IBM 650 PUBLICATIONS - GENERAL INFORMATION

This bulletin is the first of a new series in the IBM 650 area. Each bulletin
in the series will be classified in accordance with the new scheme for
technical publications: "A" for Applications information, "M'" for Machine
information, and "S'" for Systems.

The new series will replace the existing "IBM 650 Bulletins' series. Some
of the information presently contained in 650 Bulletins 1 through 20 will

be republished as new "S" bulletins. Other items in the existing series will
be incorporated in appropriate '""M" bulletins now in preparation. Certain
other information is considered obsolete and will not be reprinted. ‘

The publication of abstract pages for the manual of "Library Program
Abstracts for the IBM 650' will be discontinued in the new bulletin series.
This material will be published and distributed separately in a different
format.

650 DATA PROCESSING SYSTEM BULLETIN

SOAP IIA

SOAP IIA, a major modification of SOAP II, is a multiple machine pass assembly
program. By means of the multiple pass feature, programs containing any number
of symbols can be assembled without sectioning, prior to processing, as is required
when programs using more than 400 symbols are assembled by SOAP II.

Two versions of the program are available: The Basic SOAP IIA, which is designed
for program assembly with a basic IBM 650 Data Processing System; and the Tape
SOAP IIA program, designed for program assembly with a 650 Tape System. Both
versions can assemble programs written for any configuration of the 650 system; they
utilize the same basic processing methods, and differ mainly in speed, input-output
procedures, and system requirements. The Tape SOAP IIA version is the faster of
the two, of course, since IAS can be used for storage of frequently used constants and
program loops and for temporary storage locations.

In the following discussion it should be understood that unless a particular item is
attributed to one or the other version of the program, that item applies equally to the
Basic SOAP IIA and the Tape SOAP HA. The information contained in this bulletin is

intended as a supplement to the SOAP II Reference Manual, C28-4000, (formerly 32-7646)

and describes only those features which represent changes or additions to the SOAP II
program. Any item not mentioned should be agsumed to be the same as in the SOAP I
program, and relevant information may be found in the above cited manual.

Briefly the new features of SOAP IIA are:

1. The multiple pass feature is completely automatic except for a limited amount of
card handling required with the Basic SOAP IIA.

2. Any program which can be assembled with SOAP II is acceptable as input to
SOAP IIA, provided that certain punches do not appear in column 80 of the input

cards (see page 2).

3. The symbol table can be punched out by means of a new pseudo-operation code
and/or the setting of the 650 console Sign switch.

4. Regional definitions with FWA (first word address) greater than 1999 are acceptable.

5. The use of a new card '"type'' (type 3), which facilitates the mechanical removal of
cards containing dummy instructions, is permitted.

6. Minor revisions have been made in the optimization tables and subroutines.

© 1958 by International Business Machines Corporation

The system specifications for running the Basic SOAP IIA are the same as for SOAP II,
except that the 533 Read-Punch Unit must be equipped with twelve co-selectors. In
addition to these requirements, the use of the Tape SOAP IIA requires that the system
include at least two 727 Magnetic Tape Units. Copies of the condensed (seven instruc-
tions per card) program deck for SOAP IIA and of the flow diagrams and program
listings are available on the basis of one copy per installation from:

650 Program Librarian

International Business Machines Corporation
590 Madison Avenue

New York 22, New York

Requests for decks and/or flow diagrams and listings should specify which version is
desired; e.g., program deck for the Basic SOAP IIA, flow diagrams and listings for
the Tape SOAP IIA, etc.

PROGRAM ASSEMBLY WITH SOAP IIA

Basically, translation and assembly of symbolic program instructions by SOAP IIA are
accomplished in the same manner as by SOAP II. However, SOAP IIA can be used to
assemble long programs without the sectioning formerly required to insure that the
number of symbols in any one section did not exceed a set maximum. When the Basic
SOAP IIA is used, only the separation of the output into two parts (i.e., completely
assembled and partially assembled cards) is required. The partially assembled cards
are then used as input to the following machine pass. In the case of the Tape SOAP IIA
the assembly process is completely automatic, and no card handling is required because
only completely assembled cards are punched.

Specific information concerning the assembly of programs with SOAP IIA is included
in the following paragraphs.

Input Cards

The specifications for input cards (i.e., symbolic instruction cards) for the initial pass
of SOAP TIA are identical to those of SOAP II, except for one additional restriction:
Column 80 of the input cards must not contain a 12, 1, 2, 3, 4, 5, 6, or 7 punch. The
presence of one or more of these punches in column 80 will cause improper assembly.

As will be seen, program cards assembled with SOAP IIA will contain only a 9 punch in
column 80. Therefore, symbolic programs can be reassembled with SOAP IIA.

Assembly

The functioning of SOAP IIA is the same as that of SOAP II up to the point at which the
maximum number of symbols has been entered into the symbol table. At this point
assembly is suspended and a partial assembly phase is begun. During this phase no
entries are made in the availability or symbol tables and no pseudo-operation code (ex-
cept HED) is executed. Partial assembly consists of reading all symbols and checking

these symbols against the symbol table. If a symbol is found in the table, its equivalent
location is inserted into the output field (either of a card or of a tape record) reserved
for the assembled instruction, and a digit is inserted into a control word as an indication
that the symbol has been translated. At the beginning of the next pass the symbol table
is cleared in preparation for the construction of a new table. The symbolic information
contained in a partially assembled card is reproduced into the appropriate output field.
During a machine pass, the indication that a given symbol has been previously trans-
lated prevents the program from entering that symbol into the symbol table and assigning
it a new location thereby destroying program continuity. The retention of the symbolic
information in its original form permits subsequent reassembly of a program.

a. Basic SOAP IIA Assembly. When this version is used, the partial assembly phase
is begun following the assembly of the card containing the 300th symbol. During
this phase partially assembled instructions are punched out as described above, and
the control digits are translated into a combination of punches (see Output Cards
page 7) which are punched into zolumn 80 of the output cards.

Following each machine pass the output deck must be checked to determine whether
the last output card contains a 9 punch in column 80 or is an availability table card.
If either of these conditions is found, assembly is complete; otherwise, all cards
containing a 9 punch in column 80 must be removed from the output and held pending
completion of assembly. (Note: All completely assembled cards will be together at
the front of the output deck.) The remainder of the output deck is used as input for
the next pass.

When all output cards of a pass are found to be assembled, the sections previously
removed from output decks are placed together to form one program deck (see Figure
1). The final deck, when correctly placed together, will be numbered sequentially
throughout the entire deck.

Example: Assume that the symbolic card shown in Figure 2 is read after assembly
is suspended, and the symbols SOME and NEXT are found in the symbol
table to correspond to locations 0542 and 1349, respectively. The cor-
responding output card would be punched as shown in Figure 3.

b. Tape SOAP IIA., When assembling a program with this version, assembly is
suspended following the card (or tape record) containing the 280th symbol. However,
cards are punched out during the assembly phase only. At the beginning of the first
partial assembly phase all remaining cards are read, partially assembled, and
written on tape. Upon completion of this phase the next assembly phase is automat-
ically begun, and the input to the program is taken from the tape previously written.
Again during this pass assembled cards are punched, assembly is suspended following
the processing of the record containing the 280th symbol, and incompletely assembled
cards are written on tape. The process continues until the program is completely
assembled. (See Figure 4 for schematic diagram.)

INPUT OUTPUT

Symbolic /
Program Partiall
ia
1st Pass Deck ___|: Assembled 7
Cards
R e
Basic Assembled
SOAP Cards
IA

Assembled

2nd Pass Cards
} <
J <
Assembled
Cards
Final Deck [T

Schematic diagram of card handling during Basic SOAP TIA assembly of a symbolic
program containing 301 - 600 symbols)

Figure 1

"EEHE Eﬁ&ﬁr'f FEHT |l]
rsleocay TA ADDRJT. N) F_ADOR[1| REMARKS 1

| I S R A N A i .
H H
[LIPENTICATION], CARD NO. ,,UOCAT IO]y 5 |4 ASSEMBLED INS';RUCTION 2o (TSl \iocnrlonl 08 4| JRTAJI00R L, T§INSTR. AD0R . ;T],s REMARKS)

0000[0000050000’00000010000'000 [0 oo 0 00;000 ojo[o- B0 09 o e Wa ofooro WP 0000000000“10[5]00“)0
saselresnnzounEizwe zlnlnunm:zmnw 22 %33 %97 999 gt 45mrn‘aomllszsausssw'sssmuunussusmeswn 5|18{2]70i7
IlH'HIHHHIlHHI:IIll[llIIH|H1|:|1H|I|IIHH n1|ll||1l|lll|11”11”|11111|11MH
) i 1 \ 5.0 A P IU
22222212222222222222222\2222|222222|2222:2222 3 |

T
! | | | Y|
s-m333!333333333'33‘3333313333:33aassmaalsaalw -ooATION
S|E
4

| |

STANDARD CARD | i ASSEMBLED

» .
LOADING ENTIFIGATION| e} 24 (LOCATINIB 0 0 O | [o

CODE | |

Al

Riars

I [socs - xz>ro

DATA T INSTR

> 4

l"I'Aunness : avor s " REMARKS

1
n

e

o oo ragmres
= [on o nzera

Y
o~
-

i
AAAAABlaasaataanans

6

N

slaaaa|aaaulad sy
|

§ Bl555051555555555555(5

|) i
515 5§ 51515 515 555

{ | e KE Y

UNCH ———
05!866B|86886665666(iG65G’ﬁ666«63GGBGIGBBB:BBGSBBGIGSS51666:6668 616666/6/666666666606:%
| | !
177777!7771111‘777777777'7777'711777:7717”777777!77777:777:777777'1'777777777777777
! |
898880'8088888888888888|3888:BBBB88|888ﬂl&&ﬂﬂ”&(ﬁ&&&ﬂ:Bﬁﬂ}BlH83188888 88880888838
|
9

| _
999999/9999359399]9 999‘1!99991999999'999919999999&9999'399‘999;@9‘99999 9999"99‘“9999%“"59

V203 45 617 8 9 10[11 1213 1418 15|17 18 16 i 22125 94 25 26120 25 26 lat 32l 24 3 2617 30 30 aulatfaplazies oS a0 bzl sisule 53 54

e

= g
T

oo

3 en
)

& __en

@ o

=]
=
=
=]
=
=]

3
=
=
=
=]
=

SHZ3 59 6 »: (8263 64 65 66 87 68 89 70 71 72{7274(75{76]71[e) 78] 80

Figure 2

i !] |
Lol e] |
T|5[LOCATON] OP_{JTA ADDR.| 1'.llnitw./u)w[ﬂr REMARKS 1

| |
01640542 650982134 SOME _[SITL[AN CIMEXT []]

[IDENTICATION J; CARD NO. o ;L OCATION 45 |y ASSEMBLED INSTRUCTION 54| [;yT|:4S]es LOCATIO or_ u JETalooR L HliNSTR A00R JpTli REMATES
63 64 85 68 67 63 69 70 71 72| 73| 4] ’51’5” 187

poiooco 0y Bovoooc[gooojoageooio 0 o0 00000 afojo[lro 0 0 oflF 000 o ofojoro WE 0f0
1alsaselrssnnenusEnnean 2N zszu}z1nnm11 22133 4 38 %131 %8 20 401 414:'44454541uuswmlsz&:sossawlﬁusmx
11:.111:]\||l|11111l11111111|1Hlllﬂ|11|I111l1|h1”ll|11 lll!lN”l1llll|‘1|1|l1ll11|

82}
50 A P IT

a 00000000 0[0[o[a[o[ufofo

- o

| -
22|2222I22222222222222|2|222||222222]222'12222T
[! | Y
33!33331333333333333333(“3333'333333k3333|3l3|3"
S|E

4

oata |7 insTR
10 A
LoCATION ‘il ADORESS | aoorfps

REMARKS

@ 5

v
%
H
§
H
4

moon & xanre
B [woos - xzere
)

| 35 ococrav
>~

= [5o Framrrs

S
1
G
N
4 4444444444444844
|

WA55505/5555555055555(55(558

UNCH —
6{6{6

61665665666566666
7777“17777'7777‘777777'”77777:77'l'l'l77777:7'77777777777777177771|:

|
stanflaro can | '
LOADING WENTIFICATION 5|24 |LOCAT|0N|B 0oo

A5SEMBLED o 44;44 454444

|
‘DE NUMBE | ,I | 'Nstnucnou 555155l55|555il555
| { ' — e K E Y

rl616888|6&666666666“666‘666&6666 BIGG8E:GSGGGGG;IBSSG=668:6665
| |
17777717'I'l1777777'l7'l7'l7I

= g oo

=)
=)
=3
=
G

[|
88888B‘la&ﬂBBB&HBHH&&BBB‘IBHB8‘88.8]88888S&IHHB'H8:8'808818088808888888088888888

| |
9‘9'99199 939999599999’9999'999999|~I99'99°l 9|9I99999|99“|9999999399 990999999999999'9
1213 458l789 wnlzmﬂs18rue1920121231212425251272“9:u a2l 25 28 3892 20 39 Atiaziesler 4 0 41 45149 5071152 53 54 55156]57158 62 60 38 €4 85 68 67 0 71 72173{74(73{ 78} 77178[70)

Figure 3

Note: In partially assembled cards, the operation code punched into columns 31 and 32
has no significance, nor do any addresses punched into columns 23-26 and
33-40 which are not indicated by the appropriate punch in column 80 as having
been translated. The operation code will be identical with the operation code in
the last completely assembled card. Any addresses not translated will be the
same as the last translated address of that field. For information pertaining to
the punching in column 80, see Output Cards, page 7.

i

Partially Partially

lassembled cards assembled cards
- >
8010
Symbolic
Program
Deck
INPUT assembled
cards
Tap:- 7
SOAPIL A
assembled cards ——o
Assembled -
Cards
| > 3rd Pass / //
- FL‘— —_— _/
OUTPUT 7
L 2nd Pass /
R
> 1st Pass

assembled cards L.

Schematic diagram of Tape SOAP IIA assembly of program containing
—— 560 - 840 symbols.

Figure 4

Symbol Table

With the Basic SOAP IIA the number of symbols contained in the symbol table at the
start-of partial assembly phase will be 300, 301, or 302 (or 280, 281, or 282 with

Tape SOAP IIA) because this phase is begun after assembly of the card containing the
300th (or 280th) symbol, and this card may have one or two new symbols in addition to
the 300th (or 280th). Although no more than 302 (or 280) symbols are ever loaded onto
the table, an allowance is made for a few additional locations in the table. This allow-
ance permits more rapid partial assembly than would be possible if the entire table were
filled.

Output Cards

All output cards will be punched with one or more identifying digits in column 80.
These are as follows:

Identification Meaning

9 Completely assembled cards (no other punches
will appear in such cards).

8 Incompletely assembled cards (may appear alone
or in combination with 4, 5, 6, or 7).

7 I-address translated.

6 D-address translated.

5 Location translated.

4 First incompletely assembled card of the

machine pass.

Note: Since only completely assembled cards are punched by Tape SOAP IIA, only a
9 punch will appear in column 80 of the output cards from that version.

Miscellaneous: Basic SOAP ITA

When used as program cards, incompletely assembled cards will be passed and not
loaded into any drum location. When listed on the 407 Accounting Machine, such cards
will cause BYPAS to be printed to the right of the remarks (except HED and comments
cards). BYPAS will also be printed for EQU or SYN cards of the final deck which were
bypassed because of undefined symbolic or regional instruction addresses.

If an availability table is to be reloaded during a multiple pass assembly in order to
restore previous availability conditions, the table must be loaded before the 300th
symbol is encountered.

The multifile assembly procedure (i.e., the stacking of two or more symbolic programs
with intervening BOP cards) described on page 15 of the SOAP II manual should not be
used unless it is known that each program contains fewer than 300 distinct symbols.

Miscellaneous: Tape SOAP ITA

Programs assembled by Tape SOAP IIA must have, as the last program card, a card
punched "XYZ'" in columns 48-50 (symbolic op code field). This card, however, will
not appear in the output of the program.

If an availability table is to be reloaded during a multiple pass assembly in order to
restore previous availability conditions, the table must be loaded before the 280th
symbol is encountered.

PROGRAMMING FEATURES OF SOAP ITA

Regional Addresses

SOAP IIA will accept regional definitions with FWA > 1999 and will not make incorrect
entries in the availability table, thereby permitting regionalization of tape unit, indexing
register, and IAS addresses.

Example:
TS OPER. DATA

1 i
! RIEG | X} 8005
I i
! RIEG |T! 8010
i T T
| RIEG |1 i 9000
1 |
|
|

| |
1 1

When the above regional definitions are made, the addresses 8006, 8013, and 9050
would be coded in the symbolic program as X0002, T0004, and 10051, respectively.

SOAP IIA will accept 9000-9199 inclusive, as valid IAS addresses. The addresses
9060-9199 can, therefore, be used in a program to indicate IAS addresses which are
modified by program steps before execution of the instructions involved (e.g. , timing
ring settings for variable length records).

Punch Symbol Table (PST)*

In addition to the pseudo-operatiomn codes described in the SOAP II manual, SOAP IIA
includes the pseudo-op PST. This code permits the punching of the contents of the
symbol table together with the equivalent absolute addresses. The symbols and their
equivalents are punched into the Equivalence (EQU) card format.

*PST pseudo-operation code feature was contributed by Mr. T.F. Perkins,
California-Texas Oil Company, New York, N.Y,

Example: Assume the symbol table and equivalence table contain the following entries
when a PST card is encountered:

Symbol Table Equivalence Table
EDPM 00 0100 0462
TAX
WAGES
FICA ' 00 1807 0025

cards would be punched as follows:

oP D-Address I-Address

PST (blank) (blank) -
EQU EDPM 0100

EQU TAX 0462

EQU WAGES 1807 -
EQU FICA 0025

Note: 1. Symbols which are headed when entered into the symbol table will be
headed when punched.

2. All EQU cards will be numbered 0000.

3. If a PST card is encountered during the partial assembly phase no symbol
table punch-out will occur.

The SOAP TIA program also includes a test of the 650 console Sign switch which is
made at the beginning of the second and each succeeding machine pass of a program
assembly. If, when the test is made, the Sign switch is set to minus (-) a punch-out of
the contents of the symbol table will occur. That is, all symbols used in the preceding
pass will be punched into EQU cards.

Since the above described features are included in the program, and because the PST
pseudo-op code is not executed during a partial assembly phase, a punch-out of all
symbols used in a program may be obtained by setting the Sign switch to minus (-) and
placing a PST card at the end of the input deck. This will cause a punch-out of the
contents of the table at the beginning of each machine pass (except the first) and upon
completion of assembly.

If the only PST card included in the program is at the end of the input deck, no symbol
will be punched more than once unless redefined by an EQU or SYN card.

10

The EQU cards obtained from a symbol table punch-out have two principal uses:

a. The cards may be sorted on the symbols or equivalents and listed for reference.
Such listings are useful for detecting incorrect absolute addresses and erroneous
symbols not discovered during pre-assembly desk checking.

b. Some or all of the EQU cards, together with the availability table, may be reloaded
to establish assembly conditions if it becomes necessary to incorporate changes or
new symbolic sub-programs into an assembled program.

Type 3 Cards

Any type '"blank' card, i.e., any card other than a comments (type 1) or relocatable
(type 2) card, may be specified as a type 3 card by a 3 punch in column 41. This punch
does not affect the assembly but will appear in the output card. Type 3 cards may be
used to simplify the procedure for optimization of multiple exit instructions, that is,
instructions which are modified by program steps as a result of a test or decision.
When using SOAP 1I, it is desirable to code an instruction for each exit, and after
assembly to manually remove the extra cards required by this procedure (see para-
graph II, page 3, IBM 650 Bulletin 13, for further discussion). When SOAP IIA is used,
the same programming considerations are involved; however, the removal of the extra
cards is greatly facilitated by making them type 3 cards and using a sorter to extract
them after assembly.

The example shown in paragraph II, page 3, of IBM 650 Bulletin 13 would be coded for
SOAP IIA as follows: '

.
T8 Jrocanon] 85 | oatess 14| aporess 1A REMARKS
END1 |STL |AINY Slsiko2 | N
3| [emnp1 [smL [AINY | BiLko3 i
3| |END I s}lrn. AINY | BiLkos i
1 ! { i :

533 Control Panel for SOAP IIA

The SOAP II control panel for the 533 cannot be used with SOAP IIA, because assembly
will stop with a branch distributor operation code in the program register as soon as
the first symbol is encountered. On the other hand, the SOAP IIA control panel
described below can be used with the SOAP I program; when this procedure is used,
all output cards except availability table cards will contain a zero punch in column 80.
This punch, however, will not hinder subsequent reassembly of the output deck and may
be disregarded.

A 533 control panel for SOAP IIA may be created from a SOAP II 533 panel by the
following steps:

a. Remove from the SOAP II panel the following:

1. All wires from Read Card B to words 7, 8, and 9 of Storage Entry C.

9. The wire from the Word Size Emitter 3 to word 10 of Word Size Entry C.

3. The wire from column 41 of First Reading to the left Read Digit selector and
to D PU of Pilot Selector 1.

4. The wire from the Transfer of Pilot Selector 7 to column 79 of Punch Card A.
b. Add to the remaining wiring of the SOAP II panel the wiring shown in Figure 5.
If a new panel is to be wired for SOAP IIA, the panel should be wired as shown on

page 32 of the SOAP II manual, omitting the wiring enumerated above. The wiring
shown in Figure 5 should then be added.

11

12

BASIC SOAP TA OPERATING INSTRUCTIONS

710 1191511 2192191°9 N
STORAGE ENTRY SWITCHES SIGN
STOP RUN HALF RUN ADDRESS MANUAL DISTRIBUTOR PROGRAM STOP SENSE STOP SENSE
sTOP oP REGISTER
RUN UPPER READ OUT
X X X X ACCUM STORAGE
LOWER READ IN
ACCUM STORAGE
PROGRAMMED HALF CYCLE ADDRESS CONTROL DiISPLAY OVERFLOW ERROR

Initial Console Setting as shown above.
A. Normal Starting Procedure: Computer Reset; Program Start.
B. Special Instructions

If SOAP TIA is already on the drum do one of the following:
1. Set 00 0000 1000 in the Storage Entry switches.
2. Precede input with a BOP card and set 00 0000 1950 in the Storage
Entry switches.

Set Sign switch to minus (~) if automatic symbol table punch-out is desired.

Card Input = Qutput (533 or 537)

READ FEED PUNCH FEED
NO. OF
CARDS FILE DESCRIPTION CARD FORM
192 |Basic SOAP TIA (including loader) SOAPIT
xxx | Symbolic program deck

1 |PST card (if desired)

CONTROL PANELS

SOAP ITA 533 control panel
(see Figure 5)

TAPE UNITS

iINPUT,ouTpPuT| FILE PROTEC-
ADDRESS| OR OTHER TION RING LABEL CHARACTERISTICS

FILE DESCRIPTION
IN ouT
8010

8011

8012

8013

8014

8015

OPERATING INSTRUCTIONS, cont'd

Other Instructions and Remarks:

After each machine pass discard the last card out of the Punch Feed. If the preceding card
contains a 9 punch in column 80, or if it is an availability table card, assembly is complete.
If the card does not meet either of these conditions remove all cards which contain a 9 punch
in column 80 from the deck. Use the remainder of the deck for input to the next pass. The
first card which does not contain a 9 punch in column 80 (i.e., the first card of the input to
the next pass) will contain a 4 punch in that column.

An availability table punch-out may be initiated manually by transferring to location 1900,
and a symbol table punch-out by transferring to location 1800.

Program Stops and Required Action:

T sTOP

ADDRESS MESSAGE - EXPLANATION — ACTION

0222 No locations available for the remaining portion of the program being assembled.
Depression of the Program Start key will continue assembly, and addresses not
assigned will be left blank in the output cards.

13

TAPE SOAP ITA OPERATING INSTRUCTIONS

NS
710 1191511 2121919 N/
. \4
STORAGE ENTRY SWITCHES SIGN
STOP RUN HALF RUN ADDRESS MANUAL DISTRIBUTOR PROGRAM STOP SENSE sTopP SENSE
STOP oP REGISTER
RUN UPPER READ OUT
X X x X ACCUM STORAGE
LOWER READ IN
ACCUM STORAGE
PROGRAMMED HALF CYCLE ADDRESS CONTROL DISPLAY OVERFLOW ERROR

Initial Console Setting as shown above.

A. Normal Starting Procedure: Computer Reset; Program Start.
B. Special Instructions

If SOAP IIA is already on the drum do one of the following:
1. Set 00 0000 1000 in the Storage Entry switches.
2. Precede input with a BOP card and set 00 0000 1950 in the Storage
Entry switches.
Set Sign switch to minus (=) if automatic table punch-out is desired.

Card Input = Output (533 or 537)

READ FEED PUNCH FEED
NO. OF
CARDS FILE DESCRIPTION CARD FORM
203 |Tape SOAP TIA (including loader) SOAPIT
xxx | Symbolic program deck i

1 PST card (if desired)

1 XYZ card
CONTROL PANELS
SOAP TIIA 533 control panel
(see Figure 5)
TAPE UNITS
INPUT,oUTPUT| © ILE PROTEC-
. ADDRESS| OR OTHER 1;[':’” R”“o‘:i,_r LABEL CHARACTERISTICS FILE DESCRIPTION

8010 |input-output| X Scratch tape

8011 |Input=output| X Scratch tape

8012

8013

8014

8015

14

OPERATING INSTRUCTIONS, cont'd

Other Instructions and Remarks:

Discard last output card.

An availability table punch-out may be initiated manually by transferring to location 1900,
and a symbol table punch-out by transferring to location 1800.

Progfcnm Stops and Required Action:

ADSD—IF;OEPSS MESSAGE — EX"’LANATION —~ ACTION

0222 No locations available for the remaining portion of the program. Depression of the
Program Start key will continue assembly . Addresses not assigned will be left blank
in the output cards.

0444 End of file detected while writing a tape record.* Replace tape with a longer one
and begin assembly again.

0555 Error detected while writing a tape record.* Depression of the Program Start key
will cause one attempt to rewrite the error record. Do not attempt to rewrite more
than three times.

0666 Error detected while writing a tape mark .* Depression of the Program Start key
will cause one attempt to rewrite the tape mark . Do not attempt to rewrite more
than three times.

0777 Error detected while reading a tape record.* Depression of the Program Start key
will cause up to four attempts to reread. If the error condition persists the record
may be examined by a console read-out**, or may be printed out, if a 407
Accounting Machine is coupled to Synchronizer 2, by transferring to location 1550,
If the record can be corrected manually from the console, transfer to location 1650
to resume assembly.

0888 Error print-out completed .

0999 End of job. Re-initialize before beginning assembly by preceding the program
with a BOP card and depressing the Program Start key, or by transferring to
location 1000.

* Tape unit address can be determined by displaying the contents of the lower accumulator.
** Records read from tape occupy locations 9050-9059 . Format is similar to that shown on
page 40 of the SOAP || manual .

9

% 4 03§ a1

% i

32 % 2 49 1

vo 9 2 19 09 65 95 5 % S5 ¥ S5 X 15 05 6 8 &y 3 Cr vy © 2 B 0 6 B UL ST % o E 2 i o 62 ® 1z W 52 sz € 22 2 02 B B N S S w @ ¥ 0o & 8 L 9 & v € T 1
_1 VSN NI G3LNINd B
0 o 0 0 0 0 O O 000gO0—0=0-0gO0t0O Y. 0 0 0c c o o 0o 0o o0 w/ 0o o © 0 0 0 O O © O o-0go 0 © 0 © © ©0 0 0 O -
FLUNS NEUS EELRIY. £ I0¥INOD L3Q 08 L 0L IouLINOY 130 oM 1o 1 1 . 1 1 1 I I
o o 0 o 0 ¢ 0 o oNcfo—cgo=-ofJOoEO J © 0 © o 0o 06 ©o 0o O O or ©o © 0 o © 0 0 ° O © o0=0 lﬁo\o\o o o o o o o
Ll — 135430, Fos Lix3 49 ¥O ANIND 130 28 Vpd 0L =————— 1IX3 49 O ANIN3 130 38 SM N
o6 o o 0 ¢ o o o otofo—-olo~ocfozo o 0o 6 6 0 6 o © 0 O s o 0o o o o o o o o ofo=-0~0-0-0=-0=-0=-0-0-0f0o—0l0 © © O O © O O © O o
3 s o sm 4 osd0 fM kos AULNI 136 28 8 de Tlam e O et AUING 130 38 9 IO e §9 v 3$INdM1 O3y O [l oM [S S S B S B]
©c o o 0o o 0 o o o ofo—ogo—~ofoto o o 0 0 6 6 0 0 O O =l 0o o o ¢ o o © 0o o O 000—0|o|0|o|ololo|o o-of0o 0o o 0 0 0 0 0 0o o b
I—— 5230103775 3000 HONNC Emmmme nd 1@l DM 901S MBTI0 T08LNOD 130 28 15— TIOYINGD 130 €M A GA SM M SR SR WA SR 2% A
© o 0 0 © 0,0 © © 0JOo—0HO o © 0 ¢ 0 o o o ofo O ©0 O O O S8 O O O ns o ©c o ¢ o o o o o ofoc o9omo 040 ©0SoMOo O0|O™OYO © O O © O Om0 O O il
[T] p 1 ov B oem g nownos ffos 11%3 9 ¥O XMANT 130 38 = f—os 11X3 99 ¥0 AMIN3 130 98 ™ [S T S T '
© o 0 0 0 OY)o © o o0oBo—0yo o 0 o © o o o o ofo o o O O O O O O O % o o o © © 06 o o o offo ovomo oloc ofomo olo=ofo o o o O o O ° w
[T R B | [N - &0 poS A¥LIN3 130 3 130 28 940 INT
a 0 o o O o 0 o ovVo—oflo o 0 o o o ¢ o o of0 O o o o o wl © o o 0 o o o ofo oz2omo olo otTomo o o hd
b ¢ sm— 01 LY AHOINI 108L . o: TOHINOD 130 I 12—V 35 1S3 u.Sn..E.:J 1
of0 © ¢ © © 0O ©0 O O OyO0F¥O0 O O o cfo o o T o0 o0 0 ¢] e o Q o e gfocFo o © M@ @ N o o o ©° ~
—a Tix3 4o 80 AIn3 130 08 —] 0t 11%3 99 40 AT
0f0 #—g—e C O 0 O 53 T 0 0 © o _owe—TfO 0o 0 0 ©° 0 O O O o ™| & O O o o o o o o o o L
b AMIND 130 06 @ dO wwemmmmmmmn g el o Of wewwcncmm= LYLN3 130 98 € 90
cC¥Oo © O /ﬂ o o © o ofjoio o o o o ¢ ofo ¢ 0o o ©o © © O O O = ©o ¢ ¢ o © o © °© o 0 © o
s 081302 136 %€ d I081NGD 130 28
Sfo o o 0 0 © o o © oJoFo o 6 o O o o o o ofo O o o O O 0.0 0.2 #l 0 o o © o o © c V/ o o o g
auom 11X3 ¢9 ¥0 A¥LNT 130 98 B B et 11X3 49 80 ABINT 130 08
°Ffo 0 o ©c o © o o 0 ofjoyo © 0 o 0 0 0o o o ofo o 0 o O ©° O O O © w# o o O o0 o o oo o o B
1x3 3 XGINZ 130 58 ¥ dO CETS T wmn| 0T e N3 L)
© 0 © 0Joj 0 © O 020[0 O © ©030;0 © O 030gojOgo o O O O C O O O o c o 9 o o o 9 o o o 0do0 o
sisfos B s oz =))
o o o oNojo o o oNoflo o o OoNOfo o o oNOJRoO|jOgOC ©C O O O = T ¢ O©O O 0o o & OQIMF o o © o\ oNo Ed
ST 1 €T €19 09 S5 : 3 L4 4
o T o o oiojo o o o0lo0jo o O OiOofoO © o 0 0 © 0 0 © |®™m| © © 0 0 0o © ©°0 0.0 C o o o o \olo e
135 - z §ov se oe = Oz
o v 5 o © o 6 0 © ©O 0O 6 0 0 0 © oftoflo 0 0 o o o o o O o Jwl 0 O O 0 0% o oo © o\ o o o o© oN\o © ° -~
) (7 o« 59 o fl 9 2 s foz mmmmmm—S"s31snya HONNG EEEI— - O S 215 158 HONAd| iwll 5V o Boe sz =])
o 0o o0 @ © © ©° O o o o O ©o O o ofoncfo o o ¢ o o o .leo z o 0o o O © O © =) o O o o o\ o 2
o9 s wlsds fonmod . s ¥ < s o ™
ofo o 0o o 5 o o 0o o o o © o o o cfo.ofec © o o o0 o o oo O . ¢ o 0o o o o © o °o o o o o o c\o o\o -
or s 3 (4 =f-§+ @l&b o s 31 3 s =
ofs o o o © o 0 0 0 0 ©0 0 O c o ¢ ¢ ofogcfje o o o o o o oo o x 0o v 6 0 o © & o 0 34 6 0 0o o © o ojlo o x
ouvd ik B 1S NRAT0D Y - 3735 300G QY €
olo o ©30,0 o o0 -edojo o of0%0;0 0 o 0doO oJofoNogo=-ogo—c=~0ge=0 O~—w{—0 0=0 0©0—=O0 O0—OgOJFO OM ©c o odo0 EL) »
z3zfv e]sos f1osoe 161 1 g1 10t 1x1 e feYrResSzia
° o oNolo o o onolo oo onolo o o onofojofosofo-0fo~0-0fo0=-0 O—r =0 O=0 O=0 O—OROSORD o2 o o o NG A
8. s 1B 35NN CUSIm 3sndN) !
o ¢ o10lo o o oiolg/0 o olojo o o olofo oo o© n o o o ©c 5 o © olo o o 190 18 3
5. ojog! ' 0T B /W Y B K W ogo
o o\o 6 ¢ o o ¢c o of0 o o o o © o o o ofogofgao o s © 6 6 O 6 0 © otofo o o o ° o o a s
08 S oL 9 wn g ¢t 708 8015371350 waJ 7 5 .m
S oMo 0 0 0 06 0 0fo 0 o o o o o o o o ofafoflo o o s|{'o 0o o o c o o ¢ LA ° o o o o s
03 55 3 sv id B3 Ed B O X B LB K B naa yafgor 5 05 o w
o o o o o o o o 0 0o 0o o ©6 0o o o o offojojo o © . o © 0 ¢ o °o © Fit g) o 0o o o o © .
oy 3 o 52 wgo|o . 8059373 '/éo 3 0% 2 2
o o o\o o o © o o o o o o o c o o o cfojofo o © o o o O o OO ° 0o 0 o 0 o e—s . o o 0o 0 6 O O 0O O 0 0 0O 6 0 & 0 O O °
auv2 102 181 |7 LT 18T 15T b1 KT G WL B B 5w K4 8 0¥Y> OV
e3c © < W\ ©o o © 03050 © 0 © 0 o o o o ofo o ©c O O O O o Pl o 0 0 0 e—e o) 0F0 O W © o ¢ O 0O © 0300 0 0 © 0 © 0 O O O <
gom 04 40103735 107 oM ¥OLIITIS L0
ofo O © o/fo 0 o o ojofo o 0o 0o o o o o ¢ offo o o o o o o o ODIO x o ¢ 0o © o © © ofc o o o o o o o olcFo 0 ¢ 0 o0 0 © O O O »
L ouom L
ofFo 0 © oAVV.o o o 6 o|loFfo o o o o © © o o ofo 0o o 0,0 O O O ONO " o 0o 0 v 0o n o9 N ofo o o o 0 o o 0o ojo¥o © © © © ©0 O O Q@ O "
cF0 © © o.d/o e o oJojo o © 0 o o ¢ o o ofo o e o O O © O O1O B o o \@/o °o o ofoTo o o ©c o6 o 0 0 0JoFo © @ 0 © @ © O O O 1
e G quom
030 O c\o o o Z o ocJlofo o o o © © 0o o o ofo o e © O O O O 020 » o o o o o ©° ocofofo o O o o o 0o o ofozo o ¢ ©0 O O ©0 O O O »
X3 29183 '
030 o \ o o o o olo/o 0o 0 © 0o 0 o 0 © o ofo o o o O ©O o o° ONO . o o q@p @ ° o foljucofozec © o 6 o © O 6 043030 0 © 0 O © € O © 2 .
auom
ofo o\.o © 0 0o © 0 0o O[>RY 0 0 0 0 0o o o ¢ Oofo O °© ©° ©° o 9 © o1L0 «l o o o = ° of ofofoFo o o ©c o o o o oJoFo © © o 0o 0 0 0 O O 1
- z e 2 guom
o«o\m o o 0 0o o 0 0 © OHOZO o o o o cfo 0 0 6 0 © 06 © 0 O |gl—o—0C 0 O 0 ¢ dd OK ofo o © o o o 0o © ofefo 0 0o 0o 0 © 0 o0 O O s
— 11x3 FIN0I OGNV nd 1 11x3 374n00 ONY Ad 1
oF N\ o o o o o o o o _oldio 0 0 O g 2 c o 2 o o o © o 230 ©° © o o ¢ o o ofloFo 0 © © © ¢ 0 O C O Fl
auom Guom na o nda
o S o o o old3o o o o © © 0o 0o 0O o o o o o Jo o cfoFo O o\o o o o o-o olofo 0 0o 0o 0 0 0 0 O O 3
auom B33 1 ayom K073 3 nd AuINZ
© o 0o O O o 0O 6 0O 0 O O 0 O 0 ¢ 0 0go0 © o o o ofo o o /o o 6o 6 0 0 © O 0 0 0 0 © O 0 o o o O a
o8 I3 oL 59 whe o 5L o s ©
o 6 6 6 0 0 O 0o 0 6 0 0 0o 0o o o o o o ofo ° o o o o © o o 6 0 © 0O 6 © 0 0 0O 0 0 0 0 ¢ '0 0 O 2
09 3 os sp w v o5 o 5 - os e 1
o © 0o 0o 0 O O 0 b o o 0 a0 0 0 0 0o o O Ofo c o © [©o 0o o 6 0 o ©O 6 0 0 0 0 0 0 0 9o o0 0 00 5
or =€ 3 <z 2 1 o 3 of <= w2
© ©o 0o 0o 6 0 0 6O 0O 00 0 0 9 0 0 O 0 OFO o o o o c o o o o 0 0O 0o 0 O OO 0 O 0 O 0 0 020 v
ouva 1B g x ol 3y 1 ouvd ov
¥ 5 20 P 03 65 B 45 9% S5 ¥S €5 25 K 05 6 9 2 S Sy v S 2% b O & B X % W ¥ W > |® of & 8 IZ % S ¥ €2 72)2 02 & m o4 W & ¥ @ W n oo € 8 L % s ¥ £ 2z
(INIHOYW ONISSID0¥4-¥1Vd WNIG-JILINOVW 069 HLM a3sn)
TJINVd TOYINOD €8¢ “LINA HONNJ-AVIY
VSN vt paivid
-LOT9-ZZ "ON 1oy NOILVHOdYOD SINIHOYW SSINISNE TYNOILYNAINI

®
International Business Machines Corporation

590 Madison Avenue, New York 22, N, Y,

TIBIM

Printed in U.S.A,]28-4001 7/58

650 DATA PROCESSING SYSTEM BULLETIN

THE CHAINING METHOD FOR THE 650 RAMAC, SYSTEM ’

Considerable time and effort have been spent on the problem of effective utilization of

the large storage capacity of the IBM 650 RAMAC System. Several different methods

of disk file addressing have been developed. In general, each of these methods has
certain advantages and disadvantages which vary in importance depending on the nature
of the information to be stored and on the system of file organization employed. Though
not a new technique, the chaining method of disk file addressing is one which has recently
been adopted for a number of applications and which offers an efficient solution to the
addressing problem. Chaining is more effective when a file has high activity with respect
to a small percentage of the items in the file and when there is not a rapid turnover of
the records stored in the file. While it is recognized, of course, that chaining will not
provide a solution to all file addressing problems, the method is considered an efficient
over-all system applicable in a wide variety of cases.

The purpose of this bulletin is to present a general description of the chaining method

of disk file addressing and of a related set of evaluation and maintenance programs
currently under development. Various general aspects of disk file addressing are
discussed in the first section. Chaining is then described and compared with other
methods. A short discussion of address conversion methods and loading is included; and,
finally, the several programs designed for implementing the chaining are briefly described.

GENERAL CONSIDERATIONS IN DISK FILE ADDRESSING

Manually maintained files permit direct access to any desired item. Commercial files
cannot be readily organized to accept inquiries on more than one basis, e.g., customer
name, location, or product employed. For this purpose, duplicate files are often used,
each organized on some different principle. Although duplicate disk files are not suggested,
and are not necessary, some of the principles of manual file organization may be employed
to advantage.

Information in a file is generally in units, with each unit having a designating identification,
such as a part number, a man number, or an account number. This identification is
conventionally called the control data. If the control data of the records in a particular
file are consecutive numbers without gaps, they may be converted to addresses in the

disk file by simple arithmetic. For example, if each file location can hold only one item
and the item numbers run from 15,000 to 18,499, then by subtracting 15,000 from the

item numbers, disk file addresses from 00000 to 03499 could be assigned. The machine
operation in this respect can be very efficient.

It is rare that files are organized in such a way that the control data can be used either

directly as disk file addresses or converted simply as in the above illustration. In most
applications, the control data of each record must be converted into an address by a

© 1958 by International Business Machines Corporation

somewhat more complex procedure, For example, if information on 3, 000 stock items
has to be stored and each stock number is ten digits long, the preceding method would
utilize only 3,000 out of ten billion possible locations. This is but one example of many
in which a filing system is used to identify only a few thousand parts while the numbering
system has a potential range in the billions.

Each IBM 355 Disk File unit has a capacity of 10,000 tracks. As many as four units
are available for use with the 650, permitting a total capacity of 40,000 separate locations.
The addresses range as follows:

Unit From To
0 00000 09999
1 10000 19999
2 20000 29999
3 30000 39999

By some method of conversion the control data must be translated into numbers falling
within the above range, depending upon the number of units being used. The problem

is to store the information so that it may be recovered in the least amount of time while
keeping unused (but assigned) storage space to a minimum. These two requirements
often conflict so that in practice compromises must be sought.

First, the user must specify the range within which the addresses are to fall. Then,

the control data must be converted into addresses within this range. It is desirable to
minimize the number of duplicated addresses resulting from the conversion. Thus, if
7,000 items are to be stored within 7,000 tracks, ideally the control data of each record
should convert to a unique address. There would be no duplication and no unused addresses.

In practice this is never the case. There is always some duplication and, as a result,
some unused space. For example, assume that a record has been stored in a given

track and that each track has room for only one record. Then, if the control data of a
second record converts to the same address, the second record will have to be stored

in a different, unused location. This displaced record is termed an "overflow." Over-
flows occur when there are more items than can be stored in a location. Thus, if records
are 200 digits long, three records could be stored in a track. The "track capacity' would
be three. A fourth item would have to be stored as overflow.

With multiple track records, the excess beyond the first track is treated as overflow
and may be linked in some manner to the first track of the record.

CHAINING

As indicated in the introduction, several systems have been developed for addressing
the file and keeping track of the overflow addresses. The method known as chaining
offers an efficient, over-all solution to the problems of organization, maintenance and
retrieval of information in a 650 RAMAC system. The merits of the chaining method
were established by mathematical analysis and have been substantiated by testing on
actual files.

In recovering information from the file, the ideal system would require only one seek.
The disk table method * requires a minimum of two seeks, one to obtain the address

and a second seek to obtain the item in question. Certain indirect addressing methods*
other than chaining brought this average seek below two, provided that the file was less
than 85% full. However, since unused storage space is wasteful, it is desirable to run
the file as close as possible to 100% full. With such packing, the average seek resulting
from these addressing methods goes up well above two. At 90% full, with a track capacity
of one record, the average number of seeks is about 5.53. It jumps to 16.91 at 100%

full.

Though the disk table method with its average of about two seeks could be useful in this
situation (i.e., above 85% full), it suffers certain disadvantages in the maintenance of
a file, particularly in handling additions and deletions.

Chaining lowers the average number of seeks to approximately 1.5 when the file is

100% full. However, this assumes that a good conversion method is used to assign disk
addresses. The value of any conversion scheme can be determined by the "Address
Conversion Evaluation Program for Chaining" to be described later in this bulletin.

The graph on page 4 shows the expected average number of seeks assuming that the
addressing formula produces a normal distribution with respect to address usage and
that all items in the file have equal activity. If the addressing formula produces results
which are poorly distributed, then the average number of seeks will be greater than

the expected. Conversely if the distribution is very good, the average will be slightly
lower.

The average number of seeks will be further reduced when the track capacity (in records)
is increased. Thus, with the file 100% full, the average seek is 1.4 for three items per
track and 1. 37 for five items per track. It will drop still lower as the track capacity is
further increased.

An additional refinement called "frequency loading" will bring the average seek to 1.18
for one item per track at 100% full. In frequency loading, items which experience the
greatest activity are loaded first and are followed by the less active items. By this
means, the number of seeks for overflow items, and thus the average number of seeks,
is reduced.

Suppose that a file has a 70-20 activity, i.e., 70% of the activity on 20% of the files. If
this 20% is loaded first, then for 70% of the cases, the average number of seeks will be
very close to one (less than 1.18). TFor the other 30%, the average will be greater. For
a file close to 100% full and with one data record per track, the average number of seeks
will be about 1.18. It will be even less than this if the track capacity is increased.

ADDRESS CONVERSION

In chaining, as in some of the other methods of indirect addressing, a formula is applied
to the control data of each record to develop a numerical result. Five digits are chosen

*Described in the IBM 650 RAMAC Manual of Operation, Form 224-6270.

_

9]} 9y} ul swayl ||p o A§1A1400 |oNby * 7
*2Bpsn sseippp Of $03dsal Yjim ucHNqLYSIp [PWION] ° |

ipawnsspb s1 Buimo||o4 dy]
(171N4 %) ALISN3Q 371 I

001 06 08

o

L 09 0¢ oy 03 0¢ 0l 0

=
=
\

\:
MR
\s\\

"1
€

N
&\\x\

\\

AN}

VA

-4—..

—

N‘\mﬂ'u‘)o
< s

p——

spioday ul mxmwm _
Ay1o0doDy jo _MOME:Z
¥opi| obBbiany

. payoadxy

ALIDYAVD MHOVil ANV ALISNIA 3714 ONIAYYA
Y04 S$M33S 40 ¥IIWNN IOVIIAY Q31D3IdX3

from the result to provide the disk file address. A good formula should pack a file well
and yet minimize the number of duplicate locations which cause overflows. Various
techniques are used for this purpose such as multiplying the control data by a constant
or by squaring it. 650 Bulletin 11 gives several such conversion techniques.

Described below is a simple but efficient method of address conversion, i.e., conversion

of control data to a disk file address, which warrants serious consideration in any appli-

cation involving indirect addressing. This méthod has been used very effectively for

several chaining applications in which other conversion formulas did not produce satisfac-

tory results.

1. If the control data consists of more than ten digits, fold the number to ten digits or
fewer. Folding shrinks a number by partitioning it and adding the picces to form a

new number.

2. Modify the range of addresses (sometimes called the '"compression factor' or
"scaling factor') so that the units position is a 1, 3, 7 or 9.

3. Divide the range into the control data.
4. Add the remainder to the starting disk location to obtain the disk file address.
Thus:
Control data: 9675889993
Range: : 5000 tracks (00101 to 05100)
Modify the range to 5001.

Divide the control data by the modified range:
9675889993 + 5001 = 1934791

Remainder: 00202
Plus: 00101
Disk Address: 00303

The advantage of the above method lies in the fact that every digit in the control data
contributes to the remainder and the remainder is properly scaled. In cases where
this method has been employed the resulting addresses have been randomly distributed.

Overflow Records

To illustrate the handling of overflow records, assume that a conversion procedure has
developed the same disk file address from the control data of three different records.

Control Data Disk Address
1329 401
2 739 902 05772
5 782 133

If the track has a capacity of one record, then there will be two overflow records. The
first record, (control data 1 329 401) goes into disk file location 05772, which is called
the "home'" position. The other two records are overflow records and must go into two
unused locations.

Assume that the second record (control data 2 739 902) goes into 05779. Then the link,
05779, of the chain is specified in one of the words of the record in location 05772, The
record in 05772 might appear as follows:

Control Data Information Link Address Information
1329401 XXX, .. XXX 05779 XXX, .. XXX

If the third record (control data 5 782 133) is stored in 05785, then 05785 will appear

as the link in location 05779. Thus, to find the third record, three seeks would be
required: a seek of home (05772), a seek in the first overflow address (05779) and a seek
in the second overflow address (06785). If the records were not linked and if the record
were sought sequentially from 05772 to 05785, then 14 seeks would have been required
to locate the third record.

It is true that by the disk table method, the third record could be located in two seeks.
However, it should be remembered that every record would require at least two seeks:
one or more for the address and one for the record. With chaining, the greatest average
number of seeks is 1.5. It is less when the track capacity is greater than one.

CHAIN LOADING

Efficient loading of a chained file requires two passes. In the first pass only those
records are stored for which home locations are available. All other records are
overflows and will be rejected. During the second pass, unused space is found for
each overflow record. The address of this location is stored as the last word in the
preceding record of the chain.

Overflow records should be stored as close to home as possible so that they can be
retrieved in the shortest time. The minimum seek time is about 65 milliseconds when
the overflow record is stored either directly above or below the preceding record of
the chain, If space is not available over or under the preceding record, then the
availability of space on the adjacent track of the same disk is investigated. This
"over/under' search continues until space for the overflow is found. If necessary, the
search is continued on an adjacent disk. In this fashion, a chain of records is built.

PROGRAMS FOR CHAINING

Five programs to implement the chaining method of file organization are briefly described
in this section. The machine requirements vary from one program to another, but the

chaining method as a whole requires the followihg configuration of equipment:
533 Read - Punch Unit: 1
355 Disk File Unit: lto 4
727 Magnetic Tape Unit: 2 or more

The first of the five programs, the Address Conversion Evaluation Program, has been
completed. This routine is designed to run on a basic 650 and is being made available
in advance of the other components of chaining to permit early testing of addressing
formulas. The other programs are in various stages of development, and are pbresently
scheduled for completion in early August 1958.

Note: For efficient functioning of these and other programs, the first 150 tracks of the
first disk file unit are reserved for utility program use. Fifty additional tracks in the
first unit are reserved for each additional file unit in the system. Thus if only one file
is to be used, 150 tracks are reserved: 00000 — 00149. If four units are to be used, 300 .
tracks are required: 00000 - 00299. These tracks representing less than 2% of disk
storage will be utilized for such functions as housekeeping, maintenance, subroutines,
availability tables, etc.

Address Conversion Evaluation Program for Chaining

This program is designed to test address conversion formulas which are to be used in
filing systems based on chaining. It tests the formulas on the control data of the actual
file to be stored in order to determine the average number of seeks. The testing is
entirely automatic and, as indicated previously, is performed on a basic 650.

Address conversion will vary because of differences in:

1. The distribution of the control data in the original files: Commercial files are
generally broken down into groupings. Between these groups there may be large
gaps of unused numbers. Within any group the control data of the individual records
probably will differ from each other in only one or two positions. There will be
areas of concentrated numbers and areas of open space. These distribution
characteristics vary from file to file. Hence, a conversion method which works
well with one file may not work well with another. Each file has to be examined and
tested individually to find its best conversion formula.

2. The conversion formulas employed: Formulas for conversion may be varied by
changing the factors used or the sequence of operations to be followed. Each will
produce a different distribution of the resulting addresses. How these distributions
relate to the economy factors of time and space must be examined.

The program analyzes the control data and then punches out the average number of seeks

on a single card. No further tabulations or computations are necessary. In this manner,
several conversion methods may be tested in rapid succession and those which are found

to be inadequate quickly eliminated.

In order to distinguish between two or three methods developing approximately equal
average seeks, the average seek card for each method may be re-fed. The machine
will then punch out the frequency summaries. These are the counts of the unused
addresses and of those addresses used once, twice, three times and on up to 99 times.
Thus, the user can determine the degree of uniformity with which the range of tracks is
employed. That method developing a low average seek and a uniform distribution will
probably function with greatest efficiency.

The program also includes a feature which permits the user to inspect the actual
frequency distribution of track usage, i.e., the number of times each track address
was used.

The Address Conversion Evaluation Program was specifically designed to test conversion
formulas to be used in conjunction with chaining. The evaluation program described in
650 Bulletin 11 retains its general utility but is not suggested for use with chaining
programs. '

The program writeup and the card deck in five-per-card form are available from:
650 Program Librarian
International Business Machines Corporation
590 Madison Avenue

New York 22, New York

Character Distribution Analysis Program

This program aids in analyzing the actual control data for possible use of selected
positions as direct addresses.

Each position of the control data is individually examined. A tally is made of the digits
or characters which are used in every position. Those positions having a suitable
distribution may possibly be used as disk addresses. The selected columns should
then be tested with the Address Conversion Evaluation Program to determine the nature
of the address distribution in actual operation.

The tallying is performed in a single pass on the basic 650 and is entirely automatic.
The results may be listed for analysis on an IBM 407 Accounting Machine.

Chain Loading Program

The distinguishing feature of chaining, as pointed out earlier in this bulletin, is the
method of handling overflows. By booking or linking all of these overflow records to
the home address or to a preceding record, which is in turn linked to the home address,
the average seek time is reduced below the average required by other methods.

Input to the chain loading program will be in the form of magnetic tape records prepared
from card records by the user's card-to-tape program. As indicated previously, the
loading program involves two passes. The first pass loads the home records. The
second pass loads the overflow records. To load the home records, a table of disk

file addresses is maintained on the drum. As the control data of each record is converted
to an address during the first pass, the loading program will check the drum table to
determine whether or not the location is full. If space is available, the record will be
stored. As each track is filled, the corresponding address in the drum table is checked
off. Once a disk storage location has been filled, any additional records for this location
are stored on tape for the second pass.

- During the second pass the overflow records, i.e., the records which were rejected
during the first pass, are read from the tape. The control data of each record is
converted, and its chain is searched until the last record is found. The program then
consults the drum table for available space close to the last record. When space is
found, the new record is stored and its location recorded in the link word of the preceding
record.

Additions and Deletions

This program is designed to handle alterations to files in such a manner that control
is maintained over the retrieval of information and the efficiency of the organization
of the files kept at a high level.

An addition is a new entry to the file. The program will handle additions in the following
manner:

1. The control data of the addition is converted to an address which is the home address.
2. If home is unoccupied, the addition will be stored there.

3. If home is occupied, the record in home is tested. If the record in home belongs
there, the addition is stored at the end of that chain and linked to the preceding
record.

4. If the record in home does not belong there, i.e., it is an overflow from some other
home location, it is removed to make room for the addition. The record which was
removed is relocated, and its link in the preceding record is changed.

A deletion is an item to be removed from the file because of non-activity or obsolescence.
Since references may yet be made to such an item and there is usually no urgent need

to remove it, the record is retained and flagged. This is done by placing a "9" in the

link word. Thus, when a reference is made to the item, the processing program can

take suitable action such as punching out a card or printing a comment. In this manner,

a non-available item will be highlighted in the minimum time and with the least handling.
The actual removal of obsolete items is accomplished either by one of the user's programs
or by the Optimal Sequencing Program described below.

Optimal Sequencing Program for Chaining

The Optimal Sequencing Program is designed to rearrange each chain in the disk file
in frequency order, i.e., high activity items first, when information has become available
about the relative activity of the various items in the file. The file could be sorted

10

periodically to increase its efficiency.

The prdgram will perform three functions:

1. The chains will be arranged in order of activity.

2. The frequency counter of each sorted record Vﬁll be set to zero.

3. Flagged deletions will be placed at the end of each chain or removed if desired.

Since any deletion should be copied on a card or on tape, it is desirable to postpone the
removal of individual items until a file maintenance operation is required. Periodic
removal of deleted items in a batch, such as at the end of an accounting period, usually
improves control and maintenance of the system.

The program uses a maximum of 20 tracks, each containing 60 words, or a total of
1,200 words. It will sort from 20 to 50 records in a single pass depending upon the
track capacity. If there are more than 50 records in a chain, the first 50 will be sorted
and stored back in the disk file. The remainder will be sorted and then merged with

the first group of 50.

After each rearrangement of the file, it should be immediately unloaded onto tape for
audit purposes. The tape would then reflect the condition of the file as of the last sort.

B

®
International Business Machines Corporation
590 Madison Avenue, New York 22, N, Y, Printed in U,S,A. J28-4002 7/58

IBM 650 DATA PROCESSING SYSTEM BULLETIN

CORRECTIONS IN SORT II

The detection of three latent errors in IBM 650 Tape Sorting Program, Sort II, makes
necessary several changes in the Sort II condensed (five-per-card) load deck. The
changes are designed to correct the following conditions:

1. Improper sorting in Phase I of records whose first control data word is either
+9999999999 or -0000000001,

2. Incorrect output reel assignment in Phase II if the first control data word of any
record is negative.

3. Improper mei'ging of the highest record of the file when the merge output consists
of two reels.

The condensed deck and the corresponding lines of the listing on pages 74-80 of the
Sort I manual, form 328-0415 (formerly 31-0415), should be changed to read as

follows:
Card
Serial Word
Number Number New Value
014 2 1190350305
156 3 4400750309
4 6080010075
7 1911030503
8 0919601960
222 5 2500010242
229 5 2500010833
366 6 2400340474
380 2 6104240491
3 9999999999
4 2400600887
7 0001042404
8

7419601960

The availability tables on pages 72-73 of the Sort II manual should be altered as follows:

page T2 word opposite 0005: 0000000000
" " 0009: 0000010000
page 73 word opposite 0001: 0000000000
" " 0024: 0000000000

© 1958 by International Business Machines Corporation

On page 52 of the Sort Il manual, alter line 49, add lines 49A and 49B, and alter

line 50:

49 2COMP
49A
49B
50 STHSH

sUP
NZU
RAU
STD

9035
STHS H

8001 STHSH
HASH

0017
0305
0309
0075

11
44
60
24

On page 64 of the Sort II manual, alter line 1067, and add line 1067A:

1067
1067A

STD

STD WTIN

NMWT

1456
0474

24
24

9035 0305
0075 0309
8001 0075
0028 0031
0034 0474
0060 0887

On page 66, alter line 342 and add lines 344A and 344B following line 344:

342 2G1
344A 2HI1A
344B

On page 71, alter line 510:

510 C2H1

NTS
RSU
99

NTS

2H1A
2H1
9999 9999

2H1A 8C1

0287
0001
0424

0322

25
61
99

25

0001 0242
0424 0491
9999 9999
0001 0833

Two typographical errors should be corrected in the Sort II manual:

1. On page 12, change the last line to read "word) in IAS, and zeros filled in as

words 8 and 9."

2. On page 40, the rectangular box in the lower right whose contents presently read
"Store Its Sort Words as XW'" should read "Store Its Sort Words as XS."

LBV

®
International Business Machines Corporation
590 Madison Avenue, New York 22, N, Y,

Printed in U.S. A. J28-4005 9/58

650 DATA PROCESSING SYSTEM BULLETIN

STATUS OF SOAP PROGRAMS

In view of the number of inquiries received, it appears desirable to clarify the status
of the 8. 0. A, P. program, which is frequently referred to as SOAP L

SOAP II - Symbolic Optimal Assembly Program for the IBM 650 Data Processing
System - has replaced SOAP I. The principal advantages of SOAP II over SOAP I are:

1. Provision for the operation codes pertaining to Automatic Floating Decimal
Arithmetic, Indexing Registers, additional Input-Output Synchronizers, Immediate
Access Storage, Tapes, and RAMA%.

2. Improvement and extension of the pseudo-operation structure.

These improvements necessitated a reduction of 200 locations in the size of the symbol
table: from 600 locations in SOAP I to 400 locations in SOAP II. The consequent
problem of assembling long programs was recognized, and this led to the development
by the IBM 650 Applied Programming group of SOAP II A, a modification of SOAP IL
SOAP II A permits assembly of programs containing any number of symbols, while
retaining all features of SOAP II; in addition, improvements have been incorporated
with respect to addressing, programmed switches, symbol documentation, and
reassembly. The program exists in two forms: Basic SOAP II A, written for the
basic (card) 650; and Tape SOAP II A, a high-speed program employing IAS and two
727 Magnetic Tape Units.

Thus SOAP Iis considered obsolete because it has no features not available in SOAP I
and/or SOAP II A and furthermore cannot be used to assemble programs written for
650 systems equipped with additional features. The manual describing SOAP I is out of
print and will not be reprinted. Practically all major 650 utility programs have been
written, or rewritten, in SOAP II form; and those programming systems which them-
selves use an assembly routine, e.g., FOR TRANSIT, utilize SOAP II rather than
SOAP L

The basic publication concerning SOAP II is, of course, the SOAP II Reference Manual,
C28-4000 (formerly 32-7646). Both versions of the SOAP II A program are described
in a recent IBM 650 Systems Bulletin, titled SOAP II A (J28-4001).

The conversion of programs from SOAP I form to SOAP II form is easily accomplished
with the SOAP I to SOAP II Translator which is available from the IBM 650 Program
Library under file number 1.6.016. (Note: A SOAP II, rather than SOAP II A, control
panel for the 533 Read~Punch unit should be used with the Translator.)

© 1958 by International Business Machines Corporation Printed in U.S. A, J28-4007 9/58

IBM 650 DATA PROCESSING SYSTEM BULLETIN

CORRECTIONS IN SOAP ITA ' ,

The detection of a latent error in both the basic version and the tape version of the
SOAP IIA program makes necessary a change in one card of each condensed '
(seven-instructions-per-card) load deck, The change will remedy the failure of the
program to blank out invalid location addresses, i.e., addresses other than 0000-1999,
8000-8003, or 9000-9059. This change will also correct the failure of the program to
punch the identifying digit needed to cause "BLANK L' to print in the post-assembly
407 listing as an indication of such invalid location addresses,

In each case the change applies to the card in which the first word is 00 0933 0007
and involves re-punching the fifth word of that card, as follows:

Basic SOAP ITA 60 0535 1339
Tape SOAP ITA 60 0985 1339

In the flow charts and listings for both versions of SOAP IIA, instruction L0004 in
Subroutine 19 should have the operation code RAU, rather than ALO.

Copies of the Basic SOAP ITA and Tape SOAP IIA load decks supplied by the IBM 650
Program Librarian after October 1, 1958, incorporate the above changes,

© 1958 by International Business Machines Corporation Printed in U.S.A. J28-4017 11/58

650 DATA PROCESSING SYSTEM BULLETIN

IBM 650 MODEL 4 (4000 Word Magnetic Drum)

This edition, G24-5009-1, obsoletes Form G24-5009-0. The major change is: " Tagging 80XX or 90XX
I-Addresses for D-Address Modification. "

The IBM 650 Model 4 provides all configurations of the IBM 650 System with additional
drum storage. The 650 Model 4 increases the flexibility of the 650 system by doubling
the number of addressable drum-storage locations, which also increases the number of
available optimum locations. The additional 2000 drum-storage locations are assigned
addresses 2000 through 3999.

The increase in addressable locations is achieved by increasing the number of 50-word
bands from 40 to 80 (Figure 1). Addresses 0000 through 3999 are valid drum addresses
for the 650 Model 4.

The Model 4 operates the same as the IBM 650 Model 2. The same operation codes

are used, and the same operation execution timings apply. However, the method of
using indexing reglsters in the Model 4 is different from the method used in the Model 2.
The major part of this bulletin is used to illustrate the indexing operation in the Model 4.

BANDS
4] 42 79 80
oo4 1948\ 199m 7048 <209 o4
._QgAz NN 1949 N 1999 N 2049 N\ 2099\ 949 3999
0000 ooso \ \ 1900\ 1950 _2000 \ 2050 \\ 3900 3950
1901 \ 1951 \ 2001 \ 2051 M\ \ 3901 \ 3951 \
0021 0071 1921 2021 2071 3921 3971
M 'jm' 3972
0023 0073 1923 1973 2023 073 3023 73973 7

Figure 1. Drum Storage Location Schematic

© 1959 by International Business Machines Corporation

Indexing Registers

Addresses assigned to the indexing registers are:

Indexing Register Address
IRA 8005
IRB 8006
IRC 8007

These addresses can be used as the instruction address of any instruction, or as the
data address of the following instructions:

00-01 54

10-11 60-61
25-26 64-69
30-49 90-99

Address Modification

The primary use of indexing registers is to modify addresses automatically by adding
(algebraically) the contents of an indexing register to an address.

The indexing register can contain either positive or negﬁtive values, making it possible
to modify addresses, by tagging the instruction.

The basic instruction is not changed by this modification, and it can be remodified any
number of times.

Mode Switch

When the Model 4 modified Indexing Register feature is included in the IBM 650 Model 4
System, the method of addressing drum locations depends on the setting of the mode
switch located on the TBM 653, This mode switch is an optional feature available only
when the system has the indexing feature. When the mode switch is set to 2000:

1. Both the D- and I-address can be modified.
2. Complete compatibility with present indexing as described in 650 Data Processing
Bulletin, G24-5003. Programs already in use can be processed by the Model 4

without any changes.

3. Drum locations 2000-3999 cannot be addressed.

If the mode switch is set to 4000:

1. The indexing structure is changed as follows:
a. Tagging the D~address with 4000 indexes the D-address with the contents
of indexing register A.
b. Tagging the I-address with 4000 indexes the D-address with the contents
of indexing register B.
c. Tagging both the D- and I-addresses with 4000 indexes the D-address
with the contents of indexing register C.
2. Any of the 4000 drum addresses can be directly addressed and can be indexed.
3. The I-address, when a drum address, cannot be modified. However, by the use
of a branch code which substitutes D for I, the I-address is effectively modified.
An extra program step is needed each time (Figure 2).
4, IAS addresses can be modified in the normal manner by adding 200, 400, or
600 to indicate the use of indexing register A, B, or C, respectively.
Index Register A
2000 Mode 4000 Mode
Loc. Inst.| D | Loc. [nst. D i
0996 70 [1951 | [3000] 0996 70 | 1951 0997

Next Inst. is located in 1025 (Extra Step)| 0997 NZA E‘SOOO:] 1000

Next Inst. is loc,afe& in 1025

Figure 2. A Method of Modifying the I-Address

With the mode switch at 4000, address modification is accomplished by adding the
contents of an indexing register to a basic drum address (Examples 1, 2, 3; Figure 3).
If the contents of the indexing register are positive, and the resulting effective address
exceeds 9999, the carry is lost and only the four low-order digits of the sum are
retained. The machine does not stop because of this overflow (Example 4; Figure 3).

If the contents of the indexing register are negative, adding the 10's complement forces
a carry to occur when the difference is positive (Example 5; Figure 3).

Program Register IRA IRB IRC

Before Before After Before After Before After Remarks

65 7123 0124 0223 0223 D-address indexed by IRA.

650123 7288 0075 0075 D-address indexed by IRB.

65 4211 4314 ' 1645 1645 D-address indexed by IRC.

D-address indexed by IRC;
D exceeds 9999; carry is lost.

65 7123 7288 0223 0223 0075~ | 0075~ 8231 8231

65 3122 7128 0223 0223 0075~ 0075~ 8231 8231 D-address indexed by IRB;

D exceeds 9999, carry is lost.

D-address indexed by IRC;
9399 causes storage selection
error .

65 5168 5269 0223 0223 0075- 0075~ 8231 8231

D-address indexed by IRA;
complement 9112 causes storage
selection error.

65 4123 0124 1011~ 1011~

D-address indexed by IRA;
complement, however is a
meaningful address.

65 4123 0124 1= ni-

Figure 3. Address Modification on the 650 Model 4 (Mode Switch Setting 4000)

If indexing by subtraction results in a negative address, the complement result is not
reconverted. This may result in a storage selection error if the effective address is
not a meaningful address (Examples 6 and 7; Figure 3). If the complement is a valid
address, no error is indicated (Example 8; Figure 3).

Tagging 80XX or 90XX I-Addresses for D-Address Modification

The D-address can be modified when the next instruction is located in IAS or is a valid
8000 address. To modify a D-address with indexing register B, the I-address (80XX

or 90XX) is tagged by adding 800, To modify a D-address with indexing register C, the
D-address is tagged by adding 4000 and the I-address (80XX or 90XX) is tagged by adding
800. This method of modification can be done only if the mode switch is set to 4000 and
the I-address is either 80XX or 90XX (Figure 4), I-addresses of 9000 through 9059
cannot be modified when the 800 tag is used.

Program Register
Before IRB IRC Remarks
Tag
65 0141 9815 0050 ... 0075 D-Address indexed by IRB
Tag Tag
65 4182 8800 0050 0075 D-Address indexed by IRC

Figure 4. Address Modification When 80XX or 90XX is used as the I~-Address

IR Arithmetic Operations

Four operation codes (Figure 5) are associated with each indexing register: add,
subtract, reset-add, or reset-subtract data into each register. The D-addresses
8005, 8006, and 8007 cannot be used with the IR arithmetic operation codes.

When index registers are used as accumulators, they are similar to the upper and lower
accumulator except:

1. They are smaller (4 positions).
2. They do not indicate when an overflow occurs.
3. They can accept data only from positions 1-4 of another immediate access

storage device, or positions 5-8 of the program register.

4. They cannot accept data directly from a drum location.
5. They subtract by the 10's complement method, and a complement result is
reconverted,
IRA IRB IRC
Add 50 (AXA) 52 (AXB) 58 (AXC) -
Subtract 51 (SXA) 53 (SXB) 59 (SXC)
Reset Add 80 (RAA) 82 (RAB) 88 (RAC)
Reset Subtract 81 (RSA) 83 (RSB) 89 (RSC)

Figure 5. IR Arithmetic Operation Codes

In any immediate-access storage device such as the upper or lower accumulator (8002,
8003), the distributor (8001), the console switches (8000), or IAS (9000 to 9059), the
four low-order positions of data can be added into any index register with an IR
arithmetic operation code as shown in Figure 6.

Data Contents of IRA Contents of Distributor

Instruction Loc. Contents Before | After Before After

AXA 50 8001 xxxx | 8007 | 139423 8621+ | 0000+ | 8621+ 1394238621 1394238621+
RAA 80 9021 xxxx | 9021 | 006123 1426~ | 2713+ 1426~ | 0176548921 0061231426~
SXA 51 8000 xxxx | 8000 | 006123 1426+ | 2426+ | 1000+ | 1643263118 0061231426+

SXA 51 8002 xxxx | 8002 | 152619 8712+ | 2426+ 6286~ | 0000000718 1526198712+

Figure 6. Using IR as Accumulators

Data stored in drum addresses
Contents of IRA

0000 to 3999 cannot be added or sub- Instruction | Before After
tracted directly into index registers

by the IR arithmetic codes. When RAA 80 0126 xooxx AL o126+
any number between 0000 and 3999 AXA 50 0126 xxxx 1111+ 1237+

appears as the data address of an
IR arithmetic operation code, the
number itself is placed in the speci- RSA 81 0126 xxxx 1428+ 0126~
fied indexing register (Figure 7).
The sign of this number is always
treated as plus, because the program Figure 7. Using IR as Accumulators

register carries no sign. This is a

convenient way of placing factors in

an index register with one instruction,

and does not require another storage location to store the factor itself. It is also a
simple way to add or subtract 1 for counting a program loop.

SXA 51 0126 xxxx 1226+ 1100+

Arithmetic Operations Between Indexing Registers

If the contents of an indexing register are to be operated on by an IR arithmetic code,
the D-address, the I-address, or both the D- and the I-addresses must use the 4000-tag
address. The address or addresses tagged determine the indexing register to be used.

The indexing-register arithmetic-operation code determines the indexing register to be
operated on. It also specifies whether the effective data address (basic data address
plus the tag) is to be added or subtracted (Figure 8). This could result in the sum of
three factors:

1. the base number (0000-3999) in the data address
2. the contents of IR called for by the tag
3. the contents of the IR indicated by the operation code.
) Prog’rur'hdRééis}ér : IRA IRB IRC Progr(;m Register
Before) Before After Before After Before After After
AXA 504156 3122 | 0500+ | 1156+ 500656 3122
AXA 5001567122 1| 0500+ | 0545+ | O111- | O1T1- 500045 3122
AXA 504156 4122 | 0500+ | 2106+ 1450+ | 1450+ | 5016060122 -
_SXA 5102506018 | 0500+ | 0375+ | 0125 0125-.. 5101252018
RAA 800001 1415 | 0500+ | 0001+) 0001 1415
RAA 8000056313 | 0500+ | 0155+ | 0150+ | 0150
RSA 8140024009 | 0500+ | 1241~ 1239 1239 | 811241 0009

Figure 8. Arithmetic Operations Between Indexing Registers

IR Branching Codes

Testing the indexing register to make logical decisions is done by using branch codes.
Two branch codes (Figure 9) are associated with each of the indexing registers to test
them individually for a minus condition, and for a non-zero condition.

IRA IRB IRC
Branch on non-zero 40 NZA 42 NZB 48 NZC
Branch on minus 41 BMA A3 BMB 49 BMC

Figure 9. IR Branching Operation Codes

The data address (branch address) or the instruction address of an IR branch code can
be any valid machine address (Drum IAS, IR, or arithmetic unit). If the next instruction
is taken from an indexing register, it is treated as a no-op code, and the instruction
following the no-op code is taken from the address specified in the index register.

Indexing of Immediate Access Storage Addresses

The method of tagging immediate access storage addresses for the IBM 650 Model 4
has not changed. The method is the same whether the mode switch is set to 2000 or
4000, Tagging is accomplished by adding 200, 400, or 600 to the IAS address to
indicate the use of indexing register A, B, or C respectively.

Addresses that Cannot be Tagged

With the Model 4 machine, the following addresses cannot be tagged when in the D portion
of the instruction word:

8000 Console
8001 Distribution
8002, 8003 Accumulators

8005 through 8007 Indexing Register
8010 through 8015 Magnetic Tape Units

However, the address developed after modification by an indexing register can be any
one of the preceding, if it is meaningful to the operation,

SOAP IIA-4000

SOAP IIA-4000 can be used for optimizing programs for the IBM 650 Model 4.

International Business Machines Corporation

Data Processing Division

112 East Post Road, White Plains, New York Printed in U. S, A, G24-5009-1 12/59

	000
	07-58_J28-4001_01
	07-58_J28-4001_02
	07-58_J28-4001_03
	07-58_J28-4001_04
	07-58_J28-4001_05
	07-58_J28-4001_06
	07-58_J28-4001_07
	07-58_J28-4001_08
	07-58_J28-4001_09
	07-58_J28-4001_10
	07-58_J28-4001_11
	07-58_J28-4001_12
	07-58_J28-4001_13
	07-58_J28-4001_14
	07-58_J28-4001_15
	07-58_J28-4001_16
	07-58_J28-4002_01
	07-58_J28-4002_02
	07-58_J28-4002_03
	07-58_J28-4002_04
	07-58_J28-4002_05
	07-58_J28-4002_06
	07-58_J28-4002_07
	07-58_J28-4002_08
	07-58_J28-4002_09
	07-58_J28-4002_10
	07-58_J28-4002_11
	09-58_J28-4005_1
	09-58_J28-4005_2
	09-58_J28-4007_1
	11-58_J28-4017_1
	12-59_G24-5009-1_1
	12-59_G24-5009-1_2
	12-59_G24-5009-1_3
	12-59_G24-5009-1_4
	12-59_G24-5009-1_5
	12-59_G24-5009-1_6
	12-59_G24-5009-1_7
	12-59_G24-5009-1_8

