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1 
Foreword 

The performance of a system as complex in concept as STRETCH 

is extremely difficult to evaluate. The operation time for each unit is 

basically dependent on the particular operation it is performing~ the 

performance of the system as a whole is dependent on a complex mix 

of the individual units and their interactions with one another. Further­

more, the performance of the system with respect to a synchronous 

machine will vary, depending on the particular program which is being 

run, and no single simple measure of performance can be obtained. 

There are many independent criteria for determining machine. perform­

ance. Each user is ultimately interested in the ability of the machine to 

solve competently, in a feasible financial and technical fashion, the prob­

lem or problems peculiar to individual requirements. While we do not have 

exhaustive information on total system performance, all the problem appli­

cations that are available for release at this time are discussed in the fol­

lowing pages. Other problems have been run, but IBM does not have 

permission at this time to distribute this data. 

The STRETCH remains, in our honest judgment, the most power­

ful and potentially productive piece of computing machinery available in 

the world today. It represents a real challenge to those with problems 

heretofore unprocessable on older machines with anything like reason­

able efficiency. It is a machine ideally suited for special large problems 

drawn from the areas of matrix multiplication and inversion, linear pro­

gramming, Leontieff input/output models, three dimensional non-linear 

partial differential equations, and certain areas of simulation. The area 

of application potential is discussed in greater detail in the following 

pages. 
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The information in this report shows many aspects of the per­

formance of the STRETCH system and contains examples of test pro­

grams which have been run and timed. 
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7030 PROGRAMMABILITY 

2 
Programming 

Unlike earlier mM data processing systems, the 7030 makes very 

extensive use of overlapped operations. While this overlapping adds 

significantly to the over-all speed of the machine, it does complicate 

the problem of writing optimized programs because the time taken to 

perform a given operation depends on whether or not the look-ahead 

feature has been able to locate and bring from memory the required 

data while previous operations were being performed. Thus, the order 

in which instructions are written can be important if an optimal program 

is required. In many instances the programmer can forget about such 

considerations without significant loss of speed. There are, however, 

some situations to which the programmer must pay special attention if 

maximum speed is to be attained. 

In order to help programmers use the 7030 system effiCiently, a 

number of hints have been drawn up, and these are given below. The 

basiS of these hints is twofold: a theoretical study of the 7030 logical 

organization, and limited practical experience of running the 7030 pro­

grams. As more operating experience on the 7030 is gained, it must be 

expected that further rules or hints for good programming will be 

developed. 

Hints Towards Good 7030 Programming 

3/8/61 

Generalities 

1. Efficiency in computer problem solving involves the balancing 

of the following factors: 
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a. Accuracy of results 

b. Analysis effort 

c. Programming time 

d. Debugging time 

e. Production run time 

f. Effectiveness in repeated use of program (possibly by a 

stranger) 

The relative weights of these factors vary from problem to 

problem, individual to individual, and from installation to in­

stallation. For small one-shot problems the trend is towards 

the emphasis on a, b, c, d. 

2. Timing is important for much traversed inner loops, but 

usually less important elsewhere. 

3. There are usually many ways of doing the same problem. 

4. The 7030 will not be efficiently used when the programmer 

tries to make it look like machine X. 

5. Advantage should be taken of special features in STRAP and 

MCP to minimize errors and to simplify debugging. 

6. Machine efficiency is gained by distributing the work over as 

many major units as possible so that at any given time no 

. major unit is idle. 

7. Memory conflict can be largely removed by putting instructions 

and data in separate memory box groups. 

8. Information transmittal between autonomous major units is 

through buffer registers. The I-box buffers lY, 2Y and the 

look-ahead buffer levels LAO, LA1, LA2, and LAS should not 

be left empty over extended lengths of time. Nor should they 

be constantly crowded by data with little information content. 
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9. It is perfectly permissible to use floating point operations on 

VFL quantities or binary operations on decimal quantities. 

Specifics 

1. Floating point operations are usually E-box limited in timing 

(exceptions L, LWF, DL, DLWF and ST). VFL operations in­

volve extensive decoding and execution time, and are usually 

much slower than the floating point counterparts. I-box op­

erations usually do not involve the E-box, and the I-box time 

can be covered largely by neighboring floating point operations. 

2. I-box fetches are less efficient than E-box fetches, since the 

latter are greatly enhanced by look-ahead buffering. 

3. Sv, SC, SR are more time consuming than SX, for the latter 

does not call for an I-box fetch. 

4. Information transfer from the E-box to the I-box is relatively 

time consuming, but is still faster than, say from the E-box 

to main memory, then immediately from main memory to the 

I-box. 

5. Immediate operands require no fetch and are to be preferred, 

particularly for I-box operations. 

6. All VFL stores are fetch-and-stores. Every BB involves a 

fetch, VFL arithmetiC, and a store. B(ind) for non-index in­

dicators is similar to BB except that I-box activity is less ex­

tenSive, and the fetch-store involve an internal operand (SIND). 

7. VFL information will be processed more efficiently if word 

boundary crossover is not present. Otherwise there will be 

over-exercising of the memory and ~. 

8. Take advantage of forwarding, but avoid (if easily accomplished) 

other types of store-close-to-fetch. ' 
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9. Avoid consecutive stores since they are time consuming, as is 

forwarding more than ~ The I-box otherwise would be 

standing still and LA gradually drained. 

10. All successful branch instructions will temporarily remove 

the I-box buffer. 

11. The following branches are considered unconditional by the I-

box: 

CB and varients 

B(ind) for XF, XVLD, XV,g, XVGZ, XC&, XL, XE, XH 

and are performed correctly by the I-box. 

12. The following are considered by I-box to be truly conditional 

branches: 

B(ind) for non-index indicators 

BB 

I-box makes the tentative assumption that the branch is not 

successful, and processes ahead. If the assumption proved 

wrong, branch-recovery will be performed, which requires the 

cleaning of I-box, restoring of pre-processed index registers, 

and cleaning of LA before resumption of normal activities. 

Conditional branches should be largely unsuccessful, even if 

an additional (unconditional) branch instruction has to be added 

to the program. 

13. BD, RNX, T and SWAP require cleaning of LA. 

14. Interruption involves cleaning of the I-box, restoring of index 

registers, execution of a pseudo B(ind) instruction, fetching, 

and execution of a free instruction before the resumption of 

normal activities. Judicious use of this feature, however, al­

lows the writing of inner loops with few time consuming branch 

instructions. 
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15. VFL instructions require from 2 to 6 levels of LA and involve 

the slower byte processing. The power of such instructions 

(particularly the logical connective instructions), however, 

frequently compensates for the slow speed. 

16. Begin a loop with a full-word address, even if a CNOP has to 

be placed just prior to the loop. This avoids repeatedly fetch­

ing an instruction which is not used. 

17. For optimum speed, fetch-type I-box instructions should oc­

cupy the second half of a full word. 

18. The following special registers are bona fide memory loca­

tions, and are subject to the usual memory restrictions: 

O. (SZ), 4. (SMB), 13. (SRM), 14. (SFT), 15. (STR). 

The load factor instruction thus involves a fetch and a store. 

APPLIED PROGRAMMING SYSTEMS FOR THE IBM 7030 

Listed below are the systems programs which have been designed 

and are now being written and tested for the 7030 system. Their purpose is 

to provide efficient and productive use of the computer system, to permit 

applications to be programmed easily, and to assist IBM 704, 709, and 

7090 users in making the transition to the 7030. 

Briefly, the programs being provided are: 704, 709, and 7090 pro­

grams for Simulating the 7030 and assembling for it; programs for sim­

u1ating the 704 or 709 on the 7030; a master control program for 7030 

operations; and processors for STRAP symbolic, SMAC macro, and 

FORTRAN language programming. Programs will be released in field 

test version according to the schedule in Table 1. 
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IBM 7030 Packages for the 704, 709, and 7090. 

These packages permit programming to be partially checked in 

advance of 7030 installation. They consist of an assembly program, 

STRAP I, and a 7030 simulator. Versions are available for each of the 

three different machines: 704, 709, and 7090. 

Note 

STRAP I was designed in a joint effort by Los 

Alamos Scientific Computing Laboratory and 

International Business Machines Corporation 

personnel, and it was programmed by Los 

Alamos personnel. 

STRAP I accepts all 7030 instructions plus some of the pseudo­

instructions of STRAP II. All programs written for STRAP I are ac­

cepted by STRAP II. The output of STRAP I can be executed directly 

on the 7030 or (via the simulator) on the 704, 709, or 7090. The speed 

of execution on the 704 or 709 is several thousand times slower than 

on the 7030. No attempt is made to simulate the timing details of I/O 

operations. 

IBM 704 and 709 Simulators for the 7030. 

These programs permit 704 and 709 programs to be run on the 

7030 without reprogramming. The simulated machine has 32K mem­

ory, 8 logical drums, 10 tape units, printer, punch, and operator con­

sole. The console is simulated on the 7030 console and includes all 

features of the 704 or 709 console. 
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Note 

If the size of 7030 memory is reduced, the size 

of the simulated machine is also reduced. The 

following table obtains: 

7030 Memory 

16K 

32K 

48K 

704 or 709 

4K or 8K without drum 

8K without drum 

32K without drum 

65K Maximum configuration 

One tape per tape to be simulated. 

There is no attempt to simulate CRT output. In addition, the PSE 

instructions to the printer exit hubs are :pandled according to the SHARE 

n board. Since there is no standard board for the punch, the PSE in­

structions to the punch exit hubs are NOP' s. Otherwise the simulation 

duplicates as closely as possible the actual performance of the 704 or 

709. 

Due to the different word lengths, it is necessary to pre- or post­

process binary tapes to be communicated between the 704 or 709 and the 7030. 

The 7030 programs to perform these operations are included as part of 

the package. 

In general, the simulator is about three times slower than the 704 

or 709. Floating point instructions are somewhat faster than this and 

fixed point instructions somewhat slower. Because of the speeds of the 

7030 I/O units, programs can run faster on the 7030 than on the 704 or 

709 if they are I/O limited on those machines. 
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Master Control Program 

The master control program is an automatic operating system which 

runs job after job automatically. It plans the actual assignment of sym­

bolic I/O units in advance, so as to minimize conflicts and delays between 

successive jobs, issuing tape mounting and demounting instructions to the 

operator and checking (through reel labels) that tapes are mounted cor­

rectly. For each job, MCP offers the options of COMPILE, GO, and COM­

PILE and GO. Here COMPILE can refer to any of the several language 

processors listed below. MCP also arranges for checkout and post­

mortem procedures where needed. Also, it is the agent by which further 

service routines (such as an installation logging routine) can be easily 

added to the operating system. 

In the individual program, MCP provides a complete input/output 

system. In particular, an option is provided for buffered operation of 

the card reader and high-density blocked input and output SPOOL tapes, 

permitting easy and efficient overlap of computing with the input of pro­

gram and data and the output of results. Standard methods for reading, 

printing, and punching data are provided. Also, all interrupts are mon­

itored by MCP. I/O interrupts are returned to the program in a form 

convenient to manipulate. The pl"ogrammer can designate how maskable 

interrupts are to be processed. 

Including buffer areas, MCP occupies 8K of storage space. An 

IBM 1401 tape system is required for off-line operations. The time re­

quired for the system to exercise its supervisory functions is not yet 

known in detail, but is estimated to be small compared with the time 

saved by its use. 
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STRAP IT Assembly 

STRAP IT is a symbolic programming system for the 7030. It 

defines a complete set of mnemonics for the 7030 instructions, together 

with the pseudo-operations for data definition and such assembly opera­

tions as origin setting, space reservation, listing control, and identifica­

tion of output. 

Features provided for are as follows: acceptance of programmer 

symbols up to 128 characters in length; acceptance of source language 

numerical information written with radix 2 through 10, and 16; address 

arithmetic involving addition, subtraction, multiplication, and division; 

error messages on the output listing; extensive tailing facilities that 

permit up to 10 unique levels of tails to be appended to programmer 

symbols; and the option of saving the symbol table for subsequent pur­

poses. 

STRAP IT operates QI1 a minimum size 7030 computer (24K plus 

disk). The first version operates independently; a later version will be 

adapted to operation by MCP. 

SMAC 

SMAC processes macro-instructions of the simple substitution 

type (but permitting macros within macros), thus adding the next higher 

level to the machine language of STRAP IT. The result is a conveniently 

open-ended machine-oriented language. 

SMAC runs on a minimum 7030 and is operated by MCP. 

FORTRAN 

The FORTRAN processor handles the FORTRAN IT statements. 

Any standard FORTRAN IT program is accepted and converted into a 
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program suitable for further processing by SMAC. Much of the proces­

sor is of a general purpose nature and is expected to be useful in other 

advanced programming systems the user may care to develop. 

The speed of compilation from FORTRAN to machine language is 

expected to be approximately twice that of the new 7090 FORTRAN now 

being developed by applied programming. The object programs which 

result are expected, for typical FORTRAN applications, to run at an 

average of 75 percent as fast as equivalent programs which have been 

carefully hand-coded. This degree of efficiency is obtained by including 

throughout the processor-chain a large number of the criteria for ef­

ficient 7030 programming listed earlier. Further such rules are likely 

to be discovered in the future, and the structure of the compiler is ex­

pected to be flexible enough to accommodate most of them. 

FORTRAN runs on a minimum 7030 and is operated by MCP. 
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TABLE 1. STATUS OF 7030 PROGRAMMING SYSTEMS 

Status as of Approx. Number Manual Estimated Program 
Systems March 1, 1961 of Instructions Availability Completion Date 

704/709/7090 Operational 24,000 Available now ---
Package as form 

No. C22-6531-1 

704/709 Coding 5,000 Aug. 1961 Aug. 1961 
Simulator completed 

STRAPTI Coding 14,000 Reference July 1961 
completed Manual 

April 1961. 
Operators 
Bulletin 
June 1961. 

MCP Coding 8,000 Preliminary Oct. 1961 
completed edition of 

user's guide 
now available 
as form 
No. J22-6559. 
Reference 
Manual 
Oct. 1961 

SMAC Coding 4,000 Sept. 1961 Sept. 1961 
completed 

FORTRAN Coding in 50,000 Preliminary March 1962 
progress Bulletin 

July 1961 
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3 
Execution Times 

RAW SPEEDS AND THEIR INTERPRETATIONS 

E -Box Times for Basic Instructions 

Floating Point Instruction Times 

Following is a summary of "raw" floating point execution. The 

times are predicated upon the availability of data and instructions when 

needed; that is, the times given are the maximum speed at which the 

floating point unit may operate. If some memory access (look-ahead, 

I-box, etc.) factors enter such that data and instructions are not avail­

able when the floating pOint unit is able to accept them (or requires 

them), the extra delay thus caused is added to the times below. 

The times are broken up into two types of cycles: pre-execution 

and execution, defined as follows: 

• Pre-Execution - That part of the instruction which may be 

executed before any modification of an addressable register 

occurs. Floating point instructions are begun as soon as 

3/8/61 

data paths are free and the instruction and initial addressed 

operand is made available. This time will overlap checking 

of a previous instruction, indicator setting, interrupt testing, 

memory storage, etc. These cases may lead to a condition 

such that the operation should never have been started (inter­

rupt occurs as result of previous instructions). In such a 
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case the pre-execution is terminated and no addressable 

registers would be modified. (As far as programmer is con­

cerned pre-execution never occurred.) 

• Execution - The part of the instruction which follows the 

initial modification of an addressable register up to the point 

when the next floating point instruction may begin. 

The times are listed (table 2) in terms of the basic machine cycles, 

which is presently 0.3 microsecond. 
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TABLE 2. FLOATING POINT INSTRUCTION TIMES 

Instruction 

+ (Add) 
+ MG (Add to Mag. ) 
M+ (Add to Mem.) 
M +MG (Add Mag to Mem.) 
K (Compare) 
KMG (Compare Mag. ) 
KR (Compare for Range) 
KMGR (Compare Mag. for Range) 

D+ (Add Double) 
D+MG (Add Double to Mag. ) 
F + (Add Fraction) 

L (Load) 
L WF (Load with Flag) 
LFT (Load Factor) 
ST (store) 

DL (Load Double) 
DLWF (Load Double with 

Flag 

SRD (store Rounded) 

SL ¢ (Store Low Order) 
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Pre-execution 

4 cycles (pre shift :s 3) 
1 cycle for each 
Additional pre-shift of 4 

Same as Add 
Class 

2 cycles 

2 cycles 

3 cycles 

2 cycles 

Execution 

1 cycle (norm :s 6) 
2 cycles for each additional 

norm. of 6 
2 cycles if recomplement 

is necessary - note 1 
2 cycles if forced zero 

occurs as result of "mag." 
operation. 

Same as Add class 
plus 

1 cycle if immediate 
next instruction is floating 
pOint 

1 cycle (norm :s 6) 
2 cycles for each additional 

norm. of 6 

1 cycle (norm :s 6) 
2 cycles for each additional 

norm of 6 
1 cycle if immediate 
next instruction is floating 
point 

1 cycle (norm :s 6) 
2 cycles for each additional 

norm of 6 

17 cycles - unnormalized 
15 cycles if normalized 

and there are no leading 
zeros in intermediate 
fraction 

2 cycles for each norm. 
of 6 or less 
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TABLE 2. FLOATING POINT INSTRUCTION TIMES (cont'd) 

Instruction 

SHF (Shift Fraction) 

E+ (Add Exponent) 
E+1 (Add 1mmed. to Exp.) 

- note 2 

*(Multiply) 

D* (MuUiply Double) 

*+(Multiply and Add) 

R/ (Reciprocal Divide) 
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Pre-execution 

Applies to both left and 
right shift 

4 cycles (shift ~ 3) 
1 cycle for each 
additional shift of 4 

1 cycle 

5 cycles 

5 cycles 

3 cycles 
cannot enter execution 
cycles until Factor is 
available 

2 cycles 

Execution 

1 cycle 
1 cycle if immediate 
next operation is floating 
point 

5 cycles (norm ~ 6) 
2 cycles for each additional 

norm. of 6 
1 cycle if immediate 
next operation is floating 
pOint 

4 cycles (norm. ~ 6) 
2 cycles for each additional 
norm. of 6 

4 cycles (norm ~ 6) 
2 cycles for each additional 

norm. of 6 
1 cycle if immediate next 
operation is floating pOint 

17 cycles (pre shift ~ 3 
and norm ~ 6) 

1 cycle for each additional 
pre-shift of 4 

2 cycles for each additional 
norm. of 6 

2 cycles if recomplement 
is necessary - note 1 
1 cycle if immediate next 
operation is floating point 

2 cycles plus 
all pre-execution and 

execution cycles of Divide 
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TABLE 2. FLOATING POINT INSTRUCTION TIMES (cont'd) 

Instruction 

/(Divide) 

D/ (Divide Double) 

SRT (Store Root) 
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Pre-execution 

2 cycles (divisor shift :5 6) 
2 cycles for each 
additional divisor shift 
of 6 

If zero divisor 
3 cycles pre-execution and 

Same as Divide 

2 cycles 

Execution 

2 cycles (dividend shift ~ 6) 
2 cycles for each additional 
dividend shift of 6 or total of 
3 cycles if dividend is all zero 
2 cycles for initial reduction 
loop if dividend is normalized 
3 cycles for initial dividend 
pass if dividend has leading 
zeros. 
2 cycles for each additional 
reduction loop (number of 
cycles is data dependent). 
2 cycles if final remainder 
has to be complemented 
1 cycle - all 

2 cycles execution instead of 
previous 

Same as Divide 
plus 

6 cycles (remainder norm :s 6) 
2 cycles for each additional 
remainder norm. of 6 

106 cycles (norm. :s 6) 
1 cycle if operation began 
with a "B" pulse 
2· cycles for each additional 

norm of 6 
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NOTE 1 - When fraction signs are unlike, the operand which is pre­
shifted will be complemented. Recomplementing will only 
occur if the complemented (following pre-shift) fraction 
is larger in magnitude than unshifted fraction. 

If fraction signs are alike no complementing occurs. 

NOTE 2 - Add Exponent and Add Immediate to Exponent will most 
likely be ctanged in the near future to three pre-execution 
and three execution cycles. 

Serial Arithmetic Execution Times 

The execution times of SAU instructions can be presented in 
terms of some basic equations shown in table 2 below. 

The column headings are defined as follows: 

.• Operation Code - instruction abbreviations. 

• Pre-execution Time - time required to decode operation and 
set up controls. 

• Execution Time - time required to perform the instructed 
function. 

• Termination Time - time required to set indicators and clear 
unit. 

• Full Word Total - a computed time in microseconds for the 
operations using unsigned full word operands which produce 
no arithmetic carries. 

• Comments - variations or additions to the execution time 
equations. 

All equations were developed for unsigned operations. Signed 
operations can be computed by adding. 6 microseconds to the pre­
execution time. An additional .6 microseconds must be added if the 
result of the· operation requires complementing. The following opera­
tions require no additional time when signed: SRD, e, eM, CT, CV, 
De V, Lev (D-B).,LTRCV (D-B),:=LTRS, LFT. 
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t.¢ 
TABLE 3. EQUATIONS FOR SAU TNSTRUCTIONS ~ 

~ I Operation Pre-execution Execution Termination Full Word ...... 
Code Time Time Time Total Comments 

+ 1.8 .6(~ + z) .6 7.2 us Unlike signs CD > AB, add .6(os + ~ + Z + 1) 
to the execution time. r y 

+MG 1.8 
x .6 7.2 us Unlike signs CD > AB, add .6 to the .6(- + z) 
y execution time . 

L 1.8 . 6(~) .6 7.2 us 
y 

LWF 1.8 .6(~) .6 7.2 us 
y 

M+ 1.8 .6(~) .6 7.2 us Unlike signs AB > CD, add .6(~ + 1) to the 
y execution time. Y 

MtMG 1.8 6(~) .6 7.2 us Unlike signs AB > CD, add .6(~ + 1) to the • y 
execution time. Y 

M+l 1.8 .6(c + 1) .6 3.0 us Unlike signs, execution time = .6(Y) when 
true result or .6(2~ + 1) when complement 
result. Y 

ST 1.8 .6(~) 
Y 

.6 7.2 us 

SaD 3.0 .6(~) .6 8.4 us No additional time required when operation 
Y is signed . 

K 1.8 . 6(~ + ~) .6 7.2 us 
Y r 

KF 1.8 .6(~) .6 7.2 us 
Y 

t.¢ 
KE 1.8 

x w .6 7.2 us I .6(- +-) 
..::J Y r 

KFE 1.8 .6(~) 
Y 

.6 7.2 us 



w 
TABLE 3. EQUATIONS FOR SAU INSTRUCTIONS (cont'd) '---.. 

ex:> 
'---.. 
CJ') I Operation Pre-execution Execution Termination Full Word ...... 

Code Time Time Time Tolal Comments 

KR 1.8 x w 
.6(y + r) .6 7.2 us 

KFR 1.8 .6(~) .6 7.2 us 
y 

C 1.8 6(~) • y .6 7.2 us 

CM 1.8 .6(~) .6 7.2 us 
y 

CT 1.8 .6(~) .6 7.2 us 
y 

LTRS 2.4 .6(~ + 3) .6 9.6 If the effective FL is greater than 48 bits, 
y add .6(t -1) to the execution time. 

8 

LFT 2.4 .6(~) + 3) .6 9.6 If the effective FL is greater than 48 bits, y then add .6(k -1) to the execution time . 

B-D 2.4 . 6(x + ~ + 1) .6 45.3 
LCV 

D-B 2.4 .6(~+i+~+4) .6 14.7 
LeV 
B-D 2.4 .6(x + 3) .6 29.4 If the converted field length is greater 
LTRCV than 48 bits, add .6(~~ -1) to the 

execution time . 

D-B 2.4 . 6(~ + 16) .6 21.6 If the field length to be converted after all 
LTRCV zone bits have been removed is greater 

w tilan 48 bits, add .6(~ -1) to the execution 
I time. 

ex:> 

B-lJ 2.4 .6(s + g + 1) .6 37.2 
CV 



CA) 

~ 
'-.. 
C» ..... 

CA) 

I 
co 

Operation 
Code 

B-D 
DCV 

D-B 
CV 

D-B 
DeV 

'" 
'" + 

/ 

TABLE 3. EQUATIONS FOR SAU INSTRUCTIONS (cont'd) 

Pre-execution Execution 
Time Time 

2.4 u 
.6(s + 8" + 1) 

2.4 s 
.6(4 + 1) 

2.4 s 
.6(4" + 2) 

6.0 3.9 

7.8 
Add 

3.0 + exec. 
time 

5.4 Q 

Termination Full Word 
Time Total 

.6 63.0 

.6 10.8 

.6 18.6 

.6 10.5 

.6 18.6 

.6 24.0 

Comments 

DR L "0" DDL or DRL 
Q.6(,. + + A + 

97 - DRL 
x + 1) 

A = 1. Zero DD _DDL - DRL 
6 

#L "0" 2. Leading zero's -(1 + _ + 

DDL - DRJ: - #L "0" ) 

3. Complement Result. -Add 1 to A2. 



Glossary of Terms 

DD 
DR 
DDL 
DRL 
L "0" 
#L "0" 
DDL or DRL 

os 
FL 
BS 
B-D 
D-B 
R 
S 

T 
U 
V 
W 

x 

y 

z 

c 

Dividend 
Divisor 
Dividend length 
Divisor length 
Leading zero IS 

Number of leading zero's 
Dividend or divisor length which ever is 
greater 
Offset 
Field length 
Byte size 
Binary to decimal 
Decimal to binary 
8 in Binary - 4 in decimal 
Accumulator field specified by the offset 
minus all leading zero's 
Field length less all zone bits 
Result field 
96 in binary - 92 in decimal 
The number of accumulator significant bits 
greater than the field length 
Field length in unsigned operations - field 
length minus the byte size in signed operations 
8 in binary operations and byte size in decimal 
operations x 
One for a carry out of the last - byte plus one 
for a carry out of each succeeding 8 bit byte 
in binary or 4 bit byte in decimal 
The number of times a carry results from an 
8 bit byte in binary or a 4 bit byte in decimal 

Timing of I-Box Instructions 

The following tables list the I-box times for decoding for execu­

tion of I-box instruction. 
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TABLE 4. I-BOX TIMES - DIRECT INDEX 

Instruction Address in EM Address in XS Address in m 

LX 4.8 IJ.sec + dec 4.8 IJ.sec + dec 4.2 IJ.sec + dec + LAdr 

LV,LC.LR 4.2 j.Lsec + dec 4.2 IJ.sec + dec 3.6 IJ.sec + dec + LAdr 

SX 1.2 IJ.sec + dec + LAAR 4.2 j.Lsec + dec 1.2 j.Lsec + dec + LAAR 

SV. SC. SR 4.2 IJ.sec + dec + LAAR 5.4 IJ.sec + dec 3.6 IJ.sec + dec + LAdr 
+LAAR 

SV .SC .SR to TC 6.0 j.Lsec + dec + LAdr 

V+ 4.2 IJ.sec + dec 4.2 IJ.sec + dec 3.6 IJ.sec + dec + LAdr 

V+C 4.2 IJ.sec + dec 4.8 IJ.sec + dec 4.2 IJ.sec + dec + LAdr 

V +CR (EM) 8.4 IJ.sec + dec 9.0 j.Lsec + dec 8.4 IJ.sec + dec + LAdr 

V+ CR (XS) 7.2 IJ.sec + dec 7.8 IJ.sec + dec 7.2 IJ.sec + dec + LAdr 

KV,KC 4.2 IJ.sec + dec 4.2 IJ.sec + dec 3.6 IJ.sec + dec + LAdr 

RNX 9.0 j.LSec + dec + LAdr 
+LAAR 

LVE 7.8 j.Lsec + dec 6.6 IJ.sec + dec 6.6 IJ.sec + dec + LAdr 

L VE as object Additional Additional Additional 
INSN oj LVE 4.8 j.Lsec 3.6 IJ.sec 3.0 IJ.sec + LAdr (4.2 if LAMT) 

SVA 4.2 IJ.sec + dec + LAAR 5.4 IJ.sec + dec 3.6 IJ.sec + dec + LAdr + LAAR 

SVAtoTC 6.0 IJ.sec + dec + LAdr 

ABBREVIA TIONS: dec = decade 

3/8/61 

LAAR = Look-ahead address register 
LAdr = Look-ahead drain 
LAMT = Look-ahead empty 
TC = Time clock 

TABLE 5. I-BOX TIMES- IMMEDIATE INDEX 
Instruction Basic Time Variations 

LVI, LCI. LRI. L VNI 2.4 IJ.sec + dec 

V + I. V - I 2.4 j.Lsec + dec 

V +lC. V - IC 

V +lCR. V - ICR 

C +1, C - I 

KVI. KVNI, KCI 

L'VS 

3.0 IJ.sec + dec Also V ± ICR where 
Count'" 0 

"7.2 p.sec + dec 1.2 p.sec less if 
Refill from X5 

2.4 JLsec + dec 

2.4 j.Lsec + dec 

5.4 JLsec + dec Additional 
1.8 j.Lsec per ADD 
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TABLE 6. I-BOX TIMES - MISCELLANEOUS INSTRUCTIONS 

Instruction Address in EM Address in XS Address in m 

R (from EM) 7.8 J,J.sec + dec + LAAR 7.2 J,J.sec + dec 6.6 J,J.sec + dec + LAAR + LAdr 

R (from X S) 5.4 J,J.sec + dec + LAAR 5.4 J,J.sec + dec 4.2 J,J.sec + dec + LAAR + LAdr 

RCZ (C ¢ 0) 4.2 J,.Lsec + dec 3.0 J,J.sec + dec 3.0 J,J.sec + dec + LAdr 

Z 1.2 J,J.sec + dec + LAAR 3.6 J,.Lsec + dec 1.2 J,J.sec + dec + LAAR 

EX 

3/8/61 

1. Decode time, plus 

2. Always begins with Look-ahead drain, plus 

3. Instruction fetch time as follows: 

Address 

0.0, 0.32 
1.0, 1.32 
2.0, 2.32 
3.0, 3.32 
4.0, 4.32 
5.0 -11.32 

12.0, 12.32 
13.0 -14.32 
15.0, 15.32 
16.0 -30.32 
31.0, 31.32 
32.0 -up 

Time 

4.8 J,.Lsec 
6.0 j.Lsec 
7.8 J,J.sec 
7.8 J,J.sec 
7.8 J,J.sec 

11.2 J,J.sec 
7.8 J,J.sec 
5.4 J,.Lsec 
4.8 j..Lsec 
4.2 J,.Lsec 
6.0 J,J.sec 
5.4 J,J.sec 

4. Add decode and execution time for given instruction 

5. Always ends with LA drain, plus 

6. Add 3.0 J,J.sec for fetch of next instruction 

3-12 



TABLE 6. I-BOX TIMES - MISCELLANEOUS INSTRUCTIONS (cont'd) 

EXIC 

Instruction 

B 

BR 

BE 

BEW 

NOP 

BD 

1. Decode time, plus 

2. Always begins with a Look-ahead drain 

a) 4.2 J..Lsec to fetch the psuedo-instruction counter are overlapped with 
the Look-ahead drain if the ps IC is in EM. 

b) 3.0 J..Lsec to fetch the psuedo-instruction counter are overlapped with 
the Look-ahead drain if the ps IC is in XS. 

3. Instruction fetch time = 6.0 IJ,sec 

4. Stepping of psuedo-instruction counter 

a) Add LAAR time if psIC in EM 
b) Add .6 IJ,sec time if psIC in XS 

5. Add decode and execution time for given instructions 

6. Always ends with LA drain, plus 

7. Add 3.0 IJ,sec for fetch of next instruction 

'TABLE 7. I-BOX TIMES - UNCONDITIONAL BRANCH 

Basic Time SIC to EM 

3.6 IJ,sec + dec 4.8 IJ,sec + dec + LAAR 

4.8 IJ,sec + dec 6.0 IJ,sec + dec + LAAR 

3.6 IJ,sec + dec + LAdr 4.8 IJ,sec + dec + LAAR + 
(if previously disabled) LAdr (if previously dis­

abled) 

Setup time as above on BE 

1.2 IJ,sec + dec 

4.8 IJ,sec + dec + 
2 LA drains 

Same as Basic 

6.0 IJ,sec + dec + 
2 LA drains 

3-13 

SIC to XS 

4.2 IJ,sec + dec 

5.4 IJ,sec + dec 

4.2 IJ,sec + dec 
+ LAdr (if pre­
viously disabled) 

Same as Basic 

5.4 IJ,sec + dec + 
2 LA drains 



TABLE 8. I-BOX TIMES - INDEX BRANCHES 

Instruction Basic Time SIC to EM SIC to XS 

CB (Successful) 4.2 J.,Lsec + dec 6.6 J.,Lsec + dee + LAAR 7.2 J.,Lsec + dec 

CB (Unsuccessful) 3.6 J.,Lsee + dec 3.6 J.,Lsec + dec 3.6 J.,Lsec + dec 

CBR (EM) (Succ) 6.6 J.,Lsee + dec 9.0 J.,Lsec + dec,+ LAAR 9.6 Ilsec + dec 

CBR (XS) (Succ) 6.0 J.,Lsec + dec 8.4 J.,Lsec + dec + LAAR 9.0 J.,Lsee + dec 

CBR (EM) (Unsucc) 6.0 J.,Lsee + dec 6.0 J.,Lsee + dec 6.0 J.1.sec + dec 

CBR (XS) (Unsucc) 5.4 J.,Lsec + dec 5.4 J.,Lsee + dec 5.4 J.,Lsec + dec 

NOTE: CBR behaves like CB if Refill is not to be taken. 
Ex: CBR, branch on eount -I- zero 

TABLE 9. I-BOX TIMES - TRANSMIT INSTRUCTIONS 

1nstruction Setup time Loop time Termination time 

T (EM-EM) 1.2 usee + dee + LA dr 3.0 usee 3.6 usee 

T (EM-XS) 1.2 usee + dec + LA dr 4.2 usee .6 usec 

T (XS -EM) 1.2 usec + dee + LA dr 3.0 usee 3.6 usee 

T (XS -XS) 1.2 usee -+ dec + LA dr 4.2 usee .• 6 usee 

T (IR-EM) 1.2 usee + dee + LA dr 7.2 usee 3.6 usee 

T (IR -XS) 1.2 usee + dec + LA dr 7.2 usee .6 usee 

Note: Transmit to EM and m identical .in time. 
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TABLE 9. I-BOX TIMES - TRANSMIT INSTRUCTIONS (cont'd) 

Instruction Setup time Loop time Termination time 

S (EM-EM) 1.2 usec + dec + LA dr 6.0 usec 1.8 usec 

S (EM-XS) 1.2 usec + dec + LA dr 6.6 usec 1.8 usec 

S (EM -IR) 1.2 usec + dec + LA dr 9.6 usec 1.8 usec 

S (XS -EM) 1.2 usec + dec + LA dr 6.0 usec 1.8 usec 

S (XS -XS) 1.2 usec + dec + LA dr 7.2 usec 1.8 usec 

S (XS -IR) 1.2 usec + dec + LA dr 10.8 usec 1.8 usec 

S (IR -EM) 1.2 usee + dec + LA dr 9.6 usee 1.8 usec 

S (IR -XS) 1.2 usec + dec + LA dr 10.2 usec 1.8 usec 

S (IR -IR) 1.2 usec + dec + LA dr 15.0 usec 1.8 usec 

Note: The immediate/direct and the forward/backward options do not 
affect the timing of either transmit or swap. 

Analysis and Interpretation of the New Speeds Relative Machine Environment 

Machine Organization 

In conventional machines the instruction time is dependent upon the 

total length and delays along information paths, and the hardware places a 

severe limitation on performance. 

The organization of the 7030 has been devised to free the machine from 

such limitations. To a large extent, the number of obstacles along the in­

formation path is not of crucial importance; the speed and performance of 

the machine is governed by the average frequency of information access. 

For example, a 7030 box has a readout time of 1 fJ.S and a recycle time of 

2.2 fJ.s, yet in the 7030 system information can be obtained at the rate of 

one word every 0.3 fJ.s. 
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The 7030 system organization is characterized by the local autonomy 

of the major units: the memory bus control unit (MBCU), the I-box, the 

look-ahead (LA), the E-box, the exchange, and the disk exchange. (For defi­

nitions of these terms the reader is referred to Appendix A.) 

Each major unit is responsible for processing at top speed as long as 

there is data to process. The local autonomy of the MBCU, exchange, and 

disk exchange means that the central processing unit (CPU) can operate in­

dependent of I/O operations. Within the CPU this local autonomy means 

that temporary delays up to several J.,LS in one unit can be tolerated without 

slowing down the entire pipe line. Extensive buffering of information is 

needed to absorb such temporary delays, and within the 7030 CPU at any 

given time up to ten instructions can be in various stages of processing. 

Within wide limits, the times for instruction processing is not the sum of: 

Instruction fetch, instruction error check, decoding, operand fetch, oper­

and error check, and execution but is the maximum of these times aver­

aged over several instructions. 

The E-box times of the instructions listed in the previous section 

are the times realizable if the LA levels (which are buffers to the E-box) 

can always supply needed information to the E-box. The machine organi­

zation is such that this is usually the case. 

For such a loosely-coupled machine the information paths are ac­

tually longer and the number of obstacles larger than conventional tighUy­

organized machines. It is possible to create situations to make the infor­

mation path time influence instruction time. All of these situations, so 

far as the CPU is concerned, have an effect on the LA buffering, which in 

turn affects E-box performance. 
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Effect of Memory Interleaving 

With the instruction buffers 1 Y, 2Y (capable of housing four half­

word instructions), in the I-box, and the four LA levels, the advantage 

of memory interleaving is fully exploited. 

The demand of the E -box on LA is usually no higher than one word 

per 1.5 J..LS (sequence of floating adds) and on the average, the memory is 

not a factor. In terms of the four-level look-ahead, the requirement is 

satisfied if any four E-box demands are fulfilled in 6 J..Ls. The zremory 

interleave scheme allows four words every 2.2 J..LS (four box interleaving) 

or four words every 4.4 J..Ls (two box interleaving). 

In actual computations, with the instructions occupying the two lower 

memory boxes and data occupying the four upper memory boxes, memory 

conflict is not expected to be an important factor, even if the I/O units are 

in full operation. Delays due to repeated demands of the same memory 

box are expected to be quite infrequent. 

There are conflicts due to fetches and stores, independent of mem­

oryaccess. These are related to the machine measures at preserving 

the logical integrity of a program sequence and will be discussed else­

where. 

Over lapping of Decoding 

The I-box decoding, addr-ess indexing, and operand request continues 

as long as instructions are available and as long as LA levels are avail­

able for loading. For a sequence of floating point instructions the decoding 

rate is one instruction per 1.2 J..LS. With few exceptions, this is faster than 

the execution rate. Thus the decoding time for average floating point se­

quences is completely overlapped by concurrent E-box execution time. In 

other words, floating point instructions are E-box limited. Address index­

ing has no measurable effect on the timing of floating point instructions. 
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VFL instruction decoding is much more complicated. The minimum 

time is 3.6 ).J..S which includes the loading of two LA levels. Each addition 

level requires an additional 0.6 ).J..s,andeach indexing operation requires 0.6 

).J..s. Of course, there may be further slow down in the decoding process 

if the LA levels are not available for loading, or if the second half of the 

instruction is not available when needed. 

The decoding time of I-box instructions is 0.6 (J.S. Since these in­

structions are executed in the I-box, the decoding time has been included 

in the execution times. The processing time of I-box instructions can be 

largely overlapped by concurrent E-box action, since their E-box time, is 

only 1.2 ).J..S. 

Whenever a branch instruction is successfully executed, the pre­

fetched instructions in 1 Y, 2Y must be replaced by new instructions. The 

latter have to be checked prior to use, and the decoding of the next instrue­

tion will be delayed. This delay has been taken into account in the timing 

given. Again, concurrent E-box action can overlap much of this. 

Look-Ahead Levels 

In order to use the look-ahead (LA) levels efficiently, they must not 

be allowed to be empty over extended lengths of time, nor should they be 

crowded with data with little information content. 

The following instructionaemptythe LA completely: T, T]. SWAP, 

SWAP], RNX, BD, 

All I-box instructions load LA levels for index register recovery 

or for indicator register updating. These levels are not useful to the 

E -box and have the effect of reducing the number of LA levels. 

VF L data with word boundary crossover represent inefficient use of 

LA levels. 
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Frequent demands on LAAR (such as in consecutive STORE instruc­

tions)and prolonged decoding delays in the I-box in general often lead to a 

half-empty look-ahead. 

When the number of effective LA levels are reduced, the E -box may 

become idle. The I-box processing time can then no longer be absorbed. 

The I-Checker 

The I-Checker is shared between the I-box and LA. It processes in­

formation in 0.6 /lS and is used for the following functions: 

1. Instruction word error check with concurrent ECC to I-i>arity 

conversion. 

2. I-box data error check with concurrent ECC to I-parity conver­

sion. 

3. Passage of data and VFL operation code from I-box to LA, with 

concurrent I-parity to LA-parity conversion. 

4. E -box fetch operand error check and check code conversion. 

5. Store operand error check and check code conversion. 

6. As part of data path between LA and I-box during, say, branch 

recovery. 

7. As part of I -box internal data path. 

8. As part of LA internal data path. 

The great majority of the demands on the I-Checker is due to 1,2, 

3, 4, and 5 above. It is therefore conceivable that I-Checker conflicts may 

occur. The situation has not been completely studied (because of the dif­

ficulty in subjecting the variables to program control), but it does not seem 

to have had much effect on floating point operations. When an I-Checker 

conflict occurs, the processing of one piece of data may have to be delayed 

by 0.3 to 0.6 /lS. 
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The LAAR, Stores and Internal Operand Fetches 

All "to-memory" operations involving the main memory from the 

7030 CPU are prepared by the I-box and accomplished by the look-ahead. 

I/O stores are, however, performed directly between the MBCU and ex­

change units. 

The look-ahead address register (LAAR) is created for the purpose 

of containing the store address. LA levels are made available for the 

store operand. 

In the case of I-box store type instructions (SX, SV, SC, SR, SVA, 

R, RXZ, T, SWAP, etc.) the store operands are already available during 

I-box processing time and can be converted to ECC check bits during 

shipment to LA, simplifying the store action in LA. In practically all 

other cases the store operand will not be available during I-box proc­

essing. In any case, the LAAR will remain "busy" from the time of 

look-ahead loading until the proper operand is available, is fetched, 

checked, and accepted by the MBCU. 

In an instruction, the address may refer to the main memory, in­

dex register storage, or an internal register. The I-box, upon decoding 

an instruction whose fetch operand is an internal register, uses the 

LAAR to store the internal operand address. This is because the needed 

operand is not available during the decoding stage, and the mechanism 

for internal operand fetch already exists for the handling of store instruc­

tions. Unlike a standard store, no memory bus request is needed, and the 

LAAR is freed sooner. 

(By an internal operand address is meant address 3, or an address 

between 5 and 12 inclusive. SZ, SlA, 5MB, and SRM, SFT and STR are 

bona fide main memory locations. SIT , STC and SO through S15 are in 

index storage.) 
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Since there is only one LAAR, if the latter is busy whenever the 

I-box decodes an instruction requiring LAAR, a wait must occur until the 

LAAR is free for reloading. Therefore, LAAR-requiring instructions 

should preferably be reasonably far apart, ideally with three or more 

time consuming instructions in between to ensure smooth I-box decoding. 

Measurements on consecutive floating-point-to-memory operations (ST, 

MT, LFT, etco) do not therefore yield realistic timing information. On 

the other hand, the placement of such instructions is usually beyond the 

programmers control. 

A store into index storage is a time-consuming operation. When­

ever such an instruction is decoded, since the next instruction may make 

use of the new index contents, the I -box does no further decoding until the 

new index contents arrives. 

Store Close to Fetch 

Whenever I-box requests a memory fetch, a comparison is made 

with the contents of LAAR to avoid logical conflicts. In all cases, logi­

cal conflicts will not produce wrong results, although some delays are to 

be expected. 

One such conflict is a store into a location corresponding to a pre­

fetched instruction, such as in the sequence: 

A ST(u), A +.0.32 

* + (n), 1000. (Sl5) (1) 

The second instruction, having been previously fetched into 1 Y 

or 2 Y, clearly cannot have the correct information until the store is 

complete. When such a store is decoded, I-box invalidates the prefetched 

instructions and waits until the correct information is available. 
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Another conflict is a store into a nearby I-box operand address: 

ST (u), 1003. ($12) 

V +, $15, 1003. ($12) (2) 

The execution of the second instruction is delayed until the correct 

operand arrives. 

A third such conflict is a store into a nearby E -box operand address: 

ST (n), 

* (n) , 

1007. 

1007. (3) 

The I -box comparison with the LAAR shows that the operand will be 

in the LA prior to its arrival at the memory. A forwarding mechanism 

is activated to make the store operand available to the fetch level. Further 

LA loading in the I-box is delayed until the forwarding is completed. 

Forwarding is available also for consecutive fetch of the same mem­

ory operand. Whenever a fetch-type instruction is decoded, the fetch ad­

dress is gated into LAAR unless the latter is busy. This act does not 

make LAAR busy but can allow the forwarding on successive fetches. 

I-box Instructions 

The instructions executed by the I-box can largely be absorbed in an 

E-box limited environment. The follO\\"ing points, however, are to be noted: 

1. Some I-box instructions require the emptying of the LA. Con­

current E-box operations would not be possible. 

2. Each I-box instruction results in one (sometimes more) level 

of LA being loaded. This is done to enable the convenient up­

dating of certain indicators and to allow interruption action (if 

needed) to take place in step with other interruptions. The 

loaded level may be an index recovery level containing the old 
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contents of an index register to enable the restoration in case of 

unexpected interruptions. It takes 0.9 to 1.2 p.s to process an 

LA level corresponding to I-box instructions. This time cannot 

be overlapped by concurrent E-box action. 

3. 'Fhe E-box overlapping cannot be effective unless I-box instruc­

tions are well dispersed. 

4. I-box operand fetches are made when the instruction is decoded. 

There is no look-ahead buffering to reduce the effective fetch 

time. I-box immediate instructions, not requiring memory ac­

cess, are therefore faster than the "direct index arithmetic in­

structions II. 

5. Some I-box instructions require more than one memory refer­

ence. 

6. All successful branch instructions require the fetch of new instructions. 

The instructions previously buffered into 1 yand 2Y are invalidated. 

7. The treatment of some conditional branches requires extensive 

E-box action and will be discussed in the next section. The fol­

lowing branches, however, involve conditions known to the I-box 

and are executed entirely within the I-box: 

CB and variants 

Bind for XF. XVLZ. XVZ. XVGZ. XCZ, XL, XE. XH. 

Recovery Action 

The I-box is usually ahead by several instructions during a machine 

run of the E-box. There are certain situations, however, which may 

force the I-box to refer to the same instruction as the E-box: 

1. "Wrong branch" recovery, the I-box having made a wrong 

assumption about the path to be chosen on conditional branch. 

2. Interruption. 
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These cases may require the I-box to move backwards in time to 

be in step with the E-box. All changes in the index registers and/or 

:ndex indicators due to the advance processing by the I-box must now 

be undone. 

For conditional branches where the condition is unknown to the 

I-box, the latter assumes the branch to be unsuccessful (to avoid unnec­

essary invalidation of 1 Y, 2 Y contents) and processes ahead. Steps are 

taken, however, to perform the actual test and to facilitate the alterna­

tive path to be taken. Altogether four LA levels are used for each such 

branch instruction: three levels not unlike those for a VF L connect-to­

memory instruction plus a branch recovery level. It is noted that there 

is always a store type level, whether the programmer specifies a change 

of the tested bit or not. For Bind, two of these four levels involve the 

LAAR. 

When the I -box guess proved correct, no particular action is taken 

aside from setting of the tested bit. If, however, the guess proved incor­

rect by E-box arithmetic, the I-box has already processed ahead, and re­

covery action has to be taken to ensure the logical integrity of the pro­

gram. The re-setting of the I-box to the previous state of ten requires 

shipment of index register information back to the I-box. The correct 

instruction counter value is also shipped back to the I-box. 

The interruption action is quite similar to branch recovery except 

that in addition a new instruction has to be fetched and executed. 
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4 
Computational Performance 

MATRIX INVERSION - GERB2 

Problem 

The inversion of Hilbert matrix segments of increasing size, using 

Jordan's elimination method. In each case the determinant of the matrix 

is evaluated as a by-product. 

Program 

See Volume 2. 

Timing 

10 x 10 matrix 0.02 seconds 

20 x 20 matrix 0.14 seconds 

30 x 30 matrix 0.43 seconds 

40 x 40 matrix 0.99 seconds 

50 x 50 matrix 1.S9 seconds 

60 x 60 matrix 3.23 seconds 

70 x 70 matrix 5.10 seconds 

SO x SO matrix 7.55 seconds 

90 x 90 matrix 10.69 seconds 

100 x 100 matrix 14.61 seconds 

Comparison With Other Machines 

The 96K memory allows the convenient inversion of matrices up 

to 300 x 300 without using drums or tapes. The extra word length is 

also an asset in inversion. The present program uses the relatively 

slow *+ (multiply and add} instruction to obtain 96-bit intermediate 

fraction accuracy. 
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Hilbert matrices are extremely ill-conditioned, and no claim is 

made about the accuracy of the 100 x 100 inversion result. For an or­

dinary matrix of size beyond 40 x 40, it is probably fair to say 27 frac­

tion bits (as in the 7090) would not be adequate. Double precision cost 

is a 6-fold decrease in speed on the 7090. The 7030 with 48 fraction bits 

is adequate for a much larger range. 

Additional Remarks 

There is a faster matrix inversion program which gives the follow­

ing results: 

50 x 50 matrix 

100 x 100 matrix 

150 x 150 matrix 

200 x 200 matrix 

250 x 250 matrix 

300 x 300 matrix 

1.1 seconds 

10 seconds 

31 seconds 

79 seconds 

144 seconds 

250 seconds 

A 128 x 128 linear equation program with two sets of unknowns requires 

8.6 seconds. 

There is also a double preCision version of GERB2, called GERB3, 

with the following speeds: 

10 x 10 matrix 

20 x 20 matrix 

30 x 30 matrix 

40 x 40 matrix 

50 x 50 matrix 

0.05 seconds 

0.41 seconds 

1.36 seconds 

3.19 seconds 

6.21 seconds 

It is seen that the double preCision computation time is roughly triple 

that of single precision. 7030 double precision is almost equivalent to 

quadruple precision on the 7090 in terms of the number of fraction bits. 
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MATRIX MULTIPLICATION - MXM16 

Problem 

Multiplication of two nxn matrices. 

Program 

Listing (including test program) are included in Volume 2. 

Assume n = 17 k+m. A "major" inner loop is traversed k times, 

then a short inner loop is traversed m times, for each vector multiplica­

tion. 

The matrix elements used for the test are all equal to normalized 

floating point 1.0 and are placed in the upper memory (32768.0 and beyond). 

Timing 

25 x 25 matrices 

50 x 50 matrices 

0.20 seconds 

1.35 seconds 

75 x 75 matrices 4.74 seconds 

100 x 100 matrices 10.71 seconds 

125 x 125 matrices 21.44 seconds 

Additional Remarks 

A simple version (taken directly from the 7030 programming ex­

ample book) requires 15.5 seconds for 100 x 100 matrices. The timing 

cost was traceable to the use of the more accurate but relatively slow 

LFT; *+ sequence and the fact that two adjacent I-box instructions are 

executed for each traversal of the inner loop. 

In the present program the ratio of I-box instructions to arithmetic 

instruction is greatly reduced, but no other attempt has been made to 

speed up the program. 
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PRIME NUMBER GENERATION PROGRAM PRIMe 

Problem 

To generate prime numbers by the sieve of Eratosthenes, using 

VFL arithmetic and automatic program interruption. 

In a very large memory segment (octal 17740.40 through octal 

272777.63), consecutive bits represent consecutive odd integers. The 

bit at distance d from the beginning of the string thus represents the 

odd number 2d + 1. In the beginning all bits in the string are set to l's. 

A working prime P is represented by a 1 bit to the right of the 

previous working prime. In the beginning the first working prime is 3, 

oc~~ying._tg~ s_e.C:Qn~Ll?Jt .CJL~h~bit sequence . 
... 

The bits representing the number p2 + np, n = integer ~ 0, are 

systematically made zero by what appears to be an infinite loop, starting 

from the case n = O. When the prescribed upper memory boundary is 

exceeded, an interruption causes exit from the loop. The next working 

prime is then found, and the process is repeated, unless an end condition 

is encountered. The end condition is met when, for a working prime p, 

the bit corresponding to p2 lies beyond the upper boundary. the non­

zero bits remaining in the interval represent prime numbers if the first 

bit is reinterpreted to represent the even prime number 2. 

Program (See Volume 2) 

It is to be noted that 2/3 of the program consists of an interrup­

tion table. 

Timing- 106.7 Seconds 

_ The largest prime is (52,307,665)8' or about 11 million. A slight 

change in the inner loop (replacing the progressive indexing by ordinary 

indexing and ~ddi~.v + I instruction) leads to 102.7 seconds. 
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Comparison With Other Machines. 

The 7030 machine can process bits very conveniently. Each 

bit zeroing on the 7030 takes only one instruction. The corresponding 

operation on the 7090 or similar machines requires very careful 

programming and relatively long computation time (about 48 f,J.s), even 

if only 25 = 32 bits are used per word to avoid a divide instruction. 

Also, other machines do not have as many bits in the memory. For 

this problem, the memory capacity of the 7030 is almost six times the 

7090. 

A MONTE CARLO PROGRAM 

Problem 

The physics and method of solution of the problem is described by 

Davis, Journal of Applied Physics, 1960. The original problem was coded 

in Livermore on the 709 and 7090. 

Briefly, the problem is the passage of particles through a right­

angle bent pipe of circular cross-section at such a low density that only 

wall collisions are important. It is assumed that the angle of rebound 

is random and uncorrelated with the angle of incidence. The two ends 

of the pipe are each divided into 4 areas, and statistics are accumulated 

to determine the distribution of exit areas as a function of entry areas. 

The calculation on the 7090 differs in one respect to that de­

scribed in the paper. The calculation of random input angles and re­

bound angles follows the "cosine law" • The choice of these angles in 

the 7030 code differs from the 709 in method but not in result. 

A point is chosen from a uniform distribution in the rectangular 

parallelopiped (-0.7, 0.7) x (-0.7, 0.7) x (0.0, 1.0). Unless 

2 2 22 
(x + y + z) < z, , 
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the point is discarded and a new one is tried. If the inequality is 

satisfied the vector is used as a velocity vecotr relative to the X-Y 

waLL 

Program 

See Volume 2. 

Timing 

10,000 particles were run and the measured time was 33 seconds. 

This is to be contrasted with a known 709 run of 5000 particles in 10 

minutes. 

For the machine run 20 cards had to be loaded and 36 numbers 

were printed on line. 

WEATHER FORECASTING STUDY 

The following weather forecasting study summarizes the results, 

to date, of timing experiments performed on STRETCH. 

Inner Loop 

This program steps in time one floating-point meteorological vari­

able at one ground point (i, j) of grid, and four floating-point meteorological 

variables at each vertical k-level above the ground point. The equations 

are non -linear integro-diff erential. 

1. First form (AO, see below), lower memory: 6.4 ms. 

2. Pseudo j-level (see below), lower memory: .7 ms. 

3. AO, upper memory: 6.13 ms. 

4. AO, lower (instructions) & upper (data) memory: 5.98 ms. 
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5. Second form (A1, see below), lower (instructions) and upper 

(data) memory: 5.57 ms. 

6. Al Modified (see below), lower (instructions) and upper (data) 

memory: 7.045 ms. 

7. Third form (A2, see below), lower (instructions) and upper 

(data) memory: 7.0135 ms. 

The above times for runs 1, 3, 4, 5 are for one pseudo j-level, 

two i-levels, and three k-levels per i-level. The time for run No.2 is 

for one pseudo-j-Ievel only, and the times for runs Nos. 6 and 7 are for 

greatly reduced pseudo-j-level, one i-level, and nine k-levels. 

AO: Coding prior to any changes for timing improvement. 

A1: Same as AO except for coding changes to improve timing 

with respect to accumulate multiply, division, add to 

memory, separation of indexing instructions, loop entry, 

CNOP, one-word transmits, and associated minor changes. 

A2: Same as A1 Modified except for additional coding changes 

to improve timing with respect to spacing of store instruc­

tions, and more-than-one-word transmits. 

Summary 

With respect to run No.1, the above times provide the following 

approximate improvements: Run No.3 - 4.2 percent; run No.4 - 6.6 

percent; run No.5 - 13 percent. With respect to run No.6, run No.7 

provides an approximate improvement of .4 percent. This last suggests 

that this program is insensitive to the space of the store instruction and 

the multi -word transmit. 
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Grid Parameter s 

The execution of this program constitutes a neglible part of execu­

tion time required for the Weather program. Also, the program performs 

a very specialized function, arising from the particular grid-geometry 

and interpolation chosen for the Weather Project. Consequently, no coding 

changes in grid parameters were made for purposes of timing improve­

ment or further study. Grid parameters computes, as a function of the 

grid size (parameter N), certain grid measurements and interpolation 

data (VFL and floating-point). 

Using N = 3, lower memory: 7.07 ms 

Elementary Function Test 

In(ex) is compared against x, then a polynomial evaluation of elnx 

is compared against x. The evaluations are based on 8-decimal accuracy 

subroutines, employing polynomial methods. The program uses lower 

memory exclusively. 

In the following chart, certain similar operations have been 

grouped together (e.g., / and R/i V+, V-, V+I, V-I; +, M+ under Fl. Pt.). 

Also, the time given for AO is that for the more favorable memory 

arrangement (Le., instructions in lower, data in upper). 
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TABLE 10. EXECUTION FREQUENCY CHART FOR STRETCH PROGRAMS 

Pseudo Grid Elem. Functions 
Operation AO j-level Al Modified A2 Paramo 1st Form 2nd Form 

LFT 144 39 
L 257 1 437 633 651 243 7 7 
ST 261 1 465 659 677 202 15 15 
+ 250 394 581 581 195 28 28 
* 220 434 637 637 187 26 26 

Fl. Pt. / 88 42 51 51 42 2 2 
*+ 144 39 
D* 2 

I 
K 45 2 2 
SHF 2 
E+ 69 4 4 
SRT 4 

Total 1364 2 1772 2561 2597 1065 88 84 

L 10 8 10 9 9 128 4 2 
ST 2 2 1 1 93 6 2 
+ 20 18 20 19 19 20 
CM 66 66 70 71 71 9 

'" 8 VFL LFT 4 
"'+ 4 
-MG 4 
M+l 37 
K 64 

Total 98 92 102 100 100 371 10 4 

LZ,LV,LC,SV 13 9 13 11 11 6 

Indexing V+ 60 60 78 78 117 
CB 15 1 15 20 20 13 
KCI 12 12 18 18 

Total 100 10 100 127 127 136 0 0 

B,BD,BEW 77 5 68 91 91 6 8 10 
Branching BIND 18 18 27 27 274 3 3 

BB 2 2 1 1 1 

Total 97 5 88 119 119 280 11 13 

Z,TI 
Miscell. 52 28 38 29 31 1 1 

Total 

Grand Total 1711 109 2090 2945 2972 1883 114 106 

Execution Time (ms) 5.98 .7 5.57 7.045 7.0135 7.07 .38 .309 

Aver. time (J.Ls)/opn 3.5 6.4 2.7 2.4 2.36 3.8 3.3 2.9 
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5 
Reliability and Serviceability 

The capability of a large computer complex to satisfy operational 

requirements must extend beyond the scope of engineering design and 

programming flexibility. Maintainability, achieved through the applica­

tion of reliability and serviceability principles during the design stage 

and the planning of maintenance procedures, is a key to maximum sys­

tem availability. Among the special features of STRETCH are extensive 

error-checking and error-correcting circuitry, test panels, marginal 

(bias) checking, and automatic scanning and recording. Maintenance 

aids include diagnostic programs for testing and maintaining the equip­

ment and system, selection and training of field maintenance personnel, 

unique distribution and function of spare parts depots, comprehensive 

maintenance manuals, and applied programming support. 

PERFORMANCE CHARACTERISTICS 

Based on statistical analyses of this class of large scale computer 

systems and correlation of the analyses with an operating 7030 system, it 

is estimated that the typical 7030 Data Processing System will have the 

following operating characteristics within 19 months after installation 

of the first system and provided the system on which they are measured 

has been installed for at least 6 months. These estimates are based 

upon the best available information on component failure rates, and 

best estimates of the impact of the automatic error correction feature. 

7030 System Availability for Acceptance Purposes 

Availability for acceptance purposes is indirectly based on a specific 

allotment of time for preventive maintenance during each 24 hour period 
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of operation. It is defined as the ratio of productive customer hours to 

scheduled customer hours (defined as that portion of a regularly sched­

uled shift assigned to customer operation.) 

A '1 bTt (Scheduled Customer Hours) - (Unscheduled Maintenance Hours) 
val all y = -'---------::S:-c-;"h-e-::d-ul--e-.:..d.--::C=-'u-s-,-to-m-e-r"""H=-o-u-r s----------'-

Average Time Between Unscheduled Maintenance Periods 

On the average, it is estimated that 6 or more hours of customer 

operation will normally occur between unscheduled maintenance calls. 

This suggests one unscheduled call per operating shift. 

Duration of Unscheduled Maintenance Calls 

The average duration of an unscheduled maintenance call is 

estimated to be 1.3 hours. Ninety percent of the unscheduled calls can 

be expected to be less than 2.5 hours in duration. 

Scheduled Maintenance 

Based on purely technical equipment requirements, the duration 

of a scheduled maintenance period will be less than four hours. Twice 

each calendar year, a 24 hour period must be reserved for scheduled 

maintenance. There should be 16 or more hours of customer operation 

between scheduled maintenance periods. On a regularly planned basis, 

a four hour period of scheduled maintenance is required during every 

24 hour operating periodo 

DIAGNOSTIC PROGRAMMING 

Automatic diagnostic programming, the most advanced technique 

devised for rapidly isolating difficult and intermittent system incom­

patibilities, has been SCientifically approached in SAGE I, refined for 
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other large scale computer systems, and is an integral part of the 

7030 Data Processing System. Rapid isolation of malfunctions to a 

limited area as diagnosed automatically by the computer itself and 

multiple replacement substantially increase system efficiency. 

Good diagnostic programming provides three major advantages: 

1. A means of computer analysis which maximizes the success 

of customer machine program performance. 

2. A means of isolating failures faster to maximize customer 

machine time availability. 

3. A means for establishing an intimate man-to-machine re­

lationship. 

Diagnostic programs are written with reference to the machine 

logic, as well as with reference to machine specifications. Thus these 

programs ensure that all hardware is tested and that the machine will 

operate properly with worst-case patterns and timing relationships. 

Diagnostic testing under program control proceeds with the building 

block technique where possible. This is a technique which starts by 

testing the smallest amount of hardware, and then gradually adds sub­

sequent tests involving the minimum increment of additional circuitry 

possible. In this fashion a failure at anyone point is isolated to those 

logical blocks added in the failing test. Testing continues until all 

logical blocks are covered. At this point, worst patterns and timing 

relationships are introduced to test for electronic interactions between 

areas of equipment. 

Diagnostic programs are in use to test and maintain the present 

7030 systems. In addition, a SEV A (Systems Evaluation) program will 
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provide a comprehensive over-all test of the 7030 System under con­

ditions similar to those expected for an operational program. A brief 

description of these diagnostic programs is presented below followed 

by a description of the SEV A program. 

• Diagnostic Control Program - This is an executive program 

to control the running of all diagnostic programs providing 

standard options and common utility routines. 

• I-Box - Tests all the controls and transfer paths necessary 

for the execution of instructions in the instruction unit. 

• SAU - Tests the transfer paths, arithmetic elements, and 

controls of the serial arithmetic unit. 

• PAU - Tests the transfer paths, arithmetic elements, and 

controls in the parallel arithmetic unit. 

• Look Ahead - Tests the transfer paths and controls of the 

look-ahead unit. 

• ]\1:emory - Tests the memories and memory bus, including a 

worst-patterns test. 

• CPU Scan and Miscellaneous - Tests the central processor 

unit (CPU) scan circuitry, clocks, and boundary registers. 

• BX 0 - This program provides for manually testing basic 

functions of the exchange without using the central processor. 

• BX 1 - Tests those portions of the exchange which can be 

tested without using any I/o devices. 

• BX 2- Tests the common circuitry in the exchange using 

available devices which can be selected by the operator. 

• BX 3 - Tests the Exchange under worst conditions of simul­

taneous operation. 
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• Tapes - Tests the tape adapters and tape drives, including the 

control, information transfer, and timing circuitry. 

• Printer - Tests the printer control unit and the chain printer. 

Carefully selected patterns will be printed for the operator to 

verify results. 

• Console - Tests the console control unit and the operator's 

console. The patterns typed on the typewriter are verified by 

the operator, while the operator's inputs are verified by the 

computer. 

• Reader, Punch - This program provides a punch to reader 

loop for testing the reader, reader control unit, punch, and 

punch control unit. 

• High-Speed Exchange - This program utilizes the disk file in 

an elementary fashion to test the disk synchronizer. 

• Disk - Tests the disk and includes worst patterns and timing 

tests. 

• I/O Scan - Tests the circuitry associated with the exchange 

scan and the disk scan. 

SEV A Program 

The 7030 SEV A (Systems Evaluation) program is designed 

primarily to test the interrupt, asynchronous capabilities, and capacity 

of the 7030 system in a manner similar to that in which a customer will 

operate the system. BEV A is made up of a number of analytical and 

mathematical checking routines and is designed so that the I/o routines 

will cycle independently and concurrently of each other and of the cen­

tral processor unit routines. Because of the asynchronous operation of 

the 7030 system, phase shifts will occur, producing an almost infinite 

variety of timing conditions within the system. During operation, 
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progress of the SEV A program, required operation action, and incon­

sistencies are printed out by the printer for evaluation and analysis 

purposes. 

The SEV A program will contain thr ee general types of routines: 

control routines, central processor unit routines, and input-output 

routines. Figure 1 illustrates the inter-relationship between the 

various routines. A brief description of these routines follows: 

• Initiator - This routine establishes initial conditions, as re­

quired, for all of the other routines. 

• I/O Initiator - This routine operates with the initiator routine 

to start from one to eight tape routines and one disk routine 

and is used only when first starting or restarting the over-all 

SEV A program. 

• Central Processor Unit Routine Sequencer - This routine 

establishes the order in which the other central processor 

unit and memory routines will be run. After each pass 

through all of the central processor unit routines, the order 

is permutated so that the central processor unit routines will 

not be run in the same order on each successive pass. 

• Central Processor Unit Routines - Central processor unit 

routines will calculate mathematical problems such as 

binomial expansions and solutions of quadratic equations. 

These routines will contain four sections to accommodate 

both variable field length and floating point calculation, using 

different techniques so that the results can be compared. 

Provision is made within the SEV A program to add other 

routines (indicated as variable routines in figure 1) as 

desired. 
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CPU RTN SEQUENCER 

END 

Figure 1. 7030 SEVA Program 
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• Memory Routines - Memory routines will perform instruction 

fetch (IF) and data store (DS) functions in all available core 

storage units. Independently, the result will be generated in a 

fixed memory area for comparison to the other result gen­

erated by this routine. 

• Tape Routines - There are eight identical tape routines one 

for each tape adaptor, and they will exercise every possible 

operation. 

• Disk Routine - This routine is similar to the tape routines in 

that it wili exercise all possible disk operations. 

• Typewriter, Punch, Reader Loop Routine - With this routine, 

data entered through the typewriter will be typed and punched. 

Punched data from the reader will be typed again to verify 

results. 

• Input-Output Terminator - When a tape adaptor or disk has 

completed a routine, the input-output terminator routine will 

temporarily delete the equipment from the over-all SEVA and 

start another tape adaptor or disk in its place. When available, 

the disk and eight tapes will be running simultaneously with the 

central processor unit routine. 

• Interrupt Control- This routine will handle all interrupts. If 

two error interrupts occur within a 30-second period, the pro­

gram will be dumped. For single error interrupts within a 

30-second period, the error will be logged and the operation 

will continue. 
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Appendix A 

7030 CPU CONFIGURATION 

Main Memory 

The main memory, sometimes called extended memory, is com­

posed of six boxes of 16,384 extended words each (for the Los Alamos 

configuration). Each extended word contains 64 information bits plus 

8 error-check bits. 

The main memory is controlled by the memory bus control unit 

(MBCU) which, in addition to initiating all accesses to main memory, 

also monitors the submitted addresses for the Address Invalid (AD) 

condition. The MBCU unit has direct contact with the following units: 

instruction unit, Look-Ahead, memory boxes, exchange, and disk 

exchange. 

Instruction Unit 

The instruction unit (I-box) contains the instruction counter (IC), 

the 16 index registers ($0-$15), the time clock ($TC) and interval timer 

($IT), the "originals" of the index condition indicators ($XF, $XVL~, 

$XV~, $XLG~, $XC~, $XL, $XE, $XH), and many registers and circuits 

needed for efficient decoding and execution of instructions. The I-box 

executes the following activities: 

• Generates all instruction-fetch requests on the basis of IC 

contents. 

• Develops effective addresses by adding the pertinent index 

value to the numerical address. 

• Generates E-box operand requests for look-ahead. 

• Partially decodes E-box instructions and converts the latter 

into information suitable for look-ahead processing. This 

information is then loaded into look-ahead. 
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• Decodes and executes all index arithmetic instructions as well 

as the following: ~. R, RC~, EX, EXIC, T. SWAP, except that 

Stores are performed with the help of look-ahead. If non-l-box 

operands are required, they will be fetched from the MBCU or 

the look-ahead. 

• Decodes and executes the following branch instructions: B, BE, 

BD. BR. BEW, CB. CBR, and Bind for non-index conditions 

require the assistance of the look-ahead and the E-box. 

• Submits indicator conditions for the following indicators to 

look-ahead for updating of the indicator register: SlJ,SOP, 

SAD (from MBCU), SDS, SDF, SIF + index indicators. These 

indicators plus a conditional machine check may lead to inter­

ruption during the updating. Other I-box-generated indicators 

are gated directly to the indicator register. 

• Updates STC and SIT every 1/1024 second. 

Look-Ahead (LA) 

Look-ahead contains four buffer levels, an address register (LAAR) 

and five counters, IAUC (I-box), DCC (operand check), TBC (transfer 

bus into E-box), ABC (arithmetic bus and interruption system), and 

SCC (store check). Look-ahead functions under the following conditions: 

• When IA!!<::_ refers to a level, that level may accept I-box 

loading, although the required operand may come later from 

MBCU. 

• During OCC time, the operand from MBCU may be checked for 

error. 

• During TBC time, the level may be shipped into E-box. 

• During ABC time, the interruption system is updated and 

signal is given to E-box for execution of the instruction just 

loaded. 
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• During sec time, the store operand (if any) is checked and 

sent to. MBCU on the basis of the contents of LAAR. 

• Provides interlocks, plus close contact with the interruption 

system, to ensure smooth, autonomous, and error-free oper­

ations of the various units in the computer. 

Interrupt System 

The interrupt system contains the indicator register (SlIND), the 

mask register (SIMASK), and SICA and SlCPU. It has direct connections 

with I-box, LA, E-box, and the exchange units to receive updated indi­

cator information. 

• Interruption occurs if: 

a. System is enabled 

b. A masked indicator bit is a 1. 

• Interruption sequence: 

3/8/61 

a. The left-most masked indicator bit position (for instance, 

O.K) is noted. 

b. I-box is house-cleaned except the index storage. 

c. LA house-cleaning is performed. Recovery information is 

shipped back to the I-·box. This includes all index register 

recovery information and the interrupted IC value. 

d. Contents of SlIA is fetched and added to K. O. 

e. Instruction beginning at the address C(SlIA) + K.O is fetched 

from MBCU without disturbing SlIF indicator. 

f. The "free 11 instruction is performed with all masked inter­

ruption conditions enforced. This instruction mayor may 

not alter IC in I-box. 

g. I-box fetches new instructions on the basis of IC. 

h. Resumption of normal operations. 
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E-Box (Arithmetic Unit) 

The E-box contains a parallel arithmetic unit (PAU) for floating­

point fraction operations, as well as all executed *, /, *+, and binary­

decimal conversions. It contains a serial arithmetic unit (SAU) for 

variable field length operations (except *, /, *+ and conversions), as 

well as for floating point exponent arithmetic. 

The E-box: 

• Receives instructions and operands from LA for decoding and 

execution. 

• Submits store operands to LA. 

• Submits arithmetic indicator bits to the interrupt system. 

The E-box also contains the following registers: 

1. Accumulator (SL, m) and sign byte register (SSB). 

2. Buffer registers C, D. 

3. PAU buffer register F. 

4. Left zero counter (SLS!C) and all ones counter (SAOC). 

Exchange 

The exchange contains up to 32 channel.s (32-63) for simultaneous I/O 

processing. Through adaptors each channel can be connected to eight tape 

units or with one non-tape I/O unit. Each channel is represented by one 

control word and two data word£: :::-the exchange memory. The channels 

communicate with the change memory thru a multiplexer. 

The exchange unit contains a main memory address register 

(MMAR) and a buffer register to communicate with the MBCU. It also 

contains an interruption address for the chann~l which has created an 

interrupt condition, as well as triggers (EOP, UK, EK, EE, and CS) to 

indicate the reason for interrupt. These triggers and IAR contents are 
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set until the interruption system accepts the conditions •. When IAR is 

busy (Interrupt Wait trigger on), other channels cannot use it to cause' 

other interrupts. 

The exchange unit: 

• Accepts I/O instructions from LA (2 levels per instruction). 

• Fetches and stores control words and data words directly from 

MBCU, subject to SAD restrictions but not SDF and IDS since 

these are performed by the I-Box. 

• Communicates with I/O units (thru adaptors and multiplexer) 

in 8-bit bytes. 

• Has its own clocking circuit (1.~ us cycles divided into 10 

equal pulses) and ECC check-bit generator-comparer. 

Maximum word rate is 1 extended word/l0 J.l.S for the entire 

exchange. 

The disk exchange contains 32 channels (0-31), only one of which 

can be in operation at any given time. It contains enough memory for 1 

control word and 1 data word, and each channel can be attached to one 

disk unit. Disk word rate is 1 extended word/8 ILS. No direct chaining 

of the I/O control words is permitted. In addition, the copy-control­

word operation cannot be performed when reading or writing. Otherwise 

the disk exchange functions in much the same way as the exchange. 

LIST OF IMPORTANT REGISTERS IN THE 7030 

I-Box 

Table A-I indicates important I-box registers in the 7030. 
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TABLE A-I. I-BOX REGISTERS 

Code Name Bit lnformation Remarks 

1Y* Instruction buffer 64 + check bits Even-addressed full 
words 

2Y* Instruction buffer 64 + check bits Odd-addressed full 
words 

Z Instruction prep- 64 + check bits 
aration and exec-
ution register 

XS Index register 17 words, each Contains location 1.0, 
with 64 bits + 16.0-31.0 
check bits 

X Index data regis- 64 + check bits Buffer register for XS 
ter 

X-Adder Index Adder 32 + check bits Capable of 24-bit 
additions 

W Work register 18 + check bits Serves miscellaneous 
functions in I-box: L,VS 
address decoding; second 
operand address in VFL; 
refill and interruption 
address; count for T and 
SWAP; LVS address de-
coding. 

IC Instruction counter 19 + check bit 

GLAR Left -zeros counter Geometric-load address 
for L,VS 'instruc- counter 
tion execution 

Originals 
of: JXF, 
SXVL~, 
SXVZ, 
IXVffi!, 
JXC~, 
JXL,IXE, 
SXH 

*Both lYand 2Ymay be used as I-box operand buffer 
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I-Checker (shared between I-box and Look-Ahead) 

Look-Ahead (LA) 

LAO 

LAl 

LA2 

LA3 

Look-Ahead buffer levels, each has: 

Op code field (10 bits + check) 
Operand field (64 bits + checks) 
Indicator bit field (15 bits) 
Instruction counter field (19 bits + checks) 

plus these bits for each buffer level: 

NOOP no-op bit 

WBC word boundary crossover bit 

LAOP LA op code bit 

IC Instruction counter bit 

INT Internal fetch bit 

LC Level checked bit 

LF Level filled bit 

FF "Forward from" bit 

DISC Disconnect bit 

LAAR Look-Ahead address register (18 + check) 

LAAR-Busy bit 

Store-executed bit 

Forward-cycle-required bit 

IC buffer (19 + checks) 

Counters: 
(4 bit rings) 

IAUC (Instruction-arithmetic unit counter) For LA 
loading from I-box 

OCC (Operand check counter). For check of opnd 
arrived from MBCU 

TBC (Transfer bus counter). For loading of E-box. 

ABC (Arithmetic bus counter). For interrupt system 
updating, internal opnd fetch. 

SCC (Store check counter). For storing into main 
memory 

Interruption System 

lIND - Indicator register. 
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- Mask register. IMASK 

SCPUS 

SCA 

- Other CPU. (Not available for LASL and BuShips systems) 

- Channel address register. 

Left zeros counter to handle interrupts. 

E-box 

IL, IR - Accumulator. 

ISB - Sign byte register. 

C, D - Operand buffer register (each 64 + check bits). 

ILZC - Left zeros counter. 

lAOC - All ones counter. 

SAU - Serial arithmetic unit 

SAU - decoder 

SAU - arithmetic - logical unit 

P AU - Parallel arithmetic unit 

P AU - decoder 

P AU - arithmetic - logical unit: 

PAU - adder 

P AU - multiplier 

(PAU) - F-register 

Exchange 

Exchange storage (EM) 

EMAR. Exchange memory address register. (7 bits + check) 

Word register (communicates with EM) (76 bits) 

MMAR. Main memory address register (18 + check bits) for dealing 
with MBCU Buffer register (72 bits) to handle traffic with MBCU 

Interrupt address register (7 + check) to contain address of inter-
ru~ing channel. . 

Interrupt triggers for 5 exchange interrupt conditions. 

Interrupt wait bit. 

Multiplexer for dealing with individual channels. 

ECC generator and comparing circuits. 
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TABLE A-2. SUMMARY OF 7030 INSTRUCTION EXECUTION* 

I LAAR 
opnd not needed 

I-box I-box fetch LA LAAR but used if 
Operation Code opnd fetch execution for LA levels needed? not bury SAD PAD Comments 

LX, LV. LC, LR, yes yes no IX Rec. no no no no V+CR (c= 0) involves 2 I-box 
V+, ViC fetches. 
V +cmc/O), V ± ICR (C=O) 
R (inctex), RCH (index, C = 0) 

LVI, L I'NI, LCi, LRI, C ± 1 no yes no IX Rec. no no no no 
l'± 1, l'± 1C l'±ICR (C/O) 
RCZ (C f 0) (index) 

Kl', KC yes yes no NOOP no no no no 

KV/, KC] no yes I no NOOP no no no no 

SX . .;z: no partly no store yes no no no 

SF. SC. SR, SFA yes partly no store yes no no no SVA requires extra ctecoding 

R(memory) , RCH (memory), 2 partly no store yes no no no 
(C =0) 

RCfl; (memory, C f 0) no yes no NOOP no no no no 

LIT N N no IX Rec. no no no no extra decoding for each instruction 
fetch 

L l'S no yes no IX Rec. no no no no repeated addition of index value 

I fields, 

RNX yes partly no test I no no no no LA is pre-cleared by first leveL 

store yes no 

NOOP no no 

EX (exclusive of subject in- N yes no NOOP no no no no extra decoding for each instruction 
struction) (repeated EX fetch, 
assumed) 

EXIC (exclusive of subject 2N partly no N No no no no extra decoding for each instruction 
instruction) (repeated EXIC stores times fetch. 
assumed) 

T, SWAP N partly no test no no no no LA is pre-cleared by first leveL 

stores Ntimes no 
Each N is doubled in SWAP 

NOOP no no 

LA level designation LA level designation (cont'd) 
!NT = internal operand fetch Op = oper ation code level (VF L) 
!NT STORE = internal opnd 

I 
opnd = operand level 

store op + opnd = op code plus operand 
Store = Store (usually F.P,) 
IX Rec. ~ index register 

! 

recovery (als0 
called psuedo-

I store) 
B Hr'c. :0;: branch recovery 

i 

I 
LAOP ~ LA operation 

I 

I 
NOOP = no op; indicator 

I I I transfer only 

"(Addresses are assumed to refer to Main Memory un}pss specifjpd) 
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TABLE A-2. SUMMARY OF 7030 INSTRUCTION EXECUTION (cont'd) 
r-------------- ,----------- ---------~ ------ ,----- --- ,------- -------

LAAH 
opnd not needed 

I-box I-box f"leh LA LAAR but used 
Operallotl Corle operand fetch cxpcution for LA levels needed? if not hury SAU PAU Commpnts 

~ -- r--------------------- ------- -------
ty, 2Y ace cleared to receive 

neW instrucUon for all 8U(.'.CPSS-

ful branches 

B, BR, RH, N ¢'P no yes no NOOP no no no no 
test 

BD no yes no test no no no nn LA pre-c1earer\ 
NOOP 

lif:l.f! no parlly no NOOI' no no no no 

2 tesf 
levels no no 

CR, CRR (no refill) nn yes no IX Rec. no no no no 

C lJl? (refill) yes yes no IX Rec no no no no 

BiI,d (Xl", XC~, XVU~, XV;" nn yes no hOOp no no no no 
XVG7" XL, XE, XII) 

llind (non-index conditions) no partly INT 01'. no no yes no 

!NT yes no 

INT. stores no no 

B Rer. no no 

Rll no partly yes 01' no no yes 

opnd no yes 

store yes no 

B Rec. no no 

SIC Ii, SIC BTl, XK Rf:, SiC lilJ yes partly no sto're yes no no no LA pre-dearenln SIC flO hy 2 I,"sl lev.']s 

SIC lIBW yes partly no store yes no no no 

2 tesl nn no 
levels 

SIC CB, SIC CBR (no refill) yes partly no IX Ree. yes no no no SIC store level will nol pxist if hranch 
if hranch is taken 

Store 
is not laken 

no no 

SIC CBR (if refill) if braneh 2 partly no IX Rec . yes no no no SIC store level will nol exist if branrh 
is taken 

store 
is not taken 

no no 

SIC Bind (index conditions) yes partly no store yes no no no store level replaced hy noop if brand! 
if branch is taken is not t.aken 

SIC Bind (non-index conditions) yes 

_I~"" "" "' 
no no yf'S no 

j INT '''" I "" INT store nn no 

B Rec. no no 

store I ye~ no I ______ 1 __ 
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Operation Code 

F. P. 

±, L, LWF, ± MG 
D+, DL. DLWF, lJ ~ MG 
K, KMG, [ffi, KMGR 
*, /,R/ 
FI, E ± 

E±l 

SllF 

ST, SLe. SRD, SRt 

M±. M! MG 

*+, 

['FT,DI 

VFL 
+, I" [,WF, ± MG 
K. KMG, KR. KMGR 
KE,KF,KFE,KFR. 
C. CT, LCV 

" (Binary) 

CV, IJCV 

ST, SRD 
CM. M± MG. M+l 

"+ (ainary) 

LFT. LTRS, LTRCV 
·(Dec.), / (Dec.), "+ (Dec.) 

1/0 

TABLE A-2. SUMMARY OF 7030 INSTRUCTION EXECUTION (conttd) 

I-box I I-box 

LAAR 
opnd not needed 
fetch LA LAAR bul used 

operand felch execul.!on for LA levels needed? it nol bury SAU PAU Commenls 

no no yes op + opnd no yes expo frac. 

no no no op + opnd no no exp frae 

no no no op + counl no no no frae 

no no no store yes no exp frae 

no no yes op + opnd no yes exp frae 

store yes no 

no no 2 op + opnd no yes exp frae 

C(:liFT) no yes 

no no yes op +opnd no yes exp frac 

store yes no 

no no yes op no no yes no For all VFL operations, If 
opnd crosseS over full word 

opnd no 
boundary, the no. of LA opnd 

yes and/or store levels is doubled 
Progressive indexing required one 
more IX box. 

no no yes op no no yes yes 

opnd no yes 

no no no op no no yes no 

tNT 

no no yes op no no yes no 

opnd no yes 

store yes no 

no no 2 op no no yes yes 

opnd no yes 

C(SFT) no yes 

no no yes op no no yes no 

opnd no yes 

store yes no 

no no no op no no no no LA communicates with exchange 

LAOP no no directly 


