Reference Manual
650 FORTRAN - Automatic Coding System
for the IBM 650 Data Processing System

Reference Manual
650 FORTRAN - Automatic Coding System
for the IBM 650 Data Processing System

© 1960 by International Business Machines Corporation

TABLE OF CONTENTS

Page
INTRODUCTION 1
Purpose of FORTRAN . 1
650 FORTRAN 1
Machine Requirements . 2
Organization of Manual . 2
650 FORTRAN Statements . . 2
Example of a 650 FORTRAN Program . 4
Compatibility of 650 FORTRAN with 704 FORTRAN 4
Requirements for Changing a Source Program from
FOR TRANSIT II(s) to 650 FORTRAN . . 5
Compatibility of 650 FORTRAN with 7070 FORTRAN 5
Program Decks 6
CHAPTER | - WRITING THE SOURCE PROGRAM 7
Components of a FORTRAN Statement 7
Constants, Variables, Subscripts and
Subscripted Variables 7
Functions and Expressions 12
Rules for Forming Expressions 13
Preparation of a FORTRAN Statement 15
The twelve 650 FORTRAN Statements 16
Arithmetic Formulas 16
Control Statements 17
Unconditional GOTO 17
Computed GOTO 17
IF . « . . . 0 L0 ... 17
PAUSE, 18
sTOP 18
po L. . 0L 19
CONTINUE e e e e e e, 21
Input-Output Statements 22
READ, 22
PUNCH . . . P, 23
Specification Statements e e e e e 25
DIMENSION« « v + . . 25
END. 26

Summary of Limitations when Writing Source Program 27

CHAPTER |1 - USAGE OF SUBROUTINES
650 FORTRAN Subroutines .
Removing 650 FORTRAN Subroutlnes
Adding Function Subroutines
Subroutines in Five-per-card Format
~ Subroutines in SOAP II Format
Determining Available Drum Locations
Determining the Input Parameters of Subroutmes
User’s Subroutines Requiring Index Registers
Available Temporary Storage and Constants ,

CHAPTER 11l - PROCESSING THE SOURCE PROGRAM
Preparing the Statement Cards

Operating Instructions - 6560 FORTRAN (Compllatlon)

Phase . . v

Operating Instructions - SOAP-—PACKAGE (Assembly)

Phase

CHAPTER 1V - USING THE OBJECT PROGRAM
Preparing Data Cards
Operating Instructions - Object Program

Programmed Stops Established in the Object Program

by SOAP-PACKAGE Subroutines

APPEND IXES:
Appendix I - Summary of Operating Procedure . .
Appendix II - 533 Control Panel Wiring Diagram

Appendix III - Sample Problem: Matrix Multiplication.

Listing of Input (Source Program)

Listing of Output from Phase 1 - Object Program

in Symbolic Form

Listing of Output from Phase 2 - ObJect Program

in Machine Language
Appendix IV - Glossary .
Appendix V - Flow Charts:
650 FORTRAN (Compilation) .
SOAP-PACKAGE (Assembly) .

Page
28
28
28
29
30
31
31
32
33
33

35
35
39
42
45
45

48

48

50
51
52
52

53

54
55

56-57
58

INTRODUCTION

Purpose of

FORTRAN

650 FORTRAN

FORTRAN, which was originally developed for use on the IBM
704, is a language closely resembling the language of mathematics
and is designed primarily for scientific and engineering
computation. One of the main purposes of FORTRAN is to
provide the engineer or scientist with an efficient means of
writing programs requiring a relatively short period of instruction
and no detailed knowledge of the computer itself.

650 FORTRAN, an automatic coding system, has been developed

to reduce the number of machine passes required to transform
FORTRAN statements to IBM 650 machine language, while
retaining the optimizing features of a SOAP Assembly Program.
This system may be substituted for FOR TRANSIT II (S). However,
FORTRAN statements that have been written for the FOR TRANSIT
IT (5) system may have to be rewritten to conform to the 650
FORTRAN system. (See "Requirements for Changing a Source
Program from FOR TRANSIT II (S) to 6560 FORTRAN, " page 5.)

The 650 FORTRAN system consists of two programs: The compiler -
650 FORTRAN - accepts FORTRAN statements (the source program)
and compiles 650 instructions in symbolic (SOAP II*) language.

The assembler - SOAP-PACKAGE - is a modified version of
SOAP II which includes certain built-in subroutines. It functions
in the following manner:

1. Punches out in five instructions-per-card format, the routine
for loading the object program and all the built-in subroutines
of the SOAP-PACKAGE deck.

2. Assigns optimum locations to the symbolic instructions
generated by the compiler and punches out, in machine language,
the object program in five instructions-per-card format.

As illustrated in the overall schematic representation of the 650
FORTRAN system (see Figure 1), two passes on the IBM 650 are
required to process a source program from FORTRAN statements

.to machine language.

*SOAP II, Symbolic Optimal Assembly Program for the IBM 650

Data Processing System (see SOAP II Programmer's Reference
Manual, form C28-4000).

Machine

Requirements

Organization
of Manual

650 FORTRAN
Statements

For the compilation and assembly phases of the 650 FORTRAN
system, the following equipment is required:

Basic IBM 650

Index Registers

Alphabetic Device

Special Character Device, Group II

In addition, the Floating Point Arithmetic Device is required to
run the object program.

Programming the IBM 650 using the 650 FORTRAN system requires
a knowledge of the FORTRAN language, but little detailed knowledge
of 650 machine operations. Accordingly, the first and largest

part of this manual is devoted to a description of the FORTRAN
language and the rules governing its use in the 650 FORTRAN
system. Subsequent sections of the manual deal with the usage of
subroutines, operating instructions for the compilation and
assembly phases, and information about running the object program.

A source program consists of a sequence of FORTRAN statements.
As each statement is read into the 650, the 650 FORTRAN system
will analyze and interpret it. Based on the configuration of
characters making up the statement, instructions are compiled
and assembled into an object program.

The FORTRAN statements which are permissible in writing 650
FORTRAN are:

a = b (Arithmetic Statement)
GO TOn

GO TO (ny,ng9,....,0ypy), 1
IF (a) ny,ng,ng

PAUSE or PAUSE n

STOP or STOP n
DOni=mq,my

DOni= mq, Mgy, My
CONTINUE

READ n, list

PUNCH n, list

DIMENSION vq, Vg, Vg,...Vy
END

As an example of the general appearance and some of the properties
of a 650 FORTRAN program, the following brief program is
illustrated and explained.

The Compiler

650 FORTRAN
Deck

The Assembler

SOAP-PACKAGE
Deck

650 FORTRAN SYSTEM

FORTRAN
Coding
Sheets: Source
Program

FORTRAN
Statements

Compile
Source Program

SEEEEEE——— to

Symbolic
Language

Symbolic
Source
Program Deck

s

-t
Y

User's
Subroutines
(if any)

Assemble °
Source Program

e to

650 Machine
Language

Ready~to~Run
Object Program

Figure 1

Example of a t< ™ | B
comment | 2 FORTRAN STATEMENT
650 FO RTRAN 'L‘U’::‘l‘:‘ g
1 (.8 1 b}
Program C| 0000 | 0 | PROGRAM FOR FINDING THE LARGEST VALUE
c‘i 0000 | 0 | ATTAINED BY A SET OF NUMBERS
0| 0000 |0 |DIMENSION A (10)
o{ 0000 | 0 | BIGA = A1)
010000 |0{DO201=2, 10
0! 0000 |0 |IF (BIGA - A(I) 10, 20, 20
1
0| 0010 | 0 |BIGA = A (1)
0! 0020 [0 |CONTINUE
|
!
i Note: Card columns 1-6 must not be left blank.
! Punch zeros to fill out these columns,
I
I
This program examines the set of n numbers a; (i=1,... 10) and

Compatibility of
650 FORTRAN with
704 FORTRAN

stores the largest value attained in BIGA. It begins (after a
comment describing the program) by replacing BIGA by a;. Next
the DO statement causes the succeeding statements to and including
statement 20 to be carried out repeatedly, first with 1 = 2, then
with i = 3, etc., and finally with i = 10. During each repetition

of this loop the IF statement compares BIGA with a;; if BIGA is
less than aj, statement 10, which replaces BIGA by aj, is executed
before continuing.

As stated, the FORTRAN system was originally designed for a
larger machine than the 650. As a result, only twelve of the thirty-
two statements found in the IBM 704 FORTRAN Reference Manual,
C28-6003, are present in the 650 FORTRAN system. In addition,
certain other restrictions to the FORTRAN language have been
added. However, none of these restrictions make a source program
written in 650 FORTRAN incompatible with the 704 FORTRAN
system. For example, 704 FORTRAN variables can be made up of
from one to six characters whereas 650 FORTRAN requires that
variables be made up of from one to five characters.

A statement number of all zeros (interpreted by the 6560 FORTRAN
system as a blank statement number) will be identified by the 704
FORTRAN system as a unique statement number. Therefore, if
650 FORTRAN statements are to be processed on the 704, the
statements containing all zeros in columns 2-5 must be repunched
with these columns either left blank or assigned a gignificant unique
statement number.

It should be noted, that in a few instances FORTRAN restrictions
have been relaxed to take advantage of certain features of the 650;
specific information regarding such modifications is included at
the applicable places in the following pages for the benefit of users
concerned with compatibility.

4

Requirements for
Changing a Source
Program from FOR
TRANSIT 11 (S) to
650 FORTRAN

Compatibility of
650 FORTRAN with
7070 FORTRAN

Additional information concerning the writing of FORTRAN
statements may be obtained by referring to the IBM General
Information Manual, '"Programmer's Primer for FORTRAN,
Automatic Coding System for the IBM 704 Data Processing System, "
F28-6019.

In order to make a FORTRAN program written for the FOR TRANSIT
IT (S) system compatible with the 650 FORTRAN system, the
following modifications must be made.

(1) Delete all EQUIVALENCE statements,
(2) Delete all Function Title cards,
(3) Statement cards must not be blank in columns 1-6,

(4) Expressions to the right of the = sign can contain only one mode,
fixed or floating point.

(5) The instruction compiled for a STOP statement in FOR TRANSIT
IT (S) allows continuation of the program following the halt by
depressing the Program Start key. In 650 FORTRAN, however,
the instruction compiled does not permit continuation of the
program and, therefore, it may be necessary to substitute
PAUSE statements for STOP statements in FOR TRANSIT II (S)
source programs.

(6) The conditional PUNCH statement in FOR TRANSIT II (S), is not
recognized as such by 650 FORTRAN, That is, a PUNCH
statement which is not numbered will be compiled in 650 FORTRAN
as a normal punch statement and subsequent punching in the
object program will not be controlled by the sign switch on the
console. Therefore, it may be necessary to remove the punch
statements that were intended originally to be used only as a
diagnostic aid.

When a source program written in 650 FORTRAN is to be processed
on an IBM 7070 system using 7070 FORTRAN, certain changes will
be required in the input and output statements of the source program.

One of these changes is the addition of FORMAT statements which
are required to define input and output data fields.

The other change, which is directly associated with the use of the
FORMAT statements, is that the READ and PUNCH statements
must specify the FORMAT number to be used with the particular
input or output statement.

Program Decks

The use of FORMAT statements in 650 FORTRAN to be processed
on the IBM 650 is not allowed.

Requests for program decks for the 650 FORTRAN system should
be addressed to:

IBM 650 Program Librarian

International Business Machines Corporation
590 Madison Avenue

New York 22, New York

CHAPTER I — WRITING THE SOURCE PROGRAM

Components of a
FORTRAN
Statement

Constants,
Variables and
Subscripts

Writing FORTRAN statements requires a knowledge of the following:

1. The components of a FORTRAN statement — i.e., the symbols
and characters which may appear within a FORTRAN statement,
and the rules that must be followed in using each of these
components.

2. The twelve 650 FORTRAN statements — the purpose and function
of each FORTRAN statement in the 650 FORTRAN system.

This chapter treats each of the above in detail.

As an example, consider the algebraic formula,

ROOT = [—B+«/B2 ~4AC]/ZA

As an arithmetic FORTRAN statement, the above algebraic formula
would appear as

ROOT = (-B+ SQRTF (B**2 - 4, 0*A*C)) / (2. 0*A)

The entire arithmetic FORTRAN statement above means, “evaluate
the expression on the right side of the equal sign and make this the
value of the variable on the left. »

By coding each letter, number and symbol in the sample FORTRAN
statement, each component can be defined by the corresponding code
number as shown in Figure 2.

The component parts that make up FORTRAN statements are
explained in two groups:

1. Constants, variables and subscripts
2. Functions and expressions.

Constants
Two types of constants are permissible: fixed point (numbers

written without a decimal point) and floating point (numbers written
with a decimal point).

LN
1 2 13bl

b - X%
-«—Q
2

N

A
:

. %

a

_N

N

3
~
5

v—
6

Key

Name of Component

OPERATION SYMBOLS:

* Denotes Multiplication
*k Denotes Exponentiation; e.g., A**3 means A3
+ Denotes Add
- Denotes Subtract
/ Denotes Divide

VARIABLES (Floating Point)

CONSTANTS:

a. Floating Point
b. Fixed Point -

FUNCTION NAME denotes a subroutine which computes
the square root of the argument enclosed in parentheses.
This particular routine must be incorporated by

the user.

ARGUMENT of the Function SQRTF

EXPRESSION

NOTE: Variables may also be in fixed point even though none appear
in this example.

Figure 2

Fixed Point Constants

GENERAL FORM EXAMPLES
1 to 10 decimal digits. The plus is 3
optional. However, a minus sign +1
must be stated if the constant is to -28987
be negative.

NOTE: The magnitude of fixed point constants in the 704 FORTRAN
system must be less than 32768. 650 FORTRAN users must comply
with this restriction if compatibility is desired.

Floating Point Constants

GENERAL FORM

EXAMPLES

1 to 8 significant digits with a decimal
point at the beginning, at the end, or
between two digits. A preceding plus
is optional. However, a minus sign
must be stated if the constant is to be
negative. A decimal exponent (a one
or two digit fixed point constant)
preceded by an E may follow. The
exponent may be signed.

17.

5.0

-. 0003

5. 0E3 (=5. 0 x 10%)
5. 0E+3 (=5. 0 x 109)
5.0E-7 (=5.0 x 10~7)
5. 0E13 (=5. 0 x 1013)

The floating point number will appear in the object program as a
normalized single-precision number in the form . XXXXXXXXPP,
where PP is a power of 10 with 50 added. The decimal point is
assumed to be at the left of the high~order non-zero digit of the

number.
+.10000000x10~°0 to 99999999x1049,

Thus a floating point number can assume any value from
The values in the examples

above would appear in the machine as follows:

Input
Value

17

5.0

. 0003
. 0E3
.0E+3
. 0E-T7
. 0E13

oot O

Machine
Word

1700000052
5000000051
~-30000000047
5000000054
5000000054
5000000044
5000000064

NOTE: The magnitude of floating point constants in the FORTRAN
system for the 704 must lie between the limits of 10~38 and 1038,
650 FORTRAN users must comply with this restriction if
compatibility is desired.

Variables

Two types of variables are also permissible: fixed point (restricted
to integral values) and floating point. Fixed point variables are
distinguished by the fact that their first character is I, J, K, L,

M, or N.

Fixed Point Variables

GENERAL FORM EXAMPLES
1 to 5 alphabetic or numerical I
characters (not special characters) M2
of which the first is I, J, K, L, M, JOBNO
or N.

Floating Point Variables

GENERAL FORM EXAMPLES
1 to 5 alphabetic or numerical A
characters (not special characters) B7
of which the first is alphabetic but DELTA
notl, J, K, L, M, or N.

NOTE: For compatibility with 704 FORTRAN, the name of a
variable must not be the same as the name of any function used in
the program after the terminal F of the function name has been
removed.

Subscripts and Subscripted Variables

A variable can be made to represent any member of a one- or
two-dimensional array of quantities by appending to it one or two
subscripts; the variable is then a subscripted variable. The
subscripts are fixed point quantities whose values determine
which member of the array is being referenced.

10

Subscripts

GENERAL FORM EXAMPLES
Let v represent any fixed point I
variable (I in example) and ¢ (or ¢’) 3
any unsigned fixed point constant I+2
(numbers 2 and 3, respectively, in I-2
example), Then a subscript is an 3*1
expression of one of the forms 3*I+2

A 3*I-2

c

v+tecorve-c

c*v

c*v+e’ or c*v-c’

The variable v must not itself be subscripted.

Subscripted Variables

GENERAL FORM EXAMPLES

A fixed or floating point variable A
followed by parentheses enclosing K(3)

one or two subscripts separated by BETA (5*%J-2,K+2)
commas.

NOTE: 1. Because a variable ending with the letter F to the
immediate left of an open parenthesis is identified as
a function, no subscripted variable may end in F.

2. A maximum of 20 subscripted variables may be used
in any one program. However, there is no limit on the
number of non-subscripted variables that may be used.

For each variable that appears in subscripted form, the size of the
array, i.e., the maximum values which its subscripts can attain,
must be stated in a DIMENSION statement (page 25) preceding the
first appearance of the variable.

The minimum value which a subscript may assume in the object
program is +1.

11

Functions and
Expressions

NOTE: A two-dimensional array A will, in the object program,
be stored sequentially in the prder' Al‘,.l’ Az, Toeros Am, 1» Al, 2
Ag gsvvvsAm 9se+osApy pno Thus it is stored “columnwise, ”

with the first of its subscripts varying more rapidly. One-
dimensional arrays are of course stored sequentially.

Of the twelve 650: FORTRAN statements, it is the arithmetic
formula which defines a numerical calculation that the object
program is to do.. A FORTRAN arithmetic formula resembles a
conventional arithmetic formula. It consists of the variable to
be computed; followed by an = sign, followed by an arithmetic
expression..

For example, the arithmetic formula;

Y = A - SINF (B-C)
means “replace the value of y by the value of a-sin(b=c). »
Functions
As in the above example, a FORTRAN expression may include the
name of a function (e.g., the sine function SINF), provided the
routine: for evaluating the function is available to the 650 FORTRAN

system. These routines can be either SOAP-PACKAGE (built-in)
subroutines or subroutines added by the user.

GENERAL FORM , EXAMPLES
. The name of the function is 4/ or 5: - SINF (A+B)
~alphabetic or numerical characters SQRTF (SINF(A))
" (not special characters), of which XABSF (3. *X)

- the last must be F and-the first
must be X'if and only if'the value of
the function is to'be fixed point. The
name of the function’is followed by
parentheses:enclosing the arguments
- (which'may be expressions),

Expressions:

An expression is any sequence of constants; variables (subscripted
or not subscripted), andfunctions, separated by operation symbols,

.commas, and parentheses:so-as-to-form:a meaningful mathe-

matical expression..

12.

However, one special restriction does exist. A FORTRAN
expression may be either a fixed or a floating point expression,
but it must not be a mixed expression. This does not means
that a floating point quantity cannot appear in a fixed point
expression, or vice versa, but rather that a quantity of one
mode can appear in an expression of the other mode only in
certain ways. Briefly, a floating point quantity can appear in a
fixed point expression only as an argument of a function; a fixed
point quantity can appear in a floating point expression only as
an argument of a function, as a subscript, or as an exponent.

Rules for Forming Expressions

By repeated use of the following rules, all permissible expressions
may be derived.

1. Any fixed point (floating point) constant, variable, or sub-
scripted variable is an expression of the same mode. Thus 3
and I are fixed point expressions, and ALPHA and A(I,J) are
floating point expressions.

2. If SOMEF is some function of n variables, and if E, F,...,H
are a set of n expressions of the correct modes for SOMEF,
then SOMEF (E, F,...,H) is an expression of the same mode
as SOMEF.

3. Two operation symbols may not appear in sequence. If E is an
expression, and if its first character is not + or -, then +E and
-E are expressions of the same mode as E. Thus -A is an
expression, but +-A is not.

4. If E is an expression, then (E) is an expression of the same
mode as E. Thus (A), ((A)), (((A))), etc. are expressions.

5. If E and F are expressions of the same mode, and if the first
character of F is not + or -, then

E+F
E-F
E*F
E/F

are expressions of the same mode. Thus A-+B and A/+B are
not expressions.

13

6. If E and F are expressions, and F is not floating point unless
E is too, and the first character of F is not + or -, and neither
E nor F is of the form A **B, then
E **F

is an expression of the same mode as E. Thus AX¥(B**C) is
an expression, but I¥*(B**C) and A**B**C is not.

Similarly in the case of consecutive divisions, the order of
operations must be specified by appropriate use of parentheses.

Thus A/B/C must be written as (A/B) /C or A/(B/C) whichever
is intended.

Hierarchy of Operations

When the hierarchy of operations in an expression is not explicitly
specified by the use of parentheses, it is processed by FORTRAN
in the following order (moving from innermost operations to
outermost).

Exponentiation, then;

Multiplication and Division, then;

Addition and Subtraction.
For example, the expression

A+B/C+D**E*F-G
will be taken to mean

A+(B/C)+(DE*F) -G
When the sequence of consecutive operations of the same hierarchal
level (e.g., consecutive multiplications) is not completely specified
by parentheses, the order of operations is assumed to be from left

to right.

Verification of Correct Use of Parentheses

The following procedure is suggested for checking that the paren-
theses in a complicated expression correctly express the desired
operations.

Label the first open parenthesis “1”; thereafter, working from left
to right, increase the label by 1 for each open parenthesis and

14

Preparation of a
FORTRAN
Statement

decrease it by 1 for each closed parenthesis. The label of the last
parenthesis should be 0; the mate of an open parenthesis labeled
n will be the next parenthesis labeled n-1.

The maximum number of pairs of parentheses that may appear in
any one arithmetic expression is 25.

Certain limitations and precautions must be observed in preparing
a FORTRAN statement.

Because 650 FORTRAN contains no program error-detection tests,
special care must be taken in writing the statements in the form
the user wishes the program to function. However, there are
utility programs available such as FORSCAN*, which edit each
source program statement and determine whether it has been
correctly written. The FORSCAN program may be obtained from
the IBM 650 Program Librarian (see page 6 for address).

Rules for Statements and Statement Numbers

The 650 FORTRAN program will accept valid statements of up to a
maximum of 125 characters exclusive of blanks. Statements need
not be in any numerical order nor do all statements need statement
numbers. However, cross-referencing within a program is
accomplished by giving statement numbers to those statements
referred to by other statements.

Statement numbers can be any unique unsigned fixed point constants,
from 0001 to 9999 and may appear in any sequence. Thus the
numbering of statements as shown below would be acceptable in a
program.

ror

x
C« H
COMMENT | %
H
STATEMENT i
NUMBER g

L 3.8 |2

|_0001
10000
| | 000z
| ! o005 |
| 0003
0000
0004
o101 | |

|_0007
|

ARNNNNESA

*Contributed by Messrs. C.A. Irvine & M. A. Smith,

Continental Oil Company, Ponca City, Oklahoma.

15

THE TWELVE 650 FORTRAN STATEMENTS

Arithmetic GENERAL FORM EXAMPLES
Formula

“a=b” where a is a variable (sub~ A(I) = B(I) + SINF(C(I))
scripted or non-subscripted) and
b is an expression.

The = sign in an arithmetic formula has the meaning “is to be
replaced by. ” An arithmetic formula is therefore a command to
compute the value of the right-hand side and to store that value in
the storage location designated by the left-hand side.

The result will be stored in fixed or floating point form according
as the variable on the left-hand side is a fixed or floating point
variable.

If the variable on the left is fixed point and the expression on the
right is floating point, the result will first be computed in floating
point and then truncated and converted to a fixed point integer.
Thus, if the result is + 3. 569, the fixed point number stored will
be + 3, not + 4.

No arithmetic statement may contain more than nine different
constants. Two floating point numbers having the same equivalent
value are not considered “different. ” For example, 4.0 and .4E1l
have the same equivalent value and thus would not be considered
different. Signs are not considered in determining difference.

Examples of Arithmetic Formulas

FORMULA MEANING
A=B Store the value of B in A.
I1 =B Truncate B to an integer, convert to fixed

point, and store in I.

TA=1 Convert I to floating point and store in A.
I=1I+1 Add 1 to I and store in I. This example

illustrates the point that an arithmetic formula

is not an equation but a command to replace

a value.

A =3.0*B Replace A by 3B.

16

Control
Statements

The second class of FORTRAN statements is the set of seven
control statements, which enable the programmer to state the flow
of his program.

Unconditional GO TO

GENERAL FORM EXAMPLES
“GO TO n” where n is a statement GO TO 3
number.

This statement causes transfer of control to the statement with
statement number n.

Computed GO TO

GENERAL FORM EXAMPLES
“GO TO (n1, n9,...,0yy), i” GO TO (30,40,50,60),1
where ny,ng,...,n,, are

statement numbers and i is a
non-subscripted fixed point
variable.

If at the time of execution the value of the variable i is j, then
control is transferred to the statement with statement number nj.
Thus, in the example, if I has the value 3 at the time of execution,
a transfer to statement 50 will occur.

This statement is used to obtain a computed many-way fork. A
maximum of 25 branches may be used in any one of these statements.

IF
GENERAL FORM EXAMPLES
“IF (a) ny,ng,ng” where a is any IF (A(J,K)-B)10, 20, 30
expression and ny, ng, ng are state-
ment numbers.

17

Control is transferred to the statement with statement number
ni,no, or ng according as the value of the expression a is less than,
equal to, or greater than zero. In the example, control will be
transferred to statement 10, 20 or 30 according as the value of
the expression, (A(J,K)-B), is less than, equal to, or greater
than zero.

PAUSE

GENERAL FORM EXAMPLES

“PAUSE” or “PAUSE n” where n is PAUSE
any unsigned fixed point constant PAUSE 1234
less than or equal to 1999.

A PAUSE statement compiles as a stop command. During
execution of the object program, the machine will halt with the
number n shown in the console address lights. (If n is not stated,
it is taken to be zero.) A subsequent depression of the Program
Start key causes the program to resume at the point in the object
program corresponding to the next FORTRAN statement.

STOP

GENERAL FORM EXAMPLES

“STOP” or “STOP n” where n is any | STOP
unsigned fixed point constant less STOP 1234
than or equal to 9999.

A STOP statement compiles as a stop command. During execution
of the object program, the machine will halt in such a way that
pressing the Program Start key will have no effect. Therefore,

in contrast to the PAUSE, it is used where a get-off-the-machine
stop, rather than a temporary stop, is desired. The number n is
shown in the address field of the console display lights. (If n is
not stated, it is taken to be zero.)

18

GENERAL FORM EXAMPLES |
“DOni=my, mg” or “DOni= DO30I=1, 10
miy, Mg, mg” where n is a state- DO30I=1, M, 3

ment number, iis a non-subscripted _,,
fixed point variable, and my, mo,

mg are each either an unsigned fixed
point constant or a non-subscripted
fixed point variable. If mg is not
stated it is taken to be 1.

NOTE: If my, my, mg are constants,
they may be no more than four digits
long.

The DO statement is a command to execute repeatedly the state-
ments which follow, up to and including the statement with
statement number n. The first time the statements are executed
with i = my. For each succeeding execution i is increased by mag.
After they have been executed with i equal to the highest of this
sequence of values which does not exceed my, control passes to
the statement following the last statement in the range of the DO.

Example of DO

Suppose, for example, that control has reached statement 10 of
the program

10|po111=1, 10
11[A (T) = T*N(I)
12

The range of the DO is statement 11, and the index is I. The DO
sets I to 1 and control passes into the range. 1N(1) is computed,
converted to floating point, and stored in A(1). Now, since
statement 11 is the last statement in the range of the DO and the
DO is unsatisfied, I is increased to 2 and control returns to the
beginning of the range, statement 11. 2N(2) is computed and
stored in A(2). This continues until statement 11 has been
executed with I = 10. Since the DO is satisfied, control now
passes to statement 12.

19

DOs within DOs — Among the statements in the range of a DO
may be other DO statements. When this is so, the following rule
must be observed:

Rule: If the range of a DO includes another DO, then all of the
‘statements in the range of the latter must also be in the range of
the former. A set of DOs satisfying this rule is called a nest of
DOs. A nest must not exceed a depth of four DOs.

Transfer of Control and DOs — Transfers of control by IF~-type
or GO TO-type statements are subject to the following rule:

Rule: No transfer is permitted into the range of any DO from
outside its range. Thus, in the configuration below 1, 2 and 3
are permitted transfers, but 4, 5 and 6 are not.

EXCEPTION — There is one situation in which control can be
transferred into the range of a DO from outside its range. Suppose
control is somewhere in the range of one or more DOs, and that
it is transferred to a section of a program, completely outside the
nest to which the DOs belong, which makes no change in any of
the indices or indexing parameters (m’s) in the nest. Then

after the execution of this section of program, control can be
transferred back to the “same part of the nest” from which it
originally came. (By “same part of the nest” is meant that no
DO, and no statement which is the last statement in the range of

a DO, shall lie between the exit point and re-entry point.) This
provision makes it possible to exit temporarily from the range of
a DO to execute a subroutine.

Restriction on Calculations in the Range of a DO — Only one type
of statement is not permitted within the range of a DO loop,
namely any statement which redefines the value of the index or
of any of the indexing parameters (m’s). In other words, the
indexing of a DO loop must be completely set before the range is
entered.

20

The first statement.in the range of a DO must be executable.

CONTINUE
GENERAL FORM . EXAMPLES
“CONTINUE” CONTINUE

CONTINUE is a dummy statement and provides no instructions in
the object program. A frequent use of it is as the last statement
in the range of a DO to provide a transfer address for IF and

GO TO statements. As an example of a program requiring a
CONTINUE statement, consider the table search program:

10 DO12I=1, 100

11 IF (ARG - VALUE(I)) 12,20,12
12 CONTINUE

13

This program will examine the 100-entry VALUE table until it
finds an entry equal to ARG. As long as an equal entry is not
found, statement 11 (IF) will transfer to statement 12 (CONTINUE).
Statement 12 will in turn cause the DO loop to be repeated. When
the equal entry is found, the program will exit to statement 20
with the successful value of I available for fixed point use.
However, if no entry in the table equals ARG, an exit to statement
13 will occur, The program

10 DO11I=1, 100
11 IF(ARG - VALUE(D) 11, 20,11
12

would not work since, as stated in the next section, DO sequencing
does not occur if the last statement in the range of a DO is a
transfer.

Summary of FORTRAN Sequencing — The precise laws which
govern the order in which the statements of a FORTRAN program
will be executed, and which have been left unstated up to this
point, may be stated as follows:

1. Control begins at the first executable statement.

2. If control is at statement S, then control will next go to the
statement dictated by the normal sequencing properties of S.

21

3. EXCEPTION. If, however, S is the last statement in the range
of one or more DOs which are not yet satisfied, and if S is not
a transfer (IF or GO TO statement), then the normal sequencing
of S is ignored and DO-sequencing occurs, i.e., control will
next go to the first statement of the range of the nearest of
the unsatisfied DOs, and the index of that DO will be raised.

4, The statement DIMENSION, which is discussed in this
chapter is a non-executable statement, and in any question of
sequencing is simply to be ignored.

Input=-Output The 650 FORTRAN system provides for input and output of data by
Statements means of punched cards using the FORTRAN statements READ
and PUNCH.

From one to seven ten-digit words can be read or punched on a
single card starting at column 1 and ending with column 70.
Reading or punching of data will begin at the left and continue
under the control of the READ or PUNCH statement until all the
seven words of data have been processed.

As many cards as necessary can be read or punched providing
there is no break in the data being processed.

The last data card can contain Tfrom one to seven ten-digit words.
If less than seven words are required, the remaining word(s) may
be left blank.

NOTE: A READ statement calling for only five words of data will
ignore the remaining last two words at the right side of

the card.
READ
GENERAL FORM EXAMPLES
“READ, LIST” or “READ n, LIST” READ, A, B, C
where n may be a 1-4 digit fixed READ 1, A, B, C
—_ point constant and LIST is as READ 52, X, Y

described below.

NOTE: The comma placed after
“READ” and “READ n” is absolutely
necessary for the operation of the
program and must never be omitted.

22

The READ statement causes the object program to read card after
card until the entire list has been brought in and stored. The n
portion of the READ statement is optional but must be included if
compatibility with the FORTRAN systems for the 704 and 7070

is desired.

PUNCH
GENERAL FORM EXAMPLES
“PUNCH, LIST” or “PUNCH n, PUNCH, ROOT1, ROOT2
LIST” where n may be a 1-4 digit PUNCH 1, ROOT
fixed point constant and LIST is as PUNCH 32,ARRAY
described below. PUNCH 1, ELMNT (2, 5)

NOTE: The comma placed after
“PUNCH” and “PUNCH n” is
absolutely necessary for the
operation of the program and
must never be omitted.

The PUNCH statement causes the object program to punch card
after card until the entire list has been punched. The n portion of
the PUNCH statement is optional, but must be included if
compatibility with the FORTRAN systems for the 704 and 7070 is
required.

LIST — Both the READ and PUNCH statements call for the trans-
mission of information and include a list of the quantities to be
transmitted. The list is ordered, and its order must be the same
as the order in which the words of information exist (for input),

or will exist (for output), in the cards. Below are the various
forms a list may take and the types of variables that may be placed
in a list. (Only variables, and not constants, may be listed.)

VARIABLE EXPLANATION

Non-subscripted Variables

READ, A The name of a non-subscripted
variable.

Entire Arrays

PUNCH, B An entire array specified by
giving only the name of the array.

23

VARIABLE

PUNCH, B (Con’t)

READ, C(2)

PUNCH, D(1, 3)

READ, E(I)

PUNCH, F(I, 5)

PUNCH, H(I, K)

EXPLANATION

(The size of the array previously
must have been given in a
DIMENSION statement.) The
array will be punched (or read)
column~-wise in its natural order.

Single Elements of Arrays

A single element of a one-dimen-
sional array, with the subscript
in absolute form.

A single element of a two-dimen-
sional array, with both subscripts
in absolute form.

A single element of a one-dimen-
sional array, with the subscript
in variable form.

A single element of a two-dimen-
sional array, with one subscript
in variable form and the other
subscript in absolute form.

A single element of a two-dimen-
sional array, with both subscripts
in variable form.

Groups of Elements of Arrays Using Indexing

READ, (P(I),I = mj, my, mg)

A group of elements of a one~dimensional array using a

variable subscript with a set of values to indicate the

particular elements desired. This specifies every mgth
~element of the P array beginning with m and not

exceeding mo.

READ, (Q(I, 10), I= ml, mz, m3) or

READ, (R(2,J),J = my, my, mg)

A group of elements of a two-dimensional array with one
subscript in absolute form and the other in variable form

with a set of values.

24

The absolute subscript indicates

the column (or row) of the elements; the variable subscript,
with its set of values, specifies the elements within the
column (or row).

PUNCH, (S(K, L), K=mj, my, mg) or
READ, (T(I, L), L=my, mgy, mg)

A group of elements of a two-dimensional array with both
subscripts in variable form and a set of values for one
subscript. The variable without a set of values indicates
the column (or row) of the elements; the subscript with
the set of values specifies the elements within the column
(or row).

PUNCH, ((V(J, K), J=m1, my, m3), K=m1, mz, m3)

A group of elements of a two~dimensional array with both
subscripts in variable form and a set of values for each
subscript.

NOTE: In “Groups of Elements of Arrays Using Indexing, ”
m; is the starting value of a subscript, my is the highest
value of the subscript, and mg is the amount m; is increased
each time until my is reached. mj, ms, mgq are each either
an unsigned fixed point constant or a non-subscripted fixed
point variable. If mg is not stated, it is taken to be 1.

There is no limit as to the number of variables that may be
in a list, but adjacent variables in the list must be
separated by a comma.

More than one variable per list may be indexed; however,
each indexed variable must have its own indexing para-
meters (m’s).

Specification DIMENSION
Statements

GENERAL FORM EXAMPLES

“DIMENSION vy, Vg, Vg,...Vy” where [DIMENSION A(10),
each v, is a variable subscripted B(5, 15),C(3, 4)
with 1 or 2 unsigned fixed point
constants. Any number of v,’'s may
be given.

25

The DIMENSION statement provides the information necessary
to allocate storage in the object program for arrays of quantities.

Every variable which appears in a source program in subscripted
form must appear in a DIMENSION statement, and the DIMENSION
statement must precede the first appearance of the variable. In
the DIMENSION statement are given the dimensions of the array;
in the executed program any subscripted variable referring to the
array must never take on values larger than those dimensions.

Thus the example states that B is a two-dimensional array and that
the subscripts of B will never exceed 5 and 15; it causes 75 words
of storage to be set aside for the B array.

A single DIMENSION statement may be used to dimension any
number of arrays. However, no one dimension given in the
statement may be greater than three digits. For example, D(3001)
is not permitted because the dimension is more than three digits.

WARNING: No error checking is done for incorrectly written
statements. The foregoing rules must be observed exactly.
Punctuation marks, parentheses, etc. must never be omitted.

END

GENERAL FORM EXAMPLES

“END” END

An END statement is required as the last statement of a source
program.

An end of job halt 01 0000 8000 is always compiled from the END
statement, and therefore END should never be the last statement
in a DO loop.

Transfers to the END statement should be made only if it is to be
an end-of-job indication. T

26

Summary of
Limitations

for Writing Source
Programs

Limitations have been given throughout this chapter and are listed
below for review and reference.

Condition

Limits

Statement length (characters)

125 exclusive of blanks

Maximum number of decimal 10
digits in a fixed point constant

Maximum number of decimal 8
digits in a floating point

constant

Maximum number of fixed and 9

floating point constants in any
one statement

Maximum number of characters

for a fixed point variable

5 alphabetic or numerical (not
special) characters of which the
firstisI, J, K, L, Mor N

Maximum number of characters

for a floating point variable

5 alphabetic or numerical (not
special) characters of which the
first is alphabetic but is not ~
I, J, K, L, Mor N -

Maximum number of sub-
scripted variables in one
program

20 (none may end in F)

Minimum value of a subscript

+1

Mode

No mixed modes (see page 13)

Maximum number of branches
in a computed GO TO
statement

25

DO statements

Indexing parameters (m’s) may
not exceed four digits if they
are constants

Number of DOs within DOs

Nests may not exceed depth of
four DOs

DIMENSION statement

No one dimension may be greater
than three digits

Maximum number of paren- 25 pairs
theses in one statement
Number of arguments for a 1

built-in subroutine

27

CHAPTER IT — USAGE OF SUBROUTINES

650 FORTRAN
Subroutines

Removing 650
FORTRAN

Subroutines

The Assembly phase of the 650 FORTRAN system contains several
built-in routines for evaluating functions. These subroutines may
be called on by the user’s program. Listed below are the eight
built-in subroutines which may be used:

Subrt. Mode
Name Purpose of the Subroutines Argument Function
ABSF Taking the absolute value of a Floating Floating

floating point number

XABSF Taking the absolute value of a Fixed Fixed
fixed point number

XFIXF Fixing floating pbint numbers Floating Fixed

FLOTF TFloating fixed point numbers Fixed Floating
LOGF Logjigx Floating Floating
EXPF Raising 10 to a floating point Floating Floating

- power (Antilogarithm)
LOGEF Loggx Floating Floating

EXPEF Raising e to a floating point Floating Floating
power (Exponential)

WARNING: The user must not use any of the built-in subroutine
names for his own subroutines.

Because of non-standard entry conditions, the following built-in
subroutines are for internal use only and are not available to the
user:

XPOWF POW2F PNCHF
POWIF READF

By using a SOAP II “BLA” block availability card, locations of
some built~in subroutines that are not used by the object program
(see table on the following page) can be made available during the
assembly phase of 6560 FORTRAN. The procedure required to
delete these unused built-in subroutines is as follows: (1) prepare
a BLA card with the locations used by the subroutine(s) to be

28

Adding Function
Subroutines

dropped (see table below), (2) place the BLA card(s) in front of
first user’s subroutine, or if no subroutines have been added by
the user, in front of the compiled program.

Subrt. Consecutive
Explanation Name Locations Used
No exponentiation FLOAT FIX POW2F 0040 - 0056
No exponentiation FIX FIX XPOWF |0057 - 0071
Neither FLOAT FIXpor Fix FIX POW2F 0040 - 0087
XPOWF
No Loggx LOGEF 1996 - 1998
No eX EXPEF 1993 - 1995
No exponentiation FLOAT FLOAT POWIF |1831 - 1839
Exponentiation FLOAT FLOAT| powir
No 4 Logq,x LOGF 1831 -~ 1890
Loggx LOGEF
Exponentiation FLOAT FLOAT| pow1iFr
No < 10¥ EXPF 1831 - 1839
eX EXPEF
Exponentiation FLOAT FLOAT| pow1r
Logy ox LOGF
No< Loggx LOGEF |1831 - 1945
10% EXPF
eX EXPEF

Any subroutines required for evaluating functions must be incor-
Any number of function
subroutines (limited only by storage capacity) may be used in any

porated into the system by the user.

one program.

Subroutines added to the system by the user for the purpose of
evaluating functions operate in a manner similar to that of the

built-in subroutines.

When a function name is encountered in a

FORTRAN program, a symbolic entry to the subroutine is compiled
and the arguments of the function are stored in locations allocated

for temporary storage.

29

The function subroutines must be prepared in either

Five-instructions-per-card Absolute:

1 LOCATION

I] WORD | D WORD 2 D WORD 3 U WORD 4 u WORD B I] WORD 6 D OF
INSTRUCTION

i 0 0 0 D 0 0 "

no;unou:ooouun;nnno-ooaoon'uouuoooonoooononn«on'oooo.ooonno:noomouoomonuo.oanoononnounn

1 113 45 817 8 9101 12113 14 15 liIH)i % 212222207520'112!2539“n'JJNJ!II’“”Iﬂ42[13“““‘1“0!051ﬂlsJN.’d‘lliISlS!iﬂ.lu'n “Nl" 9 0[N 21 14 i 1 W

lmlH:llllﬂ:lllhl|Hl|llIIHHIHIIH(IHIII'HII'IIHH:IIH:1II|I1|llll||||lllllllllFll
! F

| t ! ! £
2242222:222222:2222’2222222222:22222222221222222|2222'222222:2222‘222222';2222?22222222212222
1 IDENT : FIRST 1SECOND THIRD IFOURTTH |FIFT}'I | & 0 |
33[3333l133333'3333‘333333'3333333333'3333|3333 3313333,33331331333313333(33133133733/3333[33333333
i WORD INSTRUéTION I STRU&TlON INSTRUCTION INBTRUCTION INBTRUQTION [F
44|4444'444444|4454|444444|44441444444:4444:444444l4444'4444 4:4444:444444»4444‘4444444!4444_‘_44

[

STANDARD 8 WORD CARD

-,
-

|
55'5555&55555:5555:555555'5555555555:5555:5555555555:555555:5555:555555?5555'555555555555:5
' ' t

=
-

f 1
66'6668658666:6668:666655,668&5568GG:BGGG:E(iSGSGIB668866E55:5665:56660STBGGMBGGGBBBSBSGGBB
TNl

dhrathss

00 70171 72] 141!75’711‘1!

(=)
=

. \ 1 I | H
77'7771l777177:7777:777777:7777:777777:7777:77777717771|777777:7777:777771:7777
I i | i
08:3005:805883:8880:8808 8'890B:HGBBIG:S!CE:BBBBBBBBSIGBBBOI:GBEB:DIIBIBO]B
1 1

]
' ! 1
99:9999:99!9995999999999999993 99999999909 91994948 :9999:98999999'9“9'

99 9,99
12345868708 8100 I7|3|H§15l7|. 15 20]2 22 73 24 25 26 27 28 28 303t 3233 34 35 36 37 53 35 AOUT 243 M4 “47““"5!&53"“."”"““"02”

or SOAP II Symbolic:

l { i
| i
s LOCAHO P mrn ADDR |T[INSTR.ADDR| 1| REMARKS ‘i

[IDENTIFICATION |, CARD NO_[,LOCATION,], sLAssmm.zn WS TRUCTION ,,} [f[,,s[,.wcumu,,], o ,.,,mmnuua ,,_,v|‘,msvn.aoon..}:fll,, REWARKS ,,l
000000|00000000Uﬁ]ﬂllll000'0ﬂD0:00000D|Dl]0010000000'000'00'000!000000‘000000000000000[00000000
vx:us517ns»un\7uu|smnnnonnmnsmmn uu‘uunthnmuzulumcuu{assos|!5znmssssr's-nunsn:msnummnn "
llll”:llllllllllIlllll|ll|||l||II\ll!HHIIIII!HIMIIHI||l|lllll HIIIIIIIIIHMIIII
| | €0 a P IT |
22|2222|222222222222222212222|222222|2222'2222TS B i RARARRAY
| |) { vy DATA INSTR HBHHHAR
13:1333!3333323333333333!1333'333333|3313I3333vc‘°""°" O |aooness |1 aooness [5l TEMARKE Ay 1 g
e ls dNNHAN
, | HH
STANDARD 4{alala 4 4 afala afala 4 4 4[a]ald Al4i41414)404
LOADING """"““"",,:::?R 24:wcnno«|aoeo (::Ts:;;“i: : ; : 4 ‘; HeAgeaaaaarad W
cooE | | 551515 5 5 51515 5!5i5 5 5 5151515 5 5515155555 55 55 5{5/555/5(5{5|5
|] e KEY PUNC H
65}6885]56655BGGGSGGGGBG'EGGGIG65566'5GE6][6566566|ﬁﬁBSGISGG:G56658:555868865565865““‘566
| ! i !
77:7777:77777177777777717777'777177:1717'7777777|71177:777]777777'71777777777777777777777
| - | f |
8818855\68888088BBBBBBBMSBSB:HBSBBS‘B8381880“‘“‘“‘BBB8|BBI:38888MBBBBBE88388!53““'!890
| ! !
99 999/99991999998{999 93|3999‘999999'9999'9399999159999'999'999999199999999999999u.. 81919
i213 ¢56]188 mnum«5mnu|eznh1zhmzszsh12lzvﬂ_:i:w|nuHnln»nwu17ul«lsunp_uhlsumszuussscmluuwuunuanﬂsuiWHIH"75 il
1M C 30368

and must always be entered into the system during the assembly
phase of the operation (i.e., on the second pass). A symbolic
subroutine name, encountered more than once during the assembly
phase, will always be assigned the same absolute drum address.

Subroutines in Absolute Five-instructions-per-card Format

If the five-instructions-per-card format is to be used, a SOAP II
synonym card (equating the symbolic name of the subroutine with
its starting drum address) must be prepared for each subroutine
to be added. The synonym cards should follow the last five-
instructions-per-card subroutine when entering the subroutines
into the system.

30

Determining
Available Drum
Locations

The subroutines themselves may be located on the drum
immediately following the area used for the table of subscripted
variables (see page 11). To obtain the starting address of the
first subroutine, count the number of locations reserved for
subscripted variables in the FORTRAN program, and then add
101 to this number. For example, suppose that in a FORTRAN
program, there is a DIMENSION statement containing these
subscripted variables: A(10), B(5,15), C(3,4). In this example,
the subscripted variable table will be 97 locations long. Adding
101 to this figure, a total of 198 is obtained. The first sub-
routine may start in this location (0198). The second subroutine
may start in the location immediately following the last
instruction of the first subroutine, etc. See “Determining
Available Drum Locations” below, for information regarding
reservation of locations by the compiler.

The five-instructions-per-card subroutines are read into the
system as load cards and require a “12” punch in column 2.

Subroutines in SOAP II Format

If the SOAP II format is to be used, no synonym cards are needed
for the subroutines. The assembly phase will assign available
locations.

Subroutines incorporated in the 650 FORTRAN system in symbolic
(SOAP II) format require a “12” punch in card column 5 for
correct read-in of the cards. Card columns 7-36 and columns
73-75 must be left blank.

The compiling phase of the 6560 FORTRAN system sets up a

table of subscripted variables starting at location 0101 and
continuing for as many locations as necessary. A second table
for computed GO TO statements starts with location 1710, and sets
aside, in descending sequence, as many locations as required.
The final output of the compiler is a block reservation (BLR) card
for each table making all these locations unavailable to the
assembly program. The remaining locations between these two
tables are available for all function subroutines added by the user.
The subroutines may be in five-instructions-per-card or symbolic
format.

NOTE: Overlapping of the subscripted variable and the computed
GO TO tables will not cause the program to stop compiling.
However, each of the two BLR cards for the tables will show an
overlapping of the locations reserved. Subsequent assembly would
result in a packed drum error halt.

31

When adding symbolic format subroutines to the system, block
reservation cards must be placed in front of the added symbolic
subroutines.

It is possible that the FORTRAN program will have no computed
GO TO statements or subscripted variables, and therefore, no
block reservation cards. Obviously, drum locations not used by
the subscripted variable or computed GO TO statement tables are
available to the assembly program.

NOTE: When added subroutines are in both five-instructions-per-
card and SOAP formats, the following sequence will prevail:

1. SOAP-PACKAGE assembly deck
2. Five-instructions-per-card format subroutines
3. SOAP symbolic format subroutines.

Determining the To determine the input parameters of a subroutine, let the
Input Parameters subroutine be a function of “k” variables in the order: Vi, Vy,..
of Subroutines Vy; where V,, is an expression, variable or constant.

The entry conditions are as follows:

1. Vq is stored by the compiler in symbolic location @1; V, is
stored by the compiler in @2; etc.

2. The exit instruction is in the distributor.

The exit conditions are as follows:

1. If the subroutine is in fixed point, the result must be placed in
the lower accumulator.

9. If the subroutine is in floating point, the result must be placed
in the upper accumulator.

NOTE: (1) @1 has been assigned the address 0039. @2, @3, etc.,
do not have specific addresses. Subroutines added by the user in
SOAP TI format need only refer to these storage locations by their
symbolic names. However, the absolute addresses of these
locations must be used in function subroutines added in five-
instructions-per-card absolute format. In this case, the user must
assign available addresses to these “@” locations by preparing a
synonym card (with the symbolic name of the location and the
proper absolute address) for each. Locations following those used
for the last added function subroutine and before the starting
location of the computed GO TO statement table are available for
the “@” locations.

32

User!s Subroutines
Requiring Index
Registers

Available Temporary
Storage and
Constants

(2) When adding function subroutines in five-instructions-per-card
format, the last card may contain fewer than five instructions.

The user should punch zeros in the unused instruction fields. The
corresponding address fields should be punched so as to load

these fields into the read band or any temporary storage location.
(Location 0000 is suggested for this purpose.)

The user may wish to add to the 650 FORTRAN system function-
subroutines which use index registers. In such a case, provision
must be made (at the beginning of the user’s subroutine) to save
the existing information in the index registers and to restore the
original contents after the completion of the subroutine. The
following built-in subroutines may be called in to accomplish this:

@4001 - stores the contents of index registers A, B and C in
temporary storage locations @3003, @3004 and @3005

respectively.

@4002 - resets index registers A, B and C from temporary storage
locations @3003, @3004 and @3005 respectively.

Instructions in the user’s subroutine

1. The first instruction should store the exit instruction (which
is in the distributor) in symbolic location @3001.

2. The second instruction should load the distributor with the
next instruction and then transfer to symbolic location @4001.

3. The exit instruction from the user’s subroutine should transfer
to symbolic location @4002. (Subroutine @4002 will reset the
index registers and then transfer to location @3001 which was
set to the return instruction to the main program.)

The following temporary storage locations are available for user’s
subroutines:

Symbolic Actual
Address Address
@3001 0000
@3002 1950
@3003 1990
@3004 1991
@3005 1992
@3006 1989
@3007 1976
@3008 1987
@3009 1988

33

WARNING: If index registers are needed in the user’s subroutine,
symbolic locations @3003, @3004, @3005, and @3006 are not
available.

The constants listed below are used in the 650 FORTRAN built-in
subroutines, and are available for the user’s function subroutines.

Symbolic Absolute
Address Contents Address
@2001 10 0000 0051 0089
@2002 50 0000 0000 0090
@2003 00 0000 0060 0091
@2004 10 0000 0000 0092
@2005 51 0000 0000 0093
@2006 52 0000 0000 0094
@2007 00 0001 0000 0095
@2008 43 4294 4850 0096
@2009 99 9999 9999 0097
@2010 00 0000 0051 0098
@2011 00 0000 0001 0099

34

CHAPTER IIT — PROCESSING THE SOURCE PRO GRAM

This chapter includes the necessary information and instructions
for processing a 650 FORTRAN source program to obtain a 650
machine language object program. The first section of the chapter
deals with the preparation of statement cards, and subsequent
sections constitute operator’s instructions and notes for each of
the two phases of the 650 FORTRAN system.

Source programs stated in the FORTRAN language may be written
on standard FORTRAN coding sheets, IBM form X28-7327, as
illustrated on page 4. The use of the coding forms is encouraged
to avoid programming errors and to facilitate the transcription

of the FORTRAN statements to cards. These forms may be
obtained through local IBM sales representatives.

Preparing the 650 FORTRAN statements are punched in FORTRAN statement
Statement Cards cards (IBM 888157), as shown below, using an IBM Card Punch.

Creotdin|Z
STATEMENT S
NUMBER 5
]
1]
1

FORTRAN STATEMENT IDENTIFICATION
00[00000000

i
SR I0NIZEI NS IEITI0 10 202022 23 24 23 26 27 2829 30 31 32 33 34 35 6 37 38 35 4D 41 42 43 44 45 48 47 40 49 50 51 52 50 54 58 56 57 54 58 80 61 RRUBHTBEBRNRZDINBRINNY
1

(R R R AR R R R R RN R R R R R R R R R R AR R R R R R R R RN R R RN R R R RN R R R ERRERRE]

[HEK]

IFERE

]
7
1:1111 i

U222122222222
3'3333333333333333333333333331333
4:444‘44444444444444446444(41
5|555
G:G8666556666ESBGG5866656666656‘866666GBBBG36666BBE56G6566665688868866655666666686
M1 1I71717137 701011770110 711 0010710010011 10117177900007717111171111231)17717117177
8:8&58888838888808911888880838050886988“88308880880808088388”38800BBBS&HSBBHBD

919 9 9 giofg 990099098999890999099999999999999999999999999999999999909999999999(9959999¢
1123 ¢ 51617 8 81013 1213 141516 1719 197020 22 23 24 226 27 26 29 20 30 32,39 30 39 36 37 38 39 40 41 A2 43 44 45 48 47 40 49 50 51 52 50 54 55 56 57 8 50 60.81 62 60 64 65 65 67 6 69 7071 72073 74 78 76 77 78 0 00
WM BB8IST

35

Each FORTRAN statement is punched on a separate card using
the FORTRAN characters, as follows:

TABLE OF FORTRAN CHARACTERS

Char Punch 650 || Char Punch 650 §| Char Punch 650 | Char Punch 650
1 1 91 A 12-1 61 J 11-1 71 / 0-1 31

2 2 92 B 12-2 62 K 11-2 72 S 0-2 82

3 3 93 C 12-3 63 L 11-3 73 T 0-3 83
4 4 94 D 12-4 64 M 11-4 74 U 0-4 84

5 5 95 E 12-5 65 N 11-5 75 \Y 0-5 85
6 6 96 F 12-6 66 (e} 11-6 76 W 0-6 86

7 7 97 G 12-.7 67 P 11-7 77 X 0-7 87

8 8 98 H 12-8 68 Q 11-8 78 Y 0-8 88
9 9 99 I 12-9 69 R 11-9 79 Z 0-9 89
Blank 00 + 12 20 - 11 30 0 0 90
= 8-3 48 . 12-3-8] 18 - 4-8 49 s 0-3-8 38

) 12-4-81 19 * 11-4-81 29 (0-4-8 39

NOTE: On the 24 and 26 Card Punch Machines equipped for special character punching,
the character I is the equivalent of the character) ; % is the equivalent of { ; & is the
equivalent of +; and # is the equivalent of =. If desired, the 24 and 26 machines may be
modified on an RPQ basis (Request Price Quotation) to include the "FORTRAN key tops
and printing code plate." This includes @ equivalent to "—".

If a statement is too long to fit in the statement field of a single
card, it may be continued over as many additional (continuation)
cards as necessary until the maximum statement length of 125
characters, (exclusive of blanks) is reached.

When continuation cards are used, the statement number must be
carried forward in columns 2-5. A digit 1-9 must be placed in
column 6 of each continuation card following the first card of the
statement. This digit can be used in numbering the continuation
cards of the statement. For example, if the formula

ROOT=(~-B+SQRTF(B**2-4, 0*A*C)) /(2. 0*%A)

were to use continuation cards, it could appear in three cards in
the following manner:

Fom

COMMENT

FORTRAN STATEMENT

STATEMENT
NUNBER

Il] 2 72

0j010 ROOT =

0lo1o (- B + SQRTF (B**2-4. 0*A*C))

0 [|O o conmmumion

0i010 / (2. 0%A)

!

A

36

Numérical, alphabetic and special characters, and blanks may
be included in the FORTRAN statement.

Blanks in the statement field are ignored by the FORTRAN system
and the programmer may use them freely to improve the

readability of the source program listing.

Statement Numbers

As noted previously, fixed point constants from 0001 to 9999
may be used as statement numbers. The statement number
field in the cards may not be left blank; if a statement is not
given a number, zeros must be punched in the statement number
field (columns 2-5). If a statement number does not require

all four card columns, the remaining unused columns must be
filled with zeros.

Statement Card Format

The card format for 650 FORTRAN statement cards is shown
below. Each field of the card is described in the following
table.

e

C 2ol
sTATEMENT F‘ORTRAY\{ STATEMENT IDENTIFICATION

NUMBER

010 00 0] 00000l]000000000000000000000000]000000000000ll0000000000“00000000000000000000

z3a8167 0 !19“|2'IJNIS!G"IDI!NIIHZ!Z'HIOZTIB"NSIJIMNJSIJ‘lllﬂlﬂllllﬂ“‘!ﬂﬂ““ﬁil52535!555651535"0”lluu““"ﬂ”wﬂ72)73767578""7’"

I:HIIHIIIIIIHIHIHIHIIHIHIII||'1IIIIIIHHIlH]IIIHIIlllllll!llll]llilllll
2|22222222222222222222222222222222222122222222222222222222 22222222222222)222222212

22
43333(30333323333323333333333 3333333333'333333333333333 3333333

3 3
f F? R AN LA
4l““°“”““~f~4A4 R N L LR R R R R AR AR ERX SRS

EMENT LU

NS
5|55555555555555555555555555555555555|5555555555555555 555956955555555556)55555558
l 6666666

GIB6665656EG65666566668&6666666566655'6685666556666666 66666666666/66666666
1|'I7777177777777717771777771771171117!77777777771117777777777717”7777117771717171
8:888898“888808888“08&3888888BB&SBDWHHHHBHHBSBH8“8883BHHHSBBHBBBHB

9'99999959999999!199989999999999999395'9999999999999999999999399999999999999399999!
3 4

Mz 34 TA S IZIIMISIEIT18 llﬂﬂ22Z)Nl’ﬂﬂ”?ﬁiﬂﬂ31”303910'313!1!404!4143“45“41“4@505!HNMHMUMHMIIH”ﬂ‘!“ﬁ!ﬂ”?ﬂﬂ 793N TB M

w
s

3&33333333333333333
44444444444044444444

-~ 50
]
bl
O=m
&z

(@]
=

@
en,
@ e

37

Card
Columns

Description

An alphabetic C (or any non-zero punch) in this
column indicates a comments card, which will
be ignored during processing. A zero indicates
a statement to be processed. This column must
have a punch in it.

Statement number field may be any number from
0000 to 9999. This field must contain numerical
punches.

Used to indicate continuation cards. A zero
indicates first card of a statement regardless of
whether the statement uses one or more cards.

A non-zero punch from 1-9 indicates a continuation
card. This field must contain a numerical punch.
Comments cards must contain a zero punch in

this column.

7-36

The statement. Numerical, alphabetic, and
special characters, and blank columns are all
acceptable in this field.

37-80

Blank columns.

38

Operating
Instructions:
650 FORTRAN
(Compilation)
Phase

Console Settings

Storage Entry: 70 1952 9999 (or 00 0000 0000 if 650 FORTRAN
deck is already loaded).

Switches: Programmed STOP
Half Cycle RUN
Control RUN
Display UPPER
Overflow SENSE
Error STOP
Operation

1. Ready 650 Console with proper settings; insert 650 FORTRAN
control panel into 533; feed blank cards in the punch hopper.

2. Ready read hopper with

a. 650 FORTRAN Compiler deck
b. FORTRAN statements cards

3. Depress Computer Reset key; Program Start key; and, when the
533 read hopper empties, End-of-File key.

The 650 will load the 650 FORTRAN Compiler deck and will
automatically start reading the FORTRAN statement cards. Each
FORTRAN statement card read will immediately be punched out
as a comments card. Behind the punched comments card will be
all the SOAP symbolic instructions compiled from that FORTRAN
statement. This process will be repeated each time until every
FORTRAN statement has been read.

Error Procedure for the Compilation Phase

The 650 FORTRAN deck is sequentially numbered in columns
7-10 and is checked for correct sequence while being loaded. If
a card is missing or out of order, a sequence error halt will
appear on the console:

01 0000 ABBB
where A will be either the digit 1 or 2. This digit corresponds
to the phase being loaded (1 for compilation phase, 2 for the

assembly phase). The BBB number (3 low-order digits) of
the halt indicates the last card in correct order.

39

If the error occurs in the compilation phase, clear the read
hopper, correct the sequence, and reload, starting at the
beginning of the deck.

Other than the sequence error stop, no programmed stops are
included in the compilation phase. Therefore, it is extremely
important that the user follow exactly the rules for writing
FORTRAN statements.

It is possible for the machine to stop because of (1) a read error
(blank or illegal punch) in columns 1-6 of a statement card, or (2)
an incorrectly punched FORTRAN statement causing the compiler
to attempt an illegal operation (Branch Distributor operation on
other than 8 or 9, or entering a loop causing an illegal address
and a storage selection light, etc.), If a machine stop does occur,
remove the cards from the read hopper and stacker, and run out
the cards still in the read unit. If corrections can be made
immediately, (1) reload the read hopper with the corrected card
and all of the remaining cards of the program, and (2) transfer
to location 1999 and depress the Program Start key.

NOTE: Under certain circumstances, such as a continuation
card in a lengthy arithmetic statement, part of the statement
containing the error may have been compiled and punched out
before the error was encountered. In this case, clear the cards
from the punch hopper and remove all cards up to and including
the last comments card(s).

If the error occurred on a continuation card, reload the read
hopper starting at the first card of the statement, i.e., reprocess

the entire statement rather than restarting at the error card.

Completion of the Compilation Phase

The last FORTRAN statement to be compiled must be an END
statement card. Immediately after the END statement has been
processed, the machine will punch a block reservation card

with “BLR” in the operation code columns, and blanks in both
the data and instruction address columns. This card is required
for the SOAP~-PACKAGE assembly phase and must remain in

the exact position as punched out in the output deck. The purpose
of the blank BLR card is for punching out constants contained in
the FORTRAN source program. One or two additional block
reservation cards may also be punched depending on whether
subscripted variable and/or GO TO tables have been established.
See '"Determining Available Drum Locations,'" page 31.

40

Rearranging Output Deck

1. Run all cards out of the punch feed and discard the first and
last card. The remaining cards, in order, are: (1) each
FORTRAN statement (comment card format) and the compiled
SOAP symbolic instructions for that FORTRAN statement,

(2) the blank BLR card, and (3) the block reservation card(s),
if any. o

2. Rearrange the card order so that the subscripted variable
and/or GO TO table(s) block reservation card(s), if any,
are now in front of the deck.

NOTE: The assembly phase of the 650 FORTRAN system performs
part of the compilation. Accordingly, the output from the

compiling phase may contain cards which are blank except for
numerical punches in the comments field (columns 63-72) or special
characters in the operation field (columns 48-51) or data address
field (columns 51-56). These cards are a necessary part of the
system and must not be discarded under any circumstances.

41

Operating
Instructions:
SOAP-PACKAGE
(Assembly) Phase

Console Settings

Storage Entry: 70 1952 9999

Switches: Same as for 650 FORTRAN (Compilation) Phase.

Operation

1. Ready the 650 Console with proper settings; insert the 650
FORTRAN control panel into the 533; feed blank cards in the
punch hopper.

2. Ready 533 read hopper with

a.

b.

SOAP-PACKAGE Assembly deck.

Function subroutines in five-instructions-per-card
absolute format, if any.

Entry point synonym cards for subroutines in absolute
format, if any.

Block reservation cards, if any.

Function subroutines in SOAP II symbolic format, if any.
Compiler output in SOAP symbolic format.

One blank card, if it is desired to punch out the availability
table after assembling. (The availability table can also

be obtained by manually transferring control to location 1900
at completion of assembly.)

Depress Computer Reset key, Program Start key and, when

the 533 read hopper empties, the End-of-File key.

Run cards out of the punch feed. Discard the first and last

cards. The remaining cards, all in five-instructions-per-card
format, are

a.

b.

C.

Object program load routine.
Package of built-in subroutines.

Subroutines entered in five-instructions-per-card format.

d. Subroutines entered in SOAP II symbolic format.

42

e. Object program with the last instruction a transfer to
the starting instruction of the object program.

f. Availability table, if specified. (These table cards must
be removed before running the object program. They are

identified by a “12” punch in column 41.)

Programmed Stops

As stated in the "Error Procedure for the Compilation Phase"
page 39, the error halt

01 0000 2BBB

indicates that a card is missing or out of order while the SOAP-
PACKAGE assembly deck is being loaded. The BBB number

(3 low-order digits) of the halt indicates the last card in correct
order.

If the error stop occurs, clear the 533 punch hopper and discard
the output. Then clear cards from 533 read hopper, correct
sequence of deck, and reload, starting at the beginning of the
deck. ' '

Other programmed stops in this phase are identified by Console
address lights, as follows:

Address Lights . Reason for Stop
0111 Symbol table full.
0222 Drum packed.
0333 Illegal SOAP II symbolic card

has been encountered in user’s
subroutine. Depress Program
Start key to continue assembly.

0999 Load card has been encountered
during assembly of compiled

instructions.

Error Procedure

Programmed stop 0111 indicates the symbol table capacity of 300
has been reached. This stop should rarely occur without first
having obtained a programmed stop 0222 — packed drum. However,
if this stop is encountered, the following correction procedure

is available.
43

If, in the source program, the user has assigned
statement numbers to statements other than those which
are referenced by other statements, the statement numbers
can be deleted from the non~referenced statements.
Statements that do not have numbers will not be included

in the symbol table.

If the above procedure does not eliminate the stop, the source
program must be rewritten and divided into smaller programs.

Programmed stop 0222 indicates drum capacity has been reached
and requires that the source program be rewritten, and divided
into smaller programs.

Programmed stop 0333 indicates an illegal operation code or
location address in user’s subroutine and will insert blanks in
the instruction and its respective address. The output card will
not be punched as a load card. The instruction can be corrected
after the program has been assembled by making use of the
availability table provided by the SOAP-PACKAGE assembly
phase.

Programmed stop 0999 indicates that placement of the user’s
five-instructions-per-card absolute subroutine is out of sequence.
See “Operating Instructions — SOAP-PACKAGE (Assembly)
Phase, Operation 2. ”

Assembling more than one Program

If more than one program is to be assembled, the SOAP-
PACKAGE assembly program must be reloaded each time.
Reloading is necessary because the object program loading
routine and built-in subroutines are punched directly from the
assembly program deck while it is being loaded. The procedure
to be followed in reloading the assembly program is the same
as the initial loading above.

44

CHAPTER I¥ — USING THE OBJECT PROGRAM

Preparing Data
Cards

This chapter contains the information and instructions necessary
for utilizing an object program produced by the 650 FORTRAN
system. The first section deals with the preparation of data
cards, and the second section consists of operator’s instructions
and notes for running the object program.

As indicated in Chapter II, a READ or PUNCH statement in the
source program will cause the object program to read or punch
data cards until the complete List has been processed. The
reading and punching of data is accomplished by built-in
subroutines provided in the assembly phase.

Data Cards

Data cards are identified by a “12” punch over card column 73.
One to seven ten-digit words of data may be punched on one
card.

For example, a data card for a READ, I, J, K statement with
a value of -1 for I, +2 for J, and +3 for K would be punched as
follows:

///GGGQGGGQGIJQOGGDGGG:JGGQGQQQOﬁ

§
?
8
i

06000003000 000000000000000000000000000000000000000

2820 3031 12 3394 35,30 37 38 39 QU 41 42 41 44 45 4B AT 4D QW 0 91 Y2 SO S4 555657 SA SN E0 G2 BIGABIBEETERRAW I NTAMIS B I I8 T B
t

IR R R R R R R R AR R RN R

0
o)
1
2122222222222222222.22222222222222221222222Z22222222222Z222222222222222222222222
33 33133 33
44 I 44[44 J 44144 K 44/44444484444344484044444404444444444444444444444444
55 5555 5555 55555555555555555555645555555555555555555555555555555

33 3§i33333333333333333233333333333333333333333333333333

G66666666/66666666666665666666(66666666666666665666666666666666666666666866666666
7171779711107 111011110 AT TN ATIITANINIIDNIDATTT77771701977177717717777717
8956808888/86608088806(3308835888(88860806066063880006800868838005080833808588808668088888
93959999999999999999999399999999999999599995999939

98
23458 78 6101121314 154817 13 10 20§21 22 23 24 25 26°27 20 28 S0§31 32 33 34 35 35 37 38 39 AD 4T A2 42 44 45 45 47 46 98 50 31 2§

ge
545

NOTE: The sign of the'word is punched in the units position
of the 10~digit field. -

If the List requires more than one card, i.e., more than seven
words of data, additional cards are read or punched.

Data is'punched in the first seven fields of the card (each field
is ten card columns). There must be a separate group of data

A5

cards for each READ statement in a FORTRAN program. All
seven fields on each card must be filled, except for the last card
in the group. Because the last card may have less than seven
fields, the remaining (unused) fields may be left blank. For
example, the following statements might occur in a FORTRAN
program:

DIMENSION A(4, 5), B(2,3), N(4,1), M(3,4), L(7, 2)
READ 1, A,B :
READ 2, N, M, L

There must be two separate groups of data cards, one for A, B
and a second for N, M, L. Twenty-six words of data are required
for A and B. Therefore, the first three cards in this group will
each contain seven words of data and the fourth card will

contain five words. The second READ statement requires thirty
words of data: Four data cards will have all seven fields filled,
and a fifth card will have two fields. It is important to remember
that the order of data punched in the cards is controlled by the
READ or PUNCH statement List. The data in a List will be read
or punched from left to right with arrays in column sequence.

Output cards will be sequentially numbered by the object program.
Word eight of each data card will contain this number. For input
cards, this word may be used for identification purposes if
desired.

Negative values are indicated by an “11” punch over the units
positions of the respective field.

Form of Data

Data representing values of floating point variables are punched
in data cards as floating point numbers of the form . XxxxxxxxPP,
where PP is the power of 10 with 50 added, to avoid negative
exponents.

For example, the floating point value, +45. 26, is punched as a
ten-digit word starting at card columns 1-10 and appears as
follows+—

46

/8‘5?50000‘5?

oBf800000000000000000000000000000006000
45878
[RRRR

0

A0 2 IS IE T I NI 2D NS B 2800 2N I KT WA A2 M RAT RIS R MO BN R M RZNH BRI BRIBNRINE R BN
IRRRRERER R R R AR AR AR AR R RN R R R R R R AR R R R R R R R RN R R R R AR R R AR R R R R RN AR R
220222222022

33

]
'
t

BAAtaaaaaddaadasiadaaaddadnidddadddtddqadaddqatdaddadaadidndaadasadndtasiatsandy
5@555555))55555555555555555555565555555555555555555556555555555555555555555555633
66566666666666866665666666586666666666666666666666666666666666666656666666666666
TTT170117000 01071000 T RNTNNNNATNNNNNNNNNNININNNNNNNNNNNNITITNNNNNNNNINNNNN 07
9866883088888 086668808886883830688808888808888808083800888808888C28¢88885868888888808838
999999999939999999999933

12345878001 WBKITIONDAA
19M 308)

999999990999089999929909999497999098995969939939¢9
un & W 479 80

S HU A 4248 5> Mo 41 4249 30 D1 522154 VI L0 DI S8 59 By 61 B2 6I BA GL BG 8T 6A NI TN T2 I3 A TSNS 47 8 Y

The sign of the value (a “12” punch for plus, or an “11” punch
for minus) is punched in the units position of the word. The “12~
punch in column 73 designates the card as a data card. Up to
seven 10-digit words may be punched into each data card.

Data representing values of fixed point variables are handled
as integers and are punched in cards as ten-digit words. Any
unused (high order) positions must be punched with zeros.

For example, the value, +1234, is punched as a ten-digit word
starting at card columns 1-10 and appears as follows:

&
1 |

$10 1121314151647 161920212228 24 2526 27 28 20 30 31 32 33 34 35 96 07 30 20 4041 4243 M4 45 4B AT 4B A3 SO SI 2SI B4 S 50T SANAGOGI G2 GIBABS BB BT HARI TN 2NN NI N B0

0
7
IR AR AR RN AR R RN RS R R AR R R R R R RN R AR R R AR AR R R R R R R R AR R AR AR A R AR R R AR RR R
2222222§22
33333333[333333333333333333333333333333339333333333333333333333333333333333333333

FEEEEN000000000000000000000000000000000060000000000000000060006060000000006000000000
12345878
[ARRERRE B

4444444440440 4444404444444444444444404448444484444444444444440444444444444444444

55555555555555555565555555555555555555565655555555565556555556555555555555565555553%

6G666G666866666¢6

77177711770 19017120101700790 7171901700711 90711012910700101001712711717177711707171177

88086880866888800865088860608886889868888888803806608886080058889065688006088888388888888

92????? ?9999999999999&9999999999999999995093
[

9
GBI NDARNNBRNWBANA RN UBINUBONZEHEE
M 3081

9
8
"

The sign of the value (a “12” punch for plus, or an “11” punch
for minus) is punched in the units position of the word. The “12”
punch in column 73 designates the card as a data card. Up to
seven 10-digit words may be punched into each data card.

47

Operating
Instructions:
Object Program

Programmed Stops
Established in the
Object Program by
the SOAP-PACKAGE

Subroutines

Console Settings

Storage Entry: 70 1952 9999 (or 00 0000 0000 if object program
is already loaded),

Switches: Same as for 660 FORTRAN (Compilation) Phase.

Operation

1. Ready the 650 Console with proper settings; insert the 650
FORTRAN control panel into the 533; feed blank cards in the

punch hopper.

2. Ready read hopper with entire output of the assembly phase
and data cards (if required by the program).

3. Depress Computer Reset key; Program Start key; and, when
read hopper empties, End-of-File key.

When the object program has been loaded, the last card of the
object program deck will transfer control to the first instruction
of the object program, which is always location 1999,

Address Built-in Subrt.
Lights Error Condition Involved

0001 Negative or zero argument LOGF, LOGEF
0002 Floating point result EXPF, EXPEF

> 9, 9999999x1048

0003 Error in floating point POW1F
exponentiation

0011 Floating point argument POW2F
of zero with negative
exponent

0049 Floating point result POW2F

> 9.9999999x1048-

0100 Floating point overflow Any subroutine
or underflow in an using floating
arithmetic statement point

0501 Floating point number XFIXF

to be fixed > 1010

48

Error Procedure

The various error conditions listed above may result from such
causes as logical errors or scaling problems inherent in the
source program, errors in preparing data cards, etc. Depressing
the Program Start key will cause the 650 to perform the
instruction contained in the distributor, which will be the
subroutine exit instruction. The instruction in the distributor
should be noted as an aid in finding the point in the object

program where the error was encountered.

49

APPENDIX I

*JeurIoy preo-iad-suorionisui-aary ur st ndno [y °¢

‘seunnolqns ur-1ing FOVIOVI-dVOS buraourar 103 spred yIg 99 UBD ‘SPIEd UOIIBAISSY XOO[d 2SIl IIM pepnyou] °z
+oseyd A[quuasse o3 Indur se TMOYS 19pIo 2yy 2416 o1 spied ndino sbueireay T

webord 303(qo ay3 wogy nding

(€)
‘uresboad 109fq0O

{ssumnoiqns s,I3s}

‘saurgnoiqns ur-3ymq Nyd.LJOd 059
fsurnor peoy weaboxd 109lgQ

(1)
*SPIED UONIBAISSSY NOO[g fa1qe],
O.L 0D 0/pue 3[qeue, parduosqng
‘pred s[Uelq U,
‘yerz0y Jyos ut ureaboid peyiduron

-mmuh.wo um.mH pue
sty at1p burpreosip
1aye - ndingo

(senidwra 1eddoy pea: usym) ay1g-jo-puy
11e3s wesbord
1959y reindwo)

(senndwe 1oddoy peas uaym) oy14-jo-puy
uels weiborg
jesay famdurod

(seradwrs 1addoy peas uaym) a1ry-jo-pug
yre1s urerboig
jasay samduro)

sAay ssaxda(g

*S9YDIIMS TOTIOS]S

$S2IPPY Jo sueawi 4q QQOQ UOTIEDO] 01
[onmod 13JsUEBI1 I0 0000 0000 00 O3
sayoyims Arjug aberogg 1es pspeol
Apeaite st wesboxd 1oa(qo J1 :aloN
*spaed eiep werboixd 308(q0

foseyd

A[quiesse 211 yo yoop 3ndino arpuy

(@) ‘pIEd NUBIQ T

{(rrwror gyos ur) weiboxd pajidwon
{3107] JVOS UL S2ULINOIQNS §,12s[)
‘Aue J1 ‘spreo uolzeAlasay Hoolg
{seuTINOIqQNs SINJOSqE 10J SPIBD
wAuouds yurod Aryus s, 1esq) {sinjosqe
pieo-19d-2AT] UT SOUIINOIYNS §,135[)

5[99p IDVADVI-dVOS

*S3YDIIMS UOTIDI[DS

SS2IPPY jO sweawr Aq QOO WOHEDO[

03 [013U0D IBISUBRI] I0 GO0 0000 00

03 sayoyMs Arjuy 98BI01g 198 ‘papEo]
Apeaire s13P3p NVULYOL 0S9 3 330N
*SpIED JUSatels NYU.LYOA

[29p NVH.LYOA 059

raddoy peey Apeoy

SpIED uelg SPIED NUBTY spieo yuepq (roddoy yound Apesy
NVYILIOL 059 NVd.Ld04d 059 NVILdOL 059 | T[oued [01U0D €€S
WY YD0Ud 1LoAg0 ISVHd ATdNESSY ISVHd NOLLVTIdJWNOD NOLLVYd3dO

dOl1s ronrg
ISNIS MOTIIAD
ddddi Aerdsig
NNy To13U0D)
NNd a194D ITBH

dO1S pawruresborg IS2YOIIMS

6666 ¢S6T 0L

TA0AI00dd DNILYIIdO 40 XIVIAIALNS

:Anjug abeiolg

SONIL.LIS FTTOSNOD

LI |

APPENDIX IT

LY

4 2 9 9

533 Control Panel Wiring Diagram

A R I R T T T T OROX QW IR QYR HECTORE M N NS Wow B om0 s s g oz
S) <
© 0 0 0 o030gf6-dfo~0g0%0 0 0 HN EM,0 6 06 6 6 0 o o o © 0 0 o0 0 0 o o og U
g x - am i oad oau foe Tournoo 130 28 p—or TouLC) 130 m
o ¢ o o oMo ° o © 0o o 0 o o © © 0 0 0 0 0 o 0 o
} 08 e 11x2 29 W0 vy 130 113 65 U0 AMUG 130 29
0 o 0 o oi1o © o 0 o o o 0 ¢ 0 06 0 0 ¢ 0 0 0Mo40~0-0=0=0=0=0=0=20
s o b 06 e wu1N3 130 08 B —] 130 %6 w40 ' 5Wamt YN O]
o ¢ o 6 o o © 0 0o 0 0o o 9 0o 0 o0 o 2 0o o offodofo-0~0m0=a=0=0=0]
25 3000 i ou1wod 130 58 w0 130 28
© o o o o © 0 0 9 o o © 0 0 0 06 06 0 0o o o I
[1 X3 4% 80 AMLNG 13C 1003 45 20 2w 130 28 t
© o o o ° © o o 5 o o © o o a © 6 0 o o ofer t
[G $1RT 130 06 9 dO mem— A¥INI 130 8 © <¢a 1
© o & o o © o 0o o 0 o 0 0 0 o 0 6 0 o o o 2
MOTLYMHOINI 10M1NGS mum— O I0a1v2 130 28 p—ot s 130 28 ¥ SIS DU 26 ¥HYTY RE— YO]
9 _0 o © 0o 9o o © 0 o ¢ o o© S . el 0 0 0 cJofe—eve—w—9 O C O O O
— - 3 42 BO AMING 130 98 X3 4D 0 AuIND 130 DY o
2 3 0O 0 0 0 0 O S jo ¢ ofo © ¢ 0 0 o O c 0o 0 92 0 o 0 o o ofoFe o Mm_v © 06 0 0 0 G
3 3130 ® 80 o 130 %@ 240 s
< —1*|e3 o oo ¢ ofo © o 0 0o 0 6 o0 o c 0 5 0 C o o o o ofot o o o a o o
Tourm0a 130 28 WD 130 98 3
° o 0 0 o lolorere—e—s—> o clo o 0fo o o o o o 6 o o ¢ o 2 2 0 0 o o o cfos o) o o ¢ ool © 9 o o o
11X3 9 8O AMINI 13C 38 —oar 11X3 49 80 ABIN3 130 55 -]
> 0 010 0 JolOT emttetmg o0 0 Joc 0 oo 06 6 © 06 06 © 0 0 O S 0 < o o o 0 0§0Fe—o—e—ee. o o c o © o 5 o o
uka 5080 AMINZ 130 28 ® 40 se—— N3 130 o8 3 & xuina
° © ojododo © o o30j0 o ofodjoygojog0 © 06 0 0 © © © o © 0 0 o 0o o 0o o o ofo ogs o o cpPlthe o o ©3ojfe o o opoje o o odo
s{sfom s o 55 siefe
s © oloNojo o o oNolo o o joMofojoflo o 0o 0 0 o0 o o o S 9 0 0 0o 9 0o o ¢ ofdlofo ¢ o oNojlo o o oholfflc o o ofclole o oNeo
9 ¥ 1 e!sfoe] os < whe|e E T ot 6
c o ojoloflo o o ol1o]o o ojoydofofofo o ¢ o o o o S © © 0o o 0 0 o o oflofoo o o cltofjo 0.0 o19lljo © o ofojoio o s10
ot - 2| 4for st “_“ or 2 el . -
< © o o {mfoloflo 0 0 o o o o oYo ™ L arema e g Cen 2.0 0 clogoflo o o ojofle o n o offo 0 o ¢fo oflo ¢ o o
| i S 59§ 3 3 o Jpoc wemmnm—3usnye s¥ s foe — o o »
o [ofoRe © © 0 0 0o o% #pirlgo 0o o 6 c 06 o o cfadofe o oo © 0o 0o o olo o o olo ofo o o o
o9 o5 s wlsds @ onnoD wofl s ¥ foa = o5 o »
o © © 00 00 0000 o0 o0 ofofoco © 0 0o o c o ofici§o 0 0 o ¢ o o o o =8oscfec = o o - [
or ot B e sofk Byl | < v 8y for 3 o =
< © 0 0 0 0 0 6 0 o Hblrnl.b cgojld o o o o o o <o o 0o 0o o o o o o offo9e
0uvo Tefl ¢ | ¢ Jlmcemmmsiigs xnR10D 0¥ 3 ! mi ¢ 3¢
° © o ©3o0 CC ©30;0 0 0 oJofo3do 0=cgo=0=C ¢«F=0 o=~0 o of ocgodofo
23z f n fvosne o . v 1Q1 4 .mm +Sz3z
< o oNolo onofo o o omofole o-ofo-o-0 - =0 o-0 o cé o¥cdoflo
p)]] 38 5w Ovaiemd J5nem ovpymmm——_y 1%
o 0o ¢ olLo © o olojo o o oitofo,ofcdogo-o e < o cflojofo
—— fis- oto @ vy o e o’ Q » & 2 ifogo
e -— ~1 EEEl K. ° . o o _e—e e °o ¢ ofojofo B
on O o { o MMWW nivfi 1 R ndn o iy —_ 3 W
. oflelo o s| o ofolo °
-
o9 5% L3 sy 2 3k I [33 u B s ¥ EAEd 12 m‘»\, o 0A) .
iy ° o o o o) ofojofo Jo clc clo ogfo oo ¢ o o oclo o oFfo
or 3 o = =l mlm:m o7 5 ™ p— woL33135 - 3|2for 2 3
Ly « ¢lo e e S o S 8% % % S el e e s e—e <] |ofo TTS[T o 0 S oo 6o oo o ololo o
auvo 02T 6L G U 1T st el KT 2T AT INor 5 ¢ v 8 5 = € 2 0 2vo
032 oo o © o o ¢ggp 03030 ofo o o §gblo o ofo 0 0 0 0 0 6 0 0 o | [IIIo)@uoooooooﬁFooouoo
avon 70M 30193738 10 oM 80193735 10 of
© § Sttt @Y ouny | © T 0o © o c ¢ o o%o x%\ © o0 o o0 o coolC¥ ke (s o0lo 0 0 ollcsevtmmal®¥c 0 clolo o
L
oz EE3 ~ Pz o o o o o omo @ © © o o c oNoflsF0 o 2 oflo ofo o o olffes
o3 oF o o e o o © o oo -1 @ o o 2 06 olcfoFtmitbms—sle o S 6 ol o olo o o
guom
0¥ oF ¢ = e o o o o o3¢ = e ™ 0 6 0 © cos0 o3 e—t—a—fe 5 0 0 O ClOF 5 5 0 O o
1x3 \wwo \d ARING
©}J0 0 0 0 0 © © O 0 0j0F0 © © 0 © © O O© O% ©c o o © o o ono |:iZo @ © o o o orofloFJo 0 9 0 0 0o © ©C O 0;03C 0 O © © © ¢ 0 © ©
©F0o o o © 0 0 o © o ofoF 0.0 © © ofo ¢ o o © 0 o 0ot0 ..@o/ © & &-.0 o ¢ oiofo3 oF
T +
OF Gtehmet=g O QO O OfOZT ojo o o ofo o o o © 0o o 00 |2] 00 0 o0 a5 0 ¢ o ofotx o3
ou0 11X3 334003 ONY 16 1 a '
O &ro——ted—es 0 0 0l0 0]0]ewsttmue~—a oo ¢ 0o ofoc o o o o o o o ofoz °F
nea
oF O jo 0}j0 0jOoFssTe—e—e—s {0j0 0 0 ofo © © o o o c ofo¥ i oF
0 x2 ' 107 . el
ol o o o o oo |eo oy 0 o o o o o w of” o o o o Sty 3 O —
o» sz £) o o8 [o 13 boaunNos s o I L n
» o W ‘- ©-
o 55 o5 = 55 o5 S whv = N o5 s [w
O 0 0 0 0 C 0 6 0 6 0 0 @ 0 0 0 0 nio O © o o -0
or 5 ox . = 1f Hor < o5 =2 aron. s of 2
6 G © 0 0 0 0O 6 6 600 0 0 © o »ﬂ. - d - - .. j > T o f oeo! So—s-
asva am ~+qu_uqu- t asvo
L N EEEEEE Y S Y o & K X X = ow © BRI

~
-
-
-
"
~

TINYJ JOUNOD ‘HONNJ QVIH G¥vD Z65-£85
WILSAS ONISSIDOO¥YIVA 059

9 3 % w » ¥ § 2 L

1

51

NOUY¥ORO0D SINHDYW SSINISITE TYNOWYNSILMNG E

APPENDIX TIT
SAMPLE PROBLEM: MATRIX MULTIPLICATION

Listing of FORTRAN Source Program Statement Cards

C 0000 RECTANGULAR MATRIX

C 0000 MULTIPLICATION
DIMENSION A(4¢5) +B(543)
READ 1 + A+B
READ 1 o NeMoL

DO 4 J= 1N
DO 4 1= 1M
SUM = 060

DO 3 K= 1.1
SUMz=SUM+A (T «K)#* (KeJ)
PUNCH 1s SUM, 1+ J
END

sl I VIR RN

Note: This sample problem provides a test case for the system.
It is recommended that the source program be processed through
each phase of the system and the output for each step compared
with the appropriate listings in this appendix.

52

-

$1

$2

+7

+6

+2

+3

BLR

LDD

)

*
[Ws]s]

LDD

LDD

RAA

RAB

RAU
STV

RAC

RAL

Listing of Output from Compilation Phase of 650 FORTRAN:
The Program in SOAP II Symbolic Form

0101 0135

RECTANGULAR MATRIX
MULTIPLICATION

0000000000

DIMENSION A(445)¢B(543)

READ 1| +A8

READF
%2 -
READ 1 « NeMJL
READF
+7 -
DO 4 J= | 4N
0001 %3
DO 4 = 1M
0001 $4

SUM 2 060
»

SUM +2
DO 3 K= 1.l
0001 %5

0000000000
0040050100
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0050030120
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000

0000000000
7300000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
7400000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
Q000000000
7300000000
0000000000
0000000000
0000000000
0000000000
0000000000
Q000000000
0000000000
0000000000
0000000000
0000000000
0000000000

0000000000

0000000000

0000000000
0000000000

0000000000

SUM=SUM+A (WK)1 #B (K J)

8007

0000000000

5

+4

4

$3

+8

53

STL
RAU
MPY
ALO
SLT
ALO
RAU

RAL
STL
RAU
MPY
ALO

ALO
RAU
STU
RAU
FMP
FAD
5TV
AXC
RSL
STD
ALO
BM |

LDD

LOD
AXB
RSL
sTD
ALO
BM1
AXA
Rl
5TO
ALO
BM|

HLT
BLR

-1
8005

-1
0004

0lls
)1

8006
-1

8007

-1
0004

0096

e

LR

SUM

sum
0001
8007

+4
PUNCH

0001
8006

000!
B0OOS

+8
END
0000

L

8002

8002

%5

+3
SUMe 1
PNCHF

4

+6
%3

+1

8000

0000000000
0000000000
0000000005
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000004
0000000000
0000000000
0000000000
000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
000Q000000
0000000000
0000000000

0000000000
8284740000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
6900000000
0000000000
0000000000
0000000000
0000000000
Q000000000
0000000000
0000000000
0000000000
0000000000
0000000000
7100000000
Q000000000
Q000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000

0000000000
0000000000

100000083
100000084
100000085
100000086
100000087
100000088
100000089
100000090
100000051
100000092
100000093
100000094
100000095
100000096
100000097
100000098

1600000052
1700000052
1100000052
8000000051~
3000000051
00000003

4800000052
1100000053~
3030000053
1660000053~
1000000053~
6900000052
2620000053~
1920000053
1390000053
8000000051
3240000053
1690000053

6901521820
6901731823
6901441822
8200010160
2000390142
1502068002
6080070199
6000960151
2102100213
4603040254
6901751822
6680060217
6680050369
0040050100
0000000147
00000C0147

2000000051
7000000051 ~
2000000051 -
6000000051
9000000051~
0000000004

0000000001
0000000002
0000000003
0000000004
0000000001}
0000000002
. 0000000003
00000000C4
0000000001
0000000002
0000000C03
0000000004

Listing of Output from Assembly Phase of 650 FORTRAN:

6501550158
6901761820
6501970150
6001000205
6080050149
6001150219
1902520222
2103060159
5800010169
6901571821

6502280181

£402690322
2401780231

0050030120
0000000138
0000000138

6901611822
6502290182
6901531822
2102100163
1902020172
2101740177
1500390193
6003060261
6680070227
6502600263
6901841822
1501380243
1501790233
0000000210
0000000178
0000000178

6501640167
6901851822
6901561823
8800010169
1500390143
6580060235
3500040253
3901740224
2401800183
6901661822
6901871823
4601460204
4601360154
0000000004
0000000179
0000000179

6901701822
6501880141

8000010162
6580070211

3500040203
2000390192
1502568002
3202100137
1501470201

6503190272
5200010160
5000010162
0100008000
0000000005
0000000269
0000001999

The Object Program in Five-per-Card Format

1999015201
0170017301
014101440)
0154020402
0211014201
0203020602
0192019902
0256015101
0137021301
0201030401
0272017501
0160021703
0162036902
0155016402
0197018802
0000000000

5801610167
7601820185
5001530156
0501630254
4901720143
19017702235
2201930253
5902610224
6902270183
5702630166
8101840187
2202430146
3102330136
6002520202
2802290319
0000001830

Note: The above listing does not include the SOAP-PACKAGE
cards produced in the Assembly Phase. Accordingly, the card
serial numbers (word 1, columns 8-10) begin at 083.

Actual Problem and Answer Matrix (Input and Output Data)

16 13-
2 1
1 6-

14 17

7- 2 5
8 10- 12-
15 11 18| x | 6
3 2- 9 12
2

3=
8~

5 7
13 4-
4- 10
3 5-
9- 11

48
110~

= 1303

166-

Listing of Input Data Cards for Object Program

1000000051
8000000051
5000000051
1200000052
7000000051
0000000005

Listing of Output (Answer) Cards from Object

0000000001

0000000001

0000000001

0000000001
0000000002
0000000002
0000000002
0000000002
V000000003
LOOO00VO0O3
0000000003
0000000003

1400000052
1500000052

1200000052~

2000000051
4000000051

0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000

54

1300000052~
3000000051
1800000052
5000000051
1000000052

0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000

1000000051
2000000051
2000000051
1300000052
5000000051 -

0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000

6000000051 ~
1000000052~
3000000051~
4000000051 -
1100000052

Program

0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000

100-
69
262~

192

-
o
o ©

=
o2]
NeguvN

0000000002
0000000003
0000000004
0000000005
0000000006
0000000001

0000010000
0000020000
0000030000
0000040000
0000050000
0000060000
0000070000
0000080000
0000020000
0000100000
00001 10000
0000120000

GLOSSARY

APPENDIX IV

650 FORTRAN System — An automatic coding system for the
IBM 650 which uses a subset of the original FORTRAN language
for its source programs and gives optimized 650 machine
language programs as output.

Assemble — Assign actual machine language addresses and

operation codes to symbolic addresses and operation codes.

Compile — The generation of a series of machine language
instructions to execute the operation indicated by the source
program statements.

FORTRAN Language — Statements closely resembling the
language of mathematics which are acceptable to a computer as
a source program.

FORTRAN Program — A source program written in the symbolic
language of FORTRAN.

FORTRAN System — An automatic coding system originally
designed for the IBM 704, intended primarily for scientific
computation. In addition to the 704, this system has been
adapted to the following IBM Data Processing Systems: 650,
705, 709, 1620, 7070, 7080, 7090.

Object Program — The machine language program which is the
final output of an automatic coding system.

Optimize — To select the proper memory location so as to have
the minimum amount of access time between each instruction.

Source Program — The input to an automatic coding system. In
the 650 FORTRAN system the source program consists of
FORTRAN statements.

55

APPENDIXY

650 FORTRAN (Compilation) Phase

Set up table of Constants))
insert symbol to stmnt

e sathes & \CONSTANT

SCAN STATEMENT
Branch if constant is found.

is Fix or Flt Pt and
entry in Constant Table,

Set up table of parentheses,

START

Overall Initialization

PACK

READ
Statement

ARITHMETIC

position of = sign and set
mode of stmnt (Fix or Fit Pt).

LEVEL | PARENS

Rank sets of parentheses in
table with innermost set in
statement getting highest
Ranking — to last set of
parens lowest.

STATEMENT

cards.

Punch stmnts as comments
Convert operators to
internal code.

Test arith or non-arith
statements.

NON-ARITHMETIC

STATEMENT

FIND l DEEPEST
LEVEL
Find innermost set of Paren—
theses and set up indicators
corresponding to that portion
of the statement.,

No Paren in Statement,

Py
MAKE | OPERATION

TABLE
Set up table with entry for each;
operator between the limits
under consideration for compil-
ing with the operator and its
operand in each entry.
—

COMPILE

PRE COMPILE

ANALYZE | OP TABLE

YES

MULTIPLE ENTRY

FIND NEXT

PAREN

Compile instructions for
the combination of
operators determined from
ANALYZE OP TABLE.

Set indicator to show if
accumulator is zeme, get
Operand, the two Operators
and mode of sub-expression
which will be compiled.

Compare entrles in Op Table
to find a combination of two

instructions can be compiled,

OP TABLE OVERFLOW

stmnt under consideration of
any arguments of a subroutine
to be stored.

Where there are over 15 N

adjacent operators from which [~ Operands in the portion of the L—g

Punch store instruction if
necessary and set indicator
representing location of next
set of Paren to be compiled.

SINGLE | ENTRY

OP TABLE

T'est next left ct .

Is it a Right Paren?

| o

Tf next left is operator, compile
RAU or RAL.

1 N 1le i o~

to get subscripted data. :
i gmcﬁan, c%tmpile entry and
gtore argurnent,

YES

1S THERE MOREITQ COMPILE?
Is Fix Point whole expression?

Is Fix Point argument in

Float Point statement?
| Is Float Point whole expression?

NO
LEFT SIDE | OF EXPRESSION

12

Is this an IF statetment?

Is left side subscripted?

Complle store Instruction.

S|

Compile and Punch
NZE and BMI instruction,

NO
NEXT
1f this statement ENDs a DO
Loop compile Iustructions to
ipcrement and test Index.

b6

TERM DEFINITION

Operator = Operation symbole.g.,
ty =y Hy [, HE

Operand = Varlable, Coustant, Sub-expression
or function to the right of an operator

Thus in V = -A * B + SQRTE
-y ¥, + are operatol

Operand for ~ is A
" " %isB
" " 4 13 SQRT(C)

Compute address to go to

appropriate Sub ine,

STOP

Compile and Punch HLT

Store 3 Branches

CONTINUE

instruction with I-Address
=L Address

GO TO (Unconditional)

Compile NOP to stmnt number

Compile NOP Instruction.

PAUSE

Compile HLT Instruction with
ot Number in D-add

or 0000 if no Stmnt Number.

READ

indicated by the GO TO stmnt.

GO TO {Computed)

Compile RAL (Go To Table

INOP instruct. (Go To Table) for

each possible exit in GO TO
stmont.

DIMENSION

ICotrect Variable Name and
[Dimensions and enter into
i sion Table with location

Punch Entry and 10 cards with
Name of Varlable or
DIMENSIONS and subscripts or

indices specified in stmnt
{needed in assembly phase).

PUNCH

lat which the array begins.

DO

Same as READ stmnt above.

1 Store Number of last stmnt in
DO Loop.

2 Store Index Variable name in
+table and m's.

3 Compile instrictions to injtial
ize DO Loop in IR if available|

END

57

Compile HLT 0000 8000, punch
blank BLR card, Punch BLR
card if needed, for Dimensions

and computed GO TO's.

SOAP-PACKAGE (Assembly) Phase

START

LOAD SOAP-PACKAGE DECK
AND PUNCH PACKAGE SUB-~
ROUTINES.

RESERVE
THIS A 5/CD USERS LOCATION ADDRESSES =/ PUNCH
SUBROUTINE? CONTAINED IN [_srco
5/CD

COMPILLE INSTRUCTIONS TO
GET VARIABLE NAME, DIMEN~
SIONS, ELEMENTS OR INDICES
COMPILE ENTRY TO READ
PCH PACKAGE ROUTINE

s

PCHABCONS & SET
THE
TOPCHAVAIL TABLE} ..m., HR
ON NXT CD READ CARD
STORE OP CODE AND GET
OPTIMIZING DATA., -
SET SWITCH TO BY- CLEAR SYMBOL
PASS TEST OF 1ST TABLE
COMPILED INSTRUCTIONS
USERS SUBR. ENTRY, -
ENTRY POINT IN A
USERS SUBROUTINE
PROCESS LOCATION ADDRESS
AND ASSEMBLE,
STORE TO PCH AREA.
ASSIGN ABCON A LOCATICN
IF NOT USED BEFORE AND

STORE ABCON TO SYMBOL
TABLE.

PROCESS INSTR, ADDRESS

PROCESS DATA ADDRESS PROCESS 1~ADDRESS
AND ASSEMBLE, ASSEMBLE AND STORE TO
#STORE TO PUNCH AREA, PUNCH AREA,

58

IBM 650 PUBLICATIONS

“The following IBM 650 Systems manuals have been published as of the date of
this manual:

Form Number Title

GENERAL INFORMATION MANUALS

F28-4016, Planning for IBM 650 Card Systems
F28-4033 Program Testing IBM 650 Data Processing System

REFERENCE MANUALS

C28-4000 SOAP 1I for the IBM 650 Data Processing System

C28-4004 IBM 650 Tape Merging Program Merge II

C28-4022 650 Tape Sorting Program Sort III

C28-4024 Floating-Decimal Interpretive System for the IBM 650

C28-4028 FOR TRANSIT Automatic Coding System for the IBM 650
Data Processing System

C28-4046 RAMAC 650 Programs: Utility — Scheduling — Chaining

X21-7643 Physical Planning Installation Manual 650 System

RIS
International Business Machines Corporation
Dafa Processing Division

112 East Post Road, White Plains, New York

Printed in U.S.A. C29-4047

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60

