|
PRINCIPLES

OF OPERATION
! i

; , {

i G

TYPE -{701 |

| |
‘. F {
AND ASSOCIATED EQUIPM‘»ENT

;/

IBM IELECTRONIC |

DATA PROCESSING

MACHINES

INTERNATIONAL BUSINESS MACHINES CORPORATION

MINOR REVISION

This edition, Form 24-6042-1, is a minor revision of the preceding edition but
does not obsolete Form 22-6042-0. Principal change in this edition is:

PAGE SUBJECT
31 An additional Logical Operation, EXTRACT,
has been inserted. This moves material back so
that an additional page (32a) has been provided
for “‘break-over” of the Sense Operations section.

Copyright 1953 by
International Business Machines Corporation
590 Madison Avenue, New York 22, N. Y.
Printed in U.S.A.

Form 24-6042-1

This manual describes the operation of an installation of IBM Elec-
tronic Data Processing Machines consisting of the following units:

1

2

2

1

Type 701 Electronic Analytical Control Unit
Type 706 Electrostatic Storage Units

Type 711 Punched Card Reader

Type 716 Alphabetical Printer

Type 721 Punched Card Recorder

Type 726 Magnetic Tape Readers and Recorders

Type 731 Magnetic Drum Reader and Recorder

Other units, which are not listed, have to do with power supply and
distribution.

foreword

Of IBM's many important contributions to the field
of electronic business and scientific equipment, none
has shown greater promise than the new class of
equipment known as Electronic Data Processing Ma-
chines. This equipment, expanding electronics into
previously untouched areas, has been made possible
by drawing on IBM’s tremendous reservoir of expe-
rience in electronics.

These new machines are being designed for the
higher speeds and larger capacities demanded by
problems of increasing complexity which confront
business, industry, government and science. These
problems include procurement and supply, logistics,
econometrics, production control, engineering devel-
opment, and scientific research.

IBM Electronic Data Processing Machines will
incorporate the newest devices for input, output, and
storage, including magnetic tapes, magnetic drums,
and cathode-ray tubes. Individual machines will be of
portable size and specialized function. Some units will
serve for control, arithmetic, and logical operations;

others will provide for the input, output, or storing
of data.

This manual describes a representative instailation
of present equipment—one that is intended primarily
for engineering and scientific calculations. For sim-
plicity, the complete name of this installation, IBM
Electronic Data Processing Machines Type 701 and
Associated Equipment, will be abbreviated to 701.

Among the outstanding features of the 701 are its
large capacity high-speed electrostatic storage, inter-
mediate magnetic drum storage, magnetic tape units,
a versatile and fast input-output system, and comput-
ing speed characterized by a multiplication time of
456 microseconds.

In order to achieve maximum versatility, every
function of the machine is under control of the stored
program. This versatility allows the machine to
execute instructions at the rate of about 14,000 per
second on typical problems. Also, functions such as
input-output operation, which are determined by fixed
circuitry on some computers, are under coruplete con-
trol of the program and, hence, under complete control
of the operator. The great advantage of this system
lies in the fact that a customer may build up a library
of programs which will accomplish his special appli-
cations at peak machine efficiency. No compromise in
efficiency is necessary in the design of the machine to
accommodate an average application. Furthermore, a
customer may efficiently calculate on any 701 installa-
tion simply by using his own library of programs.

PART I
Description of Characteristics

GENERAL

STORAGE
ELECTROSTATIC
MacgnNETIC DRUMS
MacexNEerIic TAPES

ADDRESS SYSTEM
Mewmory LocaTions
Electrostatic
Magnetic Drums
Magnetic Tapes .
COMPONENT IDENTIFICATION

COMPUTING
ACCUMULATION
RounbpinG
MULTIPLICATION
Division
SHIFTING
SIGN OF ZERO .
OVERFLOW INDICATION .

CONTROL
STORED PROGRAM .
Instruction Sequencer
Instruction Layout
OPERATOR’S PANEL .
Description of the Panel
Basic Manipulations

OPERATIONS .
ARITHMETIC OPERATIONS
LocicaL OPERATIONS .
InruT-OUTPUT OPERATIONS .
SENSE OPERATIONS

Input Terminals
Output Terminals

INPUT-OUTPUT COMPONENTS
Puncuep CARDS
Card Reader
Card Punch
PrINTER
MacNETIC TAPES
Writing
Reading
Rewinding
Tape Status
MagnEeTIC DRUMS
SUMMARY

contents

TIMING

OPERATIONS

CARrD READER

Carp PuncH

PrINTER
Without Echo Checkmg
With Echo Checking

MagNETIC TAPES .
Writing
Reading
Summary

MacNETIC DRUMS

CONTROL PANEL WIRING
CARD READER .
Carp Puncau
PRINTER .

Printing Control
Carriage Control

MANUAL CONTROL OF COMPONENTS .

CARrD READER
Buttons and Lights
Card-Feed Failure
End-of-Cards Procedure
Carp Puncu
PRINTER .
MagNETIC TAPE UNITS .

SUMMARY . .
MacuiNe Cu \RACTERISTICS
INSTRUCTIONS

PART Il

Programming and Examples

PROGRAMMING

CONVENTIONS AND SYMB()LISM

SuB-PROGRAMMING DEVICES .
Basic Linkage .
Branches and Forks .
Alternators

Binary INPUT .
Self-Loading Techmque .
Binary Reading Program LO05

CHECKING .

EXAMPLES

APPENDIX A .
Binary AnDp OcraL NUMBER SYSTEMS

APPENDIX B .
TABLE oF POwERS oF 2

APPENDIX C .

72
72
76
76
77
78
78
78
81
&84

86

96
96

99
99

100

OcrtaL-DeciMAaL INTEGER meERsmN TasLe 100

GENERAL

THE 701 is a large-scale electronic digital computer
controlled by a stored program of the one-address
type, and utilizing various types of internal storage.

The internal high-speed memory is on cathode-
ray tubes and will be referred to as the “electrostatic
memory.” When the amount of storage available in
the electrostatic memory is not large enough, mag-
netic drums are used to store and supply large blocks
of information for ready access at frequent intervals.
The “drum memory” is also capable of retaining its
contents while the power is turned off, so that inter-
mediate results remain available overnight when the
machine is shut down. Any part of the information
on the drums may be selectively altered by the ma-
chine at any time.

If a larger secondary memory is needed, or if in-
formation is to be filed away for future reference,
magnetic tapes may be used instead of magnetic

drums. Magnetic tape is a storage and input-output
medium that provides compactness, allows rapid read-
ing and writing and can be re-used many times.

To achieve a greater computing efficiency, the ma-
chine works internally in the binary-number system.
The input and output, however, may be accomplished
on standard IBM cards in the familiar decimal-
number system by programming that does not inter-
fere with maximum reading, punching, and printing
speeds.

Results of a computation are printed on a modified
Type 407 accounting machine operating at a speed of
over 10,000 characters per minute. Control of the
automatic tape-controlled carriage may be accom-
plished either manually, by control panel wiring, or
by the stored program itself. Output can also take the
form of cards punched in either binary or decimal;
this again depends on the programming.

12 TYPE 701 AND ASSOCIATED EQUIPMENT

The programs may be written and introduced into
the computer in various ways. Usually the instruc-
tions are key-punched on cards in their original form
and read into the machine. If the program is to be
preserved for future use, it can then be recorded on
tape and filed away in a compact form. To prepare
the machine for calculation the appropriate magnetic
tapes are inserted in the tape units, cards are placed
in the punch hopper, if necessary, and the cards con-
taining the instructions and data of the problem are
placed in the hopper of the card reader. By pushing
one button the machine may be made to store the
program and data of the problem and start calculat-
ing. From then on, operation of the computer is fully
automatic, with all of the components being under
the complete control of the program, although it is
possible for the operator to interrupt the calculation
manually at any time.

The primary unit of information is defined as a
full word which consists of 35 bits (binary digits)
and a sign, or 36 bits in all. However, any of these
full words can be split into two “half words,” each
having 17 bits and a sign, or 18 bits in all. Since 373
bits are about equivalent in information content to
one decimal digit, the full word has a precision of
about ten decimal digits, and the half-word corre-
sponds to about five decimal digits.

Full Word
- 1962
SV 2 1718 e e 35
Left Half-Word Right Half-Word
1 1962 1963
ST 2 178 1 17
Ficure 1

Figure 1 shows schematically a full word and the
two half-words contained in the full word. The posi-
tion of each of the 35 binary bits within the full word
is numbered 1 through 35 from left to right. The sign
bit of the number is represented on the extreme left
and is labeled S. If this full word is divided between
the 17th and 18th positions, the positions in the left
half-word are designated exactly as in the full word.
However, the 18th position of the full word now be-
comes the sign position of the right half-word, while
the remaining positions are numbered 1 through 17.
A word is considered negative if the binary digit 1
occupies the sign position; it is considered positive if
the sign position contains the digit O.

STORAGE

INFORMATION may be stored in electrostatic storage,
on magnetic drums, on magnetic tape, and on
punched cards.

The purpose of this section is simply to point out,
in general terms, the types and extent of storage
available on the 701. Punched cards are a well-known
form of permanent storage and will receive extensive
discussion in the input-output section of this manual.
Details of the instructions necessary for manipulation
of information contained on drums and tapes will
also be found in the same section.

ELECTROSTATIC

THE HEART of the machine is the electrostatic storage
unit, through which all information to and from all
other components of the machine must pass. Electro-
static storage consists of a bank of cathode-ray tubes.
Information is stored on the screen of each tube
through the presence or absence of charged spots at
certain locations on the screen. In this way, a certain

13

number of binary digits (or “bits’) may be stored on
each tube. One electrostatic storage unit can accom-
modate 1634 full words or 2648-half words. How-
ever, two such units may be used to provide a maxi-
mum storage of 2848 full words or 4096 -half words.
It is assumed in what follows that maximum electro-
static storage has been provided for this installation.

Principal advantages of electrostatic storage over
other types is the very small time necessary to extract
information from any given location and send it to
the computing unit and the fact that the programmer
has random access to any electrostatic storage loca-
tion. Information is lost when the power is turned off.

MAGNETIC DRUMS

ADDITIONAL storage capacity is provided by four
magnetic drums. These drums are rotating cylinders
surfaced with a material that can be magnetized
locally. Binary digits are stored on a drum through
the presence or absence of small magnetized areas at

14 TYPE 701 AND

certain locations on the surface of the drum. Each
drum has a storage capacity of 2048 full words.
Information is transmitted to and from drum storage
only through electrostatic storage. When such a
transfer of information occurs, the machine is said to
write on or read from the drum. Any part of the
information on a drum can be selectively altered by
the machine at any time. Because access to individual
words on a drum is slow in relation to electrostatic
storage access, it is more efficient to use the drums
for storing large blocks of information. After the
first word of such a block has been located, the re-
maining words are read at the rate of 800 per second.
Magnetic drums will retain stored information after
the power 1s off.

MAGNETIC TAPES

THERE is also a tape-storage section which includes
four magnetic tape units. Each tape, which may be

ASSOCIATED

EQUIPMENT

up to 1400 feet long, is wound on a reel. The tape
itself is a non-metallic, oxide coated band one-half
inch wide. Binary information is recorded on tape by
means of magnetized spots. A block of words re-
corded consecutively on a tape is called a record or
unit record. The amount of information contained on
each tape depends on the lengths of the individual
records, since there is a certain amount of space be-
tween each record to allow for starting and stopping
the tape. It is possible to store upwards of 200,000
words on each tape. The machine can read or write
information on a tape only through the medium of
electrostatic storage. It takes, on the average, about
10 milliseconds for the tape to accelerate to its read-
ing or writing speed after which the reading or writ-
ing of a unit record takes places at the rate of 1250
words per second. Since the tapes are removable, a
library of standard programming and mathematical
tables may be kept on tapes.

ADDRESS SYSTEM

MEMORY LOCATIONS

FuLL AND HALF-WORD locations in electrostatic stor-
age, together with the tapes, drums, printer, card
reader, and punch, are identified by a system of
numerical addresses. By means of a number, then, we
may tell the machine to refer to any information con-
tained in electrostatic storage or to any component of
the machine, provided only that we use the system
to be described.

Electrostatic

The 2048 different locations for full words in elec-
trostatic storage are identified by the negative even
integers from —0000 to —4094. The 4096 possible
locations for half-words in electrostatic storage are
distinguished by the positive integers from +0000 to
+4095. The relation between full and half-word
addresses is as follows: if —2# refers to a full-word
location, then +2# identifies the left half-word, and
+(2n+1) the right half-word, into which the full-
word location may be split.

15

For example, if the full-word address is —1962,
then the left half-word address is 1962 and refers
to the sign position and positions 1 to 17 of the full
word. The right half-word address is +1963 and
refers to positions 18 to 35 of the full-word location,
position 18 being the sign position of the right half
word (Figure 1). If a full word is to be obtained
from or supplied to electrostatic storage and, through
error, a negative odd address is given (e.g., —1963),
the result will be the same as if the next lower
(in absolute value) negative even address (—1962)
were given.

Magnetic Drums

As mentioned before, there are four magnetic
drums on which information can be stored. Each
drum is capable of storing 2048 full words of infor-
mation. Each full word on a drum is identified by a
system of addresses analogous to the system used for
electrostatic memory, except that there is no provision
for recognizing half-words. Thus, information must

16 TYPE 701

be used or stored on a drum in units of full words. An
address of —1962 may then refer to the full word
stored in location 1962 in electrostatic storage or
any one of the four drums. This address usually
refers to a location in electrostatic storage. An ad-
dress will refer to a drum location only under specific
conditions. These conditions are described under
Input-Output Components.

Magnetic Tapes

Information is recorded on magnetic tapes in
blocks of full words. The size of this block of words
is optional with the programmer and is limited only
by the length of the tape itself. A series of these blocks
is said to compose a file of information. By pro-
gramming we can locate any particular full word in
any unit record on any one of the four tapes. Usually,
however, we are interested in obtaining a complete
record, or even an entire file, at one time.

There is no way by which an address can be made
to refer automatically to a particular location on tape,
as was possible both in electrostatic storage and on
the drums. This is because we normally use magnetic
tapes to store a complete block of information at one
time. If we want to refer to a particular word among
a block of words, it is usually best to use the drum
storage where this can easily be done. The exact
method by which words are transferred to and from
tape is discussed later under Input-Output Compo-
nEnts.

AND ASSOCIATED

EQUIPMENT
COMPONENT IDENTIFICATION

THERE ARE four tape units, four drums, one card
reader, one printer, and one card punch—all of which
must be given identifying numbers. These identifying
numbers are placed in the address part of an instruc-
tion whenever the programmer wants the machine
to operate one of these units. Table I gives the system
of addresses. Note in Table I that identifications co-
incide with those of certain electrostatic storage loca-
tions. Whether the address part of an instruction
refers to electrostatic storage or to one of the compo-
nents depends on the operation part. Some operations
will make no sense if the address is interpreted as an
electrostatic location ; other operations make no sense
if the address is interpreted as a component identifi-
cation. Thus, an address is automatically interpreted
by the machine in the light of what it is asked to do by
the operation part of the instruction (see O perations).

TABLE I

1 2 3 4
Tape Units 0256 | 0257 | 0258 | 0259
Drums 0128 | 0129 | 0130 | 0131
Printer 0512
Card Reader 2048
Card Punch 1024

COMPUTING

CaLcuLaTioN is done by directing information to
the computing section, causing operations to be per-
formed on this information, and by storing the results
of these operations in the memory. To understand
these processes, we must first realize that the com-
puting section is composed of three internal registers
called (1) memory register, (2) accumulator regis-
ter, and (3) multiplier-quotient register. Each of
these registers is capable of holding a full word. Their

exact capacities:

Memory register : 35 bits and sign

Accumulator register : 37 bits and sign

MQ register: 35 bits and sign
(The two extra positions of the accumulator register,
called the overflow positions of this register, will be
explained later; these positions are designated as
P and Q.) Figute 2 shows a schematic representation
of these registers.

S Memory Register
1 2 35
S Accumulator Register S Multiplier-Quotient Register
Q P 1 _ _ e 35 1 2 83— ——— - 35
Ficure 2

17

18 TYPE 701 AND

Electrostatic Storage

[Memory Register I

/\

Accumulator Register I MQ Register

FIGure 3

The flow of information from the electrostatic
memory to these registers is shown in Figure 3. Note
that all information must pass through the memory
register before entering either of the other two regis-
ters. In this flow of information, three cases are to be
explained (Figure 4) :

1. If an instruction calls for a full word from elec-
trostatic storage, the word first appears unchanged in
the memory register before it goes to either of the
other registers.

2. If an instruction calls for the left half-word of
a full word, positions 1 through 17 of the full word
and the associated sign are transmitted as shown.
Note particularly that the least significant 18 bits of
the memory register are set to zeros.

ASSOCIATED

EQUIPMENT

3. If an instruction calls for the right half-word of
a full word, positions 19 through 35 of the full word
are transmitted to the left half of the memory register.
If there is a binary digit of 1 or O in the 18th position
of the electrostatic location, the right half-word is.
recognized in the memory register as negative or
positive, respectively. The 18 rightmost positions of
the memory register are set to zero.

Once the word is in the memory register, it is a
simple step for the word to be transmitted, bit for bit,
to either the accumulator register or multiplier-quo-
tient register. The programmer does not have to
concern himself with the fact that the memory regis-
ter is an intermediate step in the flow of words from
electrostatic memory to the accumulator register or
MQ (multiplier-quotient) register. It is of interest
here, because at any time during machine calculation
the operator can display the contents of all three
registers on the operator’s panel (see Control). For
example, one instruction tells the machine to transmit
a word from a given electrostatic location to the mQ
register. Note that this is done with no explicit refer-
ence to the memory register.

There are also instructions that cause information
to be transmitted from the accumulator register or

} 35 Bits :

ull word location in
lectrostatic storage

Memory Register |

17 Bits

Electrostatic Storage Location

Zeros

Aemoary Register

Ficure 4

| 17 Bits {

Electrostatic Storage Location

Zeros

Mecary Register

COMPUTING 19

MQ register to an electrostatic location. In these cases,
the memory register plays no part whatsoever.

When storing a result in a half-word location, only
the sign and the first 17 bits of the accumulator regis-
ter are stored. The remaining 18 bits on the right of
the accumulator and the two overflow bits on the left
are ignored. The same is true when storing the con-
tents of the Mm@ register in a half-word location of
electrostatic memory.

Before beginning a discussion of the arithmetic
operations, it should be stated that all numbers in the
701 are expressed in the form of a magnitude and a
sign. The results of any operation performed in the
computing unit are always returned to this form.
Results are never expressed as complements.

In the following paragraphs a description of pos-
sible operations will be stated in general terms. The
actual methods and instructions necessary for per-
forming these operations are explained later.

ACCUMULATION

A SCHEMATIC representation of the accumulator reg-
ister was given in Figure 2. Note that there are the
usual 35 positions to accommodate a full word, plus
two overflow positions, P and Q. Note also that the
sign is not located to the left of the bits as is done for
both full and half-words in the electrostatic memory.
The sign of a register is indicated separately and is
schematically represented in Figure 2 by the block
labeled S.

The accumulator register, together with the basic
circuits for adding and subtracting, form what will
be called the ‘“accumulator.”” The accumulator is
capable of adding a number (coming from memory
via the memory register) to its contents, of subtract-
ing an incoming number from its contents, of shifting
its contents right or left, and of resetting itself to
zero before entering a new word. The contents of the
accumulator can also be stored in memory.

Accumulation is performed as follows:

Suppose, for example, we wish to calculate

A+B=C
where 4 and B may have either sign. A is first placed
in the accumulator. Then B is called in from memory
and is added to the contents of the accumulator. The
sum, (, remains in the accumulator replacing A.
Finally, C can be stored in memory or used for an-
other operation in the accumulator.

A similar situation arises in subtraction, where the
number to be subtracted is the one that comes from
memory.

It is also possible to add to or subtract from the
contents of the accumulator the absolute value of a
number stored in memory, the sign of this number
being ignored.

ROUNDING

WHEN the machine is instructed to round, the process
is as follows:

If a 1 is in the first position of the MQ register, the
contents of the accumulator are increased by a 1
in the 35th position. If a zero is in the first posi-
tion of the MQ register, the contents of the ac-
cumulator are unchanged. In either case the con-
tents of the MQ register are unchanged.

Thus it will be seen how the rounding process, in
conjunction with a shifting process to be described
later, enables the programmer to round and truncate
a number to any desired number of bits.

MULTIPLICATION

MULTIPLICATION in the 701 provides for the multipli-
cation of two 35 bit factors to produce a maximum
size product of 70 bits in one operation.

To multiply A X B, we first must place the multi-
plier, A, in the MQ register. Then we simply call-out B
from memory and, at the same time, tell the machine
to multiply. After the multiplication is complete, the
most significant bits of the product are found in the
accumulator, while the least significant bits are placed
in the Mg. It should be noted that before any multi-
plication begins, the accumulator is automatically
reset to zero. Also, the number in the M@ register is
destroyed during the multiplication process. Both of
these features are necessitated by the way in which
the machine multiplies internally. Thus, it is seen
that cumulative multiplication cannot take place in
the accumulator, but the summation is very easily
programmed.

Placing of the binary point in the factors is com-
pletely arbitrary. A simple familiar rule to remember
with regard to placing the binary point in the result-
ing product follows:

20 TYPE 701 AND

Rure: Add the number of binary bits to the
right of the binary point in each factor. This
sum is the number of bits appearing to the
right of the binary point in the product as
defined above.

We can also tell the machine to multiply and round
in one operation. In this case, an ordinary multipli-
cation is followed by the rounding process. The result
is a rounded product of 35 bits at most in the ac-
cumulator.

DIVISION

Just as multiplication may result in a 70 bit prod-
uct, so division may start with a 70 bit dividend. The
more significant half of the dividend is placed in the
accumulator, and the less significant half is put into
the Mq register. The divisor is called in from mem-
ory, and the machine is instructed to divide.

The quotient is developed in the M register, dis-
placing the part of the dividend which was in that
register. After the division, the accumulator contains
the remainder. This remainder has the same sign as
the dividend. Preservation of this remainder makes
double precision division particularly convenient.

If only a full-sized 35-bit dividend is available, we
may want to reset the MQ register to zero before
division, because the contents of this register are con-
sidered to be part of the dividend. The magnitude of
the number in the Mq register, in relation to the
accumulator, however, is less than one in the 35th
position of the accumulator. If this error is not toler-
able, we must remember to reset the MQ register to
zero before division.

These properties of the MQ register may be used
conveniently to obtain a rounded quotient. With a
35-bit dividend the procedure is:

1. Place the divisor in the accumulator.
Shift it 36 places to the right into the M@ regis-
ter, so that one-half the value of the divisor
appears in the MQ register.

3. Place the dividend in the accumulator.

4. Divide.

The resultant quotient in the M@ register is then
* properly rounded to 35 bits. If a 70-bit dividend is to
be used, the absolute value of the less-significant half
must first be increased by one-half the absolute value
of the divisor before shifting into the MQ register.

ASSOCIATED

EQUIPMENT

The effect of this procedure is the same as if a
36-bit quotient had first been developed, a 1 had been
added to the 36th bit, and this bit had bheen dropped
after any carries had been propagated.

As in multiplication, something must be said with
regard to where the binary point is assumed to be in
division. What will be called the “standard” case will
be stated first followed by two rules necessary to de-
termine the location of the binary point in any other
case. The machine will perform division only if the
divisor is larger than the dividend as defined below.

“StanpARD” Case. Assume that the binary point
of the dividend is located between the 35th posi-
tion of the accumulator and the first position of
the MQ register. Also assume that the divisor
being called in from memory has its binary
point located to the right of the 35th position.
[Cavrion: If, with the binary points assumed
to be in these positions, the dividend is larger
than or equal to the divisor (in absolute value),
the machine will stop, and a division check light
will turn on to warn the operator.] With these
assumptions, the 35-bit quotient developed in the
MQ register will have its point located to the
left of the first position. The remainder, if any,
which is developed in the accumulator, has its
binary point located between positions P and 1.

The following rules are based on changes of the
binary points from the standard case.

Rure 1: A change in the binary point of the
dividend results in a change equal in magni-
tude and in the same direction in the points
of both the quotient and remainder.

RuLE 2: A change in the point of the divisor
results in a corresponding change in the oppo-
site direction of the point of the quotient. The
point of the remainder is unchanged.

SHIFTING

SHIFTING is a process by which the binary bits of a
word may be moved to the right or left with respect
to the positions of a register in the computing section.
There have been references to these paragraphs in
previous sections as a means of programming caleu-
lations so that the binary point may be arbitrarily
located at the discretion of the programmer,

COMPUTING 21

S Accumulator Register

S MQ Register

Ficure 5

Two kinds of shifts are possible :

AccumuraTtor SHIFT. The 37 bits that may be
standing in the accumulator register can be
shifted one or more places, either to the right or
left. Digits shifted beyond the capacity of the
register are lost. Vacated positions are filled with
Zeros.

Lowc Sa1rr. Both the multiplier-quotient register
and the accumulator take part in the long shift.
They behave as if the MQ register were con-
nected to the right of the accumulator as shown
schematically in Figure 5. For instance, a long
right shift by 69 places causes the bit in position
1 of the accumulator to be shifted all the way
over to position 35 in the M@ register, the inter-
vening bits having dropped off the end. The
process is similar for a long left shift. On a long
right shift the sign of the Mq register is changed
to the sign of the accumulator register. On a
long left shift, the sign of the accumulator regis-
ter is changed to the sign of the Mq register.
A useful device is to specify a long shift of zero
places which produces no actual shift but merely
changes the sign of the Mg register or the ac-
cumulator as described above.

Tf the shift is far enough, with either the accumula-
tor shift or the long shift, nothing will be left but
zeros. Thus, shifting may be used to reset the ac-
cumulator or MQ register to zero. For convenience
in certain programs, such as floating-point calcula-
tions, we can specify a shift of as many as 255 places
in a single operation, although only zeros are pro-
duced by long shifts in excess of 71 places. However,
no provisions have been made for permitting shifts
by more than 255 places. An attempted shift of more
than 255 places gives the results described under
Operations.

It should be noted that the overflow positions of
the accumulator participate in both kinds of shift. The
signs of the registers, however, do not participate in
the shift except as specifically noted above.

SIGN OF ZERO

It 1s possiBLE for a zero in this calculator to have
either a plus or a minus sign. For instance, a negative
number in the accumulator may be shifted so far to
the right or left that all numerical bits are zeros. This
still leaves the minus sign, so that technically the
result is “—0". Arithmetic operations may also result
in zeros of either sign. The arithmetic circuits are
designed so that if the result of an addition or sub-
traction is zero, the sign of the result will be that of
the number which was in the accumulator immedi-
ately before the addition or subtraction took place.
In numerical work no distinction need be made be-
tween a -+0 and a —0 result, because either zero can -
be used in further arithmetic operations.

This characteristic of the machine is sometimes
very convenient; there are ways the machine can be
made to recognize either type of zero. It is also pos-
sible for the machine to ignore the sign entirely and
test to see only if the result is zero. Such controls are
discussed in a following section.

OVERFLOW INDICATION

THIs SECTION covers the accumulator overflow posi-
tions, P and Q.

During such operations as adding, subtracting, and
shifting left, it is possible for non-zero binary bits to
enter into or be shifted completely through the over-
flow positions of the accumulator. This can happen
by means of a left shift or as the result of a carry in
addition or subtraction. Whenever a non-zero binary
bit enters position P from position 1, an overflow
indicator within the machine is turned on. Associated
with the activation of this indicator is an overflow
light on the operator’s panel. This overflow indication
occurs even in a shift that sends a binary bit com-
pletely through the overflow positions. Overflow may
indicate an error in setting up the program for
a given set of data. Frequently, however, operations
are planned deliberately to produce overflow. Hence,

22 TYPE 701 AND

the machine will continue to operate after an over-
flow, but an instruction is available to test the con-
dition of the overflow indicator and to program the
desired action after an overflow. This may include
stopping the machine on overflow, performing a spe-
cial set of operations, or simply ignoring overflow.
Testing the overflow indicator turns it off.

Examples of the operation of the overflow indi-
cator follow. In these examples we assume the binary
point to be to the left of position 1. For convenience
and abbreviation only the first three bits to the right
of the binary point are shown.

In the addition

OVERFLOW POSITIONS

+.100 400.110 = +01.010
V/ ;_V.__.—/ \—V___/
WORD FROM MEMORY ACCUMULATOR ACCUMULATOR

there is a carry that produces an overflow and causes
the overflow light to go on. If now the indicator is
turned off (by use of the test instruction) and a sec-
ond addition

+.100 + 01.010 = +01.110

is performed, the overflow indicator does not come

ASSOCIATED

EQUIPMENT

on again, because there was no carry past the binary
point this time. A further addition

+.100 4- 01.110 = 410.010

again gives an overflow indication, because a carry
was propagated through the binary point.

If shifts or carries go beyond Q, the excess bits are
dropped. Thus 4-00.010 shifted left by two places in
the accumulator gives +01.000 with an overflow.
But if +00.010 is shifted left by four places, the result
is +00.000, again with an overflow indication. In the
first case, the process may be reversed by shifting
right, but in the second case, bit 1 has been lost, and
any shifting to the right still gives a zero result.

The extra two bits in the accumulator enable the
programmer to make full use of the 35 numerical bits
in memory for such operations as double-precision
arithmetic. When a possible overflow must be allowed
for in a program, the extra bits make it considerably
easier to shift and return the result to a standard
form.

The overflow bits do not enter into multiplication,
because the product of two 35-bit numbers cannot
exceed 70 bits. Neither can they be part of a dividend,
because the dividend cannot be greater than the
divisor as defined earlier in the “standard” case.

CONTROL

STORED PROGRAM

CoMPLETELY AuTOMATIC and flexible control of the
calculator requires use of a stored program. The pro-
cedure generally used by 701 programmers with the
stored program system 1s as follows:

1. The mathematician analyzes his problem and
breaks its solution down into basic steps of which the
701 is capable.

2. By means of a number code, determined by the
design of the computer, he translates these steps into
a numerical form which can be interpreted by the
machine. Fach of these steps is then stored in the
electrostatic memory. Each step, which later will be
seen to consist of an operation part and an address
part, will hereafter be referred to as an instruction to
the machine.

3. Data necessary for solution of the problem are
stored in the memory of the machine.

4. By means of a control, the programmer tells
the machine in which memory location he has stored
the first instruction to be executed. After receiving

23

this information, the 701 is able to find all succeeding
instructions and execute them automatically.

A complete analysis of the instruction system of
the 701 follows.

Instruction Sequencer

The numerical representation of an instruction to
the machine occupies the space of a half-word in the
clectrostatic memory. Instructions may temporarily
be stored on drum, tape, or cards, but at the time they
are to be used, they must be in electrostatic storage.

A program contains a set of instructions, usually
1o be executed in sequence, to produce a particular
result. The instructions are ordinarily introduced into
consecutively-numbered half-word locations of mem-
ory in the order in which they were written. The
reasons for this follow,

Each time an operation is to be performed, the
machine looks up the instruction in the electrostatic
memory, executes it, and then goes back to the mem-
ory for the next instruction. The order in which in-
structions are executed is controlled by a unit known ~
as the instruction sequencer. This unit contains a

24 TYPE 701 AND ASSOCIATED

counter known as the instruction counter, which con-
tains the address of the instruction currently being
executed. After each execution, the number in this
counter is automatically increased by 1. Consequently,
the machine will automatically take its next instruc-
tion from a location whose half-word address is one
higher than the address from which the current in-
struction was obtained. In this way the machine con-
tinues to execute instructions in the sequence in which
they were stored in memory.

This normal sequence of instructions can be altered
by means of certain “transfer’” operations to be ex-
plained below. By means of these operations, any
half-word location in electrostatic storage can be
designated as'the source of the next instruction. The
address of this location is placed in the instruction
counter by the transfer instruction; thereafter, execu-
tion of the program again proceeds sequentially.

An important observation with regard to this
stored-program technique should be noted. Instruc-
tions are stored in the machine just like numerical
data; the only distinction between the two is the way
in which they are interpreted by the machine. If for
any reason the address of a half-word of data is
entered into the program counter, the data will be
interpreted as an instruction. Conversely, an instruc-
tion may be caused to enter the computing unit just
as data are caused to enter the computing unit. Thus,
one instruction may call for the modification of an-
other instruction by directing the machine to compute
a new address part or to substitute another operation
part. One program may operate on itself and com-
pute one of its own instructions. A program may
choose between several alternatives, depending on
results obtained in the course of the problem. The
ability of the machine to modify and to relocate in-
structions at high speed lends great flexibility to its
operation and enlarges the scope of its application.

Instruction Layout

Each operation the machine can execute——includ-
ing arithmetic operations, shifting, rounding, read-
ing, writing, and others—is assigned a numerical
code. An operation in conjunction with the address
of an appropriate operand constitutes an instruction
and is written and stored as a single binary number.
The two components of an instruction are referred
to as the operation part and the address part. A sche-
matic diagram of an instruction is shown in Figure 6.

EQUIPMENT

S Op;;arﬁon Address Part
+ 1 2 3 45 60 o . 17

Freure 6

Note that the 17 bits of information and associated
sign require exactly a half-word of storage space.

The operation part of an instruction determines
the nature of the operation the machine is to execute.
The numerical code for the operation is located in
positions 1 through 5 of the instruction itself. The
701 is capable of performing exactly 32 distinct oper-
ations divided into four categories: (1) arithmetic
operations, (2) logical operations, (3) input-output
operations, (4) sense operations. These operations
will be explained in detail later.

The address part of an instruction specifies a num-
ber that usually refers to a location in electrostatic
storage. In such cases, the address will be a positive
or negative integer as defined previously under
Address System. The sign of the integer in positions
6 through 17 of the instruction is determined by the
sign of the instruction itself. Thus, the sign of an
instruction applies only to the address part. For some
instructions, however, the address part designates a
certain input-output unit; with shift instructions it
indicates the number of places to be shifted. But the
name ‘‘address part” for the 12 rightmost bits of an
instruction is retained, although these bits do not
always represent an address in the true sense of the
word. Tt will be seen later that the sign of some in-
structions is immaterial.

The machine interprets the numbers in the opera-
tion part and the address part as integers. In other
words, the binary point of the binary digits occupy-
ing positions 1 through 5 is considered to be imme-
diately to the right of position 5. Similarly, the binary
point of the digits occupying the address part is con-
sidered to be immediately to the right of position 17.

For example, an instruction which designates 05
as the operation and —0013 as the address, will ac-
tually look in binary form as follows:

OPERATION PART ADDRESS PART

—00101000000001101

CONTROL 25

OPERATOR’'S PANEL

THE various buttons, keys, switches, and signal
lights by means of which the operator can control and
communicate with the machine are assembled to form
the operator’s panel. The only control panels on the
machine which require wiring are those for the card
reader, printer, and card punch. These panels are dis-
cussed later in a separate section.

Description of the Panel

Components of the operator’s panel are listed below
with a brief explanation of their functions. Some of
these functions will not be completely understood
without reading later sections.

Power-On Button. Turns on the power for the
entire calculator and automatlcally performs the re-
setting functions of the reset ‘and clear- -memory
button.

Power-Off Button. Turns off the power for the
entire calculator iminediately, but leaves the blowers
on for 10 minutes.

DC-Off Button. Turns off the direct-current power
for servicing the machine.

DC-On Button. Turns the direct-current power on
after it has been turned off with the DC-off button.

Power-On Light. Indicates that the main AC
power is on.

Ready Light. Indicates that the AC and DC power
is on and that the calculator is stopped but is ready
to run. When the power is turned on, there is a delay
before the ready light comes on.

Operating Light. Indicates that the calculator is
running. When the calculator is started, the operat-
ing light goes on and the ready light goes off. When
the calculator stops, the operating light goes off and
the ready light goes on, if the power is still on.

Automatic-Manual Switch. When this switch is
set to automatic, the calculator may be operated at
full speed. When it is set to manual, the calculator
may be operated manually by means of the half-step
and multiple-step keys and the enter mQ, enter in-
struction, and memory display buttons; the load
button is inoperative, and the start button cannot
start the calculator. The calculator cannot be ad-

vanced manually while the stored program is using
any input—output device.

£
Ml.lghf Goes on when the automatic-man-
ual switch is set to manual.

Start Button. If the automatic-manual switch is
set to automatic, the start button resets the various
machine interlocks and then starts the calculator. The
program begins with the instruction whose address
is contained in the instruction counter.

Reset Button. Resets the accumulator, M@ and

memory registers, the instruction counter as well as

certain internal input-output and check interlocks
which are not discussed in this manual. It does nat
affect electrostatic storage.

Reset and Clear-Memory Button. Changes every
bit in electrostatic storage to a 1 and, in addition,
performs certain resetting functions not discussed in
this manual.

Register Lights. Groups of small neon lights that
indicate the contents of the following registers:
Memory register
Accumulator register
MOQ register
Instruction counter
Instruction register
(a) Sign register
(b) Operation-part register
(c¢) Address-part register
A light being on indicates a binary digit of 1 located
in that position of the register. A light being off indi-
cates a zero.

MQ-Entry Keys. These 18 keys are used to set up
a half-word for manual entry into the MQ register.
Depressing a key represents a binary 1.

Enter-MQ Button. If the automatic-manual switch
is set to MANUAL, the enter-MQ button enters the half-
word set up on the 18 Mg-entry keys in the left 18
positions of the MqQ register. The rightmost 18 posi-
tions of the MQ register are reset to zero.

Instruction-Entry Keys. There are 18 instruction
entry keys, consisting of a sign-entry key, five opera-
tion-part entry keys, and twelve address-part entry
keys. They are used to set up instructions for manual
entry of an instruction into the control section of the
calculator.

26 TYPE 701 AND

Enter-Instruction Button. If the automatic-manual
switch is set to manual, the enter instruction button
enters the instruction set up on the instruction entry
keys into the instruction register and causes this in-
struction to be executed. The calculator then stops.
Instructions, pertaining to input-output devices which
must follow each other at high speed, cannot be
executed manually with the enter instruction button.
If the stored program calls on an input-output device
which must receive its instructions in rapid succes-
sion, the calculator will automatically go into high-
speed operation until this section of the program is
completed.

Memory-Display Button. If the automatic-manual
switch is set to manual, the memory-display button
causes the full word stored at the address set up on
the address part of the instruction-entry keys to be
displayed on the memory-register lights. Only full
words are displayed in this way.

Half-Step Key. If the automatic-manual switch is
set to manual, the half-step key advances the program
one half-step at a time, provided the machine inter-
locks do not prevent the advance of the program.
Half-steps are of two kinds: interpretation half-step,
during which an instruction is interpreted, and execu-
tion half-step, during which the instruction is exe-
cuted. Repeatedly pressing the half-step key causes
the calculator to alternate between interpreting and
executing an instruction. If a READ or WRITE instruc-
tion is executed, the calculator will go into automatic
operation until the stored program is through using
the particular input-output unit selected by the READ
or WRITE instruction.

Multiple-Step Key. Holding down the multiple-
step key is equivalent to pressing the half-step key
repeatedly about ten times a second. Releasing the
multiple-step key stops this action.

Machine Cycle Button. Advances the program one
machine cycle at a time. It is intended only for servic-
ing the machine and is not used by the operator. The
half-step or multiple-step keys should be used to ad-
vance a program manually.

Load Selector Switch. Selects either the card
reader, or the first tape unit (address 0256), or the
first drum unit (address 0128), from which a unit
record is to be read by means of the load button.

ASSOCIATED

EQUIPMENT

Load Button. If the automatic-manual switch is set
to automatic, the load button initiates the reading of
a unit record from the input unit selected by the load
selector switch. It causes the first full word of the unit
record to be read and to be stored at the address set
up on the address-part entry keys. The calculator then
starts automatically, using as the first instruction the
left half-word at the same address. Pressing the load
button is in effect the same as giving the following
instructions :

READ (Address of input-output unit

specified by load selector)
SET DR 0000 (Relevant for drum only)
COPY (Address set up on address-part
entry keys)
TR (Address set up on address-part
entry keys)

Thus it is seen that the calculator will go into auto-
matic operation starting with the instruction located
at the address set up on the instruction entry keys.

Sense-Input Switches. There are 6 two-position
sense-input switches, identified by addresses 0069 to
0074. They can be sensed by means of a SENSE in-
struction with the corresponding address part and
used to cause the calculator to skip an instruction.

A Dok ST 00 N

Sense-Output Lights. These four lights may be
turned on individually by means of SENSE instruc-
tions, as explained above. Another SENSE instruction
turns all four off together. The lights are used by the
programmer to indicate the progress of a problem
and to signal various conditions.

Instruction-Time Light. For half-step operation
this light indicates that the calculator is ready to per-
form the next interpretation half-step.

Execution-Time Light. For half-step operation this
light indicates that the calculator is ready to perform
the next execution half-step.

Overflow Light. Turns on when the overflow indi-
cator turns on. It is turned off by execution of a
TR OV instruction or by the reset and clear-memory
button.

Input-Output Light. Indicates that one of the
input-output units is selected by the calculator.

CONTROL 27

Program-Stop Light. Indicates that the calculator
has stopped as a result of executing a sToP instruc-
tion. It is reset by the start button, or the reset button,
or the reset and clear-memory button.

Copy-Check Light. Indicates that the calculator
has stopped because a copy instruction was given at
the wrong time. It is reset by the start button, or the
reset button, or the reset and clear-memory button.

Tape-Check Light. Indicates that the calculator
has stopped because of a discrepancy in the tape group
count or the redundancy check while a tape was being
read. It is reset by the start button, or the reset
button, or the reset and clear-memory button.

Divide-Check Light. Indicates that the calculator
has stopped because the dividend is not less than the
divisor. It is reset by the start button or the reset
button, or the reset and clear-memory button.

Calculator-Fuse Light. Indicates that a fuse for the
main calculator unit, or electrostatic storage, or a
tape or drum unit has burned out. After replacement
of the fuse, the light is reset by the start button or the
reset button, or the reset and clear-memory button.

Input-Output Fuse Light. Indicates that a fuse has
burned out in the card reader, punch, or printer. After
replacement of the fuse, the light is reset by the start
button or the reset button, or the reset and clear-
memory button.

Basic Manipulations
ENTERING INFORMATION INTO STORAGE
Information may be entered manually into electro-
static storage from the operator’s panel one half-word
at a time. The procedure:

1. Set up the automatic-manual switch to manual.

o

Set up the half-word on the m@-entry keys.

3. Set up the instruction 4 STORE MQ XXXX on
the instruction entry keys, where XXXX repre-
sents the address (in binary form) at which the
half-word is to be stored.

4. Press the enter-mq button to enter the hali-
word into the MQ register.

5. Press the enter-instruction button to execute
the instruction (set up under 3), thus storing
the half-word in memory.

6. Press the memory-display button to check that
the half-word has been stored correctly.

A full word can be entered into electrostatic stor-
age from the operator’s panel only by splitting it into
two half-words and entering each separately.

STARTING MACHINE WITH A GIVEN INSTRUCTION

Assume the operator wants the machine to begin
calculating with an instruction located in address
XXXX of electrostatic memory.

1. Set automatic-manual switch to manual.

2. Set up the instruction TRANSFER XXXX on the
instruction entry keys.

3. Press the enter-instruction button.
4. Set automatic-manual switch to automatic.
5. Press the start button.

If there is a program stored in memory, the ma-
chine will start calculating with the instruction located
at XxXX and continue automatically.

OPERATIONS

AvrL opErATIONS of which the machine is capable will
be explained in this section. For the sake of reference
purposes and completeness, some operations will be
discussed that will not attain their full significance
until later sections are studied.

Operations are grouped under the general classifi-
cations of arithmetic operations, logical operations,
input-output operations, and sense operations. Asso-
ciated with each individual operation is a heading for
its explanatory paragraphs. An example of such a
heading:

Reset and Add

R ADD

10-1,2,3, 4
This heading has the following meaning: first is the
name of the operation; the term in the second line is
the abbreviation commonly used for the operation;
the numerical code for the operation then appears on
the third line followed by a dash and numbers of the
examples in Part II that illustrate the operation by
means of a simple program. If the word “none” ap-
pears after the numerical code, it means that the
operation is either explained fully in other sections or
needs no further explanation.

28

Moreover, each operation is assumed to refer to
the address part x of some instruction, where x in-
cludes the sign of the instruction. The contents of
electrostatic location & are never changed except as
specifically stated. A half-word comes from memory
into the memory register, and finally into the other
registers, as described under Computing.

A complete list of all 32 operations, together with
their numerical code, is given in Summary of Ma-
chine Characteristics.

ARITHMETIC OPERATIONS

OpPERATIONS are grouped in this classification if they
take place in the computing section. They include the
ordinary arithmetic functions, shift instructions and
store instructions.

Reset and Add Contents of the accumulator register

R ADD are replaced by contents of electrostatic
10-1, 2,3, 4 location x.

Add The number in electrostatic location x is
ADD added to the number in the accumulator

09-1,2, 4,10 register.

OPERATIONS , 29

Add Absolute Value The absolute value of the number
ADD AB in electrostatic location & is added
1-3 to the contents of the accumulator.

Reset and Subtract Contents of the accumulator regis-

R SUB ter are replaced by the negative of

06-2, 12 the contents of electrostatic loca-
tion .

Subtract The number in electrostatic location x is

sus subtracted from the number in the accu-

05-2,11, 12 mulator register.

Subtract Absolute Value The absolute value of the
SUB AB number in electrostatic loca-
07-3 tion & is subtracted from the

‘number in the accumulator.

Store The contents of electrostatic location x are
STORE replaced by the contents of the accumulator
12-1. 2,3 register, exclusive of the two overflow posi-
tions. When a full-word location is specified by the
address r, the sign and the 35 bits to the right of the
overflow positions of the accumulator are stored in
the memory location. When a half-word address is
specified, the sign and the bits in positions 1 through
17 of the accumulator are stored in the half-word
memory location. The contents of the accumulator
are not changed.

Store Number in MQ Register The contents of electro-
STORE MQ static location x are re-
14-7 placed by the contents of
the Mq register. When a full-word address is speci-
fied, the entire contents of the MQ register, including
sign, are stored in the memory location. When a half-
word address is given, the leftmost 17 bits in the Mo
register and the sign are stored in the half-word
memory location. Contents of the MQ register are
unchanged.

Load MQ Register
LOAD MQ
15-5, 6, 8, 11

Contents of the MQ register are
replaced by contents of electro-
static location .

Round The magnitude of the number in the accu-
ROUND mulator register is increased by a one in
19-3. 6.8 position 35 if the bit in position 1 of the Mm@
register is a one. Otherwise the contents of the accu-
mulator register are unchénged. In any case, the M@
register remains unchanged.

Multiply The accumulator register is first reset to
MPY zero. Then the number in electrostatie loca-
16-6 tion & is multiplied by the number in the MQ
register. The most significant 35 bits of the product
are produced in the accumulator ; the least significant
35 bits are produced in the M@ register. Both registers
have the sign of the product as determined by the two
factors. The multiplicand, from the specified memory
location, may be either a full-word or a half-word.
If a half-word is specified, the instruction operates as
though it were a full-word with 18 zeros on the right.
The Mm@ register is always considered to contain a
full-word, even though a half-word had been previ-
ously placed in it. Thus, if a half-word had been put
into the M@ register and MULTIPLY were given with
a half-word address, the product would have 34 sig-
nificant bits and would appear in bit positions 1-34 of
the accumulator. The remaining bit position 35 of the
accumulator and the entire MQ register would be filled
with zeros. When the product of a negative number
by a positive number is such that either the accumula-
tor part or MQ part result in all zeros, this zero will
have a negative sign associated with it. Otherwise, a
positive zero results.

Multiply and Round This instruction produces the
MPY ROUND same result as a MPY instruction
17-5 followed by a ROUND instruction.

Divide The possibie 70-bit dividend placed in the ac-
DIV cumulator and MQ registers is divided by the
18-7,8 pumber contained in electrostatic location .
The quotient with proper sign appears in the MgQ
register. The remainder, if any, is developed in the
accumulator and has the same sign as the dividend.
The machine treats that part of the dividend placed
in the MQ register as if it had the same sign as the
accumulator. Half-word divisors behave as full-words
with the rightmost 18 bits zero. If the divisor is not

‘greater than the dividend, as previously defined, the

machine stops, and the piv cHECK light is turned on
at the operator’s panel.

NotEe: In all of the shift instructions that follow,
the address x specifies the number of places to be
shifted. The machine will recognize any number from
0 to 255 inclusive for this shift. If x is greater than
255, the actual number of places shifted is the differ-
ence between the given number, and the nearest inte-
gral multiple of 256 which is less than or equal to the
given number. In other words, the number of places

30 TYPE 701 AND

shifted is &, modulo 256. For example, if ¥ = 258, the
extent of the shift will be two places. If » = 512, this
is equivalent to giving the shift instruction with
« = 0. Shifts up to 255 are permitted for convenience
in certain uses of the machine such as floating-point
programis.

Accumulator Right Shift The contents of the accumula-
A RIGHT
23-4, 11

tor register (not including the
sign) are shifted right by
places. Emptied positions are filled with zeros. Bits
‘shifted past position 35 are lost. Both overflow posi-
tions participate in the shift. (See note above.)

Accumulator Left Shift The contents of the accumula-
A LEFT tor register (not including the
22-1,4, 8 sign) are shifted left by »
places. Emptied positions are filled with zeros. If a
non-zero bit is shifted from position 1 into position P
at any time during the shifting operation, the over-
flow indicator is turned on. Bits shifted beyond the
leftmost overflow position are dropped. (See note

above.)

Long Right Shift The contents of the accumulator and
L RIGHT
21-3,7, 11

the Mg register are considered as one
number (not including signs) and
are shifted right by & places. Bits shifted out of the
accumulator appear at the left of the Mg register. For
example, a bit initially occupying position 35 of the
accumulator finally occupies position 1 of the MQ reg-
ister on a long right shift of one. The sign of the Mg
register is changed to agree with the sign of the accu-
mulator register. (See note above.)

Long Left Shift The contents of the accumulator and
L LEFT the MQ register (not including signs)
206,81 are shifted left by x places. Bits shifted
out of the MQ register appear at the right of the accu-
mulator register in the opposite manner as described
under Long Right Shift above. The sign of the accu-
mulator register is changed to agree with the sign of
the mq register. If a non-zero bit is shifted from posi-
tion 1 to position /” of the accumulator register at any
time during the shifting operation, the overflow indi-
cator is turned on. (See note above.)

ASSOCIATED

EQUIPMENT

LOGICAL OPERATIONS

ANY OPERATION which may be used to alter selec-
tively the course of a program is considered under
this category. The address x, as before, is assumed
to contain the sign of the instruction. The sign of an
instruction in this group is entirely immaterial unless
specifically mentioned.

Transfer This instruction causes the machine to take
TR its next instruction from electrostatic loca-
01-3, 9,11 tion x. The program then proceeds sequen-
tially from this new instruction.

Transfer on Plus If the sign of the contents in the ac-
R+ cumulator register is plus, a transfer
03-9, 12 takes place exactly as described under
Transfer above. If the sign is minus, the transfer is
not executed and the program continues sequentially.
The transfer is determined only by the sign of the
word in the accumulator. Thus, “plus zero” is re-
garded as a positive word, and “minus zero” is
regarded as negative.

Transfer on Zero If the contents of the accumulator
TR O are zero (including the overflow
04-9, 10, 1 positions) a transfer is effected ex-
actly as described under Transfer above. The sign of
the accumulator has no significance. If, however,
there is a binary 1 in any position of the accumulator,
the transfer does not take place, and the program

continues sequentially.

Transfer on Overflow If the overflow indicator is on
TR OV as the result of a previous opera-
02-3 tion, a transfer of control takes
place exactly as indicated under Transfer above, and
the overflow indicator is reset to the off position. If,
however, the overflow indicator is not on, no transfer
is effected, and the program continues in its normal
sequence.

Stop and Transfer The calculator stops when this in-
sToP struction is received. When the
00-none start button on the operator’s panel
is pressed, the calculator will start again, beginning
with the instruction at electrostatic location x and

will continue sequentially.

Store Address The rightmost 12 bits of the half-word
STORE A at electrostatic location x are replaced
13-10, 12 by the bits in position 6 through 17 of
the accumulator register. Note that these positions

OPERATIONS 31

represent the address part of an instruction. The re-
maining bits (including the sign) at location x, are
unchanged. The sign of this instruction must be posi-
tive.

Extract The sign of this instruction must be minus.
EXTR The extractor or “mask” is located any-
~13-none

where in memory. The word from which
we wish to extract any combination of bits is located
in the accumulator. The EXTRACT order is then given.
The extraction process (or logical multiplication)
proceeds from the accumulator into the memory loca-
tion specified by the address part of the extract
instruction. At the completion of this operation, the
result of the extraction has replaced the word in
memory specified by the address part of the extract
instruction.

In its simplest form, the extract operation can be
understood by considering four cases. In each case
assume corresponding bit positions in the accumu-
lator and in memory.

Case Condition Result

1 ZEROinaccumulator ZERO in accumulator
ZERO in memory ZERO in memory

II ZERO in accumulator
ONE in memory

IIT ONE in accumulator
ZERO in memory

IV ONE in accumulator
ONE in memory

ZERO in accumulator
ZERO in memory

ONE in accumulator
ZERO in memory

ONE in accumulator
ONE in memory

From the above cases, note that the word in the
accumulator remains unchanged, while the word in
memory may change. The result of the extraction,
therefore, is a word that has ones where both words
have ones and zeros in every remaining position.

The ExTrACT order affects all 36 bits of a word;
that is, the sign bit s treated in the same manner as
any of the other bits.

The time for obtaining and executing the extract
operation is the same as that for any STORE-type in-
struction—i.e., 60 microseconds, unless one of the
previous 12 instructions was a multiplication, in
which case the extract order will require 24
microseconds.

Notk: By means of the conditional transfers de-
scribed above, it is possible to program a “transfer on
minus” and “transfer on non-zero.” (See Example 9
in Part II.)

INPUT-OUTPUT OPERATIONS

THuE oPERATIONS that follow will not be completely
understood until the section on Input-Output Compo-
nents has been studied. In fact, the Operations section
and the Imput-Output Components section comple-
ment each other. The sign of these operations is im-
material unless specifically stated otherwise.

Prepare to Read This instruction causes the calcula-
READ tor to prepare to read one unit rec-
24-none ord of information from an input
mechanism (component) designated by the address .
If the address a identifies a tape unit, the MQ register
is reset to zero. A selected tape unit must be in read
or neutral status if the instruction is to be effective.
(See Magnetic Tapes in next section.)

Prepare to Read Backward This instruction causes the
READ B calculator to_prepare to read
25-none one unit record of informa-
tion from a tape unit in the backward direction. Thus,
this instruction makes sense only if x refers to a tape
unit. The MQ register is reset to zero as in the READ
instruction. For the instruction to be effective, the
selected tape unit must be in read or neutral status.
(See Magnetic Tapes in next section.)

Prepare to Write This instruction causes the calcula-
WRITE : tor to prepare to write one unit rec-
26-none ord of information on an output
mechanism (component) designated by x. A tape unit
must be in write or neutral status for this instruction
to be effective. (See Magnetic Tapes in next section.)

Write End of File This instruction causes the machine
WRITE EF to clear a section of the magnetic
27-none tape unit designated by x. This
“gap” is then recognized, in any subsequent reading,
as an end-of-file gap and may be used to control the
program. The instruction is effective only if the se-
lected tape unit is in a write or neutral status. (See
Magnetic Tapes in next section.)

Rewind Tape The tape unit identified by x is rewound
REWIND to its starting point, regardless of the
28-none tape status, The rewind, however, causes
the tape unit to be placed in neutral status. (See Mag-
netic Tapes in next section.) '

Set Drum Address The address x in this instruction
SET DR specifies the location on the drum
of the first word of a unit record
that is to be read or written. It is given following a

29-none

32 TYPE 701 AND
READ Or WRITE instruction that selects a drum as the
input or output mechanism. Not giving a SET DR in-
struction is equivalent to giving the instruction with &
equal to zero. Since only full-word locations may be
referred to on a drum, the sign of the instruction is
immaterial. However, # must be one of the even inte-

gers in the range 0000 to 4094.

Copy and Skip The copy instruction is used follow-
COPY ing the READ, the READ BACKWARD, Or
31-none the WRITE instruction. When cory
follows READ or READ B, its execution causes the word
coming from the input mechanism to be placed in
memory location 2. When copy follows a WRITE in-
struction, the word in memory location & is sent to
the output mechanism to be written as part of a unit
record.

While reading cards or tape, the machine will rec-
ognize the fact that the end of a unit record has been
reached. If a copy instruction is given subsequent to
this recognition, the copy will not be executed; in-
stead, the machine will skip to the third instruction
following the copy instruction, and continue sequen-
tially. This is known as an end-of-record skip.

Similarly, the machine will recognize that it has
just completed the last unit record of a file if one
extra READ instruction is supplied. In this case, a
cOPY instruction given after the extra READ instruc-
tion will not be executed, and the machine will skip
to the second instruction following the cory instruc-
tion. This is known as an end-of-file skip. In reading
from a drum, or writing by means of any output
device, the coPy instruction never causes a skip.

The M@ register is an intermediate step in the
transmittal of words to or from electrostatic storage.
Execution of a copy instruction, therefore, destroys
any number that may have been standing in the MQ
register. In fact, this execution, for all input-output
mechanisms (except tape), results in the MQ register
containing the word just copied.

Since the input-output units are capable of handling
units of full-words only, the copy instruction nor-
mally is given a negative sign. If copy is given with
a positive sign while a unit record is being written,
the half-word in the memory location actually speci-
fied by the, copy instruction, will be written as a full-
word with zeros in the rightmost 18 bit positions. On
reading a unit record, copy given with a positive sign
and an even address will cause the sign and leftmost
17 bits of the full-word being brought in to be stored
in the half-word location actually specified by the

ASSOCIATED

EQUIPMENT

coPy instruction. Copy given with a positive sign and
an odd address will cause the rightmost 18 bits of the
full-word being brought in to be stored in the half-
word location specified. Note that this results in the
most significant part of the number being lost.

SENSE OPERATIONS

THE NAME, abbreviation, and numerical code for a
sense operation follows. The sign of the instruction
has no significance.

Sense and Skip or Control
SENSE

30-none

The sENSE instructions provide a means by which
electrical signals may be transmitted between the
automatic control section of the calculator, on the one
hand, and the printer, card punch, and operator’s
panel, on the other. The address # of a SENSE instruc-
tion is used to identify any one of several electrical
terminals. These terminals are classified as either

TasLE IT
PRrRINTER Carp PuncH [OPERATOR'S PANEL
INPUT | OUTPUT| INPUT | OUTPUT| INPUT | OUTPUT
0522 | 0512 | none | 1024 | 0069 | 0065
0513 1025 0070 0066
0514 0071 0067
0515 0072 0068
0516 0073
0517 0074
0518
0519
0520
0521

input or output terminals. The identifications of these
terminals and the components with which they are
associated are shown in Table II.

Input Terminals

When a SENSE instruction refers to an input ter-
minal by means of the address x, the action is as
follows: if an electrical impulse is present on that
terminal, the machine skips to the second instruction

OPERATIONS 32a

following the SENSE instruction; if no impulse is
present, the machine continues its instructions in
normal sequence.

There are six input terminals on the operator’s
panel; these are known as the sense-input switches
and are identified by the addresses 0069 through
0074. If the switch is pressed down, it is said to be in
the on position. Thus, when the SENSE instruction
refers to that switch, there will be an impulse avail-
able, and one instruction will be skipped in the pro-
gramming as described above. If the switch is not
on, no impulse is available.

There are no input terminals on the card punch
and only one on the printer. Use of the printer-input
terminal is described later under Control Panel
Wiring.

Output Terminals

When a seENSE instruction with an output terminal

address is executed, an electrical impulse is made
available on that terminal. No skipping of instruc-
tions takes place,

On the operator’s panel are four output terminals
that take the form of neon lights. These lights can be
turned on individually by the program and are usually
used to show the operator the progress of the prob-
lem. The addresses of these lights are 0065 through
0068. The output terminal whose address is 0064
simply turns out all the neon lights.

There are ten output hubs on the printer control
panel, with addresses shown in Table II. By means
of pulses made available by the SENSE instructions, it
is possible to transfer selectors and effect mechanical
control of the printer, such as double spacing, etc.
The two output terminals of the card punch are used
in a similar way. These output terminals actually
take the form of hubs on the control panels of the
components. Their use is explained under Control
Panel Wiring.

INPUT-OUTPUT
COMPONENTS

THE CARD READER, card punch, printer, magnetic
tapes, and magnetic drums will all be loosely classified
as input-output components of the machine, because
they all share the common property of being able to
receive information from, or transmit information to,
electrostatic storage automatically. In fact, it must be
remembered that, whenever information is trans-
mitted from one component of the machine to an-
other, it MUST pass through the electrostatic memory.

Any machine component capable of transmitting
information both to and from electrostatic storage
automatically (such as tapes and drums) may be re-
garded as an auxiliary storage (as distinguished from
the electrostatic “working” storage). However, the
common input-output terminology will be used in
this section.

The input-output system of this machine is out-
standing both in versatility and speed. The computer
has full automatic control over @/l input-output com-
ponents. Even mechanical functions of components,
such as the printer and punch, may be put under con-
trol of the program. Supplementing this mechanical
control are the control panels for the printer, punch,

33

and reader. This mechanical control is described
under Control Panel Wiring.

The great versatility of the system is obtained by
the automatic control of the components via the
stored program. For example, a binary-to-decimal
conversion can be programmed without slowing down
the rate of printing. These programs are accomplished
at the expense of some storage space, but the result-
ing usefulness of the machine makes it extremely
profitable. Moreover, such programs as mentioned
above need be written only once, and used over and
over again. A few such basic sub-programs are given
in Part II.

All of the input-output components will be dis-
cussed in this section to show how they operate under
control of the stored program. Although timing con-
siderations will be mentioned, exact data will be given
in the Timing section. Also, wiring and manual con-
trol of components are discussed under Control Panel
Wiring and Manual Control of Components.

In all instances it will be assumed that the compo-
nents have been manually prepared for control by the
calculator, such as the insertion of tapes or cards, etc.

34 TYPE 701 AND

PUNCHED CARDS

IN THIS MACHINE cards are intended to be the pri-
mary input medium because of their great flexibility
and because of the availability of apparatus for key-
punching, verifying, and duplicating. Errors are
easily detected and corrected, input data may be read-
ily prepared on several key-punches simultaneously,
and the cards may be collected before entry into the
computer, Cards are particularly desirable when one
wants to have manual access to a file since they can
be easily separated, and their contents may be printed
on them. It should be emphasized that the punched
card input and output may represent any alphabetic
character or special symbol, provided only that a pro-
gram exists to recognize the IBM code for this infor-
mation. A program may also provide for quantities
to be represented in any number system and read or
punched accordingly.

Entering a program on cards may be done in such
a way that instructions are punched, one to a card, in
the form most desirable to the programmer (e.g., in
decimal notation). The computer can then be supplied
with a standard program to assemble the instructions
in the desired order. Then, if errors are detected or if
changes must be made, the wrong cards are removed,
the correct ones (not necessarily the same number of
cards) are added, and the computer prepares the new

ASSOCIATED

EQUIPMENT

program. Note that there is no need to repunch any
but the cards in question.

The card-feeding mechanism in the card reader is
similar to that in the Type 402 Accounting Machine
and includes two sets of 80 reading brushes. Corre-
spondingly, there are 80 punching magnets and 80
punching brushes in the card punch. Only 72 columns
of the standard IBM card, however, can be read into
electrostatic storage, and only 72 columns can be
punched from electrostatic storage (unless split-col-
umn wiring is used). Any 72 columns of the card can
be selected through control panel wiring. For sim-
plicity in the following discussion, it will be assumed
that columns 1 to 72 of the card are used for both
reading and punching.

Binary information is represented on a card as
follows : each of the 12 rows of the card is split into
two parts, the left half consisting of columns 1 to 36
and the right half of columns 37 to 72; each half row
can be treated as a 36-bit word and read into a full-
word location in electrostatic storage.

Figure 7 shows how the card is divided. In this
particular example, the first 72 columns of the card
are used. Each of the rows is split into half-rows of
36 columns each. Thus, the half-row identified by the
circled 9 in Figure 7 is named the S-row left. Simi-
larly, the row identified by the circled 10 is named the
5-row right. Thus, there are 24 half-rows in the card.
One full word of binary information can be punched

{__Unused

Left Half |

Right Half

! Columns

12-Row

/ 5

@

@ 11-Row

00C00000000060000(D00000000000G0C00D

00000093000000!)00ﬂﬁODﬂﬂGBI}ﬂﬂﬂUDﬂﬂO

4 P 3 Sy 4m sn sqac wp g ™ = op
2T IS 26 2T 22 2 22T 26 2T 2R 29 30332 35 30 38

(RRR R R R R R AR R RN IR RN R R RERRRERRE!

" 4 b 45 2.2 3
33T AT A TS 4434 50 SO S-S5 SR 5 50 S 60 BT H2 B BA RS BERT R EHIE-TH2

HHIHHHHHHIHHHHHHHH

Go0000080

73747516 7778 73 8D

[ERRRREER

22222222222222222@22222222222222222

2222222222222222222222222222222222

22222222

33333333333333333@33333333333333333

33333333333333333@33333333333333333

33333333

44444444444444444@4444444444&444444

44444444444444444@44444444444444444

55555555555555555(3)555555555555865555

555555‘555}5555555555555555555555555

44444444
55555555

56666666666555665@66655586666663666

66665586656666665BBBBBBGBBEGGBSBBS

777??7??777777777@?77?7777777???7?7

77???77?7?7777??7@7?77}’77??777777??

80888888688688888(3)888883888688888888

888888888888‘88888@88888888888888888

99999999999999999(2)895999989938999498

66666666
11111171
88888888
99989998

?93 2332299999999®99999959999999939

2 WHIBWGH17IBI82071222324252627282930 3132333435 35

-1

37383340 61424344454647 48495051 5253545556 57585960 51628364 656687 68887071 72

T3NTIET6TIIBIES0

Ficure 7

INPUT-QUTPUT

in any half-row (including sign). The machine re-
gards any punched hole as a binary 1. “No punch”
indicates a binary 0. Thus, an 8-punch in column 36
of the card is regarded by the machine as a binary 1
in the least significant position of the full binary word
punched in the 8-row left. The leftmost position of
each half-row is reserved for the sign bit of the full
word. A binary 1 represents a negative sign, while a
binary O represents a positive sign.

(Note: The exact position of a full word that each
column represents is completely arbitrary according
to how the particular control panel is wired. This
example is the normal and simple case. The wiring
discussed under Control Panel Wiring assumes that
information is to be read into the calculator as de-
scribed above.)

It should also be pointed out that this card repre-
sentation of 24 binary words does not mean that the
cards must always be punched with true binary infor-
mation. The holes in the card can just as well be
numerical punching in the standard decimal card
code, alphabetic punching, or control punching. It is
necessary only to provide a suitable program so that
the computer can translate between the binary code in
which it operates and the particular code used on the
card. The translation to and from the decimal nu-
merical code, for instance, can proceed simultaneously
with reading and punching so that the over-all card-
handling speed is not reduced below the standard
rates of 150 cards per minute for reading and 100
cards per minute for punching.

Cards are fed face down, 9’s edge first, in both the
card reader and card punch. The internal card circuits
are arranged so that the 24 half-rows of the card are
read or punched in the sequence indicated by the
circled numbers in Figure 7. The sequence of read-
ing or punching full words is then as follows: 9-row
left, 9-row right, 8-row left, 8-row right, and so on to
12-row left, 12-row right.

For reading and punching cards, a unit record is
defined as the information contained in one card.
A file will consist of any number of unit records and
so will take the form of a deck of cards. Note that
definitions of unit records and files will, in general,
be different, depending on the particular input or out-
put component being discussed. This has been done
so that descriptions of input-output operations of the
previous section could be made to apply, as nearly as
possible, to all components.

COMPONENTS 35

Card Reader

For a program to cause the calculator to read all
of the information punched on a card into electrostatic
storage, it is necessary to give a READ instruction
with an address of 2048 (card-reader identification)
followed by 24 cory instructions.

The RrEeAD instruction causes the card-feeding
mechanism to start in motion. The program then is
free to continue any operations until the 9-row of the
card appears under the reading brushes. At this time,
the program must provide a copy instruction with
an address, x. This instruction will cause the word
punched in the 9-row left, to be read and stored in
electrostatic location #. The program can then resume
until the calculator is prepared to read information
punched in the 9-row right. The program now must
supply another copy instruction to read this word
into electrostatic memory. This procedure continues
until all 24 half-rows have been read. Because of their
functions, these cory instructions are called 9 left
copy, 9 right copy, etc. Another READ instruction
must be given to read another unit record (card).

Of course, the READ instruction can be given, fol-
lowed immediately by the 24 copy instructions in
succession, without any other operations being done
between instructions. In such a case the calculator

~ will automatically wait until a half-row is in position

to be read before the copry instruction is executed.

The intervals of time between these instructions
which may be used for useful calculating, are defi-
nitely limited and are completely specified in the
Timing section. If a copy is given after the card
reader is in position to read a given half-row, the
machine will stop, and the copy check light will turn
on at the operator’s panel. The amount of calculating
time available between the last copy instruction for a
given card and the READ instruction that initiates the
reading of a succeeding card is unlimited. But if a
READ instfuction does not occur within a definite time
limit, the card reader will stop and will start up only
after the new READ instruction has been received. To
keep the card reader in continuous motion and oper-
ating at its full speed of 150 cards per minute, the
time limit discussed under 7Timing must be observed.

Programming experience shows that it is extremely
convenient to have this time between input-output
instructions in order to compute succeeding copry
addresses and to control the calculator. Calculator
operation is such that during execution of a copy in-

36 TYPE 701 AND
struction, the word read from a half-row of the card
first enters the MQ register before being sent to the
electrostatic memory. This, of course, destroys any
information previously stored in this register.

If a 25th copy instruction is given after a READ
instruction, the card reader will already have set up
what is known as an “end-of-record” condition (this
denotes that all 24 half-rows of the card have been
read). Under this condition, the 25th copy is not
executed, and the program skips to the third instruc-
tion after the copy. In this way the program may
transfer control to a section that will cause the suc-
ceeding card to be read.

When the hopper of the card reader becomes
empty, the calculator stops. The start button on the
card reader may then be depressed to allow the cards
remaining ahead of the reading station to be read
under control of the program. After the last card has
been read in this way, and if another READ instruction
followed by a copy is given, the card reader sets up a
condition kriown as an “end-of-file” condition. Under
this condition the copy instruction is not executed,
and the program skips to the second instruction fol-
lowing the copy. In this way, for example, control
may be transferred to a particular section of the pro-
gram that continues a calculation interrupted by the
card-reading procedure.

The contents of the 24 locations of the electrostatic
memory, into which the 24 half-rows have been
read, is known as the card image. By a program that
suitably manipulates this card image, decimal infor-
mation punched in standard IBM code may be con-
verted to binary information.

In reading cards it is not always necessary to follow
a READ by 24 copy instructions. The card reader will
normally read half-rows for every following cory
instruction up to 24. If, however, after a few copy
instructions, another READ is given, the card reader
automatically ignores any succeeding half-rows that
have not been read and starts reading a new card.
Thus, for instance, it is possible to read the first five
words of a card and ignore the rest. It is not possible,
however, to read the first five words, skip the sixth
and seventh words, and continue on reading the card.
A cory instruction designed to accomplish any read-
ing of this type will always result in a machine stop
and a copy-check light. If successive READ instruc-
tions are given with no intervening copy instructions,
the net result is the feeding of cards through the ma-
chine with no words being read into storage.

ASSOCIATED

EQUIPMENT

Card Punch

The operation of punching information on a card
is very similar to that of card reading. To make use
of these similarities, it will be assumed that the pro-
gramming necessary for card reading is understood.

Punching a card requires a WRITE instruction hav-
ing an address of 1024 (card-punch identification)
which sets the card-feeding mechanism of the punch
in motion.

Following WRITE, a succession of coPy instructions
is given, the address parts of which give the locations
in electrostatic storage where the words to be punched
in the half rows of the card are to be taken. To punch
a full card, 24 cory instructions must be given. These
copry instructions are called, as in card reading, 9
left copy, 9 right copy, etc. A separate WRITE instruc-
tion must be given for each card to be punched. Corre-
sponding to card reading, a certain amount of com-
puting can be carried out between WRITE and the first
copy instruction and between successive COPY in-
structions.

For example, binary to decimal conversion can be
completed while a card is being punched. Each cory
instruction, however, must have been given by the
time the corresponding half-row appears at the
punching station. These time limits are specified
under Timing. If time limits are exceeded, the ma-
chine stops, and the copy check light on the operator’s
panel signals the error. To keep the punch running at
its full speed of 100 cards per minute (and if more
than one card is to be punched) succeeding WRITE
instructions must be given within a certain time in-
terval. Otherwise, if a WRITE instruction is delayed
too long, the punch will stop and will not start again
until the WRITE is actually given. If these WRITE and
COPY instructions are given in succession, the com-
puter delays until a half-row is actually in position to
be punched.

If fewer than 24 copy instructions are given, the
remaining half-rows on the card, for which there
were no COPY instructions, are left blank.

Again, we must remember that the MQ register
serves as an intermediate storage during a copy in-
struction. Since the word to be punched first enters
this register before being sent to the card punch, any
previous information in the register is destroyed.

There are no end-of-record or end-of-file conditions
in punching cards.

INPUT-QUTPUT

PRINTER

THE PRINTER, which is a modification of the printing
unit on the IBM Type 407 Accounting Machine, is
equipped with 120 rotary type-wheels. Each wheel
has 48 characters, including Arabic numerals, alpha-
betic symbols, and special characters. By means of a
proper program the machine can be made to print
decimal numbers, binary numbers, or numbers to any
other base. Titles and headings are also possible, since
alphabetic characters and special symbols are pro-
vided on the type-wheels.

As in the standard Type 407, the type-wheels are
positioned for printing by electrical pulses timed ac-
cording to the print cycle itself. Thus, it will be re-
called that if a print-wheel receives an electrical
impulse during that part of the print cycle designated
as 9-time, then the print-wheel will be positioned to
print a 9. Also, if the print-wheel receives an impulse
at 1-time and an impulse at 12-time, the machine will
interpret this as the letter 4 (according to the stand-
ard IBM code) and will position the type-wheel to
print this character. It is important to understand
this timing principle of accounting machines. Refer-
ence may be made to the Type 407 Accounting Ma-
chine principles of operation manual.

A simple example is used to show how a series of
nines might be printed in 72 positions of a line.

ExaMpPLE: A WRITE instruction with an address of
0512 (printer identification) is programmed. This
causes the printer to start a print cycle. As the print
cycle progresses, it goes through points in the cycle

known as O-time, 8-time, 7-time, and so on_to

11-time and 12-time. These times are analogous to
the times designated for the standard Type 407,
which operates in conjunction with a card-reading
mechanism. Thus, in the standard Type 407, the
above times are in exact coincidence with the time
the 9-row is under the reading brushes, etc. As
soon as the 701 printer reaches 9-time in its cycle,
the program must furnish a copry instruction that
reads a full word from an electrostatic storage
location. By means of control panel wiring (see
Control Panel Wiring) this full word is directed to
36 type-wheels (one for each bit of information)
of the printer. A second coPy instruction then fol-
lows; this causes another full word in electrostatic
storage to be directed to 36 other type-wheels.
These two copy instructions are given close enough

COMPONENTS 37

together (with respect to time) that the printer is
still essentially at 9-time of its cycle. A binary digit
of 1 in the full word will cause an electrical pulse
to enter the printer and to impulse the associated
type-wheel. This impulse will cause the type-wheel
to be positioned for printing a 9, since the impulse
arrived at 9-time of the print cycle. If now we as-
sume that both full words mentioned in connection
with the above two copy instructions consist of a
negative sign and 35 binary ones, the result will
be 72 nines printing across the page. This assumes
that any subsequent copy instructions correspond-
ing to 8-time, 7-time, etc., will not cause an addi-
tional impulse to a type-wheel and thus cause the
wheel to be positioned in a different manner. A
positive sign or a binary zero will not propagate a
pulse to the type-wheels.

The general procedure in printing a line is to set
up in electrostatic storage a card image similar in
nature to the card image produced when a card is
read by the card reader. A WRITE instruction then is
followed by 12 pairs of copy instructions; these cause
the card image to send impulses to the type-wheels.
The first pair of copy instructions will cause 9-time
impulses to be sent to the type-wheels as explained in
the example above. The second pair will cause 8-time
impulses to be sent to the type-wheels. This procedure
continues until the 12 pairs of instructions are exe-
cuted in accordance with the 12 distinct times of the
print cycle. Subsequent WrITE and copy instructions
will result in a new print cycle and a new printed line,
The full-word impulses, brought about by execution
of the first copy instruction of a pair, are available at
the hubs labeled caLc EXIT LEFT on the printer con-
trol panel and may be directed to the selected type
wheels by wiring. The impulses produced by the
second coPy instruction of a pair are available at the
hubs labeled carc £xiT RIGHT. For various reasons
described above, the 24 cory instructions will be
named in sequence, as follows: 9-left copy, O-right
copy, 8-left copy, 8-right cory, and so on to the 12-
left cory, 12-right cory.

As in the card reader and card punch, it is possible
to do useful calculating between the actual printing
instructions. For example, the time required for the
print cycle to start, and move to 9-time of its cycle,
may be used for other calculations. Once the cycle has
reached 9-time, however, the program must provide,

38 TYPE 701 AND

in succession, the pair of copy instructions for im-
pulsing the type-wheels. Useful calculating can also
be performed between pairs of instructions and even
between individual instructions of a pair. As before,
there are definite time limits to be observed. These are
precisely specified under Timing. If a copy instruc-
tion arrives too late in the cycle, the machine will
stop, and the copy check light will indicate the error.
For the machine to print at its full rate of 150 lines
per minute, the WRITE instructions for each print
cycle must be given in the interval of time explained
under Timing. 1f WRrITE instructions do not follow
each other within this time limit, the printer will stop
and will start again only on receipt of the next WRITE
instruction. If we do not want to do calculating be-
tween these input-output instructions, we can pro-
gram these instructions in immediate sequence.
Under these conditions, the calculator will automati-
cally wait until the printer reaches the proper point
of its cycle before executing the instructions. Also, it
is not always necessary to give a full set of 24 copy
instructions for each line of print. If a full set is not
given, the action will be similar to the card reader;
namely, the print cycle will continue without any
more impulses to the type-wheels, and a following
WRITE instruction will start a new cycle.

Again, the MQ register is used as an intermediate
storage for a full word passing from electrostatic
memory to the printer; so the execution of any copy
instruction destroys information previously standing
in the register.

The previous paragraphs give the procedure for
printing without checking. Checking is possible be-
cause the printer is capable not only of receiving print
pulses from the calculator to set up the type-wheels
for printing, but also capable of sending to the calcu-
lator “echo pulses” generated by the type-wheels
according to what character the wheels are in position
to print. Printing with checking, however, requires a
somewhat more complicated program, but it can be
done without reducing printing speed. The timing for
this combination is roughly as follows:

The first half of the print cycle is used to position
the type-wheels by means of words in electrostatic
storage. The second half is used for reading the “echo
pulses” generated by the type-wheels and for placing
them in electrostatic storage for verification via a
programmed check.

When it is desired to check, the echo pulses are
read in such a way as to form a card image when re-

ASSOCIATED

EQUIPMENT

ceived by the calculator. Thus, the calculator can both
write the original card image for printing and read a
corresponding card image, at a later time in the same
print cycle, from the echo pulses. If the two card
images do not agree exactly, as determined by a suit-
able program, then an error must have occurred. Only
numerical information can be checked this way.

Printing with checking is programmed as follows.
First a READ instruction (note this difference), with
the address of the printer, is given, followed by 46
coPY instructions in a specified sequence. Twenty-
four of these copy instructions refer to printing, and
cause words to be sent from electrostatic storage to
the printer. The other 22 copy instructions refer to
checking. They require words to be read from the
printer into electrostatic storage. During part of the
print cycle, the two kinds of copy instructions must
alternate in pairs. Note, then, that the READ instruc-
tions will cause both writing information from stor-
age to printer, and reading the echo impulses into
storage.

Exact sequence of the 46 copy instructions for
printing with checking is described below. There are
two sets of codes for plus and minus signs, as follows:
with one set, used for printing without checking, 12
is the code for plus, and 11 for minus; with the other
set, used for printing with checking, the combination
of 8 and 3 is the code for plus, and 8 and 4 the code
for minus.

The first 18 copy instructions are to supply im-
pulses to the printer from the left and right halves of
rows 9 through 1 of the card image. The 19th and
20th copy instructions are for storing the echo im-
pulses received from the minus sign (code 8, 4). The
21st and 22nd cory instructions send impulses to the
printer from the zero row of the card. The 23rd and
24th cory instructions store echo impulses received
from the plus sign (code 8, 3). The 25th and 26th
send the 11-row of the card image to the printer. The
27th and 28th are for checking the 9-row. The 29th
and 30th send the 12-row of the card image to the
printer. Finally, the 31st through 46th copy instruc-
tions form the check images of the 8-row through the
I-row. The fact that no checking is provided for the
0, 11, and 12 rows explains the two separate codes for
plus-and-minus signs. The exact sequence of instruc-
tions and the allowable time between them are fully
explained under Timing.

Through use of selectors or column splits on the
printer control panel, more than 72 type-wheels can

INPUT-QUTPUT

be activated from electrostatic storage. For example,
seven 10-digit numbers with signs can be printed.
Additional characters can also be printed by means of
impulses emitted on the control panel. Alternatively,
the control panel can be wired so that up to 120 char-
acters originating from electrostatic storage can be
printed on each line at the rate of 75 lines per minute,
two cycles being required for each line of printing.

The printer has an IBM tape-controlled carriage,
details of which are found in the manual of operation
for the IBM Type 407 Accounting Machine. Func-
tions of the carriage (such as changing or suppress-
ing line spacing, selecting the channel on the punched
tape to control skipping, or sensing sheet overflow)
may be controlled through sense output or input hubs
on the control panel; these hubs are activated by ap-
propriate SENSE instructions in the stored program.

MAGNETIC TAPES

MacGNETIC TAPES may be used either as a high-
capacity long-term memory or as input from a pre-
vious problem that had stored its results on tape.
Input data from cards, including programs, can be
transcribed by the computer on tape to conserve stor-
age space or to save time when the data must be
repeatedly entered into the computer. Libraries of
standard sub-programs, which can be called on to re-
duce the amount of programming required for each
problem, can also be stored on tape.

There are four tape units; each contains a magnetic
tape of any length up to 1400 feet. The tape itself is
one-half inch wide, oxide-coated, and non-metallic.
After the tape has been placed in motion, it can read
or write information at the rate of 1250 words per
second.

Information is recorded on tape in six channels
that run parallel to the length of the tape. A bit of
information is represented by a magnetized spot in a
channel. A set of six bits recorded in a line perpen-
dicular to the six channels will be referred to as a
group of bits. Six groups recorded serially on a tape
are needed to store one binary word of 36 bits.

A seventh channel on the tape serves to check the
reading and writing in the other six channels by the
so-called “redundancy check” principle. That is, either
a 0 or 1 is recorded in the seventh channel so that
across the seven channels there is an odd number of
I’s in each set of seven bits. When the tape is read,

COMPONENTS 39

the number of 1's is automatically checked. If the
number is even, the calculator stops, and the tape-
check light on the operator’s panel is turned on. If the
number of 1’s is odd (as it should be when correct),
the machine continues the reading and writing proc-
ess. It should be emphasized that operation of this
seventh channel is completely automatic and is
brought out to indicate the function of the tape-check
light on the operator’s panel.

A schematic diagram of how a word of 36 bits is
recorded on tape is shown in I'igure 8. Each X de-
notes a binary 1 or O recorded in that position on the
tape. The 36 bits recorded in the six recording chan-
nels represent the full word. When the tape moves in
the direction of the arrow, the group numbered 1
will contain the sign and first five bits of the word.
The remaining five groups contain the following bits
of the word in groups of six. Thus, group 2 contains
bits 6 through 11 of the word, etc.

Redundancy Channel X=X=H=X=XX:
X=X XXX
H—XH=X= XX
Six Recording X XY= XXX
Channels X—X—X—X—X—X
X H=XHHX
NV NV V. _V_\.
NN NANATA
54321
Ficure 8
Writing

The general procedure for writing a file of infor-
mation on a tape is as follows: A WRITE instruction
is given with an address designating a particular one
of the four tapes (see Address System). This in-
struction causes the selected tape to be started in
motion and prepares it to record a unit record of
information from electrostatic storage.

The writing process requires that all previous mag-
netic marks be erased from that portion of the tape
being written upon. To accomplish this, an erasing
apparatus precedes the recording apparatus by ap-
proximately two inches. Thus, as the tape moves
under the impetus of the WRITE instruction, the eras-
ing apparatus is continually active, while the record-
ing apparatus doeés. ot operate until told to do so by
the program. ‘

40 TYPE 701

If the wrITE instruction is given when the tape
unit is in the rewound position (i.e., in position to
write a file of records), the actual writing on tape is
delayed eight-tenths of a second. The erase circuits,
however, are functioning during this time, and there
results a blank portion of tape called the beginning-of-
file gap.

As soon as the beginning-of-file gap has been
written the program must supply a copy instruction.
This instruction takes the full word stored in the
electrostatic storage location specified by the address
part of the copy instruction, and puts it into the Mg
register. The selected tape unit then takes this word
from the M@ register in groups of six bits each, and
records them on the tape in the manner shown in
Figure 8. By'the time all six groups of bits have been
recorded, the program must furnish another copy
instruction for recording the second word of the rec-
ord. The copy instructions may continue in this way
until the entire unit record is written. In all cases
where an instruction is furnished by the program
before the tape unit is ready for it, the execution of
the instruction is automatically delayed.

Note that the length of the unit record is variable
and depends only on the number of copy instructions
following the wRrITE instruction. If the tape unit is
ready for a copy instruction {which means it has
finished recording the last word), but the program
fails to supply this instruction, the tape unit auto-
matically disconnects itself from the calculator and
stops. Because of the time necessary for the tape to
come to a complete stop and the two-inch distance
between the erase head and writing head, there results
a small section of erased tape. The gap caused by this
erasure will be called an end-of-record gap; these gaps
are extremely convenient when reading words back
into electrostatic memory. When the programmer
wants to end a unit record, he simply stops supplying
the calculator with copy instructions. If a cory in-

AND ASSOCIATED

EQUIPMENT

struction is given after the tape unit disconnects, the
entire computer stops, and the copy-check light sig-
nals the error.

The first unit record of the file has now been
written. To write a second unit record, the same pro-
cedure (WRITE instructions followed by copy instruc-
tions) is programmed. In this way a series of records
is recorded. Note again that the records may be of
variable size if desired. A series of WRITE instructions
with no copy instructions will result in the tape mov-
ing through the machine and being erased. If a new
WRITE instruction is given while the machine is still
recording the last word of the previous record, the
program is automatically delayed until the tape has
erased an end-of-record gap, and is prepared to accept
the first word of the new record.

The complete recording on a tape consists of a
number of unit records that make up a file of informa-
tion. Tapes can be re-used many times, and a new file
can be written over an old file, the old one being
erased in the process. Each time a new file is written,
it is started at the beginning of the tape, and only one
usable file of unit records can be on a tape at one time.
Different files, however, will have different lengths,
so that there is a possibility that beyond the last
record of the most recent file, there may be bits left
over from a previous use of the tape. These residual
bits of information may not be properly spaced with
respect to the record just written. This may result in
an error on a later reading of the new record. To
avoid having to erase the entire tape every time, and
for certain control purposes to be mentioned later, an
instruction called W rite End of File (abbreviated to
WRITE EF) has been provided. This instruction, which
must be given after writing any file, erases a further
section of tape after the last unit record. The section
of tape erased in this way is called an end-of-file gap.

Figure 9 shows schematically how a typical file of
information is recorded on tape. The arrow desig-

; End-of-File Gap

Beginning-of-File
Gap

T
End-of-Record Gap

Figure 9

INPUT-QUTPUT

nates the forward direction of tape motion. Writing
can be done only when the tape is moving forward.
A beginning-of-file gap is followed by a number of
unit records with the intervening end-of-record gaps.
Note that these gaps are of a fixed length regardless
of the length of the unit record itself. Finally, an end-
of-file gap appears after the last unit record. Note,
too, that the machine operates so that lengths of the
two gaps at each end of a file are equal to each other,
but longer than end-of-record gaps. All of these items
will play an important role when a program is re-
quired to read this information back into storage.

To recapitulate, there are three kinds of gaps in the
recording of information on tape:

1. The normal spacing between successive groups
of six bits within a unit record.

2. The longer gap between unit records. This gap
is long enough to allow the tape to stop and
start between records if desired.

3. The still longer gaps at the ends of the file.

As in other input-output devices, it is possible to
do useful calculating (such as the computation of the
addresses of succeeding copy instructions) between
the WRITE instruction and first copy instruction and
between successive coPy instructions. Again, this
time is limited and is specifically discussed under
Timing. It will be recalled, however, that the Mg
register is in continuous use after each copy instruc-
tion, because the word is recorded six bits at a time
on tape. This observation means that between cory
instructions no calculating can be done that requires
use of the Mmq register. This restriction specifically
excludes the following operations: STORE MQ, LOAD
M@, MPY, MPY R, DIV, ROUND, L LEFT, and L RIGHT,
(In devices previously discussed, the M@ register is
used only during execution of the cory instruction
and simply destroys the number previously stored
there. The MQ register could be used between copy
instructions in those instances.)

After the last copy instruction for writing a unit
record has been given, the MQ register is in use as
before. Consequently, the programmer must be sure
that a certain amount of time elapses {while the last
word is going from the MQ register to tape) before
programming any instructions involving the MQ reg-
ister. There is an instruction available to the pro-
grammer for delaying the program until the Mg
register is free for use. By using this delay instruction
after each unit record, the programmer need not

COMPONENTS 41

worry a%ggtv the delay. The delay instruction is
“WRITE 2052 Note that this instruction, if inter-

preted in the usual way, is nonsense, since 2052 does
not identify any component of the machine. However,
the machine circuits are so set up that it will recog-
nize this particular instruction as a delay instruction,
and the program is automatically held up until the
MQ register is not being used.

Note that the M@ register is not in use with the tape
unit between the WRITE instruction and the first copy
instruction for a unit record. Consequently, there are
no restrictions on use of the MQ register by the pro-
gram when using the calculating time available
between these instructions. Note, also, that the Mg
register is not required by the WRITE EF instruction,
and the program can continue unrestricted in this
case.

Reading

Reading information stored on tape is similar in
many respects to the writing process. Because of this
similarity, the description of reading a file of records
will be more abbreviated than the preceding para-
graphs.

Assume that the tape is in position to read the first
tnit record of a file. A READ instruction, with an
address to select the particular tape to be read, causes
the tape to start in motion. This instruction also
causes the MQ register to reset to zero (a READ in-
struction causes this only when the address designates
a tape unit). Subsequent copy instructions will cause
a word to be loaded six bits at a time into the MQ
register, and from there the whole word is sent to the
electrostatic location specified by the address part of
the copy instruction. When the tape unit comes to the
first word of the unit record, it places it, six bits at a
time, into the MQ register. When the word is com-
pletely assembled in the register, the program must
supply a coPy instruction that results in a transfer of
the word to the electrostatic memory. The copy in-
structions can then follow, and the tape continues to
move as the record is read word by word.

But eventually the tape comes to the end-of-record
gap. The machine recognizes this gap, the tape stops,
and an end-of-record condition is set up. If, under
this condition, the program supplies another cory
instruction, the machine will not execute it, but will
skip to the third instruction following the copy in-
struction. This allows the program to follow a dif-
ferent course after finding the end of a record on read-

42 TYPE 701 AND

ing. It is not necessary to know the number of words
stored in a unit record, because the tape will auto-
matically stop after reading the entire record.

However, it is not necessary to read and store
every word of a record. After reading the number of
words desired, the program may go on to something
else, and there will not be another cory instruction
waiting the next time the M@ register is filled with a
word from the tape. This causes the tape unit to dis-
connect itself from the Mo register. The MQ register
can then be used by the program for other purposes;
but the tape itself does not stop until it comes to the
end-of-record gap. As explained in the previous sec-
tion for writing on tape, the delay instruction
(WrITE 2052) should follow the last copy instruc-
tion to delay the program and avoid an overlap be-
tween the next word of the record (which will enter
the M@ register before the tape unit discovers the
absence of a corresponding copy instruction) and
any instruction that may require the MQ register. But
the delay instruction is not necessary when the entire
unit record is read.

In general, the programmer has four alternatives
for disposing of the words of a unit record after
giving a READ instruction:

1. He may give a series of copy instructions to
store every word of a unit record; and he may
continue to do so until the end of the record is
signaled by the end-of-record gap. Often this is
the simplest way of reading the entire record,
and it is particularly useful when the exact
number of words in the record is not available
and need not be known. The delay instruction
is not necessary.

2. He may know the number of words in the unit
record and give only as many coPpy instructions
as there are words in the record. He would
then continue without waiting for an end-of-
record signal. In this case the delay instruction
need not be given.

3. He may read and store fewer words than there
are in the unit record. When a sufficient num-
ber of copy’s have been given, he may give
wrrre 2052 to delay the program and force the
tape unit to disconnect. Then he may continue
with a different program and ignore the rest of
the unit record.

4. He need not give any copy instructions. In
that case the tape unit will put the first word

ASSOCIATED

EQUIPMENT

into the MQ register. When it does not find a
coPY instruction waiting at the end of this
word, the tape unit will disconnect immediately.
The tape itself, however, continues to move
through the entire unit record until it reaches
the end-of-record gap. Nothing will have been
stored in memory. This device makes it pos-
sible to skip through one or more unit records
to the desired one without storing the unwanted
records in memory. (If there is any danger of
overlap in the use of the mq register, then the
delay instruction should be used here, tco.)

In any case, the tape unit continues to run after a
READ instruction until it comes to the end of the unit
record, regardless of how much of the record is actu-
ally being read. If two READ instructions follow each
other too closely, the second is held up until the tape
unit has reached the end of the previous unit record
and is ready to read another, because every READ in-
struction applies to a new unit record.

All of the unit records in a file can be read as
described above. After the last unit record in the file
is read, however, the tape is positioned at the begin-
ning of the end-of-file gap. If, at this time, another
READ instruction is given, the tape unit starts up and
attempts to read another unit record. Instead of a unit
record, it finds the end-of-file gap, and after sufficient
searching for a new unit record, the tape unit again
stops and sets up an end-of-file condition within the
machine. If, under this condition, the program sup-
plies a copy instruction (as if it were going to read
the first word of the new unit record), the cory in-
struction will not be executed, and the program will
skip to the second instruction following the copy. The
programmer may then take advantage of this auto-
matic skip to go into a new program. This end-of-file
condition cannot be obtained from a blank tape; at
least one unit record must be written on the tape to
distinguish the normal space at the start of the file
from the end-of-file gap obtained by use of the
WRITE EF instruction.

The end-of-file, of course, can be taken into account
by giving the same number of READ instructions as
there are unit records. But the automatic end-of-file
feature is very convenient when the number of unit
records is not known directly or when it is of no
interest, such as when reading through a library of
programs on tape. Although the end-of-file gap may

INPUT-QUTPUT

not be used, it is alwavys necessary to give a WRITE EF
instruction after writing a file (see above section).

As in writing, useful calculation can be done be-
tween the input-output instructions. Again, the time
is definitely limited and is discussed below under
Timing. If a copy instruction is given after the speci-
fied time interval has elapsed, the machine stops and
the copy-check light turns on to signal the error. The
restrictions on use of the MQ register between copry
instructions is the same as for writing. As with writ-
ing, calculating may be done between a READ instruc-
tion and the first cory instruction of a unit record,
but there is one imporiant difference. The MQ register
is reset to zero by the READ instruction. This is done
in preparation for the following copy instruction
which assumes that the MQ register is actually zero.
Thus, the MQ register should not be used for calculat-
ing during this interval.

Note: The programmer may use the MQ register
during this interval if he takes extreme care to reset
this register to a positive gero (via the program)
before the tape unit starts to put the first word into
the Mg register. This is not good practice, however,
and should be done only if absolutely necessary. Note
in particular that the program must reset the mQ
register to zero before the tape unit comes to the first
word and nof simply before the first copy instruction.
This requires a thorough understanding of tape
timing.

A tape can be read backward one unit record at a
time by giving the instruction called Prepare to Read
Backward (abbreviated to READ B) in place of READ.
This instruction differs from READ only in that it
causes the tape to move in the reverse direction.

There are two uses of READ B. One is to backspace
a tape by a given number of unit records. This is done
simply by giving the appropriate number of READ B
instructions. Also, by means of the rRgap B instruc-
tion, the tape can actually be read in reverse order
and part or all of a unit record stored in electrostatic
storage. This is done by giving READ B, followed by a
suitable number of copy instructions. Under these
circumstances, it is evident that the words will be
read in the reverse order in which they were written.
Although the words are read in reverse order, the
machine automatically arranges the bits within the
word into their correct order before placing the word
in the MQ register.

COMPONENTS 43

When reading a tape backward, an end-of-record
gap is recognized just as in reading forward. After
the unit record at the beginning of the file has been
read backward, the machine will be positioned at the
beginning-of-file gap. A further READ B instruction
causes the tape unit to treat the beginning-of-file gap
as if it were an end-of-file gap.

In general, the procedure and controls available
when reading backward are the same as when read-
ing forward. Restrictions on use of calculating time
between instructions are identical to those imposed
when reading forward.

Rewinding

The REWIND instruction is used to cause the tape
specified by the address part of the instruction to re-
turn to the starting point of its file of records.

A REWIND instruction may be given in the course
of reading a file, or after the end-of-file condition has
been sensed, or while the tape is disconnected. If
REWIND is given while the tape is being read, the tape
will go to the end of the unit record before rewinding.
When writing a tape, a REWIND instruction should
not be given until after a WRITE EF instruction has
been used to terminate the file properly. Information
cannot be read from nor written on the tape during
rewinding. While this instruction is being executed,
the program may continue, and may use any other
input-output unit; but if it calls for a tape unit still in
the rewinding process, the program is held up until
the tape unit has stopped.

Tape Status

It is not possible both to read and write on a single
passage of the tape in one direction through the tape
unit. If information is being written on a tape, the file
should first be completed by writing an end-of-file gap
before the information is read. The tape can then be
read backward immediately, or it can be rewound and
then read in the forward direction. When a tape has
been used for reading, it must first be rewound com-
pletely before any new information can be written
on it.

There are circuits associated with each tape unit
that remember whether the tape is being read or
written. When the circuits are set up for reading, the
tape unit is said to be in read status; when the circuits
are set up for writing, the tape unit is said to be in
wrife status. If the tape unit is in neither read status
nor write status, it is said to be in weutral status.

44 TYPE 701 AND

Lights on each tape unit indicate the status of the
unit. The reading light is on for read status, the writ-
ing light is on for write status, and both are off for
neutral status.

When a tape unit is in read status, it may be used
only for reading ; when in write status, it may be used
only for writing. If a WRITE or a WRITE EF instruc-
tion is given for a tape unit that is in read status, the
instruction is not executed, and the tape remains
stopped. If a cory instruction follows the WRITE in-
struction, the calculator will stop and the copy-check
light will turn on. Similarly, giving either READ or
READ B instructions for a tape unit in write status
results in the instruction being ignored; any subse-
quent coPy instruction would again be treated as an
error.

Any READ or WRITE instructions will be executed
in the normal manner if the tape is in neutral status
upon which the tape unit will be set to read or write
status, respectively. Any of the following actions will
always restore a tape unit to neutral status, irrespec-
tive of its previous status:

Giving a REWIND instruction for the tape unit.

2. Opening the door of the tape unit (to insert a
new tape).

3. Turning off the power.

A WRITE EF instruction will return a tape to neutral
status only if it is originally in write status.

Table IIT shows the resulting status of the tape
after an instruction has been given under various con-
ditions of read, neutral, and write.

RewinD will be executed with the tape unit in any
status. However, REWIND should not be given while
the unit is in write status, unless an error has been
detected and the operator simply wishes to write over
the unfinished file from the beginning. Normally,

ASSOCIATED

EQUIPMENT

WRITE EF, which resets the tape unit to neutral, must
precede REWIND. A REWIND instruction must always
be given before one can write, even after reading
backward all the way to the beginning. Once a tape
has been rewound, further REWIND instructions may
be given, but they will be ignored as long as the tape
remains rewound.

After an end-of-file gap has been written by means
of a WRITE EF, the tape unit will be in neutral status.
Then it must not be attempted to give a READ, WRITE,
or another WRITE EF instruction which would move
the tape further forward, although the neutral status
would permit such meaningless actions. Only READ B
or REWIND can follow WRITE EF for the same tape
unit.

When a tape is being read in the forward direction
and the end-of-file gap has once been sensed as pre-
viously described above, no further READ instructions
should be given which would move the tape further
forward. Only READ B or REWIND can follow the de-
tection of the end-of-file gap. Similarly, after sensing
the beginning-of-file gap and setting up an end-of-file
condition on reading backward, or after giving a
REWIND, one must not give any more READ B instruc-
tions.

MAGNETIC DRUMS

THE MAGNETIC DRUM STORAGE is divided into blocks
of 2048 full words, each with addresses consisting of
the even integers from 0000 to 4094. Each block will
be referred to simply as a drum. These drums provide
an auxiliary memory that is more accessible than
tapes or cards. Individual words on the drum can be
selectively altered at any time. Drums are used to a
large extent for storing tables of data and sections of

TapLe I11
INSTRUCTION RESULTING TAPE STaTUS I¥ ORIGINAL STATUS WAS:

ReaDp NEUTRAL WRITE
READ Read Read Write*
READ B Read Read Write*
WRITE Read* Write Write
WRITE EF Read* Neutral Neutral
REWIND Neutral Neutral Neutral

*Instruction tweted as no operation.

INPUT-QUTPUT

long programs that may not fit into the electrostatic
memory. It should be noted that words on a drum
cannot be split into half words as in electrostatic
storage.

Information is usually recorded on the drum as
blocks of full words called unit records. The words of
a unit record are stored in locations with consecutive
drum addresses, although the first word of a record
may be placed at any drum address.

Words are transmitted between electrostatic stor-
age and drum storage via the MQ register just as in
the card reader and card punch.

Writing and reading on a drum are so similar that
they will be discussed together. The following para-
graphs show how to write a unit record on a drum.
The reading process is identical, except that a READ
instruction is given in place of a WRITE instruction.

A WRITE instruction with an address specifying a
particular one of the four drums is given. This in-
struction causes the specified drum to be connected to
the calculator for writing purposes. This instruction
is then followed by a Set Drum Address instruction
(abbreviated to sET DR), whose address specifies the
location where the first word of the record is to be
written. If the address part of a SET DR instruction is
an odd number, the address part is treated as the next
lower integer. The sign of the instruction is immate-
rial. A series of copy instructions {one for each word
of the record) follows. The first copy instruction
causes the calculator to be held up until the drum loca-
tion specified by the address part of the preceding
SET DR instruction passes under the drum heads. The
first word is then written from the electrostatic stor-
age location specified by the first copry instruction
into the specified location on the drum. From then
on, consecutively even-numbered drum locations ap-
pear under the drum heads at regular intervals; each
time this happens, a copy instruction must be sup-
plied if another word is to be written or read. Thus,
the second cory instruction will cause the number
stored in the electrostatic location given by the ad-
dress part to be recorded on the drum at the address
two higher than the first word.

This continues by means of copy instructions, with
each word being automatically written at consecutive-
numbered even addresses of the drum. If the new con-
secutive drum location appears under the drum heads
and no copy instruction is supplied by the program,
the drum disconnects itself from the computing unit.

COMPONENTS 45

So when the programmer wants to end a unit record,
he simply stops giving copy instructions. If a cory
instruction is supplied after the drum disconnects and
before other wRITE and SET DR instructions are given,
the machine stops, and the copy-check light signals
the error.

This means that successive coPY instructions must
be given within certain time intervals (given later
under Timing). Calculations may be performed be-
tween the input-output instructions; the only restric-
tion on use of the MQ register is to remember that its
contents are destroyed upon execution of a copy
instruction.

The division of the drum storage into unit records
is quite arbitrary. Hence, if only a single word is to
be read or written, it is treated as a one-word unit
record. WRITE or READ selects the drum, SET DR
specifies the drum location, and a single copy gives
the memory location of the word.

There are no end-of-record or end-of-file condi-
tions on the drums. These are not necessary, because
any particular word on a drum may be located by
means of the seT DR instruction, and the length of the
records is variable.

The method of reading a block of words that begins
at any drum location is almost identical to writing a
record. Again, the above explanation may serve for
reading by replacing the word write by read in every
instance.

The following limitations must be observed in pro-
grams for reading or writing on drums:

1. There is no limitation on the length or location
of a unit record, except that if it is attempted to read
or write beyond drum address 4094, the next address
will be 0000. Nothing prevents a unit record from
being started at address 0000.

2. Omitting the SET DR instruction is equivalent to
giving SET DR with address part 0000.

3. Any number of instructions (except input-out-
put instructions) may intervene between READ or
wRITE and SET DR and between SET pr and the first
cory instruction. Successive cory instructions, how-
ever, must follow each other within a definite time
limit. If a copy arrives too late, the drum will have
been disconnected, and the calculator will stop with
the copy-check light turned on.

46 TYPE 701 AND

SUMMARY

PriNcipAL RULES governing the use of the card
reader, card punch, printer, tape units, and drums are
summarized below. This summary repeats informa-
tion already given in the preceding pages.

1. Only one input-output component can be used
at a time for reading or writing a unit record.

2. In using any input-output component, COPY
instructions must follow one another within a definite
time limit. If a cory instruction is not available
within this limit, the device in use will be disconnected
from the computing unit, and no more information in
that unit record can pass to or from electrostatic stor-
age. Note, however, that the card reader, card punch,
or printer will continue in motion until the end of the
card (or print) cycle and that a tape unit will con-
tinue in motion until the end-of-record gap is reached.

3. If a copy instruction is given when there is no
read-write component connected to the computing
unit (e.g., if no READ or WRITE instruction has been
given, or if a copy has been given too late), the cal-

ASSOCIATED

EQUIPMENT

culator stops and a copy-check light turns on, indi-
cating an error in the program.

4. In using any of the read-write components ex-
cept drums, the first copy instruction must be given
within a definite time limit following the READ,
READ B, Or WRITE instruction, as the case may be.
After the unit record has been written or read, the
next READ, READ B, Or WRITE instruction must follow
the last copy instruction within a definite time limit,
if the device in use is to be kept in uninterrupted
motion.

5. The following rules apply to tapes only :

(a) During the reading or writing of infor-
mation on a tape, the MQ register cannot be
used for any other purpose.

(b) It is not possible to read a tape after
writing on that tape unless an intervening
WRITE EF Or REWIND instruction is given.
(Both may be given if desired.)

(¢) It is not possible to write on a tape after
reading that tape unless an intervening REWIND
instruction is given.

TIMING

OPERATIONS

THE FUNDAMENTAL machine cycle of the 701 is 12
microseconds; the time required to execute an in-
struction, or a sequence of instructions, is an integral
multiple of this cycle.

Table IV shows every operation of which the ma-
chine is capable, together with the basic number of
fundamental cycles required for its execution. The
times shown specifically include obtaining, interpret-
ing, and executing the instruction. The actual number
of cycles required, however, is subject to modification
under certain conditions. The third column of Table
IV lists the class of modification, if any, pertaining to
each operation. The four types of modifications are
explained below.

Tyre I. The instruction will be executed in two
cycles less if a multiplication or division has been
performed in the preceding 12 instruction exe-
cutions.

Type II. The instruction will be executed in three

cycles less if a multiplication or division has been
performed in the preceding 12 instruction exe-
cutions.

Tyee IT1. The instruction will be executed in four
fundamental cycles provided the extent of shift
is 24 places or less, and provided a multiplication
or division has not been performed in the preced-
ing 12 instruction executions. Each additional
eight places, or portion thereof, require another
cycle. If a multiplication or division has been
performed in the preceding 12 instruction execu-
tions, then the instruction will be executed in
two cycles for shifts of eight places or less. Each
additional eight places, or portion thereof, re-
quire another cycle.

Tvpe IV. The execution of this instruction may
be delayed an indefinite length of time after its
interpretation, depending on the status of the
input-output components. For example, if the
execution of one tape READ instruction is fol-

48

TYPE 701 AND ASSOCIATED EQUIPMENT

Tasre IV
Basic NUMBER oF MODIFICATION

OPERATION FunpaMeENTAL CYCLES Type*
Stop and Transfer 4 I
Transfer 4 I
Transfer on Overflow 4 I
Transfer on Plus 4 1
Transfer on Zero 4 I
Subtract 5 I
Reset and Subtract 5 I
Subtract Absolute Value 5 I
No Operation 4 I
Add 5 1
Reset and Add 5 I
Add Absolute Value 5 I
Store 5 II
Store Address 5 11
Store Contents of MQ Register 5 II
Toad MQ Register 5 i1
Multiply 38 none
Multiply and Round 38 none
Divide 38 none
Round 4 I
Long Left Shift 4 II1
Long Right Shift 4 III
Accumulator Left Shift 4 III
Accumulator Right Shift 4 111
Prepare to Read 4 Tand IV
Prepare to Read Backward 4 TandIV
Prepare to Write 4 IandIV
Write End of File 4 Tand IV
Rewind Tape 4 Iand IV
Set Drum Address 4 I
Sense and Skip or Control 4 I
Copy and Skip 5 v

*Nore: A description of modification types may be found on page 47.

lowed by the interpretation of a second tape READ
instruction (for the same tape), the execution of
the second READ instruction will be delayed until
the first record has been passed over. In the case
of the copy instruction, the electronic and me-

chanical equipment must be synchronized, and
short delays may result for this synchronization
to take place. In general, any execution delays’of
this type are of varying lengths, because they
depend to a great extent on the programming.

TIMING

CARD READER

Carps ARE READ at the rate of 150 cards per minute.
In continuous card reading, 292 milliseconds of the
card cycle of 400 milliseconds are available for useful
caleulating. The difference, 108 milliseconds, is re-
quired for the execution of the cory and READ instruc-
tions and appropriate time-margins for safe synchron-
ization of mechanical and electronic components.

The maximum safe times available for useful cal-
culating between executions of copy instructions are
indicated in Figure 10. For example, after execution
of the 9-left copy instruction, 540 microseconds are
available before the 9-right copy instruction must be
given; and after execution of the 9-right copry in-
struction, 15 milliseconds are available before the
8-left copy execution. The READ instruction must be
given in the hatched portion for continuous operation
of the card reader. After the 12-right copy execution
of a card, however, it takes 20 milliseconds before the

3 Left Copy

4 Left Copy——\\
5 Left Copy—\\

Y

GRS

9 Right Copy_y

9 Left Copy
540 us

49

machine can execute a READ instruction for the next
card. If the READ instruction, then, is given ¢ milli-
seconds after the 12-right copy, and if ¢ is less than
20, the machine will compute (i.e., it will proceed
with any intervening programs) for these ¢ milli-
seconds. Upon receiving the READ instruction, how-
ever, the program will be delayed until 20 milliseconds
(from the 12-right copy) have elapsed. If the rREAD
instruction is given after the interval of 20 millisec-
onds, the program will not be delayed. So to be able
to compute for all of the available time between cards,
and to keep the card reader in continuous motion, it is
necessary to give the READ instruction between 20 and
70 milliseconds after the 12-right copy instruction.

If the card reader is not in motion and a card READ
instruction is given, the average elapsed time between
the READ instruction execution and the first 9-left
COPY instruction execution will be 270 milliseconds.
However, only 50 milliseconds are available for cal-
culation after the READ instruction execution.

2 Left Copy

/— 1 Left Copy

0 Left Copy

L1 ES

_t4 12 Left Copy
: 12 Right Copy

540 us

Ficure 10

50 TYPE 701 AND ASSOCIATED

CARD PUNCH

CARDS ARE PUNCHED at the rate of 100 cards per
minute. In continuous card punching 442 milliseconds
of the card cycle of 600 milliseconds are available for
useful calculating. The difference, 158 milliseconds, is
required for the execution of the copy and WRITE
instructions and appropriate time-margins for safe
synchronization of mechanical and electronic com-
ponents.

The maximum safe times available for useful cal-
culating between executions of copy instructions are
indicated in Figure 11. For example, after execution
of the 9-left copry instruction, 540 microseconds are
available before the 9-right copy instruction must be
given; and after execution of the 9-right cory in-
struction, 31 milliseconds are available before the
8-left copy execution. The WRITE instruction must be
given in the hatched portion for continuous operation
of the punch. After the 12-right cory execution of a
card, however, it takes 25 milliseconds before the ma-
chine can execute a WRITE instruction for the next

2 Left Copy—\
3 Left Copy \

7 Left Copy—/ n

8 Left Copy —/L\

EQUIPMENT

card. If the WRrITE instruction, then, is given t milli-
seconds after the 12-right copy, and if ¢ is less than
25, the machine will compute for these t milliseconds.
Upon receiving the WRITE instruction, however, the
program will be delayed until 25 milliseconds (from
the 12-right copy) have elapsed. If the WRITE in-
struction is given after the 25-millisecond interval,
the program will not be delayed on this account; but
the punch will already have disconnected, and a delay
results. Thus, to be able to compute for all of the
available time between cards, and to keep the punch
running at full speed, it is necessary to give the WRITE
instruction at exactly 25 milliseconds after the 12-
right copy instruction.

If the card punch is not in motion, and a card
WRITE instruction is given, the average elapsed time
between the WRITE-instruction execution and the first
9-left copy-instruction execution will be 400 milli-
seconds. However, only 70 milliseconds are available
for calculation after the WRITE-instruction execution.

Not more than 24 copy instructions can be given
per card cycle.

/7] Left Copy

0 Left Copy

11 Left Copy

__LL 12 Left Copy

12 Right Copy

9 Left Copy
9 Right Copy

540 ps

Ficure 11

TIMING 51

PRINTER
Without Echo Checking

Information is printed at the rate of 150 lines per
minute. In continuous printing, 322 milliseconds of
the print cycle of 400 milliseconds are available for
useful calculating. The difference, 78 milliseconds, is
required for the execution of the copy and wrIiTE
instructions and for appropriate time-margins for safe
synchronization of mechanical and electronic com-
ponents.

Maximum safe times available for useful calculat-
ing between executions of coPy instructions are in-
dicated in Figure 12. For example, after execution of
the 9-left copy instruction, 540 microseconds are
available before the 9-right copy instruction must be
given; and after execution of the 9-right copy in-
struction, 13 milliseconds are available before the
8-left copy execution. The WRITE instruction must be
given in the hatched portion for continuous operation
of the printer. After the 12-right copy execution of a

print cycle, however, it takes 16 milliseconds before
the machine can execute a WRITE instruction for the
next cycle. If the wrITE instruction, then, is given
¢t milliseconds after the 12-right copry, and if ¢ is less
than 16, the machine will compute for these ¢ milli-
seconds. Upon receiving the WRITE instruction, how-
ever, the program will be delayed until 16 milliseconds
(from the 12-right copy) have elapsed. If the WRITE
instruction is given after the 16-millisecond interval,
the program will not be delayed. So to compute for
all of the available time between print cycles, and to
keep the printer running at full speed, it is necessary
to give the WRITE instruction between 16 and 115
milliseconds after the 12-right copy instruction,

If the printer is not in motion, and if a printer
WRITE instruction is given, the average elapsed time
between the WRITE-instruction execution and the first
O-left copy-instruction execution will be 280 milli-
seconds. However, only 58 milliseconds are available
for calculation after the wrITE-instruction execution.

4 Left Copy

7 Left Copy-\\
8 Left Copy\)

: S

9 Right Copy\,(d\

9 Left Copy
540 us

34!’

[

A

5 Left Copy
6 Left Copy-\ \\

3 Left Copy
// 2 Left Copy
' / /—l Left Copy

0 Left Co
/ PY

-

/1 1 Left Copy

2
14 12 Left Copy

i73 M8,

12 Right Copy
540 HS

b1
we *

Ficuxre 12

52 TYPE 701 AND

8 Left Echo Copy
12 Right Copy
12 Left Copy

9 Left Echo Copy \5\"“‘3’\
11 Left CoPY/_X\Q“‘#
.

8-3 Left Echo Copy R

. 0 Left Copyx

8-4 Right Echo Copy K
8-4 Left Echo Copy//\\&

1 Left Copy o

*s
6 Left Copy ——%’nQ

ASSOCIATED

EQUIPMENT

7 Left Echo Copy

6 Left Echo Copy

13m.8 /"%3%5 Left Echo Copy
,

%—4 Left Echo Copy

)

‘-‘}/- 3 Left Echo Copy

@
% 2 Left Echo Copy

1 Left Echo Copy
1 Right Echo Copy

540 ps

7 Left Copyj s */j‘wn.& o Left
eft Copy

8 Left Copy

9 Right Copy

540 us

Ficure 13

With Echo Checking

In continuous printing with checking, 313 milli-
seconds are available for useful calculating. Appro-
priate times are given in Figure 13. The rEAD in-
struction must be given in the hatched portion for
continuous operation of the printer after the 1-right
echo copy execution of a print cycle; however, it
takes 12 milliseconds before the machine can execute
a READ instruction for the next cycle. If the READ in-
struction, then, is given ¢ milliseconds after the
1-right echo copy, and if ¢ is less than 12, the machine
will compute for these ¢ milliseconds. Upon receiving
a READ instruction, however, the program will be de-
layed until 12 milliseconds (from the I-right echo
cory) have elapsed. If the READ instruction is given
after the 12-millisecond interval, the program will not
be delayed on this account; but the printer will al-
ready have disconnected, and a delay results. So to
compute for all of the available time between print
cycles, and to keep the printer running at full speed,
it is necessary to give the READ instruction at exactly
12 milliseconds after the 1-right echo copy instruc-
tion.

If the printer is not in motion and if a printer READ
instruction is given, then the average elapsed time

between the READ execution and the first 9-left copy-
instruction execution will be 280 milliseconds. How-
ever, only 58 milliseconds are available for calculation
after the READ-instruction execution.

MAGNETIC TAPES
Successive full-words are written on, or read from,
the magnetic tapes at a rate of about 1250 words a
second.

Writing

The maximum safe calculating time between suc-
cessive CcoPy executions is 700 microseconds. If the
tape is not in motion and if a tape WRITE instruction
is given, 6 milliseconds are available for calculating
between the WRITE execution and the first copry exe-
cution. If the WRITE instruction for a second unit
record is given ¢ milliseconds after the execution of
the last copy instruction of a first unit record, and if
t = 6, then 12—t milliseconds are available for cal-
culating between the wriTE and the first cory execu-
tions of the second record (Figure 14). If t > 6, then
6 milliseconds are available. After tape rewinding, the
maximum safe computing time between a tape WRITE
execution and the first copy execution is 500 milli-
seconds.

TIMING

2 B
Q 0.0 §
W] QL
- = [
w [— c:'u
3 2]
| |
i N 700 us
It e 12-1
] w700 us
—_—- + _———
700 ps—a jetcnn }
Ficure 14

Reading

The maximum safe calculating time between suc-
cessive coPY executions is 540 microseconds. If the
tape unit is not in motion, and if a tape READ instruc-
tion is given, 4 milliseconds are available for calcu-
lating between the READ execution and the first copy
execution. If the READ instruction for a second unit
record is given t milliseconds after the execution of
the last copy instruction of a first unit record, and if
t = 4, then 8 —¢ milliseconds are available for cal-
culating between the READ and first copy execution
for the second record (Figure 15). If ¢+ > 4, then 4
milliseconds are available. After tape rewinding, the
maximum safe computing time between a tape READ
execution and the first copy execution is 300 milli-
seconds.

These allowable computing times also hold for
reading backward. When a reversal of tape motion is
made (reading forward, followed by reading back-
ward) the available computing time between the READ
and copy executions stated above may be increased
by 7 milliseconds. After the writing of an end-of-file
gap, the maximum safe computing time between a
tape READ BACKWARD execution and the first cory
execution is 500 milliseconds.

2 ~22
[+] QO
S 3 §89
@ O A o
g [} h e o
—d (=4 o CNCD
l —_— 4-'—-540
‘ us
o] 8-t
l 540 MS
540 ,As_-' }.._ ! '
{

Ficure 15

53

Summary

Note that the multiplier-quotient register must not
be used in the calculating between the READ and the
first coryY executions, or between successive tape COPY
executions or for 1 millisecond following the execu-
tion of the last copy instruction of a record. The
delay instruction (WRITE 2852) may be used to in-
sure the latter condition.

The following information may be used to find the
over-all time required for the execution of a tape-
reading or writing program. It should be kept in mind
that these times should be used ouly for estimations.
The times for safe calculating described above must
be strictly observed.

1. If a tape is not in motion and if no reversal of
previous motion is specified, 15 milliseconds is the
maximum elapsed time between the execution of the
READ Or WRITE instruction and the execution of the
first copy instruction. The average elapsed time will
be 10 milliseconds. If a reversal of the previous mo-
tion is specified, then the maximum time is increased
to 27 milliseconds, and the average time is increased
to 20 milliseconds.

2. If tape writing of several records on a single
tape is in process, the maximum elapsed time between
the last copy execution of a given record and the first
copy execution of the next record is 25, or 15 + ¢
milliseconds whichever is greater, where ¢ is the time
between the last copy execution of the given record
and the WRITE execution of the next record.

3. If tape reading of several records (with no re-
versal of tape motion) is in progress, the maximum
elapsed time between the last copy execution of a
given record and the first coPy execution of the next
record is 18, or 8 4+ ¢ milliseconds, whichever is
greater, where ¢ is the time between the last copy exe-
cution of the given record and the READ execution of
the next record.

4. For small records (less than five words) 1 mil-
lisecond is a maximum elapsed time between cory
executions. For records of more than five words the
average time between COPY executions approaches
800 microseconds.

5. After tape rewinding, the maximum elapsed
time between a tape READ execution and the first cory
execution is 1.5 seconds. Average elapsed time is 0.9
seconds.

54 TYPE 701 AND ASSOCIATED EQUIPMENT,

6. After tape rewinding, the maximum elapsed
time between a tape WRITE execution and the first
copry execution is 1.2 seconds. Average elapsed time
is 0.9 seconds.

7. After the writing of an end-of-file gap, the
maximum elapsed time between a tape READ BACK-
WARD execution and the first copy execution is 1.2
seconds. Average elapsed time is 0.9 seconds.

MAGNETIC DRUMS

Successive full-words are written on, or read from,
the magnetic drums at the rate of about 800 words a
second. More precisely, the average time of trans-
mitting one word is 1.28 milliseconds. The maximum
safe computing time between successive copy execu-
tions is 1 millisecond.

Any number of instructions (other than input-out-
put instructions) can be executed between the. drum
READ or WRITE and SET DRUM executions, and be-
tween the SET DRUM and the first coPY executions.

The execution of the first cory instruction is de-
layed a length of time that depends on the drum
address and on the elapsed time ¢ between the READ

or WRITE execution and the first copy interpretation.
The time delay 7 in milliseconds between the READ or
WRITE execution and the first coPy execution may be
determined approximately in this way:

Divide the drum address by 32, forming an integer
quotient O and a remainder R. Let 7 be 30 or ¢,
whichever is greater. Then

_ 7 SR |, 0
T=t+d+ ° + 100
where d is a time delay depending on the orien-
tation of the drum. The d is not predictable but
will not exceed 20 milliseconds, and averages 10
milliseconds.

Thus, addresses 0, 32, 64, . . . are the most accessible
addresses, and addresses 30, 62, 94, . . . are the least
accessible addresses. For example, the formula above
yields T = 40 milliseconds as the average access time
to drum address 0000 if the coPy instruction is given
(by the program) 30 milliseconds or less after the
READ Or WRITE instruction. If the programmer is
careful to store information starting at an address
that is a multiple of 32, the average access time is
very close to 40 milliseconds. The average random
access time is 50 milliseconds.

CONTROL PANEL

WIRING

THE CARD READER, card punch, and printer of the 701
installation are modifications of the IBM Types 402,
521, and 407, respectively. The following descriptions
take advantage of similarities to the standard ma-
chines. All new functions and features will be de-
scribed in detail. Questions on how standard features
operate can be answered by referring to the appro-
priate principles of operation manual.

In relation to the card reader and punch, note that
a given coPy instruction can read or set up punching
for only 36 columns of a given card row, because a
coPY instruction can handle no more than a full word
of 36 bits. The control panels for the card machines
are supplied with 72 entries to (or exits from) the
calculator, corresponding to two full words in mem-

55

ory or two half-rows on the card. Pulses from the
card machine, synchronized with the passage of the
card rows under the read brushes (or punch mag-
nets), will cause first the left 36 entries (or exits)
and then the right 36 entries (or exits) to be activated
for each card row as the row passes under the read
brushes (or punch magnets). The card columns can
be wired to the calculator entry (or exit) hubs in
any order. This section will assume that the first 72
columns of the card are used and that the entries (or
exits) from the calculator are used in a normal left to
right order.

It is important to remember when reading this
section that familiarity with wiring of the standard
machines, of which the 701 components are modifica-
tions, is assumed.

56 TYPE 701 AND

CARD READER

I'16URrE 16 shows the hubs on the control panel of the
card reader and the wiring necessary to provide for
a direct transfer of information from cards in the card
reader to the calculator when the proper set of in-
structions are provided by programming.

Hubs not described in the standard manuals or

hubs with different names will now be discussed.

CONTROL BRUSHES: Equivalent to the second reading
brushes of the Type 402.

READ BRUSHES: Iiquivalent to the third reading

brushes of the Type 402,

’—-—— CARD CYCLES

[} ¢ 0 ¢ 0O 0o 0o o
CO-SELECTOR PICKUP =ty €4
VA e 2 AN
/ / Qo o 0 o0 o0 ¢ © O ©
|—' PILOT SELECTOR COUPLING EX‘T— P SPLIT COLUMN CONTROL
O o 0O 0O 0O ¢ o C807T0808%0403020 100010]|0

[_IMMEDMTE PICKUP

O 0 0 0 0 0 0 0 ¢ ©
[———II- 12 PICKUP =eeeeee———¢
© 0 0 0 0o 0 Q0 0 O 0
I-—S—IZ PICKUP -]
¢ 0 0 0 0 0 o © o ©

-

OO s o)

Qo e e)

Ot pmmt Qv Qe

OO)
O e e e e
OO e)
S [[e]
OTC © 0 © 0 0 0 0 O | CmOmmOmm m—C=—0 CHmaC—C——C—=Cm—C
BUS
ONO © © © 0 0 © © O | CwOmsOemOumeCumn® — OweeCue um m—C——)
0CO © 0 0 0 0 O O O] COmECEECHECwE) = —C—
5 10
0TO 06 0 0 0 0 O O 0| CeCuECmACEEC=ED Cm—Cm—C—C—C—O
ONO O 0 O 0 0 O 0 O |CwOmOomCm—G=—G — CuaCm— p—Ca——C—
0CO0 0 0 0 0 O 0O 0 O CmOmE—NG OO m—Cm—=Cm—=0
€O - SELECTORS
0To o 6 olo 0o 0o 06 oJo o 0 © ofo o o o o
t 2 3 4
oNo 0 0 o|lo 0 0 0 o]o 0 0 o0 ofo o 0 0 o
octo o o olo 0o o o olo o olo 0 0 0 o
5 CONTROL BRUSHES 15 204
© 00 0O0O0OO OOOOOO OO 0O O 0 0 o©
21 25) £ 401D MPq
© 00 00 0O0OGCOGOOOOO OO 0O 0 0 0 Ofomo
a P 50 5 60 |-COM~
© 000 00O OOO OO O C O O 0 0 O O]ommo
8l €5 70 ™ so| o
© 0 0 00 00O OCO OO0 OO OO0 0 0 0 0omo
€O - SELECTORS . [
0tTo o o o{o 0 0 0o olo 0 o o oo o o o ofommo
5 6 k4 a 7
oMo © © ©jo © © © oo 0 0 © 0o o 0 o ol
6
0co o 0 olo o 0 0 0lo 0 0 0 0lo 0o 0 o o om0
. s READ BRUSHES 5 20, 5
T Ommo
2 P 20| » 40y 4
£ OmmO
4 45 E) eor 3
& Omemo
6 & 70] 801 2
©c 000 0 0ob ofomo
0- SELHCTORS s
oto o o ololo o P o|[p ok o o]0 o o o | ommo
9 10 | 12 o
ono o o oflofo o b olb o b o oo o o o | om0
W
ok op ol o L c olo o 0o p o|owmo
- [LATE gNTRY LEQT meememm 15 5.2

24 2% 3

Ficure 16

ASSOCIATED

EQUIPMENT

CALC ENTRY LEFT and cALc eNTRY RIGHT: Entry hubs for
pulses entering electrostatic storage from rows of the
card. Successive copry instructions are associated
alternately (by internal circuits) with first the left
hubs then the right hubs, ete. Thus, with the wiring
shown in Figure 16 it is seen that successive copy
instructions will cause half-rows of the card to be
read in the sequence described under Input-Output
Components (i.e., 9-row left, 9-row right, etc.). The
S hub for each of these groups accepts a pulse to de-
termine the sign of the full word being entered, while
the remaining hubs numbered 1-35 correspond to the
other 35 bits of the full word.

oN: These hubs must be connected for the card
reader to operate as a component of the 701.

Conditional transfer of information is possible
through the use of selectors. The pilot selectors
(which work in the same way as the Type 402 pilot
selectors) have three sets of pickup hubs: immediate
pickup (equivalent to the pickup function of the im-
mediate pickup and coupling exit of the 402); 11-12
pickup (equivalent to the X pickup of the 402) ; and
the 9-12 pickup (digit pickup in the 402).

The pickups can be activated directly from punch-
ing in the card by wiring from control brushes to the
appropriate pickup, as described in detail in the Prin-
ciples of Operation of the Type 402 under the head-
ing Pilot Selectors. In addition, each type of pickup
can be activated by an impulse from a given set of the
hubs described below. In most cases, whether a given
pickup will be activated by a given hub can be decided
on the basis of whether the equivalent 402 pickup
would be activated. Cases that cannot be decided in
this way will be described in detail under the appro-
priate heading (below).

By wiring the pilot selector coupling exits (similar
to the coupling function of the immediate pickup and
coupling exits of the 402) to appropriate co-selector
pickups, one or more co-selectors can be picked up in
unison with the pilot selector when the pilot selector
1s picked up with either the 9-12 pickup or the 11-12
pickup. In this case, the co-selector, once picked up,
will hold through the next cycle in the same manner
as the pilot selector.

The hubs that can activate the pickup hubs of se-
lectors are, as on the 402, digit selector, split column
control, and card cycles. These hubs emit pulses in
exactly the same manner as the Type 402.

CONTROL PANEL

CARD PUNCH

Fraure 17 shows the hubs on the card punch control
panel and the wiring required for punching informa-
tion directly from the calculator into a card, when the
proper sets of instructions are executed by the pro-
gram. The example provides that information from
the calculator be punched in columns 1-72 of the card;
but, as in the card reader, it is possible to punch any
arrangement of not more than 72 columns by means
of appropriate wiring. The hubs involved in wiring of
Figure 17 will be explained.

PUNCH MAGNETS: These hubs have the same function
as the corresponding hubs on the type 521.

catc Bxr LeFt and catc exit RiGHT: These are exit hubs
for information being transmitted from electrostatic

BUS “‘NS'

! o e e 5 e man pumme) o—o—o-—o—-o--on oa/o [s] o

p a2 COLUMN SPUIT, CARD CYCLES—‘-PD OUTePC N P€
O 0 0 0 C © O O O O} OmmOwmOum i uwac) T TG A]
[s 28 SELECTOR PICKUP~~CONTROL BRUSHES]

¢ O ¢ ¢ ¢ o & 0 O O W/f 0102030405060
[+
© 0 0o o 0 0 Qo 0 O O o

DOUBLE PUNCH BLANK COLUMN DETECTION———'—

© o o 0 0 0 0 ¢ o 0O 0 0 9 0o 0 0 0 0 0
BLANK COLUMN SWITCHES

L T s S P e o g S S S S 0
b6 mmae————DOUBLE PUNCH BLANK COLUMN ENTR Yo 801
o 0 0 © 0 0 0 0 0 0 0 0 06 0 0 0 0 0 0 0

¢ o o 0 o 60 0 & 0 0 0 0 0 ¢ 0 o 0 G O O
BLANK COLUMM SWITCHES 8us

C— o e S T e, e e e ey oo Y e e)
g {———maeeee DOUBLE PUNCH BLANK COLUMN ENTRY s 04
© ©o 0 o0 O O C OO0 CO0O© 0 0 0 0 6 o0 o

¢ 0 o 0 o O 0O 0 0 © O © 0 0 0 O
BLANK COLUMN SWITCHES
[el o™ rret S e e et e e R e e e e e e e e e e e e e
-2) ————DOUBLE PUNCH BLANK COLUMN ENTRYmmm——ee 404
¢ © o 0 O O O H 0O O O 0 0 O 0O © O ¢ 0 0
BL COLs
O 0O © G 0O 0 0 ¢ 0 0 0 0 0 0 0 0 0 0 O O} Ow)
BLANK COLUMN SWITCHES ON OF
o ¢
b { e DOUBLE PUNCH BLANK COLUMN ENTRY 2040 PCHy
¢ 0 o O o 0o 0 © O O O O O 0 0 0 O O C Of O
5 PUNCH BRUSHES i5 204 on oFF]
D @ 0o o 0O 0O @Q & 0O 0O O 0 a 0 O 0 0 0O O o0 O
21 25 30 35 qofD M
© 0 0 O 0 0 D O 0O L 0 0 O 0 0 O 0 O O 0OfCwm)
4 as 50 55 601 COMy
0 0o 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O 0O O} Owg
6 63 70 75 so] 9
¢ ¢ 0 O O ¢ ¢ U ¢ © © 0 O ¢ 0 0O 0 & O 0fOwmo
SELECTORS 8
0To ©o o o 0 ¢ o © ofo © © © O © © O G OfOwmo
| 2 ?
ONO ©O O O O O O O Q l 0 0 0 O 0 O © © C Of Dweg
6
o olo 0 0 © © 0 0 ©0 0 O owen

wco 0o 0 0 o0 o ©
5 PUNCH MAGNETS

19 e 206§
1 Gy
21 25 I 30 a5 PY L
Comi’)
4 5 fo 55 s0f 3
L Oy
6l 5 Jol 75 sof 2
T O 0 © 0 0 0 O O70Owmd
sefegfror ;
or o o o [s] o o of O o O O 0O 0 QO © ©C O OgQOwwd
3 4 o
ONWO [e] o o o o] e o] [+] o (=} Qe Q [+] [+] o o o Q Ol
[N
wgo o o ofe o ojojojo O Q O O O O O O Of Owmwd
oo 5 — caLC A ATE EXIT LEFT o494 12
s
20 25 \ Lo 35 3 BUS -
45 10~CALCULARE EXIT RIGHT ——d20 2
L" 25 30 35
O v yosems e oo Syt ook}

Ficure 17

WIRING 57

storage to the punch magnets. In relation to pro-
gramming, the full word specified by the first copry
instruction following the WRITE instruction is avail-
able at the carc exit LErFT hubs. The full word
specified by the second copy instruction is available at
the carLc exIT RIGHT hubs. The left and right hubs
then alternate for the following copy instructions.
Because cards are fed 9's edge first, it is evident from
the wiring in Figure 17 that the half-rows of the card
will be punched in the sequence discussed under
Input-Output Components (ie., 9-row left, 9-row
right, etc.).

ca (calculate) : These hubs must be wired to enable
the punch to operate as a component of the 701.

The four selectors (two standard) of 10 positions
each are picked up by means of the corresponding
selector pickups, 1-4. Activation of the pickups di-
rectly from the control brushes will be discussed later,
using gang punching for illustration purposes. The
selectors can also be picked up by electrical impulses
available at the two SENSE output hubs in the upper-
right section of the control panel.

seNse output hubs: Wiring a sense output hub to
a selector pickup will allow a programmed SENSE in-
struction with the proper address, to effect the transfer
of a selector. With reference to Figure 11, a SENSE
instruction given at any time after the first coprv of a
given cycle, and at least 32 milliseconds before the
first cory of the next cycle, will cause the selector to
be transferred shortly after the instruction is given
(between 15 and 30 milliseconds later). The selector
will then stay transferred until 20 milliseconds after
the last copy of that next cycle. In normal usage the
SENSE instruction is given soon after the WRITE in-
struction that initiates the cycle in which the selector
is to be picked up. When all rows of a card are not
being punched after a WRITE instruction, any gang
punching or emission of digits directed through selec-
tors, which in turn are controlled by sense exits, re-
quires special precautions to insure that the selector
is transferred only during the cycles desired. As
pointed out in Table II, the address of sense output
hub number 1 is 1024, while number 2 1s 1025.

All other hubs on the panel operate in the same
manner as on the standard Type 521.

58 TYPE 701 AND ASSOCIATED EQUIPMENT

BUS TSENSE
'o—o—o—ﬂ—-o Qo e O Q) o—o—o—-o—o—olozoro ofo

1

1 1=12; COLUMN SPLIT CARD CYCLES: D QUTYPC IN GP€

© 0 0 0 0 0 0O o O 0o O—O—O—O—O—OjPHTO—()TO h.l

0-9 SELECTOR PICKUP—~CONTROL BRUSHES]
o

o 0 o 0 0 0O O 0o ©o o O! 2030405060
C % 3/4

0O ¢ 0o o 0O 0 0 0O O O O Oy oy
r———0DOUBLE PUNCH BLANK COLUMN DETECTION
0o 6 0o o 0 0O 00 0 0 0 0 0 0o 0O 0 0o O 0 o
BLANK COLUMN SWITCHES

Ot e ey e e s ety s e e ey Oy e}
6t ——————————DOUBLE PUNCH BLANK COLUMN ENTR Yesmemime—— 50
0O 0 0 0 0 0O ¢ 0 0 0 0O 0O 0 0o 0 0O 0O 0 0 O

¢ 0 0 0O 0O 0 0 0 0 0 0O 0 0 0o 0o 0 0o o O O
BLANK COLUMN SWITCHES Bus

i et Pt e Jrm—n e pr— y—y—————p—p——y————)
b4 | —————DOUBLE PUNCH BLANK COLUMN ENTRY————601
0O 0 6 0 0 0 ¢ ¢ 0 0o O 0 0 0 0O 0o O O O ©o

O © o ¢ 06 0 0O O ¢ O 0 0O O 0O 0 0 © 0 0o O
BLANK COLUMN SWITCHES

o e et e st e S sttt e St et e e e e o S)
2| =———-————DOUBLE PUNCH BLANK COLUMN ENTRV-————————':OJ
0 0o 0 0O 0D 0O 0 0 0 0O 0 0 0 0 0 0O 0 0 O

BL COL=
0 O 0O 0 0O 0O O O O 0 O © 0 0 O 0 O O O O] Ommo
BLUANK COLUMN SWITCHES ON OFF]

© © 0 0 0O 0 0 0O 0O 0 0O o 0 0 O 0 O O O Q] Op
5

1 PUNCH BRUSHES 15 ————————memsas 2 ON OF
©O 0 g 0o OO 00O 0 0O O 0 0 0 0o o o o o olo o
21 25 30 35 400 IMP~|
O 0O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OO0
4l 45 50 55 60-COM=
O 0 0o 00O 0 0 0 0 0 0 0 0 0 0 06 0 O OfO0=mo
61 65 70

0O 0o 0 0 0O 0 0O 06 0 0 0 0 0 O

m—y— y—— — —p—C— i —p—p—p— —p—— —j— y— y—C)
|- §~———————DO0UBLE PUNCH BLANK COLUMN ENTRY————2010 ch

SELECTORS
©oTo o o o 0o o o o oflo o o o

ONO 0 © O 0o ©o o o olo 0o o ©

oco o o 0o o o o o o'o O O ©
5 PUNCH MAGNETS

21 25 F)

41 45 fo

6l 65 Fol

o (o]
F eledrons
oT 0 o o o o o o [+] [e) o o o o (o] (<] (o] [e] Onmmay
3 4 0

ONO (o] o o [ed o o o] [= e] [o] o o o [e] o [e] [o] [o ¢

oco o ©0 o0 fo o o offo 0 6 0 0 0 O O O O] O=mO

=i 5= CALCUR A EXiT LEFT 15~ | G of 2
[zo b5 T\ 35 oI 31 BUS -
4—5——-\—-0—cucuu\s EXIT RIGHT —20 23 n
[24 25 \ 30 38|

Ficure 18

The card punch can be used for gang punching
cards under calculator control as well as independ-
ently of it. Figure 18 shows the wiring necessary for
gang punching with interspersed master cards under
calculator control (for this example the information
to be gang punched is assumed to be in columns 75-80
of the card).

The control panel wiring as shown in Figure 18 is:

1. Hubs 5-35 of the calculator exit left hubs fol-

lowed by hubs S-35 of the calculator exit right
are wired to hubs 1-72 of the punch magnets.

2. Columns 75-80 of the punch brushes are wired

to five consecutive common hubs of selector 2.
The corresponding normal hubs are wired to
columns 75-80 of the punch magnets.

3. The hub for control brush 1 (positioned at the

column in which the control punch will be) is
wired to selector pickup 2.

4. The ca hubs are connected.

If it is desired to gang punch cards independently
of the calculator, the P (gang punch) hubs should be
connected instead of the ca hubs.

If the program should call for the card punch to
operate with the Gp hubs wired, the calculator will
stop, because no control by the program is possible
with these hubs wired.

Offset gang punching can be done in the normal
way by wiring the appropriate control brush to the
pc (punch control) hub and wiring the pp (punch
delay) hub to the selector pickup. To prevent punch-
ing in the master cards when offset gang punching,
two selectors are necessary: one wired as above to
provide for offsetting; the other wired to prevent
punching the master card. For a more detailed ac-
count, see the section on Offset Gang Punching in the
manual for the Type 521 reproducing punch.

PRINTER

THE PRINTER is used to print information contained
in electrostatic storage. Tt should be emphasized that
this printed material can be any combination of sev-
eral characters. Some of the characters that can be
made to print by means of impulses from electrostatic
storage are decimal digits, letters of the alphabet,
punctuation marks, dollar signs, etc. The IBM code
for printing these characters is given in Table V. For
example, a dollar sign ($) may be printed by arrang-
ing impulses (from electrostatic storage) to arrive at

TABLEV

CuARrRACTER CoDE FOR THE 701 PRINTER

W No (N) | 12 (Y) | 11 (X) 0

DIGIT ZONE ZONE ZONE ZONE

No. Digit * + — 0
1 1 A J /
2 2 B K S
3 3 C L T
4 4 D M U
5 5 E N A%
6 6 F 0] w
7 7 G P X
8 8 H Q Y
9 9 1 R Z
8-3 + $)
8-4 — OJ * %

Cc

ONTROL

PANEL

WIRING

[e]
i

otfo o o o
o o

o

=]

SENSE EXITS -
4rr@eQ 0. 0 0O O O Q0 O OF OumCumCymm)
i CARRIAGE SKIPS e O

[o]

o o ¢
PILOT SELECTORS

el

0

109
a o ©

o o O

<

O-SELECTOR PICKUP

Ll A A A

==PILOT SEL COUPLING EXITS=—
¢ ¢ 0 6 8 0 0O 0 ©& ©
N r——PH_OT SELECTOR PICKUPS

0 0 0 O 0 G O

o] olo—o—o—o

SPLIT COLUMN CONTROL

---——'ISE
oO0oltoto

s ons g N

o |

-EXIT

oTo
oNO

oCo

PRINT CYCLES e

BU§ w—1ZC1

0 0 09080706050403020)

CO-SEL
0 0o o0
17

¢ O O

Lo <

Oy

ECTORS

oTo o o ©

oONC © O ©

oo

QO wo

(e}

[]

]
o
[+]
o
o
[+

¢ 0§00 ©

(=]

O e O

L]

0

Q

o ©

o o o

OG-0
o 0
Q o
Quo

Q

[=28 B+l

o

[

o 0o ¢ ¢ O ¢©

oTo
oNO

cCo

19

o 0 o

oTo

ONO o © ©

o O0 O ©

NCCE

5

o oQ m\
PRINT CONTROKi————'—*‘

(

CCNCENCCH

O
e

Lo

NN

e jlr™ jo

PR

)

ALTERY
2402
EXTRAY=SPACE w4 3 4!
O 1 O o ©
SUP];L)} B4 L-oer-l

o 0 1 oo

2>

M~

[

RN

CO-SELECTLF

T:K_ § wmesmc CALCULATE_EXIT ngl

e e &

1

| [PEDRD e E

OTO O O oj]JorTOQ

|k F RIS

=
c
@

[«

o o

o o

o|loTo
OJONO

otocCo

oy

[+]

©
o]

oTo

CionNT

oo

n O

o

C

3

Comml
E/wfe

w
o

Qo) CoweannQ) OowamO

€5
(o] o] Q o o Q
(NECN(EN RN RcRtnchinchin:
\ o]] [+] O - o} o) o v 0 o o] Q Q
85 0 00
O ¢ ¢ o o 0 © a [[o o v
s UNCONEGONCEL L)] I I I I
o o 0 0o O O o 3 o O O je s
ocdecee 105 Ho s 20
< e} L+ © o o o 0O
ZUNCINECNCINCCH L ANTRITE T
o o o © ojo o’/ &
- ety CO-SELECTORS
(e Q o O 0 0 0o 0 0o o o0 o oo o 0To o o0 ojoTe 0 ©0 ofjoTo © o o0]JOoTOo © © O
((Ns((\ " (s 2ol 10 9 0 1] 12
o] o 0O ¢ 0 0o o 0 0o 0o 0ojo0 O ONO © O QO|ONOQ O O OJONO © O OFJONO © 0O O
—I1g] [c]5~CALEULATE ECHO ENYH LEFT=15 194 1t
Qo 0 QCo © O oo 0o © ofoCo O o OofoCco O U O
2 5 2
a n % %ﬁ l° o 0T® ¢ © ociofYo © ¢ ¢of2¥0 U ©o 0jO0TO0 ©0 O ©
rAF1S— " Ta] ALCULATE ECHO ENTRY RIG i3 13 14 15 [
?. %.-E}?- c o ONC O © CJONO O © cioNO ¢ O OjORKO © O O
2 2@ Sr- BV S 4
‘+ Qa3 OOt Do o O 0OCo o ¢ v*'oCO ©0 O © oC © o o'oCo o0 O O
- g RINT NO EXIT 15 e 200 5 B {12)= A Qrome G D = £ e F e G s) e |
0 0o 0 ¢ 0O 0O O o0 o o O (e} * oloe < Qe e e) o-—-o—o—o—o]o o O 0 0 0 0o 0 0O 0
25w »o 40| 6 Ly K Lm N O P @R
—ﬁO o Q [e] o .*E Qfjo o O ety 0-—0—0—0—0:‘0 o 0 © 0o 0 0 0o 0 O
W'’ 45\LE—J (dﬂ \LG—-ES sol 17 50 7/ 8 T U v w X ¥ 2
o] o o .@—. oo o O e et el S ot e)) o ¢ & 0o 0o o o O O
L 65 bl 3% W 95 sol ® <} v 2 3456 7 809
o O © o O ﬁ < .%F o ’-ﬁ ped 'm o 0 Qe e vt el ()-0—0——0—05 I j I j I I I I
85 L of 19
[ed \ o \ =] D, © { a .}Ev Lol o} Ot et el S} o--c)—o—o—o;
\iﬂ 105 \LTJ uc\&r ey o} 20 5 ¥ - o oW % % s 0%
] o o © 0 0 0 0O 0o O 0O [o] [e] O st S) { Menaomd s S S} 0 0 0 0 0O O O O
[EL) ™ 2
N. B. GROUPS OF HUBS ARE CONNECTED 0 X], ® 10 (B, ETC
Frcure 19

a print wheel at 11-time, &time, and 3-time of the
print cycle.

Figure 19 shows the control panel wiring for the
printer, with the wiring for an examiple to be ex-
plained later. The hubs used for this example will now
be explained in general terms.

caLc exiT LEFT and caLc exit RIGHT: These hubs are exits
for words being sent from electrostatic storage to the
printer by coPy instructions. These two sets of hubs
alternate with the copy instructions in the same way
as similar hubs on the card punch.

PRINT ENTRY: These are entry hubs for impulses to
the individual type-wheels from electrostatic storage.

PRINT ECHO EXIT: These hubs are exits for the echo
pulses generated by the type-wheel according to the
character they are positioned to print.

CALC ECHO ENTRY LEFT and CALC ECHO ENTRY RIGHT: These
are hubs that can accept the echo impulses generated
by the type-wheels. The copy instructions in the
stored program then direct these impulses to electro-
static locations in preparation for a programmed
check. The left and right hubs alternate similar to the
card reader.

PR, ON: These hubs must be connected if the printer
is to be used as a component of the 701.

60 TYPE 701 AND

zc: If these hubs are wired together, the zero print
control function behaves exactly as in the 407. If these
hubs are not wired, the type-wheels will print only if
impulsed through the print entry hubs.

Printing Control

ExampLE: The control wiring of Figure 19 pro-
vides for printing any digit (including zero), letter,
or special character that has been coded in the card
image being copied. The wiring also provides for
echo checking of the digits 9 through 1 in all positions
except 11 and 64. In positions 11 and 64, provision is
made for checking the special codes corresponding to
the plus and minus signs (8, 3 and &, 4). Printing
from the card image will occur when the calculator
executes a program similar to the one explained under
Input-Output Components. Although this wiring i1s
valid for printing any character, assume that binary
numbers will be printed here.

In the specific example, characters being printed
are separated into groups of three each to facilitate
translation from the binary to the octal system. Any
other arrangement could be accomplished.

The control panel wiring shown in Figure 19 is as
follows:

1. The calculator exit hubs (two sets of hubs
labeled S, 1-35; the left half-row and the right half-
row, respectively) are wired to the print entry hubs in
this order:

CALC EXIT PRINT ENTRY
S 11
1,2 14, 15

Left half-row 3,4,5 17, 18, 19
6,7,8 21,22, 23
33, 34, 35 57,58, 59
S 64
1,2 67, 68

Right half-row 3,4, 5 70,71,72
33, 34, 35 106, 107, 108

2. The wiring from the calculator echo entry hubs
(two sets of hubs labeled in the same way as the
calculator exit hubs) to the print echo exit is the same

ASSOCIATED

EQUIPMENT

as that described in paragraph 1 above, if the words
“calculator echo entry” and “print echo exit” are sub-
stituted for “calculator exit” and “print entry,” re-
spectively. Use of echo pulses is explained below.

3. The zc hubs are wired. This allows the zero
print control to operate in the same way as on the
407. Note that all of the zero print control wiring,
described in the next paragraph, could be eliminated
if the zc hubs were not wired. The zero print control
is brought into play here only to illustrate appropriate
wiring.

4. The pairs of zero print control hubs (described
below) are numbered to correspond to the print entry
hubs. All pairs of zero print control hubs correspond-
ing to the print entry positions enumerated in para-
graph 1 will be connected (i.e., the upper hub at a
position is wired to the lower hub at the same posi-
tion) except the pairs that are at the first of a sub-
group (the hubs corresponding to positions 11, 14,
17,21,...57,64,67,70,...106). The lower hubs
at positions 14 and 67 will be wired to the zero entry.
A further exception to the system described above
occurs because the zero print control hubs should not
be wired in groups of greater than 10 pairs of hubs.
To separate the zero print control wiring into inde-
pendent groups of appropriate size, the lower hubs of
some positions are wired to zero entry. The remainder
of the zero print control hubs at the first of a group
will be connected diagonally from the lower hub of
the pair to the upper hub immediately at the left (this
corresponds to a blank position in the printing).

-

5. The pr and o~ hubs are coupled.

6. The space hub is wired to 1 to provide single
spacing between lines of print.

To check the printing of a number and its sign, the
print echo exits corresponding to the print wheels
that printed the number should be wired to the calcu-
lator echo entries corresponding to the calculator
exits from which the information was originally
taken. It is then possible, by means of programming,
to read these impulses into electrostatic storage and
perform a programmed check on the original in-
formation.

In general the program for this checking relies
upon the fact that the echo pulses occur in a given
order: 84, 83,9, 8,7,6,5, 4, 3, 2, 1. Each print
wheel emits an echo pulse timed to indicate the sector
within which it was set up to print. Since no provision

CONTROL

is made for checking the zones within these sectors,
the checking is restricted to numerical printing. For
example, at 8-echo time, the print echo exits, corre-
sponding to the print wheels set up to print in the 8
sector, will emit a pulse. The program will copy these
pulses into memory in the form of a binary word
which can then be compared with the word in the
card image corresponding to the 8row.

ZERO PRINT CONTROL: By means of the zero print con-
trol hubs on its control panel, the 701 printer can
provide any one of a number of responses to zeros or
any symbol not having a digit pulse. Each pair of zero
print control hubs corresponds to a print entry posi-
tion ; the manner in which the pair of hubs is wired to
its neighbors controls the printer’s response. Zero
print control functions only during zone (0, 11, 12)
time and N (no-zone) time and can have no effect
upon the printing in a position that has received a
digit impulse (1 through 9) during a given print
cycle. Thus, the only special characters that can be
controlled are those consisting only of zone pulses
(the zero, check-protecting asterisk, plus sign, and
minus sign) or those emitted from special hubs on the
control panel (the dollar sign, period, and comma).
The specially emitted symbols provide for setting the
print wheel to the proper sector without use of the
usual combination digit punching (as an 8 and a 3 in
the case of the dollar sign, period and decimal point,
and comma). The dollar sign, period, and comma can
be printed with the usual combination punching, of
course, but in this case the symbol cannot be con-
trolled by means of zero print control.

Note that zero print control hubs cannot operate
correctly when used in groups of more than ten at a
time. Groups larger than this should be split and
wired independently.

Examples and applications of zero print control
are given under the heading Zero, Comma, Decimal
and Dollar Symbol Control in the Type 407 principles
of operation manual.

FILTER IN-OUT: These hubs permit the passage of an
impulse in only one direction—into the 1N hub and
out of the ouT hub. The ouT hub of one filter should
not be wired to the 1N hub of another filter, either
directly or indirectly.

The printer has ten pilot selectors, each of which is
picked up by an associated one of the pilot selector
pickups (these pickups are similar to the IMMEDIATE
pU hubs on the Type 407). In addition, there are 20

PANEL

WIRING 61

co-selectors, each with two identical co-selector pick-
ups. The co-selectors can be picked up in unison with
given pilot selectors by wiring the appropriate pilot
selector coupling exits to the co-selector pickups, or
the co-selector can be picked up independently by
direct wiring from other hubs. The pilot selectors and
co-selectors are similar, i# action, to the pilot selec-
tors and co-selectors of the card reader. Hubs that
provide pulses to activate the selectors through their
pickups are:

ALTERATION swiTCHES: These switches function in the
same way as the 407 alteration switches, by emitting
a pulse every machine cycle when the corresponding
toggle switch on the printer has been turned on.
These pulses can be used to pick up either pilot selec-
tors or co-selectors.

SPLIT.-COLUMN coNTrROL: These hubs perform the same
function as the 407 split column control. The numbers
on either side of a given hub of the split column con-
trol refer to the corresponding print times. A selector
pickup wired from a given one of these hubs (the hub
between numbers 8 and 7) will cause the selector to
be transferred between the corresponding print times
(the selector would be transferred after 8-time and
before 7-time).

PRINT cYCLES: These hubs are similar in use to card
cycles of the Type 407. A pulse is emitted from these
hubs during every machine cycle of the printer.

sense Exits: Exits 1 through 10 are addressed by
the numbers 0512 through 0521, respectively {Table
IT). By programming a SENSE instruction with one
of these addresses, an impulse is made available at the
corresponding exit hub. This pulse can then be used
to pick up pilot selectors. If the exit is wired in this
way, the normal usage is as follows: if the SENSE in-
struction is given during the hatched portion of Fig-
ure 12, the pilot selector will be transferred for the
duration of the cycle initiated by the WRITE instruc-
tion that also is given during the hatched portion of
Figure 12. SENSE instructions given at times in the
machine cycle other than those specified above may
have no effect. (Additional uses of sense exits are
discussed below under Carriage Controls).

Carriage Control

The carriage of the printer is usually controlled by
means of a punched paper tape (the control tape)
used in combination with the ten sense exit hubs.

62 TYPE 701 AND

(For some simple applications, such as line-by-line
printing, the carriage can be directly controlled with-
out the use of the control tape.) In brief, the control
tape is utilized as follows:

The tape is cut to the length of the form to be used
(and later glued into a loop to provide for repetitive
operation) ; punched holes in the tape thus correspond
to positions on the form. When the carriage is in
operation, the tape advances in synchronism with the
form. An impulse to a given carriage skip hub (num-
ber 4) will cause the form to skip until the control
tape—and consequently the form—reaches the posi-
tion where there is a punched hole in the channel
(column) corresponding to the impulsed hub (chan-
nel 4).

For a detailed description of the above points and
for a further description of the carriage manual con-
trols (restore key, space key, etc.), see the principles
of operation manual for the Type 407.

The hubs listed below, when impulsed from the
carriage control hubs, activate the various carriage
skips and spacings. It should be kept in mind, when
reading the descriptions of these hub functions, that
an automatic space is inifiated, but not automatically
terminated, before each line of printing, except before
printing the first line immediately after skipping. Be-
fore the first line of printing or in the cycle immedi-
ately after a skip, no normal spacing takes place.

CARRIAGE skiPs: These hubs are similar to the p hubs
of the Type 407 carriage skips. For example, a
pulse to carriage-skips hub 1 will initiate a form skip
that terminates when the first punch in channel 1
passes under the control-tape read brushes. In gen-
eral, a hole punched in a given channel of the tape
stops the form at a predetermined position after a
pulse to the corresponding carriage-skips hub has
started a form skip. The ten channels in the tape (in
conjunction with the ten corresponding carriage
skips) provide for an almost unlimited number of
combinations of such skips. Because tape length and
form length are equal, it is easy to make the punches
in the tape correspond to the predetermined positions
on the form.

By wiring sense exits to carriage skips and by
punching the various channels in the tape to corre-
spond to various sequences of printing on the forms,
it becomes possible for stored programs (in electro-
static memory) to maintain an extremely flexible
control over the printed output.

ASSOCIATED

EQUIPMENT

SHORT skIP: These hubs are similar to the short-skip
hubs of the Type 407. The short-skip hubs provide
for skipping with no interruption of printing. The
hubs can be used wherever there occurs an over-
flow of less than one inch or a regular skip of less
than two inches. Any impulse used to initiate a short
skip (e.g., a sense-exit impulse used to cause a skip
of less than two inches) should be wired first to a
short-skip hub and from there to its ultimate destina-
tion (a carriage-skip hub). As a result of such wiring,
printing will continue at the normal rate of 150 lines
per minute during short skips.

SPACE-SEL (selective space) : These hubs are similar
to the sclective space hubs of the Type 407. When
connected, the two selective space hubs allow spacing
of less than seven lines to be selectively controlled by
punches in channel 11 of the control tape. The action
is such that, before each line of printing, spacing is
automatically started; a punch in channel 11 then
stops the spacing. For spacing of less than three lines
it 1s necessary only to connect the selective space hubs
and punch the desired positions in the control tape.
For spacing of more than three lines (but less than
seven lines), it is also necessary to impulse the space
suppress and extra space hubs from print cycles
(space suppress and extra space are discussed below).

exTRA (extra space) : These hubs are similar to the
extra-space hubs on the Type 407. These hubs are
usually used in conjunction with the space 1 or the
space 2 hub. When space 1 is wired and an extra-
space hub is impulsed (by a print cycles pulse, for
instance), an extra single space results. With space 2
wired, an extra double space results.

sup: Similar to the space suppress hubs of the Type
407. If one of these hubs is impulsed (by a print
cycies for instance), all normal spacing will be sup-
pressed during the cycle in which the hub was im-
pulsed.

NP: Similar to the non-print hubs of the Type 407.
The NP hubs will suppress both printing and spacing,
regardless of other control panel wiring, for the cycles
in which they are impulsed by a print cycles pulse.

The three types of hubs to be described below may
be used to control the carriage. It should be noted that
impulses available from these hubs may be directed
through various selectors to provide controlled varia-
tions in form spacing from print cycle to print cycle.

CONTROL

SENSE EXITS: A given one of these hubs emits a pulse
when a SENSE instruction, with the appropriate ad-
dress, is executed. (See the previous discussion of
sense exits in this section.) These hubs can be wired
to carriage skip hubs, thus providing the stored pro-
gram in the calculator with a means of controlling
form spacing. When the sense exits are to be used for
this purpose, the corresponding sense instruction
should be given immediately after the WRITE instruc-
tion that starts the print cycle.

ovrL: Similar to the Type 407 overflow hub. This
hub emits a pulse whenever a punch in channel 12
of the control tape passes the control tape reading
brushes. The pulse emitted by this hub lasts (Figure
12) through the hatched portion of the cycle, after
the cycle during which overflow has occurred (this
fact will be of use in discussion of the sense-entry hub
below). The overflow hub is often wired to a carriage-
skips hub, thus providing a skip from the position at
which channel 12 was punched to the position of the

PANEL

WIRING 63

first punch encountered in the channel corresponding
to the carriage skips hub. Such wiring is usually used
to overflow to another form when the bottom of a
given form is reached.

sk (sense entry) : The sense-entry hub is an input
hub on the printer control panel that can be sensed by
a SENSE instruction with address 0522 (see Table IT).
If during the execution of such a SENSE instruction,
the sense-entry hub is being impulsed, the SENSE in-
struction will skip over the next instruction in the
stored program. If the hub is not being impulsed
when the SENSE instruction is executed, the stored
program will continue without skipping. The sense
entry is intended primarily to be used with the over-
flow hub to inform the stored program when a form
overflow is occurring. To accomplish this, the over-
flow hub is connected to the sense entry hub and a
SENSE instruction is given sometime within the por-
tion of the print cycle in which the overflow hub is
emitting a signal (see above paragraph).

MANUAL CONTROL
OF COMPONENTS

CARD READER

To PrePARE the card reader for control by the cal-
culator, once the control panel is in place, it is neces-
sary only to fill the hopper with cards and hold the
start button until the ready light goes on. Figure 20
shows the card path through the card reader, and
indicates the relative locations of the card levers, con-
tacts, and reading brushes as cards move through the
reader under control of the stored program. After the
card reader has been prepared for calculator control
and the ready light is on, there will be two cards in
the reader, and all three card contacts (upper-card
lever, lower-card lever, and hopper contact) will be
closed.

Buttons and Lights

Start Button: Serves to run-in cards initially and
to turn control of the card reader over to the calcu-
lator. The button is operative only if: the power is
on, no fuses are blown, there is no card-feed failure,
the stacker is not full, the control panel is in place,
and the control panel calculator switch is wired on,

If there is no card waiting ahead of the read
brushes, pressing the start button causes the card feed
to operate for one or more card cycles until either the

64

button is released or until the card enters the station
just ahead of the read brushes. When the first card
reaches the station ahead of these brushes, the start
button causes control to be turned over to the calcu-
lator and the ready light to go on.

If there is a card waiting ahead of the read brushes,
pressing the start button merely turns control over to
the calculator, and the ready light is turned on.

If there are no cards in the hopper or in the card
feed ahead of the read brushes, pressing the start
button turns on the running light and allows the cal-
culator to set up an end-of-file condition.

While the ready light is on, the start button cannot
be used to feed cards.

Stop Button: Causes the calculator to lose control
over the card reader, and turns off the ready light.
If a card is being read at the time the stop button is
pressed, the action is delayed, and the card reader
does not stop until the end of the current card cycle.
The calculator will then be held up on the next copy
instruction that refers to the card reader.

Feed Button: Permits cards to be run out of the
card feed manually when the card reader is not under
control of the calculator.

MANUAL CONTROL OF
Hopper
Control
Brushes

\

Read
Brushes

¥
N

Lower Card Lever

e

COMPONENTS 65

RN

Hopper Contact

Upper Card Lever

Stacker

—

Ficure 20

If the power is on, no fuses are blown, the stacker
is not full, and the ready light is off (indicating that
the calculator does not have control), pressing the
feed button causes the card feed to operate for one or
more card ‘cycles until the button is released.

While the ready light is on, the feed button is in-
operative. The stop button may be used to turn off the
ready light in order to operate the feed button.

Ready Light: Indicates that the card reader is
under control of the calculator. The ready light is
turned on by the start button. It is turned off as
follows:

1. By the stop button.

2. When the lower card lever is open at the end of
a card cycle.

3. When the hopper contact opens at the end of a
card cycle (after which it may be turned on
again by means of the start button).

4. When there is a card-feed failure.

5. When a fuse is blown.

6. When the power goes off.

7. When the control panel is removed.

8. When the stacker is full.

The hopper contact opens when the hopper runs out
of cards. This turns off the ready light and stops the
card reader. The card reader can be started again by

pressing the start button, regardless of whether more
cards meanwhile were placed in the hopper.

Select Light: Goes on when the calculator gives
a READ instruction for this card reader. The light goes
off when the card cycle called for by the READ instruc-
tion has been executed.

Card-Feed Stop Light: Is on whenever there is a
card-feeding failure.

Power-on Light: Indicates that the DC power is
on in the card reader.

Fuse Light: Tndicates a blown fuse, if the main
power is still on.

Card-Feed Failure
When a card-feed failure occurs, the card-feed stop
light is turned on. The start button is inoperative
until a certain procedure is accomplished. The pro-
cedure:
1. Remove all cards from the hopper. (Note that
this opens the hopper contact and turns off the
ready light.)

2. Run out the cards in the feed by means of the
feed button.
3. Then press the stop button.

66 TYPE 701 AND ASSOCIATED

The last card in the stacker will not have been read.

The stop button will not reset the card-feed stop
light if there are still cards in the hopper or in the
feed ahead of the read brushes.

End-of-Cards Procedure

When the last card in the hopper is fed, the hopper
contact (Figure 20) opens, the calculator stops, and
the READY light is turned off.

If, at this point, there are more cards for the card
reader to read, it is necessary only to reload the
hopper and press the start button. The calculator will
then read the cards in the hopper as if they were a
continuation of the previous sequence of cards.

I, on the other hand, the card hopper is left empty
when the start button is pressed, it is an indication
that the end of the card file has been reached. In this
case, pressing the start button will again return con-
trol to the calculator, but as the last of the remaining
cards passes the read brushes, the calculator sets up
an end-of-file condition ; this provides a means of con-
trol as described under Input-Output Components.

CARD PUNCH

Buttons and lights on the punch are similar to the
corresponding controls on the card reader. Conse-
quently, the discussion of punch controls will be of a
general nature. Details peculiar to the punch, how-
ever, will be explicitly discussed. Note particularly
that there is no end-of-file condition on the punch.
To turn control of the card punch over to the cal-
culator (once the control panel is in place with the

Control Brushes Punches

”/

Hopper Contact

Die Card Lever

Card Station
End of 1st Cycle

—

Punch Brush Card Lever

Card Station
End of 2nd Cycle

EQUIPMENT

calculator hubs connected) the hopper is filled with
cards, and the start button is held until the ready light
goes on. There will now be one card in the punch;
the hopper contact and the die-card-lever contact
(Figure 21) will be closed. When an appropriate pro-
gram is executed by the calculator, the first card that
was in the hopper will now be punched with informa-
tion from electrostatic storage.

The path of the cards through the punch is shown
in Figure 21, along with the relative locations of the
card levers, brushes, and punches. If, for any reason,
one of the card contacts is not closed, the ready light
will be turned off. The ready light is also turned off
by any of the following conditions in the card punch:
power off, blown fuse, full stacker, control panel not
inserted, gang-punch switch wired, or a double punch
or blank column if the panel is so wired.

If the control panel has been so wired, the double
punch or blank column in any of the columns being
checked will turn on the double-punch blank-column
light and turn off the ready light. 'To reset the double-
punch blank-column light, press the stop button. Con-
trol can then be returned to the calculator by pressing
the start button.

If the gang-punch (GP) switch on the control panel
is wired, the ready light cannot be turned on; so the
calculator will have no control over the card punch.
The punch can now be used as a gang punch in the
usual way.

If the control panel has been wired for gang punch-
ing with the calculator switch on the control panel
wired, the operation will depend upon the condition

Punch Brushes

Card Station = =

End of 3rd Cycle =

Freure 21

MANUAL CONTROL

of the ready light. If the ready light is on, then each
card fed under calculator control will be gang punched
in accordance with the panel wiring. (The feed button
under this condition is inoperative.) If the ready light
is off, then gang punching will take place as long as
the feed button is depressed; the feed button must be
held down, for as soon as the feed button is released,
the punch stops at the end of the next card cycle.
Should the card punch run out of cards, the hopper
contact opens, and the ready light is turned off.

PRINTER

Burrons and lights on the printer are similar to those
on the card reader, with the following exceptions:

1. The feed button is replaced by a print-cycle

button.

2. The card-feed stop light is replaced by a form-

stop light.

3. The STOP BEFORE PRINTING, TEST, and FORM

sTop switches are added.

Consequently, a general discussion of printer con-
trols will be discussed with special emphasis on the
different features.

To prepare the printer for control by the calculator
—once the control panel is in place——it is necessary
only to hold the start button until the ready light goes
on. The ready light will be turned off by any of the
following conditions: test switch on; a form stop,
indicated by the form-stop light, when the form-stop
switch is on; depressed stop button on the carriage;
depressed stop button on the printer; power off;
blown fuse. (The test switch is discussed below.) If
the form-stop switch is on, the form-stop light goes
on when the printer runs out of paper. Other carriage
controls are similar to controls on the Type 407
carriage.

As in the card reader and card punch, the printer
stop button gives the operator a means of holding up
printing whenever he so desires. The carriage stop
button has an equivalent effect.

Turning the test switch on causes the ready light
to go off.

The print cycle button will start a print cycle only
under the following conditions:

1. When the ready light is off (as when the test

switch is on).

2. When the ready light is on, the stop-before-

printing switch is on, and the program supplies
a READ Or WRITE instruction for the printer.

COMPONENTS &7

With the test switch on, the ready light is off. De-
pressing the print cycles button will cause the printer
to go through print cycles until the button is released.
If it is desired to switch control back to the calculator,
the test switch must be turned off and the printer
start button pressed.

With the sToP BEFORE PRINTING switch on, the
printer, after being selected by a READ or WRITE in-
struction in the program, is held up at the first copy
instruction. Depressing the print cycles button will
cause the printer to print one line and the calculator
to proceed with the program until the next group of
output instructions for the printer are ready to be
executed.

MAGNETIC TAPE UNITS

AFTER a new tape reel has been inserted, the forward
direction button is pressed. {This button sets up the
tape unit to run forward on manual operation of the
load-unload-rewind button or the feed button.) Then
pressing the load-unload-rewind button causes the
tape to advance to the proper starting point for auto-
matic operation; at this point the tape stops automati-
cally. Closing the door of the tape unit permits the
operator to turn control of the tape unit over to the
calculator.

To unload a tape after it has been used, the door is
opened (this prevents the calculator from interfering
with manual operations) and the BACKWARD di-
rection button is pressed. If the tape is not already
rewound, this can be done by use of the load-unload-
rewind button that is set up for rewinding or unload-
ing by the BACKWARD button. After the tape has been
rewound to the unload position, the tape can be re-
moved from the tape unit.

As a safety precaution, the tape drive is completely
disabled while the tape stop bar is depressed. This
prevents any accidental operation of the buttons.

The door of the tape unit should not be opened
while the tape unit is in automatic operation. This
may wreck the problem being run, especially when the
tape unit is in WRITE status, as indicated by the writ-
ing light being on. Unless the file being written is
already in error and cannot be used anyway, one
should never open the door when the writing light
is on.

The stop bar on the tape unit may be used for an
emergency stop.

SUMMARY

MACHINE CHARACTERISTICS

General

Parallel operation.
Binary notation internally.

Word Size
Either 36 bits or 18 bits, including sign.

Instructions

Single address system.
32 distinct operations.
Instructions are 18-bit words.

Computing Speed
More than 2000 multiplications per second on full-
word factors.

Electrostatic Storage

Capacity : 2048 words of 36 bits each.
Each full-word location may be split into two half-
word locations with the capacity of 18 bits.

Magnetic Drums
Four drums, each with the capacity of 2048 words
of 36 bits each.
Average access time to first word of block : 40 mil-
liseconds.
Rate of reading or writing: 800 full words per
second.

Magnetic Tapes

Four magnetic tape units.

Material : Oxide-coated non-metallic tape, 14 inch
wide.

Maximum length per reel: 1400 feet.

Recording in 7 parallel channels, 6 channels for in-
formation and one for redundancy checking.

Tape may be written forward, read forward, or
read backward, under control of the program.

Density within a unit record: 200 words per foot.

Distance between unit records : one inch.

Average time of acceleration to reading or writing
speed : approximately 10 milliseconds.

Rate of reading or writing a unit record : 1250 full
words per second.

68

SUMMARY 69

Page Printing INSTRUCTIONS
One printer. Decimal Abbre-

Speed: 150 lines per minute with up to 72 com- Code viation Name of Operation

puted characters per line. 00 Stop Stop and Transfer
Printing is possible in any number system. Conver- o1 . Transfer

sion accomplished by programming simultane- 02 TR OV Transfer on Overflow

ously v_vxth prmnr‘xg.) 03 TR -+ Transfer on Plus
Alphabetic and special symbols may also be printed. 04 TR 0 Transier on Zero
Stored program may be used to control printer. 05 sUB Subtract

. . 06 R SUB Reset and Subtract
Card Reading and Punching 07 SUB AB Subtract Absolute Value

One card reader and one card punch. 08 NO OP No Operation
Read or punch up to 72 card columns, 09 ADD Add
Reading rate: 150 cards per minute. 10 R ADD Reset and Add
Punching rate: 100 cards per minute. 11 ADD AB Add Absolute Value
Cards punched in standard IBM decimal code can 12 STORE Store

be read at full speed and converted simultane- 13 STORE A Store Address
ously by means of a program. 14 STORE MQ Store Contents of M@ Register
Can read or punch in binary code with 24 full 15 Loap Mg Load Mo Register
words to a card at full speed. 16 MPY Multiply
Stored program may be used to control punch. 17 MPY R Multiply and Round
18 DIV Divide
Manual Control 19 rounp Round
Operator’s panel. 20 rLieFr Long Left Shift
Control panels for each component. 21 LRrRIGHT Long Right Shift
Buttons and switches on components. 22 A LEFT Accumulator Left Shift
23 ARIGHT Accumulator Right Shift
Checking 24 READ Prepare to Read
Tape reading and writing checked by redundancy 25 READ B Prepare to Read Backward
check. 26 WRITE Prepare to Write
Printing checked by echo signals. 27 WRITE EF Write End of File
Decimal card punching checked by double-punch 28 REWIND Rewind Tape
blank-column detection. 29 SET DR Set Drum Address
Calculation duplication by programming. 30 SENSE Sense and Skip or Control

Mathematical and physical checks by programming. 31 COPY Copy and Skip

PROGRAMMING

THIs sEcTION is intended primarily to give the rela-
tive beginner an understanding of some of the basic
techniques of programming. Tt is impossible to cover
all aspects of programming, because machine versa-
tility permits a programmer to handle a problem in a
variety of ways, one of which is most efficient. The
conventions and techniques to be described have been
in use with a 701 installation, but do not necessarily
represent the most desirable or most efficient methods.
It is hoped, however, that these paragraphs will point
to a greater understanding of 701 programming and
its simplicity.

CONVENTIONS AND SYMBOLISM

A PorTION of memory capable of retaining a word is
termed a location or a cell. As mentioned in Part I,
these locations are identified by individual addresses
that range from 0000 to 4095 as far as electrostatic
memory is concerned. Consequently, the twelve bits
of the address part of an instruction are interpreted to
be an integer. The five bits of the operation part of an
instruction are also regarded as an integer. With the
address part represented by an integer y where
O=y<2®

72

and the operation part represented by an integer x
where
0=r< 2
the entire instruction is represented by an integer ¢
1= x(x 224 y)

In other words, the address part alone is thought
of as an integer. Similarly, the operation part, when
thought of by itself, is regarded as an integer. And
finally, the instruction as a whole is thought of as an
integer. Thus, when modifying instructions by simple
additions, the binary point is assumed to be between
accumulator positions 17 and 18.

It is convenient to express addresses as decimal
integers since the decimal system is most familiar.
For ease in reading programs, alphabetic abbrevia-
tions are used as operation parts. For example, the
instruction

— ADD 1492
means add the contents of full-word location 1492 to
the contents of the accumulator. Of course, the deci-
mal addresses and the operation abbreviations must
be converted to binary information before interpreta-
tion by the 701. Decimal-to-binary -conversion is
readily accomplished by the 701 itself, however, and
may be made a part of a standard library of programs.

PROGRAMMING

Examples of programming will be given in a standard form. An instruction
given in this form is shown below.

73

INSTRUCTION
LOCATION REMARKS
+ | OPERATION PART | ADDRESS PART
+1066 — R ADD 10 1492 Place the contents of cell —1492
in the accumulator

In the example above, +1066 is the cell in which the instruction is stored. The

minus sign pertains to the sign of the instruction itself; a plus sign is implied if

this column is left blank. The operation part consists of the alphabetic abbrevia-

tion and decimal code for the operation. The address part contains the address

of the operand. Thus, the number actually appearing in cell 1066 is
—101492.

Because, in describing a program, it is frequently necessary to refer to a
particular cell (or location) in memory, the phrase “cell ¢” is used to mean
“the cell whose address is the integer @.”” Thus, the phrase “1/10 is retained in
cell —1492” means “1/10 is retained in the cell identified by the address —1492.”
This type of phrase frequently will be further abbreviated to

L{x) =a ‘
by which is meant “the location of the quantity x in memory is the cell whose
address is a.”” So, using the same example,
L(1/10) = —1492.
Similarly, it is frequently necessary to refer to the quantity or word stored in
a particular location. The quantity or word stored is usually referred to as “the
contents of the cell” (e.g., “the contents of cell —1492 is 1/10’"). The notation
Cla) =x

means “‘the contents of cell a is the quantity x,” e.g.,
C(—1492) = 1/10

The symbols L and C are reciprocal. By the definitions, then,
L[C(a)] =a

and

ClL(x)] = «.

Instructions and remarks may be written with this notation:

INSTRUCTION
LOCATION |— REMARKS
+ | OPERATION PART | ADDRESS PART
1066 — R ADD 10 L(1/10) Place 1/10 in the accumulator
1067 — STORE 12 1494 C(—1494) is replaced by 1/10

Note in the above program that the actual array of binary digits that represent
1/10 is not precisely specified, since position of the binary point is not specified.

74 TYPE 701 AND ASSOCIATED EQUIPMENT

However, the use of the L and C symbols in connection with instructions or
instruction modification is precise because of the convention to regard instruc-
tions as integers. Thus, in the program

INSTRUCTION
LOCATION REMARKS
#4 | OPERATION PART | ADDRESS PART
1063 R ADD 10 L(0)
1064 STORE A 13 1068
1065 READ 24 0256
1021—-1066 R ADD 10 1068
1067 SUB 09 L(2) :
~--1068 | — COPY 31 [] Modify the copy instruction
vl 1069 STORE A 13 1068
| L1070 TR 01 1067
t-- 51071

the execution of instruction 1067 increases the address part of the instruction in
the accumulator by 2, or equivalently, by a binary 1 in accumulator position 16,
The symbol L(2), used in the above program, represents an application of the
following convention,

Assume the symbol & L(x) where the + or — designates either a half or
full word.

Rure 1. If » = 1 the binary point of the word is assumed to be
to the right of the rightmost position of the word.

Rure 2. If »# < 1 the binary point of the word is assumed to be
to the left of the leftmost position of the word.

Examples:
The contents of + L (—2) are
—00000000000000010

The contents of — L{-+1) are
—+00000000000000000000000000000000001

The contents of — L(+427%)are
--010000600000000000000000000000000000

The contents of + L(+27%) are
-+00100000000000000

The contents of — L(+2) equals the contents of — L(27%) equals
-+00000000000000000000000000000000010

When an instruction or address part is modified by computation, the computed
instruction or instruction part is enclosed by square brackets. (See instruction

1068 above.)

PROGRAMMING

Arrows are drawn to the left of the instructions to indicate the action of the
transfer instructions, as in the program above. Dotted arrows are drawn to
indicate the action of copy or SENSE skips. If it is not possible to draw lines to
indicate a transfer (such as may happen when a program is on two or more
pages) the notation above on instruction 1066 is used. The number and arrow
to the left of 1066 mean that the instruction in cell 1066 can be executed as a
result of a transfer instruction in cell 1021.

For simple exposition it frequently is not convenient to write actual addresses,
as 1492 or 1066, above. A symbol, such as a Greek or Roman letter, may also
be used to represent an address where the correspondence to a particular address
is arbitrary or not yet assigned. For example, consider the following program:

75

INSTRUCTION
LOCATION |[— T v REMARKS
+ | OPERATION PART | ADDRESS PART
a — R ADD 10 1492 Duplicate the contents of cell
a+1 — STORE 12 1494 —1492 in cell —1494

With this notation it is possible to refer to the instruction a (i.e., the instruction
stored in some cell a) without actually specifying where the program is to be
located in memory.

A subscript is used to indicate the base of a number when the context is not
clear: Thus

(1101), = (15)8 = (13)10

represent the same number to the bases 2, 8, and 10, respectively.

In text involving card input the following notation has been adopted. The
word obtained by the first copy execution is designated by 9;, to indicate the left
portion of the 9’s row; the word obtained by the second copy execution is
designated by 9, and so on ; the last word of the card image is designated by 12
for the right portion of the 12-row.

76 TYPE 701

SUB-PROGRAMMING DEVICES

THE DEVICES to be described illustrate some of the
general techniques in programming. They represent,
however, only a few of many such devices.

Basic Linkage

This method has, in general, been found to be most
efficient for entering a sub-program routine from a
main program and later returning to the main pro-
gram.

The terms “main program” and “sub-program”
are purely relative. For example, in calculating the
function z where

a=Vat Vet Vet + Vs

it is seen that the square root of a number must be
computed ¢ times. It would be wasteful of storage
space to write a program that consisted of ¢ separate
square-root programs. The obvious thing to do is to
use the same square root program for every x. So the
main program can be thought of as the one that cal-
- culates 2; by using a square-root sub-program.

Now if we define a function Z such that

Zn:21'32'33...3n_1'3n

then the main program can be thought of as the one
that calculates Z, by means of a sub-program that
calculates 2;; and finally the program for g; again uses
the square-root program as a sub-program. Thus any
given program may be thought of as a sub-program
in relation to a more extensive program, while it may
be considered a main program in relation to a pro-
gram it uses repeatedly.

With these definitions, assume that two programs
A and B are given, where A4 is the main program and
B is a sub-program of 4. Also suppose that program
B is to be executed after instruction ¢ — 1 of pro-
gram A has been executed, and the execution of
program A is to be continued after the execution of
program B. Let the instruction stored in cell b be the
first instruction of program B. Suppose that program
B requires no information other than the address of
the instruction to be executed after its completion.
To provide information to compute this address, two
instructions are stored at locations e and a + 1.

a1 .
Z +1 iRADD : } Part of basic linkage

a2

AND ASSOCIATED

EQUIPMENT

The instruction in cell @ 4 2 is to be executed after
the completion of program B. Instruction a places
the numerical representation of R ADD a in the accu-
mulator. The next instruction transfers control to b,
which is the first instruction in program B.

b ADD L{2)

b4+1 STOREA btk } Part of basic linkage

l Execution of the
]) o sub-program

b+k TR []
Instruction b adds 2 to the contents of the accumula-
tor which consequently contains the numerical repre-
sentation of +R app a+2. Instruction b-+1 stores
a+2 into the address part of instruction b+k. The
sub-program is then executed and finally comes to its
last instruction, b~k ; this transfers control back to
a+2 of program A. The transfer into and out of the
sub-program has now been completed. If program B
was written to calculate the function sin x, for exam-
ple, it naturally must assume that & is located in some
predetermined cell, say -+1021. So a main program
must place any pertinent information in locations
where the sub-program can-find it. This is done in the
main program before transferring to the sub-program.
Thus, program A4 must place the desired argument in
a place where program B can find it, namely cell
+1021. This, of course, must be done before the
actual basic linkage is executed.

Note in the above technique that instructions b and
b+1 could have been placed between instructions a
and a+1. However, this would require writing two
additional instructions in program A for each time it
is desired to execute program B. This could result in
a considerable amount of extra storage space for in-
structions if the sub-program is called on at quite a
few different points in the main program.

Occasionally, some of the information program B
requires is not computed. For example, information
may be specified by the programmer, such as the
number of times program B is to be repeated, or the
address of a quantity to be used by program B. Let w
be a half-word of such information. The w can be
stored in program A in the cell @ + 2.

a—1

a R ADD a
a+1 TR b
a+ 2

a-+ 3

PROGRAMMING 77

Instruction @ + 3 is to be executed after the comple-
tion of program B. For program B to use the quantity
w it must be supplied with the location of w. Suppose
instruction & + j, of program B, refers to ww—that is,
the address part of instruction b + j is to be a + 2,
the location of w. The first four instructions of pro-
gram B now become

b ADD L{(2)
b+ 1 STOREA b+
b+2 ADD L(1)
b3 STOREA b+ Fk

Instructions b and b + 1 compute a + 2 and store the
quantity as the address part of instruction b + j. In-
structions b + 2 and b 4 3 compute ¢ + 3 and store
that quantity as the address part of the last instruc-
tion of program B. This last instruction to be exe-
cuted in program B is again a transfer instruction
that returns control to program A. Any amount of
information could be supplied in a similar manner.

All of the linkages described above result in an
unconditional transfer to program B after the execu-
tion of instruction @ + 1 of program A. Conditional
transfer is readily obtained by using the MQ register
to retain the address a. The following program shows
the transfer to program B only if the accumulator
contents are zero.

a—1

a LOAD MQ &
a-+1 TR O b
a+ 2

b L LEFT 35
b+ 1 ADD - L(2)
b2 STOREA b+ k
b+ k TR [a+4 2]

Branches and Forks
The execution of the conditional transfer instruc-
tion

a TR + b

will be followed by execution either of the instruction
in cell b or the instruction in cell @ + 1. Instruction
will be executed if the accumulator is positive, and

instruction @ + 1 will be executed if the accumulator
is negative. Thus the conditional transfer operation
provides the possibility of executing either the in-
structions in cells &, b + 1, b + 2. .. or the instruc-
tions incellsa + 1, a + 2, a + 3, ..., the choice
based on the condition of the accumulator. The se-
quence of instructions in cells b, b + 1,0 + 2... is
called a branch, as is the sequence of instructions in
cellsa + 1,a + 2,.... Each branch of a program is
ordinarily a different computational procedure. For
example, the instructions incellsa,a + 1, a + 2,. ..
might be designed to evaluate y = sin x for #in the in-
terval O to =/2, and the other branch, the instructions
incells b, 5 + 1, 5 4+ 2,..., might be designed to
evaluate the same function for x in the interval =/2
to =. The conditional transfer instruction could be
used to select the appropriate branch for any argu-
ment x in the interval O to =. That part of a program
which provides the possibility of executing one of
several branches is called a fork. A conditional trans-
fer instruction is a fork. However, a fork may be
more than one instruction. Consider the pair of in-
structions

a TR 0 b

a-+1 TR + ¢

This pair of instructions is a three-branch fork.
The instruction in cell b will be executed if the num-
ber in the accumulator is zero. Instruction ¢ will be
executed if the contents of the accumulator are posi-
tive and not zero. Instruction @ + 2 will be executed
if the accumulator contents are negative and not zero.
If ¢ is set equal to b, then the branch of instructions
starting at cell b will be executed if the number in the
accumulator is positive or zero. By appropriately
specifying the address parts of this pair of instruc-
tions, any of the conditions equal to, greater than,
less than, greater than or equal to, or less than or
equal to may be obtained.

In the preceding example the choice of the branch
to be executed is determined by the condition of the
accumulator. The following four-branch fork shows
that this is not always the case. Let b, ¢, d, and ¢ be
the addresses of the first instruction of four branches.
Suppose the criterion for the branch selection is a
parameter A which may take on the values 0, 1, 2,
and 3. For A = 0 the instruction in cell is to be exe-
cuted ; for A = 1, instruction ¢ is to be executed ; and
so on. The selection can be done by computing the

78 TYPE 701 AND

address part of an unconditional transfer instruction
as follows:

a R ADD L(A)
a-+1 ADD L(a+4)
a—+ 2 STOREA a+ 3
a+3 TR [a+ 4+ 4]
a+4 TR b

a+5 TR ¢

a+6 TR d

a+7 TR e

The address part of instruction @ + 3 is computed by
instructions a, ¢ + 1 and @ + 2. Instruction ¢ + 3
provides the selection of instruction @ + 4 + A which
i1s an unconditional transfer to the appropriate in-
struction b, ¢, d or e.

Occasionally it is convenient not to store the first
three instructions of this fork adjacent to the uncon-
ditional transfer instructions, but rather to separate
the sets of instructions:

a R ADD L(a)

a+1 ADD La+k+1)
a+2 STOREA a+ k&

a+k TR [a+k+14+ 4]
a+k+1 TR b

a+k+2 TR c

a+k+3 TR d

a+kE+4 TR ¢

Calculations may then be performed after the selec-
tion of the branch but before executing the selected
branch. This fork is then called a preset fork.

Alternators

The purpose of an alternator is to supply a pro-
gram with two exits that alternate each time the
program is executed. The following program illus-
trates a method for doing this. In this program let »
be a number that is positive the first time instruction
a + 1 is executed.

a
a+1 R SUB L(x)
a+2 STORE L(x)
a+3 TR + b
a-+4 TR c

ASSOCIATED

EQUIPMENT

Instructions ¢ + 1 and ¢ 4 2 result in the sign of x
being changed in storage. The contents of the accu-
mulator are negative; this results (by ¢ + 3 and
@ + 4) in a transfer to the instruction located in
cell c. Now, if program a + 1 is'again reached during
the problem, x is a negative number. The expressions
a + 1 and @ + 2 change x to a positive number and
leave the accumulator positive. Instruction a + 3 then
results in a transfer to the instruction in cell b.
Further returns to @ + 1 will result in repetition of
the two cycles mentioned above. In this way the pro-
gram alternates between two branches of instructions.

BINARY INPUT

ProGraMs that transmit binary information into elec-
trostatic storage are presented in the following sec-
tions. These programs were chosen because they :

1. Illustrate many programming techniques.

2. Are relatively simple,

3. Are useful programs that may be used directly
by many installations.

4. Have been completely checked out on a 701
installation.

These programs do not necessarily represent the
most efficient method of programming and, in addi-
tion, programs may be written that are specifically
adapted to the problems of a particular installation.

Self-Loading Technique

Often it is necessary to load a program into elec-
trostatic storage without using any information al-
ready contained in the electrostatic memory. This
happens when the power has been turned off or when
one programmer does not know, or does not care to
know, what a previous programmer has left in elec-
trostatic storage. For these occasions programs can
be designed that are capable of loading themselves
into the machine. The underlying principle of all such
programs is the following. One instruction, which is
only one half-word, can cause a full word to be placed
in electrostatic storage. This full word may be com-
posed of two instructions, each of which can put a
full word into electrostatic storage. Thus, the two in-
structions can store four more instructions in storage.
In this way a surplus of instructions is rapidly built
up; this may constitute a program capable of loading
any desired number of half-words into electrostatic
storage.

PROGRAMMING 79

Two examples of self-loading programs are given
below. Both programs are assumed to be punched in
cards. The first program, which consists of only six
instructions, will load itself and an additional 42 half-
words (or 21 full words) punched in the same card.
The six instructions that produce the self-loading
feature are punched in the first three half-rows of the
card. The last 21 half-rows of the card contain the
program which it is desired to load. The six self-
loading instructions are:

+0000 — COPY 0002
+0001 +wapp 0003
+0002 + ADb 0000
+0003 -— COPY [0004]
40004 + storE A 0003
40005 + TR 0002

Figure 22 schematically shows the half-rows where
the respective instructions are punched.

Loading of the program is initiated from the oper-
ator's panel. First, set the load selector switch to
cArDS, and set the address entry keys to zero. Then
depress the load button; this automatically starts the
loading of the program by causing the calculator to
execute a READ instruction (with the address of the
card reader as its address part) followed by the in-
struction “—COPY 0000,” causing the word in the
left half of the 9-row to be stored at location —0000
in electrostatic storage. This word is composed of the
first two instructions of the program (numbered
+0000 and +0001, above). Instruction number
+0000 is then executed and results in instructions
+0002 and +0003 (the right half of the 9-row)
being stored at —0002.

The execution of instructions +0001 and +0002
causes the sum of the contents of half-word locations
40000 and 40003 to be formed in the accumulator.
By reference to the Operations section in Part I, the
numerical code for the operation part of a cory in-
struction is found to be 31 or, in binary, 11111.
Therefore, the contents of the accumulator are:

S QP 1 17 | 18«35
i 1} |
I | |

—-E 00 i 11111000000000100] 0....0

— 100 ! 11111000000000010 ! 0.... 0
t | |

— 1 01 1| 11110000000000110 | 0.... 0

as a result of the addition of the two copy instruc-
tions. Thus, bit positions 6 to 17 of the accumulator
contain 0006. Since a binary 1 has carried over into
the P overflow position of the accumulator, the over-
flow indicator will be turned on.

Next, instruction +0003 is executed, causing in-
structions +0004 and 40005 to be stored in full-
word location —0004. The execution of instruction
40004 replaces bit positions 6 to 17 of half-word
location 40003 with the contents of bit positions 6 to
17 of the accumulator register. Thus, instruction
+0003 is modified and now becomes “—COPY
0006.” Control is then transferred back to instruction
40002 when instruction +0005 is executed.

During the succeeding repetition of the loop, the
first two half-words of the program to be loaded
into electrostatic storage are copied from the right
half of the 8-row and entered in full-word location
—0006. Instruction 40003 is modified and becomes
“—COPY 0008." Instruction +0005 again transfers
control back to instruction +0002. This sequence of

Row Left Half-Rows Right Half-Rows
No. (Columns 1-36) {Columns 37-72)
12 1 —

11 | |

0 ! |

1 X |

2 i !

3 l [

4 i !

5 | i

é I |

7 | |

8 | + Store AO003 | + TR 0002

9 | —Copy 0002 | + RAdd 0003 + Add 0000 — Copy 0004

Ficure 22

80 TYPE 701 AND
events continues until an end-of-record signal is re-
ceived, indicating that there are no more half rows of
the card to be copied. The end-of-record condition
then causes the coPy instruction not to be executed
and transfers control to +0006, which is the first in-
struction of the desired program. Thereafter the cal-
culator continues with the execution of this program.
Observe that when the instruction stored at +0006 is
executed, the overflow indicator is on, since it was
turned on the first time instruction +0002 was exe-
cuted, and no TR ov instruction has been given since.
The indicator must be turned off if overflow indica-
tion is to be used later for conditional control of the
program itself.

The foregoing method may be used only to load
programs comprising not more than 42 instructions.
The following self-loading program may be used to
load any number of instructions punched on any num-
ber of cards, to within the capacity of electrostatic
storage:

40000 — COPY 0002
40001 — COPY 0004
40002 -+ R ADD 0005
40003 + ApD 0000
~+0004 + sTore A 0005
-+0005 — COPY [0004]
+0006 -+ TR 0002
+0007 + TR 0010
40008 <+ READ 2048
40009 -+ TR OV 0005

These instructions are punched in the first card in
the locations shown in Figure 23. The rest of the first

ASSOCIATED

EQUIPMENT

card, starting with the right half of the 7-row, con-
tains the first 38 instructions of the program to be
loaded. Later instructions are placed in additional
cards.

Loading of the program is initiated from the oper-
ator’s panel by the same procedure described above.
The copy instruction, executed automatically when
the load button is depressed, causes instructions
+0000 and +0001 to be entered in full-word loca-
tion —0000 of electrostatic storage. Execution of in-
structions +0000 and +0001 results in instructions
+0002 to 40005 being stored in full-word locations
—0002, —0004.

Execution of instructions +0002 and 40003 re-
sults in the sum of the contents of half-word locations
40005 and 40000 being formed in the accumulator.
Just as in the previous example, bit positions 6 to 17
of the accumulator contain the number 0006 and,
since a binary 1 has carried over into the P overflow
position, the overflow indicator is turned on. On the
execution of instruction 40004, the contents of bit
positions 6 to 17 of half-word location 40005 are re-
placed with the contents of bit positions 6 to 17 of the
accumulator register. Thus, instruction 40005 is
modified and becomes “—COPY 0006.”

Next, the copy instruction 40005 is executed,
causing instructions +0006 and +0007 (punched in
the right half of the 8-row) to be entered into
full-word location —0006. Execution of instruction
40006 transfers control back to instruction +0002.
On the second repetition of the loop, instruction
+0005 1s modified and becomes “—CQOPY 0008.”
Then when instruction +0005 is executed, instruc-

Row Left Half-Rows Right Half-Rows \
No. (Columns 1-36) (Columns 37-72)

12 | '

1 i

0 | 1

1 J i

2 | !

3 t X

4 | I

5 ' !

6 i |

7 | +-Read 2048 | + TROV 0005 |

8 | + Store A 0005 | — Copy 0004 | + TR 0002 | + TR 0010
9 | —Copy 0002 ;| — Copy 0004 | + RAdd 0005 ;| + Add 0000

Frcoure 23

PROGRAMMING 81

tion 40008 and +0009 (punched in the left half of
the 7-row) are loaded into full-word location —0008.
Again, instruction 40006 transfers control back to
instruction +0002, and the loop is repeated.

On the next repetition, instruction +0005 becomes
“—COPY 0010,” and the right half of the 7-row
(containing the first two instructions of the program
whose presence in electrostatic storage is desired) is
loaded into full-word location —0010. The loop con-
tinues to be repeated until all the half-rows of the
first card have been copied and an end-of-record
signal is received. Then, when the copy instruction
40005 is given, it is not executed ; instead, control is
transferred to instruction +0008.

When the READ instruction in +0008 is executed,
another card feeds in the card reader, Since the over-
flow indicator was turned on the first time instruction
40003 was executed and has not been turned off
by a TR ov instruction, it is still on when instruction
40009 is given. Consequently, when instruction
+0009 is executed, control is transferred back to the
copy instruction (+0005) whose execution was pre-
viously prevented by the end-of-record condition.
This cory is now executed, and the left half of the
9-row of the second card is loaded into electrostatic
storage.

The loop consisting of instructions ~+0002 to
+0006 is repeated until all 24 half-rows of the second
card have been loaded. Then the end-of-record con-
dition again causes control to be transferred to the
READ instruction, and the next card is fed. This se-
quence of events continues until all cards have been
read. Then the last READ instruction, followed by the
cory instruction +0003, sets up an end-of-file condi-
tion. The cory instruction is not executed, and con-
trol is transferred to instruction 40007 ; this in turn
transfers control to the first instruction of the desired
program that was stored in +0010. The calculator
proceeds with the execution of this program. Note
that the overflow indicator is off at the time instruc-
tion 40010 is executed, since it was turned off by
instruction +0009.

Thus the desired program is loaded, as punched,
into consecutive electrostatic locations beginning with
~+0010.

Binary Reading Program, L 05

A program will now be described that can load
itself into storage and later load blocks of binary in-
formation into any section of electrostatic storage.

The self-loading techniques described above require
that every program to be loaded carry its own self-
loading sequence and that all loading be done using
the consecutively-numbered electrostatic storage loca-
tions immediately following the locations occupied by
the self-loading sequence itself. It is evident that these
restrictions need not apply in general, since a self-
loading sequence of six instructions may be used to
enter a more general loading program. The following
program (L 05) is an example of such a general
program.

L. 05 is contained in a single card which also in-
cludes six instructions that allow it to be entered by
means of the load button. It makes use of electrostatic
storage locations 0000 through 0047. L. 05 may be
used to enter binary information from any number of
punched cards. This information may be stored in any
desired consecutively-numbered electrostatic-storage
locations, except those already reserved for L 05.
Further, the reading and storing operations are
checked by use of a check sum. -

A block of information to be loaded by L 05 must
be preceded by a check sum, half-word count, and an
initial loading address. These and other quantities
will now be defined.

Card Check Sum: This is calculated by summing
the absolute values of all half-words in the block, in-
cluding the half-words that specify the half-word
count and initial loading address. The check sum
itself is specifically excepted. To this sum is added
2'" times the number of wnegative half-words. The
sum is then doubled, and a minus sign is attached.
This card-check sum requires a binary full word and
is punched in the left half of the 9-row of the first
card in the group containing the block of information
to be loaded.

Half-Word Count (V') : This is the number of half-
words to be loaded into consecutively-numbered loca-
tions. This count does not include the four half-words
that make up the card-check sum, the half-word
count, and the initial loading address. This count re-
quires a binary half-word and is punched in the sign
position and positions 1-17 of the right half of the
9-row of the first card.

82 TYPE 701 AND

Initial Loading Address (R): This specifies the
locations into which the following block of informa-
tion is to be loaded. The 7 half-words of the block
are then loaded into electrostatic storage locations
R + 2 through R + V 4+ 1. Locations KR and R + 1
are reserved for the storage check sum (see below).
R must be a positive even integer. It requires a binary
half-word and is punched in positions 18-35 of the
right word of the 9-row of the first card.

Storage Check Sum: This is calculated by adding
the quantity 2(} 4+ R) to the card-check sum. The
card-check sum is thereby reduced in absolute value.

The following things should be noted about these
quantities :

1. Both V7 and R are included in the calculation of
the check sum contained in the card.

2. Since L 05 occupies electrostatic storage loca-
tions 0000 through 0047, R must be greater
than or equal to 0048.

ASSOCIATED

EQUIPMENT

3. If more than one block of information is to be
loaded, then the following two requirements
must be observed :

a. The V' half-words of each block must be
loaded into consecutively numbered electro-
static-storage locations, and

b. Each block must start on a new card whose
9-row contains the card check sum, the half-
word count, and the initial loading address
for that block.

4. If VV is odd, location R + V' + 2 is set to zero.

The output of the program consists of } - 2 half-
words for each block of information entered. These
half-words are stored in locations R through R +
7 + 1, the first two of these half-word locations
being reserved for a full-word storage check sum
computed from the card check sum by the program
itself.

Instructions for L 05 follow. This program is in
turn followed by a general description of its operation.

INSTRUCTION
LOCATION REMARKS
+ | OpeErATION ParRT | ADDRESS PART
0000 | — CcoPY 31 [0002]
—(0001 R ADD 10 [0003]
0002 [ADD 09 0000] .
---0003 | — | cory 31 [0004] Load 1. 05 card
i 0004 STORE A 13 0003
1 0005 TR 01 0001
0044-30006 READ 24 2048 Select card reader
e=--=-0007 | — COPY 31 0002 Card check sum
i —0008 TR 01 0010 Not end of file
=--->0009 STOP 00 0001 End of file stop
—»0010 | — COPY 31 0004 Loading information
0011
0012 I;Tii:: A ig 88{2); Obtain loading address for stor-
0013 STORE A 13 0028 age check sum and for copy
0014 ADD 09 0045 Sequence
0015 STORE A 13 0033 Reset address to initial value
0016 ADD 09 0004 Se d of ind d
0017 STORE A 13 0001 Set up en ol cory mndex an
0018 SUB 05 0045 end of ApD index
0019 STORE A 13 0000]
0020 A RIGHT 23 17 . .
0021 o ADD 09 0002 Modify card check sum to give
0022 | — STORE 12 [] storage check sum
0023 — STORE 12 0002

PROGRAMMING

83

PROGRAM (continued)

—0024 R ADD 10
0025 SUB 05

0026 STORE A 13

0027 SUB 05
—-20028 — COPY 31

' L0029 ™ + 03

1 —0030 TR 01
---->0031 READ 24
0032 TR 01
0043730033 R ADD 10
0034 STORE 12

0035 R ADD 10

0036 ADD 09

0037 STORE A 13

0038 SUB 05

0039 — LoaD MQ | 15

0040 L LEFT 20

0041 — ADD 09

0042 — STORE 12
00330043 TR OV 02
00060044 TR O 04
0045 STOP 00

0046 STOP 00

0047 [STOP 00

[

[

0028
0045
0028
0000
1
0024
0033
2048
0028
]
0047
0033
0009
0033
0001
0046
36
0002
0002
0033
0006
0002
0000
0000]

Copy sequence

Select card reader
Continue copying

r ADD sequence

Test unit record sum
Error stop

} Contribution to unit record sum

A detailed description of each individual instruction
of the above program is not included, but a general
discussion of the operation of the program follows.

Put the card containing L 05 at the front of the
file of cards containing one or more blocks of binary
information to be loaded. Place this file of cards in
the card reader, restore the address entry keys to zero,
and depress the load button. The rest of the loading
operation takes place automatically under calculator
control.

The first six instructions of L 05 load the remain-
der of this program. Control is then transferred to
location 0006 as a result of the end-of-record skip.
Instructions 0006, 0007 and 0010 read and copy the
9-row of the first card whose information is to be
entered into electrostatic storage. This row contains
the card check sum and the quantities }” and R. These
words are stored in locations —0002, +0004, and
40005 and replace four instructions of the loading
sequence, which is no longer required. The card check
sum, V, and R are then used by instructions 0011
through 0023 to reset various address parts and to
calculate the storage check sum stored both in loca-
tions — K and —0002.

The remaining V" half-words of the block are then
read and stored by instructions 0024 through 0032.
When this information has been entered, control is
transferred to location 0033. Instruction 0033 is the
first of the loop, 0033 through 0043 ; this verifies that
the newly-entered information is stored correctly.
This verification is performed by the addition of
successive half-words, whose signs are treated as de-
scribed above, to the storage check sum stored in
location 0002.

After the V7 half-words have been added to the
storage check sum, instruction 0044 tests this new
sum for zero. If no error has been made, this test for
zero s successful, and control is transferred to loca-
tion 0006. The calculator is now ready to read a sec-
ond block of information. This process continues as
long as no error is made and cards remain to be read.

After the reading of the last group of cards whose
binary contents are to be stored, the program verifies
the correctness of the newly-entered information and
again transfers control to location 0006. At this point,
however, no cards remain to be read. So the end-of-
file skip transfers control to location 0009, which con-
tains a sToP instruction. This signals the successful

84 TYPE 701

completion of the loading operation. Should an error
be detected in the summing of a block, the calculator
stops at instruction 0045.

L 05, once loaded, may be used any desired number
of times without reloading simply by placing the cards
to be read in the card reader and starting the calcu-
lator at instruction 0006.

CHECKING

THE VALIDITY of a problem solution involves several
distinct aspects. Initial data must be correct. Usually
input data are not susceptible to machine analysis for
verification and must be guaranteed by the problem
sponsor. Of course, transcribing the data onto cards
may be verified by standard machine methods. The
programming of the problem must be shown to rep-
resent the actual sequence of operations required for
the solution. The introduction of the data and pro-
gram into the machine, the performance of the ma-
chine during the solution, and the recording of the
results should be verified. In all these checking opera-
tions, the problem sponsor and programmer should
determine the extent of the checking. The design of
the 701 allows a large variety of methods for check-
ing its operation and, as well, provides the pro-
grammer with a wide choice of the extent of the
checking.

To ascertain the correctness of the program, expe-
rience has shown that the program should be executed
by the machine in a test cycle, and the results com-
pared with expected results. One method is to inter-
rupt instruction executions manually and examine
the effects of the executions through the indicators
on the operator’s panel. Specific devices have been in-
corporated to facilitate this technique of program
verification and the correction of errors. Lights and
buttons on the operator’s panel provided for this pur-
pose are the register lights, half-step key, multiple
step key, memory display button, instruction entry
keys, MQ entry keys, enter instruction button, and
enter. MQ button.

An alternative method (called “tracing’”) has been
used successfully on a 701 installation. In this method,
the machine prints a record of the contents of the
accumulator register, multiplier-quotient register, and
the status of the overflow indicator for each instruc-
tion-execution of the problem program; the machine

AND ASSOCIHIATED

EQUIPMENT

also prints the instruction itself. We can examine the
resultant recording at leisure without consuming
machine time. The special program for this is usually
termed a tracing program.

Error-detection mechanisms have been included in
the machine; these suspend calculation and signal an
error when, because of programming errors, a CoPY
or DIVIDE instruction is interpreted under circum-
stances which, if executed, always would produce an
erroneous result. These mechanisms include the copy
check light and the divide check light. Checks for the
introduction and recording of information are print
echo pulses, double-punch blank-column detection,
and the tape check light.

Because there is the possibility of the machine itself
making an error, the performance of the machine
during the solution of a problem must be checked.
Such checks are usually embodied in the problem
itself and should be regarded as part of the general
procedure of efficient programming. The method of
checking a particular problem is determined by the
character of the problem and the degree of confidence
in the results the programmer desires. Thus, some
problems have an inherent mathematical check in
their solution, and for some a mathematical check can
easily be designed. A calculation can be checked by
duplicating it and comparing the two sets of results.
Another check is by duplicate calculation using com-
plements of the original numbers, or by duplicate
calculation performed in the residue-class ring of in-
tegers modulo some number p.

Consider programming of checking from the view-
point of efficient operation. If a transient error should
be made by the machine it is an advantage for the
machine to repeat the calculation automatically; be-
cause in the time required for the operator to reach
the operator’s control panel, the machine could have
performed many operations. This is normally ar-
ranged for by dividing the problem into parts, at nat-
ural mathematical breaking points. The programming
is so arranged that calculation, check calculation and
comparison of results are done for one part and, if the
results are correct, calculation of the next part is
started. If, on the other hand, an error is detected,
the calculation for that part is repeated.

This section points out some techniques for check-
ing solutions and input-output operations. There are
many possibilities, and individual problems merit
individual consideration.

PROGRAMMING 85

Certain checking procedures have been continu-
ously inserted in the preceding text. The previous
section, Binary Reading Program L 05, showed how
proper operation of the program is assured according
to a predetermined card check sum. An example of a
mathematically designed check is a square-root pro-
gram checked by squaring the result and comparing
it with the original argument. This is not necessarily
the best method for checking a square-root program

in a particular problem, but it does show one of the
possibilities for this kind of check.

It cannot be emphasized too strongly how impor-
tant it is to include appropriate checks in a program.
The extent and method of checking is entirely de-
pendent upon the degree of confidence in the results,
which is determined by the problem’s importance and

the needs of the problem sponsor.,

EXAMPLES

TH1s SECTION gives several examples of program-
ming that progressively use more and different oper-
ations and so become lengthier and more complicated.
These examples can be studied in sequence to under-
stand how different operations work together to
create a meaningful program. We have already re-
ferred to some of these examples in the Operations
section of Part I. Input-output operations are not

1.

illustrated here because they have been covered under
Input-Output Components.

Some of the examples cover such operations as
forming a rounded 35-bit quotient, transferring con-
trol on non-zero, transferring control on minus,
vector addition, and square root. Most of the exam-
ples use programming conventions described in the
earlier Programming section.

The following program will: add a 35-bit number A4 found in electrostatic

location —1492 to a 35-bit number B located at —1588; double the sum; and
store the result in location —1812. Assume that the result does not carry over

into the overflow positions of the accumulator.

INSTRUCTION
LOCATION REMARKS
+ | OPERATION PART | ADDRESS PART

1066 — R ADD 10 1492 Place A4 in the accumulator

1067 — ADD 09 1588 Form A+4+B

1068 A LEFT 22 1 Form 2(A4B) by shifting one

binary place left
1069 - STORE 12 1812 Place 2(A+ B)in Es location-1812

86

EXAMPLES 87

2. Two sets of programming are given; either one may be used to compute
A — B.

INSTRUCTION
LOCATION REMARKS
OPERATION PART | ADDRESS PART
1066 R ADD 10 L{A) Place A4 in accumulator
1067 SUB 05 L(B) Place —B in accumulator forming
A—B
1068 STORE 12 X Place result in location x

If A = B, the result of computing 4 — B is zero with the sign of A.

INSTRUCTION
LOCATION REMARKS
OPERATION PART | ADDRESS PART
1066 R SUB 06 L(B) Place —B in accumulator
1067 ADD 09 L(A) Form —B+4
1068 STORE 12 X Place result in locaiion &

If A = B in this programming, the result of computing —B + A is zero with
the sign of —B.

3. Suppose C + |A4| — |B| is to be calculated with the result stored in .
Also assume that an overflow into position P might occur; in this case the sum

should be rounded to 35 bits before it is stored in x.

INSTRUCTION
LOCATION REMARKS
OPERATION PART | ADDRESS PART

1066 R ADD 10 L(C) Place +C in accumulator

1067 ADD AB 11 L(A) Form +C+|A4]|

1068 SUB AB 07 L(B) Form +C+|4|—|B|

1069 TR OV 02 1071 Transfer to rounding procedure if
overflow occurred

1070 TR 01 1073 Transfer to storing procedure if
overflow did not occur

1071 LRIGHT | 21 1 Shift sum right one place

1072 ROUND 19 Round

1073 STORE 12 X Place sum in location x

88 TYPE 701 AND ASSOCIATED EQUIPMENT
The long right-shift instruction causes the combined contents of the accumu-

lator and MQ registers to shift one place to the right. Thus, the bit in the right-

most overflow position enters the first position of the accumulator register;

the bit in the 35th position of the accumulator enters the first position of the

MQ register, Since the store instruction only reads out the accumulator register,

the bit remaining in the MQ register after rounding is dropped.

4, To truncate without rounding and without disturbing the contents of the
MQ register, the A RIGHT and A LEFT operations may be used. Assume in this
program that the least significant 5 bits of the sum 4 4+ B are to be dropped.

INSTRUCTION
LOCATION REMARKS
OPERATION PART | ADDRESS PART

1066 R ADD 10 L(A) Place A4 in accumulator

1067 ADD 09 L(B) Forms A+B

1068 ARIGHT | 23 5 The 5 least significant bits of
A-B are shifted out of the reg-
ister and lost

1069 A LEFT 22 5 The number is returned to its
original position with the 5 low
order digits now zero

1070 STORE 12 x Places the truncated sum in loca-
tion x

5. Multiplication of B by A to form a 35-bit rounded product can be done as
follows :

INSTRUCTION
LOCATION REMARKS
OPERATION PART | ADDRESS PART
1066 roap M@ | 15 L(A) Place 4 in the MQ register
1067 MPY R 17 L(B) Form AB and round
1068 STORE 12 x Place rounded product in loca-
tion &

The multiply-round instruction forms the 70-bit product 4B and rounds the
product to 35 bits. The rounded product is then stored from the accumulator.

EXAMPLES

6. To shift the product before rounding, use the following procedure:

89

INSTRUCTION '
LOCATION REMARKS
OreraTION PART | ADDRESS PART
1066 Loap MQ | 15 L(A) Place A in the MQ register
1067 MPY 16 L(B) Form AB
1068 L LEFT 20 3 Shift AB three places left
1069 ROUND 19 Round
1070 STORE 12 x Place rounded answer in location »

The long left-shift instruction causes the combined contents of the accumulator
and M@ registers to be shifted left three places. After rounding, the contents of
the accumulator register are stored.

7. Suppose that [4]| < |B| < 1 and that it is desired to find the 35-bit
rounded quotient of 4 by B. The following programming will accomplish this
result.

INSTRUCTION
LOCATION REMARKS
OPERATION PART | ADDRESS PART

1066 R ADD 10 1.(B) Place B in the accumulator

1067 L RIGHT 21 36 Place 27% B (with respect to the
entire dividend) in the MQ reg-
ister

1068 R ADD 10 L{A) Form A+27% B

1069 DIV 18 L{(B) Form rounded quotient

1070 STORE MQ | 14 X Place rounded quotient in loca-
tion &

The accumulator and MQ registers together serve as a 70-bit dividend register
during division. The dividend 4 + 2% B is formed by shifting B into the M@
register from the accumulator register and then placing A in the accumulator
register. During division the sign of the entire 70-bit dividend is taken to be the
sign of the accumulator register (i.e.. the sign of 4) ; the sign of the M@ register
is ignored. Thus, in effect, the dividend has the modulus (absolute value)

4] + 27 |B|

and the sign of 4. So the quotient on division by B has the modulus

and the sign of 4/B. Consequently, after division the MQ register contains the
quotient A/B rounded to 35 bits.

90 TYPE 701 AND ASSOCIATED EQUIPMENT

8. A shifted and rounded quotient may be obtained as follows. Assume that
the half-word location 40055 contains the number zero; also that the quotient
is to be shifted four places to the right and then rounded.

INSTRUCTION
LOCATION REMARKS
+ | OPERATION PART | ADDRESS PART

1066 roap MQ | 15 0055 Reset MQ register to zero

1067 - R ADD 10 L(A) Place 4 in the accumulator register

1068 - DIV 18 L(B) Form A/B

1069 R ADD 10 0055 Clear remainder from accumula-
tor register

1070 L LEFT 20 31 Shift quotient into accumulator
register

1071 ROUND 19 Round shifted quotient

1072 A LEFT 22 4 Returns number to proper relative
location in register

1073 - STORE 12 x Store rounded, truncated quotient
ina

The LoaD MQ instruction resets the MQ register to zero. Note that to reset all
35 hits of the M@ register, it is not necessary to have a 35-bit zero in storage,
because when a half-word is loaded into the Mg register the 18 rightmost bits
automatically become zero. A similar remark applies to the clearing of the
remainder from the accumulator after division. The 31 leftmost bits of the
quotient are shifted into the accumulator register, leaving the four rightmost
bits in the M@ register. The truncated (31-bit) quotient is then rounded. Instruc-
tion 1072 then shifts the quotient to its proper relative location in the register,
and finally the sToORE instruction writes the rounded 31-bit quotient from the
accumulator register in full-word location ». The four bits left in the M@ register
are dropped.

9. Transfers on non-zero and minus can be effected by these two devices:

INSTRUCTION
LOCATION |~ ‘ REMARKS
4+ | OpERATION PART | ADDRESS PART
1066 TR O 04 1068 Transfer to 1068 if accumulator
contains zero
1067 TR 01 X Hence, transfer to x if accumula-
tor is non-zero
INSTRUCTION
LOCATION - S REMARKS
+ | OPERATION PART | ADDRESS PART
1066 TR+ 03 1068 Transfer to 1068 if accumulator is
plus
1067 TR 0 x Hence, transfer to x if accumula-
tor is minus

Other more complicated discriminations are also possible.

EXAMPLES

10. The transfer operations can be used to make the machine choose among
several programs. The following example is almost identical to a program ex-
plained above under Programming, except that no symbolism will be used here.

Assume there are four possible programs whose initial instructions are located
in electrostatic storage:

91

Program Address of Initial Instruction
I +0051
IT +0351
111 +0651
v +0951

Also assume that the decision as to which of the four programs to be used has
already been made in the course of the problem and that the result of this decision
is indicated by the presence of one of the four numbers 1, 2, 3, 4 in the accumu-
lator register. Suppose further that the number 1068 is stored at location +1812
in electrostatic storage. The following set of instructions will direct the machine
to choose the appropriate one of the four programs:

INSTRUCTION
LOCATION REMARKS
+ | OrErRATION PARrT | ADDRESS PART

1066 ADD 09 1812 Compute 1068+k%, where & = 1,
2,3, 0r4

1067 STORE A 13 1068 Address part of instruction at
-+ 1068 becomes 1068+k

1068 TR 01 [1068+k] | Program transferred to -+1069,
+1070, +1071, or +1072

1069 TR 01 0051 Transfer to Program [

1070 TR 01 0351 Transfer to Program 11

1071 TR 01 0651 Transfer to Program 111

1072 TR 01 0951 Transfer to Program IV

11. As an example of the use of the arithmetic and logical instructions, a
square-root program will now be presented. The program is intended only for
illustration and does not necessarily represent the most efficient method of
obtaining square root. The argument 4, whose square root is desired, is assumed
to lie in the range 0 < 4 < 1 — 27% and to be stored at location —1588. The
square root is computed by the well-known iteration formula

A
M = Mot + TZL[: = Mpy

_yn-—i

Assume that the first approximation is the number
3;0 = 1 o 2_(*.3

stored at the full-word location —1492 in electrostatic storage; the final result
is to be stored at —1812. Also the contents of half-word location +0055 are
assumed to be zero.

92 TYPE 701 AND ASSOCIATED EQUIPMENT
INSTRUCTION
LOCATION REMARKS
+ | OPERATION PARrT | ADDRESS PART
1066 — R ADD 10 1492 Place v, in the accumulator
1067 — STORE 12 1812 Store y, in —1812
1068 LOAD MQ 15 0055 Reset M@ register to zero
1069 — R ADD 10 1588 Place 4 in the accumulator
1070 — DIV 18 1812 Compute 4/y,_4
1071 A RIGHT 23 37 Reset accumulator to zero
1072 L LEFT 20 35 Put A/y,_; in accumulator
1073 — SUB 05 1812 Compute v Vo1
Va—1
: A
1074 L RIGHT 21 2 Compute 3| v, — Vuq |=3 " — Va1
_,’n—l
1075 TR O 04 1080 Transfer toend if y, = y,_; to 34
places
1076 L LEFT 20 1 Compute y, — V1 =3 A y”“‘]
Va1t .
1077 — ADD 09 1812 Compute vy, = v, _, +{;[4 ynml]
%-1
1078 - STORE 12 1812 Store y, in —1812
1079 TR 01 1068 Repeat cycle of iteration
1080 Start termination procedure

The first two instructions of the program set up the calculation by placing y, in
location —1812. These two instructions are used only once. The succeeding
instructions compute the new approximation y, from the old approximation
Va—1 and test for convergence. As soon as y, — y,_; = 0 to 34 binary places,
the iteration stops. The transfer-on-zero instruction causes the rest of the itera-
tion to be skipped and the next instruction to be taken from location +1080;
this location may contain the initial instruction of a program for terminating the
calculation. For instance, if A is sufficiently far from zero so that one more cycle
of iteration will give the accuracy desired, the termination program might per-
form an additional cycle carried to extra precision and then round the result to
the desired number of places.

12. Another sample program, showing the technique of computing addresses,
is the following program for adding two n-dimensional vectors. Assume that a
vector
X = (x), 2y ..., 20)
is to be added to a vector
Y = (3’1, 3’2: ey yn)
to form the vector

Z: (31s32v~--;3n) = (-"'1+3’1;~f2+3’2’---sfu+3’n) :X+ Y

EXAMPLES

Note the following :

(a) Components of X are stored in consecutive full-word locations —050Z,
—0504, ..., — (0500 + 2n).

(b) Components of ¥V are stored in —1002, —1004, ..., — (1000 + Zn),
respectively. ‘

(c) The calculation assumes that Z is to replace X in electrostatic storage—
ie., z; = x; + v; replaces x; in — (0500 + 2i), fori = 1, 2,.. ., n.

(d) The half word “~~app (1000 + 2n + 2)" is stored at location -+2000.

(e) The constant 500 is stored at location +2001. In other words, L (+500)
= +4-2001.

(f) The constant 2 is stored at location +2002. In other words, L (2) =
+2002.

(g) The symbol I; is used to represent the half word “—app (1000 + 2i)

Thus,

bal

I;4y stands for “—app (1000 + 2¢ + 2)”
I, . stands for “—app (1000 + 2n + 2)"

The program:

93

INSTRUCTION
LOCATION REMARKS
4+ | OpPERATION PART | ADDRESS PART

1500 R SUB 06 2001

2
%ig; z:(?RE A ?2 ?ggg Resets addresses of operating
I% 03 STORE A]3 1:308 instructions to proper start-
1504 SUB 05 | 2001 ing values
1505 STORE A 13 1507
}‘:’8? : ltS\DDD (1)8 %?88813:} l Operating instructions which
; :508 _ ;TORE 12| [0500+2i] | calculate and store z; = 2,4y,
1509 R ADD 10 | 1506
1510 SUB 03 2002 . . .
1511 STORE A 13 1506 These instructions modify tjhe
1512 STORE A 13 1508 addresses of the operating in-
1';1% R ADD Ib 1%07 structions in preparation for
1514 SUB 05 2602 calculating £;44
1515 STORE 12 1507

A comparison test to see if the
5 ' 2) 1
igi? ,S;;{B 4 gg Iggg ¢ last component of Z has been
calculatec
B calculated

The first six instructions of the program (located at +1500 to +1505) restore
the three operating instructions (41506, 41507, 41508) to their initial status

94 TYPE 701 AND ASSOCIATED EQUIPMENT

(i = 1). Thus, after the execution of instruction + 1305, the operating instruc-
tions read:

1506 — rApp 0502
1507 — ADD 10C2
1508 — sTorRE 0502

So no matter what the addresses of the operating instructions originally were,
they are reset to their proper starting values.

The working part of the program consists of the three operating instructions
located at +1506 to +1508. These instructions add the ith component of V" and
store the sum (i.e., the ith component of Z) at — (0500 -+ 2i). The succeeding
seven instructions (located at +1509 to +1515) serve to modify the three oper-
ating instructions by adding 2 to the magnitude of each address part.

The two instructions located at +1516 and +1517 test whether all # compo-
nents of the two given vectors have been added. If i < #n, then since

Ii-l»l - [n+1 > O)

the TR -+ instruction transfers control back to instruction +1506 and x;,
is added to vy q to form £, ,4. If i = u, then since [,y — I,y = —0, the TR +
instruction does not transfer control and the next instruction is taken from
+1518. Note that [, (stored at +-2000) is actually a constant of the program,
although it has the form of an instruction. By modifying this constant, the
program can be altered to accommodate vectors of varying dimension.

