Zec 2, (959

The Virtual Memory in the Stretch Computer
John Cocke and Harwood G. Kolsky / TR 00. 03000. 703

B

December 2, 1959 TR 00.03000. 703

THE VIRTUAL MEMORY IN THE STRETCH COMPUTER

John Cocke, IBM Research

Harwood G. Kolsky, Federal Systems Division

A paper presented at the 1959 Eastern Joint Computer Conference,
December 2, 1959, Boston, Massachusetts

Product Development Laboratory, Data Systems Division
International Business Machines Corporation, Poughkeepsie, New York

I1.

111,

Iv.

CONTENTS

hltroduction ® ®8 6 8 6 82 @ ® 6 & * o ¢ 8 ° e+ & 5 ° e 8 6 ¢ & 0 2 * o ¢ s o 1

General Descriptionof the System . . . « ¢ ¢« ¢« ¢ ¢ ¢« ¢ ¢ ¢ ¢ v o o o 2

Detailed Description of Virtual Memory Operation., 5

A.
B.
C.

General conditions to be considered, 5
Definitions, 5
Logic of the virtual memory, 9

Description of Timing Simulation Program « « « « « « . . « .23

A'
B.
Co

Some

A-
Bc
C.

Do
Eo
F,

General considerations, 23
Logic of the simulator, 24
Results of parameter studies, 25

Results of the Simulation Studies . . « « « « ¢« ¢ ¢ o o ¢« o ¢« + « + 25

Speed vs. number of levels of virtual memory, 28

Speed vs. number of main memory units, 30

Speed vs. arithmetic unit and indexing arithmetic

unit times, 30

Arithmetic unit efficiency, 30

Speed vs. concurrent input-output activity, 34

A study of branching on arithmetic results in Stretch, 36

Acknowledgements . . +« + v ¢« 4 s 4 s 4 4 e e e s e e e v e e e e e e 37

THE VIRTUAL MEMORY IN THE STRETCH COMPUTER

by John Cocke
and
Harwood G. Kolsky

I. INTRODUCTION

Early in the planning of the Stretch computer it was seen that by us-
ing the latest solid state components in sophisticated circuits it would
be possible to increase the speed of floating point arithmetic by almost
two orders of magnitude over that in existing computers. However,
there seemed to be no possibility of developing on the same time-
scale economically feasible large memories with more than a factor

of ten or perhaps twenty increase in speed. As a result, the proposed
system appeared to be in danger of being seriously memory-access
limited.

Moreover, as the speed of the floating point operations increases, a
larger and larger percentage of the computer's time is spent on '"para-
sitic operations', i.e., operations whose only function is program con-
trol and data selection. It was obvious that a radically new machine
organization was necessary in order to capitalize upon the possibilities
opened up by the high arithmetic speeds in the presence of relatively
slow memories.

At this time, a number of persons were considering the possibility of

a '"look-ahead' device in which an independent indexing arithmetic unit
would prepare the effective addresses of instructions and initiate mem-
ory references to a multiplicity of memory boxes. The data thus fetch-
ed would be held in high-speed buffer registers until needed by the
arithmetic unit. This device would serve two desirable purposes:

(1) some of the parasitic operations would be done in parallel and thus
not delay the principal calculations, and (2) several memory boxes
could be running simultaneously, giving the effect of higher memory
speed.

Since our original work on the virtual memory and simulation in 1957-58,
a large number of detailed changes have been made in the actual hard-
ware design of Stretch. These necessitated several modifications in

the simulation program to estimate their effect on the overall system
performance. In this report we are omitting many of these changes
for expository reasons, since our purpose is to describe the virtual
memory and timing simulation concepts, not to describe the Stretch
hardware exactly. The result is that the system described below em-
bodies a more general system than that found in the simulator, which
in turn is more general than that found in the actual computer.

II. GENERAL DESCRIPTION OF THE SYSTEM

The major logically-independent blocks of the Stretch computer are
shown in Figure 1. Each of the units pictured may be considered as
operating asynchronously. That is, each does its tasks as fast as possi-
bie independently of the others. In theory, each box could have its

own clocking circuits and still operate properly. In practice, for e-
conomy's sake they are all timed by the same master oscillator, but
this does not destroy their logical independence.

The bus control unit serves as a routing agent between the memories
and the various data processing units. If two or more units make a
request simultaneously the control unit assigns priorities in the follow-
ing order: (1) High-speed Exchange, (2) Basic Exchange, (3) Vir-
tual Memory, and (4) Indexing Arithmetic Unit.

The Indexing Arithmetic Unit fetches instructions, performs all necessary
indexing operations and sends the instructions to be executed to the
Virtual Memory.

The Virtual Memory fetches and receives the data required by the in-
struction and holds this data until the arithmetic unit is ready for it.
The virtual memory also performs all store operations. It holds the
data generated by the arithmetic unit or indexing arithmetic unit until
the memory to which the data must be sent is available. Thus the vir-
tual memory acts not only as a 'look-ahead' for instructions to be fed
to the arithmetic unit, but also acts as a 'look-behind'' storage buffer.

The actual design of such a 'look-ahead'' device posed a number of logical
problems, particularly in connection with conditional branches.

However, a machine organization of this complexity requires a de-
tailed timing analysis in order to determine the value of adding hard-
ware in the form of the virtual memory. This is especially true since
the sole function of the virtual memory is to increase machine speed,
by increasing the efficiency of other devices. It was also felt that the
timing analysis could not be made on the basis of a few trivial examples

*19ndurod yd3192a38 JO O13RWAYDS T HUNDII
S1INN
0/1 ANVW | 1INN
AL JIL3WHLINY
_x i ﬂ
1INN
IONVHOX3 AHOW 3N
JONVHOX3 HLINVY
G33dS HOIH IVNLYIA ONIX3aNI
sng ANOW3W
W3 W3N Waw W3aw W3anW Wan
viva viva viva viva H1SNI H1SNI

(e. g.,matrix multiply). Machine performance obtained in this fashion
can be extremely deceptive. Since a detailed timing analysis of a com-
puter of this complexity is extremely tedious to carry out by hand, it
became clear that if the job were to be done, it would be necessary to
simulate the proposed machine on another computer. This prompted
us to write the simulation program to be described later.

With the above general organization in mind, let us discuss some of
the logical problems posed by such a system. The first problem is a
result of the very concept which enables us to obtain such great bene-
fits from the stored program computer - the ability to treat instruc-
tions as data. In a system such as we have proposed there is a large
amount of simultaneous operation. For example, the indexing arith-
metic unit may be busy preparing an instruction before previous in-
structions have been completed or even started by the arithmetic unit.
One of these previous instructions may modify the instruction which is
presently being indexed. The virtual memory must recognize this
situation and allow the intervening instructions to be completed before
doing the modified instruction.

A similar problem exists with respect to ordinary data. In order to
operate several memories simultaneously, it is necessary to start
cbtaining data from these memeories before the preceding operations
have been completed. Yet, one of these operations may be a store in-
to one of the data locations. The virtual memory must make provisions
to insure that each instruction obtains the most up-to-date data as im-
plied by the order of the program.

One of the novel features of the Stretch computer is its elaborate in-
terrupt system. Under this system, whenever some unexpected occur-
rence arises, the program will be interrupted and control will pass to
a special routine which is designed to take care of the case in question,
then return control to the original program. In this situation the vir-
tual memory must have provisions to retain enough information so that
when an interrupt occurs we can resume the computation exactly where
we left off. It must be able to recognize which of the changes that have
been made in advance are not desired and should be obliterated, and
which are exact solutions that must be restored.

Another special case arises when a conditional branch on arithmetic re-
sults occurs. Here we will not know which of the two branches we

should have taken until the preceding instruction is executed. In the

case where the wrong path has been selected, the virtual memory must be
prepared to drop the intermediate results which have been computed

and pick up the correct branch in a way very similar to that of an in-
terrupt.

Summing up all these logical problems, we may state that the fundamen-
tal rule for the virtual memory is that it must make the asynchronous
and non-sequential computer give results identical to those which would
be obtained by performing the program one instruction at a time in the
order in which they are written.

III. DETAILED DESCRIPTION OF VIRTUAL MEMORY OPERATION

A. General Conditions to be Considered

The conditions which occur in the following situations must be consider-
ed in some detail:

1. The fetching of instructions by the Indexing Arithmetic Unit
(IAU).

2. The indexing of instructions and modification of Index re-
gisters.

3. The loading of the virtual memory and the setting of its

conditions by the IAU.

4. The action of the virtual memory in fetching data.
5. The action of the virtual memory in storing data.
6. The communication between the virtual memory and the

main arithmetic unit.

7. Special situations such as conditional branching on arith-
metic results, etc.

B. Definitions
Some of the terms we will use are defined as follows:
1. Operations
Operations are considered to be of three types:

(a) Bring or Fetch Type - All instructions requiring data to be
transmitted from external memory to the virtual memory.

(b)

(c)

Store Type - Instructions requiring the transmission of
data from the virtual memory to external memory or index
memory.

(Note: We consider all indexing instructions to be of the
store type, although the store may be to either ex-
ternal memory or index memory.)

Immediate Type - All operations not requiring data trans-
mission.

Virtual Memory Quantities

(a)

(b)

(c)

(d)

(e)

(£)

(2)

(h)

(1)

(3

Virtual Memory - A number of virtual memory (or look-
ahead) levels (numbered 0 to N-1).

Level of Virtual Memory - A collection of registers and
control bits. The contents of the j th level are shown in
Figure 2.

Instruction Address Register (I;) - Contains the address of
the instruction currently in the j th level.

Operation Code Register (OP;) - Contains the operation to
be performed by the arithmetic unit.

Store Bit (S:) - a one-bit trigger which indicates the level,
contains a store type instruction.

Bring Bit (Bj) - A one-bit trigger which indicates the level,
contains a fetch type instruction for which the data access
has not been started.

Forwarding Bit (Fj) - A one-bit trigger which indicates
that the j th level must transmit data to another level.

Forwarding Address (FA.) - A register which contains the
number of the level to which the data must be sent if Fj is
set.

O. K. Bit (OKJ-) - A trigger which when set indicates that
the correct data for the instruction to be executed is pres-
ent in the j th data field.

Data Field (D.) - A register which contains the operand
data for the instruction.

INSTR opP DATA COMPARE BRING
ADDR CODE ADDR BIT BIT

OK STORE FWD FWD DATA
BIT 8IT BIT ADOR WORD

V. M. LOCATION COUNTERS

COUNTER | INSTRUCTION FETCH
COUNTER 2 DATA FETCH
COUNTER 3 DATA STORE
COUNTER 4 ARITHMETIC UNIT

FIGURE 2. Virtual memory -- contents of one level.
|
&
W COUNTER C;
ovER‘“‘o
\
Py
Y / / \\l/
|
NOT o oo
0
SET
COUNTER Cgq
&
Is: C;, =C4+ N (OUTPUT 1)
I4: C) = Cq (OUTPUT 2)
2

INTERLOCKS I4 AND 1s ARE AS SHOWN, THE OTHER INTERLOCKS
ARE DONE IN A SIMILAR MANNER.

FIGURE 3. Virtual memory interlocks.

(k) Data Address (DA.) - The operand data address (already
indexed by the IAI.JI) for D

(1) Compare Bit (C.) - A trigger which if not set indicates the
address in DA. should not be included in any address com-
parisons being made.

Counters

The virtual memory is controlled by a set of counters which count
mod(N), where N is the number of virtual memory levels.

(a) Counter one (C;) - Indicates the level into which the next
instruction may be placed.

(b) Counter two (CZ) - Indicates the level from which the next
bring type instruction may be initiated.

(c) Counter three (C3) - Indicates the level from which the next
store type instruction may be initiated.

(d) Counter four (C,) - Indicates the level from which the
arithmetic unit will get its next operation and data.

Interlocks

The above counters must be interlocked in the following manner to.
assure proper sequential operation of the computer (see Figure 3):

(a) Interlock one (I)): C;= C3 + N Prevents the JAU from
placing the next operation into the level indicated by Cl
because an unexecuted store is still in the level.

(b) Interlock two (I3): C} = C3 Prevents a store from being
initiated from the level indicated by C3 because the store
has already been done.

(c) Interlock three (I3): Cj] = C, Similar to I, prevents a fetch
from being initiated.

(d) Interlock four (I4): C; = C4 Prevents the arithmetic unit
from executing an old instruction.

(e) Interlock five (Ig): €3 =C4 + N Prevents the IAU from
placing the next instruction into the level indicated by C,
because the instruction there has not been executed yet.

C. Logic of the Virtual Memory

General

There are two basic precepts which must be kept in mind to under-
stand the operation of the virtual memory:

(a) The OK bit (O,) being set in the j th level indicates that
the contents of D. is the correct data called for by DA..
All operations wi]ll be performed only under this condi-
tion, and logical decisions will be made in such a manner
as to make sure this is the case.

(b) Addresses can be compared by the IAU with every DA,
address simultaneously. DA;j is not used for any levei which
does not have its C; bit set., If a comparison exists between
a new DAj being placed in the virtual memory and an old
DAy, the compare bit Ck is turned off and the address
of level j is placed in FAy. This insures a unique mean-
ing for the comparison. If this were not done, another
instruction address DA, might compare against two levels
and thus cause an ambiguity.

Instruction Fetch Log&

Figure 4 is a flow diagram of the IAU Instruction Fetch Procedure.
The logic is as follows: If the IAU is ready to fetch another in-
struction, it compares the instruction address with all the DA:'s

of virtual memory. If there is no comparison, the instruction
fetch is initiated. If there is a comparison, the IAU must take

its instruction from the virtual memory provided the OK bit is

set; otherwise, it must wait until the OK bit is set.

Note: This procedure prevents the logical difficulty mentioned
earlier which would occur if the virtual memory contained a store
order into the instruction presently being fetched.
For example:

a STORE Address a+2

a+l LOAD M, i

at2 ADD N, i

at3 ----

v

DOES IAU WANT INST

| |
YES NO WAIT

l i i

DOES ADDRESS
COMPARE WITH VM.

| |
l YES NO
IS O.K. BIT SET IN START INST FETCH
|REGISTER WITH WHICH SET RETURN
IT COMPARES ADDRESS
J | I
NIO YES

!

TAKE INST FROM
VIRTUAL MEMORY

vy
HAS INST BEEN
RECEIVED
| T WAIT
YES NO
_’_l_ l
PROCEED TO
PROCESS

FIGURE 4. Instruction fetch procedure.

10

The store to a+2 inust be done in sequence or the old value N
would be used for the address instead of the quantity being set
by a.

3. Indexing Logic

Figure 5 shows the flow for instruction indexing. After deter-

mining that an instruction is ready to be indexed, the IAU tests whether
or not the index value is available. If it is, the indexing operation

is started, if not, the memory reference is started and the IAU

waits until the data returns before proceeding. If the index-fetch

has not been started, the IAU compares the index address against

all the data addresses in virtual memory. If none compare, the

index value is fetched normally. If one does compare, the index

fetch is held up until the OK bit is set for the data. This value

from the virtual memory is then used for indexing the instruction.

4. Logic of Putting Instructions in the Virtual Memory

(a) Figures 6,7 6A, 6B, 6C represent the logical flow for putting
instructions into the virtual memory. If the indexing arith-
metic unit has an instruction prepared for the virtual mem-
ory, it may transmit the instruction into the virtual mem-
ory if interlocks one and five dc not forbid it. These inter-
locks prohibit a new instruction from destroying an old
one which has not been executed as yet, whether an arith-
metic operation (I5) or an unexecuted stere (Ij). The hand-
ling of the instructions varies depending on whether they
are of the bring type, store type, or immediate type.

(b) The bring type, as described in Figure 6A, proceeds as
follows: If the effective data address of the instruction
compares with the DA address in some level, the in-
struction, its op code, and effective data address are load-
ed into the level marked by C;. The compare bit for level
C1 is set to one while the compare bit for the compared -
with level is set to zero. If the O.K. bit in this compared-
with level is set, meaning that the data located there is
correct, the data is transmitted directly to the C; level
and its O. K. bit is also set. If the O.K. bit is not set, we
must tag the compared-with level by setting its forwarding
bit and by putting the value of C; into its forwarding
address. The bring bit for level C. is also set to zero
since no further data fetch is required.

If the effective data address does not compare with any Vir-
tual Memory level, the instruction is put directly into

11

v §

IS THERE AN INSTRUCTION

TO BE INDEXED

|
YES NO WAIT

—p| HAS INDEX VALUE
BEEN OBTAINED

' I WAIT
Yis NO
INDEX HAS MEM. REF.
ﬁllNSTRUCTION BEEN STARTED
1 1
NO YES
L
DOES INDEX ADDRESS
COMPARE WITH AN ADDRESS
IN A VIRTUAL MEMORY

NO YES
} —
START MEMORY REFERENCE IS O. K. BIT SET IN

FOR INDEX VALUE

COMPARED WITH LEVEL | WAIT

FIGURE 5.

YES NO
* ;
OBTAIN INDEX
"FROM V M

Indexing procedure.

12

!

DOES THE INDEXING AU DOES 1, PREVENT No—p|POES 1s PREVENT

HAVE AN INST READY FOR|—YES®| OPERATION OPERATION
THE VIRTUAL MEMORY . '
T YES YES
NO 1 I WAIT I WAIT
| WAIT , !
: NO

v

WHAT TYPE OF
OPERATION IS IT

| !

BRING STORE IMMEDIATE
TYPE TYPE TYPE OPERATION

TO FIGURE TO FIGURE TO FIGURE
6A 6B 6C

FIGURE 6. Procedure for placing instructions into the virtual memory.

13

FROM FIGURE 6

DOES ADDRESS COMPARE
WITH A LEVEL DA

|
YES

v

|
NO

\

SET COMPARE BIT TO ONE IN Cj
LEVEL AND TO ZERO IN COMPARED-
WITH LEVEL.

IN THE C; LEVEL: PUT THE INSTRUC-
TION ADDRESS IN JIA PUT THE OP
CODE IN OP. PUT THE DATA ADD-
RESS IN DA. SET THE BRING BIT,
THE STORE BIT,AND THE FORWARD-

iIN THE C, LEVEL: PUT THE INSTRUC-
TION ADDRESS IN IA. PUT THE OP CODE
IN OP. PUT THE DATA ADDRESS IN DA.
SET THE BRING BIT TO ONE. SET THE
FORWARDING BIT, THE COMPARE BIT,
AND THE OK. BIT TO ZERO.

ING BIT TO ZERO.

IS O.K. BIT SET IN

COMPARED-WITH LEVEL

|]
NO YES

SET THE FORWARDING BIT TO ONE
AND PUT C, IN THE FORWARDING
ADDRESS OF THE COMPARED-WITH

SEND DATA FROM THE COMPARED-
WITH LEVEL TO D OF LEVEL C;

SET O.K. BIT OF LEVEL C, TO
LEVEL. ONE.

SET THE O.K. BIT TO ZERO IN

THE Ci LEVEL.

ADVANCE C,
TO NEXT LEVEL

l

RETURN TO TOP OF FIGURE €

FIGURE 6A. Logical conditions for bring type operations.

(c)

(d)

level Cy, its O.K. bit is set to zero, and its bring bit is
set to one, indicating that a fetch must be started.

Figure 6B shows the store type procedure. If the effective
address of the instruction does not compare with the DA
address in some level, the instruction is placed into the
level marked by C;. The store bit is set to one indicating
that a store will be required. The level's bring bit and for-
warding bit are set to zero; its compare bit is set to one.

If on the other hand the addresses do compare, the same
procedure is followed; but in addition, the compare bit in
the level compared-with is set to zero so that future com-
parisons will not use it.

The OK bit has not yet been set. It is set to one if the
operation is an index store and set to zero if it is an
ordinary store. For the ordinary store it is clear that
the OK bit should be zero since the data must come from
the arithmetic unit after the preceding instruction is exe-
cuted.

As was mentioned in the definition previously we treat all
indexing instructions as store type and place the new value
of the indexed quantity into the virtual memory. This is
done because the indexing arithmetic unit is going ahead

of the normal order of instruction execution and an inter-
ruption may occur before this indexing instruction should
have been done. In this case, the old value of the index is
still in the index register. On the other hand the indexing
arithmetic unit compares with the virtual memory and
extracts the most recent value of the index for indexing
succeeding instructions. The OK bit is set to one since the
appropriate data is in the above level. Both the new and old
index values must be carried along to give logically correct
conditions in the case of an interrupt.

A situation very similar to interrupt occurs in branches on
arithmetic results where the indexing arithmetic unit
''"guesses' which branch will be taken and proceeds with
fetching and processing the instructions on this branch,
subject to being wiped out if the guess proves to be wrong.
(See the discussion on "Wrong way Branches" below.)

Immediate type instructions are the simplest type because

they essentially carry their data with them. Figure 6C
shows the logic in this case. The instruction is placed in

15

FROM FIGURE &

DOES ADDRESS COMPARE
WITH A LEVEL DA

s o
$

SET COMPARE BIT IN
COMPARED-WITH LEVEL
70 ZERO

IN THE C, LEVEL:

PUT THE INSTRUCTION ADDRESS IN 1A, PUT THE

| OP CODE IN OF, PUT THE DATA ADDRESS IN DA.

SET THE STORE BIT TO ONE, THE BRING BIT TO

ZERO, THE FORWARDING BIT TO ZERO, AND THE
COMPARE BIT TO ONE

y

IS THE STORE YO
AN INDEX

YES NO

4

PUT THE INDEX VALUE IN SET O.K.BITTO
D OF THE C; LEVEL.SET ZERO
0.K.BIT TO ONE

———pRETURN TO TOP OF FIGURE 4

FIGURE 6B. Logical conditions for store type operations.

FROM FIGURE 6

IN THE C; LEVEL:

PUT THE INSTRUCTION ADDRESS IN 1A, PUT
THE OP CODE IN OP. PUT THE DATA ADDRESS
INTO D (NOTE THIS). SET O.K. BIT TO ONE.
SET FORWARDING BIT, THE BRING BIT,

AND STORE BIT TO ZERO. SET THE COMPARE
BIT TO ZERO (NOTE).

RETURN TO TOP OF FIGURE 6

FIGURE 6C. Logical conditions for immediate type operations.

the virtual memory level marked by C;. The address field
of the instruction is placed in the data field of C;. The OK
bit is set to one indicating the data is present. The bring
and store bits are both set to zero. The compare bit is

set to zero since the DA address field has no meaning for
immediate type ops. (The data address of the last instruc-
tion which occupied this level still remains in DA, so it has
no relation to the present D field.)

Logic of Data Fetching (See Figure 7)

When an instruction of the bring type has been placed in the virtual
memory, the data required by the instruction in general will not
be present (unless a comparison exists as was described above)
and thus the data must be obtained from core storage. The fetch
cannot be started if interlock I3 holds, which means all the fetches
corresponding to the instructions presently in the virtual memory
have been started. If a fetch is possible, the bring bit at level C,
indicates whether or not a fetch is necessary. If necessary the
fetch may be started if the memory bus and memory unit correspond-
ing to the data address are not already being used. When the fetch
is started, the bring bit for level C, is set to zero. The counter
C‘2 is then stepped forward to the next level.

Logic of Data Storing

Figure 8 shows the Data Store Logic, which is very similar to that
for data fetching just described. The only significant difference
is that the O.K. bit must be set before the operation can be started.

Logic for Placing Data into the Virtual Memory

In Figure 9, we see the logical conditions which must be satisfied
by the virtual memory. The return address which was supplied
when the fetch was started selects the level into which the data
will be placed. The O.K. bit is then set to one, indicating that
the proper data is in the level. The operation is complete at this
point unless the forwarding bit is set. In this case, the data must
be forwarded to the level designated by the forwarding address.
This procedure continues from level to level as long as the data
continues to arrive into a level whose forwarding bit is set. This
procedure automatically supplies all operands present having
identical data addresses with the proper data, without additional
memory references.

17

y

DOES I3 PREVENT

FETCH
| |
NO YES WAIT
IS THE BRING
BIT SET FOR
| LEVEL C2
]
YES NO
|]

IS THE BUS FREE (¢

| l
YES NO WAIT

A 4
IS MEMORY FREE [€—

YES NO WAIT ADVANCE FETCH
COUNTER (C2)

START DATA FETCH. SET _J

RETURN ADDRESS TO LEVEL
C2. SET BRING BIT FOR
C2 TO ZERO

FIGURE 7. Data fetch procedure.

i8

c

DOES I, PREVENT STORE

L]

Yis NO WAIT

IS THE STORE BIT

l"—— SET FOR LEVEL C3
]

YES NO
2
IS O.X. BIT SET
FOR LEVEL C3 “l
1 1
Yis NO WAIT
IS THE MEMORY
CORRESPONDING TO
ADVANCE STORE
DA FOR C3 FREE —®| COUNTER(C3)
| | [3
YES NO WAIT

J' LI

PERFORM DATA STORE AND SET
STORE BIT FOR C3 TO ZERO

FIGURE 8. Data store procedure.

19

v

IS DATA COMING FROM
MEMORY BUS

Y T |
NO YES
)

PLACE DATA INTO LEVEL
CORRESPONDING TO RETURN
ADDRESS.

SET OK. BIT TO ONE

Y

IS F BIT SET
IN THAT LEVEL

YES

v
SET F BIT TO ZERO j¢—
* v
PLACE DATA IN LEVEL
INDICATED BY FORWARDING
ADDRESS AND SET O.K.
BIT IN THAT LEVEL TO ONE

v

IS F BIT SET
IN THAT LEVEL

WAIT

NO YES

FIGURE 9. Procedure for placing data into virtual memory.

20

Logic of Removing Instructions from the Virtual Memory

Observing Figure 10, we notice that as the arithmetic unit completes
an instruction it checks to see if the next instruction in the virtual
memory is ready to be executed (indicated by interlock I4).

Note: The operation may be an unconditional branch, a conditional
branch, or an index type siore, as well as a normal bring or store
type instruction involving the accumulator. Figure 10 shows only
the cases which involve the universal accumulator. Instructions
such as the unconditional branches are merely ignored at this

point. They are carried along only to provide the data for recovery
in the event an interrupt occurs. The execution of the conditional
branches on arithmetic results is described in the next section.

If the next instruction marked by counter C4 is ready, it is fed into
the arithmetic unit. If it is a store type, the data is gated from

the accumulator into the data field of level C4, and the OK bit is set
to one. If the forwarding bit of the level is set, a forwarding pro-
cedure in this case is essential for the proper logical operation of
the camputer, whereas in the bring case it is a time-saver only.

If the instruction is not a store type, the arithmetic unit must hold up
until the O. K. bit for the level is set When the O. K. bit is set, the

instruction is gated into the arithmetic unit and executed.

Logic of Interrupt Procedure

If for any cause an interrupt (or trap) from a special condition
occurs, the instruction which is being executed in the arithmetic

is completed. However, the next instruction is not executed in
spite of the fact all the data preparation for it may have been com-
pleted. The address in the IA (instruction address) field will serve
as the value to reset the instruction counter if it is desired. The
Virtual Memory is initialized, i.e., set to the starting conditions

of an interrupt, with the exception that all store orders which have
already received data from the accumulators must be executed first.

Note: If the interrupt is of such a nature that the normal flow of
instructions is not resumed, the procedure of storing the modified
values of the index registers in the Virtual Memory gives logically
correct results, i.e., the same as if the interrupt had occured
before the indexing took place.

2]

| 1

|IS THE ARITHMETIC UNIT BUSYI‘
WTT DOING AN INSTRUCTION

Y?S NIO
' DOES INTERLOCK I,
| ®IPREVENT PROCEEDING
WAIT | |
YES NO
| L 4
SEND INSTRUCTION FROM
LEVEL DESIGNATED BY Cq
TO ARITHMETIC UNIT
¥
IS THE INSTRUCTION |
[]A STORE TYPE "I
Yss NO
PLACE ACCUMULATOR ‘
CONTENTS IN C4 LEVEL IS THE O.K. BIT SET WAIT
AND SET O.K. BIT TO ONE I T
‘ YES NO
— v
iS F BIiT SET IN THAT ‘
LEVEL
I I EXECUTE THE INSTRUCTION
Yss NO
| ADVANCE C4 TO
SET F BIT TO ZERO '[Nr-:xr EVEL

PLACE DATA IN LEVEL
INDICATED BY FORWARDING
ADDRESS AND SET O.K. BIT
IN THAT LEVEL TO ONE

v

IS F BIT SET
IN THAT LEVEL

YES NO

FIGURE 10. Procedure for removing instructions from virtual memory.

22

IV, DESCRIPTION OF TIMING SIMULATION PROGRAM

A. General Considerations

During the logical design of Stretch it was necessary to prove the value
of the virtual memory concept and to assist in the selection of optimum
values of various system design parameters. Examples of such para-
meters are: The number of memory boxes, interlace and allocation

of memory addresses, and numbers of virtual memory levels. Also

of interest were trade-off factors for speeds of indexing arithmetic unit,
arithmetic unit, memories, etc.

In November 1957 the Timing Simulator (SIM - 2) described here was
written for the IBM 704, This program attempted to answer such ques-
tions quantitatively by simulatiné the time-wise operation of Stretch on
typical test programs coded in Stretch language.

The basic logic of the 704 program follows the principles just described
in the preceding section for the virtual memory. It should be stressed
that the simulator is a timing simulator and does not execute the in-
structions in an arithmetic sense. It traces the time-wise progress of
the instructions through the components of the computer, observing all
the interlocks and time delays necessary for correct representation of
the behavior of the machine,

One. of the fundamental concepts in the Stretch design is that of asynchron-
ous operation of the components. This means that there are a large
number of logical steps being executed at any one time in the computer,
each of them proceeding at its own rate. To simulate this flow of many
parallel continuous operations, we have broken the continuous time vari-
able into finite time steps. The basic time step is taken as 0.1 micro-
second in the simulator.

By taking 0.1 microsecond as our quantum of time, we are automatically
setting the scale of the smallest circuit entities which we will consider

as being those which accomplish complete functions in 0.1 microsecond
or few multiples thereof. Thus, by using this philosophy, and considering
many of the components of the computer as '"black boxes', we greatly
simplify the details which must be considered without introducing serious
timing inaccuracies.

Our experience has indicated that more information was gained by making
a large number of fast parameter studies using different configurations
and programs than could have been obtained by a very slow, detailed
simulation of a few runs with more precision per run. Even so, our

time scale is too fine to make serious input-output application studies.

These would require a simpler simulator having at least a factor of 10

coarser basic time interval.
23

B. Logic of the Simulator

In the asynchronous organization of Stretch there can be many major
components operating at any one time. To achieve this parallel effect
in the simulator we essentially '"hold time still'' and scan the entire
machine representation at each time step. Although every major block
of the program is traversed at each time step, if there is no activity
required in a given block, only a few tests need be made by the cocde.

If in this process it is determined that a given logical unit shouid do an
operation, the time interval required for the operation is obtained from a
table of constants. The speed of the various logical units can thus be
changed parametrically by changing the values in the tables. A constant
obtained from the tables is inserted into a memory location called the
time counter for that unit. At each time step the program reduces this
counter by one until it reaches zero. Thus, the fact that the counter is
non-zero can be used to indicate that the particular logical unit is busy
and not available to service other requests. When the counter is zero
the unit can consider a new input.

In addition to the time counters many of the logical blocks contain other
conditions or interlocks which affect the operation of the block. These
conditions are stored in the program and tested before action is under-
taken.

It is interesting to note that since the simulator simulates timing only,
not the arithmetic or indexing functions, the sequence instructions to be
executed must be furnished as a ''string' with all loops unwound. How-
ever, to make the computer behave as it actually would, the loops must
be furnished with ''wrong way' paths given for the cases where the
computer would take such paths. Also one must furnish more than
enough information along such paths since it is difficult to predict in
advance how far the computer will get down the wrong path before it is
called back.

Parameters are changed from one run to another by use of control cards.
The control cards are set up in such a way that any number of parameters
may be changed between runs. Results are given either as detailed tim-
ing charts or as summary listings for each problem. The usual pro-
cedure has been to print only summary results while making a series of
parameter studies. The detailed timing charts as printed on the 704

for most problems would be abait 50 feet long for each run. Since over
1000 cases have been run, it is clear that only a few cases could be printed
in full detail. These are particularly useful in seeking the causes of
conflicts which slow the computer,

24

C. Results of Parameter Studies

When the simulator program was completed, we undertook a series of
studies in which the main parameters describing the Stretch system were
varied one or two at a time in order to get a measure for the importance
of different effects. After this we began to specialize the studies towards
answering specific questions in the Stretch design.

The simplified flow diagram in Figure 11 indicates the order in which
the subroutines for the various logical units are executed at each time
step. Using the types of techniques just described above, the logical
subroutines simulate the action of the components of the computer such
as the virtual memory, arithmetic unit, etc.

V. SOME RESULTS OF THE SIMULATION STUDIES

Figure 12 shows examples of the type of output listings given by the sim-
ulator. Figure 12 is a piece of a long timing chart with each line of
printing representing 0.1 microsecond of time. The columns represent
the various components of the computer. On the left and right are timing
counts subdividing each microsecond. On the far right are conflict
indicators (''C't on the charts) and waiting indicators, "W, which indicate
when interlocks prevent operations from proceeding.

The 2nd column, II, gives the number of the instruction being indexed.
The 4th column, AU, gives the number of the instruction using the
arithmetic unit. The next four columns represent the instructions using
the memory buses. The columns labeled X-, F-, and M- represent the
index, fast, and main memories. A string of '"X's'" in the columns re-
presents the cycle time of the memory. The number indicates the
instruction using the memory and the number of times which it is re-
peated gives the readout time of the memory. The columns L- indicate
which instruction is located in the virtual memory levels. The other
columns are for details in analysis and need not be considered here.

Five of the test problems used most frequently are described below.
Other test problems were used for specific studies, but since the results
were similar for all problems of a given type, we gradually discontinued
using them. The following were originally selected as being typical of
different classes of problems.

1. Mesh Problem - Part of an hydrodynamics problem from Los
Alamos. It contains a more or less ''average' mixture of instruc-
tions for scientific problems: 85% floating point instructions, 14%
index modification instructions, and 1% VFL. Itis usually arithme-
tic unit limited.

25

e |
— 2

N-OWO~NONH O

i

15

INITIALIZATION

ARITHMETIC UNIT

‘DECODE OPERATIONS

VIRTUAL MEMORY

INDEXING ARITHMETIC UNIT

BUS FROM MEMORY

BUS TO MEMORY

I7/0 REFERENCES TO MEMORY

V.M. STORE REFERENCES TO MEMORY
V.M. FETCH REFERENCES TO MEMORY
[.A.U. REFERENCES TO MEMORY
INSTRUCTION FETCH REFERENCES TO MEMORY
COUNT-DOWN TIME '
PRINT DETAILED LISTING

SUMMARIZE AND PRINT

FIGURE 11. SIM - 2 simplified flow diagram.

26

O 1S AU IF IM OF OM X1 X2 F1 F2 F3 F4 M1 M2 M3 M4 M5 M8 M7 M8 L1 L2 L3 14 L5 L8 L7 L8 FD MD MC

PROJECT 7000 SIMULATOR 2 COCKE & KOLSKY NOV §7

cw
Ccw
w
w
w
w
W
w
w
w
w
w
w
w
w
w
W
w
w
W
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
C
Cw

O U

10
1

A 1 In|wd =it~ ==

i | ® w0 e-fr= @ Ao unnu
11111111111111111‘L11555555555555555555.55999999
22222222222222222222‘6666863666666.68668636
38333333333333333333377777777777777777
N N W W B W | ¢ W 5 00| oo 0o o0} oo cof o0 cofoo eof
Bl e o (i e e ¢
:Xvwmﬂwmﬂ.ﬂ.vmﬂxxxxxxxxxxxx

HQQHHQHMXXXXXXXXXXXX
XN NPy e] N el gy Rl

» »® »” » » ”
| ¥ w =]
= oo w W =l @l =l

| 00 e
i~ o o) w) e @l o

al -] © AR whoww wiw |o
11241124112411224111122411241122.4112224111241122241

haliad laliad ialial nlial talallinlial Bl Ko hat Rl IO B- 1 - BN Y PN LR £V wjw Biw |© D® |- fr-~] ©]o w|w o o ale | 318 89
123453739m123156789m123458789m128458789m123456789m123456789m1234

8 710 9
8 710 9

Listing of simulator print-out,
27

FIGURE 12.

Monte Carlo Branching Problem - Part of an actual Monte Carlo
neutron diffusion code. It represents a chain of logical decisions
with very little arithmetic in between. It contains 47% floating point,
15% index modification instructions, and 36% branches of the indi-
cator and unconditional types. It is largely instruction-access
limited.

Reactor Problem - The inner loop of a neutron diffusion problem,
It consists of 90% floating point arithmetic (39% of which are mul-
tiplys) and 10% index modification instructions. It is almost en-
tirely arithmetic unit limited.

Computer Test Problem - The evaluation of a polynomial using
computed indices. It has 71% floating point, 10% index modifica-
tion, 6% VFL and 13% indi cator branches. It is usually arithmetic
unit limited, but not for all configurations.

Simultaneous Equations - The inner loop of a matrix inversion
routine 67% floating point and 33% index modification. Arithmetic
and logic are about equally important. It is limited both by arith-
metic and instruction-access speeds.

A. Speed vs Number of Levels of Virtual Memory

Figure 13 shows the effect on computer performance of varying the num-
ber of levels of virtual memory. Curves for the Monte Carlo and Mesh
Calculations with two sets of arithmetic and indexing arithmetic speeds
are shown. The AU times given are averages for all operations. A
number of interesting results are apparent from these curves:

1.

There is a tremendous gain to be had in going to the virtual memory
organization. The point for ''0 levels'' means that the arithmetic
unit is tied directly to the instruction preparation unit, although
simple Indexing-Execution overlap is still possible.

The gain in performance goes up very rapidly for the first two
levels then rises more slowly for the rest of the range.

A large number of levels does the Monte Carlo problem less good
than the Mesh problem because constant branching in the former
spoils the flow of instructions. Notice that the curve for the
Monte Carlo problem actually decreases slightly beyond six levels.
This phenomenom is a result of memory conflicts caused by ex-
traneous memory references started by the computer running
ahead on the wrong-way paths of branches.

28

SPEED

120 I~

MESH CALC. WITH
10 | AU TIME 0.64us
IAU TIME 0.6us

100 |-
90 -
80 -
70 MESH CALC. WITH
AU TIME 1.28us
_ — ———=— IAU TIME 14gs
60 » ’-—-—-‘“”
~
//
50F v/ MONTE CARLO CALC.

AU TIME 0.64us
a0l / " IAU TIME 0.6us
30} MONTE CARLO CALC,

e __ AU TIME |.28ps
20F -—"" IAU TIME |4us

0

ob—1t 1 11|
o | 2 3 4 5 6 T 8

NO. LEVELS OF LOOK-AHEAD

FIGURE 13. Computer speed vs. number of levels of look-ahead registers:
4 main memories 2.0 psec; 2 fast memories 0.6 pusec; for
two sets of arithmetic speeds.

29

4. The computer performance on 2 given problem is clearly less for
slower arithmetic speeds. However, it is important to note that
the sensitivityof the performance is also less for slower arithme-
tic speeds. The virtual memory improves the performance in
either case, but it is not a substitute for a fast arithmetic unit.

B. Speed vs Number of Main Memory Units

Figure 14 shows how internal computer performance varies with the

total number of memory units for a particular problem. The entire
calculation is assumed to be contained in memory for all cases. The
speed gain from overlapping memories is quite apparent from the graphs.

The speed differential between having and not having instructions separated
from data arises from delays in instruction fetches caused by the mem-
ory units being busy with data. The size of this effect varies from problem
to problem, being less pronounced for problems which are arithmetic
limited and more for logical problems.

The "X's'" on the graph show the effect of replacing the 0.6 usec in-
struction memories by a pair of 2.0 usec memories. The resulting
performance change is small for the Mesh problem, which is arithmetic
limited, but large for the instruction-fetch limited Monte Carlo problem.

C. Speed vs Arithmetic Unit and Indexing Arithmetic Unit Times

Although everyone realizes the importance of arithmetic speed on overall
computer performance, it was not until the simulator results became
available that the true importance of the indexing arithmetic speeds

was recognized. Figures 15 and 16 show a two parameter family of
curves giving the computer speed as a function of the AU and IAU times.

Figure 16, in which the arithmetic time is the abscissa, shows an in-
teresting '"'saturation' effect where the computer performance is inde-
pendent of AU speed below some critical value. Thus it makes no sense
to strain AU speeds if the IAU is not improved to match., The curves in
Figure 15 show the same effect, i.e., the IAU speed serves as a
""ceiling' on performance beyond which the AU speed cannot pass.

D. Arithmetic Unit Efficiency

One fallacy which is frequently quoted is that the goal of improved com-
puter organization is to increase the arithmetic unit efficiency. Actually
there are two reasons why this is not the goal in itself. The first is

30

SPEED

120
1o
100
90
80
70
60
50
40
30
20

10

MESH CALC. WITH REGULAR

/SEPARATE 0.6us FAST MEM.

B MESH SEPARATE
2.0ps INSTR. MEM.
[~ s
/’/
I MESH CALC WITH DATA
, AND INSTR SHARING SAME
y 20us MAIN MEM BOXES
B Ve
7/
L MONTE CARLO WITH REGULAR
/ SEPARATE 0.6us FAST MEM.
e ~ _MONTE CARLO SEPARATE
»” 20us INSTR.MEM.
X -
- - \MONTE CARLO WITH DATA
AND INSTR SHARING SAME
- 2.0us MAIN MEM. BOXES
| i] | 1 |]]
O | 2 3 4 5 6 7 8

NO. MAIN MEMORY BOXES

FIGURE 14. Computer speed vs. number of main memory boxes: 4 levels

LA; 0.6 psec IAU time; 0.64 pusec AU time.

31

SPEED

R{ON o

100 |- =0.64

90 F
=0.96
80 I

20l =128

=1.50
60

50 } MESH caLc
40 | N

30 | S~
20 |-

~N
\-} MONTE CARLO CALC.
10 |

0 | | | | |
0) 0.5 10 15 2.0 2.5
INDEXING ARITHMETIC TIME (usec)

(AVERAGE TIME TO INDEX ONE INSTRUCTION INCL. DECODE
AND STORING MODIFIED ADDR)

FIGURE 15. Computer speed vs. indexing arithmetic times for various
arithmetic unit times: 4 main memories 2.0 psec; 2 fast
memories 0.6 psec; 4 levels of look-ahead.

32

120

110

100

90

80

70

col- \
1AU=1.8,us FOR MESH CALC

S0 1AU=06us T~

LI W OIS G S G

a0k T == FOR MONTE CARLO CALC,

SPEED

30

IO

0 1 i 1 1 1
0 05 10 15 20 25

AVERAGE ARITHMETIC TIME (usec)
(EXECUTION TIME FOR "AVERAGE" OPERATION)

FIGURE 16. Computer speed vs. arithmetic times for various indexing
arithmetic unit times: 4 main memories 2.0 psec; 2 fast
memories 0.6 psec; 4 levels of look-ahead.

33

that arithmetic efficiency depends strongly on the mixture of arithmetic
and logic in a given problem so that a general purpose computer cannot
hope to give equally high percentage utility to all. The second reason is
that the simplest way to increase the arithmetic unit efficiency in any
asynchronous case is to slow down the arithmetic unit!

The real goal of improved organization is maximum overall computer
performance for minimum cost. One will tend to increase the arithmetic
unit speed as long as its percent efficiency is reasonable for a variety

of problems. One will stop this process when the overall performance
gain no longer matches the increase in hardware and complexity. Thus
the arithmetic unit efficiency is a by-product of this design process, not
the prime variable.

E. Speed vs. Concurrent Input-Output Activity

Because of the relative time scales of I/O activity and the CPU pro-
cessing speeds, the simulator cannot take in account the availability

or non-availability of data from I/O on the program being run. However,
we can observe the effect on the computation of the I/O devices operating
at different rates simultaneously with computing.

Using the Stretch control word philosophy, it is possible to have a num-
ber of input-output units operating at the same time the Central Pro-
cessing Unit is running. The Basic Exchange can reach a peak rate of 1
word every 10 microseconds. The high speed disk normally operates at

1 word every 4 microseconds. Since the mechanical devices take priority
over the CPU in addressing memory, the computation slows down because
of memory-busy conflicts.

Figure 17 shows an example of how internal compnuting speed is slowed as
the I/O word rates are varied continuously. At the theoretical '"choke off"
the I/O devices take all the memory cycles available and stop the calcula-
tion. Notice that this condition can never arise for any I/O rates presently
attainable,

A Stretch system with only 1 or 2 memory units has less performance than
a larger one for three reasons: (1) The top speed of the system is re-
duced by the loss of memory overlap, (2) it has a larger I/O penalty

when I/O is run concurrently with the computation, and (3) the smaller
amount of data which can be held in the memory at one time increases

the amount of I/O activity needed to do the job. Note, however, that
increasing the memory size on a computer of conventional organization
only improves the third area.

34

o4-BASE_DATA §_'N§TBS_M'§§P.'§.‘.‘JEM§. _______________
! ! 4 MEMORY UNITS
| ' |
- -+ 1
10% ! |
! |
| | 2 MEMORY UNITS o
_200/0.. : ‘:",—- _____ — — m——
[_ [
a ! R :
- O/, &
ﬁ 30% : / \
s 1 ' l
z | '
—-40% 1 I/ . |
% | | |
g |]
T ["
© -50% 1 I ! !
5 ' | IMEMORY UNIT _ __ —— —
8 ! ' i — —_—
L -60% 1 | -t
- |
') // |
I | / |
-70% 1 I |
Lo/ :
Y n
I /\ |
-80%1= | | /| |
L | [#—HIGH SPEED |
1| I/ | DISK RATE BASIC EXCHANGE
1 | | PEAK RATE
-900/0-. g I ’ : l
18] / | ! FOR MONTE CARLO PROB
z i
i I |
_'OOQ/ : I = : : Il | A L { L L 1 'l :] ' . 4 = i i 1] N |
° 5 10 15 20 25

WORD RATE-MICROSECONDS BETWEEN CONSECUTIVE WORDS

FIGURE 17. Internal computing speed. Percentage reduction in speed
caused by input-output devices referencing memory at different
rates while the calculation is proceeding.

35

F. A Study of Branching on Arithmetic Results in Stretch

One penalty of the non-sequential preparation and execution of instruc-
tions used in Stretch is that if there is a branch in the problem code
it spoils the smooth flow of instructions to the indexing arithmetic unit.
Any branch in a program will cause some delay, but the most serious
ones are the branches on arithmetic results which cannot be detected
by the indexing arithmetic unit in advance.

There are two fundamental ways in which branches on arithmetic unit
results can be handled by the computer.

1, The computer can stop the flow of instructions until the arithmetic
unit has completed the preceding operation so that the result is
known, then fetch the next correct instruction. This places a
delay on every AU result branch whether taken or not.

2. The computer can ''guess' which way the branc is going to go before
it is taken and proceed with fetching and preparing the instructions
along one path with the understanding that if the guess was wrong,
these instructions must be discarded and the correct path taken
instead.

A detailed series of simulator runs were made to study this situation and
to decide which way Stretch should be designed. Some of the general
observations were:

i. The periormance variation in a problem with considerable arithme-
tic data branching can vary by approximately + 15% depending on
the way in which the branches are handled.

2. Holding-up on every branch seems to be less desirable than any
of the guessing procedures. Some time is lost whenever a branch
is executed rather than proceeding to the next instruction. Unless
there is an unusual situation in which there is a very large pro-
bability that the branch will always be taken, the least time will be
lost if one assumes that the branch is not taken.

3. The theoretically highest performance would be obtained if each
branch had an extra ''guess bit'" which would permit the programmer
to specify which way he estimates each branch will most likely go.
However, this would place a considerable extra burden on the pro-
grammer for the gains promised. (It also uses up many valuable
OP codes.)

36

4. It is realized that there is a "feedback!' in such decisions because
the way in which the machine guesses the branches will influence
future programmers to write their codes to take advantage of the
speed gain. The result is that the statistics of the future will be
biased in favor of the system chosen for the machine, and thus
""prove' that it was the right decision!

ACKNOWLEDGEMENTS

The general idea of 'look-ahead' was under consideration by many
people in IBM before the authors became involved. What is represented
here is a realization of the detailed logic of look-ahead, similar enough
to Stretch for practical simulation purposes. The actual precise detail
of the logic as it appears in the Stretch computer represents, of course,
the accomplishments of many individuals in the Stretch project.

37

¥

IBM Prepared by Laboratory Communications, Data Systems Division, Product Development Laboratory

International Business Machines Corporation, Poughkeepsie, New York Printed in U. S. A. 1959
®

4356

—
N
pot
T
L)

	00
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	xBack

