Reference Manual
IBM 7030 Data Processing System
(FORTRAN IV

© 1963 by International Business Machines Corporation

Reference Manual

IBM 7030 Data Processing System
FORTRAN IV

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments regarding the content of this publication to:
IBM Corporation, Dept. B71, PO Box 390, Poughkeepsie, New York

Part I. The Language of FORTRANIV.............. 5
Chapter 1. General Definitions 5
Chapter 2. Constants, Variables, Subscripts, and Expressions 5
Constants 5
Variables 5
SUBSCHPES . . 6
EXDressionsiiiii i 6
Chapter 3. Arithmetic Statements. 7
Normal Arithmetic Statements 7
Logical Statements 7
Chapter 4. Control Statements and END Statement 8
Chapter 5. Input-Output Statements 10
Array and List Specifications 10
Format Specifications 11
System Input and System Output Statements 13
General Read/Write Statements 13
Manipulative Statements 14
Chapter 6. Subprogram Statements, Functions
and Subroutines 14
Functions 15
Subroutines 17
Chapter 7. Declarative Statements 18
DIMENSION . . oo\ttt e 18
EQUIVALENCEt oit it it 18
COMMON . ..o i 19
Type Statements 20
FREQUENCY\ttt it ittt 20
Chapter 8. Specification Statements 20
DATA oo ot e 20
BLOCK DATA . . o i oit et e e e e e e e 21
Part [l. FORTRAN Programming for the IBM 7030 .. 22
Chapter 9. First Principles 22

Chapter 10. Program Environment 22

Contents

Chapter 11. 10op Card Preparation 24
Group 1: Statements Not Requiring oD 24
Group 2: Binary 1-0 24
Group 3: Decimal 1-0 Statements 26
Group 4: Manipulative Statements 27
SUMMATY . . . oo iee e e 27

Chapter 12. Control Cards, and Deck Preparation 27
Control Cards for Entire Job 27
joB Card 28
TYPE Card 28
Control Cards for Each Subprogram 28
Examples 29

Chapter 13. sTRAP Subprograms and Binary Decks 30
Binary Deck 30
Compatibility Requirements 30
Calling Lower Level Routines; Transfer Vector 31

Appendix .. 33

Appendix A: Binary Card Formats 33
FORTRAN Program Card 33
Common Definition Card 33
Relocatable Binary Instruction Card 33
Relocatable Binary Data Card 33
FORTRAN Branch Card 34

Appendix B: Principal Differences Between the 18m 709/90
FORTRAN 11 and the 1BM 7030 FORTRAN IV. 34
Changesi i 34
Additions 34

Appendix C: A strap Coded Subprogram 34

Appendix D: Segmentation on the 1BM 7030 35
Node Card Format 35
NOtES . oo 35

Chapter 1. General Definitions

A FORTRAN source program consists of a sequence of
FORTRAN statements.

Each statement is a string of characters grouped
into records of 72 characters. If a statement is too
long to fit into a single 72-character record, it may
be continued on up to nine successive records. The
first through fifth characters of a continuation record
should not be used, and the sixth character of a con-
tinuation record must contain a non-blank, non-zero
character. A record which is not a continuation record
must have a zero or blank sixth character.

The order of the statements is governed solely by the
order of records.

A number, less than six digits long, may be used to
label any statement. This would appear among the
first five characters of the first 72-character record.

If the first character is a “C” the record is treated
as a comment and does not affect the object program
in any way.

The seventh through 72nd characters of the record
contain the statement proper.

Blanks are simply ignored by FORTRAN and may be
used freely to improve the readability of the listings.
(An exception is that blanks within an alphameric
field are significant.)

Chapter 2. Constants, Variables, Subscripts, and
Expressions

Part I. The Language of FORTRAN IV

Where a fixed point constant is used for the value
of a subscript, it is treated modulo 218,

FrLoaTIiNG POINT CONSTANT

GENERAL FORM EXAMPLES

Less than 15 decimal digits, 17.

with a decimal point at the be- 5.0

ginning, at the end, or between .0003

two digits. A preceding + or — 5.0E3 (meaning 5.0X10°)
sign is optional. The magnitude 5.0E+3 (meaning

of the constant must be between 5.0%x10°%)
10-* and 10***, 5.0E—7 (meaning
A decimal exponent preceded 5.0xX107)
by an E may follow a floating
point constant.
A + or — sign between E and
the exponent is optional.
LocicaL CONSTANTS

GENERAL FORM EXAMPLES
There are only two forms of logical .TRUE.
constants: .TRUE. and .FALSE. .FALSE.

Variables

Three types of variables are permissible: fixed point,
floating point, and logical. References to variables
are made in the FORTRAN source language by symbolic
names consisting of alphabetic and numeric characters.

NAMES

As required of any programming language, FORTRAN GENERAL FORM EXAMPLES
prov1de§ a means of expressing numerical c:onstants 1 to 6 alphabetic or numeric char- R
and variable quantities. In addition, a subscript nota- acters, the first of which is alphabetic. = M23A
tion is provided for expressing one-, two-, or three- SOBNO
dimensional arrays of variables.
F1xeEp POINT VARIABLES

Constants
Three types of constants are permissible in the FORTRAN CENERAL YORM EXAMPLES
source program language: fixed point (restricted to A variable name starting with I, J, IIIII4
int P ﬂg 4 g & h p db(bei . K, L, M, N if not declared other- M23A
m ege{'s), 0a ll.lg point (characterized by being writ- wise, or any variable name declared JOBNO
ten with a decimal point), and logical (one of the INTEGER.
values, .TRUE. Or .FALSE.).
Fixep PorNT CONSTANTS FLOATING POINT VARIABLES

GENERAL FORM EXAMPLES GENERAL FORM EXAMPLES
1 to 11 decimal digits. A preceding 3 A variable name starting with any let- ABC
+ or — sign is optional. The magni- +1 ter but I-N, if not declared otherwise B9
tude or absolute value of the constant — 28987 by a type declaration, or any variable DELTA
must be less than 2%, +31415928535 name declared REAL. R

LocicAL VARIABLES

EXAMPLES

TRUTH
LIES

GENERAL FORM

Any variable name declared LOGI-
CAL by a type statement (Take on
value of .TRUE. or .FALSE.)

Subscripts

A variable can be made to represent any element of
a one-, two-, or three-dimensional array of quantities
by appending one, two, or three subscripts to it, re-
spectively. The variable is then a subscripted variable.
These subscripts are fixed-point quantities whose
values determine the member of the array to which
reference is made. The variable in a subscript must
not itself be subscripted.

GENERAL FORM EXAMPLES

Let v represent any fixed point vari- 1
able and ¢ (or ¢’) any unsigned fixed 3
point constant. Then a subscript is an I+3
expression in one of the forms: 3*1

v 3*1+3

c 4*1-5

v+corv—c

c*v

c*v+c’ or cfv—c’

(' The symbol * denotes multi-

plication.)
SUBSCRIPTED VARIABLES
GENERAL FORM EXAMPLES

A variable followed by paren- A(I)
theses enclosing one, two or K(3)
three subscripts which are sep- BETA(5*]—2,K+2,L)

arated by commas,

Each variable which appears in subscripted form must
have the size of its array (i.e.,, the maximum values
which its subscripts can attain) specified in a DIMEN-
SION or COMMON statement preceding the first appear-
ance of the variable in the source program.

Expressions

A FORTRAN expression is any sequence of constants,
variables (subscripted or not subscripted), and func-
tions (see Chapter 8) separated by operation symbols,
commas, and parentheses so as to form a meaningful
mathematical or logical expression.

The arithmetic operation symbols are:

+ Addition

-~ Subtraction

* Multiplication
Division

ok Exponentiation

RuLEs FOrR CONSTRUCTING NORMAL ARITHMETIC
EXPRESSIONS

1. A normal arithmetic expression may be either
fixed point or floating point, but must not be a mixed
expression. This does not mean that a floating-point
quantity cannot appear in a fixed-point expression, but
rather that a quantity of one type can appear in an
expression of another type only in certain ways.

a. A floating-point quantity can appear in a fixed-
point expression only as an argument of a func-
tion.

b. A fixed point quantity can appear in a floating-
point expression only as an argument of a func-
tion, or as a subscript, or as an exponent.

2. Constants, variables, and subscripted variables
are also expressions of the same type as the constant
or variable name. For example, the fixed point variable
J53 is a fixed point expression.

3. Functions are expressions of the same type as
the function name, provided that the arguments of
the function are of the types assumed in the definition
of the function. For example, if SOMEF A,B) is a func-
tion with a floating point name, then SOMEF (c, 0y is
a floating point expression if C and D are of the same
types as A and B, respectively.

4. Exponentiation of an expression does not affect
the type of the expression; however, a fixed point ex-
pression may not be given a floating point exponent.

Note: The expression A**B**c is interpreted as
((A*¥By**(C),

5. Preceding an expression by a + or — does not
affect the type of the expression produced. For ex-
ample, E, +E, and —E are all expressions of the same

type.

6. Enclosing an expression in parentheses does not
affect the type of the expression. For example, A, (A),
((A)), and (((A))) are all expressions of the same
type.

7. Expressions may be connected by operators to
form more complex expressions provided:

a. No two operators appear in sequence. For ex-

ample, A + —B is illegal but A+ (—B) is legal.

b. Items so connected are all of the same type.

Hierarcay oF OPERATIONS

When the hierarchy of operations in an expression is
not explicitly specified by the use of parentheses, it
is understood by FORTRAN to be in the following order
(from innermost operations to outermost):

ok Exponentiation

- Unary minus

*and / Multiplication and Division

+ and — Addition and Subtraction

For example, the expression
G = —A+B/C+D**E*F
will be taken to mean
G = (((-A)+(B/C))+D"F)

ORDERING WITHIN A HIERARCHY

Parentheses that have been omitted from a sequence
of consecutive multiplications and divisions (or con-
secutive additions and subtractions) will be under-
stood to be grouped from the left. Thus, if - represents
either * or / (or either + or —), then

A*B«C*D-E
will be taken by FORTRAN to mean
((((A*B)+C)*D)*E)

RuLEs FOR CONSTRUCTING [.oGICAL EXPRESSIONS

1. Quantities which are not logical variables or
constants may only appear in logical expressions in
the following ways:

a. As arguments to logical functions.

b. As parts of relations.

2. A relation is a logical expression of the form:

E.GT.F
E.GE.F
E.LT.F
ELE.F

EEQF
ENEF

(where E, F are arithmetic expressions of the same
type). The operations mean:

E.GT.Fis true whenE > F
E.GEF is true when E > F
E.LT. F is true when E < F
E.LE.F is true when E < F
E.EQ.F is true when E = F
E.NE.F is true when E < F

3. Alogical constant or variable is an expression.

4. A relation is an expression.

5. An expression enclosed in parentheses is an ex-
pression.

6. .NOT. any expression is an expression.

7. Any two expressions connected by .AND. create
an expression.

8. Any two expressions connected by .oR. create an
expression.

HieraRcHY OF OPERATIONS

Arithmetic expressions are calculated first, then values
are found for relations. These, and variables, are then
operated upon by .NoT.. Next, results are connected
by .aND. and these results are connected by .or.. Paren-
theses indicate any requisite recursions. Associated
with this expression, then, is a value .TRUE. or .FALSE.
but not both.

Chapter 3. Arithmetic Statements

Normal Arithmetic Statements

EXAMPLES

Ql=K

A(I)=B(I)*SIN (C(I))

(SIN and other functions are
discussed in Chapter 6.)

GENERAL FORM

“a=b” where a is a variable
(subscripted or not subscripted)
and b is an expression.

The arithmetic formula defines a numerical or logical
calculation. A FORTRAN arithmetic statement resembles
very closely a conventional arithmetic formula. How-
ever, in a FORTRAN arithmetic statement the equal sign
means “is to be replaced by,” not “is equivalent to.”
Thus, the arithmetic statement
Y=N-LIMIT(]J-2)

means that the value of N-LiMIT(j-2) is to replace the
value of Y. The result is stored in fixed-point or in float-
ing-point form if the variable to the left of the equal
sign is a fixed-point or a floating-point variable, respec-
tively.

If the variable on the left is fixed point and the ex-
pression on the right is floating point, the result will
first be computed in floating point and then truncated
and converted to a fixed-point integer. Thus, if the
result is +3.872, the fixed-point number stored will be
+3, not +4. If the variable on the left is floating point
and the expression on the right fixed point, the latter
will be computed in fixed point, and then converted
to floating point.

The following examples illustrate types of arithmetic
statements:

EXAMPLES MEANING

A=B Store the value of B in A.

I=B Truncate B to an integer, convert to fixed
point, and store in I.

A=I Convert I to floating point, and store in A.

I=1+1 Add 1 to I and store in I. This example
illustrates the fact that an arithmetic state-
ment is not an equation, but is a com-
mand to replace a value.

A=3.0*B Replace A with the product of B multiplied
by 3.0.

A=I*B Not permitted. The expression is mixed, i.e.,
contains both fixed-point and floating-
point variables.

A=3"B Not permitted. The expression is mixed.

Logical Statements

A logical variable is equated to a logical expression.
The expression will be evaluated and the appropriate
value .TRUE. or .FALsE. will be stored as the current
value of the variable. Example:

T=Q.AND.(.NOT.R).AND.(V.GT.5.)

Chapter 4. Control Statements and
END Statement

This class of FORTRAN statements is the set of control

If t is .TRUE., statement S is executed; if t is .FALSE., con-
trol passes to the next statement.

statements which enable the programmer to state the DO
flow of his program.
GENERAL FORM EXAMPLES
NA
UnconprrioNar GO TO “DO n i=m1, m2” or “DO n i=mi, DO30I=1,10
GENERAL FORM EXAMPLE mg, ms” where n is a statement num- DO 30I=1,M,3
ber, i is a non-subscripted fixed point DO 30I=N,M
“GO TO n” where n is a state- GO TO 3 variable, and mi, mz, m3 are each DO30I=N,M,L
ment number. This statement either an unsigned fixed point con-
causes transfer of control to the stant or non-subscripted fixed point
statement with statement num- variable. If mgs is not stated, it is taken
ber n. to be 1.
Computep GO TO
The po statement is a command to execute repeatedly
GENERAL FORM EXAMPLE the statements which follow, up to and including the

“GO TO (ni, n2, .., nm), i” GO TO (30, 42, 50,9),1
where ni, n2, ..., nm are state-
ment numbers and i is a non-

subscripted fixed point variable.

Control is transferred to the statement with statement
number nj, ny, 0, . . . , Ny, depending on the current
value of i. Thus, in the example, if i is 3 at the time of
execution, a transfer to the third statement of the list,
(statement 50), will occur. This statement is used to
obtain a computed many-way fork.

AssigNED GO TO

GENERAL FORM

“GO TO i,” where i is a non-
subscripted fixed-point variable
appearing in a previously ex-
ecuted ASSIGN statement.

EXAMPLES

GO TOK
GO TO JOE, (10, 20, 30)

This statement causes transfer of control to the state-
ment with statement number equal to that value of i
which was last assigned by an assioN. The assigned
6o To is used to obtain a pre-set many-way fork. An
optional form of this statement is co T0 i, (ny, Nz, . . .,
n,) where n;, ny, . . . , N, are statement numbers.

ASSIGN

EXAMPLE

ASSIGN 12 to K

GENERAL FORM

“ASSIGN n TO i” where n is
a statement number and i is a
non-subscripted fixed point vari-
able which appears in an as-
signed GO TO statement.

This statement causes a subsequent co To i to transfer
control to the statement with the statement number n.

IF

GENERAL FORM EXAMPLES
“IF(t)S” where t is a logical IF(A.AND.B)F=SIN (R)
expression and S is any exe- IF(16.GT.L)GO TO 24
cutable FORTRAN statement, IF(D.ORX.NE.Y)GO TO
except DO, or another IF state- (18,20),1

ment.

8

statement with statement number n.

The first time, the statements are executed with i =
m;. For each succeeding execution, i is increased by
ms. After they have been executed with i equal to the
highest of this sequence of values which does not ex-
ceed m,, control passes to the statement following the
last statement in the range of the po.

The range of a po is that set of statements which will
be executed repeatedly, i.e., it is the sequence of con-
secutive statements immediately following the po, up to
and including the statement numbered n.

The index of a po is the fixed point variable i, which
is controlled by the po in such a way that its value
begins at m; and is increased each time by m: until it
is about to exceed mj,. Throughout the range it is avail-
able for computation, either as an ordinary fixed-point
variable or as the variable of a subscript. After the last
execution of the range, the po is said to be satisfied.

Suppose, for example, that control has reached state-
ment 10 of the program:

10DO 111=1, 10
11 A(1)=I*N(1)
12

The range of the po is statement 11, and the index is I.
The po sets I to 1 and control passes into the range.
The value of 1*N» is computed, converted to floating
point, and stored in location A(1). Since statement 11
is the last statement in the range of the po and the po
is unsatisfied, I is increased to 2 and control returns to
the beginning of the range, statement 11. The value of
2*N(@) is then computed and stored in location A(2).
The process continues until statement 11 has been ex-
ecuted with T = 10. Since the po is satisfied, control
then passes to statement 12,

DO’s WitHIN DO’s

Among the statements in the range of a po may be
other po statements. When this is so, the following rule
must be observed:

Rule 1: If the range of a po includes another po,
then all of the statements in the range of the
second must also be in the range of the first.

A set of po’s satisfying this rule is called a nest of p0’s.

TRANSFER OF CONTROL

Transfers of control from and into the range of a po
are subject to the following rule:

Rule 2: No transfer is permitted into the range of
any po from outside its range. Thus, in the con-
figuration (Figure 1), 1, 2, and 3 are permitted
transfers, but 4, 5, and 6 are not.

Figure 1

PRESERVATION OF INDEX

When control leaves the range of a po in the ordinary
way (i.e., when the po becomes satisfied and control
passes on to the next statement after the range) the
exit is said to be a normal exit. After a normal exit
from a po occurs, the value of the index controlled by
that po is not defined, and the index cannot be used
again until it is redefined.

If exit occurs by a transfer out of the range, how-
ever, the current value of the index remains available
for any subsequent use. If exit occurs by a transfer
which is in the ranges of several po’s the current values
of all the indexes controlled by those po’s are pre-
served for any subsequent use.

RESTRICTIONS ON STATEMENTS

Only one type of statement is not permitted in the
range of a po, namely, any statement which redefines
the value of the index or of any of the indexing param-
eters. In other words, the indexing of a po loop must
be completely set before the range is entered and the
initial, terminal, and incremental values of the index
may not be altered.

ExITs

When a caLL statement is executed in the range of
a po, care must be taken that the subprogram does not
alter the po index or indexing parameters. This applies
as well when a closed function is invoked in the range
of a po. (See Chapter 6.)

CONTINUE
GENERAL FORM EXAMPLE
“CONTINUE” CONTINUE

CONTINUE is a dummy statement which gives rise to no
instructions in the object program. It is most fre-
quently used as the last statement in the range of a
po to provide a transfer address for 1F and co 1o state-
ments which are intended to begin another repetition
of the po range.

As an example of a program which requires a CON-
TINUE, consider the table search:

10 DO 121=1, 100
IF (ARG.NE.VALUE(I)) GO TO 12
GO TO 20

12 CONTINUE

The program will scan the 100-entry vaLUE table
an entry at a time until it finds the first entry which
equals the value of the variable arc, whereupon it
exits to statement 20 with the value of I available for
fixed point use; if no entry in the table equals the value
of ARc, a normal exit to the statement following the
conTINUE will occur.

PAUSE

EXAMPLE

PAUSE

GENERAL FORM

“PAUSE”

A PAUSE statement causes a temporary halt in object
program execution, providing the operator with the
option of resuming or of abandoning the job. The con-
tents of the instruction counter are displayed on the
console numerical display.

STOP

EXAMPLE

STOP

GENERAL FORM

“STOP”

This statement causes an “Abnormal End-of-Job” re-
turn to Mcp (“Normal End-of-Job” return to Mcp is ac-
complished by the RETURN statement. See Chapter 6.)

END

EXAMPLE

END

GENERAL FORM

“END”

This statement differs from the previous statements
discussed in this chapter in that it does not affect the
flow of control in the object program being compiled.

The END statement marks the end of any given
FORTRAN source program, separating it from the pro-
gram that follows. Each FORTRAN source program must
be terminated with an END statement.

Chapter 5. Input-Output Statements

Nine statements in 1BM 7030 FORTRAN 1v specify the
transmission of information to or from magnetic tapes,
disks, card readers, card punches, and printers. These
statements may be grouped as follows:

1. System Input and System Output Statements:
Three statements, READ, PUNCH and PRINT, cause the
transmission of edited (decimal) information to or
from the system input and system output devices.

2. General Read/Write Statements: Two statements,
READ () and writE (), cause the transmission of
either edited (decimal) or non-edited (binary) data
to or from magnetic tapes, disk or, under certain con-
ditions, non-system readers, punches, and printers. The
choice between edited and non-edited transmission is
indicated by the presence or absence of a “format”
specification within the parentheses of these so-called
generalized Read/Write commands.

3. Manipulative Statements: Three statements, END
FILE, BACKSPACE, and REWIND, affect magnetic tapes or
the disk unit.

4. One statement, ForRMAT, which is a non-exe-
cutable statement, specifies the editing process re-
quired in transmission of information to or from the
1-0 device.

Array and List Specifications
SPECIFYING L1sTS OF QUANTITIES

Some 1-0 statements call for the transmission of infor-
mation and must, therefore, include a list of the quan-
tities to be transmitted. This list is ordered, and its
order must be the same as the order in which the
words of information exist (for input), or will exist
(for output) in the input-output medium.

The formation and meaning of a list is best described
by an example:

A, B(3), (C(I), D(LK), I=1, 10), ((E(L]), I=1, 10, 2),
F(1.3),J=1,K)

Suppose that this list is used with an output statement.
Then the information will be written on the input-
output medium in this order:

10

A,B(3),C(1),D(LK),C(2),D(2K),..,C(10),D(10,K),
E(1,1),E(3,1),.,E(9,1),F(1,3),
E(1,2),E(3.2),..,E(9,2),F(23),..,
E(1,KX).E(3XK),..E(9,K),F(K,3)

Similarly, if this list were used with an input state-
ment, the successive words, as they were read from
the external medium, would be placed into the se-
quence of storage locations just given.

Thus the list reads from left to right with repetition
for variables enclosed within parentheses. Only vari-
ables, and not constants, may be listed. The execution
is exactly that of a po-loop, as though each opening
parentheses (except subscripting parentheses) were a
po, with indexing given immediately before the match-
ing closing parentheses, and with the po range extend-
ing up to that indexing information. The order of the
above list can thus be considered the equivalent of
the “program”:

A
B(3)
DO 51=1,10,1
C(I)

5D(LK)
DO9J=1,K,1
DO 81=1, 10,2

8E(L])

9F(].3)

Note that indexing information, as in p0O’s, consists of
three constants or fixed point variables, and that the
last of these may be omitted, in which case it is taken
to be 1.

For a list of the form X, (A or K, (A, I=1, K> where
an index or indexing parameter itself appears earlier in
the list of an input statement, the indexing will be
carried out with the newly read-in value.

InpPuT-OUTPUT IN ARRAY FORM

FORTRAN treats variables according to conventional
matrix practice. Thus, the input-output statement,

READ 1 ((A(1]),I=12),]J=1,3)

causes the reading of I XJ (in this case 2 X 3) items of
information. The data items will be read into storage
in the same order as they are found on the input
medium.

INnpUT-OuTPUT OF ENTIRE ARRAYS

When input-output of an entire matrix is desired, an
abbreviated notation may be used for the list of the
input-output statement; only the name of the array
need be given and the indexing information may be
omitted.

Thus, if A has previously been listed in a PIMENSION
statement, the statement,

READ 1, A

is sufficient to read in all of the elements of the array A.

Format Specifications

FORMAT

GENERAL FORM EXAMPLES
“FORMAT (Specification)” where =FORMAT
Specification is as described below. (12/(E12.4,F104))

The system input/output and general READ/WRITE
statements may contain, in addition to the list of quan-
tities to be transmitted, the statement number of a For-
MAT statement describing the information format to be
used. Alternatively, the name of an array containing
A-type data may be supplied. In this case, this data is
to be interpreted (at object time) as a FORMAT speci-
fication. It also specifies the type of conversion to be
performed between the internal machine-language and
external notation. FORMAT statements are not executed;
their function is merely to supply information to the
object program. Therefore, they may be placed any-
where in the source program.

For the sake of clarity, the details of writing a For-
MAT specification are given below for use with PRINT
statements. The description is valid for any case, how-
ever, simply by generalizing the concept of “printed
line” to that of unit record in the input-output medium.

A unit record may be:

1. A printed line with a maximum of 132 characters.

2. A punched card with a maximum of 72 characters.

3. A Bep tape record with a maximum of 132

characters.

NuMmeric Fi1eLDs

Three basic types of decimal-to-binary or binary-to-
decimal conversion are available:

INTERNAL TYPE EXTERNAL
Floating point variable E Floating point,
decimal
Floating point variable F Fixed point,
decimal

Fixed point variable I Decimal integer

The ForMAT specification describes the line to be
printed by giving for each field in the line (from left
to right, beginning with the first type wheel):

1. The type of conversion (E, F, or I) to be used.

2. The width (w) of the field.

3. For the E- and F-type conversion, the number of
places (d) after the decimal point that are to be
printed (d is treated modulo 14).

These basic field specifications are given in the forms
Iw, Ew.d, and Fw.d
with the specification for successive fields separated
by commas. Thus, the statement FormaT (12, E12.4,
F10.4) might give the line:
27 —0.9321E 03 -0.0076

As in this example, the field widths may be made
greater than necessary so as to provide spacing blanks
between numbers. In this case, there is one blank fol-
lowing the 27, one blank after the E (automatically
supplied except in cases of a negative exponent, when
a minus sign will appear), and three blanks after the
03. Within each field the printed output will always
appear in the rightmost positions.

AvrpuaMERIC FIELDS

There are two ways of reading or writing alphameric
information; the specifications for this purpose are
Aw and wH. Both result in storing the information
internally in A8 form. The basic difference is that in-
formation handled with the A specification is given a
variable or array name and hence can be referred to
by means of this name for processing and/or modifica-
tion. Information handled with the H specification is
not given a name and cannot be referred to or mani-
pulated in storage in any way.

The specification Aw causes w characters to be read
into, or written from, a variable or array.

The specification wH is followed in the FoRMAT
statement by w alphameric characters. Example:

32HSHE WAS POOR, BUT SHE WAS HONEST

Note that blanks are considered alphameric charac-
ters, and must be included as part of the count w.

It is possible to read and write alphameric informa-
tion only, by giving no list with the input-output state-
ment and specifying no I, E, or F fields in the FORMAT
statement.

Consider an alphameric field in a FORMAT statement
at the time of execution of the object program. If the
FORMAT statement is used with an input statement,
the alphameric text listed in the FORMAT statement
will be replaced by whatever text is read in from the
corresponding field in the input-output medium. When
that same FORMAT statement is used for output, what-
ever information is then in the FORMAT statement will
appear in the output data. Thus, text can be originated
in the source program, or as input to the object
program.

Brank FIELDS

Blank characters may be provided in an output record
and characters of an input record may be skipped by
means of the specifications wX where 0<w=132 (w
is the number of blanks provided or characters
skipped). When the specification is used with an
input record, w characters are considered to be blank
regardless of what they actually are, and are skipped
over. (The control character X need not be separated
by a comma from the specification of the next field.)

11

RePETITION OF FIELDS

It may be desired to print n successive fields within
one record, in the same fashion. This may be specified
by giving n (an unsigned fixed point constant) before
E, F, I or A. Thus, the statement:

FORMAT (12, 3E12.4)
might give

27 -0.9321E 02 0.5536E 00

—0.7580E-02

RepeTITION OF GROUPS

A limited parenthetical expression is permitted in
order to permit repetition of data fields according to
certain format specifications within a longer FORMAT
statement specification. Thus, FORMAT (2(F10.6, E10.2),
14 is equivalent to FORMAT (F10.6, E10.2, F10.6, E10.2, I4).

ScaLkE FAacTtoRrs

To permit more general use of F-type conversion, a
scale factor followed by the letter P may precede the
specification. The scale factor is defined such that:
Printed number = Internal number X 10Qscale factor,

Thus, the statement FORMAT a2, 1P3F1 1.3) used with
the data of the preceding example would give:

27 —932.096 -0.076 5.536
whereas FORMAT (2, —1P3F11.3) would give:

27 -9.321 ~0.001 0.055

A positive scale factor may also be used with E-type
conversion to increase the number and decrease the
exponent. Thus, FORMAT a2, 1p3E12.4> would produce
with the same data:

27 —9.3210E 01 —7.5804E-03 5.5361E-01

The scale factor is assumed to be zero if no other
value has been given. However, once a value has
been given, it will hold for all E- and F-type conver-
sions following the scale factor within the same
FORMAT statement. (This applies to both single-record
and multiple-record formats.) Once a scale factor has
been given, a subsequent scale factor of zero in the
same FORMAT statement must be specified by P. Scale
factors have no effect on I-conversion.

MuLtiPLE-RECORD FORMATS

To deal with a block of more than one line of print, a
FORMAT specification may have several different one-
line formats, separated by a slash (/) to indicate the
beginning of a new line. Thus, FORMAT (3F9.2, 2F10.4/
sE14.5) would specify a multi-line block of print in
which lines 1, 3, 5, . . . have format 3F9.2, 2F10.9), and
lines 2, 4, 6, . . . have format 8E14.5.

If a multiple-line format is desired such that the
first two lines will be printed according to a special
format and all remaining lines according to another
format, the last line-specification should be enclosed

12

in a second pair of parentheses; e.g., FORMAT (2,
3E12.4/2F10.3, 3F9.4/(10F12.4). If data items remain to
be transmitted after the format specification has been
completely “used,” the format repeats from the last
open parenthesis.

As these examples show, both the slash and the
closing parenthesis of the FORMAT statement indicate
termination of a record.

Blank lines may be introduced into a multi-line
FORMAT statement, by listing consecutive slashes. N +
1 consecutive slashes produce N blank lines.

FORMAT anp INnpuT-OUTPUT STATEMENT LISTS

The ForMAT statement indicates, among other things,
the size of each record to be transmitted. In this con-
nection, it must be remembered that the FORMAT state-
ment is used in connection with the list of some par-
ticular input-output statement, except when a FORMAT
statement consists entirely of alphameric fields. In all
other cases, control in the object program switches
back and forth between the list (which specifies
whether data remains to be transmitted) and the
FORMAT statement (which gives the specifications for
transmission of that data).

EnpiNng A FORMAT STATEMENT

During input-output of data, the object program scans
the FORMAT statement to which the relevant input-
output statement refers. When a specification for a
numeric field is found and list items remain to be
transmitted, input-output takes place according to the
specification and scanning of the FORMAT statement
resumes. If no items remain, transmission ceases and
execution of that particular input-output statement is
terminated. Thus, a decimal input-output operation
will be brought to an end when a specification for
a numeric field or the end of the FORMAT statement is
encountered, and there are no items remaining in the
list.

ForMAT STATEMENTS READ IN AT OBJECT TIME

FORTRAN will accept a variable rormaT address. This
provides the facility of specifying a record format at
object time. Examples:

DIMENSION FMT(9), C(5)
1 FORMAT (9A8)
5 READ 1, (FMT(I), I=19)
10 READ FMT, A,B,(C(I), I=1,5)
Thus, A, B, and the array C would be converted and
stored, according to the FORMAT specification read into
the array FmT, by statement 5.

The format read in at object time must take the
same form as a source program FORMAT statement,
except that the word FORMAT is omitted, i.e., the vari-
able format begins with a left parenthesis.

CarriaGe CONTROL

A wrriTE statement that includes a FORMAT number
prepares a BcD tape which can be used to obtain off-
line printed output. Off-line printing will be done on
a 1401 with a program which operates in one of three
modes: single space, double space, and program con-
trol. Under program control, which gives the greatest
flexibility, the first character of each Bcp record con-
trols spacing of the 1403 printer and that character is
not printed. The control characters and their effects
are:

blank Single space before printing
0 Double space before printing
1 Restore paper before printing

Any other control character willl be passed to the
output device unchanged. Thus, a FORMAT statement
for this type of wriTE statement will usually begin
with 1H followed by the appropriate control character,
if the printing is to be done under program control.

Darta INpPuT TO THE OBJECT PROGRAM

Decimal input data to be read when the object pro-
gram is executed must be in essentially the same for-
mat as given in the previous examples. Thus, a card to
be read according to FORMAT (2, E12.4, F10.4) might be
punched:

27 —0.8321E 02 -0.0076

Within each field, all information must appear at the
extreme right. Plus signs may be omitted or indicated
by a blank or +. Minus signs may be punched with
an 11-punch or an 8-4 punch. Blanks in numeric fields
are regarded as zeros. Numbers for E- and F-type con-
version may contain any number of digits, but only the
high-order digits will be retained (no rounding will
be performed). Numbers for I-type conversion will be
treated modulo 238,

To permit economy in punching, certain relaxations
in input data format are permitted:

1. Numbers of E-type conversion need not have 5
columns devoted to the exponent field. The start of
the exponent field must be marked by an E, or if that
is omitted, by a + or — (not a blank). Thus E2, E02,
+2, +02, E—02, and E+02 are permissible exponent
fields.

2. Numbers for E- or F-type conversion need not
have their decimal point punched. If it is not punched,
the ForMAT specification will supply it; for example,
the number —09321+2 with the specification E12.4
will be treated as though the decimal point had been
punched between the 0 and the 9. If the decimal point
is punched in the card, its position overrides the in-
dicated position in the FORMAT specification.

System Input and System Output Statements

(SystEm) READ

GENERAL FORM EXAMPLE
“READ f{, list” where f is either the READ 10,A,B(3),
statement number of a FORMAT (C(I),I=1,5)

statement, or the name of an array
containing A-type data to be used as
a format specification.

The READ statement is used to input decimal informa-
tion from the System reader. Card after card is read
until the complete list has been satisfied.

(SystEM) PUNCH

GENERAL FORM EXAMPLE
“PUNCH f, list” where f is PUNCH 251, ((Z(L]),
either the statement number of I=1,5),J=11)

a FORMAT statement, or the
name of an array containing
A-type data to be used as a
format specification.

The PUNCH statement causes cards to be punched by

- the systems punch. Cards are punched in accordance

with the specified format until the entire list has been
satisfied.

(System) PRINT

GENERAL FORM EXAMPLES
“PRINT f, list” where f is PRINT FMTXK,(A(]),
either the statement number of J=M,K,2)

a FORMAT statement, or the PRINT 1012,A,B,C,
name of an array containing D(3,I),F

A-type data to be used as a
format specification.

The PrINT statement causes the object program to pre-
pare a system output tape for subsequent off-line
printing. Successive lines are written in accordance
with the specified format until the complete list has
been satisfied.

General Read/Write Statements

Two basic types of input/output activity are con-
trolled by the general Read/Write statements: decimal
(in a format) data transmission, and binary (not in a
format)data transmission. The particular action re-
quired is specified by the presence or absence of a
format specification in the statement concerned.

(Binary) READ

EXAMPLES

READ (5)A,B,C(3,1,9)
READ (J) (M(N,N),
N=1,NMAX)

GENERAL FORM

“READ (unit) list” where unit
is an unsigned fixed-point vari-
able or constant, and list is as
described elsewhere.

13

This form of the general READ statement causes the
input of binary data from either binary magnetic tapes,
or from disk, depending upon the definition supplied
for the value of “unit” at 10p compile time. (See Part
II, Chapter 11.)

If the list calls for less data than is present in the
logical record being brought in, then the remaining,
unread, data is spaced over.

(Decimar) READ

EXAMPLES

READ (6,10)A
READ (ITAPE, 707)K,
(A(I),1=1,K)

GENERAL FORM

“READ (unit, f) list” where
unit is an unsigned fixed-point
variable or constant, and f is
either the statement number of
a FORMAT statement, or the
name of an array containing
A8 data to be used as a format
specification.

This version of the general READ statement causes the
input of information, in accordance with the specified
format, from either Bcp tape or under special condi-
tions, as described in the next section, from the system
reader.

The actual 1-o device actuated by this statement de-
pends upon the running time value of “unit,” and the
particular definition supplied at 1op compile time for
this value.

If the list calls for less data than is present in the
logical record being brought in, then the remaining,
unread data is spaced over.

(Binary) WRITE

EXAMPLES
WRITE (JFILE) ((A(LJ),

J=1,10),I1=6, ITCH
WRITE (NO1)P,Q,R

GENERAL FORM

“WRITE (unit) list” where
unit is an unsigned fixed-point
variable or constant, and list is
as described elsewhere.

This form of the general wRITE statement causes the
output of binary data onto either binary magnetic
tape or disk, depending upon the actual value of “unit”
at run time, and the definitions supplied at 10p-compile
time.

The output of a single WRITE statement is considered
to be just one logical record.

(Deamar) WRITE

GENERAL FORM EXAMPLES
“WRITE (unit, f) list” where WRITE (LIST,FORMAT)
unit is an unsigned fixed-point D,A,T,UM
variable or constant, and f is WRITE (99,10)(Q(3*I-2),
either the statement number of 1=1,200)

a FORMAT statement, or the
name of an array containing A8
data to be used as a format
specification.

14

This form of the general write statement may be used
to put out data according to the specified format, either
onto BCp magnetic tape or, under special circumstances,
onto system output tapes.

It may also be used to put information on the non-
system printer. These various options are controlled
by programmer action at 10p-compile time.

Manipulative Statements

END FILE
GENERAL FORM EXAMPLES
“END FILE unit” where unit END FILE 10

is an unsigned fixed-point vari- END FILE JTAPE

able or constant.

The END FILE statement causes the object program to
write an end-of-file mark on the designated symbolic
unit, provided the definition supplied via an 1op card
is meaningful in this context.

BACKSPACE

EXAMPLES

BACKSPACE 3
BACKSPACE M1

GENERAL FORM

“BACKSPACE unit” where unit
is an unsigned fixed-point vari-
able or constant.

The BACKSPACE statement is used to backspace the sym-
bolic file “unit” one logical record.

REWIND

GENERAL FORM EXAMPLES
“REWIND unit,” where unit REWIND 3
is an unsigned fixed point con- REWIND K

stant or variable.

The REWIND statement causes the object program to re-
wind the symbolic file identified by “unit.” If “unit”
is defined to be a disk file, then the meaning here is
to locate the first arc of the file.

Chapter 6. Subprogram Statements, Functions
and Subroutines
It is possible to construct, in the FORTRAN language,
subprograms which are referred to by other programs.
These subprograms may, in turn, refer to still other
lower level subprograms, which may also be coded in
FORTRAN language. It is therefore possible to code
problems using several levels of subprograms. This
configuration may be thought of as a total problem
consisting of one main program and any number of
subprograms.

Because of the interrelationship among several dif-
ferent programs, it is possible to include a block of
hand-coded instructions in a sequence including in-

structions compiled from FORTRAN source programs.
It is only necessary that hand-coded instructions con-
form to rules for subprogram formation, since they will
comprise a distinct subprogram.

This section presents a discussion of the various
types of subprograms possible, two of which are the
rForTRAN-coded Function subprogram and the Sub-
routine subprogram.

Although Function subprograms and Subroutine
subprograms are treated together and may be viewed
as similar, it must be remembered that they differ in
two fundamental respects.

1. The Function subprogram is always single-
valued, whereas the Subroutine subprogram may
be multi-valued.

2. The Function subprogram is called or referred to
by the arithmetic expression containing its name;
the Subroutine subprogram can only be referred
to by a caLL statement.

Each of these two types of subprograms, when
coded in ForTRAN language, must be regarded as in-
dependent FORTRAN programs. In all respects, they con-
form to rules for FORTRAN programming. They may be
compiled with the main program of which they are
parts, however, by means of multiple program com-
pilation. In this way, the result of multiple program
compilation will be a complete main program-sub-
program sequence ready to be executed.

Subprograms may be referred to in two distinct ways.
One of these is by the use of the name in an arithmetic
expression. This applies to Functions. The other, which
applies to Subroutine subprograms, is by means of
a cALL statement.

Following are examples of arithmetic expressions
including Function names:

Y=A-SIN (B-C)

C=AMINO (M, L) +ABC(B*FORTF(Z), E)
The appearance in the arithmetic expression serves to
call the Function; the value of the Function is then
computed, using the arguments which are supplied
in the parentheses following the Function name. (A
value is here defined to be a single quantity.)

Functions

NAMING

The rules for naming Functions are the same as those
for naming variables. The name may be one to six
alphameric characters (except special characters),
and the first must be alphabetic. The mode of the
Function must be given either by a Type statement or,
in the case of integer and real, by the proper first
letter of the name as described in the rules for naming
variables.

DEFINITION

There are three different types of ForTRAN Functions:
1. Open (or built-in) Functions.
2. Arithmetic or Logical Statement Functions.
3. Closed Functions.

OPEN (oR BuiLT-IN) FUNCTIONS

These are Functions which are predefined, and exist
in the processor. They generate instructions which
are compiled in-line every time the function is referred
to.

The 1BM 7030 ForTRAN 1v System will contain the
21 built-in Functions shown in Figure 2. It has the
capacity for more Functions to be added.

No. of | Argument Function
Name Definition Args Mode Mode
ABS |Arg] 1 Floating Floating
1ABS Fixed Fixed
AINT Sign of Arg times 1 Floating Floating
INT Largest integer= |Arg| Floating Fixed
AMOD Argy (Mod Argy) 2 Floating Floating
MOD Fixed Fixed
AMAX0 Max (Arg‘ , Argz, N =2 Fixed Floating
AMAX1 Floating Floating
MAX0 Fixed Fixed
MAX1 Flooting Fixed
AMINO Min (Arg‘ , Arg_,..) =2 Fixed Floating
AMINI 2 Floating Floating
MINO Fixed Fixed
MINI Floating Fixed
FLOAT Fixed to floating 1 Fixed Floating
IFIX Floating to fixed 1 Floating Fixed
SIGN (Sign of Arg,) times 2 Floating Floating
ISIGN larg,| 2 Fixed Fixed
DIM Arg] - min(Arg], Arg,) 2 Floating Floating
IDIM 2 Fixed Fixed
SQRT VArg] 1 Floating Floating
Note: The function AMOD (Arg,, Arg,) = Arg -[Arg /Arg,] Arg where []
f " LI | 17772 2
means "integer part of." Hence, this qUantity is the remainder of Arg)/Argy when
the quotient is expressed as an integer, and the sign of Arg) is given to the remainder.

Figure 2

ARITHMETIC OR LOGICAL STATEMENT FUNCTIONS

These are Functions which are defined by a single
FORTRAN arithmetic or logical statement and apply
only to the particular program or subprogram in which
their definition appears.

15

EXAMPLES

FIRSTF(X)=A*X+B
SECOND(X,B) =A*X+B
THIRDF(D)=FIRST
F(E)/D
FOURTH(F,G)=SECOND
(F, THIRDF(G))
FIFTH(LA)=3.0*A**I
SIXTH(])=J+X
SEVNF(A,B)=A.AND.B

GENERAL FORM

“a=b” where a is a name fol-
lowed by parentheses enclosing
its arguments (which must be
distinct nonsubscripted vari-
ables) separated by commas,
and b is an expression which
does not involve subscripted
variables. Any Functions ap-
pearing in b must be built-in,
or available, or already defined
by preceding arithmetic state-
ment Functions.

The right-hand side of an arithmetic statement Func-
tion may be any expression, not involving subscripted
variables, that meets the requirements specified for
expressions. In particular, it may involve Functions
freely, provided that any such Function, if it is not
built-in or available, has been defined in a preceding
arithmetic statement Function. As many as desired of
the variables appearing in the expression on the right-
hand side may be stated on the left-hand side to be
the arguments of the Function. Since the arguments
are only dummy variables, their names are unim-
portant (except as indicating fixed or floating point
mode) and may even be the same as names appearing
elsewhere in the program.

Those variables on the right-hand side which are
not stated as arguments are treated as parameters.
Thus, if FirsTF is defined in an arithmetic statement
Function as FIRSTF(X)=A*x+B then a later reference to
FIRSTF(Y)> will cause ay +b, based on the current values
of a, b, and y, to be computed. The naming of param-
eters, therefore, must follow the normal rules of
uniqueness.

A Function of this type may be used just as any
other Function. In particular, its arguments may be
expressions and may involve subscripted variables;
thus, a reference to FIRSTF (z+Ya», with the above
definition of FIrsTF, will cause a(z+y;)+b to be com-
puted on the basis of the current values of a, b,y,and z.

Functions defined by arithmetic or logical statements
are always compiled as closed subroutines.

Note: All the Function definitions in a program
must precede the first executable statement of the
program,

CLosSED FUNCTIONS

These are Functions that are prewritten and/or pre-
compiled and may exist on the library tape or in
prepared card decks. These Functions are compiled
as “closed” subroutines; instead of appearing in the
object program for every reference that has been made
to them in the source program, they appear only once
regardless of the number of references.

Closed Functions may be conveniently defined by a
conventional FORTRAN program. In this instance com-

16

piling a FORTRAN program produces a Function sub-
routine in exactly the form required for object pro-
gram execution. Such a FORTRAN Program must be
headed by a FuncrioN statement, whose definition

follows:

FUNCTION

GENERAL FORM EXAMPLES
“FUNCTION Name (at,...,a;)” FUNCTION KRUM
(P,QR)

REAL FUNCTION
ARCSIN (RADIAN)

INTEGER FUNCTION
INTRST (RATE,
YEARS)

“REAL FUNCTION Name
(a1,...,aj)”

“INTEGER FUNCTION Name
(at,...,aj)”

“LOGICAL FUNCTION Name

(at,...aj)”
where Name is the symbolic
name of the single-valued func-
tion, and the arguments ai,...,aj
of which there must be at least
one are non-subscripted vari-
able names, or the names of
closed Functions or Subroutines.

The Function name consists
of one to six alphameric char-
acters the first of which must be
alphabetic and is defined (by
this statement) to be the same
type as the first word of the
function statement (unless the
first form illustrated is used, in
which case the initial letter
shows the type).

The Function name must not
occur in a DIMENSION state-
ment of the subprogram, or in
a DIMENSION statement in
any program which uses the
Function.

The FuNcTION statement must be the first statement of
a FORTRAN Function subprogram and defines it to be
such.

In a Function subprogram, the name of the Function
must appear at least once as the variable on the left-
hand side of an arithmetic or logical statement, or
alternately in an input statement list, e.g.,

FUNCTION NAME (A, B)

NAME=Z+B

RETURN
By this means, the output value of the Function is
returned to the calling program.

This type of program may either be compiled in-
dependently or multiple-compiled with others. A
Function subprogram must never be inserted between
two statements of any other single program.

The arguments following the name in the FuncrioN
statement may be considered as “dummy” variable

names. That is, during object program execution other
actual arguments are substituted for them. Therefore,
the arguments which follow the Function reference in
the calling program must agree with those in the
FUNCTION statement in the subprogram in number,
order, and type. Furthermore, when a dummy argu-
ment is an array name, the corresponding actual argu-
ment must also be an array name. Each of these array
names must appear in DIMENSION statements of their
respective programs with the same dimensions, unless
the dimensions are variable.

None of the dummy variables may appear in EQUIVA-
LENCE Or COMMON statements in the Function sub-
program.

Hand-coded closed Functions may be added to the
library. Among the closed functions distributed in the

FORTRAN library are:

NAME TYPE OF FUNCTION

ALOG Natural Logarithm

SIN Trigonometric Sine

Cos Trigonometric Cosine

EXP Exponential

ATAN Arctangent

TANH Hyperbolic Tangent
Subroutines
SUBROUTINE

GENERAL FORM EXAMPLES

“SUBROUTINE Name (a1, a2, SUBROUTINE MATMPY
..,an)where Name is the sym- (A,N,M,B,L,C)
bolic name of a subprogram, SUBROUTINE QDRTIC
and the arguments ai, ag,...,an, (B,A,C, ROOT]1,
if any, are non-subscripted vari- ROOT?2)

able names, or the names of
lower level subprograms. The
name of the subprogram may
consist of one to six alphameric
characters, the first of which is
alphabetic. Also, the name of
the subprogram must not be
listed in a DIMENSION state-
ment of any program which
calls the subprogram, or in a
DIMENSION statement of the
subprogram itself.

This statement is used as the first statement of a sub-
routine subprogram and defines it to be such. A sub-
program introduced by the sUBROUTINE statement must
be a FORTRAN program and may contain any FORTRAN
statements except FUNCTION or another SUBROUTINE
statement.

Unlike the Function-type subprogram which returns
only a single numerical value, the Subroutine sub-
program uses one or more of its arguments to return
output. The arguments so used must, therefore, appear
on the left side of an arithmetic statement within the
program.

If an argument is an array name, it must appear in
a DIMENSION statement in the subroutine.

None of the arguments may appear in EQUIVALENCE
statements in the Subroutine subprogram. These sub-
programs may be compiled independently or multiple-
compiled with others.

CALL

GENERAL FORM EXAMPLES
“CALL Name (a1, as,...,an)” CALL MATMPY
where Name is the name of a (X,5,10,Y,7,Z)
Subroutine subprogram, and a;, CALL QDRTIC
a,...,an are the arguments which (P*9.732,Q/4.536,

take one of the forms described R-S**2, X1, X2)

below.

This statement is used to call Subroutine subprograms;
the caLL transfers control to the subprograms and
presents it with the parenthesized arguments. Each
argument may be one of the following:

1. Fixed point constant, floating point constant,
logical constant.

2. A variable, with or without subscripts, fixed, float-
ing or logical types.

3. Arithmetic expression, or logical expression.

4. Alphameric characters. Such arguments must be
preceded by nH where n is the count of characters
included in the arguments, e.g., 9HEND POINT. Note that
blank space and special characters are considered
characters when used in alphameric fields.

5. The name of a Closed Function or another Sub-
routine subprogram (in which case an EXTERNAL state-
ment is required).

The arguments presented by the caLL statement
must agree in number, order, type and array size with
the corresponding arguments in the SUBROUTINE state-
ment of the called subprogram.

A subprogram may contain a DIMENSION statement
for an array with variable dimensions. The actual
dimensions of the array must be given in the calling
program and passed along in the Subroutine caLL.
(See Chapter 7.)

EXTERNAL

GENERAL FORM EXAMPLES

“EXTERNAL name, name,., EXTERNAL SIN, COS,
name” where name is the name TAN
of a Function or Subroutine EXTERNAL BOB, JOE

Whenever a subroutine or function name appears in
the argument list of:
1) acaLL

2) a function name in an expression
all such names must appear in an EXTERNAL statement.
Example:

17

EXTERNAL SIN, A
CALL JOE (B, SIN)

C=F(X.,A)
RETURN
GENERAL FORM EXAMPLE
“RETURN” RETURN

This statement terminates any subprogram, whether of
the type headed by a SUBROUTINE or a FUNCTION state-
ment, and returns control to the calling program. A
RETURN statement must, therefore, be the last executed
statement of the subprogram; it can be any point
reached by a path of control and any number of
RETURN statements may be used.

This statement should also be used to terminate
normal execution of a main program. It causes a normal
End-of-Job condition to be established within mcp
(c.f. the sTop statement, which causes an “Abnormal
End-of-Job” return).

Chapter 7. Declarative Statements

Another type of FORTRAN statement is the declarative
statement. Statements in this category are non-
executable.

DIMENSION

GENERAL FORM

“DIMENSION v, v, v, ... where
each v is the name of a vari-
able, subscripted with 1, 2, or
3 unsigned fixed point con-
stants. Any number of v’s may
be given. In a SUBROUTINE
or FUNCTION subprogram, the
subscripts may be fixed point
variables. (See Chapter 6.)

EXAMPLES

DIMENSION A(10),
B (5,15), CVAL (3,4,5)

The pIMENSION statement provides the information
necessary to allocate storage in the object program for
arrays.

Each variable which appears in subscripted form in
a program or subprogram must appear in a DIMENSION
statement of that program or subprogram, or as a
dimensioned common entry. (See commoN.) The
DIMENSION Or COMMON statement must precede the
first appearance of that variable. The DIMENSION or
coMMON statement lists the maximum dimensions of
arrays; in the object program, references to these ar-
rays must never exceed the specified dimensions.

The above example indicates that B is a two-dimen-
sional array for which the subscripts never exceed 5
and 15. If B is a floating point variable, the pIMENSsION

18

statement causes 75 (i.e., 5 X 15) storage locations
to be set aside for the array B. A single piMENsION
statement may specify the dimensions of any number
of arrays. A program must not contain a DIMENSION
statement which includes the name of the program it-
self, or any program which it calls.

ApJusTABLE DIMENSIONS

The name of an array, and the constants which are its
dimensions, may be passed as arguments when calling
a Function or Subroutine subprogram. By this means,
a subprogram may perform calculations on one or

“ more arrays whose size is not known within the sub-

program until it is called.
The following illustrates how this effect is obtained
within a subprogram:
SUBROUTINE MATMY (...R,L,M...)

DIMENSION .. R(L, M)

DO100T =1,L

Note that a special form of the piMENsION statement is
required. The dimensions listed within parentheses are
symbolic; they are not constants. Variables may be
used as dimensions of an array only in a FUNCTION or
SUBROUTINE subprogram. For any such array, the array
name and all variables used as its dimensions must ap-
pear as arguments in the FUNCTION or SUBROUTINE state-
ment at the head of the program in which such a
DIMENSION statement occurs.

A subprogram, handling arrays with adjustable
dimensions, need not be recompiled for each set of
dimension sizes.

EQUIVALENCE

EXAMPLE

EQUIVALENCE (A, B(1),
C(5)), (D(17), E(3))

GENERAL FORM

“EQUIVALENCE (a,b,c,...),
(d,e f,...),...” wherea, b, c,
d, e, f,...are variables option-
ally followed by a single un-
signed fixed point constant in
parentheses.

The EQUIVALENCE statement provides the option of con-
trolling the allocation of data storage in the object
program. In particular, when the logic of the program
permits it, the number of storage locations used can be
reduced by causing locations to be shared by two or
more variables.

An EQUIVALANCE statement may be placed anywhere
in the source program. Each pair of parentheses of

the statement list encloses the names of two or more
quantities which are to be stored in the same locations
during execution of the object program; any number
of equivalences (i.e., sets of parentheses) may be
given.

Quantities or arrays which are not mentioned in an
EQUIVALENCE statement will be assigned unique loca-
tions. Locations can be shared only among variables,
not among constants. EQUIVALANCE should not be used
to establish mathematical equivalence.

COMMON

GENERAL FORM EXAMPLES
“COMMON a, b, c.../r/d, e, COMMON A, B, C/X/Q, R
f.../s/g,h,j...” where a, b /Y/M, P, O

...are dimensioned or non-di- COMMON/Z/G,H,]J/ /D
mensioned variable names of
any type. /r/,/s/are symbols
conforming to FORTRAN

naming conventions.

The comMmoON statement permits data storage area to-

be shared between programs in a way analogous to
that by which EQUIVALENCE permits data storage shar-
ing within a single program. Where the logic of the
programs permits, this can result in a large saving of
storage space.

The programmer has complete control over the loca-
tions assigned to the variables appearing in cOMMON.
The locations are assigned in the sequence in which
the variables appear in the coMMoON statements, begin-
ning with the first coMmMoN statement of the problem.

ARGUMENTS IN COMMON STORAGE

Because of the above, comMoON statements may be
used to serve another important function: as a medium
by which to transmit arguments from the calling pro-
gram to the called Function or Subroutine subpro-
gram. In this way, they are transmitted implicitly
rather than explicitly by being listed in the paren-
theses following the subroutine name.

To obtain implicit arguments, it is necessary only
to have the corresponding variables in the two pro-
grams occupy the same location.

This can be obtained by having them occupy cor-
responding positions in coMMoON statements of the two
programs.

All elements placed in comMon may be placed in
separate blocks of comMoN, each block of which is
located separately at object time. The block name
is carried symbolically at load time so that blocks
with the same name from different programs may be
given the same location. The block name must not be
used in any other reference in the program.

CoMMON Brock

The symbolic name of a block is placed at the head
of the variable names belonging to the block. It is
always enclosed between slashes. There are two types
of comMmoN blocks: blank and labeled.

a. Blank comMoN is indicated as in FORTRAN II (1o
slashes), or by preceding the blank comMon vari-
ables by two consecutive slashes (“//7).

b. Labeled common is indicated by preceding the
labeled comMon variables by the block name be-
tween two slashes.

RuLEs

1. The field of entries pertaining to a block name
ends with a new block name or the end of the commMon
statement. .

2. Block name entries are cumulative throughout a
program. A block name may appear more than once
with entries for previous appearances.

3. Blank comMoN may be of any length. Labeled
coMMON must conform to this size requirement: all
coMMON blocks of a given name should have the same
length in programs which are to be operated together.

DIMENSION anp COMMON

Dimension information may be included in the com-
MON statement. In this case, it need not be included
in a DIMENSION statement. Example:

COMMON A, B(10, 15), C.

EQUIVALENCE ano COMMON

Equivalence will never re-order comMoN, but may

lengthen comMonN.

Note 1: In order to force correspondence in storage
locations between two variables which otherwise
will occupy different relative positions in coMmMoN
storage, it is valid to place dummy variable names
in a coMMoN statement. These dummy names, which
may be dimensioned, will cause reservation of the
space necessary to cause correspondence.

Note 2: While implicit arguments can take the place
of all arguments in caLL-type subroutines, there
must be at least one explicit argument in a FORTRAN
function. Here, too, a dummy variable may be used
for convenience. When a variable is made equiv-
alent to a variable which appears in a comMMoN
statement, the first variable will also be located
in coMMON storage.

Variables brought into a common block through
equivalence statements may increase the size of the
block indicated by the comMMoON statements as in the
following example:

COMMON A, B, C
DIMENSION D(3)
EQUIVALENCE (B, D)

19

The layout of core storage indicated by this example is:

A
B,D(1)
C,D(2)

D(3)

However, a variable may not be made equivalent to
an element of an array in such a way as to cause the
array to extend below the beginning of the common
block. For example:

COMMON A, B, C
DIMENSION D(3)
EQUIVALENCE (B, D(3))

This would cause the following impossible situation:

D(1)
A, D(2)
B, D(3)
C

Type Statements
There are three Type statements: LOGICAL, INTEGER,
and REAL.

LOGICAL, INTEGER, ano REAL

GENERAL FORM

“LOGICAL a, b,c,...”
“INTEGER a, b,c...”

EXAMPLES

LOGICAL F, G, L
INTEGER Q, NAME

“REAL a, b, c,...” REAL J, S
where a, b, c,...are variable and/or

function names appearing within the

program,

A variable or function name, once declared as a cer-
tain type, will have that type throughout the program.
Real and integer variables take arithmetic values;
logical variables take the values “.TRUE.” or “.FALSE.”.
A type declaration overrides the implicit declaration
of any variable. For example, 10TA, which is normally
an integer because it begins with I, can be declared
a floating point variable by using the type declaration
REAL IOTA,

If a variable does not appear in a Type statement,
the variable will retain its implicit definition. That is,
ALPHA is a floating point variable if it is not declared
otherwise.

A declarative on a name must precede the first
usage of that name in any executable statement.

Note that array specifications may not be given in
these statements.

FREQUENCY

GENERAL FORM

“FREQUENCY n (i, j, . . .),
m(k, 1,...),...” where n, m,
...are statement numbers and
i, j, k, I, ...are unsigned fixed
point constants.

EXAMPLES

FREQUENCY 30(1, 2, 1),
40(11), 50(1, 7, 1, 1)
10(1,7,1, 1)

The FREQUENCY statement is accepted by the 1M 7030
FORTRAN 1v, but it has absolutely no effect on com-

20

pilation. The syntax of the statement is checked, but
in all other respects, the statement is ignored.

Chapter 8. Specification Statements

DATA

By means of the pata statement, information may be
obtained in the data areas and/or commMon block of
the object program to be loaded with the program.
The pata statement specifies the information and the
variables to which they belong.

EXAMPLES

DATA A (3HEND), (B(I),
I1=1,15) (/8/4, 23)

DATA A(1.2), B(3.6),
C(7.9)

GENERAL FORM

“DATA List (d1, d2/k/ds, ...),

List (dn, dn+1)...),...
where k appears before d and
means that the d field is to be
repeated k times.

RuLEs For CONSTRUCTING THE LisT

Variable names in the list follow the same rules as for
constructing 1-0 lists with the following exceptions:

1. An array name may not appear unsubscripted.

2. Compiling of data into an array area must be
under control of po-implying parentheses and asso-
ciated parameters. The po-defining parameters must
be constants.

3. If a variable appears with a subscript, not under
control of po-implying parentheses, the subscript must
be a constant.

RuLES FOR LITERALS

The d literals may take any of three forms:

1. Integers. These are listed in the standard FORTRAN
manner.

2. Floating point numbers. These are listed in the
standard FORTRAN manner.

3. Alphameric characters. (These may extend over
more than one word.) nH precedes the alphameric
characters which are treated in the standard 7030 For-
TRAN manner (eight per word, left justified, filled out
with blanks, etc.). A repeat field preceding an alpha-
meric field covers the entire field.

With regard to the data list and its associated data:
if the list is shorter than the data, the redundant data
is ignored and, conversely, if the list is longer than the
data the remaining items in the list are ignored.

Data may not be in blank common. Data which is
to be in a labelled comMon block may be specified in
a special separate program. This special program may
contain only the paTA and coMMoON statements, as well
as any required EQUIVALENCE, DIMENsSION and Type
statements, and must be headed by the BLoCck DpATA
statement.

BLOCK DATA
GENERAL FORM EXAMPLE
“BLOCK DATA” BLOCK DATA

A program headed by this statement may contain only
DIMENSION, COMMON, Type, EQUIVALENCE, and DATA
statements, plus one END statement. Example:

BLOCK DATA
COMMON/D/A, B, C
DIMENSION B(2, 2)
INTEGER C

DATA ((B(I, J), I+1, 2), J=1, 2) (1.1, 1.2, 1.3, 1.4),

C(16)
END

21

Part Il. FORTRAN Programming for the IBM 7030

Chapter 9. First Principles

SUBPROGRAMS

The existence in the rorTrAN language of the three
statements CALL, SUBROUTINE and FUNCTION enables a
programmer to construct programs in a hierarchical
fashion; that is, to form sequences of FORTRAN state-
ments, these sequences being given unique names by
means of which they may be concisely referred to in
the construction of yet higher level code sequences.
‘For any given problem, the construction of these
sequences — Subroutine, or Function subprograms —
terminates with the construction of the highest level
sequence of all, the main program.

DeEFINITION OF A JOB

It is possible to code these subprograms, not only in
FORTRAN, but in lower level languages (e.g., STRAP)
provided certain rules are followed. Hereafter, unless
otherwise stated, the term “subprogram” will be taken
to include main programs. Within the total collection
of subprograms forming a machine procedure, some
will have been proven error-free (“debugged”), some
will be partially debugged, and some will be com-
pletely untested. Therefore, the total card deck sub-
mitted by a programmer to a machine operator most
often consists of an arbitrary number of subprogram
sub-decks, in a mixture of source languages. If the aim
is not merely to compile the statement of the problem,
but also to execute the resultant machine code, then
the program deck may be followed by input data cards.
The total collection of subprograms, plus data (if
present), plus appropriate preceding control cards,
comprises a job, in the sense described in the IBM
Reference Manual, 7030 Master Control Program
(Form C22-6678). If execution is not to be attempted
at a particular time, then the compile-only job deck
need not contain all the subprograms making up the
total program, nor any data.

MCP ENVIRONMENT

The compilation process, and the ultimate execution
of the generated machine code, are both under control
of Mcp.

RELOCATION, LINKAGES, AND COMMON STORAGE

As each subprogram is independently processed by the
compiler, the resultant object code is not precisely in
the form it will assume at execution time. At that time,

22

it will have been combined with the other subpro-
grams of the job, each requiring a region of memory
whose size cannot be known at the time of compilation
of all the others. For this reason, every compiled sub-
program is produced with a standard “origin” (initial
cell occupied by the program) of 00000.0; it is the
function of the loader to relocate each binary sub-
program to its own unique region of memory, just
prior to execution. As an aid to this function, the
compiler produces a card containing certain descrip-
tive information about each subprogram (length of
program, its name or names, etc.). This card, known
as a FORTRAN Program Card, precedes the cards con-
taining the object code.

THE LOADER

The loader also:

1. Sets up the appropriate linkages between sub-
programs,

2. Sets aside the amount of common storage re-
quired (storage to which any or all subprograms may
have access, to facilitate communication between
routines),

3. Supplies requested subprograms from the Sys-
tem’s binary library, and finally

4. Initiates execution by transferring control to the
entry point of the main program.

Chapter 10. Program Environment
ProcraM TERMINATION

A FoRTRAN job for the 7030 may, in general, be sche-
matically represented as in Figure 3.

\/\/g'sim';\/

Arbitrarily many possible
end points.

Figure 3

The procedure has a single starting point, and many
possible finishing points, the particular one chosen for
any given machine run depending upon the parameters
characterizing that run. All possible end points may
be categorized in two ways — “good stops” and “bad
stops.”

“Goop Stops”

A successful termination is characterized by the empty-
ing-out of any 1-o buffers containing as yet unwritten
information, the closing-out of any files on which the
last activity was a WRITE, the writing of a tape mark on
the system output tape, the release of all 1-0 equipment
utilized by the job, and the issuance of appropriate
messages to the operator. A successful termination
may be achieved by any of the following:

1. The execution of a RETURN statement, in a main
program.

2. An attempt to read data from the system input
tape, when all data from that source has been
exhausted.

3. Operator action following the execution of a
PAUSE statement.

“Bap Stops”

An unsuccessful finish point is characterized by all
the actions of the preceding section, but in addition, a
memory dump is supplied on the system output tape.
An unsuccessful finish is defined by any of the fol-
lowing:

1. The execution of a sTop statement, in a subpro-

gram at any level.

2. An erroneous, illegal, or undefined 1-0 operation.

3. Operator action following the execution of a

PAUSE statement.

Note that neither a (main program) RETURN, nor
any sTop, actually causes the 1BM 7030 to halt its ac-
tivities; in both cases, control is returned to mce. The
only instruction capable of suspending machine ac-
tivity indefinitely is the PAUSE operation.

FORTRAN INTERRUPT HANDLING

Like all programs operational under Mcp control, a
FORTRAN-compiled code runs with the 7030 “enabled.”
It will be recalled that prior to execution of a problem
program, McP has placed the required (cp) interrupt
table address in cell 2, and loaded the standard mcp
mask (all maskable interrupts except 1F off) into cell
12. Furthermore, the refill field of sx15 has been set
to zero, thus indicating the absence of a Program
Table of Exits. With respect to 1-0 interrupts, McCp
expects the address of an 1-0 Table of Exits to be
punched on each 10D card loaded, or, at worst, set up
by a scuEx pseudo-op before any activity on an 1-0
device.

I-O INTERRUPTS

The implication of these facts, for FORTRAN programs,
is as follows: All object program input-output is han-
dled through the Input-Output Control Subroutine
(actually a whole family of library subroutines linked
in a fairly complex fashion). This subroutine will

perform the necessary sCHEX operation for any given
1op-defined device, at the time that the first operation
for that device is encountered in the running of the
object program. The 1-0 Table of Exits, whose address
is supplied to Mcp in this fashion, is located inside the
1ocs Subroutine, with the result that the various ac-
tions appropriate to the different possible returns can
be taken, independent of the main-stream of the prob-
lem program.

MASKABLE INTERRUPTS

Some further initialization of the maskable interrupt
mechanism is required for FORTRAN object programs.
The Stretch Compiling System inserts a call to an
initializing routine as the first executable statement of
each main program compiled. This results in the rou-
tine being fetched from the library at load time, and
control being given to it before the true problem pro-
gram gets under way. The routine replaces the con-
tents of the Mask Register with the required FORTRAN
mask, and places the address of a Program Table of
Exits (if required) in the refill field of sx15. This table
is itself contained in the initializing routine, as are
any correction routines accessed through the table.
It is possible for an installation to change this routine,
if necessary.

In summary, no interrupt indicator of any kind is
accessible to the FOrRTRAN-language programmer. It is,
however, entirely possible to sTrap-code routines that
reference the indicators, and to cALL such routines
in a FORTRAN-program.

INTERNAL REPRESENTATION

The 1BM 7030 FORTRAN 1v compiler handles three basic
kinds of data, in two different ways. So-called real
numbers and integers are operated on by the opera-
tions of addition, subtraction, multiplication and divi-
sion, while “logical quantities” may be manipulated by
the operations of “and-ing,” “or-ing,” and “negation.”

ReaL NUMBERS

A real number is represented internally by a nor-
malized floating-point binary number, that is, a full-
word containing a 12-bit signed exponent, a 48-bit
fraction, a fraction sign, and 3 (unused) flag bits. The
conventional floating point instructions of the 1BM
7030 are used to manipulate such data.

Exponent Sign Position of Binary Point Fraction Sign

Exponent Fraction
0 101112 5960 63

A FORTRAN real number

23

INTEGERS

A FORTRAN integer is actually represented internally
as an unnormalized floating point quantity, with a
fixed exponent of 38,,. This enables the floating point
instruction set to be used in manipulating these quan-
tities, resulting in an appreciably shorter running time.
Position of Binary Point__Sign

T

0 101112 4950 60 63
A FORTRAN integer

38] 0 + Binary Integer

LocicaL QUANTITIES

A logical quantity, as manipulated by a FORTRAN code,
consists of a single bit, stored in bit 59 of a full word.
Such quantities are operated on principally by cox-
NECT instructions.

Either 1-True, or 0-False

1

5859 60 63
A FORTRAN logical quantity

ZERO

The FoRTRAN programmer should be aware that in the
manipulation of normalized floating point quantities
(real numbers), a number having a zero fraction part
and an arbitrary exponent may be generated as a re-
sult of add and/or subtract operations. It is necessary,
therefore, that the generated code be such that two
numbers with zero fractions and different exponents
be found equal under comparison operations. In the
case of the FORTRAN integers, however, the fixed ex-
ponent of +38;, is always preserved, including the
case of zero.

PRrECISION

Note that even though FORTRAN arithmetic is single-
precision in nature, the generated code contains some
double precision operations. These are necessary for
such cases as the multiplication of two FORTRAN inte-
gers; by reason of their internal format, a single preci-
sion multiplication operation would yield an incorrect
result.

Chapter 11. 10D Card Preparation

All programs to be executed under Mcp control are
required to state their 1-0 requirements (other than the

24

system 1-0 devices) in terms of 10D cards, placed at the
front of a job input deck. This enables Mcp to deter-
mine, prior to the execution of a program, the devices
required by a job, so that these devices may be made
ready, and any necessary messages in connection with
tape reel mounting may be given to the operator.

For a FORTRAN job, two important preliminary state-
ments may be made concerning 10D cards. First, unlike
a STRAP program, 100’s need not be present for a “com-
pile-only” job. This arises from the fact that in a For-
TRAN program there are no direct references to the
symbols punched in the 10p name field. For a compile-
go job, or a go job, they are required. If the FORTRAN
section of a job was processed in a compile-no-go
operation, then the necessary 1op cards (prepared in
the manner explained later in this chapter) must be
passed through the compiling system by themselves,
before they may be combined with the ForTRAN object
deck and run into the machine as a go-job. (See Ex-
ample 3, Chapter 4.)

Second, Mcp requires all the 100’s of a job to be in
one group, at the front of a job deck. Since a typical
FORTRAN job consists arbitrarily of many subprograms,
the 1-0 requirements must be considered for the job
in toto, not merely for each individual subprogram.

It is now possible to examine the 11 1-0 statements
of the rForTRaN language individually, and to deter-
mine their implications in terms of required 10D cards.
To this end, it is convenient to divide the statements
into four groups.

Group 1: Statements Not Requiring 10D’s

The three statements of Group 1 are unique in that
their use does not require the manufacture of 1op cards.

They are:
READ f, list
PRINT f, list

PUNCH {, list
where f is a format specification, and list is a list of
the quantities to be transmitted. These three state-
ments refer to the System reader, the System printer
and the System punch, respectively.

Group 2: Binary I-O

The two statements in this group are:
READ (u) list
WRITE (u) list
where u is a fixed point integer or variable indicating
the particular unit referenced. These statements are
for the transmission of binary information to or from
magnetic tape, or disk, the actual device required
being determined by the related 10p cards.
The rorTRAN language is defined such that each
distinct value of u implies a distinct 1-0 device, or, in

the case of the disk, a distinct region (sometimes re-
ferred to as a symbolic file). Therefore, for each actual
or possible value that u may assume at object time,
it is necessary to prepare an 10D card. Before examining
the two possible types of 10D (tape or disk), it may be
stated that in both cases, the correspondence between
the FORTRAN statement or statements, and the related
10D cards, is established by punching the appropriate
decimal value of u in the 1op-name field. Thus, if a
given job contains the following statements:
2 READ (3) list

4 WRITE (5) list
DO 101=2, 10, 3

10 WRITE (I) list
etc.

It will be necessary to prepare a total of four 10D
cards, defining units 2, 3, 5 and 8. (If, however, the
parameters characterizing a particular run are such
that statement 4 in the example above will not be
executed, then the 10D card defining unit 4 may be re-
moved before loading the job deck, thus avoiding the
scheduling of unnecessary equipment for this run.)
This requirement, that the 1op-name field be numeric,
is the only required difference between FORTRAN-
oriented 10D’s and sTRAP-oriented 10D’s.

GENERAL RULES FOR CONSTRUCTING 10D CARDS

1. A binary-type 10op (disk, or binary tape) should
contain the decimal value of unit, followed by a B,
punched in the name field.

2. A decimal-type 10D (printer, decimal tape, or
system “pseudo-top’s”) should contain the decimal
value of unit, followed by a D, punched in the name
field.

3. If an 1op-name is seen, of which the first charac-
ter is alphabetic, the compiler will assume that this
10D is for the benefit of a sTRAP subprogram wishing
to perform its own 1-0 operations. While the 1op will
be passed through the system (and thus be assigned
an 1-0 reference number equal to its relative placement
in the 10p-deck excluding “pseudo-100’s”), it will be ig-
nored by the FORTRAN I0Cs routines, except for the
insertion of the letter “K” before the 10p-name.

It will be possible for the system to accept a pIsSK
10D, without the terminal B in the name field; similarly,
a PRINTER, or “pseudo”-1op can be handled without a
terminal D.

If a TaPE 10D With a pure integer in the name field is
encountered, it will be assumed to be binary and the
appropriate control mechanisms set up. If, at object
time, the first reference to this device is decimal in

nature, then the appropriate corrections will be made
in flight. However, if the first operation is non-decimal,
binary usage will be confirmed, and a subsequent
decimal operation will cause job rejection.

BiNary Tare IOD’s

The tape 10D card format is shown in Figure 4.

| T
1 ‘2 92 no 62 163
| , '
|
IIOD-name llOD, TAPE, exit, channel, unit, |
: lmode, density, disposition |
! | l

B

Figure 4

(See the mcp manual for a detailed description of
each field indicated.) A right-to-left drop-out is per-
mitted on the fields as shown. A TAPE 10D card pre-
pared by a FORTRAN programmer may have every field
shown above punched (although it will become ap-
parent that punching in the exit field is meaningless).
Anything acceptable to mcp is acceptable to the Fog-
TRAN compiler,

1. The exit field: For sTrRaP programs, the contents
of this field indicate to the assembler the address of the
appropriate 1-0 Table of Exits for this symbolic unit.
However, FORTRAN object programs communicate with
McP via the 10cs routine, and the necessary Table of
Exits is embodied therein. It is impractical for the
programmer to determine where this (relocated) table
will be at execution time; therefore, 1ocs is so con-
structed that it will dynamically perform a sCHEX
pseudo-op, at object time, just before the first reference
to the file. Even if there is punching in the exit field,
the compiling system will delete the field, and by sTrap
time, it will be void. Therefore, it is suggested that
the FORTRAN programmer never fill in this field.

2. The Channel and Unit Fields: An attempt by a
FORTRAN programmer to associate more than one 10D
with a given physical tape unit is an error. Therefore,
to simplify the preparation of tape 10D’s for FORTRAN,
mcp has been designed to assign distinct tape units
to each tape 10p with both channel and unit void.
Note that if it is desired to force two or more tape
10D’s to reference a given tape unit, the standard mcp
procedure of punching identical non-void symbols in
these fields may be followed. However, this is not
usual for FORTRAN; these fields will most often be blank.

3. The Mode and Density Fields: Binary tapes,
which are automatically blocked in the FORTRAN sys-
tem, must be written in odd parity. As this is the instal-
lation standard in the mcp system as distributed, it
is not necessary for the programmer to specify this
mode on the 10D card. Note, however, that as the com-
piling system is not aware of the use to which the

25

unit will be put, even parity specification will not be
rejected. If a binary READ or WRITE references this
10D at execution time, the operation will be rejected
and the job terminated. Similarly, the density field may
be left void; this will result in a labeled tape being
read in the density indicated by the label, while a
labeled tape will be written, and an unlabeled tape
written or read, in installation standard (high density).

4. The Disposition Field: If the assumption is made
that the most frequent use of binary tapes is to provide

temporary external storage to be used for the duration.

of a job, but not preserved thereafter, it may be said
that usually this field may also be left void. A void
disposition field implies that the tape is, under no cir-
cumstances, to be saved (removed from the machine).
Once again, the programmer is at liberty to fill in this
field in any of the ways specified in the Mcp manual.
In summary, many binary tape usages can be sat-
isfied by the simplest possible tape 1op (Figure 5).

1
1:2 9lo 62 80
! |
| |
B |«—u —>{IOD, TAPE
|
r
| |
[|

u is some fixed point number

Figure 5

Disk IOD’s

A disk 10D, in the most general case, has the form
shown in Figure 6.

112 9110 62: 80|
| |

| | :

[}
B |1OD-name :IOD, DISK, exit, channel, number |

Number specifie.s the number of disk arcs to be reserved for this symbolic
file.

Figure 6

For identical reasons to those given for Tape 10D’s,
the exit and channel fields may be omitted. The
number field may be omitted, if the job for which this
10D is prepared requires only one disk file. In this case
all of disk is available to problem programs. Thus,
the single disk 10D required is as shown in Figure 7.

For more than one disk file, each 100 has the form
shown in Figure 8. Note that an attempt to read or
write beyond the limits of the disk file will result in
an abnormal termination of the object program.

26

80

| T
112 910 62!
]] '
| : i
B r&—u——>IOD, DISK |
] 1
: i |
i ! |
: ! |
The u is some fixed point number '
Figure 7
1 1
12 9o 62 80
1

1
B Je—u, —>IOD, DISK, , ,n;
}

The u's are fixed point numbers

Figure 8

Group 3: Decimal I-O Statements
The two statements of Group 3 are:

READ (u, f) list

WRITE (u, f) list
where u is a fixed point integer or variable denoting
the unit, and f is a format specification. These state-
ments are for the transmission of decimal information,
to or from magnetic tape, non-system printer, or, under
special circumstances, the system card-reader, card-
punch, and printer. The specific device actuated de-
pends upon the associated 10D cards.

DeciMaL TAPES

Magnetic tapes may be considered first. As in the
case of binary tapes, for each possible object-time
value of “u,” a tape 10D card must be prepared, with
the decimal value of u punched in the 10p name field.
Again, the exit, channel and unit fields may be void.
The mode and density field requirements, though,
are slightly different. A decimal Bcp> tape written
through the 1ocs output routine is not blocked; each
WRITE statement creates a series of records, from 1
to 17 words in length, which are not only logical, but
also physical records on tape. No control information
is generated, or written, by the 10cs routines. The use
of a decimal READ or wrITE, as opposed to a binary
READ Or WRITE, actually implies two things to the rocs
routines: first, that a conversion process must be ap-
plied to the data transmitted, and second, that the
tapes concerned are not to be blocked. There are no
requirements on the mode or density of the tape to
be written (or read). The mode and density, in fact,
are determined by the use to which this tape is ulti-
mately put. If it is to be used by subsequent FORTRAN
codes, running on the 1BM 7030, or by the off-line 1BM
1401 list and/or punch routines, any mode and any

density are permitted. Therefore, in this case, the For-
TRAN programmer may very well leave both fields void.
If the tape is to be taken outside the M 7030/1401
environment, however, it is probable that definite re-
quirements exist for these variables. For example, if
the tape is to be listed on the 1BM 720 printer, then
parity must be even, and density low.

In summary, the TAPE 10D associated with a decimal
READ or WRITE may often be as simple as in Figure 9.
No more complex form can cause job rejection, either
at compile or object time.

T 1 T
112 9,10 6

| 1

| 1

|
B}«—u—u IOD, TAPE
]

80

1
u is a fixed point number

Figure 9

NonN-SysTteEM PRINTER

The programmer may wish to force a generalized
WRITE statement to output material on the on-line, non-
system printer. In this case, an 100 must be prepared,
with the chosen value of u in the 10D name field, in the
format shown in Figure 10. For the usual reasons, the
exit and channel fields may be omitted.

I
B I(—-—u—)'IOD, PRINTER, exit, channel

u is a fixed point number

Figure 10

SysTEM DEVICES

To reference the system reader, punch or printer, by
the statements of this group, rather than by the three
statements specifically designed for this purpose, READ,
puNcH, and PRINT, pseudo-1op cards must be prepared.
They must be linked to the READ or WRITE statement
by means of the u-value in the name field. The format
of the 100’s is shown in Figure 11.

An attempt to reference a value of u, defined by an
1op of this type, by a binary REap or wriTE will cause
the job to be abnormally terminated.

Group 4: Manipulative Statements
The final group of statements in this area consists of
the three so-called manipulative statements:

END FILE u
BACKSPACE u
REWIND u

12 9110 80
N I
i
Bre— u —> 10D, System device
i }
1 !
! [

The system device field is one of the following:
$ READER
$ PUNCH
$ PRINTER

u is a fixed point number

Figure 11

where u, as before, is a fixed point variable or literal.
It is unlikely that a program will use any of these
statements to reference a device not elsewhere referred
to by at least one of the statements of Groups 2 or 3.
Therefore, when these statements are considered in
context of a given program, an 10p card defining u
has probably already been prepared. If such is not
the case, however, then an appropriate 100 must be
created. Clearly, a value of u referenced in a REwIND
statement, for example, should not be defined by an
1op PRINTER card; this gives trouble at object time.
Note, though, that inasmuch as the disk is treated
much like a binary tape, the operations of END FILE,
BACKSPACE, and REwWIND are defined for disk. They re-
sult in the writing of a pseudo-tape mark, the loca-
tion of the start of the previous logical record, and
the location of the first arc of the given disk file,
respectively.

Summary

The programmer is required to consider the collective
1-0 requirements of all subprograms of his job, and
prepare an appropriate set of 10p cards, belonging, in
some sense, to the entire job. This set is liable to change
if any part of any subprogram is changed.

Chapter 12. Control Cards, and

Deck Preparation

A job, as presented to Mcp and the Compiling System
on the system input tape, is defined and delimited by
certain control cards. This chapter describes the neces-
sary control cards, and the construction of the input
deck.

Control Cards for Entire Job

First, control cards govern the entire job. Mcp requires
that the very first card of each job be a jos card (Fig-
ure 12).

27

T
t

10 72!73 80

w

T
|
i
1JOB, job identification
|
|
|
I
|
]
I

Figure 12

JOB Card
The joB card serves to delimit this job from its pre-
decessor. The contents of the job identification field
are printed on the system output tape, for logging
purposes.

TYPE Card

The second card of every ForTraN job deck must be
a TYPE card, punched as shown in Figure 13.

1

| [

2 9110 7273
!
I

B ITYPE, processing option, FORTRAN
I

[
1
|
! 1
{ |
! 1
! 1
I

| | |
| | :
Processing option is one of the following:

COMPILE (compilation, no execution)

COMPILGO (compilation, finally execution)

GO (execution only, no compilation)
If the field is void, or indecipherable, the entire job will be rejected.

Figure 13

Control Cards for Each Subprogram

As mentioned earlier, the typical FORTRAN job consists
of many subprograms, in various levels of language
(including binary, precompiled subprograms). More-
over, there will usually be a set of 10p cards relevant
to the job as a whole, and sometimes a deck of punched
data cards. For the purpose of describing subprogram
control cards, it is convenient to treat both the 1op-deck
and the data-deck (if present) as two more subpro-
grams. Therefore, if any subprogram of a job requires
compilation, then every subprogram of that job must
be immediately preceded by a susTyPE card, whose
general form is shown in Figure 14.

2 90 55

1
|

|
'SUBTYPE, deck description, list option,
! punch option.

T
i
|
|
Ti
i
I
I
I

Figflure 14

Deck DEscrIPTION

The deck description field indicates the language level
of the following subprogram deck, and must be one
of the following:

28

FORTRAN — FORTRAN IV source language

Al — SMAC source statements

STRAP — STRAP 11 code

BIN — Pre-assembled relocatable binary
deck(s)

DATA — Data deck

FIOD — unprocessed FoRTRAN-oriented 1op deck

An unrecognizable field or a null field will cause the
processor to skip to the next suBTYPE card, and to can-
cel any co option selected by the TYPE card at the start
of this job.

List OPTION

The list option field may be:

LSTRAP — list-generated sTRAP code

null — list generated sTRAP

~NoLisT — do not list generated sTRAP
Clearly, LsTraP in this field is meaningless if the deck
description is BIN Or DATA.

PuncH OPTION

The punch option field may be either

PBIN punch binary cards

NoPUN do not punch binary cards

null equivalent to PBIN
Again, it is clear that pBIN (and null) are meaningless
on a suTyPE card whose deck description field con-
tains BIN Or DATA.

ExcepTioN FOR CONSECUTIVE BINARY DECKS

The rule stated above — that every subprogram deck
in a COMPILE or COMPILGO job must be preceded by an
appropriate susTYPE card —may be relaxed in the
case of a job containing two or more pre-compiled
binary decks placed contiguously in the input deck.
The second and subsequent binary decks may have
their suBTYPE's omitted. Thus, after the sUBTYPE pre-
ceding the first binary deck, the next sUBTYPE seen
(if any) is that preceding the next non-binary section
of the deck.

10D SuBPrROGRAM FIRST

[t was mentioned above that the entire collection of
1o cards for a given job (plus any related ReeL cards)
must be collected together, and treated as a subpro-
gram. This concept is pursued to the extent that it is
necessary to follow the collection with an END state-
ment, and to precede it with a sustYpE card (deck
description ¥rop). This subprogram must be the first
of a job; there is no exception to this rule. The END
must be punched beginning in column 10.

SuBTYPE FOR PROCESSED IOD SUBPROGRAM

After a job containing such a subprogram has been
compiled, note (provided binary decks have been
requested from the system) that 10D’s are still present,
even though all other decks now appear as column
binary cards. These 100’s now have two extra fields
punched; this has been done by sTrap, as described
in the Mcp manual. The cards are at the front of the
binary deck, and they may not be removed from this
position on any subsequent occasions in which the
deck is presented to the 1M 7030. However, these
processed 10D’s are to be regarded as binary input —
i.e., the preceding susTYPE card must have the deck-
description field as BIN, if this binary deck is combined
with some additional non-binary decks to form a
(new) coMPILE, or, more probably, a comPpILGO job.

DATA SUBPROGRAM

Any data to be input on the System input tape by the
execution of a program must follow all subprogram
decks. There is no exception to this rule. If the job is
cOMPILE, or COMPILGO, then the data deck must be
preceded by a suetypE card, with deck description
data. If the job is a (FORTRAN) GO, then data must be
separated from the last binary subprogram by a FOR-
TRAN Branch card (see Appendix A).

Go Joss

When a job requires no compilation whatsoever (i.e.,
all input consists of binary precompiled programs),
then suBrYPE cards are not needed. The presence of
the TYPE, GO, FORTRAN cards will invoke the FORTRAN
relocating loader. If input data is to follow, then the
last subprogram must be followed by a FORTRAN
Branch card.

Examples
A few sample input decks are illustrated below to
indicate the various control cards required.

EXAMPLE 1

A job consisting of two FORTRAN and one SMAC sub-
programs, to be compiled and executed, plus decimal
data. No binary decks required, but strap listings

requested.

B JOB, RUN 35/A, BIRNHAM WOOD REFORESTATION
PROJECT

B TYPE, COMPILGO, FORTRAN

T SUBTYPE, FIOD, LSTRAP, NOPUN

B IOD,------

B IOD,------ 10D subprogram
END

T SUBTYPE, FORTRAN, LSTRAP, NOPUN

FORTRAN subprogram 1

END

T SUBTYPE, Al, LSTRAP, NOPUN

e SMAC subprogram

END
T SUBTYPE, FORTRAN, LSTRAP, NOPUN

FORTRAN subprogram 2

END
T SUBTYPE, DATA

Data Cards

EXAMPLE 2

A job consisting of a FORTRAN subprogram: two binary
decks, a straP deck, and a processed 10D deck. (This
implies the ForTrRAN and sTRAP subprograms do not
have any additional 1-0 requirements not known at
the time the 10D deck was made up.) No sTraP listings
are required, but binary decks are to be obtained.
Execution is to be attempted.

JOB, RESEARCH PROB. 0001. CIRCLE,
(SQUARING OF)

TYPE, COMPILGO, FORTRAN

SUBTYPE, BIN

ST w

Binary deck
produced by IOD

compilation

T SUBTYPE, BIN (could be omitted)

Binary
Subprogram 1

T SUBTYPE, BIN (could be omitted)

Binary
Subprogram 2

T SUBTYPE, STRAP

STRAP subprogram

END

FORTRAN subprogram

EXAMPLE 3

A job consisting of one binary subprogram, and an un-

processed 10D subprogram. No listings, but binary cards

are required. Execution to be attempted with follow-

ing data:

B JOB, STATISTICAL EVALUATION OF SWINE-FEVER
INCIDENCE IN AKRON.

TYPE, COMPILGO, FORTRAN

SUBTYPE, FIOD

10D, - - - -

IOD, - - - -

END

T SUBTYPE, BIN

eel=~Rr o]

29

Binary
Subprogram
T SUBTYPE, DATA
Data
deck
ExXAMPLE 4

A straight co job, with two previously compiled binary
decks, and a processed 10p-deck.

B JOB, ORBITAL CALCULATION 376. (VULCAN)
B TYPE, GO, FORTRAN
B 1IOD---
B IOD---
Binary deck pro-

duced by IOD

compilation

Binary Subprogram
1

Binary Subprogram
2

FORTRAN Branch Card
Data deck

Chapter 13. STRAP Subprograms and
Binary Decks

Provided certain rules are followed, it is possible to
write subprograms (either Function-type, or Subrou-
tine-type) in sTRAP, that may be continued with FoRr-
TRAN-coded routines to form a job. This chapter ex-
plains these rules after first reviewing the constitution
of a typical binary subprogram deck.

Binary Deck
The usual binary deck consists of the following cards,
in the order given:
1. A rorTRAN Program card.
2. One or more Common Definition cards.
3. An arbitrary number of Relocatable Instruction
cards, and/or Relocatable Data cards.

ProcraM CARD

The FORTRAN Program card provides certain descrip-

tive information about the subprogram to the loader.
After the routine has been loaded into memory and
during execution, the Program card occupies no space.
The information carried by this card is:
The number of full words of memory required by
this routine.
(a) The number of full words of memory required
by this routine. »
(b) The number of full words of blank common re-
quired by this routine.
(c¢) The “name” of this routine.
(d) The entry point, relative to zero, associated
with (c¢).

30

A sTRAP subprogram, unlike a ForTRAN-coded routine,
may have more than one entry point. For such routines,
items (c¢) and (d) are repeated as many times as
required.

CommoN DEFINITION CARD

A Common Definition card informs the loader of the
names and sizes of the named common blocks utilized
by this program, of which there may be arbitrarily
many. For each such block, the information given is:

(a) Common block name.

(b) Total number of full words required for this

block.

If a given subprogram references more common blocks
than can be defined on one common definition card,
then as many more additional cards of this type as are
necessary may follow. There is no difference in formats
between the first and any “continuation” common def-
inition cards; however, it is vital that the original
ordering of these cards (i.e., as produced by the Com-
piling System) be preserved.

RELOCATABLE INSTRUCTIONS AND DATA CARDS

Relocatable binary instruction and relocatable binary
data cards contain the executable instructions of a sub-
program and its associated data, respectively. The in-
struction card also contains a relative loading origin
for the card, plus relocation bits, specifying how the
individual instruction address references are to be
relocated. The data card contains the data bits, a load-
ing base (which specifies whether the data is to be
loaded into the program region of memory, or into a
named common block), and a relative loading origin
(with respect to the loading base).

Compatibility Requirements
STRAP subprograms must observe certain rules in con-
nection with the production of:

1. The rorTRAN Program Card.

2. Any necessary Common Definition cards.
Moreover, certain conventions must be followed in
connection with the following additional points:

3. The calling of lower level routines (if any).

4. The acquisition of input arguments (if any).

5. Index register saving and restoring.

6. The production of output results (if any).

7. The returning of control to the calling routine.

Probuction oF A ProcraMm CarD
A rorTRAN Program Card may be obtained by the fol-
lowing sequence of instructions:

PUNFPC, S, C

Namei ENTER, address1
Namez ENTER, addresss
Namen ENTER, addressn

where:

S defines the number of full words oc-
cupied by this program (equal to the
highest location relative to zero used,
plus 1).

C defines the number of full words of blank

common used by this program.

is the ith entry point name to be placed
on the program card.

defines the actual entry point to be as-
sociated with name;.

If more entry points are defined by means of the ENTER
statements than can be punched on one card, then
sTRAP will automatically produce as many additional
program cards as are required.

Name;

Address;

ProbucTioN oF CoMmMoON DEFINITION CARDS

Any Common Definition cards that may be required
can be produced by the following sequence of sTRAP
statements:

PUNCDC
Name1 COMBLOCK, Q:
Namez COMBLOCK, Q2
Namen COMBLOCK, Qn
where:

Name; is the name of the ith common block de-
fined for this program.

Qs is the number of full words to be reserved
for this common block.

Calling Lower Level Routines; Transfer Vector

Any lower level routines to be referenced by a given
subprogram, must be invoked in a standard fashion.
The formal instructions passing control must be:

SIC, $X15

B, name
where name is the address of a word in the transfer
vector, at the start of the program. This transfer vector
is a consecutive series of full words, containing the A-8
coded names of the lower level routines to be called,
beginning in cell 1 of the program (relative to zero).
The first 18 bits of cell zero must contain an integer,
specifying the length of this transfer vector. Thus, to
call a lower level routine named cLos, the following

code should be used:

PUNREL
SLC, 0.0
XW,, ENDTV-BEGINTV
BEGINTV SYN, $
GLOB (A*)DD(BU, 64,8), GLOB *
other transfer
vector entries.
ENDTV SYN, $
Executable
Code

SIC, $X15 Transfer of
B, GLOB control to
routine GLOB

(Note that this example does not show the passing
of arguments into GLOB.)

ARGUMENT LisTs

The sTRAP subprogrammer is concerned with argument
lists in two connections. First, input arguments to a
subprogram must be acquired by means of the argu-
ment list generated by the calling program; second,
if a lower level routine is to be called, an appropriate
argument list must be constructed in sTrap.

A subprogram list consists of a consecutive series
of full words, one for each argument, immediately
following the invoking “sic;B” instructions. Each word
is in the form:

VF, a1; VF, az
where:

a is the location of the argument value (in the call-
ing program)

a. is either identical to a;, if the argument is a single
valued variable, or the first location of an array, a
particular element of which is being specified
by az.

Thus, a; is the address to be used in the acquisition of
arguments by the called program. If the argument
specified in the calling program is the name of an
array, without any appended subscript, then a; and
a, are identical, the address given being that of the
first cell of the array, or ARraY (1, 1, 1). If the argu-
ment is alphameric data, then both addresses given
are equivalent, and specify the first location occupied
by that data.

ExXAMPLE OF ARGUMENT LisT

FORTRAN code
DIMENSION A(2, 3, 4), B(10, 10)
CALL JOE (6.7, Q, 3HEND, B, A (1,2, 2))
Generated STRAP code (for CALL statement)
SIC, $X15
B, TVLOC
VF, L(6.7); VF, L(6.7)
VF, Q; VF, Q
VF, HOLARG; VF, HOLARG
VF, B; VF, B
VF, A+8.0; VF, A
------- return point

HOLARG (A*)DD(BU,, 8), END *

INpEX REGISTER SAVING AND STORING

A ForTRAN-coded subprogram always saves all 16 index
registers upon initial entry to that routine. At each pos-
sible exit point, arrangements are made to restore these
registers. While it is not strictly necessary for the
STRAP subprogrammer to save and restore all 16 index

31

registers, it is imperative that any registers liable to be
changed should be preserved. It may be convenient
for this to be done in a similar fashion to that in which
FORTRAN-coded routines perform this action; here, 16
memory words are set aside, following the transfer
vector (if any) for the preservation of the index regis-
ter contents.

ResuLTs

A Function subprogram must always place its (single)
result in the left part of the accumulator ($L). A Sub-
routine subprogram must place each of its results in
a memory location. (Note that it is not required that
a Subroutine produce any results.) A result repre-
sented by the nth argument of a caLL statement is to
be stored in the location specified by the first 18 bits of
location (n-1).0($X15).

ReTURN OF CONTROL

Control may be returned to the calling routine by:
1. Restoring any altered index register.

32

2. Branching to the location immediately following
the last word in the argument list (if present).
The appropriate instruction for a routine with n argu-
ments is:
B, n.0($X15)

ARRAY STORAGE

Note that data is stored in a forward direction in pro-
grams compiled by the 1BM 7030 ForTRAN. Given an
array A(2, 3, 4) the memory cells allocated are:

ADDRESS CONTENTS
X A(1,1,1)
X+1 A(2,1,1)
X+2 A(1,2,1)
X+3 A(2,2,1)
X+23 A(2,3,4)

An array is stored forward by columns. Furthermore,
the various items in a common block (including blank
common) are also stored in a forward direction. That
is, given the statement

COMMON A, B,C,D
A occupies a lower memory address than B, C, or D.

Appendix A. Binary Card Formats

FORTRAN Program Card

112(3|4|5(16 7|89 1314 16 2021 23
wy w
(= < b
® Za o%
[Z 5
—Z@ OZ
N 203 00
& z |29 g
= Lu:(AD §°° (%) é w etc.
5 % N 23 1-2-5 A o Q across
6| lus| |2/05 = 4 w % the
oz o
s 192032 6 <2 < card
wix g 3 3 >z >
SHENEE =2 7
| T & zZ Z|
9emUDQ.§U m% %

Columns 6, 7 and 8 are blank on any subsequent con-
tinuation program cards.

Common Definition Card

112|345 8 |9 1314} (16 2021
w efc.
5 % across
o Z’g %Z the
@ . Z @ oz card
= L03 OO
50 |3 TP |Ng 22 N
g3 . | ST 32 8 3
U o b b3
8l |28 = 3 =
Q£ z O 9]
M) =) v} O

If the number of named commons is greater than that
which will fit on a single card, additional cards will
be punched in the same format.

Relocatable Binary Instruction Card
Relocation Bits (describing a half-word field)

0 No relocation
10.. .. Relocation
100 .. First 18 bits (address)

101 .. Last 18 bits (refill)

Appendix

10..0 As lower address
10..1 .. As upper address
10..10 With respect to blank common
10..11i with respect to named common num-
ber i (length of i sub-field is deter-
mined by number of named commons)
1 |2|3|4f5l6 7819
Instructions only.
No data.
(Eventually followed
= by relocation
X g bits.)
z
83|z
71 &L Zla
32 92
9lo2(El5 3|5

Relocatable Binary Data Card

112 {3[4(5[6 78 9jlopt
—
Z
=]
g 8 Binary Data
b3 —
2 5§ 11-72
6 wis|e= Z|=
| 1838 4 8¢
w0 Z ZZ
8| 218101 9 o2
GIE| = 9lo
9le|&|0|s| O H|=

No relocation bits on this card.
Loading Base (column 10)
0 — Program Data
1 — 1st Named Common
2 — 2nd Named Common, etc.
Secondary Bit Count (columns 9-10)
Bits to be zeroed/skipped before/after loading as
determined from 5.0, 5.1:
5.0 0-skip 1-zero
5.1 0-before l-after

33

FORTRAN Branch Card

6-72
Unused

©° ® N o’
SEQUENCE NUMBER
CHECKSUM
BIT COUNT

1D

Appendix B: Principal Differences Between the
IBM 709/90 FORTRAN Il and the IBM 7030
FORTRAN IV

The differences between FORTRAN 11 and FORTRAN IV
may be considered under two headings: changes to
existing facilities, and addition of new features.

Changes

1. The 1F statement has been redefined, to reflect a
logical decision making process, rather than an arith-
metic sign test, although the 1BM 7030 FORTRAN IV com-
piler will accept the arithmetic-1r without flow analysis.

2. The 10 tape-oriented statements have been
changed, to make them more general.

3. The machine dependent statements referencing
sense lights, sense switches, and machine triggers have
been dropped.

4. The EQUIVALENCE statement is no longer per-
mitted to re-order coMMON storage.

5. Function naming rules have been changed, to
unify the various conventions applicable to the differ-
ent kinds of functions.

6. The B and F modal punch conventions have been
dropped.

7. Implicit multiplication is not accepted.

Additions

1. Three type declarations have been added to the
language to enable the nature of variable and function
names to be (optionally) declared rather than estab-
lished by declension.

2. Logical and relational operators have been added,
to facilitate decision making processes.

3. A special statement, EXTERNAL, has been provided
to permit the passing of subprogram names as argu-
ments.

34

4. The concept of “named” common storage has
been introduced, together with the ability to specify
dimension information in coMMON statements.

5. The ability to write subprograms operating upon
arrays of varying size specified by means of a variable
DIMENSION statement, has been added.

6. A new statement, paTA, has been added, to per-
mit initialization of data objects at compile time.

Appendix C: A STRAP Coded Subprogram

Suppose the programmer wishes to code a STRAP sub-
program analogous to the following FORTRAN program:

SUBROUTINE STRAP
COMMON ANAME1(10)
COMMON/BLOCK1/ANAME2,/BLOCK2/ANAME3(10)
ANAME2 = SIN(0.0)
DO1I1=1,10
ANAME3(I) =1
ANAME1(I) = COS (ANAME3(I))
1 CONTINUE
RETURN
END

then the strap program should be similar to the

following:

PUNREL

SEM, 92, 114, 116
PUNFPC, LAST, COMMON
ENTER, ENTER
PUNCDC

COMBLOCK, BLOCKIND
COMBLOCK, BLOCK2ND
XW,, 2

COS (A*)DD(BU), COS *
SIN (A*)DD(BU), SIN *
ENTER SX, $0, SAVE

SX, $1, SAVE+1.0

SX, $15, SAVE+2.0
CNOP

LVI, $15, $+1.0

B, SIN

VF, ZERO

VF, ZERO

ST(U), ANAME2

LVI, $1, 0.0

L(U), ONE

ST(U), I

LCI, $0, 10

L(U), 1

ST(U), ANAME3($1)
LV, $0, $L.+0.32

V+, $0, ARG1+0.32

SV, $0, ARG1

CNOP

LVI], $15, $+1.0

B, COS

VF, ANAME3

VF, ANAME3

ST(U), ANAMEL($1)
V+I, $1, 1.0

L(U), ONE

M+(U),I

CB, $0, BEGIN1

LX, $0, SAVE

LX, $1, SAVE+1.0

LX, $15, SAVE+2.0

STRAP

BLOCK1
BLOCK2

BEGIN1

ARGl

B, 0.0($15)

B, $MCP

, $ABEO]

CNOP
ZERO DD(N), 0.
ONE (F10)DD(U), 1.0 x 38
I DR(N), 1
SAVE DR(N), 3

SLCRCOM,
ANAME1 DR(N), 10
COMMON SYN, $

SLCRCOM, BLOCK1
ANAME2 DR(N), 1
BLOCKIND SYN, $

SLCRCOM, BLOCK2
ANAME3 DR(N), 10
BLOCK2ND SYN, $

SLC, SAVE+3.0
LAST SYN, $

END

Appendix D: Segmentation on the IBM 7030

Segmentation is a method of overlay designed to han-
dle the situation in which the entire problem program
is too large to be held in internal storage at one time.
As a part of the FORTRAN chain, the 7030 segmentation
is implemented through the Bss-mcp loader. Internally,
the segmentation portion of Bss will set up in the re-
location tables the information required by the mcp
loader to load the segmented program in the desired
fashion. A special link program operates during execu-
tion of the problem program to determine when a new
portion of the problem program is to be loaded and
to transfer control to the mcp loader at that time.

Segmentation is used in the following manner: a seg-
ment is defined by placing in front of the binary deck
for a group of subprograms a node control card, of the
card format given below. No node card is needed for
a program consisting of a single segment.

All of the subprograms defined as a segment by a
node card will be loaded into storage whenever any
part of that segment has to be loaded. Since a certain
amount of time will be required during execution to
bring in the various segments, the most efficient deck
arrangement for segmentation will be that which re-
quires the smallest number of transfers between seg-
ments.

Storage for a segmented program will be allocated
in the following way: One segment, called the primary
segment, will remain in storage at all times. This seg-
ment must contain the main subprogram, to which
control will be initially transferred. All library sub-
programs which are called, as well as the link sub-
program, will be assigned by Bss to the primary
segment. The user must assign the 1op subprogram to
the primary segment. Commons will be allocated space
higher in storage than the program, but commons will
be properly associated with the segments which refer-
ence them. Block data will be associated with the
segment which contains that block data subprogram.

Node Card Format

The node control card, which indicates to Bss whether
segmentation is to be used and how the segments are
divided, has the following format:

col 1 T -
col 10-19 NODE, XX, YY

xx is the two-digit segment number for the group
of subprograms preceding the next node card. vy is a
two-digit segment number of the segment to which
the current segment, xx, is to be attached. The value
of vy should be 00 on the node card for the primary
segment.

Notes

1. The number of segments cannot exceed 99.

2. Care must be taken in setting up the segmenta-
tion deck. A call from one segment to another will be
illegal if the call causes the originating segment to be
overlaid.

3. Neither named common nor block data will be
preserved when a segment associated with it is over-
laid.

4. An error will be indicated if any group of seg-
ments which are to be in storage at the same time will
exceed the amount of storage available.

5. The number of segments which are to be in
storage at the same time cannot exceed eight.

6. FORTRAN subprograms must be compiled before
node cards are inserted in the program deck.

35

5/63:2.5M-HP-40

C22-6751

BV

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York

‘V'STN Ul Pajulg Al NVYLYO4 0€0Z

1649-220

	00
	01
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	xBack

