jlalorence Manual
FOR TRANSIT Automatic Coding System
for the IBM 650 Data Processing System

IBM Reference Manual
FOR TRANSIT Automatic Coding System
for the IBM 650 Data Processing System

© 1957 and 1959 by International Business Machines Corporation

PREFACE

FOR TRANSIT is an automatic coding system for the IBM 650 Data
Processing System. By superimposing a translator on the compiler*
developed at the Carnegie Institute of Technology, FOR TRANSIT
makes available to 650 users the language of FORTRAN. FORTRAN,
a language developed for the IBM 704, closely resembles the
language of mathematics; it was designed primarily for scientific
and engineering computation. FOR TRANSIT in effect transforms
the 650 into a machine with which communication can be made in a
language more concise and more familiar than the 650 language
itself. The result should be a considerable reduction in the training
required to program, as well as in the time consumed in writing
programs and eliminating programming errors.

This manual will serve as a reference for both FOR TRANSIT I
and FOR TRANSIT II inasmuch as the language and procedures of the
two versions are essentially the same. FOR TRANSIT I is designed
for the basic machine and FOR TRANSIT II for the 650 equipped
with indexing registers and automatic floating decimal arithmetic.
Both versions of the system were revised and re-issued late in
1958 and this reference manual reflects the changes made in the
system.

* Internal Translator (IT) A Cofhpiler for the 650, by A. J. Perlis,
J. W. Smith, and H. R. Van Zoeren, Computation Center, Carnegie
Institute of Technology. (See IBM 650 Library Program Abstract
2.1.001.)

TABLE OF CONTENTS

INTRODUCTION |, . ., .. e e e e e e e e e e e e e e
Example of a FOR TRANSIT Program ,
Description of the System . ,
Machine Requirements
Program Decks.,
Outline of Manual

CHAPTERI = WRITING THE SOURCE PROGRAM

.......

Statements and Statement Numbers ., e e
Constants, Variables, and Subscripts.
Functions, Expressions, and Arithmetic Formulas

Control Statements., v « v v v e 0.
Input-Output Statements« «
Specification Statements ,
Summary of FORTRAN Sequencing
Examples and Explanatory Notes

CHAPTER II - INCORPORATING SUBROUTINES
Built-In Subroutines - . « -« « .o oo oo
Adding Function Subroutines.
Writing Function Subroutines
Use of Indexing Registers: FOR TRANSIT II and IK(S) . .
Example of Incorporated Subroutine.
Other Requirements . . . « « « « « v « o o o v v o o 0 b

CHAPTER ITI- PROCESSING THE SOURCE PROGRAM
Preparing the Statement Cards - . . . - « « «
Preparing the Function Title Cards «
Operating Instructions « - « - - « « « « « . o o oL

Phase I (Translation). - « - « « - « « « ¢« « o v v o o
Phase II (Compilation) - - « + « « « « « o v v v v v
Phase III (Assembly) . . « « . « « . « e e e
 Summary of Operating Procedure - - « « + « .« « o o . .

CHAPTER I¥ - USING THE OBJECT PROGRAM

Preparing Data Cards . - « + « « « ¢+« + 0 v o 0 0L
Executing the Object Program - - - - « « + - « « « « « . .

APPENDIXES & o o i e e e e e e e e e e e
Appendix A - Wiring Diagrams
Appendix B - Listings of Sample Problem Cards

Appendix C - Glossary. v v v v v v v v e v e

11
14
19
21
22
23

30
30
30
32
34
34
34

INTRODUCTION

Example of a
FOR TRANSIT

Program

Description of
the System

A FOR TRANSIT program consists of a sequence of FORTRAN
statements. The following brief program will serve to illustrate

the general appearance and some of the properties of a FOR TRANSIT
program.

=< " 2
commenT) § FORTRAN STATEMENT
C PROGRAM FOR FINDING THE LARGEST VALUE
C X ATTAINED BY A SET OF NUMBERS
BIGA = A(1)
D020 I=2N
IF (BIGA - A(1)) 10, 20, 20
10 BIGA=A(I)
20 CONTINUE
This program examines the set of n numbers a;(i= 1, ..., n) and

sets the quantity BIGA to the largest value attained in the-set. It
begins (after a comment describing the program) by setting BIGA
equal to aj. Next the DO statement causes the succeeding state-
ments to and including statement 20 to be carried out repeatedly,
first with i = 2, then with i = 3, etc., and finally with i = n.

During each repetition of this loop the IF statement compares BIGA
with a;; if BIGA is less than aj, statement 10, which replaces BIGA
by aj, is executed before continuing.

The FOR TRANSIT system consists of three major parts:

1. The translator, FOR TRANSIT, which accepts FORTRAN
statements and produces corresponding I'T statements.
|

i

2. The compiler, a modifiéétion of IT, which accepts IT
statements and compiles 650 instructions in symbolic
(SOAP II) language.

3. The assembler, a modified version of SOAP II*, which
produces an optimized machine language program from
the symbolic instructions.

* SOAP II, Symbolic Optimal Assembly Program for the IBM 650
Data Processing System (See SOAP II Programmer's Reference
Manual, Form C28-4000.)

Each of these parts requires a pass on the 650 . The passes
are referred to as translation phase, compilation phase, and
assembly phase, or more simply as phases I, II, and III. The
programmer need concern himself only with the FORTRAN
language since the translation, compilation, and assembly phases
are completely automatic. The FORTRAN language program is
referred to as the source program; the 650 language program,
which is available at the completion of phase IIl, is referred to as
the object program. A schematic representation of the over-all
system is shown in Figure 1.

FORTRAN
Statements

FOR TRANSIT 650
Deck Translate to IT

IT

Statements

650
IT Deck Compile Symbolic
Program

i

Symbolic

Program

50AP 650
Pockage Assemble
Object
Program
Figure 1

Phases I and II of the FOR TRANSIT system are designed to
permit multiple processing of source programs. By translating
several source programs while the FOR TRANSIT program is in
memory, then compiling the same programs on the second pass,
considerable savings of machine time and card handling may be
effected.

Machine
Requirements

Program Decks

«

The FOR TRANSIT system is presently' available in two versions
which are designated FOR TRANSIT I and FOR TRANSIT II. In
order to make the system as widely applicable as possible, each
of the two versions is provided in two forms corresponding to
different equipment specifications as indicated in the following
paragraphs.

FOR TRANSIT I, which produces object programs for the
basic 650, is available in these forms:

1. The standard FOR TRANSIT I is designed to run on a 650
equipped as indicated below. Note that the special charac-
ter device is not required even though the input cards for
the system contain special characters.

2000 word drum

Alphabetic device

20 pilot selectors (10 are standard)

16 co-selectors (8 are standard)

10 read code and 10 punch code selectors
1 half-time emitter (read side)

2. FOR TRANSIT I (S) is provided for those installations in
which the 650 is equipped with a special character device.
The specific equipment requirements are as follows:

2000 word drum
Alphabetic device
Special character device (Group II)

FOR TRANSIT II produces object programs designed to be run
on the IBM 650 equipped with indexing registers and automatic
floating decimal arithmetic. These additional features are not re-
quired, however, on the processor, i.e., the 650 on which the object
program is compiled. FOR TRANSIT II, as well as I, is available
in two forms to provide for different configurations of equipment.
FOR TRANSIT II runs on the same machine as specified for FOR
TRANSIT 1, and the machine requirements for running FOR TRANSIT
11(S) are identical to those for FOR TRANSIT 1(S).

The several program decks for the FOR TRANSIT system may be
obtained from IBM Applied Programming Publications. Requests
should specify the version desired, i.e., FOR TRANSIT I, K(S),
II, or II(S), and should be addressed to:

IBM 650 Program Librarian

Applied Programming

International Business Machines Corporation
590 Madison Avenue

New York 22, New York

In order to facilitate the filling of requests, the various card
decks in the system deck packages will not be labeled individually,
but can be identified by the high order digit end-printed on the
cards as indicated below:

Deck No, Deck Name
1 FOR TRANSIT deck
2 IT (Compiler) deck
3 SOAP-PACKAGE deck

The cards in each deck will be end-printed serially (in the
three low order positions) beginning with 001,

Outline The FQR TRANSIT system will be presented in four sections. A

of Manual glossary of some of the terms peculiar to the computing vernacular
is included for reference in Appendix C. The manual proceeds as
follows:

1. How to write the source program,

.
This includes a definition of constants, variables, and
subscripts; the types of FORTRAN statements are
described and examples given of each.

2. Incorporating of subroutines.

A subroutine is a program that is integrated into a
larger program. Subroutines are used for such things
as the evaluation of a function, e.g., square root. A
number of subroutines are included in the system, e.g.,
computing integral exponentials, reading in data and
punching out results. In this chapter the built-in sub-
routines as well as rules for incorporating subroutines
not included in the system are discussed.

3. Processing the source program.

The preparation of statement cards is covered, as
well as operating instructions for phases I, II, and III.

4. Using the object program.

Card format for data used by the object program as
well as the actual executing of the object program is
included in the final chapter.

5. Appendixes.

Wiring diagrams, listings of sample cards and a
glossary of terms are included in the Appendixes.

CHAPTER I - WRITING THE SOURCE PROGRAM

Consider the algebraic formula for one of the two roots of a
quadratic equation:

Root = [-B+ /B§-4Ac¢] /2A

‘The FORTRAN language statement which creates a machine
language program for this calculation is as follows:

Root = (-B +SQRTF(B**2 - 4,0%A*C)) / (2.0*A)
where:

1. The meaning of the statement is: evaluate the expression
on the right side of the equal sign and make this the value
of the variable on the left side of the equal sign.

2. The symbol * denotes multiplication.

3. ‘The symbol ** denotes exponentiation, e.g.,
A**3 means AS, i

4. SQRTF (arg) is a subroutine which computes the square
root of the argument enclosed in parentheses.

Source programs for the FOR TRANSIT system consist of a
sequence of FORTRAN language statements. FORTRAN statements
may be grouped into four classifications: arithmetic statements,
control statements, input/output statements, and specification
statements. The statement above for the root is an example of an
arithmetic statement. The following'list includes all of the
FORTRAN statements which are permissible in the FOR TRANSIT
system:

A. Arithmetic statements
e.g., a=b

B. Control statements
1. GOton

2. GOTO (n], np ..., Npy), i
3. IF (a) ny, ny, ng

Statements
and Statement
Numbers

4. PAUSE

5. STOP

6. DOni=mj, my
DOni=mj, my mg

7. CONTINUE

8. END

C. Input/output statements

1. READ n, list
2. PUNCH n, list

D. Specification statements

1. DIMENSIONYV, V, V,
2. EQUIVALENCE (a, b, c), (d,e)....

The FORTRAN system was designe/d for a more complex
machine than the 650, and consequently some of the 32 statements
found in the FORTRAN Programmer's Reference Manual are not
acceptable to the FOR TRANSIT system. In addition, certain
restrictions to the FORTRAN language have been added. However,
none of these restrictions make a source program written for
FOR TRANSIT incompatible with the FORTRAN system for the IBM
704. For example, whereas FORTRAN variables may consist of
from one to six characters in the FORTRAN system, FOR TRANSIT
requires that variables consist of from one to five characters. It
should be noted that in a few instances FORTRAN restrictions have
been relaxed to take advantage of certain features of the 630;
specific information regarding such modifications is included at
the applicable places in the following pages for the benefit of users
concerned with compatibility.

The following pages are devoted to a formulation of the rules
for constructing FORTRAN statements and for using them to write
a FORTRAN language program. The last part of this chapter in-
cludes some brief examples of FORTRAN programs with
explanatory notes.

Statements

Each statement is punched in one or more cards. Maximum state-
ment length is 125 characters, exclusive of blanks. (For statement
and comments cards formats and punching details, see Chapter IIL.)

Constants,
Variables, and
Subscripts

Statement Numbers

The order of statements is governed solely by the order of the
cards. However, cross-referencing within a program may be
accomplished by assigning statement numbers to those statements
referred to. Any unsigned fixed point constant from 0001 to 0999
may be used as a statement number.

Statements need not be in numerical order nor do all state-
ments need statement numbers. In FOR TRANSIT I and II
unnumbered statements are preceded by zeros since the statement
number field of the card must contain numerical punches. In
FOR TRANSIT I (S) and II (S) the statement number field may be
left blank.

FORTRAN statements may refer to constants, variables or entire
arrays of numbers.

Constants
Two types of constants are permissible: fixed point (restricted
to integers), and floating point (characterized by being written with

a decimal point).

Fixed Point Constants

GENERAL FORM EXAMPLES
1 to 10 decimal digits. A preceding 3
+ or - sign is optional. +1
~28987

NOTE: The magnitude of fixed point constants in the FORTRAN
system for the IBM 704 must be less than 32768, FOR TRANSIT
users must comply with this restriction if compatibility is desired.

Floating Point Constants

GENERAL FORM EXAMPLES
1 to 8 decimal digits, with a 17. -
decimal point at the beginning, at 5.0
the end, or between two digits. -.0003
A preceding +or - sign is optional. 5.0E3 (=5.0 x 103)
A decimal exponent (a 1- or 2-digit 5.9E+3 (=5.9 x 103
fixed point constant) preceded by 5.0E-7 (=5.0 x 107/)
an E may follow. 5.3E13 (=5.3 x 1013)

The number will appear in the object program as a normalized
single-precision floating point number of the form .xxxxxxxx PP
where PP is the power of 10 with 50 added to avoid negative
exponents. If the number is written with more than eight decimal
digits, it will be truncated to eight digits.

NOTE: The magnitude of floating point constants in the FORTRAN
system for the 704 must lie between the approximate limits of
10-38 and 1038, FOR TRANSIT users must comply with this
restriction if compatibility is desired. The magnitude limits of
floating point constants in the FOR TRANSIT system are 10-49
and 1050,

Variables

Two types of variables are also permissible: fixed point (restricted
to integral values) and floating point. Fixed point variables are
distinguished by the fact that their first character is I, J, K, L, M,
or N. :

Fixed Point Variables

GENERAL FORM EXAMPLES .
1 to 5 alphabetic or numerical I
characters (not special characters) M2
of which the firstis I, [, K, L, M, JOBNO
or N.

Floating Point Variables

GENERAL FORM EXAMPLES
1 to 5 alphabetic or numerical A
characters (not special characters) B7
of which the first is alphabetic but DELTA
notLJ,K,L,M, or N.

NOTE: 1. The name of a variable must not be the same as the
name of any function used in the program after the terminal F of
the function name has been removed, nor should the name of a
subscripted variable end with an F.

2. A maximum of 100 variables of which 20 may be
subscripted may be used in any one program.

Subscripts and Subscripted Variables

A variable can be made to represent any member of a 1- or 2-
dimensional array of quantities by appending to it 1 or 2 subscripts;
the variable is then a subscripted variable. The subscripts are
fixed point quantities whose values determine which member of the
array is being referred to.

Subscripts
GENERAL FORM EXAMPLES

Let v represent any fixed point I
variable and c (or ¢') any unsigned 3
fixed point constant. Then a MU + 2
subscript is an expression of one MU - 2
of the forms 5%]

v S*J+2

c Sx]J ~2

v+C or v-C

C*V

cxv+c' or csv-c'

The variable v must not itself be subscripted.

Subscripted Variables

GENERAL FORM EXAMPLES
A fixed or floating point variable A (D)
followed by parentheses enclosing K (3)
1 or 2 subscripts separated by BETA (5%]-2, K+2)
commas.

For each variable that appears in subscripted form, the size of
the array, i.e., the maximum values which its subscripts can
attain, must be stated in a DIMENSION statement preceding the
first appearance of the variable.

The minimum value which a subscript may assume in the object
program is +1.

NOTE: A 2-dimensional array A will, in the object program, be
stored sequentially in the order Al, 1’ Az pee App AL o

Az, 0 eeen A o A Thus it is stored "columnwise", with

m, 2" *° m,n’

10

Functions,
Expressions, and
Arithmetic
Formulas

the first of its subscripts varying more rapidly. 1l-dimensional
arrays are of course simply stored sequentially.

Of the various FORTRAN statements, it is the arithmetic formula
which defines a numerical calculation that the object program is
to do. A FORTRAN arithmetic formula resembles very closely a
conventional arithmetic formula; it consists of the variable to be
computed, followed by an " ="' sign, followed by an arithmetic
expression. For example, the arithmetic formula

Y = A - SINF (B-C)
means "replace the value of y by the value of a-sin (b-c)."
Functions
As in the above example, a FORTRAN expression may include the
name of a function (e.g., the sine function SINF), provided the

routine for evaluating the function is available to the FOR TRANSIT
system.

GENERAL FORM EXAMPLES-
The name of the function is 4 or 5 SINF(A +B))
alphabetic or numerical characters SQRTF(SINF(A))
(not special characters), of which XABSF(3. *X)

the last must be F and the first must SAMPF(A, B, C)
be alphabetic. Also, the first must
be X if and only if the value of the
function is to be fixed point. The
name of the function is followed by
parentheses enclosing the argument
(which may be expressions).

The FOR TRANSIT system has some built-in subroutines for
evaluating functions. However, provision is made for the user to
incorporate up to ten subroutines in any one program. Detailed
information concerning the inclusion of subroutines is given in
Chapter II, For the purposes of this section it will suffice to in-
dicate that by means of function title cards prepared by the user,
an internal table of function subroutines is created in the
FOR TRANSIT system. When a source program is being processed,
any function encountered will be checked against the table, and an
appropriate entry will be generated by the system.

_ The X character in function names is meaningless in the
FOR TRANSIT system but is specified for compatibility with

11

704 FORTRAN., Compatibility also requires that any function name
used in a source program represent a subroutine available to the
FORTRAN system,

Expressions

An expression is any sequence of constants, variables (subscripted
or non-subscripted), and functions, separated by operation sym-
bols, commas, and parentheses so as to form a meaningful mathe-
matical expression. The mode of arithmetic in expressions may
be either floating or fixed point. When the mode is mixed, i.e.,
the expression includes both floating and fixed point variables, the
arithmetic will be performed in the floating point mode. FOR
TRANSIT users concerned with compatibility of programs with the
704 FORTRAN system are cautioned regarding mixed expressions;
the mixing of modes is permitted in the FORTRAN system only
under certain conditions as noted in the FORTRAN manual.

Brief rules for forming expressions follow.

1. The five basic operations of the system are specified by the
symbols 4 -, *, /, and **, which denote addition, sub-
traction, multiplication, division, and exponentiation, re-
spectively.

2. Two operation symbols may not appear in sequence. Thus
A* - B is not a valid expression, but A*(-B) is valid.

3. When the hierarchy of operations in an expression is not
completely specified by parentheses, the order of operations
(working from inside to outside) is assumed to be exponen-
tiation, then multiplication and division, and finally addition
and subtraction. Thus the expression A +B/C +D**E*F - G
will be taken to mean A +(B/C) +(DE.F) - G.

4. When the sequence of consecutive operations of the same
hierarchal level (i.e., consecutive multiplications and
divisions) is not completely specified by parentheses, the
order of operations is assumed to be from left to right for
floating point variables, and from right to left for fixed
point variables. For instance, the expression A*B/C*D is
taken to mean ((A*B)/C)*D; and the expression I*J/K*L is
taken to mean I*(J/(K*L)).

5. The expression ABC » Which is sometimes considered

meaningful, cannot be written as A**B**C; it should be
written as (A**B)**C or A**(B**C), whichever is intended .

12

The following are some examples of correct and incorrect ways
of forming expressions in FORTRAN language.

The expression should not be written as but should be written
A/-B A/-B A/(-B)
ABor A - B AB A*B
A2 A +2 A**(1+ 2)
alr2.p A**] + 2*B A¥(1+2)*B
AB ® ® * *
AD A*B/C*D (A*B) / (C*D)
CD
or
A*B / (C*D)
or
A/C * B/D

Modes of Arithmetic in Exponentiation

FOR TRANSIT has built-in provision for handling exponentiation as
follows: .

1. A plus or minus fixed point quantity or a plus or minus
floating point quantity may be raised to a power which
is a plus or minus fixed point quantity.)

2. A plus or minus floating point quantity may be raised
to a power which is a plus or minus floating point
quantity.

NOTE: This operation will give the absolute value of
the quantity raised to the plus or minus power.

Exponentiation conforming to these specifications is handled
by subroutines contained in the SOAP - PACKAGE deck and thus

is actually performed at object program time.

Verification of Correct Use of Parentheses

The following procedure is suggested for checking that the paren-
theses in a complicated expression correctly express the desired
operations.

Label the first open parenthesis "1"; thereafter, working from
left to right, increase the label by 1 for each open parenthesis and

13

decrease it by 1 for each closed parenthesis. The label of the
last parenthesis should be 0; the mate of an open parenthesis
labeled n will be the next parenthesis labeled n - 1.

FOR TRANSIT permits a maximum nest of nine parentheses.

Arithmetic Formulas

GENERAL FORM ' EXAMPLES

"a = Db'" where a is a variable A(I) = B(I)+SINF(C (1))
(subscripted or not subscripted)
and b is an expression.

The " = " sign in an arithmetic formula has the meaning "is to be
replaced by." An arithmetic formula is therefore a command to
compute the value of the right-hand side and to store that value in
the storage location designated by the left-hand side.

The result will be stored in fixed or floating point form accord-
ing as the variable on the left-hand side is a fixed or floating point
variable.

If the variable on the left is fixed point and the expression on
the right is floating point, the result will first be computed in
floating point and then truncated and converted to a fixed point
integer. Thus, if the result is +3.569 the fixed point number
stored will be +3, not +4.

{ Examples of Arithmetic Formulas

FORMULA MEANING

A=B Store the value of B in A,

I=B Truncate B to an integer, convert to fixed
point, and store in I,

A=1 Convert I to floating point and store in A.

I=I +1 Add 1 to I and store in I. This example

illustrates the point that an arithmetic
formula is not an equation but a command
to replace a value.

A=3.0*B Replace A by 3B.
Control The second class of FORTRAN statements is the set of eight
Statements control statements, which enable the programmer to state the

flow of his program.

Is

14

Unconditionai GO TO

GENERAL FORM EXAMPLES
"GO TO n'" where n is a statement GO TO 3
number,

This statement causes transfer of control to the statement with
statement number n .

Computed GO TO

GENERAL FORM - EXAMPLES

"GO TO (nl, Doy« ooy nm), i"

where ng, n2, ... are

GO TO (30, 40, 50, 60), I

statement numbers and i is a
non-subscripted fixed point

variable.
)

If at the time of execution the value of the variable i is j, then
control is transferred to the statement with statement number nj.
Thus, in the example, if I has the value 3 at the time of execution,
a transfer to statement S0 will occur.

This statement is used to obtain a computed many-way fork.
A maximum of nine branches may be used in any one of these
statements.

IE

GENERAL FORM EXAMPLES

"IF (a) n}, ng ng" where a is any | IF (AQ, K)-B) 10, 20, 30
expression and nj, ng, ng are state-
ment numbers,

Control is transferred to the statement with statement number
nj, ny, or ng according as the value of the expression a is less
than, equal to, or greater than zero.

PAUSE
GENERAL FORM EXAMPLES
"PAUSE" or "PAUSE n " where n PAUSE
is any unsigned fixed point constant PAUSE 1234

15

A PAUSE statement compiles as a stop command. During execution
of the object program, the machine will halt. A subsequent
depression of the program start key will cause resumption of
operation at the point in the object program corresponding to the
next FORTRAN statement. The n part of the PAUSE statement

is disregarded by FOR TRANSIT but may be included for compati-
bility with 704 FORTRAN.

STOP
GENERAL FORM EXAMPLES
" STOP " or " STOPn " STOP
STOP 1234

A STOP statement compiles as a stop command. During execution
of the object program, the machine will halt. A subsequent
depression of the program start key will cause the resumption of
operation at the point in the object program corresponding to the
next FORTRAN statement. The n part of the STOP Statement is
disregarded by FOR TRANSIT but may be included for compatibility
; with 704 FORTRAN.

NOTE: PAUSE and STOP are identical in the FOR TRANSIT system.

DO

———

GENERAL FORM EXAMPLES

"DOni= ml,mz" or "DOni DO 301=1,10
= my, m,, mg" where n is a state- DO 30I=1,M,3

ment number, iis a non-subscripted

fixed point variable, and m,;, m,,

mg are each either an unsigned fixed

point constant or a non-subscripted

fixed point variable. If mg is not

stated it is taken to be 1,

The DO statement is a command to "DO the statements which
follow, to and including the statement with statement number n,
repeatedly, the first time withi = m 1 and with i increased by mg
for each succeeding time; after they have been done with i equal to
the highest of this sequence of values which does not exceed my

let control reach the statement following the statement with
statement number n ,"

16

The range of a DO is the set of statements which will be
executed repeatedly; it is the sequence of consecutive statements
immediately following the DO, to and including the statement
numbered n .

The index of a DO is the fixed point variable i, which is con-
trolled by the DO in such a way that its value begins at m, and is
increased each time by mg until it is about to exceed my . Through-
out the range it is available for computation, either as an ordinary
fixed point variable or as the variable of a subscript. During the
last execution of the range, the DO is said to be satisfied.

Suppose, for example, that control has reached statement 10
of the program

10 DO11I=1, 10
11 A (D) = I*N (I)
12

The range of the DO is statement 11, and the index is I. The
DO sets I to 1 and control passes into the range. 1N(1) is
computed, converted to floating point, and stored in A(1). Now,
since statement 11 is the last statement in the range of the DO
and the DO is unsatisfied, I is increased to 2 and control returns
to the beginning of the range, statement 11. 2N(2) is computed and
stored in A(2). This continues until statement 11 has been executed
with I = 10, Since the DO is satisfied, control now passes to
statement 12,

DOs within DOs Among the statements in the range of a DO
may be other DO statements. When this is so, the following
rule must be observed:

Rule: If the range of a DO includes another DO, then all of the
statements in the range of the latter must also be in the range
of the former. A set of DOs satisfying this rule is called a
nest of DOs. A nest must not exceed a depth of four DOs.

Transfer of Control and DOs Transfers of control by IF-type
or GO TO-type statements are subject to the following rule:

Rule: No transfer is permitted into the range of any DO from
outside its range. Thus, in the configuration below, 1, 2 and 3
are permitted transfers, but 4, 5 and 6 are not.

17

EXCEPTION: There is one situation in which control can be
transferred into the range of a DO from outside its range.
Suppose control is somewhere in the range of one or more DOs,
and that it is transferred to a section of the program, completely
outside the nest to which those DOs belong, which makes no
change in any of the indexes or indexing parameters (m's) in

the nest . Then after the execution of this section of program,
control can be transferred back to the "same part of the nest"
from which it originally came. (By "same part of the nest" is
meant that no DO, and no statement which is a last statement in
the range of a DO, shall lie between the exit point and re-entry
point.) This provision makes it possible to exit temporarily from
the range of a DO to execute a subroutine.

Preservation of Index Values The current values of all the
indexes controlled by DO's are preserved for any subsequent
use, until redefined.

For compatibility with 704 FORTRAN, after a normal exit
from a DO, the value of the index controlled by that DO is not
defined and cannot be used until redefined. A normal exit is
defined as control passing to the statement following the range
after the DO statement is satisfied.

Restriction on Calculations in the Range of a DO The only type
of statement not permitted is one which redefines the value of
the index or of any of the indexing parameters (m's); the index-
ing of a DO loop must be set before the range is entered. This
indexing is accomplished by the DO statement. FOR TRANSIT II
utilizes indexing registers which cannot be set by data cards,
and the values of mj, m,, and mg must be < 2000.

CONTINUE

GENERAL FORM EXAMPLES

- "CONTINUE" CONTINUE

18

CONTINUE is a dummy statement which gives rise to no instruc-
tions in the object program. A frequent use is as the last state-
ment in the range of a DO to fill the requirement that the last
statement in the range cannot be a transfer statement. AS an ex-
ample of a program which requires a CONTINUE, consider the
table search program

— 10 DO 121 = 1, 100
11 IF (ARG-VALUE(D)) 12, 20, 12
12 CONTINUE
13

This program will examine the 100-entry VALUE table until it
finds an entry which equals ARG, whereupon it will exit to state-
ment 20 with the successful value of I available for fixed point use;
if no entry in the table equals ARG a normal exit to statement 13
will occur. The following program

10 DO 111=1,100
11 IF (ARG-VALUE()) 11, 20, 11
12

would not work since DO-sequencing does not occur if the last
statement in the range of a DO is a transfer.

END

GENERAL FORM EXAMPLES

"END" - END

The END statement must be the last statement of the program.
(The END statement for 704 FORTRAN requires additional
information.)

Input-Output The FOR TRANSIT system presently allows for input and output
Statements of data by means of punched cards using the FORTRAN statements
READ and PUNCH which are described below and in Chapter IV,

LIST: Three types of variables may be specified in a READ or
PUNCH statement "LIST".

1. Non-subscripted variable

2. One member of an array; ELMNT (2, 5), or ELMNT (2,]),
or ELMNT (1,])

19

3. An entire array, by giving only the name of the array,
ELMNT, '

A maximum of ten variable names may be given in a "LIST".

READ
GENERAL FORM EXAMPLES
"READ, LIST" or READ, A, B, C
"READ n, LIST" where n may READ 1, A,B, C
be a 1-4 digit fixed point constant READ 52, X, Y
and LIST is as described above.

The READ statement causes the object program to read cards.
Record after record (card after card) is read until the complete
List has been brought in and stored. The n portion of the READ
statement is optional in the FOR TRANSIT system but may be in-
cluded if compatibility with the FORTRAN system for the IBM 704
is desired.

PUNCH

GENERAL FORM EXAMPLES

"PUNCH, LIST" or PUNCH, ROOT 1, ROOT 2
"PUNCH n, LIST" where n may PUNCH 1, ROOT

be a 1-4 digit fixed point constant PUNCH 32, ARRAY

and LIST is as described above. PUNCH 1, ELMNT (2, 5)

The PUNCH statement causes the object program to punch cards.
Record after record (card after card) is punched until the complete
List has been punched. The n portion of the PUNCH statement is
optional in the FOR TRANSIT system but may be included if com-
patibility with the 704 FORTRAN system is desired.

Conditional PUNCH

As a diagnostic convenience, a conditional form of the PUNCH
statement is provided. Any PUNCH statement which is not
numbered will produce, in the object program, a Punch command
which can be controlled by the setting of the storage entry sign
switch: In the object program with the sign switch set to minus (-),
punching occurs; when set to plus (+), punching is bypassed.

20

Specification
Statements

DIMENSION
'GENERAL FORM EXAMPLES
"DIMENSION v, v, v, ..." where DIMENSION A(10),
each v is a variable subscripted B(5, 15), C(3, 4)

with 1 or 2 unsigned fixed point
constants. Any number of v's may
be given.

The DIMENSION statement provides the information necessary to
allocate storage in the object program for arrays of quantities.

Every variable which appears in the program in subscripted
form must appear in a DIMENSION statement, and the DIMENSION
statement must precede the first appearance of the variable. In

. the DIMENSION statement are given the desired dimensions of the

array; in the executed program the subscripts of that variable must
never take on values larger than those dimensions.

Thus the example states that B is a 2-dimensional array and
that the subscripts of B will never exceed 5 and 15; it causes 75
words of storage to be set aside for the B array.

A single DIMENSION statement may be used to specify the
dimensions of any number of arrays.

EQUIVALENCE
GENERAL FORM EXAMPLES
EQUIVALENCE (A, B, C; v) EQUIVALENCE (A, B, C),
(D,E,F,...) : (D, E)
{where A,B,C, D, are
subscripted variables.

- The EQUIVALENCE 5statement enables the programmer, if he

wishes, to economize on data storage requirements by causing
storage locations to be shared by two or more quantities when the
logic of his program permits. It also permits him to call the same
quantity by several different names, and then insure that those
names are treated as equivalent.

The following rules must be observed when using the
EQUIVALENCE statement with the FOR TRANSIT system.

1. EQUIVALENCE statements are restricted to subscripted
variables.

21

Summary of
FORTRAN

Sequencing

2. EQUIVALENCE can only be specified which equates the
first member of each of the respective arrays. Successive
members will be automatically equated. If one of the arrays
in an EQUIVALENCE statement has fewer members than
the array it is being equated with, the EQUIVALENCE ends
with the last member of the smaller array.

3. The EQUIVALENCE statement for a given set of variables
must immediately follow the DIMENSION statement defining
the set.

4. Any numbe{ of equivalences (pairs of parentheses) may be
given in an EQUIVALENCE statement,

5. Each equivalence set is limited to five subscripted variable
names, e.g., (A, B, C, D, E) is a maximum equivalence set.

6. A variable name can appear only once in an EQUIVALENCE
Statement.

The sharing of storage locations cannot be planned safely with-
out a knowledge of the two types of FORTRAN statements which
when executed at object program time will cause a new value to be
stored in a storage location.

1. Execution of an arithmetic statement stores a new value of
the variable on its left-hand side.

2. Input statements store new values of the variables listed.

The precise laws which govern the order in which the statements
of a FORTRAN program will be executed, and which have been
left unstated up to this point, may be stated as follows:

1. Control begins at the first exécutable statement.

2. 1If control is in a statement S, then control will next go to
the statement dictated by the normal sequencing properties
of S.

3. EXCEPTION. If, however, S is the last statement in the
range of one or more DOs which are not yet satisfied, and
if S is not a transfer (IF-type or GO TO- -type statement),
then the normal sequencing of S is ignored and DO-sequenc-
ing occurs, i.e., control will next go to the first statement
of the range of the nearest of the unsatisfied DOs, and the
index of that DO will be raised.

22

Examples and
Explanatory Notes

4. The statements DIMENSION and EQUIVALENCE are non-
executable statements, and in any question of sequencing
are simply to be ignored.

5. The last statement of each source program must be an END
statement.

This section, which includes some brief and relatively simple
examples of FORTRAN programs with pertinent comments, is
provided to illustrate the process of writing FORTRAN statements
and using them to form a meaningful program. One of the sample
problems shown here appears in Appendix B where it is carried
through each phase of processing to provide a sample of the input
and output for each step, including the running of the object pro-
gram,

1. It may be helpful to refer first to the formula for one of the
roots of a quadratic equation which was mentioned briefly
on the first page of this chapter. The algebraic representation
for a specific case might be written

/r2

2A
where A=+3
B=+1.7
C=-31.92

A complete FORTRAN program to provide for making this
calculation and punching the result may be written in six separate
statements as follows:

roR

CoMMENT! ; (_,‘,\FORTRAN STATEMENT

[

statement | 8
NUMBER

A=3,

B= 1.7

C=-31.92

ROOT = (-B +SQRTE(B**2-4. *A*C))/(2.*A)
11 PUNCH 1, ROOT

END

The first statement means "assign the value 3. to the variable
A." The next two statements have a similar meaning. The fourth
statement means "evaluate the expression on the right side and
assign the result to the variable ROOT." The last statement in-
structs the computer to stop.

23

The sequential nature of the program should be noted. The

- computer executes instructions in the same order as the order of
the statements. For example, if the fourth statement were moved
up and made the first statement, then the computer would evaluate
ROOT before obtaining the desired values of A, B, and C. ROOT
would, therefore, be evaluated using some arbitrary, unknown
values for these variables. The same result could be obtained of
course by writing

FoR

C =
COMMENT z FORTRAN STATEMENT

STATEMENT
NUMBER ¥
) 5} s |7 12

ROOT = (-1.7 +SQRTF(1,7**2-4.*3.%(~31,92)))/(2.*3.)
11 PUNCH 1, ROOT
END

in which the actual numerical values appear in the statement des-
cribing the evaluation of ROOT,

Obviously, the foregoing is applicable only to a specific case.
A more likely form of the program is one in which it is possible
to process many sets of data and obtain a root for each set of
values of A, B, and C.

Such a program might be written

FoR

¢ = :
conmenr| 3 FORTRAN STATEMENT
STATEMENT F
NUMBER -
1 ¢ & |7 72
11 READ, A, B C
ROOT = (-B +SQRTF(B**2-4. *A*C))/(2. *A)
12 PUNCH 1, ROOT

GO TO 11 »
END

The first statement causes the computer to read a data card in
which the values of A, B, and C have been punched. The next two
statements remain unchanged from the first program. The fourth
statement provides a transfer to the READ statement, and thus
causes the entire process to be repeated. The last statement is
an END statement which is required in a FOR TRANSIT program,
The object program resulting from this FORTRAN program will
read data cards, compute the roots, and punch out answer cards
as long as there are data cards remaining in the read hopper of
the 533 Read-Punch Unit.

2. In this example, a program is required to determine the cur-
rent in an alternating current circuit consisting of a resistance,
an inductance, and a capacitance, having been given a number
of sets of values of resistance, inductance, and frequency. The

.

24

current is to be determined for a numbér of equally spaced values
of the capacitance (which lie between specified limits) for voltages
of 1.0, 1.5, 2.0, 2.5, and 3.0 volts.

The equation for determining the current flowing through such
a circuit is
i= - 2
VRZ 42w - _1]2

2miC

where current, amperes

voltage, volts

resistance, ohms
inductance, henrys

= capacitance, farads
frequency, cycles per second

T =3.1416

i

i

i
E
R
L
Cc
f

fl

The FORTRAN program could be written as follows:

FOR e
C < cment FORTRAN STATEMENT
\ SNkbER % , "

10 READ 1, OHM, FREQ, HENRY

11 READ 1, FRD 1, FRDMX

12 VOLT = 1.0

15 FARAD = FRD 1

14 PUNCH 1, VOLT

16 AMP = VOLT/SQRTF(OHM?*2 +(6. 2832*FREQ*HENRY

1| -i./(6.2832*FREQ*FARAD))**2)

17 PUNCH 1, FARAD, AMP

18 IF (FARAD - FRDMX) 19, 21, 21

19 FARAD = FARAD +.00000001

20 GO TO 16

21 IF (VOLT - 3.0) 22, 10, 10

22 VOLT = VOLT +0.5

23 GO TO IS <™

24 END

Statement 10 causes the values of the resistance, the frequency,
and the inductance to be read from the first card, and statement 11
causes the initial and final values of the capacitance to be read
from the next card. The initial value of the voltage is introduced
and punched (statements 12 and 14). Statement 15 causes the
initial value of the capacitance to replace the "current” value of
the capacitance (denoted as FARAD). The actual calculation is
specified by statement 16. The result of that calculation, together
with the current value of the capacitance, is then punched (statement
17).

25

The current value of the capacitance is compared with the final
value to determine whether or not all values have been investigated
(statement 18). If not, the expression is negative and the program
proceeds to statement 19, which causes the value of the capacitance
to be increased by the given increment. This is followed by a
transfer (statement 20) to statement 16 which causes the calculation
to be repeated for the new value of the capacitance. If the expres-
sion in statement 18 is zero or positive, all values of the capac-
itance have been investigated and the program transfers to state-
ment 21,

At this point the value of the voltage is compared with the upper
bound to determine whether or not all specified values of the voltage
have been used. If not, the expression in statement 21 is negative
and the program proceeds to statement 22 which causes the value
of the voltage to be increased. Following this, a transfer (statement
23) is made to statement 15, causing the new value of the voltage
to be punched; and the entire process of investigating all values of
the capacitance is begun again. If all values of the voltage have
been used (the expression in statement 21 is zero or positive), the
calculations for the current set of values of resistance, frequency,
and inductance are finished. The program is returned to statement
10 so that the two cards defining the next case may be read and the
program repeated. This process is repeated until all of the cases
have been considered, i.e., all of the cards have been read.

3. The problem in this example may be stated as follows:

Given Xi’ Yi’ Zj fori=1, 10and]J =1, 20 to compute:

10 20
PROD=(3 Ai> (3 zj)
i=1 j=1

where A; =X 2+Y; iflxl > 1yl
A= Xy +Yizif|Xi| < 1yl
A;=0 iflxgl = 1yl

26

A possible FORTRAN program follows:

roR

€ mcnr FORTRAN STATEMENT
e ||)
3 DIMENSION X(10), Y(10), Z(20)
5 READ L, X, Y, Z
6 SUM A = 0.0
7 DO 121=1, 10
8 IF (ABSF(X(I))- ABSE(Y(D)) 9, 12, 11
| i 9 SUM A = SUM A +X(I) +Y()**2
0 | | GoTo1z
11 SUM A = SUM A +X(D**2 +Y(I)
12 CONTINUE
13 SUM Z = 0.0
14 DO15]=1, 20
15 SUM Z = SUM Z +Z()
16 PROD = SUM A * SUM Z
17 PUNCH 1, SUM A, SUM Z, PROD B}
18 END

4.

27

The DIMENSION statement sets aside storage locations for
the input data. The READ statement reads the input data from
cards into the 650. Statement 6 sets the quantity SUM A to zero.
Statements 8-12, under control of the DO (statement 7), compute

10 20
A. . Statement 15 computes Y Z; under the control of
i J

i=1 j=1

DO statement 14. Thé\following statements compute and punch
PROD. Statement 12, CONTINUE, serves as a common reference
point; and since it is the last statement in the range of the DO,
after its completion I is increased and the next repetition begun.

In this last example a program is required to perform the
following operations: Multiply the L x N matrix bkj by the
M x L matrix a;) obtaining the product elements by the
relation

Hij

O
1
™M
[+]
e
=
o
Z

Punch the elements as they are computed.

The problem may be represented in flow chart form as
follows:

READ READ _ o 0—SUM
A, B TS o IR e On IES 2 =1 ®

SUM= SUM+ - Yes PUNCH | Yes Yes
@—-— oy bkj k=L SUM STOP

No N N

0 {s]
k+1—k 3 Livi=i @ [i+1=] D

FoR

[:
commert| ¢ FORTRAN STATEMENT

STATEMENT
HUMBER

- o

RECTANGULAR MATRIX]

MULTIPLICATION

DIMENSION A(4, 5), B(5, 3)

READ 1, A, B, |

READ 1, N, M, L

DO4}=1 N

DO4I=1, M , P

SUM = 0.0 Q

DO3K=1 L

SUM = SUM +A(L, K) * &K,) —]R
end

PUNCH 1, SUM, 1,]

@ b [N[O e N

END

The dimension statement reserves storage for the two
matrices, A and B, which in this example are 4 X 5 and 5 X 3,
respectively. For explanatory purposes only, three brackets
have been drawn around parts of the program to show the
sequence of statements controlled by each DO statement. The
brackets P, Q, and R correspond to the connectors() @) and®
in the flow chart. The first DO statement specifies that pro-
cedure P, i.e., the following statements down to statement 4, is
to be carried out for J= 1, then J = 2 and so on until = N. The
first statement of procedure P (DO 4 1= 1, M) directs that pro-
cedure Q be done for I=1to I = M. And of course each execu~
tion of procedure Q involves L executions of procedure
RforK=1, 2, ..., L.

Consider procedure Q. Each time its last statement is com-
pleted, the element Cij (called SUM) has been punched, the
"index" I of its controlling DO statement is increased by 1 and

n

28

29

control goes to the first statement of Q until finally its last
statement is reached with I = M. Since this is also the last
statement of P and P has not been completed until J = N, J will

be increased by 1 and control will then pass to the first state-
ment of P, This statement (DO 4 I = 1, M) causes the repetition
of Q to begin again. Finally, the last statement of Q and P (state-
ment 4) will be reached with I = M and] = N, meaning both Q

and P have been repeated the required number of times. Control
will then go to the next statement, "END",

Each time R is executed a new term is added to a product
element. Each time Q is executed a new product element is
punched. Each time P is executed a product column has been
completed.

CHAPTER II - INCORPORATING SUBROUTINES

Built=in
Subroutines

Adding Function
Subroutines

The ability to evaluate a function is not built into the IBM 650;

there is no operation code equivalent to v . Ifsucha function be
included in a FOR TRANSIT statement a program must be available
to evaluate it. This program is referred to as a subroutine. Up
to ten such subroutines may be used in any one FOR TRANSIT pro-
gram. This chapter provides the necessary instructions and
relevant information for adapting subroutines and including them ‘
in the system.

The FOR TRANSIT system has built into it a number of subroutines
for the most commonly used functions. Subroutines for floating
fixed point numbers and fixing floating point numbers, for handling
the various arithmetic operations, and for performing the input-
output operations are included in the Package Deck. These sub-
routines in the form of machine language instructions are loaded
into the 6350 at the time of running the object program. A complete
list of the built-in subroutines will be found at the end of this
chapter. Although designed for the specific purposes indicated,

the built-in subroutines may be utilized by the programmer by pre-
paring an appropriate function title card.

Subroutines added to the system by the user for the purpose of eval-
uating functions will be integrated into the object program as follows:

1. The translator translates the function name found in the
FORTRAN program into corresponding IT notation. The IT
notation for built-in subroutines is supplied by the system.

2. The compiler generates the symbolic entry to the appropriate
subroutine using the IT notation supplied by the translator.

3. The assembler reserves sufficient storage space for the
subroutines.

The programmer must (1) specify the names of the functions
being used, (2) specify the IT call names which he wishes to have
associated with the function names and which will determine the
symbolic entries to the subroutines, and (3) include the subroutines
themselves, either in symbolic, i.e., SOAP II, form or in absolute
form. These requirements are considered individually in subse-
quent paragraphs.,

30

31

Each function name which appears in a FOR TRANSIT source
program (see page 11 for general form and examples) must
be defined by a function title card when the source program
is processed. The function title card contains the

FOR TRANSIT language name of the function as it appears

in the source program, e.g., SQRTF, and the IT call name
to be associated with it in the compiling phase, e.g., 23EK.
A description of the card format for function title cards is
included in Chapter III. The function title cards are loaded
by the translator prior to the statement cards.

The IT call name which is punched in its corresponding
function title card is of the form nEK, where n is a one,
two, or three-digit number. The choice of subroutine
number n is arbitrary except that (a) none of the numbers
of the built-in subroutines may be used, (b) no number may

be used twice, and (c) n must be less than 500 if the output

is in floating point form and equal to or greater than 500 if
the output is in fixed point form.

Function subroutines may be included in the system in either
of the two forms indicated below.

a. A function subroutine in SOAP II symbolic form is always
incorporated into the object program by assembling the
symbolic instructions of the subroutine together with the
symbolic instructions produced by the compilation phase.

Symbolic addresses used in the subroutines must
conform to the following rules:

1. The entry point must correspond to the entry gener-
ated by the system. The entry generated from the
IT call name (nEK) will be of the form EOOab where
ab is a pair of alphabetic characters derived from
the subroutine number by the following method: The
subroutine number is divided by 26; both the resulting
quotient and remainder are incremented by one, and
‘then each is transposed into its alphabetic equivalent
(1= A, 2= B, etc.) to form the pair. Thus sub-
routine number 5 translates into the pair AF, the
number 80 into the pair DC, and the number 571 into
the pair VZ.

2. The entry point must be the first card of the sub-
routine at assembly time.

Writing Function
Subroutines

3. The first character must not be the letter "L".

4. Symbolic addresses used by more than one subroutine
must begin with the letter "E".

b. A function subroutine in absolute form is in the standard
five instructions per card format, and is incorporated
into the object program at the assembly phase. A SYN
card in SOAP II format is required for the entry point of
the subroutine. For example, if the absolute location of
the entry point is 0500 and the location as generated by
the system is EOOAB the SYN card is as follows:

48~ -50}51~ ~65]56 |57 |58- -6l 80

SYN EQOOAB 0500

The subroutines to be incorporated into a FOR TRANSIT program
must be written to conform to the format required by the system.

The system assumes the following entry and exit conditions for all
subroutines:

Let the subroutine be a function of "k variables in the order:
Vl’ Voo oon, Vk; where Vn is an expression, variable, or constant.
n=1,2 ...,k '

a. The entry conditions are as follows:

1. V; is in the lower accumulator and the upper accumu-
lator is zero for FOR TRANSIT I and I(S), and for the
fixed mode of FOR TRANSIT II and II(S).

2. V; is in the upper accumulator and the lower accumu-
lator is zero for the floating mode of FOR TRANSIT II
and II(S).

3. V_ is stored in PO00OO +(k - n) when k >1.

n

4. The contents of the distributor are:

k=1 Exit instruction

k=>1 00 POO0O +(k - 1) 0000 +m
Contents of "m" is the next instruction.
Contents of PO000 +(k - 1) is Vs,

32

5. Ifv,is itself a function of variables:
Wl’ Wz, ves gy WI'; then

a. W;j is in the lower or upper accumulator as per rules
for Vi in 1. and 2. above.

b. W, is stored in PO00O +(k - n)

c. Wj is stored in P0000 +(k - n+1x - j)

d. At entry the D address of the distributor is the
location of W, and the I address is the location of
the next instruction.

e. The result of V is stored in P0000 +(k - n).
b. The exit conditions are as follows:

1. The result is in the lower accumulator and the upper
accumulator is zero for FOR TRANSIT I and I(S) and
when the mode of the subroutine is fixed for
FOR TRANSIT II and II(S).

2. The result is in the upper accumulator and the lower
accumulator is zero when the mode of the subroutine is
floating for FOR TRANSIT II and 11(S).

The maximum number of arguments, Vn , is thirteen. These
arguments are evaluated from right to left. Each V, can itself
be a function of variables, W; . The argument V to the extreme
right can be a function of thirteen variables as there are 13
locations available at the time the first argument is evaluated.
The argument to its left, however, can be a function of not more
than twelve variables as one of the thirteen available locations is
now taken by the argument that has been evaluated. In short, the
subroutine may have arguments Vy, V2, V3, ve s Vk where
k < 13, and each V., can be a function of r variables where
r<n if k=13, r< n+13 - k) if k < 13.

A listing of the program for the following statement is included
in Appendix B to illustrate how the parameter, entry and exit are

handled by the system:

Y = OUTF (A, B, C, D, ENRF (E, F, G), H)

33

Use of Indexing
Registers :

FOR TRANSIT IT
and II (5)

Example of
Incorporated
Subroutine

Other
Requirements

The built-in subroutines include a routine to store and restore the
indexing registers. This routine may be used by incorporated
routines as follows:

1. Store the EXIT instruction of the incorporated routine in
"ERTHX",

2. Load distributor with the next instruction of the incorporated
routine and transfer control to "EZZZA'". The contents of
the indexing registers will be stored and the instruction in
the distributor executed.

3. After executing the incorporated routine, transfer control
to EZZZB. The indexing registers will be restored and the
EXIT instruction in ERTHX executed.

The object program in FOR TRANSIT II and II(S) utilizes the
indexing registers when under the control of a DO statement.
Incorporated subroutines which use indexing registers and occur
within the range of a DO statement must preserve the current values
of the indexing registers.

To incorporate the sample subroutine with the FORTRAN call name
"DCAF" and the IT compiler "28EK":

TRANSLATION PHASE: Prepare a Function Title Card (see page 40).
This card is loaded preceding the FORTRAN statements.

COMPILATION PHASE: Nothing required.

ASSEMBLY PHASE: The subroutine may be incorporated in sym-
bolic SOAP II format or absolute five instruction per card format.

1. To include the subroutine in symbolic SOAP II format the
entry point of the routine which is the first card of the
routine will be EOOBC.

2. To include the subroutine in absolute five instruction per
card format a SYN card is required for the entry point,
(SYN EOOBC nnnn). 7

Subroutines incorporated into the FOR TRANSIT I(S) or II(S)
systems in symbolic SOAP II format require a ""12" punch in card
column 5 for correct read-in of the cards. Card columns 7-36 and
73~75 must be blank.

Absolute subroutines incorporated into a FOR TRANSIT program
are read in as load cards and require a "12" punch in card column 2.

4

34

List of Subroutines in Package Deck for FOR TRANSIT I

IT Symbolic
No. Purpose of Subroutine Entry
4 | (L) Floating Point (L) Fixed Point EOOAE

5| (L) and (ACC) Floating Point«- (L) Fixed Point EOOAF
6| (L) and (ACC)= (L) / (ACC) E00AG

8| (L) and (ACC) (L) + (ACC) E00AI

9| (L) and (ACC)« (L) x (ACC) E00A]
14| (L) and (ACC) # (ACC) / (L) E00AO
16 | READ E00AQ
17 | PUNCH EOOAR
501 | (L) Fixed Point« (L) Floating Point EOOTH
10 | (L) and (ACC)#~(L) Fixed(ACC) Fixed EOOAK
11| (L) and (ACC)<—(L) Floating(ACC) Fixed EQOAL
302 | (L) and (ACC)4—(L) Floating{ACC) Floating EOOLQ
1| (L)«Logjo (L) EOOAB
2| (Lye10) EO0AC
300 | (L)<—Log, (L) EOOLO
301 | (L)ye—e(D) EOOLP

NOTE: In the above listing, the second and third characters of the
symbolic entries are zeros, not alphabetic O's. The notation (L) refers
to the contents of the lower accumulator, and (ACC) to the contents of
the pseudo floating point accumulator which occupies drum storage
location 0000,

35

List of Subroutines in Package Deck for FOR TRANSIT II

1T Symbolic
No. Purpose of Subroutine Entry
0 | Floating Arithmetic Device Overflow- EOCOAA
Underflow checking and correcting routine
(see note 2 below).
4 | (U) Floating Point« (L) Fixed Point EOOAE
5 | (U) and (ACC) Floating Point < (L) Fixed Point EOOAF
16 | READ E00AQ
17 | PUNCH EOOAR
501 | (L) Fixed Point<-(U) Floating Point 'EO0TH
10 | (L) and (ACC)e—(L) Fixed(ACC) Fixed E00AK
11 | (U) and (ACC)e—(U) Floating(ACC) Fixed EOOAL
302 | (U) and (ACC)4—(U) Floating(ACC) Floating EOOLQ
1 (U)d—LoglO(U) EOOAB
2 | (Uye—10V) EOOAC
300 | (U)+—Log_ () EOOLO
301 | (Uye—eV) EOOLP

NOTE: 1. In the above listing, the second and third characters of the
symbolic entries are zeros, not alphabetic O's. The notation (L) refers
to the contents of the lower accumulator, (U) to the contents of the upper

accumulator, and (ACC) to the contents of the pseudo floating point

accumulator which occupies drum storage location 0000.

2. The compilation phase will generate an entry to Subroutine
EOOAA at the replacement symbol (=) of each Arithmetic Statement,
except when the Storage Entry Sign Switch is set to Minus (-). Sub-

routine EQOAA will stop the program if underflow or overflow has
occurred. Depressing Program Start will cause the program to
continue. ‘

36

CHAPTERTII - PROCESSING THE SOURCE PROGRAM

Preparing the
Statement Cards

This chapter includes the necessary information and instructions
for processing a FOR TRANSIT program to obtain the object, or
machine language, program. The first sections of the chapter deal
with the preparation of statement cards and function title cards,

and subsequent sections constitute operator's instructions and notes
for each of the three phases of the FOR TRANSIT system.

Source programs stated in the FORTRAN language described
in the preceding chapter may be written on standard FORTRAN
coding sheets, IBM Form X28-7327. These are stocked at IBM
Stationery Stores in Endicott, New York, and may be ordered through
local sales representatives. The use of the coding forms is en-
couraged to avoid programming errors and to facilitate the transcrip-
tion of the FORTRAN statements to punched card form as described
in the following section.

FOR TRANSIT statements are punched in modified FORTRAN state-
ment cards using either a 24 or a 26 Card Punch Machine. Regular
FORTRAN cards, IBM electro number 888157, may be used. Two
different card formats are provided; the choice between formats

is dictated by the equipment specifications of the 650 to be used

for processing, as described in subsequent paragraphs. Regardless
of which format is used, each FORTRAN statement is punched on

a separate card using the standard FORTRAN code shown below.

STANDARD FORTRAN CODE

Char Punch 650 Char Punch 650 | | Char Punch 650 || Char Punch 650
1 1 91 A 12-1 61] 11-1 71 / 0-1 31
2 2 92 B 12-2 62 K 11-2 72 S 0-2 82
3 3 93 C 12-3 63 L 11-3 73 T 0-3 83
4 4 94 D 12-4 64 M 11-4 74 U 0-4 84
5 5 95° E 12-5 65 N 11-5 75 v 0-5 85
6 6 96 F 12-6 66 (o] 11-6 76 w 0-6 86
7 7 97 G 12-7 67 P 11-7 77 X 0-7 87
8 8 98 H 12-8 68 Q 11-8 78 Y 0-8 88
9 9 99 1 12-9 69 R 11-9 79 Z 0-9 89

Blank 00 + 12 20 11 30 0 0 90
= 8-3 48 . 12-3-8} 18 - 4-8 49 , 0-3-8 38

) 12-4-8| 19 * 11-4-8 29 (0-4-8 39

NOTE: On the 24 and 26 Card Punch Machines equipped for special character punching,
the character X is the equivalent of the character) ; % is the equivalent of (; & is the
equivalent of +; and # is the equivalent of = . If desired, the 24 and 26 machines may be
modified on an RPQ basis (Request Price Quotation) to include the "FORTRAN key tops
and printing code plate." This includes @ equivalent to " —".

37

If a statement is too long to fit in the statement field of a single
card, it may be continued over as many as nine additional

(continuation) cards.

acters, exclusive of blank spaces.

The maximum statement length is 125 char-

As blanks in the statement field

are ignored by the translator, the programmer may use them freely
to improve the readability of the source program listing.
continuation cards, column 6 must not contain a zero or be left

blank; it is used to number the continuation cards from 1 to 9. Other

details of the card formats are as follows:

Card Format for FOR TRANSIT I and II

In any

FOR TRANSIT I and 1I, both of which run on the basic 650 without

a special character device, require the statement card format shown

in Figure 2. The statement itself is punched in a twenty column

field, columns 7 to 26. Numerical, alphabetic, and special char-
acters and blanks may all be included in the FORTRAN statement.
The FOR TRANSIT system will read and accept all of the punches
without the aid of a special character device.

(o7

RolbEnt

STATEMENT
NUMBER

FORTRAN

STATEMENT

10ENTIFICATION

T3G00
234
41111
42222

sl3vas

= e Sl immaTin

3
44444

505 5 5 5
46658
nin
48838

919999

Hz a4y

4
5
6
7
8
89

101112 13 14 15 16 17 19 15 20 21 22-23 24 25 26
!Ill]lllillll1!l
STATEM
22221222222222222222
33333383333333333333)3
44444444444444444444
55555555655555555555 5]
6666666666666666660 6]
11171171111717171117171117
688880B888888888868888

9995999999999599999

00
1
1

212020 90 91 22) 3 35 3
IRRREREAER
NOT

222222222
AlLABLE
333333333,

4444444444
5555655555
6G6BCEEGEE

),N

1711711771717
8888888888
9999989969

T8 9 §0 1112193 1415 16 17 18 1920 21 22 23 24 25 2802

§000000000000000[0000000000[0000000000000000

3790 39 40 41 42 43 44 65 45 47 48 49 50 51 5
(RERARSARAARERRR!
0 E

4444444444444444
555655558555556558
66666666666606066 6
1117171171717111111
B388068B888888888§

60000000000000000000
53 54 55 56 57 58 59 80 61 62 63 64 55 66 67 68 69 70 71 72|
[RRRRRRARRRRRARRRREE]
DIGIT 9
222222222222222222212
33333333333333333333
A44444404444444444444
55555555556655555655
666666666666666666686

1177111111117 1771 17

999999899999999¢9

BBRHIZNUB M

37 WA A2 KB 44T 484350 51

88088868588606660888
SERNRNRERNERRRNANERE o

53 54 55 §3 97 59 59 60 01 62 63 64 65 66 67 69 63 70 71

nanmnnunw

00000000
13U 87898 80
IRRERRER
22222222
333333313
§4444444
55555555
66666666
71111111
56868888

9999

38

numerical punches.

Figure 2
Card columns Description
1 An alphabetic C (or any non-zero punch) in

this column indicates a comments card,
which will be ignored during translation. A
zero indicates a statement to be translated.
This column must have a punch in it.

2-5 Statement number, This field must contain

Card columns

Description

6

7-26

27-36

Used to indicate continuation cards. A zero
indicates first card of a statement regard-
less of whether the statement uses one oxr
more cards. A non-zero punch from 1-9
indicates a continuation card. This field
must contain a numerical punch.

The statement. Numerical, alphabetic and
special characters and blank columns are

all acceptable in this field.

Not available (blanks).

37-52

53-72
columns

73-80

Not read by FOR TRANSIT. May be used
for comments.

A digit 9 must be punched in each of the 20

Identification. Not read by FOR TRANSIT.

Card Format for FOR TRANSIT I (S) and II (S)

Those installations in which the 650 is equipped with a special
character device will utilize FOR TRANSIT I (S) or II (S), and the
statement card format applicable to these systems is shown in
Figure 3. It will be noted that this format is quite similar to the

preceding format except that the statement field includes ten additional

card columns and columns 37

through 80 must be blank.

/C-z,,:::n.

sTATEMERT
NUMBER

T .

FORTRAN STATEMENT

IDENTIFICATION

00000

l2sas
1:1111

= o
=<5
- - o
- o of

[RR R RN SRR R R RRR R RE|
STATEMENT

222222222222222222222222222222

ﬂ33333333333333333333333333333333333

>

02222

ﬂ4¢44444444444444444444‘444444444444

5155555/555555555565555555555555555555
4658656555565656656EGBBESGGSGGEEFG&E
NITIPTIITIIIINTINNNNNNINNNNNNNNNTTN0T
ﬂﬂ&ﬂsﬂﬂﬂ888800830&8&8889588*80583388

NS???S???999399999999999993999959995

i1 10111213 1415 15 1718 19 20 122 23 24 25 28 21 2829 30 31 22 31 34 35 34l

§0000000000000000000000000(0000000000000000G000800060000000000000

]
10111213 14 15 18 171819 20 20 22 23 24 25 26 27 28 20 30 31 32 33 34 35 3637 38 39 40 41 42 43 44 45 46 A7 48 49 50 51 52 53 54 59 56 57 50 59 60 61 62 53 64 65 56 67 68 69 70 71 72
1

IRERRERRER R R R RN AR AR RN AR
222222222222222222222222222222222222
33333333333MUST BE BLANK 33333333333
A44444040444444444444484444444484444
5555555555555555555555555555558558555
666666866666666666666666666666666666
TTI11T070 0790770070177 ¥77717911777771
586988858888888888888808008808988888888

99999990999994999
QuaRTe 5

9999999999989999989
3 38 3 40 41 @2 595

3758 59 60 61 62 83 84 63 68 67 60 63 10 7) 12

00000000

R R R AT ST

IRRRREREI

1171117117
38888888
9999998¢

IRTRCR BIETRTY)

Figure 3

39

Preparing the
Function Title
Cards

Card columns Description

1 An alphabetic C in this column
indicates a comments card, which
will be ignored during translation.
This field may be left blank,

2-5 Statement number. This field may
be left blank.
6 Used to indicaté continuation cards.

Zero or blank indicates first card
of a statement. A non-zero punch
indicates a continuation card.
This field may be left blank.

7-36 The statement. Numerical, alphabetic
and special characters and blank
columns are all acceptable in this field.

37-72 This field MUST BE LEFT BLANK.
73-80 MUST BE BLANK. Normally used

for identification but reserved for
zone punches.,

Sample Problem Statement Cards

A machine listing of the statement cards for the matrix multipli-
cation example discussed in Chapter I is included in Appendix B.

Title cards for function subroutines are required in the translating
phase to create an internal table of function names as described in
the preceding chapter. The format of these title cards is shown in
Figure 4.

00001 30! ‘1 J
EsTanDARDR|FOR TRANSIT T CALL

TRANSFER | FUNCTION CALL TITLE NAME
INSTRUCTION| TITLE NAME
ERERAROOREO 0000000000000 D0DOD0N0DDOG0D0000000000/0000000000000000000090000000000000
1

71455 18RI BWISKYT ln\szulzznunﬁlvnmwja\zluuasxl B ROA YO UE BB AR NN U BT RNDHANUEBTBBOINTRBERT BN

trrrpgrrpertireettrrorrrrnntmuroranrprrrgrorrtrrrrnrrernerien e et

2222222222Q2222222222(2222222222(22]22222)122222(22222(222222222222222222222222222222222
33333333433j3333333333)3333333333)333333(333233)33333)333333333333333333333333333333333
AA444444441444444444)1444444444414414444004044404444414444444444448444444444444444444444
5555555 65/5555555555/5555555555(5555555(55555(55555[555555555555555555555565555655545
6666666666(6666666666/6666666666/656/6666666666(66666/666666666666666666666666666666666
R R R R R IR R R IR IR I R R I AR N R R R R R RN R R RRERERR N RN
486088886063/3680088860868/868808868688(808/1686648/883086/88688880886868880A888888688888888888688
899?239999%9999999999999999999??99999999893353 9998999599999999993939 9995999993

[IER] T 6 9 10011213 141516 1718 19 20121 22 23 24 25 76 21 28 20 343 32k3 3 36 36 3039 38 40 A1 4 5 BRBNURNNBIEN RN

8
9

A2h44 49 40 B 52 2 34 55 36 57 58 59 60 31 6 63 64 63

Figure 4
40

Card columns

7

Description

1-10

11-20

21-30

31-32

33-37

38-42

43-47

48-80

A standard instruction, 00 0000 1500,
which is required in all function title
cards. Columns 2 and 10 must each
contain a 12-punch.

" The FOR TRANSIT function name
(title) in 650 double digit representa-
tion. A name consisting of less than
five characters (ten digits) must be
punched in the low order positions of
the field. Unused high order positions
of the field must be punched 00. A
12-punch is required in column 20.

The IT call name in 650 double digit
representation. If a name consists of
less than five characters (ten digits)
by virtue of its having a subroutine
number < 100, it must be left-
justified in the field. Unused low
order positions must be punched 00.
A 12-punch is required in column 30.

Blank columns.

The FOR TRANSIT function title in
single character representation. This
field is for identification purposes only.
Blank columns.

The IT call name in single character
representation. This field is for

identification purposes only.

Blank columns.

A completed function title card is shown in Figure 5. In this
sample card the function specified is the square root (SQRTF), and
the subroutine to compute the function has been assigned the number 23,
This card will cause the entry EOOAX to be generated by the compiler;
the appropriate subroutine must be incorporated at the SOAP level

with the symbolic output of the compiler (see Chapter II).

41

Operating
Instructions

Phase I

BONOON1S0NR2YETRES °»%ir BE57E0Y [SARTF] 23EK
ISTANDARD on TRANSIT A | ¥
TRANSFER | FUNCTION CALL TﬂLE CA ;t

INSTRUCTION| TITLE NAME NA
GERNAROOQAo000000000j0c0000 OO0 g0 ojgoogolo0o00
123
11

5 6 70§ I0[0n 1210 14 5 18 17 10 18 2070 22 20 20 76 26 27 28 20 30080 3203 34 36 38 27§08 33 40 41 47140 44 €3 46 4714 43 50 51 52 53 54 5553 57 59 5960 61 6263 6465 66 676869 T0 N 12 1 M IS TV 00 19 80
(RN IRR R R R AR R R R R IR R AR AR R R AR R AR AR R R R ARRR R

22222222222 Q222222222 022222 2222|R2222{22222)§2202[2222222222222222222222222222222122
33333333333333333)33(33333333333(3333(33333}3333{333333333333333333333333333333333
40444444441444444444414444444444)4444444)44444j44444/4444444444444444444444444444448444
5555555)55/5555555555555505555/55555555555555)55/555555555555555555555555555555555
6G66666666/66666666FH6666Q6666E/666666))660666/66666666666666666666666666666666666666
IR R R R AR RNty X ER R Ry R R R R R R AR R N R RN R R RN
GBGBBBEBBB.BS'BBIBESBB&BESHEBSBSB'BSBBEGGBBBﬁﬂBﬂBSﬂBBBSB388883&888888888388&5838

9990899950959655pa598 9 59999008/9585R058/83095891950909/999989958839960989 99999 535685883
123458788 xn: 1213141576 17 18 19 20 242526 27 26 29 3003 32033 34 53 36 3/130 39 AD &F AZA4I 4445 48 47148 43 50 51 52 53 54 55 56 57 54 59 60 1 62 6: J l BGci R B3 TO T T2 M T 4 i 100
Figure 5

NOTE: Function title cards must be in numerical order with
respect to the information punched in columns 11-20 of the cards
when they are loaded in the translation phase; i.e., they must be
in alphabetic order.

Phase I (Translation)

Console Settings

Storage Entry: 70 1952 9999 (If FOR TRANSIT and function title
- cards are already loaded, 00 0000 1999)

Switches: Programmed STOP
Half Cycle RUN
Control RUN
Display UPPER
Overflow SENSE
Error STOP
Operation

1. Ready machine with proper console settings, FOR TRANSIT
533 control panel and blank cards in the punch hopper.

2. Ready read hopper with:

a, FOR TRANSIT deck

b. Title cards (in numerical order on cols. 11-20) for any
function subroutines required by the program

c¢. FORTRAN statement cards

3. Depress computer reset key; program start key; and, when
read hopper empties, end-of-file key.

o

42

43

The 650 will load the FOR TRANSIT deck and any function
title cards and will automatically start reading the FORTRAN
statement cards. Translation will take place on a statement by
statement basis, with the corresponding IT statements being
punched concurrently. The last FORTRAN statement to be trans-
lated should be a "END". Immediately after this has been pro-
cessed the machine will punch a Header Card needed for the IT
compilation step.

4. At the conclusion of the translation process, run cards out
of the punch feed and discard the first and last cards. The
remaining cards, in order, are (a) the IT statements, and
(b) the IT Header Card.

5. Rearrange the card order to (a) the IT Header Card, (b) the
IT statements. This is now the complete IT program and is

ready for compiling.

Translating More Than One Program at a Time

It is not necessary to reload the FOR TRANSIT deck to trans-
late additional source programs. Simply stack the statement
card decks for the several source programs one after the other
in the read feed as if they were all one program. The last state-
ment of each program, i.e., the concluding "END" statement
will cause the 650 to:

a. Punch the Header Card
b. Initialize and proceed with the translation of the next pro-
gram in the read hopper.

This procedure assumes, of course, that appropriate function
title cards are included (immediately after the FOR TRANSIT
deck) to create an internal table of function titles containing all
the functions which will be encountered in the several source
programs.

To create a new table of function titles requires the loading
of the FOR TRANSIT deck followed by the new function title
cards.

Programmed Stops

The machine is programmed to stop under certain conditions
during the translation phase. If a stop is encountered, display

the contents of the program register and compare the data address
with the following list to determine the reason for the stop.

44

Data Address

0001

0002

0003

0004

0005

0006

0007

0010

0020

0030

0040

0100

0300

Reason for Stop

Unacceptable or misspelled non-arithmetic
Statement,

Table overflow, i.e., the limit on the
number of variables (either subscripted or
non-subscripted), or on the number of
branches in computed GO TO statements
has been exceeded.

Statement with more than 125 characters.
A variable contains more than 5 characters.

The scan routine, which inserts additional
pairs of parentheses to satisfy the require-
ments of the compiler, is attempting to
exceed the limit of 15 pairs. (Though not a
programmer's error, the statement must be
rewritten as two statements and reprocessed.)

More than ten function title cards.
Function title cards not in ascending order.

The statement does not contain an even
number of parentheses:

An unacceptable combination of punches in
a card column.

An unacceptable function name, i.e., one
not defined by a function title card.

The variable has been omitted from a
control statement.

More than 5 characters in the constant
or variable component of a subscript.

Translation results in a statement of more
than 120 characters in length. (This is not
a programmer's error, but is caused by the
expansion from FORTRAN to IT. It never-
theless must be corrected by breaking up
the offending statement into two statements
in order to avoid compilation error.)

Operating
Instructions

Phase 11

Data Address » Reason for Stop

0400 Improper DIMENSION statement.

Error Procedure

When an error is indicated, remove the cards from the read
hopper and stacker and run out the cards still in the read unit.
The first card out (or the fifth card from the back) will be the
one containing the error. If the error card is a continuation
card, the error is in the corresponding statement but not nec-
essarily in that portion of the statement contained on this card.

‘If corrections can be made at once, do so and reload the read

hopper with the corrected card and all of the cards which follow
it in the program and press the program start key. Translation
will be resumed. If it is not possible to correct the error
immediately, relinquish the 650 and completely reprocess at

a later time. It is important to remember that.an error
indication appears at the time that the error is being processed
for translation. Under certain circumstances, therefore, part
of the statement containing the error may have been translated
and punched out before the error was encountered (for example,
in a lengthy arithmetic statement or in a PUNCH statement
containing a series of variables). In such a case it is necessary
to remove the erroneously punched cards from the punch stacker
before restarting the program.

Phase II (Compilation)

As mentioned previously, the IT compiler has been modified for
the purposes of the FOR TRANSIT system. Standard IT decks should
not be used in conjunction with the FOR TRANSIT system.

45

Console Settings

Storage Entry: 70 1952 9999 (If IT is already loaded,
00 0000 1999)

Switches: Same as for Phase 1
Operation

1. Ready machine with proper console settings, FOR TRANSIT
533 control panel and blank cards in the punch hopper.

46

2. Ready read hopper with:

a. IT deck
b. IT Header Card
c. the IT statements

3. Depress computer reset key; program start key; and, when
read hopper empties, end-of-file key.

The 650 will load the IT deck and begin reading the IT state-
ments. Punching will occur as each statement is compiled
and ready for output.

4. At conclusion of compilation, run the cards out of the punch
feed, removing the first and last cards. The remaining
cards are one reservation card for data requirements and
the compiled symbolic program. The program is in one-
instruction-per-card SOAP II format, with the IT statements
in the remarks field. The deck is now ready for assembly,

Compiling More than One Program at a Time

It is not necessary to reload the IT deck to compile additional
programs. Simply stack the statement card decks for the
several problems, preceded by their respective Header Card,
one after the other in the read feed as if they were all one pro-
gram. The last statement of each program, i.e., the trans-
lated "END" statement, will cause the 650 to:

a. punch the problem constant table

b. initialize and proceed with the compilation of the next pro-
gram in the stack.

Programmed Stops

The address lights will show 1234 for error stops. The four
high order positions of the display lights (Upper) will specify the
statement number of the offending statement; the next position
will be zero; and the five low order positions will indicate the
type of error according to the following code.

Code Reason for Stop

01001 The number of instructions compiled from a single
Statement exceeds 93 instructions.

¢
-

Operating
Instructions

Phase 111

-
F]

Code Reason for Stop

03003 Power of floating point constant exceeds 50 or is
less than 00. (00 > PP > 99)

620 73} Nest of DO loops exceeding 4.

62 099 Floating point exponent of a constant.
65099 Subroutine entry exceeds limit.
67 0 99 Unconditional transfer exceeds limit.

69 073 Subscripted fixed point variable in error.

69 0 99 Non-subscripted fixed point variable in error.
88073 Subscripted floating point variable in error.

88 0 99 Non-subscripted floating point variable in efror.

50 0 50 First character of arithmetic statement or the
"DO" statement index is not alphabetic.

xx 0 xx Errors not specified above will indicate an improper
formation of an arithmetic statement.

Error Procedure

When an error occurs during compilation, note the reason for
making corrections to the original FORTRAN statements.
Depressing the program start key will cause the 650 to read
the next statement and continue. Further output of the state-
ment in error will not be punched.

Phase III (Assembly)

As indicated previously, the SOAP II program has been modified for
the FOR TRANSIT system. Standard SOAP II decks should not be
used in conjunction with the FOR TRANSIT system.

Console Settings

Storage Entry: 70 1952 9999

Switches: Same as for Phase I

47

Operation

1,

Ready machine with proper console settings, FOR TRANSIT
533 control panel and blank cards in the punch hopper.

Ready Read Hopper with:

SOAP-PACKAGE Deck

Subroutines in five-per-card absolute format, if any
Entry point "SYN" cards for subroutines in 650 language
Data reservation card (first card of Phase II output)
Subroutines in symbolic SOAP II format, if any
Compiler output in symbolic SOAP II format except
first card

g. One blank card if it is desired to punch out the avail -
ability table after assembly. (Availability table can
also be obtained by manually transferring control to
location 1900)

000D

Set the storage entry sign switch to plus for condensed
five-per~-card output format, or to minus for standard
SOAP II format,

Press computer reset, program start, and, when the read
hopper empties, end-of-file.

Run cards out of the punch feed. Discard the first and last
cards. With the storage entry sign switch set plus for five-
per-card format the remaining cards are:

five-per-card load routine

package subroutines

subroutines entered in five ~per-card format
subroutines entered in SOAP II format
compiler output (object program)

O O

All of the above cards are in the standard five-per-card
format. The last card when loaded will also transfer control
to location 1999, which is the first location of the object pro-

gram,

With the storage entry sign switch set to minus, the re-
maining cards are:

1. five-per-card load routine
2. package subroutines
3. subroutines entered in five -per-card format

“

49

>

s

4. one card which modifies the load routine to load single
card instructions

All of the above cards are in the standard five-per-card
format. The remaining cards are in assembled single card
SOAP II format.

data reservation card

entry point "SYN'" cards for subroutines in 650 language
subroutines entered in SOAP II format

compiler output (object program) assembled in single card
SOAPII

9. a transfer card which when loaded will transfer control to

o N O\ Ut

location 1999 which is the first location of the object program

Assembling More Than One Program at a Time

Assembly of additional programs requires reloading the
SOAP-PACKAGE deck preceding the subroutines and compiler
output, since the five-per-card load routine and package sub-
routines are interspersed throughout the deck and are punched
out while the program is loaded. Thus the output from the
assembly phase is a complete object program.

Multifile processing can be simulated by inserting a SOAP-
PACKAGE deck between each problem to be assembled. The
system is such that after processing the last compiled instruc-
tion the program transfers control to the console which will
load the SOAP-PACKAGE again.

Programmed Stops

The address lights on the console indicate the error condition
listed below:

Code Reason for Stop

0111 Symbol table full.

0222 Drum packed.

0333 Illegal SOAP 1I card has been encountered.

Depress Program Start to continue assembly.

Errox Procedure

Error stops 0111 and 0222 are encountered when the capacity

50

of the assembly routine or the drum has been exceeded and
assembly is halted.

Error stop 0333 will in the case of single card assembled
output reproduce the error card as an input card, and in the
case of five-per-card output insert blanks in the instruction
and its respective address and the card will not be punched as
a load card. Thus, the output cards can be corrected using
storage available as indicated from the Availability Table.

“TI1 oseyq o3 mdur Se uMoys IapIo T} JAI6 01 JBULIOY [] JYOS OHOqUIAS pUue 3IN[OSqE UL SSUMNOXNS J19sU] °E
«(S) II 3 IT JISNV.L HOJ Ul MO[I2A0 I0 MOTIISPUN I0F }o3yD wresboxd 302(qo jo wonerduroo 21eWII[> O3 SNUTW O3 398 YOJMS ubig Ay ab6eI01S °Z

*sjuawmalels burpaoasd RpPESH M sbueireay]

T

wesboxd 302fqo ur syuduUx

weaboad 03(lqp (p
ssurnoaqng (o
seupnoqns abexoeg (q

(£)

IOy I JVOS Wt
wresboxd poaridwo) (g
pIeo

(1)
mepeay IJ (9

e
spieo butareuray *pred 3sBl
Pue 38173 pIEOSIP pUe padf
yound Jo o SpIBD tna ‘aseyy

-a3e3s yound Aq Joy pase sy surnoi peoty (B UOpIBATSSAI BIR(] (B syjmauralels II (e YOEd JO UOISN[OWOD 3L Iy °S
(2) fo 9sneD Mu
aTt-yo-pug (o
wesboxd 303(qo yo bupmuny Apquiassy worzeiduwro) UOTIBSWEL], Koy 3m3s wrEBoug (q
\ A9 39501 19Idwro) (e
ssaid ¥
suior 11 IVOS
ug ndino epdwo) (3]
1BULIOT
1I dVOS ut saupnoqns (2
II 35efqd Wog
pieo moreAlasal e3e((p
sourInoIqns
obenbuey g9 10
Aue 1 ‘spreo eyeq (q spreo NAS wurod Any (o spaed
SpIeo abenbuey syusmajels I (o mewazeIs NVILJo4(o

35e] pue 1511y GuIpIeosip 0S9 wt ssunmoxqng (q wpesH II (q| Awe J1‘spreo op worgounj(q
‘111 @seyq wog mdng (e yosp 2bexped-avos (e q92Q II (e }¥09p LISNVYL ¥OA(®e MM saddoy peax Apeay ‘g
s{aeg s{ueg SEBT s[aeg i reddoy yound Apesy -z

PIEoq I9I0BIBYD

eroads TISNVY.L 904
pIeoq II1 2

II @seyd LISNVY.L 404

preoq I230BIBYO

eroads LISNVYL YOI
pIeoq IIf 3

II °seUd LISNVYL HO4

pIeoq 1910BIETO
Teoads LISNVY.L Y04
preoq III 3

11 @seyd LISNVY.L ¥Od

pIeoq IajoeIeyo
Tetoads LISNVHL HOd

preoq [3seyd LISNV Y.L 90d

(s) 11 2 (S) I LISNVY.L Y04
11 21 LISNVY.L ¥04

107 ¢€g U [oued [01uU0d WesT]]

51

TALL WVYO0Ud LOI[FO IIT ISVHd 11 3SVHd I ISVHd NOLLVYEdO
*SIYOJIMS UORDITIS N0y TooD
SSeIppy JO sweawl Aq 6667 WOIIBOO] O1 JOIUOD IBSUED IO 6661 0000 00 01 SSYDIIMS dO.LS TOLTT. Nmda 4D 1EH
Ay sbei03g 195 ‘poprol ApEai[e aie spIed oTin mopouny pue weibox ossevoxd 3 ASNAS MOTISAD dOl1S pouwrtaeiboig
gdddn

Aedsiq 6666 2S6T 0L SoyPIMg Anuy sbeorg

SONLLIAS TTOSNOD
HINAED0Yd ONILVYHdO 0 AMVININNS

CHAPTER IV ~

Preparing
Data Cards

USING THE OBJECT PROGRAM

This chapter contains the information and instructions necessary
for utilizing an object program produced by the FOR TRANSIT
system. The first section deals with the preparation of data cards,
and the second section consists of operator's instructions and notes
for running the object program.

As indicated in Chapter I, a READ or PUNCH statement in the
source program will cause the object program to read or punch
data cards, card after card, until the complete List has been
processed. This reading and punching of data is actually accom-
plished by subroutines contained in the Package Subroutines which
are always loaded with the object programs.

Data Cards

Data cards are identified by a ""12" punch over card column 73. One
to seven pieces of data may be included in one card. If the List
requires more than one card, i.e., more than seven pieces of data,
additional cards are read or punched.

Data is located in the first seven fields of the card, each field
ten columns, with negative values indicated by an "11" punch over
the units position of the respective field and positive values by a
"12" punch or a blank over the units position.

Word eight of input cards is available for identification as
desired by the programmer. Word eight of output cards is punched
with the statement number in the I-address, and with a serial
number (which is sequential for each problem) in the D-address.

Data is read and punched in the order specified by the LIST
from left to right, with arrays in columnwise sequence.

Form of Data

Data representing values of floating point variables are punched in
data cards as floating point numbers of the form .XXXXXXXXPP,
where PP is the power of 10 with 50 added to avoid negative exponents.
The values assigned to fixed point variables must be integers, and
any unused (high order) positions of a field must be punched with
Zeros.

52

Executing the Operating Instructions
Object Program

Console Settings

Storage Entry: 70 1952 9999 (If object program already
loaded 00 0000 1999)

Switches: . Same as for FOR TRANSIT (Phase I)
Operation

1. Ready machine with proper console settings, FOR TRANSIT
533 control panel, and blank cards in the punch hopper.

2. Set storage entry sign switch to minus for execution and to
plus for bypassing of conditional Punch Statements.

3. Ready read hopper with entire output of the assembly phase,
and data cards if required by the program.

4, Depress computer reset; program start; and when read
hopper empties, end-of-file.

The object program will load; control is then transferred
to location 1999 which is the first instruction of every object
program, Under control of the object program, data cards will
be read in and punched out.

Running More Than One Program at a Time

Running more than one object program at a time can be accom-
plished by stacking the object programs and their respective
input data cards in the read hopper. After completing a program
the 650 will return control to the console which being set to

70 1952 9999, will load the next object program.

Programmed Stops

PAUSE or STOP statements in the source program will give rise
to stop codes in the object program. The data address of the
stop instruction in the display lights is available to determine
at what point in the program the stop occurred.

Source programs which attempt to transfer control to state-
ment number zero will give rise to an error stop which displays
~ the address 9888 in the display lights. In FOR TRANSIT I (S)
and II (S) the number zero is assigned to blank statement num-

53

bers, and this number should not be used.

In addition to compiled stops in the object program, certain
stops will occur in the package subroutines. The address
lights on the console indicate the type of error according to the
following lists:

PROGRAMMED STOPS IN PACKAGE DECK FOR FOR TRANSIT 1

Package Sub-
routines in Which
Address Lights Error Condition Error Can Occur
0001 Negative argument EOOAB, EOOLO
0020 Zero argument with EOOAK, EOOAL
negative exponent
0050 Floating point result EOOAL, EOOLP
less than 10751 or EO00AC, E00AG
greater than 1049 EOOAI, EOOA]J
EOOAO
0501 Floating point number EOOTH
to be fixed greater
than 1010

Error Procedure

'The various error conditions listed above may result from such
causes as logical errors or scaling problems inherent in the
source program, errors in preparing data cards, etc.
Depressing the program start key will cause the 650 to perform
the instruction contained in the distributor, which will be the
subroutine Exit instruction. This instruction should be noted

~ as an aid in locating that point in the object program where the

error occurred.

PROGRAMMED STOPS IN PACKAGE DECK FOR FOR TRANSIT II

Package Sub-
routines in Which

Address Lights Error Condition Error Can Occur
0001 Negative or Zero Argument EOOAB, EOOLO
0002 Floating Point result EQOCAC, EOOLP

- >1049

o4

Package Sub-
routines in Which

Address Lights Error Condition Error Can Occur

0003 Error - Floating Point EOOLQ
Exponentiation

0010 Fixed Point argument of E00AK
zero with negative exponent

0011 Floating Point argument of EOOAL
zero with negative exponent

0049 Floating Point result EOOAL
21049

0100 Floating point overflow or EOOAA
underflow in an arithmetic
statement

0501 Floating Point number to be EOOTH

55

fixed 2 1010

Error Procedure

The various error conditions listed above may result from

such causes as logical errors or scaling problems inherent in
the source program, errors in preparing data cards, etc.
Depressing the program start key will cause the 650 to perform
the instruction contained in the distributor, which will be the
subroutine Exit instruction. The instruction in the distributor
should be noted as an aid in finding the point in the object pro-
gram where the exrror was encountered.

APPENDIXES

Appendix A

Appendix B

Appendix C

57

533 Control Panel Wiring Diagrams for FOR TRANSIT I
and FOR TRANSIT II:

FOR TRANSIT (Phase 1)
IT - SOAP (Phases 2 and 3)

533 Control Panel Wiring Diagram for FOR TRANSIT I(S)
and FOR TRANSIT II(S) (all phases).

Listings of Cards for Each Phase of Processing of Sample
Problem 4 (Matrix Multiplication).

Listings of Cards to Illustrate a Function of Multiple
Arguments of which One Argument Is Itself a Function of

Multiple Arguments.

Glossary.

2 0% 2 3 & & 3 %

% 4 2 ¥ a1 3 3

4

-«

APPENDIX A

%9 9 23 MM 09 65 W5 IS 9 S5 6 55 % 5 05 6 Gr 2 9y Sy ¥y © 2 i Or 6 B & 9% S ¥ €% k1€ 08 62 B 2 W G2 y2 € 22 1 02 B B L4 H & w £ A N O §

VSN Ni 03LNING
o o o 0o of0oj0 o ©o © O O v 0O 0 0 0 0 0O ¢ O ©O o Pung Qmug Gan® S==l O L
IAd o Boe JO§1NCD 130 28 L 0 ICULNOD 130 om 1) 1) 1) [
-] o o o ojofo o o o o o ov o 0o 0o 0o o0 o o o o G Gunel) Cemadh Dovelh ov
o8 13 90 ANINI 130 98 W] O e 1iX3 49 HO ANINT ma 28
o o o o ofojo o o © o © # 0 ©o © o 0 o o o o 0o o 0 0 o o o o
b 08 emmme— 1N} 30 08 @ 40 Tl 0L A¥1N3 130 98 a 40— 13 4 [N B A
o o o 0 ojofo o o © © o b4 6 © 0 0 © 0 0 0 O o©o 0 0 0 0 0 o0 o Ld
003 041800 130 28 gt OHLNCO 13 K 98 SA W A 2m M
[[o ol%fo o ojJoJo o o o o o |m 0o 0o o o o o o 0o 0o © o 0 0 0o o o ol|™
1 ' NO00 09 13 a0 AuiN3 130 28 w— [—0s 11¥3 49 ¥0 »E..u 136 28 [S
) o o o o ojoJo o o o o o w o o o o o o 0 o-o0 0 0 0o 0 0 0 © hd
1 } 6-0 [09 s Jii 18] 130 08 8) soemmmae (Gt ponemn O s X4 1NF 130 um m%_ ANING 328 o§||l|||_
o o o o ‘:o g ofjofjo o o ©0 o0 © b o o o o o (¢} @ L090G60p0E0OZ0t00 | W
NI x-2] TJORLNOD 130 DB E— 0% ..o ._.23 Ga Gv3y 1SN JILIBVHIIV 1iN3 3215 i
\ o o ofoNe ©o]ojJo o o o o o ~m| o o o o © o
Lov 11k3 aofu0 Auin3 130 28 g] |Icm 1133 & 5 E.Eu ._.un % @
o ofo onNglolo o o o o o W © 0 6 0 0 0 0 0 ©
uin] 130 08 8 40 T Onlll::zu ._.wo 8 umn 2
o ofo © ojjojo o o o o o o o o o o ()
Jof1v0s 130 28 75— Ilo. .EE.zS .Ea %)
o cfo o0 offojo © © O O O Ed o 0o 2 0o 0 ¢ O O Pﬂq
i3 oojvo xuin3 130 08 73—t ,IS t.m %S »Ezu »uo 28 |
O T oxuntutmegmtrdead O [o offo a offojoc ©o o o o 0 |3 o o o) Ed
GyoMm 1iX3 39VYOLS T quom onsmwmmy $5INY 130 98 B 0 SN T lﬂ—I)Khzm kuo 90 g An
H 0,0 ojofo o o o o o o 0o 0 0 0 ¢ 0 0 0 © o
43 3 9. s9 ™
K. oleo 0 ‘ ofo o o o o o %l o o o o o © o © 0 © >
St ST i £7 “fala s 0§ s w
olo ojffojo o o o o o m| 0 o o o oc © 0 o o &
3 3 ”
‘o >fo o o e—nfoho ojo o o o o o w|{ o o o ofo o o ©o O ™
o8 st I 245nu6 s3dsnu8 U
ono ofoajo o o o o o 14 a z
09 ss sds NOWNOD
o o .6.@ 0g0 olojJo o o o o o B o o o +
or st 60 o L
s & o o ofo o o 3 o o ¢ o o © x
P NWAT03 OV zd aBv> Ov i)
© 2 of C=0—=0 gO0~=0Q0 O=—w}p=0 0O=0 o
23z 1 sn8 tRisr g1 101
oo o-o~ofo-0 0=, =0 o=-o0 - Al AL »
8 L3 3SNaW QUINDEY SeESRNEN 3STRdME QV3Y ﬂv € — k4 1
¥ o, o ¢l Pl Coeetd n B O G Vo Crosdd T = s . "
0 070 19T ST T €T 12T 6T 0EK B U B 21937135
o o o 6fo o o o ° o ofo o o o offogo ~—8 oo > oe—e 0o o ojo o o ofo o o o © 0 06 0 @ o O o°
08 sz 5 whnlwn 97014040135 02 o8 st o s w| {3
o o o o o o o o o o o o o ofoged ol ~—a ¢ —s o—e t—s ot o o g o o ofo o 6 0 6 0 0 06 0 0 O O
o3 5 (3 os v wintu orosT _v« €T 121 T OL K 1B UL B K5 b g 09 S5 o5 v w
o o o o o o o o o o o o o o ofo — 'lnﬁ[f o o o= o o ofloc o G 0 0o 0 0 0 0 0 0 O ¥
3 s o 52 i Kl m dndod mo»umdm 02 m oy se 3 sz 32
© 0 6 0 6 0O 6 0 0 0 ¢ 0 0o 0o ©0 0 0 o o ofo —0 o—s o—> — o 6 6 0o 0 0o olo o 0 0 0 ©O 0 O 0O O O O © °
b2 ayvo W Tl Q1O 19T 5T apT €l 2T ATF 0r B B e aavd ¥
©jc © O 0O O 0 © © O OJ3OGFO0 O O © O O © O O Ofe—0b 6—8 oued ¢0 *—8 P — o—e o 0O 0 o 0 0 0o 0JO ©04030 0 0 O O O O O O O B
axom ouom 70M ¥019373S 10
©ofjo 0 0 0 © o o0 © 0 oJoFo © O 0O © © O O O OO O O O O © O O 0)0 ~ o ¢ © 0 0 0o 0 o © o clozo o 0o o 0o o o o o ©O "
8 0 asom 8 2
0of0 0 0 0 o o o o o oloFe o o © o o o o o ofo o o o o © o ORNO " o o o o o c o o o o o oJoFo o © 0 0 O © ° O O -
3 Q¥om s guom mv_ auol avom.
030 © © 0 ¢ 0o © o o ofjofo o o © o o © o © ofo o o o o ofc~ o olo 1o o o o o 0o o o o o o ofoFe 0 © 0 Oo 0 ©o O O O 1
v ouoM € a¥om - s Ty £ 0B
3o 0 0o o o o ¢ o o olojo 0 o o © O 0o O O O ! N o o 0o o 0o 0o o o olofo 0o 0o 0 O © © O O O B
11x3 1 AYLINI ¥
©30 0 © O ©O 0 O O O 003 0 © 0 0 © © O G O O © 0o 0o 0O 0O 0O 0O O 0y0§0 0 ©¢ © 0 O € & O O .
quom
oF oF o o o ¢ 0o o o o oflozec o o o © ©o o o O O “
8 GHOR 1 oyoR t T - s T 1 quoM
oF oF © o o 0 0 0 0 o O O ° o o o o o o o ogofo © o 0o 0 o o © 0 ©foFo © O O O O O O O O 2
s gy quom 1ix3 374000 ANV nd 1 txu ud:ou aNY ng 1 ouom.
oF oF 3 o o 0o © 0 © o 0o ojJoFyo 0 0 o ©o ©0 O <& O © 1
auds § € Quom nd q v
O T Qremyr v oF ' o o © 3 o o o o ©c o o o o 06 o olojJo o o o o & O © 0O O E
audm ¥ L1x3 39VyOL 1§ ouom ICRL asom AULND T auom
. v - ° s d —— o 0 0o 0o 0o o 0o 0 00 O 0 0 0 o 0 0o 0 0 O a
og st L2] s oL o8 52 o <9 1
0 o0 a o o o © o 0o 0o 0 0O 0O O 0O 0 6 OO O 0 O & 9 0 © B
03 55 i 05 } st o 09 B o5 v w
° a 0. 0 0O ©o 0 0o o o ¢ OO0 0 0 0 0 0 0 0o 0 o o 0 O 8
oy &5] o8 sz og o 3 o sz w2
r—— o ¢c o 0o c 0 O 0O 00O 0 C 0 0 0 0 0 o 0 O v
Loz Q¥VI HONNd oNIQYIH L v Quyd Q¥
ov 66 eE If % SE vE % % K o8 62 82 2 W S ¥ €2 2 12 02 6 @ 4 W § M 9 ;W i O & 8 L 3 S ¥ T 2 1

r
¥3 £9 29 19 09 68 BS IS 95 S§ ¥S € T Eonm«?‘i»

(1 ®s04d) LISNVIL 404
1INVd TJOUINOD ‘HONNJ aV3IY Q¥VD LE5-€ES
WILSAS ONISSIDOUVIVA 059 I HISNWVYL 304 pur T LISNV3L 304

NOILYIOdIOD SINIHOYW SSINISNS TYNOILYNIIINI En-

s voves

59

> Oy B € X5 %X S es g FOWOOE 62 ® 1z RS2 2R 22RO S @ 4 N WM WD oA 0 e 6 8 i 8 g . € oz
¥SN NI G3LNiNg
o O 0 6 0 0 0 6 0 o o ¥y, 0 0O 0O 0 0 06 0 0 O o . e
o pog————— 081800 130 98 Umed 0L J08LNOD 130 | @ — o
O 0 0 0 0 6 0 0 o o % 0 © © 0 0 0 © 0 o o
08 ————me [1X3 49 ¥0 AMINI 130 38 — b—oz 1iX3 45 ¥ AHINI 130 08
b © 0 0 0 0 ©o ©o 0 o o Fl O 0 0 0 O 0 0 & 0 OfO0=0=0=0$0m=0m=0=0=o0— «
- OB semmmeemmas 43 IN3 130 08 9 dO P] ABIN3 (30 96 § dQ wmm—m—— 9 4 J 1 3SMani av3y o ‘ -
O 0 0 0 0 6 0 0 0 o Wi 8 o0 o o 0 0 o0 ¢ o ofoeofo~0fo~c-0~0=~0=0
- }09—em— w0wiNOD 130 08 - 75 ~—i JOHLNGD 130 28 T -
© 0 0 0 0 0 © 0 o o * 0 0 0 0 0 0 0 o0 o o -y
=l LiX3 ¢% 40 ABIN3 130 28 V5 m— 0% LIX3 d9 8O ABIN3 130 28 1 -
v © © 0 0 0 0 0 O o o ¥ 0 o o o 0 0 0 0 o0 o - -y °
- P09 e A4IN3 130 98 § 4O om0 A¥IN3 130 08 ¥ 40 = -
© © o ¢ o o0 o o0 o o e o ¢ 0 o o o © o o
= 05180 130 98 ¥t ot I08INOT 130 98 QV3Y 1SuId DILIBVHdIV
~ O 0O 0 0 0 0 0 ¢ o o “f 0 o © ¢ 0 0 0o o o oFo% o 0o o o o o o o o "~
bor 11X 49 %0 AMINT 130 08 e L1X3 @9 ¥O AMINI 130 08 01 Quon -
- 0.0 0 0 0 0 0 0o 0 o |«|"0c 06 0 5 0 6 o o c o o o o -
A¥1NI 130 98 ® 40 3¢ e 3 A81NI 130 28 ® 40 .
e 2 o o IA@ OCfOo © 0 0 ©o 0 ¢ o o o 2 ¢ 0 S o ¢ 0 o o o o o o o
0HINGD 130 38 B e I1041N0D 130 98
° © © o o ofo o o 0o 0 © 0o O o o #| ¢ 0 > 0 0 6 0 © o ofoF © o) o o © o o i
- < oug) 11X2 95 4O AMINI 130 28 N B LIX3 dB ¥O ANIN3 130 08 14 v
O O Of O] Off wyeguepmupenms [0 6 ¢ 0 ofo o o © o © o 0o o0 o Ed 0 0 0 0 O 0 0 0 o 0 fo ifewreengumem o ¢Jo o o 0 O »
- Lix3 3gfu0.s 5 audm 0z ABINT 130 26 B 40 1 m— AYIND 130 28 8 40 A" A A
ool o o020 ©]°2%%0 o0fJo.0dcg0 eg0 0 0 0 O 6 0 © o0 O #¥ 0 0 5 ©0 0 0 6 0 © ofo,08 o ofodojolo o ocd0ko o ofoctojofo o od0 o
6| cfoe Se oL) whe|s
ojolo onNofjc~ olonofo o]o OfolefBo o o o ©o 9 0o o L O 2 0 0 o0 o0 o o o ofofoffcf o ofono Oro C ONojlo o ofoNojofJo o oNo x
i + L€t o] sfoe 5% os sv whale 9 i &
Oolofjo oloffo o ofolofo oo ofoloflo o o o o o o a f 0 0 0 0o 0o 0o 6 o o ofclofof o ofoiocfo ofo oh.o_oAdo ojolofofo o olo o
su01873s - tlzfor o o < wli|:2 237135
Bl B4 - — oHello o o o e b0 0 0 0 0 o 6 0 o ocfogofolo ofo o o ofo — >
2 .~) Y LR o0 s hoom Hsnug s ¥ s flgsl s oL) 9
— one ° o oo o 1{go 0 9 o o o0 0 o c ofodo o :
= Nm@m i T3> e sds @)ﬂ::oo ol s ¥ ¢ oo LA A os v W
> Q0 % .} W o.of ooy o o o~ o o - o o o o © o o o cBosofc ¢ O o o O O 0 o o 0 0o © 6 o G o +
o€ v w v 60 o1 s a2 v B v Bov se -,
° ° Sp—— T W ~ J oge [° o . O 0 © ¢ 0o o o o o ofc9%9cfo o o o o © o0 o < x
ouvo S L BB $1i1dS ANAT0D OV J 123735 3009 Qv ing e s o
© 0 o o030 Sedegumee 3 0 4 G ofooofode o=o -0=0g0=0 O # =0 0=0 0=0 O=0CgoN) omo 6 o o o o o -
b NMN sner sng 1 frer 3 81 101 axe 1zzife? vS§zlz
© o o o M.m.v dnofo Nofoge 0~—o0 -o~oflo-0 o »PF=0 0=0 o0=0 o=-ofosg o omo © o o © o ° "
2z 9 S T8 J0gw: Oy Y] 28
0 0 o o QO Q ZLolo o o o010 o e o S 0 O S T 20 O olofo o o o [} “
580193335 - oto ' T TP L odo
4 o9 e of— © 0 o 0 o© B °© o0 o 0 io h 4
oL 53 ulu GI0H ¥0LD3T3S- 0w fos st oc 53 9
s ole o o o o0 o s o o o s
0% < zla THOd ST Wl €T 2T AT 0L B 08 S os v W
s <] o=0 00 o0 0 o© ® o o o
3 s2 2 1 SN el 0108 dNXJid HO1D3 135 - 0O mmane oy s€ 3 §2 2
° ——g o o o o o0 0 o o)
G ST W T T oar w0t oz 8 quv ov !
< ©Cyo0fo 0 o ©o o o o o 0 O ©o a0 o© ° L) © &2 2 0 0 0 6 0 0y0f0 0,0 © © © O O O o
010K ¥01D313S 10Md Ty e & auom
» Cl 6 0 0o o o o 030 " G i RS
& CHOM - &
" © 0 © 0 0 o ONO f{a CEZs
S ouOM
1 o © 0 o o o E-.
a £ @
* ¢ © o o o o A 107 b
AHIND
- © o 0 o 0o o o o 0 0;03F0 o © ¢ o o o "
" 0o o o o o o o o o oflozo o © o o o o© u
om
2 © 0 0o o o o o o o ocjozo o o o o o o s
11X3 316N02 OGNV na |
. © © o o o_o o o o ofozo o © o ¢ o o 3
3 o o o o o o o ologo o o 0 o o o 3
3TIS 1071 v AHLNI
e 6 © o o o © 0o o 0 o 0 ° c 0o o o U o
¢ 17 oL 9
2 o o o© °© o o E
SS £~ 0% s i
a o 0 0o o o o © o 0 © © © o o o L]
. 3 s ot < 2
\ © 0 0o o o o o o~ o o o 0 0 o o o v
NIOV3IY | ¥ Qu¥d O
B 46 % % ¥ % B K05 6 oW o m oS ow D > m oor 65 o %K & ¥ o TE L @ R OZ R YT oSZWRRE W ou N S w2 0 o6 8 2 s = » £ 2z

(€ puo Z sstoyd) dvOs-11

T3NY4 TOELNOD "HONNJ Qv3¥ QUvD £65-E68 ’ I LISNVY1 304 pue I 1ISNV3L 304
WILSAS ONISSID0¥4VIVA 059 [P

NOLLYIOJNOD SINIHOYW SSINISNG TYNOILYNYIINI snﬂ

60

v £3 29 | 03 65 85 6 9 G5 ¥ £ 2 5 05 6y @ I 9 S» ¥y W v 1» Ov 65 66 6 9% S¢ v € % i Of 62 ® 2 92 ST ¥ €2 2 2 02 & O N W @ w €@ » N O & B ; $ S v € 2z 1

VSN N GILNI¥G

o

s o 0o o o o © 0 0o 0 0 6 6 0 O O s’} 0 O © C 0 0 O 0 0 ©° Bl GEUY puy o
pce 7081802 130 18 FLe— 0L ,55...3 Ee um LI]
g o 0o o o o o © 0 0o o 0o 0o 0o o o0 O i o o © [} ¢ o o — G o
o8 1ix3 49 40 E:G zp 8 Wome— p—0L :xu 99 xo z:zu Eo %e ﬂm;
o o o o o o o o o o o o o o o o o © 0 0 OF0=-0=0~0=0=0=0=~C=0= Cann e i e b
3 s ko IN3 130 om u 4 Tt e 02 E;u En e c 40 cam——ranm 73 35Indm V34 O 1 [
w 0o o 0 0 0 o© o 0 0 0 0 0 0 0 0 © wl 0 0 ©o 0 0O © © 0 & O oao—olololo!ololo.-o e Qe hd
bee—— 520153135 300; o 09 081807 ma um gt oS ._B:zno Zm 98 ﬁ rttlﬁ_
"~ ©_0.0 O O ¢C c 0o 0o o o o 0o o L o ©o o o o ¢ © v Sy Gy -
‘] 112 29 40 EEu Ga 28 —f }—os 11%3 99 uo E»zm 130 08 ooy
™ o b@ o o o o ©o o ™ o ¢ 0O 6 0 o 0 0 6 O Summg g bl
1 jij1 I3] AYiN3 130 0€ m& 15 aemd .llomllilllE.:,.u _wa um umn 13 1
B o o o ©o © 0 o o 0 0 0 O »7 o o ¢ o ©o o - €cZo1€0 |
I_Izo:;zot: I08INOY qou1N0D 130 28 e T] Joc:na Eq um 2y IS8l JLIOVHIN 4 ——f
~| 4030 o _o_o o o c 0o 0 2 o o o | o o o offox & [©c o o b
LEELS 11x3 49 W0 E:m 130 28 T fee0f :xu o ao bnzm G._ 28 - 2 oF ool -
B ox C O—tegem—e O OJOF B o o o o o 0 © - 6 © O o o o ofoFo o ¢ o o ofo 3 ¢ 0o o o o ad
- quom T d50m —3 A8IN3 130 om 940 e 13 e | O et XULN3 Ea un mma 8 I
o C § OomOwmpuudege O O O O OJOF c{e o Jo oo © © © © O O O O Q o% ¢c o o o c 0 080T em—eg—mmps O O 1 3 O F Poebguflintioed) O O O O O kel
T I081N0D 130 23 T JoEzoo Ea uu £ ! s
= o 0 0 oo ofci L ole o Jo oo o o © O O © O © O o c o c o o o o offc¥ O 0 O0J0 0O} Og@etpmmgmgg ©O O O O O b
§ OYOR 11%3 <9 ¥O AMIND 130 08 Hmd 0 “ux3 "0 50 .::zu Ea 28 £ <
Ed © olo ojo o Lo T Poebmmpreeeed § CJ O O JO OO ¢ O © O© O O O O O o c o o o ¢© 0 0 QB0 Gwmpmagmpere § 0 0 O fjo O0loO 0o o o ©°C o *
11x3 Svyor LT 0z A¥INF 130 28 8 40 ¥ -t AMINI 130 om ama A¥1N2 39V J
o olo]o o2o0j0 oo 0do,0 Jo o ojojo ofjolosoglojogo o o 0o o o o o o o w| o o o 0 ¢ o ¢ o o cBojogo o ofoyojo ofo ocso4lo ofo ofojo o o o2 o
6|5 fos sL oL s wEs|s
x olojo]onolo Jojo oNojo o c oNelo oo olofo o o o o o © o o o %l o o o o 0o o o o o clolofo o olonwc|oc olo oNol|fjo ofjo o¥ojo ofo oNe b
5 : 3 st +1 E 8|8 foo <5 o5 sy wlele ot €
Ed olojofolojo jojo odolo o o oldojo ojo flojodo o o o o o o g @l 0o o 0 0 9 o o o o ofolofo ofojolojoc oo oi1olo ojo ofjojo olo olo L4
I 12 st ot] 1 e 2373 -
- ofojofo o oHcflo o o o o© @ @ - o o o o o o 0 o o ofogofo ofofo o o oo o o o cfo ofo o ofo o © hd
o8 IJ I 3] IHSNYE HONNJDETEEEDENIEl S Y 9 § OF sL oL = 1)
e onogo, 9 7 ©c © o 0 o 0o o ©° odocfo ofofo o o oo o o o ofo ofo o oteo z
. s Jos 13 os s v
o ofo B o 6 0o 0 © 0 ¢ © @wp ogofec ofo jo <> L, L e) M :
v 3 v R/ o s B v Hor o sz
ool . 0 0 0o 0o 0 0 O o oo ‘o o - iy x
€ 1 ¢ [3 NrT00. O 3T 2 $¥010313S uaoo oamw_I; < e oz
o J o —0=0g0=0 O=—Amwt—~0 ©0=0C O=O0 o3t ol
3z (- g1 1071 1Xx4 .N«. 4 i a3
wo 0—0 O=—asp~—0 0=0 O0=0 omo .
§1 2SN Qv 3SINGM OV [t
o=o0 0.0 n O O O Oumep 0 ofolod “
0 191 1ST 1pT €T 2T 0T WK B & B 5 W -m g ngogofp
o L O O § Owu® Ot Gt aio .
W 0K ¥019373S-C AN g
oo o o o o© o o offo|o s
T ol 5T Wl T [+14 HEznlzw
0o 0 o © M o \ g ¥
] 3
©
o \d _mn 5 .wﬁ .mq wi _m«
P ofe o o ofo o— o o& 0703 o °. P
as + S: ma»uu.ﬁm E _e
" cje » Py n adote | o
i
n oF i oF o o © -
9 quom—}
L) oie T oF ¢ o © 1
v ayom 1
» O] gy ox o o o =
[[ELL 11%3
r{j0F0 © 0o 0 © 0 O O O 0jyO% o o o z@ ogo 2..C o o o0 ©° O O KNS .
auos Of GHOM:
Bl — O § omp=peemcnce fO O O c}lo o o o o T o3 o ¥ =
gyom - 2 qudp 2 oudm
am o3 - o 4Blp ofo o o @b o o ofos of o o
1 B 3 340 N0y GNV ng 1 quys
l o3 3 _ pr—— ofol}o o o [o3 oF - B
a v @ ¢ oude
N cT olo o o o ro c olofofosz . o3 r § 3
Ax3 397 540103735 1071d S0193 S 2 F Lu1n3 HOLS v oyds
el 2 a En oL LB om sL or | 8
5| |\o—wr e 3
08 Pt n@\m 05 s ¥ os 5ol os s os v 1 w
8 0o 0 0o o o o c o o o -] v g s
ov o os ¢] o .L X oy 3 ot 52 1 1>
v e o o ¢ 0 0 0 O ©0 O o O ecaspe w
Loz v Qyvd 3y 1 OMIgY QuYd ov
s €9 29 19 09 6 8 6 9 S5 ¥ £ W IS 05 6 @ S vy € 2zv 1 Ov 65 65 I % st fec§ ex x K ZQ 2 2 ® sz ¥ £2 @ 0z 6 $ &4 9 W M @ 2 N w6 8 & 9 § » £ 2T
h{) 1
L~ {ses0yd 1v)

TINV4 TOULNOD ‘HONNG GYIY QYYD £85-EES (S)I LISNW¥L 304 pue (S} LISNV¥L 303
WILSAS ONISSIDONV LY 059

v yovws

NOUYIONOD SINIHOVYW SSINISNE TYNOILYMNIZINI EM

61

APPENDIX B - LISTINGS OF CARDS FOR EACH PHASE OF PROCESSING OF
SAMPLE PROBLEM 4 - MATRIX MULTIPLICATION

Listing of FOR TRANSIT Source Program Statement Cards for FOR TRANSIT I
) and FOR TRANSIT 11

COOOOORECTANGULAR MATRIX 99999999999999999999
CO00000 MULTIPLICATION 99999999999999999999
DIMENSION A(445) 99999999999999999999

1 B(543) 99999999999999999999

READ 1:A»8B 99999999999999999999

READ 1sNsMyL 99999999999999999999

70D0 4 J=1,N 99999999999999999999
10D0 4 I=1.M 99999999999999999999
605UM=040 99999999999999999999
2000 3 K=1,L 99999999999999999999
30SUM = SUM+A(I,K) * 99999999999999999999

31 B(KyJ) 99999999999999999999
40PUNCH 1y SUMs 1sJ 99999999999999999999
80END 99999999999999999999

Listing of FOR TRANSIT Source Program Statement Cards for FOR TRANSIT I(S)
and FOR TRANSIT IK(S)

C RECTANGULAR MATRIX
C MULTIPLICATION
DIMENSION A(445)s B(543)
READ 19A4B
READ 1sNsMsl
7 DO 4 J=1sN
1 DO &4 I=1yM
6 SUM=0.0
2 DO 3 K=1lsL
3 SUM = SUM+A(LsK) * BlKaJ)
4 PUNCH 1y SUMs 19J
8 END

NOTE: Sample problem 4 provides a test case for the system. It is recommended
that the source program be processed through each phase of the system
and the output for each step compared with the appropriate listings in
this appendix.

63

8000
#000
€000
€000
€000
2000
9000
1000
1000
L000
1000
0000
0000

34
4 6€10 #11%.
4 d2HISU6EIXGISST
TAXHOYISUZY IXYISUYWITASTHAZIVA
E| A 8elId 1

P 1 p.| Zh e
d or 0ZT1%A
4 A LEIX 1

p| 1 A ovIdYy
E A 9e 13 1

A 1 b 613y
44 8ell €i9¢l
44 1200 ST111000021

+ + 00000000008%

" SIUSWANEIS] SYI P999314 03 PIAOIN USSg SBH YSTYM ‘pIen) I9pesH LI o
PUE Sjuowialelg 1] J0 SulSISUO) ISBYJ UOTIR[SUBIL], WIOI] ndinQ jo Bunst

+8
+%
+€
+€
+Z
+Z
+9
+1
+1
+L
+L

64

Listing of Output from Compilation Phase of
FOR TRANSIT I: The Program in SOAP I1 Symbolic Form

ESO000
LAAAA

ESQ00
LABAA

FS007
LACAA

ET020
EsS001
LADAA

FT024
ES006
LAFAA

Fs002
LAFAA

ET031
ES003
LAGAA

REG

00
RAL
STL
RAL
STL
RAL
LDD

00
RAL
STL
RAL
STL
RAL
STL
RAL
LDD

00
RAL
STL

00

00
RAL
STL

00

00
RAL
STL

00
RAL
STL

00
RAU
MPY
ALO
SLT
ALO
RAL
STL
RAL
STL
RAU
MPY
ALO
STL
RSL
ALO
SLT
ALO
RAL
STL
RAL

DD

Y0002

0000
EZ001
W0002
EZ002
w0003
EZ003
LABAA

0000
EZ004
W0002

EZ005
Wo003 -

£2006
w0004
EZ00O7
LACAA
0000
EZ008
Y0039
06000
0000
EZ0O8
Y0040
0000
0000
F2009
Y0041
0000
EZ008
Y0042
0000
0000
Y0039
EZO1l0
Y0042
Y0003

Y0015
W0000
Y0040
W0001
Y0042
EZ011
w0001
w0001
EZ01l1
w0001
Y0003

Y0000

ACC
W0000

65

0043
LAAAA

E00AQ
LABAA

E0OAQ
LACAA

LADAA
LADAA
LADAA
LAEAA
LAEAA
LAEAA

LAFAA
LAFAA

LAGAA
LAGAA
LAGAA

8002

8002

EQ0AJ

T200001T15
21
DF

T36T3 7738
DF

Y4120 Jo

Te2 2z

Y41ZY4lSYL
LM4RSLAXI 4
2RST40RXYL
155L5XI39R
S5142R

F

ES000
LAHAA

ES000
LATAA

ES004
LAJAA

£S000
LAKAA

ES000
LALAA

E5000
LAMAA

ESCO00
LANAA

ES008
LACAA
EZ015
FZ014
EZ013
E2012
EZ011
EZ010
EZ009
EZ008
FZoo7
FZ006
EZ005
E2004
EZO03
FZ002
FZ0O1

RAL
LDD
STL

00
RAL
ALO
STL

00
RSL
ALO
BMI

00
RAL
STL
RAL
STL
RAL
STL
RAL
LDD

RAL
ALO
STL
00
RSL
ALO
BMI
00
RAL
ALO
STL
00
RSL
ALO
BMI
00
NOP
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
BOP

Y0041

Y0041
0000
EZ008
Y0042
Y0042
0000
8002
Yoo3s
LAJAA
0000
EZ012
w0002
EZO13
W0003
EZ014
WO004
EZO15
LAKAA
0000
EZ008
Y0040
Y0040
0000
8002
Y0037
LAMAA
0000
EZ008
Y0039
Y0039
0000
8002
Y0036
LAOAA
nnoo
8000
0003
0000
0000
0000
0000
0000
0000
0000
0003
0000
0000
0000
0002
n020
0015

EOOATL
LAHAA
LAHAA

LATAA
LATAA

ETO31
LAJAA

EQOAR
LAKAA

LALAA
LALAA

ETO24
LAMAA

LANAA
LANAA

ET020
LAOQAA
8000
0004
0n4l
0040
0039
0004
0005
0000
0001
0000
0036
0037
0038
0000
0001
0021

142 2

142 S

1

€] 000¢

IF 138

W 142

Ta4lT4 0T3¢
F

140 2

140 5

1

G 0000

IF 137

W 140

139 £

[3%9 s

1

G G000

IF 136

W 139

Listing of Output from Compilation Phase of
FOR TRANSIT II: The Program in SOAP I1 Symbolic Form

ES000
LAAAA

ES000
LARAA

ES007
LACAA

ET021
ES001
LADAA

ET026
ES0Q06
LAEAA

£S002
LAPAA

FT034
£5003
LAGAA

REG

00
RAL
STL
RAL
STL
RAL
LDD

00
RAL
5TL
RAL
STL
RAL
STL
RAL
LDD

00
RAA
LOD
STD

00

00
RAB
LDD
STD

00

00
RAU
STU

00
RAC
LDD
STD

00

00
RAU
MPY
SLT
ALO
RAU
STU
RAL
STL
RAU
MPY
ALO
STL
RSL
ALO

Y0002
0000
EZ001
w0002
EZ002
w0003
EZ2003
LABAA
0000
EZ0O4
w0002
EZ00S5
W0003
EZ006
w0004
EZ007
LACAA
0000
Y0000
8005
Y0039
0000
0000
Y0000
8006
Y0040
0000
0000
EZ008
Y0041
0000
Y0000
8007
Y0042
0000
0000
8005
EZ009
Y0003

6016
W0000

8006
w0001

8007
EZO10
w0001
w0001
EZ010
w0001

0043
LAAAA

EO0O0AQ

LABAA

EQOAQ
LACAA

LADAA
LADAA
LADAA

LAEAA
LAEAA
LAEAA

LAFAA
LAFAA

LAGAA
LAGAA
LAGAA

8002

T200001T15
21
DF

T36T3 7738
DF

Y&41ZY41S5YL
LM&4RSL4XT4
2RST40RXYL
15SL5XI39R
ST42R

F

£S000
LAHAA

ES004
LATAA

£5000
LAJAA

E5000
LAKAA

£S008
LALAA
EZO14
EZ013
EZO12
EZ011
EZ010
EZ009
EZ008
EZ007
EZ006
FZ005
EZ004
EZ003
£2002
EZ001

SLT
ALO
RAU
FMP
FAD
STU

00
AXC
RSL
STD
ALO
BMI

00
RAL
STL
RAL
STL
RAL
STL
RAL
LDD

00
AXB
RSL
S$TD
ALO
BMI

00
AXA
RSL
STD

ALO .

BMI
00
NOP
00
00
00
00
00
00
00
00
00
00
00
00
00
00
RBOP

Y0003

Y0000
w0000
Y0041
Yo0al
0000
Y0000
8007
Y0042
Y0038
LATAA
0000
EZ011
w0002
EZ012
w0003
EZ013
w0004
EZ014
LAJAA
0000
Y0000
8006
Y0040
Y0037
LAKAA
0000
Y0000
8005
Y0039
Y0036
LALAA
0000
8000
0003
0000
0000
0000
0000
0000
0000
0003
0000
0000
0000
0002
0020
0015

8002

LAHAA
LAHAA

ET034
LATAA

EGOAR
LAJAA

ET026
LAKAA

ETO21
LALAA
8000
0004
0041
0040
0039
0004
0005
0000
0000
0036
0037
0038
0000
0001
0021

T41T4 OT39

F

7842220086
7842220087
7842220088
7842220089
7842220090
7842220091
7842220092
7842220093
7842220094
7842220095
7842220096
7842220097
7842220098
7842220099
7842220100
7842220101
7842220102
7842220103
7842220104
784222010¢
7842220106
7842220107

7842240078
7842240079
7842240080
7842240081
7842240082
7842240083
7842240084
7842240085
7842240086
7842240087
7842240088
7842240089
7842240090
7842240091
7842240092
7842240093
7842240094
7842240095
7842240096
7842240097

Listing of Qutput from SOAP Phase of FOR TRANSIT I:
The Object Program in Five-per-Card Form

0000000000
6500750129
6501240179
6900841913
0000000001
6500470001
0001000301
3500040107
2019670070
6600500055
2000000053
2000420195
06000000000
6500490103
2019700123
1500410245
4601960044
0000000000
0080008000
0000000004
0000000036
0000150021

6500520057
6900821913
2019690122
0000000007
6500870141
2000420045
0000000003
1500608002
6000430147
1519670271
6519660321
0000000000
6680020155
2019680371
6501260181
2000410094
0000000000
6680020051
0000030004
0000000005
0000000037
0000000037

2019680071
0000000000
6501250229
6500870091
2000410044
0000000002
6000400095
6500160171
1900500120
3500040131
6901741902
6500870241
1500390143
6502240279
6901841907
0000000000
6500870341
1500370391
0000000041
0000000000
0000000038
0000000038

6500740079
6500850089
2019700073
2000400093
0001000204
6500870191
1900480068
2019660069
1519670221
1501348002
6500420197
1500430247
4601460046
2019690172
0000000000
6680020153
1500400295
4601440093
0000000040
0000000001
0000020000
0000020000

2019690072
2019680121
6500760081
0001000200
0000000006
2000430046
1500430097
6500410145
2019670170
6500010105
6901001852
2000430096
0000000004
6501750329
6500870291
1500380193
2000400243
0000000008
0000000039
0000030000
0000200001
0000001999

0000199900
0072012900
0121017901
0081000000
0000009301
0044000100
0000000000
0097010700
0145007001
0170005502
0105005303
0100000001
0000009601
0146010303
0329012301
0291024500
0193000001
0000024300
0144012601
0050004800
0125012400
0052000000

Listing of Output from SOAP Phase of FOR TRANSIT II:
The Object Program in Five-per-Card Form

0000000000
6500750129
6501240179
6900841913
0001000201
0001000206
8800010051
6080050053
2119660069
1519670221
1501348002
0000000000
4601960096
2019690172
0000000000
4602460044
1500370091
2000000041
2000000000
0000020000

6500520057
6900821913
2019690122
0000000007
0000000001
0000000006
6980070107
1900560126
6580060077
2019670120
6000010105
5800010101
0000000004
6501750329
5200010190
0000000000
4601440093
0000000040
0000030000
0000200001

2019680071
0000000000
6501250229
8000010090
8200010049
6000470001
2400430096
3500040087
2019670070
6600800135
3919660066
6680070059
6500990103
2019700123

6680060097

5000010102

.0000000008

0000000039
0000000036
0000150021

6500740079
6500850089
2019700073
6980050046
6980060055
2100420045
0001000304
1501408002
6080070127
1519670271
3200420119
2400430146
2019680321
6501760181
2400410094
6680050109
0080008000
0000000004
0000000037
0000000037

2019690072
2019680121
6500760081
24600400093
2400410044
0000000002
0000000003
6060160171
1900800050
3500040131
2100420095
1500390143
6501740279
6901841907
1500380193
2400400243
0000030004
0000000005
0000000038
0000001999

0000199900
0072012900
01210179501

0081000000

0000000000
0000000000
0045005101
0096005301
0171006900
0050022101
0131013401
0000009501
0143000001
0279017203
0000018401
0193000002
0243009100
0175017400
0047007601

0075007400

5700710079
0000820089
2202290073
8400910000
4100000000
0000450191
4600950068
6001710069
4701200221
7101310134
2101740197
9502410247
5501430000
7102790172
8100000184
0000940153
9603410295
5103910000
7502240049
4700870076
8500750074
0000001980

5700710079
0000820089
2202290073
8400900046
9300490055
4400010000
0700000000
2600870140
7700700127
2001350271
0500660119
0100590146
9601030321
2901230181
9000970094
4601020109
0001440176
9900800056
2501240085
5200001980

Note: The above listings do not include the SOAP-PACKAGE cards

produced by the SOAP Phase. Accordingly, the card serial

numbers (word 1, columns 8-10) begin at 86 and 78, respectively.

67

. ¥000210000 0000000000 0000000000 0000000000 0000000000 £000000000 %000000000 €500000691
%000110000 0000000000 0000000000 0000000000 0000000000 €000000000 €000000000 €S00000%2€
#00U0T0000 0V00000CVO0 00U0OVO00VO 0000000000 0000000000 £000000000 Z20000Q0000 1500000008
#000600000 0000000000 0000000000 0000000000 0000000000 £€000000000 1000000000 ES000006€]
7000U8U0000 20000VVOOLU 00LOVOVOOO 0000000000 0000000000 2000000000 ¥000000000 €S00000261
%000L0U0000 0000000V00 UOUYO00U000 0000000000 0000000000 2000000000 €000000000 —€500000292
#000900000 0000000000 0000000000 000000000 0000000000 2000000000 2000000000 2500000069
#000500000 0000000000 0000000000 0000000000 0000000000 2000000000 1000000000 —£$00000001
#000%#00000 0000000000 0000000000 0000000000 0000000000 [000000000 %000000000 —£500000991
%000€00000 0000000000 0000000000 0000000000 0000000000 1000000000 €000000000 ESOO000EDE
000200000 0000000000 0000000000 0000000000 0000000000 1000000000 Z000000000 —£500000011
#000100000 0000000000 0000000000 0000000000 0000000000 1000000000 1000000000 ZS0000008Y

wexdoxd 10s(qO woiy spred (zamsuy) inding jo Sunst
1000000000 §000000000 000000000 £000000000
9600000000 2G6U00000TIT -1500000006 2500000001 -150000000% 1500000004 -1500000006 160000000¢
6000000000 -150000000% 26000000€1 150000000¢ 1500000002 2500000021 1600000009 =1500000008
#000000000 -150000000¢ 1500000006 2500000081 -2600000021 160000000 =150000000Z 200000011
€000000000 -2600000001 16000000072 - 1500000Q0¢ 2500000061 1600000008 ~160000000, 260000001
2000000000 -1500000009 7600000001 ~2S000000EI 25000000%1 1600000001 1500000002 2500000091

wexdoxd 109[qQ 103 spxed eieq nduj jo Sunst

T -6
69T 26T -991 S g
vze -z9¢ gog| _ | O1 -¥
8 69 -0TI -+ gl
66T -00T 8% L S

4
4l 6 -C

9| |81 TI
-8 -z1 -01
-¢ I

€

LT 71

ST -9 1

8
=L

T ¢
-¢T 91

"% warqoxd srdwes ytm pasn e1ep nding pue indu] I0] XTIIBW ISMSUE PUB waqoxd Tem3oy

68

E]

D6A ADBAMN
LAN9AATETLD
ASAATAAE AN
CANIILDZIA

wiro oTfoquiAg 11 dVOS ul weidoxd aylL

‘11 LISNVHUL Y04 30
asetg uoneridwon) woiy indinQ jo Sunsry

0008

vvavi
vvavi
vv003

ovoo3d

NVQ03

LAAA D
0100

*SINENNOYY ATILLTAN H0 SNOLLONNA HLVYLSNTTI OL SadVvD A0 SONLLSI'T

0oo8
0000
10004

%¥000d

<000A
%000d
£000A
€000d
7000A
<€000d
S000A
10004
<000d

90004
<000d
LO00A
1000d
8000A
0000d
B0UOA
0000

€000A

66666666666666666666
666666656666666666666
66666666666666666666

+

dog
dON
00

aLs
[y
dON
aqga
nvy
nLs
nvy
LS
vy
nLs
nvy
aLs
dON
adgn
nvy
nis
vy
nLs
nva
aLs
nvy
vo

93y

vvavl
00053

A2 AN
00053

34
E

Lo BN A o B g

4

D6A ADBAX
LAN9AAZETD
AGAATAAEAN
ZAN39TIDZIA

0008
vvav
vvavl

ovoo3

NY003

yvvv
0100

0008
0000
T000A
#000d

¢000A
7000d
€000A
£000d
#0004
€000d
S0004A
1000d
€000d

9000A
€000d
L000A
1000d
80004
0000d
6000A
0000

<000A

d08
dON
00

als
dON
Jda
vy
ais
vy
s
vy
s
vy
s
dON
adn
vy
s
vy
als
v
ais
vy
00

o3

yvavi ¢
00054 (14

LAAAN
00053

HNOEINC

wxod OTjoquids 1 dVOS ur werdoid YL

‘1 LISNVY.L ¥04d Jo

aseyg uornreridwo) woiy indinQ jo urlsig

06

A ADBAM

LANIANIETOAG ANTANEAANZANIOTOZIA
+0000000001

- aseyg uone[suel], woiy inding ‘sjusuralels I Jo Sunsiy

+

+

an3
(He(D€4¢37

14UNIegeD¢g¢Y)4 LN0=A
spxeD mowalel§ werSord 901nos LISNVYL YO Jo Sunsry

69

APPENDIX C

Glossary FORTRAN System - An automatic coding system originally designed
for the IBM 704, intended primarily for scientific computation.

FORTRAN Program - A computer program written in the FORTRAN
language.

FORTRAN Language - Statements closely resembling the language
of mathematics which are acceptable to a computer as a source
program.

FOR TRANSIT System - An automatic coding system for the IBM
650 which uses the FORTRAN language for its source programs
and gives optimized machine language programs as output.

Source Program - The input to an automatic coding system. In the
FOR TRANSIT system the source program consists of FORTRAN
statements .

Object Program - The machine language program which is the final
output of an automatic coding system.

Compile - Create a series of sequential machine instructions for
actual operation by processing source program statements.

Assemble - Assign actual machine language addresses and operation
codes to symbolic addresses and operation codes.

Optimize - Select memory locations which have minimum access
time for each operation,

FOR TRANSIT Deck - Cards containing instructions and tables for
the 650 processor program which translates FORTRAN statements
into IT statements.

IT Deck - Cards containing instructions and tables for the 650
processor program which compiles symbolic machine language
instructions from the IT statements.

SOAP II Deck - Cards containing instructions and tables for the 650

program which assembles and optimizes the output of the IT deck
to create a machine language object program.

70

Abbreviations and Acronyms

FORTRAN FORmula TRANslator

FOR TRANSIT FORtran TRANSlation to IT, or FORTRAN,
SOAP, IT

IT Internal Translator

SOAP Symbolic Optimal Assembly Program

71

national Business Machines Corporation

Processing Division

112 East Post Hoad, White Plains, New York . %%
Trinied in U.5.A. CZB:

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	xBack

