRESSIONS

An SYN card is like an EQU card except that the equiv-
alent of the expression written in the I-address must be
adrum address. This drum location is made unavailable
to the program.

The first pseudo instruction in Figure 22 establishes
an equivalence between the literal constant symbol
bbTWO and the drum location 1304, It punches a lit-
eral card which, when loaded, stores the literal constant
0000000002+ in location 1304 and makes location 1304
unavailable to the program.

The second expression in Figure 22 establishes an
equivalence between the literal constant symbol bMEPS
and the symbolic address EPSIL. It punches a literal
card which, when loaded, stores the literal constant
0000271828— in the drum location whose symbolic ad-
dress is EPSIL, and makes the latter drum location un-
available to the program. The symbolic address EPSIL
must have been previously defined.

The third pseudo instruction in Figure 22 establishes

an equivalence between the literal constant symbol
bbObb and the regional drum address T0015. It punches

Assembled Qutput Using Assembled Output Using
Symbolic Input SOAP I, 1A, 1A Tape SOAP 2L, 2L Tape
1802 RSL 9049C NEXXT 1802 66 9649 0009 1802 66 9649 0011

Figure 23. Result of Modification in Optimization

a literal card which, when loaded, stores the literal con-
stant 9999990001 in the drum location whose regional
address is T0015, and makes this latter location un-
available to the program. The regional address TO015
must have been previously defined by an REG card.

Modification in Optimization — Special Case

SOAP 2L and SOAP 2L Tape have been improved in
the case of an instruction having an A-, B-, or C-tagged
IAS D-address and an even dynamic drum L-address.
The improvement concerns the optimal location as-
signed to the instruction I-address. The change is in the
assembly programs only, and results in proper optimi-
zation in this particular case. When comparing the I-
addresses assigned using the SOAP 2L program with
those assigned using the SOAP II and SOAP IIA pro-
grams, the saving is almost one drum revolution, as
shown in Figure 23.

Regional Addresses

SOAP 2L and SOAP 2L, Tape accept regional defini-
tions with FWA > 1999. They will not make incorrect
entries in the availability table, thereby permitting re-
gionalization of tape unit, indexing register, and IAS
addresses. (See Figure 24.)

41|142{43144~ -47|48149.50[51152- -55] [56157- -60] J61- -72|SOAP.1 COL,
41142|43144- -47]48149,50]51152- -55/5657158- —61§6263- -72| |SOAP. T COL
p|N|LOCATION ggegé A_gé;?ss c’T% A_Ipr\gRTERs's ;é REMARKS "W?s%%

E REEG xisoos '8 0007

'I R;EG T|:8010 8015 :

l} REEGIQOOO 59059 u

i : i o

Figure 24. Regional Addresses for Indexing Registers, Tape Units, and IAS

-

16

SOAP 2L and SOAP 2L Tape accept 9000-9199, in-
clusive, as valid IAS addresses. The addresses 9060-
9199, therefore, can be used in a program to indicate
IAS addresses which are modified by program steps be-
fore execution of the instructions involved (for example,
timing-ring settings for variable-length records).

SOAP Librarian

This two-part program is designed to:

1. prepare a library tape, that is, a magnetic tape con-
taining routines that are frequently needed as subor-
dinate parts of other routines or programs.

2. provide for punching the library-tape contents into
symbolic cards.

The routines of a library tape are in symbolic form so
that they can be assembled with symbolic programs
into which the library routines are to be incorporated.
See TAP under Additional Pseudo Instruction; SOAP
2L and SOAP 2L Tape; for a description of the use of
library-tape routines with symbolic programs. The for-
mat of a library tape is indicated in Figure 25. The tape
unit used to write a library tape must be 8012,

The first part of the SOAP Librarian program writes
the library tape from SOAP 11 input cards. The second
part punches the contents of the library tape into SOAP
II output cards.

The format of each instruction on tape is the same
as that of each instruction in the input area of the drum
(see Figure 3 in Part I of the SOAP II Reference Man-
ual). In performing a library-tape search for a routine,
the part of the instruction format that has significance
is word 1 (the L-address part of a symbolic instruction)
of the first instruction in each routine.

DESCRIPTION OF SOAP LIBRARIAN PROGRAM DECK

The program deck supplied by 1M consists of 30 num-
bered cards, identified by end-printing, described as
follows.

o Cards number 1-27 are self-loading program cards
for both parts of the SOAP Librarian.

o Card number 28 is a transfer card that automatically
transfers program control to begin reading input
symbolic (SOAP II) cards.

e Card numpér 29 is the tape labeler card. It is needed
only when creating a library tape but not when add-
ing routines to an existing library tape.

Card number 30 is a transfer card that transfers pro-
gram control to the first instruction of the second (the
tape-to-card) part of the SOAP Librarian. This card
is used if, after creating a library tape or after mak-
ing additions to it, the user wishes to perform a tape-
to-card transfer and list the symbolic output. The
listing is a printed reference record of the library
tape.

GENERAL LIBRARY TAPE OPERATION

Referring to Figure 25 showing the (schematic) library-
tape format, a search for a given library routine always
begins with the library tape positioned at its load point.
The pseudo operation TAP (see Additional Pseudo In-
structions; SOAP 2L and SOAP 2L Tape) starts a tape
search. A read-tape-check operation is executed, dur-
ing which time tape is scanned until a tape mark is en-
countered. Upon reading a tape mark, the program
checks the succeeding instruction (which is always the
first instruction of a routine) to determine if its L-ad-
dress contains the entry point being sought. If the entry
point of the first instruction is not the one being sought,
the program executes another read-tape-check opera-
tion, passing over the remaining instructions of the rou-
tine. Upon reading the next tape mark, the program
checks the succeeding instruction as before, to deter-
mine if the L-address contains the entry point being
sought. If it does not, the process is repeated until an
L-address of the first instruction following a tape mark
is found that agrees with the entry point being sought.
The library routine thus located is written from tape
onto the drum. The tape mark following the located
library routine initiates a tape-rewind operation, leav-
ing the library tape positioned at load point, ready for
the next TAP pseudo operation.

In the event that a search of the library tape does not
locate a routine, invalid information read beyond the
double tape mark (that is, beyond the end of the library
routine area) results in a storage-selection stop. To pro-
ceed with assembly by reading the next input card,
manually transfer the program to drum location 1950.

7 T / 7] {1 F 7 77
"{ Tape '; T First Second lli Last :2 T :2 First Second :2 Last III T :2 T :z
G Label G M G Instruction G Instruction G G Instruction GJM G Instruction G Instruction G G Instruetion G M G M G
M A {F /. AV S~ F- /// / 7.
L Load Point L——— First Routine =————f fo——— L—Second Routine ——f f—f f— Rol-:isifne

Figure 25. Library Tape Schematic

17

INPUT DECK FOR WRITING A LIBRARY TAPE

To write a library tape, place in the card reader an
input card deck, arranged in the following order:

29—SOAP Librarian cards number 1-29.
X—Symbolic (SOAP II) program cards for the first
library routine.
1—Card with a 12-punch in column 2; other col-
umns blank.
X—Symbolic (SOAP II) program cards for the sec-
ond library routine.
1—Card with a 12-punch in column 2; other col-
umns blank,

(Intervening routines in same manner.)

X—Symbolic (SOAP II) program cards for the last
library routine.

1—Card with a 12-punch in column 2; other col-
umns blank.

1—SOAP Librarian card number 30 (if a listing is
desired of the library tape-to-card output).

ADDING ROUTINES TO AN EXISTING LIBRARY TAFE

For adding routines to an existing library tape, the
input deck used, with one exception, is the same as that
used for writing a library tape. The exception is that
card number 30, the tape labeler card, is not used.

The SOAP Librarian program checks the entry point
of each existing routine on tape to assure that the entry
point of the routine being added is unique. If it is not
unique, and if the routines are different, a unique entry
point should be assigned to the added routine and
punched in the L-address field (columns 43-47) of the
first routine instruction.

After the SOAP Librarian program checks the entry
point of the last existing routine in the manner indi-
cated above, it encounters the double tape mark at the
end of the existing library-routine area. It then back-
spaces one tape record (the last tape mark), erases it,
and writes the instructions of the routine being added.
In this manner all of the routines to be added are proc-
essed. After the last routine has been added, an addi-
tional tape mark is written, o that two consecutive tape
marks indicate the end of the routine area.

Special Character Regions

In programs assembled by SOAP II, SOAP IIA, and
SOAP IIA Tape, a regional address has the form
ANNNN. A (representing the symbolizer part of the
regional address) must be one of the 26 alphabetic
characters and NNNN (representing the absolute part
of the regional address) must be a four-digit number.
Using SOAP 2L or 2L Tape in programsg 4ssembled on

18

an 1M 650 equipped with the group II special char-
acter device extends the characters that can be used in
the symbolizer part of a regional address to include the
eleven (group II) special characters, as well as the 26
alphabetic characters. For example, if regions R, D, $,
and # are defined as locations 1951-1960, 1100-1129,
0401-0406, and 0963-0969, respectively, the regional ad-
dresses are assembled as indicated:

R0O008 1958
D0001 1100
$0003 0403
#0007 0969

NotE: On 1BM 407 Accounting Machines equipped with
FORTRAN characters, both the @ and the — char-
acters print as —. However, a unique address is as-
signed to each regional address that uses @ and —
as the symbolizer part, even if the absolute part is
the same. Thus, if region @ has been defined as loca-
tions 1727-1736 and region — has been defined as lo-
cations 1901-1912, then the regional addresses @0003
and —0003, while both print on a 407 equipped with
FORTRAN characters as —0003, are assigned loca-
tions 1729 and 1903, respectively.

Special Operation Codes
The following positive special operation codes can be
assembled.

Table Look Up on Equal TLE +63
Read Sorter Reader RSR +12

The following negative special operation codes can
be assembled.

Alpha-to-Numeric Conversion ANC —20
Numeric-to-Alpha Conversion NAC —65
Read Tape Special RTS —05
Set Format SFM —19
Special Shift Instruction SPS —30
Typewriter Output TYO —79
Write Tape Special WTS —07
Not Equal Upper NEU —42
Equal Low Upper ELU —43

SOAP 2L and SOAP 2L Tape programs translate the
preceding negative-operation-code mnemonics into the
proper numerical codes and automatically make the
instructions negative. Be careful, therefore, when mod-
ifying an instruction using a negative operation code.

For example, let —ABC represent any of the preced-
ing negative operation codes in the instruction —ABC
R0006 NEXT, located in INSTR. Suppose you want to
change the data address of this instruction to R0007.
If the constant 0000010000+ were added to the con-
tents of INSTR, the resultant data address would be
R0005 and not the desired R0007. The correct pro-
cedure is either to add 0000010000— or to subtract
0000010000.

Be careful also not to alter the sign of an instruction
if the instruction would then be interpreted differently
by the M 650. If during the course of address modifi-
cation a SET FORMAT instruction were made positive
and executed, the resultant operation would be a MuL-
TIeLy (19) instruction. Conversely, if an RAL instruc-
tion were made negative, the effective operation would
become NAC.

If a negative instruction is to be modified by the con-
tents of an indexing register, the sign of the instruction
need not be considered. The 650 treats all instructions
as if they were positive in sign while they are being
indexed.

Type 3 Cards

Any type blank card, i.e., any card other than a com-
ments (type 1) card or relocatable (type 2) card, can be
specified as a type-3 card by a 3-punch in column 41.
The 3-punch does not affect assembly; it appears in the
output card, together with 69 1954 8000 in word 1,
columns 1-10. When the assembled output is loaded,
type-3 cards are bypassed. Therefore, type-3 cards in
assembled output need not be removed from the deck
prior to loading.

When coding an instruction that is modified during
program operation, using type-3 cards permits optimiz-
ing the D- or the I-addresses. For example, in Figure
96, the instruction located in 2WAYS is one of the two
instructions indicated by the two type-3 cards, depend-
ing on a program test or decision. It is desirable to opti-
mize the locations ZOOMI1, DLAXX, and ZOOM2.
Using the two type-3 cards as indicated accomplishes
this.

Note two significant points regarding the use of
type-3 cards:

1. They appear in the symbolic program deck prior to
the instructions they represent.
2. They clarify the program executive listing.

IBM 533 Conirol Panel

The SOAP 11 control panel for the 533 cannot be used
with SOAP 2L or SOAP 2L Tape. The reason is that as-

sembly stopsswith a branch distributor operation code
in the program register as soon as the first symbol is en-
countered. The SOAP II control panel for the 533 can,
however, be modified so that it can be used with the
SOAP 2L and SOAP 2L Tape programs. On the other
hand, the SOAP 2L-SOAP 2L Tape control panel de-
scribed in the following paragraph can be used with
the SOAP II program. When this procedure is used, all
output cards except availability-table cards will contain
a zero punch in column 80. This punch, however, does
hinder subsequent reassembly of the output deck and
can be disregarded.

A 533 control panel for SOAP 2L-SOAP 2L Tape can
be wired from a SOAP 1I 533 panel by the following
steps.

A. Remove from the SOAP 11 panel:
1. All wires from READ carD B to words 7, 8, and 9 of
STORAGE ENTRY C.

2. The wire from the worD size EMITTER 3 to word
10 of WORD SIZE ENTRY C.
3. The wire from column 41 of FIRST READING to the
left READ DIGIT SELECTOR and to D PU of PILOT SELEC-
TOR 1.
4, The wire from the TRANSFER of PILOT SELECTOR 7
to column 79 of PUNCH CARD A.

B. Add to the remaining wiring of the SOAP II panel
the wiring shown in Figure 27.

If a new panel is to be wired for SOAP 2L or SOAP
2L Tape, the panel should be wired as shown in Figure
8 of the SOAP II Reference Manual, omitting the wir-
ing just enumerated. The wiring shown in Figure 27
should then be added.

IBM 543 and 544 Wiring Lists

Figures 28 and 29, respectively, are wiring lists for the
1BM 543 Card Reader and the 18m 544 Card Punch.

Operating Instructions

Figures 30 and 31, respectively, are the operating in-
structions for SOAP 2L and SOAP 2L Tape.

41]42[43144- -47]4849,50{51:52- -55] |56157- -60] |61- -72|SOAP.1 COL,

41/42/43144- -47]48149,50[51:52- -55|56|57:58- -6l=6T2 63~ -72]| SOAP.TI COL,

p|%[LocATiON Sgﬁfé Agg;é\ss é. AIQI\IIDSRTERSIS & REMARKS OFFER500
E NEZE 2§WAYS IELLOP]

3] |2{WAYSI|SLT 10002 ZiOOMl

3] l2lwAYS|s!LO [DILAXX Z0 OM 2 i

Figure 26. Type-3 Instructions

19

¥ T 23 8 09 & BE S W ST ¥ S /15 05 6 By ¥ 9 S» vy @ 2y W Ov 6E 8 £ S S vE € ¥’)L O RZ B2 42 sz S2 ¥z 62 22 12 02 & & u 9 ® ow @ 2 U oo

03 0% 4 3 4 04 3 g

2

€ L] z s s v 1 2]
{
” ¥SN NI GILNING
© o o 60 0 6 6 o 0920 FN.0 0 000000 0co fw 0000006000 0~0go 0 0 © 0 0O © O 0 O
340 AR os T0¥INOD 30 38 L — 0L IOHINGD 130 oM 1] 1} 1} 1 [} 1 1 1 "2
© 0 0 0 0 © ¢ 0 ONO © 0o 0 © 0 0 c 0o 0 O [0 O 0 0 0 0 0 o O O N e © o © 0o o o o
fos 41X3 49 B0 A¥.INI 130 28 W— g0 A41X3 d9 O AUINT 43Q 28 — SH N
© 0 © © ¢ o 0o o o110 o 0o o 6 0 6 0o o & O % '0 0 0o ¢ 0 ©o o 0 'o 0fJo-0-0-0-0-06-0-0c-0-cfo—0l0 6 6 0 O C O © O ©
: s o b 08 a1 31N3 130 38 8 6O U e O e JSINT 130 98 © 4O e 39 4 1 35INAM OvIM O B B R T T R 't
0O 0 0 O O 0 0 0 0 o © 0 0 O 0O ©o 6 06 6 o “ 0 0 6 0 6 0 & ° 0 0o o0o—o|0|ololo|o|o|o o=0fo 0 0 0 0 0 0 0 0 o
—— 50173735 3000 HONNG M N 1 0u1M0D 130 98 P WHLNOD 130 EM SOM 6K R (M M SA v S 2w M
© 6 0 0 0 ©0_ 0 0 O 030=0HO ¢ ©6 0o o o OO0 ¢ 6 0O O G O O O O |®™ © o 0 o 0 0 0 0 o ofc 090MO 0|0 OSOMO 0|O=0YO © O O C O OmO O O
L N s o1 o f s d Los L1X3 d5 O AUIN 13G 28 te— b—o05 11X3 5 HO AMIN3 13G 28 2N R I T T [
o © o o Lo Qo o [+ <] 0&0'040 <3 o o © © o o o o o R4 o o o =] < o o 0 o © o oboAo kel c oEoMoO o oO=0o o o o o o o =] o o
| R S Rt [T B A81N3 130D . 3 130 29 @ 40 T AHINI 3295 OHOM]
O 0 © 0 O © 0 O OVOo=— o o © o 0 © o ki o o o 2} o o2oMO 0OTOoOMO O 09050p0E02WT00
- LYAN0IN: 0N T0HLNOD 13Q 2 @ 3215 O
S a2 ° ° - E\ﬁ\no‘o o |7 o o o o 0o 0o o o
T T1X3 d9 ¥C AMINZ 130 98] - 0C 6 odum
0FOo e—g—e 0 0 0 © 6 0o o _o—e~3f0 O 0O O © 0 0 0 0 0 [=| 6 o o o o & o ©o o o0 o
p 8 AYINI 130 08 ¥ &Q TE | o OF st (KNG 130 08 ® dQ 2 quoam
030 o o //a; © © 0o o ojojo © o o o o ofo 0 © © ©O O O O O O o c o 2 0 ¢ 0 © o o\e¢ © o o
TOUINGD 130 3E " OSLNOD 130 08 Quom
%0 > o0 0 0o 0 0o o o oflcfo o o 5 0 o 6 o o ofo o o 0 o 0 ©,0 0.0 |=m o > o 0 v o o o o M/ o < ©
€ GuOoMm LIX3 d9 HO AHINT 130 08 s T} v o O 1IX3 d9 8O ANINI 130
030 O O 0 © © 0 0 6 ofofo © O O o o o o ofo o © © o 0 o o o o o) o o 0o /o o 0
Quom 2 iix3 3 cuom AMING 130 08 § <O 77
© 0 2 ©J040 0 0 020(0 0 O 0300 O O 0DOgO, 00 © © O O O © 0 o © o o 3 3 o o ° ofo o 02d0
6 6 gos i Sz oL 9
© o o oNofo o o oNo|lo o o ono]Jo o o oNoffolcfo ¢ o o o T T T o o o N o o o oN o o o}oNo
st ¥ [a]sfos o5 s» T or k
o [© 0 oloflo o o o0ilo]Jo o o olLofo © © ©o © o o0 o o o o o ¢ o o o' o L c o o olo ¢ o \olo
r 4 - 93735~ . T for 3 ot sz
o z v o o o 0 o o o 0o o 0 o oHoBo 0 0 0 0 0o 0 0 © o {w|l o o o o o o o\ 0 o o o o © © & 0N\ o o
o8 s oL & L2 K m 9 B0 S S HS 0T HO NN A HONAJ ¥ 08 st s9 bl
o © 00 0 0 0 o o © o o o ocfonofgo o ¢ o o o o o@ulvo 7 o o o o o 4 © o o o o\O © © o oy ©
0% s wllsds ownoD s Ros * s v »
o fo o o 2 0 0 o o o o o o o ¢ ofo.offe o © o © © 0 0.0 O . o o © o ¢ c o o o o o o ° o o olo o\o
or s . ot (] 13 @ s v 3 »for st 52 ©
o 2 o o o k] o o o o o c o o o o cgo o o © © o o o o o o . o 9 Q o c o =] W o o o o o o o o o o © o i kel o
auvd il BB S 11795 NWNIOY OV d 3903 Q¥ €3 £ \oz LENL va
o © 03910 0 0o 02070 © 093030 o 0 030003cfoNCEO=—CgO=0~0gO~C O~dnf—0 0=0 C=0 O=0go0 o oﬂom . e o ©do L 2 1 5% EL)
z3zfeYcfusom foosng r fis 81 101 1xt 1zt fiPeHeszly
o ©_oNojo o o oNojfo g0 oNo|lo o o onNofolofosofo-ofo-o-ofc=0 o—dsfwo 0-0 o=0 o=ofosolo o2 o o ° NG N§
e < Ed S 151 35w T73 3sIngm Qv [T
o < 0i10jo o0 0 olojo/0o o olo|lo o o otofo ofo ogo—-oci0o © 0 0 O O n O o ©c © 0 0 ¢ olo o o o 18 fo—oco—e 1§
- otollt i Racur | et st T v oW OlK B U B KW 990
o o (=] < =] =] ° o o, o o o o o© o o o (=} o 9o o o =0 o c o - o B] o o o o = < oile (s} o o o o o o © o *
o0 SL 0z % winifge 90K 37 0H ¥0193135- 0 nay hid
© O\ O O O 0 o° © o 60 0o 0o 0 0 o o o ofoJoffo ofoe=-0fo ©o o 0 o s 0o 0o o o0 0o 0o o] , © o o}o o
Ld 8 os <o whalafr o § woa Wi T 2T 4T L6 BN B oK W z Yo fos 3 o5 o w
o o © 0 o o a © o ¢ o 0o o © o o o ofofofjo ofo~ 4 © o & O s 0 o ©6 0 0 0 ©°) o o o o o o o o
or sg o 52 zgo|lo - ¥0493 40193138 - v/éo s o 2 b
o 0 c\o o o o O 0o ¢ 0o o 0 0 o o o o ofcjofo o o o © o o © o\ o o 0O 0 0 © 0 e—e 0O 0 0 6 0 6 0 © 0O 6 0 6 06 & 0 0 O
- §vd - K©Z 6T BT 2T 197 ST wl KT a3 KK B 2 9 K5 W 8 Quvo Ov3y 3
oFC o o o ©O O OyS3Fo O © © o o o o © ofo © o © ©o o o G o e 0 © O 0O em—p P o 2 O 0O O © © ©010%C¢ O ©0 O © © 0 0o O ©
104 40103735 10 08 30103135 10
030 o a / 0O ¢ ¢efJocFo 0 & T o 0 © O O Ofo O € O © 06 O o 030 N o ¢ 0o © o 0 ©o © 0\ & © 0o o o oJoFo 0 0 © O © O O O O
Z 8 TEoM L
030 o o 0o o oloFo 0 0 o 3 o o © o ofc © o © © O © © ONO " 6o 0 5 u o o4 9 o o m. © 0 o o © olofo © 0 6 0 © © O O O
5 ¥om
030 o o © 0 ojof¥o 0 0 © 0o 0o o o ¢ offo o o © © O O O O0LO " o o f o o ° o o o o 0o o o o|lo3o 0 o o 0o o © o o0 O
cugk - — G e
0f0 O © o /h © 0Jofo o 0o o o o o o o oo o 5o © 0 O o o 090 N & o o o o o ofozo o o olo o o o o ologo o 0o © 0 ©C O O O ©
nx3 T osom ABIND v
) w o o OZ ©c30 0 ¢ 0 0 o 0o o o oo o o o © o o 0o ONO . c o @ © o fopofozo o o oloc o o o o ©0;0F50 0 © 0 © 0 ¢ O O O
asom
© 0 0o o of>3po o 0 06 06 0 6 0 0 0o © o o 0 0 o ©o 010 x| o o o _a» ofof of ohofoso o © oJo o o o o o6JoFo 0o 0o o © © o o © O
- ¢ QuOM It al 1 Quom
o © o o o ojozo D/.o/n. © 0 o 0 & Ofo o0 o 0 0 0 0 o O O g/ © c o o 4 4 & o\afo 30 © 0o of 0o 0 0 o © olo3Fd o 0o 0o 0 © 0o o o o
11X3 3dN03 ANV Ad | 1iX3 314002 ONY Ne 1 QoA
o o o o o oloJo o 0 0 o T—emgo o oflo o o o O s o 6 o © o 2930 © o© \ © 0 0o 0o O °0JoFOo O © 0o O O O © O O
< ouom ndQ nda
o © o o o ofJofo 0 0 0 .0 0 o o o ofo o o © 0 O O O O O 3 o o o o & o ofo¥c o \ o o o o o ofloxo 0 o0 O0 O O 0 O O O
ux3 30wsOIS T oyox 123135 10 x o 315 104 nd gEoM Au1NZ
9 ©6 8 0 0 0O 0 0O 0 0 0 0 C O O 6 0 Og0—0 2_©° © e o ¢ o) c o o ofofo C 0go=0g0 /0 0 0 0 © O © O © O © O © © O o O 0o ©°
oe s oL s ¥ e nonnd f on oz $3 i T»E:u sL o 4 id
© 0 0 6 0o 0 0 06 0 0 0 0 0 © 0 ¢ 0 0 o ofo~cfo o o O o o o B o o o° 0] o o= S 0 0 ©0 0.0 0 0 O 0 0 0 O 0 0 ©0 o o 0 O
09 <5 05 v e v wonnafl os s 3 Yu%w\ os s L Lid 1
© © 0 o 0o 6 ©o 0 0O 0O 0O 06 © 0 0 0 0 o o ocfo—cofo o o o o o Le]l © o © o o o© o o—offo 0 © 0 0O o0 © O O ©o 0O 0 0 O O O ©o O O ©°
o ¥ B3 o sz i1 1 for s¢ = oy [o8 b b
8 0 0o c 0o o0 0 0 0 0 0 00 0 00 0 o o ofo~cffo 06 0 0o 0 0 o o o o v © 0o o 0 c © o o c offo cfo o ©c o © o 0 0 0 06 0 6 0 0 O O © O O O
a¥¥d ¥ el - 34 L 3y GyY> OV
» 3 29 ™ 09 6 ¥ S K 5 S 56 2 K 05 B @ i» S Sy ¥ £ 2r m» Ov BT W U %W S K ™ k= K Of 6 & 2 R $2 ¥ £Z 2T 12 02 6 L a4 wm o L o LU 3 1]] 2 t] s r 13 z 1

¢

Figure 27. Additional 533 Control-Panel Wiring for SOAP

“

20

From

First Read: 2

First Read: 43-47
First Read: 48-50
First Read: 51-55
First Read: 56

First Read: 57-61

First Read: 62

First Read: 63-67
First Read: 68-72
First Read: 41

First Read: 42

First Read: 80

Left Digit Selector 12
Left Digit Selector 1-3
Left Digit Selector 4
Left Digit Selector 5
Left Digit Selector 6
Left Digit Selector 7
Co-Selector 5: T 1
Co-Selector 5: N 1
Co-Selector 5: C 1
Co-Selector 5: C (2-5)
Co-Selector 7: T 1
Co-Selector 7: N 1
Co-Selector 7: C 1
Co-Selector 7: C (2-5)
Co-Selector 8: T 1
Co-Selector 8: N 1
Co-Selector 8: C 1
Co-Selector 8: C (2-5)
Second Reading: 23-26
Second Reading: 33-36
Second Reading: 37-39

To

Load FMT

Alpha Pre Read Wd 1: 1-5
Alpha Pre Read Wd 4: 1-3
Alpha Pre Read Wd 2: 1-5
Alpha Pre Read Wd 4: 4
Alpha Pre Read Wd 3: 1-5
Alpha Pre Read Wd 4: 5
Alpha Pre Read Wd 5: 1-5
Alpha Pre Read Wd 6: 1.5
Left Digit Selector Common
Pilot Selector 2 DPU

Left Digit Selector Common
Load FMT

Pilot Selector 7 DPU

Pilot Selector 6 DPU

Pilat Selector 3 DPU

Pilot Selector 4 DPU

Pilot Selector 5 DPU

Emit 8

Emit 9

Wd 10 Entry: 9

Wd 7 Entry: 4-1

Emit 8

Emit 9

Wd 10 Entry: 8

Wd 8 Entry: 4-1

Read Impulse: 8

Read Impulse: 9

Wd 10 Entry: 7

Wd 9 Entry: 4.1

Co-Selector 5: T (2-5)
Co-Selector 7: T (2-5)
Co-Selector 8: T (2-4)

=

The only exceptions are word-entry digits which are numbered right to left.

From

Second Reading: 40
Second Reading: 41
Second Reading: 44-47
Second Reading: 52-55
Second Reading: 58-61
Second Reading: 43-47
Second Reading: 48-50
Second Reading: 51-55
Second ‘Reading: 56
Second Reading: 57-61
Second Reading: 62
Second Reading: 63-67
Second Reading: 68-72
Pilot Selector 2: T
Pilot Selector 2: N
Pilot Selector 2: C
Pilot Selector 7: Top N
Pilot Selector 7: Top C
Pilot Selector 7: Bottom T
Pilot Selector 7: Bottom N
Pilot Selector 7: Bottom C
Pilot Selector 6: T
Pilot Selector 6: N
Pilot Selector 6: C
Column Split 7: 0-9
Wd 10 Entry: 6-4

Load FMT

Couple Exit P. §. 3
Couple Exit P. S. 4
Couple Exit P. §. 5
CAl, N/EMT

Word Size Emitter: 4
RVC Off

NOTE: All unlabeled multiple components are considered to be numbered left to,ri&hf (e.g., co-selector and pilot-selector positions, etc.).

To

Column Split 7 Common
Top Pilot Selector 7 T
Co-Selector 5: N (2-5)
Co-Selector 7: N (2-5)
Co-Selector 8: N (2-5)
Wd 1 Entry: 5-1

Wd 4 Entry: 5-3

Wd 2 Entry: 5-1

Wd 4 Eniry: 2

Wd 3 Entry: 5-1

Wd 4 Entry: 1

Wd 5 Entry: 5-1

Wd 6 Entry: 5-1

Read Impulse: 8
Read Impulse: 0

Wd 10 Entry: 1

Emit 0

Wd 10 Entry: 3

Read Impulse: 8
Read Impulse: O

Wd 10 Entry: 2

Emit 1

Emit 0

Wd 10 Entry: 10
Co-Selector 8: T 5
Read Impulse: 0
Load D/I

Co-Selector Pickup: 5
Co-Selector Pickup: 7
Co-Selector Pickup: 6
Alpha in Wds 1-6
Wd Size Entry: 7-9
(A Jackplug)

Figure 28. SOAP Wiring List for IBM 543

21

NOTE 1:

The only exceptions are column splits which are numbered top to bottom.

NOTE 2:

Field-Selectors Level-2 (Card Type B) are wired to the top Punch Magnet Entries.

Field-Selectors Level-1 (Card Type A) and Field Selectors, Normal (Card Type C) are wired to

From

Control Information
Control Information
Control Information
Control Information
Control Information
Control Information
Control Information
Control Information

VO NN AN~

Control Information
Control Information 10
Common Field Selector 1: (1-10)
Common Field Selector 1: (11)
Common Field Selector 1: (12-21)
Common Field Selector 1: (22)
Common Field Selector 2: (1-10)
Common Field Selector 2: (11)
Common Field Selector 3: (1-10)
Common Field Selector 3: (11)
Common Field Selector 3: (13-21)
Common Field Selector 3: (22)
Common Field Selector 4: (1-10)
Common Field Selector 4: (11)
Common Field Selector 4: (12-21)
Common Field Selector 4: (22)
Common Field Selector 5: (1-10)
Common Field Selector 5: (11)
CAl

Common Field Selector 6: (1-10)
Common Field Selector 6: (11)
Common Field Selector 6: (12-18)
Common Field Selector 6: (19)
Common Field Selector 6: (20)
Common, Field Selector 6: (21)
Common Field Selector 6: (22)
Level 1 Field Selector 1: (6-10)
Level 1 Field Selector 1: (17-21)
Level 1 Field Selector 1: (22)
Level 1 Field Selector 2: (6-10)
Level 1 Field Selector 2: (11)
Level 1 Field Selector 3: (6-8)
Field Selector 3: (9)
Field Selector 3: (10)
Field Selector 3: (11)
Field Selector 3: (17-21)
Field Selector 3: (22)
Level 1 Field Selector 4: (6-10)

1
Level 1
1
1
1
1
1
Level 1 Field Selector 4: (22)
1
1
1
1
1
1

Level
Level
Level
Level

Level 1 Field Selector 5: (2)
Field Selector 5: (7-9)
Field Selector 5: (10)
Field Selector 5: (11)
Field Selector 6: (1)
Level 1 Field Selector 6: (2-6)
Level 1 Field Selector 6: (7)
Level 1 Field Selector 6: (8-9)
Level 1 Field Selector 6: (10)

Level
Level
Level
Level

To

Co-Selector PU 4

Co-Selector PU 1

Pilot Selector PU 1, 4, 5
Co-Selector PU 3

Co-Selector PU 2

Field Selector PU (1-6) Level 2
Field Selector PU (1-6) Level 1
Pilot Selector PU 3

Pilot Selector PU 2

Alpha Out Words (1-6) (SOAP 4000 only)

Word 1 Exit (1-10)

PCH +

Word 2 Exit: (1-10)

Emit 9

Word 3 Exit: (1-10)

Word 9 Exit: 7

Word 4 Exit: (1-10)

Word 9 Exit: 8

Word 5 Exit: (2-10)

Word 9 Exit 9:

Word 6 Exit: (1-10)

PSU

Word 7 Exit: (1-10)

Top Pilot Selector 3 C
Word 8 Exit: (1-10)

Word 9 Exit: 10

Alpha Out (Except SOAP 4000)
Punch Magnet Entry (1-10)
Column Split 12 Common
Punch Magnet Entry (21-27)
Punch Magnet Entry 29
Punch Magnet Entry 76
Bottom P. 8. 2 C

Punch Magnet Entry 29
Punch Magnet Entry (43-47)
Punch Magnet Entry (51-55)
Punch Magnet Eniry 73
Punch Magnet Entry (57-61)
Punch Magnet Entry 17
Punch Magnet Entry (48-50)
Punch Magnet Entry 56
Punch Magnet Entry 62
Punch Magnet Entry 18
Punch Magnet Entry (63-67)
Punch Magnet Entry 19
Punch Magnet Entry (68-72)
Punch Magnet Entry 79 .
Punch Magnet Entry 80
Punch Magnet Entry 80
Punch Magnet Entry 41
Punch Magnet Entry 20
Column Split 12 Common
Emit O

Emit 8

Emit O

Column .Split 12 Common

From

Level 2 Field Selector 1 (1-10)
Level 2 Field Selector 1: (11)
Level 2 Field Selector 1: (12-21)
Level 2 Field Selector 2: (1-10)
Level 2 Field Selector 3: (1-10)
Level 2 Field Selector 3: (12-21)
Level 2 Field Selector 4: (1-10)
Level 2 Field Selector 4: (11)
Level 2 Field Selector 4: (12-21)
Level 2 Field Selector 5: (1-10)
Level 2 Field Selector 6: (11)
Normal Field Selector 1: (6-10)
Normal Field Selector 1: (17-21)
Normal Field Selector 1: (22)
Normal Field Selector 2: (6-10)
Normal Field Selector 2: (11}
Normal Field Selector 3: (6-8)
Normal Field Selector 3: (9)
Normal Field Selector 3: (10)
Normal Field Selector 3: (11)
Normal Field Selector 3: (17-21)
Normal Field Selector 3: (22)
Normal Field Selector 4: (6-10)
Normal Field Selector 4: (12-13)
Normal Field Selector 4: (14)
Normal Field Selector 4: (15)
Normal Field Selector 4: (16)
Normal Field Selector 4: (17)
Normal Field Selector 4: (18-20)
Normal Field Selector 4: (21)
Normal Field Selector 4: (22)
Normal Field Selector 5: (2)
Normal Field Selector 5: (3-6)
Normal Field Selector 5: (7-9)
Normal Field Selector 5: (10)
Normal Field Selector 5: (11)
Normal Field Selector 6: (1)
Normal Field Selector 6: (2)
Normal Field Selector 6: (3)
Normal Field Selector 6: (4)
Normal Field Selector 6: (5)
Normal Field Selector 6: (6)
Normal Field Selector 6: (7-9)
Normal Field Selector 6: (10)
Normal Field Selector 6: (11)
Normal Field Selector 6: (12)
Normal Field Selector 6: (13)
Normal Field Selector &: (14-17)
Normal Field Selector 6: (18)
Normal Field Selector 6: (19)
Normal Field Selector 6: (20)
Normal Field Selector 6: (21)
Normal Field Selector 6: (22)
DI

Top Digit Selector (Emitter) 12
Top Digit Selector (Emitter) 12

All unlabeled multiple components are considered to be numbered left to right (e.g., co-selector and pilot selector positions, etc.).

the bottom Punch Magnet Entries.

To

Punch Magnet Entry (1-10)
PCH +

Punch Magnet Entry (11-20)
Punch Magnet Entry (21-30)
Punch Magnet Entry (31-40)
Punch Magnet Entry (41-50)
Punch Magnet Entry (51-60)
PSU

Punch Magnet Entry (61-70)
Punch Magnet Entry (71-80)
Column Split 11: (11-12)
Punch Magnet Entry (43-47)
Punch Magnet Entry (51-55)
Field Selector 6: 2 Common
Punch Magnet Entry (57-61)
Punch Magnet Entry (17)
Punch Magnet Entry (48-50)
Punch Magnet Entry 56
Punch Magnet Entry 62
Punch Magnet Entry 18
Punch Magnet Entry (63-67)
Punch Magnet Entry 19
Punch Magnet Entry (68-72)
Co-Selector 4: C (4-5)

Top Pilot Selector 4 N
Bottom Pilot Selector 4 N
Top Pilot Selector 5 N
Bottom Pilot Selector 5 N
Co-Selector 1: N (1-3)
Column Split 8: (0-9)

Punch Magnet Entry 79
Punch Magnet Entry 80
Co-Selector 3: N (1-4)
Punch Magnet Entry 80
Punch Magnet Entry 41
Punch Magnet Entry 20
Column Split 10 Common
Field Selector 1: N 22

Emit 1

Punch Magnet Entry 2

Emit 5

Emit O

Co-Selector 2: C (2-4)
Punch Column Split 9 Common
Punch Magnet Entry 30
Emit 2

Emit 4

Co-Selector 3: C (1-4)

Emit 8

Emit O

Co-Selector 4: C 3

Column Split 8: (11-12)
Punch Magnet Entry 28

Top Digit Selector (Emitter)
Bottom Pilot Selector 2 N
Column Split 9: (11-12)

Figure 29 (1). SOAP Wiring List for IBM 544 <.

22

¢

From

Top Digit Selector (Emitter) 0
Top Digit Selector (Emitter) 9
Digit Emitter 12

Digit Emitter 12

Digit Emitter 11

Digit Emitter 11

Digit Emitter 11

Digit Emitter 11

Digit Emitter 0

Digit Emitter O

Digit Emitter 0

Digit Emitter 1

Digit Emitter 3

Digit Emitter 5

Digit Emitter 6

Digit Emitter 8

Digit Emitter 9

Pilot Selector 1 PU

Pilot Selector 4 PU

ey

To

Co-Selector 2 T 5
Co-Selector 2 N 3
Column Split 10: (11-12)
Column Split 12: (11-12)
Top Pilot Selector 2 T
Co-Selector 3 T 5
Co-Selector 4 T 3
Co-Selector 2 T 1
Co-Selector 2 T 3
Co-Selector 2 T 4
Column Split 12: (0-9)
Co-Selector 2 N 2
Co-Selector 2 N §
Co-Selector 2 N 4
Column Split 10: (0-9)
Co-Selector 2 T 2

Top Pilot Selector 3 T
Pilot Selector 4 PU

Pilot Selector 5 PU

From ,'

Top Pilot Shlector 1 T
Top Pilot Selector 1 C
Top Pilot Selector 2 C
Bottom Pilot Selector 2 T
Co-Selector 1: T 5
Co-Selector 1: N 4
Co-Selector 1: C (1-4)
Co-Selector 1: C 5
Co-Selector 2: C 1
Co-Selector 2: C 5
Co-Selector 3: C 5
Co-Selector 4: N (4-5)
Run INLK

Top Pilot Selector 4 C
Bottom Pilot Selector 4 C
Top Pilot Selector 5 C
Bottom Pilot Selector 5 C
Common Field Selector 3: 12
Word 5 Exit: 1

To

X Impulse

Punch Magnet Entry 77
Punch Magnet Entry 42

X Impulse

X Impulse

Column Split 8: C

Punch Magnet Entry (37-40)
Punch Magnet Entry 78
Punch Magnet Entry 74
Column Split 9: (0-9)

Punch Magnet Entry 75
Punch Magnet Entry (31-32)
(A Jackplug)

Punch Magnet Entry 33
Punch Magnet Entry 34
Punch Magnet Entry 35
Punch Magnet Entry 36
Column Split 11 Common
Column Split 11: (0-9)

Figure 29 (2). SOAP Wiring List for IBM 544

23

IBM 650 PROGRAM OPERATING INSTRUCTIONS

710 119152 9191919 N\
STORAGE ENTRY . SWITCHES SIGN
STOP RUN HWALF RUN . ADDRESS MANUAL DISTRIBUTOR PROGRAM STOP SENSE STOP SENSE
sToP op REGISTER
RUN UPPER READ OUT
X |IXIX X ACCUM STORAGE
LOWER READ iN
ACCUM STORAGE
PROGRAMMED HALF CYCLE ADDRESS CONTROL DISPLAY OVERFLOW ERROR

Initial Console Setting as shown above.
A. Normal Starting Procedure: Computer Reset; Program Start,
B. Special Instructions

If SOAP 2L is already on the drum do one of the following:
1. Set 00 0000 1000 in the Storage Entry switches.
2. Precede input with a B OP card and set 00 0000 1950 in the
Storage Entry switches.
Set Sign switch to minus (=) if automatic symbol-table punch-out is desired.

Card Input = Qutput

READ FEED PUNCH FEED
NO. OF
CARDS FILE DESCRIPTION CARD FORM
296 SOAP 2L (including loader) SOAP 1l
XXX Symbolic program deck

1 PST card (if desired)

CONTROL. PANELS

SOAP 2L control panel
for appropriate card Input=
Output components

TAPE UNITS
ADDRESS)| lNZ‘:QT'O?I'l'{l.;F;!u F?:?:RROI:‘;EUi- LABEL CHARACTERISTICS B FILE DESCRIPTION
8010
8011
8012 (Library Tape X (Optional—used only if TAP pseudo instruction is used)
8013
8014
8015

Figure 30 (1). SOAP 2L Operating Instructions, *

24

Other Instructions and Remarks:

E 4
s

After each machine pass discard the last card out of the punch feed . If the preceding card contains a
9 punch in column 80, or if it is an availability-table card, assembly is complete. If the card does not
meet either of these conditions, remove all cards that contain a 9 punch in column 80 from the deck.

Use the remainder of the deck for input to the next pass.

The first card that does not contain a 9 punch
in column 80.(i

-e., the first card of the input to the next pass) ‘will contain a 4 punch in that column.

An availability table punch - out may be initiated manually by transferring to location 1900

, and a
symbol table punch - out by transferring to location 1800, '

Program Stops and Required Action:

sSTOP - - 1
ADDRESS MESSAGE EXPLANATION ACTION

0222

No locations available for the remaining portion of the program being assembled.

Press the Program~Start key to continue assembly. Addresses not assigned will be
left blank in the output cards.

Figure 30 (2). SOAP 2L, Operating Instructions

25

IBM 650 PROGRAM OPERATING INSTRUCTIONS

710 119512
STORAGE ENTRY
STOP RUN HALF RUN
XIX X | X
PROGRAMMED HALF CYCLE ADDRESS

Initial Console Setting as shown above.

ADDRESS
sToP

219

9

9 N/

SWITCHES

RUN

!

CONTROL

MANUAL DISTRIBUTOR
oP

UPPER
ACCUM

LOWER
ACCUM

PROGRAM

REGISTER
READ OUT
STORAGE
READ IN
STORAGE

DISPLAY

STOP SENSE

OVERFLOW

A. Normal Starfing Procedure: Computer Reset; Program Start.
B. Special Instructions.

If SOAP 2L Tape is already on the drum do one of the following:
1. Set 00 0000 1000 in the Storage Entry switches.
2. Precede input with a BO P card and set 00 0000 1950 in the

Storage Entry switches.

Set Sign switch to minus (=) if automatic symbol-table punch-out is desired.

Card Input = Output

READ FEED

PUNCH FEED

sToe

SENSE

ERROR

CaAROS FILE DESCRIPTION CARD FORM
309 | SOAP 2L Tape (including loader) SOAP I
xxx | Symbolic program deck
T- | PST card (if desired)
1 XYZ card
CONTROL PANELS
SOAP 2L control panel
for appropriate card Input-
Output components
TAPE UNITS
ADDRESS KNPOURT:D?TL:;"EPRUT F'.':r:?:ii:ogﬁ; LABEL CHARACTERISTICS F IlLE DESCRIPTION _—
8010 |[Input-output| X Work tape
8011 |Input-output| X Work tape
8012 |Library Tape X (Optional—used only if TAP pdeudo instruction is used)
8013
8014
8015

Figure 31 (1). SOAP 2L Tape Operating Instz’uctions

26

-

Other Instructions and Remarks:

Discard last output card.

An availability-table punch~out may be initiated manually by transferring to location 1900,
and a symbol-table punch=out by transferring to location 1800.

Program Stops and Required Action: e

sTOP
ADDRESS

MESSAGE -~ EXPLANATION - ACTION

0222

0444

0555

0666

0777

0888

0999

No locations available for the remaining portion of the program. Pressing the
Program=Start key continues assembly. Addresses not assigned are left blank in
the output cards.

End-of-file detected while writing a tape record.* Replace tape with a longer
one and begin assembly again.

Error detected while writing a tape record.* Pressing the Program=-Start key
causes one attempt to rewrite the error record. Do not attempt to rewrite
more than three times.

Error detected while writing a tape mark ,* Pressing the Program-Start key
causes one attempt to rewrite the tape mark, Do not attempt fo rewrite more
than three times.

Error detected while reading a tape record.* Pressing the Program~Start key
causes as many as four attempts to reread, If the error condition persists, the
record may be examined by a console read=out**, or may be printed out, if a
407 Accounting Machine is coupled to Synchronizer 2, by transferring to location
1550, If the record can be corrected manually from the console, transfer to
location 1650 to resume assembly.

Error print=out completed.
End of job. Re=initialize before beginning assembly by preceding the program

with a BOP card and pressing the Program Start key, or by transferring to
location 1000,

* Tape unit address can be determined by displaying the contents of the lower accumulator,
** Records read from tape occupy locations 9050-9059., Format is similar to that shown in
Figure 3, Part 1l of the SOAP |l Reference Manual.

Figure 31 (2). SOAP 2L Tape Operating Instructions

SOAP 4000 and SOAP 42

Symbolic programs written for an 1M 650 Model 4
(4000-word drum) can be assembled on a 650 Model 4
by using the SOAP 4000 program. Symbolic programs
written for a 650 Model 4 can be assembled on a 650
Model 2 (2000-word drum) by using the SOAP 42 pro-
gram. Both programs include most of the program fea-
tures of SOAP 2L and SOAP 2L Tape. The differences
that exist are pointed out in this section of the bulletin.

Program Assembly |

Translation and assembly of the symbolic program in-
structions are the same as explained for SOAP 2L and
SOAP 2L Tape. The sizes of the symbol tables, how-
ever, are different.

Symbol Capacity

For SOAP 4000, the maximum number of symbols that
can be entered into the symbol table is 998, 999, or
1000, depending on the number of symbols in the in-
struction being processed when the 998th symbol is
entered. Similarly, for SOAP 42, the symbol-table ca-
pacity is 178, 179, or 180.

Availability-Table Punchout

The availability-table punchout for SOAP 4000 occurs
in two sections. The first section represents the status of
the first 2000 drum locations, while the second section
represents the last 2000 drum locations.

Programming Features

The following programming features, except the SOAP
Librarian, apply to both SOAP 4000 and SOAP 42.
These features are explained under Programming Fea-
tures in the section for SOAP 2L, and SOAP 2L Tape.

e BDO Operation Code

o Literal Constant

e Modification in Optimizing—Special Case

e SOAP Librarian (Not used with SOAP 42.)

® Special-Character Regions

¢ Special Operation Codes
—=e-Type-3 Cards

Address Modification

For SOAP 4000 and SOAP 42, as for SOAP II, SOAP
IIA, and Tape SOAP IIA, the user can tag an instruc-
tion in symbolic form using indexing register A, B, or
C. Simply enter A, B, or C in the appropriate tag col-
umns (columns 56 and 62) of the 650 SOAP Program
Sheet. However, the increased range of drum addresses
of a 4000-word 650 requires a change if.the method of

28

tagging instructions that use indexing registers. The
following rules govern tagging of instructions to be as-
sembled by SOAP 4000 and SOAP 42.

NORMAL OPERATION

1. All drum and IAS D-addresses meaningful to the
operation code can be tagged. .

2. 80xx (i.e., 8000-8003, 8005-8007, 8010-8015) D-ad-
dresses can be tagged by indexing register B only.

3. IAS I-addresses can be tagged, with the following
exceptions:
a. The corresponding D-addresses are B- or C-
tagged drum addresses.
b. The corresponding D-addresses are B-tagged
80xx addresses.
c. The tags of the I-addresses use the same index-
ing registers as do the operation codes.

SPECIAL OPERATION (BY INTERNAL PROGRAMMING)

The assembly programs SOAP 4000 and SOAP 42 will

process, by internal programming, instructions contain-

ing:

1. tagged drum I-addresses.

2. tagged IAS I-addresses that have B- or C-tagged
drum D-addresses.

3. tagged IAS I-addresses that have B-tagged 80xx D-
addresses.

The preceding occur on the condition that, if the oper-

ations are indexing-register arithmetic or indexing-reg-

ister branch codes, the tags do not use the same index-

ing registers as do the operation codes. As indicated in

examples that follow, tagging I-addresses of these in-

structions produces two output instructions at assembly

time for each input tagged instruction.

Input symbolic instructions, tagged in accordance
with the preceding rules, are automatically assembled
in either normal or special operation. In normal opera-
tion they yield one assembled output instruction per
input tagged instruction. In special operation they yield
two assembled output instructions per input tagged in-
struction. Each of the two operations are subsequently
described in detail.

NORMAL OPERATION—TAGGED DRUM AND IAS D-ADDRESS

Indexing Register A. SOAP 4000 and SOAP 42 pro-
grams process an A-tag of a drum D-address of a
symbolic instruction by adding 4000 to the drum D-
address at assembly time.

EXAMPLES:
Symbolic Input Assembled Output
RAL 3699A 1254 65 7699 1254
AXB 0001A 2534 52 4001 2534

SOAP 4000 and SOAP 42 programs process an
A-tag of an IAS D-address by adding 200 to the IAS
D-address at assembly time.

EXAMPLES:
Symbolic Input Assembled Qutput
RAU 9003A 0253 60 9203 0253
RAC 9019A 3823 88 9219 3823

Indexing Register B. SOAP 4000 and SOAP 42 pro-
grams process a B-tag of a drum or an 80xx D-ad-
dress by adding either 4000 to the drum I-address or
800 to the 80xx or IAS I-address at assembly time.

EXAMPLES:

Symbolic Input Assembled Output

AUP 1035B 1142 10 1035 5142
AUP 1035B 8005 10 1035 8805
AUP 10358 9006 10 1035 9806
ALO 8007B 3410 15 8007 7410
ALO 8007B 8005 15 8007 8805
ALO 8007B 9002 15 8007 9802

SOAP 4000 and SOAP 42 programs process a B-tag
of an IAS D-address by adding 400 to the IAS D-ad-
dress at assembly time.

EXAMPLES:
Symbolic Input Assembled Qutput
SLO 9040B 9002 16 9440 9002
SLO 9040B 2307 16 9440 2307
SLO 9040B 8003 16 9440 8003

Indexing Register C. SOAP 4000 and SOAP 42 pro-
grams process a C-tag of a drum D-address by add-
ing to the drum D-address 4000 and to the I-address
either 4000 (if the I-address is a drum location) or
800 (if the I-address is 80xx or an IAS location).
EXAMPLES:

Symbolic Input Assembled Output

RSU 0515C 1649 61 4515 5649
RSU 0515C 9027 61 4515 9827
RSU 0515C 8003 61 4515 8803

SOAP 4000 and SOAP 42 programs process a C-tag
of an IAS D-address by adding 600 to the IAS D-ad-
dress at assembly time.

EXAMPLES:
Symbolic Input Assembled Output
ALO 9021C 1018 15 9621 1018
ALO 9021C 9036 15 9621 9036
ALO 9021C 8005 15 9621 8005

Tagged IAS I-Address. If the tag of the I-address of an
instruction does not use the same indexing register
as does the operation code, SOAP 4000 and SOAP 42
programs process an A-, B-, or C-tag of the IAS I-ad-
dress by adding 200, 400, or 600 to the I-address at
assembly time.

EXAMPLES:
Symbolic Input Assembled Output
RSL 2840 9017A 66 2840 9217
RSL 2840A . 9017A 66 6840 9217
RSL 8003 9017B 66 8003 9417
AXB 0003 9017C 52 0003 9617

The 80xx D-addresses tagged by A or C are not
accommodated by the SOAP 4000 or the SOAP 42
program. If such an instruction is encountered, the
assembled output instruction will contain a blank
D-address and the note, BLANK D, will be printed to
the right of the assembled instruction.

As previoysly mentioned, an I-address tag must
not be one’that uses the same indexing register as
does the operation code. If the SOAP 4000 or the
SOAP 42 program encounters such an instruction (for
example, AXA 1530 9012A), the output assembled
instruction will contain a blank I-address and the
note, BLANK I, will be printed to the right of the as-
sembled instruction.

SPECIAL OPERATION

The following special operations of address modifica-
tion are accomplished by SOAP 4000 and SOAP 42. By
internal programming, these assembly programs pro-
duce two assembled output instructions for each input
instruction that is tagged as indicated.

Tagged Drum I-Address. Instructions that include
tagged drum I-addresses are processed as shown in
the following examples. :

Symbolic Input Symbolic Output Assembled Output
XXXX RAL 3103 0039A XXXX RAL 3103 XXXX 65 3103 YYYY
NZA 00394 0039 YYYY 40 4039 0039
XXXX RAL 3103 0039B XXXX RAL 3103 XXXX 65 3103 YYYY
NZB 0039B 0039 YYYY 42 0039 4039
XXXX RAL 3103 0038C XXXX RAL 3103 XXXX 65 3103 YYYY
NZC 0039C 0039 YYYY 48 4039 4039
XXXX RAL 3103B 0039A XXXX RAL 3103B XXXX 65 3103 (YYYY+4000)
NZA 0030A 0039 YYYY 40 4039 0039
XXXX RAL 3103C 0039B XXXX RAL 3103C XXXX 85 7103 (YYYY -+ 4000)
NZB 0039B 0039 YYYY 42 0039 4039
XXXX RAL 31034 003pC XXXX RAL 3103A XXXX 85 7103 YYYY

NZC 0039C 0039 YYYY 48 4039 4039

Tagged IAS I-Address with B- or C-Tagged Drum D- .

Address. These instructions are processed as follows:

Symbolic Input Symbolic Output Assembled Qutput
XXXX RAL 3103C 9032A XXXX RAL 3103C XXXX 65 7103 (YYYY 4 4000)
NZA 9032A 9032 YYYY 40 9232 9032
XXXX RAL 3103B 9032C XXXX RAL 3103B XXXX 65 3103 (YYYY44000)

NZC 9032C 9032 YYYY 48 9832 9032

Tagged 1AS I-Address with B-Tagged 80xx D-Address.
These instructions are processed as follows:

Symbelic Input Symbolic Output Assembled Output

XXXX WTN 8010B 90324 XXXX WTN 8010B XXXX 08 8010 (YYYY44000)
NZA 90324 9032 YYYY 40 9232 0032
XXXX RAL 8005B 9032B XXXX RAL 8005B XXXX 65 8005 (YYYY--4000)

NZB 9032B 9032 YYYY 42 9432 9032

5/cd Self-Loader Program

This routine can be used with the SOAP 4000 program.
It loads itself and other programs that have been con-
densed in the five-instructions-per-card format, (Con-
densing a program can be done by assembling the sym-
bolic program using the 5CD pseudo instruction.)

The 5/cd Self-Loader program deck is available only
in symbolic format and consists of 52 single-instruction
cards. It can be condensed, however, in five-per-card
format by assembly, using SOAP 4000, resulting in ten
condensed output cards. Word 1 of each condensed
card of the 5/cd Self-Loader program has the format:
01 DDDD NNNN +-. DDDD and NNNN represent,
respectively, the deck or job number and card sequence
number assigned by the user and punched in the 5CD
card (see 5CD under Additional Pseudo Instructions).

29

This program requires the first 47 consecutive drum
locations in the region specified as Region W (xx01-xx47
or xx51-xx97) and seven other locations. Although Re-
gion W is specified by the first card of the 52-card deck
supplied as being locations 1951-1997, it can be relo-
cated, if desired, to any band as indicated previously.

Another feature of the 5/cd Self-Loader program is
that card numbers of the condensed program being
loaded are sequence-checked. A card-sequence error
causes a programmed halt. If displayed, the program
register indicates the contents of word 1 of the first card
out of sequence. After correcting the card order, begin
again, using a complete restart procedure. That is, re-
move the cards from the read feed and put the deck
back in order. Then, starting with the first card of the
5/cd Self-Loader program, begin loading again.

Additional Pseudo Instructions

In addition to the pseudo-operation codes described in
the SOAP II Reference Manual, the following seven
pseudo instructions can be used as indicated. The first
five, shown in Figure 32, are explained in Programming
Features of SOAP 2L and SOAP 2L Tape of this
bulletin.

5CD (FIVE INSTRUCTIONS PER CARD)

This pseudo instruction conditions the SOAP 4000 as-
sembly program to produce the assembled output cards
of an object program in five-instructions-per-card (con-
densed) format together with the usual single-instruc-

tion-per-card format. Figure 33 is an example of the
5CD pseudo instruction. The assembled output cards
in five- and single-instruction-per-card formats are in-
terspersed. They can be separated easily, however, by
sorting, because columns 11-18 are blank in the one-
per-card output but not blank in the five-per-card
output. The instructions not condensed are pseudo in-
structions, type-1 (comments) and type-3 (blank) in-
structions, and instructions whose L-address is 800X.
Literal constant cards, containing a 1 in column 41, are
condensed. The card format of the five-per-card object
program is shown in Figure 34.

Upon assembly, if the symbol table becomes packed
(identified by the programmed halt 01 0111, and forc-
ing partial assembly of the remaining cards), produc-
tion of condensed output is suspended. It is resumed at
the start of the multi-pass phase.

When a packed drum condition occurs (identified by
the programmed halt 01 0222), further assembly result-
ing from pressing the program start key causes blank
L-, D-, and I-fields (because no locations are available)
in the single-instruction cards. No blank ficlds are
punched, however, in the condensed cards.

Figure 33 shows the form of the 5CD pseudo instruc-
tion. The D-address entry can be either blank or a
4-digit number chosen by the user to identify the con-
densed object-program deck. This number is punched
in columns 3-6 of each condensed card. If the D-address
of the 5CD pseudo instruction is blank, 0000 is punched
in columns 3-6 of each condensed card. The I-address
entry of the 5CD pseudo instruction can be either blank
or a 4-digit number, used to specify the first (starting)

Preudo sequence-card number of the five-per-card deck. A
Operation SOAP 4000 SOAP 42 card-sequence number is punched in columns 7-10 of
DLA each condensed object-program card, starting with
As Input yos yes either the number specified in the I-address of the 5CD
As Output no yes pseudo instruction, or 0001 if the I-address of the 5CD
PST yes yes pseudo instruction is blank,
RDR yes yes . . .
SEQ yos yes One application of the sequence number that is auto-
TAP yos no matically punched in each condensed object-program
card is to use the sequence-checking feature of a load-
Figure 32. Five Additional Pseudo Instructions ing program (see 5/ cd Self-Loader Program).
4114214344~ -47|48:49.50[51152- 55| |56/57- -60] |61~ -72[SOAP.1 COL,
41142|43144- -47|4849,50[51152- -55|56{57:58~ -61162/63- -72] [sOAP T COL
T|S OPER.|[DATA |I]| INSTR. | ACCU
3N LO'CATION CODE | ADDRESS A ADDRESS :é REMARKS _UPPER 8003
i 5{CD| 11234 0011 ;
: i | i
TFigure 33. 5CD Pseudo Instruction - ‘

30

WORD 7 WORD 8 _l\

Location of Instructions 1]
2 13 4

V/ORD 1 ' WORD 2 l WORD 3 l WORD 4 ' WORD 5 l WORD &

Iden. { Card First ~ []] Second] Third] Fourth [] Fifth]
Instruction Instruction Instruction Instruction | Instruction

0000000000[0070000l000B[0D0000000T 8’0 |

ot 12113 10 18 117 10 10 2mjr 2020 30 25 ke 20 20 0l 2[33 34 35 %97 38 3 o4t ulo«uul'nmoml-szlsmnsselsmsm

'11h111pt|lllp|t|p11111n111n|||11P||ip11111n||1r||111H1|1P|11||1|111111

] | | |
222222222222:2222{222222:2222:222222}2222#22222‘2222:222222|2222|222222I2222|22222222222222‘

| |
333333333333P33°P33333P3’3h33333k333F33353”333b33333”333”33333P333P33333333333”
), !

{ [
444444444444?44q444444r444p44444u444u44444u444444444p444¢44444#444u444444444444*

) | |]
55555555555ﬂ55sﬂssss5%555ﬂ555555ﬁ555p55555m55&555555&5sskssssabsrsmss5555555555$

STANDARD 8 WORD CARD

| | |
885688G33665}6665:656566:5858:568GBG:G666:666666:6686|8li666Blﬁ666,666855!666‘8{66555566BGGH'G
|
171777177771P777h71777P111h71777P717b17777b777h77177ﬂ777P771]7h117p7171711771177
| I !
080888”8”:8088:8“088:88888838&8'8888:808888'888'!5““08'!88&:888ﬂ“llﬂiliﬂjnl:a[yua880
9

|
| | | | !
-ssssgsgssﬂsssmss999M9ssmssssssbsas%ssssshseshéssssbsssmssssshsashs EEEEE
3458]

L] II'U Ml.’tlll" 1818 20121 22'232‘2520'212'2’1).‘" M'NMSSJT”I&“ ﬂlﬂ“‘!“l“dliﬂ.’ll ﬂiﬂﬂﬂﬂ'i?ﬂ”wll i 6167 69

X B66424X

TR USRI N

Figure 34. Format of Five-Instructions-Per-Card Assembled Output -

General Description of Producing Assembled Output. produced in the same manner as the condensed cards
Briefly, assembled output is produced as follows: preceding it. In the remaining four cases, however,
o The first instruction (or constant, as the case may punching of the last condensed card awaits the sig-
be) is stored in the one-per-card punch area. nal that the fifth instruction to be condensed is
o The single-instruction assembled output card is stored. Causing this last condensed output card to be
punched. punched is a function of the XFR pseudo instruction,

o The first instruction is tested to determine if it is explained next.

condensable. If it is, the instruction is stored in
word 2 of the condensed punch area. The assigned ~ XFR (TRANSFER)

L-address is stored in the four high-order positions The pseudo instruction, XFR XXXX (blank), can be

of word 7 of the condensed punch area. If not con- : . .

lensable, the first instruction is not stored in the used in a symbolic souree program that is to be assem-

¢ e k bled by SOAP 4000. The instruction produces a transfer

condensed punch area, card. The transfer card produced becomes part of the

This process is repeated, producing the single-in- assembled object program and is loaded with it. After
struction assembled output cards and storing only the assembled object program is loaded, program oper-
the condensable instructions in the condensed punch ation begins automatically, because the transfer card
area. This occurs until the fifth condensable instruc- switches program control to the location of the first ob-
tion is stored in word 6 of the condensed punch area ject-program instruction (starting address). The XFR
and its assigned L-address is stored in the last four pseudo-instruction card must be placed in the symbolic
(low-order) positions of word 8. At this time a con- source-program deck just following the last program-
densed output card is punched, in the format just instruction card. (This is usually just ahead of the PST
described and as shown in Figure 34. Thus the one- or PAT pseudo-instruction card.) The entry in the D-
per-card and the five-per-card output of the symbolic address part of the XFR pseudo instruction is the start-
assembly program is produced, except for punching ing address, which may be in absolute, regional, or

out the last condensed card. Punching this card usu- symbolic form. If the D-address contains a previously-
ally requires further instruction, as explained in the undefined symbol, a location is assigned to the symbol
following paragraph. and included in the (output) transfer card.

As mentioned, a condensed card is punched after The XFR pseudo instruction serves an additional

the fifth instruction is stored in the condensed punch purpose. It causes the last (condensed) output card to
area. On the average, one program in five contains be punched in cases where there are one, two, three, or
condensable instructions that are in multiples of five. four instructions remaining to be condensed after the
In this one case in five, the last condensed card is next-to-last condensed card is punched.

31

~72

4142043144~ -47[48149,50[51152- -55] {56:57- -60| |61- SOAP I COL,
4114243144~ -47]48149,50]51152- -55|56[57:58- -61%6263- -72| |[SOAP T COL.
p|N|LOCATION gg?é A_gg;?ss é AID’\(IDSRTE%S .é REMARKS UFPER.8003
1 EEXAMPLiE, gT]IbCAL CUiLATEI GROSS, PAY, ;
o[[I | :

i 5FD ;oooz ;0011 §

; BILR| {1951 11960| [READ . AREA, |

: REG |Pl0027 003 0| [PUNCH AREAI!

' BELR ioooo 0009 | IRATE TABLEE

; SEYN ch 0200 .
i [L ; z

START|RCD | (1950 i READ CARD |

g LpD| (1951 ; STORE '

| SETD Pl0001 ; IDENT,

J: RAL]| 1952 5 GET HOURLY!

; S|TD |P0002 ; RATE '

| AlLO| | MSK 18002 6000000200!

cla MPY| 1953 ; CALCULATE. |

; SITD [Pl000S3 J: GROS S :

; SIRD| 10001 ; R.O UND §

| SITL |Plo0o04 !]

; P.CH P%OOOl S;TART PUNCH

; X[FR|SITART ;

—T | ;

| ; : % e

! ! ! : X 2

. Figure 35. Sample Program Using a Literal Constant and the Pseudo Operations, 5CD and XFR

An XFR pseudo instruction with a blank D-address,
used in a source program that includes a 5CD card,
does not cause a transfer card to be punched out. It
does cause the last condensed card to be punched,
however, as previously explained.

Figure 35 is a minor modification of the program
shown in Part I, Figure 4 of the SOAP II Reference
Manual. This short program, Calculate Gross Pay, illus-
trates the use of the pseudo-operations, 5CD and XFR,
as well as a literal constant. The program is identified
as job number 0002. The assembled program is to be
condensed using a 5CD card. A ten-card, self-loading,
loading program is available to load the (condensed)
assembled program. Therefore, the condensed cards
are sequence-numbered beginning witly the number

32

0011. A transfer card is produced with the assembled
output, which causes program control to be switched to
the location assigned to the symbol START (i.e., 0050)
after the assembled output is loaded. Figure 36 is a list-
ing of assembled output.

When loading the condensed program deck and
running the program, set the storage-entry switches at
70 1952 9999, After the condensed program deck (in-
cluding output transfer card) is loaded, program execu-
tion begins automatically if the user supplies the input
data cards.

Operating Instructions

Figures 37 and 38, respectively, are the operating in-
structions for SOAP 4000 and SOAP 42.

Single-Instruction-Per-Card Listing (together with an indication of the
order of the condensed cards):

1 1 EXAMPLE 2 CALCULATE GROSS PAY

2 1

3 o] 5CD 0002 0011

4 0 BLR 1951 1960 READ AREA

5 0 REG P0027 0030 PUNCH AREA

6 ¢} BLR 0000 0009 RATE TABLE

7 0 SYN CG 0200

8 1

9 0 START RCD 1950 READ CARD 0050 70 1950 0100

10 o} LDD . 1951 STORE 0100 69 1951 0054

11 0 STD PO0O01 IDENT 0054 24 Q027 0080

12 0 RAL 1952 GET HOURLY 0080 65 1952 0057

13 0 STD P0O002 RATE 0057 24 0028 $031
(First Condensed Card - See Separate Listing Below) .

14 0 ALO MSK 8002 6000000200 0031 15 0034 8002

15 1 LIT 6000000200 0034 60 0000 0200

16 0 G MPY 1953 CALCULATE 0200 19 1953 0023

17 0 STD PO0O03 GROSS 0023 24 0029 0032

18 0 SRD 0001 ROUND 0032 31 0001 0039
(Second Condensed Card - See Separate Listing Below)

19 0 STL PO0O0O4 0039 20 0030 0033

20 [¢] PCH P0O001 START PUNCH 0033 71 0027 0050

21 0 XFR START

(Third Condensed Card - See Separate Listing Below)
{Last Condensed Card ~ Output Transfer Card - See Separate Listing Below)

Five-Instructions=Per-Card Listing:

01000200116 70195001006 69195100546 24002700806 F5195200576 24002800316 00500100006 54008000576
01000200126 15003480026 60000002006 1919530023 B4002900326 310001003%6 00310034026 0000230032&
01000200136 20003000336 71002700506 19195300236 B4002900326 31000100396 00390033026 00002300326
0100020014~ 0000000050& 0000000000& 00000000006 00000000006 0000000000& 00000000006 0000000000&

Figure 36. Assembled Output Listing

IBM 650 PROGRAM OPERATING INSTRUCTIONS

710 1191512 2121919 A4
STORAGE ENTRY SWITCHES SIGN
sToP RUN HALF RUN ADDRESS MANUAL DISTRIBUTOR PROGRAM STOP SENSE STOP SENSE
sTOP (1.4 REGISTER
RUN UPPER READ OUT
x X X x ACCUM STORAGE
LOWER READ IN
ACCUM STORAGE
HALF CYCLE ADDRESS CONTROL DISPLAY OVERFLOW

PROGRAMMED

Initial Console Setting as shown above.

A. Normal Starting Procedure: Computer Reset; Program Start,
B. Special Instructions

If SOAP 4000 is already on the drum do one of the following:
1. Set 00 0000 1000 in the Storage Entry switches.
2. Precede input with a BOP card and set 00 0000 1950 in the

Storage Entry switches.

Set Sign switch to minus (=) if automatic symbol-table punch-out is desired.

Card Input ~ Output

ERROR

READ FEED PUNCH FEED
NO. OF
CARDS FILE DESCRIPTION CARD FORM
367 | SOAP 4000 (including loaden SOAP 11
XXX Symbolic program deck
1 PST card (if desired)
CONTROL. PANELS
SOAP 2L for the appropriate
card Input=Output
components
TAPE UNITS
ADDRESS lNPOURT'o?rl:';rEPRUT FI-I:::"Eo:RROI:;g;—-— ILLABEL CHARACTERISTICS FILE DESCRIPTION
8010
8011
8012 |Library Tape X [(Optional=used only if TAP pseudo instruction is used)
8013
8014
8015

¢

Figure 37 (1). SOAP 4000 Operating Instructions

34

Other Instructions and Remarks

After each machine pass, discard the last card out of the punch feed. If the preceding card contains a
9=punch in column 80, or if it is an availability-table card, assembly is complete. If the card does not
meet either of these conditions remove from the deck all cards that contain a 9-punch in column 80.
Use the remainder of the deck for input to the next pass. The first card that does not contain a 9-punch
in column 80 (i.e., the first card of the input to the next pass) will contain a 4-punch in that column.

An availability table punch-out may be initiated manually by transferring to location 1900, and a
symbol-table punch=-out by transferring to location 1800.

Program Stops and Required Action

sTOP

ADDRESS

MESBSSAGE ~ EXPLANATION ~ ACTION

0222

No locations available for the remaining portion of the program being assembled.

Press the Program=Start key to continue assembly. Addresses not assigned will be
left blank in the output cards.

Figure 37 (2). SOAP 4000 Operating Instructions

IBM 650 PROGRAM OPERATING INSTRUCTIONS

PROGRAMMED

710 1121512 219 |9 |9 AN
STORAGE ENTRY SWITCHES SIGN
STOP RUN HALF RUN ADDRESS MANUAL DISTRIBUTOR PROGRAM STOP SENSE STOP SENSE
STOP oP REGISTER
RUN UPPER READ OUT
X X X X ACCUM STORAGE
LOWER READ IN
ACCUM STORAGE
HALF CYCLE ADDRESS CONTROL DISPLAY OVERFLOW ERROR

Initial Console Setting as shown above,

A. Normal Starting Procedure: Computer Reset; Program Start.
B. Special Instructions:

If SOAP 42 is already on the drum do one of the following:
1. Set 00 0000 1000 in the Storage Entry switches.

2. Precede input with a B OP card and set 00 0000 1950 in the
Storage Entry switches.

Set Sign switch to minus (=) if automatic symbol = table punch =out is desired. "

Figure 38 (1). SOAP 42 Operating Instructions

35

Card Input = Output

READ FEED PUNCH FEED
NO. OF
CAROS FILE DESCRIPTION CARD FORM
297 | SOAP 42 (including loader) SOAP I
XXX Symbolic program deck
1 PST card (if desired)
CONTROL PANELS
SOAP 2L for the appropriate
card Input-Output
components
TAPE UNITS
INPUT,ouTPUT| FILE PROTEC-
ADDRESS| OR OTHER "1':‘0" R'%%-_F- LABEL CHARACTERISTICS # FILE DESCRIPTION
8010 '
8011
8012
8013
8014
8015

Other Instructions and Remarks

After each machine pass, discard the last card out of the punch feed. If the preceding card contains a

9-punch in column 80, or if it is an availabi

meet either of these conditions remove from the deck all cards that
Use the remainder of the deck for input to the next pass. The first card that does not contain a 9-punch
in column 80 (i.e., the first card of the input to the next pass) will contain a 4-punch in that column.

lity-table card, assembly is complete. If the card does not

contain a 9-punch in column 80,

An availability table punch-out may be initiated manually by transferring to location 1900, and a
symbol~-table punch-out by transferring to location 1800.

Program Stops and Required Action

AD.DTROEPQQ MESSAGE - EXPLANATION - ACTION
0222 No locations available for the remaining portion of the program being assembied.

Press the Program=Start key to continue assembly. Addresses not assigned will be
left blank in the output cards.)

Figure 38 (2). SOAP 42 Operating Instructions

BV

[

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York

Printed in U.S.A. J24-5013-0

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36

