Programming Systems Analysis Guide

IBM 7030 STRAP II

PREFACE

Machine Oriented Programming has written this
manual describing the functions of the STRAP II
(STRETCH Assembly Program) in order to aid
technical personnel in gaining a better understanding
of the program.

Since initial release of the program, modifica-
tions have been made; these should not affect the
technical accuracy at this level of documentation.

Certain knowledge concerning the programming
system is a prerequisite for full utilization of this
manual., Such background can be obtained from the
IBM 7030 Reference Manual, Form A22-6530-2,
7030 STRAP II Reference Manual, Form C28-6129,
STRAP II Assembly Listing, and IBM Master
Control Program, Form C22-6678.

The reader must note that this analysis guide
does not offer a complete technical picture of
STRAP II, but does furnish valuable background and
a general look at some of the more important
aspects of the program.

Copies of this and other IBM publications can be obtained through IBM Branch Offices
Address comments concerning the content of this publication to:
IBM Corporation, Department B71, PO Box 390, Poughkeepsie, N. Y.

GENERAL INTRODUCTION . .,

-3

INPUT-OUTPUT -
Communication Record Specifications 8
Format of STRAP II's OQutput on Disk10

DESCRIPTION OF THE ASSEMBLY PHASES .12
Conventions Adopted in the Descriptions

of the Phases and of the Subroutines12
Introduction to the Phase Action in STRAPII. .12
Description of the Action Indicated on the

Flow Chartof Pass 119
Description of the Action Indicated on the
Flow Chartof Pass232

DESCRIPTION OF THE MAJOR LOGIC
AREAS WITHIN THE PHASES37
Major Logic Areas in the Common Section
of STRAPII . . . ‘ .. W37
Subroutines~-ERRIN, ERR ERRNUM
and ERRPRT.37

MOVE.4
TABMAN.44
SEARCH o47
ADDORD48
ADDUNO49
ANEXTX51
RSERCH53
VALUEb5

XERR62
Major Logic Areas in the Pass 1 Phase of

STRAPH63
BOPSER67
CCAS c e e e e e e69

CPLTNM71
CPLTSY74
GETCHA.79
GETFLD.83
GNLOAD.88
INTOUT9
MBSPEC D« &
MBA.9
MIOD97
MQDD 1lo00

MQDALF 102
MQDNUM 107

DNOM 110

MQDDPA 112
MRQP« 115
MQR P b
MDIMRF (and MDIMRT) B I K¢
MRS 122
MQTAILand MQT 125

CONTENTS

MULTI

XINIT . .

XINPUT .
Major Logic Area in the Between—Phases of

STRAPII

UITER« .+ « « « . .
Major Logic Areas in the Pass 2 Phases of

STRAPIl
DECODE e e e e e e e e
INTIN e e e e e e e

INSERT

NEXT

NMCP e e

ouTpPUT.
NAMEIN
OPPUN

OEDIT
OPLIST
NeQBTP
NUNDSY

SERVICEABILITY AIDSo

Error Detection and Post Mortem Dumpmg

Determination of Phase, Unit, and Symbol
Table Entry Being Processed

Locations in STRAP II Containing Information
Used to Analyze Error Conditions .

List of the STRAP II Numbered Error .
Messages .o o e

List of the STRAP II I O Error Messages

INCLUDING A COPROCESSOR SUBROUTINE
WITHSTRAPII

RELOCATION PSEUDOOPS

An Example of a STRAP II Program Using
Relocation Pseudo Ops

Some Changes in the STRAP II Formats .o

Resume’of the Processing of Relocation
Pseudo Ops in STRAP II e e .

Formats of the Relocatable Binary Output
Produced by OUTPUT .

APPENDIX A - FORMATS

APPENDIX B - ADDITIONAL INSTRUCTIONS
AND PSEUDO OPS ACCEPTED BY STRAP II

APPENDIX C - CODED EXPRESSIONS .

APPENDIX D - SYMBOLIC DESIGNATIONS
IN STRAP II e e e

127
129
131
133

135
135

138
140
143
144
146
148
157
161
163
165
167
169
172

173
173

173
173
176
179
180
183

184
184

186
187

189

195

197

202

APPENDIXE - TERMS 203 APPENDIX G - COMPOSITION OF STRAP II's
BINARYDECK 208

APPENDIX F - PROGRAMMING WITH
STRAP II e e e e e e e e ... 207 APPENDIX H - MEMORY MAP OF STRAPII 209

Chart AA.
Chart AB.
Chart AC.
Chart AD.
Chart AE.
Chart FA.
Chart ¥B.
Chart FC.
Chart FD.
Chart RF.
Chart RA.
Chart RB.
Chart RW.
Chart RD.
Chart WA.
Chart BA.
Chart BB.
Chart BC.
Chart BD.
Chart BE.
Chart BF.
Chart BG.
Chart BH.

Chart BI.
Chart BS.

Chart BK.
Chart GN.

Chart IO.

Chart BL.
Chart CA.
Chart CB.

Chart CS.

Chart CK.
Chart CC.
Chart CF.
Chart CG.

Main Pass 1 - Page 1 of 5
Main Pass 1 - Page 2 of §
Main Pass 1 - Page 3 of 5
Main Pass 1 - Page 4 of 5
Main Pass 1 - Page 5 of 5
Pass 2 - Page 1 of 4

Pass 2 - Page 2 of 4
Pass 2 - Page 3 of 4

Pass 2 - Page 4 of 4
MOVE

TABMAN

ANEXT

RSERCH

VALUE

XERR (Disk Unit Check Fix-Up)
BOPSER - Page 1 of 2
BOPSER - Page 2 of 2
CCAS8

CPLTNM

CPLTSY - Page 1 of 2
CPLTSY - Page 2 of 2
GETCHA - Page 1 of 2
GETCHA - Page 2 of 2
GETFLD - Page 1 of 3
GETFLD - Page 2 of 3
GETFLD - Page 3 of 3
GNLOAD

INTOUT

MBSPEC

MIBA

MIOD

M@DD - Page 1 of 2
MQOD - Page 2 of 2
MQDALF

MQDNUM - Page 1 of 3
MQDNUM - Page 2 of 3

14
15
16
17
18
28
29
30
31
40
43
50
52
54
61
65
66
68
70
72
73
77
78
80
81
82
87
89
92
94
96
98
99

101
104
105

Chart CH.
Chart CD.
Chart CE.

Chart CI.

Chart DA.
Chart DB.
Chart DD.
Chart DE.
Chart DF.
Chart DG.
Chart RE.

Chart DI.
Chart DJ.
Chart XI.

Chart GB.
Chart DC.

Chart ID.
Chart 1J.

Chart RC.
Chart EA.
Chart OR.
Chart OP,
Chart 0OQ.
Chart OR.

Chart OS.

Chart OT.
Chart OU.
Chart OV.

Chart NI,

Chart OM.

Chart EI.

Chart OL.
Chart EB.
Chart EG.
Chart EH.

LIST OF CHARTS

MQDNUM - Page 3 of 3
DNUM - Page 1 of 2

DNUM - Page 2 of 2
MQDDPA

MQP

MQR

MDIMRF and MDIMRT

MQS

TAILOR (MQTAIL) - Page 1 of 2
TAILOR (MQT) - Page 2 of 2
MULTI

MX

XINIT

XINPUT

UITER

DECODE

INTIN - Page 1 of 2

INTIN (Interrupts) - Page 2 of 2
NEXT

NMCP

OUTPUT - page 1 of 8
OUTPUT - Page 2 of 8

OUTPUT (Pseudo-Ops) - Page 3 of 8
OUTPUT (Pseudo-Ops) - Page 4 of 8
OUTPUT (Pseudo-Ops) - Page 5 of 8
OUTPUT (Pseudo-Ops) - Page 6 of 8

OUTPUT (DR) - Page 7 of 8
OUTPUT (DD) - Page 8 of 8
NAMEIN

OPPUN

OEDIT

OPLIST

NPNSYM AND NQBTP
NUNDSY - Page 1 of 2
NUNDSY - Page 2 of 2

106
108
109
111
114
116
118
121
123
124
126
128
130
132
136
139
141
142
145
147
149
150
151
152
153
154
155
156
160
162
164
166
168
170
171

LIST OF ILLUSTRATIONS

Figure 1.

Figure 2.

Figure 3.

Figure 4.
Figure 5.

Figure 6.

Figure 7.
Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12,
Figure 13.
Figure 14,
Figure 15.

Figure 16.

I-O and Data Flow in the IBM 7030
Processing System Compiling Chain 7

STRAP II's Output on Disk 11

Error Message Record for Pass 1,
Pass 2a, and Pass 2b 38

Error Message Record for UITER 38
Initial Error Message Record 38

Final Error Message Record for
ERRPRT 39

Format of MOVE's Storage Words 42
Format for a Table Control Block 44

Format of VALUE's Output
(without relocation fields) 58

Format of VALUE's Internal Tables 60

Format of a Control Block for
BOPSER 67

Format of CPLTNM's Output in $L 71
Format of CPLTSY's Output in $R 75
Format of CPLTSY's $ Output 76
Format of the First Word in a Unit 90

Algorithm for Division 112

Figure 17.

Figure 18,

Figure 19.

Figure 20.

Figure 21.

Figure 22,

Figure 23.

Figure 24,

Figure 25,

Figure 26.

Figure 27,

Figure 28,

Figure 29,

Figure 30.

Format of the Last Word in the
Fixed Portion of a Unit

Format of the Third Word in
VALUE's Output

Format of the Fifth Word in
VALUE's Heading

Format of the Fixed Portion of an
Intermediate Expanded Instruction
Unit (without relocation fields)

Format of the Argument Portion of
each of the Tables Handled by
Table Management

Entries in the Variable Length
Entry (vle) Table

Entries in the Taple of Primary
Operations

Entry in the Table of Secondary
Operations

Entry in the Table of System
Symbols

Entry Made in the Variable Portion
of a Numeric DD's Expanded
Instruction Unit

Dimension Entry

Coded Expression - Example 1

Coded 'Expression - Example 2

Memory Map of STRAP II

184

185

186

189

190

191

192

192

193

193

194

200

201

209

The IBM 7030 Assembly Program (STRAP II) is that
program in the STRETCH programming system
compiling chain which accepts as input, symbolic
instructions of the IBM 7030 instruction set, and
produces as output, IBM 7030 binary output and an
assembly listing. The listing includes not only the
representation of the symbolic input with the assign-
ed binary output and location counter values, but
also lists of error messages, unused symbols, un-
defined symbols, circularly defined symbols, and
multiply defined symbols.

GENERAL INTRODUCTION

Since the minimum IBM STRETCH compiling sys-
tem consists of the IBM 7030 Master Control Program
(MCP) and STRAP II, the system requirements for
STRAP II are the same as those of MCP.

Before describing the input-output specifications
for STRAP II, it is necessary to establish the logical
position of STRAP II in the compiling system. STRAP
II's environment 1s set forth by the companion dia-
gram where boxes represent programs, double-headed
arrows represent I-O, and single headed arrows re-
present data paths for the requested levels.

PH3
< FORTRAN IV
SYNTAX
~ +
PH2-1
<> » SMACII
-~ & DATA GIEAN
<
~ z| 2 +
fa
é 2| 2 PH2-2
% 8l & EXPANSION
o} Ol w [.-~ ~"7 77
& | O PH2-3
a 21 A INDEXING
Q e Z,
= Q| <
ol % g ¢
2l 8 | E| S [
R o Bl 3 < SMACI
= A EXPANSION
%) 5 Q
< % 2
= 5]
< 9
5 || 5| g
= g1 &
Y
STRAP 1I STRAPII
€™ (STRETCH ASSEMBLY PROGRAM) I —
LISTING BINARY
FORTRAN IV SMACII SMACI STRAP - REQUEST IEVEL (DETERMINED BY MCP)
LPC LPC PPC
STRAP STRAP STRAP STRAP MCP CHAIN
IPC 1PC LPC (OF PROGRAMS BETWEEN
BSS FIRST AND FINAL USE OF MCP)

Figure 1. 1-O Flow and Data Flow in the IBM 7030 Processing System Compiling Chain

General Introduction 7

INPUT-OUTPUT

COMMUNICATION RECORD SPECIFICATIONS ing tables.
the code and to the unit are defined as follows:

The numbers in the tables referring to

A common Communication Record (COMREC) is Code Unit

located in core storage. It is used by the Master

Control Program (MCP) to communicate with the 0 Not used 0 System Input or System
processors, by the processors to communicate with Output

each other, and by the processors to communicate
with MCP. The first eight and a half words of the
25 word table are for the exclusive use of MCP, The
use of the remainder of the COMREC is determined
by the requirements of the compiling chain.

STRAP II expects words 7. 32 through 24. 63 in
the COMREC to be set up as indicated in the follow-

Bits

0.00 - 7.31
7.32 -17.63

7.32 ~ 7,39

7.40

7.41

7.42

7.43

7.44 - 7.63

N oUW N

COMMUNICATION RECORD

Purpose

Reserved for MCP

A pre-processor can turn on this bit.

STRAP II turns on this bit if STRAP II
has determined the existence of one or
more undefined, multiply-defined,
and/or circularly defined symbols.

STRAP II turns on this bit if STRAP II
has encountered any of the following
conditions:
Improper operation code
Improper secondary operation code
Entry mode preceding a non-DD
Extra secondary operation code
More than one DDS
Location counter does not agree
Assembly error
Symbolic statement too long

STRAP II turns on this bit if any error
condition which has not been suppressed
has occurred.

Card code 1-10 Not used
A6 code 11 Disk

A8 code

Not used

1IQS code

Binary code

Not used

LAST IN A CHAIN:

If this bit is on when STRAP Il is
last in a chain, STRAP II turns on
MCP's reject bit.

(

LAST IN A CHAIN:

In the case of -- COMPILGO, STRAP -~
MCP's reject bit will be turned on if
Bit 7.41 and/or Bit 7.42 has been
turned on.

OTHER THAN LAST IN CHAIN:
These bits are available for examina-
tion by the post-processor.

-

Bits

8.00 - 8.63

8.00 - 8.
8.18 - 8.
8,25 - 8.
8.28 - 8.
8.32 - 8.
8.48 - 8.

Bits

9.00 - 9.63

W W W W W

© ©

Bits

.00 - 9.
.18 - 9.
.25 - 9.
.28 - 9.
.32 - 9.

.40 - 9,
.48 - 9.

17
24
27
31
47
63

17
24
27
31
39

47
63

10.00 - 10.63

10.00 - 10.
10.18 - 10.
10.25 - 10.
10.28 - 10.
10.32 - 10.
10.48 ~ 10.

17
24
27
31
47
63

Input File Data to STRAP II

Purpose

(This word must always be set up by
the pre-processor.)

Relative arc number.

Number which defines code used.
Number which defines unit used.
Number of unit records to be written
or read during a single I-O command.

Listing Output From STRAP II

Purpose

(This word must always be set up by
the pre-processor.)

Relative arc number.

Number which defines code to be used.

Number which identifies unit to be used.
Number of lines to be placed on a page of

listing output.
Number of unit records to be written
or read during a single I-O command.

Binary Output Data From STRAP II

Purpose

(This word must always be set up by
the pre-processor.)

Relative arc number.

Number which defines code to be used.
Number which defines unit to be used.
Number of unit records to be written
or read during a single I-O command.

FIRST IN A CHAIN:
Input will be obtained from the
System Input.

OTHER THAN FIRST IN A CHAIN:
Input will be from disk, or
System Input, as specified by word 8.

LAST IN A CHAIN:
Output will be written via the
System Output.

OTHER THAN LAST IN A CHAIN:
Listing will be written on the disk
beginning in the relative arc
specified in COMREC, or the
System Output, as specified by
word 9.

LAST IN A CHAIN: COMPILE & GO:
Binary output will be written on disk
beginning in relative arc O.

If punch option exists in COMREC
output will also be written via the
System Output.

LAST IN A CHAIN: COMPILE ONLY:
Binary output will be written via
the System Output.

NOT LAST IN A CHAIN:

Binary output will be written on the
disk and the System Output.

Input-Output 9

STRAP II's Intermediate File 1 Data

Bits Purpose
11.00 - 11.63

11.00 - 11.17
11.18 - 11.63

Relative arc number.

(STRAP II only uses a half of this word.)

This file always goes on the disk.

STRAP II's Intermediate File 2 Data

Bits Purpose
12.00 - 12.63

12.00 - 12.17
12.18 - 12.63

Relative arc number.

(STRAP II only uses a half of this word.)

This file always goes on the disk.

STRAP II's Intermediate Name File

Bits Purpose

13.00 - 13.63 (STRAP II only uses half of this word.)
13.00 - 13.17 Relative arc number. This file always goes on the disk.
13.18-13.63 = - - ---

14.00 - 24.63 00 o— - ---

FORMAT OF STRAP II's OUTPUT ON DISK

STRAP II will place the first block of listing and the
first block of binary output in the arcs specified.
The first word of each arc written will be an index
word that has the following configuration:

Format of Header Index Word Before
Each Arc of STRAP Output

Bits 0 - 17 contains the relative arc number
where the current output is continued.

Bits 18 - 19 not used.

Bit 20 if on, indicates present record is in
binary code.

Bit 21 if on, indicates present record is in
A6 code.

Bit 22 if on, indicates present record is in
A8 code.

10

Bit 23 not used.

Bit 24 if off, indicates present record is
listing; if on, binary output.

Bit 25 if on, indicates this is the last record
of the type of output specified by
bit 24.

Bit 26 if on, indicates present record is in
IQS code.

Bit 27 not used.

Bits 28 - 45 contains the number of 'unit records’
per arc (lines per arc, cards per
arc).

Bits 46 - 63 in the case of a listing arc, contains

the relative arc number of the previ-
ous arc of listing.

The second word of each record will be a "dummy"
word. The data begins in the third word.

STRAP will leave the listing and binary data "sand- —— - -

wiched" or interspersed, on the disk in records of Interspersed 3 Intermediate "
arc lengths. Binary and Expanded Unit Name File
When assembly is complete, the data in word 9 of Listing Records Files
the Communication Record will be placed in word 8, ()
with bits 00 - 18 containing the relative arc number Relative Arc 0 - Top of Disk
of the last arc of listing.

Figure 2. STRAP II's Output on Disk

Input-Output 11

DESCRIPTION OF THE ASSEMBLY PHASES

CONVENTIONS ADOPTED IN THE DESCRIPTION OF
THE PHASES AND OF THE SUBROUTINES

Underlining (in the context only and excluding from
consideration that in titles) will be used exclusively
to refer to locations in the STRAP Il program. An
underlined word, all in caps, refers to a logic area
whose first symbolic location generally is the name
given to the particular subroutine. An underlined
word with only the initial letter capitalized refers to
an indicator, buffer, index word, etc. .

The term unit, unless otherwise specifically
qualified, will be used to refer to the intermediate
expanded instruction unit record built up by STRAP II
for each input instruction.

The purpose of particular logic areas (loosely
called subroutines during the descriptions) will be
included with each index of subroutines rather than
with the write-ups of the subroutines.

Specific mention of which error situations are
detected in the subroutines is not generally made in
the subroutine write-ups. Instead the subroutine that
usually detects the conditions causing a particular
error message is included with the itemization of the
error messages in the section on serviceability aids.

A sub-procedure or logic area which performs a
specific function is broadly referred to as a sub-
routine.

The main flow of Pass 1 is referred to as MAIN;
the main flow of Pass 2 is referred to as Pass 2.

Even though most of the sub-procedures are just
sections of either main flow process, reference to
the performance of a particular function will
generally be made by using the name of the sub-
procedure, e.g., referring to the SYN procedure in
main flow of Pass 1 by MQS, instead of by MAIN.

The variable length entry (vle) portion of the sym-
bol table will be referred to as the vle table; an
entry in this table will be referred to as a vle.

When reference in the text is made to an input char-
acter, the character will be represented in the
description by the character's standard graphic (or
coding symbol) enclosed in a circle, e.g., the ;.

Diagrams and formats for the most part are
included in the Appendix rather than in the text itself.

INTRODUCTION TO THE PHASE ACTION IN
STRAP II

STRAP II consists of two passes, the second of which
has two parts. (The value of each symbol is not avaik

12

able at the end of Pass 1 because a program to be
assembled by STRAP II is allowed to have in the data
description and/or address field(s) symbols which
have not been previously defined in the program.
Thus the establishing of values for the binary output
and the settings of the location counter must be done
during a two-part Pass 2.)

Pass 1

Pass 1 processes the input statements and builds up
an intermediate expanded instruction unit for each
statement in a buffer which is written out, when filled,
onto the disk. Each expanded instruction unit is a
record at least eight words in length. The first of
these eight words is a control word for locating and
chaining the units. (A unit occupies the same area
each time it is in memory.) The next seven words is
the fixed portion of the unit, fixed in the sense that
these seven words have a format in which information
both about the instruction and for the listing is saved
in particular fields of the unit. The format of the
fixed portion of the unit is defined in terms of its
relative locations by the symbols beginning with_Zi.
The absolute address of the current expanded instruc-
tion unit is in the value field of $6 during Pass 1 and
in the value field of $3 during Pass 2. Following the
initial eight words will be the coded expressions (or
special configurations as that made up for the
PUNSYM symbols) associated with the instruction.

If the data description was unable to be evaluated, its
coded expression will be first. Then will follow the
coded expression(s) for the address field(s) of the
instruction. The print image of the statement field
to appear on the listing occupies the final portion of
the unit. Access to information in a particular unit
is possible only when that unit is being processed
because in general the units are not all in memory at
the same time. (The name which appears on the
listing with the statement print image contained in
the unit is saved in another file.)

Information is put in the unit as each field in the
input instruction is analyzed by main flow. Thus the
coded expressions will be stacked in the same order
as that of the fields they represent. Since the total
length of the coded expressions is unknown during the
time the characters of the statement field are being
analyzed, the characters of the variable length state-
ment field are saved in another buffer and collectively
inserted into the unit after all the fields in the input
instruction have been analyzed.

If a name is associated with the instruction, Pass 1
makes a symbol table entry in the STRAP II symbol

table which remains in memory during the entire
assembly. The symbol table entry recording the
occurrence of a name with the first instruction of a
card block is made of two parts: the fixed or diction-
ary portion contains at least part of the symbol and
the address of its variable length entry, the variable
length entry portion contains the remaining char-
acters, if any, of the name, information about the
symbol such as its data description, and its value or
the coded expression of the value of the symbol. The
format of the function section of the variable length
entry portion of a symbol table entry is defined in
terms of its relative location by the symbols begin-
ning with Zst.

Another dictionary table, the one for the tail, also
uses the same vle table for the remainder, if any, of
its dictionary entries. Furthermore one type of
entry - namely the one built up for any possible candi-
date for the highest or lowest assembly value - is
recorded only in the vle table with no portion in a
dictionary table. Other entries in the vle table which
do not have a corresponding dictionary portion include
old vle portion(s) of any multiply-defined symbol with
no contradictions and any dimension entry made in
addition to its corresponding regular symbol table
entry for a name on a DR, DRZ, or SYN. (Material
marked with an ID character and stacked chronologi-
cally in the unordered vle table is fetched by table
management with a linear search. Material alpha-
betically inserted in any ordered dictionary table is
fetched with a binary search.) Note in regard to the
symbol table, each entry in the dictionary portion
table must have a corresponding vle portion because
of the way a unit marked as having a name is coordi-~
nated with its symbol table entry for Pass 2 proc-
essing.

Note the information for a unit is built-up during
the analyzation of its instruction, while the symbolic
argument for the dictionary portion of the regular
symbol table entry is collected over the analyzation
of all the instructions in the card block. At the end
of the card block the symbol information is coordi-
nated, and the symbol table entry is made. The infor-
mation common to the unit and its corresponding
symbol table entry, if any, are the name check digit
and the contents from the absolute and symbolic
counters, i.e., the counters that determine the value
of the location counter.

After Pass 1 there is the first iteration of the sym-
bol table, which both resolves the data description
associated with each symbol and tries to establish
values for the symbols, particularly the values of the
SYN chains.

Pass 2

Pass 2a assigns location counter values to the instruc-
tions and attempts to assemble them. Following Pass
2a there is a second pass of the symboi table which
establishes the absolute value for each symbol in the
symbol table. As in Pass 1, each of the units passes
through Pass 2a singularly and then through Pass 2b.
When each unit reaches the end of Pass 2b, Pass 2b
gives it to the output program for its inclusion in the
final documents.

To establish each location counter value, STRAP II
maintains an absolute and symbolic value, each in its
own index register during Pass 2. The contents of
these counters are put into the unit and into the func-
tion part of the variable length entry portion of the
corresponding symbol table entry, if any, during the
final processing in Pass 2b just before the output
procedure prints and punches the documents for the
instruction represented in the unit. The field in the
unit reserved for the contents of the absolute counter
is the source of the location counter value for the
output procedure in Pass 2b.

Two counters have to be maintained during Pass 2a
because there are occasions during Pass 2a when the
value of the yet unevaluated programmer's symbol is
needed in establishing a particular location counter
value. When this situation arises, the absolute
counter is set to zero, a unique STRAP II special
symbol is put in the symbolic counter, and an entry
made in the symbol table for the special symbol.
This STRAP II symbol is a three A8 character, the
first character of which is the all ones A8 character
reserved for STRAP II. (Taking advantage of the
fact that each of these relative address symbols will
necessarily be the currently last symbol in the sym-
bol table, Pass 2 has the symbol inserted unordered
into the symbol table since fewer subroutines in table
management are involved in the unordered type of
insertion.) :

In function part of the variable length entry portion
of the STRAP II special symbol, a SYN-like coded
expression is built up to represent what the location
counter value should be. This STRAP II special
symbol will be evaluated during the second iteration.
Once a STRAP II symbol is put in the symbolic
counter, the STRAP II symbol remains there while
the absolute incrementing is done on the absolute
counter. If Pass 2a reaches another instance where
the absolute increment is not available for updating,
the absolute counter is set to zero again, a new
STRAP II special symbol is put in the symbolic
counter, and a coded expression built up in the vle

Assembly Phases 13

CHART AA STRAP II MAIN PASS 1---PAGE 1 OF S
ENTRY 1
AERBRBEERRERER BT
* -

14

* *
ENTRY PROCEDURE®
= *

(3 »
ERRRARBEERRAER RN

R .

» = .

®AA ¥,

* 12% ees essevesscoe

EREE - «NO

MAIN 2 *

FEEERREREREREE AR * * 3 ARERREREREE
*INITIALIZE FOR¥% PREVICUS * SET ON b4
- * *INSTRUCTION* YES * FBLENA,

NEXT *
#* INSTRUCTION :-.-...-.X’ TERMINATE A *ewevsneoX*FIRST—UNIT-OF—~ *
*

*#CARD BLOCK * (TURN * CARD-BLOCK #
- * (FBLENC=1) OFF) * INDICATOR *
EEREERXFRRRERAAER * L3 HANERERRENE
»
sevevvnes
M8 X 12
ARRRERERREARERERER
* COLLECT *
% CHARACTERS *
* OF 0P *
* MNEMONIC *
* *
RERFRBAERFERRERXR
R -
* *
* 16 *.X.
* * -
_EXE .
x
REERE * x * 13
*ERROR® * COMMA *
L et * QR *
* ENTER * * SEMICOLON *
*COPRO- * * OR .
CESSOR * QUOTE *
EEEER * *
X
. <YES
. .
. .
. .
+NO M
N 22 X 17
» - 21 EFRRERAEFARRERRRRRE (2222223222222 22)
#FURTHER* - MBSPEC * » BOPSER -
- HELP » YES EEE BN B 2 T B 2 2 3 L oS B B B B B B S
* POSSIBLE BeceseeceX*MAIN'S SFECIAL %*eocesaeeX® BINARY *
. » *# CHARACTER * ® OPERATION *
» * * SUBSTITLTION * * ARC *
* * # ERRRFERERRERAR R ERREREREERRERRERERR
x .
. .
. .
. .
. .
+NO .
. 19 X
» » 20 EEBERERERETERR LS ERE N 18
- * - MIBA » L4 -
+ OPERATION P NG *INSTRUCTION®

* DETERMINED #Xeesseves® MAIN'S INDIC- ¥*Xouso * IN OP TABLE #
* * * TOR BRANCH * * *
- * ®* ANALYSIS * * *
» * AERRFERAERARRRREER * -
L] *
«YES »YES
. M
. .
. .
. -
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
R
X 23
ARERBREARFRRRERRN
UPDATE =
* INFORMATION *
* IN UNIT *
* *
* -
222232222 2222221
.
.
.
.
.
26 » MC X
FREEBEEFEAEE AR BAR * - 25 LR I 24
AN » » *

PROCESS * *
D:

/ OR #*Xesssesoast®

-

= » NO *
* AND

* SECONDARY *
-

»

EXTRACT =
OPERATION
*

YES *
#Xessseses* FMODIF = 1 *
*

OPERAT ION -
RERBEARBRRARRRES

cseace

.] *
. EERFRABRXEXERERESR - * 6
. = GETCHA = * LEGAL *
X Lt B Tt Bt Bt B B Bt #* CHARACTOR *
e GET A ¥eeseseseX® STARTING
CHARACTER * #INSTRUCTION®
* * * *
ERERBEFREXERERERE * *
*
<YES
.
.
teesssseassssassrssressarrtssssacsssesnsaacan
¥ AB 11 *
ZEBRERERREXERRERR * - 10
* PROCESS * * *
* ENTRY * YES % *
Xeosasosek MODE ¢
* * *
* * * *
EE 22222222 E] *
*
NG
.
.
.
X
* x % 8
» -
NO YES * *
cetesavssansaasaae oo ® COMMA
- * *
. . » *
. X .
N P .
. * » «NO
£ 16 * .
* * -
. L L2 3 -
. X
. . x ® 7
- »* *
. YES * -
Xeos . cee® QuoTE
. . . * *
. . * *
X ® -
. ErEw -
. . AR «NO
. . ® 17% .
. . . .
. . * -
. . .
. . X
. . L 9
- » *
- *
. . SEMICOLON
. . *
. . . *
- . - *
. . *
. . +NO
- . .
. . .
N .
. . .
. . X
- . EREE
. . *ERROR
. .]
. . * ENTER *
. M *COPRO- ®
. . CESSOR
3 - EREE
.
.
. .
. .
. .
. X
- * ® ¥ 14 *EEER
. - * *ERROR®
- * *
* i
® *
. * » CESSOR
. * - REEER
. »
. oYES
. .
. .
. .
. .
X 15
ERERRERREREE
. ® SET ON #

. * FMODIF *
eeses s ®"MODIFIER-EXISTSH
* INDICATOR
*

EREERBRRRNE

*#Xaa

CHART AB

AR

e oo

= o * SH
#* DOES *
=

* (FNAME=1)
- *
= -

*
NO

IR

E]
* REAL #*
* SEMICOLON *

*{FBLEND=0) ¥
* *

* 98

* *

NO

MXO o 0 80

» * 9E
* FIRST *
* INSTRe *

STRAP 11

YES

YES
*

YES
#0F A CARD BLOCK¥csecsovscsassscscsssosavessvcscssccssosnncssiaX

*(FBLENA=1) %
* *

96

EX 212222222222 222
MAKE =
SYMBOL *
TABLE *
*

*

*

ENTRY

ERBAERREEREEEE AR
-

LA R

.
Xeo

X
HEREE
*AA #
* 12%

= ®

*

UNIT *
HAVE A NAME #.scsccveccccnsscssasccaccssssans
=

eseee

-
-
-
-
-
.

X

MAIN PASS 1-—--PAGE 2 OF S

EEEERE

+ 78
* DOES +*
* UNIT *
* HAVE A NAME
% (FNAME=1) #*
* *

* =

=
«YES

ceesesssseXs

9C

EEXEKEEXEREEEAER B
MAKE A UNIT

*
* FOR A
* 1DRZIN)»1°
*

*

*

*
*
*
*
*
*

FEFRREERERRER RN

R N Y

MAABA X 90D
ARAREEREERRETRERE
* MAKE OTHER *
* -MISCELLANEOUS #*
* ADJUSTMENTS #
® *
* *
AEERREFREREERRERER
.

-

-

X
ERERE
*AC ¥
* 23%

= *

*

NO

*esee

.
-
-
-
.

.
.
-
.
.
-
.
-
.
.
-
-
.

.
-
.
.
.
.
.
.

.
.
.
-
.
-
.

.
.
.
-
.
-

.
-
.
.
.
.

L R N B A A N N A A

ME X 7
EEEREEEEEEREEE R AN
#ESTe LOC. WHERE®
CODED EXPRES—#
* SIONS FOR THE *
%#ADDRESS FIELDS #
* ARE TO BE PUT #
AEEXEEREEEEELEERE

*
*

HXe oo 000

31
EAAXEERERAERERRRS
* * MIOD *

*

«X*¥MAIN®'S IODSETC.*
* PROCESSING *®
=

* * *
* * 2 KR
* -
+NO .
. .
. X
% ®
. *AC *
x 308 * 23
* X * * &
* *
YES =
eeee* A COMMENT =
. * =
. - »
. % *
- *
. +NO
. .
. .
M .
. .
. X 32
- EARARERETERE
. SET F10D SWITCH
. *TO SHOW THAT *
. ®*SUBSEQUENT MCP *
. INSTRe WILL BE
. ouT ORDER
. FEFBREERERE R
. .
. .
. .
. .
ceae .eXe
.
X
* #* & 33
* »
NO % % YES
eee® A PSEUDO-OP *....
. * * .
. * * -
X L X
EE 22 1] * EE 22 2]
*AE * *AC *
* 29w * 2gx
* % % *
* *

15

CHART AC

16

STRAP II MAIN PASS 1---PAGE 3 OF §

EERAR

MEA X 34
RERRREREERE
LENGTH, IF #
®AVAILABLE, IS%
* PUT IN LNIT. #
* SET PASS 2+
SWITCFES
REERERRRRRE

.
cseaXe
.

b3 35
ERRERERARRE
INCREASE

* FICLD COUNT *

* *

* =

- *
AEERERARR AN
.

36A
RERERFFRRARRRLRER

* GETFLD #Xasessscresssscsccscsoscconcane

L T e e it]
* GET A FIELD *
- ENCOCED =

* X
ERERRBARRRERRCRRN
.

EXe s 000

.
.
.
-
.
.
.
.
-
.
. .
. MEDAD X
-
-
.
.
-
.
.
.
.
.
.
.
.
.

- * 37
. * IS *
«YES ® THERE »*
esee®ANOTHER STATE- #
*MENT FIELD *
- *

- -
-
+NO
FeRnn -
*AC # .
* 23« MEDAF X 38
* = EERRERRERARRARRER
* - COLLECT

*
. ® REMAINING #
seeceseX® CHARACTERS #
* *
-
-

. SEMICCLON
FERRERAREARSBRAD

MEDB 39
REERRRRRRAAEERRAER
* ESTe LOC. OF ®
FIRST BIT AFTER#
- LASY L3

- CODED -

EXPRESSION *

FEABESRBAERTHERNE
.

. & e 40

* DOES * *

#THIS INST. # YES *

HAVE A NAME #..00c00eX¥®

®(FNAME = 1)#% -
* *

*

* »

»
«hO

-
-
eXessesscascssveccnsce
-

42

ERARRRERRARBRRERE

®COMPUTE LENGTH *

*

OF SYMEOLIC #
» STATEMENT *
- *

- *
ERAERRARRARERERRE
-

Xe oo

43
ARRBRRRARARERRERN
* MOVE *
L e e e ltttd
#* PUT SYMBOLIC #
* STATEMENT IN #
* THE UNIT *
ERRBEEARATRERRRRR

.

Xs oo

MEOC 44
ARERERERRANNDDREN
®COMPUTE LENGTH #
- OF -

* CODED -

: EXPRESSIONS :

AEEESRAERAEERRERS
-

L3
ERBRER
#AD *
* 30#

*a

-

SHBRBRERBRE
FLAG

UNIT
AS ONE WITH
NAME

- -
RERRRRRABES

.
.
.
sevace

vecsasscee

368
AERBERTERRRERERER

ceeeX¥ CPLTSY el

seses st et

LR B e e e et)
* COMPLETE A L]
d SYMBOL *

* L]
EE e T)

36C
ARRRRRRRRRRRRRREE
= CPLTNM *
R W R N Y N R
* COMPLETE A *
* NUMBER *
*
AEERRERERAREE SRR

CHART AD

cose¥®

Ces et s errbe ety

S52A
AR R ERER RN

#* INSERT SYMBOL ¥*Xeeseeseao®

¥TABLE ENTRY IN *
* SYMBOL TABLE ¥
ARFRAEERRRIXRALERES

528

EXS e e s e

» «
*

*
NO #* MULTIPLE *

DEF INED *
*
» *
* *
*
«YES
.
.
52C
EREEREEREEUREERET
* MULTI *
Em e B Y K W N R B
* MULTIPLE *

#*DEF INED SYMBOL #
* PROCESSING *
FREERREEEREERR TR

.

-

.

-
csecsssccsXe

X 53
EEAREXFEEZEEEERER
»* GNLOAD *
B e Kem R N Rm K R

%* SAVE FILE OF %,

* NAMES OUTSIDE *

* OF COR *
AREERAEEREREAREES

STRAP 11

MAIN PASS 1--—-PAGE & OF S

EREEE
*AD *
* 30%

* »

*

.

X * MEDD 48
= & = 45 = * 46 AREAREEERRE

IRS * DOES % * TURN OFF *

* F T *
INSTRUCTION YES
*OF A CARD BLOCK¥*ssessecoeX®
*(FBLENA=1) *
* *

INSTRUCTION# YES *
HAVE A NAME *ccscccceX¥®
* (FNAME=1) *

* *

- * * * EERERERRERR

* TURN -
NO «NO (OFF) -
. .
. .
. .
. N

X 47 x 49

EE 222222223 RN NN AR R

* FORM *

SYMBOL TABLE *

FXeseooras® ENTRY *

* *

* *

EXEREREERER FRRRRERAREEREEEEE

NAXs s dasotsossossavsnen

* S1A MEE
* * * * S0
*SYMBCL * ® LAST #
* TABLE ¥ YES *INSTRUCTION*
ENTRY READY *Xeseseess®OF A CARD BLOCK¥
*(FNOSYN=0) * *(FBLEND=1) *
* * * *
* * * *
* *
«NO «NO
. .
.
. sesssasscacXe
518 .« MEF x s4
R332 2222233 - AEREEREREREE
* SET CN * . PUT SPECIAL SET
FNOSYM, OF ERROR FLAGS
NO-SYMEOL= *s..eeXe * INTO THE UNIT #
* TABLE-ENTRY . * =
INDICATOR * . x *
RN RR - EXE 222222223
. .
. .
:
. x 57
- NN
. o INTOUT *
- Lot Bt B S B 2 et et
. * SAVE FILE OF *
« % UNITS OUTSIDE *
PR OF CORE *
. L ey e N i)
. .
. .
. X 58
- EX 2222222223
. ® INCREASE *

* UNIT COUNT =%
* =
= ®

EEEEREEEERR

60
9 AREREEEERERNL RN
S THIS#* * INTOUT *®
4 LR et e e e B ot
* PSEUDO-OP KevosessesssescscssncecncsccancsccecX*® SAVE FILE OF #
- = * UNITS 2U;SIDE *

*

= * OF CORE *
* * EREABRAEXRREERRES
* .
«NO .
. .
x .
EEERE -
EAR .
* 12% b
* *® EA 2222222222222 3
* * ENTER THE *
* § SYMBOL *
* N THI =
* SYMBCL TABLE *
* *
MEEREN R R EERERRRS
.
.
.
.
zzxY X 62
NN R
* *
* *
+ BETWEEN PASS *
= PROCEDURE ®
* *
EAES R E 2222 EL 2]
.
.
.
.
.
X
R 222
GO TO
*PASS 2 *
* FLOW +
* CHART *
* *

PRI Y

CHARY AE STRAP 11 MAIN PASS 1-—--PAGE S OF S
L2 22 2]
*AE *
* 29%
L
-
-
-
ME+ X MQDOD *
LI 63 * 64
* - - *
* * YES ¥ (NUMERIC)
* DD FeeesesseccsastasassssonacsnsassaassannsssssasssssessesscneaseX® TYPE OF DD ®evesncescscasesass
» » * -
- - * * -
* - * * .
* .
«NO « LALPHABETIC) .
. . .
. . .
. . N
X 7 X 65 X COA
AERERARFEERRE X RS ERERRBRFERERRE AR EXREREERAR R AR AR
*® DIGIT SELECT * * MQDALF . * MQOD -
* PSEUDO-0OP LR et O B S B N E—E—E— RN R—R
% BRANCH TABLE * * MAIN'S * seveesk MAIN'S LD *
» = * ALPHABETIC OD * . * PROCESSING *
» * * PROCESSING * . * *
E2Z 222222 222 2 22 EAZ RSS2 2222 2 S - EEFERERERERARERER
. . . . x
. . . . B
. eXssosssenans . -
. . .
. EEEER . .
- *AC * . .
. * 23% X 668
- * x EEREEEARREELRRRER
- * * MGINUM *
«PUNFUL + PUNNOR s PUNORG» PRNS s FRND » PRN IO L e et ST P
R * EVALUATE A *
- * NUMERIC CD *
- rrEnw * *
. XAC * EEKER AR HRERERER
- ® 23% - X
. * % - .
- - - .
. . .
- X €6C
. RAREXERAA R AR
- * ONUM *
+SKIP3s NOPUNNOPRNT + PRNOR B RN E—
seseesaccsserresersssssssssssscenatasnbanas * COMPLETE A *
. X * 0D*S NUMERIC =
HEEER * FIZLD *
*AC FEBFARE AR FEREERE
* 23m
- w
»

et s et eans

«PUNALL » SPNUS 4 PRNTALL +DUPL I «NOSEQ,RESEQ

s ceees sesve seesve
. AR
. #AC *
. * 27k
. LY
. .

.

.

.

- HERERERERARRLT AR

. * NPUNID -

+PUNID R R e R ot et

eesscsvssesnsscseX® MAIN'S FUNID ®evesuees
. X

- * PROCESSING

. * EEREE
- AREREERAERBRRE N *AC *
. ® 23%
. » %
«TLB+SLC.END»SLCR *

P LR L R R R R TR

ERAERERER SR ERRNN
- M »
IO SR My - =]

eseesX® MAIN'S EXT ¥oresansee
® PROCESSING *
* * ETTIN]
ERAERAREAAERER RS *AC *
® 23
LR3
*

seses

.
.

- FERRERERFARARAERR EAERERERERETREEERR N

. * * MD [MRF *
«DRsDRZ LR B BT P B S T B Lt EL Bt B S B S Tl
esacssssessessesaX® MAIN'S CR,ORZ *, cemoX¥ MAIN®'S

. * PROCESSING - * DIMENSION

. * * * PROCESSING *

- ERERT R REERRRRR RHEFRARRERESRRRRR R

-

«PUNSYM
D L L R P R T Y
.

.

- RHREREAERFREARRRE RN

- *

«SEMsREM Ee B R E W W X

essesscessssseevs e X¥MAINT'S SEMIREM ¥eseseeve

. * PROCESSING - X

- * * ERBENR

- ERERERAAEREERRRRE *AC »

. . 23w

. * =

«TATLUNTAEL *

D T T T L LR L L R R T R R P P PR P P PP R PR TN
.

.

.

- ERREAERRRTRRRRERER

. * MAL IAK *

.
r
-
z
=

L R R .t T

seass eeX®* MAIN'S LINK *¥i0cc0ees
. * PROCESSING
. * * EREAE
. EEBRBRERRAREERRRD ®AC *
. * 23+%
- L S
. »

18

.
.
.
.

sres e

*
*
L R R T B = 2)

KEAEREEEREARNR®N
* MQL

e e XAMAEIN'S TLCsSLCe¥ueenaasne
»* END s SLCR *
* PROCESSING el
AEARERRERERAREA S EAC #
s 238
P
B

HERERFRERERRERERR
MQS *
L T D Tt B B R

sseX® MAIN'S SYN Feeesssae
% PROCESSING bl
* * ErnEw
ARREEERAREREERR R *AC
* 23%
* %
*

[Ty
2AC *
* 23%
.
*
I i d L]
» MaP
L e e e e R ot

eseX® MAIN'S PUNSYM %¢,c00000
PROCESSING * X

] * EEERR
EERRRAREERTERERRRE *AC *
* 23%
* »
*
EERERRAERFRERERERE
* MQTAIL »
B R L et ot 2
seaX® MAIN'S TAILs Fuessevens
* UNTAIL *
* PROCESSING HEERE
AAXETERRERRERRTRE *AC #
* 23%
. %
-

portion of the new symbol table entry to indicate the
cascading of the relative location STRAP II special
symbols. The second iteration will establish the
values of these STRAP II special symbols along with
the values of the other symbols in the symbol table,
Pass 2b will then combine the absolute and evaluated
symbolic value, if any, so that each actual location
counter value can be put into the absolute field of
each unit for the output program.

The attempt to assemble takes place when the
decoding procedure gets values which can be selec-
tively inserted into the skeleton word provided in the
unit. This is done during Pass 2a if all datums in
the coded expressions for the instruction fields can
be evaluated. Otherwise, the filling in of the binary
output is done during Pass 2b. If while evaluating a
coded expression the evaluating subroutine cannot
establish a value, Pass 2a still has the entire coded
expression scanned (by a special re-entry into the
evaluating subroutine) so that any undefined symbols
used in the coded expression can be detected and
inserted in the symbol table.

DESCRIPTION OF THE ACTION INDICATED ON THE
FLOW CHART OF PASS 1

Box 1

The entry procedure for STRAP II includes the
following actions:

1. The entry procedure saves the current setting
of the time clock. In Pass 2, QUTPUT uses this
value to mark the binary cards; the end-of-assembly
procedure uses it to compute the total time of the
assembly.

2. The entry procedure writes the current pass
indication on the numeric display lights of the console.
3. The entry procedure also has MCP change two
of its IOD addresses, the one for the console and the

one for the disk.

4. By checking $UB, the entry procedure deter-
mines the size of the machine, and then sets the
limits of the STRAP II internal symbol table accord-
ingly.

5. The ERR and VALUE subroutines are initialized
now.

6. During the assembly many of the index registers
have fixed uses. The refill field of $15 has a special
function and is now set up with the location of STRAP
II's table of exits for maskable interrupts.

7. After having fetched the Communication Record
from MCP, the entry procedure determines STRAP
II's position in the chain. If STRAP II is first in the
chain, the entry procedure sets the Communication
Record to indicate input is System Input. In any
event, the entry procedure goes to MAIN to begin the
processing of the input.

8. The ZM bit and the EXE bit in the mask regi-
ster are turned on so that MCP will give these inter-
rupts to STRAP II.

Box 2

The action of this box is performed at the beginning
of the Pass 1 processing for each new instruction.

Buffers are reset: The two word buffer, Bem,
containing the entry mode control data is zeroed.

The collection buffer, Bop, for the primary op is
blanked. Thus, Bop will contain the proper back-
ground characters for the later table-lookup. The
field counter which the error message routine uses

in locating the field of the error is set to zero. On
the other hand, the unit counter, initially defined as
one, is incremented by Pass 1 during its end proc-
essing of the former unit rather than during the
initialization of the new unit about to be processed.
The fixed format part of the current expanded instruc-
tion unit is set to zero. (See Appendix A.) This fixed
format will contain the specific information about the
instruction, the binary output, the dimension refer-
ence address, the ID, etc. .

Indicators and flags are reset: The if-modifier and
if-pseudo-dds indicators are initially set off. (These
'if' indicators are not in the unit.) The if-all-evalu-
ated indicator in the fixed format part of this unit is
now initially set on. The mask containing the five
error symbol indicators and the suppress-error-
message indicator is zeroed. The bit setting of these
six indicators is put into the fixed format part of the
unit during the final processing of the unit in each
phase. Also, the indicators, flags, and a radix for
GETFLD are reset.

Control index words are reset: Bop's controlling
index word, Bopx, is reset. The index word, Bsystx,
which controls the collection buffer for the statement
field characters that shall appear on the listing with
the instruction is reset. (GETCHA collects the
characters; MAIN puts them into the unit.) The index
word, Ibuffw, locates available area in the buffer
reserved for the units. Since Ibuffw is now addressing
the starting location of a new unit, MAIN adjusts this
address to a full word location and saves this address
in $6. (The fixed format fields in the unit are refer-
enced by $6 during Pass 1.) Next MAIN updates Ibuffw
to address the available area after the fixed format
where the coded expression(s), if any, followed by
the statement field characters will be put. This
location of the starting point of the coded expression(s)
is saved for the later computation of the total length
of the coded expression(s) in this unit. The upper
limit of the buffer reserved for the units is put in
GETFLD's index word, Befxtx, since this is one of
the index words that have to be set up for using the
encoding subroutine. Besides knowing where to put

Assembly Phases 19

coded expression(s), the encoding subroutine,
GETFLD, must also know the upper limit of the
buffer containing the encoding. Since GETFLD will
probably put more than one coded expression into the
unit for this instruction, the upper boundary is set
this one time to include all the uses of GETFLD for
this purpose. Bcefxtx has to be reset for each instruc-
tion because GETFLD can be asked to put coded
expression(s) in places other than in the unit (e.g.:
in variable length entry portion of the symbol table
for a SYN).

Finally, the contents of the identification field
(columns 73-80) is inserted in the space provided in
the fixed format part of the unit for the card ID which
will be later printed on the listing. Note an instruc-
tion which is specified over several cards is assigned
the ID of the card on which the instruction started.

STRAP II does not indent on the listing the second
and subsequent instructions contained in a single card
image; if there is a different ID on each card image
as is the case when a sequence number is used in
columns 73-80, each of the instructions started on
the same card image will have the same ID on the
listing.

Boxes 3, 4

One of the responsibili'ties of the subroutine, GETCHA,
is to inform Pass 1 when the end of a card block has
been reached by putting a 'false' semicolon (false

in the sense that it did not come from the card image)
in the value field of $3 and by turning on the if-block-
end indicator, Fblend. If Fblend is on when MAIN is
starting the processing of a new instruction, then the
previous instruction terminated a card block and the
present instruction is beginning a new card block.
(Fblend is initially on.) If Fblend is on at this point,
then this instruction is marked eligible for a name by
setting the Fblena indicator on. Fblend is turned off
here as a result of the test. During the final proc-
essing of a unit in Pass 1, if Fblena is on, then the
symbol table entry, if any, can be prepared and set
up; if Fblend is on, then the name and the symbol
(name without blanks for internal processing) associ-
ated with the card block can be entered into each of
its respective files.

Box 5

The get-a-character subroutine, GETCHA, gives to
main flow the next character from the statement
field of the card image. Each new character - now
in the A8 processing code of STRAP II - is put in the
value field of index register three during Pass 1.
(See section on serviceability aids.) GETCHA does

20

, and a

not give blanks to main flow unless main flow has
turned on the indicator, Geaz.

Main flow interrogates characters in the following
manner. For each IBM card code character and for
specific-grouping of characters, there is a 256-bit
question block in which the bit(s) corresponding to
the character(s) indicated have been permanently
masked on. The symbolic location of éach string of
bits is given by a symbol beginning with Qc. The
relative locations within the question block is
addressed by the A8 character in the value field of
$3.

Ex.: Is this character a "$"? If yes, branch to

Mb area.
BB, Qcdola($3), Mb

Since Pass 1 analyzes most of the characters from
the source input through these question character
blocks, a pre-processor can send a special A8 char-
acter through STRAP II by setting the high order two
bits of the A8 character to one and the corresponding
question character block accordingly. A special
character, thus set up, will be interpreted as an
alphameric character by the question character
blocks.

GETCHA also collects the characters from a name
field in the name buffer and in the symbol buffer each
of whose contents is picked up during the end-of-card-
block procedure for the name and symbol table entries.
Also, GETCHA builds up an image (for the listing of
the statement field of this instruction) in a buffer which
MAIN later transfers to the unit. The statement field
of this instruction cannot be directly built up in the unit
because both the coded expressions, if any, which
precede the symbolic statement in the unit and the sym-
bolic statement are not a constant length.

Box 6

The only characters that are allowed to start an
instruction are: all legal op characters, @, ,
(This test of the first non-blank char-
acter of an instruction is a good example of STRAP II's
use of the question character blocks.)

Boxes 7, 7B, 9C, 9D, 38

If MAIN receives a comment character as the first
character of the first instruction of a named card
block, then MAIN makes up a "DRZ(N), 1" instruction
for the current unit. Whether the unit has a name or
not, for a comment character Pass 1 continues to
branch to GETCHA until GETCHA gives the terminating
semicolon character to main flow. The only proc-
essing necessary for the intermediate characters of
the comment is that they be saved for the final listing

in Pass 2b. GETCHA saves the characters associated
with each instruction in a symbolic statement buffer
which Pass 1 transfers into the unit during the end-of-
instruction processing in MAIN,

Box 8

For a comma character (a null op) Pass 1 transfers
to that part of the main flow where up to eight char-
acters of the op have already been collected in Bop.
Note: since the buffer was blanked out in the initiali-
zation, Bopx is already set up for the look-up of the
null op in the primary op table.

Boxes 9-9H

For a semicolon character in a named card block,
MAIN moves a precoded - DRZ(N), 1 - unit into the
current unit. For a semicolon character in an unnamed
card block, a comment unit is set up. This ultimately
will produce a blank line on the listing. However the
setting of the ID field in the unit prior to this move is
saved and restored. Because the precoded format has
all the information needed for the instruction, practi-
cally all the intermediary action between this box and
box 38 is not needed. However, three things must be
done before the transfer to box 38: First, $5 is set up
with the location of the appropriate op index. Second,
since the usual encoding of GETFLD will not take
place for this DR, index word Befldx must be adjusted
so that later redefinition of Ibuffw by Befldx will be
correct. Third, Fiod is turned on to indicate a non-
MCP instruction has occurred.

In summary, if the first character of a new instruc-
tion is a semicolon, one of the following three situa-
tions is possible:

Setting
of Fblena

Setting

of Fblend Comment

More than one semicolon
has been specified after an
instruction which is not the
last instruction in this card
block. STRAP II makes up
a -- DRZ(N), 1 ~- instruc-
tion for this unit.

off -

A semicolon has been
specified as the first char-
acter of this card block
STRAP II makes up either
a -- DRZ(N), 1 -- instruc-
tion in the unit if it has a
name or a comment if
unnamed.

on on

Setting
of Fblend

Setting

of Fblena Comment

off This semicolon is not
from the symbolic input
but is the "false' semi-
colon from GETCHA. A
semicolon (already proc-
essed) has been specified
unnecessarily after the
last instruction in the
previous card block. If
this immediately previous
card block has a name,
MAIN makes the entry into
the symbol table now
because MAIN knows that
the card block has finally
been completed.

on

Boxes 10, 11

For a@ Pass 1 determines the type of entry mode
before having the characters of the op collected. A
two word buffer at Bem, which holds the information
about any entry mode and radices on a DD, is built
up. The second index word contains the parameter,
if any, specified before the op; the first index word,
the radix to be used on the current D field under proc-
ess. In each index word the value field is reserved
for the terminating character of an alphabetic DD;
the twenty four bits, 36-60, for the radix; bits 61-63,
Bemt, Bemu, Bemv, for the type of DD.

Setting of Setting of Setting of
Bemt Bemu Bemv Comment
1 0/1 0/1 alphabetic entry
mode
1 0 0 A entry mode
1 0 1 CC entry mode
1 1 0 IQS entry mode
0 0 0 no entry mode
given
0 0 1 Fn entry mode
0 1 0 (r) radix
0 1 1 (.n) parenthetical

integer entry
mode
This information is picked up later when MQDD or
MQDALF processes the DD.

Boxes 12-15

Using GETCHA, MAIN collects the characters of the
op mnemonic, each being tested for legality. Up to

Assembly Phases 21

eight characters are collected or up to the next sepa-
rator character. If a@follows the op, the if-modi-
fier-exists indicator, Fmodif, is set on, so the dds
or opg processing will be done after the table lookup
of the primary op. Modif being on indicates to MAIN
that there are data description, secondary op, or
EXTract parameters yet to be considered before the
address field of the instruction can be encoded.

Boxes 17-22

The binary operation search, BOPSER, does the
look-up on the ordered table of primary operations.
(This subroutine is also used to search the table of
secondary ops and the table of system symbols.) If
the op mnemonic is not found the op may be one of
the 'branch on indicator' type instructions which are
not in the op table because of the impracticality of
including all their variations. A special purpose
routine, MIBA, supplies for a 'branch on indicator’
type of instruction that information which would have
been in an op table entry if the operation had been in
the op table. If the op is not a 'branch on indicator’
instruction, by using MBSPEC, subroutine MIBA
tries substituting alternate characters for any which
might be making the op illegal. If subsequent retries
on looking up each new variation of the op fails, there
is an error condition, and the unit is setup as a —-
SIC, $15; BE, 0 -- instruction.

Box 23

The entry in either op table is generally the source
of both the skeleton bit pattern for the instruction
and the location of the "op index" (op question bit
string) for the operation. However, the pseudo-op's
entry in the primary op table is the source of both
the ''digit select” numbers assigned to the pseudo-op
and the location of the op index. (This number will
be used in three different phases of the assembly in
determining the treatment of an individual pseudo-op.)
The ambiguous op's entry in the primary op table has
the skeleton bit pattern of the normalized version of
the instruction, the last half of the bit pattern of the
variable field length version, and the location of the
op index for an ambiguous op. There is one entry
(not two entries) for an ambiguous op in the table of
primary operations. (STRAP II processes the unit
of an ambiguous op as that of a floating point instruc-
tion until diagnosis of the data description or address
fields in the instruction proves otherwise. Note in
Pass 2a if the data description to be associated with
an ambiguous unit is still undetermined after DECODE
has gone to VALUE for the dds, DECODE assigns a
VFL dds to the unit. Of course, an ambiguous op's
field types are not referred to until the ambiguity is
settled.)

22

Information from the op entry is put in the unit and
the location of the op index is also put in $5 for com-
mon referencing during Pass 1.

During the processing of a unit in Pass 1 and Pass
2, $5 has the constant function of addressing the op
index. For each operation there is provided a string
of bits which represent yes/no answers to the ques-
tions about the op such as: Is this a variable field
length op? The format of the operation question bits
is defined in terms of its relative locations by the
symbols beginning with Zo. The absolute location of
each string of op question bits is in the first 18 bits
of the function part of the op entry in the table of ops.
The first 24 bits in the actual string contains the
address of the first control word in the chain of
control words which are used in Pass 2 to insert the
address fields into the binary output saved in the
fixed format part of this op's unit. The op index for
a binary producing instruction which can have a
secondary op also contains the code number for the
secondary op. (See Appendix A.)

Ex.: Is this an immediate variable field length

op? If no, branch to Mdgl area.
BZB, Zoimm($5), Mdgl

If an operation is added to the op table, besides
possible processing alterations, changes will have
to be made to some or to all of the following tables:
table of operations, table of op question bit strings,
list of op index words, INSERT's index words, con-
trol block for BOPSER, three pseudo-op branch
tables.

Boxes 24, 25, 26

Since the EXT parameters are handled in the EXT
pseudo-op subroutine later, this type of case is post-
poned for the later treatment. However if the char-
acter after the@s one of the characters in the ques-
tion character block which contains the legal first
characters for a secondary op, then MAIN collects
the remaining characters of the secondary op and
looks up the op in the secondary op table. Once again

MBSPEC may be called upon to help. Note the format

of an entry in the secondary op table differs from that
in the primary op table. The secondary op may not
be greater than seven characters in length since the
dictionary part of a secondary op table entry contains
a special leading 8-bit byte code number to identify
the type of instruction which may have this secondary

op. This code number is obtained from the current
op index and is the first character put in the second-
ary op collection buffer, Bop2x. When a secondary
op follows a primary op which permits a secondary
op, MAIN makes up an appropriate argument for the
table look-up. Thus the cases, such as -- + (BU, 3)
(SEOP) and CW (V + I) -- are illegal, although in
each instance the primary op does allow a secondary

op. For these operations, MAIN would attempt to
look up the corresponding argument 1ISEOPbbb or
4V+Ibbbb, respectively, in the secondary op table.
Since neither argument is in the table, the illegal
op would be detected without further cross checking.
(See Appendix A.)

If the op is an ambiguous-type op, the presence of
a secondary op establishes the op as a variable field
type op; the variable field length skeleton bit pattern
is set up in the unit now; the location of the op index
for a variable field lengthop is put in the unit and
into $5.

In the processing of the data description in Pass 1,
MAIN treats a specified P-mode, absolute, symbolic
or absolute-symbolic data description in the following
manner. MAIN has the complete symbol routine,
CPLTSY, collect the characters of the P-mode sym-
bol and put them in the area of the unit reserved for
the coded expressions. This symbol becomes the
coded expression for the data description of this
instruction. MAIN computes the length of the P-mode
symbol by subtracting the value field of index word,
Ibuffw, from the value field of CPLTSY's updated
index word, Bsymbx, which was set equal to Ibuffw
prior to the entrance into CPLTSY. This length is
saved in the fixed format part of the unit so DECODE
will know how long this special type of coded express-
ion is during the Pass 2 evaluation.

If the data description is not P-mode, MAIN has
GETFLD encode the byte size and field length and
put the coded expressions in the unit MAIN calls
on VALUE to evaluate the coded expressions.

For the coded expression of each dds field that
VALUE can evaluate now, the following occurs:
Erroneously specified parameters are adjusted.

The absolute value of the dds field is put in its speci-
fied field in the fixed format part of the unit. The dds-
field-filled indicator is turned on.
is erased (by resetting Ibuffw) if there was no general
parenthetical entry with the dds field. However, if
this is a DD op and if there is a general parenthetical
entry with the dds field, the coded expression of the dds
remains in the unit, and Ibuffw is updated to space over
this dds coded expression. (The coded expression of

a general parenthetical entry will be evaluated by
OUTPUT in Pass 2b.)

For the coded expression of each dds field that
VALUE cannot evaluate, that is, for a symbolic byte
size or for a symbolic field length, the following
occurs: The appropriate symbolic-field-length or
symbolic-byte-size indicator in the fixed format part
of the unit is turned on. The coded expression is
left in the unit for DECODE to have evaluated in Pass
2. Ibuffw is updated to space over the dds coded
expression. The Zifall indicator is turned off to
indicate to Pass 2a that it will have to evaluate a
coded expression in this unit.

The coded expression

In addition, the appropriate mode indicator in the
unit format is turned on, a null field length or a null
byte size causes the specified number to be substituted
by STRAP II.

Once again the ambiguity of an "ambiguous' op may
be resolved. If at this point an explicit dds has just
been detected, the appropriate changes are made to
the unit, ete. .

Box 27

The index word, Befldx, which indicates to GETFLD
where a coded expression is to be placed is now reset
by Ibuffw. GETFLD will shortly start to encode the
address fields which will probably go into the unit.

If the coded expression for the address fields are not
to go into unit, Befldx will be changed later appropri-
ately.

Boxes 30A, 30B, 31, 32

Tests are made for a master control program op or

a pseudo-op now because the processing of the address
fields of each is handled by specialized subroutines.
If it is not a master control op and not a comment,
then the Fiod switch is set so any subsequent master
control op will receive an error message because any
later MCP instruction will be out of order. (MCP
instructions that are out of order will be printed on
the listing, but not punched.) Therefore, comments
excepted, the initial instructions of the program being
assembled by STRAP II must be master control ops

if all the master control ops specified in the program
being assembled are to be punched. MIOD handles
the MCP ops, REEL and IOD, during Pass 1.

Box 33

See description under Box 67.
Box 34

The length of the binary output of a non-ambiguous
binary producing instruction (DD and DR are handled
separately) is put in the unit. Also the indicators
frequently referenced in Pass 2 can be turned on
now, Zifbo on because the unit has binary output;
and Zifp2 on because the unit will contain coded ex-
pressions which must be decoded in Pass 2. Note
both these indicators are in the format part of the
unit.

Boxes 35-37
The get-a-field subroutine, GETFLD, is now called

upon to encode in the unit each of the allowed address
fields in this op. GETFLD performs a legality test

Assembly Phases 23

to detect syntatical errors in a field. If the datums
in a field are combined in an illegal manner, GETFLD
encodes a null coded expression which later will be
evaluated as zero for the field. Since GETFLD encodes
only one field per request, MAIN sets up a counter of
the maximum number of times it should go to GETFLD.
The initial contents of this counter is determined by
the first of this op's fill index words which is located
by the value field of the op index word. For each
address field encountered, MAIN increments the

field counter which is used by the error message sub-
routines to identify the field of an occuring error.
Also a field counter in the format part of the unit is
updated for each field encoded so DECODE will know
how many times to go to VALUE to get a coded ex-
pression encoded during Pass 2. On each re-entry
into GETFLD through this loop, MAIN does not have
to reset Befxtx because GETFLD updates this index
word. MAIN turns the Zifall indicator off so Pass 2a
will know that there are coded expressions in this

unit to be evaluated.

If GETFLD is called upon to encode more than one
statement field for an "ambiguous op" then the "ambig-
uous op'' must be of the vfl type and MAIN changes
the unit, ete., accordingly.

Whenever GETFLD encounters a dollar sign chara-
cter in an address field followed by a semicolon,
comma, plus, minus, asterisk, or slash character,
GETFLD forms a coded expression which contains at
least the two datums to represent the dollar sign
character. One datum is a symbolic datum containing
the $ symbol itself represented internally by the
STRAP II special symbol $00. The 24 bits occupied
by the $00 configuration now, will later contain the
contents of the symbolic portion, if any, of the
associated location counter value. The second datum
is an absolute datum presently containing 24 bits of
all zeros but eventually holding the absolute portion
of the location counter value. The operator to be
later used with these two datums during the decoding
is set up as a "L and plus' operation, so that the
two datums will be combined to give the bit value of
the $ setting, i.e., the present setting of the location
counter value when the value of the field is established
by VALUE.

For such cases, MAIN enters the $ symbol into the
symbol table after all the units have been processed
in Pass 1. The symbol entry will be for the symbol
$00, with the function portion of the variable length
entry part of the entry containing a SYN-like coded
expression made up of two datums, one for the sy-
mbolic portion and one for the absolute portion of
the current Pass 2 setting of the running location
counter value (maintained in $6 and $7 respectively
during Pass 2).

24

During Pass 2 in the initial processing of each
unit, Pass 2 OR's into the fields (reserved for the
symbolic and absolute portions of the location counter
in the function portion of the $00*'s variable length
entry) the current setting of $6 and $7 respectively.

Thus, later whenever VALUE is called upon by

DECODE to establish the value of a coded expression

in the unit and VALUE encounters the symbolic datum
$00, VALUE recognizes the $ situation and does the
following:

1. VALUE looks up the $00 in the symbol
table to obtain the current absolute and
symbolic values to be associated with
this $.)

2. VALUE inserts these values into the
corresponding absoute and symbolic
datums of the coded expression in this
unit.

3. If there is no symbolic portion in the current
contents of the $00 symbol table entry,
VALUE changes the symbolic field in the
unit's coded expression from $00 to all
zeros. Later if VALUE has to look at this
coded expression again, VALUE makes a
special check for a symbolic datum of all
zeroes, so that VALUE will ignore this
type of symbolic datum rather than looking
it up in the symbol table,

Box 38

After MAIN has processed all the characters con-
tributing to the instruction itself, the comment
character (or any characters of the instruction

that are to be treated as a comment) must now be
processed. Their only processing consists of having
them included in the symbolic statement buffer being
built up by GETCHA. MAIN accomplishes this by
relooping into GETCHA until GETCHA gives MAIN a
semicolon in the value field of $3. This semicolon
may be either one picked up from the card image or
the "false' semicolon indicating an end of card block.
Later the symbolic statement buffer, i.e., the pic-
ture of the statement field of the card image, is
transmitted into the unit.

Box 39

Using GETFLD's index word, Bcfldx, MAIN updates
Ibuffw to address the first bit after the coded expres-
sions with which GETFLD has been loading the unit
under the control of the index word Befldx. Note

GETFLD does not update Ibuffw; the user program

must do this. Just as Ibuffw was used to locate the
initially available area in the unit for the coded

expression, so Ibuffw must be updated to locate avail-
able area in the unit for the symbolic statement.

Boxes 40, 41

At this point if this is the first unit of a card block
and has a name, the if~a-name indicator, Zifname
is turned on and the name check digit is stored in
the unit. The name check digit is one of the built-in
checking features in STRAP. The check digit is
carried in the symbol table entry and also in the
name field entry. The synchronous matching of
these files in Pass 2 is cross-checked by the use of
the check digit. Note the DDI and SYN instructions,
when used, must each have a name.

Boxes 42, 43

The length (count of 8-bit characters) of the symbolic
statement which GETCHA has built up with each of
the statement field characters in this operation is now
computed and saved in the format part of the unit so
OUTPUT in Pass 2b will know the length of the state-
ment field to be printed on the listing.

The index word, Ibuffw, is rounded to a full word
location so that the symbolic statement will go into
the unit at a full word location, except for a comment
card block and a B-type card block, the symbolic
statement will not necessarily be a true image of the
statement field of the op. The blanks following the
last non-blank character in the statement field do
not go into the statement buffer. Furthermore,
MAIN adjusts the symbolic statement to eliminate the
semicolon from the print image stored in the unit.
After the symbolic statement has been moved into
the unit, Ibuffw is updated to address available
area for the next unit since no more data will go
into the current unit.

Box 44

The bit length of the encoded fields in the unit is
also computed and saved in the unit so QUTPUT in
Pass 2 will be able to locate the statement field
characters in the unit. (In Pass 2, Location of unit
in the value field of $3 + size of fixed format + bit
length of encoded fields = location of statement field
characters.)

Boxes 45-53

Now if the unit is the first unit of the card block
and if it has a name, a symbol table entry must be
set up. Furthermore, if this is the end of a named
card block (only at the end of a card block can an
MAIN be sure that the entire name has been collect-

ed), MAIN makes an entry into the symbol table

which remains in memory throughout the assembly.

If the symbol collected from the name field of the

card block is in the sphere of influence of a previous
TAIL pseudo op still in effect, a NOP/Branch instruct-
ion before the calling sequence to ADDORD will be

a Branch as set previously by MQTAIL. The internal
STRAP II characters indicating the tails in effect

will be appended to the symbol before ADDORD in-
serts the entire entry in the symbol table, GETCHA
makes the entry in the name file which does not remain
in memory and is only recalled into memory to be
printed on the listing in Pass 2b.

At this time certain information in the unit must
also be included in the set up symbol table entry for
a symbol referencing done by Pass 2 in establishing
the final value. Some of the data to be moved to the
symbol table entry are: length of binary output, coded
expressions for a P-mode data description on a still
"ambiguous'' op, explicit data description information
of a DD or the coded expression for its symbolic
data description, and coded expression for a dimen-
sion of a DR. (See Appendix A.)

Note the set up symbol table entry for a SYN or a
MCP op has already been made in their respective
pseudo-op subroutines.

A special (or '"phoney'") symbol table entry is set
up for a pseudo op which should not have a name but
yet does have one. A named pseudo op which should
not have a name is not guaranteed to have a full or
half word address when referenced.

If ADDORD of table management informs MAIN
that the entry just requested to be put in the symbol
table is multiply-defined, MAIN has the subroutine
MULTI adjust the symbol table entry of the multiply-
defined symbol.

Box 54

A set of six error flags is OR'ed into each unit after
a unit is processed in Pass 1 and after a unit is proc-
essed in Pass 2a. (During each pass processing
there is an intermediate error flag buffer where the
occurrence of the errors is recorded as detected.)
The first five flags denote whether a symbol is
undefined, multiply-defined without contradictions,
circularly defined or defined in terms of an error
symbol. The sixth flag denotes whether the suppress
error message,@, appeared before the instruction.
At the end of Pass 1, only the sixth flag could be on.
Later in Pass 2 when VALUE is evaluating a coded
expression which contains error symbol(s), VALUE
informs the using program which in turn sets on the
appropriate error flag(s). UITER, too, does some
detecting. However, while the undefined, circularly
defined, and contagiously defined symbols are detected

Assembly Phases 25

after Pass 1, the multiply-defined type symbols are
detected and recorded by MULTI in the symbol table
during Pass 1.

Boxes 57-61

The unit is now given to INTOUT to be put out on an
external storage unit. The counter of the units is
incremented. (During the trouble-shooting of the
Pass 1 processing, the contents of this counter is
available in the general work area as an indication of
which unit is being processed. The counter is also
available in Pass 2 to give the total number of units
in the assembly.) If this is not the unit for the END
pseudo-op, the Pass 1 procedure repeats itself and
begins processing the next instruction at MAIN. Now
if Pass 1 has just received the semicolon character
from GETCHA while processing the END unit, Pass 1
will have the file of units terminated by going to the
INTOUT subroutine with a special calling sequence.
After Pass 1 has processed the unit for the END
pseudo-op, INTOUT terminates the file of units with
an index word of particular format. This end-of-file
indication enables INTIN to know when the last unit
has been processed in Pass 2a and in Pass 2b. The
final action taken by Pass 1 is to enter the symbol
$00 in the symbol table.

Box 62

The between-passes procedure that occurs after
Pass 1 includes the following actions:

1. The between-passes procedure has MCP bring
in all of STRAP II's Pass 2 from disk.

2. The between~passes procedure turns off the
internal Pass 1 indicator, Fpassl, and turns on its
Pass 2 counterpart, Fpass2.

3. The between-passes procedure writes the
current pass indication on the numeric display lights
of the console.

4. The between-passes procedure now enters
UITER for the iteration of the symbol table.

Boxes 63-66C

The type of processing for DD's during Pass 1, of
course, depends on whether the DD is alphabetic or
numeric. (Even though a DDI unit is marked as such,
the unit of a DDI receives the same processing as
that of a DD during Pass 1.) Since the output of a

DD is variable in length, the binary output for a DD
is not built up in the usual skeleton op area in the fixed
format of the unit. Instead the binary output will be
built up in the currently available free area in the
unit. The current setting of Ibuffw is saved in the,
fixed format field at Ziotpt. 32 for the later location
of the binary output. If it is an alphabetic DD, the

26

Pass 1 processing is rather straightforward. After
some indicator settings are fixed by MQDD, MQDALF
handles the alphabetic DD's. The comma is in the
value field of $3 when MQDD goes to MQDALF. After
completing the conversion MQDALF returns to main
flow of Pass 1 with the value field of $3 containing the
next non-blank character after the terminating char-
acter of the DD. MQDALF converts the characters of
the alphabetic DD output code and puts the results in
the next available area in the variable length portion
of the unit. The length and character count will also
be inserted in the unit. The byte size is significant

in the assembling of an alphabetic DD in codes: IQS,
A8, and A6. If an absolute byte size of less than eight
had been specified, MQDALF truncates the characters
accordingly. On the other hand, if a symbolic byte
size had been specified, truncation if any, will be
done by OUTPUT in the final pass after the byte size
has been evaluated. An end of card block terminates
a DD if the terminating character specified in the
entry mode was not included in the D field. (Also,

the value field of $3 still contains the false semicolon
when MQDALF returns to MAIN.) While MQDALF is
requesting the A8 characters from GETCHA, MQDALF

has the bit indicator, Gcaz on so that GETCHA will
give the input blanks to MQDALF.

Now for the numeric DD's, there are three sub-
routines responsible for their processing in Pass 1.
These subroutines are MQDD, MQDNUM, and DNUM.
MQDD has the responsibility of taking care of the
radix, which may be 2-16 in STRAP II, the entry
mode, multiple numeric cases, the special sign (S),
the special exponent (X), and the regular exponent
(E). DNUM converts each operand in the statement
(after collecting the characters from GETCHA) to a
double precision floating point number, and MQDNUM
evaluates the field to the semicolon, comma, or
comment character.

Note that during Pass 1 the binary output in the
unit for a numeric DD is in a floating point form. For
all numeric types of DD's, except for Fn-type, the
form is that of a double precision normalized floating
point number. For the Fn-type numeric DD, the form
is that of a double precision unnormalized floating
point number. (See Appendix A.) Therefore, OUTPUT
must always adjust the binary output in the unit of
numeric DD to the specified mode, etec., in order to
obtain the final binary output.

Box 67

Using the pseudo-op number and a digit-select-type
branch technique, MAIN now determines what action
must be taken by Pass 1 on the units of the individual
pseudo-ops. Note the pseudo-op term was formerly
applied to an instruction that could not be executed
during the run of a program. However, during STRAP II

processing, any code that produces a single piece of
binary output of predetermined length is not considered
a pseudo-op. Thus the operations such as XW, CF,
RF, VF, CW, INDMK, and CNOP are not in the pseudo-
op branch table. (See Appendix B.)

For many of the pseudo-ops, all that MAIN has yet
to do before performing the end-of-instruction pro-
cedure is to collect the statement characters. This is
accomplished by a tight reloop into GETCHA until
GETCHA "kicks out'" a semicolon character. The
pseudo-ops are: PUNFUL, PUNNOR, PUNORG, PRNS,
PRND, PRINID, SKIP, NOPUN, NOPRNT, PRNOR,
PUNALL, SPNUS, PRNTALL, NOSEQ, and RESEQ.

DUPLI: For a DUPLI, MDUP saves the pseudo-op's
parameters, n and d. The index word Xrepl, in
positions 0-17 will contain the number (n) of the input
cards to be duplicated; the count field, Xrep2, will
contain the number (d) of duplications for each of the
n input cards. MDUP also turns on the indicator,
Xsp3, to tell XINPUT that it is in the duplicating mode.
XINPUT will stack each of the next n card images
in a special memory block before giving each of these
n card images to GETCHA. After XINPUT has
stacked n card images, then ZINPUT gets the next
n times d card images from its own duplicating block
rather than from the regular input source. XINPUT
resumes fetching card images from the regular
source after it has cycled through its duplicating
block d times.

PUNID: For the PUNID, MPUNID gets the characters
from the address field for the ID from GETCHA and
stores them in the available work area of the current
unit. The value field of Ziofpt in the unit is set to
contain the location of the ID in the unit which
OUTPUT will later pick up. Blanks are significant in
the ID symbol, so MPUNID has the Gcaz indicator on
while requesting characters from GETCHA. An ID

of less than eight characters is padded with blanks.

TLB, SLC, END, SLCR: For the pseudo-ops, TLB,
SLC, END, and SLCR, Pass 1 has the Pass 2 indica-
tors set on and then has the statement field of the op
encoded by GETFLD. Note since there is not a set of
INSERT index words for these pseudo-ops, this sub-
routine sets up here the counter for the number of
times to go to GETFLD. (The END instruction must
be the only instruction in its card block whenever
STRAP II is running with the indicator, Hhcom4, on.)

EXT: For the pseudo-op, EXT, STRAP II forms two
internal processing units. The EXTract procedure
in MAIN, MX, builds up the first unit with the coded
expressions of the parameters. After MX has
returned to main flow, _MAIN will form another unit
for the material being extracted upon.

SYN: The main purpose of MQS, which processes
each SYN in Pass 1, is to build up the symbol entry in
the Msyte area. (The symbol is actually entered in
the symbol table at the end of the card block.) The
dds information of the SYN op is transferred from the
unit to the Msyte area. If any coded expression exits
for an undetermined byte size and/or field length, it
is moved to the Msyte area from the unit. Since the
only coded expressions that could be in the variable
part of the unit now are those for the dds, and these
are now in Msyte, the available area in the unit
buffer is redefined to be the first bit after the fixed
portion of the current unit. Since MQS wants the
coded expression to be made by GETFLD for the single
address field of the SYN op put in Msyte, the upper
boundary location of the buffer for the encoding has to
be changed because the encoding is not going into

the unit. The previous setting of Befxtx does not
have to be saved because no more coded expressions
will go into this unit for this instruction. Besides
changing the upper buffer 1limit, an indicator has to
be turned on to tell GETFLD that the encoding is not
being put in the usual unit area because GFLONG is
only set up to handle the overflow of the unit buffer
area, but not the overflow of Msyte.

STRAP II main flow knows that there is only one
address field to be considered on a SYN unit, but
the error message routine does not; the error mes-
sage field counter must be incremented. The Zifall
indicator is turned off to indicate to Pass 2 that there
are coded expressions associated with this instruction
which are not yet evaluated. Zifp2 is not turned on
because the coded expressions will get directly
decoded in UITER through VALUE rather than in
Pass 2 through DECODE. If there is a dimension in
the address field, MQS uses the MDIMRT subroutine
to make the separate dimension entry in the vle
table. The dimension reference address will be saved
in the vle entry of the SYN. (See Appendix A.)

During MQR which handles the DR pseudo-op, the
presence of a null dds will cause the dds, (N, 64, 4)
to be assigned to the unit of the DR. If the address
field is not null, MQR has the basic dimension entry
made by MDIMRF. This entry is put in the unit. If
the DR has a name, the basic dimension entry pre-
fixed by the appropriate header bits will also be put
later into the vle table. (See Appendix A.) The loca-
tion of the basic portion of the vle dimension entry in
the unit is saved in Ziotpt field of the unit. Before
returning to main flow to complete the processing of
the statement, MQR has VDIMEN try to evaluate the
products of the dimensions. The intermediary pro-
ducts of the dimensions are kept in the dimension
entry. When the final product is available (now
possibly or later in Pass 2), it is put as a negative
number into the value field of Ziotpt. The negative

Assembly Phases 27

CHART

28

FA STRAP 11

PASS 2-—-PAGE 1 OF &

NPS2 3
FERREERAAARE RN R
*INITIALIZATION *
* NECESSARY FOR *

* ITERATION OF # vesvevesevvoevseoX¥ PASS 2A *
* SYMBOL TABLE * . * *
* AFTER PASS 1 * . * *
ERERERRRERRBAR RS - EERARRAERRERERERNE N

. . -

- . .

. . -

. . -

. . -

. «YES -

. * -

- * * 2 -

. * * .

X * -

secccssessscnsacaX® PASS 2A * -

. * -

. * * .

. * * .

. * -

. «NO -

. . -

. . .

. - -

. 24 . NPS3 X 4
FERREERERRR SRR AR - RHRERERRERAEREERER
- UITER * . *INITIALIZATION *
e e o R W W - * NECESSARY FOR *
#* ITERATION OF -

#* SYMBOL TABLE *

EEEREREREERARE BN

X
PR R T
.
.
.
.
.
.
«YES
-
* * 23
* *
*
* PASE 2A
» -
* *
L3
«NO

ceens esase

NPSs2B X 31
ARRRAEREERARUR AR
* *

* *
*END OF ASSEMBLY®
* PROCEDURE *
* *

EXRRRBAEERAERAR IR

26
HERAFRRFBARRRARRR
* NMCE .
AEE DR TS B B Dt s o
¥PROCESS MCP
* IN PASS 2B
* *
FER RN AR E RN RN

YES

OPS%Xeesvre
*

eressrvsrarsn

seeeX¥®
*

PASS 2B *
*

* *
EERRRERRERRRRERE N

. *ERER

. *FA ¥
NGUNT8 X S5A * 1ax
EEREEREE AR RN * *
» INTIN * *

L L O i
* INTCRMEDIATE

#EXPANDED INSTR
* UNIT FETCH *
T T R S T Y Y)

*Xesosovws
*

.
X
PR 58
» *
. *
ECF -
* *
* *
» *
*
«NO
.
x

6
EEEABARERERE AR
*INITIALIZATION *
* FOR EACH UNIT *
* *
» »

- *
AR BTN TEEE NN NN

-
.
X » 25
LSRR 7 * L3 8 AERERERRRTRN L ENNR
* - - - - NMCPAL -
* NO » FIRST * YES EEL B B N Sttt ot T
* PASS 2A *eusosseeX® UNIT THROUGH ®ocssseseX® PUNCH *
* * PASS 2A % * LIM AND GO *
* L] » = * R *

» - - *
* * .
+YES «NO .
- . .
- X .
eXesnasseseseessssnncscsssscosenacscncsccsnssssanananse
X 10
. ®» 9 ARBBERARERRRERRER
= » ¥ SEY ON SWITCH *
* * NO * TO PREVENT -
MCP UNIT LEEFTTRRES PUNCHING *
* * *SUBSEQUENT MCP¥*
* * % INSTRUCTIONS *
» * (R e R e e L
* . .
.
.
.
.

[ETTT)

A
ERAEERRERRNRARENE

CHART FB STRAP I1
ERERE
*FB *
* 27
.
*
.
°
NA X
L 11
#IS THIS#
YES # THE 2ND %
seee® OF TWO EXT *
. * INET *
.
. » -
-NO
. .
. .
. .
- .
- X 124 128
. * & x FEREEERRRAAREEREN
- ' Is * ROUND THE *
. UNDING * YES * LOCATION bl
. *® NECESSARY FOR s X ¥ COUNTER *
* LOCATION % * »
. .'COUNTERC * *
. * RRBERENRER AR ERE TR
. .
- NO -
. .
. .
.
- X 12¢C
. * %X %
. * *
. NO ® *
. Xeoooossssoscscnek CNOP LNIT *
- *
. , * *
- g * =
.
-YES
. .
. -
. -
. X 120
- L
- * DOES *
.

.
.
-
-
-
-
.
-

.
-
.
.
-
-

* LOCATION #
COUNTER STILL
* NEED 20— %

JUSTING
* *

®
«YES

Xe o

EEBRREREE AER R TR
* MAKE THE CNOP *
UNIT !NTC A NOP
Xeoseoessosscccask
*

{

* *
EEERERARRAEERE RN

secessseX

Xe e Xs 6000000000000t essscsat et s s AL

13
HEEETE RN AN
* SAVE LOCATION *
COUNTER SETTING#
#* IN VLE OF THE *
* DOLLAR SIGN *
*#SYM TABLE ENTRY#
EEREBEERREER R ERE

-
.
.
.
X 14A 148
* ® EEERREEREREEZEEEER
* UNIT # » DECOCE *
CONTAIN #*# YES LR B L ot TS 2 2 Y
CODED EXPRESSNS........X* DECODE CODED *
*EXPRESSICNS IN *

* CODED # * THE UNIT *
* * REEBREEERRZAEREE RN

* -
«NO
. .
. b3
- AR
- - *
. % 22 =
- * *
. rxEx
.
.
.
.
.

EEER -

* * -

* 28 #,Xe

* * -

ey .
X *

* % ® 15 * * 16
* * * *

YES

#eseseneeX¥

»
* PASS 2A
»

*
SYN UNIT *
*

PASS 2--=PAGE 2 OF 4

14C
* X %
* INST *
IN CURRENT # YES
* UNIT PRODUCE *ane
* BIN.
’OUTPUT *
*

o X

NO

* * YES

*asseee

X
.
.
.
-
-
.
.
.
.
.

se X% 28 *
* *

xR
NO
.
x
R
*FC ¥
* 31
* *
*
cee
.
.
X
R
AFC ®
* 31%
* *
*
EXEREEREZEEREERER
ceeeX® VALUE *
- Eaat St B B St B 2 T
. * EVALUATE A * .en
. = CODED * .
. * EXPRESSION * .
. EEEEEEEXEEERERERNE X
- E2 X223
. *FC *
. %® 3I1*
. * *®
. *
.
.
. EREREREERREF RN R
Xesee = INSERT *
LEE Bl S B B S Bt 2
* INSERT VALUE *
* INTO BINARY *
Xesssess e X*QUTPUT IN UNIT *
EE2 2222222222222 23
e
.
.
X
#REER
#FEC *
*® 31%
* ®

*

17

EREEEEREREEEEEREE

*#STORE COUNTERS #

NO * *
seceeseeX® *
=)

* *
EREERTETRE RN RER
.

X

sssescscccs

* 14E 14F
* * HEEEEERREE N RTE RN
* * *STORE COUNTERS *
= YES ® *
- PASS 2A XeceeannaX® ®
* * *
* * * *
* * LR 2222 S22 22222222
*
«NO
.
.
N
x 27

EREEXEREEERERE KRS
XCHECK COUNTERS #
- *

L] *
* *

= *
ARRFEREREEREFE TR

sesees e

.
.
-
.
.

.
.
*

KXo+ s 0o esonsosansanssorossnsssssnans

146G

A Fm B F— R % YES % TH!S THh *
*PROCtSS EXTRACY*X.-.--.-.*FI RST OF THE 2 *
* *
* UNITS *
ii*;&o:ii;*i{i&{& * *
*
«NO
.
4K ; 144
FEEEEREEEERRRE RS L
*UPDATE LOCATION® * *

* COUNTER BY *

*

*ABSOLUTE LENGTHQX.-.. OR A DR UNITH®
* OF BINARY X * *
* OUTPUT - * *
*ll!li{!llilliiii . * *

.

. oYES

. .

- .

. .

B X 141

. x ® ®

. * 1S *

e YES ® ABSQLUTE #

esseee® TOTAL LENGTH #

* COMPUTED %
* *

* *
-VO
.
-
4J .
AEFEEERREEERRE R R -
* SET UP A NEW ¥ .
* RELATIVE * -
* SYMBOLIC *Xeoe .

COUNTER. ZERO *
* ABSOLUTE CNTR *
AR R

29

CHART FC

30

* SPECIFIED IN #eseeneesX* EXTRACT ZEROS *e0es
* EXT STMNT * * »

STRAP IT
ruan
*FC *
* 32%
* ¥
*
.
.
NUPDT X 184
* ox
* *
* PSEUDC-OP #
=
P
*
Y}
.
1 X 194
REFERERERRS * X *
= DIGIT * *
* SELECT *
PSEUDO-OP *Xessessea¥ PSEUDC-OP %
= BRANCH *
* TABLE * * *
AERERBE R RR - *
.
. +NO
. .
X .
AERER .
*FD * .
* a1 .
* % -
* .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
HERXE .
FC_ .
* 25+ NPOB X
- ® * ® 20
- * *
- * *
P PASS 2A »
-
* *
* *
*
«YES
.
.
.
.
.
.
.
.
.
.
.
.
HERER -
*FC * .
31w NGUNT X 1
® * ERRERRERRARERR AR
* #PUT SPECIAL SET*

. *0F ERRQOR FLAGS *
eescaseX® INTO THE UNIT :
*

* »
EERAERAARREE SRR

* 22
* *
*

*
* PASS 2A
*

* *
* »

-

*YES

edassasssecseinsessnsesssessecsssssenstecroscsnansies

EREAE
*FA *
+ 14a%
* A

PASS 2---PAGE 3 OF a

188

REREEEREERRERRRER

* NIXT2 *

YES D R el e e T =]

* *
ERARRAELAEREA RN

28
ERRERREREREREERER
#CHECK COUNTERS #
* *

NO
[*
* -
» =
EEARERRBRERRERERER
.
.
.
.
M
N
.
.
.

XeaseesseosssssssecenvsoscncaXoossscscoanse

NO

R N I I I N A A I A I I}

seseeres et ettt b

sesesesssrs e

L

EXRREERAEAXNSRRB AR

* ERRNUM *
LINE NP R

svecnen o X¥ GET ERROR bl
. * PAGE AND *
. * LINE NUMBER %
. ERBERRRRERERRARAS
.

.

.

. FERAAREEFERARERAR
.

eesavisescsssscaaX¥ PUNCH *
. *

. * *
. EEAEEERERERAERNRE
.

.

.

.

. FEERREEERREEEAD AR
. * QEDIT *
. e e e
. seens

eX¥®*SET UP CARRIACGE®
* CONTROL =
* CHARACTER *
AAEARRAERARERRERER

EEERRBRRSEERRERER

* OPLIST *
LR e A e e et
eeeseccsnenssenX® LIST *
* -

* *
EEREEERRERRELRENE

EERRRENARERRR AR

evemsccsccssres s X*PUNCH SYN CARDSH®*
* *

* *
ERRERERRBERERERER

EEARRAARERRERRAEE
* NUNDSY »
L B D e e P P
«X*SPECIAL SYMBOL *
* L1ISTS *

seanscevne

» -
EERAREAEREE RN AR

ARBERAERRRRAE R B N

.
.
.
.
.
.
.

.
.
.
-
-
.
.
-
-
.
.
.
-
.
.
.
-
-
-
.

.

.

.

.

.

eesssscscsenccs e XW PRINT *
* RROR *
» MESSAGES *

L e

-
.

cesscscessane

X 30
ARERERERRRAERRERR

PRODUCE THE *
DOCUMENTS OF %
* THE ASSEMBLY #*
REEREERRREARREERE
.

REXEREREBREERERRR
* NAMEIN »
Ll e e e e ettt 4
X% GET LISTING ®
NAME FOR EACH
®* NAMED UNIT *
AEBRARARRERRE RN

Bececoseo s s s et s e

CHART

FD STRAP Il —PAGE 4 OF o
il
=FD *
* 41
* ®
*
.
.
X 1
HEEEREREREE ERRFEREEREARRERE R
* DIGIT * - NPRNID *
* LECT * B e e e L

E!
PSEUDQ-OP # sssesX® PASS 2°'S
% BRANC * ® PRNID
* TABLE * . * PROCEDURE *
HAERERERERE - FEEREAEXRE RN AT RN
- .
. .
. .
. .
<PRNID .
LR R R RN RN W I IR NN
. *
«SYN St
eserecersvecanen *essesnecsssccasncovoe
. SYN * .
. * PROCEDURE * -
. EREERREXREERERERR .
- -
. .
. .
. -
p .
: F R TR F X RE R -
. * o * .
«SLCsSLCR B S e I O et O .
eeessccsscassinsteavecssesstsssransnsnsesssX? PASS ZtS *oaveasesssncsne .
. * SLCySLCR - .
* PROCEDURE * .
R ETXERTTFEEEERN .
.
.
EEXEEEEEREREREXES .

- PROCEDURE *
EEEEEEREEXRELRNES

TR AT
* NEXT *

.
.
.
.
.
.
.
.
.
.
.
.
-
.
.
.
.

Xe oo et s earrrar i et o ety
R R R R R R R R R R T

L T R N I I S R A P R S AP N ST R S S S N

L N R I R S B S R S T AP ST ST]

* PROCEDURE *
EEREAFREAERRREEER

FEEEERERERRREERE R

«EXT e e e e
®eesscesvesecsrcsscssssssscssssscscnnsenas e X¥ PASS - 2°'S *oeu
- * EXT * -
- * PROCEDURE * .
- AEEREREEERKEREREE
- -
. .
. .
- -
. .
. .
. .
«NOPRNTTAIL UNTAIL .
+PUNID »PUNFUL s PUNNOR X
ssesenese ecesncnen esee esssccscncen
O 2PRNS,PRN X X
«NOPUN,TLB,DDI . . .
«PRNOR s PUNALL yPRNTALL . - .
+DUPLI sNOSEQsRESEQ . . .
. . . .
. . . .
- . . .
- . . .
- . - .
- EEEEERRREEERFRERR . - .
- * * - - .
«PUNSYM Eo oW F XN e X - - .
seesvecsssssssacssscsssnsssresvesansssassens XK *oeeves - .
. * PUNSYM - .
. *® PROCEDURE * - .
. EEREREEREEEREERERN . .
. - .
. . .
. . .
- . .
- . .
- EREEREEE LR EREERR . .
- * NBSEM * - .
. .
-
.
.
.

acsen

* PROCEDURE *
EREEEEERFERERERER

L T T I)

* NSPRES
L e e ittt]

X
.
-
.
.
.
.
.
.
.
.
.
.
.
.
.
.
-
.

eeesvesescsntercnsassesasrsesennasscscsanesX® PASS 2°'S *ieesseassaresacnssannns
. * SPNUS

* PROCEDURE *

EREEEREEERE TR RN

X ERE
*FC *
* 31

31

sign of the Ziotpt value field in a DR unit is the indica-
tor that the dimension has been completely computed.

PUNSYM: The PUNSYM pseudo-op causes MQP to
collect the requested symbols from the address field(s)
of the PUNSYM through CPLTSY, and then stores
each symbol preceded by its character length in the
variable section of the PUNSYM unit. The format

of the SYN cards punched by STRAP 1I for the sym-
bols requested by the PUNSYM is included in the
description of the NQBTP subroutine. The instruction
field counter in the fixed format of the unit and the
error message field counter are each incremented

for each PUNSYM symbol. The list of symbols will
always follow the fixed format of the unit, so the loca-
tion of the list is easily computed in Pass 2. (location
of unit + length of fixed format = location of list.)
NPNSYM and NQBTP process the PUNSYM's symbols
during Pass 2.

REM,SEM: For REM and SEM processing, a four
word intermediate error message mask is set up in
the unit of the REM or SEM; each bit in the mask will
correspond to the status of the corresponding num-
bered error message (0=restore, 1=suppress). As
a result of the current instruction, the major error
mask used by the error message routine is updated
by the current intermediate mask whenever each
SEM or REM unit is being processed. The location
of the intermediate message mask in the variable
part of the unit is in the value field at Ziotpt. The
SEM-~-REM subroutine in Pass 1 uses GETFLD and
VALUE to establish the number of each message in
absolute form. There will be no decoding necessary
for this unit in Pass 2.

TAIL, UNTAIL: To handle a tail, MQTAIL collects
the characters of the tail, sets up a tail entry, and
enters it into the tail table. (See Appendix A.) Note
that the tails are not in the regular symbol table and
thus the tail table has its own control block for the
table management subroutines of TABMAN. While

a TAIL pseudo-op is in effect, any subsequent symbol
appearing in the name field or in an instruction field
will be appended with a suffix. A name to be tagged
will be treated prior to its entry into the symbol table
if a usual NOP instruction had been set to a Branch
by MQTAIL. This switch indicates that the name is
in the sphere of influence of a TAIL op and thus must
be adjusted before being put into the symbol table.
CPLTSY, the subroutine which collects the characters
of a symbol appearing in an instruction field, appends
the STRAP II tailing suffix, when necessary, to the
collected symbol before giving the user routine the
requested symbol. The UNTAIL pseudo-op is handled

by MQT.

32

LINK: When Pass 1 encounters the LINK pseudo-op in
a program being assembled, the MQLINK subroutine
is used to put the corresponding coded expression of
the instruction —— LVI, 15, $+2 -~ into the LINK unit.
The location of the op question bits, which is carried
both in the unit and in $5, is changed in both places

to address the op index of an LVI type instruction.
Processing indicators for Pass 2 are turned on in the
unit: Zifbo, Zifall, and Zifp2.

DESCRIPTION OF THE ACTION INDICATED ON
THE FLOW CHART OF PASS 2

Box 1

A program using STRAP II can have instructions
containing symbols in the data description and/or
address fields, which symbols have not been
previously defined in the program. Therefore, the
value of each symbol is not available at the end of
Pass 1. Thus, the establishing of values for the
binary output and the settings of the location counter
must be done during a two-part Pass 2.

UITER inspects the symbol table twice, once
between the end of Pass 1 and the beginning of
Pass 2a, and again between the end of Pass 2a and
the beginning of Pass 2b.

After Pass 1, UITER iterates over the symbol
table to establish a data description and value for
each symbol. Each symbol table entry is examined
and any symbol which is not complete, but still
needed to evaluate the original symbol, is kept in a
push down list and in turn evaluated in an attempt
to complete both the data description and the value
of the original symbol. A non-P mode symbol
initiates a new level. As UITER analyzes each
entry in the symbol table, UITER updates the
symbol counter for the error message procedure
which may be used during UITER.

UITER plays the major role in evaluating each
SYN instruction. Only UITER can detect the
undefined symbols in a SYN chain. During the first
scan of the symbol table, UITER marks these entries
of the undefined symbols. Furthermore, while
completing each symbol table entry in the first
scan, UITER also turns on the appropriate symbol
error flags in the symbol table entry if a symbol
is either circularly defined or contagiously defined.
UITER assigns a value of zero to the base symbol
in a circularly defined symbol chain.

The general detection of error symbols occurs so:
After Pass 1, UITER turns on an indicator to
inform VALUE that it can now make an undefined-
type entry in the symbol table during each UITER
or Pass 2 evaluation of any symbol which VALUE
can not find in the symbol table. (When Pass 1

used VALUE to evaluate a coded expression
formed by GETFLD, it was allowable for VALUE
not to find the symbol in the symbol table since the
symbol table was incomplete during Pass 1. But at

the end of Pass 1, the symbol table contains an entry

for each name that has appeared in the name field -
of a card block.) Note that all the regular symbol
table entries have been made before Pass 2a, but
Pass 2a does make entries in the symbol table for
the undefined symbols appearing in non-SYN
address fields, for the location counter values that
are candidates for hi-lo values, and for the

STRAP II symbolic counter symbols that are needed
until absolute increments are known. Whenever
VALUE is asked to evaluate a symbol, VALUE
marks the symbol as having been referenced from
an address field. The multiply-defined symbols

are detected in ADDORD and are resolved and
marked in MULTI during Pass 1. On the final
scanning of the symbol table, NUNDSY can easily
recognize the error symbols marked for special
listing. Of the five different type of irregular
symbols, only the multiply defined and the multiply
defined with contraditions are mutually exclusive.

Boxes 3, 4

Because of the overlapping functions of Pass 2a and
Pass 2b, there are unique indicators associated
with each of the phases of Pass 2. The Pass 2a
indicator, Np2ind, is set on now. It will be turned
off between Pass 2a and Pass 2b.

Pass 2a goes to INTIN an additional time after
receiving the END unit, so INTIN by its end-of-file
condition thus obtained, can set up the recycling
through the units during Pass 2b. The entry into
the between passes procedure is made from INTIN.
This re-entry location is set now.

Also included in this initialization process is the
saving of the location of the symbol table entry
since the setting of the location counter for each
instruction must be put into this entry. The
subroutine for bringing in the units into internal
storage and the error message subroutines are
initialized. Miscellaneous indicators are set. The
unit counter of the error message routine and $4
and $6 are set to zero. The absolute counter is
set to its initial 41._ location (0 if in PUNREL
mode). This initial setting of the absolute counter
is entered into the hi-lo table now as the first entry.
If the first unit is that of an SLC pseudo op, this
low entry will be overruled.

Boxes 5A - 6

For each new unit INTIN brings into process, the
following takes place at this point: The field counter

for field identification in the error message is
zeroed; the unit counter is incremented and the
symbol counter is updated. (The field counter is
incremented during the Pass 2 procedures which
process address fields, e.g., generally by DECODE.)
‘$3 is set up with the location of the new unit.

$5 is set up with the location of the op index for the
new instruction. The five error flags for an
erroneous symbol are zeroed. If the unit has a
name associated with it, the location of the function
portion of the vle part of the symbol table is
computed and saved.

Boxes 9, 10, 26

Master control program's units are processed during
Pass 2b. At this point in Pass 2a, the first op that
is not an MCP op (comments excepted) causes a
switch to be set which will prevent-non-contiguous
MCP ops from being punched in Pass 2b, although
they will be listed.

Box 11

During the processing of EXTract units, the location
counter is adjusted only for the first of the two units.

Boxes 12A, 12B

Since the processing of a previous instruction only
incremented the location counter by the length of the
binary output, rounding tests must be made at the
beginning of processing of each new unit in Pass 2a.
If the unit is one for a DD or for a DR in a non-
floating point mode, there is no rounding necessary.
Either of these type of units is sent on to the next
processing step. I not, tests are made by using
the op question bits to see if the instruction in the
unit must have a full or half word address. Once
the type of op has been established, the counter can
be rounded, if necessary, immediately if $6 is
zero, i.e., if there is no symbolic portion of the
location counter.

If however there is a symbolic counter portion,
changes may have to be made on the symbolic
counter. If the present symbolic counter symbol is
at the required type location, then only the absolute
counter is adjusted for any necessary rounding.
Otherwise a new symbolic counter symbol is
entered into the symbol table marked with the
appropriate full or half word indicator; $4 will be
set to zero again; and $6 will contain the location
of the new STRAP symbolic counter symbol.

Boxes 12C - 12E

Further adjustment to the location counter may be
necessary if the present unit is a CNOP. The

Assembly Phases 33

CNOP unit will be effectively processed as a NOP
unit if the adjustment is necessary.

Box 13

The current setting of the absolute and symbolic
portion of the location counter are put in the
function portion of the symbol table entry for the

Boxes 14A - 14L

Here in Pass 2a the unit which contains any coded
expressions that have to be decoded is sent to
DECODE. (Any unit which produces binary output —
including the DR, DRZ, EXT, LINK, DD and DDI
ops — will necessarily go to_ DECODE in Pass 2a.)
Note that SYN and MCP-type ops will not be decoded
at this point but in their own specialized subroutines
in Pass 2.

DECODE uses VALUE in decoding the coded
expression(s) in each unit. Included in the informa-
tion from VALUE is whether the coded expression
just evaluated, contained any "error®™ symbols. K
so, DECODE OR's the error symbol indicators set
up by VALUE into the intermediate error-symbol
mask. During the later processing of the unit in
the pass, the intermediate error-symbol mask will
be OR'd into the unit so that when the instruction is
picked up from the unit to be printed, the instruction
will be preceded on the listing by the appropriate
error-symbol message.

A fact about DDI processing should be mentioned
now. A DDI is processed as a DD during Pass 1.

In Pass 2, DECODE will get the DDI evaluated by
using special facilities in OUTPUT. Then DECODE
adjusts the unit of the DDI so that subsequently
Pass 2 will recognize and treat the unit as one for a
SYN.

If a unit has just been to DECODE the setting of the
location counter (absolute and symbolic counter) is
put into the unit and into the corresponding symbol
table entry, if any. If the unit produces binary
output or is a DR, the location counter must be
advanced, also, in preparation for the new unit.

Furthermore, after coming from DECODE, the
absolute length of the binary output may or may not
be established. I it is, the length is added to the
contents of $4 (absolute portion of the location
counter). The symbolic error flags will then be
OR'd into the unit and the Pass 2a cycle is repeated.

On the other hand, if the op is a DD or a DR, the
length of the binary output could very easily still be
unestablished. Note that the final length of the
binary output for a DD or a DR is kept in Ziotpt field

34

of the unit instead of the usual Zilbo. So a special
STRAP II symbol is entered into the symbol table.

In the function portion of its vle will be set up a
special coded expression in which the sum of the
current symbolic counter and the absolute counter

is encoded. The location of the vle portion of this
new STRAP II symbol replaces the previous contents
of the symbolic counter ($6) and zero replaces the
previous contents of the absolute counter ($4). Thus
a cascading of STRAP II special symbols can be
built up to refer to the actual setting of the location
counter in a relative way whenever the length of the
binary output is not available at update time or when-
ever the symbolic counter is not at the appropriate
type of address at rounding time. Again the final
OR'ing of the symbol error flags into the unit is
performed and the Pass 2a cycle is repeated.

Boxes 15 - 17

Now to finish the Pass 2a processing of a unit which
contains an instruction which is a pseudo-op. The
contents of the absolute and symbolic location
counters are put into the unit and the vle portion of
any companion symbol table entry. This is not
done if the unit contains a SYN op.

Boxes 18A, 18B

STRAP II does not prevent extracting from a
pseudo-op, but instead supplies zeros and gives
an error message.

Box 21

If the op is'not a pseudo-op the present setting of the
five error flags for an erroneously used symbol

is OR'ed into the unit now rather than later and

the cycle through Pass 2a is repeated. Note the
MCP ops, the DD and the DR ops which have
already been treated with follow this action,
immediately, too.

Boxes 19A - 19B

The pseudo-op number which was put in the unit

of the pseudo-op during Pass 1, is again used in
another digit select type branch to determine the
specialized treatment of the pseudo-op during

Pass 2a. The specific treatment for each pseudo-
op that still needs treatment in Pass 2a before the
next unit is brought in is described below. The
following pseudo-ops only need the wind up procedure
in box 20: PUNID, PUNFUL, PUNNOR, PUNORG,
PRNS, PRND, SKIP, NOPUN, TLB, DDI, NOPRNT,
TAIL, UNTAIL, PRNOR, PUNALL, PRNTALL,
DUPLI, NOSEQ and RESEQ.

PRNID: For PRNID, the unit must also be given
to the output phase in Pass 2a as well as in Pass
2b. The setting of the error flags are OR'ed into
the unit before the output phase gets control.

Since the PRNID statements are the only assembly
material printed during Pass 2a, all the PRNID's
will precede the major listing; the PRNID will also
appear in its specified location through the Pass 2b
printing. i

SLC: For SLC, Pass 2a adjusts the absolute

and symbolic counters and makes an entry in the
hi-lo table. (The SCLR indicator is turned off,
and the hi-lo-entry can-be-made indicator will be
set on.)

SLCR: For an SLCR, Pass 2a adjusts the absolute
and symbolic counters. No entry is made in the
hi-lo table. (The SCLR indicator is turned on and
the hi-lo-entry-can-be-made indicator is turned
off.)

END: For the END unit Pass 2a enters the
location of the END as a possible hi-lo candidate
into the hi-lo table.

EXT: For an EXT unit Pass 2a has evaluated the
coded expressions for the parameters and saved
their values in the unit. The location counter is
incremented by the length indicated by the N
parameter and the rounding procedure for the
next of the EXT units will not be performed. The
output phase will pick up the value of the parameter
and do the actual extracting from the next unit
later in Pass 2b, If the statement of the EXT op
is a multiple field DD, then the location counter
will be incremented the extra amount.

SYN: For a SYN op, Pass 2a tests if the value is
complete; if so, then Pass 2a now performs the
action as described in box 21. I the SYN is not
completely evaluated at this point, then there is
another try to get the value of the SYN by using a
section of UITER.

PUNSYM: For each symbol appearing in a PUNSYM
pseudo op, the corresponding symbol table entry
must be marked for the later punching (to be more
exact a bit must be turned on in the function portion
of the vlg. Since by Pass 2a all the symbols have
been entered into the symbol table, the necessary
vle's can be marked now during NPUNSYM in

Pass 2a. The SYN cards will be punched in Pass

2b during the QUTPUT subroutine through NQBTP.

SEM,REM: For a SEM or a REM the message
numbers in the major error mask of the error
subroutine are adjusted by the intermediate error
mask in the current unit.

SPNUS: For a SPNUS, all that Pass 2a does in
turn on an indicator for NUNDSY before performing
the end of Pass 2a procedure.

Box 24

If an end-of-file condition occurs when INTIN is
fetching the next unit for Pass 2a to process,
INTIN will branch to the between passes procedure.
(This EOF exit was set up at the beginning of Pass
2a.) Between Pass 2a and Pass 2b, UITER
concludes the evaluation of the data description and
the value of the symbols in the symbol table. In
addition, at this time UITER evaluates the memory
bounds of the program being assembled by using
the Uhl subroutine which inspects each hi-lo entry
in the vle table. On completion of the iteration,

UITER, returns to Pass 2b with the Pass 2a

indicator, Np2ind, off and Pass 2b indicator, Fpass3,
on. At this time all the names of the assembly are
evaluated.

Again we shall follow the flow through the Pass 2
flow chart. Only this time we shall take all the
Pass 2b branches.

By the beginning of Pass 2b all the symbols will
have been evaluated in the symbol table. During
Pass 2b the floating point format of all numeric
DD's will be adjusted and any general parenthetical
field entries on the DD's will be treated, the binary
output for an EXTract will be extracted, and finally
the documents for the program being assembled will
be produced.

Boxes 7, 8, 25

On the first cycle through Pass 2b the GO and the
LIM cards are produced and punched by NMCPAI.
This is the only output that is not punched by

OUTPUT. The GO and LIM cards will not appear

on the listing (nor will the SKIP and NOPRNT
pseudo ops appear on the listing). Note that the
GO and LIM cards precede each binary deck
produced by STRAP.

Boxes 14E, 27

In Pass 2b, the location counter value previously
stored in the unit and in the symbol table entry are

Assembly Phases 35

checked against the present setting of the location
counter. For a non-binary producing unit the
checking is done later. If a discrepancy occurs,
an error message will be given and the Pass 2a
setting of the location counter will be used.

Boxes 20, 28

During the processing of a unit which does not
contain a binary output producing instruction, the
checking of the location counter value is done at
this point.

Boxes 22, 30

Now before bringing in the next unit, Pass 2b gives
OUTPUT control at this point. The function of
OUTPUT is to set up the listing and the binary

card images which are printed and punched by the
I-O subroutines. For the listing of the instruction,
OUTPUT gets the location counter, binary output,
and symbolic statement including the comment
from the corresponding unit. OUTPUT gets the
name for each instruction from the name file
brought into internal storage by NAMEIN. QUTPUT
has the tilting and the page numbering done by
OEDIT. ERRNUM sets up and ERRPRT has
printed the error messages for QUTPUT. The

I-O subroutines, OPLIST and OPPUN, perform the
actual printing and punching. ¥ SYN cards have to
be made, OUTPUT has the PUNSYM procedure in
Pass 2b, the NQBTP subroutine, make them after
all the regular binary cards have been produced.
NUNDSY is responsible for collecting and having
printed those symbols in the symbol table which
are undefined, multiply-defined with or without
contradictions, circularly defined, or never used
in the program. . Since OQUTPUT uses a digit select
type branch technique in determining the appropriate
pseudo-op procedure, new pseudo-ops can be added
with a minimum alteration to QUTPUT. Note this
is the third of the three digit select type pseudo-op
tables in STRAP II.

Boxes 19A - 19C

During Pass 2b the following pseudo ops will need

no further treatment at this point: PRNID, PUNID,
PUNFUL, PUNNOR, PUNORG, PRNS, PRND,

SKIP, NOPUN, TLB, DDI, DD, DR, DRZ, NOPRNT,
PUNSYM, TAIL, UNTAIL, PRNOR, PUNALL,
SPUNS, PRNTALL, DUPLI, NOSEQ, and RESEQ.
Their units will go on to box 20 immediately for
processing. Their major effect on the Pass 2b
process happens in OUTPUT.

36

SLC, SLCR: For an SLC and SLCR, the location
counter is adjusted at this point. The absolute
value of the location will be available now. (As with
most of the other pseudo-ops, OUTPUT performs a
specific action later with a SL.C and SLCR. If

OUTPUT receives a unit of an SLCR, OQOUTPUT stops

punching cards until the next SLC unit is encount-
ered.)

END: For an END op, the current symbolic and
absolute counters are checked and the end of file
location for INTIN is now set up.

EXT: For an EXT op, similarly as in Pass 2a,
switches are set to prevent rounding and to detect
extraction from a psuedo-op in the second of the
EXTract's units. The length of the binary output
has now been established for the EXT instruction
and is saved. Then the counters will be checked in
box 28.

SYN: For every SYN, its value is now available in
Pass 2b. These bit and integer values are taken
from the absolute and symbolic counters of the
symbol table and put into the absolute and symbolic
counter fields of the corresponding unit of the SYN.
Also, the setting of the five error symbol flags that
have been accumulated with the symbol are now OR'd
into the unit of the SYN. Furthermore, if the sym-
bol has a dimension, the dimension reference ad-
dress is moved to the unit, too.

SEM, REM: For a SEM or REM unit, the same
action takes place now as happened in Pass 2a.
Actually the updating of the error mask must take
place in each pass of STRAP II since a condition
causing an error message to be given can be
detected in any pass of STRAP II.

Boxes 5B, 23, 31

The end-of-assembly procedure for STRAP II
includes the following actions:

1. The end-of-assembly procedure prints on the
listing the total time and the total number of units
used.

2. The end-of-assembly procedure prints the
message, THE END, on a page by itself, and by
using an additional SKIP pseudo-op, displays the
message to the operator.

3. The end-of-assembly procedure updates the
Communication Record with the information where
the STRAP II documents are located.

4. After returning the Communication Record to
MCP, the end-of-assembly procedure gives MCP
full control to continue the processing.

DESCRIPTION OF THE MAJOR LOGIC AREAS WITHIN THE PHASES

MAJOR LOGIC AREAS IN THE COMMON SECTION OF STRAP II

ERR ERRor message procedure
ERRIN ERRor message INitialization
MOVE MOVE data

TABMAN TABle MANagement

VALUE get VALUE of coded expression
XERR input/output ERRor

Makes an entry in the lists of detected programmer
errors.

Initializes the error message procedure before each
major part of the assembly by defining the bounds
of the current list of detected programmer errors.

Moves a string of bits from one memory area to
another memory area.

Manipulates the data in the symbol table, in the tail
table, and in the branch-on-indicator (BI) table.

Evaluates a coded expression.

Is responsible for retrying I-O operations on the disk
when a unit check is received by the read/write
operation in the user routine.

SUBROUTINES -- ERRIN, ERR, ERRNUM, and
ERRPRT

Details

The cause necessitating an error message can be
detected during any of the passes of STRAP II. The
cause of an error message can be an instruction '
which has been illegally specified by the programmer,
an instruction which contains a possible cause of
error, or a "trouble' condition which has occurred
within the assembly process. All the error messages
appear at the end of the listing. In general, the
detection of each error results in the creation of a
32-bit entry in one of five internal error lists. At
the end of the assembly program, each entry in the
lists causes a corresponding error message to be
printed. Each print out of an error message includes
not only the description of the error but also the page
and line number of the instruction in question and, as
necessary, the address field of the occurring error.
There are four subroutines involved in the recording
and printing of the error messages by STRAP II:
ERRIN, ERR, ERRNUM, and ERRPRT. The time of

their use during STRAP II is described first and then
their function. ERRIN is used during the initialization
of each of the major parts of STRAP II: Pass 1,

Pass 2a, Pass 2b, the UITER between Pass 1 and
Pass 2a, and the UITER between Pass 2a and Pass 2b.
ERR is used during each end-exception interrupt
action that STRAP II forces to occur whenever an
error condition is detected within Pass 1, UITER, .
Pass 2a, UITER, or Pass 2b. ERRNUM is used

after each unit has been processed in the OUTPUT
routine at a point after all possible errors have been
detected in Pass 2b. _ERRPRT is used once at the
very end of the assembly in Pass 2b.

Since ERRIN is only entered during the initialization
of each major part of STRAP II before any error
condition can be detected in that part of the assembly,
ERRIN's primary function is to stack the starting
location (current contents of Errfwa) of each of the
five lists being built up by ERR, ERRNUM with page
and line information supplied by OUTPUT completes
all the error entries in the_ERR lists so that the
five lists finally can be merged and printed by
ERRPRT.

Major Logic Areas -- Common Section 37

The source of information for ERR are: three
counters, Unit (BU, 20), Field (BU, 4), and Symbol
(BU, 24); a table at Errtab of ordered 64-bit control
words each of which locates a variable length error
message; and the bounds, which are contained in
Errfwa and Errtop, of each area for the ERR lists
containing the 32-bit entries.
ability aids for a description of the counters: Unit,
Field, and Symbol.)

ERR is responsible for making the 32-bit entry
recording the occurrence of an error detected by
STRAP II either in the problem program or in the
assembly program. If the error is detected while
Pass 1, Pass 2a, or Pass 2b is in process, the 32-bit
entry has the following form. (Each of these parts
of STRAP processes the expanded instruction units
in their chronological order.)

_Field Number of
Unit Number Number Error Message
THHITHHIHIHHIIIIIIHIII
20 bits 4 bits 8 bits

Figure 3. Error Message Record for Pass1, Pass 2a, and Pass 2b

On the other hand, if the error is detected while
either use of UITER is in process, the above 32-bit
entry has another form. (UITER analyzes the entries
in the ordered symbol table.)

Location of Symbol Table Entry

RERRERERRRRRERRRREEREE

24 bits

ojo]ojojolo]ofo
8 bits

Figure 4. Error Message Record for UITER

Preceding each list, ERR makes the following
specialized type entry:

38

(See section on service-

Number of Errors, If Any,
Which Have Not Been Listed

TTTTTTTTTTTTITITTITTTITTTUT jololofololololo
24 bits

8 bits
Figure 5. Initial Error Message Record

ERR returns to MCP in order to resume assembly
processing.

The number of an error message refers to the rank
of the corresponding particular control word in the
Errtab table of control words. The method by which
ERR establishes the rank of the appropriate control
word should be explained. When STRAP II detects an
error condition, STRAP II performs an instruction of
the type -- EX, A -~ where A is the address of a CW
instruction which locates the message to be given for
the condition detected. The request to execute a CW
instruction causes an execute exception interrupt to
occur, whereupon MCP takes immediate control.

Now the refill field of $15 has the fixed use of pointing
to STRAP II's table of exits for maskable interrupts.
This table includes the address of ERR as the loca-
tion MCP is to go to whenever MCP receives an
execute exception interrupt from STRAP II. Then
after MCP's subsequent entry into the ERR sub-
routine, ERR manipulates the interrupt location
counter value, which MCP has put in the STRAP II
table of exits, to get the address, A. Once ERR
obtains the location of the control word, its rank in
the table of control words is obtained by a simple
subtraction. The rank of the CW is used in the 32-bit
entry recording the error message.

Serious error messages printed at the end of the
listing can also be printed on the console typewriter
when the error condition occurs under the installation's
optionable use of a Correction card. These serious
error messages have their corresponding control
words at the beginning of the list of error message
control words. The number of these type of control
words is given by the quantity Esss to which ERR
compares the error message number just calculated.

ERRNUM looks through the five lists for an entry
with either a unit number corresponding to the con-
tents of the Unit counter (if an item in the first, third,
or fifth list), or a symbol number corresponding to
the contents of the Symbol counter (if an item in the
second or fourth list). Then using the page and line
information supplied by OUTPUT, ERRNUM trans-
forms the error entry into the new format.

The 12-bit page number is made available by
OUTPUT in the accumulator at offset 8; the 8-bit line
number is in the accumulator at offset 0. (If the
found error entry is one from either the second or
fourth list, the field designations in the transformed

ERRNUM

error entry are set to zero.) In addition ERRNUM_
puts the second and fourth lists in chronological
order, the other lists are built up in chronological
order originally.

Number of

Page Number Line Number Field Error Message

[IIHIIIIII]IIII[II{TII}I]IIIIT
12 bits 8 bits
Figure 6. Final Error Message Record for ERRPRT

4 bits 8 bits

ERRNUM 39

40

EEERRERRERRERB AR

* MOVE *
Lt ot It B B S
* MOVE *
* DATA *

* *
EREERERABRANBR SRR
.

- REN
- - »
- *] M.
- * *
. ERER .
X X
* * = 1 ERAE
1s
*
-
. .
. .
X . 14 4057 L
* * » - ARERAERTERARRRRE R * * 13
* ARE ® . * MOVE THE * * ARE *
* THE FROM #* YES * SPECIFIC NQ. * * THERE ANY * NO
- AND TO ‘.o---Qo-o--n---.X--.-.--o.o‘n---o.-' OF RITS FROM *Xeevesvaok 00D BITS Ravee
* ADDR * THE FRONT : * TO MOVE = -
- = * l OF THE STRING #* * * .
* * EREERARBRERFERERR x ® o® X
* x rEEN
«NO . * -
. - * 1 *
- . » *
- - LES 2D
. «YCS
X * 10 * 12
- * * 4 FREBAERREAALERE R AR - »* 11 LR T e Y Y
CAN = * * * CALCULATE THE * * * * NMOVE THE NEXT *
#* WE USE - * SHOULD * * NO. OF 64 BIT * * COUNT * NO * 64 BITS FROM #
- TRANSMIT WE MCVE .---(* VFL WORDS TO ¥eeae —1=0 seeeX¥ THE END OF LLEET)
* Q= * FORWARD * MOVE +1 * * + * * THE STRING * .
- * * - 0 AS COUNT. * * * * * -
- - - * EERRREERERREEERERR * % ¥ HERFRARFRRRARNRER -
* X .
+YCS «YCS . .
- . ssescessesseeventsvrrnnnovascnerseraan
. .
. .
. .
x 15 x s Jo4s2 * »
ERERERERERERES AR REEARREARAERERNRR » * 6 13 »
®SAVE THE FIRST # * CALCULATE THE * * * * ARE ¥
® AND LAST FULL * * NQ. OF €4 BIT * * COUNT * YES * THERE ANY * NO
STRETCH WORDS ¥ * VFL WORCS TO #ocsessseX¥® -1=0 ®easevseesX® ODD BITS TO *.0ee
HAVING ODD BITS * MOVE +1 AS * X » MOVE * -
#* TO BE MOVED # = COUNT » . * * .
L e e e L HERAER AN IEEERRER . - = » » x
- - - LA RS
. - «NO «YES * *
- . - - * 1 *
- - - - * *
. . . . wnwx
. . . .
. 16 . X 7 X 9
REREFRRHARRRRE AR . HEAFRARARRERERAE AREEERRERFREEERBRED
* CALCULATE NO., * . ® MOVE THE NEXT ¥ * MOVE THESE
#OF FULL STRETCH®* . * 64 BITS FROM * #*SPECIFIED DBITS
*WORDS WHICH CAN¥ eneak THE FRONT * * FROM THE LAST .
® BE TRANSMITED #* * OF THE STRING # * BITS OF THE .
®* AS COUNT (3* * * * * STRING .
RHEXRFRAAARBRERRRS HRRBRABERRERREERN ERERREERRAERRRAE RS x
- -
- * *
. * 1 *
. * *
- T
X J12 18
L 7 T OPRPIRSP 1
I * * *
* THIS = - MAVE THE »
- counT * SPECIFIC *
- BITS »
- * *
* * EEEFRERERRTEERE AR
»* s
«NO *
- -
- *
- LE 2 22
x Ji1 20 * 22
- % % 19 REEREREERRARTRRRRE * »* 21 AEBAERERERRNRRANR
* * * CALCULATE NO. * * ARE % CALCULATE NO. *
* Is YES * OF BITS FROM * THERE ANY OLOD YES * OF BITS AND i
#* THIS COUNT ®asaeseesX*THE FIRST WORD *ooseewweX® BKTS AT THE *esesess s XAMOVE THESE FROM*---.
* o * *AND MOVE THEM. # END * THE LAST WORD *
» * *(1 70O 64 BITS) * * * .
* * HEREEREREREEEREEEN * * HEREREERRERREERES X
* X *N R
«NOQ - EREE - LR S22 * *
- - * - * * * 1 *
. eXe® 2 % e X¥] * * *
. - * * - - L2 R
- - EEEE R
X . 2a
* % % 23 FARERERREARERR RN
»* -

* -

Xo oo

25
ERRRRERERERNER RN
* *

TRANSMIT C *
*WORDS BACKWARD
lP+l+C TO R+1+C ‘

l&fi:acyliiinals'

¥oosa

#* TRANSMIT C

eeX¥* WORDS FCRWARD
*

*
»*
P+l TO R+l *
*
*

*
HEREEAARNATRBERR

LINKAGE

The calling sequence is:
LVI, 15, $+2; B, MOVE
, from address (I)
, to address ()
, number of bits to be
moved ()
Normal Return

'referred to as A or P.Q
'referred to as B or R.S
'referred toas Nor T.U

RESTRICTION

Currently MOVE destructively uses the accumulator,
the arithmetic result indicators, the comparison
result indicators, and the result indicators.

USERS

OEDIT, OUTPUT, OPLIST, VALUE, TABMAN

DETAILS

In the description of MOVE's niethod of moving data,
the following nomenclature and examples are referred
to:

A =P.Q = the 'from' address

B=R.S = the 'to' address

N=T.U = the number of bits to be moved
A+N =Z=X.Y = the address of the next bit

following the data in the
_ 'from' buffer

A storage word V is used for storing 64 bits of data
beginning at P.0. A storage word W is used for
storing 64 bits of data beginning at X.0.

The possible situations that can occur are:

1. N=0or A=B.

2. Q =8 either with A<<B or with A=B, and N # 0.

3. Q=8, and N #0.

FLOW CHART DESCRIPTION
Boxes 1, 2

For situation #1 MOVE does not move any data and
returns directly back to the user program.

MOVE

Boxes 3-14

For situation #3, MOVE by progressively indexed Load
and STore operations, moves T words forward (or
backward) from location A (or A + N) to location B
(or B+ N) if A=<<B (or if A =B).

Then if U # 0, MOVE picks up the U odd data bits
from location A + T (or A) and puts them in location
B+ T (or B) if A <B (or if A = B).

Boxes 15, 16

To handle situation #2 MOVE does the following:

First, MOVE saves the words at locations P.0 and X.0
in the storage words at locations V and W, respec-
tively, to protect against overlapping.

Then since Q = S and a straight Transmit operation
may be able to be used, MOVE computes how many
full words are in the data by the formula:

L= N-Y-(64-Q)/64.

Boxes 19-22

If L =0, as is the case in ex. b, then MOVE moves
the last 64-Q bits of the word V to location B. And
then if Y # 0, MOVE moves the first Y bits of word
W to location B+ N - Y.

Boxes 17, 18

If L<<0, as is the case in ex. a, then MOVE moves
to location B the N bits which are in the word V at an
offset of 64-(Q + N) bits. There is no boundary
crossover.

Boxes 23-25

If L=0, as is the case in ex. ¢, then MOVE transmits
forward (or backward) L full words from location P. 64
(or P.0 + L) to location R. 64 (or R.0) if A<< B (or
if A = B).

Then MOVE moves the odd number of data bits in
the words, V and W, as described above.

MOVE 41

’<_Q Bits —

le—N ths__»"_64 (QfN) —>

)

e N Bits

/////

P.O

X.Y

H—— Q Bits —_,.*(GB‘ttS)_>

ex. a: 1< 0

i

leg— N Bits|
|

P.O

.

X.0|X.Y

—P{ :(—Y Bits

\

W.0
ex.b: L =0

(64-Q)

- Bits

//,

Figure 7.

42

—>
L Words -3]4-

|<_l N Bits
|

.

P.O

Format of MOVE's Storage Words

P.Q [P.64 |X.01 X.Y
i |
> € Y Bits

\

Ww.0

ex,c: L >O

Intermediate
Storage Word V

From Buffer

Intermediate
Storage Word W

Intermediate
Storage Word V

From Buffer

Intermediate
Storage Word W

Intermediate
Storage Word V

From Buffer

Intermediate
Storage Word W

CHART RA STRAP II TABMAN
1 2 3
EEREREAEREE SRR EREERAEREAERER RN FREEEEREEEREREER
* SEARCH * * ADDORD * * ADDUNO *®
e N W e e o R I] R e e R e B ®
» L * * * *
* HOUSEKEEPING * % HOUSEKEEPING * * HOUSEKEEPING *
= = » x *
ERRERARERERERRREN REREEEEEETRREELEE EEKEEEEERREEREERE

. . .

- . .

. . .

. . .

. . .

- . .

X 4 x X
ERREEREERARRRRIEE EEREERERREEEREEER ARRERREEAEREREERR
* ACOMPI * * *

Lot B B et Sl S S * SET * * SET *
* SET UP #Xeoesnaaek ADDQRD * * ADDUNO *
= COMPARE * * BIT TC 1 * * BIT TO 1 *
* INSTRUCTION * * * * *
RERXREARFEERFREX IR AEAREEELRNARRREREE EERRRERERERERREER
. .
. .
. .
. .
. .
7 * 9 X 10
ERRBERELRERN RN * * EREERRREREREELEER ERREREERERREREERR
* - ®* IS * * * » *
* SEARCH *NOT FOUND * ADDORD * YES * INCREASE * * INCREASE =
= FOR ITEM *eeevsoeaX¥ BIT HesesoanaXi $X15 * * $X15 *
- * » ON * * BY 3.32 * * BY 3.0 *
* * - * * * = « *
EERREREEREEERERES - = * ARFEREEEER RS ERRER AEEXEERERRRERERNE

«FOUND . * . .

. . « NO . .

- . . .

.

. . . - .

-

X - X 12 - x 13

* % % 11 . FEEREERRRAXERREER . AREAEXNRREFELERER

» . * * . - *

* ITEM * YES . * INCREASE * - “ LAST ®

- DELETED Hovwona * $X1¢E * - * LOCATION *
* * BY 2.0 * . * TO $X6 ®

= * * * . * *

* * EREERARERAEERRRER . BREREREEHFRENR TR

* - - .

«NO . - -

. . . .

. . . .

. . . .

. . . .

X 14 . x 19
RRRERERFEARARLRLS - - EEEARREEEERERERRAE
* * . - * AFNDMA *
* INCREASE * . - L L e I S e e
* $X15 * . . * TEST IF THE *
* BY 2.32 * . . ALAST ENTRY HAS #
* * - * BEEN DELETED *
EERREERERRRRFRAEE . . EAEEXERAREEXERRREER

. - - .

. . . .

. . . -

. . - .

. . - .

. . - .

X 18 . . X 22
EERRERERERERELE X . - EREEREERREERFEREE
* PUT * ‘e - * -
* LOCATION * . . * ENTRY *
* IN CONTROL *X sessce - * LOCATION =
b oCcK * . * TO sX2 *
* * . * *
AREREEREERERRRRREE - EEREEREREEEEEREERE

. . .

. . .

. . .

. . .

- . .

X 21 - X 24

= ® ® 20 EURAEERERAERTS RS - ERRAREREERERREEER

» * * * -] x

* DOES ® NO * FUNCTION *® - * TABLE *

* IT HAVE A P ADDRESS * . * AS =
VLE » * TO AC * . * UNORDERED *

* ® - « -

= - P e ERXREEREAEARERRRRE

* - . .

+YES . . -

. . . .

. . .

ssescessssssssssssscsscccXe
. .

X 23 .

ERERRERERERERENER . ERRARFEFRRERRRERS * % * 28
* AGETV * - * CHANGE * * IS *

L s e et et o T ot . * LWA IN * NO * DELETED *

* GET VLE * - * CONTROL *Xoove * ITEM BEING *
* ADDRESS * . * BLOCK * * REPLACED ¥

- * . * * * *
EEEREREEREERERERE . EFERERRERFERAXERR

. . .

. . .

. .

. . .

. - eXewssessssssosscncoscse

. . .

X X

25
EREEERRRAREE SR XRE
* *

* COMPUTE *

* FUNCTION ®eoesssceX®
* ADDRESS bt *
=

FEREREEREEREEE RN

L L

* =% 32
* IS *
* ADDORD * YES
BIT

- Heese

X%
*

26
AREEEEERREREARERE
®

PUT *
* LOCATION *
IN CONTROL *
B *

*

*

*
EEREREEER AR RRERE
.

essessssccccascccnsencse

33
EFREREEXREARR R TR
* *
* INCREASE *

$X1E *

BY 0432 *

* *
FHEXEEFREEEARREREEE

.

X 29 30
(a2 2222222 s S22 22 AEBRREREERRRRERER
* *

* AENTER *
» ADD 1 * B S
bl TO COUNT *ou see XE ENTER LY
* * * ITEM *
* . IN TABLE *

* L
EEARERERREBEEERRE R EREEEEREEXRREREER

31
F AT R KRN ER

*

AREST

*

L T e e o ST T 2

X#
*

S B R P R]

RESTORE
AND

XIT
RERREEREEERXRRRRN

0000 X

R

*
*
*

43

TABMAN

DETAILS

The table management routines are a set of programs
designed to accomplish the table handling functions of
search, ordered and unordered addition, replacement,
research, and scan in STRAP II.

Table manipulation is based upon the conformation
of design of each table to specific information contained
in an associated table control block. The calling
sequence for each table management routine includes
the location of the table control block and certain
individual entrance parameters. Table design and
control block information are completely inter-
dependent.

A table entry has a fixed length argument or
designator part and a possible variable length portion -
the function or use part. All entries of a table consist
of at least a fixed length portion, the length of which
is specified in the table's control block. (This fixed
length portion is also called the dictionary part of the
entry.) Whenever an entry either exceeds established
fixed length limits or whenever it is desired to split
the argument, a variable length entry (vle) is estab-
lished. If a vle portion exists, its address is contained
in the function field of the dictionary entry. A block
of storage has been reserved for the consolidated vle
portions of the tables. The dictionary part of different
tables is located in non-adjacent blocks of storage,
but the vle portions of all tables are located in one
consolidated vle block of storage.

0

The control block for each table contains all infor-
mation pertinent to the fixed length portion of that
table. If a vle portion exists, the address is contained
in the last 25 bits of the function part of the dictionary
entry. All other information concerning the vie is
contained in the vle itself. If a vle portion is to be
generated, the universal control block (another con-
trol block governing all the tables managed by table
management) contains the next available location in
the consolidated vle table. One characteristic that
cannot be too strongly stressed is that a table control
block contains defining information about the fixed
length entry part of its table only. In addition, the
fixed length portion of each individual entry conforms
to this defining information. Thus, each table entry
has one of three forms:

1. Argument and function in fixed length portion
and no vle portion as an entry in the MIBA table.

2. Argument in fixed length portion and function in
vle portion as the STRAP special symbol entry in the
symbol table.

3. Part of argument in fixed length portion and
remainder of argument plus the function in vle portion
as an input symbol entry in the symbol table.

The set of table management routines are:
SEARCH, ADDORD, ADDUNO, RSERCH, and ANEXT.

Figure 8 presents the format for a table control
block associated with either the table for the symbols
(taken from the input instructions), or the table for
the 7030 indicators, or the table for the tails (taken
from the input instructions).

32 63
|I|IIIIIIHI|IIIIIIHIIIIHIIIIIIIllllllllllllllllllIIIIIIIIIIIT]
FX

0 32 63
I||l||||f|||]|||||ll|ll|||||||l||f||[ll!lHHHIIIIIIHIIIHIH
DX

0 25 32 5758 6263

l IIlllllllllllllll_[lTlllllllT|0|0||Hll[!ll]l]!llTlllllH,Hlolololq
Fw w TOTMTEC

0 16 32 48 63
lllilllllll[llll||||ll||l|||||l]ll|l[||i|’1]|||'|Illil)llilllT\—l
EL AL ADDL N

Figure 8. Format for a Table Control Block

44

Individual Control Block

Field

in
Diagram
FX

DX

FW

ID
Lw

TO
™™
TEC
EL

AL

ADDL

Contents

Index word referring to
function part of an entry
Index word referring to
dictionary location
Location of first entry of
table

Identification

Location of last entry of
table

Type of table

(0, ordered; 1, unordered)
Table delete mark

Type of compare

Length of fixed entry in
dictionary (filled in by
subroutine)

Length of argument in
dictionary

Length of function in
dictionary

Number of undeleted
entries in dictionary

Universal Control Block

Field
Auvtab

Auvbot

Length (bits)
24 of half word
24 of half word

18 of half word
18 of half word

Relative
Location
Symbol

Azfx

Relative
Location

0.0

1.0

2.0

2.25
2.32

N

.o7

.58
. 62
.0

W NN

Contents

Length
in

Bits

64

64

24

24

16
16

16

Restrictions

Full word

Full word

Address of half wd.

Address of half wd.
1 bit
1 bit

1 bit

Word addressed contains first available bit location of vlie table
(which is built upwards).
Lowest bit address usable in vle block.
Location of first table control block.

Number of table control blocks, including any marked for
deletion, unless at end.

FLOW CHART DESCRIPTION

Boxes 1-3

Housekeeping for the three routines accomplished

the following:

$0 - $7 are saved.

Azzc and Azzb bits are set to zero.
The location of the table control block is read from
the calling sequence and placed in the value field

of $5.

Box 4

Acompi sets the field length in the compare instruc-
tions for the size of the argument under considera-

tion.

Box 7

If the number of items in the table is less than seven,

a linear search is performed.

binary search is used.

If seven or more, a

TABMAN 45

Box 14

If the item is found and not deleted, $15 is advanced
to return to the found return for SEARCH.

Boxes 18, 20, 21, 23, 25, 26

The location of the equal entry is put into the table
control block. If the entry has a variable length entry
portion, its location is obtained using Agetv. In both
cases the function address is placed in the table con-
trol block.

Boxes 32, 33

If the Azzc bit is on, $15 must be increased by half
a word to return to the "already there' return.

Box 31

$0 - $7 are restored and exit is made by a ---
B, -1($15).
Boxes 8, 9

If the item is not found and the Azzc bit is off, $15 is
increased to point to the 'not found" return. If the

Azzc bit is on, $15 is increased to point to the
"normal" return for ADDORD.

Boxes 10, 13, 19, 22, 24

Index register 15 is increased to point to the "normal"
return. The last entry in the table is placed in $6

and a branch is made to the find delete mark routine.
At exit $2 will contain the address of the last entry,

if deleted, or the next available location in the table.
The table is now marked as unordered.

Boxes 28, 27

If a deleted item is not being replaced it is necessary
to increase the last word address in the table control
block by one entry length.

Boxes 29-31

The number of entries in the table control block is
increased by one and the new entry is moved to the
location specified in $2 and exit is made via Arest.

PURPOSE

The main objective of SEARCH is to ascertain
whether or not a given piece of information is con-
tained within a table.

LINKAGE

LVI, 15, $+2; B, SEARCH
, tbl

, arg ()

» al (I)

B, a fix-up subroutine
Normal Return

'not found return.

DETAILS

The SEARCH objective is accomplished through the
use of a main program and several key subroutines.
The main program will decide which of two specific

SEARCH

table search routines to use, linear or binary. These
routines select a table argument, and then branch to

a common routine which compares the given and table
arguments. If an equal comparison is not made, the
specific SEARCH routine will continue to select other
table arguments until either an equal table argument

is found or the entire table has been processed. Only
if the table is ordered and greater than six entries long
will a binary search be conducted.

The index words in the control block will contain one
of two locations, depending on whether or not an argu-
ment in the table equal to the given argument was found.
If an equal argument was found, the location of that
argument and its function will be in the control table
index words. If an equal argument was not found, one
of two results may appear in the index words. In the
case of an ordered table search, the location of the
entry with the next higher argument will be in the index
words. For a non-ordered table search, the next loc-
ation after the table will be given in the index words.

SEARCH 47

ADDORD

PURPOSE

The objective of ADDORD is to add an entry in its
proper place in an ordered table, if the entry is not
already in the table.

LINKAGE

LVI, 15, $+2; B, ADDORD
, thl

» arg(

» alD

, funct(l)

» 1D

B, a fix-up subroutine

B, a fix-up subroutine

'Already there exit.
'Error exit, unordered
table, item not in

order.
Normal Return

RESTRICTIONS

1. The table must be in ascending order.
2. It is the programmer's responsibility to make

48

certain that adding an entry will not overflow the
table and possibly overlap other information or tables.

DETAILS

An initial check is made to see if the table is ordered.
It not, the entry will be added out of order. If the
table is ordered, the location of a table argument
equal to or next higher than the given argument is
obtained by use of the SEARCH routine. If no equal
argument is found, the table will be moved up the
correct amount to permit insertion of the new entry
in order. All this will be done in conformation to

the control block specifications. The control block
will then be updated.

On return to the 'already there' exit, the index words
in the control block will locate the equal item. If a
'normal return' is made, the control block will reflect
the change in the number of entries in the table, and
the location of the properly inserted entry. The 'error
return' exit will be made from the ADDUNO routine
if an unordered table had been detected, and the entry
will be added to the end of the table.

PURPOSE
The objective of ADDUNO is to add an item to a table.
LINKAGE

LVI, 15, $+2; B, ADDUNO
, tbl

, arg()

, al(l)

, funct(l)

, (D)

Normal Return
RESTRICTIONS

When the given item is added to the table, this routine
does not check for available space. Therefore, the
beginning of the next table may unwittingly be
destroyed. The overall bookkeeping of all tables is

ADDUNO

left to the programmer, and it is the programmer's
responsibility to avoid obliterating his own memory.

DETAIILS

The routine checks if the last entry in the table is
marked for deletion. If it is, it is replaced by the
given item. If not, the given item is placed immedi-
ately after the last entry of the table. This routine
enters the contents of location arg(l) and funct(l) into
the table, adjusts the address of the last vle entry in
the universal control block when necessary, and makes
the following adjustments to the table control block to
correspond to the new status of the table:

1. The count of entries (Azn) is advanced by one.

2. The table is marked unordered.

3. The location of the last dictionary entry (Azew)
is changed when the given item is added at the end of
the table.

ADDUNO 49

CHART RB

50

STRAP 11 ANEXT
ERUEBSREFTARXERERR
* ANEXT *
LS DR EE EE T 2 T2 2 2
* GET THE NEXT =
* VLE *
* LOCATION *
RAEEEREERBAFRERERS
.
.
.
.
.
.
X 1
E2 22 EXZ2 RS2 222 23
* »*
* »*
» SAVE 32 *
* *
* *
ERBRAFEAARRERERER
.
.
.
.
.
3 X
AP RR AR REIRERRERRR * * % 2
- * * IS -
= SET $2 * ON_* AFIRST *
® 7O FIRST Xeesorvset B8It *
* ENTRY * * oN -
* * * *
L2232 22222222 222 3 * -
- *
. « OFF
. .
. .
. .
. .
. X 4
- REAREARRRARERRERSS
. * »
. » SET 32 *
. ® YO NEXT X, .
. » ENTRY . .
. * » -
- RERTRHERREALSRRREE -
. . .
. . .
. . .
. . -
eveces Xe .
. -YES
X L]
* ¥ ¥ 5 * * 6
* 1D » * *
®* EQUAL TO * NO * ANY + NO
» GIVEN BeeeananakE MORE
* 1) * * ENTRIES * x
- ® = - -
* * * * .
* * -
«YES .
. .
. .
X -
* * ¥ 8 -
* * .
* ENTRY * YES .
* DELETED R eeersseesnesstnnascessasesavee
* *
* *
=
« NO
.
.
.
.
X

-
SET LP *

EXET RS

ceevecan

*
» *,
% INDEX wWORDS ¥

* »

*

FEBAERRAARSRERER

AN
- *
* EXIT #
» -

» »
(T3 23

RS

. 7
AEBERRERER TR HARN
x *

a
ceen X¥ RESTORE s2
1

x
AREFERRRBEURA SR
X

»
*
-
*
»

PURPOSE
The objective of ANEXT is to scan the variable length
entry table for entries associated with a particular

table control block (i.e., for those entries with the
same ID).

LINKAGE

LVI, 15, $+2; B, ANEXT

, ID 'See restriction.
'See restriction.

, linkage to a fix-up subroutine
, No more vle

return.
Normal Return

ANEXT

RESTRICTIONS

Initially the bit, Afirst, must be on. ANEXT turns
the indicator off. In fact, whenever it is desired to
restart the scan at the beginning of the vle table,
Afirst should be turned on.

Regarding the calling sequence, it should be noted
that the ID must be placed in bit positions 18-23 of its
half word and that the 'no more vle' return occupies
two half words in the calling sequence (for an optional
linkage to a fix-up subroutine) instead of the usual one
half word for the non-normal return.

DETAILS
The location of the first bit of the vle with the same

ID as that in the calling sequence will be in the value
field of the index word, _Anextx.

ANEXT 51

CHART Rw

52

STRAP I1I

EREETEERRAREERERN
* RSERCH *
L il o
GLCT ADDRESS OF #
* SYMBCL i

» *
EERERERRERAERAE R
.

1
EERERERRARBRRRRNR

* HOUSEKEEPING *#
* REAC *
* CALL ING »
* SEQUEMNCE *
* »
AEREXERERRTTERR RN

.

.

.

.

.

X 2
HERAERERRRAERRRERER
* DETERMINE *
» FIRST »
* ENTRY *
* LOCATION *
- -
FHEXRERERRATRRER AR

.
.
.
sXeesaasns
.
X
* ® » 4
* -
* EoQuaL
®* TO GIVEN *
* LOCATION #
* »

- 13

»
«YES

.
.

X 7
EELRERERARRERNENN

» PyT *
* ADDRESSES IN *
* CONTFROL *
* BLOCK »
* *
* -

REXAERRRENRREES

.
.
X
* ® # 9
* -

*

INDEX »
* SPECIFIED »
»

.
X
AREERREEERRER LR
* MOVE d

DICTIONARY *
- ENTRY *
L] *

EREERERBAAERRERREN
.

Xs s o0

1
RAAREXBERERERNSE
*

INDEX

2
*
L]
* UPDATE »
* *
* REGISTER »
* *
x *

EREEERERAE RN NS

RSERCH

IR

NO

NO

sessceneXi
-

sseas

LA
sessess s X ENTRY
»

3
ERAXERATREEFERAEN

ENTRY

* *
* *
* *
* LENGTH *
* *
* *

EEERERBERERERALS

NO

xe s e bex

» * 5
* *

* ST *

- *
*

10
ARARRERERRERERREN
* »
b INCREASE *

$X15
BY 2.0

* »
ERERRRERARNCERNRN

R R R I

YES

*oossveaoX¥
*

*osesesssssansenses
-

6
EEEERAERERRERERS
=

* INCREASE

$X15 BY
132

*

WA RN ENN

*

*
*
»
*
*
*

FLOW CHART DESCRIPTION

Box 1

$0 - $7 are saved and bit Azzs is set to one to indicate
to TABMAN that the management routine being used
is RSERCH. The contents of the index register Iin
the calling sequence is saved for later tests.

Boxes 2-6

The location of the first dictionary location is deter-
mined and its function address is compared to the
address given in the calling sequence. If it is not
equal and if we have not exhausted the list, we update
by the entry length, and test the next dictionary entry.
If there are no more entries in the list, we set up $15
for the not found return, and branch to the exit routine.

Boxes 7, 9-12

If the function address specified in the calling sequence
has been found we place the dictionary location and

the function location in the appropriate words in the
table control block. Also, if an index register was
specified in the calling sequence, the dictionary entry
is moved to the location specified in the value field of
the index register, and the value field is updated by
the length of the entry moved. In either case $15 is

RSERCH

set up for the found return, and a branch is made to
the exit routine.

Box 8

$0 - $7 are restored. Return to the user program is
a —- B,-1(315).

Boxes 2-4

If bit Afirst is on, $2 is reset to the first location of
the vle table. If off the location of the next vle entry
is picked up from index word Anexta. The bit is
turned off by the test.

Boxes 5, 6

If the ID in the calling sequence is not equal to the ID
in the entry and more entries are in the table, $2 is
updated by the length of the entry just tested and the
next entry ID is checked. If there are no more entries
the routine exits to the "'no more entries" return.

Boxes 8, 9

If the ID's are equal and the entry is not deleted, the
location of the entry is put in the index word Anextx
and the index word Anexta is set to point to the next
vle. Exit is made to the normal exit. If the entry
has been deleted we treat it as if it had not been
found.

RSERCH 53

CHART RD

sose®

R I I N A N R A A S A A A A R A N AN)

54

1
FRERBRRRRERE R ERE
* VALUE *
L e et 2
* EVALUATE A

CODED
* EXPRESSION *
BEREERERAIRERERANDE

STRAP 11

¥oaoeveneX¥
* *

VALUE

7
EX eI IR YT)
* =

INITIALIZE

* *
ERRERRRERNERERERF

ccesusssccace

. .
vA x e .
ERERERRBRTRERE AR REER NIRRT NN RN .
* * * * -
* SPECIAL * 0o1® BRANCH =,
* INDEX BIT *Xaas ee® ACCORCING * .
* T0 1 * * TO PREFIX *101
* * 000eses® coees
ARFFARRRRERERRERR ORe RRXBERREERERBRRER -
. 100. 010. 110.111+ O1l. .
. . . « . . .
. . . PO - neoes
. . . PO .
. . .
o . .
X 2 . . « .
FERBEAEARERAER AR - . - -
* * . . - .
- SPACE *
- vl BY 3 * . . e teesececssensase
= * . . .
= * . . .
ARRRRREREFIRETRRR - . -
. . .
ERER - . -
* 3 . . .
% 40 FoXeXeooeossoorvas . ceveesssesvessearens
* . X .
E2 22X) - - .
ve X . VA2
* % 3 - RHERERRAERBAREREERS
- » *
.

E3 *
ANOTHER %
* DATUM *
* *

* .
- »
»
«NO
.
.
.
x
* e . 4
- »

ANY *
OPERATORS *
-

.
X S
ARARRERERRERE RS
» -
* COMBINE DATA *
* ACCORDING TO *
* OPERATORS b
» -
R RARARN R RN RN

.

Xe oo

6
RN AN
* MACHER *

PUT RESULTS *
- IN RESULT -
INDEX WORDS %
LI T
.

Xe s oo

ARERE

» *
* -
* EXIT *
» -

* *
rEEER

* PADDING
oo
*

*
BIT TC 1 *
*
*
*

*
ARREAEREAARRRES D

sevsene

essscssesssavsssnsnsnsesane

9
ERERRREARRNERRRERNE
» »

- BRANCH =
eseeesX® ACCORDING TO #*
* NEXT 3 BITS =
* *oe
RAEFBEERFARRRATRER

100. 101e 110. 111

sreevvses s

-

.
-
.
-

cssessscscns

.
.
.
.
.
.

sSeses et s st

ssesscesncesenson

Xe oo

ERAERAEERARAERERE
* SEARCH »*
L R o S B 2
L LOOK uP *
* sSyYMecL *
* »*
RERERERRAARR TR

: * *o® 10

- *

. * IN * NO

. * SYMBCL *osveveseX
. » TABLL *

: - *

.

. «YES

. .

. “ssssssssscencescns
. 11

. IE R I T A R 2 2R s

. * VBREAK L

. L Ll ok T T B

. GIVE LSER

* OPPORTUNITY %
TO FIX SYMBOL *
AERERRBRAARREERRE

toeeneneoX¥
*

* 17 21
* * 12 REAFRRERRRERRE RS RERRREERERRREREES
* * * *eeue * MACHER *
PROCESSING # YES ¥ FORM PRODUCT ¥ oXeoos®—RoB—R—d-N—_t——*%
DIMENSION *eceeesssX¥ IF POSSIBLE * . * *
* X * ERROR ROUTINE *
* = * * AN * *
- - HEREREERRESRBRRERE * I XIS 22222222222
* ®EXIT* X
-NO * * .
- REER -
- .
- eeecesccccactesssesssassascassascssstnan
. .
x « vas 22
* % ® 13 - * *
* * - * .
* * NO o« % PUT NEXT SPACE *
EXISTENCE %.. * 2 WORDS INDEX *
* BIT ON * IN LIST 2 WORDS *
coneX¥ * * *
- * REZZZ2 IS 22222 L) HEFREREERRRHRE R
. . .

svevecsessesnsssssevnas

e ssee

. AL
. ®
» e XFEXIT*
* *
RN
VA3

ARERRR RN
*

*
* SET ZERO =
eessccacssessscccosscsass Xt IN LIST -
* *
* *
AFAEERERRRLREREERR

* *
PUT NEXT 2S5

eseX¥ BITS IN LIST
*

-
»
AS B VALUE *
*
¥

*
ERTFRERRERE LR RS

ceeesenas : :
; eerceceecscens :
vae X 18 vaA63 . X
AREXRFEERERERRRRN LE 2] . AR
» - x » . » *
* BRANCH % SET 17 BIT * X * SPACE OVER *
* ACCOROING TO xX® CONSTANT - b PADDING »
* NEXT 3 BITS * ® IN LIST * *
* * * * * »*
REERERERBRREEREEE S ERFRBRERERFRERR RN EERFERERRRAERARARSE
000. 010. 001 . .
. - . . P
- . s e sessecssesssesssssassnassennen . *
. - - ce XREXITH
. metssessesecessssssunenasns . * *
- . R
vA61 X .
(22222222 22222223 RFERAEEREFRRNBRRERE - AFRBFARF SRR RRERE
»* * * - - »
* SET_INT * SET ABs ¥ : * SET ABSOLUTE #
= BIT TO 1 * * AND INTEGER # teeex® o BITTO 1
» * » BIT TO 1 * * *
» * - - . *
(SZZ 222222 X RS ARARRAEFRARERERRRRN RARRERERARARBRR RS

ARRRERRREREERELAE
. »

* PUT 24 BITS &
IN LIST AS

sesevenssccsscscssssnnsssaX¥®

* INTEGER VALUE *
* *
Ly R T R T IR e
cescssans
X 18
ERERARAEREERE RN s e
* VALUE * * *
O T s R B ot 2t T L] PUT VALUE »
* EVALUATE X#* IN WORK AREA #,
*SUB EXPRESSION * * *
- * * »
HEARRERERERARER R AEAREEEE R ATEER RN
b 19
* * 15 ARRRARAA R R EER
- * . ADDQORD *
* oK * YES LR e R ittt Rk
* TO ENTER LEETPTRRRY &4 *
#*# IN TABLE ¥ o MAKE ENTRY *
* ® EwER x *
* * »* * AERERARRARRERRRRR
REXIT*® .
e X® * .
xww .
.
esevsscssXssessssescsssencscsrncsvese
X 20
* 16 ERRERERERRER RSB RR
* * * *
* REQUESTED * YES . PUT INFO -
* INFO * eoavaX¥ IN LIST LX)
ESTARLISHED# * -
* * »

» *
Ll

*
EREEARRRRRERNEE NN

¥ esmoas

.
.
.
.
.
.
x

VSS X
FEERRRIFERBERB AN
L] *

®* PUT SYSTEM *
* SYMBOL VALUE &
* IN LIST *
» »
EAERARRRRRAERRIRS

.

.

X 24
EERRRAARAERERRRES
- *
» PUT ODS *
* IN LIST *
* »
» »
EEARRRRERTRERE RN

»
.
.
X
. AERRER
. * *
X » *
esssensX¥® 40 *
X
- » *
. REEER
.

.
.
.
.

PURPOSE

VALUE evaluates a coded expression
VSKIP skips over a coded expression.
VDIMEN evaluates a dimension statement.
VMOVE moves a coded expression.

LINKAGE
VSKIP
On Entry

1. The calling sequence is:
LVI, 15, $+2; B, VSKIP
2. The index word Valinx locates the first bit of
the coded expression.

On Exit

1. Valinx will be updated to locate the first bit
after the coded expression.

2. 1If the using program has turned on bit, Vcundf,
VSKIP also will have made a symbol table entry for
any undefined symbol encountered in the coded
expression.

VDIMEN
On Entry
1. The calling sequence is:

LVI, 15, $+2; B, VDIMEN
B, a fix-up subroutine @not evaluated
exit
@not evaluated
exit
2. $1 locates the first bit of the dimension
statement.

Normal Return

On Exit

1. If the dimension statement was evaluated, $1
contains the location of the product of the dimensions.
2. If the dimension statement could not be evalu-
ated, $1 still locates the first bit of the dimension

statement.

3. If the using program has turned on bit Vcundf,
VDIMEN also will have made a symbol table entry for
any undefined symbol encountered in the coded
expression.

VALUE

VMOVE

On Entry

1. The calling sequence is:
LVI, 15, $+2; B, VMOVE
Normal Return

2. The index word, Valinx, locates the first bit
of the coded expression.

3. The index word, Vmovex, contains the location
where the expression is to be moved.

On Exit

1. After the expression has been moved, Valinx
and Vmovex will be updated accordingly.

2. If the using program has turned on bit, Vcundf,
VMOVE also will have made a symbol table entry for
any undefined symbol encountered in the coded
expression.

VALUE
On Entry

1. The calling sequence is:
LVI, 15, $+2;: B, VALUE
B, a fix-up subroutine
Normal Return

2. The index word Valinx locates the first bit of
the coded expression.

@break return

3. Bit Vebv = 1 if VALUE is not to attempt to

get value and index information.

Bit Vcbsx = 1 if VALUE is not to attempt to
get S/X type information.

Bit Vebdim = 1 if VALUE is not to attempt to
get dimension information.

Bit Vchdds = 1 if VALUE is not to attempt to
get dds information.

On Exit

1. If while attempting to do its job, VALUE dis-
covers that a symbol table entry is lacking needed
information, VALUE will exit to the break exit and
provide the using program with the following infor-
mation:

a. $1 will locate the function part of the symbol
table entry causing the trouble.

b. Bit Vnbv = 1 if value and index informa-
tion is needed.
Bit Vnbsx = 1 if S/X type information is
needed.
Bit Vnbdim = 1 if dimension information is
needed.
Bit ¥nbdds = 1 if dds information is needed.

VALUE 55

c. Bit Viby = 1 if the value and index
information is affected.
Bit Vfbsx = 1 if S/X type of information
is affected.
Bit Vfbdim = 1 if dimension information
is affected.

Location dds
value and index Sini (B, 25)
information Sinb (B, 25)
Sinx (BU, 4)
Sinxq (BU, 1)
Sinrll (BU, 1)
Sinrl2 (BU, 1)
S/X type Sinsx (BU, 2)
information
dimension Sindim (B, 25)
information
dds Sindds (B, 25)
information Sindsq (BU, 1)
Sinser (BU, 4)

* See Section on relocation ops.

Bit Vfbdds = 1 if dds information is
affected.
d. Bits Vcbe, Vcbsx, Vebdim, Vebdds, are
not changed.
2. When VALUE exits to the normal return,
VALUE provides the using program with the follow-
ing information:

integer value

bit style value

index

=1 if there is an index
= 0 if there is no index

relocation indicators*

00 integer style (S)
10 bit style X)
01
11

dimension reference
dds reference
=1 if the dds reference is known

= 0 if it is not known

symbol error flags

3. If VALUE had been unable to find some of the
desired information, the bit Vfbnot will be on to indi-
cate this fact and the appropriate Vfb bits will be set
to show what information could not be found.

4, If the using program had turned on bit Vcunfd
VALUE also will have made a symbol table entry for
any undefined symbol encountered in the coded
expression.

5. Valinx will be updated to locate the first bit
after the coded expression.

DETAILS
Break exit: Following a break exit, the using pro-
gram may take any action it desires, including (per-

haps):

56

1. changing the setting of Vcbv, Vcbsx., Vebdim
and Vcbdds to show that certain information is no
longer desired, or

2. filling in missing information into the symbol
table.

If desired, VALUE may be used at this time to eval-
uate other coded expressions. Eventually, the using
program must return to one of the locations, Vpunt
or Vrtrn. after the break exit from VALUE, By a
Vrtrn return if the situation has improved (i.e., if
any of the Vcb bits have been turned on, or if further
information has been added to the symbol table or
both), then VALUE tries again where it previously ran
into trouble, If the situation has not been improved,
VALUE notes what items can no longer be evaluated,
and then proceeds with the evaluation of the others,

if any. By using the Vpunt return to VALUE after a
break-exit, the user program effectively has all the
Vb bits turned on and the Vrtrn procedure per-
formed.

Treatment of Undefined Syrobols: The treatment is
dependent on the setting of the control bit Vcundf.

1. If Vcundf is on when an undefined symbol is
encountered, a standard symbol table entry will be
made, and then VALUE will proceed as though it had
found this entry there. Note: Even if all the Veb bits
are on, VALUE will still look at all symbols and
make this entry when needed.

2. If Vcundf is off when an undefined symbol is
encountered, VALUE will note what items can no
longer be computed, and will proceed without making
a break.

Example: The coded expression is for A+B. The
using program wants all the information available
from VALUE about the expression.

Discovering that no information is in the symbol
table for A, VALUE makes a break exit with all the
Vib and Vnb bits on. Then the program fills in
values into the symbol table, and goes to Vrtrn.
Whereupon, VALUE discovers that the situation is
improved, but still all the desired information is not
yet there. Again VALUE makes a break exit, now
with the bits Vfbsx, Vfbdim, Vibdds, Vnbdim, and
Vnbdds on. The user program decides to ignore the
dimension reference and returns to Yrtrn with bit
Vcbdim on. Once again VALUE sees that the situation
is improved, but still some desired information is
lacking. Therefore VALUE makes a break exit with
the bits Vibsx, Vfbdds, Vnbsx, and Vnbdds on. On
this occasion the user program returns directly back
to Vrtrn. Seeing that there is no improvement VALUE
makes note that the S/X type and dds type information
is not available and continues through the coded
expression of the B datum. VALUE makes no further
attempt to look up S/X type information. However,
if B has a dimension reference, the fact that A was
ambiguous on this point is no longer relevant. Note:
When a break is taken, it is not meaningful for the
user program to turn off any of the Vcb bits. If the
user program does this, his action will be ignored
by VALUE.

Item Type Purpose
Valinx Xw Locates coded expression.
Vmovex XW Locates the position to which

the coded expression is to
be moved.

Item Type Purpose

Vcebv bits Tell VALUE what informa-

Vcbsx tion not to attempt to get.

Vcbdim

Vchdds

Vnbv bits Tell the using program what

Vnbsx information could not be

Vnbdim found in the symbol table

Vnbdds (when a break exit is made).

Vibv bits Tell the using program what

Vibsx is not computable in the

Vibdim coded expression unless

Vibdds information stated by the
Vnb bits is supplied (when a
break exit is made).

Vibnot bit Is on if anything was not
found that should have been
found (when the normal exit
is made).

Vcundf bit Is on if VALUE is to enter

undefined symbols in the
symbol table.

FLOW CHART DESCRIPTION

VALUE has a '"push' type list with values being
'pushed' upwards as they are computed or combined.
The first five words of the list are called the heading;
the workspace follows. After the first workspace
there is a sequence of headings and workspaces
determined by the number of existence bits encoun-
tered by VALUE in the coded expression. $10 points
to the location of the current heading; $11 points to
the location in the workspace.

Box 12

Branch-on-zero-bit Valdfg (indicating special entry
made by VDIMEN) to box 13. The VDIMEN sub-
routine deals with the dimension reference statement
for a user outside of VALUE.

Box 17

Get address of dimension reference, set control bits,
and branch to VALUE to evaluate the coded expres-
sion. If VALUE evaluates the expression, form
product of dimensions, and turn on completed bit;

if not, go to VBREAK.

VALUE 57

o SINB
SINSX

24 29

5657 63

3
TTTTTTTTTITTITITT T TI T I T
B Value ’ Ill

'IIII

o SINDDS
SINM
SINX

24 28

3132

IIIIIIIIHIIHHIIHIH[IIIII[

I Value

IIIIHHIIIHIIIIIHII

DDS Reference

tllll

SINDDS (BU, 25) DDS Reference SINSER
SINM (BU, 3) Mode Bits SINB
SINX (BU, 4) Index SINSX
SINDIM (BU, 25) Dimension Reference SINRL1
SINMQ (BU, 1) Mode Bits Given SINRL2
SINXQ (BU, 1) Index Given SINI

Figure 9. Format of VALUE's Output (without Relocation Fields)

Box 13

Branch to MACHER subroutine if existence bit is off.

(Existence bit is the first bit in the coded expression
and must be on.) -

Box 8
Pick up the coded expression prefix (bits two, three,
and four in the coded expression), space the pointer

over the prefix, and branch according to the prefix.

Coded Expression Type of Coded Expression

Prefix

000 Normal case
001 Special case
010 Padded case
011 Special signed
100 Super special
101 Fully evaluated
110--- Long prefix
111 Null

Box 14

If the coded expression prefix is 110, then we must
branch according to the next three bits (bits five,
six, and seven in the expression) as we had a long
prefix.

58

!III!]I

HIIIIIIIIIIIIIHIHIIlHIIII
DIM Reference

63
'El

(BU, 4) Symbol Error Flags
(BU, 25) B Value

(BU, 1) Subscript/Index
(BU, 1) Relocation Flag 1
(BU, 1) Relocation Flag 2
(BU, 25) 1 Value

Additional Bits in a Type of Coded Expression

Long Prefix
000 Integer
001 Absolute
010 Absolute integer
011 Seventeen bit constant
Box 3

Test for another datum by seeing if the no-more-
datum bit was set off by GETFLD. If off, go to box
4. If there is another datum, turn off Vvsymb (1 - if
last datum is a symbol) and the dimension reference
flags: Vvedr (1 - if current datum is a symbol whose
dimension was asked for and obtained), Vvedrl (1 -
if current datum is a symbol whose dimension was
asked for and not obtained), and Vvedrm (1 ~ if cur-
rent datum is a symbol whose dimension was not
asked for). Then branch to box 9.

Boxes 4, 5

If either Vcbv or Vtbv is on, we do not want to
pute the value of the total coded expression. So we
see if Vcbsx is on (indicating we do not want sub-
script/index type). If neither the value nor the S/X
is desired, go to box 6. If either Vcbv or Vcbsx is
on, set up correct table address for arithmetic (or
S/X) routine. If there is another operator, pick up

the operator code from the coded expression and get combine integer and bit values, and set bit value to

both the section entry and the operand type from the zero. Skip the pointer over the padding in the coded
table. Then after picking up the datum number from expression. Put integer and bit values into VALUE's
the coded expression and getting the location of the output words, Sini and Sinb.

right and/or left operand if needed, perform the

indicated operation. When there is no other opera- Box 9

tor, go to box 6.
Pick up datum prefix (usually bits five, six, and
Box 6 seven in the coded expression), space the pointer
over the prefix and branch according to the prefix.
Reset $11 (current location in workspace) with $10

{location of current heading). If S/X type is unknown, Datum Prefix Type of Datum
set on trouble bit, Vtbsx. If no values were computed,

go to Vz. Mark index as existing if Vvspx is on. If 100 Symbol

Vvspx is off and Vvabs is on (indicating result is to 101 Subexpression
be made), set signs of the integer and of the.bit values 110 Absolute

to plus, and continue. If the result is not to be made 111-- Long

an integer, i.e., ¥Yvint is off, then exit; otherwise 11100 System symbol

VALUE 59

r g
[afaTal § >
200r ¢
2 S £
0 242526 2728 32 5657 63
IIIIIIII—HIIIHIHIlllll]alel!l TTITTITTT llllHlllllllll!d!ObIOTOlOO
Entry Point Storage Break Point
[c ($15)yf when VALUE is entered] for VCB
Bits
5 a2 %
Q Q
s s
< 282 2
0 24252627 32 5657 63
IlIlllIIHIl||||||lH||l||f||°l0|010!l!lIIIIHHHIITIIIIIIIl|0lolo!olo[o
Next Heading Above Next Heading Below
HEADING
o Preceding
> Eg 8 § F a Work
& w‘;[_' ;’ Area
; §>§ >
0 24252627 32 56 57 63
TTTTTT IHI||||l|l|lIlllllh|I]0Io|0I0|lIIIIIIIIIIllITI|l|l|l|||0|0|0|0(0[0]0
Input Index Location of Symbol Table Entry in Error
at External Break Only
v 2 -0
oo =] = wd R
8 M3 g ged
3 S5> > 2&>
> > > >>>
0 12627 28 32 56 575859 63
III!IIIIIIHHllllllIIIIO]kllllll]ll!llllllllllIIHHIIlIIH“IIIFO
Dds Reference Address Index Dimension Reference Address Symbol .
Error)
Flags
0 1112 5960 63)
TITTTT I T T T T T T T T T T T e T T e T T T T I T I I I T T T I T T T I I I T T T 171717 IIIII
Exponent Fraction
I-Value (Normalized floating point)
DATUM
> in Work
Area
0 1112 5960 63
IllIHIHlI]IIIIIIIHIIIIIIIHIII|HII|||HIIHTIHIIIH IIIIO
Exponent Fraction
B-Value (normalized floating point) J
0 1112 5960 63
T 0] 1 TTg] | SUBSCRIPT
Exponent Fraction In Work
Subscript (normalized floating point) Area
Legend
a, dimension requested and obtained f. result integer k. index
b. dimension requested and not obtained ABLE! 9. result absolute 1. mode known
c. dimension not requested h. result index m. relocation
d. last datum symbol i. datum with subscripts n. relocation
e. padding J. entry from outside

Figure 10. Format of VALUE's Internal Tables

60

See section on relocation ops for format of fifth word in heading.

CHART WA STRAP I1I XERR (DISK UNIT CHECK FIX-UP)
REXRERERELERE XX IR AR RN RN
* XERRWR * XERRRD *
L it e Ot = T2 O T e et
* WRITE ERROR # # READ ERROR *
» -) *
* * * =
EEREEETN RN AR P i L)
. .
. .
. .
. .
. .
. .
x 1 X 9 XERR2 15
EEBEEERSAERRRENEE FEEEREREEREERERER HEREEREEERRER
#* TURN ON WROP * * TURN OFF WROP * * *
* * * * 4 UNIT CHECK *
= - * * * INTERRUPT 'y
* = * * * *
* * * * * a
EREEERERERRETR RN ERERRREREEREREERN EERRERRRREERL
. .
. . .
. . .
. . .
. . .
. . .
X XERRO 3 X 10 X 16
EEREREEREERERSRER FEEEERAEEAERERERR EREREERERREEREEEH EAEEERRREERERERER
- SET $W ol * INITIALIZE * * SET $RD * * RESTORE bl
* IN INDEX 7 * * RETRY CCUNT, * # IN INDEX 7 * * INDEXES 7+8+9 %
* ¥eusessseX*® SAVE T-0-E #Xooeonsaet * * *
* * » * * * * *
= * * * * *] *
HE R RN R R T
. .
. .
. .
. .
. x
. LI 17
- * =
. NO * *
. cesessesscssssecsercscenscns eseseess XERROR COUNT = O%
. * *
. * -
- * =
. *
. *YES
. .
. .
. .
. .
X 4 11 X XERR3 21
FEEREREREAXEERESR R EEREE LT EEN RN LI i8 FERRRRELEREE R EEHE
* LOCATE ARC * * MESSAGE» * * * * MESSAGE s *
* IN ERROR * * WRITE DISK * OFF # * ON * READ DISK *
* * = ERROR %Xessasased WROP ¥eeensaseX® ERROR =
* * * * * *
» * . * = * * *
EERERKATEREEEERRE EEEREEEE RN ERE = * EEERRFERAERERERER
. - *
.
.
.
X

s
HEXREREXEREXERRER
* SET UP *
* T-0-E
* FOR XERR
*
*
*

RN

sseese

ok k

FREFERERAREERI R

.
.
.
.
.
X 12
HEREXEREEFAERREERE RN TR
* RETRY I-0 % * *
% OPERATION * * *
* = * EOP INTERRUPT *
*® * * *
* * * *
AEEEEXEEERERRRE R R EEZ X2 2223
. . -
. . .
. . .
. . .
. . -
. - .
7 XERR4A X 13 X 22
EREERERFREREEEEEE R IR R N * # ® 20 R R
* SAVE = * RESTORE * * * * *
* INDEXES 7+8,9 * * ORIGINAL * ON ® OFF * TERMINATE *
* * * T-0-E EXessosoook WROP ®eveessesX® ASSEMBLY *
* * * * * » *
* * * * * * *
H LN RN RE R EREFERBERBREERRR R * * HEXXAEREXRARE
. . ®
. .
. .
. .
. .
. .
X 8 x 1
HEREREETRERER HEEEEREETEERER
* * *
* * BRANCH *
» SRET * * TO ORIGINAL *
* »

* EOP FIX-uP
*

* *
EERRERE AL LN EERRREREEREER

XERR

LINKAGE

The user routine, when receiving a unit check, must
set up in the UK fixup the error arc number in the
value field of $8, and the address of the I-O control
word in the value field of $9. If the error occurred
during a read operation, the unit check fixup must
branch to Xerrrd, or to Xerrwr if it occurred during
a write operation.

DETAILS

The operation will be retried a maximum of 100 times.
If not corrected in this time, the assembly will be
terminated (in the case of read errors) or continued
with error (in the case of write errors).

FLOW CHART DESCRIPTION
Boxes 1, 9
The Wrop indicator is set according to the operation

to be retried. If on, a write operation is indicated;
if off, a read.

Boxes 2, 3, 10

The I-O operation is loaded into the value field of $7.
A count of 100 is placed in the count field of $8, and
the table of exits set up by the user routine is saved
in location Xerr9.

Boxes 4-8

The arc in error is located; the EOP interrupt is
suppressed. A new table of exits is set up specifying
a branch to Xerrd4a in the case.of an EOP interrupt,
and a branch to Xerrz in the case of unit check. The
I-O operation is initiated, $7, $8, and $9 are saved
in location Xerr5, and return to the interrupted
address is made via $RET.

62

Box 12

This is location Xerr4a and is entered upon successful
completion of the I-O operation initiated by XERR.

Boxes 13, 14
The original table of exits is restored as set up by

the user routine, and XERR branches to the EOP fixup
which would have been taken if the I-O error had not

occurred.
Box 15

This is location Xerr2 and is entered upon XERR
receiving a unit check from its I-O operation.

Box 16

$7, $8, and $9 are refilled with the I-O parameters
saved in location Xerr5.

Box 17

The count in $8 is decremented by one. If the count
is not zero, the I-O operation will be attempted
again. If zero, the error has not been successful
after 100 tries.

Boxes 18, 11, 21, 19

An appropriate message "Uncorrected Error Reading/
Writing Disk, " and '"Relative Arc Number XXXXXX"
is written via System Output.

Boxes 20, 22
If a write operation, return will be made to the user

routine's EOP fixup. If a read operation, the
assembly is terminated.

MAJOR LOGIC AREAS IN THE PASS 1 PHASE OF STRAP 1I

Includes the Processing in the Following Subroutines

MAIN MAIN flow for Pass 1 and Subprocedures

BOPSER Binary OPeration SEaRch Performs the binary search on the operation tables and
on the system symbol table.

CCAS8 conversion of CC to A8 code Converts code of card input to the A8 internal processing
code of STRAP II.

CPLTNM ComPLeTe a NuMber Fetches the remaining characters of the number from
the card image input and computes, using the radix
specified, the number represented.

CPLTSY ComPLeTe a SYmbol Fetches and collects in a specified buffer the remaining
characters of a programmer's symbol with its tail
or gets the value and data description of a system
symbol.

GETCHA GET a CHAracter Gets a character from the input card image for main
flow to process.

GETFLD GET a FieLD encoded Does the Pass 1 encoding put in the expanded instruction
units.

GNLOAD Get Name LOADed Creates the name file and writes it on disk.

INTOUT OUTput the INTermediate Buffers the expanded instruction units and writes them

expanded instruction unit on disk for later processing during Pass 2.
MBSPEC Main's SPECial character Scans an illegal op or an illegal system symbol for a
substitution possible error character and substitutes in its
place the corresponding option character.

MIBA Main's Indicator Branch Performs the branch-on indicator analysis on any opera-

instruction Analysis tion which MAIN does not find in the operation table.

MIOD Main's 10D processing Processes the Master Control Program (MCP) pseudo-
ops during Pass 1.

MQ@DD Main's DD procedure Processes the DD during Pass 1; takes care of the radix,
entry mode, multiple-numeric cases, the special
sign (S), and the special (X) in particular.

MQDALF Main's ALPHabetic Data Converts the alphabetic data definition statement from
definition procedure the internal A8 code to the code specified in the entry
mode; puts results in the expanded instruction unit.
MQDNUM Main's processing for a Evaluates the statement field of a numeric DD to the
NUMeric Data definition terminal character, to the special sign or the special
exponent.
DNUM complete a Data definition's Collects the characters of an operand from the D field
NUMeric field of a numeric DD and transforms the specified operand
into a double precision floating point number.
MQDDPA Main's DD Precision Arith- Performs the precision arithmetic specified between the
metic subroutines fields of a numeric DD.
MQP Main's Punsym procedure Collects in the unit the symbols specified by the PUNSYM.
MQR Main's data Reservation Processes the address field of a DR or a DRZ, that is,
procedure sets up the dimension information.
MDIMRF Makes a primitive dimension reference entry for a
Main's DIMension ReFerence dimension specified by a DR or DRZ without a name.
MDIMRT procedure Makes a primitive dimension reference entry for a
dimension specified by a SYN or by a DR or DRZ with
a name.
MQS Main's Syn procedure

Major Logic Areas -- Pass 1 63

MULTI

TAILOR

XINIT

XINPUT

64

MULTIply-defined symbols

Main's eXtract procedure

TAIL OR untail procedure

INITialization for input/output
subroutines
INPUT another card image

Adjusts the symbol table after MAIN has discovered that
a symbol is multiply-defined.

Has the expressions formed for the extract parameters
in their own unit; then has the statement of the
EXTract pseudo-op set up in a second unit.

Updates the information determining the special tailing
configuration appended by MAIN or by CPLTSY
during Pass 1 to each symbol in the sphere of
influence of a TAIL pseudo-op.

Initializes the Input-Output routines for Pass 1.

Brings into memory each new card image; has each new
card image converted into the internal A8 processing
code.

CHART BA STRAP 11 BOPSER---PAGE 1 OF 2

AR R
» BOPSER *
o o o e e B R B
* BINARY SEARCH #
- *

= - 2223
AEBERERERE AR ERE - *
. * 12 ®
. » *
. E2 2T
. .
. .
. .
X 1 X
ARRRBERRERE - x %
#* PERFORM * *ADDR OF %
* INITIAL * HIER #NEXT ENT TO* LOER
* HOUSEKEEPING * seesccssscsevcesoe ¥ BE TESTED HIER ¥eceecocncosscccoce
* * - *OR LOER IN ¥ .
* - *THE TBL* .
EEERERERRAR . * * .
- . * .
. . .
. .
. .
- »
- . .
X LLACHI X 14 LLACLO X 13
. = % 3 ERERREEREES ERREREEREER
- * EERR * USING THE # * USING THE #
* NuULL *® YES * * #CURRENT ADDR.#* *#CURRENT ADDR.#*
* TABLE FoooeX® 11 *#INCRes COMPUTE * *DECRes COMPUTE *
* * * * THE ADDR4OF THE THE ADOR.OF THE
* * TEXE ENEXT ENTRY * #NEXT ENTRY #*
- - EREEEEERERE EETr ey)
* . .
«NO . -
- . . .
. . .
. eeesessscesscssvssescssccssXeXsosessecocsssossssenvsnss
.
X 3 X
Ll ettt EREREERERAR
% COMPUTE THE * * ESTe LOC. *
#MAXIMUM NUMBER * - OF NEXT *
#0F COMPARISONS #* # ADDR. INCR. *
* POSSIBLE * * AND OF NEXT *
L * *ADDR. DECRs*
PIY TR R I Y EREERERREEE
.
- - EERE
- . * >
. weX¥® 13 #
. . * *
. l EEER
LLoLo X S &
* x ® 4 R REEAREE RN
#INCRe— * * TURN ON * * LLNEW *
#DECRes LISTS* NO SWITCH INDICA- R B o R
* MADE YET ®eeeeoeesX¥TING INCoa~DECs #oneesseeX*MAKE THE LISTS *
* FOR THIS * LISTS HAVE BEEN * OF INCREMENTS *
%* TABLE * * MADE * #AND DECREMENTS *
* = RAERERKEERRE FEERURERRERRRRRRS
= .
«YES .
. -
. .
sXeosevs00ss00s0s0000sss00000r0sscscrsveccessesstsans e
.
X 7
REERERERERRAARREE
* COMPUTE =
#* ADDRESS OF *
* MID-TABLE *
* ENTRY *
= *
EERRRERERNERRE RN
.
RE® -
* .
* 13 *#.X.
= +
ARER -
X 8
RN BARRAN AR
bd COMPARE =
* TEST WORD *
* WITH AN *
* ENTRY IN THE *
* TABLE *
FEREREREEER RS AR
.
.
.
.
.
.
X 16 LLEND 17
* % » 9 ERERRREEABRERRERE EEAREERERER ERERE
» * * COMPLTE * * SET UP * *
* DESIRED * YES *ADDRESS CF THE #* * THE ADDRESS % * EXIT *
* ENTRY *eesesoeeX® FUNCTICN OF ¥, x* FOR THE * o X *
* * * THIS TABLE * *USER PROGRAM % *# FOUND %
- » » ENTRY - * - » *
= * ERERBRERRREERER RN AERRREREERS ERERE
*
«NO
.
.
.
.
X 10
FEAEREERERE
DECREMENT #*
*# COUNTER OF #
*THE COMPARISONS#®
- MADE *
- - 211
EERRRERERRE * *
. * 11 =
N * *
. -
. .
. .
. .
X b3
% ® 11 It
* IS * *
THE NO. * YES ® EXIT =
#0F COMPARISONS #..4
* ZERO *
FOUND
* * EEREE
1]
+NO
.
X
[T}
* *
12 %
* -

CHART BB

66

STRAP 11

sssese

R

.
X
* X *
* FIRST *
YES

* oot
esssssnsessseseseve® . COUNT

OUNT
INDICATOR
ERAERRERRAERE NS

Xt s aee

E2 2222 E RS2 X2
. ADD 1 »
* TO THE COUNT *
* OF THE NOe OF *
COMPARISONS YET
*# TO PE MADE *
HERAERARFREEARE RN
.

-
.
.

AERRERRERERANDARN
* LLZERO »*

L L L SEr S B
* MAKE AN ENTRY #*

RERXRRERRRBAERRER

Xo e Xeoannro

* e o»
*ALL THE®
NO $INCRe—~TECR, *

-+« *PAIRS BEEN PUT *
. *IN CONTROL *
. * BLOCK *
X * »
RN *
* -YES
® 21 % .
* * .
L2 22 .
X

FREFERRRBREERRRRN
- RESTCRE *
* THE VARIABLES #
* THAT BCPSER #
* WILL NOw USE *
» »

»

AREEEEREE TR RN RN

Xe oo

[TYETS
REXIT *

[)

* *
* LISIS *
*MADE *
R

BOPSER———PAGE 2 OF 2

NO

%sascacesssscscansen

EREERAARANEFRANE Y

*# TO MAKE THE *

*LISTS OF INCR. *

» AND DECR. *

RAEREEAEEREREERER
.

-
-
.
.

EERRERERERRERERR R
#*#SAVE THE VARI- #
*#ABLES THAT ARE *
* USED 1IN *
* BOPSER. *

* *
EEERRAREREERRE R
REX .

* * .
® 21 *,X.
* *
EEER .

X

* x *
COUNT OF
COMPARISONS#

*YET TO BE MADE #%eae

#EVEN OR ODO*
* »

* *
*

Xsosesavaans

RERRERRREREERFRER
b LLZERO *
L e e bt o =
* MAKE AN ENTRY #

ARRERARARRGERRRRR
* ADD 1 »
TO THE COUNT *
* OF THE NOe. OF ¥
#COMPARISONS YETH®
* YO BE MADE *
LR T e L

RN

XeuesvessssacssesvanssccseXaavesssssecscscvsccnasons

FEREBFRERAEREFRRREN
* LLZERQ *
LR S B 2 S S B 2 3
#T0 MAKE AN ADDR#®
#* INCREMENT AND #
* DECREMENT -
ER222 222222223222)
.

EARARRAREERRATERRR
* HALVE *
* THE COUNT _ #
* OF THE NO. OF #
¥CCMPARISONS YET#
* TO BE MADE *
E2 2222222222221 2223
.

Xew oo

EERREREEARERR SRR
#SAVE THE RESULT#®
* AS NEW COUNT #
* OF THE NOe. OF ¥
COMPARISONS YET#
* TO BE MADE *
ERARRRARRRERERRAN
.

e s sao

EAEABREEEEFARERRE
*(NO«OF COMP.YET#
* FO BE MADE) * #
*(LENGTH OF ENT.®
*#IN TABLE BEING #
* SEARCHED) *
R T P e e L
.

3
ERREEERSRE R SR E RN
* SAVE ABOVE *
*PRODUCT WITH A *

EEEREREEDH AR RAN
.

-
.
.

-

X
FRARTRRRRRERARNDE
* SAVE ABOVE »
*PRODUCT WITH A ¥
* NMINUS SIGN AS ®

FEEBRRBRER RS RRRER

.
-
.

x
EARARCRNRRER
* STEP UP #
INCRe AND DECRe
b LOCATIONS -
* WITHIN THE #
* LISTS *
FEERERRBARE

LINKAGE
On Entry

The calling sequence is:
SIC, $15;B, BOPSER
,address of the

control block (I)

B, a fix-up subroutine not found exit
from BOPSER.

Normal Return found exit from
BOPSER.

A control block must be set up in the format

shown in Figure 11.

V

BOPSER's Indicator

Address of the 0 Bit Length of an No. of Entries
Test Word Entry in the Table in the Table
0 23" 26 |28 ll 46 63
& : 1
|
DRZ(BU), N|
|
!
1

(49

Figure 11, Format of a Control Block for BOPSER

On Exit

BOPSER puts the address of the function of the

found entry in the value field, Lixw.

RESTRICTIONS

1. The table to be searched must be ordered.
2. N= ﬁog (no. of entries in the table to

be sear¢ edﬂ .

3. The test word must be 64 bits in length.
4. The minimum length of an entry in the
table to be searched is 64 bits.

USERS

MAIN: to search the primary op table and

the secondary op table.

CPLTSY: to search the system symbol table.

BOPSER

FLOW CHART DESCRIPTION
Box 1

The housekeeping includes setting up three index
registers, $7, $8, and $9, with the address of the
list of address increments, with the address of the
table to be searched, and with the address of the list
of address decrements, respectively. The address
of the test word is put in the compare instruction.

Boxes 2, 3

The test for a null table also establishes a left zero's
count with which the count of the maximum number
of searches through the table is calculated. (18-LZC
= maximum number of tests.) This count is saved

in the count field of $7.

Boxes 4 - 6

An indicator, turned on only by BOPSER, in the
control block tells whether this table has been
searched by BOPSER before in the assembly and thus
whether or not the address increment-decrement
pairs are already in the control block.

The first time BOPSER searches a new table, the
subroutine makes its own set of address increment-
decrement pairs which BOPSER saves in the space
provided by the user program in his table control
block.

Subsequently, whenever BOPSER searches the
table specified by this control block, BOPSER uses
these address increment-decrement pairs in directly
computing the address of each entry to be inspected
during the binary search through the table.

Box 7

To the address of the past table test entry is applied
the successive address increment and/or address
decrement during the search. Because of the way
the lists of binary search address modifiers are
made, the location of the first entry to be tested is
computed by adding the first address increment

not to the actual starting location of the table but to
an adjusted starting location. (The adjusted starting
location is the location of the table minus the length
of an entire entry.)

BOPSER 67

CHART BC

68

STRAP 11

CCA8

EREREREREREREERERR
* AB -
Laal Snk Bl Bl S Sk Bt Bt
* CONVERT *
* I1BM CARD CODE *
* TO A8 CODE *
ERAFERRRAREFRERESY

e e

1
EERRERREERN

* INITIAL *
*HOUSEKEEPING +
» *

- *

= .
AEREERE RS

Xeos oo

RERRREEREER
* CALLING *
* SEQUENCE *
* READ

= *

-

* *
EREEANEER RN

L322] .

wnEr .
CcCLOD X
FRBERRRERERERERER
* SET up *
* CARD CODE *
* CHARACTER TQ *
INDEX THE A8 *
* CHAR. TABLE *
RERERERRRRRXARERES

.

.

4
EERERERERRRRURERS
- PERFORM *
* TABLE LOOK-UP *
* N A »
:CHARACTER YABLE:

AEEREERARRREBNE RS

HXe a0

» - s
* »
- ERROR *
- CHARACTER
*

* *
* *

.
«NO

Xe e

RAEARERERREEERR R
#STORE A8 CHAR. *
OBTAINED FROM *
* THE TABLLE *
*LOOK-UP IN THE #
*CONV. CD.BUFFERN
L e e e

»

.
.
X
AERERRRERRE

* FINAL
*HOUSEKEEPING
*

*
*
*
* *
"
FEERERERERS

He s s o

EERER
= *
* *
* EXIT +
* *

] *
EEURR

.
-
.
.
.
.
.
-
.
-
.

tscscecssasns

CCERR X
L2 ZXZ 222222

* SET UP ®

* ERROR EXIT #
. ADDRESS *
* *

=
AERBRARRRRN

Xeoona

10
EEEREREERRRER SN N
* SET UP ERROR #*
* INFORMATION FOR#¥
* USER PROGRAM #
- »

* -
ARERAERRB R AR R R NS

xXeseas

il
HERRER AN
* -

* FINAL *
* HOUSEKEEPING *
L] *

EEERERRRRNR

»
*(ERROR) *
»* L]

ENR.

Xe e a0

HEEREE AR
*
® RESTORING *
* HOUSEKEEPING *
* »
*
RERBRERREER

.
- XN
- * *
eeX¥® 1 %

*

LT X TS

LINKAGE
Initially

The calling sequence is:
SIC, $15; B, CCAS

, A(D 'address of IBM card code
character buffer.

, B{) 'address of A8 character
buffer.

, n(D 'n = an integer (without radix

point) specifying count of
IBM card code characters
to be converted.

B, a fixup subroutine 'error return.

Normal Return
Re-entfry

1. The contents of $15 must be preserved outside
of CCA8 because the contents of $15 are used in the
re-entry linkage.

2. The legal 12-bit character to be substituted for
the illegal IBM card code must be loaded into the
accumulator at offset 107 before re-entry.

3. After re-entering the CCA8 subroutine with a
B, 0($15) instruction, CCA8 will resume the converting
process with the substitute IBM card code character.

USER
XINPUT: to convert the card image of each card
type input into a card image in A8 code,

the processing code of STRAP II.

FLOW CHART DESCRIPTION

Boxes 1, 8, 11, 12

Indicator bits, mask bits, and index registers are
preserved and restored by CCAS.

Box 5

The table of A8 characters has a field of eight zeros
for each position in the table that can be referenced by
an illegal IBM card code character. (Note that if

this generalized subroutine —-— and it definitely is one --
should be used out of STRAP II, the subroutine could be
easily adjusted to do a slower conversion with a much
shorter table of A8 characters by inserting instruc-
tions before those for the table look-up to test for
illegal multiple punches in the high-order three posi-
tions of each IBM card code character.)

Boxes 9-11

If an illegal IBM card code character is detected by
CCAS8 during the table look-up, a reference index
word is set up in the right half of the accumulator.
The value field contains the address of the next IBM
card code character; the count field contains the
number of characters yet to be converted (excluding
the illegal one). _CCAS8 then exits back into the user
routine.

CCAS8 69

CHART BD STRAP 11 CPLTNM

EEFRAREERERERRRES

= CPLTNM *
L e et Dt 4
* COMPLETE *
- A NUMBER *

» *
EREEERRRARBERNRRY

Xeo o e

1
RERRREERFFREREERRN
ESTABLISH RADIX
» *

* PUT IT IN _ #
*FLOATING POINT #
* *
AFERARERARRBERARER

.

.

.

.

.

b3 2
EFEERFABRRRFRBRERR
» ZERO *
* BUFFER *
% CONTAINING *
- PART[AL *
* RESULTS (PR) #

AEREEARERBRERRERE
-
-
-
ecssssvereeXe

.
. CPNB X 3
LA A2 I 222122222223
* CHANGE INPUT
CHARACTER

*
. » *
. * TO FLOATING #
. #* POINT FORM *
. * *
. ERERRARERRRR RGN
. .
. .
. .
. -
. .
. .
. X 5
. & % 4 RRARRAEEARRERNNOTS
. * NEW * * -
- * CHAR * NO * ERROR -
- * LESS THAN #eseesssvecsessassssccsscncncncsnsnaseX¥ MESSAGE et
- * RADIX * * *
. - *
» - ERERERRERRERGTAED
- -
<YES .
. .

-
eXeoeosoeeenversssesecscssssscscccsnsosnansssssnsnssance
-

X 6
EERERRRERBRRAE RN

#(PR ® RADIX) + *
* NEW CHARACTER #*
INTO

.
-
.
-
.

* *
. * PR -
. - »*
. EEREEERERERNERRRE
. .
. .
. .
. .
. .

X 7
- ERRERARERERARNRES
- * GETCHA *
. s e B B)
. *GET A CHARACTER®
- * .
. * *
. L
. -
. .
. -
. -
. X
. * n »
. * »
JYES
ssses¥® ALPHAMERIC »

»* CHAR« -
- -

*

*NO

.

-

.

.

X

9
EEFRERER RS RRRNR
SET UP »
CONFIGURATION #*
IN -
ACCUMULATOR #
=

EREREBRAARNERARRE N
-

LR R

xs e s e

AREES
= »
- *
* EXIT #
* -

* -
fEREN

70

CPLTNM

LINKAGE Gfsrad field is one of the areas that is zeroed in the
initialization prior to the STRAP I processing of an
On Entry instruction.

1. The calling sequence is:

SIC, Cpltnz; B, CPLTNM. Box 2

2. The first character of the number is
in the value field of $3.

The partial result area where the intermediate

3. The radix is in the 8-bit field, Gfsrad. results are built up is zeroed.
On Exit Boxes 3 -8
1. The first character following the number The loop is performed for each 'digit' character
is in the value field of $3. that belongs to the numeric datum. Each input
2. The number itself is left as a 24-bit character for the number is changed into floating
number in the accumulator at offset 64, point form for the floating point calculation.
with an additional prefix of 3 marker The input character (now in floating point form)
bits signifying an absolute datum. is checked to see if it is less than the radix (now in
floating point form) specified. I the digit equals or
USERS exceeds the radix, an error message is executed,
but the digit is still used in the computation of the
GETFLD: to get a number specified in a numeric datum.
field. (GETF LD does not collect The necessary arithmetic computation is
the numeric characters in the performed and the results become the new contents
statement field of a numeric DD.) of the previous results operand.
MAIN: to get the number with a leading CPLTNM fetches each of its characters from the
F-entry mode. input by GETCHA which gives its user the
MQDD: to get the number in a field radix characters in the value field of $3. When CPLTNM
of a DD. receives a non-alphameric character from GETCHA,
MQDD: to get the number in a field g.p. of CPLTNM considers the characters of the numeric
- a2 DD. datum completely collected.
FLOW CHART DESCRIPTION Box 9
Box 1 Adjusting the final partial result, CPLTNM sets up
) a specific configuration in the accumulator at offset
Since the intermediate arithmetic calculations are 64 in order that the using program can, if necessary,
in floating point, the radix specified in Gfsrad is directly insert the numeric information into a coded
converted to a floating point number and saved. expression as an absolute datum of the coded
CPLTNM accepts a radix as high as 16 where the expression.
letters A-F represent the values 10-15. If the Gfsrad The final configuration at offset 64 in the
field is zero, CPLTNM uses a radix of 10. The accumulator is shown in Figure 12.
Marker
bits Value of Numeric Datum
IIIIIIIIlIIllllllllIIII|I!III]]I]lllllll]()]lllﬂllllHIIIITIIIIIII
3 bits 24 bits

Figure 12, Format of CPLTNM's Qutput in $L

CPLTNM 71

CHART BE

STRAP 11

CPLTSY-~-—PAGE 1 OF 2

RERRRARERTRRRRRNR
* CPLTSY *
L R e e e ot 2 B 3
* COMPLETE A »
L4 SYMBCL d

* »
FEREEEETRARABAREN
-

. EER
. * -

. * 14 R,
- » .
. e .
X CPL19

1
FEERAREERAAR AR EAN
*INITIALIZATION ®
» -

= -
- *

» »
AERABEERRERARREER

14
E2 2222 222222222223
* MOVE TAIL *
- CONTROL *
* INFORMATION #
* TO BUFFER IN *
= *

*

LTSY
EREERERE R AR A AN

. .
EERE . EX22) .
»* . . * * .
* 11 ¥.Xe *BE_ #*.X.
* * . ® 15 .
ranw . ExeE .
X 3 X
* * % ERAREEARREERALRAES LR 15
EFMAX T MUM# - ERROR * * =
* COUNT * b MESSAGE » * * YES
* OF SYMBOL LECTTRRTRS &) * L s LET R
* EXCEECED ¥ * * * * .
* - * - - * -
- * AEREBERBRERRRRELS » * X
. RER
+NO . EEER «NO *BF *®
. * . * 22%
. oX® 16 * L
. * » . »
. rame -
X 4 x
ERERRERERARERERRN - * » 30
* INCRENMENT * * ANY ®
- CPLTSY'S * NO * TAILS -
CHARe LENGTH # eeee* CURRENTLY IN *
* COUNTER - . * EFFECT *
» * . * -
PITIRTSTIRR2T T2 22 . * *
. .
. . «YES
. . .
. . .
. . .
- . -
CPLT&+ X . x 31
L S . AERARERSRRERRERER
- » . * ADD TAILS IN #®
* SYSTEM - . #EFFECY TO PRO—~ #
SYMBCL - . *GRAMMER SYMBOL =
. - - *ALREADY LOCATED®
- * * . - . »
- - - . - EERRERRE AR AR EREN
- - - . .
- . . .
. . . .
. - - .
. . - .
. . - .
X 7 X 6 X -
L T AERRERERARERRREEN "xnnn .
#*STORE CHARACTER® #STORE CHARACTER¥® .
» IN BUFFER » - IN BUFFER * * EXIT * .
* LOCATED BY bl - IN CPLTSY * * .
- B85YMBX = * * - .
» » » - .
ERRRRERERE AR RRR AR ERRAE AR ETYYYS .
- - X .
- - . nEE .
. - . = * .
- . saee® BE * .
evsevscesvsssssssssccsvecsssXoNooossssvesssecsccrovranae 13% .
Ly .
CPLTS 8 .
ARRARREBRARRARRER .
* GETCFA * .
R N AR .
2« X*GET A CHARACTER®¥ .
. ¥ » .
. - * -
o ERERFEERERFEAABEE .
R - .
) * . TTY) .
* 16 % . = - .
- * - A 12 %ese .
nRRE . - . .
. ERE . .
X CPLTBA X .
LN 9 * ® 12 -
»* * .
YES ® * NO ® - .
see® ALPHAMERIC A4 cee® » .
- * CHARACTER #* * * -
. * * .
X * * X .
runs - R -
* * «NO #*BF * -
* 11 = . ® 21w -
» * . * » .
sany . * . -
. . .
X X 13A .
* ®» 10 ARERRARRTERRRRT RN .
» » #SET UP SPECIAL #* .
* SYSTEM * NO % SUBSTITUTE - -
* SYMBCL Faaae a “syMBOoL IN .
b . *BUFFER LOCATED * .
* * - ol BY BSYMBX * .
- » X R Ty L] .
» R - .
«YES » * . .
. * 14 = . .
. * - . .
- T2 . .
. .
118 x 11A 138 .
REEERRRR BB ARR B - % ARARRBARRRBERRREE -
* ERROR * * * » UPDATE - .
- MESSAGE bl YES * * . INDEX WORD, # .
= Esossesooeh $ * * BSYMBX ®eaoe .
- - L] » *
- » * * *
ERREARERBARRNE RRE * HEBEEAARARRRERE .
.
- wnae

. » .
eaX® 16 %
* *

L2 13

T2

CHART

BF STR

RRREE

CPLSER X 32
EEEERRRERAREEERRR
* BOPSER =
Em e e B Kem F— H—
* BINARY SEARCH *
* IN SYSTEM *
* SYMBOL TABLE *
AEBREAERNRLELE R
.

R

« (NOT FOU

sseccsenrssesssessaX¥®

set s s et s s st e s

DI

*Xe oo

* * 35
#REGULAR*
* SYSTEM *
* - SYMBOL

x 3
Iy e
* SET UP *
* CONFIGURATION *
#IN ACCUMULATOR *
= *
* *
ERERERBARREXTE TR

~ .

Xs oo

37
FEERBERERSRAER AR
SET _UP

* *
A DATA *
DESCRIPTION *
* INFORMATION *
* *
» =

AEERRERERERE IR

seses s e

Xedtooooos

*
*
»

»

o

*SYSTEM *

AP I

Xesooos

ND)

NO

®essncescsccnsssncaa

e

sses s

. 33
ERRERERERTERRRRRE
* MBSPEC *
S el
CHARACTER *
* SUBSTITLTION *
* PROCECURE *
EERRERAEEAEEXRRER

« {NO HELP)

Xe oo

34
EX RIS S S22 2
* ERRCR *
* MESSAGE ®
* *
* *
* *
EEREFERERALRRRERR

Koo X0 oo eoseXessessssssssoeseseoevce

38
AEFEEXREFAREREERS
* PUT THIS TYPE *
* OF SYSTEM *
* SYMBOL IN THE #*
AREA LOCATED BY¥
* XWs BSYMBX -
EFEEEXRSXERAETR X RN
.

Xe oo

39
EERRREEREREEREREE
UPDATE
INDEX WORDs
BSYMEX

-
* *
* *
* *
* *
* *

EEEXERER BTN EE

.
.
.
.
.
.
.
.

cseae

41
EEREE KRR AR TR

® ERRCR .
* MESSAGE -
x* .
* *
* *
ARARREERERAEERERR R
.

R
- * *
e X¥BE_ *
% 13#
rank

(POSSIBLE HELP)

CPLTSY~-~PAGE 2 OF 2

EREEE

esemssessescessesnorssescseXse

R I I S A T A A)

- i
EEXEEERAEREREFXRRR
% COLLECT TAIL

* CHARACTERS

* T IN BUFFLR

* IN CPLT3Y

* kK K XD

* *
AEREEEREREERRLXERE

YES

Xeoswonosok

CPL3C X 16
AREEXEREEEREEERRR
* GETCHA ®
B e e Ol
%#GET A CHARACTER¥*
* ®

x *
EEERERARERRERH KRS

.
.
X
* * x 17
* *
TERMINATING YES
» CHARACTER LT
.
* * .
- * X
* FETY
+NO * *
. * 24 %
. * *
. Exrx
X
x X % 18

* x
*#ALPHAMERIC *
CHARACTER *
*

* *
* *

* 20
* *

* * NO
#* DOLLAR SIGN *essesceeX®
* * *

13 *
* *
*
EXEE «YES
* .
* 24 ¥4Xe
A % e Xe
ERER .

X

* % % 22
* ANY *

= TAIL
* CHARACTERS

*

- .

* *

Xesooe k

25
AEERREREERERERRRR

* INCREMENT *
*NUMBER-OF-TAIL *
* COUNTER *
x *
* *
EEEAXXEREREERREAR

.

.

.

X 26
R Y e
* ADDORD *

#ADD TAIL TO THE*
* ORDERED TABLE *

* OF TAILS *
IR 2SS 2SS]
.

X 27
EREREEEREREERER R
% ADJUST AND *
* UPDATE *
* CPLTSY S *
* CONTROL *
* INFORMATION *
RN K KRR

.

sXeoveoss

.

X 28
EEERE XN TR
* CALCULATE *
%* NOe OF ACTUAL =
* LEVELS OF . *
#*TAILING NOW IN *
* EFFECT *
AERRBEREREREERERE

.

Xe oo

29
EXEFERRREREFEREER
* INCREMENT =
x TAILING *
x LEVEL *
* COUNTER *
* *
EENBERFXRXRERRRER

. EEEE

. * =

e« o X®BE ¥
* 1S#*
EREE

cesessven

21
EAEERRAREEREREARE
* ERROR
* MESSAGL

x

*
*
*
*
*

EXHERXREREERE K RER

23
ERERRKREREEEREREE
ERROR *
MESSAGE *
*
*
*
*

*
HREREREEEE LR AN

Xeosoev e

24
EEEFAERREREERE AR
* ZERQ OUT TAIL *
%#NCe IN CURRENT #*
® LEVEL OF *
*CPLTSY CONTROL *
* INFCRMATICN *
EEEREERERR AR EARR

.

R S A A IS B AP

73

CPLTSY

LINKAGE
On Entry

1. The calling sequence is:
SIC, Cpltsz; B, CPLTSY.
2. The first character of the symbol, i.e., a $
or an alphabetic is in the value field of $3.
3. The location where the symbol is to be placed
is in the value field of Bsymbx.

On Exit

See details under boxes 32-37.

USERS

MAIN: to collect the characters of a symbol
which is in a P-mode data descrip-
tion;

MQP: to collect the characters of a symbol
which is in the address field of a
PUNSYM pseudo-op;

MQDD: to get the value of a system symbol
which is in the address field of a
numeric DD pseudo-op;

GETFLD: to collect the characters of a pro-

grammer symbol or get the value of
a system symbol.

FLOW CHART DESCRIPTION
Box 1

During the initialization CPLTSY does the following:
zeros the length-of-symbol counter, zeros the number
of levels counter, zeros the if-a-system-symbol
switch, sets the initial setting of NOP/B-type
switches, and sets up index registers with the loca-
tion of the buffer located by Bsymbx and the location
of CPLTSY's word buffer.

If the character in $3 is a indicating a system
symbol is to be collected, then the if-a-system-
symbol switch is turned on, the collection buffer of
the system symbol is blanked, and the maximum
count of system symbol characters is set to eight
(excludin). Otherwise the symbol to be collected
is a programmer symbol and the maximum character
count is set to 128.

74

Boxes 2-9

As CPLTSY gets each of the characters from
GETCHA, CPLTSY collects the alphameric char-
acters of the symbol in one of two buffers depending
on whether the symbol is a system symbol or a pro-
grammer symbol.

If the symbol is a programmer symbol, it is
immediately collected in the area located by the
index word, Bsvmbx. (This area will usually be in
the variable portion of the current expanded instruc~
tion unit where_ GETFLD is building up a coded
expression.) CPLTSY maintains a character length
counter so CPLTSY can determine later how much of
the current tails in effect, if any, can be appended to
the programmer symbol. On detection of a non-
alphameric character, CPLTSY stops getting char-
acters from the input for the programmer symbol.

If the symbol is a system symbol, it is collected in
a buffer area of CPLTSY in preparation for the later
look up of the symbol in the system symbol table.
Afterwards, CPLTSY may or may not put the system
symbol in the area located by the index word
Bsymbx. On detection of a non-alphameric character,
CPLTSY has the presently collected symbol looked up.

CPLTSY cannot use all this information directly
from the TAILOR table because the information may
have to be temporarily adjusted just for this pro-
grammer symbol if the programmer symbol being
collected has any tails specified with the symbol.
Any tail specified with a programmer symbol over-
rules any existing tail on the same level.

Box 15

This test determines whether there is any tail speci-
fied with the programmer symbol.

Boxes 16-29

The cycle through these blocks is performed for each
tail specified after the programmer symbol.

(The first character of the tail is checked to be an
alphabetic character.) The characters of the tail are
collected. The number-of-tail counter is incre-
mented. Then the tail with this new number is
entered into the table of tails. However, if the tail
itself is in the table already, the new tail with the
new number is not put in the table of tails: the number-

of-tail counter is decremented, so the control data
of TAILOR will always contain the highest tail
number currently used in the table of tails.

The number associated with the tail just collected
is stored also with the CPLTSY tailing control data
in the field representing the level effected. The
contents of the level-of-tailing indicator set is used
to select the proper field in the string of fields
representing the levels. If just awere specified
for the tail, the appropriate field in CPLTSY's control
data will be zeroed to indicate that on this level there
is no tailing for this symbol.

The number of levels of tailing now in effect for
this symbol is recomputed after the level control data
has been adjusted. Also, the level-of-tailing counter
is incremented in anticipation of a new tail with the
programmer symbol.

After all the level control data effecting this pro-
grammer symbol has been adjusted, then CPLTSY
takes the necessary steps to append the special char-
acters to the programmer symbol collected.

Box 30

CPLTSY inspects its tailing control data to see if
any tails should be appended to this programmer
symbol.

Box 31

The length of the actual programmer symbol deter-
mines whether none, some, or all of the tails in
effect can be indicated on the programmer symbol by
the appended special characters.

Thus, if there are tails in effect, the programmer
symbol may be appended with n + 1 eight bit char-
acters, a $-character to indicate a tail is present,
and then n eight-bit characters. This 'n' is deter-
mined by the last calculated number of actual levels
of tailing now in effect for this programmer symbol.
Each of these n fields contains the number of the tail
associated with the level concerned. In fact, these
n consecutive fields are taken from CPLTSY's tailing
control data.

Boxes 32-37

After a non-alphameric character has appeared in the
collection of a system symbol, then CPLTSY has the
symbol 1ooked up in the table of system symbois by
BOPSER. Note the collection buffer for the system
symbol was blanked in the initialization to insure the
proper background characters for a short system
symbol.

An entry for a mathematical constant-type system
symbol contains the location within STRAP of the
double precision floating point constant, while an
entry for just a system symbol contains the machine
location assigned to the system symbol.

If the system symbol in its evaluated form is in
the table, CPLTSY does the following: Using the dds
information, also in each entry, CPLTSY inserts this
data in the location, Cpldds, where the user program
may have access to it. Furthermore, before exiting
CPLTSY sets up in the accumulator at offset zero,
the datum for the coded expression being built up by
the user program.

If the system symbol is not in the system symbol
table, CPLTSY tries to get the symbol adjusted by
MBSPEC. If still the adjusted symbol is not in the
table, then the system symbol in its original form is
put in the area located by Bsymbx and Bsymbx is
updated. The latter storing is also done if the
corresponding symbol in the system table is marked
as one unavailable at the installation. (Of course,
CPLTSY inserts the collected programmer symbol
in the area located by Bsymbx too.)

The fact that Bszmbﬁ_a_sTeen updated indicates to
the routjne using CPLTSY that a system symbol has
been collected for which there is no value or that a
programmer symbol has been collected.

Boxes 12, 13a, 13b

After CPLTSY collects a symbol that turns out to be
a single $-character, then CPLTSY sets up a special
configuration of bits in the area located by Bsymbx
(Figure 14).

Datum

Prefix Location of Constant or Value of System Symbol
TTT T I T T T T T T T I T T T T T T T T T T T I I I T T el TTTTTTITTTTTTITTITTITTITTTI
l S bits 24 bits

Accumulator

S $=0, If regular system symbol

oloTolo |1r|0] Olol S=1, If mathematical constant
0

Sign byte

Figure 13. Format of CPLTNM's Cutput in $R

CPLT8Y 75

CPLTSY updates Bsymbx to locate the bit which sion being built up by GETFLD. The GETFLD if-a-

CPLTSY has set to zero, immediately after the $00 dollar-sign indicator, Gfdol, is turned on to distin-
configuration. Actually this configuration is to be guish the type of re-entry into GETFLD.

part of the symbolic datum portion of a coded expres-

BSYMBX BSYMBX
Pointer (before CPLTSY) Pointer (after CPLTSY)
$
{
olooJoloToTofofoT1]oT1Tol1]1]olo]ofofo]oTolo !oloIOIOIOTOIOIOI TTTTTTTTITTTT T TITTI T T T TITTITITTTITT7T17T)
7 bits 8 bits 8 bits 8 bits

Figure 14. Format of CPLTSY's $ Output

76

CHART BG STRAP I1

R L
» GETCHA *
B R A—E—R—R— R
GET A CHARACTER%
* FOR MAIN FLOW *
* *

ERERERARREERRERER

Xo oo e

1
EERTRERRRERERE R
*INITIAL HOUSE- *
* KEEPING FOR *
* EACH ENTRY ¥
* INTO GETCHA +

*

*
ERERERER TN REE
.

Xe oo

2
RAEREREXRARRERERRER
* PERFORM *
* ENTRY *
* TESTS *
* *
* *
RERERERERREERRRRE
.

MXo e s e

4
* * 3 HAEERERRERE R EH N
* * * XINPLT *
* GETCHA'S % YES P g

* INITIAL ENTRY ¥#ceoeseceX¥® GET FIRST
* * * CONVERTED *
* * #* CARD INAGE *
LI ERRAEEERRREEEEEE
=
«NO
.
oXe secsenssae escscse
-
X *
x5 ox 6 * * 7
* ERROR * * *

CONDITION * YES * YES
* FROM MAIN *oeowsveeX® COPROCESSOR *aesee
* WANT *

*
* * *CONTROL *
- - * *
® *
«NO «NO
. .

eXesoosseossnseveersonncnnrse
X
% * %
* NAME »*
* FIELD * YES
* . PROCESSED LETRRY
*

GETCHA---PAGE 1 OF 2.

EEEREERERLEERXRER
*INITIALIZATION *
* TESTSe SET UP *

¥essssessi® COPROCESSOR

* TABLE. SET *
» SWITCHES *
EEEERER LR LT N RAR

8
EERAEBEEXLRERXEERR
* COPROCESSOR #
Em e X e K e R

X% *
* *

* *
EEERARRKESEERAENRN

* * .
* * X
* "
+NO * *
. ® 11 =
- *
- XAE
GC1A 10
HRBERRER RS E TR RER
* INSPECT *
* CHARACTER *
= IN *
* COLUMN 1 *
* *
EREEEREEETRRRERER
.
.
x * 13
* ® * 11 * * 12 FREREREREEERERRRER
* * * = * COPROCESSOR *
COPROCESSOR® YES * * YES i o T
CHARACTER ®eessceseX® COPROCESSOR *ecvesseaX¥ *
* * WANT * - »
* * ECONTROL % - *
* * - * ERAXAEREEEREEFRRE R
* *
«NO #NO
. .

eXoossnsscssecncssscanscnssncne

X s

= * ® 14 EEEERERER AR EEERER

* * %*SAVE CHARACTER #

* % YES * IN MAINS *

* QUOTE ®eesssseeX* COLLECTION *oose
* * *BUFFLER FCR THE * -

* = » STATEMENT * .
* * AEEERRERERNERERER x
* EEER
ranE «NO *
* . ® 11 ®
#BG *.Xa *
* 13% . Exxx
AR .
GC3 X 16 »
EEEEE RN AR RN * * 17
* PROCESS THE * *ILLECAL®
#* CHARACTERS * * NAME
* IN THE *oeoa s X ¥ CHARACTER
#* NAME FIELD * *
* * * *
Ty * *
N
. [222]
. ® *
coX® 12 =
* *
AEER

* * 18
* *

CONTROL
* *

*NO
- ERRE

. * *
e X¥ 12 *
- *

EEER

* * YES
A% COPROCESSOR *.ee
* WANT *

srsess e

e
»
X 12 *...
* -
EERR -

X 20
EREREERERERERERRE
*SAVE CHARACTER *
*7 IN GETCHA'S *
* NAME *
* BUFFER *
*

*
EEERERAER LN RE
-

Xe oo e

i**i&*lien{liiael
®¥SAVE CHARACTER *
* IN MAIN®'S *
* SYMBOL *
* BUFFER *
* ®
EEEREFEREXERER R R

ERER

PR
-
-

* ko
.
X

F R
€c30 22
EREERERERERRRRERR
* FETCH A *
® CHARACTER *
* FROM *
* STATEMENT *
* FIELD *
RERRBEXERXEEREEEER

KXo oo

26
* * 23 EEREREEREERERE XA
* * * COPROCES30R #

* * NO [o e
* ANYMORE *oous * *
* * . * *
* * . * *
* * X e N i e]
* AEEER X
+YES *EH * .
- * 22% .
. * % .
. * -
- «YES
X *
x x % 24 * * 25
* * * =
* YES * *
* E OF END *esessseesX¥®* COPROCESSOR ¥
*® * WANT *
* * *CONTROL*
* * * ®
* *
«NO #NO
. .

eXesocecscccncenscscscsncne

X 7
ARFEEREREFERRNE RN
*SAVE CHARACTER #
* IN MAIN®'S *
% COLLECTION *
*PUFFER FOR THE #
* STATEMENT *
EEREREEREERERR KRS

EXe s o0

x x 28

IS THIS A
YES COMMENT CHAR,
FROM

*
*COLUMNS 1-9%
* *
* *
*
«NO
.
.
X
* * ® 29
*WITHIN *
* A COMMENT * YES
% STARTED IN *eaas
*COLUMNS 1-9% .
* * .
» * X
* XX
«NO * *
. ® 11 %
. * *
esssessaneXe LT
.
cC41C X 30
EEXEEXRERRLERRRER
* SET uP *
* CHARACTER *
* FOR Xeaae
= USER .
* PROGRAM * .
R Y e e X
*EEE R
*BH *
* 21%
* *
*

19

ERLEXERERERERL X EE

* COPROCESSOR =

LR R s o B
ceX¥® *®
* *

* =
EEEEERRAEREEER N T

ki

CHART BH

ERRER
*BH =
* 21%

Xe o0

31
AERRREFERERSRE SR
F INAL *
* HOUSEKEEPING #
* FOR EACH
* EXIT FROM
-
-

GETCHA *
EEERERAEBERART RS

8

STRAP II

*Xeee
* .

GETCHA~--PAGE 2 OF 2

Xes oo s

35
ARRRERESERRERERER
* XINSP2 *
KRR R—R—X—
* A SPECIAL -
* PROCEDURE [N #
* XINPUT *
RRAREREREARERRNT S

.

smeese

RN

GCEND X 32
L2222 2222222222223
* END OF *
ASTATEMENT FIELD#®
% PROCEDURE *
* -

* *
EEZ YR e R T 22
-

X e o0

* 33

* * YES

* END CARD *eoue
* * .

» * .

X
RER
NO * .
* 23 »
»

ERRE

KXo v e oo

* % v 34

* *

YES * INSERTING * NO
S CARDS FROM *o
COPROCESSOR

- -

- -

*

x
LN 37
® NEW ¥

* CARD A * YES
% CONTINUATION *.0.0
* CARD * .
.
* - X
» rERRE
*BG *
% 13
L
*
- »
% CARD BLOCK *
* PROCEDURE *
] *
] *
RERERERARERRNERER
.
.
.
X
* % 39
» »
* NAMED ® YES
* CARD BLOCK FesnvoeseXW
- *
* *
- *
*
«NO

eeessesccense

coeee

Xeossosounn

36
ERRERARAREERRARRR
* XINPUT *

* GET ANOTHER *
#CONVERTED CARD *»
1]

IMAGE ol
R TRE R EER

40
AERERRERERRRRERRS
* GNLOAD »
L e e e et I
SAVE NAME *
*#OUTSIOE OF CORE¥
* UNTIL PASS 2B *
R T R T T e 2

.
.

eXseooosecssencscsosssscone

X 1
ARRERARRRRERNRERRS
RESET GETCHA *
* FOR NEXT »
% CARD BLOCK #
L] *

*

*

-
FERFAERRARIERESS
.

Xeweose

42

FRERRERERARRERARS
*
. -
INDICATIONS *
* F L3
' *
-

EEEERBREEERERERN
.
. EER
-
seX® 24 #
- *

EE R

LINKAGE

The calling sequence is: SIC, Getchz; B, GETCHA.

DETAILS

GETCHA performs the following functions:

1. This subroutine gives the characters of the input
to main flow character-by-character through the value
field of $3 during Pass 1 in A8 code.

2. This subroutine collects the characters of each
name associated with a card block. Then the GNLOAD
subroutine collects the names and puts them out on
tape or on disk. Unlike the symbol file, the name
file does not remain in memory during all the passes.
The NAMEIN subroutine brings the name file into
memory for the OUTPUT subroutine at the end of
Pass 2 when the listing is produced.

3. This subroutine also builds up the corresponding
symbol for each name. With each of these symbols,
the TABMAN subroutines build up the symbol file.

The symbol file remains in memory for the entire
assembly.

4. This subroutine also collects the characters of
the statement field in the buffer, Bsyst. The MAIN
routine later puts the contents of this buffer into the
unique expanded instruction unit associated with the
instruction.

5. This subroutine tells main flow of Pass 1 when
an end of card block has been reached by setting the
bit, Fend, and by putting an A8 semicolon (''false
semicolon') into the value field of $3.

6. This subroutine informs the coprocessor sub-
routine when one of its conditions has been detected
by GETCHA or by MAIN or by XINPUT.

FLOW CHART DESCRIPTION

Boxes 14-16, 28, 29

A comment character appearing in columns 2-9 on
the initial card of a card block causes the entire card
block to be treated as if the comment character had
appeared in column 1. In fact, GETCHA super-
imposes a comment character over the first column
character of the initial card image. The comment

GETCHA

character appearing in the name field of the card
image is blanked out.

A comment character appearing in columns 2-9 of
a continuation card causes the remaining characters
on the card to be treated as a comment. The name
may be continued on the following continuation cards
of that card block. The characters from the statement
field of these subsequent continuation cards are
treated as part of the comment.

A comment character appearing in column 1 on the
initial card of the card block causes the entire card
to be treated as 2 comment.

A comment character appearing in columns 10-72
causes the remaining character of the unit to be
treated as part of the comment.

If a comment started in the first nine columns, then
GETCHA informs main flow that a comment has been
encountered with the comment character in $3 as
usual. Subsequently, GETCHA will put all the
remaining characters of this type of comment into the
collection buffer for the statement characters without
giving them out to main flow through $3. When
GETCHA has finished collecting this type comment,

GETCHA does inform main flow with the usual end of

card block indications.

However, when a comment begins in the statement
field, GETCHA not only inserts each character into
the collection buffer for the statement characters as
usual, but also gives each character to main flow.
MAIN then ignores the characters in a statement
comment by relooping into GETCHA until a semicolon
appears in $3.

Boxes 5, 7, 8, 12, 13, 18, 19, 25, 26

The specifications for including a coprocessor sub-
routine with Pass 1 is described in a later section of
this manual. During her initialization GETCHA
determines whether there is a coprocessor sub-
routine operating with Pass 1 and fills in GETCHA's
error branch vector accordingly. When there is no
coprocessor subroutine with STRAP II or when a
coprocessor subroutine does not want control for one
of its error conditions, then GETCHA or MAIN gives
an error message and continues with the appropriate
corrective action.

GETCHA 79

CHART BI STRAP II

1
RRBREERREREE R TRE
ETFL! *

*
L R e e X A N
* INITIAL *

* HOUSEKEEPING *
* *

EERREEREERREER RN
-

GFCBIN X 2
ERAREREERERRRRRES

* HOUSEKEEPING *
* FOR

*
o X ¥ « ®Xowe
. ® * .
- *
. RAEEASREABEERRAEE .
= . T
* » . *
*8] * . * 1
® 02% . * =
enn . rEEE
.
X
L) 3
» »
* 1sT * YES
xX# CHARACTER LEEEEY
OBTAINED % .
* - .
- * .
- .
«NO .
gL * . .
= 03% N .
EEnan .
.
GFMAIN 4 .
EEERRARERARRRS SN .
- GETCHA » .
e N e el .
e« X*GET A CTHARACTER* .
. ® * .
. * * .
. EREEAERARNENNEEES .
- . .
» * . .
*BI * . .
* O4% . .
RERE eXesesssoason
.
X
. x s
- =
- * YES
(*ooee
.
- - .
. - *
* rEEe
. = «NO *
*g1 * - .1
* 05% . *
Ry . 223
-

6
AEREARRRERSRAR AR
- SET .
*SUBSCRIPT-NOT~ *
* ALLOWED *
- INDICATOR »
L] »

FRBPERBRBERRBERES
-

XV e e

- - 7
- *
START OF # YES
* SYMBOL OR $ *eee
* -
» »
» -
-
NO

.
.

-

.

GFMB X
* &% 8

* *

#* START OF # YES

* NUMBER
*

R EEE
*By *
* 30%

80

GETFLD--—PAGE 1 OF 3

EERRE
*al *
* 18+

Xeo e w

9
ARERERERE RN AR
*RESTORE EUFFER *
* TO ORICINAL # *
#CONDITION MAKE #Xeoeosane®
* NULL CCOED * *
* EXPRESSION *
ERERRRERE R EE R
.

18
HERRREFREETRERRRRS
* ERROR -
MESSAGE *
*
*
-
*

*
AEERRRREAARAR DY

Xeee0

10
EEXRBRREAARBERREE
* ERROR
MESSAGE

*
*
*
*
*
*

[EERE]

ERBERERRARBERRE
-
.
sMeseevesssevsscncrsssscscvensuonssanes

X -
% > 11 E23 2] 19 .
* » * * .
* COMNA * * .
* SEMICOLON OR * .
* QUOTE * -
.
- * wrnun .
* X .
oNO - -
. . .
. . .
. .
. .
x .
LI 12 » = 20 .
3 * 13 * .
» * YES ®PARENTHESESH* .
*) ®eseseceeX® COUNT EQUAL * .
* * * ZERO - -
3 » .
® * - - .
- * .
«hO «NO .
. . .
. . .
. . .
. . .
X X 21 .
. ® ow 13 REERRARERARERENRN -
* L3 . GETCHA =,
- » [el -
13 « eesdX*GET A CHARACTER*eeos
» - X - »
3 » . - =
* » . FEEREIRNEABRBERRES
* -
+YES -
. .
. .
. .
X 14 .
FRERERRERARABENES -
ADD 1 TO - .
PARENTFESES # -
COUNT .

*eeves
-

»
*
*
*
-
HERENEREAANBEIRER

GFMAJ *
*

1
FEBEERBRRRAREERS 22

* AND DDS TO
*

*# AND DDS TO *
CODED CODE *
® EXPRESSION
»

*

.

* - c
-

*

"

* EXPRCSSION -
*

*
ERRRAEERRRAREE A RERBERAERERRRAER .
.

. .
X X
Es 2 X2 3 AREER
By By *
* Sew * sg*
* X * *
» *

28
* * 25 EEAEERRRRREERERRN

s
*
» CPLYSY * * . * . * PREFIX AND %
!-I—.-ﬁ—'-’-'c'—. - - NO ES * LENGTH OF *
X% COMPLETE A *useeeseesX*SYSTEM SYMBOL ¥eeeessesX® 5 SYMBOL ®ecesseseX® SYMBOL IN
* SYMBCL * - * x . oD *
- » * . . * » * EXPRESSION *
ERAREFFFRAREERBER - - . » * AREBRREREARERERAES
» - » .
-YES . -NO .
. . . .
. . . .
. . . .
. - . .
16 X . x 26 X
22222222222 22 222 * ® ® 23 . HERERRRRF RS RN RAEERERABERERERERER
* CPLTNM - . * . * PREFIX AND * ADD + *
s il Bl * PROPER # NO ® LENGTH OF # * OPERATOR *
COMPLETE A % ®ESYSTEM SYMBOL *.aes * SyMBOL IN * TO CODEC »
NUMBER . » * * CODE * * EXPRESSION
* * * * * EXPRESSION * * »
HRERERERERBAERRBRER * - ERERRERBEEREREERER R EARERRRERBREREREE
. * - -
. «YES . .
. . . .
. . . X
- - ERRER
. . . By *
X 17 X 24 X 27 * 58%
LAZZ2 2222 2E 2222223 HERFRRERRRRRRRA R RRAEREREREREERERR * »
*VALUE, PREFIX, #VALUE, PREFIX. * »

INDICATOR

ON
ERERRRERARRRRRE
.

.

a

- *
» EX~ »
* SUBSCRIPT-OK #*
* *
a *
- *

X
R ERR
*BJ *
* S8%

*

*

CHART BJ STRAP 1 GETFLD--—PAGE 2 OF 3

EEERE EERER
%84 * *By =
* 30% * 58%
* = * *
»* =
. .
GFMC X 39 47 52 GFNAF X S8
* * 30 T Y e FAREEERERRR ISR ERRE EREREFERRERBERER N P T
* * * SET PRCPER * * GETCHA * * * * ADD 1 TC *
* 1s % YES * OPERATOR * RNk R E—N— # SET CPERATOR ¥ #CCUNT OF DATUM *
» CHARACTER BeassnsoaX¥ CODE IN *enenees s KA*GET A CHARACTER¥®esesoseneX¥ PRESENT * * SET TO SHOW *
LI * CODED * * * * INDICATOR * * END OF DATUM =
* * * EXPRESSION * * * * * * *
* * HEETRERAEHEREEF R P R I I AREERREERRATTRTRSE ERERAEENEARAREERE
* . .
*NO - .
. . .
. . .
. . .
. . .
GFMH X * X X 59
® ® 3 * ® 40 * % w 53 T e e
= * * * * * #[F LAST OPELRATR#*
* SYNTAX * NO * NULL * NC NO * SYNTAX * *WAS oL, CHANGE *
coX® CORRECT KeseroseeX¥ FIELD L PP PO CORRECT *Xeeesssee® OPERATOR TC *
. * * * * x X * * * et *
. - * * * T EEEER * * = *
* * * * %31 * *pl * * * EREBEREEREEENERER
* * 0% * 09% *
<YES «YES . * % * +YES
. . * * .
. . .
EEER . . .
. . .
X 32 X 41 54
RN RN R 2 L L T
* * * * * *
* PULL UP - * NULL FIELD * x SET NEW -
* LIST ¥Xeouoooask INDICATOR * * SYNTAX *
» * * ON * * =
* = *® * * *
EEERRREREREENERRE EEXREERRRRAREAE RN AAERERREREELERELR
. -
. *RER .
. * * .
- ® B *Xew .
. * 18% .
. ®RXE JNO -
X * * S5
= % ® 33 *® ® 42 * * 48 AREEHAREREEERRRRE
* * * * * * * GFLONG *
* PAREN * NO * * NO * * L R it =
* COUNT Xossevses X¥® COMMA FaoeososeeX¥®) * * CHECK FOR *eoesssse
* 0 ® * * * * * RGOM IN * X
£ * * * * * * BUFFER * R EEENE
= * * - * * L e e i et] %51 * *By *
* = L * 05% * 60%
«YES <YES «YES * = x x
. - - * *
. . . .
. ceccasccsscssancscccsssasXe .
- . .
X 43 - * GFCCA X 60
* % ¥ 34 I YTy - * * 56 EEAEEARERLEEERRER
* * * GFZA * - * * = GFZA *
= NULL *= NO B e Sl S St T - ® ALREADY * YES R e i B B B
* FIELD *seesneseX¥® PUT OPERATORS #* sesssessssvescsssX¥ ONE SUBSCRIPT *sseessseeX¥® PUT OPERATORS *
* * * IN COCED * * * * IN CODED *
* * * EXPRESSION * * * * EXPRESSICN *®
* * P T YT T T Y * * ERREEEETTEETAAER
- . * .
«YES . +NO .
- . . .
. - X .
. . ERERE -
. . *BK * .
X 35 X 49 * 64% X 61
L e T I T * % 44 EERRAFEEEREERERER * * AEREHEERERERE LR
* * * * * SHOW * * * SET END OF *
CREATE NULL # *ARITHMETIC * NO * EXISTENCE OF # * SUB-CODED
® PREFIX AND % * PARENTHESES %*eeseesesX* SUB—CODED * * EXPRESSICN *
* DATUM * * * * EXPRISSIONS * * INCICATGR *
* * * * * * * *
EAEEEEREREESEERRR * * EEEEAERRRREERRERE EEREEEAREE TR
. * . N
. - YES - .
. . . .
- X . -
eXoovssevesesccscsssesscsecssnasnsssessssntsnscnsssnnre .
. .
X * 50 X
- ® % 36 * - 45 P R I Y * x % 62
* = * % * GETCHA Cow * *
* 1s * NO * GP * YES L ot of = YES % -
* GP ¥onesssoaX¥ WAITING *osesses s X¥GET CHARACTERS * sesese® COMMA *
#* ALLOWED * * * # TILL PROPER * . * *
* * * * ® END CHARACTER # . * -
- * * * PRI R IR T . * *
* * . . *
«YES +«NO - - «NO
. . - . .
.
- esscsss seXe . .
. . . .
X 46 X - X
* % ® 37 ERAAEERERARERRR R EEERE . * % % €3
* * * SET CCDED * * * . * *
* GP * NO * EXPRESSION TO * * * . * *
* WAITING Feossesos XW SHOW NO %*evveeew seseX® EXIT % .) *
* * * GP * * * PO * *
* * * * * * EEEER o« o * *
= = HEREEREEERRNRARN EEEEE *BJ * . X * *
* ® 57% dEEEER *
«YES * J*BL * «YES
. * o* O4% .
. . . ®® X
. . .« * T2
. . . *B81 *
X 38 * GFCA X . * 18%
AREREEERFRHEREREE * * s1 * » 57 - * =
* SET VALUE * * * * * . *
* OF GP IN * YES * ALREADY * NO * ALREADY * .
* CODED * ees® GP OR RADIX %*Xeeeeossssh ONE. *Xeao
* EXPRESSION » . * * * SUBSCRIPT %
* * . * * * *
AREERERERRRERRAER X * - * *
. REEEE * *
. #81 * +NO <YES
. ® Q9% . .
x * % X X
rEEEE * ERRER ERXER
*B] * gL * *B1 *
* 02% % 02% ® Q2%
- ® * * - =

- ® *

CHART BK STRAP 11 GETFLD---PAGE 3 OF 3

82

FEREE
#BK *
* 64%
* =
*
.
.
.
GFCD X GFCDA * * 82
* % 64 * * 73 * »* 76 EEREREFERRERRR RN
* » * * * * »*
* ONE * GP * NO ®ARITHMETIC * NO #SET PROCESSING *
* ABSOLUTE OR RACIX LT TR PARANTHESES ®oesseveseX¥® SUBSCRIPT %orns
*¥DATUM ONLY ® X * ALREADY # * LEGAL * * INDICATOR * -
* * . * * * * * » -
» * . * - - * EE e T X
[ERER ®YES * R
*YES * . EExw «YES *EJ *
- * P * . * 60%
o * s X#BI * - * x
- xR * QO - *
- EEEN -
GFCE x X
* * = 65 * * » 77
* * * L
* POSSIBLE * NO * * NO
GP LT * COMMA ¥oeee
- » - * - -
» * - * * -
» - X * * X
- ERER - RREEE
«YES * * «YES Bl *
. ® 3] » . * 1%
- * * - x »
. annw . »
. -
X X 78 83
L N 66 EREREXELUREXEREA R ARRREFREERERRRNRE
» * % INCORPORATE * * GETCHA *
* oL * NO *DATUM+OPERATOR * KR KRR A%
* OPERATOR [#SET ARITHMETIC ®eueeaeeoX¥GET A CHARACTER¥aeu e
* * . # PARENTHESES * * * .
* * . * INDICATOR »* * * .
» [X ERERRARBERRRRERA N ERRRFARERERERRNRE X .
* I EEREER
<YES * L *gy
. * 31 # * Sge
- » * LA
- EEEE -
.
X
* ® ¥
» -
* CORRECT
- END ING
#CONDITIONS #
* * REER
. *
»
«YES nEEE
- - -
. ® 3] %...
. »* .
- EREE -
X GFCEA X
- » = 68 * B o» 79
* * (ALREADY » *
» TEST L] ON) * SUBSCRIPT * YES
- PRESENCE LR * ALLOWED LET T
* oF GP * . * A
* IND % . »
- - X »
- EERRR
< (SET 81 *
« ON) * 09%
- *
- *
.
X
EREFBRFRFEERRRRER -
-
®* SAVE VALUE * * NUM|
* REMOVE oL * * OF OPE
* QPERATOR - * EQUAI
- » .
ERERBRBERTRHERERRE - * X
. » ranw
. =YES * =
. . * 32 =
- . * *
. . Enww
. . N
X 70 74 X
HERBRFRBRARRERR RN HRREERREEEAERRR RN L B 81
- RESTORE * * SAVE VALUE * (SET * * (ALREADY
- BUFFER TO » * OF RACIX * ON) * TEST * ON}
* POSITION #Xeeessase® FROM CCDED *Xesenocast® RADIX LR
* BEFORE GP * ®* EXPRESSION * * IND * X
* »* * * - * REERE
BERBARARRRRERAARD HREREEREE AR RLRRR * » "B *
. * s 09
- - * ARER
. * * *
. * BJ *Xse
. * 31
- ARNE «YES
X GFCEE *
* » 8 71 84
- * » *
* #* YES * -
*) % e ee0000000ssestiisisterereseteetesItesetesreseRNTUSIELRSTERTOIIIIERTSIESIOETIOERRTOTTRORTLRRITTER R X GP
» * *
* * * *
- - * *
» *NO
<NO . WEER
. PR *
- seX%BIL
- * 03%
- R
X *
» o » 72 * * 75
* * * *
* * YES *PARENTHESES®
* COMMA e X¥ COUNT 1
- * * -
= » * * .
- » * -
* * AR R
<NO +hO gy *
. . * 57%
X X L
,EERR LEZEE] -
B * 8] *
* 18% * 188
 * * ¥
- *

LINKAGE
On Entry

1. The calling sequence is:
SIC, Getflz; B, GETFLD.

2. Since the index words, Bcfldx and Befxtx,
define the buffer area where the coded expression
is to be built up,

a. the value field of Befldx locates the full
word address of the buffer and

b. the value field of Befxtx locates the first
bit after the buffer.

3. The bit, Gfchar, is on if the user has already
set up $3 with the first character of the field.

4. The bit, Gfnogp, is on if the user does not
allow a general parenthetical integer entry on the
field about to be encoded.

On Exit

1. The value field of Befldx will have been up-
dated accordingly.

2. The value field of $3 will contain the first
character after the field.

3. The flag, Fsymb, will be on if a symbol
(which was not an absolute system symbol) appeared
in the field.

USER(s)

The most frequent use of GETFLD is from the place
in main flow where MAIN calls on GETFLD to put
into the unit the encoding of the address field(s)
from an instruction that produces binary output.
(See Appendix C.) However, instructions that are
re-routed around this area of MAIN for special
treatment in one of the sub-procedures of MAIN
have their address fields encoded (If necessary)
from that particular subroutine. Subroutines using
GETFLD include: MQM, MDIMRF, MDIMRT,

MIOD, MDUP, MX, MQS. MAIN also uses GETFLD

during the processing of the byte size and field
length.

DETAILS

A coded expression for one field will be set up in

the beginning of the buffer. The end of the buffer
may have been used for intermediate storage. More-
over, if the value field of Befxtx does not contain

a full word address, the address will be rounded
down.

GETFLD

Each coded expression which GETFLD is called
upon to make is usually saved in the current expanded
instruction unit. During Pass 1 the coded expression
for each field of an instruction producing binary
output is sequentially stacked in the variable length
portion of the current unit. During Pass 2 these
coded expressions will be sequentially decoded and
evaluated by the routine DECODE and its VALUE
subroutine in order to obtain the values to be inserted
in the binary output. (The binary output for an
instruction is also saved in the unit.)

GETFLD performs a legality test to detect syn-
tactical errors in a field. If the combination of
datums is specified in an illegal manner, GETFLD
encodes a null coded expression which will be
evaluated later as zero for the field.

A code number is associated with the type of infor-
mation that either precedes or follows the arithmetic
separators: @ Q, @, @, @, @,@ An S-code
(syntax code) is a number associated with what pre-
cedes a separator; a syntax code describes either a
datum or another arithmetic separator. A U-code
is a number associated with what follows an arith-
metic separator; a U-code describes either a datum
or another arithmetic separator, one separator or
two separators can determine an arithmetic opera-
tion.

With the S- and U-codes, GETFLD looks up an
element in its two dimensional syntax matrix. Each
look up in the syntax matrix accomplishes two things:
First, the look up establishes whether or not the cur-
rent operation, or the current datum is syntactically
correct depending on the value of the isolated element.
Second, the look-up establishes the S-code, the value
of the isolated element to be used for the next look-
up in the syntax matrix. Initially each S- and U-code
is zero. Thereafter, each U-code is determined by
the current datum or by the current arithmetic
separator; each S-code is determined by the previous
look-up in the syntax mateix.

Syntax Codes (what precedes)

Value(s) Symbol Meaning

0 B Beginning of expression,
or unitary minus.

1 S Symbol, number, or
parameter.

2 SZ Symbol etc. preceded by
a decimal.

3 O Operation.

GETFLD 83

Value(s) Symbol Meaning
4 . . preceded by an 'S’
described above.
5 .Z . not preceded by 'S’.
U-Codes
Value(s) Meaning
0 Symbol, number, or
parameter
1 + and - operations
2 * ./ or END of expression
3 .
4 Special to identify arith-

metic ()
FLOW CHART DESCRIPTION
Box 1

Initial housekeeping for GETFLD is done here.
Befxtx (last word available in the intermediate
buffer) is rounded down toa full word address. Gfpcnt
(parentheses count) is set to zero. Gfnull and
Gfgenp are turned off. The position within the inter-
mediate buffer is stored in Befldz. $2 is spaced
over the first prefix bit.

Box 2

The first word of the GETFLD buffer (Gfsave) is set
to zero and the buffer is pushed down one word. If
there is a special radix (Gfrads on), its value is
stored in Gfsrad.

Boxes 3, 4

If the first character has not been obtained, the
program branches to GETCHA.,

Box 5

If the character is a parentheses, Gfgenp, Gfrads,
Gfsfrd, Gfsfxa and Gfsfxb are set to zero. The
parenthesis count is stepped one. If the parenthesis
is possibly arithmetic, Bcefldx is spaced back three
bits, removing the prefix. Gfapan is set to one.

Boxes 6-8
Gfsfsb (subscript-allowed indicator) is turned off.

The character is checked to determine if it is either
,or the start of a symbol, or the start of a number.

84

Box 15

If the character is either r the start of a symbol,
10 bits are left in the coded expression for the prefix
and length of symbol, and CPLTSY gets the entire
symbol.

Boxes 22-24

If it is a properly defined system symbol the inter-
mediate buffer is spaced back 10 bits. The prefix,
value and dds of the symbol are placed in the buffer,
and the buffer is spaced up 43 bits.

Boxes 25-27

If it is not the@ymbol, the prefix and length of sym-
bol are stored in the coded expression, and the sub-
script allowed indicator is turned on.

Boxes 28, 29

The symbol is th. The prefix and value of the
is stored in the coded expression. The buffer is
spaced 20 bits.

Boxes 16, 17

The character is the start of a number. CPLTNM
furnishes the number. Gfrads is turned off. The
prefix, datum, and data description are stored in
the encoded expression, and the buffer pointer is
spaced twenty-eight bits.

Boxes 30, 39, 47, 52

The character is tested for@,@,@,@, or@.

If one of these, theappropriate operator code and

the number of the datum acted on by the operator are
stored in the coded expression; the syntax U-code
indicating what may follow is set; Gfspar (operator—
present indicator) is set to one; one is added to the
operator count. GETCHA is asked for the next
character.

Boxes 53-55

The U- and S-codes are checked for syntactical error.
If correct, the new S-code is saved and the routine
branches to Gflong to check for sufficient room in

the intermediate buffer.

Boxes 31, 32, 40, 41

The syntax is checked for the legality of ending at
this point. If the syntax is legal or if it is a null

field, the GETFLD buffer is pulled up.
null field indicator (Gfnull) is turned on.

If null, the

Boxes 34, 35

If the parentheses count is zero, and Gfnull is on,
the null prefix is stored in the intermediate buffer,
and $2 is spaced six bits.

Boxes 36, 45, 50

If a GP is not allowed (indicated by Gfnogp on), and
a GP does not follow (Gfgenp off), exit is made. If

a GP does follow, GETCHA is requested to space to
the end of the instruction unit.

Boxes 37, 46

If a GP is allowed, but no GP follows, the bit at the
end of the coded expression is set to zero to indicate
no GP entry exit.

Boxes 38

If a GP follows, the heading for a GP entry is stored
in the buffer, $2 is spaced 8 bits, and the lst word
if the GETFLD buffer reset to zeros.

Boxes 42,48

If the parentheses count is not zero (box 33), the
null field indicator is turned off. If the character is
not n@,the error message (Inappropriate
Character) is given.

Boxes 56, 60

If the character is a , or) and a subscript has already
been encounter (Gfsfxb on), a branch is made to

Gfza. In the case of a , one is subtracted from

the parenthesis count. Gfza storesthe operators in-

to the coded expression from the GETFLD buffer.

The expression is given the prefix 1000.

Box 61

Set coded expression to indicate no more operators
$2 is spaced 1 bit.

Boxes 62, 57, 51

The character is checked for a comma indicating

a subscript. Bit Gfsfxb, if on indicates a subscript
has already been processed and the program branches
to process the subscript. If off, a check is made on
bit Gfsfxa. If off, a GP or radix has not been en-

countered, and the bit is turned on. If on, the error
message (Syntax Error) will be given.

Box 63

If the test for a comma (box 62) is negative, the
character is checked for a closed parenthesis. If
yes, an error message is given. I no, the program
will request the next character from GETCHA.

Boxes 43, 44, 49

If the field is not null (box 34), the program branches
to Gfza. If there was no operator to make the par-
entheses arithmetic, the coded expression is set to
indicate a sub-expression.

Boxes 64, 73

If there is only one absolute datum, and a GP or
radix has already been processed (Gfsfxa on), an
error message is given.

Boxes 76-78, 82,83

If the parenthesis could not be arithmetic, Gfsfxb
(processing-subscript indicator) is turned on and the
program branches to Gfza. K the parentheses could
be arithmetic, but the character is not a closed par-
enthesis, the error message (Inappropriate Character)
is given. I a closed parenthesis, the operator and
the number of the datum are placed in the GETF 1D
buffer. GETCHA supplies the next character and the
opening arithmetic parenthesis; indicator (Gfspas)

is turned on.

Boxes 65, 66, 79-81, 74

The expression is tested for the possibility of being
a GP or radix. I neither, Gfsfsb (subscript-allowed
indicator) is tested. I off, and the number of oper-
ators is equal to zero, the radix indicator (Gfrads)
is turned on. If it is already on, the error message
(Syntax Error) is given.

Box 74

The value of the radix is stored in Gfsrad.

Boxes 67-70

If the syntax is correct for terminating and a GP
has not already been processed, Gfgend is turned

on. The value of the GP is stored in Gfgpv, and
the operator is deleted from the GETFLD buffer.

GETFLD 85

Box 71

If the character is neither a closed parenthesis, nor
a comma, an error message is given. If a closed
parenthesis, it is checked for a GP. If a comma,
and the parenthesis count is not one, an error
message is given.

86

CHART GN STRAP II GNLOAD

HRAEREEER AR RRE

*SAVE NAMES FOR *
*LISTING CUTSIDEX

*# OF MENORY # xew
EFREEERERRAREERERR * *
. *2 =
- * *
- %
. .
. .
. .
X 1 b3 18
EREEAREREARERRERR ERREFRERLERER
i * LOAD BUFFER # = WRITE EOF *
+ = * LOCATOR * * BUFFER *
* 3 Eol..XxE * * *
* * * * *
EE 2 24 * * * *
FREEFEEERREREE TR RN EERER
- .
. .
. .
.
e .
X 2
® ¥ * X AR
* * * *
* WORC * YES * EXIT %
* COURT Feeeo * *
* ZERC * . * *
» * - = *
* * X E2 2223
* N
«NO *
. =1 =
- *
. EEER ssessescccsssssscscsccsanesseersesesrneene
- .
X 3 - X
* * * - FREXEERREXAEREANER
* ® . % FLAG END *
* ROOM * NO . ® OF BUFFER, *
= IN *eue .ae . * GNFLAG CN *
* BUFFER = . . * *
- - * *
* * - - EREXABERERREEEXER
* - . .
S YES . . EEE .
. . . * * .
. . . * 4 ®ae. .
- - * * . 3
- - X XE - .
. x 19 . 10 .
- * x x . XKW NN XEN -
. * * . * FLAG BUFFER * .
b3 # UPPER * YESe. % AS END OF % .
[Pt BUFFER eeee * FILE, Swl ON * .
- * * * * -
- * * * * -
. = L EEEXERERRFAEEERER .
= - .
. .
. . .
. .
. eecicncssssvecsssscsesocsacscssccscseXe .
. . . .
X 4 . x 11 .
EAZZZ 2SS E2 22222 . * O ® -
*STORE NUMBER # . * * .
OF CHARACTERS * . NO * UPPER ¥ YES X
* IN NAME * . . BUFFER .
* IN BUFFER % . . .
* * - - * * 2
E232Z2II22XT 22223 . - * * .
. . . * .
N . . .
. . . .
. . . X
. . .
. . . - .
GNTRAN o 7 x s . X 12 X
RE s 2 222222222223 * ® * - EREREREEEEERETEER IZE3Z 222222222223 3
* RE * * * « * SET CONTROL # * SET CONTROL *
% CHARACTER * * BUFFER * YES . * WORD FOR * * " WORD FOR *
* I[N BUFFER ¥ * FuLL %eceess * LOWER BUFFER * * UPPER BUFFER #
* * * * * * * *
* * * * * * * *
EREXFREEREEERERESE * * IZ2 222222222222 2233 EERRERAXFRRERERER
X * . .
. +«NO . .
. . .
. . .
. eXessssesescecsesscsssssnes eXessescssscsccssssasssncse
. . .
. x 6 . X 14
- * * * - R R
. * * . * WRITE *
. * ALL * . ® BUFFER *
. CHARACTERS # - * *
* ENTERED * . *
* * - *
* * - AREEERERERERE
- .
. .
. .
. .
. .
«OFF .
8 * 17 X 15
o PR
* * * EEER
*+ YES * sw 1 * * GNFLAG * ON = *
eeee * Xeee . ¥oeasX® 3 ®
* - »* * . - * * *
- * * - -] R
* * - = *
R1312] * -
= * «ON . «OFF
- 4 t 3 -
. .
EREE EEE - -
* » . -
9 +2 = . X 16
- ERRREEFEEREREREEER
xen . * INITIALIZE *
. *BUFFER LOCATOR *
cesees®AND WORD COUNT #
* *
* *
RERFEEERRERRER SRR

GNLOAD

PURPOSE

GNLOAD is the subroutine which creates the name
file for STRAP II and writes it on the disk. It uses
two buffers, each being written on the disk as it is
filled.

LINKAGE
On Entry

The calling sequence is:

1. SIC, Gnexit; B, GNLOAD.

2. $7 must contain the location of the name in the
value field, and the number of name characters in
the count field. The file is terminated when the
count field is found to be zero.

On Exit

GNLOAD places the name specified by the calling
sequence in its buffer with the following format:

Each name record
1st character 8-bit byte, number of A8 char-
acters in the name + one for the
check character.

2nd character 8-bit byte, check character for

the name entry, progresses from

0-9 and repeats.

8-bit bytes, name in A8 code.
Names less than eight characters
in length are assumed to be eight
characters long.

The end of the second buffer is

next n characters

end-of-buffer

character terminated by an 8-bit byte of

all ones.
end-of-file The file is terminated by an 8-bit
character byte of all zeros.

FLOW CHART DESCRIPTION

Boxes 1, 2

The count field of index register 7 is checked for zero.
If not zero, the name

If zero, end-of-file is initiated.
will be entered into the buffer.

88

Boxes 3, 4

A check is made to determine if there is sufficient
room remaining in the current buffer for the name.
If so, the number of characters in the name is
stored in the buffer.

Boxes 5-7

A check is made to determine if the buffer is full.
If not, each character of the name is stored in the
buffer in 8-bit bytes.

Boxes 8, 10

If the flag is on in index register 7 the current
name is the last, and the file is terminated by stor-
ing a character count of zero in the buffer, and
switch 1 is turned on.

Boxes 11-14
The completed buffer is written on the disk.
Box 15

If the Gnflag is on indicating that there had not
been room in the second buffer, the flag is turned
off and return is made to store the name in the
first buffer.

Box 16

Initialize buffer locator and counter to beginning
of buffer,

Boxes 17, 18

Switch 1, if on, indicates last buffer has been pro-
cessed, and a terminating arc is written as end-
of-file.

Boxes 19, 20

If processing in the second buffer, the end of
the buffer is flagged with an 8-bit byte of all one bits.

CHART 10

ARREREREEEERRE AR
* INTOUT *
L e e e et St
#SAVE UNIT OUT-—~ *
*SIDE OF MEMORY #
* FOR PASS 2 *
REEEEHEBTEEIERE R
-

-
.
-

X 1
AREXEAERERERE TR XX
#FILL IN THE Cw *
- AT THE *
* BEGINNING OF *
* THE EXPANDED *
% INST UNIT _ *
EREARAREZEERF KR ERE

2

PR

* *

* *
% CURRENT * NO

* BUFFER
% FILLED *
T =

* *
*
<YES

Xeoeossreassssesean

AEXEEEEERERRRRRRN
* FLAG CONTROL *
* WORD AS LAST #
oX* IN BUFFER *
* *

*

=

*
EREREARRAARELEER

EEEE .
® * -
=1 = .
* -
* X AR -
.

X 12

* % *
* *

NO * WRITING =
coae® BUFFER =
. A *
- * *

- * ®
*
*YES
.
.
.
.
x

-
-
-
-
-
-

13
TR RN REE
* AREA A
* INDICATOR ON
*

EE T Y]

-
EEEEREREFELERERAE
-
.
-
aXe

eee

-
IsS0PS X 14
REEERERUEEERE

* ®
* WRITE BUFFER *
* *
»

* =

EERERERRRREEE
-
. EEAE
- * *
e X% 2 ¥

*
EERE

STRAP 11

*4ee000s000se

6
AERETREEERERERERS
* SUBTRACT ONE #
*FROM INTERRUPT *
* COUNTER»SWAP ®

seavsssessX* COUNTER ZERO
* *

INTOUT

XX
* *
x 2 2.,
* *
E2 22)

INTEG 3
*

%o o s

*
* *

* INTERRUPT * YES

* *

-
.
.
-
-
-
.
ITRDY X 5
* % ¥
* *
OFF * A * CN
. ® INDICATOR *esooe
*
* *
® r3
*

EXEERRREEREXRREER

#* ADJUST THE
* FULL BUFFER *
*

*
EREERFREREEE XX ERN

YES

see v Xteot e

NO

446ves0s0scsscssnscscsssccssscsnssnsscscacace®

eveces

MKO o Xe 008 0 eXo 00 e0 e eI BB AR OO LA

IROOM 4
* * 9N E R
* * * *
* ROOM * YES * EXIT
A IN BUFFER € ®ecessescsseeX®
* * *
* » *
* * EE 22 23
*
«NO

.
.
escceveXe
.
X 7
* % ®
* *

* INTERRUPT *
* COUNTER ZERO *

* *

* *
® *

NO

EXO S o 0w
®

* *
* *
* A *
INDICATOR *
ON *
E 3 *
*

=

*
S YES{

X 9
AERAERRREREREERERRE
MOVE UNIT TO
- BUFFER A
* CALCULATE
* FIRST WwWORD
" AVAILABLE

=
*
=
*
*
ERBERAABREEERLRESR

10
AEEEEREFEXREEEERE
*# SET UP NEW *
* CONTROL WORD #
L] *
- *
= *
ABEFEEREREREERRER

EREE

—
LE R

TURN OFF)

*
*

)

INTOUT

PURPOSE

INTOUT buffers the expanded units and writes them
on the disk for processing during Pass 2.

LINKAGE

1. The calling sequence is:SIC, Intouz; B, INTOUT.

2. The index word, Jbuffw, must point to the next
available full word location in the unit buffer.

3. When sufficient room is not available for the
unit in the current buffer, the calling sequence is:
SIC, Intouz; B, INTOUT.

DETAILS

Each expanded unit is preceded by a control index
word having the format shown in Figure 15.

The routine uses three buffers (A, B, and C), each
being written on the disk as it is filled. The location
in Ibuffw is the location of the next word available to
be used by INTOUT or the user routine.

FLOW CHART DESCRIPTION
Box 1

The number of words in the unit is obtained by sub-
tracting the address of the last control-word Icwa
from the address of the next word available Ibuffw,
and is placed in the count field of the control word.
The address of the new control word will be the
address in Ibuffw, and this is stored in the refill
field. Ibuffw is stepped by one to indicate next word
available.

On, If Last
Control Word

Address of Next Word
(i.e., beginning of Format)

On, If Last

Control Word In File

Box 2

A check is made to determine if Ibuffw has left the
current buffer by comparing it with the address of
the last word of the current buffer plus one.

Boxes 3, 4

Each time an EOP interrupt occurs due to the
completion of the write operation, one is added to
the interrupt counter Intent. This count is checked
here to see if it is equal to zero. If it is equal to
zero, a check is made to see if at least ten unused
words remain in buffer C. If so, return is made.

Box 5

The area A indicator is turned on at the beginning
of writing buffer A, and turned off when writing
buffer C. It's being off indicates that the last buffer
written was C, and that the last word available
Tbulwa must be updated.

Box 6

One is subtracted from the interrupt counter, and
the last word available table is rotated once.

Box 7

If the interrupt counter is zero, the program waits
until an EOP interrupt occurs.

Boxes 8-10

If the area A indicator is on at this point, it is
turned off, the incomplete unit is moved to buffer

Number of Words in

Current Unit Address of Next Control Word

I I}Il
IIIIIIHIIIIIllllllolOIOIOIOIOIO|
0 17 18

Figure 15, Format of the First Word in a Unit

90

TTTTTTTTITTTTTTT

O TTTTTITTTITTITITT
sz:izl28 45'46 63

A, the refill field of the last control word is updated
to reflect this, and a new control word is set up in
buffer A.

Box 11

Bit 25 of the last control word is flagged to indicate
last control word in buffer,

Boxes 12-14
If buffer A has just been completed, the area A in-

dicator is turned on. The completed buffer is
written on the disk.

INTOUT 91

CHART BL

92

7
EERERRER SRR
»* LLsSuB *
D e o
* SUBSTITUTE *
L3 A *

- CHARACTER *
ARRRERERRBERAN AR

Xeesae

HEARBRRRERN
#UPDATE THE *
ADDRESS OF THE
* CHARACTER *
*TO BE TESTED *
* *

RRECRBERBERR
.

Xeeee

RRERARARRE
DECREMENT THE
#COUNT OF THE #*
* NO« OF *
CHARACTERS YET
TO BE EXAMINED
EEERREXERRN

STRAP II

.
.

x
EREEARANERY
®*TURN ON THE®
CORESPCNDING#
®* CHARe« CCNTROL *
INDICATOR FOR
THE CHARACTER
ERRRRBARERE

Xe oo

RERREBRERAERRRREN
* SUBSTITUTE *
* THE OPTION .
* CHARACTER BY #
* GOING TO *
» *
- *

LLSLB
HERERRTAEERNNN

.
X 6

AA 222222 RS2 222 d

* LLLSLB *

L e e e et)
* SUBSTITUTE *
* A CHARACTER *
* *

ERFARERANAE RS RRE
.

Xeoeo

10
rarEREAREEE
TURN ON THE IN-
*DICATOR WHICH®
®TELLS THE USER *
PROGRAM CF THE
SUBSTITLTION
ERERE AR RN

POSSIELE
* HELF *
. *

[TTT Y

MBSPEC

T™H
secsacesrassereas® ORIGINAL

FEERERRERERD R RE R

* POSSIBLE SUB~ ¥
*STITUTION OF AN¥
* OPTION CHAR, *
EERRERARERRERNREE

Xs oo

1
EXRREEETRE RS

* PERFORM ¥
* HOUSEKEEPING *
* *

®
ERREERERRNE

.
(2223 .
* =,
* 1 #.Xe
* *
“xxx
LLLTST

Xe o

= x e 2
* 15 *
* THIS A *
POSSIBLE ERROR
* CHARACTER *
* *
* *

YES

LLLYES
»

*

3

Vaxe s ou s &

*

»

NG * *

4]
»
z

* CHARACTER *
* *
)
*

11

EREEEAREERR
*TURN ON THE®
#CORRESPUNDING*

*eesseseaX® CHAR. CONTROL *

®#INDICATOR FOR¥
THE CHARACTER
EREEEARERER
.

X 12
EREREREEEER
*UPDATE THE *
ADDRESS OF THE
* CHARACTER *
» CONTROL »
®INDICATORS *
ERRARAARE NS
.

Xews o

13
EREERAERAN AT N RN
* RESTORE *
THE ORIGINAL L
* CHARACTER BY #
" GOING TO *
* LLSUDB *
ARREREREBEREERE RN

x 14
ARERSERERRRTEERRR
- LLLSLB *
e e e O B 3
% SUBSTITUTE 4
A CHARACTER *
* »
AERRERRER RSN R NN

.

.
X
o ox 15
*WAS THE®#
Al *

AERRBERRRER

e s e s s ees e e se st ete s

®#UPDATE THE *®
OF THE

ACDRESS
* CHARACTER
* CONT

ROL

*INDICATCRS *

ERBARRERRER

Xeoasa

EREEERERAES

*UPDATE THE *

*TO BE TESTED *
* *

HEERRERBRRN

-

Xoas e

EREETRRRR AR

6

*
*

18

DECREMENT *

ERRERERRRRE

EXe s evea st e s s s varseesn

* * 13
. ® WAS %
X * THE LAST ¥
ssvesncssncssssees *CHARACTER JUSTH*
. * EXAMINED #
. *
. * *
. #NO
. . EER
. PO »
x e X®] ®
. =
. e R
x

EERER

*EXIT *

#*#NG HELP#®
® ®

»
rEEER

LINKAGE
On Entry
1. The calling sequence is:
SIC, $15; B, MBSPEC
, address of the test word (I)

B, a fix-up subroutine
Normal Return

' no further help
possible return
' possible help re-
turn
2. A string of 8 MBSPEC indicators, Llbts,
must be preset to zero by the user program before
MBSPEC works on an op or system symbol.
3. The op or system symbol (i.e., any test
word) must be eight A8 characters in length.

On Exit

1. Whenever MBSPEC makes a substitution, it
turns on a special indicator, Llbts.8, for the user
program as well as exiting through the possible
help return. (MBSPEC turns this indicator off in
its initial housekeeping.)

2. When MBSPEC exits through the no further
help possible return, the op or system symbol is in
its original illegal form.

FLOW CHART DESCRIPTION
Box 1

Initialization includes turning of a substitution-has~
been-made indicator, setting the indices to locate
the starting location of the test word and of the
eight control indicators, and resetting the counter.

Box 2

During Pass 1 after the main flow has discovered
that the second or any subsequent character of an

op or of.a system symbol is illegal, Pass 1 goes_to
the MBSPEC to see if a‘@ was punched for an ,
a@foran , a@fora , a for an , Or
vice versa on the original input. More characters
can be included in the possible error character set
by adjusting two tables of MBSPEC.

MBSPEC

Boxes 3, 4, 11

MBSPEC maintains a string of eight consecutive
indicators, each one represents the status of its
corresponding character in the test word.
MBSPEC uses and sets these indicators to deter-
mine whether each character in an op or system
symbol is the original character or the substitute
character: 0 if the character is the original
character; 1 if the character is the newly substituted
option character. Pass | zeroes these indicators
before the first entry into MBSPEC. But during
the ping-ponging back and forth while MBSPEC is
supplying Pass 1 with a new substitute test word,
these eight control indicators remain as last set
by MBSPEC.

Box 6

Let each character in the test word be a possible
error character. If we represent an original
character in the test word by an X and a substitute
character by an S, the following list represents the
order of the possible test word given to the using
program by MBSPEC:

SXXXXXXX, XSXXXXXX, SSXXXXXX,

XXSXXXXX, etc.

Boxes 7-9

The updating and incrementing are only significant
if the option character is being replaced by the
original character.

Box 10

Whenever main flow makes a successful search

on the op table or system symbol table, main flow
tests the indicator, Llbts.8. If it is on, main flow
will give an error message informing the pro-
grammer a change has been made to his original
input.

Boxes 15, 19

Once MBSPEC returns to the using program by its
no help exit, the using program ceases coming to
MBSPEC for help on the particular illegal op or
system symbol.

MBSPEC 93

CHART CA

94

EARBRREARRRRER R

* MIBA *
)
- MAIN S b

hd INDICATOR *
#*BRANCH ANALYSIS#
FERRERERERERRERER

Xewsoon

1
EREREREARRERRARRR
*#INITIALIZATION *
* -

* *
* *

STRAP 11

* * waax
P e Y] *
. 1 *
. *
. (222
. .
. .
X X 21
LI 2 FREREBEEEIERREARE
* IS * * TURN ON *
* 1ST NO * ERROR EXIT *
- CHARACTER %eaesssseX® INDICATOR,
* 8 * MIERR
* - * »
* ERAEREREREEERN RN

3
RERERBRAERARAERTR
SUBTRACT 8 BITS
FROM LENGTH OF #
- OPERATION -
» 3

» *
ERBERREEERE LR REN
.

HXe s oo

Y
‘LENGTH *

» " opERATION
* EXCEED 32 *
+ BITS *
- *
-
«YES

.
.
Xe
MIB8D X 11
ERARRRRERAERRE RN
- TRASMIT *
* ORIGINAL OP #
* TO -
* TEMPORARY *
- -
- *

BUFFER
EERERERRARRE LR

.
.
.
.
.
.
X 128
* » . RERFERERRARCRRARR
* IS - * REPLACE LAST %
* LAST #* CHARACTER IN »
» CHARACTER seeeX® TEMPORARY
* z * BUFFER BY
* * * A8 BLANK *
» » EEEEERANSAEERERRR
»
«NO
.
MIBE X p-1:)
* 5o 15A WHRERABN R BTN RAR
- IS - * PUT ORIGINAL *
* 2ND * YES * OPERATION *
- CHARACTER ®esaseaneX® iN »
- z » TEMPORARY *
* » * BUFFER *
- * ARBERRNRRAEIRE RN
.
NO

Xesaevesneosanasossens n

MI8F
P 17
* 1S5 £
* LAST
* CHARACTER
* z

FoasvanveX®

aXe aon

* * 15C

* *
#ORIGINAL OP*
*CHARACTERS *

» *

* *
»*
«YES

X

18
ERRARBAARERSRERRR
* REPLACE LAST *
* CHARACTER IN ®

TEMPOFARY
* BUFFER BY
* A8 BLANK ‘

MIBA

osenssseX

¥evnsaes
*

Xusoeosssassessscssecssscsoserssncsnscccsncssonsenosnssa

l.-..----XI ORIGINAL OP -
]

essse

9
RERFEERRERAFRERRESR
* FINAL *
* HOUSEKEEPING #
*

*

* *
REUAREXEREERERRR S

S
l"&**ﬂ'li'*‘*l"
* SEARCH
R e . n(FoUNg)

- CHARACTER *
REEAARREREREERRE

(NOT FOUND).

13
'll"li'l'il'llli
* SEARCH
I—Q—Q—i—l—l—l—ioR(FouND)
X* ORIGINAL OP — =,
* 1ST AND LAST *
* CHARACTERS *
XFRXEERERARARERRE T
.
.

(NOT FOUND)<

. ..

16
*i;ll{n&l‘inallii
" SEARCH
L R e I S Bt i(FQUND)
X* QORIGINAL OP -
® 1ST AND 2ND
* CHARACTERS * .

hELLE)
*

T T e e] X
- LT
- * *
* 3 =

.
{NOT FOUND).

19
l‘.'llli‘l'iill!'
* SEARCH
P T D Jar e Sy Q(FOUND)

15Ty 2ND AND #
L_ASY CHARACTERS#
LTI T Y T e e)

.
(NOT FOUND).

. .o

*oeomeneeX¥
*

escsce

*eooaeaneX¥
*

* * 10
* *

MIERR ON

® USUAL ®
»* *

ERREE

¥eseescesssssesscscssncsncnsnsncsansoX® ORIGINAL OP =~ *.cuesessscsnsncecnase

Nessossans

6
LR Y R F Y Y e

YES b
HeooeseeeX® SUBSTITUTE A *

* TURN ON *
* BIT 30 IN *
% THE BINARY %au.e
* QUTPUT .
* SKELETON . .
ARRERTXRRARERR RN X
EEER
* -
* 3
*
LSRR]
.
.
.
.
14
ERRRERRRT AR R R RN
* TURN ON *
* BIT 29 IN *
* THE BINARY %....
* OUTPUT x o,
% SKELETON -,
EEAXEAREAATFRERRTE RN X
*EEw
* *
* 3 %
*
RERE
20
REREFRRARERRRR SRR
" TURN oN =
- 1T 28 IN *
THE BINARY *as4e
OUTPUT * .
% SKELETON .
AUFFARABRE RN X
R
-
“« 3 =
N
REE

* ERROR #
* *
ERREE
X
-
« {NG HELP)
. 22
EEELET S22 223 21
* MBSPEC *
* CHARARACTER *
* *

HEAREERE RN R TN

.lPOSS!BLE
HELP)

Xe oo

AEEER
* »

* EXIT *

L

CORREC-
*TION #
xERE

21T

L *

® 3 ...

* .

R .
NIBC X 7
FAREARAREERER A TN
PUT OP CODL AND®
* INDICATOR NOo. *

* INTO THL *
* BINARY QUTPUT =
* SKELETON *

EARRARERRER R NN

Xes oo

8
HAERERRERRERT TN
* ESTABLISH *
#LOCATION OF QP #
#*INDEX WORD_FQR *
*THIS CPERATICN ¥
» *

*

EEEREREN TR
.

.
X
"% EE

* 2
*

PR

XY

LINKAGE

On Entry

1. MAIN branches directly to MIBA.

2. 'The complete operation mnemonic is in the
operation collection buffer, Bop.

On Exit

1. The proper indicator number, indicator operation

code, and indicator bits are set up in the binary out-
put skeleton contained in the expanded instruction unit.

2. The location of this op's index word is estab-
lished.

3. _MIBA returns to one of three locations in MAIN;
The three subsequent actions that can occur in MAIN
after MIBA has analyzed the op are:

a. To continue processing the branch-on-indic-
ator operation.

b. To relook-up in the primary operation table
the formerljr illegally specified operation
mnemonic which MIBA has now adjusted with
the MBSPEC subroutine.

c. To treat an illegal operation which cannot be
successfully adjusted.

FLOW CHART DESCRIPTION

Boxes 1, 9

MIBA uses an index register which has a standard use
in main flow. This index register mustbe savedwhile
MIBA is in process and restored before MIBA enters
main flow.

Boxes 2, 9, 10, 21-23

If the op does not start with the character, B, or is
not a legally specified BI-type op, the operation will

MIBA

receive the STRAP error op treatment here in MIBA.
The adjustment of the op mnemonic may make it
possible for MAIN to find the op in another search of
the primary op table.

Boxes 3-5; 3,4, 11-13; 3,4, 11,12,15,16; 3,4,11,12,15,17-19

For each of the indicators that can appear in the BI-
type instruction, MIBA has in its table one entry with
the mnemonic for the indicator and its associated in-
dicator number (See Appendix A.)

The variations of a BI-type of instruction are:
BI, BIZ, BZI, and BZIZ. The maximum mnemonic
for an indicator contains four characters.

By successive testing of the last and second
characters of the original operation mnemonic for a
Z and by subsequent selected stripping of the basic
operation mnemonic, MIBA tests to see if any one of
the resulting indicator mnemonics is in the table of
the indicator mnemonics.

Boxes 6, 14, 20, 7

The binary output skeleton for the instruction is
contained in the fixed format portion of the op which
is in the expanded instruction unit. MIBA inserts in
the binary output skeleton the indicator number, the
operation code, and the setting for bits 29 and 30.
(The fixed portion of each new unit is zeroed during
the processing initialization for each new instruction.)

Box 8

MIBA also supplies main flow with the information
that is usually obtained from the primary operation
table. This location of the op index is put into the
unit and into the value field of $X5 for referencing
purposes.

MIBA 95

CHART CB

96

STRAP [1

sees

R R R EE R I

MIOD10
* » 16
& DOES #
#INSTRUCTION® NO
® HAVE A NAME *.. .
* (FNAME=1) # .
- » .
* - .
* .
«YES .
. .
- .
. .
. -
. X 17
- AEFRRRRSFRAEERRNAR
. * ERRCR -
. * MESSAGE *
- * *
- - -
- * *
3 222222222222 222)
M .
. .
. .
. .
. .
. .
. x 18
- FRREREEFRARRRR AR
. * SET LP .
. » PHONE Y *
. *® SYMBOL TABLE *
. * ENTRY *
* *
ERERREAABAERERERR
. .
. .
. .
- .
eXsossveccescsonesscvannene
.
X
HRRARRRBRRN
* TURN ON %
* ZIFALL *
®_ INDICATOR
-
RERHRAEHERREE

M10D

%

FERERRARRREREERRR
MIOD *

L e e e L e T

*MAIN®'S MCP OPS ¥
* PROCESSING *
*

*
FEEEERRAEXIRREREE

TR R R R R I e I A A A A S A A A A R R U AP SR

MK 6 2 8 6 e 8 8 8 6668 e 880400t IEREs IO NE

ERERN
» *

* *
ERERW

. s X¥

. 5
* * 4 ERREERERERRERREREE
* DOES * * ERROR
INSTRUCTION NO * MESSAGE

HAVE A NAME

FosseoveeX¥
* (FNAME=1) * *
* *

*
]
*
*

* *
EERARRAREERAFRARE

- »

X -]
AEERREEEEEEEEE RN

* SPACE OVER *
%= 1ST FIELD. *
*THE TYPE FIELD *
* *
x »
EEARARERREERRRXER
.
.
.
x 78
o *® 7A EXERERERERE RN RN
* * * ERROR *
* * MESSAGE *
* COMMA X *
* *
* * * *
* * RS2 RIS SE RS)
.
«YES .
. .
. .
. .
o .
X .
REREREEELRENRER NN »
* GETFLD * .
T 2 B B 2 S e et .
* ENCODE * .
¥TABLE OF EXITS * .
* ADDRESS * .
LEZ 222222222222 2 -
. .
. .
. .
. .
. .
x -
AERRERERERERRREER -
. INCREMENT * .
. FIELD * .
% COUNTERS * .
* * -
* » .
FERERRERF TN W .
. .
. .
eXesesocesonssssenssnasnans

X 10
ANEEREREREREREE RN

* INCREMENT *
* REFERENCE #
*#NUMBER COUNTER *
- *
* *
ARBRERFRRRERRR AR

.

.

.

X 1

HRAEREERERR
* TURN ON™ #
- 21FP2 .
% INDICATOR *
- -

* -
EERREBAARRS
.

1
» L] 12 T T T I T I P
* DOES * * SET

3
H

up *

*INSTRUCTION® YE ® SYMBOL TABLE *
»

»

M

*

Muxse oane

% HAVE A NAME * sseX¥
* (FNAME=)1) *
»* »

*
ERAERERRAFRRERAT
ssesssserssrveae

EREREEREREE
* TURN OFF *
*

ZIFALL
* INDICATOR *
» *

*
ARRRRRRERER

Xe eo s e

15
AERARERERTEERRRS
* SAVE

b REFERENCE

L}
EEEARARARRRERE RS

»
*
-
<% NUMBER IN THE *
* UNTT »
.
*

LINKAGE

The MCP ops, I0D and REEL, have a special bit on
in their op index word, signifying the op is an MCP
op. Just before the digit select table in Pass 1 there
is a test of this bit. If it is on, the address fields of
the current op will then be processed by MIOD and
not by the mainroutine. If the current op index has
this bit off, or if 2 comment, then MAIN turns on
the Fiod indicator to show that there should not be
any more MCP-type instructions and continues as
usual. Thus Fiod should not be on while MIOD is
processing a REEL or an IOD instruction.

FLOW CHART DESCRIPTION

Boxes 4-15

The spacing over the first field is accomplished by
saving the unit buffer control address and then after
asking GETFLD to encode the type field, resetting
the buffer area to the original address. The encoding
is thus effectively erased, but $3 will contain the
comma character before the second field. This set-
ting of $3 will be the proper contents with which to
enter GETFLD to do the saved encoding of the second
field. For IOD processing, MIOD encodes the second
field (exit address) of the IOD instruction.

Then MIOD increments the Zinfld counter in the
unit by only one because Zinfld tells Pass 2 how many
encoded fields there are in the unit. However, MIOD
increments the error message field counter once
after the first field has been skipped over and once

MIOD

after GETFLD has encoded the second field. Thus
this field counter will locate the proper part of the
10D if an error is detected in GETFLD or in MIOD,
MIOD also sets up the symbol table entry in the
Msyte area as MAIN would have done. The reference
number counter, initially zero, is incremented and
saved in the unused (for I0OD) Zilpms field of the
unit for later Pass 2 use. The Zifp2 indicator in the
unit is turned off so the NMCP subroutine and not
DECODE will get control of the processing of the
unit in Pass 2. To prevent DECQODE from being
asked to work on the unit during the main flow of
Pass 2, MIOD turns on the Zifall indicator on each
IOD or on each REEL unit. In this way, NMCP
which has control of the processing of MCP units in
Pass 2, will get these expressions evaluated by
VALUE directly from NMCP,

Boxes 16-19

For a REEL instruction, MIOD does not have much
to do. The Zifall indicator is turned on to tell
Pass 2 that there are no values to get.

If a name had been specified with a REEL instruc-
tion of course it must be set up in the symbol table
because ANEXT in Pass 2 must have a name to get
from the symbol table for each unit marked as
having a name. The symbol table entry will be set
up as a 'phoney’ or 'special’ entry and UITER will
ignore the entry during Pass 2.

Then MIOD returns to the location, Medaf, to
collect the remaining characters to finish processing
the unit in Pass 1.

MIOD 97

CHART CJ STRAP 1

FHERERRRARER RN
= MQDD -
B e e e R e T
* MAIN'S bl
= DD *
PROCESSING *
EEREAFAERFSRRRARR
.

Xees e

1
ERAERERBEREERA AR
®, SET DD UNIT *

MQDD—=~f

AGE 1 OF 2

*INDICATORS AND¥
* INITIALIZE #
* SYITCHES »
* *
REREFAEREERRERREN
-
-
.
.
.
.
X - 17
* * L 10 AERERRAEEEBERRNEE
* DD * * * * SET DDS TO *
* GIVE * NO #*ALPHABETIC * YES * BU» 8,8 *
* FOR THIS UNIT #*aeceessseX® ENTRY MODE LERT R TR *eaene
* - * »* .
* - * * * * -
- * » * FREEBEREERAEERERRE X
- - RN
«YES «NO * *
. . * 14 *
. - - *
- - "NRE
- -
MQDDAA X 3 X 11
RAFRERRERRERRE RS EERRERRLERERERRRER
* STORE IN UNIT #* * SET DDS TO *
* THE LOCATION # »* N,64,4 hd
seX¥% TO PLACE DD ® * ANO EXECUTE #
. ® CODED » * ERRQOR MESSAGE +*
e« * EXPRESSION - L -
- RRFEFTREARERRRBER REERRAERERERRRERE
- - -
* . .
“Cy * . N
®ollw . -
AN -
. .
X X 12 18
. ¥ ¥ LY FEXRERERRAEREER RS ERRFEXRERRRERREERE
#ENOUGH % * IOFULL * *ADJUST ADDRESS *
- ROOM *= NO L I S B Y * TO PLACE -
IN BUFFER FOR #saccecaeX?® MOVE UNIT LEELEER RS &4 DD CODED *
- UNIT * * . * EXPRESSION »
- - - - -
* » ARFRBERERAREERRE S REZRERREERBRRRERRE
* -
«YES .
. .
X0 0000rs0000s09000000000090000000000asIseTrRIPIOEITEILS
.
X
* & * 5 ERABRHERRR DR SRR
* »* » MQDAL *
- - YES Lt Dl Bl DS B Bt B ok
#* ALPHABETIC DD + eseeX® ALPHABETIC DD +
* » * PROCESSING *
* * - *
- * BEAAFERRRARERRERR
«NO "R
- - *
- * 15 #Xea
- * * -
. ER YRS «NO
x 6 la - 22
REFRFRTRRERERRARD REERRERRBARERE RS * * 19 AFEFRRERRRREER SR
- GETCHA * * MGDEMB * *WAS IT » - CREATE »
L e e el L el L S) » A GP * YES » ZERO DATA *
* GET NEXT * eevesX® PROCESE AS Boevenewe Xt INSTYEAD OF LECTTT RS &) AND STORE *
bl CHARACTER * - ® RADIX CR GP # * RADIX - * IN DD UNIT *
- - - - - * - -
ERREERRERRRERR TN . EEEREERRR NSRRI » * AEERRREARNCREARE R
. . - .
- .
. .
- . .
- - EEESR -
. . #CJ .
X . 15 * 13% N QDH X
* % % . EREERRERRERRRRARR ARERERARARREER AR
* IS IT » . * STORE FN = GETFLD -
* A LEFT #* YES. * IN DD LNIT » R RN bR RN
#* PARENTHESIS #*ecee oseX¥® * GET CODED
* » . - * EXPRESSION
* * - = - » F oPe » RS
* . ERRRERRBRARBRERRS FRHERRAEARALATRARES *CK ®
L - - *® 21%
EXT T «NO - . EZY TS x »
- * - . - *
% 15 #.X. . caX® 14 #
* ., - * *
Yy . . EREN
X . 16 20 *
" = = 8 . EE SIS S22 R 2222 2] L2222 2222223322223 * * 24
* L - ® MQDNLM * * STORE * * *
. oot Sttt ettt d *EVALUATED DATA # *#GePe/RADIX * YES
. * EVALUATE THE #eceassesX® IN DD UNIT ¥esesseeeX® BIT ON *easesassn
* FIELD * * * *(TURN OFF) *
» 3 * * * * * R
* » REERFRERRARREE SRR ARAFRERERRRERRRR S * * #CK ®
- » ® 224
[22 23 «NO - RS «NO * *
* * . . * . »
* 14 #.X. . 13 X
» * . . 4 * .
EY Ty - . TTY) .
x . 21 ~NQDC X
LA B 9 - FREREFRRBERERTRRRR L I 25
*[S NEXT® . * STORE SPECIAL * * 15 =
* CHARACTER * YES . * N * YES ® THERE A *
#A DECIMAL POINT®esceonacennsasacse ess® IN DD UNIT *Xevesseoe® SPECIAL SIGN *ecessees
#HEX OR NUM * - ® * * ° BYTE * X
* CHAR * - * HEERR
* » X RRERERRFRARERERRRE L3R I 2CK
*NO “nEE X * 238
- AR - * A * *
PR [3 ® 13 * .
eeX® 13 ¥ * * .
* * EERL *
EE 2 22 »* ®
98 *Cy *
® j2%

CHART CK STRAP II1 MQDD—-—PAGE 2 OF 2

xR
*CK *
* 23%
* ®
-
.
.
.
MQDE X 32
= % 26 EEAERERREAREERIRR
* IS % * EVALUATE *
*® THERE A * YES * EXPONENT AND
» SPECIAL *eea oX* STORE IN *
% EXPONENT * * DD UNIT - X
» 1 * * AEREE
* * RERRERRERARRRRERR *Cy =
» * 12%
«NO EERE * %
. - * =
. ECK #eae
- * 22 -
. RN .
MQDOK X X 33 *
* » 27 EEXEAEREXNEEEXRERE = = 36
* is * * MQDENMA * * WAS ¥
* NEXT * YES K Hm e ek — e e K B * THE * YES
eeX¥* CHARACTER A ¥sccesseeX® PROCESS GePe ¥ssesseeeX¥® FIELD A GePe *ouseoesese
. * DECIMAL = X * 0R RACIX * * * X
. * POINT * . * * * * EEERE
. * * . FEEREERREAXXXELER * * *CJy *
* * . * * 13
* ® «NO «NO x %
#CK * . . . *®
* 218 . . .
e - . -
- . .
X . X 37
L 28 - H NN AR
* IS = . * *
- 1T * YES . * ERROR -
A LEFT * MESSAGE *
*PARENTHESIS * * - *
* * * *
* * EREERERREREREENR R
*NO -

-

sessvesee esescsseXorcccssssccnn

.
MQDL. X
* *

* IS = .
* NEXT * YES .
% CHARACTER A ®evssasss .
% COMMA * X .
* AR .
= * *#CJy = -
= = 11% .
«NO * *
*
. .
. .
. .
b3 -
R 30 EEEAE 34 .
* IS * *EXIT * .
IT * YES *BRANCH * .
%* A SEMICOLON *.sse eseesX®* TO * .
* * MEDAF *
- = * = .
* * EREAE .
* .
«NO .
. .
. .
. .
MGQON X 31 35 .
REREEERBRARERERER FEERANIL L XN TN ER
- * * GETCFA * .
- ERROR * B .
* MESSAGE *s00eseasX¥ GET NEXT *eeae
* * * CHARACTER *
* * * *
P Y i) HEXRRERRERRRERERN

MQDD

LINKAGE

MQDD does not have a calling sequence linkage.
After main Pass | had determined that it is process-
ing a DD unit and has completed the data description,
it branches directly to MQDD, which used MQDNUM
and DNUM as subroutines. MQDD's final exit bran-
ches back to main Pass 1 at Medaf where the final
details of processing the unit are accomplished.

DETAILS

MQDD sets up the variable portion of the unit for
a numeric DD in the format specified in Appendix A.

FLOW CHART DESCRIPTION

Boxes 2, 10, 17, 11

If no dds is given by the programmer, the dds will
be set to BU for alphabetic DD's and N for others.

Box 3

The location in the control word Ibuffw is stored in
the DD unit at relative location Ziotpt. 32. This
will be the location at which the coded expression
of the DD is placed.

Boxes 4, 12, 18

—_— 2y "=

If there is not enough room in the intermediate buffer

to contain the entire unit, IOFULL is used to move
the previously set up portion of the DD unit to the

beginning of the buffer, and the control word address-

es are adjusted accordingly.

Box 5

If the unit is an alphabetic DD, control is immediately

transferred to MQDALF,

100

Boxes 6, 7, 14, 19, 22

If there was a left parenthesis, it is followed by
either a radix or GP. This number is evaluated by
Mgdemb, using CPLTNM, and stored accordingly
in the unit. If it was a GP, MQDD assumes that
there was no data, and stores a zero coded ex-
pression in the DD unit.

Box 8

If there was a Fn-entry mode, the bit Bemv was
turned on by main Pass 1.

Boxes 9, 16, 20

The DD numeric data is evaluated by MQDNUM and
stored in the DD unit.

Boxes 13, 14

If there is a special sign byte, evaluate and store in
the DD entry.

Boxes 26, 32

Special exponents are evaluated by MQDNUM and
stored in the unit.

Boxes 27, 33, 36, 28, 29

The remaining characters are analyzed. Additional
GP's, exponents, or sign bytes if any, return to
the proper section of MQDD; another radix at this
point would be an error, and is error flagged.

Boxes 30, 34

The final exit from MQDD returns to Medaf in main
Pass 1.

7
EERERERERKR AR EA R

* =
AEEREFEAEAXEREEER

IREEERX)

- 9
- ERERRDEERREE SRR
- * STORE *
«1A) * CHARACTER (A)
scscssssesscsssca X IN UNIT

- *

- * *
. R REEEAEEEER RN

STORE
CHARACTER (IQS)
X% IN UNIT *o

*

EEN

= * *
FosooX® 3 ¥
* - *

sEXE

CHART CC STRAP II MQDALF
EERER
*
* 3 *
*
EXEE
-
.
X 10
ERRERERRRRERNREER ERZ I SIS 22222
* MQDALF * * INCREMENT *
e s e S e = 2) * CCOUNTER *
* MAIN'S b % OF CHARACTERS *
* ALPHABETIC DD * * *
* PROCESSING * * ®
REFESERR TR ARTRAES TR NN RN

. .

. .

. .

- .

. .

X 1A X 11

REEEEREEERE ER R 222222222

TURN ON * * UPDATE *

* BL ANK * * LOCATION OF %
* INDICATOR * * AVAILABLE *
= * * STORAGE AREA %
* * * *
ERERREEEEEE EEREREREREREREREE

. .

. .

. .

. .

. .

. .

X 1B 13 X
HREEREREREERERNER EE 22222222222 222 * * * 12
* GETCHA * * IOFULL * UNIT *

B e e el Bl e o e R * BUFFER s
#GET A CHARACTER#* * HAVE INTOUT AREA FULL *
* * * ADJUST UNIT * *

* * » BUFFER AREA % * L
EREEARERRERREERRE EERREREEREAEREERN * *

. . *

. - *NQ

. . .

. . .

.

X X

x * * 2 EEERFEEXEELRR R EXE

* * * GETCHA *
#TERMINATING®* YES B o et atd

* CHARACTER ¥oo0es *GET A CHARACTER#*
* * - * *

» * - * *

* * X EEREEEREREEEERRER

* * XN E -

«NO * .

. ® 1 # .

. * -

- XEW -

. .

X X

* * % 3 * * ® 15
*END OF ¥ * *
* CARD * YES YES *TERMINATING*
BLOCK *eose - CHARACTER *
#(FBLEND=1) * - . * *
* * - . * -
- * X * *

* AEEE % *

«NO * * +NO

. * 1 * x 1 * -

* * * .
EEER EEE -

. .

X 4 X
AEREEREXRRXERERER * * 16
* ET uP * *END OF *

* REQUIRED * NO * CARD *

: BYTE SIZE : 209800000200 0002000000 0P 00s0srEEerErresssatenterrosssssetocsccsectssssssacancasccanan® BLOCK *
- * *

* * * *

FEREERBRERERAEREE * *

. -

. - +YES

. . .

. . .

sXesosossssnces .

.

X S X
EEEEXRBEEEREEERRE EEREERER T RE RN RTE
* DETERMINE * * MAKE THE *
* TYPE OF * * NECESSARY ~ #*
% ENTRY MODE * eeX®* CHANGES IN *
b *® » * FIXED PORTION #*
* * . *# OF THE UNIT *
EREEEEEERTERREREL - EEEERRRREREERERER

- ERE -

. = * -

. 1 = .

. * * .

R -

. .

- 6 X

- EE SRR EE S22 223 EEEEN

- * STORE * 3223

«(CC) *CHARACTER (CC) * * *

sesevscenscnnssseX® IN UNIT EosoeX® 3 * EXIT *

- * * * * *

- * * RRER * *

. HEREN RN NERERERE X EEE

101

MQDALF

LINKAGE
On Entry

1. Main flow branches to MQDALF after MAIN
gets from GETCHA the comma immediately pre-
ceeding the D field. The comma is still in the value
field of $3 when MAIN goes to MQDALF.

2. The value field of the index word at Bem + 1.0
contains the terminating character of the alphabetic
DD.

3. The indicators, Bemt, Bemu, and Bemv are
set to the appropriate alphabetic entry mode.

4. The value field of the index word, Ibuffw,
contains the lower bound of the area where the
material is to be put in the expanded instruction unit.

5. The value field of the index word, Ibuflw,
contains the address of the upper bound of the avail-
able space in the unit.

On Exit

1. The necessary statement is in the DD unit.
(Ibuffw will have been updated accordingly. JIbuflw
may or may not have been updated.)

2. The count field at relative location Zinfld in the
expanded instruction unit of the DD contains the
number of characters in the D field.

3. If the byte size is symbolic, bits 0-23 of the
Ziotpt field in the unit contains the number of char-
acters also.

Bit 24 of Ziotpt = 0 in this case.

However, if the byte size of the DD is absolute,
bits 0-23 of Ziotpt contains the number of bits in
the D field.

Bit 24 of Ziotpt = 1 under this condition.

4. Bit Ziotpt. 26 for this unit will be 0 if the entry
mode is A, P, or IQS; 1 if the entry mode is CC.
(The above fields and indicators are of interest to
OUTPUT in Pass 2b.)

5. Bit Ziotpt.27 = 1 if OUTPUT has to perform a
possible truncation of the characters in the DD mes-
sage.

6. After completing the conversion, MQDALF
returns to the main flow of Pass 1 with the value field
of $3 containing the next non-blank character after the
terminating character of the DD.

USER

MQDD transfers to MQDALF for the processing of the
statement field of a DD pseudo-op.

102

FLOW CHART DESCRIPTION

Boxes 1A, 1B

MQDALF has GETCHA get the first character of the
alphabetic D field since MQDD comes to MQDALF
with the comma separator in the value field of $3.
MQDALF must turn on the Geaz indicator so GETCHA
will 'kick out' blanks since a blank is significant in
this field.

Boxes 2, 3; 15, 16

Each time MQDALTF uses GETCHA to get a new input
character, MQDALF must make two tests before
processing the character as part of the alphabetic DD.
Of course, on detection of the terminating character,
MQDALF stops collecting alphabetic DD characters
in the expanded instruction unit and performs the
final housekeeping. (The terminating character is
in the Bem area with other DD information. See
Phase 1 description.)

In case a terminating character is absent from the
D field, the end-of-card-block indication from
GETCHA causes MQDALF to terminate the DD.

Box 4

The information, whether the data description of the
op is symbolic or absolute, and if absolute, what the
byte size is, is included in the fixed portion of the
op's expanded instruction unit. Using this informa-
tion, MQDALF sets up the appropriate entry mode
subprocedure to collect the required number of bits
for the specified type entry mode.

If the byte size is symbolic which remains unevalu-
ated during Pass 1, MQDALF saves the maximum 8
bits of each of the converted A or IQS characters, or
the 12 bits of each of the converted CC characters.
Leading zeros are added if necessary. The QUTPUT
routine - in Pass 2b - will truncate each of the col-
lected converted characters in the unit for the final
binary output.

If the byte size collected by MAIN was absolute,
MQDALF adjusts the appropriate subprocedure to
store the required number of bits of each converted
character. (However, MQDALF forces a 12-bit byte
size if entry mode is CC.)

Boxes 5-9

According to the Bem setting of the Bem indicators,
MQDALF transfers to the correct subprocedure and

stores the converted characters in the variable portion Boxes 12, 13
of the expanded instruction unit. \
If the usual area allowed for the variable portion of

Box 10 the expanded instruction unit has been exceeded, the
) buffer for the unit has to be adjusted to make room
MQDALF increments the character counter, the for the next unit.

contents of which will be later transferred to a field
in the fixed-format portion of this DD's expanded
instruction unit.

Box 17
Box 11

After the terminating character has been reached,
The index word containing the location of available MQDALF adjusts the expanded instruction unit as
area in the unit is updated. indicated in the linkage descriptions.

MODAIF 103

CHART CF

104

STRAP I1 MGDNUM-~-PAGE 1 OF 3

lllllli'!ill{liil

NQD: *
l—l—!—l—'-l—i—‘—l
EVALUATE STATE-
#MENT FIELD OF A®
#* NUMERIC DD *
FERRREERBEREER SRS

.

.
.
.
.
.
X 1
ERERERAERRER AERERBLERER
* * *
= * * LEVEL
HOUSEKEEPING ®eccevscoX¥ HOUSEKEEPING #Xesesssccsscssccesasccesccsnocecsasaransaces
» - o
* .
E2 2222222222 AEARRRARTET .
. .
. .
- .
. «NO
X 4 »
* 2 ® 3 L2222 22222222222 2 * S
sxen * * - GETCHA * » CouLd
* - * * YES E R B B 2t 2 St B B) * TH]S BE * YES
* 11 ®eaelX® « #eeeeesesXFGET A CHARACTER#,. -
= s * * * » * c.p. » X
L3223 * - * »* »* L HREER
* * RA 2222222222222 2] * »* *CG %
* * * 21®
oNO L
- *
.
.
-
MGQDNB X 8 9
* = 6 EXRVREERERES A 222 S22 2 2222223 REFEREREREARRERER
% DO WE ® * SET » * ONUM » * SAVE RESULTS * sxew
HAVE AN & YES * INDICATOR * i et el - * * *

- INTEGER
- 4' NUMERIC FIELD

'---o--..X* TO SHOW DATUH *eonvsee s X¥COMPLETE A DD'S'.--.----K'
-l

OTH LEVEL RoeaeX® 11 #
= 13 »

X
- * . 5 » - REE
» * ERARBEARERS illﬂll'll‘l.il!ﬂl 01-&»:011»-;»&»14 .
X -
«NO . REn .
- » » . -
. % CF # -
. * Q2% .
- EER -
X 12 * . 14
- = 10 ARERRRREARE AREFERRERFRRFRERE - - 13 RHERBRERRRAEFEEERE
ol DO WE * * SET * * CPLTSY - * D10 = * SAVE RESULTS *#
PQSSIBLY ¥* YES # INDICATOR * it doebutahutalmolmt ot g * WE HAVE # YES * A »*
HAVE A SYSTEM %eeswecoeX¥ TO SHOW DATUM ¥eeseeceseX® COMPLETE A *enesesse Xt A TRUE SVSTEH f--------x* OTH LEVEL *
SYMBOL - * » bl SYMBOL * - SVH BOL *
» * - * & -
- - HRRERRARRER LSZ22 X2 222222 222 2 » * FAERAERAREERERRNRE
»* *NO
oNO . ERER
- - -
- e e XH*CG ®
. * 22%
- RRR
MQDNC X 16 17 18
- & = 15 SRRRRARERAERERRRN HERBEERRERERER RSN ARRBRERERE R R R
- * * MQDNC1 * - SET NEXT * GETCHA
* - e R Lt * 151 LEVEL » e e e o
- + OR - -ol' PERFORM LAST X* T0 *ee +X*GET A CHARACTER
* = 1ST ORDER * ' PROPER + OR - Q * * - *
- L] ' OPERATION - » * #nuw
- - ARBERERARARRRR RS I.l}.'ll...l.ll.l SEERERRRBERRERE SRR
.No = »
- *CF ®
- * 13
- HRERE -
. .
MQDND x - 21 .
- ® 19 * - 20 REFXRERTEREFRRRER FEREREERNTARERFRRES -
L] " * - * MQDNC2 » b SET NEXT - .
- * YES * * NO B T R o e * 2ND LEVEL * .
- * OR / LT ETRRYY 3 4 * '----.--.X* PERFORM LAST #icsceeveX¥® T *oeXe
- »* * 2ND ORDER e * .
* * - 3 - OPERAT ION - " » .
E 3 - » * ARRERRERREERRRRR ERAAREERRERERRRER -
- .
«NO *YES . rEER
- . - - *
X . . * 14 ¥g4,
. . » -
. - HEER -
X 23 . X 30
ERERRERERAERRREA S . LIy T I T
* hd GETCHA * - * MQONC2 »
o B W e W e W B . o e = T 2

#*GET A CHARACTER® * PERFCRM LAST *
b * . * 2ND ORDER *
* » - * OPERATION *
EEERERARARRRERNRN . L R T A L
- . .
- . .
. . .
. . .
. . .
. . .
X 25 26 . X 31
LR 24 ARRBARRERRRTRAIRN ARRARERERERERERER . illll!lllili‘l!'l
» * - MQDNC 3 * « SET NEXT * . SET NEXT *
- * YES et e e ot B x 3RO LEVEL . H 2ND LEVEL *
* » ..o-..--cX' PERFORM LAST *ssecasseX¥ oP ®osXe * oP TO x
- * 3RD ORDER * ‘EXPONENT IAT ION = - * *
* * ' OPERATION * * . * *
- - RERERSERRRENRERED liu:nn{!ll:fiao.« . ERARERERERRER AR AR
* - -
+NO - .
. .
- . X
. . Eann
. . » *
MQDNEB X 28 29 . *® 11 *
* % » 27 ERBEREERARERSRERRE ARRRRERER LR AR . » *
* * * MODNC3 - * SET NEXT * . nee
- * YES BB RN R W * 3RD LEVEL » .
» / *----....X' PERFORM LAST #,.5s000¢X? oP 70 *qaXe
* 3RD ORDER * * RESPs EXe
* hd ‘ OPERATION L bt *
» - I T I T TR Y Y T AERBARRRRRRERERRY
"N
. ren

.

seX® 14 #

» *
LI

CHART CG

STRAP II

YES

sesnanes®

*
* * 3
* DO WE %
* POSSIELY *
HAVE A HEX

3

%#Xesoeoses® C
*

MGDONUM-=-~PAGE 2 OF 3

NO

.

MQDNE X
* %

A

2 T

*CG *®

* 21%
* *
»

*
* WAS #

32

LAST *
ASE A DATUM *
*

X * CHARACTER *
EEEEE * * * *
#CF * * = * *
* 12% * *
= x «NO -YES
* -
. .
. -
. X 34
- E32 223222222 22 3 22
. * MQDNC 1 *
- L 2 B Bt Bt B St St g
. * PERFORM LAST *
. * 1ST ORDER *
* OPERATION %
. AARREEXRERTEERERRER
. .
. .
. .
. x
. = * %
* *
- *
. *)
- *
- * *
. * *
- *
. «NO
. -
L2222 - -
*CG * . -
* 22% MQDNG X 38 X
* ® EXXIZZ SRS LE S S * * * 39
* * ERRCR * *PROPER *
. * MESSAGE * NO * ENDING *
cesemeeX® *Xeoonasask HERE =
* *
* * * *
EEERERREXEAERERERR * *
- =
. -YES
. .
. .
. .
. .
X 41 x 42
%
* SET_uP * * SET UP *
* ZERO RESULTS # * RESULTS
* * * FOR
* USER PRCGRAM * #* USER PROGRAM *
* * * *

*%

Xeooa v

ERERE

eseessssserssacccssseX¥ EXIT *
* *

=
ERERR

-
® * 36
* DOES *
* IT *
ssessX® HAVE A MATE
* =
* *
= *

*
«NO
.

-
.

4
HERER A ERRR NN
*
*
*
»
*

E I
-

ERROR
MESSAGE

RS

o
*

=
*
*
=
*
*

3
AREREREXEFERERRE
* HOUSEKEEPING

xX*
*

*
HEEEERER LT E R
.

EEEER

*CF *

% 13%
x* ®
*

7
*
=
*
*
=
-

*

105

CHART CH

106

EREEERERNSRERLRER

* PERFORM LAST *
b 1ST ORDER *
* OPERATION *
EFRRREEREBERERERAE

x
EEAERERRFERERNERN
* MQDNC2 *

* PERFORM LAST *
* 2ND ORDER *
» OPERATION *
EEERRARFERRRRERER

Xt e oo

44
HERFREREXEARTRRRR

, ADD *

* (OR SUBTRACT) *

® THE 2ND LEVEL *

* TO(FROM) THE =

® 1ST LEVEL *

REBREERERR T ERERER
.

.
x 45
EERRREERETRERR RN
* MQl *
LR e e Lt = 2
* 1ST LEVEL + *
- 2ND LEVEL *
*

-
EEAEREEEERE RN REE
.

Xe s e

46
L T e Ty
* SAVE RESULTS *
+ AS LST LEVEL *
* RESULTS *
- -

*

»*

*
ERBREREEEERERE N
-

Xe s oo

EEEARBRERBRERNRNE

* PERFORM LAST *
»* 3RD ORDER *
- OPERATION *
L R Y Y P S L)

» *
#MULTI-POSITION ®
* SWITCH *

» »

.
.
.
-
.
.
-

.o
(POSI.TION 1)

v
<}
“

-
sesene e
e
-
os
Z

-
.

x 59
REBFRAEREERAER BT
®MOVE OTH LEVEL *
® 70 3RD LEVEL #*
»

»

* "

RARRAEERRRRARRREN
(POSITION 3)

STRAP 11

*oeenes
*

AEXERREREAERREERR
* MQDNC2 *
E e e e et
* PERFORM LAST *
* 2ND OFDER *
* OPERATION *
EERFRERRRARREENRR

*
PERFORM LAST #
3RD OFDER *
OPERATION *
EREAREREAERR LR

AXe e s e

* a8
* *

x ®
¥MULTI-POSITION *
* SWITCH *

*

* *

esesces
{POS1.TI0 1)

-

(POSI

Xe o s s s s s s s er s s s s s s e et easass e n

53
l’l!llf".iii‘llﬂl
MOVE 3RD LEVEL #
* TO 2ND LEVEL *
* % eenscerecsacsnscsescnnscsencccnnsenveces X® EXIT
* * -

* *
EERAARFEXERTRRRAERRE

(POSITION 3)

seeren

MQDNUM---PAGE 3 OF 3

]
REERABEEARREER RN
»

5
-
-

L it TeT T W e Y)

«X%® 3RD LEVCL *%

* OTH LEVEL

*
AFERLERRRRREREER

ce e e x

- 5
TRRAERFRERERAREER
* SET THE
" EXPONENT

“ecesssesrscscsevssnscsssacsconsenes o X¥ TO NEGATIVE
»

(OTH LEVEL)

*
EERREEREARSEA RN

reREE
»
*Xao
*

*ERTE

*
»

-
*

7
L]

-
»
*
»*
*
*

49
EAAREXRRERLRRRRRE
M3z »

LR e e e N T

3RD LEVEL *
*

L)
RIS F 2T T

51
ABRLESEEREERRERAE
* MOLL4 *
W W NN e e X

cenaX¥ 2ND LEVELL / .0
=

3RD LEVEL *
»

=
EREERRRAARRRRAT NS

reRRE
* =

(2221
56
EEERRERNEEARRE AR
STORE *
* RESULTS e
sseeeX® IN 3RD LEVEL *
" *
*
LR R e e Y

Xes oo

58
REEERRRER AL

* SET *

* SWITCH TO »

* POSITION 3 »
» *

*

-
EEERRBRENERE
.

.
.
-
.
.
.

.
.
.

%*Xosessssasenssscnsans
-

EEERARFRRENE TR
» STORE
* RESULTS

esecseccssecrnacecsnasossnssensncsasX® 2ND LEVEL * #,.c000eaX® IN 2ND LEVEL
* X

*

*
FHAREARRAEREARF N

Xeowo s

FERRRRNR NN
L4 SET *
* SWITCH 10 *

* POSITION 3
»

3
ERERRERERRE

*
*
»
»*
*
*

*
-

LINKAGE
On Entry

1. The calling sequence is: SIC, Mqgdnuz; B,
MQDNUM.

2. The first character of the field is in the value
field of $3.
On Exit

1. The non-blank character following the field is
in the value field of $3.

2. The double precision result is in the accumulator.

FLOW CHART DESCRIPTION
Boxes 6-14

For each level in the arithmetic operations MQDNUM
makes an -eight word entry in its push down list at
Mgnnd. In this entry two words are reserved for the
result from each of the first, second, and third order
operations. The remaining two words are for mis-
cellaneous indicators including those designating the
type of arithmetic combination between these inter-
mediate result areas in the entry. MQDNUM main-
tains a common storage area for the result of the
fourth order, i.e., each new operand from DNUM.,

The current arithmetic operations which may be
specified on a numeric DD are:

First order Second order Third order

operations operations operations
+(addition) *(multiplication) **(powering)
-(subtraction) /(division)

Note that in powering the exponent must be an integer
in the range 218 «—n <218,

While operating within a level, as each new datum
is encountered, MQDNUM has it made into a double
precision floating point word by DNUM, and then
MQDNUM enters the result into the fourth order
result area.

Box 13
Remember that CPLTSY sets up the location of the

system symbol mathematical constant as a negative
quantity in the accumulator.

MQDNUM

Boxes 45, 49, 51, 55

These are double precision arithmetic subroutines
whose specifications will be described shortly.

These double precision arithmetic subroutines as well
as DNUM give the using program the results in the
accumulator.

Box 33
A radix may be 2-186.
Box 15 ff.

While operating within a level, as each new operator
is encountered, MQDNUM combines the intermediate
results of an entry in the following manner:

1. For any operator, MQDNUM combines the
results of the fourth order with that of the third order
according to the corresponding operator indicators;
MQDNUM then enters this result in the third order
result area and resets the operator indicators of the
fourth and the third orders to the transfer setting.
(Initially all the operator indicators are in the
transfer setting.)

2. For a second order operation (®;@) MQDNUM

also combines the result of the third order with that
of the second order according to the corresponding
indicators; MQDNUM then enters this result in the
second order result area and resets the operator
indicators of the third and second orders to the
transfer setting.

3. For a first order operator ,@) MQDNUM
further combines the result of the second order with
that of the first order, etc. .

4. After combining the appropriate results in a
Mqdnnd entry, MQDNUM adjusts the arithmetic
indicators in the entry to the operation just encountered.

Boxes 32-42

This routine evaluates the field to the terminal char-
acter (@ R @ , or@) or to the special sign or
exponent (or).

Box 37

As each non-initial level is completed, the result

becomes the contents of the fourth order area in the
previous level.

MODNUM 107

CHART CD

ERAFRRBAERERRE RN
* DI *

L et et i
#COLLECT CHARS #
*OF A NUMERIC OD#
- »

RERERE AR RN
.

Xe oo oo

1
RERUEFRERRERHERRER
* HOUSEKEEPING. #*
* RESET INDICA- *
* TORS. *
= GET RADIX #
* »*

REEEAERNRE SRR EEN

»
'lS
*

STRAP 11

DNUM---PAGE 1 OF 2

»
* 3
'IS TME *

ERERR AR
#SET INDIC- *
#ATOR TO SHOW *

ADI ES DIX YES
*® OYHER YHAN 10 ‘o-».o...X'GREAYER THAN lO"-oo..-o-X'GREATER THAN 10%

* *
* *

DNCR10 X 3
e e
* HOUSEKEEPING. *
* ZERQ PARTIAL *
«» X¥RESULTS BUFFER.*
s ®SET INST 7O + #

X

(SET INDICATOR

* - * O ON) *
* * EERERARRRER

.

«NO -

. .

. .

. .

. -

X -

EEERRRRRRRE .

*SET INDIC- = .

®ATOR TQO SHOW #* .

sseee® OTHER THAN 10 #Xseee -

{SET INDICATOR
* C

. = * ON) *
o ERREERFEREREEREER ERRBERAE AR
* .
x 2 .
%*CD = .
L2 5 .
- -
.
x -
» ww 7 . - 8 HERREARRTEN
* * * - * SET INST *# xnnw
* YES * YES # TO SUBTRACT #
- + OR - FaeavessseX¥® - ®eonsosseX® RATHER THAN #eeeeX® 1 *
* ADD - » -
» 3 - - * * xnns
1Y »* - RERERRRNEN
»
=NO
. .
. .
. .
. X 10
. ERRAREEERRRRNRERRS
. = GETCHA * ."'
. e el -
oXee .o--oo..---'GET A CHARACTER'X-..." 1 *
. -
- l‘ﬂl
. QIQGQQI!‘..!!'IQ!
.
.
.
DONG1I X - 13 *
- » 11 - * 12 EEREREREARRGIRSER » » 14
THE # *1S THE # » PREVIOUS ol ®* HAS @ #EER
- CHARACYER * YES * NUMBER * YES * RESULTS(PsR.) * #THERE BEEN ® NO *
#A TRUE NOssleEc®ocecoseeX® LESS THAN THE ®ecencaceX®TIMES RADIX#NOe#eseenvesX® A POINT YET #eeueX* 1
*A DIGIT 0—9 X RADIX * * BECOMES NEW # * (A ON} * *
- - » P.R. * EEE
- * . * 1) ERREEREERE AR RN - -
* . * x *
«NO - «NO - «YES
. . . .
. . . .
. . . .
. . . .
X - 17 X 18
. » . . % o 16 &&cuou;-:o.e-;--; FEERRERERRANEN RN
.IS THE * . *[S THE # ERROR * * REDUCE THE * RN
NO - . * CHARACTER * YES l MESSAGE ol * RUNNING * *
-.--‘GQEATER THAN IO' . *A TRUE NU-ol.Eo'-.-.-o-ox' * * EXPONENT *
.) . *A DIGIT 0-9 * i BY ONE *
- . » -
- - * . * »* .lll.l'.’i!!lil!’ REARRAAREARERRARE
. -
oYES . «NO
. - . .
. - . .
. . . .
. - . .
- X . - 20
. [. . AERERARBARERREED
- * COULD # - . * ERROR *
. # THE CHAR ® VYES . * MESSAGE *
- - . * *
- » k)
. * * - » -
. » » . EAERRECAARRBRRERN
. * . X
- «NO . -
- - . .
. . . .
sesnasssccoXeXoosonosncsasvnn -
. «YES
DNPER X * 23
L 21 * » 22 ARERABAEREREC RN
#1S THIS® *HAVE WE# * HOUSEKEEPING. * EREE
* CHARACTER % YES *PREVIOUSLY # NO #SET INDICATOR A% *
L A POINT %easncssssessssvscccevscssccsessceeX¥ ENCOUNTERED #eceecsceeeX® ON TO SHOW *¥euoaX®]
L * A POINT & * POINT - *
- * * * * ENCOUNTERED # #nEe
* 3 » » FEREABERRRREER RN
- -
«NO
.
X
rEnEw
#CE #
» 21%
108 25

»
-
*

-
-
-

CHART CE STRAP 11 DNUM—--—-PAGE 2 OF 2

ExRAE
*CE *
* 21%
*
*
.
.
.
DNTSTC X * 26
% o 2a » * 25 REEERRAREAREAERER
*wAS THE® * HAVE * * DNADJ *
* RADIX * YES * wE * YES Ak E— X%
OTHER THFAN 10 #eceesceeX® ENCOUNTERED #secseseeX¥® ADJUST BASE *
* (C ON) * * A POINT = * *
»* * *(A ON) = = -
* * * * EEREEXREEEEREFEER
'y * .
{SET OFF) «ND (SET OFF) .NO .
. . .
. X -
D L L R R R A
.
b3 28 29
* % x 27 HEREEEEERERELEEE R AEEERRARARTEERERR
* IS * * HOUSEKCEPING * * GETCHA *
* THIS AN * *SET INDICATORS * e e et
Y E «X*A AND B ONe SET®eeeeeeeaX¥GET A CHARACTER¥®escecoss
* * * RADIX TO 10. * * * X
* * * SAVE PaR. * * * EEEER
= * EEEEERERREER RS AREERRRE RS RRTER *CD *
* 11%
«hO * *
. *
-
X 31
x* % 30 EERAFREEAEEUEREE R
% HAVE * * ADD SPECIFIED *
* WE HAC A * YES * EXPONENT TO *
* SPECIFIED *eeoeeseeX® RUNNING EXPO— *
* EXPONENT * E*NENT AND RCTURN®
*(8 ON) * * PREVe RESULTS *
* % EEFAERERERARERERR
* -
«NO -
. .
. .
eXessvscascssssssvrsvesssses
.
x * 34
% 32 * * 33 EEEEERRERERERREER
* WAS * IS * * DNADJ *
A THEFRE * YES *# THE NEW * NO B W — R X=X R
* AN EXPCNENT #... o X¥E EXPONENT - eseX* ADJUST BDASE *
» * * ZERO * * *
* * » * » *
= * * * EEEEERREARREERRRE
* S .
«NO «YES .
. . .
. . .
. .
. - -
X 3S - -
ERREETREEREERRARE - .
b SET _LP * . .
* RESULTS FOR ¥ - -
* USER PRCGRAM #Xeeseeeccccccccoss .
* * .
- * .
EEREERESRARRRE SRR .
. .
. .
. .
. .
. .
X -
EITETY .
* * .
EAEEEBEREERA RS NN
DNADJ *
D R s o S T
ADJUST BASE
- *
* =
ERREREERAEERBE RN

-

.

.

.

.

X 36 37 38
ERBEREEERERE LR EEREREXRRARAARNRE AEARERRAKAAL XL RES
» SET THE * x MQa * . * Maz2 *
* EXPONENT TO A * RAISE THE RADIX E-k—R—¥_a_%_%—%_—% MULTIPLY THIS R R R o K B Bk
* UBLE ¥eoovsecedssesoenseonsescenssvsescce s XKFEXPONENTIATION ¥ooeeeccscocssanssncscsosscesssccoeae e XENULTIPLICATION *
*PRECISION VALUEX TO POWER OF EXPe. * FOR * BY THE PREVIOUS RESULT * FOR *
* * * NUMERIC DD*'S % * NUMERIC DD's *
e FEERREEEARBERERE EREAERRERERERREER

.

X
EEERER
» ®

* *
* EXIT »
* *
* =
RERRE

109

DNUM

LINKAGE
On Entry

1. The calling sequence is: SIC, Dnuz; B, DNUM

2. The first character of the operand is in the
value field of $3.

3. The radix in effect for this field is in location,
Drad.
gets control for processing this field.)

On Exit

1. The double precision floating point result is in
the accumulator.

2. The next non-blank character after the operand
is in the value field of $3.

USER

MQDNUM

FLOW CHART DESCRIPTION

Box 1

Indicators A, B, C, and D are turned off. Note the
operand that is to be collected and evaluated is in the
format: b b b

(+ n, + n.n, or + n.nk+e).

110

(This radix is set up by MQDD before MQDNUM

Box 5, 9

The instruction referred to is the plus part of the
calculation indicated in box 13.

Box 19

Since a radix can be in the range 2-16, the character

can be one of the set A-F.

Boxes 18, 31, 34

Two exponents are mentioned in the flow chart. The
exponent which DNUM develops to keep count of the
number of places after the point is referred to as a
running exponent. The exponent appearing in the
source data is referred to as the specified exponent.
The previous result is adjusted by each of these
exponents to produce the final result.

Box 36

The values to be arithmetically combined by any of
the MQDDPA subroutines must be in double precision
floating point form.

CHART CI STRAP TI MQDDPA

HR NIRRT RN
* MQDDPP *
Fm R — R R KR
* DD PRECISION *
* ARITHMETIC - l
* POWERING

i(!tei&&&iii&ﬁina

.
-
X 14
* % % 1 ERLELEREEAEEEREEE
* TEST * * ERRCR *
* 1F * YES * MESSAGE * *

¥oeonveneX¥
*

* *
HEEAE R ANNRT RN

2
L3222 222222232
* ENTER FIRST *
* ENTRY IN THE *
* BASE®®(2##N) *
* TABLE *
*® *
EA 2222122222 3
.

15
I I R E s T
* ERROR *

EXe s 00

* *
* TEST =
NO *

* MESSAGE *
®EXPONENT IS IN ¥seeeweoeX¥®
® RANGE *

* *
EXERBREERERREERRR N

R

*

FeneaX® 11 *
* = *

E2 TR

16
AEEEREXERLEL RIS
ASSIGN EXPONENT
* ®

*eeseseseX¥® *
*

* *

* *
EEEERRREEEREE R

AEEREERRFERRRRRRE
= MQLL4 »
L e Do I S Y
* DD PRECISION *
* ARITHMETIC - *
* DIVISION *
AREXREEREERARRRRE
.

Xees 0

AEREREEREXNERRREE
%*(A1+A2) /81 + *

* R1/81 *
* *
* *
* *
EEREREEERREEEEERE

.

.

X
EXEREXRERLRXERRRE
® 1/B1(RY1 - %
2B2((A1+A2)/B1))%
* *
* *

* *
EEEENEERARERLEANE
.

.
-

X
FE I Ty T Y
*(A1+A2) /B2 + i
* 1/81(R1
BZ((AI+A2)/BI))

* * iliiiiﬁli&‘*i&lli
. .
<YES . .
. .
.
. . .
. . .
MQDDP2 X 4 . X
FERREEREREEERE BN . *EEEE
= CONVERT * . x
_®FLOATING POINT # . * *
SEXPONENT TO 18 * . * EXIT =
* BIT BINARY % . = *
#¢NEW' EXPONENT #* . * *
EREREFRBERERREE RN - EREEE
. .
. .
. .
-
eXsoesacescscsesreevscscccrcsccsssescsocssancasesssne
.
X s
EREREREAREEERRREE
* SAVE *
**NEW® EXPONENT *
* AND ITS SIGN *
* *
* *
EERRERRETEEEER R
.
-
17
6 AREERERRERRERREE R
* * FOR THE USER * rxxa
* 1F YES *PROGRAM,SET UP * * *
*ONEw? EXPONENT BeeeseoolX¥ RESULTS AS A ¥.ooeoXX 11 %
* 2FLOATING POINT ® *
» * ONE EEEE
* * illlll.l!lfii*i‘f{
«NO
.
.
.
X 7
AR R RN AR
* COMPUTE AND *
* SAVE THE MAX *
*CNT OF ENTRIES *
* THAT MAY BE *
* MADE IN TABLE *
AEEFRERRRETRERRER
.
.
.
10 *
8 RN R R R R * * 12
* * SET THE * * DEVELOP FINAL * * *
- YES * INTERMECIATE # *PRODUCT OF THE + * NEGATIVE *
*oNE W om-:m Feeeess o X¥RESULT AREA TO ¥euoeoor X *NEEDED ENTRIES.¥sevoesseX® —EXPONENT
* X % A FLOATING ®SET UP RESULTS * *ON THIS DD
* « ® POINT ONE * FOR USER * * *
* * Iiil!llllliil’lill’ REREEREEERXEEEEER * *
. *
+NO . SYES
. . .
. . .
. . .
. . .
MQDDPM X 9 . x 13
EEBRERRERRERER ERE - E2 2223 A2 222222222223
* COMPUTE AND * . = - MQ3 *
SAVE ONLY THE # . * LR Bl B X B B 2eE B 3
#*NEEDED ENTRIES *eeesee *Xa eee® DD PRECISION *
* [N THE TABLE, * * % ARITHMETIC - #
* BASESE(2#EN) * * * * INVERSION *
EEFEFRFEAERERERENR & X% % L2221 222222 3

NO
*ooeeX® 1] *
* -

*

R

R

x

Ql+R1/B1

R1-Q2Q1

Q1+R1/81-G2Q1

111

MQDDPA

These are subroutines: MQl, MQ2, MQLL4, MQDDPP, MQJ3

LINKAGE
On Entry
Operation Calling Sequence VF of $7 VF of $8
Addition or A+ B SIC, Mqiz; address of A address of B
subtraction B, MQl
Multiplication A*B SIC, Mq2z; address of A address of B
B, MQ2
Division A/B SIC, Mqlldz; address of A address of B
B, MQLLA4
Powering A ** B SIC, Mqddpw; address of A address of B
B, MQDDPP
Inverting A ¥¥-] SIC, Mq3z; —— address of A
: B, MQ3
On Exit
The accumulator contains the double precision float- FLOW CHART DESCRIPTION

ing point results.
Boxes 1, 2, 3

RESTRICTION(s)
The algorithm for the MQLL4 subroutine is shown in
1. B of A**B must be a whole number in the range, Figure 16.
9718 —p<2"18
2. A and B are double precision floating point
numbers.
ag+a, a +ap 1
USER(s) by + by by (1 ¥ b_2>
b1 ignore
= 31% 3, 1-32_+.'./.—
b1 b1
MQDNUM, DNUM _ <a1+ 32) -(E&) (al * "“2)
b1 by by

~/ ignore

DETAILS (Qﬁﬂ) i <Q2+ }%5 <O1 . 5
by 2\
R

MQIl, MQ2, and MQ3 are simple enough not to warrant o + By o
flow charts. However, the flow chart of the MQDDPP = b - Q29
and MQLL4 subroutines are included. (MQ3 is much

faster than the MQDDPP subroutine for inverting.) Figure 16, Algorithm for Division

112

Boxes 1, 14; 3, 15, 16

If Ain A ** B is zero, MQDDPP gives an error
message and puts a floating point zero in the
accumulator.

If B in A ** B is not in the specified range,
MQDDPP gives an error message and uses instead
the appropriate bound in the computation.

When B<<2718 | MQDDPP assigns-1+ 2. to B;
when B<<2 +18 , MQDDPP assigns-1 + 2 +18 to B.

Boxes 2, 4, 5, 7, 8, 9, 10, 11

The powering subroutine adjusts the exponent B so
it can fit into an eighteen bit field. (The off/on
status of a bit in this 18-bit ""new" exponent field
determines whether a base " type entry is made

in the thirty-six word buffer.) Then MQDDPP proceeds
to build up the needed powers of the base. Each
result is saved as a double precision floating point
number in its appropriate slot in the thirty-six word
buffer. After the entire ""new' exponent has been
scanned with the appropriate entries made, then all
those entries made will be multiplied together (by
now using the '"new'' exponent as a selector) to pro-
duce the final answer.

MQDDPA 113

CHART DA

114

STRAP 11 MOP
ERARREEERERERRARR
* MQF M
B N)
®COLLECT IN UNIT#*
®#SYMBOLS SPECI- #
*F[ED BY FUNSYM *
EREERAARRAEARRRER
.
.
.
MQPAA X i
EAREREARRAEEEE RS
ERER * GETCHA *
* L R e ot Bl
®] ®....X*GET A CHARACTER®
* * * *
R * *
HEKEARREF AR R NN
.
.
X S QPAC *
= ® % 2 * 11
* » * * xRE
*ALPHABETIC * NC % NUMERIC * NO »
* CHARACTCR S S CHARACTER BeeaoX¥ 2
* *
* = - * 232
* * * *
» »
+YES «YES
. .
. .
X 12
2 I T T Y AEXERERERARER LR
®#SET UP LCCATION® ERRUR *
#* WHCRE CFLTSY » * MESSAGC *
* 1S TO CCLLECT # - -
* THE SYNBOL # * *
- * » *
e EREREFARRERE RN R TR
. .
. .
- eXesesvevssos
. . .
X 4 X 13 .
ARERRERAE R AR AERERREREERRRE RN .
* CPLTSY - * GETCHA * -
L Tt O e e Y) LR R R L = .
* COMPLEYE A L *GET A CHARACTER® .
» SYMBCL » * »* .
- *] = .
EERBEERRRNSRAA RN FRERBREEERRRERE NN .
. .
. . .
. . .
. . .
. - .
. . .
X 5 x .
ERRAEBRAEERARRERRE N * % ® 14 .
* PREF LX »* * COMMA * -
* COLLECTED * * OR * NO .
SYMBOL WITH [TS¥ ® TERMINATING *aees
* COMPUTE! * * CHARACTER %
* LENGTH - * *
ERRAREREE AR ARLNRN * *
. =
. «YES
. .
. .
X 6 x
ERUARARRGARERENNN * x ¥ 15
™ UPDATE * * » EEEw
* INDEX ®wORD * * YES *
* CONTROLLING . COMMA FoeeaX® 1
*AVAILABLE AREA # * *
- IN UNIT » * » anE
ERNRRARRRAA RN AR - -
. »
. «NG
. .
. .
MASPSL X 7 .
EARAEAREEAGARRRRR .
* INCREMENT * .
* FIELD * -
* COUNTERS * -
* » .
* - -
EEERRRERERNARE RS .
. .
. .
. .
. .
. .
MQPGSY X .
* % ¥ 8 .
LT * * [T .
* * YES % .
* 2 FaoeeX¥® COMNMA HoeuwanX¥® 1 » -
* * - .
. - * rAR .
» * .
* -
oNO .
. .
. .
. .
x 10 X
L 9 FEREARERBERRNEARS REER
* * - ERROR
TCRMINATING® NO * MESSAGC *
* CHARACTER . seseX¥ *
* » *
- - * * * *
* * HEARRRRERARS RN EEuEE
X

*
*

*
*
*

LINKAGE
On Entry

MAIN enters MQP through the Pass 1 digit-select,
pseudo -op branch table.

On Exit

MQP returns to MAIN where the remaining (non-

processed) characters of an instruction are collected.

FLOW CHART DESCRIPTION
Box 1

The character in the value field of $3 is the comma
after the op mnemonic since MAIN just came to MQP
through the digit-select table. MQP must fetch the
first character of each symbol before using CPLTSY
to collect the remaining characters of the symbol.

Boxes 2, 11-15

Any field containing a null symbol or a symbol be-
ginning with a number is skipped over by MQP,

Boxes 15, 8, 9

Either of two conditions cause MQP to stop collecting
any more characters: first, if the symbol in the
statement field of the PUNSYM begins with a non-
alphameric character; second, when a terminating
character occurs.

Boxes 3, 4, 5

MQP must set up the index word, Bsymbx, with the
location of where the symbol collected by CPLTSY

is to be stored. MQP is having the collected symbol
put in the variable portion of the PUNSYM's expanded
instruction unit. The location given to CPLTSY is
set up so that MQP can later prefix the symbol with
an eight-bit byte containing the character count of the
symbol.

Box 7

Since the PUNSYM instruction will not go through that
section in MAIN where the GETFLD subroutine is
asked to encode the statement fields, MQP increments
the field counters, Zinfld and Field, at this point instead.

STRAP maintains two counters associated with the
number of statement fields in the instruction. One
counter, the Zinfld field in the fixed portion of each
expanded instruction unit, is zeroed during the in-
itialization of each instruction and is incremented
every time MAIN detects a new field during Pass 1.
Throughout Pass 2 the contents of each Zinfld con-
tains the total number of statement fields in the
corresponding instruction. On the other hand the
counter Field is a single counter used for all instruct-
ions and thus is outside of the expanded instruction
unit buffer. Field like each Zinfld field during Pass 1
both is zeroed during the initialization of each instruect-
ion and is incremented for each field detected in the
statement. However, unlike each Zinfld counter,
Field is also zeroed during the initialization of each
instruction during Pass 2 also. By the contents of
Field, ERROR can determine the number of the field
in which an error occurs.

MOP 115

CTHARY 0B

116

STRAP

|4

EEEXEREREUBRER RN
* *
W W R N N R
*PROCESS ADDRESS®
* FLIELD{S) OF A *
* DR OR A DRZ *
ARRXRRBARARRENRE R

EXe s o s e

* *
*#1S THE *
* DDS GIVEN * NO
* IN THE UNIT %,
®(ZIFDDS=1) *
* *

* *
*
+YES

sXeossscs0escvessncsssssocnnsvsnn

-
MQRAAA X
* L]

* IN THE OR
*

» *
* *

Xa oo

3
EERRBERERTRARERER
*SET INDICATORS ®
T0 SHOW MOT ALL®
* PROCESSED AND #*
* PASS 2 WILL »
* PROCESS LATER ®
ARAXEREFHUEARRRWR

8 9
HERREXRRERRERERR S AEREREEEFERNEREER FEEEREARERREX R RSN

*SET INDICATORS * » - ERROR * *
* TO SHOwW THAT # - MESSAGE * *
«eX®DDS IS PSEUDO— *.cucseeweX¥ %oo *
* EF INED * * * *
* (FPDDS=1) * bt * *
EREREREREERRRRRNR FEERERREERNNRN N NN EEERERRRFXEAB RN

seesscssne

EREER

* =
¥oseosecsnseeX® EXIT *
»

*

L]
EREER

10
EERSERFFEERESERER

SET UP WORK *
* AREAS SO THAT #

* HAVE A NAME #*,.00000«X*DIMENSION ARRAY#

* (FNAME=1) *
- x

- *
»
<YES
.
.
MQRAA X S
EERRREAIAARRAERT
* MDIMRT »

L e e R e ettt
* MAIN®'S CIMN. &
» REFERENCE *
* PROCECURE *
LR S e e]

Xe oo ne

6
RRERAEEEEARRRENR R
* VDIMEN -
[SR R B ST S T = =
* EVALUATE *X o
* DIMENSION *
* STATEMENT *
AERERBRERAEERERRE
.

Xs o v e

EREAR
» -
* »
* EXIT =
* -

* »
ruan

*1S PART OF THE #
»

* UNIT
EERREARTARRERNEAN
.

X 11
A2 TS S TR T E0
* MD IMRF b
LR e e e e b it it
* MAIN'S DIMN. &
* REFERENCE *
- PROCEDURE *
EERAAERERRRELEERN

12
AEXAERARERFRRRERR
* ADJUST THE
* BUFFER AREA ¥

*

*

*

*

eee® TO PASS OVER

*THE DIMENSIONS
-

ERRERBRRRREA AN

LINKAGE

MQR is entered from MAIN through the pseudo-op
digit select table.

FLOW CHART DESCRIPTION
Boxes 10-12

When the DR does not have a name, the dimension
information is put in the variable portion of the unit.
Therefore, the setting of the index words which MAIN
used to define the available space in the unit area are
used to set up the contents of MDIMRF's index words.
MAIN's index word, Ibuffw, is now locating the avail-
able area in the variable length portion of the unit
where the coded expressions or encoding of any kind
is to go. MDIMRF makes up the special dimension
configuration to go into the unit (See Appendix A.)

‘information is saved in a special field of the unit.

MQR

After the primitive dimension information is in the
unit, the index words of MAIN must be updated to
locate new free area.

Box 6

Before going to VDIMEN, the location of the dimension
Now
VDIMEN, a special subroutine of VALUE, tries to
evaluate the dimensions. If it can evaluate the dimen-
sion information, VDIMEN replaces the previous coded
expression with the twenty-four bit products. (See
Appendix A.)

Box 5

MQR must enter MDIMRF by the MDIMRT entry be-
cause MDIMRT makes the adjustments so that the
dimension array can be part of a vle.

MOR 117

CHART DD

118

SRBEHAETBRRBERRRE
L MD1IMRF *
R N e N e]
#MAKE PRIMITIVE *
%DIMNeREF.ENTRY #
*FOR DR NO NAME *
RERRRERERERAEERER

Xe oo e

4
ARRERRRRRERE RN RN
#ZERO SPACE OVER#*

*PRIM«DIMNSREF+ #
ARFRRRRRRTRELR SRS

STRAP IT

MDIMRF AND MDIMRT

ARRBERFERERRERRNE
* MDIMRT *
e R B B e B T B
#MAKE PRIMITIVE *
*DIMNLREFLENTRY *
4 FOR NAMED DR #
AEEERRARTRRERRRER
.

Xees e

llllll!*l!ii’llii
% SET UP TO PUT ¥
* DIMENSION *
.'ARRAYS INTQ THE®

VLE TABLE *

2z
ERERERRARERRRRRNE N
ZERO OUT,SPACE #

3
ERERERRLBRRTRARRS
* SET FLAG TO *
* SHOW MCIMRT ¢

ENTRY *Xeseo
(LPFLGE=1} *
-

*HEADING FOR VLE®
#ENTRY .MAKE [D,D%*
AERREARERR RN

EEERESRERTERREERE lillilditiiiitili

-

.

-

.

X s 6 * 8 9
RERSBRRRRSERRRERRE FEBERERREARERRERE »* » 7 ERARRERRABERRER IR EZZIZ 22222222382 2]
* SET BIT = - GETCFA * * » * SET FLAG TO * * MEDF »
» TO SHOW - LR B B Bt T B St 2o 3 * * YES #SHOW DIMENSIONS® W W e e W W e W=
® DIMENSIONS %ecoeevecoX¥GET A CHARACTER¥ecsooos X « FececsccoXXENC IN PARENS. %occsceeeX® STEP FIELO %
* NOT EVALUATED % * LPFLGA=1 * # COUNT BY ONE *

" * - 'I *
..I’QI‘.."IQ.I"D ‘l".!"l’l."il.l’l * * ERT2Z2 2222222222223 I*ll.lll'l'llll‘ll

15
HARBARERRE BB RERER

#PAD OUT TO THE *
#MINIMUM LENGTH *
3 *
[

- »
AABRRREERRRARR RSN

ssessescsnsence X
*

cesssscccs

LPGET2 X 10
HAERBLEERERX R BEA

*GET A CHARACTER®
* -

- »
AEAARREREERNR RN

.
* £3 12 X 11
* * 14 I3 X222 22232222223 AEFRHRRRAERERERRARR ERERREEREREERRRRE
1S THE * * GETFLD = #SET UP GETFLD. * ® SAVE STARTING *
* LENGTH RoE— g AR R ¥ % SHOW 1ST CHAR * * “ADDRESS OF *
THE EXPRES= #X. +* ~ HAS BEEN *x «es+ ®*EXPRESSION FOR #*

#*ENCODE A FIELD *Xeo
- »

SION LONG *
*ENOUGH #
* *

% FETCHED.NO GP *
XIS ALLOWEDJETC.%
ARERERRRRERANBEERR

#CHECKING LENGTH®
»

* L] *
EREREERABERERRTRR AEEERARRERRRERR T

*

-YES

.

.

x 16 - * 19
SRERBREEZABRERBRR » » 17 - * 18 FZERTFERREREREREREN
* ADD 1 TC THE # . » ® WERE * * ERROR »
* COUNT OF THE # » * YES * THE DIMN * NO * MESSAGC *

DIMENSION *eaeeeceseX® COMMA #ueeseeesX*® ENCLOSED P Raae
ARRAYS * IN PARENS # *
»* * - - * - - »
FREFFRRRBARERERER - * * * AEAFERERRRRERE RS
* *
«NO «YES
. .
. .
. eseeascsencsescansassercsrsensnsassnse
.
X . 22
E I 20 * * 21 AREREERRRRRERE RN
: HERE * * * * ERROR *
DIMN # YES * * NO ® MES3AGE *
’ENC TN PARENS. FesenenaoXt) =
* LPFLGA=1 * * * *
*SET OFF * " » .
* * * - ERERERREXEERRE NN
- » -
-NO «YES .
. . .
. . .
- . .
x 23 .
. REEFERBRRRERFERRR
M * GETCHA .
. PP S-Sie P
. #GET A CHARACTER®¥
. » "
- * -
- RARREAERRABEERR R
- .
- .
Xewooo .
X 24 25
* & ® 26 ARRRARRERERERERRE ENERERERRERRRRREN
s * COMPLETE THZ * * SET uP *
* THIS * YES #HEADING FOR THE®* ® DIMENSION #
* MDIMRT ENTRY. ®eceeneeseX¥VLE TABLE ENTRY®eeeeeeesX® REFERENCE *
* LPFLGB=1 * * X % ADDRZSS FOR #
SET OFF . * « % LSER PROGKAM *
- * ARERETRBRRERRTRER RERERRRRRA RN
- .
-NO . .
D .
.
X
AX 22 3]

* *
* EXIT ¥
*® -

3 *
EnnEw

M R N I A N SR Ao}

LINKAGE
On Entry

1. The calling sequence -- SIC, Mdimrz; B,
MDIMRF -- is used to put just the dimension infor-
mation into the available area of the expanded instruc-
tion unit located by the index word, Mdimrx. (The
dimension data for a DR or a DRZ without a name is
put into the unit.)

2. The calling sequence -- SIC, Mdimrz; B,
MDIMRT -- is used to make an entire dimension
entry in the vle portion of the symbol table. (The
dimension data for a DR or DRZ with a name or for
a SYN is put in the symbol table.)

3. The value field of $3 contains the character
appearing just before the dimension in the statement
field.

4. The value field of the index word, Mdimrx,
locates the available area in the expanded instruction
unit of the DR or the DRZ without a name.

On Exit

1. The value field of $3 will contain the character
immediately following the last dimension field.

2. The value field of the index word, Mdimrx, will
be updated accordingly.

3. The value field of $1 contains the location (dimen-
sion reference address) of the dimension information
whether the dimension information is in the vle entry
or in the expanded instruction unit.

USERS
MQR, MQS

FLOW CHART DESCRIPTION

Boxes 1, 4

Why must the dimension information be set up in a

new vle rather than in the current unit when the
dimension is on a SYN or on a named DR instruction?
The answer is that the dimension information must
always be in memory for these cases since a reference
to the name of the SYN or of the DR may occur any-
where in the source program. The entire symbol
table remains in memory throughout the assembly;

the buffer of the units is not necessarily entirely in
memory during any phase of the assembly.

MDIMRF (AND MDIMRT)

Boxes 1, 2, 3; 26, 24

If the primitive dimension entry is to be set up as
part of a vle, the MDIMRF's index words$ which define
its buffer area can be set up inside of the subroutine.
MDIMRT get these bounds from the table management
control block of the symbol table. Of course, when
the dimension entry is part of the vle other informa-
tion (pertinent to the vle) must also be set up by
MDIMRF. The starting position of the vle is saved
so later the total length can be computed and inserted
in the 13-bit field reserved for this purpose in the

vle because the vle by its vary name is not of constant
length. Since the vle contains dimension information
in the function (i.e., the vle is not in the format of
the regular symbol table vle), the@character is

put in the six-bit ID field. Note a regular symbol
table entry (with an entry in the dictionary portion as
well as in the vle portion of the symbol table) will be
made later at the end of Pass 1 for the name on the
DR. The vle entry being built up now does not have

a corresponding dictionary portion.

MAIN will take the location of the dimension infor-
mation supplied by MDIMRF and put this dimension
reference address in the unit. Then later when
MAIN is setting up the symbol table entry for the
name on the unit, MAIN inserts the dimension refer-
ence address in the field reserved for it in the func-
tion portion of the symbol table entry, Of course, the
final housekeeping of MDIMRF must include updating
the index words locating the available area in the vle
table.

Boxes 4, 5, 16

The five bit count field in the dimension vle is incre-
mented by one after GETFLD encodes each dimen-
sion. The if-evaluated indicator in the vle is set to
zero to indicate the dimension vle contains the
un-evaluated coded expression for each dimension.
Later after VDIMEN has evaluated and formed the
product of the dimensions, VDIMEN will turn this
indicator on.

Boxes 11-15

In the dimension entry a coded expression is made
for each of the n dimensions specified. Each coded
expression must be at least 24-bits in length because
later in the same area previously occupied by the

MDIMRF (AND MIDIMRT) 119

coded expressions will be the 24-bit evaluated dimen~
sion products. (See Appendix A.) The saving of the
starting location is done not only for making the
minimum length tests but also for marking the prefix
to the coded expressions if padding is added to the
coded expression.

120

CHART DE STRAP I1

EEEREEFRERRRRREE RN
* MQs =
B e o e W R
* MAIN'S *
#PROCESSING OF A%
* =

EREEARBRAEEEEE RN

% ®
#* DOES *

* THIS * NO
% SYN HAVE A EosesevseX¥®
* NAME * *

* =

L3
«YES
-
-
-

2
FERAFRRBFEREERERREE
ZERO WORK AREA.
*SET UP CONTROL #
* OF VLE PART *
% *

= »
EREREEEEERESEERRN.
.

e s e oo

3
EREERFRERERRERREE
* MARK SYMBOL *
*TABLE ENTRY AS %
* THAT OF A SYN *
-* *®

* -
EEEEEEER AR NIRRT

16
EEREEREERARAERRES
* ERRCR *
*® MESSAGE *

% *
EREERERXNEEERERES

EXEEE
» *

*

*
FesssesssseeeX® EXIT #
* ® *

= =
ERERE

-
-
.
-
X 5 6 7 8
= % % 4 FEEREEEAEERRTREES L At At EEEEERFAFEERELR RN E T
#* HAS * * TRANSFER MODE #* % TRANSFER FL % #* TRANSFER BS * * ERASE
THI * * INF FRONM UNIT #* % INF FROM UNIT * * [NF FRCM UNIT * * CODED *
*BEEN DETERMINED#® * TO SeTeEsse ¥eoee oX¥* TO SaeTeEee *oavesseseX¥ TO SeTeEws XeeseneseX®* EXPRESSION *
E * MARK SeTeEe * * MARK SeTeEs - * MARK SeTeEe * * IN UNIT *
#* ACCORDINGLY # # ACCORDINGLY ¥ % ACCORDINGLY * * -
- * £33 L1 EREEE AREREERRREEERRERE AEEFEREEEREXER RN
* .
<YES .
. .

.

0099060000000 0000008000000088scetseaesatssscessetcasossrrerrsosretttesroncnnosseree

16 17
9 23 *a EREER

* IS * * ERRCR * % SET UP SYMBOL *
® THERE * NO. * MESSAGE * *#TABLE ENTRY AS *

% AN ADDRESS FeoenesoasX¥ ¥oseesnseX¥® ONE OF AN *
- FIELD * * * *

*

-

* UNUSED SYMBOL
*

* *
= » . EE R RE IR RN AEEREEERERRREERR
*
«YES
.
.
MQSH 10
EERRBERERERERERER
g SET UP *

* GETFLD TO *

*PUT ENCODING IN¥

SYMBOL TABLE #*

*ENTRY {SeTeEs) *

EEREBSRERRRERERER
.

Hesooe

11
EREEERERERRREE T RE
= STEP UP *
bl FIELD *
bl COUNTER *
- *
* *
HEREEREERRRRRR KRR
.

lili‘illi!l'illi%
- GETFLD
e R N R R R W
*ENCODE ADDRESS
* FIELD

RS R RN

*
ERRRERRREE R R A
-

TR R R R R R R N A N N A AR N U N A A I)

Xe s oo

13 14

ARBERRRERERRERRRE
* MARK THE UNET *
® AS ONE HAVING ¥*

REEREARLRAX R AR AT
#RESET GETFLD SO*
* NEXT ENCODING #

% INCOMPLETE ®eeecscessX® WILL GO INTO *
= * UNIT

- VALUES
*

. *
ERREREERRRERAERER

AREA *
*

*
RERBEEREERERRE T

15
ARRERRXEARREEERAR
* MAK *
* ADJUSTMENTS #
eeX® TO ENTER MAIN #..
* FLOW *

* *
FEABEEEERRREEE RN

EEEER

*
= =
esaeX® EXIT #*
* =

=
rEERE

121

MQS

LINKAGE

On Entry

MQS is entered from the pseudo-op digit select table
with the comma in the value field of $3.

On Exit

MQS returns to the main flow of MAIN with a
comment or semicolon in the value field of $3.

FLOW CHART DESCRIPTION
Box 1

If the instruction has a name, Fname will have been
turned on by GETCHA.

Boxes 2, 3

MQS, not MAIN, initially sets up Msyte for the
name on the SYN instruction. Thus all the work
area has to be zeroed before MQS turns on the
miscellaneous indicators in the vle.

Boxes 4, 8

If the data description is determined, MAIN will

have turned on Zifdds during the processing of the
data description in main flow. A reference to the
name on the SYN instruction can occur in any unit,

122

but the units are not always in memory while on the
other hand the symbol table is. Therefore, the

data description information and the address field
information must be put in the vle of the symbol
table entry. Since the encoding is now in vle, the
location of available area in the unit is stepped back.

Boxes 10, 14

Main flow maintains the index word controling
available area in the buffer for the GETFLD
encoding. But now since the encoding of the
address field is to go into the symbol table entry
some adjustments have to be made before entering
GETFLD. After the encoding is put in the vle,

of course these special entrance conditions must be
cancelled because besides GETF LD's use of Befldx
to locate the area where the encoding is to be put,

MAIN also uses the updated Befldx to determine
where the contents of GETCHA's statement buffer is
to be inserted in the unit.

Box 13

Zifall is turned off for Pass 2.

Box 16

If the SYN does not have a name, the remaining
characters of the instruction are merely collected

so they can be printed on the listing. They do not
receive any other processing or analyzation.

CHART DF

AARXEERXEAERR RS
x MQTAIL *
L e R e e k. et 3
* MAIN'S TAIL *
»* PROCEDURE *

* *
EEEREERFREERRERER
.

Xo oo

1
EEEERREEEERRER RN
* GETCHA *
W WK K N N K
GET A CHARACTER
* *

* *
EEETEREREEEFEE R BT

KXo ¢ b e

* *® 2

STRAP II

9
EERAREREREEKEREER

TAIL

OR (MQTAIL)-—-PAGE 1 CF 2

*
*

3
FEEEEERREEE R AR

X2 S
*

13 ¥.00eX
*

ERE

0
*

* * * ERRCR * * PROCESS AS *
* SEMICOLON * YIS * MESSAGE * * 1ST Lavil *
OR HecoseenaXF Eoeesane s CE SEMICOLON *
* QuoTC * ® * * *
* * * * * *
* * EEFXRAREAARARERRS KERERERKEERLRERE R
* -
«NO . REER
. - ® *
. 2+ XEDG ¥
- x 24%
. AEEE
X
EEREEREEERR
* SWITCH *
* IN MAIN *
* TO BRANCH *
* *
® (22T
ERAREREEERR *
. * 13 *
. =
. xEx
. X
. o YES
X 10 *
x ® * 4 EEKEEHEEEHREERH R » * 12
* ® * GETCFA * * *
* % YES e B L
* t %eesesasaX®GET A CHARACTER®escaeaassX¥ NUMERIC *
* * * *
* * * * * *
c * EREEREEFRARRERRER * *
* *
«NO +NO
. .
. .
. .
x X
* % x 5 = % = 13
* * * *
* YES NO * *
* ALPHABETIC ¥esececsccenscscsccessersccscnsses sse ¥) *
* PO * *
* * .o . * ®
* * . X * =
* . ®EERR *
«NO D * S YES
- % 11 % -
. o * -
. . EREX .
X . X 14
EERERERRERERRERER N AREEREEIEARERREE R
* ERROR * . - GETCHA ®
* MESSAGE * . L e e e R
.o X ¥ * . #GET A CHARACTER#®
P * . * *
. * * . = ®
o EREREREEEEREREREN . EREIEAERERRRE X RS
*EEE . . .
* * . .
. 11 o= - . .
» * . . .
Py . R,
. .
X X 1S
o & EXREEERRRRET AR LR
* * * INDICATE *
NO * EFFECTIVE #* * 1ST LEVEL *
P } TAIL = 0 * * ATL *eaoae
= = *
* * (T2 * *
* * *DF * XERT XA N E KR
* 12%
+YES L
. *
. .
X MQTOUT x

R)

esesesccssXeXesoanssesessovocsssnscsossnse

EERREERRREE
.

X
EERER
®

* *
* EXIT *
* =

= *
ERERE

338
e 1 1
* SAVE *
* ACTUAL NUMBER *
* OF LENELS =
® TO BE LSED %
* *
RN NN RN ERE

R+
* SAVE NUMBER *
% OF LEVIL

* BEING TAILED
M

* M
AEREAEER R CRX R XR

1S
AEKEREEN KA REEE X ER
* COMPLETE TAIL «
* IN MCTHBUF *

*
ARLRERRTAREERRR RS

. ACD CNE

* TO TAIL COUNT
x

*

*
AEARE L AR XA AR R

Xeasaoe

2
EARERREEARLEEL XL ®
* ADDORD *
Ak e A — Rk m ke Rk
- ADC TAIL TO *
* ORDERED TAIL *

* TABLC *
EREEEERE XA EH RN

(ALREADY

X oo sssasesesesssena

23
AEREREEREREAERRRE R
STORE NUMBER IN#
* MQTAIL TABLE *
* BOTH IN LEVCL *

INDICATION ANU#
* IN TAIL COUNT =
AERFEREXREREER L LR

e s s

24
AR R EEERRARAER
*ADJUST COUNT OF *
* LEVELS ®
5 IN USE, ®
% IF NECESSARY *
* *
AEAEREERERRRERE LR

X
ERERX
*DG *
* 3%

% x

*

*
*eensnsnseX
*

*Xeeeoossessscsces
x

THERE)

cessessaaX

17
EAEEEEAEFEREAERER
® GETCHA *
Kk N N M K — R
XGET A CHARACTER®
- *

* *
EEEARETR AN N R

.
.
X
* % x 15
* *
* *
*) *
* ®
* *
* *

13

.
.

22
FAREEERRREXL BT R 2R
* SUETRACT *
* ONE F 0¥ *
* TAlL COUnT *
* *

*
*

*
EARAARRE R AL RARE

123

CHART DG STRAP II TAILOR (MAT)---PAGE 2 OF 2
E rnn
* * »
* 28 % ® 27 &
* * *
AR Exuw
. . EEERR
. . DG *
X X 428 * 24
REEERFERREEAEEERNR IR 40 O L E * %
* * * ZERr0 * * * INDICAT: *
L e e o T e] ® = * * COUNTER x . * 18T LCVil *
bl MAIN'S * *TO TAILEC LEVEL¥ * OF LEVELS * . * UNTATIL L
* UNTATL * . * * * BIZING USED * * *
* PROCEDURE * . * * * * * hd
AR T e X * * EREERRFEAERRERRNES EEEFERREET AR SRR
. *EXR » . .
. » * «NO N . EARE
- * 26 * . . - * *
. * * . . eeX¥ 21 *
. RN eXsoessevssnscnsssnassscans * *
. . AR
X X 48
% x * 25 %% a1 ERRANANUERANEERRS
* * * * * GETCHA *
* SEMICOLON * YES ®* SEMICCLON * NO D Bt e i Y
OR *eewsw OR *se0seeee s X®*GET A CHARACTER¥Xeao
L4 QUOTE * . * QUOTE * * * .
. * * .
" * X * * EEEEEREERE RN .
xmx *YES . .
+NO * * - EREE . .
- * 29 * . d * . .
. * eeX¥® 2B ¥ - .
. nEXR = * - .
. XX AR . .
X 26 X .
HERE AR AR TN LI 50 .
* GETCHA * * * -
L e T et o YES * .
*GET A CHARACTER¥ cos i SEMICOLON * .
* * . .
* » . * x .
L T T I T Y x * * .
. I * .
. * * «NO -
. * 28 * . .
. * * . .
. e . .
X 4398 X 49A .
* ® % 27 EEERRERRAAEEERERS * x o .
- * ERRCR * - * .
* SEMICOLON * YES * MESSAGE * L4 * YES.
* OR “eee * 2Xeweo) LEXRRY
- QUOTE . . * * - *
. * * ® *
* » x [e] * *
L3 Anex . «
«NO * * . 232
. * 29 x . ® *
. * * coX#® 28 *
. (X2 3] » *
. rEEE
X 35 *
% % ® 28 R Ty T Y P * * 42
. * * GETCFA * » -
»* * YZ5 R YR W N N N— B * ¥ YES
* (KeovoeoesXHGET A CHARACTER¥® e cesvssenensnesanscsacensassaansnaXh) LR
* * * * * * .
» * - » * * -
* * RERRERAERARNERERR * * x
» * Exw R
«NO RO * *
. . * 29 %
. . *
. . 222
X X
. % = 29 * %o 43
» * * *
YES YES «
* NUMERIC BeavsoscosnssceacseXooossoccoroncnnssocscaccsnsvrsoccssascossovsonnn® NUMERIC *
» - . * -
= » . 3 *
L . *NO
+NO - . R
. . . bl -
- . s X® 23
. . * -
. . - EE
x 30 X
L T LR 36
- ERROR - *
* MESSAGE * * ® YLCS
.o X¥® * * 10 %o evssssasvutsstcenosrresrensenssssaasseses
P * * * .
PO * * * .
. REEEARREFAABARREN) 3 .
rae . * .
* * . NY) .
* 23 ® M . .
® - . . .
e . . .
MQTXIT X 31 X X 4s
AREERERRERRRERRRE * * x 37 ERRAEEAEARRRRRNER HAKARERERRERNER N
* DETERMINE b * »* * ZERO * = ZERO *
* LEVELS * - * YES * FIRST NINE bl *ALL TEN LEVELS *
eeX® STILL TAILED *X.as * 9 ®osesneneX¥ LEVELS - * *®
. * » . * * * *] *
P * . * * * * * *
. EREEREEERERERREEE . » * ANREEREERRRE R R RN ERAERERRARERRE NN
* . *unw * . .
* * - * * ExEw «RO . xERE . (32
*DG * . * 28 x » .. P P *
* 23% - * R 21 *.X, caX® 22 X% eeX® 22 ¥
R . xuw * . » * * *
. xxe . rERE xR
X X 38
* %W 32 ERAARAANRARRE SN
* » » ZERQ THE d
NO * EFFECVIVE » * LEVILS *
RS TAIL = 0 * SPECIFIE *
. * * *
. » - * *
. * * EERBRAAREERRRN NN
. .
. +.YES wnn . naw
. . L4 - *
. . * 22 *,Xe * 26 %®...
- . - * * .
. . ranw . Awrw .
. X 3A X 46 X 47A
. EERARRERERE R 39 A T T T REARRERAREN
. * SWITCH * . LEVCL * * ERROR * * SWITCH *
o * IN MAIN * * UNTAILED * YES * MESSAGE * * IN MAIN *
. * TO NOP * GREATER THAN #ecvenesaX® L YO NOP
. * * TAILED LEVEL * *
. * * * » *
. ERERRAREERR * * L R T ERERAREANNE
. . * .
. «NO .
csseXe - M
X X
EHAER euw LX)
20F * * - * *
124 * 12% ¥ 28 % * 27 %
* % * * * *
* xnn (332

These subroutines are sometimes referred to
jointly by TAILOR.

LINKAGE

MQTAIL and MQT are entered from MAIN through

the pseudo op digit select table.
DETAILS

MQTAIL subroutine's information primarily consists
of: a string of ten consecutive 8-bit bytes each
containing the number of the tail associated with one
of the ten possible levels, a counter for the number
of tails in use, the number of the highest level
specified, and the number associated with the tail
most recently entered into the table of tails.

The method of internally representing the tails in
use is to append the collected symbol with a special
tailing configuration of up to eleven A8 characters
(*, ny, Ny, Ng, Ng, ... nlo). The asterisk
character, which is an illegal character for a
symbol, indicates there is a special tailing
configuration. The n represents the number of the
tail; the position of the n in the string corresponds
to the level of the tail. The string maintained in
MQTAIL's table is purposely preceded by an A8
asterisk character, so when MAIN has to indicate
tailing on a symbol, MAIN can just pick up directly
from the MQTAIL table the appropriate number of
fields. However, CPLTSY masks MQTAIL's table
onto the CPLTSY tail table which then can be
altered, if necessary, as described in CPLTSY.

FLOW CHART DESCRIPTION
Boxes 21 - 24

Each tail is numbered by MQTAIL and saved in an
ordered table. This ordered table has a control
block other than the one used for the ordered
symbol table. The number assigned to the tail in
its entry is saved both in the field of the string
which corresponds to the current level and in the
tail counter. Both are in MQTAIL's table. X a
tail has been previously specified, of course, the

MQTAIL AND MQT

number associated with the original tail will be
used. The counter designating the number of tails
in use must also be updated. If the current level is
greater than the number of tails in use, the counter
of the number of tails in use will be raised. X no
tails have been specified at levels in between, the
corresponding fields in the string will be zero.

Boxes 31 - 33

After MQTAIL or MQT has processed the TAIL or
UNTAIL pseudo op, the string in the MQTAIL table
must be scanned. This scan determines two things,
first whether or not Pass 1 should continue
appending the tailing configuration to symbols
collected, and second how many actual levels of
tails are to be used if the internal tailing is to
continue. It is quite possible that the last pseudo
op might have been a (TAIL(6), ;) where there were
only four levels of tailing prior to this pseudo op
occurring. So strictly speaking the count of levels
in use is six (from box 24), but the last two tails
are blank and really do not need to be indicated in
the configuration appended to a symbol. This scan
working backwards detects the highest level in use,
i.e., the highest rank of a field in the string with
a non-zero content. The count of levels in use
will then be reset, accordingly.

Boxes 10, 35, 43

Since GETCHA only gets one character at a time
for the using program, GETCHA will be called
upon twice to collect the level number whose first
digit is one.

Box 38

If a level greater than eight should fall through to
this box, only 'n mod(8)' fields in the string will be
zeroed.

Boxes 44, 45

—_— 2 =

The appropriate fields in the string of level
indications are zeroed.

MQTAIL AND MQT 125

CHART RE

126

STRAP 11 MULTIL
IS EL LS SRS RSS2
* MULTI *
LR B Bl T R B S 2t
* PROCEDURE FOR *
* MULTIPLY *
DEFINED SYMBOLSH
RERRRXAERERERRERK
.
.
x MULTIA # *
- x 1 * » 12 * = 13
* * * * * *
* IS NEW * YES * IS OLD * YES * ARE *
* SYMBOL ON A ¥eeswsseeX¥® A SYN FoeansosasX¥ VALLES
- SYN * * * - COUAL *
* * *
- * * * * *
* * *
« NO « NO « NG
MULTI1 X 2 - -
REEFRRERBREAERRRER . .
* - . -
- MARK AS * X .

L MULTIPLY X
* DEFINED WITH #
* CONTRADICTION *
AEREERRERERRRE AR

.
.
MULST1 X 3
ERERREERRANERERERE
- *
* SET up .
® VLE ENTRY ¥Xeueesoevoosanosoesnssasssssaseescsnsssnsesscaasaanssssass
» *
- *
RFERRERRFSERES RN
.
.
X * 6
* * = 4 * L 5 HEAERTRRRARRX RN R
* * » * MOVL *
* USING * Yrs * SYMBCL » YES L R R T
* NEw *¥eanvsasanX¥ MORE THAN 8 s« X¥ MOVE CXTRA *
- VLE * « CHAFR . * * CHARACTERS *
L4 * * * * TO TABLE »
- * » * N HERE R NE R
* * .
« NO « NO .
. . .
X .

sXsssese

x 7
REARERRXEEERBRAEN

* MOVE ENTRY *
* TO TABLE *

- *
EERERRBERERRERNEE

ceseene

saesee

.
.
x
FREEREEREREERBE R
*
* UPDATE =
* TABLE *
* CONTROL *
= RD -
RERERERRRFARRETERS
.
.
.
X 10
L 9 AR EREESEREEZ RSS2
- * * »*
® USING * YES * CHANGE *
* NEW oX% AIGUMENT *
. VLE * TO SFOW *
» - * NEW \ *
- * LA AR S SRR LSS SS
* -
. NO .
. .
. .
x 11 .
BEEFERRXBEFERERES .
» *
STORE VLE .

»
b LENGTH IN
- VLE JUST
=
*

%*Xesesovennsensnnnes
-

MADE
FRRARRARE AR AR

Xe o oo 0

EEERE

» .
- »*
* EXIT *
* *

- *
EEEEE

YES

¥ensananeX¥

R R R I R R N R R R R R R

R

kR Kk KT

*
*
*
*
a
=
x

*
2

«
*
-
*
-

* *
- * 14 * * 15
* * * *
* CcLD * NC * NEA *
HAS D33 FoesanooseX¥ HAS DD3
»* * * *
* ® * *
* *
« YOS . NU
uLTB2 X 16 .
RN R TN RN .
* .
USE OLD AS *
DDS REFERENCE *X
FCR NEW *
*
TRERAERE AR RRE
sXeaeesosasonsnsescccsssonssosssons
x *
* % % 17 x * 18
* * * *
* oLD A NC * NEW =
HAS DIMREF YesossaasX* HAS DIMRCF
* « *
» * » *
» * * *
* *
. YES .« N
x 19 .
I R Y P .
* .
oL .
DIMREF LEEETRY
TO NEW

*
[T Ty

sXesesesscscsssrsvecsscsncsnnnsanse
X *
oxo» 20 * * 21
* * * *
* oLe * NC * NEW *
HAS INDEX FasesosssX® HAS INDLX
*
« * * *
* *] *
* *
« YES » NO
. .
x .
HEEREREAARRRE R .
* .
oLn * .
INDEX *Xeooovsessvresnsnne
TO NEW *
3
L Ry e Y
.
X 23
EREEAERERRRERERE
*
MARK b
AS USING *
NEw VLE *
*
EAEEERRREARB AR

YES

Foves

-

YES

¥eeae

IR T

vees

YES

Fouas

-
.
.

DETAILS

Multiply-defined symbols are detected in Pass 1 and
MULTTI is the specialized subroutine which treats
them. A’multiply-defined symbol may be either a
legally multiply-defined symbol or an illegally
multiply-defined symbol with contradictions.

If the symbol is legally multiply-defined, MULTI
will change the dictionary portion of the symbol table
entry to locate in the vle portion of the symbol table
the new updated vle. This updated vle contains all
the accumulated information so far specified on the
symbol. Any of the properties given on a previous
definition will still hold.

If the symbol is an illegal multiply-defined-with-
contradictions symbol, then MULTI will not change
the dictionary portion of the symbol table entry. The
dictionary portion of the illegal multiply-defined
symbol will still locate that vle which contains the
old parameters.

In either case, there will be at least a basic vle
entry made in the symbol table for each name
encountered. (For the subroutine, ANEXT, in Pass
2 there must be a corresponding vle in the symbol
table associated with each expanded instruction unit
marked as having a name.) MULTTI has the additional
entry made in the vle table for the multiply-defined
symbol.

MULTTI also marks a multiply-defined symbol with
(or without) contradictions as such in its vle entry.
NUNDSY in Pass 2b will then be able to detect the
appropriate entries in the symbol table to be printed
on the listing.

It is possible to add a data description, dimension
properties, and/or index to a quantity previously
defined. Consider the following example where the
symbol is a legal multiply-defined symbol:

A SYN, 32.0

A SYN (BU, 32), 32.0 ($2)

However, it must be noted that the values for the
symbol, i.e., for 'A' in the example, during
assembly time are the same.

MULTI

FLOW CHART DESCRIPTION
Boxes 14-22

MAIN has already set up in the Msyte intermediate
buffer the function part of the vle portion of the
current symbol table entry. Of course, none of the
current vle material is in the symbol table because
after the subroutine, ADDORD discovered the symbol
was multiply-defined, ADDORD effectively went to
MULTI. MULTI now makes use of the information
already set up in forming the new vle that will go into
the vle table. On a multiply-defined symbol without
contradictions, it is not possible to overrule a data
description, dimension property, and/or index
previously specified.

Boxes 16, 19

The dimension reference (dimref) address field in
the function of the vle locates the dimension informa-
tion usually in another part of the same function.

The data description reference (dds ref) address
locates the beginning of the function portion of that
vle which contains the needed data description infor-
mation.

Box 8

The address of available area in the vle table is
updated. The count of the number of symbols remains
the same.

The following case illustrates an illegal multiply-
defined symbol with contradictions:

B L, JOE

B L, JOE($2)
Here the illegal symbol 'B' has different values
during the assembly process. The symbol table entry
for the first 'B' is used in all references to this
symbol.

MULTI 127

CHARTY DI

128

EEEREREEERERREREE
»* *

LR R S el t St S
* MAIN'S *
* CXTRACT d
* PROCESSING -
EUFRERAREATRERRREN

Xe oo

1
E
#SET I[NDICATORS *
* IN UNIT TO *
* MARK LT FOR *
* PASS 2 -
* PROCESSING *
EERERRERREREERARN

-

* NO-GePa
* INDICATOR
* FOR GETFLD
*
*

X 3
ARERERRR AR RERRRT
* GETFLD *
E e e e
*ENCODE L FIELD *
* *

» »
ERERARE NSRS

- *
® NO - G.P, ¥
*» INDICATOR *
* FOR GETFLD =
- *
= -

ERENREERERE RN R
.
.
&6
ERAREXRAARRERRE RN
GETFLD »

R B e -
#*ENCODE LP FIELD#*
» *

* »
FEEERRASREEERB AR

* = NO

* COMMA ®eoessovscscsncssssnssencesvsnsons Xt)
» *

MXD 8
ARBHEEREEEAR R R RN
* TURN ON *
* NO—GeP. *
INDICATOR
+ FOR GETFLD *
L] *
. *

HEERARBRERERE NS
.

.

X 9
FERRREEREBERNRAER
- GETFLD *

L o R
RENCODE N FIELD#*
* »*

» *
ERBEERARRERE R RN

STRAP 11

rxE Y1
* * *
L T * 2 »
* * x
xnn 213

. .

X 14 X
AEEERXRFARARRARIRE * ® % 10
* TUIN ON * * *

* NO — GePe * * *

* INDICATOR %¥Xouesussseenrsscanncsssvsocavsennsnel) *
* FCR GETFLD * * *

* * * *
RERERAEAREEFRERRK * *

- *

- «YEn

. .

x X

P

EEEE TR

EEBFRAERERELR LR
* ADJUST UNIT.
* ADJUST BINARY
*OQUTPUT IN UNIT
* TO

* SIC.$15 DBEL,0
EREAEBRERREA LR

Xe o0

16
FEREERREEFERER LR
*¥ADJUST TO ENTER¥
* MAIN FLOW SO *
* REST OF CARD »
* BLOCK witlL BE *
* COLLECTED *
FEERRAXERRERENERR

Xe oo

L2
» *
* EXIT =
* 'Y

* *
[T 222

Xe e e s e v s a st e ne s x

13
HERREARTRR AR ERRER
®MAKE UP SPECIAL®
* ENCODING FOR *
*THE UNSPECIFIED®
* N PARAMETER -
* FIELD *
FERARRRRAAAERRER R

X
renn
- ®
* 2 =
» »

1
EERERRERRRERAEERR
®ADJUST TO _NTZIR*®
* MAIN FLOW SO ®
* NAIN WILL SET #
%¥UP NEW UNIT FOR®
*INST.TO BE CXTa¥®
EAAERERERR RN A ANRS

.
X
*

* «
* *
* EXIT *
* *

N
P

LINKAGE
On Entry

MX is entered from the pseudo-op digit select table
with the left parenthesis still in the value field of $3.

On Exit

MX returns to the main flow of MAIN with the right
parenthesis in the value field of $3.

FLOW CHART DESCRIPTION
Box 1

The Zifp2 indicator is turned on to show that there
are coded expressions in this unit to be decoded by
DECODE; Zifall indicator is turned off to indicate
that not all the values of this unit are obtained.

Boxes 2, 5, 8

To prevent a general parenthetical field integer entry
from being allowed on the parameter, an indicator is
turned on before entry into the encoding subroutine,
GETFLD.

Boxes 3, 6, 9, 11

For the EXT statement Pass 1 creates 2 units. The
first unit is for the parameters, i.e., the GETFLD
coded expressions for the parameters are put in the
variable part of the first unit. The second unit is for
the binary output producing instruction on which the
EXT op is to operate. Note the statement to be
included in the first unit is considered complete after
the right parenthesis has been received from GETCHA.
The statement to be included in the second unit is con-
sidered complete when the usual terminating semi-
colon is received from GETCHA. When the second
unit is being processed of course it will be treated

in Pass 1 as if it were a regular unit. Pass 2 will
evaluate the expression and save their values. The
OUTPUT routine performs the necessary extracting
on the binary output of the second unit.

Box 16

The only processing of the remaining characters will
be to collect them in the unit for later listing purposes.

MX 129

CHART DJ

130

FARERRERFEERERRRR
* XINIT *

#INITIALIZATION %
* FOR I-0 bl
SUBROUTINES *
ERFERFERERFRERRER

mXe e o0

- -
3 *

- * YES
® 1ST IN CHAIN ®uceccscccvscsnssccasccscnsccssaansaX¥h
» * *

- *
- *
*
NO

aXe e e e

- *
* *

* *
- -

*
«NO
.
.

.
XINITL X 3
FRERRRFERRBRERAER
* DETERMINE &
* INPUT »
* ARC »
* ADDRESS *
- »®
* *

ERBRRESRRBIRRAN

.

Xesoeeseeensesnssssse

4
FERRRRERERR SR BN
SET UP CODE *
CONVERSION -

ROUTINE bt
3
»
*

EE R R]

HERBERERRRRRRE R
-

s

]
REREFRERRT SRR RRR
#SET UP BLOCKING®
CONTROL INDEX *
* WORDS *
* -
* »
(2222322222222 2223

.

Xeoss oo

6
ERREARERRREREETRER
* SET UP INPUT #
CONTROL WORDS *
-
*

- »
FRRATREARRBEERENN

STRAP 11

FOFR
®oeeesessX® INTERMECIATE
* *

7
RRRRENEXERRERERRN
*TURN ON SPOOLO *

» * YES » »
%* SYSTEM INPUT ®oceeccceX®
* * »*

* »
ERERERAERRER TR

8
HAERERERRARRRRRRE
*DETERMINE ARCS #
L *

AND NAME FILE ¥

*
AEEERERBEFERERRNE

XINIT

*eseevescsvovoveeX
-

Keosessoossossssscsccccsssvecsssosncosvsssnsncsccsnosnnms

9

EEEE2 RS2 X2 22222 2
* SET COMREC *
ol FOR SYSTEM *
INPUT *
*

* *
ERRREERRRRRERERER

R R N AN I AN N I AP R A SIS

REREE
* *

- *
¥eessensscnseX¥ EXIT *
» »

® *
rEEER

LINKAGE
On Entry
The calling sequence is: SIC, Xret;B, XINIT.

On Exit

The following is accomplished before return is
made:

1. The input source is determined and proper
MCP calling sequences are set up.

2. The code of the input data is determined and
linkage to convert routines is set-up.

3. The blocking control is set up according to the
number of cards per arc of input.

4. The input buffer is filled.

FLOW CHART DESCRIPTION

Box 1

The COMREC is examined to determine if STRAP II
is first in the chain.

Box 9
The eighth word in COMREC is set by STRAP II fo
indicate System Input, card code, and a blocking

factor of one. Spool0 is turned on.

Boxes 2, 7

If System Input is indicated by the COMREC, Spool0
is turned on.

XINIT

Box 3

The input arc address is obtained from bits 0-17 of
word 8 of the COMREC and saved in word 0 of the
input buffer. The value field of the blocking control
is initialized to word 1 of the input buffer.

Box 4

The input code specified by bits 25-27 of word 8 of
COMREC is determined by digit selection. The
address of the conversion routine is stored in the
branch instruction following Xreada.

Boxes 5, 6

The blocking factor in bits 48-63 is stored in the
count field of the blocking control (Xblkl), and in
the System Input calling sequence. In the case of
disk input, it is also multiplied by the number of
words per card to obtain the word count of the read
control word.

Box 8

The number of arcs in temporary working storage
is obtained from word 1 of COMREC. One is
subtracted, and this is used as the starting arc
for the name file. Available arcs on the disk are
divided in the ratio of 1/32; 1/32 assigned to the
name file, 31/32 assigned to the intermediate file.

XINIT 131

CHART

emen

e

sevsss e

.
-
-
-
-
-
-
.
.
-
-
-
-
-
-
-

-
-
-
-
-
.
.
.

-
.
.
-
-
.
.
.

-
.
.
.
-
-
-
.

.
-
.
«YES

coee

132

X1 STRAP

RREEEREE RS RN
* INPUT *
L e e S ad
* GET CARD FROM *
#REGULAR INPUT. ¥
CONVERT IT *
ERAERARRARARRE AR

.

-

.
esessnaXeXesoosvoose
.

x 1
ERRERERE RN RN

184

seessassessnsescscessssnncscscnns

* WAIT FOR =
= BUFFER -
* FULL *
» -
- -
Eal 2222212222222
.
.
.
.
.
.
X 2
= ® %
* XSP1 * o
ess
. * (TURN OFF)
- *
= *
«OFF
.
.
.
.
XINSP3 X 4
(A2 2222 2222222222
» CONVERT -
* DATA TO A8 %
* AND MOVE TO %X
GETCHA BUFFER #* .
- - .
»-ew RERRRRXBRRR -
. AR
- *
- * 1o
- ”
- ERER
.
x s
* % »
» REENR
* xsp2 * ON *
» FeeaoX® 2 %
L #(TURN = »
- * OFF) En
- »
«OFF
.
.
.
.
X [}
Lzl 222222222222 2]
- STEP -
d BLOCKING ol
hd CONTROL -
- -
-» -
FRARBEARRARRARR AN
.
.
.
-
.
x 9
* » e
- * REN
» END * YES * *
» CARD foeweX® 3
»* - - -
» - HRRE
- *
-

1.3
» "

EMPTY
-
* *
» -
«YES
.
:
X 1t
RERRBERBERREN
» FILL *
» BUFFER .
* CARD »
* *

R

-
.
.
.
-

XINPUT

“eeescecsssccssnssccssnnsascsne

EERERREERRERERRER
* XINSP1 *
L R N R . o
* GET CARD FROM ¥
*REGULAR INPUT. *
#DO NOT CONVERT #
FERRERRERT RN NN N
.

Xesons

13
RERRBRREERRERERRR
* TURN ON -
* XsP1 *
* -
* »
= -
AERRRBEXIANERRERE R

.
sesesscss

sesensene

e e s o esasoe

* MOVE DATA *
UNCONVERTED
* TO GETCHA *
* BUFFER *
* *
ARRARRERRRTERERER

s

ser I e s s et s a e

.
-
-
.
.
.
-
-
.
-
.

.
X 12 X
- . n LX)
- - * *
* BL ANK * NO * EXIT *
- . CARD ®esesssvencsasccnssssnsoccosvssccanernos Xt *
*
» - * *
- * LT 2T
-

FRRFREERRERNER LR
* XINSP2

Lt B S B B 2 B 2 2
* GET CARD FROM #
* COPROCESSOR'S *
#* MEMORY BUFFER *
REREXRRERRERXLARRRSE

.

.
.

14
W R IIN AR RER
% DETERMINE *
* CODE_OF -
* INSERT DATA, *
* TURN ON XSP2 *
* *
* *

EEEEEREEERARE KRR

EXE 2

xXe s 0
o

7
REEFERSRRERERERER
* TURN ON »
® LAST INSERT #
4« INCICATCR *
* -
* *
RERXBERARAREERETAER

.

.
-
.

.
.
.
.
-
.

eXsoesnsnvsvns

.
X
RERRS
* *
* EXIT *
» -

*

* *
EREER

LINKAGE

1. The first calling sequence to XINPUT must be:
SIC, Xret; B, XINIT.

2. This usual calling sequence causes XINPUT to
place at the location specified one card converted to
A8 code:

LVI, 15, $+2

B, XINPUT

, 'Address to place card.

B, "Return if non-IBM character
is encountered during CCT.
A8 conversion.

B, '"Return if end of file from
input source occurs before
END card is discovered.

Normal Return
3. This special calling sequence for the copro-
cessor's "want another card image' option causes
XINPUT to place the next card unconverted at the
address specified:

LVI, 15, $+2

B, Xinspl

, 'Address to place unconverted
card.

, 'Spacer (not used).

B, 'End-of-file return.

Normal Return
4, This special calling sequence to get the copro-

cessor's inserted card images causes XINPUT to
supply the next ""X" number of cards from a location
other than from usual input source. ($7 must be set
up as follows: VF, location of input data; CF number
of cards to insert; RF, code identification number.)

LVI, 15, $+2

B, Xinsp2

R 'Address to place card image.

, 'Spacer (not used).

3 'Spacer (not used).

Normal Return

DETAILS

The input is obtained from the System Input if
STRAP 1I is the first member of a chain, or from
the disk if other than first in a chain. The input, if
from the System Input, is assumed to be in IBM

XINPUT

card code; if the input is from the disk, the

address of the first arc of data, the input code, and
the number of cards per arc are placed in word 8 of
the Communication Record by the pre-processor.

In all cases but one, the data is converted to A8
code and placed in the location specified by the
calling sequence.

FLOW CHART DESCRIPTION
Box 1

The instruction---BB, Xind2, $-- is encountered
to prevent processing data before the I-O operation
is complete. The bit is turned off by the EOP
interrupt.

Boxes 2, 3

Xspl is a bit indicating that entry was made through
the ---LVI,15,$+2;B, Xinspl --- linkage. If on, a
card image is given without being converted to A8
code. The blocking control value field is incremented.

Box 4

If Xspl is off, a card from the input buffer is
converted to A8 code, and placed at the memory
position specified.

Boxes 5 -8

Xsp?2 is a bit indicating that entry was made through
the--- LVI, 15,$+2;B, Xinsp2 --- linkage. If on,

it is turned off. The count of $7 is checked for zero.
If so, a bit is set indicating that the last card from
the special source has been given, and return is
made. If Xsp2 is not on, the blocking control value
field is incremented.

Box 9
The card supplied is checked for the END pseudo-op.

If the END card is found, return is made. If the card
is blank, an indicator is set.

XINPUT 133

Box 10

The count in the blocking control is checked for zero.
If zero, all cards in the input buffer have been used
and the buffer must be refilled. If not zero, the
blocking control count field is decremented.

Box 11

If STRAP II is first in the chain, the buffer is filled
by the System Input. If not first in the chain arc
address of the next block of input is obtained from the
first word of the exhausted input, and the buffer is
filled from the disk: Blocking control is reset.

Box 12

If the blank card indicator which may have been set
in box 9 is on, the card is ignored and a branch is

134

made to box 1.
exits.

If the indicator is not on, the routine

Box 13

Entrance when the next card is desired unconverted.
Xspl is turned on.

Box 14

Entrance when a card is desired from a special input
buffer. $7 is inspectéd to determine the memory
location of the source and the number of cards in the
special input. The code is determined and linkage to
the proper conversion code is set up. Xsp2 is turned
on.

MAJOR LOGIC AREA IN THE BETWEEN-PASSES PHASES OF STRAP II

UITER ITERate over the symbol table Iterates over the symbhol table to establish a data
description and value for each symbol in the table.

UITER

LINKAGE Boxes 7, 15 (after Pass 1)

UITER inspects the symbol table twice, once be-
tween the end of Pass 1 and the beginning of Pass 2a,
and again between the end of Pass 2a and the be-
ginning of Pass 2b. Each time it is entered with
a--B,UITER.

DETAILS

UITER iterates over the symbol table to establish
a data description and value for each symbol. UITER

also computes the memory bounds of the program
being assembled.

UITER maintains a pushdown type table at the sym-
bolic location, Utab,
The 64 bit entry in the Utab table contains: in positions
0-23 the location in the symbol table of the problem
symbol and in positions 32-56 the level in the sym-
bolic chain. An entry in the Utab table is made each
time VALUE returns through Vbreak while UITER
is processing a SYN chain. In coordination with the
Utab table, UITER uses three index registers which
have the following significance:

Symbolic Field Contents
U3 ($3) vValue The location in the symbol table
of the base symbol in the chain
U4 ($4) Value The location of the latest entry
made in the Utab table.
Count The current level of evaluation.
U9 ($5) Value The location in the symbol table

of the symbol currently being
evaluated by UITER.

FLOW CHART DESCRIPTION *

After initialization we determine whether or not we
are in Pass 1. (Np2ind is zero if we are in Pass 1.)

*Flow chart of UITER on next page

Get each symbol table entry by branching to ANEXT,
When there are no more symbol table entries, leave
UITER.

Box 8

Space to location of function in order to investigate the
entry. The delete mark, the field indicating the length
of the entry, the ID field, the field indicating the
length of the remainder of the argument, and the
remainder of the argument precede the function

field in the vle. :

Box 9

Branch-on-bit-and- set-to-one Zst0 (everything
defined and computed) and then go to ANEXT to get
the next symbol table entry. By '"everything'' it is
meant value, dds, and dimension properties.

Boxes 16, 31

Branch-on-zero-bit Zst3 (existence of dds reference
has been decided). By dds reference address, it is
meant a location to find the address of a dds.

Box 23

Test for circular value by seeing if Zstl7 (processing
bit for mode) is on. If value is circular, give refer-
ence address of zero. Branch to VALUE subroutine
to establish dds reference address.

Box 17

Branch-on-bit Zst32 (use dds reference address) to

box 10. The dds reference address is only used if
the dds is implicit.

Major Logic Area -- Between Passes Phases 135

CHART GB

136

STRAP 11

UITER

1 UGOA 7
LEZ 22221222222 2223 A2 2222222222 22222) ERERRE 15 ARRRN
» VITER » * ANEXT * *
LET Bt 2% B2 2 2t Bt 2 R ReR-R-#-2NO MORE - * »
#® ITERATION +# essX® GET SYWNBOL %eessessercesX® EXIT * * a0 »
* THROUGH THE * « % TABLE ENTRY * - * * »
® SYMBOL TABLE *# . ® - . * * *
ARERFRABRTRRHA RS HERERFERRAABRRRREE SEREE REZ 22]
. «MORE x
. . . .
. . . M
. . . .
. . . .
o . . +YES
X 2 . X 8 yDoS 23 *
ARFERRERFRERAR RN - HRERRREEFTRRRE RS AR 2222222 22222232) - - 31
» * - »* * - *
» * * SPACE TO * * TRY TO
* INITIALIZE * ® L OCATION * X®* ESTABLIS *
* » « ® OF FUNCTION * . * oos REFERENCE
= * . = * . ADDRESS
(2222222222222 2223 - REXAFERSRREFRRBEE » » Il*’.lil‘ll!i’i’! - -
. . . . - -
. . . . -YES «NO
. . . . - .
.
.
. . .
x 3 . X . x = x
E2 2222 22222222 X223 - * & ® 9 - > ® = 17 - * 24 REERE
" ERRIN * . - * . - * -
BB E B WR- ko E-RPASS]e *EVERYTFING # NOo YES #SHOULD DDS * NO * MODE * NO * *
* INITIALIZE #..00Xe * DEFINEC AND .. ccvee.*REFERENCE ADDR ¥eeomessoX¥ KNOWN FecesessascasX® 41 ®
ERROR MESSAGE * . * COMPUTED * . + BE USED % * *
* ROUTINE » - - - - . - * *
AR BRARBIRRRRRRR - - * - * - * * EEEEE
+PASS2 . * =
«YES ves
.. .
- esesssscscenene .
. . M
. o .
. x X -
ERERR - * % = 18 * % = 25 - - 32
- - - * »* * *
* » . # SYMBOLIC * NO * FIELD * NO * SYMBOLIC * YES
* 40 * eeoX® FIELD LENGTH #.aee LENGTH . eeX* FIELD LENGTH ‘*acae
* - * EXIST = . +ESTABL ISHED® * EXIST ® .
* » . * * » -
AERRE . * » - * » - - -
. P . - - .
eXeassssasass o «YES . «NO -
. -
. -
. . . . cssssessersrsscsssscanancae .
. . - . . .
X 5 UvAaL X . x 19 . X UEVALA 33 .
FERRAERSRSABRRGRER * » - FABFRERRBARBRERRE - ERERR LR 212212222222) -
. . * REAL - . VSKIP . * » .
ESTABLISH * YES . e m—m—Red—W-_s—¥ X * - * GET VALUE *
...ll HI LO VALUES # Txeew COMPUYEC AND » « * SPACE OVER %ececececeseeX® 42 # * OF SYMBOLIC #Xa.s
. . * ENTERED # . CODED * - - ENTRY .
. « * EXPRESSION ® = * » *
'.."l.'llll".li . * * . HBRRERERBTRERNERRE sXREN I Z 2222222222222 2 3
. . x .
. «NO . . .
. . . .
N
.
. . . FeLoNOT. «YES .
6 . X 11 - ESTAB o 20 * X
ARERENERRESERRANS - L3222 22222 222222] - I I 2222222222223 - - 26 - ¥ = 34
» MACHER . . ® » . = KAMMS * * REAL *
L e e e . 0w TRY T0 - Fo LofoRoBoW—R—N—t-t—¥ usvsnvrnmc * NO # VALUE #
» ERROR ®aseaXe ® ESTABLISH # csee® ADD_AND #Xesseoose® DEFINED AND *Xeeeesess® COMPUTED AND *
- ROUTINE » . w A VALUE . ESTAB® COMPARE . * COMPU‘I’ED * ® ENTERED #
- . " » [3 RESUL » * * »
BRBRFLBRAERTRRARR FEEEERRRARBERERD . EREBEFRARRERRRREER » » »* *
x . . x » *
. . . . +YES
. . . 4ecscccsasasssecsscavessctecssetatnsnccsannensessorone
. . .
. . .
. . .
. . X 21 LBSt »
RN - - » % SEBRFRERRRRRERARR * - 27 RN
. » * REAL # * SPACE OVER * * - . -
ES # VALLE ® ®* CODED EXPR * YES * BYTE * - »
* 41 = eXeo® COMPUTEC AND # eeeX® IF SYMBOLIC #Xees - SIZE cssecssee® 42
. * ENTERED # - % BYTE SIZE * SESTABLISHED* » *
- - - - - - EXISTS » * * *
HERRR . - - - ARARREARERERERERE R * - R
x . - . B -
. . «NO . - «NO
.
.
. . . .
.
. X - X X UEVALA 35
- LN 13 - *» n 28 EEARRARRRE RS RBRE
- - * - - . - *
. NO . . - NO * SYMBOLIC * YES GET VALUE =
. cee® PASS 2 . . I 43 Xeeceeeceecce® BYTE SIZE | #l.......XP OF SYMBOLIC *eees
. - .] ® EXIST *® * ENTRY .
- * » - * * * -
- - - . ERERR * - l!.li'l.l..l'.l" -
. * . x . .
. .
. cevesssesressasersasssesnssssenasennns .
. X . -
. . . .
. . «NO .
. BeS.NOT.ESTAB 29 . .
EEAN - .’G.’GI*'.I*.I’"{ L - 36 -
» * . KAMMS * AL * .
. B.s.---—l — A k—E— % YES % VALU .
* a0 = . cvsane ADD _AND #Xeoseseeoak COMPUTED AND *Xeoo
COMPARE : * ENTERED
* RESULTS
RERE Ilillillillllllli * *
X -
.
eXeotosoescsssssciesssnnnes
. .
. .
+NO <YES
* * UVALC
NERER L * 14 - - 22 EERBRBRARBAN AR
* L4 . - . RESTORE *
* . YES NO IEVERVTHING » * ORIGINAL * = .
® A1 #Xeeessvcessse® PASS 2 #Xeessseao® DEFINED AND #Xeossseee® ENTRY TO #Xeceosenasaee® 43 *
- * » CONPUT - LOC IN U3 » * -
- * - - * *
‘“nenn * » - » URBHEERERERRERE RN SERER
* »

Box 24
Branch-on-bit Zst10 (mode known) to box 25.
Boxes 10, 12

Branch-on-bit Zst26 (real value computed and
entered). By real value it is meant that we know the
value of a symbol.

Box 11

Test for circular value. If circular value, assign a
value of zero; otherwise branch to VALUE to attempt
to establish a value. In the case of a DR whose
dimension product has not yet been formed, branch
to YVDIMEN. If the product of dimensions is not
formed by VDIMEN, turn off Zst0, and continue.

Box 13
Branch-on-zero-bit Np2ind (Pass 2 indicator) to box
7. The value should be established by the end of

Pass 2a; if it is not, branch to MACHER (error sub-
routine).

Box 25

Branch-on-bit Zstll (field length has been estab-
lished) to box 18.

Box 32

Branch-on-bit_Zst12 (symbolic field length exists)
to box 33.

Box 18

Branch-on-zero-bit Zsti2 to box 27.

Box 19

Branch to VSKIP subroutine to skip the pointer over
the coded expression for the field length because
the field length has already been established.

Box 20

Branch to Kamms procedure in DECODE to test
whether the field length was properly specified,

i.e., to see if it is not more than 64 bits and not

in bit style. An illegal condition causes both an error
message to be given and the field length to be trun-
cated. (Bit and integer values are combined.)

Box 27

Branch-on-bit-and-set-to-one _ZstQ (everything
defined and computed) to box 27.

Boxes 33 and 34

Described under boxes 11 and 10, respectively.

Box 2

Branch-on-bit Zstl4 (byte size has been established)
to bhox 27.

Box 28

Branch-on-bit Zstl5 (symbolic byte size exists) to
box 35.

Box 21

Branch to box 30 if symbolic byte size does not
exist. If symbolic byte size does exist, branch to
VSKIP subroutine to skip the pointer over the coded
expression for the byte size because of the byte size
has already been established.

Boxes 35 and 36
Described under boxes 11 and 10, respectively.
Box 29

Branch to Kammsg procedure in DECODE to test
whether the byte size was properly specified, i.e.,
to see if it is not more than 8 bits and not in bit style.
An illegal condition causes both an error message
and the byte size to be truncated. (Bit and integer
values are combined.)

Box 22

Branch-on-bit-and-set-to-one Zst0 (described under
box 9) to box 10.

Box 14

Branch-on-zero-bit Np2ind (Pass 2 indicator) to box 10

Boxes 4, 5, (after Pass 2a)

Branch to ANEXT subroutine to get each hi-lo entry
made by Pass 2 in the vle table; establish the memory
bounds of the assembly.

Major Logic Areas -- Between Passes Phases 137

MAJOR LOGIC AREAS IN THE PASS 2 PHASES OF STRAP II

Includes the Processing in the Following

NPS2 Main Flow for Pass 2 Subroutines and Subprocedures

DECODE DECODE coded expressions Resolves the coded expressions in the expanded
instruction units.

INTIN INput the INTermediate expanded Reads the intermediate expanded instruction units

instruction unit from disk for processing during Pass 2 and
writes them back on disk.

INSERT INSERT values into the binary Performs the necessary address arithmetic on the

output skeleton bit and integer values provided by VALUE, and
inserts the results into the correct field of the
binary output skeleton.

NEXT Pass 2's EXTract procedure Has the expressions of the parameters evaluated
and saves the values; adjusts the companion unit
accordingly with the proper updating of the
location counter.

NMC Pass 2's MCP procedure Completes the symbolic card image in each MCP
expanded instruction unit for the later punching
and printing by OUTPUT.

OUTPUT OUTPUT the final documents - - - -~ -

NAMEIN Bring a NAME IN off the name file Fetches each name to be printed with its instruction
on the listing.

ERRNUM Get the ERRor page and line Computes the page and line number for each entry

NUMber in the five lists of detected programmer errors;
puts the second and fourth lists in order according
to page and line number.

OPPUN Output's.PUNching procedure Puts the STRAP II binary on an output device.

OEDIT Output's EDITing procedure Sets up the carriage control character for each-line
to be printed; provides both the heading which
appears on the top of each page and the total line
message.

OPLIST Output's LISTing procedure Puts the listing on an output device.

NQBTP PUNSYM procedure Creates a card image for each symbol specified
individually by a PUNSYM or collectively by a
PUNALL.

NUNDSY Pass 2's UNDefined SYmbol listing Sets up and has printed the lists of symbols that
are undefined, multiply-defined, circularly
defined, and the ones never used in the program.

ERRPRT PRinT ERRor messages = =« - -

138

CHART DC STRAP [1 DECODE

*
R * * 1 R
- DECODE - * - » -
o R e S T # ALREADY * YES * -
= DECODE FeeesesesX® DECOCED ¥eiesasesscss Xt EXIT *
* CODED * * - » »
* EXPRESSION * * * - -
ERERERERRBREERREE * * *ERER
3 KB S
* ® ® * * AERRRBFRERERERRRE R
* DOES = * * * EVALUATE »
® UNIT * YES * DDS + NO * DDS *
= HAVE FeceeeoseX® EXPLICIT #eeeeceeeX® REFERENCE Fececsscssnsccsccsc
* oDs - * = * * .
- = * »* L] * -
- * * * E2 2222222222222] »
* * .
«NO «YES .
. . .
- . -
. . .
- . .
- X 4 6 KAB X 7
. * % ® RERFREREREEREEERE * * # EREEE
- * * LOOK UP * * * = *
. ol * P MODE * * DDS * NO * *
. * DDS BY F MODE SYMBOL *e o X% ESTABLISHED FessesscsssseX® EXIT *
. * * * * * * -
. * * *) - »* * 1]
. * * FEEAEREEEEREE LR * * EEREE
. * *
. «NO s YES
. . .
. . .
. . .
. . .
. - X 8
- - AEEREFEFRBRERRR R
. o * PUT DDS »
. x = IN *
R R 1 UNIT *
. * *
° * *
. EEREREERHRERFERRER
.
-
.
.
-
-
KE X KEBA 10 * 11 13
TR RERE RN * * HEREEEE RN RELE RS
VALUE * * = » INSERT *
EIE B R e e = - VALUE * YES [T S S N Tt S N 3
EVALUATE ®oeseseeeX¥ AVAILABLE LYY «X*INSERT VALUE IN#*
#* ADDRESS ‘FIELD * * * * BINARY OUTPUT *
= - * * * * * *
* - REFRAEREFAERRREER * L3 EES 2222222222222
* » .
«YES . =NO .
. - - .
- . - .
. oXeoo ssesscsccns
. . .
- . X 12 - 14
. . LR - * EREaw
. . * #* * * *
- M . YES % ANOTHER * NO * A = NO . * [
. sXeessosnssscsnsses® FIELD *esesscsa X GP ®oeeeessscscaX® EXIT #
- - * * * * X * *
. . »* = - * . * *
. - - - - . RAEE
- . * -
. . «YES .
. seecceccescssccsccsssncscsvcssssnscccons . .
- . .
. . .
- .
KF X 16 KDD1 17 KEF 15 .
% FAERERERRARRREEER ERERRARERERERRRAR .
* * * PROCESS * * HANOLE i .
» oDI * YES * ANC * GP * .
* oX¥ CHANGE o » - -
* * * TO SYN * * *
* * » * * *
* * Ea 2223222222222 282 RERERRRRRREEERTER
*
+NO
.
.
.
.
X 18 KFA * 20 KFB *
* #* % * * £l *
* * * * * *
- DD * NO - DR ®= NO - EXT
= FoasossseX® %eeecacseX¥
* * * =
- - * * * =
- * * - - -
* *
«YES «YES «YES
. . .
. . -
- - -
- . -
KFNA x 19 KF A4 X 21 KXAB X 23
HEREEERB SRS RN LR EREFEEEEEEEERERRRE EEEEFERRRERERERRE
% DETERMINE * - VOIMEN * - VALUE =
- LENGTH - Lk aat ST OE 2t S8 2 2 [BN TS o S BN B N
* OF * * EVALUATE * * EVALUATE *
* DATA * * DIMENSION * * PARAMETERS *
» * # PROPERTIES - # = *
EERERRRERERUDE RIS EEERERERDAREERRRE BERFEEEERET RN
. . -
. ‘. -
. - -
. . -
. . -
- . -
x . -
EREEE- . -
- - - -
* EXIT = x .
i .

%X eesesocsccssecsctcccsesscsscenccsssccssccsnsoss
] *

* *
SEERE

DECODE

LINKAGE

DECODE is entered from pass 2a and 2b if Zifp2
is one.

On Entry

The calling sequence is: SIC, Decodz; B, DECODE.
Zifall is set to one on entry by DECODE.

On Exit

If DECODE is unable to completely assemble the bin-
ary output, Zifall is set to zero before returning.

FLOW CHART DESCRIPTION
Box 1

Establish if DECODE is finished with unit by testing
if Zifall is on.

Box 2

Test Zoddsa of the operation question bits to deter-
mine if a dds is needed for this unit.

Boxes 3, 4
Test Zifdds and Zifpm of the expanded instruction

unit to determine if the dds is explicit or implicit
and if it is specified by a P-mode.

Box 5

Handle case when dds needed but none given explicitly,
made up according to convention:

1. If op is ambiguous (variable field length or
floating point), it is compiled as (BU, 64, 8).

2. If op is clearly variable field length it is com-
piled as (BU, 64, 8).

3. If op is clearly variable field length and an
immediate, it is compild as (BU, 24, 8).

4. If op is only floating point except for E or E+I,
then it is compiled as normalized; if op is E or E+I,
then it is compiled as unormalized.

Box 6
Using the Zst24 subroutine SEARCH look up the

P-mode symbol. Turn the Zst24 of the symbol table
entry to mark as used.

140

Boxes 7, 8

If the dds has been established, insert it in the dds
field of the expanded instruction unit.

If the dds has not been established, turn ‘Zifall off
and return.

Box 9

Test Zopo to determine if it is a pseudo-op.

Boxes 14, 15

Test for general parenthetical expressions, if
there is a GP evaluate and insert it in the binary

output.
If unable to evaluate, turn Zifall off and return.

Box 13

INSERT is used to fill the major fields in the binary
output word of the expanded instruction unit.

Boxeg 10-12
Use VALUE to evaluate all major fields.
Boxes 16, 17

If a DDI, process and change to SYN and return.
DECODE uses part of QUTPUT to evaluate the DDI,
and OR's it into the expanded instruction unit.

Boxes 18, 19

If an DD, multiply field length by number of fields,
store result in the expanded instruction unit, and
return.

Boxes 20, 21

If an DR, evaluate the dimension properties; multi-
ply the dimension by the field length to reserve the
amount of space required. The result is stored in
the expanded instruction unit.

Boxes 22, 23

GETFLD goes to VALUE to get values, and if avail-
able, stores them for use by the extract section of
Pass 2.

If the op is not DDI, DD, DR, or EXT, GETFLD
returns for normal insertion of address field.

CHART 1I1I

LR}

ARERREEERERS LS RAE
* INTIN

e et St B P Y
* GET A UNIT *

WAIT FOR *
* 1ST READ *
®* COMPLETE ®
* *
* *
EEERRREERELEREEEER
.
-
.
.
X 2
* * *
* *
* LAST UNIT * YES
LT

* BUFFER *
* *

* *
*
«NO
.
.
.
.
-
.
-
.
.
.
.
.
.
-
.
.
.
.
.
-
.
.
.
.
.
.
-
-
.
-
-
.
.
.
.
IRFL X 3
EREREREREERREE SN
- UPDATE *
* 1BUFXW *
.o X® =
- ® *
P *
o RERERREEARXARERRE
L2223
I
1 0
)
X

4

hXe st 00

* *

* *
* LAST UNIT #
IN
®* BUFFER +
* *
* *

NO

x
.

Xesesesoosnenonsasss x

EREEE

- *
* EXIT *
* *

*
RBEE

STRAP 11

YES

sseassse

ssvssecneses

%eeseesccesccscccnscsscsssnssnse

seremereee

INTIN---PAGE 1 OF 2

®sesveessessscssesvenssncesssnsassscsescssenvesvennsX

Ke o 0000080000000 et eVttt aE s

* *

<
m
v

cvsessessessencss

10

* *
% LAST UNIT *
IN

oX®
. * FILE *
. *
. * =
. -
. «NO
. .
. .
. eXsesovsneone
- .
. IBAH X 11 .
. * xo» .
- * * .
. * READ CNT #* NO .
- * GREATER THAN #*..es
* ERO
* *
<YES
-
.
X 12
EERAEAEEERERERERER
* SUBTRACT -
* FROM *
* READ COUNT *
» *
* -
EERERREERRER LSRR

-
X

ssveve

seconse

IN®R .5
RN N

* SWAP WRITE *
* CONTROL WCRDS %
* *
* *
® *
EEREERAERRRE AL AER

Xevs o

6

EXEREREERRTXE
*WRITE BUFFER *
* *

* =
*

* *
ERERREERKREEES

7

EXe 0 00 o

* *

* *
* LAST UNIT =
IN
* FILE *
* *
* *

YES

Xe s voostsrevoors oo n

8
EEERREREEEEEF
* WRITE EGCF *
* *

* *
* *
*

»*
HEEERRE RSN
.

IR

9
ARRRERREERELRERK N
* SWAP 1-0 *
* DATA IN *
* COMREC d
* *
* =
» *

H RN R

141

CHART 1J

142

STR

FESABRANERABERRERS

* IRDINY *
L R R e et aiatatatd

* INTIN®S *
*READ INTERRUPT *
* PROCEDURE *
R I T e L e L

AP 11

.
.
.
.
.
X 13
. 5 = L2222
» * * *
® LAST * YES * EXIT =
= BUFFER L 3 *
*
* * * -
* * RERER
+NO
.
X
RERXRERXAERAERERRE
« ADD 1 TO .
® READ COUNT =
* *
* *
= *
E22Z 2222222222222
.
.
.
.
.
X 15
* * »
. »
* sw2 * OFF
* ¥aceseesisacssssscscsasssssnsensessensssecsnse
- » -
* » -
- - .
. .
«ON .
. H
. .
. .
- X
P (222222222222 2 X
. * TURN ON *
- * sw 2 *
. . -
- * *
. - *
- ARBREEERBERERERRS
.
.
.
.
X 16
* % ®

- -
READ .
- IND 1
*

OFF

Xesoesssesssesssosetsne

7
AR IIGQI}G!!I:..
» TURN ON
* READ IND 2
E 3
*
»

*
-
»
»
»
»

FREREEEAERRER RS

ON (TURN OFF)

eesessrsescescccsasncsssnnsnenne

cesces

Xeooossosoe

.

.

.
[READ X 18
ARAREXRARAER LR RN
* SWAP READ *
* CONTROL WORDS *
* -
* »
* *
ERREREARERERERERES

.

X L

HRAAREAR RN AR

» READ BUFFER #
- *
» -
* *
HERARBEATRRERE

.
esseesXeXuore
.

X
ERERE
- *
* EXIT *
* -
*

* *
R

INTIN {INTERRUPTS)---PAGE 2 OF 2

eesens

(TURN CFF) ON

seccscrcscsccsssncans

EEARRAARENRRERR RN
* IWRINT *
R KRR F— R
* INTIN'S -
WRITE INTERRUPTH
* PROCEDURE *
EEERERXEREREERREE

21

Mo 8 5 6 £ 8 8 0 6 0 8 8 B B S0 S e 88 e e 80 e ANVt et eI BOSDY

» *
- L]
* READ »
IND 2 *
*

- *
* *
*
«OFF
.
-
.
.
X

22
EREREANE RN RN
* TURN ON i
% REAC IND 1 *
* *
» »
- *
REARERATRERERRERS
.

LINKAGE

On Entry

1. Initially the calling sequence is:
SIC, Intiz: B, Ininit.

2. Subsequently the calling sequence is:
SIC, Intiz; B, INTIN.

On Exit

The control word preceding the expanded unit is
placed in Ibufxw for the user routine.

FLOW CHART DESCRIPTION
Box 1

A -- BEW, $ — is encountered which prevents proc-
essing the first buffer before the read operation has
been completed. The EOP interrupt fix-up will
change the BEW to a NOP.

Box 2

Bit 25 of Ibufxw is tested for a one. If one, the
control word is the last in a buffer, and the buffer is
ready to be written on the disk.

Box 3

The next control word is placed in Ibufxw by refilling
$2 and storing.

Box 4

The control word is tested to determine if it is the
last in the buffer. If not, return is made.

Boxes 5, 6
The write control words (there are three, one for
each buffer) are rotated, and the buffer is written
on the disk.

INTIN

Boxes 7-9

Bit 26 of the control word is checked for a one
indicating the last control word in the file. If so, an
additional buffer is written indicating end of file.

Boxes 10-12

If Bit 26 is off in the control word, the read counter
is checked for a value greater than zero. If not
greater, the program must wait until a read opera-
tion is completed. The EOP fix-up will add one to the
read counter. When the counter is greater than

zero, one is subtracted from it, and return is made.

Box 13

The buffer just read is checked for the end-of-file
record. If so, return is made thru $RET.

Boxes 14, 15, 20

One is added to the read counter. If switch 2 is off
(first time only), it is turned on.

Boxes 18, 19

Read control words are swapped, and another buffer
is read. Return is made thru $RET.

Boxes 16, 17

Initially on. If on, it is turned off, and a read is
initiated. If off, read indicator 2 is turned on, thus
permitting the next write interrupt to initiate the
read.

Boxes 21, 22

Entered as a result of a write interrupt. If on, read
indicator 2 is turned off, and initiates a read. If off,
read indicator 1 is turned on.

INTIN 143

INSERT

LINKAGE

DECODE uses any of the INSERT subroutines by the
calling sequence: SIC, Sgez: B, an address of one
of the INSERT subroutines. The address in the
Branch instruction is determined by the current fill
index word.

DETAILS

After DECODE has a coded expression, which is in
the unit, evaluated by VALUE, a value must be
inserted into the appropriate field in the binary output.

For each type of instruction, there has been set up
a chained set of index words so DECODE can suc-
cessively use the appropriate INSERT subroutine after
getting each coded expression in the unit evaluated by
VALUE. (Recall that MAIN puts the location of the
set of fill index words for this type of op in the unit
after the look-up in the primary operation table.)

The format of each of the fill index words is: Value
field contains the address of the INSERT subroutine
to put value in particular field of the binary output
skeleton in the unit. Count field contains the number
of coded expressions each of whose values will be
given to this particular INSERT subroutine. (This
count field is one in almost all type of instructions,
INDMK and LVS being the exceptions.) Refill field
contains the location of the index word to be used in
filling in the value of the next field in the binary out-
put skeleton.

Thus, for example, the field types list for a variable
field length operation would be -- XW, S24A, 1, $ +1;
XW, SOFF, 1, 0 -~ while for a LVS it would be --
XW, SJFLD, 1, $ + 1; XW, SBIT, 16, 0.

Algebraic addition of bit and integer addresses is
performed according to the type of field into which
the sum is to be inserted. For example, if the
address SAM + 10 is to be inserted into an 18-bit
address, the routine adds 10 full words to the address
of SAM; if a 19-bit address, it adds 10 half words; if
a 24-bit address, it adds 10 bits.
is determined by the function of the address, not the
size of the field. To fill the addresses in the instruc-
tion TI, 7, SAM + 10, PAT + 10, the routine adds 10
full words to both addresses. Although SAM + 10 is a
24-bit field and PAT + 10 is a 19-bit field, both func-
tion as 18-bit addresses.

144

Note that the addition

A two's complement is formed to take the place of
a negative result intended for an unsigned field. Bits
are truncated where necessary to fit the field, and the
appropriate error messages are executed. INSERT
gets the absolute value of the coded fields from three
locations:

Sinb: bit value.
Sini: integer value.
Sinx: index value.
NOTE: In the case of immediate addresses, it

should be noted that the immediate address is filled
into the word according to the given field length,
unless it contains a bit address or the given field
length exceeds 24, in which cases the field is filled
in as a 24-bit address.

The INSERT subroutines are:

S18A 18-bit address and I field.

S18NI 18-bit address, no index allowed.

S19NI 19-bit address, .no index allowed.

S19KF 19-bit address, K field

S19IA 19-bit address, and I field.

S1918A 19-bit address and I field, error-flagged
if 19th bit not zero.

S24A 24-bit address and I field.

STTI 24-bit address and I field, error-flagged
if more than 18 bits are specified.

SSI1Cc24 24-bit address and I field, error-flagged
if more than 19 bits are specified.

S24SNI 24-bit signed field with index if any.

S24CW 24-bit signed field, error-flagged if
more than 18 bits are specified.

SFLGS Flag bits 25-27.

S19BBK 19-bit branch address and K field.

STT19A 19-bit transmit address and I field,
error-flagged if more than 18 bits
are specified in address.

S18CF 18-bit count field.

S18RF 18-bit refill field.

SOFF Offset and I field.

SCHAN 7-bit channel address and I field.

SXP10 Signed exponent field or normal fraction
shift.

SBIT Index indicator bits for LVS instruction.

SJFLD J field.

STJFLD J field for transmit and swap instructions.

SIMAD Immediate addresses.

SINDMK Indicator mask.

CHART RC STRAP 11 NEXT
1
EEREEEEERE I ERREEE ARFRERAERRRER DR
* NEXT * * MODIFY *
e o B fe R B R B * FOR *
#* EXT PROCEDURE %esssesseX¥® NEXT *
* IN PASS I * L UNIT -
* * * *
HEEEEREE R R ERE L3222 RSS2 S
.
.
.
.
X 3
* ® * 2 T WA RNER
*HAVE WEW * SAVE N *
* wE CCME * NQO * PARAMETER *
* FRON *osseeeeeX¥® FOR UPDATING *eceecesccccccccscce
* DECOCE * * * -
* * * .
* * EFEEEEEEREREERERE -
* -
s YES ERER .
. * * -
. * 1 ¥ooe .
. * * . .
- EEE - .
NEXTB X 4 X 5 X
KRR EEEEEREXREEEREL &R
* PARAMETER * * STORE *
SPECIFIEC FORM # * PARAMETERS *
* VALUE FOR * * FOR LX) seese
* FOR BRANCH * * ouUTPUT * .
* ABL * * * -
EAXEREREAAREREERR AEREEEEEREERERRER .
.
. . P - .
. . P - .
- - «000(»5) . e
. . . .
- e + «010(,LP) <YES .
. . . NEXTF * . 8 .
- - - «100(L,s) - * 7 AREEEEEREEERRERERR -
e o o . % ARE ® ASET UP SYMBOLIC* .
. . e +110(L.LP) THERE VALUES NO * COUNTER AND * .
- . . sesessssssveX® FOR ALL HovoossooX¥ RETURN * .
- . - *PARAMETERS #* * TO PASS II * .
- . - * * * * -
- * * TN RN RR
- . *
- - REEE -
- . * .
. . * 2 ¥,a. .
. . . .
- - EXEE - -
- e NEXTE * X - 1l
. - 001 {»sN) * * 9 * ®* * 10 EREERFREREER SRR
. . ® ARE # * VALUE # SET UP *
. O1(LssN) THERE VALUES *® FOR * SYMBOLIC *
. sesscscscsaeXH FOR ALL N COUNTER. *
- . *PARAMETERS # x * PARAMETER * * N CAN NOT BE *
. - *® * . * * * EVALUATED b
. - * - . * * R RN RN R NN AR
. . *YES . *YES
AR - . - EREE - - X R
» * - - - * » - « * *
1 #x . . elX® 1w . eex® 1 ®
* * . e * * *
ERRE ps . REEE EE TS
NEXTD . e .
P .
* A . . .
THERE VALUES 011{s+LPsN) - - -
* FOR EXeosesessnsnss - -
#PARAMETERS * . -
* * - .
- * .
*NO .
- . - .
- el * . .
eeX® 2 ¥ - -
* * - -
nan - .
. * .
- * * 13 .
- * ARE ¥ -
*111(LsLP,N) THERE VALUES
see X FOR ALL .

RPARAMETERS *
* *

* »

*
«YES
.

x 14
EEERERRERARERRERS
* TEST *
#*CONSISTENCY OF *
*PARAMETERS AND *
INDICATE ERROR,#*
* 1IF ANY *
FREERERERERREIRR N

EEEE

. * *

e X® 1 ®

® ®

R

1145

NEXT

LINKAGE

Pass 2 enters the extract procedure from the digit
select pseudo-op table.

FLOW CHART DESCRIPTION
Box 1

Modify Pass 2 to skip rounding the location counter,
and branch to a special location counter updating.

Also modify Pass 2 to stop the extract of a pseudo-op.

Box 2

Check to see if DECODE has already handled the
unit. Zifp2 is always on in Pass 2.

Box 3

Store N value in Zilbo for updating, and return.

146

Box 4
Set up branch to determine-what fields are given.

Boxes 7, 9, 12, 13

Determine if Zifall is on to verify that there are
values for all parameters.

Box 5

The value of N has been determined; insert this value
in the expanded instruction unit, and return.

Box 8

Set up symbolic counter when the N parameter is not
specified and when the other parameters cannot be
evaluated at this point.

Boxes 10, 11

Set up symbolic counter. The expression for N
cannot be evaluated at this point.

CHART EA

R R N S N N R R I N AR A A I

YES

ARBEREERFEREERRRS

* NMCP
L N S R e T
* PASS 2'S *

* PROCESSING OF %
#MCP OPERATIONS *
ERERREEARFERAERER

HXe o0 oo

= * 1
* *
* *
= PASS 28
#(NP2IND=0) *
* *

* *

2
FEEEEREEEERERETRN
*PLACE REFERENCE#®
#NUMBER [N CARD #
* FORMAT *

*

= =
REXRERERAEFREER BHF
.

X o o0

* 3
*

* *

REEL CARD #
*(ZOREEL=1) *

= *
*
«NO

Xe s oo

4
EREEERNEREEE AN REE
* YALUE *
e e e atd
®* EVALUATE EXIT *
#* ADDRESS FOR #
* IOD CARD *
EEREREERRLL TR R

NMCPBR X S
HERERE T NN

* PLACE EXIT *
* ADDRESS IN *
* FORMAT *
* *
M *
E2 222222222222 2223

eeesXeXooowsoe

X
W E®
L] *
* *
* EXIT *
* *

3 *
EEEEE

STRAP 11

.
.
.
.
-
.
.
.
.
.
-
.
.
.
.
.
.
-
.
-
-
.
-
-
.
.
-
-
-
-
.
.
.
.
-
.
-
-

NMCP

EERRERXERERERTAER
. NMCPAL *
LEX EE B B I 2ok 2t St
* PASS 2A's *
* PROCESSING OF ¥
*#MCP OPERATIONS =
FEEARRERAAAEREERER

HXesane

6A
I T]
*CREATE GO CARD *
= *

* *
* *
* *
EEEERERREREREREEN

.

.

X

o ® 68
* L]

ES * *
sssscscsssscesesees® FORTRAN JOB *
* £

Xboesssestescsesnonsatoes

6cC
HRRERWRER AR NER
* CHANGE TO *
*TYPE +GOs FORTRAN®
* AND PUNCH =
* *

* *
EERREXEREREEERERE
.

ees s bttt

* *
* *

*

«NO

.

.
NMCPNP X 7
EREREEEERERERERER
* OPPUN *

L e it it B e bad
* PUNCH GO CARD *
* *

* *
FREEEREEREE TR RN
.

Xe e oo

8
I e T e e Y]
CREATE LIM CARD¥
* *

® *
* *

* *
EERERREEZRERRRERE

.
X 9

W RN REE

* OPPUN *

E e B X N K N W
*PUNCH LIM CARD %
* ®

* *
HERER RN LR
-

-

.

ssseescesscessssssscscscne

X
EEEER
*
* *
* EXIT *
* *

* L3
ERERR

147

LINKAGE
At the beginning of Pass 2b for each Master Control

program operation, the NMCP subroutine is entered
to complete the card images for later punching.

FLOW CHART DESCRIPTION
Box 1

During Pass 2a the master control program units do
not receive any attention.

148

Boxes 3-5

Primarily NMCP must complete the eighty column A8
card image in the unit. The two fields that must be
supplied in IOD card image are the reference number
field and the I-O table of exits field. The source of
the reference number is a binary counter in the fixed
portion of the unit; the source of the I-O table of exits
address is a coded expression in the variable portion
of the unit. Once evaluated, both values are converted
to A8 code and inserted into the card image saved in
the unit. If no table of exit address had been specified
in the source input, NMCP leaves the field blank.

CHART 0P STRAP

11

*
EERETFEFEEER TN * * 1
* ouUTPUT * * FIRST *
e R e o = * TIME *
* PRODUCE FooeowsveX® THROLGH x

* DOCUMENTS FOR *
* THE ASSEMBLY £

* QUTPLT *
* *

ssecessscessessesessssnrenesevasnerenna

eXeoevacsreevcrrs-vsesravensssassencnssocess

ERRERXTERTEEEEREE * *
*
«NO
x
2 .
Py L] .
* PRINT ® .
- ERROR * .
* FLAGS *Xese
® *
* *
EXEBREXRREREERERER
.
X 3 oPT2 * 7
%* ® ¥ * *®
* DOES # * DOES *

* UNIT * NO * UNIT #®
* FOLLOW ¥eoeonneaX® HAVE *
* EXTRACT * ® EINARY #

* * *QUTPLT *

* * * *

*
+YES +YES
. .
. .
X X &
FEEERERERRERRREER * %
* CONSTRUCT * * *
* REQUESTED * * oD *
* EXTRACT * * *
* * * *
* * * *
EXEREEEE R TR T RRE * *
. *
- «NO
.
sesees
OINST X 9
ISR Z 2SS SRS SRR 2
* STOFRE *
* BINARY CUTPUT *
* N *
* PUNCH BLFFER %
* *
FEREEEEEAAERERRER
.
.
X 10
EERERREEEAREEREERS
* DETERNMINE *
* TYPE OF *
CARD TC BE *
* PUNCHED *
* *
FHEREEERER TR ERR
X 11
% o®
*EEE * CARLC #
= * IMAGE *
® 1 Fe,..XE BUFFER *
* * * FULL *
*EEE * *
* %
*
«NO
.
X 12
AERETHERREAREREL X
* STORE *
* EINARY CUTPUT *
* *
* PRINT LINE *
* *
HEREELEREAEER RS T
axER .
* * .
*0P *4Xae
* 15% .
xxxw .
OLCN X 13
EEEEXERRRERER AR S
LA EA * STORE *
* * * LOCATION *
* 2 ¥,4.eX* CCOUNTEFR IN *
* #* PRINT LINE *
ERER * *
EEERERBEREARRREERRE
E2 2 5 LEE] .
* * * .
3 %, *OP ®.X.
- * * 14% .
e - EX T3 .
0ss 5 ONME X 14
EEREEEEEERERERLER *® % B
STORE SYMBOLIC # * *
* STATEMENT IN ¥ NO * NAME »*
* PRINT LINE *Xe
- * * *
= * * *
EREEERAEEEEREE AT * ®

EEEEE

*0Q *

* 22%

* %
*

CUTPUT——-PAGE 1 OF %

6
NEEEEREEXERL XX REL

s *
AEREARTERTELEN R R

15
B I R]
LIST *

EEERE

® * *
* AND * * EXIT *
= PUNCH ®ieeeeoveneeaX¥ *
* 10D CARDS * = *
M * * *
FREEK KRR R T R R EEREE
X
<YES
x 16 * 20
* x * *
* ® * *
NG * McP * * PSEUDO-OP * YES
ceescesaXk STATEMONT *eeoseeeaX® Kecee
* *
* * * *
P P
*
NG
17 X
AERXKAEERREKANERR
* SET uP * * *
YES ®* PRINT LINE ¥ - *
P AND * * *
* BINARY QUTPUT * * *
* * ® ®
EEERARREERRRAEEES FEERRREERRRERKRRR
. .
X -
XXz .
* * .
* 1 = X
* * A
e

18

AEXEXEEERRAKRERE R

& MOV i

YES * CATA TO *
seseccseesnt PUNCH BUFFLR *
* *

*
*

*
EEREETE DN R TR R

19
ERREREEERE AN E XK R

* NAMLIN *

YIS L e e B e it
see ¥ ® GET NAME

F0M *

* NAME FILE *
Py ey Y L]

asseseeaX¥

* *
* EXIT *
*

* *
ERE T

22
AXERAEERELEREE R IR
®#FILL IN JLOADER #
% INFOe(ORIGIN, *
IC+SEQeNOs s

ETC.)

® *
ARXEXFRRRARRAKL XX

23
AEEREAREREEAE SR TR
L] STORL
* NAME IN

PRINT LINE

cses e X
*

= *
EEERAEAKEENERE R R

FosassvesX¥
* »

secssoscee

24
BEEEARRERSALERERR

* CXLCUT. *
* PSEUCO-LP *
« X% ERANCH TAULE *
¥ *
* *
HAAEKKERENRRE AR ERR

.

.

X
EEREREEE AR REA AR
* PROCESS ®
* INDIVIDUAL *
* PSEUDO~UP *
* ROLTINES *
* *
AXEERRRERERL LS XA

26
EAKEEERELR KRR EARR
bt CPPUN *
RS TS D S
FUNCH CA:O *

*
* *
HEEE KRR KN L KX XRR

149

CHART oOaQ

150

STRAP 11

QUTPUT---PAGE 2 OF 8

EREan
*0Q *
* 20w

Xe oo

0AUS 27
ERURFERREEREREERERS
* STORE CARD #
*IDENTIFICATION *
* I[N PRINT LINE #
* »
*
*

*
EEEREEER NN NN

e sou e

28
EERRRERERERARERRS

®LINE NOoIN PRNT#*

*LINE.IF NEW PG *

* HEADING ALSO *®

ERRERERRERERNN RS
.

.
.
.
QERNOP X 29 37
* EERNERRERAREERERR
* ANY ® - ERRNUM *
* ERRORS * YES L Y L TS E MY L e S 3

®* ASSOCIATED ¥aeeeons o X*STORE PAGE AND #
- wiTH * ® LINE NO. IN *

* UNIT * * ERROR ENTRY %

= = EAARRERAREERA RN

»* -

«NO -

- -
2Xeesvsnsssecsescsnccccncen

X 30
EERFRERERRERLRERY

*PRINT THE LINE %
* -

* -
FRAERFERARESRENNS

.
.
X 31
- * = R
» 1s * - -
* THIS THE ¥ NO ® EXIT =
* LAST UNIT IN #ccucconesseaX® *
* ASSEMBLY ¥ X *
» * - - *
* 3 . EREER
» *
«YES o
. ®0Q *
- * 21%
- LXTEY
.
X 32
BERRRERTFRERRRERRY
* CHECK FOR -
- END OF .
- NAME FILE *
- -
* -
HERARBA R RSB S
.
0OPSYM X 33
L HERFRSEFRERRAERRS
* ANY % = PUNSYM »
* SYN * YES L R R e e e)
* CARDS TO BE #, «X*CONSTRUCT CARD *
* PUNCHED # L IMAGES AND -
#*PUNCH SYN CARDS®
* " ERBERFERBERRARRERS
* -
+NO -
“Xe .ee

.

X
ARFRAARRBRAARERE R
* NUNDSY *
L B SE S B2 B S 2
®PRINT LISTS OF #
® SYMBOLS(UNDaes *
#MULTles CIRC.) *
REERRF SRR ERERNE

Xe oo

REAREEAREARERRARN
* ERRPRT *
Lol Sl O B A O S 3
* PRINT LIST OF #
® ERRORS *
*

*
ERBERARBRARERRARN
.

Xe oo oo

ERERBEAREERAABENE FEEREBERT N
* QEOIT * * *
L e e * $EO0J *
* PRINT TIME OF %sscceaassX¥

* ASSEMBLY AND # - *
* NOe OF UNITS ¥ * *

EEEREERARAEEERARER HRUERBEREE RS

CHART OR

PRINID

P
#STORE SYMBOLIC *
* STATEMENT IN *
* PRINT LINE =
=

* =
EREEREARREREERBRR
.

Xe a0

EREEREARAREEEHERE
* OPLIST *
LR s o S S
* PRINT *
* STATEMENT *
* *
AERERRERARREREERE

.

.

.

X
ERERE
*OP *
* 14®

= %

PRNS

AEERRERERRERRERRR
® TURN OFF *
* DOUBLE SPACE #
* INDICATOR *
- *
* -
EREEBEBEREREE RN
.

X
ERERE
#OP #
* 14%

x

*

STRAP [T

PUNID

HEXRRERRERXERERER
* PUNCH CARD %
% IN EXISTING *
PUNCH MODE *
* *
* *
* *

ERRREEREEER BT

EEEREERE R EER RS

.
x

e RE

0P *

* 14%

* *
*

PRND
FEFEEEREEAEEREFEER
TURN ON
DOUBLE SPACE
INDICATOR

LEER 2]

-

*

*

*

EERERENERRER AR RRER
.

X
AERER
%*0P *
* 14%

= %

*

QUTPUT (PSEUDO OPS)---PAGE 3 OF 8

PUNFUL

ERRAEREERR RS BRERE
PUNCH CARD
IN EXISTING
PUNCH MODE

I EE TN

=

*

*

*

*

EEXBEERERREREERR
-

MR

EREBEEXEEREERRER R
* TURN ON *
® PUNFUL *
* INDICATOR *
= *
- *
AEEERERAREREEREER
-

X
EREXR
0P *
® 14%

€ %

*

SKIP

AEREREREFRREERETR
* TURN ON *
* NEW PAGE *
* INDICATOR *
* *
= *
L3 »

PUNNGR PUNORG

ENE EXEERE
* PUNCH CARD * * PUNCH CARC *
* IN EXISTING * * IN EXISTING *
* PUNCH MODE * * PUNCH MODE *
® * * *
* * * *
EERERARRRERAEREEER REAREERFRRRERTEER

. .

. .

. .

. .

o .

X x
222222 RSS2 22 2] A EL S RIS S LSS
* TURN ON * * TURN ON *
* ORIGIN CARD #* * ORIGIN *
* INDICATOR % * AND *
* * * PUNORG *
* * * INDICATOR *
EEREEEREREAERE RN EERTEREREREETRE X RE

-

X
EREEE
%*0P *
® 14%

NOPUN

EERARERRRARERLRER
PUNCH CARD *
IN EXISTING %
* PUNCH MODE *
* *
* *
= *

EXRERFBEEERREERE E2Z 2222 XSS L 22 3
. .
. .
. .
. .
. .
. .
X X
XX RN
#SPACE NAME FILE#® * TURN ON =
#TO IGNORE NAME.* * NOPUN *
* IF ANY - * INDICATOR *
* * * *
* * * *
* XN
. .
. .
X x
EEERR XX
*0Q * *0P *
* 21 * 14%
* *® LN 3
* *

.

X
EERER
0P *
% 14%

. x

*

L8

ERAEEEERREELRERER
* STORE -
*TLE ACDRESS IN %
%* PRINT LINE *
* *
* *
EAERER RN TE N
.

Xe o s

R RER
* *

PUNCH
ORIGIN CARD
AND

*ox ok

*

E]

BRANCH CARD *
*

*

RN
-
.

TURN ON
ORIGIN CARD
INDICATOR

WX
.
.

X
EEEEE
0P *
* 14%

* *

*

151

LHART 0S

152

sTR

* PUNFUL
* INDCATOR *
*
*

L] *

FORCE
ORIGIN CARD

IEL R

EREREREREEFREEE

Xe s o ne

EBERREERBRE AR AR
*

* S
* ORIGIN CARD *
* INDICATOR *
* *
* *
EERERRREREEERE AR
-
.

eXeosonna
.

AEAREERREBERRRR RN
#STORE NEW VALUE®
» *

iN
LOCATION
COUNTER

* -
FAEERRRE WA RRA RN

*
*

»*
*

sXevsosssssansnsscsecsscncsesccne

HEEE

*0P *

* 15%
LR
-

AP 11
*
*
*
YES *
sescaaes X¥ 157
*
*
*

*

R R I A I S A R P

ssevssesssensncae

OUTPUT (PSCUDO OPS)——==PAGEZ 4 OF o

* NO

Fosssnns el

YES

sesmee

*
* *

* *
* SLC LESS
THAN CUSRENT
* LOCATION

FCOUNTER*

* *

*

*

*
- NO

TURN OFF

*

DIFFERENCE
AS

PUNFUL MODE
RERRRBENREE RN

esceXasse

EEEEERREERLRRR RN
ETURN ON LOW SLC*

YES * INDICATOR. *
*eosveass X¥STORE LOCATION *
* COUNTER FOR »

* CO#PARISON *
ARHERRERERTRERE R

I EEEET
T T T R T T

CHART OT STRAP 11 OQUTPUT (PSEUDO OP3)---PAGE 5 OF 8

END SLCR EXT SYN DoI
HEEERRERIE TR SRR . EREEAEEEAR AR R R ARERERRR TR RN R .
#* STORE BRANCH * . * STORE * * LOOK uP * -
* ADDRESS IN * - * PARAMETCRS * % BIT VALUE AND * .
* PRINT LINE * . #0F EXTRACT UNIT* * STORE IN * -
* * - * * * PRINT LINE * -
» * . * * x * .
EERERERERRERER AL . AREEREREERAEEL KA R AEERENEREX RS RREER -
.
.
. X . - X
. EREAE . . EEEER
. *0P * . . xoP *
X * 14% X X * 14%
EEREREREERRRER REE * % EREEEEEEERRER LN R e R T T * %
PUNCH FINAL #* z * TURN ON * * LGOK uP * *
* CARD IN * * SWITCH * * INTEGER VALUE *
* EXISTING MODE * * FOR UNIT - # AND STORE IN #*
* * * FOLLOWING CXT * % PRINT LINE *
- = * * x =
AR RN EEREREREEERERE RS AEREEEEREERENRENE
. . .
. X .
. EEEEE .
. 0P * .
* 1a%
E R et] * % EEREEEEEEEEERT AN
TURN ON * x * STORL *
* INDICATOR FOR # * INDEX AND DDS *
* LAST UNIT * * *
* * * *
* = * *
EERRERAEURRRRE HER ARFEREEARRAERRERE
. .
. .
. .
- X
. EXEER
. *0P *
X * 14%
ERERREETEE TR RRRE * x
= PUNCH * *
BRANCH CARD *
* *
* *
* =
AREREREEREEEEEERR
.
.
X
EREEE
*OP *
* 15%
-
*
NOPRNT PUNSYM SEM REM ~TAIL
EEFERERREREEEE AR EXEERRARRARRRENES - . .
* TURN ON * * TURN ON * - -
* NOPRINT * * INDICATCR TO % - . .
* INDICATOR * *PUNCH SYN CARDSH* . . .
* * * AT ENC OF * - . -
* * * PROGRAM * . - -
P T2 2) E e L] . . .
.
.
. : . - . .
X X X X
EARER EERAR EEERE AR X REE
*op * *OP * P * *0op * %*0P *
* 14% ®* 14% ® 1a% * 14% * lax
* % ® % = = * x * %
» * -
UNTAIL LINK PRNOR PUNALL SPNUS
. . EEEERERERERRNE RS ERREREAERRARRRIRE .
- . * TURN OFF * * TURN ON * -
. - * NOPRINT AND * * INDICATQOR TO * -
. - * DOUBLE SPACE % #*PUNCH SYN CARDS#* .
. . * INDICATORS * * AT ENO OF * .
. . ® * * PROGRAM * .
. . AEEERERFEBRRERERR AEERRARAERERERERE .
.
. . - . .
X X X . X
rERER ERXAE EnAR . REREE
*0OP * *OP ® *0oP * . *QP *
* 15% * 14% *® 14% X * e
* ® * x * AEREREAEEELR I RR x %
* * * . TURN ON * *
®* INDICATOR TO *
* PUNCH *
- ALL SYMBOLS #
2 *
EREREEAERBREREREN

X
R
x0p *
* 1a%

* *

CHART OU

154

NOSEQ

FRAAESERARERBREN
* PUNCH CARD %
* IN EXISTING #
* *
* *
* *
ERFABREFRRELRLR RS
.

RRERREEERREE RN
TURN ON BIT

NU

-
-
PUNCHING *
-

MBER *
EREREFREREERERRN

*
-
-
* SEQUENCE
*
*

STRAP II

RESEQ

EREREERERAFREERRS
* PUNCH CARD *
% IN EXISTING #
* *
* *
* *
ERARXTERERRBRNR T

Xe o e

REERREERRAERRRXRE
* TURN OFF BIT #
®* TO PREVINT *
* PUNCH ING *
* SCQUENCE *
- NUMBERS bt
R T I S T

*

* SCQUENCE

* NUMBER

* FIELD

*

ERERRRERERARAR NN
.
.

X
rEERR
%0P ¥
* 14%

* %

CUTPUT

{PSEUDO OPS)}~—--PAGE 6 OF 8

PRNTALL

EREEFEREEEEREERRN
* TURN ON BIT *
* TO ALLOW *
* PRINTING OF
® ENTIRE SYMEBGL *
¥ TABLE *
FREERERTRERRRRRRE
.

X
AR
*OP *
* l14%

. =

*

.
.
b3
AW EEE

*QP *
* 14%

CHART OV STRAP 11 OUTPUT (DR)-——PAGE 7 OF 8
DR
*
* * 1 ARAEXRERERARRREREN
* * CREATE ELANK *
* PUNFUL % YES * WORDS AND/OR ¥
eeX® INDICATOR ON FecoeeeesX*CARDS EQUALLING*ecscesae
. = * * DR LENGTH * x
- * * * * #EAEE
- * * EE XTI II SRS LS 3 *#0OpP *
XA * * 15
* «NO .
* 1 * - *
* .
ERRE -
.
X
* # ®
* *
* DRZ * YES
* CURRENTLY IN
* PROCESS *
* .
* * X
* EERE
«NO *
- * 2 *
. *
- EERE
X * = 11
* % = 4 » * = * 10 EE IS I Y I)
#DATA IN® = DR * * * ASET INDICATORS *
PUNCH BUFFER NO * CURRENTLY * NGO * ANY DATA #* NO *TO SKIP BEFORE *
EXCEED ORIGIN %oeeseseeX¥® IN PROCESS ®eeeseseeX¥IN PUNCH BUFFER¥ccnessesX¥ LOADING Feaes
#CD CAPACITY# * * * * * =
* - * * * * * * .
* * * * * * AFEFRFREEREXAERRER -
* * .
<YES +YES -YES
. . -
. . . .
. . . .
. . .
s x X 13 .
FEEREREEREEREERRE = * * 7 % % * 12 EEREREERBEERERERRSR .
* NCH * * * * * ®ESET INDICATORS * o
ORIGIN CARD * YES % ANY DATA % * DATA * NO # TO SKIP AFTER # .
.o XE *Xeoes *#IN PUNCH BUFFER#% * EXCEED FULL * X% LOADING * .
- * * * * * CARD * * *
- * * * * * * *
- AEEREERERRRERER AR - * * * EE X2 2ZI L RIS L] -
(222 . * *YES . .
* * - HER +NO - ERER . .
=2 = . * * . . ® ® eXsooosnsesse
= * eoX® 1 % . eaX® 2 %
EERE * . * * ENRE
A ER . EEEE = »
X * 3 =
ERAREEEFERERRERER * *
*RE® - INCRENMENT * xR
* * * LOCATION *
® 3 %eeseX* COUNTER. *
. * ® SKIP COLNT 8Y *
runx *# LENGTH CF DR *

ERERRRRRRREREERER

MIEERE]

9
EEREREREEE AL LN RN
*STORE DIKENSION®

#VALUE IN PRINT *
* LINE *
* »

* *
EERERRRERARERERAR
.

.

.

X
XEAE
0P *
% 1E%

L)

155

CHART Ow

156

* »
* NUMERIC DD *
» *

* -
* *

=
«NO

-

e om

2
FEEERFERAERRRRRRR
- STORE GP -
#* SPECIFIED ON #
* DDS FIELD *
* *
* =
EREREFERERN R RN
.

Xesoane

3
AREEERAARLELRE NN
* STORE

STRAP 11

X

5
FRERRRRERARTREERDR
* PROCESS GP ¥
* IN DDS FIELD *

*
* *
* *
ERRESRAAREBRRHERER

EXe e e e

* * 6
* *

- ® NO
®SINGLE CC FTIELD¥seveeseeX®
* -

* *
* *
*
<YES

ouTPUT

(DD)~—--PAGE & OF 8

7
EFERREAERERERRERR R
- INDICATE
* MULTIPLE

»
*
DATA *
* DEFINITIONS *
» -
EEERRERRRARRERERNE

-

.

eXesevsosecssnccasssssenene

X 8
EERRRERREARRERRER

* *STORE DATA AND #
*ALPHABETIC DATA® *GP, IF ANY, IN *
®{N PUNCH BUFFER# * PUNCH BLFFER *
» * * *
* * = *
ARFRRFRELRFRRRE RN MR R AR

. .

- .

. .

- .

. .

. .
X 4 X 3
ARERAERR
- oPNOUT - * OPNOLT *

F BB - R N
* PUNCH CARD IF %
* DATA EXCEEDS *
bl BUFFER

FERRBRRBRTRRRE AR

[e Tt SU-OEE R TS Y
* PUNCH CARD IF #
® DATA EXCEEDS *
* BUFFER *
FERARBHREEARRERRNS

Xe s v oo

10
EREARAERRARRERBRS
*®*CONVERT EINARY #
OUTPUT AND *
» STORE IN *
* PRINT LINE »*
*

»
FERFERRRRREERL RN
.

wXa 000

* » 11
» *

» -
* ADDITICNAL *e
#* 00 FIELDS #
. »

- -
*
«NO

EREAR

P *

® jc#
L
*

YES

12
HAERRAEREREERRRER
®ADVANCE CONTROL *
* WORDS OVER *

X DD UNIT *
» -

- *
EERRRARBEERRANAN S
.

-

#scecsccnconsssssereeveeXeXesossvnanesnnccncncossnan

LINKAGE
The calling sequence is: SIC, Outgz; B, Outgo*.
DETAILS

During Pass 2b, as each unit is completed, control

is given to QUTPUT to create the listing print line

and store the binary output into the punch buffer,
punching a card whenever necessary. QUTPUT uses
the subroutines, OPLIST and OPPUN, for listing and
punching. The mechanics of page headings, numbering
and overflow are done by OEDIT. At the end of the
entire assembly, the following subroutines are used:

NQBTP: if the PUNSYM or PUNALL pseudo-ops
have been specified.

NUNDSY: prints lists of undefined, multiply and
circularly defined symbols, plus the
entire symbol table if PRNTALL was
specified.

ERRPRT: prints the list of error messages.

FLOW CHART DESCRIPTION
Box 6

The subroutine OEDIT is used to print the page
heading and program boundaries for the assembly.

Box 2

The error flags for undefined, multiply and pseudo-
defined symbols and contagious errors are printed
here.

Boxes 15, 16

IOD cards specified by the programmer are punched,
as well as the following:

Absolute decks: TYPE, GO
LIM, ,
Relocatable decks: TYPE, GO
LIM

>

Fortran decks: TYPE, GO, FORTRAN

Boxes 20, 24, 25

The action taken for the various pseudo-ops, is
explained in separate flow charts.

* This subroutine is referred to in the text as

OUTPUT not as OUTGO.

OUTPUT

Box 17
A separate flow chart is provided for DD's.

Boxes 9, 10, 11, 18, 22, 26

The binary output is stored in the buffer, after which
OUTPUT determines whether there is enough data

to punch a card in the existing punch mode. OUTPUT
uses the routine OPPUN to perform the punch function.

Box 12
The binary output of the instruction is picked up from
word 5 of the instruction unit, converted and stored

in the print image.

Boxes 14, 19, 23

If there is a name associated with the instruction,
OUTPUT uses NAMEIN to get it from the name file,
and stores it in the print image. Depending on the
length of the name, this may require an extra line.

Box 5,

The symbolic statement also may require more than
one line for the listing.

Box 28

OEDIT inserts the carriage control character and line
number in the print image, as well as headings where
a new page is required.

Boxes 29, 37

If there have been any errors associated with the unit
in process, the page and line number are stored in
the error entry by the subroutine ERRNUM.

Boxes 31, 32

When the END unit of the assembly is processed, a
final check is made to ascertain that the name file
has been exhausted and therefore correctly matched
with the instructions.

Boxes 33, 38

The PUNSYM subroutine constructs card images and
punches cards for each symbol requested, or all

OUTPUT 157

symbols if PUNALL was specified. The SYN card
format is included in the NQBTP subroutine descrip-
tion.

Box 34

NUNDSY scans the symbol table and prints lists of
undefined, multiply and circularly defined symbols,
plus a list of the entire symbol table with the location
at which each symbol is defined, if PRNTALL was
specified in the assembly.

Box 35

ERRPRT sorts the error list into page and line number
sequence and lists it via OPLIST, followed if necessary
by a message stating the number of errors not listed
because of exceeding the error buffer.

Boxes 36, 39

OEDIT now prints a time message and the number of
units in the assembly, after which control reverts to
MCP for a normal EOJ.

DR PROCESSING IN OUTPUT

Boxes 1, 2

Since no control information can be punched in a
PUNFUL card, blank words and/or cards must be
punched equivalent to the DR length.

Box 3

If there is a DRZ already waiting when a DR is speci-
fied, an origin card must be punched immediately
before the DR can be processed.

Boxes 6-8

If a DR is waiting when another DR is specified, and
there is data in the buffer, an origin card must be
punched immediately; if there is no data, the DR
length can be added to the previous DR length.

Boxes 10-13

If no DR is waiting and no data in the buffer, the card
indicators are set to "skip before loading.' If there
is some data, the indicators are set to "skip after
loading." If there is more than enough data to fill an
origin card, a card is punched before the new DR is
processed.

158

DD PROCESSING IN OUTPUT
Box 1

Numeric DD's are identified by the bit Ziotpt. 25 being
on in the instruction unit. This was turned on by the
MQDD subroutine in Pass 1.

Boxes 2, 3

If a general parenthetical field integer entry (gp) was
specified in the dds of an alphabetic DD, it is OR'ed

at O6pal into the alphabetic data in the instruction unit,
which is then picked up and stored in the punch buffer.

Box 4

OPNOUT is used to determine whether or not a card
should be punched, based on the type of card being
punched.

Box 5

A gp specified in the dds field of a DD must be OR'ed
into each unit of a multiple unit DD; it is therefore
stored in a temporary area to be used for each unit.

Boxes 6, 7

If a multiple unit DD is in process, Zinfld in the
instruction unit will show the number of units, and
OUTPUT turns on the indicator bit Oenm so that after
the first field is printed, OUTPUT can return to
process the others instead of returning to the main
flow of Pass 2b.

Box 8

All the gp fields are OR'ed into the data itself, which
is then stored in the punch buffer, updating the bit
count accordingly. For signed data the sign byte is
stored separately in the punch buffer.

Box 9

OPNOUT determines whether to punch a card, and if
so, fills in the control data such as ID sequence, card
type code, origin, etc. .

Box 10

The DD output is converted and stored in the print

line according to the type of DD. DD's are not
printed in octal-hex format, but in the following:

Floating point: Exponent, fraction, sign byte.
Fixed point: Sign byte separate for signed data.

Boxes 11, 12
If the bit Qenm is on, there are additional fields in

the DD unit, and the index word pointing to the
beginning of the D field must be advanced to the next

field by a standard 120 bits plus any extra bits for
Fn, special exponent or gp depending on the format
of the existing field.

After printing the location counter, binary output
and symbolic statement, if the multiple unit DD bit
(Oenm) is still on, OUTPUT will print the new

location counter setting and return to box 2 to process

the next unit.

OUTPUT

159

CHART NI

160

EERNRERERZ R RERES
* NAMEIN *
W e e e P P W N
* GET LISTING *
* NAME FOR EACH *
®= NAMED UNIT *
SREERRBRERHERERRER

.

.

eXosavossvane

X 1
x % *®

- -
« 187 * NO

READ *
* COMPLETE *

* *

* *
*

REE «YES
= .
* 2 *.X.
* - -
EEw .

X 2
EERRERREAERRRRR RN
* STEP TO FIRST *
* CHARACTER OF #
* THE NAME *
» *
*
*

*
EREABRRBATERTRRE

-

* GRCATER #

#CHARACTERS *
* *

» »

&4
RERERERERE XA RN
* PUT COUNT OF #
CHARACTERS *
® IN NAMXW .
- -

*

-

-
ERBRABAAARRRRR AN
.

.
.
X s
= * »
» *
COUNT # YES
* EQUAL ZERO ¥aee
* *
* *
- *
-
-NO

STRAP 11

12
FERERERRAAERRERRR

*
*
*

= *
AURRARRRRALR AR

RN O
INDICATOR D

eXeeooccesssessccsoncacanne

X 6
ARBERERSERRESR RN
* ADDRESS OF *
CHECK CHAR.
*TQ0 VALUE FIELD #
= QF NAMEXw L]

] *
HERRRBERERAARREER
.

.

.

. 3

x 7
LK

» *

* END OF * YES

L R R R R R Y RN

- BUFFER
»

» »
- -
-
«NO
.

*eea

NAME [N

eXeessssesensescsncsssonssevscssresersrserssnonnncense

.
NAMEIY X 8
LR 2N

* -
INDICATOR * NO
* [

10
EEREERER RN SRR RT N
TURN ON
READING

*
*

¥esvsaseeX®

RARE
» *
* EXIT #
*
-

L] *
SREER

.
- * (TURN QFF)¥
* *

(122}
*

#Xeenvseoae* 3
* *

rEEE

»
*

INDICATOR

*
EARTRFERRARBEREEN

. 11
3232232222223

R

ERERRRERBE NN

EAD

esssssscsssXeXosoosnsnsson

IR R

R

.
.
-
.
.
.
.
.

*
®
*

ON
e
(TURN OFF)
.
X
LYY 2]
»
* 2
*

YY)

ARAERERERENRE NN
* NAMINT *
L R et B R
* INITIALIZE *
* NAME I N *
* SUBROUTINE *
ARERREXRRERERR SRR

* *
* 1ST READ *
¥ INDICATOR AND %
% INDICATOR C =
* *
* *

EAREEERTRRRRR R

R

*
FEFRRERERENK AR

»*

*
*

NAMETE X 13
PR
- -
* READ * NO
* COMPLETE *euun
*
* -
- *
.YES
.
X
EARRRRRRERRERER RSN
* TURN ON »
* INDICATOR C *
« *
* *
. -
ERRERRERERERRERER
.
.
.
x 15
* % ¥
* *
* I[NDICATOR * ON
o Feerecoesene
»*
* -
* *
»
«OFF
.
.
.
.
- L]
- *
eXesososescsscannsac®
. *
.
.
X 17
REERRERBERRERRARRN
» RESET *
» BUFFER *
* LIMITS *
- *
L] *
(ZZ 2SI 222 ER S S
X 18
® * »
* - ERER
* INDICATOR *# OFF #
i [HeeeoX¥® 3
* *
- R
» *
*
-
L]
-

*
-
*
B
*
*

LINKAGE

On Entry

1. Initially the calling sequence is:
SIC, Nameiz; B, Namint.

2. Subsequently the calling sequence is:
SIC, Nameiz; B, NAMEIN,

On Exit

1. This subroutine reads the name file from the
disk.

2. The address in memory of the name check
character is placed in the value field of Namexw.

3. When the file is exhausted, the flag, bit 25 in
Namexw, is turned on.

FLOW CHART DESCRIPTION
Boxes 1, 19

During initialization, indicators A, B, and C, are
turned on and a read operation is initiated. Each
read EOP interrupt fix-up turns off indicators A and
B. This box waits for the first read operation to be
completed and for indicator A to be set to zero.

Boxes 2-4

The character count is loaded into the accumulator
from $2, the latter being stepped to the beginning of
the name. The count is checked against 128. If less,
the count is placed in the count field of Namexw.

NAMEIN

Boxes 5, 9

The count is checked for zero. If zero, the end-of-
file has been reached and the flag in Namexw is set
on.

Box 6

The address of the name check character is stored
in the value field of Namexw.

Boxes 7, 8, 10, 11

The count of the next name is added to the present
location in the buffer. If the result exceeds the end
of the buffer, another read will be required if in
the second buffer. If not, indicator C is tested. If
off, return is made. If on, it is reset, indicator B
is turned on, and a read initiated.

Boxes 12-14

Indicator D is turned on indicating that the end of the
second buffer has been reached. The program waits

for indicator B to be reset to zero by an EOP interrupt,

and indicator C is turned on (indicating a read is
required).

Boxes 15-17

If indicator D is on, the locator is reset to the first
buffer. The buffer limits are initialized.

Box 18

If indicator D is off, return is made; if on, it is
reset, and the next name is obtained.

NAMEIN 161

CHART OM STRAP I1 OPPUN

162

FEERERSRRBERENRER
®* PUNCH A CARD *
- *

= *
ERABREARRARBRR RS
.

Xe oo o

1
EARAEREEEERRREREER
* WAIT FOR *
* BUFFER EMPTY #
= *
- *
*
*

-
AEARFRRETRBELE RN

EXe s oo e
N

* INITIALIZE *
* OPLIST. OPPUN :
-

EEAREREREERREREAE
.

X & . X
REFRRBERERRERRRREE - EERRARRREREEXRERRR
® MOVE DATA * . * SET BUFFER *
* YO OUTPUT * . * INDEX WORD *
. BUFFER * . » FOR EOF *
- - - * »
- - - * *
EEERRBRBRRBRERERE - ARERERRRRRERRRRRN
. .
.
. . .
. . .
. . .
OPPUNZ X s . OPPUNS X 8 CPPUNB # 12
LR - * % & » -
» - - * » * »
* LAST * YES . * DISK * NO * SYSTEM + YES
- ENTRY *ees conx® OUTPUT eee X+ DUTPUT cossenssecs
" 3 - * * * -
- (3 - - * . - » -
» - - * * . » » -
- . - . * .
«NO . <YES . «NO .
.
. -
. . - . . -
. . - . . .
6 . X 9 . .
RERRRRAERE RN REE - AERARREFRERERERR RN -
* INCREMENT * .o SET ® . .
* BLOCKING . .« % BUFFER INDEX * . . .
- CONTROL * . WORD IN * . . .
» * . o OUTPUT. * . . -
- * « * COMPLETE ARC # . . .
RERERERREAARBRRER - E22 222222 S22 2228 2 - - .
. . . - . .
. . . . - .
. . .
. . .
. - .
OPPUN& X 7 . X 10 . .
* = ® - HERERBERERETERE » .
* » - » * . N
®* BUFFER # YES . sw * . .
» FULL L %ienee . .
* * * - -
- * * * - .
* » EAZ2 2232 222222 - -
- .
. .
11 . X 13
RERABRRBTRERRERRER - X2 222 22223
* INITIALIZE * . » *
. * - BLOCKING * . * $SPU *
eXesoosevases ee¥ CONTROL XeoeXoovossnne . *
" » * X * *
- . 3 - * -
- RE322 2222222222224 . HRRER RN AR
. . .
. . .
. cesscascsenessecssernesrnsecnnsrasrssaes
.
.
.
X
HERER

- *
* EXIT
» *
= -

* -
LAzl

LINKAGE
On Entry

1. The usual calling sequence is:
CNOP
SIC, Oppunz
B, OPPUN
CW, Location of data, number of words.
2. In order to terminate the binary output, bit
Orien must be set to one before using the above
calling sequence to OPPUN.
3. In order to terminate the binary output when
a card is not given to OPPUN, the following calling
sequence must be used:
CNOP
SIC, Oppunz
B, unx
NOP; NOP

On Exit

1. If STRAP II is the last compiler in a chain,
the binary output will be written on the System Out-
put tape.

2. If compile and go, the output will also be
written on the disk starting in relative arc 0. If
STRAP II is other than last in a chain, the binary
output will be written on the disk as specified in
word 10 of the Communication Region. If the binary
is to disk, the location of the first arc where the
binary is to be placed is specified by the pre-pro-
cessor.

3. STRAP II will place suceeding binary output
arc numbers in word 0 (bits 0-17) of each output
arc. The number of card images in the arc is
placed in bits 28-45. Bit 25 on indicates the final
arc of binary output.

FLOW CHART DESCRIPTION
Box 1
The program waits for bit Opfull to be reset by the

write EOP interrupt, indicating that the binary buffer
is ready to accept data.

Boxes 2, 3

Switch 2 is a NOP-Branch switch which is set to a
branch by OPLIPU. There is an identical switch

OPPUN

on QPLIST. The first time through either OQPLIST
or OPPUN will cause OPLIPU to initialize both
routines.

Box 4

The card image is moved to the binary output buffer
under control of the blocking control index word
(Opblk), which contains the working location in the
binary buffer and the number of available positions
in the buffer.

Box 5

Orien is checked to see if the current entry is the
last. If so, the buffer will be written regardless
of the blocking control count. ’

Box 6

The blocking control is stepped over the card image
in the buffer.

Box 7

The count in Opblk is decremented and checked for
zero. If zero, the buffer is full and ready for
output. If not zero, Opblk is saved and return is made.

Boxes 8-10

If bit Opdisk has been turned on by OPLIPU, the
next available arc for binary output is obtained
from Oarcx and placed in the first word of the
buffer. Oarcx is stepped to the next available arc
for listing or binary output. The number of cards
in the buffer is stored in the count field of the first
word, and the arc is written on the disk.

Boxes 12, 13

If bit Spool2 has been turned on by OPLIPU, the
binary output buffer will be writien on the System
Output tape.

Box 11

The blocking control is reset, indicating an empty

buffer (i.e. starting at word 2, and maximum card
count).

OPPUN 163

CHART EI

ese
.
.
.
nme
-

* 11
-
sean

164

ARRABERARRRERN AR
OEDIY
o S g T
#SET UP CARRIAGE®
CONTROL CHAR *
*FOR PRINT LINE *
ERBEREARRRSRERERE

MXe e 0 b

- * 1
- *

-
- THE END
»

» L3
- *
=
«NO
-
-
-
.
b3
- * % 2
- L3

* L]
- *

-
«NO
.
-

b #* YES
INITIAL ENTRY #..
» -

STRAP 1II

HoavesensX
*

18
AERBRERRERARRREERE
* CALCULATE -
* ELAPSED TIME #

* »
ARRERREARARAREENE

* INITIALIZE
* SET UF OF

»
*

sesseceX* | INES/FAGE »
- *

-

*

»
AERERRARDAREBRER
-
-
.

eXoeosoossssacssccecsosannne

.
0GAA x
L 4
» -

* -
#START NEW PAGE #
- -

* wWRITE PAGE *
- HEADING L

- -
WA RN RN
.

Xo oo o

6
BRAABARNRRARRRR NS

Mo e o o0 astsesotsertesssrsetencrasts e ®

NEEEE
- »
eesX® EXIT #
- *
*® *
SRR

NO

*
» - 7

QEDIT

» -
#LINE CCUNT ® NO

eseaX® EXCEECED LETTY
L] *

HKe e e

12
EERRERRARAEARSERS
* UPDATE LINE #
* COUNT 8Y ONE *
» -
* -
* *
AEARRRRREAREEEERE
.

Xe s s e

13
EEAERER TS ARREAREN
* SET CARFIAGE #
* CONTROL TO *
* SINGLE SPACE *
* -

-

*

»
FEERARARAARRBENN
-

.

14
AEEEAERREARREE LR
¥SAVE LINE COUNT#*
» *

» »
* =

- *
EERTRERRRARNREEES
.

.

X

NO ® *
ssesssessscesssece® DOUBLE SPACE
»* 3

16
ARREEARERAEEREREDS
* OPLIST *
B e e B W W B B

*eeecosseX® WRITE TIME *oeee
* -

MESSAGE *

- =
AERERERERERRREERN

wXe s Bt e 000

»
» -

- 8

* -
* *
-

.
.

X
EERE
* -
* 11 =
* »*

EER

#eoeesncenceeseccscceroenssecevssonsrensonone

.

.

.

.

M

x 9
ERRFERRREEARER RN
* UPDATE LINE #
COUNT BY Two
- *
* *
* »
AERREZARBERERRERSR

Xesena

10
(2222222 22222227
* SET CARRIAGE #
* CONTROL TO_ *
* DOUBLE SPACE *
» *

*

-

-
EXTY ISR YRR
.

Xeoane

1
ERRFEEESREERRR Y
#SAVE LINE COUNT*
* *

* *
* -

* *
ARREURARRARENERES
.

.

.

Ko 000 000000000000060c00tersnirssresestoseosserttssisteeeoresoosenetossisttssineetnectos sseeresscessonnsossss

LINKAGE

OEDIT is entered by the calling sequence -~
SIC, Qedita; B, OEDIT -- with certain indicators set
according to the type of entry:
Ogend = 1 if the end time message is to be printed.
Oginit = 1 if initial entry.

Onpge = 1 if new page is to be started (e.g., for
a SKIP).
Odbsp = 1 if double spacing is in effect.

FLOW CHART DESCRIPTION

Boxes 1, 2, 4, 8

These tests are determined by the indicator(s) set by
OUTPUT.

Boxes 7-14

Note that the line count maintained by OEDIT is for
the physical number of lines allowed per page. (The
line count maintained by OUTPUT is for the purpose
of numbering the lines of the instructions.) The
number of lines allowed per page is set up in the
Communication Region of STRAP II.

Box 5

The page heading includes the initial time clock
reading, the card identification from columns 73-80
of the card, the identification from the most recent
PRNID pseudo-op, the page number, the setting of
location counter (within a word) at the start of this
page, and the title headings for the columns on the
listing.

CEDIT 165

CHART OL STRAP I1 OPLIST

FERRRAERRSACRE AT
* OPLIST *
e o o el e et ek B
4 LIST OUTPUT *
- FOR -
* PASS 2 *
AR EREFERARAERRL

e oo o

1
SR R
* WAIT FOR
» BUFFER
* EMPTY
*
-
-

LA R R

R R R
.

mXe v oo
~

3
EERARA LB RERERERRE
* OPINT *
ol e e e B e W
®INITIALIZATION *
. FOR »
#OPLIST ¢+ OPPUN®
HRBRRERB AR AR

.
-
.

-
.
.
.

eXesoenvsncasn
.

X 4
FERERSERERARRTURS ARRARBEREARESERR R
* CONVERT DATA * * FLAG BUFFER *
- T0 OUTPUT * #* INDEX WORD AS #
®* CODE, MOVE TO ® esee s X*EOF, STORE NQO. *
* BUFFER, STEP * ® OF LINES IN :
-
* *

.
#BLOCKING CNTL o . - COUNT
ERARTFRRRFTARRRAR - RS2 22222222221

- . -

. . .

. . .

. . .

. - .

. . .

x 5 . x 8 - 12

* * » - % % » * *
- - * - * -
® LAST * YES . * SYSTEM # NO * OTHER * YES
L3 ENTRY #eceecccecssecsnnacccnscccnnens socX® OUTRUT #eueeseeoXt OUTPUT Fecescrnssoscsnnane
- L3 * .
- » - » * » .
- - . * - - »* -

- - - » -

+NO . «YES «NO .

.

.

.

. . - . .

x 6 « OPLIS7 X 9 . X

- * % - FRERRARBRAREN - HABABRRXRTERRRRES
* . * . * COMPUTE
BLOCK ® YES . ® $SPR * . * NEXT
* FULL . ® * . * LISTING ARC
® » * - *
- * * - - *
- - FEREREREREA AR - EERBERRREER
- . .

«NO . . .

. . . .

. . . .

. . . .

. . . .

x 7 x 10 . x 14
RERERABXRREBRRRRS E2 R R 222222222221 2] - RAARAPFREERRRRERNE
* SAVE » * BLANK . ® SET INDEX %
*+ BLOCKING » » BUFFER * . * WORD IN *
- CONTROL = * * . * BUFFER *
- » * * - * -
* » * * . * »
FRERARBABABARH LR ERRRAERRRZERFRRES - LR X222 2222222222 2]

. . . .

. . . .

- . . .

. - . .

- . . .

. . . .

- oPLISE 11 . . X 15

- AERBEERER AR BN REN - - RARARBEERARE RN

. % INITIALIZE * - . * *

. * BLOCK ING * X . * sw *

- ek CONTROL *XeooXe . » »

Y » * x * *

- - * - * L

- FARRSERARARFRARES - ERERAREERREER

. . .

. . .

. secsesesassecssenscsecatcsasestssassnsarsstseeTsurTansanenaeaenaens

.

.

.

x

RERE

* L]
* EXIT *
- L3

- L]
2212)

166

LINKAGE

On Entry

1. The calling sequence is:
CNOP
SIC, Oplisz
B, OPLIST
CW, Location of data, number of words.
2. In order to terminate the listing, bit Oprien
must be set to one before branching to OPLIST.

On Exit

1. If STRAP II is the last compiler in a chain,

the listing will be written on the System Output ($SPR);

if not last in a chain, the listing will be written on
either the disk or System Output as specified in word
9 of the Communication Region (COMREC). If the
listing is to disk, the location of the first arc where
the listing is to be placed is specified by the pre-pro-
cessor. i

2. STRAP II will place succeeding listing arc
numbers in word 0 (bits 0-17) of each listing arc.
The number of lines of listing in the arc is placed in
bits 28-45. Bit 25 on indicates the final arc of the
listing.

FLOW CHART DESCRIPTION
Box 1

The program waits for bit Olfull to be reset by the
write EOP interrupt, indicating that the listing buffer
is ready to accept data.

Boxes 2, 3

Switch 1 is a NOP-Branch switch which is set to a
branch by OPLIPU. There is an identical switch in
OPPUN. The first time thru either OPLIST or
OPPUN will cause OPLIPU to initialize both routines.

Box 4

The data is moved to the listing buffer and converted
to the code specified by COMREC, or in the case of

OPLIST

System Output, to A8 code. The blocking control
index (Olblk), which contains the working location in
the listing buffer, and the mumber of available posi-
tions in the buffer, is stepped over the line image.

Box 5

Oprien is checked to see if the current entry is the
last. 1If yes, the buffer will be written regardless
of the blocking control count.

Boxes 6, 7

The count in Olblk is decremented and checked for
zero. If so, the buffer is full and ready for output.
If not zero, the blocking control is saved, and
return is made.

Boxes 8-10

If bit Spooll has been turned on by OPLIPU, the
listing will be written on the System Output; the
buffer will be blanked.

Boxes 12-15

Bit Oldisk will have been set to one if the listing is
to disk. If on, the next available arc for listing is
obtained from Oarcx and placed in the first word of
the buffer. Oarcx is stepped to the next available
arc for listing or binary output. The number of
lines of listing is stored in the count field of the
first word, and the arc is written on the disk.

Box 11

The blocking control is reset, indicating an empty
buffer (i.e., starting at word 2, and maximum line
count).

Box 16

Bit 25 in word 0 of the listing buffer is set to one,
indicating EOF. The count in the blocking control

is subtracted from one less than the maximum number
of lines that can be placed in the buffer. The result

is stored in the count field of word 0.

OPLIST 167

CHART

cee

R R I I N NN I ORI SN SO I)

.
-
.
.
.
.
-
.

.
<
m
“w

ases

168

EB

EERBRERERE

b NPNSY

L R e o
PUI

STRAP II

EERERRE
(] =
P]

* INSYM *
* PROCESSING IN *
A *

* PASS 2
EAERERERARRBRERER

.

.

.

.

-

X

. o » 1 EREAE
* *
* * *
* PASS 2A seve s X® EXIT ¥
*® * *
* * * *
- - EREAR

«YES

.

X 2
ERERRARERNRERE RS
#GET NUMBER OF *

»* FIELDS *
* *
* *
= -
RERBEBREARBRER RN

.
ssvaceeXe

.

NPSSER X 3
EEREBFRERRRERRE AR
LOCe OF VLE =
*AND SPACE OVER *
* TO SYMBOL »

*
» *
RERBBEERRELREERER

.

x 4
RARBARBEREFRAERERRS
* SEARCH »

EEE B S T B B 2 2 g
* SEARCH *
% SYMBOL TABLE *
- -
AERERTRARERERT EER

.

.

.

.

. S

. ERRERREERRER RS RN

. * UNDEF *

«{NOT FOUND) Rk e e i Ak bk

esvvaccsscssssnasX¥ MAKE AN »

. * UNDEF INCD L4

. * SYMBOL ENTRY -

- EEXARAREERARRERRER

- .

-

. .

. .

x T X 6
FFERREFARBERNE RS HRRRFERRRARREREEE
- TURN ON * ERRCR hd
» 25737 » MESSAGE *
* X *
* - *
* * * *
RERERARERBRERERENE RS R R A RN RN

.

-

.

.

.

X

s » e
® ANY *
* MORE *
* SYMBOLS *
- »
* *
* L

*

«NO

.

. »

x

EERR
*
* EXIT *
-

SRRE

NPNSYM AND NGBTP

AEREREAREAEERERER

* NQBTP *
LR B B B S Bt O Tl 2
* PASS 2B *
* PUNSYM *

* PROCEDURE *
EEEERAXERRERRE RS
.

X 1
HEEERERERERRRERER
* *

* GET ADDRESS %
*#OF NEXT SYMBOL
* TABLE VLE

»

*
RAEERERERBERERAERRE

X e v 0

* » 2
* *
HAS *
PUNALL BEEN ¥
* SPECIFIED *
H x

YiS oo

* *
*
«NO
X

* ® % 3
s »

*

* SYMHOL *

MARKED TO BE

* PUNCHED *
* -

*

* *

"
«YES

.

sees s sttt ess s e

essecanssaXe

X 4
ERREERRAEE R ERRER

IN BUFFLR
EEERRRERERARRLE

» M
» *
- AND ®
» INDEX »
* »*
- -

» »

o
Muxsosos

* DOES *
*SYMBOL HAVE®

* DIMENS ION
®*PROPERTIES *

* -

NO

¥ooe

1] *

-
«YES

ll'lllllliil'llil
»* CONSTRUCT *
» DIMENSION *
#VALUES + STORE *
* IN BUFFER *

-

*

*
AREERERBEERE SRR
.

-

.
seseveccsceXaXeosasssvone
- -

x 7
ARERBERERAERERRER

AR
* REQUIRED #
* »
- -

-
«YES

Xe e

9
FEERAARRERRERRRRR
*

STORE DATA

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
»
.
.
.
.

»
* -
¥ -
* BUFFER .
- L]
* *

EEERBBRESERRRNY

sresnceas

-
.
.

* OPUNSA *
LT BN P Nt Bt Bt Sk Bl
* PUNCH *
* SYN »
ARD *
FERARRRERERARRRERRER
.
.
.
X
* a
- *
CONTINUATION KO
o ceven

NQAMS

*eaneeceaX¥

X
.
.
.
.
.
.
.
.
.
.
.

.
-
.
-
.
.
.
.
.
.
-
.
.
.
.
.
.
.
-
.
.
.
.
.

=

*Xevssssossancsnsnese
*

ks e s s e s e e s e st s s eses e

ANY

MORE
* SYMBCLS *®
x *

»*

*

13
10 REEXERRRRERRRENE
*

1
*
»
* NO * F INAL *
%esesssseX¥ HCUSEKEERING *
* *

=

»

»
HEARRRRERESLRREE

Xe oo

EREER 12

* *
* EXIT *
* 10 *
*QUTPUT *
* *

REEE

This subroutine is the PUNSYM procedure in Pass 2b.

LINKAGE

After all binary cards have been punched, OUTPUT
branches to the NQBTP (Branch To PUNSYM) only

if the switch at Opsym is a Branch. This switch is
converted to a Branch by the normal processing of
either PUNSYM or PUNALL pseudo-ops by OUTPUT,
and is restored to a NOP by the NQBTP subroutine.
NQBTP branches directly back to OUTPUT.

DETAILS

The pseudo-op, PUNSYM, initiates the punching of
SYN cards for only those symbols specified by the .
pseudo-op. PUNALL requests punching SYN cards
for the entire symbol table. For PUNALL a switch
at Ngpall, in addition to the switch at Opsym, must
be converted to a Branch by OUTPUT. Both will
be restored to NOP's by NQBTP.

The SYN cards punched by STRAP II for symbols

requested by the program are in the following format:

2-9 Name
10 - 12 Operation Code SYN
13- 22 (Mode, FL, BS),
23 - 38 (8) + XXXXXX.XX Bit Value
42 - 53 (8) + XXXXXXXX Integer Value
56 - 60 ($xx) Index Value
61 - 72 , (Dim.q, Dim. g, ..., Dim.)
73- 80 Identification

Continuation cards (if required for name, dimension
reference, or both):

1 Asterisk
2-9 Name
10 - xx Dimension reference

FLOW CHART DESC RIPTION
Box 1
The address of the first symbol table entry is picked

up from the control block (Tsymb + Azfw) and spaced
over to the vle entry.

NQBTP

Boxes 2,3

If the pseudo-op, PUNALL, has been specified in
the program, PUNSYM bypasses testing NQBTP to
determine those symbols marked to be punched, and
punches the entire symbol table. N.B.: STRAP
does not punch cards for undefined symbol table
entries.

Boxes 10-12

If there are more symbol table entries, NQBTP
spaces over to the next vle entry; if not, it restores
the original buffer and switch settings, and branches
back to Pass 2b.

Box 4

Eight characters of the symbol name are stored in
the buffer, and if more characters remain, a switch
is set to indicate the necessity for a continuation
card. The dds, bit and integer values, and index
value are obtained from the symbol table entry and
stored in the buffer.

Boxes 5, 6

If dimension properties are attached to the symbol,
they must be recalculated by NQBTP. Since the
original dimensions have already been multiplied to
produce the final product of the dimensions, NQBTP
divides the last value by the penultimate value, etc.,
to arrive at the original values.

Box 7

Opunsa sets up the control word and branches to
OPPUN for the actual punching

Boxes 8,9

If one or more continuation cards are required be-
cause of a name longer than 8 characters and/or an
extra number of dimensions, the card image is con-
structed and NQBTP branches back to box 7.

NOBTP 169

CHARY EG STRAP 11 NUNDSY-~~PAGE 1 OF 2

FEAEEREEREE R AT
* NUNDSY *
L R e e
* SYMBOL LISTS #*
* *

» *
HERRBAREERS SRR R

Xe e e e

1
HERRARRERREERE RET
*INITIALIZAYION *
» £

* *

- *

* -

EERARAERBRRERRA AR
.

.
-
.

2
REFAURRBLFRRRAERER
* ANEXT * EERR
EEL Bl BE Sl g 2t B B » =
#® GET NEXT VLE *Xeaas® 11 *
* * » *
- * EEER
FREARRERFERFRHERRRS

R

« (NO MQORE VLE)

essserscovosesnes

. EnEnE
- #EH *
. * 21
. LK)
. *
.
.
.
X 3
AERERARRERERER RS
* SPACE TO »
* FUNCTION -
* ADDRESS »
- *
- »
HRARERRRARAERERRS
.
.
.
x NISUSE * 10A * 108 11
L Y * » * * AREAREEERERES R RN
I * IS A L * HAS * % STORE ADDRESS *
- SPNLS ® NO * SYMBOL * * OF FUNCTION. ol
- PSEUDO-OP IN BEEN USED sseseX® ADD TO COUNT bl
* EFFECT * * (ZST24=1) * * *
- . - »] -
* * * » * * T e T T
» » » .
+YES «YES -YES -
. . . .
- esevosssvssssnsevsecssssoXeXnooonsosasssesnsssasuancsvas
. .
X X 13
o » s * % x 12 HRRAREERERLN R
- » AMULTI— = * ERROR »* RER
YES BY PASS # *DEFINLCD NO * YES b MESSAGE * - *
cees® SWITCH ON - #CONTRADICTIONS ¥oeaasonasX¥® FoaeaX¥ 11 ¥
. * * (ZSTV22=1) = * * * *
. - * * = * - X
. * * * » LT s Y e
. - »
. «NO «NO
. .
. .
. . .
. - .
. x 6A X 15
. EERERERRNEN LR 14 Y il
- * EMULTE- * * STORE ADDRESS ¥ rEEE
- bl TURN ON - *DEF INED AND#* YES # OF FUNCTION. * b *
- *BY PASS SWITCH # #CONTRADICTIONS ®essessssX® ADD TO COUNT FoeeeX¥® 11 ¥
- * * * (2ST23=1) * * » * .
. L] ' * * * » “nxw
RREEREERRRRERE RS * * AEARRERRERERR AR
. . »
- - «NO
. . .
. . .
- X 7 X 17
. - o ow 68 L R e . wx 16 ERAERRERBAAARRRRN
. bl - * OPLIST * * * * STORE ADDRESS # EER
® PRINTING ® YES A—R—B—R—R-R-B—R-F #CIRCULARLY * YES % OF FUNCTION. * » *
eeX* PRINT HEADER # L DEF INED *ou

* ALL SYMBOLS #.
» *

«X¥ ADD TO CGUNT #
* MESSAGE FOR # * -

. * {ZST4=1) -
. » * * ALL SYNBOLS * * * * * HERE
. * »* LT Y R T T 2 » - ARRARERERERERRERS
. * . L3
. «NO . «NO
. - . .
- - X
. secnna rena
. * -
x 9 110w
T T TR TY IR Y Y FEAARRRERARERRAEE - *
* RSERCH * i NCVAD * - EEn

L S e N e ok

*GET ADDRESS OF #cceseeeeX*CONVERT ADDRESS#*
* *

- RELATED
* ARGUMENT »
HREXRRERERERER RGN

170

AND PRINT *
* *
ARRAAARNBAXRERERR

CHART EH

ERRER
®EH *
® 21

*

NMOYLE
* * 18A
-

»
* PRINTING %

Wmxe oo

YES
ALL SYMBOLS #...eX* 23 *
- * *

STRAP 11

*

EXRE
=

NUNDSY———PAGE 2 OF 2

ERER
* *
* 22 #
* *
ERRE
.
.
.
X 20 21 22
* GET ADDRESS * * RSERCH * * NCVAD *
* OF FUNCTION * » -

essesX® FROM TABLE #eeeeesesX® GET ADDRESS %eeoeeeas«X#CONVERT ADDRESSH*
= . * * « OF SYMBOL * - ND PRINT %
= - xR . * = * *
= * - ERREEAREE TR - #nn
* . .
«NO - .
. . .
. . .
. . .
. . .
X 19 - X
= % 188 RERERERERIREREERR . = & ® 23
* ANY ® * OPLIST * . * ANY #
* UNUSED * YES R RN ® - NO ® MORE *
* SYNBOLS ®oeoseeansX®* PRINT HEADER Feaee ec0csssscsscsccscscscscecsssescssssccssncssncancsnssconcet *
* - MESSAGE . *
* * * * . * *
- * EREEEERFEIRRERRNS . » =
* . *
«NO - «YES
. . .
. - X
eXeeossancasncsosesesescssscscsssessasssse EEBR
. * »
NANYMD X 25 26 22 *
= ® 24 EERERREREARRRREEN FENEEARERE RS RERE T * ®
* ANY # * oPLIST * * NLISTO * ExEE
MULTIPLY * YES B Fm W n W W e Em W R Fm T W e S B
DEF INED oX%® PRINT HEADER %uscssceseX® GET ADDRESSES *
= MESSAGE * * OF SYMBOLS *
* = = * - AND PRINT =
= - REFEREREEARRRRRRE EEEEEERBERBAERRRL
* .
«NO .
. -
. -
.
NANYCE X 28 29
% w 27 ERERERERRAEREREER ERRRRERBEERERRRER EREEFERREREERE SRR
* Al * * OPLIST * * NLISTO * * NLISTO *
#CIRCULARLY #* YES o ot B e e s e B Rl e R e W e e N U e B R
* DEFINED FasasesesX¥ PRINT HEADER *eseesecesX¥ GET ADDRESSES * * GET ADDRESSES #
* * MESSAGE * # OF SYMBOLS b * OF SYMBOLS *
* * * * » AND PRINT = ® AND PRINT *
- = FERFAEARRARAERRRE ERERRREERRRER NN RERERRREERERER BT
* . .
«NO . .
. . -
- . .
eXonsse00e000cs0000000ccsstnccnccsssssccnsssccscssnseen -
. .
. X 35
.
. * NCVAD * * PICK UP *
- D e e = FUNCTION *
. *CONVERT ADDRESS#* ce e X¥ ADDRESS *
. * AND PRINT - . *® *
- *RAR L] * . * .o
. * » AR AR RRE . AEARREREERERERERE
. * 23 = . .
. * * . . .
. xan . . .
. . - . .
.
. - . . .
X X 30D X 31 . X 36
* ® ® 30A EEREREERETERER RS R .
* WAS ¥ * FINAL) M PICK UP * - = RSERCH *
PRNTALL * NO * HOUSEKEEPING ¥ * FUNCTION * - e e e He e Koo W K B
* SPECIFIED *oessnscseX¥® * * ADDRESS * . ®GET ACDRESS OF *
= * * * * . * SYMBOL *
- » * . * = = - * -
= - EREEEERERARRRREER . AR
. . . .
*YES
. . - . .
.
.
.
b3 X X 32 . x 37
EEEE RN EE EEEEE AREEREARRERERERES . R e e
* RN ON bl * * * CONVERT * . * OPLIST *
* PRNTALL * * * #* ADDRESS OF * . R -k A
* SWITCH * * EXIT # * SYMBOL TO BCD * . * PRINT SYMBOL *
L3 * = - = * . * *
" - = - * * - » *
FEERERTRERRREE IS ERESR . *EE
. . . .
. . . .
. . - .
. . . .
. . . .
. . . .
X 30C X 33 . X 38
ERERRRERERERER RS .
* NUNDSY * * OPLIST * - * BLANK THE *
Bl o e R R N — R e L o e ot = . * BUFFER *
- REENTER * * PRINT SYMBOL * . * *
* NUNDSY * % AND ADDRESS * - * *
* * - * . » *
EREERE SRR R R = .
. . .
- . .
. . .
. .
. .
- - .
X 34 . x
AEREREAREARRERRRE . o 39
* BLANK THE * . * ANY ¥
el BUFFER * *YES ¥ MORE *
* - PP *
* * *
Ll *® * *
ERREEERER RN DR RS * *
. *
. «NO
. .
- .
- .
. -
X X
EREEE ARREE
= = *
- = =
* EXIT * * EXIT *
* = *
*
EREE EEEW

1m

NUNDSY

LINKAGE

OUTPUT branches directly to NUNDSY.

DETAILS

For symbols multiply-defined without contradiction,
an error message is executed. Undefined symbols

and their addresses are given immediately to the
specified output medium, and the locations of the

172

other three types of symbols in error are temporarily
stacked, so that only one iteration of the symbol

table is necessary. After the complete iteration,

the unused, multiply (with contradictions) and circu-
larly defined symbols, if any have been detected, are
given to the output medium. For unused symbols,

the address is also printed. Only the first 50 char-
acters of the symbol will be printed. The SPNUS
pseudo-op suppresses the listing of the unused
symbol list.

SERVICEABILITY AIDS

ERROR DETECTION AND POST MORTEM DUMPING

As an aid in the original debugging of STRAP II and
as a subsequent check on the operation of the com-
puter, there has been provided in the coding of the
assembly program tests of various parts of the
assembly program's logic in terms of the current
instruction being assembled.

In certain areas of STRAP II when specific infor-
mation should be in the unit according to the instruc-
tion being assembled and when specific information
should be in the symbol table entry according to the
symbol on the instruction being assembled, STRAP
inspects the contents of the unit or of the symbol
table entry for the specific piece of information. An
unsuccessful inspection (i.e., information is not
available that should be) causes STRAP to give both
an error message containing the location of the test
just made and a dump. The dump is optional. If the
logic test is made during Pass 1, the dump, if taken,
will be of the current unit. If the logic test is made
during UITER or Pass 2, the dump, if taken, will be
of the vle portion of the current symbol table entry.

Whether or not there is this dump is determined
by an indicator in the STRAP II program which
STRAP 1II arbitrarily has defined in the not-to-dump
status.

MACHER (MACHine ERror) is the subroutine to
handle this error action. The calling sequence to
MACHER is SIC, Machez; B, MACHER. The location
to be inserted in the message is obtained from the
location, Machez. When used by Pass 1, MACHER
returns control to the wind-up procedure in MAIN,
not to the user routine as would be expected by the
calling sequence. Furthermore, when UITER uses
MACHER, MACHER marks the vle as completed.

Another checking feature in the assembly program
occurs during the matching of files in the Pass 2b
phase. To guard against errors while matching
names with the units, each name from the name file
has associated with it a digit from 0-9. This digit
is inserted both in the name record and in the
corresponding unit record by Pass 1. The OUTPUT
subroutine checks that the files agree.

DETERMINATION OF PHASE, UNIT, AND SYMBOL
ENTRY BEING PROCESSED

In the area of the STRAP program that is particularly
reserved for control information common to all
phases, there are both a set of indicators whose status
indicates the phase of STRAP in process and a set

of counters whose contents describe how far the
assembly is in process in a particular phase.

The indicators and the meaning of their on-setting
are:

Fpassl =1, when Pass 1 is in process.

Fuiter = 1, when the iteration between Pass 1 and

Pass 2a is in process.
when the iteration between Pass 2a
and Pass 2b is in process.

Fpass2 = 1, when the iteration between Pass 1 and

and Pass 2a is in process.
when Pass 2a is in process.
when Pass 2b is in process.

Fpass3 =1, when the iteration between Pass 2a

and Pass 2b is in process.

when Pass 2b is in process.
(STRAP II writes the current pass indication on the
numeric display lights of the console.)

The counters and their significances are:

1. The Unit counter is set to one at the start of
each pass, and is increased by one for each new unit
processed. This incrementing is done in Pass 1 after
the use of INTOUT, in Pass 2a and Pass 2b after the
use of INTIN,

2. The Field counter is set to zero at the start of
processing each unit and is increased by one as each
address field is processed.

3. The Symbol counter during the UITER sub-
routine holds the address of the function portion of
the variable length entry part of the symbol table
entry currently being analyzed by UITER; during
Pass 2a and Pass 2b, Symbol holds the address of
the function portion of the variable length entry part
of the symbol table entry, if any, associated with the
current unit. Otherwise, Symbol is zero. (During
Pass 1 Symbol always holds the value, Msyte, where
the variable length entry part of the symbol table
entry is built up.

Furthermore, if the unit has a name, the number
associated with each name is carried in the Ziname
field of the unit and in the Zstcent field of the function
portion of the variable length entry part of the symbol
table entry.

LOCATIONS IN STRAP I CONTAINING INFORMA~
TION USED TO ANALYZE ERROR CONDITIONS

Work Area
There is an area (commonly referred to as the work

area) within the STRAP II program that is reserved
for control-type information. This area is divided

Servicability Aids 173

into logical as well as physical sections determined
by the phase in which the information is used. One

section is used both for the information referred to

by more than one phase and for the subroutines used
in more than one phase. Then there is a section

containing reference information for Pass 1, another
reserved for both phases of Pass 2 as well as for
the iteration phases, and a final section containing
the large buffers (e.g., Tsymba-~symbol table,
Tbufa-buffer for units).

Sections of STRAP II

Type Area Section
on Designation
Disk

SCSTRAPO Bootstrap
SCSTRAP1 0

A0

Al

1
SCSTRAP2 A2

2

A3

174

Contents

Those subroutines of STRAP II common to Pass 1
and Pass 2.

Constants and work areas common to Pass 1 and
Pass 2.

Constants and work areas for the input-output routines.

Error messages common to Pass 1 and Pass 2, all
control words for serious and non-serious error
messages, and all serious error messages for
STRAP II.

Constants and work areas for Pass 1.

Subroutines unique to Pass 1.

Constants and work areas unique to Pass 2.
All non-serious error messages.

Subroutines unique to Pass 2.

Buffers.

Index Registers

In STRAP II index registers other than $7, $8, and
$9 are at the special disposal of specific routines

Index
Register

0

10
11
12
13
14

15

of the assembly. Therefore, these index registers,
the ones other than $7, $8, and $9, are not used
generally in STRAP Il unless their contents are

saved on entrance into and restored on exit from
the routine using them.

Index Register Assignment in STRAP II

Contents or Use during
Pass 1 Phase

Value field used for calling sequence
reads in TABMAN; refill field used
during the execution of a RNX
instruction.

Used in the RNX instruction.
A8 character from GETCHA.

Address of the question bits for
instruction being processed

Address of unit being processed.

Used randomly.

Used randomly.

Used randomly.

Used by VALUE.

Used by VALUE.

Used by INTOUT.

Used by GETCHA.

Value field used for subroutine linkages;

refill field used to point to the table of
exits for maskable interrupts.

Contents or Use during
Pass 2 Phase

Value field used for calling sequence
reads in TABMAN; refill field used
during the execution of a RNX
instruction.

Used in the RNX instruction.
Address of the unit being processed.
Absolute portion of the location counter.

Address of the question bits for
instruction being processed.

Symbolic portion of the location counter
(i. e., current 3 character STRAP II
special symbol).

Used randomly.

Used randomly-

Used randomly.

Used by VALUE.

Used by VALUE.

Used by NAMEIN.

Used by OUTPUT.

Used by NAMEIN.

Value field used for subroutine linkages;

refill field used to point to the table of
exits for maskable interrupts.

Servicability Aids 175

LIST OF THE STRAP II NUMBERED ERROR MESSAGES*

Logic Area
Detecting
Error
Number Condition Message
1 MAIN ILLEGAL OP CODE 1
2 MAIN ILLEGAL SECONDARY OP 2
3 MAIN ENTRY MODE WITH NON DD OPER. 3
4 MAIN MORE THAN ONE SECONDARY OP 4
5 MAIN MORE THAN ONE DDS 5
6 NPS2 PASS 2A AND 2B LOC. CTR. DO NOT AGREE 6
7 MACHER. ASSEMBLY ERROR 7
8 GETFLD VLE SYMBOL TABLE EXCEEDED 8
9 GETFLD SYM. BUFF. HAS BEEN EXCEEDED 9
10 GETCHA GETCHA BUFFER FULL 10
11 SPARE 11
12 OUTPUT REACHED FLAG IN NAMEXW PRIOR TO END INSTRUCTION 12
13 OUuTPUT FLAG NOT SET IN NAMEXW AT END INSTRUCTION 13
14 OUTPUT NAME CHECK CHARACTERS DO NOT COMPARE 14
15 SPARE 15
16 SPARE 16
17 SPARE 17
18 MAIN SYM TBL ENTRY MADE UNORDERED 18
19 ANEXT SYMBOL TABLE IS INCORRECT 19
20 SPARE 20
21 SPARE 21
22 SPARE 22
23 SPARE 23
24 SPARE 24
25 SPARE 25
26 SPARE 26
27 SPARE 27
28 SPARE 28
29 MAIN IMPROPER 1ST CHAR 29
30 MAIN MORE THAN ONE $ 30
31 MAIN ILLEGAL ENTRY MODE 31
32 MAIN ENTRY MODE NOT CLOSED BY RIGHT PAREN 32
33 MAIN 2NDARY OP NOT CLOSED BY RIGHT PAREN 33
34 MAIN THIS OP SHOULD NOT HAVE DDS 34
35 MAIN DDS NOT CLOSED BY RT. PAREN 35
36 MAIN FIELD LENGTH GREATER THAN 64 36
37 MAIN BYTE SIZE GREATER THAN 8 37
38 MAIN BIT STYLE NO. IN DDS 38
39 MAIN NEG. FL OR BS HAS BEEN COMPLEMENTED 39
40 MAIN EXTRA FIELDS 40
41 MAIN SHOULD HAVE NO NAME 41
42 MAIN STRAP ASSIGNED DDS 42
43 MQS SYN WITHOUT A NAME 43
44 MQS SYN WITHOUT AN ADDRESS FIELD 44
45 MQDD UNATTAINABLE VALUE 45

* Error Messages numbered 1-28 can be made to appear on the console typewriter by the use of a
Correction card.

176

Number

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

Logic Area
Detecting
Error
Condition

OUTPUT
MDIMRF
MPUNID
CPLTSY
OUTPUT
MQTAIL
MQTAIL
MQTAIL
MQTAIL
MQTAIL
CPITNM
MQP

MQDD
GETFLD

GETFLD
GETFLD
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
YALUE:
VALUE
VALUE
GETCHA
GETCHA
GETCHA
GETFLD
MAIN

MQDALF

MQDALF
VALUE

DECODE
DECODE
DECODE
DECODE
DECODE
DECODE
DECODE
DECODE
DECODE

Message

DR OR DD WITHOUT DDS 46

CHAR ILLEGAL IN RADIX SPEC. 47

MORE THAN ONE POINT 48

SYMBOL IS TOO LONG 49

MORE THAN ONE E IN NUM. DD 50

MORE THAN 1 $ IN SYSTEM SYM. 51
MULTIPLE DIMENSIONS NOT IN PAREN 52
VALUE ROUNDED TO FULL WORD 53
BIMENSION NOT CLOSED BY RIGHT PAREN 54
NO COMMA AFTER PUNID 55

NON-EXISTENT SYSTEM SYMBOL 56

PSEUDO LOC. CTR. TOO HIGH 57

UNTAIL LEVEL MORE THAN TAIL 58

NULL TAIL 59

TAIL LEVEL NOT CLOSED BY RIGHT PAREN 60
ILLEGAL TAIL LEVEL CHARACTER 61
ILLEGAL CHARACTER IN TAIL 62

DIGIT INCORRECT FOR RADIX 63

ILLEGAL CHARACTER IN PUNSYM 64

MORE THAN 1 RADIX OR PAREN. ENTRY 65
SYNTAX ERROR 66

INAPPROPRIATE CHAR. 67

GP ERROR 68

TRUNCATION IN INDEX VALUE 69

INDEX IN WRONG PLACE, IT IS IGNORED 70
SUBSCRIPT WRITTEN AS BIT 71

CANT SUBSCRIPT CONSTANT, TRY INDEX 72
SUBSCRIPT OR INDEX INCORRECT 73
CANNOT SUBSCRIPT SYMBOL WITH NO DDS 74
1 SUBS. TOO MANY, LAST USED AS INDEX 75
TOO MANY SUBSCRIPTS, EXTRA IGNORED 76
TOO FEW SUBSCRIPTS, OTHERS TAKEN 0 77
DIVISION BY ZERO, DIVISOR IGNORED 78
INCORRECT CARD CODE CHAR. 79

ILLEGAL CHAR. IN FIRST COL. 80

ILLEGAL CHAR. IN NAME FIELD 81

(.0) HAS BEEN INTERPRETED AS PAREN INTEGER 82
SYMBOL TOO LONG FOR SPECIFIED TAIL 83
CC ENTRY MODE WITHOUT BS 12 84

BS NOT 8 85

ONLY INTEGER VALUES ALLOWED 86

THE FL IS GREATER THAN 64 87

BYTE SIZE GREATER THAN 8 88

BIT TYPE NOT ALLOW. 89

NEG. FIELD HAS BEEN COMPLEMENTED 90
MODE INCONSISTENT WITH OP 91

NO MODE 92

TOO MANY FIELDS 93

ERROR IN GP 94

NEGATIVE GP HAS BEEN COMPLEMENTED 95

Numbered Error Messages

177

Logic Area

Detecting
Error
Number Condition Message

96 MDUP NO FIELDS, STATEMENT IGNORED 96

97 DECODE BIT TYPE UNUSUAL 97

98 DECODE NEGATIVE PARAMETERS ON EXT 98

99 DECODE PARAMETER GREATER THAN 64 99
100 NPS2 ADDR LESS THAN 33. 100
101 NSYN ERR IN DDS 101
102 MIOD JILLEGAL SEQ. OF MCP CARDS 102

103 MIOD IOD CARD SHOULD HAVE NAME 103
104 MIOD 1/0 TBL OF EXITS ADDR NULL 104
105 MIOD REEL CARD DOESNT NEED NAME 105
106 MDUP MISSING FIELD 106

107 MX EXT NOT FOLLOWED BY CORRECT PARTITION CHAR 107
108 GETFLD GP IS NOT ALLOWED 108

109 MAIN RADIX SPECIFIED AT THE END OF A DD 109

110 MQM BIT STYLE NUMBER USED TO REFER. ERR 110

111 MQM ERR MESSAGE SPECIFIED IS UNKNOWN 111
112 MQDDPP 0 BASE INDD 112
113 MQDDPP EXP. NOT IN RANGE 113

114 INSERT NEGATIVE FIELD HAS BEEN COMP. 114

115 INSERT INDEX NOT ALLOWED 115

116 INSERT ADDRESS FIELD HAS BEEN TRUNCATED 116

117 INSERT ONLY K FIELD ALLOW. 117

118 INSERT ADDR INCLUDES BITS NOT NORMAL IN OP 118

119 INSERT SLC HAS AN INTEGER 119

120 INSERT BIT TYPE ADDR UNUSUAL HERE 120

121 INSERT BIT ADDRESSED TWICE IN LVS OR INDMK 121
122 NEXT INSTR. NOT ALLOWED IN EXT 122

123 INSERT MORE THAN 1 LOC. CTR. DEP. SYMBOL 123
124 NPNSYM SYM ON PUNSYM NOT IN PROG. 124
125 MQDALF NO TERMINATING CHARACTER 125

126 GETCHA FORCED COMMENT CARD 126
127 OUTPUT PUNID IN PUNFUL SEQUENCE -- STATE. IGNORED 127
128 NUNDSY MULTIPLY ASSUMED 128
129 MAIN OP OR SS CHANGED INTO LEGAL MNEMONICS 129
130 DECODE FIELD LENGTH MORE THAN 24 130
131 NUNDSY MULT. DEFINED SYM WITH NO CONTRADICTION 131
132 DECODE CANNOT EVALUATE DDI 132
133 NEXT INCONSISTENCY IN EXT PARAMETERS 133
134 OUTPUT PSEUDO LOC. COUNTER CHECK 134
135 GETCHA ID SEQUENCE 135
136 OUTPUT RELOCATABLE PSEUDO-OP., NOT IN PUNREL MODE 136
137 OUTPUT COMBLOCK STATEMENT WHEN NOT IN PUNCDC MODE 137
138 OUTPUT ENTER STATEMENT, NOT IN PUNFPC MODE 138
139 OuTPUT NAME LONGER THAN 8 CH. ON COMBLOCK OR ENTER 139
140 MAIN NO FIELDS ON RELOCATABLE STATEMENT 140
141 MAIN RELOCATABLE STATEMENT NEEDS A NAME 141
142 MAIN COMMON NAME UNDEFINED 142
143 MIOD EXIT ADDR IS NULL 143
144 MIOD NO BONIOD 144

145 MDUP FIELD IS ZERO 145

178

146
147
148

MDUP PARAMETER EXCEEDS MAXIMUM ALLOWED 147

MDUP REPEAT PSEUDO-OP ILLEGAL'HERE, REPEAT TERMINATED

LIST OF THE STRAP II I-O ERROR MESSAGES

Logic Area
Detecting
Error
Condition

XERR

XINPUT

XERR

INTOUT

OPLIST
OPPUN
OPPUN
OPLIST

or
OPPUN

Message

UNCORRECTED ERROR READING DISK
RELATIVE ARC number
STRAP ASSEMBLY TERMINATED

COMREC FOR INPUT FILE IN ERROR
STRAP ASSEMBLY TERMINATED

UNCORRECTED ERROR WRITING DISK
RELATIVE ARC number

THE FOLLOWING INSTRUCTION IS TOO LARGE FOR STRAP BUFFER
current contents of the card image buffer

COMREC FOR LISTING OUTPUT IN ERROR - LISTING ON SYSTEM OUTPUT
COMREC FOR BINARY OUTPUT IN ERROR - BINARY ON SYSTEM OUTPUT
PUNFUL, COMPILE AND GO BOTH SPECIFIED

INSUFFICIENT DISK STORAGE FOR STRAP OUTPUT
STRAP ASSEMBLY TERMINATED

Numbered Error Messages

MDUP REPEAT PSEUDO-OP WITHIN REPEAT BLOCK, STATEMENT IGNORED 146

148

179

INCLUDING A COPROCESSOR SUBROUTINE WITH STRAP II

There can be included with the assembly program a
coprocessor subroutine which Pass 1 can enter when~
ever any one of six conditions occurs during the Pass 1
phase. The conditions are:
1. An illegal STRAP or MCP character in column
1 of the input (This condition is detected by GETCHA.)
2. An illegal programmer symbol in columns
2-9 of the input--where the first character of a name
must be alphabetic; the subsequent characters of the
name must be alphameric. (This condition is detected
by GETCHA.)
3. A non-IBM card code character punched on
the card input. (This condition is detected by XINPUT.)

B, entry D .

B, entry E ..

B, entry F .

B, entry G 'where entry G is the

entrance into the co-
processor subroutine
for the 'WANT ANOTHER
CARD' option.
NOTE: When Hhcom4 is on and the coprocessor
does not wish control after Pass 1 detects a coprocessor
condition, the corresponding slot in the transfer table
for the unwanted condition must be a B, 0($15). If
Hhcom4 is off, the STRAP II transfer vector must be

4. Immediately before the pseudo-op END is
processed. (This condition is detected by GETCHA.)
5. An illegal operation code. (This condition is

detected by MAIN.)

6. An inappropriate character in an entry mode
--where the current entry modes allowed by STRAP II
are: Radix, IQS, CC, A,and Fn. (This condition is
detected by MAIN.)

COMMUNICATION SPECIFICATIONS
Entry into Coprocessor

In order for Pass 1 to enter the coprocessor sub-

routine certain information must be preset in STRAP II's
common work area section. If this information is not
there when the Pass | phase detects one of these six
conditions, Pass 1 will treat any possible coprocessor
condition strictly as an error condition, and will not
consult the coprocessor subroutine at all.

Transfer Vector

Therefore, if the coprocessor wants control under any
of the above conditions, the common work area of
STRAP II must be set up as follows:

1. The bit, Hhcom4, must be on to indicate to
STRAP II that the coprocessor wants control during
Pass 1 whenever a coprocessor condition is detected
on the input.

2. The transfer table at Hhcopr must contain the
following when Hhcom4 is on:

Hhcopr B, entry A 'where entry A is the
entrance into the co-
processor subroutine
for the condition 1.

B, entry B e
B, entry C ...

180

in the transfer table.

GETCHA informs and enters the coprocessor through
a special calling sequence after having set up $6 and $7
accordingly.

Calling Sequence
GETCHA exits to the coprocessor through the following

calling sequence:
SIC, $l5; B, entry X

B, --—-- ' " CONDITION NOT WANTED!g
return from the coprocessm(

B, ---—- '""INSERT CARDS'" return from
the coprocessor.

B, -—- ""WANT ANOTHER CARD"

return from the coprocessor.
The address entry X corresponds to the appropriate
entry address in the previous table.

Index Register 7

Index register 7 contains information to be used by
the coprocessor..

1. VF of $7 contains the location of the card image
with the trouble condition.

2. CF of $7 contains the number of bits which
STRAP II has processed on the error card image.
(VF + CF = position of pertinent character).

3. RF of $7 contains a value corresponding to the
code of the card image being given to the coprocessor.

Value Character Code Set

CC code
A6 code
A8

Not used
IQS code

Q1 W oD

4. Bits $7.25 and $7. 26 have the following signifi-

cance:
$7.25 = 0 if STRAP II is giving the cop-

rocessor a card image in the IBM
card code.
= 1 if STRAP is giving a card image
in a code specified by the RF of
87.
0 under the usual circumstances.
1 if there is no more material to
give the coprocessor when a

11

$7.26=

"WANT ANOTHER CARD'" request

is made by the coprocessor.
Index Register 6

Under certain of the six conditions, a character in
A8 (or card) code is positioned in the rightmost 8
(or 12) bits of the value field of index register 3.

1. If STRAP II enters the coprocessor through
entry 1, the VF of $3 contains the illegal STRAP or
MCP character in A8 code, positioned as mentioned
above.

2. If STRAP 1I enters the coprocessor through
entry 2.the VF of $3 is zero .

3. If STRAP II enters the coprocessor through
entry 3, the VF of $3 contains the illegal 12-bit card
code character.

4. If STRAP II enters the coprocessor through
entry 5. the VF of $3 contains the next character
following the operation code where the operation code
is assumed to be less than nine characters. If the
operation code exceeds eight characters, the VF of
$3 contains the ninth. In either case the character
is in A8 code.

5. If STRAP II enters the coprocessor through
entry 6, the VF of $3 contains the inappropriate entry
mode character in A8 code.

(An END pseudo-operation should never be included
as part of any insert group to STRAP II. If STRAP II
detects the END pseudo-op in insert material, control
will be given to the coprocessor through the entry

4 only this once. The bit Hhcom5 in the common
area of STRAP will be set on for the coprocessor

for this situation.)

Options

The options available to the coprocessor are:

1. The coprocessor may not accept the condition
and may re-enter STRAP II through the ""CONDITION
NOT WANTED" return.

2. The coprocessor may accept the condition;
the coprocessor may perform both options 2a and 2b,
or just option 2b. For the final return to STRAP II

under the 2a option, the coprocessor must re-enter
STRAP II through the "INSERT CARDS" return after
having setup index register 6 with the prescribed
information. Before STRAP II performs the option
of "WANT ANOTHER CARD'" or of "INSERT CARDS"
for the illegal card code character condition, it first
terminates the present card block if there are any
good units in it.

a. The coprocessor may request a card image
-- one at a time —- by a re-entry through the "WANT
ANOTHER CARD" return.

b. The coprocessor may or may not insert
information after the last unit processed by
STRAP 11, supplying a group of zero to n card images
in a memory buffer specified by the coprocessor.

Exit from the Coprocessor

Whenever the coprocessor accepts a condition, the
coprocessor must set up index register 7 with the

following information before re-entering Pass 1 through

the "INSERT CARDS" routine.
Index Register 7

1. VF of $7 contains the location of the insert
buffer material.

2. CF of $7 contains the count + 1 of the card
images in the ingsert buffer. (A CF of 1 indicates that
no material is to be inserted; a CF of 0 cannot be
specified.)

3. RF of $7 contains a value corresponding to the
code of the insert material.

4. Bits $7.25, $7.26 and $7. 27 have the following
significance:

a. $7.25 0 if the buffer contains insert
material in the A8 code.
= 1 if the buffer contains material
in a code specified by the value
in the RF of $7.
0 if the coprocessor only re-
quested as many card images
through the "WANT ANOTHER
CARD'" option as it needed.
= 1 if the coprocessor requested
one more card image than it
actually needed through this
option.
0 if a continuation card may
follow the actual insert material
of the coprocessor.
= 1 if a continuation card may not
follow the actual insert material
of the coprocessor.

il

Il

b. $7.26

c. $7.27

Coprocessor 181

NOTE: the extra card image that the coprocessor
may have requested must be included with the
material to be inserted into the assembly. The
extra card image, if present, will be the card image
examined for the illegal continuation card situation.
Any illegal continuation card is made into a comment
and an error message is given.

PERTINENT OPERATING FACTORS

The following operating factors influence the previous
specifications:

1. After Pass] has entered the coprocessor through
any of the possible seven entry points, the coprocessor
must save the status of the index registers. On re-
entry into Pass 1, the coprocessor must restore the
previous status of the index registers, excepting index
register 7, which now contains new communication
information.

2, Once the coprocessor has accepted a condition

on an "error" card image, all the remaining information

on this "error' card image is lost as far as Pass 1 is
concerned except if the coprocessor includes the re-

182

maining information of the "error' card on a new card
image in a group to be inserted.

3. The END instruction must be the only instruction
in its card block whenever STRAP II is running with
the indicator, Hhcom4, on.

4. The card image given to the coprocessor under
the "WANT ANOTHER CARD" option is in the original
input code, not in the A8 processing code of Pass 1.

5. Pass 1 will not have scanned a card image for
the END instruction before going to the coprocessor
if the card image is one for "WANT ANOTHER CARD"
option or one on which an illegal character is present.

6. Coprocessor must scan for an END instruction
each card image received under the "WANT ANOTHER
CARD" option or under the illegal card input condition.
If the coprocessor detects the END pseudo-op, the
coprocessor must not ask for any more card images
and the subsequent return to Pass 1 must be by the
"INSERT CARDS" return. The insert group must
at least include the END instruction.

7. Control is given to the coprocessor for con-
ditions present in the original input, not those in an
insert group.

For STRAP II to produce relocatable binary output,
following pseudo-ops had to be defined: ORIGIN,
PUNREL, PUNFPC, ENTER, PUNCDC, COMBLOCK,
SLCRCOM, and FEND. The implementation of these
pseudo-ops involved introducing both new indicators
and new fields to existing formats. The changes to

RELOCATION PSEUDO-OPS

RELOCATION PSEUDO-OPS

three of the formats, the unit, the symbol table
entry, and VALUE's output words are indicated
here. Also in this section are both a resume of the
processing of the ops, together with the formats of
the binary output produced, and the specifications of
the pseudo-ops with an example.

Relocation

Pseudo-Op Specification Use

ORIGIN ORIGIN, N To produce special
origin card for the
loader

PUNREL PUNREL To put STRAP II in
relocatable mode

PUNFPC PUNFPC,S,C To produce special
Fortran program
for the loader

ENTER A | ENTER, B To provide informa-
tion for the Fortran
program card

PUNCDC PUNCDC To produce special
common definition
card for the loader

COMBLOCK A | COMBLOCK, N To define a named
common

SLCRCOM SLCRCOM, B To set location rela-
tive to common

FEND FEND To produce Fortran

branch card

Notes

Where name is not meaningful.
Where N=location, in absolute or
symbolic form.

Where name and address are not
meaningful.

Where name is not meaningful.

Where S=program size, in absolute or
symbolic form.

Where C=blank common size, in
absolute or symbolic form.

Where A=any eight characters
excluding the quote and semicolon
characters.

Where B=program entry point, in
absolute or symbolic form.

Where name and address are not
meaningful.

Where A=any name (8 characters
maximum).

Where N=block size, in absolute or
symbolic form.

Where name is not meaningful.

Where B if in absolute or symbolic
form = named common.

Where B if blank = blank common.

Where name and address are not
meaningful.

Relocation Pseudo-Ops

183

AN EXAMPLE OF A STRAP II PROGRAM USING RELOCATION PSEUDO-0OPS

PUNFPC, LAST, COMLAST

KRUM ENTER, START
PUNCDC
BLOCKI1 COMBLOCK, 100
PUNREL
SLC, 0.0
DD(BU), 1.0 'Length of T. V,
INPUT (A*)DD(BU, 64, 8), INPUT bbb* 'T.V.
XSAV DR(BU), (15) 'Index saving calls.
START TI, 15, $X1, XSAV 'First instruction.
SIC, $X15
B, INPUT 'CALL INPUT
s A, A
, B;, B
LX, $X14, XW1 'T index.
SIC, $X15; B, $MCP '"RETURN.
, SEOJ
A DD(N), (10)
LAST SYN, $
SLCRCOM
B DD(N), (10)
COMLAST DR(N), 0
SLCRCOM, BLOCK1
C DD(N), (100)
FEND
SOME CHANGES IN THE FORMATS Position in Word Use

An additional word had to be added to the basic 0-17 Number of named common for
format of the unit to contain the relocatable in- the address from an address
formation: whether the contents of the address field.

field or of the refill field or of both are to be relocat- 18-23 Zero fill to force a full word
able, and if so, to what base, See Figure 17. address

=

=

0

O

N

0 17 18 242526 27 3132 49 50 5556 58

I FTTTTTITTTTITTTTTTT] OIOIOIOIOIOI l I IOIOIOIOlOl FTTTTTTTTITTITTTITTI |°l°l°l0|0|0| H ‘OIOIOIO!O

Figure 17. Format of the Last Word in the Fixed Position of a Unit

184

Position in Word Use

0-if address is not to be re-
located.

1-if address is to be relocated.

0-if address to be relocated is
from an address field.

1-if the address to be relocated
is from a refill field.

0-if address is to be relocated
as a lower address.

1-if address is to be relocated
as an upper address.

Not used

Number of named common for
the address either from a
second address field orfrom
a refill field of a full word
instructjon.

Zero fill to force a full word
address.

24

25

26

27-31
32-49

50-55

56
57

As above.
As above.
58 As above.
59-63 Not used.
Each entry in the symbol table entry also includes
fields to flag relocatable information:

Relative Position Use
in the vle
Zst35 0-if location counter dependence
is not decided.
1-if location counter dependence
is decided.
Zst36 0-if location counter dependent.
1-if not location counter dependent.
Zstcom 0-if address is to be relocated as

a lower address.

© SINCOM
SINUA

171819

Relative Position Use

in the vle
1-if address is to be relocated as
an upper address relative to
the contenis of Zstcon.
Zstcon 0-if blank common otherwise-

number of named common.

When both Zstl3 is on and Zst36 is off, it is necessary
to look at Zstcom. If Zstcom is zero, the address is
to be relocated as a lower address; if on, the address
is to be relocated as an upper address relative to the
common whose number is given in Zstcon. When
data follows an SLCRCOM statement, Pass 1 sets
up each symbol table entry both with Zstcom =1 and
with the common number in Zstcon. Later in Pass 2
after INSERT has inserted the binary output in Ziotpt,
INSERT also checksin VALUE's output words the
relocation indicators: /Sinrll, Sinrl2, and Sinua.
If Sinrll = 1, Sinrl2 =0, and Sinua = 1, then INSERT
inserts in the unit at Zicomm the number of the named
common contained in VALUE's Sincom.

Figure 18 shows the third word in VALUE's output
which contains the extra relocatable information for
the user routine.

Position Use

0-17 Number of named common.

18 0-if at exit from VALUE, the
address is to be relocated as a
lower address.

1-if at exit from VALUE, the address
is to be relocated as an upper
address.

19-63 Not used.

The fifth word in VALUE's heading is reserved
specifically for relocation information during
VALUE's evaluating procedure. See Figure 19.

63

[TTTTTTTITTTITTITT] l iolololoIoloToToTo]o101010101010]OIOIOI0I0I0[0I0|0|0IOIOIOIOICWOWOIOIOIOIOI010|0Ioiol0|0|0

Figure 18. Format of the Third Word in VALUE's Output

Relocation Pseudo-Ops 185

© VVCOM
VINUA

1718 19

63

TTTTTTTTTTTTTITT I]]NO]OIOIOIOFOI o[ofojofp[o0[0]0]O]OTO[OTOT 00000

Figure 19. Format of the Fifth Word in VALUE's Heading

The bit assignment is the same as that in the third
word in VALUE's output.

RESUME OF THE PROCESSING OF THE RELOCA-
TION PSEUDO-OPS

PUNREL: On encountering a PUNREL pseudo-op,
Pass 1 turns on bit Punrel. Subsequent non-PUNREL
punch pseudo-ops effectively turn it off so Pass 2
later turns it on also. Pass 2 does not accept re-
location pseudo-ops if itis not in PUNREL mode.

PUNFPC: For a PUNFPC, Pass 1 encodes the
program and common size fields. If a blank common
is not used, the second field may be left blank. If

in PUNREL mode, OQUTPUT goes into PUNFPC

mode and sets up the format for the Fortran Program
Card. OUTPUT leaves PUNFPC mode when a non-
ENTER statement is encountered.

ENTER: For an ENTER, Pass 1 makes a symbol
table entry for the name, if it has one, and encodes
the address field. It is QUTPUT's job to determine
if it is in PUNFPC mode, to fetch the name (sixty-
four bits, A8 code) from the name file, and to place
it in the Fortran Program Card format. If the
ENTER does not have a name, QUTPUT will supply
eight A8 blanks. OUTPUT also evaluates the entry
point address, using VALUE, and plaeces the value
in the Fortran Program Card as a nineteen bit field.
When either a non-ENTER statement is encountered
or the card is full, the Fortran Program Card is
punched. Additional Fortran Cards are in the same
format except that the program size and amount of
blank common used fields are blank.

PUNCDC: If in PUNREL mode QUTPUT goes into
PUNCDC mode and sets up a format for the Common
Definition Card . OUTPUT leaves PUNCDC mode
when a non-COMBLOCK statement is encountered.

COMBLOCK: The COMBLOCK statement does not
reserve any data: it simply supplies information for

186

the common block definition card., Data is entered
into a named common in the following manner:
Program Example

BL1 COMBLOCK, 5
BL2 COMBLOCK, 25
'"Program instructions

SLCRCOM, BL1

JOE DD(N), 5, 10, 15, 20, 25
SLCRCOM, BL2
JACK DRZ(N), $PI

References to JOE in the program are marked as
relocatable as an upper address relative to common #1.
References to JACK are marked as relative to
common #2.
Symbol table entries for COMBLOCK have Zstcom
set to one and Zstcon set up to contain the common
block reference number as an eighteen bit field. If
the statement does not have a name, an error message
is given, and the address field is still encoded. This
is not the way to define blank common. It should be
done thusly:

Program Example

SLCRCOM
JIM DR(BU), 32

References to JIM in the program are each marked as

an upper address relative to common #0 (blank common).

It is OUTPUT's job to determine if it is in PUNCDC
mode, to fetch the 64-bit A8 name from the name file,
to place it in the Common Definition Card format, to
evaluate, using VALUE, the common block size, and
to place this in the Common Definition Card as an
eighteen bit field. When either a non- COMBLOCK
statement is encountered or the card is full, the
Common Definition Card is punched. Additional
Common Definition Cards are in the same format.

SLCRCOM: For a SLCRCOM, Pass 1 turns on bit
Mupper to indicate that the symbol table entries
made are relative to some upper address. If the
address field is blank, the symbol table entries are
marked as relative to common #0 (blank). If the
address is not blank but contains a legitimate name,
it is looked up and the symbol table entry is marked
as relative to the common number which is found in
the symbol table entry for the name in the address
field. Pass 2's job is to set the location counter to
zero. In blank common instructions they should

be only DR's (no DRZ's).

FORMATS OF THE RELOCATABLE BINARY
OUTPUT PRODUCED BY OUTPUT

STRAP II in PUNREL mode produces binary output
as herein described.

Relocatable Data Card

The Relocatable Data Card contains both data from
DD statements and a count of bits to be zeroed or
skipped at the time before or after loading from DR
or DRZ statements.

Bits Assigned Use

1.0- 1.11 Code column. (Relocatable data
card has 6, 7, 8, and 9 punches.)

2.0 - 2.11 Identification column.

3.0- 3.11 Sequence number.

4.0 - 4.11 Check sum.

5.0 A one bit control: 0 if skipping,

1 if setting to zero.

5.1 A one bit control: 0 if either skip-
ping or zeroing is done before card
contents are loaded, a 1 if after.

5.2 - 5.11 Bit count (10 bits).

6.0 - 7.11 Origin.

8.0 - 9.11 Number of bits to be either skipped
or zeroed at the time either
before or after loading (24 bits).

10.0 - 10.11 Loading base.
11.0 - 71.11 Data only.
72.0 - 80.11 A nine column field ignored by the

loader, which may be used for
card code identification and
sequencing.

Common Definition Card

The Common Definition Card contains information
regarding named commons for the BSS Loader. The
common name and size is derived from the
COMBLOCK statements.

Bits Assigned Use

1.0- 1.11 Code column. (Common definition
card has 5, 7, 8, and 9 punches.)

2.0~ 2,11 Identification column.

3.0 - 3.11 Sequence number.

4.0 - 4.11 Check sum.

5.0 - 8.11 Not used (48 bits).

9.0 -14.3 First common name from first
COMBLOCK definition card (64
bits).

14.4 - 15.9 Common size (18 bits).

15.10 - 15.11 Not used (2 bits).

16.0 - 21.3 Second common name from second
COMBLOCK definition card (64
bits).

21.4-22.9 Common size (18 bits).

22.10 - 22.11 Not used (2 bits).

23.0 - 29.11 The above pattern is repeated for
third common name.

30.0 - 36.11 The above pattern is repeated for
fourth common name.

37.0 - 43.11 The above pattern is repeated for
fifth common name.

44.0 - 50.11 The above pattern is repeated for
sixth common name.

51.0 - 57.11 The above pattern is repeated for
seventh common name.

58.0 - 64.11 The above pattern is repeated for
eighth common name.

65.0 - 71.11 The above pattern is repeated for
ninth common name.

72.0 - 80.11 A nine column field ignored by the

loader, which may be used for
card code identification and
sequencing.

Fortran Branch Card

The Fortran Branch Card is produced as a result of
the FEND pseudo-op.

Bits Assigned Use

1.0- 1.11 Code column. (Fortran branch
card has 5, 6, 7, 8, and 9
punches.)

2.0- 2.11 Identification column.

3.0 - 3.11 Sequence number.

4.0 - 4.11 Check sum.

5.0 - 71.11 Not used.

72.0 - 80.11 A nine column field ignored by the

loader, which may be used for
card code identification and
sequencing.

Relocation Pseudo-Ops 187

Fortran Program Card

The Fortran Program Card contains information for
the BSS Loader regarding both the size of blank
common and entry points derived from ENTER state-

ments.

Bits Assigned

1.0 - 1.11
2.0- 2.11
3.0 - 3.11
4.0 - 4.11
5.0 - 5.11
6.0 - 7.5
7.6 - 8.11
9.0 - 14.3
14.4 - 15.10
15.11

16.0 - 21.3
21.4 - 22.10
22.11

23.0 - 29.11
30.0 - 36.11
37.0 - 43.11
44.0 - 50.11
51.0 - 57.11
58.0 - 64.11
65.0 - 71.11
72.0 - 80.11

Use

Code column. (Fortran program
card has 5, 6, 7, and 9 punches.)

Identification.

Sequence number.

Check sum.

Not used.

Program size (18 bits).

Size of blank common (18 bits).

A8 name from first ENTER state-
ment (64 bits).

Entry address (19 bits).

Not used (1 bit).

A8 name from first ENTER state-
ment (64 bits).

Entry address (19 bits).

Not used (1 bit).

The above pattern is repeated for
the third entry point name.

The above pattern is repeated for
the fourth entry point name.

The above pattern is repeated for
the fifth entry point name.

The above pattern is repeated for
the sixth entry point name.

The above pattern is repeated for
the seventh entry point name.

The above pattern is repeated for
the eighth entry point name.

The above pattern is repeated for
the ninth entry point name.

A nine column field ignored by the
loader, which may be used for
card code identification and
sequencing.

Relocatable Binary Instruction Card

The Relocatable Binary Instruction Card contains
instructions, XW's, CF's, and RF's only (i.e., no
DD's or DR's) and their respective relocation bits.
The bit count in column five contains the count of
bits to be loaded, excluding the relocation bits.

188

Bits Assigned Use

1.0 - 1.11 Code column. (Relocatable binary

instruction card has 5, 7, and
9 punches.)

2.0 - 2.11 Identification column.

3.0 - 3.11 Sequence number.

4.0 - 4.11 Check sum.

5.0 - 5.11 Bit count.

6.0- 7.11 Origin

8.0~ 8.11 Not used.

9.0 - 71.11 Variable binary output for instruc-
tions only, followed by variable
relocation bits.

72.0 - 80.11 A nine column field ignored by the

loader, which may be used for
card code identification and

sequencing.
Relocation Bits
0 No relocation
10.... Relocation
100 First 18 bits (address)
101 .. Last 18 bits (refill)
10.. 0 As lower address
10.. 1.. As upper address
10..10 Blank common
10.. 111 Named common

where i is the number of the named
common. Length of i field is
determined by the number of
named commons.

This bit is reserved for later definition.
Special Origin Card

The Special Origin Card for the BSS Loader has the
following format:

Bits Assigned Use

1.0- 1.11 Code column. (Special origin card
has an O- punch.)
2.0 - 9.11 New origin. (The full word loca-
tion is punched in the format:
Xxxxxx.08.)
10.0 - 71.11 Not used.
72.0 - 80.11 A nine column field ignored by the

loader, which may be used for
card code identification and
sequencing.

APPENDIX A - FORMATS

0 17 18 24 28 45 46 63
IIIIIIIIHHIIIIIl]OIIII!IHIIIHHIIIIIIIIII PITTTTTT Control
t
Address of Next Word Number of Words in Unit Address of Next Control Word ‘;;;0
] >
< 1% E [a)
[a) o} a IN[®]
g 2 s EEES
N [N NNNN
0 2425 3132 56 58 60 63
~
FTTTTTITTTTI T LI T I T T ol IHIHIIIIIIIIIIIHHIIIIlll[c[dlefolol
Absolute Portion of the Location Counter Length of Symbolic Portion of the Location Counter
is Put here in Pass 2 Binary Qutput is Put here on Pass 2
w Z o]
= e SRR g
N N NNNRNNSN N
0 24 26 28 30 32 56 57 63
TTTTITITTITIT I T I T T ITT IIig[hl;l;’anlll TTTTTITT T T I I T i T I I T I Il]
Length of Coded Fields Length of Symbolic Statement No. of Extra
Wo.uds of
" . o A Binary Output
z 2 2 & 3
5 S 2z £ g
N N N N N
0 2425 28 3132 4950 6263
lllIIIIHIIIIIIII]IIlll]!nlolollll I||IIllllIIIHIIIIIHIIIIIHII
Length of P-Mode Symbol Name Number of Fields. Dds Information Fixed
Check
Format
Digit
a
o}
9
N
0 32 63
FITTTITIT I T T e T T I T T T I T T T I I T T T T T I T T T T T I T T I TTITTIT I 0T
Card ID in Absolute Form
>
[
9
N
0 2425 2930 63
‘ CTTTTTTTITITTTIT T TT I T T T I TTT [p]ol q0[0[0[0T0[0T0 [0TOJOOTOT O[O IO TOTOTO] O[O0 O[O O[O TOTO[0[0 O
l'l'OI'
Location of Operation Question Bits Flags
=
o
=
9
N
0 32
FTTTTTT T T T T T e T I T T T T T I T T T T T T T T i 1117
Binary Qutput
Legend
a. on if last control word f. DD k. b.s. filled in
b. on if last control word in file g. explicit dds 1. symbolic b.s.
C. name h. P-mode m. dds filled in
d. DECODE gets unit i. f.1. filled in n. nothing left for DECODE
e. binary output j. symbolic f.1, p. suppress e.m. *See section on relocation pseudo ops.

Figure 20. Format of the Fixed Portion of an Expanded Instruction Unit (not including relocation fields)*

Appendix A - Formats 189

64 25

| I I I I | I
ols Entry in the
< Symbol Table
5§ 1 ! 1 L1 1 I
E r?; / 1 First Eight Characters of the Name Signed Address of its vle
[}
g om
28 ws
2 957
.8
¢ g
g <
2 e
64 25
T T I T T T Entry in the Symbol Table
g o Especially for the $ Symbol
‘ L - \ -
Of112"-1 S - or for an Internal STRAPII
i 1] l \ 1 Special Symbol
> 2 Internal STRAP II Special Symbolic Counter Symbol As Above
B> (n = 0 for the $ itself)
o g
G 0
< <
n o
32 25
0 T | 1 c -
obor nt.ry in the
) Tail Table
l]]
First Four Characters of the Tail Either Signed Address of its vle

(If Tail > Four Characters)
or Number of the Tail
(If Tail < Four Characters)

3A0QY SY
2A0QY SY

32 6

Entry in the
Table of IBM 7030
Indicators

Mnemonic for the Indicator Number
(0-63)

2A0Qy sy
2A0QY Sy

Delete Indicator: O - If this is not a deleted entry
Vle Indicator: 1 - If there is a vle portion

Figure 21. Augment Portion of Each of the Tables Handled by Table Management

190

|

oi the ame
: f the N
| |
I |
|
' |
| I

103eD1pU] AMI[R(]

13 6 12 8n 231 minimum
0 S A6
} Length D |Length Rest, if any, Function
of this of the of the Name (Format of function defined by the
Entire vle Rest, if any, ZST. . .bits)

13 6 12 231 minimum
0 Yas <€ 0 -)l
z As Above' As | As I As Above
g Abovel Above |
< ’ |
I
I |
|
I |
I I
| |
13 6 12 8n 8
0 Thr6
2 las Above ! As As Rest of the Tail Number of
Ef_ AboveI Above the Tail
¢ |
|
|
|
|
13 6 ! 5
| |
0 Dus 1
l 1
2 As Above’ As ' As \ ny ngxng n{xnpxn3
> Abovel Above Evaluation
g | Indicator Products of Dimensions
’ [
|
|
|
13 6 | 25 25
[
Hype
|]
2 s Above | As Signed Value from Signed Value from
? Above Absolute Counter Symbolic Counter
2
[

Figure 22. Entries in the Variable Length Entry (vle) Table

Remainder
of a symbol
table entry

Remainder of
an internal STRAPII
special symbol

Remainder, if any,
of a tail entry

An evaluated
dimension entry

A Hi-Lo
entry

Appendix A - Formats

191

0 18 116 124 |32 140 148

I56 63

-t Skeleton Bit Pattern for Non-Ambiguous Op

The Location of the Corresponding
Op-Index is in Bits 0-23. |

Y

Two Word Format for a Non-Ambiguous Op

0 18 {16 (24 132 [40 148

156 63

Field Length Op.

The Location of the Corresponding Op-Index
is in Bits 0-23, |

|«¢—Skeleton Bit Pattern for a Floating Pt. Op »}t- Skeleton Bit Pattern for the Bits 32-63 of a Variable————p»

Two Word Format for an Ambiguous Op

0 18 116 124 132 140 [48

56 63

)) The Digit-Select
'Ijhet Lof:atlon of the Corresponding Op-Index |<___ Pseudo Op Number—‘_‘>|
is in Bits 0-23. | | is in Bits 32-50. |

Two Word Format for a Pseudo Op

Figure 23. Entries in the Table of Primary Operations

0 abc |8

63

111

000 % MNEMONIC OF THE SECONDARY OP

SKELETON BIT PATTERN

A

abe Use

000 -

001 for a secondary op in a variable field length instruction
020 for a SEOP

100 for a secondary op in the CW instruction

Figure 24. Entry in the Table of Secondary Operations

192

=0, if the location is the machine location corresponding to the system symbol.

a=1,

b=0,

b=1

c =0, if mode
=1, if mode

d =0, if mode

d =1, if mode

e =0, if mode

e =1, if mode

is floating point.
is not floating point.

is either unnormalized or unsigned.
is either normalized or signed.

is decimal,
is binary.

Figure 25. Entry in the Table of System Symbols

if the location for the system symbol is available at this IBM 7030 machine installation.
, if the location for the system symbol is not available at this IBM 7030 machine installation.

- 64 Ittt 24 ——] ——— 13—
alblc,de
0jofofojo
111

Model F.L.IB.S.

System Symbol without the $ Location DDS Information

- AN /)

~N '
Argument Function

if the location is an address within STRAP II where the floating point constant for the system symbol is stored.

Ife=1,
the format
isrepeated

Ife=1,
the format
isrepeated

al 12 96 8 S 12 |d| 6 e
0 0 0
0 1 1 1
Expo- Fraction Sign Special’ 'G.PJIf R
nent Byte Exponent d=1, there
is a coded
expression
for G.P.
a 11 12 96 8 c 12 |dl6 | _ k]
1
Fraction Expo- Fraction Sign Special g, p!H
Length npent Byte Exponent d=1, there
is a coded
s : s s . . expression
a =1, if the numeric DD is in the Fn entry mode. d = 1, if the numeric DD has a general paren- for the G. P.
a =0, if the numeric DD is not in the Fn entry mode. thetical field integer entry (G,P).
d =0, if the numeric DD does not have a general
b =1, if the numeric DD is in the normalized mode. parenthetical field integer entry.
b =0, if the numeric DD is not in the normalized mode.
e =1, if the format is repeated for another field
c =1, if the numeric DD has a special exponent. in a multiple field numeric DD.
c =0, if the mumeric DD does not have a special exponent, e = 0, if this is the end of the encoding.

Figure 26. Entry Made in the Variable Portion of a Numeric DD's Expanded Instruction Unit

Appendix A - Formats

193

13 6
Total
0| Length Das Dimension Information
of
vle
| Dimension Data in the (vle) Table |
| |
I
| |
I
| I
|
Dimension Information
| Dimension Data in the Unit
i |
| |
| |
|
} I
5 24 min 24 min 24 min |
No. Coded Coded Coded /S/e/e///////
0 . . .
of Expression Expression Expression Footnote /
D's for Dy for Dy for Dy_1 /
2 1 /
THInn,
|
| Primitive Dimension Information I
{ |
| |
| I
| 5 24 24 24 |
ee
No.
° I Footnote
of Dl D2 D1D2. e Dn_1 >
D's

Evaluated Dimension Information

> General

Information

>

/

Detailed Format
of Dimension
Information

1. This is 'garbage' in case it is necessary to make the total length of the primitive form 2 24(n-1)+6
bits to allow for the conversion of the primitive to the completed form.

2. This is 'garbage' if the primitive form waslonger than 24 (n-1) + 6 bits.

(The transition from the

primitive to the completed form is handled by the VALUE subroutine when the dimension reference

is required.)

Figure 27. Dimension Entry

194

APPENDIX B--ADDITIONAL INSTRUCTIONS AND PSEUDO-OPS ACCEPTED BY STRAP IIl’ 2

PRIMARY OPERATIONS

Pseudo—Ops3
COMBLOCK Common Block Definition PUNFPC Punch FORTRAN Program Card
CNOP Conditional No Opera’tion4 PUNFUL Punch Full Binary Card(s)
DDI Data Definition Immediate PUNID Punch ID in Binary Card(s)
DR Data Reservation PUNNOR Punch Normally
DRZ Data Reservation and Set to Zero PUNORG Punch Origin Binary Card(s)
DUPLI Duplicate PUNREL Punch Relocatable Binary
END End PUNSYN(or Punch Syn Symbolic Card(s)
ENTER Define Entry Point PUNSYM)
EXT Extract? REM Restore Error Message
FEND FORTRAN End RESEQ Restore Punching Sequence Number
LINK Link in Binary Card(s) with one
NOPRINT No Printing of Listing SEM Suppress Error Message
NOPUN No Punching of Binary Output SKIP Skip Paper
NOSEQ No Sequence Number to be Punched SLC Set Location Counter
in Binary Card(s) SLCR Set Location Counter Relative
ORIGIN Origin SLCRCOM Set Location Counter Relative to
PRND Print double-Spaced Common
PRNID Print ID SPNUS Suppress Printing Not Used Symbol List
PRNOR Print Normally SYN Synonym
PRNS Print Single-spaced TAIL Tail
PRNTALL Print All Symbol(s) Used in TLB Terminate Loading and Branch
Program
PUNALL . Punch SYN Card(s) for All UNTAIL Untail
Symbol(s)
PUNCDC Punch Common Definition Card
General Instructions MCP Instructions
CF Count Field 10D
CwW Control Word REEL
DD Data Definition
INDMK Indicator Mask
RF Refill Field
VF Value Field
XW Index Word

Input-Output Instructions: OP, A-(D where A7(I) represents a channel address and the unit affected is the
last unit selected by an LOC instruction.

Appendix B - Additional Instructions 195

BS
BSSEOP

BSFL
BSFLSEOP
ECC
ECCSEOP
ERG
ERGSEOP
EVEN
EVENSEOP
GONG
GONGSEOP
HD
HDSEOP
KLN
LD
LDSEOP

Backspace

Backspace, Suppress End of
Operation Interrupt

Backspace File

ECC (and odd parity for tape)

Erase Gap

Even Parity, No ECC (tape only)

Sound Gong

High Density

Check Light On
Low Density

SECONDARY OPERATIONS

CCR
CD
CDSC
CR
SCCR
SCR
SCD
SCDSC

Chain Counts within Record
Count Disregarding Record

NOECC
ODD
ODDSEOP
ODDECC
ODDNEC
RLF
RLFSEOP
RLN
RLNSEOP
RWDUNL
SP
SPSEOP
SPFL
SPFLSEOP
TLB
TILF
UNLOAD

Count Disregarding Record, Skip, and Chain

Count within Record

Skip, Chain Counts within Record

Skip

Skip, Count Disregarding Record
Skip, Count Disregarding Record, Skip, and Chain

No ECC, EVEN Parity (tape only)
Odd Parity, No ECC

0Odd Parity, ECC
0Odd Parity, No ECC
Reserved Light Off
Reserved Light On

Rewind and Unload
Space

Space File
Terminate Loading and Branch

Tape Indicator Light Off
Unload

1 Additional is used in the sense that the instructions and pseudo-ops are not specified in the

IBM-7030 Reference Manual.
2 An operation mnemonic cannot exceed 8 characters in length.

w

These pseudo-ops are in each of STRAP II's three-digit select pseudo-op tables.

4 With the exception of the EXT and CNOP instructions, STRAP II considers an instruction to
be a pseudo-op if it does not produce binary output.

196

PARTICULAR COMPOSITION OF A CODED
EXPRESSION

Any coded expression begins with a 4 bit prefix, of
which the first bit is 1 (to indicate the existence of
the coded expression). The format of the coded
expression depends on the prefix.

1000 -- Normal Case. Following this prefix there is
a list of data, terminated by a 0-bit (after the 0-bit
terminating the last datum); then there is a list of
operators, again terminated by a 0-bit. Finally the
entire coded expression is terminated by a 0-bit.

The operators are in the order in which they are
to be performed.

1001 -~ Special Index Expression. Following this
prefix and an additional three bits is the same
encoding as that after a normal case prefix. The
final result is to be considered as an index (with a
basic value of 0).

1010 -- Padded Case. Following this prefix is the
same encoding as that after a normal case prefix,
but after the last 0 of the normal case type encoding
is a padding, that is, an arbitrary number of 1 bits
and a final 0 bit to end the expression.

1011 -- Special Signed Value. After the prefix is a
25 bit (sign included) value followed by a padding that
is an arbitrary number of 1-bits and a 0-bit.

1100 -- Super Special. (Normal case that has been
finished by DECODE.) Following this prefix is the
same encoding as that after the normal case prefix.
(This super special prefix is intended to indicate to
super-programs, e.g., DECODE, that the informa-
tion in the coded expression has already been used.)

1101 —- Fully Evaluated Expression. Following the
prefix are two full words (128 bits) giving the values,
etc., in the same format as that of the output from
VALUE.

1110 —- Long Prefix. This prefix indicates that
three more bits are to be considered as part of the
prefix for the coded expression.

1110000 -- Integer Value. Following this prefix is
the same encoding as that after a normal case pre-
fix, but if the encoding has a non-zero bit style part,

APPENDIX C - CODED EXPRESSIONS

this is to be added into the integer part, and an error
message is to be given.

1110001 -- Absolute. Following this prefix is the
same encoding as that after a normal case prefix,
but after computation of the coded expression, the
values are set positive.

1110010 —- Absolute Integer. This is like the integer
value and absolute cases in that order.

1110011 -- 17-Bit Constant. Following this prefix is
a 17-bit number and padding. The number is used
for the I value, and the S/X portion is taken as S.
(This prefix is intended for internal use by VALUE
in dealing with subscripts. The length '17' is chosen
because this type of expression is now short enough
to replace any other.)

1111 —- Null Expression. When this prefix appears
in subscript position after a datum, this prefix
terminates the datum (i.e., it has the same effect

as a single 0-bit). When this prefix appears as a
field in its own right it represents a null field, and

is followed by padding as in padded and special signed
value cases (i.e., it terminates at the first 0-bit).

Any encoding of a datum begins with a prefix of
three bits, of which the first bit is 1 (to indicate a
datum exists). The format of the encoding for the
datum depends on this 3-bit prefix.

100 -— Symbolic Datum. This prefix is followed both
by seven bits giving the number of A8 bytes (char-
acters) in the symbol and then by the symbol in A8
code.

110 —- Absolute Datum. This prefix is followed by a
24-bit binary number (interpreted as integer part).

101 —— Sub-Expression. This prefix is followed by a
coded expression whose values are to be used for the
datum.

111 —— Long Prefix. This prefix indicates that two

more bits are to be looked at as part of the prefix to
the encoding for the datum.

11100 —— System Symbol Datum. This prefix is
followed by a 24-bit binary number (interpreted as the
bit style part) and by 13 bits of data description infor-
mation.

Appendix C - Coded Expressions 197

Not used.

Encoding for a subscript, if present, is that of a
regular coded expression. The encoding for a sub-
script immediately follows the encoding of the symbol
to which the subscript refers.

Encoding for an index, if present, is that of a regular
coded expression. The encoding for an index follows
the encoding of the last datum and precedes the
encoding of the operators.

Encoding for operator, if present, in the field con-
sists of nine bits of which the first bit is 1 (to indicate
operators exist). The nine bits are made up of the
following fields: a 1-bit, a 3-bit operator code, and
a 5-bit datum number telling which datum the opera-
tor follows. The operator codes are:

111 .+, a. in a context such as 2.3, A.B.
110 .L, a . left in a context such as 2., 2. +3.
101 .R, a . right in a context such as .2, 2+.3.

100 U-, a unitary - in a context such as -7,

A*-2,
011 *
010 /
001 +
000 -, a - in a context such as 2-3, A-2.

Encoding for a general parenthetical field entry, if
present, includes the 1-bit (to indicate a general
parenthetical field entry exists) followed both by six
bits giving the value of N and by a coded expression
for the entry to be OR'ed into the field. The encoding
for a general parenthetical field entry follows encoding
of the operators.

GENERAL COMPOSITION OF A CODED
EXPRESSION

Item Number
for Referencing Bit
Purposes Length Comments

Prefix Portion (once for every coded expression):

1A 1 Indicator: 1-if coded
expression exists;
0-if no (more) expres-
sion(s).

1B 3 Type of coded expression

(normally 000). 1

198

Item Number
for Referencing Bit

Purposes Length Comments
Datum Portions:
2A 1 Indicator: 1-if datum
exists; 0-if no (more)
datum.
2B 2 Indicator: 10-if absolute
datum; 00-if symbolic.
2C 24 Absolute datum: value,
or binary.
2C 7 Symbolic datum: length
of item 2D (symbol)
in 8-bit bytes.
and
2D Variable Symbol (in A8 code).
2E 1 Indicator?: 1-if coded

expression(s) for
symbol subscript
exists; 0-if no (more)
subscript(s).
(""'subscript" may be
index.)

NOTE: Items 2E and 2F are repeated for each sub-

script until item 2E is "0."

2F Variable Coded expression for
subscript field. 3

NOTE: Items 2A through 2E(F) are repeated for as
many data as exist until item 2A is "0."

Operator Portions:

3A 1 Indicator: 1-if opera-
tor exists; 0-if no
(more) operator(s).

3B 3 Operation code. %

3C 5 Reference number to

datum to which opera-
tor applies.
NOTE: Items 3A through 3C are repeated for as
many operators as exist until item 3A is "0."

General Parenthetical Integer Entry Portions (g.p.):

4A 1 Indicator: 1-if (.n)
entry follows; 0-if no
(more). (.n) entries. 5

4B 6 Value of n, binary.

4C Variable Coded expression to be

OR'ed in.
NOTE: Items 4A through 4C are repeated for as many
g.p.'s as exist until item 44 is "0."

Examples of a Coded Expression

Figures 28 and 29 illustrate coded expressions.
Footnotes

1. See the detail write-up and example for defini-
tions of these codes.

2. This item is actually 1A of a coded expression
within the coded expression. Voila la cereal box! If
this seems confusing, think of the box of cereal that
has a picture of a boy holding a box of cereal with a
picture of a boy holding a box of cereal with a picture

This "cereal box'" idea is a key to both the
formats, and the subroutines which create and inter-
pret them.

3. Each datum is followed by a "0", the end of a
datum indicator, or by more complete coded expres-
sions representing subscripts. The last datum is
followed by a "0", the end-of-datums indicator, in
addition to end-of-datum indicator. Since each
expression starts with a 1-bit, a "0"" end of datums
indicator is all that is needed to show that there are
no more expressions and that datum(s) is (are) com-
plete.

4. Priority of an operator is defined so that the
more parentheses the operator is inside, the higher
its priority. Within the same pair of parentheses,
the order is essentially that given in the table.

5. Actually, the 0-bit setting of item 4A is
equivalent to the 0-bit setting of item 1A in its own
coded expression.

Appendix C - Coded Expressions 199

((JOE - 1) /4.) * 4+ 1),

<}
<
—- After 4th
o
o
<) EOD o
o -t
= [« o +
o o o
o =
o o - Operator
© o
© o
© <) -
o o -
o o After 3rd
o o o
(= _, Absolute =
<}
o 1 -
i
2 o EOD Tk
(= ° o
o
o =} — Operator
S o
= S °
~—
o pt o After 2nd
o P et
o 2 Py
o
<}
- Absolute g 4 2 /
- o =}
o
© FEOD °© ~ Operator
=}
- s}
o o -
~ o ~—
o E pt o After 3rd
- =) (@]
— o (=}
o o o
° °© - L
Al
=4 =]
- ~ Absolute
- - — Operator
© o
-
© o EOD o
el
=] © After 1st
o ° o
© (=]
el
Rl
o
o
<) g S 1
=} ° 2
s °
- g Operator
© o
© o 4 o NMD
=}
- o o EOD o No G.P,
— -
Length is ©
o 9 o - © NMD
o 3 Char o o
[} o o
o =) o -
© o ° =}
Rl
o ° o After 5th
o o o Py
o Symbolic =} o
~ (@] o
(=] o (=]
o o — .L
=} i o =} -
Y Prefix - Absolute =)
- - =] — Operator

Figure 28. Coded Expression -- Example 1

200

-
~ 24-Bit
o. Absolute
| Value
=]
o
o™ Absolute
< - Datum
& -~ Follows
<
A o ><
=) =
p P 5
E o YesS/X|&
O
1 -~
X - 24-Bit
E ; Absolute
= . Value
o S
o .
& o
5 o
%
= o Absolute
poy - Datum
© — Follows
o
- = No S/X
T
& =™
5 -
o
= o
-
o} o
= g Symbolic
E : Operand
o .
i
a -
:I: -~
Q o
3 on
A ~
= o
:
“! v—l\
m" -l
o
*l; o Length of
N - 8-Bit
] o Bytes
a o/ vt
+ o Symbolic
[=] Datum
- Follows
=)
g Prefix
-~
*
Figure 29,

000...010010, 00 1 o011 00010 1 000 00001 0 1000 11100
18 N /N / -/ __/

110
_/

0

110, 000

S

0

...0110

System
Symbol
Datum

i
e}
o
=)
o
Rl
o+
o
-
o
-
o
o
o
—
-
i
~

o
(=]

Prefix

Yes $/X

No More Op.
Between
1st and

2nd
Datums

Operation

Operator
Exists

Between
2nd and
3rd Datums

Operation

Operator

Exists

No More Datums
End of Datums

o
—
-

0

24-Bit
Absolute
Value

1000
8

000000
64

Absolute

Datum
Follows

01
BU

No §/X

7\

24-Bit
Absolute
Value

01001000000
22.0

Absolute
Datum
Follows

00...

\

No §/X

Coded Expression -- Example 2

Between
1st and
2nd
Datums

Operator

Operator Exists

Between
2nd and

3rd
Datums

Operator

Operator Exists

No More Datums o n
End of Datums

24-Bit
Absolute
Value

Absolute
Datum
Follows

No S/X

24-Bit
Absolute
Follows

Absolute
Datum
Follows

No S/X

Dds
System
Symbol

24-Bit
Absolute
Value

o No S/X
; Symbolic
o Operand
-~

S

o,/

SN

=] Symbolic
-

og Operand
o

-

o

e -

O™

[=}

; Length
o in 8-bit
=}

o/ Bytes

=} Symbolic
o Datum
-, Follows
o

[=} Prefix

o

Rl

001

00001
o/ __/

Operation

Operator
Exits

1

Between
2nd and
3rd Datums

00010
_/

111
Lt

Operation

Operator Exists

1

No More Datums
End of Datums

No More Op.

00

0060000

1000
8 /

64

101

/ \BU

..010011000000
23.0

00,

\

11100

\

/

0000101

NAVAN

*Coded expression for a new field begins here.

Appendix C - Coded Expressions

Dds of
System Syinbol
*
= End, i.e., No G.P,
24-Bit)
Absolute © No More Op-
Value ; Between
=] 1st and
g 2nd Datums
[=)
o! Operation
System e
Symbol - Operator Exists
Datum
o No More Datums
% (=] End of Datums
&
[
= o No More Op.
YesS/X e
=
o Between
s . g 1st and
ymbolic o 2nd Datums
Operand
i
o+ | Operation
[}
— Operator Exists
. © No More Datums
Symbolic © End of Datums
Operand
-
T | 24-Bit
© Absolute
E Value
=]
o
Length ©
o Absolute
. - Datum
Symbolic - Follows
Datum
= No S/X

201

APPENDIX D - SYMBOLIC DESIGNATIONS

If any named modifications are to be made to the
STRAP 1II program or if a coprocessor subroutine is
to be added to the assembly program, the following
mnemonic system already adopted by STRAP II
should be noted to avoid possible multiply-defined

symbols.

Initial
Character(s)

A

AZZ
AZ

AY
AX
AW
AU
AS

CC

.CP

EF

GC
GF

202

Used in the Symbolic Locations

Table management subroutine, e.g.,
ADDEND, ADDORD

Triggers

Relative Location in Table Control
Block (SYN)

Temporary Erasable in Program

Bit Lengths in Entries (SYN)

Relative Locations in Entries (SYN)

Locations in Universal Control Block

Locations for Saving Indexes, etc.

Buffers and index words referring to
the buffers.

CCAS8

CPLTSY, CPLTNM

Processing of DD fields

Error message subroutines, e.g.,
ERR, ERRIN, ERRNUM, and
ERRPRT

Error flags

Control flags

GETCHA
GETFLD

Interrupt subroutines

Intermediate input and intermediate
output subroutines, e.g., ININIT,
INTIN, and INTOUT

Initial
Character(s) Used in the Symbolic Locations

J MOVE

K _DECODE

LL BOPSER

LLL MBSPEC

M Main flow of Pass 1

N Main flow of Pass 2

o OUTPUT

P - —— -

QC Character question (256-bit) strings

R —_ - -. =

S Insertion subroutines

T Tables and setup routines

TOPA Operation fill control words for
INSERT

TOPQ Operation question (64-bit) strings

U UITER

A% VALUE

W —_— - -

X I-O subroutines, e.g., XERR

ZI... SYN's defining the relative locations

in an intermediate expanded
instruction unit

ZO... SYN's defining the relative locations
in the operation question bits
ZST... SYN's defining the relative l'ocations

in the function portion of the vari-
able length entry part of a symbol
table entry

Following is a 1ist of terms and abbreviations which
are used frequently in the analysis manual, including
a number which have certain specialized meanings
when used with respect to the STRAP II program.
The definitions given here are not exhaustive and the
reader is referred to the text of the manual for
amplification when required.

Absolute and Symbolic Counters (portion of the
location counter)

The location counter setting is maintained through
Pass 2 in two portions, each in an index register.

$4 contains the absolute setting of the counter; $6
contains the special symbol table entry, if any, which
has the special coded expression with the sum of the
current symbolic counter and of the absolute counter.
Thus, a cascading of STRAP II special symbols can
be built-up to refer to the actual setting of the loca-
tion counter until the absolute length of the binary
output is known. (The settings of $4 and $6 are also
carried in each unit and in the vle portion of each
symbol table entry.)

Ambiguous Op

This is an instruction that may have a floating point
dds or a variable field length data description.

Bit Style Number

This is a number which has a decimal point. Since
$3 is considered a bit style number and may be
written 3.0, a bit style datum may also be called an
X-datum.

b. s.

This stands for byte size.

B-value

This stands for bit value.

Card Block

This consists of the group of instructions included on

the initial card and on the continuation cards immedi-
ately following the initial card.

APPENDIX E - TERMS

Coded Expression

This is the encoding form (done primarily by
GETFLD) of an expression in a field. See Appendix
C.

COMREC

This stands for Communication Record.

Continuation Card

This is a card which has a continuation mark, an
asterisk, in the first column.

dds

This stands for data description.

dds reference address

This is a field in the Zst bits that refers to the
address of the explicit data description information to
be associated with this symbol table entry.

Deck

This is a group of symbolic or binary cards.

Dimension or Subscript

This is an integer specified within parentheses after
a symbol to refer to an item within an array.

Dimension Reference Address

This is a field in the Zst bits that refers to the count
position of the dimension information usually con-
tained in the same symbol table entry further out in
the variable length entry part.

Expanded Instruction Unit

This is a’record built-up for each instruction
primarily by Pass 1 in which is placed the following
information for each statement: control word for
INTOUT, information about the instruction, the’
encoding of the instruction, and the symbolic state-
ment of the instruction.

Appendix E - Terms 203

Expression

A STRAP II expression (constructed according to the
rules for the field of the instruction in which the
expression is located) is a sequence of constants and
of variables, subscripted or not subscripted, separa-
ted by operation symbols and parentheses, and

followed by either an index or by a general paren-
thetical field integer entry, but not both.

Fill Control Words

They are a chained list of index words for each
instruction. These XW's are used by INSERT's sub-
routines for inserting the values into the binary
output of the instruction.

f. 1.

This stands for field length.

General Parenthetical Field Integer Entry

This is the method of OR'ing a pattern of bits into
an instruction or into a pseudo instruction which
produces binary output. Such pseudo instructions
as SYN, DR, DDI, and DRZ cannot have a gp.

g. p. (or gp, or GP)

This stands for general parenthetical integer entry.

Initial Card of a Card Block

This is a card which does not have a continuation
mark in the first column.

Integer Style Number

This is a number which does not have a decimal
point. Since a subscript is an example of this, an
integer style datum may also be called an S-datum.
I-value

This stands for integer value.

Location Counter Dependent Symbol

This is a symbol whose value in the symbol table
entry depends on the location counter.

Name
This consists of the legal name characters appearing

in columns 2-9 of a card block including the
embedded blanks.

204

Op Index

In STRAP II there is a table of op index words. For
each type of instruction, there is a corresponding op
index or question bit string. The op index contains:

1. Location of fill index word chains for this type
of instruction.

2. Masked set of bits whose status indicate
answers to certain yes-no questions about this type
of op.

3. A code number if the op is a secondary op.

Pass 1

This is the phase of STRAP II that processes the
input statements and builds up an intermediate
expanded instruction unit for each instruction, a
symbol table, and a name file.

Pass 2a

This is the phase of STRAP II that assigns memory
addresses to location counter dependent statements.

Pass 2b

This is the phase of STRAP II that checks memory
assignments, completes binary output, and produces
final documents.

Phoney Symbol Table Entry

If a name is attached to an operation which does not
produce binary output and which is not an MCP op,

a SYN, DR, nor a DDI op, a ''phoney'" or specially
marked entry is made in the STRAP II symbol table.
Then the instruction will receive an error message
for the unnecessary name. Note that address refer-
ence to this symbol will receive the setting of the
location counter of the next instruction (with or
without possible truncation).

Primitive Dimension Reference Entry

This is the initial unevaluated entry made for a
dimension specified on a DR or DRZ either in the unit
or in the vle table. See Appendix A for format.

Priority of Operations

When arithmetic operations are specified in an
instruction field, there is a definite order by which
they are combined. The following describes the
operations in descending order of combination.

1st order operation + and -.

2nd order operation * and /.

3rd order operation **.

Print Buffer

Listing data that is to be printed by OUTPUT is built
up in the print buffer.

Pseudo-Defined Symbol

If a symbol is undefined in the program, the symbol
will be assigned a data description of (N), and a loca-
tion of the next available full word above the upper
limit of the assembled program. Such a symbol will
be frequently referred to as a pseudo-defined

symbol.

Pseudo-Op

STRAP II considers an instruction a pseudo-op if
binary output is not to be inserted in STRAP II's
expanded instruction unit for the instruction.
Generally, this means that if the instruction does not
produce binary output, STRAP II considers the
instruction a pseudo-op.

Punch Buffer

When enough binary output for a binary card has been
accumulated in the intermediate binary storage
buffer, OUTPUT transfers the binary output to the
punch buffer.

S-Datum

See integer style number.

Serious Error Messages

Those are the numbered error messages 1-28 which
indicate the most serious error conditions detected
in the program being assembled.

Special Floating Point Ops

These are the floating point operations, E and E+I,
to which is assigned a data description of U by
DECODE if the op does not have an implicit or
explicit dds stated.

STRAP 1II Special Symbol

STRAP II makes one of its 24-bit special symbols in
the symbol table whenever an internal cross refer-

encing symbol is needed. The first eight bits of the
STRAP II special symbol is always eight one bits; the

remaining sixteen bits are determined at the time the
symbol is made. The STRAP II special symbol —-
111111110000000000000000 ~- is the one made for a
programmer's $ symbol. STRAP II also makes
these symbols during the establishing of the location
counter value in Pass 2.

Symbol

This consists of the legal name characters appearing
in columns 2-9 of a card block excluding the
embedded blanks.

TOE

This stands for table of exits.

Types of dds's

The types of dds's will be defined by example.
Explicit dds

Regardless of the dds associated with the symbol,
CONSTANT, in the instruction —-

L(BU, 64), CONSTANT ---,
the explicit data description for the Load instruc-
tion is clearly, (BU, 64).

Implicit dds

When CONSTANT has been defined as --
CONSTANT DD®BU, 7, 7 —
in the instruction —-
L, CONSTANT --,
the implicit data description attached to the Load
instruction is (BU, 7).

Pseudo dds

When CONSTANT has not been defined by the pro-
grammer, the pseudo dds associated with the
instruction --

L, CONSTANT -~
will be (N) which is the data description assigned to
the undefined symbol CONSTANT.

Types of Symbols

undefined: A symbol is undefined if it is used in an

address field but has never appeared in a name field
to specify either a datum or an instruction.

unused: A symbol is unused if it has appeared in a

name field referring to a datum or to an instruction
but has not been referenced by an address field.

Appendix E - Terms 205

multiple-defined without contradiction: This type of
symbol is here defined by an example:

RAT SYN, 5

RAT SYN(BU, 32), 5
Note the additional specifications (BU, 32) on the
symbol, RAT, does not contradict any previous
specifications of the symbol.

multiple-defined with contradictions: This type of

symbol is also best defined by an example:

DOG LX, 5, CAT

DOG SX, 5, MONKEY
In this case a contradictory condition exists as DOG
is referencing two different instructions.

circularly defined symbol: This type of symbol is
defined by an example:

A SYN, B+ 2

B SYN, A

206

contagious error: A contagious error occurs

wherever a programmer symbol is defined in terms
of another programmer symbol which has been
erroneously defined in one of the four ways described
above.

Unit

This refers to the intermediate expanded instruction
unit record built up by STRAP II for an instruction.

VFL
This stands for variable field length.
vle

This stands for variable length entry, in particular
the variable portion of a symbol table entry.

X-Datum

See bit style number.

An index specification, if used, must be the last
entry in the field.
Correct: B, JOE + 1.32 ($3)
Incorrect: B, JOE ($3) + 1.32
A subscript, if used, must immediately follow the
symbol to which it refers.
Correct: BB, JACK(, 2) +.32, BILL
Incorrect: BB, JACK +.32(1, 2), BILL
A gp must follow all other (type) information in the
field in which the gp appears. Therefore an index
and a gp cannot both be specified in the same field.

Tlegal: L, JOE ($2) (. 31) 3
Legal: L, JOE (.63) 2 (.31) 3
Legal: L, JOE ($2), 0 (.31) 3

A general parenthetical field integer entry cannot
be the first entry in a field.

The .n in the gp format must be absolute; the
binary pattern may be absolute or symbolic.

A gp cannot be specified inside another set of
parentheses except in the DD case where a gp can
appear in the data description.

STRAP II will make a symbol table entry for all
symbolic statement names, even if they appear in an
instruction where a name is not normally meaningful,
i.e., SKIP, TAIL, etc. .

Implied multiplication is not allowed in field arith-
metic.

APPENDIX F - PROGRAMMING WITH STRAP II

The following remarks concern the radix under
which operands in an 'address' field of a numeric
DD are processed:

1. If a radix is specified in the leading entry mode
before the DD mnemonic and no radix is specified
before the first operand in the field, then all the
operands in the field will be processed under this
radix specified in the leading entry mode.

2. If a radix is specified before the first operand
in the 'address' field, this radix overrules the
leading entry mode, if any, for the current field only
and all operands of the current field will be processed
under the radix specified before the first operand.

3. If there is no leading entry mode and there is
no radix specified before the first operand in an
'address' field then all the operands in the field will
be processed under the STRAP II assigned radix of 10.

When a general parenthetical integer entry is
specified on the field length or on the byte size of a
DD, the gp will be OR’ed into each of the data fields.

Example: DD(BU, 32(.6)7), 0, 1, 2, 3, 4
The gp will be OR'ed into each of the data fields.

The dds associated with a particular system
symbol can be specified in an instruction with a
P-mode.

Example: L(P, $LZC), ALPHA
The dds assembled in the load instruction will be
(BU, 7, 8).

. Appendix F - Programming with STRAP II 207

APPENDIX G - COMPOSITION OF STRAP II's BINARY DECK

1 2 10 66
N
ﬂ HED, REP, PCSTRAP, ,
SCSTRAPO

B LIM, 000042, (upper limit)

B IOD, TRACK 1
B HED, REP, SCSTRAPO, ,

T

STRAP bootstrap binary deck.
Followed by C and P cards if any.

B HED, REP, SCSTRAP1, LOAD, ,

Binary deck for STRAP sections: 0, A0, Al, 1;
Followed by C and P cards if any.

B HED, REP, SCSTRAP2, LOAD, ,

Binary deck for STRAP sections: A2, 2;
Followed by C and P cards if any.

208

APPENDIX H-MEMORY MAP OF STRAP II

Boot-
Lstrap I Sec 0 AO I Al I Sec 1 | L A3
_,_I A\ =< SCSTRAP1 >J|
)
SCSTRAPO

A2 | Sec 2

|<____ SCSTRAP2 __>|

Figure 30. Memory Map of STRAP II

Appendix H - Memory Map 209

CUT ALONG LINE

FOLD

FOLD

COMMENT SHEET

IBM 7030 ASSEMBLY PROGRAM

PROGRAMMING SYSTEMS ANALYSIS GUIDE, FORM C22-8729

FROM

NAME

OFFICE NO,

CHECK ONE OF THE COMMENTS AND EXPLAIN IN THE SPACE PROVIDED

D SUGGESTED ADDITION (PAGE)
D SUGGESTED DELETION (PAGE)
[] error (rPacE)
EXPLANATION

NO POSTAGE NECESSARY IF MAILED IN U.S.A.

FOLD ON TWO LINES, STAPLE, AND MAIL

FOLD

FOLD

C22-6729

SIArILE

POUGHKEEPSIE, N, Y.

FIRST CLASS
PERMIT NO, 8i

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U, S, A,

POSTAGE WILL BE PAID BY

1BM CORPORATION
P.O. BOX 390

POUGHKEEPSIE, N.Y.

ATTN: DEPT. B7I

TSIV

[0}
International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York

STAPLE

'

- e S G I - P S G G - = S - -

CUT ALONG LINE

Wid

LR WO]

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	replyA
	replyB

