— , E E i

Reference Manual STRAP-II
7030 Assembly Program

EM Reference Manual STRAP-II
7030 Assembly Program

© 1961 by International Business Machines Corporation

Introduction 1
Section |l 2
Input Format 2
Expression of Machine Instructions 3
Operation Field 5
Data Description 6
Address Field 7

sTRAP Bit Addresses 8

Integer Addressesiiiiiiiiiiiiiaiaan, 8

Programmer Symbols 9

System Symbols 9
Offset Fieldo 11
Pseudo Operationsiiiiiinnannn. 12
STRAP-II Output Listing 18
sTRaP-1I Punched Qutput 22
Section Il 24
Entry Mode0 24
Statement Entry Modeoivniiivn.. 24
Statement or Field Entry Modes 24

FEntry Modeoiiiiniiiiiiiiiinannn, 24

Radix Specifier i 25

Contents

Field Entry Modeooviniii .. 25
The Form of Data Entries in DD Statements a7

Sign Byte Entry 27

Exponent Entry 27
Complete Rules for DD Statements 27
Normalized Floating Point 28
Unnormalized Floating Point 28
Binary Signed VFL 29
Binary Unsigned VFL 29
Decimal Signed VFL 30
Decimal Unsigned VFLc.coiiiiinn.... 30
Summary of Rules for DD Statements 30
Address Arithmetic 31
Additional Pseudo Operations 36
Output Listing Pseudo Operations 36
Output Punching Pseudo Operations 36
Miscellaneous Pseudo Operations 37
Appendix A 43
Appendix B.......l 46
Appendix C..........o 47
Appendix D il 54

An assembly program for an electronic computer is
actually a translator; it translates a program from a
language convenient for the programmer to use into a
language that is easy for the computer to use. An as-
sembly program, therefore, simplifies the writing of
programs for a computer.

STRAP-TI, the sTRETCH Assembly Program, defines a
language for programmers for the mm 7030. The
STRAP-II language is a symbolic language—it provides
a complete set of mnemonics for the expression of ma-
chine instructions and it permits the use of symbolic
names for the locations of data and instructions.
STRAP-II also provides mnemonics for a large set of
pseudo operations, defined by strap-11 to simplify the
definition of data and the issuing of directions to the
assembly program itself.

STRAP-II is a large program; it must be run on a 7030
computer with a minimum storage capacity of 24,576
words. If the 7030 being used has a disk unit attached,
sTRAP-1I Will require three tape drives—one input tape
and two output tapes. If there is no disk attached, seven
tape drives must be available for assembly—one drive
for the system tape, one for input, three intermediate
tapes and two output tapes. In either case, the input
tape, the output tape for peripheral punching and the
output tape for peripheral printing of the listing are

Introduction

Spool Tapes that are part of the 7030 Master Control
Program.

Any program that can be assembled by strap-1, an
early assembly program for the 7030 computer that
assembled programs on the 1M 704 that would be
run at a later time on the 7030, can be assembled by
sTRAP-11 without modification. Thus, all the specifica-
tions defined in the 704-709-7090 Programming Pack-
age Manual (M Form No. C22-6531-1) for sTRaP-1
are also applicable to sTrap-11, with the exception of
the behavior of two pseudo operations that control the
format of the output listing, and one new restriction
of the use of radix 16.

STRAP-II is a more elaborate programming system
than sTrRAP-1; its specifications contain several new fea-
tures not previously available in strap-1. These new
features remove some of the restrictions of STRAP-I,
offer more flexibility, and in some cases provide for
completely new functions to be performed.

The remainder of this manual is divided into two
major sections. The first section will describe input
format, the expression of machine instructions and
pseudo operations, and the output format. The second
section extends the description of some of the features
in the first section to explain certain less frequently
used but more advanced and complex procedures that
are available to the programmer.

Section |

Input Format

Figure 1 illustrates the strap coding sheet (1BM
Form No. X22-6798-0) with some STRAP statements
written on it.

NAME

ANY NAME, |L(BU,64,8), DATA($X3),7
ADDER, , . [+(BU,8,8),SINE8

Ficure 1. strap Coding Sheet.

The straP coding sheet was designed to simplify the
writing of instructions in a neat and orderly fashion.
The coding sheet is divided into four fields:

1. Class (1 column)—used by sTtrRap to identity
Master Control Program cards, continuation
cards and comment cards.

2. Name (8 columns)—identifies the statement.

3. Statement (63 columns)—used to express a 7030
instruction or pseudo instruction.

4. Identification (8 columns)—identifies the card.

Card identification (columns 73-80) is reproduced on
the output listing, but does not contribute any infor-
mation to the assembly program for translating in-
structions.

The format of the coding sheet is directly related to
the format of the symbolic input card (1BM card Form
No. A36259). Both are divided into the same four
fields. The coding sheet is most useful as a document
from which the keypuncher can punch the program
directly on to the input cards. The first instruction
from the above illustration of the coding sheet is
shown in Figure 2 as it would be punched on a sTrap
input card.

One line on the coding sheet represents one punched
card. Normally, one machine instruction or pseudo
operation is written per line. A comment may follow
any instruction. The beginning of a comment is sig-
naled by the character ' (an 8-4 double punch); it is
usually terminated by the end of the card.

CONV3L(BU,64,8), TABLE’ BEGIN CONVERSION

Comments are reproduced on the output listing, but
do not affect the assembly program in any way. If an
' appears in the name field, the entire card block is
treated as a comment—it is reproduced on the listing
but it is not assembled.

Several statements may be written in the statement
field of a single symbolic input card. Multiple state-
ments are separated by the special character ; (an
11-0 double punch), which implies the end of a state-
ment. Therefore, the character ; can never be used in
a comment, except in a comment card block.

NYNAME 7Bl €4 R, DATAZSHZE 7
111 11l 1

NAME STATEMENT

€23-0864-0

1210

Identification

STRAP I

3l TANBIATSIEIT T

STRAP Symbolic Card

567858

4
TRt
2222222

10111213 141516 17 181320212223 24 2525 27 286 29 30 31 3233 34 36 26 37 3B 39 40 41 £2 43 44 45 46 4T 4B 43 50 51 5253 54 5 58 57 56 55 65 51 62 63 64 S 88 €

IHIIIIIHIIIIIIIIHIlllllllll11111IHIIIHIIHIIIHHIHHHH
22.22222Z22
I333.33'33.33.33.3.3'33
4.4.44.44.4.444'444.444444444444444444-‘.444444444444444444444444

(B}

5 5555555555555555553855555¢8

o
w

555858

555555555555555655555555555555
6666666666666666555€65565666666866C6066660655666666666566068666¢
7717117171717171717117071717177771717171371797117771171717717171111711717117771171
shselscHMENcosclBoclNecess856266820836820308538888556088308838838

co

w0
8o
D
8
w
L e
(A3

99

d
135455 55 57

559965¢§
5758 55 60 6162 63

8w

3

Pey-)

93939989
5168517271 12

1

0.000000'0"00.0'0.0'!‘!.00'00000900000000030GEGGGGGSI‘;UGHGBGUG&G%GSGDGUOCGSU
3
1

IRERREES!
22222222
333333373
L4444444
558555355
66666656
17111171111
883¢c8838
39999939

7374 75 7€ 17 78 73 80

Ficure 2. strRaP Symbolic Card.

2

M 7030

BEGIN L(N), DATA; +(N), FIRST1; —(N), ANGLE

The number of instructions that may be written on
one line is limited only by the number of columns
available in the statement field of the card. The sym-
bol in the name field of a card having more than one
instruction in the statement field is associated with the
first instruction only. The remaining instructions are
treated as if they appeared on separate cards having
blank name fields.

The name field and/or the statement field of a sym-
bolic input card can be continued on subsequent cards
by use of a continuation card. A continuation card is
identified by an * punched in column one. In all other
Tespects it is identical to the symbolic input card. In
sTRAP-11, a card block is defined as the initial symbolic
input card plus all its continuation cards.

REALLONG L(N), DATAWORD; *(N), FACTOR
*NAME

If continuation cards are used to extend the name
field, one restriction applies—the first character of the
name must appear in the name field of the first card
in the card block. A name, regardless of its length,
is always attached to the first statement of the card

block.

Expression of Machine Instructions

Symbolic machine instructions are written in the
statement field of the coding sheet. Symbolic instruc-
tions are divided into several fields (operation mne-
monic, data description, address, offset, etc.) by
commas. These major fields may in turn be further
divided into subfields or modified by expressions con-
tained in parentheses, such as index register specifica-
tions, secondary operations in progressive indexing,
and so on.

The format of the symbolic instruction varies with
the class of sTRETCH instructions to which it belongs.
There are twelve symbolic instruction formats for
STRAP-IL

1. Floating Point
OP(dds), A (1)
Example:
ST(U), BUCKET($2)

This instruction says, “Store the contents of the
accumulator as an unnormalized floating point
number in the storage location symbolized by
BUCKET modified by index register 2.”

2. Miscellaneous, unconditional branch, sic

OP, Ay, (1)

Example:
B, START($X12)

This sTrAP instruction means, “Branch to, or
transfer control to, the instruction whose loca-
tion is symbolized by sTarT modified by index
register 12.”

3. Direct Index Arithmetic
OP,], Ass(I) or OP,], Ass(I)

Example:
LX, $3, XWORD($6)

This instruction, when executed, tells the 7030
computer to, “Load index register 3 with the
contents of the word found at the location sym-
bolized by xworp modified by index register 6.”

4. Immediate Index Arithmetic
OP, J, Ay or OP, J, Ays

Example:
V+I, $10, 1024

The meaning of this instruction is “Add the
address of this instruction to the value field of
index register 10.”

5. Count and Branch
OP, J, Biy(K)
Example:
CB, $8, BEGIN($1)

This instruction directs the computer to “Sub-
tract one from the count field of index register
8, then test the count field. If it is not zero,
branch to the location specified by the sym-
bolic location BEGIN modified by index register
1. If the count field is zero, do not branch but
proceed to the next instruction in sequence.”

6. Indicator Branch
OP, B, (K)
Example:
BZM, ERROR($7)

This instruction, whose operation code mne-
monic is partially constructed from the name
of the indicator, says “Branch to the instruc-
tion located at the location symbolized by
error modified by index register 7 if the Zero
Multiply indicator is on. If it is not on, pro-
ceed to the next instruction in sequence.”

7. vrL Arithmetic, Connect, Convert
OP(dds), A..(I), OF(I")
Example:
M+(BU, 24, 8), DUMMY($9), 6(%4)

Section I 3

This variable field length operation says “Take
the 24-bit unsigned field composed ot 8-bit
bytes found offset from the right end of the
accumulator by an amount equal to 6 bits
modified by index register 4 and add it to the
field of the same length that is found beginning
at location pummy modified by index register
9 in storage.”

8. Progressive Indexing
OP,(OP.) (dds), A..(I), OF(I")
Example:
ST(V+I)(BU, 24, 8), .30(3$8), 2($14)

This vrL instruction with progressive indexing
illustrates the power of STRETCH instructions.
The operation reads “Store the unsigned 24-bit
field composed of 8-bit bytes that is found oft-
set from the right end of the \accumulator by
2 modified by index register 14 bits in the stor-
age location specified by the value field of in-

_dex register 8. Then increment the value field

- of index register 8 by 30 bits and proceed to
the next instruction in sequence.”

9. Swap, Transmit full words.
OP,], Aws(I), A'ss(1")
Example:
T, $2, TABLE1($3), TABLE2($4)

This transmit instruction is written to “Transmit
the number of full words specified by the count
field of index register 2 from the storage area
beginning at location TaBLEl moditied by index
register 3 to the storage area beginning at
tTaBLE2 modified by index register 4.”

10. Branch on Bit
OP, A (1), Biy(K)
Example:
BB, ONEBIT($5), FIXUP($9)

This instruction is interpreted to mean, “If the
bit in storage whose location is oNEBIT modified
by index register 5 is on, branch to the instruc-
tion at location Fixup modified by index regis-
ter 9. If this bit is not on, proceed to the next
instruction in sequence.”

11. Input-Output
OP,(OP.), Ayp(I), Ajs(I)
Example:
RD(SEOP), CHANX($%6), CONWORD($9)

The meaning of this 1/0 instruction is “Read the
unit connected to the channel symbolized by
cuanx modified by index register 6 (or the last

4 M 7030

unit located on this channel if more than one
unit is attached) according to the instructions
contained in the control word addressed by
conworp modified by index register 9.”

12. Load Value With Sum
LVS,], X, X, X,, . ..

Example:
LVS, $3, $5, $6, $7, $8

This instruction reads, “Add together the value
fields of index registers 5, 6, 7, and 8 and store
the sum in the value field of index register 3.”

Each of these formats is a slight variation or expan-
sion of the basic sTraP instruction format which is:

OP, A

The inclusion of index modification of the principal
address expands this basic pattern to a sTrap format

OP, A(I)

used in Unconditional Branches, Indicator Branches
and Miscellaneous instructions. Through the addition
of the data description field

OP (dds), A(I)

we arrive at the format for floating point instructions.
Adding to this format the offset specification and its
index modifier

OP(dds), A(I), OF(I')

we develop the Variable Field Length format.
Other changes in the basic format yield the other

sTrRaP formats. For example, the insertion of the |

field to specify the index register that is being oper-

ated upon OP, J, A(I)

becomes the basis for the Index Arithmetic and Count
and Branch formats. Swap-Transmit, Input-Output,
Bit Branching and the Load Value With Sum for-
mats evolve from the basic strap format in similar
fashion.

The major fields in any sTrAP format are separated
by commas. All of the fields shown for a particular
format need not be written in every instruction. It is
obvious, for example, that an offset would not always
be specified in every vrL arithmetic statement. There-
fore, a right-to-left drop-out order for major fields has
been established; that is to say, missing fields are
compiled by sTtrap-11 as if they contained zeros and
were added at the end of the statement. A missing
field that is always compiled in some standard fashion
(in this case zero) is referred to as a null field. Our
previous example of a vrL arithmetic instruction, now
written with the offset field null, would appear

M-+ (BU, 24, 8), DUMMY/($9)

and the instruction will be compiled by sTrap-u1 with
zero offset.

The complete right-to-left drop-out of fields in a
VFL statement is illustrated below to show the pro-
grammer how the expression of a STRAP statement may
vary within the framework of the format for that class
of instructions.

OP(dds), A(I), OF(I")
OP(dds), A(I), OF
OP(dds), A(I)
OP(dds), A

Notice that when even a complex format such as the
VFL format is written to include only the essential in-
formation, the result is a statement that differs very
little from the basic sTrap instruction format previ-
ously illustrated. It will be seen later that in actual
practice, the (dds) field can almost always be elimi-
nated in the instruction proper (see Data Description
discussion).

A major field may be null even if other non-null
fields follow. Such is the case if nothing but the
comma denoting the field termination is written.
Thus, a vrFL instruction written with its address and
index modifier null but with an offset specification fol-
lowing would appear as in the illustration below

OP(dds), , OF,(I')

Note that it is only the presence of the comma that
indicates the missing address field. If the comma were
omitted, strap would assume that the offset field were
null and would actually compile the offset specifica-
tion as the address expression.

Some of the components of a major field can be
made null simply by omission. We have seen, for ex-
ample, that the offset specification in a vFL statement
need not be indexed and can be written

OP(dds), A(I), OF

Similarly, the address expression need not be indexed,
and can be written

OP(dds), A, OF

Obviously, if all the components of a major field are
omitted (both offset expression and its index modi-
fier, for example) the field is made null. This will
normally be just what the programmer desires, but
care must be taken if the null field occurs in the
middle of the statement. As explained above, if the
comma denoting the termination of the null field is
also missing, the null field is assumed to be missing
from the right hand end of the statement.

On the following pages, a detailed discussion of
some of the major fields in the sTRAP instruction for-
mats is found. The three fields covered are the opera-
tion field, the address field and the offset field.

These fields are singled out because they are com-
mon to most instructions or because they illustrate
important programming features or facilities of STRAP.
The operation field is, of course, common to all instruc-
tions. The data description appears as a sub-field of
the operation field in those instructions where it is
appropriate. The address field is also common to all
7030 instructions, although it varies considerably in
length. The address field typifies a field in which a
wide variety of entries can be made. Rules for inter-
preting these entries and translating them for internal
use are illustrated for address fields and hold true for
most other instruction fields. The offset field is found
only in variable field length instructions, but it is in-
terpreted as an address field of an unusual length.
It illustrates some unique index modification as well.

Two general comments are appropriate here. First,
all 7030 instruction fields are unsigned. Any numeric
entries that are negative are converted by sTraP and
expressed as the two’s complement of the entry. Sec-
ond, all numeric entries in the illustrations are as-
sumed to be written in the decimal radix. Entries in
other radices are permitted in strap 1 if the radix is
specified in a standard fashion (see Entry Mode in
Section II of this manual).

Operation Field

sTRaP-11 provides a complete set of mnemonics for
the expression of all 7030 instructions. The use of
mnemonics is desirable from a programming stand-
point because they make instructions brief to express,
easy to remember and easy to recognize.

A complete list of sTRAP-11 mnemonics is given in
Appendix A. A few rules may be noted in choice of
mnemonics. First, the mnemonic is as brief as it can
be and still unambiguously identify the instruction.
Second, standard symbols are used for arithmetic op-
erations— + for App, — for suBTrACT, * for MULTIPLY
and / for pivibe. Third, the receiving register (that is,
the register that receives the result of the operation)
in arithmetic operations is indicated by the letter to
the left of the arithmetic symbol. In cases where the
result is in the accumulator, the accumulator is as-
sumed and is not mentioned in the mnemonic. For
example, + is the mnemonic for straight App where the
result is left in the accumulator, M+ is the mnemonic
for app TO MEMORY and v+ means ADD TO VALUE.
Fourth, certain basic operations may be altered to in-
voke immediate addressing by adding the suffix 1 as in
V-1, ADD IMMEDIATE TO VALUE.

Mnemonics for sTrRap-i1 pseudo operations may also
be written in the operation field of a sTrAP statement.

Section I 5

The formats for the expression of pseudo operations
are similar in style to the sTraP instruction formats.
(See Pseudo Operations.) A complete list of sTRAP-11
pseudo operation mnemonics is given in Appendix B.

A null operation code field occurs if the first char-
acter in a 7030 statement is a comma, as in this ex-
ample:

, EXIT

STRAP treats a null operation field as a special case;
it compiles the statement as a half word with a 24-bit
address field, the 25th bit set to one and all the rest
of the bits set to zero, thus:

24-bit address 1 0000000

0 23 24 25 31

This half word appears, when compiled, to be the first
half of a full word instruction because of the one bit
in bit 24 and the zeros following. This can be help-
ful to the programmer in some situations. For ex-
ample, if it is desired to load the quantity compiled
in the address field into the value field of an index
register, LVE (the Load Value Effective instruction),
which is indexable, can be used. This instruction ex-
amines the half word to determine the class of instruc-
tions to which it belongs. Since the half word resem-
bles the first half of a full word instruction, Lve loads
all 24 bits of the address field. If v (Load Value) is
used, 25 bits will be loaded (24 bits plus sign) and
the one in the 25th bit makes the value appear nega-
tive. Therefore, caution must be used when creating
value fields in storage by means of statements with
null operation fields. An alternative method is avail-
able through use of the pseudo operation vr (see
Pseudo Operations).

A secondary operation mnemonic may appear as a
subfield of the operation field in progressive indexing.
Here the secondary operation is enclosed in paren-
theses and follows the primary operation mnemonic.

Data Description (dds)

A second sub-field that may appear in the operation
field of certain instruction formats is the data descrip-
tion. It is symbolized in the instruction formats above
by the letters dds enclosed in parentheses. This field
contains three specifications:

M Use Mode
FL Field Length
BS Byte Size

These three specifications appear in the above order

6 M 7030

within parentheses and are separated by commas,
thus: (M, FL, BS)

The dds immediately follows the operation mnemonic,
except in progressive indexing, where it follows the
secondary operation.

A data description is required only by the floating
point and vrL formats. In floating point instructions,
the data description tells whether the instruction calls
for normalized or unnormalized operations. Field
length and byte size are not appropriate. In vFL state-
ments, the data description specifies signed or un-
signed binary or decimal operations. In addition, it
describes the field length and byte size of the data to
be operated upon. One additional mode, the proper-
ties mode, may appear in either type instruction as
explained below. Here again, field length and byvte
size are not appropriate with the p mode.

sTRAP-11 provides seven brief mnemonics to desig-
nate a use mode. These are:

N Normalized Floating Point
U Unnormalized Floating Point
B Binary (Signed)

BU Binary Unsigned

D Decimal (Signed)

DU Decimal Unsigned

P Properties Mode

The field length and byte size specifications are
normally numeric entries, but they may be symbolized
by the programmer, provided, of course, that the sym-
bols are correctly defined elsewhere in the program.
A typical floating point instruction with data descrip-
tion is illustrated below:

L (N), SINEX

The data description (N) indicates a normalized float-
ing point data word located at sINEX is to be operated
upon. In the following vFL instruction
L (BU, 30, 6), ADJUST

the data description describes the data at symbolic
location apjust as binary unsigned, 30 bits in length,
composed of 6-bit bytes. Note that in cases where
the operation mnemonic is the same for vrL and float-
ing point instructions, it is the data description that
tells sTrap to which class the operation belongs and,
hence, which operation code to compile.

A data description given with any of the four data
entry or data reservation pseudo operations (pp-Data
Definition, ppi-Data Definition Immediate, pr-Data
Reservation and syN-Synonym are all discussed in the
Pseudo Operations section) is attached to the symbol
in the name field of that statement, and is auto-
matically invoked whenever that symbol appears in
the principal address field of a 7030 instruction. Since

this is the usual practice, in straightforward program-
ming it is unnecessary to write a data description in
machine operations. When several symbols are joined
arithmetically in an address field, the data properties
of the last one written down are invoked for the
statement.

When the data description is written as a sub-field
in the operation field of a machine instruction, it
overrules any other data description derived from a
svmbol in the address field for that statement and
that statement only.

The mnemonic “P” in the mode field of a data de-
scription has this special meaning:

(P, NUT)

specifies that the data description associated with the
svmbol Nur is to be invoked as if it had been written
out explicitly in this instruction. Thus, in an instruc-
tion, the properties mode invokes a data description
that overrules any data description implied by a
svmbol in the principal address field.

Within a data description field, the usual right-to-
left drop-out order holds (except that the mode field
can never be null), so that a data description may
appear in any of the following four forms:

(M) Field length and byte size are null

(M, FL) Byte size is null
(M,,BS) Field length is null
(M, FL, BS)

If the field length is null, a field length of zero
(effectively 64 —see 7030 Reference Manual — except
in the case of vFL immediate where it is 24) is com-
piled. However if the byte size is null, the byte size
compiled by sTraP is a function of the mode specitied.

MODE STANDARD BYTE SIZE
D or DU 4
B 1
BU 8
N or U Fixed format of 64 bits; field length

and byte size not appropriate.

Cases can arise from programmer errors in which
a data description and an operation are not mutually
consistent (when the operation mnemonic specifies a
floating point operation and the use mode in the data
description is binary unsigned, for example). In this
case the operation overrules.

Other cases can arise where there is no way for
STRAP to obtain a data description from either the
symbolic address or an explicit data description field.
Three distinct situations can be encountered here:

1. The operation symbol can stand for either vrL
or floating point operations (+, —, *, /). The

operation is compiled as a VFL operation with
the data description (Bu, 64, 8).

2. The operation mnemonic can stand for a vrL
operation only (M + 1, for example). The state-
ment is assigned a data description (BU, 64, 8).
If the operation is clearly vFL immediate, (BU,
24, 8) is assigned.

3. The operation mnemonic can only be a floating
point operation (—a, or *Na). The operation is
assembled as normalized floating point, except
for the case of £+1 (Add Immediate to Ex-
ponent) and its modified forms, where un-
normalized is assumed.

If sTraP encounters any of the four irregularities de-
scribed above, the indicated action is taken and an
error message is printed on the output listing.

Address Field

The maximum core storage capacity of the By 7030
computer is 262,144 words (each word 64 bits in
length) or 2!* distinct locations. Hence, 18 binary bits
can unambiguously specify any word in 7030 memory.

Any single bit in core storage can occupy one of 64
positions within a word. Since it is a STRETCH con-
vention to number bit positions in a word from 0 (the
leftmost bit position) to 63 (the rightmost bit posi-
tion), 6 binary bits are sufficient to specify any bit
position within a 7030 word.

Clearly then, 18 + 6 = 24 binary bits are adequate
to address a single bit anywhere in STRETCH core stor-
age — the first 18 bits specify a full word and the last
6 bits specify a bit position within that word. Such a
24-bit binary address, when appearing in the address
field of a 7030 statement, is known as a standard
binary bit address, commonly abbreviated to “bit
address.”

In 7030 programming, the address of an instruction
need specify only the leading bit of the operand since
the field length of the operand is always known. If
the operand is an instruction, a field length of either
one-half word or a full word can be determined from
the operation code. If the operand is data, the data
description gives the field length; floating point data
always occupies a full word, while the field length of
vFL information is specified explicitly in the dds.

Certain rules for the location of data or instructions
further simplify the addressing of operands. Thus, to
address an index word, which is constrained to begin
at a full word, only 18 bits are required. A 19-bit
standard binary bit address is adequate to address any
instruction, since instructions can only be located to

Section 1 7

begin at half or full words. Other examples are seen
below:

A vrL operand may begin anywhere in core storage
—a 24-bit standard binary bit address is required.
A floating point operand must begin at a full word
— this location can be specified in 18 bits.

1/0 control words must begin at a full word — the
location can be specified by 18 bits.

Index arithmetic operands can begin at either half
or full word locations — 19 bits are sufficient to
address any of these locations.

A floating point instruction needs only to address
floating point data; hence the size of the address field
of a floating point instruction is limited to 18 bits. A
VFL instruction must be capable of addressing any
field, in fact any bit, in storage. Its format, therefore,
provides for a 24-bit address field. In general, the
STRAP instruction formats are designed to provide the
largest address field demanded by the operations of
a particular class. When an instruction does not re-
quire a 24-bit address field, a smaller one is provided
and the bits not used as part of the address field can
be efficiently used in other fields of that instruction,
leading to the variations in format we have already
viewed.

It would be most difficult for the programmer to
write 24-bit, or even 19-bit or 18-bit, binary addresses
in his program. In place of a binary address, strap
permits the programmer a choice of entries in address
fields. He may write a

1. strap bit address

2. Integer

3. Programmer symbol
4. System symbol

Address fields are unsigned fields. When a negative
quantity is expressed in an unsigned field, the two’s
complement of the quantity is computed and compiled
by strAP.

STRAP BIT ADDRESSES

A strap bit address provides a simple means of writ-
ing a standard binary bit address. Using this sTrap
shorthand, the programmer writes two integers sepa-
rated by a period, thus:

124.32

The integer to the left of the period specifies the word
address portion, while the integer to the right of the
period specifies the bit position within that word. It
the example above appeared in the address field of a
VFL instruction, sTRAP would interpret it as “location
124, bit position 32 — the first bit of the second halt

8 M 7030

word”. Note that the period is definitely not a decimal
point. This can be proven by the following illustration.

999.1= 999.01

A sTraP bit address is translated by strap and com-
piled as a 24-bit binary integer. The period that sepa-
rates the two integers may be imagined to always line
up between bit positions 17 and 18. If the address
field of the instruction is 24 bits long, the binary
integer is simply placed in that field. If the address
field is smaller than 24 bits, the 24-bit standard binary
address must be truncated before it is inserted. For a
19-bit address field, the rightmost 5 bits are dropped;
for an 18-bit address field, the rightmost 6 bits are
dropped. Our sample straP bit address, 124.32,
would yield the proper meaning when inserted in a
19 or a 24-bit address field, but would be truncated
to 124.0 for an 18-bit field.

The only restriction on the size of a sTrap bit
address is that it must be able to be expressed in 24
binary bits. If a sTrap bit address is symbolized by

A. B, then B4A+B <22

The following three examples are all legal strap bit
address representations of the same address.

505. 17= 300.337= 0.32337

INTEGER ADDRESSES

An integer, written without a period, may also be used
to specify an address. sTraP also translates an integer
into a standard binary bit address. However, the bit
address equivalent is dependent upon the environment
in which the integer is found. The operation deter-
mines the environment, that is, it determines the
length of the address field. The integer specified is
treated as an integer for that address field, i.e., the
integer is converted to binary and inserted in the
address field with the unit bit placed in the rightmost
bit position of the field.

An integer can be interpreted by the programmer to
count in the units that are specified by the length of
the address field. A 24-bit address field specifies bits;
an integer in this field counts bits. A 19-bit field
specifies half words so an integer here counts halt
words. An 18-bit field specifies full words, so an
integer here counts full words.

Consider the following instruction.

C+I, $3, 13

The environment is determined by the operation
c+1 (Add Immediate to Count). This instruction has
an 18-bit address field, so an integer is inserted with
its unit bit in bit 17. This is equivalent to

C+I1, $3, 13.0

and the integer can be considered to count full words.
However, the same integer in the following instruc-

tion V4L, $3, 13

has a different meaning. Here the v+1 instruction has
a 19-bit address, and the integer inserted in this field
is equivalent to 13 half words or location 6, bit posi-
tion 32. This is the same as writing

V+I, $3, 6.32

The use of an integer to express an address requires
special care on the part of the programmer since the
size of the address field determines the interpretation
of the integer. However, the integer is often the most
desirable form of address specification, and simpler to
use than a sTrRaP bit address. One such case is im-
mediate addressing.

LI(BU, 12, §), 1

The Load Immediate instruction above specifies,
through its data description, a 12-bit address field.
The integer address, in this case 1, is inserted as an
integer in this 12-bit field. Thus, the instruction will
be compiled by sTRaP:

+_

24-bit address field —>

000000000001 |

12-bit sub-field

The same Load Immediate instruction could be writ-
ten with a strap bit address specification as follows:

LI(BU, 12, 8), 64.0
The two statements are equivalent, but the one writ-
ten with the integer address is clearly the more de-
sirable from the standpoint of simplicity of coding
and recognition of original meaning when reviewing
the statement at a later date.

PROGRAMMER SYMBOLS

A programmer symbol can be any sequence of 128 or
fewer alphabetic and numeric characters that con-
form to the following conditions:

1. It contains only alphameric characters. This
example

THISISALONGNAME2SHOWTHATSTRAP
NAMESCANBESENTENCES

is a legal programmer symbol. This example
A*B
is not a legal symbol.

2. The first character is specifically alphabetic.
6ALPHABET

is not allowed, but
A123456
is perfectly acceptable.

3. It appears in the name field of a sTrar state-
ment at some point in the program, at which
time it is “defined” and is assigned a value that
is either a standard binary bit address or an
integer.

BEGIN L(BU, 8, 8), Al23456

The symbol BEGIN is assigned a standard binary
bit address which is equal to the value of the
location counter within sTrRap at the time this
Load instruction is encountered in the code. The
sTRAP location counter always contains a 24-bit
standard binary bit address.

In the following case

EIGHT SYN, 8

the symbol ErGuT is assigned the value of the
integer 8 through use of the pseudo operation
Synonym (see Pseudo Operations).

Symbols that name instructions are automatically
assigned data descriptions by strap. Specifically, an
instruction-naming symbol is given a field length
equal to the length of the particular instruction named
(that is either 32 or 64 bits), a byte size of 8 and a
use mode of binary unsigned (Bv).

An integer in a programmer symbolized field is al-
ways converted to binary. An integer is limited in
length to the length of the field in which it is to be
inserted. An integer that cannot be expressed in 24
binary bits cannot be symbolized.

A programmer symbolized field is a field that may
contain programmer symbols or system symbols. Of
the fields shown in the instruction formats previously
illustrated, all may contain programmer symbols ex-
cept the operation field and the mode field of a data
description.

SYSTEM SYMBOLS

System symbols are symbols whose values are fixed in
the compiler. They are identified in programmer sym-
bolized fields by the appearance of the special prefix
character $ (which, as one of the non-alphameric char-
acters, can never appear in a programmer symbol),
followed by seven or fewer alphabetic or numeric
characters. System symbols may appear in arithmetic
expressions in programmer symbolized fields where,
in cases where restrictions apply, they can be con-
sidered the same as numeric entries because their
values are immediately available to the compiler.

All system symbols that represent the addresses of
special registers in storage ($aoc, the All Ones

Section 1 9

Counter) or special bits in storage ($rc, the Lost
Carry indicator) are bit addresses. All others are real
numbers.

The appearance of the $ character alone makes for
a special system symbol that provides a standardized
substitute in place of a name for the current state-
ment. That is, the character $ is a bit address which,
in any particular statement where it appears, func-
tions as if it had been defined by being written in the
name field of that statement. Because it represents
the value of the location counter when the instruction
is encountered by the compiler (if the instruction
actually compiles space in the program), the appear-
ance of the $ as follows:

B, $-2.

means “Branch to the instruction which begins two
full words before this branch instruction.” In another
illustration: B, $+.32

the meaning is “Branch to the next instruction,” effec-
tively a “no operation.”

Another special use of the $ character is to prefix
any operation code in this manner: $op. This directs
the compiler to suppress any error indications that
arise in connection with the compilation of this state-
ment.

STRAP assigns a dds to every system symbol. The
system symbols can be classified in five groups. These
are:

1. Index Register Symbols. The system symbols $0
through $15, or $X0 through $X15, represent index
registers 0 through 15, addresses 16.0 through 31.0 in
STRETCH storage. The advantage of using a system
symbol is that sTrRap always compiles the correct
value, regardless of the size of the field in which the
svmbol is written. Therefore, in the instruction

the index specification involving the system symbol
$5 directs sTraP to correctly compile the binary integer
5 in the 4-bit index subfield. In a similar fashion,
STRAP correctly interprets the system symbol when
used as an address as in

ST(BU),$X5

and compiles the standard binary bit address 21.0 in
the address field of the Store instruction.

2. Special Register Symbols. The names of all the
special registers in the 7030 computer are listed below,
along with the system symbol for addressing each
register, and the bit address assigned to each system
symbol. sTRaP also assigns a data description to each
symbol with a use mode of binary unsigned (Bu), a
byte size of 8 and a field length equal to the length

10 BM 7030

of the register. When a system symbol for a special
register appears in the principal address field of a vrL
instruction, no data description need be explicitly
written out in that instruction.

NAME MNEMONIC BIT ADDRESS
Word number zero $Z 0.0
Interval timer SIT 1.0
Time clock $TC 1.28
Interruption address $IA 2.0
Upper boundary $UB 3.0
Lower boundary $L.B 3.32
Boundary control $BC 3.57
Maintenance bits $MB 4.32
Channel address $CA 5.12
Other CPU $CPU 6.0
Left zeros count $LZC 7.17
All ones count $A0C 7.44
Left half of accumulator SL 8.0
Right half of accumulator $R 9.0
Sign byte $SB 10.0
Indicator register $IND 11.0
Mask $MASK 12. 20
Remainder register $RM 13.0
Factor register $FT 14. 0
Transit register $TR 15.0

A use of the system symbol for the Indicator Register
is illustrated in the following instruction:

L, $IND

No data description need be explicitly written in the
Load instruction because the dds (Bu, 64, 8) has been
attached to the system symbol. This instruction is
thus complied by sTrap to mean, “Load the contents
of the entire 64-bit Indicator Register into the right
half of the accumulator at zero offset.”.

3. Indicator Bit Symbols. The complete list of the
system symbols for the indicator bits are listed in
Appendix A. Each system symbol, when prefaced
with a dollar sign and placed in a programmer sym-
bolized field, will represent the correct bit position in
word 11 of the indicator named.

The system symbols for the indicator bits are also
used as part of the mnemonic for the Branch on In-
dicator instruction. In this usage, however, the $ is
not required. The mnemonic for this instruction is
composed of the B (representing Branch) followed
by the system symbol for the indicator being inter-
rogated minus the dollar sign. Thus, BxH is the opera-
tion mnemonic for Branch on Index High, while Bxvez
is the operation mnemonic for the 7030 instruction
Branch on Index Value Greater Than Zero.

All the system symbols in classes 1, 2, and 3 are

bit addresses and are assigned standard data descrip-
tions with mode Bu, byte size 8 and a field length
equal to the length of the particular register or bit.

4. Input-Output Address Symbols. Since the actual
numeric addresses which are to identify particular
1/0 units and channels may be chosen arbitrarily, sys-
tem symbols that represent integers are provided by
sTRAP for use in addressing 1/0 equipment. The nu-
meric values of symbols in this class, unlike all other
system symbols, may vary from one installation to an-
other in order that rbR, for example, may represent the
card reader channel address independently of what
that address, in any particular installation, may be.
The 1/0 system symbols are:

SYMBOL MEANING

$PCH Punch (Channel Address)

$SPRT Printer (Channel Address)

SRDR Reader (Channel Address)

SDISK Disk Unit (Channel Address)
Note: The arcs of a disk may
be addressed by any legal
symbolic integer expression
that is evaluated by sTraP
modulo 2% to assure a valid
arc address.

$CNSL Console (Channel or Unit
Address)

$TCO, TCl, ... TCK Tape channels0,1, 2, ...K

If more than one punch, printer, console or any
other input-output unit is attached to the computer,
the same numbering system used in tape channel
addresses should be adopted where $prRT=$PRT0 for
example; thus one may have $prrl, $pPRT2, etc.

Thus, a programmer may write the following Write
operation:

W, $PRT, CONTROL WORDI1

sTraP will compile the correct 19-bit channel address
for the printer at that installation.

5. Symbols For Mathematical Constants. Five math-
ematical constants, useful in many scientific and engi-
neering problems, can be represented by system sym-
bols. These system symbols and their values are:

SYMBOL MATHEMATICAL CONSTANT
SE e
$M log.e
$N log.2
$PI T
$INF ®© (infinity)

These five symbols may only be used in a data field of
a Data Definition pseudo operation where normalized
floating point (N) has been specified in the use mode
field of the dds. The following data definition pseudo

op CONSTANT DD(N), $PI

assigns the floating point equivalent of the quantity =
to the symbol consTanT. When coNsTANT is used in
the address of a sTRETCH instruction such as

+, CONSTANT

the normalized floating point data description is in-
voked and the full word floating point equivalent of
= is added into the accumulator.

Index modification of an address field is performed
in standard fashion. The index register to be used is
specified as a sub-field of the address field. The index
field is a 4-bit field, enclosed in parentheses, immedi-
ately following the address expression. sTrAP bit ad-
dresses, system symbols and programmer symbols that
are defined as bit addresses are all legal entries in an
index field.

In the case of a bit address entry, the period is as-
sumed to line up at the right end of the field. Thus,
when converted to binary, the rightmost six bits of the
entry are truncated, as are the leftmost 14 bits.

System symbols are the simplest to use and act as if
a bit address had been entered. All of the following
entries are equivalent in an index subfied of an ad-

dress: 432 =4.0=%$4=20.0=52.0

and all are translated by sTraP to mean index regis-
ter 4.

If an integer is written in the index field, the mean-
ing is entirely different. The integer tells sTrap that
the symbol in the address field proper has been de-
fined as an array and the integer is addressing an ele-
ment in that array. (See Data Reservation Pseudo
Operation.)

In the case of progressive indexing in a vFL instruc-
tion, it is the index register specified within the ad-
dress field that is stepped by the immediate address.

Offset Field

Offset fields are similar in content to address fields.
STRAP bit addresses, integers, system symbols and pro-
grammer symbols are all acceptable entries in an offset
field.

An offset field has a fixed length of 7 bits. Probably
the most common entry for an offset specification is
an integer. An integer specifies a count of the number
of bits to offset a field from the right end of the ac-
cumulator. An integer entry is converted to a 24-bit

Section 1 11

binary integer by sTraP and the rightmost 7 bits are
placed in the offset field. If a programmer writes the
statement

L(BU, 64), PAYROLLDEDUCTION, 5

STRAP assembles the instruction to mean load the 64-
bit quantity found at symbolic location PAYROLLDE-
pucTION into the accumulator offset 5 bits from the
right end. Since the offset field can contain a maxi-
mum of 7 binary bits, the programmer can specify any
offset from zero to 127. When specifying offsets of
greater than 64 bits or one full word, it may be more
convenient to begin counting bits from the left end
of the double length accumulator. This can be easily
done by using negative offsets. The offset field is
unsigned, hence straP translates any negative entry
to the two’s complement. The 128 bits of the accumu-
lator, proceeding from left to right, are referred to
by the offsets 127, 126 . . . 0 or, alternatively, —1, —2,
—3...-128.

If an offset specification is a parameter in a program
that may vary from time to time, it is helpful to use
a programmer symbol in place of an integer.

INDENT SYN, 4

(intervening instructions)

ST(BU, 24), WORD1, INDENT
1+ (BU,24),WORD2, INDENT
L(BU, 24), WORDSUM, INDENT

The programmer symbol INDENT in the example above,
can be defined as an integer early in the program, in
this case by the pseudo operation Synonym. If the
programmer changes the sy~ card that defines INDENT

to INDENT SYN, 5

and reassembles, all offsets specified by this particu-
lar symbol are changed in value to 5 as well.

In the case of the offset field, care must be exer-
cised when using sTrRaP bit addresses, not integers as
in address fields. The reason for this is twofold.
First, the length of the offset field is fixed, so an in-
teger always has the same meaning. The bit address
is also handled according to a fixed rule, but the mean-
ing is not immediately clear from its appearance in
the instruction. Second, a bit address is not the natu-
ral means of expressing an offset, and it unnecessarily
complicates the specification. A sTraP bit address
here will be converted to a 24-bit binary integer and
the rightmost 7 bits will be inserted in the offset field
while the leftmost 17 bits are truncated. Any sTrap
bit address expression that specifies an address above
1.63 will overflow the offset field when converted to
binary and only the rightmost 7 bits will participate.
This occurrence can yield unexpected results.

The likelihood of using a system symbol to specify

12 BM 7030

an offset is even more remote, but legal nonetheless.
As previously stated, a system symbol is equivalent
to a numeric entry; specifying an offset by means of
a system symbol that is defined as a bit address, such
as $IT in this example:

+(BU, 32), THISIS, $IT

is the same as writing 1.0 or specifying an offset of
64 bits.

Index register specification is treated in the same
fashion as an index modifier in an address field, ex-
cept that the modification can affect the field length
and byte size as well as the offset. The sTRaP instruc-
tion format for vrrL statements including data descrip-
tion as seen below

OP(M, FL, BS), A..(I), OF,(I")
does not hint at the relationship between field length,

byte size and offset. The internal 7030 vFL instruc-
tion format,

|
Address 1000 | 1 F P | Length | oBs | ofiee | S| | op1 | ©
| |

0 17 24 28 32 35 41 44 31 60 63

the format into which a sTRAP vFL instruction is trans-
lated, does show that the offset field is adjacent to the
field length and byte size fields. The index modifier
in the second half word treats all three fields together
as one 16-bit field. For the modification process, the
two fields are aligned as follows:

FL | BS | OFFSET | Instruction

18 bits |6 bits| Index Value Field

If the magnitude of the contents of the value field of
the index register does not exceed 2°, only the offset
field can be modified. If the value field does exceed
2°, the byte size may be affected (by a carry, for ex-
ample). The diagram above shows how larger value
fields will modify byte size and field length. This 7030
feature can provide very flexible and elaborate index-
ing of certain vFL instruction fields.

Pseudo Operations

Pseudo operations are operations created by sTRap-u
to provide a simplified means of performing some spe-
cial functions that are required in writing most pro-

grams. Definition of data, definition of symbols and
setting a program origin are three examples of func-
tions performed by pseudo operations.

Pseudo operations are not 7030 instructions; they
do not exist in 7030 circuitry, but they resemble 7030
instructions in format. The general format for sTRAP-11
pseudo operations is

NAME POP(dds), A(I)

The pseudo operation code field appears first in the
statement. The operation mnemonic is symbolized by
por. A complete list of mnemonics is given in Ap-
pendix B. A dds, if appropriate, appears as a sub-field
of the operation field and is enclosed in parentheses.

The address field may contain a wide variety of en-
tries that are not always addresses in the strict sense
of the word. Some addresses can include index reg-
ister specifications.

1. PRNID—Print ID
PRNID, XXXXXXXXXXXXX...XX

Normally, the first statement to appear in a program
is the prxID pseudo operation. The appearance of this
statement instructs the assembly program to write im-
mediately the entire contents of this card block on the
output tape. PRNID provides a means of heading the
assembly listing with such information as the prob-
lem name, programmer, and so on. A typical PrRND
statement might be

PRNID, BCD CONVERSION ROUTINE BY JOE ZILCH

If a prNID appears in the middle of a program, it
will appear both at the beginning of the listing and
at the point where it actually appeared in the code.
When several PrRNID statements appear in one pro-
gram, they are listed sequentially in one group at the
top of the listing and each one is listed in its appro-
priate place in the program. The practice of writing
all PRNID statements at the beginning of the listing
is useful, for example, when a program being assem-
bled is composed of many subroutines, and each sub-
routine begins with a pRNID statement. The PRNID’s,
when they appear at the top of the listing, will form
an index of the names of the subroutines included in
that assembly.

A very long message may be written following a
PRNID; if the message overflows the card, a continua-
tion card or cards may be used. An alternate spelling
of the mnemonic, PRINID, is also accepted by sTrRap-1.

2. PUNID—Punch ID
PUNID, XXXXXXXX
puxnip fulfills the same basic function as PRNID ex-

cept that the identifying information is punched on
the binary cards produced by strap-11. The assembly

program takes the first 8 characters following the
comma that terminates the operation field, and
punches them in columns 73-80 of every binary card
produced as output of that assembly. The following
statement
PUNID, IBMSINE1

causes the characters 1BMSINE]L to be punched in the
last 8 columns of each binary card produced in that
assembly.

The identifying characters represented by x’s above
may be any legal card code characters except the
; and '. Every assembly must contain a PUNID state-
ment or the binary cards will contain no identifica-
tion other than the time clock setting as described
under strap-11 Punched Output.

3. SLC—Set Location Counter
A SILC, Y

In normal assembly operations, cards are read in
sequence and the number of bits needed tor each in-
struction or piece of data is added to a location counter
maintained by sTrRaP to aid in the assigning of ad-
dresses to instructions and data. A principle of round-
ing upward is followed, guaranteeing that an instruc-
tion, value, count or refill will begin exactly at a halt-
word address, and that index words, control words
and floating point data will begin only at full word
addresses.

The sLc pseudo operation provides a means of set-
ting the assembly location counter to any value at any
point in the code, thus giving the programmer com-
plete control over the location of his code. sLc resets
the location counter to the value of the bit address y.
The next instruction will be compiled at this address,
subject only to rounding upwards conventions. Fol-
lowing an src, the location counter is advanced once
more in normal fashion until another sLc card resets it.

Y must be a bit address expression, either numeric
or symbolic, whose value is positive. If an integer is
specified in this field, it is treated as an integer in a
24-bit address field, i.e., it is interpreted as specitying
a number of bits. Subject to this interpretation, it is
evaluated correctly, but an error indication is given
on the listing.

Any symbol in the name field will be effectively
ignored, but will be entered in the symbol table.

If the following statement appeared in a program:

SLC, 100.32

it would cause the sTrRAP location counter to be reset
to 100.32. If the instruction following the sLc were a
VFL instruction, it would be compiled at 100.32. If
it were a floating point data word, it would be com-
piled at 10L.0.

Section 1 13

4. XW—Index Word
XW, VALUE, COUNT, REFILL, FLAG

The location counter is rounded up to the next full
word if it is not already at a full word address. The
contents of the four fields following the operation are
compiled in an index word format. The quantity rep-
resented by the symbol VALUE is compiled in bits 0-24
of the full word compiled. count is compiled in bits
28-45 of this word and ReFILL is compiled in bits 46-
63. rrac denotes the index word field composed of
bits 25, 26 and 27. An expression in the flag field of
an xw statement is therefore evaluated modulo 22,

If the following statement were encountered by
STRAP in a program:

XW, 1001.50, TOTAL, XWORD?2, 4

a full word would be compiled in the format of an
index word with 1001.50 in the value field, the quan-
tity symbolized by the programmer symbol ToTaL in
the count field and the quantity symbolized by xworp2
in the refill field, all converted to binary of course.
The 4 is interpreted as the octal integer 4 in the three
bit flag field, which turns on the index flag bit in the
index word compiled.

Note: Bit 24, the 25th bit in the word compiled, is as-
sumed to be the sign bit for the value field. All the
other fields are unsigned; a negative sign is interp-
reted in two’s complement form in the usual way.

5. VF—Value Field
VF, VALUE

The location counter is rounded to the nearest half-
word if it is not already at a half-word address. The
quantity symbolized by vaLuE is compiled in bits 0-24
of the next half word (24 bits plus sign). The loca-
tion counter stands at bit 25 at the end of the opera-
tion.

6. CF—Count Field
CF, COUNT
The location counter is rounded to the next half-
word if necessary. The quantity symbolized by count
is complied as an 18 bit integer in bits 0-17. The lo-

cation counter stands at bit 18 at the end of the opera-
tion.

7. RF—Refill Field
RF, REFILL

The pseudo operation is treated in exactly the same
fashion as cr, except the word refill should be sub-
stituted for the word count.

Note: The last four pseudo operations defined above

14 BM 7030

are given data descriptions by the compiler, and,
therefore, cannot be written by the programmer.
Specifically, the index words or elements created by
these orders have had the following data descrip-
tions affixed automatically, and cannot be overruled
in the pseudo operation statement:

Operation Data Description
Xw (BU)

VF (B, 25)

CF or RF (BU, 18)

8. CW—Control Word
CW(OP), ADDRESS, COUNT, CHAIN ADDRESS

The pseudo operation cw is similar in function to
xw. cw creates a full word in storage, but in the
format of an 1/0 control word. The location counter
is first rounded up to a full word address unless it is
already at a full word address. The quantity repre-
sented by the symbol appress is compiled in the first
18 bits of the full word created. counT is compiled in
bits 28-45 and cHAIN ADDRESs is compiled in 46-63.

In a control word the flag bits (bits 25-27) are the
chain flag, the multiple flag and the skip flag, in that
order. Each of these bits may be set to zero or one
and each of the combinations of the setting of these
bits causes certain variations in reading and writing
operations. sTRap-i1 defines 8 pseudo operations to
specify all combinations of the three flag bits. The
pseudo operation names indicate the type of 1/0 op-
eration they specify. These pseudo operation mne-
monics are written as a secondary operation in the
cw statement, i.e., the mnemonics are written in par-
entheses immediately following cw. The 8 secondary
pseudo operations are:

Chain Multiple Skip
Bit Bit Flag

CR Count Within Record” 0 0 0
CCR “Chain Counts Within Record” 1 0 0
CD “Count Disregarding Record” 0 1 0
CDSC “Count Disregarding Record,

Skip and Chain” 1 1 0
SCR “Skip, Count Within Record” 0 0 1
SCCR “Skip, Chain Counts Within

Record” 1 0 1
SCD “Skip, Count, Disregarding

Record” 0 1 1
SCDSC “Skip, Count, Disregarding

Record, Skip and Chain” 1 1 1

cw is assigned a data description of (Bu, 64, 8).

9. DD—Data Definition
DD(dds), D, D', D', ...

The Data Definition pseudo operation provides the
programmer with the basic method of entering and

defining data. The dds in the operation field is iden-
tical in form and content to that previously described
when writing a 7030 instruction, and must be written
in every pp statement. Thus, a data description may
be attached to a symbol at the point of definition of
the symbol, or it may be written as a part of an in-
struction referring to the symbol.

When the data description is given by a pp state-
ment (or other data defining pseudo operation), this
description is invoked whenever the symbol appear-
ing in the name field of the defining pseudo operation
is used in the principal address field of a 7030 in-
struction. A description set down at the point of defi-
nition of the symbol is overruled by a data description
appearing in the 7030 instruction that references the
symbol. Whenever overruling occurs, the entire data
description specified in the defining pseudo operation
is overruled. Overruling applies only to the instruction
at hand. Thus, the 7030 instruction

+(BU), SOMEMORE

explicitly specifies a data description of binary un-
signed, field length 64 and byte size 8 (field length
and byte size derived from null field conventions) to
be compiled with this statement, regardless of the data
description written in the statement where sOMEMORE
was defined.

The address fields b, o', etc. shown in the general
format above represent separate numeric entries which
the programmer wishes defined by strap and con-
verted to one of several 7030 internal forms. Several
numeric entries may be written in one pp statement,
separated by commas. b fields are signed fields (if
use mode, B, b, N or U is given, of course). If no
sign is written, the positive sign is assumed. The
fields are converted and allocated storage sequentially
as separate pieces of data, each having the data de-
scription specified. If too many p fields are written
to fit on one card, continuation cards may be used
to extend the statement field of the pp pseudo opera-
tion. If a symbol appears in the name field, it is at-
tached only to the first piece of data compiled. When
one wishes to name each of the entries, each must be
presented in a separate pp statement with its own
name.

Programmer symbols may not appear in the address
field of a pp statement. (Pseudo operations vr or EXT
may be used for this purpose.) It will be seen later
that various letters have fixed meanings when they
appear in a p field that are not subject to program-
mer control. Bit addresses, similarly, are not permitted
in a p field. sTrap-mr always assumes a numeric entry
is written in the decimal radix, whether it is encoun-
tered in a pseudo operation or a 7030 statement. In

a pp statement then, the programmer need specity
only the form to which he wishes his data entry con-
verted. This is accomplished by the use mode in the
data description. All seven use modes—N, U, B, BU, D,
pu, and p are all acceptable in a pp statement.

If use mode N is specified in a pp statement, as in

FLOATIT DD(N), 1000

the data entry 1000 is converted to its normalized float-
ing point equivalent (in sTrap format) by sTRaP-
and placed in the full word storage location hence-
forth symbolically referred to as rLoaTiT. Note that bp
conforms to the normal sTrap rounding upward con-
ventions. If use mode u had been specified in the dds,
1000 would have been converted to floating point in
the same fashion, but not normalized.

Use mode B converts the numeric entry from deci-
mal to binary. The sign byte is the low order byte of
the converted number, equal in size to the byte size
specified in the dds. The converted entry is placed in
a field equal in length to the number of bits specitied
in the field length of the dds. If the field length speci-
fies a field that is too small to contain the converted
entry, the number is inserted in the field with the unit
position aligned with the rightmost bit. Any high
order bits that will not fit in the field are discarded.
No rounding up of the location counter takes place.
The field length specified is added to the current set-
ting of the location counter and the numeric entry is
converted and inserted in this field.

Use mode BU is essentially the same as B except that
the entry is considered to be unsigned, and no sign
byte is created. The entry is converted and inserted
in a field of the length specified in the dds. The byte
size specified has no effect on the conversion since an
unsigned operation has been called for and no sign
byte is compiled.

When use mode b is specified, a character-by-char-
acter type of conversion is called for, wherein each
decimal digit in the numeric entry is converted to the
four bit binary coded decimal form. If the byte size
specified in the dds is greater than 4, high order
zeros are added. If the byte size requested is less than
4, truncation occurs.

If use mode pu is specified, the conversion process is
the same. However, no sign byte is compiled as none
is required for the unsigned decimal mode.

To illustrate the differences between the binary and
decimal modes, consider the following sTRAP state-
ments and the resulting fields compiled in storage:

STRAP Statement Field Compiled

DD(BU, 4, 1), 1 0001
DD(DU, 12, 4),12 000000010010

Section 1 15

The p mode references the dds in another statement
where the use mode must be N, u, B, BU, D or bu. Once
the reference is made, the conversion performed by
sTRAP proceeds according to the rules already out-
lined.

To enter alphabetic information by means of a pp
statement, a special entry mode subfield must be writ-
ten, enclosed in parentheses immediately before the
operation code as shown in this general format:

(EM)DD(dds), D

There are 4 entry modes available for use in enter-
ing alphabetic or alphanumeric messages. Each entry
mode serves two functions; it tells stTrap that a mes-
sage is being entered, and it describes the character
set that is being used and prescribes the type of con-
version that is required. When alphabetic informa-
tion is specified, only one entry per pp statement is
permitted.

(1) Entry mode a signals the appearance of a mes-
sage composed only of characters drawn from the
standard 1BM BCD character set. If byte size 6 is
specified in the data description, the characters
are converted to the 6-bit 1M tape Bcp format.
If byte size 8 is given, 2 leading zeros are added
to each 6-bit byte during the conversion process.

(2) 10s tells sTraP that the characters in the message
are drawn from the set appropriate to the 7030
console typewriter, or Inquiry Station, and are
to be converted to their 8-bit binary equivalents.

(3) P specifies that each character in the source lan-
guage is one of the 120 members of the extended
character set known as Ecs 120. sTRAP converts
each character to its 8-bit equivalent.

(4) cc is the mnemonic for card code, and delineates
that set of characters known as mM card code
characters. These characters are converted to 12-
bit bytes, where each byte reflects the multiple
punch actually read in the appropriate card col-
umn.

In the data description, the importance of the use
mode and field length are deferred in that they can-
not affect the conversion of the alphabetic characters
but they do play an active role at a later time when
another 7030 instruction refers to this alphabetic data
and does not overrule the implied dds. The byte size,
however, does affect the conversion of A characters but
is ignored when any other entry mode is written.

If the following statement were encountered by
STRAP-II:

(AQ)DD(BU, 60, 6), DONT PANIC Q

the compiler interprets the A entry mode to mean that
the alphabetic data entry on this card is composed of

16 iBM 7030

BCD characters which are to be converted to 1By tape
BcD format. The second character in the entry mode
field is known as the end-of-statement character. Its
presence instructs sTraP to perform the desired con-
version until this character is reached in the message.
The end-of-statement character may be any legal card
code character except), ' (8-4), ;(11-0), and blank.
This character is not compiled. Blanks that appear in
the message are retained, and converted and stored
correctly. A blank between the comma that marks the
end of the operation field and the first alphabetic
character is converted.

If the byte size specified is greater than 6, leading
zeros are supplied by strap. If the byte size is less
than 6, leading bits are truncated.

If 10s entry mode is specified, the conversion process
is quite similar except that the characters are con-
verted to the 8-bit inquiry station code. When the
byte size specified is greater than 8, leading zeros are
inserted; when the byte size is less than 8§, leading bits
are truncated. Note that in a pp statement, the byte
size of converted characters may range trom one
through 12, as specified in the dds. However, the
byte size in a 7030 statement may range from 1
through 8 because the byte size field is restricted to
3 bits in length. Therefore, byte size is treated modulo
8 by sTRAP.

10. DDI—Data Definition Immediate
ANYNAME DDI(dds), D

The ppr pseudo operation performs the same basic
function as pp, that is, it provides the mechanism for
entering and converting data. In the case of ppr, the
data in question is specifically intended for use as an
immediate operand in a 7030 immediate instruction.

More specifically, ppr is the only convenient method
for compiling decimal information in the address field
of an immediate instruction. Data in an immediate
address is always converted to binary, never to deci-
mal, regardless of the use mode specified in the data
description.

The data entry in a ppr statement is converted ac-
cording to the use mode specified in the dds. The
resulting field, which cannot exceed 24 bits in length
(if it does, high order bits are lost), is inserted, right
justified, in a 24 bit field in the sTraP symbol table.
The field length specified in the dds is ignored at this
point. When a 7030 immediate operation references
this data through the symbol that appears as the name
of the ppr statement, a field of the length specified in
the implied dds or the overruling dds (if one is given)
is extracted from the right end of the appropriate sym-
bol table entry and is inserted left justified in the in-
struction address field.

In the following example,

IDATA DDI(DU, 4, 4), 4
LI, IDATA

the converted field created in the symbol table is
000000000000000000000100

while the 24-bit address field of the Load Immediate
instruction will be compiled as follows:

010000000000000000000000

If the Load Immediate instruction had contained an
overruling dds, such as

LI(DU, 8, 4), IDATA
the address field, after compilation would contain the

following: 43001000000000000000000

If a signed use mode is given, such as
LI(D, 8, 4), -IDATA
then the symbol table entry would be
000000000000000000000100

and the instruction address field would be compiled as
follows: 010010000000000000000000

If the length of the converted data entry is greater
than the field length specified, high order bits (from
the left) are truncated before insertion into the ad-
dress field. Only the decimal or binary use modes,
and the P mode of course, are legal in a pp1 statement.
The floating point use modes are not appropriate in
immediate addressing, and hence are not acceptable.
Any entry mode that is legal in a pp statement, includ-
ing the alphabetic entry mode, is accepted in a ppr
statement as well. If the field length is null in the
specified dds, 24 is assumed by sTRAP-I.

In summation, o1 is purely definitive in character;
it compiles no space or binary output in storage. Data
is converted and entered only in the symbol table.
Data so defined that is referenced symbolically by a
7030 instruction is also inserted in the address field of
that instruction.

11. SYN—Synonym
ANYNAME SYN(dds), Y

The pseudo operation sy~ provides another mechan-
ism for defining a symbol in terms of an integer, a bit
address or another symbol which is eventually defined
as an integer or bit address.

When one writes

A SYN, 6

the meaning of the newly defined symbol 4 is that
whenever A is written in the program, the effect is
the same as if 6 had been written. The meaning of
syx is always one of exact substitution.

The entry in the address field of the syn statement
is converted to binary and inserted right justified in
a 24-bit field in the symbol table. In this process, syn
is similar to ppr, in that neither pseudo operation com-
piles space in storage. sy~ statements may have their
own data description; any dds that appears in a syN
is attached to the symbol in the name field, but in no
way affects the conversion of the entry in the address
field. When a 7030 instruction references the symbolic
name of a syN statement, the dds attached to that
symbol is invoked as in pp. If no dds is given in a sy~
statement, none is attached to the symbolic name.
Then a dds must be explicitly written in a 7030 in-
struction that references a symbol defined by such a
SYN statement.

Index registers may be attached to the expression
appearing in the address field of a syx statement.
Thus, in the syx statement:

A SYN, B($3)

the index register specification it attached to the ad-
dress expression, so that, the 7030 instruction
+(N), A
is synonymous with
+(N), B($3)

If an index register is specified in the principal ad-
dress field of the instruction proper, it overrules any
other index register specification for that instruction
only. In the above example, if the normalized float-
ing point add instruction had been written

+(N), A(%6)
this would be synonymous with
+(N), B($6)

A circular definition may arise through the use of
a sequence of syx cards, as in the following example:
A SYN, B
B SYN, C
C SYN, A

All symbols in such a sequence are assigned a value

of 0 by sTRAP.

12. DR—Data Reservation,
and Set to Zero

A DR(dds), N

A DR reserves storage space for data. The pseudo
operation causes N fields of the kind described in the
data description to be reserved; that is, the location
counter is skipped forward a quantity in bits equal
to the product of N and the field length specified in
the dds. Any symbol A appearing in the name field
of a pr statement is attached to the first field reserved,
as is the data description. Thereafter, whenever a ap-
pears as the principal address in a 7030 instruction,

DRZ-Data Reservation

Section I 17

this dds is invoked in the same manner as with pp and
pp1 statements. Thus:
SAVE DR(BU, 8§, 8), 10

reserves 10 8-bit fields (skips the location counter
forward 80 bits). The dds (Bu, 8, 8) is attached to
SAVE. SAVE is attached to the first 8-bit field reserved.

When either one of the floating point use modes is
given in the data description, the floating point data
block being reserved is forced to begin at a tull word
address. sTtrap will automatically round the location
counter up to the next full word address to accomplish
this, thereby insuring that each floating point data
word will begin at a full word address.

If no dds is given, the symbol appearing in the
name field is assigned the normalized floating point
use mode by STRaP.

By appending a z to the prR mnemonic, a slightly
different pseudo operation, Data Reservation and Set
to Zero, is formed. This operation is identical to DR,
but it performs the additional function of setting all
reserved fields to zero. pr reserves fields but makes no
attempt to clear them to zero.

bR can also define arrays. (See Section II).

13. END—End
END, Y

A card containing the pseudo operation code END
signals the end of an assembly. Therefore, an ExDp
card must appear as the last card of every symbolic
program deck. When STRAP recognizes an END card,
it punches out a branch card with an address y. This
branch card is included as the last card of the binary
output deck produced by strap. When the binary
deck is loaded, the branch card causes control to be
transferred to the instruction located at v.

Since the instruction located at y will be the first
instruction in the program to be executed, y usually
specifies the location of the first instruction in a pro-
gram. This use of Exp is illustrated in the following

example. SLC, 1050.

L(BU, 24), DATA
(intervening code)
END, BEGIN

Of course, the END statement does not have to address
the first instruction in a program. The programmer is
free to select any instruction he wishes to be executed
first. If the Exp address is a programmer symbol,
sTRAP correctly substitutes the sTrap binary bit ad-
dress equivalent. If the address is a numeric entry,
the programmer is cautioned that the address follows
the rules of any 24-bit address field. An integer writ-
ten in this field is interpreted as a number of bits.
A bit address will be compiled correctly, so care must

BEGIN

18 mBM 7030

be taken to include the period unless an integer ex-
pression is specifically intended.

Any symbol appearing in the name field is eftec-
tively ignored by strap, but the symbol is placed in
the symbol table.

STRAP-II Output Listing

Basically, the output listing produced by sTrap-11 con-
tains two types of information. On the right half of
the page, each sTRaP statement is reproduced as it
was punched on the symbolic input card. Thus, each
line of the listing represents one symbolic card. On
the left half of the page, the location assigned each
statement is displayed in octal, followed by an octal-
hex representation of the compiled information. A
sample listing appears in Figure 3.

The octal-hex representation is one which, as the
name implies, uses two different radices to represent
each half-word instruction compiled by strap-11. The
first 24 bits of the half word are displayed in octal,
with a period supplied between the sixth and seventh
octal character (between the 18th and 19th bits in
binary) to facilitate reading strap bit addresses. An
economy can be effected by representing the last 8
binary bits of the half-word by 2 hexadecimal charac-
ters. (Any 4-bit binary integer, that is any number
from 0-15,,, can be represented by one of the hexa-
decimal characters 0-9, a-r. Thus,

0001, =1, 1010, = Ay,
1001, = 9, 1111, =Fy,

The subscript 2 refers to the binary radix, while 16
refers to hexademical.) If a full word instruction has
been compiled, two half-word octal-hex expressions
are used.

The octal-hex notation is used only for displaying
compiled instructions. At least four other print for-
mats are available:

1. Floating Point. When a Data Definition state-
ment with a floating point use mode is specified,
the compiled data entry is printed in octal but
it is separated into the components of the 7030
floating point format- exponent, exponent sign,
fraction, fraction sign and data flags. See lines
14 and 15 in Figure 3.

2. Index Word. When the xw pseudo operation is
employed to create storage elements in the for-
mat of 7030 index words, the printed display
of the compiled information is clearly divided
into the four fields comprising the index word-
value field plus sign, index flag and two un-
used bits, count field and refill field. See line 17
in Figure 3.

1 uonoeg

61

LOCATION

TIME CLOCK

THIS ASSEMBLY REQUIRED

2= 017777.00+
3~ 000100.00
4= 000100.40
5- 000101.40
6— 000102.40
7- 000103,00
8- 000103.40
8- 000104.00
10- 000104.40
11- 000105.40
12-
13- 000106.40
14— 000107.00
15- 000110.00
16= 000111.00
17— 000112.00
18- 000113.0
19- 000113.20
20—~ 000113.34
21-
22— 000113.64
23—
24— 000114.14
Ficure 3.

011000101

BINARY OUTPUT
000077.00 LOWER MEMORY BOUND
000115.00 UPPER MEMORY BOUND

1- 000100.00

+00000000
000112.16 10
000113.20 80 000000.20 50
000000.10 87 204000.20 DO
000101.70 40
000107.00 60
000110.,00 20
000111.00 EO
000113.34 80 030000.20 50
000113.64 80 030000.,20 DO
017777.10 00
0007+ ©6777700000000000 +000
0022+ 5453370000000000 +TUV
000001.00
000113.00+ 000 000004 000000
000000.20
5703
00067777
000000, 30
000100.00

PAGE
NAME

NEXT
ABLE

CHARLIE

DOG

FOX

INDEX
ZEBRA
BAKER
SOME VERY

00000032 SECONDS

STATEMENT

SLC,64.

SYN, (8)17777.0

LX,7, INDEX

L(BU),BAKER
ST(BU, 4) (V+IC), .8($7)
BZXCZ,CHARLIE

L(N),DOG

+(N),DOG+1.

ST(N),FOX

—LOAD INDEX

L(BU,24),SOME VERY LONG NAME
ST(BU,24),SOME OTHER LONG NAME
WILL CARRY OVER TO THE NEXT LINE

B,NEXT

DD(N),28671X7,183007S7

DR(BU)Y, (1)
XW, ZEBRA, 4

DR(BU, 4), (4)
(8)DD(BU,12),5703

LONG NAME

DD(BU,24),28671
SOME OTHER LONG NAME
DR(BU,24), (1)

END, ABLE

~TESTING LONG COMMENTS THAT

3. Octal. Binary signed and unsigned data com-
piled via a pp statement are printed on the out-
put listing in a straight octal format. See lines
19 or 20 in Figure 3.

4. Decimal. A decimal use mode in a pp state-
ment cause the compiled data to be displayed in
decimal.

Pseudo operations that do not cause any binary in-
formation to be compiled give rise to certain unique
printing formats. pr compiles no binary information,
so STRAP prints the number of words and bits reserved
by the pseudo-operation as an octal bit address. sy,
on the other hand, can define a symbol in terms ot
either an integer value or a sTraP bit address value.
When the symbol is defined as a bit address, an octal
bit address equivalent is printed in the column where
the location counter setting is usually displayed. If
the symbol is defined as an integer, a straight octal
representation of the converted integer is printed
where all other compiled statements and data are
shown. If the pseudo operation sLc is used, the con-
tents of the location counter resulting from the ap-
pearance of the sLc are displayed in the usual column
as an octal bit address.

Some additional information is supplied on the list-
ing which will prove helptul to the programmer. The
first item to appear on each assembly listing is a binary
representation of the 7030 internal time clock when
the assembly began. The time clock can be used for
identification purposes. The time required to complete
the assembly is displayed in seconds as the last item
printed on the listing. Headings are also given over
each column of information to clarify where Loca-
tion, Binary Output, Name and Statement appear.

Also, at the beginning of the listing, four lists of
symbols are supplied by strap. The first list is a tabu-
lation of those programmer symbols that were not de-
fined by the programmer, along with the definitions
supplied by strap. The second list contains all pro-
grammer symbols that are defined by the program-
mer but are never referred to or used. The third and
fourth lists contain those symbols that are multiply
defined with contradictions and pseudo defined.

Immediately following the column headings, upper
and lower storage bounds are printed as octal bit ad-
dresses. The boundaries for each program are de-
termined by straP in the following way—the lower
memory bound is the address of the full word in stor-
age immediately preceding the first word used by the
program, while the upper memory bound is the ad-
dress of the full word in storage that immediately fol-
lows the last word used by the program.

20 M 7030

The leftmost column on the sTrRap-1t listing contains
line numbers—the printed lines on each page are num-
bered sequentially, beginning with 1. Each page is
also numbered, and this number appears at the top of
the page, just below the time clock display. sTrap
can easily refer to any line of printed output by page
and line number.

Certain error conditions can be detected by sTrRaP
during compilation. At the completion of an assembly,
then, sTrap can list error messages and in each mes-
sage reference the statement by page, line number
and field wherein the error occurred. Since many
statements occupy more than one line on the listing
(see lines 11 and 12 on the sample listing), an error
message will reference only the last line occupied by
the statement’s binary output. Consult Appendix D
for a complete list of error messages.

Five other error conditions, all caused by incorrect
definition of programmer symbols, can be detected by
sTRaP and reported on the output listing by means of
error flags. These flags are five or six character sym-
bols that appear on the listing on the line immedi-
ately preceding the first line of the statement that con-
tains the symbol erroncously defined. The five flags
and the meaning of each are:

(1) uxprr. An undefined symbol has been detected.
STRAP has assigned to this symbol the bit address
value of the first full word location following the
highest full word used by the program in which
this symbol appears. If several symbols are un-
defined, they are assigned sequential full word lo-
cations from this starting point, in the order in
which they are encountered by sTrap.

(2) QuesT. A multiply defined symbol has been en-
countered. However, the definitions are not con-
tradictory, that is, two or more definitions of the
same programmer symbol have been found and
all definitions assign the identical value to the
symbol. This situation could occur in this se-
quence of instructions:

SLC, 1000.0

SYMBOL LI, ANOTHERSYMBOL
+I, STILLANOTHER

SYMBOL SYN, 1000.0

STRAP accepts the definition as legal and does
assign the specified value. The appearance of the
flag is to warn the programmer of the unneces-
sary multiple definition.

(3) murtr. This flag signals a more serious case of
multiple definition where the definitions are con-
tradictory. If the following two statements were

(4)

(3)

found in a program

A SYN, 100.0

A SYN, 100.32
the amurTr error flag would appear on the output
listing on the line immediately preceding the sec-
ond syx statement. When contradictory defini-
tions occur, sTRAP assigns the first value encoun-
tered and discards all subsequent definitions.

psEUDO. Pseudo definitions are often called circu-
lar definitions and are best illustrated by the illus-
trations below.

A SYN, B

B SYN, A+5

STRAP-II assigns a value of zero to A and a value
of 5 to B.

CONTAG. A contagious error occurs wherever a
programmer symbol is defined in terms of another
programmer symbol which has been erroneously
defined in one of the four ways described above.
In the following case
SLC, 500.0
A SYN, 1000.0
A SYN, 500.0
B SYN, A
L(N), B
+(N), A

murtt flag would appear on the listing on the line
immediately preceding the Add statement, and the
contAc flag would be found on the line preced-
ing the Load statement. strap would assign the
value 500.0 to A and B.

Because strap-11 has provisions for very long pro-
grammer symbols and continuation cards, the sym-
bolic listing of the contents of the input cards may
extend over two or more lines. If the name of the
statement is too long to fit in the name column, it ex-
tends into the statement column, and the remainder
of the statement is printed on the next line. An illus-
tration of this is found on line 20 and line 21 of the
sample listing. Note that even though the statement
uses two lines, the compiled binary information is
printed on the first line. In another instance, the pro-
grammer may use a continuation card to append a
very long comment to a statement. An example of a
long comment forcing a format change in the listing
is seen on lines 11 and 12 in the sample listing.

The reverse situation occurs when several o fields
are written on one pp card or multiple statements are
written on a card. Then the binary output will be
spread over two or more lines, while the symbolic
duplication of the input card appears on one line.
Lines 14 and 15 illustrate a pp with more than one
data entry.

Section I 21

STRAP Il Punched Output

In addition to printed information, STRAP also punches
column binary cards as part of the output of each as-
sembly. Four types of column binary cards are
punched.

Origin Card. The first card of every binary deck to
be loaded into the 7030 via the standard loader pro-
gram must be an origin card. Basically, the origin
card contains an origin address, a checksum and up
to 23 half-words of data and/or instructions. The
origin address tells the loader where to start loading
the compiled information that appears in column
binary form on the origin card in columns 10 through
72. The origin address is taken from the sLc state-
ment that is normally the first statement in any pro-

gram following the prNID and PUNID pseudo opera-
tions. The checksum permits the loader to check that
the binary information on the card has been correctly
loaded.

The complete format of the origin card is shown
below. In the convention used to number card col-
umns and rows, the first number specifies the card
column—a number ranging from 1 through 80. The
second number, separated from the column number
by a period, is the row number. Here the card is con-
sidered to be divided into 12 rows—the row nearest
the top of the card is row 0 and the row nearest the
bottom of the card is row 11. For example 10.8 means
column 10, row 8.

Card Column and Row Use
1.0-1.11 Code column (origin card—1.9, 1.10, 1.11 punches)
2.0-2.11 Identification column (binary)
3.0-3.11 Sequence number (binary)
4.0-4.11 Checksum
5.0 A control-bit—0 if skipping, 1 if setting to zero
5.1 A control bit—0 if action is before card contents are
loaded, 1 means after card contents are loaded.

5.2-5.11 Primary bit count
6.0-7.11 24-bit origin address
8.0-9.11 Secondary bit count

10.0-10.7 Not used

10.8-71.11 Up to 736 information bits

73.0-80.11 Identification (card code)—ignored by the loader

The additional fields seen in the format have the
following uses:

1. Code column—this is a multiple punch code that
tells the loader the type of card that is being loaded.
For an origin card the code is a punch in 1.9, 1.10 and
1.11.

9. Identification column—12 bits of the 36-bit 7030
time clock ($TC) are punched in column 2 of every
binary card produced by strap-ut to identify each as-
sembly. The setting of the clock at the start of each
assembly is used. Column 2 will be ignored by the
loader.

22 M 7030

3. Sequence number—a binary number computed by
sTRAP to aid the loader in checking the sequence of
cards being loaded. The first card is every deck
punched by straP is given the sequence number 1,
the second is given sequence number 2, etc.

4. Primary bit count—this 10-bit count tells the loader
the number of bits of binary information (columns 10
through 72) that are to be loaded into 7030 storage,
starting at the location specified by the origin. Any
number from 0 to 748 can be specified. Bits not in-
tended to be loaded are ignored by the loader.

5. Secondary bit count—this 24-bit count is inter-

preted by the loader in conjunction with the two con-
trol bits.

Bit3.0 Bit5.1 Meaning of Secondary Bit Count

0 0 Skip n bits before loading card contents

0 1 Skip n bits after loading card contents

1 0 Set n bits to zero before loading card
contents

1 1 Set n bits to zero after loading card

contents

Bit skipping or zeroing before loading is started at the
origin address. Skipping and zeroing after loading is
done starting with the bit location immediately fol-
lowing the last bit loaded from the origin card. In-
formation for skipping or zeroing is determined from
the pseudo operations pr and prz. If pr has been
given, bit skipping is called for, while prz specifies
setting bits to zero. The setting of control bit 5.1 is
determined by the position of the pr or prz in the
code. (See flow card below.)

6. Identification—sTRAP punches in this field the card
code characters specified in the last PuNID statement
encountered.

Flow Card. A flow card contains 25 half-words of
data in column binary form. This data is to be loaded
in sequence with the data of the previous card loaded.
The format of the flow card is:

Card Column and Row Use

1.0-1.11 Code column (flow card—1.9 and

1.11 punches)

2.0-2.11 Identification number (binary)

3.0-3.11 Sequence number (binary)

4.0-4.11 Checksum

5.0-5.3 Not presently used

5.4-71.11 25 half—words of binary infor-
mation

73.0-80.11 Identification field ignored by

the loader

All columns reserved on a flow card to contain com-
piled data or instructions must be used. No primary
bit count is provided for. All of these columns are
read by the loader, and any that contain no punches
are interpreted and loaded as if they contained zeros.

When a pr or prz immediately follows an sLc, the
skipping or zeroing information can be placed on the
origin card and the proper control bit set to accom-
plish the zeroing or skipping before loading the con-
tents of the origin card (because the contents are

instructions or data that follow the DR or DRz in the
program). Another situation that often occurs is when
STRAP is constructing a flow card and a DR or DRz is en-
countered before the data columns (5.4-7.11) are
full. sTrap immediately changes the card to an origin
card; now a primary bit count can be given so that in-
structions and data ready to be punched in the card
can be loaded, but the remaining blank columns can
be ignored. Now a control bit can be set so that the
skipping or zeroing is done after the contents of the
converted origin card are loaded.

PUNFUL Card. A pUNFUL card is a special type of Hlow
card requested by the programmer through the pun-
FUL pseudo operation. The format of the punruL
differs from the flow card in that all 80 columns of
the card are used for column binary data or instruc-
tions.

A punrFuL card cannot be loaded by the standard
loader. In normal usage, PUNFUL cards containing con-
stants or tables of data are placed behind flow cards.
A TLB pseudo operation is positioned between the last
instruction on the flow cards and the first punrFuL
card. The action of the TLB is to interrupt loading
and give control to the problem program. At the ap-
propriate point in the program, the programmer can
load the punrFuL cards under program control.

Branch Card. A branch card contains an address to
which the loader transfers control. A branch card is
produced as a result of sTrAP encountering an END
card or a TLB card. If no address is specified with the
pseudo operation, control is transferred to the address
given as the origin on the first origin card produced
for the subject program.

The format of the branch card is:

Bits Assigned Use
1.0-1.11 Code column (branch card—1.8, 1.9,
2.0-2.11 1.11 punches)
3.0-3.11 Identification number (binary)
4.0-4.11 Sequence number (binary)
5.0-5.11 Check sum
6.0-7.11 Not presently used

24-bit transfer address

The card before the branch card is often forced to
be an origin card. As before with pr or prz, if the
TLB or END is encountered when the flow card being
composed does not have columns 5.4 through 71.11
filled the flow card is changed to an origin card. The
next card will be the branch card.

Section 1 23

Section 1l

Entry Mode

sTRAP 11 always assumes that the characters appearing
in the statement on a symbolic card are alphabetic or
numeric. Furthermore, when the characters are nu-
meric, STRaP assumes they are written in the deci-
mal radix. Often it is much more convenient to write
a numeric entry in another radix, such as octal or
binary. In other cases there are other properties of
the source language that the programmer would like
to describe to strap. The facility in the sTRaP lan-
guage that allows the programmer to describe the
source language is called the entry mode.

Within the data description field the use mode, field
length and byte size describe characteristics of the
data that determine the conversion of the data and
its later use at execution time. These characteristics
are therefore compiled along with the data. The
entry mode, on the other hand, describes the form in
which the data appears on the card and, therefore,
need not be compiled. The entry mode may be em-
ployed in one of three ways:

Statement Entry Mode

An entry mode may be used to specity the properties
of all data in a pp or ppr statement. When used in this
fashion, it is enclosed in parentheses and appears im-
mediately before the pp or ppr operation code in the
operation field.

(EM)DD(dds), D, D', D', ...
Note that ppr does not have the multiple entry facility.
When an entry mode is used in connection with the

data of a pp or ppr statement, it may in this instance
—but only in this instance—designate that alphabetic

information is to be compiled. There are only two <

entry modes that fall into this category, the A entry
mode and the 10s entry mode. These modes have al-
ready been discussed in the section concerning the pp
pseudo operation.

Statement or Field Entry Modes
Some entry modes may be used to specify the proper-

ties of all the fields in a statement or to specify the
properties of one specific field within the statement.

24 M 7030

One such entry mode is the ¥ mode.

F ENTRY MODE. The F mode may appear only in bp or
ppI statements where an unnormalized floating point
or binary use mode has been specified. If the F mode
is employed as a statement entry mode within such a
statement, it is written enclosed in parentheses im-
mediately before the operation code.

(F6)DD(BU), 12.36

In this case, the entry mode r implies that the data
which follows are written in the decimal radix, are to
be converted to binary, and may contain a decimal
fraction portion. The integer following the F specifies
the number of fractional binary bits that are desired
to the right of the binary point following conversion.
In the previous example, the fractional portion to the
right of the binary point will be limited to 6 bits in
length. The converted 6-bit fractional portion plus the
integer portion will be right justified in the appropri-
ate field (in this case a 64-bit field so leading zeros
will be supplied by sTraP).

Conflicts between the field length specified and the
F entry mode can arise where binary use mode has
been written. If the converted data entry is too large
to fit in the field requested, high order bits are dis-
carded. Whenever the converted entry is smaller than
the field size specified, the problem is less crucial.
High order zeros are supplied.

In the case of unnormalized floating point pp state-
ments, the rules governing the interpretation of the
data and its conversion are identical to the handling
of binary use mode statements except that the con-
verted data entry is always inserted right justified in
the standard fractional portion of the floating point
format. The correct exponent, as determined by the
location of the decimal point, is supplied by strap.

Entry mode F may also be used as a field entrv
mode, that is, it may be used to specify the properties
of one particular field within a Do or ppr statement
without influencing the treatment of any other field in
the same statement. In everyday programming situa-
tions, it is common to write pp statements with several
data entries in each statement. In this situation, it is
often desirable to use different entry modes for each
field. Thus, the programmer may write

DD(BU), (F6) 12.36, (F2) 18755, (F8) 1005.679

Note that when the r entry mode is used as a field
entry mode it is still enclosed in parentheses and ap-

pears first in the field. The meaning is the same as
when it appears as a statement entry mode; however,
that meaning applies only to the data entry in the field
in which it appears.

Statement entry modes and field entry modes may
both appear in the same statement. When there are
contradictory properties by the statement and field
entrv modes, the field entry mode overrules for the
case of the particular field on hand. Entry modes may
not appear in a manner that cause parentheses within
parentheses. In the following example:

(F6)DD(BU), 12.36, (F3) 166.3, 1776
the ¥8 entry mode rules for data entry fields one and
three, while the ¥3 specification temporarily overrules
the statement entry mode for the second data entry
only.

rRapIx SPECIFIER The radix specifier is another entry
mode that may be used as a statement entry mode or
a field entry mode. In any programmer symbolized
field not enclosed by parentheses, numerical integers
and bit addresses may be written in any radix from
two through 16. The radix is specified by enclosing
the appropriate decimal integer in parentheses and
placing it either before the operation code if state-
ment entry mode action is desired, or at some appro-
priate place in the field to which it refers when it is
emploved as a field entry mode. (Usually, but not
always, the radix specifier is the first item to appear
in the field.)

If used as a statement entry mode, the radix speci-
fied applies to the entire statement unless individual
fields contain their own radix specifier, in which case
the field entry mode overrules the statement entry
mode for that field only. If used as a field entry mode,
the radix applies to the entire field unless it is reset
before the end of the field is reached. If no radix
is specified, the base 10 is assumed.

1. (8)573—34+50 (all numbers are in octal)

2. (2) 11011011100011.111100 (bit address written in
binary)

(5) saxr—342 (the symbol sam is not aftected by
the radix, having been previously converted to
binary. The integer 342 is written in the num-
ber system of the base 5.)

4. (8)7436.(10)60+9 (the full word portion of this
bit address is written in octal, whereas the bit
address portion and the integer 9 are written
in decimal.)

5. (2)op(s, 16, 8), (10)—972, 111011110 (the first p
field is written in decimal, the second one is

binary.)

[V}

The entry mode radix specifies the radix in which

an integer is written on the card but says nothing
about the one to which it is converted. At the com-
pletion of every sTrap statement, the radix is auto-
matically reset to 10 and remains 10 for the following
statement unless it is changed therein.

One note of caution applies to the use of radix 16.
An address expression written in hexadecimal must
begin with a numeric character.

Field Entry Mode

A final sTraP entry mode that is used as a field entry
mode is the parenthetical integer entry mode. This
mode permits any integer or pattern of bits to be
stored in any bit position of an instruction or pseudo
operation that produces binary output. The general
format for this entry mode is:

(n)An
The symbol .n represents the bit address of the right-
most bit of the field into which the integer or bit pat-
tern is to be entered. The integer A,., is formed as
an unsigned field, n+1 bits in length (because of the
7030 custom of addressing bits starting with zero),
and inserted into the leftmost n+1 bits of the ad-
dressed instruction or data entry field by means of a
logical or type operation. Logical or is used so that
the parenthetical entry may be combined with the
existing contents of the particular field addressed or
with other parenthetical entries.

The field selected by the parenthetical integer entry
mode may cross field lines within a statement as de-
termined by the format of the statement. However,
the parenthetical entry mode is not permitted to cross
statement lines. The specification of the rightmost
boundary of the addressed field via .n must therefore
be less than or equal to 31 in a half word instruction,
or 63 in a full word instruction. Nevertheless, a maxi-
mum of 24 significant bits can be converted in a par-
enthetical entry. If necessary, zeros are added to ex-
pand to the desired length. When the bit address is
specified as .n, the parenthetical integer expression
is assigned a field length of n+1 and is evaluated
modulo 27+'. All parenthetical fields are regarded as
unsigned by sTraP, so that a negative number is com-
piled as the complement, re 2°! of the magnitude of
the number.

In the following instruction:

E+1, (.8)41
the integer 41 is converted to binary and or’ed into
the first nine bits of the E-+1 instruction. In the case
of an instruction, the position of the entry is deter-
mined by counting bits from the beginning of the in-
struction, starting with bit zero, no matter in which

Section II 25

subfield of the instruction the integer entry may be
written. Thus, in the vFL instruction format, the par-
enthetical integer entry may be appended to the ad-
dress field, as in this illustration:

+(BU), DATA(.23)4, 20
or it may follow the offset specification as in this illus-
tration: +(BU), DATA, 20(.23)4
In either use the result would be the same. The rule
is that the parenthetical entry must follow all other in-
formation in the field in which it does appear.

When a parenthetical integer entry mode appears
in the b field of a pp statement, the .n specification
names the rightmost bit position relative to the be-
ginning of the field at hand, not relative to the be-
ginning of the pp statement. In other words, the par-
enthetical field position is determined by counting bits
from the previous comma forward. In pp statements
with multiple data entries, one or many parentheti-
cal entries may be appended to each such field. Again
in the case of pp only, the .n specification is restricted
to be less than or equal to the field length as given
in the data description of the particular statement.

There is no limit on the number of consecutive par-
enthetical integer entries that may be written. Al-
though one entry can conceivably be made to serve
any single instruction or data field, is it often conven-
ient to write several different integer entry specifica-
tions when one wishes to place numbers or patterns
of bits in various positions within an instruction or
data field.

This entry mode must appear in a statement that
compiles space in storage. Therefore, this mode can-
not be used in pseudo operations that give instruc-
tions to the compiler but result in no binary output
(scL, oo1, END, etc.). The parenthetical entry mode
is a modification that may be appended to a b field
or to any programmer symbolized field (or in place ot
such a field) which is not enclosed in parentheses.
Thus, an index register specification in an address field
may not contain this entry mode. One exception to
this rule is permitted in pp statements only. Here, a
parenthetical integer entry may be written in the data
description field which is enclosed in parentheses.
When so written as an appendage to the field length
or byte size specification, but never as a modification
of the use mode, the meaning is similar to that of a
statement entry mode. That is, the parenthetical
integer entry acts as if it had been appended to each
of the p fields that follow in the pp statement. This
unusual notation permits the insertion of a pattern of
bits in every data entry in a multiple o field pp state-
ment without the necessity of repeatedly writing the
parenthetical entry in every field. In all other respects
the parenthetical entry mode behaves exactly the same

26 BM 7030

as it does when used as a field entry mode.

Parenthetical expressions may contain anything that
goes in a normal address field (except bit addresses),
but may not contain other information such as alpha-
betic messages or real numbers (see Rules for En-
tering Data) which are permitted in pp or ppr state-
ments. If a programmer symbol is used as a paren-
thetical integer entry, any data description associated
with this symbol has no effect on this particular usage
of the symbol. All numbers that appear in a paren-
thetical field are converted to binary, never to decimal
or floating point.

Radix designators are permitted in parenthetical or
fields, separated by commas from the bit address
designation, and the two may be in any order. Thus,
(.32, 8) or (8, .32) signifies a parenthetical integer en-
try follows that is written in the octal radix on the card
and is to be inserted in the field whose rightmost
boundary is bit position 32.

Examples:
1. L(BU), INFO(.50, 8)17—JOE+ (10)4203(4,.22)—33303(.60)1030
2. L(BU), INFO(7)(.30)1265(.20) (10)138—(6)43(.10)553

The first example is that of a vFL instruction with
three consecutive parenthetical integer entry expres-
sions appended to the address field. It is interesting
to note that arithmetic between integers and pro-
grammer symbols is permitted in forming the integer
entry (17s—joE-+4203,,) and that when no radix is
specified with a parenthetical entry, the current op-
erative radix is continued. No attempt is made to re-
set to 10. The radix is assumed to be 10 if no radix
has been previously specified in the field to which the
parenthetical entry is appended, and if no radix has
been specified as a statement entry mode.

The second example also illustrates 3 separate par-
enthetical integer entries in the address field. Of sig-
nificance here is the fact that the radix need not be
specified within the same set of parentheses as the bit
address specification for the integer entry.

The radices which apply in the above examples are:

Example Number Radix

1 17 8

1 JOE does not apply
1 4203 10

1 33303 4

1 1030 4

2 1265 7

2 138 10

2 43 6

2 553 6

All numbers that appear within parentheses are in-
terpreted by sTrAP as decimal numbers.

The Form of Data Entries in DD Statements

Any number written in a pp statement for conversion
by sTrap must be capable of being expressed in 64
binary bits. This means that the largest fixed point
quantity that can be converted by sTrap is equal to
254 or 18, 446, 744, 073, 709, 551, 615 or 20 decimal
digits.

The floating point data format is a special case.
Here the numeric entry is always converted to a 48-
bit fraction and an 11-bit exponent. Therefore, the
only decimal quantities that can be expressed in 7030
floating point format must lie within the range 10-°%
to 10398,

Numeric entries in Data Definition statements may
be written in a variety of formats. The two basic
formats are the integer format, such as

982104

and the decimal fraction format, as in

—982104.2

These illustrations are written in the decimal radix.
As previously described, an entry mode in the form
of a radix specifier can be employed so that the pro-
grammer may write the data entry in one of several
radices. If no sign is written, the number is assumed to
be positive. If a BU or pu use mode is given and a sign
is written, the sign is ignored by sTraP.

Some special characters may be appended to data
entries to provide further flexibility in notation. It is
- often convenient to express a data entry as a num-
ber raised to some power of 10. The suffix letter is
used for this purpose, as in this example:

670.7E7

The meaning of £ is to multiply the number that pre-
cedes it by the power of 10 expressed by the number
that follows it. This number is always interpreted as
a decimal integer. Thus, the above example is inter-
preted by sTraP to mean 670.7 X 107. The presence
of E automatically implies that the entry is written in
the decimal radix. If a floating point use mode is speci-
fied, both the E specification and the position of the
decimal point affect the computation of the exponent.

Two other suffix characters are used for the inser-
tion of specific fields.

SIGN BYTE ENTRY.

The letter s is used to enter information into the sign
byte of signed data. Any integer that follows the s is
interpreted by sTraP as an octal integer. It is con-
verted to binary and inserted by means of a logical or
into any previously calculated sign byte.

The sign byte generated depends upon the byte size
specified in the data description; its composition is il-

lustrated by the following table.

Byte Size Sign Byte
1 S
2 ST
3 STU
4 STUV Z = zone bit
5 ZSTUV S =sign bit
6 Z7ZSTUV T
7 Z7ZZSTUV U} flag bits
8 7777ZSTUV A%

A byte size of 1 means that the sign byte is composed
only of the sign bit; hence, an octal 1 will be ored
into the sign bit position and create a negative sign.
If the specified byte size had been 4, the suffix s10
would be required to create a negative sign. Because
the logical or is used for the insertion, the sign byte
sign position can be made negative by either a nega-
tive sign written with the numeric entry or by an
s-type entry.

EXPONENT ENTRY.

The suffix letter x may be used if the programmer
wishes to create his own exponent for a loating point
data entry. The number following the x is interpreted
by strap as a decimal integer and is converted to
binary and compiled as the machine exponent of the
floating point number to which it is attached. It over-
rules and replaces the exponent computed by sTRAP
in the conversion process, which is completely eradi-
cated by the replacement process.

Complete Rules for DD Statements

The legal formats for entering data can be classified
according to the use mode written in the data de-
scription field of the pp statement. Normally, an ele-
ment listed in the general format may be omitted it
it is not needed to specify the data.

The data entries in a pp statement are restricted to
real numbers. Bit addresses would have no meaning
here and are not allowed. In addition, programmer
symbols are not permitted. In one special case, where
normalized floating point has been specified in the
data description, the system symbols for certain
mathematical constants are accepted.

Arithmetic expressions, that is, combination of two
or more numbers by means of addition, subtraction,
multiplication and division to form one data entry,
are permitted in all pp statements regardless of the
use mode specified. Such arithmetic is specified using
the standard ForRTRAN symbols. The symbols available
are addition (+), subtraction (—), multiplication (*)

Section 1I 27

and division (/). sTRaP will perform the arithmetic
and compile a single constant. Multiplications are
performed first, proceeding from left to right, and then
the additions and subtractions are completed.

sTRAP does the necessary bookkeeping to insure that
floating point data entries are always compiled at
addressable full words; the location counter is rounded
up to the nearest full word, if necessary, in order to
accomplish this.

Normalized Floating Point

Format:

Name DD(N), #xx - xx.x - xxE*yyySn

The number is converted to a normalized floating
binary number consisting of an 11-bit signed ex-
ponent, a 48-bit fraction, and a 4-bit sign byte. If
no sign byte has been entered by means of an s, the
sign preceding the number is used with the flag bits
set to zero. If a different binary exponent is desired,
it can be entered following an x, as follows:

Format:
Name
Examples:

a. DD(N), 5473 E 4
54.73 X 10* is converted to floating binary. The
sign bit is zero (= plus), and the flag bits are
zero (i. e., entire sign byte is zero).

b. DD(N), -3473 E 4, or DD(N), 5473 E 4 S 10
In this case the sign bit is set to one (negative)
and the flag bits are zero.

c. DD(N), 5473 E 4S5
The sign bit is one, since the number is nega-
tive, and flag bits T and V are one. U is zero.

d. DD(N), 1, 3E-5, 45.7, 12 S 17
This example illustrates the multiple entry fea-
ture. This single DD statement compiles four
64-bit floating point words and advances the
location counter accordingly.

e. DD(N), 1/3, 4727351, 4-7°5/21 S 4
Note: Sign byte entered in last D field.

f. DD(N), 27.9/31.4/12/14 E 5, 4+3%7/5%6
The number produced in the first case is:
27.9
314 X'12 X 14 X 10°
3XT7TX6
— 5
g. DD(N), 1/7-3/11 + 14321 E - 2, .12 + 1/144
As an extra convenience, certain system sym-

bols are defined by which constants involving
irrational numbers can be entered. They are:

DD(N), *xx - xx.x - xxE+yyySnXzzz

in the second;: 4 +

28 M 7030

1. $PI T

2. $E e

3. $M log,.e

4, $N log.2

5. $INF ° (infinity)
Thus, one can enter a number such as 47 X 107
by writing:

DD(N), 4 * $PI * 1E — 7.

Unnormalized Floating Point

Format:

Name | (Fn)DD(U), = xx- - x. x - xE*yyySn X*n
or

DD(U), (Fn) * xx - xxx - xE*yyySnX=n,

(Fn)=xx - - etc.

The number is converted to binary with the correct
number of binary tractional places as specified by the
(Fn) entry mode, and a correct exponent is computed
and entered. This exponent is overruled and replaced
by that following the X if X is used (necessary only
if, for some reason, the programmer desires an in-
correct exponent). The entry mode (Fn) can come
before the DD, in which case it applies to all D fields
of the statement, or it may form the first element of a
D field, in which case it overrules one given before
the DD. Either the X or the S or both may be omitted
or their order may be interchanged. Omitting S has
the same effect here as in the normalized case. Omit-
ting X simply allows the correct exponent to remain
as computed. Leaving out the sign, decimal point, or
E is permitted as in normalized numbers.

Examples:

a. DD(U), (F21) - 343.7, (F10) 432
Two numbers are compiled. In the first, 343 is
converted as an integer and .7 is converted to a
21-bit fraction. They are joined and placed in
the rightmost bits of the fraction portion of the
floating point word, and the correct exponent
(in this case 27) and sign are supplied. In the
second D field, 432 is converted to a binary
integer. Because ten fractional bits are speci-
fied, but no decimal fraction is written, the
ten rightmost bits of the fraction field are set
to zero and the number is entered with its right-
most bit in position 50.

b. (F15)DD(U), 767.52, 767.52 X-12 S11
The (F15) applies to both D fields. In the sec-
ond, the computed exponent is overruled by

the specified one and the number is made nega-
tive by means of the specified sign byte.

c. (F15)DD(U), 767.52, (F20) 767. 52 S11 X-12, 398
This example is identical to example b except
that in the second field the operation entry
mode (F15) is overruled by a field entry mode
(F20), and the order of S and X is interchanged,
which makes no diftference. (F15) still applies
to 398, however.

If the entry mode is omitted, two cases arise:

1) If the number entered is an integer, (FO0) is
understood.

2) If the number entered is a decimal fraction, it
is converted to an unnormalized floating point
number.

Examples:

a. DD(U), 17, 17X-35
In the first case 17 is converted to binary and
placed in the fraction with its rightmost bit in
position 60 and an exponent of 48 supplied. In
the second field the same thing is done except
that the exponent is set to —35.

b. DD(U), 17.5
In this example 17. 5 is converted to normalized
floating binary and stored as such. However,
instructions whose normalization bits depend
on the symbol in the name field of this pseudo-
operation will have them set to unnormalized.

Note: 17 E 5 is an integer and will be recog-

nized as such.

is a decimal fraction and will be

normalized.

17.5 E 5 is an integer but will be treated as
a fraction and normalized. Thus,
a normalized integer can be as-
signed use mode “unnormalized.”

17 E-5

An integer greater than 2'% is stored as a
normalized number.

Binary Signed VFL

Formats:

(Fn)DD(B, FL, BS), = xx ' x.x - xExyy Sn
DD(B, FL, BS), (Fn) #xx - x.x - xE%yy Sn
(R)YDD(B, FL, BS), =xx--xx Sn

DD(B, FL, BS), (R) =xx - xx Sn

A data definition of binary signed data may have
either (Fn) or (R) entry modes, but not both at the
same time. (Fn) implies that the data following it are
written in a decimal radix, whereas (R) implies that
the number following it is an integer. An integer sub-
ject to a radix entry mode must be written without the
aid of E because E is not defined for a radix other

than 10. A decimal fraction must have a controlling
(Fn) entry mode. There is no obvious way to convert
to a fixed point number without specifying the binary
scaling. In the data description either the field length
or byte size or both may be omitted. The implied
field length in this case is 64; the implied byte size
is 1. The sign byte need not be specified unless the
programmer desires to have flag or zone bits difterent
from zero. Note that the sign bit position changes for
a byte size less than 4. To make a number negative,

specify the sign byte as:

BS =1, S1
BS =2, S2
BS =3, S4
BS =4, S10

If a number has no entry mode at all, it must be a
decimal integer, but may in this case be written with
the aid of the E notation.

Examples:

a. (F7)DD(B, ,4), . 005E3S13, —17, 143. 2S11, (8) 77760, 777
Implied field length is 64. Octal specification in
the fourth D field overrules (F7)written before
DD, but (F7) still applies to 777.

b. (2)DD(B, 16, 8) 1101018377, (10) —972, 111011105201
Binary entry, overruled in only the second D
field.

c. (F12)DD(B, 24), 1.324E3, -72. 1E-4, 3.4E-4S1
Implied byte size is 1.

d. DD(B), 1489, —1272, 1491, (F13) -972.16, 1394851, 12E5
Decimal integers, except where a field entry
mode is written.

Binary Unsigned VFL

Formats:

(Fn)DD(BU, FL, BS), xx' - x. x - - xE=*yy

DD(BU, FL, BS), (Fn) xx' - x.x - - xE*yy
(R)DD(BU, FL, BS), xx - - xx

DD(BU, FL, BS), (R) xx- - - xx

(Az)DD(BU, FL, BS), alphabetic information to “z”
(IQSz)DD(BU, FL, BS), alphabetic information to “z”
(Pz)DD(BU, FL, BS), alphabetic information to “z”
(CCz)DD(BU, FL, BS), alphabetic information to “z”

Numerical entry is exactly the same as in binary
signed data except that no sign byte is formed, and
if the byte size is left out of the dds, it is set to 8. Any
sign or sign byte (with S) written with mode BU is
ignored. The alphabetic modes are permitted here;
they are explained under “Entry Modes.” Note that
the alphabetic entry mode must precede the DD, that
there can be only one D field per statement, and that

Section 1I 29

if the field length is omitted, it is set equal to 64. If
the byte size is omitted in entry mode CC, BS= 12 is
implied.

Examples:

a. (F13)DD(BU, 30), 17.2, 183, (8) 70707

b. (A*)DD(BU, 48, 6), GLORIOUS FRIDAY, THE 13TH.*
The mode and field length have no effect on
the conversion and storage; they are used in
compiling instructions that refer to the name
of this statement. Field length 48 indicates that
the programmer wants to process these char-
acters in groups of 8.

c. (IQSS)DD(BU, 32, 8§) DOG EAT DOG S

Decimal Signed VFL

Formats: (R)DD(D, FL, BS), = xx - - xxx Sn
DD(D, FL, BS), =(R) xx - - xx Sn
DD(D, FL, BS), = xx - - xxEyy Sn
(Fn) has no meaning for mode = D or DU.

The two decimal modes in DD and DDI state-
ments represent the only cases in which sTrRaP-11 con-
verts numbers to an internal decimal radix. The radix
entry mode indicates the radix in which the numbers
are written on the card. Thus, it is possible to write
an integer in binary or octal and have it converted to
decimal for machine use. If no entry mode is given,
decimal to decimal is implied. The E notation can be
used to multiply an integer by positive powers of 10.
If either the field length or byte size is omitted, the
implied values are FL. = 64, and BS = 4.

Examples:
a. DD(D), —9534812, +173E5, 18E10S13
Field length =64; byte size =4. A 4-bit sign
byte is formed. Decimal-to-decimal conversion.
b. (2)DD(D, 20), 111010001101S7
Byte size = 4. Binary-to-decimal conversion.
c. DD(D, , 8), 432E3
Field length =64. Decimal-to-decimal conver-

sion. Four binary zeros are inserted in the zone
positions of each byte.

Decimal Unsigned VFL

Formats:

(R)DD(DU, FL, BS), xx - - xx

DD(DU, FL, BS), (R) xx - - xx

DD(DU, FL, BS), xx - - xxxEyyy

(Az)DD(DU, FL, BS), alphabetic information to “z”
(IQSz)DD(DU, FL, BS), alphabetic information to “z”

The numerical conversion is just as in decimal

30 M 7030

signed mode except for the omission of the sign byte.
Alphabetic conversion is exactly as in the binary un-
signed mode, except that instructions referring to these
data are compiled as decimal operations. For alpha-
betic entry, implied field length is equal to byte size.
Examples:
a. DD(DU), 8430051, (8) 77241, 82E10
Field length = 64; byte size =4.
An octal-to-decimal conversion is inserted be-
tween two decimal-to-decimal conversions.
b. (IQS3)DD(DU, , 8), PUSH PANIC BUTTON 3
Field length = 8.

Summary of Rules for DD Statements

ENTRY MODE APPROPRIATE USE MODES

Fn U, B, BU

R B, BU, D, DU, N, U
A BU, DU, U

1QS BU, DU, U

CcC BU, DU, U

P BU, DU, U

Note: Use mode N should have no entry mode.

SPECIAL FIELD ENTRY APPROPRIATE USE MODES

S N, U, B, D
X N, U

The floating decimal notation, using E to designate
multiplication by powers of 10, is appropriate to all
modes.

If the field length is omitted from the dds, it will
be assigned a value of 64. The maximum permissible
field length for a DD statement is 64.

The parenthetical integer entry mode is appropriate
in any DD statement, no matter what use mode has
been written. The following examples illustrate the
use of general parenthetical integer entry with DD:

a. DD(N), 572(.59)1, 347.89E12(. 63, 2)1011
In the second case the sign byte is specified by
means of (. n) entry.

b. DD(B), (F9) -35.7(. 24) SAM + 4
The address SAM + 4 is placed in the first part
of the 64-bit field, followed by the converted
number -35. 7.

c. (8§)DD(BU), 4762(. 10)707(10, . 20)34
707 is written in octal, 34 in decimal.
d. DD(BU, 12(.2)7, 8), 787, 788
All numerals are in decimal. Binary 111 is

ORed into the three high order bits of each
12-bit data field created.

Address Arithmetic

It is often convenient for a programmer to write an
address expression composed of an arithmetic com-
bination of two or more symbols, integers, bit ad-
dresses, etc. Relative addressing is a good example of
the need for these type expressions. It has already
been shown that the appearance of a $ in an address
field has the meaning “the location of this very in-
struction.” If one wishes to refer to the location
exactly two full words beyond the location of the
instruction containing the $, it may be preferable to
write the address expression
$+20

rather than to assign a programming symbol to this
location and address the location by symbolic name.
In another instance, a table is known to begin at
symbolic location paTta and to be 20 full words in
length. Clearly the full word immediately following
the last word in the table can be addressed by the
expression DATA+ 20. 0.

Many other situations can be imagined where ad-
dress arithmetic would be desirable. sTrap offers gen-
erous provisions for the performance of address arith-
metic. Virtually any mixture of sTraP bit addresses,
integers, programmer symbols and system symbols
can be combined by addition, subtraction, multiplica-
tion and division to form a single 24-bit standard
binary bit address. From this point on the trunca-
tion (if necessary) and insertion of the bit address
into the appropriate address field is completely
standard.

Symbols for addition, subtraction, multiplication and
division are the standard rorTRaN characters, that is
+ , —, ® and / respectively. Addition and subtrac-
tion are the most common arithmetic operations and,
when like quantities are involved, the procedure is
completely straightforward. When two sTrap bit ad-
dresses are to be added together, the points are lined
up and the two quantities are added. If two integers
are to be added, the units positions are lined up be-
fore the addition is performed. In either of these
cases, subtraction is analogous to addition.

Thus, the address expression in this instruction
L(BU), 8. +64.0+12.3

will be treated

8.0
64.0
+ 12.3

84. 3 = actual instruction address

In the case of integer expressions, such as

LI(BU, 18, 8), 8+2+13+1

the addition takes place
8
2
13
+ 1

24 = actual instruction address

The sequence of steps that sTraP executes to per-

form addition and subtraction of like quantities in an
address field is:

1. Convert each quantity to a 24-bit binary integer.

2. The quantities are aligned with respect to each
other.

3. The numbers are assumed to be signed. Addi-
tion is algebraic.

4. The result is complemented if necessary. (Ad-
dress fields are unsigned.) If the field is signed,
such as an xw or vr, the sign bit is inserted in
the correct bit and no complementation occurs.

5. The result is truncated, if necessary, to fit the
particular address field.

6. The result is inserted into the correct position
in the instruction.

When unlike quantities are added or subtracted, the
sequence executed by sTRAP is the same with the ex-
ception of a slight modification in Step 2. If integers
and bit addresses are mixed, a certain amount of
shifting, determined by the environment, must be per-
formed before the addition takes place. For example,
in the floating point instruction

+(N), 64.0+ 20

the address field is 18 bits in length. The rule for posi-
tioning bit addresses is clear— the point must always
line up between the 18th and 19th bits in the address
field. Earlier it was explained that an integer is right
justified in a field; here the units position falls in the
18th bit. Thus the two numbers are aligned

Section II 31

. . STRAP Bit
18 bits 6 bits Address Term
24 bits Integer Term
| 6 bits 18 bits 6 bits | Result
I
ing Point
Address Field 1(\; S| Operation |10] I E(s)tiﬁlcléono?ormat

0 17 18

Up to this point, discussion has been limited to ad-
dress fields. In reality, all previous statements apply
to any field where arithmetic is permitted, that is any
programmer symbolized field. Three restrictions must
be observed.

1. No arithmetic may appear in the operation code
part of the operation field, the mode subfield of
the data description or any entry mode. All of
these fields are reserved for designations whose
meanings to STRAP are absolute and may not be
symbolized.

[

No arithmetic may appear in the name field,
which is reserved entirely for the definition of
symbols. Only one symbol per statement is
allowed.

3. The “1” or “k” fields (see Expression of Machine
Instructions) must contain at least one sTrap bit
address term.

The diagrams below illustrate the complete set of
rules for shifting and truncation that cover addition
and subtraction of unlike quantities in all 7030 instruc-
tion fields where arithmetic is permitted. The two
basic precepts involved are:

32 M 7030

28 31

1. Where a bit address has some meaning, the point
is positioned between the 18th and 19th bits of
the field. If a bit address has no meaning, the
entire 24-bit quantity is treated as an integer and
right justified in the field. Index fields are an
exception,

2. An integer is always treated as an integer in the
environment that is the size of the particular
field. The integer is right justified so that its
units position is aligned with the units position
of the field.

Although the diagrams show the final sum truncated
to the appropriate length, the bits are not actually
discarded unless they fall outside the address field of
the instruction. Some operations do not use all of the
space available in their address fields (transmit, in-
put-output select), and in these cases bits may be
placed in the unused portions.

An error indication is given if non-zero bits are
discarded when truncation occurs, except in the case
of index fields where a “1” bit in the fifth position
from the right (in the “16” position) is discarded with-
out error indication.

Truncation occurs for particular fields in the following manner:

1. A, Bit Address

Rule: No truncation 24 bits

Note: An integer in
a 24-bit field 24 bits
counts bits

24 bits
2. Ay, Half-Word Address 19 bits 5 bits
Rule: Leftmost 5
bits and right- 24 bits
most 5 bits
are truncated TTT ; S
from sum : 5 bits 19 bits 5 bits :
Note: An integer in a 19-bit field counts half-words
3. A,s Full-Word Address 18 bits 6 bits
Rule: Leftmost 6 and
rightmost 6 bits 24 bits
are truncated
fr T ——— —_————
rom the sum : 6 bits 18 bits 6 bits |

Bit Address Term
Integer Term

Result

Bit Address Term

Integer Term

Result

Bit Address Term
Integer Term

Result

Note: An integer in an 18-bit field counts full words or unit address, control operation,
control word address, and so on, in right I-O address.

4. Ay. Signed 11-Bit Address 24 bits
Rule: Leftmost 13 bits
are truncated from 24 bits
the sum. Rightmost

11 bits plus sign are T .
placed in leftmost 12 : 13 bits 11 bits

1 bit

bits of address field
of shift and Add Immediate
to Exponent instructions

Bit Address Term
Integer Term

Result

Note: Integer counts number of bits in shift or number of bits to be added to ex-

ponent of floating point word.

5. OF,; Offset 24 bits
Rule: Leftmost 17 bits of
sum are truncated 24 bits
Note: Integers count number —_-__—__—__—__—
of bits of offset L 17 bits 7 bits

Bit address 1.32 = .96 = integer 96

Bit Address Term
Integer Term

Result

Section II

33

6. FL; Field Length 24 bits Bit Address Term
Rule: Leftmost 18 bits

of sum are truncated 24 bits Integer Term
Note: Integers count length e
of field in bits : 18 bits 6 bits Result

Bit address 1.0 = .64 = 0 not error marked

7. BS; Byte Size 24 bits Bit Address Term
Rule: Leftmost 21 bits
of sum are truncated 24 bits Integer Term
Note: Integers count byte
size in bits =T T .
.8 = 8 = 0 not error marked L____El_}iti___ 8 bits Result
8. I, J 4-Bit Index Fields 18 bits 6 bits Bit Address Term
Rule: Leftmost 20 bits 24 bits Integer Term
and rightmost 6
bits of sum are I o | 21
20 bits 4 bits | 6 bits Result
truncated o o

Note: Integers represent index register number. A “1” in the bit position immediately
to the left of the final sum field is discarded with no error indication.

9. K Single Bit Index Field 18 bits 6 bits Bit Address Term
Rule: Leftmost 23 bits 24 bits Integer Term
and rightmost 6
bits of sum are —_———————— —————
truncated | 23 bits_ |1 bit | 6 bits| Result

Note: Integers specify either index register 0 or index register 1. A “1” in the bit
position that corresponds to “16” in the sum is discarded with no error indica-

tion.
10. A, I-O Left Effective Address 19 bits 5 bits
Rule: Leftmost 17 and 94 bits

rightmost 5 bits
are truncated from ,'
sum

————— ——— —— ———

17 bits 7 bits |5 bits I

Note: Integers specify channel address

34 M 7030

One exceptional condition must be noted here. This
is the case of immediate operation address fields. In
this instance, the treatment of a mixed expression con-
sisting of both integers and bit addresses difters from
the general rules above. The treatment of integers is
straightforward and the result is left justified before
insertion in the field. (See ppr). If two or more bit
address terms are being combined, the arithmetic is
as usual but no left justification is done. The field
length in the dds is ignored and the point is lined up
between the 18th and 19th bits as in any other field.
However, when integer and bit address terms are to
be combined, all terms are considered to be bit ad-
dresses; they are aligned accordingly and the result
is inserted as a bit address. The following immediate

operation 1 1(BU, 24, 8), 2+2.216
is treated by sTRAP as if it had been written
LI(BU, 24, 8), .2+2.2+.6

Programmer symbols, defined elsewhere in the code
as integers or sTRAP bit addresses, may participate in
the address arithmetic and no restrictions other than
those already outlined need be observed. System sym-
bols defined as bit addresses may also be used. There-
fore

ANKLEBONE SYN, 20.2
FOOTBONE SYN, 1
L(BU),FOOTBONE + ANKLEBONE —2 + 888.08
is perfectly legal, while
CIRCLE ST(BU), CIRCLE —$P1

is not.

There is no limitation on the number of terms that
may appear in an arithmetic expression. Continua-
tion card(s) must be used if the expression exceeds
the space available on the symbolic card.

Arithmetic expressions involving multiplication and
division are handled somewhat differently by sTrAP.
Here the assembly program recognizes that certain
combinations (two or more integers or integers and
bit addresses) can have meaningful results while
multiplying or dividing two or more bit addresses has
little meaning so that, although such operations are
not prohibited, arbitrary rules are imposed on the
arithmetic.

The basic precept in multiplication and division is
that both bit address terms and integer terms are
treated as 24-bit integers and the point is forgotten
in the bit address once the conversion to binary is
accomplished. This means that the address expression

2.0 * 2
is the same as writing

128 * 2
No shifting is done.

The two numbers are simply assumed to be integers,
are aligned with respect to each other and are multi-
plied or divided on this basis. The result is also
treated as an integer, that is, it is right justified in the
field in which it is being inserted. If the field is
smaller than 24 bits in length, all truncation occurs
on the left.

The sequence that strap follows then to multiply
or divide an address expression that is a mixture of
bit addresses and integers is

1. Convert all terms to 24-bit binary integers.

2. Assume all terms are signed integers. Multiply

or divide as requested.

3. The result is complemented if necessary

4, The result is truncated on the left if necessary
to fit the particular field.

5. The result is inserted in the field as an integer,
i.e. it is right justified in the field.

An illustration of multiplication in an address field
will point out how three different expressions using
the same numbers will produce three very different re-
sults. In the first case

CMI1010(BU), 2 * 2($X7)
multiplication of two integers proceeds as would be
expected and the arithmetic

o b

X

4
If, however, the instruction had been written
CMI1010(BU), 2.0 * 2

the multiplication would now be performed in this
manner 198

X 2

256
In still a third case, this address expression
CM1010(BU), 2.0 * 2.0

which is multiplied by sTraP as
128
X 128

16384

The straP bit address, when converted to 24-bit binary
integer form, is specifying an integral number of bits.
The 24-bit representation of integer terms is also a
number of bits. The results, therefore, are also treated
as an integral number of bits. In case one, the an-
swer is 4 bits as one would expect when multiplying
two bits by two bits. In case two, the answer is 256
bits or four words, also to be anticipated when multi-

Section II 35

plying two words by two. However, case three pre-
sents a multiplication of two bit addresses wherein
the results can only be arbitrarily defined, here 16384
bits or 256 full words.

The result of multiplication or division can be
forced to be interpreted by sTrap as a bit address. If
the expression is enclosed in parentheses and followed
by a period, the result will be treated like a standard
binary bit address, that is, it will be appended by six
zeros and inserted in the address field with the period
lined up between the 18th and 19th bits. Truncation,
if required, will be performed in the manner specified
for bit addresses. To illustrate, the address expres-
sion in this instruction

M+(BU), 200 * 50

yields a result of 10000 which, when inserted in this
address field as an integer, would count bits. If the
expression had been written
M-+(BU), (200 * 50).

the result 10000 would now be treated as a bit ad-
dress, or 10000.0, which would count full words.

Two other alternatives are possible. The instruction
could be written

M+ (BU), 200.0 * 50

where the result is 640,000 which is treated as an in-
teger and inserted in the field when compiled to yield
an integral bit count. Again, by use of the special

notation M-+(BU), (200.0 * 50.0).

bit address characteristics are attached to the integer
result, yielding an address of 640,000.0.

It should be pointed out that an expression com-
prised of all four types of arithmetic operations is
perfectly legal. The instruction

SRD(BU), 200 +70.0 —600 * 2 / 4

is perfectly legal. In an expression of this type, sTrAP
performs the arithmetic operations in the following
order—multiplication, division, addition and subtrac-
tion. The treatment of each term is strictly in accord-
ance with the rules described above.

Additional Pseudo Operations

There are several sTrap pseudo operations that per-
form rather specialized functions. These fall into three
categories:

Output Listing Pseudo Operations

1. prns—Print Single Spaced
PRNS

36 M 7030

This pseudo operation causes the assembly listing to
be printed with single spacing. Double spacing is the
normal printing mode, and is the mode in effect for
every assembly except those in which pr~s is specifi-
cally written.

2. PRND—Print Double Spaced
PRND

This pseudo operation restores printing to the normal
double spacing mode after the use of a Prxs. At the
conclusion of each assembly, the mode is automati-
cally reset to double space, so that pPrxs need only be
used if it is desired to change mode from single to
double space in the middle of one assembly.

3. NopeNT—No Printing

NOPRNT
This pseudo operation stops printing of the output
listing until any other printing pseudo operation is
encountered in the program, at which time printing
is resumed.

4, SPNUS—Suppress Printing of Unused Symbols
SPNUS

This pseudo operation suppresses printing of the
list of unused symbols that appears at the beginning
of the output listing (see sTRaP-11 Output Listing).
The list is suppressed for the compilation of the entire
program in which the spNus appears. Printing of the
list is not restored until the beginning of the next as-

sembly.

Output Punching Pseudo Operations

1. punruL—Punch Full Cards
PUNFUL

Full cards (80 columns of column binary information)
are punched without checksum, first word address,
identification, and so on.

2. PUNNOR—Punch N ormally
PUNNOR

This pseudo operation restores normal punching (72
columns) after the use of a punFuL.

3. punorc—Punch Origin
PUNORG

This pseudo operation causes an origin to be punched
in every binary card in the output deck, thus making
every binary card produced by sTrap 11 an origin card.

4. nopux—No Punch
NOPUN

Punching of the binary output deck by sTraP 11 can be
halted by the use of the Nopux pseudo operation.
Punching remains suppressed until a PUNNOR or PUN-
FUL pseudo operation is encountered.

5. punsymM—Punch Cards For Symbols
PUNSYM, A AT, A'',.. . A,
The A; are any legal programmer symbols that are
used elsewhere in the program. After the entire binary

deck has been punched out, one card in the following
format will be punched out for each A; specitied.

Card Column Contents
1
2-9 Programmer Symbol
10-12 SYN
13-21 dds
22-25 ,(8)
26-28 blank
29 sign
30-38 Bit address (xxxxxx.xx)
39-41 blank
42-44 (8)
45 integer sign
46-53 integer
54-55 blank
56-60 Index value ($xx)
61-72 Array dimensions
73-80 ID specified by the latest PUNID

The sy~ cards thus produced permit reassembly of
a portion of a program that refers to symbols defined
in another portion not being reassembled. The sy~
cards will be put in the symbol table at reassembly
time, and the symbols involved are thereby legally de-
fined.

The format of the card produced by punsym allows
for symbols that are defined as bit addresses, integers
or arrays. (See Array Specification Using pr below.)
When a symbol has been defined as an integer some-
where in the program, punsym yields a card that has
the integer definition in columns 44-55, and the fields
reserved for a bit address definition or an array defini-
tion are left blank. Note the presence of the radix
specifier which denotes that bit address and integer
definitions are always punched in octal.

If the symbol is too long to fit in the name field of
one card, strap will automatically supply a continua-
tion card or cards. Similarly, if the array definition
is too long to fit on one card, a continuation card is
supplied and the definition is continued beginning in
column 10.

6. punaLL—Punch All
PUNALL

This pseudo operation causes STRAP to punch a syx
card for every symbol used in the program.

Miscellaneous Pseudo Operations

1. Tam—Tail
TAIL, ANYSYMBOL

Difficulty with multiply-defined symbols can arise
when two programs, written by difterent people at
different locations, are assembled together. By ap-
pending a unique programmer symbol as a tail to
every symbol in his program, a programmer can be
assured that each of his symbols will be uniquely de-
fined, regardless of what other programs are assembled
with his program.

The pseudo operation TaiL appends the symbol that
appears in its address field as a tail to every symbol
in the statements that follow the tail statement until
another tail statement, or an untail statement, is given.

A tail symbol can be any legal programmer sym-
bol; it may be composed of as many as 128 alpha-
numeric characters, the first of which is specifically
alphabetic. When tailing is used, the last two char-
acters of the basic symbol are used for a special char-
acter that indicates tailing is being used and a charac-
ter to represent the tail symbol. Therefore, a program-
mer symbol of more than 126 characters cannot be
tailed. As many as 256 distinct tail symbols can be
used within any one program.

STRAP-II permits up to ten levels of tailing; that is,
as many as ten different tail symbols may be appended
to each programmer symbol within a block of code.
When only one level of tailing is used, two characters
must be subtracted from the maximum size of a pro-
grammer symbol to be tailed. In multi-level tailing,
an additional character must be subtracted for each
additional level of tailing. If n=the number of levels
of tailing, n+1 characters must be subtracted from the
maximum size programmer symbol. Thus, if 6 levels
of tailing are to be used, the maximum size program-
mer symbol that may appear in that tailed block is 121
characters in length; when ten level tailing is speci-
fied, the longest programmer symbol may be 117
characters in length.

To facilitate multi-level tailing, a sub-field is added
to the basic tail statement format, as in

TAIL, (n)DOG

where n refers to the level of tailing to which the
given tail symbol is to be assigned. If the level is not

Section II 37

specified, the first level is assumed. Thus,
TAIL, (1)DOG

can also be written
TAIL, DOG

Omission of the parentheses as in
TAIL, 1DOG

will result in an illegal tail symbol and invalidate the
statement.

The tail will continue to be added to every pro-
grammer symbol encountered at the level specified
until an untail statement or a tail statement that speci-
fies the same level is found. An untail statement will
untail all levels up to and including the level specified
in the address field. The statement

TAIL, (6)DOG

specifies poc as a sixth level tail, and

UNTAIL, (6)
untails the first six levels. Note that
UNTAIL, (1)
is equivalent to
TAIL, (1)
but
UNTAIL, (2)

is not equivalent to
TAIL, (2)

since UNTAIlL, (2) will untail the first and second
level, while Ta1L, (2) tails the second level only with a
blank, or effectively untails it. Clearly then, if it is
desired to untail one level when multi-level tailing
is being done, the best method is a tail statement that
specifies the level but has a blank tail symbol field, as

in TAIL, (6)

The normal reference may be made from one sym-
bol to another within the same tailed block. How-
ever, when reference is made from a block tailed by
pog, for example, to a possible multiply defined sym-
bol Bos in another block tailed by car, the 7030 state-
ment should read

+(N), BOB$CAT

If the symbol BoB has been tailed at several levels,
they must all be mentioned:

+(N), BOB$CATS$TAYLE

If reference is made from a tailed block to a pos-
sible multiply defined symbol in an untailed block,
only the $ is required after the symbol, as in

+(N), BOB$
The $ alone (actually $ followed by a blank) tells

38 BM 7030

strap that the reference is to the untailed symbol
BOB, not the Bos defined in the tailed block.

2. exTt—Extract
A EXT,(L], COUNT)STATEMENT

The Extract pseudo operation has the following
meaning:

First, compile sTATEMENT as if it were any legal
7030 instruction or pseudo operation that produces
binary output. Then extract from this statement the
subfield that is equal in length to the number of bits
specified by count and begins at bit 1 of that state-
ment and ends at bit J. The extracted subfield is then
actually compiled in the position in the code where
the ExT occurs.

Any symbol A appearing in the Name field is as-
signed a data description BU, a field length equal to
count (or j—1t+1), and a byte size of 8, and is at-
tached to the subfield compiled.

Any 2 of the 3 parameters 1, J, and counT are sufli-
cient to adequately describe the subfield to be ex-
tracted. All 3 can be written if the programmer so de-
sires, but if less than 3 are written, the usual right to
left drop out order rules, as in the dds. Therefore,
the permissable alternatives are:

(I,], COUNT)
(L 1)

(L, , COUNT)
(,], COUNT)

The terms 1, J, and counT may contain any number of
symbolic integers. A bit address is improper, how-
ever, and will be treated as a 24-bit binary integer.

If exT is used to specity the extraction of anything
beyond the range of the single statement that follows
it up to 64 zeros will be added.

Example: ~ EXT(18, 47)+(B, 18, 7), 73.16

First the full word instruction + (B, 18, 7), 73.16 is
formed. Then bits 18 through 47 (the first bit in the
instruction is numbered zero according to 7030 cus-
tom) are extracted and placed in the program being
compiled. The dds (su, 30, 8) is formed. The loca-
tion counter is advanced 30 bits.

3. cnop—Conditional No Operation
A CNOP

The pseudo operation cNop is used to insure that
the instruction or data immediately following the cxop
will be assigned a full-word address by sTrap 11.

When a cNop is encountered, the location counter
is immediately rounded up to the nearest half-word
address if it is not already at a half-word address.
Then sTRAP examines the location counter. If it now
stands at a full-word address, the cxop is ignored.

If, however, the location counter is set to a half-word
address, the 7030 instruction Nop is compiled. This
has the effect of advancing the location counter 32
bits or one-half word to the next full-word address.

Any symbol A appearing in the Name field is as-
signed a full-word address when the cNop is ignored,
or a half-word address when a Nop is compiled.

In the following example:

SLC, 100.32
CASE1 CNOP

L(BU, 24, 8), ASSIST
CASE2 CNOP

+(N), FLOATINGONE

the appearance of the first cNop causes a 7030 Nop in-
struction to be compiled at location 100.32. The Load
instruction is compiled at 101.0. The symbol casel
is assigned the value 100.32. When the second cnop
is encountered, the location counter stands at 102.0.
The cnop is then ignored, the floating point Add in-
struction is compiled at storage location 102.0 and the
programmer symbol casg2 is assigned the value 102.0.
Thus case2 becomes the symbolic location of the float-
ing point instruction.

4. tLB—Terminate Loading and Branch
TLB, Y

The pseudo operation TLB is similar to the Exp state-
ment with one major distinction: it does not stop the
assembly process. Therefore, TLB may be assembled
at any point in the symbolic deck where a transition
card is desired. The branch card thus produced will
interrupt the loader when encountered in a binary
deck and transfer control to the instruction at loca-
tion Y. The remainder of the program must be loaded
under program control.

5. sLcer—Set Location Counter Relative
SLCR, Y

SLCR resets the sTRaP location counter to the address
Y in much the same fashion as sLc. However, SLCR
also stops binary punching, so that locations of state-
ments following sLcr are assigned relative to the loca-
tion specified in sLcr but none of the statements ap-
pear in the binary output. This effect is the same as
if all symbols in the name field of the statements that
follow the sLcr were defined by sy~ statements, and
the convenience for the programmer is more desirable.

In the most common usage,

SLCR, 0

will reset the location counter to 0, and all symbols
following are assigned locations relative to 0. A useful
application of this use of sLcr might occur in the defi-

nition of table formats. In the following sequence
SLCR, 0

PRICE DD(BU, 24, 8), 0
QUANTITY DD(BU, 6, 8), 0
ONHAND DD(BU, 10, 8), 0

the evaluation of the symbols will be
PRICE = 0.0
QUANTITY = 0.24
ONHAND = 0.30

If the table in question begins at location 2000.0, and
this address is placed in the value field of index reg-
ister 6, the relative addressing of items in the table
can be accomplished in simple fashion as shown in
these instructions:

L, QUANTITY($6)
* PRICE($6)

These instructions would be compiled by straP as

L, .24($6)
= 0.0($6)

One advantage of this method is the ease with which
the dds of one of the statements can be changed with-
out requiring changes in any of the others. The defi-
nitions can be reordered also with no other changes
in the statements required and all address assign-
ments are recomputed by sTRAP relative to the sLcr
address.

sLcr is allowed to set the location counter to an
address below 41; without causing an error message
to be printed. This is not the case if s.c had been
used. The locations subsequently assigned will often
be below 41 as well, but they are usually indexed to
produce addresses above the first 32 storage loca-
tions. In many ways sLcr is equivalent to sic fol-
lowed by a NOPUN. An sLc must be issued to restore
binary punching of the output deck.

6. sem—Suppress Error Messages
SEM, 1, 2, 3, ...

The pseudo operation code sem, followed by a
blank address field, causes all error messages detected
in statement that follow the sEm statement to be sup-
pressed on the output listing. Any particular message
or group of messages may be suppressed by writing
the numbers identifying the messages in the address
field, separated by commas. Thus,

SEM, 8, 2
suppresses the printing of error messages 2 and 8 only.
7. reM—Resume Error Messages
REM, 1, 2, 3, ...
An ReM restores normal error message printing on

Section II 39

the listing after an sEm has been used. The ability to
specify individual messages or all messages at once
is also available with rem. Thus, following the state-

ment SEM, 9, 16, 18
the pseudo operation
REM, 16

restores normal error printing to message 16, while
messages 9 and 18 remain suppressed.

8. rink—Link
LINK

The LNk pseudo operation provides the program-
mer with a shorthand notation for an entry or link-
age into a subroutine. At the point in the code where
the LINk is encountered, sTrap substitutes the 7030

Operation LVI, $15’ $+2

which follows the custom of using index register 15
to store the instruction counter value of the return
instruction and has become the standard entry mecha-
nism.

9. pr also provides a convenient method of defining
multidimensional arrays of data and of addressing in-
dividual elements of arrays so defined. All indexing
required for the manipulation of the array must be
handled by the programmer.

The statement:

A DR(dds), (L, L', L'",... L")

reserves space for an L X L' X L''X...L" array of
data fields. The location counter is skipped forward
a number of bits equal to the field length (specified in
the dds) multiplied by the product of the dimensions
of the array. (If the dds specifies the floating point
mode, the correct number of full-words is reserved,
beginning at a full-word boundary.)

Any symbol a appearing in the name field is at-
tached to the first element of the array, and the dds is
attached to the symbol in the normal fashion. Thus,
in an instruction, a specific element of the array may

40 M 7030

be addressed by writing:

A(gq,q5q""....q)
Note that the first element of the array has the ad-
dress: A (0,0,0,...,0)

and the last element is located at:
A (L-1, L'-1, L' '—1,...,L—1)

The address of an arbitrary element in the array may
be computed by means of the formula:

Address of A(q,q',q'",...,q") = Address of A(0,
0,0,...0) +FLX(q+q'L+q''LL"'+q"''LL'L" "+
where FL is the field length of any element in the ar-
ray. An array address computed in this manner may
be used in any programmer symbolized field not in
parentheses, except a general parenthetical integer
entry. The dimension of a pr statement must be evalu-
ated by the end of pass 1. Therefore, they may be de-
fined by a chain of syN’s ending in an integer.

L, L', L"", etc.,, must be integers in symbolic or nu-
meric form. Referring to “Address Field” to apply
index register 1 to the second element of a one dimen-
sional array a, write:

A(1)(T)
where I must be a bit address.

syN must be used to define a symbol as an interior
element of a multidimensional array and have the di-
mensional addressing properties carried along. For
example:

Name Statement
A DR(N), (10,20)
B SYN, A(5,5)

In the above example, the rectangular array goes from
A(0,0) to A(9,19); B goes from B(—5,—5) to B(4,
14); a and B use identical storage. Thus, 4(0,0) —B
(=5, —5); a(1,0) —B(—4, =5); a(1,1) —B(—4, —4);

etc.

STRAP-1I APPENDICES

Appendix 41

monics do not appear explicitly in the listings.

symbolic instruction type.

Av

$
I
C

Mne-
monic

Foot-

Tvpe note

)
-
wl
~
DO DO = NN PO DO R = DR - O RO ke b 1D RO = 1O DN

[

APPENDIX A

STRAP-II MNEMONICS

Assigned STRAP-II mnemonics, including both operation codes and system Mne-
symbols, are listed on the following pages. The numbers in the Footnote Type monic
column designate notes that follow the listing. These footnotes, in gen-
eral, identify a particular class of operations that may be expanded in a $ MOP
standard way to produce other operations. Where footnotes specify how $ N
particular modified operation mnemonics may be constructed, these mne- P NM
$ or
The following abbreviations, used in the Type column, identify the $ PCH
8 PF
$ PGO..PG 6
VFL $ PI
Floating Point $ PRT
System Symbol $ PSH
Index $ R
Count and Branch $ RDR
Branches and Miscellaneous $ RGZ
Branch on Bit 8 RLZ
. $ RM
Transmits $ RN
I-O Select or Control Word $ RU
$ RZ
$ SB
$ TC
$ TCI...TCK
Word Bit SO
Name No. giiss $ TS
$ TX
Address Invalid 11 16
Accumulator Equal 11 61] UB
Accumulator High 11 62 8 UF
Accumulator Low 11 60 8 UK
All Ones Count 7 44-50 $ UNR]
Boundary Control 3 57 $ USA
Binary Transit 11 39
Channel Address 5 12-18 $ VF
Channel Busy Reject 11 8 $ X0
Console $ X1
CPU Signal 11 5 $ X2
Other CPU 6 0-18 $ X3
Channel Signal 11 13 $ X4
Data Fetch 11 20 $ X5
Disk $ X6
Data Store 11 19 3 X7
Decimal Transit 11 40 $ X8
e $ X9
End Exception 11 11 $ X10
Exchange Control Check 11 3 $ X11
Exchange Check Reject 11 6 8 X12
End of Operation 11 12 $ X13
Exchange Program Check 11 9 $ X14
Execute Exception 11 18 $ X15
Factor 14 0-63 $ XCZ
Interruption Address 2 0-17 8 XE
Instruction Fetch 11 21 8 XF
Instruction Check 11 1 $ XH
Instruction Reject 11 2 8 XL
Indicators 11 0-63 $ M
Inquiry Station 8 XPFP
Imaginary Root 11 25 8 XPH
Interval Timer 1 0-18 $ XPL
Left Half of Accumulator 8 0-63 $ XPO
Lower Boundary 3 32-49 $ XPU
Lost Carry 11 22 $ XVGZ
Lost Significance 11 26
Left Zeroes Count 7 17-23 $ XVLZ
Log,,e
Mask 12 21-49 $ XVZ
Maintenance Bits 4 0-63 $ Z
Machine Check 11 0 $ ZD

PR DD DD ADDDDDDPDDDPDPLPDDLPDDPD PLDPADDDPDDPDNDDL DD DDDSD
&=
o
Q
el

o
aQ
RO bt bt et b DO DD B DO = DD

Foot-
note

[

NHEMNHNNI—IN

[l GO N S SIS R

= SN &

[SR G

ONNDNNNONNDINDMNDNDDN D = b b b b bt bl pod el b= e e DD

[

O = b

Name

To-Memory Operation

Log, 2

Noisy Mode

Operation Invalid

Punch

Partial Field

Program Indicators

T

Printer

Preparatory Shift Greater
Than 48

Right Half of Accumulator

Reader

Result Greater Than Zero

Result Less Than Zero

Remainder

Result Negative

Remainder Underflow

Result Zero

Sign Byte

Time Clock

Tape Chanels 1...K

T Flag

Transit

Time Signal

Tape X (X is a numerical
designation)

Upper Boundary

U Flag

Unit Check

Unit Not Ready Reject

Unended Sequence of
Addresses

V Flag

Index Zero

Index One

Index Two

Index Three

Index Four

Index Five

Index Six

Index Seven

Index Eight

Index Nine

Index Ten

Index Eleven

Index Twelve

Index Thirteen

Index Fourteen

Index Fifteen

Index Count Zero

Index Equal

Index Flag

Index High

Index Low

Zero Multiply

Exponent Flag Positive

Exponent Range High

Exponent Range Low

Exponent Overflow

Exponent Underflow

Index Value Greater Than
Zero

Index Value Less Than
Zero

Index Value Zero

‘Word Number Zero

Zero Divisor

Word Bit
No. Address
11 55
11 63
11 15
11 23
11 41-47
11 27

9 0-63
11 58
11 56
13 0-63
11 59
11 34
11 57
10 0-7
1 28-63
11 35
15 0-63
11 4

3 0-17
11 36
11 10
11 7

11 17
11 37
16 0-63
17 0-63
18 0-63
19 0-63
20 0-63
21 0-63
22 0-63
23 0-63
24 0-63
25 0-63
26 0-63
27 0-63
28 0-63
29 0-63
30 0-63
31 0-63
11 48
11 53
11 38
11 54
11 52
11 33
11 28
11 30
11 31
11 29
11 32
11 51
11 49
11 50

0 0-63
11 24

ALPHABETIC LIST OF OPERATIONS

Type

B e e e b R e R e L R R o R R L L L L L PP L L PL T Iy

R
S

Mne- Foot-
monic note

+
+
+MG
+MG

-MG
—-MG
e

R DWW O WR

#*
LR

e}
=
S)

0

=

=
® w0 w w

Q
|
=
(SR

D + MG
D—

D — MG
DCV
DL
DLWF
D#

D/

E +

E + AI

BT D D UL

=
N oo

=
=
=
Lo N TN

~
2
Q
i

M 7030

Name

Add

Add

Add to Magnitude

Add to Magnitude

Subtract

Subtract

Subtract from Magnitude
Subtract from Magnitude
Multiply

Multiply

Multiply and Add

Multiply and Add

Multiply Absolute and Add
Multiply Immediate and Add
Multiply Negative and Add
Multiply Negative and Add
Multiply Negative Absolute and Add
Multiply Negative Immediate and Add
Divide

Divide

Branch

Branch on Bit

Branch on Bit and Set to One
Branch on Bit and Negate
Branch on Bit and Zero

Branch Disabled

Branch Enabled

Branch Enabled and Wait
Branch Relative

Branch on Zero Bit

Branch on Zero Bit and Set to One
Branch on Zero Bit and Negate
Branch on Zero Bit and Zero
Connect

Add Immediate to Count
Subtract Immediate from Count
Count and Branch

Count, Branch, and Refill

Count and Branch on Zero Count
Count, Branch on Zero Count, and Refill
Copy Control Word

Connect to Memory

Connect for Test

Control

Convert

Add Double

Add Double to Magnitude
Subtract Double

Subtract Double from Magnitude
Convert Double

Load Double

Load Double with Flag

Multiply Double

Divide Double

Add to Exponent

Add Absolute Immediate to Exponent
Add Immediate to Exponent
Subtract from Exponent

Subtract Absolute Immediate from Exponent

Subtract Immediate from Exponent
Execute

Execute Indirect and Count
Add to Fraction

Subtract from Fraction
Compare

Compare

Compare Count

Compare Count Immediate
Compare If Equal

Compare Field

Compare Field If Equal
Compare Field for Range
Check Light On

Compare Magnitude

Compare Magnitude for Range

Type

""""‘""“'—1'—1'—1%""—]'—]'—]%"'"‘F'J’TJ<’11"11<"‘"11"11Z'X'J"fj"lj<111"*"‘1"“3‘1?1ngg"l'i<'ﬁ<“11<}’11<’11<’ﬁ<’11<<<""“""-"‘""‘""“m’ﬁ<}<<""""rj<""-"“"rj<

Mne- Foot-
monic note

KR 4
KR 7
KV
KVI
KVNI
L

L 7
LC

o
=)
=
w

SN

3
=
+
[=2]

-
[
|
z
=
Q

> w

RNX

SEOP 11

%]
Z,
=
=
[N

[%2)
=
|

N Ut 1w

V+I 9

Name

Compare for Range

Compare for Range

Compare Value

Compare Value Immediate
Compare Value Negative Immediate
Load

Load

Load Count

Load Count Immediate

Load Converted

Load Field

Load Factor

Load Factor

Locate (same as Select Unit)
Load Refill

Load Refill Immediate

Load Value

Load Value Effective

Load Value Immediate

Load Value Negative Immediate
Load Value with Sum

Load Index

Load Transit Converted

Load Transit and Set

Load with Flag

Load with Flag

Add to Memory

Add to Memory

Add One to Memory

Add to Absolute Memory

Add Magnitude to Memory
Add Magnitude to Memory
Subtract from Memory

Subtract from Memory

Subtract One from Memory
Subtract from Absolute Memory
Subtract Magnitude from Memory
Subtract Magnitude from Memory
No Operation

Refill

Refiill on Count Zero

Read

Release

Rewind

Rename

Reciprocal Divide

Store Count

Suppress End of Operation
Store Field

Shift Fraction

Shift Fraction Left (same as SHFA)
Shift Fraction Right (same as SHFNA)
Store Instruction Counter If
Store Low Order

Store Negative Root

Store Refill

Store Rounded

Store Rounded

Store Root

Store

Store

Select Unit (same as Locate)
Store Value

Store Value in Address

Swap

Swap Immediate

Swap Backward

Swap Backward Immediate
Store Index

Transmit

Transmit Immediate

Transmit Backward

Transmit Backward Immediate
Add to Value

Add Immediate to Value

Add to Value and Count

Add to Value, Count, and Refill
Add Immediate to Value and Count

Mne- Foot-
Type monic note Name
I V+ICR 9 Add Immediate to Value, Count, and Refill
I V-1 9 Subtract Immediate from Value
I vV—-I1C 9 Subtract Immediate from Value and Count
I V-ICR 9 Subtract Immediate from Value, Count, and Refill
E w Write
E WEF Write End-of-File
M VA Store Zero
FOOTNOTES

1. This mnemonic is a system symbol. It must be prefixed by the char-
acter “$”” whenever used.

2. This mnemonic is both an indicator mnemonic and a system symbol.
It must be prefixed by the “$” whenever it is used as a system symbol in
a symbolic field of some instruction. This mnemonic may also be used
directly to express a Branch on Indicator instruction by being substituted
for the letter “I” in any of the following four formats:

BI Branch on Indicator
BIZ Branch on Indicator and Zero
BZI Branch on Zero Indicator

BZI1Z Branch on Zero Indicator and Zero

The mnemonics BI, BIZ, BZI, BZIZ are not in themselves legal
operation codes. Any of the integers 0 through 63 may also be substituted
for I if it is desired to designate an indicator numerically.

3. This operation code may be suffixed by the letter “I” to invoke
immediate addressing.

4. This VFL operation code may have the following suffixes:

I Immediate
N Negative
NI Negative Immediate

5. This operation code may be suffixed by the letter “N” to invoke the
negative sign modifier.

6. This floating point operation code may be suffixed by the letter “A”
to invoke the absolute sign modifier.

7. This floating point operation code may have the following suffixes:

N Negative
A Absolute
NA Negative Absolute

8. Count and Branch operation may have the following suffixes:

+ Add one to value
— Subtract one from value
H Add half to value

9. This operation code may be used to indicate either an immediate
indexing operation or the secondary operation of any VFL instruction.

10. This operation mnemonic specifies, potentially, 16 connect instruc-
tions. Four binary digits are written directly after the operation code
to select a particular one of the 16 instructions. This operation code is
also subject to Footnote 3.

11. This code may be used as a secondary operation with I-O select
orders that are subject to end-of-operation interrupts.

12. These mnemonics are mathematical constants.

Appendix 45

APPENDIX B

STRAP-II PSEUDO-OPERATIONS

Mnemonic Name Mnemonic Name

BS Backspace PRNID Print ID

CCR Chain Counts Within Record PRNS Print Single-spaced

CD Count Disregarding Record PUNFUL Punch Full Cards

CDSC Count Disregarding Record, Skip, and Chain PUNID Punch ID

CF Count Field PUNNOR Punch Normally

CNOP Conditional No Operation REM Resume Error Marks

CR Count Within Record REW Rewind

CRDRUN Card Run-Out RF Refill Field

CwW Control Word RLF Reserved Light Off

DD Data Definition RLN Reserved Light On

DDI Data Definition Immediate SCCR Skip, Chain Counts Within Record

DR Data Reservation SCR Skip, Count Within Record

DRZ Data Reservation and Set to Zero SCD Skip, Count Disregarding Record

ECC or SCDSC Skip, Count Disregarding Record, Skip and Chain
ODDECC ECC (and odd parity for tape) SEM Suppress Error Marks

END End SKIP Skip Paper

ERG Erase Gap SLC Set Location Counter

EVEN Even Parity No ECC (tape only) SP Space

EXT Extract SPFL Space File

GONG Sound Gong SYN Synonym

HD High Density TAIL Tail

KLN Check Light On TILF Tape Indicator Light Off

LD Low Density TLB Terminate Loading and Branch

NOECC No ECC, Even Parity (tape only) UNLOAD Unload

ODDECC 0Odd Parity, ECC VF Value Field

ODDNEC 0dd Parity, No ECC WEF Write End-of-File

PRND Print Double-spaced XwW Index Word

46 M 7030

APPENDIX C

SYMBOLIC DESCRIPTIONS AND MNEMONICS FOR IBM 7030

The following list of mnemonics may be used with Strap-1 and Strap-2
A symbolic description of the mnemonic is given to assist the programmer.
The operations symbols used are defined at the start of each section. Note
that the same letter (“a” and “m” for example) has a different definition
for floating point and for VFL. Carefully read the definition for each set.
A more detailed description of the operation is in the IBM 7030 Reference
Manual. Form A22-6530.

A specific title for each mnemonic is not given in cases where the
mnemonic is derived from the basic operation by changing the sign and
absolute modifiers.

In the case of VFL operations, the unsigned modifier must be implied
by the data referred to or be explicitly stated in a dds.

FLOATING POINT OPERATIONS

Notation for Symbolizing the Floating Point Operations OP(dds), A;q(I)

Accumulator Operands

a = bits (0-59) of the accumulator, and the accumulator sign,
bit 4 of the sign byte register.

b = bits (60-107) of the accumulator, and the accumulator
sign.

ab = bits (0-107) of the accumulator, and the accumulator
sign.

e(a) = bits (0-11) of a.

f(a) = bits (12-59) of a, and s(a).

s(a) = bit 4 of the sign byte register.

SB(a) = bits 4-7 of the sign byte register.

Fl (a) = bits 5-7 of the sign byte register.

Storage Operands

m = bits (0-59) of the storage word, and its sign, bit 60.

M = L(m) = the effective address.

e(m) bits (0-11) of m.

f(m) = bits (12-59) of m, and s(m).
s(m) = bit 60 of the storage word.

bits (60-63) of the storage word.
bits (61-63) of the storage word.

SFT = Factor operand; SB(8FT) = bits (60-63) of $FT.

$RM Remainder operand.
Add
+ atm —> a 1. b is unchanged.
- a—m —> a 2. Fl (a) is unchanged.
+A atlm| —> a
—-A a—|m| —> a
Add to Memory
M+ m+a ——> m 1. Fl(m) remain unchanged.
M- m—a ——> m 2. The entire accumulator and
M+A |m{+a —> m SB(a) remain unchanged.
M—-A |m]-a ——> m

Add to Fraction

F+ f(ab)+f(m) —> f(ab) 1. e(m) is ignored; the add is
F— f(ab)—f(m) —> f(ab) performed with e(a) on both
F+A f(ab)+|/f(m)| > f(ab) operands.

F—-A f(ab)—|f(m)| > f(ab) 2. The normalized mode oper-

ates in the same way as in
D+.

Add to Exponent

E+ e(ab)+e(m) —>|e(ab)
E— e(ab)—e(m) —>e(ab)
E+A e(ab)+je(m)| > e(ab)

E—-A e(ab)—|e(m)| > e(ab)

Add Immediate to Exponent

E+I e(ab)+e(M) —>e(ab)
E-I e(ab)—e(M) —>e(ab)
E+AI e(ab)+le(M)| —>e(ab)
E—-AI e(ab)—le(M)| —>e(ab)

Shift Fraction

SHF f(ab)-2¥ — > f(ab)
SHFN f(ab)-2-M —> f(ab)
SHFA f(ab)-2PM| —> f(ab)

SHFNA f(ab)-2-]M| > f(ab)

SHFL f(ab)-2|M| —> f(ab)
SHFR f(ab):2-[M| - f(ab)
Double Add

D+ ab+m ———> ab
D— ab—m ——> ab
D+A ab+|m| —> ab
D-A ab—[m| —> ab

Add to Magnitude

+MG R=[a[+m
—-MG R=|a|-m
+MGA R-=la+ |m|
—~MGA R=la]— m]|

Double Add to Magnitude

D+MG R=|[abj+m
D-MG R=|abl-m

D+MGA R = [ab|+ [m]|
D—MGA R = |ab|— |m|

Add Magnitude to Memory

M+MG R=m+|a|
M-MG R=m—|a|
M+MGA R =|m| + |a|
M—MGA R = |m| — |a]

Multiply

a am ——> a
*N a-—m ——> a
=A a‘'lm| ——> a
*NA a—[m| ——> a

Double Multiply

D# a-m ——> ab

D*N a*—m —» ab
D*A a‘lm| ———> ab
D*NA a—|m| —> ab

(SN

—

=

. f(m) is ignored.
. Strap—II will assemble as unnor-

malized unless the normalized
mode is requested by referring to
normalized data or by using the
dds = (N).

. The unnormalized mode is given

unless overruled by dds = (N).

Left shift if bit 11 of M = 0.

. Right shift if bit 11 of M = 1.
. The operation is not affected by

the normalized modifier.

. The exponent is not adjusted for

the shift. e(a) is unchanged.

. On a right shift, zeroes are intro-

duced in bit 12.

. PSH indicator goes on if the ex-

ponent difference exceeds 48.

.R—> aif R=0.
. 0—> f(a) if R < 0 and e(a) is

unchanged.
s(a) is unchanged in either case.

. R—>abif R=0.
. 0——>f(ab) if R < O and e(a)

is unchanged.

. s(a) is unchanged in either case.

. R —> mifs(R)=s(m)
. 0—>f(m) if s(R) #s(m).

. s(m) is unchanged in either case.

. b in unchanged.

(108-127) of accumulator are un-
changed.

Appendix 47

Multiply Factor and Add

v m-* ($FT)+ab—>ab
N+ —m- ($FT)+ab—>ab
SA+ Jm|-($FT)+ab->ab
*NA+ —|m|-($FT)+ab—>ab
Divide

/ a/m ——>a

/N a/—m ——>a

/A a/im| ———>a
/NA a/—/m| ——>a

Reciprocal Divide

R/ m/a ———>a
R/N —m/a ——>a
R/A jm[/a ——>a
R/NA —|m|/a ——>a

Double Divide

D/ ab/m ——> ab
D/N ab/—m ——> ab
D/A ab/|lm| ———> ab
D/NA ab/—|m| —> ab
Store Root

SRT Vva ——>m
SNRT —Va ——>m
SRTA Vla| ———>m
SNRTA —Vjal ——>m
Load

L m ——>a

LN —-m ——>a

LA jm| ———>a

LNA -lm| ———>a

Double Load

DL m ——>a
DLN -m ———>a
DLA lm| ———>a
DLNA —|m| ———>a

Load with Flag Bits

LWF m ————>a
LWFN —m ——>a
LWFA lm| ——>a
LWFNA —|m|—>a

Double Load with Flag Bits

DLWF m —>a
DLWFN -m —>a
DLWFA |m|———>a

DLWFNA —/m| ———>a

Load Factor

LFT m ———> $FT
LFTN —m —— > $FT
LFTA Im| ———> $FT
LFTNA —|m| ———> $FT
Store

ST a ———>m
STN —a ———>m
STA la] ———> m
STNA —la] —————>m

48 M 7030

—

W o

. The contents of $FT remain un-

changed.

. No remainder is generated.
. Quotient is 48 bits.
. Pre-normalization of the operands

is independent of the normaliza-
tion modifier.

. b is unchanged.

. Performed similarly to divide.
. b is unchanged.

. Remainder in $RM.
. 0—>b except bit 60, which contains

a continuation of f (a).

. No rounding.
. SB(a)—>SB($RM).
. Result capable of being rounded in

a subsequent instruction.

. ab and SB(a) are unchanged.

. 0 —> Fl(a).

. b is unchanged.

. 0—>b.
. 0—>Fl(a)

. Fl(m) —> Fl(a).

. 0—>b.
. FI(m) —> Fl(a).

. ab and SB(a) are not changed.
. s(m) —> (60)$FT.
. 0—> (61-63)$FT.

. Fl(a) —> Fl(m).

. ais unchanged.

Store Rounded

SRD a —>m
SRDN —~a —>m
SRDA la] ———>m
SRDNA —Ja] ————> m

Store Low Order

SLO b —>f(m)
SLON —b ———>f(m)
SLOA |b] ————> f(m)
SLONA —|b|] ——— > f(m)
Compare

K a:m

KN a:—m

KA a:|m|

KNA a:—|m|

Compare for Range

KR a:m
KRN a:—m
KRA a:|m|
KRNA a:—|m]|

Compare Magnitude

KMG "amm
KMGN a:—m
KMGA a:|m]|
KMGNA a:—!m|

Compare Magnitude for Range

KMGR a:m
KMGRN a:—m
KMGRA a:/m|
KMGRNA a:—|m]|

1.

—

A one is added in bit (60)b prior
to the store: a and (60)b are
unchanged.

. Fl(a) —> Fl(m).

. e(a) ~48 —>e(m).
. Fl(a) —> Fl(m).

. e(a) is unchanged.

. Indicators AL, AE, and AH are

set as follows:
AL issettooneifa<m
AE issettooneif a=m
AH issettooneifa >m

. Zero exponents of different sign

are considered equal.

. If the exponent difference is 48 the

larger of the numbers is per sign
and exponents regardless of frac-
tions.

. If AH is off prior to this op, no

indicators will be changed.

. If AH is on:

AL is unchanged.
AE is set to one if a << m.
AH is set to one if a = m.

. Same as Compare, except for ac-

cumulator comparand.

. Same as Compare for Range, ex-

cept for accumulator comparand.

VARIABLE FIELD LENGTH OPERATIONS

Notation for Symbolizing the Variable Field Length Operations OP(dds),

Ay, (1), OF(T')

Accumulator Operands

a = the accumulator operand whose:
1. Low order bit is defined by the offset;
2. Byte size is four for decimal arithmetic, eight for binary

arithmetic;

3. Length includes all bits in the accumulator to the left of the

offset;

4. Sign is indicated by bit four of the sign byte register.

‘a = the accumulator operand, a, but without sign.
ay = the accumulator operand, a, with offset = 20.

Storage Operands

m = the storage operand whose:
1. High-order bit is defined by the bit address;

2. Byte size may be any number from one to eight, but is
assumed to be four in the instruction lists below;

3. Length is defined by the field length in the dds; -
4. Sign is bit s in the sign byte.

m = the storage operand in which all bytes are processed as data;

a positive sign is assumed.

The unsigned storage operand is designated by the dds.
Bits 7.17 and 7.18 are the leftmost two bits of $LZC.
$FT = Factor Operand; s($FT) = bit 60; FL(SFT) = bits (61-63).
STR = 64-bit Transit Register.

Integer Operations

Operations which can have an immediate operand are followed by (I),
except for #+.

Add

+ atm —>a (I) 1. If the sign changes, bits to the

- a—m ——>a right of the offset are comple-
mented.

Add To Memory

M+ m+a ——>m
M- m—a ——>m

Add to Magnitude

+MG R=a+m (I) 1. R—>a if R=0.
—MG Rea—m 2. 0—>-entire accumulator if
R<O.
3. s(a) is not changed by these
operations.

Add Magnitude To Memory

—

. R—>-mif s(R) =s(m).
2. 0—>mifs(R) #s(m).
3. s(m) is not changed.

M+MG R=m+a
M—-MG R=m-a

Multiply
b am ——> ay (I) 1. Multiplication takes place only
*N ar—m ——> ag, if mode = B or BU.

2. The decimal mode gives LTRS
and 00, to bits 7.17 and 7.18.

3. The length of a or m must be
= 48 bits in binary multiply.

4. The portion of the accummu-
lator not containing the prod-
uct is set to zero.

Multiply Factor and Add

et m-($FT)+a —>a (I) 1. Write: ®*I+
N —m-($FT)+a—>a and *NI+ for an immediate
operand.

2. Multiplication takes place only
if mode = B or BU.

3. Decimal mode gives LTRS
and 10, to bits 7.17 and 7.18.

Divide
/ a/m ——>a (I) 1. Divide takes place only in the
/N a/-m ——>a binary mode.
2. Decimal divide gives LTRS
and 01, in bits 7.17 and 7.18.
3. The remainder is placed in
$RM. The remainder sign,
(60) $RM, is the same as the
original s(a). F1 ($RM) =0.
4. Bits to the right of the offset
are cleared.
Load
L m————->a (I) 1. 0—>F1(a).
LN -m————>a 2. The entire accumulator is

cleared before the load.

Load with Flag Bits

LWF m————>a (I) 1. FI(m)—>Fl(a).
LWFN —m———>a

Load Factor

LFT m ——> $FT (I) 1. 0—>(61 —63) $FT.
LFTN -m ——> $FT 2. The offset field is ignored.

Load Transit and Set

LTRS m ————>8$TR (1) 1. Offset—>$A0C.
LTRSN -m ————> §TR 2. 11,—>bits 7.17 and 7.18.

3. Indicator $BTR = 1 and
$DTR = 0 if mode is B or BU.
Indicator $DTR = 1 and
$BTR = 0 if mode is D or DU.

Store

ST a————>m 1. SB(a)—>SB(m).

STN -a ——————>m 2. If the byte size is greater than
four:
Binary: zone bits of the sign

Store Rounded

byte register are
stored in SB(m).

Decimal: zone bits of the sign
byte register are
stored in each byte
of m.

SRD These operations are the same as the corresponding
SRDN Store operations, except for:
a. Binary: a one is added one bit to the right of the offset,
prior to the store.
b. Decimal: 0101 is added one byte to the right of the offset,
prior to the store.

c. The accumulator is unchanged, even if rounding occurs.

Add One to Memory

M+1 m+]l ———— > m 1. The one is added to the low

M-1 m—1 ——————> m order byte.

2. The offset field is ignored.

Compare

K a:m (I) 1. The Compare operations set the AL, AE, and

KN a:—m AH indicators.

AL issettooneif: a<<m
AE isset tooneif: a==m
AH is set to one if: a >m
2. All bits to the left of the offset in the accu-
mulator participate in the compare.

Compare for Range

KR a:m (I) 1. If the AH indicator is off prior to the opera-

KRN a:—m tion, it is executed as a NOP.

2. If AH is on:
AL is unchanged.
AL is set to one if a << m
AH issettooneif a=m

Compare If Equal

KE a:m (I) 1. If the AE indicator is off, no changes will

KEN a:—m occur.

2, If the AE indicator is on, the indicators are
set as in Compare, K.

Compare Field

KF a:m (I) 1. The indicators are set as in Compare.

KFN a:—m 2. The length of the accumulator comparand is
the same as the length of the storage com-
parand.

3. The matching bits of both operands are com-

pared.

Appendix 49

Compare Field for Range

(I) 1. The accumulator comparand is the same as
in Compare Field, KF.
2. The indicators are set as in Compare Range,
KR.

KFR a:m
KFRN

a:-m

Compare Field If Equal

(I) 1. The accumulator comparand is the same as
in Compare Field, KF.
2. The indicators are set as in Compare If
Equal, KE.

KFE a:m
KFEN a:—m

Logical Connectives OP(dds), Ay, (I), OF; (I")

Note: If the operand from storage has a byte size (BS) less than eight,
then eight minus BS (8 — BS) leading zeros are added to each byte from
storage before the connect takes place. However, the storage operand is
not changed in Cxxxx or CTxxxx.

Connect to Accumulator

CxyxoXgXy Result—>»a
Connect to Memory
CMx1x2x3x 4 Result—>m

Connect for Test

CTx xgXgX, Result is not stored.
X;XgXgXy is a four.-bit binary configuration to describe the type of con-
nective; it is summarized:
Let: m=a bit from storage (may be an inserted leading zero if the
byte size is less than 8.)

a =a bit from the accumulator corresponding to m. The accu-
mulator byte size always = 8.

x; = desired result if m =0 anda =0
xo = desired resultif m=0anda=1
xg = desired resultif m=1anda=20
x4 = desired result if m = landa=1
Example: C1010 (BU, 64, 4), 0 will complement the entire 128-bit

accumulator.

Pseudo-Connectives

LF =C0011
SF = CMO0101

LF (Load Field)
SF (Store Field)

Immediate Connects

To indicate immediate addressing, write: CIx1x2x3x4, CTIx1x2x3x4,
and LFI.

$AOC = All ones count register.
$LZC = Left zeros count register.

After a connective operation the two registers, $AOC and $LZC contain
the indicated counts of the result. Because the result may not occupy the
entire accumulator, $AOC and $LZC may not give the total count of ones
and left zeros of the accumulator. However, these counts always give the
correct count in CM or SF.

Convert Instructions

Definitions:
ap, = accumulator in decimal, four-bit bytes with specified offset.
ap = accumulator in binary with specified offset.
apo = accumulator in binary with offset = 20.
aggg = accumulator in binary with offset = 68.
my, = storage operand in binary with specified byte size and field length.
my, = storage operand in decimal with specified byte size and field length.
$TR = 64-bit transit register with a sign byte in the rightmost four bits.

Note: The conversion goes: from decimal to binary if the mode given
is decimal; from binary to decimal if the given mode is binary.

50 M 7030

Convert

Ccv ap, —>apgg if mode = D or DU 1. In binary a
or aggg —>aj if mode = B or BU field of 48 bits
CVN —ap, —>apggg is used.
or —apge —> 2 2. The entire
accumulator

to the left of
the offset is
used.

Double Convert

DCV a, —> aggg 1. In binary, a
or apgy —>ay field of 96 bits

DCVN —ap —>apyg is used.
or —apyy —>ap 2. The entire
accumulator

to the left of
the offset is

used.
Load Converted
LCV my,————> ap (1) 1. s(m)—>s(a)
or my—> ap 2., 0—>FI(a)
LCVN —mp——> ap (I) 3. The entire accumu-

lator is cleared be-
fore the load.

or —mp——> ay

Load Transit Converted

LTRCV m,———> $TRy (1) 1. The accumulator
or my——> $TR, and offset are

LTRCVN —m,—> $TR; (I) ignored.
or —my;——> $TRy, 2. 0—>FI($TR)
3. s(m)—>s($TR)
4. The entire $TR is

cleared before the
load.

Progressive Indexing

Any VFL or Connective operation (when not immedidate) may have a
second operation enclosed in parentheses. The second operation may be
V=zI, V=IC or V=zICR.

Format: OP(OP,)(dds), Agy (J), OF; (T')

Notes: 1. The original value field J is the effective address of operation.

2. Ay, is the immediate operand specified by J in V = I, and so
on, and the value field of J is incremented by = A24 accord-
ing to+I. The incrementing takes place subsequent to
note 1.

3. J may be $XO.

INDEXING OPERATIONS

Notation for symbolizing the Indexing Operations

Index Word Operands

J =bits (0 — 63) of the index word
V =bits (0 — 24) of J.

C =bits (28 — 45) of J.

R = bits (46 — 63) of J.

Storage Word Operands

m = bits (0 — 63) of a storage word.

V(m) =bits (0 — 24) of m if the second operand is V. (sign of V is
in bit 24)

V(m) =bits (0 — 17) of m if the second operand is C or R.

Immediate Operands

m =bits (0 — 18) of the effective address if the second operand is V.
m =bits (0 — 17) of the effective address if the second operand is C
or R,
Notes: 1. For clarity, the titles to the indexing and the branch opera-
tions bave been omitted.

2. The indicators XF, XCZ, XVLZ, XVZ, and XVGZ are set
by all of the direct and immediate index operations except
KV, KC, KVI, KVNI, and KCI. These indicators are set be-
fore the refill (if any) takes place.

KV, KC,....,KCI set the index compare indicators XL,
XE, and XH.

Direct Index Arithmetic OP,], A19 (1)

LX m —>7J Alg

LV V(m) —>V 1M =4y ()

LC V(m) —»C 2. m = (M)

LR V(m) —> R} { 3. Cy= The count field of J after modifica-
tion

SX] —>m 1. A
SV V——>V(m)

sC C—>V(m) 1. 0—> (18-24) of m.
SR R —>V(m) 1. 0—> (18-24) of m.

V+ V+V(m)—>V 1. Thereis no V — etc.
{V+V(m)—>V
V+C c-1—>»c,
V+V(m) >V

V+CR C-1 —>C,
(R) —>(1)if C, =0
SVA V —> V(m) 1. V is truncated to 18, 19, or 24 bits, as is
appropriate for the instruction containing

V(m).
LVE (M)» —>V 1. (M) means contents of M
(M = « (M)
(M)n = « e (M)n-1
KV —V:V(m) 1. Indicators: XL, XE, XH are set by KV and
KC —>C:V(m) KC. This setting is the only output of
KV and KC.

M —> R(8$XO0) ters.
m—>]J

LVS (special format): LVS,J, A1, A%, ..., An

{]—)(R($X0)) 1. Used for saving and restoring index regis-
RNX

1. The sum may include any subset of the
1 >

vah van index words, each one appearing no more
i=1 than once.

2. No indexing of the address field is allowed.

n

1. (19 -24) of V are compared with
Zeros.

KVI (0-18) of V:A

1. (19 -23) of V are compared with
zeros and (24) of V is compared
with 1 (minus).

KVNI (0-18)of V:A

KCI C:A

Count and Branch Operations OP, J, B{4 (K)

CB Ci-1 ——>Cy 1. K may be only 0 or 1.
IC; +0.32 —)IleC2—O 2, M =the effective ad-
M ——>ICif C, #0 dress of B;g (K).

3. IC, is the value of the
CBR C;—-1—>Cy instruction counter
IC +0.32 —)-IC and (R)—>(J) where the CB instruc-

if Cy=0 tion is located.

M ———>ICﬁC2%O 4. C1 and C, are the

az o1, o ld 1) e
16, +0.32 S 1Ci Cy %0 tion of the. inst
M ————)IleC2=O P n of € 1nstruc-

tion, respectively.
CBRZ C -1 ——>C,
or IC; + 0.32 —)-IleC =0
CBZR M — > IC and (R)=>(I)
if Co=0

Note: In addition to the stated functions, the value field of J may be
modified by placing +, —, or H after the above mnemonics. The
modification of V takes place regardless of C, and before the
refill (if any).

Example: In addition to the given functions of CB, we have:

CB leave V alone

CB+ V+10 >V
CB— V—-10 >V
CBH V+032 >V

Unconditional Branch Operations: OP, A19 (I)

—— > IC 1. The unconditional branch in-
structions are the only branch
instructions which allow a 4 bit

B M
BR |M+IC, +0.32 —>1IC

BE (Enable S IC index field, I. The conditional
l M branch instructions may have

Disable only a 1-bit index field, K.
BD {\I ——— > IC 2. IC, is the value of the instruc-
h tion is located (i.e., the leftmost

bit of the instruction).

Enable
BEW M
Wait — > IC

Immediate Index Arithmetic OP, J, Aq

Notes: 1. None of the immediate index instructions allow for indexing
of the address. Ajq is the effective address and is represented
by A below.

2. The output of KVI, KVNI, and KCI is the setting of indi-
cators XL, XE, and XH.

NOP IC1 +0.32 ——> IC
Branch on Bit Operations: OP, Ag((1), B19 (K)

BB IC; +0.32 - ICifm; =0 1. m; =(Ag (1)), the bit being
My ——> ICifm =1 tested.

. 2. M, =B{4(K), the branch ad-
BZB IC;+10 —>ICifm;=1 dress.

LVNI —-A —>V 1.) (19-23) of Vare setto 0. .
LVI A —>V 1. | (19-24) of V are set to 0. My ———> ICifm; =0 3 K=0or1;1=1-15.
—>C
Egi ﬁ >R Note: The BB and BZB may have a suffix, Z, 1, or N, which, respec-
tively, will set m, to zero or to one, or negate it. This function
V+I V+A —>V 1. is independent of the success of the branch. For example, the
V-1 V-A — >V 1. following branch on bit instructions are permissible and perform
the stated functions as well as:
V+A —> .
V+IC (C——l s g ! BB BZB leave m, alone
l A is appended by 5 zero bits BBZ BZBZ 0 —>m,
[V—A ——>V 1. r for the operation. BB1 BZB1 1—>my
v-IC 1C-1 —>C BBN BZBN —m; > m,
V+A — >V 1 Branch on Indicator Operations BIND, By, (K)
V+ICR {C-1 ——> G, BIND IC; +0.32 —> ICif ind. =0 1. The indicators may not be set
(R) —> (J) ifCy =0 M —— > ICifind. =1 to 1 or negated with a BIND
A v 1 operation.
V-ICR {C-1 —>C,) BZIND IC, +0.32 —>IC ifind. =1)
(R) _>(J)lfc2:0 M ——— > ICifind.=0

Notes: 1. The letters “IND” in BIND are replaced by the appropriate
indicator mnemonics as shown in note 2 below.

C+I CtA —>GC,
Cc-I C-A —>C,

Appendix 51

Mnemonic

52

2.

MK
1K
18
EK

TS
CPUS

EK]J
UNR]J
CBJ

The above operations can have a suffix, Z, which will cause
the indicator being tested to be set to zero independently of
the success of the branch. For example, BZXPOZ will set
indicator XPO to zero arbitrarily. We may have: BXPO;
BZXPO; BXPOZ; and BZXPOZ. The following list indicates
all of the indicator mnemonics which may be used in BIND,
B19(K), and their bit addresses.

Name Bit Address

EQUIPMENT CHECK

Machine Check 11.0
Instruction Check 11.1
Instruction Reject 11.2
Exchange Control Check 11.3
ATTENTION REQUEST
Time Signal 11.4
CPU Signal 11.5
INPUT-OUTPUT REJECTS
Exchange Check Reject 11.6
Unit Not Ready Reject 11.7
Channel Busy Reject 11.8
INPUT-OUTPUT STATUS
Exchange Program Check 11.9
Unit Check 11.10
End Exception 11.11
End of Operation 11.12
Channel Signal 11.13
(not available) 11.14
INSTRUCTION EXCEPTION
Operation Invalid 11.15
Address Invalid 11.16
Unended Sequence of
Addresses 11.17
Execute Exception 11.18
Data Store 11.19
Data Fetch 11.20
Instruction Fetch 11.21
RESULT EXCEPTION
Lost Carry 11.22
Partial Field 11.23
Zero Divisor 11.24

RESULT EXCEPTION-FLOATING POINT

IR

LS
PSH
XPFP
XPO

XPH
XPL

XPU

M

RU

TF
UF
VF
XF

BTR
DTR

Imaginary Root 11.25
Lost Significance 11.26
Preparatory Shift

Greater than 48 11.27
Exponent Flag

Positive 11.28
Exponent Over-

flow 11.29
Exponent High 11.30
Exponent Range

Low 11.31
Exponent Under-

flow 11.32
Zero

Multiply 11.33
Remainder Under-

flow 11.34

FLAGGING
T Flag 11.35
U Flag 11.36
V Flag 11.37
Index Flag 11.38
TRANSIT OPERATIONS

Binary Transit 11.39
Decimal Transit 11.40

M 7030

PROGRAMMER INDICATORS

PGO or PG
PG1
PG2
PG3
PG4
PG5
PG6

INDEX RESULT

XCZ Index Count Zero
XVLZ Index Value Less than
Zero

XVZ Index Value Zero
XVGZ Index Value Greater
Than Zero
XL Index Low
XE Index Equal
XH Index High
ARITHMETIC RESULT
MOP To-Memory Operation
RLZ Result Less than Zero
RZ Result Zero
RGZ Result Greater than
Zero
RN Result Negative
AL Accumulator Low
AE Accumulator Equal
AH Accumulator High
MODE
NM Noisy Mode

TRANSMIT OPERATIONS:
Notes: 1.

11.41
11.42
11.43
11.44
11.45
11.46
11.47

11.48

11.49
11.50

11.51
11.52
11.53
11.54

11.55
11.56
11.57

11.58
11.59
11.60
11.61
11.62

11.63

OP, J, Ag(1), A';(I)

Full words are transmitted in all Transmit and Swap instructions.

2. In the immediate operations, J is the count of the number of full

words transmitted. J must be =< 16.

transmitted.

If J=0, 16 words are

3. In the others (the direct transmission) the count field of J has
the number of full words to be transmitted.

Transmit Forward
T (M) —>(M,)

(M;+1) —>(My+1)

etc.

Transmit Forward Immediate

I (M) —> (M)
(M;+1) —> (M,+1)
ete.
Transmit Backward
B (M) —> (My)
(M;—1) —> (Mp—1)
ete.

Transmit Backward Immediate

TBI (M) —> (My)
(M;=1) —> (Mp—1)
etc.
Swap Forward
SWAP (My) <—~(M,)
(My+1)<—>(My+1)
etc.

Swap Forward Immediate

SWAPI (Ml) <——>(M2)
(M +1)<—>(My+1)
ete.

1. M; is the effective address of
A (D

2. M, is the effective address of
A (1)

1. Both blocks are referred to in a
backward direction.

Swap Backward

SWAPB (M) <—>(My)
(My—1)<—>(My—1)
etc.

Swap Backward Immediate

SWAPBI (My) <—>(M,)
(Ml_l)H(MQ_I)
ete.

MISCELLANEOUS OPERATIONS: OP, A;q4(1)
Store Instruction Counter If

SIC IC1+1.0—>(0—18) of 1. SIC; NOP will not store the IC.
Aqg(D) if the following
half word branch in-

struction is executed.
Refill
R (Ry) ——— > (M) 1. R, =refill field of word M.
Refill If Count Is Zero

RCZ (Ry) —— > (M)
if C field of M=0

Execute

The instruction located at M is
executed.

2. Contro! then goes to the instruc-
tion following EX.

EX Execute —————> (M) 1.

Execute Indirect and Count

EXIC Execute ——— > (M)? 1. The instruction whose address is
(M) +1 ———> (M) located in M is executed.

Store Zero

z 0 — > (M) 1.

Full word of zeros.

INPUT-OUTPUT INSTRUCTIONS: OP, A_(I), A (I")

Locate A, (I) represents a channel address; AIS(I’) represents:
The address of one of several units attached to chan-
Loc nel A;(I); in this case LOC or SU must be given
X before a RD or W addressing this channel;
Select Unit 2. An address on the disk specified by A-(I).
LOC =SU.
SU
Read
RD A (I) represents a channel address; a reading operation

is initiated for this channel (or for a unit attached to
this channel if more than one unit is available and has

been readied by a LOC instruction). AIS(I’) is the
address of a control word.

Write
w Initiates a writing operation. Analogous to RD except
that the skip flag of the control word is ignored.
Release
REL Immediately terminates any operation in progress at the

unit specified in A7(I), the channel address, or in the
last unit at A;(I) selected by a LOC instruction, if
AT(I) consists of more than one unit.

Copy Control Word

CCW The current control word corresponding to the addressed
channel A, (I) is sent to AlS(T).

LOC(SEOP) Same as LOC, SU, RD, W, REL, CTL except the SEOP
RD(SEOP) bit in control word is set to 1; thus, program interruption
W(SEOP) on completion of an operation is suppressed, provided no
REL(SEOP) exception conditions, such as unit check and end ex-
CTL(SEOP) ception, are encountered.

SU(SEOP)

Control
CTL Initiates performance of certain functions at the chan-

nel indicated by A;(I), or at the last unit selected by
an LOC instruction. The functions are indicated:
General I/0 Unit (Standard for A g(I))
A14(I') = 016g Reserved Light Off
017g Reserved Light On
1164 Read-Write Check Light On
057¢g ECC Mode
157g No ECC Mode
Card Reader and Card Punch
Standard, except AlS(I') =2 also causes a card to
be offset in the stacker.
Tape Units
Standard, but in addition:
AlS(I') = 0578 ECC Mode, Odd Parity
157g No ECC Mode, Odd Parity
1565 No ECC Mode, Even Parity
1365 Rewind Tape
0764 Space Block (record)
1764 Backspace Block (record)
077¢ Space File
177g Backspace File
117¢ Write Tape Mark (EOF mark)
0564 Erase Long Gap
036¢g High-Density Mode (556 bits/inch)
0378 Low-Density Mode (200 bits/inch)
0165 Remove End of Tape Condition
137g Rewind and Unload
Inquiry Station, Printer, Console
Standard, except codes 057g and 157 are missing.
On Console, A;g(I’) =177g causes the gong to
sound.

Appendix 53

APPENDIX D

The Current (May 1, 1961) list of STRAP II Error Messages are as follows®:

Message
No. Message
1 MAIN S1
2 MAIN S2
3 MAIN S3
4 MAIN S4
5 MAIN S5
6 MAIN S6
7 ASSEMBLY ERROR
8 MAIN S8
9 MAIN S9
10 GETCHA4
11 ASSEMBLY ERROR
12 REACHED FLAG
IN NAMEXW
PRIOR TO END
INSTRUCTION
13 FLAG NOT SET
IN NAMEXW AT
END INSTRUC-
TION
14 NAME CHECK
CHARACTERS
DO NOT COM-
PARE
15 THE OUTPUT FOR
THIS INSTRUC-
TION IS UNDE-
TERMINED
16%# XXXXXXXCODE
ERR
17 RDR NEEDS ATTN
18 UNORDER
19 SYMBOL TABLE
INCORRECT
21 MAIN 1
22 MAIN 2
23 MAIN 3
24 MAIN 4
25 MAIN 5
26 MAIN 6
[

Meaning

An improper primary op has been
specified.

An improper secondary op has been
specified.

An entry mode has been specified with
a non-DD pseudo-op.

More than one secondary op has been
specified.

More than one dds has been specified.

This symbol is multiple defined.

There is an error in the assembly
process.

The internal VLE table buffer has
been exceeded.

The internal MSYTE buffer has been
exceeded.

The internal BSYST buffer is now full.

There is an error in the assembly
process.

Output has received the flag in the
index word, NAMEXW, before re-
ceiving the instruction, END.

Output has received the instruction,
END, but the flag in index word,
NAMEXW, has not been set.

The name check characters do not
compare.

The output for this DD instruction is
undetermined.

I/0 code specified is not compatible
with I/O unit specified.

Card hopper has been emptied with-
out STRAP II reaching the instruc-
tion, END.

A symbol table entry has been made
unordered.

There is an error in the assembly
process.

The unit begins with an improper
character.

There is more than one leading $ on
this unit.

An illegal entry mode has been speci-
fied for a DD.

The entry mode of the DD has not
been closed by a right parenthesis.

The secondary op has not been closed
by a right parenthesis.

This op should not have a data de-
scription.

The messages will be modified at a later date to become more meaning-
ful and descriptive of the error situation.

@2 INPUT CODE ERR-Input code specified is not compatible with input
unit specified.
BINOUT CODE ERR—OQOutput code specified is not compatible with
output unit specified.

LIST CODE ERR—Output code specified is not compatible with output
unit specified.

54

M 7030

Message
No.

27
28
29
30

31

39
40

41

46
48

49

50

51

52

33

54

56

57

58
59

60

Message

MAIN 7

MAIN 8

MAIN 9

MAIN

MAIN

MAIN
MAIN
MAIN

MAIN
MAIN

MAIN
MAIN

MAIN

MAIN :2

EM21

MAIN

EM23

MAIN

MAIN

10

11

22

24

25

MAIN 26

EM

EM

EM

EM

EM

EM

EM

EM

EM

28

29

30

31

32

33

34

35

36

MAIN 37

MAIN 38

MAIN 39

MAIN 40

Meaning

The data description has not been
closed by a right parenthesis.

The field length of the data descrip-
tion is greater than 64.

The byte size of the data description
is greater than 8.

A bit style number has been specified
in the data description.

The negative field length or byte size
has been complemented.

There are too many fields in this unit.

This unit should not have a name.

This instruction has been assigned a
data description.

This SYN does not have a name.

An address field has not been speci-
fied with the SYN.

The value of a DD was unattainable.

A data description has not been speci-
fied with the DR.

A character in the D field of a DD is

illegal under the radix specified.

More than one point has been used in
the D field of the numeric DD.

Too many characters have been speci-
fied for a symbolic address.

More than one E has been used in the
D field of a numeric DD.

More than one $ has been used before
the system symbol.

The multiple dimensions have not
been enclosed in parentheses.

The exponent specified on a numeric
DD is out of range.

The dimension has not been closed
by a right parenthesis.

The system symbol specified is non-
existent.

An illegal character has been specified
in the level indication of the UN-
TAIL psuedo-op.

The numeric level of untailing is
greater than the current level of
tailing.

A null symbolic tail has been speci-
fied.

The level indication of the TAIL
pseudo-op. has been closed by a
right parenthesis.

An illegal character has been specified
in the level indication of the TAIL
pseudo-op.

An illegal character has been used in
the symbolic tail.

A number has been used which is not
less than the radix specified.

An illegal character has been used in
the address field of the PUNSYM.
More than one parenthetical entry has
been specified on the DD or more
than one radix has been specified

on the DD.

GETFLD has detected an M field er-
ror.

There is an inappropriate character
string in the coded expression.

A parenthetical entry is not allowed
here.

Message
No.
61
62

63

64

66

67

68

69

70

71

86
87
88
89
90

91

41

42

43

44

45

46

47

48

49

50

Message

TRUNCATION IN
INDEX VALUE

INDEX IN
WRONG PLACE.
IT IS IGNORED

SUBSCRIPT WRIT-
TEN IN BIT-
STYLE

CAN’T SUBSCRIPT
CONSTANT. TRY
INDEX.

SUBSCRIPT OR
INDEX INCOR-
RECT

CAN’T SUBSCRIPT
SYMBOL WITH
NO DDS

ONE SUBS. TOO
MANY. LAST
USED AS XR

TOO MANY SUBS.
EXTRAS IG-
NORED

TOO FEW SUBS.
OTHERS TAKEN
AS ZERO

DIVISION BY
ZERO. DIVISOR
IGNORED

GETCHA1

GETCHA2

GETCHA3

GETFLD

MAIN 41

MQDALF1

MQDALF2

VALUE 1

MIOD 1

MIOD 2
MIOD 3

MIOD 4

EXT 1
EXT 2

GP ERR
MAIN 81
REMSEM1
REMSEM2
ZERO DD
HIEX

MQDALPX

Meaning

The index address in the J or in the T
field is larger than the instruction
field allows.

An index has been specified in the
wrong place.

A point has been used in a subscript.

A subscript has been specified with a
constant.

Either an incorrect subscript or index
has been specified.

A subscript has been specified with a
symbol that does not have a data
description.

An extra subscript has been specified.

Too many subscripts have been speci-
fied.

The last has been used as an index,

Too few subscripts have been speci-
fied.

Other subscripts have been taken as
zero,

A zero divisor has been specified.

A non IBM card code character has
been specified on the input.

An illegal character is in the first col-
umn,

An illegal character is in the name
field.

(.0) has been interpreted as a paren-
thetical integer entry.

The symbol is too long to accept the
specified tail.

The byte size should equal 12 on this
DD.

The byte size should equal 8 on this
DD.

A combination of bit and integer val-
ues have been specified where only
an integer value is allowed.

There is an illegal sequence of MCP
instructions.

The instruction should have a name.

The address of the IOD table of exits
is null.

This MCP instruction should not have
a name,

A parenthetical integer entry has been
specified on a parameter of the
EXT pseudo-op.

A parameter of the EXT pseudo-op is
not followed by the correct parti-
tion character.

A parenthetical integer entry is not al-
lowed.

A parenthetical integer entry has been
specified on the statement of a DD.

A bit style number has been used to
reference error.

Value of error message to be sup-
pressed or restored is not known.

A zero base has been specified in the
DD.

Exponent in the DD is greater than
2181,

The alphabetic DD was not termi-
nated by the specified terminating
character.

Message
No.

97
98
99
100
101
102
103
104

105

107
108
109

110
111

113

114

115

116

117

118

119

120

121

122

123
124

125

126

127

Message

DEC 59
DEC 60
DEC 61
DEC 62
DEC 63
DEC 64
DEC 65
DEC 66

DEC 67

DEC 69
DEC 70
DEC 71

PASS2 1
PASS2 2

Meaning

A field length greater than 64 has
been specified.

A byte size greater than 8 has been
specified.

A non-allowed bit style number has
been specified.

A negative field has been comple-
mented.

The mode specified is inconsistent
with the op.

No mode has been specified.

There are too many fields.

There is an error in the parenthetical
integer entry.

The negative parenthetical integer
entry specified has been comple-
mented.

A non-allowed bit style number has
been specified.

Negative parameters have been speci-
fied with the extract pseudo-op.

A parameter > 64 has been specified
with the extract pseudo-op.

An address <C 41.0 has been specified.

There is an error in the dd of a SYN
or of a DDI.

NEGATIVE FIELD The negative field specified has been

HAS BEEN COM-

PLEMENTED
INDEX FIELD

NOT ALLOWED

ADDRESS FIELD
HAS BEEN
TRUNCATED

ONLY K FIELD
ALLOWED

ADDRESS IN-
CLUDES BITS
NOT NORMAL
IN OP

SLC CONTAINS
AN INTEGER

BIT STYLE AD-

DRESS NOT AL-

LOWED
BIT ADDRESSED
TWICE IN LVS
OR INDMK
INSTRUCTION

NOT ALLOWED

IN EXT
MORE THAN 1
LOC. CTR.

DEP. SYMBOL
SYMBOL ON

PUNSYM NOT

IN PROGRAM
SIMAD

MISMUL

CANNOT EVALU-
ATE DDI

INCONSISTENCY
IN EXT
PARAMETERS

CNTRCHK

complemented.

An index field is not allowed on this
instruction,

The address specified contains too
many bits to be assembled in this
instruction.

Only a K field is allowed.

The address field or fields of this in-
struction contains bits which shall
be ignored in the actual execution
of the instruction.

A point has not been used in the ad-
dress field of the SLC pseudo-op.

Bit style address is not allowed.

A bit has been addressed more than
once in the address field of the LVS
or the INDMK instruction.

This is an illegal statement for the
EXT pseudo-op.

Address field contains more than one
location counter symbol which may
cause trouble in relocation.

A symbol specified in the address
field of the PUNSYM pseudo-op is
not in the program.

A field length larger than 24 has been
specified on a VFL immediate op.
This is a multi-defined symbol with

no contradictions.

There is a too complicated data de-
scription for the evaluation of a
DDI.

JLP-L | +1=N

There is an error in the assembly
process.

Appendix 55

IBM Technical Newsletter System 7030
Re: FormNo. ~ €28-6129
This Newsletter No. N28-1081
Date April 15, 1963

Previous Newsletter Nos. None

ADDITIONS AND CORRECTIONS TO STRAP II REFERENCE MANUAL

In order to inform STRAP II users of all additions and corrections since the release of
the STRAP manual, this bulletin covers the following:
1. System Requirements
2. New Pseudo-Operations
3. Relocatable Output
a. Special Relocatable Pseudo-Operations
b. Relocation Bits
c. Relocatable Card Formats
d. Coding Example
Other General Changes
Coding Suggestions
Revised Appendix B - Pseudo-Operations List
Additions to Appendix C - Instruction Mnemonics
Revised Appendix D - Error Message List
Revised Appendix E - Output Listing
10. Errata

© 00 ~3 o OB

SYSTEM REQUIREMENTS

Since STRAP II currently functions as a problem program under MCP control, the
system requirements have been changed; the combined MCP-STRAP system requires
core storage of at least 32K, a disk, console, and MCP system input and output.

NEW PSEUDO-OPERATIONS

Pseudo-operations not described in the STRAP reference manual.

1. DUPLI - Duplicate cards

DUPLI, X, Y
The DUPLI pseudo-op will cause STRAP to repeat the next X cards Y times. Note
that X refers to card images, not individual instructions; where several instructions
appear on the same card, they are all duplicated. If a name appears on any card to be
duplicated, it will not be included in the duplicated cards; however, a comment
character in the name field will be included. X and Y must both be absolute numbers.

2. REPEAT - Duplicate cards
REPEAT is an alternate mnemonic for DUPLI.

International Business Machines Corp., Advanced Systems Programming Dept., Poughkeepsie, N.Y .

PRINTED IN U.S.A. N28-1081 (C28-6129) Page 1l of 20

3. PRNTALL - Print all symbols

PRNTALL
If this pseudo-operation is specified anywhere in the program, a list of all symbols will
be printed at the end of the program, with the address at which they were defined.

4, NOSEQ - No sequence numbers in binary output

NOSEQ
This pseudo-operation will cause immediate punching of any data remaining in the punch
buffer, and eliminate punching the sequence number in all binary cards produced there-
after until the end of the program or a RESEQ.

5. RESEQ - Renumber sequence numbers in binary output

RESEQ
This pseudo-operation will cause immediate punching of any data remaining in the punch
buffer, and begin punching sequence numbers starting with 1 in all subsequent binary
cards produced thereafter until the end of the program or a NOSEQ.

The next two pseudo-ops are not recent additions, but were not included in the STRAP
manual.

6. INDMK - Create one word of binary output

INDMK, A, B, C, D,........
This pseudo-operation provides a convenient way of producing one full word of binary
output beginning at a full word address, with a bit pattern as specified in the address
field, bits 0-63. These integers may also be specified symbolically if desired. A
‘sample usage is the creation-of an indicator mask, using the mnemonics for the desired
bits in the address field of the INDMK, e.g., INDMK, $ZM, $EXE, $IF.

7. PRNNOR - Print Normally
PRNNOR
This pseudo-operation restores printing in double-spaced format after a NOPRNT or
PRNS.
RELOCATABLE OUTPUT

Special Relocatable Pseudo-Operations

1. PUNREL - Punch relocatable binary output

PUNREL
This pseudo-operation puts STRAP in relocatable mode, and must be specified before
any other relocatable pseudo-operations; they will be ignored by STRAP unless it has
already received a PUNREL. An assembly can be specified to produce partially
relocatable and partially absolute output, since as in the case of all other punch modes,
STRAP produces output in accordance with the current punch mode request.

2. ORIGIN - Punch origin card
ORIGIN, N
This command produces a special origin card to be used in execution by the loader. N

may be either absolute or symbolic.

N28-1081 (C28-6129) Page 2 of 20

3. PUNCDC - Punch common definition card

PUNCDC
This command produces one or more special common definition cards for the loader,
containing common names and sizes derived from the COMBLOCK statements immedi-
ately following PUNCDC.

4. COMBLOCK - Common block definition

A COMBLOCK, N
The name A may not exceed 8 characters. The address N refers to the size of the
common block desired, and may be either absolute or symbolic. If there are more
than 9 COMBLOCK statements, one or more additional cards will be punched in the
same format.

5. PUNFPC - Punch FORTRAN program card

PUNFPC, S, C
This command produces a FORTRAN program card for the loader. The field S defines
the program size, and C the blank common size. Either field may be absolute or sym-
bolic. If either is not a full word, STRAP will round it up to the next higher full word.
The card produced will also contain program entry points and addresses derived from
the ENTER statements immediately following PUNFPC.

6. ENTER - Define entry point

A ENTER, B
The ENTER statements provide information about the program entry points to be
incorporated into the FORTRAN program card. The name A, if used, may not exceed.
8 characters. If it is left blank, the corresponding entry point in the FORTRAN pro-
gram card will contain 8 A8 blanks. B refers to an entry point within the program. If
there are more than 9 ENTER statements, one or more additional program cards will
be punched in the same format except that the program size and blank common size
fields will be left blank.

7. SLCRCOM - Set location counter relative to common

SLCRCOM, B
This pseudo-operation resets the location counter to zero, and includes the number of
the named common B on the resulting relocatable data card, so that the BSS loader may
properly position the data relative to common B. To insure that no data will be loaded
into blank common, STRAP does not punch an output card where the address field is left
blank following an SLCRCOM.

8. FEND - FORTRAN end card

FEND
Either END or FEND may terminate a FORTRAN program or subprogram. If FEND is
used, STRAP will produce a FORTRAN branch card. If END is specified, no branch

card will be punched.

N28-1081 (C28-6129) Page 3 of 20

Relocation Bits

A set of relocation bits is built up by STRAP describing the relocation characteristics
of each half word on a binary instruction card. These relocation bits are punched
consecutively following the final half word of data on the card, as determined by the bit
count.

The relocation bit scheme is defined as follows:

0 No relocation

1 0 Relocation

1 0 0 .. First 18 bits (address)
1 01 .. Last 18 bits (refill)

1 0.. 0 As lower address

1 0. 1 As upper address

1 0 . 1 0 Blank common

1 0 . 1 1 i Named common

i is the number of the named common, the length of which is
determined by the number of named commons. The second
bit is not presently being used.

Relocatable Card Formats

ORIGIN CARD:

Column 1 : Hollerith O (11, 6 punches)
2~ 9: Octal address XXXXXX.X
10 - 72: Unused

COMMON DEFINITION CARD:

e = te.
o <§t:2 QE :ccross
> E H=A %g the
E:o n [=Ne) car
= s ! <! n S a
= < n)
7 S| B 3 z & 8 z
=zl @&l a 5 < © 13
o B8 & = =
5] =) =7 =
a8 & o/ 07
=Hlwm| O j} O/ O
/ 7
2 3 4 5 8 9 13 14 16 20 21

N28-1081 (C28-6129) Page 4 of 20

FORTRAN PROGRAM CARD:

4)
=
oo & :
19 <@ < etc.
ot) Z 5 a4 across
5 < Pl A Z e
= m[O E6° |Ba@ Se) A card
6| |2 N5 RA&! |zg| BA |z
Z — 0 —y 0w
2] >3 aM B)
@ S| © 2< Ao * A
7 Ol P (O ~ < S [<
AREIE EE o Z |
::Owg':’ K w M &
ola|2 03 E £
e EEIEEE Z Z/
B nlo|o|a<m = m/
9 /|

1 2 3 4 5 67 89 13 14 16 20 21 23
Columns 6-8 are blank on any continuation program cards.

RELOCATABLE BINARY INSTRUCTION CARD:

/

Instructions only.
No data.
5 ~
=) (Eventually followed
g by relocation bits.)
=
z
=
7| |8|5 z 9 - 171
2123 = |8
2|99 § |»
Q <l [— =2
9 |B[(m|O| @ O |B
1 2 3 4 56 72829 71

N28-1081 (C28-6129) Page 5 of 20

RELOCATABLE BINARY DATA CARD:

/7 No relocation bits on this
/ B/ card.

_é Loading Base (column 10)
0-Program Data
1-1st Named Common

£ 2-2nd Named Common
g Binary ete.
ﬁ 8 Data Secondary Bit Count
g [(columns 9-10)
6 D A B 11-71 Bits to be zeroed/
E s e E é skipped before/after
7 0| g < |o loading as determined
21218 =z | £ |& from 5.0, 5.1
8 8, 8 Ol & 8 g 5.0 O0-skip 1-zero
AT R (9 5.1 O-before 1-after
o |2l@ [C|B| © | @ [A4
1 2 3 456 7 8 9 10 11 71
FORTRAN BRANCH CARD:
A
- 72
5 aut 5 7
&
8 = Unused
=)
Zz
|| &
7 (O o]
Z | m
m | &
8 5|0
2E
9 E % &}
1 2 3 4 5

All of these card formats include the ID field of 73-80 if a PUNID has been specified.

N28-1081 (C28-6129) Page 6 of 20

Coding Example

PRNID, AN EXAMPLE @
PUNID, EXAMPLE @

PUNREL @

PUNFPC, FINIS, COMLAST @

MAIN ENTER, BEGIN @
PUNCDC @
comt COMBLOCK, 100 @
com2 COMBLOCK, 50 @
W, , 1@
JOE (AX)DD(BU), PROGRAM2X @
BEGIN LINK; B, JOE @
B, SMCP @
, $EOJ @
FINIS DR(N), 0 @
SLCRCOM @
A DR(N), 50 @
COMLAST DR(N), 0 @
SLCRCOM, COM! @
B DD(N), $PI @
c DR(N), 50 @
SLCRCOM, COM2 @
D DRZ(N), 10 @
FEND @

OTHER GENERAL CHANGES

PUT IN RELOCATABLE MODE
PUNCH FORTRAN PROGRAM CARD
MAIN ENTRY POINT

PUNCH COMMON DEFINITION CARD
FIRST NAMED COMMON

SECOND NAMED COMMON

LENGTH OF TRANSFER VECTOR
T.V. TO PROGRAM2

FIRST EXECUTABLE INSTRUCTION

END OF PROGRAM
RELATIVE TO BLANK COMMON

END OF BLANK COMMON
RELATIVE TO NAMED COMMON1
DATA TO BE PLACED IN THE COMMON BLOCK

RELATIVE TO NAMED COMMON?2

The current version of STRAP II requires that the END (or FEND) statement be
punched in columns 10-12 (10-13 for FEND).

When assembling a FORTRAN program, STRAP produces a type card as follows:
B TYPE, GO, FORTRAN

On discovery of any program error during assembly, STRAP turns on for exami-
nation and disposition by any subsequent processor one of three bits in the com-
munication record as follows:

7.417¢: For undefined or multiply defined symbols or contagious errors.
7.421p: For all serious error messages (see revised Appendix D).
7.437y: For all other error messages.

In addition, since it would be of questionable value to execute the GO phase of a
COMPILGO assembly containing serious errors, STRAP sets on the REJECT bit
in the communication record whenever it discovers either of the first two types of
errors in a COMPILGO assembly with STRAP as the last member of the chain.
An error message is printed on the system output, and MCP will reject the GO
portion of the job.

With reference to multiply defined symbols, STRAP now prints the MULTI error
flag on the output listing line immediately preceding both definitions. In addition,
the CONTAG flag is printed immediately preceding an instruction which references
a multiply defined symbol.

N28-1081 (C28-6129) Page 7 of 20

The MCP pseudo-operations are included in the STRAP system symbol table, and
may be assembled as with any other system symbol, by preceding the reference
with a $; e.g., SWAIT, $ABEOJ.

The output listing format has been somewhat changed, and a revised version of
page 19 in the STRAP manual is included in Appendix E.

CODING SUGGESTIONS

Three simple coding hints are suggested, which will increase assembly speed.

1,

Pack as many instructions as will fit on a card.

If there is only one instruction on a card or blank columns following the last
instruction, put a comment mark (4-8 punch) immediately after the last character
of the final instruction.

Use an absolute number instead of a system symbol in a J field only.
LX, 5, BOX @ is faster than
LX, $5, BOX @ or
LX, $X5, BOX @

N28-1081 (C28-6129) Page 8 of 20

REVISED APPENDIX B - Pseudo-Operation List

The following information should replace Appendix B:

Additional Instructions and Pseudo-Ops Accepted as STRAP II PRIMARY OPERATIONS

Pseudo-Ops

COMBLOCK Common Block Definition

CNOP Conditional No Operation

DDI Data Definition Immediate

DR Data Reservation

DRZ Data Reservation and Set to Zero

DUPLI Duplicate Input

END End

ENTER Define Entry Point

EXT Extract

FEND FORTRAN End

LINK Link

NOPRNT No Printing of Listing

NOPUN Binary Output Suppressed, Both Cards and Disk
NOSEQ No Sequence Number to be Punched in Binary Card(s)
ORIGIN Origin

PRND Print Double-Spaced

PRNID Print ID

PRNNOR Print Normally

PRNS Print Single-Spaced

PRNTALL Print All Symbol(s) Used in Program
PUNALL Punch SYN Card(s) for All Symbol(s)
PUNCDC Punch Common Definition Card

PUNFPC Punch FORTRAN Program Card
PUNFUL Punch Full Binary Card(s)

PUNID Punch ID in Binary Card(s)

PUNNOR Punch Normally

PUNORG Punch Origin Binary Card(s)

PUNREL Punch Relocatable Binary Card(s)
PUNSYM Punch Syn Symbolic Card(s)

REM Restore Error Message

REPEAT Duplicate Input

RESEQ Restore Punching Sequence Number in Binary Card(s)
SEM Suppress Error Message

SKIP Skip paper

SLC Set Location Counter

SLCR Set Location Counter Relative

SLCRCOM Set Location Counter Relative to Common
SPNUS Suppress Printing Not Used Symbol List
SYN Synonym

N28-1081 (C28-6129) Page 9 of 20

Pseudo-Ops

TAIL
TLB
UNTAIL

General Instructions

CF
CwW
DD
INDMK
RF
VF
XW

Input-Output Instructions: OP, Ay(I) where A, (I) represents a channel address and the

Tail
Terminate Loading and Branch
Untail
MCP Instructions
Count Field 10D
Control Word REEL

Data Definition
Indicator Mask
Refill Field
Value Field
Index Word

BS
BSSEOP
BSFL
BSFLSEOP
ECC
ECCSEOP
ERG
ERGSEOQOP
EVEN
EVENSEOP
GONG
GONGSEOP
HD
HDSEOP
KLN
LD
LDSEOP
NOECC
ODD
ODDSEOP
ODDECC
ODDNEC
RLF
RLFSEOP
RLN
RLNSEOP
RWDUNL

instruction,
Backspace
Backspace, Suppress End of Operation Interrupt
Backspace File
ECC (and odd parity for tape)
Erase Gap
Even Parity No ECC (tape only)
Sound Gong

High Density

Check Light On
Low Density

No ECC, EVEN Parity (tape only)
Odd Parity, No ECC

Odd Parity, ECC
0Odd Parity, No ECC
Reserved Light Off
Reserved Light On

Rewind and Unload

N28-1081 (C28-6129) Page 10 of 20

unit affected is the last unit selected by a LOC

SP Space

SPSEOP
SPFL Space File

SPFLSEOP
TILF Tape Indicator Light Off
UNLOAD Unload
WEF Write End-of-File

WEFSEOP

SECONDARY OPERATIONS

CCR Chain Counts within Record
CD Count Disregarding Record
CDSC Count Disregarding Record, Skip, and Chain
CR Count within Record
SCCR Skip, Chain Counts within Record
SCR Skip
SCD Skip, Count Disregarding Record
SCDSC Skip, Count Disregarding Record, Skip, and Chain

N28-1081 (C28-6129) Page 11 of 20

ADDITIONS TO APPENDIX C - Instruction Mnemonics

The following additional mnemonics should be included in Appendix C:

Floating Point

Variable Field
Length

Input-Output

New Instruction

Under these

headings

Add

Add to Memory

Add to Fraction

Add to Exponent

Double Add

Double Add to Magnitude
Add Magnitude to Memory

Add

Add to Magnitude
Multiply

Divide

Load

Load with Flag Bits
Load Factor

Load Transit and Set
Add One to Memory
Compare

Compare for Range
Compare If Equal
Compare Field
Compare Field for Range
Compare Field If Equal
Connect to Accumulator
Connect for Test
Pseudo-Connectives
Load Converted

Load Transit Converted

Card Runout
Rewind

Store Multiply Register

Load Multiply Register

include

+N, -N, +NA, -NA, -A
M+N, M-N, M+NA, M-NA
F+N, F-N, F+NA, F-NA
E+N, E-N, E+NA, E-NA
D+N, D-N, D+NA, D-NA
D+NMG, D-NMG
M+NMG, M-NMG

+1

+NMG, -NMG, +MGA, +MGI
*], *NI

/1, /NI

LI, LNI

LNFI, LWFNI
LFTI, LFTNI
LTRSI, LTRSNI
M+N1, M-N1
KI, KNI

KRI, KRNI
KEI, KENI
KFI, KFNI
KFRI, KFRNI
KFEI, KFENI
CIX; X, XX

CTIX %(§(%(

17277374
LFI

LCVI, LCVNI
LTRCVI, LTRCVNI

CRDRUN (SEOP)
REW (SEOP)

STM
STMN
STMNA
STMA
LMR
LMRN
LMRNA
LMRNI
LMRA
LMRI

N28-1081 (C28-6129) Page 12 of 20

REVISED APPENDIX D - Error Message List

The following list of STRAP error messages should replace Appendix D. The number
at the left of the message may be used if the programmer wishes to SEM any of the
messages. Messages 1-18 are considered as serious error messages by STRAP, and
it is strongly recommended that they should not be SEM'ed.

The error list is printed at the end of the listing, in sequence by page and line
number. On the listing itself an extra asterisk is printed following the line number and
asterisk on all lines containing an error.

ILLEGAL OPERATION CODE
ILLEGAL SECONDARY OP CODE
ENTRY MODE WITH NON-DD OPERATION
MORE THAN ONE SECONDARY OPERATION
MORE THAN ONE DDS
PASS 2A AND 2B LOCATION COUNTER DOES NOT AGREE
ASSEMBLY ERROR
SYMBOL TABLE EXCEEDED
SYMBOL BUFFER EXCEEDED
STATEMENT BUFFER EXCEEDED
SPARE
REACHED END OF NAME FILE BEFORE END INSTRUCTION
MORE NAMES IN NAME FILE AFTER END INSTRUCTION
ERROR ON NAME SEQUENCE
SPARE
SPARE
SPARE
SYMBOL TABLE ENTRY UNORDERED
- 28 SPARE MESSAGES
IMPROPER 1ST CHAR
MORE THAN ONE $
ILLEGAL ENTRY MODE
ENTRY MODE NOT CLOSED BY RIGHT PAREN
2NDARY OP NOT CLOSED BY RIGHT PAREN
THIS OP SHOULD NOT HAVE DDS
DDS NOT CLOSED BY RT. PAREN
FIELD LENGTH GREATER THAN 64
BYTE SIZE GREATER THAN 8
BIT STYLE NO. IN DDS
NEG. FL OR BS HAS BEEN COMPLEMENTED
EXTRA FIELDS
SHOULD HAVE NO NAME
STRAP ASSIGNED DDS
SYN WITHOUT A NAME
SYN WITHOUT AN ADDRESS FIELD
UNATTAINABLE VALUE
DR OR DD WITHOUT DDS
CHAR ILLEGAL IN RADIX SPEC.
MORE THAN ONE POINT
SYMBOL IS TOO LONG
MORE THAN ONE E IN NUM. DD
MORE THAN 1 $ IN SYSTEM SYM.
MULTIPLE DIMENSIONS NOT IN PAREN

O 0o N U bW =

»b-h.hSwwwwwwwwwwwt—uwn—n—-n—n—»un—
WN = VoONOOULLEWNROWLVLWLVLONOGO UV LAEWNRDO

SL8EE8&&R

N28-1081 (C28-6129) Page 13 of 20

53 VALUE ROUNDED TO FULL WORD

54 DIMENSION NOT CLOSED BY RIGHT PAREN
55 NO COMMA AFTER PUNID
56 NON-EXISTENT SYSTEM SYMBOL
57 PSEUDO LOC. CTR. TOO HIGH
58 UNTAIL LEVEL MORE THAN TAIL
59 NULL TAIL
60 TAIL LEVEL NOT CLOSED BY RIGHT PAREN
61 ILLEGAL TAIL LEVEL CHARACTER
62 ILLEGAL CHARACTER IN TAIL
63 DIGIT INCORRECT FOR RADIX
64 ILLEGAL CHARACTER IN PUNSYM
65 MORE THAN 1 RADIX OR PAREN, ENTRY
66 SYNTAX ERROR
67 INAPPROPRIATE CHAR,
68 GP ERROR
69 TRUNCATION IN INDEX VALUE
70 INDEX IN WRONG PLACE, IT IS IGNORED
71 SUBSCRIPT WRITTEN AS BIT
72 CANT SUBSCRIPT CONSTANT, TRY INDEX
73 SUBSCRIPT OR INDEX INCORRECT
74 CANNOT SUBSCRIPT SYMBOL WITH NO DDS
75 1 SUBS. TOO MANY, LAST USED AS INDEX
76 TOO MANY SUBSCRIPTS, EXTRAS IGNORED
77 TOO FEW SUBSCRIPTS, OTHER TAKEN 0
78 DIVISION BY ZERO, DIVISOR IGNORED
79 INCORRECT CARD CODE CHAR.
80 ILLEGAL CHAR. IN FIRST COL.
81 ILLEGAL CHAR, IN NAME FIELD
82 (.0) HAS BEEN INTERPRETED AS PAREN INTEGER
83 SYMBOL TOO LONG FOR SPECIFIED TAIL
84 CC ENTRY MODE WITHOUT BS 12
85 BS NOT 8
86 ONLY INTEGER VALUES ALLOWED
87 THE FL IS GREATER THAN 64
88 BYTE SIZE GREATER THAN 8
89 BIT TYPE NOT ALLOW.
90 NEG. FIELD HAS BEEN COMPLEMENTED
91 MODE INCONSISTENT WITH OP
92 NO MODE
93 TOO MANY FIELDS
94 ERROR IN GP
95 NEGATIVE GP HAS BEEN COMPLEMENTED
96 NO FIELDS, STATEMENT IGNORED
97 BIT TYPE UNUSUAL
98 NEGATIVE PARAMETERS ON EXT
99 PARAMETER GREATER THAN 64
100 ADDR LESS THAN 33.
101 ERR IN DDS
102 ILLEGAL SEQ. OF MCP CARDS
103 10D CARD SHOULD HAVE NAME
104 1/O TBL OF EXITS ADDR NULL
105 REEL CARD DOESNT NEED NAME
106 MISSING FIELD
107 EXT NOT FOLLOWED BY CORRECT PARTITION CHAR
108 GP IS NOT ALLOWED

N28-1081 (C28-6129) Page 14 of 20

109 RADIX SPECIFIED AT THE END OF A DD

110 BIT STYLE NUMBER USED TO REFER. ERR

111 ERR MESSAGE SPECIFIED IS UNKNOWN

112 0 BASE IN DD

113 EXP. NOT IN RANGE

114 NEGATIVE FIELD HAS BEEN COMP.

115 INDEX NOT ALLOWED

116 ADDRESS FIELD HAS BEEN TRUNCATED

117 ONLY K FIELD ALLOW.

118 ADDR INCLUDES BITS NOT NORMAL IN OP

119 SLC HAS AN INTEGER

120 BIT TYPE ADDR UNUSUAL HERE

121 BIT ADDRESSED TWICE IN LVS OR INDMK

122 PSEUDO-OP SPEC. IN EXT--ZEROES SUPPLIED

123 MORE THAN 1 LOC. CTR. DEP, SYMBOL

124 SYM ON PUNSYM NOT IN PROG.

125 NO TERMINATING CHARACTER

126 FORCED COMMENT CARD

127 PUNID IN PUNFUL SEQUENCE--STATE. IGNORED
128 MULTIPLY ASSUMED

129 OP OR SS CHANGED INTO LEGAL MNEMONICS

130 FIELD LENGTH MORE THAN 24

131 MULT, DEFINED SYM WITH NO CONTRADICTION
132 CANNOT EVALUATE DDI

133 INCONSISTENCY IN EXT PARAMETERS

134 PSEUDO LOC. COUNTER CHECK

135 BIT ADDR IN DR(Z)

136 RELOCATABLE PSEUDO-OP, NOT IN PUNREL MODE
137 COMBLOCK STATEMENT WHEN NOT IN PUNCDC MODE
138 ENTER STATEMENT, NOT IN PUNFPC MODE

139 NAME LONGER THAN 8 CH. ON COMBLOCK OR ENTER
140 NO FIELDS ON RELOCATABLE STATEMENT

141 RELOCATABLE STATEMENT NEEDS A NAME

142 COMMON NAME UNDEFINED

143 EXIT ADDR IS NULL

144 NO B ON IOD

145 FIELD IS ZERO

146 REPEAT PSEUDO-OP WITHIN REPEAT BLOCK--IGNORED
147 PARAMETER EXCEEDS MAXIMUM ALLOWED

148 REPEAT PSEUDO-OP ILLEGAL HERE

149 SPECIAL SYSTEM SYMBOL IN NON DD OP

150 MISSING COMMA

N28-1081 (C28-6129) Page 15 of 20

0z Jo 9T @8ed (6219-82D) T80T-82N

TIME CLOCK €C0005162 PUNTU

LiNE

LOCATION

CCO100.00 LUWER MEMORY RUUND

CCO115.00 UPPER MEMORY BOUND

i
e
s
4n
s
En
i»
En
S
1C»
1=
12+
12»
14w
15»
16
Lix
18+«
1S#
2Cw
21
22+
23
24w
25#%

0C010C.00

017777.00+
0CC100.00
00U10C.40
00C101.40
0CC102.40
00C103.00
000103.40
000104.00
000104.40
000105.40

000106.40
000107.00
00C11¢.00
000Cl111.C0
00C112.00
00C113.00
00C113.20
000113.34

00C113.64

000114.14

-

*

*

*

DIST. UF 3/01 3/01

STATEMENT

SLC,64%. -

PRNS -

SYN,(8)17777.0 -

LXy 7y INDEX -

L{BU),BAKCR -
STUBU,4)(V+IC),y.8(87) ~-
BZXCZ,CHARLIE ~-

Li{N), D06 -

+(N},D0G+1. -

STIN),FOX -

L{BUy24), SOME VERY LONG NAME -
ST(BU,24),SOME OTHER LONG NAME-
WILL CARRY OVLER TO THE NcXV LINE
8y NEXT -

DU(N),28671X7,18300787 -

DR(BU)y1-

Ky LLOBRA, 46—
DR{BUy4),y 46—
(8)B0(BU,12),5703 -

SOME VERY LONG NAME

DD(BU,24),286T71

SOME OTHER LONG NAME

CARD ID
BINARY CUTPUT NANME
+000Cc00C0 NULL NEXT
C00112.16 10 ABLE
C0C113.20 80 (©€00000.20 50
C000C0.1U 87 204000.20 DO CHARLIE
000101.70 40
C0Cl07.00 60
000110.00 20
000111.00 0
000113.34 80 030000.20 59
000113.64 80 030000.20 DO
017777.10 00
0607+ 6777700000000000 +000 DGG
CC22+ 5453370000000000 +Tuv
G00001.00V FOX
000113.00+ 000 000004 000000 INDEX
G00G00.20 LEBRA
5703 BAKER
00067777
00CCQ0. 30
000100.00

DRUBUY24),1
ENDy ABLE -

PAGE NUMBER 1

LOCATION 000100

LOAD INDEX

TESTING

LONG COMMENTS THAT

3unsr1 ndinp postAdy - A XIANIAAV

ERRATA

The introduction to the STRAP manual gives alternate system requirements for running
STRAP without a disk. Since STRAP now functions as a problem program of MCP, this
is no longer possible. The current system requirements are listed in this bulletin.

column 2 - line 1l

page 1

pagel - column 2 - line 12

page 3 - column 2 - line 36

page 3 - column 2 - line 41

page 4 - column 1 - line 36

page 4 - column 1 - line 41

page 6 - column 2 - line 4

page 10 - column 2 - line 32

page 12 - column 2

page 18 - column 2 - line 43

page 18 - column 2 - line 50

not Spool Tapes
but System Input and System Output Tapes

eliminate and one new restriction on the use of
radix 16.

not BZM, ERROR($7)
but BZM, ERROR($1)

not by index register 7
but by index register 1

not BB, ONEBIT($5), FIXUP($9)
but BB, ONEBIT($5), FIXUP($1)

not ter 9.
but ter 1.

The sentence should read: The dds immediately
follows the operation mnemonic, except in pro-
gressive indexing, where it may precede or
follow the secondary operation.

not thus complied.
but thus compiled.

The diagram showing index modification of the
second half word is out of proportion. The
corrected diagram is:

FL BS | OFFSET i
35 i1 |aa 50 Instruction

I Index Value

|
|
1
t
|3 18, Field

not lines 14 and 15
but lines 15 and 16

not line 17
but line 18

N28-1081 (C28-6129) Page 17 of 20

page 19

page 20

page 20

page 20

page 20

page 21

page 22

page 22

page 23

page 23

page 23

!

column 2

column 2

column 1

column 2

column 2

column 2

column 2

column 2

column 2

column 2

line 4

line 14

line 35

line 49

line 5

line 36

line 38

line 4

line 30

line 36f.

page 23 - column 1 - line 34f.

This page is out of date. A new sample output
listing page is found in the section headed
"General Changes''.

not 19 or 20
but 20 or 21

not (see lines 11 and 12)
but (see lines 12 and 13)

not beginning of the listing
but end of the listing

Refer to the section headed "General Changes',
Item 4 for a change in treatment of MULTI error
flags.

not value 500.0
but value 1000.0

not through 72
but through 71

not 0 to 748
but 0 to 736

not data columns (5.4-7.11)
but data columns (5.4-71.11)

The sentence beginning "If no address' is
incorrect. If no address is specified on the END
or TLB, 41. 8 is used.

The format indicated is incorrect. The format
should read:

1.0-1.11 Code column (branch card -

1.8, 1.9, 1.11 punches)

2.0-2.11 Identification number (binary)
3.0-3.11 Sequence number (binary)
4.0-4.11 Checksum
5.0-5
6.0-7

.11 Not presently used
.11 24-bit transfer address

not There are only two ... and the IQS entry
mode.

but There are three entry modes that fall into
this category, the A entry mode, the IQS entry
mode, and the CC entry mode.

N28-1081 (C28-6129) Page 18 of 20

page 25

page 26

page 28

page 28

page 36

page 36

page 36

page 36

page 37

page 37

page 37

page 38

page 39

page 39

column 2

column 1

column 1

column 1

column 1

column 1

column 2

column 2

column 1

column 1

column 2

column 2

column 2

column 2

line 6

line 27

line 1

line 4

line 28

line 40

line 9f.

line 23

line 5

line 41

line 28

line 4

line 40

line 43

Eliminate the paragraph referring to a restriction
on the use of radix 16.

not or data field, is it
but or data field, it is

not division (/).
but division (/), and certain exponentiation(**¥).

not and subtractions are completed.

but and subtractions are completed. Exponenta-
tion is allowed if the integer exponent is in the
range

Integer
o718 < exponent < o+18

not M+(BU), (200.0 * 50.0).
but M+(BU), (200.0 * 50).

Additional pseudo-operations have been itemized
in this bulletin.

The following sentence should be deleted:
At the conclusion ... in the middle of one
assembly. o

not at the beginning
but at the end

The sentence should be: Punching remains
suppressed until another punch pseudo-operation
(PUNNOR, PUNFUL, PUNORG or PUNREL) is
encountered.

not columns 44-55
but columns 46-53

not As many as 256
but As many as 255

not A EXT, (I,J, COUNT) STATEMENT
but A EXT (I,J, COUNT) STATEMENT

not in statement
but in statements

not the numbers identifying
but the absolute numbers identifying

N28-1081 (C28-6129) Page 19 of 20

page 40 - column 1l - line 8

page 43

page 46

page 47f.

page 47 - column 2 - line 41

page 54f.

not suppressed.
but suppressed. Again the number of each message
must be in absolute.

Insert in its place in the list this entry:

$ INF 12 SO (infinity)

This page is not up to date. See new Appendix B
in this bulletin.

Appendix C is not up to date. Additional mnemonics
are itemized in this bulletin.

not 1.b in unchanged.
but 1.b is unchanged.

A new list of error messages is included in this
bulletin.

N28-1081 (C28-6129) Page 20 of 20

C28-6129

BV

International Business Machines Corporation
Data Processing Division
112 East Post Road, Whits Plains, New York

6219-8Z5 "V §°N v Peiviig

	000
	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	_01
	_02
	_03
	_04
	_05
	_06
	_07
	_08
	_09
	_10
	_11
	_12
	_13
	_14
	_15
	_16
	_17
	_18
	_19
	_20
	xBack

