rence Manual

R
REN

Floating-Decimal Interpretive System

for the IBM 650

IBM Reference Manual
Floating-Decimal Interpretive System
for the IBM 650

This is a reprint of the report which appeared in Technical Newsletter
No. 11, March 1956. Although now issued as a Systems Reference
Manual with a new form number, it does not obsolete Newsletter No. 11,
form 31-6822.

This report by Dr., V.M, Wolontis of the Bell Telephone Laboratories
describes a Complete Floating-Decimal Interpretive System for the IBM
650 Magnetic Drum Calculator., The system is the result of a joint
effort by several members of the Laboratories, including Miss D.C.
Leagus, Miss R, A, Weiss, Miss M.C, Gray, and Dr. G, L, Baldwin,
and it has benefited from suggestions by Dr. R. W, Hamming and Dr.
S.P., Morgan., We wish to extend our thanks to the Bell Telephone
Laboratories and to the above-mentioned individuals for their valuable
contribution to the interchange of technical information.

In its external characteristics, the interpretive system described in
this report owes much to the IBM Speedcoding System for the 701,

© 1956 and 1959 by International Business Machines Corporation

A COMPLETE FLOATING-DECIMAL INTERPRETIVE SYSTEM

FOR THE IBM 650 MAGNETIC DRUM CALCULATOR

V. M. Wolontis
Bell Telephone Laboratories, Inc,
Murray Hill, New Jersey

ABSTRACT

This report describes an interpretive system which transforms the 650
into a three-address, floating-decimal, general-purpose computer,
primarily suited for scientific and engineering calculations. The system
is complete in the sense that all mathematical, logical and input-output
operations normally called for in such calculations can be performed
within the system, i.e., without reference to the basic operation codes
of the 650, The guiding principles in designing the system have been
ease of use, as defined in the introduction, high speed of arithmetic and
frequently used logical operations and full accuracy and range for the
elementary transcendental functions.

The report serves a dual purpose. It presents the external characteristics
of the interpretive system to the potential user by means of detailed
explanations accompanied by illustrative examples, assuming no previous
familiarity with internally programmed machines. It also describes

the internal structure of the system to the professional designer of such
systems, enabling him to modify it to suit his particular needs or to
borrow ideas or building blocks he may find useful.

The program card deck for the system is available from the 650 Program
Library. Requests should be addressed to:

IBM 650 Program Librarian

Applied Programming Publications
International Business Machines Corporation
590 Madison Avenue

New York 22, New York

CONTENTS

Note: The material of immediate concern to those who wish to learn how to
program problems in the interpretive system is contained in sections II-X. Sec-
tion I is devoted to general considerations and may be bypassed. Section XI deals
with the internal structure of the system, primarily for the benefit of those inter-
ested in the design of interpretive systems, but the discussion of possible mod-
ifications in Sec. XI. 1. and the contents of Sec. XI.2. and XI. 3. should be of wider
interest and do not require familiarity with the basic language of the 650.

The experienced programmer may absorb the essentials of the system by
reading the definitions of the operations. Page references to them are given in
the summary of operation codes.

Page

I. INTRODUCTION 4
I 1. General Design Considerations 4
I.2. Changes and Additions 6
II. GENERAL INFORMATION 7
II. 1. The 650 7

II. 2. The Interpretive System:
Storage; Data and Instruction Form 7
III. MATHEMATICAL OPERATIONS 10
III. 1. Arithmetic Operations 10
III. 2. Special Functions 10
III. 3. MOVE 000 11
I11. 4. An Example 12
IV. LOGICAL OPERATIONS 13
V. 1. Transfer Operations 13
Iv. 2. Loop Operations 15
Iv. 3. Address Change Operations - 18
Iv. 4. MOVE 23
V. INPUT-OUTPUT OPERATIONS ‘ 25
V. 1. Card Form 25

VI.

VIL

VIII.

IX.

XI.

CONTENTS (continued)

V. 2. Punching
V. 3. Loading
V. 4. Reading

PROGRAM TESTING

VI. 1.
VI. 2.
VI 3.

Memory Print-Out
Tracing .
Console Testing

SUMMARY OF OPERATION CODES

STOPS

EXECUTION TIMES

. SPECIAL TOPICS IN PROGRAMMING

X. 1. Subroutines; Translation

X. 2. Unnormalized Input; Transition Between
Floating- and Fixed-Decimal Form

X. 3. Examples

INTERNAL STRUCTURE OF THE SYSTEM

Control Panel Wiring for the Read-Punch Unit
Control Panel Wiring for the Tabulator

XI. 1. Detailed Design Considerations
XI. 2. Related Systems

XI. 3. Numerical Methods

XI. 4.

XI. 5.

XI. 6. System Loading

XI. 7. Programs

Page
25
27
29
31

31
32
34

36
37
40
43
43

44
44

50

50
55
55
57
58
61
63

I INTRODUCTION

I.1. GENERAL DESIGN CONSIDERATIONS

The use of most existing computing devices whose degree of automatic per-
formance substantially exceeds that of a desk calculator entails certain problems
not encountered in desk computing. To cope with these problems, one may incor-
porate additional circuitry into the machine--this, indeed, appears to be the trend
in recently announced commercially available machines--or, alternatively, one
may program, in terms of the basic language of the machine, a system or super-
language in terms of which the general user will program his problems. The user
may consider the machine and the super-language as one entity, and no knowledge
‘of the basic machine language is required of him. Before actual calculation, the
programmer's instructions are translated by the machine into the basic language.

If this translation or interpretation takes place each time an instruction is to be
executed, rather than once for all at the beginning of a problem, the super-language
is referred to as an interpretive language or system. Limitations in storage capac-
ity may necessitate the choice of an interpretive system rather than a system of

the once-for-all type in the case of most small or medium-sized computers.

The designers of an interpretive system are faced with a very large number
of decisions. To provide a basis of motivation for these decisions, it is convenient
to list here, in somewhat arbitrary order, some of the above-mentioned problems
which the present interpretive system proposes to solve. All of them may funda-
mentally be measured in terms of total time spent by a programmer in learning to
use the machine and in using it on a specific problem. In this sense, the ''ease of
use'' referred to in the abstract above is implicitly defined by the list that follows.
The price paid for the saving of programmer time is, of course, to be found in
substantially reduced speed of operation.

A. Scaling

The storage medium--paper--normally used in desk computing places no
practical restriction on the size of numbers or on the location of decimal points.
In using a computer that automatically stores intermediate results in registers
of fixed length and with the position of the decimal point fixed in advance, a great
deal of time must in most cases be spent on estimating the range of all intermediate
results to prevent errors due to overflow. The well-known way of avoiding this
at the expense of a very substantial increase in the internal complexity of the arith-
metic operations is to represent each non-zero number in floating -decimal form,
i.e., as a signed quantity whose absolute value lies in a fixed range, accompanied
by an exponent of 10 or decimal point indicator.

B. Length and Complexity of the Program

Floating decimal arithmetic and frequently needed special functions could

4

.

be incorporated into a program written in the basic machine language in the form
of a set of subroutines reached by a two-way transfer of control, (""calling se-
quence'' or '"basic linkage'') and there are indeed probléms for which this is the
best choice. In many cases--particularly in the case of relatively short prob-
lems where the results are needed quickly--a further reduction of the program-
ming effort is desirable. This may be achieved by combining under single oper-
ation codes, in an interpretive language, groups of steps in the basic language
needed for performing frequently occurring tasks. For example, a single instruc-
tion in which three locations are specified may be used for adding two arbitrarily
located numbers and storing the result or a block of information of any length
may be punched on cards as a result of a single instruction. In particular, the
task of repeating a calculation a specified number of times, each time with appro-
priate modifications, must be made easy, and the interpretive system described
in this report goes as far as is believed possible in this direction by providing an
order ("LOOP'") with which simple cases of this task can be handled by a single
instruction.

To preserve the simplicity gained by introducing an interpretive system, the
system must be made complete or self contained so that most problems can be
conveniently programmed without reference to two different systems of operation
codes, although, of course, leaving and re-entering the interpretive system should
be made possible in order to provide the experienced programmer with complete
flexibility.

- C. Restrictions

In desk computing, one cannot fail to notice if the argument for which a func-
tion value is to be found in a table falls outside the range covered by the table or
if in transcribing a set of numbers from one area on a piece of paper to another,
overlapping area, some of the numbers to be transcribed are erased before tran-
scription. A machine will avoid or detect such blunders only if programmed to do
so, and as much as possible of this programming should be included in the inter-
pretive system. For example, it is desirable that all mathematical functions in-
cluded in the system be available for the full range of argument consistent with their
definition and with the limitations imposed by the machine itself and that they are
computed to the full accuracy of the number system used. Error stops indicating
violations of unavoidable restrictions should be included to the fullest extent that
space limitations permit.

D. Program Testing

The usefulness of a general-purpose computer or interpretive system depends
decisively on the methods provided for testing (''debugging'') new programs--for
definitions and details, see Sec. VI. In the case of an interpretive system whose
operating speed is only one order of magnitude above the speed of card punching,
testing by means of a tracing routine included in the system compares favorably to

console testing, at least in the case of programmers whose familiarity with the
machine is limited. Either of these methods is thought of as a tool normally used
only when memory print-outs have been found insufficient. To facilitate testing

by any of the methods mentioned and to keep programming as concrete as possible,
the system described in this report assumes that the actual machine location of

each instruction and stored number is assigned by the programmer. The system
may, of course, be used in conjunction with regional or symbolic assembly programs.

I.2. CHANGES AND ADDITIONS

Numerous minor changes suggest themselves when the system is viewed in
the light of the experience gained in designing it; some of them are discussed in
detail at the end of the report., Corrections of errors not yet revealed must be ex-
pected. External changes and additions will undoubtedly be proposed after a period
of use. The present system should, therefore, be considered primarily as a first
version which each user may consider changing to better suit his needs. Comments
and suggestions on both internal and external aspects of the system will be greatly
appreciated.

II GENERAL INFORMATION

II.1. THE 650

The IBM 650 is an electronic computer whose basic storage consists of
a magnetic drum capable of holding 2000 words (numbers) of ten decimal digits
and sign. The machine is internally programmed, i.e., the program of instruc-
tions which the machine is expected to follow is kept on the drum, and the ma-
chine automatically reads one instruction at a time from the drum, executes it,
reads another instruction, and so on. Initially, the program is loaded onto the
drum from punched cards but each instruction is loaded only once, although the
machine may be expected to execute it many times in the course of a problem.
Special orders are inserted into the program to cause repetition of prescribed
sections the desired number of times. In many cases, the instructions exec-
uted by the machine are changed or modified under control of the program between
successive executions, This ability to modify its own instructions is one of the
distinguishing characteristics of an internally programmed machine.

In the basic model of the 650, all answers are punched by the machine into
cards, which may be printed on a separate tabulator.

The 650 is a general-purpose, fixed-decimal machine and any programmer
may, with the aid of a detailed manual published by IBM, learn to use it as such.
There are many large problems and many problems of a data processing nature
for which fixed-decimal operation is definitely indicated, and the programmer is
asked to give serious consideration to this alternative for all but the very smallest
problems, since the gain in machine time over floating-decimal operation (ex-
plained below) may be as high as 10:1. The machine-language programmer may
relieve himself of many tasks by using the interpretive system for loading, punch-
ing, calculation of special functions, etc., provided 1000 storage locations suffice
for his problem. (See TR OUT, Sec. IV.1)

This report describes a system which enables the programmer to use the
650 as a floating-decimal machine, without being familiar with the fixed-decimal
mode of operation. Beginning with the next section, all statements will concern
the system rather than the 650 itself, but it should be borne in mind that if any-
thing in the system appears restrictive from the viewpoint of a particular appli-
cation, --storage capacity, speed, card form, word length, etc.--total or partial
use of basic 650 coding may be the answer.

II.2. THE INTERPRETIVE SYSTEM: STORAGE; DATA AND INSTRUCTION FORM

When the interpretive system is in use 999 ten-digit storage locations,
numbered 001-999, are unrestrictedly available to the programmer for storing
instructions and data. The location 000 has a special use ('previous result'')
which will be discussed below.

Throughout the system, numbers upon which mathematical operations are
performed are stored and used in so-called (normalized) floating -decimal form,
which will be defined as follows: The number zero is written as ten zeros with a
plus sign ('machine zero'). Any number A other than zero is expressed as

A=t A . 1071
where 1€ A; £ 10 and -50£a;& 49. In the machine, A is written as the pair
* (A, a), where a= aj+ 50 and A} is an eight-digit number with seven decimal
places. The "machine exponent'" a is a two-digit (positive) integer located at the
right end of the number. Non-zero numbers A not in the range 10-50 £ |Al<1050
cannot be correctly used in the machine, and some of the mathematical operations
will give an error stop if the result would fall outside this range (see STOPS). Num-
bers loaded into the machine must also be in the form prescribed above, unless
special precautions are taken (see Sec. X.2).

The system instructions are signed ten-digit numbers of the following
form:

*lo

1 A or 02 B C

Here, 0; is a one-digit operation code and B and C are three-digit addresses. The
three-digit quantity "A or 0," is interpreted as an address A if 0; # 0 and as an
operation code 02 if 0; = 0. The sign of the instruction is used in connection with
the LLOOP order (see LOOP OPERATIONS). The only difference between the mu-
tually exclusive 01 and 0, operations is that all operations which require three
addresses have been designated 01, all others, 0).

An example will illustrate how the addresses are used in a program: To add
the number stored in register 200 to the number stored in register 201 and store
the result in 500, the operation code 0] = 1 (ADD) is used and the instruction reads:
1 200 201 500. To take the square root of the number in 200 and store the result
in 500, the 0)-operation 0, = 300 (SQRT) is used: 0 300 200 500. As will be shown
in later sections, it is also possible to call out an instruction stored in memory
and operate upon it, e.g., increase one of the addresses in it. In storage, no dis-
tinction is made between instructions and data so that the programmer is free to
use any memory location for storing an instruction or a number as he sees fit.

To facilitate explanations, the following notation will be used: The ten-digit
quantity whose storage location has the address A _will be denoted by A; anal-
ogously, ‘B—”Will denote the contents of location B. C denotes the result of a calcula-
tion about to be stored in location C.

In addition to being stored at C, the result C of any mathematical operation
(i.e., arithmetic operations or special functions) and of MOVE 000 and CONS
(see READING) is automatically stored in the special location 000. If this result
is needed on the next step, {or, more generally, before it has been replaced by
the result of a subsequent mathematical operation or MOVE 000 or CONS) calling
it out by using 000 as an A-address will reduce the execution time in the case of

the arithmetic operations. Also, time will be saved in any mathematical operation

by using 000 as a C-address when C will be needed only on the next step. Execu-
tion times are discussed in detail in a later section, but it should be emphasized
that timing considerations only affect the running time of a problem, never the
correctness of results. All locations are accessible at any time.

Special addresses for obtaining frequently needed numbers, such as, 0 and

1, are not provided by the system. The programmer should load such numbers
into locations of his own choosing.

III MATHEMATICAL OPERATIONS

II1. 1. ARITHMETIC OPERATIONS

The operations will be introduced in an order chosen to facilitate the learn-
ing process. Later, a concise summary of all operation codes will be given.
Alphabetic operation codes are listed in addition to the numerical ones merely to
facilitate programming; they are not introduced into the 650 and need not be used
at all.

The result of each arithmetic operation is rounded. If the result is zero,
a machine zero is given, i.e., the machine exponent will be 00. An error stop
occurs if the result of a multiplication or division would fall outside the range of
the floating-decimal number representation; another error stop detects attempts
to divide by zero (see STOPS).

A list of the arithmetic operations follows:

Numer. Alpha.

code code Function

0= 1 ADD Add (in floating-decimal form) the num-
ber A stored at A to the numb_c:a_r B
stored at B, store the result C at C
and 000. Abbreviated:

A+B=20C

0; = 2 SUB Subtract: Z& -B = cC

0, = 3 MPY Multiply: A . B = C

0, =4 DIV Divide: A /B= C

01 = 5 NGMPY Multiply negatively: -A.B=C

II1. 2. SPECIAL FUNCTIONS

The system is intended to give eight-digit accuracy (i.e., an error less than
l in the eighth digit) in computing the special functions included whenever the input
makes this accuracy possible. For trigonometric functions of an argument exceed-
ing one revolution and for logarithms of numbers near 1, loss of accuracy follows
from the mathematical properties of the respective functions and stops (which may
be bypassed by the setting of a console switch) are provided when this loss exceeds
two digits. For small values of the argument, where an eight-digit, fixed-decimal
representation of the sine or arc tangent would contain leading zeros, the floating-
decimal representation would normally introduce meaningless digits at the right

-10-

end. To reduce this nuisance to a tolerable level and also make possible trig-
onometric calculations with extremely small arguments, the formulas sin x = x
and arc tan x = x are used for |x\¢{ .0025 and |x{€ . 00l, respectively. Those
interested will find the methods of computing the special functions described in
Section XI. 3. -

Aside from the limitations imposed by the above mentioned inherent loss
of accuracy and by the floating-decimal representation of the result, no restric-
tions apply to the natural range of the argument for the special functions. Error
stops will prevent attempts to take the square root of a negative number or the
logarithm of a non-positive number.

The special functions {or, more precisely, elementary transcendental
functions) are:

Numer. Alpha. Function

0, = 300 SQRT V8 =¢C

0, = 301 EXP E eB=C

0, = 302 LOG E log, B=C

0, = 303 SIN R sin B = C, B in radians

0, = 304 COS R cos:B- = C, B in radians

0, = 305 ART R arc tan B = G, C in radians, ICI< /2
0, = 350 ABS Bl = C

0, = 351 EXP 10 108 = G

0, = 352 LOG 10 logjgB = C

0, = 353 SIN D sin B = C, B in degrees

0, = 354 COS D cos B = C, B in degrees

02 = 355 ART D arc tan B = C, C in degrees, Icl< 90

Subdivisions of a degree are expressed decimally, not in minutes and sec-
onds, ‘

III. 3. MOVE 000

In many cases (particularly in connection with the use of subroutines) it may

-11-

be convenient to be able to call out a number B from B and deposit it in C, as
well as in 000, without the time-consuming use of a floating-decimal arithmetic
operation. This is accomplished by the logical operation 0_ = 9 ("MOVE") with
A = 000. The normal use of MOVE with A # 000 is described in Sec. IV. 4.

IIl. 4. AN EXAMPLE

For the benefit of anyone with no previous computer experience, a simple
example illustrating the use of the mathematical operations will be inserted here.
Suppose that, as a part of a program which is assumed to be already on the drum,
it is desired to evaluate the function

sin x
S 14 e-x3

Here, x in radians is assumed to be in storage register 500 and the constant 1 in
600. The quantity e-X3 is to be stored in 501, and f(x) in 502. A program might
look as follows: o

f(x)=

Alpha. 0g A or 0, B C Comments

MPY 3 500 500 000 x2

NGMPY 5 000 500 000 =3

EXP E 0 301 000 501 e %>, store in 501

ADD 1 000 600 000 14 e~X°

SQRT 0 300 000 400 J1+ e-%3, store
temporarily

SIN R 0 303 500 000 sin x

DIV 4 000 400 502 f(x), store in 502

The extensive use of the ""previous result' address, 000, is worth noting.

-12-

IV LOGICAL OPERATIONS

IV.1. TRANSFER OPERATIONS

Suppose the machine has been instructed (see LOADING) to begin a program
by executing the instruction stored in, say, location 10l. When this execution is
completed, the machine will automatically execute instruction 102, then 103, etc.,
until told by the program to do otherwise. Operations whose primary function is
to influence either the order in which instructions are executed by the machine or
the selection of stored data upon which the instructions make the machine operate
will be called logical operations. A simple example of such an operation is 0, =
203, "Transfer Control''. If in the sequence 101, 102, 103 above, instruction 103
should read "TR 0 203 000 080", the next instruction executed by the machine would
be 080 instead of 104. This may be expressed by saying that '"control was trans-
ferred to 080". The B-address was ignored in this case. The transfer of control
may be made to depend on the result of calculations (mathematical or logical) in
which case a '"conditional transfer! is said to occur. Logical operations--con-
ditional or unconditional--are needed whenever several blocks of instructions,
located on various parts of the drum, are to be tied together to form a program,
whenever it is desired to repeat a calculation several times, etc.

For simplicity in grouping, the following list of transfer operations includes
two (UNC STOP and NOQP) whose transfer function is of a degenerate nature. In
a first reading, it may be advantageous to omit the TR SUBR and TR OUT operations.

Numer. Alpha. Function

0, = 000 UNC STOP Stop unconditionally. The machine
stops regardless of the setting of
console switches (see CONSOLE)
and displays 9999 on the address
lights and B on the display lights.
This operation should be used only
where it is intended to discontinue
the execution of the program, since
a continuation of the program cannot
be effected by a simple depression
of the PROGRAM START key (see
STOPS). The C-address is ignored
but should be filled, e.g., with zeros
(see LOADING).

200 COND STOP Stop conditionally and transfer. The
machine stops if the PROGRAMMED
STOP switch on the console is in
the STOP position. The number
1120 is displayed on the address

0

i

-13-

Numer. Alpha. Function

lights and B on the di splay lights.
When the PROGRAM START key

is depressed, control is trans-
ferred to C. If the PROGRAMMED
STOP switch is in the RUN position,
control is transferred to C with-
out stopping.

Caution: If the PROGRAMMED
STOP switch is on RUN, the stops
for loss of accuracy in sine, co-
sine and logarithm and the stop in
the CONS operation will not occur.

This operation may be used for stopping at check points in the early running
stages of a problem, with the option of avoiding the stops during later runs.

0, = 201 TR SGN Transfer on sign. Control is trans-
ferred to C if the result of the last
mathematical operation or MOVE
000 or CONS is negative, to B if
it is non-negative. (i.e., zero is
regarded as having a plus sign).

0, = 202 TR EXP Transfer on exponent. The exponent,
¢, of the result of the last mathe-
matical operation or MOVE 000 or
CONS is compared to B (the leading
digit of B should be 0). Control is
transferred to Cif ¢) B. If ¢< B,
control proceeds to the next instruc-
tion.

This operation is particularly suited for the summation of series where terms
are to be added until they have a prescribed number (50 - B) of leading zeros. For
example, in order to return to instruction 080 only as long as the absolute value of
the previous result is . 0001 or greater, one would write "TR EXP 0 202 046 080",
This saves a time-consuming floating subtraction preceding the test. The TR EXP
operation is also intended to take the place of the TR ZERO operation found in most
systems. Due to the accumulation of small errors during a calculation, it is unwise
in most cases to expect a result to be exactly zero to eight figures; here a TR EXP
with a suitably chosen B may prevent a never-ending repetition of a part of a program.

02 = 203 TR Transfer. Control is transferred to
C, i.e., the next instruction exe-~

-14-

Numer. Alpha. Function

cuted-will be the one stored at C.
The B address is ignored but
should be filled, e.g., with zeros.

0, = 204 TR SUBR Transfer to subroutine. The C-
address of the instruction located
at C is set equal to B, whereupon

L control is transferred to C. The
sign of the instruction at C is made
positive. (For an elucidation and
applications see SUBROUTINES.)

0, = 205 TR OUT Transfer out. Control is transferred
to C and the instruction stored there
is executed in the basic language of
the machine (i. e., outside the inter-
pretive system). When an instruc-
tion address 1095 is given in the
basic language, control is returned
to the interpretive system beginning
at the instruction following the TR
OUT. The B-address of the TR OUT
instruction is ignored but should be
filled, e.g., with zeros. The pro-
grammer in basic language must be
careful not to use locations above 999,
which are occupied by the interpretive
system.,

0, = 454 NOOP No operation. Control proceeds to
the next instruction. The B- and
C-addresses are ignored but should
be filled, e.g., with zeros.

This operation is likely to occur in connection with tracing (see TRACING,
particularly the ST TR ERAS operation) or when a superfluous instruction has
been deleted from a program.

Iv.2. LOOP OPERATIONS

A highly repetitive character is required of any problem to be economically
handled on an automatic computer. In certain instances, such as Newton's iteration
procedure for the solution of equations, a repetitive process or '"loop'" is con-
veniently programmed, merely using conditional transfer operations. In many cases,
however, some of the instructions to be repeated must be slightly modified in a

-15-

systematic way before each new repetition. For example, in the evaluation of a
linear expression § a; x; with the aj and the x; stored in blocks of consecutive
i=1
locations, the addresses of a; and x; must be increased by 1 each time a new term
is to be computed. To facilitate programming of this kind, the system provides
two methods of so-called address modification. The simpler--but less general--
of these methods employs a special counter called the loop box, which is stored
in a location normally inaccessible to the programmer. If an instruction carries
a minus sign, the current contents of the loop box will be added to the instruction
(in fixed-decimal arithmetic and without regard to the sign) before it is executed.
If, for example, the instruction - [531 600 901 is given and the loop box contains
+ 0 009 000 009, the instruction actually executed by the machine would read 1 540
600 910. The original instruction remains unchanged in its storage location. At
the end of a calculation, an 0, instruction called LOOP enables the programmer
to increase the contents of the loop box by 1 in one or several address positions and
to transfer control back to the beginning of the calculation. Hence, the calculation
may be carried out repeatedly, each time with different addresses used in the exe-
cution of instructions with minus signs. A test provision included in the LOOP order
stops the repetition after a specified number of executions and resets the loop box
to zero for future use. An example will be given after the following list of LOOP
operations.

Numer. Alpha. Function

0, = 100 LOOP A Loop on A. The contents of the
loop box are increased by 0 001
000 000. In other words, the A-
segment of the loop box is in-
creased by 1. After the increase,
the A-segment of the loop box is
compared to the B-address of the
LOOP instruction. If the A-seg-
ment is less than B, control is
transferred to C. If the A-seg-
ment is equal to B, (or greater,
which will never be the case in
normal use) the loop box is reset
to zero and control proceeds to
the next instruction.

02 = 010 LOOP B Loop on B. Analogous to LOOP A,
with the B-segment of the loop
box now being increased and com-
pared to the B-address of the LOOP
instruction.

001 LOOP C Loop on C. Analogous to LOOP
A, with the C-segment of the
loop box being increased and
compared to B.

oo
il

-16-

Numer. Alpha. Function

0, = 110 LOOP AB Loop on A and B. Analogous to
LOOP A. The A- and B-segments
of the loop box are increased by
1 and the A-segment is compared

to B.

0, = 101 LOOP AC Loop on A and C. Analogous.

0, = 011 LOOP BC Loop on B and C. Analogous. The
B-segment is used for the com-
parison,

02 =111 LOOP ABC Loop on A, B and C. Analogous.
The A-segment is used for the
comparison.

To illustrate the use of a LOOP order, consider the evaluation of the linear

expression L(x)= i.‘? a; X, where the a, and the x; are stored in memory. In
i=1 '

choosing storage locations for numbers, it is wise to plan in advance how they are
to be used in the program. In this case, since the a; and the x, are to be reached
using the LOOP operation, it is advantageous to store them in %locks of consecutive
locations, say the a; in 800 + i and the x; in 900+ i, (i = 1,2, ..., 20). Suppose
L(x) is to be stored in 700. For simplicity, assume that register 700 contains zero
at the beginning of the calculation and that the loop box has been reset. The entire
program for this calculation might be written as follows:

Instr. No. Alpha. Sign. 0, Aor 0, B C
101 MPY — 3 801 901 000
102 ADD + 1 _ 000 700 700
103 LOOP AB -+ 0 110 020 101
104 Next instruction in the problem.

Note that the B-address of the LOOP order simply indicates the number of times
the arithmetic calculation is to be performed, including the first time when the
addresses are actually unmodified (modified by adding zero). The practice of
starting the instruction numbering at, e.g., 101, rather than 00l facilitates later
additions to the beginning of a program.

The loop box is automatically reset at the beginning of a new problem (see
LOADING), and whenever a transfer out of a loop is effected by a loop order (as
stated in the definitions above). Hence, the resetting of the loop box need not
concern the programmer under normal conditions. If the need for resetting the
loop box should arise, however, this is easily done by giving, e.g., the order
LOOP A with the B-address 000. According to the definition of LOOP A, this will
cause control to proceed to the next instruction with a resetting of the loop box.

-17-

The C-address is irrelevant in this case. This situation would arise if control
were transferred out of a loop in the middle of it by one of the conditional transfer
operations.

It is worth observing that a LOOP operation may be advantageously used in
some cases where address modification is nof involved, simply to repeat a sequence
of steps a prescribed number of times, e.g., each time adding a fixed increment to
a parameter. In such a case, any one of the loop orders could be chosen, (see
EXECUTION TIMES, however) and no negative instructions would occur.

The advantages of the loop-box method are its simplicity and high speed and
the fact that the original instructions remain unchanged in memory. It is limited
by the fact that there is only one loop box and hence, all instructions to be modified
are modified in the same way. To handle situations more complicated than this,
the system provides a set of operations described in the next section.

1V. 3. ADDRESS CHANGE OPERATIONS

Many problems can be completely programmed without the use of address
change operations, and for someone approaching the field of internal programming
for the first time, it might be advantageous to ignore this section until the need
for more general logical operations arises.

The functions of the address change operations are: (a) To increase or
decrease a designated address of an instruction in storage by any given amount;
(b) To set such an address to a given value {without reference to its previous value);
and (c) To transfer control as a result of comparing such an address to a given num-
ber.

There are nine Oz-operations among the address change operations. In each
of these, the B-address gives the location of the instruction (B) to be changed and
the C-address is the amount of change. For example, suppose the instruction 0
600 750 005 (using the operation 0, = 600, ADD A) is given and suppose location
750 contains the instruction 1 320 400 000. Then the A-address, 320, of this in-
struction will be increased by 005 and the resulting instruction 1 325 400 000 stored
back in 750. Similarly, if 0 050 750 333 were given, (using 0, = 050, SET B) the
instruction in 750 would be changed to read 1 320 333 000. In brief:

Numer. Alpha. Function

02 = 500 SET A Set the A-address._ The A-address
of the instruction (B) specified

by B is set equal to C.

0, = 050 SET B Set the B-address. The B-address
of the instruction (B) specified by
B is set equal to C.

0, = 005 SET C Set the C-address. The C-address
of the instruction (B) specified by
B is set equal to C.

-18-

Numer. Alpha. Function

02 = 600 ADD A Add to the A-address. The A-
address of the instruction (B)
specified by B is increased by
C.

, 02 060 ADD B Add to the B-address. The B-
’ address of the instruction (B)
specified by B is increased by

C.

0, = 006 ADD C Add to the C-address. The C-
address of the instruction (B)
specified by B is increased by
C.

0, = 700 SUB A Subtract from the A-address.
The A-address of the instruction
(B) specified by B is decreased
by C.

o
1

2 070 / SUB B Subtract from the B-address.
Analogous to SUB A.

02 = 007 SUB C Subtract from the C-address.
Analogous to SUB A,

The sign of the instruction being modified remains unchanged and does not affect
the outcome of the modification. Attempts to increase an address beyond 999 or
decrease it below 0 will result in erroneous operation not prevented by error stops.

Three 0j-operations, TR A, TR B and TR C, complete the set of address
change operations. In each of them, the A-address specifies the instruction (A)
to be called out and the B-address is the constant to which a specified address is
to be compared. In case of inequality, control is transferred to C. For example,
if the instruction 6 750 325 200 (using 07 = 6, TR A) is given, control will be trans-
ferred to 200 if the instruction in 750 reads 1 320 400 000 but control will proceed
ahead if 750 contains 1 325 400 000. Summarizing:

0, = 6 TR A Transfer on the A-address. The
A-address of the instruction (A)
specified by A is compared to B.
Control is transferred to C if
they are unequal but proceeds to
the next instruction if they are
equal.

-19-

Numer. Alpha. Function

0, = 7 TR B Transfer on the B-address. The
B-~address of the instruction (A)
specified by A is compared to B.
Control is transferred to C if
they are unequal but proceeds to
the next instruction if they are
equal.

0, = 8 TR C Transfer on the C-address. The
C-address of the instruction (A)
specified by A is compared to B.
Control is transferred to C if
they are unequal but proceeds to
the next instruction if they are
equal.

As an introductory example, the summation in the section on LOOP OPERA-
TIONS will be programmed again using address change methods. This would be
an inefficient choice in an actual problem, but it will best illustrate the difference,
as well as the analogy between the two methods. It is again assumed that register
700 contains zero at the start, but the steps analogous to the resetting of the loop
box will be included.

Inst. Alpha. Sign 01 A or 02 B C
101 SET A + 0 500 103 801
102 SET B + 0 050 103 901
103 MPY + 3 [] [1] 000
104 ADD +, 1 000 700 700
105 ADD A + 0 600 103 001
106 ADD B + 0 060 103 001
107 TR A + 6 103 821 103
108 Next instruction in the problem.

The brackets in the A- and B-addresses of instruction 103 are used to indicate that
these addresses are variable and will be supplied by the program before the instruc-
tion is executed, hence what is written there when the program is loaded into the
machine is irrelevant. At the end of the program when instruction 108 is reached,
memory location 103 will contain + 3 821 921 000. It is assumed that the summation
just programmed is part of a larger problem in which it is used repeatedly. This - -
is the reason for the SET A and SET B instructions. If 801 and 901 were simply
loaded into their respective positions in instruction 103 initially, the summation
would be performed correctly the first time it is used, but the next time when the
summation is called for, instruction 103 would read 4+ 3 821 921000 and erroneous
calculations would result. The SET instructions could, of course, have been in-
‘serted after the completion of the summation, restoring instruction 103 to its proper

-20-

Instr.

101
102
103
104
105
106

107

108
109

110

111

value for the next application, but this procedure is not recommended because it
makes it more difficult to restart the problem from the beginning without reload-
ing the program in case of an interruption (e.g., error stop) during the loop.

A more realistic example of the use of address change methods would be a
calculation involving more than one summation index or parameter. Then, one
of the fast and convenient LOOP orders would normally be used in the "inner loop'",
i.e., the loop occurring most frequently, with address change operations con-
trolling the 'fouter loop'* or loops. Suppose, for example, that it is desired to
calculate Sj = 12'9 ajixi forj=1, 2, ...5, where the a,,i are stored in 8004+ 10 + i

X j j

(i. e., a is in 811, aj, in 812, etc.; a 1 in 821, a, in 822, and so forth), the
x; in 900 + i, and the S, are to be storedzm 700+ j. %t will be assumed that register
500 contains zero. For completeness, the setting of all variable addresses to their

initial values for repeated use of the summation program will be included.

Alpha. Sign 01 A or 02 B C Comments

SET A + 0 500 104 811 Set variable
addresses to their

SET C + 0 005 107 701 initial values

MOVE + 9 000 500 400 Set register 400

- to zero

MPY - 3 L] 901 000 “Inner loop

ADD -+ 1 000 400 400 i.e., summation

LOOP AB + 0 110 010 104 on i

MOVE + 9 000 400 (I Store the result

ADD A + 0 600 104 010 Increase addresses

ADD C + 0 006 107 001 for next repetition
in the outer loop
(j-loop)

TR C + 8 107 706 103 Test for end of
j-loop

Next instruction in the problem.

A superficial examination of this program might suggest that only 1/5 of the
program is devoted to actual arithmetic calculation (!), but it should be observed
that in terms of the number of instructions executed by the machine when one
complete summation is performed, the arithmetic ones are still in the majority,
and in terms of execution time they comprise about 3/4 of the program.

- -21-

In programming problems involving several loops, it may be helpful to
consider the structure of a loop in terms of four phases:

1. Initialization. Where addresses in the loop are set to their ini-
tial values, registers used for summation are set to zero, etc..
The automatic resetting of the loop box and the fact that ad-
dresses remain unchanged in memory tend to reduce the ini-
tialization when the loop is controlled by a LOOP operation.

In the summation problem above, steps 101 and 102 constitute
the initialization for the outer loop, step 103 is the initialization
for the inner loop. Notice that step 103 is repeated as a part of
the outer loop.

2. Execution. Comprising the mathematical operations of the loop,
as well as any logical operations associated with a loop inside
the one being executed. Above, the execution of the inner loop
consists of steps 104 and 105 and the execution of the outer
loop consists of 103-107.

3. Modification. Where addresses, parameter values, etc., are in-
creased or decreased. The modification of the inner loop above
is included in the LOOP instruction. The modification of the
outer loop consists of steps 108 and 109. The position of the
modification in the program in relation to the execution and test
is frequently subject to choice.

4. Test. Determining whether the loop is completed or further rep-
etition is required. The LOOP instruction includes the test for
the inner loop and step 110 is the test for the outer loop.

Note: It is important to write loops in such a way that all ini-
tializations are performed by the program, not by loading. If

this rule is not followed, it will not be feasible to restart the pro-
gram during testing or after a machine stop without reloading.
For example, if a register is used for summation, it should be
reset before being used in the summation loop by moving zero into
it from another location, not by loading zero into it from a card.

Many programmers find it helpful in programming a large problem to draw
a block diagram or flow chart with one box representing each phase of each loop
and arrows connecting the boxes showing the flow of control.

The address change operations, particularly the SET operations, are fre-
quently useful in non-repetitive situations as well. An example of this will be -

found in the section on SUBROUTINES.

If a program appears to require a large amount of address modification
and particularly, if this occurs because a quantity whose address is subject to

-22-

change is needed in many places in the execution of a loop, it may be advantageous
to write the execution largely in terms of fixed addresses and perform the mod-
ifications by moving data. Instruction 107, in the example above, illustrates this

in a simple way: If the registers 700+ j themselves had been used in the summation
process, (step 105) both the B- and C-addresses of step 105 would have required
modification in the outer loop, as well as the C-address of instruction 103. For
casés where several numbers are to be moved at the same time, a more general
MOVE operation than the MOVE 000 used so far is available and will be described
in the next section.

iv.4. MOVE
The MOVE operation is defined as follows:
Numer. Alpha. Function

0, = 9 MOVE ' Move. If A # 000, the block of
A consecutive words beginning at
B is moved into the set of A con-
secutive locations beginning at
C. The words in the original
locations are not destroyed,
except where the two regions
overlap. The number in location
000 ("'previous result'') is not
affected when C # 000. Both
C)B and C { B are permissible.
An error stop occurs if C+ A—
121000. If A= 000, the word
(B) specified by the B - address is
moved into location C and into 000.
It also remains in location B.

MOVE with A = 000 differs from MOVE with A = 001 only in that the execution time
with A= 000 is shorter and that the previous result location is affected.

Note: If a number is to be moved from location B into 000 for use in a TR
SGN or TR EXP operation on the next step, MOVE 9 001 B 000 must not be used,
since these transfer operations work strictly according to their definitions (see
Sec. IV.1.). The correct instruction would be MOVE 9 000 B 000. (Internally,

these transfer operations inspect a duplicate ""previous result' location rather than
000!)

As an example, suppose xj is in 701, x, in 702, ..., x5 in 705 and the instruc-
tion MOVE 9 005 701 703 is given. Then xj will be found in 703, X, in 704, ...,
xg in 707, after execution.

In conclusion, it should be pointed out that the use of the logical operations

-23-

is by no means restricted to the straightforward functions for which they are
primarily intended. The programmer will find innumerable ways of increasing
the efficiency and elegance of his programs by unusual applications, particularly
of the address change operations. As a weird example, suppose it is desired

to multiply the numbers located in registers 1, 4, 9, 16, 25, 36, ..., 400 (!)
by a constant located in 600 and store the results in 501, 502, 503, ..., 520:

Instr. Alpha. Sign 0, A or 0, B C

898 SET A + 0 500 900 001
899 SET C + 0 005 901 003
900 MPY - 3 [] 600 501
901 ADD A + 0 600 900 [1
902 ADD C + 0 006 901 002
903 LOOP C + 0 001 020 900
904 Next instruction in the problem,

-24.-

V INPUT-OUTPUT OPERATIONS

V.1l. CARD FORM

By a card form is meant a specific assignment of card columns to form fields
for data, instructions, identification, etc., in connection with a given program or
interpretive system. In the 650, information is transmitted to and from cards
through a control panel, and anyone whose needs call for a special card form can
adapt it for use in connection with the interpretive system merely by simple control-
panel wiring. For most needs, the following card form, associated with the inter-
pretive system, is likely to be found adequate. At this point, only brief definitions
of the card fields will be given for reference in subsequent sections where their
use will be explained in detail:

Columns Definition
1-4 Card number
5-6 Deck number
7-9 Location
10 Word count
11 ' Sign of word 1
12-21 Word 1l
22 Sign of word 2
23-32 Word 2
33 Sign of word 3
34-43 Word 3
44 Sign of word 4
45-54 Word 4
55 Sign of word 5
56-65 Word 5
66 Sign of word 6
67-76 Wokd 6
77-79 Problem number
80 Tracing identification

The same card form is used in all input-output operations, as well as in trac-
ing. Both instructions and data are signed ten-digit words and are entirely indistin-
guishable in connection with input-output operations.

V. 2. PUNCHING

At any point in the problem, the machine may be ordered to punch into cards
the contents of any set of memory locations, together with appropriate identification.
In some problems, it may be desirable to punch out answers one at a time, perhaps
together with the values of relevant parameters; in others it may be preferable to
punch out a large amount of information at less frequent intervals. There are also
cases where it is advantageous to punch out instructions: In connection with testing

w25a-

(see PROGRAM TESTING) in order to examine a program interrupted at a chosen
point, and in connection with loading,(see LOADING) in order to reduce the size of
a deck of cards. All of these ends are served by the following instruction:

0, =410 PCH Punch cards. The block of consecutive
words beginning at B and ending at C
(inclusive) is punched into cards. Five
words and a word count of 5 are punched
into each card but the last, whose word
count will be the remainder when C-B+
l is divided by 5. On each card, the
location from which word 1 was punched
is punched into columns 7-9. The
words in storage are not destroyed. A
cumulative count of the number of cards
punched during the problem (i.e., since
LOADING) is punched into columns 1-4.
The problem number (see LOADING) is
punched into columns 77-79 and zero is
punched into columns 6 and 80, An error
stop occurs if B) C.

If it is desired to punch six words to a card, this may be done by adding a
special card behind the punching deck (see LOADING). This card should have an
x-punch in column 5, 1969 in columns 6-9, 1 in column 10, a 12 punch in column
11, and 00 0006 0000 in column 12-21.

The punched cards are likely to be used for one (or both) of two purposes (in
addition to possible processing on other equipment): The information on them may
be printed on a tabulator or they may be loaded (or READ) into the 650 at a later
time. Details of the printing will not be given here, since they depend on the char-
acteristics of the tabulator, but the printing form may be assumed to be roughly
identical with the card form with proper spacing between words. (Suggestions on
tabulator wiring are given in Sec. XI. 5.) It is assumed that the suppression of the
superfluous words punched into the last card, if its word count is not 5, will be
performed on the tabulator control panel. If this is not feasible, it may be done in
the 650 by adding three cards to the punching deck. For details, see Sec. XI. 1.

Selective spacing between lines in printing may be accomplished in several
ways, even though no operation in the 650 is provided for this purpose. A brief
discussion will be given here, since spacing considerations may affect the use of
the PCH operation in programming. Through the setting of switches on the tab-
ulator, a choice of any of the following spacing alternatives may be provided:

(a) Single or double spacing.

-26-

(b) Spacing between every n lines (with n chosen by wiring, nor-
mally, e.g., n=10).

(c)Spacing after any line whose word count is less than the word
count of the preceding line,

(d) Spacing before any line whose location number has a units digit
smaller than the units digit of the location number of the pre-
ceding line.

Alternative (c) is suited for the printing of information punched from fairly
large blocks of locations by one PCH order. Spacing will occur after each block,
unless the block length is a multiple of 5, which can be avoided by programming.
Alternative (d) is intended for information punched repeatedly from the same set
of locations and provides the option of spacing when the loop is interrupted, e.g.,
for changing a parameter value.

V.3.. LOADING

When a program has been written, and careful inspection reveals no further
errors, it is key punched into cards following the card form given in Sec. V.1. To
reduce to a minimum the number of errors to be found with the aid of the 650, the
cards should be run through a verifier operated by another person or, alternatively,
key punched independently by two operators and compared on a reproducer. The
programmer has the option of specifying the number of words to be punched to a
card: Punching 5 or 6 to a card will keep the program deck small from the outset
and eliminate the need for condensing the deck on the 650 later. Punching one word
to a card is felt by some programmers to facilitate changes. Each card must have
in columns 7-9 the location into which word 1 is to be loaded, and in column 10 the
number of words to be loaded from the card into consecutive locations. Columns
1-6 and 77-80 are not read by the 650 (except that the problem number is read from
the last card, see below) and may be used by the programmer as he deems best.
Each column of each field to be used by the machine must contain one and only one
punch and an error stop is provided to enforce this rule. A 12-punch is used for
plus, an 11- or x-punch for minus and a 0-punch--not a blank column--for zero. If
the word count is less than 6, unused word fields and sign columns may be left
blank. No distinction is made between data and instructions in key punching and load-
ing.

LOADING is the process of feeding data and instructions into the machine at
the beginning of a problem. If the previous user of the 650 was not using the inter-
pretive system or if there is any reason to doubt that the system is correctly
stored on the drum, the program deck should be preceded in loading by a deck which
loads the interpretive system (in 51.9 seconds) into the memory locations above 999.
Before the program deck, the programmer may also place a Reset Memory Card,
which will {in 6.3 seconds) reset each of the memory locations 001-999 to minus
zero. (This is useful in connection with the punching out of sections of memory in

27

testing.) Immediately behind the program deck--no blank cards are used in the
card reader in connection with this interpretive system--the programmef places
one of two nine-card decks to inform the machine whether he wants normal opera-
tion or TRACING described in a later section. (If he knows that he wants the
same mode of operation as the previous user, he can omit these cards but the
gain is only 2.7 seconds.) Last, he must place a so-called transfer card with a
zero punched in column 10, the problem number in 77-79 and the location of the
instruction at which the program begins in columns 7-9. The word fields on this
card may be left blank.

The loading program automatically resets the loop box, the card counter
(see PUNCHING) and location 000 to zero.

The order in which the program cards are loaded is irrelevant, unless the
same location is loaded into from more than one card, in which case the last such
card, of course, determines the contents of the location. This may occur in
connection with changes of a temporary nature, which may be placed at the end of
the deck and later removed, leaving the program in its original form. In the deck
which loads the interpretive system, the order of the cards must be preserved,
and an error stop is provided to insure this, thereby ascertaining that no part of
the system is missing.

In summary, a complete deck to be loaded must contain:

System deck (173 cards)

Reset Memory card (optional)
Program deck
Mode-of-operation deck (9 cards)
Transfer card

The control console of the 650 need be of almost no concern to the user of
the interpretive system under normal conditions. He must only make sure that
all switches on the console are set in a fixed manner required by the system, and
these settings will now be listed without any description of the function of the
switches. Certain ways of using the console are described in the sections on READ-
ING and PROGRAM TESTING.

Switches Settings

Storage entry 70 1951 1333 +
Programmed stop Stop (see COND STOP)
Half cycle Run .
Address selection 1338 (see STOPS)

Control Run

Digplay Upper Accumulator
Overflow Stop

Error Stop

To start a problem, the deck to be loaded is placed in the card reader, and

-28-

the following keys are depressed in order:

(1) COMPUTER RESET {on the console)
(2) PROGRAM START (on the console)
(3)START (on the card reader)

When the last card leaves the hopper, the machine stops and the key labelled

(4) END OF FILE (on the card reader)
is depressed. If the deck has been correctly put together, the execution of the pro-
gram will then start automatically.

The program deck may be run out at any time after loading by depressing the
START key, unless a READ instruction is contained in the program. Blank cards
should be inserted into the PUNCH hopper and the START key on the punch side
depressed.

To make the 650 produce a condensed program deck in case the program was
originally key punched one instruction to a card, a PCH instruction should be given
at the very beginning of the program. This instruction may be bypassed during
subsequent executions of the program merely by changing the location number on
the transfer card.

V.4. READING -

In some problems, particularly in applications of a data processing nature,
it may be desirable to read information into the machine during the execution of
the program without manual interference. This is accomplished by the READ
operation:

02 = 400 READ Read cards. The block of consec-
utive storage locations beginning
at B and ending at C (inclusive)
is read into from cards. The ad-
dress B must appear in the location
field on the first card, as well as
in the READ instruction, and the
location field on each card follow-
ing must contain the sum of the
word count and location on the
previous card. The sum of the
word counts of all cards to be
read must be C-B+ 1. Violations
of these requirements, which have
been included for the programmer's
protection, will result in error
stops.

-29-

The cards to be read should be placed in the hopper of the card reader imme-
diately following the transfer card (no blank cards).

The decisions made with the aid of conditional transfers and other logical
operations are normally based on criteria predetermined by the programmer and
incorporated into the program. If the programmer wishes to influence the pro-
gram during its execution, e.g., on the basis of a result displayed on the console
in connection with a COND STOP instruction, he may do so using the CONS opera-
tion: '

0, = 401 CONS Read console. The machine stops
if the PROGRAMMED STOP switch
is on STOP. Zero is displayed on
the display lights and 1131 on the
address lights. When the PROGRAM
START key is depressed, the num-
ber entered on the STORAGE
ENTRY SWITCHES is stored in
location C and in 000 (the 'previous
result' location). If the PRO-
GRAMMED STOP switch is on
RUN, the storing takes place with-
out a stop preceding. The B-ad-
dress is ignored but should be
filled, e.g., with zeros.

An example of an application of CONS might be the feeding in of an "educated
guess' for a starting value in connection with the solution of algebraic equations.
Another application, involving only the storage entry SIGN switch, might be to
continue a program until another user is ready to take the machine, at which time
a change in the SIGN switch setting, interpreted by a TRSGN operation, causes the
program to punch out intermediate results for later restart.

-30-

VI PROGRAM TESTING

VI.l. MEMORY PRINT-OUT

The choice of methods for testing ("'debugging'') a program by comparing
results of machine calculation to known quantities or to results of independent
calculations by other means is governed by the relative availability of machine
time and programmer time. If machine time is freely available, testing with the
aid of the control console is highly efficient, as well as instructive and enjoyable,
as soon as a certain facility for operating the console has been acquired. Par-
ticularly in the case of small problems, the method of tracing--where a card is
punched for each instruction executed, showing all numerical and logical quantities
associated with the execution--may be the most desirable in that it gives an almost
certain clue to the difficulty within a predictable, if not very short, period of
machine time and allows the programmer to study the material at his leisure.

The method most economical of machine time and yet frequently sufficiently
illuminating is that of memory print-out. It might be suggested that on most prob-
blems in a busy but not heavily over-loaded installation, the methods be used in
the order reverse to that in which they were mentioned here. Some directions

for their use will now be given.

The memory print-out method simply consists of inserting temporarily into
the program at one or several suitably chosen points PCH orders (see PUNCHING)
calling for the punching of blocks of information--data or instructions--which, when
printed on the tabulator, will give a picture of the progress of the program. Since
1000 words may be punched 5 to a card in two minutes, it is not out of the question
to punch out the contents of every register used in a problem--including all the
instructions--several times. To get the most benefit from this method, the pro-
grammer should, in any problem that does not threaten to fill the entire available
memory, avoid using the same storage location for storing different quantities at
different times whenever feasible, so that as many partial results as possible are
preserved for the memory print-outs. Whenever a test case of a problem is run,
even if memory print-out is not chosen as the primary testing method, it would
certainly be advisable to make the last instruction of the test deck punch out the
entire memory used. A flexible alternative would be to have scattered through the
program CONS--TR SGN combinations which transfer control to a PCH order if
the storage entry sign switch is turned to minus.

Temporary instructions may be inserted into a program in two ways: Either
they are-included in the normal sequence of instructions when the program is
initially written and replaced either by NOOP instructions (see Sec. IV. 1) or by
transfer to the next non-temporary instruction when no longer needed,or else one
of the regular instructions of the program is replaced by a TR to a vacant location
L, the regular instruction is placed in L, the temporary ones in L+ 1, L+ 2, etc.,
and at the end of this temporary sequence a TR back to the normal program is given.
In either case, the temporary instructions may (as suggested in LOADING) be kept

-31-

as a separate deck at the end of the program deck, eliminating any changes in the
main program deck and simplifying bookkeeping.

VI. 2. TRACING

If the tracing deck of nine cards is loaded with the program deck, (see LOAD-
ING) the machine will automatically start tracing from the beginning of the program,
as specified by the transfer card. Before the execution of each instruction, a card
with the following information will be punched:

Columns Definition
1-4 Card number {cumulative)
6 Zero
7-9 Location of the instruction
about to be executed.
10 Six

11-21 The instruction as stored in
memory.

22-32 The instruction as modified
for execution (i.e., with the

‘ loop box added if minus).

33-43 The contents of the loop box.

44-54 A if A# 000, zero if A= 000.

55-65 B

66-76 The contents of location 000

- (i. e., the result of the last

mathematical MOVE 000 or
CONS operation).

77-79 Problem number.

80 Eight (used by the tabulator

for automatic selection of a
different printing form for
trace cards).

The punching rate will be 100 cards per minute except in the case of very time-con-
suming operations, such as, the moving of a large block of information. The ad-
vantage of punching the trace card before execution is that information will be
punched for an instruction whose execution is interrupted by an error stop. In the
case of instructions (such as LOOP or TR EXP) whose B-address does not refer
to a memory location, the quantity B is irrelevant. Tabulator wiring to suppress
the printing of B in such cases can be provided if sufficient selection equipment is
available. The PCH operation is bypassed when the machine is operating in the
tracing mode, i.e., PCH is equivalent to NOOP.

If a program is too long to be traced in its entirety or if this is unnecessary,
selective tracing may be effected by using the following operations:

-32-

0

450 START TR Start tracing. If the nine-card
tracing deck has been loaded,
the machine will start tracing
from the next instruction. If it
is already tracing, it will con-
tinue to trace. The B and C
addresses are ignored. If the
deck for normal operation has
been loaded, START TR will

T be equivalent to NOOP.

0, = 451 STOP TR Stop tracing. If the machine is
tracing, it will discontinue trac-
ing immediately. If it is not
tracing, STOP TR will be equiv-
alent to NOOP. The B and C
addresses are ignored.

0, = 452 ST TR ERAS Start tracing and erase itself.
If the tracing deck has been
loaded, the machine will start
tracing from the next instruc-
tion. If it is already tracing,
it will continue to trace. If the
deck for normal operation has
been loaded, . tracing will not
begin. In all cases, the ST TR
ERAS instruction will be replaced
in memory by a NOOP (0, = 454)
during its first (and only!) execu-
tion. The B and C addresses are
ignored.

The bypassing of the PCH operation is in effect as long as the trace program is on
the drum and is not affected by the selective tracing orders. To make PCH opera-
tive, the nine-card deck for normal operation must be loaded.

The purpose of the ST TR ERAS operation is to make it possible to trace the
repetitive steps of a loop either once or twice and then stop tracing until the loop
is completed. To get the steps traced once, one may place the pair STOP TR, ST
TR ERAS at the beginning of the repeated portion of the loop; to get them traced
twice, one places this pair of instructions at the end immediately preceding the
test. As a specific example, suppose it is required to trace twice the steps of the
loop programmed in the section on LOOP OPERATIONS and suppose vacant loca-
tions are available from 900 up. Assume that the machine is tracing as it enters
the loop. The original program reads as follows:

-33-

101 MPY — 3 801 901 000

102 ADD + 1 000 700 700
103 LOOP AB + 0 110 020 101
104 Next instruction in the problem.

The following instructions could be added as a temporary deck at the end of the pro-
gram deck:

102 TR + 0 203 000 900
900 ADD + 1 000 700 700
901 STOP TR + 0 451 000 000
902 ST TR ERAS + 0 452 000 000
903 TR + 0 203 000 103

Notice that the TR instruction gets loaded into 102 after the regular program, replac-
ing the ADD instruction, as explained in LOADING. This example is, of course,
unrealistic in that selective tracing would hardly be needed for testing such a simple
loop.

VI.3. CONSOLE TESTING

Testing with the aid of the control console requires some familiarity with the
internal structure of the interpretive system (see Sec. XI) and with the basic language
of the 650. Console testing is more attractive on the 650 than on most machines due
to the ADDRESS STOP feature: If the CONTROL switch is turned to the ADDRESS
STOP position, the execution of the program will proceed at electronic speed until
the address set up on the ADDRESS SELECTION switches is reached. At that point,
the machine stops, and the contents of various registers may be examined on the
display lights or the program may be continued manually one step at a time. Alter-
natively, the program may be punched out on cards at this point by merely feeding
in one card with a PCH instruction, going into any vacant location, followed by a
transfer card specifying this location. Console testing, in connection with the inter -
Pretive system, is likely to be needed only in exceptional cases.

The ADDRESS STOP feature of the 650 may be used in conjunction with a spe-
cial address stop transfer card when it is desired to start tracing from a certain
instruction N in the middle of a program after running at full speed up to that point.
(This may, of course, alternatively be accomplished using the tracing operations
described in Sec. VI. 2, but then the value of N must be decided upon in advance
and the proper program changes key punched.) The procedure is as follows: Set
the ADDRESS SELECTION switches to N and turn the CONTROL switch to ADDRESS
STOP. Load as usual and run until the machine stops at the instruction N. (For
details on possible earlier stops see below.) Then set the CONTROL switch to
RUN and load the tracing deck followed by the address stop transfer card. Tracing
will begin immediately and the first instruction traced will be N.

In choosing N it must be remembered that the loop box and location 000 are
reset to zero when the tracing deck is loaded. If this restriction is inconvenient,

-34-

it can be circumvented by placing a special card in front of the tracing deck. The
card counter and the problem number are also reset to zero, unless the tracmg
deck has been modified to prevent it.

If the CONTROL switch is kept in the ADDRESS STOP position when the pro-
gram deck is loaded, one stop will occur when location N is reset by the memory
reset card and another when the programmer's instruction is loaded into N. Also,
stops may occur before instruction N is reached in the program, if N is referred
to in an ADDRESS CHANGE or MOVE operation (but not if N is one address in a
conditional transfer instruction and control is transferred to the other address).
After each stop, operation will resume when the PROGRAM START key is depressed.
1f the CONTROL switch is left in the ADDRESS STOP position during tracing, two
stops will occur each time N is referred to (and one if N is the B-address of a
transfer instruction).

The program can be continued at full speed (punching mode) after a period of
tracing by following the procedure described above with the punching deck in place
of the tracing deck.

The address stop transfer card has 69 1976 1952 24 1061 1098 in columns
1-20 and a 12-punch in each of columns 1, 10 and 20. The special card for by-
passing the resetting steps in loading has 69 1953 1952 24 1278 1953 70 1951 1344
in columns 1-30 and a 12-punch in each of columns 1, 10, 20 and 30. (See Deck 7,
Sec. XI1.7.)

If the value of N has been decided upon in time to get it key punched into a
regular transfer card, (Sec. V. 3) this card may, of course, be used in place of
the address stop transfer card in the procedure described above.

A programmer familiar with the internal structure of the interpretive system

will be able to think of many other cases where special needs can be met using
maching language cards (''load cards').

-35-

0; OPERATIONS

Num.

O W N -

~N o

Alpha.

GO to O2
ADD
SUB
MPY
DIV
NGMPY

TR A
TR B
TR C

MOVE

Page
Ref.

10
10
10
10
10

19
20
20

23

Vil SUMMARY OF OPERATION CODES

Num.

000
200
201
202
203
204
205

100
010
001
110
101
011
111

500
050
005
600
060
006
700
070
007

Page
Alpha. Ref.
UNC STOP 13
COND STOP 13
TR SGN 14
TR EXP 14
TR 14
TR SUBR 15
TR OUT 15
LOOP A 16
LOOP B 16
LOOP C 16
LOOP AB 17
LOOP AC 17
LOOP BC 17
LOOP ABC 17
SET A 18
SET B 18
SET C 18
ADD A 19
ADD B 19
ADD C 19
SUB A 19
SUB B 19
SUB C. 19

-36-~

02 OPERATIONS

Num.

300
301
302
303
304
305
350
351
352
353
354
355
400

401
410

450
451
452

454

Alpha.

SQRT
EXP E
LOG E
SIN R
COS R
ART R
ABS
EXP 10
LOG 10
SIN D
COS D
ART D

READ
CONS
PCH

START TR

STOP TR

Page
Ref.

11
11
11
11
11
11
11
11
11
11
11
11

29
30
26

33
33

ST TR ERAS 33

NOOP

VIII STOPS

Error circuits in the 650 will stop the machine on attempts to use invalid
information, such as, that represented by blank columns or double punches, as
well as on several kinds of machine malfunctioning, and will indicate on the control
console the nature of the error. If this occurs during the loading of a new deck,
the cards should be examined. In other cases, a note should be made of the indica-
tions on the console, and the procedure that led to the stop should, if possible, be
repeated exactly in order to determine whether the error is systematic in nature.

All stops, which are part of the interpretive system, will now be listed.
Conditional stops will occur only if the PROGRAMMED STOP switch is set to
STOP. On a conditional stop, the PROGRAM LIGHT in the OPERATING section
of the console will be on and no lights in the CHECKING section should be on. The
program will continue if the PROGRAM START key is depressed. On an uncon-
ditional stop, the STORAGE SELECTION light in the CHECKING section will be on.
Normally, operation should be discontinued after an unconditional stop and changes
made in the program in order to avoid the stop. Alternatively, the program may
be continued by having a transfer card (see LOADING) in the card reader, specifying
the instruction to which control should proceed when the COMPUTER RESET and
PROGRAM START keys are depressed.

The location of the interpretive system instruction xxx on which the machine
has stopped, may be determined by displaying the contents of location 1098 on the
console. The display lights will show 60 Oxxx 1107. This process, called "monitor-
ing't, may be performed as described in the 650 manual or, alternatively, by setting
the storage entry switches to 60 Oxxx 8000 and depressing the COMPUTER RESET,

PROGRAM START and PROGRAM STOP keys.

If, in an exceptional case, it would be advisable to proceed to the next instruc-
tion after an unexpected unconditional stop, this may be done manually as follows:

(1) Set the CONTROL switch to MANUAL.

(2) Check that the ADDRESS SELECTION switches are set to 1338.
(3) Depress the COMPUTER RESET key.

(4) Depress the TRANSFER key.

(5) Set the CONTROL switch to RUN.

(6) Depress the PROGRAM START key.

As a result of this procedure, zero will be stored at C and 000 before the next instruc-
tion is executed. If this is not desired, the ADDRESS SELECTION switches should

be set to 1095 in step (2). To repeat the same instruction (on which the stop occurred)
the switches are set to 1098.

There is an alternative manual procedure for restarting after an unconditional

stop which is simpler in the case of frequent use but is not recommended in general
because it requires changing the setting of the STORAGE ENTRY switches. They

-37-

are used in LOADING and must be set back to their normal positions for the next
user:

(1) Set the STORAGE ENTRY SWITCHES to 00 1951 1338+ (or
00 1951 1095+ if zero is not to be stored or 00 1951 1098 +
to repeat).

(2) Depress the COMPUTER RESET key.

(3) Depress the PROGRAM START key.

-38-

CONDITIONAL STOPS

Address Lights Normal Cause
1120 Programmed COND STOP. (Display lights show B.)
1131 CONS (Check STORAGE ENTRY switch setting.)
1715 Loss of accuracy in SIN (Exponent of B exceeds 52)
or COS. -
1835 Loss of two or more digits of accuracy in LOG.

UNCONDITIONAL STOPS
MOVE with C+ A — 1) 1000.
2222 PCH with B C+ 1.

READ with incorrect loc. or word count.

3333 DIV with B = 0.

4444 SORT with B £ 0.

MPY with result out of range.

5555
DIV with result out of range.
FEXP with result out of range.
LOG with B { 0.
6666 é
SIN with exp. of B exceeding 58.
'EOS with exp. of B exceeding 58.
777 Cards missing or out of order in the system deck
being loaded.
9999 Programmed UNC STOP (Display lights show B).

-39-

IX EXECUTION TIMES

The execution times listed in this section are based on the standard 650 drum
speed of 12, 500 r.p. m. They represent approximate theoretical estimates derived,
in the case of the mathematical operations, from simple assumptions regarding the
distribution of the numbers to be opegated upon. For example, the part A ofa
floating-decimal number A = Ay. 10 l is assumed to be uniformly distributed
between 1 and 10, although in physical problems there are reasons that favor a
logarithmic distribution; extremely small and extremely large exponents are con-
sidered very unlikely, etc. It is further assumed that the programmer has chosen
storage locations on the drum without regard to timing, ignoring the fact that in
the case of some operations the execution time will be a few milliseconds shorter
for numbers stored in certain sections of memory. Some, but not nearly all, of
the time estimates have been verified by tests.

It should be stressed that the estimates of execution times are needed only
for making comparisons or estimates of running time for problems or for choosing
efficient ways of programming and will never affect the result of an operation. In
comparing these estimates to estimates given for other interpretive systems or
subroutines, it is important to verify by sample calculations or machine tests that
the assumptions are realistic.

To minimize the size of the table, the execution times listed refer to a basic

case and corrections to be added in other cases are given at the beginning of the
table. ’

-40-

650 INTERPRETIVE SYSTEM

ESTIMATED AVERAGE EXECUTION TIMES IN MILLISECONDS

(a) If A# 000, add 7.2 ms. for ADD and SUB, 6.3 ms. for MPY, NGMPY and
DIV *,

(b) If C # 000, add 6.1 ms. for all mathematical operations, MOVE 000 and
CONS*.

(c) If the instruction has a minus sign, add 4.8 ms. for all operations.

(d) If, after a TR EXP or LOOP operation, control will proceed to the next

instruction rather than to C,

ADD 65.7

sSUB 65. 7

MPY 67.2

DIV 74.3

NGMPY 67.2

TR A 37.3

TR B 37.3

TR C 42.1

MOVE 00037.7

MOVE 40.8 +12A
(A = no. of
words.)

UNC STOP
COND STOP
TR SGN

TR EXP

TR

TR SUBR
TR OUT

LOOP A
LOOP B
LOOP C
LOOP AB
LOOP AC
LOOP BC
LOOP ABC

SET A
SET B
SET C
ADD A
ADD B
ADD C
SUB A
SUB B
SUB C

*(See next page for footnote.)

add 4. 8 ms.

28.8
29.8
19.2
24.0
19.2
44. 4
26.0

24.0
28.8
24.0
24.0
24.0
28.8
24.0

55.3
55.3
55.3
44.
44.
44.
44,
44.
44.

AYe N e JENe JVe BN« JENe)

-41] -

SQRT
EXP E
LOG E
SIN R
COS R
ART R
ABS
EXP 10
LOG 10
SIN D
COS D
ART D

READ

CONS
PCH

START TR
STOP TR
ST TR ERAS
NOOP

TRACING

LOADING

206
197
202
192
187
238
33.2
187
207
240
235
271

One card:

101+ 14n

(n = no. of words.)
Succeeding cards:
300 each.

28.8

One card:

163+ 12.5n

(n = no. of words.)
Succeeding cards:
600 each.

28. 8
24. 0
38.9
24.0
600 per card.

300 per card.

*Those who are particularly interested in time considerations may wish to know
the exact increments on which the weighted averages in (a) and (b) are based:

In ADD and SUB, 4.8 ms. if 17 iAiéLl (mod 50)
' 9.6 ms. if 1< AL 16 or 42 A< 49 (mod 50)

In MPY, NGMPY and DIV, 4.8 ms. if A_)_ 17 or A= 1 {mod 50)
9.6 ms. if ZSAS 16 (mod 50)

In all mathematical operations, MOVE 000 and CONS:
4.8 ms. if 7< C<£ 42 (mod 50)
9.6ms. if 1{ C(6 or 43 £ C< 49 (mod 50)

An easily remembered programming rule could be extracted from this in-

formation: If locations between 17 and 41 (mod 50) are used for storing numbers,
the increments given in (a) and (b) may be replaced by 4.8 ms.

42

X SPECIAL TOPICS IN PROGRAMMING

X.1l. SUBROUTINES; TRANSLATION

A subroutine is a program expected to be of use as a part of the program in
several problems or in several sections of the same problem. The mathematical
operations in the interpretive system are indeed subroutines written in the basic
language of the machine and reached through their operation codes, and anyone
desirous of preparing an additional subroutine of this type may avail himself of a

vacant operation code (see Sec. XI) and write the program in a part of the memory
below 1000.

Subroutines written wholly or partly in the interpretive language may be
reached conveniently using the TR SUBR operation defined in Sec. IV.1l. Suppose
the subroutine begins at 900 and ends at 935. Instruction 900 should read: SET
C 0 005 935L Jand instruction 935 should read: TR 0 203 000C J]. Now suppose
the subroutine is needed at step 700 in a program, and when it has been used,
control is to be transferred to 680. Instruction 700 should read: TR SUBR 0 204
680 900. "The TR SUBR operation will take the quantity ("'return address'!) 680,
place it in the C-address of instruction 900 and then transfer control to 900. Instruc-
tion 900, in turn, places 680 in the C-address of 935, and when instruction 935 is
reached at the end of the subroutine, it transfers control to 680 as originally desired.
Hence, the programmer using the subroutine only needs to know the identifying
number 900; the transfer of control to and from the subroutine is handled by the
TR SUBR in conjunction with the two instructions 900 and 935 provided by the writer
of the subroutine. Subroutines needing only one input number and giving only one
result (such as, the evaluation of one Bessel function for a given value of the argu-
ment) will normally assume the input to be in 000 and will deliver the result there;
in the case of several numbers, specified locations normally within the block
occupied by the subroutine would be used for input and/or results. Subroutines may,
of course, be used inside other subroutines without restriction.

If the locations occupied by a subroutine are needed for another purpose, e.g.,
another subroutine in the same problem, the subroutine may be translated to a
different set of locations by a translating program developed by Miss D. C. Leagus.
When the subroutine is written entirely in the interpretive system, the programmer
is required only to separate data and constants from instructions, and the translating
program will automatically decide which addresses of each instruction are subject
to translation. Machine language instructions may also be used in a subroutine to
be translated, provided certain conditions specified by the translating program are
adhered to.

Subroutines for the solution of cubic equations and of systems of linear
equations have been written at the Laboratories.

-43.

X.2. UNNORMALIZED INPUT; TRANSITION BETWEEN FLOATING- AND FIXED-
DECIMAL FORM

Nearly all of the mathematical operations in the system assume that the float-
ing decimal numbers to be operated upon are in the normalized form defined in
Sec. 1I.2, i.e., that the leading digit is different from zero unless the entire num-
ber is zero. In processing empirical data, key punching is often facilitated by
permitting leading zeros and reproducing a constant exponent. Such unnormalized
data may be used in the interpretive system provided the first operation in which
it is used is ADD or SUB with operand exponents differing by less than 10.

A special case of unnormalized input is that of a zero with a non-zero machine
exponent. If such a zero is added to a non-zero number with a smaller exponent,
a number of digits equal to the difference between the exponents are lost. Con-
sequently, zero should be equipped with exponent 00 unless the programmer knows
in detail how the zero will be used in his program. Special provisions in the MPY
and DIV routines make it possible to use a zero with machine exponent 00 in them
without danger of exceeding the exponent range negatively.

The converse problem of producing unnormalized output, e.g., for the print-
ing of tables in fixed-decimal form or for calculations in machine language is easily
solved at the expense of one digit. Suppose for example that the numbers N, to be
"unnormalized! or 'fixed' are known to be less than 10% and output in the form
XXXX xxx is desired. Add the number 1000006054 (i.e., 10, 000. 0oo0) to N if

N; > 0, subtract it from N, if N < 0 (using TR SGN) and punch. The output 'of the
form + (10, 000 + |N1|) , {s ready to be printed on the tabulator with the leading
1 and the constant exponent 54 suppressed by hammerlocks or wiring. If the num-
bers are to be used in machine language, the 1 and 54 are shifted out. Rounding
to a smaller number of digits is obtained by choosing the exponent of the additive
constant (1000000054) correspondingly larger.

X.3. EXAMPLES

In conclusion, two problems will be programmed in order to illustrate the use
of many of the operations and methods described.

First, suppose it is desired to evaluate the "error function',
2 S t2
m e =f [et dt
for a set of values x = a, a+a, a+24,..., a+l0A, using the RAND approximation

2 Q*(=I-(an+a,n+a;w+a,n*+a.n’) @',

-44-

where

(3 M=1/C1+px) (p 1s @ numerical constant),

@ QOO =Es e-x?

and to punch out the results as well as to store them for later use. The evaulation
of the polynomial in N will be faster if (2) is written in the form

5 QCU=I=(n@# (@, +N (@, + N (2,+ N @5))))) @' (X).

To make it possible to use the LOOP order in evaluating CQ*(x) this way, the
coefficients a; will be stored in consecutive locations in decreasing order. The
L.OOP program will be given a form applicable to an arbitrary polynomial by
including a "dummy' coefficient a,= 0. Storage locations will be chosen as

o
follows:
Location Contents
101-119 instructions {cards 1 - 4)
‘-\
200 2N
201 1
202 a constants
203 i\ ’ (card 5)
204 P
J .
221 x) temporary
222 Q'(x) b storage
223 n _J (""ferasable!'")
301 | ag
302 a4
303 aj coeff*ircients
304 ap in @ (K)
305 al {(card 6)
306 a =0
401-410 Q') :} results

-45-

The program might be written as follows:

Alpha. Sign O1 A or 02 B C Comments
SET C + 0 005 114 401 Set address of.

first Q*)
MOVE -+ 9 000 202 221 Firstxis x= a
NGMPY + 5 000 000 000 —x2
EXP E + 0 301 000 000 e-xZ -x2
MPY + 3 000 200 222 Q)=E=-C
MPY + 3 204 221 000 px
ADD + 1 000 201 000 1+ px
DIV + 4 201 000 223 n=1/C1+PX)
MOVE + 9 000 301 000 ag into 000 for LOOP
MPY + 3 000 223 000 prev. res..N
ADD -_— 1 000 302 000 add next coeff.
LOOP B + 0 010 005 110 loop in polynomial eval.
NGMPY + 5 000 222 000 polyn. "@'(x)
ADD + 1 000 201 €3 Q‘(x):—. 1+ prev. res.
ADD + 1 221 203 221 x+ A= next x
ADD C + 0 006 114 001 next ®*(x) address
TR C -+ 8 114 412 103 test for end
PCH + 0 410 401 410 punch two cards
COND STOP + 0 200 221 500 end; stop, display last

- x, go to 500 on PRO-
GRAM START
500 Next instruction in the problem.

An important remark should be made: If there is no shortage of storage
locations and if the programmer does not mind writing a somewhat larger number
of instructions, the running time for many problems can be decreased and the
logic simplified by '"unwinding't the innermost loop, i.e., by writing out the
mathematical instructions in the loop in a straight sequence instead of using the
LOOP operation. In the present problem, a sequence containing five MPY and four
ADD instructions could replace the instructions 109-112 and also eliminate the use
of the dummy coefficient ay. The execution time for the polynomial loop would be
reduced by nearly 1/3 and the LOOP operation could be used to replace the ad-
dress change operations in the outer loop. The polynomial evaluation accounts for
about 1/2 of the total running time of this problem. In many large problems, the
innermost loop consumes an even larger fraction of the running time, making it
important to program the innermost loop efficiently even at the expense of apparent
inefficiencies elsewhere.

The second illustrative problem reads as follows: For a given set of numbers

Xy: v =1, 2,..., 50, not necessarily equally spaced, the values of the Chebyshev
polynomials T, (xy), n=1, 2,..., 10, are to be computed using the recursion formula

-46-

© Ty (XD =@Xy Tn(Xy) = Tr— (X)),

(T, (xv) =1, Ty (x,)= x) and punched out in a compact form.
In addition, the sum
50 (2
(7) P [To(XWI™ X (— X
+ \')
V:,\/ ,__sz (V+1))

(X5 = 1) is to be punched out and the operator is to be given the option of also
calling for the punching of partial sums of (7) at any time.

Storage locations will be assigned as follows:

Location Contents
050 0)
051 1) constants {card 7)
052 2)

095-120 instructions (cards 1 - 6)

199 The sum (7) and its partial sums)
200 Tolx,) = 1
201 Ty(xy) =2 x,, output
. 202 Tz(xv)
300 2x B
7 temporary
301 [Tlo(xvz] 2 > storage
(""terasable'")
302 [TIO(XVH 2/ 1 - X.Vz'

400 + v Xy input
451 1 7 (cards 8 - 18)

In addition, locations 1-8 will be used in connection with a trick in program-
ming the LOOP.

The program may be written in many ways. The following is not necessarily
the best:

-47 -

pum

1591 I9inQ

‘pour I8N

*D9X9
doot 18inQ

1s91 ® -pouwx Isuujl
*D9Xd

doot xouug

‘jrut

dooT xouuj

uoijeZIferjrur
doot 191nQ

AfTeuoTt

“NH X =

05x Lerdstiq ‘pug
jtpuodun ()) young
406 =4 8]

I A9 A aseaIdU]

Oﬂﬁ oo

A, I
L goung
(°L pue)*x yitm
wns 1erred youndg
{payound oq wms
Terrred prnoyg
(1) 30 wns Tenjieg

Ax = T+ay

mxl;\omw

A

XA

UOTIBINOTED
J10F .\ruﬂ mno 1red

U 4+ 95113
JO ss9Ippe 398

A
X 15133

JO ssaippe 394G
0 Arrertur (1)

1=°1

S3USUIUION)

000
661
660
100
100

012

102
mw..:
nooo

661

000

000

20¢
000

000
0600
10¢
101
20¢
000
00¢

10¢
0%
10%

661
0o0¢

10¢
661
147
601
660

102

661
G1t1
000
661
20¢
10¢

000
000

000
10¢
000
600
00¢
10¢
250

[]
601

660
090
140

000
01y
660
009
090

oo~ 00

01%

(=]

01%
102
10%
000
000

C13

10¢ 14

N M —~O OO

00¢ 0

150 Z
10¢ ¢
000 ¢
110 0
000 [4
0o¢ ¢
600 €

000 6
00¢s 0
090 0

000
000 6

o

010V Ty

dOLS DNN
HDd

g 4dL

vV aav

g aav

HODd

HDd
NDSH.L
SNOD
aav
AdN
dans

Al
1¥90Ss

ans
AdN
AdN
0d dOOT
ans
f AN
* XdNW

HAOW
VvV LIS

g LES
JIAONW
IAON

L e e R S T TR T & bk S S o de s

usgtg eydry

0?1 9
611

811
LT1 g
911

611

Plt
€It
211 14
11t
0TI
601

801
L01 €

901
S01
$01
€01
201 A
101
00T

660)

860

L60 1
960

560
J

*d0rT wnm.U

-48ax

A number of remarks are called for, many of them of general applicability:

(a) The C-address of instruction 101 will, during execution, run through
the values 000-008, but the result of the instruction is always called out from 000
on step 102. This trick makes it possible to use the LOOP BC operation instead
of address change, which is normally required if different sets of addresses are to
be modified during a loop.

(b) The instruction numbering was arrived at by starting the preparation
of the program at instruction 101 with the intention of later adding an unknown
number of initialization steps preceding it. This speaks in favor of not starting
a program at 001.

(c) The stop which would normally occur each time the CONS instruction
is reached may be bypassed when found superfluous without any sacrifice by
turning the PROGRAMMED STOP switch to RUN, since no COND STOP, SIN or
LOG operations (the only other ones involving a conditional stop) are used. The
operator decision regarding punching of partial sums is made using only the sign
switch of the STORAGE ENTRY switches. This switch does not influence LOAD-
ING.

(d) The quantity x,, is used so frequently that it was more economical to
MOVE it into a fixed location than to apply address modification. The converse
applies to x4 1, which is used only once.

(e) The constant 1 appears in three locations merely in order to simplify
bookkeeping and loading, as well as changing the number of points xy, in a later
run.

(f) An invaluable aid in determining whether the results of a calculation
are correct is a mathematical identity which they must satisfy, and the programming
of such checks is strongly recommended whenever it is possible. In the present
problem, the identity

1
T, A(x) 2
(iii) 5 [10 ax="1C
2
3 Ni—= -

is closely connected with the computation of (7) if the x, are distributed over the
interval (-1, 1).

(g) An alternative method of progra’mming the outer loop, which would
eliminate the address change operations at the expense of somewhat increased
card preparation, would be to key punch the x, one to a card and give a READ
order entering one x,, at a time into a fixed location during the execution of the
program. The difficulty arising from the need for x,+10n step 109 is not in-
surmountable.

-49-

XI INTERNAL STRUCTURE OF THE SYSTEM

XI.1l. DETAILED DESIGN CONSIDERATIONS

An expert examining the program at the end of this report will ask a number
of questions about apparent duplication, about tight optimization in one routine in
contrast to a lack of it in another, about the choice of operations and of methods
of implementing them, etc. This section will attempt to answer some of these
questions and also suggest a number of changes and additions that could be con-
sidered for a second version of the system. Additional questions and suggestions
from readers will be genuinely appreciated.

In the early stages of system design, the following requirements were among
those agreed upon, in addition to the general principles discussed in Sec. I.2:

(a) The arithmetic operations and those logical operations most likely to
occur in inner loops (LOOP and certain TRANSFER operations) must be as fast
as we know how to make them, regardless of the expense in storage.

(b) The system must occupy at most 1000 memory locations.

(c) The special functions must have full accuracy and unlimited range and
most of them should be as fast as these requirements and available storage permit.

(d) Optimum programming, (see the 650 Manual of June, 1955) in addition
to being necessary for the attainment of (a) and (c), should be used locally in any
program where the gain is significant but not at the expense of extensive rewriting
of previously completed programs.

(e) The programs must be so written that if the machine stops on any pro-
gram step in a subroutine and control is transferred elsewhere before restarting,
the subroutine, where the stop occurred, is left in a condition which assures correct
operation the next time that subroutine is used. This implies that if a subroutine
is used in more than one program, it must be initialized by each program rather
than having a normal form used in one program and temporarily being changed at
the beginning of other programs when needed there and then restored to normal at
the end.

(f) To facilitate changes, the individual programs (or ''decks', 1-20, see
Sec. XI.7) that make up the system should be as independent of one another as they
can be without excessive waste of storage. This requirement was not fully adhered
to near the end of the programming task.

As a result of these requirements and of some oversights in programming,

there are a number of storage registers which could be made available without any
loss in system performance and a number which could be freed at some sacrifice.

-50-

A brief guide for finding such registers will now be given followed by a number of
suggestions for their possible use in a revised version of the system.

The 6 vacant 0,~code locations and the 11 vacant registers listed in deck 5
are, of course, available. The only distinction between them is one of mnemonics
in connection with the choice of operation codes. In addition, it appears possible
to salvage 22 registers essentially without loss by the following substitutions, but
a careful check followed by machine testing is advisable:

Deck Card Loc. Replace by
20 113 1801 1848
16 48 1240 1138
18 103 1896 1138

6 70 1360 1160
16 6 1230 1338
18 77 1887 1137

2 32 1058 1655
12 60 1639 1289
16 30 1244 1245
19 103 1702 1103
17 63 1480 1980
10 36 1331 1358

8 32 1166 1241
12 56 1423 1674
17 22 1485 1285
18 97 1842 1504
17 29 1495 1297

5 11 1252 1952

5 12 1255 1955

5 13 1260 1960

5 21 1277 1977

5 23 1283 1983

It is, of course, necessary to determine, by sorting on instruction and data
address, all places where the locations listed are referred to.

Registers that may be freed at a price in speed include, above all, nearly
40 extra registers used in the arithematic routines in calling out A and B, splitting
them up and storing the parts. This is done separately in each of decks 12, 13
and 14 to accommodate minor differences that facilitate optimization. To combine
these steps without any loss of time is a task which, if possible, would require
re-optimization of a substantial part of the system. At the expense of one revolution,
they may be combined easily. Similarly, making the dissection of B common to
all 0,-routines would result in a substantial saving at the expense of lost time in
cases (such as LOOP and TREXP) where B is irrelevant. To make this dissection
common only to those routines where it is needed would be less profitable.

-51-

At some sacrifice in external characteristics, registers may, of course, be
freed in any number of ways. If, in tracing, the modified instruction (redundant
but convenient) is omitted, seven steps are eliminated. The MOVE operation for
A# 000 is easily programmed in terms of LOOP BC and MOVE 000 and could be
omitted, as could the special functions in degrees and to base 10 (or radians and
base e, respectively).

A number of suggestions for changes and additional operations will now be
listed. Suggestions (1) - (3) use only the vacant registers and operation codes
listed in deck 5 and can consequently be added to the system without difficulty at
the option of any installation or individual programmer. For temporary use, they
may be punched on separate cards and loaded after the system deck, in the case
of (1) and (2) and after the punching deck, in the case of (3). Such cards should
have an x-punch in column 5 and the four-digit location in columns 6 - 9,

(1) Add an 0,-operation defined as follows:

0, = 453 SWITCH Transfer on switch. Control is
transferred to C if the Storage
Entry Sign Switch is set to minus,
to B if it is set to plus.

This operation bypasses the stop that would occur if the same function were
programmed by a CONS and a TR SGN order. It might be particularly useful in
connection with tracing when it is desired to start tracing after a certain amount
of running time has elapsed or for following the progress of a calculation by
occasional punching of intermediate results at the discretion of the operator.

The coding for SWITCH consists of the instruction:

1453 10 8000 1015 Read console. Go to TR SGN
routine.

The execution time is 19.2 ms.

(2) Add an 0,-operation called COUNT having the same counting and testing
properties as the LOOP orders but using a counter independent of the loop box and
not capable of modifying instructions. Its function can be duplicated, e.g., by a
SET A, an ADD A and a TR A instruction. Its advantage lies in its speed and
simplicity. The execution time is 24. 0 ms. when control is transferred to C and
33. 6 the last time when control proceeds ahead and the counter is reset. A formal
definition follows: T

02 = 800 COUNT The number standing in the counter
is increased by 1. Its new value
is compared to B. If B is greater,
control is transferred to C. Other-

~-52-~

wise, the counter is reset to
zero and control proceeds to
the next instruction. The
counter is also reset in loading.

If COUNT is used extensively, an expansion of the tracing program to punch
out the contents of the counter, e.g., in place of the problem number, would seem
desirable.

The coding for COUNT reads as follows: -

Loc. Op. Data Instr. Remarks

1800 10 1356 1314 Call out and increase

1314 10 1317 1323 the contents, N, of the counter,

1323 11 8002 1381 Test N+ 1—- B,

1381 46 1337 1391

1337 10 8001 1396 On -, store N+ 1 in the counter; go to C
1396 21 1356 1120 (in TR SGN program).

1391 16 8002 - 1066 On+ , reset the counter, go to General
1066 20 1356 1095 Interpretation.

1356 00 0000 0000 The Counter

1317 00 1000 0000 Constant

1194 20 0000 1378 Change in LOADING to reset

1378 24 1356 1178 the counter.

Note: If the COUNT program is loaded separately, the card loading
zero into 1356 (step 9 in the program) must be included.

(3) Include in the punching program (deck 9) a routine that prevents unwanted
numbers from being punched out when the word count is less than the normal max-
imum. This can be done on a tabulator with sufficient selector capacity (see Sec.
XI.5). In the 650, it requires five locations and increases the execution time of
the PCH order by 24. 0 ms.when the word count is less than the normal maximum.
The program, which may be punched on three cards, reads as follows:

1949 44 1306 1095
1306 20 1980 1307
1307 20 1981 1308
1308 20 1982 1309
1309 20 1983 1044
1044 20 1984 1973

(4) Make room for the tracing program to be on the drum in parallel with
the punch program, replacing the mode-of-operation deck (see LOADING) by an

-53-

x-punch on the transfer card or a setting of the storage entry sign switch. An ex-
pansion of the loading program (about 7 steps) or of general interpretation would
be needed, and the present overlap between tracing and punching is 34 registers.

(5) If MOVE is omitted, except for A = 000, make this an Oz—operation and
use the vacant Ol-code for NGDIV. Alternatively, add a fa_gt Oz-operation, "NEG'",
identical with MOVE 000 except that it changes the sign of B. If NEG were available,
however, it might be used in cases where, by slight reprogramming, a better pro-
gram using NGMPY could be written.

(6) Increase the number of logical operations,adding to the flexibility of the
system and to the confusion of the beginner: Have a register called the "address
counter'!, addressed, e.g., by 000 or by special operations and SET instructions
referring to the address counter (as in 701 Speedcoding) where the present SET
instructions refer to their own C-address. Have a set of TR A, TR B, TR C orders
which automatically increase the address referred to by 1. These would have to be
alternative to the address transfer orders in present use unless vacant Ol-codes are
produced.

(7) Make use of addresses now ignored in some operations. For example,
in CONS, use the B-address to call out a number B for console display when the
machine stops. In TR OUT, make B a '"return address' similar to that in TR SUBR.
In START TR, or a new tracing order supplementing it, let B {or C) designate the
number of steps to be traced before an automatic discontinuation of tracing.

(8) Make Program Loading reset the registers below 1000 to zeros, unless
told not to by an x-punch on the first card being loaded. »

(9) Have a conditional stop, or an operation effecting such a stop, on loss
of accuracy in ADD and SUB, analogous to those in SIN and LOG. In many problems,
particularly in connection with tests, such loss is legitimate, however,and a stop
undesirable.

(10) Replace or supplement the present error stops by the punching of an
"error card',

(11) Introduce an operation similar to ST TR ERAS, perhaps replacing it,
which will cause the machine to trace the first, second and last repetition in a
loop.

{12) Add another LD-STD pair (at no loss in time) to General Interpretation
(see cards 26 and 27) making ADD and SUB, as well as MPY and DIV available as
internal subroutines.

(13) Cut the execution time of several subroutines, such as, the arc tangent

program, by making minor rearrangements, usually involving the expenditure of
a few additional registers.

-54.

(14) Add an 0,-operation, SPACE, which causes an x-punch to appear on the
next card punched.

(15) Interchange the functions of registers 1002 and 1702, causing the machine
to stop sooner if a programmer accidentally attempts to continue upward from
instruction 999.

(16) Investigate whether a carry can ever occur on card 78, deck 18, If not,
put the registers used on cards 78-82 to better use.

(17) Replace or supplement the arc tan operation by an 0 -operation, ARG,
which gives the argument (angle) of the point whose coordinates are (A, B).

XI.2. RELATED SYSTEMS

Several systems supplementing the present one suggest themselves: (a) A
system of symbolic or regional programming where the machine assigns absolute
addresses in connection with loading; (b) A system externally identical with the
present one, or very nearly so, operating on complex numbers, probably with real
and imaginary parts in 8-2 floating-decimal form; (c) A system externally identical
with the present one, or very nearly so, operating on double precision floating-
decimal numbers, e.g., 16-4; (d) A system of "formula translation'’ or "automatic
coding'' (such as, the IBM Fortran for the 704) putting on the machine as much as
possible of the burden of translation from a set of mathematical formulas to a
program.

XI.3. NUMERICAL METHODS
The study of numerical methods for calculation of the special functions included
in the system was not nearly as exhaustive as would have been desirable and no

claim to an optimal choice is made.

The square root is computed by Newton's iteration method,
=1 (8
(1) Xm+r =5 (2 +
Z *¥n Xh)
where 1 S B; € 10, using the initial approximation

The evaluation of the trigonometric and exponential functions is based on RAND
approximations (see Approximations for Digital Computers by Cecil Hastings, Jr.,
Princeton University Press) to sin 'ng and 10X for 0§,_ x { 1. Resembling the
approximations obtainable by expansion in terms of orthogonal polynomials, these

-55-

approximations are in general somewhat more efficient than partial sums of Taylor
series for a prescribed interval and accuracy, but it is not obvious that a further
reduction of the argument followed by the use of a Taylor expansion could not have
been better in the present case. For small x, as stated previously, the formula sin
x = x (in radians) is used in order to retain significant figures.

The logarithm and,arc tangent are evaluated from fixed-length partial sums
of power series after preliminary reductions of the argument, since eight-digit
RAND approximations were not available. For the logarithm of B, 1{ B, K 10,
the substitutions

o
N

3 w=2L, -é—;(orB,(e;
- B

(4) u~e\~3‘3-;5- ,V=I.65, for B|ZC)

5 :g—-_'-

Gr T =G

are followed by the evaluation of
- It = t2 <]

The constants, Ve and el- 65 were arbitrarily chosen within the intervals that would
lead to a minimal number of terms in (6). For x near 1, the logarithm is inherently
less accurate than x since

(1) d Iog Xz‘%-(’-‘— - dx

and log x &= 0 whereas xx 1. No substitution comparable to sin x = x can alleviate
this difficulty. The use of a second 0,-operation for log (1 + B) was considered
but was rejected due to space limitations. This second logarithm could not be used
to replace the present one for all values of the argument, since if the logarithm of
a small number, say 10-10 is desired, the substitution

® |+B = lo7°

forced upon the programmer, yields B= -1 exactly (in the eight-digit system used)
with all digits of the input lost.

~56-

_ For the arc tangent, the reduction (after the argument is restricted to Oé
B S 1 by the obvious properties of the function) is based on the formula

(9) arc tan x= arc tan y + arc tan X=Y
I+ Xy

which is merely the addition theorem for the tangent rewritten. With y= .6, the
use of (9) gives the desired accuracy in

(10) arc tan z =Z[l——-§-—z+_§_4-—,...— -Izi-'f

with z = ?(T'i-;’ for x>.28 and z = x for x £.28. There is again some leeway in the

choice of these constants. For small x, the substitution arc tan x = x is used to
preserve significant digits.

XI.4. CONTROL PANEL WIRING FOR THE READ-PUNCH UNIT

The control panel for the 533 Read-Punch Unit associated with the 650 is
wired as follows:

Col. 1, 1st Reading, to LOAD.
R + Sign, jackplugged.
P+ Sign, jackplugged.

Col. 5, 1st Reading, to Pilot Sel. 1 X PU.

Rd. Hold to PS1 Hold.

Read Card C, Col. 6, to PS1 T.

Read Impulse 0 to PS1 N.

PS1 C to Storage Entry C, Word 1, pos. 3 (from the left).

Read Card C, Col. to Storage Entry C.

7-9 Wd. 1, pos. 4-6
10 Wd. 2, pos. 6

11 Wwd. 3, Sign
12-21 Wd. 3, pos. 1-10
22 Wd. 4, Sign
67-T76 Wd. 8, pos. 1-10
77-79 wWd. 9, pos. 4-6

-57-

Read Impulse 12 Wds. 1, 2, 9, 10, Sign

Wd. 1, pos. 7-10
wd. 2, pos. 7-10
wd. 9, pos. 7-10

Read Impulse 0

Word Size Emitter to Word Size Entry C
10 Wds. 3-8, 10
8 wd. 1
7 wd. 9
5 wd. 2
Storage Exit C to Punch Card C, Col.
Wd. 10, pos. 3-6 1-4
wWd. 1, pos. 3-6 6-9
wd. 2, pos. 6 10
Wd. 3, Sign 11
Wd. 3, pos. 1-10 12-21
Wd. 4, Sign 22
Wd. 8, pos. 1-10 67-76
Wd. 9, pos. 4-6 77-79
Wd. 2, pos. 10 - 80

Double Punch and Blank Column Detection as available and desired.
XI. 5. CONTROL PANEL WIRING FOR THE TABULATOR

The IBM accounting machine or tabulator used for printing from the cards
associated with the interpretive system may be expected to perform some or all

of the following tasks:

(1) Automatic selection of different printing forms (i.e., zero control and
spacing between items on a line) for data cards and trace cards.

(2) Selective spacing between lines.

(3) Suppression of unwanted words from cards with word count less than
5 (or 6).

Since there are many tabulator models, it is not feasible to provide a detailed
wiring diagram in this report. Instead, suggestions of general applicability will be

-58-

given.

Exact selector requirements depend on the characteristics of each machine.
As an example, requirements on a 416 will be given: The printing of signs requires
6 single-position selectors with X-pickup and 6 positions of 11-12 separation (either
special attachments or 6 positions of a selector transferred by an 11-1/2 impulse).
Task (1) requires a digit selector (which may be put to duplicate use in task (3)) and
34 selector positions with digit pickup (delayed pickup). Task (2) requires only
3 one-position selectors on the 416. Task (3) requires 55 selector positions with

emitter for control.

The problem in connection with task (1) is to get the desired zero control
and spacing in the two cases with the same setting of the hammersplit levers (also
called zero suppression levers) and hammerlocks, on machines where zero control
is not performed on the control panel. On a tabulator with 89 type bars, this may
be done as follows:

Type bar Direct Wiring Data Cards Trace Cards

Alpha. 1-4 Col. 1-4, II*,
5 ——
6-8 Col. 7-9, II.
9 — — s
10 Col. 5, II. Col. 11, I,
11 Col. 6, II. Col. 12, II.
12 —— Emit 10,
13 - Col. 13, 1II.
14 - Col. 14, I1.
15 Col. 11, 1. Col. 15, 1II.
16 Emit 10.
17 Col. 16, II.
18 Col. 17, 11,
19 —— Col. 18, 1II.
20 Col. 12-21, 1II. Emit10.
21 Col. 19, II.
22 ' Col. 20, II.
23 Col. 21, 1I.
24 Emit 10.
25 Col. 23, II.
26 Emit10.
27 Col. 22, 1. Col. 24, II.
28 Col. 25, II.
29 Col. 26, II.
30 Col. 23-29, II Emit 10.
31 ‘ Col. 27, II.

-59-

Type bar Direct Wiring Data Cards Trace Cards

32 Col. 28, II.
33 Col. 29, II.
34 Emit10.
35 Col. 30, II.
36 Col. 31, II.
37 Col. 32, 1II.
38 -——— Emit10.
39 Col. 33, 1. Col. 35, II.
40 Col. 36, II,
41 Col. 37, II.
42 Emit10.
43 Col. 34-40, IIL Col. 38, II
44 Col. 39, I1.
Num. 1 Col, 40, II.

2 Emit10.
3 Col. 41, II.
4 Col. 42, 1I.
5 Col. 43, II1.
6 —_——
7 Col. 44, 1.

8-17 Col. 45-54, II.
18 -
19 Col. 55, 1.

20-29 Col. 56-65, 1I.
30 - -
31 Col. 66, 1.

32-41 Col. 67-76, 1I.
42 -

43-45 Col., 77-79, II.

(*) The symbol "II" denotes wiring from the second brushes {(on some machines
called '"third reading't) whereas "I'' denotes wiring from the first brushes (''second
reading'') through a selector that separates 11's from 12's to the X-PU of an X-
distributor (''pilot selector') through the transfer point of which an emitted 10 goes
to the type bar in question.

The hammersplit (zero suppression) levers alpha. 4, 11, 25, 37 and num. 5,
17, 29, 41 and the long hammerlocks alpha. 12, 16, 20, 24, 26, 30, 34, 38, 42 and
num. 2 are raised. Left zero carry clips of width 3 are attached to hammersplit
levers alpha., 6-8 and num. 43-45.

Trace cards are distinguished by the presence of an 8 in column 80. This

impulse is wired through a digit selector to the digit pickup of a row of selectors
("‘class selectors'’ or '‘co-selectors with a controlling pilot selector'’) with a total

-60-

of 34 sets of points and to the hammerlock control hub.

For performing task (2) in the manner specified in Sec. V.2., four external
switches are needed. On a 416, the single-double spacing lever and the minor,
intermediate and major control switches can be used; on machines with four
pluggable switches there is no problem.

Spacing every 10 lines (alternative (b), Sec. V. 2.) may be accomplished by
adding 1 to a counter on card cycles and using the carry (which, on a 416, is
automatically available at the counter total exit) to initiate a minor cycle during
which spacing takes place and the counter is cleared.

Spacing alternatives (c) and (d) both involve inspecting a card column at two
reading stations and taking certain action when the digit at the first brushes is less
than the digit at the second brushes. This may be done by wiring from second
brushes to a comparing entry and from the corresponding comparing exit to the
immediate pickup (""ZFS P. U. ' on a 416) of a selector through the transfer point
of which the digit at first brushes is passed. In case (d), this digit is taken directly
to cause spacing; in case (c) it is wired to the digit pickup of a selector which)
initiates spacing on the next cycle.

Task (3) is easily accomplished if a sufficient number of selectors are avail-
able. Since the same task can be performed on the 650 at the expense of 5 locations,
(see Sec. XI.1.) the tabulator wiring will not be discussed here.

XI. 6. SYSTEM LOADING

The interpretive system deck, normally with 6 words to a card and an x-punch
in 5 to get the 1 in column 6 picked up as a leading digit of the address, is loaded by
a deck of six self-loading cards (12 in col. 1) with 7 words to a card and a card
number in the eighth word. The first card serves the sole purpose of making a
fixed console setting possible. The System Loading program on these cards operates
as follows:

8000 70 1951 1333

1951 70 0004 0152 Read in the loading pro-
0004 70 0053 0152 gram from six load

0053 70 0106 0152 cards (B into 0001, C+1
0106 70 0153 0152 | into 0002).

0153 70 0204 0152

0204 70 0251 0056 Read a system card (non-load).
0056 60 0001 0055

0055 11 0251 - 0155 Go to stop if expected loc.
0155 44 0152 0102 B's$ loc. on card, L.
0102 60 0002 0007

-6] -

0007 11 0001 0205} Go to stop if C+ 1<

0205 11 0252 0057 B'4 n.

0057 46 0152 0051

0051 21 0080 0052

0052 60 0006 0103 Prepare accumulator for
0103 10 0251 0156 - move.

0156 15 0202 0206 '

0206 10 0252 0054 Store test constant.

0054 21 0070 0203}

0203 11 0252 8002

8002 69 (0253] 8003 Move one word.

8003 24 CL3J 0151§

0151 15 0154 0201 Increase addresses by 1.
0201 10 8001 0207

0207 11 0070 0101 Test for end of moving.
0101 44 0105 0107

0105 10 0070 8002 Return to move another word.
0107 60 0080 0104 If C+1=B%n, end of load-
0104 44 0157 8000 ing; go to console.

0157 60 0001 0005 Increase location by word
0005 10 0252 0003 count, go to read next card.
0003 21 0001 0204

0152 69 7777 1333 Error stop.

0001 00 B 0000

0002 00 C 1 0000 -

0006 24 0000 0151 Constants

0202 69 0253 8003

0154 00 0001 0000

A similar program is used for punching out the system in condensed form in
case extensive changes, entered on self-loading, single-instruction cards, have
been made.

The Reset Memory Card, mentioned in Sec. V. 3., is a load card with eight
words. The program, essentially identical with one supplied by the IBM 650 Sales
Research Group at Endicott, runs as follows:

8000 70 1951 1333
1951 69 8000 1953
1953 24 0000 1954
1954 69 1957 1955
1955 24 0999 1956
1956 61 1958 8003
8003 20 [oooi]} 0999

-62-

11 1952 8003
0999 00 0000 0000

0000 70 1951 1333
1952 00 0001 0000
1957 11 1952 8003
1958 20 0001 0999

XI.7. PROGRAMS

The complete programs of the system are listed on the next 21 pages, (i) -
(xxi). In many cases, but not always, a constant used in two programs is listed
in both.

-63~

INSTR.

650 INTERPRETIVE SYSTEM.

1o GENERAL INTERPRETATION.

DATA

OP.

LOC,

CARD

DECK

. o

g :

T &

= a £
o 8=] °
- QO 4]
® P o 4 g
bmb (3] u
o~ M =] =
~ N =) [=] e}
hes 57 3 5
b - [] =
00 P O & o
N O D D []
O~ joN o
im%e ¢ ©
] -l . N =
gdTs S 2 S 4
T w4 © ® o
8OO b 1N | 9 m =

2832 ¢ 0§
-~ 5] wn -4 nm

—

TOSRMCHOAOM OO O A
HAROOVU-QRMNITTOOVUNOD
OO HOOCOOOONMO OO0
HrEH O e H Y O

FTOTITAMMMMAD MM~ Q
A gdHonoovrvoovwao
COO0OM-HOOOOOOO0OOD
Hr SO N OO H DO D

OO HOVOOO0OCOOTON

Vri@OTMQROMNQON O

M EHHOAOMN O NN
AHITOOVU-HAMNTITOVCO
000010000001000
A O o v e D

HARNMYIUOUO~OAO NN T
™o

v e o e e v v v] e e]

p box to the instr.

Remove the minus sign.

6 Add the loo
}—Constanta

4
61

7 10
3 10

101
800

i~
1 O

M\
in
- O
™~

O~
i ed

1107
081
000

1
1

Taaw
OO
coo
—0 @

o oW
O YO

T O~
()R ary
QO Qoo
v

=M <$
Qo e e

™ v oy

Loop box (initially 0)

25 1017

normal

Restore the multiplieation
(01=3) to

routine

g. program makes

special use of it),

(The tri

i

73
04

1732 1
1539 1

Q<
iy

o
ST
o~
~

O~
v av]

28 1732 35 0002 1445

1

2, TRANSFER OPERATIONS.

0z=000,

for console display

UNC STOP
B

Call out

QN

B for console display
Stop; Go to C on PROGRAM START

0z=200, COND STOP

Call out

|

J

13 1202 60 1009 101 3 02=202

Q0O
ToNaR=Te)
QOO
=~ O i i

M Q-
Q0
O
O

O VO
M-EYO

(o Nevate]
oo~
NCOoO
™~ O

O RNoR o Lo

Qe

TR SGN

—— it

Test the sign of prev., result

Go to C if -,
Go to B if +,

02=201,

15
69
27
27

CSOCO
vl v~

aomME
oo
Q-OO
el ©

SWOoO
OO

lalirReNel
(@R Rarive)
NOHO
vy

O HHQ
e

Qe

TR EXP

2

i

}-Get the exp. of prev, result
Compare it to B; Go ahead
if exp. < B, to C if exp. > B.

7
)
3

~AONRO
QM-
OO0
v v v vl

QRN
QOOTO
QOOCOo
CDO i

ooV

MNOoM-HS

MOV
RN~
COCOO0
v vl

TOHOVN~O
i v vl e el

RN

i+l by C in

IR

general interpretation.

02=203,
Replace

102
103
104

N o
RO M
cOO
O i

Q00O
O Mt

M~
oM
[\Hele
virivd

QO
o

QN

.
>

instruction at C equal to B

Set the C-address of the
go to TR to C.

[

X

NodHH@WM®OOM
WSOV ONMMOTINO
HOHHOOHOOOMW
v 00

M MY LD O N 1 Q2 LD M
NOFN ™GO0 FO,
ocovror ©OOOC

HOHHH 0o ©® O~

NOoOMWVNMOOWNIH
VNMOREHOMOANQA

TH-OHENWNMNAQOO
ouwwmwOUoI-MovtW
AHOHEHOOHOOO0
el O e v e

NMITOO~-ORNO N
aaearuEaaanmmnng

auaQEEeaeEQ Qe

£«

]

1 O

Ut

in machine language

IR

)
c

20
to

0
Go

}

28
03
]
1095 0p=454,

1
0
¢

M
Qo
oo
-iO

0w
wom

nwon
oMo
NHO
i~ ©

®M W

DAT A R

QQQE

NOOP

Go to general interpretation.

36 1454

2

? o
[
-]
B% 4
= - 2 =¥
Q It © 0O
- (&) [+
| 2] & &) i~
- O~
mphae
mtcnn
<% »
2] o ©
- + 50
m (<7 B o w
i Hg=3i
[+ |
: JYEEE
3 SR 8.5
—A ~ r A -
D M~OY Aol o I RIS N |
OO\ O~-~-M Oy
OO0 D00 HO
™ v vded i = 4 v v]
B~-Q-®©
O +=HOOM
C OO O
O=O O
=000 OO0 O
O WOWOY M AON o
OO [e R R Te]
WMo Mm OOi~--MN
~HH OO COOC
v v v+ ¢ v v v~ v}
OO QW
MmmnMn g
QR MmmMnnmn

Common LOOP steps

~ g e
[&]
.MO
@8 24
oo o8
+ o0
xl.\ lm.u..
[+ 3 =1 D
£ o £ o
L) P
[=7 .m
o a +»
Se 9
g 7
© O o R
E-Ee []
+ - ’m
pg 3
m.& oo
ml [P RE
O $4 4 O
O - &0
}}
oMW

NYARHG
OHC HHO
vl et e

T b~
CBO-HO
lejojololoNel
DO ®D

OO +HOO
LR o HAT R o Ruv

M RN N
QWO
Co0OHH
e

OO0~
)~

mmnmnmnmn

LOOP AC

02=101,

~iiji~

O m
LR e,
— O
vl

-\
om
(o R w)
© i

QO
L]

© 0
@m
o
e

O
10 ¥4

02=111, LQOP ABC

LOOP B

010,

02=011, LOOP BC

om
sol g
it
i

<O
Q™
O
O

(o Xo]
AR

- O
D
Ol
v~

Qo
am

O O } Constants,
00
01

leXej e
\nReRai

0001

(o R o]
o O
Anl o]
oo

0100

DH> OO
MmN
Hooow
v

QMW
MMM 8

AL Rl

4, MOVE

o
~O W
5.]
ol =
133 o
2% g §
0
o2 ~ m
+ 0 (=}
2 N o
Q O
%] + 1
- ~ [+]
~ [
- = .m..u
o &]
. opd W.
[M
m . Q, =~}
Cal ~ []
S 2 ® 5
’N ° o %~
N 2 | - <+
o 3 o O
(a1 2 [45] (&7 1
ey }

QUG- OoOOM
SCO-HRNTONMNMNOOW
Ort-ME{HOMHEO
el el A A el

oMM WD
OCOQ0ONMWOAWHO WO
O-OoOOoOMNOOMOOM
OO HO O

BNOoCYWAaOWLWSY O
OO T

SN~ OO0
AOOWNRAQRNO O
COHHPMNHOMHAHO
el e v v

HRMYTOLONMNOOND
il

SeeTTTTFTE

} Initialize for downward move,

Qoo
- RMNDT
LA IAR
il

QMM QQ
QoW
COoOMW
VO~

QQoowvwm
M

naQNo @
Mo
i L Wa T il
vl

QMW
vl vl

A g

}rxnitialize for upward move,

DOMNOL-
RITO~-M O
MM o
v v

Mmaumm e
wovoavw
SOoOOoOOoOM
v QO

COUHO -0
O

~oomaw
oRITO~Mm
DAY R ST]
v vy e e e

OO
QA

I T ¢

(see next p.)

§ &
*uw_ lwo
< -3 yng.
MMZ [~} L [}
_i o QTS
-~ +> 020t
23 4 Beo° %
O+ .m (=} @ >»Mm O
Q o m ® O =

m (2] & H e
L = L34 o «Woo
[< Q =]
83 g & °* .7

[)] o] ~ O (@ 2¥e]
£8 o » gmMﬂ
Om > [mt
- o] o £ 0% O
n o = & O k=

\ll.J\’LJ.\llrl.J}

VRN AN QN
MOOOMaRM™ONY
HOOHHOM OO M
O O™ DO

LMD VTN
N0 XNV ONOTO
Q= QMO OOOCO
e O HO~O

e OATHTO OO
AEHOAH T A HHOM

FOMANAAOARO-OON
AOOCOoOWVVONN~TW
HeAOOIdMMNEHHO
i OO v

MmITVO~OoONO QM
e EemMmnmnmn

TGS T

~iv=

Error stop for MOVE, READ & PCH.

@ v

) Qe
O ;N

0 i)

Non
O

QW
OO
Mmom
i O

SELRGY
M

} Constants

QL
oOovw
O i
O vl

YO
Aa XA RNe)

mnmwn
N0
MO
v v v

OO
MmN

< ¢

5. ERASABLE AND VACANT LOCATIONS.

} Vacant Oa-codes

S
o~ D0
-
o el Sl

S N
S S L
Y
S

S S ST
S

oo ONno
OOoCQOWmnOo
MMM ©
Hririrel

QNN 0

nwuuwmnnwn

}Inter\-subroutine storage

nwnw
nwnw
nwwmn
nnw

nwnw
ninw
mwnw

nwunw

nwniwn
nwnw

oM
ocow
O0C
viviv

~00

ninuw

v
S %, 373
= 4% %3
(9] m o
2 5 59
S
= Q0
g E .
<5 O]

ol m
4 2
3

*

= « 3 F

} Erasable

DODODOMODGDDMMDPDOODD 0D
DOCHDDBODDDDDDDO 0D DD OO DD
O®OWDODDOODDODDDWDDO DD
DODDODODODODODOCDDD0®

[soX: ol oNesResReoReoRivlesResResRseRurRualesloaleosoReshre)

csRieRisRieResResReoleoNeoResleoRieReoleoRsaeoReoRes N Jea}
oksalesNerReaRsoNioRasReoJesReoReoReo Rt oo s ResqioRioNs)
DOV DOROODOXDODVOVDVDLD

COVOVDOVODOROVDODODOOD
CRDDOOOODVLCDDODBDODDD

oRULOYULMMNODONTHFOMDAAM T
NNVOVOCVVYNFFFODDROAAOD
oI
R R R R e R R R R R R A R A R R R R R o R |

O-iANNTWOVNMRODAO-NMNITNO~OO
e be b R R R R R Ko By RarJaviarHaravavargar HavRqy

nuonINuLnULnLLVLIDLONDWWOLW

7Vacant registers

~

N S N
S Y o e e e
N S e
T e

S N S N e
S S e
O e
T S S S

o A
S N S S e e

oY -MOH-OVO YT
DM OMNOGAO Y
mMmMmmMaMnnNMo o
el el e

O QMTHW-ORNO
mEMMmmMnmMmMmmnmMm e

nNnunLBLLWO W

6. ADDRESS CHANGE OPERATIONS.

1 1087 69 1140

1088 69 1341 1188

2

-V

1195

3 1089 69 134¢2

IR C

Common steps.

0128,

(3
8 .
m
. E
= 8
& 5
- _.. &y
CIE o m ot
G L g
- o
g 8 4 3
...m o ® m
[++] Q &~ O =
“ B . - v
S BT 53 3B
) £ o @ o
5 -8 CEF 57
! o
§ 23 8% g~
PO 1 S o
] m‘C 2.0
2 8 0 & 5
%51 %l v o Cnm
r) ™ ety

A
MEHO QOGN ®ROW
DWEHOOADHARD N
CMMOEM MO
111811111111

oeMmerTamnnmmmm
QOO 4, FOOOO WO
HOOO ‘ro0O0O0OONM
HOOH "= O VO =i

THOWMNLWVNOOVLW
ROMHOM O OMN ¢

DM
O HOVOM RO O
HOMMNO v M o v Y
v v O e

FTUOVOCDAOHANMT WD
vt e e

VO YVYVOVYVVVYVYIE

} Constants

O
L2 R 2 RTs Ne
DAN TR
v

i~
eNele)
c oo
QOO

nunmne-
MmmMmMnM Y

(O Naviev]
A R g
MM o
™ v

O~ 3
i vf e

OOV Y

02=005, SET C

=050, SET B

20 1005 65 8003 1163

6

21 1050 65 1103 1163 SET B

6

22 1500 65 1104 1163

6

022500, SET A

Mo
- e . &
~ m @ (e}
m ~~ ~
i 558 T oo 5
= 8 D wrf o <t
2] D 4> +
- L T (&) =
S D 4 3 = ~ (5]
=] ® | I) o] > ol
0 P.mtB ord L [
8 2 Sage 2 o o @
+ m Q 4o @ ¢ 0 L2l =
™ 3 2T ey B me o -]
=} w S 080 O Q K-
[} © H o [| Mo < (Y]
g = t.m — g 5
<+ 2 D0 [« 0 Q, + 0
O ¢ .o ® O + ' | D +& 4>
(& 2] N DO~ n Qo o < w

97429.7408982.2488006475

OC-0OANYWOUNOOOAMNYD-ENMNMANOG
- OMN A AO R H O A HHH A HQ RO
AR e R Rl e R e R R R R R B DR o I N e e g

6409530731“533353335]]
1788406675%600018206&5
HRONOOHNO _sMMOOOoCwHoOooa ™

At A HO A = 0O O O o O

GRAQVOONNOCOOOOOCVVWNWL
VROVROMNUVAHONMQOUNOT M Q

MOAMTRAGTONTONNUTTUOOO T ™
VO AYTWO-OCOONNYD NN
HREEH M A AT O N A HO He QN
v A vt e e e v v @ o e v o v o o o e v

MYV TAOHAAMTULONODOO QM
e MM

el ol R s Rie s RleRreRIoATs RV RlaRIo R o RTo RTs RV, RTo WY RV WV WV

} Constants

50 1006 65 1023 1079 02=006

~ow
Voo
QO
it

0003
0006

0o
Lalsatey]

MOOo QN
O=COO
AHO
v]

EpAYeRn oo et
AR A A

C oV

ADD ¢

’

66 1023 1079 0,=007, SUB C

1007

51

(OS2
LS B AV]

162 6
o A

o o0 O«
o 3 O

OO OO0 O O O O v O Oy

ENENEN RN Yo Ne NN e Yo Ws R R N6
NREO VNP OW

SR S S PR DR R, UK PR R B B
N4 O ALVPOWV ON0OIALIVR

S

® O
AN R

R

1079

W
o

0007 1004 Common to both

1060
1070
1129

1023 1129 0p=060, ADD B
1023 1129 02=070, SUBB
0004 1004 Common to both

(O W)Y
O\ m

(8]
O

1600 1023 1189 022600, ADD A

ah O
o O,

1700
1189

1023 1189 0Q2=700, SUB A

W
O
o
o
o
| g

1004 Common to both

Common to all ADD & SUB gp-
Store shifted tC;

Set address for storing
modified instr, at B

Get B

Add ¥C to |B|; store
(with original sign) at B,

VEFRLLUOLWUWWOO
AN OO ODD
Ll OO0 WIOoO LU O

NSO OO OO OVOONO

WWO VOO DNOW~I0® A
DR L PDROOW

T R T R R S O

Constants

MRR RRRPRRORRRPRR
OO VREPAMNNVOAUWUGRD
OOr RROOUINVOWUVIO
PR RREBRERORRRRR
WUHO ODVWRPWOUWLWLWWO
OHMO VOONOHOIR VIO
VOO =N-VOAOVOWIO®

ey ey e !

(@3 N

7. PROGRAM LOADING.

Read the first program card,
Set an instruction for return
from the READ routine

Reset 000

Reset the Loop box

Reset the card counter

Test the word couni,n. If # O,
go to READ to move n words

t._,,‘-J

If n=0, put the problem no.
inte the punch band,
decide if tracing is required,
(dep. on contents of 1976%),
atore the address of the
first programmer instruction,
go to execute it (gen.int.)
*{30 0003 1019 if not tracing
21 1980 1386 if tracing
1951 1344 cConstant (return from READ)

8. READING OPERATIONS

11 3 1] 0p=401, READ CONS

144 5 Stop. On start, read console
1174

1486

RRERRRR PRER pEe
QUVUQOVWYWY WOUWYVWO DG
WOl o= ~HA
H
O W HO] ~NHAPAIIVDW
~ DU~ NnAOOAAW
e N e Ry

R ONe ANV D
NE OUWWLK WOoOWRERRERPW

29

P R RRpBERREBR pRBRRERRD
N O FPOUUWLWW OUWRRRRWO
DLW WP AOVUIY AAUTODVDWO
NV o OO VAR BWO
N BN AOVVVVA
O O CORUVAY NOBAROLOO

P RPRRRRE RpRpRRRERRR

SN
NC WO
NO Re

switches, go to storing routine.
0,=400, READ
Set return instructions, go to

R
N©O OBF

A
Ve O
Re @
VW O
Nk o
oo O

-viji-

S 1486 69 1241 11685 Steps common with PCH

ko]
1
@ e
00
C
a7 3
= -
e YR 4% 4 v 5 m
»
Q, [~ + @ = —~4 s 1 m
@ O O = o) on) [+ =
+ S~ M s =1 > o 2 G D s
® 2 BAZ ® ® 2 2 7 ° =%
=~ * O o H8 N g @ [+ _m Y ed
9o O W + - (e} o o ® g @ o G
m (o o) - M -+ o~ B 7} = o ="1]
lr.mnu ~] 3] “— o ® &y -
[+ o, . o [T) (o) @ = O K
(3] L < O o« +2 o od > i <+ ©
.iMsimi mm i ST g] + =4
g o O o« +3 @ = OP.M o o] [&] o
O & A& 2.0 o - ot x @ m g
2@ 0% 20 0 O Q w o [*] ® o
W O o o < 5 @ V¥ O & +© oo
[RPN o] 4 O E~4 S = a O = -
ma ~ ® =~ Q [0} O o L= = +
[I O O+ ~4 ¢ 4 - 2 o
ST 0P W %) (ST g o7 N =3 m +
o @ CRRN) I —~ @ m > m © [+ ke
U OO O od o O o] = o [Gy < 0
(SRR G - AU RNl [SRRL] (&) =z O [o= =~ << &)
ey A N A~ 2. ¥ ammage W SIS N W, — Ay

71151275524188BHT4189156727
COUVLHALNHORNOOWIO JRO VMO O~ i [~
ROAOMRORNROMNOARHEHID CORMONME G A
111111111111111&[1811811111

O -HTO ﬂ*1¢5v1¢nununu1+ﬁu4¢0,A.Ruﬂu1+A.ﬂvﬂvA.ﬂvnu1¢
Ou?.1¢A.Av4L4LAHO~Au4¢4LQ~1*1*ﬁuQ~1¢1¢1~A.1¢f0,4f0uLnd

QVOLM 7.Q~D~nunvd.ﬂvﬁu1¢d.9w7Jnuﬁu?4?JO,QVAVf0,4/O
~-MmoMm 4.7-QVA.QJAUQVRUZJQ,nuﬂuOMKJO/V.ZJWanA.RUAV
D~712J147.Zuzz?JWJRuZJAuﬂuONnunvﬂv?J?/1¢?J?JDuZ/1JRu1¢
4¢4¢1L1¢1¢1¢1¢4¢4¢1¢1¢1*1¢1¢1*RvRV1*1¢1*1*1¢1L1*1*1&1¢

Nolalieols Vo) 1*Ou144;b,bnlnu0/nv1¢QMWJA.KVAVTaﬂuO/nu4¢ON
1*4¢4L4¢4¢4¢1¢1L1¢1*Q~9~QuDuONONONDwQuDuZJ?JW;

RVRVQVRVRVRVRVRVRVRVRVRVRVRVRVRVRVRVRVQuQuQuQUQVRVRvRV

}-Constants

MOWVO
oo
omMmp~Mm
@ v v]

M~
0@~
O
v

SO
NoRXoXa Ry,

tolles o BNy
DV Q
=M
i v

M O
MMM

DD

«_PUNCHING.

2=410,

PCH

1 1410 69 1964 1168 o

Prepare for testing
and initialization.

Common with READ

——Hr

S RHOATQ
BN O M~
caAaMM—Q
o v v e

QMM T
oo
NooocoOo®
el O it

YUooOmo
WOHM—HQ

CHQ AT

SO OMYOEM

~HO QMM
v

MO~

A

L]
g
o]
Gt le’.ﬂm.w 2]
Lol + 5 °
PO T N £
—_ [} (S I)) W
Wm SV <
+ aq
o m ["aY £ g
.WM O+ 03 M
O 0= P& o
= O ~4m > 0
Ol no 0o
~r ‘Ntf + g
w 0 - ©
U $57%e 2%
o ovgl. 5B
-
Blod Sm2o8 52
+ [T 2 42
SloN $85 0 £ o
mGB U2 3 2 b0 ey ©

(N RN N JarNa ROR ResRisBa Y o)

CAOAHADO~-0VOTNW
OO OO OO
o e e e e e e e e v

NOYOOAHAN OO AT A
OVYUNAONN~NN~NO0O0O VNS
oGO OCOOO
THOH AT A A AT OO i

HHOVOHAOHAHOCOOW
QOO v v O]

NANOOMNONRA-HD DO
OO0~ O OO NI~
Ve, o e We. X0 e, 8o We, Mo, We . Wo e
o v e e e e e e e o

COOHRNI N ONDTOD
e e o 2

(RO R Y Y Ne,Ne W e e Ko, We,We

-viii-

another word
Increase the card no,
Punch a card

Set the location no.
for the next card

If B*=C+1l, punching
is completed.

Move one word
Go to punch
Return to move

- QNS OO
VOO VOV ®VAT T VO T
o NoYor:Ne Yo X ¥e X o No e No¥s No e We o)
HOO A S S A e

701%64444446778713
OO OSSN~ O™
AOFBOAOOCCOCOC OO0
11fﬁ11111111111181

BOoOAYONLUINS HAHOOHO Y
HA O OHE A A =T RO HR T

o-QMHOANYO AN ONN R
HIVOOARNAODCOTIOY
o N YeleootoloNo o NoNs ReRe Ro, Ne Yo R o, 98
YOO A A A A

~=HOUMTHDO~OAOHQMTNDO~©
aaaerEaEEeMmMmmMmMamMmnaMmmnmMm

NN OR R Yo Ns: N e N Weo W, We W0 RS, REIREINS, We)N

W~ m.“
B wd 2 °
O 5 e _d.m
T o -3 %]
Lo d e
OMOr ms
o588 S3.
§158 W83
rom.m ol e
B I -1 o0
ssmm 5590
LEE P
. wd Hm.m
P O e Q WW
[I | 3]
Sed 0 4 W e
O w g P2 ® Ols
O & O w A Nl o
M O & + —~t
mA 42 :
..mom.mm §54
E5£58 £9%
PSR —

Ay Ot
o OO,
OO ONONO O
v el O

Mmoo
or~-OC > >
oo O O
OO <«

O i
M QQ

A i
QLo

OO T O
oo O~n
(e Yo e, Ne,Ne Ro N e}
v v vt v i

ROHQMTW
M T

(YO RORe R RO N

10, TRACING

)
=
S w0 b
o = 3
5 3 ¥ 5
b B0
[1 9] [3] 1
o] &) - ot < O
L= .m Q 1 9 &
..mo L] M.u. N t .
LR ° f 5 S5 s £
[0} S + [+] +3 | TR %
o.m o u (o] =
= - Bt 0 [. ord
4 B e < g & ® =
1] &5 + 1 5 [e] ﬂ
s A T
o4 << S (=] > 2. a0
8% s S = E g2 7
ﬂ g0 m m << Im o R =)
mee] @] o o o [V
S B £ —§] 1Y e 15 b |9
B33 3 3 08 2 £%35 3
nu wn (&=} [22] 921 9p} 2 /5] 9]

VOO TWIMOU-RAOACHQAQAMSTU~OONOO QRN

O TITTNDOOC OO WO OO OODOAO GG
LN Ne ¥e We o e ¥e Wo e o ¥ e FoRe Xo X Ne RaTo X No R N Ro. 1o e No N Ro Ne
Rl R e R R R R R [S [Iy o QR (U [N S [y, o QRN JURE QS JUNE NS G U QR (' QR U

OMMMPMNMNOMD AN —@ID N —N
DONOOTOVOWVWOOQ ,MYOQ ©
O COO0O0OCROACOD OO g
HAOHOOHRHOHDO ™ L= O

RS oF o e N t)
VHOOS NI~
aocoacoanoo
o e e

QOO0 OWCH OO HNOUWATHOTATUINTINA TN
QMAOAOUMAVAAMNTUOUMNEHOAQROMA0QRUOUAQAOVQROUA-HORQW

HOUYU-OAO-EIAMIDOVMFNOAOCHRRRNMNY NSO T RN
(a0l i R RN RNe AN Rlo R o B0 N RS e Ao R sl a i = Tl ol il s JssXve Ne el o, Wa Ne We
OMARNOOORANARCHRANRNANTSHAIINANAOANNAOOO R
i A A A AT A O A A AT O A A A A A~ O

ST OOUFROOAOOHIRMNETUIONMNORAOHUNMIYUIOVOOO
v dQQaQaaauEauuQaeamn

jlejojejojejojojofojolojolojolololololofololoolololoNoReloRo)
A n R BB R e R R e R R R e R R e e e R e R R R R e R R R R R R R R]
\

.

Return to normal gen, int,

I Store card no. for trace cards
Punch a trace card

START TR

0
Modify’gen. int. to include

tracing expansion

0z=451, STOP

Qo=

TR
Restore gen. int. to normal

1055}

<
00
— O
i

<
W

- O
w3

<MY
i

b~
MM

oje]
iR

-]
< .
| 5
309
5)
[}
]+ o .m
= .85 &
« O 0N A
Hiew o8
m_.l.m. 2,2
s @D
gE S0
gm.m eb
N [3]
g4 95
M3E% 52
QL= + R.m
—~ Ay

ATWOLON T
VRO-OQ

QT
mMawemnNo
MO =iNne
vl vl v = ©

oM
Mg T

CQOO0O0OO0O
AR R R R R

% trace identif.
Make PCH inoperative when tracing.
Will be 30 0003 1019 when not trac.

When the trace program is

loaded with program loading

this will load into 1963 (1
11, STORING THE RESULT

rCmﬁmw
Word count

4
8
2
2
9
8
5
6

VO™~ HelOoO®
DO oooOoOMmM
Owvivd OHO

5
196&{

Mo
oo
oo
(e je)

5400

AOOTOCO
cwvwvomm

<
aQ

OON-HINTOTOY D
OB -O~-O~-Ow
A HHATTAOOO O
Yt A e e

BO~-ODRRO~-ANMT W
AR IR T RTo R To R ToRToRTo!

COO0OO0OO0O0OCOOCO
el A e e

5.

.
o -+
m =
® o
~~ 5]
W e 0, o
Ego¢
o S N 80
+ V] -
S &4 O [&)
oo
0o g m
& T Py
o R 8~
=] AR - [&]
- 0
1543 ¢
oot Q o
—~ (o lica] 2 4
Fe] (33 S.m
] [=]
- =)
SAS . Mn
n_colw %
=] mo .
o [} Q
Mlc [~
O 42 % &t ©
CYord 1 - 4 &)

NT-uai-uw
OvviiomMmtoom
NNFTOITOO
vl el O

aMmomm .
oRMOw
. OOYOY
MO

e

HHOWOoOno Y
RQOTFM O

AR S Lo ¥
TO=HAQMIN T O
YT VO
v e o ©

NN IO~

ol v e e
et e e e o

1095 Constant

9 1443 24

11

12, ADDITION AND SUBTRACTION

» ADD
Get B

03=1

P
aovam

ATWOor
YT OW
o O

awmo
©TOCq
xoow

i O v

OO Oo
QOK O

o~
DOTWVO
oY YO
Sl O

—RMT W

R E
il el

SUB

,_
]

oAy
Q- mMm
OO O~
nmuo W

el vl O |

2
Get -B

anMng M
YO r;m
uoom

™l O

O
QUMY

MO~ @
OTOO O
oOWON O
v~ ©

wr~-oono
~!

Qe
i~

If A=000, get K& directly,

Common steps

83
953
97

AR
v

@ Y0
~0 0
QR
v

W
N0

MMM
~aoo
TN
v~

o~ Q2 M0
iRl

QaeE
v

-3

o
]
X g 8 ;
2 ° m S & fe
] (e} (5] m o}
=] ~] P >
o » ~ - -] .bm.. > T% e.D
(& (& ~{ [— o] (&) &) 3
[} Q, N“ [] + £ D9 > — . w
= u m -~] a3 [+ <+« — ®
m # ht PO o © . @ £ 0

+2 e] + — [3 N ()] [3 4] £ a0 @ [30}
m ord ol boud [] = ko't I o) o £ - |

— — o < PO o o 5 2, ~Q ~ o2

s & 8 g i, 7% g8 B g8 3 £}
e @ 5 m o~ Lo o o g, Ao ® -l
=< . @ . @ ——— Ot >— Oﬁo (&) <l’ o ek - - -
- %3 g i * Voo &« o g =2 @ o N ¢ @

3 —_— —

-8 28 Ps - g— & - & . R 1 % Vv AT
< <®m m® — " [2) -l 0 - O . £
- - P o < —— O L0 P [(& — o l.'—B-. Fel 0 o
LY = m m e St fmo m & fm L] Gy ¥ Gy 4 -
o - i< 3 |m 4 — O 8 W M - @ -t =IO 1 <

. —t— —A Sy A A e S — A —r— e ——

626551853961?906378950931175115319741359355329391929
0040016788905133440834906774174087841016244213120133
VO IITNLOVOVVUITTRISIIIIITTNTOITTI IS ONSTET T TTOTOTFN GO
1811

M QOQOCRAMOoOAALNYEMONMONAMNAQOVNDARANOVINN TN MO LoE-HDROERM-HNMOEO
OO & CUGFOONCYWOMNMNAUVINMNODONNYVOONVARO O0CYW OdHRONMSMWUN OOV
o CRANONQNONOTVCOVWANOTOOVTNOOTRNTC COOT ONTOoONTER® o
O i Ordr-O -0 HOHHH A+-iOHO = HHO O A0 O0VO~ Ovivd® v D v S

0501000100017809255554166850575061006905600659159459
MAVARVUMARVNAROHNOVAT OETMI N I M A H ATOMNEHONTONTTOOT OO HO®R00

VOQROUMDHEHOWUIMAOAOVONMNHAOWU® OO RAHANN HOTMEHANMY MU ORMNARQ G N O
9004901678890613344083895677014902784901122671312013
NYTONNTIIIITOONODOOVNONY RYEITITITOSTTOS-OTEIINITINONGTTETFTEGOT OO

11811111111?111111111111111111111111111111111111111.1

4567890123456789012345678901234567890123456789012345
111111822822822233333333334444444444r0555555555566666

222222282222222222228822282238222822822222822822228m,,w
11

1~C0nstants

M N A Y
- A
NS
o

HOO Ad
LOoOmMo

OO MY
~=oCcMmwn
SRTR - vl A\
R R R R

el eloNe
YOO~

R
el

ext-

13. MULTIPLICATION

013, MPY
Get

B

}

Qo
AT O~
wuOWOoWw
™ v v O

QAUMNO M
QO W
Roow
O

NnNono
QUM HY

< Q2 OV DS
e Xe MRS
omwwwo
N~ ©

b ACEE AR T i Fo)

MMM
el

01=5, NGMPY

Get -B

\'I?J
N~ ©

oOTWworr

VVWeouw
v vl O v

SN O —
QDTO W

Noow?®
YO w2

NWoww
QAOVM O

oRarXe N Sliqt
CeNo B disNe}
COWVWWVO
il ©

Relngeo e Vo)
An)

DARA TN A s
™ v

£ £ 5 g
o] Q m
+ -+ 4
® n m.r
L d
qW_v ge o eom
3808w
[o 2,
~ = =/ .w D.W
oy [} o}
° A5 3 e 38
m. (@] ~ i m+ —
[] £ 2, g e m
34 1o w wm ~ Oﬂ
+> [+] £ .
o - + £ W
g § &4 2 2o © <
g iy < - e .m.u S5 a
m 2 Sy Anﬂ @u ‘M Om,
-
[$] nw = =Xt |mn 1] S A o
\'ll\fl‘l) \FJ\III\P N r A u}\'\(J

VNSO QRODHONOM MM O N HD OO G D O~
QOACOOUVUHHEHRMM Y TIOONN® O O
DVLVLVOVVVMIVLWVFTWVWV NIV O W O A~
v O v v A o e e e e] e e e]

MOAVNOFM QVONMMENMQRONMD - QO T M
DORNO O O VDOYNOVEDAONNOO
NAOOWLT OVMANVOVLROVARDI RN O o
HrHHOH S OHHHHO D A e A= O ©

ADVOLOCOTHOOCOTHONWOVTO W
RO HOOVOMNTRROMN T QO QSO0

8636527515307376531816489
7899009511833445673894645
LVVLYVOWVLYVLVLLVVWWWVWLWI LWV WL O N
v v v e O v e e e o v v v e v o e e s

HAMNITOONDAOHQRNTOONONO QMY W
AT T e QRN QAN NN M N

3333333333333333333333333
AR R R B B R B R R o o I [R O U QN S QR N R

5

L
g e |
wl 13
o o o 8
~ + War]
~ [P0 o
- [)] T O ~F
| &) u 0O n%
N] 2,42 o O + o
=t [=1 + 42 Qg -
(=) - ~ O [&]
(=) (&) Q.5 [e "
m. = Y]
< - - =] (S
-+ le) O M ~ &
.ﬂ ~{ ~ O ~ Q 4>
Al ve ¢ 8
g s x3 s
m [&) [& 2 (] O
£ —
O el %~ O ol G
[]] - © o~ [2"
\"I\(J} .

MO T GO O QRO O LD
RMNYTOTOLOONRN QMMM ¢
RNV QAVRVDOLY VYOGS
vt e v o e e = e e

HEOM QMM AHA QA AN E
OO VOONOCOCTCOODROHOVO
OCVNOCNOONUICOOOOMHANMNO
OCrH-HOHO O HHODOODVDOHHHHO

YA HD T YUV O O VDR
346363344_113634113

MMM ONYMONNONMM A0 R0
HENMNQOYAWOUN O~ NOMM
FRUNUVUYTERDDAR VWV WY
R R e R R R R R R R N Qur e,

OO RMNYTOOUNMNDO RO AN
SAATAT A i A M B i - R To N To TS WTo!

AR A N R N T N T W W AT W WL W W LY
AR R R e R R R e R R R R R Rk h R

—-xiie

54 1595 69 5555 1338 Error stop. for MPY and DIV,

13

578 '
578

6 5 5% Constants
0001

Anhalyl

O On
VOO

QOO VOO
VOOVD®
OO
i

O~ DORO
N W NHWNY

NaYaaTaa ua TR 1ag
e il

Go to store O after error stop,

14. DIVISION,

L 3
S O ®
O w %
° om f=d
[]] O [« T 9 e ord
% ot un b £ 42
Q Q b. O &4 | -]
» + [+] o0
[] w k—u Mut O
he o - « O
g 8 2 =° g3
¥
z . [e] Wue [3
k £2. O 2. - L4 = Q
<} =] = - o C 43
~4 2] = O + o
o + 02 <« e T3 iﬂ
L o o 2 m ~ o T
o jo] £ 6 f= 1
> [w0 43 [4p) m L] [+ s
- - 2] + 2 43 —
o'} 1] = O el 0 a [I = Bw
m H < v “ ® 4 ow o
® LY « R ol
.+u o _¢u =% @] .m ®Y ¥
- a
[2 | I e .1 +] [=) ore opd
o im (4] j<t < im w [&] ST (& L
‘ “IL S I}]"L(‘J"\l J}‘l\)}

QTN ANMNQOT AT TN AD
OV ODOOOCOUNMIOONONVAGDORY
ONMNMANONOONRONNYROVODRAM
OHMHHOHOO A O it vt

VMO MOV Mm
OTOHQ@®OTOW
NOCOYw MENYOYO

HH O e A HO T

45050155050000100005105176864004
26316264316632263263263261144256

52972663662763007307319541014885
84900234450401283950678845188734
06660666660666666664666666566666
11118111118111111111111111111111

12345678901834567890123456789012
HelHHe s d@uaauauauEeuaEennm

,44444444444444444444444444444444
11111111111111111111111111111111

3
& y Constants

lojeRe)
VoW

OO
HOW
00\0
it

NI w
mmm

T
\nRalz

0

p if B=0.

5 Set C=0 directly if Ay=

8

Error stop for B=0,

4 Go to sto

137
144
133

oM
Qom
VoM
i

9 R19 N,
< <O

Mo~
A o
O M
v~

\O0 D~ @
MmN

A2
v

15, ABSOLUTE VALUE.

0, ABS

Get |B] = C, go to store it.

0

9
2
7
5

oM
—HO W
v O vf i

M
aum@o
coO ©
[@X o FiSlss)

aounr~o
MO0

™~
noom
MeiQ el
= O

ST

nunuunwy
e

-xiii-

Constant

1137

5 1022 67

15

16. SQUARE ROOT

®
2
®
o
+3 o
[1] o w
19 +
o w0 . _nm. o
+ LN —~ ko] ﬂ
)] . w0 1~ = o]
> g b " ® 2.
g 3 S 3 - s T e f
Q m vV Lu . 8 #
o a, — [o] 'S -
L) = [+ — ~ Q &0 -— 3 (&
o o 1 3 vm - T2 ¥ (&3 £
(e} ° <+~ [e] m < " B 'S
B ord L o4 S L = L o [~
8 Y g3 =g < B g5 ;¢
[24] o 0w m o = ~ o (] (<] + o
- Gy - . N ~ 4]] m
(@] owd ﬂ L ° o~ '] -l wd ol
O [2e] - + 3 m . Q,
o\ Q, jm -~ - © —— o~ Q L 2 .M L
&8 B 3 o & i o o~ & 3 - — T
ol & # b B S W S ha o S — — 82 -

NQUEHOLOLHACOAHNVAQANS OV AN HAODTARD VNN~ NONMN H O

OO - IMYEHNOMTRNMIYINOHRMNEHROMNOAYTHATOROHAAMAWL AR RN QY
ROV TATHR QMU AHNQAQANN AR QRO —HNQ QRN RN M
A R R e R R R e R R e R e R R R R R R e R e R R R e R ke R R ke R I o g e puis Ut G o o g

MOATOYTAQRMOMNEHD TN O HNAROATO HOUHTODAAHDD A DONRVOS NUDO N
018740027005354050709703095000570170457 oo~~~ O
ON VUYTOOWROONMAUANONONONNRONOROOOOONOTNONHN CORNO
Ordir i T OO HO O HHH O H O IO HHO A O HHO OO HAH O HHD i OO HHO

OVOVAOOTOONHORNAOCOUVITOVAONVLNOVAOOANO HOTORHO D O o
MEHOTOOVMNTROMNAVATMN A RORAN T O AT A MO A N AR O O QM O

OTRVOO-OMHAOGHD QO SNOOUWROHAOOTMQOUMEMRQONO MM MO
CrHiOOMH-HROMNITAUNMIYNO-HAMNEHROIMATHRYTMNROARMNAT QY R0 Q
MARONRVANRNNRHNRNNQQRQHNNQNQMRMNR M 0 RN N0 022020 M N NN
AR R R R R e R R e R e R R e e B R B o B B e B e B IR Ik IR o [IR R R [N Sl A QU [l U S N [U QY T S QU U

HRMITDOrEDVAOHRNITIWONEOONOHRMITWONOROHR MYV ONORO = QM T WO
A A AT HHRQRR QR QR RE QNN NN NN T

VWOOYVOYOYVVVVVVYVVYOVYVVYVYVVVVVYVVVVVVVVVVIYYVOVYYCYY
AR Rl R R R R R R e R e R R e R R R R R e R e R R e R R I oo 0 [(R [G U Y U Y S G U T QO R R

}-Constants

LCR-EHDWNO
cNOo oMY
NOOoC OO~
OO OO~

o
\o

03 1622

AATOUNORNO
L AR SR = 1Y)
QRO T
v vt

LIl R N
TN 0 W

\eRteR s ioR e RNo)
Heled A

Xl v

17. EXPONENTIAL

02=301, EXP E

1 1301 69 1514 1467

17

51, EXP 10

0"

2 1351 69 1464 1467

17

(o]
—~
m
] +3
h .
5] K 3
» —
n A ~ s [N e s
= o~ O < O - v 2, ~N
mq o 4 | N o —
[s9) * (4] [} .\A 43 ~
Lo o) S s W [13} ® — [} <
H o Lo @ A £ of i
[- 1) L LS -m ° ® fe] %}
SR oW o ® B — o + +
O ot ﬂd Q - N e 3 — -~ .
&t = m + | —= O 2] m o] .
£, e MOND M [3) —— . -] .
o & W2 . Q— O -t b =~ +
0] & S . &) LI (o] - + + » ~<
Q2 . L2 0 %y Folco I B [= O —
ol QO . n o @ o o — a)] ™ g
s S8 &% Lo Sull 2 =) A
- - * »
m O =] © SOMH | {[as] — M e
ag]ls e oS o .D.m =1 [as] @] —
e an de 3 -gz3° o oggpp @ :
Bz 37 33 E% sdse 5 5 288 - %
ojn Gm 0.0 eI, ¥ n ndA < =, nwnu =) =
v

——— P ——— Ay A A A - .
5823971773108259551291759554113653644,68878872972972200

280551277345512988500339696789919569514069515060510628
44054444465r045554455564464446435664624466556565455”.6654
118111

1J
351]2404402.418581255442342.”087480360380320320330330353
08430622280406078899060060 1_477.8947007057017067017067060
oN < 024454040404444/4580080b325552052062062052052042050

O, O HHAHHAAO HOHO HHAHAHAHAHO O HO _ Ao A0 A0 ATOA O A0 A O A DD

0450016994765406998209577.5_.E_O11609009009009009009009009
33163846626134346622613£63[821461.61161161_1611611611611

75823970173108258955191729554.1146536446887887897297220
628055128734551872885033069,,0789919569r\v1406951506051062
44405444446554554.544556456444.64,55664624466556565455665
111811

345678901234567890123456789012345678901234567890123456
11111111112822222922333333337)344444444445555555

O N N N N N o Y o N e a atad g al g ol i ol ol nl i
deddeAd A dddd A Al A A Al A A A A A A A A A A A d A A A e A A A e e

—XV~-

.
[
13
.]
~ 4]
o T »
n\ (o} [o]
+ —)] +
s O nm.v.o Q“.
\m.ru +~ m. =%) n
- S o Mo~ .
) 43 O on Al
ol - ~ 3A
28 g v ey
[« 3 o ._M.\A [] 4y
renw © _nU.\A i O
- - < A1 Oty
O+ 0 o] (o] Q-
aw...u O +
Alz w A\ l“&\f 81:‘_
im a0 =2 2 - ol
o 4 a IR A +
53, % 22 o3
= © &g = BH 3R G o
- A A A —

Ve 1]
NOVVMNVLOARNODN TV ML
DOONOMNO TN QD RMTO b O ¢
OV OVUITOTTOOOO0 T O™ ¢
vt v v e o e o o e e] e]

Me QO RAVHARTRND TS
COQOVVVOVOMNOTOONMHM
COCOoONULNVONROITOTOONTO T
DOV HAHAHOCHO HO O © v

51500010045415501660
63361126363431311646

07865308290821465125
88968883277234017361
46456644564466665446
11111111111111111111

tOOOHANTNONONO QMWW
NOWVVVVYOV VOO VO~

e e S e N F o N N NN
S A e o A e e e o o

2]

g

2

w

§

(&S]

A
~ Y
SRAMM>O VDOAOMNDONWULINYY O
DoOWLOM VOHULTHAMNON wn
nuwwwvw 44806917.587 o]
el HeNTOURUT NN ON Q
nwn MW <3 MUOULONMNOG
AN O m® (o, AN DQ
Y o QR O~ ITAN
il O« ¢ CowM™~LnOVUWn
NN OWERO M NO-=OO
QROVOQ TN QO v

A A B i e RAVIEN o ol o RV e o s ot N v I A N o To RN
HOY AT OODORXTOW WO O OM
DNNTVTIITITOLONOOWNT O
et o v e v v e o o] v v e e] e

OO HOMNTODOUNOAO QN T
OV OTDDDODDORAOAN G

S e o ad d o S S S S N SN SN NN
o v v e e e e e e e

Error stop for exp., log. & trig.

96 1393 69 6666 1338
18°

17

LOGARITHM.

0Op=302, 1LOG E

1 1302 69 1807 1818

18

2, 10G 10

1352 69 1815 1818 Op=

2

18

L]
Q
Vi
—
m
L=
- ot
5
LY
° [«
5 B
..m.t =
° [92 I = kal
n D N
s o
3} L 0 a,
- - 0O, []
[- -
m o© 0
8 e o
m &~ L
8 B9 o
(&) O ©» &}
—t—— e

TR EHNS T HO -
QRMOMM YOS
CODODOOMIT O
0O ot

—ARNVTaN MM Q
ROMMOMOATOO
DOm CoCNMDNOXD
OO A - D

TONOOO TV
QNMHOMQATTOH

ORISR
“-QQMOMMY IO
OOV~ ®
v O v v]

MYV~ TOO A
i

OO ODOODOX
e A

-V i-~

- ™
'y}
8 &
—e, * L
[
N ~ .
m m
+ 2]
[} [] L & %..
= = L4 2t_5 ..M
+ + +
Y]] + =
0 w0 2]]
+i 1 5
'S - ~jed -+ m
[+ (] ° NN w
/\ >— et 14 +
wn i+ Q &
- e —0 |13 ~ o o
mwn m e [}
" . f.ﬂ_]] + o
| o] W - P + i} L] m

O18710642679729141636435433432419394
2026031708%690806070560560560560 VO ok~
808808820828202020708808208208808022
181181110111181818181181181181101811

609909945011404910900900900900900090
411611683121662126161161161161131611

705417307312165207341100929898756341
120@17217784097896629569559958950n0789~
888888888888888887888888878888888888

345678901234567890123456789012345678
111111122222228283333333333444444444

888888888888888888888888888888888888
111111111111111111111111111111111111

g
Fe]
[
7~ r
(&) o} [o]
un m a
1 I
Q g 4 O N BT
- 2 °% o 8
- O n 3]
o 5 mmmz
e o] ~ 3 0 g
O o + g @
=2 - n e S B B>
Sm ~ 0 o O ®
N o & anh
= o -~ © +2 QO+ QO 0
P + ;] P @
] ¢ ad [BT
—~ m‘m = o
= =] QT Q =
Q o + FERN 5]
53 5 o % o
= o = o o GRS A
7 RES L e

MTOOMNMAQRODONNQD
DODODODOOD
A A e e

0= OO DO
ODOATOOTORTO
QRVDOVAQANQDO
Hrt e OO

HO-ENNORHOHAC
QOUHAEOHQRO M

AOUMNHRMNO O
QAMTOOMANOD N
DODDOOORDO
AT e

AOWAQMTHONO
<O N D D D DLW WO

DCODDDDODLRO©
et A

coaoMnVmOW
TrH=-OOATT OO
VDOOCDDVTDXV®
el et e

NOHTOTOY WA
VOoOOOoCMONY O
NOQOOVO®W V.
~-HHOOOHO v il

QAo WLV TORM
Mg TErnoe|

ROCOHONOARND
OF H-EDOMNTTOO
CODODVROO®
el e e e e

A0 - AAMNITNIO-D
ToRtoRle I\ RloR e Rlo R s R s Bie}

DT VODNDODD
Hel A

«XViie-

o LE
L]
e = g
> B o3
g 8 3 S &
5 5 o Ee
A S - w%
[}
g 9 8 °q
S 3 4 %5
M g il
- o g o
o = b~ o
—A _— —
NMOHONMAND ImMmew
MYTOASOMOY OVOO
RO DOODDOT D00
nhn R B R O P G R
MURORANRRR ¢ -O0
C00COMMMMO WO oo
COOVRONDO OO
COOHHHATD O ooy
LEHLVVVWVYVO oI
O A O M g
DYMYTHOD N O
SMYOEHNOND 0!~ ~
PODODOOD® OO
A A R e R PR
RO HQRM YW O~ 00—
R T T oy
VODDDODDO D®o®
R R R A P

gits,

1835 Stop on loss of two di

83 1893 01

18

progr, on start,

return to log,

o

o

[+

—~

o,

G

[e]

e

3]

=
[}

> -

a8

© 5

» (&)
-~ ? ~N
A~ ON 5 O 4Y] MOOoQ O
QOoOMNM-EHO ™~ s3] wn AW 0o
VOO OW as} [®] o QLN D v o
™Yl QW - @) @] QN OO
< s2 N'e) QOO OvoQv O
o~~~ i M O o e K | (¥e]
oQQ I~ QQCOo RO~ O
i QW - 1) Q2 O QR W \O

OO0 owwvwwvaoco OMNONOOW
O VO rvr® LATHR QT

7568873606928626653265
0131266138634047555596
8888888888888887888888
1111111111111111111111

TOO-DNOOHRMTWONDRAO QM T
DOODDVDARNAARARARNAOARD OO O
o

8888888888888888888888
1111111111111111111111

19,. SINE AND COSINE,

T
Q-
9~
i i

Oi~Y
N YN
aQuw
v i

A O
fefarRte)

DA
O -
R Yo Ba
v v

—aQam

A
i

i
[}
o

QO
o~
8Oown
v

Rt
ocwvm~
N~ w
-

Ot Oy
VN

X
oV
MO0
o~

Al To MNe]

QA O
v

this step needed in degree prog.)

-~
pa
2.
. 75 Y
n [
* 5
g8 48
-2} ms
=] [=
1] —Bm
Ee]
m 2,
ch &5
. N

~ \
VWD NT QO
MO0 OY
nuToOMmmWVwE
Yt O e

MM D g 0y
BDOOV QO W
ROON QON
HOO e O v s

OO HO HM
RUVUMEHVRMNE,

VUL ATRO ™
MMawworD®DWY
NUVTOWNWNHLCQ
HrelH e O

oo MTWn
Ml

(9 ¥e R Ne e, Wo,We WoWe
AT A A A"

xviii-

im
]
e o]
®) Q
1 Y LY
5§ ow ® 3 v ©
L §d ©§ £ K
o Q" %o 95 & 2 *
© o o©° ® £ g q ~ . g <
=1 S ®» e ") O <= &) g © -+ o
ol 3 0 -4 1) © o ® P 4 B o W,
2 1 0o o @ e o g Py & & L 3 o
W _M 1Y) tw ,m 43 en ..ﬂ...otu.n_.. ~ [[]] Q ° +
£ T o b d -0 - T B v 4) .
(7o SR Y 2N ~ O a rnm = o] [45}
@ S N N © D 5 o~ - = T S +
.m @ m ma . <m o 3 NO n - N N ° Laf
Q o O 3] ojm e} o 42 ® -
®n 3 2 * ° © ~ — (B L N R Vi VI V A3) 8
ey g L o] P oy o - 80 O)
- -~ VvV A AL I 5 w4 oy - ~ © 8 B - 13
-~ o~ @ o 6y f¢ ® o o ¥
0 Y@ imos 2o Nog - R Q Vv VvV vV V & 1 o
2 a = =1 rm o nw WNF) T 4 o o~ oF °
® o w4 &4 & O 7 o 0o 25 S
[B - = Q0 = 0 | B B Cm.n__u o] oL H H H mw oT... a.u
PR e TP . A - Pt S — N Py ey b e A~ — —

859486457194\7285860556836311433276881400808484528076880109
39470674200128813411121912440,184405‘47344424284416389629788
58767664667778577777747277777727772,78655777727776738378323
11

AHDOAQHAO QT HOW QUMM QW 8221”166333615161611391351103230034034
ooV HVNNNTANMOOMOANAON WO k.uo*r/.ouoooounuﬁuo607000,nunvonvnOnUnV_bO_./O950132.«7000
ovaunat-uNTOoONoVoR M 620w048000807020600000320020504205206
O AT AT AT O H O i 110%1188818181818,8808118818181181181

8556754085540698925610951060100166060601101400910901900901
614461466134346262140613f341611f14141411631426126161161161
_
5858986497194788286055683636143327526166084048452807688010
MM OARTOVNOVNOOHAREDOOMNTHM;EHRHAHRETO AR TTOVONTOYTINANOTITHOMNDAOV RN
5522776656677726677737472774777277728267576772777673237832
11

678901234567«89012345678901234567890 HRMNTOONMOAOHRNMNTVOUR OO HAMN
1111222823822233333333334444444444555555555566666666667777

999999999999999999999.9999999999999999999999999999999999999
11

~-xi 3

a
- [N
8 " .
ol AR
9 a0
E 4.a
20
14 o]
i bo
< ¢ o
5% ¥ e
o O o o
© & (42]
AN

—_— —
54460294295973573503
MO IORMOAMMNONDTTOO
-M~voERMMMMASQN YT A A
AR R R e R e e R R R R R e R s e g g

OriMOUMNHMMARHER QUVUOOMY
NOCOHDOOVOTOOO OOV
NOOMNOOMNOOCOCOO OMVVM®
HOOHHDOHOOO00® Owivdodrd

90009554151506160160
TNV EH AV TN ON AN O

OTTVORAMMATOASNMOVO
O-MOAQAT-CONROAENYROONG
MARASMSOORNMRMNMA~RNRERM
o et e e e o v o o] e

OO~ DOOAOHAMYUBOMDOAO XM
77777788888888889999

99999999999999999999
A e e R R R R o R o [Qe G g

/]

g

Fe g

(3]

5

[&]

A
M~y VY ocavMeino
(SR RN el MYORHW
D~ 00 > OO~ HMO
HerrHd, e O NOUNVO
PR RV R T o R L e
DO o oONWN>®ON
ROO® Ty OOV OO
o ~ QOOTOWDN™
COADHONOOW W N T I e
QOUOHOTONN o OV

VOO HAHOLQRDOROTTD O
DROMVAHMMNOHNMOANOA Y
QUNMOLLYVSVVNOWLNTN VN YT
A e v v e v e e e e e e

VOO -HRNMNIEINDOVON~OANOD
OO OO0 O0OOOOOO vvd
it A A A e e

SISO YRR N Fol e ¥e e o No N0 We Wo W
AR R R R R R R R R R R R

02=353, SIN D

19 112 1353 69 1384 1739
19 113 1354 69 1385 1739

0z=35k, €OS D

of B,

steps

Set an instr. at the end of
MFY to get out to SIN R or COS R.

Go to MPY with B in place of A
and 2rt/360 in place

Common

}
;

o R NeoMToce)
QOB
nnwLWw
eded vl

M OOV D
AWOUM oY
QA
ol

N OO
QOO

AWV OW
MO ®aWw
SN OVW
v

TNV~
xR R R R
ol

GO O
AR R B R

}-Constants

M M@
Coovw
MM N
b R B o Ko

a
om
o
oW

i~
QamMm -

N~
©OOO
MM Q-
v~ i

MO Q@
A S QVEQY
i il

(S)N e e 00,
el

20. ARC TANGENT,

02=305, ARC TAN R

1 1305 69 1758 1761

20

-

02=355, ARC TAN D

1355 69 1908 1761

2

20

oM
] s N .
3 £ ¢ @ 2 g
g » 30 & g S T 4
. o AN <+ 3 o - ks 3 3
- fm. m.>_ &y cm + @ Gt +
m L O o | T - £ o 0 ®
o 2gv "® e TH &g 3 °9 *° % 5
1 +$ d Q' &y ou Q .m _B.m o w.. m.v.
[=] m Lo P - ord °© &0 ®
+ © = e + o -] 33 o .
] N0~ o— [] [-3 9 o @ o by > It
[} = -l L] w0 -~ [3) +» T % e —_— 13}
ol o —~ L 24 , Vi A © 1] A 17 X &
] L Q¥ Al o o~ s o - ko] N —_— . @
+ - SE N~ -] ~“ oOwT"Y a2 O) ol IS [l —_—
[} ~ ~ ® B4 N o o = @ I o.u A + M g
m ' oo o o Vv + ~ - —_—0
=]] 52 I 5 A a A G —
o] m. E=] o m. Q w @ 4] n B Mo
FL L L9 T 0 & Q —
% A A ®3 £ s4smo w® & HE o % o 3
o S haa =5 e HHB H®Ww Wed H 3

5]
— y ~—A N ——A N\ Py A Ay e e A - \\rll.lll}\li
MOQHON DN O OVNNAT O TMNOCOTANMR MO OOHA VYN OUNMMSMEMNOOMYTARAMMNAOHANMNHO G Q

HAROTONVYNNROAMFE OMOAYHRMOVOYNMQANMMOYOOONHAMNQAOAVOOTNOMMMMTO YT IO
QYT s RO g Sl s U R Rl iR RO RO Ll o RO B O R o B o Bl ol ol ol alia o We Ne N Wl ol s e (e R S0 8 To lo. e .W 0 e Wo W's QR N
AnAalish o Rl e R R R R e R R R e R R R R o R e R R R o R e R R e R R R e R Rl e R e e e R R R e e R R e R R e R R R R R R R R R R e

NN O~-QN AT AN D HOOUAADANOMN TN A RN AN - NANMINEHOMOR=EHOMNONM Y
CON L0000 OVODNOOVOVARNAVNRAHONOO %0995590579570900670050705
QOO» 20877720507909279928992920w0277720682789209820020708
HOHEA O H - H AT H O A H OO H e i HH A A A A A A A OO O AT H A A O A H A A HOO A A EH O DD HD

NONOHOHO O OANOUNNTOUONMNQUOUOUONAKAO TR ITWNOROTOOAO EHOHTOLUNATOOR AN O
QAMEHOVOQMNATVOVAVENTITNONOVRYTHTOOVOVYOYOVYAMMOUNATO M- Q0O HOOVOMNOVNRNR OO0

HAMOQEHOMMOD EHROOUNMNMOAMY-TMNOVUOoOOAOOOMONDOHAVRMMMMEMNOOMTRRUMMMNAOAOHOALMNAHOO
Or-QOYOWOVNNNF~OA SO NOHAMAQAOVUOUARNMTODOODOOANLHAMNM QDA VOWNMETNONMMYO T
A OARI--- OO ANE NN OO0
Ap A R keoR o R R e R e R R R R A R R R R e R e R R R R R R R e R R R R e R e R e R R R R e R R R R R R R R R R R R R R R R R R

MGV~ HAAMTUONROCAOOHARMYTOURORO AN IUIYONDONO - RANMNEUIVFOROOAINRNITLONT
AR R R R e R R R R o B s NV EarEer e AevaerRavRa VAL RAV RN TR\ N A WA TR a Taa Woa AR B MRS N o fo NTa R Io RIo RTo RioRTs RIo R i)

oJolololololololoNolaJolelala oo lojolojejojelojololojolojolololejololoololololeolojololololoRoRoYotoXoYoYoloR e
e LRI REEEELERQAEERREEEEREREEREEQEAR R R

e

—_
A

w :
g & Q
i3 E
w_l_l M. @ o] '
g 35 & B fe &
: § 50 F s = #E®
. S F o 1a 2= g

3 w QO+ a®d o = O
i B §8® df g g%
L S tm - AN ™ » Ao ©
@ 5Y 5§ —d e) 1m b=
3 o I B-v LR B
Qlen © on £ 0 o 8 .o
SIS LA A— 58§ ® £ 0 b

3] + M - o N 3
m i o4 O— ON + o] ot © N Al
& 25 2 fst 9 Eggs

t _.u._ o O o 3%9 m o\
g ¥ 8 88w wso ksl
a3 B~ (w. =] I.m< = O o0~
A —_— —— e N

COTODDOMVNMTRAHRMNDMAO FMININYIN T EMNMF —n O
OOHNYTVOTOOHDOAMTD HMOAHMHMTOWVOO 1o
MO HNNHAOA NN HR OGN ON® 80
R R R R R R R e R R R o Yy s i e A P U S S S

OCMUOMMOMNNOHMUVOMFEMEHERMEQA AN QO M F
DLOVVONWVLONNOOCBO OOOTOOOOQ O-HO OO
RODVNOVNRODVNUOOTNO OOAOCOOOO OWVO i~
181181181108118[810100008 OO0

NOHOAOCOOOHNOOOROOIMILN EHEHWOW O MO W
THOAA O AT O MO A O b U N N A N O A0 O

NOBDYDXVOMOMYTARAAHRSOMNOTROMNOVIITOT N TOM
OCORIMNTOOTOOCHORAMNOOTHN T =T OO OO
AR AN HOAMARA N OARANUAOA ORI D R QOO0
L e e R R e R R R R R R R R R R R Eo R R R VIR N IOE G B g gy

CO-AMNTVLOVUNDACOHAMINONDAOHRNMNITWONDAO
DOOOOOCOVOVOOVOO--MN0O0DOD OO0 00D 0

eieiejejefojelofolefololoYoNoloYeYoReToYoRotoYoRoloRoloR e JoXo ko)
RQERENRERMQEQQERAQQMNMNMN MMM RN N QNN MR NRNNRE

>3
g
<+
g
o)
[&]
AL i
- Y
OHYTYET w O M nw o Mo
NMYEOO O OO O Nwwn
AR I~ O O mMEe N Moo
et o - vl OO VO
MM nmMmomMo o - O
® OO0 lolofoloXe) MO 9 N~ W
QN oo QOO O 8o B o T o I ¢
- oo OOV N el O~ Q@
HO-HOOO U V~RYOOOOW |1 O
QYOO YW VOO HHENRO « 1w

DOOITNOAHAEHQAT ROV EHO O
MO VONAHAROANVOODMNDO HOO
OO~
el e e A e e e e e e e e

HAMIODO~MFOONOHAQNIOOVO~DODONO AW
A COO0OCOCCOO0OO0O0 -
inRa R R a e R e Ra R e R R R R R R |

jojojajejolololoNololaloloRoNooTololoYoYeYoYo!
eI EERR AR QR

Correction in are tan z,

20 114 1143 19 1801 1267

1IN
[#inrnational Business Machines Cornoration

540 Madison Avenue, New York 22, N.Y.
Jrinted in U.S.AL Cl

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	lst_01
	lst_02
	lst_03
	lst_04
	lst_05
	lst_06
	lst_07
	lst_08
	lst_10
	lst_11
	lst_12
	lst_13
	lst_14
	lst_15
	lst_16
	lst_17
	lst_18
	lst_19
	lst_20
	lst_21
	lst_22
	xBack

