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A DESCRIPTION OF STRETCH
L. R. Johnson
ERRATA

page 17, figure at bottom of page, item 3: label is "address of VFL parameters”,
should be "address or VFL parameters”,

page 24, line 26; now reads "Non-destructive read takes 0.4 microseconds , ., ".
should read "Non-destructive read takes 0,2 microseconds ... ".

page 32, line 6 forward: should read " ... floating-point add, 1,0 microseconds; floating -point

multiply, 1.8 microseconds; floating-point divide, 7.0 microseconds;
and VFL addition on N bytes, (N + 2) (0.5) microseconds. (reference 19)"
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1. INTRODUCTION

Stretch is a high-performance computer under construction by
IBM. Although the developmental effort has been traced back to 1954,
it was in 1955 that the outlines of a ten megapulse computer were ham-
mered into quantitative objectives for circuit development and for
memory development. Preliminary work on the organization of the
computer was underway in late 1955.

The first Stretch is scheduled for delivery in summer 1960. It
is contracted for by the Atomic Energy Commission at Los Alamos. A
second Stretch will be incorporated into the Harvest system that IBM is
building for the Bureau of Ships. The subject of this report is the Los
Alamos system; at this time, Stretch has not been announced as part of
the IBM product line. Various engineering specifications are still subject
to change.

The aim here is to report on the principal elements that consti-
tute a Stretch, on the functions of each, and on the way in which the
elements function together. The subject does not extend to logical design,
much less to circuit design. The level of detail herein sought is that of
"systems architecture. "

The subject is approached through two intermediate levels of
complexity. Sections 2 and 3 are offered primarily as groundwork for
Section 4, "Functional Structure.' Section 2 swings through basic ideas
that underly the system. Section 3 surveys relevant formats and other
general information. Some references are cited in context, but much of
the material is too general for.explicit documentation. All basic sources
are given in Section 5, therefore, and associated with appropriate
sections of the report.

2. GENERAL SURVEY

2.1 Design Tenets

The pattern of the single-address, one-instruction-counter type
of computer is assumed in Stretch design. Some two-address instruc-
tions are found desirable, to be sure, and one-at-a-time execution is
simulated, not observed. But the point of departure is clearly the
IBM 704 and 705. Within this framework the Stretch system has brought
new answers to many design problems. If some of these answers have
a familiar look about them, it is because they have already influenced
the IBM 709, 7090, 705-III and 7070.



By virtue of its hardware parameters, which are still impres-
sive, Stretch would be a fast computer with any reasonable kind of
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In setting the performance goals for Stretch, the targets for
components were set high. Beyond this, however, considerable reliance
was placed on the prospects that improved organization could enhance
performance. These prospects were to include more efficient arithmetic
processes, more powerful instructions, multiple memory units, and
more overlapping in the instruction preparation and execution cycles.

It was in the early years of Stretch design, 1955 and 1956, that
electronic digital computers really came into general acceptance. Field
experience attested, widely and decisively, to the potential of general
purpose computers. As it happened, the very same experience testified
as well to unrealized potential - to potential lost because of inefficiencies
inherent in the designs and practices of the time. Stretch might well be
regarded as a response to the insights and the exuberance of that period.

In a decade of general purpose computers, Stretch is not only
the fastest, it is in many ways the most general. It has an answer to
all of the standard programmer grievances of the 1955-56 period. It
has, for example,

- powerful indexing provisions,

- longer word length,

- floating point binary arithmetic,

- binary arithmetic on variable field length,

- decimal arithmetic on variable field length,

- logical operations on variable field length,

- separately-controlled read-write devices,- and
- powerful interrupt provisions.

And it has speed. Simulation studies have estimated its potential for
large scientific problems at sixty to a hundred times that of an IBM 704.

There is, throughout the Stretch design, evidence of much effort
(and freedom) to generalize and te unify. This systems effort has
achieved a certain elegance in the instruction set. With fewer than a
hundred basic operation codes, and fewer than a dozen rules for options
and parameter settings, a machine language of unusual richness is pro-
vided. To supplement and exploit this language, the hardware maintains
sixty-four on-off status bits. These indicators can be interrogated for
conditional branching and, better yet, many can be enabled to interrupt
to corresponding exception routines.
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Instruction definitions must be generalized to inciude possible
indicator effects, of course. This implies additional detail for pro-
gram control, as well as additional flexibility. In practice, the bulk of
the indicator burden will be delegated to a supervisor program, with
overriding responsibility elective on the part of the individual program-
mer. The result is a system with a high degree of convenience and
flexibility from the programmer's viewpoint.

It is characteristic of the traditional stored-program computer
that

(a) instructions fall, to some extent, into specialized categories,
and

(b) each instruction execution is synthesized from a set of
sequential tasks.

If generality is the first tenet in Stretch design, the second is to exploit
the possibilities for parallelism inherent in (a) and (b).

Stretch instructions are taken to be of three kinds, viz., arithme-
tic, index arithmetic, and in-out. Each kind is executed out of a separate
station, permitting a considerable degree of parallelism based on (a).

The life history of a typical arithmetic instruction execution in
Stretch is fashioned out of such tasks as

- request memory access for instruction word,
- receive and check instruction word,

- fetch index word from index memory,

- modify instruction address,

- request memory access for operand,

- receive and check operand,

- perform arithmetic,

- check result,

- update addressable registers, and

- interrogate interrupt system.

This list is illustrative. To cover the complex arithmetic instructions,
or the non-arithmetic instructions, it would have to be extended. It
should, however, convey the idea of a possible parallelism based on (b).

At this point assume a number of hardware units for the sake of
discussion: multiple memory units, busses, checkers, special-purpose
registers, and an arithmetic unit. A task, as given in the preceding
paragraph, generally involves more than one of these units. For each
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task, therefore, assume a ''procedure' that delegates appropriate work
to hardware units. It is typical of a procedure to wait until it is free

to go ahead, and then to delegate work to hardware units - with possible
waits on busy units. This ability to proceed independently with a

specialized mission will be termed ""procedural asynchronism. "
P

The Stretch design makes considerable use of procedural
asynchronism to attain a high degree of parallelism based on (b). There
are logical restrictions on the order in which things can happen, there
are practical restrictions arising out of the allocation of tasks and hard-
ware units, but there is no arbitrary machine cycle to which the timing
of various tasks is subservient.

One comparison may be instructive. MIT's TX-2 computer, using
separate memory units for the instructions and for the operands, attains
a good deal of overlapping. Often it manages to overlap the operand
memory cycle of one instruction with the instruction memory cycle of
the instruction next to be executed. At best, however, the marginal
time for one more arithmetic instruction execution is one memory cycle
time. (It is more if the execution time has to be extended). The basic
pattern for TX-2 arithmetic instructions is to overlap tasks onto a basic
memory cycle, making relatively little use of procedural asynchronism.

By using multiple memory units, by buffering instructions, oper-
ands, and results for storage, and by using procedural asynchronism,
Stretch can sustain arithmetic executions at rates well above that of the
word rate for one memory unit. This ability dramatizes the extent to
which Stretch designers have managed to circumvent the memory speed
limitation, a limitation that has had a pervasive influence on Stretch de-
sign. The design considerations mentioned above, the instruction format,
the binary addressing format - all are consistent with the need to mini-
mize the word rate and to reduce system dependence on a basic memory
cycle.

The procedural asynchronism mentioned above is indifferent to
the design of the hardware units. The question of whether the hardware
units do or do not employ asynchronous circuits is one that should be
answered in the full context of efficiency versus estimated costs for
design, production, maintenance, possible redesign, etc. A distinct
advantage of procedural asynchronism is that such questions can be
answered in context. (In Stretch, the decision has been to make consider-
able use of a master clock and of the synchronous circuit mode).

In general, systems involving multiple waiting times do not lend
themselves to analytical expressions for the quantitative effects of
structural or parametric changes, and simulation studies yield the only
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realistic evidence on many design questions. Because the Stretch
system does entail waits and bottlenecks, considerable use was made
of simulation 1n its design.

A rather interesting rule of thumb is associated with the simula-
tion studies in Stretch '"design space.'" In a general purpose system with
overlapping procedures, this rule says, no hardware unit should be busy
all or nearly all of the time. If it is, procedures are too often lagging
for it, and the performance of the whole system can be raised by the
improvement of one unit. The optimum is said to be more like two-
thirds usage.

2.2 Basic Formats

Sixty-four bits are available to the user in the Stretch word.
Eight bits are appended for error checking and correction (ECC)
functions. Within a word, bits are identified by location numbers 0
through 63.

Some instructions occupy a half word, others a full word. Index
arithmetic, floating point arithmetic, and branch on indicator use a
half word; variable field length (VF L) operations, in-out instructions,
branch on bit, and a few others use a full word.

Sixteen words with locations 0 through 15 are defined as ''address-
able registers.'' These include the left half, right half, and the sign of
the accumulator; the remainder in division; the multiplicand in multiply
and add; a time clock; and the set of 64 indicators; and the address of an
interrupt table. Locations 16 through 31 are assigned to sixteen index
registers.

For floating point arithmetic, Stretch uses a 48-bit binary frac-
tion, an 11-bit binary exponent, a fraction sign, an exponent sign, and
three bits for flagging purposes. For the VFL operands in integer
arithmetic and connective operations, a flexible format is used.

As an instance of Stretch generality, there is no machine-defined
alphamerical code or collating sequence. No use is made of plug boards
on the in-out devices. A card image, for instance, is obtained as 960
bits in fifteen consecutive memory locations (this is altered in an optional
mode for including ECC bits with input). The case for program control
is carried through to the operator's console, where unlabeled buttons,
toggles and neons are correlated with memory bits - and made meaningful -
through a ''console-defining'' routine.



2.3 System Schematic

Figure 1 depicts the principal elements in a Stretch system. On
the left are six independent units of core storage. These are tied into
two busses; one brings control information and store data to the units,
the other carries data away from the units. Requests on the memory units
are made via the bus control unit, which resolves conflicts among requests
and allocates time periods on the busses. All data channels in the figure
move 72 bits in parallel unless otherwise noted.

The memory bank is shared by

- the exchange,

- the high speed exchange,
- the instruction unit, and
- the lookahead unit,

each of these, in effect, constituting a special-purpose computer. The
exchanges can request memory accesses for either storing or fetching.
The instruction unit fetches only; the lookahead unit stores only.

- 2":n1ords of storage —> Basic Exchange
T 1
| 5| 24words of storagef— 1/0 Devices| | Disks

)

> High-Speed Exchange

/ \ A Y

Bus fo storage; bus from storage ; and bus control unit

7 N A

> 24words of storage > Instruction Unit
1) )
5| 2%words of storage [— Lo | ookahead Unit

4 |

Arithmetic Registers
b 1

2%words of storage Arithmetic Unit

> 2Mwords of storage

r

Figure 1 - Schematic of Elements and Data Flows in Los Alamos System



Up to 32 data channels can be accommodated by the exchange.
Data channels are parallel for eight or for sixteen bits, as most suit-
able for the device involved. A device may use a whole channel, or
several devices may share one channel through a control unit. Many
channels can be in use at once. The maximum data rate for the exchange
is one word every ten microseconds.

A high-speed exchange, with a four microsecond word rate, is
provided for the very fast magnetic disk unit available with Stretch. Up
to 32 units may be serviced, but only one can be reading or writing at
any given time.

Taken together, the instruction unit, the lookahead unit, the
arithmetic unit and registers constitute an ALU, i.e., an arithmetic
and logical unit. (This grouping is denoted by "Sigma' in much of the
Stretch literature).

The instruction unit performs what are sometimes called ''red
tape' operations. It has direct access to the index registers. Its first
mission is to fetch instructions, index them, initiate requests for oper-
ands, and in general to arrange for the delivery of command-operand
pairs to the lookahead unit. Its second mission is to intercept the index
arithmetic instructions and execute them as they go by, even through this
means doing them ahead of sequence.

The idea of sequence in Stretch must be associated with the ad-
dressable registers. The last instruction '"executed' is the last instruc-
tion with the opportunity to modify addressable registers. Instructions
executed ahead of turn in the instruction unit are blocked from such an
opportunity until authorized by the lookahead unit.

The basic function of the lookahead unit is to maintain a backlog
of work for the arithmetic unit, and thus to increase its average utiliza-
tion. Lookahead has four levels of storage. Each will hold an operation
code, an operand, and instruction counter reading, and necessary control
bits for a simple half-word arithmetic instruction. Every executed
instruction takes up at least one level in lookahead, although some take
more. An in-out instruction, for instance, occupies one level until
passed on to the exchange at the appropriate time. An index arithmetic
instruction is most often represented by the old contents of the index
register that it changed; if the sequence changes through conditional
branch or interrupt, the index register can therefore be restored.

Lookahead is the only ALU unit that can store to memory. Many
ALU control functions are assigned to it, such as timing the updating of

addressable registers and timing of interrupts.
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The arithmetic unit contains a 96-bit parallel adder for floating-
point binary addition (true or complement); a smaller 12-bit adder for
serial VFL operations; and additional circuitry for binary multiplication.
Decimal multiplication and division are not implemented but can be ob-
tained by automatic entrance to subroutines that use the instructions for
radix conversion and binary arithmetic.

Associated with the data paths in Figure 1 are checking units:
one in each exchange, one for the arithmetic unit, and one shared by

the instruction unit and lookahead.

2.4 Addressing Principles

The binary radix is employed in addressing memory words and
in-out devices. Each memory unit contains 214 (16, 384) words. The
maximum number of memory units is 24 (16). The number of addressable
bits in a word is 26 (64). Therefore, it takes 18 bits to address a word,
19 to address a half-word, and 24 to address a bit. The Stretch instruc-
tion format takes advantage of this fact and uses the fewest bits necessary
for the addressing job to be done.

Each memory unit can be independently accessed. To exploit
this fact, memory addresses are scattered over the units. In a system
with more than four units, successive addresses are distributed among
groups of four units. A system with six units, for example, has the
first 210 addresses distributed over four units, while the remainder of
the addresses alternate between two units. For best performance in
such a system, it is recommended that the two units contain instructions
and the four units operands.

Addresses 0 through 31, the special and index registers, are
addressable in general, but have some restrictions on their use.

Stretch instructions are single-address, for the most part. The
address in the instruction is called the instruction address. This quantity
is indexed to yield an effective address. Given an effective address,
there are three modes in which it can be used:

(1) the immediate mode uses it as operand,

(2) the direct mode uses it to specify operand location, and

(3) the indirect mode uses it to specify the location of another
effective address.

The instructions for index arithmetic make considerable use of (1). The
typical mode of addressing is provided by (2). A special index loading

8



instruction provides (3) in a general way, and the principle is used in two
special '"'execute' instructions.

2.5 Indexing Principles

Two formats are essential to any discussion of Stretch indexing.
These are the index word and the control word, as shown in Figure 2.

P Q R
VALUE COUNT REFILL
INDEX WORD
24 BITS & SIGN 18 BITS I8 BITS
DATA WORD STATUS
CONTROL WORD & COUNT REFILL

Figure 2 - Index and Control Word Patterns

Let P, Q and R denote the value, count and refill fields in an index
word. When an instruction tags an index register, it is the signed value
P that is added to the instruction address.

The generic instruction for Stretch index branching is, '"Advance
P, reduce Q by one, branch on Q condition, refill on zero Q." P may
be advanced one word, decreased one word, adva.nced a half word, or
unchanged. The branch can be on Q zero or Q non-zero. Other index
arithmetic instructions provide for loading, storing, changing, and com-
paring the various fields P, Q and R. There is one instruction for sum-
ming P over a set of index registers. One provides indirect addressing
in that a specified P is replaced by the field reached through a chain of
load instructions. And there is a '"rename" instruction with which any
memory location can be made to serve the function of an index register.

A second kind of indexing, called progressive indexing, is avail-
able for VFL instructions. Here P is taken as the effective address of
the instruction, and after the instruction is executed, P is increased
(optionally decreased) by the instruction address. Q and R are treated
as in direct indexing.

Some special addressing problems occur in any system where
reading, processing and writing occur in parallel. The Stretch answer
is the control word, with format such that it can also serve as an index
word. A control word permits the exchange to read Q data words into an
area starting at location P and then obtain another control word at loca-
tion R. Writing is analogous. Skipping is possibie. . The conditions under
which the operation terminates are encoded - by the exchange - in the
status field of the control word.




Because of the consistency in control word and index word formats,
one word of information can (a) serve to guide a record into memory
(b) serve as an index quantity in processing the record, and {c) serve to
guide an updated record out of memory. Records are effectively swapped
by swapping their control words, which is a great help in arranging,
merging, adding and deleting records.

2.6 Interruption Principles

As mentioned earlier, Stretch may be viewed as four limited-
purpose computers sharing a common bank of core storage units. This
memory sharing is accomplished by simple decision rules implemented
in the bus control unit, and is in no way related to the stored program.

Turn now to the concept of ''system sharing', a matter inherently
related to program control. The end product of the system is a stream
of executed instructions, and to share the system means to control this
stream during various segments of time.

The pressures for system-sharing arise diversely. First, there
is the technological fact that a Stretch has more processing potential, per
dollar, than less expensive systems. Second, it is an observed fact that
production runs on a computer must be supplemented and supported by
program testing, machine maintenance, manual set-ups, and miscellane-
ous chores that use but a fraction of system potential. Third, there
exist applications with requirements for immediate attention at disjoint
intervals of time. Fourth, there are programming and operating efficiencies
in allowing asynchronous in-out devices to interrupt upon completion of an
operation. Fifth, there are programming and operating efficiencies in
having exception conditions such as machine checks, overflows, and
special flags cause interrupts.

The Stretch interrupt system is a generalized answer to the prob-
lem of system sharing. Each of 48 possible interrupt conditions may
seize control - the incumbent program permitting. To each condition
there corresponds a bit in the indicator register, and a request for
interrupt is established by turning on the appropriate bit.

There are two kinds of program control over interruption. First,
the interruption system may be 'disabled' by instruction, and in this
event no interruption can occur until an "enable" instruction follows.
Second, 28 of the 48 indicators can be masked to prevent interruption.
These two features provide a good deal of flexibility.

Interrupt priority is implicit in the location of bits within the indi-
cator register; the leftmost 'on' bit is first to be acted upon by the interrupt
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system. The location of this bit within the indicator register is con-
verted into a six-bit binary number, and this number is used to obtain
an instruction word from a 48-word table.

The first instruction after interrupt is performed without
disturbing the instruction counter. Unless this instruction effects a
branch, the incumbent routine will continue as though nothing had
happened. If the first instruction effects a branch, the interrupting rou-
tine must assume-responsibility for the instruction counter and for any
addressable registers and index registers that it changes. The first
instruction of an interrupt routine will normally be ''store instruction
counter at y and branch, ' the last '"branch to y. "

Inasmuch as interrupts may occur within interrupts, it is likely
that various system-sharing routines will need to have different inter-
rupt tables. This generality is provided. An addressable register,

"base word address, ' is used to locate the table, and the indicator number
is used to find the word in the table.

2.7 Arithmetic Principles

With the current-switching circuits, complement representation
can be obtained directly., One's-complement arithmetic with end-around
carry is the natural choice for handling addition with unlike signs,
therefore. When the main adder is operated as two independent adders,
as is the case in divide, two's-complement arithmetic is used.

The parallel binary arithmetic operations are designed around
three ideas. In the main adder, the method of '"carry propagation' is
used to reduce the levels of logic necessary for carry assimilation. A
version of the '"Sweeney' method, in which leftmost zeros in the partial
remainder are shifted out, is used for division.” The ''carry-save'
principle, through which carry assimilation can be deferred to the end
of a. series of carry-save additions, is employed to gain speed in
multiplication.

Although carry assimilation is often viewed as a serial process
for practical purposes, it need not be so viewed in the logical sense.
It is possible to write a canonical expression for each sum digit as a
function of the low-order carry and augend-addend digits. For an adder
of typical size, the expression is hopelessly unwieldy, but by yielding
some on levels of logic (hence, on time), the carry propagation method
brings the general idea down into the realm of possibility. The Stretch
adder is viewed as comprising five groups; in each group there are five
sections; and in each section there are four bits. Various logical expres-
sions are formed in parallel by section, then others in parallel by group,
and then assimilated carries in parallel for the whole adder.
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In ordinary binary non-restoring division, the dividend is
diminished through a series of true or complement additions and one
quotient digit is obtained for each addition. The Sweeney method starts
with normalized dividend and divisor and takes advantage of the proper-
ties of leftmost zeros in the diminished dividend to realize more than
one quotient digit per addition. In effect, some quotient digits come as
a by-product of the act of renormalizing the dividend each time it is
diminished. For random data and for quotients of ten or more bits, the

method yields an average of 2. 67 quotient digits per addition.

In Stretch this method is generalized to make use of the 0. 75 and
1. 5 multiples of the divisor. The divisor is shifted and added to itself
in the upper half of the main adder to obtain these multiples. Their use
has the effect of lengthening the strings that can be shifted over in
normalization, giving an average of 3. 7 quotient digits per addition
(reference 7).

Before discussing Stretch multiplication, consider the following
method for performing decimal multiplication with five multiples (true
or complement) of the multiplicand. Even multiples will be chosen, viz.,
2, 4, 6, 8, and 10. As an example, multiply 514 by 432. Our multiples
are as follows:

True Ten's Complement
2 001028 998972
4 002056 997944
6 003084 996916
8 004112 995888
10 005140 994860

Let x denote the complement of digit x. Because 1 in the ten's position
is equivalent to 10 in the units position, we can write

43224 (3 + 1) (2 - 10) = 448

and avoid the need for a three's multiple.

514 514
432 448
1028 or 995888
1542 02056
2056 2056
222048 222048



In Stretch multiplication, an octal representation is assumed.
Even multiples are used, and are not stored but are gated as needed.
Two, four and eight are obtained by shifting only. The main adder is
used as in division to form a 1. 5 multiple, and this is shifted to yield
the six multiple. The octal plan reduces a 48-bit multiplication to six-
teen carry-save adds followed by one ordinary addition. To further re-
duce elapsed time, multiplicand multiples for four octal digits are gated
at each main step in the process.

Operations on exponents are performed in the serial arithmetic
unit.

When a fraction is shifted left in normalization, the entering low-
order digits may be specified as either zeros or ones. Provision is

made for both unnormalized and normalized operations.

2.8 Checking Principles

There are conventional checks on the validity of memory addresses,
channel addresses, operation codes, and the like.

All words moved to or from the main memory carry error check-
ing and correcting (ECC) bits in the form of a modified Hamming code.
These eight bits permit single-bit errors to be corrected and double-bit
errors to be detected. Single-error correction and double-error detec-
tion on half words is done in the high-speed exchange using seven ECC
bits.

The Hamming code is not used internally in the instruction unit,
the lookahead unit, or the arithmetic unit, although the ECC bit-positions
still exist for checking purposes. In floating-point arithmetic, operations
on fractions are checked by similar operations on modulo-three residues.
With this exception, the three units rely upon parity checks over various
register fields and occasionally on duplicate circuitry.

There are four devices for generating and checking ECC bits:
one each in the two exchanges, one in the arithmetic unit, and one shared
by the instruction unit and the lookahead. These devices recognize the
incoming format by context. They produce all relevant formats, and the
requesting unit gates out the one desired.

The arithmetic registers have parity bits associated with them.
Residues on the accumulator are maintained by the arithmetic checker.
Residue on an operand is provided by the lookahead., Following a VFL
operation, the contents of the accumulator are gated through the checker,
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thus maintaining the residue and permitting VFL and floating-point
instructions to be intermixed.

Memory accesses may be made in error because of machine mal-
function or, as is more likely, because of program mistake. Program
control over mistaken memory references is afforded by address monitor-
ing. Two boundary registers, under program control, define an area of
memory. References to memory include an address check against con-
tents of these registers. An Interrupt indicator is set if the reference
falls outside (optionally inside) the defined area. Separate indicators
are provided for stores (#19), for data fetch (#20), and for instruction
fetch (#21).

For maintenance purposes, about four thousand triggers are
tapped through maintenance consoles. Visual exhibition is provided for
static conditions, and a maintenance scanner is provided in an attempt
to monitor the triggers under operating conditions. Upon detection of an
error, the scanning system interrupts to record the status of all triggers.
(The recording mechanism can be an ordinary card punch). About 2700
of the indicators concern the ALU, and in general mark the end of the
execution in which the error occurred. Because the memory units, and
particularly the exchanges, must complete relatively long operations,
their indicators are latched as soon as possible after the error is
discovered.

3. PROGRAMMING STRUCTURE

3.1 Addressable Register Formats

The first 32 memory locations are reserved for special-purpose
registers. Of these, locations 16 through 31 are the index registers.
Locations 0 through 15 are termed '"addressable registers'' and are
listed in Table 1.



TABLE 1

ADDRESSABLE REGISTER FORMATS

Location Name or Function Bit Address
0 Permanent source of zeros 0 - 63
1 *Interval timer! 0 -18
1 *Time clock (read only) 28 - 63
2 *Address of interrupt table 0-17
3 *Upper boundary 0-17
3 *Lower boundary 32 - 49
3 *Boundary control bit 57
4 Maintenance bits 0 -63
5 Channel address (read only) 12 - 18
6 Signals for other computers 0-18
7 Left zeros count 17 - 23
7 All ones count 44 - 50
8 Left half of accumulator 0 - 63
9 Right half of accumulator 0 - 63

10 Accumulator sign byte 0- 7
11 Indicators (0-19 read only) 0 - 63
12 Interrupt mask 20 - 47
13 Remainder in division (when defined) ' 0 - 63
14 Multiplicand in multiply and add 0 - 63
15 Transit register 0 - 63

*Area protected when interrupt system is enabled.
1Read-only except for Store P, Store Q and Store R instructions.

For measuring elapsed time over intervals of 8,5 minutes or less,
the interval timer can be used. Time is counted with an oscillator that
runs at 1,024 cycles per second, and therefore the reading from bit
positions 0-8 can be taken as the approximate number of seconds left in
an interval. The timer is stepped down at each pulse until it reaches
zero, at which time Indicator #4 is set to interrupt.

As the interval timer is stepped down, the time clock is stepped up.

The 36-bit field corresponds to about 777 days. Carry past the 36}9_ bit
position is ignored.

15



The boundary addresses are for monitoring of ALU memory ac-
cesses, and the boundary control bit tells whether alarms are to be for
accesses inside or outside the defined area. ''Maintenance bits'' are
not of programming interest. Attention request bits for up to 19 other
computers can be defined in location 6; by turning such a bit ''on'', the
stored program can signal the corresponding computer.

In VFL operations of the Boolean type, the ''left zeros count"
reveals the number of zeros to the left of the leftmost one bit in the
result field. Meanwhile the '"all ones count' stores the number of bits
in the result field.

3.2 Data Formats

A floating -point number in memory has the format,

exponent ...... bits 0 through 10,
exponent sign... bit 11,

fraction ....... bits 12 through 59,
fraction sign ... bit 60, and

flags .......... bits 61, 62, 63.

The accumulator has two formats for floating-point operations,
one for single precision and another for double precision.

single double
exponent bits 0 through 10 0 through 10
exponent sign bits 11 11
fraction bits 12 through 59 12 through 107

The fraction sign is always contained in bit four of a separate ''sign byte"
register of eight bits. This register also contains the flag fields. The
term ''double precision'' is used for operations that involve a one-word
memory operand and a 96-bit fraction in the accumulator. It takes two
operations to store a 96-bit fraction.

Variable field length (VFL) operations take as operand a field of
64 bits or less. The field can start at any bit position in memory. The
field is processed from the right, a '"byte'' at a time, using a two-word
accumulator. In general, the programmer must specify

- length of operand field,

- accumulator bit against which rightmost
bit of operand is to be aligned (accumulator
offset), and

- some byte size.
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Additional information is implied by a set of rules summarized in Table
2. (A byte is a set of bits processed at once, and the rules in the table
constitute the only definition that is more meaningful). The programmer
must also specify whether the operand is unsigned or signed; in the lat-
ter event, the rightmost operand byte will be treated as a sign byte.

TABLE 2

PARAMETER SPECIFICATION IN VFL INSTRUCTIONS

Parameter Binary Decimal Boolean

Bits in operand bytel 8 implied 4 to 8 given 1 to 8 given
Bits in accumulator byte 8 implied 4 implied 8 implied
Size of operand field? given given given

Bits in accumulator field3 128 implied 128 implied 8 per operand byte
Accumulator offset given given mult. of 4 given

Sign if operand unsigned implied implied not applicable
Bits in sign byte, if any given operand byte not applicable

lwith byte size over four in decimal, high-order bits are ignored to make an
operand byte of four bits; with byte size given under eight in Boolean, high-
order zeros are added to make an operand byte of eight bits.

2The operand field need not be-an even multiple of the operand byte size; rules
for the remainder bytes are defined.

3In binary and decimal arithmetic, the field length and offset number have the

logical effect of unmasking one portion of an accumulator that acts as a unit
of 128 bits.

3.3 Instruction Formats

Let I denote an index register to be used for address modification
and J an index register that provides an operand or receives a result.
Then the three patterns underlying Stretch instructions are

() ADDRESS op  |I
(2) ADDRESS Jjop |1
ADDRESS OR
(3) ADDRESS WI VFL PARAMETERS Op L

Pattern (1) is the prototype for floating-point arithmetic, (2) the prototype
for index arithmetic, and (3) the model for branch on bit, in-out and VFL
operations. Both sides of a type (3} instruction can be indexed.
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3.4 Indicator Set

A listing of indicators is contained in Table 3.

The general

purpose of many of these will be fairly clear from the designation, but
mention will be made of #5, #17, and #18.

TABLE 3

LIST OF INDICATORS*

Equipment Check
0 Machine check
1 Instruction check
2 Instruction reject
3 Exchange control reject
Attention Request
4 Time period has ended
5 Other computer wants attention
In-out Rejects
6 Exchange check
7 Unit not ready
8 Channel busy
In-out Status
9 Exchange program check
10 Unit check
11 End exception
12 End of operation
13 Channel signatl
14 Reserved
Instruction Exception
15 Op code not valid
16 Address not valid
17 Unended sequence
18 Execute exception
19 Data store
20 Data fetch
21 Instruction fetch
Result Exception
22 Lost carry
23 Partial field
24 Zero divisor
Result Exception in Floating Point

25 Imaginary root

26 Lost significance

27 Preparatory shift over 48
28 Exponent s 211

29 210s exponent < 211
30 28 = exponent < 210
31 25 = exponent < 28
32 -211< exponent S - 210

33 Exponent = - 211

34 Remainder underflow
Flags

35 Data flag 1

36 Data flag 2

37 Data flag 3

38 Index flag
Automatic Subroutine Entrance

39 Loaded for binary op

40 Loaded for decimal op
Reserved

41 through 47
Index Result

48 Count zero

49 Value negative

50 Value zero

51 Value positive

52 Index low

53 Index equal

54 Index high
Arithmetic Result

55 To-memory operation

56 Result less than zero

57 Result zero

58 Result over zero

59 Result negative

60 Accumulator low

61 Accumulator equal

62 Accumulator high
Mode

63 Mode of Normalization

*Indicators 0-19 always interrupt, 20-47 interrupt unless masked, and

48-63 never interrupt.
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Indicator #5 is activated when another computer wants attention;
the identity of the interrupting computer will be stored in accord with
some convention.

Indicator #17 is activated if an indirect addressing sequence
continues through more than one full time interval of a millisecond.
Indicator #18 reports that an instruction performed under control of
an ''execute'' type instruction tried to branch but was suppressed. Indi-
cators #19, #20 and #21 are set, as appropriate, when {1} the central
processing unit attempts stores or fetches to a delimited area in memory
and (2) the interrupt system is enabled. If the corresponding mask bit is
one, the operation is suppressed and interruption occurs; if zero, the
operation is completed.

3.5 Instruction Set

Exact formats, indicator settings, or unusual usages are not
attempted in presenting the instruction list. Little use is made of
symbols, although IC will denote "instruction counter' and X; will denote
the ith index register, where i runs from 0 to 15. The terms direct, in-
direct and immediate will have the meaning used in Section 2.4. The
distinction between ''different' instructions is more or less arbitrary in
Stretch; conventions used by the designers are followed here. As pre-
sented, the instructions are separated by semicolons.

Index Arithmetic

Load X;; Load value (direct, immediate plus or minus);

Load count (direct or immediate); Load refill (direct or immediate);

Store X; Store value; Store count; Store refill;

Add to value (direct, immediate plus, immediate minus);

Ditto and count; Ditto and count and refill on zero count;

Compare value (direct, immediate plus or immediate minus);

Compare count (direct or immediate);

Add to count (immediate plus or immediate minus);

Refill; Refill on count zero;

Load value with sum of values from specified X;;

Load value by indirect addressing;

Load X; (i # 0) saving memory address in X( but first store X;
in location given by contents of Xp;

Store value in address field of instruction with number of bits
appropriate to the instruction;

Increment value, count and branch on count;

Increment value, count, branch on count, refill on count.



The value field of an index word takes up 24 bits, yet only 19
bits are available from the address of an immediate instruction.
Simple rules govern the treatment of the five low-order bits in load-
ing, adding or comparing value via immediate addressing.

In-out instructions. These are few in number and have but one
variation. In typical usage, an in-out operation signals Indicator #12
(end of operation) when successfully completed. This potential inter-
rupt can be avoided, if so desired, by using an instruction for the pur-
pose. Let SEOP denote ""suppress end of operation signal."” All in-
structions occupy a full word and can therefore contain two addresses.
In read or write, the first address specifies the channel and the second
address specifies the location of the first control word. Data addresses
and control information are provided by control words.

Read; Read SEOP; Write; Write SEOP;

Control (rewind, backspace, etc.); Control SEOP;

Locate unit or arc; Locate SEOP;

Release channel and clear status bits in control word;
Release SEOP; Obtain control word from exchange memory.

Branch and miscellaneous instructions. Let T denote an in-
struction that does not affect the interrupt mode or reset IC,

No operation; Branch; Branch relative to IC;

Enable interrupt mechanism and branch;

Enable interrupt mechanism, branch and wait;

Disable interrupt mechanism and branch;

Branch on indicator (off or on, leave or set to zero); .

Branch on bit (off or on, leave or invert - leave or set to zero);

Store IC if suffixed half-word branched instruction is taken;

Move N words in memory; Swap n word-pairs in memory;

Store zero; Execute instruction T at location U;

Execute T as addressed by contents of location U, then augment
U as though it were IC.

The last two instructions can use indirect addressing; i. e., they will
chain until a non-execute instruction is found, or until a full milli-
second time interval has elapsed (indicator #17 will then be set). The
"'no operation' code differs by only one bit from certain branch instruc-
tions.

Floating-point instructions. The numbers 48 and 96 are used to
indicate the size of memory and accumulator fractions in those cases
where a question might exist. All instructions are half word. Augment
means ''add but if accumulator goes negative clear it to zero!' Operations
may be normalized or unnormalized as specified. Sign control is provided,
typically as follows: signs unchanged, invert sign of memory operand,
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assume operand positive, or assume operand negative.

Add; Add 48 to 96; Add to memory; Add exponent immediate;
Add 48 to 96 using accumulator exponent with addend;

Add operand exponent to accumulator exponent;

Augment; Augment 48 to 96; Augment to memory;

Load; Load with flag; Load cumulative multiplicand;

Reset 96 and load 48; Reset 96 and load 48 with flag;

Store; Store rounded; Store square root;

Store low 48 of 96 with adjusted exponent;

Compare; Compare with positive-signed accumulator;
Compare if accumulator-high indicator is on;

Compare with positive accumulator if high indicator is on;
Multiply 48 x 48 and save 48; Multiply 48 x 48 and save 96;
Multiply 48 x 48, save 96 and add to 96;

Divide accumulator 48 (extended with 48 zeros) by operand 48;
Divide as before but first swap accumulator and operand;
Divide 96 by 48 and save remainder; Shift 96.

With Indicator #63 on, an optional mode of arithmetic is used.
Left shifts in normalization then bring in ones on the right, thus pro-
viding a basis for doing the same calculation two ways and estimating
loss of significance from the two results.

Variable field length instructions. All VFL instructions occupy
one word. The variable length data field may be unsigned or signed
decimal or binary, or it may be any desired pattern of bits. The results
of multiplications and divisions are aligned as thoughthe operands were
integers.

Several of the parameters necessary to a VFL instruction were
given in Table 2. If the instruction is arithmetic, radix and sign control
parameters must be given. If the instruction is a logical connective,a
four-bit code is used to specify which of the sixteen possible logical con-
nectives applies in combining memory and accumulator. bits. The form of
indexing must be specified as well. Ordinary indexing can be used with
direct or immediate addressing. Progressive indexing can be chosen with
six options for adding, counting and refilling.

Add; Add to memory; Augment; Augment to memory;

Count to memory; Load; Load with flag; Store; Store rounded;
Compare; Compare field; Compare if "equal' indicator on;
Compare field if ""equal" indicator on;

Compare if "high" indicator on;

Compare field if "high'" indicator is on;

Multiply; Multiply cumulative; Divide and save remainder;
Load cumulative multiplicand;

Memory to accumulator with radix change;

Memory to transit register with radix change;

Radix change in accumulator; Radix change in double accumulator;
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Load transit and set indicator #39 or #40;

Perform logical connective with result to memory;

Perform logical connective with result to accumulator;
Perform logical connective just to set indicators and counts.

The last three instructions set the ''all ones' counter and the 'left zeros"
counter. These counters are also used in the four VFL instructions that
involve automatic entrance to subroutines: (1) multiply with decimal
radix, (2) divide with decimal radix, (3) multiply and add with decimal
radix, and (4) load transit register and turn on appropriate indicator.
Each of these four conditions identifies itself by leaving information in
the left zeros counter. Beyond this, (1), (2) and (3) simply place the spe-
cified offset parameter in the all ones counter and turn on Indicator #40 -
thereby entering a common subroutine that determines what needs to be
done.

Operation (4) is more general. It loads the transit register,
places the given offset parameter in the all ones counter, and turns on
Indicator #39 (binary) or #40 (decimal) in accordance with the given
radix modifier. At this point the all ones counter contains information
that can be used to distinguish among 128 subroutines for pseudo
operations.

3.6 Time Estimation

There is no crisp, definitive way to estimate running time for
Stretch. Here is a rule of thumb, however, that is useful for rough
comparative and descriptive purposes. It is based on experience with
a timing simulator (14), and is said to have a variation of perhaps ten
percent from much more elaborate estimation procedures - for typical
computational problems where the mix is quite high on floating-point
instructions.

Let N denote the number of words involved in a move instruction,
and the number of pairs involved in a swap instruction.

(1) Form a total of executions. Count moves 2N times, swaps
3N times, and other instructions once.

(2) Subtract branches not taken.

(3) Subtract index instructions that do not require operand fetch
from main memory - if followed by VFL or floating point
instructions.

(4) Multiply total by 1.4 microseconds.
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(5) Add 5 microseconds for each interrupt, branch taken on
indicator, or branch taken on bit.

A branch taken on count can be effected in the instruction unit with rela-
tively-little delay for ALU as a whole. Branch taken on indicator or on
bit, however, requires that lookahead be loaded from a new sequence of
instructions. The time in (5) is associated with the delay involved in
this reloading. Stretch performance is sensitive to the proportion of
conditional branches, as will become clearer in the sequel.

3.7 Programming Aids

The aids to be described are designed primarily for the installa-
tion with a mix of batch processing jobs. Specifications are tentative.

STRAP, the symbolic programming system for Stretch, will pro-
vide the framework for mnemonic instruction formats, for pseudo oper-
ations, and for symbolic addresses. The first STRAP assembly system
involves assembly processing on the IBM 704. This will be followed by
an assembler that runs on Stretch. It is not planned that the 1960 version
of STRAP will give the programmer debugging information back in the
symbolic language, although this is contemplated for the future.

The increased processing speeds in Stretch spotlight the need
for efficient read-write operations. Assume that the following could be
estimated for a computer installation as a whole: (1) elapsed time
necessary for all read-write operations with the exchange reasonably-
well loaded, and (2) elapsed time for all ALU processing. Ideally, one
would like to accomplish all work in the longest of these two elapsed
times. Real-time considerations aside, multiprogramming in a Stretch-
like system should be viewed as a step towards attainment of this goal.
In reaching for higher efficiency, however, such multiprogramming in-
volves additional cost. The nature - i, e., shape and generality - of
the efficiency-cost curve is still a matter of speculation.

The second basic programming aid is a system for limited multi-
programming control. This system provides a convenient framework in
which read-write chores can be run concurrently with a main program,
along the lines that have been publicized for the IBM 7070. The idea is
generalized to include an "automatic operator' through which various
input (output) activities are queued and completed before (after) the cor-
responding main program processing. The objective here is to disassoci-
ate main runs as much as possible from all devices except high-density
magnetic tapes, and to attain the objective without overwhelming the
operators.



It is planned that input-output devices will remain symbolic in
assembled programs. Symbolic will be converted to actual at running
time. Devices will be loaded and unloaded upon instructions from the
supervisor program.

The supervisor, version 1960, will permit temporary suspension
of the main program and its tape devices to afford time for a debugging
session. Repositioning of tapes may be optional later.

Fortran will be provided. A generalized multiprogramming
scheme may or may not become justified. If so, the problem of
storage allocation for a changing mix of active programs must be
solved effectively. To aggravate this problem, Stretch suffers
some loss of efficiency if the two-four (four-four, etc.) partition of
instructions and operands is disregarded.

4. FUNCTIONAL STRUCTURE

4.1 Addressable and Index Registers

Because of the key role these registers play in the system as a
whole, their functions have emerged earlier in the report.

Location 1, the interval timer and time clock, amounts to a
seventeenth word in the index memory. Locations 2, 3, 5, 7, 8, 9,
10, 11 and 12 are transistorized circuits. Like all fast registers in
ALU, the circuits use a variety of current-switching logic. Location
4 is implemented by switches on a maintenance console. Locations
13, 14, and 15 are simply locations in main memory.

The index memory, locations 16 through 31, is a-parity-checked
core storage unit with separate and independent read and write cycles.
Non-destructive read takes 0.4 microseconds and write about twice as
long.

4.2 Core Storage

Although the Los Alamos system has six, sixteen separate core
storage units can be attached. Each unit is self-timed frem the start of
access, but is adjusted to synchronize with the slot system of the bus
control unit. The memory unit farthest from the bus control unit is taken
as a reference point and nearer units employ adjustable delay lines to
simulate an equal distance.

24



Assuming no delay in service from the bus control unit or from
the desired memory unit, the timing for an ALU fetch is as given below
(2 "'slot" is 0. 2 microseconds).

Slots Needed Slots Elapsed
Request to bus control (BCU) 1 1
BCU decodes; informs memory 1.5 2.5
Memory access 5 7.5
Memory returns data word 1.5 9
ALU checks data word 2 11

The requesting register in this case is notified of acceptance at the end of
slot 2. In stores, acceptance provides a signal to start a two-slot data
gate.

4.3 In-out Devices

New in-out devices can be added to Stretch by meeting the general
requirements laid down by the exchange. The devices to be mentioned
are illustrative.

The IBM 729-II and 729-1V magnetic tape devices are currently
specified. To feed the exchange with 8-bit bytes, four 6-bit characters
on tape are converted to three 8-bit bytes. Each tape control unit is
assigned a channel, and up to eight devices can be tied to one control
unit. A "locate' instruction is used to select the device of interest, while
the channel is specified in the read or write instruction. Stretch words
can be recorded as 64 or as 72-bit words, i.e., with or without ECC bits.

Currently specified are a 1000-cpm card reader and a 250-cpm
card punch. Both use buffers of 960 bits. The buffers hold fifteen words
in non~-ECC mode. In ECC mode, the first 78 columns hold thirteen 72-
bit words, and the last two columns are unused.

The electromechanical printer has 132 printing positions. Infor-
mation to be printed is coded in an 8-bit code, with 16.5 words required
for a full line. The information is moved from memory to buffer by the
write instruction. The printing rate is 600 lines per minute for a 48-
character set and 300 lines per minute for a 119-character set.

The operator's consoles, connected to the computer through the
exchange, are viewed as in-out devices. The 'central' console has two
special keys, initial program load and emergency power off, and two
unique visual indicators, running and inactive.
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From any console, channel signal (indicator #13) can be activated.
The console is designed with the equivalent of 192 bits (three words) of
switch settings and 192 bits of visual information. A read operation is
used to store the settings in three words, and a write operation uses
three words to set up visual indicators. Additional information can be
entered via keyboard and received via typewriter.

High-speed disk units are available with 222 {over four million)
words each. A unit is composed of 39 disks; 39 faces are used for even-
numbered tracks, and the other 39 for odd-numbered tracks. Because
each set of faces has a corresponding set of 39 read-write heads, and
because consecutively numbered tracks do not fall in the same set,
positioning of one track is possible while the preceding track is being
read or written, Words are moved in parallel by 39-bit bytes, of which
32 bits are data. The other seven bits are ECC bits for single-error cor-
rection and double-error detection on half words.

Addressing is via 212 locations called "arcs." Each arc contains
210 words. Arcs are formed by dividing each of 29 tracks into 23 sectors.
A locate instruction gives information for both track and sector. Time
for a locate ranges up to 150 milliseconds. As the disks revolve every
34 milliseconds, a subsequent read or write will average about 17 milli-
seconds in finding the right starting sector. This 17 can be cut to around
two milliseconds by reading full tracks - in which case it is possible for
the system to start with the very next sector and adjust memory addresses
to suit the particular choice of starting sector.

The transmission rate is one word every four microseconds. A
special exchange is required for disks. Up to 32 disk units are said to
be possible in one system. All units may be performing "locate' at the
same time, but only one unit can read or write concurrently.

4.4 The Exchang_e Units

In addition to the basic exchange, a high-speed exchange is speci-
fied for the disk units. Its kindred design is simpler than the basic ex-
change, and will not be discussed here.

The end purpose of the exchange is to provide for, and regulate,
the movement of data words between read-write devices and main memory.
Typically, the exchange receives an instruction from the lookahead, car-
ries out the execution, and then communicates back to the stored program.
The exchange makes references to main memory to obtain new control
words and to fetch or store data words, Via control units on its data
channels, data bytes of eight or sixteen bits each are moved to or from
in-out devices.
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An exchange can have up to 32 channels. More than one device
may be attached to a channel via a control unit, but only one device can
be selected for a given channel at a given time. The exchange, therefore,
sees only one device per channel. There is a possible exception to this
rule: with a special adapter, one channel can be time-shared by up to
64 devices with very low data rates.

The exchange has a core-storage memory of 256 words with a
one-microsecond cycle. The cycle leaves time for some processing, so
that a word can be updated before being restored. Storage is assigned to
96 control words, 64 data words (two per channel) for ordinary channels,
64 data words for the possible time-shared channel, and 32 extra words.
An 80-bit word length is used in the exchange memory: 64 bits for data,
eight bits for ECC, and eight bits for exchange contrel purposes. The
exchange is synchronized to its memory cycle, which is derived from a
free-running ring. Instructions are executed by combining a number of
different one-microsecond operations. Unbuffered devices are assigned
numerical weights, in accordance with their data rates, and the stored
program is expected to avoid exchange overloading by staying within a
total weight limit. The prescribed limit is reached by eight IBM Type
729-1V tape devices each operating at 62, 500 characters per second (and
not using scatter-read or write).

The status of a channel is recorded in the status bits of its control
word: exchange program check, unit check, end exception, end of oper-
ation, channel signal, suppress end of operation interrupt, and unit
ready. The first five of these status bits have corresponding indicators
in the indicator register (IR). When the exchange completes or otherwise
terminates an operation for a given channel, it seeks to communicate with
the stored program by sending the appropriate status bits to IR and the
channel address to the channel address register. It is permitted to do
this if one or more interrupts attendant upon the prior report have cleared
the IR field to zero. Failing this, the exchange must wait. Because only
one channel at a time can cause interruption, reports for other channels
must be held up until the stored program clears the report it has. In-out
status interrupts cannot be masked. End-of-operation interrupt can be
avoided by a SEOP instruction, but this does not prevent interruptions
from other conditions.

4.5 Instruction Unit

The first mission of the instruction unit is to provide the looka-
head unit with a stream of instruction-operand pairs. Four main
functions are involved in the attainment of this objective:
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- stepping the instruction counter,

- requesting and receiving instruction words,

- indexing instruction addresses, and

- requesting operands for delivery to lookahead.

The second mission of the instruction unit is to execute the index
arithmetic instructions. There are secondary functions, of course, such
as stepping the interval timer and the time clock every 1024 microseconds.

The unit has two registers Y] and Y, for main memory accesses,
a register X for buffering direct accesses to the index memory, the
instruction counter IC, and a register Z for use with the 24-bit algebraic
adder.

The instruction unit has direct access to index registers for both
fetch or store. It can fetch from main memory but must store to main
memory via the lookahead unit. It has no direct access to addressable
registers but must submit the request through lookahead.

The instruction unit, the lookahead unit, and the bus control unit
are all synchronized to the same basic pulse source.

4.6 Lookahead Unit

The lookahead unit receives instructions from the instruction
unit, It receives operands requested by the instruction unit. It trans-
mits instructions and operands to the arithmetic unit; it transmits
instructions and control word addresses to the exchanges. It receives
operands to be stored from the instruction unit and from the arithmetic
unit. It updates addressable registers. In event of interrupt, it restores
index memory and authorizes an instruction counter (IC) value of record.

To perform its functions the lookahead has four levels of storage,
two other important registers, and a sequence of five control counters
through which each level must pass in disposing of an instruction. Look-
ahead also has a forwarding system by which operands can be moved from
one level to another.

The following fields and information bits are associated with each
level of lookahead storage: operation code, ten bits; operand, 64 bits;
indicators affected by indexing, 12 bits; IC reading for next instruction,

19 bits; and status field, seven bits. Check bits are additional. Every
instruction obtained by the instruction unit takes up at least one level in
lookahead. A simple floating-point instruction takes one, but floating-
point add-to-memory takes two. A VFL instruction takes one level for
the instruction and parameters, and one or two additional levels according
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as the field does not or does cross a word boundary. An index arithmetic
instruction either saves a word (an index word it changed) in the operand
field or provides a word for storage; it is also represented by the rele-
vant indicator settings that correspond to its execution.

The "IC buffer' register contains the IC value for the instruction
being executed. After execution is completed, this value is retained dur-
ing interrogation of the program interrupt system.

The lookahead address register (LAAR) has three uses. (1) When
a store instruction is loaded, LAAR receives the store address.
(2) When an instruction specifies as operand the contents of an internal
register, LAAR contains the register address. Lookahead can contain
only one instruction of these kinds. (3) When LAAR is not used for (1)
or {2), it contains the address of the last operand loaded inte lockahead,
and is said to be ''not busy."

The instruction unit always checks LAAR before starting a memory
fetch. If the instruction unit wants a word for itself (instruction or index
arithmetic operand), and if LAAR is busy, an equal on compare is used to
block the fetch until LAAR is no longer busy. If the instruction wants to
request an operand for delivery to lookahead, an equal on compare means
the word is in lookahead (3), will be in lookahead (1), or must be obtained
by lookahead in exact sequence (2). This information is passed on to
lookahead, where the forwarding system arranges data movements with-
in lookahead.

If the instruction unit wants the contents of an addressable internal
register, lookahead fetches and returns the data at the appropriate time.

4,7 Arithmetic Unit

The basic functions of the arithmetic unit are to perform (1) binary
addition, multiplication and division on fixed-format fields, and (2) binary
addition, decimal addition, and logical connectives on variable format
fields. Central to the first function is a parallel binary adder with 102
bit positions, which will be termed the ""main adder." Central to the
second function is a parallel adder with twelve bit positions, supple-
mented by an eight-bit logic unit. For convenience, these are termed
the "VFL adder. "

All multiplication and division is done on binary radix. Binary
VFL multiply and divide are so defined that they can be accomplished
within the fixed-format facilities. Decimal multiplication and division
make entrance to a stored-program subroutine, which will use instruc-
tions for radix conversion and binary arithmetic.
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The VFL adder is used for exponent arithmetic in fixed-format
operations. When the VFL adder is used for byte processing in VFL
instructions, the main adder idles.

Four of the principal registers have an effective size of 64
bits each. These are register A, the upper accumulator; register B,
the lower accumulator; register C, an operand register; and D, also an
operand register. The accumulator as a whole is denoted AB. For VFL
instructions it is convenient to think of CD as a continuous register, as
there will be two operands if the field crosses a word boundary.

Closely associated with the main adder are register F and a
shifter. F is used in multiplication and division and in general for
shifting, which is accomplished through an adder-register-shifter loop.
Shifts of six or less are possible in one cycle through the loop.

Among the special-purpose registers are the sign-byte register
(8 bits); register G for multiply select signals (20 bits); register S for
the sum from a carry-save add cycle {60 bits); and register T for the
carry bits from a carry-save cycle.

The main adder is composed of 100 positions plus two high-order
positions for true/complement control. The adder as a whole works with
ones-complement arithmetic and end-around carry. Effective size for
most purposes is 96 bits. Extra positions are needed in division, in
which case the adder is divided, twos-complement arithmetic is used,
and extra positions are needed for tapping of 3/4 and 3/2 multiples of
the divisor. '

In floating-point addition, the memory fraction from C and the
accumulator fraction from AB are routed through the main adder, the
checker, and back to AB.

In VFL byte operations, the operand or operands are in CD.
The offset parameter is used to align the right edge of the field from
CD with a position in AB. Starting from the right end of the respective
fields, bytes of appropriate size are processed through the VFL adder
in duplicate. Result bytes go back to AB. Upon completion of byte pro-
cessing, the accumulator contents go through the checker to verify parity
and update the residue-three information in the checker.

An octal radix is assumed in multiplication. Multiplicand
multiples 2, 4, 6 and 8 - true or complement - are gated as needed.
In the general algorithm, which was introduced in Section 2. 7, the
multiple for an octal position assumes odd-even knowledge of the octal
digit in the next higher position. The digit decoders therefore look at
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the low-order bit in the next octal. An odd low-order octal is handled
by the initial procedure.

A carry-save adder has three inputs and two outputs. At each

in Stretch multiplication, there are six inputs: multiples for four
octal digits, and S and T from the prior step (these are zero at the first

step). The six inputs are reduced to two with the network of adders in
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Figure 3 - Network of Carry-Save Adders

Three stages of carry-save addition are required to sum up the four
multiples. This is interesting because the job could be done with four
applications of one carry-save adder. The explanation: carry-save
addition is very fast in itself but the return loop (dotted line) is relatively
slow. The Stretch design is planned, therefore, to hold down the number
of return loops.

At the start of multiplication, the multiplicand is in C and the
multiplier moves from A into the high end of F. Four octal digits are
decoded. Register C and the main adder supply multiples for the carry-
save network. At the end of the cycle, the rightmost twelve bits in both
S and T are stored in unused portions of F. After the cycle is repeated
four times tnere are 60 sum bits in S and 36 in F, and there are 60 carry
bits in T and 36 in F. The 96 sum bits and 96 carry bits go through the
main adder for carry assimilation, back to F, through the arithmetic
checker, and into the accumulator,

In division the lower order end of the main adder is used to form
divisor multiples. The high end is used for addition. The dividend is
placed in F and, as it is diminished at each cycle, is progressively
shifted out of the high end. Quotient digits meanwhile shift into the low
end of F. At the close, remainder and quotient are in F. These go to

31



the checker. The quotient returns to A. The remainder is treated ac-
cording to the specific divide instruction.

The parallel add and basic multiply cycles in Stretch are not
data-timed, although division is. Initialization procedures, particu-
larly normalization, may introduce time variability. The following
estimates are for typical conditions and include checking: floating-point
add, l.Z2 microseconds; floating-point multiply, 2.4 microseconds;
floating ~point divide, 7.5 microseconds; and VFL processing on N bytes,
(N + 2) (0. 6) microseconds.

4.8 Bus Control Unit

Two main busses, the memory-in bus and a memory-out bus,
connect accessing registers to core storage. Each operates at a maxi-
mum rate of one word each 0.2 microseconds. Busses are under direc-
tion of the bus control unit (BCU).

The main BCU functions are to regulate the movement of (1)
memory addresses, store-fetch commands, and data words from ac-
cessing registers to memory units, and (2) data words to receiving
registers. BCU operates synchronously with the instruction unit and
lookahead unit on the basis of 0.2 microsecond slots. The exchange
operates asynchronously, and its requests are individually synchronized.
Memory units are self-timed but are adjusted to synchronize accesses
with BCU.

BCU selects accessing units according to a priority system and
a memory unit as determined from the memory address. To afford a
one-word-per-slot rate, control decisions overlap with address trans-
missions to memory units. During the move of one request to a memory,
BCU is determining which request will be moved in the next slot. A re-
quest is honored if (a) the desired memory is available and (b) the request-
ing unit has higher priority than other units requesting available memories.
Priority is in this order: basic exchange, high-speed exchange,lookahead,
instruction unit. A data word to be stored is gated two slots later than
the address; this time may be used in ALU to convert from an ALU check-
ing code to the Hamming code used in memory.

In fetches, an output bus slot is reserved when the fetch request is
moved to memory. The reservation is filed as a binary return address
that specifies the register to read the data on the out bus. An ALU regis-
ter is notified one slot before the data word is timed to reach the register,
permitting it to request priority on the checker.
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5. REFERENCES AND ACKNOWLEDGEMENTS

Although I did not encounter any bibliography of IBM confidential
documents on Stretch, it should be mentioned that the IBM Technical
Library, South Road Laboratory, Poughkeepsie, has on file two series
of documents with relevance to machine organization. These are the
Stretch Memo series with numbers 1 through 63 (1 November 1955 to
26 July 1957) and the Sigma Computer Memo series with numbers 1
through 33 (18 November 1957 to 6 July 1959). Over forty different
authors contributed to the seven hundred pages under these titles. Al-
though the memos vary greatly in scope and generality, they provide an
incomplete but interesting record of analytical forces molding a machine
organization.

For design objectives see Dunwell (1). Simulation studies were
mentioned in Section 2.1 - for a report on studies using a timing simu-
lator see Cocke and Kolsky (2). For amplification and analysis of points
mentioned in Sections 2.4, 2.5 and 2. 6, refer to Buchholz (3), Blaauw (4)
and Brooks (5). For Section 2.7, see a paper by Brooks, et. al. (6) and
three file memoranda (7, 8, 9) by Montgomery. None of these discuss
carry propagate addition, however, and I have relied upon a paper by
Weinberger and Smith (10) for the general ideas, which were worked out
independently at the National Bureau of Standards. Section 2.8 is based
largely on Bahnsen (11) and Stringfellow (12).

Sections 3.1 through 3.5 summarize from the Stretch information
manual (13). The estimation procedure of Section 3. 6 is not in print to
my knowledge. Kolsky presented it to an internal IBM training course
(14) and I have changed it slightly on the basis of a subsequent conversa-
tion with him. Section 4.7 is based on (14) and (15).

Use was made of Ulfsparre (16) for Sections 4. 2 and 4. 8; the
manual (13) for 4. 3; Stetler (17) for 4. 6; and Fletcher, et. al. (18) for
4.4. In Section 4.7, use was made of (8) and (9). Revisions were made
using Bloch (19), which has considerable material on the arithmetic unit.

For background on current-switching circuits, there is Yourke
(20). For hardware counts and three basic Stretch circuits see Bloch
(19). The classical article on error-correcting codes is Hamming (21).

While several people have been instrumental in the preparation
of this report, I am particularly indebted to three. R. S. Ballance and
E. 1. Jordan have been helpful in providing references and system facts.
Remarks by F. P. Brooks, Jr., first on the original outline and again on
the first draft, enabled me to repair a number of weaknesses in technical
emphasis and clarity,
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