48 1959 PROCEEDINGS OF THE EASTERN JOINT COMPUTER CONFERENCE

The Engineering Design of the Stretch Computer

INTRODUCTION

HE STRETCH Computer! project was started in
Torder to achieve two orders of magnitude of im-

provement in performance over the then existing
704. Although this computer, like the 704, is aimed
at scientific problems such as reactor design, hydro-
dynamies problems, partial differential equations ete.,
its instruction set and organization are such that it
can handle with ease data-processing problems nor-
mally associated with commercial applications, such
as processing of alphanumeric fields, sorting, and deci-
mal arithmetic.

In order to achieve the stated goal of performance,
all factors that go into the computer design must
contribute towards the performance goal; this in-
cludes the instruction set?, the internal system organ-
ization, the data and instruction word length, and
auxiliary features such as status-monitoring devices,
the circuits, packaging, and component technology.
No one of them by itself can give this hundred-fold
increase in speed: only by the combining and inter-
acting of these contributing factors can this perform-
ance be obtained.

This paper reviews the engineering design of the
Stretch System with primary concentration on the
central computer as the main contributor to perform-
mance. In it, these new techniques, devices, and in-
structions have been pushed to the limit set by the
present technology and, therefore, its analysis will
convey best the problems encountered and the solu-
tions employed.

THE STRETCH SYSTEM

Early in the system design, it appeared evident
that a six-fold improvement in memory performance
and a ten-fold improvement in basic circuit speed
over the 704 was the best one could achieve. To meet
the proposed performance criteria, the system had to
be organized in such a way that it took advantage of
every possible overlap of systems function, multi-
plexing of the major portion of the system, processing
of operations simultaneously, and anticipation of oc-
currences, wherever possible. The system had to be
capable of making assumptions based on the proba-
bility that certain events might occur, and means had

t Data Systems Division, IBM, Poughkeepsie, N. Y.

! 8.W. Dunwell,“Design Objectives forthe IBM Stretch Computer,”
EJCC Proc., p. 20, Dec. 1956.

?W. Buchholz, “Selection of an Instruction Language,” WJCC

Proc., p. 128, May 1958,

to be provided to retrace the steps
tion proved to be wrong.

This simultaneity and multiplexing of operations
reflects itself in the Stretch System at all levels,
from overall systems organization to the cycle of
specific instructions. In the following desecription, this
will be discussed in more detail.

n the assump-

INSTRUCTION MEMORIES OPERAND MEMORIES

(MOD 2 INTERLEAVED) / (MOD 4 INTERLEAVED)

T ? I__% £ bl 7
eusecoore| [2useccore] f[2usecoore]| [zuseccome] [2uwseccome| [z secoome
MEMORY MEMORY MEMORY MEMORY L Y MEMORY
(16K) wex) |/ (16K} (6K) (16K) (16K}

L 1 / 7 wewony i sus i f il

MEMORY OUT BUS

CENTRAL
DISK SYNCH MEMORY
UNIT | I/0 EXMH BUS COMPUTER
DISK CONSOLE READER PRINTER PUNCH TAPE TAPE TAPE
CONTROL ADAPTER ADAPTER ADAPTER ADAI’TER ADAPTER ADAPTER ADAPTER
UNIT
am‘vmus 729-IC
TAPE

Fig. 1—The Stretch system.

If one considers the Stretch System (Fig. 1) from

> + +hat +ho
an overall p"““+ of ‘"D“ it buLleAus Apparenv uiat wae

major parts of the system can operate simultaneously:

a. The 2-usec, 16,384-word core memories are self-
contained, with their own clocks, addressing
circuits, data registers and checking circuits.
The memories themselves are interleaved so that
the first two memories have their addresses dis-
tributed modulo 2 and the other four are inter-
leaved modulo 4. The modulo-2-interleaved
memories are used primarily for instruction
storage; since, for high-performance instruc-
tions, halfword formats are used, the average
rate of obtaining instructions is one per 14 usec.
Similarly, a 0.5-usec data-word rate is achieved
by the use of four modulo-4 organized memories.
The addressing of the memories and the transfer
of information from and to the memories by a
memory bus permits new addresses, informa-
tlﬂn or hoth to pass through the bus every

200 mpsec. T

b. The simultaneously-operating Input,/Output
units are linked with the memories and the com-
puter through the Exchange, which, after initial
instruction by the computer, coordinates the

Bloch: Engineering Design of the Stretch Computer 49

starting of the I/0 equipment, the checking and
error-correction of the information, the arrange-
ment of the information into memory words,
and the fetching and storing of the information
from and to memory. All these functions are
executed without the use of the computer, so it
can in the meantime continue its data process-
ing and computation.

. The central computer processes and executes the
stored program. Here, now, the simultaneity and
multiplexing of functions has reached its
ultimate.

Before discussing the computer organization, a few

general features must be mentioned for completeness:

a. Word length: 64 bits plus eight bits for parity
checks and error-correction codes.

. Memory capacity and addressing: A possible
256,000 words can be randomly addressed.
These storage positions are all in external mem-
ory, except for the 32 first addresses. These
positions consist of the internal registers (accu-
mulators, time clocks, index registers).

. The instructions are single-address instructions
with the exception of a number of special codes
that imply the second address explicitly.

The instruction set (Fig. 2) is generalized and
contains a full set for single- and double-preci-
sion floating-point arithmetic, and a full set for
variable-field-length integer arithmetic (binary
and decimal). It also has a generalized set for
index modification and a branching set, as well
as a set of I/0 instructions. All told, 765 differ-
ent types of instructions are used in the system.

v

T T T T T

INTEGER {nn’z & BYTET BYTEG BYTES BYTE 4 BYTE 3 BYTE2 BYTE ! I ECC
1 . L L L L L

P1v BiTS
o 7 15 E) El 39 a7 55 €3 7
FLOATING T
o XPONENT]*4 ECC
T EXPON m MANTISSA (FRACTION) PARITY l
o112 s 63 7
INDEX | ECC
O r VALUE JN COUNT | REFILL i"“’"’*
° 23 28 63 T
FLAG
170 75 =
oonmu.rmuwoe Al IW‘AI [I
0 ADR | ¢ COUNT REFILL sy
c '8 2528 [) 7

INSTRUCTION FORMATS
MSIZE/—M‘ FIELD SiGNED

wreeer [woro aooress | BT Joodwof e [EEER] [ACE Ts ¥ op 1 [pasiry
G CRREN- X & &
BINARY
DECIMAL
FLOATING
POINT ADDRESS s oP 1
o [] 2 3
DIRECT
INDEX ADDRESS Jjor|1
13 v 23 28 3

Fig. 3—Data word — and instruction word formats.

d. The instruction format (Fig. 3) makes use of
both half and full words; half words accommo-
date indexing and floating-point instructions (for
optimum performance these two sets of instruc-
tions use a rigid format), and full-word formats
are used by the variable-field-length instruc-
tions. Notice that the latter specifies the operand
field by the address of its left-most bit, the
length of the field, and the byte* size, as well as
the starting point (offset) of the implied operand
(accumulator). Both halves of the word are in-
dependently indexable.

e. A general monitoring device used for important
status triggers is called the Interrupt® System.
This system monitors the flip-flops which reflect
internal malfunctions, result significance (ex-
ponent range, mantissa zero, overflow, under-

COMPUTER VOCABULARY
INSTRUCTION Numesr
CATEGORY Cuass MODIFIER EXAMPLES OF INSTR,

VARIABLE FIELD BINARY SIGNED ADD (TO MEMORY)
LENGTH ARITHMETIC | DECIMAL UNSIGNED LOAD/STORE

SAME SIGN MPY

NEGATIVESIGN | DIVIDE

CUMULATIVE MPY 280

RADIX CONVERSTON |~ BIN/DEC I EH
LOGIC CONNECTS 16 LOGIC STATEMENT 3
FLOATING POINT NORMALIZED |SAME SIGN

ADD (SINGLE & DOUBLE)
LOAD/STORE
MPY/(SINGLE 8DOUBLE)
DIV (WITH REMAINDER)
INTERCHANGE DIVIDE
CUMULATIVE MPY
SQUARE ROOT

UNNORMAUIZED |OPPOSITE SIGN
NEGATIVE SIGN
NOISY MODE

ARITHMETIC

240

flow), program errors (illegal instruction, pro-
tected memory area), and input/output condi-
tions (unit not ready, etc.). The status of these
flip-flops can cause a break in the normal pro-
gression of the stored program for fix-up pur-
poses. Their status is automatically interrogated
at all times.

DIRECT
IMMEDIATE
PROGRESSIVE

INDEXING ARITHMETIC

43

UNCONDITIONAL
INDEXING
INDICATOR IF {1

o 1 {o}

BRANCHES

ISET O
LEAVE BIT

STORE INST CTR INVERT BIT

TRANSMIT/SWAP
/O INSTRUCTION

TOTAL

Fig. 2—The instruction set.

TreE STRETCH COMPUTER

If one considers the internal organization of the
majority of computers that have been produced dur-
ing the last eight years (and the 704 is a case in point),
the organization looks as shown in Fig. 4a. There
is a sequential flow of instructions into the computer,
and after due processing and execution, the next in-
struction is called from memory. Compare this with

* Byle: a generic term to denote the number of bits to be operated
on as a unit by a variable-field-length instruction.

3 7. P. Brooks, Jr., “A Program-Controlled Program Interruption
System,” EJCC Proc., p. 128, Dec. 1957.

50

DATA WORD

Fig. 4—Comparison of Stretch and 704 organization.

Fig. 4b, showing the organization of Stretch, where
two instruction words and four operands can be
fetched simultaneously. In addition, the execution of
the instruction is done in parallel and simultaneously
with the described fetching functions.

All the units of the computer are loosely coupled
together, each one controlled by its own clock sys-
tem, which in turn is synchronized by a master
oscillator. This multiplexing of the units of the com-
puter results in a large number of registers and
adders, since time-sharing of the major computer
organs is no longer possible. All in all, the computer
has 3,000 register positions and about 450 adder
positions.

Despite the multiplexing and simultaneous opera-
tion of sucecessive instructions, the result appears as
if sequential step-by-step internal operation were
utilized. This has made the design of the interlocks
quite complex.

Data Flow

The data flow through the computer is shown in
Fig. 5 and is comparable to a pipeline which in a
steady state (namely, once filled) has a large output
rate no matter what its length. The same is true
here; after start-up the execution of the instructions

MEMORY BUS MEMORY IN BUS

JFR.E

RESULT STORE

DR placoress| oata
MEMORY OUT BUS

INSTRUCTION &
INDEXING UNIT

TO E

CHECKER OUT 8US

[OPERAND BUFFER |

ERROR
CORRECTOR
CHECKER

CHMECKER 1IN BUS

LA TRANSFER BUS

2 1
l . & § ARITH CHECKER OUT BUS
2woro | 2 WORD
ACCUMUL ATOR flitenty
INTERRUPT AB ARITHMETIC
SYSTEM ! Y cHECK
v v
ARITH CHECKER IN BUS

PARALLEL
ARITH UNIT

SERIAL =ﬂ
ARITHUMIT [V

Fig. 5—Stretch Computer — units and dataflow.

1959 PROCEEDINGS OF THE EASTERN JOINT COMPUTER CONFERENCE

is fast and bears no relation at all to the stages it
must progress through.

The Memory Bus is the communication link be-
tween the memories on one side and the exchanges

and the comnuter on the other. It monitors the re-

QIIA ViU UULLPU UL Vil Uil UUaalie AU 2niUiavies sl 4

quests for storage to, or fetches from, memory, and
sets up a priority scheme. Since 1/0 units cannot
hold up their requests, the exchange will get highest
priority, followed by the computer. In the computer
the instruction-fetch mechanism has priority over
the operand-fetch mechanism. All told, the memory
bus gets requests from and assigns priority to eight
different channels.

Since memory can be accessed from multiple
sources, and once accessed it is on its own to complete
its cycle, a busy condition can exist. Here again, the
memory bus tests for busy conditions and delays the
requesting unit until memory is ready to be interro-
gated on data fetches. The return address is remem-
bered and the requesting unit receives the information
when it becomes available. To accomplish this, from
the time information is requested the receiving data
register is in a reserved status.

Requests for stores and fetches can be processed
at a 200 musec rate and the time, if no busy or
priority conditions exist, to return the word to the
requesting unit is 1.6 usec, a direct function of the
memory read-out time.

The Instruction Unat' is a computer of its own. It
has its own instruction set, its own small memory for
index word storage, and its own arithmetic unit.
During its operation as many as six instructions can
be at various stages of execution.

The Instruction Unit fetches the instruction words
from memory, it steps the instruction counter, and
performs the indexing of instructions and the initia-
tion of data fetches. After a preliminary decoding of
the class of instruction, it recognizes its own instruc-
tions and executes indexing instructions. On branches,
conditional or unconditional, the instruction unit exe-
cutes these. In the case of conditional branches, it
makes the assumption that the branch will not be
successful.

This assumption and the availability of two full-
word buffer registers keep the flow of instruction to
the computer continuous. Therefore, the rate of in-
structions entering the instruction unit is for all prac-
tical purposes independent of the memory cycle.

Since, for high speed instructions, half-word for-
mats are used, four of these at any one time can be
in buffer storage. As soon as the instruction unit
starts processing an instruection, it is removed from
the buffer, thus making room for the next memory-
word access (Fig. 6). Incidentally, half-word instruc-
tions and full-word instructions can be intermixed

4 G. A. Blaauw, “Indexing and Control-Word Techniques,” 1BM
Journal, July 1959.

Bloch: Engineering Destgn of the Stretch Computer

WMDEX
™ irw
1 CHECKER OUT BUS
1 AODER OUT BUS
[9 I D S S
X z w
enmen | | s | || metree | | | oot | |vommee | | pome ||
| lenzm]| | |
| ADDER BUS A
ADDER BUS B
LOOKAHEAD LOAD |UNES >

CHECKER IN_BMS .

MEMORY ADDRESS BUS

Fig. 6—Instruction unit.

within the same word, and therefore the latter can
cross a word boundary. This permits maximum pack-
ing of instructions in memory and also serves as a
facility for automatic program assemblers and com-
pilers.

The adder path, index registers, and transfer bus
to look-ahead complete the instruction unit system
(Fig. 6). It should be noted that the index registers
are part of the instruction-unit data path, therefore
permitting fast access (no long transmission lines) to
an index word. There are 16 index words available
to the programmer. The index registers, consisting of
multi-aperture cores, are operated in a non-destruc-
tive fashion, since in a representative program, the
index word is used nine out of ten times without
modifying it. This permits fast operation under these
conditions, and additional time is only applied where
modification is involved.

After processing through the instruction unit, the
updated (indexed) instruction enters a level of the
Look-ahead (Fig. 5). Besides the instruction, all neces-
sary information, its associated instruction counter
value, and certain tag information are also stored in
the same level. The operand, already requested by
the instruction unit, will enter this level directly and
will be checked and error-corrected while awaiting
transfer to the arithmetic units for execution.

An interlocked counter mechanism in the look-
ahead keeps its four levels in step, preventing out-of-
sequence execution of instructions, even if all infor-
mation for a succeeding one is available, before the
previous instruction has been started.

The pre-accessing of operands by the look-abead
and of instructions by the instruction unit leads some-
times to embarassing positions, for which a fix-up
routine must be provided. Consider the program

(n) STORE Accumulator m
(n +1) LOADR
(n+2) ADDm

51

and assume instruction (n) is in look-ahead, waiting
for execution. If (n 4+ 2) now enters the look-ahead,
a reference to m cannot be made, since the data
stored in that position is subiect to change by the
sTORE instruction. The look-ahead must recognize
this and ‘“forward’’ the result of instruction (n), when
received, to the level where (n 4 2) is stored.

Another example is the case where the instruction
unit assumed that a conditional branch would not be
executed. This instruction is stored in look-ahead
and, when it is recognized that the branch was suc-
cessful, all modifications of addressable registers
made by the instruction unit in the meantime must
be restored. Look-ahead in this case acts as a recovery
memory for this information. A similar condition
exists when interrupts oecur due to arithmetic results.
The look-ahead here again has the data stored per-
taining to registers which were modified erroneously
in the meantime. The restoring and recovery routines
described break into the instruction unit processing,
interrupting temporarily the flow of instruction and
their indexing.

The arithmetic units described later are slaves to
the look-ahead, receiving not only operands and in-
struction codes but also the start-execution signal.
Conversely, the arithmetic units signal to the look-
ahead the termination of an operation and, in the
case of “To Memory’’ operations, place into the look-
ahead the result word for transfer to the proper mem-
ory position.

Arithmetic Units

The design of the arithmetic units was established
along lines similar to the design of look-ahead and
the instruction unit. Every attempt was made to
speed up the execution of arithmetic operations by
multiplexing techniques and overlapping of the
algorithm, where mathematically permissible.

The arithmetic units, consisting of the Serial Unit
and the Parallel Unit, use the same arithmetic regis-
ters, namely a double-length accumulator (4,B)
consisting of 128 bits and a double-length operand
register (C,D) consisting of 128 bits. The reason for
the use of the same arithmetic registers is the fact
that at any time, a shift from floating-point to vari-
able-field-length operation (or vice versa) can be made
by the program. Therefore, the result obtained by a
floating-point operation can serve as the starting
operand for a variable-field-length operation. The
chief reason for the double-length registers is the
definition of maximum field length to be 64 bits. The
field can start with any bit position, and therefore
can cross the word boundary.

The executions of floating-point mantissa opera-
tions and variable-field-length binary multiply and
divide operations are performed by the parallel unit,
whereas the floating-point exponent operation and

52 1959 PROCEEDINGS OF THE EASTERN JOINT COMPUTER CONFERENCE

the variable-field-length binary and decimal add-type
operations are executed by the serial unit. The
square-root operation and the binary-to-decimal con-
version by both
units. Salient features of the two units will now be
described.

The Serial Arithmetic Unit.> (Fig. 7) The serial
arithmetic consists of a switch matrix which can
extract 16 consecutive bits from A,B and C,D.These
16 bits then can be aligned in such a way that the
low-order bit of a field as specified by the instruction
is at the right end of the field. This wrap-around cir-
cuit then feeds into a carry-propagate adder or, in
case of logical-connect instructions, into the logic
unit. At the adder output, a true complement unit
and a binary-to-decimal correction unit are used for
subtract and decimal operations. The inverse process
of extracting is used to insert the processed byte back
into the register without disturbing any neighboring
positions. Notice that in one clock ecycle, the in-
formation is extracted, the arithmetic is performed
and the result inserted back into the registers. In
addition, the arithmetic information is checked by
parity checks on the switch matrices and by duplica-
tion and comparison of the arithmetic procedure in
a duplicate unit.

algo il Unison

rithm are avoapiiéad
riguUiiuiiiil alc TATLuulcu

FR. LOOK -AHEAD

R
ACCUMULATORS OPERAND REGISTRRS
L c

A D
€3 ol63 o 63 0|63 o

SWITCH
MATRIX
{16 OF 128)

I WRAP
AROUND

(BOF 16}
8BIT
PASS

SWITCH
MATRIX
(16 OF 128}

I WRAP l
ARGUND

(8 OF 16} |

TRUE/COMP

[TRUE /COMP
(8 miTs)

(8 BiTS)

BINARY LOGIC
ADDER UNIT

I DECIMAL
CORRECT

& D switcH (<
MATRIX

;! 1616 | &
A/B c/o
WRITE IN WRITE IN
MATRIX MATRIX

Fig. 7—Serial arithmetic unit.

Parallel Arithmetic Unit. The parallel arithmetic
unit (Fig. 8) is designed to execute floating-point
operations with a maximum of efficiency. Since both
single- and double-precision arithmetic is performed,
the shifter and adder exist in a double-length format
of 96 bits. This insures almost the same performance
for single- and double-precision arithmetic. The adder
is of a carry-progapation type with look-ahead over
4 bits at a time to reduce the delay that normally re-
sults in a ripple-carry adder. This carry look-ahead

3F. P. Brooks, Jr. et al; “Processing Data in Bits and Pieces,”’
Trans. IRE on Electronic Computers, June 1959.

MPCD
3BiTS

MPCD
3 8ITS

MPCD MPCD
38ITS 3IsTS

I‘rnu:] |

—]
ey
CARRY SAVE
E Ao0ER ! oz
RY PROPAGATE sz I T
Cz

PARALLEL
UNIT REGISTER

s

i

I
ADDER o
100 BITS

SHIFTER

0

Fig. 8—Floating point arithmetic unit.

results in a delay time of 150 musec for 96-bit binary-
number additions. All additions and subtractions are
made in one’s complement form with automatic end-
around carry.

The shifter is capable of shifting up to 4 positions
to the right and up to 6 positions to the left. This
shifter arrangement takes care of the majority of
shifting operations encountered under normal opera-
tion. Where higher-order shifts are required, a suc-
cessive operation is set up between the parallel unit
register and the shifter.

To expedite the execution of the multiply instruc-
tion, 12 bits of the multiplier are handled within one
cycle. This is accomplished by breaking the 12 bits
into groups of three bits each. The action is from
right to left and consists of decoding each group of
three bits. By observing the lowest-order bit of the
next higher group, a decision is made as to what
multiple of the multiplicand one must add to the par-
tial product. Since only even multiples of the multi-
plicand are available, subtraction and addition of the
multiples can result. The following example will
elaborate this point: (M CD means multiplicand)

Groups
nt4 n+3 n+2 n+1 n
Multiplier, 12 bit group
xx0 011 110 101 010
Octal value
3 6 5 2
If two additions of multiples were permitted
4XMCD 6 XMCD 6 XMCD 2XMCD
—1XMCD —1XMCD
Instead of subtracting 1 X MCD in n+1, subtract 8 X MCD in n.
4XMCD 6 XMCD 6 XMCD 2XMCD
—8XMCD —8XMCD
Resulting decoding
4XMCD —2XMCD 6 XMCD —6XMCD

The four multiple multiplicand groups and the partial
product of the previous cycle are now fed into carry-
save adders of the form,

Bloch: Engineering Design of the Stretch Computer

Sum S = A+B~C
Carry ¢’ = AB + AC + BC.

There are four of these adders, two in parallel fol-
lowed by two more in series (Fig. 8). The output of
Carry-Save Adder 4 then results in a double-rank
partial product, the product sum and the product
carry. For each cycle this is fed into Carry-Save
Adder 2, and, during the last cycle, into the carry-
propagate adder, for accumulation of the carries.
Since no propagation of carries is required in the four
cycles, where multiple multiplicands are added, this
operation is fast and is the main contributor to the
fast multiply-time of Stretch.

The divide scheme® has a similarity to the mul-
tiply scheme. Multiples of the divisor are used,
namely, 3/2 X divisor, 3/4 X divisor and 1 X divisor.
This, plus shifting over strings of ones and zeros, re-
sults in the generation of the required 48 quotient
bits within thirteen machine cycles. Most machines
using a nonrestoring divide method require 48 cycles
for 48 quotient bits. The following example explains
this technique. This- scheme depends on the use of
normalized divisors:

DIVIDEND (DD) = 101000000000000
DIVISOR (DR) = 1100011
2’s COMP DR (DR) = 0011101
3/4 DR = 100101001
(a) Using skip over 1/0 only:
101000000000000 DIVIDEND
Step 1: 0011101 ADD DR
1101101

Remainder negative, 1st quotient bit = 0; shift one
position. Leading 1 indicates that next quotient
bit must be 1; Q:Q. = 01

011010000 REMAINDER
Step 2: 1100011 ‘ADD DR~
10010111

Overflow: Remainder positive and Q; = 1, leading
zero indicates @, = 0

1011100 REMAINDER
Step 3: 0011101 ADD DR
1111001

Negative remainder; Q; = 0; leading 1’s indicate

Q6Q7Qg = 111

Number of quotient bits per cycle:

¢ J. E. Robertson, “A New Class of Digital Division Methods,”
Trans. IRE on Electronic Computers, vol. EC-7, pp. 218-222; Sept.
1958.

53
Cyecle 1: 01 =2
Cycle 2: 10 =2
Cycle 3: 0111 =4

(b) The same problem with both skip over 1/0 and
3/4 — 8/2 complement:

101000000000000
0011101

11011010000

Step 1:

Same as before, Q:Q: = 01

Step 2: 100101001

111111001

This (by table look-up) indicates Q;Q.:Q:QeQ:Qs =
100111

Add 3/4 DR

Quotient bits generated per cycle:

Cycle 1: 01 =2
Cycle 2: 100111 = 6

In general, this method results in the generation of
3.7 quotient bits per subtraction. While the mantissa
operations of multiply and divide are performed by
the parallel unit, the serial arithmetic unit executes
the exponent arithmetic. Here again is a case where
overlap and simultaneity of operation is used to
special advantage.

3. Checking. The operation of the computer is
checked in its entirety and correction codes are em-
ployed where data transfers from memory and input-
output units are involved. In particular, all informa-
tion sent to memory has a correction code associated
with it, which is checked for accuracy on its way from
memory. If a single error is indicated, then correction
is made and the error is recorded via a maintenance
output device. Within the machine, all arithmetic
operations are checked, either by parity, duplication,
or a ‘‘casting out three” process. These checks are
overlapped with-the exeeution-of the nextinstruetion-

4. Hardware Count. Fig. 9 shows the percentage of
transistors used in the various sections of the machine.
It becomes obvious that the parallel unit and the
instruction unit use the highest percentage of tran-
sistors. In case of the parallel unit this is due to the
extensive circuits for multiply and to the additional
hardware to achieve speed of up the divide scheme.
In the instruction unit, the controls consume the
majority of the transistors, because of the high multi-
plexed operation encountered.

5. Performance. The performance comparisons in
Fig. 10 show the increase in speed achieved, especially
in floating-point operations, over the 704. It should
be noted that for a large number of problems this
particular increase in all arithmetic speeds is almost
proportional to the performance increase of the prob-

[T ! or % OF TOTAL # OF FRAMES
MEMORY CONTROLS 10,500 6.0 2
INSTRUCTION UNIT
DATA PATH 7,700 220 2

ROLS 9,50 iz
LOOK-AHEAD
DATA PATH 7,90 i5.6 1
CONTROLS 8.600 1-1/2
ARITH. REGISTERS 10,000 5.9 1
SERIAL ARITH. UNET
DATA PATH 10,000 10.5 12
CONTROLS 8,700 H

FLOATING PT. UNIT
210 2-1/2

DATA PATH 2,700

CONTROLS 3,000 2

CHECKING 24,500 14.5 1

INTERRUPT SYSTEM 6,000 a5 vz

TOTAL 169,100 i00.0 18
DOUBLE CARDS 4,025

SINGLE CARDS 18,747
{3 21 KW

Fig. 9—Component count.

M 18
OPERATION 704 705

1. FLOATING POINT

2128 12048
EXPONENT RANGE 2
MANTISSA TS

FLOATING ADD

e
i

FLOATING MPY
FLOATING DIV
LOAD/STORE

~N
43

2. BINARY VARIABLE
FIELD LENGTH ARITH.

BIT RANGE
16 ADD/LOAD/STORE
MPY

L.}
FIELD DIVIDE

3. DECIMAL

ARTTHMETIC

DICIT RANCE 1= MEu CAPACITY, ! T
FOR ADD 119 USEC 3.5
5 MY 799 USEC 0.0
DIGITS { DIVIDE 4628 USEC 5.0
LOAD / STORE 204 USEC 3.2
4. MISCELLANEOUS

EBRROR CORRECTION NO NO B
CHECKING NO Y&
WORD SIZE 36 8175

Fig. 10—Comparison of Stretch and 705/704 operation times.

lem as a whole, since the instruction execution-times
are overlapped to a great extent with the preparation
and fetching of instructions. Simulation of Stretch
programs on the 704 proved a performance of 100 X
704 speed in mesh-type calculations. Higher per-
formance figures are achieved where double- or triple-
precision calculations are required.

Circuits

Having reviewed the systems organization of
Stretch, it is now of interest to discuss briefly the
components, circuits, and packaging techniques used
to implement the design.

The basic component used in Stretch is the high-
speed drift transistor which exists in both an NPN
and a PNP version. This transistor has a frequency

1959 PROCEEDINGS OF THE EASTERN JOINT COMPUTER CONFERENCE

cut-off of approximately 100 me¢ and for high-speed
operation must be kept out of saturation at all times.
This then explains why both the PNP and NPN ver-

sion are used: main]y to avoid the prn}\]pm of level

translation, which would be required due to the poten-
tial difference of the base and the collector. This dif-
ference is 6 volts, an optimum point for this device.

Fig. 11 shows the basic circuit configuration. It
consists of a current source, represented by the —30
volt supply and resistor R. The functional operation
of the circuits consists of two possible paths repre-
sented by transistor A or C. Which path is chosen by
the current depends on the condition existing on base
A. If point A is positive with respect to ground by
0.4 volts, that particular transistor is cut off, making
the emitter of transistor C positive with respect to
the base and, therefore, making C conducting. The
current supplied by the current source (6 ma) will
then flow through transistor C to the load ¢. Output
¢, then, is positive by 0.4 volts with respect to the
—6 volt reference. This indicates at ¢ the equivalent
function impressed on A. At the same time, ¢ is nega-
tive with respect to the —6 volt power supply by
0.4 volt, representing, therefore, the inverse of the
function impressed on A. Conversely if A is negative
with respect to the ground reference, transistor A is
the conducting one, keeping emitter C negative with
respect to its base. The current flows through tran-
sistor A, making ¢ positive with respect to —6 and ¢
negative with respect to —6. Again, the output of ¢
reflects the function impressed on A, whereas ¢ repre-
sents the inverse of the function.

If an additional transistor now is paralleled with
A, 1t becomes obvious that only if both bases A and
B are positive will output ¢ be positive and ¢ nega-

A $as

SYmMBoL +Ay
° s

TRUTH
TABLE

W[+ +{»
1+)| +®

|+ +| 1| e

CIRCUIT
DIAGRAM

An

-;N-llu
1GNAL
voLTages REF—————————ov REF—— _gv

DELAY~20MM SEC
INPUT ouTPUT

Fig. 11—Current switching circuits (4AND).

CIRCUIT
RESPONSE

Bloch: Engineering Design of the Stretch Computer

tive. If any or none of the bases A and B are positive,
then ¢ will be negative and ¢ will be positive. In
other words, an AND function is obtained on output ¢.

This principle, which is reflected in all the circuits,
is essentially the principle of current switching or
current steering.

Logical functions for the PNP circuits are, there-
fore, a +AND or —oRr. Two outputs from each circuit
block are available: the AND function and the inverse
of the anDp function.

A dual circuit exists for NPN transistors with in-
put levels at —6 volts and output levels at ground.
This circuit will give the +or or —AND function.

A thorough investigation of the systems design
showed that the circuits described so far are versatile
enough to be used throughout the system. However,
there are enough special cases (resulting from the
many data buses and registers throughout the
machine) that could use a distributor function or an
overriding function. This caused the design of a eir-
cuit which permitted great savings in space and tran-
sistors by adding a third voltage level. Fig. 12 shows
the PNP version of the third-level circuit.

A

“ P
ale[xJola]|n] ale[xJo]a]x
LAEEES B3 il Nd + |+ + =
@ —TF[+i—1+1- —J+[+f+]+|—
Ay +[-1+0-]+]- +l- +[+]1-
] (m) xQ =1+ U-1+1- MEE RRE
x—2|lop x [T FF =i+ -]x
1+ [=0=1-1+ x|+ |-+
- =0-1=1* e e
symBoL =t t=t=t= S P e B E
TRUTH TABLES
@
<% 3 _
a2 [P] sz o2 [P]
Ao [u] ® x [n] -6 -12
[P] (7]] 215K
5 s 150K
CcIRCUT e[n]r ©
An 45K=R
() f a2 aRcurr An
+30
ouTPUTS
wPUTS -52v
ABaX ZZZL% %-u
AN - MAX
REF onp —6ov
SIGNAL VOLTAGES €
- -64
ase ZZZ _gs
onwy _
8 (ALL OUTPUTS)

~12

X IWPUT
el S
-20

OUTPUT
CIRCUIT RESPONSE WPUT
DELAY 7= 20 M 1L SEC

Fig. 12—Third level circuit.

If transistor X were eliminated, then transistors
A and B in conjunction with the reference transistor
C would work normally as a current switching circuit,
in this case a +AND circuit. If transistor X is added
with the stipulation that the down level of X is more
negative than the lowest possible level of A or B, it
becomes apparent that when X is negative, the -cur-
rent will flow through that branch of the circuit in
preference to branch ¢ or ¢, regardless of inputs A
and B. Therefore, the output of ¢ and ¢ will be nega-
tive, provided input X is negative. Output 177 is the

55

inverse of input X. If, however, X is positive, then
the status of A and B will determine the function ¢
and ¢ implicitly. This demonstrates the overriding
function of input X.

Similarly, the NPN version (not shown) results in
the or function of ¢ if input X is negative and in a
positive output at ¢ and ¢, regardless of status 4 and
B, if X is positive. Again minimum and maximum
signal swings are shown in Fig. 12.

The speed of the circuits described so far depends
on the number of inputs and the number of circuits
driven from each load. The response of the circuit is
anywhere between 12 and 25 myusec per logical step
with 18 to 20 musec average. The number of inputs
allowable per circuit is eight. The number of driven
circuits is three. Additional circuits are needed to
drive more than three bases and where current
switching circuits communicate over long lines, ter-
mination networks must be added to avoid reflections.

‘To improve the performance of the computer in
certain critical places, emitter-follower logic is used
as shown in Fig. 13. These circuits, having a gain less
than one, after a number of stages require the use of
current switching circuits as level setters and gain
devices. Both aAND and oOR circuits are available for
both a ground-level and a —6-level input. Change
from a —6-level circuit to a ground-level circuit is
obtained by applying the appropriate power supply
levels. Due to the variations in inputs and driven
loads, the circuits must be designed so that the load
can vary over a wide range. This resulted in instabil-
ity which had to be offset by the feedback capacitor
C shown in the circuit.

All functions needed in the computer can be im-
plemented by the use of the aforementioned circuits,

CIRCUIT

TRUTH TABLES

BEG . OF
CHAIN

7 =

QRCUIT RESPON!
) %m -

Fig. 13—Emitter follower circuit.

56 1959 PROCEEDINGS OF THE EASTERN JOINT COMPUTER CONFERENCE

including flip-flop operation, which is obtained by
tying a PNP current switch block and an NPN cur-
rent switch block together with proper feedback.

Pacxacing

The circuits deseribed in the last paragraph are pack-
aged in two ways:

A circuit package using the smaller of the two
printed circuit boards shown in Fig. 14, called a
single card, contains AND or oR circuits. It should be
mentioned that the printed wiring is one-sided and
that besides the components and transistors, a rail is
added which permits the shorting or addition of cer-
tain loads depending on the use of the circuits. This
rail then has the effect of reducing the different types
of circuit boards in the machine. Twenty-four differ-
ent boards are used and of these, two types reflect ap-
proximately 709, of the total single card population.

Due to the large number of registers, adders, and
shifters used in the computer, it seems reasonable
that functional packages could be employed econom-
ically, because of wide usage. This results in the high-
density package also shown in Fig. 14, called a Double
Card, which has 4 times the capacity of a single eard
and which has wiring on both sides of the board.
Furthermore, components are double-stacked; and
again, the rail is used to effect circuit variations due
to different applications. Eighteen double card types
are used in the system. Approximately 4,000 double
cards are used, housing 609, of the transistors. The
rest of the transistors are on approximately 18,000
single cards.

The cards, both single and double, are assembled
in gates, and two gates are assembled into a frame.
Fig. 15 shows the gate back-panel wiring, using wire-
wraps; and Figs. 16 and 17 the frame construction,
both in a closed and open version.

To achieve high performance, special emphasis
must be placed on keeping noise to a low level. This
required the use of a plane which overlies the whole
back panel, against which the intercircuit wiring is
laid. In addition, the power-supply distribution sys- 28 . .
tem must be of such a low impedance that extraneous Fig. 16—The frame (closed).

Bloch: Engineering Design of the Stretch Computer

Fig. 17—The frame (extended).

noise cannot induce circuit malfunction. For this rea-
son, a bus system, consisting of laminated copper
sheets, is used to distribute the power to each row of
card sockets. The wiring rules are such that single-
conductor wire is used up to a maximum of 24/,
twisted pair to a maximum of 36", unterminated coax
to a maximum of 60"/, and terminated coax to a maxi-
mum of 100 feet. The whole back-panel construction
and the application of single wire, twisted pair, or
coax are calculated by a computer program to mini-
mize the noise on each circuit node.

The two gates of a frame are a sliding pair with the
power supply mounted on the sliding portion. All
connecting wires between frames are coax and ar-
rayed in layers which are formed into a drape.

SUMMARY

The Stretch computer is an advanced scientific
computer with variable facilities for floating-point,
fixed-point, and variable-field-length arithmetic and
data-handling facilities.

The performance goal of 100 X 704 speed is
achieved by high-speed circuits, multiplexing, and
simultaneous-operation technique of instruction and
data-fetching, as well as overlap within the execution
units. This massive overlap and multiplexing results
in complicated recovery routines between the look-
ahead and instruction units. These units are described
in detail, as are the arithmetic units and significant
algorithms used in the floating point arithmtic.

A flexible set of circuits using a current-switching
technique with overriding-level facility is described,
as well as the packaging of circuits on printed cards.
The frame and gate concept is also shown. Perform-
ance figures and hardware count illustrate the size,
complexity, and performance of the system.

57

ACKNOWLEDGMENTS

The efforts and contributions of many people
have gone into the engineering design of the Stretch
computer. To mention all would be impossible. How-
ever, the following individuals and their groups were
responsible for the units indicated; Mr. R. T. Blosk
for the Instruction Unit, Mr. J. F. Dirac for the
Look-ahead Units, Messrs. J. A. Hipp and O. L.
MacSorley for the Arithmetic Units and Mr. L. O.
Ulfsparre for the Memory Bus. The Systems De-
velopment was under the guidance of Messrs. S. W.
Dunwell and R. E. Merwin.

Discussion

H. Aiken: You have told us a great deal on schemes used to speed
up the computer. Now I wonder if you would spend a minute or
two telling us what gains you have made in system logic, or what
concessions you have had to make.

Mr. Bloch: The gains in system logic were in novel ways of per-
forming high speed arithmetic, in the way multiplexing of opera-
tions was achieved, in the considerations necessary to interlock the
individual units of the computer, and in designing complex interrupt
and information-recovery networks.

C. W. Rosenthal (Bell Tel. Labs): With respect to your goal of in-
creased speed over the 704, what portion do you attribute to faster
devices and what portion to organization changes? Can you separate
the effect of the individual organization changes?

M. Bloch: 1 think one order of magnitude of improvement is due
to faster devices and faster circuits. The other order of magnitude
of improvement is due to system organization, multiplexing and so
forth. As to your second question, overlapping techniques and look-
ahead contribute less than half to the performance; the remainder
is due to new schemes in the execution units.

D. Hammel (RCA): What is the full time required to execute a short
instruction such as an add instruction? Identify the various steps.

Mr. Bloch: This question is not so easy to answer. Because of the
computer organization which is extensively overlapped, the only
time that can be charged to the ApD operation is the execution time
in the arithmetic unit. For a Floating Add, which I assume you have
reference to, it amounts to the following: 30 per cent of the time
is spent to find out what the relative pre-shift of mantissas is. About
40 per cent of the time is spent in shifting and performing the actual
addition operation. The rest of the time, which is quite considerable,
is spent in doing significance tests on the results, such as exponent
ranges, zerc operands, etc., and in checking and transfer of the in-
formation over a bus. o T

V. Enstein (Brooks Research): Can you mention the general charac-
teristics of the transistors used and the achieved switching speeds?

Mr. Bloch: To answer the transistor question first: it is a drift device
with a cutoff frequency of over a hundred megacycles and a forward
drop of about two-tenths of a volt. The gain is 20 at end of life and
the dissipation is 50 mw. Both PNP and NPN versions have the
same characteristics. As far as the circuit speed is concerned, it
varies from 12 to 25 millimicroseconds, depending on fan-in and
fan-out. The third-level circuit shown is slightly slower than the
normal current-switching circuits, due to larger level swings.

W. A. Cava (Philco): What programming procedures are necessary
to produce a minimum number of interruptions in the normal
sequence of operation?

My, Bloch: Some of the interrupt bits which trigger routines can be
inhibited by the programmer. Also, the definition of the interrupt
conditions is such that only extreme occurrences can bring them
into play. Therefore the frequency of interrupts should be small in
the majority of problems.

58

M. Lewin (RCA): What adjustments are required on the plug in
cards from the time they are wired up until they are ready to be
plugged in?

Mr. Bloch:The only adjustment you have to make to the cards is
the clipping of the rail. This changes the configuration logicaily, and
changes the circuit as far as load networks are concerned. This is
the only change that has to be made.

D. Neumann (Lincoin Lab.): Why do you assume a branch will not
take place? Use of programming loops usualily has branches oceurring
more often than not.

Mr. Bloch: This is quite an arbitrary decision. It could have been
done the other way. Once it is specified arbitrarily, the programmer
is not better or worse off, whichever way it is defined.

D. H. Daggett (Convair): Would you please mention some of the
considerations involved in selecting input-output equipment of
sufficient speed to be compatible with the high processing speeds in
Stretch?

Mr. Bloch: The system organization is set up in such a way that »

input-output equipment really does not interfere with the compu-
tation. The Exchange, which is an input-output computer, so to
speak, takes care of this. Therefore the speed of the input-output
devices is not such a consideration as it is in a machine where simul-
taneous operation is not possible. As far as input-output equipment
on the STRETCH computer is concerned, there was no great con-
sideration for special input-output devices; rather, more effort was
put into a novel system organization.

G. A. Sellers (Bell Labs.): Are the speeds quoted statistical averages
— dependent on numbers — or absolute, — independent of numbers
operated upon?

Mr. Bloch: Both. The multiply speed is worst-case. The floating-
point-add speed depends on the number of pre- and post-shift cycles.
The shifter is capable of shifting six bits at a time, and experience
showed that within the six shifting cycles, 80 per cent of the num-
bers that are normally flowing through a computer can be handled.

T. R. Finch (BTL): At one time I believe you employed a Y4-micro-
second store, but today you showed only a block of 2-microsecond
stores. Does this change result from improved system organization
or necessary change due to fast store problems or what?

Mr. Bloch: 1 think from improved system organization. Let me men-
tion, however, one item: I showed the 2-microsecond memories. Now
the instruction unit has a memory of its own of about 16 words, used
as index storage, and it runs at a speed which is comparable to the
speed of the instruction unit itself. In this application it has been
shown that for fast memories to be useful, they must be tightly
interwoven with the computer networks.

F. H. Tendrik (Bell Tel. Labs): What is the logical use of the circuit
with the “X” input?

Mp. Bloch: The circuit — third-level circuit — is an overriding func-
tion. Essentially what you can do is the following: The “X’’ input
can be assumed to be an information bit and then normal inputs A
and B might be mutually exclusive signals directing the informa-
tion to one out of many registers. This is employed for shifters, read-
out matrices, gating and distributing functions.

S. DeMaio (ITT Lab.): What is the access time of the memory?

Mr. Bloch: About 1.6 microseconds. This includes bus transfer test
for busy and priority conditions, etc.

R. M. Horowitz (Lincoln Lab.): How much power is dissipated in
STRETCH?

Mr. Bloch: The whole STRETCH system dissipates about 70 KW.
P. J. Scola (GE): Do you use marginal checking?
Mr. Bloch: Yes.

1959 PROCEEDINGS OF THE EASTERN JOINT COMPUTER CONFERENCE

Mr. Scola: How effective is it in detecting marginal transistors and
circuits?

Mr. Bloch: What you are doing in varying the voltages is checking
gain. characteristics as well as frequency response of the circuits.
By the way, each frame has its own buiit-in marginai-voitage supply.

G. E. Saltus (BTL): What is the approximate size of the central
processor? What total power dissipation is associated with the cen-
tral processor?

Mr. Bloch: 1t dissipates 21 KW and is about 30 feet long by 6 feet
high by 5 feet deep.

W. Renwick (Plessey Co.): What is the present status of the
STRETCH Project?

Mr. Bloch: Right now we are in the process of testing out the system
units and tying them together.

A. Dowkont (Rand Corp.): When is the first delivery? What is the
cost? What is the commercial availability?

Mr. Bloch: As you realize, STRETCH is designed under contract
with the Atomic Energy Commission. The delivery is scheduled for
May, 1960. As far as cost and commercial availability is concerned,
I would rather not answer this question. As I pointed out before,
right now it is strictly considered a one-shot affair under a develop-
ment contraet.

H. P. Peterson (Lincoln Lab.): Is there now a working, reliable,
2-microsecond 16K core memory?

Mr. Bloch: Yes, three are operating on Stretch, and two have been
supplied to a customer the other day as part of the first 7090’s.
Many more are under assembly.

D. Dickman (Los Alamos Lab.): What is the basic cycle time of the
computer?

Mr. Bloch: There is no such thing, since the individual units of the
computer operate asynchronously. However, each unit has a clock
which has a cycle anywhere between 200 and 300 millimicroseconds.

J. Kalz (GE): Are you coding in machine language or are compilers
or interpreters in use?

Mr. Bloch: We are writing essentially two compiler-type programs.
One is written in STRETCH language; the other is written in 704

Fortran lanonace
Horiran lancusce,

F. Mazziotti (IBM): How many instructions per second can your
machine perform in a typical scientific problem?

Mr. Bloch: Well, I don’t think I am able to answer this question
here. This depends obviously on what problem you are talking about
and what are the housekeeping functions you are performing during
the computation. I think if you look at the speeds shown before, you
can interpret this for yourself.

L. Clapp (Sylvania): To what extent, if any, have you used com-
puter techniques in the processing of your design and production
data? If so, what computers were used for this program and how
extensive was the effort?

Mr. Bloch: We used computers quite extensively to process logic
pages, and also to compute the noise on each node of the back panel.
The back panel layout and routing was done by computers. Com-
puters used were both 704 and 705 systems.

G. A. Barrard (Ampezx): Were you to continue to extend the tech-
niques expounded here, would you comment on the widening gap
between internal speeds and the load /unioad specds of input/output
equipment? What about pressures to speed up the in /out equipments
instead of merely using more of them?

Mr. Bloch: 1 don’t think we are right now input-output limited,
because of the philosophy the system operates under. Also, we have
made great advances in higher-speed and high-storage-capacity disks.

	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058

