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ABSTRACT. Automatic Digital Encoding System IT (ADES TI) is a system
for the automatic translation of mathematical formulas into programs
of coded instructions for an electronic digital commuter, ADES
represents a new approach to the problem of automatic programming in
that it is applicable to almost all modern computers, and it is not
limited to a special class of mathematical problems., The systenm
consists of a formulation language, an Encoder, and a digital computer,
The formalation language closely resermbles ordinary mathematical
language, and is based on the theory of recursive functions. The
Fncoder is an automatic device which receives a mathematical formmlation
as input and produces the necessary computer instructions as output,
The logical design of an Encoder is given, It consists of a computer
with certain routines loaded into its storage. Certain desirable
features of the computer in such a system are suggested.
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This report contains the results of research directed toward expediting
the process of preparing, or programming, mathematical problems for
computation on high-speed electronic digital computers., The advent of
the automatic computer which performs computations at electronic speed,
has revolutionized the art of computation, but it has raised problems
of its own., For many mathematical problems, the speed of computation
is so great and the process of programming so involved, that the time
spent on the computer in useful computation is often just a fraction
of the total time elapsed between the formulation of the problem and
the obtainment of the numerical results.

This report presents a system designed to correct this situation. The
system relieves the mathematician of a major portion of the programming
task, In effect, it replaces the human by an automatic device which
carries out the programming duties. The design for such a device is
given. An experimental model is in process of construction,

This work was performed under NOL Task No. FR=30-1-56.,
W. W. WILBOURNE

Captain, USN
Commander
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PREFACE

At the September 1955 Anmual Meeting of the Association for
Computing Machinery, the author presented a paper which described
Automatic Digital Encoding System I, (ADES I), a system of automatic
translation of mathematical formmlas into computer programs., The
present paper describes an extension of that system, ADES II, which
significantly enlarges the class of problems which can be automatically
programmed, It is conjectured that ADES II is sufficiently general to
cope with most of the two~dimensional mathematical problems that are
submitted to existing digital computers,

_ ADES I excluded problems which involved double recursion, This

is now provided for in ADES II, which is also capable of programming a
special kind of triple recursion. However, ADES II harbors certain
obvious limitations which can and should be removed., Further, there is
room for much improvement in procedure, for example, in input—output
procedure, Finally, there remains the deeper problem of efficiency,both
in time and storage utilization. The minimalization or efficiency problem
has thus far been treated as secondary in urgency. These considerations
motivate plans for another system, ADES III, now in the research stages,

The ADES approach to automatic programming is believed to be entirely
new, Mathematically, it has its foundations in the bedrock of the theory
of recursive functions., The proposal to apply this theory to automatic
programning was first made by C. C. Elgot, a former colleague of the
authorts, While at the Naval Ordnance Laboratory, Elgot did some research
on a language for automatic programming., Some of his ideas were adapted to
ADES, and we wish to acknowledge this fundamental contribution.

It is our belief that the theory of recursive functions, as propounded
in references P'] , E}a‘i and [3] say, and the closely related mathematical
logic provide the na , possibly the only, framework for constructing
a general automatic coding system for digital computation., However, it
appears that these subjects are not yet within the purview of the majority
of those mathematicians presently concerned with preparing problems for an
electronic digital computer. Since this report is directed primarily at
them, ADES II is presented here as a practical system for the translation
. of mathematical problems into computer programs, rather than as an
application derived from the theory of metamathematics, The mathematical
logician will find no theorems to justify the methods adopted, and the
- sporadic references to recursive function theory are intentionally in an

intuitive vein, The style is consciously expository and heuristic rather
than telegraphic, However we do assume that the reader has a good mathe-
matical background, ADES is designed primarily for the mathematician,
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This report is in two parts, under separate covers., The first part
presents definitions and rules for formlating problems in a stylized
mathematical language., The second part describes the logical design of
the 'Encoder?', a machine which will receive the mathematical formmlation
as input and yield a complete computer program as output., The logical
mechanism of the Encoder becomes rather intricate in places. Therefore,
minute details are often omitted, since it is felt that the mathematician
versed in machine techniques will be able to supply the missing details,
in one form or another, once he has grasped the overall pattern. In fact,
he can modify the design in many ways, for there usually is more than one
means to an end, Many features in the present design were suggested by
the authort's colleague, Leroy Krider. Mr, Krider and the author are working
on the construction of an actual Encoder for ADES II, which will utilize a
650 Magnetic Drum Calculator. A joint report describing this Encoder and
experiences with its operation will be published in the near future.

Many thanks are due to Larry Schmid for his critical reading of the

manuscript and helpful suggestions., We also thank Mrs. M. Zawatzky for
her assistance in preparing the manuseript for pubiication,
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AUTOMATIC DIGITAL ENCODING SYSTEM II (ADES II)

Introduction, In the last few years, we have witnessed the advent of
sutomatic computing machines which perform digital computation at
electronic speed, In fact, the speed of computation is so great that
for many mathematical problems, the time spent on the machine is but a
small fraction of the total time elapsed between the formmlation of the
problem and the obtainment of the numerical results,

Mach of the time and effort required to solve any moderately complex
mathematical problem by means of an automatic digital computer is consumed
in the process commonly referred to as *programming’.

Programmuing can be described as that process which starts with the
problem as a set of statements in mathematical language (i.e. equations),
coupled with a set of metamathematical statements in ordinary language
(e.g. English), and transforms these two sets into a single set of instruc—
tions coded in a language intelligible to the machine, This set of coded
instructions, known as the 'program!, is a list of the successive computer
operations required to obtain the numerical results.

To elaborate, programming can be considered to take place in two stages.
The first stage involves the writing of explicit mathematical formulas which
define the quantities to be c ted, indicating the order in which these
quantities are to be computed, g.e. the flow chart), and finally, specifying
the mumerical values to be assigned to the independent variables in these
forrmlas, The writing of the formulas may be a matter of transcription, or
it may entail some numerical analysis and algebra, for example, converting
implicit equations into explicit ones, setting up a numerical integration,
or an interpolation, and so on.

In the second stage of programming, the mathematical formulas obtained
in the first stage, together with the metamathematical statements which
specify the flow chart and the procedure for substituting mubers for the
variables, are translated into the language of the machine. This translation
is essentially a clerical process in which three main tasks are performed,
(1) The computation is broken down into an ordered sequence of machine
operations., These include arithmetic operations and logical operations,
each of which is translated into a mumerical code. (2) The numbers to be
substituted for the independent variables, (i.e. the input data) are
assigned storage locations, and their addresses are then combined with the
appropriate operation codes from step (1) to form machine instructions,

(3) Storage locations are allocated to the computed results, and machine
instructions for the output of these results are given,
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These three tasks of encoding are recognized to be quasi-mechanical,
and, to a great extent, they can be assigned to a machine, preferably to
the computer itself, Toward this emd, various schemes such as compilers,
library routines, interpretive routines, and pseudo~code systems have been
devised. As yet, these schemes have fallen short of the immediate
objective, which is to accept a mathematical formulation of a problem as
obtained in the first stage of programming and produce a complete program
for machine computation.

In the present paper, a system is presented, which, for the most part,
realizes this objective for a wide class of problems, This system will be
called 'Automatic Digital Encoding System, II* , (ADES,II). The Roman
mumeral, II, indicates both the incompleteness of the system and its
extensibility. The incompleteness is of two kinds., First, certain
components of the system are still in an unrefined though workable state,
resulting in a loss of efficiency. Second, a class of mathematical problems
canmmot be encoded by system II, namely, those problems which necessarily
involve arbitrary triple recursions or, more generally, recursions on k
indices, where k 2 3, However, the system does provide for a special
kind of triple recursion which arises frequently in practice. Furthermore,
there is no inherent reason for excluding the gemeral triple recursion.
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| PART I

1. The Components

As conceived in this paper, an automatic encoding system consists
of three primary components: a formlation language, an Encoder (i.e.
a machine which does the encoding), and an electronic digital computer,
The three components influence each other to such an extent that it is
difficult to construct any one of them independently of the others,
Seemingly, this is a disadvantage, since in most instances we are given
the computer and required to design the other components around it. It
would appear that each computer requires a system peculiar to itself.
Actually, the computer does not play a critical role.

Fortunately, there are certain general principles, drawn from the
theory of metamathematics, which are applicable to all digital computation,.
Thus, although ADES II has been set up for computers with certain character—
istics, the system can be modified very easily to fit most digital computers.
In particular, the formlation language and the logical design of the
Encoder can be used universally with relatively minor changes, while the
internal machinery of the Encoder can readily be adapted to different
computers,

2. The Computer

To fix our ideas, we assume that the computer in ADES II is a
single-address, sequenced-program, floating-point calculator which can
perform the usual arithmetic and logical operations. It can also carry
out a new operation which facilitates the metamathematical processes of
the computer, i.e, those processes which compute and modify storage
addresses., This operation is called *Modify!.

The coded instruction, *Modify n*, causes the next instruction in
sequence to be executed as if the mumber in storage n had been added to
it, For example, if the mumber 230 is in storage n, then the pair of
instructions, Modify n, Multiply 1300, is equivalent in effect to the
single instruction, Multiply 1530, i.e. multiply by the number in 1530.
Since n is arbitrary, this makes it possible to use any storage in the
computer as a *B-box®, or *index register!, Furthermore, the instruction,
Modify n', converts the floating—point mmber in storage n into an
integer suitably ‘positioned for address modification. This eliminates the

need for two kinds of arithmetic in the computer, and makes the mathematical
" formaletion of a problem conceptually simpler. It also simplifies the
machinery of the Encoder, :
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The above features are not absolutely essential in system II, :
However, they are convenient, In any case, they can be achieved by means
of interpretive routines if the actual computer hardware is lacking.

3., Requirements of the Language

The formulation language is the critical component in any automatic
coding system. In devising such a langyage, one is beset by conflicting
demands, The language should resemble ‘ordinary methematical notationt
as much as possible, It should not result in inefficient programs. It
should not be so flexible that the Encoder becomes excessively complicated.
Its alphabet and syntax should be rich enough to accomodate any effectively
calculable function,

The first three properties depend largely on personal Jjudgment, In
the designing of system II, there was a tendency to choose a language
vhich simplified the Encoder at the expense of efficiency in the computer
program, The resulting inelegancies can be removed, and this will be deme
in system III., Most important is the fourth requirement, and to satisfy it,
recourse was had to the theory of recursive functions (see {1] ,‘_&2] »[3)).
This theory is pertinent, since the arithmetic and logical operations
performed by a digital computer are, in effect, operations on integers, and
what's more, they are *primitive recursivet functions.

In the domain of positive integers, one distinguishes two kinds of
functions, primitive recursive and general recursive, Intuitively speaking,
a primitive recursive function is one which is obtained by composition of
a finite sequence of arithmetic fumctions and recursions on one index. A
general recursive function is obtained by adducing mltiple recursions on
k indices, where k can be as large'as we please, Theoretically, multiple
recursions, as such, can be eliminated if a new operator, u, called the
minimization operator, is included in the language, [1) . Thus,

9 (x5 ees x)=py { f(xl, cees X y) = o} R

means that (}(xl, eees X ) is the minimm value of y such that f(x,, ...,;cn,y) = O.

The minimization operator appears to be of limited practical value in
eliminating miltiple recursions., Hence, the language for system II provides
for explicit double recursions, and a special type of triple recursion, as
explained later, _

In the next few sections, the language will be described semi~formally
by presenting its alphabet and syntax in the form of definitions and rules,
and illustrating them with numerous examples.
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4. The Alphabet and Elementary Expressions

The alphabet is constructed from the nine gemeric symbols, ‘
q,r,a,b,c,f,e,p and d, the positive integers and zero. The usage of
the generic symbols is indicated by their names:

q_o-ooooooboooooiogindelﬁndellt index
Teooeoseesssesseecdependent index
aooo.ooocaooocoooomdependﬂnt variable (Or data 8ymb01)
booc.oo.oooooooo.odemndent varisble (Or defined Varia.ble)
Ceecssscesssessessiree variable -
feececseseseessessfunction symbol

e.éoooéoooooooooooequal 31@, (= )
p...u............plmc‘hlation symbol
Qececeescecesssascoitput symbol

The letters of the alphabet consist of the generic symbols with
numerical subscripts attached., Thus, the alphabet consists of the
independent indices IPT L YRRy the dependent indices T 3T sTpseees

the independent variables 8,98 y8nreee) and so on for the other symbols.

In what follows, we shall abbreviate, using tvariable! to denote
either one of the independent variables 8,78)5855000, Or ONE of the
dependent variables bo ,bl,b2 seesy unless otherwise stated, Likewise,
tindex?! will mean either an independent or dependent index, ‘

Def. 4.1, An indexed variable of degree one is an expression of the
form, xi, where x denotes a variable and i denotes an index,

€8s o BQ, Bds ByTy, DTy .

An indexed variable of degree two is an expression of the form, xij,
where x denotes a variable, and i and j denote indices,

€ o a.3g.lq2 ) barqu, blr2r3’ a.5q_3r2 .

An eﬁ:pression consisting simply of a variable is said to be an
indexed variable of degree zero,

‘e‘g’: al’ b2) a)_‘,;

A numerical constant is a floating—point mumber, written in some
standard form consisting of an exponent, a modulus, and algebraic sign,
(Note: The precise form cannot be specified, since it depends on the -
computer, However, in this discussion, the exact form is irrelevant, and
we shall write mmerical constants in the form that is easiest to present.)
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Definition 4.1 can be extended to indexed variables of
arbitrary degree. However, in ADES, II, the maximum degree of a variable
is two,

In the formulation of a problem, the independent variables are used
to denote the various kinds of input data; e.g. a might represent

pressure, a, temperature, a3 time, ay, the elements®of a given matrix, etc,

If a% is to assume n numerical values as the computation proceeds, the n
valu€s being supplied as a row of data, then in the formulation this data
must be represented as an indexed independent variable of degree one,
€.g. 8,q;, where q, = 0,1,2, ..., n-1. (Thus, in that formulation,

mst alwdys occur #ith one index.) For data supplied in the form ofa%
two-dimensional matrix, we must use an independent variable of degree two,
€oe a’hqaq'j » Where %W and q assume successive positive integral values

between specified lower and upper bounds. A data constant must be denoted.
either by an indexed variable of degree zero, say &, Or by its numerical

A computed gquantity (i.e. an intermediate or final result) which is
defined by a designated formmla is represented by a dependent variable,
If several values of a dependent variable, b,, are to be computed, they can
be distinguished, if necessary*, by using on€ or two indices; e.g, b,q)50,0,,.

It should be apparent from these remarks that the independent indices
in a problem are to assume successive integral values as the computation
proceeds, The lower and upper bounds of each independent index used must
be specified explicitly. This specification is called *quantification® of
the index, and is an important part of the fornmlation. A quantification
consists of a phrase 'for all integral values of g,, such that Llé 9= u ¢,
In this report, we shall use the quantification sy?ﬁbol, t v/ Yto represent
tfor allt, and a quantification will be written briefly in a form to suggest
'V, 1) $ 99 &y ' . Here, L; and u, denote independent variables or

indices which specify the bounds of g,. Rigorous rules for quantification
will be given in section 8,

It is often necessary to have indices which do not take on successive
values, or it may be convenient to have an index which is defined in terms
of a quantified index, In such cases, dependent indices are used, For
example, if a problem calls for an index which takes on only even integral
values, we define ry= 2 g, where g, = 0,1,2,...,n, and write a r, instead

of a.l(2ql). Other uses of the dependent indices will appear la £

5 Notation

In ADES, the formulas which define the dependent variables and
dependent indices must be written in what is known as parenthesis~—free,
or prefixed-operator notation. In this concise notation, the formula

*The necessity depends on other factors to be explained later,
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(a,+a,) is written as +a,a_, and asa, is written as ea.a_. In other
woa}ds,eeach operator (i.e?lfﬁnction?lsyﬁbol is written to'the left of its
operands, and all parentheses are eliminated since they are redundant.
Note that juxtaposition, :;ia » does not connote multiplication, The
centered dot is used for e%mltiplica.tion operator,

For a unary operator, such as cosine, the prefixed-operator notation
coincides with ordinary mathematical notation, provided that all parentheses
are eliminated, e,g., cos X, A unary operator is said to be of degree 1, a
binary operator (e.g.+, *) is of degree 2, and in general, a function of
n operands is of degree n., In the actual ADES II language, each function
is denoted by the symbol f with identifying subscript., For example, f,
denotes 4, f_ denotes - , f, denotes ¢ , and so on., However, to simpiify
the exposition, in this report we shall contimue to use the conventional
mathematical designations 4, ¢ , cos etc., with a few exceptions., One of
these is the identity function, which is usually not written explicitly in
conventional mathematics., In ADES, it will be denoted by fl’ and must be
written wherever called for by the syntactical rules, Thus, as we shall
see, one must write b, =1 a:b instead of b, = a,, Note that for expository
reasons again,weshahwhe t= fora}io equal sign instead of
‘e ¢, as required in ADES. Likewise, in this paper, all common punctuation
in®Pormulas will be written in conventional form instead of using the
symbol P with a subscript.

Now, to further illustrate the use of prefixed-operator notation, we
list several examples written in both conventional and prefixed—operator
notation, ,

Conventional Prefixed-Operator
(814- 32) 530 ¥ za,la.aa.5
a‘s(a‘l"— az) . a.3+ alaa
‘{ lerle) - aa(rl’ra)] V- 2a9277%
(a4 a5)(ry = 7,) - +%9; — T,
sin (hl-l- al(ql)) sin + bya g
2.(a; + 3.) * 2. + a3,

6. Well-formed formulas and terms.

An expression in parenthesis—free notation consisting of a juxtapositiocn
of operators and operands is called a !string' [4] . Not all strings are
meaningful; e.g. +a,, sin a;b,, + a,aa, are meaningless. A meaningful
string is called a *well~formed fornula', (w.f.f.) . In essence, a string
is a well~formed formula if for each operator in the string there is the
correct mmber of operands. A rigorous definition is as follows,.
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If x is an operand, then x is a well-formed formila. If Y1s¥pseeesyy

are well-formed formlas and f is a function of degree n, then
fkylya...y is a well—formed fsrmla.

In ADES, we use ‘terms' rather than well-formed formmlas.

Def, 6.1, An index term is a well—formed formula in which the operands
are independent indices, qo,q_l,qa,..., dependent indices, r 0?12 preee)

indexed independent variables, or numerical constants, and in which there is
at least one function symbol,
Note: The w.f.f., a,, is not an index term, nor is the w.f.f., q; «

Instead, one must write flal and flq_l, where fl is the identity function,

Def. 6.2, An index equation (or r—equation), is an expression of the

3=¢,

where J denotes one of the dependent indices r 0?T19Tpr oees and Q denotes
an index term. (Note the comma after ¢.)

form

We illustrate this definition by examples written both in conventional
and in ADES language.

Conventional ADES

1= (e, )= 39,

To= @ ~ % To= ™%

rh = g 4 a) + qe, u‘-‘-’ + G+ 12,
= [al(ql) +r ] 5 = /+ a9, 27>

r6 = 9.]_(9.1'.' a‘l)/a- ’ Tg = / °q + 11312-:

Def. 6.3. A b~term is a well—formed formula in which the operands are
indexed variables or numerical. constants, and in which there is at least one
function symbol.

Def. 6.4, A b—equation is an expression of the form,
y=v, ,

vhere y denotes one of the dependent variables bo ’bl’ s eeey and ¥ denotes
a b-term,
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Ce8o .

Conventional - ADES

b, =a2(ql) b, = 11859,

by = [ay(gy)+ 8] e e S L
byo = by(ry,Tp) — ay(959) P17 = DT o % %y
by = (a4 2.) b= 4 a2,

It may be necessary to have an independent index, q, say, as an
operand in a b-equation, This is done by introduc an independent
variable, a,;, and defining a.i(qj) =q. The identification of a, with

qj is done in the 'Computer Table!, to be explained in section 13,

Def, 6.5. An integer-wvalued independent variable is an independent
variable which assumes the values of a designated independent index.
Integer—valued variables are permisgible operands in b-equations.

The b-equations and the r—equations constitute the major part of the
formilation of a problem, since they define what is to be computed.
However, there is need for another kind of equation. Suppose a formula
occurs several times in the same problem, It would sometimes be convenient
to be able to write this formula once with 'free! or unspecified variables,
Then each time the formla 3s used, it would be necessary to indicate only
which data are to be substituted for the free variables, For this purpose,
we adduce the *free terms! and tauxiliary equations' defined as follows,

Def. 6.6. A free term is a well-formed formula in which the operands
are free variables or constants, and in which there is at least one function
symbol.

Def. 6.7 An auxiliary equation is an expression of the form,

g=1¢, ,
vhere g denotes a function and ¢ a free term. The degree of g is equal to
the number, n, of free varisbles in §. If X;, ..., X denote permissible

operands for an index term, then gx,, ..., X, is the index term obtained

when x,; is substituted for the free variable ¢, in ¢ , and similarly for
b-terms, The function, g, on the left side of an auxiliary equation is

called an tauxiliary* function, In this report, we shall use subscripts
of 50 or greater to designate auxiliary functions.
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For example, suppose the index eq.tations »

L= ql(%+ 1), T = 92(q5+ 1.), r3 = 9.3(‘16 +1.),

occur in the same problem. If we define an auxiliary function, f.. say,
by the auxiliary equation, 20

f50 - ° cl + calo,
then we can write the index equations as
= T5oq %
T2 = 5005
T3 = I5095%s o
Note the following important point, which we emphasize as a Rule.
Rule 6.1l. Each equation in an ADES formulation must be punctuated
by a comma at the right end of the equation,
The functions used in an ADES formulation are of two types, the

auxiliary functions defined above, and *library® functions. To explain
what is meant by *library function®, we must refer to the computer again,

7« Punctions and the Computer.

Associated with a digital computer is a library of subroutines for
computing various mathematical functions. In ADES, it is assumed that
the computer library contains at least the floating-point arithmetic
operations, + , — , * , /. In some machines, these subroutines are part
of the hardware, In others, interpretive subroutines are used, In either
case, we regard them as part of the library of functions, that is, as _
mathematical functions which can be called for without special formulation.

Each library function is designated by an f with a characterising
subscript. (In ADES II, we have reserved subscripts O to 49 for library
functions. As mentioned earlier, f, is the identity functiom, f, is+,
f,is = 1, is *, f5 is / , and so on.) In the translation progess, the

Encoder recognizes the subscript and inserts the pertinent calling sequence
for the library subroutine into the program. At the same time, it compiles
the subroutine itself, that is, it arranges the transfer of the subroutine
fron external storage (e.g. tape) to a suitable location in high speed
storace. (See description of Encoder.) '

The main point here is that in formulating a problem, a library
function can be called for simply by writing an f with the correct subscript.
No special equations are needed to define the function.*- On the other
*¥l, See Appendix I for exceptions.

10
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hand, each auxiliary function must be defined by an auxiliary eguation.

The assignment of a subscript to an auxiliary function is arbitrary,
provided that it does not conflict with the subscrint of a library function
or another auxiliary function in the same problem.

We assume that the ADES II computer library contains, besides the
four arithmetic operations, the following clementary functions: absclute
value, square root, direct and inverse circular and hyperbolic functions,
exponential, logarithm, power functicn,

In the terminology of recursive function theory, the library functions
are the given functions of our formal system. The formulas for b's, rts
and auxiliary f's are derived from the library functions by applying the
syntactical rules. These rules are such that any derived function is
primitive recursive relative to the set of library functions. Conversely,
the library and rules of syntax should he such that any primitive recursive
function can be derived. This implies that the syntax should include
definition by recursion. Recursion will be introduced in section 11. 1In
ADES II, however, recursive definitions are restricted to dependent variables,
that is, a dependent index cannot be defined by recursion. Thus, not every
primitive recursive function can be formulated. However, in practice, only
a narrow class of functions is excluded thereby,

8. Quantification, Phasing;

The b-equations constitute the main part of an ADES forrmlation. They
define the quantities to be computed, and closely resemble the conventional
equations which a mathematician writes to describe a computational problen,
But, in automatic digital computation, mathematical formulas are not
sufficient. One must also specify the order in which quantities are to be
computed, that is, a flow chart must be drawn up. This is frequently mcre
difficult than writing the formlas,

In ADES, a large part of the flow chart is determined implicitly and
in a natural way by the very structure of the b—equations, However, certain
explicit directions must be written; e.g. for the quantification of
independent indices, for branch eguations, and for recursions., This secticn
presents some of the rules for writing quantifications.

Def, 8.1, A quantifier is an expression of the form ! V Liu', where
the symbol * V '* is the universal quantifier *for all*, i denctes an
independent index, L denotes the lower bound of i and may be either an
indexed independent variable or an indeX, and u denotes the upper bound
of i and may be an indexed independent variable or an index.”

Thrus, *\/ Liut is to be read as 'for all integral values of i such
that L £ 1 § u.*

* In the actual ADES alphabet, ¥ is denoted by a library function symbol.

11
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Rule 8.1. , uantifier is written to the left of a b-equation,
Unless specifically forbidden by other rules, any b-equation may be
preceded by one or more quantifiers. (The b-equation and the dependent
variable which it defines are then also said to be quantified,) If more
than one quantifier is written to the left of a b-equation, the order of
quantification is considered to take place from left—to-right, i.e. if
we have

Vihy Vitye y=4,
this implies that for all il’ Lis 11$ W,y is to be computed for all
1, ,I.2$ i £ uye The quantification * L4 Li,uw ' applies to the

] T
quantification v L212u_2 . Hence, L2 and u, can depend on 11, vhereas.

I‘l a.nd ul mst be independent of 12.

It is sometimes necessary to quantify several b-equations by the same
quantifier, or it may be necessary to specify the order in which certain
independent quantifications are to take place., In many problems, it is
necessary that certain b!s be computed before others. These situations
are provided for by the ‘phase equationt,

Def. 8.2. A phase equation is a b—equation of the form,

Y=L ¥ V5 ooe Ypr 2
where the y's denote dependent variables, n is an arbitrary positive integer,
and fo is a special library function.

~ The function, fo’ is to be read as, 'compute the following quantities®,
Strictly speaking, f o is not a function in the mathematical sense, However,
in ADES, it is to be regarded as a function of arbitrary degree which
operates on those b's between itself and the first comma to its right.
(Therefore,the explicit and correct placement of this comma is essential,
just as it is in all b-equations.)

The dependent variable denoted by y on the left side of a phase equation
does not represent a computed mathematical quantity, but, this introduction
of a dependent variable allows us to compound pbase equations, for y can
be used as an operand in another phase equation, or even in an ordinary
b-equation. This makes it possible to specify the order of computation by
the simple expedient of writing the dependent variables in the desired

order within a term, This is amplified in Appendix II, and in examples.

" Rule 8,2. To quantify several dependent variables bjl”"’ an’
with the same quantifier, a phase equation is written as follows.

VLiu ba°= fOlebda oce bjn’ .

(This can be read as 'for all i, L& 1 £ u, compute byys eees bjn"’)

12
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Def, 8.3. A phase equation in which the left member is the special
dependent variable, b , is called a master phase equation; i.e.

b°= fobalbda soe bdn, .

Rule 8,3. There is precisely one master phase equation in each problem
formulation. The dependent variable, b , is used only on the left side
of the master phase equation and in no Sther equation.

The master phase equation is the first b-equation to be programmed.
The left-to-right order of the b 12 eses b, in the master phase equation
determines the order in which thd various Bhases of the computation will
proceed. We shall postpone a precise detailed description of the ordering
procedure to Appendix II, but many of the main ideas are suggested in the
follawing examples, and a rule of thumb is given in example 8.4 below.,

e.g. 8.1, It is required to compute al(ql)+ a5(q) ), and a,(q;) — ay(q)

for all g¢.,0 & qlé 25 + A formlation, neglecting input-output symbols,
is as foﬁowa‘.‘

Vog2s v, =2bpb ,

b= +aga ,
by = =aq8,q , -

The master phase equation specifies that bl and b2 are to be computed for

all q,,0 £ q £ 25, The order in which the b's on the right side of a

b-equation are written, reading from left to right, determines the order
in which they are to be computed. In all problems, the computation starts
with the master phase equation., In example 8,1, the quantification informa~

tion will be obtained first., Then the programs for b, and b, will be set
up in that order, Note that, in this case, the orderZin whidh the b-equations

is written is irrelevant, This is true for all b-equations except recursion
equations and vector equations (see sections 10,11).

e.g. 8.2. Suppose it is required to compute both al(ql) + aa(qa) and
85(ay,95) + 8,,(qy,9,), for all q,,0 & g, & 9, and for all g,,0 € g, & 8.
A formmlation, néglecting input-output symbols, is as follows:
5= +ag8,0,,

v b= *8599,9,9%,,
0g,9 V0q28 b= £bb, .

‘13
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Starting with the master phase equation, the program for the quantification
of 4 will be set up first., The quantifier for will be set up next, and
then the programs for b, and b, in that order, %ain, the b-equations can

be written in any order].‘ 2

e.8. 8.3. It is required to compute al(ql)-l- ae(ql) for all q_l,0$ 9-15 5,
. P
and aj(ql,qa)-{- au(ql,qe) for all q;,0 £ g; £ 5, and all 90¢€ 9,£ 9.
A formulation, neglecting input-output symbols, is as follows:

Vog5 b =1fbb, .

b = 4+ a,q,8,9:,

Voy,o b= +aqa899, -
The quantification of q, in the master phase equation will be set up first,
Then b, will be pro s Since it precedes b, in the phase equation.

Beforelthe program for b2 is composed, the quan%ification of QW is set up.

Remarks: Each quantification corresponds to a *loop! in the flow chart,
In example 8.3, the loop for q, is traversed six times. Within the g, loop
is the loop for q,, which is traversed ten times for each traverse of the
q, loop. Six vallies of by are computed in the g loop, whereas sixty values

o} b2 are computed in thelq2 loop.

e.g. 8. It is required to compute al(ql)-ln aa(ql) and sin(al(ql)+ aa(ql))
for all q,,0 & g € 5. A formulation, neglecting imput—output symbols, is

as follow%
v b, = fobl ’
0q15b1 = sin ‘b2,

b2= +alq1a2ql, °

Here, the master phase equation serves only as a starting point. Since
the b, equation is quantified, all dependent variables in that equation
are also quantified by that same quantifier., Thus, the ba-eq_ua.tian is

implicitly quantified, o

As a rule of thumb for specifying the order of computation, the
formilator can use the following brief outline of the operation of the
Encoder. The Encoder will start at the master phase equation, scan right
for the first dependent varisble, bl in example 8.4, It finds the b,—equation,
sets up the quantifier for g,, then'scans the right side for b's. IT one
is present, the Encoder finds its defining equation. It repeats this
process until an equation is found which contains no b's on the right side.
This equation is programmed first. Then the path of search is retraced,
ignoring b's which have already béen programmed, In this example, after

1k



NAVORD Report L4209

the quantification of g, is set up, b, will be programmed and then b .
(Note that the quantififation could hfive been Written in the master e
equation.)

Rule 8.4. No quantifier can be written more than once in a formulation.

Thus, not only is it unnecessary to quantify b, in the preceding
example, but it is an error, since this would requige writing 'V0q15' twice,

9. Branching

We now introduce a logical operation into the language. This will
permit the definition of a quantity that is to be computed by one of two
or more alternative fermulas, depending on cne or more conditions, This
situation corresponds to a branch point in a flow chart of a calculation,

Def. 9.1. A branch equation is an equation of the form,
= P)_ﬁxlxzt ¥, 8 ,

where y denotes the dependent variable being defined, P, is a special
punctuation symbol called a *branch symbol! ; ¢ denotes one of three
library functions for the conditions £, € , and = s Xy and X, are variables,

¥ denotes the b-term which defines y if the condition ¢x,x, hclds, and &
denotes the b—term which defines y if the condition does not hold,

Def, 9.2. The definition 6.k of b-equation is hereby extended to
include branch equations,

Def; 9.3. A branch r-equation is an equation of the form,

i::Puqxlxz, v, @, ,

where i denotes the dependent index being defined; Py, is the branch symbol,
¢ is as in def. 9.1; X, and x, are indices or independent variables;
¥ denotes the index term which defines i when (x,x, holds, and & denotes

the index term which defines i otherwise.

Def, 9.4. The definition 6.2 of r-equation is hereby extended to
include branch r—equations.

€.Ze 9.1. The branch equation,
by = Byfy85Tes + 818, —8y2,,
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defines by as equal to (a;+ &) 1f &< 7, and (a) ~ &) if &> 7;

i.e. £, . denotes '« * and is a library function,

10

€e8e Fela r = thllqla'z’+ qzl, -qej,
This branch equation defines r; to be equal to (q,+ 1) if q; £ a,, and

equal to (g, ~ 3) if @, > &, ; i.e. f;; 1s the library function for ' £ *,

Observe that multiple branches can be set up by using a succession of
branch equations in which one of the two alternative terms is f.x, where x
is a dependent variable (or index, as the case may be) which :I.s]'deﬁ.ned by
another branch equation,

€eg.9.3. b= th10"57’+ a8, I;b,,
Do = Pufyo859s 8855 *218y,
These equations define b, = (al+ a2) for a5< T, 0 = (al - '3.2) for 7 £ 9,5( 9,
and bl:: a.e a,2 for a.5) 9.

Remark. We could dispense with the branch equation as such, Suppose
¢(x) Is a function which is equal to 1 if x £ a and equal to 0 if x > a,
‘The equation, y = {f 4 (g, is equivalent to a branch equation for y, with
f and g as the two alternative terms., The function ¢ is a primitive
recursive function, and could be incorporated into the library as one of
the given functions of the system. Nevertheless, the branch equation is
included in the language for practical reasons., Many mathematicians are
accustomed to that terminology, and it leads to more efficient programs,

10, Vector Equations.

A vector quantity is an n—tuple of scalar quantities; i.e. the
components of the vector. In ADES II, we shall not provide any special
letter to designate a vector, since all aritlmetic will be carried out with
the components of vectors, In fact, if the components are denoted by
different b's, no new syntax is required at all, However, it may be
convenient to represent the components of a vector by an indexed b, such
as blq' , where g, = 0,1,...,n. In that case, several situations can arise,
each z%@iring fferent phasing, quantification and output specifications.

If the components, b Qy
output specification may %e required in the equation for b
determined by rules given in section 13.

, are defined by a single formula, then an
1° This is

If the components, b_q., are defined by different formilas involving
different arguments, and hl it is necessary to compute all components
before the computation can proceed, then a 'vector equation® should be used.

16
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Def. 10.1. A vector equation is a set of consecutive b—e tions
Wﬁom, o

(v =09 Clo:
y :09 ¢1)

& oo

where y denotes the dependent variable which represents the vector and Q 1

denotes the b-term which defines the componentc y(i), = 0,1,.04,0,
Each component must then be called for by writing y with a suitable index.

€.8.10.1. Given the acceleration vector (cos t, sin t s t41),
compute the force vector, b,, for a mass a, at time t =a ., An ADES
formilation follows, °

by = £.byby,

V0q12 bl = alb2ql’
(b, =09 08 3y,
b2 :09 sin &, s

o =O9+l a, ).

Now, it frequently happens that (k+ 1) scalar quantities, y(i),0¢ i% k,

are defined by k<4 1 different functions, gi, of the same arguments, xl, cee ,xn.

In such cases, it is customary for the mathematician to write,
(1) =g (X 5e00,%), O €ifx,
and then define the functions g, in separate equations., This is especially

convenient when another vector, z(i), is defined by the same functions
with different arguments; i.e.

z(i)= gi(ul,...,un), 0€if k.

This type of formulation requires the introduction of an indexed function
symbol, and a means of defining it.

Def, 10,2. An indexed function is an expression of the form, gi,
where g denotes an auxiliary function and i denotes an independent index.

ee8e T51%s Tpdp

Def, 10,35, A vector auxiliary gyation is a set of consecutive
auxiliary equations of the form,

17
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”~~
® ®
"
3
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o
.

R eoe
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-

L

-

where g denotes an auxiliary function, and the {, denotec free terms which
define the functions denoted by the indexed function, gi, 0 €1 & k.

Rule 10.l. An indexed function, gi, can be used only in a b-equation.
g must be the only function in that equation. A vector auxiliary equation
mist be written to define gi, The index, i, must be quantified somewhere
in the fornulation. If y denotes the dependent variable being defined by
the indexed function, we write the b—equation,

Y= &t Xy 0o X
where the x's denote the arguments of gi. If it is necessary to refer to
several values of y in the fornulation, one writes y with a suitable index,
In that case, the equation for y mist contain a storage symbol as explained
in section 15.
As a simple example, consider the problem,
- £ 5 £
z, 2 8;(x,(3),%,(3)), 0% 341,
g, = s:.n(cl-f- c2) R
g = cos(c1+ ca), .

Letting by= ¥, b,= 2, @, = 1, 4,2 J, o= & 3o = X (1),
a0 = xz(i), 850 = xs(,j), ay%p = x,(3), we obtain the ADES formilation,

(f60 = g Bin +¢;¢,,
f60 =09 cos -\-clca,)
b, = £_b;by,
Vog,10, = To0h 2 4 2% »

¥ 04,10, = £4,9,8505%,95

11, Recursion

If the ADES language is to allow for the formulation of primitive
recursive functions, the syntax must include rules for definition by
recursion., This is probably the most difficult part of the syntax,

18
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In ADES II, we provide for the definition of dependent variables
by several different kinds of recursion equations. The various types
of recursion equations are distinguished by means of identifying sub—
scripts attached to the equal signs. With the exception of a vector
equation, the equal sign in any non—-recursive equation has the subscript
00, which we have agreed to omit throughout this report. In recursion
equations, a two-digit subscript, n%n » is written explicitly with each
equal sign. The following table 1i¥t§ the value of n, and n,, and the
names of the corresponding recursions.

Subscript Type of Recursion

Simple scalar preceding-wvalues
Simple scalar course-of-walues
Simple vector preceding-values
Simple vector course-of-walues
Simple vector one-row

Double preceding-row

Double two-preceding—rows
Double one-row

Double course-~of-walues

Triple special

O-F'\NNH\.H-F’\NI\)I-“PP
’\NNI’OI\)NI—‘I—'I—'HI—‘]M”

The names are intended to describe both the structure of the mathe—
matical formulation and the kind of store instructions in the program
produced by the Encoder,

The second digit,

n_, indicates the mumber of independent indices
involved in the recursiof,

e.go 11,1, For example, the Newton iteration algorithm for the
square root of is a recursion on one index, It defines a scalar function,
and the new valug® in an iteration depends only on the preceding value,
Hence, it is a simple scalar preceding-wvalues recursion; its subscript is
11. In ordinary mathematical notation, it might be written as,

x(1+1)= (1/2) [ 1) +a /x()] ,
x(0) = 3,

vhere the recursion index, i,'goes from zero to an upper bound, w, which
depends on the accuracy desired, We shall rewrite this later as an ADES
formmlation.
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e.g. 11.2, The sumation, b, = = l__ 0 a.l(ql), also can be written
q‘l—

as a recursion with subscript 11, namely,
b (g +1)=8(q)+v(y), 0£q 4&n-1,
bl(o) =0,

€.g. 11.5. As an example of a double recursion with subscript 12,
we take the recursion formula for the binomial coefficients. Denoting the
coefficients by bl(i ;J), we write in conventional notation,

b(i+1, J+1)=0b,(1, 341)+v,(1,3),
b, (1 41,0) =1, for all 1€ 1,
. bl(O, j4+1l)=0, for all 320, .,

Def, 11.1. A simple scalar recursion equation is an equation of the
form,

VLiux:nllé, Vos soes Vo

where x denotes the dependent variable being defined, i1 denotes the recursion
(independent) index, ¢ denotes the b-term which defines x(i4- 1) as a
function of x(i), x(i - 1), ..., x(L), and other variables, and Vos eeoes ¥

are the b~terms which define the initial values x(L), x(L 4 1),...,x(m),
respectively, V¥ Liu is the quantifier for i. It is the only quantifier
permitted in the equation,

It is understood that the x on the left side of the equal sign denotes
x(i4 1), If for each value of i, the term, ¢, involves only the m4 1
values of x preceding x(i<4 1), i.e. only x(i), x(1 = 1),...,x(1 — m), then
n, = 1, and we call this a preceding-walues recursion. If ¢ involves eny

other set of values of x(e.g. all the values prior to x(i < 1)), we call
this a course-of-walues recursion and write n1= 2,

Remark: In a course—of-values recursion, the Encoder will reserve a
total of N(i) computer storages for the values of x, where N(i) is the
maximm number of values which the index i assumes, whereas in a preceding-—
values recursion, it allots only m +# 2 storages. Thus, although n, = 2
will slways yield a correct program, nl"—'-' 1 should be used whenever possible
since it conserves computer storage.
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e.g. 11,4, The Newton iteration algoritim of e.g. 1.1 for b = WA ay
can be fornulated in ADES as follows (neglecting Input-Output).
v b, = £ b,
0g,6 by =,, / +b1qy / a0, 9,20, £3, .

Here, six iterations are specified. Later, we shall introduce a device
to permit the number of iterations to depend on the accuracy desired.,

Def, 1l.,la. The class of b-equations is hereby extended to include
simple scalar recursion equations.,

A system of simultaneous recursion equations on one index will be
called a !simple vector recursiont,

€.g. 11.5. Suppose the quantities x and y are defined by the system

of equations,
BIYTHIAY } omosite
x(0) = a5,

y(O) - 32’ .

The vector (x,y) is thereby defined by a ‘'simple vector recursion!, The
formal definition is as follows,.

Def, 11.2. A simple vector recursion is a system of equatiorsof the
form, L ‘

V Liu ( yo =Dll ¢0, vm’ Wol; [ XX F) ‘l’om}
Ny =nl Ql: W].O’ ‘Vn) eoss *lm’

.
L 4

o0 0

nl]_ ¢n’ vno’ vnl) eeey ‘l‘mn: ) ?
where Vo2 Y77 oo Yo denote dependent variables representing the components

of the vector. There are two possible cases, Either each y denotes a
distinct dependent variable, or all the y's denote the same dependent
variable, In the former casé, the ith value of the jth component is
denoted by yJi. In the latter case, it is denoted by yij, where 0 £ j£ n,

and is defined by the jth equation.

”td XX}

It is understood that Yo eoo2 ¥y on the left side of the equations is
an abbreviation for the values at the new point, i+ 1. Thms, ¢ 5 defines
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yj(i-l- 1) in terms of the preceding values yo(i), ceny yn(:l.), yo(i ~= 1)y eeoy
yn(i = 1), eoey yO(L), eees ¥, (L), and the new values ¥ (14 1), where k¢ J.
vjo, cooy ‘ij denote b—terms which define the initial values yJ(L), cosy
yj(L+ m), respectively. As in a simple scalar recursion, *'\¢ Liu! is the
quantifier for the recursion index, i.

If each Qj involves only the m+ 1 preceding values of ¥, eees ¥p»
and the new values of Vi k£ J, the subscript n= 3 in all equations, As
a special case, if each qj involves only yk(i+ 1) :or k& j, and yk(i) for
k2 j, the subscript n, = 5. This is the vector ‘one-row' recursion. In
all other cases, n = k3 i.e., they are treated as course—of-values vector

recursions.
No quantifiers are permitted within the parentheses.

In calling for a vector recursion, one refers to the desired component,
Reference to any component causes the entire recursion to be computed. The
components are computed in the order in which they are written.

e.g. 11.6. We rewrite example 11.5 as an ADES formulation.
. 3 -
v bo fobl’
0gy6(by =5 + Pyg b9y, 8,
by =35 /o400, a8, ),
In the above formulation, the vector is denoted by (bl, b2).

The problem can also be formnmlated with the notation (bl(o) ’ bl(l))
for the vector, Thus,

r, = 1,0, 1= fl.,
v b =fb,
0g;6(by =5 + P17y P1yyTpr 18y,

by =5 /b7y Dy, fa, ),

In this second case, the components involve two indices in the recursion
formilas. The final results, however, when referred to in another part of
the problem, are denoted by blrl and blr o :

If the components of the vector in a recursion are denoted by b (3),
0% j%n, and if the same formila with different operands defines all
components, then the simple vector recursion can be regarded as a double
recursion, Thus, using i as the recursion index, b,(i+ 1, j+ 1) would be

defined in terms of the preceding values of bl' The final components of
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the vector would then appear as the final line of the double recursion,
and would have to be referred to as such, This will be further explained
in the ensuing paragraphs on double recursion.

As shown in example 11,3, a double recursion involves two indices,
i and j. We shall speak of the (i,j) torid! and refer to 'pointst in this
grid in an obvious way. A double recursion defines a quantity, b, say, at
the grid point (i +1, j4 1) in terms of its values at grid points which
tprecedet (i< 1, j<+1). Following Péter (3], we say that the grid point
(al, &1) precedes (oza, ,82) if either o < @, Or oy = o, and B, < B,.
Geometrically speaking, grid point Pl precedes P2 if either Pl is in a
lower row than P2 or if Pl is in the same row and in a colurm to the left

of P,. i and j will be called the row and colurm index, respectively.

The order of computation in a double recursion will be zlong a2 row from
colurtm to colurm to the last point in the row, then up to the first point
in the next row and so on,

Def. 11,3, A double recursion is a system of b-equations of the form,

VL0 = g2 G

I =n.12 4ss

Vg1 = n 2 $zs

Y L, [_ykrkl =n2 Gy

L]
L ]

g e

srk3=n;2 ¢s’]

<

s4 1 =n2 qs.t 1’

(XK R

='nl2 qm’ ) .

‘ 5‘4 eve

il and i2 denote the two recursion (independent) indices. il is the
row index, 12 is the column index. (The colurm index, i2 , Will run from

its lower bound L2 to its upper bound u, for each value of the row index, i

V2 Y 412 °°2 Vs denote dependent variables whickh are to be corputed for

all i, and for all i,. The equations for these variables are enclesed in

1
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the square brackets. Y2 eo0r Vg and Yg 4 17 **°2 Yy denote b's which
are to be computed only for all i The equations for these b's are
within the parentheses, but outsi%e the brackets.

For k & J& s, in the equatian, ¥y =n12¢J’ (’J denotes the complete

recursion formla for computing y 3 at the grid point (:ll'l’ 1, ia'l— 1),

Unlike simple recursion, the equation for y 3 will usually be a branch equation
in which the alternative terms define the initial values y J'(o, i34 1) and
yj(11+ 1,0), and the general value y,j(il+ 1, 12+ 1), . Because of the
choice of the indices i,+ 1 and 12+ 1 for the *new® grid point, the

lower and upper bounds in the quantifiers of 11 and i, must be one less

2

than the actual bounds of il and 1,; e.g. if 0% i, £a 4+ 1, ve mst

write ' Y —11 a.l,' to insure that yj(ilﬁ- 1,0) sta.rts with yj(o,o)

of course, for j< k or j> s, there is only one pertinent index,
namely i,. Hence, q defines the initial value yj(o) and the value yJ(il+ 1),

again by using a branch equation,

Note: No quantifiers other than those for il and 12 are permitted
within the parentheses,

Def. 11,5 is continmued in the following rules, 11l.l to 11.3,
Rule 11.l. The equations in a double recursion will be computed in
the order in which they are written; i.e. ¥y 3 is computed after y 31 and

and before y, 541° This means that q,j can contain operands of the following
types.

(1) ym(a,fs), where m«€ j, and kS m& s;asi+ 1,8£ 12-\-1.

(2) y (a,B), vhere m2 j and k &€ m € s; and (a,B) precedes
(il+ 1, i+ 1), i, 20, 1,20. ‘

(3) ym(a), where m< j, and m< k orm)s;agil-\-l

(4) ym(a), vherem>» jandmg kormP s, ok i, (il?_ 0).

Rule 11,2, In a double recursion, the digityn , in the subscript of
the equal sign of the equation for y, is detem:l.ne the row indices
that go with the occurrences of Yy 1tl the ¢*s. Each equation may have a
different nl subscript,
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(1) If for all m € §, ¢ involves only y (11,3), vhere B is
subject to rule 11,1, and if for all m > J, Q 1nvolvea only ¥y (1 + 1,8),
where p 1s subject to rule 11,1 and if ¢, involves only vy (1 + 1,5),
vhere g < i, +1, or yd(il,ﬁ), where g 1,% 1, then nl- 5 in the
equation for y'1

(2) Ifon]yilgnd11+lappearasmwind1cesofyd, then we
vrite n, S 1l if we cannotwritenl.—.}.

(3) If only i1, i, end i, 1 appear as row indices of Yy
then we write n1= 2.

(4) In all the remaining cases, we write n, = 4,

The. above rule for determining n, will assure an economy of storage
in the computer, However, if economy is not an important factor, the
formlator can simply write n. 2 4 in all equations., Each equation will
then be treated as a course~o -ara.lues recursion,

; Rule 11,3, If n, = 4 in an equation within the brackets,the formulator
mst write a dependent index immediately to the right of the dependent
variable on the left side of the equation, The precise nature of this

index will be explained in Rule 13.6 in section 13, on Input-Output. Its
purpose is to provide store instructions.

Note; Rule 11,1 regarding the order of the b-equations within the
parentheses of a double recursion must be strictly observed. This rule
prescribes necessary conditions on the order, but it does not determine
the order uniquely in all cases, Hence, some of the ordering is at the
formlator?®s option.

Rule 11,%, If one of the equations within the parentheses involves
asanopemadependentvaﬂable,b which is not part of the simulta-
neous double recursion, then the equa éion for b;) should be wri.tten outside
the parentheses. ’

As remarked earlier, each quantification corresponds a:o a loop in
the flow chart. Thus, in a double recursion, the qumtiﬁcation of 11
sets up a recursive loop which is repeated for -1.51]10;;}. Within

i. ~loop is the recursive loop for 1 Recursive differ from
ord:l.n%ry loops in that the gquantities coﬁputed are stored in a recursive
manner, Thus, recursive 1¢ops allow several interdependent variables to
be computed simultaneously, i.e. if bl is a function of b, and b, is a
function of hl, this implies that a recursion is taking pisee, sgnoe
Ams does not permit implicit functioms,
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To provide greater flexibility in the ordering of recursive loops,
the double recursion definition is extended as follows,.

Def. 11l.4, A general double recursion is a double recursion in
which there is more than one column index. Each column index is quantified
separately, and the b—equations to which it applies are enclosed in square
brackets,

For example, a general double recursion in which there are two colum
indices would have the following format.

Vauw (v = n 2 (’1'

Y1 = n,2 ¢k-1’
—11

2’2 [yk kl n 2 ¢

;rm n124m’
V- 3{ym+1,jl n12¢m+l’

yhrjh = n 2 Clh,j
ne 1= n,2 G4 20

LX R J

Q

g = n,2 q'b’ ).

"Rules 11.l, 11.2, and 11.5 on order and indices apply, with obvious

modifications to account for :13.

e.g. 11.7. We reformilate example 11.3 in ADES (cmitting input-output
specifications). The binomial coefficients are denoted by b,, the row
index by %5 and the columm index by Qe
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= 49l
V-—lqla3( V—1q2a3 [_ b =P, ,8.0, £l flba,] )

b = £b,

Remarks. There is only one recursion equation, namely, that which
defines b,. Since there are two initial conditions, a triple branch is
required,” The first branch condition, floaec,is 'a‘2 < 0', vwhere a, = Qe

2
If a.2< 0, i.e, if L= -1, the equation defines bl to be equal to 1. If

8, 20, bl= b2 » Where b2 is defined by a branch equation outside the

parentheses, The branch condition for b2 is ‘al< 0!, where &= q;. If
a1< 0, i.e. Q= -1, then b1= b2= 0. If alz 0, we have the main recursion

formla, Part 2 of Rule 11,2 applies, and we write 12 as the subscript of
the recursion equal sign., Therefore, this will be treated by the Encoder as
a preceding—row recursion. (a,4 2) storages will be reserved for the
tpreceding® row corresponding 2o the index gy, and (8.3-[- 2) storages for

the fcurrent! row corresponding to gq,< 1. Note that in applying Rule 11.2,
we must check through all b-equations referred to by the recursion equation

for ’bl.

e.g. 11.8. In the Choleski method for solving systems of linear
algebraic equations, a square symmetric matrix a,(i,j), of order (n +41)
is given, and a triangular matrix bl(i »3) is computed by the formulas,

153, by (1,3 = [a5(1,9) - =22 b (1,008, (3,5)] /o0 (),

123 bl(i,i)::,J.[a}(i,i) - Z;—_i'obl(i,k)bl(i,k)] , .

Denoting i by g, J Y dys ‘(n-l) by a),, k by Az, the expression in
brackets by b,, and the summation by by we can formilate this in ADES as
follows (agaiﬁ without input-output). |

rl‘.'.. +q_11, r2 =‘+q21,

V14,5, (V1950 cblr 3 = 4aPuT10%% 0/ PoPy TpTps 'l ba’] )

b2= -e.srlrzb3 »

V 0a5a,05 =1, ¥ 403,00 T 05005, £10.,

bo = fobl 2

Remarks: In the input specifications, a; and a, are identified as
q, and g, respectively, i.e. they are integer-valued variables (Def.6.5).
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]
This artifice must be used since a b—equation cannot contain indices
as operands, Since all values of b, are involved in the recursion, it
is considered to be a course~of-wvaliles recursion. Hence, the subscript

is 42, The symbol r, is a storage (i.e. output) specification, It will
be discussed in section 13, Rule 13.6.

In the preceding section on vectors, it was said that a simple vector
recursion in which the components of the vector are defined by the same
function can be formulated as a double recursion., The next example
illustrates this. It is the well—known Gauss~Seidel method for solving a
systep of linear equations.

€.ge 11.9. The system of equations,

Zg_._oal(ia.i) bl(.i) = 8-2(3-), i= 0,1,...,n, is to be solved for the

vector, bl(,j) , given the matrix al(i,j) and the vector aa(i). Denoting

the iteration index by Xk, the Gauss-Seidel formula, in conventional
notation, can be written as,

g=

f Zg = 091(3 + 1:Q)bl(k+ 1:‘1].

This is a vector recursion on the index k, It is of the type in which all
components of the vector are defined by a single formula. As mentioned

in section 10, such a vector recursion can be treated as a double recursion,
The Gauss-Seidel formula illustrates this. In ADES language, if we write
9 for Kk, %W for J, q3 for g in the first sum, which we denote by 'b2,

write Q, for q in the second sum, which we denote by b,, and za.3 for n, we
get the formilation (using a) 4 2 iterations):

v = b,
r; = *lag,, TE +1q,, 1,=+2.9, r3= -ejl,
¥ ge, (V-1 gy [0 =00 / —apmy¥opsmmny ’])
¥ rya5250 =1 % Dotz 7185019955 110
Vth_q? by Zqqt b0, 0T q B Y0, £0,

Next, we consider the following problem. Suppose that the elements
of a two—dimensional matrix, bl(qe,q5), are to be computed by a simple

recursion on g,. In some cases, one could set up the quantification to
take place in the order Qs qg,ggé and a simple scalar recursion formula—
tion would suffice, Thus, fo! h element, bl(qa’%)’ a simple recursion
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would be performed, Even if this procedure were possible mathematically,
it might not yield an efficient program since some quantities might be
recomputed many times. In cases where the recursion is simmltaneous,

that is, bl(q-l,“' 1,92';'9.3) depends on some bl(q]_’a’ﬁ) where (x,8) (92:‘13):

the simple recursion procedure is no longer valid, The quantification
mist now take place in the order qa’qj’ql or que,ql, that is, for each

q, ve compute b]. for all Y and Q. This is, in effect, a triple recursion.

In ADES II, a special type of triple recursion is provided, It will
cope with the above matrix recursion, and with any triple recursion which
satisfies the special requirements explained below.

Def. 11.5. Let the symbol !GDR* denote a set of b-equations written
in the format of a general double recursion, except that all the equal signs
are written with subscript 035, A special triple recursion is a set of
b-equations of the form,

v Llilul{ n= o3 4

(GDR )y
Yk + 1 €03 Gy 10

Thus, a triple recursion consists of b-equations interspersed with GDR's,
all quantified by the i, quantifier, In each GIR there is one row
quantification and any r of colum quantifications (possibly none).

We shall not attempt to give formal rules for the writing of indices
in a triple recursion., Instead, we shall explain briefly the order of
computation and the manner of storage in the computer. This will indicate
how to index the dependent variables, ‘

Let i, denote a row index which precedes the parenthesis in a GDR,
Let i, be & colum index which precedes a bracket in that GDR. If y, is
'dzfinéd. by an equation within the i, brackets, the recursion for yJ roceeds

along the grid points of the (111- ?) —plane, running along the (‘1‘2-1- 1) —row,
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as the column index, i., runs from its lower bound to its upper bound,
The storage of y. valués is limited to at most a two-dimensional array.
Al storage speciﬁcation":fs accomplished by writing a suitable
dependent index to the right of y, in the y. —equation, This is
explained in section 13, If y ig stored aé a two-dimensional array,
thig implies that when the indéx i. increases and a new value
yy(i, + 1, @p) is computed, it inthediately replaces y4(4;,0,8) in
storage., With this convention, only the row and column indices need be
specified when y 3 is used as an operand. Yy 3 can also be stored as a

one-dimensional array if the problem permits, In that case, only one

row of yJ is stored in the computer at any juncture, Wwhen 12 increases,

the new value yj(ia-l- 1,8) replaces y;j(ia’ﬁ) immediately. Hence, if y‘j )
is used as an operand, only one index need be written in this instance,

If the y 3 equation occurs within the 12 parentheses of a GDR but not

within any of the brackets, the recursion for y, will run from row to row
in the (i,4 1) —plane as i, varies, Here, we Have the possibility of
storing y 3 88 fwo—dimension&l (11,12) array, or as a one-dimensional i,

array. In the latter case, when y j(il+ l,a) is computed, it immediately
replaces yJ(il,a). in storage. Thus, only the array yj(iz) is in storage
at any time., Part of this array may belong to the »(il+ 1) —plane and the

rest to the previous plane, When y 3 is used as an operand, only one
index is required in this case,

Finally, if the y, —equation occurs outside all GDR's, it is computed
only for all i,. Here), the new value of y. does not immediately replace
the previous value, This replacement is déne after all y*s have been
computed in the i, loop. Thus, after ¥y is evaluated in the (124- 1) -plane,

there are two values of Y5 in storage, namely, yj(i_u-l— 1) and y;](il:)' To

use either as an operand in a formmla one simply writes the proper index,
keeping in mind that the y's are computed in the order in which their
equations are written. If all values, y (:I.l) , are to be stored, an index
mist be written as explained in section 3.

No quantifications are written within the braces other than those in
the GDR's. However, if it necessary to introduce other quantifiers, one
can write a phase equation, y 3 = 05f1yi’ at the appropriate place within

the braces, and then quantify the y, —equation, which is written outside
the braces., Tms, for example, ¥y ght itself be defined by a triple
recursion, The storage for Y5 is specified in the ¥ —equation.
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12, Minimization.

In section 3, brief mention was made of the minimization operator
which is introduced in the theory of recursive functions to eliminate
miltiple recursions. We incorporate a form of this operator into ADES I1
as a library function., However, we do not propose to eliminate multiple
recursions, Rather, minimization will be used frequently within recursion
formilations to define the upper bound of a recursion index. It will also
be used in ttable look-up! operations,

Def. 12.1. A minimization equation is a special equation of the type
- J= fuixy, ’
where j is a dependent index, i is an independent index, x is an indexed
independent variable or mumerical constant, y is a dependent variable, and
f,, denotes a special library function known as the tminimization operator?!.

T.ge minimization equation can be read as *'j is the minimum value of 1,1 £ x,
such that y< 0! .

pef. 12.2. The class of r—equations is hereby extended to include
minimization equations. :

e.g. 12,1, In example 11.4, the Newton iteration algorithm for the
square root was formulated in ADES language for six iterations., We now .
impose the requirement that the error in the square root be less than 10 ,
if possible, but that at most.six iterations be used, The formlation, with
a minimization equation, becomes ’

b 1002
r, = + qll,

b, = £,bys

Vogrby =13/ +00/ a,0032., £33,

b= ~fops, P11 %R0 2

where we have written fa.bs to denote ythe library function for the absolute
value, * '

=7f q.,6
I-lq'

Remark® The above use of the minimization operator in scalar recursions
ig so common that some special abbreviation would be feasible, We might
simple write,

o -5

r.2f6x10 1x10 ,

1 n
it being understood that the first number, 6 x 10° , 1s the upper bound of
the recursion index, while the second is the tolerance for the absolute
difference between successive values of the quantity being computed. In
vector recursions, the tolerance might be applied to the sum of squares
of differences of successive components. ‘
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The 'table look-up! aspect of minimization is illustrated by the
next example,

e.g. 12,2, Let fifty values, a (ql), of a function be tabulated
against the corresponding values of 1ts independent variable » 2 (q;).
It is required to evaluate the function at some point, a,, by

linear interpolation. In conventional language, this value is given by,

8 (r; = 1) = a_ (r,)
= 311 3\71 [ ]
bl.-— 83(1'1)“‘ 81‘(1‘1—- 1) = a']_(r]_) o = al(rl) ’

where T is the minimm value of % such that a.l(ql) - aa.‘. 0. In ADES,
the formulation (except for Input-Output specifications), is as follows:

rl= fuq15o° 2)

e
b = b,

bl =+ aﬁrl' =658, Ty / -ajraajrl—alr2alr1 ’
Dy E ey
Other examples will be found in Appendix III.

13, Input and Output Formmlation,

The mathematical and logical part of the formulation of a problem
in ADES II, as described in the preceding sectlions, consists of r—equations,
b-equations, and auxiliary equations., To complete the description of the
language, syntactical rules will now be given for the specification of the
input of data, and the output of results,

Let 8,9 By By esey By be the independent variables which occur in

the r—equations and b—equations of a problem. The 8 represent: the
different types of input data. Let Nk be the maximum number of numerical
quantities to be supplied in the computer as data for ?:E In problems
which are to.be repeated for j different cases, the actial nmumber, N, .,

of data for a may vary from case to case. Thus, Nk‘:’-mgx{ﬁkj} .

Def. 13.1. 1In what follows, we sball say that a variable, ak(or b.),

tig of degree two in a formmlationt! if it occurs at least once as part of
an indexed variable of degree two, e.g. akqlqe(or hkqlque If a variable

ak(or bk) is not of degree two, and if it occurs at least once as part of

an indexed variable of degree one, then we say that a‘i(or bk) tis of
degree one!, Otherwise, ak(or b, ) 'is of degree zerol. '
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Remark, If an independent variable is of degree zero, one,or two ’
then it always occurs with zero, one,or two indices, respectively. The
phrase 'at least once' really applies to dependent variables, since they
can occur with a different number of indices at different places in the
same problem,

For an ‘of degree zero, Nka 1l; i.e. one numerical datum will be
loaded into the computer for a . (Exception: If is an integer—valued
variable (Def.6,5), no data is supplied.) If is of degree one, then
N >1; & 'colum! of numerical data, to be s?{%stituted for a (J), 0 £5& v,
wf1l be loaded into the computer.

Ir is of degree two, a matrix of data, to be substituted for ak(i,j) )
will be loaded into the computer,

The loading of data into the computert's intermal storage in ADES II
is under control of a 'Read! program composed by the Encoder, The Read
program is executed by the computer just after the entire program has been
loaded into internal storage. The Read program transfers data from external
storage (e.g. tape,cards) to predetermined internal storages. In ADES 1T,
the Encoder composes the Read program on the assumption that the data in
external storage is arranged according to the following conventions,

Computer Convention 1, All the data for each is in a block of
consecutive external storages. The beginning of the block must be identified
as belenging to the variable a . If tape is used, the end of the block
should also be marked., If Ched cards are used, all data on a card should
be for the same a , and should be in the order dictated by conventions 2, 3,
and 4 below, Further, all the data for an a]é should be on consecutive cards,
in order, and suitably identified. Just what constitutes suitable identi-—
fication will depend on the particular computer. .

Remark: It is not difficult to see how these conventions for the
computer can be relaxed to allow for variations in the arrangement of input
data., The scheme suggested here somewhat simplifies the Encoder and the
Read program. For those problems in which the amount of data is somparatively
small, the conventions impose little or no inconvenience,

Computer Conventien 2, If is of degree zero, only one datum is
supplied, i.e. this variable requires a block of external storage of length 1.
The block should be suitably identified at beginning and end. The blocks for
all a, of degree zero should themselves be consecutive,

Computer Convention 3. Following the data for all the variables of
degree zero is the block of data for the first variable of degree one.
All the data for a variable a of degree one should be loaded in a block
of consecutive storages in an order corresponding to a.K(O) s & (1)5eee,

- a (N —1). Following the block of data for the first variable of degree
zke Es the block of data for the second variable of degree one, etc.
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Computer Convention 4, Following the block of dats for the last
variable of degree one 1s the block of data for the first variable of
degree two, a_. This is actually a matrix of data to be substituted for
ak(i,j), oglgu, L, éj.‘..uz. The linear ordering of the data in
this matrix into a block of consecutive storages must correspond to
a.k(O,L2), a.k(O,La“" 1)se00s 8.‘{(0,112), ak(l.sz), ak(l:La"" 1)yeeey &k(lsua)a
coe a.k(ul,Lz), ceoy a.k(ul,ua), In short, the matrix should be loaded
into external storage by consecutive rows, This ordering can be described
as a mapping of the two—dimensional (i,J) grid onto a one~dimensional r—grid
extending from some point o to the point a + N -~ 1., For example, if
0£i4d5and 0 < 3¢5, the square 6 x 6 grid is mapped into the linear
grid by the mapping,

r=za4(j+6i), .
Again, if 0 £i £ 5, 1 £ j £ 5, the triangular grid is mapped into the

linear one by,
rza+(i+ _L_lﬁ__.).é‘ia =), .

If the matrix structure is more complicated, the mapping may be defined by
using a tabular function., The data for the other variables of degree two
is loaded similarly, and in consecutive blocks of storage, each suitably
marked. .

The structure of the matrix of data for a variable, a _, of degree
two determines a mapping according to Convention 4, The ?émla.tor mst
write this mapping in the formulation as an index equation defining a
dependent index, Such a dependent index will be called a ‘storage index?
of type A, since it describes how the data for is to be arranged in
storage. However, in writing the ‘storage index equation', the formulator
need make no reference to any storage address, or equivalently, the initial
storage address, a, is always taken to be zero., The storage index is
defined as a purely mathematical function of two independent indices:

82 representing the row index, and s the column index of a matrix,
82, for the square matrix with row ifidex O € agg 5 and colum index
0<% q99 ¢ 5, the storage index equation is,

= (q99 + 6998) , (common notation)
ry =+ g ° 6.q98, . (ADES notation)
For the triangular matrix with 0¢ g <5, %Yg < 99 < 5, the storage

index is,
r) =499 + (22 ~ (6—998)é7 —998)- ) 5 (common)

r) = +agg — 2L /® ~6.agg = Tedgg?) « (ADES)
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 For the triangular matrix, 0 < g < a,; 0 £ < q.n, the storage index
equation is, E 98 : xl Y99 = 987

r= q99+ 998((]984’ 1)/2’ (common)
r = +ag/ q98+q98 1.2, (ADES) .

The formulator must also list the type A storage indices in a table,
called the fComputer Tablet!, which is part of the formmlation., The
Computer Table will te defined precisely in Def. 15.4.

Since the data for most of the independent variables of degree two
in a given problem will usually have the same matrix structure, the same
storage index will apply to most of the ats, Rectangular and triangular
structures are the most common, Several rectangular arrays of different
dimensions may occur in the same problem, In that case, it is more
efficient to have a single function, fr say, to denote the formula for
the rectangular mapping, If f_ is a library function, the forrulator need
only write an equation of the type s

ry = frq98(’99al’ »
where %98 and dgg are the row and colurm indices, respectively, and
o< U9 < e If £ is not a library function, the auxiliary equation,
fr = +02' clcﬁ’ )
mst also be written, but this auxiliary equation will serve for all other
rectangular storage index equations. ‘ ’

It should be evident that no particular row and column indices can he
specified in a storage index equation for an independent variable of
degree two. It is only necessary to distinguish the row index from the
colum index, With all the above considerations in mind, we adopt the
following definition and rule for ADES II.

Def. 13.2. A storage index equation of type A is an r-equation of the
form, :

§ = Gy -+ ar

where J 1s a dependent index (called a m A storage indﬁx)‘,‘q is a
function symbol, 998 always denotes the row index, q99 the colurm index,

and the x's are indexed independent variables. The function q defines a
mapping of the grid points(q98,q99) onto a linear grid. If Q is not a

library function it mist be defined by an auxiliary equation in which the
free variables cl’ca""’cn are to be identified with (198"(‘199’x2"°"xn’

respectively. ¢ 8 and q,., are never q}lahtified and can be used conly in
storage index eggations T type A.
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Rule 13,1, To each independent variable, » of degree two in a
formuletion, there is assigned a storage index g§ type A. A storage
index equation of type A must be written to define this storage index,
The function ¢ in this equation depends on the structure of the matrix
of data for a.g. 4 must map the tgrid pointst® of the matrix into a linear
sequence according to computer convention k., The same storage index can
be used for different variables if the matrix structures are identical.
The type A storage indices must be listed in the *Computer Table! ( see
Def. 13.%4 below).

Storage index equations are also written to specify the storage
structure of computed results, The rules for these equations are somewhat
lengthier,

Def. 13.3. A storage index equation of type B is an r—equation of
the form

y=1i, ,

or of the form
j - q11i2x3 .Qoxn, ’

where J is a dependeht index (a storage index of type B), ¢ is a function,

i, and i, are indices, and X5y eee) X aTE indexed independent variables,

If ¢ is an auxiliary function, the free variables c;,C,s «es, ¢, in the

auxiliary equation are to be identified with i ,i_,...,X , respectively.
A branch symbol is not permitted in a storage }ndgx equation.

After writing the b-equations, the formulator ascertains the degree
of each b—-symboﬁDef. 13.1) by inspecting the righthand sides of all the
equations.

Rule 13.2. If b,_ is of degree zero, no storage index equation is
required. will a;u}c{omatically be stored in the same storage each time
it is computed.

Rule 13.3, If bk is of degree one or two, and if 5{ is not defined

by a recursion or a vector equation,then a type B storage index, r. say,
is assigned to bk‘ The symbol r 3 is written to the left of bk on the

left side of the equation for b . A stbra.ge index equation of type B is

added to the formulation to define r 3° If bk is of degree one, the first

form of the type B storage equation is used. The choice of the index i

will cause bkil , to be stored in separate storages for all il. If bk 1&

of degree two, the second form of the type B storage index equation is
used., The choice of the indices il and 12 will cause bkilia to be stored
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in separate storages for all i, and i The function ( is selected by
the forrmlator after he determ}nes thg structure of the (i,,i,.) grid
defined by the quantifiers of i, and i,. The discussion of

storage equations is applicable™if 98 a.nd. U9 are replaced by i a.nd
12 s respectively.

Note that the same storage index can be applied to different bts
if they have identical storage requirements,

Careful consideration of Rules 13,2 and 13.3 gives rise to several
suggestions for writing b-equations,

In the interests of economy in the use of computer storage, the
formlator should avoid introducing unnecessary b-equations. Tn the
computation of the well—formed formulas which occur as parts of a b-term,
results are stored only when necessary. (This storing is automatically
programmed by the Encoder. It does not concern the formulator,) However,
the final result of a b—term is automatically stored whether or not this
is necessary for the progress of the computation., For example, in the
equation

by = *4aya, + R

the intermediate result, 4 a_a, , must and will be stored before the program
proceeds., No other quant:.tl s will be stored, except the final result, l‘
Now, if we reformlate this as follows,

= +818.2,
5 - +a‘3a'}+)

then bl,‘b2 and b3 will be stored, b2 unnecessarily.

The indexing of a dependent variable, bk ,should be avoided if possible,
since this will require the introduction of & storage index. This will
cause the Encoder to produce a program in which the different values of b.55
are stored in separate storages. A complete discussion of this point lea
to rather involved and deep problems, We shall content ourselves, in the

present report, with the formal rules and examples to illustrate what is

at issue,

€.g. 13.1. suppos‘e it is required to compute by qu.o bz(ql),
where ba(ql) = al(q_l) . aa(ql). This should be formilated as follows.
fobl"
VOqla by =,+D0,a,5 110,

a]_Ql q'l 2 -

37



NAVORD Report 4209

Note that b. is written without an index. since only one value of b, at
a time is ngeded, and the proper indexing is already contained in the
right side of the ba —equation,

a =l
- D
e.g. 13.2. Suppose b3_. ;qlzobe(ql)ba(ql+ 1), where again
b2(ql) = al(ql)- aa(ql). We shall formulate the problem in three ways,
and mention a fourth,
Formulation 1,
= -a.jl, r, = +1ql,

bo f0b3, ’

Vogr; by =) + sq # ayqp0 8,0 08 T 8,1, 10,

Formlation 2,

=fb
=5lflb2ql » f10 »

o 51”8 TofTns ¢ 80850,

by =5 +D50 0 3005 0, )

Another possible formilation would introduce a double recursion to
compute b,. We shall not go into this,

The preceding example is very informative and merits study. In
formalation 1, the symbol b, is dispensed with entirely. b5 is computed
by a simple scalar recursiofi which involves a rather long b=term. When
this b-term is computed, no intermediate results will be stored. Thus,
this formulation would be fairly economical storagewise. Timewise,however,
it is obviously inefficient since each product of ay by a, is performed
tWice.

In forrmlation 2, the duplicate computation of a)’ a, is avoided by
computing all the products first and storing them for'alf g,. Then b
is computed by simply calling for the successive pairs of b  values, 5
Since b, is of degree one in this formulation, a B type storage index, r,,
is writ%en to the left of the b2 -equation, and a B type equation, T3 = }lq2’

38
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indicates that baq%ois to be stored in séparate storages for all q,.
This formilation“pfoduces a faster program, but requires (a,+ l)q?.nter—
mediate storages. If a, represents a large number, this fo;‘xmlation is
uneconomical storagewise,

In formulation 3, b, is treated as the third component in a simple
vector recursion. The sécond component is the product of by a,. The
first component is then defined merely as the previous value of tge second
component in the recursion, thus avoiding a duplicate calculation of the
product a.e a. The subscript 51 makes this a 'one-row! recursion, which
means that a“minimum of storage is used, i.e, the new value of a component
replaces the previous value in storage. Therefore, this forrmlation is
economical both timewise and storagewise. In fact, the Encoder will
translate it into a program which is about as efficient as the program
produced by a skilled humen programmer, who will, in effect, program it
as a vector recursion (although he may not think of it as such.)

In formilation 2 above, the use of a B type storage index equation
is illustrated. The equation is of the simple form, j= ¢i,,. The next
example illustrates the B—~type storage equation with two indices.

e.Z. 13.3. Let it be required to compute three mxn matrices,
by (g7,95) = a (g )+ ay(a,),
b,(a;,9,) = & (a;)/a,(q,), and their product

b,(a5,q,) = Zg;i oP1(a5995) bylag;q,). The ADES

formulation is as follows (letting as

f51= +cyec, lcj,
ry = f51q1q2a 2
b, = :\E‘Q‘ol;n5 »
Voq,a,V 0q,8.b, = £ b0,
1P F %200,
riby = /298,05
Voq8, ¥ 0g,2,05 = £,
V0q5a3b5 =15 +050%0) 450505059, £105
Since b, and b,, are of degree two in this formulation, the storage
index, 1y, mi‘ist be g.ntr?ducec} and defined as shown. . It causes‘the Encoder
to compoSe a program which will store each value of by and b, in a separate

storage according to Computer Convention 4., The program forzb will later
call these values out as they are needed, Note the use of phage equations

= n-l),
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and quantifiers to prescribe the order of computation., The phase equation
for b, must be introduced because the recursion equation for b, cannot be
q_uant?fied more than once (Def. 11.l). 3

Rules 13.2 and 13.3 apply to the storing of non-recursive dependent
variables, We now state rules for recursively-defined variables.

Rule 13.k, Let bk be defined by a simple scalar recursion. b, must
be of degree one at ledst. If it is of degree one and occurs only \lﬁth
the recursion index, or with some index which depends on the recursion
index, and with no other index, then no storage index need be assigned,
The final value of b_ in the recursion will automatically be stored like
any dependent variabEe of degree zero,

However, if ‘D}Sl occurs with an index which is independent of the
recursion index, then Rule 13.3 applies., The storage index pertains to
the final value of b _ in the recursion. Since the recursion is repeated,
there Will be more than one final value., Each final value will be stores
separately as prescribed by the storage index. The storage index is
written immediately to the left of bk’ but to the right of the quantifier,

If the formulator wishes to store one or more intermediate values of
b, computed during the iterations, he must write the recursion as a course—
oI-values recursion. This automatically causes all values of bk to be
stored, No storage index is required.

Rule 13.5. If b, is one component in a simple vector recursion, and
if the other components are not also denoted by b, , then Rule 13.4 applies
to bk' If the components are denoted by b§(i) » DO storage index can be
assigned, If it is necessary to store bk( ) for all j, this must be
formulated by relabeling bk(i), using the identity function.

Rule 15,6, If b, 1is defined in a double recursion and its equation
is outside the brackefs » then Rule 13.% applies. If the b,_-—equation
occurs inside the brackets of a double recursion, then bk necessarily
of degree two in the formulation,

If the recursion is a course-of-wvalues double recursion, then a
B type storage index, r,e is required as indicated in Rule 11l.3, The
index, r , is written immediately to the right of b, on the left side
of the e‘c};uation. r_is a function of the recursion indices ,12.
The formilator mist define r_ by the mapping of the (1,,i,) gridonto a
linear grid, according to Convention 4, The structure of~the (1,,1i,)
grid is determined by the gquantifiers of il and. 12. Thus, T sp%ci%ies
the storing of all values of bk(il siy)e

ho
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If bk occurs with one or two indices which are independent of the
recursion indices, then Rule 13.l4 applies for the storing of the final
value of b, .

k

If bk is defined by an equation within the braces of a triple
recursion, the degree of b, in the triple recursion should be determined.
A suitable B-type storage Endex should then be written to the right of b
in the b_~equation, k

Rule 13.7. If y denotes a variable of degree one which is defined by
a vector equation (Def.10.1), then no storage index need be written., If
Y 1s a variable of degree one which is defined by an indexed function
(Defs. 10.2, 10.3 and Rule 10,1), the y—equation should contain a B-type
storage index.

(Remark: The rules for storage indices, as given above, are to be
regarded as temporary, It is planned to eliminate most or all storage
indices in ADES III; i.e. the Encoder of ADES III will take over this
task.)

Having written all necessary storage indices, the formulator can
write the part of the fornmlation known as the *Computer Table?,

Def. 13.4 Let )i: x° s eesy xﬁ denote the independent variables of
degree zero in a formu tign, written in an order corresponding to the
order of the data in external storage. (See computer conventions.,) Let

xi, xz 5 eeey xz'l, denote the independent variables of degree one. Let

xia), x‘,gz), ceey xz(le) be the independent variables of degree two, and"

J:EQ) ) eeey '51'(12) the corresponding A-type storage indices. (The variables

of degree one and two are in an order corregponging to tge order of the
blocks of data in external storage.) Let Xis Xp; ees; X denote the

integer—valued variables, and il ,12 yoeey is the respective independent
indices with which they are to be identified (Def. 6.5.). Let jl""’j:p

denote those independent indices which are used in recursions, and
N(Jl), eess N(J_ ) the respective numbers which specify the maximum number
of values each®index assumes. Finally, let Kisees ,KH denote the B-—type

storage indices and N(Kl), ...,N(KH) the respective numbers which give the

maximum nmumber of values of each index. The Coguter Table is a table
arranged as follows.: -_—



NAVORD Report 4209

1 Independent Variables
of Degree Zero

SNHcool\)Nl-J !—-'xl—-' WKO ooof\)xo I—FO
|

i
N
N]é Independent Variables
N of Degree One
1
Ny
x(e) N(e) 3(2) Independent Variables
1 L 1 f Degree Two
£2) (@) (2 °
2 2 2
(@) 4 ()
X' LA J n
’ Semi—colon

Integer~+alued variables

NP".QNKP"—?‘H'
[ and ooof\JH. I—'H
— \_"‘v--J

s s
i Ny) |

} :i Recursion Indices

o w3 ) |

kK, NK) 1 B-type Storage Indices
Ky NKg), |

where the various N's denote actual numbers which specify the maximum
mmber of pieces of data supplied for the adjacent variables.

With the writing of the Computer Table, the formulation is virtuvally
complete, It remains only to indicate the output; i.e. which results are
to be punched out on cards, transferred to tape, printed, etc, The details
of output will vary with the computer,
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In ADES, output is indicated by writing an output symbol, d, with
suitable subseript, on the left side of the appropriate b-equaticn. The
details of output are concealed in this subscript, and will not concern
us here, It is sufficient to assume that a list of available modes of
output and their corresponding subscripts is in the possession of the
formalator, e.g. 4, . might mean *punch this result in the second field
of a five-rield cafd;* 4, might mean 'print this result in the third
field on the page and s!z:ip5 one line!, d62 might mean twrite and copy onto
tape 2%, etc.

Rule 13,8, If it is desired to have all the values of the dependent
120581e) ,(n "
variable/, bk » as output, an appropriately subscripted output symbol, dn s
r )

P S
should be written to the left of (bkk on the left side of the "\bkk) equation.

If there is a B-type index to the left of bk’ then dn should be written
immediately to the left of this index,

In a recursion, this will cause cnly the final values of b_ to be
processed for output. To effect output of all values in a recul}sion, d
should be written to the right of bk and to the left of the equal sign.n

This completes the description of the input and output parts of a
formilation,

14, Summary .

The Automatic Digital Encoding System is designed to enable the
mathematician to present a mathematical problem to any modern electronic
digital computer in a form closely resembling a conventional mathematical
statement of the problem., ADES eliminates the programmer, with his
specialized knowledge of one computer, All the clerical tasks which the
programmer would perform are taken over by a machine, the Encoder. The
mathematician, or formulator, must first prepare the problem as a set of .
equations suitable for digital computation. He then forrmlates the problem
in the ADES language. This frequently requires little more than a trans—
literation of the original equations, A complete formulation of the problem
in ADES consists of the following. '

Computer Table,
Aunxiliary Equations,
r - equations,

b —~ equations.

For the most part, the formulation of a problem can be plamned and
written with no specific computer in mind, It is true that the use of
library functions does depend on the computer. However, some standard

bz
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agsignment of subscripts for the elementary functions and other common
library subroutines can be adopted) e.g. f, for+ , £, for -, ete.
Failing that, the formulator can use the conventional”symbols, and when
a particular computer is selected, the conventional symbols can be
replaced by the correct function symbols. The same procedure applies to
output symbols, which are somewhat more difficult to standardize,

When the formulation has been completed for a specific computer, it
is punched in cards (or tape etc.) and loaded into the Encoder for that
computer. The Encoder will translate the formulation into a program in
the computer language, and will compile all necessary subroutines. The
complete program with subroutines is then punched out on cards (or placed
on tape) in a form ready for computation. This program can then be loaded
into the computer. It will read the data into high-speed storage, perform
the necessary computation, and yield the desired results as output.
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APPENDIX I. Library Functions.

Most of the common library subroutines can be referred to simply by
writing the properly subscripted function symbols in the formulation. In
system 1T, the computer library is assumed to comprise mainly these compara—
tively elementary subroutines, and the preceding report is based on this
assumption. This in no way implies that ADES is limited to such simple
subroutines. As examples of more complex subroutines, we shall cite two
situations which require somewhat special formulation,

First, if the subroutine involves a recursion, and if there are
- operands containing the recursion index in the formmulation, a separate
recursion equation must be written., For example, suppose T deng s a
subroutine for summation, £. Then if we wish to formulate %2: Z‘.q - Oa.l(ql) 5
1 =
it is clearly not sufficient to specify the quantity to be summed. Ome
must also specify the jindex of summation (i.e. the recursion index) and its
bounds. Further, if ‘11 - Oal(ql) occurs as part of another formula, it

mst be denoted by a b—symbol, which must then be defined by a b-equation.
In this case,

VOq_llo by = T as

defines the summation, Note that this equation is not considered to be a
recursion equation (i.e, subscript of equal sign is 00), since the subroutine
will take care of all the recurgsive features except the gquantification.

The second situation which complicates a library subroutine can best be
explained by an example, Suppose there is a subroutine for the mumerical
integration of any real elementary function, g(x), over a finite interval,
Ea5 »8,]. The numerical formila would be of the type, L

zlil' =0 a‘l(i)'g(bz(i)))

where the al(i) are constant coefficients independent of the function g,

ay,~a
and the limits aj,au, while be(i) depends on 8‘3 and a). In fact,b2(1)= 3.‘._&,5_.3_]10
Therefore, ‘the integration subroutine depends on values of the function g
“hich cannot be computed until b,(i) has been computed, The formula for g
mist be written with the argument, b,(i), and g itself must be identified
by a dependent variable. A suggesteg procedure for referring to such

library functions is the following, a
. ' 2
Let fjo denote the subroutine which computes b, = j; g(x)ax. To
’ ()
illustrate, let g(x) = sin x., The formulation for by would be,’
Vogn b = £20 350,05

b3= sin b2, .
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The above format can be standardized, that is, for each library function
of the type described, the formulator writes a b—equation, quantifying it if
an index is involved. On the right side, he writes the pertinent f—symbol )
fmn’ followed by indexed independent variables, which represent data to be
supplied to the subroutine, and dependent variables., Of the dependent
variables, the last one denotes the function to be operated on by £ . The
last b is defined by a b-equation. The other b-symbols denote quanTities
computed within the subroutine for use in the formula for the last b-symbol.
They are not defined by b-equations.

The Encoder must be slightly modified to cope with these special library
functions., It must recognize the f-symbol before prograrming the last b, It
mst then operate so that the part of the subroutine which ceamputes all bts
but the last is compiled into the program first. These b's are replaced by
addresses which are relative to the location of the subroutine in the program.
‘Then the last b is programmed. The program for the library fumction is
then completed,
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APPENDIX II.

The order in which the b-equations are programmed is determined by
(1) the phase equations, (2) the parentheses in vector equations and
recursions, and (3) by the order in which dependent variables are written
on the right side of an equation.

The Encoder determines the order of computation in a natural manner
as follows, Starting with the master phase equation, it scans the right
member from left to right for dependent variables, Let the first dependent
varisble which it finds be denoted by Yy Assume first that the vy —equation
is not a branch, vector, or recursion egquation. The Encoder scams the
right side of the y. —equation for dependent variables, If there are none,
¥, is programmed an?l the Encoder returns to the phase equation to obtain
the next dependent variable, If the y, —equation contains a dependent
variable, ¥, say, then the Yo —equatioll is inspected for dependent variables,

If no dependent variables are found in the y, —equation, it is programmed
and the Encoder returns to the y, —equation fnd scans right again for
dependent variables, If y, is tﬁe only dependent variable in the right
member of the y. —equation; then y. is programmed next, and the Encoder
returns to the ABster phase equatidn., If the y. —equation contains another
dependent variable, y. say, the Encoder will pr%ceed with y, as with the
Yo —equation, Eventually, all dependent variables on the r:?ght side of the
¥y —equation will have been programmed, and then vy itself is programmed.

In this wey, the Encoder traces its way through the formulation,
programming the variables as they are encountered, whenever possible. This
order is interrupted, however, if a variable,y , is one component in a
vector equation. In that case, the Encoder will arrange to program the
components in the order in which they are written, beginning at the left
parenthesis and proceeding to the right. Similarly, in double and triple
recursions, the equations are programmed in the order in which they are
written,

In a branch equation, the leftmost formula is programmed first.
Normally, if a variable, y., is referred to in several formulas, it is
programmed only once, at t?ie' time of the first referral. An exception to
this mst be made in the case of a branch equation in which a dependent
variable, y., is referred to in both branches, This is inefficient formu-—
lation, sin%e vi will have to be programmed twice. This situation can
always be avoided by writing a vector equation in which y, is the first
component and the branch equation defines the second component, for then
y. would be referred to prior to the branch and programmed once, Never—
tﬁeless , the Encoder will accept the inefficient formulation, and program
y; once in each branch.
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APPENDIX III. Examples,

Each example will be stated first in a more or less conventional
mathematical way, and then a complete ADES formulation will be given,

EXAMPLE 1.
Given the data points a.l(ql), where 0 £ q1 < a,+ 1.

It is required to compute

by Zti%l(ql)]qe

for all q,, where O < %, < 2a . (The b, are the elements of the normal

1
matrix in the least square fitting of a polynomial of degree a - over
a,+ 2 points.) Two ADES formulations are ziven.

Formlation 1,

Computer Table, .
T aol a.21 a, 50; azq, T 200 q,50 QOO,

Auxiliary Equations, f50=' +cy0cy + cil’

r — Equations,

b — Equations, b = £, b.b
) 3?
Y ...l.q (V -1.q2r b r "'h2 Pl& lla5 -, £ 1, oa.lr b r3q2,])

Voq,r, b, = fb),

V 0a58,9, 5b; "11‘",' b1 250,459, » 120,

Remarks o ba(ql’qe) ::[a.l(ql)]q2 is defined by a double recursion
of the course—of-values type (subscript 42), qi is the row index and g,

is the column index., Actually, there is no recursion on q,. However,

since all values of b, are to be stored, advantage is take%i of this property
of the course—of-ava.lugs double recursion.  The storage index, r 02 defines
the structure of the b (ql,qe) array as rectangular, The initi&l values,

1(q1 ,0) = -1 , are defined by means of a: branch equation, The branch condition

f._‘_]_a.5 —~1* means ‘a3< —~1,* where as is an integer—valued variable identified
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with g, in the Computer Table, Since b, on the left of the equation is

2
really b,(q;+ 1, g+ 1), the condition qes -1 is equivalent to g,+ 1 £0,

i.e, b2(q1+ 1,0). This also explains vhy the lower bound of g, is -1, and
why the index of ay is r3= ql+ 1,

The master phase equation causes b, to be computed first, It next
refers to b,, which leads to another phgse equation, The b, —equation is
introduced éo permit the quantifier of to be applied to § o This is
necessary since b, is defined by a simplé recursion equation, and Rule 1l.l
prohibits more th%n one quantifier in a simple recursion equation. The
output symbol, &5, will cause the successive values of bl?‘;:) to be punched
out five per card; as they are computed,

The gbove formulation is economical of time but wasteful of storage,
since all values of b, are stored. A better formulation, given below,
causes b, and b, to b8 computed in one double recursion simultaneously, and
in such & way tﬁat only one row of values is stored for b, and b,. However,
to obtain output, the final row of b1 values must be call&d out gn a special
b"equation, b‘h‘. »

‘ Formulation 2.
COEEE ter Tableo aolo 3210 al500 ; &3(]2 ah'q'l q150. ‘ qeh'o. ¥}

r—equations. r & —rl. ’ r, =2, a,
r3= +1. % r), =+lq2, r5=+la2,

b—eguations. bo - fobabh

\ —1.qlr5(V—1.q2ro[b2 =,p B Iy e, -1, 1,0, by,
by =5 By, £10, +DrmbiaT 1)

b3 = Pl&fllaB -1, fll"a‘lqlber3q2 s
V0q5r1615bh = :t‘lblq5 »

Remarks: To permit the simultaneous computation of b, and b,, the initial
values, b (0,q2+ 1), are taken to be zero, This forles us %o use a triple
branch fof b,, necessitating tha branch equation for b,. Note that this
equation is firitten outside the parentheses because it“will be referred to
in the course of programming b,. In the Computer Table, one sees that there
are two integer-valued variabl€s, namely, a,3 =q, and 8, = Gy Note also

that a maximm of fifty data points, a, is permitted. Since a, and a, are

constants, they each have one datum, The maximum number of values of g, is
50, The maximm number of values of %, is 4o,

.
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EXAMPLE 2.
Given the polynomial approximation,
( 7 , 2q_l+ 1
arctan x =p(x)s = A x

valid for -1 £x £ 1, compute a table of arctan x for 9<% x_<_ 9, in
steps of O.l.

We introduce ADES notation as follows. Let a = 0.1, by= X,

&g = Aql; a, = n/2 ; b= arctan x; b,= p(x); b= X when x| £ 1,

‘and l/x when |x| > 1; bhz 1 when |x|$1and -1 when |x| > 1;
by = 2/2 when x > 1, O when |x| £ 1, and /2 when x £ —1; clearly,

- . 3 1§ ] t L -
arctan x b5 +'bh_.p(b5) Letting f, denote ' ', £, ' ¢, fy= ),
f_  the absolute value, we have

9
FORMULATION
Computer Table. a 1l a,l a18 M a3q2q18,
r—equations. ri::. ~6q), T,= £37.,
b—equations, o = fobl ’
¥ 0g,180. d,, by = +bsbyb,,

406 = --a5a09 )
bg = £obgs
bll- = P’!-fllel’ fll, f6l, '
by = Py bgl, Tybg, /1.,
blo- .b3b3’

'b2 = b3b9 3
V°q16b9 F e B T Fo i B R o P

»* * *
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EXAMPLE 3.

The usual tdifferential corrections?! problem can be stated as
follows. g is a function of the independent variable, a,, and the
m + 1 parameters, blo(o), coes blo(m). A table of values, aa(ql) vs.

a‘.\.(ql)’ 0% ql.‘. n, is given, i.e.
a,(a) = & (8 (q))s 035(0); wery Byo(m)
It is required to determine the 'best' values of the parameters,

The problem is linearized by writing
]
aa(q'l) - g(al(q'l)’ blo(o}o))'°'} blo(m"o))" z’: - Ogi.Ablo(i),
where 8 denotes the partial of g with respect to 'blo(:l). The tcorrections?,

o blo(i ), are then determined by the method of least squares, and the

process is iterated until the difference in successive sums of squares of
residvals is sufficiently small, One possible order of computation is as
follows,

1.) Compute values of blo(i) , starting with initial guesses, 33(1).

2.) Cémpute the augmented tobservational! matrix,
by (L,m 4 1)'= ay(1) = g (3,(1), (0),e0e, Byo(m)) ,

for. 0% 1< n,

3.) Compute the augmented *normel' matrix, b2 » by mltiplying the
matrix bl by its transpose, at the same time computing the augmented
triangular, *'Choleski! matrix, bj.

4,) Solve the linear system of normal equations for bg = A'blo by
the Choleski method.

5.) Test whether the difference in successive sums of the squares of
the residuals is less than some constant, a0° Repeat 1 — 5 if necessary.
To write an ADES formulation, we denote the 84 and a, — 8 by the

indexed function, fsiTs, 0¢ r55 n+1l; mbya; nby age
Let g = e 4 P, wnere A and B are denoted by b, (0), by (1), respect—
ively, Thus, g o= 8g/SA = xeAx and & = x2e . We denote the exponential

function by f e*
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FORMULATION

Computer Table. a1 a.51 alol a,50 2,50 a.39; a, oqla6q237q138q5a9q6
r159 r), 450 2‘955 r139,
Auxiliary Equations, (f50 =09 c,¢,)

f50 = 09 *cy ® clfe - oclclc3,

f50 =09 =<y, +fe . clcafe . c5- 1G5 )
f‘jl = 4,410 +lclc3,

f52 = +c2+1 LK 4 cll -I-‘cl2,

® clfe .

r—equations., r, = -lah R r3 = +1q2 )
Ty =+ 1,1, = + 1q_3, T, = £,0, rg = £,1,

rp= ¥ 1o Ty =+l Ty T + 1ay,
1= Flag, Ty T T T = %0
T2 = fid T3 = N1y = 595U 0
r9 = f52q5q6 » Ty = fpg‘ll()‘bla’
rg= 1y, Tg= 19,
b—equations. Y -lqlrl{ V—lqere‘ ( d15b10r12 = 05P1;-floa70 ,
| | £18575, +0107505T55 )

Y —lg5T5 ( V-1q,2, {:blrh_ = 15750752176 P1077P107 8% 6 ’])
A4 “lasp), ( v-lq6q5 [b2r9 =03T1P132 |
Ty = O3th10a9a8 ’ /bhbirlltll’ J by, ] )

(vgrys =3 7 43%&’“16"953"16"16”
by 18 = TP 1ns
a1 =B T00 Bl PyFigPudy
bh = "'b2r10r11b5 ’
¥ 0gg35 v =11 +*P57139%°5710%0% %7 1%
‘v0q10g9b9 =11+Pga0* DT T1ePghpr £105
Wog ey b5 =1, +by307 D) T80 T3 %0 110

V-lq9r2

EXAMPLE k4,

Given the system of n ordinary first order differential eg_uations »
0£né&m, —dxﬁ_ =8, (x:Yo.v Yys eces Ym):
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and the boundary values, yi(xo) , it is required to obtain a solution
by the Runge—Kutta fourth-order method.
Using the mesh size, h, the recursion formula can be written as
follows,
0£n€m Ay (i+1)=ns + 2, + 2k3n+ k) /6,
y,(0+1)=y,()+ a8y,
o€ i&m k(34 1) =g (x(3), y,(3)s eees 7 (9)),
k(34 1) = g(x+ 8/2, y () ¥ nig /2, coouy, (3)4nk) /2)
ki (31 1) =gy x4 8/2, v (3) + MKy /2,000, ¥, (3) + By, £2),
Ky (04 1) =g (xy By ¥, (3) + Begy oo,y (3)+ by ),

To illustrate an ADES formilation, it is sufficient to consider the
case m= 2, where go(x’yo’yl) LR At /sin Vo2 and gl(x’yo’yl) =2YMN + Xge
The computation of Yo and ¥y will be formulated as a triple recursion in
vhich the main recursion index is j. For each value of J, we compute Ay ) )’n)
for all n, Then, by a double recursion, we compute the ks, n

The following ADES notation is adopted;

=M, & = h; 259, ‘:an(‘xo)‘ ’ ay= X @ = Js Q= 1,

— e - ° -— <uxXé - —
a.h(2) = 1f2, a.h(3) =13 f50 = g; 1:>3 = %4 ;

FORMULATION
Computer Teble. acla 1l a,l 3.31 alka,d . 853 84z rl9 rThs r99,

>

Auxiliary Equations., (f5o = 09 /- c5Co sin c,,
50 Tog + *1%°5 )
f51 = 4 c, e cl+ cjl,

r—equations. ry = flq2’ r7= f51q3qhao’. rg= + lq‘l’ r9= flqﬁ’
b—equations, bo = fobl 3
v.—lqla6{ ¥ 0g 2, (blrl =03tuf10%50s 105
-2/ tiylay + =220, T ¢ 2b,30,08,6,
4T ZsPT10%00 F18a%s + 100 d55)
d21 ‘o3 ::05 +a3 . +a5131,
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Voq3u ( Yo,z [‘bl'_r,( Z03BuF11%70s £105 o2 bsOb 10,
‘(0(;_53.o [b5r9 =03 &+ b?_q‘j .o a.lbuqiqsah_% ,]
bg = 03 +b3 . alahqﬁ, )}
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