
Reference Manual

PERFORMANCE CHARACTERISTICS

7030 Data Processing System

volume 1

VOLUME 1

Reference Manual

PERFORMANCE CHARACTERISTICS

7030 Data Processing System

March 8, 1961

This document contains information which is proprietary to
the International Business Machines Corporation and should
not be reproduced or used in whole or in part without the
express permission of the IBM Data Systems Division.

INTERNATIONAL BUSINESS MACHINES CORPORATION

Contents

FOREWORD . ~ " oil " " " " • 1-1

PROORAMMIN"G • • • • • . 2-1

7030 Programmability 2-1

Hints Toward Good 7030 Programming. . ••. • •• • 2-1

Applied Programming Systems for the IBM 7030 .••..•.•.•.•.•. 2-5

IBM 7030 Packages for the 704, 709, and 7090. . . • • . . • . . • . .• •. • • 2-6

IBM 704 and 709 Simulators for the 7030 •••••.•..•...•...•..•• 2-6

Master Control Program .. "..... 2-8

STRAP n Assembly. 0 • 2-9

SMAC 0.. 2-9

FORTRAN .••..••••...•••.•..••••.••••••.•.••••••••.•••.•.• 2-9

EXEC UTION TIM.ES " e .. " 3-1

Raw Speeds and Their Interpretations .••••••. 0 • • • • • • • • • • • • • • • 3-1

E-Box Times for Basic Instructions •...•.•....•... 0 •• • • • • • •• • 3-1

Analysis and Interpretation of the New Speeds Relative
Machine Environment " lit • .. 3-5

COMPUTATIONAL PERFORMANCE.......................... 4-1

Matrix In.version - G ERB2 " .. " " .. . 4-1

Matrix Multiplication - MXM16 ••••••••••••••••••••••••• 0.. . . . 4-3

Prime Number Generation Program PRIMC.................. 4-4

A Monte Carlo Program " .. ,. " 4-5

Weather Forecasting Study. . • . • • . . • . . • . • • • • . . • • • • • • • • • . • • . . • . 4-6

-Grid Parameters 'II 0 •• e .. • • • • • .. • 4-8

Elementary Function Test ...• 0 ••••••• 0 ••••• 0 •••••••••• 0 ••• 0 • 4-8

RELIABILITY AND SERVICEABILITY.. •••••••• ••. .••• . ••.••. 5-1

Performance Characteristics ••.• 0 • • • • • • • • •• • • • • • • • • • • • • • • • • • 5-1

7030 Availability for Acceptance Purposes •• ,'" • . ••. • • • .• •• . ••• 5-1

Average Time Between Unscheduled Maintenance Periods. • • • • • • 5-2

i

Contents

Duration of Unscheduled Maintenance Calls

Scheduled Maintenance

Diagnostic Programming

SEV A Program 4o4o ••• " II " " a .. " " , " ••• It

APPENDIX A

7030 CPU Configuration

Main Memory 4o •• 4o •• 4o.4o .. 4o" •• 4o .. ,,4o ... ct •

List of Important Registers in the 7030 .••.••••.•••...•.•.••.•.

I - Box III ••••••••••• " • ,. •••• " " " " •• " • IiJ <II •

I-Checker

Look-Ahead II" •• "" ... to,,, ... ,,.,,.,,.,, 110 " ... " •• " It

Irlterruption System ,. . " ... " . " , . " " " " " , " " ,. " ..

E - Box 4o4o " •• " " • " .. " " <II " " 110 .. " " 40 It "

Exchange

5-2

5-2

5-2

5-4

A-l

A-l

A-l

A-6

A-6

A-8

A-8

A-8

A-9

A-9

Illustrations

1

A-l

7030 SEVA Program,

The 7030 Data Processing Unit

5-7

A-2

ii

Tables

1 Status of 7030 Programming Systems. 2-11

2 Floating Point Instruction Times 0 • • 3-3

3 Equations for SAU Instructions •..•....... 0 • • • • • • • • • • • • • • 3-7

4 I-Box Times -- Direct Index 0.................. 3-11

5 I-Box Times - Immediate Index 0 •••••••••••••••• 0 • • 3-11

6 I-Box Times - Miscellaneous Instructions ..•..•......... 3-12

7 I-Box Times - Unconditional Branch. 3-13

8 I-Box Times - Index Branches .• /. • 3-14

9 I-Box Times - Transmit Instructions. •. • • . . • . 3-14

10 Execution Frequency Chart for STRETCH Programs •..... 4-9

A-I I-Box Registers .•.............•.. o. • • • • • • • • • • • •• • • • • • • A-7

A-2 Summary of 7030 Instruction Execution. , A-IO

iii

1
Foreword

The performance of a system as complex in concept as STRETCH

is extremely difficult to evaluate. The operation time for each unit is

basically dependent on the particular operation it is performing~ the

performance of the system as a whole is dependent on a complex mix

of the individual units and their interactions with one another. Further­

more, the performance of the system with respect to a synchronous

machine will vary, depending on the particular program which is being

run, and no single simple measure of performance can be obtained.

There are many independent criteria for determining machine. perform­

ance. Each user is ultimately interested in the ability of the machine to

solve competently, in a feasible financial and technical fashion, the prob­

lem or problems peculiar to individual requirements. While we do not have

exhaustive information on total system performance, all the problem appli­

cations that are available for release at this time are discussed in the fol­

lowing pages. Other problems have been run, but IBM does not have

permission at this time to distribute this data.

The STRETCH remains, in our honest judgment, the most power­

ful and potentially productive piece of computing machinery available in

the world today. It represents a real challenge to those with problems

heretofore unprocessable on older machines with anything like reason­

able efficiency. It is a machine ideally suited for special large problems

drawn from the areas of matrix multiplication and inversion, linear pro­

gramming, Leontieff input/output models, three dimensional non-linear

partial differential equations, and certain areas of simulation. The area

of application potential is discussed in greater detail in the following

pages.

a/8/61 1-1

The information in this report shows many aspects of the per­

formance of the STRETCH system and contains examples of test pro­

grams which have been run and timed.

3/8/61 1-2

7030 PROGRAMMABILITY

2
Programming

Unlike earlier mM data processing systems, the 7030 makes very

extensive use of overlapped operations. While this overlapping adds

significantly to the over-all speed of the machine, it does complicate

the problem of writing optimized programs because the time taken to

perform a given operation depends on whether or not the look-ahead

feature has been able to locate and bring from memory the required

data while previous operations were being performed. Thus, the order

in which instructions are written can be important if an optimal program

is required. In many instances the programmer can forget about such

considerations without significant loss of speed. There are, however,

some situations to which the programmer must pay special attention if

maximum speed is to be attained.

In order to help programmers use the 7030 system effiCiently, a

number of hints have been drawn up, and these are given below. The

basiS of these hints is twofold: a theoretical study of the 7030 logical

organization, and limited practical experience of running the 7030 pro­

grams. As more operating experience on the 7030 is gained, it must be

expected that further rules or hints for good programming will be

developed.

Hints Towards Good 7030 Programming

3/8/61

Generalities

1. Efficiency in computer problem solving involves the balancing

of the following factors:

2-1

a. Accuracy of results

b. Analysis effort

c. Programming time

d. Debugging time

e. Production run time

f. Effectiveness in repeated use of program (possibly by a

stranger)

The relative weights of these factors vary from problem to

problem, individual to individual, and from installation to in­

stallation. For small one-shot problems the trend is towards

the emphasis on a, b, c, d.

2. Timing is important for much traversed inner loops, but

usually less important elsewhere.

3. There are usually many ways of doing the same problem.

4. The 7030 will not be efficiently used when the programmer

tries to make it look like machine X.

5. Advantage should be taken of special features in STRAP and

MCP to minimize errors and to simplify debugging.

6. Machine efficiency is gained by distributing the work over as

many major units as possible so that at any given time no

. major unit is idle.

7. Memory conflict can be largely removed by putting instructions

and data in separate memory box groups.

8. Information transmittal between autonomous major units is

through buffer registers. The I-box buffers lY, 2Y and the

look-ahead buffer levels LAO, LA1, LA2, and LAS should not

be left empty over extended lengths of time. Nor should they

be constantly crowded by data with little information content.

3/8/61 2-2

9. It is perfectly permissible to use floating point operations on

VFL quantities or binary operations on decimal quantities.

Specifics

1. Floating point operations are usually E-box limited in timing

(exceptions L, LWF, DL, DLWF and ST). VFL operations in­

volve extensive decoding and execution time, and are usually

much slower than the floating point counterparts. I-box op­

erations usually do not involve the E-box, and the I-box time

can be covered largely by neighboring floating point operations.

2. I-box fetches are less efficient than E-box fetches, since the

latter are greatly enhanced by look-ahead buffering.

3. Sv, SC, SR are more time consuming than SX, for the latter

does not call for an I-box fetch.

4. Information transfer from the E-box to the I-box is relatively

time consuming, but is still faster than, say from the E-box

to main memory, then immediately from main memory to the

I-box.

5. Immediate operands require no fetch and are to be preferred,

particularly for I-box operations.

6. All VFL stores are fetch-and-stores. Every BB involves a

fetch, VFL arithmetiC, and a store. B(ind) for non-index in­

dicators is similar to BB except that I-box activity is less ex­

tenSive, and the fetch-store involve an internal operand (SIND).

7. VFL information will be processed more efficiently if word

boundary crossover is not present. Otherwise there will be

over-exercising of the memory and ~.

8. Take advantage of forwarding, but avoid (if easily accomplished)

other types of store-close-to-fetch. '

8/8/61 2-8

9. Avoid consecutive stores since they are time consuming, as is

forwarding more than ~ The I-box otherwise would be

standing still and LA gradually drained.

10. All successful branch instructions will temporarily remove

the I-box buffer.

11. The following branches are considered unconditional by the I-

box:

CB and varients

B(ind) for XF, XVLD, XV,g, XVGZ, XC&, XL, XE, XH

and are performed correctly by the I-box.

12. The following are considered by I-box to be truly conditional

branches:

B(ind) for non-index indicators

BB

I-box makes the tentative assumption that the branch is not

successful, and processes ahead. If the assumption proved

wrong, branch-recovery will be performed, which requires the

cleaning of I-box, restoring of pre-processed index registers,

and cleaning of LA before resumption of normal activities.

Conditional branches should be largely unsuccessful, even if

an additional (unconditional) branch instruction has to be added

to the program.

13. BD, RNX, T and SWAP require cleaning of LA.

14. Interruption involves cleaning of the I-box, restoring of index

registers, execution of a pseudo B(ind) instruction, fetching,

and execution of a free instruction before the resumption of

normal activities. Judicious use of this feature, however, al­

lows the writing of inner loops with few time consuming branch

instructions.

3/8/61 2-4

15. VFL instructions require from 2 to 6 levels of LA and involve

the slower byte processing. The power of such instructions

(particularly the logical connective instructions), however,

frequently compensates for the slow speed.

16. Begin a loop with a full-word address, even if a CNOP has to

be placed just prior to the loop. This avoids repeatedly fetch­

ing an instruction which is not used.

17. For optimum speed, fetch-type I-box instructions should oc­

cupy the second half of a full word.

18. The following special registers are bona fide memory loca­

tions, and are subject to the usual memory restrictions:

O. (SZ), 4. (SMB), 13. (SRM), 14. (SFT), 15. (STR).

The load factor instruction thus involves a fetch and a store.

APPLIED PROGRAMMING SYSTEMS FOR THE IBM 7030

Listed below are the systems programs which have been designed

and are now being written and tested for the 7030 system. Their purpose is

to provide efficient and productive use of the computer system, to permit

applications to be programmed easily, and to assist IBM 704, 709, and

7090 users in making the transition to the 7030.

Briefly, the programs being provided are: 704, 709, and 7090 pro­

grams for Simulating the 7030 and assembling for it; programs for sim­

u1ating the 704 or 709 on the 7030; a master control program for 7030

operations; and processors for STRAP symbolic, SMAC macro, and

FORTRAN language programming. Programs will be released in field

test version according to the schedule in Table 1.

3/8/61 2-5

IBM 7030 Packages for the 704, 709, and 7090.

These packages permit programming to be partially checked in

advance of 7030 installation. They consist of an assembly program,

STRAP I, and a 7030 simulator. Versions are available for each of the

three different machines: 704, 709, and 7090.

Note

STRAP I was designed in a joint effort by Los

Alamos Scientific Computing Laboratory and

International Business Machines Corporation

personnel, and it was programmed by Los

Alamos personnel.

STRAP I accepts all 7030 instructions plus some of the pseudo­

instructions of STRAP II. All programs written for STRAP I are ac­

cepted by STRAP II. The output of STRAP I can be executed directly

on the 7030 or (via the simulator) on the 704, 709, or 7090. The speed

of execution on the 704 or 709 is several thousand times slower than

on the 7030. No attempt is made to simulate the timing details of I/O

operations.

IBM 704 and 709 Simulators for the 7030.

These programs permit 704 and 709 programs to be run on the

7030 without reprogramming. The simulated machine has 32K mem­

ory, 8 logical drums, 10 tape units, printer, punch, and operator con­

sole. The console is simulated on the 7030 console and includes all

features of the 704 or 709 console.

3/8/61 2-6

Note

If the size of 7030 memory is reduced, the size

of the simulated machine is also reduced. The

following table obtains:

7030 Memory

16K

32K

48K

704 or 709

4K or 8K without drum

8K without drum

32K without drum

65K Maximum configuration

One tape per tape to be simulated.

There is no attempt to simulate CRT output. In addition, the PSE

instructions to the printer exit hubs are :pandled according to the SHARE

n board. Since there is no standard board for the punch, the PSE in­

structions to the punch exit hubs are NOP' s. Otherwise the simulation

duplicates as closely as possible the actual performance of the 704 or

709.

Due to the different word lengths, it is necessary to pre- or post­

process binary tapes to be communicated between the 704 or 709 and the 7030.

The 7030 programs to perform these operations are included as part of

the package.

In general, the simulator is about three times slower than the 704

or 709. Floating point instructions are somewhat faster than this and

fixed point instructions somewhat slower. Because of the speeds of the

7030 I/O units, programs can run faster on the 7030 than on the 704 or

709 if they are I/O limited on those machines.

3/8/61 2-7

Master Control Program

The master control program is an automatic operating system which

runs job after job automatically. It plans the actual assignment of sym­

bolic I/O units in advance, so as to minimize conflicts and delays between

successive jobs, issuing tape mounting and demounting instructions to the

operator and checking (through reel labels) that tapes are mounted cor­

rectly. For each job, MCP offers the options of COMPILE, GO, and COM­

PILE and GO. Here COMPILE can refer to any of the several language

processors listed below. MCP also arranges for checkout and post­

mortem procedures where needed. Also, it is the agent by which further

service routines (such as an installation logging routine) can be easily

added to the operating system.

In the individual program, MCP provides a complete input/output

system. In particular, an option is provided for buffered operation of

the card reader and high-density blocked input and output SPOOL tapes,

permitting easy and efficient overlap of computing with the input of pro­

gram and data and the output of results. Standard methods for reading,

printing, and punching data are provided. Also, all interrupts are mon­

itored by MCP. I/O interrupts are returned to the program in a form

convenient to manipulate. The pl"ogrammer can designate how maskable

interrupts are to be processed.

Including buffer areas, MCP occupies 8K of storage space. An

IBM 1401 tape system is required for off-line operations. The time re­

quired for the system to exercise its supervisory functions is not yet

known in detail, but is estimated to be small compared with the time

saved by its use.

3/8/61 2-8

STRAP IT Assembly

STRAP IT is a symbolic programming system for the 7030. It

defines a complete set of mnemonics for the 7030 instructions, together

with the pseudo-operations for data definition and such assembly opera­

tions as origin setting, space reservation, listing control, and identifica­

tion of output.

Features provided for are as follows: acceptance of programmer

symbols up to 128 characters in length; acceptance of source language

numerical information written with radix 2 through 10, and 16; address

arithmetic involving addition, subtraction, multiplication, and division;

error messages on the output listing; extensive tailing facilities that

permit up to 10 unique levels of tails to be appended to programmer

symbols; and the option of saving the symbol table for subsequent pur­

poses.

STRAP IT operates QI1 a minimum size 7030 computer (24K plus

disk). The first version operates independently; a later version will be

adapted to operation by MCP.

SMAC

SMAC processes macro-instructions of the simple substitution

type (but permitting macros within macros), thus adding the next higher

level to the machine language of STRAP IT. The result is a conveniently

open-ended machine-oriented language.

SMAC runs on a minimum 7030 and is operated by MCP.

FORTRAN

The FORTRAN processor handles the FORTRAN IT statements.

Any standard FORTRAN IT program is accepted and converted into a

3/8/61 2-9

program suitable for further processing by SMAC. Much of the proces­

sor is of a general purpose nature and is expected to be useful in other

advanced programming systems the user may care to develop.

The speed of compilation from FORTRAN to machine language is

expected to be approximately twice that of the new 7090 FORTRAN now

being developed by applied programming. The object programs which

result are expected, for typical FORTRAN applications, to run at an

average of 75 percent as fast as equivalent programs which have been

carefully hand-coded. This degree of efficiency is obtained by including

throughout the processor-chain a large number of the criteria for ef­

ficient 7030 programming listed earlier. Further such rules are likely

to be discovered in the future, and the structure of the compiler is ex­

pected to be flexible enough to accommodate most of them.

FORTRAN runs on a minimum 7030 and is operated by MCP.

3/8/61 2-1D

TABLE 1. STATUS OF 7030 PROGRAMMING SYSTEMS

Status as of Approx. Number Manual Estimated Program
Systems March 1, 1961 of Instructions Availability Completion Date

704/709/7090 Operational 24,000 Available now ---
Package as form

No. C22-6531-1

704/709 Coding 5,000 Aug. 1961 Aug. 1961
Simulator completed

STRAPTI Coding 14,000 Reference July 1961
completed Manual

April 1961.
Operators
Bulletin
June 1961.

MCP Coding 8,000 Preliminary Oct. 1961
completed edition of

user's guide
now available
as form
No. J22-6559.
Reference
Manual
Oct. 1961

SMAC Coding 4,000 Sept. 1961 Sept. 1961
completed

FORTRAN Coding in 50,000 Preliminary March 1962
progress Bulletin

July 1961

3/8/61 2-11

3
Execution Times

RAW SPEEDS AND THEIR INTERPRETATIONS

E -Box Times for Basic Instructions

Floating Point Instruction Times

Following is a summary of "raw" floating point execution. The

times are predicated upon the availability of data and instructions when

needed; that is, the times given are the maximum speed at which the

floating point unit may operate. If some memory access (look-ahead,

I-box, etc.) factors enter such that data and instructions are not avail­

able when the floating pOint unit is able to accept them (or requires

them), the extra delay thus caused is added to the times below.

The times are broken up into two types of cycles: pre-execution

and execution, defined as follows:

• Pre-Execution - That part of the instruction which may be

executed before any modification of an addressable register

occurs. Floating point instructions are begun as soon as

3/8/61

data paths are free and the instruction and initial addressed

operand is made available. This time will overlap checking

of a previous instruction, indicator setting, interrupt testing,

memory storage, etc. These cases may lead to a condition

such that the operation should never have been started (inter­

rupt occurs as result of previous instructions). In such a

3-1

case the pre-execution is terminated and no addressable

registers would be modified. (As far as programmer is con­

cerned pre-execution never occurred.)

• Execution - The part of the instruction which follows the

initial modification of an addressable register up to the point

when the next floating point instruction may begin.

The times are listed (table 2) in terms of the basic machine cycles,

which is presently 0.3 microsecond.

3/8/61 3-2

TABLE 2. FLOATING POINT INSTRUCTION TIMES

Instruction

+ (Add)
+ MG (Add to Mag.)
M+ (Add to Mem.)
M +MG (Add Mag to Mem.)
K (Compare)
KMG (Compare Mag.)
KR (Compare for Range)
KMGR (Compare Mag. for Range)

D+ (Add Double)
D+MG (Add Double to Mag.)
F + (Add Fraction)

L (Load)
L WF (Load with Flag)
LFT (Load Factor)
ST (store)

DL (Load Double)
DLWF (Load Double with

Flag

SRD (store Rounded)

SL ¢ (Store Low Order)

3/8/61

Pre-execution

4 cycles (pre shift :s 3)
1 cycle for each
Additional pre-shift of 4

Same as Add
Class

2 cycles

2 cycles

3 cycles

2 cycles

Execution

1 cycle (norm :s 6)
2 cycles for each additional

norm. of 6
2 cycles if recomplement

is necessary - note 1
2 cycles if forced zero

occurs as result of "mag."
operation.

Same as Add class
plus

1 cycle if immediate
next instruction is floating
pOint

1 cycle (norm :s 6)
2 cycles for each additional

norm. of 6

1 cycle (norm :s 6)
2 cycles for each additional

norm of 6
1 cycle if immediate
next instruction is floating
point

1 cycle (norm :s 6)
2 cycles for each additional

norm of 6

17 cycles - unnormalized
15 cycles if normalized

and there are no leading
zeros in intermediate
fraction

2 cycles for each norm.
of 6 or less

3-3

TABLE 2. FLOATING POINT INSTRUCTION TIMES (cont'd)

Instruction

SHF (Shift Fraction)

E+ (Add Exponent)
E+1 (Add 1mmed. to Exp.)

- note 2

*(Multiply)

D* (MuUiply Double)

*+(Multiply and Add)

R/ (Reciprocal Divide)

3/8/61

Pre-execution

Applies to both left and
right shift

4 cycles (shift ~ 3)
1 cycle for each
additional shift of 4

1 cycle

5 cycles

5 cycles

3 cycles
cannot enter execution
cycles until Factor is
available

2 cycles

Execution

1 cycle
1 cycle if immediate
next operation is floating
point

5 cycles (norm ~ 6)
2 cycles for each additional

norm. of 6
1 cycle if immediate
next operation is floating
pOint

4 cycles (norm. ~ 6)
2 cycles for each additional
norm. of 6

4 cycles (norm ~ 6)
2 cycles for each additional

norm. of 6
1 cycle if immediate next
operation is floating pOint

17 cycles (pre shift ~ 3
and norm ~ 6)

1 cycle for each additional
pre-shift of 4

2 cycles for each additional
norm. of 6

2 cycles if recomplement
is necessary - note 1
1 cycle if immediate next
operation is floating point

2 cycles plus
all pre-execution and

execution cycles of Divide

3-4

TABLE 2. FLOATING POINT INSTRUCTION TIMES (cont'd)

Instruction

/(Divide)

D/ (Divide Double)

SRT (Store Root)

3/8/61

Pre-execution

2 cycles (divisor shift :5 6)
2 cycles for each
additional divisor shift
of 6

If zero divisor
3 cycles pre-execution and

Same as Divide

2 cycles

Execution

2 cycles (dividend shift ~ 6)
2 cycles for each additional
dividend shift of 6 or total of
3 cycles if dividend is all zero
2 cycles for initial reduction
loop if dividend is normalized
3 cycles for initial dividend
pass if dividend has leading
zeros.
2 cycles for each additional
reduction loop (number of
cycles is data dependent).
2 cycles if final remainder
has to be complemented
1 cycle - all

2 cycles execution instead of
previous

Same as Divide
plus

6 cycles (remainder norm :s 6)
2 cycles for each additional
remainder norm. of 6

106 cycles (norm. :s 6)
1 cycle if operation began
with a "B" pulse
2· cycles for each additional

norm of 6

3-5

NOTE 1 - When fraction signs are unlike, the operand which is pre­
shifted will be complemented. Recomplementing will only
occur if the complemented (following pre-shift) fraction
is larger in magnitude than unshifted fraction.

If fraction signs are alike no complementing occurs.

NOTE 2 - Add Exponent and Add Immediate to Exponent will most
likely be ctanged in the near future to three pre-execution
and three execution cycles.

Serial Arithmetic Execution Times

The execution times of SAU instructions can be presented in
terms of some basic equations shown in table 2 below.

The column headings are defined as follows:

.• Operation Code - instruction abbreviations.

• Pre-execution Time - time required to decode operation and
set up controls.

• Execution Time - time required to perform the instructed
function.

• Termination Time - time required to set indicators and clear
unit.

• Full Word Total - a computed time in microseconds for the
operations using unsigned full word operands which produce
no arithmetic carries.

• Comments - variations or additions to the execution time
equations.

All equations were developed for unsigned operations. Signed
operations can be computed by adding. 6 microseconds to the pre­
execution time. An additional .6 microseconds must be added if the
result of the· operation requires complementing. The following opera­
tions require no additional time when signed: SRD, e, eM, CT, CV,
De V, Lev (D-B).,LTRCV (D-B),:=LTRS, LFT.

3/8/61 3-6

t.¢
TABLE 3. EQUATIONS FOR SAU TNSTRUCTIONS ~

~ I Operation Pre-execution Execution Termination Full Word
Code Time Time Time Total Comments

+ 1.8 .6(~ + z) .6 7.2 us Unlike signs CD > AB, add .6(os + ~ + Z + 1)
to the execution time. r y

+MG 1.8
x .6 7.2 us Unlike signs CD > AB, add .6 to the .6(- + z)
y execution time .

L 1.8 . 6(~) .6 7.2 us
y

LWF 1.8 .6(~) .6 7.2 us
y

M+ 1.8 .6(~) .6 7.2 us Unlike signs AB > CD, add .6(~ + 1) to the
y execution time. Y

MtMG 1.8 6(~) .6 7.2 us Unlike signs AB > CD, add .6(~ + 1) to the • y
execution time. Y

M+l 1.8 .6(c + 1) .6 3.0 us Unlike signs, execution time = .6(Y) when
true result or .6(2~ + 1) when complement
result. Y

ST 1.8 .6(~)
Y

.6 7.2 us

SaD 3.0 .6(~) .6 8.4 us No additional time required when operation
Y is signed .

K 1.8 . 6(~ + ~) .6 7.2 us
Y r

KF 1.8 .6(~) .6 7.2 us
Y

t.¢
KE 1.8

x w .6 7.2 us I .6(- +-)
..::J Y r

KFE 1.8 .6(~)
Y

.6 7.2 us

w
TABLE 3. EQUATIONS FOR SAU INSTRUCTIONS (cont'd) '---..

ex:>
'---..
CJ') I Operation Pre-execution Execution Termination Full Word

Code Time Time Time Tolal Comments

KR 1.8 x w
.6(y + r) .6 7.2 us

KFR 1.8 .6(~) .6 7.2 us
y

C 1.8 6(~) • y .6 7.2 us

CM 1.8 .6(~) .6 7.2 us
y

CT 1.8 .6(~) .6 7.2 us
y

LTRS 2.4 .6(~ + 3) .6 9.6 If the effective FL is greater than 48 bits,
y add .6(t -1) to the execution time.

8

LFT 2.4 .6(~) + 3) .6 9.6 If the effective FL is greater than 48 bits, y then add .6(k -1) to the execution time .

B-D 2.4 . 6(x + ~ + 1) .6 45.3
LCV

D-B 2.4 .6(~+i+~+4) .6 14.7
LeV
B-D 2.4 .6(x + 3) .6 29.4 If the converted field length is greater
LTRCV than 48 bits, add .6(~~ -1) to the

execution time .

D-B 2.4 . 6(~ + 16) .6 21.6 If the field length to be converted after all
LTRCV zone bits have been removed is greater

w tilan 48 bits, add .6(~ -1) to the execution
I time.

ex:>

B-lJ 2.4 .6(s + g + 1) .6 37.2
CV

CA)

~
'-..
C»

CA)

I
co

Operation
Code

B-D
DCV

D-B
CV

D-B
DeV

'"
'" +

/

TABLE 3. EQUATIONS FOR SAU INSTRUCTIONS (cont'd)

Pre-execution Execution
Time Time

2.4 u
.6(s + 8" + 1)

2.4 s
.6(4 + 1)

2.4 s
.6(4" + 2)

6.0 3.9

7.8
Add

3.0 + exec.
time

5.4 Q

Termination Full Word
Time Total

.6 63.0

.6 10.8

.6 18.6

.6 10.5

.6 18.6

.6 24.0

Comments

DR L "0" DDL or DRL
Q.6(,. + + A +

97 - DRL
x + 1)

A = 1. Zero DD _DDL - DRL
6

#L "0" 2. Leading zero's -(1 + _ +

DDL - DRJ: - #L "0")

3. Complement Result. -Add 1 to A2.

Glossary of Terms

DD
DR
DDL
DRL
L "0"
#L "0"
DDL or DRL

os
FL
BS
B-D
D-B
R
S

T
U
V
W

x

y

z

c

Dividend
Divisor
Dividend length
Divisor length
Leading zero IS

Number of leading zero's
Dividend or divisor length which ever is
greater
Offset
Field length
Byte size
Binary to decimal
Decimal to binary
8 in Binary - 4 in decimal
Accumulator field specified by the offset
minus all leading zero's
Field length less all zone bits
Result field
96 in binary - 92 in decimal
The number of accumulator significant bits
greater than the field length
Field length in unsigned operations - field
length minus the byte size in signed operations
8 in binary operations and byte size in decimal
operations x
One for a carry out of the last - byte plus one
for a carry out of each succeeding 8 bit byte
in binary or 4 bit byte in decimal
The number of times a carry results from an
8 bit byte in binary or a 4 bit byte in decimal

Timing of I-Box Instructions

The following tables list the I-box times for decoding for execu­

tion of I-box instruction.

3/8/61 3-10

TABLE 4. I-BOX TIMES - DIRECT INDEX

Instruction Address in EM Address in XS Address in m

LX 4.8 IJ.sec + dec 4.8 IJ.sec + dec 4.2 IJ.sec + dec + LAdr

LV,LC.LR 4.2 j.Lsec + dec 4.2 IJ.sec + dec 3.6 IJ.sec + dec + LAdr

SX 1.2 IJ.sec + dec + LAAR 4.2 j.Lsec + dec 1.2 j.Lsec + dec + LAAR

SV. SC. SR 4.2 IJ.sec + dec + LAAR 5.4 IJ.sec + dec 3.6 IJ.sec + dec + LAdr
+LAAR

SV .SC .SR to TC 6.0 j.Lsec + dec + LAdr

V+ 4.2 IJ.sec + dec 4.2 IJ.sec + dec 3.6 IJ.sec + dec + LAdr

V+C 4.2 IJ.sec + dec 4.8 IJ.sec + dec 4.2 IJ.sec + dec + LAdr

V +CR (EM) 8.4 IJ.sec + dec 9.0 j.Lsec + dec 8.4 IJ.sec + dec + LAdr

V+ CR (XS) 7.2 IJ.sec + dec 7.8 IJ.sec + dec 7.2 IJ.sec + dec + LAdr

KV,KC 4.2 IJ.sec + dec 4.2 IJ.sec + dec 3.6 IJ.sec + dec + LAdr

RNX 9.0 j.LSec + dec + LAdr
+LAAR

LVE 7.8 j.Lsec + dec 6.6 IJ.sec + dec 6.6 IJ.sec + dec + LAdr

L VE as object Additional Additional Additional
INSN oj LVE 4.8 j.Lsec 3.6 IJ.sec 3.0 IJ.sec + LAdr (4.2 if LAMT)

SVA 4.2 IJ.sec + dec + LAAR 5.4 IJ.sec + dec 3.6 IJ.sec + dec + LAdr + LAAR

SVAtoTC 6.0 IJ.sec + dec + LAdr

ABBREVIA TIONS: dec = decade

3/8/61

LAAR = Look-ahead address register
LAdr = Look-ahead drain
LAMT = Look-ahead empty
TC = Time clock

TABLE 5. I-BOX TIMES- IMMEDIATE INDEX
Instruction Basic Time Variations

LVI, LCI. LRI. L VNI 2.4 IJ.sec + dec

V + I. V - I 2.4 j.Lsec + dec

V +lC. V - IC

V +lCR. V - ICR

C +1, C - I

KVI. KVNI, KCI

L'VS

3.0 IJ.sec + dec Also V ± ICR where
Count'" 0

"7.2 p.sec + dec 1.2 p.sec less if
Refill from X5

2.4 JLsec + dec

2.4 j.Lsec + dec

5.4 JLsec + dec Additional
1.8 j.Lsec per ADD

3-11

TABLE 6. I-BOX TIMES - MISCELLANEOUS INSTRUCTIONS

Instruction Address in EM Address in XS Address in m

R (from EM) 7.8 J,J.sec + dec + LAAR 7.2 J,J.sec + dec 6.6 J,J.sec + dec + LAAR + LAdr

R (from X S) 5.4 J,J.sec + dec + LAAR 5.4 J,J.sec + dec 4.2 J,J.sec + dec + LAAR + LAdr

RCZ (C ¢ 0) 4.2 J,.Lsec + dec 3.0 J,J.sec + dec 3.0 J,J.sec + dec + LAdr

Z 1.2 J,J.sec + dec + LAAR 3.6 J,.Lsec + dec 1.2 J,J.sec + dec + LAAR

EX

3/8/61

1. Decode time, plus

2. Always begins with Look-ahead drain, plus

3. Instruction fetch time as follows:

Address

0.0, 0.32
1.0, 1.32
2.0, 2.32
3.0, 3.32
4.0, 4.32
5.0 -11.32

12.0, 12.32
13.0 -14.32
15.0, 15.32
16.0 -30.32
31.0, 31.32
32.0 -up

Time

4.8 J,.Lsec
6.0 j.Lsec
7.8 J,J.sec
7.8 J,J.sec
7.8 J,J.sec

11.2 J,J.sec
7.8 J,J.sec
5.4 J,.Lsec
4.8 j..Lsec
4.2 J,.Lsec
6.0 J,J.sec
5.4 J,J.sec

4. Add decode and execution time for given instruction

5. Always ends with LA drain, plus

6. Add 3.0 J,J.sec for fetch of next instruction

3-12

TABLE 6. I-BOX TIMES - MISCELLANEOUS INSTRUCTIONS (cont'd)

EXIC

Instruction

B

BR

BE

BEW

NOP

BD

1. Decode time, plus

2. Always begins with a Look-ahead drain

a) 4.2 J..Lsec to fetch the psuedo-instruction counter are overlapped with
the Look-ahead drain if the ps IC is in EM.

b) 3.0 J..Lsec to fetch the psuedo-instruction counter are overlapped with
the Look-ahead drain if the ps IC is in XS.

3. Instruction fetch time = 6.0 IJ,sec

4. Stepping of psuedo-instruction counter

a) Add LAAR time if psIC in EM
b) Add .6 IJ,sec time if psIC in XS

5. Add decode and execution time for given instructions

6. Always ends with LA drain, plus

7. Add 3.0 IJ,sec for fetch of next instruction

'TABLE 7. I-BOX TIMES - UNCONDITIONAL BRANCH

Basic Time SIC to EM

3.6 IJ,sec + dec 4.8 IJ,sec + dec + LAAR

4.8 IJ,sec + dec 6.0 IJ,sec + dec + LAAR

3.6 IJ,sec + dec + LAdr 4.8 IJ,sec + dec + LAAR +
(if previously disabled) LAdr (if previously dis­

abled)

Setup time as above on BE

1.2 IJ,sec + dec

4.8 IJ,sec + dec +
2 LA drains

Same as Basic

6.0 IJ,sec + dec +
2 LA drains

3-13

SIC to XS

4.2 IJ,sec + dec

5.4 IJ,sec + dec

4.2 IJ,sec + dec
+ LAdr (if pre­
viously disabled)

Same as Basic

5.4 IJ,sec + dec +
2 LA drains

TABLE 8. I-BOX TIMES - INDEX BRANCHES

Instruction Basic Time SIC to EM SIC to XS

CB (Successful) 4.2 J.,Lsec + dec 6.6 J.,Lsec + dee + LAAR 7.2 J.,Lsec + dec

CB (Unsuccessful) 3.6 J.,Lsee + dec 3.6 J.,Lsec + dec 3.6 J.,Lsec + dec

CBR (EM) (Succ) 6.6 J.,Lsee + dec 9.0 J.,Lsec + dec,+ LAAR 9.6 Ilsec + dec

CBR (XS) (Succ) 6.0 J.,Lsec + dec 8.4 J.,Lsec + dec + LAAR 9.0 J.,Lsee + dec

CBR (EM) (Unsucc) 6.0 J.,Lsee + dec 6.0 J.,Lsee + dec 6.0 J.1.sec + dec

CBR (XS) (Unsucc) 5.4 J.,Lsec + dec 5.4 J.,Lsee + dec 5.4 J.,Lsec + dec

NOTE: CBR behaves like CB if Refill is not to be taken.
Ex: CBR, branch on eount -I- zero

TABLE 9. I-BOX TIMES - TRANSMIT INSTRUCTIONS

1nstruction Setup time Loop time Termination time

T (EM-EM) 1.2 usee + dee + LA dr 3.0 usee 3.6 usee

T (EM-XS) 1.2 usee + dec + LA dr 4.2 usee .6 usec

T (XS -EM) 1.2 usec + dee + LA dr 3.0 usee 3.6 usee

T (XS -XS) 1.2 usee -+ dec + LA dr 4.2 usee .• 6 usee

T (IR-EM) 1.2 usee + dee + LA dr 7.2 usee 3.6 usee

T (IR -XS) 1.2 usee + dec + LA dr 7.2 usee .6 usee

Note: Transmit to EM and m identical .in time.

3-14

TABLE 9. I-BOX TIMES - TRANSMIT INSTRUCTIONS (cont'd)

Instruction Setup time Loop time Termination time

S (EM-EM) 1.2 usec + dec + LA dr 6.0 usec 1.8 usec

S (EM-XS) 1.2 usec + dec + LA dr 6.6 usec 1.8 usec

S (EM -IR) 1.2 usec + dec + LA dr 9.6 usec 1.8 usec

S (XS -EM) 1.2 usec + dec + LA dr 6.0 usec 1.8 usec

S (XS -XS) 1.2 usec + dec + LA dr 7.2 usec 1.8 usec

S (XS -IR) 1.2 usec + dec + LA dr 10.8 usec 1.8 usec

S (IR -EM) 1.2 usee + dec + LA dr 9.6 usee 1.8 usec

S (IR -XS) 1.2 usec + dec + LA dr 10.2 usec 1.8 usec

S (IR -IR) 1.2 usec + dec + LA dr 15.0 usec 1.8 usec

Note: The immediate/direct and the forward/backward options do not
affect the timing of either transmit or swap.

Analysis and Interpretation of the New Speeds Relative Machine Environment

Machine Organization

In conventional machines the instruction time is dependent upon the

total length and delays along information paths, and the hardware places a

severe limitation on performance.

The organization of the 7030 has been devised to free the machine from

such limitations. To a large extent, the number of obstacles along the in­

formation path is not of crucial importance; the speed and performance of

the machine is governed by the average frequency of information access.

For example, a 7030 box has a readout time of 1 fJ.S and a recycle time of

2.2 fJ.s, yet in the 7030 system information can be obtained at the rate of

one word every 0.3 fJ.s.

3/8/61 3-15

The 7030 system organization is characterized by the local autonomy

of the major units: the memory bus control unit (MBCU), the I-box, the

look-ahead (LA), the E-box, the exchange, and the disk exchange. (For defi­

nitions of these terms the reader is referred to Appendix A.)

Each major unit is responsible for processing at top speed as long as

there is data to process. The local autonomy of the MBCU, exchange, and

disk exchange means that the central processing unit (CPU) can operate in­

dependent of I/O operations. Within the CPU this local autonomy means

that temporary delays up to several J.,LS in one unit can be tolerated without

slowing down the entire pipe line. Extensive buffering of information is

needed to absorb such temporary delays, and within the 7030 CPU at any

given time up to ten instructions can be in various stages of processing.

Within wide limits, the times for instruction processing is not the sum of:

Instruction fetch, instruction error check, decoding, operand fetch, oper­

and error check, and execution but is the maximum of these times aver­

aged over several instructions.

The E-box times of the instructions listed in the previous section

are the times realizable if the LA levels (which are buffers to the E-box)

can always supply needed information to the E-box. The machine organi­

zation is such that this is usually the case.

For such a loosely-coupled machine the information paths are ac­

tually longer and the number of obstacles larger than conventional tighUy­

organized machines. It is possible to create situations to make the infor­

mation path time influence instruction time. All of these situations, so

far as the CPU is concerned, have an effect on the LA buffering, which in

turn affects E-box performance.

2/8/61 3-16

Effect of Memory Interleaving

With the instruction buffers 1 Y, 2Y (capable of housing four half­

word instructions), in the I-box, and the four LA levels, the advantage

of memory interleaving is fully exploited.

The demand of the E -box on LA is usually no higher than one word

per 1.5 J..LS (sequence of floating adds) and on the average, the memory is

not a factor. In terms of the four-level look-ahead, the requirement is

satisfied if any four E-box demands are fulfilled in 6 J..Ls. The zremory

interleave scheme allows four words every 2.2 J..LS (four box interleaving)

or four words every 4.4 J..Ls (two box interleaving).

In actual computations, with the instructions occupying the two lower

memory boxes and data occupying the four upper memory boxes, memory

conflict is not expected to be an important factor, even if the I/O units are

in full operation. Delays due to repeated demands of the same memory

box are expected to be quite infrequent.

There are conflicts due to fetches and stores, independent of mem­

oryaccess. These are related to the machine measures at preserving

the logical integrity of a program sequence and will be discussed else­

where.

Over lapping of Decoding

The I-box decoding, addr-ess indexing, and operand request continues

as long as instructions are available and as long as LA levels are avail­

able for loading. For a sequence of floating point instructions the decoding

rate is one instruction per 1.2 J..LS. With few exceptions, this is faster than

the execution rate. Thus the decoding time for average floating point se­

quences is completely overlapped by concurrent E-box execution time. In

other words, floating point instructions are E-box limited. Address index­

ing has no measurable effect on the timing of floating point instructions.

3/8/61 3-17

VFL instruction decoding is much more complicated. The minimum

time is 3.6).J..S which includes the loading of two LA levels. Each addition

level requires an additional 0.6).J..s,andeach indexing operation requires 0.6

).J..s. Of course, there may be further slow down in the decoding process

if the LA levels are not available for loading, or if the second half of the

instruction is not available when needed.

The decoding time of I-box instructions is 0.6 (J.S. Since these in­

structions are executed in the I-box, the decoding time has been included

in the execution times. The processing time of I-box instructions can be

largely overlapped by concurrent E-box action, since their E-box time, is

only 1.2).J..S.

Whenever a branch instruction is successfully executed, the pre­

fetched instructions in 1 Y, 2Y must be replaced by new instructions. The

latter have to be checked prior to use, and the decoding of the next instrue­

tion will be delayed. This delay has been taken into account in the timing

given. Again, concurrent E-box action can overlap much of this.

Look-Ahead Levels

In order to use the look-ahead (LA) levels efficiently, they must not

be allowed to be empty over extended lengths of time, nor should they be

crowded with data with little information content.

The following instructionaemptythe LA completely: T, T]. SWAP,

SWAP], RNX, BD,

All I-box instructions load LA levels for index register recovery

or for indicator register updating. These levels are not useful to the

E -box and have the effect of reducing the number of LA levels.

VF L data with word boundary crossover represent inefficient use of

LA levels.

3/8/61 3-18

Frequent demands on LAAR (such as in consecutive STORE instruc­

tions)and prolonged decoding delays in the I-box in general often lead to a

half-empty look-ahead.

When the number of effective LA levels are reduced, the E -box may

become idle. The I-box processing time can then no longer be absorbed.

The I-Checker

The I-Checker is shared between the I-box and LA. It processes in­

formation in 0.6 /lS and is used for the following functions:

1. Instruction word error check with concurrent ECC to I-i>arity

conversion.

2. I-box data error check with concurrent ECC to I-parity conver­

sion.

3. Passage of data and VFL operation code from I-box to LA, with

concurrent I-parity to LA-parity conversion.

4. E -box fetch operand error check and check code conversion.

5. Store operand error check and check code conversion.

6. As part of data path between LA and I-box during, say, branch

recovery.

7. As part of I -box internal data path.

8. As part of LA internal data path.

The great majority of the demands on the I-Checker is due to 1,2,

3, 4, and 5 above. It is therefore conceivable that I-Checker conflicts may

occur. The situation has not been completely studied (because of the dif­

ficulty in subjecting the variables to program control), but it does not seem

to have had much effect on floating point operations. When an I-Checker

conflict occurs, the processing of one piece of data may have to be delayed

by 0.3 to 0.6 /lS.

3/8/61 3-19

The LAAR, Stores and Internal Operand Fetches

All "to-memory" operations involving the main memory from the

7030 CPU are prepared by the I-box and accomplished by the look-ahead.

I/O stores are, however, performed directly between the MBCU and ex­

change units.

The look-ahead address register (LAAR) is created for the purpose

of containing the store address. LA levels are made available for the

store operand.

In the case of I-box store type instructions (SX, SV, SC, SR, SVA,

R, RXZ, T, SWAP, etc.) the store operands are already available during

I-box processing time and can be converted to ECC check bits during

shipment to LA, simplifying the store action in LA. In practically all

other cases the store operand will not be available during I-box proc­

essing. In any case, the LAAR will remain "busy" from the time of

look-ahead loading until the proper operand is available, is fetched,

checked, and accepted by the MBCU.

In an instruction, the address may refer to the main memory, in­

dex register storage, or an internal register. The I-box, upon decoding

an instruction whose fetch operand is an internal register, uses the

LAAR to store the internal operand address. This is because the needed

operand is not available during the decoding stage, and the mechanism

for internal operand fetch already exists for the handling of store instruc­

tions. Unlike a standard store, no memory bus request is needed, and the

LAAR is freed sooner.

(By an internal operand address is meant address 3, or an address

between 5 and 12 inclusive. SZ, SlA, 5MB, and SRM, SFT and STR are

bona fide main memory locations. SIT , STC and SO through S15 are in

index storage.)

3/8/61 3-20

Since there is only one LAAR, if the latter is busy whenever the

I-box decodes an instruction requiring LAAR, a wait must occur until the

LAAR is free for reloading. Therefore, LAAR-requiring instructions

should preferably be reasonably far apart, ideally with three or more

time consuming instructions in between to ensure smooth I-box decoding.

Measurements on consecutive floating-point-to-memory operations (ST,

MT, LFT, etco) do not therefore yield realistic timing information. On

the other hand, the placement of such instructions is usually beyond the

programmers control.

A store into index storage is a time-consuming operation. When­

ever such an instruction is decoded, since the next instruction may make

use of the new index contents, the I -box does no further decoding until the

new index contents arrives.

Store Close to Fetch

Whenever I-box requests a memory fetch, a comparison is made

with the contents of LAAR to avoid logical conflicts. In all cases, logi­

cal conflicts will not produce wrong results, although some delays are to

be expected.

One such conflict is a store into a location corresponding to a pre­

fetched instruction, such as in the sequence:

A ST(u), A +.0.32

* + (n), 1000. (Sl5) (1)

The second instruction, having been previously fetched into 1 Y

or 2 Y, clearly cannot have the correct information until the store is

complete. When such a store is decoded, I-box invalidates the prefetched

instructions and waits until the correct information is available.

3/8/61 3-21

Another conflict is a store into a nearby I-box operand address:

ST (u), 1003. ($12)

V +, $15, 1003. ($12) (2)

The execution of the second instruction is delayed until the correct

operand arrives.

A third such conflict is a store into a nearby E -box operand address:

ST (n),

* (n) ,

1007.

1007. (3)

The I -box comparison with the LAAR shows that the operand will be

in the LA prior to its arrival at the memory. A forwarding mechanism

is activated to make the store operand available to the fetch level. Further

LA loading in the I-box is delayed until the forwarding is completed.

Forwarding is available also for consecutive fetch of the same mem­

ory operand. Whenever a fetch-type instruction is decoded, the fetch ad­

dress is gated into LAAR unless the latter is busy. This act does not

make LAAR busy but can allow the forwarding on successive fetches.

I-box Instructions

The instructions executed by the I-box can largely be absorbed in an

E-box limited environment. The follO\\"ing points, however, are to be noted:

1. Some I-box instructions require the emptying of the LA. Con­

current E-box operations would not be possible.

2. Each I-box instruction results in one (sometimes more) level

of LA being loaded. This is done to enable the convenient up­

dating of certain indicators and to allow interruption action (if

needed) to take place in step with other interruptions. The

loaded level may be an index recovery level containing the old

3/8/61 3-22

contents of an index register to enable the restoration in case of

unexpected interruptions. It takes 0.9 to 1.2 p.s to process an

LA level corresponding to I-box instructions. This time cannot

be overlapped by concurrent E-box action.

3. 'Fhe E-box overlapping cannot be effective unless I-box instruc­

tions are well dispersed.

4. I-box operand fetches are made when the instruction is decoded.

There is no look-ahead buffering to reduce the effective fetch

time. I-box immediate instructions, not requiring memory ac­

cess, are therefore faster than the "direct index arithmetic in­

structions II.

5. Some I-box instructions require more than one memory refer­

ence.

6. All successful branch instructions require the fetch of new instructions.

The instructions previously buffered into 1 yand 2Y are invalidated.

7. The treatment of some conditional branches requires extensive

E-box action and will be discussed in the next section. The fol­

lowing branches, however, involve conditions known to the I-box

and are executed entirely within the I-box:

CB and variants

Bind for XF. XVLZ. XVZ. XVGZ. XCZ, XL, XE. XH.

Recovery Action

The I-box is usually ahead by several instructions during a machine

run of the E-box. There are certain situations, however, which may

force the I-box to refer to the same instruction as the E-box:

1. "Wrong branch" recovery, the I-box having made a wrong

assumption about the path to be chosen on conditional branch.

2. Interruption.

3/8/61 3-23

These cases may require the I-box to move backwards in time to

be in step with the E-box. All changes in the index registers and/or

:ndex indicators due to the advance processing by the I-box must now

be undone.

For conditional branches where the condition is unknown to the

I-box, the latter assumes the branch to be unsuccessful (to avoid unnec­

essary invalidation of 1 Y, 2 Y contents) and processes ahead. Steps are

taken, however, to perform the actual test and to facilitate the alterna­

tive path to be taken. Altogether four LA levels are used for each such

branch instruction: three levels not unlike those for a VF L connect-to­

memory instruction plus a branch recovery level. It is noted that there

is always a store type level, whether the programmer specifies a change

of the tested bit or not. For Bind, two of these four levels involve the

LAAR.

When the I -box guess proved correct, no particular action is taken

aside from setting of the tested bit. If, however, the guess proved incor­

rect by E-box arithmetic, the I-box has already processed ahead, and re­

covery action has to be taken to ensure the logical integrity of the pro­

gram. The re-setting of the I-box to the previous state of ten requires

shipment of index register information back to the I-box. The correct

instruction counter value is also shipped back to the I-box.

The interruption action is quite similar to branch recovery except

that in addition a new instruction has to be fetched and executed.

3/8/61 3-24

4
Computational Performance

MATRIX INVERSION - GERB2

Problem

The inversion of Hilbert matrix segments of increasing size, using

Jordan's elimination method. In each case the determinant of the matrix

is evaluated as a by-product.

Program

See Volume 2.

Timing

10 x 10 matrix 0.02 seconds

20 x 20 matrix 0.14 seconds

30 x 30 matrix 0.43 seconds

40 x 40 matrix 0.99 seconds

50 x 50 matrix 1.S9 seconds

60 x 60 matrix 3.23 seconds

70 x 70 matrix 5.10 seconds

SO x SO matrix 7.55 seconds

90 x 90 matrix 10.69 seconds

100 x 100 matrix 14.61 seconds

Comparison With Other Machines

The 96K memory allows the convenient inversion of matrices up

to 300 x 300 without using drums or tapes. The extra word length is

also an asset in inversion. The present program uses the relatively

slow *+ (multiply and add} instruction to obtain 96-bit intermediate

fraction accuracy.

3/S/61 4-1

Hilbert matrices are extremely ill-conditioned, and no claim is

made about the accuracy of the 100 x 100 inversion result. For an or­

dinary matrix of size beyond 40 x 40, it is probably fair to say 27 frac­

tion bits (as in the 7090) would not be adequate. Double precision cost

is a 6-fold decrease in speed on the 7090. The 7030 with 48 fraction bits

is adequate for a much larger range.

Additional Remarks

There is a faster matrix inversion program which gives the follow­

ing results:

50 x 50 matrix

100 x 100 matrix

150 x 150 matrix

200 x 200 matrix

250 x 250 matrix

300 x 300 matrix

1.1 seconds

10 seconds

31 seconds

79 seconds

144 seconds

250 seconds

A 128 x 128 linear equation program with two sets of unknowns requires

8.6 seconds.

There is also a double preCision version of GERB2, called GERB3,

with the following speeds:

10 x 10 matrix

20 x 20 matrix

30 x 30 matrix

40 x 40 matrix

50 x 50 matrix

0.05 seconds

0.41 seconds

1.36 seconds

3.19 seconds

6.21 seconds

It is seen that the double preCision computation time is roughly triple

that of single precision. 7030 double precision is almost equivalent to

quadruple precision on the 7090 in terms of the number of fraction bits.

3/8/61 4-2

MATRIX MULTIPLICATION - MXM16

Problem

Multiplication of two nxn matrices.

Program

Listing (including test program) are included in Volume 2.

Assume n = 17 k+m. A "major" inner loop is traversed k times,

then a short inner loop is traversed m times, for each vector multiplica­

tion.

The matrix elements used for the test are all equal to normalized

floating point 1.0 and are placed in the upper memory (32768.0 and beyond).

Timing

25 x 25 matrices

50 x 50 matrices

0.20 seconds

1.35 seconds

75 x 75 matrices 4.74 seconds

100 x 100 matrices 10.71 seconds

125 x 125 matrices 21.44 seconds

Additional Remarks

A simple version (taken directly from the 7030 programming ex­

ample book) requires 15.5 seconds for 100 x 100 matrices. The timing

cost was traceable to the use of the more accurate but relatively slow

LFT; *+ sequence and the fact that two adjacent I-box instructions are

executed for each traversal of the inner loop.

In the present program the ratio of I-box instructions to arithmetic

instruction is greatly reduced, but no other attempt has been made to

speed up the program.

3/8/61 4-3

PRIME NUMBER GENERATION PROGRAM PRIMe

Problem

To generate prime numbers by the sieve of Eratosthenes, using

VFL arithmetic and automatic program interruption.

In a very large memory segment (octal 17740.40 through octal

272777.63), consecutive bits represent consecutive odd integers. The

bit at distance d from the beginning of the string thus represents the

odd number 2d + 1. In the beginning all bits in the string are set to l's.

A working prime P is represented by a 1 bit to the right of the

previous working prime. In the beginning the first working prime is 3,

oc~~ying._tg~ s_e.C:Qn~Ll?Jt .CJL~h~bit sequence .
...

The bits representing the number p2 + np, n = integer ~ 0, are

systematically made zero by what appears to be an infinite loop, starting

from the case n = O. When the prescribed upper memory boundary is

exceeded, an interruption causes exit from the loop. The next working

prime is then found, and the process is repeated, unless an end condition

is encountered. The end condition is met when, for a working prime p,

the bit corresponding to p2 lies beyond the upper boundary. the non­

zero bits remaining in the interval represent prime numbers if the first

bit is reinterpreted to represent the even prime number 2.

Program (See Volume 2)

It is to be noted that 2/3 of the program consists of an interrup­

tion table.

Timing- 106.7 Seconds

_ The largest prime is (52,307,665)8' or about 11 million. A slight

change in the inner loop (replacing the progressive indexing by ordinary

indexing and ~ddi~.v + I instruction) leads to 102.7 seconds.

3/8/61 4-4

Comparison With Other Machines.

The 7030 machine can process bits very conveniently. Each

bit zeroing on the 7030 takes only one instruction. The corresponding

operation on the 7090 or similar machines requires very careful

programming and relatively long computation time (about 48 f,J.s), even

if only 25 = 32 bits are used per word to avoid a divide instruction.

Also, other machines do not have as many bits in the memory. For

this problem, the memory capacity of the 7030 is almost six times the

7090.

A MONTE CARLO PROGRAM

Problem

The physics and method of solution of the problem is described by

Davis, Journal of Applied Physics, 1960. The original problem was coded

in Livermore on the 709 and 7090.

Briefly, the problem is the passage of particles through a right­

angle bent pipe of circular cross-section at such a low density that only

wall collisions are important. It is assumed that the angle of rebound

is random and uncorrelated with the angle of incidence. The two ends

of the pipe are each divided into 4 areas, and statistics are accumulated

to determine the distribution of exit areas as a function of entry areas.

The calculation on the 7090 differs in one respect to that de­

scribed in the paper. The calculation of random input angles and re­

bound angles follows the "cosine law" • The choice of these angles in

the 7030 code differs from the 709 in method but not in result.

A point is chosen from a uniform distribution in the rectangular

parallelopiped (-0.7, 0.7) x (-0.7, 0.7) x (0.0, 1.0). Unless

2 2 22
(x + y + z) < z, ,

3/8/61 4-5

the point is discarded and a new one is tried. If the inequality is

satisfied the vector is used as a velocity vecotr relative to the X-Y

waLL

Program

See Volume 2.

Timing

10,000 particles were run and the measured time was 33 seconds.

This is to be contrasted with a known 709 run of 5000 particles in 10

minutes.

For the machine run 20 cards had to be loaded and 36 numbers

were printed on line.

WEATHER FORECASTING STUDY

The following weather forecasting study summarizes the results,

to date, of timing experiments performed on STRETCH.

Inner Loop

This program steps in time one floating-point meteorological vari­

able at one ground point (i, j) of grid, and four floating-point meteorological

variables at each vertical k-level above the ground point. The equations

are non -linear integro-diff erential.

1. First form (AO, see below), lower memory: 6.4 ms.

2. Pseudo j-level (see below), lower memory: .7 ms.

3. AO, upper memory: 6.13 ms.

4. AO, lower (instructions) & upper (data) memory: 5.98 ms.

3/8/61 4-6

5. Second form (A1, see below), lower (instructions) and upper

(data) memory: 5.57 ms.

6. Al Modified (see below), lower (instructions) and upper (data)

memory: 7.045 ms.

7. Third form (A2, see below), lower (instructions) and upper

(data) memory: 7.0135 ms.

The above times for runs 1, 3, 4, 5 are for one pseudo j-level,

two i-levels, and three k-levels per i-level. The time for run No.2 is

for one pseudo-j-Ievel only, and the times for runs Nos. 6 and 7 are for

greatly reduced pseudo-j-level, one i-level, and nine k-levels.

AO: Coding prior to any changes for timing improvement.

A1: Same as AO except for coding changes to improve timing

with respect to accumulate multiply, division, add to

memory, separation of indexing instructions, loop entry,

CNOP, one-word transmits, and associated minor changes.

A2: Same as A1 Modified except for additional coding changes

to improve timing with respect to spacing of store instruc­

tions, and more-than-one-word transmits.

Summary

With respect to run No.1, the above times provide the following

approximate improvements: Run No.3 - 4.2 percent; run No.4 - 6.6

percent; run No.5 - 13 percent. With respect to run No.6, run No.7

provides an approximate improvement of .4 percent. This last suggests

that this program is insensitive to the space of the store instruction and

the multi -word transmit.

3/8/61 4-7

Grid Parameter s

The execution of this program constitutes a neglible part of execu­

tion time required for the Weather program. Also, the program performs

a very specialized function, arising from the particular grid-geometry

and interpolation chosen for the Weather Project. Consequently, no coding

changes in grid parameters were made for purposes of timing improve­

ment or further study. Grid parameters computes, as a function of the

grid size (parameter N), certain grid measurements and interpolation

data (VFL and floating-point).

Using N = 3, lower memory: 7.07 ms

Elementary Function Test

In(ex) is compared against x, then a polynomial evaluation of elnx

is compared against x. The evaluations are based on 8-decimal accuracy

subroutines, employing polynomial methods. The program uses lower

memory exclusively.

In the following chart, certain similar operations have been

grouped together (e.g., / and R/i V+, V-, V+I, V-I; +, M+ under Fl. Pt.).

Also, the time given for AO is that for the more favorable memory

arrangement (Le., instructions in lower, data in upper).

3/8/61 4-8

TABLE 10. EXECUTION FREQUENCY CHART FOR STRETCH PROGRAMS

Pseudo Grid Elem. Functions
Operation AO j-level Al Modified A2 Paramo 1st Form 2nd Form

LFT 144 39
L 257 1 437 633 651 243 7 7
ST 261 1 465 659 677 202 15 15
+ 250 394 581 581 195 28 28
* 220 434 637 637 187 26 26

Fl. Pt. / 88 42 51 51 42 2 2
*+ 144 39
D* 2

I
K 45 2 2
SHF 2
E+ 69 4 4
SRT 4

Total 1364 2 1772 2561 2597 1065 88 84

L 10 8 10 9 9 128 4 2
ST 2 2 1 1 93 6 2
+ 20 18 20 19 19 20
CM 66 66 70 71 71 9

'" 8 VFL LFT 4
"'+ 4
-MG 4
M+l 37
K 64

Total 98 92 102 100 100 371 10 4

LZ,LV,LC,SV 13 9 13 11 11 6

Indexing V+ 60 60 78 78 117
CB 15 1 15 20 20 13
KCI 12 12 18 18

Total 100 10 100 127 127 136 0 0

B,BD,BEW 77 5 68 91 91 6 8 10
Branching BIND 18 18 27 27 274 3 3

BB 2 2 1 1 1

Total 97 5 88 119 119 280 11 13

Z,TI
Miscell. 52 28 38 29 31 1 1

Total

Grand Total 1711 109 2090 2945 2972 1883 114 106

Execution Time (ms) 5.98 .7 5.57 7.045 7.0135 7.07 .38 .309

Aver. time (J.Ls)/opn 3.5 6.4 2.7 2.4 2.36 3.8 3.3 2.9

3/8/61 4-9

5
Reliability and Serviceability

The capability of a large computer complex to satisfy operational

requirements must extend beyond the scope of engineering design and

programming flexibility. Maintainability, achieved through the applica­

tion of reliability and serviceability principles during the design stage

and the planning of maintenance procedures, is a key to maximum sys­

tem availability. Among the special features of STRETCH are extensive

error-checking and error-correcting circuitry, test panels, marginal

(bias) checking, and automatic scanning and recording. Maintenance

aids include diagnostic programs for testing and maintaining the equip­

ment and system, selection and training of field maintenance personnel,

unique distribution and function of spare parts depots, comprehensive

maintenance manuals, and applied programming support.

PERFORMANCE CHARACTERISTICS

Based on statistical analyses of this class of large scale computer

systems and correlation of the analyses with an operating 7030 system, it

is estimated that the typical 7030 Data Processing System will have the

following operating characteristics within 19 months after installation

of the first system and provided the system on which they are measured

has been installed for at least 6 months. These estimates are based

upon the best available information on component failure rates, and

best estimates of the impact of the automatic error correction feature.

7030 System Availability for Acceptance Purposes

Availability for acceptance purposes is indirectly based on a specific

allotment of time for preventive maintenance during each 24 hour period

3/8/61 5-1

of operation. It is defined as the ratio of productive customer hours to

scheduled customer hours (defined as that portion of a regularly sched­

uled shift assigned to customer operation.)

A '1 bTt (Scheduled Customer Hours) - (Unscheduled Maintenance Hours)
val all y = -'---------::S:-c-;"h-e-::d-ul--e-.:..d.--::C=-'u-s-,-to-m-e-r"""H=-o-u-r s----------'-

Average Time Between Unscheduled Maintenance Periods

On the average, it is estimated that 6 or more hours of customer

operation will normally occur between unscheduled maintenance calls.

This suggests one unscheduled call per operating shift.

Duration of Unscheduled Maintenance Calls

The average duration of an unscheduled maintenance call is

estimated to be 1.3 hours. Ninety percent of the unscheduled calls can

be expected to be less than 2.5 hours in duration.

Scheduled Maintenance

Based on purely technical equipment requirements, the duration

of a scheduled maintenance period will be less than four hours. Twice

each calendar year, a 24 hour period must be reserved for scheduled

maintenance. There should be 16 or more hours of customer operation

between scheduled maintenance periods. On a regularly planned basis,

a four hour period of scheduled maintenance is required during every

24 hour operating periodo

DIAGNOSTIC PROGRAMMING

Automatic diagnostic programming, the most advanced technique

devised for rapidly isolating difficult and intermittent system incom­

patibilities, has been SCientifically approached in SAGE I, refined for

3/8/61 5-2

other large scale computer systems, and is an integral part of the

7030 Data Processing System. Rapid isolation of malfunctions to a

limited area as diagnosed automatically by the computer itself and

multiple replacement substantially increase system efficiency.

Good diagnostic programming provides three major advantages:

1. A means of computer analysis which maximizes the success

of customer machine program performance.

2. A means of isolating failures faster to maximize customer

machine time availability.

3. A means for establishing an intimate man-to-machine re­

lationship.

Diagnostic programs are written with reference to the machine

logic, as well as with reference to machine specifications. Thus these

programs ensure that all hardware is tested and that the machine will

operate properly with worst-case patterns and timing relationships.

Diagnostic testing under program control proceeds with the building

block technique where possible. This is a technique which starts by

testing the smallest amount of hardware, and then gradually adds sub­

sequent tests involving the minimum increment of additional circuitry

possible. In this fashion a failure at anyone point is isolated to those

logical blocks added in the failing test. Testing continues until all

logical blocks are covered. At this point, worst patterns and timing

relationships are introduced to test for electronic interactions between

areas of equipment.

Diagnostic programs are in use to test and maintain the present

7030 systems. In addition, a SEV A (Systems Evaluation) program will

3/8/61 5-3

provide a comprehensive over-all test of the 7030 System under con­

ditions similar to those expected for an operational program. A brief

description of these diagnostic programs is presented below followed

by a description of the SEV A program.

• Diagnostic Control Program - This is an executive program

to control the running of all diagnostic programs providing

standard options and common utility routines.

• I-Box - Tests all the controls and transfer paths necessary

for the execution of instructions in the instruction unit.

• SAU - Tests the transfer paths, arithmetic elements, and

controls of the serial arithmetic unit.

• PAU - Tests the transfer paths, arithmetic elements, and

controls in the parallel arithmetic unit.

• Look Ahead - Tests the transfer paths and controls of the

look-ahead unit.

•]\1:emory - Tests the memories and memory bus, including a

worst-patterns test.

• CPU Scan and Miscellaneous - Tests the central processor

unit (CPU) scan circuitry, clocks, and boundary registers.

• BX 0 - This program provides for manually testing basic

functions of the exchange without using the central processor.

• BX 1 - Tests those portions of the exchange which can be

tested without using any I/o devices.

• BX 2- Tests the common circuitry in the exchange using

available devices which can be selected by the operator.

• BX 3 - Tests the Exchange under worst conditions of simul­

taneous operation.

3/8/61 5-4

• Tapes - Tests the tape adapters and tape drives, including the

control, information transfer, and timing circuitry.

• Printer - Tests the printer control unit and the chain printer.

Carefully selected patterns will be printed for the operator to

verify results.

• Console - Tests the console control unit and the operator's

console. The patterns typed on the typewriter are verified by

the operator, while the operator's inputs are verified by the

computer.

• Reader, Punch - This program provides a punch to reader

loop for testing the reader, reader control unit, punch, and

punch control unit.

• High-Speed Exchange - This program utilizes the disk file in

an elementary fashion to test the disk synchronizer.

• Disk - Tests the disk and includes worst patterns and timing

tests.

• I/O Scan - Tests the circuitry associated with the exchange

scan and the disk scan.

SEV A Program

The 7030 SEV A (Systems Evaluation) program is designed

primarily to test the interrupt, asynchronous capabilities, and capacity

of the 7030 system in a manner similar to that in which a customer will

operate the system. BEV A is made up of a number of analytical and

mathematical checking routines and is designed so that the I/o routines

will cycle independently and concurrently of each other and of the cen­

tral processor unit routines. Because of the asynchronous operation of

the 7030 system, phase shifts will occur, producing an almost infinite

variety of timing conditions within the system. During operation,

3/8/61 5-5

progress of the SEV A program, required operation action, and incon­

sistencies are printed out by the printer for evaluation and analysis

purposes.

The SEV A program will contain thr ee general types of routines:

control routines, central processor unit routines, and input-output

routines. Figure 1 illustrates the inter-relationship between the

various routines. A brief description of these routines follows:

• Initiator - This routine establishes initial conditions, as re­

quired, for all of the other routines.

• I/O Initiator - This routine operates with the initiator routine

to start from one to eight tape routines and one disk routine

and is used only when first starting or restarting the over-all

SEV A program.

• Central Processor Unit Routine Sequencer - This routine

establishes the order in which the other central processor

unit and memory routines will be run. After each pass

through all of the central processor unit routines, the order

is permutated so that the central processor unit routines will

not be run in the same order on each successive pass.

• Central Processor Unit Routines - Central processor unit

routines will calculate mathematical problems such as

binomial expansions and solutions of quadratic equations.

These routines will contain four sections to accommodate

both variable field length and floating point calculation, using

different techniques so that the results can be compared.

Provision is made within the SEV A program to add other

routines (indicated as variable routines in figure 1) as

desired.

3/8/61 5-6

1 0 TERMIN)TOR

TERMINATES 1/0
RESTARTS ANOTHER

/
/

START

n,1TIATOR

ESTABLISHES INITIAL CONDITIONS
FOR .ALL ROUTINES

110 mTTIA TOR

INITIATES UP TO
8 TAPE AND 1 DISC ROUTINES

CPU RTN SEQUENCER

END

Figure 1. 7030 SEVA Program

3/8/61 5-7

• Memory Routines - Memory routines will perform instruction

fetch (IF) and data store (DS) functions in all available core

storage units. Independently, the result will be generated in a

fixed memory area for comparison to the other result gen­

erated by this routine.

• Tape Routines - There are eight identical tape routines one

for each tape adaptor, and they will exercise every possible

operation.

• Disk Routine - This routine is similar to the tape routines in

that it wili exercise all possible disk operations.

• Typewriter, Punch, Reader Loop Routine - With this routine,

data entered through the typewriter will be typed and punched.

Punched data from the reader will be typed again to verify

results.

• Input-Output Terminator - When a tape adaptor or disk has

completed a routine, the input-output terminator routine will

temporarily delete the equipment from the over-all SEVA and

start another tape adaptor or disk in its place. When available,

the disk and eight tapes will be running simultaneously with the

central processor unit routine.

• Interrupt Control- This routine will handle all interrupts. If

two error interrupts occur within a 30-second period, the pro­

gram will be dumped. For single error interrupts within a

30-second period, the error will be logged and the operation

will continue.

3/8/61 5-8

Appendix A

7030 CPU CONFIGURATION

Main Memory

The main memory, sometimes called extended memory, is com­

posed of six boxes of 16,384 extended words each (for the Los Alamos

configuration). Each extended word contains 64 information bits plus

8 error-check bits.

The main memory is controlled by the memory bus control unit

(MBCU) which, in addition to initiating all accesses to main memory,

also monitors the submitted addresses for the Address Invalid (AD)

condition. The MBCU unit has direct contact with the following units:

instruction unit, Look-Ahead, memory boxes, exchange, and disk

exchange.

Instruction Unit

The instruction unit (I-box) contains the instruction counter (IC),

the 16 index registers ($0-$15), the time clock ($TC) and interval timer

($IT), the "originals" of the index condition indicators ($XF, $XVL~,

$XV~, $XLG~, $XC~, $XL, $XE, $XH), and many registers and circuits

needed for efficient decoding and execution of instructions. The I-box

executes the following activities:

• Generates all instruction-fetch requests on the basis of IC

contents.

• Develops effective addresses by adding the pertinent index

value to the numerical address.

• Generates E-box operand requests for look-ahead.

• Partially decodes E-box instructions and converts the latter

into information suitable for look-ahead processing. This

information is then loaded into look-ahead.

3/8/61 A-1

w
~
""-­en

>
I

t..;)

xs
($ It, $ tc,
$ 0 THRU $ 15)

X

X-ADDEnl

(INTERLEAVED MEMORIES)

I I I I
I I I I
I I I I

1 T -I
DATA WORDS-+

M J3 C tJ
I - BOX OPER AND OR LA LEVEL -I 4-SERVICE REQUEST

(TO DISK EXCItANGE)
DATA WORDS

•
(SCC)

-~ ~OD 0 I L l3 S F I 0 T A S DECODEItI
i---I"! I - LA -t: AUT C SAtJ

(dCC) A S E It
A C l3 l3 C

I U C C C C
L R ~ CHKR It y X C

I 1 Y (TBC) .$ L!liC L It LAO C
I

D
2Y I (ABC) LAlli;

LA! $L
I

$R 1$ SB
~ I

(lAUC) LA2
W-P--

I LA3
PAU GLAIt Di':CODEItI

IC J3UFIi'ER (LOOKAHEAD) !
F

(1- BOX)
(ABC)I I (TO EXCItANGE) (E - BOX)

(INTERRUPT) (TO DISK EXCHANGE)

$IND $ CA •. (TO EXCHANGE)

$ MASK $CPU (TO DISK EXCHANGE)

$CPUS
(INTERRUPTION SYSTEM)

Figure A-i. The 7030 Data Processing Unit

• Decodes and executes all index arithmetic instructions as well

as the following: ~. R, RC~, EX, EXIC, T. SWAP, except that

Stores are performed with the help of look-ahead. If non-l-box

operands are required, they will be fetched from the MBCU or

the look-ahead.

• Decodes and executes the following branch instructions: B, BE,

BD. BR. BEW, CB. CBR, and Bind for non-index conditions

require the assistance of the look-ahead and the E-box.

• Submits indicator conditions for the following indicators to

look-ahead for updating of the indicator register: SlJ,SOP,

SAD (from MBCU), SDS, SDF, SIF + index indicators. These

indicators plus a conditional machine check may lead to inter­

ruption during the updating. Other I-box-generated indicators

are gated directly to the indicator register.

• Updates STC and SIT every 1/1024 second.

Look-Ahead (LA)

Look-ahead contains four buffer levels, an address register (LAAR)

and five counters, IAUC (I-box), DCC (operand check), TBC (transfer

bus into E-box), ABC (arithmetic bus and interruption system), and

SCC (store check). Look-ahead functions under the following conditions:

• When IA!!<::_ refers to a level, that level may accept I-box

loading, although the required operand may come later from

MBCU.

• During OCC time, the operand from MBCU may be checked for

error.

• During TBC time, the level may be shipped into E-box.

• During ABC time, the interruption system is updated and

signal is given to E-box for execution of the instruction just

loaded.

3/8/61 A-3

• During sec time, the store operand (if any) is checked and

sent to. MBCU on the basis of the contents of LAAR.

• Provides interlocks, plus close contact with the interruption

system, to ensure smooth, autonomous, and error-free oper­

ations of the various units in the computer.

Interrupt System

The interrupt system contains the indicator register (SlIND), the

mask register (SIMASK), and SICA and SlCPU. It has direct connections

with I-box, LA, E-box, and the exchange units to receive updated indi­

cator information.

• Interruption occurs if:

a. System is enabled

b. A masked indicator bit is a 1.

• Interruption sequence:

3/8/61

a. The left-most masked indicator bit position (for instance,

O.K) is noted.

b. I-box is house-cleaned except the index storage.

c. LA house-cleaning is performed. Recovery information is

shipped back to the I-·box. This includes all index register

recovery information and the interrupted IC value.

d. Contents of SlIA is fetched and added to K. O.

e. Instruction beginning at the address C(SlIA) + K.O is fetched

from MBCU without disturbing SlIF indicator.

f. The "free 11 instruction is performed with all masked inter­

ruption conditions enforced. This instruction mayor may

not alter IC in I-box.

g. I-box fetches new instructions on the basis of IC.

h. Resumption of normal operations.

A-4

E-Box (Arithmetic Unit)

The E-box contains a parallel arithmetic unit (PAU) for floating­

point fraction operations, as well as all executed *, /, *+, and binary­

decimal conversions. It contains a serial arithmetic unit (SAU) for

variable field length operations (except *, /, *+ and conversions), as

well as for floating point exponent arithmetic.

The E-box:

• Receives instructions and operands from LA for decoding and

execution.

• Submits store operands to LA.

• Submits arithmetic indicator bits to the interrupt system.

The E-box also contains the following registers:

1. Accumulator (SL, m) and sign byte register (SSB).

2. Buffer registers C, D.

3. PAU buffer register F.

4. Left zero counter (SLS!C) and all ones counter (SAOC).

Exchange

The exchange contains up to 32 channel.s (32-63) for simultaneous I/O

processing. Through adaptors each channel can be connected to eight tape

units or with one non-tape I/O unit. Each channel is represented by one

control word and two data word£: :::-the exchange memory. The channels

communicate with the change memory thru a multiplexer.

The exchange unit contains a main memory address register

(MMAR) and a buffer register to communicate with the MBCU. It also

contains an interruption address for the chann~l which has created an

interrupt condition, as well as triggers (EOP, UK, EK, EE, and CS) to

indicate the reason for interrupt. These triggers and IAR contents are

3/8/61 A-5

set until the interruption system accepts the conditions •. When IAR is

busy (Interrupt Wait trigger on), other channels cannot use it to cause'

other interrupts.

The exchange unit:

• Accepts I/O instructions from LA (2 levels per instruction).

• Fetches and stores control words and data words directly from

MBCU, subject to SAD restrictions but not SDF and IDS since

these are performed by the I-Box.

• Communicates with I/O units (thru adaptors and multiplexer)

in 8-bit bytes.

• Has its own clocking circuit (1.~ us cycles divided into 10

equal pulses) and ECC check-bit generator-comparer.

Maximum word rate is 1 extended word/l0 J.l.S for the entire

exchange.

The disk exchange contains 32 channels (0-31), only one of which

can be in operation at any given time. It contains enough memory for 1

control word and 1 data word, and each channel can be attached to one

disk unit. Disk word rate is 1 extended word/8 ILS. No direct chaining

of the I/O control words is permitted. In addition, the copy-control­

word operation cannot be performed when reading or writing. Otherwise

the disk exchange functions in much the same way as the exchange.

LIST OF IMPORTANT REGISTERS IN THE 7030

I-Box

Table A-I indicates important I-box registers in the 7030.

3/8/61 A-6

TABLE A-I. I-BOX REGISTERS

Code Name Bit lnformation Remarks

1Y* Instruction buffer 64 + check bits Even-addressed full
words

2Y* Instruction buffer 64 + check bits Odd-addressed full
words

Z Instruction prep- 64 + check bits
aration and exec-
ution register

XS Index register 17 words, each Contains location 1.0,
with 64 bits + 16.0-31.0
check bits

X Index data regis- 64 + check bits Buffer register for XS
ter

X-Adder Index Adder 32 + check bits Capable of 24-bit
additions

W Work register 18 + check bits Serves miscellaneous
functions in I-box: L,VS
address decoding; second
operand address in VFL;
refill and interruption
address; count for T and
SWAP; LVS address de-
coding.

IC Instruction counter 19 + check bit

GLAR Left -zeros counter Geometric-load address
for L,VS 'instruc- counter
tion execution

Originals
of: JXF,
SXVL~,
SXVZ,
IXVffi!,
JXC~,
JXL,IXE,
SXH

*Both lYand 2Ymay be used as I-box operand buffer

3/8/61 A-7

I-Checker (shared between I-box and Look-Ahead)

Look-Ahead (LA)

LAO

LAl

LA2

LA3

Look-Ahead buffer levels, each has:

Op code field (10 bits + check)
Operand field (64 bits + checks)
Indicator bit field (15 bits)
Instruction counter field (19 bits + checks)

plus these bits for each buffer level:

NOOP no-op bit

WBC word boundary crossover bit

LAOP LA op code bit

IC Instruction counter bit

INT Internal fetch bit

LC Level checked bit

LF Level filled bit

FF "Forward from" bit

DISC Disconnect bit

LAAR Look-Ahead address register (18 + check)

LAAR-Busy bit

Store-executed bit

Forward-cycle-required bit

IC buffer (19 + checks)

Counters:
(4 bit rings)

IAUC (Instruction-arithmetic unit counter) For LA
loading from I-box

OCC (Operand check counter). For check of opnd
arrived from MBCU

TBC (Transfer bus counter). For loading of E-box.

ABC (Arithmetic bus counter). For interrupt system
updating, internal opnd fetch.

SCC (Store check counter). For storing into main
memory

Interruption System

lIND - Indicator register.

3/8/61 A-8

- Mask register. IMASK

SCPUS

SCA

- Other CPU. (Not available for LASL and BuShips systems)

- Channel address register.

Left zeros counter to handle interrupts.

E-box

IL, IR - Accumulator.

ISB - Sign byte register.

C, D - Operand buffer register (each 64 + check bits).

ILZC - Left zeros counter.

lAOC - All ones counter.

SAU - Serial arithmetic unit

SAU - decoder

SAU - arithmetic - logical unit

P AU - Parallel arithmetic unit

P AU - decoder

P AU - arithmetic - logical unit:

PAU - adder

P AU - multiplier

(PAU) - F-register

Exchange

Exchange storage (EM)

EMAR. Exchange memory address register. (7 bits + check)

Word register (communicates with EM) (76 bits)

MMAR. Main memory address register (18 + check bits) for dealing
with MBCU Buffer register (72 bits) to handle traffic with MBCU

Interrupt address register (7 + check) to contain address of inter-
ru~ing channel. .

Interrupt triggers for 5 exchange interrupt conditions.

Interrupt wait bit.

Multiplexer for dealing with individual channels.

ECC generator and comparing circuits.

3/8/61 A-9

t.:l
'-....
0:>
'-....
0')

>
I
o

I

I

I
I

TABLE A-2. SUMMARY OF 7030 INSTRUCTION EXECUTION*

I LAAR
opnd not needed

I-box I-box fetch LA LAAR but used if
Operation Code opnd fetch execution for LA levels needed? not bury SAD PAD Comments

LX, LV. LC, LR, yes yes no IX Rec. no no no no V+CR (c= 0) involves 2 I-box
V+, ViC fetches.
V +cmc/O), V ± ICR (C=O)
R (inctex), RCH (index, C = 0)

LVI, L I'NI, LCi, LRI, C ± 1 no yes no IX Rec. no no no no
l'± 1, l'± 1C l'±ICR (C/O)
RCZ (C f 0) (index)

Kl', KC yes yes no NOOP no no no no

KV/, KC] no yes I no NOOP no no no no

SX . .;z: no partly no store yes no no no

SF. SC. SR, SFA yes partly no store yes no no no SVA requires extra ctecoding

R(memory) , RCH (memory), 2 partly no store yes no no no
(C =0)

RCfl; (memory, C f 0) no yes no NOOP no no no no

LIT N N no IX Rec. no no no no extra decoding for each instruction
fetch

L l'S no yes no IX Rec. no no no no repeated addition of index value

I fields,

RNX yes partly no test I no no no no LA is pre-cleared by first leveL

store yes no

NOOP no no

EX (exclusive of subject in- N yes no NOOP no no no no extra decoding for each instruction
struction) (repeated EX fetch,
assumed)

EXIC (exclusive of subject 2N partly no N No no no no extra decoding for each instruction
instruction) (repeated EXIC stores times fetch.
assumed)

T, SWAP N partly no test no no no no LA is pre-cleared by first leveL

stores Ntimes no
Each N is doubled in SWAP

NOOP no no

LA level designation LA level designation (cont'd)
!NT = internal operand fetch Op = oper ation code level (VF L)
!NT STORE = internal opnd

I
opnd = operand level

store op + opnd = op code plus operand
Store = Store (usually F.P,)
IX Rec. ~ index register

!

recovery (als0
called psuedo-

I store)
B Hr'c. :0;: branch recovery

i

I
LAOP ~ LA operation

I

I
NOOP = no op; indicator

I I I transfer only

"(Addresses are assumed to refer to Main Memory un}pss specifjpd)

(J.)

"-00
"­m

>
I

TABLE A-2. SUMMARY OF 7030 INSTRUCTION EXECUTION (cont'd)
r-------------- ,----------- ---------~ ------ ,----- --- ,------- -------

LAAH
opnd not needed

I-box I-box f"leh LA LAAR but used
Operallotl Corle operand fetch cxpcution for LA levels needed? if not hury SAU PAU Commpnts

~ -- r--------------------- ------- -------
ty, 2Y ace cleared to receive

neW instrucUon for all 8U(.'.CPSS-

ful branches

B, BR, RH, N ¢'P no yes no NOOP no no no no
test

BD no yes no test no no no nn LA pre-c1earer\
NOOP

lif:l.f! no parlly no NOOI' no no no no

2 tesf
levels no no

CR, CRR (no refill) nn yes no IX Rec. no no no no

C lJl? (refill) yes yes no IX Rec no no no no

BiI,d (Xl", XC~, XVU~, XV;" nn yes no hOOp no no no no
XVG7" XL, XE, XII)

llind (non-index conditions) no partly INT 01'. no no yes no

!NT yes no

INT. stores no no

B Rer. no no

Rll no partly yes 01' no no yes

opnd no yes

store yes no

B Rec. no no

SIC Ii, SIC BTl, XK Rf:, SiC lilJ yes partly no sto're yes no no no LA pre-dearenln SIC flO hy 2 I,"sl lev.']s

SIC lIBW yes partly no store yes no no no

2 tesl nn no
levels

SIC CB, SIC CBR (no refill) yes partly no IX Ree. yes no no no SIC store level will nol pxist if hranch
if hranch is taken

Store
is not laken

no no

SIC CBR (if refill) if braneh 2 partly no IX Rec . yes no no no SIC store level will nol exist if branrh
is taken

store
is not taken

no no

SIC Bind (index conditions) yes partly no store yes no no no store level replaced hy noop if brand!
if branch is taken is not t.aken

SIC Bind (non-index conditions) yes

_I~"" "" "'
no no yf'S no

j INT '''" I "" INT store nn no

B Rec. no no

store I ye~ no I ______ 1 __

c,..,
'-....
00
'-....
0')

'""'

:>
I

'""' N

Operation Code

F. P.

±, L, LWF, ± MG
D+, DL. DLWF, lJ ~ MG
K, KMG, [ffi, KMGR
*, /,R/
FI, E ±

E±l

SllF

ST, SLe. SRD, SRt

M±. M! MG

*+,

['FT,DI

VFL
+, I" [,WF, ± MG
K. KMG, KR. KMGR
KE,KF,KFE,KFR.
C. CT, LCV

" (Binary)

CV, IJCV

ST, SRD
CM. M± MG. M+l

"+ (ainary)

LFT. LTRS, LTRCV
·(Dec.), / (Dec.), "+ (Dec.)

1/0

TABLE A-2. SUMMARY OF 7030 INSTRUCTION EXECUTION (conttd)

I-box I I-box

LAAR
opnd not needed
fetch LA LAAR bul used

operand felch execul.!on for LA levels needed? it nol bury SAU PAU Commenls

no no yes op + opnd no yes expo frac.

no no no op + opnd no no exp frae

no no no op + counl no no no frae

no no no store yes no exp frae

no no yes op + opnd no yes exp frae

store yes no

no no 2 op + opnd no yes exp frae

C(:liFT) no yes

no no yes op +opnd no yes exp frac

store yes no

no no yes op no no yes no For all VFL operations, If
opnd crosseS over full word

opnd no
boundary, the no. of LA opnd

yes and/or store levels is doubled
Progressive indexing required one
more IX box.

no no yes op no no yes yes

opnd no yes

no no no op no no yes no

tNT

no no yes op no no yes no

opnd no yes

store yes no

no no 2 op no no yes yes

opnd no yes

C(SFT) no yes

no no yes op no no yes no

opnd no yes

store yes no

no no no op no no no no LA communicates with exchange

LAOP no no directly

