PROCEEDINGS OF THE
EASTERN JOINT COMPUTER CONFERENCE

PAPERS PRESENTED AT
THE JOINT IRE-AIEE-ACM COMPUTER CONFERENCE
BOSTON, MASSACHUSETTS, DECEMBER 1-3, 1959

Sponsors

THE INSTITUTE OF RADIO ENGINEERS

Professional Group on Electronic Computers

THE AMERICAN INSTITUTE OF ELECTRICAL ENGINEERS

Comnmittee on Computing Devices

THE ASSOCIATION FOR COMPUTING MACHINERY

Published by

THE 1959 EASTERN JOINT COMPUTER CONFERENCE
FOR

THE NATIONAL JOINT COMPUTER COMMITTEE

No. 16

82

1959 PROCEEDINGS OF THE EASTERN JOINT COMPUTER CONFERENCE

The Virtual Memory in the STRETCH Computer

JOHN COCKE anp HARWOOD G.

puter it was seen that by using the latest solid

state components in sophisticated ecircuits it
would be possible to increase the speed of floating
point arithmetic by almost two orders of magnitude
over that in existing computers. However, there
seemed to be no possibility of developing on the same
time-scale economically feasible large memories with
more than a factor of ten or perhaps twenty increase
in speed. As a result, the proposed system appeared
to be in danger of being seriously memory-access
limited.

Moreover, as the speed of the floating point opera-
tions increases, a larger and larger percentage of the
computer’s time is spent on ‘‘parasitic operations’,
i.€., operations whose only function is program con-
trol and data selection. It was obvious that a radically
new machine organization was necessary in order to
capitalize upon the possibilities opened up by the
high arithmetic speeds in the presence of relatively
slow memories.

At this time, a number of persons were considering
the possibility of a “look-ahead” device in which an
independent indexing arithmetic unit would prepare
the effective addresses of instructions and initiate
memory references to a multiplicity of memory boxes.
The data thus fetched would be held in high-speed

huffar arithmotin 11nit
ASLLL UL UL LUVLLLIILIU VIV WUlil Us

EARLY in the planning of the STRETCH com

registers until needed by the
This device would serve two desirable purposes: (1)
some of the parasitic operations would be done in
parallel and thus not delay the principal calculations,
and (2) several memory boxes could be running
simultaneously, giving the effect of higher memory
speed.

Since our original work on the virtual memory and
simulation in 1957-58, a large number of detailed
changes have been made in the actual hardware
design of STRETCH. These necessitated several

modifications in the simulation program to estimate

DATA
MEM

INSTR
MEM

INSTR DATA
MEM MEM

l MEMORY BUS l

DATA
MEM

DATA
MEM

INDEXING
ARITH
UNIT

VIRTUAL
MEMORY

I DISK
ARITHMETIC @

UNIT
Fig. 1—Schematic of Stretch computer.

HIGH SPEED

EXCHANGE EXCHANGE

TTTTTT

MANY 1/0
UNITS

J

t International Business Machines Corporation, Poughkeepsie,
New York.

KOLSKY#+

their effect on the overall system performance. In
this report we are omitting many of these changes for
expository reasons, since our purpose is to describe
the virtual memory and timing simulation concepts,
not to describe the STRETCH hardware exactly.
The result is that the system described below em-
bodies a more general system than that found in the
simulator, which. in turn is more general than that
found in the actual computer.

GENERAL DESCRIPTION OF THE SYSTEM

The major logically-independent blocks of the
STRETCH computer are shown in Fig. 1. Each of
the units pictured may be considered as operating
asynchronously. That is, each does its tasks as fast as
possible independently of the others. In theory, each
box could have its own clocking circuits and still
operate properly. In practice, for economy’s sake they
are all timed by the same master oscillator, but this
does not destroy their logical independence.

The bus control unit serves as a routing agent
between the memories and the various data’proces-
sing units. If two or more units make a request simul-
taneously the control unit assigns priorities in the
following order: (1) High-speed Exchange, (2) Basic
Exchange, (3) Virtual Memory, and (4) Indexing
Arithmetic Unit.

The Indexing Arithmetic Unit fetches instructions,
performs all necessary indexing operations and sends
the instructions to be executed to the Virtual Memory.

The Virtual Memory fetches and receives the data
required by the instruction and holds this data until
the arithmetic unit is ready for it. The Virtual
Memory also performs all store operations. It holds
the data generated by the arithmetic unit or index-
ing arithmetic unit until the memory to which the
data must be sent is available. Thus the virtual
memory acts not only as a “look-ahead’” for instrue-
tions to be fed to the arithmetic unit, but also acts as
a “look-behind” storage buffer.

The actual design of such a ‘“look-ahead” device
posed a number of logical problems, particularly in
connection with conditional branches. However, a
machine organization of this complexity requires a
detailed timing analysis in order to determine the
value of addin

C VI aulliil diGai WA U 1dl uwiiT V60 AL UL

memory. This is especially true since the sole function
of the virtual memory is to increase machine speed,
by increasing the efficiency of other devices. It was
also felt that the timing analysis could not be made
on the basis of a few trivial examples (e.g. matrix

g hardware in the form of the virtual

Cocke and Kolsky: Virtual Memory in the STRETCH Computer

multiply). Machine performance obtained in this
fashion can be extremely deceptive. Since a detailed
timing analysis of a computer of this complexity is
extremely tedious to carry out by hand, it became
clear that if the job were to be done, it would be
necessary to simulate the proposed machine on
another computer. This prompted us to write the
simulation program to be described later.

With the above general organization in mind, let
us discuss some of the logical problems posed by such
a system. The first problem is a result of the very
concept which enables us to obtain such great bene-
fits from the stored program computer — the ability
to treat instructions as data. In a system such as we
have proposed there is a large amount of simultaneous
operation. For example, the indexing arithmetic unit
may be busy preparing an instruetion before previous
instructions have been completed or even started by
the arithmetic unit. One of these previous instructions
may modify the instruction which is presently being
indexed. The virtual memory must recognize this
situation and allow the intervening instructions to be
completed before doing the modified instruction.

A similar problem exists with respect to ordinary
data. In order to operate several memories simul-
taneously, it is necessary to start obtaining data from
these memories before the preceding operations have
been completed. Yet, one of these operations may be
a store into one of the data locations. The virtual
memory must make provisions to insure that each
instruction obtains the most up-to-date data as
implied by the order of the program.

One of the novel features of the STRETCH com-
puter is its elaborate interrupt system. Under this
system, whenever some unexpected occurrence arises,
the program will be interrupted and control will pass
to a special routine which is designed to take care
of the case in question, then return control to the
original program. In this situation the virtual memory
must have provisions to retain enough information so
that when an interrupt occurs we can resume the
computation exactly where we left off. It must be
able to recognize which of the changes that have been
made in advance are not desired and should be
obliterated, and which are exact solutions that must
be restored.

Another special case arises when a conditional
branch on arithmetic results occurs. Here we will not
know which of the two branches we should have taken
until the preceding instruction is executed. In the
case where the wrong path has been selected, the
virtual memory must be prepared to drop the inter-
mediate results which have been computed and pick
up the correct branch in a way very similar to that
of an interrupt.

Summing up all these logical problems, we may
state that the fundamental rule for the virtual
memory is that it must make the asynchronous and

83

non-sequential computer give results identical to
those which would be obtained by performing the
program one instruction at a time in the order in
which they are written.

Definitions
Operations

Operations are considered to be of three types:

(1) Bring or Fetch Type — All instructions re-
quiring data to be transmitted from external
memory to the virtual memory.

(2) Store Type — Instructions requiring the
transmission of data from the virtual memory
to external memory or index memory.

(Note: We consider all indexing instructions
to be of the store type, although the store
may be to either external memory or index
memory.)

(3) Immediate Type — All operations not re-
quiring data transmission.

Virtual Memory Quantities

(1) Virtual Memory — A number of virtual
memory (or look-ahead) levels (numbered O
to N — 1).

(2) Level of Virtual Memory — A collection of
registers and control bits. The contents of the
jth level are shown in Fig. 2.

(3) Instruction Address Register (/;) — Contains
the address of the instruction currently in the
jth level.

(4) Operation Code Register (OP;) — Contains

the operation to be performed by the arith-

metic unit.

Store Bit (S;) — a one-bit

indicates the level, contains

instruction.

(6) Bring Bit (B;) — A one-bit trigger which
indicates the level, contains a fetch type

_ instruction for which the data access has not

been started.

Forwarding Bit (F;) — A one-bit trigger

which indicates that the jth level must

transmit data to another level.

Forwarding Address (FA ;) — A register which

contains the number of the level to which the

data must be sent if F; is set.

trigger which
a store type

(5)

7

(8)

INSTR
ADDR

DATA COMPARE
ADDR ar

oP BRING oK STORE FWD FWD DATA
CODE BIT BIT 8IT BIT ADDR 'WORD

V. M. LOCATION COUNTERS

COUNTER | INSTRUCTION FETCH
COUNTER 2 DATA FETCH
COUNTER 3 DATA STORE
COUNTER 4 ARITHMETIC UNIT

Fig. 2—Virtual memory — contents of one level.

84

1

T\

,{ COUNTER €, I
actOW

g LT T
s€

NOT OR

)

\ N

To
0VE’?"'LA'JW
COUNTER Cs

(OUTPUT 1}
(OUTPUT 2)

Is:C, = Ce4 N

. I: C, » Cy
2

INTERLOCKS Is AND ls ARE AS SHOWN, THE OTHER INTERLOCKS
ARE DONE IN A SIMILAR MANNER.

Fig. 3—Virtual memory interlocks.

(9) O. K. Bit (OK;) — A trigger which when set
indicates that the correct data for the instruc-
tion to be executed is present in the jth data
field.

(10) Data Field (D;) — A register which contains
the operand data for the instruction.

(11) Data Address (DA;) — The operand data
address (already indexed by the IAU) for D;.

(12) Compare Bit (C;) — A trigger which if not set
indicates the address in DA; should not be
included in any address comparisons being
made.

Counters

The virtual memory is controlled by a set of
counters which count mod(N'), where NV is the number
of virtual memory levels.

(1) Counter one (C;) — Indicates the level into
which the next instruction may be placed.
Counter two (C; — Indicates the level from
which the next bring type instruction may be
initiated.

Counter three (C3;) — Indicates the level from
which the next store type instruction may be
initiated.

Counter four (Cy) — Indicates the level from
which the arithmetic unit will get its next
operation and data.

(2)

(3)

(4)

Interlocks

The above counters must be interlocked in the
following manner to assure proper sequential opera-
tion of the computer (see Fig. 3:)

(1) Interlock one (I,): C; = C; + N Prevents
the TAU from placing the next operation into
the level indicated by C; because an unexe-
cuted store is still in the level.

(2) Interlock two (I,): C; = C; Prevents a store
from being initiated from the level indicated
by C; because the store has already been done.

1959 PROCEEDINGS OF THE EASTERN JOINT COMPUTER CONFERENCE

(3) Interlock three (I5): C; = C, Similar to 1,
prevents a fetch from being initiated.
Interlock four (I,): C; = C, Prevents the
arithmetic unit from executin

tion.

Interlock five (I;): C; = C, + N Prevents the
IAU from placing the next instruction into the
level indicated by C; because the instruction
there has not been executed yet.

(4)

an nld ingtrna
1L Uil s vl uil-

o
i@ uiL

(5)

Logzic of the Virtual Memory

There are two basic precepts which must be kept
in mind to understand the operation of the virtual
memory:

(1) The OK bit (0;) beingset in the jth level indi-
cates that the contents of D, is the correct
data called for by DA ;. All operations will be
performed only under this. condition, and
logical decisions will be made in such a manner
as to make sure this is the case.

Addresses can be compared by the IAU with
every DA ; address simultaneously. DA, is not
used for any level which does not have its C,
bit set. If a comparison exists between a new
DA, being placed in the virtual memory and
an old DA, the compare bit C, is turned off
and the address of level j is placed in FA,.
This insures a unique meaning for the com-
parison. If this were not done, another instruc-
tion address DA, might compare against {wo
levels and thus cause an ambiguity.

(2)

Instruction Fetch Logie

Fig. 4 is a flow diagram of the IAU Instruction
Fetch Procedure. The logic is as follows: If the IAU
is ready to fetch another instruction, it compares the
instruction address with all the DA/s of virtual
memory. If there is no comparison, the instruction
fetch is initiated. If there is a comparison, the TAU

DOES 1AU WANT INST

YES NO WAIT
S
DOES ADDRESS
COMPARE WITH VM
’_j YES NO
IS O.X. BIT SET IN START INST FETCH

REGISTER WITH WHICH SET RETURN

IT COMPARES ADDRESS
T T
NG YES

TAKE INST FROM
VIRTUAL MEMORY

I

I Y !

HAS INST BEEN
RECEIVED

YES
PROCEED TO
PROCESS

Fig. 4+—Instruction fetch procedure.

i

wAIT

NO 1
| S

Cocke and Kolsky: Virtual Memory in the STRETCH Computer 85

must take its instruction from the virtual memory
provided the OK bit is set; otherwise, it must wait
until the OK bit is set.

Note: This procedure prevents the logical difficulty
mentioned earlier whien would occur if the virtual
memory contained a store order into the instruction
presently being fetched.

For Example: a STORE Address a + 2
a+1 LOAD M,
a+2 ADDN,:
a—+3

The store to a + 2 must be done in sequence or the
old value N would be used for the address instead of
the quantity being set by a.

Indexing Logic

Fig. 5 shows the flow for instruction indexing. After
determining that an instruction is ready to be in-
dexed, the TAU tests whether or not the index value
is available. If it is, the indexing operation is started;
if not, the memory reference is started and the IAU
waits until the data returns before proceeding. If the
index-fetch has not been started, the TAU compares
the index address against all the data addresses in
virtual memory. If none compare, the index value is
fetched normally. If one does compare, the index
fetch is held up until the OK bit is set for the data.
This value from the virtual memory is then used for
indexing the instruction.

1S THERE AN INSTRUCTION
TO BE INDEXED
YES NO WAIT
HAS INDEX VALUE
BEEN OBTAINED
WAIT

YES

f
NO
— INDEX HAS MEM. REF
| INSTRUCTION BEEN STARTED
T T
NO
1 |
- t -

YES
T

DOES INDEX ADDRESS
COMPARE WITH AN ADDRESS
IN A VIRTUAL MEMORY

NO YES

START MEMORY REFERENCE 1S 0. K BIT SET IN
FOR INDEX VALUE COMPARED WITH LEVEL | WAIT

I

YES NO

OBTAIN INDEX
FROM Vv M

Fig. 5—Indexing procedure.

Logic of Putting Instructions in the Virtual Memory

(1) Figs. 6, 6A, 6B, 6C represent the logical flow
for putting instructions into the virtual
memory. If the indexing arithmetic unit has
an instruction prepared for the virtual mem-
ory, it may transmit the instruction into the

2)

(3)

virtual memory if interlocks one and five do
not forbid it. These interlocks prohibit a new
instruction from destroying an old one which
has not been executed as yet, whether an
arithmetic operation (I;) or an unexecuted
store (I1). The handling of the instructions
varies depending on whether they are of the
bring type, store type, or immediate type.
The bring type, as described in Fig. 6A, pro-
ceeds as follows: If the effective data address
of the instruction compares with the DA
address in some level, the instruction, its op
code, and effective data address are loaded
into the level marked by C;. The compare bit
for level C, is set to one while the compare bit
for the compared-with level is set to zero. If
the OK bit in this compared-with level is set,
meaning that the data located there is correct,
the data is transmitted directly to the C; level
and its OK bit is also set. If the OK bit is not
set, we must tag the compared-with level by
setting its forwarding bit and by putting the
value of C, into its forwarding address; the
bring bit for level (| is also set to zero since no
further data fetch is required.

If the effective data address does not compare
with any Virtual Memory level, the instruc-
tion is put directly into level C,, its OK bit is
set to zero, and 1its bring bit is set to one, indi-
cating that a fetch must be started.

Fig. 6B shows the store type procedure. If the
effective address of the instruction ‘does not
compare with the DA address in some level,
the instruction is placed into the level marked
by C,. The store bit is set to one indicating
that a store will be required. The level’s bring
bit and forwarding bit are set to zero; its
compare bit is set to one. If on the other hand
the addresses do compare, the same procedure
is followed; but in addition, the compare bit
in the level compared-with is set to zero so

" that future comparisons will not use it.

The OK bit has not yet been set. It is set to
one if the operation is an index store and set
to zero if it i1s an ordinary store. For the ordi-
nary store it is clear that the OK bit should be
zero since the data must come from the arith-
metic unit after the preceding instruction is
executed.

As was mentioned in the definition previously
we treat all indexing instructions as store
type and place the new value of the indexed
quantity into the virtual memory. This is
done because the indexing arithmetic unit is
going ahead of the normal order of instruction
execution and an interruption may occur
before this indexing instruction should have

86

1959 PROCEEDINGS OF THE EASTERN JOINT COMPUTER CONFERENCE

4

DOES THE INDEXING AU 0oES 1, PREVENT L\ LIDOES 15 PREVENT
HAVE AN INST READY FOR~YES| OPERATION OPERATION
THE VIRTUAL MEMORY .
T YES YES
NO 1 | WAIT | WAIT
-l WAIT : [S
L1 w0

IMMEDIATE
TYPE OPERATION

TC FIGURE
6A

L2

BRING [STORE J
I TYPE l TYPE
68

TO FIGURE
6C

Fig. 6—Procedure for placing instructions

into the virtual

memory.

FROM FIGURE 6

DOES ADDRESS COMPARE
WITH A LEVEL Da

YES ~ NO
¥ ¥

SET COMPARE BIT TO ONE IN C
LEVEL AND TO ZERO IN COMPARED-
WITH LEVEL.

IN THE C; LEVEL: PUT THE INSTRUC-
TION ADDRESS IN IA PUT THE OP
CODE IN OP. PUT THE DATA ADD-

IN THE C: LEVEL: PUT THE INSTRUC-
TION ADDRESS IN [A. PUT THE OP CODE
IN OP. PUT THE DATA ADORESS IN DA.
SET THE BRING BIT TO ONE. SET THE
FORWARDING BIT, THE COMPARE BIT,
AND THE OX. BIT TGO ZERO.

RESS IN DA. SET THE BRING BIT,
THE STORE BIT,AND THE FORWARD-
ING BIT TO ZERO.

ISOK. BIT SET IN
COMPARED-WITH LEVEL

YES

FROM FIGURE 6

DOES ADORESS COMPARE
WITH A LEVEL DA

YES NO

SET COMPARE BIT IN
-WITH LEVEL
0 ZERO

IN THE ¢, LEVEL:
PUT THE INSTRUCTION ACDRESS IN_ IA, PUT THE
L—pi OP CODE IN OP, PUT THE DATA ADDRESS IN DA.
SET THE STORE BIT TO ONE, THE BRING BIT TO
ZERO, THE FCRWARDING BIT TO ZERO, AND THE
COMPARE BIT TO ONE

1S THE STORE YO
AN INDEX

T 1
P‘UY THE INDEX WALUE IN SET O.X. 8IT TO
ZERO

D OF THE Ci LEVEL.SET
O.K.BIT TO ONE

L—OREYUM TO TOP OF FIGURE 4

Fig. 6(b)—Logical conditions for store type operations.

FROM FIGURE €

IN THE C; LEVEL:

PUT THE INSTRUCTION ADDRESS IN IA, PUT
THE OP CODE IN OP. PUT THE DATA ADDRESS
INTO D {(NOTE THIS). SET O.K. BIT TO ONE.
SET FORWARDING BIT, THE BRING BIT,

AND STORE BIT TO ZERO. SET THE COMPARE
BIT TO ZERO (NOTE).

RETURN TO TOP OF FIGURE 6

T

Fig. 6(c)—Logical conditions for immediate type operations.

SET THE FORWARDING BIT TO ONE
AND PUT C, IN THE FORWARDING
ADDRESS OF THE COMPARED-WITH
LEVEL.

SET THE OK. BIT TO ZERO IN
THE C» LEVEL

SEND DATA FROM THE COMPARED-
WITH LEVEL TO D OF LEVEL C,
SET OK. BIT OF LEVEL C, TO
ONE.

ADVANCE C; l -

TO NEXT LEVEL

TOP OF FIGURE 6

Fig. 6(a)—Logical conditions for bring type operations.

been done. In this case, the old value of the
index is still in the index register. On the other
hand the indexing arithmetic unit compares
with the virtual memory and extracts the
most recent value of the index for indexing
succeeding instructions. The OK bit is set to
one since the appropriate data is in the above
level. Both the new and old index values must
be carried along to give logically correct con-
ditions in the case of an interrupt. A situation
very similar to interrupt occurs in branches on
arithmetic results where the indexing arith-
metic unit “guesses’” which branch will be
taken and proceeds with fetching and process-
ing the instructions on this branch, subject to
being wiped out if the guess proves to be
wrong. (See the discussion on “Wrong way
Branches” below.)

Immediate type instructions are the simplest
type because they essentially carry their data
with them. Fig. 6C shows the logic in this case.

The instruction is placed in the virtual
memory level marked by C,. The address field
of the instruction is placed in the data field of
C;. The OK bit is set to one indicating the
data is present. The bring and store bits are
both set to zero. The compare bit is set to
zero since the DA address field has no mean-
ing for immediate type ops. (The data address
of the last instruction which occupied this
level still remains in DA, so it has no relation
to the present D field.)

DOES Iy PREVENT
FETCH

NO YES WAIT

IS THE BRING

BIT SET FOR
LEVEL C2
=
v?s NO
IS THE BUS FREE

YES NIO WAIT
1

| IS MEMORY FREE l‘—]

S
YES NO waIT

[

ADVANCE FETCH
COUNTER (C2)

START DATA FETCH. SET
RETURN ADDRESS TO LEVEL
Cz. SET BRING BIT FOR

Cz TO ZERO

Fig. 7—Data fetch procedure.

Cocke and Kolsky: Virtual Memory in the STRETCH Computer

Logic of Data Fetching

See Fig. 7: When an instruction of the bring type
has been placed in the virtual memory, the data re-
quired by the instruction in general will not be present
(unless a comparison exists as was described above)
and thus the data must be obtained from core stor-
age. The fetch cannot be started if interlock I holds,
which means all the fetches corresponding to the
instructions presently in the virtual memory have
been started. If a fetch is possible, the bring bit at
level C; indicates whether or not a fetch is necessary.
If necessary the fetch may be started if the memory
bus and memory unit corresponding to the data
address are not already being used. When the fetch is
started, the bring bit for level C, is set to zero. The
counter C, is then stepped forward to the next level.

Logic of Data Storing

Fig. 8 shows the Data Store Logic, which is very
similar to that for data fetching just deseribed. The
only significant difference is that the OK bit must be
set before the operation can be started.

DOES I PREVENT STORE

YES NO WA

|
1S THE STORE BIT
SET FOR LEVEL Cy

YES NO

T

IS O.K. BIT SET
FOR LEVEL Cy

YES NO WAIT

IS THE MEMORY
CORRESPONDING TO
DA FOR Cy FREE AgvnucsRs{gg?s
T
YES NO WAIT

r PERFORM DATA STORE AND SET
l STORE BIT FOR Ca TO ZERO

Fig. 8—Data store procedure.

Logic for Placing Data into the Virtual Memory

In Fig. 9, we see the logical conditions which must
be satisfied by the data returning from memory
addressed to the virtual memory. The return address
which was supplied when the fetch was started selects
the level into which the data will be placed. The OK
bit is then set to one, indicating that the proper data is
in the level. The operation is complete at this point
unless the forwarding bit is set. In this case, the data
must be forwarded to the level designated by the
forwarding address. This procedure continues from
level to level as long as the data continues to arrive
into a level whose forwarding bit is set. This procedure
automatically supplies all operands present having
identical data addresses with the proper data, without
additional memory references.

87

WAIT IS DATA COMING FROM
| MEMORY BUS

NO—I

fes

PLACE DATA INTO LEVEL
CORRESPONDING TO RETURN
ADDRESS.

SET O.K BIT TO ONE

IS F BIT SET
IN THAT LEVEL

YES

SET F BIT TO ZERO

PLACE DATA IN LEVEL
INDICATED BY FORWARDING
ADDRESS AND SET O.K.

B8IT IN THAT LEVEL TO ONE

NO

IS F 8IT SET
IN THAT LEVEL

L ves—|

e NO

Fig. 9—Procedure for placing data into virtual memory.

Logic of Removing Instructions from the Virtual
Memory

In Fig. 10, we notice that as the arithmetic unit
completes an instruction it checks to see if the next
instruction in the virtual memory is ready to be ex-
ecuted (indicated by interlock I,). Note that the
operation may be an unconditional branch, a condi-
tional branch, or an index type store, as well as a
normal bring or store type instruction involving the
accumulator. Fig. 10 shows only the cases which in-
volve the universal accumulator. Instructions such as
the unconditional branches are merely ignored at this
point. They are carried along only to provide the data
for recovery in the event an interrupt occurs. The
execution of the conditional branches on arithmetic
results are described in the next section.

If the next instruction marked by counter C; is
ready, it is fed into the arithmetic unit. If it is a store

A{
DOES INTERLOCK I,
PREVENT PROCEEDING

WA|
i YES . NG
L 'y

SEND INSTRUCTION FROM

}

LEVEL DESIGNATED BY C4
TO ARITHMETIC UNIT

IS THE INSTRUCTION
A STORE TYPE

s 1

PLACE ACCUMULATOR
IS THE OK. BIT SET WAIT
NO l

CONTENTS IN Cq LEVEL
AND SET 0.K. BIT TO ONE
YES

IS F BIT SET IN THAT
LEVEL

YES NO
SET F BIT TO ZERO

PLACE DATA IN LEVEL
INDICATED BY FORWARDING
ADDRESS AND SET O.K. BIT
IN THAT LEVEL TO ONE

IS F BIT SET
IN THAT LEVEL

YES NO

EXECUTE THE INSTRUCTION

ADVANCE C4 TO
NEXT LEVEL

Fig. 10—Procedure for removing instructions
from virtual memory.

88

type, the data is gated from the accumulator into the
data field of level C,, and the OK bit is set to one. If
the forwarding bit of the level is set, a forwarding
procedure in this case is essential for the proper
logical operation of the computer, whereas in the
bring case it is a time-saver only.

If the instruction is not a store type, the arithmetic
unit must hold up until the OK bit for the level is set.
When the OK bit is set, the instruction is gated into
the arithmetic unit and executed.

Logic of Interrupt Procedure

If for any cause an interrupt (or trap) from a spe-
cial condition occurs, the instruction which is being
executed in the arithmetic unit is completed. How-
ever, the next instruction is not executed in spite of
the fact all the data preparation for it may have been
completed. The address in the /A (instruction ad-
dress) field will serve as the value to reset the instruc-
tion counter if it is desired.

The Virtual Memory is initialized, i.e., set to the
starting conditions of an interrupt, with the excep-
tion that all store orders which have already received
data from the accumulators must be executed first.
If the interrupt is of such a nature that the normal
flow of instructions is not resumed, the procedure of
storing the modified values of the index registers in
the Virtual Memory gives logically correct results,
i.e., the same as if the interrupt had occurred before
the indexing took place.

DEscrIPTION OF TIMING SIMULATION PROGRAM
During the logical design of STRETCH it was

T\DﬂOQQQ‘l“Y +n hY‘ﬂ‘") f]'\n ‘70]11ﬂ (\‘F +l’\ﬂ vn'f'na] moamaoarwv
10U M. s i

AT ad,

concept and to assist in the selection of optimum
values of various system design parameters. Ex-
amples of such parameters are: The number of
memory boxes, interlace and allocation of memory
addresses, and numbers of virtual memory levels.
Also of interest were trade-off factors for speeds of
indexing arithmetic unit, memories, etc.

In November 1957 the Timing Simulator (SIM-2)
described here was written for the IBM 704. This
program attempted to answer such questions quan-
titatively by simulating the time-wise operation of
STRETCH on typical test programs coded in
STRETCH language.

The basic logic of the 704 program follows the
principles just described in the preceding section for
the virtual memory. It should be stressed that the
simulator is a timing simulator and does not execute
the instructions in an arithmetic sense. It traces the
time-wise progress of the instructions through the
components of the computer, observing all the inter-
locks and time delays necessary for correct representa-
tion of the behavior of the machine.

One of the fundamental concepts in the STRETCH
design is that of asynchronous operation of the com-

1959 PROCEEDINGS OF THE EASTERN JOINT COMPUTER CONFERENCE

ponents. This means that there are a large number of
logical steps being executed at any one time in the
computer, each of them proceeding at its own rate.

Tha cimulate thiea Aaw of ant narallal ntinirA
10 SIMuUIate Inis now O many parant: Conuinucus

operations, we have broken the continuous time
variable into finite time steps. The basic time step is
taken as 0.1 microsecond in the simulator.

By taking 0.1 microsecond as our quantum of time,
we are automatically setting the scale of the smallest
circuit entities which we will consider as being those
which accomplish complete functions in 0.1 micro-
second or few multiples thereof. Thus, by using this
pholosophy, and considering many of the components
of the computer as ‘“‘black boxes”, we greatly simplify
the detaiis which must be considered without intro-
ducing serious timing inaccuracies.

Our experiénce has indicated that more informa-
tion was gained by making a large number of fast
parameter studies using different configurations and
programs than could have been obtained by a very
slow, detailed simulation of a few runs with more
precision per run. Even so, our time scale is foo fine
to make serious input-output application studies.
These would require a simpler simulator having at
least a factor of 10 coarser basic time interval.

Logic of the Simulator

In the asynchronous organization of STRETCH
there can be many major components operating at
any one time. To achieve this parallel effect in the
simulator we essentially ‘“hold time still” and scan
fhe entire machine repreqentatmn at each time qtep

Tthan n-]'\ avarv mainr hlaclr n‘F thao nrogram iQ
A.L.I. \uxvu TyTiy LiigUs LUV VAU L URL Guiis S

traversed at each time step, if there is no activity
required in a given block, only a few tests need be
made by the code.

If in this process it is determined that a given
logical unit should do an operation, the time interval
required for the operation is obtained from a table of
constants. The speed of the various logical units can
thus be changed parametrically by changing the
values in the tables. A constant obtained from the
tables is inserted into a memory location called the
time counter for that unit. At each time step the
program reduces this counter by one until it reaches
zero. Thus, the fact that the counter is non-zero can
be used to indicate that the particular logical unit is
busy and not available to service other requests.
When the counter is unit can consider a new
input.

In addition to the time counters many of the
logical blocks contain other conditions or interlocks
which affect the operation of the block. These condi-
tions are stored in the program and tested before
action is undertaken.

It is interesting to note that since the simulator
simulates timing only, the sequence of instructions

zZerg +h

U uia

Cocke and Kolsky: Virtual Memory in the STRETCH Computer

to be executed must be furnished as a “string” with
all loops unwound. However, to make the computer
behave as it actually would, the loops must be fur-
nished with “wrong way”’ paths given for the cases
where the computer would take such paths. Also one
must furnish more than enough information along
such paths since it is difficult to predict in advance
how far the computer will get down the wrong path
before it it called back.

Parameters are changed from one run to another
by use of control cards. The control cards are set up
in such a way that any number of parameters may be
changed between runs. Results are given either as
detailed timing charts or as summary listings for each
problem. The usual procedure has been to print only
summary results while making a series of parameter
studies. The detailed timing charts as printed on the
704 for most problems would be about 50 feet long
for each run. Since over 1000 cases have been run, it
is clear that only a few cases could be printed in full
detail. These are particularly useful in seeking the
causes of conflicts which slow the computer.

Resulis of Parameter Studres

When the simulator program was completed, we
undertook a series of studies in which the main
parameters describing the STRETCH system were
varied one or two at a time in order to get a measure
for the importance of different effects. After this we
began to specialize the studies towards answering
specific questions in the STRETCH design.

—— | INITIALIZATION

2 ARITHMETIC UNIT

3 DECODE OPERATIONS

4 VIRTUAL MEMORY

5 INDEXING ARITHMETIC UNIT

6 BUS FROM MEMORY

7 B8US TO MEMORY

8 170 REFERENCES TO MEMORY

9 V.M STORE REFERENCES TO WMEMORY
10 VM. FETCH REFERENCES TO MEMORY
Il I.A.U. REFERENCES TO MEMORY

12 INSTRUCTION FETCH REFERENCES TO MEMORY
13 COUNT-DOWN TIME

14 PRINT DETAILED LISTING

L——— 15 SUMMARIZE AND PRINT

Fig. 11—SIM — 2 simplified flow diagram.

The simplified flow diagram in Fig. 11, indicates
the order in which the subroutines for the various
‘logical units are executed at each time step. Using
the types of techniques just described above, the
logical subroutines simulate the action of the com-
ponents of the computer such as the virtual memory,
arithmetic unit, ete.

SoME RESULTS OF THE SIMULATION STUDIES

Fig. 12 shows examples of the type of output list-
ings given by the simulator. Fig. 12 is a piece of a long
timing chart with each line of printing representing
0.1 microsecond of time. The columns represent the
various components of the computer. On the left and
right are timing counts subdividing each micro-
second. On the far right are conflict indicators (C on
the charts) and waiting indicators, W, which indicate
when interlocks prevent operations from proceeding.

89

The 2nd column, I, gives the number of the
instruction being indexed. The 4th column, AU,
gives the number of the instruction using the arith-
metic unit. The next four columns represent the
instructions using the memory buses. The columns
labeled X- F-, and M- represent the index, fast, and
main memories. A string of X’s in the columns repre-
sents the cycle time of the memory. The number
indicates the instruction using the memory and the
number of times which it is repeated gives the read-
out time of the memory. The columns L- indicate
which instruction is located in the virtual memory
levels. The other columns are for details in analysis
and need not be considered here.

Five of the test problems used most frequently are
described below. Other test problems were used for
specific studies, but since the results were similar for
all problems of a given type, we gradually discon-
tinued using them. The following were originally
selected as being typical of different classes of
problems.

(1) Mesh- Problem — Part of an hydrodynamics
problem from Los Alamos. It contains a more
or less “average’ mixture of instructions for
scientific problems: 859, floating point instruc-
tions, 149, index modification instructions, and
19, VFL. It is usually arithmetic unit limited.

Monte Carlo Branching Problem — Part of an
actual Monte Carlo neutron diffusion code. It
represents a chain of logical decisions with very
little arithmetic in between. It contains 479,
floating point, 159, index modification instruc-
tions, and 369, branches of the indicator and
unconditional types. It is largely instruction-
access limited.

@)

(3) Reactor Problem — The inner loop of a neutron
diffusion problem. It consists of 909, floating
point arithmetic (39% of which are multiplys)
and 109, index modification instructions. It is

almost entirely arithmetie unit limited.

Computer Test Problem — The evaluation of a
polynominal using computed indices. It has
719, floating point, 10%, index modification,
6% VFL and 139, indicator branches. It is
usually arithmetic unit limited, but not for all
configurations.

4)

Simultaneous Equations — The inner loop of a
matrix inversion routine 679, floating point
and 339, index modification. Arithmetic and
logic are about equally important. It is limited
both by arithmetic and instruction-access
speeds.

(5)

Speed vs. Number of Levels of Virtual Memory
Fig. 13 shows the effect on computer performance

Cw

1959 PROCEEDINGS OF THE EASTERN JOINT COMPUTER CONFERENCE
IS AU IF IM OF OM X1 X2 F1 F2 F3 F4 M1 M2 M3 M4 M5 M6 M7 M8 L1 L2 L3 14 L5 L6 LT L8 FD MD MC

I

90

e 3 ke ic i ke i i i 3 e i 3 fc e J e i x = z X

6]

34158789m123458789m12345878
[R [N B o [~ B o oy | N~ o o

" Mmjm ™ w oW

E e e B I e B I I]

N NN Ny N

™ m

XN P 55
b % B 3
” "
e oM m wn W
— @ ™
-~ ™

R TR R PR IR LI R ™ @ o™ W

™ T ot~ iR N | Y| o ™ 0N M W) it~ ©

10
10
1
2

CwW

10
10
10
10

11
11
11
11
13

4 3 21
4 3 21
4 3 21
4 3 21
4 3 21
4 3 21
4 3 21
4 3 25
4 3 25
4 3 25
4 3 25
4 3 85
4 3 85
4 3 65
4 3 6 5
4 3 85
4 7 85
4 7 65
4 7 65
4 7 65
4 71 85
4 7 865
8 1 65
8 7 85
8 7T 65
8 7 65
B 7 85
8 7 69
8 768
8 7 69
8 17 6 9
8 7T 69
8 71 69
8 710 9
8 7109

TX
X
X
X
X
X
X
X

5X
5X
5X
5X
SX
5X
5X
5X

4X
4X
4X
4X
4X

X

4x
Fig. 12—Listing of simulator print-out.

34
X
98X
(24
98X
9X

X
X
X
11X
11X
11X
11X

11
1

§
11

2

10
10 10
10
10

10
10
10

Cocke and Kolsky: Virtual Memory in the STRETCH Computer

of varying the number of levels of virtual memory.
Curves for the Monte Carlo and Mesh Calculations
with two sets of arithmetic and indexing arithmetic
speeds are shown. The AU times given are averages
for all operations.

CALC. WITH
AU TIME 0.64ps
IAU TIME O6as

MESH CALC. WITH
AU TIME 1.28,3
== IAU TIME l4ps

MONTE CARLO CALC.
AU TIME 0.64us"
IAU TIME O.6us

MONTE CARLO CALC
AU TIME 128gs
1AU TIME 14xs

e —————————
———

N WU TN I NN T N |
2 3 4 5 6 17 8

NO. LEVELS OF LOOK-AHEAD

(o] t

Fig. 13—Computer speed vs. no. of levels of look-ahead registers;
4 main mems. 2.0 us; 2 fast mems. 0.6 ps for two sets of arith.
speeds.

A number of interesting results are apparent from
these curves:

(1) There is a tremendous gain to be had in going
to the virtual memory organization. The point
for “0 levels” means that the arithmetic unit
is tied directly to the instruction preparation
unit, although simple Indexing-Execution over-
lap is still possible.

~~
N
~—

The gain in performance goes up very rapidly
for the first two levels, then rises more slowly
for the rest of the range.

(3) A large number of levels does the Monte Carlo
-~ ———problem—less good -than the- Mesh problem
because constant branching in the former
spoils the flow of instructions. Notice that the
curve for the Monte Carlo problem actually
decreases slightly beyond six levels. This phe-
nomenon is a result of memory conflicts caused
by extraneous memory references started by
the computer running ahead on the wrong-way

paths of branches.
4)

The computer performance on a given problem
is clearly less for slower arithmetic speeds.
However, it is important to note that the
sensitivity of the performance is also less for
slower arithmetic speeds. The virtual memory
improves the performance in either case, but

it is not a substitute for a fast arithmetic unit.

91

Speed vs. Number of Main Memory Units

Fig. 14 shows how internal computer performance
varies with the total number of memory units for a
particular problem. The entire calculation is assumed
to be contained in memory for all cases. The speed
gain from overlapping memories is quite apparent
from the graphs.

120 MESH CALC. WITH REGULAR
SEPARATE 0.6us FAST MEM.

1o

100 MESH SEPARATE

20us INSTR. MEM.

A~
- ’\
Pkl MESH CALC WITH DATA

AND INSTR SHARING SAME
20us MAIN MEM BOXES

, MONTE CARLO WITH REGULAR
SEPARATE 06us FAST MEM.
MONTE CARLO SEPARATE
¥ 20us INSTR.MEM

e ——

90

80

70

60

4

SPEED

50
40

30 MONTE CARLO WiTH DATA

AND INSTR SHARING SAME

20 2.0us MAIN MEM. BOXES

ob—t 1 1 1111
5 6 7 8

NO. MAIN MEMORY BOXES

Fig. 14—Computer speed vs. number of main memory boxes:
4 level LA; 0.6 us I AT time; 0.64 ps AU time.

The speed differential between having and not
having instructions separated from data arises from
delays in instruction fetches caused by the memory

—units—being busy with data. The size of this effect
varies from problem to problem, being less pro-
nounced for problems which are arithmetic limited
and more for logical problems.

The X’s on the graph show the effect of replacing
the 0.6 usec instruction memories by a pair of 2.0
usec memories. The resulting performance change is
small for the Mesh preblem, which is arithmetic
limited, but large for the instruction-fetch limited
Monte Carlo problem.

Speed rs. Arithmetic Unit and Indering Arithmetie
“Unat Times S e

Although everyone realizes the importance of
arithmetic speed on overall computer performance,
it was not until the simulator results became available
that the true importance of the indexing arithmetic
speeds was recognized. Figs. 15 and 16 show a two-
parameter family of curves giving the computer
speed as a function of the AU and TAU times.

Fig. 16, in which the arithmetic time is the abscissa,
shows an interesting ‘“‘saturation” effect where the
computer performance is independent of AU speed
below some critical value. Thus it makes no sense to
strain AU speeds if the TAU is not improved to
match. The curves in Fig. 15 show the same effect,
i.e., the TAU speed serves as a ‘‘ceiling” on per-
formance beyond which the AU speed cannot pass.

92 1959 PROCEEDINGS OF THE EASTERN JOINT COMPUTER CONFERENCE

o}

%
100 F :o.sa\‘?\g_,
N\

=0.96

S0

80

70} 'I.ZB\
=150~

B 60 i \
w
a
@ 50+ } wmesH cac
~
40 AN
\\
30p S~
\\
20} \\
1} MONTE caRLO cALC.
ok
0 1 1 1 1 1
) 05 10 15 20 25

INDEXING ARITHMETIC TIME {usec)
(AVERAGE TIME TO INDEX ONE INSTRUCTION INCL. DECODE
AND STORING MODIFIED ADDR)

Fig. 15— Computer speed vs. indexing arith. times for various arith-

metic unit times: 4 main mems. 2.0 ps; 2 fast mems, 0.6 us; 4
levels of look-ahead.

120
110
100

90

80

7O IAU=1.4,s

60+
FOR MESH CALC

SPEED

1AU=1.8us
18U=06us

—_———
= -~

50
FOR MONTE CARLO CALC.
30

20

) 1 1 1 1 !
o 05 10 15 20 25

AVERAGE ARITHMETIC TIME (usec)
(EXECUTION TIME FOR "AVERAGE" OPERATION)

Fig. 16—Computer speed vs. arithmetic times for various indexing
arithmetic unit times: 4 main mems. 2.0 us; 2 fast mems. 0.6 us;
4 levels of look-ahead.

Arithmetic Unit Efficiency

One fallacy which is frequently quoted is that the
goal of improved computer organization is to increase
the arithmetic unit efficiency. Actually there are two
reasons why this is not the goal in itself. The first is
that arithmetic efficiency depends strongly on the
mixture of arithmetic and logic in a given problem
so that a general purpose computer cannot hope to
give equally high percentage utility to all. The second

reason 18 that the Qimp]oef wav to inereace the arith-

TASUAL LS LUIGL LLT SLLpulsLy Wa)y U AUlIiTast wiil adivid

metic unit efficiency in any asynchronous case is to
slow down the arithmetic unit.

The real goal in improved organization is maxi-
mum overall computer performance for minimum
cost. One will tend to increase the arithmetic unit

speed as long as its percent efficiency is reasonable
for a variety of problems. One will stop this process
when the overall performance gain no longer matches
the increase in hardware and complexity. Thus the
arithmetic unit efficiency is a by-product of this
design process, not the prime variable.

Speed vs. Concurrent Input-Output Activity

Because of the relative time scales of 7/0 activity
and the CPU processing speeds, the simulator can-
not take account the availability or non-availability
of data from //0 on the program being run. How-
ever, we can observe the effect on the computation
of the I/O devices operating at different rates
simultaneously with computing.

Using the STRETCH control word philosophy, it
is possible to have a number of input-output units
operating at the same time the Central Processing
Unit is running. The Basic Exchange can reach a
peak rate of 1 word every 10 microseconds. The high
speed disk normally operates at 1 word every 4
microseconds. Since the mechanical devices take
priority over the CPU in addressing memory, the
computation slows down because of memory-busy
conflicts.

Fig. 17 shows an example of how internal comput-
ing speed is slowed as the I,/0 word rates are varied
continuously. At the theoretical ‘“choke off;” the I,/0
devices take all the memory cycles available and stop
the calculation. Notice that this condition can never
arise for any I,/0 rates presently attainable.

BASE: DATA & INSTRS MIXED IN 4 MEMS

Ot -——mem e S T L L L e - -
1:' T 4 MEMORY UNITS
!
! /4/_’—
Py 1]
i e 7] |
1
1]
I) 2 MEMORY UNITS o
-20% : domee
| //’ 1
o ! P |
W -30% - 17 !
a 1, H
: / -
=3]
u-40'l.- I |
e P! 1
3 '
O .50, ")
s ! | MEMORY UNIT e —
& o H g
& [| ——
2*60%- | : /’,r—
| e 1
s
[Y
-70% 1 | ',
] 1
4
sl | 1 /1
Tl ! ,/ 1+—HIGH SPEED
&1 1] | DIsk RATE leBASIC EXCHANGE
ol \ | PEAK RATE
sont 11| |
A 1 FOR MONTE CARLO PROB
2 :l i H
1
100% 5 16 i5 20 25

WORD RATE-MiCROSEC:

sama

ONDS BETWEEN CONSECUTIVE WORDS

Fig. 17—Internal computing speed. Percentage reduction in speed
caused by input-output devices referencing memory at different
rates while the calculation is proceeding.

A STRETCH system with only 1 or 2 memory
units has less performance than a larger one for three

Cocke and Kolsky: Virtual Memory in the STRETCH Computer

reasons: (1) The top speed of the system is reduced
by the loss of memory overlap, (2) it has a larger
1/0 penalty when I/0 is run concurrently with the
computation, and (3) the smaller amount of data
which can be held in the memory at one time increases
the amount of I/0 activity needed to do the job.
Note, however, that increasing the memory size on a
computer of conventional organization only improves
the third area.

A Study of Branching on Arithmetic Results in Stretch

One penalty of the non-sequential preparation and
execution of instructions used in STRETCH is that
if there is a branch in the problem code it spoils the
smooth flow of instructions to the indexing arith-
metic unit. Any branch in a program will cause some
delay, but the most serious ones are the branches on
arithmetic results which cannot be detected by the
indexing arithmetic unit in advance.

There are two fundamental ways in which branches
on arithmetic unit results can be handled by the
computer.

(1) The computer can stop the flow of instructions
until the arithmetic unit has completed the
preceding operation so that the result is
known, then fetch the next correct instruction.
This places a delay on every AU result branch
whether taken or not.

The computer can ‘‘guess’” which way the
branch is going to go before it is taken and
proceed with fetching and preparing the in-
structions along one path with the under-
standing that if the guess was wrong, these
instructions must be disearded and the correct
path taken instead.

@)

A detailed series of simulator runs were made
to study this situation and to decide which way

STRETCH should be designed. Some of the general
observations were:

(1) The performance variation in a problem with
considerable arithmetic data branching can
vary by approximately + 159, depending on
the way in which the branches are handled.

(2) Holding-up on every branch seems to be less
desirable than any of the guessing procedures.
Some time is lost whenever a branch is exe-
cuted rather than proceeding to the next
instruction. Unless there is an unusual situation
which there is a very large probability that the
branch will always be taken, the least time will
be lost if one assumes that the branch is not

taken.

The theoretically highest performance would
be obtained if each branch had an extra ‘“‘guess

®3)

93

bit”” which would permit the programmer to
specify which way he estimates each branch
will most likely go. However this would place
a considerable extra burden on the programmer
for the gains promised. (It also uses up many
valuable OP codes.)

It is realized that there is a “feedback” in such
decisions because the way in which the machine
guesses the branches will influence future pro-
grammers to write their codes to take advan-
tage of the speed gain. The result is that the
statistics of the future will be biased in favor
of the system chosen for the machine, and thus
‘“‘prove’’ that it was the right decision.

(4)

ACKNOWLEDGMENT

The general idea of “look-ahead” was under con-
sideration by many people in IBM before the authors
became involved. What is represented here is a
realization of the detailed logic of look-ahead, similar
enough to STRETCH for practical simulation
purposes. The actual precise detail of the logic as it
appears In the STRETCH computer represents, of
course, the accomplishments of many individuals in
the STRETCH project.

Discussion

M. Rubinoff: What happens to the look-ahead process if a sequence
of branch instructions is programmed, such as in the binary selection
of one of many subroutines? An example is the selection of the desired
piece of a piece-wise function approximation.

Dr. Kolsky: If it is an unconditional branch then it takes a correct
path.

Mr. Rubinoff: These are conditional?

Dr. Kolsky: The machine makes the assumption that the branch is
not taken. If the path is not taken then the branch time is covered up.

M. S. Maxwell (US Naval Weapons Lab.): Discuss maintenance on
diagnostic programs to insure proper operation of virtual memory.

Dr. Kolsky: The STRETCH machine has as one of its unusual
features a part of the interrupt system capable of recording the status
of the machine at the instant the interrupt oceurs, so that one gets a
“snapshot” of the machine as of that moment. This oceurs so you do
not have to go back and duplicate the error by running the program
over and over again. I think you can see by the way the virtual
memory operates that it would be very difficult to duplicate the error
again. This feature, whereby a snapshot is made at the time of the
error occurs, enables the engineers to go over the records and deter-
mine exactly what it was that caused the failure. Of course, the
machine has a very elaborate checking mechanism as was described
by Erich Bloch in his paper yesterday.

J. Anderson (Burroughs): Is the addressing of STRETCH’s main
memory sequential within a memory unit or sequential across several
memory units?

Dr. Kolsky: The Los Alamos machine has six memories. Two are
alternating and the other four are sequential across all four.

R. MacIniyre (Bausch & Lomb): Is the virtual memory addressable
in case of a branch?

Dr. Kolsky: No, it is completely unavailable to the programmer. You
can see that one would get into some rather tricky logical problems
if it could be addressed. We discussed this at length and one gets
into a terrible spider web of logical complications when one does that.

	001
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093

